FORMER DARBY DRUGS DISTRIBUTION CENTER 80-100 BANKS AVENUE ROCKVILLE CENTRE, NEW YORK BROWNFIELD CLEANUP PROGRAM ID: C130140

SUPPLEMENTAL REMEDIAL INVESTIGATION REPORT

Submitted To:

New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, New York 12233-7015

Prepared For:

AvalonBay Communities, Inc. 135 Pinelawn Road, Suite 130 South Melville, New York 11747

Prepared By:

P.W. Grosser Consulting, Inc. 630 Johnson Avenue, Suite 7 Bohemia, New York 11716 Phone: 631-589-6353 Fax: 631-589-8705 Kris Almskog, Senior Project Manager Thomas Melia, Senior Hydrogeologist

krisa@pwgrosser.com thomasm@pwgrosser.com

PWGC Project Number: AVB0801

P.W. GROSSER CONSULTING, INC. PROJECT No. AVB0801

SUPPLEMENTAL REMEDIAL INVESTIGATION REPORT

FORMER DARBY DRUGS DISTRIBUTION CENTER
80-100 BANKS AVENUE
ROCKVILLE CENTER, NEW YORK
BROWNFIELD CLEANUP PROGRAM ID: C130140

November 24, 2009

TABLE	OF CON	NTENTS	PAGE
1.0	INTRO	DDUCTION	1
	1.1	Site Description	
	1.2	Site History	
	1.3	Project Background	
	1.4	Previous Investigations	
		1.4.1 Preliminary Soils and Foundation Investigation Report	
		1.4.2 Phase I Environmental Site Assessment	
		1.4.3 Phase II Environmental Investigation	
		1.4.4 Remedial Investigation	
2.0	INVES	STIGATION	
	2.1	Field Investigation and Technical Approach	
	2.2	Geophysical Survey	
		2.2.1 Ground Penetrating Radar/Pipe Tracing	
		2.2.2 Dye/Flush Testing	
		2.2.3 Gamma Logging	
	2.3	Leaching Structure Characterization	
	2.0	2.3.1 Storm Water Drainage Structures	
		2.3.2 Industrial Discharge Structures	
	2.4	Source Area Delineation	
	2.5	Soil and Groundwater Evaluation	
	2.0	2.5.1 Soil Borings	
		2.5.2 Groundwater Sampling Points	
		2.5.3 Supply, Diffusion and Monitoring Well Sampling	
	2.6	Evaluation of Groundwater Quality beneath Clay Layer	
	2.7	Soil Vapor Evaluation	
	2.7	Data Analysis	
3.0		ROGEOLOGIC ASSESSMENT AND PHYSICAL SETTING	
3.0	3.1	Site Topography	
	3.1	Surrounding Land Use	
	3.3	Regional Geology/Hydrogeology	
	3.4	Site Geology/Hydrogeology	
4.0		IRE AND EXTENT OF CONTAMINATION	
4.0	4.1	Identification of Source Areas	
	4.1	Soil Impacts	
	4.2	4.2.1 Additional Source Area Delineation	
		4.2.1 Additional source Area Delineation	
		4.2.3 Storm Water Drainage Structures	
		4.2.4 Industrial Leaching Pools	
	4.3		
	4.3	Groundwater Impacts	
		no. i onaliew Greanawater	20
	1 1	4.3.2 Deep Groundwater	
	4.4 4.5	Soil-Vapor Impacts	
	4.3	Qualitative Exposure Assessment	
		4.5.1 Water Supply Wells	
	1 4	·	
	4.6	Quality Assurance/Quality Control	
		4.6.1 QA/QC Samples	
г о	CON	4.6.2 Data Usability and Validation	
5.0		CLUSIONS AND RECOMMENDATIONS	
	5.1	Conclusions F. 1.1 Source Areas	
		5.1.1 Source Areas	
		5.1.2 Soil	
		5.1.3 Groundwater	
		5.1.4 Soil Vapor	
	5.2	Recommendations	
		5.2.1 Responsible Party	
	BE	5.2.2 Volunteer	
6.0	KEFER	RENCES	40

FIGURES

Figure 1

Site Location Map

Figure 2	Site Plan		
Figure 3	Subsurface Drainage Structure Locations		
Figure 4	Soil Boring Locations		
	Figure 5 Historic Soil Sample Locations and Results Figure 6 Shallow Groundwater Sample Locations		
Figure 7			
Figure 8	·		
Figure 9	Soil-Vapor Sample Locations		
Figure 10	Surrounding Land Use		
Figure 11	Geologic Cross Sections A & B		
Figure 12			
Figure 13			
Figure 14	Deep Groundwater Contour Map		
TABLES			
Table 1	Subsurface Drainage Structure Construction Details		
Table 1	Monitoring/Supply/Diffusion Well Construction Details		
Table 3	Soil Sample Analytical Data Summary – Volatile Organic Compounds		
Table 3			
Table 5	Soil Sample Analytical Data Summary - Semi-Volatile Organic Compounds Soil Sample Analytical Data Summary - Pesticides/PCBs/Metals		
Table 6	Subsurface Drainage Structure Sample Analytical Data Summary – Volatile Organic Compounds		
Table 7	Subsurface Drainage Structure Sample Analytical Data Summary – Volatile Organic Compounds Subsurface Drainage Structure Sample Analytical Data Summary – Semi-Volatile Organic Compounds		
Table 8	Subsurface Drainage Structure Sample Analytical Data Summary – Semi-Volatile Organic Compounds Subsurface Drainage Structure Sample Analytical Data Summary – Metals		
Table 9	Historic Storm Drain Sample Analytical Data Summary - Volatile Organic Compounds		
Table 10	Historic Storm Drain Sample Analytical Data Summary – Semi-Volatile Organic Compounds		
Table 11	Historic Storm Drain Sample Analytical Data Summary – Metals		
Table 12	Groundwater Sample Analytical Data Summary – Volatile Organic Compounds		
Table 13	Groundwater Sample Analytical Data Summary – Volatile Organic Compounds Groundwater Sample Analytical Data Summary – Semi-Volatile Organic Compounds		
Table 14	Groundwater Sample Analytical Data Summary - Pesticides/PCBs/Metals		
Table 15	Groundwater Vertical Profile Sample Analytical Data Summary - Volatile Organic Compounds		
Table 16	Soil-Vapor Sample Analytical Data Summary – Volatile Organic Compounds		
Table 17	Public Supply Well Construction Details		
Table 18	Groundwater QA/QC Sample Analytical Data Summary – Volatile Organic Compounds		
Table 19	Groundwater QA/QC Sample Analytical Data Summary – Semi-Volatile Organic Compounds		
Table 20	Groundwater QA/QC Sample Analytical Data Summary – Pesticides/PCBs/Metals		
Table 21	Soil QA/QC Sample Analytical Data Summary – Volatile Organic Compounds		
Table 22	Soil QA/QC Sample Analytical Data Summary - Semi-Volatile Organic Compounds		
Table 23	Soil QA/QC Sample Analytical Data Summary – Pesticides/PCBs/Metals		
Table 24	Trip Blank Sample Analytical Data Summary – Volatile Organic Compounds		

APPENDICES

Appendix A	NYSDEC Correspondence
Appendix B	Gamma Logs
Appendix C	Soil Boring Logs
Appendix D	Well Sampling Logs
Appendix E	Well Construction Logs
Appendix F	Laboratory Analytical Reports
Appendix G	Data Validation Report

Due to size constraints, Appendices E & F have not been reproduced in this volume and are included in the attached electronic version of this report.

1.0 INTRODUCTION

P.W. Grosser Consulting Inc. (PWGC) was contracted by Avalon Bay Communities, Inc. (Avalon Bay) of Melville, New York and Darby Drug Co., Inc. (Darby) of Westbury, New York to perform a Supplemental Remedial Investigation (RI) at the property located at 80-100 Banks Avenue, Rockville Centre, New York. Redevelopment plans for the property, the former Darby Drugs pharmaceutical product warehouse and distribution center, include two residential complexes and associated grounds. Based on the historical use of the property and the confirmed presence of chlorinated solvents, the site was accepted into the New York State Brownfields Cleanup Program (BCP). This report has been prepared to document the results of the Supplemental RI performed at the site, as required under the BCP.

Areas of concern addressed by this Supplemental RI are detailed in the approved Supplemental Remedial Investigation Work Plan (SRIWP) prepared by PWGC dated April 2008. Additional investigation activities were completed following a February 23, 2009 email request by NYSDEC and follow conversations. This Supplemental RI Report is intended to address potential areas of concern within the property boundary of the site only, and does not address areas of concern outside of the property boundary. The on-site and off-site components of this project have been separated into two Operable Units (OU) which will be managed by separate and distinct parties. The on-site component will be addressed under a Brownfield Cleanup Agreement between ARC Chase Partners, LLC, Avalon Bay Communities, Inc. (AvalonBay) and the New York State Department of Environmental Conservation (NYSDEC). The off-site component has been designated as Operable Unit 2 (OU2) and will be addressed under an Order on Consent between the NYSDEC and Darby Drug Group Companies, Inc. (Darby).

1.1 Site Description

The subject site is located at 80-100 Banks Avenue in the Village of Rockville Centre, New York. The site is located within the Town of Hempstead and Nassau County. The site is situated at the northwest corner of the intersection of Nassau Street and Banks Avenue. The property is identified as Section 38, Block 539, Lots 27 and 30 by the Nassau County Department of Assessment. The site is approximately 7.1 acres and is currently improved with a one-story, 150,000 square foot warehouse building and a 2-story 24,000 square foot office building, both of masonry construction. A Vicinity Map is included as **Figure 1**; a Site Plan is included as **Figure 2**.

The subject site was recently purchased by Avalon Bay and was formerly owned by Darby, which ceased operation at the site in November 2000. Darby had occupied the building since 1978 and operated it as a pharmaceutical product warehouse and distribution center. Demolition of the existing structures and the phased development of two residential buildings consisting of a 100,492 square foot (footprint) north complex and a 60,128 square foot (footprint) south complex are planned.

1.2 Site History

According to title information provided by Darby, the 80 Banks Avenue parcel was owned by the RVC Urban Renewal Agency until 1971, when it was sold to the partnership of Walter G. Stackler, Leonard L. Frank and Herbert Z. Gold. The parcel remained under the ownership of various forms of the original partnership until it was purchased by Darby Drug Co., Inc. in 1978. The 100 Banks Avenue parcel has a similar history and was owned by

the RVC Urban Renewal Agency prior to 1972. From 1972 to 1973 the title lists Stafgo Corporation as the owner. In 1973, ownership of the parcel was transferred by Stafgo Corporation to 420 Doughty Blvd Corporation, which merged with Darby Drug Co. Inc. in 1975. In 1993 the 80 Banks Avenue and 100 Banks Avenue property was transferred to Darby Group Companies, Inc by the successor-in-interest to Darby Drug Co., Inc.

Although Darby occupied the 80 Banks Avenue premises since 1978 and the 100 Banks Avenue property from 1973, no information regarding previous operators except as set forth above or tenants of either parcel has been identified other than Downen-Zier Knits, Inc. which leased the 80 Banks Avenue property from 1972 to 1978. Downen-Zier went bankrupt in 1978. Unverified information indicates that a rug cleaning or carpet manufacturing business may have occupied the property prior to Darby's acquisition of the 80 Banks Ave property; however, this could not be confirmed.

1.3 Project Background

The chlorinated solvent, tetrachloroethene (PCE), was first identified in shallow soil beneath the southwestern portion of the building, during a Phase II investigation performed at the site in November 2003. It is believed that PCE may have been released between 1972 and 1978, during the time that a textile company leased the southern portion of the site (80 Banks Avenue). A Remedial Investigation (RI), performed in accordance with NYSDEC Draft DER-10, Technical Guidance for Site Investigation and Remediation (DER10), was initiated in March 2004, to characterize the nature and extent of PCE in soil and groundwater at the site. The results of the investigation, as documented in the Draft RI Report (PWGC, 8/04), recommended an Interim Remedial Measure (IRM) to remove mobile and residual dense non-aqueous phase liquid (DNAPL). The site was accepted into New York State's Brownfield Clean-up Program (BCP), and a Brownfield Clean-up Agreement (BCA) was executed on June 29, 2005. Upon review of the RI Report, NYSDEC provided multiple comments in an August 15, 2005 letter, including providing further detail about initial investigation sample collection techniques and the need to further evaluate and investigate additional on-site areas of concern.

An IRM Work Plan was approved by the NYSDEC May 12, 2006. The IRM Work Plan addresses source areas of PCE contamination, by removing DNAPL that has accumulated at a clay boundary (11-17 ft below surface), and by excavating residually impacted soils down to the clay surface.

A September 20, 2007 NYSDEC letter to Environmental Business Consultants, Inc. (EBC), the consultant representing Darby for the off-site investigation portion of the BCP, requested additional areas of concern to be investigated as part of the Work Plan for OU2 (off-site). Although this letter focuses on the previously submitted OU2 Work Plan, several of the comments requested further investigation within the property boundary, including investigation of 14 leaching pools on the western side of the building and groundwater sampling outside the source area beneath the clay layer. The letter included a copy of a 1971 State Pollution Discharge Elimination System Permit (SPDES) application for the site which detailed the proposed locations of three supply wells, four diffusion wells, and 14 leaching pools located on the western portion of the property. Although the presence of these structures was suspected during previous investigation, the application illustrates the likely locations of the leaching pool system.

A Supplemental Remedial Investigation Work Plan (SRIWP) to address on-site areas of concern was submitted to the NYSDEC by PWGC on behalf of AvalonBay in April 2008. The SRIWP was approved by the NYSDEC and released for public comment on May 12, 2008. Following close of the public comment period, PWGC submitted a response to comments amending the SRIWP to the NYSDEC (dated August 6, 2008). The NYSDEC granted final approval to the SRIWP on August 7, 2008. Copies of PWGC's response to public comments and copies of NYSDEC correspondence are included in **Appendix A**. In February 2009, following completion of initial supplemental investigation activities and NYSDEC review of the groundwater data, NYSDEC requested that three additional monitoring wells be installed in the northern portion of the site and several existing monitoring wells be resampled

1.4 Previous Investigations

for metals analysis.

1.4.1 Preliminary Soils and Foundation Investigation Report

Melick-Tully and Associates (MT&A) installed a number of borings at the subject property as part of a geotechnical analysis of site conditions to assist in the design of the proposed apartment buildings. The geotechnical investigation initially consisted of six soil borings with a recommendation that monitoring wells be installed for the basement design. Six monitoring wells were installed between January and May 2003. Based on MT&A geotechnical borings, geology beneath the site consists of one to four feet of sand fill material underlain by orange-tan sand with gravel to a depth of approximately 12 to 16 feet below grade. Beneath the sand and gravel unit is black, silty clay, which was determined to be approximately nine feet thick.

MT&A reported that the depth to groundwater at the site varies between five to nine feet below grade depending upon surface elevation. The water table was determined to exist within the sand unit situated above the black, silty clay unit. Groundwater flow was determined to vary from a westerly to a southerly direction as you move west to east across the site.

1.4.2 Phase I Environmental Site Assessment

A Phase I Environmental Site Assessment (Phase I ESA) was conducted by EcolSciences, Inc. (ESI) in March 2002 to identify potential recognized environmental conditions (RECs) associated with the subject site. The Phase I ESA included a review of available title and deed records, historical aerial photographs and maps, readily available local records, an environmental database search, including federal and state listings, and a site reconnaissance.

During site reconnaissance, ESI identified an electrical panel on the western wall of the southern warehouse area containing circuit breakers labeled "well pumps" and "dry cleaning still unit". In addition, six vertical steel pipes were discovered beneath square metal covers outside the building in the west parking area. Three of the pipes were located outside the building along the western wall and were believed to be inactive pumping wells for processing water. The remaining three pipes were located along the southern edge of the parking lot and were believed to be inactive injection wells.

The document search yielded no information on a dry cleaning operation, but records were obtained from the

Nassau County Department of Health (NCDH) detailing the proper removal of four heating oil underground

storage tanks (USTs). UST removals were witnessed by the NCDH; each tank excavation was observed to be clean

and no holes were identified in the tanks. ESI's Phase I ESA recommended the collection of soil samples in the vicinity of the former UST locations to verify that no discharges occurred, and a test boring program beneath the

concrete floor to assess potential impacts from possible former dry cleaning operation at the site.

1.4.3 Phase II Environmental Investigation

A Phase II Environmental Investigation was performed by ESI in November 2003. ESI identified a total of seven

areas of concern (AOC) as part of their scope of work. In addition to the former heating oil tanks and the former

potential dry cleaning still unit, other AOCs were identified as a result of further field observation and a

geophysical survey performed as part of the Phase II investigation. A total of nineteen borings were installed during the investigation with thirty-one soil samples submitted for analysis. Eleven groundwater samples were

collected and analyzed including five from soil boring locations and six from pre-existing monitoring wells installed

by MT&A. The AOCs identified by ESI and results of the Phase II Investigation are as follows:

North Fuel Oil UST

During the geophysical survey, an asphalt patch was identified near the northwest corner of the building,

adjacent to the loading dock area. This patch represented the area where two 5,000 gallon fuel-oil USTs were formerly located. As documented in the Phase I ESA report, the USTs were removed under the oversight of the

NCDH in 1995 when the heating system was converted to natural gas. The geophysical survey did not identify

anomalies indicative of the presence of USTs in the vicinity of the patch.

Three soil borings were installed in the vicinity of the patch, with soil samples collected from immediately above

the water table (7.5 feet below grade). Soil samples were collected to verify that a release did not occur from

the removed USTs, since endpoint samples were not collected during the tank removal. Samples were analyzed

for volatile organic compounds (VOCs) by USEPA Method 8260B and semi-volatile organic compounds (SVOCs)

by USEPA Method 8270 (base neutral [BN] compounds). Based on analytical data it did not appear that a

release occurred from the former fuel-oil USTs.

Southwest Fuel Oil UST

A second asphalt patch was identified outside the boiler room located within the southwest corner of the

warehouse building. According to the Phase I ESA, two 2,500 gallon USTs were removed from this area in 1995

when the heating system was converted to natural gas. The geophysical survey did not identify anomalies

indicative of the presence USTs in the vicinity of the patch. As with the northern UST location, three soil borings

were installed in the vicinity of the asphalt patch. Again, soil samples were collected from immediately above the

water table and analyzed for VOCs by USEPA Method 8260 and SVOCs by USEPA Method 8270 (BN). Based on

analytical data, it did not appear that a release had occurred from the former fuel-oil USTs.

Dry Cleaning Still Unit

Several soil borings were installed in the southwest portion of the site, both inside and outside of the building, to

assess potential impact from the suspected former presence of a dry cleaning unit, as noted in the Phase I ESA.

Shallow (<5 feet) and deep (immediately above the clay layer @ 12 to 16 feet below grade) samples were

collected and analyzed for VOCs by USEPA Method 8260. Soil sample analytical data identified significant

concentrations of tetrachloroethene (PCE), a compound commonly associated with dry cleaning processes. The

highest shallow (<5 ft) PCE concentrations found within the building were in samples collected from soil borings DC1 and DC4, at 93,000 ppb and 110,000 ppb respectively. The Recommended Soil Cleanup Objective (RSCO)

for PCE as specified in NYSDEC Technical and Administrative Guidance Memorandum (TAGM) 4046,

Determination of Soil Cleanup Objectives and Soil Cleanup Levels (January 24, 1994) is 1,400 ppb (note - TAGM

4046 RSCOs were used as cleanup objectives prior to the issuance of 6 NYCRR Part 375 Soil Cleanup Objectives in

December 2006; data collected prior to December 2006 are compared to the RSCOs since this investigation pre-

dated 6 NYCRR Part 375).

Higher PCE concentrations were detected at the clay surface (approximately 15.5 feet below grade) in samples

collected from soil borings DC2 and DC3, roughly 40 feet south of soil borings DC1 and DC4. PCE concentrations

at the clay layer were 110,000 ppb in the sample collected from soil boring DC2 and 19 million ppb in the sample

collected from soil boring DC3. Since the deeper samples were collected below the water table, the

concentration in excess of the pure product solubility detected in DC3 indicates that dense non-aqueous phase

liquid (DNAPL) is present above the clay.

PCE was detected at concentrations ranging from 2.4 ppb to 7,400 ppb in shallow soil samples collected from the

exterior of the southwestern portion of the warehouse building. The highest shallow PCE concentration was

detected in the sample collected from soil boring WP3. PCE was detected at concentrations ranging from 3.6

ppb to 2,100 ppb in deep soil samples collected from the exterior of the southwestern portion of the warehouse

building. The highest deep PCE concentration was detected in the sample collected from soil boring B2 location,

adjacent to the south wall of the building.

Exterior Subsurface Structure/Interior Battery Charging Area

The geophysical survey identified a potential rectangular subsurface structure adjacent to the asphalt patch

(former UST location) near the southwest corner of the building. Below grade piping, identified by magnetic

imaging, was identified leading from this potential structure toward the building in an area formerly used by Darby

as a battery charging area. A soil boring was installed through the potential structure and both shallow (above

the water table) and deep (above the clay) soil samples were collected. PCE was detected at 7.5 ppb and

7,400 ppb, respectively.

Potential Injection Wells

During the geophysical survey, below grade piping was identified from the southwest corner of the building to

three three-foot by three-foot vaults at the southwest properly boundary. Horizontal below grade piping was also

identified connecting the vaults. Each vault contained four-inch vertical piping assembly resembling a well head.

Groundwater was recorded at a depth of six feet below grade within in one of the suspected wells with the total

depth of the well measured at approximately 14 feet below grade.

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716
PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com

Two soil borings were installed adjacent to two separate vaults. Both shallow (above the water table) and deep

(above the clay) soil samples were collected and analyzed for VOCs by USEPA Method 8260. Very low

concentrations of PCE (2.4 and 2.6 ppb) were detected in the shallow soil samples. Concentrations in the deeper

soil samples varied significantly. The concentration of PCE from the area coinciding with the eastern most vault

was 3.6 ppb (soil boring WP1), while the concentration of PCE from the vicinity of the western most vault was

16,000 ppb (soil boring WP3), which exceeds the NYSDEC RSCO of 1,400 ppb.

Potential Vapor Vent

Vent duct work was observed leading from the area of the former dry cleaning still unit towards an outlet port on

the south exterior wall of the building. A soil boring was installed adjacent to the outside the vent port. A soil

sample from the interval above the clay was collected and analyzed for VOC by USEPA Method 8260. PCE was

detected at a concentration of 2,100 ppb.

Metal Shop Vent

Based on field observations, a metal shop was identified along the western wall of the building, approximately 130

feet north of the battery recharging area. A soil sample directly below the asphalt pavement was collected

outside of this part of the building, beneath an exterior vent port. The sample was analyzed for priority pollutant

metals by USEPA Method 6010B. Chromium (30.7 ppm), Copper (35.4 ppm), nickel (16.9 ppm), and zinc (105

ppm) were detected at concentrations exceeding their respective RSCOs. Based on the relatively low

concentrations detected and the collection of the sample immediately below the asphalt, it is unclear if the

detection of these compounds is associated with former on-site activities.

Groundwater Sampling Results

During the Phase II Investigation, ESI collected groundwater samples from five temporary groundwater sampling

points and six pre-existing monitoring wells installed by MT&A. Groundwater samples were analyzed for VOCs by

USEPA Method 8260. The results of the groundwater analyses identify PCE as the predominant compound

detected. The highest concentrations of PCE were detected adjacent to the west wall of the warehouse

building with concentrations ranging from 1,800 ppb to 5,800 ppb.

1.4.4 Remedial Investigation

A Remedial Investigation (RI) was conducted by PWGC in March 2004 to determine the nature and extent of

contamination at the site and to characterize potential threats to public health or the environment caused by the

release of hazardous substances, pollutants, or contaminants from the site. Previous investigations performed at

the site had identified a concentration of chlorinated VOCs, primarily PCE, in soils beneath the southwest portion

of the warehouse building. PCE impact is believed to have originated during the time that a textile company

(Downen-Zier Knits) and/or a rug cleaning or processing operation existed onsite (which may possibly have

occupied a portion of the premises prior to 1978).

The results of the RI confirmed the findings of the previous investigations and supported a release scenario of liquid

 $\hbox{phase PCE beneath the floor in the southwestern portion of the warehouse building. From there, PCE, as DNAPL,}\\$

migrated along the clay surface to a low point approximately 50 feet east of the release point. Based on PCE

concentrations in soil and groundwater, sufficient evidence existed to indicate that DNAPL was present beneath

the site.

A competent clay layer, reportedly measuring approximately nine feet thick, had been documented throughout

the site during the 2003 geotechnical investigation. The presence of clay appeared to have limited the vertical

migration of PCE in the soil column to a maximum depth of 18 feet below grade. The clay surface was deepest in

borings beneath the building and shallowest in borings at the property boundaries.

PCE impact in shallow soil, at concentrations exceeding the RSCO of 1,400 ppb, was limited to an area measuring

approximately 40 feet by 60 feet. PCE impact in deeper soils was found to be more extensive covering an area

roughly 180 feet by 160 feet. Significant PCE impact in soil was also found at the clay surface in samples collected

from beneath the north end of the west parking area, in the general vicinity of a suspected leaching structure.

The structure, if present, may have received VOC-contaminated process water from the building. The presence

of DNAPL and high PCE concentrations in soil was determined to be acting as a continuing source of

contamination to shallow groundwater beneath the site.

Based on groundwater sampling data, a shallow groundwater plume of chlorinated VOCs, primarily PCE, was

determined to be emanating from the source area beneath the southwestern portion of the warehouse building.

PCE was detected at concentrations exceed in the pure product solubility in soil and groundwater samples

collected from within the presumed source area, providing further evidence of DNAPL in this area. The plume

appeared to be migrating off-site toward the south. PCE was detected at concentrations up to 28,000 ppb in

groundwater samples collected at the south property line. Based on the historic use of the property, the plume

may have been in transit since 1978 or sometime prior.

High VOC concentrations were also detected in a single groundwater sample location (B9) at the western

property boundary, which does not appear to be related to the plume emanating from the known source area.

Dissolved VOCs at this location displayed a much higher ratio of 1,2-dichloroethene (1,2-DCE) and trichloroethene

(TCE) to PCE, indicating that reductive dechlorinization was occurring in this area. The origin of the VOCs

detected in the groundwater sample collected from B9 are unknown, but may be associated with a below grade

drainage structure suspected to be in the area.

The vertical migration of DNAPL appeared to have been contained by the presence of the clay layer beneath

the site. The RI recommended that, since chlorinated solvents have been known to cause desiccant fracturing of

certain clays, groundwater quality beneath the clay layer should be evaluated.

The isolated presence of PCE in the deep soil sample from soil boring B8 and the circular mark-outs from the ESI

geophysical survey, suggested that a drainage structure exists in the area which may have, at one time, received

processing waste from the building. If the structure is present, it may be the source of the VOCs in groundwater

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716
PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com

detected at groundwater sampling location B9 at the western property boundary. The RI recommended that, to investigate this issue, test pits should be installed at the circular mark-outs to determine if subsurface drainage structures are present. If drainage structures are present, samples should be collected to determine if they have been impacted by improper wastewater disposal, and if so, the extent of impact should be determined. Drain lines entering the structure should be traced to verify the point of origin, and to investigate the possibility of secondary drainage structures. Furthermore, the RI recommended that additional groundwater delineation should be performed in this area to identify the source and migration route of the VOCs detected in the groundwater sample collected from location B9.

Based on the results of the RI, PWGC recommended that a IRM consisting of the recovery of DNAPL from within the source area and sequenced excavation of PCE impacted soils from beneath the southwestern portion of the warehouse building. The excavation plan called for utilization of sheet piling installed to the clay surface to isolate sections of the source area for excavation and dewatering to prevent mixing of contaminated and clean groundwater.

2.0 INVESTIGATION

The purpose of the Supplemental RI was to collect data of sufficient quality and quantity to augment the March

2004 RI and adequately characterize the nature and extent of contamination at the site, evaluate contaminant migration, characterize the potential exposure to human health and the environment and select the most

appropriate remedial technology. This Supplemental RI is intended to address potential areas of concern within

the property boundary of the site only, and did not address areas of concern outside the property boundary.

Work was performed in accordance with the approved SRIWP and NYSDEC Draft DER-10 Technical Guidance for

Site Investigation and Remediation, December 2002.

2.1 Field Investigation and Technical Approach

The results of the preliminary soils and foundation investigation performed by MT&A, the Phase I and Phase II

Investigations performed by ESI, and the RI performed by PWGC were used as a guide in selecting field sampling

locations to verify subsurface conditions.

The primary objective of the work was to collect information and field data necessary to address NYSDEC

comments pertaining to on-site issues as detailed in correspondence dated August 15, 2005 and September 20,

2007 (see Appendix A).

The scope of work included the following tasks:

Ground penetrating radar (GPR) survey.

Characterization of leaching structures located at the property.

Evaluation of interior and exterior soil vapor quality.

• Evaluation of groundwater quality beneath the clay layer.

Further delineation of subsurface soil impacts in the vicinity of the suspected source area.

• Evaluation of soil and groundwater quality beneath the northern portion of the site.

2.2 Geophysical Survey

2.2.1 Ground Penetrating Radar/Pipe Tracing

In an effort to better determine outflow of the interior drains and piping and potential overflow structures related

to the known and suspected leaching pools, a geophysical survey was performed to identify the following:

Subsurface piping and discharge points associated with floor drains within the warehouse building.

• Discharge points of unidentified piping within the warehouse building.

• Locations of potential leaching structures beneath the property.

• Usage of each structure (i.e., storm water drainage, industrial discharge).

A geophysical investigation to identify the items detailed above was performed on August 28, 2008 by Utility

Detection, Inc. (UDI) of Melville, New York. The survey performed by UDI utilized ground penetrating radar (GPR),

a magnetometer and pipe snake to search for anomalies representative of leaching structures and piping based

on size and instrument response.

Multiple potential drainage structures (two floor drains and five 4-inch diameter pipes of undetermined usage) are

present within the existing building. Dye/flush testing performed during the March 2004 RI did not identify discharge points for these structures. During previous investigations, the presence of 24 on-site leaching structures,

believed to be storm drains were documented. Also present are two solid manhole covers at grade, which are

related to the municipal sanitary and storm sewer system lines running beneath the eastern portion of the site.

In addition to the previously identified floor drains, pipe runs and leaching structures, a site plan included in a

State Pollution Discharge Elimination System (SPDES) permit application for the site illustrated 14 leaching structures

within the western parking area, eight leaching structures within the southern parking area, three supply wells

outside the western wall of the warehouse building (near the southwest corner of the building) and four diffusion

wells along the western property boundary in the southern parking area.

Nine of the leaching structures identified in the 1971 SPDES permit site plan appear to be included among the 24

structures confirmed to be present at the site. The permit does not include information regarding the usage of the

leaching structures identified in the site plan. The locations of the diffusion wells and several leaching structures,

as illustrated in the 1971 SPDES permit application; do not correspond to the actual locations of the wells and

structures. A copy of the SPDES Permit is included in **Appendix A**.

A magnetometer and pipe snake were used to trace four 4-inch diameter pipes (cut off at grade) located

adjacent to the inside of the western wall of the warehouse building (near the southwest corner), one 4-inch

diameter pipe (cut off at grade) adjacent to the southern wall of the warehouse building and one floor drain

located in the southwest boiler room. Three of the pipes adjacent to the western wall were traced to the supply

wells identified outside that portion of the building. The fourth pipe located adjacent to the western wall was

traced south toward the diffusion well system where it met a "T" junction and a pipe running east-west parallel to

the southern property boundary from diffusion well DIFFW-01 to diffusion well DIFFW-04. The pipe located

adjacent to the southern wall and the floor drain in the south boiler room were obstructed at approximately two

feet below grade and could not be traced using the magnetometer/snake. The southern pipe and boiler room

floor drain were traced via test pits excavated outside the southern wall of the building. The 4-inch diameter pipe

adjacent to the southern wall was determined to be connected to a manifold/valve system related to the

diffusion well system in a vault located at the southern property boundary near diffusion well DIFFW-04. The floor

drain in the southern boiler room was determined to discharge to an exterior leaching structure (LP-01) not

finished to grade.

In addition to the magnetometer and pipe snake, a GPR survey was performed throughout the western and

southern parking areas to identify potential below grade leaching structures and anomalies. The presence of

nine structures (all finished to grade) throughout this area had been confirmed prior to implementation of the GPR

survey. The GPR survey identified 19 additional structures beneath the western and southern parking areas.

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716

Eighteen of the additional structures appeared to be storm drain overflow pools; one was determined to be an

industrial leaching pool (LP-01) which received discharge from the floor drain located within the southern boiler

room. The GPR survey did not identify any piping that would indicate that the storm drain structures beneath the

southern and western parking areas received discharge from within the warehouse building.

Overflow piping associated with on-site leaching structures was traced using a magnetometer and pipe snake to

identify potential unknown structures. No evidence of previously undetected structures was identified in storm

drains located within the northern parking area; no evidence indicating pools within the northern parking area

had received discharge from within the building was identified.

Following completion of the geophysical survey, test pits were excavated where leaching structures were

expected to be located based on the 1971 SPDES permit and/or the presence of overflow piping within identified

structures, but were not identified during the geophysical survey. Three test pit areas were excavated within the

southern and western parking areas at locations that corresponded to leaching structures locations in the SPDES

permit site plan. No structures were identified within these test pit areas. Two overflow pipes were identified within

one storm drain (DW-29) located outside the southern portion of the office building. Test pits excavated around

this pool identified one previously unknown overflow pool (DW-28). The discharge point, if any exists, of the

second overflow pipe could not be determined due to the presence of underground utilities in the area (i.e., electric and telephone lines) which limited the area in which additional exploratory excavation could be

performed.

Subsurface leaching structures and overflow piping identified by the geophysical survey and test pit areas are

illustrated in Figure 3.

2.2.2 Dye/Flush Testing

Dye/flush testing was performed on drains within the onsite structures to confirm discharge points. Based on

dye/flush testing:

Sinks and drains in the northern portion of the warehouse building (including the floor drain in the northern

boiler room and slop sink in a utility closet) discharge to the municipal sewer system via a sewer

connection at the east site of the office building.

Sinks and drains in the southern portion of the warehouse building (not including the floor drain in the

southern boiler room) discharge to the municipal sewer system via a sewer connection at the southeast

corner of the warehouse building.

The floor drain in the southern boiler room discharges to a leaching pool near the southwest corner of the

warehouse building (leaching pool LP-01).

Sinks and drains in the office building discharge to the municipal sewer system via a sewer connection at

the east site of the office building.

Discharge locations for floor drains and piping identified within the existing structures were confirmed by the

geophysical survey and/or dye/flush testing. Floor drain, piping and discharge locations are illustrated in Figure 3.

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716 PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com

2.2.3 Gamma Logging

In an effort to determine the depth and thickness of the clay layer and lithology beneath the clay layer, augers

were driven to 100 feet below grade following completion of vertical profile sampling at each location and a

gamma geophysical log was performed through the open augers. Following completion of gamma logging,

penetrations through the clay layer were sealed with bentonite pellets to a depth above the top of the clay layer

and augers were removed from the borehole. Gamma logs are included as Appendix B.

Results of the gamma logging at the vertical profile locations indicate that the highest gamma readings were

generally present from approximately 12 feet below grade to 30 feet below grade, followed by a zone of lower

gamma readings from 30 feet below grade to approximately 55 feet below grade, and then followed by another

increase in gamma readings from 55 feet below grade to 100 feet below grade. Elevated gamma readings are

generally indicative of fine silt and clay containing soils.

2.3 **Leaching Structure Characterization**

Sediment samples were collected from seven storm water drywells (identified as SD-1 through SD-7) during

implementation of the March 2004 RI. To determine if remaining on-site leaching structures had been impacted

by historic site operations, soil/sediment samples were collected from each on-site leaching structure (excluding

those from which samples were collected in 2004), including those identified during the geophysical survey/test

pit excavation. Samples were collected in accordance with United States Environmental Protection Agency

(USEPA) Underground Injection Control (UIC) program and Nassau County Department of Health (NCDH)

procedures.

Subsurface drainage structure locations are illustrated in Figure 3, and drainage structure construction details,

including structure ID, depth and diameter are summarized in Table 1. Based on inspection of subsurface

drainage structures and the observed depth to the clay layer present at the site, it does not appear that the

leaching structures extend beneath the clay layer.

2.3.1 Storm Water Drainage Structures

A total of 43 leaching structures were identified that appeared to be used primarily for storm water drainage.

One structure (DW-42) located in the northern loading dock area was determined to be a solid bottomed catch

basin leaving a total of 42 storm water drywells present at the site. One shallow soil/sediment sample was

collected from each of the 42 structures from which a sample was not collected during implementation of the

2004 RI (a total of 36 samples were collected). No sample was collected from catch basin DW-42, which was

determined to be a solid bottomed structure. Samples were collected using a properly decontaminated stainless

steel hand auger. Soil/sediment was collected from zero to six inches below the base of each structure at three

locations. Soils from each of the three grab samples within each structure were screened with a photo-ionization

detector (PID); the grab sample exhibiting the highest PID response was collected for VOC analysis. Remaining

soils collected from each of the three points were homogenized in a stainless steel mixing bowl prior to sample

collection.

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716 PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com

Storm water drainage structure locations are illustrated in Figure 3.

2.3.2 Industrial Discharge Structures

Only one structure (LP-01) was identified that appeared to have been used primarily for discharge of industrial

wastewater. The structure received discharge from a floor drain located in the boiler room in the southern portion

of the warehouse building. One shallow and one deep soil/sediment sample was collected from the structure.

The shallow sample was collected using a properly decontaminated stainless steel hand auger from zero to six

inches below the base of the structure at three locations. Soils from each of the three grab samples were

screened with a PID; the grab sample exhibiting the highest PID response was collected for VOC analysis.

Remaining soils collected from each of the three points were homogenized in a stainless steel mixing bowl prior to

sample collection.

The deep sample was collected using a properly decontaminated stainless steel hand auger advanced inside a

PVC outer casing to prevent the boring from collapsing. The sample was collected from a depth corresponding

to the two-foot interval (nine to 11 feet below grade) immediately above the clay layer present beneath the site,

as determined by location specific field observations. Collected soils were field screened for the presence of

VOCs using a PID.

Industrial wastewater discharge structure locations are illustrated in Figure 3.

2.4 Source Area Delineation

To further delineate the extent of the source area documented by the 2004 RI, soil borings were installed adjacent

to the source area location to quantify the horizontal extent of subsurface impact. Six soil borings (SB-2008-09

through SB-2008-14) were installed around the perimeter of the suspected source area, both inside and outside

the building. Delineation borings were concentrated in areas from which a sufficient number of samples were not

previously collected during the ESI Phase II ESA and the March 2004 RI. Soil boring locations are illustrated in Figure

4; soil boring logs are included in Appendix C. Historic soil boring locations, from previous investigations, are

illustrated in Figure 5.

Soil borings were installed utilizing a Geoprobe® direct-push drill rig outfitted with a macro-core sampler and

dedicated acetate liners. Soils were collected continuously from ground surface to a depth corresponding to the

top of the clay layer present beneath the site as determined by location specific field observations. Soils were

field-screened for the presence of VOCs using a PID. Non-dedicated sampling equipment was decontaminated

prior to the collection of each sample.

Two soil samples were collected at each boring location. Samples were collected from the interval within the

vadose zone (approximately zero to nine feet below grade) exhibiting the highest PID response, and the interval

immediately above the clay layer. If no PID response above background concentrations was observed in soils

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716
PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com
New York, NY • Seattle, WA • Greensboro, NC

collected from within the vadose zone, a sample was collected from the interval immediately above the water

table interface.

The SRIWP included a provision to install step-out borings at boring locations where field observations and/or PID

response identified the presence of impacted soil. However, no evidence of impacted soil was identified at

boring locations SB-2008-09 through SB-2008-14; as such, the installation of step out borings was not warranted.

2.5 Soil and Groundwater Evaluation

To evaluate general soil and groundwater quality beneath the site, eight soil borings (SB-2008-01 through SB-2008-

08) and nine temporary groundwater sampling points (GW-2008-01 through GW-2008-08 and GW-2008-15) were

installed throughout the property. Boring locations were chosen to provide a representative sample of general

soil and groundwater conditions at the subject property and were not biased towards any potential areas of

concern.

In addition, groundwater samples were collected from each of the existing supply, diffusion and monitoring wells

at the site. Soil borings, temporary groundwater sampling points, and supply, diffusion, and monitoring well

locations are illustrated in Figure 4 and Figure 6. Soil boring logs are included as Appendix C; well sampling logs

are included as **Appendix D**. Historic groundwater sample locations, from previous investigations, are illustrated in

Figure 5.

2.5.1 Soil Borings

A total of eight soil borings were installed utilizing a Geoprobe® direct-push drill rig outfitted with a macro-core

sampler and dedicated acetate liners. Soils were collected continuously from ground surface to a depth

corresponding to the top of the clay layer present beneath the site, as determined by location specific field

observations. Soils were field-screened for the presence of VOCs using a PID. Non-dedicated sampling

equipment was decontaminated prior to the collection of each sample.

One soil sample was collected at each boring location from the interval exhibiting the highest PID response. If no

PID response above background concentrations was observed, a sample was collected from the interval

immediately above the water table.

The SRIWP included a provision to install step-out borings at boring locations where field observations and/or PID

response identified the presence of impacted soil. However, no evidence of impacted soil was identified at

boring locations SB-2008-01 through SB-2008-08; as such, installation of step out borings was not warranted

2.5.2 Groundwater Sampling Points

A total of nine temporary groundwater sampling points were installed at the site. Groundwater samples were

collected from a depth of approximately three feet below the water table. At each sampling location, a four-

foot long screen point sampler was driven to the desired depth (approximately one foot of screen above the

water table, three feet below the water table) using a Geoprobe® direct-push drill rig. At the desired depth,

dedicated polyethylene tubing fitted with a stainless steel check valve was inserted through the probe rods into

the water bearing zone. The tubing was oscillated by hand and/or connected to a peristaltic pump to draw water to the surface. Prior to sampling, approximately three to five times the volume of standing water within the probe rods was purged to reduce sample turbidity. Non-dedicated sampling equipment was decontaminated

prior to the collection of each sample.

2.5.3 Supply, Diffusion and Monitoring Well Sampling

Prior to sampling, the depth to water and depth to bottom of each supply, diffusion, and monitoring well was measured. Water level measurements were obtained with an electronic water level probe. Three to five well casing volumes of standing water were removed from each well prior to sample collection. The wells were purged using a submersible pump fitted with dedicated polyethylene tubing. Field readings (pH, temperature and conductivity) were recorded during purging, initially and for each well volume. Groundwater samples were collected with a dedicated, disposable high-density polyethylene bailer suspended by a polypropylene cord.

Non-dedicated sampling equipment was decontaminated prior to the collection of each sample.

Based on their total depths, supply wells SW-01through SW-03 and diffusion wells DIFFW-01 through DIFFW-04 appear likely to be screened within and/or slightly below the clay layer (see **Table 2** for well measurement details), and as such analytical data from these wells have been included in the evaluation of water quality beneath the

clay layer.

Previously installed monitoring well MW-3 could not be located during implementation of the Supplemental RI; as

such, no sample was collected.

2.6 Evaluation of Groundwater Quality beneath Clay Layer

To evaluate groundwater quality in the deeper aquifer segment, four temporary vertical profile wells were installed throughout the southern and western portions of the property and three monitoring wells (MW-7, MW-8 and MW-9) were installed throughout the northern portion of the property. Deep groundwater sample locations

are illustrated in Figure 8.

2.6.1 Temporary Vertical Profile Wells

Temporary vertical profile wells were installed using a track mounted Geoprobe® outfitted for both direct-push and rotary drilling. Three inch inside-diameter augers were advanced to approximately two feet into the top of the clay layer. A smaller diameter direct push rod, fitted with a four-foot, stainless steel, drop-down sampling screen, was inserted inside the hollow stem augers and advanced down through the clay layer using direct push technology to the required sampling depth. Installation of outer hollow augers into the top of the clay was intended to isolate potentially impacted soil and/or groundwater above the clay layer from the smaller diameter sampling equipment, minimizing the migration of impacted soil and groundwater downward through the

penetration in the clay layer.

At each vertical profile location, groundwater samples were collected at 20 foot intervals beginning at 20 feet below grade and continuing to 100 feet below grade. Five groundwater samples were collected at each vertical profile location. At each location, samples were collected from the shallowest interval first and continued

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716
PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com
New York, NY • Seattle, WA • Greensboro, NC

progressively through the deeper intervals. At each sampling interval, a four-foot long screen point sampler was

driven to the desired depth using a Geoprobe® direct-push drill rig. At the desired depth, dedicated

polyethylene tubing fitted with a stainless steel check valve was inserted through the probe rods into the water

bearing zone. The tubing was oscillated by hand and/or connected to a peristaltic pump to draw water to the

surface. Prior to sampling, attempts were made to purge approximately three to five times the volume of

standing water within the probe rods to reduce sample turbidity. However, in several of the sample locations and

depths, the rods were pumped dry, due to poor recharge rates, and then sampled upon recharge. Many of the

samples collected were visibly turbid, likely due to fine grained soils within the aquifer.

Following collection of groundwater samples from each vertical profile location, the groundwater sampler and

direct-push rods were removed from the borehole. The penetration through the clay layer was sealed with

bentonite pellets to a depth above the top of the clay layer and augers were removed from the borehole.

In addition to the four vertical profile locations, it appears, based on total well depths, that supply wells SW-01

through SW-03 and diffusion wells DIFFW-01 through DIFFW-04 are screened below the clay layer (see Table 2 for

well construction details), and as such have been included in the evaluation of water quality beneath the clay

layer.

2.6.2 Deep Monitoring Wells (Northern Portion of Site)

Monitoring wells MW-7, MW-8, and MW-9 were installed in the northern portion of the site following a request from

NYSDEC after a review of the SRI preliminary data. Installation of these three wells was not included in the SIWP,

but was requested by NYSDEC in February 2009 following completion of initial field activities.

Monitoring wells MW-7, MW-8, and MW-9 were installed using a rotary drill rig outfitted for hollow stem auger (HSA)

drilling. Monitoring wells were installed to a depth of approximately 46 feet bgs. Wells were constructed of 2-inch

diameter, schedule 40 PVC casing and 0.010 inch slot screen. Wells consisted of a one foot sump, 10 feet of

screen set at approximately 35 to 45 feet bgs and solid riser to surface. Screen intervals were set below the

shallow clay layer. For each monitoring well, a gravel pack of No. 2 morie sand was installed to 4 feet above the

top of the screen, with a minimum two-foot thick bentonite seal. Cement/bentonite grout was installed from the

bentonite seal to approximately 5 feet below grade to fill remaining void space as the augers were removed from

the borehole. Drill cuttings were containerized for proper disposal. Wells were finished flush to grade with limited

access manholes and risers were fitted with water tight caps. Monitoring well construction logs are included as

Appendix E.

Following installation, wells were left undisturbed for five days to allow the bentonite seal and grout to set after

which, wells were developed using the overpurge method. Wells were purged until field parameters (pH,

temperature and turbidity) stabilized. Development water was drummed for proper disposal. Following

development, monitoring wells MW-7, MW-8 and MW-9 were surveyed to determine relative casing elevations

and locations in reference to existing site structures. Elevations were tied in to the pre-existing monitoring well

network.

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716 PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com Prior to sampling, the depth to water and depth to bottom of each monitoring well was measured. Water level

measurements were obtained with an electronic water level probe. Three to five well casing volumes of standing

water were removed from each well prior to sample collection. The wells were purged using a submersible pump

fitted with dedicated polyethylene tubing. Field readings (pH, temperature and conductivity) were recorded

during purging, initially and for each well volume. Groundwater samples were collected with a dedicated,

disposable high-density polyethylene bailer suspended by a polypropylene cord. Non-dedicated sampling

equipment was decontaminated prior to the collection of each sample.

2.7 Soil Vapor Evaluation

A total of twelve soil vapor sampling points, three within the northern portion of the warehouse, two within the

southern portion of the warehouse and five within the asphalt paved parking areas surrounding the existing

buildings, were installed throughout the property. Soil vapor sampling point locations are illustrated in Figure 9.

Soil vapor sampling point installation and sample collection was performed in accordance with New York State

Department of Health (NYSDOH) Guidance for Evaluating Soil Vapor Intrusion in the State of New York (October

2006), and United States Environmental Protection Agency (USEPA) Standard Operating Procedure (SOP) 2042,

Soil Gas Sampling.

Soil vapor sampling points were installed using a Geoprobe® direct-push drill rig to a depth of 5.5 feet below

existing grade. Each sampling point was constructed of a dedicated stainless steel screen fitted with

polyethylene tubing. Washed #1 crushed stone was added to create a sampling zone 1 to 2 feet in length. The

sampling point was sealed above the sampling zone with bentonite slurry to grade to prevent outdoor air

infiltration. Soil vapor samples were collected into SUMMA® canisters fitted with pre-set flow regulators. The

laboratory provided certified-clean canisters with an initial vacuum of approximately -30 inches of mercury (inHg)

for sample collection and flow regulators pre-set to provide uniform sample collection for a 2-hour sampling

period.

2.8 Data Analysis

Soil, groundwater and soil-vapor samples were delivered to Alpha Analytical Labs (Alpha) of Westboro,

Massachusetts for analysis. Analytical services provided by Alpha were performed in accordance with NYSDEC

Analytical Sampling Protocol (ASP) with Category B deliverables (ASP-B). Analytical services included analysis of

soil and groundwater samples for Target Compound List (TCL) VOCs by USEPA Method 8260, TCL SVOCs by USEPA

Method 8270, Target Analyte List (TAL) Metals by USEPA Methods 6010/7000, pesticides by USEPA Method 8081,

and PCBs by USEPA Method 8082 and analysis of soil-vapor samples for VOCs by USEPA method TO-15.

Laboratory analytical reports (results only) are included as Appendix F; full laboratory data packages are

included on the enclosed CD-ROM.

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716
PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com
New York, NY • Seattle, WA • Greensboro, NC

3.0 HYDROGEOLOGIC ASSESSMENT AND PHYSICAL SETTING

3.1 Site Topography

The topography of the site and surrounding area was reviewed from the USGS 7.5 minute series topographic map for the Lynbrook, New York quadrangle. The subject property has an elevation of approximately 17 feet above

National Geodetic Vertical datum (NGVD) at the north end of the site, sloping to an elevation of approximately

10 feet above NGVD at the southern end of the site. Paved areas slope locally to drainage structures positioned

through out the property. There is little topographic relief on the subject property and surrounding area.

3.2 Surrounding Land Use

The site is situated in a mixed industrial, residential and commercial area of the Village of Rockville Centre. The

adjacent land uses, as illustrated in Figure 10, include:

North – multi-family housing complex

• South - vacant one-story building; Metropolitan Transit Authority (MTA) Long Island Bus Depot; Rockville

Racquet Club

East – church; four-story office building; one-story office/industrial building

• West - Morgan Day's Park; Smith Pond

3.3 Regional Geology/Hydrogeology

The hydrogeologic setting of Long Island is well documented and consists of impermeable bedrock composed of

schist and gneiss, overlain by a series of unconsolidated glacial deposits. Thicknesses of these deposits range from

zero in northern Queens, where the bedrock is exposed, to more than 2,000 feet in the southern parts of Nassau and Suffolk Counties. The glacial advance is marked by two terminal moraines, which form an east-west trending

line of deposits with a maximum altitude of 400 feet. A gently sloping outwash plain composed of well-sorted and

permeable sand and gravel extends south of the moraine to the shore, with a slope of approximately 20 feet/mile

(Cohen).

The lowest unit in the sequence is the Raritan Formation, which overlies an erosional bedrock surface composed

of granite, diorite, gneiss and schist (Lubke, 1964). The Raritan formation includes the Lloyd Sand Member, which

consists of sands and gravels of moderate permeability forming the Lloyd Aquifer and the Raritan Clay Member,

which consists of very low permeable clay known as the Raritan Confining unit.

The Raritan Formation is overlain by the Magothy Formation, which consists of up to 1,000 feet of highly stratified

layers of sand, gravel, silt and clay, which dip gently to the southeast. The Magothy Formation is the principal

aquifer for Long Island, and is the main source of water for public supply (Kilburn and Krulikas, 1987). The

saturated thickness of the Magothy Aquifer in the vicinity of the site is 600 feet with an estimated hydraulic

conductivity of 56 feet/day (McClymonds and Franke, 1972).

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716
PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com

Along the south shore of Long Island, the Magothy is confined by a 40 to 90 foot thick low permeability sequence

of clay, silty clay and fine sand known as the Gardiner's Clay. Although the Gardiner's Clay has been mapped

north of Sunrise Highway in the Rockville Center area (Doriski, 1981), the clay appears to be absent along the

Hempstead Lake - Mill River corridor. As such, it is not known if the Magothy Aquifer is confined by the Gardiner's

Clay in the immediate vicinity of the site.

In this area of Nassau County, the Upper Glacial Aquifer overlies either the Magothy Aquifer, or the Gardiner's

Clay, where present. Upper glacial deposits consist mainly of stratified beds of fine to coarse sand and gravel but

also contain beds of silt and clay (Kilburn and Krulikas, 1987). The Upper Glacial Aquifer contains the water table

in most of the area. The estimated hydraulic conductivity of the Upper Glacial Aquifer is 270 feet/day

(McClymonds and Franke, 1972).

The site is situated some distance south of a regional groundwater divide located along the terminal moraine,

where groundwater flows to the north, west and south. Located south of the divide, groundwater in the vicinity of

the site generally flows in a southwesterly direction toward the Mill River and Hempstead Bay.

3.4 Site Geology/Hydrogeology

The site overlies an interconnected aquifer system consisting of the upper glacial deposits and the underlying

Magothy Formation. Depth to groundwater in the underlying Upper Glacial Aquifer ranges from approximately 5

to 10 feet below ground surface (bgs). The lithologic description of the sediments from soil borings advanced

during this and previous investigations at the site identifies the materials as fine to coarse sand with small amounts

of gravel to a depth of 12 to 18 feet below surface. Below the sand is a silty clay layer, which was documented to

be approximately nine feet thick in the MT&A geotechnical boring report. The presence of the clay layer was visually confirmed at soil boring locations PWG-SB-2008-01 through PWG-SB-2008-14 installed during the

Supplemental RI. Geologic cross sections illustrating the depth of the clay layer are included as Figure 11 and

Figure 12.

Gamma geophysical logs completed at the four vertical profile locations indicate that the highest gamma

readings were generally present from approximately 12 feet below grade to 30 feet below grade, followed by a

zone of lower gamma readings from 30 feet below grade to approximately 55 feet below grade, and then

followed by another increase in gamma readings from 55 feet below grade to 100 feet below grade. Elevated

gamma readings are generally indicative of fine silt and clay containing soils. Soil samples were not collected at

vertical profile locations; as such, the presence of the clay confining layer was not visually confirmed at these

locations.

Groundwater elevation data, recorded on October 3, 2008, was used to prepare a shallow groundwater contour

map, included as Figure 13. As illustrated in Figure 13, shallow groundwater flow is generally to the south-

southwest with an average gradient of 0.01 foot/foot.

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716 PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com

Groundwater elevation data for monitoring wells MW-7, MW-8 and MW-9 which were installed in the northern portion of the property and screened below the clay layer was used to generate a deep groundwater contour map, included as **Figure 14**. As illustrated in **Figure 14**, deep groundwater flow in the northern area of the site is toward the southwest with an average gradient of 0.002 foot/foot. Due to the lack of accurate construction details for supply and diffusion wells present at the site, these wells could not be used in determination of deep groundwater flow at the site.

Table 2 provides a summary of the monitoring well elevation data including total well depth, screened interval, casing elevation and the measured depth to water.

NATURE AND EXTENT OF CONTAMINATION 4.0

This section details the Supplemental RI findings and analytical data. Analytical data is compared to NYSDEC,

NYSDOH and USEPA standards, cleanup objectives and guidance values, as appropriate. Regulatory standards

and guidance values used to evaluate analytical data are detailed below.

Soil sample analytical data are compared to both the Unrestricted Use and Restricted Residential Soil Cleanup

Objectives (SCO) specified in 6 NYCRR Part 375-6, Remedial Program Soil Cleanup Objectives (December 2006).

SCOs specified in 6 NYCRRR Part 375-6 were established for use in remediating Inactive Hazardous Waste Disposal

Site Remedial Program, Brownfield Cleanup Program and Environmental Restoration Program sites and are based

on the protection of health and ecological resources.

Typically, analytical data for soil samples collected from subsurface drainage structures (e.g., storm drains and

leaching pools) compared to the Recommended Soil Cleanup Objectives (RSCO) specified in NYSDEC Technical

Administrative and Guidance Memorandum (TAGM) 4046, Determination Of Soil Cleanup Objectives and

Cleanup Levels (January 1994) in accordance with NCDH and USEPA UIC Program procedures. However,

because the subject property has been accepted into the BCP, subsurface drainage structure soil sample

analytical data are compared to the Unrestricted Use SCOs and Restricted Residential SCOs specified in 6 NYCRR

Part 375-6, as required by the BCP. The RSCOs and Unrestricted Use SCOs are approximately equal for the VOCs

of concern at the site.

Groundwater sample analytical data is compared to the NYSDEC Class GA Ambient Water Quality Standards

(AWQS) as specified in Technical Operation and Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards

and Guidance Values and Groundwater Effluent Limitations (June 1998, with January 1999 Errata Sheet and April

2000 and June 2004 Addendums).

Soil vapor analytical results were compared to the Deep Soil-Gas Target Levels as specified in USEPA Draft

Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor

Intrusion Guidance).

Based on the March 2004 RI findings, the primary chemicals of potential concern (COPC) to be encountered at

the site are PCE and its degradation products: TCE, cis-1,2-dichloroethene, trans-1,2-dichloroethene, 1,1-

dichloroethene and vinyl chloride.

Soil, groundwater and soil-vapor sample locations are illustrated in Figure 4, Figure 6, Figure 8 and Figure 9;

analytical data are summarized in Table 3 through Table 16. Laboratory analytical reports are included as

Appendix F (results only)...

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716 PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com

4.1 Identification of Source Areas

Results of previous soil sampling programs (see section 1.4) indicate that the primary source of residual VOC

contamination is beneath the southwestern corner of the warehouse building. These impacted soils appear to

act as a continuing source for VOC impact to groundwater at and downgradient of the subject property.

A secondary potential source area was identified in the northwest corner of the western parking area (soil boring

location B-8) during the 2004 RI. The 2004 RI concluded that elevated PCE concentrations in this area may have

been due to PCE discharges to storm drains in this area. However, based on samples collected from storm drains

DW-01 and DW-02 during the supplemental RI, it does not appear that storm drains in this area have been

significantly impacted by PCE discharges (see section 4.2.3).

4.2 Soil Impacts

4.2.1 Additional Source Area Delineation

At each boring installed adjacent to the previously identified source area (SB-2008-09 through SB-2008-14), soil

samples were collected from both above and below the water table. Each sample was analyzed for TCL VOCs

by USEPA Method 8260B; two samples were also analyzed for TCL SVOCs by USEPA Method 8270C, TAL metals by

USEPA Method 6010, pesticides by USEPA Method 8081 and PCBs by USEPA Method 8082.

PCE was not detected at concentrations exceeding its Unrestricted Use SCO of 1,300 ppb in samples collected

from borings SB-2008-09 through SB-2008-14. Low level (below Unrestricted Use SCO) PCE concentrations were

detected in both shallow and deep samples collected from borings SB-2008-10, SB-2008-13 and SB-2008-14.

Concentrations in shallow samples ranged from 5.5 ppb (SB-2008-10 @ 5-10) to 56 ppb (SB-2008-14 @ 0-5).

Concentrations in deep samples ranged from 44 ppb (SB-2008-13 @ 10-15') to 290 ppb (SB-2008-14 @ 10-15'). At each source area delineation boring location at which PCE was detected, concentrations were higher in the

3 -----

deep sample (collected from below the water table). PCE was the sole VOC detected in the source area

delineation soil samples.

Samples collected from borings SB-2008-10 (5-10') and SB-2008-14 (10-15') were also analyzed for SVOCs, metals,

pesticides and PCBs. SVOCs, metals, pesticides and PCBs were not detected at concentrations exceeding their

respective Unrestricted Use SCO in either sample.

Additional source area delineation sampling appears to confirm the conclusions of the March 2004 RI indicating

that the source area for PCE contamination at the site is limited to the area beneath the southwest portion of the

warehouse building.

Soil boring locations are illustrated in Figure 4; soil sample analytical data are summarized in Table 3, Table 4 and

Table 5.

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716
PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com
New York, NY • Seattle, WA • Greensboro, NC

4.2.2 General Soil Quality

At each boring installed throughout the northern portion of the subject site (SB-2008-01 through SB-2008-08), one

soil sample was collected from above the water table. Each sample was analyzed for TCL VOCs by USEPA

Method 8260B; two samples were also analyzed for TCL SVOCs by USEPA Method 8270C, TAL metals by USEPA

Method 6010, pesticides by USEPA Method 8081 and PCBs by USEPA Method 8082.

VOCs were not detected at concentrations exceeding the laboratory method detection limit (MDL) in samples

collected from soil borings SB-2008-01 through SB-2008-08.

Samples collected from borings SB-2008-01 (5-10') and SB-2008-08 (5-10') were also analyzed for SVOCs, metals,

pesticides and PCBs. Lead and 4,4'-DDT were detected at concentrations exceeding their respective

Unrestricted Use SCO in the sample collected from boring SB-2008-01; however, in both cases the compound was

detected at a concentration below its Restricted Residential SCO. Additional metals, SVOCs, pesticides and PCBs

were not detected at concentrations exceeding their respective Unrestricted Use SCO in the sample collected

from boring location SB-2008-01. SVOCs, pesticides, PCBs and metals were not detected at concentrations

exceeding their respective Unrestricted Use SCO in the sample collected from boring location SB-2008-08.

Based on soil sampling results, it does not appear that significant soil impacts are present at the site outside the

presumed PCE source area beneath the southwest portion of the warehouse building. Although low level

concentrations (below Restricted Residential SCOs) of lead and 4,4'-DDT were detected in the sample collected

from boring SB-2008-01, it appears the sample contained non-native (fill) material. The presence of non-native

material and the lack of elevated concentrations of these compounds elsewhere throughout the site indicates

that their presence is likely related to the presence of non-native fill material, rather than a release or improper

chemical disposal at the subject site.

Soil boring locations and PCE concentrations are illustrated in Figure 4; soil sample analytical data are summarized

in Table 3, Table 4 and Table 5.

4.2.3 Storm Water Drainage Structures

Samples were collected from 36 storm water drainage structures during the Supplemental RI and seven storm

water drainage structures during the 2004 RI. Each sample collected during the Supplemental RI was analyzed for

TCL VOCs by USEPA Method 8260B, TCL SVOCs by USEPA Method 8270C and TAL metals by USEPA Method 6010.

Sample collected during the 2004 RI were analyzed for VOCs by USEPA Method 8260, SVOCs by USEPA Method

8270C and RCRA metals by USEPA Method 6010 in accordance with NCDH procedures.

PCE and its degradation products were detected in soil samples collected from nine (DW-03, 06, 07, 10, 15, 16, 17,

18, & 19) of 36 storm water drainage structures from which samples were collected during implementation of the

Supplemental RI and two (SD-1 & SD-3) of seven storm water drainage structures from which samples were

collected during implementation of the 2004 RI. It should be noted that drainage structures identified as DW-07

and SD-3 are the same structure. In each case, the concentrations detected were below the respective

Unrestricted Use SCO for each compound. PCE concentrations ranged from 6.4 ppb (DW-07) to 190 ppb (DW-17)

during current sampling and from 20 ppb (SD-1) to 1,100 ppb (SD-3) during March 2004 sampling.

Storm water drainage structure DW-07 (identified as SD-03 during the 2004 RI) was the only structure from which a

sample was collected during the 2004 RI and the Supplemental RI. PCE concentrations in this structure decreased from 1,100 ppb in 2004 to 6.4 ppb in 2008. Based upon PCE concentrations detected in this drainage structure

during the 2004 RI, it was listed as a potential source area that may have received VOC contaminated process

water from the building.

Storm water drainage structures in which PCE and its degradation products were detected were limited to the

southwestern portion of the property. Based on the locations of the structures impacted with PCE, the

concentrations detected and the shallow groundwater table at the site, it appears likely that PCE impact in these

structures is related to groundwater impact at the site rather than improper discharges to individual structures.

VOCs other than PCE and its degradation products were detected in samples collected from 13 (DW-01, DW-02,

DW-03, DW-07, DW-10, DW-11, DW-14, DW-30, DW-33, DW-34, DW-37, DW-38, & DW-39) of 36 storm water drainage

structures from which samples were collected during implementation of the Supplemental RI and five (SD-1, SD-3,

SD-4, SD-5, & SD-7) of seven storm water drainage structures from which samples were collected during

implementation of the 2004 RI. The sole VOC detected at concentrations exceeding its Unrestricted Use SCO (50

ppb) was acetone in samples collected from drainage structures DW-30, DW-37, DW-38 and DW-39 during

implementation of the Supplemental RI, and storm drain SD-1 during implementation of the 2004 RI. The Data

Usability and Validation Report, detailed in Section 4.6.2, recommends that caution be used with acetone

concentrations from these samples, because chromatographic peaks were observed in raw data for these

compounds in associated method blanks, and acetone is a common laboratory contaminants and low

concentrations observed in soil samples may no be site related.

SVOCs were detected at concentrations exceeding their respective Unrestricted Use SCOs and Restricted

Residential SCOs in samples collected from storm water drainage structures DW-30, DW-38 and DW-39 during

implementation of the Supplemental RI. SVOCs detected at elevated concentrations included benzo(a)pyrene,

benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, and indeno(1,2,3-cd)pyrene. The SVOCs detected are

generally petroleum related and their presence in drainage structures receiving run-off from parking areas is

typical. SVOCs were not detected at concentrations exceeding their respective Unrestricted Use SCOs in samples

collected from storm water drainage structures SD-1 through SD-7 during implementation of the 2004 RI.

Metals were detected at concentrations exceeding their respective Unrestricted Use SCOs in samples collected

from 22 (DW-01, DW-02, DW-07, DW-10, DW-11, DW-14, DW-17, DW-19, DW-20, DW-23, DW-24, DW-26 DW-28, DW-

30, DW-31, DW-33, DW-34, DW-37, DW-38, DW-39, DW-40 & LP-01) of 36 storm water drainage structures from which

samples were collected during implementation of the Supplemental RI; of those 20 pools, metals were detected

at concentrations exceeding their respective Restricted Residential SCOs in samples collected from seven (DW-

01, DW-20, DW-30, DW-31, DW-34, DW-37, & DW-40). Metals were detected at concentrations exceeding their

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716 PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com

respective Unrestricted Use SCOs in samples collected from six (SD-1, SD-3, SD-4, SD-5, SD-6, & SD-7) of seven storm

water drainage structures from which samples were collected during implementation of the 2004 RI; of those six

pools, metals were detected at concentrations exceeding their respective Restricted Residential SCOs in samples

collected from four (SD-1, SD-3, SD-4, & SD-6)..

Subsurface drainage structure locations are illustrated in Figure 3. Subsurface drainage structure soil sample

analytical data are summarized in Table 6, Table 7 and Table 8; historic storm water drainage structure analytical

data are summarized in Table 9, Table 10 and Table 11.

4.2.4 Industrial Leaching Pools

A shallow and deep sample were collected from the sole industrial leaching pool (LP-01) present at the site. Each

sample was analyzed for TCL VOCs by USEPA Method 8260B, TCL SVOCs by USEPA Method 8270C and TAL metals

by USEPA Method 6010.

PCE and its degradation products were detected in both the shallow and deep samples collected from industrial

leaching pool LP-01. In each sample, the concentrations detected were below the respective Unrestricted Use

SCO for each compound. PCE was detected at 120 ppb in the shallow sample and 4.9 ppb in the deep sample.

VOCs other than PCE were not detected above the laboratory MDL.

SVOCs were not detected above their respective Unrestricted Use SCOs in either the shallow or deep sample

collected from industrial leaching pool LP-01.

Copper and zinc were the only metals detected at concentrations exceeding their respective Unrestricted Use

SCOs in the shallow sample collected from industrial leaching pool LP-01. Zinc was also detected at a

concentration exceeding its Unrestricted Use SCO in the deep sample collected from industrial leaching pool LP-

01.

Subsurface drainage structure locations are illustrated in Figure 3; subsurface drainage structure soil sample

analytical data are summarized in Table 6, Table 7 and Table 8.

4.3 Groundwater Impacts

4.3.1 Shallow Groundwater

Groundwater samples collected from temporary sampling points GW-2008-01 through GW-2008-08, GW-2008-13

through GW-2008-15 and monitoring wells MW-1, MW-2, MW-4, MW-5 and MW-6 were used to evaluate shallow

groundwater quality. Each sample was analyzed for TCL VOCs by USEPA Method 8260B; five samples were also

analyzed for TCL SVOCs by USEPA Method 8270C, TAL metals by USEPA Method 6010, pesticides by USEPA Method

8081 and PCBs by USEPA Method 8082. Well measurement details are summarized in Table 2.

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716
PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com
New York, NY • Seattle, WA • Greensboro, NC

PCE and its degradation products were detected at concentrations exceeding their respective NYSDEC AWQS in

samples collected from three of eleven temporary groundwater sampling points (GW-2008-13, GW-2008-14 and

GW-2008-15) and one of five monitoring wells (MW-6). Other than PCE and its degradation products, VOCs were

not detected at concentrations above their respective AWQS in shallow groundwater samples collected from the

site. Each of the samples in which PCE and its degradation products were detected was collected from the

southwestern portion of the subject property.

Samples collected from each of the five monitoring wells present at the site (MW-1, MW-2, MW-4, MW-5 and MW-

6) were also analyzed for SVOCs, metals, pesticides and PCBs. SVOCs, pesticides and PCBs were not detected at

concentrations exceeding the laboratory MDL in shallow groundwater samples collected from the site. One or more metal was detected at a concentration exceeding its NYSDEC AWQS in each of the shallow groundwater

samples submitted for analysis. Metals detected included aluminum, arsenic, beryllium, cadmium, chromium,

iron, lead, magnesium, manganese, mercury and nickel. As noted in well sampling logs (Appendix C)

groundwater samples collected from these monitoring wells were observed as turbid to very turbid. Due to the

turbidity of the groundwater samples collected, it is possible that metals detected at elevated concentrations

may have been related to suspended solids in the samples rather than actual dissolved metals impact. Elevated

metals concentrations are commonly found in turbid groundwater samples due to nitric acid sample preservative

leaching metals from suspended solids. Based upon elevated metals concentrations detected in samples from

multiple storm water drainage structures throughout the site, an additional round of filtered samples were

collected from monitoring wells MW-4, MW-5 and MW-6 in August 2009. Monitoring wells MW-1 and MW-2 appear

to have been destroyed during demolition activities at the site between collection of initial samples and re-

sampling, as such it was not possible to collect filtered samples from these wells. Samples were filtered by the

analytical laboratory in accordance with the procedures detailed in USEPA SW-846.

Dissolved metals impact was not identified above NYSDEC AWQS in filtered samples collected from monitoring

wells MW-4, MW-5 and MW-6. Although filtered samples were not collected from monitoring wells MW-1 and MW-

2, based on the large reduction in metals concentrations between unfiltered and filtered samples collected from

monitoring wells MW-4, MW-5 and MW-6, it appears likely that initial unfiltered samples collected from monitoring

wells MW-1 and MW-2 were impacted by suspended solids within the samples.

Based on groundwater sampling results, shallow groundwater at the site is impacted with PCE and its degradation

products. It appears that the plume of impacted groundwater originates from the source area beneath the

southwestern portion of the warehouse building and is migrating south-southwest.

Shallow groundwater sample locations are illustrated in Figure 6; and shallow groundwater elevation contours are

illustrated in Figure 13. Groundwater sample analytical data are summarized in Table 12, Table 13 and Table 14.

4.3.2 Deep Groundwater

In addition to samples collected from temporary vertical profile wells VP-2008-01 through VP-2008-04, samples

collected from supply wells SP-01 through SP-03, diffusion wells DIFFW-01 through DIFFW-04 and monitoring wells

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716 PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com

MW-7, MW-8 and MW-9 were used to evaluate groundwater quality beneath the clay layer. Although specific well construction details for supply and diffusion wells are unknown, based on total well depths, it appears likely

that these wells are screened within and/or slightly below the clay layer. Each sample was analyzed for TCL VOCs

by USEPA Method 8260B; two samples were also analyzed for TCL SVOCs by USEPA Method 8270C, TAL metals by

USEPA Method 6010, pesticides by USEPA Method 8081 and PCBs by USEPA Method 8082. Well measurement

details are summarized in Table 2.

PCE and/or its degradation products were detected at concentrations exceeding their NYSDEC AWQS in each sample collected from vertical profile locations VP-01, VP-02 and VP-03 and diffusion wells DIFFW-01 through DIFFW-04. PCE and TCE were detected at concentrations below their respective NYSDEC AWQS in samples

collected from two of three supply wells (SW-02 and SW-03). PCE and its degradation products were not

detected above the laboratory MDL in samples collected from vertical profile location VP-04 and supply well SW-

01. At vertical profile locations VP-01, VP-02 and VP-03, PCE and/or its degradation products were detected at

concentrations exceeding their NYSDEC AWQS in samples collected as deep as 100 feet bgs.

At vertical profile location VP-01, PCE concentrations increased with sample depth with a peak concentration detected in the sample collected from the 96 to 100 foot bgs interval (200 ppb). At vertical profile location VP-02, PCE concentrations peaked in the sample collected from the 36 to 40 foot bgs interval (5,800 ppb); a second, much smaller peak was also detected in the sample collected from the 96 to 100 foot bgs interval (280 ppb). At vertical profile location VP-03, the peak PCE concentration was detected in the 56 to 60 foot bgs interval (91 ppb). At sample locations adjacent to the southern property boundary (i.e., VP-02, VP-03 and DIFFW-01 through DIFFW-04) the highest PCE concentrations were generally detected between 30 and 60 feet bgs. At vertical

profile location VP-01, located adjacent to the western property boundary, the highest PCE concentration was

detected at 100 feet bgs; a similar elevated concentration was also detected in the 100 foot sample collected

from vertical profile location VP-02 (located adjacent to the southern property boundary).

Samples collected from monitoring wells MW-7, MW-8 and MW-9 were analyzed for VOCs. No VOCs, including PCE and its degradation products, were detected above the laboratory MDL in samples collected from these

wells.

Samples collected from supply well SW-01 and diffusion well DIFFW-01 were also analyzed for SVOCs, metals, pesticides and PCBs. One SVOC (3-nitroaniline) was detected at a concentration exceeding its NYSDEC AWQS in

the sample collected from suspected supply well SW-01; SVOCs were not detected at concentrations exceeding the laboratory MDL in the sample collected from diffusion well DIFFW-01. Iron, manganese and sodium were

detected at concentrations exceeding their NYSDEC AWQS in samples collected from diffusion well DIFFW-01 and supply well SW-01; cadmium and copper were also detected at concentrations exceeding their respective

NYSDEC AWQS in the sample collected from diffusion well DIFFW-01. As noted in well sampling logs (Appendix C)

groundwater samples collected from these wells were observed as clear for SW-01 and slightly turbid for DIFW-01. Due to the turbidity of the groundwater sample collected from DIFFW-01, it is possible that metals detected at

elevated concentrations may have been related to suspended solids in the samples rather than actual dissolved

metals impact. Elevated metals concentrations are commonly found in turbid groundwater samples due to the

nitric acid sample preservative leaching metals from suspended solids. Based upon the elevated level of copper

detected in the sample from DIFFW-01 and the detection of elevated metals concentrations in soils collected

from multiple storm water drainage structures throughout the site, filtered samples were collected from supply well

SW-01 and diffusion well DIFFW-01. Dissolved metals impact was not identified above NYSDEC AWQS in filtered

samples collected from these wells..

Pesticides and PCBs were not detected at concentrations exceeding the laboratory MDL in the samples

collected from suspected supply well SW-01 and diffusion well DIFFW-01.

Deep groundwater sample locations are illustrated in Figure 8. Groundwater sample analytical data are

summarized in Table 12, Table 13 and Table 14; vertical profile sample analytical data are summarized in Table 15.

4.4 Soil-Vapor Impacts

Twelve soil vapor samples were collected from throughout the site. Each sample was analyzed for VOCs by

USEPA Method TO-15.

Elevated PCE concentrations were detected in soil-vapor samples in the vicinity of and/or downgradient of the

documented source area. PCE and/or its degradation products were detected at concentrations exceeding

their respective USEPA Guidance Value (as listed for the 10⁻⁵ risk level) in soil-vapor samples collected at sampling

points SG-2008-03, SG-2008-09, SG-2008-11 and SG-2008-12, which were the Sample collected in closest proximity

to the presumed source area. Soil-vapor sample SG-2008-11, the soil-vapor sample collected nearest the

proposed excavation area exhibited the highest PCE concentration detected at 1,680,000 ug/m³. The soil-vapor

sample collected at location SG-2008-09, adjacent to the southern property boundary had a PCE concentration

of 9,660 ug/m³.

PCE concentrations detected in soil-vapor samples collected from the remainder of the subject site were below

its USEPA Guidance Value (as listed for the 10⁻⁵ risk level), ranging from non-detect (SG-2008-10) to a high of 62.2

ppb (SG-2008-07). PCE detected in upgradient soil-vapor samples is likely the result of dissipation of vapors from

the source area. PCE was detected at 9,660 ppb at sample location SG-2008-09 which was located adjacent to

the southern property boundary, indicating that soil-vapor impact in excess of USEPA guidance values likely

extends off-site to the south of the subject property. Elevated PCE concentrations in soil vapor appear to roughly

correlate with areas impacted with PCE in groundwater.

Soil-vapor sampling point locations are illustrated in Figure 9; soil-vapor sample analytical data are summarized in

Table 16.

4.5 Qualitative Exposure Assessment

The objective of the qualitative exposure assessment under the Brownfield Cleanup Program (BCP) is to identify

potential receptors to the contaminants of concern (COC) that are present at, or migrating from, the subject

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716 PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com

property. The identification of exposure pathways describes the route that the COC takes to travel from the

source to the receptor. An identified pathway indicates that the potential for exposure exists; it does not imply

that exposures actually occur. Off-site investigation of contaminant plumes is not the responsibility of a party

considered to be a volunteer under the BCP. Off-site investigation (OU2) will be completed under an Order on

Consent between the NYSDEC and Darby Drug Group Companies, Inc. (Darby), the potential responsible party

(PRP).

Based on the concentration of VOCs currently in the source area, the concentration of VOCs migrating off-site

and the presumed length of time that the VOCs have been in transit (30 to 36 years) the following potential

receptors and exposure pathways have been identified:

Village of Rockville Centre water supply wells;

Groundwater to vapor intrusion in residential and commercial structures, and,

Smith Pond and Mill River

Each of the potential receptors and the exposure scenario is discussed in the following sections.

4.5.1 Water Supply Wells

A review of the NYSDEC inventory of documented wells (i.e. wells with permit numbers) and NCDH well records

was performed to identify public water supply wells within 1 mile downgradient or ½ mile cross-gradient or

upgradient of the site. These criteria was established to account for the high pumping rate and source water

influence associated with public supply wells and is consistent with the New York State Source Water Assessment

Program (SWAP) results.

Identified wells which met the specified distance and position criteria, were examined further to obtain specifics

on the well's construction details (depth, diameter, screen interval), pumping capacity and the aquifer in which it

was screened. Supply well construction details are summarized in Table 17.

Five wells were identified including three wells owned and operated by the Village of Rockville Centre in Lister

Park, and two wells on Tanglewood Road which are owned and operated by Long Island American Water. One

of the Rockville Centre Wells is no longer in use. The remaining four wells are all screened in the Magothy Aguifer

at depths of approximately 450 feet. It is not known if the Magothy Aquifer is confined in this area, though the

northern extent of the Gardiners Clay is present in the general area. Although a site specific seepage velocity

was not be calculated, using a typical range of 0.5 to 2 ft per day, and a retardation factor of 1.3 for PCE,

sufficient time would have elapsed since the release for the plume to encounter either wellfield, though no such

impact has occurred.

The Village of Rockville Centre wells are located on the west side of Mill River about 1,500 feet south-southwest of

the site, in the approximate direction of groundwater flow. Both of the RC wells are used on a routine basis by the

Village along with a 0.75 million gallon (MG) storage tank also located at the well field. Water quality data

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716 PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com

obtained from the NCDH for these wells indicate that PCE and its breakdown products have not been detected

in well N5194 over the course of its available sampling history (11/77 - 3/01). Two detections of PCE have been

noted in well N5195 over its available sample history (4/81- 12/02) which included 59 analysis rounds. PCE was

detected once in 1983 and again in 1990 at a maximum concentration of 8 ppb. Based on the results, it appears

that these detections are anomalous and not associated with an on-going source of contamination.

The two wells operated by Long Island American Water (LIAW) are located northwest of Smith Pond,

approximately 1,800 feet from the site in an up-gradient (with respect to groundwater flow) direction. Water

quality data obtained from the NCDH for these wells indicate that in the past 20 years (54 sampling rounds) PCE

was detected once, (1 ppb - 12/19/77) and TCE was detected twice (11 ppb - 12/19/77, 2 ppb - 8/21/80) in Well

N5556. During this same period of time Well N7521 also had one detection of PCE (2 ppb - 8/25/83) and two

 ${\it detections of TCE (2 ppb - 11/20/78, 1 ppb - 8/21/80)}. \ {\it The appearance of one or two isolated detections of these}$

compounds is inconsistent with a continuing source of contamination. In addition, the LIAW wells are positioned

upgradient (northwest), of the site while the dissolved VOC plume is migrating in the opposite direction (south).

All public supply wells in Nassau and Suffolk Counties are routinely tested for contaminants (including VOCs) to

assure compliance with State and Federal water quality standards.

The planned off-site (OU2) investigation is intended to provide additional characterization to more accurately

determine if significant exposure pathways exist.

4.5.2 Smith Pond and Mill River - Surface Water

A groundwater elevation map, which includes data from five monitoring wells present at the site, indicates that

shallow groundwater at the site flows toward the south-southwest toward the southern end of Smith Pond.

Shallow groundwater samples collected near the western and southern property boundaries, generally confirm

that a shallow PCE plume is migrating off-site in a south-southwesterly direction. Assuming the plume continues

migrating in a southwesterly direction, it appears likely that it will encounter Smith Pond and/or Mill River.

Based on limited groundwater elevation data for monitoring wells MW-7, MW-8 and MW-9, deep groundwater

beneath the clay layer in the northern portion of the site flows southwest toward Smith Pond/Mill River. Due to the

lack of accurate construction details for supply and diffusion wells present at the site, these wells could not be

used in determination of deep groundwater flow at the site.

Further evaluation of both the shallow and the deep groundwater flow will be completed under the planned off-

site (OU2) investigation to provide additional characterization to more accurately determine if significant

exposure pathways exist.

4.5.3 Vapor Intrusion

The depth to groundwater at, and in the vicinity of, the subject property is relatively shallow; therefore potential

vapor intrusion is a concern for downgradient properties affected by the shallow PCE plume migrating from the

ite. There are two potential shallow plume migration pathways downgradient of the subject property;

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716 PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com

groundwater flow may shift slightly to the west and discharge to Smith Pond and/or Mill River or it may travel

south-southwest, approximately parallel to Mill River. If the plume discharges to the pond or river, the only

structures it will pass under are the MTA Long Island Bus Depot, a vacant church building and commercial properties on the

north side of Sunrise Highway. If the plume continues southward parallel to the river, it may encounter a residential

area south of S. Village Avenue, approximately 1,750 feet south of the subject property.

Although elevated PCE concentrations were detected in soil vapor samples collected at the southern property

boundary, exposure from VOCs in groundwater to ambient air assumes that VOCs present in on-site and near-site

groundwater migrate approximately 1,750 feet to the nearest residence with minimal attenuation, transfer to the

vapor phase and enter residences through pores and cracks in their foundations.

The planned off-site (OU2) investigation is intended to provide additional characterization to more accurately

determine if significant exposure pathways exist.

4.6 Quality Assurance/Quality Control

The overall quality assurance quality control (QA/QC) objective for the field investigation was to develop and

implement procedures that provide data of known and documented quality. QA/QC characteristics for data

include precision, accuracy, representativeness, completeness, and comparability. The purpose of the QA/QC activities developed for this site were to verify the integrity of the work performed and data collected is of the

appropriate type and quality for the intended use.

4.6.1 QA/QC Samples

To assess the adequacy of the sample collection and decontamination procedures performed in the field,

QA/QC samples were collected and analyzed throughout the field sampling program. In general, QA/QC

samples confirmed that the procedures performed in the field were consistent and acceptable. Reported

detections in the trip and field blanks did not impact the interpretation of sample data. QA/QC samples included

trip blanks, field blanks, blind duplicates, matrix spike (MS), and matrix spike duplicates (MSD). Types and

frequencies of field QA/QC samples are listed below.

<u>Type</u>

Frequency

Trip Blank

One per cooler (when VOC samples collected)

Field Blank

One per day per matrix sampled

Blind Duplicate

One per 20 samples per matrix

Matrix Spike/Matrix Spike Duplicate

One per 20 samples per matrix

During the project, a total of twelve trip blanks were submitted and analyzed. Trip blanks accompanied

environmental samples whenever VOCs were collected.

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716
PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com

Targeted analytes were not detected above the laboratory MDL in field blank or trip blank samples submitted for analysis, indicating that sample collection procedures and/or ambient conditions are unlikely to have impacted

environmental samples collected from the site during implementation of the Supplemental RI.

QA/QC sample data are summarized in Table 18 through Table 24.

Data Usability and Validation 4.6.2

A Data Validation Report and a Data Usability Summary Report (DUSR) were prepared by Stone Environmental,

Inc. (Stone) of Montpelier, Vermont. A copy of the DUSR (with the Data Validation Report included as an

attachment) is included as Appendix G.

Data Validation

Full data validation was performed on 5% of the data generated or one sample per Sample Delivery Group

(SDG), whichever was greater. Remaining data received a summary validation as detailed in the DUSR. The

findings and recommendations of the Data Validation Report (included as Attachment C to the DUSR) are

summarized as follows:

Both vials for groundwater samples PWG-VP-2008-01 (96-100), PWG-VP-2008-02 (56-60), PWG-VP-2008-02 (96-100)

and PWG-VP-2008-03 (96-100) were received with a large headspace. The validator recommended that results

for all compounds in these samples be considered estimated (J, UJ qualifiers).

Due to unacceptable %D values in the associated calibration standards, the validator classified the following

results as estimated (J, UJ qualifiers):

Chloromethane, bromomethane, isopropyl benzene, 1,2,3-trichloropropane and naphthalene in samples

PWG-VP-2008-02 (16-20) and PWG-VP-2008-04 (36-40).

Dichlorodifluoromethane, chloromethane carbon disulfide, isopropyl benzene and p-diethyl benzene in

samples PWG-GW-2008-04 and PWG-GW-2008-24 (PWG-GW-2008-24 was collected as a blind duplicate

of PWG-GW-2008-04).

Isophorone, 1,4-dichlorobenzene, 2,4-dinitrotoluene, 3-nitroaniline and 4-nitroaniline in samples PWG-SB-

2008-01@5-10 and PWG-SB-2008-21@5-10 (PWG-SB-2008-21@5-10 was collected as a blind duplicate of

PWG-SB-2008-21@5-10).

Dichlorodifluoromethane and 1,2,3-trichloropropane in samples PWG-DW-2008-15@7-7.5 and PWG-DW-

2008-100@7-7.5 (PWG-DW-2008-100@7-7.5 was collected as a blind duplicate of PWG-DW-2008-15@7-7.5).

Dichlorodifluoromethane, carbon disulfide, vinyl acetate and 1,2,3-trichloropropane in sample PWG-DW-

2008-34@5.5-6.

Dichlorodifluoromethane, chloromethane, bromomethane and isopropyl benzene in sample DIFFW-01.

Dichlorodifluoromethane, chloromethane, 2-butanone, acetone and isopropyl benzene in sample DIFFW-

04.

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716 PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com

Due to poor MS/MSD and duplicate recoveries in SDG L0813344 for metals and mercury analyses, several

compounds exhibited recoveries outside the acceptance windows. The laboratory appropriately applied "N"

and "*" qualifiers on compounds that exceeded the criteria. As a result of the recovery failures, results flagged by

the laboratory with an "N" or "*" were classified as estimated (J, UJ qualifiers) by the validator in samples PWG-

DW-2008-15@7-7.5 and PWG-DW-2008-100@7-7.5 (PWG-SB-2008-21@5-10 was collected as a blind duplicate of

PWG-SB-2008-21@5-10).

Due to poor MS/MSD and duplicate recoveries in SDG L0813447 for metals and mercury analyses, several

compounds exhibited recoveries outside the acceptance windows. The laboratory appropriately applied "N"

qualifiers on compounds that exceeded the criteria. As a result of the recovery failures, results flagged by the

laboratory with an "N" were classified as estimated (J, UJ qualifiers) by the validator in sample PWG-DW-2008-

34@5.5-6.

Based on poor reproducibility in the organic field duplicate pairs, the validator classified the following results as

estimated (J, UJ qualifiers):

• 4-4'-DDT in samples PWG-SB-2008-01@5-10 and PWG-SB-2008-21@5-10 (PWG-SB-2008-21@5-10 was

collected as a blind duplicate of PWG-SB-2008-21@5-10).

Cis-1,2-dichloroethene, trichloroethene, vinyl chloride, fluoranthene and pyrene in samples PWG-DW-

2008-15@7-7.5 and PWG-DW-2008-100@7-7.5 (PWG-DW-2008-100@7-7.5 was collected as a blind

duplicate of PWG-DW-2008-15@7-7.5).

Acetone, 2-butanone, n-butylbenzene, isopropyl benzene and 2-methylnaphthalene in sample PWG-DW-

2008-34@5.5 -6.

Vinyl chloride in DIFFW-01.

Based on poor reproducibility in the inorganic field duplicate pairs, the validator classified the following results as

estimated (J, UJ qualifiers):

Aluminum, arsenic, barium, calcium, copper, lead, mercury, vanadium and zinc in samples PWG-SB-2008-

01@5-10 and PWG-SB-2008-21@5-10 (PWG-SB-2008-21@5-10 was collected as a blind duplicate of PWG-

SB-2008-21@5-10).

Silver in sample PWG-DW-2008-34@5.5 -6.

Although acetone and methylene chloride were not detected above the reporting limit in volatile organic

analysis (VOA) method blanks, chromatographic peaks were observed in raw data for these compounds in

associated method blanks. As such, the validator recommends that caution be used in the results of these

compounds as they are common laboratory contaminants and low concentrations observed in soil samples may

no be site related.

Data Usability

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716 PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com

The DUSR was prepared in accordance with USEPA Region II SOPs for validating organic and inorganic analyses and was based on a review of each SDG case narrative and full Data Validation Report (detailed above). The findings and recommendations of the DUSR are summarized as follows:

- Laboratory deliverables were received in accordance with the work plan and general reporting requirements of NYSDEC Analytical Services Protocol. Deviations from acceptable QC specifications were discussed in detail in case narratives and data were flagged with laboratory qualifiers, where appropriate.
- Due to the need for dilutions or reanalysis due to QC outliers, multiple data sets were provided for some samples. Per the DUSR, in the case of dilution analyses, the more concentrated analysis is replaced with the appropriate concentration from the dilution analysis; in the case of reanalysis original results are considered for use as estimated values (U, UJ qualifiers).
- The completeness level attained for the analysis of field samples was greater than 95%. For all data, the overall quality of data is acceptable and all results, as qualified, are considered usable.

5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

5.1.1 Source Areas

Previous investigations performed at the site have identified PCE and its degradation products in soils beneath the southwest portion of the warehouse building. The results of the March 2004 RI confirmed the findings of previous investigations identifying significant shallow soil contamination limited to an area approximately 40 feet by 60 feet and deeper contamination covering an area roughly 180 feet by 160 feet beneath the southwest portion of the southern warehouse building. PCE impacted soil was also identified at the surface of the clay layer outside of the

building at the north end of the western parking area.

Analytical data for soil samples collected from six source area delineation soil borings installed as part of this Supplemental RI appears to confirm the conclusions of the March 2004 RI indicating that the source area for PCE contamination at the site is limited to the area beneath the southwest portion of the warehouse building. Based upon field observations, installation of additional step out borings was not warranted. PCE and its degradation

upon field observations, installation of additional step out borings was not warranted. PCE and its degradation

products were not detected at concentrations in excess of their respective Unrestricted Use SCOs in soil samples

collected from outside the perimeter of the presumed source area (SB-2008-09 through SB-2008-14).

The presence of elevated PCE concentrations in soil beneath the southwest portion of the warehouse building is acting as a continuing source of contamination to the shallow groundwater. Based upon a review of the recent and historic data, no source area was located in the northern portion, to the north of the Parcel Line

(N83°50′53″E), of the property.

5.1.2 Soil

The geophysical survey, test pit excavation and dye/flush testing performed as part of the Supplemental RI identified twenty previously unknown storm water drainage structures and one previously unknown industrial

leaching pool. No evidence indicating the storm water drainage structures had received discharges from within

the build was identified.

PCE and its degradation products were detected at concentrations below their respective Unrestricted Use SCOs

in samples collected from ten storm water drainage structures (DW-03, 06, 07(SD_3), 10, 15, 16, 17, 18, 19 & SD-1)

and one industrial leaching pool (LP-01). With the exception of LP-01, all of these structures are classified as storm

water drainage structures that received surface runoff and were not connected to drains from within the building.

Leaching pool LP-01 was a buried structure, with no cover to grade, and it only received discharge from a drain within the southwestern corner of the building. Based on the locations of the structures impacted with PCE, in the

western and southern parking lot areas, the fairly low concentrations of PCE detected and the shallow

groundwater table at the site, it appears likely that low level PCE impact in these structures is related to

groundwater impact at the site. PCE and its degradation products were not detected at concentrations

exceeding their respective Unrestricted Use SCOs in samples collected from subsurface drainage structures at the

subject site.

A total 26 storm water (DW-01, DW-02, DW-07, DW-10, DW-11, DW-14, DW-17, DW-19, DW-20, DW-21, DW-23, DW-

24, DW-26, DW-28, DW-30, DW-31, DW-32, DW-33, DW-34, DW-35, DW-36, DW-37, DW-38, DW-39, DW-40, & DW-43)

drainage structures and one industrial leaching pool (LP-1) at the site were determined to be impacted with

VOCs other than PCE and its degradation products, SVOCs and/or metals at concentrations exceeding their

respective Unrestricted Use SCOs. The compounds detected are typically associated with run-off from parking

areas.

5.1.3 Groundwater

The March 2004 RI identified a shallow groundwater plume of PCE and its degradation products emanating from

the source area beneath the southwestern portion of the warehouse building. PCE concentrations in the source

area were reported at or above the pure product solubility, providing evidence of DNAPL in this area. At that

time, the plume appeared to be migrating south toward the MTA Long Island Bus Depot. PCE was detected at

concentrations as high as 28,000 ppb at the southern property boundary and 8,600 ppb at the western property

boundary.

Analytical data for fourteen shallow groundwater samples collected as part of this Supplemental RI confirmed the

findings of the March 2004 RI, identifying a plume of PCE and its degradation products in shallow groundwater at

the site.

It appears that the plume of impacted shallow groundwater originating from the source area beneath the

southwestern portion of the warehouse building may currently be migrating off-site to the south.

Elevated concentrations of PCE and/or its degradation products were detected in nineteen of 30 groundwater

samples collected from below the clay layer present at the site. In deep groundwater, peak concentrations of

PCE were detected at a depth of approximately 36 to 40 feet below grade at VP-02, adjacent to the southern

property boundary. PCE was not detected in groundwater samples from VP-04, which was the vertical profile

located furthest to the east. PCE and its degradation products were not detected in monitoring wells (MW-7, MW-

8 and MW-9) located in the northern portion of the site, which were screened beneath the clay layer.

Based on the historic use of the property, plume(s) originating at the site may have been in transit for 30 to 36

years, starting sometime prior to 1978. The extent of off site groundwater impact will be determined by the off-site

(OU2) investigation.

In addition to VOCs, samples collected from each of the five monitoring wells present at the site (MW-1, MW-2,

MW-4, MW-5 and MW-6) were also analyzed for SVOCs, metals, pesticides and PCBs. SVOCs, pesticides and PCBs

were not detected at concentrations exceeding the laboratory MDL in shallow groundwater samples collected

from the site. One or more metal, including aluminum, arsenic, beryllium, cadmium, chromium, iron, lead,

magnesium, manganese, mercury and nickel, were detected at a concentration exceeding its NYSDEC AWQS in

each of the shallow groundwater samples submitted for analysis. Due to the turbidity of the groundwater samples

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716 PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com

collected, and the possibility that metals detected at elevated concentrations were related to suspended solids

in the samples rather than actual dissolved metals impact, monitoring wells MW-4, MW-5 and MW-6 were re-

sampled and laboratory filtered samples were analyzed for dissolved metals content. Elevated metals concentrations were not detected in filtered samples, indicating that previously identified metals impact was

likely related to suspended solids in the samples rather than actual dissolved metals impact.

5.1.4 Soil Vapor

Elevated PCE concentrations were detected in four of twelve soil-vapor samples collected from the site. PCE

and/or its degradation products were detected at concentrations exceeding their respective USEPA Guidance

Value (as listed for the 10-5 risk level) in soil-vapor samples collected at sampling points SG-2008-03, SG-2008-09,

SG-2008-11 and SG-2008-12. With the exception of SG-2008-12, each of the soil-vapor samples was collected

adjacent to the proposed IRM excavation area. Soil-vapor sample SG-2008-11, the soil-vapor sample collected

nearest the proposed excavation area exhibited the highest PCE concentration detected at 1,680,000 ug/m3.

5.2 Recommendations

The Brownfield Cleanup Program defines the investigation/cleanup responsibilities required of the volunteer

applicant and those assigned to the responsible party and/or the NYSDEC. Recommendations for further

investigation and remediation, as detailed below, are grouped accordingly.

Potential remedial activities to address on-site soil and groundwater impact will be detailed in a Remedial Work

Plan for the site, to be prepared in accordance with the NYSDEC Draft Brownfield Cleanup Program Guide (May

2004), NYSDEC 6 NYCRR Part 375-1 (December 14, 2006), and NYSDEC Draft DER-10 Technical Guidance for Site

Investigation and Remediation (December 25, 2002).

5.2.1 Responsible Party

Delineation of Off-Site Groundwater Impact

The results of this Supplemental RI demonstrate that groundwater impact in excess of NYSDEC AWQS extends off

site to the south and west of the subject property both above and, to a lesser extent below the clay confining

layer. Based on the historic use of the property, impacted groundwater may have been in transit for 30 to 36

years, starting sometime prior to 1978. The off-site downgradient extent of the plume will be investigated under the

OUIII off-site Remedial Investigation.

Delineation of Off-Site Soil Vapor Impact

PCE was detected in soil vapor in samples collected adjacent to the southern property boundary. The off site

extent of soil vapor impact should be further investigated under the OU II Off-Site Remedial Investigation.

5.2.2 Volunteer

Subsurface Drainage Structure Remediation and Closure

VOCs, SVOCs and/or metals were detected at concentrations exceeding their respective Unrestricted Use SCOs

in samples collected from 25 of 42 storm water drainage structures and the sole industrial wastewater leaching

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716 PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com

pool present at the subject property. Impacted structures should be remediated in accordance with USEPA

Underground Injection Control (UIC) Program procedures and abandoned if no longer needed.

Groundwater

VOCs, SVOCs and/or metals were detected at concentrations exceeding their respective NYSDEC AWQS at 16

locations throughout the southwestern corner of the site, both above and, and to a lesser extent, below the clay.

However, no VOCs were detected above AWQS in samples collected from the northern portion of the property,

to the north of the Parcel Line (see Figure 7), and a second round of laboratory filtered groundwater samples

showed a decrease in metals concentrations below AWQS. The upcoming IRM will address VOC impacted

groundwater through extensive dewatering and chemical oxidant treatment. The need for additional treatment,

of impacted groundwater in the southwestern corner of the site, will be evaluated under the Remedial Action

Work Plan for the site.

Interim Remedial Measure

Based on previous characterizations of the source area beneath the building, which identified DNAPL and sorbed

phase VOCs below the water table, the RI report recommended implementation of an Interim Remedial Measure

(IRM) to remove the source of groundwater impact from the southwestern corner of the site. PWGC submitted to

NYSDEC a proposed IRM consisting of the installation extraction of product recovery wells to recover mobile

DNAPL on top of the clay layer, followed by soil excavation within the primary source area. The IRM was

approved by the NYSDEC in May 2006 and later amended with NYSDEC approval in April 2009.

Based on previous investigations, it appeared that the topography of the clay surface beneath the building

formed a bowl shape in the vicinity of soil boring B3, which could potentially restrict the movement of mobile

DNAPL away from the source area. As such, the IRM called for the installation of DNAPL recovery wells in this

area. Since it was expected that the amount of mobile DNAPL would be limited, event based recovery methods

(e.g., product bailing) were recommended rather than the installation of an automated recovery system. The

intended purpose of removing mobile DNAPL was to reduce the possibility of DNAPL migration during soil

excavation.

The IRM specified the excavation and disposal of approximately 9,000 cubic yards of impacted soil from the site

(in conjunction with dewatering activities) to eliminate the bulk of the presumed source area followed by the

application of chemical oxidants to treat residual PCE impact.

To date, six DNAPL recovery wells have been installed within the source area beneath the southwestern portion of

the warehouse building and product recovery has been implemented. The following phases of the IRM, including

dewatering, soil excavation and off-site disposal, chemical oxidant injections, and backfilling are scheduled to be

implemented in the coming months. Following the completion of the IRM, field observations, endpoint analytical

results and site activities will be summarized in a Remedial Action Work Plan (RAWP). The RAWP will also detail

remedial technologies and methods to address any residual PCE impact or newly identified environmental areas

if concern as detailed in this Supplemental Remedial Investigation Report.

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716

Future Site Development Activities

The results of the investigation indicate that there are no areas of contaminated soil, groundwater or soil vapor impact in the northern portion of the site (north of the Parcel Line). In light of these findings, there is no evidence from an engineering standpoint as to why, upon NYSDEC approval of this Supplemental Remedial Investigation Report, site development activities, including the start of construction of the planned garage structure and other components of the planned development, including the residential apartment building, should not commence in the northern portion of the site at the same time that remediation is taking place in the southern portion of the site. Consistent with sound engineering practice, a vapor mitigation system will be incorporated into the building design. Any subsurface drainage structures which may be disturbed during or otherwise need to be abandoned for upcoming construction activities, will be properly remediated, if necessary, and abandoned in accordance with USEPA UIC Program procedures.

Following completion of the IRM, additional information will be available to determine what if any, additional remedial activities and/or engineering controls may be warranted in the southwestern portion of the site. Based upon the contaminants observed during this and previous investigations, it is anticipated that additional remedial measures may be warranted in the southern portion of the site. Appropriate remedial alternatives will be detailed in the RAWP to be submitted to the Department after completion of the IRM.

6.0 REFERENCES

EcolSciences, Inc., Phase I Environmental Site Assessment for 80-100 Banks Avenue, Rockville Centre, New York,

March 28, 2002

EcolSciences, Inc., Phase II Environmental Investigation Report for 80-100 Banks Avenue, Rockville Centre, New

York, January 2004

Melick-Tully and Associates, Inc., Preliminary Soils and Foundation Investigation Report, 80-100 Banks Avenue,

Rockville Centre, New York, April 4, 2002

NYSDEC, Division of Environmental Remediation, Draft Brownfield Program Cleanup Guide, April 4, 2002

NYSDEC, Division of Environmental Remediation, 6 NYCRR Part 375, Environmental Remediation Programs,

December 14, 2006.

NYSDEC, Division of Environmental Remediation, Draft DER-10, Technical Guidance for Site Investigation and

Remediation, December 2002

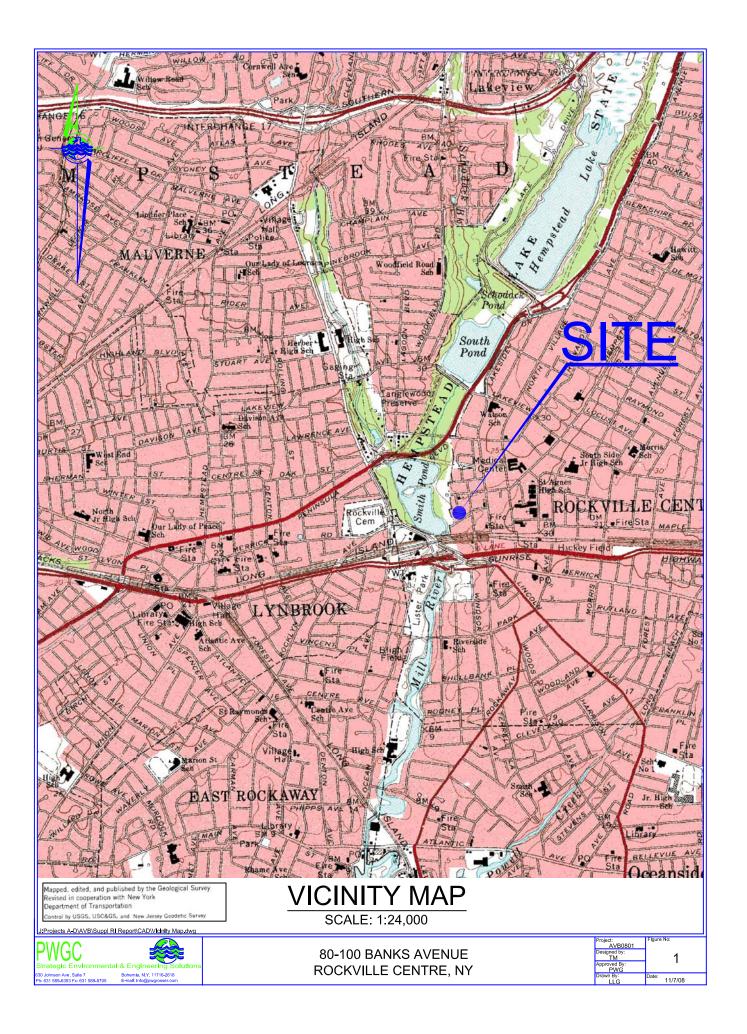
NYSDEC, Division of Environmental Remediation, Technical and Administrative Guidance Memorandum (TAGM)

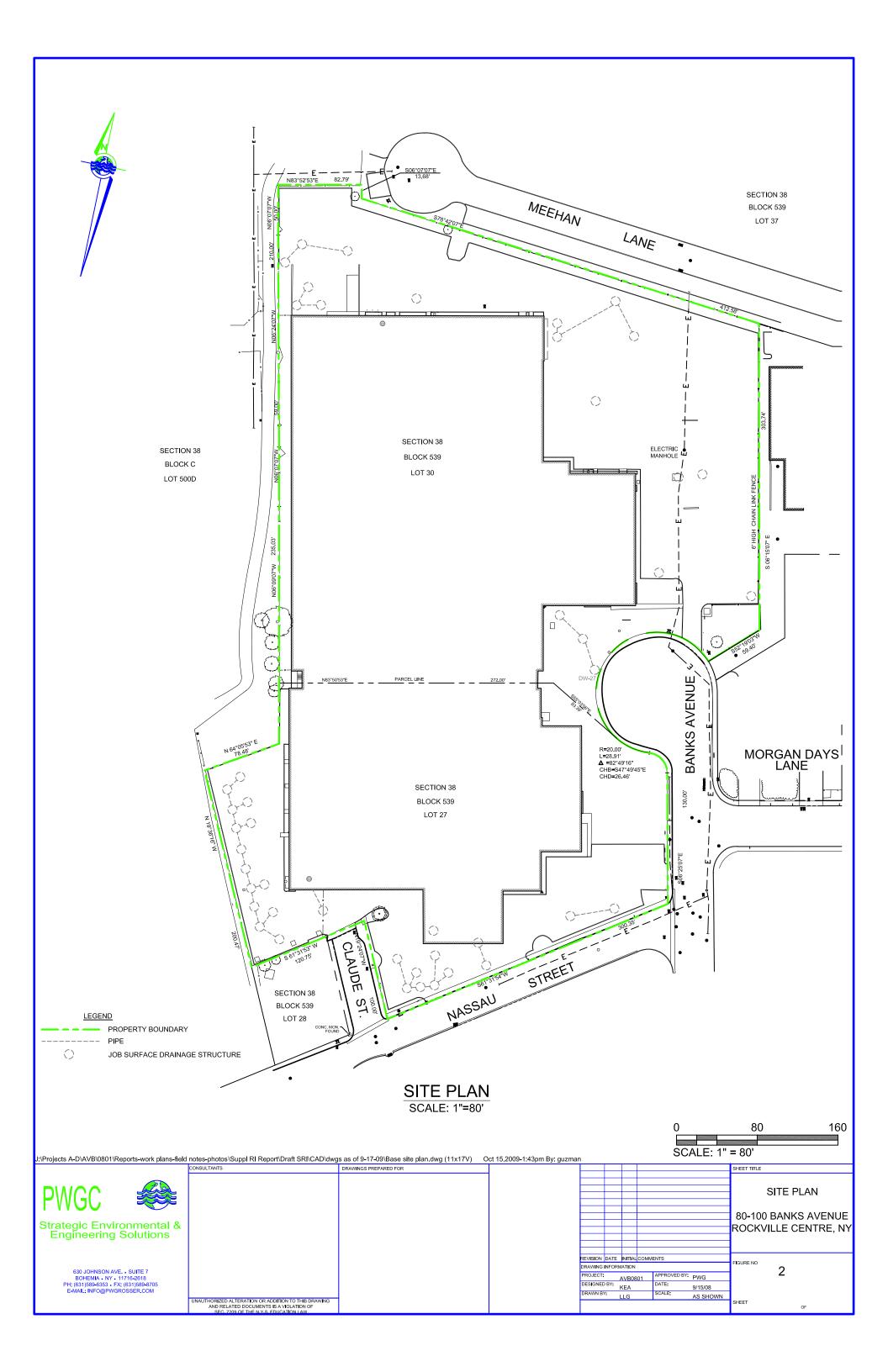
#4046 Determination of Soil Cleanup Objectives and Soil Cleanup Levels. January 24, 1994

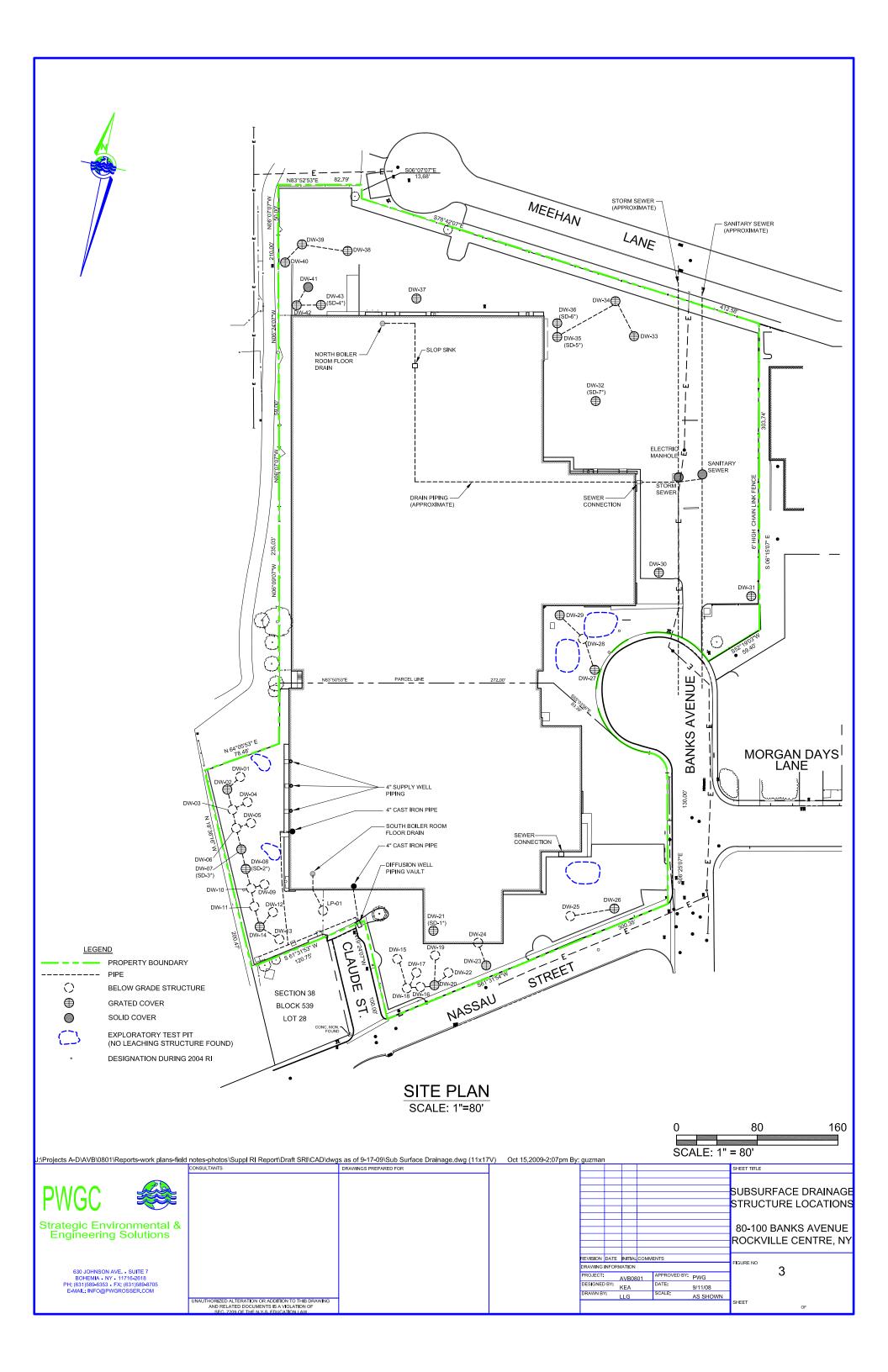
NYSDEC, Division of Water, Technical and Operational Guidance Series (TOGS) 1:1:1, Ambient Water Quality

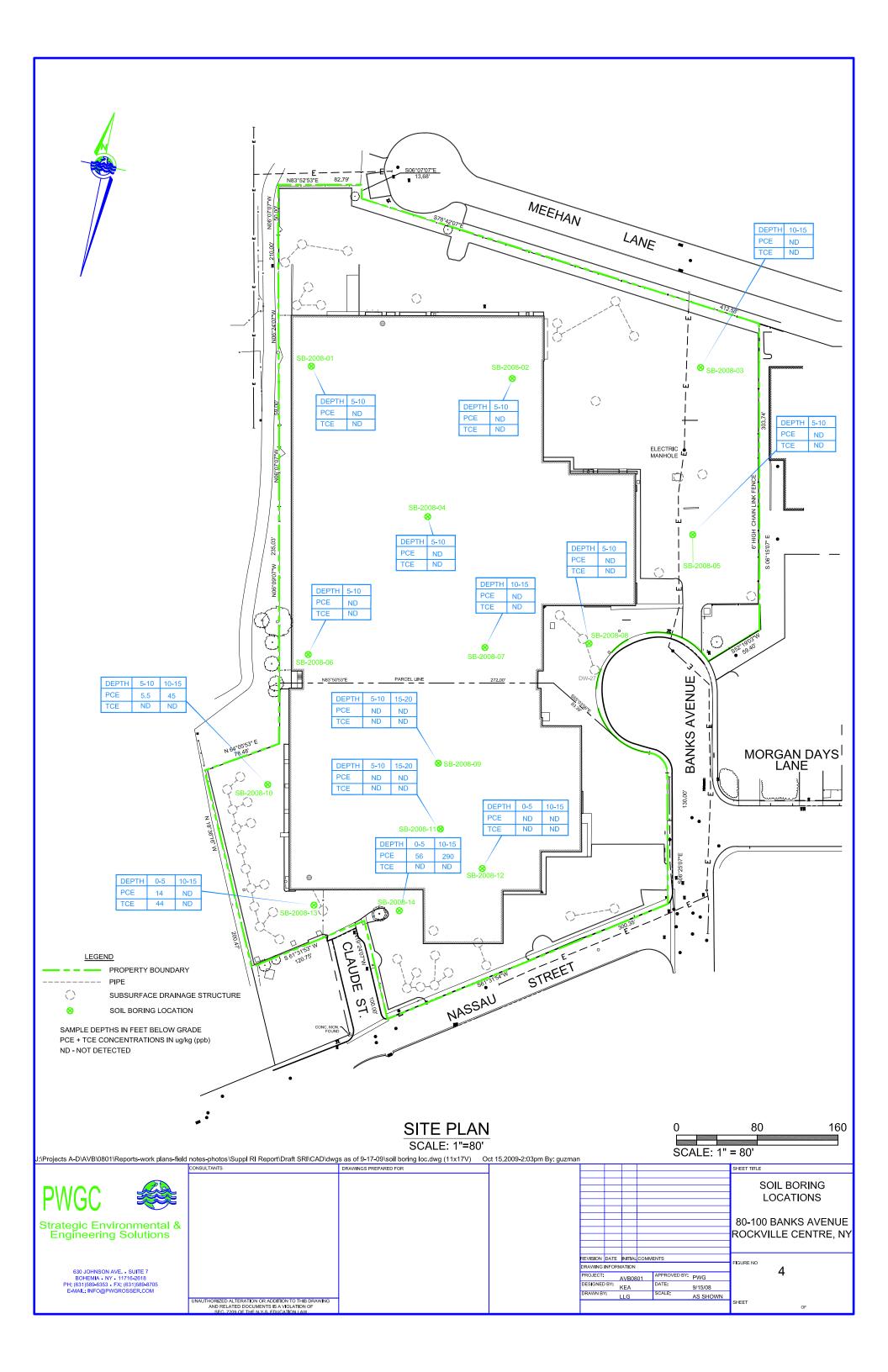
Standards and Guidance Values and Groundwater Effluent Limitations, June 1998, April 2000 Addendum

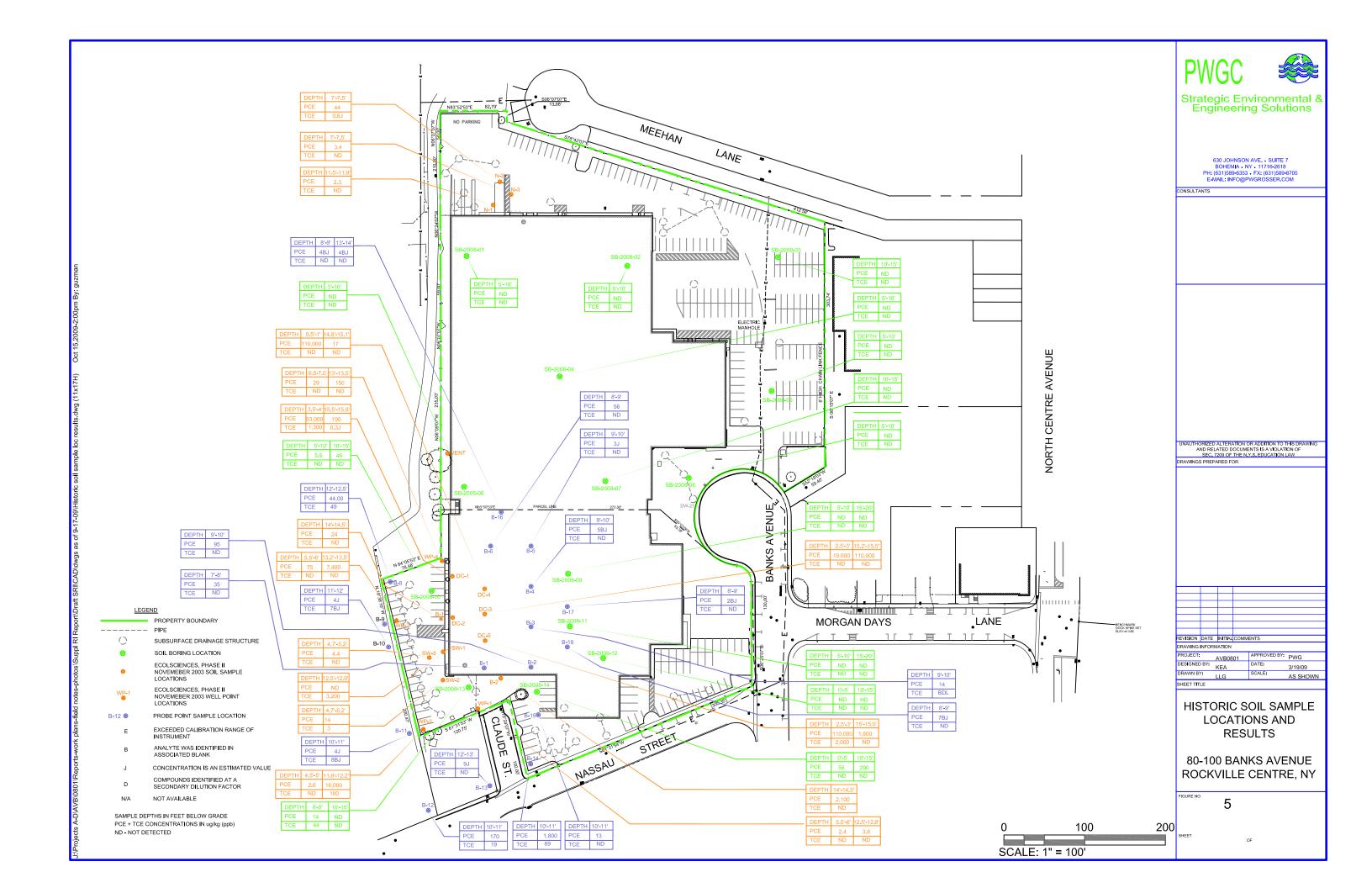
P.W. Grosser Consulting, Inc. September, 2004. Remedial Investigation Report, 80-100 Banks Avenue, Rockville

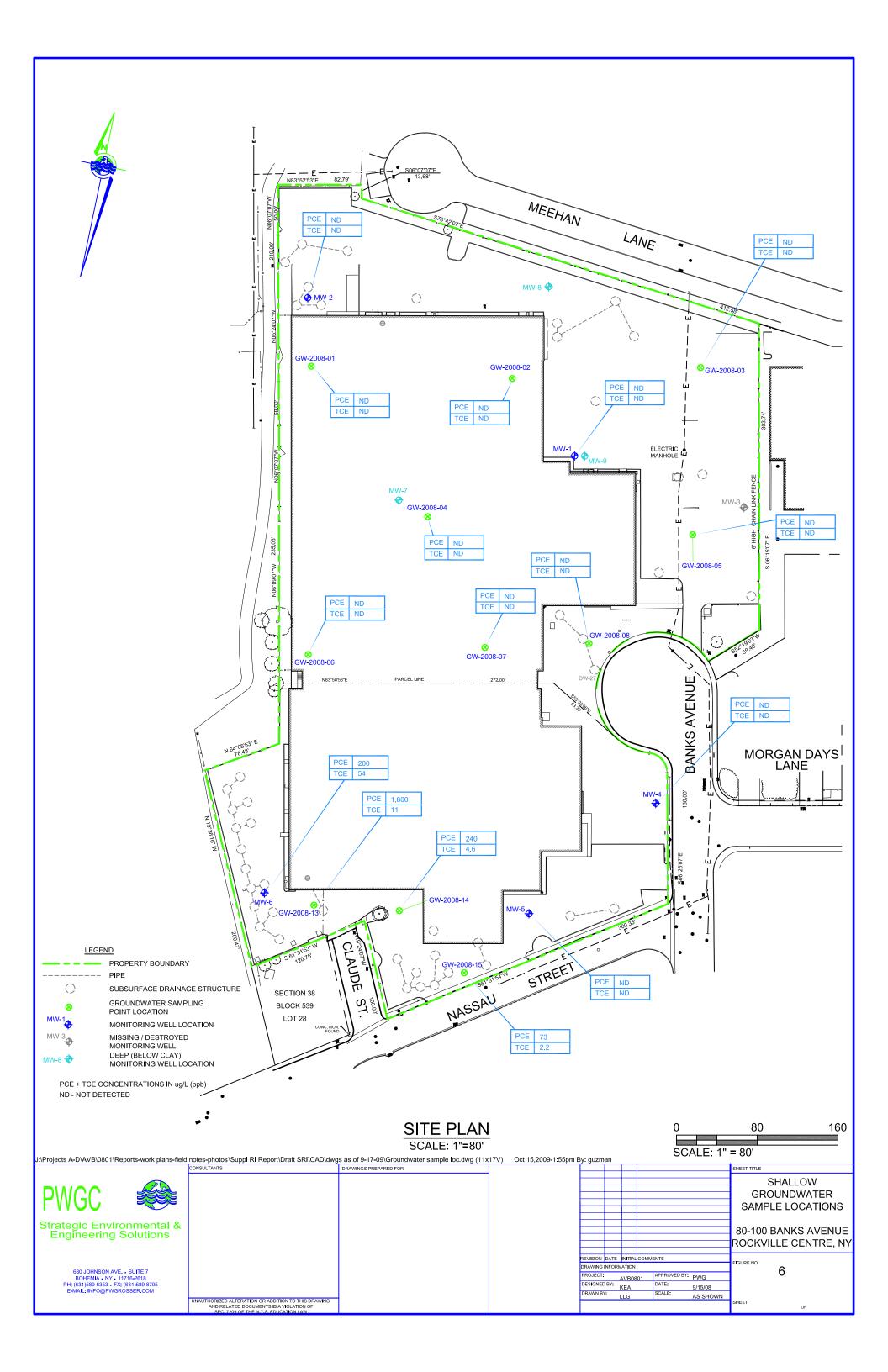

Centre, New York

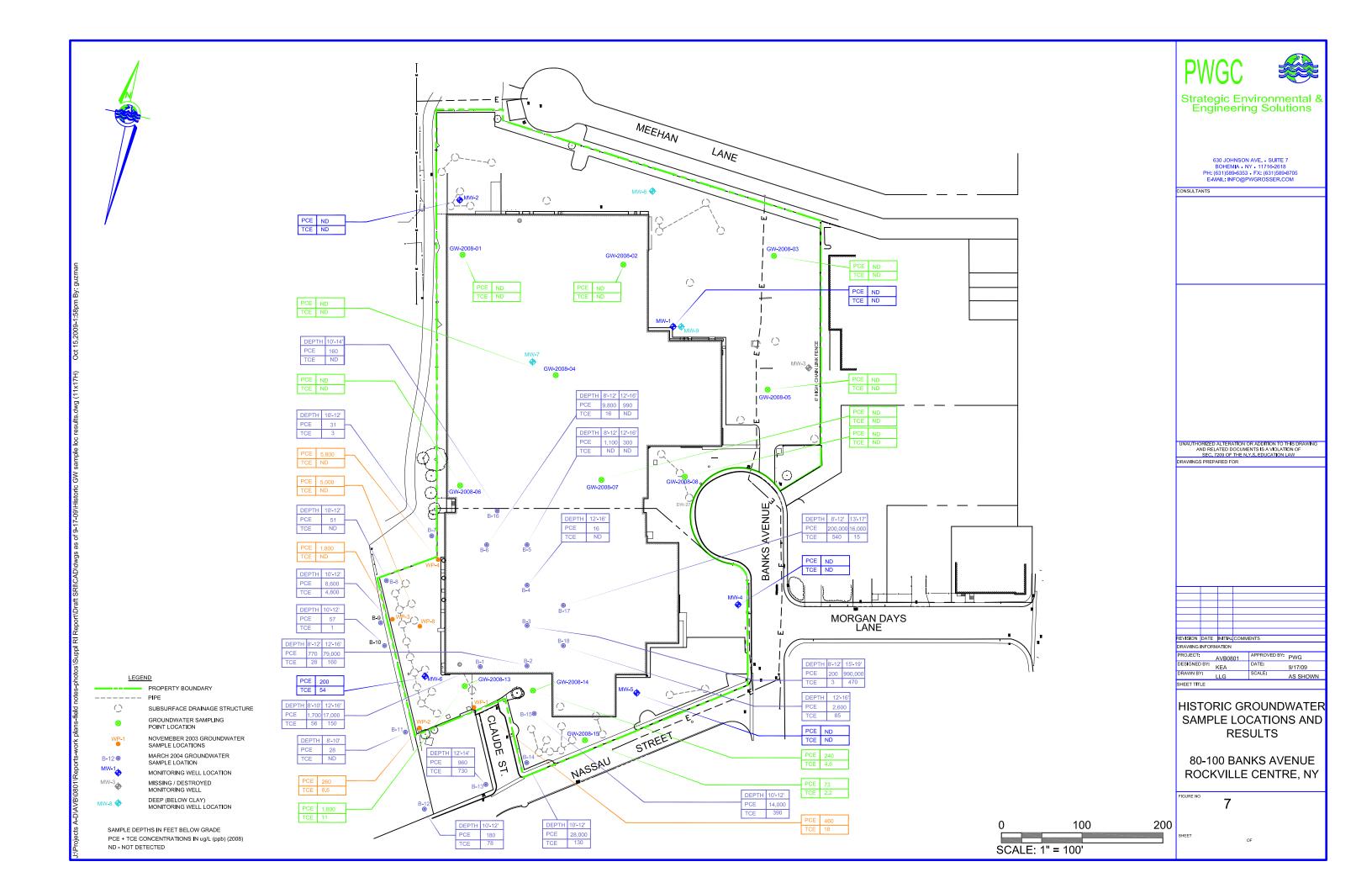

P.W. Grosser Consulting, Inc. September, 2004. Proposed Interim Remedial Measure, 80-100 Banks Avenue,

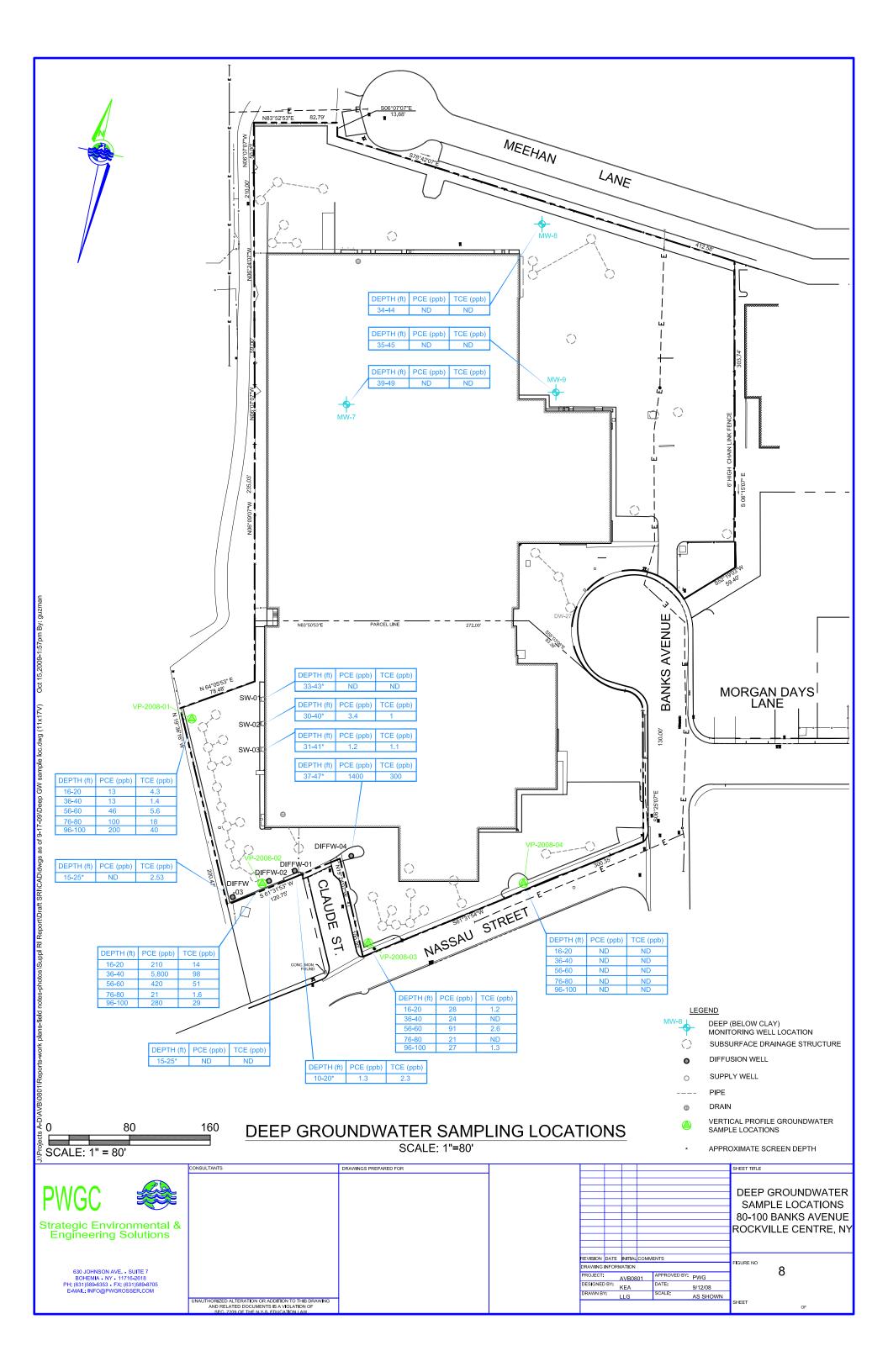

Rockville Centre, New York.

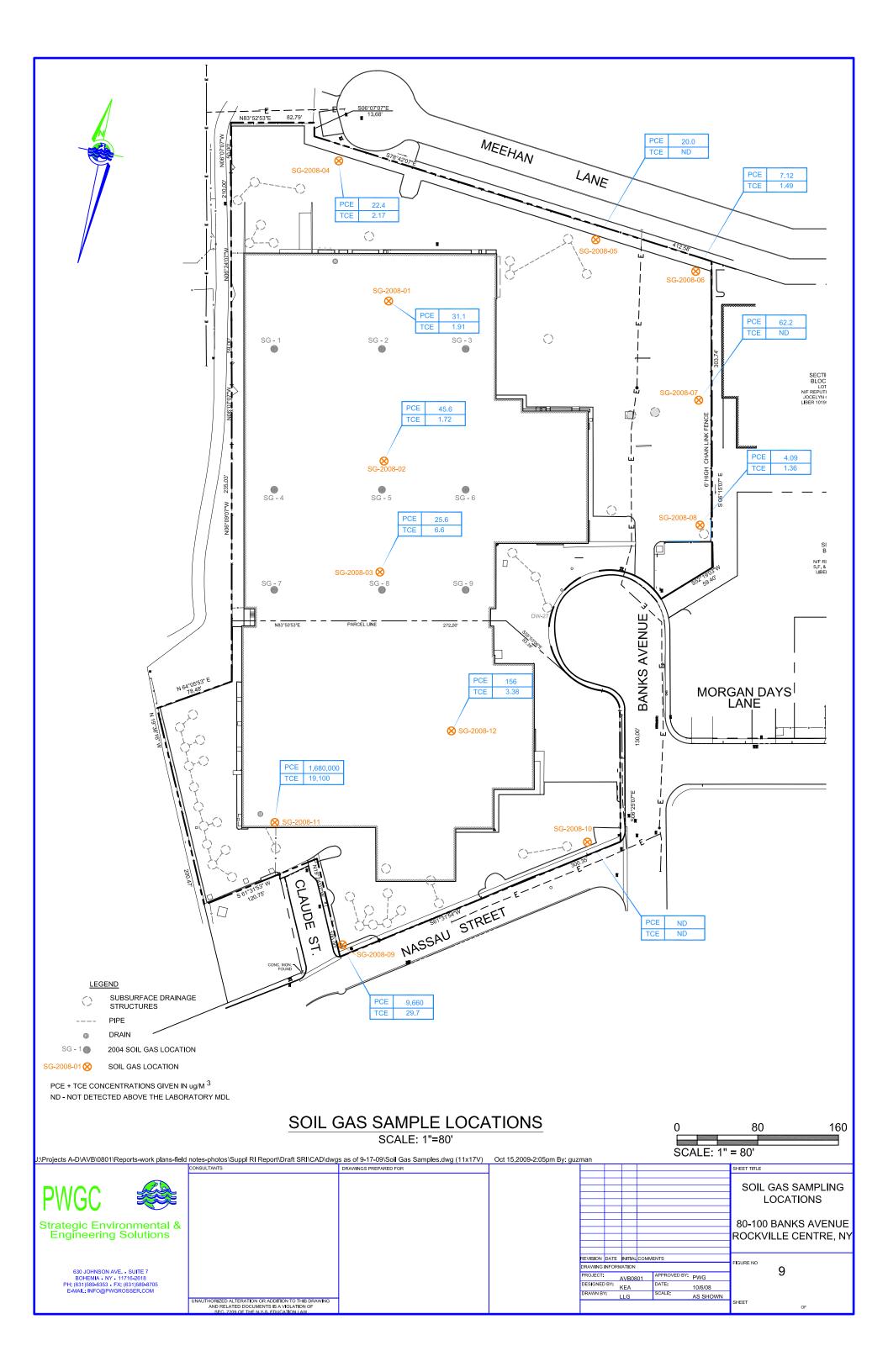

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716
PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com
New York, NY • Seattle, WA • Greensboro, NC

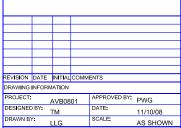

FIGURES










PWGC

Strategic Environmental & Engineering Solutions

630 JOHNSON AVE. • SUITE 7 BOHEMIA • NY • 11716-2618 PH: (631)589-6353 • FX: (631)589-8705 E-MAIL: INFO@PWGROSSER.COM

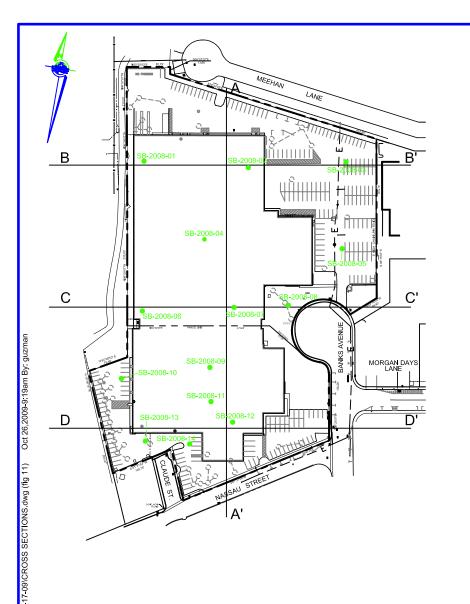
NSULTANTS

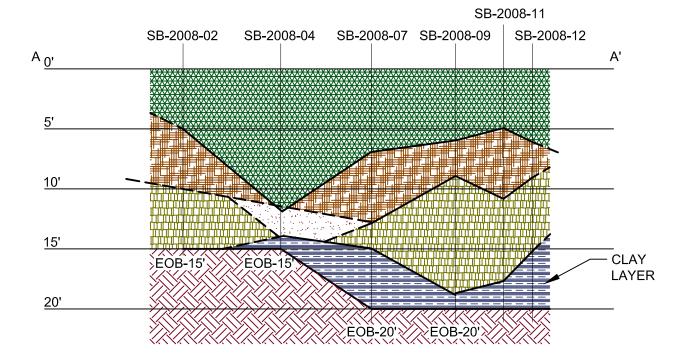
UNAUTHORIZED ALTERATION OR ADDITION TO THIS DRAWING AND RELATED DOCUMENTS IS A VIOLATION OF SEC. 7209 OF THE N.Y.S. EDUCATION LAW PRAWINGS PREPARED FOR

SURROUNDING LAND USE

80-100 BANKS AVENUE ROCKVILLE CENTRE, NY

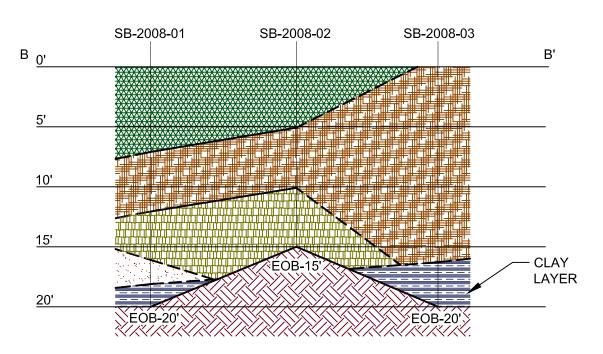
FIGURE NO 10


1,000

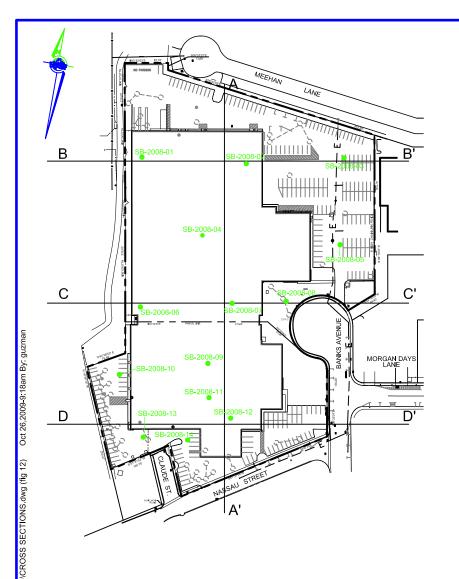

500

ET

AERIAL MAP
SCALE: 1"=500'


AERIAL MAP PROVIDED BY: GOOGLE MAPS 0 50 SCALE: 1" = 500'

CROSS SECTION A-A' SCALE = 1:8


CROSS SECTION B-B'
SCALE = 1:8

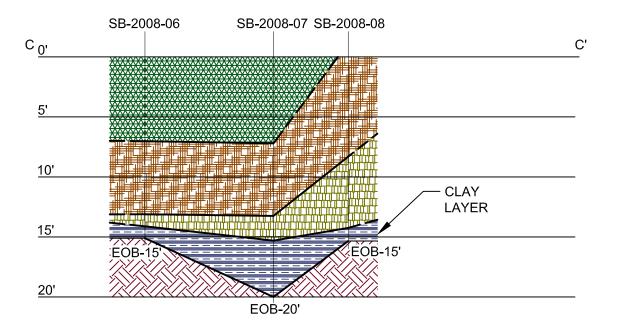
Strategic Environmental & Engineering Solutions 630 JOHNSON AVE. • SUITE 7 BOHEMIA • NY • 11716-2618 PH: (631)589-6353 • FX: (631)589-8705 E-MAIL: INFO@PWGROSSER.COM AUTHORIZED ALTERATION OR ADDITION TO THIS DRAWING AND RELATED DOCUMENTS IS A VIOLATION OF SEC. 7209 OF THE N.Y.S. EDUCATION LAW WINGS PREPARED FOR

GEOLOGIC CROSS SECTIONS

80-100 BANKS AVENUE ROCKVILLE CENTER, NY

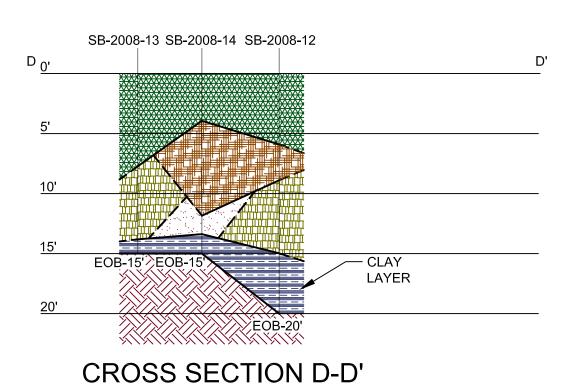
GURE NO 11

LEGEND

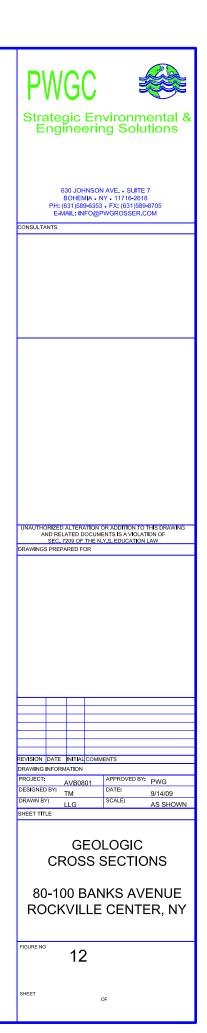

SILTY SAND

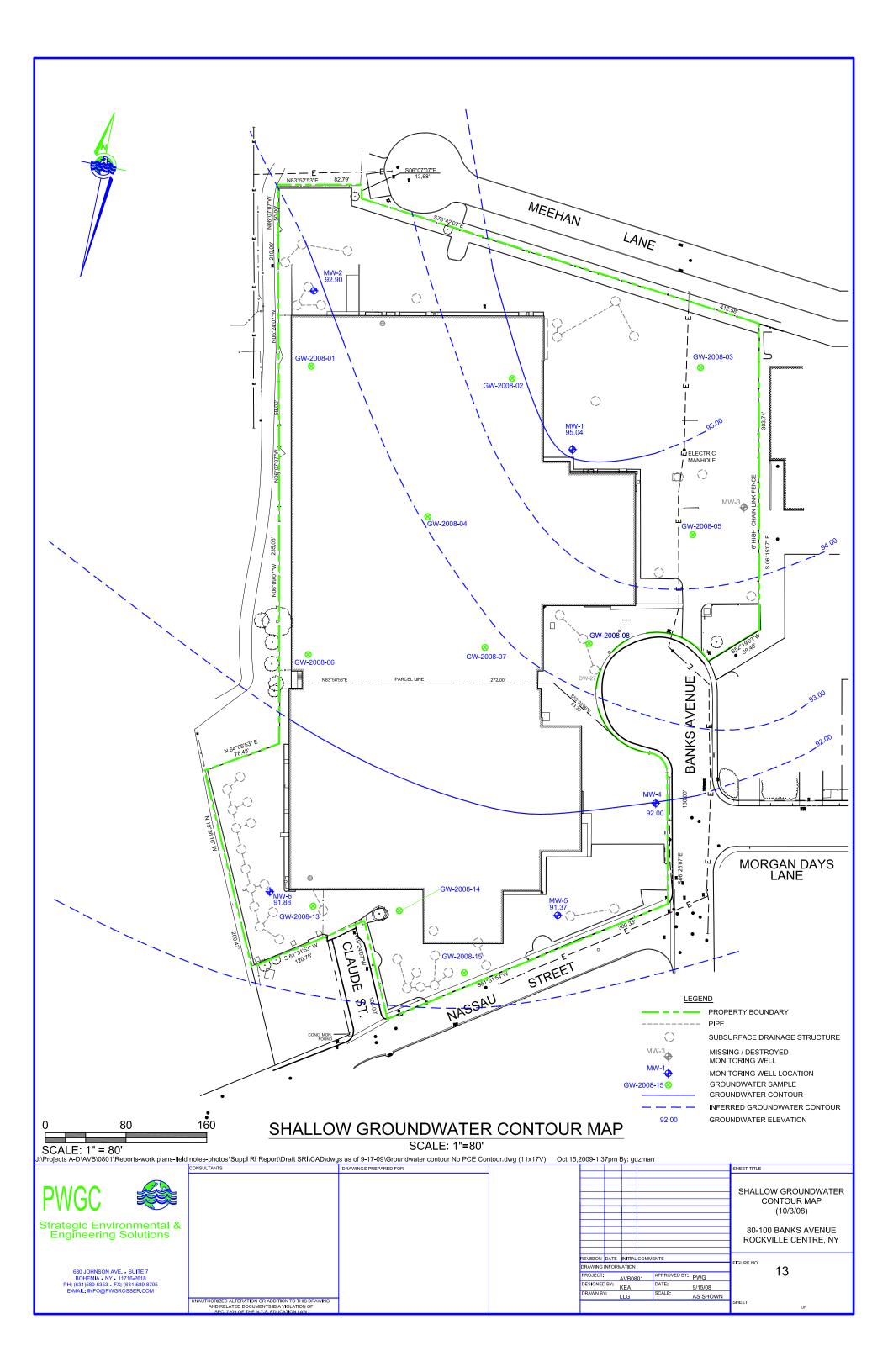
NOT SAMPLED

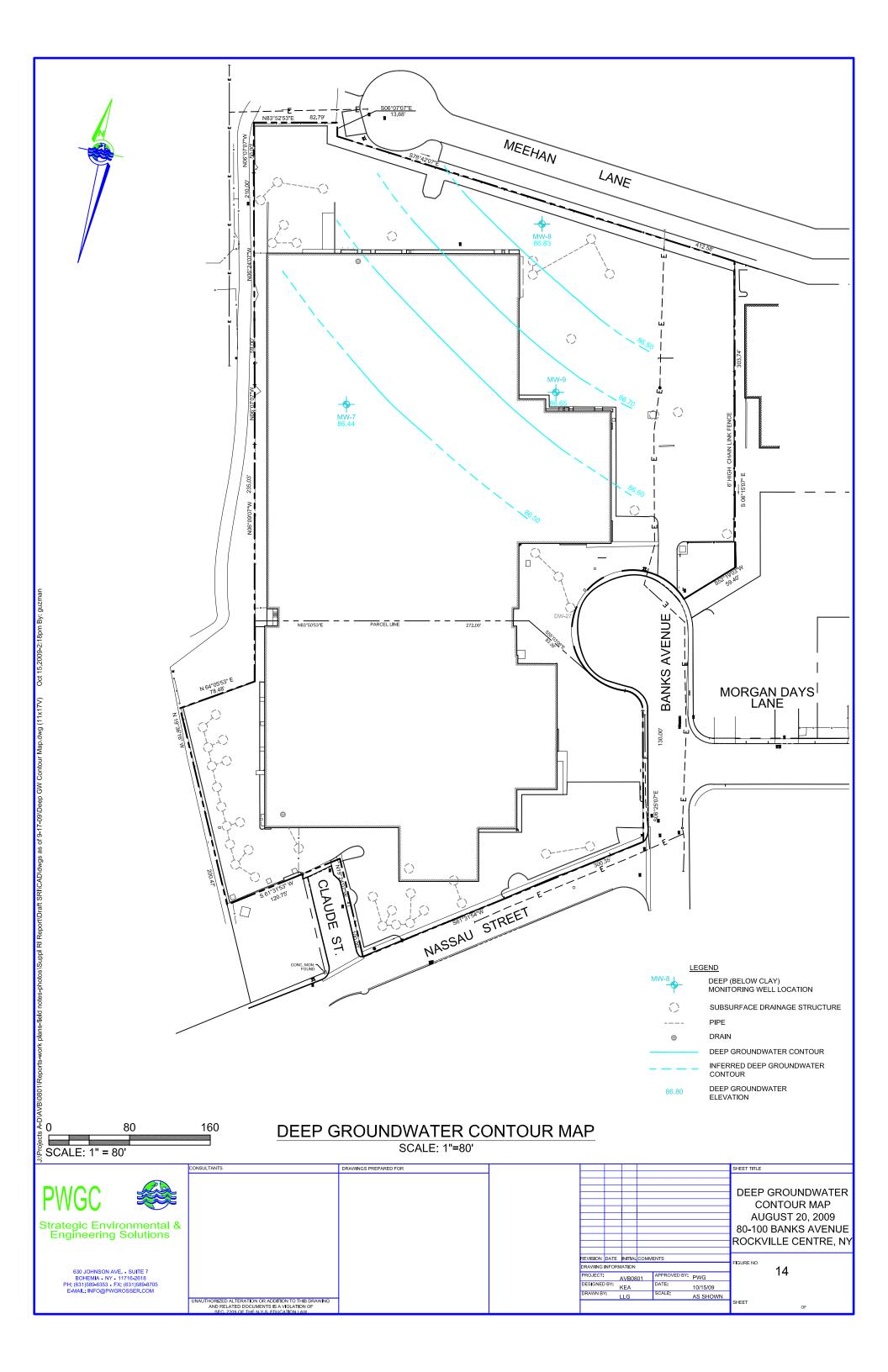
END OF BORING


CLAY

EOB




CROSS SECTION C-C' SCALE = 1:8



SCALE = 1:8

TABLES

Table 1
Subsurface Drainage Structure Construction Details
Former Darby Drugs Distribution Center

Structure ID	Alternate ID(1)	Finished to	Depth to	Depth to	Total Depth to	Inside	Liquids	Solid	PID
		Grade	Buried Cover	Bottom from	Bottom from	Diameter of	Present ⁽²⁾	Bottom	Response ⁽³⁾
				Buried Cover	Grade	Structure			
			(feet)	(feet)	(feet)	(feet)	(feet)		(ppm)
DW-01		No	2.5	4.75	7.25	8	3	No	0.0
DW-02		Yes	-	-	5.25	8	3	No	0.0
DW-03		No	3	5.25	8.75	8	4	No	0.0
DW-04		No	1.75	5.5	7.25	8	3	No	0.0
DW-05		No	2.75	4	6.75	10	2.25	No	0.0
DW-06		No	2.25	4.5	6.75	8	2.5	No	0.0
DW-07	SD-3	Yes	-	-	6.75	8(4)	3	No	0.0
DW-08	SD-2	Yes	-	-	5.25	8(4)	1.75	No	0.0
DW-09		No	1.75	5	6.75	10	2.25	No	0.0
DW-10		No	1.5	4.75	6.25	10	1.75	No	0.0
DW-11		No	2.25	4.5	6.75	10	2.5	No	0.0
DW-12		No	2.25	5	7.25	10	2.75	No	0.0
DW-13		No	3.25	4	7.25	10	3	No	0.0
DW-14		Yes	-	-	6	8(4)	2.5	No	0.0
DW-15		No	3.25	3.75	7	10	3.25	No	0.0
DW-16		No	2.5	3	5.5	8	1	No	0.0
DW-17		No	2	3.5	5.5	10	1.25	No	0.0
DW-18		Yes	-	-	4	8	0.5	No	0.0
DW-19		No	1.5	3	4.5	8 8 ⁽⁴⁾	0.5	No	0.0
DW-20		Yes	-	-	4.5		0.75	No	0.0
DW-21	SD-1	Yes	-	-	5	4	1	No	NS
DW-22		No	3.5	1.75	5.25	8	0.75	No	0.0
DW-23		Yes	-	-	3	8	0.5	No	0.0
DW-24		No	2	4	6	8	1.25	No	0.0
DW-25		No	2.5	3.25	5.75	8	1.75	No	0.0
DW-26		Yes	-	-	4.25	10 8 ⁽⁴⁾	1.75	No	0.0
DW-27		Yes	-	-	12.5	8(4)	9.5	No	0.0
DW-28		No	3	9	12	8(4)	7	No	0.4
DW-29		Yes	-	-	10	8(4)	5	No	0.0
DW-30		Yes	-	-	8.5	8 ⁽⁴⁾	2	No	0.0
DW-31	5.73	Yes	-	-	8	8(4)	3	No No	0.0
DW-32	SD-7	Yes	-	-	10 7		2 0.5	No	NS 0.0
DW-33		Yes	-	-		10 8 ⁽⁴⁾		No No	
DW-34	CD.F	Yes	-	-	5.5	8(4)	1	No	1.0
DW-35	SD-5 SD-6	Yes	-	-	4	8(4)	0.5	No No	NS NS
DW-36 DW-37	3D-0	Yes Yes	-	-	3 11	8(4)	5.5	No No	NS 0.0
DW-37		Yes	-	-	7	8(4)	2	No	1.0
DW-38		Yes	-	-	8.5	10	0.5	No No	0.0
DW-39					6	8	0.5	No	0.0
DW-40 DW-41		Yes Yes	-	-	9	8	0	No No	0.0
DW-41		Yes	-	-	5	2	0	Yes	0.0
DW-42	SD-4	Yes	-	-	6	2 8 ⁽⁴⁾	1	No	NS
LP-01	3D-4								
LP-01		No	3	4.75	7.75	10	1.75	No	0.0

¹Structure ID during implementation of 2004 Remedial Investigation

 $^{{}^4\!}Approximate\ volume\ of\ liquids\ present\ within\ structure\ during\ sample\ collection\ (9/8/08\ \&\ 9/10/08)}$

³Highest PID response recorded during sample collection (9/8/08 & 9/10/08)

⁴Estimated diameter

Table 2

Monitoring/Supply/Diffusion Well Elevation and Construction Details
Former Darby Drugs Distribution Center

Well Designation	Well Use	Well Diameter	Total	Casing	10/3/2008	10/3/2008	8/20/2009	8/20/2009
			Depth	Elevation	DTW	GW Elevation	DTW	GW Elevation
		(inches)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
MW-1	Monitoing/Observation	2	18.06	103.56	8.52	95.04	**	**
MW-2	Monitoing/Observation	2	18.04	99.47	6.57	92.90	**	**
MW-3	Monitoing/Observation	2	NA	102.97	**	**	**	**
MW-4	Monitoing/Observation	2	19.39	99.08	7.08	92.00	7.24	91.84
MW-5	Monitoing/Observation	2	19.89	97.76	6.39	91.37	6.79	90.97
MW-6	Monitoing/Observation	2	19.40	97.39	5.51	91.88	5.93	91.46
MW-7	Monitoing/Observation	2	50.92	96.83	**	**	10.39	86.44
MW-8	Monitoing/Observation	2	44.24	96.85	**	**	10.02	86.83
MW-9	Monitoing/Observation	2	46.35	96.79	**	**	10.14	86.65
GW-2008-01	Temporary Sampling Point	0.5	15.00*	NA	11.00*	NA	NA	NA
GW-2008-02	Temporary Sampling Point	0.5	14.00*	NA	11.00*	NA	NA	NA
GW-2008-03	Temporary Sampling Point	0.5	16.00*	NA	12.00*	NA	NA	NA
GW-2008-04	Temporary Sampling Point	0.5	15.00*	NA	11.00*	NA	NA	NA
GW-2008-05	Temporary Sampling Point	0.5	15.00*	NA	11.00*	NA	NA	NA
GW-2008-06	Temporary Sampling Point	0.5	15.00*	NA	11.00*	NA	NA	NA
GW-2008-07	Temporary Sampling Point	0.5	19.00*	NA	11.00*	NA	NA	NA
GW-2008-08	Temporary Sampling Point	0.5	14.00*	NA	12.00*	NA	NA	NA
GW-2008-13	Temporary Sampling Point	0.5	13.00*	NA	9.00*	NA	NA	NA
GW-2008-14	Temporary Sampling Point	0.5	13.00*	NA	9.00*	NA	NA	NA
GW-2008-15	Temporary Sampling Point	0.5	13.00*	NA	9.00*	NA	NA	NA
SW-01	Supply	8	43.30	NA	3.80	NA	3.85	NA
SW-02	Supply	8	40.04	NA	4.20	NA	NA	NA
SW-03	Supply	8	41.64	NA	3.74	NA	NA	NA
DIFFW-01	Diffusion	4	19.82	NA	6.78	NA	6.81	NA
DIFFW-02	Diffusion	4	25.40	NA	5.73	NA	NA	NA
DIFFW-03	Diffusion	4	25.11	NA	6.34	NA	NA	NA
DIFFW-04	Diffusion	4	47.00	NA	7.40	NA	NA	NA

NA - Not available

^{*} Approximate measurement

^{**} Well missing/destroyed/not installed

SAMPLING DATE STATE STAT	3-2008-05
Section Sect	196-01
Vashibe Companies by FIA PARKS	/2008 -10
Enchange 470	
Section 1960 100,000 31 U 2.6 U 3.2 U 2.6 U 3.5	U
Institute Technological	U
13.0 Enchlorocheme	U
1.1.1.2-InterChizonethane	U
11.1-Inchroroentame	U
11.1-Inchroroentame	
11.22-Entencharcethane	U
11.2-lichlorochane	U
1.10-Chickropropene	U
12.3 Inchloroperagene	U
12.2-Inchloropropane	U
1.2.4.Firchforobenzene	U
1,2,4-Inchlorobenzene	U
1.2-Dibromo-3-chioropropane	U
1.2-Dichomoethane	U
1.2 Dichlorobenzene	U
1,2-Dichlorogehane	U
1,2-Dichloropropane	U
1,3,5-frimethytbenzene 8,400 52,000 15 U 13 U 16 U 13 U 15 13,3-frimethytbenzene 2,400 49,000 15 U 13 U 16 U 13 U 15 15 13,3-frimethytpenzene NS NS NS 15 U 13 U 16 U 13 U 15 14,5-fribertopenzene NS NS NS 15 U 13 U 16 U 13 U 15 14,5-fribertopenzene 1,800 13,000 15 UJ 13 U 16 U 13 U 15 14,5-fribertopenzene NS NS NS 12 U 10 U 13 U 16 U 13 U 15 15 U 12 12,5-fribertopenzene NS NS NS 12 U 10 U 13 U 16 U 13 U 15 15 U 12 15 U 15 U 15 U U 15 U U U U U U U U U	U
1.3-Dichloropropane NS NS 15 U 13 U 16 U 13 U 15 1.4-Dichlorobenzene 1,800 13,000 15 UJ 13 U 16 U 13 U 15 2.2-Dichloropropane NS NS 12 U 10 U 13 U 10 U 12 2-Butanone 120 100,000 31 U 26 U 32 U 26 U 30 2-Hexanone NS NS NS 31 U 26 U 32 U 26 U 30 4-Ethyltoluene NS NS 31 U 26 U 32 U 26 U 30 4-Ethyltoluene NS NS NS 31 U 26 U 32 U 26 U 30 Acetone 50 100,000 31 U </td <td>U</td>	U
1.4-Dichlorobenzene 1,800 13,000 15 UJ 13 U 16 U 13 U 15 1.4-Dichlorobenzene NS NS 12 U 10 U 13 U 10 U 12 U 10 U 13 U 16 U 13 U 12 U 15 U 13 U 16 U 13 U 12 U 16 U 13 U 16 U 13 U 26 U 32 U 26 U 30 24 U 26 U 32 U 26 U 32 U 26 U 30 24 U 26 U 30 24 U 26 U 32 U 26 U 30 Acetone NS	U
1.4-Diethylbenzene NS NS 12 U 10 U 13 U 10 U 12 2.2-Dichloropropane NS NS 15 U 13 U 16 U 13 U 126 U 30 2-Hexanone 120 100,000 31 U 26 U 32 U 26 U 30 2-Hexanone NS NS NS 31 U 26 U 30 4-Ethyldulene NS NS NS 12 U 10 U 13 U 10 U 12 4-Methyl-2-pentanone NS NS NS 31 U 26 U 32 U 26 U 30 Acetone 50 100,000 31 U 26 U 32 U 26 U 30 Berzene 60 4,800 3.1 U 26	U
2.2-Dichloropropane	U
2-Butanone 120 100,000 31 U 26 U 32 U 26 U 30 2-Hexanone NS NS 31 U 26 U 32 U 26 U 30 2-Hexanone NS NS NS 31 U 26 U 32 U 26 U 30 4-Methyl-2-pentanone NS NS NS 31 U 26 U 32 U 26 U 30 Acetone 50 100,000 31 U 26 U 32 U 26 U 30 Acrylonlirile NS NS NS 31 U 26 U 32 U 26 U 30 Acrylonlirile NS NS NS 31 U 26 U 32 U 26 U 30 Acrylonlirile NS NS NS 31 U 26 U 32 U 26 U 30 Bernzene 60 4,800 3.1 U 26 U 32 U 26 U 3 Bromobenzene NS NS NS 15 U 13 U 16 U 13 U 15 Bromochloromethane NS NS NS 15 U 13 U 16 U 13 U 15 Bromochloromethane NS NS NS 15 U 13 U 16 U 13 U 16 Bromochloromethane NS NS NS 15 U 13 U 16 U 13 U 16 Bromochloromethane NS NS NS 12 U 10 U 11 U 11 U 12 Bromomethane NS NS NS 12 U 10 U 10 U 11 U 10 U 12 Bromochloromethane NS NS NS 12 U 10 U 10 U 13 U 10 U 12 Bromochloromethane NS NS NS 12 U 10 U 10 U 13 U 10 U 12 Bromochloromethane NS NS NS 12 U 10 U 10 U 13 U 10 U 12 Bromochloromethane NS NS NS 12 U 10 U 10 U 13 U 10 U 12 Bromochloromethane NS NS NS 12 U 10 U 13 U 10 U 12 Bromochloromethane NS NS NS 12 U 10 U 10 U 13 U 10 U 12 Bromochloromethane NS NS NS 6.2 U 5.1 U 6.3 U 5.1 U 6 Carbon disulfide NS NS NS 31 U 26 U 32 U 26 U 30 Chlorobenzene 1,100 100,000 3.1 U 2.6 U 3.2 U 2.6 U 3 Chlorobenzene NS NS NS 15 U 13 U 16 U 13 U 16 Chloroform NS NS NS 6.2 U 5.1 U 6.3 U 5.1 U 6. Chloroform NS NS NS 15 U 13 U 16 U 13 U 16 Chloroform NS NS NS 31 U 2.6 U 3.2 U 2.6 U 3 Chloromethane NS NS NS 6.2 U 5.1 U 6.3 U 5.1 U 6.0 U 3 Chloromethane NS NS NS 15 U 13 U 16 U 13 U 16 Chloroform NS NS NS 31 U 2.6 U 3.2 U 2.6 U 3 Dibromomethane NS NS NS 31 U 2.6 U 3.2 U 2.6 U 3 Dibromomethane NS NS NS 31 U 2.6 U 3.2 U 2.6 U 3 Dibromomethane NS NS NS 31 U 2.6 U 3.2 U 2.6 U 3 Dibromomethane NS NS NS 31 U 2.6 U 3.2 U 2.6 U 3 Dibromomethane NS NS NS 31 U 2.6 U 3.2 U 2.6 U 3 Dibromomethane NS NS NS 31 U 2.6 U 3.2 U 2.6 U 3 Dibromomethane NS NS NS 31 U 2.6 U 3.2 U 2.6 U 3 Dibromomethane NS NS NS 31 U 2.6 U 3.2 U 2.6 U 3 Dibromomethane NS NS NS 31 U 2.6 U 3.2 U 2.6 U 3 Dibromomethane NS NS NS 31 U 2.6 U 3.2 U 2.6 U 3 Dibromomethane NS NS NS 31 U 2.6 U 3.2	U
### Activition NS	U
4-Methyl-2-pentanone NS NS 31 U 26 U 32 U 26 U 30 Acetone 50 100,000 31 U 26 U 32 U 26 U 30 Acrylonitrile NS NS 31 U 26 U 32 U 26 U 30 Beromote 60 4,800 3.1 U 26 U 32 U 26 U 30 Bromotence NS NS NS 15 U 13 U 16 U 13 U 15 Bromothoromethane NS NS NS 15 U 13 U 16 U 13 U 15 Bromodichloromethane NS NS NS 3.1 U 2.6 U 3.2 U 2.6 U 3 Bromodichloromethane NS NS 12	U
Acetone	U
Acrylonitrile	U
Benzene	U
Bromobenzene	U
Bromodichloromethane	U
Bromoform	U
Bromomethane	U
Carbon disulfide NS NS 31 U 26 U 32 U 26 U 30 Carbon tetrachloride 760 2,400 3.1 U 2.6 U 3.2 U 2.6 U 3 Chlorobenzene 1,100 100,000 3.1 U 2.6 U 3.2 U 2.6 U 3 Chlorobenzene NS NS NS 6.2 U 5.1 U 6.3 U 4.7 U 3.8 U 4.7 U <td>U</td>	U
Carbon tetrachloride 760 2,400 3.1 U 2.6 U 3.2 U 2.6 U 3 Chlorobenzene 1,100 100,000 3.1 U 2.6 U 3.2 U 2.6 U 3 Chlorobenzene NS NS 6.2 U 5.1 U 6.3 U 5.1 U 6.0 U 3.8 U 4.7 U 3.8 U 4.5 Chloromethane NS NS 15 U 13 U 16 U 13 U 15 cls-1,3-Dichloropropene NS NS NS 3.1 U 2.6 U 3.2 U 2.6 U 3.2 U 2.6 U 3.2 U 2.6 U 3.2 U	U
Chlorobenzene 1,100 100,000 3.1 U 2.6 U 3.2 U 2.6 U 3 Chloroethane NS NS 6.2 U 5.1 U 6.3 U 5.1 U 6. Chloroform 370 49,000 4.6 U 3.8 U 4.7 U 3.8 U 4.5 Chloromethane NS NS 15 U 13 U 16 U 13 U 15 cis-1,3-Dichloropropene NS NS 3.1 U 2.6 U 3.2 U 2.6 U 3. Dibromochloromethane NS NS 3.1 U 2.6 U 3.2 U 2.6 U 3 Dibromochloromethane NS NS 31 U 2.6 U 3.2 U 2.6 U 3 Dibromochloromethane NS NS 31 U	U
Chloroform 370 49,000 4.6 U 3.8 U 4.7 U 3.8 U 4.5 Chloromethane NS NS 15 U 13 U 16 U 13 U 15 Cis-1,3-Dichloropropene NS NS 3.1 U 2.6 U 3.2 U 2.6 U 3 Dibromochloromethane NS NS 3.1 U 2.6 U 3.2 U 2.6 U 3 Dibromomethane NS NS 3.1 U 2.6 U 3.2 U 2.6 U 3 Dichlorodifluoromethane NS NS 31 U 2.6 U 3.2 U 2.6 U 3.0 Ethylbenzene 1,000 41,000 3.1 U 2.6 U 3.2 U 2.6 U 3 Hexachlorobutadiene NS NS NS 15	U
Chloromethane NS NS 15 U 13 U 16 U 13 U 15 cis-1,3-Dichloropropene NS NS 3.1 U 2.6 U 3.2 U 2.6 U 3 Dibromochloromethane NS NS 3.1 U 2.6 U 3.2 U 2.6 U 3 Dibromomethane NS NS 31 U 2.6 U 32 U 2.6 U 30 Dichlorodifluoromethane NS NS 31 U 2.6 U 32 U 2.6 U 30 Ethylbenzene 1,000 41,000 3.1 U 2.6 U 3.2 U 2.6 U 3 Hexachlorobutadiene NS NS NS 15 U 13 U 16 U 13 U 15 Kopropylbenzene NS NS 3.1	U
cis-1,3-Dichloropropene NS NS 3.1 U 2.6 U 3.2 U 2.6 U 3 Dibromochloromethane NS NS 3.1 U 2.6 U 3.2 U 2.6 U 3 Dibromomethane NS NS 31 U 2.6 U 3.2 U 2.6 U 30 Dichlorodiffluoromethane NS NS 31 U 2.6 U 3.2 U 2.6 U 3.0 Ethylbenzene 1,000 41,000 3.1 U 2.6 U 3.2 U 2.6 U 3 Hexachlorobutadiene NS NS NS 15 U 13 U 16 U 13 U 15 Isopropylbenzene NS NS NS 3.1 U 2.6 U 3.2 U 2.6 U 3 Melthyl tert butyl ether 930	U
Dibromochloromethane	U
Dibromomethane	U
Ethylbenzene 1,000 41,000 3.1 U 2.6 U 3.2 U 2.6 U 3 Hexachlorobutadiene NS NS 15 U 13 U 16 U 13 U 15 Isopropylbenzene NS NS 3.1 U 2.6 U 3.2 U 2.6 U 3 Methyl tert butyl ether 930 100,000 6.2 U 5.1 U 6.3 U 5.1 U 6 W 3.2 U 2.6 U 30 Methylene chloride 50 100,000 31 U 2.6 U 3.2 U 2.6 U 30 Naphthalene NS NS 3.1 U 2.6 U 3.2 U 2.6 U 3	U
Hexachlorobutadiene NS NS 15 U 13 U 16 U 13 U 15 Isopropylbenzene NS NS 3.1 U 2.6 U 3.2 U 2.6 U 3 Methyl tert butyl ether 930 100,000 6.2 U 5.1 U 6.3 U 5.1 U 6 Methylene chloride 50 100,000 31 U 26 U 32 U 26 U 30 Naphthalene NS NS 3.1 U 2.6 U 3.2 U 2.6 U 3	U
Isopropylbenzene	U
Methyl tert butyl ether 930 100,000 6.2 U 5.1 U 6.3 U 5.1 U 6 Methylene chloride 50 100,000 31 U 26 U 32 U 26 U 30 Naphthalene NS NS 3.1 U 2.6 U 3.2 U 2.6 U 3	U
Methylene chloride 50 100,000 31 U 26 U 32 U 26 U 30 Naphthalene NS NS 3.1 U 2.6 U 3.2 U 2.6 U 3	U
Naphthalene NS NS 3.1 U 2.6 U 3.2 U 2.6 U 3	U
	U
n-Butylbenzene 12,000 NS 3.1 U 2.6 U 3.2 U 2.6 U 3	U
n-Propylbenzene 3,900 100,000 15 U 13 U 16 U 13 U 15	U
o-Chlorotoluene NS NS 15 U 13 U 16 U 13 U 15 o-Xylene 260 100,000 6.2 U 5.1 U 6.3 U 5.1 U 6	U
p/m-Xylene 260 100,000 15 U 13 U 16 U 13 U 15	U
p-Chlorotoluene NS NS 3.1 U 2.6 U 3.2 U 2.6 U 3	U
p-isopropyltoluene NS NS 6.2 U 5.1 U 6.3 U 5.1 U 6	U
sec-Butylbenzene 11,000 100,000 3.1 U 2.6 U 3.2 U 2.6 U 3	U
Styrene NS NS 6.2 U 5.1 U 6.3 U 5.1 U 6 tott Putulborgopo 5,900 NS 15 U 12 U 16 U 12 U 15	U
tert-Butylbenzene 5,900 NS 15 U 13 U 16 U 13 U 15 Toluene 700 100,000 4.6 U 3.8 U 4.7 U 3.8 U 4.5	
trans-1,3-Dichloropropene NS 100,000 3.1 U 2.6 U 3.2 U 2.6 U 3	U
Trichlorofluoromethane NS NS 15 U 13 U 16 U 13 U 15	U
Vinyl acetate NS NS 31 U 26 U 32 U 26 U 30	U

All concentrations are µg/kg (ppb)

'Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006

'Resticted-Residential Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006

U - Analyte not detected above the laboratory MDL

J - Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory MDL

Green highlighting indicates exceedance of Unrestricted Use SCO

SAMPLE ID	Unrestricted	Restricted	PWG-SB-2008	-06	PWG-SB-200	8-07	PWG-SB-200	8-08	PWG-SB-20	08-09	PWG-SB-20	08-09
LAB SAMPLE ID	sco'	Residential SCO ²	L0813196-1		L0813196-		L0813196-		L0813196		L0813196	
Sampling date Sample depth (ft.)		300	9/3/2008 5-10		9/4/2008 10-15		9/3/200 5-10	В	9/5/200 5-10	18	9/5/200 15-20	
Volatile Organics by EPA 8260B												
Tetrachloroethene	1,300	19,000	3.1	U	3	U	2.9	U	2.7	U	3	U
Trichloroethene cis-1,2-Dichloroethene	470	21,000	3.1	U	3	U	2.9	U	2.7	U	3	U
trans-1,2-Dichloroethene	250 190	100,000	3.1 4.6	U	3 4.5	U	2.9	U	2.7 4.1	U	3 4.5	U
1,1-Dichloroethene	330	100,000	3.1	U	3	U	2.9	U	2.7	U	3	U
Vinyl chloride	20	900	6.2	U	6	U	5.8	U	5.4	U	6	U
1,1,1,2-Tetrachloroethane	NS	NS	3.1	U	3	U	2.9	U	2.7	U	3	U
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	680 NS	100,000 NS	3.1	U	3	U	2.9	U	2.7	U	3	U
1,1,2-Trichloroethane	NS NS	NS	4.6	U	4.5	U	4.4	U	4.1	U	4.5	U
1,1-Dichloroethane	270	26,000	4.6	U	4.5	U	4.4	U	4.1	U	4.5	U
1,1-Dichloropropene	NS	NS	15	U	15	U	14	U	14	U	15	U
1,2,3-Trichlorobenzene	NS	NS	15	U	15	U	14	U	14	U	15	U
1,2,3-Trichloropropane	NS	NS NS	31 12	U	30 12	U	29 12	U	27 11	U	30 12	U
1,2,4,5-Tetramethylbenzene 1,2,4-Trichlorobenzene	NS NS	NS	15	U	15	U	14	U	14	U	15	U
1,2,4-Trimethylbenzene	3,600	52,000	15	U	15	U	14	U	14	U	15	U
1,2-Dibromo-3-chloropropane	NS	NS	15	U	15	U	14	U	14	U	15	U
1,2-Dibromoethane	NS	NS	12	U	12	U	12	U	11	U	12	U
1,2-Dichlorobenzene	1,100	100,000	15	U	15	: ⊂	14	U	14	υ.	15	U
1,2-Dichloroethane 1,2-Dichloropropane	20 NS	3,100 NS	3.1 11	U	3 10	U	2.9	U	2.7 9.5	U	3 10	U
1,3,5-Trimethylbenzene	NS 8,400	52,000	15	U	15	U	10	U	9.5	U	10	U
1,3-Dichlorobenzene	2,400	49,000	15	U	15	U	14	U	14	U	15	U
1,3-Dichloropropane	NS	NS	15	U	15	U	14	U	14	U	15	U
1,4-Dichlorobenzene	1,800	13,000	15	U	15	U	14	U	14	U	15	U
1,4-Diethylbenzene	NS	NS	12	U	12	U	12	U	11	U	12	U
2,2-Dichloropropane 2-Butanone	NS 120	NS 100,000	15 31	U	15 30	U	14 29	U	14 27	U	15 30	U
2-Hexanone	NS	NS	31	U	30	U	29	U	27	U	30	U
4-Ethyltoluene	NS	NS	12	U	12	U	12	U	11	U	12	U
4-Methyl-2-pentanone	NS	NS	31	U	30	U	29	U	27	U	30	U
Acetone	50	100,000	31	U	30	U	29	U	27	U	30	U
Acrylonitrile	NS 60	NS 4,800	31	U	30	U	29	U	27	U	30	U
Benzene Bromobenzene	NS NS	4,800 NS	15	U	15	U	14	U	14	U	15	U
Bromochloromethane	NS	NS	15	U	15	U	14	U	14	U	15	U
Bromodichloromethane	NS	NS	3.1	U	3	U	2.9	U	2.7	U	3	U
Bromoform	NS	NS	12	U	12	U	12	U	11	U	12	U
Bromomethane	NS	NS	6.2	U	6	U	5.8	U	5.4	U	6	U
Carbon disulfide Carbon tetrachloride	NS 760	NS 2,400	31	U	30	U	29	U	27	U	30	U
Chlorobenzene	1,100	100,000	3.1	U	3	U	2.9	U	2.7	U	3	U
Chloroethane	NS	NS	6.2	U	6	U	5.8	U	5.4	U	6	U
Chloroform	370	49,000	4.6	U	4.5	U	4.4	U	4.1	U	4.5	U
Chloromethane	NS	NS	15	U	15	U	14	U	14	U	15	U
cis-1,3-Dichloropropene Dibromochloromethane	NS NS	NS NS	3.1	U	3	U	2.9	U	2.7	U	3	U
Dibromocniorometnane Dibromomethane	NS NS	NS NS	3.1	U	30	U	2.9	U	2.7	U	30	U
Dichlorodifluoromethane	NS	NS	31	U	30	U	29	U	27	U	30	U
Ethylbenzene	1,000	41,000	3.1	U	3	U	2.9	U	2.7	U	3	U
Hexachlorobutadiene	NS	NS	15	U	15	U	14	U	14	U	15	U
Isopropylbenzene	NS 030	NS	3.1	U	3	U	2.9	U	2.7	U	3	U
Methyl tert butyl ether Methylene chloride	930 50	100,000	6.2	U	6 30	U	5.8 29	U	5.4 27	U	6 30	U
Naphthalene	NS NS	NS	3.1	U	3	U	2.9	U	2.7	U	3	U
n-Butylbenzene	12,000	NS	3.1	U	3	U	2.9	U	2.7	U	3	U
n-Propylbenzene	3,900	100,000	15	U	15	U	14	U	14	U	15	U
o-Chlorotoluene	NS	NS	15	U	15	U	14	U	14	U	15	U
o-Xylene n/m-Xylene	260 260	100,000	6.2 15	U	6 15	U	5.8 14	U	5.4 14	U	6 15	U
p/m-Xylene p-Chlorotoluene	NS NS	100,000 NS	3.1	U	3	U	2.9	U	2.7	U	3	U
p-Isopropyltoluene	NS	NS	6.2	U	6	U	5.8	U	5.4	U	6	U
sec-Butylbenzene	11,000	100,000	3.1	U	3	U	2.9	U	2.7	U	3	U
Styrene	NS	NS	6.2	U	6	U	5.8	U	5.4	U	6	U
tert-Butylbenzene	5,900	NS 400,000	15	U	15	: ⊂	14	U	14		15	U
Toluene trans-1,3-Dichloropropene	700 NS	100,000	4.6 3.1	U	4.5	U	4.4 2.9	U	4.1 2.7	U	4.5	U
Trichlorofluoromethane	NS NS	100,000 NS	3. I 15	U	15	U	2.9	U	14	U	15	U
Vinyl acetate	NS	NS	31	U	30	U	29	U	27	U	30	U
•			•									

All concentrations are µg/kg (ppb)

¹Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Enviro

 $^{\prime}$ Resticted-Residential Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, I

U - Analyte not detected above the laboratory MDL

J - Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory MDL

Green highlighting indicates exceedance of Unrestricted Use SCO

LAB SAMPLE ID SAMPLING DATE SAMPLE DEPTH (ft.) Volatile Organics by EPA 82608 Tetrachloroethene Trichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene 1,1-Dichloroethene Vinyl chloride	1,300 470 250	Residential SCO ²	L0813196-3 9/5/2008 5-10		L0813196-: 9/5/2008 10-15		L0813196 9/5/200 5-10		L0813196 9/5/200		L0813196 9/5/200	
SAMPLE DEPTH (ft.) Volatile Organics by EPA 8260B Tetrachloroethene Trichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene 1,1-Dichloroethene	470							8		18		18
Volatile Organics by EPA 8260B Tetrachloroethene Trichloroethene tics-1,2-Dichloroethene trans-1,2-Dichloroethene 1,1-Dichloroethene	470	10.000							15-20		5-10	
Trichloroethene cls-1,2-Dichloroethene trans-1,2-Dichloroethene 1,1-Dichloroethene	470	10.000										
cis-1,2-Dichloroethene trans-1,2-Dichloroethene 1,1-Dichloroethene			5.5		45		2.6	U	3.3	U	2.8	U
trans-1,2-Dichloroethene 1,1-Dichloroethene		21,000	3.2	U	3.1	U	2.6	U	3.3	U	2.8	U
1,1-Dichloroethene	190	100,000	4.8	U	4.6	U	4	U	4.9	U	4.3	U
Vinyl chloride	330	100,000	3.2	U	3.1	U	2.6	U	3.3	U	2.8	U
	20	900	6.4	U	6.2	U	5.3	U	6.6	U	5.7	U
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	NS 680	NS 100,000	3.2	U	3.1	U	2.6	U	3.3	U	2.8	U
1,1,2,2-Tetrachloroethane	NS NS	NS	3.2	U	3.1	U	2.6	U	3.3	U	2.8	U
1,1,2-Trichloroethane	NS	NS	4.8	U	4.6	U	4	U	4.9	U	4.3	U
1,1-Dichloroethane	270	26,000	4.8	U	4.6	U	4	U	4.9	U	4.3	U
1,1-Dichloropropene	NS	NS	16	U	15	U	13	U	16	U	14	U
1,2,3-Trichlorobenzene	NS	NS	16	U	15	U	13	U	16	U	14	U
1,2,3-Trichloropropane 1,2,4,5-Tetramethylbenzene	NS NS	NS NS	32 13	U	31 12	U	26 11	U	33 13	U	28 11	U
1,2,4-Trichlorobenzene	NS	NS	16	U	15	U	13	U	16	U	14	U
1,2,4-Trimethylbenzene	3,600	52,000	16	U	15	U	13	U	16	U	14	U
1,2-Dibromo-3-chloropropane	NS	NS	16	U	15	U	13	U	16	U	14	U
1,2-Dibromoethane	NS	NS	13	U	12	U	11	U	13	U	11	U
1,2-Dichlorobenzene	1,100	100,000	16 3.2	U	15 3.1	U	13 2.6	U	16 3.3	U	14	U
1,2-Dichloroethane 1,2-Dichloropropane	20 NS	3,100 NS	3.2	U	3.1	U	9.3	U	3.3	U	2.8 9.9	U
1,3,5-Trimethylbenzene	8,400	52,000	16	U	15	U	13	U	16	U	14	U
1,3-Dichlorobenzene	2,400	49,000	16	U	15	U	13	U	16	U	14	U
1,3-Dichloropropane	NS	NS	16	U	15	U	13	U	16	U	14	U
1,4-Dichlorobenzene	1,800	13,000	16	U	15	U	13	U	16	U	14	U
1,4-Diethylbenzene 2,2-Dichloropropane	NS NS	NS NS	13 16	U	12 15	U	11 13	U	13 16	U	11 14	U
2-Butanone	120	100,000	32	U	31	U	26	U	33	U	28	U
2-Hexanone	NS	NS	32	U	31	U	26	U	33	U	28	U
4-Ethyltoluene	NS	NS	13	U	12	U	11	U	13	U	11	U
4-Methyl-2-pentanone	NS	NS	32	U	31	U	26	U	33	U	28	U
Acetone	50 NS	100,000 NS	32 32	U	31 31	U	26 26	U	33	U	28 28	U
Acrylonitrile Benzene	60	4,800	3.2	U	3.1	U	2.6	U	3.3	U	2.8	U
Bromobenzene	NS	NS	16	U	15	U	13	U	16	U	14	U
Bromochloromethane	NS	NS	16	U	15	U	13	U	16	U	14	U
Bromodichloromethane	NS	NS	3.2	U	3.1	U	2.6	U	3.3	U	2.8	U
Bromoform	NS	NS	13	U	12	U	11	U	13	U	11	U
Bromomethane Carbon disulfide	NS NS	NS NS	6.4	U	6.2	U	5.3	U	6.6	U	5.7 28	U
Carbon tetrachloride	760	2,400	3.2	U	3.1	U	2.6	U	3.3	U	2.8	U
Chlorobenzene	1,100	100,000	3.2	U	3.1	U	2.6	U	3.3	U	2.8	U
Chloroethane	NS	NS	6.4	U	6.2	U	5.3	U	6.6	U	5.7	U
Chloroform	370	49,000	4.8	U	4.6	U	4	U	4.9	U	4.3	U
Chloromethane	NS	NS	16	U	15	U	13	U	16	U	14	U
cis-1,3-Dichloropropene Dibromochloromethane	NS NS	NS NS	3.2	U	3.1	U	2.6	U	3.3	U	2.8	U
Dibromomethane	NS	NS	32	U	31	U	26	U	33	U	28	U
Dichlorodifluoromethane	NS	NS	32	U	31	U	26	U	33	U	28	U
Ethylbenzene	1,000	41,000	3.2	U	3.1	U	2.6	U	3.3	U	2.8	U
Hexachlorobutadiene	NS	NS	16	U	15	U	13	U	16	U	14	U
Isopropylbenzene Methyl tert butyl ether	NS 930	NS 100,000	3.2 6.4	U	3.1 6.2	U	2.6 5.3	U	3.3 6.6	U	2.8 5.7	U
Methylene chloride	50	100,000	32	U	31	U	26	U	33	U	28	U
Naphthalene	NS	NS	3.2	U	3.1	U	2.6	U	3.3	U	2.8	U
n-Butylbenzene	12,000	NS	3.2	U	3.1	U	2.6	U	3.3	U	2.8	U
n-Propylbenzene	3,900	100,000	16	U	15	: ⊂	13		16		14	U
o-Chlorotoluene o-Xylene	NS 260	NS 100,000	16 6.4	U	15 6.2	U	13 5.3	U	16 6.6	U	14 5.7	U
p/m-Xylene	260	100,000	16	U	15	U	13	U	16	U	5.7	U
p-Chlorotoluene	NS	NS	3.2	U	3.1	U	2.6	U	3.3	U	2.8	U
p-lsopropyltoluene	NS	NS	6.4	U	6.2	U	5.3	U	6.6	U	5.7	U
sec-Butylbenzene	11,000	100,000	3.2	U	3.1	U	2.6	U	3.3	U	2.8	U
Styrene	NS F 000	NS	6.4	U	6.2	U	5.3	U	6.6	U	5.7	U
tert-Butylbenzene Toluene	5,900 700	NS 100,000	16 4.8	U	15 4.6	U	13	U	16 4.9	U	14 4.3	U
trans-1,3-Dichloropropene	NS NS	100,000	3.2	U	3.1	U	2.6	U	3.3	U	2.8	U
Trichlorofluoromethane	NS	NS	16	U	15	U	13	U	16	U	14	U
Vinyl acetate	NS	NS	32	U	31	U	26	U	33	U	28	U

All concentrations are µg/kg (ppb)

¹Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Enviro

⁴Resticted-Residential Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, I

- U Analyte not detected above the laboratory MDL
- J Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory MDL

Green highlighting indicates exceedance of Unrestricted Use SCO

SAMPLE ID	Unrestricted	Restricted	PWG-SB-200	8-12	PWG-SB-2008	8-13	PWG-SB-20	08-13	PWG-SB-20	008-14	PWG-SB-20	08-14
LAB SAMPLE ID	sco'	Residential SCO ²	L0813196-3		L0813196-2		L0813196		L081319		L0813196	
Sampling date Sample depth (ft.)		300	9/5/2008 10-15		9/4/2008 5-10	;	9/4/200 10-15	18	9/4/20 0-5	08	9/4/200 10-15	
Volatile Organics by EPA 8260B			10-15		5-10		10-15		0-5		10-15	
Tetrachloroethene	1,300	19,000	3.1	U	14		44		56		290	
Trichloroethene	470	21,000	3.1	U	3.2	U	3.2	U	2.6	U	6.6	U
cis-1,2-Dichloroethene	250	100,000	3.1	U	3.2	U	3.2	U	2.6	U	6.6	U
trans-1,2-Dichloroethene	190	100,000	4.6	U	4.8	U	4.8	U	4	U	9.9	U
1,1-Dichloroethene	330	100,000	3.1	U	3.2	U	3.2	U	2.6	U	6.6	U
Vinyl chloride	20	900	6.2	U	6.4	U	6.4	U	5.3	U	13	U
1,1,1,2-Tetrachloroethane	NS	NS	3.1	U	3.2	U	3.2	U	2.6	U	6.6	U
1,1,1-Trichloroethane	680	100,000	3.1	U	3.2	U	3.2	U	2.6	U	6.6	U
1,1,2,2-Tetrachloroethane	NS	NS	3.1	U	3.2	U	3.2	U	2.6	U	6.6	U
1,1,2-Trichloroethane 1,1-Dichloroethane	NS 270	NS 26,000	4.6	U	4.8	U	4.8	U	4	U	9.9	U
1,1-Dichloropropene	NS NS	26,000 NS	15	U	16	U	16	U	13	U	33	U
1,2,3-Trichlorobenzene	NS	NS	15	U	16	U	16	U	13	U	33	U
1,2,3-Trichloropropane	NS	NS	31	U	32	U	32	U	26	U	66	U
1,2,4,5-Tetramethylbenzene	NS	NS	12	U	13	U	13	U	11	U	26	U
1,2,4-Trichlorobenzene	NS	NS	15	U	16	U	16	U	13	U	33	U
1,2,4-Trimethylbenzene	3,600	52,000	15	U	16	U	16	U	13	U	33	U
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	NS NS	NS NS	15 12	U	16	U	16 13	U	13	U	33 26	U
1,2-Dibromoethane 1,2-Dichlorobenzene	NS 1,100	NS 100,000	12 15	U	13	U	13 16	U	11	U	26 33	U
1,2-Dichloroethane	20	3,100	3.1	U	3.2	U	3.2	U	2.6	U	6.6	U
1,2-Dichloropropane	NS	NS	11	U	11	U	11	U	9.3	U	23	U
1,3,5-Trimethylbenzene	8,400	52,000	15	U	16	U	16	U	13	U	33	U
1,3-Dichlorobenzene	2,400	49,000	15	U	16	U	16	U	13	U	33	U
1,3-Dichloropropane	NS	NS	15	U	16	U	16	U	13	U	33	U
1,4-Dichlorobenzene 1,4-Diethylbenzene	1,800 NS	13,000 NS	15 12	U	16 13	U	16 13	U	13 11	U	33 26	U
2,2-Dichloropropane	NS NS	NS NS	15	U	16	U	16	U	13	U	33	U
2-Butanone	120	100,000	31	U	32	U	32	U	26	U	66	U
2-Hexanone	NS	NS	31	U	32	U	32	U	26	U	66	U
4-Ethyltoluene	NS	NS	12	U	13	U	13	U	11	U	26	U
4-Methyl-2-pentanone	NS	NS	31	U	32	U	32	U	26	U	66	U
Acetone	50	100,000	31	U	32	U	32	U	26	U	66	U
Acrylonitrile	NS	NS 4,800	31	U	32	U	32	U	26 2.6	U	66	U
Benzene Bromobenzene	60 NS	4,800 NS	15	U	16	U	16	U	13	U	6.6	U
Bromochloromethane	NS	NS	15	U	16	U	16	U	13	U	33	U
Bromodichloromethane	NS	NS	3.1	U	3.2	U	3.2	U	2.6	U	6.6	U
Bromoform	NS	NS	12	U	13	U	13	U	11	U	26	U
Bromomethane	NS	NS	6.2	U	6.4	U	6.4	С	5.3	С	13	U
Carbon disulfide	NS	NS	31	U	32	U	32	U	26	U	66	U
Carbon tetrachloride Chlorobenzene	760	2,400 100,000	3.1	U	3.2	U	3.2	U	2.6	U	6.6	U
Chloroethane	1,100 NS	NS	6.2	U	6.4	U	6.4	U	5.3	U	13	U
Chloroform	370	49,000	4.6	U	4.8	U	4.8	U	4	U	9.9	U
Chloromethane	NS	NS	15	U	16	U	16	U	13	U	33	U
cis-1,3-Dichloropropene	NS	NS	3.1	U	3.2	U	3.2	U	2.6	U	6.6	U
Dibromochloromethane	NS	NS	3.1	U	3.2	U	3.2	U	2.6	U	6.6	U
Dibromomethane	NS	NS	31	U	32	U	32	U	26	U	66	U
Dichlorodifluoromethane Ethylbenzene	NS 1,000	NS 41,000	31	U	32	U	3.2	U	26	U	66	U
Hexachlorobutadiene	NS	41,000 NS	15	U	16	U	16	U	13	U	33	U
Isopropylbenzene	NS	NS	3.1	U	3.2	U	3.2	U	2.6	U	6.6	U
Methyl tert butyl ether	930	100,000	6.2	U	6.4	U	6.4	U	5.3	U	13	U
Methylene chloride	50	100,000	31	U	32	U	32	U	26	U	66	U
Naphthalene	NS	NS	3.1	U	3.2	U	3.2	U	2.6	U	6.6	U
n-Butylbenzene	12,000	NS 400,000	3.1	U	3.2	U	3.2	U	2.6	U	6.6	U
n-Propylbenzene o-Chlorotoluene	3,900 NS	100,000 NS	15 15	U	16 16	U	16 16	U	13 13	U	33	U
o-Xylene	260	100,000	6.2	U	6.4	U	6.4	U	5.3	U	13	U
p/m-Xylene	260	100,000	15	U	16	U	16	U	13	U	33	U
p-Chlorotoluene	NS	NS	3.1	U	3.2	U	3.2	U	2.6	U	6.6	U
p-Isopropyltoluene	NS	NS	6.2	U	6.4	U	6.4	U	5.3	U	13	U
sec-Butylbenzene	11,000	100,000	3.1	U	3.2	U	3.2	U	2.6	U	6.6	U
Styrene	NS 5 888	NS	6.2	U	6.4	U	6.4	U	5.3	U	13	U
tert-Butylbenzene Toluene	5,900	NS 100,000	15	U	16	U	16	U	13	U	33	U
	700	100,000	4.6	U	4.8	U	4.8	U	4	U	9.9	U
		100 000	2.1	- 11	2.7	11	3 3	11	2.6	11	6.6	
trans-1,3-Dichloropropene Trichlorofluoromethane	NS NS	100,000 NS	3.1 15	U	3.2 16	U	3.2 16	U	2.6 13	U	6.6	U

All concentrations are µg/kg (ppb)

¹Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Enviro

⁴Resticted-Residential Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, I

- U Analyte not detected above the laboratory MDL
- J Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory MDL

Green highlighting indicates exceedance of Unrestricted Use SCO

Sample ID Lab Sample ID Sampling Date Sample Depth (ft.)	Unrestricted SCO ¹	Restricted Residential SCO ²	PWG-SB-200 L0813196- 9/4/2008 5-10	20	PWG-SB-200 L0813196- 9/3/2008 5-10		PWG-SB-200 L0813196- 9/5/2000 5-10		PWG-SB-200 L0813196- 9/4/2003 10-15	
Semivolatile Organics by EPA 8270C										
1,2,4,5-Tetrachlorobenzene	NS	NS	1600	U	1600	U	1700	U	1400	U
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene	NS NS	NS NS	410 410	U	390 390	U	430 430	U	350 350	U
1,2-Dichlorobenzene 1,3-Dichlorobenzene	NS NS	NS NS	410	U	390	U	430	U	350	U
1,4-Dichlorobenzene	NS NS	NS	410	UJ	390	U	430	U	350	U
2,4,5-Trichlorophenol	NS	NS	410	U	390	U	430	U	350	U
2,4,6-Trichlorophenol	NS	NS	410	U	390	U	430	U	350	U
2,4-Dichlorophenol	NS	NS	820	U	780	U	850	U	710	U
2,4-Dimethylphenol	NS	NS	410	U	390	U	430	U	350	U
2,4-Dinitrophenol 2,4-Dinitrotoluene	NS NS	NS NS	1600 410	U	1600 390	U	1700 430	U	1400 350	U
2,6-Dinitrotoluene	NS NS	NS NS	410	U	390	U	430	U	350	U
2-Chloronaphthalene	NS	NS	490	U	460	U	510	U	420	U
2-Chlorophenol	NS	NS	490	U	460	U	510	U	420	U
2-Methylnaphthalene	NS	NS	410	U	390	U	430	U	350	U
2-Methylphenol	NS	NS	490	U	460	U	510	U	420	U
2-Nitroaniline	NS	NS	410	U	390	U	430	U	350	U
2-Nitrophenol	NS NS	NS NS	1600 820	U	1600 780	U	1700 850	U	1400 710	U
3,3'-Dichlorobenzidine 3-Methylphenol/4-Methylphenol	NS NS	NS NS	490	U	460	U	510	U	420	U
3-Nitroaniline	NS NS	NS NS	410	UJ	390	U	430	U	350	U
4,6-Dinitro-o-cresol	NS NS	NS NS	1600	U	1600	U	1700	U	1400	U
4-Bromophenyl phenyl ether	NS	NS	410	U	390	U	430	U	350	U
4-Chloroaniline	NS	NS	410	U	390	U	430	U	350	U
4-Chlorophenyl phenyl ether	NS	NS	410	U	390	U	430	U	350	U
4-Nitroaniline	NS	NS	580	UJ	540	U	600	U	500	U
4-Nitrophenol	NS 20.000	NS 100.000	820	U	780	U	850	U	710	U
Acenaphthene Acenaphthylene	20,000	100,000	410 410	U	390 390	U	430 430	U	350 350	U
Acetophenone	NS	NS	1600	U	1600	U	1700	U	1400	U
Anthracene	100,000	100,000	410	U	390	U	430	U	350	U
Benzo(a)anthracene	1,000	1,000	410	U	390	U	430	U	350	U
Benzo(a)pyrene	1,000	1,000	410	U	390	U	430	U	350	U
Benzo(b)fluoranthene	1,000	1,000	410	U	390	U	430	U	350	U
Benzo(ghi)perylene	100,000	100,000	410	U	390	U	430	U	350	U
Benzo(k)fluoranthene	800	3,900	410	U	390	U	430	U	350	U
Benzoic Acid	NS NS	NS NS	4100	U	3900 780	U	4300	U	3500 710	U
Benzyl Alcohol Biphenyl	NS NS	NS NS	820 410	U	390	U	850 430	U	350	U
Bis(2-chloroethoxy)methane	NS NS	NS NS	410	U	390	U	430	U	350	U
Bis(2-chloroethyl)ether	NS	NS	410	U	390	U	430	U	350	U
Bis(2-chloroisopropyl)ether	NS	NS	410	U	390	U	430	U	350	U
Bis(2-Ethylhexyl)phthalate	NS	NS	820	U	780	U	850	U	710	U
Butyl benzyl phthalate	NS	NS	410	U	390	U	430	U	350	U
Carbazole	NS	NS	410	U	390	U	430	U	350	U
Chrysene	1,000 NS	3,900 NS	410 410	U	390 390	U	430 430	U	350 350	U
Di-n-butylphthalate Di-n-octylphthalate	NS NS	NS NS	410	U	390	U	430	U	350	U
Dibenzo(a,h)anthracene	330	330	410	U	390	U	430	U	350	U
Dibenzofuran	NS	NS	410	U	390	U	430	U	350	U
Diethyl phthalate	NS	NS	410	U	390	U	430	U	350	U
Dimethyl phthalate	NS	NS	410	U	390	U	430	U	350	U
Fluoranthene	100,000	100,000	410	U	390	U	430	U	350	U
Fluorene	30,000 NS	100,000 NS	410	U	390 390	U	430	U	350 350	U
Hexachlorobenzene Hexachlorobutadiene	NS NS	NS NS	820	U	780	U	430 850	U	710	U
Hexachlorocyclopentadiene	NS NS	NS NS	820	U	780	U	850	U	710	U
Hexachloroethane	NS	NS	410	U	390	U	430	U	350	U
Indeno(1,2,3-cd)Pyrene	500	500	410	U	390	U	430	U	350	U
Isophorone	NS	NS	410	UJ	390	U	430	U	350	U
n-Nitrosodi-n-propylamine	NS	NS	410	U	390	U	430	U	350	U
Naphthalene	12,000	100,000	410	U	390	U	430	U	350	U
Nitropenzene	NS	NS NC	410	U	390	U	430	U	350	U
NitrosoDiPhenylAmine(NDPA)/DPA P-Chloro-M-Cresol	NS NS	NS NS	1200	U	1200	U	1300	U	1100 350	U
Pentachlorophenol	800	6,700	1600	U	1600	U	1700	U	1400	U
Phenanthrene	100,000	100,000	410	U	390	U	430	U	350	U
Phenol	330	100,000	580	U	540	U	600	U	500	U
Pyrene	100,000	100,000	410	U	390	U	430	U	350	U
Semivolatile Organics by EPA 8270C-SI										
2-Chloronaphthalene	NS	NS	16	U	16	U	17	U	14	U
2-Methylnaphthalene	NS 20,000	NS 100,000	16	U	16	U	17	U	14	U
Acenaphthene Acenaphthelene	20,000	100,000	16	U	16	U	17	U	14	U
Acenaphthylene Anthracene	100,000	100,000	16 16	U	16 16	U	17	U	14	U
Benzo(a)anthracene	1,000	1,000	48	- 3	16	U	17	U	14	U
Benzo(a)pyrene	1,000	1,000	64	l	16	U	17	U	14	U
Benzo(b)fluoranthene	1,000	1,000	58		16	U	17	U	14	U
Benzo(ghi)perylene	100,000	100,000	51	1	16	U	17	U	14	U
Benzo(k)fluoranthene	800	3,900	58		16	U	17	U	14	U
Chrysene	1,000	3,900	55	[16	U	17	U	14	U
Dibenzo(a,h)anthracene	3,300	330	16	U	16	U	17	U	14	U
Fluoranthene	100,000	100,000	120	U	16	U	17	U	14	U
Fluorene Hexachlorobenzene	30,000 NS	100,000 NS	16	U	16	U	17	U	14 57	U
Hexachlorobutadiene	NS NS	NS NS	41	U	39	U	43	U	35	U
Hexachloroethane	NS	NS	66	U	62	U	68	U	57	U
Indeno(1,2,3-cd)Pyrene	500	500	52		16	U	17	U	14	U
Naphthalene	12,000	100,000	16	U	16	U	17	U	14	U
Pentachlorophenol	800	6,700	66	U	62	U	68	U	57	U
	100.000	100,000	47		16	U	17	U	14	U
Phenanthrene Pyrene	100,000	100,000	120		16	U	17	U	14	U

Notes:
All concentrations are µg/kg (ppb)

**Identificed Use Sol Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006

**Resticted-Residential Sol Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006

**U - Analyte not detected above the laboratory MDL

**J - Estimated value

**NS - No standard established

**Sold text indicates compounds above the laboratory MDL

**Green highlighting indicates exceedance of Unrestricted Use SCO

**Yellow highlighting indicates exceedance of Restricted Residential SCO

Table 5

Soil Sample Analytical Data Summary Pesticides/PCBs/Metals

Former Darby Drugs Distribution Center

SAMPLE ID	Unrestricted	Restricted	PWG-SB-200		PWG-SB-20	06 U6	PWG-SB-20	09 10	PWG-SB-200	0 1/
LAB SAMPLE ID	SCO'	Residential	L0813196		L0813196		L0813196		L0813196-	
	333	SCO ²								
SAMPLING DATE		300	9/4/200	8	9/3/200	18	9/5/200	או	9/4/2008	5
SAMPLE DEPTH (ft.)			5-10		5-10		5-10		10-15	
Organochlorine Pesticides by EPA		12222	4.10		0.00		4.07		0.55	
4,4'-DDD	3.3	13000	4.12	U	3.88	U	4.27	U	3.55	U
4,4'-DDE	3.3	8900	4.12	U	3.88	U	4.27	U	3.55	U
4,4'-DDT	3.3	7900	4.73	J	3.88	U	4.27	U	3.55	U
Aldrin	5	97	4.12	U	3.88	U	4.27	U	3.55	U
Alpha-BHC	20	480	4.12	U	3.88	U	4.27	U	3.55	U
Beta-BHC	36	360	4.12	U	3.88	U	4.27	U	3.55	U
Chlordane	94	4200	41.2	U	38.8	U	42.7	U	35.5	U
Delta-BHC	40	100000	4.12	U	3.88	U	4.27	U	3.55	U
Dieldrin	5	200	4.12	U	3.88	U	4.27	U	3.55	U
Endosulfan I	2400	24000	4.12	U	3.88	U	4.27	U	3.55	U
Endosulfan II	2400	24000	4.12	U	3.88	U	4.27	U	3.55	U
Endosulfan sulfate	2400	24000	4.12	U	3.88	U	4.27	U	3.55	U
Endrin	14	11000	4.12	U	3.88	U	4.27	U	3.55	U
Endrin ketone	NS	NS	4.12	U	3.88	U	4.27	U	3.55	U
Heptachlor	42	2100	4.12	U	3.88	U	4.27	U	3.55	U
Heptachlor epoxide	NS	NS	4.12	U	3.88	U	4.27	U	3.55	U
Lindane	100	1300	4.12	U	3.88	U	4.27	U	3.55	U
Methoxychlor	NS	NS	16.5	U	15.5	U	17.1	U	14.2	U
trans-Chlordane	NS	NS	4.12	U	3.88	U	4.27	U	3.55	U
Polychlorinated Biphenyls by EPA	8082									
Aroclor 1016	100	1000	41.2	U	38.8	U	42.7	U	35.5	U
Aroclor 1221	100	1000	41.2	U	38.8	U	42.7	U	35.5	U
Aroclor 1232	100	1000	41.2	U	38.8	U	42.7	U	35.5	C
Aroclor 1242	100	1000	41.2	U	38.8	C	42.7	U	35.5	\Box
Aroclor 1248	100	1000	41.2	U	38.8	C	42.7	U	35.5	U
Aroclor 1254	100	1000	41.2	U	38.8	С	42.7	U	35.5	U
Aroclor 1260	100	1000	41.2	U	38.8	U	42.7	U	35.5	U
Total Metals										
Aluminum	NS	NS	4700		2500		1100		4000	
Antimony	NS	NS	2.9	UJ	2.8	U	3	U	2.5	U
Arsenic	13	16	2.2		1.8		1		1.1	
Barium	350	400	40		14		3		19	
Beryllium	7.2	72	0.29	U	0.28	U	0.3	U	0.25	U
Cadmium	2.5	4.3	0.58	U	0.56	U	0.6	U	0.5	U
Calcium	NS	NS	1000	J	92		64		350	
Chromium	30	180	6.4	J	4.7		3.2		4.2	
Cobalt	NS	NS	2.8		9		1.2	U	1	U
Copper	50	270	9.4		5.8		1.2		3.3	
Iron	NS	NS	7500		6900		2500		3800	
Lead	63	400	87	J	2.8	U	3	U	21	
Magnesium	NS	NS	690	J	340		80		380	
Manganese	1600	2000	100	J	650		7.8		55	
Mercury	0.18	0.81	0.1	J	0.09	U	0.09	U	0.09	U
Nickel	30	310	5.2		5.6		1.5	U	2.3	
Potassium	NS	NS	320		240		150	U	150	
Selenium	3.9	180	1.2	U	1.1	U	1.2	U	1	U
Silver	2	180	0.58	U	0.56	U	0.6	U	0.5	U
Sodium	NS	NS	120	U	110	U	120	U	100	U
Thallium	NS	NS	1.2	U	1.1	U	1.2	U	1	U
Vanadium	NS	NS	9.3		7.5		3.4		6.2	
Zinc	109	10000	58	J	25		6.5		26	
ļ				-						

Notes:

Pesticides & PCBs concentrations are µg/kg (ppb)

Metals concentrations are mg/kg (ppm)

'Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006

⁴Resticted-Residential Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006

U - Analyte not detected above the laboratory MDL

J - Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory MDL

Green highlighting indicates exceedance of Unrestricted Use SCO

Control Cont																		
March Marc	SAMPLE ID		Restricted															PWG-DW-2008-09
Martin M		SCO																
Selection conformed 1,301																		
Members March Ma				7.25 7.70	•	0.20 0.7		0.70 7.2		7.20 7.7		0.70 7.2		0.70 7.2		0.70 7.2		0.70 7.20
19.3 Althorowhere (19.5) Sept. 19.5 Althorowhere (19.5) Sept.	Tetrachloroethene	1,300	19,000	3	U	3.2	U	7.6		3.2	U	2.9	U	6.6		6.4		3.1 U
man La Del Colombination 988 1968 1968 14 10 12 13 12 13 14 10 14 10 14 10 13 10	Trichloroethene	470	21,000	3	U	3.2	U	3.1	U	3.2	U	2.9	U	3	U	3.4	U	3.1 U
Section Sect																		
Processor 10																		
1.1.1.2. Abroachescenters																		
Mathematical Control Mathematical Mathematica	Vinyi chloride	20	900	6	U	6.3	U	6.2	U	6.5	U	5.8	U	6	U	6.8	U	6.2 U
11-22 Amony Antonomous	1,1,1,2-Tetrachloroethane	NS	NS	3	U	3.2	U	3.1	U	3.2	U	2.9	U	3	U	3.4	U	3.1 U
13.10 Exclamentame	1,1,1-Trichloroethane	680	100,000	7.5		9.5		13		3.2	U	2.9	U	3	U	3.4	U	3.1 U
Stack-indepare	1,1,2,2-Tetrachloroethane																	
Section of the content of the cont							U		U									
13.50 15.5																		
13.5 Seriespropriespers																		
13.45 March 13.65 March 15.05 March 13.05 Marc																		
12.45 Temple processors 16																		
13.4 Element placemen																	U	
1.50 1.50		3,600			U				U									
13.05-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c	1,2-Dibromo-3-chloropropane																	
1300Horopeapee																		
13 Dischargeopene																		
1.3.5 Times shower 1.4.00 1.4.00 1.5.00																		
13.Delteropense																	U	
1.50 1.50	_																- 11	
Melecondemone																		
2.2001-00spropagene																		
2-butanome 100	1,4-Diethylbenzene	NS	NS	12	U	13	U	12	U	13	U	12	U	12	U	16		12 U
Part	2,2-Dichloropropane	NS	NS	15	U	16	U	16	U	16	U	14	U	15	U	17	U	15 U
Althylothene	2-Butanone	120	100,000	30	U	32	U	31	U	32		29	U	30	U	34	U	
Methyly-genthone NS																	U	
Acetone																		
Acytomile NS																	U	
Benzeneme																	- 11	
Bemochismene NS																		
Bernochloromethane																		
Bomordemane		NS	NS	15	U		U		U	16	U	14	U		U	17	U	15 U
Bernemethane	Bromodichloromethane	NS	NS		U	3.2		3.1	U			2.9	U	3	U	3.4	U	
Carbon Idsulfide NS NS S S S S S S S S S S S S S S S S	Bromoform	NS	NS	12	U	13		12	U	13		12	U	12		14		
Carbon tetrachloride																		
Chlorobehrene 1,100 100,000 3 U 32 U 3.1 U 3.2 U 2.9 U 3 U 3.4 U 3.1																		
Chioroethane																		
Chicordom S370																		
Chioromethane																		
September Sept																		
Dichiconderliane NS	cis-1,3-Dichloropropene	NS	NS	3	U	3.2	U	3.1	U	3.2	U	2.9	U	3	U	3.4	U	3.1 U
Dichlorodifilutoromethane NS																		
Ethylbenzene																		
Hexachlorobutadiene																		
Sopropylbenzene NS	*			-										_				
Methylene chloride 930 100,000 6 U 6.3 U 6.2 U 6.5 U 5.8 U 6 U 6.8 U 6.2 Methylene chloride 50 100,000 30 U 32 U 31 U 32 U 29 U 30 U 34 U 31 Naphthalene NS NS NS 3 U 3.2 U 3.1 U 3.2 U 2.9 U 30 U 3.4 U 3.1 Naphthalene 12,000 NS 3 U 3.2 U 3.1 U 3.2 U 2.9 U 3 U 3.4 U 3.1 Naphthalene 12,000 NS																	U	
Methylene chloride																	U	
Naphthalene NS NS NS 3 U 3.2 U 3.1 U 3.2 U 2.9 U 3 U 3.4 U 3.1 NBUltiplenzene 12,000 NS 3 U 3.2 U 3.1 U 3.2 U 2.9 U 3 U 3.7 3.1 NBUltiplenzene 12,000 NS 3 U 3.2 U 3.1 U 3.2 U 3.1 U 3.2 U 2.9 U 3 U 3.7 3 U 3.7 3.1 NBUltiplenzene 3,900 100,000 15 U 16 U 16 U 16 U 16 U 16 U 14 U 15 U 17 U 15 O CKlorotoluene NS NS 15 U 6.3 U 6.2 U 6.5 U 5.8 U 6 U 6.8 U 6.2 P/m-Xjene 260 100,000 15 U 16 U																		
n-Propylbenzene 3,900 100,000 15 U 16 U 16 U 16 U 16 U 15 U 15 U 17 U 15 O-Chlorotoluene NS NS 15 U 16 U 16 U 16 U 16 U 14 U 15 U 17 U 15 O-Chlorotoluene NS NS 15 U 16 U 16 U 16 U 16 U 17 U 15 O-Chlorotoluene NS																		
O-Chlorotoluene NS NS 15 U 16 U 16 U 16 U 16 U 15 U 15 U 17 U 15 O-Xylene 260 100,000 6 U 6.3 U 6.2 U 6.5 U 5.8 U 6 U 6.8 U 6.2 p/m-Xylene 260 100,000 15 U 16 U 16 U 16 U 16 U 14 U 15 U 17 U 15 O-Chlorotoluene NS NS NS 3 U 3.2 U 3.1 U 3.2 U 2.9 U 3.3 U 3.4 U 3.1 O-Chlorotoluene NS NS NS 6 U 6.3 U 6.2 U 6.5 U 5.8 U 6 U 6 U 3.4 U 3.1 O-Chlorotoluene NS NS NS 6 U 6.3 U 6.2 U 6.5 U 5.8 U 6 U 6 U 3.4 U 3.1 O-Chlorotoluene NS NS NS 6 U 6.3 U 6.2 U 6.5 U 5.8 U 6 U 6 U 3.4 U 3.1 O-Chlorotoluene NS NS NS 6 U 6.3 U 6.2 U 6.5 U 5.8 U 6 U 6 U 230 C 6.2 Sec-Butylbenzene 11,000 100,000 3 U 3.2 U 3.1 U 3.2 U 3.2 U 2.9 U 3 U 3.4 U 3.1 O-Chlorotoluene NS NS NS 6 U 6.2 U 6.5 U 5.8 U 6 U 6.5 U	,																	
O-Xylene 260 100,000 6 U 6.3 U 6.2 U 6.5 U 5.8 U 6 U 6.8 U 6.2 p/m-Xylene 260 100,000 15 U 16 U 16 U 16 U 16 U 15 U 15 U 17 U 15 p-Chlorotoluene NS NS 3 U 3.2 U 3.1 U 3.2 U 2.9 U 3 U 3.4 U 3.1 p-Stopropyltoluene NS NS 6 U 6.3 U 6.2 U 6.5 U 5.8 U 6 U 6.3 U 6.2 sec-Butylbenzene 11,000 100,000 3 U 3.2 U 3.1 U 3.2 U 2.9 U 3 U 3.4 U 3.1 Styrene NS NS 6 U 6.3 U 6.3 U 6.2 U 6.5 U 5.8 U 6 U 6.8 U 6.8 U 6.2 sec-Butylbenzene NS NS NS 6 U 6.3 U 6.2 U 6.5 U 5.8 U 6 U 6.8 U 6.2 U 6.5 U 6.																		
p/m/xylene 260 100,000 15 U 16 U 16 U 16 U 16 U 15 U 15 U 17 U 15 p.Chlorotoluene NS NS 3 U 3.2 U 3.1 U 3.2 U 2.9 U 3 U 3.4 U 3.1 p-lsopropyltoluene NS NS NS 3 U 6.3 U 6.2 U 6.5 U 5.8 U 6 U 230 6.2 Sec-Butylbenzene 11,000 100,000 3 U 3.2 U 6.3 U 6.2 U 6.5 U 5.8 U 6 U 3.4 U 3.1 Styrene NS NS NS 6 U 6.3 U 6.2 U 6.5 U 5.8 U 6 U 6.8 U 6.2 Sec-Butylbenzene NS NS NS 6 U 6.3 U 6.2 U 6.5 U 5.8 U 6 U 6.8 U 6.2 Sec-Butylbenzene NS NS NS 15 U 6.3 U 6.2 U 6.5 U 5.8 U 6 U 6.8 U 6.2 Sec-Butylbenzene NS NS NS 15 U 6.3 U 6.2 U 6.5 U 5.8 U 6 U 6.8 U 6.2 Sec-Butylbenzene NS NS NS 15 U 16 U 16 U 16 U 16 U 16 U 15 U 15 U																		
P-Chlorotoluene NS NS NS 3 U 3.2 U 3.1 U 3.2 U 2.9 U 3 U 3.4 U 3.1 P-Isopropyltoluene NS NS NS 6 U 6.3 U 6.2 U 6.5 U 5.8 U 6 U 230 6.2 Sec-Bulylbenzene 11,000 100,000 3 U 3.2 U 3.1 U 3.2 U 2.9 U 3 U 3.4 U 3.1 Styrene NS NS NS 6 U 6.3 U 6.2 U 6.5 U 5.8 U 6 U 6.8 U 3.4 U 3.1 Styrene NS NS NS 6 U 6.3 U 6.2 U 6.5 U 5.8 U 6 U 6.8 U 6.2 U 6.5 U 5.8 U 6 U 6.8 U 6.2 U 6.5 U 5.8 U 6 U 6.8 U 6.2 U 6.5 U 5.8 U 6 U 6.8 U 6.2 U 6.5 U 5.8 U 6 U 6.8 U 6.2 U 6.5 U 5.8 U 6 U 6.8 U 6.2 U 6.5 U 5.8 U 6 U 6.8 U 6.2 U 6.5 U 5.8 U 6 U 6.8 U 6.2 U 6.5 U 5.8 U 6 U 6.8 U 6.2 U 6.5 U 5.8 U 6 U 6.8 U 6.2 U 6.5 U 5.8 U 6 U 6.8 U 6.2 U 6.5 U 5.8 U 6 U 6.8 U 6.2 U 6.5 U 5.8 U 6 U 6.8 U 6.2 U 6.5 U 5.8 U 6 U 6.8 U 6.2 U 6.5																		
Pisopropylloluene NS NS 6 U 6.3 U 6.2 U 6.5 U 5.8 U 6 U 230 6.2 sec-Butylibenzene 11,000 100,000 3 U 3.2 U 3.1 U 3.2 U 2.9 U 3 U 3.4 U 3.1 Styrene NS NS 6 U 6.3 U 6.2 U 6.5 U 5.8 U 6 U 6.8 U 6.2 sec-Butylibenzene 5,900 NS 15 U 16 U 16 U 16 U 16 U 17 U 15 U 17 U 15 Toluene 700 100,000 4.5 U 4.7 U 4.7 U 4.9 U 4.4 U 4.5 U 4.5 U 5.1 U 4.6 trans-1,3-Dichloropropene NS 100,000 3 U 3.2 U 3.2 U 3.1 U 3.2 U 2.9 U 3 U 3.3 U 3.4 U 3.1 Trichlorofluoromethane NS NS 15 U 16 U 16 U 16 U 16 U 17 U 15 U 17 U 15 U 17 U 15 U 17 U 15 U 17 U 18 U 18 U 18 U 19 U 19 U 19 U 19 U 19																		
sec-Butylbenzene 11,000 100,000 3 U 3.2 U 3.1 U 3.2 U 2.9 U 3 U 3.4 U 3.1 Styrene NS NS 6 U 6.3 U 6.2 U 6.5 U 5.8 U 6 U 6.8 U 6.2 tert-Butylbenzene 5,900 NS 15 U 16 U 16 U 16 U 16 U 14 U 15 U 17 U 15 Toluene 700 100,000 4.5 U 4.7 U 4.7 U 4.9 U 4.4 U 4.5 U 5.1 U 5.1 U 4.6 trans-1,3-Dichloropropene NS 100,000 3 U 3.2 U 3.1 U 3.2 U 3.2 U 2.9 U 3 U 3.4 U 3.1 Trichlorofluoromethane NS NS 15 U 16 U 16 U 16 U 16 U 17 U 17 U 15																	U	
Styrene NS NS NS 6 U 6.3 U 6.2 U 6.5 U 5.8 U 6 U 6.8 U 6.2 Ett-Hullybenzee 5,900 NS 15 U 16 U 16 U 16 U 16 U 14 U 15 U 17 U 15 CU 17 Oldene 700 100,000 4.5 U 4.7 U 4.7 U 4.9 U 4.4 U 4.5 U 5.1 U 5.1 U 4.6 CU 17 Tricklorofluoromethane NS NS 15 U 16 U 16 U 16 U 16 U 16 U 17 U 18 U 19																	U	
terl-Butylbenzene 5,900 NS 15 U 16 U 16 U 16 U 14 U 15 U 17 U 15 Toluene 700 100,000 4.5 U 4.7 U 4.7 U 4.9 U 4.4 U 4.5 U 5.1 U 5.1 U 4.6 trans-1,3-Dichloropropene NS 100,000 3 U 3.2 U 3.1 U 3.2 U 2.9 U 3 U 3.4 U 3.1 Trichlorofluoromethane NS NS 15 U 16 U 16 U 16 U 17 U 15 U 17 U 15																		
Toluene 700 100,000 4.5 U 4.7 U 4.7 U 4.9 U 4.4 U 4.5 U 5.1 U 5.6 U 4.6 trans-1,3-Dichloropropene NS 100,000 3 U 3.2 U 3.1 U 3.2 U 2.9 U 3 U 3.4 U 3.1 Trichlorofluoromethane NS NS 15 U 16 U 16 U 16 U 16 U 17 U 15 U 17 U 15	•																	
Trichlorofluoromethane NS NS 15 U 16 U 16 U 16 U 14 U 15 U 17 U 15	Toluene																	
Vinyl acetate NS NS 30 U 32 U 31 U 32 U 29 U 30 U 34 U 31	iricniorofluoromethane	NS	INS	15	U	16		16	U	16			U	15	U	17	U	15 U

Notes: All concentrations are µg/kg (ppb)

¹Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006

²Resticted-Residential Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006

U - Analyte not detected above the laboratory MDL

J - Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory MDL

Green highlighting indicates exceedance of Unrestricted Use SCO

SAMPLE ID	Unrestricted	Restricted	PWG-DW-20	008-10	PWG-DW-2	008-11	PWG-DW-20	008-12	PWG-DW-2	008-13	PWG-DW-20	008-14	PWG-DW-20	008-15	PWG-DW-20	008-16	PWG-DW-2008-17
LAB SAMPLE ID	SCO ¹	Residential	L0813344		L0813344		L0813344		L0813344		L0813344		L0813344		L0813344		L0813344-22
SAMPLING DATE		SCO ²	9/8/200		9/8/200		9/8/200		9/8/200		9/8/200		9/8/200		9/8/200		9/8/2008
Sample Depth (ft.)			6.25-6.7		6.75-7.2	25	7.25-7.7		7.25-7.7	75	6-6.5		7-7.5		5.5-6		5.5-6
Volatile Organics by EPA 8260B																	
Tetrachloroethene	1,300	19,000	20		3.1	U	3	U	2.9	U	3.6	U	120		30		190
Trichloroethene	470	21,000	3.5	U	3.1	U	3	U	2.9	U	3.6	U	11	J	2.9	U	14
cis-1,2-Dichloroethene trans-1,2-Dichloroethene	250 190	100,000	3.5 5.3	U	3.1 4.7	U	3 4.5	U	2.9	U	3.6 5.4	U	28 4.5	J	3.0 4.4	U	86 4.6 U
1,1-Dichloroethene	330	100,000	3.5	U	3.1	U	4.5	U	2.9	U	3.6	U	3	U	2.9	U	4.6 U
Vinyl chloride	20	900	7	U	6.2	U	6	U	5.8	U	7.2	U	26	J	5.8	U	6.1 U
							-										
1,1,1,2-Tetrachloroethane	NS	NS	3.5	U	3.1	U	3	U	2.9	U	3.6	U	3	U	2.9	U	3 U
1,1,1-Trichloroethane	680	100,000	3.5	U	5.3		3	U	2.9	U	3.6	U	3	U	2.9	U	3 U
1,1,2,2-Tetrachloroethane	NS	NS	3.5	U	3.1	U	3	U	2.9	U	3.6	U	3	U	2.9	U	3 U
1,1,2-Trichloroethane	NS	NS	5.3	U	4.7	U	4.5	U	4.4	U	5.4	U	4.5	U	4.4	U	4.6 U
1,1-Dichloroethane	270	26,000	5.3	U	4.7	U	4.5	U	4.4	U	5.4	U	4.5	U	4.4	U	4.6 U
1,1-Dichloropropene	NS	NS	18	U	16	U	15	U	14	U	18	U	15	U	14	U	15 U
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	NS NS	NS NS	18 35	U	16 31	U	15 30	U	14 29	U	18 36	U	15 30	U	14 29	U	15 U
1,2,4,5-Tetramethylbenzene	NS	NS NS	14	U	12	U	12	U	12	U	14	U	12	U	12	U	12 U
1,2,4-Trichlorobenzene	NS	NS NS	18	U	16	U	15	U	14	U	18	U	15	U	14	U	15 U
1,2,4-Trimethylbenzene	3,600	52,000	18	U	16	U	15	U	14	U	18	U	15	U	14	U	15 U
1,2-Dibromo-3-chloropropane	NS	NS	18	U	16	U	15	U	14	U	18	U	15	U	14	U	15 U
1,2-Dibromoethane	NS	NS	14	U	12	U	12	U	12	U	14	U	12	U	12	U	12 U
1,2-Dichlorobenzene	1,100	100,000	18	U	16	U	15	U	14	U	18	U	15	U	14	U	15 U
1,2-Dichloroethane	20	3,100	3.5	U	3.1	U	3	U	2.9	C	3.6	U	3	U	2.9	U	3 U
1,2-Dichloropropane	NS	NS	12	U	11	U	10	U	10	U	13	U	10	U	10	U	11 U
1,3,5-Trimethylbenzene	8,400	52,000	18	U	16	U	15	U	14	U	18	U	15	U	14	U	15 U
1,3-Dichlorobenzene	2,400 NS	49,000 NS	18 18	U	16 16	U	15 15	U	14 14	U	18 18	U	15 15	U	14 14	U	15 U
1,3-Dichloropropane 1,4-Dichlorobenzene	1,800	13,000	18	U	16	U	15	U	14	U	18	U	15	U	14	U	15 U
1,4-Diethylbenzene	NS	NS	14	U	12	U	12	U	12	U	14	U	12	U	12	U	12 U
2,2-Dichloropropane	NS	NS	18	U	16	U	15	U	14	U	18	U	15	U	14	U	15 U
2-Butanone	120	100,000	35	U	31	U	30	U	29	U	36	U	30	U	29	U	30 U
2-Hexanone	NS	NS	35	U	31	U	30	U	29	U	36	U	30	U	29	U	30 U
4-Ethyltoluene	NS	NS	14	U	12	U	12	U	12	U	14	U	12	U	12	U	12 U
4-Methyl-2-pentanone	NS	NS	35	U	31	U	30	U	29	U	36	U	30	U	29	U	30 U
Acetone	50	100,000	67		31	U	30	U	29	U	42		30	U	29	U	30 U
Acrylonitrile	NS	NS 4 000	35	U	31	U	30	U	29	U	36	U	30	U	29	U	30 U
Benzene Bromobenzene	60 NS	4,800 NS	3.5 18	U	3.1 16	U	3 15	U	2.9	U	3.6 18	U	3 15	U	2.9	U	3 U
Bromochloromethane	NS	NS	18	U	16	U	15	U	14	U	18	U	15	U	14	U	15 U
Bromodichloromethane	NS	NS	3.5	U	3.1	U	3	U	2.9	U	3.6	U	3	U	2.9	U	3 U
Bromoform	NS	NS	14	U	12	U	12	U	12	U	14	U	12	U	12	U	12 U
Bromomethane	NS	NS	7	U	6.2	U	6	U	5.8	U	7.2	U	6	U	5.8	U	6.1 U
Carbon disulfide	NS	NS	35	U	31	U	30	U	29	U	36	U	30	U	29	U	30 U
Carbon tetrachloride	760	2,400	3.5	Ω	3.1	U	3	U	2.9		3.6	U	3	U	2.9	U	3 U
Chlorobenzene	1,100	100,000	3.5	U	3.1	U	3	U	2.9	U	3.6	U	3	U	2.9	U	3 U
Chloroethane	NS 370	NS 49,000	7 5.3	U	6.2 4.7	U	6 4.5	U	5.8	U	7.2 5.4	U	6 4.5	U	5.8 4.4	U	6.1 U 4.6 U
Chloroform		49,000 NS		U		U				U						U	
Chloromethane cis-1,3-Dichloropropene	NS NS	NS NS	18 3.5	U	16 3.1	U	15	U	14 2.9	U	18 3.6	U	15 3	U	14 2.9	U	15 U
Dibromochloromethane	NS	NS	3.5	U	3.1	U	3	U	2.9	U	3.6	U	3	U	2.9	U	3 U
Dibromomethane	NS	NS	35	U	31	U	30	U	29	U	36	U	30	U	29	U	30 U
Dichlorodifluoromethane	NS	NS	35	U	31	U	30	U	29	U	36	U	30	UJ	29	U	30 U
Ethylbenzene	1,000	41,000	3.5	U	3.1	U	3	U	2.9	U	3.6	U	3	U	2.9	U	3 U
Hexachlorobutadiene	NS	NS	18	U	16	U	15	U	14	C	18	U	15	U	14	U	15 U
Isopropylbenzene	NS	NS	3.5	U	3.1	U	3	U	2.9	U	3.6	U	3	U	2.9	U	3 U
Methylene obleride	930	100,000	7	U	6.2	U	6	U	5.8	U	7.2	U	6	U	5.8	U	6.1 U
Methylene chloride	50 NS	100,000 NS	35 3.5	U	31 3.1	U	30	U	29	U	36 3.6	U	30	U	29	U	
Naphthalene n-Butylbenzene	NS 12,000	NS NS	3.5	U	3.1	U	3	U	2.9	U	3.6	U	3	U	2.9	U	3 U
n-Propylbenzene	3,900	100,000	18	U	16	U	15	U	14	U	18	U	15	U	14	U	15 U
o-Chlorotoluene	NS	NS	18	U	16	U	15	U	14	U	18	U	15	U	14	U	15 U
o-Xylene	260	100,000	7	U	6.2	U	6	U	5.8	U	7.2	U	6	U	5.8	U	6.1 U
p/m-Xylene	260	100,000	18	U	16	U	15	U	14	U	18	U	15	U	14	U	15 U
p-Chlorotoluene	NS	NS	3.5	U	3.1	U	3	U	2.9	U	3.6	U	3	U	2.9	U	3 U
p-Isopropyltoluene	NS	NS	7	U	6.2	U	6	U	5.8	U	7.2	U	6	U	5.8	U	6.1 U
sec-Butylbenzene	11,000	100,000	3.5	U	3.1	U	3	U	2.9	U	3.6	U	3	U	2.9	U	3 U
	NS	NS	7	U	6.2	U	6	U	5.8	U	7.2	U	6	U	5.8 14	U	6.1 U
Styrene	F 000				16	U	15	U	14	U	18	U	15	U	. 1/	U	15 U
tert-Butylbenzene	5,900	NS 100,000	18														
tert-Butylbenzene Toluene	700	100,000	5.3	U	4.7	U	4.5	U	4.4	U	25		4.5	U	4.4	U	4.6 U
tert-Butylbenzene												U					

Notes: All concentrations are µg/kg (ppb)

¹Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environ ²Resticted-Residential Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, EI

U - Analyte not detected above the laboratory MDL

J - Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory MDL

Green highlighting indicates exceedance of Unrestricted Use SCO

Mathematical Content of the part of the	SAMPLE ID			2112 211 22	00.10	BILLO BILL 00	200.40	SIVE SIVE		2112 2111 21		SIMO SIM 60		BUIG BUIG		Buo suu s	200 05	DIVO DIVO	2000.01
Mary Content																			
Section Property																			
Wilst September 19 (19 19 19 19 19 19 19 19 19 19 19 19 19 1																			
TRESPONDENCY 1990 19																			
Septembersone 190 100000 12 0 3 0 3 0 5 0 24 0 25 0 27 0 3 0 3 0 3 0 4 5 0 1 1 1 1 1 1 1 1 1	Tetrachloroethene	1,300	19,000	18		82		3.5	U	2.9	U	3.2	U	3.3	U	3.1	U	3	U
March 12 Decembers 198	Trichloroethene	470	21,000	3.2	U	3	U	3.5	U	2.9	U	3.2	U	3.3	U	3.1	U	3	U
State Componence 198		250	100,000	3.2	U	3	U	3.5	U	2.9	U	3.2	U	3.3	U	3.1	U	3	U
Marchanness	trans-1,2-Dichloroethene	190	100,000	4.8	U	4.5	U	5.3	U	4.3	U	4.7	U	5	U	4.7	U	4.5	
1.1.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2						3		3.5						3.3				3	
No. Company	Vinyl chloride	20	900	6.4	U	6	U	7	U	5.7	U	6.3	U	6.7	U	6.2	U	6	U
No. Company	1.1.1.2.Tetrachloroethane	NS	NS	3.2	- 11	3	- 11	3.5	- 11	2.0	- 11	3.2	- 11	3.3	- 11	3.1	- 11	3	
13.13.2 Alexanomenomenomenomenomenomenomenomenomenome																			
13.10 Processor																			
13.034 1																			
13.50 15.5	1,1-Dichloroethane																		
2.55 1.55	1,1-Dichloropropene	NS	NS	16	U	15	U	18	U	14	U	16	U	17	U	16	U	15	U
2.4.5. 1.5.	1,2,3-Trichlorobenzene	NS	NS	16	U	15	U	18	U	14	U	16	U	17	U	16	U	15	U
12.4 Norte-pleasement	1,2,3-Trichloropropane	NS	NS	32	U	30	U	35	U	29	U	32	U	33	U	31	U	30	U
12.5 Interruptive content 1.00	1,2,4,5-Tetramethylbenzene	NS	NS	13	U	12	U	14	U	11	U	13	U	13	U	12	U	12	U
3-200cmonomene																			
2000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 1000	•																		
2.50 2.50																			
3.20 3.10 3.10 3.2 0 3.2 0 3.2 0 3.2 0 3.2 0 3.3																			
3.20Ertoropepare																			
3.55 Time hyberthermene 8.600 52,000 16 U 15 U 18 U 14 U 16 U 17 U 16 U 15 U 15 U 18 U 14 U 16 U 17 U 16 U 15 U 15 U 18 U 14 U 16 U 17 U 16 U 15 U 15 U 15 U 18 U 14 U 16 U 17 U U 16 U 17 U U 16 U U 17 U U 16 U U U U U U U U U																			
13-08-charpeane																			
1.50 1.50	•																		
1.600 1.60																			
22 Dischargeopene																			
23 Dictionepopeneme	1,4-Diethylbenzene	NS	NS	13	U	12	U	14	U	11	U	13	U	13	U	12	U	12	U
248earanee		NS	NS	16	U	15	U	18	U	14	U	16	U	17	U	16	U	15	U
4Ethylothene	2-Butanone	120	100,000	32	U	30	U	35	U	29	U	32	U	33	U	31	U	30	U
Abbetting Abbe	2-Hexanone	NS	NS	32	U	30	U	35	U	29	U	32	U	33	U	31	U	30	U
Accelane	4-Ethyltoluene	NS	NS	13	С	12	U	14	U	11	U	13	U	13	U	12	U	12	U
Accylonative NS NS NS 32 U 33 U 33 U 33 U 31 U 30 U 32 U 33 U 31 U 30 U 30 U 35 U 35 U 20 U 32 U 33 U 31 U 30 U 31 U 30 U 30 U 30 Semente	4-Methyl-2-pentanone								U										
Sentener 16																			
Semoshorome																			
Semochichomethane																			
Semonderhame																			
Semondemanne																			
Semonthane																			
Carbon classifier																			
Chloroblance 1,100 100,000 3,2 U 3 U 3,5 U 2,9 U 3,2 U 3,3 U 3,1 U 3 U Chloroblance NS								35											
Chicordemane	Carbon tetrachloride	760	2,400	3.2	U	3	U	3.5	U	2.9	U	3.2	U	3.3	U	3.1	U	3	U
Chloroform \$370	Chlorobenzene	1,100	100,000	3.2	U	3	U	3.5	U	2.9	U	3.2	U	3.3	U	3.1	U	3	U
Chioromethane	Chloroethane	NS	NS	6.4	U	6	U	7	U	5.7	U	6.3	U	6.7	U	6.2	U	6	U
Cist-1,3-Dichidropropene NS	Chloroform			4.8	U			5.3	U	4.3	U	4.7		5	U	4.7	U		
Dibromochloromethane																			
Dichiormethane NS NS NS NS NS NS NS N																			
Dichlorodiffuoromethane NS																			
Ethylbenzene																			
Hexachlorobutadiene NS NS NS 16 U 15 U 18 U 14 U 16 U 17 U 16 U 15 U 15 U 15 O 15 O 15 O 15 O 15 O 15																			
Septoply Septops Sep																			
Methyler buylether 930 100,000 6.4 U 6.8 U 5.7 U 6.3 U 6.7 U 6.2 U 6.6 U Methylene chloride 50 100,000 32 U 30 U 35 U 29 U 32 U 33 U 31 U 30 U 30 U 35 U 35 U 32 U 33 U 31 U 30 U 30 U 35 U 35 U 32 U 33 U 31 U 31 U 30 U 30 U 35 U 35 U 32 U 33 U 31 U 31 U 30 U 30 U 35 U 35 U 32 U 32 U 33 U 31 U 31 U 30 U 30 U 35 U 35 U 32 U 32 U 33 U 31 U 31 U 33 U 31 U 31																			
Methylene chloride																			
Naphthalene NS NS 3.2 U 3.3 U 3.5 U 2.9 U 3.2 U 3.3 U 3.1 U 3.1 U 3 U 1.0 NBUlbjenzene 12,000 NS 3.2 U 3.5 U 3.5 U 2.9 U 3.2 U 3.3 U 3.1 U 3.1 U 3 U 3.0 U 1.0 NBUlbjenzene 12,000 NS 3.2 U 3.5 U 3.5 U 2.9 U 3.2 U 3.3 U 3.1 U 3.1 U 3 U 3.0 U 1.0 NBUlbjenzene 3,900 100,000 16 U 15 U 18 U 14 U 16 U 17 U 16 U 16 U 15 U 16 U 0.0 NBUBLEN 15 U 18 U 14 U 16 U 17 U 16 U 16 U 17 U 16 U 15 U 16 U 17 U 16 U 15 U 17 U 16 U 17 U 17																			
n-Butylbenzene 12,000 NS 3.2 U 3.3 U 3.5 U 2.9 U 3.2 U 3.3 U 3.1 U 3.1 U 3.1 U 7.0 Propylbenzene 3,900 100,000 16 U 15 U 18 U 14 U 16 U 17 U 16 U 15 U 15 U 5.0 U 5.7 U 16 U 17 U 16 U 15 U 15 U 5.7 U 16 U 17 U 16 U 15 U 15 U 5.7 U 16 U 17 U 16 U 15 U 15 U 5.7 U 16 U 17 U 16 U 15 U 15 U 5.7 U 16 U 17 U 16 U 15 U 15 U 5.7 U 16 U 17 U 16 U 15 U 15 U 5.7 U 16 U 17 U 16 U 17 U 16 U 15 U 5.7 U																			
n-Propylbenzene 3,900 100,000 16 U 15 U 18 U 14 U 16 U 17 U 16 U 15 U 15 U 0 Chlorotoluene NS NS 16 U 15 U 18 U 14 U 16 U 17 U 16 U 15 U 15 U 0 NS/prince 260 100,000 16 U 15 U 18 U 14 U 16 U 17 U 16 U 15 U 15 U 16 U 17 U 16 U 15 U 16 U 17 U 16 U 15 U 16 U 17 U 16 U 15 U 18 U 14 U 16 U 17 U 16 U 17 U 16 U 15 U 18 U 14 U 16 U 17 U 16 U 17 U 16 U 15 U 18 U 14 U 16 U 17 U 16 U 17 U 16 U 15 U 18 U 14 U 16 U 17 U 16 U 17 U 16 U 15 U 18 U 18 U 14 U 16 U 17 U 16 U 17 U 16 U 15 U 18 U 18 U 14 U 16 U 17 U 16 U 17 U 16 U 15 U 18 U 18 U 14 U 16 U 17 U 16 U 17 U 16 U 15 U 18																			
O-Xylene 260 100,000 6.4 U 6 U 7 U 5.7 U 6.3 U 6.7 U 6.2 U 6 U 7 M 5/9 M 5/9 M 6.3 U 6.7 U 6.2 U 6 U 7 M 5/9		3,900	100,000	16	U	15	U	18	U	14	U	16	U	17	U	16	U	15	U
p/m/xylene 260 100,000 16 U 15 U 18 U 14 U 16 U 17 U 16 U 15 U 15 U 15 U 16 U 17 U 16 U 15 U 1	o-Chlorotoluene	NS	NS	16	U	15	U	18	U	14	U	16	U	17	U	16	U	15	U
p-Chlorotoluene NS NS NS 3.2 U 3.3 U 3.5 U 2.9 U 3.2 U 3.3 U 3.1 U 3.1 U 3 U p-Isopropyltoluene NS NS NS 6.4 U 6 U 7 U 5.7 U 6.3 U 6.7 U 6.2 U 6 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5	o-Xylene	260	100,000	6.4	U	6	U	7	U	5.7	U	6.3	U	6.7	U	6.2	U	6	U
Pisopropylloluene NS NS 6.4 U 6 U 7 U 5.7 U 6.3 U 6.7 U 6.2 U 6 U 6 U 5 Sec-Butylbenzene 111,000 100,000 3.2 U 3 U 3.5 U 2.9 U 3.2 U 3.3 U 3.1 U 3 U 3 U 5 Syrene NS NS 6.4 U 6 U 7 U 5.7 U 6.3 U 6.7 U 6.2 U 6 U 6 U 5 Syrene 5.900 NS 16 U 15 U 18 U 14 U 16 U 17 U 16 U 17 U 16 U 15 U 17 U 16 U 17 U 16 U 17 U 16 U 17 U 17																			
sec-Butylbenzene 11,000 100,000 3.2 U 3.3 U 3.5 U 2.9 U 3.2 U 3.3 U 3.1 U 3.1 U 3 U 5 Syrene NS NS 6.4 U 6.6 U 7. U 5.7 U 6.3 U 6.7 U 6.2 U 6.6 U 6.7	p-Chlorotoluene																		
Styrene NS NS NS 6.4 U 6.6 U 5.7 U 5.7 U 6.3 U 6.7 U 6.2 U 6.6 U 15 U 1																			
tert-Butylbenzene 5,900 NS 16 U 15 U 18 U 14 U 16 U 17 U 16 U 17 U 16 U 15 U 15 U 16 U 17 U 16 U 15 U 15 U 16 U 17 U 16 U 15 U 16 U 17 U 16 U 15 U 17 U 18																			
Toluene 700 100,000 4.8 U 4.5 U 5.3 U 4.3 U 4.7 U 5 U 4.7 U 4.5 U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																			
trans-1,3-Dichloropropene NS 100,000 3.2 U 3.5 U 2.9 U 3.2 U 3.1 U 3 U Trichlorofluoromethane NS NS 16 U 15 U 18 U 14 U 16 U 17 U 16 U 15 U																			
Trichlorofluoromethane NS NS 16 U 15 U 18 U 14 U 16 U 17 U 16 U 17 U 15 U 15 U																			
	Vinyl acetate	NS NS	NS NS	32	U	30	U	35	U	14 29	U	32	U	33	U	31	U	30	U

Notes: All concentrations are µg/kg (ppb)

¹Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environ ²Resticted-Residential Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, EI

U - Analyte not detected above the laboratory MDL

J - Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory MDL

Green highlighting indicates exceedance of Unrestricted Use SCO

SAMPLE ID LAB SAMPLE ID																	
LAB SAMPLE ID	Unrestricted SCO ¹	Restricted	PWG-DW-20		PWG-DW-20		PWG-DW-20		PWG-DW-20		PWG-DW-20		PWG-DW-20		PWG-DW-20		PWG-DW-2008-37
SAMPLING DATE	300	Residential SCO ²	L0813447- 9/10/200		L0813447- 9/10/200		L0813447 9/10/200		L0813447- 9/10/200		L0813447- 9/10/200		L0813447 9/10/20		L0813447 9/10/200		L0813447-09 9/10/2008
SAMPLE DEPTH (ft.)		300	12.5-13		12-12.5	0	10-10.5		8.5-9	00	9/10/200 8-8.5	0	7-7.5	Uo	5.5-6	JO	11-11.5
Volatile Organics by EPA 8260B			12.5-13		12-12.5		10-10.0	,	0.3-7		8-8.3		7-7.5		3.3-0		11-11.5
Tetrachloroethene	1,300	19,000	3.2	U	3.7	U	3.3	U	5.1	U	3.7	U	3.6	U	3.8	U	4.6 U
Trichloroethene	470	21,000	3.2	U	3.7	U	3.3	U	5.1	U	3.7	U	3.6	U	3.8	U	4.6 U
cis-1,2-Dichloroethene	250	100,000	3.2	U	3.7	U	3.3	U	5.1	U	3.7	U	3.6	U	3.8	U	4.6 U
trans-1,2-Dichloroethene	190	100,000	4.8	U	5.5	U	4.9	U	7.6	U	5.5	U	5.4	U	5.7	U	6.9 U
1,1-Dichloroethene	330	100,000	3.2	U	3.7	U	3.3	U	5.1	U	3.7	U	3.6	U	3.8	U	4.6 U
Vinyl chloride	20	900	6.4	U	7.4	U	6.6	U	10	U	7.4	U	7.2	U	7.6	U	9.2 U
1,1,1,2-Tetrachloroethane	NS	NS	3.2	U	3.7	U	3.3	U	5.1	U	3.7	U	3.6	U	3.8	U	4.6 U
1.1.1-Trichloroethane	680	100,000	3.2	U	3.7	U	3.3	U	5.1	U	3.7	U	3.6	U	3.8	U	4.6 U
1,1,2,2-Tetrachloroethane	NS	NS	3.2	U	3.7	U	3.3	U	5.1	U	3.7	U	3.6	U	3.8	U	4.6 U
1,1,2-Trichloroethane	NS	NS	4.8	U	5.5	U	4.9	U	7.6	U	5.5	U	5.4	U	5.7	U	6.9 U
1,1-Dichloroethane	270	26,000	4.8	U	5.5	U	4.9	U	7.6	U	5.5	U	5.4	U	5.7	U	6.9 U
1,1-Dichloropropene	NS	NS	16	U	18	U	16	U	26	U	18	U	18	U	19	U	23 U
1,2,3-Trichlorobenzene	NS	NS	16	U	18	U	16	U	26	U	18	U	18	U	19	U	23 U
1,2,3-Trichloropropane	NS	NS	32	U	37	U	33	U	51	U	37	U	36	U	38	UJ	46 U
1,2,4,5-Tetramethylbenzene	NS	NS NC	13	U	15	U	13	U	20	U	15	U	14	U	15	U	18 U
1,2,4-Trichlorobenzene	NS 3,600	NS 52,000	16 16	U	18 18	U	16 16	U	26 26	U	18 18	U	18 18	U	19 19	U	23 U 23 U
1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	3,600 NS	52,000 NS	16	U	18	U	16	U	26	U	18	U	18	U	19	U	23 U
1,2-Dibromoethane	NS NS	NS NS	13	U	15	U	13	U	20	U	15	U	14	U	15	U	18 U
1,2-Dichlorobenzene	1,100	100,000	16	U	18	U	16	U	26	U	18	U	18	U	19	U	23 U
1,2-Dichloroethane	20	3,100	3.2	U	3.7	U	3.3	U	5.1	U	3.7	U	3.6	U	3.8	U	4.6 U
1,2-Dichloropropane	NS	NS	11	U	13	U	12	U	18	U	13	U	13	U	13	U	16 U
1,3,5-Trimethylbenzene	8,400	52,000	16	U	18	U	16	U	26	U	18	U	18	U	19	U	23 U
1,3-Dichlorobenzene	2,400	49,000	16	U	18	U	16	U	26	U	18	U	18	U	19	U	23 U
1,3-Dichloropropane	NS	NS	16	U	18	U	16	U	26	U	18	U	18	U	19	U	23 U
1,4-Dichlorobenzene	1,800	13,000	16	U	18	U	16	U	26	U	18	U	18	U	19	U	23 U
1,4-Diethylbenzene	NS	NS	13	U	15	U	13	U	20	U	15	U	14	U	15	U	18 U
2,2-Dichloropropane	NS 120	NS 100,000	16	U	18	U	16	U	26	U	18	U	18	U	19	U	23 U
2-Butanone 2-Hexanone	120 NS	100,000 NS	32 32	U	37 37	U	33	U	51 51	U	37 37	U	36 36	U	38 38	U	46 U
4-Ethyltoluene	NS	NS	13	U	15	U	13	U	20	U	15	U	14	U	15	U	18 U
4-Methyl-2-pentanone	NS	NS	32	U	37	U	33	U	51	U	37	U	36	U	38	U	46 U
Acetone	50	100,000	32	U	37	U	33	U	70		37	U	43		48		67
Acrylonitrile	NS	NS	32	U	37	U	33	U	51	U	37	U	36	U	38	U	46 U
Benzene	60	4,800	3.2	U	3.7	U	3.3	С	5.1	U	3.7	U	3.6	U	3.8	U	4.6 U
Bromobenzene	NS	NS	16	U	18	U	16	U	26	U	18	U	18	U	19	U	23 U
Bromochloromethane	NS	NS	16	U	18	U	16	U	26	U	18	U	18	U	19	U	23 U
Bromodichloromethane	NS NS	NS NS	3.2 13	U	3.7 15	U	3.3	U	5.1 20	U	3.7 15	U	3.6 14	U	3.8 15	U	4.6 U
Bromoform Bromomethane	NS NS	NS NS	6.4	U	7.4	U	6.6	U	10	U	7.4	U	7.2	U	7.6	U	9.2 U
Carbon disulfide	NS	NS	32	U	37	U	33	U	51	U	37	U	36	U	38	UJ	46 U
Carbon tetrachloride	760	2,400	3.2	U	3.7	U	3.3	U	5.1	U	3.7	U	3.6	U	3.8	U	4.6 U
Chlorobenzene	1,100	100,000	3.2	U	3.7	U	3.3	U	5.1	U	3.7	U	3.6	U	3.8	U	4.6 U
Chloroethane	NS	NS	6.4	U	7.4	U	6.6	U	10	U	7.4	U	7.2	U	7.6	U	9.2 U
Chloroform	370	49,000	4.8	U	5.5	U	4.9	U	7.6	U	5.5	U	5.4	U	5.7	U	6.9 U
Chloromethane	NS	NS	16	U	18	U	16	U	26	U	18	U	18	U	19	U	23 U
cis-1,3-Dichloropropene	NS	NS	3.2	U	3.7	U	3.3	U	5.1	U	3.7	U	3.6	U	3.8	U	4.6 U
Dibromochloromethane Dibromomethane	NS NS	NS NS	3.2	U	3.7	U	3.3	U	5.1 51	U	3.7	U	3.6 36	U	3.8	U	4.6 U
Dichlorodifluoromethane	NS NS	NS NS	32	U	37	U	33	U	51	U	37	U	36	U	38	UJ	46 U
Ethylbenzene	1,000	41,000	3.2	U	3.7	U	3.3	U	5.1	U	3.7	U	3.6	U	3.8	U	4.6 U
Hexachlorobutadiene	NS	NS	16	U	18	U	16	U	26	U	18	U	18	U	19	U	23 U
Isopropylbenzene	NS	NS	3.2	U	3.7	U	3.3	U	5.1	U	3.7	U	3.6	U	3.8	U	4.6 U
Methyl tert butyl ether	930	100,000	6.4	U	7.4	U	6.6	U	10	U	7.4	U	7.2	U	7.6	U	9.2 U
Methylene chloride	50	100,000	32	U	37	U	33	U	51	U	37	U	36	U	38	U	46 U
Naphthalene	NS	NS	3.2	U	3.7	U	3.3	C	5.1	U	3.7	U	3.6	U	3.8	U	4.6 U
n-Butylbenzene	12,000	NS	3.2	U	3.7	U	3.3	U	5.1	U	3.7	U	3.6	U	3.8	U	4.6 U
n-Propylbenzene	3,900	100,000	16	U	18	U	16	U	26	U	18	U	18	U	19	U	23 U
o-Chlorotoluene	NS 260	NS 100,000	16 6.4	U	18 7.4	U	16 6.6	U	26 10	U	18 7.4	U	18 7.2	U	19 7.6	U	23 U 9.2 U
o-Xylene n/m-Xylene	260	100,000	16	U	18	U	16	U	26	U	18	U	1.2	U	19	U	9.2 U
p/m-Xylene p-Chlorotoluene	NS NS	NS	3.2	U	3.7	U	3.3	U	26 11	U	3.7	U	3.6	U	3.8	U	4.6 U
p-Isopropyltoluene	NS	NS NS	6.4	U	7.4	U	6.6	U	10	U	7.4	U	7.2	U	7.6	U	9.2 U
	11,000	100,000	3.2	U	3.7	U	3.3	U	5.1	U	3.7	U	3.6	U	3.8	U	4.6 U
sec-Butylbenzene	NS	NS	6.4	U	7.4	U	6.6	U	10	U	7.4	U	7.2	U	7.6	U	9.2 U
sec-Butylbenzene Styrene																	
	5,900	NS	16	U	18	U	16	U	26	U	18	U	18	U	19	U	23 U
Styrene tert-Butylbenzene Toluene	700	100,000	4.8	U	5.5	U	4.9	U	7.6	U	5.5	U	5.4	U	5.7	U	6.9 U
Styrene tert-Butylbenzene																	

Notes: All concentrations are µg/kg (ppb)

¹Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environ ²Resticted-Residential Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, EI

U - Analyte not detected above the laboratory MDL

J - Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory MDL

Green highlighting indicates exceedance of Unrestricted Use SCO

Table 6 Leaching Structure Soil/Sediment Sample Analytical Data Summary Volatile Organic Compounds Former Darby Drugs Distribution Center

SAMPLE ID	Unrestricted	Restricted	PWG-DW-2008-38	PWG-DW-2008-39		PWG-DW-2008-41	PWG-LP-2008-01	PWG-LP-2008-01
LAB SAMPLE ID	SCO1	Residential SCO ²	L0813447-11 9/10/2008	L0813447-12	L0813447-13 9/10/2008	L0813447-14	L0813344-20	L0814755-01
Sampling date Sample Depth (ft.)		300	9/10/2008 7-7.5	9/10/2008 8.5-9	9/10/2008 6-6.5	9/10/2008 9-9.5	9/8/2008 7.75-8.25	10/3/2008 9-11
Volatile Organics by EPA 8260B			1-1.5	0.3-7	0.0.5	7-7.5	7.75-8.25	7-11
Tetrachloroethene	1,300	19,000	15 U	3.6 U	2.7 U	3.2 U	120	4.9
Trichloroethene	470	21,000	15 U	3.6 U	2.7 U	3.2 U	8.7	3.3 U
cis-1,2-Dichloroethene	250	100,000	15 U	3.6 U		3.2 U	5.3	3.3 U
trans-1,2-Dichloroethene	190	100,000	22 U	5.4 U		4.7 U	4.4 U	4.9 U
1,1-Dichloroethene Vinyl chloride	330 20	100,000 900	15 U 29 U	3.6 U 7.1 U		3.2 U 6.3 U	2.9 U 5.9 U	3.3 U 6.6 U
viriyi chionde	20	900	29 0	7.1 0	5.5 0	6.3 0	5.9 0	6.6
1,1,1,2-Tetrachloroethane	NS	NS	15 U	3.6 U	2.7 U	3.2 U	2.9 U	3.3 U
1,1,1-Trichloroethane	680	100,000	15 U	3.6 U	2.7 U	3.2 U	2.9 U	3.3 U
1,1,2,2-Tetrachloroethane	NS	NS	15 U	3.6 U		3.2 U	2.9 U	3.3 U
1,1,2-Trichloroethane	NS	NS	22 U	5.4 U		4.7 U	4.4 U	4.9 U
1,1-Dichloroethane	270 NS	26,000 NS	22 U 74 U	5.4 U		4.7 U	4.4 U 15 U	4.9 U
1,1-Dichloropropene 1,2,3-Trichlorobenzene	NS NS	NS	74 U	18 U		16 U	15 U	16 U
1,2,3-Trichloropropane	NS	NS	150 U	36 U		32 U	29 U	33 U
1,2,4,5-Tetramethylbenzene	NS	NS	230	14 U	11 U	13 U	12 U	13 U
1,2,4-Trichlorobenzene	NS	NS	74 U	18 U		16 U	15 U	16 U
1,2,4-Trimethylbenzene	3,600	52,000	74 U	18 U		16 U	15 U	16 U
1,2-Dibromo-3-chloropropane	NS	NS	74 U	18 U		16 U	15 U	16 U
1,2-Dibromoethane 1,2-Dichlorobenzene	NS 1,100	NS 100,000	59 U 74 U	14 U		13 U 16 U	12 U 15 U	13 U
1,2-Dichlorobenzene 1,2-Dichloroethane	20	3,100	74 U	3.6 U		3.2 U	2.9 U	3.3 U
1,2-Dichloropropane	NS	NS	51 U	12 U		11 U	10 U	12 U
1,3,5-Trimethylbenzene	8,400	52,000	74 U	18 U	14 U	16 U	15 U	16 U
1,3-Dichlorobenzene	2,400	49,000	74 U	18 U	14 U	16 U	15 U	16 U
1,3-Dichloropropane	NS	NS	74 U	18 U		16 U	15 U	16 U
1,4-Dichlorobenzene	1,800	13,000	74 U	18 U		16 U	15 U	16 U
1,4-Diethylbenzene 2,2-Dichloropropane	NS NS	NS NS	340 74 U	14 U		13 U 16 U	12 U 15 U	13 U
2-Butanone	120	100,000	150 U	36 U		32 U	29 U	33 U
2-Hexanone	NS	NS	150 U	36 U		32 U	29 U	33 U
4-Ethyltoluene	NS	NS	59 U	14 U	11 U	13 U	12 U	13 U
4-Methyl-2-pentanone	NS	NS	150 U	36 U	27 U	32 U	29 U	33 U
Acetone	50	100,000	320	74	27 U	32 U	29 U	33 U
Acrylonitrile	NS	NS	150 U	36 U		32 U	29 U	33 U
Benzene Bromobenzene	60 NS	4,800 NS	15 U 74 U	3.6 U		3.2 U	2.9 U 15 U	3.3 U
Bromochloromethane	NS NS	NS	74 U	18 U		16 U	15 U	16 U
Bromodichloromethane	NS	NS	15 U	3.6 U		3.2 U	2.9 U	3.3 U
Bromoform	NS	NS	59 U	14 U	11 U	13 U	12 U	13 U
Bromomethane	NS	NS	29 U	7.1 U		6.3 U	5.9 U	6.6 U
Carbon disulfide	NS	NS	150 U	36 U		32 U	29 U	33 U
Carbon tetrachloride Chlorobenzene	760 1,100	2,400	15 U 15 U	3.6 U		3.2 U 3.2 U	2.9 U 2.9 U	3.3 U 3.3 U
Chloroethane	NS	NS	29 U	7.1 U		6.3 U	5.9 U	6.6 U
Chloroform	370	49,000	22 U	5.4 U		4.7 U	4.4 U	4.9 U
Chloromethane	NS	NS	74 U	18 U	14 U	16 U	15 U	16 U
cis-1,3-Dichloropropene	NS	NS	15 U	3.6 U	+	3.2 U	2.9 U	3.3 U
Dibromochloromethane	NS	NS	15 U	3.6 U		3.2 U	2.9 U	3.3 U
Dibromomethane	NS	NS	150 U	36 U		32 U	29 U	33 U
Dichlorodifluoromethane Ethylbenzene	NS 1,000	NS 41,000	150 U	36 U	27 U 2.7 U	32 U 3.2 U	29 U 2.9 U	33 U 3.3 U
Hexachlorobutadiene	NS	41,000 NS	74 U	18 U		16 U	15 U	16 U
Isopropylbenzene	NS	NS	15 U	3.6 U		3.2 U	2.9 U	3.3 U
Methyl tert butyl ether	930	100,000	29 U	7.1 U	5.5 U	6.3 U	5.9 U	6.6 U
Methylene chloride	50	100,000	150 U	36 U		32 U	29 U	33 U
Naphthalene	NS	NS	140	3.6 U		3.2 U	2.9 U	3.3 U
n-Butylbenzene	12,000	NS 100,000	15 U	3.6 U	+	3.2 U 16 U	2.9 U	3.3 U
n-Propylbenzene o-Chlorotoluene	3,900 NS	100,000 NS	370 74 U	18 U		16 U	15 U 15 U	16 U
o-Xylene	260	100,000	29 U	7.1 U		6.3 U	5.9 U	6.6 U
p/m-Xylene	260	100,000	74 U	18 U		16 U	15 U	16 U
p-Chlorotoluene	NS	NS	110	3.6 U		3.2 U	2.9 U	3.3 U
p-Isopropyltoluene	NS	NS	29 U	7.1 U		6.3 U	5.9 U	6.6 U
sec-Butylbenzene	11,000	100,000	57	3.6 U		3.2 U	2.9 U	3.3 U
Styrene	NS F 000	NS	29 U	7.1 U		6.3 U	5.9 U	6.6 U
tert-Butylbenzene Toluene	5,900 700	NS 100.000	74 U 42	18 U 5.4 U		16 U 4.7 U	15 U 4.4 U	16 U 4.9 U
						ļ	ļ	
trans-1,3-Dichloropropene	NS	100,000	15 U	3.6 U	2.7 U	3.2 U	2.9 U	3.3 U
trans-1,3-Dichloropropene Trichlorofluoromethane	NS NS	100,000 NS	15 U 74 U	3.6 U		3.2 U	2.9 U 15 U	3.3 U

Notes: All concentrations are µg/kg (ppb)

¹Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environ

NS - No standard established

Bold text indicates compounds above the laboratory MDL

Green highlighting indicates exceedance of Unrestricted Use SCO

²Resticted-Residential Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, EI

U - Analyte not detected above the laboratory MDL J - Estimated value

SAMPLE ID	Unrestricted	Restricted	PWG-DW-200	08-01	PWG-DW-200	08-02	PWG-DW-20	08-03	PWG-DW-2008	8-04	PWG-DW-2008-	05	PWG-DW-2008	-06	PWG-DW-2008-0	17	PWG-DW-2008-09
LAB SAMPLE ID SAMPLING DATE		Residential SCO ²	L0813344-0		L0813344-0		L0813344- 9/8/2008		L0813344-0 9/8/2008		L0813344-08 9/8/2008		L0813344-09		L0813344-10 9/8/2008		L0813344-12
Sampling date Sample Depth (ft.)			9/8/2008 7.25-7.75		9/8/2008 5.25-5.75		9/8/2008 8.75-9.25		7.25-7.75		9/8/2008 6.75-7.25		9/8/2008 6.75-7.25		6.75-7.25		9/8/2008 6.75-7.25
Semivolatile Organics by EPA 8270C	NC	NC	1.00		0.400		1 700		1 700		1.00		1.400		10.000		0.200
1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene	NS NS	NS NS	1,600 400	U	8,400 2,100	U	1,700 420	U	1,700 430	U		U	1,600 400	U		U U	8,200 U 2,000 U
1,2-Dichlorobenzene	NS	NS	400	U	2,100	U	420	U	430	U		U	400	U		IJ	2,000 U
1,3-Dichlorobenzene 1,4-Dichlorobenzene	NS NS	NS NS	400 400	U	2,100 2,100	U	420 420	U	430 430	U		U	400 400	U		U	2,000 U 2,000 U
2,4,5-Trichlorophenol	NS	NS	400	U	2,100	U	420	U	430	U		U	400	U		U	2,000 U
2,4,6-Trichlorophenol	NS	NS	400	U	2,100	U	420	U	430	U		U	400	U		U	2,000 U
2,4-Dichlorophenol	NS NS	NS NS	790 400	U	4,200 2,100	U	830 420	U	860 430	U		U	790 400	U		U U	4,100 U 2,000 U
2,4-Dimethylphenol 2,4-Dinitrophenol	NS NS	NS NS	1,600	U	8,400	U	1,700	U	1,700	U		U	1,600	U		U	8,200 U
2,4-Dinitrotoluene	NS	NS	400	U	2,100	U	420	U	430	U	390	U	400	U	4,600	U	2,000 U
2,6-Dinitrotoluene	NS	NS	400	U	2,100		420		430	U		:	400	U		U	2,000 U
2-Chloronaphthalene 2-Chlorophenol	NS NS	NS NS	480 480	U	2,500 2.500	U	500 500	U	520 520	U		U	480 480	U		U U	2,500 U 2.500 U
2-Methylnaphthalene	NS	NS	400	U	2,100	U	420	U	430	U		U	400	U		U	2,000 U
2-Methylphenol	NS	NS	480	U	2,500	С	500	С	520	U		Ω.	480	U		U	2,500 U
2-Nitroaniline 2-Nitrophenol	NS NS	NS NS	400 1.600	U	2,100 8,400	U	420 1.700	U	430 1,700	U		U	400 1.600	U		U	2,000 U 8,200 U
3,3'-Dichlorobenzidine	NS	NS	790	U	4,200	U	830	U	860	U		U	790	U		U	4,100 U
3-Methylphenol/4-Methylphenol	NS	NS	480	U	2,500	U	500	U	520	U		U	480	U		U	2,500 U
3-Nitroaniline	NS NS	NS NS	400 1,600	U	2,100 8.400	U	420 1.700	U	430 1,700	U		U	400 1.600	U		U	2,000 U 8,200 U
4,6-Dinitro-o-cresol 4-Bromophenyl phenyl ether	NS NS	NS NS	400	U	2,100	U	1,700	U	430	U		U	400	U		U	2,000 U
4-Chloroaniline	NS	NS	400	U	2,100	U	420	U	430	U	390	U	400	U	4,600	U	2,000 U
4-Chlorophenyl phenyl ether	NS	NS	400	U	2,100	U	420	U	430	U		U	400	U		U	2,000 U
4-Nitroaniline 4-Nitrophenol	NS NS	NS NS	560 790	U	3,000 4,200	U	580 830	U	610 860	U		U	560 790	U		U	2,900 U 4,100 U
Acenaphthene	20000	100000	400	U	2,100	U	420	U	430	U		U	400	U		IJ	2,000 U
Acenaphthylene	100000	100000	400	U	2,100	U	420	U	430	U		U	400	U		U	2,000 U
Acetophenone Anthracene	NS 100000	NS 100000	1,600	U	8,400 2.100	U	1,700 420	U	1,700	U		U	1,600	U		U	8,200 U 2.000 U
Benzo(a)anthracene	1000	1000	400	U	2,100	U	420	U	430	U		U		U		U	2,000 U
Benzo(a)pyrene	1000	1000	400	U	2,100	U	420	U	430	U		U		U		U	2,000 U
Benzo(b)fluoranthene	1000	1000	400 400	U	2,100	U	420 420	U	430	U		U	400 400	U		U	2,000 U 2,000 U
Benzo(ghi)perylene Benzo(k)fluoranthene	800	3900	400	U	2,100	U	420	U	430	U		U	400	U		U	2,000 U
Benzoic Acid	NS	NS	4,000	U	21,000	U	4,200	U	4,300	U		U	4,000	U		U	20,000 U
Benzyl Alcohol	NS	NS	790	U	4,200	U	830	U	860	U		U	790	U		U	4,100 U
Biphenyl Bis(2-chloroethoxy)methane	NS NS	NS NS	400 400	U	2,100 2,100	U	420 420	U	430	U		U	400 400	U		U	2,000 U 2.000 U
Bis(2-chloroethyl)ether	NS	NS	400	U	2,100	U	420	U	430	U		U		U		U	2,000 U
Bis(2-chloroisopropyl)ether	NS	NS	400	U	2,100	U	420	U	430	U		U	400	U		U	2,000 U
Bis(2-Ethylhexyl)phthalate	NS	NS	790	U	4,200	U	830 420	U	860	U		U	790	U		U	4,100 U
Butyl benzyl phthalate Carbazole	NS NS	NS NS	400 400	U	2,100 2,100	U	420	U	430 430	U		U	400 400	U		U	2,000 U 2,000 U
Chrysene	1000	3900	400	U	2,100	U	420	U	430	U		U	400	U		U	2,000 U
Di-n-butylphthalate	NS	NS	400	U	2,100	С	420	С	430	U		Ω.	400	U		U	2,000 U
Di-n-octylphthalate Dibenzo(a,h)anthracene	NS 330	NS 330	400 400	U	2,100 2,100	U	420 420	U	430 430	U		U		U		U U	2,000 U 2,000 U
Dibenzofuran	NS	NS	400	U	2,100	U	420	U	430	U		U	400	U		IJ	2,000 U
Diethyl phthalate	NS	NS	400	U	2,100	U	420	U	430	U		U	400	U		U	2,000 U
Dimethyl phthalate Fluoranthene	NS 100000	NS 100000	400 400	U	2,100 2,100	U	420 420	U	430 430	U		U	400 400	U		U	2,000 U 2,000 U
Fluorene	30000	100000	400	U	2,100	U	420	U	430	U		U	400	U		U	2,000 U
Hexachlorobenzene	NS	NS	400	U	2,100	U	420	U	430	U		U	400	U		U	2,000 U
Hexachlorobutadiene Hovachlorocyclopoptadiono	NS NS	NS NS	790 790	U	4,200 4,200	U	830 830	U	860 860	U		U		U		U	4,100 U 4,100 U
Hexachlorocyclopentadiene Hexachloroethane	NS NS	NS NS	400	U	2,100	U	420	U	430	U		U		U		U	2,000 U
Indeno(1,2,3-cd)Pyrene	500	500	400	U	2,100	U	420	U	430	U	390	U	400	U	4,600	U	2,000 U
Isophorone	NS NC	NS NC	400 400	U	2,100	U	420	U	430 430	U		U	400 400	U		U	2,000 U 2.000 U
n-Nitrosodi-n-propylamine Naphthalene	NS 12000	NS 100000	400	U	2,100 2,100	U	420 420	U	430	U		U	400	U		U	2,000 U 2,000 U
Nitrobenzene	NS	NS	400	U	2,100	U	420	U	430	U	390	U	400	U	4,600	U	2,000 U
NitrosoDiPhenylAmine(NDPA)/DPA	NS NS	NS NC	1,200	U	6,300	U	1,200	U	1,300	U	1,200	U	1,200	U		U	6,200 U
P-Chloro-M-Cresol Pentachlorophenol	NS 800	NS 6700	400 1,600	U	2,100 8,400	U	420 1,700	U	430 1,700	U	390 1,600	U	400 1,600	U		U	2,000 U 8,200 U
Phenanthrene	100000	100000	400	U	2,100	U	420	U	430	U	390	U	400	U	4,600	IJ	2,000 U
Phenol	330	100000	560	U	3,000	U	580	U	610	U		U	560	U		U	2,900 U
Pyrene Semivolatile Organics by EPA 8270C-SI	100000 M	100000	400	U	2,100	U	420	U	430	U	390	U	400	U	4,600	IJ	2,000 U
2-Chloronaphthalene	NS	NS	79	U	840	U	83	U	86	U	78	U	16	U	1,800	U	820 U
2-Methylnaphthalene	NS	NS	79	U	840	U	83	U	86	U	78	U	16	U	1,800	U	820 U
Acenaphthene Acenaphthylene	20000 100000	100000 100000	79 79	U	840 840	U	83 83	U	86 86	U		U		U		U	820 U 820 U
Anthracene	100000	100000	79	U	840	U	83	U	86	U		U		U		U	820 U
Benzo(a)anthracene	1000	1000	79	U	840	U	83	U	86	U	78	U	16	U	1,800	U	820 U
Benzo(a)pyrene	1000	1000	79	U	840	U	83	U	86	U		U	16	U		U	820 U
Benzo(b)fluoranthene Benzo(ghi)perylene	1000	1000 100000	79 79	U	840 840	U	83	U	86 86	U		U	16 16	U		U	820 U 820 U
Benzo(k)fluoranthene	800	3900	79	U	840	U	83	U	86	U		U	16	U		IJ	820 U
Chrysene	1000	3900	79	U	840	U	83	U	86	U		U		U		U	820 U
Dibenzo(a,h)anthracene Fluoranthene	3300 100000	330 100000	79 170	U	840 840	U	83 83	U	86 86	U		U	16 30	U		U	820 U 820 U
Fluorene	30000	100000	79	U	840	U	83	U	86	U		U	16	U		U	820 U
Hexachlorobenzene	NS	NS	320	U	3,400	U	330	U	350	U	310	U	63	U	7,300	U	3,300 U
Hexachlorobutadiene	NS NC	NS NC	200	U	2,100	= _	210	= =	220	U		= =	40	U		U	2,000 U
Hexachloroethane Indeno(1,2,3-cd)Pyrene	NS 500	NS 500	320 79	U	3,400 840	U	330 83	U	350 86	U		U	63 16	U		U	3,300 U 820 U
Naphthalene	12000	100000	79	U	840	U	83	U	86	U		U		U		U	820 U
Pentachlorophenol	800	6700	320	U	3,400	U	330	U	350	U		U		U		U	3,300 U
Phenanthrene Pyrene	100000	100000	79 170	U	840 840	U	83	U	86 86	U		U	16 32	U		U	820 U 820 U
. ,	100000	100000	.70		540	U	- 33	U	J0	U	,,,	v	- J.		1,000	- 1	U20 U

Notes:
All concentrations are µg/kg (ppb)

**Unrestriced Use Solf Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006

**Unrestriced Use Solf Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006

**Unrestriced Residential Solf Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006

**Unrestriced Residential Remediation Programs, December 2006

**Unrestricted Residential Remediation Programs, Decemb

SAMPLE ID	Unrestricted	Restricted	PWG-DW-200	08-10	PWG-DW-200	08-11	PWG-DW-200	8-12	PWG-DW-2008-1	8 PWG-DW-2008	3-14	PWG-DW-2008-1	5 PWG-DW-2008-1	6 PWG-DW-2008-17
LAB SAMPLE ID	sco'	Residential					L0813344-1							L0813344-22
Sampling date Sample Depth (ft.)			9/8/2008 6.25-6.75		9/8/2008 6.75-7.25		9/8/2008 7.25-7.75		9/8/2008 7.25-7.75	9/8/2008 6-6.5		9/8/2008 7-7.5	9/8/2008 5.5-6	9/8/2008 5.5-6
Semivolatile Organics by EPA 8270C														
1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene	NS NS	NS NS	9,400 2.300	U	1,700 420	U	1,600 400	U	1,600 L 390 L		U		J 1,600 L J 390 L	
1,2-Dichlorobenzene	NS	NS	2,300	U	420	U	400	U	390 L		U		J 390 L	
1,3-Dichlorobenzene	NS	NS	2,300	U	420	U	400	U	390 L		U		J 390 L	
1,4-Dichlorobenzene 2.4.5-Trichlorophenol	NS NS	NS NS	2,300	U	420 420	U	400 400	U	390 L		U		J 390 L	
2,4,6-Trichlorophenol	NS	NS	2,300	U	420	U	400	U	390 L		U		J 390 L	
2,4-Dichlorophenol	NS	NS	4,700	U	830	U	800	U	780 L		U		J 780 L	
2,4-Dimethylphenol 2,4-Dinitrophenol	NS NS	NS NS	2,300 9.400	U	420 1.700	U	400 1.600	U	390 L 1.600 L		U		J 390 L J 1.600 L	
2,4-Dinitrophenoi 2,4-Dinitrotoluene	NS NS	NS NS	2.300	U	420	U	400	U	390 L		U		J 390 L	
2,6-Dinitrotoluene	NS	NS	2,300	U	420	U	400	U	390 L		U		J 390 L	
2-Chloronaphthalene	NS	NS	2,800	U	500	U	480	U	460 L		U		J 460 l	
2-Chlorophenol	NS NS	NS NS	2,800	U	500 420	U	480 400	U	460 L 390 L		U		J 460 L J 390 L	
2-Methylnaphthalene 2-Methylphenol	NS NS	NS NS	2,800	U	500	U	480	U	460 L		U		U 460 L	
2-Nitroaniline	NS	NS	2,300	U	420	U	400	U	390 L	970	U	400	J 390 L	J 810 U
2-Nitrophenol	NS	NS	9,400	U	1,700	U	1,600	U	1,600 L		U		J 1,600 L	
3,3'-Dichlorobenzidine 3-Methylphenol/4-Methylphenol	NS NS	NS NS	4,700 2,800	U	830 500	U	800 480	U	780 L 460 L		U		U 780 L	
3-Nitroaniline	NS	NS	2,300	U	420	U	400	U	390 L		U		J 390 L	
4,6-Dinitro-o-cresol	NS	NS	9,400	U	1,700	U	1,600	U	1,600 U	3,900	U		J 1,600 L	J 3,200 U
4-Bromophenyl phenyl ether	NS	NS	2,300	U	420	U	400	U	390 L		U		J 390 L	
4-Chloroaniline 4-Chlorophenyl phenyl ether	NS NS	NS NS	2,300	U	420 420	U	400 400	U	390 L		U		J 390 L	
4-Oniorophenyi phenyi ether 4-Nitroaniline	NS NS	NS NS	3,300	U	580	U	560	U	540 L		U		U 540 L	
4-Nitrophenol	NS	NS	4,700	U	830	U	800	U	780 L	1,900	U	790	J 780 L	J 1,600 U
Acenaphthene	20000	100000	2,300	U	420	U	400	U	390 L		U		J 390 L	
Acenaphthylene Acetophenone	100000 NS	100000 NS	2,300 9,400	U	420 1,700	U	400 1,600	U	390 L 1,600 L		U		JJ 390 L JJ 1,600 L	
Anthracene	100000	100000	2,300	U	420	U	400	U	390 L		U		J 390 L	
Benzo(a)anthracene	1000	1000	2,300	U	420	U	400	U	390 L		U		J 390 L	
Benzo(a)pyrene	1000	1000	2,300	U	420	U	400 400	U	390 L		U		J 390 L	
Benzo(b)fluoranthene Benzo(ghi)perylene	1000	1000	2,300	U	420 420	U	400	U	390 L		U		J 390 L	
Benzo(k)fluoranthene	800	3900	2,300	U	420	U	400	U	390 L		U		J 390 L	
Benzoic Acid	NS	NS	23,000	U	4,200	U	4,000	U	3,900 L		U		J 3,900 l	
Benzyl Alcohol	NS NS	NS NS	4,700 2.300	U	830 420	U	800 400	U	780 L		U		J 780 L J 390 L	
Biphenyl Bis(2-chloroethoxy)methane	NS NS	NS NS	2,300	U	420	U	400	U	390 L		U		J 390 L	
Bis(2-chloroethyl)ether	NS	NS	2,300	U	420	U	400	U	390 L		U		J 390 L	
Bis(2-chloroisopropyl)ether	NS	NS	2,300	U	420	U	400	U	390 L		U		J 390 L	
Bis(2-Ethylhexyl)phthalate	NS NS	NS NS	4,700 2.300	U	830 420	U	800 400	U	780 L		U		J 780 L J 390 L	
Butyl benzyl phthalate Carbazole	NS NS	NS NS	2,300	U	420	U	400	U	390 L		U		J 390 L	
Chrysene	1000	3900	2,300	U	420	U	400	U	390 L		U		J 390 L	
Di-n-butylphthalate	NS	NS	2,300	U	420	П	400	U	390 L		U		J 390 L	
Di-n-octylphthalate Dibenzo(a,h)anthracene	NS 330	NS 330	2,300 2,300	U	420 420	U	400 400	U	390 L		U		J 390 L	
Dibenzofuran	NS NS	NS NS	2,300	U	420	U	400	U	390 L		U		J 390 L	
Diethyl phthalate	NS	NS	2,300	U	420	U	400	U	390 L	970	U		J 390 L	J 810 U
Dimethyl phthalate	NS	NS	2,300	U	420		400	U	390 L		U		J 390 L	
Fluoranthene Fluorene	100000 30000	100000 100000	2,300 2,300	U	420 420	U	400 400	U	390 L		U		J 390 L	
Hexachlorobenzene	NS	NS	2,300	U	420	U	400	U	390 L		U		J 390 L	
Hexachlorobutadiene	NS	NS	4,700	U	830	U	800	U	780 L		U	790	J 780 L	
Hexachlorocyclopentadiene	NS	NS	4,700	U	830	U	800	U	780 L		U		J 780 L	
Hexachloroethane Indeno(1,2,3-cd)Pyrene	NS 500	NS 500	2,300 2,300	U	420 420	U	400 400	U	390 L		U		J 390 L	
Isophorone	NS	NS	2,300	U	420	U	400	U	390 L		U		JJ 390 L	
n-Nitrosodi-n-propylamine	NS	NS	2,300	U	420	U	400	U	390 L		U		J 390 L	
Naphthalene	12000	100000	2,300	U	420	U	400	U	390 L		U		J 390 L	
Nitrobenzene NitrosoDiPhenylAmine(NDPA)/DPA	NS NS	NS NS	2,300 7,000	U	420 1,200	U	400 1,200	U	390 L 1,200 L		U		J 390 L J 1,200 L	
P-Chloro-M-Cresol	NS	NS	2,300	U	420	U	400	U	390 L		U		J 390 U	
Pentachlorophenol	800	6700	9,400	U	1,700	U	1,600	U	1,600 L		U		J 1,600 l	
Phenanthrene Phenol	100000 330	100000 100000	2,300 3,300	U	420 580	U	400 560	U	390 L 540 L		U		J 390 L J 540 L	
Phenol Pyrene	100000	100000	3,300 2,300	U	580 420	U	560 400	U	540 L 390 L		U		J 540 L J 390 L	
Semivolatile Organics by EPA 8270C-SI			2,230	Ť		-		Ť	,,,,		Ĭ			
2-Chloronaphthalene	NS	NS	190	U	33	U	32	U	16 L		U		U 78 L	
2-Methylnaphthalene	NS 20000	NS 100000	190	U	33	U	32	U	16 L		U		J 78 L	
Acenaphthene Acenaphthylene	20000 100000	100000 100000	190 190	U	33	U	32 32	U	16 L		U		J 78 L	
Anthracene	100000	100000	190	U	33	U	32	U	16 L		U		J 78 L	
Benzo(a)anthracene	1000	1000	190	U	33	U	32	U	16 L		U		J 78 L	
Benzo(a)pyrene Benzo(b)fluoranthene	1000 1000	1000	190 190	U	33 33	U	32 32	U	16 L		U		U 78 L	
Benzo(b)fluoranthene Benzo(ghi)perylene	10000	10000	190	U	33	U	32	U	16 L		U		J 78 L	
Benzo(k)fluoranthene	800	3900	190	U	33	U	32	U	16 L		U	79	J 78 L	J 810 U
Chrysene	1000	3900	190	U	33	U	32	U	16 L		U		J 78 L	
Dibenzo(a,h)anthracene Fluoranthene	3300 100000	330 100000	190 190	U	33	U	32 64	U	16 L	970 970	U		JJ 78 L	810 U
Fluorantnene	30000	100000	190	U	33	U	32	U	32 16 U		U		JJ 160 J 78 L	
Hexachlorobenzene	NS	NS	750	U	130	U	130	U	62 L		U		J 310 L	
Hexachlorobutadiene	NS	NS	470	U	83	U	80	U	39 L		U		J 190 L	
Hexachloroethane	NS 500	NS 500	750	U	130	= =	130	U	62 L 16 L		U		J 310 L	
Indeno(1,2,3-cd)Pyrene Naphthalene	500 12000	100000	190 190	U	33 33	U	32 32	U	16 L		U		J 78 L	
Pentachlorophenol	800	6700	750	U	130	U	130	U	62 L		U		J 310 L	
Phenanthrene	100000	100000	190	U	33	U	32	U	16 L		U		J 78 L	
Pyrene	100000	100000	190	U	33	U	67		33	970	U	79	JJ 160	810 U

Notes:
All concentrations are µg/kg (ppb)
'Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Envir
'Restlicted-Residential Soil Cleanup Objectives (SCO) 6 NYCRR Part 375
U - Analyte not detected above the laboratory MDL
J - Estimated value
NS - No standard established
Bold text indicates compounds above the laboratory MDL
Green highlighting indicates exceedance of Unrestricted Use SCO
Yellow highlighting indicates exceedance of Restricted Residential SCC

SAMPLE ID	Unrestricted	Restricted	PWG-DW-200	08-18	PWG-DW-200	8-19	PWG-DW-200	08-20	PWG-DW-200	8-22	PWG-DW-200	8-23	PWG-DW-20	08-24	PWG-DW-200	8-25	PWG-DW-2008-26
LAB SAMPLE ID		Residential	L0813344-2		L0813344-2				L0813344-2		L0813344-2		L0813344-		L0813344-2		L0813344-30
Sampling date Sample Depth (ft.)			9/8/2008 4-4.5		9/8/2008 4.5-5		9/8/2008 4.5-5		9/8/2008 5.25-5.75		9/8/2008 3-3.5		9/8/2008 6-6.5	3	9/8/2008 5.75-6.25		9/8/2008 4.25-4.75
Semivolatile Organics by EPA 8270C			4 4.5		4.5 5		4.5 0		0.25 0.75		5 5.5						
1,2,4,5-Tetrachlorobenzene	NS	NS	3,400	U	3,200	U	19,000	U	1,500	U	8,400	U	1,800	U	1,700	U	7,900 U
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene	NS NS	NS NS	850 850	U	790 790	U	4,700 4,700	U	380 380	U	2,100 2.100	U	440 440	U	420 420	U	2,000 U
1,3-Dichlorobenzene	NS NS	NS	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
1,4-Dichlorobenzene	NS	NS	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
2,4,5-Trichlorophenol	NS	NS	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
2,4,6-Trichlorophenol	NS	NS	850	U	790	U	4,700	U	380 770	U	2,100	U	440 890	U	420 830	U	2,000 U
2,4-Dichlorophenol 2.4-Dimethylphenol	NS NS	NS NS	1,700 850	U	1,600 790	U	9,400 4,700	U	380	U	4,200 2.100	U	440	U	420	U	4,000 U
2,4-Dinitrophenol	NS	NS	3,400	U	3,200	U	19,000	U	1,500	U	8,400	U	1,800	U	1,700	U	7,900 U
2,4-Dinitrotoluene	NS	NS	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
2,6-Dinitrotoluene	NS	NS	850	U	790	П	4,700	С	380	U	2,100	U	440	U	420	U	2,000 U
2-Chloronaphthalene	NS	NS NS	1,000	U	950 950	U	5,600 5.600	U	460 460	U	2,500 2.500	U	530 530	U	500 500	U	2,400 U
2-Chlorophenol 2-Methylnaphthalene	NS NS	NS NS	1,000 850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,400 U
2-Methylphenol	NS	NS	1,000	U	950	U	5,600	U	460	U	2,500	U	530	U	500	U	2,400 U
2-Nitroaniline	NS	NS	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
2-Nitrophenol	NS	NS	3,400	U	3,200	U	19,000	U	1,500	U	8,400	U	1,800	U	1,700	U	7,900 U
3,3'-Dichlorobenzidine	NS NS	NS NS	1,700	U	1,600 950	U	9,400 5.600	U	770 460	U	4,200 2,500	U	890 530	U	830 500	U	4,000 U
3-Methylphenol/4-Methylphenol 3-Nitroaniline	NS NS	NS NS	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,400 U
4,6-Dinitro-o-cresol	NS NS	NS	3,400	U	3,200	U	19,000	U	1,500	U	8,400	U	1,800	U	1,700	U	7,900 U
4-Bromophenyl phenyl ether	NS	NS	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
4-Chloroaniline	NS	NS	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
4-Chlorophenyl phenyl ether	NS	NS	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
4-Nitroaniline 4-Nitrophenol	NS NS	NS NS	1,200	U	1,100	U	6,600 9,400	U	540 770	U	3,000 4,200	U	620 890	U	580 830	U	2,800 U
4-Nitrophenol Acenaphthene	NS 20000	NS 100000	1,700 850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
Acenaphthylene	100000	100000	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
Acetophenone	NS	NS	3,400	U	3,200	U	19,000	U	1,500	U	8,400	U	1,800	U	1,700	U	7,900 U
Anthracene	100000	100000	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
Benzo(a)anthracene Benzo(a)pyrene	1000	1000	850 850	U	790 790	U	4,700	U	380 380	U	2,100	U	440 440	U	420	U	2,000 U
Benzo(a)pyrene Benzo(b)fluoranthene	1000	1000	850 850	U	790	U	4,700 4,700	U	380	U	2,100 2,100	U	440	U	420 420	U	2,000 U
Benzo(ghi)perylene	100000	100000	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
Benzo(k)fluoranthene	800	3900	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
Benzoic Acid	NS	NS	8,500	U	7,900	U	47,000	U	3,800	U	21,000	U	4,400	U	4,200	U	20,000 U
Benzyl Alcohol	NS	NS	1,700	U	1,600	U	9,400	U	770	U	4,200	U	890	U	830	U	4,000 U
Biphenyl Bis(2-chloroethoxy)methane	NS NS	NS NS	850 850	U	790 790	U	4,700 4,700	U	380 380	U	2,100 2,100	U	440 440	U	420 420	U	2,000 U
Bis(2-chloroethyl)ether	NS NS	NS	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
Bis(2-chloroisopropyl)ether	NS	NS	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
Bis(2-Ethylhexyl)phthalate	NS	NS	1,700	U	1,600	U	12,000		770	U	4,200	U	890	U	830	U	4,000 U
Butyl benzyl phthalate	NS	NS	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
Carbazole Chrysene	NS 1000	NS 3900	850 850	U	790 790	U	4,700 4,700	U	380 380	U	2,100 2,100	U	440 440	U	420 420	U	2,000 U
Di-n-butylphthalate	NS	NS NS	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
Di-n-octylphthalate	NS	NS	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
Dibenzo(a,h)anthracene	330	330	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
Dibenzofuran	NS	NS	850	U	790	С	4,700		380	U	2,100	U	440	U	420		2,000 U
Diethyl phthalate	NS NS	NS NS	850 850	U	790 790	U	4,700 4,700	U	380 380	U	2,100 2.100	U	440 440	U	420 420	U	2,000 U
Dimethyl phthalate Fluoranthene	100000	100000	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
Fluorene	30000	100000	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
Hexachlorobenzene	NS	NS	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
Hexachlorobutadiene	NS	NS	1,700	U	1,600	П	9,400	С	770	U	4,200	U	890	U	830	U	4,000 U
Hexachlorocyclopentadiene	NS	NS	1,700 850	U	1,600 790	U	9,400	U	770 380	U	4,200	U	890 440	U	830	U	4,000 U
Hexachloroethane Indeno(1,2,3-cd)Pyrene	NS 500	NS 500	850 850	U	790	U	4,700	U	380	U	2,100 2.100	U	440	U	420 420	U	2,000 U
Isophorone	NS	NS	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
n-Nitrosodi-n-propylamine	NS	NS	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
Naphthalene	12000	100000	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
Nitrobenzene	NS NS	NS NS	850 2,600	U	790 2 400	U	4,700 14.000	U	380 1.100	U	2,100	U	1.300	U	420 1.200	U	2,000 U
NitrosoDiPhenylAmine(NDPA)/DPA P-Chloro-M-Cresol	NS NS	NS NS	2,600 850	U	790	U	4,700	U	380	U	6,300 2,100	U	1,300	U	1,200 420	U	2,000 U
Pentachlorophenol	800	6700	3,400	U	3,200	U	19,000	U	1,500	U	8,400	U	1,800	U	1,700	U	7,900 U
Phenanthrene	100000	100000	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
Phenol	330	100000	1,200	U	1,100	U	6,600	U	540	U	3,000	U	620	U	580	U	2,800 U
Pyrene Seminaletile Organies by EDA 9370C SI	100000	100000	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
Semivolatile Organics by EPA 8270C-SI 2. Chloropaphthalopo	NS NS	NS	850	U	16	U	1.900	U	31	U	840	U	89	U	17	U	790 U
2-Chloronaphthalene 2-Methylnaphthalene	NS NS	NS NS	850	U	16	U	1,900	U	31	U	840	U	89	U	17	U	790 U
Acenaphthene	20000	100000	850	U	16	U	1,900	U	31	U	840	U	89	U	17	U	790 U
Acenaphthylene	100000	100000	850	U	16	U	1,900	U	31	U	840	U	89	U	17	U	790 U
Anthracene	100000	100000	850	U	16	U	1,900	= =	31	U	840	U	89	U	17	= =	790 U
Benzo(a)anthracene Benzo(a)pyrene	1000	1000	850 850	U	18 36		1,900	c c	31 31	U	840 840	U	89 89	U	17 17	U	790 U
Benzo(a)pyrene Benzo(b)fluoranthene	1000	1000	850	U	36		1,900	U	31	U	840	U	89	U	17	U	790 U
Benzo(ghi)perylene	100000	100000	850	U	16	U	1,900	U	31	U	840	U	89	U	17	U	790 U
Benzo(k)fluoranthene	800	3900	850	U	34		1,900	U	31	U	840	U	89	U	17	U	790 U
Chrysene	1000	3900	850	U	16		1,900	U	31	U	840	U	89	U	17	U	790 U
Dibenzo(a,h)anthracene	3300	330	850	U	16	С	1,900	: =	31	U	840	U	89	U	17	: =	790 U
Fluoranthene Fluorene	100000 30000	100000	850 850	U	53 16	U	1,900	U	31 31	U	840 840	U	170 89	U	17 17	U	790 U
Hexachlorobenzene	30000 NS	NS	3,400	U	63	U	7,500	U	120	U	3,400	U	360	U	67	U	3,200 U
Hexachlorobutadiene	NS	NS	2,100	U	40	U	4,700	U	77	U	2,100	U	220	U	42	U	2,000 U
Hexachloroethane	NS	NS	3,400	U	63	U	7,500	U	120	U	3,400	U	360	U	67	U	3,200 U
Indeno(1,2,3-cd)Pyrene	500	500	850	U	16	U	1,900	U	31	U	840	U	89	U	17	U	790 U
Naphthalene	12000	100000	850	U	16	U	1,900	U	31	U	840	U	89	U	17	U	790 U
	000																
Pentachlorophenol Phenanthrene	800 100000	6700 100000	3,400 850	U	63 16	U	7,500 1,900	U	120 31	U	3,400 840	U	360 89	U	67 17	U	3,200 U

Notes:
All concentrations are µg/kg (ppb)
'Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Envir
'Restlicted-Residential Soil Cleanup Objectives (SCO) 6 NYCRR Part 375
U - Analyte not detected above the laboratory MDL
J - Estimated value
NS - No standard established
Bold text indicates compounds above the laboratory MDL
Green highlighting indicates exceedance of Unrestricted Use SCO
Yellow highlighting indicates exceedance of Restricted Residential SCC

SAMPLE ID	Unrestricted	Restricted	PWG-DW-200	08-27	PWG-DW-200	18-28	PWG-DW-200	08-29	PWG-DW-2008-3	30	PWG-DW-2008-31	PWG-DW-2008-3	3 PWG-DW-2008-34	PWG-DW-2008-37
LAB SAMPLE ID	sco'	Residential												
Sampling date Sample Depth (ft.)			9/10/2008 12.5-13		9/10/2008 12-12.5		9/10/200 10-10.5		9/10/2008 8.5-9		9/10/2008 8-8.5	9/10/2008 7-7.5	9/10/2008 5.5-6	9/10/2008 11-11.5
Semivolatile Organics by EPA 8270C														
1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene	NS NS	NS NS	1,700 430	U	2,000 490	U	1,800 440	U		U	20,000 U 4.900 U	29,000 U 7,200 U		120,000 U 31,000 U
1,2-Dichlorobenzene	NS	NS	430	U	490	U	440	U		U	4,900 U	7,200 U		31,000 U
1,3-Dichlorobenzene	NS	NS	430	U	490	U	440	U		U	4,900 U	7,200 U		31,000 U
1,4-Dichlorobenzene 2,4,5-Trichlorophenol	NS NS	NS NS	430 430	U	490 490	U	440 440	U		U	4,900 U 4,900 U	7,200 L		31,000 U 31,000 U
2,4,6-Trichlorophenol	NS	NS	430	U	490	U	440	U		U	4,900 U	7,200 U		31,000 U
2,4-Dichlorophenol	NS	NS	850	U	980	U	880	U		U	9,800 U	14,000 L		62,000 U
2,4-Dimethylphenol	NS NS	NS NS	430 1.700	U	490 2.000	U	1.800	U		U	4,900 U 20.000 U	7,200 L 29,000 L		31,000 U 120.000 U
2,4-Dinitrophenol 2,4-Dinitrotoluene	NS NS	NS NS	430	U	490	U	440	U		U	4,900 U	7,200 L		31,000 U
2,6-Dinitrotoluene	NS	NS	430	U	490	U	440	U	10,000	U	4,900 U	7,200 U		31,000 U
2-Chloronaphthalene	NS	NS	510	U	590	U	530	U		U	5,900 U	8,700 L		37,000 U
2-Chlorophenol 2-Methylnaphthalene	NS NS	NS NS	510 430	U	590 490	U	530 440	U		U	5,900 U 4.900 U	8,700 L 7,200 L		37,000 U 31,000 U
2-Methylphenol	NS	NS	510	U	590	U	530	U		U	5,900 U	8,700 U		37,000 U
2-Nitroaniline	NS	NS	430	U	490	U	440	U		U	4,900 U	7,200 l		31,000 U
2-Nitrophenol	NS	NS	1,700	U	2,000	U	1,800	U		U	20,000 U	29,000 L		120,000 U
3,3'-Dichlorobenzidine 3-Methylphenol/4-Methylphenol	NS NS	NS NS	850 510	U	980 590	U	880 530	U		U	9,800 U 5,900 U	14,000 L 8,700 L		62,000 U 37,000 U
3-Nitroaniline	NS	NS	430	U	490	U	440	U		U	4,900 U	7,200 L		31,000 U
4,6-Dinitro-o-cresol	NS	NS	1,700	U	2,000	U	1,800	U		U	20,000 U	29,000 l		120,000 U
4-Bromophenyl phenyl ether 4-Chloroaniline	NS NS	NS NS	430 430	U	490 490	U	440 440	U		U	4,900 U 4,900 U	7,200 L 7,200 L		31,000 U 31,000 U
4-Chlorophenyl phenyl ether	NS NS	NS NS	430	U	490	U	440	U		U	4,900 U	7,200 U		31,000 U
4-Nitroaniline	NS	NS	600	U	690	U	610	U		U	6,900 U	10,000 L		43,000 U
4-Nitrophenol	NS	NS 100000	850	U	980	U	880	U		U	9,800 U	14,000 U		62,000 U
Acenaphthene Acenaphthylene	20000 100000	100000 100000	430 430	U	490 490	U	440 440	U		U	4,900 U 4,900 U	7,200 L 7,200 L		31,000 U 31,000 U
Acetophenone	NS	NS	1,700	U	2,000	U	1,800	U		U	20,000 U	29,000 U		120,000 U
Anthracene	100000	100000	430	U	490	U	440	U	10,000	U	4,900 U	7,200 L	J 7,600 U	31,000 U
Benzo(a)anthracene	1000	1000	430	U	490		440	U		U	4,900 U	7,200 L		31,000 U
Benzo(a)pyrene Benzo(b)fluoranthene	1000	1000	430 430	U	490 490	U	440 440	U		U	4,900 U 4,900 U	7,200 U		31,000 U 31,000 U
Benzo(ghi)perylene	100000	100000	430	U	490	U	440	U		U	4,900 U	7,200 U		31,000 U
Benzo(k)fluoranthene	800	3900	430	U	490	U	440	U		U	4,900 U	7,200 l		31,000 U
Benzoic Acid	NS	NS	4,300	U	4,900	U	4,400	U		U	49,000 U	72,000 U		310,000 U
Benzyl Alcohol Biphenyl	NS NS	NS NS	850 430	U	980 490	U	880 440	U		U	9,800 U 4.900 U	14,000 U		62,000 U 31,000 U
Bis(2-chloroethoxy)methane	NS	NS	430	U	490	U	440	U		U	4,900 U	7,200 L		31,000 U
Bis(2-chloroethyl)ether	NS	NS	430	U	490	U	440	U		U	4,900 U	7,200 l		31,000 U
Bis(2-chloroisopropyl)ether	NS NS	NS NS	430 850	U	490 980	U	440 880	U	10,000 23.000	U	4,900 U 9,800 U	7,200 L 19.000	7,600 U 15,000 U	31,000 U 62,000 U
Bis(2-Ethylhexyl)phthalate Butyl benzyl phthalate	NS NS	NS NS	430	U	490	U	440	U		U	4.900 U	7,200 L		31,000 U
Carbazole	NS	NS	430	U	490	U	440	U		U	4,900 U	7,200 L		31,000 U
Chrysene	1000	3900	430	U	490	U	440	U		U	4,900 U	7,200 l		31,000 U
Di-n-butylphthalate	NS NC	NS NC	430 430	U	490	U	440 440	U		U	4,900 U 4,900 U	7,200 L 7,200 L		31,000 U
Di-n-octylphthalate Dibenzo(a,h)anthracene	NS 330	NS 330	430	U	490 490	U	440	U		U	4,900 U 4,900 U	7,200 L 7,200 L		31,000 U 31,000 U
Dibenzofuran	NS	NS	430	U	490	U	440	U		U	4,900 U	7,200 L		31,000 U
Diethyl phthalate	NS	NS	430	U	490	U	440	U		U	4,900 U	7,200 L		31,000 U
Dimethyl phthalate Fluoranthene	NS 100000	NS 100000	430 430	U	490 490	U	440 440	U		U	4,900 U 4,900 U	7,200 L 7,200 L		31,000 U 31,000 U
Fluorene	30000	100000	430	U	490	U	440	U		U	4,900 U	7,200 U		31,000 U
Hexachlorobenzene	NS	NS	430	U	490	U	440	U		U	4,900 U	7,200 l		31,000 U
Hexachlorobutadiene	NS	NS	850	U	980	U	880	U		U	9,800 U	14,000 U		62,000 U
Hexachlorocyclopentadiene Hexachloroethane	NS NS	NS NS	850 430	U	980 490	U	880 440	U		U	9,800 U 4,900 U	7,200 L		62,000 U 31,000 U
Indeno(1,2,3-cd)Pyrene	500	500	430	U	490	U	440	U		U	4,900 U	7,200 U		31,000 U
Isophorone	NS	NS	430	U	490	U	440	U		U	4,900 U	7,200 L		31,000 U
n-Nitrosodi-n-propylamine Naphthalene	NS 12000	NS 100000	430 430	U	490 490	U	440 440	U		U	4,900 U 4,900 U	7,200 U		31,000 U 31,000 U
Nitrobenzene	NS	NS	430	U	490	U	440	U		U	4,900 U	7,200 U		31,000 U
NitrosoDiPhenylAmine(NDPA)/DPA	NS	NS	1,300	U	1,500	U	1,300	U		U	15,000 U	22,000 U		92,000 U
P-Chloro-M-Cresol	NS	NS	430	U	490	U	440	U	,	U	4,900 U	7,200 L		31,000 U
Pentachlorophenol Phenanthrene	800 100000	6700 100000	1,700 430	U	2,000 490	U	1,800 440	U		U	20,000 U 4,900 U	29,000 U		120,000 U 31,000 U
Phenol	330	100000	600	U	690	U	610	U		U	6,900 U	10,000 U		43,000 U
Pyrene	100000	100000	430	U	490	U	440	U		U	4,900 U	7,200 L		31,000 U
Semivolatile Organics by EPA 8270C-SI		A-0							0.700		2.005	1.000	2.000	2.505
2-Chloronaphthalene 2-Methylnaphthalene	NS NS	NS NS	17 17	U	98 98	U	88 88	U		U	2,000 U 2,000 U	1,900 L 1,900 L		2,500 U 2,500 U
Acenaphthene	20000	100000	17	U	98	U	88	U		U	2,000 U	1,900 U		
Acenaphthylene	100000	100000	17	U	98	U	88	U	2,700	U	2,000 U	1,900 l	J 2,000 U	2,500 U
Anthracene	100000	100000	17	U	98	= =	88	U		U	2,000 U	1,900 U		2,500 U
Benzo(a)anthracene Benzo(a)pyrene	1000	1000	17 17	U	98 210	U	88	U	2,700 5,400	U	2,000 U 2.000 U	1,900 L		2,500 U 2,500 U
Benzo(b)fluoranthene	1000	1000	17	U	180		88	U	5,000		2,000 U	1,900 U		2,500 U
Benzo(ghi)perylene	100000	100000	17	U	98	U	88	U	5,900		2,000 U	1,900 l	J 2,000 U	2,500 U
Benzo(k)fluoranthene	800	3900	17	U	180		88	U	4,900		2,000 U	1,900 L		2,500 U
Chrysene Dibenzo(a,h)anthracene	1000 3300	3900 330	17 17	U	98 98	U	88 88	U		U	2,000 U 2,000 U	1,900 L 1,900 L		2,500 U 2,500 U
Fluoranthene	100000	100000	17	U	220	0	88	U	6,700	~	3,900	1,900 U		4,800
Fluorene	30000	100000	17	U	98	U	88	U	2,700	U	2,000 U	1,900 L	J 2,000 U	2,500 U
Hexachlorobenzene	NS NC	NS NC	68	U	390	U	350	U		U	7,800 U	7,700 L		9,900 U
Hexachlorobutadiene Hexachloroethane	NS NS	NS NS	43 68	U	240 390	U	220 350	U		U	4,900 U 7,800 U	4,800 L 7,700 L		6,200 U 9,900 U
Indeno(1,2,3-cd)Pyrene	500	500	17	U	98	U	88	U		U	2,000 U	1,900 L		2,500 U
Naphthalene	12000	100000	17	U	98	U	88	U	2,700	U	2,000 U	1,900 L	J 2,000 U	2,500 U
Pentachlorophenol	800	6700	68	U	390	U	350	U		U	7,800 U	7,700 L		9,900 U
Phenanthrene Pyrene	100000	100000	17 17	U	98 240	U	88	U	2,700 6,500	U	2,000 U 4,100	1,900 L 1,900 L		2,500 U 5,000
. ,	.00000	100000		U	240		30	U	0,000		4,100	1,700	2,000 0	5,550

Notes:
All concentrations are µg/kg (ppb)
'Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Envir
'Restlicted-Residential Soil Cleanup Objectives (SCO) 6 NYCRR Part 375
U - Analyte not detected above the laboratory MDL
J - Estimated value
NS - No standard established
Bold text indicates compounds above the laboratory MDL
Green highlighting indicates exceedance of Unrestricted Use SCO
Yellow highlighting indicates exceedance of Restricted Residential SCC

011101510			D. 110 D. 11 D. 110 D.		D.110 D.11 0000 10	0110 0111 0000 11	01110 10 0000 00	01110 10 0000 00
SAMPLE ID LAB SAMPLE ID	Unrestricted SCO ¹	Restricted Residential	PWG-DW-2008-38 L0813447-11	PWG-DW-2008-39 L0813447-12	PWG-DW-2008-40 L0813447-13	PWG-DW-2008-41 L0813447-14	PWG-LP-2008-01 L0813344-20	PWG-LP-2008-01 10/3/2008
Sampling date			9/10/2008	9/10/2008	9/10/2008	9/10/2008	9/8/2008	L0814755-01
SAMPLE DEPTH (ft.) Semivolatile Organics by EPA 8270C			7-7.5	8.5-9	6-6.5	9-9.5	7.75-8.25	9-11
1,2,4,5-Tetrachlorobenzene	NS	NS	29,000 U	28,000 U	7,300 U	1,700 U	1,600 U	1,800 U
1,2,4-Trichlorobenzene	NS	NS	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
1,2-Dichlorobenzene 1,3-Dichlorobenzene	NS NS	NS NS	7,400 U 7,400 U	7,100 U 7,100 U	1,800 U 1,800 U	420 U 420 U	390 U	440 U
1,4-Dichlorobenzene	NS NS	NS NS	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
2,4,5-Trichlorophenol	NS	NS	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
2,4,6-Trichlorophenol	NS	NS	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
2,4-Dichlorophenol 2,4-Dimethylphenol	NS NS	NS NS	15,000 U 7.400 U	14,000 U 7.100 U	3,700 U 1.800 U	840 U 420 U	780 U 390 U	880 U 440 U
2,4-Dinitrophenol	NS	NS	29,000 U	28,000 U	7,300 U	1,700 U	1,600 U	1,800 U
2,4-Dinitrotoluene	NS	NS	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
2,6-Dinitrotoluene	NS	NS	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
2-Chloronaphthalene 2-Chlorophenol	NS NS	NS NS	8,800 U 8,800 U	8,600 U 8,600 U	2,200 U 2,200 U	510 U 510 U	470 U 470 U	530 U
2-Methylnaphthalene	NS	NS	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
2-Methylphenol	NS	NS	8,800 U	8,600 U	2,200 U	510 U	470 U	530 U
2-Nitroaniline	NS	NS	7,400 U 29.000 U	7,100 U 28.000 U	1,800 U 7,300 U	420 U 1.700 U	390 U 1.600 U	440 U 1.800 U
2-Nitrophenol 3,3'-Dichlorobenzidine	NS NS	NS NS	29,000 U 15,000 U	28,000 U 14,000 U	7,300 U 3,700 U	1,700 U 840 U	1,600 U 780 U	1,800 U 880 U
3-Methylphenol/4-Methylphenol	NS	NS	8,800 U	8,600 U	2,200 U	510 U	470 U	530 U
3-Nitroaniline	NS	NS	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
4,6-Dinitro-o-cresol	NS NS	NS NS	29,000 U 7,400 U	28,000 U 7,100 U	7,300 U 1,800 U	1,700 U 420 U	1,600 U 390 U	1,800 U 440 U
4-Bromophenyl phenyl ether 4-Chloroaniline	NS NS	NS NS	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
4-Chlorophenyl phenyl ether	NS	NS	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
4-Nitroaniline	NS	NS	10,000 U	10,000 U	2,600 U	590 U	550 U	610 U
4-Nitrophenol Acenaphthene	NS 20000	NS 100000	15,000 U 7,400 U	14,000 U 7,100 U	3,700 U 1,800 U	840 U 420 U	780 U 390 U	880 U 440 U
Acenaphthylene	100000	100000	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
Acetophenone	NS	NS	29,000 U	28,000 U	7,300 U	1,700 U	1,600 U	1,800 U
Anthracene	100000	100000	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
Benzo(a)anthracene Benzo(a)pyrene	1000	1000	7,400 U 7,400 U	7,100 U 7,100 U	1,800 U 1,800 U	420 U 420 U	390 U	440 U
Benzo(b)fluoranthene	1000	1000	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
Benzo(ghi)perylene	100000	100000	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
Benzo(k)fluoranthene	800 NC	3900	7,400 U 74.000 U	7,100 U	1,800 U	420 U	390 U 3.900 U	440 U 4.400 U
Benzoic Acid Benzyl Alcohol	NS NS	NS NS	74,000 U 15.000 U	71,000 U 14.000 U	18,000 U 3,700 U	4,200 U 840 U	3,900 U 780 U	4,400 U 880 U
Biphenyl	NS	NS	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
Bis(2-chloroethoxy)methane	NS	NS	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether	NS NS	NS NS	7,400 U 7,400 U	7,100 U 7,100 U	1,800 U 1,800 U	420 U 420 U	390 U	440 U
Bis(2-Ethylhexyl)phthalate	NS	NS NS	15,000 U	200,000	3,700 U	840 U	780 U	880 U
Butyl benzyl phthalate	NS	NS	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
Carbazole	NS	NS	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
Chrysene Di-n-butylphthalate	1000 NS	3900 NS	7,400 U 7,400 U	7,100 U 7,100 U	1,800 U 1,800 U	420 U 420 U	390 U	440 U
Di-n-octylphthalate	NS	NS	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
Dibenzo(a,h)anthracene	330	330	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
Dibenzofuran	NS	NS	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
Diethyl phthalate Dimethyl phthalate	NS NS	NS NS	7,400 U 7.400 U	7,100 U 7,100 U	1,800 U 1.800 U	420 U 420 U	390 U	440 U
Fluoranthene	100000	100000	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
Fluorene	30000	100000	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
Hexachlorobenzene Hexachlorobutadiene	NS	NS	7,400 U 15.000 U	7,100 U	1,800 U	420 U 840 U	390 U 780 U	440 U 880 U
Hexachlorocyclopentadiene	NS NS	NS NS	15,000 U 15,000 U	14,000 U 14,000 U	3,700 U 3,700 U	840 U 840 U	780 U	880 U
Hexachloroethane	NS	NS	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
Indeno(1,2,3-cd)Pyrene	500	500	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
Isophorone n Nitrosodi n propulamino	NS NS	NS NS	7,400 U 7,400 U	7,100 U 7,100 U	1,800 U 1,800 U	420 U 420 U	390 U	440 U
n-Nitrosodi-n-propylamine Naphthalene	12000	100000	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
Nitrobenzene	NS	NS	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
NitrosoDiPhenylAmine(NDPA)/DPA	NS NC	NS	22,000 U	21,000 U	5,500 U	1,300 U	1,200 U	1,300 U
P-Chloro-M-Cresol Pentachlorophenol	NS 800	NS 6700	7,400 U 29,000 U	7,100 U 28,000 U	1,800 U 7,300 U	420 U 1,700 U	390 U 1,600 U	440 U 1,800 U
Phenanthrene	100000	100000	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
Phenol	330	100000	10,000 U	10,000 U	2,600 U	590 U	550 U	610 U
Pyrene Combolatila Organica by EDA 9370C St	100000	100000	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
Semivolatile Organics by EPA 8270C-SI 2-Chloronaphthalene	M NS	NS	2.000 U	1,900 U	1,500 U	84 U	16 U	18 U
2-Methylnaphthalene	NS	NS	2,400	1,900 U	1,500 U	84 U	16 U	18 U
Acenaphthene	20000	100000	2,000 U	1,900 U	1,500 U	84 U	16 U	18 U
Acenaphthylene Anthracono	100000	100000	2,000 U	1,900 U	1,500 U	84 U	47	18 U
Anthracene Benzo(a)anthracene	100000	100000	2,000 U 2,000 U	1,900 U 1,900 U	1,500 U 1,500 U	84 U 84 U	17 96	18 U
Benzo(a)pyrene	1000	1000	4,200	1,900 U	1,500 U	84 U	120	18 U
Benzo(b)fluoranthene	1000	1000	3,900	3,300	1,500 U	84 U	110	18 U
Benzo(ghi)perylene Benzo(k)fluoranthene	100000	100000 3900	4,500 4,000	1,900 U 3,300	1,500 U 1,500 U	84 U 84 U	100	18 U
ponzojkjihoordHHHHH	1000	3900	2,000	3,300 1,900 U	1,500 U	84 U	100 77	18 U
Chrysene		330	2,000 U	1,900 U	1,500 U	84 U	49	18 U
Chrysene Dibenzo(a,h)anthracene	3300			. —	1,500 U	84 U	75	18 U
Chrysene Dibenzo(a,h)anthracene Fluoranthene	100000	100000	5,700	4,300				
Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene	100000 30000	100000 100000	2,000 U	1,900 U	1,500 U	84 U 340 U	16 U	18 U
Chrysene Dibenzo(a,h)anthracene Fluoranthene	100000	100000				84 U 340 U 210 U		18 U 70 U 44 U
Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachloroethane	100000 30000 NS NS NS	100000 100000 NS NS NS	2,000 U 7,800 U 4,900 U 7,800 U	1,900 U 7,600 U 4,800 U 7,600 U	1,500 U 5,900 U 3,700 U 5,900 U	340 U 210 U 340 U	16 U 63 U 39 U 63 U	70 U 44 U 70 U
Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorobthane Indeno(1,2,3-cd)Pyrene	100000 30000 NS NS NS NS	100000 100000 NS NS NS NS	2,000 U 7,800 U 4,900 U 7,800 U 4,800	1,900 U 7,600 U 4,800 U 7,600 U 1,900 U	1,500 U 5,900 U 3,700 U 5,900 U 1,500 U	340 U 210 U 340 U 84 U	16 U 63 U 39 U 63 U 91	70 U 44 U 70 U 18 U
Chysene Dibenzo(a, h)anthracene Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadilene Hexachloroethane Indeno(1, 2, 3 - cd)Pyrene Naphthalene	100000 30000 NS NS NS 500 12000	100000 100000 NS NS NS 500	2,000 U 7,800 U 4,900 U 7,800 U 4,800 2,000 U	1,900 U 7,600 U 4,800 U 7,600 U 1,900 U 1,900 U	1,500 U 5,900 U 3,700 U 5,900 U 1,500 U	340 U 210 U 340 U 84 U 84 U	16 U 63 U 39 U 63 U 91 16 U	70 U 44 U 70 U 18 U
Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorobthane Indeno(1,2,3-cd)Pyrene	100000 30000 NS NS NS NS	100000 100000 NS NS NS NS	2,000 U 7,800 U 4,900 U 7,800 U 4,800	1,900 U 7,600 U 4,800 U 7,600 U 1,900 U	1,500 U 5,900 U 3,700 U 5,900 U 1,500 U	340 U 210 U 340 U 84 U	16 U 63 U 39 U 63 U 91	70 U 44 U 70 U 18 U

Table 8

Leaching Structure Soil/Sediment Sample Analytical Data Summary Total Metals

Former Darby Drugs Distribution Center

SAMPLE ID	Unrestricted	Restricted	PWG-DW-2008	-01	PWG-DW-200	08-02	PWG-DW-200	08-03	PWG-DW-20	008-04	PWG-DW-20	08-05	PWG-DW-20	008-06	PWG-DW-2	008-07	PWG-DW-2	2008-09
LAB SAMPLE ID	SCO'	Residential	9/8/2008		9/8/2008		9/8/2008		9/8/200	08	9/8/200	8	9/8/200	8	9/8/200	8	9/8/20	08
SAMPLING DATE		SCO²	L0813344-04		L0813344-0	05	L0813344-	06	L0813344		L0813344-	-08	L0813344-	-09	L0813344		L0813344	4-12
SAMPLE DEPTH (ft.)			7.25-7.75		5.25-5.75		8.75-9.25		7.25-7.7	75	6.75-7.2	5	6.75-7.2	5	6.75-7.2	25	6.75-7.	25
Total Metals																		
Aluminum	NS	NS	4,300		2,600		1,300		1,400		1,200		1,100		1,400		2,500	
Antimony	NS	NS	2.7	U	2.9	U	2.9	U	3.2	U	2.7	U	2.9	U	3.2	U	3	U
Arsenic	13	16	3.6		0.83		0.69		0.84		1.1		0.8		0.82		0.77	
Barium	350	400	28		9.8		5.2		9.7		17		12		7.8		9.7	
Beryllium	7.2	72	0.27	U	0.29	U	0.29	U	0.32	U	0.27	U	0.29	U	0.32	U	0.3	U
Cadmium	2.5	4.3	2.5		0.58	U	0.58	U	0.64	U	0.53	U	0.57	U	0.64	U	0.59	U
Calcium	NS	NS	6,700		24,000		560		3,600		8,900		14,000		13,000		230	
Chromium	30	180	14		2.3		2.7		3.6		2.3		2		9.2		6.3	
Cobalt	NS	NS	2.6		3.3		1.2	U	1.3	U	1.1	U	1.1	U	1.3	U	1.2	U
Copper	50	270	54		18		4.6		5.1		3.1		5.6		14		4.9	
Iron	NS	NS	5,300		6,700		1,800		3,000		2,400		2,000		2,400		3,600	
Lead	63	400	470		20		30		35		32		26		60		21	
Magnesium	NS	NS	4,400		15,000		520		2,100		5,700		8,600		8,800		460	
Manganese	1600	2000	37		58		13		20		34		29		26		13	
Mercury	0.18	0.81	0.21		0.1	U	0.09	U	0.09	U	0.09	U	0.09	U	0.11	U	0.1	U
Nickel	30	310	11		3.6		2		2.1		1.4		1.6		3.7		3	
Potassium	NS	NS	260		220		140	С	160	U	130	С	140	U	170		150	U
Selenium	3.9	180	1.1	\subset	1.2	U	1.2	С	1.3	U	1.1	С	1.1	U	1.3	U	1.2	U
Silver	2	180	1.2		0.58	U	0.58	С	0.64	U	0.53	С	0.57	U	0.64	U	0.59	U
Sodium	NS	NS	110	U	150		120	U	130	U	110	U	110	U	130	U	120	U
Thallium	NS	NS	1.1	U	1.2	U	1.2	U	1.3	U	1.1	U	1.1	U	1.3	U	1.2	U
Vanadium	NS	NS	31		24		4.1		5.6		3.2		3.1		9.3		9.9	
Zinc	109	10000	250		120		29		45		21		31		110		78	

Notes:

All concentrations are mg/kg (ppm)

'Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006

'Resticted-Residential Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006

U - Analyte not detected above the laboratory MDL

J - Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory MDL

Green highlighting indicates exceedance of Unrestricted Use SCO

Table 8 Leaching Structure Soil/Sediment Sample Analytical Data Summary Total Metals

Former Darby Drugs Distribution Center

SAMPLE ID	Unrestricted	Restricted	PWG-DW-2008-10	PWG-DW-2008-11	PWG-DW-2008-12	PWG-DW-2008-13	PWG-DW-2008-14	PWG-DW-2008-15	PWG-DW-2008-16	PWG-DW-2008-17
LAB SAMPLE ID	SCO'	Residential	9/8/2008	9/8/2008	9/8/2008	9/8/2008	9/8/2008	9/8/2008	9/8/2008	9/8/2008
Sampling date		SCO²	L0813344-13	L0813344-14	L0813344-15	L0813344-16	L0813344-17	L0813344-18	L0813344-21	L0813344-22
SAMPLE DEPTH (ft.)			6.25-6.75	6.75-7.25	7.25-7.75	7.25-7.75	6-6.5	7-7.5	5.5-6	5.5-6
Total Metals										
Aluminum	NS	NS	3,000	1,900	3,000	1,500	2,300	1,700 J	1,600	3,700
Antimony	NS	NS	3.3 L	2.9 U	3 U	2.8 U	3.5 U	2.8 J	2.7 U	2.8 U
Arsenic	13	16	1.3	1.6	1.2	1.1	0.95	1.3 J	1.5	3.2
Barium	350	400	18	15	48	16	13	16 J	20	32
Beryllium	7.2	72	0.33 L	0.29 U	0.3 U	0.28 U	0.35 U	0.28 U	0.27 U	0.28 U
Cadmium	2.5	4.3	1	0.58 U	0.59 U	0.57 U	0.7 U	0.57 U	0.54 U	0.56 U
Calcium	NS	NS	53,000	14,000	17,000	7,000	10,000	6,600 J	33,000	8,200
Chromium	30	180	7.3	6.5	5.7	2.5	6.4	5.2	3.1	12
Cobalt	NS	NS	1.5	1.2	1.5	1.1 U	2.8	1.1 U	1.4	2.1
Copper	50	270	25	14	6	3.1	22	4.7 J	5.8	20
Iron	NS	NS	5,000	2,700	4,600	2,400	6,200	4,600 J	3,200	7,700
Lead	63	400	82	70	42	26	65	36 J	51	160
Magnesium	NS	NS	32,000	8,500	12,000	3,900	6,300	2,900 J	19,000	5,400
Manganese	1600	2000	87	29	47	31	43	47	53	58
Mercury	0.18	0.81	0.42	0.31	0.1 U	0.09 U	0.13	0.09 UJ	0.08 U	0.17
Nickel	30	310	5.9	3.8	2.6	1.4	4.7	2 J	2.8	6
Potassium	NS	NS	210	160	620	140 U	180 U	140 U	220	240
Selenium	3.9	180	1.3 L	1.2 U	1.2 U	1.1 U	1.4 U	1.1 U	1.1 U	1.1 U
Silver	2	180	0.65 L	0.58 U	0.59 U	0.57 U	0.7 U	0.57 U	0.54 U	0.56 U
Sodium	NS	NS	130 L	120 U	120 U	110 U	170	110 U	110 U	110 U
Thallium	NS	NS	1.3 L	1.2 U	1.2 U	1.1 U	1.4 U	1.1 UJ	1.1 U	1.1 U
Vanadium	NS	NS	12	8.9	8.6	3.8	21	5.9 J	4.8	14
Zinc	109	10000	170	69	42	24	100	35 J	47	140

Notes:

All concentrations are mg/kg (ppm)

'Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Pa

²Resticted-Residential Soil Cleanup Objectives (SCO) 6 NYC

U - Analyte not detected above the laboratory MDL

J - Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory $\ensuremath{\mathsf{MDL}}$

Green highlighting indicates exceedance of Unrestricted U

Table 8 Leaching Structure Soil/Sediment Sample Analytical Data Summary Total Metals

Former Darby Drugs Distribution Center

SAMPLE ID	Unrestricted	Restricted	PWG-DW-2008-18	PWG-DW-2008-19	PWG-DW-2008-20	PWG-DW-2008-22	PWG-DW-2008-23	PWG-DW-2008-24	PWG-DW-2008-25	PWG-DW-2008-26
LAB SAMPLE ID	sco'	Residential	9/8/2008	9/8/2008	9/8/2008	9/8/2008	9/8/2008	9/8/2008	9/8/2008	9/8/2008
Sampling date		SCO ²	L0813344-23	L0813344-24	L0813344-25	L0813344-26	L0813344-27	L0813344-28	L0813344-29	L0813344-30
SAMPLE DEPTH (ft.)			4-4.5	4.5-5	4.5-5	5.25-5.75	3-3.5	6-6.5	5.75-6.25	4.25-4.75
Total Metals										
Aluminum	NS	NS	1,500	2,500	4,500	2,200	1,400	2,800	16,000	1,100
Antimony	NS	NS	3 U	2.8 U	3.4 U	2.6 U	3 U	3.1 U	3 U	2.9 U
Arsenic	13	16	0.76	1.6	1.6	7.2	1	1.4	3	0.58 U
Barium	350	400	7.9	24	46	6.9	10	6.2	43	7.3
Beryllium	7.2	72	0.3 U	0.28 U	0.34 U	0.34	0.3 U	0.31 U	0.3 U	0.29 U
Cadmium	2.5	4.3	0.6 U	0.56 U	3.3	0.53 U	0.61 U	0.61 U	0.6 U	0.58 U
Calcium	NS	NS	31,000	7,200	10,000	11,000	13,000	3,400	3,900	6,400
Chromium	30	180	7.8	6.8	22	26	10	7.2	20	4.7
Cobalt	NS	NS	2.3	1.4	4.6	1.7	2	1.2 U	4.4	1.6
Copper	50	270	42	12	73	6.1	170	13	14	11
Iron	NS	NS	6,000	5,000	10,000	15,000	7,600	4,400	24,000	3,600
Lead	63	400	44	120	960	12	67	37	13	14
Magnesium	NS	NS	18,000	4,000	6,700	7,200	8,300	2,300	5,200	4,000
Manganese	1600	2000	64	38	89	34	58	15	130	34
Mercury	0.18	0.81	0.1 U	0.09 U	1.1	0.09 U	0.13	0.29	0.1 U	0.1 U
Nickel	30	310	5.4	3.5	17	3.8	13	4	12	2.3
Potassium	NS	NS	150 U	180	320	130	180	150 U	1300	150 U
Selenium	3.9	180	1.2 U	1.1 U	1.3 U	1 U	1.2 U	1.2 U	1.2 U	1.2 U
Silver	2	180	0.6 U	0.56 U	0.67 U	0.53 U	0.61 U	0.61 U	0.6 U	0.58 U
Sodium	NS	NS	120 U	110 U	300	100 U	120 U	120 U	120 U	120 U
Thallium	NS	NS	1.2 U	1.1 U	1.3 U	2.1 U	1.2 U	1.2 U	2.4 U	1.2 U
Vanadium	NS	NS	19	8.4	43	14	12	10	31	17
Zinc	109	10000	50	110	340	24	180	54	37	54

Notes:

All concentrations are mg/kg (ppm)

'Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Pa

²Resticted-Residential Soil Cleanup Objectives (SCO) 6 NYC

U - Analyte not detected above the laboratory MDL

J - Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory $\ensuremath{\mathsf{MDL}}$

Green highlighting indicates exceedance of Unrestricted U

Table 8 Leaching Structure Soil/Sediment Sample Analytical Data Summary Total Metals

Formor	Darby	Druge	Distribution	Contor	
ronner	Daiby	Diugs	DISTIDUTION	Center	

SAMPLE ID	Unrestricted	Restricted	PWG-DW-2008-2	7 PWG	-DW-2008-	-28	PWG-DW-20	08-29	PWG-DW-20	08-30	PWG-DW-20	08-31	PWG-DW-20	08-33	PWG-DW-20	008-34	PWG-DW-2	008-37
LAB SAMPLE ID	SCO'	Residential	L0813447-02	LC	813447-03		L0813447-	04	L0813447-	05	L0813447-	06	L0813447		L0813447	-08	L0813447	7-09
Sampling date		SCO²	9/10/2008		/10/2008		9/10/200	8	9/10/200	8	9/10/200	18	9/10/200	08	9/10/20	08	9/10/20	80
Sample Depth (ft.)			12.5-13		12-12.5		10-10.5		8.5-9		8-8.5		7-7.5		5.5-6		11-11.	5
Total Metals																		
Aluminum	NS	NS	15,000	1:	2,000		2,100		7,000		5,400		2,300		4,200		9,600	
Antimony	NS	NS	3.2 l	J	3.4	U	3	U	5	U	3.6	U	3.6	U	3.7	UJ	4.2	U
Arsenic	13	16	0.9		2.1		0.61	U	1.1		1.3		0.92		1.3		4.2	
Barium	350	400	37		41		9.3		74		35		21		41		58	
Beryllium	7.2	72	0.36		0.45		0.3	U	0.5	U	0.36	U	0.36	U	0.37	U	0.42	U
Cadmium	2.5	4.3	0.63		2.2		0.61	U	4		1.2		0.84		1.8		6.3	
Calcium	NS	NS	520		760		130		20,000		4,700		12,000		14,000		3,100	
Chromium	30	180	15		14		3.2		120		29		30		39	J	91	
Cobalt	NS	NS	4		5.7		1.2	U	6.2		2.6		1.8		3		5.5	
Copper	50	270	13		30		6.9		96		24		24		35	J	240	
Iron	NS	NS	16,000	1	1,000		2,500		10,000		7,400		3,700		7,900		11,000	
Lead	63	400	10		160		36		970		520		210		300	J	890	
Magnesium	NS	NS	3,200	1	,200		340		9,900		3,200		7,300		8,300		2,200	
Manganese	1600	2000	120		66		15		110		54		36		54	J	64	
Mercury	0.18	0.81	0.1 l	J	0.12	U	0.1	U	0.85		0.59		0.27		4.1		1.6	
Nickel	30	310	14		15		3.4		34		14		9.7		14		42	
Potassium	NS	NS	1100		480		160		540		340		200		300		650	
Selenium	3.9	180	1.3 l	J	1.4	U	1.2	U	2	U	1.4	U	1.4	U	1.5	U	2.5	
Silver	2	180	0.63 l	J	0.68	U	0.61	U	1.3		0.72	U	0.72	U	4.4		2.9	
Sodium	NS	NS	130 l	J	140	U	120	U	3200		140	U	140	U	150	U	170	U
Thallium	NS	NS	1.3 l	J	1.4	U	1.2	U	2	U	1.4	U	1.4	U	1.5	U	1.7	U
Vanadium	NS	NS	27		30		5.3		58		33		22		26		70	
Zinc	109	10000	61		210		64		480		240		170		270		730	

Notes:

All concentrations are mg/kg (ppm)

Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Pa

⁴Resticted-Residential Soil Cleanup Objectives (SCO) 6 NYC

U - Analyte not detected above the laboratory MDL

J - Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory $\ensuremath{\mathsf{MDL}}$

Green highlighting indicates exceedance of Unrestricted U

Table 8 Leaching Structure Soil/Sediment Sample Analytical Data Summary Total Metals

Former Darby Drugs Distribution Center

SAMPLE ID	Unrestricted	Restricted	PWG-DW-2008-3	88	PWG-DW-2008-39)	PWG-DW-200	08-40	PWG-DW-2008	-41	PWG-LP-200	8-01	PWG-LP-200	08-01
LAB SAMPLE ID	sco'	Residential	L0813447-11		L0813447-12		L0813447-1	13	L0813447-14		9/8/2008		10/3/200	80
Sampling date		SCO ²	9/10/2008		9/10/2008		9/10/2008		9/10/2008		L0813344-2	20	L0814755	-01
Sample Depth (ft.)			7-7.5		8.5-9		6-6.5		9-9.5		7.75-8.25		9-11	
Total Metals														
Aluminum	NS	NS	2,600		2,900		2,400		820		1,500		1,500	
Antimony	NS	NS	3.5	U	3.3 U		2.5	С	3.1	U	2.8	С	3.2	U
Arsenic	13	16	1		0.91		0.51		0.62	U	1.1		0.64	U
Barium	350	400	24		24		15		1.8		12		9.6	
Beryllium	7.2	72	0.35	U	0.33 U		0.25	U	0.31	U	0.28	U	0.32	U
Cadmium	2.5	4.3	0.77		1.4		0.82		0.62	U	0.56	U	0.64	U
Calcium	NS	NS	28,000		16,000		16,000		170		710		440	
Chromium	30	180	25		30		13		4		5.6		6.9	
Cobalt	NS	NS	2.3		2.3		2		1.2	U	2		1.3	U
Copper	50	270	33		39		12		3.6		160		36	
Iron	NS	NS	5,900		4,600		5,300		1,300		10,000		6,600	
Lead	63	400	120		170	ı	90		5		59		23	
Magnesium	NS	NS	18,000		10,000	T	10,000		120		700		410	
Manganese	1600	2000	77		49		85		3.4		66		33	
Mercury	0.18	0.81	0.37		0.45		1		0.17		0.1		0.1	U
Nickel	30	310	9.2		11		7.8		1.5		5.4		3	
Potassium	NS	NS	330		340		260		150	U	140	U	160	U
Selenium	3.9	180	1.4	U	1.3 U		1	U	1.2	U	1.1	U	1.3	U
Silver	2	180	0.98		0.7		0.76		0.62	U	0.56	U	0.64	U
Sodium	NS	NS	140	U	130 U		100	U	120	U	110	U	130	U
Thallium	NS	NS	1.4	U	1.3 U		1	U	1.2	U	1.1	U	1.3	U
Vanadium	NS	NS	25		26		13		2.1		3.8		6	
Zinc	109	10000	270		390		160		18		360		120	

Notes:

All concentrations are mg/kg (ppm)

Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Pa

²Resticted-Residential Soil Cleanup Objectives (SCO) 6 NYC

U - Analyte not detected above the laboratory MDL

J - Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory MDL Green highlighting indicates exceedance of Unrestricted $\mbox{\tt U}$

Table 9

Historical Storm Drain Soil/Sediment Sample Analytical Data Summary Volatile Organic Compounds Former Darby Drugs Distribution Center

SAMPLE ID	Uprostricted	Postriotod	SD-1		SD-2		SD 3		SD-4		SD-5		SD-6		SD-1	7
	Unrestricted SCO'	Restricted		01	3D-2 240847.0	2	SD-3	02			3D-5 240847.				240847	
LAB SAMPLE ID	300	Residential SCO ²	240847.0				240847.		240847				240847			
SAMPLING DATE		300	3/3/200)4	3/3/200	4	3/3/200	J4	3/3/20	04	3/3/200)4	3/3/20	04	3/3/20	JU4
SAMPLE DEPTH (ft.)																
Volatile Organics by EPA 8260B	4.000	40.000			7.0		1 100									
Tetrachloroethene	1,300	19,000	20		7.2	U	1,100		6.8	U	6.8	U	6.7	U	6.9	U
Trichloroethene	470	21,000	24		7.2	U	36		6.8	U	6.8	U	6.7	U	6.9	U
cis-1,2-Dichloroethene	250	100,000	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
trans-1,2-Dichloroethene	190	100,000	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
1,1-Dichloroethene	330	100,000	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
Vinyl chloride	20	900	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
1,1,1-Trichloroethane	680	100,000	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
1,1,2,2-Tetrachloroethane	NS	NS	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
1,1,2-Trichloroethane	NS	NS	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
				U						U				U		U
1,1-Dichloroethane 1,1-Dichloropropene	270 NS	26,000 NS	7.6 7.6	U	7.2 7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
1,2,3-Trichlorobenzene	NS NS	NS NS	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
							7.2	U								U
1,2,3-Trichloropropane	NS	NS	7.6 7.6	U	7.2 7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
1,2,4-Trichlorobenzene	NS 3,600	NS 52,000	7.6	U	7.2	U	7.2 22	U	6.8 840	U	6.8	U	6.7	U	6.9	U
1,2,4-Trimethylbenzene	-															
1,2-Dibromo-3-chloropropane	NS	NS	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
1,2-Dibromoethane	NS 1.100	NS	7.6	U	7.2		7.2	U	6.8	U	6.8	U	6.7	U	6.9	
1,2-Dichlorobenzene	1,100	100,000	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
1,2-Dichloroethane	20 NG	3,100	7.6	U	7.2	U	7.2		6.8	U	6.8	U	6.7	U	6.9	
1,2-Dichloropropane	NS 0.400	NS Falcon	7.6	U	7.2 7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
1,3,5-Trimethylbenzene	8,400	52,000	7.6	U		U	8.7		1,200		6.8	U	6.7	U	6.9	
1,3-Dichlorobenzene	2,400	49,000	7.6	U	7.2	U	48		6.8	U	6.8	U	6.7	U	6.9	U
1,3-Dichloropropane	NS	NS	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
1,4-Dichlorobenzene	1,800	13,000	7.6	U	7.2	U	120		48		6.8	U	6.7	U	6.9	U
2,2-Dichloropropane	NS	NS 100,000	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
Acetone	50	100,000	110		72	U	72	U	68	U	68	U	67	U	69	U
Benzene	60 NG	4,800	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
Bromobenzene	NS	NS	7.6		7.2	U	7.2	U	25		6.8		6.7		6.9	
Bromodichloromethane	NS	NS	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
Bromoform	NS 740	NS 0.400	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
Carbon tetrachloride	760	2,400	7.6	U	7.2	U	7.2 7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
Chlorobenzene	1,100	100,000	7.6 7.6	U	7.2 7.2	U	7.2	U	55	U	6.8	U	6.7	U	6.9	U
Chloroform	370	49,000							6.8		6.8		6.7		6.9	
cis-1,3-Dichloropropene	NS	NS	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
Dibromochloromethane	NS	NS	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
Dibromomethane	NS 1 000	NS 41.000	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
Ethylbenzene	1,000	41,000	7.6	U	7.2	U	23		370		6.8	U	6.7	U	6.9	U
Hexachlorobutadiene	NS	NS	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
Isopropylbenzene	NS	NS 100,000	7.6	U	7.2	U	7.2	U	300		6.8	U	6.7	U	6.9	U
Methylene chloride	50	100,000	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	
Naphthalene	NS 2.000	NS 100,000	7.6	U	7.2	U	7.2	U	89		6.8	U	6.7	U	6.9	U
n-Propylbenzene o-Xylene	3,900 260	100,000	7.6 11	U	7.2 7.2	U	10 13		750 110		6.8	U	6.7	U	6.9	U
				- 11	1.2							U	13	U		U
p/m-Xylene	260 NS	100,000	7.6 7.6	U	7.2	U	36 7.2	U	160	U	14	U		U	14	U
p-Chlorotoluene	NS NS	NS NS	7.6 14	U	7.2	U	140	U	6.8 440	U	6.8	U	6.7	U	6.9 6.9	U
p-Isopropyltoluene		100,000	7.6	U	7.2	U	7.2	U	440		6.8	U	6.7	U	6.9	U
sec-Butylbenzene	11,000			U		U		U				U		U		U
Styrene tort Putylbonzono	NS 5,900	NS NS	7.6 7.6	U	7.2 7.2	U	7.2	U	63 6.8		6.8	U	6.7	U	6.9	U
tert-Butylbenzene Toluene	700	100,000	7.6	U	7.2	U	7.2	U	160	U	6.8 20	U	6.7	U	13	U
trans-1,3-Dichloropropene	NS	100,000	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
			7.6		7.2		7.2	U								U
Trichlorofluoromethane	NS	NS	7.6	U	1.2	U	1.2	U	6.8	U	6.8	U	6.7	U	6.9	U

Notes:

All concentrations are µg/kg (ppb)

 ${}^{\text{'}}\text{Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006}$

 ${}^{\checkmark}Resticted\text{-}Residential Soil Cleanup Objectives (SCO) \ 6 \ NYCRR \ Part \ 375, Environmental Remediation Programs, December \ 2006 \ Appendix Appe$

U - Analyte not detected above the laboratory MDL

J - Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory MDL

Green highlighting indicates exceedance of Unrestricted Use SCO

Table 10

Historical Storm Drain Soil/Sediment Sample Analytical Data Summary Semi-Volatile Organic Compounds Former Darby Drugs Distribution Center

SAMPLE ID	Unrestricted	Restricted	SD-1	SD-2		SD-3		SD-4		SD-5		SD-6		SD-7	
LAB SAMPLE ID	SCO'	Residential	240847.01	240847.02		3D-3 240847.03		240847.04		3D-5 240847.05		240847.0	,	240847.0	27
SAMPLING DATE		SCO ²	3/3/2004	3/3/2004		3/3/2004		3/3/2004		3/3/2004		3/3/2004		3/3/200	
SAMPLE DEPTH (ft.)		300	3/3/2004	3/3/2004		3/3/2004		3/3/2004		3/3/2004		3/3/2002		3/3/200	4
Semivolatile Organics by EPA 8270C															
1,2,4-Trichlorobenzene	NS	NS	450 U	43	U	430	U	410 L		41	U	40	U	420	U
1,2-Dichlorobenzene	NS NS	NS	450 U	43	U	430	U	410 L		41	U	40	U	420	U
1,3-Dichlorobenzene	NS NS	NS	450 U	43	U	430	U	410 L	_	41	U	40	U	420	U
1,4-Dichlorobenzene	NS	NS	450 U	43	U	430	U	410 L		41	U	40	U	420	U
2,4-Dinitrotoluene	NS NS	NS	450 U	43	U	430	U	410 L		41	U	40	U	420	U
2,6-Dinitrotoluene	NS NS	NS	450 U	43	U	430	U	410 L		41	U	40	U	420	U
2-Chloronaphthalene	NS	NS	450 U	43	U	430	U	410 L		41	U	40	U	420	U
2-Methylnaphthalene	NS	NS	450 U	43	U	430	U	520	+	41	U	40	U	420	U
3,3'-Dichlorobenzidine	NS NS	NS	4,500 U	430	U	4,300	U	4,100 L		410	U	400	U	420	U
4-Bromophenyl phenyl ether	NS NS	NS	4,500 U	430	U	430	U	410 L	_	410	U	400	U	420	U
4-Chlorophenyl phenyl ether	NS NS	NS NS	450 U	43	U	430	U	410 C	_	41	U	40	U	420	U
Acenaphthene	20,000	100,000	450 U	43	U	430	U	410 C		41	U	40	U	420	U
Acenaphthylene	100,000	100,000	450 U	43	U	430	U	410 L		41	U	40	U	420	U
Anthracene	100,000	100,000	450 U	43	U	430	U	410 C	_	88	U	40	U	420	U
Benzo(a)anthracene	1.000	1,000	450 U	43	U	430	U	520	+	240		75	U	420	U
Benzo(a)pyrene	1,000	1,000	450 U	43	U	430	U	410 L		120		40	U	420	U
Benzo(b)fluoranthene	1,000	1,000	450 U	43	U	430	U	410 L		150		40	U	420	U
	100.000	100.000	450 U	43	U	430	U	560	+	110		40	U	420	U
Benzo(ghi)perylene	800		450 U	43	U	430	U	410 L	. +	150		40	U	420	U
Benzo(k)fluoranthene Bis(2-chloroethyl)ether	NS	3,900 NS	450 U	43	U	430	U	410 C		41	U	40	U	420	U
* * * * * * * * * * * * * * * * * * * *	NS NS	NS NS	450 U	43	U	430	U	410 C	_	41	U	40	U	420	U
Bis(2-chloroisopropyl)ether	NS NS	NS NS	6,500	220	U	16.000	U	22.000	+	2.600	U	760	U	1.100	U
Bis(2-Ethylhexyl)phthalate Butyl benzyl phthalate	NS NS	NS NS	7,700	43	U	860		4,000	+	2,600		240		420	U
Carbazole	NS NS	NS	450 U	43	U	430	U	4,000 410 L	. +	41	U	40	U	420	U
Chrysene	1.000	3,900	450 U	43	U	430	U	730	+	280	U	72	U	420 490	U
,	1,000 NS	3,900 NS	450 U	43	U	430	U	2.100	+	41	U	40	U	420	U
Di-n-butylphthalate Di-n-octylphthalate	NS NS	NS NS	450 U	43	U	430	U	1,600	+	41	U	40	U	780	- 0
Dibenzo(a,h)anthracene	330	330	450 U	43	U	430	U	410 L		47	U	40	U	420	U
Dibenzo(a,n)antniacene Dibenzofuran	NS NS	NS NS	450 U	43	U	430	U	410 C		41	U	40	U	420	U
Diethyl phthalate	NS NS	NS NS	27,000	43	U	430	U	1,800	+	41	U	40	U	420	U
Dimethyl phthalate	NS NS	NS	450 U	43	U	430	U	410 L	. +	41	U	40	U	420	U
Fluoranthene	100.000	100.000	450 U	43	U	480	U	970	+	340	U	68	U	420	U
Fluorene	30,000	100,000	450 U	43	U	430	U	440	+	43		40	U	420	U
Hexachlorobenzene	30,000 NS	NS	450 U	43	U	430	U	410 L		43	U	40	U	420	U
Hexachlorobutadiene	NS NS	NS	450 U	43	U	430	U	410 L	_	41	U	40	U	420	U
Hexachlorocyclopentadiene	NS NS	NS NS	4.500 U	430	U	4.300	U	4.100 L	_	410	U	400	U	420	U
Hexachloroethane	NS NS	NS	4,500 U	430	U	430	U	4,100 C		410	U	400	U	420	U
Indeno(1,2,3-cd)Pyrene	500	500	450 U	43	U	430	U	480	+	120	U	40	U	420	U
Isophorone	NS NS	NS NS	450 U	43	U	430	U	480 410 L	+	41	U	40	U	420	IJ
Naphthalene	12.000	100.000	450 U	43	U	430	U	410 C	_	41	U	40	U	420	U
Nitrobenzene	12,000 NS	NS	450 U	43	U	430	U	410 L		41	U	40	U	420	U
NitrosoDiPhenylAmine(NDPA)/DPA	NS NS	NS NS	450 U	43	U	430	U	410 L	_	41	U	40	U	420	U
Phenanthrene	100.000	100.000	450 U	43	U	510	U	2.100	+	360	U	67	U	420 67	U
	100,000	100,000	450 U	43	U	1.000		3,400	+	41	U	250		420	U
Pyrene	100,000	100,000	45U U	43	U	1,000		3,400		41	U	250		420	U

Notes:

All concentrations are µg/kg (ppb)

'Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006
'Resticted-Residential Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006

- U Analyte not detected above the laboratory MDL
- J Estimated value
- NS No standard established

Bold text indicates compounds above the laboratory $\ensuremath{\mathsf{MDL}}$

Green highlighting indicates exceedance of Unrestricted Use SCO

Table 11
Storm Drain Soil/Sediment Sample Analytical Data Summary
Metals

Former Darby Drugs Distribution Center

SAMPLE ID	Unrestricted	Restricted	SD-1	SD-2	SD-3	SD-4	SD-5	SD-6	SD-7
LAB SAMPLE ID	SCO'	Residential	240847.01	240847.02	240847.03	240847.04	240847.05	240847.06	240847.07
Sampling date		SCO²	3/3/2004	3/3/2004	3/3/2004	3/3/2004	3/3/2004	3/3/2004	3/3/2004
Sample Depth (ft.)									
Total Metals									
Arsenic	13	16	0.76 U	1.2	1.1	1.9	0.68 U	0.67 U	1.1
Barium	350	400	58	14	48	19	49	23	13
Chromium	30	180	94	6.5	42	44	31	19	35
Cadmium	2.5	4.3	2.9	0.72 U	6.4	2.2	0.68 U	0.75	1.4
Lead	63	400	360	38	720	180	130	89	330
Mercury	0.18	0.81	0.23	0.017	0.19	2.9	0.051	1.5	0.04
Selenium	3.9	180	3.3	0.58 U	1.2	0.55 U	0.54 U	0.53 U	0.56 U
Silver	2	180	0.76 U	0.72 U	0.87	4.4	0.68 U	0.67 U	0.82

Notes:

All concentrations are mg/kg (ppm)

¹Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006

⁴Resticted-Residential Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006

- U Analyte not detected above the laboratory MDL
- J Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory MDL

Green highlighting indicates exceedance of Unrestricted Use SCO

	AMOC!		_														
Sample ID Lab Sample ID	AWQS'	PWG-GW-2008-0 L0813196-22	01	PWG-GW-200 L0813196-0		PWG-GW-2008-0 L0813196-04	03	PWG-GW-200 L0813196-1		PWG-GW-20 L0813196		PWG-GW-20 L0813196-		PWG-GW-20 L0813196-		PWG-GW-20 L0813196	
SAMPLING DATE		9/4/2008		9/3/2008		9/3/2008		9/3/2008		9/3/200		9/3/2008		9/4/200		9/3/200	
SAMPLE DEPTH (ft.)		77 47 2000		7/3/2000		7/3/2000		7/3/2000		7/3/200	Ü	77 37 2000		77 47 200		7/3/200	50
Volatile Organics by EPA 8260B																	
Tetrachloroethene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Trichloroethene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
cis-1,2-Dichloroethene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
trans-1,2-Dichloroethene	5	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
1,1-Dichloroethene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Vinyl chloride	2	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
1,1,1,2-Tetrachloroethane	5		U	0.5	U		U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,1,1-Trichloroethane	5		U	0.5	U		U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	5		U	0.5	U		U	0.5	U	0.5 0.75	U	0.5	U	0.5	U	0.5 0.75	U
1,1-Dichloroethane	5		U	0.75	U		U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
1,1-Dichloropropene	5		U	2.5	U		U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2,3-Trichlorobenzene	5		U	2.5	U		U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2,3-Trichloropropane	0.04		U	5	U		U	5	U	5	U	5	U	5	U	5	U
1,2,4,5-Tetramethylbenzene	5	2	U	2	U	2	U	2	U	2	U	2	U	2	U	2	U
1,2,4-Trichlorobenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2,4-Trimethylbenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2-Dibromo-3-chloropropane	0.04	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2-Dibromoethane	0.0006		U	2	U		U	2	U	2	U	2	U	2	U	2	U
1,2-Dichlorobenzene	3		U	2.5	U		U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2-Dichloroethane	0.6		U	0.5	U		U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,2-Dichloropropane	1		U	1.8	U		U	1.8	U	1.8	U	1.8	U	1.8	U	1.8	U
1,3,5-Trimethylbenzene	5		U	2.5	U		U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,3-Dichlorobenzene	3 5		U	2.5	U		U	2.5	U	2.5	U	2.5 2.5	U	2.5	U	2.5	U
1,3-Dichloropropane 1,4-Dichlorobenzene	3		U	2.5	U		U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,4-Diethylbenzene	NS NS		U	2.5	U		U	2.5	UJ	2.5	U	2.5	U	2.5	U	2.5	U
2,2-Dichloropropane	5		U	2.5	U		U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
2-Butanone	50*		U	5	U		U	5	U	5	U	5	U	5	U	5	U
2-Hexanone	50*		U	5	U		U	5	U	5	U	5	U	5	U	5	U
4-Ethyltoluene	NS	2	U	2	U	2	U	2	U	2	U	2	U	2	U	2	U
4-Methyl-2-pentanone	NS	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
Acetone	50*	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
Acrylonitrile	5	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
Benzene	1		U	0.5	U		U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Bromobenzene	5		U	2.5	U		U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
Bromochloromethane	5		U	2.5	U		U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
Bromodichloromethane Bromoform	50* 50*		U	0.5	U		U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Bromomethane	5		U	1	U		U	1	U	1	U	1	U	1	U	1	U
Carbon disulfide	NS		U	5	U		U	5	UJ	5	U	5	U	5	U	5	U
Carbon tetrachloride	5		U	0.5	U		U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Chlorobenzene	5		U	0.5	U		U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Chloroethane	5	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Chloroform	7	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
Chloromethane	5	2.5	U	2.5	U	2.5	U	2.5	UJ	2.5	U	2.5	U	2.5	U	2.5	U
cis-1,3-Dichloropropene	0.4	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Dibromochloromethane	50*	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Dibromomethane	5		U	5	U		U	5	U	5	U	5	U	5	U	5	U
Dichlorodifluoromethane	5		U	5	U		U	5	UJ	5	U	5	U	5	U	5	U
Ethylbenzene	5		U	0.5	U		U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Hexachlorobutadiene	0.5		U	0.6	U		U	0.6	U	0.6	U	0.6	U	0.6	U	0.6	U
Isopropylbenzene	5		U	0.5	U		U	0.5	UJ	0.5	U	0.5	U	0.5	U	0.5	U
Methyl tert butyl ether Methylene chloride	10 5		U	1 5	U		U	5	U	1 5	U	1 5	U	1 5	U	1 5	U
Naphthalene	10*		U	0.5	U		U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
n-Butylbenzene	5		U	0.5	U		U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
n-Propylbenzene	5		U	2.5	U		U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
o-Chlorotoluene	5		U	2.5	U		U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
o-Xylene	5		U	1	U		U	1	U	1	U	1	U	1	U	1	U
p/m-Xylene	5		U	2.5	U		U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
p-Chlorotoluene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
p-lsopropyltoluene	5	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
sec-Butylbenzene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Styrene	5		U	1	U		U	1	U	1	U	1	U	1	U	1	U
tert-Butylbenzene	5		U	2.5	U		U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
Toluene	5		U	0.75	С		U	0.75	U	0.75	C	0.75	U	0.75	U	0.75	U
trans-1,3-Dichloropropene	0.4		U	0.5	U		U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Trichlorofluoromethane	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
Vinyl acetate	NS	5	U	5	С	5	U	5	U	5	U	5	U	5	U	5	U

Notes:

All units are µg/L (ppb)

'Class GA Amblent Water Quality Standard (AWOS), NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June

- * Guidance Value
- U Analyte not detected above the laboratory MDL
- J Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory MDL

Yellow highlighting indicates exceedance of Ambient Water Quality Standard

Green highlighting indicates exceedence of Ambient Water Quality Guidance Value

Montage Mont	CANADIE ID	AWQS'	DIME CIM 200	0.10	BMC CM 30	20.14	DIMC CIM 2000	1.1.5	140/1		A 0 M 2		NA) A .		N 40 47 5		1007
Company of the Comp	SAMPLE ID LAR SAMPLE ID	AWQ3							MW-1	18	MW-2		MW-4 10/3/200		MW-5		MW-6 10/6/2008
Washington State Washington Washingt																	
Proceduremente 5																	
Description Section	Volatile Organics by EPA 8260B																
Modern Company																	
Mary 1962																	
International	·																
Mindefinition																	
1.1.1 Sementione 3 13 U 03 U 03 U 05																	
11.12/2016/com/com/com/com/com/com/com/com/com/com	viriyi Chionae	2	20	U	Į.	U	ı ı	U	'	U	'	U	ļ	U	'	U	20 0
11.23 Enteroscharbene 9 10 U 030 U 0	1,1,1,2-Tetrachloroethane	5	10	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	10 U
11.12 Technolomore	1,1,1-Trichloroethane	5	10	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	10 U
11 DEFINITION CONTINUES 15	1,1,2,2-Tetrachloroethane	5	10	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	10 U
10-15-15-16-16-16-16-16-16-16-16-16-16-16-16-16-		1	15	U	0.75		0.75		0.75		0.75	U	0.75	U	0.75	U	
19.35 Interviewpospone																	
12.3-1-februsy-dependence																	
1.4.5 Frommer 1																	
12.4-Interroberomene																	
1.54 Himmorphemo																	
1.2 Determone-protection 1.2 Determone-prote																	
Section of the color of the c																	
12-Dehtopotenteme																	
1.5 Define proposement 1 35																	
13.5 15.6	1,2-Dichloroethane	0.6	10	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	10 U
Section Sect	1,2-Dichloropropane	· ·															
September S	1,3,5-Trimethylbenzene			U	2.5	U		U			2.5			U	2.5	U	
Section Sect																	
14 Delity Delity Delity Company 15 Delity Delit																	
25 De Informerpropone 5 50																	
Section Sect																	
Service Serv																	
Efflytiolarine																	
Medity-2-pertanone																	
Acetone																	
Entenneme		50*	100	U	5	U	5	U	5	U	5	U	5	U	5	U	
Sembeneme	Acrylonitrile	5	100	U	5	U	5	U	5	U	5	U	5	U	5	U	100 U
Expandichioromethane	Benzene	1	10	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	10 U
Semedichicknomethane	Bromobenzene																
Semondorm																	
Experimentation S 20																	
Carbon disultide																	
Carbon tetrachloride 5 10 U 0.5 U 10 U 0.5 U 10 U 0.5 U 0.5 U 0.5 U 0.5 U 10 U 0.5 U 10 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 10 U 10 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U																	
Chicordename																	
Chioroethane 5 20 U 1 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 20 U Chioroform 7 15 U 0.75 U 0.																	
Chloromethane																	
Cis-1,3-Dichioropropene	Chloroform	7	15	U	0.75	U	0.75	U	0.75	U	0.75		0.75	U	0.75	U	15 U
Dibromochloromethane	Chloromethane	5	50	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	50 U
Dibromomethane	cis-1,3-Dichloropropene	0.4	10	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	10 U
Dichlorodifluoromethane	Dibromochloromethane				0.5	U	0.5				0.5		0.5		0.5		
Ethylbenzene 5 10 U 0.5 U 10 L 10 U 12 U 10 0.6 U 0.5		_			-		_								-		
Hexachlorobutadiene																	
Sopropylbenzene 5																	
Methyl tert butyl ether 10 20 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 100 U 0.5																	
Methylene chloride 5 100 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 100 U 100 U 0.5 U																	
Naphthalene 10° 10 U 0.5 U 10 L 10 U 10 L 10 U 10 L 10 U 10 U 10																	
n-Butylbenzene 5 10 U 0.5 U 10 L 0.7 Propylbenzene 5 5 50 U 2.5 U																	
o-Chlorotoluene 5 5 50 U 2.5 U 50 U 2.5 U 50 U																	
O-Xylene 5 20 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	n-Propylbenzene	5	50	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	50 U
p/m-Xylene 5 50 U 2.5 U 0.5	o-Chlorotoluene	5	50	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	50 U
p-Chlorotoluene 5 10 U 0.5 U 10 L p-Isopropyltoluene 5 20 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U																	
p-isopropyltoluene 5 20 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 20 U sec-Butylbenzene 5 10 U 0.5 U 10 U 0.5 U 10 U 1																	
Sec-Butylbenzene 5 10 U 0.5 U 10 U 10 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 10 U 11 U 2.5 U 0.75 U 0.75 U 0.75 U 0.75	<u>'</u>																
Styrene 5 20 U 1 U 2.5 U 0.75 U 0.5 </td <td></td>																	
tert-Butylbenzene 5 50 U 2.5 U 50 U																	
Toluene 5 15 U 0.75 U 15 U																	
trans-1,3-Dichloropropene 0.4 10 U 0.5 U 10 U 0.5 U 10 U 10 U 11 U 10 U 11 U 11 U 11 U 1																	
Trichlorofluoromethane 5 50 U 2.5 U 50 U 50 U																	
Description of the contraction o	Vinyl acetate	NS NS	100	U	5	U	5	U	5	U	5	U	5	U	5	U	100 U

Notes:

All units are µg/L (ppb)

¹Class GA Ambient Water Quality Standard (AWQS), NY:1998

- * Guidance Value
- U Analyte not detected above the laboratory MDL
- J Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory M

Yellow highlighting indicates exceedance of Ambient $\boldsymbol{\mathsf{V}}$

SAMPLE ID	AWQS'	DIFFW-01	DIFFW-0	2	DIFFW-03	DIFFW-0	04	SW-01		SW-02		SW-03		MW-7	7
LAB SAMPLE ID		10/6/2008	10/6/200		10/6/2008	L0814991		L0814991		L0814991		L0814991-	04	L0911697	7-04
Sampling date		L0814755-07	L0814755-	-08	L0814755-09	10/8/20	08	10/7/20	08	10/8/200	08	10/8/200	8	8/20/200	009
Sample Depth (ft.)															
Volatile Organics by EPA 8260B						_									
Tetrachloroethene	5	1.3	0.5	U	0.5 L	1,400		0.5	U	3.4		1.2		0.5	U
Trichloroethene	5	2.3	0.5	U	0.53	300		0.5	U	1		1.1		0.5	U
cis-1,2-Dichloroethene	5	32	7.7		21	1,800		0.5	U	0.5	U	0.5	U	0.5	U
trans-1,2-Dichloroethene	5	0.75 U 0.5 U	0.75	U	0.75 L	38 25	U	0.75 0.5	U	0.75	U	0.75	U	0.75 0.5	U
1,1-Dichloroethene Vinyl chloride	2	0.5 U	1	U	0.5 L		U	0.5	U	1	U	0.5	U	1	U
Viriyi Chilonde	2	1 03	'	U	1 0	30	U	'	U	'	U		- 0		- 0
1,1,1,2-Tetrachloroethane	5	0.5 U	0.5	U	0.5 L	25	U	0.5	U	0.5	U	0.5	U	0.5	U
1,1,1-Trichloroethane	5	0.5 U	0.5	U	0.5 L	25	U	0.5	U	0.5	U	0.5	U	0.5	U
1,1,2,2-Tetrachloroethane	5	0.5 U	0.5	U	0.5 L	25	U	0.5	U	0.5	U	0.5	U	0.5	U
1,1,2-Trichloroethane	1	0.75 U	0.75	U	0.75 L	38	U	0.75	U	0.75	U	0.75	U	0.75	U
1,1-Dichloroethane	5	0.75 U	0.75	U	0.75 L	38	U	0.75	U	0.75	U	0.75	U	0.75	U
1,1-Dichloropropene	5	2.5 U	2.5	U	2.5 L	120	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2,3-Trichlorobenzene	5	2.5 U	2.5	U	2.5 L		U	2.5	U	2.5	U	2.5	U	2.5	U
1,2,3-Trichloropropane	0.04	5 U	5	U	5 L		U	5	U	5	U	5	U	5	U
1,2,4,5-Tetramethylbenzene	5	2 U	2	U	2 L	100	U	2	U	2	U	2	U	2	U
1,2,4-Trichlorobenzene	5	2.5 U	2.5	U	2.5 L		U	2.5	U	2.5	U	2.5	U	2.5	U
1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	5 0.04	2.5 U 2.5 U	2.5 2.5	U	2.5 L 2.5 L	120 120	U	2.5	U	2.5 2.5	U	2.5	U	2.5 2.5	U
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	0.004	2.5 U	2.5	U	2.5 L	100	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2-Dichlorobenzene	3	2.5 U	2.5	U	2.5 L		U	2.5	U	2.5	U	2.5	U	2.5	U
1,2-Dichloroethane	0.6	0.5 U	0.5	U	0.5 L		U	0.5	U	0.5	U	0.5	U	0.5	U
1,2-Dichloropropane	1	1.8 U	1.8	U	1.8 L	88	U	1.8	U	1.8	U	1.8	U	1.8	U
1,3,5-Trimethylbenzene	5	2.5 U	2.5	U	2.5 L		U	2.5	U	2.5	U	2.5	U	2.5	U
1,3-Dichlorobenzene	3	2.5 U	2.5	U	2.5 L		U	2.5	U	2.5	U	2.5	U	2.5	U
1,3-Dichloropropane	5	2.5 U	2.5	U	2.5 L	120	U	2.5	U	2.5	U	2.5	U	2.5	U
1,4-Dichlorobenzene	3	2.5 U	2.5	U	2.5 L	120	U	2.5	U	2.5	U	2.5	U	2.5	U
1,4-Diethylbenzene	NS	2 U	2	U	2 L	100	U	2	U	2	U	2	U	2	U
2,2-Dichloropropane	5	2.5 U	2.5	U	2.5 L	120	U	2.5	U	2.5	U	2.5	U	2.5	U
2-Butanone	50*	5 U	5	U	5 L		UJ	5	U	5	U	5	U	5	U
2-Hexanone	50*	5 U	5	U	5 L		U	5	U	5	U	5	U	5	U
4-Ethyltoluene	NS	2 U	2	U	2 L	100	U	2	U	2	U	2	U	2	U
4-Methyl-2-pentanone	NS FO*	5 U	5	U	5 L		U	5	U	5	U	5	U	5	U
Acetone	50* 5	5 U	5	U	5 L	250 250	U	5	U	5	U	5	U	5 5	U
Acrylonitrile Benzene	1	0.5 U	0.5	U	0.5 L		U	0.5	U	0.5	U	0.5	U	0.5	U
Bromobenzene	5	2.5 U	2.5	U	2.5 L		U	2.5	U	2.5	U	2.5	U	2.5	U
Bromochloromethane	5	2.5 U	2.5	U	2.5 L	120	U	2.5	U	2.5	U	2.5	U	2.5	U
Bromodichloromethane	50*	0.5 U	0.5	U	0.5 L		U	0.5	U	0.5	U	0.5	U	0.5	U
Bromoform	50*	2 U	2	U	2 L	100	U	2	U	2	U	2	U	2	U
Bromomethane	5	1 UJ	1	U	1 L	50	U	1	U	1	U	1	U	1	U
Carbon disulfide	NS	5 U	5	U	5 L	250	U	5	U	5	U	5	U	5	U
Carbon tetrachloride	5	0.5 U	0.5	U	0.5 L		U	0.5	U	0.5	U	0.5	U	0.5	U
Chlorobenzene	5	0.5 U	0.5	U	0.5 L	25	U	0.5	U	0.5	U	0.5	U	0.5	U
Chloroethane	5	1 U	1	U	1 L		U	1	U	1	U	1	U	1	U
Chloroform	7	0.75 U	0.75	U	0.75 L		U	0.75	U	0.75	U	0.75	U	0.75	U
Chloromethane	5	2.5 UJ	2.5	U	2.5 L		UJ	2.5	U	2.5	U	2.5	U	2.5	U
cis-1,3-Dichloropropene	0.4 50*	0.5 U	0.5	U	0.5 L	25 25	U	0.5 0.5	U	0.5	U	0.5	U	0.5 0.5	U
Dibromochloromethane Dibromomethane	50*	0.5 U	0.5	U	0.5 L		U	0.5 5	U	0.5 5	U	0.5	U	0.5 5	U
Dichlorodifluoromethane	5	5 UJ	5	U	5 L		UJ	5	U	5	U	5	U	5	U
Ethylbenzene	5	0.5 U	0.5	U	0.5 L		U	0.5	U	0.5	U	0.5	U	0.5	U
Hexachlorobutadiene	0.5	0.6 U	0.6	U	0.6 L		U	0.5	U	0.6	U	0.6	U	0.6	U
Isopropylbenzene	5	0.5 UJ	0.5	U	0.5 L		UJ	0.5	U	0.5	U	0.5	U	0.5	U
Methyl tert butyl ether	10	7.8	1	U	1 L		U	1.1	-	1	U	1	U	1	U
Methylene chloride	5	5 U	5	U	5 L		U	5	U	5	U	5	U	5	U
Naphthalene	10*	0.5 U	0.5	U	0.5 L	25	U	0.5	U	0.5	U	0.5	U	2.5	U
n-Butylbenzene	5	0.5 U	0.5	U	0.5 L	25	U	0.5	U	0.5	U	0.5	U	0.5	U
n-Propylbenzene	5	2.5 U	2.5	U	2.5 L		U	2.5	U	2.5	U	2.5	U	0.5	U
o-Chlorotoluene	5	2.5 U	2.5	U	2.5 L		U	2.5	U	2.5	U	2.5	U	2.5	U
o-Xylene	5	1 U	1	U	1 L		C	1	С	1	U	1	U	1	U
p/m-Xylene	5	2.5 U	2.5	U	2.5 L		U	2.5	U	2.5	U	2.5	U	1	U
p-Chlorotoluene	5	0.5 U	0.5	U	0.5 L		U	0.5	U	0.5	U	0.5	U	2.5	U
p-Isopropyltoluene	5	1 U	1 0.5	U	1 L		U	1	U	1	U	0.5	U	0.5	U
sec-Butylbenzene	5	0.5 U	0.5	U	0.5 L		U	0.5	U	0.5	U	0.5	U	0.5	U
Styrene tert-Butylbenzene	5	2.5 U	2.5	U	2.5 L		U	2.5	U	2.5	U	2.5	U	2.5	U
Toluene	5	0.75 U	0.75	U	1.1	38	U	0.75	U	0.75	U	0.75	U	0.75	U
	0.4	0.75 U	0.75	U	0.5 L		U	0.75	U	0.75	U	0.75	U	0.75	U
trans-1.3-Dichloropropene															
trans-1,3-Dichloropropene Trichlorofluoromethane	5	2.5 U	2.5	U	2.5 L	120	U	2.5	U	2.5	U	2.5	U	2.5	U

Notes:

All units are µg/L (ppb)

¹Class GA Ambient Water Quality Standard (AWQS), NY:

- * Guidance Value
- U Analyte not detected above the laboratory MDL
- J Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory M Yellow highlighting indicates exceedance of Ambient V Green highlighting indicates exceedence of Ambient V

LAB SAMPLE ID		L0911697		L0911697	
SAMPLING DATE		8/20/20	09	8/20/20	09
SAMPLE DEPTH (ft.) Volatile Organics by EPA 8260B					
Tetrachloroethene	5	0.5	U	0.5	l
Trichloroethene	5	0.5	U	0.5	l
cis-1,2-Dichloroethene	5	0.5	U	0.5	Į
trans-1,2-Dichloroethene	5	0.75	U	0.75	l
1,1-Dichloroethene	5	0.5	U	0.5	l
Vinyl chloride	2	1	U	1	Į
1,1,1,2-Tetrachloroethane	5	0.5	U	0.5	l .
1,1,1-Trichloroethane	5	0.5	U	0.5	- 1
.,.,=,=	5	0.5	U	0.5	ı
1,1,2-Trichloroethane 1.1-Dichloroethane	1 5	0.75 0.75	U	0.75	l
1,1-Dichloropropene	5	2.5	U	2.5	_
1,2,3-Trichlorobenzene	5	2.5	U	2.5	
1,2,3-Trichloropropane	0.04	5	U	5	
1,2,4,5-Tetramethylbenzene	5	2	U	2	
1,2,4-Trichlorobenzene	5	2.5	U	2.5	
1,2,4-Trimethylbenzene	5	2.5	U	2.5	-
1,2-Dibromo-3-chloropropane	0.04	2.5	U	2.5	-
1,2-Dibromoethane	0.0006	2	U	2	- 1
1,2-Dichlorobenzene	3	2.5	U	2.5	
1,2-Dichloroethane	0.6	0.5	U	0.5	
1,2-Dichloropropane	1	1.8	U	1.8	
1,3,5-Trimethylbenzene	5	2.5	U	2.5	
1,3-Dichlorobenzene	3	2.5	U	2.5	
1,3-Dichloropropane	5	2.5	U	2.5	
1,4-Dichlorobenzene	3	2.5	U	2.5	
1,4-Diethylbenzene	NS	2	U	2	
2,2-Dichloropropane	5	2.5	U	2.5	
2-Butanone 2-Hexanone	50* 50*	5 5	U	5	
I-Ethyltoluene	NS NS	2	U	2	
4-Methyl-2-pentanone	NS NS	5	U	5	
Acetone	50*	5	U	5	
Acrylonitrile	5	5	U	5	
Benzene	1	0.5	U	0.5	
Bromobenzene	5	2.5	U	2.5	
Bromochloromethane	5	2.5	U	2.5	
Bromodichloromethane	50*	0.5	U	0.5	
Bromoform	50*	2	U	2	
Bromomethane	5	1	U	1	
Carbon disulfide	NS	5	U	5	
Carbon tetrachloride	5	0.5	U	0.5	
Chlorobenzene	5	0.5	U	0.5	
Chloroethane	5	1	U	1	
Chloroform	7	0.75	U	0.75	
Chloromethane	5	2.5	U	2.5	
cis-1,3-Dichloropropene Dibromochloromethane	0.4	0.5	U	0.5	
Dibromocniorometnane Dibromomethane	50*	0.5	U	0.5	
Dichlorodifluoromethane	5	5 5	U	5	
thylbenzene	5	0.5	U	0.5	
Hexachlorobutadiene	0.5	0.6	U	0.6	
sopropylbenzene	5	0.5	U	0.5	
Methyl tert butyl ether	10	1	U	1	
Methylene chloride	5	5	U	5	
Vaphthalene	10*	2.5	U	2.5	
n-Butylbenzene	5	0.5	U	0.5	
n-Propylbenzene	5	0.5	U	0.5	
o-Chlorotoluene	5	2.5	U	2.5	
o-Xylene	5	1	U	1	
o/m-Xylene	5	1	U	1	
o-Chlorotoluene	5	2.5	U	2.5	
o-Isopropyltoluene	5	0.5	U	0.5	
ec-Butylbenzene	5	0.5	U	0.5	
Styrene	5	1	U	1	
ert-Butylbenzene	5	2.5	U	2.5	
oluene	5	0.75	U	0.75	
rans-1,3-Dichloropropene	0.4	0.5	U	0.5	
richlorofluoromethane	5	2.5	U	2.5	
Vinyl acetate	NS				

Notes:

All units are µg/L (ppb)

'Class GA Ambient Water Quality Standard (AWQS), NY!

- * Guidance Value
- U Analyte not detected above the laboratory MDL
- J Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory M Yellow highlighting indicates exceedance of Ambient V Green highlighting indicates exceedence of Ambient V

SAMPLE ID	AWQS'	MW-1		MW-2		MW-4		MW-5		MW-6		DIFFW-01		SW-01	
LAB SAMPLE ID								L0814755-0				L0814755-07		L0814991-0	
Sampling date Sample depth (ft.)		10/3/20	US	10/3/200	18	10/3/200	18	10/6/200	8	10/6/200	38	10/6/2008		10/7/2008	3
Semivolatile Organics by EPA 8270C 1,2,4,5-Tetrachlorobenzene	5	20	U	20	U	20	U	19	U	19	U	19	U	4.9	U
1,2,4-Trichlorobenzene	5	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U		U	4.9	U
1,2-Dichlorobenzene 1,3-Dichlorobenzene	3	4.9 4.9	U	4.9 4.9	U	4.9	U	4.8 4.8	U	4.8	U		U U	4.9 4.9	U
1,4-Dichlorobenzene	3	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U		U	9.8	U
2,4,5-Trichlorophenol	1	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U		U	9.8	U
2,4,6-Trichlorophenol 2,4-Dichlorophenol	1	4.9 9.8	U	4.9 9.8	U	4.9 9.9	U	4.8 9.7	U	4.8 9.7	U		U	4.9 9.8	U
2,4-Dimethylphenol	1	9.8	U	9.8	U	9.9	U	9.7	U	9.7	U		U	29	U
2,4-Dinitrophenol 2,4-Dinitrotoluene	1 5	29 5.9	U	29 5.9	υ	30 5.9	U	29 5.8		29 5.8			U	4.9	U
2,6-Dinitrotoluene	5	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U		U	5.9	U
2-Chloronaphthalene	10*	5.9	U	5.9	U	5.9	U	5.8	U	5.8	U		U	4.9	U
2-Chlorophenol 2-Methylnaphthalene	NS NS	5.9	U	5.9 4.9	U	5.9 4.9	U	5.8 4.8	U	5.8 4.8	U		U	4.9	U
2-Methylphenol	NS	5.9	U	5.9	U	5.9	U	5.8	U	5.8	U	5.7	U	15	U
2-Nitroaniline 2-Nitrophenol	5 1	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U		U	4.9	U
3,3'-Dichlorobenzidine	5	49	U	49	U	49	U	48	U	48	U		U	9.8	U
3-Methylphenol/4-Methylphenol	NS	5.9	U	5.9	U	5.9	U	5.8	U	5.8	U		U	4.9	U
3-Nitroaniline 4,6-Dinitro-o-cresol	5 NS	4.9 20	U	4.9	U	4.9	U	4.8	U	4.8	U		U U	4 9	U
4-Bromophenyl phenyl ether	NS	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U	4.8	U	5.9	U
4-Chloroaniline	5 NS	4.9 4.9	U	4.9 4.9	U	4.9	U	4.8	U	4.8	U		U U	4.9 5.9	U
4-Chlorophenyl phenyl ether 4-Nitroaniline	NS 5	6.8	U	6.8	U	6.9	U	6.8	U	4.8 6.8	U		U	4.9	U
4-Nitrophenol	1	9.8	U	9.8	U	9.9	U	9.7	U	9.7	U		U	6.8	U
Acenaphthene Acenaphthylene	20* NS	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U		U	20 4.9	U
Acetophenone	NS	20	U	20	U	20	U	19	U	19	U	19	U	4.9	U
Anthracene Benzo(a)anthracene	50* 0.002*	4.9 4.9	U	4.9 4.9	U	4.9 4.9	U	4.8 4.8	U	4.8	U		U	49 4.9	U
Benzo(a)pyrene	0.002*	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U		U	4.9	U
Benzo(b)fluoranthene	0.002*	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U	4.8	U	4.9	U
Benzo(ghi)perylene Benzo(k)fluoranthene	NS 0.002*	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U		U	9.8	U
Benzoic Acid	0.002 NS	49	U	49	U	49	U	48	U	48	U		UJ.	4.9	U
Benzyl Alcohol	NS	9.8	U	9.8	U	9.9	U	9.7	U	9.7	U		U	6.8	U
Biphenyl Bis(2-chloroethoxy)methane	5 5	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U		U	4.9 5.9	U
Bis(2-chloroethyl)ether	1	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U		U	4.9	U
Bis(2-chloroisopropyl)ether	NS	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U		U	4.9	U
Bis(2-Ethylhexyl)phthalate Butyl benzyl phthalate	5 50*	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U		U	6.8	U
Carbazole	NS	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U		U	4.9	U
Chrysene Dibenzo(a,h)anthracene	0.002* NS	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U		U U	4.9	U
Dibenzofuran	NS	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U	4.8	U	4.9	U
Diethyl phthalate	50* 50*	4.9	U	4.9 4.9	υ	4.9	U	4.8		4.8			U U	4.9	U
Dimethyl phthalate Di-n-butylphthalate	50	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U		U	9.8	U
Di-n-octylphthalate	50*	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U		U	4.9	U
Fluoranthene Fluorene	50* 50*	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U		U	4.9	U
Hexachlorobenzene	0.04	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U	4.8	U	4.9	U
Hexachlorobutadiene Hexachlorocyclopentadiene	0.5 5	9.8 29	U	9.8	U	9.9	U	9.7	U	9.7	U		IJ	4.9	U
Hexachloroethane	5	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U		U	49	U
Indeno(1,2,3-cd)Pyrene	0.002*	6.8	U	6.8	U	6.9	U	6.8	U	6.8	U		U	4.9	U
Isophorone Naphthalene	50* 10*	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U		U U	5.9 4.9	U
Nitrobenzene	0.4	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U	4.8	U	20	U
NitrosoDiPhenylAmine(NDPA)/DPA	50* NS	15 4.9	U	15 4.9	U	15 4.9	U	14	U	14 4.8	U		U	4.9	U
n-Nitrosodi-n-propylamine P-Chloro-M-Cresol	NS NS	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U		U	4.9	U
Pentachlorophenol	1	9.8	U	9.8	U	9.9	U	9.7	U	9.7	U		U	4.9	U
Phenanthrene Phenol	50* 1	4.9 6.8	U	4.9 6.8	U	4.9 6.9	U	4.8	U	4.8	U		U	4.9	U
Pyrene	50*	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U		U	4.9	U
Semivolatile Organics by EPA 8270C-SI 2-Chloronaphthalene	M 10*	0.2	U	0.2	U	0.2	U	0.19	U	0.19	U	0.19	U	0.19	U
2-Methylnaphthalene	NS NS	0.2	U	0.2	U	0.2	U	0.19	U	0.19	U		U	0.19	U
Acenaphthene	20*	0.2	U	0.2	U	0.2	U	0.19	U	0.19	U	0.19	U	0.19	U
Acenaphthylene Anthracene	NS 50*	0.2	U	0.2	U	0.2	U	0.19	U	0.19	U		U	0.19	U
Benzo(a)anthracene	0.002*	0.2	U	0.2	U	0.2	U	0.19	U	0.19	U		U	0.19	U
Benzo(a)pyrene	0.002*	0.2	U	0.2	U	0.2	U	0.19	U	0.19	U		U	0.19	U
Benzo(b)fluoranthene Benzo(ghi)perylene	0.002* NS	0.2	U	0.2	U	0.2	U	0.19	U	0.19	U		U	0.19	U
Benzo(k)fluoranthene	0.002*	0.2	U	0.2	U	0.2	U	0.19	U	0.19	U		U	0.19	U
Chrysene	0.002*	0.2	U	0.2	U	0.2	U	0.19	U	0.19	U		U	0.19	U
Dibenzo(a,h)anthracene	NS 50*	0.2	U	0.2	U	0.2	U	0.19	= =	0.19	= =		U	0.48	U
Fluoranthene Fluorene	50* 50*	0.2	U	0.2	U	0.2	U	0.19	U	0.19	U		U U	0.19	U
Hexachlorobenzene	0.04	0.78	U	0.78	U	0.79	U	0.78	U	0.78	U	0.76	U	0.19	U
Hexachlorobutadiene	0.5	0.49	U	0.49	U	0.49	U	0.48	U	0.48	U		U	0.19	U
Hexachloroethane Indeno(1,2,3-cd)Pyrene	5 0.002*	0.78	U	0.78	U	0.79	U	0.78	U	0.78	U		U	0.19	U
Naphthalene	10*	0.2	U	0.2	U	0.2	U	0.19	U	0.19	U	0.19	U	0.19	U
Pentachlorophenol	1	0.78	U	0.78	U	0.79	U	0.78	U	0.78	U		U	0.78	U
Phenanthrene Pyrene	50* 50*	0.2	U	0.2	U	0.2	U	0.19	U	0.19	U		U	0.78	U
, your	30	U.Z	U	U.Z	U	U.Z	U	0.19	U	J. 19	U	0.19	J	U.19	U

'Class GA Ambient Water Quality Standard (AWGS), NYSDEC Technical and Operation

Guidance Value

U - Analyte not detected above the laboratory MDL

J - Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory MDL

Vellow highlighting indicates exceedance of Ambient Water Quality Standard

Green highlighting indicates exceedence of Ambient Water Quality Guidance Value

Notes:
All units are µg/L (ppb)

'Class GA Ambient Water Quality Standard (AWQS), NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater I

Table 14 Groundwater Sample Analytical Data Summary Pesticides/PCBs/Metals Former Darby Drugs Distribution Center

SAMPLE ID	AWQS'	MW-1	MW-2	MW-4	MW-5	MW-6	DIFFW-01	SW-01	SW-01	MW-4	MW-5	MW-6	DW-1
LAB SAMPLE ID		L0814755-02	L0814755-03	L0814755-04	L0814755-05	L0814755-06	L0814755-07	L0814991-02 R1	L0911697-05	L0911697-10	L0911697-09	L0911697-06	L0911697-08
SAMPLING DATE		10/3/2008	10/3/2008	10/3/2008	10/6/2008	10/6/2008	10/6/2008	10/7/2008	8/20/2009	8/20/2009	8/20/2009	8/20/2009	8/20/2009
SAMPLE DEPTH (ft.)													
Organochlorine Pesticides by EPA 8081	Α												
4,4'-DDD	0.3	0.041 U	0.04 U	0.046 U	0.043 U	0.041 U	0.043 U	0.206 U	NA	NA	NA	NA	NA
4,4'-DDE	0.2	0.041 U	0.04 U	0.046 U	0.043 U	0.041 U	0.043 U	0.206 U	NA	NA	NA	NA	NA
4,4'-DDT	0.2	0.041 U	0.04 U	0.046 U	0.043 U	0.041 U	0.043 U	0.206 U	NA	NA	NA	NA	NA
Aldrin	NS	0.021 U	0.02 U	0.023 U	0.021 U	0.021 U	0.021 U	0.103 U	NA	NA	NA	NA	NA
Alpha-BHC	0.01	0.021 U	0.02 U	0.023 U	0.021 U	0.021 U	0.021 U	0.206 U	NA	NA	NA	NA	NA
Beta-BHC	0.04	0.021 U	0.02 U	0.023 U	0.021 U	0.021 U	0.021 U	0.103 U	NA	NA	NA	NA	NA
Chlordane	0.05	0.206 U	0.2 U	0.228 U	0.213 U	0.206 U	0.213 U	0.103 U	NA	NA	NA	NA	NA
Delta-BHC	0.04	0.021 U	0.02 U	0.023 U	0.021 U	0.021 U	0.021 U	0.206 U	NA	NA	NA	NA	NA
Dieldrin	0.004	0.041 U	0.04 U	0.046 U	0.043 U	0.041 U	0.043 U	0.103 U	NA	NA	NA	NA	NA
Endosulfan I	NS	0.021 U	0.02 U	0.023 U	0.021 U	0.021 U	0.021 U	0.206 U	NA	NA	NA	NA	NA
Endosulfan II	NS	0.041 U	0.04 U	0.046 U	0.043 U	0.041 U	0.043 U	0.103 U	NA	NA	NA	NA	NA
Endosulfan sulfate	NS	0.041 U	0.04 U	0.046 U	0.043 U	0.041 U	0.043 U	0.103 U	NA	NA	NA	NA	NA
Endrin	NS	0.041 U	0.04 U	0.046 U	0.043 U	0.041 U	0.043 U	0.103 U	NA	NA	NA	NA	NA
Endrin ketone	5	0.041 U	0.04 U	0.046 U	0.043 U	0.041 U	0.043 U	0.206 U	NA	NA	NA	NA	NA
Heptachlor	0.04	0.021 U	0.02 U	0.023 U	0.021 U	0.021 U	0.021 U	0.103 U	NA	NA	NA	NA	NA
Heptachlor epoxide	0.03	0.021 U	0.02 U	0.023 U	0.021 U	0.021 U	0.021 U	1.03 U	NA	NA	NA	NA	NA
Lindane	0.05	0.021 U	0.02 U	0.023 U	0.021 U	0.021 U	0.021 U	0.206 U	NA	NA	NA	NA	NA
Methoxychlor	35	0.206 U	0.2 U	0.228 U	0.213 U	0.206 U	0.213 U	0.103 U	NA	NA	NA	NA	NA
trans-Chlordane	NS	0.021 U	0.02 U	0.023 U	0.021 U	0.021 U	0.021 U	1.03 U	NA	NA	NA	NA	NA
Polychlorinated Biphenyls by EPA 8082													
Aroclor 1016	0.09	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	NA	NA	NA	NA	NA
Aroclor 1221	0.09	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	NA	NA	NA	NA	NA
Aroclor 1232	0.09	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	NA	NA	NA	NA	NA
Aroclor 1242	0.09	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	NA	NA	NA	NA	NA
Aroclor 1248	0.09	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	NA	NA	NA	NA	NA
Aroclor 1254	0.09	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	NA	NA	NA	NA	NA
Aroclor 1260	0.09	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	NA	NA	NA	NA	NA
Total Metals	NC	100.000	(20	10.000	F0 000	100 000	2.100	140	0.10	0.10	0.10	0.10	0.10
Aluminum Antimony	NS 3	190,000 50 U	630 50 U	10,000 50 U	58,000 50 U	190,000 50 U	2,100 50 U	140 50 U	0.10 U 0.050 U	0.10 U 0.050 U	0.10 U 0.050 U	0.10 U 0.050 U	
Arsenic	25	291	7	50	40	177	100 U	10 U	0.005 U	0.005 U	0.005 U	0.005 U	
Barium	1000	576	10 U	39	158	428	62	19	0.003	0.005	0.005 U	0.003 U	0.005
Beryllium	3*	8	5 U	5 U	5 U	13	5 U	5 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Cadmium	5	11	5 U	5 U	5 U	13	9	5 U	0.005 U	0.005 U	0.005 U	0.005 U	
Calcium	NS	57,000	13,000	17,000	18.000	49,000	20.000	14,000	15	19	6.6	14	11
Chromium	50	400	10 U	20	120	380	40	10 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Cobalt	NS	198	20 U	20 U	44	184	34	20 U	0.020 U				
Copper	200	312	10 U	11	113	333	726	104	0.061	0.010 U	0.010 U	0.010 U	0.010 U
Iron	300	360,000	11,000	150,000	160,000	520,000	340,000	39,000	0.05 U	17	0.05 U	0.09	0.05 U
Lead	25	394	10 U	15	349	254	12	20	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
Magnesium	35000*	54,000	2,600	16,000	24,000	78,000	15,000	12,000	9.2	15	3.0	4.8	5.0
Manganese	300	5,130	280	795	1,330	6,810	4,740	366	0.404	0.818	0.162	0.417	0.055
Mercury	0.7	2.7	0.2 U	0.2 U	0.8	1.1	0.2	0.2 U	0.0002 U				
Nickel	100	341	25 U	25 U	110	420	25 U	25 U	0.025 U	0.025 U	0.025 U	0.025 U	
Potassium	NS	16,000	2,500 U	3,800	7,300	21,000	4,200	3,000	2.5	2.5 U	2.5 U	2.5 U	3.5
Selenium	10	10 U	10 U	10 U	10 U	10 U	10 U	10 U	0.010 U				
Silver	50	7 U	7 U	7 U	7 U	7 U	7 U	7 U	0.007 U	0.007 U	0.007 U	0.007 U	
Sodium	20000	15,000	2,000 U	30,000	7,000	7,500	25,000	29,000	24	35	7.7	6.6	20
Thallium	0.5*	20 U	20 U	20 U	20 U	20 U	20 U	20 U	0.020 U				
Vanadium	NS	602	10 U	30	194	679	10 U	10 U	0.010 U				
Zinc	2000*	1,320	50 U	217	740	1,700	670	87	0.412	0.050 U	0.050 U	0.050 U	0.050 U

Notes:

All units are µg/L (ppb)

1 Class GA Ambient Water Quality Standard (AWQS), NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998

U - Analyte not detected above the laboratory MDL

NS - No standard established

NA- Not analyzed

Bold text indicates compounds above the laboratory MDL

Yellow highlighting indicates exceedance of Ambient Water Quality Standard

Green highlighting indicates exceedence of Ambient Water Quality Guidance Value

^{*} Guidance Value

J - Estimated value

SAMPLE ID LAB SAMPLE ID	AWQS'	PWG-VP-200 L0812904-		PWG-VP-200 L0812904-		PWG-VP-20		PWG-VP-200 L0812904-		PWG-VP-20	
Sampling date		8/29/200	18	8/29/200	8	8/29/200	08	8/29/200	8	8/29/20	08
Sample Depth (ft.)		16-20		36-40		56-60		76-80		96-100	
Volatile Organics by EPA 8260B											
Tetrachloroethene	5	13		13		46		100		200	J
Trichloroethene cis-1,2-Dichloroethene	5	4.3 1.2		0.5	U	5.6 0.5	U	0.82		40 14	J
trans-1,2-Dichloroethene	5	0.75	U	0.75	U	0.75	U	0.62	U	1.5	UJ
1,1-Dichloroethene	5	0.75	U	0.5	U	0.5	U	0.75	U	1.5	UJ
Vinyl chloride	2	1	U	1	U	1	U	1	U	2	UJ
	•										
1,1,1,2-Tetrachloroethane	5	0.5	U	0.5	U	0.5	U	0.5	U	1	UJ
1,1,1-Trichloroethane	5	0.5	U	0.5	U	0.5	U	0.5	U	1	UJ
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	5	0.5 0.75	U	0.5	U	0.5	U	0.5	U	1 1.5	UJ
1,1-Dichloroethane	5	1.0	U	0.75	U	0.75	U	0.75	U	1.5	UJ
1,1-Dichloropropene	5	2.5	U	2.5	U	2.5	U	2.5	U	5	UJ
1,2,3-Trichlorobenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	5	UJ
1,2,3-Trichloropropane	0.04	5	U	5	U	5	U	5	U	10	UJ
1,2,4,5-Tetramethylbenzene	5	2	U	2	U	2	U	2	U	4	UJ
1,2,4-Trichlorobenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	5	UJ
1,2,4-Trimethylbenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	5	UJ
1,2-Dibromo-3-chloropropane	0.04	2.5	U	2.5	U	2.5	U	2.5	U	5	UJ
1,2-Dibromoethane 1,2-Dichlorobenzene	0.0006	2 2.5	U	2.5	U	2.5	U	2.5	U	4 5	UJ
1,2-Dichloropenzene 1,2-Dichloroethane	0.6	0.5	U	0.5	U	0.5	U	0.5	U	1	UJ
1,2-Dichloropropane	1	1.8	U	1.8	U	1.8	U	1.8	U	3.5	UJ
1,3,5-Trimethylbenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	5	UJ
1,3-Dichlorobenzene	3	2.5	U	2.5	U	2.5	U	2.5	U	5	UJ
1,3-Dichloropropane	5	2.5	U	2.5	U	2.5	U	2.5	U	5	UJ
1,4-Dichlorobenzene	3	2.5	U	2.5	U	2.5	U	2.5	U	5	UJ
1,4-Diethylbenzene	NS	2	U	2	U	2	U	2	U	4	UJ
2,2-Dichloropropane	5	2.5	U	2.5	U	2.5	U	2.5	U	5	UJ
2-Butanone	50°	10	U	16	U	5	U	5	U	10 10	UJ
2-Hexanone 4-Ethyltoluene	NS	2	U	2	U	2	U	2	U	4	UJ
4-Methyl-2-pentanone	NS NS	5	U	5	U	5	U	5	U	10	UJ
Acetone	50*	13		11		5	U	12		32	J
Acrylonitrile	5	5	U	5	U	5	U	5	U	10	UJ
Benzene	1	0.5	U	0.5	U	0.5	U	0.5	U	1	UJ
Bromobenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	5	UJ
Bromochloromethane	5	2.5	U	2.5	U	2.5	U	2.5	U	5	UJ
Bromodichloromethane	50*	0.5	U	0.5	U	0.5	U	0.5	U	1	UJ
Bromoform	50*	2	U	2	U	2	U	2	U	4	UJ
Bromomethane Carbon disulfide	5 NS	1 5	U	5	U	5	U	5	U	2 10	UJ
Carbon tetrachloride	5	0.5	U	0.5	U	0.5	U	0.5	U	10	UJ
Chlorobenzene	5	0.5	U	0.5	U	0.5	U	0.5	U	1	UJ
Chloroethane	5	1	U	1	U	1	U	1	U	2	UJ
Chloroform	7	0.75	U	0.75	U	0.75	U	0.75	U	1.5	UJ
Chloromethane	5	2.5	U	2.5	U	2.5	U	2.5	U	5	UJ
cis-1,3-Dichloropropene	0.4	0.5	U	0.5	U	0.5	U	0.5	U	1	UJ
Dibromochloromethane	50*	0.5	U	0.5	U	0.5	U	0.5	U	1	UJ
Dibromomethane	5	5	U	5	U	5	U	5	U	10	UJ
Dichlorodifluoromethane Ethylbenzene	5	5 0.5	U	5 0.5	U	5 0.5	U	5 0.5	U	10	UJ UJ
Hexachlorobutadiene	0.5	0.6	U	0.6	U	0.6	U	0.6	U	1.2	UJ
Isopropylbenzene	5	0.5	U	0.5	U	0.6	U	0.5	U	1.2	UJ
Methyl tert butyl ether	10	1	U	1	U	1	U	1.1		2	UJ
Methylene chloride	5	5	U	5	U	5	U	5	U	10	UJ
Naphthalene	10*	2.5	U	2.5	U	2.5	U	2.5	U	5	UJ
n-Butylbenzene	5	0.5	U	0.5	U	0.5	U	0.5	U	1	UJ
n-Propylbenzene	5	0.5	U	0.5	U	0.5	U	0.5	U	1	UJ
o-Chlorotoluene	5	2.5	U	2.5	U	2.5	U	2.5	U	5	UJ
o-Xylene	5	1	U	1	U	1 1	U	1	U	2	UJ
p/m-Xylene p-Chlorotoluene	5	2.5	U	2.5	U	2.5	U	2.5	U	5	UJ
p-Isopropyltoluene	5	0.5	U	0.5	U	0.5	U	0.5	U	1	UJ
sec-Butylbenzene	5	0.5	U	0.5	U	0.5	U	0.5	U	1	UJ
Styrene	5	1	U	1	U	1	U	1	U	2	UJ
tert-Butylbenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	5	UJ
Toluene	5	0.75	U	0.75	U	0.75	U	0.75	U	1.5	UJ
trans-1,3-Dichloropropene	0.4	0.5	U	0.5	U	0.5	U	0.5	U	1	UJ
Trichlorofluoromethane	5	2.5	U	2.5	U	2.5	U	2.5	U	5	UJ
Vinyl acetate	NS	5	U	5	U	5	U	5	U	10	UJ

All units are µg/L (ppb)

'Class GA Ambient Water Quality Standard (AWQS), NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1, Ambient Water Quality Standards and

- * Guidance Value
- U Analyte not detected above the laboratory MDL
- J Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory MDL

Yellow highlighting indicates exceedance of Ambient Water Quality Standard

Green highlighting indicates exceedence of Ambient Water Quality Guidance Value

SAMPLE ID LAB SAMPLE ID SAMPLING DATE		PWG-VP-20					08-02			PWG-VP-20	
		L0812904		L0812904-	08-02 -04	L0812904		PWG-VP-20 L0812904		L0812904	
		8/28/200	08	8/28/200	8	8/28/20	38	8/28/20	08	8/28/20	08
Sample Depth (ft.)		16-20		36-40		56-60		76-80		96-100	
Volatile Organics by EPA 8260B											
Tetrachloroethene	5	210		5,800		420	J	21		280	J
Trichloroethene	5	14		98		51	J	1.6		29	J
cis-1,2-Dichloroethene	5	500		50	U	210	J	7.5		110	J
trans-1,2-Dichloroethene 1,1-Dichloroethene	5	7.9 2.5	U	75 50	U	5.7 1.2	J	1.5	U	1.5	UJ
Vinyl chloride	2	100	Ü	100	U	4.7	J	2	U	2	UJ
1,1,1,2-Tetrachloroethane	5	2.5	U	50	U	1.2	UJ	1	U	1	UJ
1,1,1-Trichloroethane	5	2.5	U	50	U	1.2	UJ	1	U	1	UJ
1,1,2,2-Tetrachloroethane	5	2.5	U	50	U	1.2	UJ	1	U	1	UJ
1,1,2-Trichloroethane	1	3.8	U	75	U	1.9	UJ	1.5	U	1.5	UJ
1,1-Dichloroethane	5	3.8	U	75	U	1.9	UJ	1.5	U	1.5	UJ
1,1-Dichloropropene 1,2,3-Trichlorobenzene	5	12 12	U	250 250	U	6.2	UJ	5	U	5	UJ UJ
1,2,3-Trichloropenzene	0.04	25	UJ	500	U	12	UJ	10	U	10	UJ
1,2,4,5-Tetramethylbenzene	5	10	U	200	U	5	UJ	4	U	4	UJ
1,2,4-Trichlorobenzene	5	12	U	250	U	6.2	UJ	5	U	5	UJ
1,2,4-Trimethylbenzene	5	12	U	250	U	6.2	UJ	5	U	5	UJ
1,2-Dibromo-3-chloropropane	0.04	12	U	250	U	6.2	UJ	5	U	5	UJ
1,2-Dibromoethane	0.0006	10	U	200	U	5	UJ	4	U	4	UJ
1,2-Dichlorobenzene	3	12	U	250	U	6.2	UJ	5	U	5	UJ
1,2-Dichloroethane	0.6	2.5	U	50	U	1.2	UJ	1	U	1	UJ
1,2-Dichloropropane	1	8.8	U	180	U	4.4	UJ	3.5	U	3.5	UJ
1,3,5-Trimethylbenzene	5	12	U	250	U	6.2	UJ	5	U	5	UJ UJ
1,3-Dichlorobenzene 1,3-Dichloropropane	3 5	12 12	U	250 250	U	6.2	UJ	5	U	5	UJ
1,4-Dichlorobenzene	3	12	U	250	U	6.2	UJ	5	U	5	UJ
1,4-Diethylbenzene	NS	10	U	200	U	5	UJ	4	U	4	UJ
2,2-Dichloropropane	5	12	U	250	U	6.2	UJ	5	U	5	UJ
2-Butanone	50*	25	U	500	U	12	UJ	21		10	UJ
2-Hexanone	50*	25	U	500	U	12	UJ	10	U	10	UJ
4-Ethyltoluene	NS	10	U	200	U	5	UJ	4	U	4	UJ
4-Methyl-2-pentanone	NS	25	U	500	U	12	UJ	10	U	10	UJ
Acetone	50*	28		500	U	23	J	71		36	J
Acrylonitrile	5	25 2.5	U	500 50	U	12	UJ	10	U	10	UJ
Benzene Bromobenzene	5	12	U	250	U	6.2	UJ	1 5	U	1 5	UJ
Bromochloromethane	5	12	U	250	U	6.2	UJ	5	U	5	UJ
Bromodichloromethane	50*	2.5	U	50	U	1.2	UJ	1	U	1	UJ
Bromoform	50*	10	U	200	U	5	UJ	4	U	4	UJ
Bromomethane	5	5	UJ	100	U	2.5	UJ	2	U	2	UJ
Carbon disulfide	NS	25	U	500	U	12	UJ	10	U	10	UJ
Carbon tetrachloride	5	2.5	U	50	U	1.2	UJ	1	U	1	UJ
Chlorobenzene	5	2.5	U	50	U	1.2	UJ	1	U	1	UJ
Chloroethane Chloroform	5 7	5	U	100	U	2.5	UJ	2	U	2	UJ UJ
Chloromethane	5	3.8 12	UJ	75 250	U	6.2	UJ	1.5	U	1.5 5	UJ
cis-1,3-Dichloropropene	0.4	2.5	U	50	U	1.2	UJ	1	U	1	UJ
Dibromochloromethane	50*	2.5	U	50	U	1.2	UJ	1	U	1	UJ
Dibromomethane	5	25	U	500	U	12	UJ	10	U	10	UJ
Dichlorodifluoromethane	5	25	U	500	U	12	UJ	10	U	10	UJ
Ethylbenzene	5	2.5	U	50	U	1.2	UJ	1	U	1	UJ
Hexachlorobutadiene	0.5	3	U	60	U	1.5	UJ	1.2	U	1.2	UJ
Isopropylbenzene	5	2.5	UJ	50	U	1.2	UJ	1	U	1	UJ
Methyl tert butyl ether	10	5	U	100	U	2.5	UJ	2	U	2	UJ
Methylene chloride	5	25 12	U	500	U	12	UJ UJ	10 5	U	10 5	רח רח
Naphthalene n-Butylbenzene	10* 5	2.5	U	250 50	U	6.2 1.2	UJ	1	U	1	UJ
n-Propylbenzene	5	2.5	U	50	U	1.2	UJ	1	U	1	UJ
o-Chlorotoluene	5	12	U	250	U	6.2	UJ	5	U	5	UJ
o-Xylene	5	5	U	100	U	2.5	UJ	2	U	2	UJ
p/m-Xylene	5	5	U	100	U	2.5	UJ	2	U	2	UJ
p-Chlorotoluene	5	12	U	250	U	6.2	UJ	5	U	5	UJ
p-IsopropyItoluene	5	2.5	U	50	U	1.2	UJ	1	U	1	UJ
sec-Butylbenzene	5	2.5	U	50	U	1.2	UJ	1	U	1	UJ
Styrene	5	5	U	100	U	2.5	UJ	2	U	2	UJ
	5	12	U	250	U	6.2	UJ	5	U	5	LUJ LUJ
tert-Butylbenzene					- 11						
Toluene	5	3.8	U	75 50		1.9		1.5	- 11	1.5	
-	5 0.4 5	3.8 2.5 12	U	50 250	U	1.2	N)	1 5	U	1 5	UJ UJ

Notes:

All units are µg/L (ppb)

'Class GA Ambient Water Quality Standard (AWQS), NY:Guidance Values and Groundwater Effluent Limitations, June 1998

- * Guidance Value
- U Analyte not detected above the laboratory MDL
- J Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory M

Yellow highlighting indicates exceedance of Ambient $\mbox{\tt W}$

SAMPLE ID LAB SAMPLE ID SAMPLING DATE	AWQS'	PWG-VP-200 L0812845	-06	PWG-VP-200 L0812845-		PWG-VP-20 L0812845 8/27/200	-08	PWG-VP-200 L0812845		PWG-VP-20 L0812904	-02
Sampling date Sample Depth (ft.)		8/27/200 16-20	18	8/27/200 36-40	18	8/2//200 56-60	38	8/27/200 76-80	18	8/28/200 96-100	
Volatile Organics by EPA 8260B											
Tetrachloroethene	5	28		24		91		21		27	J
Trichloroethene cis-1,2-Dichloroethene	5	1.2		0.5	U	2.6 8.3		0.5 1.2	U	1.3 8.8	J
trans-1,2-Dichloroethene	5	0.75	U	0.75	U	0.75	U	0.75	U	0.75	UJ
1,1-Dichloroethene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	UJ
Vinyl chloride	2	1	U	1	U	1	U	1	U	1	UJ
T											
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	UJ
1,1,2,2-Tetrachloroethane	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	UJ
1,1,2-Trichloroethane	1	0.75	U	0.75	U	0.75	U	0.75	U	0.75	UJ
1,1-Dichloroethane	5	0.75	U	0.75	U	0.75	U	0.75	U	0.75	UJ
1,1-Dichloropropene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	UJ
1,2,3-Trichlorobenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	UJ
1,2,3-Trichloropropane 1,2,4,5-Tetramethylbenzene	0.04 5	5 2	U	5	U	5	U	5	U	5	UJ UJ
1,2,4-Trichlorobenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	UJ
1,2,4-Trimethylbenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	UJ
1,2-Dibromo-3-chloropropane	0.04	2.5	U	2.5	U	2.5	U	2.5	U	2.5	UJ
1,2-Dibromoethane	0.0006	2	U	2	U	2.	U	2	U	2	UJ
1,2-Dichlorobenzene	3	2.5	U	2.5	U	2.5	U	2.5	U	2.5	UJ
1,2-Dichloroethane 1,2-Dichloropropane	0.6	0.5 1.8	U	0.5	U	0.5	U	0.5	U	0.5	UJ
1,3,5-Trimethylbenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	UJ
1,3-Dichlorobenzene	3	2.5	U	2.5	U	2.5	U	2.5	U	2.5	UJ
1,3-Dichloropropane	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	UJ
1,4-Dichlorobenzene	3	2.5	U	2.5	U	2.5	U	2.5	U	2.5	UJ
1,4-Diethylbenzene	NS	2	U	2	U	2	U	2	U	2	UJ
2,2-Dichloropropane	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	UJ
2-Butanone 2-Hexanone	50* 50*	6.4 5	U	5	U	5	U	5	U	5	UJ UJ
4-Ethyltoluene	NS NS	2	U	2	U	2	U	2	U	2	UJ
4-Methyl-2-pentanone	NS	5	U	5	U	5	U	5	U	5	UJ
Acetone	50*	26		5	U	5	U	5	U	7.1	J
Acrylonitrile	5	5	U	5	U	5	U	5	U	5	UJ
Benzene	1	0.5	U	0.5	U	0.69		0.5	U	0.5	UJ
Bromobenzene Bromochloromethane	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	UJ UJ
Bromodichloromethane	5 50*	0.5	U	0.5	U	0.5	U	0.5	U	0.5	UJ
Bromoform	50*	2	U	2	U	2	U	2	U	2	UJ
Bromomethane	5	1	U	1	U	1	U	1	U	1	UJ
Carbon disulfide	NS	5	U	5	U	5	U	5	U	5	UJ
Carbon tetrachloride	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	UJ
Chlorobenzene Chloroethane	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	UJ
Chloroform	7	0.75	U	0.75	U	0.75	U	0.75	U	0.75	UJ
Chloromethane	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	UJ
cis-1,3-Dichloropropene	0.4	0.5	U	0.5	U	0.5	U	0.5	U	0.5	UJ
Dibromochloromethane	50*	0.5	U	0.5	U	0.5	U	0.5	U	0.5	UJ
Dibromomethane	5	5	U	5	U	5	U	5	U	5	UJ
Dichlorodifluoromethane	5	5	U	5	U	5	U	5	U	5	UJ
Ethylbenzene Hexachlorobutadiene	5 0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	UJ
Isopropylbenzene	5	0.5	U	0.5	U	0.88	-	1.3		0.5	UJ
Methyl tert butyl ether	10	1	U	1	U	5.5		1	U	1	UJ
Methylene chloride	5	5	U	5	U	5	U	5	U	5	UJ
Naphthalene	10*	2.5	U	2.5	U	2.5	U	2.5	U	2.5	UJ
n-Butylbenzene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	UJ
n-Propylbenzene o-Chlorotoluene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	UJ
o-Xylene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	UJ
p/m-Xylene	5	1	U	1	U	1	U	1	U	1	UJ
p-Chlorotoluene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	UJ
p-Isopropyltoluene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	UJ
	5	0.5	U	1.3		0.5	U	1.2		0.5	UJ
sec-Butylbenzene			U	1	U	1	U	1	U	1	UJ
Styrene	5	1									
Styrene tert-Butylbenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	UJ
Styrene tert-Butylbenzene Toluene	5 5	2.5 0.75	U	2.5 0.75	U	2.5 1		2.5 0.75	U	2.5 1.1	J
Styrene tert-Butylbenzene	5	2.5	U	2.5	U	2.5	U	2.5		2.5	

Notes: All units are µg/L (ppb)

¹Class GA Ambient Water Quality Standard (AWQS), NY

- * Guidance Value
- U Analyte not detected above the laboratory MDL
- J Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory M Yellow highlighting indicates exceedance of Ambient $\mbox{\tt W}$

SAMPLE ID LAB SAMPLE ID	AWQS'	PWG-VP-200 L0812845-		PWG-VP-200 L0812845-		PWG-VP-200 L0812845-		PWG-VP-200 L0812845		PWG-VP-20 L0812845	
Sampling date Sample Depth (ft.)		8/26/200 16-20	18	8/26/200 36-40	8	8/26/200 56-60	8	8/26/200 76-80	18	8/27/20 96-100	
Volatile Organics by EPA 8260B		16-20		30-40		30-00		76-60		90-100	,
Tetrachloroethene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Trichloroethene	5	0.5	U	0.5	C	0.5	U	0.5	U	0.5	U
cis-1,2-Dichloroethene trans-1,2-Dichloroethene	5	0.5 0.75	U	0.5 0.75	U	0.5 0.75	U	0.5 0.75	U	0.5 0.75	U
1,1-Dichloroethene	5	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
Vinyl chloride	2	1	U	1	U	1	U	1	U	1	U
1,1,1,2-Tetrachloroethane	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	5	0.5 0.5	U	0.5 0.5	U	0.5	U	0.5	U	0.5 0.5	U
1,1,2-Trichloroethane	1	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
1,1-Dichloroethane	5	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
1,1-Dichloropropene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	5 0.04	2.5 5	U	2.5 5	UJ	2.5 5	U	2.5 5	U	2.5 5	U
1,2,4,5-Tetramethylbenzene	5	2	U	2	U	2	U	2	U	2	U
1,2,4-Trichlorobenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2,4-Trimethylbenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2-Dibromo-3-chloropropane	0.04	2.5		2.5		2.5	U	2.5	U	2.5	U
1,2-Dibromoethane 1,2-Dichlorobenzene	0.0006	2 2.5	U	2.5	U	2 2.5	U	2.5	U	2 2.5	U
1,2-Dichloroethane	0.6	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,2-Dichloropropane	1	1.8	U	1.8	U	1.8	U	1.8	U	1.8	U
1,3,5-Trimethylbenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,3-Dichlorobenzene	3	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,3-Dichloropropane 1,4-Dichlorobenzene	5 3	2.5	U	2.5	U	2.5	U	2.5	U	2.5 2.5	U
1,4-Diethylbenzene	NS	2.3	U	2.3	U	2.3	U	2.3	U	2.3	U
2,2-Dichloropropane	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
2-Butanone	50*	5	U	5	U	5	U	5	U	18	
2-Hexanone	50* NS	5 2	U	5	U	5	U	5	U	5	U
4-Ethyltoluene 4-Methyl-2-pentanone	NS	5	U	5	U	5	U	5	U	5	U
Acetone	50*	5	U	5	U	8.9		5	U	49	
Acrylonitrile	5	5	U	5	U	5	U	5	U	5	U
Benzene	1	0.5 2.5	U	0.5 2.5	U	0.5 2.5	U	0.5 2.5	U	0.56 2.5	U
Bromobenzene Bromochloromethane	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
Bromodichloromethane	50*	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Bromoform	50*	2	U	2	U	2	U	2	U	2	U
Bromomethane	5	1	U	1	UJ	1	U	1	U	1	U
Carbon disulfide Carbon tetrachloride	NS 5	5 0.5	U	5 0.5	U	5 0.5	U	5 0.5	U	5 0.5	U
Chlorobenzene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Chloroethane	5	1	U	1	U	1	U	1	U	1	U
Chloroform	7	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
Chloromethane	5	2.5	U	2.5	UJ	2.5 0.5	U	2.5	U	2.5	U
cis-1,3-Dichloropropene Dibromochloromethane	0.4 50*	0.5 0.5	U	0.5	U	0.5	U	0.5 0.5	U	0.5 0.5	U
Dibromomethane	5	5	U	5	U	5	U	5	U	5	U
Dichlorodifluoromethane	5	5	U	5	U	5	U	5	U	5	U
Ethylbenzene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Hexachlorobutadiene	0.5	0.6	U	0.6	UJ	0.6	U	0.6	U	0.6	U
Isopropylbenzene Methyl tert butyl ether	5 10	0.5	U	0.5	O)	0.5	U	0.5	U	0.5	U
Methylene chloride	5	5	U	5	U	5	U	5	U	5	U
Naphthalene	10*	2.5	U	2.5	UJ	2.5	U	2.5	U	2.5	U
n-Butylbenzene	5	0.5		0.5		0.5	U	0.5	U	0.5	U
n-Propylbenzene o-Chlorotoluene	5	0.5 2.5	U	0.5 2.5	U	0.5 2.5	U	0.5 2.5	U	0.5 2.5	U
o-Xylene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
p/m-Xylene	5	1	U	1	U	1	U	1	U	1	U
p-Chlorotoluene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
p-Isopropyltoluene	5	0.5		0.5		0.5	U	0.5	U	0.5	U
sec-Butylbenzene Styrene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
tert-Butylbenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
Toluene	5	0.75	U	0.75	U	0.75	U	0.75	U	1.3	
trans-1,3-Dichloropropene	0.4	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Trichlorofluoromethane	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
Vinyl acetate	NS	5	U	5	U	5	U	5	U	5	U

Notes: All units are µg/L (ppb)

¹Class GA Ambient Water Quality Standard (AWQS), NY

- * Guidance Value
- U Analyte not detected above the laboratory MDL
- J Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory M Yellow highlighting indicates exceedance of Ambient $\boldsymbol{\mathsf{V}}$

SAMPLE ID	Target	PWG-SG-2008	-01	PWG-SG-2008-02	PWG-SC	5-2008-03	PWG-SG-20	008-04	PWG-SG-20	008-05	PWG-SG-20	008-06
SAMPLING DATE:	Shallow	9/10/08		9/10/08		0/08	9/10/0		9/10/0		9/10/0	
LAB SAMPLE ID:	Soil-Gas	L0813541-0	1	L0813541-02	L0813	541-03	L0813541	I-04	L0813541	-05	L0813541	-06
Sample Depth:	Concentration(1)	5.5'		5.5'	5		5.5'		5.5'		5.5'	
Volatile Organics by TO-15												
Tetrachloroethene	81	31.1		45.6	26.5		22.4		20.0		7.12	
Trichloroethene	2.2	1.91		1.72	6.6		2.17		10.7	U	1.49	
cis-1,2-Dichloroethene	350	0.792	U	0.792 U	0.79		0.792	U	7.92	U	0.792	U
trans-1,2-Dichloroethene	700	0.792	U	0.792 U	0.79		0.792	U	7.92	U	0.792	U
1,1-Dichloroethene	NS	0.792	U	0.792 U	0.79		0.792	U	7.92	U	0.792	U
Vinyl chloride	28	0.511	U	0.511 U	0.51	l U	0.511	U	5.11	U	0.511	U
1.1.2.2-Tetrachloroethane	4.2	1.37	U	1.37 U	1.37	U	1.37	U	13.7	U	1.37	U
1,1,1-Trichloroethane	22,000	1.33	U	27.7	9.81	- 0	1.09	U	10.9	U	1.09	U
1,1,2-Trichloroethane	15	1.09	U	1.09 U	1.09	U	1.09	U	10.9	U	1.09	U
1,1-Dichloroethane	9.4	0.809	U	0.809 U	0.80		0.809	U	8.09	U	0.809	U
1,2,4-Trichlorbenzene	NS	1.48	U	1.48 U	1.48	U	1.48	U	14.8	U	1.48	U
1,2,4-Trimethylbenzene	60	5.5		5.56	7.86		4.72		9.82	U	4.9	
1,2-Dibromoethane	1.1	1.54	U	1.54 U	1.54	U	1.54	U	15.4	U	1.54	U
1,2-Dichlorobenzene	2,000	1.2	U	1.2 U	1.2	U	1.2	U	12	U	1.2	U
1,2-Dichloroethane	9.4	0.809	U	0.809 U	0.80		0.809	U	8.09	U	0.809	U
1,2-Dichloropropane	40	0.924	U	0.924 U	0.92		0.924	U	9.24	U	0.924	U
1,3,5-Trimethybenzene	60	2.28		2.56	3.32		2.28		9.82	U	2.23	
1,3-Butadiene	0.87	0.442	U	0.442 U	0.44		0.442	U	4.42	U	0.442	U
1,3-Dichlorobenzene	1,100	1.2	U	1.2 U	1.2	U	1.2	U	12	U	1.2	U
1,4-Dichlorobenzene 1,4-Dioxane	8,000 NS	36.7 0.72	U	38.2 0.72 U	48.2 0.72		35.5 0.72	U	17.3 7.2	U	34.1 0.72	U
2,2,4-Trimethylpentane	NS NS	0.72	U	0.72 U	0.72		0.72	U	9.34	U	0.72	U
2-Butanone	10,000	2.84	U	3.01	4.14		37.1	- 0	421	-	40.1	- 0
2-Hexanone	NS	0.819	U	0.819 U	0.81		9.32		9.46		12.2	
3-Chloropropene	NS	0.626	U	0.626 U	0.62		0.626	U	6.26	U	0.626	U
4-Ethyltoluene	NS	0.982	U	0.982 U	1.14	, ,	0.982	U	9.82	U	0.982	U
4-Methyl-2-pentanone	800	0.819	U	0.819 U	0.81) U	0.819	U	8.19	U	0.819	U
Acetone	3,500	16.7		16	24		114		1900		108	
Benzene	31	0.638	U	0.638 U	0.63	3 U	0.828		6.38	U	0.638	U
Benzyl chloride	50	1.03	U	1.03 U	1.03	U	1.03	U	10.3	U	1.03	U
Bromodichloromethane	14	1.34	U	1.34 U	1.34	U	1.34	U	13.4	U	1.34	U
Bromoform	220	2.06	U	2.06 U	2.06		2.06	U	20.6	U	2.06	U
Bromomethane	50	0.776	U	0.776 U	0.77		0.776	U	7.76	U	0.776	U
Carbon disulfide	7,000	0.789		0.622 U	3.02		0.715		6.22	U	0.622	U
Carbon tetrachloride	16	1.26	U	1.26 U	1.26		1.26	U	12.6	U	1.26	U
Chlorobenzene	600	0.92	U	0.92 U 0.527 U	0.92		0.92	U	9.2	U	0.92	U
Chloroethane Chloroform	100,000	0.527 0.976	U	0.527 U 5.72	0.52 ³		0.527 1.94	U	5.27 9.76	U	0.976	U
Chloromethane	240	0.413	U	0.413 U	0.42		0.413	U	4.13	U	0.413	U
cis-1,3-Dichloropropene	NS NS	0.413	U	0.907 U	0.90		0.907	U	9.07	U	0.413	U
Cyclohexane	NS	0.942		0.965	1.95		1.37		6.88	U	1.05	
Dibromochloromethane	10	1.7	U	1.7 U	1.7	U	1.7	U	17	U	1.7	U
Dichlorodifluoromethane	2,000	5.34		4.78	9.56		3.46		9.88	U	2.78	
Ethanol	NS	8.78		11.8	17		18.2		206		18	
Ethyl Acetate	320,000	1.8	U	1.8 U	1.8	U	1.8	U	18	U	1.8	U
Ethylbenzene	220	2.55		3.06	3.95		3.86		8.68	U	7.92	
Freon-113	300,000	1.53	U	1.53 U	1.66		1.65		15.3	U	1.53	U
Freon-114	NS	1.79		1.4 U	1.96		1.4	U	14	U	1.4	U
Hexachlorobutadiene	11	0.819	U	0.819 U	0.88		1.21		8.19	U	1.49	
Isopropanol	NS	2.13	U	2.13 U	2.13		2.13	U	21.3	U	2.13	U
Methylene chloride	520	1.23	U	1.23 U	1.23		3.75		130		2.74	
Methyl tert butyl ether	30,000	0.72	U	0.72 U	0.72		0.72	U	7.2	U	0.72	U
p/m-Xylene o-Xylene	70,000 70,000	1.74 0.704	U	1.74 U 0.704 U	1.74 1.42		1.74 0.872	U	17.4 7.04	U	1.74 0.909	U
o-Xylene Heptane	70,000 NS	0.704 3.53	U	3.88	5.16		0.872		7.04 8.68	U	9.74	
n-Hexane	2,000	8.63		9.6	12.2		12		17.4	U	26.3	
Propylene	2,000 NS	0.344	U	0.344 U	2.1		3.28		270	U	2.92	
Styrene	10,000	4.03	J	4.14	5.05		4.62		8.51	U	3.9	
Tetrahydrofuran	NS	0.589	U	0.589 U	0.58		0.589	U	5.89	U	0.589	U
Toluene	4,000	7.34		8.22	10.9		10.7		14.1		11	
trans-1,3-Dichloropropene	NS	0.907	U	0.907 U	0.90		0.907	U	9.07	U	0.907	U
Trichlorofluoromethane	7,000	2.52		6.38	18.3		4.62		11.2	U	1.83	_
Vinyl acetate	2,000	0.704	U	0.704 U	0.70		0.704	U	7.04	U	0.704	U

Notes: All units are ug/m³

Bold text indicates compounds above the laboratory $\ensuremath{\mathsf{MDL}}$

Yellow highlighting indicates exceedence of USEPA Target Shallow Soil Gas Concentration

⁽¹⁾ Target Shallow Soil Gas Concentrations, USEPA Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soil (Subsurface Vapor Intrusion Guidance) Table 2b Risk = 1 x 10⁻⁵

U - Analyte not detected at or above the reporting limit

J - Estimated value

NS - No standard or guidance value established

SAMPLE ID	Target	PWG-SG-200	08-07 PWG-SG-2008-08 PWG-SG-2008-09				-09 PWG-SG-2008-		8-10 PWG-SG-2008-11		PWG-SG-20	08-12
SAMPLING DATE:	Shallow	9/10/08		9/10/08	9/10/0		9/10/08		9/10/0		9/10/08	
LAB SAMPLE ID:	Soil-Gas	L0813541-0	07	L0813541-08	L0813541	1-09	L0813541-	-10	L0813541	-11	L0813541	-12
SAMPLE DEPTH:	Concentration(1)	5.5'		5.5'	5.5'		5.5'		5.5'		5.5'	
Volatile Organics by TO-15												
Tetrachloroethene	81	62.2		4.09	9660		13.6	U	1680000		156	
Trichloroethene	2.2	10.7	U	1.36	29.7		10.7	U	19100		3.38	
cis-1,2-Dichloroethene	350	7.92	U	0.792 U	19.8	U	7.92	U	33500		0.792	U
trans-1,2-Dichloroethene	700	7.92	U	0.792 U	19.8	U	7.92	U	1340		0.792	U
1,1-Dichloroethene	NS	7.92	U	0.792 U	19.8	U	7.92	U	205	U	0.792	U
Vinyl chloride	28	5.11	U	0.511 U	12.8	U	5.11	U	132	U	0.511	U
					1		•		U			
1,1,2,2-Tetrachloroethane	4.2	13.7	C	1.37 U	34.3	U	13.7	U	355	U	1.37	U
1,1,1-Trichloroethane	22,000	10.9	U	1.09 U	27.2	U	10.9	U	282	U	16.8	
1,1,2-Trichloroethane	15	10.9	U	1.09 U	27.2	U	10.9	U	282	U	1.09	U
1,1-Dichloroethane	9.4	8.09	U	0.809 U	20.2	U	8.09	U	209	U	0.809	U
1,2,4-Trichlorbenzene	NS	14.8	U	1.48 U	37.1	U	14.8	U	384	U	1.48	U
1,2,4-Trimethylbenzene	60	9.82	U	3.88	24.6	U	9.82	U	254	U	5.95	
1,2-Dibromoethane	1.1	15.4	U	1.54 U	38.4	U	15.4	U	397	U	1.54	U
1,2-Dichlorobenzene	2,000	12	U	1.2 U	30	U	12	U	311	U	1.2	U
1,2-Dichloroethane	9.4	8.09	C	0.809 U	20.2	U	8.09	U	209	U	0.809	U
1,2-Dichloropropane	40	9.24	U	0.924 U	23.1	U	9.24	U	239	U	0.924	U
1,3,5-Trimethybenzene	60	9.82	U	1.85	24.6	U	9.82	U	254	U	2.71	
1,3-Butadiene	0.87	4.42	U	0.442 U	11	U	4.42	U	114	U	0.442	U
1,3-Dichlorobenzene	1,100	12	U	1.2 U	30	U	12	U	311	U	1.2	U
1,4-Dichlorobenzene	8,000	22.8		24.3	30	U	20.1		311	U	40.1	
1,4-Dioxane	NS	7.2	U	0.72 U	18	U	7.2	U	186	U	0.72	U
2,2,4-Trimethylpentane	NS	9.34	U	0.934 U	23.3	U	9.34	U	241	U	0.934	U
2-Butanone	10,000	749		12.4	388		299		152	U	2.82	
2-Hexanone	NS	22.8		3.84	20.5	U	9.18		212	U	0.819	U
3-Chloropropene	NS	6.26	U	0.626 U	15.6	U	6.26	U	162	U	0.626	U
4-Ethyltoluene	NS	9.82	U	0.982 U	24.6	U	9.82	U	254	U	0.982	U
4-Methyl-2-pentanone	800	8.19	U	0.819 U	20.5	U	8.19	U	212	U	0.819	U
Acetone	3,500	3870		36	2280		1630		307	U	16.2	
Benzene	31	6.38	U	0.638 U	16	U	6.38	U	165	U	0.638	U
Benzyl chloride	50	10.3	U	1.03 U	25.9	U	10.3	U	268	U	1.03	U
Bromodichloromethane	14	13.4	U	1.34 U	33.5	U	13.4	U	346	U	1.34	U
Bromoform	220	20.6	U	2.06 U	51.6	U	20.6	U	534	U	2.06	U
Bromomethane	50	7.76	U	0.776 U	19.4	U	7.76	U	201	U	0.776	U
Carbon disulfide	7,000	6.22	U	0.622 U	15.6	U	6.22	U	161	U	0.622	U
Carbon tetrachloride	16	12.6	U	1.26 U	31.4	U	12.6	U	325	U	1.26	U
Chlorobenzene	600	9.2	U	0.92 U	23	U	9.2	U	238	U	0.92	U
Chloroethane	100,000	5.27	U	0.527 U	13.2	U	5.27	U	136	U	0.527	U
Chloroform	11	9.76	U	0.976 U	24.4	U	9.76	U	362		1.25	
Chloromethane	240	4.13	U	0.413 U	10.3	U	4.13	U	107	U	0.413	U
cis-1,3-Dichloropropene	NS	9.07	U	0.907 U	22.7	U	9.07	U	234	U	0.907	U
Cyclohexane	NS 10	6.88	U	0.975	17.2	U	6.88	U	178	U	1.07	
Dibromochloromethane	2,000	17	U	1.7 U	42.6	U	17	U	440	U	1.7	U
Dichlorodifluoromethane		9.88	U	2.95	24.7	U	9.88	U	256	U	3.55	
Ethanol	NS 220 000	455	U	8.23 1.8 U	240 45	U	136	U	1220	U	17.5	
Ethyl Acetate	320,000 220		U	3.18	21.7	U	8.68	U	466 224	U	2.93	U
Ethylbenzene Freon-113	300,000	8.68 15.3	U	1.53 U	38.3	U	15.3	U	869	U	1.53	U
Freon-114	NS	14	U	1.4 U	34.9	U	15.5	U	361	U	1.33	U
	11	8.19	U	0.819 U	20.5	U	8.19	U	212	U	0.819	U
Hexachlorobutadiene Isopropanol	NS	21.3	U	2.13 U	53.3	U	21.3	U	551	U	2.13	U
Methylene chloride	520	232	U	1.28	185	U	26.9	U	318	U	1.23	U
Methyl tert butyl ether	30,000	7.2	U	0.72 U	18	U	7.2	U	186	U	0.72	U
p/m-Xylene	70,000	17.4	U	3.08	43.4	U	17.4	U	449	U	1.74	U
o-Xylene	70,000	7.04	U	1.02	17.6	U	7.04	U	182	U	0.704	U
Heptane	70,000 NS	8.68	U	4.11	21.7	U	8.68	U	224	U	3.8	U
n-Hexane	2,000	22.7	U	10	43.4	U	17.4	U	449	U	9.3	
Propylene	NS	390		1.64	406	U	163	U	88.9	U	0.344	U
Styrene	10,000	8.51	U	3.02	21.3	U	8.51	U	220	U	4.36	U
orgrenie	10,000 NS	5.89	U	0.589 U	14.7	U	5.89	U	152	U	0.589	U
Tetrahydrofuran	INO		U			U	10.9	U	195	U	7.76	U
Tetrahydrofuran Toluana	4 000	10.4										
Toluene	4,000 NS	10.6	11	7.07	18.8			- 11				- 11
Toluene trans-1,3-Dichloropropene	NS	9.07	U	0.907 U	22.7	U	9.07	U	234	U	0.907	U
Toluene			U U					U U				U

Notes: All units are ug/m³

⁽¹⁾Target Shallow Soil Gas Concentrations, USEPA Draft Guida Guidance) Table 2b Risk = 1 x 10⁻⁵

U - Analyte not detected at or above the reporting limit

J - Estimated value

NS - No standard or guidance value established Bold text indicates compounds above the laboratory MDL Yellow highlighting indicates exceedence of USEPA Target SI

Table 17Public Supply Well Construction Details
Former Darby Drugs Distribution Center

Water District	Well No.	Distance	Aquifer	Status	Depth	Screen Depth	Capacity	Layer?	Well Pos.
Rockville Centre Village	N-00050	1,303	Magothy	NU	513	442	1100	Unk.	downgradient
Rockville Centre Village	N-05194	1,540	Magothy	YR	515	455	1200	Unk.	downgradient
Rockville Centre Village	N-05195	1,658	Magothy	YR	505	444	1200	Unk.	downgradient
Long Island Water	N-05656	1,895	Magothy	YR	495	445	1390	Unk.	crossgradient
Long Island Water	N-07521	1,824	Magothy	YR	555	445	1400	Unk.	crossgradient

Notes:

Public Supply Wells within 1/2 mile upgradient/crossgradient or 1 mile downgradient of the site

NA = Not Applicable

YR = Year Round

NU = Not in Use

SS = Seasonal

AB = Abandoned

SAMPLE TYPE	AWQS'	Blind C	uplicate			Blind Du	nlicate		Blind Duplic	ate	Field Bla	nk	Field Blar	nk
SAMPLE ID		PWG-GW-2008-04	PWG.GW.20	08.24	DIFFW-0		DIFFW-10	00	DUP-01	aic	FB-01	HK	FB090308 (0	
LAB SAMPLE ID		L0813196-11	L0813196		L0814755-		L0814755-		L0911697-0		L0812845		L0813196-	
Sampling date		9/3/2008	9/3/200	8	10/6/200	8	10/6/200	8	8/20/200		8/26/200	08	9/3/2008	8
Sample Depth (ft.)											Groundwa	ater	Groundwa	ater
Volatile Organics by EPA 8260B	_													
Tetrachloroethene Trichloroethene	5	0.5 U	0.5	U	1.3 2.3		1.3 2.3		0.5	U	0.5	U	0.5	U
cis-1,2-Dichloroethene	5	0.5 U	0.5	U	32		32		0.5	U	0.5	U	0.5	U
trans-1,2-Dichloroethene	5	0.75 U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
1,1-Dichloroethene	5	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Vinyl chloride	2	1 U	1	U	1	U	1.6		1	U	1	U	1	U
1,1,1,2-Tetrachloroethane	5	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,1,1-Trichloroethane	5	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	5	0.5 U 0.75 U	0.5 0.75	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,1-Dichloroethane	5	0.75 U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
1,1-Dichloropropene	5	2.5 U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2,3-Trichlorobenzene	5	2.5 U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2,3-Trichloropropane	0.04	5 U	5	U	5	U	5	U	5	U	5	U	5	U
1,2,4,5-Tetramethylbenzene	5	2 U	2	U	2	U	2	U	2	U	2	U	2	U
1,2,4-Trichlorobenzene	5	2.5 U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2,4-Trimethylbenzene	5	2.5 U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2-Dibromo-3-chloropropane	0.04	2.5 U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2-Dibromoethane	0.0006	2 U	2	U	2	U	2	U	2	U	2	U	2	U
1,2-Dichlorobenzene	3	2.5 U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2-Dichloroethane	0.6	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,2-Dichloropropane	1	1.8 U	1.8	U	1.8	U	1.8	U	1.8	U	1.8	U	1.8	U
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	5	2.5 U 2.5 U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,3-Dichloropenzene	5	2.5 U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,4-Dichlorobenzene	3	2.5 U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,4-Diethylbenzene	NS	2 U	2	U	2	U	2	U	2	U	2	U	2	U
2,2-Dichloropropane	5	2.5 U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
2-Butanone	50*	5 U	5	U	5	U	5	U	5	U	5	U	5	U
2-Hexanone	50*	5 U	5	U	5	U	5	U	5	U	5	U	5	U
4-Ethyltoluene	NS	2 U	2	U	2	U	2	U	2	U	2	U	2	U
4-Methyl-2-pentanone	NS	5 U	5	U	5	U	5	U	5	U	5	U	5	U
Acetone	50*	5 U	5	U	5	U	5	U	5	U	5	U	5	U
Acrylonitrile	5	5 U	5	U	5	U	5	U	5	U	5	U	5	U
Benzene	5	0.5 U	0.5 2.5	U	0.5 2.5	U	0.5 2.5	U	0.5 2.5	U	0.5 2.5	U	0.5 2.5	U
Bromobenzene Bromochloromethane	5	2.5 U 2.5 U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
Bromodichloromethane	50*	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Bromoform	50*	2 U	2	U	2	U	2	U	2	U	2	U	2	U
Bromomethane	5	1 U	1	U	1	U	1	U	1	U	1	U	1	U
Carbon disulfide	NS	5 U	5	U	5	U	5	U	5	U	5	U	5	U
Carbon tetrachloride	5	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Chlorobenzene	5	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Chloroethane	5	1 U	1	U	1	U	1	U	1	U	1	U	1	U
Chloroform	7	0.75 U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
Chloromethane	5	2.5 U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
cis-1,3-Dichloropropene	0.4	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Dibromochloromethane Dibromomethane	50* 5	0.5 U	0.5 5	U	0.5	U	0.5	U	0.5	U	0.5 5	U	0.5	U
Dichlorodifluoromethane	5	5 U	5	U	5	U	5	U	5	U	5	U	5	U
Ethylbenzene	5	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Hexachlorobutadiene	0.5	0.6 U	0.6	U	0.6	U	0.6	U	0.6	U	0.6	U	0.6	U
Isopropylbenzene	5	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Methyl tert butyl ether	10	1 U	1	U	7.8		8		1	U	1	U	1	U
Methylene chloride	5	5 U	5	U	5	U	5	U	5	U	5	U	5	U
Naphthalene	10*	0.5 U	0.5	U	0.5	U	0.5	U	2.5	U	2.5	U	0.5	U
n-Butylbenzene	5	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
n-Propylbenzene	5	2.5 U	0.5	U	2.5	U	2.5	U	0.5	U	0.5	U	2.5	U
o-Chlorotoluene	5	2.5 U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
o-Xylene	5	1 U	1	U	1	U	1	U	1	U	1	U	1	U
p/m-Xylene p-Chlorotoluene	5	2.5 U 0.5 U	2.5 0.5	U	2.5 0.5	U	2.5 0.5	U	2.5	U	2.5	U	2.5 0.5	U
p-Isopropyltoluene	5	0.5 U	0.5	U	1	U	1	U	0.5	U	0.5	U	1	U
sec-Butylbenzene	5	0.5 U	0.5	U	0.5	U	1	U	0.5	U	0.5	U	0.5	U
Styrene	5	1 U	1	U	1	U	1	U	1	U	1	U	1	U
tert-Butylbenzene	5	2.5 U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
Toluene	5	0.75 U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
trans-1,3-Dichloropropene	0.4	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
										_				
Trichlorofluoromethane	5	2.5 U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U

Notes:

All units are µg/L (ppb)

Class GA Ambient Water Quality Standard (AWQS), NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, Ju

NS - No standard established

Bold text indicates compounds above the laboratory $\ensuremath{\mathsf{MDL}}$

Yellow highlighting indicates exceedance of Ambient Water Quality Standard

Green highlighting indicates exceedence of Ambient Water Quality Guidance Value

^{*} Guidance Value

U - Analyte not detected above the laboratory MDL

J - Estimated value

	Sample type	AWQS'	Field Blank	Field B	lank	Field Bla	nk	Field Blar	nk	Field Blan	k	Field Bla	nk	Field Blar	nk
MARCH PART															
March 1979															
Value of Providence 1							В		8						
Marchitechemics	, ,		3011	Ground	water	3011		3011		3011		Glouriaw	atei	Glouriawa	itei
Ext 2 of Expressionation S		5	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Part December S	Trichloroethene	5	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Trigonomieme	cis-1,2-Dichloroethene		0.5 U	0.5	U	0.5		0.5	U		U	0.5	U	0.5	U
Tell															U
1.1.1.2.5600c.Seprendurage															U
11.51-Enconferomente S	Vinyl chloride	2	1 U	1	U	1	U	1	U	1	U	1	U	1	U
St.1-Fire Conference 5	1.1.1.2-Tetrachloroethane	5	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
11.23 Foreigneen 1															U
Experiment S	1,1,2,2-Tetrachloroethane									0.5	U	0.5	U	0.5	U
Section of the content of the cont	1,1,2-Trichloroethane	1	0.75 U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
12.3-Discherospensee	1,1-Dichloroethane	5	0.75 U	0.75	U	0.75		0.75	U	0.75	U	0.75	U	0.75	U
1.2.3 https://persone															U
12.6.5 1															U
13.4 Inchronomenemenement															U
1.6. Filmony-bennemen				_											U
1.5 Description belong 0.04															U
1-Discriptomentmentmentmentmentmentmentmentmentment															U
12-Decentementementement 3															U
1.2 Define proposed 1		3			U	2.5	U	2.5	U		U	2.5	U	2.5	U
13.5 Heinhylbereine	1,2-Dichloroethane	0.6													U
1-5-DEI-MORDEMENTER 3															U
1-3-Definitopic propriete S															U
1.4 Defiver processor 3															U
EADERHybrogropene															U
22-Defendence															U
December Sept	. ,														U
Estreptobusine															U
Methyl-2-pentanone	2-Hexanone	50*	5 U	5	U	5	U	5	U	5	U	5	U	5	U
Rectione	4-Ethyltoluene	NS	2 U	2	U	2	U	2	U	2	U	2	U	2	U
Acyonatrie	4-Methyl-2-pentanone														С
Bereene															U
Romochromethane															U
Expressive content S															U
Semondicitationmethane S0° 0.5 U 0.5															U
Romoform															U
Carbon disulfide															U
Carbon tetrachloride	Bromomethane	5	1 U	1	U	1	U	1	U	1	U	1	U	1	U
Chicrobenzene	Carbon disulfide		5 U	5	U	5	U	5	U	5	U	5	U	5	U
Chicroethane				_											U
Chloroform															U
Chloromethane															U
cis-1,3-Dichloropropene 0.4 0.5 U 0				_											U
Dibromochloromethane															U
Dibromomethane															U
Dichlorodifiluoromethane															U
Hexachlorobutadiene		5	5 U	5	U	5	U	5	U	5	U	5	U	5	U
Isopropylbenzene	Ethylbenzene														U
Methyl tert butyl ether 10 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 2.5 U 2.5 U 0.5															С
Methylene chloride															U
Naphthalene	· ·														U
n-Butylbenzene 5 0.5 U 0.5 N-Propylbenzene 5 2.5 U 0.5 N-Propylbenzene 5 2.5 U															U
n-Propylbenzene 5 2.5 U 0.5 o-Chlorotoluene 5 2.5 U 2.5 O-Xylene 5 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1				_											U
o-Chlorotoluene 5 2.5 U 1 U 1 U 0.5	,														U
p/m-Xylene 5 2.5 U 0.5 Sec-Butylbenzene 5 0.5 U															U
p-Chlorotoluene 5 0.5 U 0.5 Styrene 5 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	o-Xylene				U		U	1	U	1	U	1	U	1	U
p-isopropyltoluene 5 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 0.5 sec-Butylbenzene 5 0.5 U 0.75 U 0.7															U
Sec-Butylbenzene 5 0.5 U 0.75 U 0.5 U	F'														U
Styrene 5 1 U 2.5 U 2.5 U 2.5 U 2.5 U 2.5 U 0.75 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U															U
tert-Butylbenzene 5 2.5 U 0.75 U 0.5 U <td></td> <td>U</td>															U
Toluene 5 0.75 U 0.5 U 0.															U
trans-1,3-Dichloropropene 0.4 0.5 U 0.5 U <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>U</td></th<>															U
Trichlorofluoromethane 5 2.5 U 2.5															U
															U
vinyi acetate	Vinyl acetate	NS	5 U		U	5	U	5	U	5	U	5	U	5	U

Notes:

All units are µg/L (ppb)

¹Class GA Ambient Water Quality Standard (AWQS), NYIne 1998

U - Analyte not detected above the laboratory MDL

J - Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory $\ensuremath{\mathsf{M}}$

Yellow highlighting indicates exceedance of Ambient $\tt W$ Green highlighting indicates exceedence of Ambient $\tt W$

^{*} Guidance Value

Table 19 Groundwater QA/QC Sample Data Summary Semi-Volatile Organic Compounds Former Darby Drugs Distribution Center

SAMPLE TYPE	AWQS'			plicate		Field Blank		
SAMPLE ID LAB SAMPLE ID		DIFFW-0 L0814755		DIFFW-1 L0814755		FB100308 L0814755		
Sampling date		10/6/200		10/6/20		10/3/20		
SAMPLE DEPTH (ft.) Semivolatile Organics by EPA 8270C								
1,2,4,5-Tetrachlorobenzene	5	19	U	20	U	20		
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene	5	4.8	U	5	U	5 5	-	
1,3-Dichlorobenzene	3	4.8	U	5	U	5		
1,4-Dichlorobenzene 2,4,5-Trichlorophenol	3	4.8	U	5	U	5		
2,4,6-Trichlorophenol	1	4.8	U	5	U	5		
2,4-Dichlorophenol	1	9.5	U	10	U	10		
2,4-Dimethylphenol 2,4-Dinitrophenol	1	9.5 28	U	10 30	U	10 30		
2,4-Dinitrotoluene	5	5.7	U	6	U	6		
2,6-Dinitrotoluene 2-Chloronaphthalene	5 10*	4.8 5.7	U	5	U	5		
2-Chlorophenol	NS	5.7	U	6	U	6		
2-Methylnaphthalene 2-Methylphenol	NS NS	4.8 5.7	U	5	U	5		
2-Nitroaniline	5	4.8	U	5	U	5		
2-Nitrophenol 3,3'-Dichlorobenzidine	1 5	19 48	U	20 50	U	20 50		
3-Methylphenol/4-Methylphenol	NS NS	5.7	U	6	U	6		
3-Nitroaniline	5	4.8	U	5	U	5		
4,6-Dinitro-o-cresol 4-Bromophenyl phenyl ether	NS NS	19 4.8	U	20 5	U	20 5		
4-Chloroaniline	5	4.8	U	5	U	5		
4-Chlorophenyl phenyl ether 4-Nitroaniline	NS 5	4.8	U	5	U	5 7		
4-Nitrophenol	1	9.5	U	10	U	10		
Acenaphthene	20*	4.8 4.8	U	5	U	5		
Acenaphthylene Acetophenone	NS NS	4.8 19	U	20	U	20		
Anthracene	50*	4.8	U	5	U	5		
Benzo(a)anthracene Benzo(a)pyrene	0.002* 0.002*	4.8	U	5	U	5		
Benzo(b)fluoranthene	0.002*	4.8	U	5	U	5		
Benzo(ghi)perylene Benzo(k)fluoranthene	NS 0.002*	4.8	U	5	U	5 5		
Benzoic Acid	0.002 NS	4.0	U	50	U	50		
Benzyl Alcohol	NS	9.5	U	10	U	10		
Siphenyl Bis(2-chloroethoxy)methane	5	4.8	U	5	U	5		
Bis(2-chloroethyl)ether	1	4.8	U	5	U	5		
Bis(2-chloroisopropyl)ether Bis(2-Ethylhexyl)phthalate	NS 5	4.8	U	5	U	5		
Butyl benzyl phthalate	50*	4.8	U	5	U	5	_	
Carbazole	NS	4.8	U	5	U	5		
Chrysene Dibenzo(a,h)anthracene	0.002* NS	4.8	U	5	U	5		
Dibenzofuran	NS	4.8	U	5	U	5		
Diethyl phthalate Dimethyl phthalate	50* 50*	4.8	U	5	U	5		
Di-n-butylphthalate	50	4.8	U	5	U	5		
Di-n-octylphthalate Fluoranthene	50* 50*	4.8	U	5	U	5 5		
Fluorene	50*	4.8	U	5	U	5		
Hexachlorobenzene	0.04	4.8	U	5	U	5		
Hexachlorobutadiene Hexachlorocyclopentadiene	0.5 5	9.5 28	U	10	U	10 30		
Hexachloroethane	5	4.8	U	5	U	5		
ndeno(1,2,3-cd)Pyrene sophorone	0.002*	6.7	U	7	U	7		
sopnorone Naphthalene	50* 10*	4.8 4.8	U	5	U	5		
Nitrobenzene	0.4	4.8	U	5	U	5		
NitrosoDiPhenylAmine(NDPA)/DPA n-Nitrosodi-n-propylamine	50* NS	14 4.8	U	15 5	U	15 5		
P-Chloro-M-Cresol	NS	4.8	U	5	U	5		
Pentachlorophenol Phenanthrene	1 50*	9.5 4.8	U	10 5	U	10 5		
Phenol	1	6.7	U	7	U	7	_	
Pyrene	50*	4.8	U	5	U	5		
Semivolatile Organics by EPA 8270C-SI 2-Chloronaphthalene	M 10*	0.19	U	0.2	U	0.2		
2-Methylnaphthalene	NS	0.19	U	0.2	U	0.2		
Acenaphthene Acenaphthylene	20* NS	0.19	U	0.2	U	0.2		
Anthracene	50*	0.19	U	0.2	U	0.2		
Benzo(a)anthracene	0.002*	0.19	U	0.2	U	0.2		
Benzo(a)pyrene Benzo(b)fluoranthene	0.002* 0.002*	0.19	U	0.2	U	0.2		
Benzo(ghi)perylene	NS	0.19	U	0.2	U	0.2		
Benzo(k)fluoranthene	0.002*	0.19	U	0.2	U	0.2		
Ohrysene Oibenzo(a,h)anthracene	0.002* NS	0.19	U	0.2	U	0.2		
Fluoranthene	50*	0.19	U	0.2	U	0.2	_	
luorene	50*	0.19	U	0.2	U	0.2		
Hexachlorobenzene Hexachlorobutadiene	0.04	0.76	U	0.8	U	0.8		
Hexachloroethane	5	0.76	U	0.8	U	0.8		
ndeno(1,2,3-cd)Pyrene	0.002*	0.19	U	0.2	U	0.2		
Naphthalene Pentachlorophenol	10* 1	0.19	U	0.2	U	0.2		
Phenanthrene	50*	0.76	U	0.8	U	0.8		
	50*	0.19	U	0.2	U	0.2		

Notes:
All units are µg/L (ppb)

'Class GA Ambient Water Quality Standard (AWQS), NYSDEC Technical and Operational Guidance Series (TOGS) 1

'Guidance Value

U - Analyte not detected above the laboratory MDL

J - Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory MDL

Vellow highlighting indicates exceedance of Ambient Water Quality Standard

Green highlighting indicates exceedence of Ambient Water Quality Guidance Value

Table 20

Groundwater QA/QC Sample Data Summary Pesticides/PCBs/Metals Former Darby Drugs Distribution Center

SAMPLE TYPE	AWQS ¹	Blind Dup		ıplicate		Blind Duplic	ate	Field Bank	
SAMPLE ID				DIFFW-10	0	DUP-02		FB100308-	01
LAB SAMPLE ID		L0814755-	07	L0814755-1	10	L0911697-	07	L0814755-	11
Sampling date		10/6/200	8	10/6/2008		8/20/200	9	10/3/200	8
SAMPLE DEPTH (ft.)									
Organochlorine Pesticides by EPA 8081	A								
4,4'-DDD	0.3	0.043	U	0.045	U	NA		0.053	U
4,4'-DDE	0.2	0.043	U	0.045	U	NA		0.053	U
4,4'-DDT	0.2	0.043	U	0.045	U	NA		0.053	U
Aldrin	NS	0.021	U	0.023	U	NA		0.026	U
Alpha-BHC	0.01	0.043	U	0.023	U	NA		0.026	U
Beta-BHC	0.04	0.021	U	0.023	U	NA		0.026	U
Chlordane	0.05	0.021	U	0.227	U	NA		0.263	U
Delta-BHC	0.04	0.043	U	0.023	U	NA		0.026	U
Dieldrin	0.004	0.021	U	0.045	U	NA		0.053	U
Endosulfan I	NS	0.043	U	0.023	U	NA		0.026	U
Endosulfan II	NS	0.021	U	0.045	U	NA		0.053	U
Endosulfan sulfate	NS	0.021	U	0.045	U	NA		0.053	U
Endrin	NS	0.021	U	0.045	U	NA		0.053	U
Endrin ketone	5	0.043	U	0.045	U	NA		0.053	U
Heptachlor	0.04	0.021	U	0.023	U	NA		0.026	U
Heptachlor epoxide	0.03	0.213	U	0.023	U	NA		0.026	U
Lindane	0.05	0.043	U	0.023	U	NA		0.026	U
Methoxychlor	35	0.021	U	0.227	U	NA		0.263	U
trans-Chlordane	NS	0.213	U	0.023	U	NA		0.026	U
Polychlorinated Biphenyls by EPA 8082									
Aroclor 1016	0.09	0.1	U	0.1	U	NA		0.1	U
Aroclor 1221	0.09	0.1	U	0.1	U	NA		0.1	U
Aroclor 1232	0.09	0.1	U	0.1	U	NA		0.1	U
Aroclor 1242	0.09	0.1	U	0.1	U	NA		0.1	U
Aroclor 1248	0.09	0.1	U	0.1	U	NA		0.1	U
Aroclor 1254	0.09	0.1	U	0.1	U	NA		0.1	U
Aroclor 1260	0.09	0.1	U	0.1	U	NA		0.1	U
Total Metals	•								
Aluminum	NS	2,100		1,800		0.10	U	100	U
Antimony	3	50	U	50	U	0.050	U	50	U
Arsenic	25	100	U	100	U	0.005	U	5	U
Barium	1000	62		60		0.013		10	U
Beryllium	3*	5	U	5	U	0.005	U	5	U
Cadmium	5	9		7		0.005	U	5	U
Calcium	NS	20,000		20,000		11		100	U
Chromium	50	40		30		0.01	U	10	U
Cobalt	NS	34		30		0.020	U	20	U
Copper	200	726		622		0.010	U	10	U
Iron	300	340,000		300,000		0.05	U	50	U
Lead	25	12		11		0.010	U	10	U
Magnesium	35000*	15,000		15,000		5.0		100	U
Manganese	300	4,740		4,370		0.057		10	U
Mercury	0.7	0.2		0.2	U	0.0002	U	0.2	U
Nickel	100	25	U	25	U	0.025	U	25	U
Potassium	NS	4,200		4,100		3.4		2,500	U
Selenium	10	10	U	10	U	0.01	U	10	U
		7	U	7	U	0.007	U	7	U
Silver	50	7	U						
Silver Sodium	50 20000	25,000	U	25,000		21		2,000	U
			U		U		U		U
Sodium	20000	25,000		25,000		21		2,000	

Notes:

All units are µg/L (ppb)

¹Class GA Ambient Water Quality Standard (AWQS), NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998

- U Analyte not detected above the laboratory MDL
- J Estimated value
- NS No standard established
- NA Not analyzed

Bold text indicates compounds above the laboratory $\ensuremath{\mathsf{MDL}}$

Yellow highlighting indicates exceedance of Ambient Water Quality Standard

Green highlighting indicates exceedence of Ambient Water Quality Guidance Value

^{*} Guidance Value

Table 21 Soil QA/QC Sample Data Summary Volatile Organic Compounds Former Darby Drugs Distribution Center

SAMPLE TYPE	Unrestricted	Restricted	Plind D	ıplicate	Plind D	uplicate	Plind D	uplicate	Plind C	Ouplicate
SAMPLE ID	SCO'	Residential	PWG-SB-2008-01	PWG.SB.2008.21	PWG-SB-2008-12	PWG.SB.2008.22	PWG-DW-2008-15	PWG-DW-2008-100	PWG-DW-2008-34	PWG-DW-2008-101
LAB SAMPLE ID		SCO ²	L0813196-20	L0813196-21	L0813196-36	L0813196-37	L0813344-18	L0813344-19	L0813447-08	L0813447-10
SAMPLING DATE			9/4/2008	9/4/2008	9/5/2008	9/5/2008	9/8/2008	9/8/2008	9/10/2008	9/10/2008
SAMPLE DEPTH (ft.)			5-10	5-10	5-10	5-10	7-7.5	7-7.5	5.5-6	5.5-6
Volatile Organics by EPA 8260B Tetrachloroethene	1,300	19,000	3.1 U	2.6 U	2.8 U	2.7 U	120	110	3.8 U	3.9 U
Trichloroethene	470	21,000	3.1 U	2.6 U	2.8 U	2.7 U	11	3 U	3.8 U	
cis-1,2-Dichloroethene	250	100,000	3.1 U	2.6 U	2.8 U	2.7 U	28	3 U	3.8 U	
trans-1,2-Dichloroethene	190	100,000	4.6 U	3.9 U	4.3 U	4 U	4.5 U	4.5 U	5.7 U	5.8 U
1,1-Dichloroethene	330	100,000	3.1 U	2.6 U	2.8 U	2.7 U	3 U	3 U	3.8 U	
Vinyl chloride	20	900	6.2 U	5.2 U	5.7 U	5.4 U	26	6 U	7.6 U	7.8 U
1,1,1,2-Tetrachloroethane	NS	NS	3.1 U	2.6 U	2.8 U	2.7 U	3 U	3 U	3.8 U	3.9 U
1,1,1-Trichloroethane	680	100,000	3.1 U	2.6 U	2.8 U	2.7 U	3 U	3 U	3.8 U	
1,1,2,2-Tetrachloroethane	NS	NS	3.1 U	2.6 U	2.8 U	2.7 U	3 U	3 U	3.8 U	
1,1,2-Trichloroethane	NS	NS	4.6 U	3.9 U	4.3 U	4 U	4.5 U	4.5 U	5.7 U	5.8 U
1,1-Dichloroethane	270	26,000	4.6 U	3.9 U	4.3 U	4 U	4.5 U	4.5 U	5.7 U	
1,1-Dichloropropene	NS	NS	15 U	13 U	14 U	13 U	15 U	15 U	19 U	
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	NS NS	NS NS	15 U 31 U	13 U 26 U	14 U 28 U	13 U 27 U	15 U 30 U	15 U 30 U	19 U 38 U	
1,2,4,5-Tetramethylbenzene	NS NS	NS	12 U	10 U	11 U	11 U	12 U	12 U	15 U	
1,2,4-Trichlorobenzene	NS	NS	15 U	13 U	14 U	13 U	15 U	15 U	19 U	
1,2,4-Trimethylbenzene	3,600	52,000	15 U	13 U	14 U	13 U	15 U	15 U	19 U	
1,2-Dibromo-3-chloropropane	NS	NS	15 U	13 U	14 U	13 U	15 U	15 U	19 U	
1,2-Dibromoethane	NS	NS	12 U	10 U	11 U	11 U	12 U	12 U	15 U	
1,2-Dichlorobenzene	1,100	100,000	15 U 3.1 U	13 U	14 U 2.8 U	13 U	15 U	15 U	19 U	
1,2-Dichloroethane 1,2-Dichloropropane	20 NS	3,100 NS	3.1 U	2.6 U 9.1 U	2.8 U 9.9 U	2.7 U 9.4 U	3 U	3 U	3.8 U	
1,3,5-Trimethylbenzene	8,400	52,000	15 U	13 U	14 U	13 U	15 U	15 U	19 U	
1,3-Dichlorobenzene	2,400	49,000	15 U	13 U	14 U	13 U	15 U	15 U	19 U	
1,3-Dichloropropane	NS	NS	15 U	13 U	14 U	13 U	15 U	15 U	19 U	
1,4-Dichlorobenzene	1,800	13,000	15 U	13 U	14 U	13 U	15 U	15 U	19 U	
1,4-Diethylbenzene	NS	NS	12 U	10 U	11 U	11 U	12 U	12 U	15 U	
2,2-Dichloropropane 2-Butanone	NS 120	NS 100,000	15 U 31 U	13 U 26 U	14 U 28 U	13 U 27 U	15 U 30 U	15 U 30 U	19 U 38 U	
2-Hexanone	NS	NS	31 U	26 U	28 U	27 U	30 U	30 U	38 U	
4-Ethyltoluene	NS	NS	12 U	10 U	11 U	11 U	12 U	12 U	15 U	
4-Methyl-2-pentanone	NS	NS	31 U	26 U	28 U	27 U	30 U	30 U	38 U	39 U
Acetone	50	100,000	31 U	26 U	28 U	27 U	30 U	30 U	48	190
Acrylonitrile	NS	NS	31 U	26 U	28 U	27 U	30 U	30 U	38 U	
Benzene Bromobenzene	60 NS	4,800 NS	3.1 U	2.6 U	2.8 U	2.7 U	3 U	3 U 15 U	3.8 U	
Bromochloromethane	NS	NS	15 U	13 U	14 U	13 U	15 U	15 U	19 U	
Bromodichloromethane	NS	NS	3.1 U	2.6 U	2.8 U	2.7 U	3 U	3 U	3.8 U	
Bromoform	NS	NS	12 U	10 U	11 U	11 U	12 U	12 U	15 U	16 U
Bromomethane	NS	NS	6.2 U	5.2 U	5.7 U	5.4 U	6 U	6 U	7.6 U	
Carbon disulfide	NS	NS	31 U	26 U	28 U	27 U	30 U	30 U	38 U	
Carbon tetrachloride Chlorobenzene	760 1,100	2,400 100,000	3.1 U 3.1 U	2.6 U 2.6 U	2.8 U 2.8 U	2.7 U 2.7 U	3 U	3 U	3.8 U	
Chloroethane	NS NS	NS	6.2 U	5.2 U	5.7 U	5.4 U	6 U	6 U	7.6 U	
Chloroform	370	49,000	4.6 U	3.9 U	4.3 U	4 U	4.5 U	4.5 U	5.7 U	
Chloromethane	NS	NS	15 U	13 U	14 U	13 U	15 U	15 U	19 U	
cis-1,3-Dichloropropene	NS	NS	3.1 U	2.6 U	2.8 U	2.7 U	3 U	3 U	3.8 U	
Dibromochloromethane	NS	NS	3.1 U	2.6 U	2.8 U	2.7 U	3 U	3 U	3.8 U	
Dibromomethane Dichlorodifluoromethane	NS NS	NS NS	31 U	26 U	28 U 28 U	27 U 27 U	30 U	30 U	38 U	
Ethylbenzene	1,000	41,000	3.1 U	2.6 U	2.8 U	2.7 U	30 U	30 U	3.8 U	
Hexachlorobutadiene	NS NS	NS NS	15 U	13 U	14 U	13 U	15 U	15 U	19 U	
Isopropylbenzene	NS	NS	3.1 U	2.6 U	2.8 U	2.7 U	3 U	3 U	3.8 U	
Methyl tert butyl ether	930	100,000	6.2 U	5.2 U	5.7 U	5.4 U	6 U	6 U	7.6 U	
Methylene chloride	50	100,000	31 U	26 U	28 U	27 U	30 U	30 U	38 U	
Naphthalene n-Butylhenzene	NS 12,000	NS NS	3.1 U 3.1 U	2.6 U	2.8 U 2.8 U	2.7 U 2.7 U	3 U	3 U	3.8 U	
n-Butylbenzene n-Propylbenzene	3,900	NS 100,000	3.1 U	2.6 U	2.8 U	2.7 U	3 U	3 U	3.8 U	
o-Chlorotoluene	3,900 NS	NS	15 U	13 U	14 U	13 U	15 U	15 U	19 U	
o-Xylene	260	100,000	6.2 U	5.2 U	5.7 U	5.4 U	6 U	6 U	7.6 U	
p/m-Xylene	260	100,000	15 U	13 U	14 U	13 U	15 U	15 U	19 U	
p-Chlorotoluene	NS	NS	3.1 U	2.6 U	2.8 U	2.7 U	3 U	3 U	3.8 U	
p-Isopropyltoluene	NS 11.000	NS 100,000	6.2 U	5.2 U	5.7 U	5.4 U	6 U	6 U	7.6 U	
sec-Butylbenzene Styrene	11,000 NS	100,000 NS	3.1 U 6.2 U	2.6 U 5.2 U	2.8 U 5.7 U	2.7 U 5.4 U	3 U	3 U	3.8 U 7.6 U	
			15 U	13 U	14 U	13 U	15 U	15 U	19 U	
tert-Butylbenzene	5,900	IN2								
tert-Butylbenzene Toluene	5,900 700	NS 100,000	4.6 U	3.9 U	4.3 U	4 U	4.5 U	4.5 U	5.7 U	5.8 U
	700 NS	100,000 100,000	4.6 U 3.1 U	3.9 U 2.6 U	4.3 U 2.8 U	4 U 2.7 U	3 U	3 U	3.8 U	3.9 U
Toluene	700	100,000	4.6 U	3.9 U	4.3 U	4 U				3.9 U 20 U

Notes: All concentrations are µg/kg (ppb)

'Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 200t

NS - No standard established Bold text indicates compounds above the laboratory MDL

Green highlighting indicates exceedance of Unrestricted Use SCO

ÉResticted-Residential Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2004

U - Analyte not detected above the laboratory MDL

J - Estimated value

March Marc	SAMPLE TYPE	Unrestricted	Restricted	Blind Du	uplicate	Blind Du	uplicate	Blind Du	plicate
March Control Contro			Residential						PWG-DW-2008-101
Montane 1985 1986			200-						
1.4.5	* ***			5-10	5-10		7-7.5		
12.4 Februard Control		NS	NS	1600 II	1400 II	1,600 II	1.600 II	30.000 II	31,000 U
150-New Commonwer 100									
Fig. 5. September Fig. 68 Fig. 9									
September Sept	.,								
STORMONDMENT STOR									
Extractive Mode M									
Extraconame									
September Sept									
Extracophysione Mo									
Substitution									
State-printer Mo									
Management 16									
13 Contemporariame									
Steengeprenous Authority Private 185	<u> </u>								
Incompress 150									
Recompany prompt of Professor 165									
Commonship									
Millographies	4-Chloroaniline	NS	NS	410 U	350 U	400 U	400 U	7,600 U	7,800 U
Management 160									
Accomplemywore 100000 100000 410 U 350 U 500 U 7,000 U 7									
No. No. No. No. 1.00 U 1.00 U 1.00 U 3.000									
International									
Semontal physician	Anthracene				350 U				
Semantic 1000									
Bindox Displayer Display									
Ministration Miss No. 180	Benzo(ghi)perylene		100000	410 U	350 U	400 U	400 U	7,600 U	7,800 U
Sempt NS									
MacC-Attrocombroy/membrane									
BGC - Chrosophydehner									
## Part									
Buyls beny phthalate	·	NS	NS						
Carbasce									
Description NS									
Den octyphthelaiste									
Deberrook 3 alon 3 alon 3 alon 3 alon 4 alon 0 3 50 0 4 60 0 4 60 0 0 7,600 0 7,800 0 7,									
Diethy Enhalste									
Demotry phthelate									
Facinithmen 100000 1000000 410									
Paszachforobenzene	Fluoranthene								
Name									
Research/Josephane									
Indeno(1,2.3-cd)Pyrene									
Sophionone NS									
Naphthalene									
NitrospiPhenylAmine(NDPA)/DPA									
NitrosoDiPhenylAmine(NDPA)/DPA	-1								
Pentachlorophenol 800					1000 U		1,200 U	23,000 U	
Penenalthrene									
Phenol 330 100000 580 U 490 U 550 U 550 U 11,000 U 11,000 U 17,000 V V V V V V V V V									
Semicrolatitic Organics by EPA 8270C-SM2	Phenol			580 U		560 U	560 U	11,000 U	11,000 U
2-Chronosphthalene NS NS 16 U 14 U 79 U 80 U 2,000 U 2,100 2-Methylnaphthalene NS NS 16 U 14 U 79 U 80 U 1,000 13,000 Acenaphthylene 100000 160000 16 U 14 U 79 U 80 U 2,000 U 2,100 Acenaphthylene 100000 100000 16 U 14 U 79 U 80 U 2,000 U 2,100 Benzo(a)pyrene 10000 1000 48 40 79 U 80 U 2,000 U 2,100 Benzo(a)pyrene 1000 1000 48 40 79 U 80 U 2,000 U 2,100 Benzo(a)phyrene 1000 1000 58 50 79 U 80 U 2,000	·		100000	410 U	350 U	400 U	400 U	7,000 U	7,800 U
Acenaphthene 20000 100000 16 U 14 U 79 U 80 U 2,000 U 2,100 Acenaphthylene 100000 100000 16 U 14 U 79 U 80 U 2,000 U 2,100 Antivacene 100000 100000 16 U 14 U 79 U 80 U 2,000 U 2,100 Benzo(a)prince 1000 1000 48 40 79 U 80 U 2,000 U 2,100 Benzo(phjerejnene 1000 1000 58 50 79 U 80 U 2,000 U 2,100 Benzo(phjerejnene 10000 10000 58 50 79 U 80 U 2,000 U 2,100 Benzo(phjerejnene 100000 100000 58 48 79 U 80 U 2,000 U <td>2-Chloronaphthalene</td> <td>NS</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2-Chloronaphthalene	NS							
Acenaphthylene 100000 100000 16 U 14 U 79 U 80 U 2,000 U 2,100 Anthracene 100000 100000 16 U 14 U 79 U 80 U 2,000 U 2,100 Benzo(a)pyrene 1000 1000 64 53 79 U 80 U 2,000 U 2,100 Benzo(a)pyrene 1000 1000 58 50 79 U 80 U 2,000 U 2,100 Benzo(a)pyrene 10000 10000 58 50 79 U 80 U 2,000 U 2,100 Benzo(a)pyrene 100000 100000 51 43 79 U 80 U 2,000 U 2,100 Benzo(a)pyrene 100000 3900 58 48 79 U 80 U 2,000 U 2,100									
Benzo(a)anthracene 1000 1000 48 40 79 U 80 U 2,000 U 2,100									
Benzo(s)pyrene 1000 1000 64 53 79 U 80 U 2,000 U 2,100									
Benzo(ph)tucranthene 1000 1000 58 50 79 U 80 U 2,000 U 2,100									
Benzo(k)fluoranthene 800 3900 58 48 79 U 80 U 2,000 U 2,100		1000	1000	58	50	79 U	80 U	2,000 U	2,100 U
Chrysene 1000 3900 55 45 79 U 80 U 2,000 U 2,100 Dibenzo(a,h)anthracene 3300 16 U 14 U 79 U 80 U 2,000 U 2,100 Plucraintene 100000 100000 120 99 79 U 150 2,000 U 2,100 Plucraintene 30000 100000 16 U 14 U 79 U 80 U 2,000 U 2,100 Plucraintene 30000 100000 16 U 14 U 79 U 80 U 2,000 U 2,100 Plucraintene NS NS NS 66 U 56 U 320 U 320 U 8,100 U 8,300 Hoxachlorobutadiene NS NS NS 41 U 35 U 200 U 200 U 5,000 U 5,200 Plucraintene NS NS NS 66 U 56 U 320 U 320 U 8,100 U 5,200 Plucraintene NS NS NS 66 U 56 U 320 U 320 U 8,100 U 5,000 U 5,200 Plucraintene NS NS NS 66 U 56 U 320 U 320 U 8,100 U 8,300 Naphthalene NS NS NS 66 U 56 U 320 U 320 U 8,100 U 8,300 Naphthalene NS NS NS 66 U 56 U 320 U 320 U 8,100 U 8,300 Naphthalene 12000 100000 16 U 14 U 79 U 80 U 2,000 U 2,100 Naphthalene 12000 100000 16 U 14 U 79 U 80 U 2,000 U 2,100 Pentantificene 100000 100000 47 S66 U 360 U 320 U 8,00 U 2,000 U 2,100 Pentantificene 100000 100000 47 S66 U 360 U 320 U 8,00 U 2,000 U 2,100 Pentantificene 100000 100000 47 S66 U 360 U 320 U 8,00 U 2,000 U 2,100 Pentantificene 100000 100000 47 S66 U 360 U 320 U 8,00 U 2,000 U 2,100 Pentantificene 100000 100000 47 S66 U 360 U 320 U 8,00 U 2,000 U 2,100 Pentantificene 100000 100000 47 S66 U 360 U 320 U 8,00 U 2,000 U 2,100 Pentantificene 100000 100000 U 560 U 360 U 300 U 2,000 U 2,100 Pentantificene 100000 1000000 U 566 U 360 U 320 U 8,000 U 2,000 U 2,100 Pentantificene 1000000 100000 U 560 U 560 U 320 U 8,000 U 2,000 U 2,100 Pentantificene 100000 100000 U 560 U 560 U 320 U 8,000 U 2,000 U 2,100 Pentantificene 100000 100000 U 560 U 560 U 320 U 8,000 U 2,000 U 2,100 U 8,000 U 2,100 U 8,000 U 2,100 U 8,000 U 2,000 U 2,100 U 8,00	-0 11 7								
Diberazo(a,h)anithracene 3300 330 16 U 14 U 79 U 80 U 2,000 U 2,100									
Fluorene 30000 100000 16 U 14 U 79 U 80 U 2,000 U 2,100 Hoxachlorobenzene NS NS 66 U 56 U 320 U 320 U 8,300 U 8,300 Hexachlorobethadiene NS NS 41 U 35 U 200 U 200 U 5,000 U 5,200 Hoxachlorobethadiene NS NS 66 U 56 U 320 U 320 U 320 U 8,100 U 8,300 Hexachlorobethane NS NS 66 U 56 U 320 U 320 U 320 U 8,100 U 8,300 Indeno(1,2,3-cd)Pyrene 500 500 52 44 79 U 80 U 2,000 U 2,100 Naphthalene 12000 100000 16 U 14 U 79 U 80 U 2,000 U 2,100 Pentachlorophenol 800 6,700 66 U 56 U 320 U 320 U 320 U 8,100 U 8,300 Phenanthrene 100000 100000 47 56 79 U 80 U 2,000 2,100 Phenanthrene 100000 100000 47 56 79 U 80 U 2,000 2,100 Phenanthrene 100000 100000 47 56 79 U 80 U 2,000 2,100 Phenanthrene 1000000 100000 100000 100000 100000 100000 100000000		3300	330	16 U	14 U	79 U	80 U	2,000 U	2,100 U
Hoxachlorobenzene NS NS 66 U 56 U 320 U 320 U 8,100 U 8,300 Hexachlorobutadiene NS NS 41 U 35 U 200 U 200 U 5,000 U 5,200 Hexachlorobethane NS NS 66 U 56 U 320 U 320 U 8,100 U 8,300 Indeno(1,2,3-cd)Pyrene 500 500 52 44 79 U 80 U 2,000 U 2,100 Naphthalene 12000 100000 16 U 14 U 79 U 80 U 2,000 U 2,100 Pentachlorophenol 80 670 66 U 56 0 320 U 320 U 8,100 U 8,300 Phenanthrene 100000 100000 47 56 79 U									
Hexachloroethane NS NS 66 U 56 U 320 U 320 U 8,100 U 8,300 Indeno[1,3-cd]Pyene 500 50 52 44 79 U 80 U 2,000 U 2,100 Naphthalene 12000 100000 16 U 14 U 79 U 80 U 2,000 U 2,100 Pentachlorophenol 800 6700 66 U 56 U 320 U 320 U 8,100 U 8,300 Phenanthrene 100000 100000 47 56 79 U 80 U 2,000 2,100							320 U		
Indeno(1,2,3-cd)Pyrene 500 52 44 79 U 80 U 2,000 U 2,100 Naphthalene 1 2000 1 00000 16 U 14 U 79 U 80 U 2,000 U 2,100 Pentachlorophenol 80 6 700 66 U 56 U 320 U 8,100 U 8,300 Phenanthrene 1 00000 100000 47 56 79 U 80 U 2,000 2,100									
Naphthalene 12000 100000 16 U 14 U 79 U 80 U 2,000 U 2,100 Pentachlorophenol 800 6700 66 U 56 U 320 U 320 U 8,100 U 8,300 Phenanthrene 100000 100000 47 56 79 U 80 U 2,000 2,100									
Phenanthrene 100000 100000 47 56 79 U 80 U 2,000 2,100	Naphthalene	12000	100000	16 U	14 U	79 U	80 U	2,000 U	2,100 U
pyrene 100000 100000 120 93 79 U 160 1 2,000 U 2100	Phenanthrene Pyrene	100000	100000	47 120	56 93	79 U	80 U	2,000 U	2,100 U 2,100 U

Notes:
All concentrations are µg/kg (ppb)
**Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006
**Gesticted-Residential Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006
**U - Analyte not detected above the laboratory MDL
**J - Estimated value
**NS - No standard established
**Boil dext indicates compounds above the laboratory MDL
**Green highlighting indicates exceedance of Unrestricted Use SCO
**Yellow highlighting indicates exceedance of Restricted Residential SCO

Table 23 Soil QA/QC Sample Data Summary Pesticides/PCBs/Metals Former Darby Drugs Distribution Center

SAMPLE TYPE	Unrestricted	Restricted	Blind E		ınlicate	Bline	d Du	ıplicate	Blind D	uplicate
SAMPLE ID	SCO'	Residential	PWG-SB-2008-		PWG-SB-2008-21	PWG-DW-2008-		PWG-DW-2008-100		PWG-DW-2008-101
LAB SAMPLE ID		SCO ²	L0813196-20		9/4/2008	L0813344-18		L0813344-19	L0813447-08	L0813447-10
SAMPLING DATE			9/4/2008		L0813196-21	9/8/2008		9/8/2008	9/10/2008	9/10/2008
SAMPLE DEPTH (ft.)			9/4/2008 5-10		5-10	7-7.5		7-7.5	9/10/2008 5.5-6	9/10/2008 5.5-6
			5-10		5-10	7-7.5		7-7.5	5.5-0	5.5-0
Organochlorine Pesticides by EPA 8081		10000	4.40		0.47		_		***	***
4,4'-DDD	3.3	13000	4.12	U	3.47 l			NA	NA	NA
4,4'-DDE	3.3	8900	4.12	U	3.47 l			NA	NA	NA
4,4'-DDT	3.3	7900	4.73		3.47 l			NA	NA	NA
Aldrin	5	97	4.12	U	3.47 l			NA	NA	NA
Alpha-BHC	20	480	4.12	U	3.47 l			NA	NA	NA
Beta-BHC	36	360	4.12	U	3.47 l			NA	NA	NA
Chlordane	94	4200	41.2	U	34.7 l			NA	NA	NA
Delta-BHC	40	100000	4.12	U	3.47 l	NA NA		NA	NA	NA
Dieldrin	5	200	4.12	\Box	3.47 l	NA NA		NA	NA	NA
Endosulfan I	2400	24000	4.12	\Box	3.47 l	NA NA		NA	NA	NA
Endosulfan II	2400	24000	4.12	\Box	3.47 l	NA NA		NA	NA	NA
Endosulfan sulfate	2400	24000	4.12	U	3.47 l	I NA		NA	NA	NA
Endrin	14	11000	4.12	U	3.47 l	I NA		NA	NA	NA
Endrin ketone	NS	NS	4.12	U	3.47 l	I NA		NA	NA	NA
Heptachlor	42	2100	4.12	U	3.47 l	NA NA		NA	NA	NA
Heptachlor epoxide	NS	NS	4.12	U	3.47 l	I NA		NA	NA	NA
Lindane	100	1300	4.12	U	3.47 l	I NA		NA	NA	NA
Methoxychlor	NS	NS	16.5	U	13.9 l	l NA		NA	NA	NA
trans-Chlordane	NS	NS	4.12	U	3.47 l	I NA		NA	NA	NA
Polychlorinated Biphenyls by EPA 8082										
Aroclor 1016	100	1000	41.2	U	34.7 l	l NA		NA	NA	NA
Aroclor 1221	100	1000	41.2	U	34.7 l	l NA		NA	NA	NA
Aroclor 1232	100	1000	41.2	U	34.7 l	l NA		NA	NA	NA
Aroclor 1242	100	1000	41.2	U	34.7 l	l NA		NA	NA	NA
Aroclor 1248	100	1000	41.2	U	34.7 l	l NA		NA	NA	NA
Aroclor 1254	100	1000	41.2	U	34.7 l	l NA		NA	NA	NA
Aroclor 1260	100	1000	41.2	U	34.7 l	l NA		NA	NA	NA
Total Metals										
Aluminum	NS	NS	4700		2900	1,700		2,100	4,200	3,900
Antimony	NS	NS	2.9	U	2.5 l		U	2.8 U	3.7 U	3.8 U
Arsenic	13	16	2.2		1.2	1.3		1.4	1.3	1.1
Barium	350	400	40		20	16		15	41	33
Beryllium	7.2	72	0.29	U	0.25 l		U	0.28 U	0.37 U	0.38 U
Cadmium	2.5	4.3	0.58	U	0.5 l		U	0.56 U	1.8	1.6
Calcium	NS	NS	1000		500	6,600		6,400	14,000	11,000
Chromium	30	180	6.4		4.9	5.2		4.5	39	28
Cobalt	NS	NS	2.8		2.4	1.1	U	1.2	3	2.6
Copper	50	270	9.4		5.6	4.7		5.6	35	41
Iron	NS	NS	7500		6400	4,600		4,600	7,900	6,100
Lead	63	400	87		30	36		32	300	270
Magnesium	NS	NS	690		560	2,900		3,900	8,300	6,300
Manganese	1600	2000	100		88	47		34	54	60
Mercury	0.18	0.81	0.1		0.25	0.09	U	0.09 U	4.1	4.6
Nickel	30	310	5.2		4.5	2	_	2.2	14	13
Potassium	NS	NS	320		260	140	U	140 U	300	250
Selenium	3.9	180	1.2	U	1 1		U	1.1 U	1.5 U	1.5 U
Silver	2	180	0.58	U	0.5		U	0.56 U	4.4	0.98
Sodium	NS	NS	120	U	100		U	110 U	150 U	150 U
Thallium	NS	NS	1.2	U	1 1		U	1.1 U	1.5 U	1.5 U
Vanadium	NS NS	NS	9.3	U	6.3	5.9	U	8.3	26	25
Zinc	109	10000	58		24	35		34	270	300
ZITIC	109	10000	30		24	ວວ		34	210	300

Notes:

All concentrations are $\mu g/kg$ (ppb)

¹Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006

²Resticted-Residential Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006

U - Analyte not detected above the laboratory MDL

J - Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory $\ensuremath{\mathsf{MDL}}$

Green highlighting indicates exceedance of Unrestricted Use SCO

Table 24 Trip Blank Sample Data Summary Volatile Organic Compounds Former Darby Drugs Distribution Center

SAMPLE ID	AWQS'	TD 01		TD 02		TB0003	20	TROCOCO	1	TD00000	0.2	TD00100	00
LAB SAMPLE ID	AWQS	TB-01 L0812845-	09	TB-02 L0812904		TB09030 L0813196		TB090808 L0813344-		TB09080 L0813344		TB09100 L0813447	
SAMPLING DATE		8/21/200		8/21/20		8/19/20		9/8/200		8/21/20		9/10/20	
Sample Depth (ft.)													
Volatile Organics by EPA 8260B													
Tetrachloroethene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Trichloroethene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
cis-1,2-Dichloroethene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
trans-1,2-Dichloroethene 1,1-Dichloroethene	5	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
Vinyl chloride	2	1	U	1	U	1	U	1	U	0.5	U	1	U
viriyi enionae	2				Ü		Ü	· ·	Ü		Ü		
1,1,1,2-Tetrachloroethane	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,1,1-Trichloroethane	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,1,2,2-Tetrachloroethane	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,1,2-Trichloroethane	1	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
1,1-Dichloroethane	5	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
1,1-Dichloropropene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2,3-Trichlorobenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2,3-Trichloropropane	0.04	5	U	5	U	5	U	5	U	5	U	5	U
1,2,4,5-Tetramethylbenzene	5	2	U	2	U	2	U	2	U	2	U	2	U
1,2,4-Trichlorobenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	0.04	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2-Dibromoethane	0.006	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2-Dichlorobenzene	3	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2-Dichloroethane	0.6	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,2-Dichloropropane	1	1.8	U	1.8	U	1.8	U	1.8	U	1.8	U	1.8	U
1,3,5-Trimethylbenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,3-Dichlorobenzene	3	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,3-Dichloropropane	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,4-Dichlorobenzene	3	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,4-Diethylbenzene	NS	2	U	2	U	2	U	2	U	2	U	2	U
2,2-Dichloropropane	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
2-Butanone	50* 50*	5	U	5	U	5	U	5	U	5	U	5	U
2-Hexanone 4-Ethyltoluene	NS	5 2	U	5	U	2	U	5	U	2	U	5 2	U
4-Methyl-2-pentanone	NS NS	5	U	5	U	5	U	5	U	5	U	5	U
Acetone	50*	5	U	5	U	5	U	5	U	5	U	5	U
Acrylonitrile	5	5	U	5	U	5	U	5	U	5	U	5	U
Benzene	1	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Bromobenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
Bromochloromethane	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
Bromodichloromethane	50*	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Bromoform	50*	2	U	2	U	2	U	2	U	2	U	2	U
Bromomethane	5	1	U	1	U	1	U	1	U	1	U	1	U
Carbon disulfide	NS	5	U	5	U	5	U	5	U	5	U	5	U
Carbon tetrachloride	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Chlorobenzene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Chloroethane Chloroform	7	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
Chloromethane	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
cis-1,3-Dichloropropene	0.4	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Dibromochloromethane	50*	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Dibromomethane	5	5	U	5	U	5	U	5	U	5	U	5	U
Dichlorodifluoromethane	5	5	U	5	U	5	U	5	U	5	U	5	U
Ethylbenzene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Hexachlorobutadiene	0.5	0.6	U	0.6	U	0.6	U	0.6	U	0.6	U	0.6	U
Isopropylbenzene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Methyl tert butyl ether	10	1	U	1	U	1	U	1	U	1	U	1	U
Methylene chloride	5	5	U	5	U	5	U	5	U	5	U	5	U
Naphthalene n Butulbanzana	10*	2.5	U	2.5	U	0.5	U	0.5	U	0.5	U	0.5	U
n-Butylbenzene n-Propylbenzene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5 2.5	U	0.5 2.5	U
o-Chlorotoluene	5	0.5 2.5	U	0.5 2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
o-Xylene	5	1	U	1	U	1	U	1	U	1	U	1	U
p/m-Xylene	5	1	U	1	U	2.5	U	2.5	U	2.5	U	2.5	U
p-Chlorotoluene	5	2.5	U	2.5	U	0.5	U	0.5	U	0.5	U	0.5	U
p-Isopropyltoluene	5	0.5	U	0.5	U	1	U	1	U	1	U	1	U
sec-Butylbenzene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Styrene	5	1	U	1	U	1	U	1	U	1	U	1	U
tert-Butylbenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
Toluene	5	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
	0.4	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
trans-1,3-Dichloropropene													
trans-1,3-Dichloropropene Trichlorofluoromethane Vinyl acetate	5 NS	2.5 5	U	2.5 5	U	2.5 5	U	2.5 5	U	2.5 5	U	2.5 5	U

Notes:

All units are µg/L (ppb)

'Class GA Ambient Water Quality Standard (AWQS), NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1, Ambient Water Quality Standards and Guidance Values are

NS - No standard established

Bold text indicates compounds above the laboratory MDL

 $\label{thm:continuous} \textbf{Yellow highlighting indicates exceedance of Ambient Water Quality Standard}$

Green highlighting indicates exceedence of Ambient Water Quality Guidance Value

^{*} Guidance Value

U - Analyte not detected above the laboratory MDL

J - Estimated value

Table 24 Trip Blank Sample Data Summary Volatile Organic Compounds Former Darby Drugs Distribution Center

SAMPLE ID	AWQS'	TB100308-	01	TB100308-02		TB100608-03		TB100608-04		TB100608-05		TB100708-01		TRIP BLANK	
LAB SAMPLE ID		L0814755-12		L0814755-13 10/3/2008		L0814755-14 10/6/2008		L0814755-15 10/6/2008		L0814755-16 10/6/2008		L0814991-01 10/7/2008		L0911697-12 8/20/2009	
SAMPLING DATE	10/3/2008														
Sample Depth (ft.)															
Volatile Organics by EPA 8260B															
Tetrachloroethene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U	
Trichloroethene cis-1.2-Dichloroethene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U	
trans-1,2-Dichloroethene	5	0.5 0.75	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U	
1,1-Dichloroethene	5	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75 U	
Vinyl chloride	2	1	U	1	U	1	U	1	U	1	U	1	U	1 U	
1,1,1,2-Tetrachloroethane	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U	
1,1,1-Trichloroethane	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U	
1,1,2,2-Tetrachloroethane	5	0.5 0.75	U	0.5	U	0.5 0.75	U	0.5	U	0.5	U	0.5	U	0.5 U	
1,1,2-Trichloroethane 1,1-Dichloroethane	5	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75 U	
1,1-Dichloropropene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U	
1,2,3-Trichlorobenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U	
1,2,3-Trichloropropane	0.04	5	U	5	U	5	U	5	U	5	U	5	U	5 U	
1,2,4,5-Tetramethylbenzene	5	2	U	2	U	2	U	2	U	2	U	2	U	2 U	
1,2,4-Trichlorobenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U	
1,2,4-Trimethylbenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U	
1,2-Dibromo-3-chloropropane	0.04	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U	
1,2-Dibromoethane	0.0006	2	U	2	U	2	U	2	U	2	U	2	U	2 U 2.5 U	
1,2-Dichlorobenzene 1,2-Dichloroethane	0.6	2.5 0.5	U	2.5 0.5	U	2.5 0.5	U	2.5 0.5	U	2.5 0.5	U	2.5 0.5	U	2.5 U	
1,2-Dichloropropane	1	1.8	U	1.8	U	1.8	U	1.8	U	1.8	U	1.8	U	1.8 U	
1,3,5-Trimethylbenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U	
1,3-Dichlorobenzene	3	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U	
1,3-Dichloropropane	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U	
1,4-Dichlorobenzene	3	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U	
1,4-Diethylbenzene	NS	2	U	2	U	2	U	2	U	2	U	2	U	2 U	
2,2-Dichloropropane	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U	
2-Butanone	50*	5	U	5	U	5	U	5	U	5	U	5	U	5 U	
2-Hexanone 4-Ethyltoluene	50* NS	5 2	U	5	U	5	U	5	U	5	U	5	U	5 U	
4-Methyl-2-pentanone	NS	5	U	5	U	5	U	5	U	5	U	5	U	5 U	
Acetone	50*	5	U	5	U	5	U	5	U	5	U	5	U	5 U	
Acrylonitrile	5	5	U	5	U	5	U	5	U	5	U	5	U	5 U	
Benzene	1	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U	
Bromobenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U	
Bromochloromethane	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U	
Bromodichloromethane	50*	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U	
Bromoform Bromomothano	50* 5	2	U	1	U	2	U	2	U	1	U	1	U	2 U	
Bromomethane Carbon disulfide	NS	5	U	5	U	5	U	5	U	5	U	5	U	5 U	
Carbon tetrachloride	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U	
Chlorobenzene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U	
Chloroethane	5	1	U	1	U	1	U	1	U	1	U	1	U	1 U	
Chloroform	7	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75 U	
Chloromethane	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U	
cis-1,3-Dichloropropene	0.4	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U	
Dibromochloromethane Dibromomethane	50* 5	0.5 5	U	0.5 5	U	0.5 5	U	0.5	U	0.5 5	U	0.5 5	U	0.5 U	
Dichlorodifluoromethane	5	5	U	5	U	5	U	5	U	5	U	5	U	5 U	
Ethylbenzene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U	
Hexachlorobutadiene	0.5	0.6	U	0.6	U	0.6	U	0.6	U	0.6	U	0.6	U	0.6 U	
Isopropylbenzene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U	
Methyl tert butyl ether	10	1	U	1	U	1	U	1	U	1	U	1	U	1 U	
Methylene chloride	5	5	U	5	U	5	U	5	U	5	U	5	U	5 U	
Naphthalene	10*	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	2.5 U	
n-Butylbenzene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U	
n-Propylbenzene o-Chlorotoluene	5	2.5 2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	0.5 U	
o-Xylene	5	1	U	1	U	1	U	1	U	1	U	1	U	1 U	
p/m-Xylene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	1 U	
p-Chlorotoluene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	2.5 U	
p-Isopropyltoluene	5	1	U	1	U	1	U	1	U	1	U	1	U	0.5 U	
sec-Butylbenzene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U	
Styrene	5	1	U	1	U	1	U	1	U	1	U	1	U	1 U	
tert-Butylbenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U	
L .		0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75 U	
Toluene trans 1.3 Dichloropropopo	5		- 11	0.5	- 11	O.E.	- 11	0.5	- 11	0 =	- 11	0.5	- 11	0.5	
trans-1,3-Dichloropropene	0.4	0.5	U	0.5 2.5	U	0.5 2.5	U	0.5	U	0.5 2.5	U	0.5 2.5	U	0.5 U	
			U U U	0.5 2.5 5	U U	0.5 U 2.5 U 5 U									

Notes: All units are µg/L (ppb)

¹Class GA Ambient Water Quality Standard (AWQS), NYId Groundwater Effluent Limitations, June 1998

U - Analyte not detected above the laboratory MDL

J - Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory M

Yellow highlighting indicates exceedance of Ambient W

^{*} Guidance Value

APPENDIX A NYSDEC CORRESPONDENCE

New York State Department of Environmental Conservation

Division of Environmental Remediation

Remedial Bureau A, 11th Floor

625 Broadway, Albany, New York 12233-7015 **Phone:** (518) 402-9620 • **FAX:** (518) 402-9020

Website: www.dec.state.ny.us

August 15, 2005

Mr. Clark Hamilton Managing Member ARC Chase Partners, LLC One Gateway Center Suite 230 11-43 Raymond Plaza West Newark, New Jersey 07102

Re: Broy

Brownfield Cleanup Program

Former Darby Drugs, C130140

80-110 Banks Avenue

Rockville Centre, Town of Hempstead, Nassau County

Dear Mr. Hamilton:

The Department, in conjunction with the NYSDOH, has reviewed the draft Remedial Investigation Report for the Former Darby Drugs site and offers the following comments.

- 1. The procedures that were implemented in the field to collect the soil gas samples must be documented and included in the report.
- 2. The discharge points must be further investigated and identified for the four (4) interior drainage systems mentioned on page 8 of the report.
- 3. The suspected leaching structure in the vicinity of boring B8 must be further investigated.
- 4. Deeper groundwater beneath the clay layer should be investigated because it is possible that the three (3) injection wells discharged beneath the clay layer at the site. Appropriate precautions must be taken to prevent contamination from migrating below the clay layer during the investigation.
- 5. There appears to have been very limited soil and groundwater investigation in the northern portion of the property. This area may require further investigation.
- 6. To further delineate the potential for site related contamination to Smith Pond, sediment samples should be collected and analyzed for semi-volatile organic compounds, volatile organic compounds, and metals.

- 7. The qualitative exposure assessment (section 4.3) did not include possible dermal exposure. This route of exposure must be addressed in the qualitative exposure assessment.
- 8. There are several locations at which the level of contamination in the groundwater samples and the level of contamination in the soil samples do not coincide. The levels in the groundwater are higher than the levels in the soil would indicate they should be; sample locations B-2, B-4, B-6, B-15, and B-17. These inconsistencies should be addressed in the RI report. Based on the current data, the Department does not support the conclusion that remediation in these areas is not necessary because the soil sample is below the recommended soil cleanup guidance value.
- 9. High levels of PCE were detected in the groundwater near the south property line. An offsite threat assessment is necessary. Considering the VOC soil and groundwater contamination source areas that have been identified at the site, the potential soil vapor intrusion should be considered in the offsite threat assessment at the down gradient commercial and residential properties.
- 10. Based on the report, seven (7) drywells were sampled. Four of the seven drywells contained elevated levels of metals (SD-1:94 ppm chromium, SD-3:720 ppm lead, SD-4:2.9 ppm mercury, SD-6:1.5 ppm mercury). The other 17 drywells at the site should also be sampled. The four contaminated drywells mentioned above and any other contaminated drywells detected, based on the sampling results, will require evaluation and possible remediation.
- 11. In Section 2.4.2. Monitoring Well Installation, the report indicates that 1 inch permanent monitoring wells were installed with Geoprobe equipment. The NCDH does not accept 1 inch monitoring wells. Monitoring wells must have a minimum diameter of two (2) inches and should be drilled and properly developed. The 1 inch monitoring wells should be replaced with proper 2 inch wells.
- 12. The horizontal extent of soil contamination at the site needs to be further delineated.
- 13. Attention should be brought to grammatical errors found on the following pages: on page 5 under the potential injection wells paragraph, the word property is misspelled (properly). On page 7 in the last paragraph, there is an extra word in the first sentence. On page14 under 2.9.1 leaching structure results paragraph, there is an extra word in the first sentence.
- 14. On page 22 in the first paragraph, consultants reported that "Previous investigations performed at the site identified a concentration of chlorinated VOCs, primarily PCE, in soils beneath the southeast portion of the building." The majority of the investigation at this site was conducted in the southwest portion of the building. During the 2/10/05 meeting with the BCP candidate, it was indicated that this wording was an error. The wording should be corrected to read "southwest."

Please feel free to contact me if you have any questions.

Sincerely,

Daniel J. Eaton

Engineering Geologist

cc:

M. Faltischek

C. Sosik

New York State Department of Environmental Conservation Division of Environmental Remediation

Remedial Bureau A 625 Broadway, 11th Floor Albany, New York 12233-7015

Phone: (518) 402-9625 • Fax: (518) 402-9020 / (518) 402-9627

Website: www.dec.ny.gov

September 20, 2007

Mr. Charles B. Sosik EBC Environmental Business Consultants 9 Peconic Road Ridge NY 11961

> RE: OU-2 Work Plan Review/Response Darby Drugs Distribution Center. 80-100 Banks Avenue Rockville Center, NY Site No. C130140

Dear Mr. Sosik:

The New York State Departments of Environmental Conservation (NYSDEC) and Health (NYSDOH), have reviewed the Work Plan for Operable Unit 2 (OU-2), dated July 2007. The following is a list of comments provided by the two departments. Each of the comments must be addressed in a revised work plan or as an addendum to the current before the NYSDEC will grant approval.

Comments:

1. NYSDEC has recently learned that in 1971 Downen-Zier Knits applied for a State Pollutant Discharge Elimination System Permit (SPDES) in which they requested the approval to install 3 supply wells for cooling water. The application (see attachment) also identifies diffusion wells to return the water to aquifer and 14 leaching pools on the western side of the property. This confirms the long speculation of a leaching pool system on the west side of the building. The existence and location of the pools should be determined and sediment and groundwater sampling be completed on all the pools.

- 2. The work plan should include sampling beneath the clay layer. As the above noted permit request indicates, the diffusion wells punctured the clay layer. It is only an assumption that the clay layer has not been breached. No sampling has ever been completed below the clay layer in the area of the suspected plume. To assume that there is no contamination in the lower aquifer would be incorrect. According to the SPDES permit, three wells were installed at depths between 40' to 50' (i.e. below the clay layer). If the wells were not sealed correctly, contamination could have leaked into the lower aquifer. Another potential pathway to the aquifer are the three diffusion wells. These wells are noted to be at 37'-50', located on the south west side of the building. The diffusion wells were installed to dispense the water from the 3 supply wells after it was used in a closed loop cooling system for dry cleaning. It is possible, that heat exchanger leaks could provide a pathway to cross contamination, thus impacting the aquifer. Therefore, samples should be taken outside of the source area, to a depth between the clay and confining layers.
- 3. The transects should continue to the west and east, so as to identify the complete extent (width) of the plume. The three transects should extend to Smith Pond and Mill River.
- 4. If the plume is found to be discharging into the river, ground water samples should be taken from beneath the river.
- 5. The analysis should include testing for metals because metals such as antimony are often used in textile production. The TAL metals by methods 6010/7000 and TCL SVOC by 8270 should be included.
- 6. Soil vapor intrusion sampling should be completed in the adjacent buildings MTA bus terminal, hotel, Shiloh Baptist Church and Rockville Housing Authority building.
- 7. Include the following details on the public well field;
 - 1. Profile sampling should be completed on the west side of the water bodies and between the wells to determine if plume is being pulled towards the well field.
 - 2. Periodic sampling of the Centinel well should be completed to give warning of plume reaching the well field.
- 8. A DUSR (Data Usability Summary Report) is also required.
- 9. Since the second transect will not be started until results have returned from the first, the NYSDEC and NYSDOH request adequate time to review the sample report.

If you have any questions please feel free to contact me via phone or e-mail (prior to any formal letter response) at (518)-402-9622 or mebufali@gw.dec.state.ny.us

Sincerely,

Mark E. Bufalini Project Manager Remedial Bureau B

ec:

J. Yavonditte - NYSDEC W. Parish - RHWRE Reg 1. S. Karpinski - NYSDOH

Sente of New York

DEPARTMENT OF EDVIRONMENTAL CORSERVATION

Lang Island Hell Application to, W-2842

In the Matter of the Application

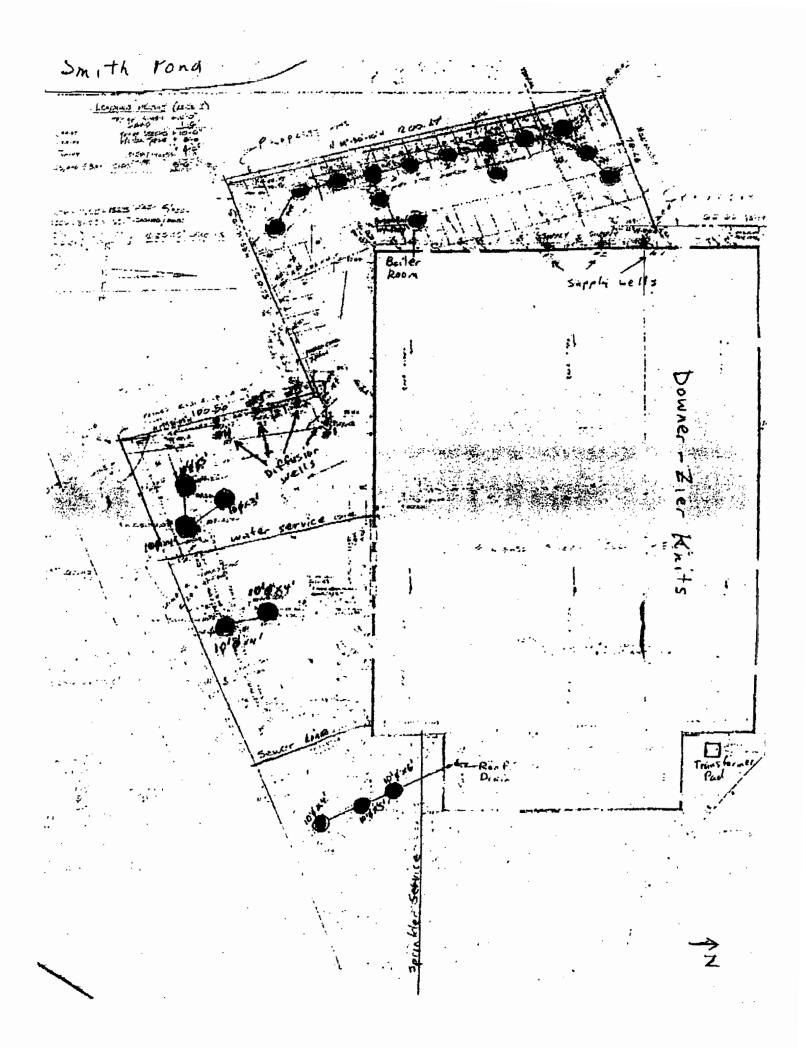
- of -

DOMENN-ZIER KNITS, INC.

for approval to in tall wells at its promises at lanks Avenue, Rockville Center, County of Nasseu, State of New York.

BECISION

Application filed


Becember 9, 1971

Hearing hold in Westbury

December 17, 1971

Dauision

January 27, 1972

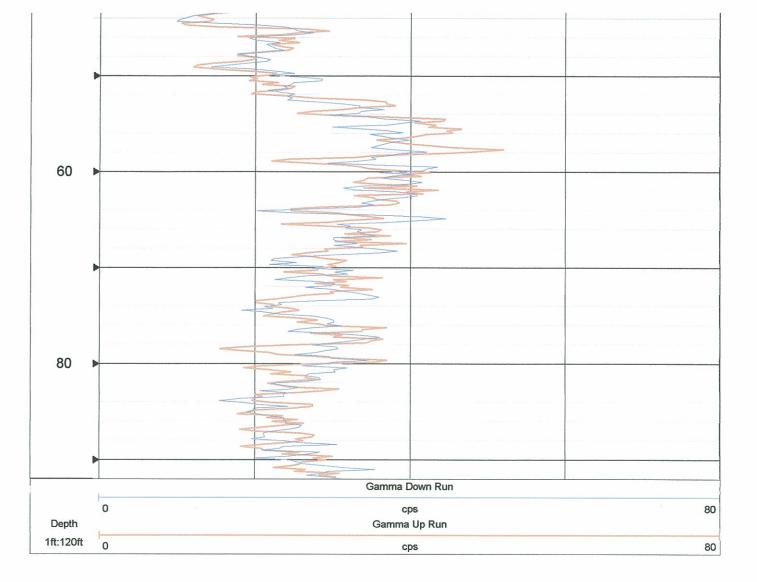
- 4. The water will be used about 300 days a year at an average rate of 360,000 gallons a day. Annual usage will not exceed 108 million gallons.
- to the various coding units, then through a common supply header to the various coding units, then through a common return header into 6 separate diffusion wells spaced at 20-foot intervals at a location about 150 feet southeast of the supply wells. There will be no outlets or connections in the system that will permit usage of this water for any other purpose.
- 6. There are no other wells on this property and water for all other purposes will be obtained from the Village of Rockville Center public supply system.
- /. Since all vater pumped from the proposed wells is to be returned to the same rusping zone, there will be no net loss to the underground strats or any adverse effect on any public supply wells. The mearest public supply wells are Nos. N-5656 and N-7521 of the Long Island Water Corp. located about 3/8 of a mile to the west.

CONDITIONS

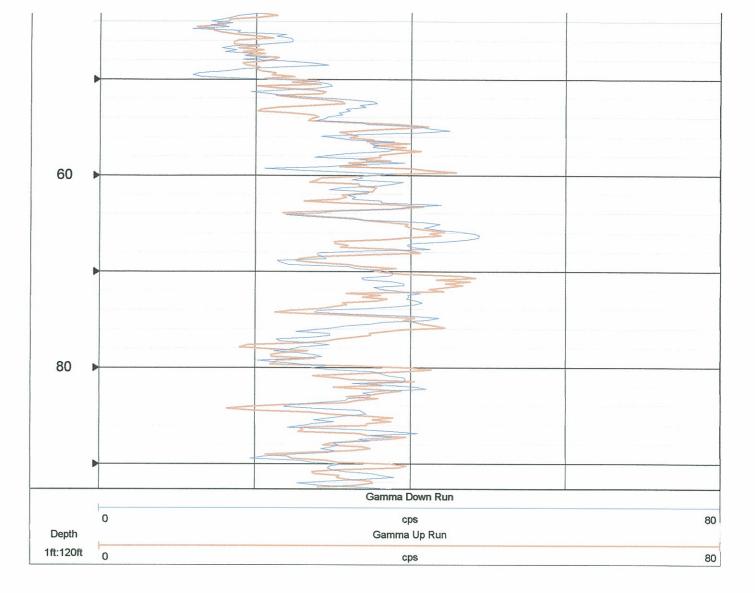
The Department finds it to be necessary to protect the interests of the applicant and of the people of the State to impose the following conditions

- A. By authority of this decision and approval, applicant is authorized to use water pusped from this well or wells for cooling as indicated herein but for no other purpose whatsoever.
- This water may be used only in a completely closed system and the water must be returned. through the proposed diffusion wall or wells, or nume other equivalent satisfactory structure, to the zone in which the supply well is screened. Although each case will be decided on its particular merits, in general this zone will be considered to extend from 50 feet above the top of the supply well screen to 50 feet below the bottom of the supply well screen. In the event of multiple screen settings in the supply well or walls, the diffusion zone will probably be determined by the lowermost supply well screen. The above limits may be extended, if it can be established to the satisfaction of this Department that the proposed diffusion zone is freely interconnected with the supply well zone.

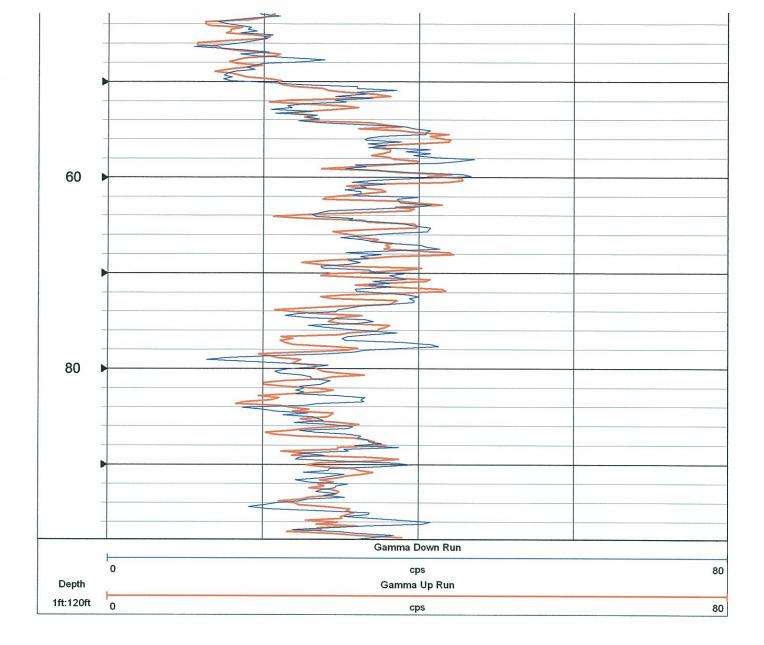
- No overflows or connections to severs or crossconnections to any other source of water supply may be installed or maintained.
- E. Upon completion of the proposed supply wells and before a permit to operate will be issued, applicant shall submit to the Department the results of an analysis made from a sample of water taken from the well or wells, as prescribed by the Pepartment.
- F. No chemical or polluting substance may be discharged in this water or into the diffusion well and the material used in this piping of the cooling system shall be of a nature reasonably resistant to corresion which would pollute the water and tend to clog the diffusion well.
- C. This entire plant and the apparatus connected therewith must at all reasonable hours be open to inspection and test by duly accredited agents of this Department and of the local water authorities.
- II. This decision and approval shall not be held to grant exemption from general restrictions of the use of water for this particular purpose which way at any time he imposed by other competent authority.
- I. The Department of Environmental Conservation recorves the right to reconsider this approval at any time and, after due notice and hearing, at that time to continue, rescind or modify this decision in such a manner as may be found to be thank equitable.

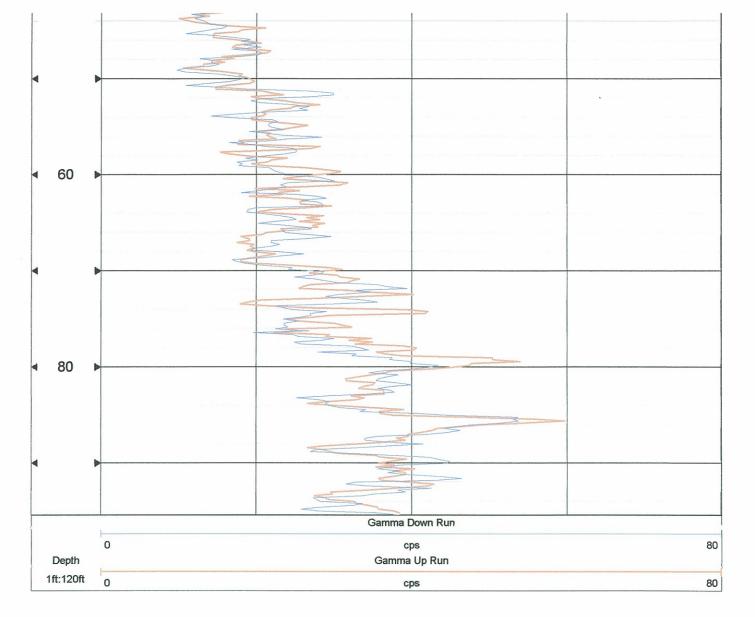

J. Unless all work authorized by the decision shall have been complered by February 1, 1975, or within such extended time as may have been applied for and granted by the Department, then and on that date this approval shall be deemed to have lapsed.

DETERMINATION


In view of the above, the Department of Environmental Conservation under the provisions of Section 4.6 of the Conservation Law, approves of this application as above modified.

APPENDIX B GAMMA LOGS


		NO. BII FROM	BOKEHOLE RECORD	WITNESSED BY MENZY JEAN-BAPTISTE	RECORDED BY BENJAMIN RICE	3 TIME	TOP LOGGED INTERVAL	BTM LOGGED INTERVAL	DEPTH-LOGGER 93.3 FEET	DEPTH-DRILLER 100 FEET	TYPE LOG	RUN No	DATE OCTOBER 6, 2008	DRILLING MEAS. FROM	LOG MEAS. FROM	PERMANENT DATUM	CO WELL FLD CTY STE FILING No COUNTRY NAS LOCATION 80 - 100 BANKS AVE., 1
	4 INCH HSA		CASING RECORD	BAPTISTE	CE				MAX, REC. TEMP.	LEVEL	DENSITY	SALINITY	008 TYPE FLUID IN HOLE	G.L.	ABOVE PERM. DATUM D.F.	ELEVATION K.B.	OCIATED ENVIRONMENTAL 01 DJECT AVB - 0801 SSAU ROCKVILLE CENTRE ROCKVILLE CENTRE
Depth 1ft:120ft	TOTAL DEPTH O O	TO															ma Up Run cps a Down Run
20																	cps {
40							2	7		la l	The state of the s	, terr					


	4 INCH HSA	NO. BIT FROM TO SIZE WGT. FROM	RUN BOREHOLE RECORD CASING RECORD	WITNESSED BY MENZY JEAN-BAPTISTE	GTIME	TOP LOGGED INTERVAL	BTM LOGGED INTERVAL	DEPTH-LOGGER 94 FEET MAX. REC. TEMP.	DEPTH-DRILLER 100 FEET LEVEL	TYPE LOG DENSITY	RUN No SALINITY	DATE OCTOBER 6, 2008 TYPE FLUID IN HOLE	DRILLING MEAS. FROM G.L.	LOG MEAS. FROM BLACKTOP ABOVE PERM. DATUM D.F.	PERMANENT DATUM ELEVATION K.B.	VKS AVE., ROCKVILLE CENTRE TWP RGE	LOCATION STATE NEW TORK	PROJECT AVB - 0801	∀	Y	
Depth 1ft:120ft	TOTAL DEPTH O O	TO														ma Up Run cps a Down Run	RVICES	440			8
20																CDS	335000				

		NO. BIT FROM TO	BOREHOLE RECORD		RECORDED BY BENJAMIN RICE	OPERATING RIG TIME	TOP LOGGED INTERVAL	TERVAL		DEPTH-DRILLER 100 FEET	TYPE LOG	RUN No	DATE OCTOBER 2, 2008	DRILLING MEAS, FROM	LOG MEAS. FROM BLACKTOP A	PERMANENT DATUM	CO WELL FLD CTY STE FILING No SEC	LOCATION 80 - 100 BANKS AVE., ROCKVILLE CENTRE	COUNTRY NASSAU	FIELD PROJEC	WELL ID VP - 03	COMPANY ASSOCI	とこと	7 / 07	
	4 INCH HSA	SIZE WGT. FROM	NG RECORD						MAX. REC. TEMP.	LEVEL	DENSITY	SALINITY	TYPE FLUID IN HOLE		ABOVE PERM. DATUM	ELEVATION	RGE	VILLE CENTRE	U STATE	PROJECT AVB - 0801		ASSOCIATED ENVIRONMENTAL			
	TOTAL DEPTH	M TO												G.L.	D.F.	K.B.		OTHER SERVICES	NEW YORK						
Depth 1ft:120ft		_														Gam	ma Up Run	<u> </u>							80
2000m307 15800 1580 0340	<u></u> 0														G	amm	na Down Run						 		80
									Ī		_	_			1		cps								80
2															~										
						=		=	1	7			-									-	 		
															_				-	-					
									-																
20																2									
8													-		<u> </u>										
2									-							>	-								
						<		5																	
					_	=	7			_	_											-			
					-				7	=	_														
40					_		-	3	-														 		
40						,		-	_	20												-			

			NO. BIT		WITNESSED BY	RECORDED BY	OPERATING RIG TIME	TOP LOGGED INTERVAL	BTM LOGGED INTERVAL	DEPTH-LOGGER	DEPTH-DRILLER	TYPE LOG	RUN No	DATE	DRILLING MEAS. FROM	LOG MEAS. FROM	PERMANENT DATUM	CO WELL FLD CTY							
		1 100	BUT FROM	HOLE BECOM			3 TIME	VIERVAL	NTERVAL	7	R				S. FROM		ATUM	STE FILING No	80 ·	C	H	W	Ω	Z	
		, A	1	<u>-</u>	TOM MELL	BENJAMIN RICE				98 FEET	100 FEET			OCTOBER 2, 2008		BLACKTOP		G	LOCATION 80 - 100 BANKS A	COUNTRY	FIELD	WELL ID	COMPANY	NSI ISW	
			TO		TOM MELIA, PW GROSSER	RICE								2, 2008		ABOVE		TWP	LOCATION 80 - 100 BANKS AVE, ROCKVILLE CENTRE	NASSAU	PROJECT AVB - 0801	VP - 04	ASSOCIATED ENVIRONMENTAL		
	THYCLL	4 NCH	SIZE WGT	CASINICAL						MAX. REC. TEMP.	LEVEL	DENSITY	SALINITY	TYPE FLUID IN HOLE		ABOVE PERM. DATUM	ELEVATION	RGE	CENTRE		B - 0801) ENVIRO		
	VOT			naco						TEMP.		Y	CY	D IN HOLE		M				STATE			NMENTAL		
		TATOM	FROM												G.L.	D.F.	K.B.		OTHER	TE NEW YORK					
	1017	TOTAL DEPTH	TO																OTHER SERVICES	YORK					
Depth	DEFIII	HTGH															Gam	ma Up Run							-
1ft:120ft	0															G	amm	cps a Down Run							8
	0		. Solution 100							T			and the same					cps							8
						-		200			los		100	Stay-		Para Caracana									
•							-05				Tanah in	>	2		Toniche.			The state of the s	-		-				
. 20												<		The same	Otalian lang			ORD CONTROL OF THE PROPERTY OF							
▼ 20									5			3	220	Section 1											
4							<	-			-														
						5			The state of the s		2 Series	-	- H	*:											

APPENDIX C SOIL BORING LOGS

Boring Des	signation:			SB-2008-01			Logged By:		TM
Site Addre		80 - 10	00 Banks Ave			w York	Project Manager:		KA
Project Na			ner Darby D				Project Number:		AVB0801
Orilling Co		1 0.1		ted Enviror			Driller Name:		John
Orilling Me				Direct Push			Borehole Diameter:		2.5"
Sampling I				Macro-Cor			Borehole Depth:		20'
Start Time:			•				Completion Time:		
Start Date:				9/4/2008			Completion Date:		9/4/2008
Depth (ft)	Advance (ft)	Recovery (ft)	Graphic Log	USCS Code	Soil Color	Moisture Content	Soil Description	on	Notes
0	5	4.0		NA	NA	NA	Concrete (0-6')		PID - 3.8 ppm
				GM	Brown	Dry	Sand/silt/gravel/brick r	mix (fill)	
5	5	4.0		SM	Red/ brown	Dry	Med./fine sand, some gravel	silt, trace	PID - 8.7 ppm
10	5	5.0	-						PID - 13.3 ppm
				SW	Tan	Wet	Fine sand, some silt		
15	5	5.0							PID - 0.0 ppm
			-	SP	Red/ brown	Wet	Med./coarse sand, sor little silt	ne gravel,	
				СН	Grey	Wet	Clay		
20			_				E.O.B 20' bgs		Soil sample
							_		collected from
									5-10' interval
25									Groundwater sample collected at 11-15'
30									
			-						
35			-						
							 - -		
40									

P.VV.		K COI	NOULIIIN	G					
Boring Des	ignation:			SB-2008-02			Logged By:		TM
Site Addre		80 - 10	00 Banks Ave	e, Rockville	Centre, Ne	w York	Project Manager:		KA
Project Na	me:	Forr	ner Darby D	rugs Site - S	Supplement	al RI	Project Number:		AVB0801
Drilling Co	ntractor:		Associa	ted Enviror	nmental		Driller Name:		Tim
Drilling Me				Direct Push	1		Borehole Diameter:		2.5"
Sampling N				Macro-Cor			Borehole Depth:		15'
Start Time:							Completion Time:		
Start Date:				9/3/2008			Completion Date:		9/3/2008
Depth (ft)	Advance (ft)	Recovery (ft)	Graphic Log	USCS Code	Soil Color	Moisture Content	Soil Description	on .	Notes
0	5	3.0		NA	NA	NA	Concrete (0-6')		PID - 2.9 ppm
			- - -	GM	Brown	Dry	Sand/silt/gravel mix (fill)	
5	5	4.0		SM	Red/	Dry	Med./fine sand, some s	silt, trace	PID - 2.4 ppm
			-		brown		gravel		
10	5	3.0		SW	Tan	Wet	Fine sand, some silt		PID - 0.0 ppm
							=		Approx. 2-3" of
									grey clay at bottom
							-		of sample
							_		or sample
15							EO.B - 15' bgs		
10							- 13 bgs		Coil comple
									Soil sample
			-						collected from
			-				_		5-10' interval
			-						
20			-				_		Groundwater
			-						sample collected
									at 11-14'
25									
30									
35]				1		
			1				1		
							1		
			1				=		
			-				-		
40			-				+		
4U	1	1			1				

P.VV. C	3KO33E	RCON	120FIII/	G					
Boring Des	ignation:			SB-2008-03			Logged By:		TM
Site Addres		80 - 10	00 Banks Ave	e, Rockville	Centre, Ne	w York	Project Manager:		KA
Project Na	me:		ner Darby D				Project Number:		AVB0801
Drilling Co	ntractor:		Associa	ted Environ	mental		Driller Name:		Tim
Drilling Me	thod:			Direct Push			Borehole Diameter:		2.5"
Sampling N	/lethod:		1	Macro-Core	9		Borehole Depth:		20'
Start Time:							Completion Time:		
Start Date:				9/3/2008			Completion Date:		9/3/2008
Depth (ft)	Advance (ft)	Recovery (ft)	Graphic Log	USCS Code	Soil Color	Moisture Content	Soil Descriptio	n	Notes
0	5	3.0		SM	Red/ brown	Dry	Med./fine sand, some s gravel	silt, trace	PID - 6.2 ppm
5	5	2.0				Moist			PID - 0.0 ppm
10	5	1.0				Wet			
15	5	5.0		СН	Grey	Wet Wet	Clay		PID - 0.0 ppm
20							E.O.B 20' bgs		
25									Soil sample collected from 10-15' interval
									Groundwater sample collected at 12-16'
30									
35									
							-		
-							-		
40									

P. VV. C	3KO33E	K COI	120LIII	IG					
Boring Des	ignation:			SB-2008-04			Logged By:		TM
ite Addres	ss:		00 Banks Ave				Project Manager:		KA
roject Na	me:	Forr	mer Darby D	rugs Site - S	upplement	al RI	Project Number:		AVB0801
rilling Cor	ntractor:		Associa	ited Enviror	nmental		Driller Name:		Tim
orilling Me	thod:			Direct Push			Borehole Diameter:		2.5"
Sampling N	Method:		1	Macro-Core	Э		Borehole Depth:		15'
tart Time:							Completion Time:		
tart Date:				9/3/2008			Completion Date:		9/3/2008
Depth (ft)	Advance (ft)	Recovery (ft)	Graphic Log	USCS Code	Soil Color	Moisture Content	Soil Description	on	Notes
0	5	4.0		NA	NA	NA	Concrete (0-6')		PID - 0.0 ppm
			- - -	GM	Brown	Dry	Sand/silt/gravel mix (fil	ll)	
5	5	3.0	-						PID - 0.0 ppm
			-				-		
			-				_		
			 				-		
10	5	4.0	-						PID - 0.0 ppm
				60	Drouge	Mot	Mad (agara sand sar	ma graval	
				SP	Brown	Wet	Med./coarse sand, sor little silt	me gravei,	
				СН	Grey	Wet	Clay		
15							E.O.B 15' bgs		
									Soil sample
			-				-		collected from
			-				-		5-10' interval
							_		
20			_				-		Groundwater
			-				-		sample collected
			_				_		at 11-15'
25									
30			-						
							-		
							-		
35			-				_		
			-						
							-		
			-				-		
40									

P.VV. C	KO22E	R CON	N20LIIIV	G					
Boring Desi	gnation:			SB-2008-05			Logged By:		TM
ite Addres	SS:	80 - 10	00 Banks Ave	e, Rockville	Centre, Ne	w York	Project Manager:		KA
Project Nai	me:	Forr	mer Darby D	rugs Site - S	Supplement	tal RI	Project Number:		AVB0801
Orilling Cor	ntractor:		Associa	ted Enviror	nmental		Driller Name:		Tim
Orilling Met	hod:			Direct Push	1		Borehole Diameter:		2.5"
Sampling N	/lethod:		١	Macro-Cor	е		Borehole Depth:		15'
Start Time:							Completion Time:		
Start Date:				9/3/2008			Completion Date:		9/3/2008
Depth (ft)	Advance (ft)	Recovery (ft)	Graphic Log	USCS Code	Soil Color	Moisture Content	Soil Description	on	Notes
0	5	0.0		NA	NA	NA	No Recovery		
5	5	1.5		SM	Red/ brown	Moist	Med./fine sand, some gravel	silt, trace	PID - 39.9 ppm
10		4.0	- -						DID. O.O. va va
10	5	4.0		SW	Tan	Wet	Med./fine sand, little si	lt	PID - 9.8 ppm
				СН	Grey	Wet	Clay		
15				CIT	Cicy	Wot	E.O.B 15' bgs		
13			-				- 10 bgs		Soil sample
			-						collected from
			<u> </u> 				_		5-10' interval
			_						5-10 interval
0.0			-				_		Craymalyyatar
20			-				_		Groundwater
			-				=		sample collected
			-						at 11-15'
			-						
							_		
25							_		
30									
				-					
]						
35]						
]				1		
]						
			1				1		
			1				1		
40			1				1		

P. VV. C	JKO33E	K COI	120LIII/	G					
oring Des				SB-2008-06			Logged By:		TM
ite Addre	SS:	80 - 10	00 Banks Ave	e, Rockville	Centre, Ne	w York	Project Manager:		KA
roject Na	me:	Forr	mer Darby D	rugs Site - S	upplement	al RI	Project Number:		AVB0801
rilling Co	ntractor:		Associa	ted Enviror	nmental		Driller Name:		Tim
rilling Me	thod:			Direct Push			Borehole Diameter:		2.5"
ampling N	Method:		N	Macro-Core	9		Borehole Depth:		15'
tart Time:							Completion Time:		
tart Date:				9/3/2008			Completion Date:		9/3/2008
Depth (ft)	Advance (ft)	Recovery (ft)	Graphic Log	USCS Code	Soil Color	Moisture Content	Soil Description	on	Notes
0	5	4.0		NA	NA	NA	Concrete (0-6')		PID - 0.0 ppm
			- - -	GM	Brown	Dry	Sand/silt/gravel mix (fil	1)	
5	5	5.0							PID - 0.0 ppm
				SM	Red/	Moist	Med./fine sand, some	silt, trace	
			1	<u> </u>	brown		gravel		
10	5	4.0	- - -						PID - 0.0 ppm
			-		T)A/-+			
				SW	Tan	Wet	Fine sand, some silt		
				СН	Grey	Wet	Clay		
15			-				E.O.B 15' bgs		
			-				=		Soil sample
			-				-		collected from
									5-10' interval
20									Groundwater
									sample collected
			-				-		at 11-15'
25									
30									
30			-						
35									
40			-				-		

r.vv. C		K CON	NOULIIIN	U					
Boring Des	ignation:			SB-2008-07			Logged By:		TM
Site Addre	ss:	80 - 10	00 Banks Ave	, Rockville	Centre, Ne	w York	Project Manager:		KA
Project Na	me:	Forr	ner Darby Di	rugs Site - S	Supplement	al RI	Project Number:		AVB0801
Drilling Co	ntractor:		Associa	ted Enviror	nmental		Driller Name:		John
Drilling Me				Direct Push			Borehole Diameter:		2.5"
Sampling N				/acro-Core			Borehole Depth:		20'
Start Time:							Completion Time:		
Start Date:				9/4/2008			Completion Date:		9/4/2008
Depth (ft)	Advance (ft)	Recovery (ft)	Graphic Log	USCS Code	Soil Color	Moisture Content	Soil Description	on	Notes
0	5	4.0		NA	NA	NA	Concrete (0-6')		PID - 17.1 ppm
			- - - - - -	GM	Brown	Dry	Sand/silt/gravel mix (fill)	
5	5	4.0	- - -	SM	Red/ brown	Dry	Med./fine sand, some s gravel	silt, trace	PID - 3.3 ppm
10	5	4.0	-	SM	Red/	Moist	Med./coarse sand, son	ne silt and	PID - 13.3 ppm
					brown		gravel		
] 	SW	Tan	Moist	Fine sand, some silt		
15	5	5.0		СН	Tan/ grey	Wet	Clay		PID - 0.0 ppm
20							E.O.B 20' bgs		
20							E.O.D. 20 bgs		Soil sample
							_		
			-						collected from
									5-10' interval
25									Groundwater
									sample collected
									at 11-15'
			Ī						
30			_						
							1		
							-		
							-		
35							-		
35							-		
							-		
40				_					

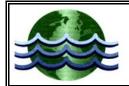
P.VV. C	2KO33E	ER COI	120FIII/	G					
Boring Des	ignation:			SB-2008-08			Logged By:		TM
Site Addres	SS:	80 - 10	00 Banks Ave	e, Rockville	Centre, Ne	w York	Project Manager:		KA
Project Na	me:	Forr	ner Darby D	rugs Site - S	upplement	al RI	Project Number:		AVB0801
Drilling Cor	ntractor:		Associa	ted Enviror	mental		Driller Name:		Tim
Drilling Me	thod:			Direct Push			Borehole Diameter:		2.5"
Sampling N	Method:		1	Macro-Core	9		Borehole Depth:		15'
Start Time:							Completion Time:		
Start Date:				9/3/2008			Completion Date:		9/3/2008
Depth (ft)	Advance (ft)	Recovery (ft)	Graphic Log	USCS Code	Soil Color	Moisture Content	Soil Descriptio	on	Notes
0	5	3.0		SM	Red/ brown	Dry	Med./fine sand, some s gravel	silt, trace	PID - 0.0 ppm
5	5	4.0				Moist			PID - 0.0 ppm
				SW	Tan	Moist	Med./fine sand, some s	silt	
10	5	5.0				Wet			PID - 0.0 ppm
				СН	Tan/	Wet	Clay		
15				Сп	Grey	WCt	E.O.B 15' bgs		
15					Gicy		- -		Soil sample
									collected from
									5-10' interval
									o to interval
20									Groundwater
20									sample collected
									at 12-14'
25									
30									
35									
40									

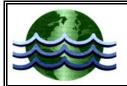
P. VV. C	3KO33E	ER COI	120LIII	G					
oring Des	ignation:			SB-2008-09			Logged By:	TM	
ite Addres	ss:		00 Banks Ave				Project Manager:		KA
Project Na	me:	For	mer Darby D	rugs Site - S	iupplement	al RI	Project Number:		AVB0801
rilling Cor	ntractor:		Associa	ted Enviror	nmental	Driller Name:		John	
Drilling Method:				Direct Push		Borehole Diameter:		2.5"	
Sampling Method:			1	Macro-Core	Э		Borehole Depth:		20'
Start Time:						Completion Time:			
tart Date:				9/5/2008		Completion Date:		9/5/2008	
Depth (ft)	Advance (ft)	Recovery (ft)	Graphic Log	USCS Code	Soil Color	Moisture Content	Soil Description	on	Notes
0	5	3.0		NA	NA	NA	Concrete (0-6')		PID - 3.5 ppm
			- - -	GM	Brown	Dry	Sand/silt/gravel mix (fil	1)	
5	5	4.0							PID - 7.0 ppm
				SM	Red/	Dry	Med./fine sand, some	silt, little	
			1		brown		gravel		
			<u> </u>				1		
10	5	4.0		SW	Tan	Wet	Fine sand, some silt		PID - 0.2 ppm
15		2.0							PID - 0.0 ppm
15	5	3.0							ПВ 0.0 ррпп
				СН	Grey	Wet	Clay		
20					3		E.O.B 20' bgs		
20							-		Soil samples
							_		collected from
			-				-		5-10' & 15-20'
0.5			-						intervals
25									
			-						
30									
			-						
35			-						
			-						
40									

P. VV. C	2KO22E	RCON	120LIII	G					
Boring Designation:				SB-2008-10			Logged By:	TM	
Site Addres	ss:	80 - 10	00 Banks Ave	e, Rockville	Centre, Ne	w York	Project Manager:		KA
Project Na	me:	Forr	mer Darby D	rugs Site - S	Supplement	Project Number:		AVB0801	
Drilling Cor	ntractor:		Associa	ted Enviror	nmental		Driller Name:		John
Drilling Method:				Direct Push	l		Borehole Diameter:		2.5"
Sampling N	Method:		N	Macro-Core	9		Borehole Depth:		20'
Start Time:							Completion Time:		
Start Date:				9/5/2008			Completion Date:		9/5/2008
Depth (ft)	Advance (ft)	Recovery (ft)	Graphic Log	USCS Code	Soil Color	Moisture Content	Soil Description	on	Notes
0	5	3.0		GM	Brown	Dry	Sand/silt/gravel mix (fill)		PID - 11.1 ppm
5	5	4.0	-	SM	Red/ brown	Dry	Med./fine sand, some gravel	silt, trace	PID - 19.1 ppm
				SW	Tan	Wet	Fine sand, some silt		
							_		
10	5	4.0							PID - 16.8 ppm
				SP	Red/	Wet	Coarse sand & gravel,	little silt	
					Brown		1		
							1		
				СН	Grey	Wet	Clay		
15	5						E.O.B 15' bgs		
									Soil samples
									collected from
									5-10' & 10-15'
									intervals
20									
25									
							1		
]						
]				1		
30]						
]						
]				1		
]						
35			1				1		
			1				1		
-									
			1				1		
			1				1		
40			1				1		

			120FIII/						
Boring Des				SB-2008-11		Logged By:		TM	
Site Addres			00 Banks Ave			Project Manager:	KA		
Project Na		Forr	mer Darby D			Project Number:		AVB0801	
Orilling Cor				ted Enviror		Driller Name:		John	
Drilling Method:				Direct Push			Borehole Diameter:		2.5"
Sampling Method:			N	Macro-Core	9	Borehole Depth:		20'	
Start Time:						Completion Time:			
Start Date:				9/5/2008			Completion Date:		9/5/2008
Depth (ft)	Advance (ft)	Recovery (ft)	Graphic Log	USCS Code	Soil Color	Moisture Content	Soil Descriptio	n	Notes
0	5	4.0		NA	NA	NA	Concrete (0-6')		PID - 0.4 ppm
			- - -	GM	Brown	Dry		Sand/silt/gravel mix (fill)	
5	5	4.0		SM	Red/	Moist	Med./fine sand, some s	silt, little	PID - 0.0 ppm
			=		brown		gravel		
			-				_		
			-				=		
10	5	4.0							PID - 0.0 ppm
				SW	Tan	Wet	Fine sand, some silt		
							_		
							=		
							=		
15 5		2.0					-		PID - 0.0 ppm
							-		
				СН	Grey	Wet	Clay		
							=		
20							E.O.B 20' bgs		
							=		Soil samples
							=		collected from
			1						5-10' & 15-20'
			1						intervals
25			1				-		
			1				-		
			1				-		
			1				-		
							-		
30			1				-		
			-				-		
			-				-		
			-				-		
			1				-		
35			1				-		
			1				-		
			1				-		
			-				_		
			-				-		
40			-				-		

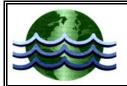
		IN COI	NOULIIIN						
Boring Des				SB-2008-12			Logged By:		TM
Site Address:			00 Banks Ave				Project Manager:	KA	
Project Na									AVB0801
Orilling Co				ted Enviror		Driller Name:		John	
Orilling Me				Direct Push			Borehole Diameter:		2.5"
Sampling I			N	Macro-Cor	е		Borehole Depth:		20'
Start Time:							Completion Time:		
tart Date:				9/5/2008			Completion Date:		9/5/2008
Depth (ft)	Advance (ft)	Recovery (ft)	Graphic Log	USCS Code	Soil Color	Moisture Content	Soil Description	on	Notes
0	5	3.0		NA	NA	NA	Concrete (0-6')		PID - 0.0 ppm
			- - - -	GM	Brown	Dry	Sand/silt/gravel mix (fill)		
5	5	4.0	<u> </u>						PID - 0.0 ppm
			-	SM	Red/ brown	Moist	Med./fine sand, some gravel	silt, little	
				SW	Tan	Wet	Fine sand, some silt		
10	5	5.0					1		PID - 0.0 ppm
15 5		4.0		СН	Grey	Wet	Clay		PID - 0.0 ppm
20							E.O.B 20' bgs		
									Soil samples
									collected from
									5-10' & 10-15'
] [intervals
25									
]						
30							-		
			-				-		
			-				-		
			-				+		
25			-				-		
35			-				-		
			-				_		
			-				-		
			-				-		
							-		
40	1								

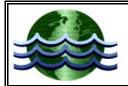

P.VV. C											
Boring Des				SB-2008-13			Logged By: TM				
ite Addres	SS:	80 - 10	00 Banks Ave	e, Rockville	Centre, Ne	w York	Project Manager:	KA			
Project Na	me:	Forr	mer Darby D	rugs Site - S	upplement	Project Number:	AVB0801				
rilling Cor	ntractor:		Associa	ted Enviror	ımental	Driller Name:	John				
orilling Me	thod:			Direct Push			Borehole Diameter:	2.5"			
ampling N	Method:		N	Macro-Core	9		Borehole Depth:	20'			
tart Time:						Completion Time:					
tart Date:				9/4/2008		Completion Date:	9/4/2008				
Depth (ft)	Advance (ft)	Recovery (ft)	Graphic Log	USCS Code	Soil Color	Moisture Content	Soil Description	on Notes			
0	5	3.0	- - -	GM	Brown	Dry	Sand/silt/gravel mix (fill) PID - 0.0 ppm			
5	5	4.0	-			Moist	-	PID - 0.0 ppm			
<u> </u>	3	7.0	-				_	112 от рртт			
							-				
				SW	Tan	Wet	Fine sand, some silt				
				344		.,,,,,					
10	5	3.0					-	PID - 13.3 ppm			
10	Ü	3.0					-	110 - 13.3 μμπ			
							-				
							_				
				011	Crow	Wet	Clay				
				СН	Grey	wet					
15			=				E.O.B 15' bgs				
			-				_	Soil samples			
			-				=	collected from			
			-				=	5-10' & 10-15'			
			= -					intervals			
20			-				_				
			-				_	Groundwater			
							=	sample collected			
								at 9-13'			
25] [
]								
30]								
			1								
			1								
			1				-				
35			1								
	1		1								
			l l								
							_				
33											

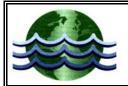

P.VV. C	2KO33E	K CON	120FIII/	IG							
Boring Designation:				SB-2008-14		Logged By: TM					
Site Address:		80 - 10	00 Banks Ave	e, Rockville	Centre, Ne	Project Manager:	KA				
Project Na	Project Name:		ner Darby D	rugs Site - S	upplement	Project Number:	AVB0801				
Drilling Contractor:			Associa	ited Enviror	mental	Driller Name:	John				
Drilling Me	thod:			Direct Push		Borehole Diameter:		2.5"			
Sampling N	Method:		1	Macro-Core	9		Borehole Depth:		20'		
Start Time:							Completion Time:				
Start Date:				9/4/2008			Completion Date:		9/4/2008		
Depth (ft)	Depth Advance			Recovery (ft)	Graphic Log	USCS Code	Soil Color	Moisture Content	Soil Descriptio	n	Notes
0	5	3.0		GM SM	Brown Red/	Dry	Sand/silt/gravel mix (fill) Med./fine sand, some silt, trace		PID - 0.0 ppm		
5	5	2.0		0111	brown	,	gravel		PID - 0.0 ppm		
J	J	5 2.0			210,011		-	1.15 0.0 ppiii			
			-								
10	5	3.0							PID - 0.0 ppm		
]	SP	Brown	Moist	Coarse sand & gravel,	some silt			
				СН	Grey	Wet	Clay				
15							E.O.B 15' bgs				
									Soil samples		
									collected from		
									5-10' & 10-15'		
									intervals		
20							-				
									Groundwater		
									sample collected		
									at 9-13'		
25											
							1				
30							_				
							-				
							-				
35							-				
33											
							-				
							-				
40											

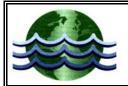
USCS Code	Pattern	Pattern Name
СН		Reverse Diagonal Stripe
CL		Thin Reverse Diagonal Stripe
GC		Diagonal Stripe
GM		Vertical Stripe
GP		12.5% Grey
GW		6.25% Grey
МН		Horizontal Stripe
ML		Diagonal Crosshatch
ОН		75% Grey
OL		Thin Horizontal Crosshatch
PT		Thick Diagonal Crosshatch
SC		Thin Diagonal Stripe
SM		Thin Vertical Stripe
SP		50% Grey
SW		25% Grey

APPENDIX D WELL SAMPLING LOGS

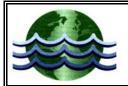

CLIENT/PROJECT No	D				A	VB0801	1			
WELL Number						MW-1				
SAMPLED BY		JLL		_	WELL	USE	(Groundwa	ater Monit	oring
DATE SAMPLED		10/3/2008	3	_	TIME S	SAMPLI	ED		1220	
STATIC WATER ELE	VATION	8.5	52	ft	FT. BE	LOW M	MEASU	IRING PO	DINT	TOC
WELL DIAMETER		2	2	<u>In</u>	Product Elevation					ft.
TOTAL WELL DEPTH	l	18.06			FT. BE	LOW M	MEASU	IRING PO	DINT	TOC
	MPLIN	G INFO	RMATI	<u>ON</u>						
PURGE METHOD _	RGE METHOD Whale Pump			-	SAMPI	_E MET	THOD		Bailer	
PURGE RATE	0.44	0.44 GPM			PURGE TIME					Min
CASING VOLUMES R	REMOVED	1		GALLONS					1.75	
SAMPLE APPEARAN	CE	ery turbi	d	_	ODOR	S OBSI	ERVE) <u> </u>	no	ne
LABORATORY _	Alpha /	Analytical		DATE SHIPPED 1)8
ANALYSIS _		TCL VC	OCs, T	CL SVC	Cs, TA	L Meta	ls, Pes	ticides, P	PCBs	
NOTES _	Well	ran dry		_						
		SAI	MPLIN	G PAR	AMETE	RS				
Condu Tempel	Initial 280 rature 18.9 pH 8.00	290 19.3	2	3	4	5	6	Units uS °C		

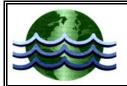

CLIENT/PROJECT No.	AVB0801								
WELL Number				ļ	MW-2				
SAMPLED BY	,	JLL	_	WELL	USE	(Groundwater M	1onito	oring
DATE SAMPLED	10/	3/2008	_	TIME S	SAMPLI	ED	1()25	
STATIC WATER ELEVATION)N _	6.57	_ft	FT. BE	LOW N	MEASU	RING POINT		TOC
WELL DIAMETER	_	2	_In	Product Elevation N/A					
TOTAL WELL DEPTH	_	18.04	_ft	FT. BELOW MEASURING POINT					
	NG INFO	RMATIO	ON						
PURGE METHOD Whale Pump						ΓHOD	Ba	ailer	
PURGE RATE	1.44	GPM		PURGE	E TIME		4		Min
CASING VOLUMES REMO	VED _	3	_	GALLC	NS		5	.75	
SAMPLE APPEARANCE	tu	urbid	_	ODOR	S OBSI	o	nor	ne	
LABORATORY	Alpha Ana	alytical	_	DATE S	10/6	/2008	3		
ANALYSIS	Т	CL VOCs,	TCL SV	DCs, TA	L Meta	ls, Pes	ticides, PCBs		
NOTES									
		CAMPLIN			DC				
		SAMPLIN	NG PAR	AIVIE I E	<u>KS</u>				
O a made catic its	Initial 1 2 3						Units		
Conductivity Temperature		70 40 19.2 18.9	80 18.8				uS ºC		
remperature pH		8.40 8.20	_				1		
	2.30		1 2.00	<u> </u>		<u>l</u>	4		
L									

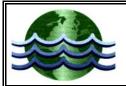

CLIENT/PROJECT No.	AVB0801							
WELL Number			MW-4					
SAMPLED BY	JLL		WELL USE	Ground	water Monit	oring		
DATE SAMPLED	10/3/2008		TIME SAMPLE	ED	1440			
STATIC WATER ELEVATION	ON7.08	ft	FT. BELOW M	IEASURING I	POINT	TOC		
WELL DIAMETER	2	In	Product Elevat	Product Elevation N/A				
TOTAL WELL DEPTH	19.39) ft	FT. BELOW MEASURING POINTT					
	SAMF	PLING INFO	ORMATION					
PURGE METHOD		SAMPLE MET	HOD	Bailer				
PURGE RATE	0.42 GI	PM	PURGE TIME	6	Min			
CASING VOLUMES REMO	VED1		GALLONS 2.5					
SAMPLE APPEARANCE	slightly turbid	<u> </u>	ODORS OBSE	ERVED	no	ne		
LABORATORY	Alpha Analytical		DATE SHIPPED 10/6/20					
ANALYSIS	TCL VOC	s, TCL SV	OCs, TAL Metal	s, Pesticides	, PCBs			
NOTES	Well ran dry							
	SAMF	PLING PAR	RAMETERS					
	Initial 1	2 3	4 5	6 Units				
Conductivity			 	uS				
Temperature	20.2 18.6			°C				
рН	8.00 7.40							

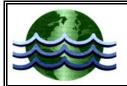

CLIENT/PROJECT No.	AVB0801								
WELL Number				İ	MW-5				
SAMPLED BY	JLL			WELL I	USE _	C	Groundwater	Monit	oring
DATE SAMPLED	10/6/2008	3		TIME S	SAMPLE	ΞD		930	
STATIC WATER ELEVATION	ON6.3	39	ft	FT. BE	LOW M	IEASU	RING POIN	т	TOC
WELL DIAMETER	2	2	In	Product Elevation N/A					ft.
TOTAL WELL DEPTH	19.	ft	FT. BELOW MEASURING POINT						
	MPLING	G INFO	RMATIO	NC					
PURGE METHOD Whale Pump						HOD	1	Bailer	
	0.50	<u>-</u> '	PURGE		4		Min		
CASING VOLUMES REMO				GALLONS2					
SAMPLE APPEARANCE	turbid		ODORS OBSERVED nor						ne
LABORATORY	Alpha Analytical			DATE S	10	/6/200	8		
ANALYSIS	TCL V	DCs, T	CL SVC	Cs, TA	L Metal	ls, Pes	ticides, PCB	s	
NOTES	Well ran dry								
	SAI	MPI IN	G PAR	AMETE	RS				
Conductivity	Initial 1 330 230	2	3	4	5 	6	Units luS		
Temperature							°C		
pH	7.80 7.40]		

CLIENT/PROJECT No.		AVB0801									
WELL Number						MW-6					
SAMPLED BY		JLL		_	WELL	USE	(Groundwa	ater Moni	toring	
DATE SAMPLED	1	0/6/2008		-	TIME S	SAMPL	ED		1050		
STATIC WATER ELEVA	TION	5.5	1	ft	FT. BE	LOW N	//EASL	IRING PC	DINT	TOC	
WELL DIAMETER		2			Produc	t Eleva	ition	_	N/A	ft.	
TOTAL WELL DEPTH		19.4	.0	ft	FT. BE	ELOW N	//EASU	IRING PC	DINT	TOC	
	SAMPLING										
PURGE METHOD Whale Pump				_	SAMPI	LE ME	THOD		Bailer		
PURGE RATE	0.42		SPM		PURG	E TIME		6	Min		
CASING VOLUMES REM	MOVED	1		_	GALLO	ONS		2.5			
SAMPLE APPEARANCE		turbid		ODORS OBSERVEDnone						one	
LABORATORY	Alpha A	nalytical		_	DATE	SHIPPI		10/6/200	08		
ANALYSIS		TCL VO	Cs, T	CL SVC	OCs, TA	L Meta	ıls, Pes	sticides, P	CBs		
NOTES	Well r	an dry		-							
		SAM	IPLIN	G PAR	AMETE	RS					
Conductiv Temperatu		1 130 17.3 7.10	2	3	4	5	6	Units uS °C			

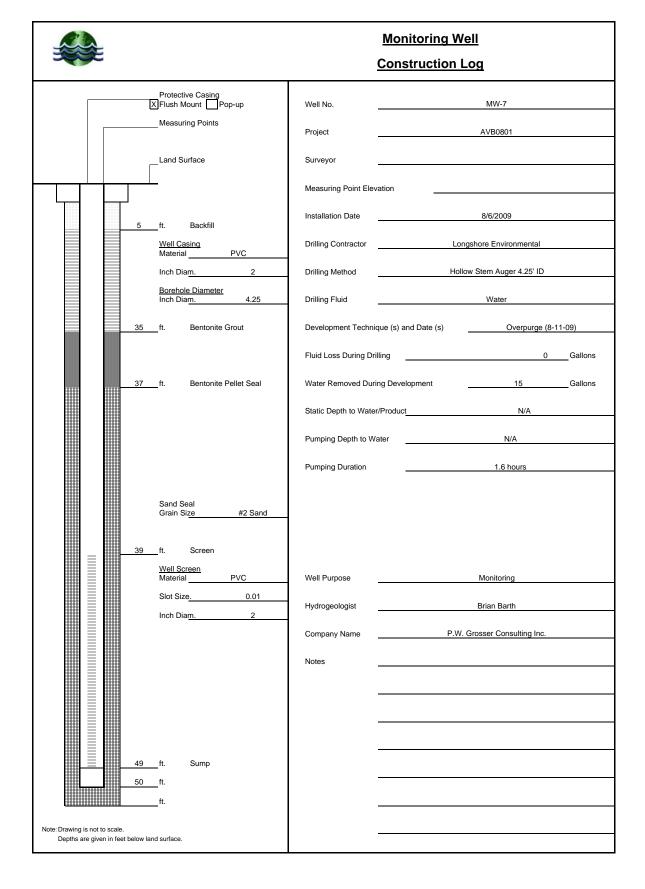

CLIENT/PROJECT No.		AVB0801								
WELL Number					D	oiffW-0	1			
SAMPLED BY		JLL		_	WELL	USE	S	suspected I	Diffusion	Well
DATE SAMPLED	1(0/6/200	8	_	TIME S	SAMPL	.ED		1145	
STATIC WATER ELEVATION	ON	6.	78	ft	FT. BE	LOW I	MEASU	IRING POI	NT	TOC
WELL DIAMETER			4	In	Product Elevation N/A					ft.
TOTAL WELL DEPTH		19.82			FT. BELOW MEASURING POINT					
SAMPLI				G INFC	RMATI	ON				
PURGE METHODWhale Pump			_	SAMPI	LE ME	THOD		Bailer		
PURGE RATE	1.08 GPM				PURG	E TIME		24	Min	
CASING VOLUMES REMO	SING VOLUMES REMOVED 3			GALLONS					26	
SAMPLE APPEARANCE	slig	htly turl	bid	ODORS OBSERVEDnor						ne
LABORATORY	Alpha Aı	nalytica	l	DATE SHIPPED10						8
ANALYSIS		TCL V	OCs, T	CL SVC	OCs, TA	L Meta	als, Pes	ticides, PC	Bs	
NOTES				_						
		SA	MPLIN	G PAR	AMETE	RS				
	1 242 1	<u>-</u>						11. %		
Conductivity	Initial 120	1 120	2 130	330		5	6 	Units luS		
Temperature		16.4		14.2				°C		
рН		7.60	7.60	7.40]		

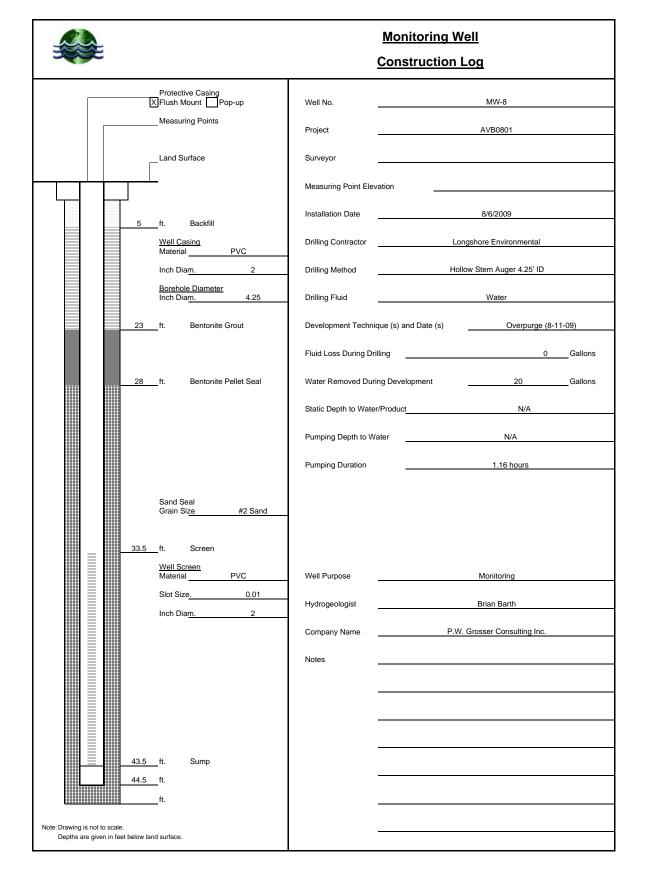

CLIENT/PROJECT No.		AVB0801								
WELL Number			DiffW-02							
SAMPLED BY	JLL	_	WELL USE _	Suspecte	ed Diffusion	Well				
DATE SAMPLED	10/6/2008	_	TIME SAMPLE	ED	1305					
STATIC WATER ELEVATION	ON <u>5.73</u>	ft	FT. BELOW M	EASURING F	POINT	TOC				
WELL DIAMETER	4	_In	Product Elevat	ion	N/A					
TOTAL WELL DEPTH	25.40	ft	FT. BELOW M	EASURING F	POINT	TOC				
	SAMPLII	NG INFO	DRMATION_							
PURGE METHOD	Whale Pump	_	SAMPLE MET	HOD	Bailer					
PURGE RATE	0.38 GPM		PURGE TIME	24	Min					
CASING VOLUMES REMO	VED 1	_	GALLONS		9					
SAMPLE APPEARANCE	clear	_	ODORS OBSERVED							
LABORATORY	Alpha Analytical	_	DATE SHIPPED 10/6/2							
ANALYSIS	TCL VOCs,	TCL SV	OCs, TAL Metal	s, Pesticides,	PCBs					
NOTES	Well ran dry. Te	mperatu	ure / Conductivit	y meter malfu	nctioned.					
	SAMPLII	NG PAR	AMETERS							
		3	4 5	6 Units						
Conductivity	Initial 1 2 Conductivity			uS						
Temperature			°C							
pH	7.90 8.20									

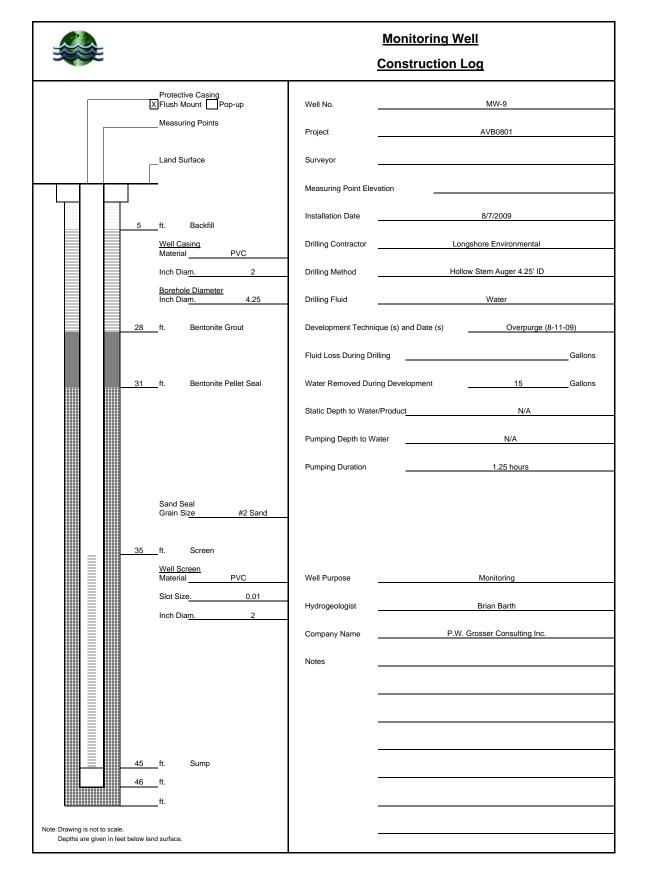

CLIENT/PROJECT No.		AVB0801								
WELL Number		DiffW-03								
SAMPLED BY	JLL	WELL USE	Suspected Diffusion Well							
DATE SAMPLED	10/6/2008	_ TIME SAMPLED	1320							
STATIC WATER ELEVATION	ON 6.34	_ft FT. BELOW MEASU	JRING POINT TOC							
WELL DIAMETER	1	In Product Elevation	N/A ft.							
TOTAL WELL DEPTH	25.11	_ft FT. BELOW MEAS	JRING POINT TOC							
	SAMPLIN	IG INFORMATION								
PURGE METHOD	Whale Pump	_ SAMPLE METHOD	Bailer							
PURGE RATE	0.14 GPM	PURGE TIME	7Min							
CASING VOLUMES REMO	VED1	GALLONS	1							
SAMPLE APPEARANCE	slightly turbid	ODORS OBSERVED none								
LABORATORY	Alpha Analytical	DATE SHIPPED	10/6/2008							
ANALYSIS	TCL VOCs, T	CL SVOCs, TAL Metals, Pe	sticides, PCBs							
NOTES	Well ran dry. Ter	mperature / Conductivity met	ter malfunctioned.							
	SAMPLIN	IG PARAMETERS								
	Initial 1 2		Units							
Conductivity		3 4 5 6	uS							
Temperature			 oc							
pH	8.70 8.70		_							


CLIENT/PROJECT No.				AVB0801							
WELL Number				D	iffW-04	1					
SAMPLED BY	JLL		_	WELL	USE	S	uspected Diff	usion	Well		
DATE SAMPLED	10/8/20	800	_	TIME S	SAMPL	.ED	1	245			
STATIC WATER ELEVATION	N	7.40	ft	FT. BE	LOW N	MEASU	RING POINT		TOC		
WELL DIAMETER		4	_In	Product Elevation N/A					ft.		
TOTAL WELL DEPTH		ft	FT. BE		тос						
	AMPLIN	G INFO	RMATI	<u>ON</u>							
PURGE METHOD Whale pump			_	SAMPL	_E ME	THOD	E	ailer			
PURGE RATE	0.83		PURGI	E TIME	96		Min				
CASING VOLUMES REMO	VED	3	GALLONS					80			
SAMPLE APPEARANCE	clea	•	_	S OBS		No	ne				
LABORATORY	Alpha Analytic	cal	_	DATE :	SHIPP	10/	10/8/2008				
ANALYSIS	TCL	VOCs, T	CL SVC	OCs, TA	L Meta	als, Pes	ticides, PCBs	3			
NOTES			_								
	.9	AMPLIN	G PAR	AMETE	RS						
	_				<u>110</u>						
Conductivity	2 3 102.5		4	5	6 I	Units luS					
Temperature							°C				
рН] _				
·	•						_				

CLIENT/PROJECT No.	AVB0801								
WELL Number				(SW-01				
SAMPLED BY	JLL		_	WELL	USE .	Ç	Suspected S	upply	Well
DATE SAMPLED	10/7/20	08	_	TIME S	SAMPLI	ED		1510	
STATIC WATER ELEVATION	ON :	3.80	_ft	FT. BE	LOW M	MEASU	RING POINT		TOC
WELL DIAMETER		8	_In	Product Elevation N/A					
TOTAL WELL DEPTH	4	_ft	FT. BE		TOC				
	AMPLIN	G INFC	RMATI	<u>ON</u>					
PURGE METHOD	_	SAMPI	_E MET	THOD	E	Bailer			
PURGE RATE	0.71		PURGE TIME					Min	
CASING VOLUMES REMO	VED	3	GALLONS 140						
SAMPLE APPEARANCE	clear		_	ODOR	S OBSI	ERVED		No	ne
LABORATORY	Alpha Analytic	al	_	8/200	8				
ANALYSIS	TCL '	VOCs, T	CL SVC	DCs, TA	L Meta	ls, Pes	ticides, PCB	6	
NOTES <u>Temp</u>	perature / Con	ductivity	meter n	nalfunct	ioned				
	<u>S</u>	AMPLIN	IG PAR	AMETE	RS_				
Conductivity Temperature pH	73	4	5	6	Units luS ⁰ C				




CLIENT/PROJECT No.	_			Α\	/B0801					
WELL Number				S	SW-02					
SAMPLED BY	JL	L	_	WELL (USE _	(Suspec	ted Supp	ly Well	
DATE SAMPLED	10/8/2	2008	_	TIME S	SAMPLE	ΞD		130	5	
STATIC WATER ELEVATION	ON	4.20	ft	FT. BE	LOW M	IEASU	RING F	POINT _	TOC	
WELL DIAMETER		8	<u>In</u>	Produc	t Elevat	tion		N/A	<u> </u>	t.
TOTAL WELL DEPTH		40.04	ft	FT. BE	LOW M	IEASU	RING F	POINT _	TOC	
		SAMPLIN	G INFC	RMATIO	<u>NC</u>					
PURGE METHOD	GE METHOD Grunfos			SAMPL	E MET	HOD		Baile	er	
PURGE RATE	1.53	GPM		PURGE	TIME			101	Min	1
CASING VOLUMES REMO	VED	3	GALLONS					155	;	
SAMPLE APPEARANCE	clea	ar	ODORS OBSERVED						None	
LABORATORY	Alpha Analy	tical	DATE SHIPPED 10						800	
ANALYSIS	TCI	VOCs, T	CL SV	OCs, TA	L Metal	s, Pes	ticides,	PCBs		
NOTES			_							
		SAMPLIN	G PAR	AMETE	RS					
Conductivity Temperature pH	105.9 6 16.5 16		3 97.6 17.0 6.77		5	6	Units]uS ⁰ C			



CLIENT/PROJECT No.		AVB0801									
WELL Number				SW-	03						
SAMPLED BY		JLL	_	WELL USE	Ē	Suspected	Supply \	Well			
DATE SAMPLED	10/8	8/2008	_	TIME SAM		1410					
STATIC WATER ELEVATION	ON _	3.74	ft	FT. BELOV	N MEASU	JRING POIN	NT	TOC			
WELL DIAMETER	_	8	<u>In</u>	Product Ele	evation		N/A	ft.			
TOTAL WELL DEPTH	_	41.64	ft	FT. BELOV	N MEASU	JRING POIN	NT	TOC			
		SAMPLIN	G INFC	RMATION							
PURGE METHOD	Grunfo	os	<u>-</u>	SAMPLE N	/IETHOD		Bailer				
PURGE RATE	1.43	GPM		PURGE TI	11	15	Min				
CASING VOLUMES REMO	VED _	3	<u>-</u>	GALLONS _			165				
SAMPLE APPEARANCE	c	elear	_	ODORS O	D None						
LABORATORY	Alpha Ana	alytical	<u>-</u>	DATE SHII	PPED	10/8/2008					
ANALYSIS	Т	CL VOCs, T	TCL SVOCs, TAL Metals, Pesticides, PCBs								
NOTES			_								
		SAMPLIN	G PAR	AMETERS							
Conductivity Temperature pH	16.6	1 2 113.5 120.2 18.5 18.3 6.69 6.70	3 94.5 18.7 6.73	 	6 6	Units uS °C					

APPENDIX E WELL CONSTRUCTION LOGS

APPENDIX F LABORATORY ANALYTICAL REPORTS

ALPHA ANALYTICAL

Eight Walkup Drive

Westborough, Massachusetts 01581-1019 (508) 898-9220 www.alphalab.com

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

CERTIFICATE OF ANALYSIS

Client: P.W. Grosser Laboratory Job Number: L0812845

Address: 630 Johnson Avenue Date Received: 29-AUG-2008

Suite 7

Bohemia, NY 11716 Date Reported: 05-SEP-2008

Attn: Mr. Kris Almskog Delivery Method: Alpha

Project Number: AVB0801 Site:

ALPHA SAMPLE NUMBER CLIENT IDENTIFICATION SAMPLE LOCATION L0812845-01 PWG-VP-2008-04 (16-20') 80-100 BANKS AVE., ROCKVILLE C L0812845-02 PWG-VP-2008-04 (36-40') 80-100 BANKS AVE., ROCKVILLE C L0812845-03 PWG-VP-2008-04 (56-60') 80-100 BANKS AVE., ROCKVILLE C L0812845-04 PWG-VP-2008-04 (76-80') 80-100 BANKS AVE., ROCKVILLE C PWG-VP-2008-04 (96-100') 80-100 BANKS AVE., ROCKVILLE C L0812845-05 L0812845-06 PWG-VP-2008-03 (16-20') 80-100 BANKS AVE., ROCKVILLE C 80-100 BANKS AVE., ROCKVILLE C PWG-VP-2008-03 (36-40') L0812845-07 L0812845-08 80-100 BANKS AVE., ROCKVILLE C PWG-VP-2008-03 (56-60') 80-100 BANKS AVE., ROCKVILLE C TB-01 L0812845-09 80-100 BANKS AVE., ROCKVILLE C L0812845-10 FB-01 PWG-VP-2008-03 (76-80') 80-100 BANKS AVE., ROCKVILLE C L0812845-11

Authorized by:

Technical Representative

09050813:43 Page 1 of 31

I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

ALPHA ANALYTICAL NARRATIVE REPORT

Laboratory Job Number: L0812845

The samples were received in accordance with the chain of custody and no significant deviations were encountered during preparation or analysis unless otherwise noted below.

Volatile Organics

L0812845-08 required re-analysis on a 4x dilution in order to quantitate the sample within the calibration range. The result is reported as a "greater than" value for the compound that exceeded the calibration on the initial analysis. The re-analysis was performed only for the compound which exceeded the calibration range.

L0812845-08, -11: The concentrations of Isopropylbenzene should be considered estimated because the %D for this analyte was outside method acceptance criteria in the associated CCAL (34%).

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0812845-01 Date Collected: 26-AUG-2008 10:45

PWG-VP-2008-04 (16-20') Date Received: 29-AUG-2008

Sample Matrix: WATER Date Reported: 05-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 82	260B			1 8260B	0904 17:33 PD
Methylene chloride	ND	ug/l	5.0		
1,1-Dichloroethane	ND	ug/l	0.75		
Chloroform	ND	ug/l	0.75		
Carbon tetrachloride	ND	ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75		
Tetrachloroethene	ND	ug/l	0.50		
Chlorobenzene	ND	ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND	ug/l	0.50		
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50		
Chloromethane	ND	ug/l	2.5		
Bromomethane	ND	ug/l	1.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	1.0		
1,1-Dichloroethene	ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/l	0.75		
Trichloroethene	ND	ug/l	0.50		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/l	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	ND	ug/l	0.50		
Dibromomethane	ND	ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/l	5.0		
Acrylonitrile	ND	ug/l	5.0		

Laboratory Sample Number: L0812845-01

PWG-VP-2008-04 (16-20')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Volatile Organics by EPA 826	OB cont'd			1	8260B		0904 17:3	3 PD
Styrene	ND	ug/l	1.0					
Dichlorodifluoromethane	ND	ug/l	5.0					
Acetone	ND	ug/l	5.0					
Carbon disulfide	ND	ug/l	5.0					
2-Butanone	ND	ug/l	5.0					
Vinyl acetate	ND	ug/l	5.0					
4-Methyl-2-pentanone	ND	ug/l	5.0					
2-Hexanone	ND	ug/l	5.0					
Bromochloromethane	ND	ug/l	2.5					
2,2-Dichloropropane	ND	ug/l	2.5					
1,2-Dibromoethane	ND	ug/l	2.0					
1,3-Dichloropropane	ND	ug/l	2.5					
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50					
Bromobenzene	ND	ug/l	2.5					
n-Butylbenzene	ND	ug/l	0.50					
sec-Butylbenzene	ND	ug/l	0.50					
tert-Butylbenzene	ND	ug/l	2.5					
o-Chlorotoluene	ND	ug/l	2.5					
p-Chlorotoluene	ND	ug/l	2.5					
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5					
Hexachlorobutadiene	ND	ug/l	0.60					
Isopropylbenzene	ND	ug/l	0.50					
p-Isopropyltoluene	ND	ug/l	0.50					
Naphthalene	ND	ug/l	2.5					
n-Propylbenzene	ND	ug/l	0.50					
1,2,3-Trichlorobenzene	ND	ug/l	2.5					
1,2,4-Trichlorobenzene	ND	ug/l	2.5					
1,3,5-Trimethylbenzene	ND	ug/l	2.5					
1,2,4-Trimethylbenzene	ND	ug/l	2.5					
1,4-Diethylbenzene	ND	ug/l	2.0					
4-Ethyltoluene	ND	ug/l	2.0					
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0					
Surrogate(s)	Recovery		QC Crit	teria	L			
1,2-Dichloroethane-d4	108	%	70-130					
Toluene-d8	99.0	%	70-130					
4-Bromofluorobenzene	101	%	70-130					
Dibromofluoromethane	101	%	70-130					

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0812845-02 Date Collected: 26-AUG-2008 11:30

Sample Matrix: WATER Date Reported: 05-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 6-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 83	260B			1 8260B	0904 18:11 PD
Methylene chloride	ND	ug/l	5.0		
1,1-Dichloroethane	ND	ug/l	0.75		
Chloroform	ND	ug/l	0.75		
Carbon tetrachloride	ND	ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75		
Tetrachloroethene	ND	ug/l	0.50		
Chlorobenzene	ND	ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND	ug/l	0.50		
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50		
Chloromethane	ND	ug/l	2.5		
Bromomethane	ND	ug/l	1.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	1.0		
1,1-Dichloroethene	ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/l	0.75		
Trichloroethene	ND	ug/l	0.50		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/l	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	ND	ug/l	0.50		
Dibromomethane	ND	ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/l	5.0		
Acrylonitrile	ND	ug/l	5.0		

Laboratory Sample Number: L0812845-02

PWG-VP-2008-04 (36-40')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	ATE ANAL	ID
Volatile Organics by EPA 826	OB cont'd			1	8260B		0904 18:	L1 PD
Styrene	ND	ug/l	1.0					
Dichlorodifluoromethane	ND	ug/l	5.0					
Acetone	ND	ug/l	5.0					
Carbon disulfide	ND	ug/l	5.0					
2-Butanone	ND	ug/l	5.0					
Vinyl acetate	ND	ug/l	5.0					
4-Methyl-2-pentanone	ND	ug/l	5.0					
2-Hexanone	ND	ug/l	5.0					
Bromochloromethane	ND	ug/l	2.5					
2,2-Dichloropropane	ND	ug/l	2.5					
1,2-Dibromoethane	ND	ug/l	2.0					
1,3-Dichloropropane	ND	ug/l	2.5					
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50					
Bromobenzene	ND	ug/l	2.5					
n-Butylbenzene	ND	ug/l	0.50					
sec-Butylbenzene	ND	ug/l	0.50					
tert-Butylbenzene	ND	ug/l	2.5					
o-Chlorotoluene	ND	ug/l	2.5					
p-Chlorotoluene	ND	ug/l	2.5					
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5					
Hexachlorobutadiene	ND	ug/l	0.60					
Isopropylbenzene	ND	ug/l	0.50					
p-Isopropyltoluene	ND	ug/l	0.50					
Naphthalene	ND	ug/l	2.5					
n-Propylbenzene	ND	ug/l	0.50					
1,2,3-Trichlorobenzene	ND	ug/l	2.5					
1,2,4-Trichlorobenzene	ND	ug/l	2.5					
1,3,5-Trimethylbenzene	ND	ug/l	2.5					
1,2,4-Trimethylbenzene	ND	ug/l	2.5					
1,4-Diethylbenzene	ND	ug/l	2.0					
4-Ethyltoluene	ND	ug/l	2.0					
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0					
Surrogate(s)	Recovery		QC Cri	teria	a.			
1,2-Dichloroethane-d4	106	%	70-130					
Toluene-d8	100	%	70-130					
4-Bromofluorobenzene	100	%	70-130					
Dibromofluoromethane	99.0	%	70-130					

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0812845-03 Date Collected: 26-AUG-2008 15:00

PWG-VP-2008-04 (56-60') Date Received: 29-AUG-2008

Sample Matrix: WATER Date Reported: 05-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 82	60B			1 8260B	0904 20:06 PD
Methylene chloride	ND	ug/l	5.0		
1,1-Dichloroethane	ND	ug/l	0.75		
Chloroform	ND	ug/l	0.75		
Carbon tetrachloride	ND	ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75		
Tetrachloroethene	ND	ug/l	0.50		
Chlorobenzene	ND	ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND	ug/l	0.50		
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50		
Chloromethane	ND	ug/l	2.5		
Bromomethane	ND	ug/l	1.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	1.0		
1,1-Dichloroethene	ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/l	0.75		
Trichloroethene	ND	ug/l	0.50		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/l	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	ND	ug/l	0.50		
Dibromomethane	ND	ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/l	5.0		
Acrylonitrile	ND	ug/l	5.0		

Laboratory Sample Number: L0812845-03

PWG-VP-2008-04 (56-60')

						PREP	ANAL	
Volatile Organics by EPA 820	SOB contid			1 0	260B		0904 20:0	S DD
Styrene	ND	ug/l	1.0	1 0	2008		0904 20:00	J PD
Dichlorodifluoromethane	ND	ug/1 ug/1	5.0					
Acetone	8.9	ug/1 ug/1	5.0					
Carbon disulfide	ND	ug/1 ug/1	5.0					
2-Butanone	ND	ug/1 ug/1	5.0					
Vinyl acetate	ND	ug/1 ug/1	5.0					
4-Methyl-2-pentanone	ND	ug/1 ug/1	5.0					
2-Hexanone	ND	ug/l ug/l	5.0					
Bromochloromethane	ND	ug/1 ug/1	2.5					
2,2-Dichloropropane	ND	ug/1 ug/1	2.5					
1,2-Dibromoethane	ND	ug/l ug/l	2.0					
1,3-Dichloropropane	ND	ug/1 ug/1	2.5					
1,1,1,2-Tetrachloroethane	ND	ug/1 ug/1	0.50					
Bromobenzene	ND ND	ug/l ug/l	2.5					
n-Butylbenzene	ND	ug/l ug/l	0.50					
sec-Butylbenzene	ND	ug/l ug/l	0.50					
tert-Butylbenzene	ND	ug/l ug/l	2.5					
o-Chlorotoluene	ND	ug/l ug/l	2.5					
p-Chlorotoluene	ND ND	ug/l ug/l	2.5					
1,2-Dibromo-3-chloropropane	ND	ug/l ug/l	2.5					
Hexachlorobutadiene	ND	ug/l ug/l	0.60					
Isopropylbenzene	ND ND	ug/l ug/l	0.50					
p-Isopropyltoluene	ND	ug/l ug/l	0.50					
Naphthalene	ND	ug/l ug/l	2.5					
naphthaiene n-Propylbenzene	ND ND	ug/l ug/l	0.50					
1,2,3-Trichlorobenzene	ND	ug/l ug/l	2.5					
1,2,4-Trichlorobenzene	ND ND	ug/l ug/l	2.5					
	ND	_	2.5					
1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene	ND ND	ug/l	2.5					
		ug/l	2.5					
1,4-Diethylbenzene 4-Ethyltoluene	ND ND	ug/l	2.0					
	ND ND	ug/l	2.0					
1,2,4,5-Tetramethylbenzene	עוא	ug/l	∠.∪					
Surrogate(s)	Recovery		QC Cr	iteria				
1,2-Dichloroethane-d4	103	%	70-130	0				
Toluene-d8	99.0	%	70-130	0				
4-Bromofluorobenzene	101	&	70-130)				
Dibromofluoromethane	99.0	8	70-130)				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0812845-04 Date Collected: 26-AUG-2008 16:15

PWG-VP-2008-04 (76-80') Date Received: 29-AUG-2008

Sample Matrix: WATER Date Reported: 05-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 82	260B			1 8260B	0904 20:44 PD
Methylene chloride	ND	ug/l	5.0		
1,1-Dichloroethane	ND	ug/l	0.75		
Chloroform	ND	ug/l	0.75		
Carbon tetrachloride	ND	ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75		
Tetrachloroethene	ND	ug/l	0.50		
Chlorobenzene	ND	ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND	ug/l	0.50		
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50		
Chloromethane	ND	ug/l	2.5		
Bromomethane	ND	ug/l	1.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	1.0		
1,1-Dichloroethene	ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/l	0.75		
Trichloroethene	ND	ug/l	0.50		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/l	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	ND	ug/l	0.50		
Dibromomethane	ND	ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/l	5.0		
Acrylonitrile	ND	ug/l	5.0		

Laboratory Sample Number: L0812845-04

PWG-VP-2008-04 (76-80')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Volatile Organics by EPA 826	OB cont'd			1	8260B		0904 20:4	4 PD
Styrene	ND	ug/l	1.0					
Dichlorodifluoromethane	ND	ug/l	5.0					
Acetone	ND	ug/l	5.0					
Carbon disulfide	ND	ug/l	5.0					
2-Butanone	ND	ug/l	5.0					
Vinyl acetate	ND	ug/l	5.0					
4-Methyl-2-pentanone	ND	ug/l	5.0					
2-Hexanone	ND	ug/l	5.0					
Bromochloromethane	ND	ug/l	2.5					
2,2-Dichloropropane	ND	ug/l	2.5					
1,2-Dibromoethane	ND	ug/l	2.0					
1,3-Dichloropropane	ND	ug/l	2.5					
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50					
Bromobenzene	ND	ug/l	2.5					
n-Butylbenzene	ND	ug/l	0.50					
sec-Butylbenzene	ND	ug/l	0.50					
tert-Butylbenzene	ND	ug/l	2.5					
o-Chlorotoluene	ND	ug/l	2.5					
p-Chlorotoluene	ND	ug/l	2.5					
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5					
Hexachlorobutadiene	ND	ug/l	0.60					
Isopropylbenzene	ND	ug/l	0.50					
p-Isopropyltoluene	ND	ug/l	0.50					
Naphthalene	ND	ug/l	2.5					
n-Propylbenzene	ND	ug/l	0.50					
1,2,3-Trichlorobenzene	ND	ug/l	2.5					
1,2,4-Trichlorobenzene	ND	ug/l	2.5					
1,3,5-Trimethylbenzene	ND	ug/l	2.5					
1,2,4-Trimethylbenzene	ND	ug/l	2.5					
1,4-Diethylbenzene	ND	ug/l	2.0					
4-Ethyltoluene	ND	ug/l	2.0					
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0					
Surrogate(s)	Recovery		QC Crit	teria	ı			
1,2-Dichloroethane-d4	105	8	70-130					
Toluene-d8	99.0	%	70-130					
4-Bromofluorobenzene	100	%	70-130					
Dibromofluoromethane	101	%	70-130					

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0812845-05 Date Collected: 27-AUG-2008 11:20

PWG-VP-2008-04 (96-100') Date Received: 29-AUG-2008

Sample Matrix: WATER Date Reported: 05-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 8	260B			1 8260B	0904 21:22 PD
Methylene chloride	ND	ug/l	5.0		
1,1-Dichloroethane	ND	ug/l	0.75		
Chloroform	ND	ug/l	0.75		
Carbon tetrachloride	ND	ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75		
Tetrachloroethene	ND	ug/l	0.50		
Chlorobenzene	ND	ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	0.56	ug/l	0.50		
Toluene	1.3	ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50		
Chloromethane	ND	ug/l	2.5		
Bromomethane	ND	ug/l	1.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	1.0		
1,1-Dichloroethene	ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/l	0.75		
Trichloroethene	ND	ug/l	0.50		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/l	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	ND	ug/l	0.50		
Dibromomethane	ND	ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/l	5.0		
Acrylonitrile	ND	ug/l	5.0		

Laboratory Sample Number: L0812845-05

PWG-VP-2008-04 (96-100')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Volatile Organics by EPA 826	OB cont'd			1	8260B		0904 21:2	22 PD
Styrene	ND	ug/l	1.0					
Dichlorodifluoromethane	ND	ug/l	5.0					
Acetone	49	ug/l	5.0					
Carbon disulfide	ND	ug/l	5.0					
2-Butanone	18	ug/l	5.0					
Vinyl acetate	ND	ug/l	5.0					
4-Methyl-2-pentanone	ND	ug/l	5.0					
2-Hexanone	ND	ug/l	5.0					
Bromochloromethane	ND	ug/l	2.5					
2,2-Dichloropropane	ND	ug/l	2.5					
1,2-Dibromoethane	ND	ug/l	2.0					
1,3-Dichloropropane	ND	ug/l	2.5					
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50					
Bromobenzene	ND	ug/l	2.5					
n-Butylbenzene	ND	ug/l	0.50					
sec-Butylbenzene	ND	ug/l	0.50					
tert-Butylbenzene	ND	ug/l	2.5					
o-Chlorotoluene	ND	ug/l	2.5					
p-Chlorotoluene	ND	ug/l	2.5					
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5					
Hexachlorobutadiene	ND	ug/l	0.60					
Isopropylbenzene	ND	ug/l	0.50					
p-Isopropyltoluene	ND	ug/l	0.50					
Naphthalene	ND	ug/l	2.5					
n-Propylbenzene	ND	ug/l	0.50					
1,2,3-Trichlorobenzene	ND	ug/l	2.5					
1,2,4-Trichlorobenzene	ND	ug/l	2.5					
1,3,5-Trimethylbenzene	ND	ug/l	2.5					
1,2,4-Trimethylbenzene	ND	ug/l	2.5					
1,4-Diethylbenzene	ND	ug/l	2.0					
4-Ethyltoluene	ND	ug/l	2.0					
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0					
Surrogate(s)	Recovery		QC Crit	eria	ı			
1,2-Dichloroethane-d4	105	%	70-130					
Toluene-d8	100	%	70-130					
4-Bromofluorobenzene	101	%	70-130					
Dibromofluoromethane	99.0	%	70-130					

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0812845-06 Date Collected: 27-AUG-2008 13:20

PWG-VP-2008-03 (16-20') Date Received: 29-AUG-2008

Sample Matrix: WATER Date Reported: 05-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 820	50B			1 8260B	0904 22:00 PD
Methylene chloride	ND	ug/l	5.0	1 02006	0904 22:00 PD
1,1-Dichloroethane	ND ND	ug/l	0.75		
Chloroform	ND ND	ug/1 ug/l	0.75		
Carbon tetrachloride	ND	ug/1 ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75		
Tetrachloroethene	28	ug/l	0.50		
Chlorobenzene	ND	ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND	ug/l	0.50		
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50		
Chloromethane	ND	ug/l	2.5		
Bromomethane	ND	ug/l	1.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	1.0		
1,1-Dichloroethene	ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/l	0.75		
Trichloroethene	1.2	ug/l	0.50		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/l	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	13	ug/l	0.50		
Dibromomethane	ND	ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/l	5.0		
Acrylonitrile	ND	ug/l	5.0		

Laboratory Sample Number: L0812845-06

PWG-VP-2008-03 (16-20')

Volatile Organics by EPA 826 Styrene Dichlorodifluoromethane Acetone	OB cont'd ND ND 26 ND	ug/l ug/l	1.0	1			
Styrene Dichlorodifluoromethane Acetone	ND ND 26	ug/l	1 0		8260B	0904 22:00	מת נ
Dichlorodifluoromethane Acetone	ND 26	ug/l			0200B	0904 22.00	J PD
Acetone	26	_	5.0				
		ug/l	5.0				
Carbon disulfide		ug/l ug/l	5.0				
2-Butanone	6.4	ug/l	5.0				
Vinyl acetate	ND	ug/l ug/l	5.0				
4-Methyl-2-pentanone	ND ND	ug/l ug/l	5.0				
2-Hexanone	ND	ug/l ug/l	5.0				
Bromochloromethane	ND	ug/l ug/l	2.5				
2,2-Dichloropropane	ND ND	ug/l ug/l	2.5				
1,2-Dibromoethane	ND ND	ug/l ug/l	2.0				
1,3-Dichloropropane	ND ND	ug/l ug/l	2.5				
1,1,1,2-Tetrachloroethane	ND	ug/l ug/l	0.50				
Bromobenzene	ND ND	ug/l ug/l	2.5				
n-Butylbenzene	ND ND	ug/l ug/l	0.50				
sec-Butylbenzene	ND ND	ug/l ug/l	0.50				
tert-Butylbenzene	ND ND	ug/l ug/l	2.5				
o-Chlorotoluene	ND	ug/l ug/l	2.5				
p-Chlorotoluene	ND ND	ug/l ug/l	2.5				
1,2-Dibromo-3-chloropropane	ND ND	ug/l ug/l	2.5				
Hexachlorobutadiene	ND ND	ug/l ug/l	0.60				
Isopropylbenzene	ND ND	ug/l ug/l	0.50				
p-Isopropyltoluene	ND	ug/l ug/l	0.50				
Naphthalene	ND ND	ug/l ug/l	2.5				
naphthaiene n-Propylbenzene	ND	ug/l ug/l	0.50				
1,2,3-Trichlorobenzene	ND ND	ug/l ug/l	2.5				
1,2,4-Trichlorobenzene	ND ND	ug/l ug/l	2.5				
1,3,5-Trimethylbenzene	ND ND	ug/l ug/l	2.5				
1,2,4-Trimethylbenzene	ND ND	ug/l ug/l	2.5				
	ND ND	_	2.0				
1,4-Diethylbenzene 4-Ethyltoluene	ND ND	ug/l	2.0				
1,2,4,5-Tetramethylbenzene	ND ND	ug/l	2.0				
1,2,4,5-letramethy1Denzene	עועו	ug/l	∠.∪				
Surrogate(s)	Recovery		QC Cri	iteria	L		
1,2-Dichloroethane-d4	104	%	70-130)			
Toluene-d8	99.0	%	70-130)			
4-Bromofluorobenzene	102	%	70-130)			
Dibromofluoromethane	99.0	%	70-130)			

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0812845-07 Date Collected: 27-AUG-2008 13:50

PWG-VP-2008-03 (36-40') Date Received: 29-AUG-2008

Sample Matrix: WATER Date Reported: 05-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 82	60B			1 8260B	0904 22:37 PD
Methylene chloride	ND	ug/l	5.0		
1,1-Dichloroethane	ND	ug/l	0.75		
Chloroform	ND	ug/l	0.75		
Carbon tetrachloride	ND	ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75		
Tetrachloroethene	24	ug/l	0.50		
Chlorobenzene	ND	ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND	ug/l	0.50		
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50		
Chloromethane	ND	ug/l	2.5		
Bromomethane	ND	ug/l	1.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	1.0		
1,1-Dichloroethene	ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/l	0.75		
Trichloroethene	ND	ug/l	0.50		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/l	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	0.62	ug/l	0.50		
Dibromomethane	ND	ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/l	5.0		
Acrylonitrile	ND	ug/l	5.0		

Laboratory Sample Number: L0812845-07

PWG-VP-2008-03 (36-40')

.,2-Dichloroethane-d4 104 % 70-130 Coluene-d8 99.0 % 70-130 R-Bromofluorobenzene 100 % 70-130	PARAMETER	RESULT	UNITS	RDL	REF I	METHOD	D <i>F</i> PREP	ATE ANAL	ID
ND	Wolatile Organics by FDA 826	OB contid			1	9260B		0004 22:2	7 DD
Sichlorodifluoromethane			1107 / 1	1 0		02005		0904 22-3	/ PD
ND	-		_						
Carbon disulfide			_						
### Butanone ND			_						
ND			_						
######################################			_						
### ND	-		_						
Stromochloromethane			_						
			_						
			_						
ND			_						
### 1.1.1.2-Tetrachloroethane	•		_						
ND			_						
### Butylbenzene			_						
1.3			_						
ND	-								
Description ND Ug/l 2.5 2.	_		_						
Description ND Ug/l 2.5 2.	-		_						
			_						
ND	-		_						
Sopropylbenzene									
### Description of the image of			_						
Maphthalene ND ug/l 2.5 n-Propylbenzene ND ug/l 0.50 .,2,3-Trichlorobenzene ND ug/l 2.5 .,2,4-Trichlorobenzene ND ug/l 2.5 .,3,5-Trimethylbenzene ND ug/l 2.5 .,2,4-Trimethylbenzene ND ug/l 2.5 .,4-Diethylbenzene ND ug/l 2.0 H-Ethyltoluene ND ug/l 2.0 .,2,4,5-Tetramethylbenzene ND ug/l 2.0 Surrogate(s) Recovery QC Criteria .,2-Dichloroethane-d4 104 % 70-130 Toluene-d8 99.0 % 70-130 H-Bromofluorobenzene 100 % 70-130			_						
n-Propylbenzene ND ug/l 0.50 1,2,3-Trichlorobenzene ND ug/l 2.5 1,2,4-Trichlorobenzene ND ug/l 2.5 1,3,5-Trimethylbenzene ND ug/l 2.5 1,2,4-Trimethylbenzene ND ug/l 2.5 1,4-Diethylbenzene ND ug/l 2.0 1-Ethyltoluene ND ug/l 2.0 1-Ethyltoluene ND ug/l 2.0 1-2,4,5-Tetramethylbenzene ND ug/l 2.0 1-2,2,4,5-Tetramethylbenzene ND ug/l 2.0 1-2-Dichloroethane-d4 104 % 70-130 1-2-Dichloroethane-d4 104 % 70-130 1-2-Bromofluorobenzene 100 % 70-130			_						
.,2,3-Trichlorobenzene ND ug/l 2.5 .,2,4-Trichlorobenzene ND ug/l 2.5 .,3,5-Trimethylbenzene ND ug/l 2.5 .,2,4-Trimethylbenzene ND ug/l 2.5 .,2,4-Trimethylbenzene ND ug/l 2.5 .,4-Diethylbenzene ND ug/l 2.0 4-Ethyltoluene ND ug/l 2.0 .,2,4,5-Tetramethylbenzene ND ug/l 2.0 Surrogate(s) Recovery QC Criteria .,2-Dichloroethane-d4 104 % 70-130 Toluene-d8 99.0 % 70-130 4-Bromofluorobenzene 100 % 70-130	-		_						
Ug/l 2.5 1,2,4-Trichlorobenzene ND ug/l 2.5 1,3,5-Trimethylbenzene ND ug/l 2.5 1,2,4-Trimethylbenzene ND ug/l 2.5 1,4-Diethylbenzene ND ug/l 2.0 1-Ethyltoluene ND ug/l 2.0 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 Surrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 104 % 70-130 Coluene-d8 99.0 % 70-130 1-Bromofluorobenzene 100 % 70-130			J .						
ND			_						
ND			_						
A.4-Diethylbenzene ND ug/l 2.0 A-Ethyltoluene ND ug/l 2.0 A.2,4,5-Tetramethylbenzene ND ug/l 2.0 Surrogate(s) Recovery QC Criteria A.2-Dichloroethane-d4 104 % 70-130 Acoluene-d8 99.0 % 70-130 A-Bromofluorobenzene 100 % 70-130	=		_						
#-Ethyltoluene ND ug/l 2.0 .,2,4,5-Tetramethylbenzene ND ug/l 2.0 Surrogate(s) Recovery QC Criteria .,2-Dichloroethane-d4 104 % 70-130 Coluene-d8 99.0 % 70-130 #-Bromofluorobenzene 100 % 70-130			_						
Surrogate(s) Recovery QC Criteria 104 % 70-130 Coluene-d8 99.0 % 70-130 R-Bromofluorobenzene 100 % 70-130									
Surrogate(s) Recovery QC Criteria .,2-Dichloroethane-d4 104 % 70-130 Coluene-d8 99.0 % 70-130 H-Bromofluorobenzene 100 % 70-130			_						
.,2-Dichloroethane-d4 104 % 70-130 Coluene-d8 99.0 % 70-130 R-Bromofluorobenzene 100 % 70-130	1,2,4,5-lectamethylbenzene	מאז	ug/I	⊿.∪					
Foluene-d8 99.0 % 70-130 8-Bromofluorobenzene 100 % 70-130	Surrogate(s)	Recovery		QC Crit	eria				
-Bromofluorobenzene 100 % 70-130	1,2-Dichloroethane-d4	104	8	70-130					
	Toluene-d8	99.0	8	70-130					
pibromofluoromethane 99.0 % 70-130	4-Bromofluorobenzene	100	8	70-130					
	Dibromofluoromethane	99.0	%	70-130					

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0812845-08 Date Collected: 27-AUG-2008 15:00

PWG-VP-2008-03 (56-60') Date Received: 29-AUG-2008

Sample Matrix: WATER Date Reported: 05-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 820	50B			1 8260B	0904 23:15 PD
Methylene chloride	ND	ug/l	5.0	1 02005	0504 52:13 ED
1,1-Dichloroethane	ND	ug/l	0.75		
Chloroform	ND	ug/l	0.75		
Carbon tetrachloride	ND	ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND ND	ug/l	0.75		
Tetrachloroethene	>100	ug/l	.5		
Chlorobenzene	ND	ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/1 ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	0.69	ug/l	0.50		
Toluene	1.0	ug/1 ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50		
Chloromethane	ND	ug/1 ug/l	2.5		
Bromomethane	ND ND	ug/l ug/l	1.0		
Vinyl chloride	ND ND	ug/l	1.0		
Chloroethane	ND	ug/1 ug/l	1.0		
1,1-Dichloroethene	ND ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/1 ug/l	0.75		
Trichloroethene	2.6	ug/l ug/l	0.75		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/1 ug/l	2.5		
1,4-Dichlorobenzene	ND ND	ug/1 ug/l	2.5		
Methyl tert butyl ether	5.5	ug/1 ug/l	1.0		
p/m-Xylene	ND	ug/1 ug/l	1.0		
o-Xylene	ND ND	ug/l ug/l	1.0		
o-xylene cis-1,2-Dichloroethene	8.3	ug/l ug/l	0.50		
Dibromomethane	ND	_	5.0		
		ug/l	5.0		
1,2,3-Trichloropropane Acrylonitrile	ND ND	ug/l ug/l	5.0		

Laboratory Sample Number: L0812845-08

PWG-VP-2008-03 (56-60')

PARAMETER	RESULT	UNITS	\mathtt{RDL}	REF METHOD	DATE	
					PREP ANAL	
Volatile Organics by EPA 826	OB cont'd			1 8260B	0904 23:	:15 PD
Styrene	ND	ug/l	1.0			
Dichlorodifluoromethane	ND	ug/l	5.0			
Acetone	ND	ug/l	5.0			
Carbon disulfide	ND	ug/l	5.0			
2-Butanone	ND	ug/l	5.0			
Jinyl acetate	ND	ug/l	5.0			
4-Methyl-2-pentanone	ND	ug/1	5.0			
2-Hexanone	ND	ug/1	5.0			
Bromochloromethane	ND	ug/l	2.5			
2,2-Dichloropropane	ND	ug/l	2.5			
1,2-Dibromoethane	ND	ug/1	2.0			
1,3-Dichloropropane	ND	ug/1	2.5			
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50			
Bromobenzene	ND	ug/l	2.5			
n-Butylbenzene	ND	ug/l	0.50			
sec-Butylbenzene	ND	ug/l	0.50			
tert-Butylbenzene	ND	ug/l	2.5			
o-Chlorotoluene	ND	ug/l	2.5			
p-Chlorotoluene	ND	ug/l	2.5			
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5			
Hexachlorobutadiene	ND	ug/l	0.60			
Isopropylbenzene	0.88	ug/l	0.50			
p-Isopropyltoluene	ND	ug/l	0.50			
Naphthalene	ND	ug/l	2.5			
n-Propylbenzene	ND	ug/l	0.50			
1,2,3-Trichlorobenzene	ND	ug/l	2.5			
1,2,4-Trichlorobenzene	ND	ug/l	2.5			
1,3,5-Trimethylbenzene	ND	ug/l	2.5			
1,2,4-Trimethylbenzene	ND	ug/l ug/l	2.5			
1,4-Diethylbenzene	ND	ug/l ug/l	2.0			
4-Ethyltoluene	ND ND	ug/l ug/l	2.0			
1,2,4,5-Tetramethylbenzene	ND	ug/l ug/l	2.0			
	ND	49/1				
Surrogate(s)	Recovery		QC Cr	iteria		
1,2-Dichloroethane-d4	102	%	70-130	0		
Toluene-d8	99.0	%	70-130	0		
4-Bromofluorobenzene	100	%	70-130	0		
Dibromofluoromethane	100	%	70-130	0		
Volatile Organics by EPA 826	0в			1 8260B	0905 10:	:11 PD
Tetrachloroethene	91	ug/l	2.0			
Surrogate(s)	Recovery		QC Cr	iteria		
1,2-Dichloroethane-d4	107	%	70-130	0		
Toluene-d8	99.0	%	70-130	0		
4-Bromofluorobenzene	100	%	70-130			
Dibromofluoromethane	102	%	70-130			

 $\hbox{{\tt Comments:}} \ \hbox{{\tt Complete list of References and Glossary of Terms found in Addendum I} \\$

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0812845-09 Date Collected: 21-AUG-2008 12:00

TB-01 Date Received: 29-AUG-2008 WATER Date Reported: 05-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

Sample Matrix:

	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 82	60B			1 8260B	0904 23:52 PD
Methylene chloride	ND	ug/l	5.0	1 02005	0504 23.32 FD
1,1-Dichloroethane	ND	ug/l	0.75		
Chloroform	ND	ug/l	0.75		
Carbon tetrachloride	ND	ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75		
Tetrachloroethene	ND	ug/l	0.50		
Chlorobenzene	ND	ug/1 ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/1 ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND ND	ug/l	0.50		
Toluene	ND	ug/1 ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50		
Chloromethane	ND	ug/1 ug/l	2.5		
Bromomethane	ND	ug/l ug/l	1.0		
Vinyl chloride	ND ND	ug/l	1.0		
Chloroethane	ND	ug/1 ug/l	1.0		
1,1-Dichloroethene	ND ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/1 ug/l	0.75		
Trichloroethene	ND ND	ug/l ug/l	0.75		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/l ug/l	2.5		
1,4-Dichlorobenzene	ND ND	ug/1 ug/l	2.5		
Methyl tert butyl ether	ND	_	1.0		
o/m-Xylene	ND ND	ug/l ug/l	1.0		
o-Xylene	ND ND	ug/l ug/l	1.0		
cis-1,2-Dichloroethene	ND ND	ug/l ug/l	0.50		
Dibromomethane	ND ND	_	5.0		
		ug/l	5.0		
1,2,3-Trichloropropane Acrylonitrile	ND ND	ug/l ug/l	5.0		

Laboratory Sample Number: L0812845-09

TB-01

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE I	D
Volatile Organics by EPA 826	OB contid			1 8260B	0904 23:52 P	D
Styrene	ND	ug/l	1.0	1 02006	0904 23.32 F	U
Dichlorodifluoromethane	ND	ug/l	5.0			
Acetone	ND	ug/l	5.0			
Carbon disulfide	ND	ug/l	5.0			
2-Butanone	ND	ug/l	5.0			
Vinyl acetate	ND	ug/l	5.0			
4-Methyl-2-pentanone	ND	ug/l	5.0			
2-Hexanone	ND	ug/l	5.0			
Bromochloromethane	ND	ug/l	2.5			
2,2-Dichloropropane	ND	ug/l	2.5			
1,2-Dibromoethane	ND	ug/l	2.0			
1,3-Dichloropropane	ND	ug/l	2.5			
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50			
Bromobenzene	ND	ug/l	2.5			
n-Butylbenzene	ND	ug/l	0.50			
sec-Butylbenzene	ND	ug/l	0.50			
tert-Butylbenzene	ND	ug/l	2.5			
o-Chlorotoluene	ND	ug/l	2.5			
p-Chlorotoluene	ND	ug/l	2.5			
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5			
Hexachlorobutadiene	ND	ug/l	0.60			
Isopropylbenzene	ND	ug/l	0.50			
p-Isopropyltoluene	ND	ug/l	0.50			
Naphthalene	ND	ug/l	2.5			
n-Propylbenzene	ND	ug/l	0.50			
1,2,3-Trichlorobenzene	ND	ug/l	2.5			
1,2,4-Trichlorobenzene	ND	ug/l	2.5			
1,3,5-Trimethylbenzene	ND	ug/l	2.5			
1,2,4-Trimethylbenzene	ND	ug/l	2.5			
1,4-Diethylbenzene	ND	ug/l	2.0			
4-Ethyltoluene	ND	ug/l	2.0			
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0			
Surrogate(s)	Recovery		QC Crit	ceria		
1,2-Dichloroethane-d4	103	%	70-130			
Toluene-d8	98.0	%	70-130			
4-Bromofluorobenzene	102	%	70-130			
Dibromofluoromethane	97.0	%	70-130			

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0812845-10 Date Collected: 26-AUG-2008 10:30

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

Sample Matrix:

	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 82	60B			1 8260B	0905 00:29 PD
Methylene chloride	ND	ug/l	5.0	1 02000	0505 00.25 ED
1,1-Dichloroethane	ND	ug/l	0.75		
Chloroform	ND	ug/l	0.75		
Carbon tetrachloride	ND	ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND ND	ug/l	0.75		
Tetrachloroethene	ND	ug/l	0.50		
Chlorobenzene	ND	ug/1 ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/1 ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND ND	ug/l	0.50		
Foluene	ND	ug/l	0.75		
Ethylbenzene	ND ND	ug/1 ug/l	0.75		
Chloromethane	ND	ug/1 ug/l	2.5		
Bromomethane	ND ND	ug/l ug/l	1.0		
Vinyl chloride	ND ND	ug/l	1.0		
Chloroethane	ND	ug/1 ug/l	1.0		
1,1-Dichloroethene	ND ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/1 ug/l	0.75		
Trichloroethene	ND ND	ug/l ug/l	0.75		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/1 ug/l	2.5		
1,4-Dichlorobenzene	ND ND	ug/1 ug/l	2.5		
Methyl tert butyl ether	ND	_	1.0		
o/m-Xylene	ND ND	ug/l ug/l	1.0		
o-Xylene	ND ND	ug/l ug/l	1.0		
cis-1,2-Dichloroethene	ND ND	ug/l ug/l	0.50		
Dibromomethane	ND ND	_	5.0		
		ug/l	5.0		
1,2,3-Trichloropropane Acrylonitrile	ND ND	ug/l ug/l	5.0		

Laboratory Sample Number: L0812845-10

FB-01

Dichlorodifluoromethane Acetone Carbon disulfide 2-Butanone Vinyl acetate	CONT'd ND	ug/l ug/l ug/l ug/l ug/l ug/l	1.0 5.0 5.0 5.0 5.0 5.0	1	8260B	0905 00:29) PD
Styrene Moderate Mode	ND ND ND ND ND ND	ug/l ug/l ug/l ug/l ug/l ug/l	5.0 5.0 5.0 5.0	1	02005	0903 00.25	, FU
Dichlorodifluoromethane Acetone Carbon disulfide 2-Butanone Vinyl acetate	ND ND ND ND ND	ug/l ug/l ug/l ug/l ug/l ug/l	5.0 5.0 5.0 5.0				
Acetone Macaton disulfide Macaton disulfide Macaton Ma	ND ND ND ND ND	ug/l ug/l ug/l ug/l ug/l	5.0 5.0 5.0 5.0				
Carbon disulfide N 2-Butanone N Vinyl acetate N	ND ND ND	ug/l ug/l ug/l ug/l	5.0 5.0 5.0				
2-Butanone Number of Numbe	ND ND ND	ug/l ug/l ug/l	5.0 5.0				
Vinyl acetate	ND ND	ug/l ug/l	5.0				
-	ND ND	ug/l					
	ND	_					
		1101/	5.0				
		ug/l ug/l	2.5				
	ND	ug/l	2.5				
	ND	ug/l	2.0				
•	ND	ug/l	2.5				
	ND	ug/l	0.50				
	ND	ug/l	2.5				
	ND	ug/l	0.50				
1	ND	ug/l	0.50				
_	ND	ug/l	2.5				
-	ND	ug/l	2.5				
	ND	ug/l	2.5				
*	ND	ug/l	2.5				
	ND	ug/l	0.60				
	ND	ug/l	0.50				
	ND ND	ug/l	0.50				
	ND	ug/l	2.5				
-	ND	ug/l	0.50				
1 1	ND	ug/l	2.5				
	ND	ug/l	2.5				
	ND ND	_	2.5				
	ND ND	ug/l ug/l	2.5				
		_	2.0				
,	ND ND	ug/l	2.0				
	MD	ug/l	2.0				
1,2,4,5-Tetramethylbenzene	עוּא	ug/l	∠.∪				
Surrogate(s) F	Recovery		QC Crit	eria	L		
1,2-Dichloroethane-d4	104	%	70-130				
Toluene-d8	99.0	%	70-130				
4-Bromofluorobenzene	99.0	%	70-130				
Dibromofluoromethane 1	100	%	70-130				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0812845-11 Date Collected: 27-AUG-2008 17:05

PWG-VP-2008-03 (76-80') Date Received: 29-AUG-2008

Sample Matrix: WATER Date Reported: 05-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 83	260B			1 8260B	0905 01:06 PD
Methylene chloride	ND	ug/l	5.0		
1,1-Dichloroethane	ND	ug/l	0.75		
Chloroform	ND	ug/l	0.75		
Carbon tetrachloride	ND	ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75		
Tetrachloroethene	21	ug/l	0.50		
Chlorobenzene	ND	ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND	ug/l	0.50		
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50		
Chloromethane	ND	ug/l	2.5		
Bromomethane	ND	ug/l	1.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	1.0		
1,1-Dichloroethene	ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/l	0.75		
Trichloroethene	ND	ug/l	0.50		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/l	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	1.2	ug/l	0.50		
Dibromomethane	ND	ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/l	5.0		
Acrylonitrile	ND	ug/l	5.0		

Laboratory Sample Number: L0812845-11

PWG-VP-2008-03 (76-80')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	D <i>P</i> PREP	ANAL	ID
Volatile Organics by EPA 826	OB contid			1	8260B		0905 01:0	S DD
Styrene	ND	ug/l	1.0		02008		0903 01:0	J PD
Dichlorodifluoromethane	ND ND	ug/l	5.0					
Acetone	ND	ug/l	5.0					
Carbon disulfide	ND	ug/l	5.0					
2-Butanone	ND	ug/l	5.0					
Vinyl acetate	ND	ug/l	5.0					
4-Methyl-2-pentanone	ND	ug/l	5.0					
2-Hexanone	ND	ug/l	5.0					
Bromochloromethane	ND	ug/l	2.5					
2,2-Dichloropropane	ND	ug/l	2.5					
1,2-Dibromoethane	ND	ug/l	2.0					
1,3-Dichloropropane	ND	ug/l	2.5					
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50					
Bromobenzene	ND	ug/l	2.5					
n-Butylbenzene	ND	ug/l	0.50					
sec-Butylbenzene	1.2	ug/l	0.50					
tert-Butylbenzene	ND	ug/l	2.5					
o-Chlorotoluene	ND	ug/l	2.5					
p-Chlorotoluene	ND	ug/l	2.5					
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5					
Hexachlorobutadiene	ND	ug/l	0.60					
Isopropylbenzene	1.3	ug/l	0.50					
p-Isopropyltoluene	ND	ug/l	0.50					
Naphthalene	ND	ug/l	2.5					
n-Propylbenzene	ND	ug/l	0.50					
1,2,3-Trichlorobenzene	ND	ug/l	2.5					
1,2,4-Trichlorobenzene	ND	ug/l	2.5					
1,3,5-Trimethylbenzene	ND	ug/l	2.5					
1,2,4-Trimethylbenzene	ND	ug/l	2.5					
1,4-Diethylbenzene	ND	ug/l	2.0					
4-Ethyltoluene	ND	ug/l	2.0					
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0					
Surrogate(s)	Recovery		QC Crit	teria	L			
1,2-Dichloroethane-d4	104	8	70-130					
Toluene-d8	98.0	8	70-130					
4-Bromofluorobenzene	100	8	70-130					
Dibromofluoromethane	101	%	70-130					

Laboratory Job Number: L0812845

Parameter	LCS	%	LCSD %	RPD	RPD Limit	QC Limits
Volatile Organics by EPA 8260E	3 for	sample	(s) 08	(WG335231-6,	WG335231-7)	
Chlorobenzene	106		98	8	20	75-130
Benzene	104		98	6	20	76-127
Toluene	107		100	7	20	76-125
1,1-Dichloroethene	103		95	8	20	61-145
Trichloroethene	102		96	6	20	71-120
Surrogate(s)						
1,2-Dichloroethane-d4	102		103	1		70-130
Toluene-d8	100		98	2		70-130
4-Bromofluorobenzene	98		99	1		70-130
Dibromofluoromethane	99		100	1		70-130
Volatile Organics by EPA 8260B f	or s	ample(s) 01-11	. (WG335231-1,	WG335231-2)	
Chlorobenzene	109		90	19	20	75-130
Benzene	108		90	18	20	76-127
Toluene	108		89	19	20	76-125
1,1-Dichloroethene	106		87	20	20	61-145
Trichloroethene	106		87	20	20	71-120
Surrogate(s)						
1,2-Dichloroethane-d4	105		106	1		70-130
Toluene-d8	98		99	1		70-130
4-Bromofluorobenzene	96		99	3		70-130
Dibromofluoromethane	103		102	1		70-130

ALPHA ANALYTICAL QUALITY ASSURANCE BATCH MS/MSD ANALYSIS

Laboratory Job Number: L0812845

Parameter	MS %	MSD %	RPD	RPD Limit	MS/MSD Limits
Volatile Organics by EPA 8260	B for sample	e(s) 01-11	(L0812845-02,	WG335231-5)	
Chlorobenzene	97	91	6	20	75-130
Benzene	97	90	7	20	76-127
Toluene	98	92	6	20	76-125
1,1-Dichloroethene	97	83	16	20	61-145
Trichloroethene	96	88	9	20	71-120
Surrogate(s)					
1,2-Dichloroethane-d4	104	104	0		70-130
Toluene-d8	100	100	0		70-130
4-Bromofluorobenzene	97	97	0		70-130
Dibromofluoromethane	101	102	1		70-130

Laboratory Job Number: L0812845

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE PREP	ANAL
		7 () 01 11	/	5031 3)		
Blank Analys		ple(s) 01-1.	_ (WG33			
Volatile Organics by EPA 826		. / 7	F 0	1 8260B	09	04 16:54 P
Methylene chloride	ND	ug/l	5.0			
l,1-Dichloroethane Chloroform	ND	ug/l	0.75			
Carbon tetrachloride	ND	ug/l	0.75			
	ND	ug/l	0.50			
1,2-Dichloropropane Dibromochloromethane	ND	ug/l	1.8			
	ND	ug/l	0.50			
1,1,2-Trichloroethane Tetrachloroethene	ND ND	ug/l	0.75 0.50			
Chlorobenzene	ND ND	ug/l	0.50			
Trichlorofluoromethane		ug/l	2.5			
.,2-Dichloroethane	ND ND	ug/l	0.50			
l,2-Dichioroethane L,1,1-Trichloroethane	ND ND	ug/l ug/l	0.50			
Bromodichloromethane	ND ND	ug/l ug/l	0.50			
rans-1,3-Dichloropropene	ND ND	ug/1 ug/l	0.50			
cis-1,3-Dichloropropene	ND	ug/l	0.50			
1,1-Dichloropropene	ND	ug/l	2.5			
Bromoform	ND ND	ug/l	2.0			
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50			
Benzene	ND	ug/l	0.50			
Coluene	ND	ug/l	0.75			
Ethylbenzene	ND	ug/l	0.50			
Chloromethane	ND	ug/l	2.5			
Bromomethane	ND	ug/l	1.0			
inyl chloride	ND	ug/l	1.0			
Chloroethane	ND	ug/l	1.0			
1,1-Dichloroethene	ND	ug/l	0.50			
crans-1,2-Dichloroethene	ND	ug/l	0.75			
Trichloroethene	ND	ug/l	0.50			
.,2-Dichlorobenzene	ND	ug/l	2.5			
L,3-Dichlorobenzene	ND	ug/l	2.5			
L,4-Dichlorobenzene	ND	ug/l	2.5			
Methyl tert butyl ether	ND	ug/l	1.0			
o/m-Xylene	ND	ug/l	1.0			
o-Xylene	ND	ug/l	1.0			
cis-1,2-Dichloroethene	ND	ug/l	0.50			
Dibromomethane	ND	ug/l	5.0			
,2,3-Trichloropropane	ND	ug/l	5.0			
Acrylonitrile	ND	ug/l	5.0			
Styrene	ND	ug/l	1.0			
oichlorodifluoromethane	ND	ug/l	5.0			
acetone	ND	ug/l	5.0			
Carbon disulfide	ND	ug/l	5.0			
2-Butanone	ND	ug/l	5.0			
inyl acetate	ND	ug/l	5.0			
	ND	ug/l	5.0			
2-Hexanone	ND	ug/l	5.0			

Laboratory Job Number: L0812845

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE PREP ANAL	ID
Blank Analys	is for samp	ole(s) 01-1	L1 (WG33!	5231-3)		
Volatile Organics by EPA 826				1 8260B	0904 16:5	4 PD
Bromochloromethane	ND	ug/l	2.5			
2,2-Dichloropropane	ND	ug/l	2.5			
1,2-Dibromoethane	ND	ug/l	2.0			
1,3-Dichloropropane	ND	ug/l	2.5			
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50			
Bromobenzene	ND	ug/l	2.5			
n-Butylbenzene	ND	ug/l	0.50			
sec-Butylbenzene	ND	ug/l	0.50			
tert-Butylbenzene	ND	ug/l	2.5			
o-Chlorotoluene	ND	ug/l	2.5			
p-Chlorotoluene	ND	ug/l	2.5			
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5			
Hexachlorobutadiene	ND	ug/l	0.60			
Isopropylbenzene	ND	ug/l	0.50			
p-Isopropyltoluene	ND	ug/l	0.50			
Naphthalene	ND	ug/l	2.5			
n-Propylbenzene	ND	ug/l	0.50			
1,2,3-Trichlorobenzene	ND	ug/l	2.5			
1,2,4-Trichlorobenzene	ND	ug/l	2.5			
1,3,5-Trimethylbenzene	ND	ug/l	2.5			
1,2,4-Trimethylbenzene	ND	ug/l	2.5			
1,4-Diethylbenzene	ND	ug/l	2.0			
4-Ethyltoluene	ND	ug/l	2.0			
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0			
Surrogate(s)	Recovery		QC Cr	iteria		
1,2-Dichloroethane-d4	105	%	70-130	0		
Toluene-d8	100	%	70-130	0		
4-Bromofluorobenzene	99.0	%	70-130	0		
Dibromofluoromethane	98.0	%	70-130	0		
	ysis for sa	ample(s) 08	3 (WG335			
Volatile Organics by EPA 826		4.5	5 0	1 8260B	0905 09:3	3 PD
Methylene chloride	ND	ug/l	5.0			
1,1-Dichloroethane	ND	ug/l	0.75			
Chloroform	ND	ug/l	0.75			
Carbon tetrachloride	ND	ug/l	0.50			
1,2-Dichloropropane	ND	ug/l	1.8			
Dibromochloromethane	ND	ug/l	0.50			
1,1,2-Trichloroethane	ND	ug/l	0.75			
Tetrachloroethene	ND	ug/l	0.50			
Chlorobenzene	ND	ug/l	0.50			
Trichlorofluoromethane	ND	ug/l	2.5			
1,2-Dichloroethane	ND	ug/l	0.50			
1,1,1-Trichloroethane	ND	ug/l	0.50			
Bromodichloromethane	ND	ug/l	0.50			

09050813:43 Page 28 of 31

Laboratory Job Number: L0812845

Continued

					PREP ANAL
Dlaula Augl) /ETG225	221 0)	
Blank Anal Olatile Organics by EPA 826	ysis for sa	ampie(s) U	3 (WG335		0005 00:33 DD
		/ 1	0 50	1 8260B	0905 09:33 PD
rans-1,3-Dichloropropene	ND	ug/l	0.50		
is-1,3-Dichloropropene	ND ND	ug/l	0.50 2.5		
,1-Dichloropropene romoform	ND ND	ug/l	2.0		
,1,2,2-Tetrachloroethane	ND ND	ug/l ug/l	0.50		
enzene	ND	ug/1 ug/l	0.50		
oluene	ND ND	ug/l ug/l	0.75		
thylbenzene	ND	ug/l ug/l	0.50		
hloromethane	ND	_	2.5		
romomethane	ND ND	ug/l ug/l	1.0		
inyl chloride	ND	_	1.0		
hloroethane	ND ND	ug/l	1.0		
,1-Dichloroethene		ug/l			
rans-1,2-Dichloroethene	ND ND	ug/l	0.50 0.75		
richloroethene	ND ND	ug/l	0.75		
,2-Dichlorobenzene	ND ND	ug/l	2.5		
,3-Dichlorobenzene	ND ND	ug/l	2.5		
,4-Dichlorobenzene		ug/l	2.5		
ethyl tert butyl ether	ND ND	ug/l ug/l	1.0		
/m-Xylene	ND	_	1.0		
-Xylene	ND	ug/l	1.0		
is-1,2-Dichloroethene	ND ND	ug/l	0.50		
ibromomethane		ug/l	5.0		
,2,3-Trichloropropane	ND ND	ug/l	5.0		
crylonitrile	ND ND	ug/l	5.0		
tyrene	ND ND	ug/l	1.0		
ichlorodifluoromethane	ND ND	ug/l	5.0		
		ug/l			
cetone arbon disulfide	ND ND	ug/l	5.0 5.0		
-Butanone		ug/l	5.0		
	ND	ug/l	5.0		
inyl acetate	ND ND	ug/l	5.0		
-Methyl-2-pentanone		ug/l	5.0		
-Hexanone romochloromethane	ND	ug/l	2.5		
	ND	ug/l			
,2-Dichloropropane	ND	ug/l	2.5		
,2-Dibromoethane ,3-Dichloropropane	ND ND	ug/l	2.0		
,1,1,2-Tetrachloroethane	ND	ug/l	2.5		
	ND	ug/l	0.50		
romobenzene	ND	ug/l	2.5		
-Butylbenzene	ND	ug/l	0.50		
ec-Butylbenzene	ND	ug/l	0.50		
ert-Butylbenzene -Chlorotoluene	ND	ug/l	2.5		
	ND	ug/l	2.5		
-Chlorotoluene ,2-Dibromo-3-chloropropane	ND	ug/l	2.5		
exachlorobutadiene	ND ND	ug/l ug/l	2.5 0.60		

Laboratory Job Number: L0812845

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE PREP ANAL	ID
Blank Anal	ysis for sa	mple(s) 08	(WG3352	231-8)		
Volatile Organics by EPA 826	OB cont'd			1 8260B	0905 09:	33 PD
Isopropylbenzene	ND	ug/l	0.50			
p-Isopropyltoluene	ND	ug/l	0.50			
Naphthalene	ND	ug/l	2.5			
n-Propylbenzene	ND	ug/l	0.50			
1,2,3-Trichlorobenzene	ND	ug/l	2.5			
1,2,4-Trichlorobenzene	ND	ug/l	2.5			
1,3,5-Trimethylbenzene	ND	ug/l	2.5			
1,2,4-Trimethylbenzene	ND	ug/l	2.5			
1,4-Diethylbenzene	ND	ug/l	2.0			
4-Ethyltoluene	ND	ug/l	2.0			
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0			
Surrogate(s)	Recovery		QC Cri	lteria		
1,2-Dichloroethane-d4	104	%	70-130)		
Toluene-d8	99.0	%	70-130)		
4-Bromofluorobenzene	102	%	70-130)		
Dibromofluoromethane	99.0	૪	70-130)		

ALPHA ANALYTICAL ADDENDUM I

REFERENCES

1. Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IIIA, 1997.

GLOSSARY OF TERMS AND SYMBOLS

REF Reference number in which test method may be found.

METHOD Method number by which analysis was performed.

ID Initials of the analyst.

ND Not detected in comparison to the reported detection limit.

NI Not Ignitable.

ug/cart Micrograms per Cartridge.

The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.

LIMITATION OF LIABILITIES

Alpha Analytical, Inc. performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical, Inc., shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical, Inc. be held liable for any incidental consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical, Inc.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding times and splitting of samples in the field.

09050813:43 Page 31 of 31

	MA MCP or CT RCP?	IS YOUR BROIFET	TERME ANSWER QUESTIONS ABOVE!	C (56-60)	7	6 Mb-W-Cos -03 (16-20)	5 \ \ (96 tw)	7 (76-80)	3 (56-60)	2 (31-40/m)	W(.9x-72)	2 (3-40:)	12845. 1 11-6-11-2008-04 (16-20) 8/2688	, , ,	ALPHA Lab ID Sample ID		NYSUEC ASP is Letwerades	†ic F	These samples have been Previously analyzed by Alpha	Email:	Fax 631-589-8705	Phone: 631-589-6353	Bohemia, NY 11716	Address: 630 Johnson Avenue, Suite 7		Client Information	C 508-822-3288		7 1 0	CHAIN OF CUSTODY
Awat 872	Harri hagullo Alle	Preservative	1	A 1200 A	1350		SOUTH	801 4 1615	(6) /50	m) //30	(M) //30		70) 8/26/8 1095 L The	Date lime Matrix initials	Sample S		ables	Detection Limits:	Due Date: ime:	208	Standard Rush (ONLY IF PRE-APPROVED)	Turn-Around Time	ALPHA Quote #:	Project Manager: Kn: Almskos	Project #: AVBO801	Project Location: D-100 But, Ave Killy		Project Name:	Project Information	CUSTODY PAGE 1 OF 2
Pos no and	States Will And Control of the States of the		10m	\						/	/		X /	,T(VOC	Cs	8	32.	60		SIS	□ No			Program A	Regulatory Requirements/Report Limits	☐ ADEx ☐ Add'l Deliverables	Report Information Data Deliverables ☐ FAX ☐ EMAIL	Date Rec'd in Lab: 8/29/08
8/29/08 17/0	Date/Time Start until any emblguities ar resolved. All samples submitted are subject to Alpha's Payment Terms.		Please print clearly legibly	/										Sample Specific Comments			(Please specify below)	Preservation ☐ Lab to do	□ Lab to do	□ Done	SAMPLE HANDLING Filtration		Are CT RCP (Reasonable Confidence Protocols) Required?	□ No Are MCP Analytical Mathods Required?	CAL O'VELIVE MOLOS	Criteria			☐ Same as Client info PO #:	ALPHA Job #: LO8 12848

	IS YOUR PROJECT MA MCP or CT RCP?	11 PWG-UP-2008-23(76-85)	ALPHA Lab ID (Lab Use Only) 12 C.C. 4 TR-O1	These samples have been Previously analyzed by Alpha Due Date: Other Project Specific Requirements/Comments/Detection Limits:	Fax 631-589-8705 Email:	Bohemia, NY 11716 Phone: 631-589-6353	on Avenue, Suite 7	FAX: 508-822-3288	Westborough, MA Mansfield, MA TEL: 508-938-9220 TEL: 508-92300	CHAIN OF CUSTODY
Short 81	Container Type Preservative Relinquished By:	01/8/108 1/200 C TM 91/26/08 1/30 L MJB	Sample Matrix	Due Date: Time: Detection Limits:	XStandard Rush (ONLY IF PRE-APPROVED)	ALPHA Quote #: Turn-Around Time	Project #: 4VB080/ Project Manager: KHS Alms Kog	Project Location: 80-100 Banks Au Rockille		SUSTODY PAGE 2 of 2
the hare	HCL Date/Time Pecewed By SPENION SP		TCL	VOC 826		/SIS	MS#C	ory Requirements/Report L	nation [Date Rec'd in Lab:
जित स्वीकरी है	Please print clearly, legibly and completely. Samples or not be logged in and turnaround trine clock will in start until any ambiguities at submitted are subject to Alpha's Payment Terms.		Sample Specific Comments	□ Lab to do Preservation □ Lab to do (Please specify below)	SAMPLE HANDLING Filtration Done	Are CT RCP (Reasonable Confidence Protocols) Required?	AT D'I)LIIVE (AMES) IAINTY-CT REASONABLE CONFIDENCE PROTOCO Are MCP Analytical Methods Required?	nits Criteria	Billing Information Same as Client info	ALPHA Job #: L 68 77848

ALPHA ANALYTICAL

Eight Walkup Drive

Westborough, Massachusetts 01581-1019 (508) 898-9220 www.alphalab.com

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

CERTIFICATE OF ANALYSIS

Client: P.W. Grosser Laboratory Job Number: L0812904

Address: 630 Johnson Avenue Date Received: 30-AUG-2008

Suite 7

Bohemia, NY 11716 Date Reported: 08-SEP-2008

Attn: Mr. Kris Almskog Delivery Method: FedEx

Project Number: AVB0801 Site:

ALPHA SAMPLE NUMBER	CLIENT IDENTIFICATION	SAMPLE	LOCATION
L0812904-01	TP-02	80-100	BANKS AVE.
L0812904-02	PWG-VP-2008-03 (96-100')	80-100	BANKS AVE.
L0812904-03	PWG-VP-2008-02 (16-20')	80-100	BANKS AVE.
L0812904-04	PWG-VP-2008-02 (36-40')	80-100	BANKS AVE.
L0812904-05	PWG-VP-2008-02 (56-60')	80-100	BANKS AVE.
L0812904-06	PWG-VP-2008-02 (76-80')	80-100	BANKS AVE.
L0812904-07	PWG-VP-2008-02 (96-100')	80-100	BANKS AVE.
L0812904-08	PWG-VP-2008-01 (16-20')	80-100	BANKS AVE.
L0812904-09	PWG-VP-2008-01 (36-40')	80-100	BANKS AVE.
L0812904-10	PWG-VP-2008-01 (56-60')	80-100	BANKS AVE.
L0812904-11	PWG-VP-2008-01 (76-80')	80-100	BANKS AVE.
L0812904-12	PWG-VP-2008-01 (96-100')	80-100	BANKS AVE.

Authorized by:

Technical Representative

09080811:31 Page 1 of 34

I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

ALPHA ANALYTICAL NARRATIVE REPORT

Laboratory Job Number: L0812904

The samples were received in accordance with the chain of custody and no significant deviations were encountered during preparation or analysis unless otherwise noted below.

Sample Receipt

Headspace was noted in both of the sample containers submitted for Volatile Organics for samples "PWG-VP-2008-03 (96-100')", "PWG-VP-2008-02 (56-60')", "PWG-VP-2008-02 (96-100')", and "PWG-VP-2008-01 (96-100')"; and in one of the sample containers for samples "PWG-VP-2008-01 (36-40')" and "PWG-VP-2008-01 (76-80')". The analysis was performed at the client's request.

Volatile Organics

The following samples have elevated detection limits due to the dilutions required by the elevated concentrations of target compounds in the samples:

L0812904-03: 5x

L0812904-04: 100x

L0812904-05: 2.5x

L0812904-06, -07, -12: 2x

L0812904-05 and -07 required re-analysis on 10x dilutions in order to quantitate the samples within the calibration range. The result is reported as a "greater than" value for the compound that exceeded the calibration on the initial analysis. The re-analysis was performed only for the compound which exceeded the calibration range.

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0812904-01 Date Collected: 21-AUG-2008 12:00

TP-02 Date Received: 30-AUG-2008 WATER Date Reported: 08-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

Sample Matrix:

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 82	60B			1 8260B	0905 01:43 PD
Methylene chloride	ND	ug/l	5.0		
1,1-Dichloroethane	ND	ug/l	0.75		
Chloroform	ND	ug/l	0.75		
Carbon tetrachloride	ND	ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75		
Tetrachloroethene	ND	ug/l	0.50		
Chlorobenzene	ND	ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND	ug/l	0.50		
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50		
Chloromethane	ND	ug/l	2.5		
Bromomethane	ND	ug/l	1.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	1.0		
1,1-Dichloroethene	ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/l	0.75		
Trichloroethene	ND	ug/l	0.50		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/l	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	ND	ug/l	0.50		
Dibromomethane	ND	ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/l	5.0		
Acrylonitrile	ND	ug/l	5.0		

Laboratory Sample Number: L0812904-01

TP-02

1,2-Dichloroethane-d4 101 % 70-130 Foluene-d8 99.0 % 70-130 4-Bromofluorobenzene 102 % 70-130	PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	ATE ANAL	ID
ND	Volatile Organics by FDA 826	NB contid			1	8260B		0905 01:4	3 DD
Dichlorodifluoromethane			ug / 1	1 0	1	0200B		0903 01.4	3 PD
ND	-		_						
Carbon disulfide ND ug/1 5.0 2-Butanone ND ug/1 5.0 4-Methyl-2-pentanone ND ug/1 5.0 4-Methyl-2-pentanone ND ug/1 5.0 2-Hexanone ND ug/1 5.0 2-Hexanone ND ug/1 5.0 2-Hexanone ND ug/1 5.0 2-Hexanone ND ug/1 2.5 2-Dichloropropane ND ug/1 2.5 1,2-Dibromoethane ND ug/1 2.5 1,1,3-Dichloropropane ND ug/1 2.5 1,1,1,2-Tetrachloroethane ND ug/1 2.5 1,1,1,2-Tetrachloroethane ND ug/1 0.50 2-Combination ND u			_						
ND			_						
Vinyl acetate			_						
4-Methyl-2-pentanone ND ug/1 5.0 2-Hexanone ND ug/1 5.0 3-Bromochloromethane ND ug/1 2.5 2.2-Dichloropropane ND ug/1 2.5 1,2-Dibromoethane ND ug/1 2.5 1,2-Dibromoethane ND ug/1 2.5 1,1,1,2-Tetrachloroethane ND ug/1 2.5 1,1,1,2-Tetrachloroethane ND ug/1 0.50 3-Bromobenzene ND ug/1 0			_						
### 2-Hexanone	-		_						
Saromochloromethane			_						
2,2-Dichloropropane			_						
1,2-Dibromoethane			_						
1,3-Dichloropropane	- <u>-</u> -		_						
1,1,1,2-Tetrachloroethane	-		_						
### Bromobenzene ND ug/l 2.5			_						
### Butylbenzene			_						
ND			_						
ND	-								
D-Chlorotoluene ND ug/l 2.5 D-Chlorotoluene ND ug/l 2.5 D-Chlorotoluene ND ug/l 2.5 D-Chlorotoluene ND ug/l 2.5 D-Chloromo-3-chloropropane ND ug/l 2.5 D-Exachlorobutadiene ND ug/l 0.60 D-Exachlorobutadiene ND ug/l 0.50 D-Exachloropylbenzene ND ug/l 0.50 D-Exachlorobutadiene ND ug/l 0.50 D-Exachlorobutadiene ND ug/l 2.5 D-Exachlorobutadiene ND ug/l 2.0 D-Exachlo	-		_						
Description	-		_						
1,2-Dibromo-3-chloropropane			_						
### Additional Control of the contro	-		_						
ND	,								
Description ND Ug/l 0.50			_						
Naphthalene ND ug/l 2.5 n-Propylbenzene ND ug/l 0.50 1,2,3-Trichlorobenzene ND ug/l 2.5 1,2,4-Trichlorobenzene ND ug/l 2.5 1,3,5-Trimethylbenzene ND ug/l 2.5 1,2,4-Trimethylbenzene ND ug/l 2.5 1,4-Diethylbenzene ND ug/l 2.0 4-Ethyltoluene ND ug/l 2.0 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 Surrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 101 % 70-130 Foluene-d8 99.0 % 70-130 4-Bromofluorobenzene 102 % 70-130			_						
ND			_						
1,2,3-Trichlorobenzene ND ug/l 2.5 1,2,4-Trichlorobenzene ND ug/l 2.5 1,3,5-Trimethylbenzene ND ug/l 2.5 1,2,4-Trimethylbenzene ND ug/l 2.5 1,4-Diethylbenzene ND ug/l 2.0 4-Ethyltoluene ND ug/l 2.0 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 Surrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 101 % 70-130 Toluene-d8 99.0 % 70-130 4-Bromofluorobenzene 102 % 70-130	-		_						
1,2,4-Trichlorobenzene ND ug/l 2.5 1,3,5-Trimethylbenzene ND ug/l 2.5 1,2,4-Trimethylbenzene ND ug/l 2.5 1,4-Diethylbenzene ND ug/l 2.0 4-Ethyltoluene ND ug/l 2.0 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 Surrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 101 % 70-130 Toluene-d8 99.0 % 70-130 4-Bromofluorobenzene 102 % 70-130	- 1		J .						
1,3,5-Trimethylbenzene ND ug/l 2.5 1,2,4-Trimethylbenzene ND ug/l 2.5 1,4-Diethylbenzene ND ug/l 2.0 4-Ethyltoluene ND ug/l 2.0 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 Surrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 101 % 70-130 Toluene-d8 99.0 % 70-130 4-Bromofluorobenzene 102 % 70-130			_						
1,2,4-Trimethylbenzene ND ug/l 2.5 1,4-Diethylbenzene ND ug/l 2.0 4-Ethyltoluene ND ug/l 2.0 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 Surrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 101 % 70-130 Toluene-d8 99.0 % 70-130 4-Bromofluorobenzene 102 % 70-130			_						
1,4-Diethylbenzene ND ug/l 2.0 4-Ethyltoluene ND ug/l 2.0 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 Surrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 101 % 70-130 Foluene-d8 99.0 % 70-130 4-Bromofluorobenzene 102 % 70-130	-		_						
4-Ethyltoluene ND ug/l 2.0 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 Surrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 101 % 70-130 Toluene-d8 99.0 % 70-130 4-Bromofluorobenzene 102 % 70-130			_						
1,2,4,5-Tetramethylbenzene ND ug/l 2.0 Surrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 101 % 70-130 Toluene-d8 99.0 % 70-130 4-Bromofluorobenzene 102 % 70-130									
Surrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 101 % 70-130 Toluene-d8 99.0 % 70-130 4-Bromofluorobenzene 102 % 70-130			_						
1,2-Dichloroethane-d4 101 % 70-130 Foluene-d8 99.0 % 70-130 4-Bromofluorobenzene 102 % 70-130	1,2,4,5-lectamethylpenzene	מאז	ug/I	⊿.∪					
Foluene-d8 99.0 % 70-130 4-Bromofluorobenzene 102 % 70-130	Surrogate(s)	Recovery		QC Crit	ceria				
4-Bromofluorobenzene 102 % 70-130	1,2-Dichloroethane-d4	101	8	70-130					
	Toluene-d8	99.0	8	70-130					
Dibromofluoromethane 99.0 % 70-130	4-Bromofluorobenzene	102	8	70-130					
	Dibromofluoromethane	99.0	%	70-130					

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0812904-02 Date Collected: 28-AUG-2008 10:20

PWG-VP-2008-03 (96-100') Date Received: 30-AUG-2008

Sample Matrix: WATER Date Reported: 08-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 82	260B			1 8260B	0905 02:20 PD
Methylene chloride	ND	ug/l	5.0		
1,1-Dichloroethane	ND	ug/l	0.75		
Chloroform	ND	ug/l	0.75		
Carbon tetrachloride	ND	ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75		
Tetrachloroethene	27	ug/l	0.50		
Chlorobenzene	ND	ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND	ug/l	0.50		
Toluene	1.1	ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50		
Chloromethane	ND	ug/l	2.5		
Bromomethane	ND	ug/l	1.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	1.0		
1,1-Dichloroethene	ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/l	0.75		
Trichloroethene	1.3	ug/l	0.50		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/l	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	8.8	ug/l	0.50		
Dibromomethane	ND	ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/l	5.0		
Acrylonitrile	ND	ug/l	5.0		

Laboratory Sample Number: L0812904-02

PWG-VP-2008-03 (96-100')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Volatile Organics by EPA 826	OB cont'd			1	8260B		0905 02:2	0 PD
Styrene	ND	ug/l	1.0					
Dichlorodifluoromethane	ND	ug/l	5.0					
Acetone	7.1	ug/l	5.0					
Carbon disulfide	ND	ug/l	5.0					
2-Butanone	ND	ug/l	5.0					
Vinyl acetate	ND	ug/l	5.0					
4-Methyl-2-pentanone	ND	ug/l	5.0					
2-Hexanone	ND	ug/l	5.0					
Bromochloromethane	ND	ug/l	2.5					
2,2-Dichloropropane	ND	ug/l	2.5					
1,2-Dibromoethane	ND	ug/l	2.0					
1,3-Dichloropropane	ND	ug/l	2.5					
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50					
Bromobenzene	ND	ug/l	2.5					
n-Butylbenzene	ND	ug/l	0.50					
sec-Butylbenzene	ND	ug/l	0.50					
tert-Butylbenzene	ND	ug/l	2.5					
o-Chlorotoluene	ND	ug/l	2.5					
p-Chlorotoluene	ND	ug/l	2.5					
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5					
Hexachlorobutadiene	ND	ug/l	0.60					
Isopropylbenzene	ND	ug/l	0.50					
p-Isopropyltoluene	ND	ug/l	0.50					
Naphthalene	ND	ug/l	2.5					
n-Propylbenzene	ND	ug/l	0.50					
1,2,3-Trichlorobenzene	ND	ug/l	2.5					
1,2,4-Trichlorobenzene	ND	ug/l	2.5					
1,3,5-Trimethylbenzene	ND	ug/l	2.5					
1,2,4-Trimethylbenzene	ND	ug/l	2.5					
1,4-Diethylbenzene	ND	ug/l	2.0					
4-Ethyltoluene	ND	ug/l	2.0					
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0					
Surrogate(s)	Recovery		QC Crit	teria	à			
1,2-Dichloroethane-d4	103	%	~ 70-130					
Toluene-d8	99.0	%	70-130					
4-Bromofluorobenzene	102	8	70-130					
Dibromofluoromethane	99.0	%	70-130					

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0812904-03 Date Collected: 28-AUG-2008 12:30

PWG-VP-2008-02 (16-20') Date Received: 30-AUG-2008

Sample Matrix: WATER Date Reported: 08-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 820	50B			1 8260в	0905 02:57 PD
Methylene chloride	ND	ug/l	25.		
1,1-Dichloroethane	ND	ug/l	3.8		
Chloroform	ND	ug/l	3.8		
Carbon tetrachloride	ND	ug/l	2.5		
1,2-Dichloropropane	ND	ug/l	8.8		
Dibromochloromethane	ND	ug/l	2.5		
1,1,2-Trichloroethane	ND	ug/l	3.8		
Tetrachloroethene	210	ug/l	2.5		
Chlorobenzene	ND	ug/l	2.5		
Trichlorofluoromethane	ND	ug/l	12.		
1,2-Dichloroethane	ND	ug/l	2.5		
1,1,1-Trichloroethane	ND	ug/l	2.5		
Bromodichloromethane	ND	ug/l	2.5		
trans-1,3-Dichloropropene	ND	ug/l	2.5		
cis-1,3-Dichloropropene	ND	ug/l	2.5		
1,1-Dichloropropene	ND	ug/l	12.		
Bromoform	ND	ug/l	10.		
1,1,2,2-Tetrachloroethane	ND	ug/l	2.5		
Benzene	ND	ug/l	2.5		
Toluene	ND	ug/l	3.8		
Ethylbenzene	ND	ug/l	2.5		
Chloromethane	ND	ug/l	12.		
Bromomethane	ND	ug/l	5.0		
Vinyl chloride	100	ug/l	5.0		
Chloroethane	ND	ug/l	5.0		
1,1-Dichloroethene	ND	ug/l	2.5		
trans-1,2-Dichloroethene	7.9	ug/l	3.8		
Trichloroethene	14	ug/l	2.5		
1,2-Dichlorobenzene	ND	ug/l	12.		
1,3-Dichlorobenzene	ND	ug/l	12.		
1,4-Dichlorobenzene	ND	ug/l	12.		
Methyl tert butyl ether	ND	ug/l	5.0		
p/m-Xylene	ND	ug/l	5.0		
o-Xylene	ND	ug/l	5.0		
cis-1,2-Dichloroethene	500	ug/l	2.5		
Dibromomethane	ND	ug/l	25.		
1,2,3-Trichloropropane	ND	ug/l	25.		
Acrylonitrile	ND	ug/l	25.		

Laboratory Sample Number: L0812904-03

PWG-VP-2008-02 (16-20')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE II PREP ANAL
Volatile Organics by EPA 8260	DR contid			1 8260B	0905 02:57 PI
Styrene	ND	ug/l	5.0	1 02005	0903 02.37 PI
Dichlorodifluoromethane	ND	ug/l ug/l	25.		
Acetone	28	ug/l	25.		
Carbon disulfide	ND	ug/l ug/l	25.		
2-Butanone	ND	ug/l	25.		
Vinyl acetate	ND	ug/l	25.		
4-Methyl-2-pentanone	ND	ug/l	25.		
2-Hexanone	ND	ug/l	25.		
Bromochloromethane	ND	ug/l	12.		
2,2-Dichloropropane	ND	ug/l	12.		
1,2-Dibromoethane	ND	ug/l	10.		
1,3-Dichloropropane	ND	ug/l	12.		
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5		
Bromobenzene	ND	ug/l	12.		
n-Butylbenzene	ND	ug/l	2.5		
sec-Butylbenzene	ND	ug/l	2.5		
tert-Butylbenzene	ND	ug/l	12.		
o-Chlorotoluene	ND	ug/l	12.		
p-Chlorotoluene	ND	ug/l	12.		
1,2-Dibromo-3-chloropropane	ND	ug/l	12.		
Hexachlorobutadiene	ND	ug/l	3.0		
Isopropylbenzene	ND	ug/l	2.5		
p-Isopropyltoluene	ND	ug/l	2.5		
Naphthalene	ND	ug/l	12.		
n-Propylbenzene	ND	ug/l	2.5		
1,2,3-Trichlorobenzene	ND	ug/l	12.		
1,2,4-Trichlorobenzene	ND	ug/l	12.		
1,3,5-Trimethylbenzene	ND	ug/l	12.		
1,2,4-Trimethylbenzene	ND	ug/l	12.		
1,4-Diethylbenzene	ND	ug/l	10.		
4-Ethyltoluene	ND	ug/l	10.		
1,2,4,5-Tetramethylbenzene	ND	ug/l	10.		
1,2,1,5-1ectamechy identifie	IND	ug/ I	10.		
Surrogate(s)	Recovery		QC Cr	iteria	
1,2-Dichloroethane-d4	103	%	70-13	0	
Toluene-d8	98.0	%	70-13	0	
4-Bromofluorobenzene	100	%	70-13	0	
Dibromofluoromethane	100	8	70-13	0	

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0812904-04 Date Collected: 28-AUG-2008 13:05

Sample Matrix: WATER Date Reported: 08-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 820	50B			1 8260B	0905 10:50 PD
Methylene chloride	ND	ug/l	500	1 0200B	0903 10.30 PD
1,1-Dichloroethane	ND ND	ug/l	75.		
Chloroform	ND	ug/1 ug/l	75.		
Carbon tetrachloride	ND	ug/1 ug/l	50.		
1,2-Dichloropropane	ND	ug/l	180		
Dibromochloromethane	ND	ug/l	50.		
1,1,2-Trichloroethane	ND	ug/l	75.		
Tetrachloroethene	5800	ug/l	50		
Chlorobenzene	ND	ug/l	50.		
Trichlorofluoromethane	ND	ug/1	250		
1,2-Dichloroethane	ND	ug/l	50.		
1,1,1-Trichloroethane	ND	ug/l	50.		
Bromodichloromethane	ND	ug/l	50.		
trans-1,3-Dichloropropene	ND	ug/l	50.		
cis-1,3-Dichloropropene	ND	ug/l	50.		
1,1-Dichloropropene	ND	ug/l	250		
Bromoform	ND	ug/l	200		
1,1,2,2-Tetrachloroethane	ND	ug/l	50.		
Benzene	ND	ug/l	50.		
Toluene	ND	ug/l	75.		
Ethylbenzene	ND	ug/l	50.		
Chloromethane	ND	ug/l	250		
Bromomethane	ND	ug/l	100		
Vinyl chloride	ND	ug/l	100		
Chloroethane	ND	ug/l	100		
1,1-Dichloroethene	ND	ug/l	50.		
trans-1,2-Dichloroethene	ND	ug/l	75.		
Trichloroethene	98	ug/l	50		
1,2-Dichlorobenzene	ND	ug/l	250		
1,3-Dichlorobenzene	ND	ug/l	250		
1,4-Dichlorobenzene	ND	ug/l	250		
Methyl tert butyl ether	ND	ug/l	100		
p/m-Xylene	ND	ug/l	100		
o-Xylene	ND	ug/l	100		
cis-1,2-Dichloroethene	ND	ug/l	50.		
Dibromomethane	ND	ug/l	500		
1,2,3-Trichloropropane	ND	ug/l	500		
Acrylonitrile	ND	ug/l	500		

Laboratory Sample Number: L0812904-04

PWG-VP-2008-02 (36-40')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	ATE ANAL	ID
Volatile Organics by EPA 826	OB cont'd			1	8260B		0905 10:5	0 PD
Styrene	ND	ug/l	100					
Dichlorodifluoromethane	ND	ug/l	500					
Acetone	ND	ug/l	500					
Carbon disulfide	ND	ug/l	500					
2-Butanone	ND	ug/l	500					
Vinyl acetate	ND	ug/l	500					
4-Methyl-2-pentanone	ND	ug/l	500					
2-Hexanone	ND	ug/l	500					
Bromochloromethane	ND	ug/l	250					
2,2-Dichloropropane	ND	ug/l	250					
1,2-Dibromoethane	ND	ug/l	200					
1,3-Dichloropropane	ND	ug/l	250					
1,1,1,2-Tetrachloroethane	ND	ug/l	50.					
Bromobenzene	ND	ug/l	250					
n-Butylbenzene	ND	ug/l	50.					
sec-Butylbenzene	ND	ug/l	50.					
tert-Butylbenzene	ND	ug/l	250					
o-Chlorotoluene	ND	ug/l	250					
p-Chlorotoluene	ND	ug/l	250					
1,2-Dibromo-3-chloropropane	ND	ug/l	250					
Hexachlorobutadiene	ND	ug/l	60.					
Isopropylbenzene	ND	ug/l	50.					
p-Isopropyltoluene	ND	ug/l	50.					
Naphthalene	ND	ug/l	250					
n-Propylbenzene	ND	ug/l	50.					
1,2,3-Trichlorobenzene	ND	ug/l	250					
1,2,4-Trichlorobenzene	ND	ug/l	250					
1,3,5-Trimethylbenzene	ND	ug/l	250					
1,2,4-Trimethylbenzene	ND	ug/l	250					
1,4-Diethylbenzene	ND	ug/l	200					
4-Ethyltoluene	ND	ug/l	200					
1,2,4,5-Tetramethylbenzene	ND	ug/l	200					
Surrogate(s)	Recovery		QC Cri	iteria	a.			
1,2-Dichloroethane-d4	106	8	70-130)				
Toluene-d8	99.0	%	70-130)				
4-Bromofluorobenzene	103	%	70-130					
Dibromofluoromethane	100	%	70-130					

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0812904-05 Date Collected: 28-AUG-2008 14:00

PWG-VP-2008-02 (56-60') Date Received: 30-AUG-2008

Sample Matrix: WATER Date Reported: 08-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 82	60B			1 8260B	0905 11:29 PD
Methylene chloride	ND	ug/l	12.		7770 22 27 22
1,1-Dichloroethane	ND	ug/l	1.9		
Chloroform	ND	ug/l	1.9		
Carbon tetrachloride	ND	ug/l	1.2		
1,2-Dichloropropane	ND	ug/l	4.4		
Dibromochloromethane	ND	ug/l	1.2		
1,1,2-Trichloroethane	ND	ug/l	1.9		
Tetrachloroethene	>400	ug/l	1.2		
Chlorobenzene	ND	ug/l	1.2		
Trichlorofluoromethane	ND	ug/l	6.2		
1,2-Dichloroethane	ND	ug/l	1.2		
1,1,1-Trichloroethane	ND	ug/l	1.2		
Bromodichloromethane	ND	ug/l	1.2		
trans-1,3-Dichloropropene	ND	ug/l	1.2		
cis-1,3-Dichloropropene	ND	ug/l	1.2		
1,1-Dichloropropene	ND	ug/l	6.2		
Bromoform	ND	ug/l	5.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	1.2		
Benzene	ND	ug/l	1.2		
Toluene	ND	ug/l	1.9		
Ethylbenzene	ND	ug/l	1.2		
Chloromethane	ND	ug/l	6.2		
Bromomethane	ND	ug/l	2.5		
Vinyl chloride	4.7	ug/l	2.5		
Chloroethane	ND	ug/l	2.5		
1,1-Dichloroethene	ND	ug/l	1.2		
trans-1,2-Dichloroethene	5.7	ug/l	1.9		
Trichloroethene	51	ug/l	1.2		
1,2-Dichlorobenzene	ND	ug/l	6.2		
1,3-Dichlorobenzene	ND	ug/l	6.2		
1,4-Dichlorobenzene	ND	ug/l	6.2		
Methyl tert butyl ether	ND	ug/l	2.5		
p/m-Xylene	ND	ug/l	2.5		
o-Xylene	ND	ug/l	2.5		
cis-1,2-Dichloroethene	210	ug/l	1.2		
Dibromomethane	ND	ug/1 ug/l	12.		
1,2,3-Trichloropropane	ND	ug/1 ug/l	12.		
Acrylonitrile	ND ND	ug/l ug/l	12.		

Laboratory Sample Number: L0812904-05

PWG-VP-2008-02 (56-60')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE I PREP ANAL
					PREP ANAL
Volatile Organics by EPA 826	OB cont'd			1 8260B	0905 11:29 P
Styrene	ND	ug/l	2.5		
Dichlorodifluoromethane	ND	ug/l	12.		
Acetone	23	ug/l	12		
Carbon disulfide	ND	ug/l	12.		
2-Butanone	ND	ug/l	12.		
inyl acetate	ND	ug/l	12.		
-Methyl-2-pentanone	ND	ug/l	12.		
Z-Hexanone	ND	ug/l	12.		
Bromochloromethane	ND	ug/l	6.2		
2,2-Dichloropropane	ND	ug/l	6.2		
.,2-Dibromoethane	ND	ug/l	5.0		
, 3-Dichloropropane	ND	ug/l	6.2		
,1,1,2-Tetrachloroethane	ND	ug/l	1.2		
Bromobenzene	ND	ug/l	6.2		
n-Butylbenzene	ND	ug/l	1.2		
sec-Butylbenzene	ND	ug/l	1.2		
tert-Butylbenzene	ND	ug/l	6.2		
o-Chlorotoluene	ND	ug/l	6.2		
-Chlorotoluene	ND	ug/l	6.2		
.,2-Dibromo-3-chloropropane	ND	ug/l	6.2		
Mexachlorobutadiene	ND	ug/l	1.5		
Sopropylbenzene	ND	ug/l	1.2		
o-Isopropyltoluene	ND	ug/l	1.2		
Japhthalene	ND	ug/l	6.2		
n-Propylbenzene	ND	ug/l	1.2		
1,2,3-Trichlorobenzene	ND	ug/l	6.2		
.,2,4-Trichlorobenzene	ND	ug/l	6.2		
1,3,5-Trimethylbenzene	ND	ug/l	6.2		
1,2,4-Trimethylbenzene	ND	ug/l	6.2		
.,4-Diethylbenzene	ND	ug/l	5.0		
l-Ethyltoluene	ND	ug/l	5.0		
.,2,4,5-Tetramethylbenzene	ND	ug/l	5.0		
Surrogate(s)	Recovery		OC C**	iteria	
l,2-Dichloroethane-d4	108	%	70-13		
Coluene-d8	99.0	%	70-13		
loluene-do 1-Bromofluorobenzene	101	%	70-13		
Dibromofluoromethane	101	%	70-13		
'TDT OUIOT TUOT OUIECHAME	TOT	°o	/U-13	U	
Volatile Organics by EPA 826 Cetrachloroethene		110 / ¹	E 0	1 8260B	0905 15:20 P
etraciiroroethene	420	ug/l	5.0		
Surrogate(s)	Recovery		QC Cr	iteria	
,2-Dichloroethane-d4	104	%	70-13		
Coluene-d8	99.0	%	70-13		
		-	0		
4-Bromofluorobenzene	101	용	70-13	0	

 $\hbox{{\tt Comments:}} \ \hbox{{\tt Complete list of References and Glossary of Terms found in Addendum I} \\$

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0812904-06 Date Collected: 28-AUG-2008 16:20

PWG-VP-2008-02 (76-80') Date Received: 30-AUG-2008

Sample Matrix: WATER Date Reported: 08-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 82	60B			1 8260B	0905 12:09 PD
Methylene chloride	ND	ug/l	10.	1 02006	0903 12:09 FD
1,1-Dichloroethane	ND ND	ug/l ug/l	1.5		
Chloroform	ND ND	ug/l	1.5		
Carbon tetrachloride	ND ND	ug/l ug/l	1.0		
1,2-Dichloropropane	ND ND	ug/1 ug/1	3.5		
Dibromochloromethane	ND ND	ug/l ug/l	1.0		
1,1,2-Trichloroethane	ND ND	ug/l ug/l	1.5		
Tetrachloroethene	ND 21	ug/l ug/l	1.0		
Chlorobenzene	ND	ug/l ug/l	1.0		
Trichlorofluoromethane	ND ND	ug/l	5.0		
1,2-Dichloroethane	ND ND	ug/l ug/l	1.0		
1,1,1-Trichloroethane	ND ND	ug/l	1.0		
Bromodichloromethane	ND	ug/1 ug/1	1.0		
trans-1,3-Dichloropropene	ND ND	ug/l ug/l	1.0		
cis-1,3-Dichloropropene	ND ND	ug/l ug/l	1.0		
1,1-Dichloropropene	ND ND	ug/l ug/l	5.0		
Bromoform	ND ND	ug/l ug/l	4.0		
1,1,2,2-Tetrachloroethane	ND ND	ug/l ug/l	1.0		
Benzene	ND ND	ug/l ug/l	1.0		
Toluene	1.5	ug/l ug/l	1.5		
Ethylbenzene	ND	ug/l ug/l	1.0		
Chloromethane	ND ND	ug/l ug/l	5.0		
Bromomethane	ND ND	ug/l ug/l	2.0		
Vinyl chloride	ND ND	ug/l ug/l	2.0		
Chloroethane	ND ND	ug/l ug/l	2.0		
1,1-Dichloroethene	ND ND	ug/1 ug/1	1.0		
trans-1,2-Dichloroethene	ND ND	_	1.5		
Trichloroethene	1.6	ug/l ug/l	1.0		
1,2-Dichlorobenzene	ND	ug/1 ug/1	5.0		
1,3-Dichlorobenzene	ND ND	_	5.0		
1,4-Dichlorobenzene	ND ND	ug/l	5.0		
•		ug/l			
Methyl tert butyl ether p/m-Xylene	ND ND	ug/l	2.0 2.0		
	ND ND	ug/l			
o-Xylene cis-1,2-Dichloroethene	иD 7.5	ug/l	2.0 1.0		
Dibromomethane	7.5 ND	ug/l	1.0		
		ug/l			
1,2,3-Trichloropropane	ND	ug/l	10.		
Acrylonitrile	ND	ug/l	10.		

Laboratory Sample Number: L0812904-06

PWG-VP-2008-02 (76-80')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 826	OR contid			1 8260B	0905 12:09 PD
Styrene	ND	ug/l	2.0	1 0200B	0905 12:09 PD
Dichlorodifluoromethane	ND ND	ug/1 ug/l	10.		
Acetone	71	ug/l	10.		
Carbon disulfide	ND	ug/l	10.		
2-Butanone	21	ug/l	10.		
Vinyl acetate	ND	ug/1 ug/l	10.		
4-Methyl-2-pentanone	ND ND	ug/l	10.		
2-Hexanone	ND	ug/l	10.		
Bromochloromethane	ND	ug/l	5.0		
2,2-Dichloropropane	ND ND	ug/l	5.0		
1,2-Dibromoethane	ND	ug/l	4.0		
1,3-Dichloropropane	ND ND	ug/1 ug/l	5.0		
1,1,1,2-Tetrachloroethane	ND	ug/1 ug/l	1.0		
Bromobenzene	ND ND	ug/l ug/l	5.0		
n-Butylbenzene	ND ND	ug/l	1.0		
sec-Butylbenzene	ND	ug/l ug/l	1.0		
tert-Butylbenzene	ND	ug/1 ug/l	5.0		
o-Chlorotoluene	ND	ug/l	5.0		
p-Chlorotoluene	ND ND	ug/1 ug/l	5.0		
1,2-Dibromo-3-chloropropane	ND ND	ug/l	5.0		
Hexachlorobutadiene	ND	ug/l ug/l	1.2		
Isopropylbenzene	ND ND	ug/l ug/l	1.0		
p-Isopropyltoluene	ND	_	1.0		
Naphthalene	ND	ug/l ug/l	5.0		
naphthalene n-Propylbenzene	ND ND	ug/l ug/l	1.0		
1,2,3-Trichlorobenzene	ND	ug/1 ug/l	5.0		
1,2,4-Trichlorobenzene	ND ND	ug/l ug/l	5.0		
1,3,5-Trimethylbenzene	ND	ug/l ug/l	5.0		
1,2,4-Trimethylbenzene	ND	ug/l ug/l	5.0		
	ND ND	_	4.0		
1,4-Diethylbenzene 4-Ethyltoluene	ND ND	ug/l	4.0		
1,2,4,5-Tetramethylbenzene	ND ND	ug/l	4.0		
1,2,4,3-recramethythenzene	מא	ug/l	4.0		
Surrogate(s)	Recovery		QC Cr	iteria	
1,2-Dichloroethane-d4	107	%	70-13	0	
Toluene-d8	100	%	70-13	0	
4-Bromofluorobenzene	99.0	%	70-13	0	
Dibromofluoromethane	100	૪	70-13	0	

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0812904-07 Date Collected: 28-AUG-2008 18:00

PWG-VP-2008-02 (96-100') Date Received: 30-AUG-2008

Sample Matrix: WATER Date Reported: 08-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 82	60B			1 8260B	0905 12:48 PD
Methylene chloride	ND	ug/l	10.	1 0200B	0903 12.40 FD
1,1-Dichloroethane	ND ND	ug/l ug/l	1.5		
Chloroform	ND ND	ug/l	1.5		
Carbon tetrachloride	ND ND	ug/l ug/l	1.0		
1,2-Dichloropropane	ND ND	ug/1 ug/l	3.5		
Dibromochloromethane	ND ND	ug/1 ug/1	1.0		
1,1,2-Trichloroethane	ND ND	ug/1 ug/1	1.5		
Tetrachloroethene	>200	ug/1 ug/l	1.3		
Chlorobenzene	ND	ug/l ug/l	1.0		
Trichlorofluoromethane	ND ND	ug/l	5.0		
1,2-Dichloroethane	ND ND	ug/l ug/l	1.0		
1,1,1-Trichloroethane	ND ND	ug/l ug/l	1.0		
Bromodichloromethane	ND	ug/1 ug/l	1.0		
trans-1,3-Dichloropropene	ND ND	ug/1 ug/1	1.0		
cis-1,3-Dichloropropene	ND ND	ug/l ug/l	1.0		
1,1-Dichloropropene	ND ND	ug/1 ug/1	5.0		
Bromoform	ND ND	ug/l ug/l	4.0		
1,1,2,2-Tetrachloroethane	ND ND	ug/1 ug/l	1.0		
Benzene	ND ND	ug/1 ug/1	1.0		
Toluene	ND ND	ug/l ug/l	1.5		
Ethylbenzene	ND ND	ug/1 ug/1	1.0		
Chloromethane	ND ND	ug/1 ug/l	5.0		
Bromomethane	ND ND	ug/l ug/l	2.0		
Vinyl chloride	ND ND	ug/1 ug/1	2.0		
Chloroethane	ND ND	ug/1 ug/l	2.0		
1,1-Dichloroethene	ND ND	ug/1 ug/1	1.0		
trans-1,2-Dichloroethene	ND ND	_	1.5		
Trichloroethene	ND 29	ug/l	1.0		
1,2-Dichlorobenzene	ND	ug/l ug/l	5.0		
1,3-Dichlorobenzene	ND ND	_	5.0		
1,4-Dichlorobenzene	ND ND	ug/l	5.0		
•		ug/l			
Methyl tert butyl ether p/m-Xylene	ND ND	ug/l	2.0 2.0		
	ND ND	ug/l			
o-Xylene cis-1,2-Dichloroethene	ND 110	ug/l	2.0 1.0		
Dibromomethane	ND	ug/l	10.		
		ug/l			
1,2,3-Trichloropropane	ND	ug/l	10.		
Acrylonitrile	ND	ug/l	10.		

Laboratory Sample Number: L0812904-07

PWG-VP-2008-02 (96-100')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE PREP ANAL	ID
					TABL ANAL	
Volatile Organics by EPA 826	OB cont'd			1 8260B	0905 12:48	PD
Styrene	ND	ug/l	2.0			
Dichlorodifluoromethane	ND	ug/l	10.			
Acetone	36	ug/l	10			
Carbon disulfide	ND	ug/l	10.			
-Butanone	ND	ug/l	10.			
inyl acetate	ND	ug/l	10.			
-Methyl-2-pentanone	ND	ug/l	10.			
2-Hexanone	ND	ug/l	10.			
Bromochloromethane	ND	ug/l	5.0			
,2-Dichloropropane	ND	ug/l	5.0			
,2-Dibromoethane	ND	ug/l	4.0			
.,3-Dichloropropane	ND	ug/l	5.0			
.,1,1,2-Tetrachloroethane	ND	ug/l	1.0			
Bromobenzene	ND	ug/l	5.0			
n-Butylbenzene	ND	ug/l	1.0			
sec-Butylbenzene	ND	ug/l	1.0			
tert-Butylbenzene	ND	ug/l	5.0			
-Chlorotoluene	ND	ug/l	5.0			
-Chlorotoluene	ND	ug/l	5.0			
,2-Dibromo-3-chloropropane	ND	ug/l	5.0			
Mexachlorobutadiene	ND	ug/l	1.2			
Sopropylbenzene	ND	ug/l	1.0			
-Isopropyltoluene	ND	ug/l	1.0			
Japhthalene	ND	ug/l	5.0			
a-Propylbenzene	ND	ug/l	1.0			
.,2,3-Trichlorobenzene	ND	ug/l ug/l	5.0			
.,2,4-Trichlorobenzene	ND	ug/l	5.0			
.,3,5-Trimethylbenzene	ND	ug/l	5.0			
.,2,4-Trimethylbenzene	ND	ug/l ug/l	5.0			
.,4-Diethylbenzene	ND	ug/l	4.0			
Ethyltoluene	ND ND		4.0			
.,2,4,5-Tetramethylbenzene	ND ND	ug/l ug/l	4.0			
.,2,4,5-recramethy Denzene	ND	ug/1	4.0			
Surrogate(s)	Recovery		QC Cr	iteria		
,2-Dichloroethane-d4	109	%	70-13	0		
Coluene-d8	100	%	70-13	0		
1-Bromofluorobenzene	99.0	%	70-13	0		
Dibromofluoromethane	101	%	70-13	0		
Volatile Organics by EPA 826	0B			1 8260в	0905 15:57	PD
Cetrachloroethene	280	ug/l	5.0			
Surrogate(s)	Recovery		QC Cr	iteria		
,2-Dichloroethane-d4	103	&	70-13			
Coluene-d8	99.0	&	70-13	0		
1-Bromofluorobenzene	101	%	70-13			
Dibromofluoromethane	99.0	%	70-13			

 $\hbox{{\tt Comments:}} \ \hbox{{\tt Complete list of References and Glossary of Terms found in Addendum I} \\$

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0812904-08 Date Collected: 29-AUG-2008 07:35

PWG-VP-2008-01 (16-20') Date Received: 30-AUG-2008

Sample Matrix: WATER Date Reported: 08-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 83	260B			1 8260B	0905 13:28 PD
Methylene chloride	ND	ug/l	5.0		
1,1-Dichloroethane	1.0	ug/l	0.75		
Chloroform	ND	ug/l	0.75		
Carbon tetrachloride	ND	ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75		
Tetrachloroethene	13	ug/l	0.50		
Chlorobenzene	ND	ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND	ug/l	0.50		
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50		
Chloromethane	ND	ug/l	2.5		
Bromomethane	ND	ug/l	1.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	1.0		
1,1-Dichloroethene	ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/l	0.75		
Trichloroethene	4.3	ug/l	0.50		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/l	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	1.2	ug/l	0.50		
Dibromomethane	ND	ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/l	5.0		
Acrylonitrile	ND	ug/l	5.0		

Laboratory Sample Number: L0812904-08

PWG-VP-2008-01 (16-20')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Volatile Organics by EPA 826	OB cont'd			1	8260B		0905 13:2	28 PD
Styrene	ND	ug/l	1.0					
Dichlorodifluoromethane	ND	ug/l	5.0					
Acetone	13	ug/l	5.0					
Carbon disulfide	ND	ug/l	5.0					
2-Butanone	10	ug/l	5.0					
Vinyl acetate	ND	ug/l	5.0					
4-Methyl-2-pentanone	ND	ug/l	5.0					
2-Hexanone	ND	ug/l	5.0					
Bromochloromethane	ND	ug/l	2.5					
2,2-Dichloropropane	ND	ug/l	2.5					
1,2-Dibromoethane	ND	ug/l	2.0					
1,3-Dichloropropane	ND	ug/l	2.5					
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50					
Bromobenzene	ND	ug/l	2.5					
n-Butylbenzene	ND	ug/l	0.50					
sec-Butylbenzene	ND	ug/l	0.50					
tert-Butylbenzene	ND	ug/l	2.5					
o-Chlorotoluene	ND	ug/l	2.5					
p-Chlorotoluene	ND	ug/l	2.5					
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5					
Hexachlorobutadiene	ND	ug/l	0.60					
Isopropylbenzene	ND	ug/l	0.50					
p-Isopropyltoluene	ND	ug/l	0.50					
Naphthalene	ND	ug/l	2.5					
n-Propylbenzene	ND	ug/l	0.50					
1,2,3-Trichlorobenzene	ND	ug/l	2.5					
1,2,4-Trichlorobenzene	ND	ug/l	2.5					
1,3,5-Trimethylbenzene	ND	ug/l	2.5					
1,2,4-Trimethylbenzene	ND	ug/l	2.5					
1,4-Diethylbenzene	ND	ug/l	2.0					
4-Ethyltoluene	ND	ug/l	2.0					
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0					
Surrogate(s)	Recovery		QC Crit	ceria	ı			
1,2-Dichloroethane-d4	108	%	70-130					
Toluene-d8	99.0	%	70-130					
4-Bromofluorobenzene	98.0	%	70-130					
Dibromofluoromethane	101	%	70-130					

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0812904-09 Date Collected: 29-AUG-2008 08:40

PWG-VP-2008-01 (36-40') Date Received: 30-AUG-2008

Sample Matrix: WATER Date Reported: 08-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 820	50B			1 8260B	0905 14:07 PD
Methylene chloride	ND	ug/l	5.0	1 0200B	0903 14:07 PD
1,1-Dichloroethane	ND ND	ug/l	0.75		
Chloroform	ND	ug/1 ug/l	0.75		
Carbon tetrachloride	ND ND	ug/1 ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75		
Tetrachloroethene	13	ug/l	0.50		
Chlorobenzene	ND	ug/l	0.50		
Trichlorofluoromethane	ND	ug/1	2.5		
1,2-Dichloroethane	ND	ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND	ug/l	0.50		
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50		
Chloromethane	ND	ug/l	2.5		
Bromomethane	ND	ug/l	1.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	1.0		
1,1-Dichloroethene	ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/l	0.75		
Trichloroethene	1.4	ug/l	0.50		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/l	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	ND	ug/l	0.50		
Dibromomethane	ND	ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/l	5.0		
Acrylonitrile	ND	ug/l	5.0		

Laboratory Sample Number: L0812904-09

PWG-VP-2008-01 (36-40')

PARAMETER	RESULT	UNITS	RDL	REF I	METHOD	DA PREP	TE ANAL	ID
Volatile Organics by EPA 826	OB cont'd			1	8260B		0905 14:0	7 PD
Styrene	ND	ug/l	1.0					
Dichlorodifluoromethane	ND	ug/l	5.0					
Acetone	11	ug/l	5.0					
Carbon disulfide	ND	ug/l	5.0					
2-Butanone	16	ug/l	5.0					
Vinyl acetate	ND	ug/l	5.0					
4-Methyl-2-pentanone	ND	ug/l	5.0					
2-Hexanone	ND	ug/l	5.0					
Bromochloromethane	ND	ug/l	2.5					
2,2-Dichloropropane	ND	ug/l	2.5					
1,2-Dibromoethane	ND	ug/l	2.0					
1,3-Dichloropropane	ND	ug/l	2.5					
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50					
Bromobenzene	ND	ug/l	2.5					
n-Butylbenzene	ND	ug/l	0.50					
sec-Butylbenzene	ND	ug/l	0.50					
tert-Butylbenzene	ND	ug/l	2.5					
o-Chlorotoluene	ND	ug/l	2.5					
p-Chlorotoluene	ND	ug/l	2.5					
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5					
Hexachlorobutadiene	ND	ug/l	0.60					
Isopropylbenzene	ND	ug/l	0.50					
p-Isopropyltoluene	ND	ug/l	0.50					
Naphthalene	ND	ug/l	2.5					
n-Propylbenzene	ND	ug/l	0.50					
1,2,3-Trichlorobenzene	ND	ug/l	2.5					
1,2,4-Trichlorobenzene	ND	ug/l	2.5					
1,3,5-Trimethylbenzene	ND	ug/l	2.5					
1,2,4-Trimethylbenzene	ND	ug/l	2.5					
1,4-Diethylbenzene	ND	ug/l	2.0					
4-Ethyltoluene	ND	ug/l	2.0					
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0					
Surrogate(s)	Recovery		QC Crit	eria				
1,2-Dichloroethane-d4	107	%	70-130					
Toluene-d8	99.0	%	70-130					
4-Bromofluorobenzene	98.0	%	70-130					
Dibromofluoromethane	100	%	70-130					

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0812904-10 Date Collected: 29-AUG-2008 09:50

PWG-VP-2008-01 (56-60') Date Received: 30-AUG-2008

Sample Matrix: WATER Date Reported: 08-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 820	50B			1 8260B	0905 18:29 PD
Methylene chloride	ND	ug/l	5.0	1 02006	0903 18.29 FD
1,1-Dichloroethane	ND ND	ug/l	0.75		
Chloroform	ND ND	ug/1 ug/l	0.75		
Carbon tetrachloride	ND	ug/1 ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75		
Tetrachloroethene	46	ug/l	0.50		
Chlorobenzene	ND	ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/1 ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND	ug/l	0.50		
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50		
Chloromethane	ND	ug/l	2.5		
Bromomethane	ND	ug/l	1.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	1.0		
1,1-Dichloroethene	ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/l	0.75		
Trichloroethene	5.6	ug/l	0.50		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/l	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/1 ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	ND	ug/l	0.50		
Dibromomethane	ND	ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/1 ug/l	5.0		
Acrylonitrile	ND ND	ug/l	5.0		

Laboratory Sample Number: L0812904-10

PWG-VP-2008-01 (56-60')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE PREP ANAL	ID
					PREP ANAL	
Volatile Organics by EPA 8260	OB cont'd			1 8260B	0905 18:2	9 PD
Styrene	ND	ug/l	1.0			
Dichlorodifluoromethane	ND	ug/l	5.0			
Acetone	ND	ug/l	5.0			
Carbon disulfide	ND	ug/l	5.0			
2-Butanone	ND	ug/l	5.0			
Vinyl acetate	ND	ug/l	5.0			
4-Methyl-2-pentanone	ND	ug/l	5.0			
2-Hexanone	ND	ug/l	5.0			
Bromochloromethane	ND	ug/l	2.5			
2,2-Dichloropropane	ND	ug/l	2.5			
1,2-Dibromoethane	ND	ug/l	2.0			
1,3-Dichloropropane	ND	ug/l	2.5			
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50			
Bromobenzene	ND	ug/l	2.5			
n-Butylbenzene	ND	ug/l	0.50			
sec-Butylbenzene	ND	ug/l	0.50			
tert-Butylbenzene	ND	ug/l	2.5			
o-Chlorotoluene	ND	ug/l	2.5			
p-Chlorotoluene	ND	ug/l	2.5			
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5			
Hexachlorobutadiene	ND	ug/l	0.60			
Isopropylbenzene	ND	ug/l	0.50			
p-Isopropyltoluene	ND	ug/l	0.50			
Naphthalene	ND	ug/l	2.5			
n-Propylbenzene	ND	ug/l	0.50			
1,2,3-Trichlorobenzene	ND	ug/l	2.5			
1,2,4-Trichlorobenzene	ND	ug/l	2.5			
1,3,5-Trimethylbenzene	ND	ug/l	2.5			
1,2,4-Trimethylbenzene	ND	ug/l	2.5			
1,4-Diethylbenzene	ND	ug/l	2.0			
4-Ethyltoluene	ND	ug/l	2.0			
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0			
Surrogate(s)	Recovery		QC Crit	teria		
1,2-Dichloroethane-d4	102	%	70-130			
Toluene-d8	98.0	%	70-130			
4-Bromofluorobenzene	104	%	70-130			
Dibromofluoromethane	98.0	%	70-130			

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0812904-11 Date Collected: 29-AUG-2008 11:00

PWG-VP-2008-01 (76-80') Date Received: 30-AUG-2008

Sample Matrix: WATER Date Reported: 08-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 820	50B			1 8260B	0905 19:06 PD
Methylene chloride	ND	ug/l	5.0	1 02005	0505 15:00 FB
1,1-Dichloroethane	ND	ug/l	0.75		
Chloroform	ND	ug/l	0.75		
Carbon tetrachloride	ND	ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75		
Tetrachloroethene	100	ug/l	0.50		
Chlorobenzene	ND	ug/1 ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/1 ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND ND	ug/l	0.50		
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND ND	ug/1 ug/l	0.75		
Chloromethane	ND ND	ug/1 ug/l	2.5		
Bromomethane	ND ND	ug/l ug/l	1.0		
Vinyl chloride	ND ND	ug/l	1.0		
Chloroethane	ND	ug/1 ug/l	1.0		
1,1-Dichloroethene	ND ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND ND	ug/1 ug/l	0.75		
Trichloroethene	18	ug/l ug/l	0.75		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND ND	ug/l ug/l	2.5		
1,4-Dichlorobenzene	ND ND	ug/1 ug/l	2.5		
Methyl tert butyl ether	1.1	ug/1 ug/l	1.0		
p/m-Xylene	ND	ug/1 ug/1	1.0		
o-Xylene	ND ND	ug/l ug/l	1.0		
cis-1,2-Dichloroethene	0.82	ug/l ug/l	0.50		
Dibromomethane	0.82 ND	_	5.0		
		ug/l	5.0		
1,2,3-Trichloropropane	ND ND	ug/l ug/l	5.0		

Laboratory Sample Number: L0812904-11

PWG-VP-2008-01 (76-80')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	D <i>P</i> PREP	ATE ANAL	ID
Volatile Organics by EPA 826	OB contid			1	8260B		0905 19:0	6 DD
Styrene	ND	ug/l	1.0	1	0200B		0903 19:0	O PD
Dichlorodifluoromethane	ND ND	ug/l ug/l	5.0					
Acetone	12	ug/l	5.0					
Carbon disulfide	ND	ug/l ug/l	5.0					
2-Butanone	ND	ug/l	5.0					
Vinyl acetate	ND	ug/l	5.0					
4-Methyl-2-pentanone	ND	ug/l	5.0					
2-Hexanone	ND	ug/l	5.0					
Bromochloromethane	ND	ug/l	2.5					
2,2-Dichloropropane	ND	ug/l	2.5					
1,2-Dibromoethane	ND	ug/l	2.0					
1,3-Dichloropropane	ND	ug/l	2.5					
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50					
Bromobenzene	ND	ug/l	2.5					
n-Butylbenzene	ND	ug/l	0.50					
sec-Butylbenzene	ND	ug/l	0.50					
tert-Butylbenzene	ND	ug/l	2.5					
o-Chlorotoluene	ND	ug/l	2.5					
p-Chlorotoluene	ND	ug/l	2.5					
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5					
Hexachlorobutadiene	ND	ug/l	0.60					
Isopropylbenzene	ND	ug/l	0.50					
p-Isopropyltoluene	ND	ug/l	0.50					
Naphthalene	ND	ug/l	2.5					
n-Propylbenzene	ND	ug/l	0.50					
1,2,3-Trichlorobenzene	ND	ug/l	2.5					
1,2,4-Trichlorobenzene	ND	ug/l	2.5					
1,3,5-Trimethylbenzene	ND	ug/l	2.5					
1,2,4-Trimethylbenzene	ND	ug/l	2.5					
1,4-Diethylbenzene	ND	ug/l	2.0					
4-Ethyltoluene	ND	ug/l	2.0					
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0					
Surrogate(s)	Recovery		QC Crit	teria	l			
1,2-Dichloroethane-d4	104	%	70-130					
Toluene-d8	98.0	%	70-130					
4-Bromofluorobenzene	102	%	70-130					
Dibromofluoromethane	99.0	%	70-130					

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0812904-12 Date Collected: 29-AUG-2008 13:10

PWG-VP-2008-01 (96-100') Date Received: 30-AUG-2008

Sample Matrix: WATER Date Reported: 08-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 820	50B			1 8260B	0905 14:44 PD
Methylene chloride	ND	ug/l	10.		
1,1-Dichloroethane	ND	ug/l	1.5		
Chloroform	ND	ug/l	1.5		
Carbon tetrachloride	ND	ug/1	1.0		
1,2-Dichloropropane	ND	ug/l	3.5		
Dibromochloromethane	ND	ug/l	1.0		
1,1,2-Trichloroethane	ND	ug/l	1.5		
Tetrachloroethene	200	ug/l	1.0		
Chlorobenzene	ND	ug/l	1.0		
Trichlorofluoromethane	ND	ug/l	5.0		
1,2-Dichloroethane	ND	ug/l	1.0		
1,1,1-Trichloroethane	ND	ug/l	1.0		
Bromodichloromethane	ND	ug/l	1.0		
trans-1,3-Dichloropropene	ND	ug/l	1.0		
cis-1,3-Dichloropropene	ND	ug/l	1.0		
1,1-Dichloropropene	ND	ug/l	5.0		
Bromoform	ND	ug/l	4.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	1.0		
Benzene	ND	ug/l	1.0		
Toluene	ND	ug/l	1.5		
Ethylbenzene	ND	ug/l	1.0		
Chloromethane	ND	ug/l	5.0		
Bromomethane	ND	ug/l	2.0		
Vinyl chloride	ND	ug/l	2.0		
Chloroethane	ND	ug/l	2.0		
1,1-Dichloroethene	ND	ug/l	1.0		
trans-1,2-Dichloroethene	ND	ug/l	1.5		
Trichloroethene	40	ug/l	1.0		
1,2-Dichlorobenzene	ND	ug/l	5.0		
1,3-Dichlorobenzene	ND	ug/l	5.0		
1,4-Dichlorobenzene	ND	ug/l	5.0		
Methyl tert butyl ether	ND	ug/l	2.0		
p/m-Xylene	ND	ug/l	2.0		
o-Xylene	ND	ug/l	2.0		
cis-1,2-Dichloroethene	14	ug/l	1.0		
Dibromomethane	ND	ug/l	10.		
1,2,3-Trichloropropane	ND	ug/l	10.		
Acrylonitrile	ND	ug/l	10.		

Laboratory Sample Number: L0812904-12

PWG-VP-2008-01 (96-100')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE PREP ANAL	ID
Volatile Organics by EPA 8260	OB cont'd			1 8260B	0905 14:4	4 PD
Styrene	ND	ug/l	2.0			
Dichlorodifluoromethane	ND	ug/l	10.			
Acetone	32	ug/l	10			
Carbon disulfide	ND	ug/l	10.			
2-Butanone	ND	ug/l	10.			
Vinyl acetate	ND	ug/l	10.			
4-Methyl-2-pentanone	ND	ug/l	10.			
2-Hexanone	ND	ug/l	10.			
Bromochloromethane	ND	ug/l	5.0			
2,2-Dichloropropane	ND	ug/l	5.0			
1,2-Dibromoethane	ND	ug/l	4.0			
1,3-Dichloropropane	ND	ug/l	5.0			
1,1,1,2-Tetrachloroethane	ND	ug/l	1.0			
Bromobenzene	ND	ug/l	5.0			
n-Butylbenzene	ND	ug/l	1.0			
sec-Butylbenzene	ND	ug/l	1.0			
tert-Butylbenzene	ND	ug/l	5.0			
o-Chlorotoluene	ND	ug/l	5.0			
p-Chlorotoluene	ND	ug/l	5.0			
1,2-Dibromo-3-chloropropane	ND	ug/l	5.0			
Hexachlorobutadiene	ND	ug/l	1.2			
Isopropylbenzene	ND	ug/l	1.0			
p-Isopropyltoluene	ND	ug/l	1.0			
Naphthalene	ND	ug/l	5.0			
n-Propylbenzene	ND	ug/l	1.0			
1,2,3-Trichlorobenzene	ND	ug/l	5.0			
1,2,4-Trichlorobenzene	ND	ug/l	5.0			
1,3,5-Trimethylbenzene	ND	ug/l	5.0			
1,2,4-Trimethylbenzene	ND	ug/l	5.0			
1,4-Diethylbenzene	ND	ug/l	4.0			
4-Ethyltoluene	ND	ug/l	4.0			
1,2,4,5-Tetramethylbenzene	ND	ug/l	4.0			
Surrogate(s)	Recovery		QC Cr	iteria		
1,2-Dichloroethane-d4	107	%	70-13	0		
Toluene-d8	99.0	%	70-13			
4-Bromofluorobenzene	101	%	70-13			
Dibromofluoromethane	101	૾ૢ	70-13			

Laboratory Job Number: L0812904

Parameter	LCS %	LCSD %	RPD	RPD Limit	QC Limits
Volatile Organics by EPA 820	SOR for cample	(a) 01_03	/wc335362-	1 WC335362-2)	
Chlorobenzene	109	90	19	20	75-130
Benzene	108	90	18	20	76-127
Toluene	108	89	19	20	76-125
1,1-Dichloroethene	106	87	20	20	61-145
Trichloroethene	106	87	20	20	71-120
Surrogate(s)					
1,2-Dichloroethane-d4	105	106	1		70-130
Toluene-d8	98	99	1		70-130
4-Bromofluorobenzene	96	99	3		70-130
Dibromofluoromethane	103	102	1		70-130
Volatile Organics by EPA 820	SOR for gample	(a) 10-11	/ WC225262_	7 WC225262-9\	
Chlorobenzene	99	98	8	7, WG33330Z-07	75-130
Benzene	99	96	8	20	76-127
Toluene	100	100	7	20	76-125
1,1-Dichloroethene	98	97	6	20	61-145
Trichloroethene	97	96	6	20	71-120
Surrogate(s)	100	100	-		TO 100
1,2-Dichloroethane-d4	102	103	1		70-130
Toluene-d8	99	100	1		70-130
4-Bromofluorobenzene	99	100	1		70-130
Dibromofluoromethane	100	98	2		70-130
Volatile Organics by EPA 8260	OB for sample(s) 04-09,1	2 (WG33536	2-4, WG335362-5)
Chlorobenzene	106	98	11	20	75-130
Benzene	104	98	10	20	76-127
Toluene	107	100	8	20	76-125
1,1-Dichloroethene	103	95	11	20	61-145
Trichloroethene	102	96	10	20	71-120
Surrogate(s)					
1,2-Dichloroethane-d4	102	103	1		70-130
Toluene-d8	100	98	2		70-130
4-Bromofluorobenzene	98	99	1		70-130
Dibromofluoromethane	99	100	1		70-130

Laboratory Job Number: L0812904

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DAT PREP	E ANAL	ID
Blank Analys		ple(s) 01-03	(WG33				
Volatile Organics by EPA 826				1 8260B	C	904 16:5	4 PD
Methylene chloride	ND	ug/l	5.0				
l,1-Dichloroethane	ND	ug/l	0.75				
Chloroform	ND	ug/l	0.75				
Carbon tetrachloride	ND	ug/l	0.50				
,2-Dichloropropane	ND	ug/l	1.8				
Dibromochloromethane	ND	ug/l	0.50				
1,1,2-Trichloroethane	ND	ug/l	0.75				
Tetrachloroethene	ND	ug/l	0.50				
Chlorobenzene	ND	ug/l	0.50				
Trichlorofluoromethane	ND	ug/l	2.5				
l,2-Dichloroethane	ND	ug/l	0.50				
l,1,1-Trichloroethane	ND	ug/l	0.50				
Bromodichloromethane	ND	ug/l	0.50				
crans-1,3-Dichloropropene	ND	ug/l	0.50				
cis-1,3-Dichloropropene	ND	ug/l	0.50				
,1-Dichloropropene	ND	ug/l	2.5				
Bromoform	ND	ug/l	2.0				
,1,2,2-Tetrachloroethane	ND	ug/l	0.50				
Benzene	ND	ug/l	0.50				
Coluene	ND	ug/l	0.75				
thylbenzene	ND	ug/l	0.50				
Chloromethane	ND	ug/l	2.5				
Bromomethane	ND	ug/l	1.0				
/inyl chloride	ND	ug/l	1.0				
Chloroethane	ND	ug/l	1.0				
1,1-Dichloroethene	ND	ug/l	0.50				
crans-1,2-Dichloroethene	ND	ug/l	0.75				
Trichloroethene	ND	ug/l	0.50				
,2-Dichlorobenzene	ND	ug/l	2.5				
1,3-Dichlorobenzene	ND	ug/l	2.5				
1,4-Dichlorobenzene	ND	ug/l	2.5				
Methyl tert butyl ether	ND	ug/l	1.0				
o/m-Xylene	ND	ug/l	1.0				
o-Xylene	ND	ug/l	1.0				
cis-1,2-Dichloroethene	ND	ug/l	0.50				
	ND	ug/l	5.0				
.,2,3-Trichloropropane	ND	ug/l	5.0				
acrylonitrile	ND	ug/l	5.0				
Styrene	ND	ug/l	1.0				
oichlorodifluoromethane	ND	ug/l	5.0				
Acetone	ND	ug/l	5.0				
Carbon disulfide	ND	ug/l	5.0				
2-Butanone	ND	ug/l	5.0				
/inyl acetate	ND	ug/l	5.0				
1-Methyl-2-pentanone	ND	ug/l	5.0				
2-Hexanone	ND	ug/l	5.0				

09080811:31 Page 28 of 34

Laboratory Job Number: L0812904

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE PREP ANAL	ID
Blank Analys:		ple(s) 01-0)3 (WG33	5362-3)		
Volatile Organics by EPA 8260	OB cont'd			1 8260B	0904 16	54 PD
Bromochloromethane	ND	ug/l	2.5			
2,2-Dichloropropane	ND	ug/l	2.5			
1,2-Dibromoethane	ND	ug/l	2.0			
1,3-Dichloropropane	ND	ug/l	2.5			
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50			
Bromobenzene	ND	ug/l	2.5			
n-Butylbenzene	ND	ug/l	0.50			
sec-Butylbenzene	ND	ug/l	0.50			
tert-Butylbenzene	ND	ug/l	2.5			
o-Chlorotoluene	ND	ug/l	2.5			
p-Chlorotoluene	ND	ug/l	2.5			
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5			
Hexachlorobutadiene	ND	ug/l	0.60			
Isopropylbenzene	ND	ug/l	0.50			
p-Isopropyltoluene	ND	ug/l	0.50			
Naphthalene	ND	ug/l	2.5			
n-Propylbenzene	ND	ug/l	0.50			
1,2,3-Trichlorobenzene	ND	ug/l	2.5			
1,2,4-Trichlorobenzene	ND	ug/l	2.5			
1,3,5-Trimethylbenzene	ND	ug/l	2.5			
1,2,4-Trimethylbenzene	ND	ug/l	2.5			
1,4-Diethylbenzene	ND	ug/l	2.0			
4-Ethyltoluene	ND	ug/l	2.0			
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0			
Surrogate(s)	Recovery		QC Cr	iteria		
1,2-Dichloroethane-d4	105	%	70-130	0		
Toluene-d8	100	%	70-130)		
4-Bromofluorobenzene	99.0	%	70-130	0		
Dibromofluoromethane	98.0	%	70-130	0		
Blank Analysis	s for sampl	le(s) 04-09),12 (WG	335362-6)		
Volatile Organics by EPA 8260	ОВ			1 8260B	0905 09	33 PD
Methylene chloride	ND	ug/l	5.0			
1,1-Dichloroethane	ND	ug/l	0.75			
Chloroform	ND	ug/l	0.75			
Carbon tetrachloride	ND	ug/l	0.50			
1,2-Dichloropropane	ND	ug/l	1.8			
Dibromochloromethane	ND	ug/l	0.50			
1,1,2-Trichloroethane	ND	ug/l	0.75			
Tetrachloroethene	ND	ug/l	0.50			
Chlorobenzene	ND	ug/l	0.50			
Trichlorofluoromethane	ND	ug/l	2.5			
1,2-Dichloroethane	ND	ug/l	0.50			
1,1,1-Trichloroethane	ND	ug/l	0.50			
I/I/I IIICIIICI CCCIIGIIC						

09080811:31 Page 29 of 34

Laboratory Job Number: L0812904

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Blank Analysi:		le(s) 04-09	9,12 (WG	335362-6)	
Volatile Organics by EPA 8260	OB cont'd			1 8260B	0905 09:33 PD
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND	ug/l	0.50		
Toluene	ND	ug/1	0.75		
Ethylbenzene	ND	ug/1	0.50		
Chloromethane	ND	ug/1	2.5		
Bromomethane	ND	ug/l	1.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	1.0		
1,1-Dichloroethene	ND	ug/1	0.50		
trans-1,2-Dichloroethene	ND	ug/l	0.75		
Trichloroethene	ND	ug/l	0.50		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/l	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	ND	ug/l	0.50		
Dibromomethane	ND	ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/l	5.0		
Acrylonitrile	ND	ug/l	5.0		
Styrene	ND	ug/l	1.0		
Dichlorodifluoromethane	ND	ug/l	5.0		
Acetone	ND	ug/l	5.0		
Carbon disulfide	ND	ug/l	5.0		
2-Butanone	ND	ug/l	5.0		
Vinyl acetate	ND	ug/l	5.0		
4-Methyl-2-pentanone	ND	ug/l	5.0		
2-Hexanone	ND	ug/l	5.0		
Bromochloromethane	ND	ug/l	2.5		
2,2-Dichloropropane	ND	ug/l	2.5		
1,2-Dibromoethane	ND	ug/l	2.0		
1,3-Dichloropropane	ND	ug/l	2.5		
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50		
Bromobenzene	ND	ug/l	2.5		
n-Butylbenzene	ND	ug/l	0.50		
sec-Butylbenzene	ND	ug/l	0.50		
tert-Butylbenzene	ND	ug/l	2.5		
o-Chlorotoluene	ND	ug/l	2.5		
p-Chlorotoluene	ND	ug/l	2.5		
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5		
Hexachlorobutadiene	ND	ug/l	0.60		

Laboratory Job Number: L0812904

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE II PREP ANAL
			0 10 (7702	25260 61	
Blank Analysi Volatile Organics by EPA 826		le(s) 04-09	9,12 (WG3	35362-6) 1 8260B	0905 09:33 PI
volatile organics by EPA 626 Isopropylbenzene	ND	ug/l	0.50	1 8260B	0905 09:33 PI
p-Isopropyltoluene	ND ND	ug/l ug/l	0.50		
Naphthalene	ND ND	ug/1 ug/l	2.5		
naphtharene n-Propylbenzene	ND ND	ug/1 ug/l	0.50		
1,2,3-Trichlorobenzene	ND ND	ug/1 ug/l	2.5		
1,2,4-Trichlorobenzene	ND ND	ug/1 ug/l	2.5		
1,3,5-Trimethylbenzene	ND ND	ug/1 ug/l	2.5		
1,2,4-Trimethylbenzene	ND ND	ug/1 ug/l	2.5		
1,2,4-111Methylbenzene 1,4-Diethylbenzene	ND ND		2.0		
		ug/l			
4-Ethyltoluene	ND	ug/l	2.0		
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0		
Surrogate(s)	Recovery		QC Cri	teria	
1,2-Dichloroethane-d4	104	%	70-130		
Toluene-d8	99.0	%	70-130		
4-Bromofluorobenzene	102	%	70-130		
Dibromofluoromethane	99.0	8	70-130		
Diani Analua	4a fan aam	ala/a\ 10 :	11 /WG22E	262 01	
Blank Analys Wolatile Organics by EPA 826		51e(s) 10	II (WG335		0005 15.50 5
			ΕΛ	1 8260B	0905 17:52 PI
Methylene chloride	ND	ug/l	5.0		
l,1-Dichloroethane Chloroform	ND	ug/l	0.75		
Carbon tetrachloride	ND	ug/l	0.75		
	ND	ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75		
Tetrachloroethene	ND	ug/l	0.50		
Chlorobenzene	ND	ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND	ug/l	0.50		
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50		
Chloromethane	ND	ug/l	2.5		
Bromomethane	ND	ug/l	1.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	1.0		
ciii oi occiiaiic					

09080811:31 Page 31 of 34

Laboratory Job Number: L0812904

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Blank Analys	is for samr	nle(s) 10-1	11 (WG33)	5362-91	
Volatile Organics by EPA 826	_)IC(B) IO I	.1 (11055	1 8260B	0905 17:52 PD
trans-1,2-Dichloroethene	ND	ug/l	0.75	1 02005	0,003 17.32 25
Trichloroethene	ND	ug/l	0.50		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/l	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	ND	ug/l	0.50		
Dibromomethane	ND	ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/l	5.0		
Acrylonitrile	ND	ug/l	5.0		
Styrene	ND	ug/l	1.0		
Dichlorodifluoromethane	ND	ug/l	5.0		
Acetone	ND	ug/l	5.0		
Carbon disulfide	ND	ug/l	5.0		
2-Butanone	ND	ug/l	5.0		
Vinyl acetate	ND	ug/l	5.0		
4-Methyl-2-pentanone	ND	ug/l	5.0		
2-Hexanone	ND	ug/l	5.0		
Bromochloromethane	ND	ug/l	2.5		
2,2-Dichloropropane	ND	ug/l	2.5		
1,2-Dibromoethane	ND	ug/l	2.0		
1,3-Dichloropropane	ND	ug/l	2.5		
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50		
Bromobenzene	ND	ug/l	2.5		
n-Butylbenzene	ND	ug/l	0.50		
sec-Butylbenzene	ND	ug/l	0.50		
tert-Butylbenzene	ND	ug/l	2.5		
o-Chlorotoluene	ND	ug/l	2.5		
p-Chlorotoluene	ND	ug/l	2.5		
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5		
Hexachlorobutadiene	ND	ug/l	0.60		
Isopropylbenzene	ND	ug/l	0.50		
p-Isopropyltoluene	ND	ug/l	0.50		
Naphthalene	ND	ug/l	2.5		
n-Propylbenzene	ND	ug/l	0.50		
1,2,3-Trichlorobenzene	ND	ug/l	2.5		
1,2,4-Trichlorobenzene	ND	ug/l	2.5		
1,3,5-Trimethylbenzene	ND	ug/l	2.5		
1,2,4-Trimethylbenzene	ND	ug/l	2.5		
1,4-Diethylbenzene	ND	ug/l	2.0		
4-Ethyltoluene	ND	ug/l	2.0		
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0		

09080811:31 Page 32 of 34

Laboratory Job Number: L0812904

Continued

PARAMETER	RESULT	UNITS	\mathtt{RDL}	REF METHOD	DATE	ID
					PREP ANA	L
Blank Anal	ysis for sar	mple(s) 10-	11 (WG33	35362-9)		
Volatile Organics by EPA 8	260B cont'd			1 8260B	0905 17	7:52 PD
Surrogate(s)	Recovery		QC Cr	riteria		
1,2-Dichloroethane-d4	104	%	70-13	30		
Toluene-d8	100	%	70-13	30		
4-Bromofluorobenzene	102	%	70-13	30		
Dibromofluoromethane	96.0	%	70-13	30		

ALPHA ANALYTICAL ADDENDUM I

REFERENCES

1. Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IIIA, 1997.

GLOSSARY OF TERMS AND SYMBOLS

REF Reference number in which test method may be found.

METHOD Method number by which analysis was performed.

ID Initials of the analyst.

ND Not detected in comparison to the reported detection limit.

NI Not Ignitable.

ug/cart Micrograms per Cartridge.

H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.

LIMITATION OF LIABILITIES

Alpha Analytical, Inc. performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical, Inc., shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical, Inc. be held liable for any incidental consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical, Inc.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding times and splitting of samples in the field.

09080811:31 Page 34 of 34

CHAIN OF	CHAIN OF CUSTODY PAGE 2 or 2	Date Rec'd in Lab: 8 30 05	ALPHA Job #: 1 18 1 29 50
ANALYTICAL	Project Information	Report Information Data Deliverables	Billing Information Same as Cient info PO#:
Westtorough, MA Mansfield, MA TEL: 508-898-9220 TEL: 508-822-9300 FAX: 508-898-9193 FAX: 508-822-3386	Project Name:		
Client Information	Project Location: 80 - 600 Banks AM.	State/Fed Program	Crteria
Client: P.W. Grosser	Project # A MOSOI Commit		
Address: 630 Johnson Avenue, Suite 7	nager Ka's Amskog	RESU	MPTIVE CERTAINTY CIT REASONABLE CONFIDENCE PROTOCOLS
Bohemia, NY 11716	ALPHA Quote #:	☐ Yes ☐ No Are CTRCP (Rea	Are CT RCP (Reasonable Confidence Protocols) Required?
Phone: 631-589-6353	Turn-Around Time	ANALYSIS	
Fax: 631-589-8705	X Standard ☐ Rush (ONLY IF PRE-APPROVED)	778	SAMPLE HANDLING Filtration
Email			□ Done
☐ These samples have been Previously analyzed by Alpha	Due Date: (1) \$ (0 Time:		□ Lab to do
Other Project Specific Requirements/Comments/Detecton Limits:	nts/Detecton Limits:	\$ 260	Preservation ☐ Lab to do (Please specify
		1/0Cs	
(Lab Use Only)	ollection Sample S	CL	Sample Specific
	Date Time Matrix Initials	T(Sample Specific Comments
_	5x 7 0021 84/12/8	X / /	
) PWG-18-20-8-03	(8400') 8/28/88 1020 JLL		
	1230		
1) 20-8002-W-Just A	(36-40) 1305		
			1
6 Put Meason 17			/
ú	•		
10-802-W- SMG	(4-20) 8/29/8 (05-2)		
	_		
عا	(50-65) V 0950 V	4	
PLEASE ANSWER QUESTIONS ABOVE!	Container Type	-tont	
	Preservative	He	Please print clearly. Samples of
S YOUR PROJECT	Relinquished By	Date/Time Received By	Date/Time turnaround time clock will not start until any ambiguities are
MA MCP or CT RCP?	112 tombre cons	Stephen 1328 John Handle	330
		8/24/08/41/ SAN 30/61/3	103

CHAIN OF CUSTODY CHAIN OF CUSTODY CHAIN OF CUSTODY Project Information Westborough, MA Mansfield, MA TEL 508-892-9300 FAX 508-892-3288 Client Information Client P.W. Grosser CHAIN OF CUSTODY Project Location: \$0 Project H. AlfRogo	Project Information Project Name: Project Location: 80 - 600 Sauk, Art Kapal Project #: Allikogol	Date Rec'd in Lab: \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ALPHA Job#: 10812904 Billing Information Same as Clent Info PO# Criteria
Address: 630 Johnson Avenue, Suite 7	Project Manager Krij Almskis		MPTIVE CERTAINTY CT REASONABLE CONFIDENCE PROTOCOLS Are MCP Applying Methods Required?
	ALPHA Quote #:		Are CT RCP (Reasonable Confidence Protocols) Required?
Phone: 631-589-6353	Turn-Around Time	ANALYSIS	
Fax: 631-589-8705	Standard Rust (ONLY IF PRE-APPROVED)		SAMPLE HANDLING Filtration
Email:	G TO TOWN		Done
☐ These samples have been Previously analyzed by Alpha	Due Date: Time:		□ Lab to do
Other Project Specific Requirements/Comments/Detection Limits:	Detection Limits:	8260	Preservation Lab to do (Please specify below)
		16Cs	
(Lab Use Only)	Collection Sample Sampler's Date Time Matrix Initials	TCL	Sample Specific Comments
10-80 02-01-9MD	8/13/48 1100 L	-×	
19 (m) 10 m) 10 m	5) 4 500 4		
PLEASE ANSWER QUESTIONS ABOVE	Container Type Freservative	-Hc1 · · · · · · · · · · ·	Please print clearly, legibly and completaly, Samples can completaly. Samples can
MA MCP or CT RCP?	Relinquished By Relinquished By Convoke Lang Misson Mary 16	Date:Time Received By Rescived By Rescive By	Date/Time turnatound time dock will not start until any artbiguities are resolved. All samples superitied are subject to Alpha's Payment Terms.

ALPHA ANALYTICAL

Eight Walkup Drive

Westborough, Massachusetts 01581-1019

(508) 898-9220 www.alphalab.com

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

CERTIFICATE OF ANALYSIS

Client: P.W. Grosser Laboratory Job Number: L0813447

Address: 630 Johnson Avenue Date Received: 11-SEP-2008

Suite 7

Bohemia, NY 11716 Date Reported: 22-SEP-2008

Attn: Mr. Kris Almskog Delivery Method: Alpha

Project Number: AVB0801 Site: AVALON BAY

CLIENT IDENTIFICATION ALPHA SAMPLE NUMBER SAMPLE LOCATION L0813447-01 TB091008 80 BARKS AVE., ROCKVILLE CENTER L0813447-02 PWG-DW-2008-27(12.5-13') 80 BARKS AVE., ROCKVILLE CENTER L0813447-03 PWG-DW-2008-28(12-12.5') 80 BARKS AVE., ROCKVILLE CENTER L0813447-04 PWG-DW-2008-29(10-10.5') 80 BARKS AVE., ROCKVILLE CENTER L0813447-05 PWG-DW-2008-30(8.5-9') 80 BARKS AVE., ROCKVILLE CENTER L0813447-06 PWG-DW-2008-31(8-8.5') 80 BARKS AVE., ROCKVILLE CENTER 80 BARKS AVE., ROCKVILLE CENTER L0813447-07 PWG-DW-2008-33(7-7.5') PWG-DW-2008-34(5.5-6') 80 BARKS AVE., ROCKVILLE CENTER L0813447-08 PWG-DW-2008-37(11-11.5') 80 BARKS AVE., ROCKVILLE CENTER L0813447-09 PWG-DW-2008-101(5.5-6') L0813447-10 80 BARKS AVE., ROCKVILLE CENTER L0813447-11 PWG-DW-2008-38(7-7.5') 80 BARKS AVE., ROCKVILLE CENTER L0813447-12 PWG-DW-2008-39(8.5-9') 80 BARKS AVE., ROCKVILLE CENTER L0813447-13 PWG-DW-2008-40(6-6.5') 80 BARKS AVE., ROCKVILLE CENTER PWG-DW-2008-41(9-9.5') L0813447-14 80 BARKS AVE., ROCKVILLE CENTER L0813447-15 PWG-DW-2008-42(2-5') 80 BARKS AVE., ROCKVILLE CENTER

Authorized by:_

Technical Representative

09220812:02 Page 1 of 90

I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

ALPHA ANALYTICAL NARRATIVE REPORT

Laboratory Job Number: L0813447

The samples were received in accordance with the chain of custody and no significant deviations were encountered during preparation or analysis unless otherwise noted below.

Metals

L0813447-08 and -10 have elevated detection limits for Mercury due to the 5x dilutions required to quantitate the results within the calibration range.

The WG336219-1/-2 MS/MSD recoveries associated with L0813447-13 are outside the acceptance criteria for Antimony, Arsenic (MSD only), Chromium, Copper (MS only), Lead, and Manganese. Post-digestion spikes were performed with acceptable recoveries of 108%, 113%, 77%, 80%, 77%, and 98%, respectively. The MS recoveries for Aluminum, Calcium, Iron, Magnesium, and Zinc are invalid because the sample concentration is greater than four times the spike amount added. In addition, the associated MS/MSD RPDs are outside the acceptance criteria for Aluminum, Manganese, and Zinc. The elevated RPDs have been attributed to the non-homogenous nature of the sample utilized for the MS/MSD.

Volatile Organics

The surrogate recovery for L0813447-05 is above the acceptance criteria for 4-Bromofluorobenzene; however, the sample was not re-analyzed due to coelution with obvious interferences. A copy of the chromatogram is included as an attachment to this report. The results are not considered to be biased.

L0813447-10: The internal standard (IS) response for 1,4-Dichlorobenzene-d4 is below and the surrogate recoveries for Toluene-d8 and 4-Bromofluorobenzene are above the acceptance criteria; however, re-analysis achieved similar results. The results of both analyses are reported.

L0813447-11: The internal standard (IS) response for 1,4-Dichlorobenzene-d4 is below and the surrogate recovery for 4-Bromofluorobenzene is above the acceptance criteria; however, re-analysis achieved similar results. The results of both analyses are reported.

L0813447-11 re-analysis has elevated detection limits due to the 4x dilution required by the elevated concentrations of non-target compounds in the sample.

Semivolatile Organics

The following samples have elevated detection limits due to the dilutions required by matrix interferences encountered during the concentration of the samples:

L0813447-05, -07, -08, -10, -11, -12: 15x

L0813447-13: 5x

L0813447-06 has elevated detection limits due to the 10x dilution required by the sample matrix.

L0813447-09 has elevated detection limits due to the 10x dilution required by the matrix

ALPHA ANALYTICAL NARRATIVE REPORT

Laboratory Job Number: L0813447

Continued

interferences encountered during the concentration of the sample and the 5x dilution required by the sample matrix.

The surrogate recoveries for L0813447-09 are below the acceptance criteria for 2-Fluorophenol, Phenol-d6, Nitrobenzene-d5, 2-Fluorobiphenyl, 2,4,6-Tribromophenol and 4-Terphenyl-d14 due to the dilutions required to quantitate the sample. Re-extraction is not required; therefore, the results of the original analysis are reported.

The WG336983-2/-3 LCS/LCSD recoveries associated with L0813447-02 through -14 was above the acceptance criteria for 2,4-Dinitrotoluene; however, the associated samples were non-detect for this target compound. The results of the original analysis are reported.

Semivolatile Organics-SIM

L0813447-03, -04, and -14 have elevated detection limits due to the 5x dilutions required by the sample matrices.

L0813447-05, -07, and -08 have elevated detection limits due to the 2x dilutions required by the matrix interferences encountered during the concentration of the samples and the 50x dilutions required by the sample matrices.

L0813447-06, and -09 through -13 have elevated detection limits due to the 5x dilutions required by the matrix interferences encountered during the concentration of the samples and the 20x dilutions required by the sample matrices.

The surrogate recoveries for L0813447-05 through -13 are below the acceptance criteria for 2-Fluorophenol, Phenol-d6, Nitrobenzene-d5, 2-Fluorobiphenyl, 2,4,6-Tribromophenol, and 4-Terphenyl-d14 due to the dilutions required to quantitate the samples. Re-extraction is not required; therefore, the results of the original analyses are reported.

TPH-DRO

L0813447-05, -09, and -11 have elevated detection limits due to the 10x dilutions required by the matrix interferences encountered during the concentration of the samples and the 5x dilutions required by the elevated concentrations of target compounds in the samples.

L0813447-06, -07, -08, and -10 have elevated detection limits due to the 10x dilutions required by the elevated concentrations of target compounds in the samples.

The following samples have elevated detection limits due to the dilutions required by matrix interferences encountered during the concentration of the samples:

L0813447-12: 10x

L0813447-13: 5x

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813447-01 Date Collected: 10-SEP-2008 00:00

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

Sample Matrix:

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 82	60B			1 8260B	0912 12:49 PD
Methylene chloride	ND	ug/l	5.0	1 02000	0512 12.45 FD
1,1-Dichloroethane	ND	ug/l	0.75		
Chloroform	ND	ug/l	0.75		
Carbon tetrachloride	ND	ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l ug/l	0.50		
1,1,2-Trichloroethane	ND ND	ug/l ug/l	0.75		
Tetrachloroethene	ND	ug/l	0.50		
Chlorobenzene	ND	ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND ND	ug/l	0.50		
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND ND	ug/l ug/l	0.75		
Chloromethane	ND ND	ug/1 ug/1	2.5		
Bromomethane	ND ND	ug/l ug/l	1.0		
Vinyl chloride	ND ND	ug/l	1.0		
Chloroethane	ND	ug/1 ug/1	1.0		
1,1-Dichloroethene	ND ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND ND	ug/l	0.75		
Trichloroethene	ND ND	ug/l ug/l	0.75		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/l	2.5		
1,4-Dichlorobenzene	ND ND	ug/l ug/l	2.5		
Methyl tert butyl ether	ND ND	_	1.0		
p/m-Xylene	ND ND	ug/l ug/l	1.0		
o-Xylene	ND ND	ug/l ug/l	1.0		
cis-1,2-Dichloroethene	ND ND	ug/l ug/l	0.50		
Dibromomethane	ND ND	_	5.0		
		ug/l	5.0		
1,2,3-Trichloropropane	ND ND	ug/l	5.0		
Acrylonitrile	חמ	ug/l	5.0		

Laboratory Sample Number: L0813447-01

TB091008

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Volatile Organics by EPA 826	OB cont'd			1	8260B		0912 12:4	9 PD
Styrene	ND	ug/l	1.0					
Dichlorodifluoromethane	ND	ug/l	5.0					
Acetone	ND	ug/l	5.0					
Carbon disulfide	ND	ug/l	5.0					
2-Butanone	ND	ug/l	5.0					
Vinyl acetate	ND	ug/l	5.0					
4-Methyl-2-pentanone	ND	ug/l	5.0					
2-Hexanone	ND	ug/l	5.0					
Bromochloromethane	ND	ug/l	2.5					
2,2-Dichloropropane	ND	ug/l	2.5					
1,2-Dibromoethane	ND	ug/l	2.0					
1,3-Dichloropropane	ND	ug/l	2.5					
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50					
Bromobenzene	ND	ug/l	2.5					
n-Butylbenzene	ND	ug/l	0.50					
sec-Butylbenzene	ND	ug/l	0.50					
tert-Butylbenzene	ND	ug/l	2.5					
o-Chlorotoluene	ND	ug/l	2.5					
p-Chlorotoluene	ND	ug/l	2.5					
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5					
Hexachlorobutadiene	ND	ug/l	0.60					
Isopropylbenzene	ND	ug/l	0.50					
p-Isopropyltoluene	ND	ug/l	0.50					
Naphthalene	ND	ug/1	2.5					
n-Propylbenzene	ND	ug/l	0.50					
1,2,3-Trichlorobenzene	ND	ug/1	2.5					
1,2,4-Trichlorobenzene	ND	ug/1	2.5					
1,3,5-Trimethylbenzene	ND	ug/l	2.5					
1,2,4-Trimethylbenzene	ND	ug/1	2.5					
1,4-Diethylbenzene	ND	ug/1	2.0					
4-Ethyltoluene	ND	ug/1	2.0					
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0					
Surrogate(s)	Recovery		QC Cri	teria	a.			
1,2-Dichloroethane-d4	102	%	70-130					
Toluene-d8	98.0	%	70-130					
4-Bromofluorobenzene	105	%	70-130					
Dibromofluoromethane	98.0	%	70-130					

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813447-02 Date Collected: 10-SEP-2008 08:15

Sample Matrix: SOIL Date Reported: 22-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE I
					PREP ANAL
Solids, Total	78	9	0.10	30 2540G	0913 15:45 N
Total Metals					
Aluminum, Total	15000	mg/kg	6.3	1 6010B	0912 18:00 0918 12:50 A
Antimony, Total	ND	mg/kg	3.2	1 6010B	0912 18:00 0918 12:50 A
Arsenic, Total	0.90	mg/kg	0.63	1 6010B	0912 18:00 0919 11:36 A
Barium, Total	37	mg/kg	0.63	1 6010B	0912 18:00 0918 12:50 A
Beryllium, Total	0.36	mg/kg	0.32	1 6010B	0912 18:00 0918 12:50 A
Cadmium, Total	0.63	mg/kg	0.63	1 6010B	0912 18:00 0918 12:50 A
Calcium, Total	520	mg/kg	6.3	1 6010B	0912 18:00 0918 12:50 A
Chromium, Total	15	mg/kg	0.63	1 6010B	0912 18:00 0918 12:50 A
Cobalt, Total	4.0	mg/kg	1.3	1 6010B	0912 18:00 0918 12:50 A
Copper, Total	13	mg/kg	0.63	1 6010B	0912 18:00 0918 12:50 A
ron, Total	16000	mg/kg	3.2	1 6010B	0912 18:00 0918 12:50 A
Lead, Total	10	mg/kg	3.2	1 6010B	0912 18:00 0918 12:50 A
Magnesium, Total	3200	mg/kg	6.3	1 6010B	0912 18:00 0918 12:50 A
Manganese, Total	120	mg/kg	0.63	1 6010B	0912 18:00 0919 11:36 A
Mercury, Total	ND	mg/kg	0.10	1 7471A	0912 20:30 0914 14:13 н
Nickel, Total	14	mg/kg	1.6	1 6010B	0912 18:00 0918 12:50 A
Potassium, Total	1100	mg/kg	160	1 6010B	0912 18:00 0918 12:50 A
Selenium, Total	ND	mg/kg	1.3	1 6010B	0912 18:00 0919 11:36 A
Silver, Total	ND	mg/kg	0.63	1 6010B	0912 18:00 0918 12:50 A
Sodium, Total	ND	mg/kg	130	1 6010B	0912 18:00 0918 12:50 A
Thallium, Total	ND	mg/kg	1.3	1 6010B	0912 18:00 0918 12:50 A
Vanadium, Total	27	mg/kg	0.63	1 6010B	0912 18:00 0918 12:50 A
Zinc, Total	61	mg/kg	3.2	1 6010B	0912 18:00 0918 12:50 A
Volatile Organics by EPA 8	3260B			1 8260B	0915 14:53 P
Methylene chloride	ND	ug/kg	32.		
l,1-Dichloroethane	ND	ug/kg	4.8		
Chloroform	ND	ug/kg	4.8		
Carbon tetrachloride	ND	ug/kg	3.2		
l,2-Dichloropropane	ND	ug/kg	11.		
Dibromochloromethane	ND	ug/kg	3.2		
l,1,2-Trichloroethane	ND	ug/kg	4.8		
Tetrachloroethene	ND	ug/kg	3.2		
Chlorobenzene	ND	ug/kg	3.2		
Trichlorofluoromethane	ND	ug/kg	16.		

Laboratory Sample Number: L0813447-02

PWG-DW-2008-27(12.5-13')

PARAMETER	RESULT	UNITS	\mathtt{RDL}	REF	METHOD	DA	TE	ID
						PREP	ANAL	
7.1.1.1.1. O	0D							
Volatile Organics by EPA 826		/1	2 0	1	8260B		0915 14	:53 PD
1,2-Dichloroethane	ND	ug/kg	3.2					
1,1,1-Trichloroethane	ND	ug/kg	3.2					
Bromodichloromethane	ND	ug/kg	3.2					
trans-1,3-Dichloropropene	ND	ug/kg	3.2					
cis-1,3-Dichloropropene	ND	ug/kg	3.2					
l,1-Dichloropropene	ND	ug/kg	16.					
Bromoform	ND	ug/kg	13.					
1,1,2,2-Tetrachloroethane	ND	ug/kg	3.2					
Benzene	ND	ug/kg	3.2					
roluene	ND	ug/kg	4.8					
Ethylbenzene	ND	ug/kg	3.2					
Chloromethane	ND	ug/kg	16.					
Bromomethane	ND	ug/kg	6.4					
Vinyl chloride	ND	ug/kg	6.4					
Chloroethane	ND	ug/kg	6.4					
1,1-Dichloroethene	ND	ug/kg	3.2					
trans-1,2-Dichloroethene	ND	ug/kg	4.8					
Trichloroethene	ND	ug/kg	3.2					
l,2-Dichlorobenzene	ND	ug/kg	16.					
l,3-Dichlorobenzene	ND	ug/kg	16.					
l,4-Dichlorobenzene	ND	ug/kg	16.					
Methyl tert butyl ether	ND	ug/kg	6.4					
p/m-Xylene	ND	ug/kg	6.4					
o-Xylene	ND	ug/kg	6.4					
cis-1,2-Dichloroethene	ND	ug/kg	3.2					
Dibromomethane	ND	ug/kg	32.					
Styrene	ND	ug/kg	6.4					
Dichlorodifluoromethane	ND	ug/kg	32.					
Acetone	ND	ug/kg	32.					
Carbon disulfide	ND	ug/kg	32.					
2-Butanone	ND	ug/kg	32.					
Jinyl acetate	ND	ug/kg	32.					
4-Methyl-2-pentanone	ND	ug/kg	32.					
l,2,3-Trichloropropane	ND	ug/kg	32.					
2-Hexanone	ND	ug/kg	32.					
Bromochloromethane	ND	ug/kg	16.					
2,2-Dichloropropane	ND	ug/kg	16.					
l,2-Dibromoethane	ND	ug/kg	13.					
l,3-Dichloropropane	ND	ug/kg	16.					
1,1,1,2-Tetrachloroethane	ND	ug/kg	3.2					
Bromobenzene	ND	ug/kg	16.					
n-Butylbenzene	ND	ug/kg	3.2					
sec-Butylbenzene	ND	ug/kg	3.2					
tert-Butylbenzene	ND	ug/kg	16.					
o-Chlorotoluene	ND	ug/kg	16.					
p-Chlorotoluene	ND	ug/kg	16.					
1,2-Dibromo-3-chloropropane	ND	ug/kg	16.					
Hexachlorobutadiene	ND	ug/kg	16.					
Isopropylbenzene	ND	ug/kg	3.2					

Laboratory Sample Number: L0813447-02

PWG-DW-2008-27(12.5-13')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
						PREP	ANAL	
Volatile Organics by EPA 826	OB cont'd			1	8260B		0915 14:	53 PD
p-Isopropyltoluene	ND	ug/kg	3.2					
Naphthalene	ND	ug/kg	16.					
Acrylonitrile	ND	ug/kg	32.					
n-Propylbenzene	ND	ug/kg	3.2					
1,2,3-Trichlorobenzene	ND	ug/kg	16.					
1,2,4-Trichlorobenzene	ND	ug/kg	16.					
l,3,5-Trimethylbenzene	ND	ug/kg	16.					
l,2,4-Trimethylbenzene	ND	ug/kg	16.					
l,4-Diethylbenzene	ND	ug/kg	13.					
4-Ethyltoluene	ND	ug/kg	13.					
1,2,4,5-Tetramethylbenzene	ND	ug/kg	13.					
Surrogate(s)	Recovery		OC Cri	teria	a.			
1,2-Dichloroethane-d4	96.0	%	70-130					
Foluene-d8	107	%	70-130					
4-Bromofluorobenzene	116	%	70-130					
Dibromofluoromethane	98.0	%	70-130					
Semivolatile Organics by EPA	8270C			1	8270C	0916 19:00	0010 11:	E/ DC
Acenaphthene	ND	ug/kg	430	1	8270C	0916 19:00	0910 11.	34 PS
l,2,4-Trichlorobenzene	ND	ug/kg ug/kg	430					
Hexachlorobenzene	ND	ug/kg ug/kg	430					
Bis(2-chloroethyl)ether	ND	ug/kg ug/kg	430					
2-Chloronaphthalene	ND	ug/kg ug/kg	510					
1,2-Dichlorobenzene	ND	ug/kg ug/kg	430					
1,3-Dichlorobenzene	ND	ug/kg ug/kg	430					
1,4-Dichlorobenzene	ND	ug/kg ug/kg	430					
3,3'-Dichlorobenzidine	ND	ug/kg	850					
2,4-Dinitrotoluene	ND	ug/kg ug/kg	430					
2,6-Dinitrotoluene	ND	ug/kg ug/kg	430					
Fluoranthene	ND	ug/kg ug/kg	430					
4-Chlorophenyl phenyl ether	ND ND	ug/kg ug/kg	430					
4-Bromophenyl phenyl ether	ND ND	ug/kg ug/kg	430					
Bis(2-chloroisopropyl)ether	ND ND	ug/kg ug/kg	430					
Bis(2-chloroethoxy)methane	ND ND	ug/kg ug/kg	430					
Hexachlorobutadiene	ND ND	ug/kg ug/kg	850					
Hexachlorocyclopentadiene	ND ND	ug/kg ug/kg	850					
Hexachiorocyclopentadiene Hexachloroethane	ND ND	ug/kg ug/kg	430					
Isophorone	ND ND		430					
		ug/kg	430					
Naphthalene Nitrobenzene	ND ND	ug/kg	430					
		ug/kg ug/kg	1300					
NitrosoDiPhenylAmine(NDPA)/D n-Nitrosodi-n-propylamine	ND		430					
Bis(2-Ethylhexyl)phthalate		ug/kg						
	ND ND	ug/kg	850 430					
Butyl benzyl phthalate Di-n-butylphthalate	ND	ug/kg	430					
	ND	ug/kg	430					
	MD	110 /1-0-	120					
Di-n-butylphthalate Diethyl phthalate	ND ND	ug/kg ug/kg	430 430					

Laboratory Sample Number: L0813447-02

PWG-DW-2008-27(12.5-13')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Semivolatile Organics by EPA 8	3270C cont	- ' d		1	8270C	0916 19:00	0918 11:	54 PS
Benzo(a)anthracene	ND	ug/kg	430	-	02700	0310 13 00	0,10 11 .	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Benzo(a)pyrene	ND	ug/kg ug/kg	430					
Benzo(b)fluoranthene	ND	ug/kg ug/kg	430					
Benzo(k)fluoranthene	ND	ug/kg ug/kg	430					
Chrysene	ND	ug/kg ug/kg	430					
Acenaphthylene	ND	ug/kg ug/kg	430					
Anthracene	ND	ug/kg ug/kg	430					
Benzo(ghi)perylene	ND	ug/kg ug/kg	430					
Fluorene	ND	ug/kg ug/kg	430					
Phenanthrene	ND		430					
		ug/kg						
Dibenzo(a,h)anthracene	ND	ug/kg	430					
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	430					
Pyrene	ND	ug/kg	430					
Biphenyl	ND	ug/kg	430					
4-Chloroaniline	ND	ug/kg	430					
2-Nitroaniline	ND	ug/kg	430					
3-Nitroaniline	ND	ug/kg	430					
1-Nitroaniline	ND	ug/kg	600					
Dibenzofuran	ND	ug/kg	430					
2-Methylnaphthalene	ND	ug/kg	430					
1,2,4,5-Tetrachlorobenzene	ND	ug/kg	1700					
Acetophenone	ND	ug/kg	1700					
2,4,6-Trichlorophenol	ND	ug/kg	430					
P-Chloro-M-Cresol	ND	ug/kg	430					
2-Chlorophenol	ND	ug/kg	510					
2,4-Dichlorophenol	ND	ug/kg	850					
2,4-Dimethylphenol	ND	ug/kg	430					
2-Nitrophenol	ND	ug/kg	1700					
1-Nitrophenol	ND	ug/kg	850					
2,4-Dinitrophenol	ND	ug/kg	1700					
1,6-Dinitro-o-cresol	ND	ug/kg	1700					
Pentachlorophenol	ND	ug/kg	1700					
Phenol	ND	ug/kg	600					
2-Methylphenol	ND	ug/kg	510					
3-Methylphenol/4-Methylphenol	ND	ug/kg	510					
2,4,5-Trichlorophenol	ND	ug/kg	430					
Benzoic Acid	ND	ug/kg	4300					
Benzyl Alcohol	ND	ug/kg	850					
Carbazole	ND	ug/kg	430					
Surrogate(s)	Recovery		QC Cr	iteria	L			
2-Fluorophenol	69.0	%	25-120)				
Phenol-d6	69.0	%	10-120)				
Nitrobenzene-d5	61.0	%	23-120)				
2-Fluorobiphenyl	63.0	%	30-120)				
2,4,6-Tribromophenol	95.0	%	19-120)				
4-Terphenyl-d14	80.0	%	18-120)				

Laboratory Sample Number: L0813447-02

PWG-DW-2008-27(12.5-13')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DAT PREP	TE ANAL	ID
Semivolatile Organics by E	PA 8270C-SIM	cont'd		1 8270C	0912 21:30	0916 01:4	1 AK
Acenaphthene	ND	ug/kg	17.				
2-Chloronaphthalene	ND	ug/kg	17.				
Fluoranthene	ND	ug/kg	17.				
Hexachlorobutadiene	ND	ug/kg	43.				
Naphthalene	ND	ug/kg	17.				
Benzo(a)anthracene	ND	ug/kg	17.				
Benzo(a)pyrene	ND	ug/kg	17.				
Benzo(b)fluoranthene	ND	ug/kg	17.				
Benzo(k)fluoranthene	ND	ug/kg	17.				
Chrysene	ND	ug/kg	17.				
Acenaphthylene	ND	ug/kg	17.				
Anthracene	ND	ug/kg	17.				
Benzo(ghi)perylene	ND	ug/kg	17.				
Fluorene	ND	ug/kg	17.				
Phenanthrene	ND	ug/kg	17.				
Dibenzo(a,h)anthracene	ND	ug/kg	17.				
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	17.				
Pyrene	ND	ug/kg	17.				
2-Methylnaphthalene	ND	ug/kg	17.				
Pentachlorophenol	ND	ug/kg	68.				
Hexachlorobenzene	ND	ug/kg	68.				
Hexachloroethane	ND	ug/kg	68.				
Surrogate(s)	Recovery		QC Cri	teria			
2-Fluorophenol	76.0	%	25-120				
Phenol-d6	84.0	%	10-120				
Nitrobenzene-d5	74.0	%	23-120				
2-Fluorobiphenyl	66.0	8	30-120				
2,4,6-Tribromophenol	67.0	%	19-120				
4-Terphenyl-d14	77.0	%	18-120				
Petroleum Hydrocarbon Quan	titation by (GC-FID		1 8015B(M)	0916 01:30	0917 20:5	5 JL
ТРН	ND	ug/kg	42700				
Surrogate(s)	Recovery		QC Cri	teria			
o-Terphenyl	64.0	૪	40-140				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813447-03 Date Collected: 10-SEP-2008 08:50

PWG-DW-2008-28(12-12.5') Date Received: 11-SEP-2008

Sample Matrix: SOIL Date Reported: 22-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER	RESULT	UNITS	\mathtt{RDL}	REF METHOD		ATE	ID
					PREP	ANAL	
Solids, Total	68	%	0.10	30 2540G		0913 15:45	5 NM
Total Metals							
Aluminum, Total	12000	mg/kg	6.8	1 6010B	0912 18:00	0918 12:53	B AI
Antimony, Total	ND	mg/kg	3.4	1 6010B	0912 18:00	0918 12:53	AI
Arsenic, Total	2.1	mg/kg	0.68	1 6010B	0912 18:00	0919 11:39) AI
Barium, Total	41	mg/kg	0.68	1 6010B	0912 18:00	0918 12:53	B AI
Beryllium, Total	0.45	mg/kg	0.34	1 6010B	0912 18:00	0918 12:53	B AI
Cadmium, Total	2.2	mg/kg	0.68	1 6010B	0912 18:00	0918 12:53	B AI
Calcium, Total	760	mg/kg	6.8	1 6010B	0912 18:00	0918 12:53	B AI
Chromium, Total	14	mg/kg	0.68	1 6010B		0918 12:53	
Cobalt, Total	5.7	mg/kg	1.4	1 6010B		0918 12:53	
Copper, Total	30	mg/kg	0.68	1 6010B	0912 18:00	0918 12:53	B AI
Iron, Total	11000	mg/kg	3.4	1 6010B	0912 18:00	0918 12:53	B AI
Lead, Total	160	mg/kg	3.4	1 6010B		0918 12:53	
Magnesium, Total	1200	mg/kg	6.8	1 6010B		0918 12:53	
Manganese, Total	66	mg/kg	0.68	1 6010B		0919 11:39	
Mercury, Total	ND	mg/kg	0.12	1 7471A	0912 20:30	0914 14:15	HG
Nickel, Total	15	mg/kg	1.7	1 6010B	0912 18:00	0918 12:53	B AI
Potassium, Total	480	mg/kg	170	1 6010B	0912 18:00	0918 12:53	B AI
Selenium, Total	ND	mg/kg	1.4	1 6010B	0912 18:00	0919 11:39) AI
Silver, Total	ND	mg/kg	0.68	1 6010B	0912 18:00	0918 12:53	BAI
Sodium, Total	ND	mg/kg	140	1 6010B		0918 12:53	
Thallium, Total	ND	mg/kg	1.4	1 6010B		0918 12:53	
Vanadium, Total	30	mg/kg	0.68	1 6010B		0918 12:53	
Zinc, Total	210	mg/kg	3.4	1 6010B		0918 12:53	
Volatile Organics by EPA 8	3260B			1 8260B		0915 15:29) PD
Methylene chloride	ND	ug/kg	37.				
1,1-Dichloroethane	ND	ug/kg	5.5				
Chloroform	ND	ug/kg	5.5				
Carbon tetrachloride	ND	ug/kg	3.7				
1,2-Dichloropropane	ND	ug/kg	13.				
Dibromochloromethane	ND	ug/kg	3.7				
1,1,2-Trichloroethane	ND	ug/kg	5.5				
Tetrachloroethene	ND	ug/kg	3.7				
Chlorobenzene	ND	ug/kg	3.7				
Trichlorofluoromethane	ND	ug/kg	18.				

Laboratory Sample Number: L0813447-03

PWG-DW-2008-28(12-12.5')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Volatile Organics by EPA 826		(1		1	8260B		0915 15:2	29 PD
l,2-Dichloroethane	ND	ug/kg	3.7					
l,1,1-Trichloroethane	ND	ug/kg	3.7					
Bromodichloromethane	ND	ug/kg	3.7					
crans-1,3-Dichloropropene	ND	ug/kg	3.7					
cis-1,3-Dichloropropene	ND	ug/kg	3.7					
l,1-Dichloropropene	ND	ug/kg	18.					
Bromoform	ND	ug/kg	15.					
,1,2,2-Tetrachloroethane	ND	ug/kg	3.7					
Benzene	ND	ug/kg	3.7					
Coluene	ND	ug/kg	5.5					
Ethylbenzene	ND	ug/kg	3.7					
Chloromethane	ND	ug/kg	18.					
Bromomethane	ND	ug/kg	7.4					
/inyl chloride	ND	ug/kg	7.4					
Chloroethane	ND	ug/kg	7.4					
l,1-Dichloroethene	ND	ug/kg	3.7					
rans-1,2-Dichloroethene	ND	ug/kg	5.5					
Trichloroethene	ND	ug/kg	3.7					
,2-Dichlorobenzene	ND	ug/kg	18.					
.,3-Dichlorobenzene	ND	ug/kg	18.					
.,4-Dichlorobenzene	ND	ug/kg	18.					
Methyl tert butyl ether	ND	ug/kg	7.4					
o/m-Xylene	ND	ug/kg	7.4					
o-Xylene	ND	ug/kg	7.4					
cis-1,2-Dichloroethene	ND	ug/kg	3.7					
Dibromomethane	ND	ug/kg	37.					
Styrene	ND	ug/kg	7.4					
Dichlorodifluoromethane	ND	ug/kg	37.					
Acetone	ND	ug/kg	37.					
Carbon disulfide	ND	ug/kg	37.					
?-Butanone	ND	ug/kg	37.					
Jinyl acetate	ND	ug/kg	37.					
l-Methyl-2-pentanone	ND	ug/kg	37.					
1,2,3-Trichloropropane	ND	ug/kg	37.					
2-Hexanone	ND	ug/kg	37.					
Bromochloromethane	ND	ug/kg	18.					
2,2-Dichloropropane	ND	ug/kg	18.					
,2-Dibromoethane	ND	ug/kg	15.					
.,3-Dichloropropane	ND	ug/kg	18.					
,1,1,2-Tetrachloroethane	ND	ug/kg	3.7					
Bromobenzene	ND	ug/kg	18.					
ı-Butylbenzene	ND	ug/kg	3.7					
sec-Butylbenzene	ND	ug/kg	3.7					
tert-Butylbenzene	ND	ug/kg	18.					
-Chlorotoluene	ND	ug/kg	18.					
-Chlorotoluene	ND	ug/kg	18.					
.,2-Dibromo-3-chloropropane	ND	ug/kg	18.					
Mexachlorobutadiene	ND	ug/kg	18.					
Isopropylbenzene	ND	ug/kg	3.7					

Laboratory Sample Number: L0813447-03

PWG-DW-2008-28(12-12.5')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA		ID
						PREP	ANAL	
Volatile Organics by EPA 826	OB cont'd			1	8260B		0915 15:	29 PD
p-Isopropyltoluene	ND	ug/kg	3.7					
Naphthalene	ND	ug/kg	18.					
Acrylonitrile	ND	ug/kg	37.					
n-Propylbenzene	ND	ug/kg	3.7					
1,2,3-Trichlorobenzene	ND	ug/kg	18.					
1,2,4-Trichlorobenzene	ND	ug/kg	18.					
1,3,5-Trimethylbenzene	ND	ug/kg	18.					
1,2,4-Trimethylbenzene	ND	ug/kg	18.					
1,4-Diethylbenzene	ND	ug/kg	15.					
4-Ethyltoluene	ND	ug/kg	15.					
1,2,4,5-Tetramethylbenzene	ND	ug/kg	15.					
Surrogate(s)	Recovery		OC Cri	teri:	9			
1,2-Dichloroethane-d4	94.0	%	70-130		^			
r,z-bichioroechane-u4 Foluene-d8	103	%	70-130					
101uene-do 1-Bromofluorobenzene	118	%	70-130					
Dibromofluoromethane	94.0	,o o/o	70-130					
TDI OMOLI GOI OMECHANE	J ∓. U	o	,0-130					
Semivolatile Organics by EPA				1	8270C	0916 19:00	0918 12:	17 PS
Acenaphthene	ND	ug/kg	490					
1,2,4-Trichlorobenzene	ND	ug/kg	490					
Hexachlorobenzene	ND	ug/kg	490					
Bis(2-chloroethyl)ether	ND	ug/kg	490					
2-Chloronaphthalene	ND	ug/kg	590					
l,2-Dichlorobenzene	ND	ug/kg	490					
l,3-Dichlorobenzene	ND	ug/kg	490					
l,4-Dichlorobenzene	ND	ug/kg	490					
3,3'-Dichlorobenzidine	ND	ug/kg	980					
2,4-Dinitrotoluene	ND	ug/kg	490					
2,6-Dinitrotoluene	ND	ug/kg	490					
Fluoranthene	ND	ug/kg	490					
4-Chlorophenyl phenyl ether	ND	ug/kg	490					
4-Bromophenyl phenyl ether	ND	ug/kg	490					
Bis(2-chloroisopropyl)ether	ND	ug/kg	490					
Bis(2-chloroethoxy)methane	ND	ug/kg	490					
Hexachlorobutadiene	ND	ug/kg	980					
Hexachlorocyclopentadiene	ND	ug/kg	980					
Hexachloroethane	ND	ug/kg	490					
Isophorone	ND	ug/kg	490					
Naphthalene	ND	ug/kg	490					
Jitrobenzene	ND	ug/kg	490					
NitrosoDiPhenylAmine(NDPA)/D	PA ND	ug/kg	1500					
n-Nitrosodi-n-propylamine	ND	ug/kg	490					
Bis(2-Ethylhexyl)phthalate	ND	ug/kg	980					
Butyl benzyl phthalate	ND	ug/kg	490					
Di-n-butylphthalate	ND	ug/kg	490					
Di-n-octylphthalate	ND	ug/kg	490					
Diethyl phthalate	ND	ug/kg	490					
Dimethyl phthalate	ND	ug/kg	490					

Laboratory Sample Number: L0813447-03

PWG-DW-2008-28(12-12.5')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Semivolatile Organics by EPA 8	3270C cont	- ' d		1	8270C	0916 19:00	0918 12:	17 PS
Benzo(a)anthracene	ND	ug/kg	490	-	02700	0,10 1,00	0,10 11	1, 10
Benzo(a)pyrene	ND	ug/kg ug/kg	490					
Benzo(b)fluoranthene	ND	ug/kg ug/kg	490					
Benzo(k)fluoranthene	ND	ug/kg ug/kg	490					
Chrysene	ND	ug/kg ug/kg	490					
Acenaphthylene	ND	ug/kg ug/kg	490					
Anthracene	ND	ug/kg ug/kg	490					
Benzo(ghi)perylene	ND	ug/kg ug/kg	490					
Fluorene	ND		490					
Phenanthrene	ND	ug/kg	490					
		ug/kg	490					
Dibenzo(a,h)anthracene	ND	ug/kg						
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	490					
Pyrene	ND	ug/kg	490					
Biphenyl	ND	ug/kg	490					
4-Chloroaniline	ND	ug/kg	490					
2-Nitroaniline	ND	ug/kg	490					
3-Nitroaniline	ND	ug/kg	490					
1-Nitroaniline	ND	ug/kg	690					
Dibenzofuran	ND	ug/kg	490					
2-Methylnaphthalene	ND	ug/kg	490					
1,2,4,5-Tetrachlorobenzene	ND	ug/kg	2000					
Acetophenone	ND	ug/kg	2000					
2,4,6-Trichlorophenol	ND	ug/kg	490					
P-Chloro-M-Cresol	ND	ug/kg	490					
2-Chlorophenol	ND	ug/kg	590					
2,4-Dichlorophenol	ND	ug/kg	980					
2,4-Dimethylphenol	ND	ug/kg	490					
2-Nitrophenol	ND	ug/kg	2000					
1-Nitrophenol	ND	ug/kg	980					
2,4-Dinitrophenol	ND	ug/kg	2000					
1,6-Dinitro-o-cresol	ND	ug/kg	2000					
Pentachlorophenol	ND	ug/kg	2000					
Phenol	ND	ug/kg	690					
2-Methylphenol	ND	ug/kg	590					
3-Methylphenol/4-Methylphenol	ND	ug/kg	590					
2,4,5-Trichlorophenol	ND	ug/kg	490					
Benzoic Acid	ND	ug/kg	4900					
Benzyl Alcohol	ND	ug/kg	980					
Carbazole	ND	ug/kg	490					
Surrogate(s)	Recovery		QC Cr	iteria	ı			
2-Fluorophenol	60.0	%	25-120)				
Phenol-d6	66.0	%	10-120)				
Nitrobenzene-d5	52.0	%	23-120)				
2-Fluorobiphenyl	61.0	%	30-120)				
2,4,6-Tribromophenol	81.0	%	19-120)				
4-Terphenyl-d14	68.0	%	18-120)				

Laboratory Sample Number: L0813447-03

PWG-DW-2008-28(12-12.5')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA: PREP	TE ANAL	ID
Semivolatile Organics by E	PA 8270C-SIM	cont'd		1 8270C	0912 21:30	0916 03:3	3 AK
Acenaphthene	ND	ug/kg	98.				
2-Chloronaphthalene	ND	ug/kg	98.				
Fluoranthene	220	ug/kg	98				
Hexachlorobutadiene	ND	ug/kg	240				
Naphthalene	ND	ug/kg	98.				
Benzo(a)anthracene	ND	ug/kg	98.				
Benzo(a)pyrene	210	ug/kg	98				
Benzo(b)fluoranthene	180	ug/kg	98				
Benzo(k)fluoranthene	180	ug/kg	98				
Chrysene	ND	ug/kg	98.				
Acenaphthylene	ND	ug/kg	98.				
Anthracene	ND	ug/kg	98.				
Benzo(ghi)perylene	ND	ug/kg	98.				
Fluorene	ND	ug/kg	98.				
Phenanthrene	ND	ug/kg	98.				
Dibenzo(a,h)anthracene	ND	ug/kg	98.				
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	98.				
Pyrene	240	ug/kg	98				
2-Methylnaphthalene	ND	ug/kg	98.				
Pentachlorophenol	ND	ug/kg	390				
Hexachlorobenzene	ND	ug/kg	390				
Hexachloroethane	ND	ug/kg	390				
Surrogate(s)	Recovery		QC Cri	teria			
2-Fluorophenol	79.0	%	25-120				
Phenol-d6	87.0	%	10-120				
Nitrobenzene-d5	71.0	%	23-120				
2-Fluorobiphenyl	73.0	%	30-120				
2,4,6-Tribromophenol	72.0	%	19-120				
4-Terphenyl-d14	76.0	%	18-120				
Petroleum Hydrocarbon Quan	titation by (GC-FID		1 8015B(M)	0916 01:30	0917 21:2	9 JL
ТРН	165000	ug/kg	49000				
Surrogate(s)	Recovery		QC Cri	teria			
o-Terphenyl	88.0	%	40-140				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813447-04 Date Collected: 10-SEP-2008 09:15

Sample Matrix: SOIL Date Reported: 22-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER	RESULT	UNITS	\mathtt{RDL}	REF METHOD	DATE		ID
					PREP ANA		
Solids, Total	76	%	0.10	30 2540G		0913 15:45	5 NM
Total Metals							
Aluminum, Total	2100	mg/kg	6.1	1 6010B	0912 18:00	0918 13:26	5 AI
Antimony, Total	ND	mg/kg	3.0	1 6010B	0912 18:00	0918 13:26	5 AI
Arsenic, Total	ND	mg/kg	0.61	1 6010B	0912 18:00	0919 12:08	3 AI
Barium, Total	9.3	mg/kg	0.61	1 6010B	0912 18:00	0918 13:26	5 AI
Beryllium, Total	ND	mg/kg	0.30	1 6010B	0912 18:00	0918 13:26	5 AI
Cadmium, Total	ND	mg/kg	0.61	1 6010B		0918 13:26	
Calcium, Total	130	mg/kg	6.1	1 6010B	0912 18:00	0918 13:26	5 AI
Chromium, Total	3.2	mg/kg	0.61	1 6010B		0918 13:26	
Cobalt, Total	ND	mg/kg	1.2	1 6010B		0918 13:26	
Copper, Total	6.9	mg/kg	0.61	1 6010B	0912 18:00	0918 13:26	5 AI
Iron, Total	2500	mg/kg	3.0	1 6010B	0912 18:00	0918 13:26	5 AI
Lead, Total	36	mg/kg	3.0	1 6010B	0912 18:00	0918 13:26	5 AI
Magnesium, Total	340	mg/kg	6.1	1 6010B		0918 13:26	
Manganese, Total	15	mg/kg	0.61	1 6010B		0919 12:08	
Mercury, Total	ND	mg/kg	0.10	1 7471A	0912 20:30	0914 14:16	5 HG
Nickel, Total	3.4	mg/kg	1.5	1 6010B	0912 18:00	0918 13:26	5 AI
Potassium, Total	160	mg/kg	150	1 6010B	0912 18:00	0918 13:26	5 AI
Selenium, Total	ND	mg/kg	1.2	1 6010B	0912 18:00	0919 12:08	3 AI
Silver, Total	ND	mg/kg	0.61	1 6010B	0912 18:00	0918 13:26	5 AI
Sodium, Total	ND	mg/kg	120	1 6010B	0912 18:00	0918 13:26	5 AI
Thallium, Total	ND	mg/kg	1.2	1 6010B	0912 18:00	0918 13:26	5 AI
Vanadium, Total	5.3	mg/kg	0.61	1 6010B		0918 13:26	
Zinc, Total	64	mg/kg	3.0	1 6010B		0918 13:26	
Volatile Organics by EPA 8	3260B			1 8260B		0915 16:06	5 PD
Methylene chloride	ND	ug/kg	33.				
1,1-Dichloroethane	ND	ug/kg	4.9				
Chloroform	ND	ug/kg	4.9				
Carbon tetrachloride	ND	ug/kg	3.3				
1,2-Dichloropropane	ND	ug/kg	12.				
Dibromochloromethane	ND	ug/kg	3.3				
1,1,2-Trichloroethane	ND	ug/kg	4.9				
Tetrachloroethene	ND	ug/kg	3.3				
Chlorobenzene	ND	ug/kg	3.3				
Trichlorofluoromethane	ND	ug/kg	16.				

Laboratory Sample Number: L0813447-04

PWG-DW-2008-29(10-10.5')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DATE		
						PREP	ANAL	
7.1.1.1.1. O	0.D							
Volatile Organics by EPA 826		/1	2 2	1	8260B		0915 16:	:06 PD
1,2-Dichloroethane	ND	ug/kg	3.3					
1,1,1-Trichloroethane	ND	ug/kg	3.3					
Bromodichloromethane	ND	ug/kg	3.3					
trans-1,3-Dichloropropene	ND	ug/kg	3.3					
cis-1,3-Dichloropropene	ND	ug/kg	3.3					
l,1-Dichloropropene	ND	ug/kg	16.					
Bromoform	ND	ug/kg	13.					
1,1,2,2-Tetrachloroethane	ND	ug/kg	3.3					
Benzene 	ND	ug/kg	3.3					
Toluene	ND	ug/kg	4.9					
Ethylbenzene	ND	ug/kg	3.3					
Chloromethane	ND	ug/kg	16.					
Bromomethane	ND	ug/kg	6.6					
Vinyl chloride	ND	ug/kg	6.6					
Chloroethane	ND	ug/kg	6.6					
1,1-Dichloroethene	ND	ug/kg	3.3					
trans-1,2-Dichloroethene	ND	ug/kg	4.9					
Trichloroethene	ND	ug/kg	3.3					
l,2-Dichlorobenzene	ND	ug/kg	16.					
1,3-Dichlorobenzene	ND	ug/kg	16.					
1,4-Dichlorobenzene	ND	ug/kg	16.					
Methyl tert butyl ether	ND	ug/kg	6.6					
p/m-Xylene	ND	ug/kg	6.6					
o-Xylene	ND	ug/kg	6.6					
cis-1,2-Dichloroethene	ND	ug/kg	3.3					
Dibromomethane	ND	ug/kg	33.					
Styrene	ND	ug/kg	6.6					
Dichlorodifluoromethane	ND	ug/kg	33.					
Acetone	ND	ug/kg	33.					
Carbon disulfide	ND	ug/kg	33.					
2-Butanone	ND	ug/kg	33.					
Vinyl acetate	ND	ug/kg	33.					
4-Methyl-2-pentanone	ND	ug/kg	33.					
1,2,3-Trichloropropane	ND	ug/kg	33.					
2-Hexanone	ND	ug/kg	33.					
Bromochloromethane	ND	ug/kg	16.					
2,2-Dichloropropane	ND	ug/kg	16.					
1,2-Dibromoethane	ND	ug/kg	13.					
1,3-Dichloropropane	ND	ug/kg	16.					
1,1,1,2-Tetrachloroethane	ND	ug/kg	3.3					
Bromobenzene	ND	ug/kg	16.					
n-Butylbenzene	ND	ug/kg	3.3					
sec-Butylbenzene	ND	ug/kg	3.3					
tert-Butylbenzene	ND	ug/kg	16.					
o-Chlorotoluene	ND	ug/kg	16.					
p-Chlorotoluene	ND	ug/kg	16.					
1,2-Dibromo-3-chloropropane	ND	ug/kg	16.					
Hexachlorobutadiene	ND	ug/kg	16.					
Isopropylbenzene	ND	ug/kg	3.3					

Laboratory Sample Number: L0813447-04

PWG-DW-2008-29(10-10.5')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Volatile Organics by EPA 826	NB contid			1	8260B		0915 16:	יחה שח
p-Isopropyltoluene	ND	ug/kg	3.3		02000		0,15 10	.00 FD
Naphthalene	ND	ug/kg ug/kg	16.					
Acrylonitrile	ND ND		33.					
n-Propylbenzene	ND ND	ug/kg	3.3					
<u> </u>	ND ND	ug/kg	16.					
1,2,3-Trichlorobenzene		ug/kg						
1,2,4-Trichlorobenzene	ND	ug/kg	16.					
1,3,5-Trimethylbenzene	ND	ug/kg	16.					
1,2,4-Trimethylbenzene	ND	ug/kg	16.					
1,4-Diethylbenzene	ND	ug/kg	13.					
4-Ethyltoluene	ND	ug/kg	13.					
1,2,4,5-Tetramethylbenzene	ND	ug/kg	13.					
Surrogate(s)	Recovery		QC Cri	teri	a			
1,2-Dichloroethane-d4	101	%	70-130					
Toluene-d8	110	%	70-130					
4-Bromofluorobenzene	118	%	70-130					
Dibromofluoromethane	99.0	%	70-130					
Semivolatile Organics by EPA	8270C			1	8270C	0916 19:00	0918 12:	:40 PS
Acenaphthene	ND	ug/kg	440					
1,2,4-Trichlorobenzene	ND	ug/kg	440					
Hexachlorobenzene	ND	ug/kg	440					
Bis(2-chloroethyl)ether	ND	ug/kg	440					
2-Chloronaphthalene	ND	ug/kg	530					
1,2-Dichlorobenzene	ND	ug/kg	440					
1,3-Dichlorobenzene	ND	ug/kg	440					
1,4-Dichlorobenzene	ND	ug/kg	440					
3,3'-Dichlorobenzidine	ND	ug/kg	880					
2,4-Dinitrotoluene	ND	ug/kg	440					
2,6-Dinitrotoluene	ND	ug/kg	440					
Fluoranthene	ND	ug/kg ug/kg	440					
4-Chlorophenyl phenyl ether	ND ND	ug/kg ug/kg	440					
4-Bromophenyl phenyl ether	ND ND	ug/kg ug/kg	440					
Bis(2-chloroisopropyl)ether	ND ND		440					
Bis(2-chloroethoxy)methane	ND ND	ug/kg ug/kg	440					
Bis(2-chioroethoxy)methane Hexachlorobutadiene	ND ND		880					
Hexachioroputadiene Hexachlorocyclopentadiene		ug/kg						
Hexachiorocyclopentadiene Hexachloroethane	ND	ug/kg	880					
	ND	ug/kg	440					
Isophorone	ND	ug/kg	440					
Naphthalene	ND	ug/kg	440					
Nitrobenzene	ND	ug/kg	440					
NitrosoDiPhenylAmine(NDPA)/D		ug/kg	1300					
n-Nitrosodi-n-propylamine	ND	ug/kg	440					
Bis(2-Ethylhexyl)phthalate	ND	ug/kg	880					
Butyl benzyl phthalate	ND	ug/kg	440					
Di-n-butylphthalate	ND	ug/kg	440					
Di-n-octylphthalate	ND	ug/kg	440					
Diethyl phthalate	ND	ug/kg	440					
Dimethyl phthalate	ND	ug/kg	440					

Laboratory Sample Number: L0813447-04

PWG-DW-2008-29(10-10.5')

PARAMETER	RESULT	UNITS	RDL	REF M	ETHOD	DA' PREP	TE ANAL	ID
Semivolatile Organics by EPA 8	3270C cont	'd		1 8	270C	0916 19:00	0918 12:4	40 PS
Benzo(a)anthracene	ND	ug/kg	440		2,00	0,10 1,00	0,10 11	10 10
Benzo(a)pyrene	ND	ug/kg ug/kg	440					
Benzo(b)fluoranthene	ND	ug/kg ug/kg	440					
Benzo(k)fluoranthene	ND	ug/kg ug/kg	440					
Chrysene	ND	ug/kg ug/kg	440					
Acenaphthylene	ND	ug/kg ug/kg	440					
Anthracene	ND	ug/kg ug/kg	440					
Benzo(ghi)perylene	ND		440					
Fluorene	ND	ug/kg	440					
Phenanthrene	ND	ug/kg	440					
		ug/kg						
Dibenzo(a,h)anthracene	ND	ug/kg	440					
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	440					
Pyrene	ND	ug/kg	440					
Biphenyl	ND	ug/kg	440					
4-Chloroaniline	ND	ug/kg	440					
2-Nitroaniline	ND	ug/kg	440					
3-Nitroaniline	ND	ug/kg	440					
1-Nitroaniline	ND	ug/kg	610					
Dibenzofuran	ND	ug/kg	440					
2-Methylnaphthalene	ND	ug/kg	440					
1,2,4,5-Tetrachlorobenzene	ND	ug/kg	1800					
Acetophenone	ND	ug/kg	1800					
2,4,6-Trichlorophenol	ND	ug/kg	440					
P-Chloro-M-Cresol	ND	ug/kg	440					
2-Chlorophenol	ND	ug/kg	530					
2,4-Dichlorophenol	ND	ug/kg	880					
2,4-Dimethylphenol	ND	ug/kg	440					
2-Nitrophenol	ND	ug/kg	1800					
1-Nitrophenol	ND	ug/kg	880					
2,4-Dinitrophenol	ND	ug/kg	1800					
1,6-Dinitro-o-cresol	ND	ug/kg	1800					
Pentachlorophenol	ND	ug/kg	1800					
Phenol	ND	ug/kg	610					
2-Methylphenol	ND	ug/kg	530					
3-Methylphenol/4-Methylphenol	ND	ug/kg	530					
2,4,5-Trichlorophenol	ND	ug/kg	440					
Benzoic Acid	ND	ug/kg	4400					
Benzyl Alcohol	ND	ug/kg	880					
Carbazole	ND	ug/kg	440					
Surrogate(s)	Recovery		QC Cr	iteria				
2-Fluorophenol	83.0	%	25-120)				
Phenol-d6	85.0	%	10-120)				
Nitrobenzene-d5	71.0	%	23-120)				
2-Fluorobiphenyl	76.0	%	30-120)				
2,4,6-Tribromophenol	112	%	19-120)				
1-Terphenyl-d14	76.0	%	18-120	1				

Laboratory Sample Number: L0813447-04

PWG-DW-2008-29(10-10.5')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA' PREP	TE ANAL	ID
Semivolatile Organics by E	PA 8270C-SIM	cont'd		1 8270C	0912 21:30	0916 04:2	0 AK
Acenaphthene	ND	ug/kg	88.				
2-Chloronaphthalene	ND	ug/kg	88.				
Fluoranthene	ND	ug/kg	88.				
Hexachlorobutadiene	ND	ug/kg	220				
Naphthalene	ND	ug/kg	88.				
Benzo(a)anthracene	ND	ug/kg	88.				
Benzo(a)pyrene	ND	ug/kg	88.				
Benzo(b)fluoranthene	ND	ug/kg	88.				
Benzo(k)fluoranthene	ND	ug/kg	88.				
Chrysene	ND	ug/kg	88.				
Acenaphthylene	ND	ug/kg	88.				
Anthracene	ND	ug/kg	88.				
Benzo(ghi)perylene	ND	ug/kg	88.				
Fluorene	ND	ug/kg	88.				
Phenanthrene	ND	ug/kg	88.				
Dibenzo(a,h)anthracene	ND	ug/kg	88.				
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	88.				
Pyrene	ND	ug/kg	88.				
2-Methylnaphthalene	ND	ug/kg	88.				
Pentachlorophenol	ND	ug/kg	350				
Hexachlorobenzene	ND	ug/kg	350				
Hexachloroethane	ND	ug/kg	350				
Surrogate(s)	Recovery		QC Cri	teria			
2-Fluorophenol	70.0	%	25-120				
Phenol-d6	73.0	%	10-120				
Nitrobenzene-d5	64.0	%	23-120				
2-Fluorobiphenyl	64.0	%	30-120				
2,4,6-Tribromophenol	71.0	%	19-120				
4-Terphenyl-d14	67.0	%	18-120				
Petroleum Hydrocarbon Quan	titation by (GC-FID		1 8015B(M)	0916 01:30	0917 22:0	3 JL
ТРН	ND	ug/kg	43800				
Surrogate(s)	Recovery		QC Cri	teria			
o-Terphenyl	69.0	%	40-140				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813447-05 Date Collected: 10-SEP-2008 09:30

PWG-DW-2008-30(8.5-9') **Date Received :** 11-SEP-2008

Sample Matrix: SOIL Date Reported: 22-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE I
					PREP ANAL
Solids, Total	49	%	0.10	30 2540G	0913 15:45 N
Total Metals					
Aluminum, Total	7000	mg/kg	9.9	1 6010B	0912 18:00 0918 13:29 A
Antimony, Total	ND	mg/kg	5.0	1 6010B	0912 18:00 0918 13:29 A
Arsenic, Total	1.1	mg/kg	0.99	1 6010B	0912 18:00 0919 12:11 A
Barium, Total	74	mg/kg	0.99	1 6010B	0912 18:00 0918 13:29 A
Beryllium, Total	ND	mg/kg	0.50	1 6010B	0912 18:00 0918 13:29 A
Cadmium, Total	4.0	mg/kg	0.99	1 6010B	0912 18:00 0918 13:29 A
Calcium, Total	20000	mq/kq	9.9	1 6010B	0912 18:00 0918 13:29 A
Chromium, Total	120	mg/kg	0.99	1 6010B	0912 18:00 0918 13:29 A
Cobalt, Total	6.2	mg/kg	2.0	1 6010B	0912 18:00 0918 13:29 A
Copper, Total	96	mg/kg	0.99	1 6010B	0912 18:00 0918 13:29 A
Iron, Total	10000	mg/kg	5.0	1 6010B	0912 18:00 0918 13:29 A
Lead, Total	970	mg/kg	5.0	1 6010B	0912 18:00 0918 13:29 A
Magnesium, Total	9900	mg/kg	9.9	1 6010B	0912 18:00 0918 13:29 A
Manganese, Total	110	mg/kg	0.99	1 6010B	0912 18:00 0919 12:11 A
Mercury, Total	0.85	mg/kg	0.17	1 7471A	0912 20:30 0914 14:18 H
Nickel, Total	34	mg/kg	2.5	1 6010B	0912 18:00 0918 13:29 A
Potassium, Total	540	mg/kg	250	1 6010B	0912 18:00 0918 13:29 A
Selenium, Total	ND	mg/kg	2.0	1 6010B	0912 18:00 0919 12:11 A
Silver, Total	1.3	mg/kg	0.99	1 6010B	0912 18:00 0918 13:29 A
Sodium, Total	3200	mg/kg	200	1 6010B	0912 18:00 0918 13:29 A
Thallium, Total	ND	mg/kg	2.0	1 6010B	0912 18:00 0918 13:29 A
Janadium, Total	58	mg/kg	0.99	1 6010B	0912 18:00 0918 13:29 A
Zinc, Total	480	mg/kg	5.0	1 6010B	0912 18:00 0918 13:29 A
1110, 10001	100	9, 129	3.0	1 00102	0,12 10,00 0,10 15,2,1
olatile Organics by EPA 8	260B			1 8260B	0915 16:42 P
Methylene chloride	ND	ug/kg	51.		
l,1-Dichloroethane	ND	ug/kg	7.6		
Chloroform	ND	ug/kg	7.6		
Carbon tetrachloride	ND	ug/kg	5.1		
1,2-Dichloropropane	ND	ug/kg	18.		
Dibromochloromethane	ND	ug/kg	5.1		
1,1,2-Trichloroethane	ND	ug/kg	7.6		
Tetrachloroethene	ND	ug/kg	5.1		
Chlorobenzene	ND	ug/kg	5.1		
Frichlorofluoromethane	ND	ug/kg	26.		

Laboratory Sample Number: L0813447-05

PWG-DW-2008-30(8.5-9')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
7-1-+-1- 0	00							
Volatile Organics by EPA 826		/1	г 1	1	8260B		0915 16:	42 PD
l,2-Dichloroethane	ND	ug/kg	5.1					
1,1,1-Trichloroethane	ND	ug/kg	5.1					
Bromodichloromethane	ND	ug/kg	5.1					
rans-1,3-Dichloropropene	ND	ug/kg	5.1					
cis-1,3-Dichloropropene	ND	ug/kg	5.1					
,1-Dichloropropene	ND	ug/kg	26.					
romoform	ND	ug/kg	20.					
,1,2,2-Tetrachloroethane	ND	ug/kg	5.1					
enzene	ND	ug/kg	5.1					
oluene	ND	ug/kg	7.6					
thylbenzene	ND	ug/kg	5.1					
hloromethane	ND	ug/kg	26.					
Bromomethane	ND	ug/kg	10.					
Vinyl chloride	ND	ug/kg	10.					
hloroethane	ND	ug/kg	10.					
,1-Dichloroethene	ND	ug/kg	5.1					
rans-1,2-Dichloroethene	ND	ug/kg	7.6					
richloroethene	ND	ug/kg	5.1					
,2-Dichlorobenzene	ND	ug/kg	26.					
,3-Dichlorobenzene	ND	ug/kg	26.					
,4-Dichlorobenzene	ND	ug/kg	26.					
ethyl tert butyl ether	ND	ug/kg	10.					
/m-Xylene	ND	ug/kg	10.					
-Xylene	ND	ug/kg	10.					
is-1,2-Dichloroethene	ND	ug/kg	5.1					
ibromomethane	ND	ug/kg	51.					
Styrene	ND	ug/kg	10.					
Dichlorodifluoromethane	ND	ug/kg	51.					
acetone	70	ug/kg	51					
arbon disulfide	ND	ug/kg	51.					
-Butanone	ND	ug/kg	51.					
inyl acetate	ND	ug/kg	51.					
-Methyl-2-pentanone	ND	ug/kg	51.					
,2,3-Trichloropropane	ND	ug/kg	51.					
-Hexanone	ND	ug/kg	51.					
romochloromethane	ND	ug/kg	26.					
,2-Dichloropropane	ND	ug/kg	26.					
,2-Dibromoethane	ND	ug/kg	20.					
.,3-Dichloropropane	ND	ug/kg	26.					
,1,1,2-Tetrachloroethane	ND	ug/kg	5.1					
Bromobenzene	ND	ug/kg	26.					
-Butylbenzene	ND	ug/kg	5.1					
ec-Butylbenzene	ND	ug/kg	5.1					
ert-Butylbenzene	ND	ug/kg	26.					
-Chlorotoluene	ND	ug/kg	26.					
-Chlorotoluene	ND	ug/kg	26.					
.,2-Dibromo-3-chloropropane	ND	ug/kg	26.					
exachlorobutadiene	ND	ug/kg	26.					
Esopropylbenzene	ND	ug/kg	5.1					

Laboratory Sample Number: L0813447-05

PWG-DW-2008-30(8.5-9')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Volatile Organics by EPA 8260	DR contid			1	8260B		0915 16:	42 DD
p-Isopropyltoluene	11	110 /kg	5.1	1	0200B		0913 10.	42 FD
p-isopropyrtoruene Naphthalene		ug/kg	26.					
	ND	ug/kg						
Acrylonitrile	ND	ug/kg	51.					
n-Propylbenzene	ND	ug/kg	5.1					
1,2,3-Trichlorobenzene	ND	ug/kg	26.					
1,2,4-Trichlorobenzene	ND	ug/kg	26.					
1,3,5-Trimethylbenzene	ND	ug/kg	26.					
1,2,4-Trimethylbenzene	ND	ug/kg	26.					
1,4-Diethylbenzene	ND	ug/kg	20.					
4-Ethyltoluene	ND	ug/kg	20.					
1,2,4,5-Tetramethylbenzene	ND	ug/kg	20.					
Surrogate(s)	Recovery		QC Crit	eri	a			
1,2-Dichloroethane-d4	99.0	%	70-130					
Toluene-d8	113	%	70-130					
4-Bromofluorobenzene	145	8	70-130					
Dibromofluoromethane	101	%	70-130					
Semivolatile Organics by EPA	8270C			1	8270C	0916 19:00	0918 13:	04 PS
Acenaphthene	ND	ug/kg	10000					
1,2,4-Trichlorobenzene	ND	ug/kg	10000					
Hexachlorobenzene	ND	ug/kg	10000					
Bis(2-chloroethyl)ether	ND	ug/kg	10000					
2-Chloronaphthalene	ND	ug/kg	12000					
1,2-Dichlorobenzene	ND	ug/kg	10000					
1,3-Dichlorobenzene	ND	ug/kg	10000					
1,4-Dichlorobenzene	ND	ug/kg	10000					
3,3'-Dichlorobenzidine	ND	ug/kg	20000					
2,4-Dinitrotoluene	ND	ug/kg	10000					
2,6-Dinitrotoluene	ND	ug/kg ug/kg	10000					
Fluoranthene	ND	ug/kg ug/kg	10000					
4-Chlorophenyl phenyl ether	ND	ug/kg ug/kg	10000					
4-Chrorophenyl phenyl ether	ND ND		10000					
Bis(2-chloroisopropyl)ether	ND	ug/kg	10000					
Bis(2-chloroethoxy)methane	ND ND	ug/kg	10000					
Bis(2-chioroethoxy)methane Hexachlorobutadiene	ND ND	ug/kg	20000					
Hexachioroputadiene Hexachlorocyclopentadiene		ug/kg						
Hexachiorocyclopentadiene Hexachloroethane	ND ND	ug/kg	20000					
	ND	ug/kg	10000					
Isophorone	ND	ug/kg	10000					
Naphthalene	ND	ug/kg	10000					
Nitrobenzene	ND	ug/kg	10000					
NitrosoDiPhenylAmine(NDPA)/DI		ug/kg	31000					
n-Nitrosodi-n-propylamine	ND	ug/kg	10000					
Bis(2-Ethylhexyl)phthalate	23000	ug/kg	20000					
Butyl benzyl phthalate	ND	ug/kg	10000					
Di-n-butylphthalate	ND	ug/kg	10000					
Di-n-octylphthalate	ND	ug/kg	10000					
Diethyl phthalate	ND	ug/kg	10000					
Dimethyl phthalate	ND	ug/kg	10000					

Laboratory Sample Number: L0813447-05

PWG-DW-2008-30(8.5-9')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA' PREP	TE ANAI	ID
Semivolatile Organics by EPA 8	3270C cont	- ' d		1	8270C	0916 19:00	0018 13	·04 pg
Benzo(a)anthracene	ND	ug/kg	10000	_	02700	0310 13:00	0,10 13	-01 15
Benzo(a)pyrene	ND	ug/kg ug/kg	10000					
Benzo(b)fluoranthene	ND		10000					
Benzo(k)fluoranthene	ND	ug/kg ug/kg	10000					
Chrysene	ND	ug/kg ug/kg	10000					
acenaphthylene	ND	ug/kg ug/kg	10000					
anthracene	ND	ug/kg ug/kg	10000					
Benzo(ghi)perylene	ND		10000					
luorene	ND	ug/kg	10000					
henanthrene	ND	ug/kg	10000					
		ug/kg	10000					
oibenzo(a,h)anthracene	ND	ug/kg						
indeno(1,2,3-cd)Pyrene	ND	ug/kg	10000					
yrene	ND	ug/kg	10000					
Siphenyl	ND	ug/kg	10000					
Chloroaniline	ND	ug/kg	10000					
-Nitroaniline	ND	ug/kg	10000					
-Nitroaniline	ND	ug/kg	10000					
-Nitroaniline	ND	ug/kg	14000					
ibenzofuran	ND	ug/kg	10000					
-Methylnaphthalene	ND	ug/kg	10000					
,2,4,5-Tetrachlorobenzene	ND	ug/kg	41000					
cetophenone	ND	ug/kg	41000					
,4,6-Trichlorophenol	ND	ug/kg	10000					
-Chloro-M-Cresol	ND	ug/kg	10000					
-Chlorophenol	ND	ug/kg	12000					
,4-Dichlorophenol	ND	ug/kg	20000					
,4-Dimethylphenol	ND	ug/kg	10000					
-Nitrophenol	ND	ug/kg	41000					
-Nitrophenol	ND	ug/kg	20000					
,4-Dinitrophenol	ND	ug/kg	41000					
,6-Dinitro-o-cresol	ND	ug/kg	41000					
entachlorophenol	ND	ug/kg	41000					
henol	ND	ug/kg	14000					
-Methylphenol	ND	ug/kg	12000					
-Methylphenol/4-Methylphenol	ND	ug/kg	12000					
,4,5-Trichlorophenol	ND	ug/kg	10000					
enzoic Acid	ND	ug/kg	100000)				
Benzyl Alcohol	ND	ug/kg	20000					
arbazole	ND	ug/kg	10000					
urrogate(s)	Recovery		QC Cri	teria	a			
-Fluorophenol	84.0	%	25-120)				
henol-d6	77.0	%	10-120)				
itrobenzene-d5	78.0	%	23-120)				
-Fluorobiphenyl	75.0	%	30-120)				
,4,6-Tribromophenol	84.0	%	19-120)				
-Terphenyl-d14	64.0	%	18-120)				

Laboratory Sample Number: L0813447-05

PWG-DW-2008-30(8.5-9')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA' PREP	TE ANAL	ID
Semivolatile Organics by E	PA 8270C-SIM	cont'd		1 8270C	0912 21:30	0916 05:0	7 AK
Acenaphthene	ND	ug/kg	2700				
2-Chloronaphthalene	ND	ug/kg	2700				
Fluoranthene	6700	ug/kg	2700				
Hexachlorobutadiene	ND	ug/kg	6800				
Naphthalene	ND	ug/kg	2700				
Benzo(a)anthracene	ND	ug/kg	2700				
Benzo(a)pyrene	5400	ug/kg	2700				
Benzo(b)fluoranthene	5000	ug/kg	2700				
Benzo(k)fluoranthene	4900	ug/kg	2700				
Chrysene	ND	ug/kg	2700				
Acenaphthylene	ND	ug/kg	2700				
Anthracene	ND	ug/kg	2700				
Benzo(ghi)perylene	5900	ug/kg	2700				
Fluorene	ND	ug/kg	2700				
Phenanthrene	ND	ug/kg	2700				
Dibenzo(a,h)anthracene	ND	ug/kg	2700				
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	2700				
Pyrene	6500	ug/kg	2700				
2-Methylnaphthalene	ND	ug/kg	2700				
Pentachlorophenol	ND	ug/kg	11000				
Hexachlorobenzene	ND	ug/kg	11000				
Hexachloroethane	ND	ug/kg	11000				
Surrogate(s)	Recovery		QC Cri	teria			
2-Fluorophenol	ND	%	25-120				
Phenol-d6	ND	%	10-120				
Nitrobenzene-d5	ND	%	23-120				
2-Fluorobiphenyl	ND	%	30-120				
2,4,6-Tribromophenol	ND	%	19-120				
4-Terphenyl-d14	ND	%	18-120				
Petroleum Hydrocarbon Quan	titation by G	GC-FID		1 8015B(M)	0916 01:30	0918 11:5	1 JL
ТРН	10700000	ug/kg	340000	0			
Surrogate(s)	Recovery		QC Cri	teria			
o-Terphenyl	92.0	%	40-140				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813447-06 Date Collected: 10-SEP-2008 09:45

PWG-DW-2008-31(8-8.5') **Date Received :** 11-SEP-2008

Sample Matrix: SOIL Date Reported: 22-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA PREP	TE ANAL	ID
Solids, Total	68	8	0.10	30 2540G		0913 15:45	5 NM
Total Metals							
Aluminum, Total	5400	mg/kg	7.2	1 6010B	0912 18:00	0918 13:32	2 AI
Antimony, Total	ND	mg/kg	3.6	1 6010B	0912 18:00	0918 13:32	2 AI
Arsenic, Total	1.3	mg/kg	0.72	1 6010B	0912 18:00	0919 12:14	l AI
Barium, Total	35	mg/kg	0.72	1 6010B	0912 18:00	0918 13:32	2 AI
Beryllium, Total	ND	mg/kg	0.36	1 6010B	0912 18:00	0918 13:32	2 AI
Cadmium, Total	1.2	mg/kg	0.72	1 6010B	0912 18:00	0918 13:32	2 AI
Calcium, Total	4700	mg/kg	7.2	1 6010B	0912 18:00	0918 13:32	2 AI
Chromium, Total	29	mg/kg	0.72	1 6010B	0912 18:00	0918 13:32	2 AI
Cobalt, Total	2.6	mg/kg	1.4	1 6010B	0912 18:00	0918 13:32	2 A]
Copper, Total	24	mg/kg	0.72	1 6010B	0912 18:00	0918 13:32	2 A1
Iron, Total	7400	mg/kg	3.6	1 6010B	0912 18:00	0918 13:32	2 AI
Lead, Total	520	mg/kg	3.6	1 6010B	0912 18:00	0918 13:32	2 A1
Magnesium, Total	3200	mg/kg	7.2	1 6010B	0912 18:00	0918 13:32	2 A1
Manganese, Total	54	mg/kg	0.72	1 6010B	0912 18:00	0919 12:14	l Al
Mercury, Total	0.59	mg/kg	0.12	1 7471A	0912 20:30	0914 14:20) но
Nickel, Total	14	mg/kg	1.8	1 6010B	0912 18:00	0918 13:32	2 Al
Potassium, Total	340	mg/kg	180	1 6010B	0912 18:00	0918 13:32	2 A1
Selenium, Total	ND	mg/kg	1.4	1 6010B	0912 18:00	0919 12:14	l AI
Silver, Total	ND	mg/kg	0.72	1 6010B	0912 18:00	0918 13:32	2 AI
Sodium, Total	ND	mg/kg	140	1 6010B	0912 18:00		
Thallium, Total	ND	mg/kg	1.4	1 6010B	0912 18:00		
Vanadium, Total	33	mg/kg	0.72	1 6010B	0912 18:00		
Zinc, Total	240	mg/kg	3.6	1 6010B	0912 18:00		
Volatile Organics by EPA 8	260B			1 8260B		0915 17:18	B PD
Methylene chloride	ND	ug/kg	37.				
1,1-Dichloroethane	ND	ug/kg	5.5				
Chloroform	ND	ug/kg	5.5				
Carbon tetrachloride	ND	ug/kg	3.7				
1,2-Dichloropropane	ND	ug/kg	13.				
Dibromochloromethane	ND	ug/kg	3.7				
1,1,2-Trichloroethane	ND	ug/kg	5.5				
Tetrachloroethene	ND	ug/kg	3.7				
Chlorobenzene	ND	ug/kg	3.7				
Trichlorofluoromethane	ND	ug/kg ug/kg	18.				

Laboratory Sample Number: L0813447-06

PWG-DW-2008-31(8-8.5')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Volatile Organics by EPA 826				1	8260B		0915 17:1	L8 PD
l,2-Dichloroethane	ND	ug/kg	3.7					
l,1,1-Trichloroethane	ND	ug/kg	3.7					
Bromodichloromethane	ND	ug/kg	3.7					
rans-1,3-Dichloropropene	ND	ug/kg	3.7					
cis-1,3-Dichloropropene	ND	ug/kg	3.7					
,1-Dichloropropene	ND	ug/kg	18.					
Bromoform	ND	ug/kg	15.					
,1,2,2-Tetrachloroethane	ND	ug/kg	3.7					
Benzene	ND	ug/kg	3.7					
'oluene	ND	ug/kg	5.5					
thylbenzene	ND	ug/kg	3.7					
Chloromethane	ND	ug/kg	18.					
Bromomethane	ND	ug/kg	7.4					
Jinyl chloride	ND	ug/kg	7.4					
Chloroethane	ND	ug/kg	7.4					
,1-Dichloroethene	ND	ug/kg	3.7					
rans-1,2-Dichloroethene	ND	ug/kg	5.5					
richloroethene	ND	ug/kg	3.7					
,2-Dichlorobenzene	ND	ug/kg	18.					
,3-Dichlorobenzene	ND	ug/kg	18.					
,4-Dichlorobenzene	ND	ug/kg	18.					
Methyl tert butyl ether	ND	ug/kg	7.4					
p/m-Xylene	ND	ug/kg	7.4					
-Xylene	ND	ug/kg	7.4					
cis-1,2-Dichloroethene	ND	ug/kg	3.7					
Dibromomethane	ND	ug/kg	37.					
Styrene	ND	ug/kg	7.4					
Dichlorodifluoromethane	ND	ug/kg	37.					
Acetone	ND	ug/kg	37.					
Carbon disulfide	ND	ug/kg	37.					
2-Butanone	ND	ug/kg	37.					
inyl acetate	ND	ug/kg	37.					
l-Methyl-2-pentanone	ND	ug/kg	37.					
1,2,3-Trichloropropane	ND	ug/kg	37.					
2-Hexanone	ND	ug/kg	37.					
Bromochloromethane	ND	ug/kg ug/kg	18.					
2,2-Dichloropropane	ND	ug/kg ug/kg	18.					
1,2-Dichiolopiopane 1,2-Dibromoethane	ND	ug/kg ug/kg	15.					
1,3-Dichloropropane	ND	ug/kg ug/kg	18.					
.,1,1,2-Tetrachloroethane	ND	ug/kg ug/kg	3.7					
romobenzene	ND		18.					
		ug/kg	3.7					
-Butylbenzene ec-Butylbenzene	ND	ug/kg						
_	ND	ug/kg	3.7					
ert-Butylbenzene	ND	ug/kg	18.					
-Chlorotoluene	ND	ug/kg	18.					
o-Chlorotoluene	ND	ug/kg	18.					
.,2-Dibromo-3-chloropropane	ND	ug/kg	18.					
Mexachlorobutadiene	ND	ug/kg	18.					
Isopropylbenzene	ND	ug/kg	3.7					

Laboratory Sample Number: L0813447-06

PWG-DW-2008-31(8-8.5')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA		ID
						PREP	ANAL	
Volatile Organics by EPA 826	OB cont'd			1	8260B		0915 17:	18 PD
p-Isopropyltoluene	ND	ug/kg	3.7					
Naphthalene	ND	ug/kg	18.					
Acrylonitrile	ND	ug/kg	37.					
n-Propylbenzene	ND	ug/kg	3.7					
1,2,3-Trichlorobenzene	ND	ug/kg	18.					
1,2,4-Trichlorobenzene	ND	ug/kg	18.					
1,3,5-Trimethylbenzene	ND	ug/kg	18.					
1,2,4-Trimethylbenzene	ND	ug/kg	18.					
1,4-Diethylbenzene	ND	ug/kg	15.					
4-Ethyltoluene	ND	ug/kg	15.					
1,2,4,5-Tetramethylbenzene	ND	ug/kg	15.					
Surrogate(s)	Recovery		QC Cri	teri:	9			
1,2-Dichloroethane-d4	99.0	%	70-130		^			
Foluene-d8	113	%	70-130					
101uene-do 1-Bromofluorobenzene	123	%	70-130					
Dibromofluoromethane	101	,o o/o	70-130					
TEL OMOTIGOT OMECHANIC	TOT	o	,0-130					
Semivolatile Organics by EPA				1	8270C	0916 19:00	0918 13:	27 PS
Acenaphthene	ND	ug/kg	4900					
1,2,4-Trichlorobenzene	ND	ug/kg	4900					
Hexachlorobenzene	ND	ug/kg	4900					
Bis(2-chloroethyl)ether	ND	ug/kg	4900					
2-Chloronaphthalene	ND	ug/kg	5900					
l,2-Dichlorobenzene	ND	ug/kg	4900					
l,3-Dichlorobenzene	ND	ug/kg	4900					
l,4-Dichlorobenzene	ND	ug/kg	4900					
3,3'-Dichlorobenzidine	ND	ug/kg	9800					
2,4-Dinitrotoluene	ND	ug/kg	4900					
2,6-Dinitrotoluene	ND	ug/kg	4900					
Fluoranthene	ND	ug/kg	4900					
4-Chlorophenyl phenyl ether	ND	ug/kg	4900					
4-Bromophenyl phenyl ether	ND	ug/kg	4900					
Bis(2-chloroisopropyl)ether	ND	ug/kg	4900					
Bis(2-chloroethoxy)methane	ND	ug/kg	4900					
Hexachlorobutadiene	ND	ug/kg	9800					
Hexachlorocyclopentadiene	ND	ug/kg	9800					
Hexachloroethane	ND	ug/kg	4900					
Isophorone	ND	ug/kg	4900					
Naphthalene	ND	ug/kg	4900					
Nitrobenzene	ND	ug/kg	4900					
NitrosoDiPhenylAmine(NDPA)/D	PA ND	ug/kg	15000					
n-Nitrosodi-n-propylamine	ND	ug/kg	4900					
Bis(2-Ethylhexyl)phthalate	ND	ug/kg	9800					
Butyl benzyl phthalate	ND	ug/kg	4900					
Di-n-butylphthalate	ND	ug/kg	4900					
Di-n-octylphthalate	ND	ug/kg	4900					
Diethyl phthalate	ND	ug/kg	4900					
Dimethyl phthalate	ND	ug/kg	4900					

Laboratory Sample Number: L0813447-06

PWG-DW-2008-31(8-8.5')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANA	ID L
Semivolatile Organics by EPA	8270C cont	- ' d		1	8270C	0916 19:00	0918 13	1:27 PS
Benzo(a)anthracene	ND	ug/kg	4900	-	02700	0310 13:00	0710 10	,-2, 15
Benzo(a)pyrene	ND	ug/kg ug/kg	4900					
Benzo(b)fluoranthene	ND		4900					
Benzo(k)fluoranthene	ND	ug/kg	4900					
Chrysene	ND	ug/kg ug/kg	4900					
acenaphthylene	ND		4900					
nthracene	ND	ug/kg ug/kg	4900					
Benzo(ghi)perylene 'luorene	ND	ug/kg	4900					
luorene Thenanthrene	ND	ug/kg	4900					
	ND	ug/kg	4900					
pibenzo(a,h)anthracene	ND	ug/kg	4900					
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	4900					
yrene	ND	ug/kg	4900					
Siphenyl	ND	ug/kg	4900					
Chloroaniline	ND	ug/kg	4900					
-Nitroaniline	ND	ug/kg	4900					
-Nitroaniline	ND	ug/kg	4900					
-Nitroaniline	ND	ug/kg	6900					
ibenzofuran	ND	ug/kg	4900					
-Methylnaphthalene	ND	ug/kg	4900					
,2,4,5-Tetrachlorobenzene	ND	ug/kg	20000					
cetophenone	ND	ug/kg	20000					
,4,6-Trichlorophenol	ND	ug/kg	4900					
-Chloro-M-Cresol	ND	ug/kg	4900					
-Chlorophenol	ND	ug/kg	5900					
,4-Dichlorophenol	ND	ug/kg	9800					
,4-Dimethylphenol	ND	ug/kg	4900					
-Nitrophenol	ND	ug/kg	20000					
-Nitrophenol	ND	ug/kg	9800					
,4-Dinitrophenol	ND	ug/kg	20000					
,6-Dinitro-o-cresol	ND	ug/kg	20000					
entachlorophenol	ND	ug/kg	20000					
henol	ND	ug/kg	6900					
-Methylphenol	ND	ug/kg	5900					
-Methylphenol/4-Methylphenol	ND	ug/kg	5900					
,4,5-Trichlorophenol	ND	ug/kg	4900					
enzoic Acid	ND	ug/kg	49000					
Benzyl Alcohol	ND	ug/kg	9800					
arbazole	ND	ug/kg	4900					
urrogate(s)	Recovery		QC Cri	teri	a			
-Fluorophenol	69.0	%	25-120)				
henol-d6	76.0	%	10-120)				
Jitrobenzene-d5	69.0	ર	23-120					
-Fluorobiphenyl	72.0	%	30-120					
,4,6-Tribromophenol	93.0	ર	19-120					
-Terphenyl-d14	63.0	%	18-120					

Laboratory Sample Number: L0813447-06

PWG-DW-2008-31(8-8.5')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA ⁱ PREP	TE ANAL	ID
Semivolatile Organics by El	PA 8270C-SIM	cont'd		1 8270C	0912 21:30	0916 05:5	4 AK
Acenaphthene	ND	ug/kg	2000				
2-Chloronaphthalene	ND	ug/kg	2000				
Fluoranthene	3900	ug/kg	2000				
Hexachlorobutadiene	ND	ug/kg	4900				
Naphthalene	ND	ug/kg	2000				
Benzo(a)anthracene	ND	ug/kg	2000				
Benzo(a)pyrene	ND	ug/kg	2000				
Benzo(b)fluoranthene	ND	ug/kg	2000				
Benzo(k)fluoranthene	ND	ug/kg	2000				
Chrysene	ND	ug/kg	2000				
Acenaphthylene	ND	ug/kg	2000				
Anthracene	ND	ug/kg	2000				
Benzo(ghi)perylene	ND	ug/kg	2000				
Fluorene	ND	ug/kg	2000				
Phenanthrene	ND	ug/kg	2000				
Dibenzo(a,h)anthracene	ND	ug/kg	2000				
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	2000				
Pyrene	4100	ug/kg	2000				
2-Methylnaphthalene	ND	ug/kg	2000				
Pentachlorophenol	ND	ug/kg	7800				
Hexachlorobenzene	ND	ug/kg	7800				
Hexachloroethane	ND	ug/kg	7800				
Surrogate(s)	Recovery		QC Cri	teria			
2-Fluorophenol	ND	%	25-120				
Phenol-d6	ND	%	10-120				
Nitrobenzene-d5	ND	%	23-120				
2-Fluorobiphenyl	ND	%	30-120				
2,4,6-Tribromophenol	ND	%	19-120				
4-Terphenyl-d14	ND	%	18-120				
Petroleum Hydrocarbon Quant	titation by (GC-FID		1 8015B(M)	0916 01:30	0917 23:1	1 JL
ТРН	6340000	ug/kg	490000				
Surrogate(s)	Recovery		QC Cri	teria			
o-Terphenyl	94.0	%	40-140				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813447-07 Date Collected: 10-SEP-2008 10:00

Sample Matrix: SOIL Date Reported: 22-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE II
					PREP ANAL
Solids, Total	69	%	0.10	30 2540G	0913 15:45 NM
Total Metals					
Aluminum, Total	2300	mg/kg	7.2	1 6010B	0912 18:00 0918 13:35 AI
Antimony, Total	ND	mg/kg	3.6	1 6010B	0912 18:00 0918 13:35 AI
Arsenic, Total	0.92	mg/kg	0.72	1 6010B	0912 18:00 0919 12:17 AI
Barium, Total	21	mg/kg	0.72	1 6010B	0912 18:00 0918 13:35 AI
Beryllium, Total	ND	mg/kg	0.36	1 6010B	0912 18:00 0918 13:35 AI
Cadmium, Total	0.84	mg/kg	0.72	1 6010B	0912 18:00 0918 13:35 AI
Calcium, Total	12000	mg/kg	7.2	1 6010B	0912 18:00 0918 13:35 AI
Chromium, Total	30	mg/kg	0.72	1 6010B	0912 18:00 0918 13:35 AI
Cobalt, Total	1.8	mg/kg	1.4	1 6010B	0912 18:00 0918 13:35 AI
Copper, Total	24	mg/kg	0.72	1 6010B	0912 18:00 0918 13:35 AI
Iron, Total	3700	mg/kg	3.6	1 6010B	0912 18:00 0918 13:35 AI
Lead, Total	210	mg/kg	3.6	1 6010B	0912 18:00 0918 13:35 AI
Magnesium, Total	7300	mg/kg	7.2	1 6010B	0912 18:00 0918 13:35 AI
Manganese, Total	36	mg/kg	0.72	1 6010B	0912 18:00 0919 12:17 AI
Mercury, Total	0.27	mg/kg	0.11	1 7471A	0912 20:30 0914 14:22 HG
Nickel, Total	9.7	mg/kg	1.8	1 6010B	0912 18:00 0918 13:35 AI
Potassium, Total	200	mg/kg	180	1 6010B	0912 18:00 0918 13:35 AI
Selenium, Total	ND	mg/kg	1.4	1 6010B	0912 18:00 0919 12:17 AI
Silver, Total	ND	mg/kg	0.72	1 6010B	0912 18:00 0918 13:35 AI
Sodium, Total	ND	mg/kg	140	1 6010B	0912 18:00 0918 13:35 AI
Thallium, Total	ND	mg/kg	1.4	1 6010B	0912 18:00 0918 13:35 AI
Janadium, Total	22	mg/kg	0.72	1 6010B	0912 18:00 0918 13:35 AI
Zinc, Total	170	mg/kg	3.6	1 6010B	0912 18:00 0918 13:35 AI
1110, 10001	1 , 0	9,9	3.0	1 00102	0312 10:00 0310 13:03 11
olatile Organics by EPA 8	3260B			1 8260B	0915 17:55 PD
Methylene chloride	ND	ug/kg	36.		
,1-Dichloroethane	ND	ug/kg	5.4		
Chloroform	ND	ug/kg	5.4		
Carbon tetrachloride	ND	ug/kg	3.6		
l,2-Dichloropropane	ND	ug/kg	13.		
Dibromochloromethane	ND	ug/kg	3.6		
1,1,2-Trichloroethane	ND	ug/kg	5.4		
Tetrachloroethene	ND	ug/kg	3.6		
Chlorobenzene	ND	ug/kg	3.6		
Trichlorofluoromethane	ND	ug/kg	18.		

Laboratory Sample Number: L0813447-07

PWG-DW-2008-33(7-7.5')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Volatile Organics by EPA 826		(1	2 -	1	8260B		0915 17:	55 PD
l,2-Dichloroethane	ND	ug/kg	3.6					
l,1,1-Trichloroethane	ND	ug/kg	3.6					
Bromodichloromethane	ND	ug/kg	3.6					
crans-1,3-Dichloropropene	ND	ug/kg	3.6					
cis-1,3-Dichloropropene	ND	ug/kg	3.6					
l,1-Dichloropropene	ND	ug/kg	18.					
Bromoform	ND	ug/kg	14.					
,1,2,2-Tetrachloroethane	ND	ug/kg	3.6					
Benzene	ND	ug/kg	3.6					
Coluene	ND	ug/kg	5.4					
Ethylbenzene	ND	ug/kg	3.6					
Chloromethane	ND	ug/kg	18.					
Bromomethane	ND	ug/kg	7.2					
Vinyl chloride	ND	ug/kg	7.2					
hloroethane	ND	ug/kg	7.2					
,1-Dichloroethene	ND	ug/kg	3.6					
rans-1,2-Dichloroethene	ND	ug/kg	5.4					
Crichloroethene	ND	ug/kg	3.6					
,2-Dichlorobenzene	ND	ug/kg	18.					
,3-Dichlorobenzene	ND	ug/kg	18.					
,4-Dichlorobenzene	ND	ug/kg	18.					
ethyl tert butyl ether	ND	ug/kg	7.2					
/m-Xylene	ND	ug/kg	7.2					
-Xylene	ND	ug/kg	7.2					
is-1,2-Dichloroethene	ND	ug/kg	3.6					
ibromomethane	ND	ug/kg	36.					
Styrene	ND	ug/kg	7.2					
Dichlorodifluoromethane	ND	ug/kg	36.					
cetone	43	ug/kg	36					
Carbon disulfide	ND	ug/kg	36.					
-Butanone	ND	ug/kg	36.					
inyl acetate	ND	ug/kg	36.					
-Methyl-2-pentanone	ND	ug/kg	36.					
.,2,3-Trichloropropane	ND	ug/kg	36.					
-Hexanone	ND	ug/kg	36.					
romochloromethane	ND	ug/kg	18.					
2,2-Dichloropropane	ND	ug/kg	18.					
,2-Dibromoethane	ND	ug/kg	14.					
,3-Dichloropropane	ND	ug/kg	18.					
.,1,1,2-Tetrachloroethane	ND	ug/kg	3.6					
romobenzene	ND	ug/kg	18.					
-Butylbenzene	ND	ug/kg	3.6					
ec-Butylbenzene	ND	ug/kg	3.6					
ert-Butylbenzene	ND	ug/kg	18.					
-Chlorotoluene	ND	ug/kg	18.					
-Chlorotoluene	ND	ug/kg	18.					
,2-Dibromo-3-chloropropane	ND	ug/kg	18.					
exachlorobutadiene	ND	ug/kg	18.					
Esopropylbenzene	ND	ug/kg	3.6					

Laboratory Sample Number: L0813447-07

PWG-DW-2008-33(7-7.5')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 826	OR contid			1 8260B	0915 17:55 PD
p-Isopropyltoluene	ND	ug/kg	3.6	1 0200B	0913 17:33 20
Naphthalene			18.		
	ND	ug/kg			
Acrylonitrile	ND	ug/kg	36.		
n-Propylbenzene 1,2,3-Trichlorobenzene	ND	ug/kg	3.6		
	ND	ug/kg	18.		
1,2,4-Trichlorobenzene	ND	ug/kg	18.		
1,3,5-Trimethylbenzene	ND	ug/kg	18.		
1,2,4-Trimethylbenzene	ND	ug/kg	18.		
1,4-Diethylbenzene	ND	ug/kg	14.		
4-Ethyltoluene	ND	ug/kg	14.		
1,2,4,5-Tetramethylbenzene	ND	ug/kg	14.		
Surrogate(s)	Recovery		QC Cri	iteria	
1,2-Dichloroethane-d4	100	%	70-130)	
Toluene-d8	113	%	70-130)	
4-Bromofluorobenzene	128	8	70-130)	
Dibromofluoromethane	101	%	70-130)	
Semivolatile Organics by EPA	8270C			1 8270C	0916 19:00 0918 13:50 PS
Acenaphthene	ND	ug/kg	7200		
1,2,4-Trichlorobenzene	ND	ug/kg	7200		
Hexachlorobenzene	ND	ug/kg	7200		
Bis(2-chloroethyl)ether	ND	ug/kg	7200		
2-Chloronaphthalene	ND	ug/kg	8700		
1,2-Dichlorobenzene	ND	ug/kg	7200		
1,3-Dichlorobenzene	ND	ug/kg	7200		
1,4-Dichlorobenzene	ND	ug/kg	7200		
3,3'-Dichlorobenzidine	ND	ug/kg	14000		
2,4-Dinitrotoluene	ND	ug/kg	7200		
2,6-Dinitrotoluene	ND	ug/kg	7200		
Fluoranthene	ND	ug/kg	7200		
4-Chlorophenyl phenyl ether	ND	ug/kg	7200		
4-Bromophenyl phenyl ether	ND	ug/kg	7200		
Bis(2-chloroisopropyl)ether	ND	ug/kg	7200		
Bis(2-chloroethoxy)methane	ND	ug/kg	7200		
Hexachlorobutadiene	ND	ug/kg	14000		
Hexachlorocyclopentadiene	ND	ug/kg	14000		
Hexachloroethane	ND	ug/kg	7200		
Isophorone	ND	ug/kg	7200		
Naphthalene	ND	ug/kg	7200		
Natrobenzene	ND	ug/kg ug/kg	7200		
NitrosoDiPhenylAmine(NDPA)/D		ug/kg ug/kg	22000)	
n-Nitrosodi-n-propylamine	ND	ug/kg	7200	•	
Bis(2-Ethylhexyl)phthalate	19000	ug/kg ug/kg	14000		
Butyl benzyl phthalate	ND	ug/kg ug/kg	7200		
Di-n-butylphthalate	ND ND	ug/kg ug/kg	7200		
Di-n-butyiphthalate Di-n-octylphthalate	ND ND		7200		
		ug/kg			
Diethyl phthalate	ND	ug/kg	7200		
Dimethyl phthalate	ND	ug/kg	7200		

Laboratory Sample Number: L0813447-07

PWG-DW-2008-33(7-7.5')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA' PREP	TE ANA:	L
Semivolatile Organics by EPA 8	8270C cont	- ' d		1	8270C	0916 19:00	0918 13	8:50 PS
Benzo(a)anthracene	ND	ug/kg	7200	_				
Benzo(a)pyrene	ND	ug/kg ug/kg	7200					
Benzo(b)fluoranthene	ND	ug/kg ug/kg	7200					
Benzo(k)fluoranthene	ND	ug/kg ug/kg	7200					
Chrysene	ND	ug/kg ug/kg	7200					
acenaphthylene	ND	ug/kg ug/kg	7200					
anthracene	ND	ug/kg ug/kg	7200					
Benzo(ghi)perylene	ND	ug/kg ug/kg	7200					
luorene	ND		7200					
Phenanthrene	ND	ug/kg	7200					
		ug/kg						
oibenzo(a,h)anthracene	ND	ug/kg	7200					
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	7200					
yrene	ND	ug/kg	7200					
Siphenyl	ND	ug/kg	7200					
-Chloroaniline	ND	ug/kg	7200					
-Nitroaniline	ND	ug/kg	7200					
-Nitroaniline	ND	ug/kg	7200					
-Nitroaniline	ND	ug/kg	10000					
ibenzofuran	ND	ug/kg	7200					
-Methylnaphthalene	ND	ug/kg	7200					
,2,4,5-Tetrachlorobenzene	ND	ug/kg	29000					
cetophenone	ND	ug/kg	29000					
,4,6-Trichlorophenol	ND	ug/kg	7200					
-Chloro-M-Cresol	ND	ug/kg	7200					
-Chlorophenol	ND	ug/kg	8700					
,4-Dichlorophenol	ND	ug/kg	14000					
,4-Dimethylphenol	ND	ug/kg	7200					
-Nitrophenol	ND	ug/kg	29000					
-Nitrophenol	ND	ug/kg	14000					
,4-Dinitrophenol	ND	ug/kg	29000					
,6-Dinitro-o-cresol	ND	ug/kg	29000					
entachlorophenol	ND	ug/kg	29000					
henol	ND	ug/kg	10000					
-Methylphenol	ND	ug/kg	8700					
-Methylphenol/4-Methylphenol	ND	ug/kg	8700					
,4,5-Trichlorophenol	ND	ug/kg	7200					
enzoic Acid	ND	ug/kg	72000					
Benzyl Alcohol	ND	ug/kg	14000					
arbazole	ND	ug/kg	7200					
durrogate(s)	Recovery		QC Cri	teria	a			
-Fluorophenol	103	%	25-120					
henol-d6	98.0	%	10-120					
itrobenzene-d5	92.0	%	23-120					
-Fluorobiphenyl	85.0	%	30-120					
,4,6-Tribromophenol	109	%	19-120					
-Terphenyl-d14	78.0	%	18-120					

Laboratory Sample Number: L0813447-07

PWG-DW-2008-33(7-7.5')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE PREP ANA	ID AL
Semivolatile Organics by E				1 8270C	0912 21:30 0916 (06:40 AK
Acenaphthene	ND	ug/kg	1900			
2-Chloronaphthalene	ND	ug/kg	1900			
Fluoranthene	ND	ug/kg	1900			
Hexachlorobutadiene	ND	ug/kg	4800			
Naphthalene	ND	ug/kg	1900			
Benzo(a)anthracene	ND	ug/kg	1900			
Benzo(a)pyrene	ND	ug/kg	1900			
Benzo(b)fluoranthene	ND	ug/kg	1900			
Benzo(k)fluoranthene	ND	ug/kg	1900			
Chrysene	ND	ug/kg	1900			
Acenaphthylene	ND	ug/kg	1900			
Anthracene	ND	ug/kg	1900			
Benzo(ghi)perylene	ND	ug/kg	1900			
Fluorene	ND	ug/kg	1900			
Phenanthrene	ND	ug/kg	1900			
Dibenzo(a,h)anthracene	ND	ug/kg	1900			
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	1900			
Pyrene	ND	ug/kg	1900			
2-Methylnaphthalene	ND	ug/kg	1900			
Pentachlorophenol	ND	ug/kg	7700			
Hexachlorobenzene	ND	ug/kg	7700			
Hexachloroethane	ND	ug/kg	7700			
Surrogate(s)	Recovery		QC Cri	lteria		
2-Fluorophenol	ND	%	25-120)		
Phenol-d6	ND	%	10-120)		
Nitrobenzene-d5	ND	8	23-120)		
2-Fluorobiphenyl	ND	%	30-120)		
2,4,6-Tribromophenol	ND	%	19-120			
4-Terphenyl-d14	ND	%	18-120			
Petroleum Hydrocarbon Quan	titation by (GC-FID		1 8015B(M)	0916 01:30 0917 2	23:46 JL
ТРН	3590000	ug/kg	483000)		
Surrogate(s)	Recovery		QC Cri			
o-Terphenyl	89.0	%	40-140)		

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813447-08 Date Collected: 10-SEP-2008 10:15

PWG-DW-2008-34(5.5-6') Date Received: 11-SEP-2008

Sample Matrix: SOIL Date Reported: 22-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE I
					PREP ANAL
Solids, Total	66	%	0.10	30 2540G	0913 15:45 N
Total Metals					
Aluminum, Total	4200	mg/kg	7.4	1 6010B	0912 18:00 0918 13:38 A
Antimony, Total	ND	mg/kg	3.7	1 6010B	0912 18:00 0918 13:38 A
Arsenic, Total	1.3	mg/kg	0.74	1 6010B	0912 18:00 0919 12:20 A
Barium, Total	41	mg/kg	0.74	1 6010B	0912 18:00 0918 13:38 A
Beryllium, Total	ND	mg/kg	0.37	1 6010B	0912 18:00 0918 13:38 A
Cadmium, Total	1.8	mg/kg	0.74	1 6010B	0912 18:00 0918 13:38 A
Calcium, Total	14000	mq/kq	7.4	1 6010B	0912 18:00 0918 13:38 A
Chromium, Total	39	mg/kg	0.74	1 6010B	0912 18:00 0918 13:38 A
Cobalt, Total	3.0	mg/kg	1.5	1 6010B	0912 18:00 0918 13:38 A
Copper, Total	35	mg/kg	0.74	1 6010B	0912 18:00 0918 13:38 A
Iron, Total	7900	mg/kg	3.7	1 6010B	0912 18:00 0918 13:38 A
⊒ead, Total	300	mg/kg	3.7	1 6010B	0912 18:00 0918 13:38 A
Magnesium, Total	8300	mg/kg	7.4	1 6010B	0912 18:00 0918 13:38 A
Manganese, Total	54	mg/kg	0.74	1 6010B	0912 18:00 0919 12:20 A
Mercury, Total	4.1	mg/kg	0.58	1 7471A	0912 20:30 0914 16:06 H
Nickel, Total	14	mg/kg	1.8	1 6010B	0912 18:00 0918 13:38 A
Potassium, Total	300	mg/kg	180	1 6010B	0912 18:00 0918 13:38 A
Selenium, Total	ND	mg/kg	1.5	1 6010B	0912 18:00 0919 12:20 A
Silver, Total	4.4	mg/kg	0.74	1 6010B	0912 18:00 0918 13:38 A
Sodium, Total	ND	mg/kg	150	1 6010B	0912 18:00 0918 13:38 A
Thallium, Total	ND	mg/kg	1.5	1 6010B	0912 18:00 0918 13:38 A
Janadium, Total	26	mg/kg	0.74	1 6010B	0912 18:00 0918 13:38 A
Zinc, Total	270	mg/kg	3.7	1 6010B	0912 18:00 0918 13:38 A
		5,5			
olatile Organics by EPA 8	260B			1 8260B	0915 18:31 F
Methylene chloride	ND	ug/kg	38.		
l,1-Dichloroethane	ND	ug/kg	5.7		
Chloroform	ND	ug/kg	5.7		
Carbon tetrachloride	ND	ug/kg	3.8		
l,2-Dichloropropane	ND	ug/kg	13.		
Dibromochloromethane	ND	ug/kg	3.8		
1,1,2-Trichloroethane	ND	ug/kg	5.7		
Tetrachloroethene	ND	ug/kg	3.8		
Chlorobenzene	ND	ug/kg	3.8		
Trichlorofluoromethane	ND	ug/kg	19.		

Laboratory Sample Number: L0813447-08

PWG-DW-2008-34(5.5-6')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Olatile Organics by EPA 826				1	8260B		0915 18:	31 PD
l,2-Dichloroethane	ND	ug/kg	3.8					
l,1,1-Trichloroethane	ND	ug/kg	3.8					
Bromodichloromethane	ND	ug/kg	3.8					
rans-1,3-Dichloropropene	ND	ug/kg	3.8					
cis-1,3-Dichloropropene	ND	ug/kg	3.8					
,1-Dichloropropene	ND	ug/kg	19.					
Bromoform	ND	ug/kg	15.					
.,1,2,2-Tetrachloroethane	ND	ug/kg	3.8					
Benzene	ND	ug/kg	3.8					
'oluene	ND	ug/kg	5.7					
Sthylbenzene	ND	ug/kg	3.8					
hloromethane	ND	ug/kg	19.					
Bromomethane	ND	ug/kg	7.6					
7inyl chloride	ND	ug/kg	7.6					
hloroethane	ND	ug/kg	7.6					
,1-Dichloroethene	ND	ug/kg	3.8					
rans-1,2-Dichloroethene	ND	ug/kg	5.7					
richloroethene	ND	ug/kg	3.8					
,2-Dichlorobenzene	ND	ug/kg	19.					
,3-Dichlorobenzene	ND	ug/kg	19.					
,4-Dichlorobenzene	ND	ug/kg	19.					
Methyl tert butyl ether	ND	ug/kg	7.6					
/m-Xylene	ND	ug/kg	7.6					
-Xylene	ND	ug/kg	7.6					
is-1,2-Dichloroethene	ND	ug/kg	3.8					
ibromomethane	ND	ug/kg	38.					
Styrene	ND	ug/kg	7.6					
ichlorodifluoromethane	ND	ug/kg	38.					
cetone	48	ug/kg	38					
Carbon disulfide	ND	ug/kg	38.					
-Butanone	ND	ug/kg	38.					
inyl acetate	ND	ug/kg	38.					
-Methyl-2-pentanone	ND	ug/kg	38.					
.,2,3-Trichloropropane	ND	ug/kg	38.					
-Hexanone	ND	ug/kg	38.					
romochloromethane	ND	ug/kg	19.					
,2-Dichloropropane	ND	ug/kg	19.					
,2-Dibromoethane	ND	ug/kg	15.					
,3-Dichloropropane	ND	ug/kg	19.					
,1,1,2-Tetrachloroethane	ND	ug/kg	3.8					
romobenzene	ND	ug/kg	19.					
-Butylbenzene	ND	ug/kg	3.8					
ec-Butylbenzene	ND	ug/kg	3.8					
ert-Butylbenzene	ND	ug/kg	19.					
-Chlorotoluene	ND	ug/kg	19.					
-Chlorotoluene	ND	ug/kg	19.					
,2-Dibromo-3-chloropropane	ND	ug/kg	19.					
exachlorobutadiene	ND	ug/kg	19.					
Esopropylbenzene	ND	ug/kg	3.8					

Laboratory Sample Number: L0813447-08

PWG-DW-2008-34(5.5-6')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
						PREP	ANAL	
Volatile Organics by EPA 826	OB cont'd			1	8260B		0915 18:3	31 PD
p-Isopropyltoluene	ND	ug/kg	3.8					
Naphthalene	ND	ug/kg	19.					
Acrylonitrile	ND	ug/kg	38.					
n-Propylbenzene	ND	ug/kg	3.8					
1,2,3-Trichlorobenzene	ND	ug/kg	19.					
1,2,4-Trichlorobenzene	ND	ug/kg	19.					
1,3,5-Trimethylbenzene	ND	ug/kg	19.					
1,2,4-Trimethylbenzene	ND	ug/kg	19.					
1,4-Diethylbenzene	ND	ug/kg	15.					
4-Ethyltoluene	ND	ug/kg	15.					
l,2,4,5-Tetramethylbenzene	ND	ug/kg	15.					
Surrogate(s)	Recovery		QC Cri	teria	a			
1,2-Dichloroethane-d4	85.0	%	70-130					
Toluene-d8	94.0	%	70-130					
4-Bromofluorobenzene	99.0	%	70-130					
Dibromofluoromethane	85.0	%	70-130					
		•	30					
Semivolatile Organics by EPA		. /1	7600	1	8270C	0916 19:00	0918 14:	14 PS
Acenaphthene	ND	ug/kg	7600					
1,2,4-Trichlorobenzene	ND	ug/kg	7600					
Hexachlorobenzene	ND	ug/kg	7600					
Bis(2-chloroethyl)ether	ND	ug/kg	7600					
2-Chloronaphthalene	ND	ug/kg	9100					
l,2-Dichlorobenzene	ND	ug/kg	7600					
l,3-Dichlorobenzene	ND	ug/kg	7600					
l,4-Dichlorobenzene	ND	ug/kg	7600					
3,3'-Dichlorobenzidine	ND	ug/kg	15000					
2,4-Dinitrotoluene	ND	ug/kg	7600					
2,6-Dinitrotoluene	ND	ug/kg	7600					
Fluoranthene	ND	ug/kg	7600					
4-Chlorophenyl phenyl ether	ND	ug/kg	7600					
4-Bromophenyl phenyl ether	ND	ug/kg	7600					
Bis(2-chloroisopropyl)ether	ND	ug/kg	7600					
Bis(2-chloroethoxy)methane	ND	ug/kg	7600					
Hexachlorobutadiene	ND	ug/kg	15000					
Hexachlorocyclopentadiene	ND	ug/kg	15000					
Hexachloroethane	ND	ug/kg	7600					
Isophorone	ND	ug/kg	7600					
Naphthalene	ND	ug/kg	7600					
Nitrobenzene	ND	ug/kg	7600					
NitrosoDiPhenylAmine(NDPA)/D		ug/kg	23000					
n-Nitrosodi-n-propylamine	ND	ug/kg	7600					
Bis(2-Ethylhexyl)phthalate	ND	ug/kg	15000					
Butyl benzyl phthalate	ND	ug/kg	7600					
Di-n-butylphthalate	ND	ug/kg	7600					
Di-n-octylphthalate	ND	ug/kg	7600					
Diethyl phthalate	ND	ug/kg	7600					
Dimethyl phthalate	ND	ug/kg	7600					

Laboratory Sample Number: L0813447-08

PWG-DW-2008-34(5.5-6')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA' PREP	TE ANA	ID L
Semivolatile Organics by EPA	8270C cont	- ' d		1	8270C	0916 19:00	0918 14	L:14 DS
Benzo(a)anthracene	ND	ug/kg	7600	_	02700	0310 13:00	0010 11	11 10
Benzo(a)pyrene	ND	ug/kg ug/kg	7600					
Benzo(b)fluoranthene	ND	ug/kg ug/kg	7600					
Benzo(k)fluoranthene	ND	ug/kg ug/kg	7600					
Chrysene	ND	ug/kg ug/kg	7600					
acenaphthylene	ND	ug/kg ug/kg	7600					
anthracene	ND	ug/kg ug/kg	7600					
Benzo(ghi)perylene	ND	ug/kg ug/kg	7600					
luorene	ND	ug/kg ug/kg	7600					
henanthrene	ND	ug/kg ug/kg	7600					
ribenzo(a,h)anthracene	ND	ug/kg ug/kg	7600					
ndeno(1,2,3-cd)Pyrene	ND	ug/kg ug/kg	7600					
			7600					
yrene	ND	ug/kg	7600					
Siphenyl	ND	ug/kg						
-Chloroaniline	ND	ug/kg	7600					
-Nitroaniline	ND	ug/kg	7600 7600					
-Nitroaniline	ND	ug/kg						
-Nitroaniline	ND	ug/kg	11000					
ibenzofuran	ND	ug/kg	7600					
-Methylnaphthalene	ND	ug/kg	7600					
,2,4,5-Tetrachlorobenzene	ND	ug/kg	30000					
cetophenone	ND	ug/kg	30000					
,4,6-Trichlorophenol	ND	ug/kg	7600					
-Chloro-M-Cresol	ND	ug/kg	7600					
-Chlorophenol	ND	ug/kg	9100					
,4-Dichlorophenol	ND	ug/kg	15000					
,4-Dimethylphenol	ND	ug/kg	7600					
-Nitrophenol	ND	ug/kg	30000					
-Nitrophenol	ND	ug/kg	15000					
,4-Dinitrophenol	ND	ug/kg	30000					
,6-Dinitro-o-cresol	ND	ug/kg	30000					
entachlorophenol	ND	ug/kg	30000					
henol	ND	ug/kg	11000					
-Methylphenol	ND	ug/kg	9100					
-Methylphenol/4-Methylphenol	ND	ug/kg	9100					
,4,5-Trichlorophenol	ND	ug/kg	7600					
enzoic Acid	ND	ug/kg	76000					
Benzyl Alcohol	ND	ug/kg	15000					
arbazole	ND	ug/kg	7600					
urrogate(s)	Recovery		QC Cri	teria	a.			
-Fluorophenol	97.0	રુ	25-120)				
henol-d6	93.0	%	10-120)				
itrobenzene-d5	89.0	%	23-120)				
-Fluorobiphenyl	82.0	%	30-120)				
,4,6-Tribromophenol	103	%	19-120)				
-Terphenyl-d14	73.0	%	18-120)				

Laboratory Sample Number: L0813447-08

PWG-DW-2008-34(5.5-6')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATI PREP	E ANAL	ID
Semivolatile Organics by E	PA 8270C-SIM	cont'd		1 8270C	0912 21:30 09	916 07:2	6 AK
Acenaphthene	ND	ug/kg	2000				
2-Chloronaphthalene	ND	ug/kg	2000				
Fluoranthene	ND	ug/kg	2000				
Hexachlorobutadiene	ND	ug/kg	5000				
Naphthalene	ND	ug/kg	2000				
Benzo(a)anthracene	ND	ug/kg	2000				
Benzo(a)pyrene	ND	ug/kg	2000				
Benzo(b)fluoranthene	ND	ug/kg	2000				
Benzo(k)fluoranthene	ND	ug/kg	2000				
Chrysene	ND	ug/kg	2000				
Acenaphthylene	ND	ug/kg	2000				
Anthracene	ND	ug/kg	2000				
Benzo(ghi)perylene	ND	ug/kg	2000				
Fluorene	ND	ug/kg	2000				
Phenanthrene	2000	ug/kg	2000				
Dibenzo(a,h)anthracene	ND	ug/kg	2000				
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	2000				
Pyrene	ND	ug/kg	2000				
2-Methylnaphthalene	11000	ug/kg	2000				
Pentachlorophenol	ND	ug/kg	8100				
Hexachlorobenzene	ND	ug/kg	8100				
Hexachloroethane	ND	ug/kg	8100				
Surrogate(s)	Recovery		QC Cri	teria			
2-Fluorophenol	ND	%	25-120)			
Phenol-d6	ND	%	10-120)			
Nitrobenzene-d5	ND	%	23-120)			
2-Fluorobiphenyl	ND	%	30-120				
2,4,6-Tribromophenol	ND	%	19-120)			
4-Terphenyl-d14	ND	%	18-120	1			
Petroleum Hydrocarbon Quan	titation by (GC-FID		1 8015B(M)	0916 01:30 09	918 00:2	0 JL
ТРН	4820000	ug/kg	505000				
Surrogate(s)	Recovery		QC Cri	teria			
o-Terphenyl	89.0	%	40-140	1			

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813447-09 Date Collected: 10-SEP-2008 10:30

Sample Matrix: SOIL Date Reported: 22-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE II
					PREP ANAL
colids, Total	54	9	0.10	30 2540G	0913 15:45 NM
Cotal Metals					
Aluminum, Total	9600	mg/kg	8.5	1 6010B	0912 18:00 0918 13:41 AI
Antimony, Total	ND	mg/kg	4.2	1 6010B	0912 18:00 0918 13:41 AI
Arsenic, Total	4.2	mg/kg	0.85	1 6010B	0912 18:00 0919 12:23 AI
Barium, Total	58	mg/kg	0.85	1 6010B	0912 18:00 0918 13:41 AI
Beryllium, Total	ND	mg/kg	0.42	1 6010B	0912 18:00 0918 13:41 AI
Cadmium, Total	6.3	mg/kg	0.85	1 6010B	0912 18:00 0918 13:41 AI
Calcium, Total	3100	mg/kg	8.5	1 6010B	0912 18:00 0918 13:41 AI
Chromium, Total	91	mg/kg	0.85	1 6010B	0912 18:00 0918 13:41 AI
Cobalt, Total	5.5	mg/kg	1.7	1 6010B	0912 18:00 0918 13:41 AI
Copper, Total	240	mg/kg	0.85	1 6010B	0912 18:00 0918 13:41 AI
Iron, Total	11000	mg/kg	4.2	1 6010B	0912 18:00 0918 13:41 AI
Lead, Total	890	mg/kg	4.2	1 6010B	0912 18:00 0918 13:41 AI
Magnesium, Total	2200	mg/kg	8.5	1 6010B	0912 18:00 0918 13:41 AI
Manganese, Total	64	mg/kg	0.85	1 6010B	0912 18:00 0919 12:23 AI
Mercury, Total	1.6	mg/kg	0.14	1 7471A	0912 20:30 0914 14:26 HG
Nickel, Total	42	mg/kg	2.1	1 6010B	0912 18:00 0918 13:41 AI
Potassium, Total	650	mg/kg	210	1 6010B	0912 18:00 0918 13:41 AI
Selenium, Total	2.5	mg/kg	1.7	1 6010B	0912 18:00 0919 12:23 AI
Silver, Total	2.9	mg/kg	0.85	1 6010B	0912 18:00 0918 13:41 AI
Sodium, Total	ND	mg/kg	170	1 6010B	0912 18:00 0918 13:41 AI
Thallium, Total	ND	mg/kg	1.7	1 6010B	0912 18:00 0918 13:41 AI
Janadium, Total	70	mg/kg	0.85	1 6010B	0912 18:00 0918 13:41 AI
Zinc, Total	730	mg/kg	4.2	1 6010B	0912 18:00 0918 13:41 AI
Volatile Organics by EPA 8	3260B			1 8260B	0915 19:08 PI
Methylene chloride	ND	ug/kg	46.		
,1-Dichloroethane	ND	ug/kg	6.9		
Chloroform	ND	ug/kg	6.9		
Carbon tetrachloride	ND	ug/kg	4.6		
l,2-Dichloropropane	ND	ug/kg	16.		
Dibromochloromethane	ND	ug/kg	4.6		
1,1,2-Trichloroethane	ND	ug/kg	6.9		
Tetrachloroethene	ND	ug/kg	4.6		
Chlorobenzene	ND	ug/kg	4.6		
Trichlorofluoromethane	ND	ug/kg	23.		

Laboratory Sample Number: L0813447-09

PWG-DW-2008-37(11-11.5')

PARAMETER	RESULT	UNITS	\mathtt{RDL}	REF	METHOD	DA	TE	ID
						PREP	ANAL	
7.1.1.1.1. O	0.D							
Volatile Organics by EPA 826		/1	4 6	1	8260B		0915 19:	08 PD
1,2-Dichloroethane	ND	ug/kg	4.6					
1,1,1-Trichloroethane	ND	ug/kg	4.6					
Bromodichloromethane	ND	ug/kg	4.6					
trans-1,3-Dichloropropene	ND	ug/kg	4.6					
cis-1,3-Dichloropropene	ND	ug/kg	4.6					
l,1-Dichloropropene	ND	ug/kg	23.					
Bromoform	ND	ug/kg	18.					
1,1,2,2-Tetrachloroethane	ND	ug/kg	4.6					
Benzene 	ND	ug/kg	4.6					
Toluene	ND	ug/kg	6.9					
Ethylbenzene	ND	ug/kg	4.6					
Chloromethane	ND	ug/kg	23.					
Bromomethane	ND	ug/kg	9.2					
Vinyl chloride	ND	ug/kg	9.2					
Chloroethane	ND	ug/kg	9.2					
1,1-Dichloroethene	ND	ug/kg	4.6					
trans-1,2-Dichloroethene	ND	ug/kg	6.9					
Trichloroethene	ND	ug/kg	4.6					
1,2-Dichlorobenzene	ND	ug/kg	23.					
1,3-Dichlorobenzene	ND	ug/kg	23.					
1,4-Dichlorobenzene	ND	ug/kg	23.					
Methyl tert butyl ether	ND	ug/kg	9.2					
p/m-Xylene	ND	ug/kg	9.2					
o-Xylene	ND	ug/kg	9.2					
cis-1,2-Dichloroethene	ND	ug/kg	4.6					
Dibromomethane	ND	ug/kg	46.					
Styrene	ND	ug/kg	9.2					
Dichlorodifluoromethane	ND	ug/kg	46.					
Acetone	67	ug/kg	46					
Carbon disulfide	ND	ug/kg	46.					
2-Butanone	ND	ug/kg	46.					
Vinyl acetate	ND	ug/kg	46.					
4-Methyl-2-pentanone	ND	ug/kg	46.					
1,2,3-Trichloropropane	ND	ug/kg	46.					
2-Hexanone	ND	ug/kg	46.					
Bromochloromethane	ND	ug/kg	23.					
2,2-Dichloropropane	ND	ug/kg	23.					
1,2-Dibromoethane	ND	ug/kg	18.					
1,3-Dichloropropane	ND	ug/kg	23.					
l,1,1,2-Tetrachloroethane	ND	ug/kg	4.6					
Bromobenzene	ND	ug/kg	23.					
n-Butylbenzene	ND	ug/kg	4.6					
sec-Butylbenzene	ND	ug/kg	4.6					
tert-Butylbenzene	ND	ug/kg	23.					
o-Chlorotoluene	ND	ug/kg	23.					
p-Chlorotoluene	ND	ug/kg	23.					
1,2-Dibromo-3-chloropropane	ND	ug/kg	23.					
Hexachlorobutadiene	ND	ug/kg	23.					
		ر ، ر	•					

Laboratory Sample Number: L0813447-09

PWG-DW-2008-37(11-11.5')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA		ID
						PREP	ANAL	
Volatile Organics by EPA 826	OB cont'd			1	8260B		0915 19:	08 PD
p-Isopropyltoluene	ND	ug/kg	4.6					
Naphthalene	ND	ug/kg	23.					
Acrylonitrile	ND	ug/kg	46.					
n-Propylbenzene	ND	ug/kg	4.6					
1,2,3-Trichlorobenzene	ND	ug/kg	23.					
1,2,4-Trichlorobenzene	ND	ug/kg	23.					
1,3,5-Trimethylbenzene	ND	ug/kg	23.					
1,2,4-Trimethylbenzene	ND	ug/kg	23.					
1,4-Diethylbenzene	ND	ug/kg	18.					
4-Ethyltoluene	ND	ug/kg	18.					
1,2,4,5-Tetramethylbenzene	ND	ug/kg	18.					
Surrogate(s)	Recovery		QC Cri	teria	9			
1,2-Dichloroethane-d4	97.0	%	70-130		^			
Foluene-d8	109	%	70-130					
4-Bromofluorobenzene	125	%	70-130					
Dibromofluoromethane	98.0	,o o/o	70-130					
TEL OMOTIGOT OMECHANIC	JU.U	o	, U-I3U					
Semivolatile Organics by EPA				1	8270C	0916 19:00	0918 14:	37 PS
Acenaphthene	ND	ug/kg	31000					
1,2,4-Trichlorobenzene	ND	ug/kg	31000					
Hexachlorobenzene	ND	ug/kg	31000					
Bis(2-chloroethyl)ether	ND	ug/kg	31000					
2-Chloronaphthalene	ND	ug/kg	37000					
l,2-Dichlorobenzene	ND	ug/kg	31000					
l,3-Dichlorobenzene	ND	ug/kg	31000					
l,4-Dichlorobenzene	ND	ug/kg	31000					
3,3'-Dichlorobenzidine	ND	ug/kg	62000					
2,4-Dinitrotoluene	ND	ug/kg	31000					
2,6-Dinitrotoluene	ND	ug/kg	31000					
Fluoranthene	ND	ug/kg	31000					
4-Chlorophenyl phenyl ether	ND	ug/kg	31000					
4-Bromophenyl phenyl ether	ND	ug/kg	31000					
Bis(2-chloroisopropyl)ether	ND	ug/kg	31000					
Bis(2-chloroethoxy)methane	ND	ug/kg	31000					
Hexachlorobutadiene	ND	ug/kg	62000					
Hexachlorocyclopentadiene	ND	ug/kg	62000					
Hexachloroethane	ND	ug/kg	31000					
Isophorone	ND	ug/kg	31000					
Naphthalene	ND	ug/kg	31000					
Nitrobenzene	ND	ug/kg	31000					
NitrosoDiPhenylAmine(NDPA)/D	PA ND	ug/kg	92000					
n-Nitrosodi-n-propylamine	ND	ug/kg	31000					
Bis(2-Ethylhexyl)phthalate	ND	ug/kg	62000					
Butyl benzyl phthalate	ND	ug/kg	31000					
Di-n-butylphthalate	ND	ug/kg	31000					
Di-n-octylphthalate	ND	ug/kg	31000					
Diethyl phthalate	ND	ug/kg	31000					
Dimethyl phthalate	ND	ug/kg	31000					

Laboratory Sample Number: L0813447-09

PWG-DW-2008-37(11-11.5')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Semivolatile Organics by EPA	8270C cont	.'d		1	8270C	0916 19:00	0918 14:	37 PS
Benzo(a)anthracene	ND	ug/kg	31000	_				
Benzo(a)pyrene	ND	ug/kg ug/kg	31000					
Benzo(b)fluoranthene	ND	ug/kg ug/kg	31000					
Benzo(k)fluoranthene	ND	ug/kg ug/kg	31000					
Chrysene	ND	ug/kg ug/kg	31000					
Acenaphthylene	ND		31000					
Anthracene	ND	ug/kg	31000					
		ug/kg						
Benzo(ghi)perylene	ND	ug/kg	31000					
Fluorene	ND	ug/kg	31000					
Phenanthrene	ND	ug/kg	31000					
Dibenzo(a,h)anthracene	ND	ug/kg	31000					
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	31000					
Pyrene	ND	ug/kg	31000					
Biphenyl	ND	ug/kg	31000					
1-Chloroaniline	ND	ug/kg	31000					
2-Nitroaniline	ND	ug/kg	31000					
3-Nitroaniline	ND	ug/kg	31000					
1-Nitroaniline	ND	ug/kg	43000					
Dibenzofuran	ND	ug/kg	31000					
2-Methylnaphthalene	ND	ug/kg	31000					
1,2,4,5-Tetrachlorobenzene	ND	ug/kg	120000					
Acetophenone	ND	ug/kg	120000					
2,4,6-Trichlorophenol	ND	ug/kg	31000					
P-Chloro-M-Cresol	ND	ug/kg	31000					
2-Chlorophenol	ND	ug/kg	37000					
2,4-Dichlorophenol	ND	ug/kg	62000					
2,4-Dimethylphenol	ND	ug/kg	31000					
2-Nitrophenol	ND	ug/kg	120000					
1-Nitrophenol	ND	ug/kg	62000					
2,4-Dinitrophenol	ND	ug/kg	120000					
4,6-Dinitro-o-cresol	ND	ug/kg	120000					
Pentachlorophenol	ND	ug/kg	120000					
Phenol	ND	ug/kg	43000					
2-Methylphenol	ND	ug/kg	37000					
3-Methylphenol/4-Methylphenol		ug/kg	37000					
2,4,5-Trichlorophenol	ND	ug/kg ug/kg	31000					
Benzoic Acid	ND	ug/kg ug/kg	31000					
Benzyl Alcohol	ND	ug/kg ug/kg	62000					
Carbazole	ND	ug/kg ug/kg	31000					
		~5, 115	22000					
Surrogate(s)	Recovery		QC Cri		a			
2-Fluorophenol	ND	%	25-120					
Phenol-d6	ND	%	10-120					
Nitrobenzene-d5	ND	%	23-120					
2-Fluorobiphenyl	ND	%	30-120					
2,4,6-Tribromophenol	ND	%	19-120					
l-Terphenyl-d14	ND	%	18-120					

Laboratory Sample Number: L0813447-09

PWG-DW-2008-37(11-11.5')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA' PREP	TE ANAL	ID
Semivolatile Organics by E	PA 8270C-SIM	cont'd		1 8270C	0912 21:30	0916 08:1	2 AK
Acenaphthene	ND	ug/kg	2500				
2-Chloronaphthalene	ND	ug/kg	2500				
Fluoranthene	4800	ug/kg	2500				
Hexachlorobutadiene	ND	ug/kg	6200				
Naphthalene	ND	ug/kg	2500				
Benzo(a)anthracene	ND	ug/kg	2500				
Benzo(a)pyrene	ND	ug/kg	2500				
Benzo(b)fluoranthene	ND	ug/kg	2500				
Benzo(k)fluoranthene	ND	ug/kg	2500				
Chrysene	ND	ug/kg	2500				
Acenaphthylene	ND	ug/kg	2500				
Anthracene	ND	ug/kg	2500				
Benzo(ghi)perylene	ND	ug/kg	2500				
Fluorene	ND	ug/kg	2500				
Phenanthrene	ND	ug/kg	2500				
Dibenzo(a,h)anthracene	ND	ug/kg	2500				
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	2500				
Pyrene	5000	ug/kg	2500				
2-Methylnaphthalene	ND	ug/kg	2500				
Pentachlorophenol	ND	ug/kg	9900				
Hexachlorobenzene	ND	ug/kg	9900				
Hexachloroethane	ND	ug/kg	9900				
Surrogate(s)	Recovery		QC Cri	teria			
2-Fluorophenol	ND	%	25-120				
Phenol-d6	ND	%	10-120				
Nitrobenzene-d5	ND	%	23-120				
2-Fluorobiphenyl	ND	%	30-120				
2,4,6-Tribromophenol	ND	%	19-120				
4-Terphenyl-d14	ND	%	18-120				
Petroleum Hydrocarbon Quan	titation by (GC-FID		1 8015B(M)	0916 01:30	0918 11:1	8 JL
ТРН	9730000	ug/kg	309000	0			
Surrogate(s)	Recovery		QC Cri	teria			
o-Terphenyl	92.0	8	40-140				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813447-10 Date Collected: 10-SEP-2008 10:20

PWG-DW-2008-101(5.5-6') Date Received: 11-SEP-2008

Sample Matrix: SOIL Date Reported: 22-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID
					PREP ANAL
Solids, Total	64	%	0.10	30 2540G	0913 15:45 NM
Total Metals					
Aluminum, Total	3900	mg/kg	7.6	1 6010B	0912 18:00 0918 13:44 AI
Antimony, Total	ND	mg/kg	3.8	1 6010B	0912 18:00 0918 13:44 AI
Arsenic, Total	1.1	mg/kg	0.76	1 6010B	0912 18:00 0919 12:26 AI
Barium, Total	33	mg/kg	0.76	1 6010B	0912 18:00 0918 13:44 AI
Beryllium, Total	ND	mg/kg	0.38	1 6010B	0912 18:00 0918 13:44 AI
Cadmium, Total	1.6	mg/kg	0.76	1 6010B	0912 18:00 0918 13:44 AI
Calcium, Total	11000	mq/kq	7.6	1 6010B	0912 18:00 0918 13:44 AI
Chromium, Total	28	mg/kg	0.76	1 6010B	0912 18:00 0918 13:44 AI
Cobalt, Total	2.6	mg/kg	1.5	1 6010B	0912 18:00 0918 13:44 AI
Copper, Total	41	mg/kg	0.76	1 6010B	0912 18:00 0918 13:44 AI
Iron, Total	6100	mg/kg	3.8	1 6010B	0912 18:00 0918 13:44 AI
Lead, Total	270	mg/kg	3.8	1 6010B	0912 18:00 0918 13:44 AI
Magnesium, Total	6300	mg/kg	7.6	1 6010B	0912 18:00 0918 13:44 AI
Manganese, Total	60	mg/kg	0.76	1 6010B	0912 18:00 0919 12:26 AI
Mercury, Total	4.6	mg/kg	0.63	1 7471A	0912 20:30 0914 16:08 HG
Nickel, Total	13	mg/kg	1.9	1 6010B	0912 18:00 0918 13:44 AI
Potassium, Total	250	mg/kg	190	1 6010B	0912 18:00 0918 13:44 AI
Selenium, Total	ND	mg/kg	1.5	1 6010B	0912 18:00 0919 12:26 AI
Silver, Total	0.98	mg/kg	0.76	1 6010B	0912 18:00 0918 13:44 AI
Sodium, Total	ND	mg/kg	150	1 6010B	0912 18:00 0918 13:44 AI
Thallium, Total	ND	mg/kg	1.5	1 6010B	0912 18:00 0918 13:44 AI
/anadium, Total	25	mg/kg	0.76	1 6010B	0912 18:00 0918 13:44 AI
Zinc, Total	300	mg/kg	3.8	1 6010B	0912 18:00 0918 13:44 AI
inc, iotai	300	ilig/kg	3.0	1 60108	0912 18:00 0918 13:44 AI
Volatile Organics by EPA 8			_	1 8260B	0915 19:44 PD
Methylene chloride	ND	ug/kg	39.		
1,1-Dichloroethane	ND	ug/kg	5.8		
Chloroform	ND	ug/kg	5.8		
Carbon tetrachloride	ND	ug/kg	3.9		
l,2-Dichloropropane	ND	ug/kg	14.		
Dibromochloromethane	ND	ug/kg	3.9		
1,1,2-Trichloroethane	ND	ug/kg	5.8		
Tetrachloroethene	ND	ug/kg	3.9		
Chlorobenzene	ND	ug/kg	3.9		
Trichlorofluoromethane	ND	ug/kg	20.		

Laboratory Sample Number: L0813447-10

PWG-DW-2008-101(5.5-6')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
7-1-+-1- 0	00							
Volatile Organics by EPA 826		/1	2 0	1	8260B		0915 19:4	44 PD
l,2-Dichloroethane	ND	ug/kg	3.9					
1,1,1-Trichloroethane	ND	ug/kg	3.9					
Bromodichloromethane	ND	ug/kg	3.9					
crans-1,3-Dichloropropene	ND	ug/kg	3.9					
:is-1,3-Dichloropropene	ND	ug/kg	3.9					
,,1-Dichloropropene	ND	ug/kg	20.					
romoform	ND	ug/kg	16.					
,1,2,2-Tetrachloroethane	ND	ug/kg	3.9					
senzene	ND	ug/kg	3.9					
oluene	ND	ug/kg	5.8					
thylbenzene	ND	ug/kg	3.9					
hloromethane	ND	ug/kg	20.					
romomethane	ND	ug/kg	7.8					
Jinyl chloride	ND	ug/kg	7.8					
hloroethane	ND	ug/kg	7.8					
,1-Dichloroethene	ND	ug/kg	3.9					
rans-1,2-Dichloroethene	ND	ug/kg	5.8					
richloroethene	ND	ug/kg	3.9					
,2-Dichlorobenzene	ND	ug/kg	20.					
,3-Dichlorobenzene	ND	ug/kg	20.					
,4-Dichlorobenzene	ND	ug/kg	20.					
ethyl tert butyl ether	ND	ug/kg	7.8					
/m-Xylene	ND	ug/kg	7.8					
-Xylene	ND	ug/kg	7.8					
is-1,2-Dichloroethene	ND	ug/kg	3.9					
ibromomethane	ND	ug/kg	39.					
Styrene	ND	ug/kg	7.8					
pichlorodifluoromethane	ND	ug/kg	39.					
acetone	180	ug/kg	39					
arbon disulfide	ND	ug/kg	39.					
-Butanone	58	ug/kg	39					
inyl acetate	ND	ug/kg	39.					
-Methyl-2-pentanone	ND	ug/kg	39.					
,2,3-Trichloropropane	ND	ug/kg	39.					
-Hexanone	ND	ug/kg	39.					
romochloromethane	ND	ug/kg	20.					
,2-Dichloropropane	ND	ug/kg	20.					
,2-Dibromoethane	ND	ug/kg	16.					
,3-Dichloropropane	ND	ug/kg	20.					
,1,1,2-Tetrachloroethane	ND	ug/kg	3.9					
romobenzene	ND	ug/kg	20.					
-Butylbenzene	7.5	ug/kg	3.9					
ec-Butylbenzene	10	ug/kg	3.9					
ert-Butylbenzene	ND	ug/kg	20.					
-Chlorotoluene	ND	ug/kg	20.					
-Chlorotoluene	ND	ug/kg	20.					
,2-Dibromo-3-chloropropane	ND	ug/kg	20.					
exachlorobutadiene	ND	ug/kg	20.					
Isopropylbenzene	22	ug/kg	3.9					

Laboratory Sample Number: L0813447-10

PWG-DW-2008-101(5.5-6')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD		TE	ID
						PREP	ANAL	
Volatile Organics by EPA 826	OB cont'd			1	8260B		0915 19:4	14 PD
p-Isopropyltoluene	ND	ug/kg	3.9					
Naphthalene	ND	ug/kg	20.					
Acrylonitrile	ND	ug/kg	39.					
n-Propylbenzene	11	ug/kg	3.9					
1,2,3-Trichlorobenzene	ND	ug/kg	20.					
1,2,4-Trichlorobenzene	ND	ug/kg	20.					
1,3,5-Trimethylbenzene	ND	ug/kg	20.					
1,2,4-Trimethylbenzene	ND	ug/kg	20.					
l,4-Diethylbenzene	18	ug/kg	16					
4-Ethyltoluene	ND	ug/kg ug/kg	16.					
1,2,4,5-Tetramethylbenzene	20	ug/kg ug/kg	16					
.,2,1,3 Teerameenyibenzene	20	ug/kg	10					
Surrogate(s)	Recovery		QC Cr	iteria	a			
1,2-Dichloroethane-d4	117	%	70-130)				
Toluene-d8	131	%	70-130)				
l-Bromofluorobenzene	180	%	70-130)				
Dibromofluoromethane	118	%	70-130)				
olatile Organics by EPA 826	0B			1	8260B		0916 15:1	3 PD
Methylene chloride	ND	ug/kg	39.	-	02002		0,10 10 1	.5 12
L,1-Dichloroethane	ND	ug/kg	5.8					
Chloroform	ND	ug/kg	5.8					
Carbon tetrachloride	ND	ug/kg	3.9					
L,2-Dichloropropane	ND	ug/kg	14.					
Dibromochloromethane	ND	ug/kg	3.9					
1,1,2-Trichloroethane	ND	ug/kg ug/kg	5.8					
Tetrachloroethene	ND	ug/kg	3.9					
Chlorobenzene	ND	ug/kg ug/kg	3.9					
Frichlorofluoromethane	ND	ug/kg ug/kg	20.					
1.2-Dichloroethane	ND	ug/kg ug/kg	3.9					
1,1,1-Trichloroethane	ND	ug/kg ug/kg	3.9					
Bromodichloromethane	ND ND	ug/kg ug/kg	3.9					
crans-1,3-Dichloropropene	ND ND	ug/kg ug/kg	3.9					
cis-1,3-Dichloropropene	ND	ug/kg ug/kg	3.9					
l,1-Dichloropropene	ND	ug/kg ug/kg	20.					
Bromoform	ND ND	ug/kg ug/kg	20. 16.					
1,1,2,2-Tetrachloroethane	ND	ug/kg ug/kg	3.9					
Benzene	ND ND	ug/kg ug/kg	3.9					
roluene	ND ND		5.8					
Ethylbenzene		ug/kg						
Chloromethane	ND ND	ug/kg	3.9					
nioromethane Bromomethane		ug/kg	20.					
gromomethane Vinyl chloride	ND	ug/kg	7.8					
-	ND	ug/kg	7.8					
hloroethane	ND	ug/kg	7.8					
.,1-Dichloroethene	ND	ug/kg	3.9					
crans-1,2-Dichloroethene	ND	ug/kg	5.8					
Trichloroethene	ND	ug/kg	3.9					
l,2-Dichlorobenzene	ND	ug/kg	20.					
l,3-Dichlorobenzene	ND	ug/kg	20.					

Laboratory Sample Number: L0813447-10

PWG-DW-2008-101(5.5-6')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE PREP ANA	ID L
Volatile Organics by EPA 826	OR contid			1 8260B	0016 1	5:13 PD
1,4-Dichlorobenzene	ND	110 /lea	20.	1 02008	0910 1:	3.13 PD
Methyl tert butyl ether		ug/kg	7.8			
o/m-Xylene	ND	ug/kg				
· <u>-</u>	ND	ug/kg	7.8			
o-Xylene cis-1,2-Dichloroethene	ND	ug/kg	7.8			
Dibromomethane	ND	ug/kg	3.9			
	ND	ug/kg	39.			
Styrene	ND	ug/kg	7.8			
Dichlorodifluoromethane	ND	ug/kg	39.			
Acetone	190	ug/kg	39			
Carbon disulfide	ND	ug/kg	39.			
2-Butanone	59	ug/kg	39			
/inyl acetate	ND	ug/kg	39.			
1-Methyl-2-pentanone	ND	ug/kg	39.			
1,2,3-Trichloropropane	ND	ug/kg	39.			
2-Hexanone	ND	ug/kg	39.			
Bromochloromethane	ND	ug/kg	20.			
2,2-Dichloropropane	ND	ug/kg	20.			
l,2-Dibromoethane	ND	ug/kg	16.			
l,3-Dichloropropane	ND	ug/kg	20.			
1,1,1,2-Tetrachloroethane	ND	ug/kg	3.9			
Bromobenzene	ND	ug/kg	20.			
n-Butylbenzene	13	ug/kg	3.9			
sec-Butylbenzene	16	ug/kg	3.9			
tert-Butylbenzene	ND	ug/kg	20.			
o-Chlorotoluene	ND	ug/kg	20.			
p-Chlorotoluene	ND	ug/kg	20.			
1,2-Dibromo-3-chloropropane	ND	ug/kg	20.			
Hexachlorobutadiene	ND	ug/kg	20.			
Isopropylbenzene	28	ug/kg	3.9			
p-Isopropyltoluene	ND	ug/kg	3.9			
Naphthalene	ND	ug/kg	20.			
Acrylonitrile	ND	ug/kg	39.			
n-Propylbenzene	16	ug/kg	3.9			
1,2,3-Trichlorobenzene	ND	ug/kg	20.			
l,2,4-Trichlorobenzene	ND	ug/kg	20.			
1,3,5-Trimethylbenzene	ND	ug/kg	20.			
l,2,4-Trimethylbenzene	ND	ug/kg	20.			
l,4-Diethylbenzene	ND	ug/kg	16.			
1-Ethyltoluene	ND	ug/kg	16.			
1,2,4,5-Tetramethylbenzene	31	ug/kg	16			
Surrogate(s)	Recovery		QC Cr	iteria		
l,2-Dichloroethane-d4	97.0	%	70-13			
Foluene-d8	106	%	70-13	0		
1-Bromofluorobenzene	134	%	70-13			
Dibromofluoromethane	97.0	8	70-13			
Semivolatile Organics by EPA	8270C			1 8270C	0916 19:00 0918 1	5:00 PS

Laboratory Sample Number: L0813447-10

PWG-DW-2008-101(5.5-6')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Comirrolatile Organica by EDA	9270C cont	F 1 d		-	0.000.00	0016 10.00	0010 15.	00 00
Semivolatile Organics by EPA			7000	1	8270C	0916 19:00	0918 15:	00 PS
1,2,4-Trichlorobenzene Hexachlorobenzene	ND	ug/kg	7800 7800					
Bis(2-chloroethyl)ether	ND	ug/kg						
_ ·	ND	ug/kg	7800					
2-Chloronaphthalene	ND	ug/kg	9400					
1,2-Dichlorobenzene	ND	ug/kg	7800					
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ND	ug/kg	7800 7800					
•	ND	ug/kg						
3,3'-Dichlorobenzidine	ND	ug/kg	16000					
2,4-Dinitrotoluene	ND	ug/kg	7800					
2,6-Dinitrotoluene	ND	ug/kg	7800					
luoranthene	ND	ug/kg	7800					
4-Chlorophenyl phenyl ether	ND	ug/kg	7800					
l-Bromophenyl phenyl ether	ND	ug/kg	7800					
Bis(2-chloroisopropyl)ether	ND	ug/kg	7800					
Bis(2-chloroethoxy)methane	ND	ug/kg	7800					
Mexachlorobutadiene	ND	ug/kg	16000					
Mexachlorocyclopentadiene	ND	ug/kg	16000					
Mexachloroethane	ND	ug/kg	7800					
sophorone	ND	ug/kg	7800					
Japhthalene	ND	ug/kg	7800					
Jitrobenzene	ND	ug/kg	7800					
JitrosoDiPhenylAmine(NDPA)/DI		ug/kg	23000					
n-Nitrosodi-n-propylamine	ND	ug/kg	7800					
Bis(2-Ethylhexyl)phthalate	ND	ug/kg	16000					
Butyl benzyl phthalate	ND	ug/kg	7800					
Di-n-butylphthalate	ND	ug/kg	7800					
Di-n-octylphthalate	ND	ug/kg	7800					
Diethyl phthalate	ND	ug/kg	7800					
Dimethyl phthalate	ND	ug/kg	7800					
Benzo(a)anthracene	ND	ug/kg	7800					
Benzo(a)pyrene	ND	ug/kg	7800					
Benzo(b)fluoranthene	ND	ug/kg	7800					
Benzo(k)fluoranthene	ND	ug/kg	7800					
Chrysene	ND	ug/kg	7800					
Acenaphthylene	ND	ug/kg	7800					
Anthracene	ND	ug/kg	7800					
Benzo(ghi)perylene	ND	ug/kg	7800					
luorene	ND	ug/kg	7800					
Phenanthrene	ND	ug/kg	7800					
pibenzo(a,h)anthracene	ND	ug/kg	7800					
indeno(1,2,3-cd)Pyrene	ND	ug/kg	7800					
yrene	ND	ug/kg	7800					
Biphenyl	ND	ug/kg	7800					
-Chloroaniline	ND	ug/kg	7800					
-Nitroaniline	ND	ug/kg	7800					
-Nitroaniline	ND	ug/kg	7800					
-Nitroaniline	ND	ug/kg	11000					
Dibenzofuran	ND	ug/kg	7800					
2-Methylnaphthalene	8600	ug/kg	7800					

Laboratory Sample Number: L0813447-10

PWG-DW-2008-101(5.5-6')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Semivolatile Organics by EPA	8270C cont	'd		1	8270C	0916 19:00	0918 15:0	00 PS
1,2,4,5-Tetrachlorobenzene	ND	ug/kg	31000					
Acetophenone	ND	ug/kg	31000					
2,4,6-Trichlorophenol	ND	ug/kg	7800					
P-Chloro-M-Cresol	ND	ug/kg	7800					
2-Chlorophenol	ND	ug/kg	9400					
2,4-Dichlorophenol	ND	ug/kg	16000					
2,4-Dimethylphenol	ND	ug/kg	7800					
2-Nitrophenol	ND	ug/kg	31000					
4-Nitrophenol	ND	ug/kg	16000					
2,4-Dinitrophenol	ND	ug/kg	31000					
4,6-Dinitro-o-cresol	ND	ug/kg	31000					
Pentachlorophenol	ND	ug/kg	31000					
Phenol	ND	ug/kg	11000					
2-Methylphenol	ND	ug/kg	9400					
3-Methylphenol/4-Methylphenol		ug/kg	9400					
2,4,5-Trichlorophenol	ND	ug/kg	7800					
Benzoic Acid	ND	ug/kg	78000					
Benzyl Alcohol	ND	ug/kg	16000					
Carbazole	ND	ug/kg ug/kg	7800					
carbazore	ND	ug/kg	7000					
Surrogate(s)	Recovery		QC Cri	teri	a			
2-Fluorophenol	102	%	25-120					
Phenol-d6	97.0	8	10-120					
Nitrobenzene-d5	91.0	%	23-120					
2-Fluorobiphenyl	81.0	%	30-120					
2,4,6-Tribromophenol	111	%	19-120					
4-Terphenyl-d14	74.0	%	18-120					
i respicity as i	74.0	0	10 120					
Semivolatile Organics by EPA	8270C-SIM			1	8270C	0912 21:30	0916 08:5	59 AF
Acenaphthene	ND	ug/kg	2100					
2-Chloronaphthalene	ND	ug/kg	2100					
Fluoranthene	ND	ug/kg	2100					
Hexachlorobutadiene	ND	ug/kg	5200					
Naphthalene	ND	ug/kg	2100					
Benzo(a)anthracene	ND	ug/kg	2100					
Benzo(a)pyrene	ND	ug/kg	2100					
Benzo(b)fluoranthene	ND	ug/kg ug/kg	2100					
Benzo(k)fluoranthene	ND	ug/kg ug/kg	2100					
Chrysene	ND	ug/kg ug/kg	2100					
			2100					
Acenaphthylene	ND	ug/kg						
Anthracene	ND	ug/kg	2100					
Benzo(ghi)perylene	ND	ug/kg	2100					
Fluorene	ND	ug/kg	2100					
Phenanthrene	ND	ug/kg	2100					
Dibenzo(a,h)anthracene	ND	ug/kg	2100					
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	2100					
Pyrene	ND	ug/kg	2100					
2-Methylnaphthalene Pentachlorophenol	13000	ug/kg	2100 8300					
	ND	ug/kg						

Laboratory Sample Number: L0813447-10

PWG-DW-2008-101(5.5-6')

PARAMETER	RESULT	UNITS	RDL	DEE	METHOD	DA	Tr	ID
PARAMEIER	RESULI	ONIID	KDL	KEF	MEIHOD	PREP	ANAL	ענ
Semivolatile Organics by EPA	8270C-SIM (cont'd		1	8270C	0912 21:30	0916 08:59) AK
Hexachlorobenzene	ND	ug/kg	8300					
Hexachloroethane	ND	ug/kg	8300					
Surrogate(s)	Recovery		QC Cri	teria	ā			
2-Fluorophenol	ND	%	25-120					
Phenol-d6	ND	%	10-120					
Nitrobenzene-d5	ND	%	23-120					
2-Fluorobiphenyl	ND	8	30-120					
2,4,6-Tribromophenol	ND	8	19-120					
4-Terphenyl-d14	ND	%	18-120					
Petroleum Hydrocarbon Quanti	tation by GO	C-FID		1	8015B(M)	0916 01:30	0918 01:28	3 .TT.
TPH	5530000	ug/kg	521000	_	00135(11)	0,10 01.30	0010 01.20	, 01
	2223000	~5, 11g	221000					
Surrogate(s)	Recovery		QC Cri	teria	a			
o-Terphenyl	93.0	%	40-140					

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813447-11 Date Collected: 10-SEP-2008 10:45

Sample Matrix: SOIL Date Reported: 22-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID
					PREP ANAL
Solids, Total	68	8	0.10	30 2540G	0913 15:45 NM
Total Metals					
Aluminum, Total	2600	mg/kg	7.0	1 6010B	0912 18:00 0918 13:47 AI
Antimony, Total	ND	mg/kg	3.5	1 6010B	0912 18:00 0918 13:47 AI
Arsenic, Total	1.0	mg/kg	0.70	1 6010B	0912 18:00 0919 12:29 AI
Barium, Total	24	mg/kg	0.70	1 6010B	0912 18:00 0918 13:47 AI
Beryllium, Total	ND	mg/kg	0.35	1 6010B	0912 18:00 0918 13:47 AI
Cadmium, Total	0.77	mg/kg	0.70	1 6010B	0912 18:00 0918 13:47 AI
Calcium, Total	28000	mg/kg	7.0	1 6010B	0912 18:00 0918 13:47 AI
Chromium, Total	25	mg/kg	0.70	1 6010B	0912 18:00 0918 13:47 AI
Cobalt, Total	2.3	mg/kg	1.4	1 6010B	0912 18:00 0918 13:47 AI
Copper, Total	33	mg/kg	0.70	1 6010B	0912 18:00 0918 13:47 AI
Iron, Total	5900	mg/kg	3.5	1 6010B	0912 18:00 0918 13:47 AI
Lead, Total	120	mg/kg	3.5	1 6010B	0912 18:00 0918 13:47 AI
Magnesium, Total	18000	mg/kg	7.0	1 6010B	0912 18:00 0918 13:47 AI
Manganese, Total	77	mg/kg	0.70	1 6010B	0912 18:00 0919 12:29 AI
Mercury, Total	0.37	mg/kg	0.11	1 7471A	0912 20:30 0914 14:30 HG
Nickel, Total	9.2	mg/kg	1.8	1 6010B	0912 18:00 0918 13:47 AI
Potassium, Total	330	mg/kg	180	1 6010B	0912 18:00 0918 13:47 AI
Selenium, Total	ND	mg/kg	1.4	1 6010B	0912 18:00 0919 12:29 AI
Silver, Total	0.98	mg/kg	0.70	1 6010B	0912 18:00 0918 13:47 AI
Sodium, Total	ND	mg/kg	140	1 6010B	0912 18:00 0918 13:47 AI
Thallium, Total	ND	mg/kg	1.4	1 6010B	0912 18:00 0918 13:47 AI
Vanadium, Total	25	mg/kg	0.70	1 6010B	0912 18:00 0918 13:47 AI
Zinc, Total	270	mg/kg	3.5	1 6010B	0912 18:00 0918 13:47 AI
ille, local	270	9/119	3.3	1 0010B	0)12 10:00 0)10 13:47 A1
olatile Organics by EPA 8	3260B			1 8260B	0915 20:21 PD
Methylene chloride	ND	ug/kg	37.		
l,1-Dichloroethane	ND	ug/kg	5.5		
Chloroform	ND	ug/kg	5.5		
Carbon tetrachloride	ND	ug/kg	3.7		
l,2-Dichloropropane	ND	ug/kg	13.		
Dibromochloromethane	ND	ug/kg	3.7		
1,1,2-Trichloroethane	ND	ug/kg	5.5		
Tetrachloroethene	ND	ug/kg	3.7		
Chlorobenzene	ND	ug/kg	3.7		
Trichlorofluoromethane	ND	ug/kg	18.		

Laboratory Sample Number: L0813447-11

PWG-DW-2008-38(7-7.5')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
olatile Organics by EPA 8260				1	8260B		0915 20:2	21 PD
,2-Dichloroethane	ND	ug/kg	3.7					
.,1,1-Trichloroethane	ND	ug/kg	3.7					
Bromodichloromethane	ND	ug/kg	3.7					
rans-1,3-Dichloropropene	ND	ug/kg	3.7					
sis-1,3-Dichloropropene	ND	ug/kg	3.7					
.,1-Dichloropropene	ND	ug/kg	18.					
Bromoform	ND	ug/kg	15.					
.,1,2,2-Tetrachloroethane	280	ug/kg	3.7					
Benzene	ND	ug/kg	3.7					
'oluene	25	ug/kg	5.5					
Sthylbenzene	4.5	ug/kg	3.7					
hloromethane	ND	ug/kg	18.					
Bromomethane	ND	ug/kg	7.4					
inyl chloride	ND	ug/kg	7.4					
Chloroethane	ND	ug/kg	7.4					
,1-Dichloroethene	ND	ug/kg	3.7					
rans-1,2-Dichloroethene	ND	ug/kg	5.5					
richloroethene	ND	ug/kg	3.7					
,2-Dichlorobenzene	ND	ug/kg	18.					
,3-Dichlorobenzene	ND	ug/kg	18.					
,4-Dichlorobenzene	ND	ug/kg	18.					
ethyl tert butyl ether	ND	ug/kg	7.4					
/m-Xylene	7.9	ug/kg	7.4					
-Xylene	ND	ug/kg	7.4					
is-1,2-Dichloroethene	ND	ug/kg	3.7					
bibromomethane	ND	ug/kg	37.					
Styrene	ND	ug/kg	7.4					
ichlorodifluoromethane	ND	ug/kg	37.					
acetone	130	ug/kg	37					
arbon disulfide	ND	ug/kg	37.					
-Butanone	ND	ug/kg	37.					
inyl acetate	ND	ug/kg	37.					
-Methyl-2-pentanone	ND	ug/kg	37.					
,2,3-Trichloropropane	ND	ug/kg	37.					
-Hexanone	ND	ug/kg	37.					
romochloromethane	ND	ug/kg	18.					
,2-Dichloropropane	ND	ug/kg	18.					
.,2-Dibromoethane	ND	ug/kg	15.					
.,3-Dichloropropane	ND	ug/kg	18.					
1,1,2-Tetrachloroethane	ND	ug/kg	3.7					
gromobenzene	ND	ug/kg	18.					
-Butylbenzene	130	ug/kg ug/kg	3.7					
ec-Butylbenzene	57	ug/kg ug/kg	3.7					
ert-Butylbenzene	ND	ug/kg ug/kg	18.					
-Chlorotoluene	ND	ug/kg ug/kg	18.					
-Chlorotoluene	ND	ug/kg ug/kg	18.					
.,2-Dibromo-3-chloropropane	ND	ug/kg ug/kg	18.					
	TAT	u4/124	±0.					
Mexachlorobutadiene	ND	ug/kg	18.					

Laboratory Sample Number: L0813447-11

PWG-DW-2008-38(7-7.5')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD		TE	ID
						PREP	ANAL	
Volatile Organics by EPA 826	OB cont'd			1	8260B		0915 20:2	21 PD
p-Isopropyltoluene	110	ug/kg	3.7					
Naphthalene	180	ug/kg	18					
Acrylonitrile	ND	ug/kg	37.					
n-Propylbenzene	ND	ug/kg	3.7					
1,2,3-Trichlorobenzene	ND	ug/kg	18.					
1,2,4-Trichlorobenzene	ND	ug/kg	18.					
1,3,5-Trimethylbenzene	ND	ug/kg	18.					
1,2,4-Trimethylbenzene	53	ug/kg	18					
1,4-Diethylbenzene	310	ug/kg	15					
4-Ethyltoluene	ND	ug/kg	15.					
1,2,4,5-Tetramethylbenzene	150	ug/kg	15					
Surrogate(s)	Recovery		QC Cr	iteri;	a			
1,2-Dichloroethane-d4	106	8	70-130					
Foluene-d8	123	8	70-130					
4-Bromofluorobenzene	203	%	70-130					
Dibromofluoromethane	107	%	70-130					
	- • ·	•	. 5 150					
Volatile Organics by EPA 826		/1	150	1	8260B		0916 15:5	0 PD
Methylene chloride	ND	ug/kg	150					
l,1-Dichloroethane	ND	ug/kg	22.					
Chloroform	ND	ug/kg	22.					
Carbon tetrachloride	ND	ug/kg	15.					
1,2-Dichloropropane	ND	ug/kg	51.					
Dibromochloromethane	ND	ug/kg	15.					
1,1,2-Trichloroethane	ND	ug/kg	22.					
Tetrachloroethene	ND	ug/kg	15.					
Chlorobenzene	ND	ug/kg	15.					
Trichlorofluoromethane	ND	ug/kg	74.					
l,2-Dichloroethane	ND	ug/kg	15.					
1,1,1-Trichloroethane	ND	ug/kg	15.					
Bromodichloromethane	ND	ug/kg	15.					
crans-1,3-Dichloropropene	ND	ug/kg	15.					
cis-1,3-Dichloropropene	ND	ug/kg	15.					
l,1-Dichloropropene	ND	ug/kg	74.					
Bromoform	ND	ug/kg	59.					
l,1,2,2-Tetrachloroethane	ND	ug/kg	15.					
Benzene	ND	ug/kg	15.					
roluene	42	ug/kg	22					
Ethylbenzene	ND	ug/kg	15.					
Chloromethane	ND	ug/kg	74.					
Bromomethane	ND	ug/kg	29.					
Jinyl chloride	ND	ug/kg	29.					
Chloroethane	ND	ug/kg	29.					
,1-Dichloroethene	ND	ug/kg	15.					
rans-1,2-Dichloroethene	ND	ug/kg	22.					
Trichloroethene	ND	ug/kg	15.					
l,2-Dichlorobenzene	ND	ug/kg	74.					
1,3-Dichlorobenzene	ND	ug/kg	74.					

Laboratory Sample Number: L0813447-11

PWG-DW-2008-38(7-7.5')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID
					PREP ANAL
olatile Organics by EPA 826	OB cont'd			1 8260B	0916 15:50 PD
1,4-Dichlorobenzene	ND	ug/kg	74.		
Methyl tert butyl ether	ND	ug/kg	29.		
o/m-Xylene	ND	ug/kg	29.		
o-Xylene	ND	ug/kg	29.		
cis-1,2-Dichloroethene	ND	ug/kg	15.		
Dibromomethane	ND	ug/kg	150		
Styrene	ND	ug/kg	29.		
Dichlorodifluoromethane	ND	ug/kg	150		
Acetone	320	ug/kg	150		
Carbon disulfide	ND	ug/kg	150		
2-Butanone	ND	ug/kg	150		
/inyl acetate	ND	ug/kg	150		
4-Methyl-2-pentanone	ND	ug/kg ug/kg	150		
.,2,3-Trichloropropane	ND	ug/kg ug/kg	150		
2-Hexanone	ND	ug/kg ug/kg	150		
Bromochloromethane	ND	ug/kg ug/kg	74.		
2,2-Dichloropropane	ND	ug/kg ug/kg	74.		
1,2-Dibromoethane	ND	ug/kg ug/kg	59.		
1,3-Dichloropropane	ND	ug/kg ug/kg	74.		
.,1,1,2-Tetrachloroethane	ND	ug/kg ug/kg	15.		
Bromobenzene	ND ND	ug/kg ug/kg	74.		
n-Butylbenzene	140	ug/kg ug/kg	15		
-	57		15		
sec-Butylbenzene tert-Butylbenzene	ND	ug/kg	74.		
o-Chlorotoluene		ug/kg	74.		
	ND	ug/kg	74. 74.		
o-Chlorotoluene	ND	ug/kg	74. 74.		
.,2-Dibromo-3-chloropropane Mexachlorobutadiene	ND	ug/kg	74. 74.		
	ND	ug/kg			
Isopropylbenzene	ND	ug/kg	15.		
o-Isopropyltoluene	110	ug/kg	15		
Maphthalene	370	ug/kg	74		
Acrylonitrile	ND	ug/kg	150		
n-Propylbenzene	ND	ug/kg	15.		
1,2,3-Trichlorobenzene	ND	ug/kg	74.		
1,2,4-Trichlorobenzene	ND	ug/kg	74.		
,3,5-Trimethylbenzene	ND	ug/kg	74.		
1,2,4-Trimethylbenzene	ND	ug/kg	74.		
l,4-Diethylbenzene	340	ug/kg	59		
4-Ethyltoluene	ND	ug/kg	59.		
.,2,4,5-Tetramethylbenzene	230	ug/kg	59		
Surrogate(s)	Recovery			iteria	
1,2-Dichloroethane-d4	121	%	70-13		
Coluene-d8	131	%	70-13		
1-Bromofluorobenzene	143	%	70-13		
Dibromofluoromethane	123	%	70-13	0	
Semivolatile Organics by EPA	8270C			1 8270C	0916 19:00 0918 15:24 PS
Acenaphthene	ND	ug/kg	7400		

Laboratory Sample Number: L0813447-11

PWG-DW-2008-38(7-7.5')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Semivolatile Organics by EPA	9270C gont	+ ı d		1	8270C	0916 19:00	0010 15.	24 PG
			7400	1	8270C	0916 19:00	0918 15.	24 PS
1,2,4-Trichlorobenzene Hexachlorobenzene	ND	ug/kg	7400					
	ND	ug/kg	7400					
Bis(2-chloroethyl)ether	ND	ug/kg	7400					
2-Chloronaphthalene	ND	ug/kg	8800					
l,2-Dichlorobenzene l,3-Dichlorobenzene	ND	ug/kg	7400					
l,4-Dichlorobenzene	ND	ug/kg	7400 7400					
	ND	ug/kg						
3,3'-Dichlorobenzidine	ND	ug/kg	15000					
2,4-Dinitrotoluene	ND	ug/kg	7400					
2,6-Dinitrotoluene	ND	ug/kg	7400					
luoranthene	ND	ug/kg	7400					
4-Chlorophenyl phenyl ether	ND	ug/kg	7400					
l-Bromophenyl phenyl ether	ND	ug/kg	7400					
Bis(2-chloroisopropyl)ether	ND	ug/kg	7400					
Bis(2-chloroethoxy)methane	ND	ug/kg	7400					
Mexachlorobutadiene	ND	ug/kg	15000					
Mexachlorocyclopentadiene	ND	ug/kg	15000					
Mexachloroethane	ND	ug/kg	7400					
sophorone	ND	ug/kg	7400					
Japhthalene	ND	ug/kg	7400					
Jitrobenzene	ND	ug/kg	7400					
<pre>JitrosoDiPhenylAmine(NDPA)/DI</pre>		ug/kg	22000					
-Nitrosodi-n-propylamine	ND	ug/kg	7400					
Bis(2-Ethylhexyl)phthalate	ND	ug/kg	15000					
Butyl benzyl phthalate	ND	ug/kg	7400					
Di-n-butylphthalate	ND	ug/kg	7400					
Di-n-octylphthalate	ND	ug/kg	7400					
Diethyl phthalate	ND	ug/kg	7400					
Dimethyl phthalate	ND	ug/kg	7400					
Benzo(a)anthracene	ND	ug/kg	7400					
Benzo(a)pyrene	ND	ug/kg	7400					
Benzo(b)fluoranthene	ND	ug/kg	7400					
Benzo(k)fluoranthene	ND	ug/kg	7400					
Chrysene	ND	ug/kg	7400					
Acenaphthylene	ND	ug/kg	7400					
inthracene	ND	ug/kg	7400					
Benzo(ghi)perylene	ND	ug/kg	7400					
luorene	ND	ug/kg	7400					
Phenanthrene	ND	ug/kg	7400					
pibenzo(a,h)anthracene	ND	ug/kg	7400					
indeno(1,2,3-cd)Pyrene	ND	ug/kg	7400					
yrene	ND	ug/kg	7400					
Biphenyl	ND	ug/kg	7400					
-Chloroaniline	ND	ug/kg	7400					
-Nitroaniline	ND	ug/kg	7400					
-Nitroaniline	ND	ug/kg	7400					
-Nitroaniline	ND	ug/kg	10000					
Dibenzofuran	ND	ug/kg	7400					
2-Methylnaphthalene	ND	ug/kg	7400					

Laboratory Sample Number: L0813447-11

PWG-DW-2008-38(7-7.5')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID
					PREP ANAL
Semivolatile Organics by EPA	8270C cont	t.'d		1 8270C	0916 19:00 0918 15:24 PS
1,2,4,5-Tetrachlorobenzene	ND	ug/kg	29000		
Acetophenone	ND	ug/kg	29000		
2,4,6-Trichlorophenol	ND	ug/kg	7400		
P-Chloro-M-Cresol	ND	ug/kg	7400		
2-Chlorophenol	ND	ug/kg	8800		
2,4-Dichlorophenol	ND	ug/kg	15000		
2,4-Dimethylphenol	ND	ug/kg	7400		
2-Nitrophenol	ND	ug/kg	29000		
4-Nitrophenol	ND	ug/kg	15000		
2,4-Dinitrophenol	ND	ug/kg	29000		
4,6-Dinitro-o-cresol	ND	ug/kg	29000		
Pentachlorophenol	ND	ug/kg ug/kg	29000		
Phenol	ND	ug/kg ug/kg	10000		
2-Methylphenol	ND	ug/kg ug/kg	8800		
3-Methylphenol/4-Methylphenol		ug/kg ug/kg	8800		
2,4,5-Trichlorophenol	ND	ug/kg ug/kg	7400		
Benzoic Acid	ND	ug/kg ug/kg	7400		
Benzyl Alcohol	ND		15000		
Carbazole	ND	ug/kg ug/kg	7400		
Calpazole	ND	ug/kg	7400		
Surrogate(s)	Recovery		QC Cri		
2-Fluorophenol	97.0	%	25-120		
Phenol-d6	101	%	10-120		
Nitrobenzene-d5	91.0	%	23-120		
2-Fluorobiphenyl	91.0	8	30-120		
2,4,6-Tribromophenol	118	%	19-120		
4-Terphenyl-d14	77.0	%	18-120		
Semivolatile Organics by EPA	8270C-SIM			1 8270C	0912 21:30 0916 17:46 AK
Acenaphthene	ND	ug/kg	2000		
2-Chloronaphthalene	ND	ug/kg	2000		
Fluoranthene	5700	ug/kg	2000		
Hexachlorobutadiene	ND	ug/kg	4900		
Naphthalene	ND	ug/kg	2000		
Benzo(a)anthracene	ND	ug/kg	2000		
Benzo(a)pyrene	4200	ug/kg	2000		
Benzo(b)fluoranthene	3900	ug/kg	2000		
Benzo(k)fluoranthene	4000	ug/kg	2000		
Chrysene	2000	ug/kg	2000		
Acenaphthylene	ND	ug/kg	2000		
Anthracene	ND	ug/kg	2000		
Benzo(ghi)perylene	4500	ug/kg ug/kg	2000		
Fluorene	ND	ug/kg ug/kg	2000		
Phenanthrene	2600	ug/kg ug/kg	2000		
Dibenzo(a,h)anthracene	ND	ug/kg ug/kg	2000		
Indeno(1,2,3-cd)Pyrene	4800	ug/kg ug/kg	2000		
Pyrene	5800	ug/kg ug/kg	2000		
Pyrene 2-Methylnaphthalene	2400	ug/kg ug/kg	2000		
Pentachlorophenol	ND	ug/kg	7800		

Laboratory Sample Number: L0813447-11

PWG-DW-2008-38(7-7.5')

DADAMENTO.		IDITEG		DEE MERIOD	
PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
					PREP ANAL
Semivolatile Organics by E	PA 8270C-SIM	cont'd		1 8270C	0912 21:30 0916 17:46 AK
Hexachlorobenzene	ND	ug/kg	7800		
Hexachloroethane	ND	ug/kg	7800		
Surrogate(s)	Recovery		QC Cri	iteria	
2-Fluorophenol	ND	%	25-120)	
Phenol-d6	ND	8	10-120)	
Nitrobenzene-d5	ND	%	23-120)	
2-Fluorobiphenyl	ND	8	30-120)	
2,4,6-Tribromophenol	ND	%	19-120)	
4-Terphenyl-d14	ND	%	18-120)	
Petroleum Hydrocarbon Quan	titation by G	C-FID		1 8015B(M)	0916 01:30 0918 10:44 JL
TPH	10000000	ug/kg	245000	,	
Surrogate(s)	Recovery		QC Cri	iteria	
o-Terphenyl	93.0	8	40-140)	

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813447-12 Date Collected: 10-SEP-2008 11:00

PWG-DW-2008-39(8.5-9') Date Received: 11-SEP-2008

Sample Matrix: SOIL Date Reported: 22-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Solids, Total	70	%	0.10	30 2540G	0913 15:45 NM
Total Metals					
Aluminum, Total	2900	mg/kg	6.5	1 6010B	0912 18:00 0918 13:50 AI
Antimony, Total	ND	mg/kg	3.3	1 6010B	0912 18:00 0918 13:50 AI
Arsenic, Total	0.91	mg/kg	0.65	1 6010B	0912 18:00 0919 12:32 AI
Barium, Total	24	mg/kg	0.65	1 6010B	0912 18:00 0918 13:50 AI
Beryllium, Total	ND	mg/kg	0.33	1 6010B	0912 18:00 0918 13:50 AI
Cadmium, Total	1.4	mg/kg	0.65	1 6010B	0912 18:00 0918 13:50 AI
Calcium, Total	16000	mg/kg	6.5	1 6010B	0912 18:00 0918 13:50 AI
Chromium, Total	30	mg/kg	0.65	1 6010B	0912 18:00 0918 13:50 AI
Cobalt, Total	2.3	mg/kg	1.3	1 6010B	0912 18:00 0918 13:50 AI
Copper, Total	39	mg/kg	0.65	1 6010B	0912 18:00 0918 13:50 AI
Iron, Total	4600	mg/kg	3.3	1 6010B	0912 18:00 0918 13:50 AI
Lead, Total	170	mg/kg	3.3	1 6010B	0912 18:00 0918 13:50 AI
Magnesium, Total	10000	mg/kg	6.5	1 6010B	0912 18:00 0918 13:50 AI
Manganese, Total	49	mg/kg	0.65	1 6010B	0912 18:00 0919 12:32 AI
Mercury, Total	0.45	mg/kg	0.11	1 7471A	0912 20:30 0914 14:36 HG
Nickel, Total	11	mg/kg	1.6	1 6010B	0912 18:00 0918 13:50 AI
Potassium, Total	340	mg/kg	160	1 6010B	0912 18:00 0918 13:50 AI
Selenium, Total	ND	mg/kg	1.3	1 6010B	0912 18:00 0919 12:32 AI
Silver, Total	0.70	mg/kg	0.65	1 6010B	0912 18:00 0918 13:50 AI
Sodium, Total	ND	mg/kg	130	1 6010B	0912 18:00 0918 13:50 AI
Thallium, Total	ND	mg/kg	1.3	1 6010B	0912 18:00 0918 13:50 AI
Vanadium, Total	26	mg/kg	0.65	1 6010B	0912 18:00 0918 13:50 AI
Zinc, Total	390	mg/kg	3.3	1 6010B	0912 18:00 0918 13:50 AI
Olatile Organics by EPA 8	3260B			1 8260B	0915 20:57 PD
Methylene chloride	ND	ug/kg	36.		
l,1-Dichloroethane	ND	ug/kg	5.4		
Chloroform	ND	ug/kg	5.4		
Carbon tetrachloride	ND	ug/kg	3.6		
1,2-Dichloropropane	ND	ug/kg	12.		
Dibromochloromethane	ND	ug/kg	3.6		
1,1,2-Trichloroethane	ND	ug/kg	5.4		
Tetrachloroethene	ND	ug/kg	3.6		
Chlorobenzene	ND	ug/kg	3.6		
Trichlorofluoromethane	ND	ug/kg	18.		

Comments: Complete list of References and Glossary of Terms found in Addendum I

Laboratory Sample Number: L0813447-12

PWG-DW-2008-39(8.5-9')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
7-1-+-1- 0	00							
Volatile Organics by EPA 826		/1	2 (1	8260B		0915 20:	57 PD
l,2-Dichloroethane	ND	ug/kg	3.6					
1,1,1-Trichloroethane	ND	ug/kg	3.6					
Bromodichloromethane	ND	ug/kg	3.6					
crans-1,3-Dichloropropene	ND	ug/kg	3.6					
cis-1,3-Dichloropropene	ND	ug/kg	3.6					
,1-Dichloropropene	ND	ug/kg	18.					
romoform	ND	ug/kg	14.					
.,1,2,2-Tetrachloroethane	ND	ug/kg	3.6					
senzene	ND	ug/kg	3.6					
oluene	ND	ug/kg	5.4					
thylbenzene	5.0	ug/kg	3.6					
Chloromethane	ND	ug/kg	18.					
romomethane	ND	ug/kg	7.1					
Vinyl chloride	ND	ug/kg	7.1					
Chloroethane	ND	ug/kg	7.1					
,1-Dichloroethene	ND	ug/kg	3.6					
rans-1,2-Dichloroethene	ND	ug/kg	5.4					
richloroethene	ND	ug/kg	3.6					
,2-Dichlorobenzene	ND	ug/kg	18.					
,3-Dichlorobenzene	ND	ug/kg	18.					
,4-Dichlorobenzene	ND	ug/kg	18.					
ethyl tert butyl ether	ND	ug/kg	7.1					
/m-Xylene	ND	ug/kg	7.1					
-Xylene	ND	ug/kg	7.1					
is-1,2-Dichloroethene	ND	ug/kg	3.6					
ibromomethane	ND	ug/kg	36.					
Styrene	ND	ug/kg	7.1					
pichlorodifluoromethane	ND	ug/kg	36.					
acetone	74	ug/kg	36					
arbon disulfide	ND	ug/kg	36.					
-Butanone	ND	ug/kg	36.					
inyl acetate	ND	ug/kg	36.					
-Methyl-2-pentanone	ND	ug/kg	36.					
,2,3-Trichloropropane	ND	ug/kg	36.					
-Hexanone	ND	ug/kg	36.					
romochloromethane	ND	ug/kg	18.					
,2-Dichloropropane	ND	ug/kg	18.					
,2-Dibromoethane	ND	ug/kg	14.					
,3-Dichloropropane	ND	ug/kg	18.					
,1,1,2-Tetrachloroethane	ND	ug/kg	3.6					
romobenzene	ND	ug/kg	18.					
-Butylbenzene	ND	ug/kg	3.6					
ec-Butylbenzene	ND	ug/kg	3.6					
ert-Butylbenzene	ND	ug/kg	18.					
-Chlorotoluene	ND	ug/kg	18.					
-Chlorotoluene	ND	ug/kg	18.					
,2-Dibromo-3-chloropropane	ND	ug/kg	18.					
[exachlorobutadiene	ND	ug/kg	18.					
Sopropylbenzene	ND	ug/kg	3.6					

Laboratory Sample Number: L0813447-12

PWG-DW-2008-39(8.5-9')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
						PREP	ANAL	
Volatile Organics by EPA 826	OB cont'd			1	8260B		0915 20:	57 PD
p-Isopropyltoluene	ND	ug/kg	3.6					
Naphthalene	ND	ug/kg	18.					
Acrylonitrile	ND	ug/kg	36.					
n-Propylbenzene	ND	ug/kg	3.6					
1,2,3-Trichlorobenzene	ND	ug/kg	18.					
1,2,4-Trichlorobenzene	ND	ug/kg	18.					
1,3,5-Trimethylbenzene	ND	ug/kg	18.					
1,2,4-Trimethylbenzene	ND	ug/kg	18.					
1,4-Diethylbenzene	ND	ug/kg	14.					
4-Ethyltoluene	ND	ug/kg	14.					
1,2,4,5-Tetramethylbenzene	ND	ug/kg	14.					
Surrogate(s)	Recovery		QC Cri	teria	a.			
1,2-Dichloroethane-d4	90.0	%	70-130					
roluene-d8	100	%	70-130					
4-Bromofluorobenzene	120	%	70-130					
Dibromofluoromethane	91.0	%	70-130					
Semivolatile Organics by EPA	8270C			1	8270C	0916 19:00	0918 15:	47 DQ
Acenaphthene	ND	ug/kg	7100	_	02700	0010 10:00	0010 10.	17 15
1,2,4-Trichlorobenzene	ND	ug/kg	7100					
Hexachlorobenzene	ND	ug/kg	7100					
Bis(2-chloroethyl)ether	ND	ug/kg	7100					
2-Chloronaphthalene	ND	ug/kg	8600					
1,2-Dichlorobenzene	ND	ug/kg	7100					
1,3-Dichlorobenzene	ND	ug/kg	7100					
1,4-Dichlorobenzene	ND	ug/kg	7100					
3,3'-Dichlorobenzidine	ND	ug/kg	14000					
2,4-Dinitrotoluene	ND	ug/kg ug/kg	7100					
2,6-Dinitrotoluene	ND	ug/kg ug/kg	7100					
Fluoranthene	ND	ug/kg ug/kg	7100					
4-Chlorophenyl phenyl ether	ND	ug/kg ug/kg	7100					
4-Bromophenyl phenyl ether	ND ND	ug/kg ug/kg	7100					
Bis(2-chloroisopropyl)ether	ND ND	ug/kg ug/kg	7100					
Bis(2-chlorothoxy)methane	ND ND	ug/kg ug/kg	7100					
Hexachlorobutadiene	ND ND	ug/kg ug/kg	14000					
Hexachlorocyclopentadiene	ND ND	ug/kg ug/kg	14000					
Hexachiorocyclopentadiene Hexachloroethane	ND ND	ug/kg ug/kg	7100					
sexacnioroethane Isophorone	ND ND		7100					
Naphthalene		ug/kg	7100					
Naphthalene Nitrobenzene	ND ND	ug/kg ug/kg	7100					
Nitrobenzene NitrosoDiPhenylAmine(NDPA)/D		ug/kg ug/kg	21000					
n-NitrosodiPhenyiAmine(NDPA)/D. n-Nitrosodi-n-propylamine	ND	ug/kg ug/kg	7100					
Bis(2-Ethylhexyl)phthalate	מא 200000		14000					
		ug/kg						
Butyl benzyl phthalate	ND	ug/kg	7100					
	ND	ug/kg	7100					
	MD	110 /1-0	7100					
Di-n-butylphthalate Di-n-octylphthalate Diethyl phthalate	ND ND	ug/kg ug/kg	7100 7100					

Laboratory Sample Number: L0813447-12

PWG-DW-2008-39(8.5-9')

Semivolatile Organics by EPA 8270C cont'd Benzo(a)anthracene ND ug/kg 7100 Benzo(b)fluoranthene ND ug/kg 7100 Benzo(b)fluoranthene ND ug/kg 7100 Benzo(k)fluoranthene ND ug/kg 7100 Chrysene ND ug/kg 7100 Acenaphthylene ND ug/kg 7100 Anthracene ND ug/kg 7100 Benzo(ghi)perylene ND ug/kg 7100 Fluorene ND ug/kg 7	1 8270C	PREP ANA	
Senzo(a) anthracene	1 8270C	0916 19:00 0918 3	15:47 PS
enzo(a) anthracene enzo(a) pyrene enzo(b) fluoranthene enzo(k) fluoranthene enzo(ghi pervlene enzo(ghi) perylene enzo(ghi) perylene enzo(ghi) perylene enzo(ghi) perylene enzo(ghi) perylene enzo(a, h) anthracene enzo ug/kg enzo(a, h) anthracene enzo(a) enzo(a, h) anthracene enzo(a) enzo(a, h) anthracene enzo(a) enzo(a, h) anthracene enzo(a) enz	1 02/00	5710 17100 0510 1	13.17.10
Senzo(a)pyrene			
Senzo(k)fluoranthene			
hrysene ND			
cenaphthylene ND ug/kg 7100 nthracene ND ug/kg 7100 enzo(ghi)perylene ND ug/kg 7100 luorene ND ug/kg 7100 henanthrene ND ug/kg 7100 ibenzo(a,h)anthracene ND ug/kg 7100 ibenzo(a,h)anthracene ND ug/kg 7100 idenci (1,2,3-cd)Pyrene ND ug/kg 7100 mdeno (1,2,3-cd)Pyrene ND ug/kg 7100 yrene ND ug/kg 7100 iphenyl ND ug/kg 7100 yrene ND ug/kg 7100			
Inthracene ND ug/kg 7100 lenzo(ghi)perylene ND ug/kg 7100 lenzo(ghi)perylene ND ug/kg 7100 lenzo(a,h)anthracene ND ug/kg 7100 libenzo(a,h)anthracene ND ug/kg 7100 libenzo(a,h)anthracene ND ug/kg 7100 mdeno(1,2,3-cd)Pyrene ND ug/kg 7100 yrene ND ug/kg 7100 yrene ND ug/kg 7100 -Chloroaniline ND ug/kg 7100 -Nitroaniline ND ug/kg 7100 -Nethylnaphthalene ND ug/kg 7100 -2,4,5-Tethalorophenol <t< td=""><td></td><td></td><td></td></t<>			
ND			
ND			
## A			
Indeno(1,2,3-cd)Pyrene			
ryrene ND ug/kg 7100 riphenyl ND ug/kg 2800 riphenyl ND ug/kg 7100 riphenyl ND ug/kg 1400 riphenyl ND ug/kg 2800 riphenyl ND ug/kg 1400 riphenyl ND ug/kg 2800 riphenyl ND ug/kg 1000 riphenyl ND ug/kg 1000 riphenyl ND ug/kg 1000 riphenyl ND ug/kg 1000 riphenyl Riph			
Siphenyl ND ug/kg 7100 -Chloroaniline ND ug/kg 7100 -Nitroaniline ND ug/kg 7100 -Nitrophenone ND ug/kg 7100 -Methylnaphthalene ND ug/kg 7100 -Q,4,5-Tetrachlorobenzene ND ug/kg 2800 -Cetophenone ND ug/kg 2800 -Chloro-M-Cresol ND ug/kg 7100 -Chlorophenol ND ug/kg 8600 -A-Dichlorophenol ND ug/kg 1400 -Nitrophenol ND ug/kg 2800 -Nitrophenol ND ug/kg 2800 -A-Dinitro-o-cresol ND			
-Chloroaniline ND ug/kg 7100 -Nitroaniline ND ug/kg 7100 -Nitroaniline ND ug/kg 7100 -Nitroaniline ND ug/kg 7100 -Nitroaniline ND ug/kg 1000 -Nitroaniline ND ug/kg 7100 -Nethylnaphthalene ND ug/kg 7100 -Methylnaphthalene ND ug/kg 2800 cetophenone ND ug/kg 2800 -Cetophenone ND ug/kg 7100 -Chloro-M-Cresol ND ug/kg 7100 -Chloro-M-Cresol ND ug/kg 7100 -Chlorophenol ND ug/kg 8600 -(4-Dichlorophenol ND ug/kg 1400 -Nitrophenol ND ug/kg 7100 -Nitrophenol ND ug/kg 2800 -Nothitrophenol ND ug/kg 3800 -No			
R-Nitroaniline R-Nitrophenol R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-			
-Nitroaniline ND ug/kg 7100 -Nitroaniline ND ug/kg 1000 -Nitroaniline ND ug/kg 1000 -Nitroaniline ND ug/kg 7100 -Methylnaphthalene ND ug/kg 7100 -2,4,5-Tetrachlorobenzene ND ug/kg 2800 -2,4,5-Tetrachlorobenzene ND ug/kg 2800 -2,4,6-Trichlorophenol ND ug/kg 7100 -2,6-Trichlorophenol ND ug/kg 7100 -2,6-Trichlorophenol ND ug/kg 7100 -2,6-Trichlorophenol ND ug/kg 8600 -4-Dichlorophenol ND ug/kg 1400 -4-Dimethylphenol ND ug/kg 2800 -Nitrophenol ND ug/kg 2800 -Nitrophenol ND ug/kg 2800 -A-Dinitrophenol ND ug/kg 2800 -A-Dinitrophenol ND ug/kg 2800 -A-Dinitro-o-cresol ND ug/kg 2800			
-Nitroaniline ND ug/kg 1000 -Methylnaphthalene ND ug/kg 7100 -2,4,5-Tetrachlorobenzene ND ug/kg 2800 -Cetophenone ND ug/kg 7100 -Chloro-M-Cresol ND ug/kg 7100 -Chlorophenol ND ug/kg 8600 -4-Dichlorophenol ND ug/kg 1400 -4-Dimethylphenol ND ug/kg 7100 -Nitrophenol ND ug/kg 7100 -Nitrophenol ND ug/kg 1400 -Nitrophenol ND ug/kg 2800 -Nitrophenol ND ug/kg 1400 -Nitrophenol ND ug/kg 2800 -Nitrophenol ND ug/kg 2800 -Nitrophenol ND ug/kg 2800 -Nitrophenol ND ug/kg 2800 -A-Dinitro-o-cresol ND ug/kg 2800			
Dibenzofuran	n		
-Methylnaphthalene ND ug/kg 7100 ,2,4,5-Tetrachlorobenzene ND ug/kg 2800 cetophenone ND ug/kg 2800 ,4,6-Trichlorophenol ND ug/kg 7100 -Chloro-M-Cresol ND ug/kg 7100 -Chlorophenol ND ug/kg 8600 ,4-Dichlorophenol ND ug/kg 1400 ,4-Dimethylphenol ND ug/kg 7100 -Nitrophenol ND ug/kg 2800 -Nitrophenol ND ug/kg 2800 -Nitrophenol ND ug/kg 2800 ,4-Dinitrophenol ND ug/kg 2800 ,6-Dinitro-o-cresol ND ug/kg 2800 entachlorophenol ND ug/kg 2800 entachlorophenol ND ug/kg 2800 -Methylphenol ND ug/kg 8600 -Methylphenol ND ug/kg 8600 -Methylphenol/4-Methylphenol ND ug/kg 8600 -Methylphenol/4-Methylphenol ND ug/kg 7100 enzoic Acid ND ug/kg 7100 enzoic Acid ND ug/kg 7100 arbazole ND ug/kg 7100	J		
,2,4,5-TetrachlorobenzeneNDug/kg2800cetophenoneNDug/kg2800,4,6-TrichlorophenolNDug/kg7100-Chloro-M-CresolNDug/kg7100-ChlorophenolNDug/kg8600,4-DichlorophenolNDug/kg1400,4-DimethylphenolNDug/kg7100-NitrophenolNDug/kg2800-NitrophenolNDug/kg2800,4-DinitrophenolNDug/kg2800,6-Dinitro-o-cresolNDug/kg2800entachlorophenolNDug/kg2800henolNDug/kg1000-Methylphenol/4-MethylphenolNDug/kg8600,4,5-TrichlorophenolNDug/kg7100enzoic AcidNDug/kg7100enzoic AcidNDug/kg7100arbazoleNDug/kg7100			
cetophenone ND ug/kg 2800 ,4,6-Trichlorophenol ND ug/kg 7100 -Chloro-M-Cresol ND ug/kg 7100 -Chlorophenol ND ug/kg 8600 ,4-Dichlorophenol ND ug/kg 1400 ,4-Dimethylphenol ND ug/kg 7100 -Nitrophenol ND ug/kg 2800 -Nitrophenol ND ug/kg 1400 ,4-Dinitrophenol ND ug/kg 1400 ,4-Dinitrophenol ND ug/kg 2800 entachlorophenol ND ug/kg 2800 entachlorophenol ND ug/kg 2800 entachlorophenol ND ug/kg 2800 entachlorophenol ND ug/kg 2800 -Methylphenol/4-Methylphenol ND ug/kg 8600 -Methylphenol/4-Methylphenol ND ug/kg 8600 ,4,5-Trichlorophenol ND ug/kg 7100 enzoic Acid ND ug/kg 7100 enzyl Alcohol ND ug/kg 1400 arbazole ND ug/kg 7100	n		
,4,6-TrichlorophenolNDug/kg7100-Chloro-M-CresolNDug/kg7100-ChlorophenolNDug/kg8600,4-DichlorophenolNDug/kg1400,4-DimethylphenolNDug/kg7100-NitrophenolNDug/kg2800-NitrophenolNDug/kg1400,4-DinitrophenolNDug/kg2800,6-Dinitro-o-cresolNDug/kg2800entachlorophenolNDug/kg2800henolNDug/kg1000-MethylphenolNDug/kg8600,4,5-TrichlorophenolNDug/kg7100enzoic AcidNDug/kg7100enzyl AlcoholNDug/kg7100arbazoleNDug/kg7100			
-Chloro-M-Cresol ND ug/kg 7100 -Chlorophenol ND ug/kg 8600 ,4-Dichlorophenol ND ug/kg 1400 ,4-Dimethylphenol ND ug/kg 7100 -Nitrophenol ND ug/kg 2800 -Nitrophenol ND ug/kg 1400 ,4-Dinitrophenol ND ug/kg 2800 ,4-Dinitrophenol ND ug/kg 2800 entachlorophenol ND ug/kg 2800 entachlorophenol ND ug/kg 2800 henol ND ug/kg 2800 henol ND ug/kg 2800 -Methylphenol ND ug/kg 8600 -Methylphenol ND ug/kg 8600 ,4,5-Trichlorophenol ND ug/kg 7100 enzoic Acid ND ug/kg 7100 enzoic Acid ND ug/kg 7100 enzyl Alcohol ND ug/kg 7100 enzole ND ug/kg 7100 enzyl Alcohol ND ug/kg 7100 enzole ND ug/kg 7100 enzyl Alcohol ND ug/kg 7100 enzole ND ug/kg 7100	J		
-Chlorophenol ND ug/kg 8600 ,4-Dichlorophenol ND ug/kg 1400 ,4-Dimethylphenol ND ug/kg 7100 -Nitrophenol ND ug/kg 2800 -Nitrophenol ND ug/kg 1400 ,4-Dinitrophenol ND ug/kg 2800 ,6-Dinitro-o-cresol ND ug/kg 2800 entachlorophenol ND ug/kg 2800 entachlorophenol ND ug/kg 2800 henol ND ug/kg 2800 -Methylphenol ND ug/kg 8600 -Methylphenol/4-Methylphenol ND ug/kg 8600 ,4,5-Trichlorophenol ND ug/kg 8600 ,4,5-Trichlorophenol ND ug/kg 7100 enzoic Acid ND ug/kg 7100 enzyl Alcohol ND ug/kg 1400 arbazole ND ug/kg 7100			
,4-DichlorophenolNDug/kg1400,4-DimethylphenolNDug/kg7100-NitrophenolNDug/kg2800-NitrophenolNDug/kg1400,4-DinitrophenolNDug/kg2800,6-Dinitro-o-cresolNDug/kg2800entachlorophenolNDug/kg2800henolNDug/kg1000-MethylphenolNDug/kg8600-Methylphenol/4-MethylphenolNDug/kg8600,4,5-TrichlorophenolNDug/kg7100enzoic AcidNDug/kg7100enzyl AlcoholNDug/kg7100arbazoleNDug/kg7100			
,4-DimethylphenolNDug/kg7100-NitrophenolNDug/kg2800-NitrophenolNDug/kg1400,4-DinitrophenolNDug/kg2800,6-Dinitro-o-cresolNDug/kg2800entachlorophenolNDug/kg2800henolNDug/kg1000-MethylphenolNDug/kg8600-Methylphenol/4-MethylphenolNDug/kg8600,4,5-TrichlorophenolNDug/kg7100enzoic AcidNDug/kg7100enzyl AlcoholNDug/kg7100arbazoleNDug/kg7100	0		
-Nitrophenol ND ug/kg 1400 -Nitrophenol ND ug/kg 1400 ,4-Dinitrophenol ND ug/kg 2800 ,6-Dinitro-o-cresol ND ug/kg 2800 entachlorophenol ND ug/kg 2800 henol ND ug/kg 1000 -Methylphenol ND ug/kg 8600 -Methylphenol/4-Methylphenol ND ug/kg 8600 ,4,5-Trichlorophenol ND ug/kg 7100 enzoic Acid ND ug/kg 7100 enzyl Alcohol ND ug/kg 1400 arbazole ND ug/kg 7100	J		
-Nitrophenol ND ug/kg 1400 ,4-Dinitrophenol ND ug/kg 2800 ,6-Dinitro-o-cresol ND ug/kg 2800 entachlorophenol ND ug/kg 2800 henol ND ug/kg 1000 -Methylphenol ND ug/kg 8600 -Methylphenol/4-Methylphenol ND ug/kg 8600 ,4,5-Trichlorophenol ND ug/kg 7100 enzoic Acid ND ug/kg 7100 enzyl Alcohol ND ug/kg 1400 arbazole ND ug/kg 7100	0		
,4-Dinitrophenol ND ug/kg 2800 ,6-Dinitro-o-cresol ND ug/kg 2800 entachlorophenol ND ug/kg 2800 henol ND ug/kg 1000 -Methylphenol ND ug/kg 8600 -Methylphenol/4-Methylphenol ND ug/kg 8600 ,4,5-Trichlorophenol ND ug/kg 7100 enzoic Acid ND ug/kg 7100 enzyl Alcohol ND ug/kg 7100 enzyl Alcohol ND ug/kg 7100 earbazole ND ug/kg 7100			
entachlorophenol ND ug/kg 2800 Pentachlorophenol ND ug/kg 2800 Pentachlorophenol ND ug/kg 1000 Pentachlorophenol ND ug/kg 8600 Pentachlorophenol ND ug/kg 8600 Pentachlorophenol ND ug/kg 8600 Pentachlorophenol ND ug/kg 7100			
entachlorophenol ND ug/kg 2800 chenol ND ug/kg 1000 c-Methylphenol ND ug/kg 8600 c-Methylphenol/4-Methylphenol ND ug/kg 8600 c,4,5-Trichlorophenol ND ug/kg 7100 cenzoic Acid ND ug/kg 7100 cenzyl Alcohol ND ug/kg 1400 carbazole ND ug/kg 7100			
whenol ND ug/kg 1000 se-Methylphenol ND ug/kg 8600 se-Methylphenol/4-Methylphenol ND ug/kg 8600 server Acid ND ug/kg 7100 senzyl Alcohol ND ug/kg 7100 senzyl Alcohol ND ug/kg 7100 senzyl Alcohol ND ug/kg 7100 senzyl ND			
A-Methylphenol ND ug/kg 8600 a-Methylphenol/4-Methylphenol ND ug/kg 8600 a,4,5-Trichlorophenol ND ug/kg 7100 aenzoic Acid ND ug/kg 7100 aenzyl Alcohol ND ug/kg 1400 arbazole ND ug/kg 7100 arbazole			
-Methylphenol/4-Methylphenol ND ug/kg 8600 ,4,5-Trichlorophenol ND ug/kg 7100 enzoic Acid ND ug/kg 7100 enzyl Alcohol ND ug/kg 1400 erbazole ND ug/kg 7100 ug/kg 7100 erbazole	J		
,4,5-TrichlorophenolNDug/kg7100denzoic AcidNDug/kg7100denzyl AlcoholNDug/kg1400darbazoleNDug/kg7100			
enzoic Acid ND ug/kg 7100 enzyl Alcohol ND ug/kg 1400 arbazole ND ug/kg 7100			
senzyl Alcohol ND ug/kg 1400 arbazole ND ug/kg 7100	2		
arbazole ND ug/kg 7100			
	J		
urrogate(s) Recovery QC (
	riteria		
-Fluorophenol 109 % 25-1			
henol-d6 100 % 10-1	20		
Sitrobenzene-d5 96.0 % 23-1	20		
-Fluorobiphenyl 93.0 % 30-1	20		
,4,6-Tribromophenol 111 % 19-1			
-Terphenyl-d14 76.0 % 18-1	20		

Laboratory Sample Number: L0813447-12

PWG-DW-2008-39(8.5-9')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA' PREP	TE ANAL	ID
Semivolatile Organics by E				1 8270C	0912 21:30	0916 18:3	2 AK
Acenaphthene	ND	ug/kg	1900				
2-Chloronaphthalene	ND	ug/kg	1900				
Fluoranthene	4300	ug/kg	1900				
Hexachlorobutadiene	ND	ug/kg	4800				
Naphthalene	ND	ug/kg	1900				
Benzo(a)anthracene	ND	ug/kg	1900				
Benzo(a)pyrene	ND	ug/kg	1900				
Benzo(b)fluoranthene	3300	ug/kg	1900				
Benzo(k)fluoranthene	3300	ug/kg	1900				
Chrysene	ND	ug/kg	1900				
Acenaphthylene	ND	ug/kg	1900				
Anthracene	ND	ug/kg	1900				
Benzo(ghi)perylene	ND	ug/kg	1900				
Fluorene	ND	ug/kg	1900				
Phenanthrene	ND	ug/kg	1900				
Dibenzo(a,h)anthracene	ND	ug/kg	1900				
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	1900				
Pyrene	4500	ug/kg	1900				
2-Methylnaphthalene	ND	ug/kg	1900				
Pentachlorophenol	ND	ug/kg	7600				
Hexachlorobenzene	ND	ug/kg	7600				
Hexachloroethane	ND	ug/kg	7600				
Surrogate(s)	Recovery		QC Cri	teria			
2-Fluorophenol	ND	8	25-120				
Phenol-d6	ND	%	10-120				
Nitrobenzene-d5	ND	%	23-120				
2-Fluorobiphenyl	ND	%	30-120				
2,4,6-Tribromophenol	ND	%	19-120				
4-Terphenyl-d14	ND	%	18-120				
Petroleum Hydrocarbon Quan	titation by (GC-FID		1 8015B(M)	0916 01:30	0918 03:1	0 JL
ТРН	3270000	ug/kg	476000				
Surrogate(s)	Recovery		QC Cri	teria			
o-Terphenyl	95.0	%	40-140				

Comments: Complete list of References and Glossary of Terms found in Addendum I

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813447-13 Date Collected: 10-SEP-2008 11:10

Sample Matrix: SOIL Date Reported: 22-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID
					PREP ANAL
Solids, Total	91	%	0.10	30 2540G	0913 15:45 NM
Total Metals					
Aluminum, Total	2400	mg/kg	5.1	1 6010B	0912 18:00 0918 12:35 AI
Antimony, Total	ND	mg/kg	2.5	1 6010B	0912 18:00 0918 12:35 AI
Arsenic, Total	0.51	mg/kg	0.51	1 6010B	0912 18:00 0919 11:21 AI
Barium, Total	15	mg/kg	0.51	1 6010B	0912 18:00 0918 12:35 AI
Beryllium, Total	ND	mg/kg	0.25	1 6010B	0912 18:00 0918 12:35 AI
Cadmium, Total	0.82	mg/kg	0.51	1 6010B	0912 18:00 0918 12:35 AI
Calcium, Total	16000	mg/kg	5.1	1 6010B	0912 18:00 0918 12:35 AI
Chromium, Total	13	mg/kg	0.51	1 6010B	0912 18:00 0918 12:35 AI
Cobalt, Total	2.0	mg/kg	1.0	1 6010B	0912 18:00 0918 12:35 AI
Copper, Total	12	mg/kg	0.51	1 6010B	0912 18:00 0918 12:35 AI
Iron, Total	5300	mg/kg	2.5	1 6010B	0912 18:00 0918 12:35 AI
Lead, Total	90	mg/kg	2.5	1 6010B	0912 18:00 0918 12:35 AI
Magnesium, Total	10000	mg/kg	5.1	1 6010B	0912 18:00 0918 12:35 AI
Manganese, Total	85	mg/kg	0.51	1 6010B	0912 18:00 0919 11:21 AI
Mercury, Total	1.0	mg/kg	0.09	1 7471A	0912 20:30 0914 14:38 HG
Nickel, Total	7.8	mg/kg	1.3	1 6010B	0912 18:00 0918 12:35 AI
Potassium, Total	260	mg/kg	130	1 6010B	0912 18:00 0918 12:35 AI
Selenium, Total	ND	mg/kg	1.0	1 6010B	0912 18:00 0919 11:21 AI
Silver, Total	0.76	mg/kg	0.51	1 6010B	0912 18:00 0918 12:35 AI
Sodium, Total	ND	mg/kg	100	1 6010B	0912 18:00 0918 12:35 AI
Thallium, Total	ND	mg/kg	1.0	1 6010B	0912 18:00 0918 12:35 AI
Vanadium, Total	13	mg/kg	0.51	1 6010B	0912 18:00 0918 12:35 AI
Zinc, Total	160	mg/kg	2.5	1 6010B	0912 18:00 0918 12:35 AI
Olatile Organics by EPA 8	260B			1 8260B	0915 21:34 PD
Methylene chloride	ND	ug/kg	27.		
l,1-Dichloroethane	ND	ug/kg	4.1		
Chloroform	ND	ug/kg	4.1		
Carbon tetrachloride	ND	ug/kg	2.7		
l,2-Dichloropropane	ND	ug/kg	9.6		
Dibromochloromethane	ND	ug/kg	2.7		
1,1,2-Trichloroethane	ND	ug/kg	4.1		
Tetrachloroethene	ND	ug/kg	2.7		
Chlorobenzene	ND	ug/kg	2.7		
Trichlorofluoromethane	ND	ug/kg	14.		

Comments: Complete list of References and Glossary of Terms found in Addendum I

Laboratory Sample Number: L0813447-13

PWG-DW-2008-40(6-6.5')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Volatile Organics by EPA 826		/1	0 0	1	8260B		0915 21:	34 PD
l,2-Dichloroethane	ND	ug/kg	2.7					
l,1,1-Trichloroethane	ND	ug/kg	2.7					
Bromodichloromethane	ND	ug/kg	2.7					
rans-1,3-Dichloropropene	ND	ug/kg	2.7					
eis-1,3-Dichloropropene	ND	ug/kg	2.7					
,1-Dichloropropene	ND	ug/kg	14.					
Bromoform	ND	ug/kg	11.					
,1,2,2-Tetrachloroethane	ND	ug/kg	2.7					
Benzene	ND	ug/kg	2.7					
oluene	ND	ug/kg	4.1					
thylbenzene	ND	ug/kg	2.7					
hloromethane	ND	ug/kg	14.					
Bromomethane	ND	ug/kg	5.5					
inyl chloride	ND	ug/kg	5.5					
hloroethane	ND	ug/kg	5.5					
,1-Dichloroethene	ND	ug/kg	2.7					
rans-1,2-Dichloroethene	ND	ug/kg	4.1					
richloroethene	ND	ug/kg	2.7					
,2-Dichlorobenzene	ND	ug/kg	14.					
,3-Dichlorobenzene	ND	ug/kg	14.					
,4-Dichlorobenzene	ND	ug/kg	14.					
ethyl tert butyl ether	ND	ug/kg	5.5					
/m-Xylene	ND	ug/kg	5.5					
-Xylene	ND	ug/kg	5.5					
is-1,2-Dichloroethene	ND	ug/kg	2.7					
Dibromomethane	ND	ug/kg	27.					
Styrene	ND	ug/kg	5.5					
ichlorodifluoromethane	ND	ug/kg	27.					
cetone	ND	ug/kg	27.					
arbon disulfide	ND	ug/kg	27.					
-Butanone	ND	ug/kg	27.					
inyl acetate	ND	ug/kg	27.					
-Methyl-2-pentanone	ND	ug/kg	27.					
.,2,3-Trichloropropane	ND	ug/kg	27.					
-Hexanone	ND	ug/kg	27.					
romochloromethane	ND	ug/kg	14.					
,2-Dichloropropane	ND	ug/kg	14.					
,2-Dibromoethane	ND	ug/kg	11.					
,3-Dichloropropane	ND	ug/kg	14.					
,1,1,2-Tetrachloroethane	ND	ug/kg	2.7					
gromobenzene	ND	ug/kg	14.					
-Butylbenzene	ND	ug/kg	2.7					
ec-Butylbenzene	ND	ug/kg	2.7					
ert-Butylbenzene	ND	ug/kg	14.					
-Chlorotoluene	ND	ug/kg	14.					
-Chlorotoluene	ND	ug/kg	14.					
,2-Dibromo-3-chloropropane	ND	ug/kg	14.					
exachlorobutadiene	ND	ug/kg	14.					
sopropylbenzene	ND	ug/kg	2.7					

Laboratory Sample Number: L0813447-13

PWG-DW-2008-40(6-6.5')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 826	OR contid			1 8260B	0915 21:34 PD
p-Isopropyltoluene	ND	ua /ka	2.7	1 0200B	0915 ZI-34 PD
Naphthalene		ug/kg	14.		
	ND	ug/kg	27.		
Acrylonitrile	ND	ug/kg			
n-Propylbenzene 1,2,3-Trichlorobenzene	ND	ug/kg	2.7		
	ND	ug/kg	14.		
1,2,4-Trichlorobenzene 1,3,5-Trimethylbenzene	ND	ug/kg	14.		
-	ND	ug/kg	14.		
1,2,4-Trimethylbenzene	ND	ug/kg	14.		
1,4-Diethylbenzene	ND	ug/kg	11.		
4-Ethyltoluene	ND	ug/kg	11.		
1,2,4,5-Tetramethylbenzene	ND	ug/kg	11.		
Surrogate(s)	Recovery		QC Cri		
1,2-Dichloroethane-d4	92.0	8	70-130		
Toluene-d8	102	%	70-130		
4-Bromofluorobenzene	107	%	70-130)	
Dibromofluoromethane	92.0	%	70-130)	
Semivolatile Organics by EPA	8270C			1 8270C	0916 19:00 0918 16:10 PS
Acenaphthene	ND	ug/kg	1800		
1,2,4-Trichlorobenzene	ND	ug/kg	1800		
Hexachlorobenzene	ND	ug/kg	1800		
Bis(2-chloroethyl)ether	ND	ug/kg	1800		
2-Chloronaphthalene	ND	ug/kg	2200		
1,2-Dichlorobenzene	ND	ug/kg	1800		
1,3-Dichlorobenzene	ND	ug/kg	1800		
1,4-Dichlorobenzene	ND	ug/kg	1800		
3,3'-Dichlorobenzidine	ND	ug/kg	3700		
2,4-Dinitrotoluene	ND	ug/kg	1800		
2,6-Dinitrotoluene	ND	ug/kg	1800		
Fluoranthene	ND	ug/kg	1800		
4-Chlorophenyl phenyl ether	ND	ug/kg	1800		
4-Bromophenyl phenyl ether	ND	ug/kg	1800		
Bis(2-chloroisopropyl)ether	ND	ug/kg	1800		
Bis(2-chloroethoxy)methane	ND	ug/kg	1800		
Hexachlorobutadiene	ND	ug/kg	3700		
Hexachlorocyclopentadiene	ND	ug/kg	3700		
Hexachloroethane	ND	ug/kg	1800		
Isophorone	ND	ug/kg	1800		
Naphthalene	ND	ug/kg	1800		
Nitrobenzene	ND	ug/kg	1800		
NitrosoDiPhenylAmine(NDPA)/D		ug/kg	5500		
n-Nitrosodi-n-propylamine	ND	ug/kg	1800		
Bis(2-Ethylhexyl)phthalate	ND	ug/kg	3700		
Butyl benzyl phthalate	ND	ug/kg ug/kg	1800		
Di-n-butylphthalate	ND	ug/kg	1800		
Di-n-octylphthalate	ND	ug/kg ug/kg	1800		
Diethyl phthalate	ND	ug/kg ug/kg	1800		
TOULT PILOTACE	1417	42/129	±000		

Laboratory Sample Number: L0813447-13

PWG-DW-2008-40(6-6.5')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA' PREP	TE ANAI	ID
Semivolatile Organics by EPA 8	3270C cont	- 'd		1	8270C	0916 19:00	0918 16	·10 pg
Benzo(a)anthracene	ND	ug/kg	1800	-	02700	0310 13:00	0,10 10	-10 15
Benzo(a)pyrene	ND	ug/kg ug/kg	1800					
Benzo(b)fluoranthene	ND	ug/kg ug/kg	1800					
Benzo(k)fluoranthene	ND	ug/kg ug/kg	1800					
Chrysene	ND	ug/kg ug/kg	1800					
acenaphthylene	ND	ug/kg ug/kg	1800					
anthracene	ND	ug/kg ug/kg	1800					
Benzo(ghi)perylene	ND	ug/kg ug/kg	1800					
luorene	ND	ug/kg ug/kg	1800					
henanthrene	ND	ug/kg ug/kg	1800					
ribenzo(a,h)anthracene	ND	ug/kg ug/kg	1800					
ndeno(1,2,3-cd)Pyrene	ND	ug/kg ug/kg	1800					
			1800					
yrene	ND	ug/kg						
Siphenyl	ND	ug/kg	1800					
-Chloroaniline -Nitroaniline	ND	ug/kg	1800					
	ND	ug/kg	1800					
-Nitroaniline	ND	ug/kg	1800					
-Nitroaniline	ND	ug/kg	2600					
ibenzofuran	ND	ug/kg	1800					
-Methylnaphthalene	ND	ug/kg	1800					
,2,4,5-Tetrachlorobenzene	ND	ug/kg	7300					
cetophenone	ND	ug/kg	7300					
,4,6-Trichlorophenol	ND	ug/kg	1800					
-Chloro-M-Cresol	ND	ug/kg	1800					
-Chlorophenol	ND	ug/kg	2200					
,4-Dichlorophenol	ND	ug/kg	3700					
,4-Dimethylphenol	ND	ug/kg	1800					
-Nitrophenol	ND	ug/kg	7300					
-Nitrophenol	ND	ug/kg	3700					
,4-Dinitrophenol	ND	ug/kg	7300					
,6-Dinitro-o-cresol	ND	ug/kg	7300					
entachlorophenol	ND	ug/kg	7300					
henol	ND	ug/kg	2600					
-Methylphenol	ND	ug/kg	2200					
-Methylphenol/4-Methylphenol	ND	ug/kg	2200					
,4,5-Trichlorophenol	ND	ug/kg	1800					
enzoic Acid	ND	ug/kg	18000					
Benzyl Alcohol	ND	ug/kg	3700					
arbazole	ND	ug/kg	1800					
urrogate(s)	Recovery		QC Cr	iteria				
-Fluorophenol	109	%	25-120	0				
henol-d6	112	%	10-120	0				
itrobenzene-d5	98.0	%	23-120	0				
-Fluorobiphenyl	95.0	%	30-120	0				
,4,6-Tribromophenol	119	%	19-120	0				
-Terphenyl-d14	80.0	%	18-120	Ω				

Laboratory Sample Number: L0813447-13

PWG-DW-2008-40(6-6.5')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA' PREP	TE ANAL	ID
Semivolatile Organics by EI	PA 8270C-SIM	cont'd		1 8270C	0912 21:30	0916 19:2	0 AK
Acenaphthene	ND	ug/kg	1500				
2-Chloronaphthalene	ND	ug/kg	1500				
Fluoranthene	ND	ug/kg	1500				
Hexachlorobutadiene	ND	ug/kg	3700				
Naphthalene	ND	ug/kg	1500				
Benzo(a)anthracene	ND	ug/kg	1500				
Benzo(a)pyrene	ND	ug/kg	1500				
Benzo(b)fluoranthene	ND	ug/kg	1500				
Benzo(k)fluoranthene	ND	ug/kg	1500				
Chrysene	ND	ug/kg	1500				
Acenaphthylene	ND	ug/kg	1500				
Anthracene	ND	ug/kg	1500				
Benzo(ghi)perylene	ND	ug/kg	1500				
Fluorene	ND	ug/kg	1500				
Phenanthrene	ND	ug/kg	1500				
Dibenzo(a,h)anthracene	ND	ug/kg	1500				
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	1500				
Pyrene	ND	ug/kg	1500				
2-Methylnaphthalene	ND	ug/kg	1500				
Pentachlorophenol	ND	ug/kg	5900				
Hexachlorobenzene	ND	ug/kg	5900				
Hexachloroethane	ND	ug/kg	5900				
Surrogate(s)	Recovery		QC Cri	teria			
2-Fluorophenol	ND	%	25-120				
Phenol-d6	ND	%	10-120				
Nitrobenzene-d5	ND	%	23-120				
2-Fluorobiphenyl	ND	8	30-120				
2,4,6-Tribromophenol	ND	8	19-120				
4-Terphenyl-d14	ND	%	18-120				
Petroleum Hydrocarbon Quant	citation by G	GC-FID		1 8015B(M)	0916 01:30	0918 03:4	4 JL
ТРН	645000	ug/kg	183000				
Surrogate(s)	Recovery		QC Cri	teria			
o-Terphenyl	103	8	40-140				

Comments: Complete list of References and Glossary of Terms found in Addendum I

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813447-14 Date Collected: 10-SEP-2008 11:20

PWG-DW-2008-41(9-9.5') Date Received: 11-SEP-2008

Sample Matrix: SOIL Date Reported: 22-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID
					PREP ANAL
Solids, Total	79	%	0.10	30 2540G	0913 15:45 NM
Total Metals					
Aluminum, Total	820	mg/kg	6.2	1 6010B	0912 18:00 0918 12:47 AI
Antimony, Total	ND	mg/kg	3.1	1 6010B	0912 18:00 0918 12:47 AI
Arsenic, Total	ND	mg/kg	0.62	1 6010B	0912 18:00 0919 11:33 AI
Barium, Total	1.8	mg/kg	0.62	1 6010B	0912 18:00 0918 12:47 AI
Beryllium, Total	ND	mg/kg	0.31	1 6010B	0912 18:00 0918 12:47 AI
Cadmium, Total	ND	mg/kg	0.62	1 6010B	0912 18:00 0918 12:47 AI
Calcium, Total	170	mg/kg	6.2	1 6010B	0912 18:00 0918 12:47 AI
Chromium, Total	4.0	mg/kg	0.62	1 6010B	0912 18:00 0918 12:47 AI
Cobalt, Total	ND	mg/kg	1.2	1 6010B	0912 18:00 0918 12:47 AI
Copper, Total	3.6	mg/kg	0.62	1 6010B	0912 18:00 0918 12:47 AI
Iron, Total	1300	mg/kg	3.1	1 6010B	0912 18:00 0918 12:47 AI
Lead, Total	5.0	mg/kg	3.1	1 6010B	0912 18:00 0918 12:47 AI
Magnesium, Total	120	mg/kg	6.2	1 6010B	0912 18:00 0918 12:47 AI
Manganese, Total	3.4	mg/kg	0.62	1 6010B	0912 18:00 0919 11:33 AI
Mercury, Total	0.17	mg/kg	0.09	1 7471A	0912 20:30 0914 14:39 HG
Nickel, Total	1.5	mg/kg	1.5	1 6010B	0912 18:00 0918 12:47 AI
Potassium, Total	ND	mg/kg	150	1 6010B	0912 18:00 0918 12:47 AI
Selenium, Total	ND	mg/kg	1.2	1 6010B	0912 18:00 0919 11:33 AI
Silver, Total	ND	mg/kg	0.62	1 6010B	0912 18:00 0918 12:47 AI
Sodium, Total	ND	mg/kg	120	1 6010B	0912 18:00 0918 12:47 AI
Thallium, Total	ND	mg/kg	1.2	1 6010B	0912 18:00 0918 12:47 AI
Vanadium, Total	2.1	mg/kg	0.62	1 6010B	0912 18:00 0918 12:47 AI
Zinc, Total	18	mg/kg	3.1	1 6010B	0912 18:00 0918 12:47 AI
Volatile Organics by EPA 8	260B			1 8260B	0915 22:10 PD
Methylene chloride	ND	ug/kg	32.		
1,1-Dichloroethane	ND	ug/kg	4.7		
Chloroform	ND	ug/kg	4.7		
Carbon tetrachloride	ND	ug/kg	3.2		
1,2-Dichloropropane	ND	ug/kg	11.		
Dibromochloromethane	ND	ug/kg	3.2		
1,1,2-Trichloroethane	ND	ug/kg	4.7		
Tetrachloroethene	ND	ug/kg	3.2		
Chlorobenzene	ND	ug/kg	3.2		
Trichlorofluoromethane	ND	ug/kg	16.		

Comments: Complete list of References and Glossary of Terms found in Addendum I

Laboratory Sample Number: L0813447-14

PWG-DW-2008-41(9-9.5')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Volatile Organics by EPA 826				1	8260B		0915 22:3	10 PD
l,2-Dichloroethane	ND	ug/kg	3.2					
l,1,1-Trichloroethane	ND	ug/kg	3.2					
Bromodichloromethane	ND	ug/kg	3.2					
rans-1,3-Dichloropropene	ND	ug/kg	3.2					
cis-1,3-Dichloropropene	ND	ug/kg	3.2					
,1-Dichloropropene	ND	ug/kg	16.					
Bromoform	ND	ug/kg	13.					
.,1,2,2-Tetrachloroethane	ND	ug/kg	3.2					
Benzene	ND	ug/kg	3.2					
'oluene	ND	ug/kg	4.7					
Sthylbenzene	ND	ug/kg	3.2					
hloromethane	ND	ug/kg	16.					
Bromomethane	ND	ug/kg	6.3					
7inyl chloride	ND	ug/kg	6.3					
hloroethane	ND	ug/kg	6.3					
,1-Dichloroethene	ND	ug/kg	3.2					
rans-1,2-Dichloroethene	ND	ug/kg	4.7					
richloroethene	ND	ug/kg	3.2					
,2-Dichlorobenzene	ND	ug/kg	16.					
,3-Dichlorobenzene	ND	ug/kg	16.					
,4-Dichlorobenzene	ND	ug/kg	16.					
Methyl tert butyl ether	ND	ug/kg	6.3					
/m-Xylene	ND	ug/kg	6.3					
-Xylene	ND	ug/kg	6.3					
is-1,2-Dichloroethene	ND	ug/kg	3.2					
ibromomethane	ND	ug/kg	32.					
Styrene	ND	ug/kg	6.3					
Dichlorodifluoromethane	ND	ug/kg	32.					
cetone	ND	ug/kg	32.					
Carbon disulfide	ND	ug/kg	32.					
-Butanone	ND	ug/kg	32.					
inyl acetate	ND	ug/kg	32.					
-Methyl-2-pentanone	ND	ug/kg	32.					
.,2,3-Trichloropropane	ND	ug/kg	32.					
-Hexanone	ND	ug/kg	32.					
romochloromethane	ND	ug/kg	16.					
2,2-Dichloropropane	ND	ug/kg	16.					
,2-Dibromoethane	ND	ug/kg	13.					
,3-Dichloropropane	ND	ug/kg	16.					
,1,1,2-Tetrachloroethane	ND	ug/kg	3.2					
romobenzene	ND	ug/kg	16.					
-Butylbenzene	ND	ug/kg	3.2					
ec-Butylbenzene	ND	ug/kg	3.2					
ert-Butylbenzene	ND	ug/kg	16.					
-Chlorotoluene	ND	ug/kg	16.					
-Chlorotoluene	ND	ug/kg	16.					
.,2-Dibromo-3-chloropropane	ND	ug/kg	16.					
exachlorobutadiene	ND	ug/kg	16.					
Isopropylbenzene	ND	ug/kg	3.2					

Laboratory Sample Number: L0813447-14

PWG-DW-2008-41(9-9.5')

PARAMETER	RESULT	UNITS	RDL	REF METH	OD I PREF	ATE ANAL	ID
Volatile Organics by EPA 826	OR contid			1 8260B		0915 22:	10 DD
p-Isopropyltoluene	ND	ua /ka	3.2	1 0200B		0915 22.	IO PD
p-isopropyrtoruene Naphthalene		ug/kg	3.2 16.				
_	ND	ug/kg	32.				
Acrylonitrile	ND	ug/kg					
n-Propylbenzene	ND	ug/kg	3.2				
1,2,3-Trichlorobenzene	ND	ug/kg	16.				
1,2,4-Trichlorobenzene	ND	ug/kg	16.				
1,3,5-Trimethylbenzene	ND	ug/kg	16.				
1,2,4-Trimethylbenzene	ND	ug/kg	16.				
1,4-Diethylbenzene	ND	ug/kg	13.				
4-Ethyltoluene	ND	ug/kg	13.				
1,2,4,5-Tetramethylbenzene	ND	ug/kg	13.				
Surrogate(s)	Recovery		QC Cri				
1,2-Dichloroethane-d4	84.0	%	70-130				
Toluene-d8	95.0	8	70-130				
4-Bromofluorobenzene	100	%	70-130)			
Dibromofluoromethane	85.0	%	70-130)			
Semivolatile Organics by EPA	8270C			1 8270C	0916 19:0	0 0918 16:	33 PS
Acenaphthene	ND	ug/kg	420				
1,2,4-Trichlorobenzene	ND	ug/kg	420				
Hexachlorobenzene	ND	ug/kg	420				
Bis(2-chloroethyl)ether	ND	ug/kg	420				
2-Chloronaphthalene	ND	ug/kg	510				
1,2-Dichlorobenzene	ND	ug/kg	420				
1,3-Dichlorobenzene	ND	ug/kg	420				
1,4-Dichlorobenzene	ND	ug/kg	420				
3,3'-Dichlorobenzidine	ND	ug/kg	840				
2,4-Dinitrotoluene	ND	ug/kg	420				
2,6-Dinitrotoluene	ND	ug/kg	420				
Fluoranthene	ND	ug/kg	420				
4-Chlorophenyl phenyl ether	ND	ug/kg	420				
4-Bromophenyl phenyl ether	ND	ug/kg	420				
Bis(2-chloroisopropyl)ether	ND	ug/kg	420				
Bis(2-chloroethoxy)methane	ND	ug/kg	420				
Hexachlorobutadiene	ND	ug/kg	840				
Hexachlorocyclopentadiene	ND	ug/kg	840				
Hexachloroethane	ND	ug/kg	420				
Isophorone	ND	ug/kg	420				
Naphthalene	ND	ug/kg	420				
Nitrobenzene	ND	ug/kg	420				
NitrosoDiPhenylAmine(NDPA)/D		ug/kg	1300				
n-Nitrosodi-n-propylamine	ND	ug/kg	420				
Bis(2-Ethylhexyl)phthalate	ND	ug/kg	840				
Butyl benzyl phthalate	ND	ug/kg	420				
Di-n-butylphthalate	ND	ug/kg	420				
Di-n-octylphthalate	ND	ug/kg	420				
Diethyl phthalate	ND	ug/kg ug/kg	420				
Dimethyl phthalate	ND	ug/kg	420				

Laboratory Sample Number: L0813447-14

PWG-DW-2008-41(9-9.5')

PARAMETER	RESULT	UNITS	RDL	REF METHO	D DA PREP	TE ANAL	ID
Semivolatile Organics by EPA 8	8270C cont	- ' d		1 8270C	0916 19:00	0918 16.	33 DG
Benzo(a)anthracene	ND	ug/kg	420	1 02/00	0010 10.00	0,10 10.	JJ FD
Benzo(a)pyrene	ND	ug/kg ug/kg	420				
Benzo(b)fluoranthene	ND		420				
Benzo(k)fluoranthene	ND	ug/kg	420				
chrysene	ND	ug/kg ug/kg	420				
acenaphthylene	ND	ug/kg ug/kg	420				
nthracene	ND	ug/kg ug/kg	420				
Benzo(ghi)perylene	ND		420				
luorene	ND	ug/kg	420				
henanthrene	ND	ug/kg	420				
	ND	ug/kg	420				
ribenzo(a,h)anthracene		ug/kg	420				
indeno(1,2,3-cd)Pyrene	ND	ug/kg					
yrene	ND	ug/kg	420				
siphenyl	ND	ug/kg	420				
Chloroaniline	ND	ug/kg	420				
-Nitroaniline	ND	ug/kg	420				
-Nitroaniline	ND	ug/kg	420				
-Nitroaniline	ND	ug/kg	590				
ibenzofuran	ND	ug/kg	420				
-Methylnaphthalene	ND	ug/kg	420				
,2,4,5-Tetrachlorobenzene	ND	ug/kg	1700				
cetophenone	ND	ug/kg	1700				
,4,6-Trichlorophenol	ND	ug/kg	420				
-Chloro-M-Cresol	ND	ug/kg	420				
-Chlorophenol	ND	ug/kg	510				
,4-Dichlorophenol	ND	ug/kg	840				
,4-Dimethylphenol	ND	ug/kg	420				
-Nitrophenol	ND	ug/kg	1700				
-Nitrophenol	ND	ug/kg	840				
,4-Dinitrophenol	ND	ug/kg	1700				
,6-Dinitro-o-cresol	ND	ug/kg	1700				
entachlorophenol	ND	ug/kg	1700				
henol	ND	ug/kg	590				
-Methylphenol	ND	ug/kg	510				
-Methylphenol/4-Methylphenol	ND	ug/kg	510				
,4,5-Trichlorophenol	ND	ug/kg	420				
enzoic Acid	ND	ug/kg	4200				
Benzyl Alcohol	ND	ug/kg	840				
arbazole	ND	ug/kg	420				
urrogate(s)	Recovery		QC Cr	iteria			
-Fluorophenol	83.0	%	25-120)			
henol-d6	87.0	%	10-120)			
itrobenzene-d5	78.0	%	23-120)			
-Fluorobiphenyl	75.0	%	30-120)			
,4,6-Tribromophenol	84.0	%	19-120)			
-Terphenyl-d14	67.0	%	18-120)			

Laboratory Sample Number: L0813447-14

PWG-DW-2008-41(9-9.5')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA' PREP	TE ANAL	ID
Semivolatile Organics by E	PA 8270C-SIM	cont'd		1 8270C	0912 21:30	0916 20:0	8 AK
Acenaphthene	ND	ug/kg	84.				
2-Chloronaphthalene	ND	ug/kg	84.				
Fluoranthene	ND	ug/kg	84.				
Hexachlorobutadiene	ND	ug/kg	210				
Naphthalene	ND	ug/kg	84.				
Benzo(a)anthracene	ND	ug/kg	84.				
Benzo(a)pyrene	ND	ug/kg	84.				
Benzo(b)fluoranthene	ND	ug/kg	84.				
Benzo(k)fluoranthene	ND	ug/kg	84.				
Chrysene	ND	ug/kg	84.				
Acenaphthylene	ND	ug/kg	84.				
Anthracene	ND	ug/kg	84.				
Benzo(ghi)perylene	ND	ug/kg	84.				
Fluorene	ND	ug/kg	84.				
Phenanthrene	ND	ug/kg	84.				
Dibenzo(a,h)anthracene	ND	ug/kg	84.				
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	84.				
Pyrene	ND	ug/kg	84.				
2-Methylnaphthalene	ND	ug/kg	84.				
Pentachlorophenol	ND	ug/kg	340				
Hexachlorobenzene	ND	ug/kg	340				
Hexachloroethane	ND	ug/kg	340				
Surrogate(s)	Recovery		QC Cri	teria			
2-Fluorophenol	60.0	%	25-120				
Phenol-d6	66.0	%	10-120				
Nitrobenzene-d5	53.0	%	23-120				
2-Fluorobiphenyl	56.0	%	30-120				
2,4,6-Tribromophenol	47.0	%	19-120				
4-Terphenyl-d14	63.0	%	18-120				
Petroleum Hydrocarbon Quan	ntitation by (GC-FID		1 8015B(M)	0916 01:30	0918 04:1	8 JL
ТРН	168000	ug/kg	42200				
Surrogate(s)	Recovery		QC Cri	teria			
o-Terphenyl	88.0	%	40-140				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LAO00065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813447-15 Date Collected: 10-SEP-2008 11:35

PWG-DW-2008-42(2-5') **Date Received:** 11-SEP-2008

Sample Matrix: SOIL Date Reported: 22-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER RESULT UNITS RDL REF METHOD DATE ID PREP ANAL

***** THIS SAMPLE IS ON HOLD ******

Comments: Complete list of References and Glossary of Terms found in Addendum I

09220812:02 Page 75 of 90

Laboratory Job Number: L0813447

Parameter		Value 1	Value 2	Units	RPD	RPD	Limits
	Solids, To	tal for sam	ple(s) 02-1	4 (L0813406	5-41, WG3	36296-1	.)
Solids, Total		68	68	96	0	20	
	Total Met	als for sam	ple(s) 02-1	4 (L0813344	1-25, WG3	36225-3	()
Mercury, Total		1.1	0.80	mg/kg	32	35	
Petroleum Hyd	rocarbon Qua	ntitation b	y GC-FID fo	r sample(s)) 02-14 (L081344	7-02, WG336438-3
TPH	-	ND	ND	ug/kg	NC	40	
Surrogate(s)		Rec	overy				QC Criteria
o-Terphenyl		64.0	61.0	%			40-140

09220812:02 Page 76 of 90

ALPHA ANALYTICAL QUALITY ASSURANCE BATCH SPIKE ANALYSES

Laboratory Job Number: L0813447

Parameter	% Recovery QC Criteria
Total Metals LO	CS for sample(s) 02-14 (WG336219-4)
Aluminum, Total	105 75-125
Antimony, Total	109 75-125
Arsenic, Total	107 75-125
Barium, Total	106 75-125
Beryllium, Total	105 75-125
Cadmium, Total	107 75-125
Calcium, Total	98 75-125
Chromium, Total	100 75-125
Cobalt, Total	105 75-125
Copper, Total	96 75-125
Iron, Total	98 75-125
Lead, Total	103 75-125
Magnesium, Total	92 75-125
Manganese, Total	96 75-125
Nickel, Total	105 75-125
Potassium, Total	102 75-125
Selenium, Total	104 75-125
Silver, Total	102 75-125
Sodium, Total	105 75-125
Thallium, Total	107 75-125
Vanadium, Total	100 75-125
Zinc, Total	100 75-125
Total Metals Lo	CS for sample(s) 02-14 (WG336225-2)
Mercury, Total	101 80-120
Petroleum Hydrocarbon Quantita	ation by GC-FID LCS for sample(s) 02-14 (WG336438-2)
TPH	101 40-140
Surrogate(s)	
o-Terphenyl	85 40-140
Total Metals SPIKE for	sample(s) 02-14 (L0813344-25, WG336225-4)
Mercury, Total	0 70-130

Laboratory Job Number: L0813447

Parameter	LCS %	LCSD %	RPD	RPD Limit	QC Limits
Volatile Organics by EPA 82	60B for sample	a(a) N2-14	(WG336650-1	WG336650-2)	
Chlorobenzene	101	97	4	30	60-133
Benzene	95	94	1	30	66-142
Toluene	98	95	3	30	59-139
1,1-Dichloroethene	91	92	1	30	59-172
Trichloroethene	95	93	2	30	62-137
Surrogate(s)					
1,2-Dichloroethane-d4	83	90	8		70-130
roluene-d8	94	102	8		70-130
1-Bromofluorobenzene	92	102	10		70-130
Dibromofluoromethane	89	97	9		70-130
Volatile Organics by EPA 82	60B for sample	e(s) 10-11	(WG336650-4	, WG336650-5)	
Chlorobenzene	87	85	2	30	60-133
Benzene	89	86	3	30	66-142
l'oluene	88	87	1	30	59-139
l,1-Dichloroethene	86	81	6	30	59-172
Trichloroethene	86	85	1	30	62-137
Surrogate(s)					
l,2-Dichloroethane-d4	88	87	1		70-130
Coluene-d8	99	100	1		70-130
l-Bromofluorobenzene	99	97	2		70-130
Dibromofluoromethane	96	96	0		70-130
Volatile Organics by EPA	8260B for samp	ole(s) 01	(WG336088-4,	WG336088-5)	
Chlorobenzene	96	101	5	20	75-130
Benzene	97	102	5	20	76-127
Toluene	95	102	7	20	76-125
l,1-Dichloroethene	93	99	6	20	61-145
Trichloroethene	93	99	6	20	71-120
Surrogate(s)					
1,2-Dichloroethane-d4	102	102	0		70-130
Coluene-d8	99	100	1		70-130
1-Bromofluorobenzene	100	99	1		70-130
Dibromofluoromethane	101	101	0		70-130
Semivolatile Organics by EPA					
Acenaphthene	83	84	1	50	31-137
l,2,4-Trichlorobenzene	75	78	4	50	38-107
2-Chloronaphthalene	85	85	0	50	40-140
,2-Dichlorobenzene	79	82	4	50	40-140
l,4-Dichlorobenzene	75	76	1	50	28-104
2,4-Dinitrotoluene	107	106	1	50	28-89
2,6-Dinitrotoluene	89	93	4	50	40-140
Fluoranthene	101	99	2	50	40-140
4-Chlorophenyl phenyl ether	86	97	12	50	40-140

Laboratory Job Number: L0813447

Continued

Parameter	LCS	%	LCSD	%	RPD	RPD Limit	QC Limits
Semivolatile Organics by EPA 82700	for	gamplo	'a\ 0'	0_1/	(WC226002	-2 MC226002-2)	
n-Nitrosodi-n-propylamine	83	Sample	79	7 T T	5	50	41-126
Butyl benzyl phthalate	112		109		3	50	40-140
Anthracene	95		93		2	50	40-140
Pyrene	98		97		1	50	35-142
P-Chloro-M-Cresol	89		90		1	50	26-103
2-Chlorophenol	84		81		4	50	25-102
2-Nitrophenol	88		81		8	50	30-130
4-Nitrophenol	96		98		2	50	11-114
2,4-Dinitrophenol	83		86		4	50	30-130
Pentachlorophenol	88		88		0	50	17-109
Phenol	82		84		2	50	26-90
Fileliot	04		04		2	50	20-90
Surrogate(s)							
2-Fluorophenol	97		90		7		25-120
Phenol-d6	95		89		7		10-120
Nitrobenzene-d5	89		79		12		23-120
2-Fluorobiphenyl	84		80		5		30-120
2,4,6-Tribromophenol	110		98		12		19-120
4-Terphenyl-d14	85		77		10		18-120
Semivolatile Organics by EPA 82700	-STM	for gar	mle(a) 02)_14 (WG336	5244-2 WG33624	14-3)
Acenaphthene	70	IOI Dat	61), UZ	14	2211 2, NG3302.	31-137
2-Chloronaphthalene	74		65		13		40-140
Fluoranthene	94		86		9		40-140
Anthracene	85		77		10		40-140
Pyrene	95		87		9		35-142
Pentachlorophenol	24		21		13		17-109
							1, 10,
Surrogate(s)							
2-Fluorophenol	73		62		16		25-120
Phenol-d6	80		68		16		10-120
Nitrobenzene-d5	71		60		17		23-120
2-Fluorobiphenyl	66		57		15		30-120
2,4,6-Tribromophenol	48		43		11		19-120
4-Terphenyl-d14	83		76		9		18-120

ALPHA ANALYTICAL QUALITY ASSURANCE BATCH MS/MSD ANALYSIS

Laboratory Job Number: L0813447

Parameter		MS %	MSD %	RPD	RPD Limit	MS/MSD Limits
	Metals for	sample(s) 02-14				
Aluminum, Total		956	566	51	35	75-125
Antimony, Total		57	60	5	35	75-125
Arsenic, Total		113	138	20	35	75-125
Barium, Total		110	99	11	35	75-125
Beryllium, Total		111	102	8	35	75-125
Cadmium, Total		108	110	2	35	75-125
Calcium, Total		0	0	NC	35	75-125
Chromium, Total		134	141	5	35	75-125
Cobalt, Total		99	98	1	35	75-125
Copper, Total		130	121	7	35	75-125
Iron, Total		2680	1880	35	35	75-125
Lead, Total		188	185	2	35	75-125
Magnesium, Total		0	0	NC	35	75-125
Manganese, Total		172	320	60	35	75-125
Nickel, Total		104	106	2	35	75-125
Potassium, Total		109	94	15	35	75-125
Selenium, Total		105	105	0	35	75-125
Silver, Total		104	102	2	35	75-125
Sodium, Total		113	107	5	35	75-125
Thallium, Total		96	97	1	35	75-125
Vanadium, Total		107	102	5	35	75-125
Zinc, Total		459	188	84	35	75-125

Laboratory Job Number: L0813447

PARAMETER	RESULT	UNITS RDL		REF METHOD	DATE II		
	112021	011215	102	1121102	PREP ANAL		
Blank Analy	sis for sam	ole(s) 02-1	.4 (WG33	6219-3)			
Total Metals			·	·			
Aluminum, Total	ND	mg/kg	5.0	1 6010B	0912 18:00 0918 12:27 A		
Antimony, Total	ND	mg/kg	2.5	1 6010B	0912 18:00 0918 12:27 A		
Arsenic, Total	ND	mg/kg	0.50	1 6010B	0912 18:00 0919 11:12 A		
Barium, Total	ND	mg/kg	0.50	1 6010B	0912 18:00 0918 12:27 A		
Beryllium, Total	ND	mg/kg	0.25	1 6010B	0912 18:00 0918 12:27 A		
Cadmium, Total	ND	mg/kg	0.50	1 6010B	0912 18:00 0918 12:27 A		
Calcium, Total	ND	mg/kg	5.0	1 6010B	0912 18:00 0918 12:27 A		
Chromium, Total	ND	mg/kg	0.50	1 6010B	0912 18:00 0918 12:27 A		
Cobalt, Total	ND	mg/kg	1.0	1 6010B	0912 18:00 0918 12:27 A		
Copper, Total	ND	mg/kg	0.50	1 6010B	0912 18:00 0918 12:27 A		
ron, Total	ND	mg/kg	2.5	1 6010B	0912 18:00 0918 12:27 A		
Lead, Total	ND	mg/kg	2.5	1 6010B	0912 18:00 0918 12:27 A		
agnesium, Total	ND	mg/kg	5.0	1 6010B	0912 18:00 0918 12:27 A		
langanese, Total	ND	mg/kg	0.50	1 6010B	0912 18:00 0918 12:27 A		
ickel, Total	ND	mg/kg	1.2	1 6010B	0912 18:00 0919 11:12 A		
otassium, Total	ND ND	mg/kg	120		0912 18:00 0918 12:27 A		
elenium, Total	ND		1.0				
ilver, Total	ND ND	mg/kg	0.50	1 6010B	0912 18:00 0919 11:12 A		
odium, Total		mg/kg		1 6010B	0912 18:00 0918 12:27 A		
•	ND	mg/kg	100	1 6010B	0912 18:00 0918 12:27 A		
hallium, Total	ND	mg/kg	1.0	1 6010B	0912 18:00 0918 12:27 A		
anadium, Total	ND	mg/kg	0.50	1 6010B	0912 18:00 0918 12:27 A		
inc, Total	ND	mg/kg	2.5	1 6010B	0912 18:00 0918 12:27 A		
Blank Analy	sis for sam	ple(s) 02-1	.4 (WG33	6225-1)			
otal Metals							
	ND	mg/kg	0.08	1 7471A	0912 20:30 0914 13:49 H		
ercury, Total					0912 20:30 0914 13:49 но		
ercury, Total Blank Ana	lysis for sa				0912 20:30 0914 13:49 HG		
Mercury, Total Blank Ana Volatile Organics by EPA 82	lysis for sa			088-6)			
ercury, Total Blank Ana Colatile Organics by EPA 82 Methylene chloride	lysis for sa	ample(s) 01	(WG336)	088-6)			
Blank Ana Olatile Organics by EPA 82 Wethylene chloride ,1-Dichloroethane	lysis for sa 60B ND	ug/lug/l	. (WG3360	088-6)			
Blank Ana Tolatile Organics by EPA 82 Methylene chloride The chloroethane Schloroform	lysis for sa 60B ND ND	ample(s) 01	5.0 0.75	088-6)			
Blank Ana Tolatile Organics by EPA 82 Tethylene chloride The chloroethane The chloroform The chloride of the chloroform The chloride of the chloride of the chloride	lysis for sa 60B ND ND ND	ug/lug/lug/lug/lug/lug/l	5.0 0.75 0.75 0.50	088-6)			
Blank Ana Tolatile Organics by EPA 82 Tethylene chloride The chloroethane The chloroform The chlorode chloride The chloroform The chlorode chloride The chloride chloride chloride The chloride chloride chloride chloride The chloride chlori	lysis for sa 60B ND ND ND ND	ug/lug/lug/lug/lug/lug/lug/lug/l	5.0 0.75 0.75 0.50 1.8	088-6)			
ercury, Total Blank Ana olatile Organics by EPA 82 ethylene chloride ,1-Dichloroethane hloroform arbon tetrachloride ,2-Dichloropropane ibromochloromethane	lysis for sa 60B ND ND ND ND ND	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	5.0 0.75 0.75 0.50	088-6)			
Blank Ana olatile Organics by EPA 82 ethylene chloride ,1-Dichloroethane hloroform arbon tetrachloride ,2-Dichloropropane ibromochloromethane ,1,2-Trichloroethane	lysis for sa 60B ND ND ND ND ND ND	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	5.0 0.75 0.75 0.50 1.8 0.50 0.75	088-6)			
Blank Ana olatile Organics by EPA 82 ethylene chloride ,1-Dichloroethane hloroform arbon tetrachloride ,2-Dichloropropane ibromochloromethane ,1,2-Trichloroethane etrachloroethene	lysis for sa 60B ND ND ND ND ND ND ND ND ND N	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	5.0 0.75 0.75 0.50 1.8 0.50 0.75 0.50	088-6)			
Blank Ana Tolatile Organics by EPA 82 Tethylene chloride The chloroethane The chloroethane The chloroform The chloroform The chloropropane The chloromethane The chloroethane	lysis for sa 60B ND ND ND ND ND ND ND ND ND N	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	5.0 0.75 0.75 0.50 1.8 0.50 0.75 0.50	088-6)			
Blank Ana Tolatile Organics by EPA 82 Tethylene chloride Thoroform Tarbon tetrachloride Thoromochloromethane Thoromochloromethane Thoromochloromethane Thorotomethane Thorobenzene Trichlorofluoromethane	lysis for sa 60B ND ND ND ND ND ND ND ND ND N	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	5.0 0.75 0.75 0.50 1.8 0.50 0.75 0.50 0.50	088-6)			
Blank Ana Tolatile Organics by EPA 82 Methylene chloride Tolichloroethane Chloroform Marbon tetrachloride Tolichloropropane Dibromochloromethane Tolichloroethane Metrachloroethane Tolichloroethane Metrachloroethane Metrachloroethane Metrachloroethane Metrachloroethane Metrachloroethane Metrachlorofluoromethane Metrachlorofluoromethane Metrachlorofluoromethane Metrachlorofluoromethane Metrachloroethane	lysis for sa 60B ND ND ND ND ND ND ND ND ND N	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	5.0 0.75 0.75 0.50 1.8 0.50 0.75 0.50 0.50	088-6)			
Blank Ana Volatile Organics by EPA 82 Methylene chloride L.1-Dichloroethane Chloroform Carbon tetrachloride L.2-Dichloropropane Dibromochloromethane L.1,2-Trichloroethane Cetrachloroethene Chlorobenzene Crichlorofluoromethane L.2-Dichloroethane L.2-Dichloroethane L.2-Dichloroethane L.2-Dichloroethane L.2-Dichloroethane L.3-Trichloroethane	lysis for sa 60B ND ND ND ND ND ND ND ND ND N	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	5.0 0.75 0.75 0.50 1.8 0.50 0.75 0.50 0.50	088-6)			
Blank Ana Volatile Organics by EPA 82 Methylene chloride L,1-Dichloroethane Chloroform Carbon tetrachloride L,2-Dichloropropane Dibromochloromethane L,1,2-Trichloroethane Chlorofluoromethane Chlorofluoromethane L,1,2-Trichloroethane Chlorofluoromethane Chlorofluoromethane Chlorofluoromethane L,2-Dichloroethane Chlorofluoromethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloromethane Chloromethane Chloromethane Chloromethane Chloromethane Chloropropene	lysis for sa 60B ND ND ND ND ND ND ND ND ND N	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	5.0 0.75 0.75 0.50 1.8 0.50 0.75 0.50 0.50	088-6)			

09220812:02 Page 81 of 90

Laboratory Job Number: L0813447

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Blank Analy	vsis for sa	ample(s) 0	1 (WG336)	088-6)	
Volatile Organics by EPA 8260		<u> </u>	`	1 8260B	0912 11:36 PD
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND	ug/l	0.50		
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50		
Chloromethane	ND	ug/l	2.5		
Bromomethane	ND	ug/l	1.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	1.0		
1,1-Dichloroethene	ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/l	0.75		
Trichloroethene	ND	ug/l	0.50		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/l	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	ND	ug/l	0.50		
Dibromomethane	ND	ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/l	5.0		
Acrylonitrile	ND	ug/l	5.0		
Styrene	ND	ug/l	1.0		
Dichlorodifluoromethane	ND	ug/l	5.0		
Acetone	ND	ug/l	5.0		
Carbon disulfide	ND	ug/l	5.0		
2-Butanone	ND	ug/l	5.0		
Vinyl acetate	ND	ug/l	5.0		
4-Methyl-2-pentanone	ND	ug/l	5.0		
2-Hexanone	ND	ug/l	5.0		
Bromochloromethane	ND	ug/l	2.5		
2,2-Dichloropropane	ND	ug/l	2.5		
1,2-Dibromoethane	ND	ug/l	2.0		
1,3-Dichloropropane	ND	ug/l	2.5		
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50		
Bromobenzene	ND	ug/l	2.5		
n-Butylbenzene	ND	ug/l	0.50		
sec-Butylbenzene	ND	ug/l	0.50		
tert-Butylbenzene	ND	ug/l	2.5		
o-Chlorotoluene	ND	ug/l	2.5		
p-Chlorotoluene	ND	ug/l	2.5		
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5		
Hexachlorobutadiene	ND	ug/l	0.60		
Isopropylbenzene	ND	ug/l	0.50		
p-Isopropyltoluene	ND	ug/l	0.50		

Laboratory Job Number: L0813447

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID
					PREP ANAL
Blank Anal	ysis for sa	ample(s) 01	L (WG336	088-6)	
Volatile Organics by EPA 826	OB cont'd			1 8260B	0912 11:36 PD
Naphthalene	ND	ug/1	2.5		
n-Propylbenzene	ND	ug/1	0.50		
1,2,3-Trichlorobenzene	ND	ug/1	2.5		
1,2,4-Trichlorobenzene	ND	ug/1	2.5		
1,3,5-Trimethylbenzene	ND	ug/1	2.5		
1,2,4-Trimethylbenzene	ND	ug/1	2.5		
1,4-Diethylbenzene	ND	ug/1	2.0		
4-Ethyltoluene	ND	ug/1	2.0		
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0		
Surrogate(s)	Recovery		QC Cr	iteria	
1,2-Dichloroethane-d4	102	%	70-13	0	
Toluene-d8	99.0	%	70-13	0	
4-Bromofluorobenzene	103	용	70-13	0	
Dibromofluoromethane	95.0	%	70-13	0	
Blank Analys	sis for samp	ple(s) 02-1	L4 (WG33	6650-3)	
Volatile Organics by EPA 826	0B			1 8260B	0915 13:31 PD
Methylene chloride	ND	ug/kg	25.		
l,1-Dichloroethane	ND	ug/kg	3.8		
Chloroform	ND	ug/kg	3.8		
Carbon tetrachloride	ND	ug/kg	2.5		
1,2-Dichloropropane	ND	ug/kg	8.8		
Dibromochloromethane	ND	ug/kg	2.5		
1,1,2-Trichloroethane	ND	ug/kg	3.8		
Tetrachloroethene	ND	ug/kg	2.5		
Chlorobenzene	ND	ug/kg	2.5		
Trichlorofluoromethane	ND	ug/kg	12.		
1,2-Dichloroethane	ND	ug/kg	2.5		
1,1,1-Trichloroethane	ND	ug/kg	2.5		
Bromodichloromethane	ND	ug/kg	2.5		
trans-1,3-Dichloropropene	ND	ug/kg	2.5		
cis-1,3-Dichloropropene	ND	ug/kg	2.5		
1,1-Dichloropropene	ND	ug/kg	12.		
Bromoform	ND	ug/kg	10.		
1,1,2,2-Tetrachloroethane	ND	ug/kg	2.5		
Benzene	ND	ug/kg	2.5		
Toluene	ND	ug/kg	3.8		
Ethylbenzene	ND	ug/kg	2.5		
Chloromethane	ND	ug/kg	12.		
Bromomethane	ND	ug/kg	5.0		
Vinyl chloride	ND	ug/kg	5.0		
	ND	ug/kg	5.0		
Chloroethane					
Chloroethane 1.1-Dichloroethene	ND	11a/ka	/. 5		
Chloroethane 1,1-Dichloroethene trans-1,2-Dichloroethene	ND ND	ug/kg ug/kg	2.5 3.8		

09220812:02 Page 83 of 90

Laboratory Job Number: L0813447

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Blank Analys:	is for samp	le(s) 02-1	4 (WG3366	550-3)	
Volatile Organics by EPA 826				1 8260B	0915 13:31 PD
1,2-Dichlorobenzene	ND	ug/kg	12.		
1,3-Dichlorobenzene	ND	ug/kg	12.		
1,4-Dichlorobenzene	ND	ug/kg	12.		
Methyl tert butyl ether	ND	ug/kg	5.0		
p/m-Xylene	ND	ug/kg	5.0		
o-Xylene	ND	ug/kg	5.0		
cis-1,2-Dichloroethene	ND	ug/kg	2.5		
Dibromomethane	ND	ug/kg	25.		
Styrene	ND	ug/kg	5.0		
Dichlorodifluoromethane	ND	ug/kg	25.		
Acetone	ND	ug/kg	25.		
Carbon disulfide	ND	ug/kg	25.		
2-Butanone	ND	ug/kg	25.		
Vinyl acetate	ND	ug/kg	25.		
4-Methyl-2-pentanone	ND	ug/kg	25.		
1,2,3-Trichloropropane	ND	ug/kg	25.		
2-Hexanone	ND	ug/kg	25.		
Bromochloromethane	ND	ug/kg	12.		
2,2-Dichloropropane	ND	ug/kg	12.		
1,2-Dibromoethane	ND	ug/kg	10.		
1,3-Dichloropropane	ND	ug/kg	12.		
1,1,1,2-Tetrachloroethane	ND	ug/kg	2.5		
Bromobenzene	ND	ug/kg	12.		
n-Butylbenzene	ND	ug/kg ug/kg	2.5		
sec-Butylbenzene	ND	ug/kg	2.5		
tert-Butylbenzene	ND	ug/kg	12.		
o-Chlorotoluene	ND	ug/kg ug/kg	12.		
p-Chlorotoluene	ND	ug/kg	12.		
1,2-Dibromo-3-chloropropane	ND	ug/kg ug/kg	12.		
Hexachlorobutadiene	ND	ug/kg	12.		
Isopropylbenzene	ND	ug/kg ug/kg	2.5		
p-Isopropyltoluene	ND	ug/kg	2.5		
Naphthalene	ND	ug/kg	12.		
Acrylonitrile	ND	ug/kg	25.		
n-Propylbenzene	ND	ug/kg	2.5		
1,2,3-Trichlorobenzene	ND	ug/kg ug/kg	12.		
1,2,4-Trichlorobenzene	ND	ug/kg ug/kg	12.		
1,3,5-Trimethylbenzene	ND	ug/kg	12.		
1,2,4-Trimethylbenzene	ND	ug/kg ug/kg	12.		
1,4-Diethylbenzene	ND	ug/kg ug/kg	10.		
4-Ethyltoluene	ND ND	ug/kg ug/kg	10.		
1,2,4,5-Tetramethylbenzene	ND	ug/kg ug/kg	10.		
Surrogate(s)	Recovery		QC Crit	ceria	
1,2-Dichloroethane-d4	94.0	%	70-130		

Laboratory Job Number: L0813447

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID
					PREP ANAL
Blank Analys	sis for samm	ole(s) 02-1	4 (WG33)	6650-3)	
Volatile Organics by EPA 826			- (1 8260B	0915 13:31 PD
4-Bromofluorobenzene	115	%	70-13		
Dibromofluoromethane	98.0	%	70-13		
Blank Analys	sis for samp	ple(s) 10-1	1 (WG33	6650-6)	
Volatile Organics by EPA 826	0B			1 8260B	0916 11:35 PD
Methylene chloride	ND	ug/kg	25.		
1,1-Dichloroethane	ND	ug/kg	3.8		
Chloroform	ND	ug/kg	3.8		
Carbon tetrachloride	ND	ug/kg	2.5		
1,2-Dichloropropane	ND	ug/kg	8.8		
Dibromochloromethane	ND	ug/kg	2.5		
1,1,2-Trichloroethane	ND	ug/kg	3.8		
Tetrachloroethene	ND	ug/kg	2.5		
Chlorobenzene	ND	ug/kg	2.5		
Trichlorofluoromethane	ND	ug/kg	12.		
1,2-Dichloroethane	ND	ug/kg	2.5		
l,1,1-Trichloroethane	ND	ug/kg	2.5		
Bromodichloromethane	ND	ug/kg	2.5		
crans-1,3-Dichloropropene	ND	ug/kg	2.5		
cis-1,3-Dichloropropene	ND	ug/kg	2.5		
l,1-Dichloropropene	ND	ug/kg	12.		
Bromoform	ND	ug/kg	10.		
l,1,2,2-Tetrachloroethane	ND	ug/kg	2.5		
Benzene	ND	ug/kg	2.5		
Toluene	ND	ug/kg	3.8		
Ethylbenzene	ND	ug/kg	2.5		
Chloromethane	ND	ug/kg	12.		
Bromomethane	ND	ug/kg	5.0		
Jinyl chloride	ND	ug/kg	5.0		
Chloroethane	ND	ug/kg	5.0		
l,1-Dichloroethene	ND	ug/kg	2.5		
crans-1,2-Dichloroethene	ND	ug/kg	3.8		
Trichloroethene	ND	ug/kg	2.5		
l,2-Dichlorobenzene	ND	ug/kg	12.		
l,3-Dichlorobenzene	ND	ug/kg	12.		
l,4-Dichlorobenzene	ND	ug/kg	12.		
Methyl tert butyl ether	ND	ug/kg	5.0		
o/m-Xylene	ND	ug/kg	5.0		
o-Xylene	ND	ug/kg	5.0		
cis-1,2-Dichloroethene	ND	ug/kg	2.5		
Dibromomethane	ND	ug/kg	25.		
Styrene	ND	ug/kg	5.0		
Dichlorodifluoromethane	ND	ug/kg	25.		
Acetone	ND	ug/kg	25.		
Carbon disulfide	ND	ug/kg	25.		
2-Butanone	ND	ug/kg	25.		

Laboratory Job Number: L0813447

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE I PREP ANAL	ID
Blank Analys	sis for samp	ole(s) 10-1	.1 (WG336	5650-6)		
Volatile Organics by EPA 826				1 8260B	0916 11:35 F	PD
Vinyl acetate	ND	ug/kg	25.			
4-Methyl-2-pentanone	ND	ug/kg	25.			
1,2,3-Trichloropropane	ND	ug/kg	25.			
2-Hexanone	ND	ug/kg	25.			
Bromochloromethane	ND	ug/kg	12.			
2,2-Dichloropropane	ND	ug/kg	12.			
1,2-Dibromoethane	ND	ug/kg	10.			
1,3-Dichloropropane	ND	ug/kg	12.			
1,1,1,2-Tetrachloroethane	ND	ug/kg	2.5			
Bromobenzene	ND	ug/kg	12.			
n-Butylbenzene	ND	ug/kg	2.5			
sec-Butylbenzene	ND	ug/kg	2.5			
tert-Butylbenzene	ND	ug/kg	12.			
o-Chlorotoluene	ND	ug/kg ug/kg	12.			
p-Chlorotoluene	ND	ug/kg ug/kg	12.			
1,2-Dibromo-3-chloropropane	ND	ug/kg ug/kg	12.			
Hexachlorobutadiene	ND	ug/kg ug/kg	12.			
Isopropylbenzene	ND	ug/kg ug/kg	2.5			
p-Isopropyltoluene	ND	ug/kg ug/kg	2.5			
Naphthalene	ND	ug/kg ug/kg	12.			
Acrylonitrile	ND		25.			
n-Propylbenzene	ND	ug/kg	2.5			
		ug/kg	12.			
1,2,3-Trichlorobenzene	ND	ug/kg	12.			
1,2,4-Trichlorobenzene	ND	ug/kg				
1,3,5-Trimethylbenzene	ND	ug/kg	12.			
1,2,4-Trimethylbenzene	ND	ug/kg	12.			
1,4-Diethylbenzene	ND	ug/kg	10.			
4-Ethyltoluene	ND	ug/kg	10.			
1,2,4,5-Tetramethylbenzene	ND	ug/kg	10.			
Surrogate(s)	Recovery		QC Cri			
1,2-Dichloroethane-d4	101	8	70-130)		
Toluene-d8	117	%	70-130)		
4-Bromofluorobenzene	123	%	70-130			
Dibromofluoromethane	106	%	70-130)		
Blank Analys	sis for samp	ple(s) 02-1	.4 (WG336	5983-1)		
Semivolatile Organics by EPA	8270C			1 8270C	0916 19:00 0918 10:44 F	PS
Acenaphthene	ND	ug/kg	330			
1,2,4-Trichlorobenzene	ND	ug/kg	330			
Hexachlorobenzene	ND	ug/kg	330			
Bis(2-chloroethyl)ether	ND	ug/kg	330			
2-Chloronaphthalene	ND	ug/kg	400			
1,2-Dichlorobenzene	ND	ug/kg	330			
1,3-Dichlorobenzene	ND	ug/kg	330			
1,5 Dichiolopchizene						

09220812:02 Page 86 of 90

Laboratory Job Number: L0813447

Continued

PREP ANAL 02-14 (WG336983-1) 1 8270C 0916 19:00 0918 10:44 PS 29 670 29 330 29 330 29 330 29 330 29 330 29 330 29 330 29 330 29 330 29 330 29 330 29 330 29 330 29 330 29 330 29 330 29 330
1 8270C 0916 19:00 0918 10:44 PS 4
1 8270C 0916 19:00 0918 10:44 PS 4
69 670 69 330 69 330 69 330 69 330 69 330 69 330 69 330 69 670
xg 330 xg 330 xg 330 xg 330 xg 330 xg 330 xg 330 xg 330
xg 330 xg 330 xg 330 xg 330 xg 330 xg 330 xg 670
xg 330 xg 330 xg 330 xg 330 xg 330 xg 670
xg 330 xg 330 xg 330 xg 330 xg 670
xg 330 xg 330 xg 330 xg 670
sg 330 sg 330 sg 670
kg 330 kg 670
kg 670
_
kg 670
kg 330
kg 330
kg 330
kg 330
/kg 1000
rg 330
kg 670
rg 330
cg 330
rg 330
kg 470
rg 330
kg 330
kg 1300
kg 1300
kg 330 kg 330

Laboratory Job Number: L0813447

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE PREP ANAL	ID
Blank Anal	ysis for sam	mple(s) 02-1	4 (WG336	5983-1)		
Semivolatile Organics by E			,	1 8270C	0916 19:00 0918 10:44	PS
2-Chlorophenol	ND	ug/kg	400			
2,4-Dichlorophenol	ND	ug/kg	670			
2,4-Dimethylphenol	ND	ug/kg	330			
2-Nitrophenol	ND	ug/kg	1300			
4-Nitrophenol	ND	ug/kg	670			
2,4-Dinitrophenol	ND	ug/kg	1300			
4,6-Dinitro-o-cresol	ND	ug/kg	1300			
Pentachlorophenol	ND	ug/kg	1300			
Phenol	ND	ug/kg	470			
2-Methylphenol	ND	ug/kg	400			
3-Methylphenol/4-Methylphe	nol ND	ug/kg	400			
2,4,5-Trichlorophenol	ND	ug/kg	330			
Benzoic Acid	ND	ug/kg	3300			
Benzyl Alcohol	ND	ug/kg	670			
Carbazole	ND	ug/kg	330			
Surrogate(s)	Recovery	7	QC Cri	iteria		
2-Fluorophenol	86.0	%	25-120)		
Phenol-d6	84.0	%	10-120)		
Nitrobenzene-d5	78.0	%	23-120)		
2-Fluorobiphenyl	77.0	%	30-120)		
2,4,6-Tribromophenol	40.0	%	19-120)		
4-Terphenyl-d14	83.0	%	18-120)		
Blank Anal	ysis for sam	mple(s) 02-1	.4 (WG336	5244-1)		
Semivolatile Organics by E	PA 8270C-SIM	1		1 8270C	0912 21:30 0915 17:07	AK
Acenaphthene	ND	ug/kg	13.			
2-Chloronaphthalene	ND	ug/kg	13.			
			± J •			
Fluoranthene	ND	ug/kg	13.			
	ND ND	ug/kg ug/kg				
Hexachlorobutadiene Naphthalene			13.			
Hexachlorobutadiene Naphthalene	ND	ug/kg	13. 33.			
Hexachlorobutadiene Naphthalene Benzo(a)anthracene	ND ND	ug/kg ug/kg	13. 33. 13.			
Hexachlorobutadiene Naphthalene Benzo(a)anthracene Benzo(a)pyrene	ND ND ND	ug/kg ug/kg ug/kg	13. 33. 13. 13. 13.			
Hexachlorobutadiene Naphthalene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	ND ND ND ND	ug/kg ug/kg ug/kg ug/kg	13. 33. 13. 13.			
Hexachlorobutadiene Naphthalene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene	ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg	13. 33. 13. 13. 13.			
Hexachlorobutadiene Naphthalene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene	ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	13. 33. 13. 13. 13. 13.			
Hexachlorobutadiene Naphthalene Benzo(a)anthracene Benzo(b)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Acenaphthylene	ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	13. 33. 13. 13. 13. 13.			
Hexachlorobutadiene Naphthalene Benzo(a)anthracene Benzo(b)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Acenaphthylene Anthracene	ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	13. 33. 13. 13. 13. 13. 13.			
Fluoranthene Hexachlorobutadiene Naphthalene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Acenaphthylene Anthracene Benzo(ghi)perylene Fluorene	ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	13. 33. 13. 13. 13. 13. 13. 13.			
Hexachlorobutadiene Naphthalene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Acenaphthylene Anthracene Benzo(ghi)perylene Fluorene	ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	13. 33. 13. 13. 13. 13. 13. 13.			
Hexachlorobutadiene Naphthalene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Acenaphthylene Anthracene Benzo(ghi)perylene Fluorene Phenanthrene	ND N	ug/kg	13. 33. 13. 13. 13. 13. 13. 13.			
Hexachlorobutadiene Naphthalene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Acenaphthylene Anthracene Benzo(ghi)perylene Fluorene Phenanthrene	ND N	ug/kg	13. 33. 13. 13. 13. 13. 13. 13. 13. 13.			
Hexachlorobutadiene Naphthalene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Acenaphthylene Anthracene Benzo(ghi)perylene Fluorene Phenanthrene Dibenzo(a,h)anthracene	ND N	ug/kg	13. 33. 13. 13. 13. 13. 13. 13. 13. 13.			
Hexachlorobutadiene Naphthalene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Acenaphthylene Anthracene Benzo(ghi)perylene Fluorene Phenanthrene Dibenzo(a,h)anthracene Indeno(1,2,3-cd)Pyrene	ND N	ug/kg	13. 33. 13. 13. 13. 13. 13. 13. 13. 13.			

09220812:02 Page 88 of 90

Laboratory Job Number: L0813447

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA'	ΓE	ID
					PREP	ANAL	
Blank Anal	ysis for samp	ple(s) 02-14	(WG336	244-1)			
Semivolatile Organics by E	PA 8270C-SIM	cont'd		1 8270C	0912 21:30	0915 17:0	7 AK
Hexachlorobenzene	ND	ug/kg	53.				
Hexachloroethane	ND	ug/kg	53.				
Surrogate(s)	Recovery		OC Cri	teria			
2-Fluorophenol	70.0	%	25-120				
Phenol-d6	78.0	%	10-120				
Nitrobenzene-d5	71.0	%	23-120				
2-Fluorobiphenyl	64.0	%	30-120				
2,4,6-Tribromophenol	57.0	%	19-120				
4-Terphenyl-d14	79.0	%	18-120				
Blank Anal	ysis for sam	ole(s) 02-14	(WG336	438-1)			
Petroleum Hydrocarbon Quan	-		. (110330	1 8015B(M)	0916 01:30	0917 19:1	2 .TT.
TPH	ND	ug/kg	33300	1 0013B(FI)	0710 01.30	0)1/ 1).1	2 01
Surrogate(s) o-Terphenyl	Recovery 53.0	%	QC Cri 40-140				

ALPHA ANALYTICAL ADDENDUM I

REFERENCES

- 1. Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IIIA, 1997.
- 30. Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.

GLOSSARY OF TERMS AND SYMBOLS

REF Reference number in which test method may be found.

METHOD Method number by which analysis was performed.

ID Initials of the analyst.

ND Not detected in comparison to the reported detection limit.

NI Not Ignitable.

ug/cart Micrograms per Cartridge.

H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.

LIMITATION OF LIABILITIES

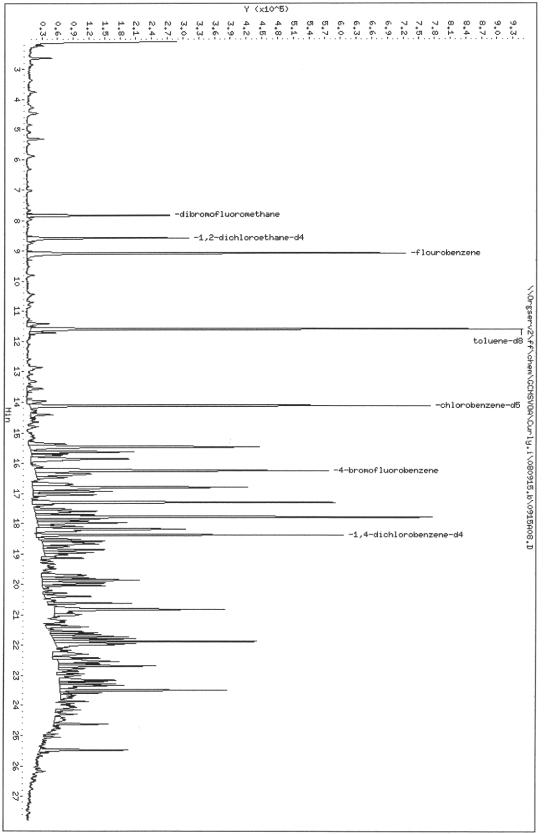
Alpha Analytical, Inc. performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical, Inc., shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical, Inc. be held liable for any incidental consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical, Inc.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding times and splitting of samples in the field.

09220812:02 Page 90 of 90

	-			9	7	9				
	1911/18 18V	1	7/7				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\) (prev 30-JUL-07
Alpha's Payment Terms.		Key MO	XX	+	84"/B	1	(1) Woch	1		FORM NO CITABLE
resolved. All samples submitted are subject to	21 Map 11 52	& crodilly		MORY (400	101/3	_	Ņ	<i>\</i> 3	MCB or CT BCB3	>
turnaround time clock will not start until any ambiguities are	Date/Time	Received By:		Date.Time	Di	hed By:	Relinquished By		PROJECT	IS YOUR
and completely. Samples can not be logged in and	1	50 - I	1	1	1	Preservative				
Please print clearly, legibly		that.	20	208 208	402	Cortainer Type			PLEASE ANSWER QUESTIONS ABOVE!	PLEASE ANSWER
			_	←	4	←	102 c	~	(MRG-DWW4-10) (S.J-C)	1.
					-		1050		126-De-201-37(11-115)	53
					-		210		(PUG-DU-ZOCO -34(5.56)	~
			_		-		6000		PUG-JU-2208-13/7-7.51)	
					-		Skho		PWG-DW-208-31 (8-8,5')	6
							0950		1.6- Du-wa- 30(8,5-91)	<u></u>
							04/5		MG- Duras 27 (10 405)	رع
			-		+		0,000		brc. Dr. 2003-24 (15-152)	7 6
			X	X	X	S Jic	08/5	800115 (,	PW6-DW-2008-27 (17.5-13"	2
1						7			7809 DCK	1 , UNP()
Comments			TP	TA	7	-	ā	Dale		(Lab Ose Only)
Sample Specific		<i>Y-2</i>	Н	1	70	Matrix Initials	Collection	2	Sample ID	ALPHA Lab ID
			Ü	1	, -			<u> </u>	7	
		<u> </u>	81	rz,	82					
				70 415	60					
☐ Lab to do (Please specify							ī\$:	Detection Emi	Other Project Specific Requirements/Comments/Detection Limits	Other Project Sp
				ŝo L			I Ime:	Due Da:e:	been Previously analyzed by Alpha	These samples have
eeded				2/				: : ≥		Email:
□ Done				700		Rush (ONLY IF PRE-APPROVED)	☐ Rush (Standard		Fax: 631-589-8705
SAMPLE HANDLING T				ANALYSIS	AN		Time	Turn-Around Time)53	Phone: 631-589-6353
	Are CT RCP (Reasonable Confidence Protocols) Required?	Are CT RCP (Reaso	□ 8	es	☐ Yes		***	ALPHA Quote #:	5	Bohemia, NY 117:6
	Methods Requirec?	Are MCP Analytical Methods Requirec?	□ No	es	☐ Yes	Nos	er Keis Felmskos	Project Manager: パイン	Address: 630 Johnson Avenue, Suite 7	Address: 630 John
ENCE PROTOCOLS	TIVE CERTAINTY-CT REASONABLE CONFIDENCE PROTOCOLS	CERTAINTY-CT REA	/PTIVE	MCP PRESUMP	MC		-	Project #: ALBOKO	er	Client: P.W. Grosser
	Citatio	(sixe Pac/ W)	1 hich	NX S DC C And	K	+	Project Location or Ocrife for	Project Location	on	Client Information
	Criteria	all enterior velocit Filme		Negulatory Neg	_	0 1 11 61	8 0 1		FAA. 300-822-3280	FAA. 308-898-9193
		Add'I Deliveraties		ADEX	□ ADEx	oʻ:	Project Name: Autin Bay	Project Name:	Mansfield, MA TEL. 508-822-9300 FAY: 508-821-9388	
PO#	A Same as Client info			AX	☐ FAX		lalion	Floject Illioillianoil	AL	ANALYTICAL
	Billing Information	Data Deliverables	ion	Report Informa	Rep					
-0/134~]	ALPHA Job #: Lt	(1 c 80	2	Date Rec'd in Lab:	Date	PAGE OF		OTSUC	CHAIN OF CUSTODY	
-										

				1	7	7		
Alpha's Payment Forms.	THE WAY		IN STAN	18 J				FORM NO. 01-0-(I) (18V 30-JUL-07)
start until any ambiguities are resolved. All samples submitted are subject to	Tilk 11:30	received By:	lu D	9/10/04/4w	ned by:	Relinquished by	or CT RCP?	MA MCP or CT RCF
and completely. Samples can not be logged in and			1	, [Preservative) 	
Please print clearly, legibly			208 Jus	Hoz Soz	Container Type		ONS ABOVE!	PLEASE ANSWER QUESTIONS ABOVE
			/ 					
					/			
	/					-/		
8	/							
Hold Knyde &			4	*	¢	¥ //35	W6. D. ray -47 (2-5')	15 W.G.D
		/				1120	MG-DU-DUX-4/(9-9,5')	17 846-1
		/				11/0	Pro- Juny - 40(6-651)	3 mg-
						1/00	Eng-Dr. 2002-34 (82-21)	17 fre D
4			x Z	χ X	5 726	North robs	Rub-Ju-2005-38 (7-7.5-)	1344) 11 KED
Sample Specific Comments			TA.	TO	Matrix Initials	Date Time		(Lab Use Only)
				i	Sample Sampler's	Collection	Sample ID	ALPHA Lab ID
· ·			nefels 80/5	826				
(Please specify below)			60	ن ن				
			710			ection Limits:	Other Project Specific Requirements/Comments/Detection Limits:	Other Project Specific R
			/7			Due Date: $Q/(\sqrt{N})$ Time:		These samples have been Previously analyzed by Alpha
☐ Done			00.			- ·		Email:
Filtration A		-	; =		Rush (ONLY IF PRE-APPROVED)	🕅 Standard 🔲 Rush	M	Fax: 631-589-8705
			S	ANALYSIS		Turn-Around Time	Ţ	Phone: 631-589-6353
s) Required?	Are CT RCP (Reasonable Confidence Protocols) Required?	Are CT RCP (Reaso	□ No	□ Yes		ALPHA Quote #:	AL	Bohemia, NY 11716
	Methods Required?	Are MCP Analytical Methods Required?		☐ Yes	(hu)	Project Manager Kn, Hlmsky		Address: 630 Johnson Avenue, Suite 7
MPTIVE CERTAINTY-CT REASONABLE CONFIDENCE PROTOCOLS	ASONABLE CONFID	RTAINTY-CT RE		MCP PRESU		Project#: A VISCOSO!		Client: P.W. Grosser
		Parco 1 (A(D)	Analytical Source	_ <u> </u>		3)
	Criteria			3	be looker the Come	Project Location: 8 / Kock, Art Parkerell Care	Pr	Client Information
		equirements/Report Limits	ry Requirement	Regulatory R		Avilor Bus		FAX: 509-898-9193 FAX: 508-822-3288
		Add'l Deliverables	□ ⊁	ADEx		Project Name:		
PO #:	Billing Information Same as Client info	ta Deliverables EMAIL	nation Dar	Report Inforn		Project Information	P	ANALYTICAL
~08/3441	ALPHA Job#: ((108		Date Recid in Lab	PAGE OF		CHAIN OF COSTODI	
1000	I	,		2		ICTODY		


Client ID:

Sample Info: L0813447-05,3,2.0
Volume Injected (uL): 0.1

Column phase:

Instrument: curly.i

Operator: PD Column diameter: 0.53

ANALYTICAL REPORT

Lab Number: L0813541

Client: P. W. Grosser

630 Johnson Avenue

Suite 7

Bohemia, NY 11716

ATTN: Kris Almskog

Project Name: FORMER DARBY DRUG

Project Number: AVB0801 Report Date: 09/25/08

Certifications & Approvals: MA (M-MA030), NY (11627), CT (PH-0141), NH (2206), NJ (MA015), RI (LAO00299), ME (MA0030), PA (Registration #68-02089), LA NELAC (03090), FL NELAC (E87814), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

L0813541

Lab Number:

Project Name: FORMER DARBY DRUG

Project Number: AVB0801 Report Date: 09/25/08

Alpha Sample ID	Client ID	Sample Location
L0813541-01	PWG-SG-2008-01	ROCKVILLE CENTRE
L0813541-02	PWG-SG-2008-02	ROCKVILLE CENTRE
L0813541-03	PWG-SG-2008-03	ROCKVILLE CENTRE
L0813541-04	PWG-SG-2008-04	ROCKVILLE CENTRE
L0813541-05	PWG-SG-2008-05	ROCKVILLE CENTRE
L0813541-06	PWG-SG-2008-06	ROCKVILLE CENTRE
L0813541-07	PWG-SG-2008-07	ROCKVILLE CENTRE
L0813541-08	PWG-SG-2008-08	ROCKVILLE CENTRE
L0813541-09	PWG-SG-2008-09	ROCKVILLE CENTRE
L0813541-10	PWG-SG-2008-10	ROCKVILLE CENTRE
L0813541-11	PWG-SG-2008-11	ROCKVILLE CENTRE
L0813541-12	PWG-SG-2008-12	ROCKVILLE CENTRE

L0813541

Lab Number:

Project Name: FORMER DARBY DRUG

Project Number: AVB0801 Report Date: 09/25/08

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

TO-15

L0813541-01 and -03: results for Propylene should be considered estimated due to co-elution with a non-target peak.

L0813541-05, WG336905-4 Duplicate, L0813541-07, -09 through -11 have elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

L0813541-05, -07 and -11 required re-analysis on a dilution in order to quantitate the sample within the calibration range. The result is reported as a "greater than" value for the compound that exceeded the calibration on the initial analysis. The re-analysis was performed only for the compound which exceeded the calibration range.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Kathle M. Ofricin

Authorized Signature:

Title: Technical Director/Representative

Date: 09/25/08

AIR

Project Name: FORMER DARBY DRUG

Project Number: AVB0801

Lab Number:

L0813541

Report Date:

09/25/08

SAMPLE RESULTS

Lab ID: L0813541-01
Client ID: PWG-SG-2008-01

Sample Location: RO

ROCKVILLE CENTRE

Matrix: Anaytical Method: Analytical Date: Soil_Vapor 48,TO-15 09/17/08 15:28

Analyst:

RY

Date Collected:

09/10/08 13:10

Date Received:

09/11/08

Field Prep:

Not Specified

	ppbV		ug/m3	<u> </u>		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor

Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Com	pounds in Air					
1,1,1-Trichloroethane	0.244	0.200	1.33	1.09		1
1,1,2,2-Tetrachloroethane	ND	0.200	ND	1.37		1
1,1,2-Trichloroethane	ND	0.200	ND	1.09		1
1,1-Dichloroethane	ND	0.200	ND	0.809		1
1,1-Dichloroethene	ND	0.200	ND	0.792		1
1,2,4-Trichlorobenzene	ND	0.200	ND	1.48		1
1,2,4-Trimethylbenzene	1.12	0.200	5.50	0.982		1
1,2-Dibromoethane	ND	0.200	ND	1.54		1
1,2-Dichlorobenzene	ND	0.200	ND	1.20		1
1,2-Dichloroethane	ND	0.200	ND	0.809		1
1,2-Dichloropropane	ND	0.200	ND	0.924		1
1,3,5-Trimethybenzene	0.464	0.200	2.28	0.982		1
1,3-Butadiene	ND	0.200	ND	0.442		1
1,3-Dichlorobenzene	ND	0.200	ND	1.20		1
1,4-Dichlorobenzene	6.11	0.200	36.7	1.20		1
1,4-Dioxane	ND	0.200	ND	0.720		1
2,2,4-Trimethylpentane	ND	0.200	ND	0.934		1
2-Butanone	0.965	0.200	2.84	0.589		1
2-Hexanone	ND	0.200	ND	0.819		1
3-Chloropropene	ND	0.200	ND	0.626		1
4-Ethyltoluene	ND	0.200	ND	0.982		1
Acetone	7.06	0.500	16.7	1.19		1
Benzene	ND	0.200	ND	0.638		1
Benzyl chloride	ND	0.200	ND	1.03		1
Bromodichloromethane	ND	0.200	ND	1.34		1

Project Name: FORMER DARBY DRUG

Project Number: AVB0801

Lab Number:

L0813541

Report Date:

09/25/08

SAMPLE RESULTS

Lab ID: L0813541-01
Client ID: PWG-SG-2008-01
Sample Location: ROCKVILLE CENTRE

Date Collected:

09/10/08 13:10

Date Received: Field Prep:

	ppbV	<u> </u>	ug/m3	3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Comp	oounds in Air					
Bromoform	ND	0.200	ND	2.06		1
Bromomethane	ND	0.200	ND	0.776		1
Carbon disulfide	0.254	0.200	0.789	0.622		1
Carbon tetrachloride	ND	0.200	ND	1.26		1
Chlorobenzene	ND	0.200	ND	0.920		1
Chloroethane	ND	0.200	ND	0.527		1
Chloroform	ND	0.200	ND	0.976		1
Chloromethane	ND	0.200	ND	0.413		1
cis-1,2-Dichloroethene	ND	0.200	ND	0.792		1
cis-1,3-Dichloropropene	ND	0.200	ND	0.907		1
Cyclohexane	0.274	0.200	0.942	0.688		1
Dibromochloromethane	ND	0.200	ND	1.70		1
Dichlorodifluoromethane	1.08	0.200	5.34	0.988		1
Ethanol	4.66	2.50	8.78	4.71		1
Ethyl Acetate	ND	0.500	ND	1.80		1
Ethylbenzene	0.588	0.200	2.55	0.868		1
Freon-113	ND	0.200	ND	1.53		1
Freon-114	0.257	0.200	1.79	1.40		1
Hexachlorobutadiene	ND	0.200	ND	2.13		1
sopropanol	ND	0.500	ND	1.23		1
Methylene chloride	ND	0.500	ND	1.74		1
4-Methyl-2-pentanone	ND	0.200	ND	0.819		1
Methyl tert butyl ether	ND	0.200	ND	0.720		1
o/m-Xylene	1.99	0.400	8.63	1.74		1
o-Xylene	0.813	0.200	3.53	0.868		1
Heptane	ND	0.200	ND	0.819		1
n-Hexane	ND	0.200	ND	0.704		1
Propylene	ND	0.200	ND	0.344		1

L0813541

Lab Number:

Project Name: FORMER DARBY DRUG

Project Number: AVB0801 Report Date: 09/25/08

SAMPLE RESULTS

Lab ID: L0813541-01 Date Collected: 09/10/08 13:10

Client ID: PWG-SG-2008-01 Date Received: 09/11/08
Sample Location: ROCKVILLE CENTRE Field Prep: Not Specified

	ppbV	<u>, </u>	ug/m3	ug/m3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Com	pounds in Air					
Styrene	0.948	0.200	4.03	0.851		1
Tetrachloroethene	4.59	0.200	31.1	1.36		1
Tetrahydrofuran	ND	0.200	ND	0.589		1
Toluene	1.95	0.200	7.34	0.753		1
trans-1,2-Dichloroethene	ND	0.200	ND	0.792		1
trans-1,3-Dichloropropene	ND	0.200	ND	0.907		1
Trichloroethene	0.355	0.200	1.91	1.07		1
Trichlorofluoromethane	0.448	0.200	2.52	1.12		1
Vinyl acetate	ND	0.200	ND	0.704		1
Vinyl bromide	ND	0.200	ND	0.874		1
Vinyl chloride	ND	0.200	ND	0.511		1

Project Name: FORMER DARBY DRUG

Project Number: AVB0801

Lab Number:

L0813541

Report Date:

09/25/08

SAMPLE RESULTS

Lab ID: L0813541-02

Client ID: PWG-SG-2008-02 Sample Location: ROCKVILLE CENTRE

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 09/17/08 16:02

Analyst: RY

Date Collected: 09/10/08 13:30

Date Received: 09/11/08
Field Prep: Not Specified

	ppbV	ppbV		ug/m3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Compou	nds in Air					
1,1,1-Trichloroethane	5.08	0.200	27.7	1.09		1
1,1,2,2-Tetrachloroethane	ND	0.200	ND	1.37		1
1,1,2-Trichloroethane	ND	0.200	ND	1.09		1
1,1-Dichloroethane	ND	0.200	ND	0.809		1
1,1-Dichloroethene	ND	0.200	ND	0.792		1
1,2,4-Trichlorobenzene	ND	0.200	ND	1.48		1
1,2,4-Trimethylbenzene	1.13	0.200	5.56	0.982		1
1,2-Dibromoethane	ND	0.200	ND	1.54		1
1,2-Dichlorobenzene	ND	0.200	ND	1.20		1
1,2-Dichloroethane	ND	0.200	ND	0.809		1
1,2-Dichloropropane	ND	0.200	ND	0.924		1
1,3,5-Trimethybenzene	0.522	0.200	2.56	0.982		1
1,3-Butadiene	ND	0.200	ND	0.442		1
1,3-Dichlorobenzene	ND	0.200	ND	1.20		1
1,4-Dichlorobenzene	6.35	0.200	38.2	1.20		1
1,4-Dioxane	ND	0.200	ND	0.720		1
2,2,4-Trimethylpentane	ND	0.200	ND	0.934		1
2-Butanone	1.02	0.200	3.01	0.589		1
2-Hexanone	ND	0.200	ND	0.819		1
3-Chloropropene	ND	0.200	ND	0.626		1
4-Ethyltoluene	ND	0.200	ND	0.982		1
Acetone	6.76	0.500	16.0	1.19		1
Benzene	ND	0.200	ND	0.638		1
Benzyl chloride	ND	0.200	ND	1.03		1
Bromodichloromethane	ND	0.200	ND	1.34		1

Project Name: FORMER DARBY DRUG

Project Number: AVB0801

Lab Number:

L0813541

Report Date:

09/25/08

SAMPLE RESULTS

Lab ID: L0813541-02
Client ID: PWG-SG-2008-02
Sample Location: ROCKVILLE CENTRE

Date Collected:

09/10/08 13:30

Date Received: Field Prep:

	ppbV	<u>'</u>	ug/m3	3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Comp	oounds in Air					
Bromoform	ND	0.200	ND	2.06		1
Bromomethane	ND	0.200	ND	0.776		1
Carbon disulfide	ND	0.200	ND	0.622		1
Carbon tetrachloride	ND	0.200	ND	1.26		1
Chlorobenzene	ND	0.200	ND	0.920		1
Chloroethane	ND	0.200	ND	0.527		1
Chloroform	1.17	0.200	5.72	0.976		1
Chloromethane	ND	0.200	ND	0.413		1
cis-1,2-Dichloroethene	ND	0.200	ND	0.792		1
cis-1,3-Dichloropropene	ND	0.200	ND	0.907		1
Cyclohexane	0.281	0.200	0.965	0.688		1
Dibromochloromethane	ND	0.200	ND	1.70		1
Dichlorodifluoromethane	0.966	0.200	4.78	0.988		1
Ethanol	6.28	2.50	11.8	4.71		1
Ethyl Acetate	ND	0.500	ND	1.80		1
Ethylbenzene	0.705	0.200	3.06	0.868		1
Freon-113	ND	0.200	ND	1.53		1
Freon-114	ND	0.200	ND	1.40		1
Hexachlorobutadiene	ND	0.200	ND	2.13		1
sopropanol	ND	0.500	ND	1.23		1
Methylene chloride	ND	0.500	ND	1.74		1
1-Methyl-2-pentanone	ND	0.200	ND	0.819		1
Methyl tert butyl ether	ND	0.200	ND	0.720		1
o/m-Xylene	2.21	0.400	9.60	1.74		1
o-Xylene	0.896	0.200	3.88	0.868		1
Heptane	ND	0.200	ND	0.819		1
n-Hexane	ND	0.200	ND	0.704		1
Propylene	ND	0.200	ND	0.344		1

Project Name: FORMER DARBY DRUG

Project Number: AVB0801

Lab Number: L0813541 Report Date:

09/25/08

SAMPLE RESULTS

Lab ID: L0813541-02 Client ID: PWG-SG-2008-02 Sample Location: ROCKVILLE CENTRE Date Collected: 09/10/08 13:30 Date Received:

Field Prep:

ppbV		ug/m3			Dilution
Results	RDL	Results	RDL	Qualifier	Factor
ıds in Air					
0.973	0.200	4.14	0.851		1
6.72	0.200	45.6	1.36		1
ND	0.200	ND	0.589		1
2.18	0.200	8.22	0.753		1
ND	0.200	ND	0.792		1
ND	0.200	ND	0.907		1
0.320	0.200	1.72	1.07		1
1.14	0.200	6.38	1.12		1
ND	0.200	ND	0.704		1
ND	0.200	ND	0.874		1
ND	0.200	ND	0.511		1
	Results 10.973 10.97	Results RDL 0.973 0.200 6.72 0.200 ND 0.200 2.18 0.200 ND 0.200	Results RDL Results nds in Air 0.973 0.200 4.14 6.72 0.200 45.6 ND 0.200 ND 2.18 0.200 ND ND 0.200 ND ND 0.200 ND 0.320 0.200 1.72 1.14 0.200 ND ND 0.200 ND ND 0.200 ND ND 0.200 ND	Results RDL Results RDL ads in Air 0.973 0.200 4.14 0.851 6.72 0.200 45.6 1.36 ND 0.200 ND 0.589 2.18 0.200 ND 0.793 ND 0.200 ND 0.792 ND 0.200 ND 0.907 0.320 0.200 1.72 1.07 1.14 0.200 ND 0.704 ND 0.200 ND 0.704 ND 0.200 ND 0.874	Results RDL Results RDL Qualifier nds in Air 0.973 0.200 4.14 0.851 6.72 0.200 45.6 1.36 ND 0.200 ND 0.589 2.18 0.200 ND 0.792 ND 0.200 ND 0.907 ND 0.200 1.72 1.07 1.14 0.200 ND 0.704 ND 0.200 ND 0.704 ND 0.200 ND 0.874

Project Name: FORMER DARBY DRUG

Project Number: AVB0801

Lab Number:

L0813541

Report Date:

Date Collected:

Date Received:

Field Prep:

09/25/08

09/10/08 13:34

Not Specified

09/11/08

SAMPLE RESULTS

Lab ID: L0813541-03

Client ID: PWG-SG-2008-03
Sample Location: ROCKVILLE CENTRE

Matrix: Soil_Vapor Anaytical Method: 48,TO-15

Analytical Date: 09/17/08 16:39

Analyst: RY

	ppbV ug/m3				Dilution	
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Compound	ls in Air					
1,1,1-Trichloroethane	1.80	0.200	9.81	1.09		1
1,1,2,2-Tetrachloroethane	ND	0.200	ND	1.37		1
1,1,2-Trichloroethane	ND	0.200	ND	1.09		1
1,1-Dichloroethane	ND	0.200	ND	0.809		1
1,1-Dichloroethene	ND	0.200	ND	0.792		1
1,2,4-Trichlorobenzene	ND	0.200	ND	1.48		1
1,2,4-Trimethylbenzene	1.60	0.200	7.86	0.982		1
1,2-Dibromoethane	ND	0.200	ND	1.54		1
1,2-Dichlorobenzene	ND	0.200	ND	1.20		1
1,2-Dichloroethane	ND	0.200	ND	0.809		1
1,2-Dichloropropane	ND	0.200	ND	0.924		1
1,3,5-Trimethybenzene	0.675	0.200	3.32	0.982		1
1,3-Butadiene	ND	0.200	ND	0.442		1
1,3-Dichlorobenzene	ND	0.200	ND	1.20		1
1,4-Dichlorobenzene	8.02	0.200	48.2	1.20		1
1,4-Dioxane	ND	0.200	ND	0.720		1
2,2,4-Trimethylpentane	ND	0.200	ND	0.934		1
2-Butanone	1.40	0.200	4.14	0.589		1
2-Hexanone	ND	0.200	ND	0.819		1
3-Chloropropene	ND	0.200	ND	0.626		1
4-Ethyltoluene	0.231	0.200	1.14	0.982		1
Acetone	10.1	0.500	24.0	1.19		1
Benzene	ND	0.200	ND	0.638		1
Benzyl chloride	ND	0.200	ND	1.03		1
Bromodichloromethane	ND	0.200	ND	1.34		1

Project Name: FORMER DARBY DRUG

Project Number: AVB0801

Lab Number:

L0813541

Report Date:

09/25/08

SAMPLE RESULTS

Lab ID: L0813541-03
Client ID: PWG-SG-2008-03
Sample Location: ROCKVILLE CENTRE

Date Collected:

09/10/08 13:34

Date Received: Field Prep:

	ppbV		ug/m3			Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Compour	nds in Air					
Bromoform	ND	0.200	ND	2.06		1
Bromomethane	ND	0.200	ND	0.776		1
Carbon disulfide	0.971	0.200	3.02	0.622		1
Carbon tetrachloride	ND	0.200	ND	1.26		1
Chlorobenzene	ND	0.200	ND	0.920		1
Chloroethane	ND	0.200	ND	0.527		1
Chloroform	4.41	0.200	21.5	0.976		1
Chloromethane	0.204	0.200	0.420	0.413		1
cis-1,2-Dichloroethene	ND	0.200	ND	0.792		1
cis-1,3-Dichloropropene	ND	0.200	ND	0.907		1
Cyclohexane	0.566	0.200	1.95	0.688		1
Dibromochloromethane	ND	0.200	ND	1.70		1
Dichlorodifluoromethane	1.93	0.200	9.56	0.988		1
Ethanol	9.02	2.50	17.0	4.71		1
Ethyl Acetate	ND	0.500	ND	1.80		1
Ethylbenzene	0.910	0.200	3.95	0.868		1
Freon-113	0.216	0.200	1.66	1.53		1
Freon-114	0.281	0.200	1.96	1.40		1
Hexachlorobutadiene	ND	0.200	ND	2.13		1
sopropanol	ND	0.500	ND	1.23		1
Methylene chloride	ND	0.500	ND	1.74		1
1-Methyl-2-pentanone	ND	0.200	ND	0.819		1
Methyl tert butyl ether	ND	0.200	ND	0.720		1
o/m-Xylene	2.82	0.400	12.2	1.74		1
o-Xylene	1.19	0.200	5.16	0.868		1
Heptane	0.217	0.200	0.887	0.819		1
n-Hexane	0.402	0.200	1.42	0.704		1
Propylene	1.22	0.200	2.10	0.344		1

Project Name: FORMER DARBY DRUG

Project Number: AVB0801

Lab Number:

L0813541

Report Date: 09/25/08

SAMPLE RESULTS

Lab ID: L0813541-03

Client ID: PWG-SG-2008-03
Sample Location: ROCKVILLE CENTRE

Date Collected: Date Received: 09/10/08 13:34

Field Prep:

	ppbV	<u>' </u>	ug/m3			Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Compo	ounds in Air					
Styrene	1.19	0.200	5.05	0.851		1
Tetrachloroethene	3.91	0.200	26.5	1.36		1
Tetrahydrofuran	ND	0.200	ND	0.589		1
Toluene	2.90	0.200	10.9	0.753		1
trans-1,2-Dichloroethene	ND	0.200	ND	0.792		1
trans-1,3-Dichloropropene	ND	0.200	ND	0.907		1
Trichloroethene	1.23	0.200	6.60	1.07		1
Trichlorofluoromethane	3.26	0.200	18.3	1.12		1
Vinyl acetate	ND	0.200	ND	0.704		1
Vinyl bromide	ND	0.200	ND	0.874		1
Vinyl chloride	ND	0.200	ND	0.511		1

Project Name: FORMER DARBY DRUG

Project Number: AVB0801

Lab Number:

L0813541

Report Date:

09/25/08

SAMPLE RESULTS

Lab ID: L0813541-04
Client ID: PWG-SG-2008-04
Sample Location: ROCKVILLE CENTRE

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 09/17/08 17:13

Analyst: RY

Date Collected: 09/10/08 12:29

Date Received: 09/11/08
Field Prep: Not Specified

	ppbV		ug/m	ug/m3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Compou	nds in Air					
1,1,1-Trichloroethane	ND	0.200	ND	1.09		1
1,1,2,2-Tetrachloroethane	ND	0.200	ND	1.37		1
1,1,2-Trichloroethane	ND	0.200	ND	1.09		1
1,1-Dichloroethane	ND	0.200	ND	0.809		1
1,1-Dichloroethene	ND	0.200	ND	0.792		1
1,2,4-Trichlorobenzene	ND	0.200	ND	1.48		1
1,2,4-Trimethylbenzene	0.961	0.200	4.72	0.982		1
1,2-Dibromoethane	ND	0.200	ND	1.54		1
1,2-Dichlorobenzene	ND	0.200	ND	1.20		1
1,2-Dichloroethane	ND	0.200	ND	0.809		1
1,2-Dichloropropane	ND	0.200	ND	0.924		1
1,3,5-Trimethybenzene	0.464	0.200	2.28	0.982		1
1,3-Butadiene	ND	0.200	ND	0.442		1
1,3-Dichlorobenzene	ND	0.200	ND	1.20		1
1,4-Dichlorobenzene	5.92	0.200	35.5	1.20		1
1,4-Dioxane	ND	0.200	ND	0.720		1
2,2,4-Trimethylpentane	ND	0.200	ND	0.934		1
2-Butanone	12.6	0.200	37.1	0.589		1
2-Hexanone	2.28	0.200	9.32	0.819		1
3-Chloropropene	ND	0.200	ND	0.626		1
4-Ethyltoluene	ND	0.200	ND	0.982		1
Acetone	47.9	0.500	114	1.19		1
Benzene	0.259	0.200	0.828	0.638		1
Benzyl chloride	ND	0.200	ND	1.03		1
Bromodichloromethane	ND	0.200	ND	1.34		1

Project Name: FORMER DARBY DRUG

Project Number: AVB0801

Lab Number:

L0813541

Report Date:

09/25/08

SAMPLE RESULTS

Lab ID: L0813541-04
Client ID: PWG-SG-2008-04
Sample Location: ROCKVILLE CENTRE

Date Collected:

09/10/08 12:29

Date Received: Field Prep:

	ppbV	,	ug/m3			Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Compo	ounds in Air					
Bromoform	ND	0.200	ND	2.06		1
Bromomethane	ND	0.200	ND	0.776		1
Carbon disulfide	0.230	0.200	0.715	0.622		1
Carbon tetrachloride	ND	0.200	ND	1.26		1
Chlorobenzene	ND	0.200	ND	0.920		1
Chloroethane	ND	0.200	ND	0.527		1
Chloroform	0.397	0.200	1.94	0.976		1
Chloromethane	ND	0.200	ND	0.413		1
cis-1,2-Dichloroethene	ND	0.200	ND	0.792		1
cis-1,3-Dichloropropene	ND	0.200	ND	0.907		1
Cyclohexane	0.398	0.200	1.37	0.688		1
Dibromochloromethane	ND	0.200	ND	1.70		1
Dichlorodifluoromethane	0.699	0.200	3.46	0.988		1
Ethanol	9.70	2.50	18.2	4.71		1
Ethyl Acetate	ND	0.500	ND	1.80		1
Ethylbenzene	0.889	0.200	3.86	0.868		1
Freon-113	0.216	0.200	1.65	1.53		1
Freon-114	ND	0.200	ND	1.40		1
Hexachlorobutadiene	ND	0.200	ND	2.13		1
sopropanol	1.53	0.500	3.75	1.23		1
Methylene chloride	ND	0.500	ND	1.74		1
4-Methyl-2-pentanone	ND	0.200	ND	0.819		1
Methyl tert butyl ether	ND	0.200	ND	0.720		1
o/m-Xylene	2.76	0.400	12.0	1.74		1
o-Xylene	1.15	0.200	5.00	0.868		1
Heptane	0.295	0.200	1.21	0.819		1
n-Hexane	0.248	0.200	0.872	0.704		1
Propylene	1.90	0.200	3.28	0.344		1

L0813541

09/25/08

Lab Number:

Project Name: FORMER DARBY DRUG

Project Number: AVB0801 Report Date:

SAMPLE RESULTS

Lab ID: L0813541-04 Date Collected: 09/10/08 12:29

Client ID: PWG-SG-2008-04 Date Received: 09/11/08
Sample Location: ROCKVILLE CENTRE Field Prep: Not Specified

	ppbV	ppbV		ug/m3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Comp	ounds in Air					
Styrene	1.09	0.200	4.62	0.851		1
Tetrachloroethene	3.30	0.200	22.4	1.36		1
Tetrahydrofuran	ND	0.200	ND	0.589		1
Toluene	2.84	0.200	10.7	0.753		1
trans-1,2-Dichloroethene	ND	0.200	ND	0.792		1
trans-1,3-Dichloropropene	ND	0.200	ND	0.907		1
Trichloroethene	0.404	0.200	2.17	1.07		1
Trichlorofluoromethane	0.824	0.200	4.62	1.12		1
Vinyl acetate	ND	0.200	ND	0.704		1
Vinyl bromide	ND	0.200	ND	0.874		1
Vinyl chloride	ND	0.200	ND	0.511		1

Project Name: FORMER DARBY DRUG

Project Number: AVB0801

Lab Number:

L0813541

Report Date:

09/25/08

SAMPLE RESULTS

Lab ID: L0813541-05

Client ID: PWG-SG-2008-05 Sample Location: ROCKVILLE CENTRE

Matrix:

Soil_Vapor

Anaytical Method: Analytical Date: 48,TO-15 09/17/08 17:44

Analyst:

RY

Date Collected:

09/10/08 12:31

Date Received:

09/11/08

Field Prep:

Not Specified

	ppb\	ppbV		ug/m3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Com	pounds in Air					
1,1,1-Trichloroethane	ND	2.00	ND	10.9		10
1,1,2,2-Tetrachloroethane	ND	2.00	ND	13.7		10
1,1,2-Trichloroethane	ND	2.00	ND	10.9		10
1,1-Dichloroethane	ND	2.00	ND	8.09		10
1,1-Dichloroethene	ND	2.00	ND	7.92		10
1,2,4-Trichlorobenzene	ND	2.00	ND	14.8		10
1,2,4-Trimethylbenzene	ND	2.00	ND	9.82		10
1,2-Dibromoethane	ND	2.00	ND	15.4		10
1,2-Dichlorobenzene	ND	2.00	ND	12.0		10
1,2-Dichloroethane	ND	2.00	ND	8.09		10
1,2-Dichloropropane	ND	2.00	ND	9.24		10
1,3,5-Trimethybenzene	ND	2.00	ND	9.82		10
1,3-Butadiene	ND	2.00	ND	4.42		10
1,3-Dichlorobenzene	ND	2.00	ND	12.0		10
1,4-Dichlorobenzene	2.88	2.00	17.3	12.0		10
1,4-Dioxane	ND	2.00	ND	7.20		10
2,2,4-Trimethylpentane	ND	2.00	ND	9.34		10
2-Butanone	143	2.00	421	5.89		10
2-Hexanone	2.31	2.00	9.46	8.19		10
3-Chloropropene	ND	2.00	ND	6.26		10
4-Ethyltoluene	ND	2.00	ND	9.82		10
Acetone	>1000	5	>2375	11.9		10
Benzene	ND	2.00	ND	6.38		10
Benzyl chloride	ND	2.00	ND	10.3		10
Bromodichloromethane	ND	2.00	ND	13.4		10

Project Name: FORMER DARBY DRUG

Project Number: AVB0801

Lab Number:

L0813541

Report Date:

09/25/08

SAMPLE RESULTS

Lab ID: L0813541-05
Client ID: PWG-SG-2008-05
Sample Location: ROCKVILLE CENTRE

Date Collected:

09/10/08 12:31

Date Received: Field Prep:

	ppbV	<u>, </u>	ug/m3			Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Compo	ounds in Air					
Bromoform	ND	2.00	ND	20.6		10
Bromomethane	ND	2.00	ND	7.76		10
Carbon disulfide	ND	2.00	ND	6.22		10
Carbon tetrachloride	ND	2.00	ND	12.6		10
Chlorobenzene	ND	2.00	ND	9.20		10
Chloroethane	ND	2.00	ND	5.27		10
Chloroform	ND	2.00	ND	9.76		10
Chloromethane	ND	2.00	ND	4.13		10
cis-1,2-Dichloroethene	ND	2.00	ND	7.92		10
cis-1,3-Dichloropropene	ND	2.00	ND	9.07		10
Cyclohexane	ND	2.00	ND	6.88		10
Dibromochloromethane	ND	2.00	ND	17.0		10
Dichlorodifluoromethane	ND	2.00	ND	9.88		10
Ethanol	110	25.0	206	47.1		10
Ethyl Acetate	ND	5.00	ND	18.0		10
Ethylbenzene	ND	2.00	ND	8.68		10
Freon-113	ND	2.00	ND	15.3		10
Freon-114	ND	2.00	ND	14.0		10
Hexachlorobutadiene	ND	2.00	ND	21.3		10
Isopropanol	53.0	5.00	130	12.3		10
Methylene chloride	ND	5.00	ND	17.4		10
4-Methyl-2-pentanone	ND	2.00	ND	8.19		10
Methyl tert butyl ether	ND	2.00	ND	7.20		10
p/m-Xylene	ND	4.00	ND	17.4		10
o-Xylene	ND	2.00	ND	8.68		10
Heptane	ND	2.00	ND	8.19		10
n-Hexane	ND	2.00	ND	7.04		10
Propylene	157	2.00	270	3.44		10

Project Name: FORMER DARBY DRUG

Project Number: AVB0801

Lab Number: Report Date:

L0813541

eport Date: 09/25/08

SAMPLE RESULTS

Lab ID: L0813541-05

Client ID: PWG-SG-2008-05 Sample Location: ROCKVILLE CENTRE Date Collected: 09/10/08 12:31 Date Received: 09/11/08

Field Prep: N

ppbV		ug/m3			Dilution
Results	RDL	Results	RDL	Qualifier	Factor
unds in Air					
ND	2.00	ND	8.51		10
2.95	2.00	20.0	13.6		10
ND	2.00	ND	5.89		10
3.75	2.00	14.1	7.53		10
ND	2.00	ND	7.92		10
ND	2.00	ND	9.07		10
ND	2.00	ND	10.7		10
ND	2.00	ND	11.2		10
ND	2.00	ND	7.04		10
ND	2.00	ND	8.74		10
ND	2.00	ND	5.11		10
	Results unds in Air ND 2.95 ND 3.75 ND ND ND ND ND ND ND ND ND N	Results RDL unds in Air ND 2.00 2.95 2.00 ND 2.00 ND 2.00 ND 2.00	Results RDL Results unds in Air ND 2.00 ND 2.95 2.00 20.0 ND 2.00 ND 3.75 2.00 14.1 ND 2.00 ND ND 2.00 ND	Results RDL Results RDL unds in Air ND 2.00 ND 8.51 2.95 2.00 20.0 13.6 ND 2.00 ND 5.89 3.75 2.00 14.1 7.53 ND 2.00 ND 7.92 ND 2.00 ND 9.07 ND 2.00 ND 10.7 ND 2.00 ND 11.2 ND 2.00 ND 7.04 ND 2.00 ND 8.74	Results RDL Results RDL Qualifier unds in Air ND 8.51

Project Name: FORMER DARBY DRUG Lab Number: L0813541

Project Number: AVB0801 Report Date: 09/25/08

SAMPLE RESULTS

Lab ID: L0813541-05 R Date Collected: 09/10/08 12:31

Client ID: PWG-SG-2008-05 Date Received: 09/11/08
Sample Location: ROCKVILLE CENTRE Field Prep: Not Specified

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 09/17/08 22:46

Analyst: RY

	ppbV		ug/m3			Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Compound	s in Air					
Acetone	800	12.5	1900	29.7		25

L0813541

Project Name: FORMER DARBY DRUG Lab Number:

Project Number: AVB0801 Report Date: 09/25/08

SAMPLE RESULTS

 Lab ID:
 L0813541-06
 Date Collected:
 09/10/08 12:34

 Client ID:
 PWG-SG-2008-06
 Date Received:
 09/11/08

Sample Location: ROCKVILLE CENTRE Field Prep: Not Specified

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 09/17/08 18:50

Analyst: RY

	ppbV		ug/m3			Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Compour	nds in Air					
1,1,1-Trichloroethane	ND	0.200	ND	1.09		1
1,1,2,2-Tetrachloroethane	ND	0.200	ND	1.37		1
1,1,2-Trichloroethane	ND	0.200	ND	1.09		1
1,1-Dichloroethane	ND	0.200	ND	0.809		1
1,1-Dichloroethene	ND	0.200	ND	0.792		1
1,2,4-Trichlorobenzene	ND	0.200	ND	1.48		1
1,2,4-Trimethylbenzene	0.998	0.200	4.90	0.982		1
1,2-Dibromoethane	ND	0.200	ND	1.54		1
1,2-Dichlorobenzene	ND	0.200	ND	1.20		1
1,2-Dichloroethane	ND	0.200	ND	0.809		1
1,2-Dichloropropane	ND	0.200	ND	0.924		1
1,3,5-Trimethybenzene	0.454	0.200	2.23	0.982		1
1,3-Butadiene	ND	0.200	ND	0.442		1
1,3-Dichlorobenzene	ND	0.200	ND	1.20		1
1,4-Dichlorobenzene	5.68	0.200	34.1	1.20		1
1,4-Dioxane	ND	0.200	ND	0.720		1
2,2,4-Trimethylpentane	ND	0.200	ND	0.934		1
2-Butanone	13.6	0.200	40.1	0.589		1
2-Hexanone	3.00	0.200	12.2	0.819		1
3-Chloropropene	ND	0.200	ND	0.626		1
4-Ethyltoluene	ND	0.200	ND	0.982		1
Acetone	45.7	0.500	108	1.19		1
Benzene	ND	0.200	ND	0.638		1
Benzyl chloride	ND	0.200	ND	1.03		1
Bromodichloromethane	ND	0.200	ND	1.34		1

Project Name: FORMER DARBY DRUG

Project Number: AVB0801

Lab Number:

L0813541

Report Date:

09/25/08

SAMPLE RESULTS

Lab ID: L0813541-06
Client ID: PWG-SG-2008-06
Sample Location: ROCKVILLE CENTRE

Date Collected:

09/10/08 12:34

Date Received: Field Prep:

	ppbV		ug/m3			Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Compo	unds in Air					
Bromoform	ND	0.200	ND	2.06		1
Bromomethane	ND	0.200	ND	0.776		1
Carbon disulfide	ND	0.200	ND	0.622		1
Carbon tetrachloride	ND	0.200	ND	1.26		1
Chlorobenzene	ND	0.200	ND	0.920		1
Chloroethane	ND	0.200	ND	0.527		1
Chloroform	ND	0.200	ND	0.976		1
Chloromethane	ND	0.200	ND	0.413		1
cis-1,2-Dichloroethene	ND	0.200	ND	0.792		1
cis-1,3-Dichloropropene	ND	0.200	ND	0.907		1
Cyclohexane	0.306	0.200	1.05	0.688		1
Dibromochloromethane	ND	0.200	ND	1.70		1
Dichlorodifluoromethane	0.562	0.200	2.78	0.988		1
Ethanol	9.56	2.50	18.0	4.71		1
Ethyl Acetate	ND	0.500	ND	1.80		1
Ethylbenzene	1.82	0.200	7.92	0.868		1
Freon-113	ND	0.200	ND	1.53		1
Freon-114	ND	0.200	ND	1.40		1
Hexachlorobutadiene	ND	0.200	ND	2.13		1
Isopropanol	1.12	0.500	2.74	1.23		1
Methylene chloride	ND	0.500	ND	1.74		1
4-Methyl-2-pentanone	ND	0.200	ND	0.819		1
Methyl tert butyl ether	ND	0.200	ND	0.720		1
p/m-Xylene	6.06	0.400	26.3	1.74		1
o-Xylene	2.24	0.200	9.74	0.868		1
Heptane	0.365	0.200	1.49	0.819		1
n-Hexane	0.258	0.200	0.909	0.704		1
Propylene	1.70	0.200	2.92	0.344		1

L0813541

Lab Number:

Project Name: FORMER DARBY DRUG

Project Number: AVB0801 Report Date: 09/25/08

AMDLE DECILITE

SAMPLE RESULTS

Lab ID: L0813541-06 Date Collected: 09/10/08 12:34

Client ID: PWG-SG-2008-06 Date Received: 09/11/08
Sample Location: ROCKVILLE CENTRE Field Prep: Not Specified

	ppbV	ppbV		ug/m3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Compo	unds in Air					
Styrene	0.918	0.200	3.90	0.851		1
Tetrachloroethene	1.05	0.200	7.12	1.36		1
Tetrahydrofuran	ND	0.200	ND	0.589		1
Toluene	2.91	0.200	11.0	0.753		1
trans-1,2-Dichloroethene	ND	0.200	ND	0.792		1
trans-1,3-Dichloropropene	ND	0.200	ND	0.907		1
Trichloroethene	0.278	0.200	1.49	1.07		1
Trichlorofluoromethane	0.326	0.200	1.83	1.12		1
Vinyl acetate	ND	0.200	ND	0.704		1
Vinyl bromide	ND	0.200	ND	0.874		1
Vinyl chloride	ND	0.200	ND	0.511		1

Project Name: FORMER DARBY DRUG

Project Number: AVB0801

Lab Number:

L0813541

Report Date: 09/25/08

SAMPLE RESULTS

Lab ID: L0813541-07
Client ID: PWG-SG-2008-07

Sample Location: RO Matrix: Soi

ROCKVILLE CENTRE

Anaytical Method:
Analytical Date:

Soil_Vapor 48,TO-15 09/17/08 19:23

Analyst:

RY

Date Collected: 09/10/08 12:40

Date Received:

09/11/08

Field Prep: Not Specified

	ppbV		ug/m3			Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Compo	ounds in Air					
1,1,1-Trichloroethane	ND	2.00	ND	10.9		10
1,1,2,2-Tetrachloroethane	ND	2.00	ND	13.7		10
1,1,2-Trichloroethane	ND	2.00	ND	10.9		10
1,1-Dichloroethane	ND	2.00	ND	8.09		10
1,1-Dichloroethene	ND	2.00	ND	7.92		10
1,2,4-Trichlorobenzene	ND	2.00	ND	14.8		10
1,2,4-Trimethylbenzene	ND	2.00	ND	9.82		10
1,2-Dibromoethane	ND	2.00	ND	15.4		10
1,2-Dichlorobenzene	ND	2.00	ND	12.0		10
1,2-Dichloroethane	ND	2.00	ND	8.09		10
1,2-Dichloropropane	ND	2.00	ND	9.24		10
1,3,5-Trimethybenzene	ND	2.00	ND	9.82		10
1,3-Butadiene	ND	2.00	ND	4.42		10
1,3-Dichlorobenzene	ND	2.00	ND	12.0		10
1,4-Dichlorobenzene	3.79	2.00	22.8	12.0		10
1,4-Dioxane	ND	2.00	ND	7.20		10
2,2,4-Trimethylpentane	ND	2.00	ND	9.34		10
2-Butanone	254	2.00	749	5.89		10
2-Hexanone	5.58	2.00	22.8	8.19		10
3-Chloropropene	ND	2.00	ND	6.26		10
4-Ethyltoluene	ND	2.00	ND	9.82		10
Acetone	>1000	5	>2375	11.9		10
Benzene	ND	2.00	ND	6.38		10
Benzyl chloride	ND	2.00	ND	10.3		10
Bromodichloromethane	ND	2.00	ND	13.4		10

Project Name: FORMER DARBY DRUG

Project Number: AVB0801

Lab Number:

L0813541

Report Date:

09/25/08

SAMPLE RESULTS

Lab ID: L0813541-07
Client ID: PWG-SG-2008-07
Sample Location: ROCKVILLE CENTRE

Date Collected:

09/10/08 12:40

Date Received: Field Prep:

cample Lecation. Tree trible of	· OLITINE		riola riop.			riot Op	
	ppbV	<u></u>	ug/m			Dilution	
Parameter	Results	RDL	Results	RDL	Qualifier	Factor	
Low Level Volatile Organic Compour	ids in Air						
Bromoform	ND	2.00	ND	20.6		10	
Bromomethane	ND	2.00	ND	7.76		10	
Carbon disulfide	ND	2.00	ND	6.22		10	
Carbon tetrachloride	ND	2.00	ND	12.6		10	
Chlorobenzene	ND	2.00	ND	9.20		10	
Chloroethane	ND	2.00	ND	5.27		10	
Chloroform	ND	2.00	ND	9.76		10	
Chloromethane	ND	2.00	ND	4.13		10	
cis-1,2-Dichloroethene	ND	2.00	ND	7.92		10	
cis-1,3-Dichloropropene	ND	2.00	ND	9.07		10	
Cyclohexane	ND	2.00	ND	6.88		10	
Dibromochloromethane	ND	2.00	ND	17.0		10	
Dichlorodifluoromethane	ND	2.00	ND	9.88		10	
Ethanol	242	25.0	455	47.1		10	
Ethyl Acetate	ND	5.00	ND	18.0		10	
Ethylbenzene	ND	2.00	ND	8.68		10	
Freon-113	ND	2.00	ND	15.3		10	
Freon-114	ND	2.00	ND	14.0		10	
Hexachlorobutadiene	ND	2.00	ND	21.3		10	
Isopropanol	94.4	5.00	232	12.3		10	
Methylene chloride	ND	5.00	ND	17.4		10	
4-Methyl-2-pentanone	ND	2.00	ND	8.19		10	
Methyl tert butyl ether	ND	2.00	ND	7.20		10	
p/m-Xylene	5.24	4.00	22.7	17.4		10	
o-Xylene	ND	2.00	ND	8.68		10	
Heptane	ND	2.00	ND	8.19		10	
n-Hexane	ND	2.00	ND	7.04		10	
Propylene	227	2.00	390	3.44		10	

L0813541

Lab Number:

Project Name: FORMER DARBY DRUG

Project Number: AVB0801 Report Date: 09/25/08

SAMPLE RESULTS

Lab ID: L0813541-07 Date Collected: 09/10/08 12:40

Client ID: PWG-SG-2008-07 Date Received: 09/11/08
Sample Location: ROCKVILLE CENTRE Field Prep: Not Specified

	ppbV	ppbV		ug/m3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Compo	ounds in Air					
Styrene	ND	2.00	ND	8.51		10
Tetrachloroethene	9.18	2.00	62.2	13.6		10
Tetrahydrofuran	ND	2.00	ND	5.89		10
Toluene	2.82	2.00	10.6	7.53		10
trans-1,2-Dichloroethene	ND	2.00	ND	7.92		10
trans-1,3-Dichloropropene	ND	2.00	ND	9.07		10
Trichloroethene	ND	2.00	ND	10.7		10
Trichlorofluoromethane	ND	2.00	ND	11.2		10
Vinyl acetate	ND	2.00	ND	7.04		10
Vinyl bromide	ND	2.00	ND	8.74		10
Vinyl chloride	ND	2.00	ND	5.11		10

Project Name: FORMER DARBY DRUG Lab Number: L0813541

Project Number: AVB0801 Report Date: 09/25/08

SAMPLE RESULTS

Lab ID: L0813541-07 R Date Collected: 09/10/08 12:40

Client ID: PWG-SG-2008-07 Date Received: 09/11/08

Sample Location: ROCKVILLE CENTRE Field Prep: Not Specified Matrix: Soil_Vapor
Anaytical Method: 48,TO-15

Analyst: RY

Analytical Date:

09/18/08 19:45

	ppbV		ug/m3			Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Compound	s in Air					
Acetone	1630	12.5	3870	29.7		25

Project Name: FORMER DARBY DRUG Lab Number: L0813541

Project Number: AVB0801 Report Date: 09/25/08

SAMPLE RESULTS

 Lab ID:
 L0813541-08
 Date Collected:
 09/10/08 12:42

 Client ID:
 PWG-SG-2008-08
 Date Received:
 09/11/08

Sample Location: ROCKVILLE CENTRE Field Prep: Not Specified

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 09/17/08 19:57

Analyst: RY

	ppbV	<u>, </u>	ug/m3			Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Com	pounds in Air					
1,1,1-Trichloroethane	ND	0.200	ND	1.09		1
1,1,2,2-Tetrachloroethane	ND	0.200	ND	1.37		1
1,1,2-Trichloroethane	ND	0.200	ND	1.09		1
1,1-Dichloroethane	ND	0.200	ND	0.809		1
1,1-Dichloroethene	ND	0.200	ND	0.792		1
1,2,4-Trichlorobenzene	ND	0.200	ND	1.48		1
1,2,4-Trimethylbenzene	0.789	0.200	3.88	0.982		1
1,2-Dibromoethane	ND	0.200	ND	1.54		1
1,2-Dichlorobenzene	ND	0.200	ND	1.20		1
1,2-Dichloroethane	ND	0.200	ND	0.809		1
1,2-Dichloropropane	ND	0.200	ND	0.924		1
1,3,5-Trimethybenzene	0.377	0.200	1.85	0.982		1
1,3-Butadiene	ND	0.200	ND	0.442		1
1,3-Dichlorobenzene	ND	0.200	ND	1.20		1
1,4-Dichlorobenzene	4.05	0.200	24.3	1.20		1
1,4-Dioxane	ND	0.200	ND	0.720		1
2,2,4-Trimethylpentane	ND	0.200	ND	0.934		1
2-Butanone	4.21	0.200	12.4	0.589		1
2-Hexanone	0.940	0.200	3.84	0.819		1
3-Chloropropene	ND	0.200	ND	0.626		1
4-Ethyltoluene	ND	0.200	ND	0.982		1
Acetone	15.2	0.500	36.0	1.19		1
Benzene	ND	0.200	ND	0.638		1
Benzyl chloride	ND	0.200	ND	1.03		1
Bromodichloromethane	ND	0.200	ND	1.34		1

Project Name: FORMER DARBY DRUG

Project Number: AVB0801

Lab Number:

L0813541

Report Date:

09/25/08

SAMPLE RESULTS

Lab ID: L0813541-08
Client ID: PWG-SG-2008-08
Sample Location: ROCKVILLE CENTRE

Date Collected:

09/10/08 12:42

Date Received: Field Prep:

	ppbV	,	ug/m3	ug/m3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Compo	ounds in Air					
Bromoform	ND	0.200	ND	2.06		1
Bromomethane	ND	0.200	ND	0.776		1
Carbon disulfide	ND	0.200	ND	0.622		1
Carbon tetrachloride	ND	0.200	ND	1.26		1
Chlorobenzene	ND	0.200	ND	0.920		1
Chloroethane	ND	0.200	ND	0.527		1
Chloroform	ND	0.200	ND	0.976		1
Chloromethane	ND	0.200	ND	0.413		1
cis-1,2-Dichloroethene	ND	0.200	ND	0.792		1
cis-1,3-Dichloropropene	ND	0.200	ND	0.907		1
Cyclohexane	0.284	0.200	0.975	0.688		1
Dibromochloromethane	ND	0.200	ND	1.70		1
Dichlorodifluoromethane	0.598	0.200	2.95	0.988		1
Ethanol	4.37	2.50	8.23	4.71		1
Ethyl Acetate	ND	0.500	ND	1.80		1
Ethylbenzene	0.733	0.200	3.18	0.868		1
Freon-113	ND	0.200	ND	1.53		1
Freon-114	ND	0.200	ND	1.40		1
Hexachlorobutadiene	ND	0.200	ND	2.13		1
sopropanol	0.521	0.500	1.28	1.23		1
Methylene chloride	0.888	0.500	3.08	1.74		1
4-Methyl-2-pentanone	ND	0.200	ND	0.819		1
Methyl tert butyl ether	ND	0.200	ND	0.720		1
p/m-Xylene	2.32	0.400	10.0	1.74		1
o-Xylene	0.947	0.200	4.11	0.868		1
Heptane	ND	0.200	ND	0.819		1
n-Hexane	0.289	0.200	1.02	0.704		1
Propylene	0.957	0.200	1.64	0.344		1

Project Name: FORMER DARBY DRUG

Project Number: AVB0801

Lab Number:

L0813541

Report Date:

09/25/08

SAMPLE RESULTS

Lab ID: L0813541-08
Client ID: PWG-SG-2008-08
Sample Location: ROCKVILLE CENTRE

Date Collected:

09/10/08 12:42

Date Received: Field Prep:

	ppb\	ppbV		ug/m3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Comp	oounds in Air					
Styrene	0.710	0.200	3.02	0.851		1
Tetrachloroethene	0.603	0.200	4.09	1.36		1
Tetrahydrofuran	ND	0.200	ND	0.589		1
Toluene	1.88	0.200	7.07	0.753		1
trans-1,2-Dichloroethene	ND	0.200	ND	0.792		1
trans-1,3-Dichloropropene	ND	0.200	ND	0.907		1
Trichloroethene	0.254	0.200	1.36	1.07		1
Trichlorofluoromethane	0.335	0.200	1.88	1.12		1
Vinyl acetate	ND	0.200	ND	0.704		1
Vinyl bromide	ND	0.200	ND	0.874		1
Vinyl chloride	ND	0.200	ND	0.511		1

Project Name: FORMER DARBY DRUG

Project Number: AVB0801

Lab Number:

L0813541

Report Date: 09/25/08

SAMPLE RESULTS

Lab ID: L0813541-09
Client ID: PWG-SG-2008-09
Sample Location: ROCKVILLE CENTRE

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 09/17/08 20:31

Analyst: RY

Date Collected: 09/10/08 12:53 Date Received: 09/11/08

Field Prep: Not Specified

	ppbV		ug/m3		Dilu	Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Compou	nds in Air					
1,1,1-Trichloroethane	ND	5.00	ND	27.2		25
1,1,2,2-Tetrachloroethane	ND	5.00	ND	34.3		25
1,1,2-Trichloroethane	ND	5.00	ND	27.2		25
1,1-Dichloroethane	ND	5.00	ND	20.2		25
1,1-Dichloroethene	ND	5.00	ND	19.8		25
1,2,4-Trichlorobenzene	ND	5.00	ND	37.1		25
1,2,4-Trimethylbenzene	ND	5.00	ND	24.6		25
1,2-Dibromoethane	ND	5.00	ND	38.4		25
1,2-Dichlorobenzene	ND	5.00	ND	30.0		25
1,2-Dichloroethane	ND	5.00	ND	20.2		25
1,2-Dichloropropane	ND	5.00	ND	23.1		25
1,3,5-Trimethybenzene	ND	5.00	ND	24.6		25
1,3-Butadiene	ND	5.00	ND	11.0		25
1,3-Dichlorobenzene	ND	5.00	ND	30.0		25
1,4-Dichlorobenzene	ND	5.00	ND	30.0		25
1,4-Dioxane	ND	5.00	ND	18.0		25
2,2,4-Trimethylpentane	ND	5.00	ND	23.3		25
2-Butanone	132	5.00	388	14.7		25
2-Hexanone	ND	5.00	ND	20.5		25
3-Chloropropene	ND	5.00	ND	15.6		25
4-Ethyltoluene	ND	5.00	ND	24.6		25
Acetone	960	12.5	2280	29.7		25
Benzene	ND	5.00	ND	16.0		25
Benzyl chloride	ND	5.00	ND	25.9		25
Bromodichloromethane	ND	5.00	ND	33.5		25

Project Name: FORMER DARBY DRUG

Project Number: AVB0801 Lab Number:

L0813541

Report Date: 09/25/08

SAMPLE RESULTS

Lab ID: L0813541-09 Client ID: PWG-SG-2008-09 Sample Location: ROCKVILLE CENTRE Date Collected:

09/10/08 12:53

Date Received: Field Prep:

RDL	Qualifier	Factor
		Dilution
i iciu i	i iep.	Not Sp

		,					
	ppbV	<u> </u>	ug/m3			Dilution	
Parameter	Results	RDL	Results	RDL	Qualifier	Factor	
Low Level Volatile Organic Com	pounds in Air						
Bromoform	ND	5.00	ND	51.6		25	
Bromomethane	ND	5.00	ND	19.4		25	
Carbon disulfide	ND	5.00	ND	15.6		25	
Carbon tetrachloride	ND	5.00	ND	31.4		25	
Chlorobenzene	ND	5.00	ND	23.0		25	
Chloroethane	ND	5.00	ND	13.2		25	
Chloroform	ND	5.00	ND	24.4		25	
Chloromethane	ND	5.00	ND	10.3		25	
cis-1,2-Dichloroethene	ND	5.00	ND	19.8		25	
cis-1,3-Dichloropropene	ND	5.00	ND	22.7		25	
Cyclohexane	ND	5.00	ND	17.2		25	
Dibromochloromethane	ND	5.00	ND	42.6		25	
Dichlorodifluoromethane	ND	5.00	ND	24.7		25	
Ethanol	128	62.5	240	118		25	
Ethyl Acetate	ND	12.5	ND	45.0		25	
Ethylbenzene	ND	5.00	ND	21.7		25	
Freon-113	ND	5.00	ND	38.3		25	
Freon-114	ND	5.00	ND	34.9		25	
Hexachlorobutadiene	ND	5.00	ND	53.3		25	
Isopropanol	75.2	12.5	185	30.7		25	
Methylene chloride	ND	12.5	ND	43.4		25	
4-Methyl-2-pentanone	ND	5.00	ND	20.5		25	
Methyl tert butyl ether	ND	5.00	ND	18.0		25	
p/m-Xylene	ND	10.0	ND	43.4		25	
o-Xylene	ND	5.00	ND	21.7		25	
Heptane	ND	5.00	ND	20.5		25	
n-Hexane	ND	5.00	ND	17.6		25	
Propylene	236	5.00	406	8.60		25	

L0813541

Lab Number:

Project Name: FORMER DARBY DRUG

Project Number: AVB0801 Report Date: 09/25/08

SAMPLE RESULTS

Lab ID: L0813541-09 Date Collected: 09/10/08 12:53

Client ID: PWG-SG-2008-09 Date Received: 09/11/08
Sample Location: ROCKVILLE CENTRE Field Prep: Not Specified

	ppbV	ppbV		ug/m3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Compou	ınds in Air					
Styrene	ND	5.00	ND	21.3		25
Tetrachloroethene	1420	5.00	9660	33.9		25
Tetrahydrofuran	ND	5.00	ND	14.7		25
Toluene	ND	5.00	ND	18.8		25
trans-1,2-Dichloroethene	ND	5.00	ND	19.8		25
trans-1,3-Dichloropropene	ND	5.00	ND	22.7		25
Trichloroethene	5.53	5.00	29.7	26.8		25
Trichlorofluoromethane	ND	5.00	ND	28.1		25
Vinyl acetate	ND	5.00	ND	17.6		25
Vinyl bromide	ND	5.00	ND	21.8		25
Vinyl chloride	ND	5.00	ND	12.8		25

Project Name: FORMER DARBY DRUG Lab Number: L0813541

Project Number: AVB0801 Report Date: 09/25/08

SAMPLE RESULTS

 Lab ID:
 L0813541-10
 Date Collected:
 09/10/08 12:44

 Client ID:
 PWG-SG-2008-10
 Date Received:
 09/11/08

Client ID: PWG-SG-2008-10 Date Received: 09/11/08
Sample Location: ROCKVILLE CENTRE Field Prep: Not Specified

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 09/17/08 21:05

Analyst: RY

	ppbV		ug/m3			Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Con	npounds in Air					
1,1,1-Trichloroethane	ND	2.00	ND	10.9		10
1,1,2,2-Tetrachloroethane	ND	2.00	ND	13.7		10
1,1,2-Trichloroethane	ND	2.00	ND	10.9		10
1,1-Dichloroethane	ND	2.00	ND	8.09		10
1,1-Dichloroethene	ND	2.00	ND	7.92		10
1,2,4-Trichlorobenzene	ND	2.00	ND	14.8		10
1,2,4-Trimethylbenzene	ND	2.00	ND	9.82		10
1,2-Dibromoethane	ND	2.00	ND	15.4		10
1,2-Dichlorobenzene	ND	2.00	ND	12.0		10
1,2-Dichloroethane	ND	2.00	ND	8.09		10
1,2-Dichloropropane	ND	2.00	ND	9.24		10
1,3,5-Trimethybenzene	ND	2.00	ND	9.82		10
1,3-Butadiene	ND	2.00	ND	4.42		10
1,3-Dichlorobenzene	ND	2.00	ND	12.0		10
1,4-Dichlorobenzene	3.35	2.00	20.1	12.0		10
1,4-Dioxane	ND	2.00	ND	7.20		10
2,2,4-Trimethylpentane	ND	2.00	ND	9.34		10
2-Butanone	102	2.00	299	5.89		10
2-Hexanone	2.24	2.00	9.18	8.19		10
3-Chloropropene	ND	2.00	ND	6.26		10
4-Ethyltoluene	ND	2.00	ND	9.82		10
Acetone	688	5.00	1630	11.9		10
Benzene	ND	2.00	ND	6.38		10
Benzyl chloride	ND	2.00	ND	10.3		10
Bromodichloromethane	ND	2.00	ND	13.4		10

Project Name: FORMER DARBY DRUG

Project Number: AVB0801

Lab Number:

L0813541

Report Date:

09/25/08

SAMPLE RESULTS

Lab ID: L0813541-10
Client ID: PWG-SG-2008-10
Sample Location: ROCKVILLE CENTRE

Date Collected:

09/10/08 12:44

Date Received: Field Prep:

	ppbV	<u>, </u>	ug/m3	ug/m3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Compo	ounds in Air					
Bromoform	ND	2.00	ND	20.6		10
Bromomethane	ND	2.00	ND	7.76		10
Carbon disulfide	ND	2.00	ND	6.22		10
Carbon tetrachloride	ND	2.00	ND	12.6		10
Chlorobenzene	ND	2.00	ND	9.20		10
Chloroethane	ND	2.00	ND	5.27		10
Chloroform	ND	2.00	ND	9.76		10
Chloromethane	ND	2.00	ND	4.13		10
cis-1,2-Dichloroethene	ND	2.00	ND	7.92		10
cis-1,3-Dichloropropene	ND	2.00	ND	9.07		10
Cyclohexane	ND	2.00	ND	6.88		10
Dibromochloromethane	ND	2.00	ND	17.0		10
Dichlorodifluoromethane	ND	2.00	ND	9.88		10
Ethanol	72.0	25.0	136	47.1		10
Ethyl Acetate	ND	5.00	ND	18.0		10
Ethylbenzene	ND	2.00	ND	8.68		10
Freon-113	ND	2.00	ND	15.3		10
Freon-114	ND	2.00	ND	14.0		10
Hexachlorobutadiene	ND	2.00	ND	21.3		10
sopropanol	11.0	5.00	26.9	12.3		10
Methylene chloride	ND	5.00	ND	17.4		10
4-Methyl-2-pentanone	ND	2.00	ND	8.19		10
Methyl tert butyl ether	ND	2.00	ND	7.20		10
o/m-Xylene	ND	4.00	ND	17.4		10
o-Xylene	ND	2.00	ND	8.68		10
Heptane	ND	2.00	ND	8.19		10
n-Hexane	ND	2.00	ND	7.04		10
Propylene	94.8	2.00	163	3.44		10

L0813541

09/25/08

Project Name: FORMER DARBY DRUG

Lab ID:

Project Number: AVB0801

L0813541-10

SAMPLE RESULTS

Date Collected: 09/10/08 12:44

Lab Number:

Report Date:

Client ID: PWG-SG-2008-10 Date Received: 09/11/08
Sample Location: ROCKVILLE CENTRE Field Prep: Not Specified

ppbV ug/m3 Dilution Factor Results RDL Qualifier **Parameter** Results **RDL** Low Level Volatile Organic Compounds in Air Styrene ND 2.00 ND 8.51 10 Tetrachloroethene ND 2.00 ND 13.6 10 Tetrahydrofuran ND 2.00 ND 5.89 10 Toluene 2.89 2.00 10.9 7.53 10 trans-1,2-Dichloroethene ND 2.00 ND 7.92 10 trans-1,3-Dichloropropene ND 2.00 ND 9.07 10 Trichloroethene ND 2.00 ND 10.7 10 Trichlorofluoromethane ND 2.00 ND 11.2 10 Vinyl acetate ND 2.00 ND 7.04 10 Vinyl bromide ND 2.00 ND 8.74 10 Vinyl chloride ND 2.00 ND 5.11 10

Project Name: FORMER DARBY DRUG

Project Number: AVB0801

Lab Number:

L0813541

Report Date:

09/25/08

SAMPLE RESULTS

Lab ID: L0813541-11

Client ID: PWG-SG-2008-11
Sample Location: ROCKVILLE CENTRE

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 09/17/08 21:39

Analyst: RY

Date Collected: 09/10/08 13:04
Date Received: 09/11/08
Field Prep: Not Specified

	ppb\	ppbV		ug/m3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Com	pounds in Air					
1,1,1-Trichloroethane	ND	51.7	ND	282.		258.6
1,1,2,2-Tetrachloroethane	ND	51.7	ND	355.		258.6
1,1,2-Trichloroethane	ND	51.7	ND	282.		258.6
1,1-Dichloroethane	ND	51.7	ND	209.		258.6
1,1-Dichloroethene	ND	51.7	ND	205.		258.6
1,2,4-Trichlorobenzene	ND	51.7	ND	384.		258.6
1,2,4-Trimethylbenzene	ND	51.7	ND	254.		258.6
1,2-Dibromoethane	ND	51.7	ND	397.		258.6
1,2-Dichlorobenzene	ND	51.7	ND	311.		258.6
1,2-Dichloroethane	ND	51.7	ND	209.		258.6
1,2-Dichloropropane	ND	51.7	ND	239.		258.6
1,3,5-Trimethybenzene	ND	51.7	ND	254.		258.6
1,3-Butadiene	ND	51.7	ND	114.		258.6
1,3-Dichlorobenzene	ND	51.7	ND	311.		258.6
1,4-Dichlorobenzene	ND	51.7	ND	311.		258.6
1,4-Dioxane	ND	51.7	ND	186.		258.6
2,2,4-Trimethylpentane	ND	51.7	ND	241.		258.6
2-Butanone	ND	51.7	ND	152.		258.6
2-Hexanone	ND	51.7	ND	212.		258.6
3-Chloropropene	ND	51.7	ND	162.		258.6
4-Ethyltoluene	ND	51.7	ND	254.		258.6
Acetone	ND	129	ND	307		258.6
Benzene	ND	51.7	ND	165.		258.6
Benzyl chloride	ND	51.7	ND	268.		258.6
Bromodichloromethane	ND	51.7	ND	346.		258.6

Project Name: FORMER DARBY DRUG

Project Number: AVB0801

Lab Number:

L0813541

Report Date: 09/25/08

SAMPLE RESULTS

Lab ID: L0813541-11
Client ID: PWG-SG-2008-11
Sample Location: ROCKVILLE CENTRE

Date Collected:

09/10/08 13:04

Date Received: Field Prep:

09/11/08 Not Specified

	ppbV	<u>, </u>	ug/m3	3		Dilution Factor
Parameter	Results	RDL	Results	RDL	Qualifier	
Low Level Volatile Organic Compo	ounds in Air					
Bromoform	ND	51.7	ND	534.		258.6
Bromomethane	ND	51.7	ND	201.		258.6
Carbon disulfide	ND	51.7	ND	161		258.6
Carbon tetrachloride	ND	51.7	ND	325.		258.6
Chlorobenzene	ND	51.7	ND	238.		258.6
Chloroethane	ND	51.7	ND	136.		258.6
Chloroform	74.1	51.7	362	252		258.6
Chloromethane	ND	51.7	ND	107.		258.6
cis-1,2-Dichloroethene	8470	51.7	33500	205		258.6
cis-1,3-Dichloropropene	ND	51.7	ND	234.		258.6
Cyclohexane	ND	51.7	ND	178.		258.6
Dibromochloromethane	ND	51.7	ND	440.		258.6
Dichlorodifluoromethane	ND	51.7	ND	256		258.6
Ethanol	ND	646.	ND	1220		258.6
Ethyl Acetate	ND	129.	ND	466.		258.6
Ethylbenzene	ND	51.7	ND	224.		258.6
Freon-113	113	51.7	869	396		258.6
Freon-114	ND	51.7	ND	361.		258.6
Hexachlorobutadiene	ND	51.7	ND	551.		258.6
sopropanol	ND	129	ND	318		258.6
Methylene chloride	ND	129	ND	449		258.6
4-Methyl-2-pentanone	ND	51.7	ND	212.		258.6
Methyl tert butyl ether	ND	51.7	ND	186.		258.6
o/m-Xylene	ND	103.	ND	449.		258.6
o-Xylene	ND	51.7	ND	224.		258.6
Heptane	ND	51.7	ND	212.		258.6
n-Hexane	ND	51.7	ND	182.		258.6
Propylene	ND	51.7	ND	88.9		258.6

L0813541

Lab Number:

Project Name: FORMER DARBY DRUG

Project Number: AVB0801 Report Date: 09/25/08

SAMPLE RESULTS

Lab ID: L0813541-11 Date Collected: 09/10/08 13:04

Client ID: PWG-SG-2008-11 Date Received: 09/11/08
Sample Location: ROCKVILLE CENTRE Field Prep: Not Specified

	ppbV	ppbV				Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Compour	nds in Air					
Styrene	ND	51.7	ND	220.		258.6
Tetrachloroethene	>25860	51.7	>175393	350		258.6
Tetrahydrofuran	ND	51.7	ND	152.		258.6
Toluene	ND	51.7	ND	195.		258.6
trans-1,2-Dichloroethene	339	51.7	1340	205		258.6
trans-1,3-Dichloropropene	ND	51.7	ND	234.		258.6
Trichloroethene	3560	51.7	19100	278		258.6
Trichlorofluoromethane	ND	51.7	ND	290		258.6
Vinyl acetate	ND	51.7	ND	182.		258.6
Vinyl bromide	ND	51.7	ND	226.		258.6
Vinyl chloride	ND	51.7	ND	132.		258.6

Project Name: FORMER DARBY DRUG Lab Number: L0813541

Project Number: AVB0801 Report Date: 09/25/08

SAMPLE RESULTS

Lab ID: L0813541-11 R Date Collected: 09/10/08 13:04

Client ID: PWG-SG-2008-11 Date Received: 09/11/08
Sample Location: ROCKVILLE CENTRE Field Prep: Not Specified

Matrix: Soil_Vapor
Anaytical Method: 48,TO-15
Analytical Date: 09/18/08 21:58

Analyst: RY

	ppbV		ug/m3			Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Compound	ls in Air					
Tetrachloroethene	249000	647	1680000	4380		3234

Project Name: FORMER DARBY DRUG Lab Number: L0813541

Project Number: AVB0801 Report Date: 09/25/08

SAMPLE RESULTS

 Lab ID:
 L0813541-12
 Date Collected:
 09/10/08 13:02

 Client ID:
 PWG-SG-2008-12
 Date Received:
 09/11/08

Sample Location: ROCKVILLE CENTRE Field Prep: Not Specified

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 09/17/08 22:13

Analyst: RY

	ppbV	<u>, </u>	ug/m3			Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Comp	oounds in Air					
1,1,1-Trichloroethane	3.09	0.200	16.8	1.09		1
1,1,2,2-Tetrachloroethane	ND	0.200	ND	1.37		1
1,1,2-Trichloroethane	ND	0.200	ND	1.09		1
1,1-Dichloroethane	ND	0.200	ND	0.809		1
1,1-Dichloroethene	ND	0.200	ND	0.792		1
1,2,4-Trichlorobenzene	ND	0.200	ND	1.48		1
1,2,4-Trimethylbenzene	1.21	0.200	5.95	0.982		1
1,2-Dibromoethane	ND	0.200	ND	1.54		1
1,2-Dichlorobenzene	ND	0.200	ND	1.20		1
1,2-Dichloroethane	ND	0.200	ND	0.809		1
1,2-Dichloropropane	ND	0.200	ND	0.924		1
1,3,5-Trimethybenzene	0.552	0.200	2.71	0.982		1
1,3-Butadiene	ND	0.200	ND	0.442		1
1,3-Dichlorobenzene	ND	0.200	ND	1.20		1
1,4-Dichlorobenzene	6.68	0.200	40.1	1.20		1
1,4-Dioxane	ND	0.200	ND	0.720		1
2,2,4-Trimethylpentane	ND	0.200	ND	0.934		1
2-Butanone	0.957	0.200	2.82	0.589		1
2-Hexanone	ND	0.200	ND	0.819		1
3-Chloropropene	ND	0.200	ND	0.626		1
4-Ethyltoluene	ND	0.200	ND	0.982		1
Acetone	6.82	0.500	16.2	1.19		1
Benzene	ND	0.200	ND	0.638		1
Benzyl chloride	ND	0.200	ND	1.03		1
Bromodichloromethane	ND	0.200	ND	1.34		1

Project Name: FORMER DARBY DRUG

Project Number: AVB0801

Lab Number:

L0813541

Report Date:

09/25/08

SAMPLE RESULTS

Lab ID: L0813541-12
Client ID: PWG-SG-2008-12
Sample Location: ROCKVILLE CENTRE

Date Collected:

09/10/08 13:02

Date Received: Field Prep:

09/11/08 Not Specified

	ppbV		ug/m3			Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Compo	ounds in Air					
Bromoform	ND	0.200	ND	2.06		1
Bromomethane	ND	0.200	ND	0.776		1
Carbon disulfide	ND	0.200	ND	0.622		1
Carbon tetrachloride	ND	0.200	ND	1.26		1
Chlorobenzene	ND	0.200	ND	0.920		1
Chloroethane	ND	0.200	ND	0.527		1
Chloroform	0.256	0.200	1.25	0.976		1
Chloromethane	ND	0.200	ND	0.413		1
cis-1,2-Dichloroethene	ND	0.200	ND	0.792		1
cis-1,3-Dichloropropene	ND	0.200	ND	0.907		1
Cyclohexane	0.310	0.200	1.07	0.688		1
Dibromochloromethane	ND	0.200	ND	1.70		1
Dichlorodifluoromethane	0.718	0.200	3.55	0.988		1
Ethanol	9.30	2.50	17.5	4.71		1
Ethyl Acetate	ND	0.500	ND	1.80		1
Ethylbenzene	0.676	0.200	2.93	0.868		1
Freon-113	ND	0.200	ND	1.53		1
Freon-114	ND	0.200	ND	1.40		1
Hexachlorobutadiene	ND	0.200	ND	2.13		1
Isopropanol	ND	0.500	ND	1.23		1
Methylene chloride	ND	0.500	ND	1.74		1
4-Methyl-2-pentanone	ND	0.200	ND	0.819		1
Methyl tert butyl ether	ND	0.200	ND	0.720		1
p/m-Xylene	2.14	0.400	9.30	1.74		1
o-Xylene	0.875	0.200	3.80	0.868		1
Heptane	ND	0.200	ND	0.819		1
n-Hexane	ND	0.200	ND	0.704		1
Propylene	ND	0.200	ND	0.344		1

Project Name: FORMER DARBY DRUG

Project Number: AVB0801

Lab Number:

L0813541

Report Date:

09/25/08

SAMPLE RESULTS

Lab ID: L0813541-12 Client ID: PWG-SG-2008-12 Sample Location: ROCKVILLE CENTRE Date Collected: Date Received: 09/10/08 13:02

Field Prep:

09/11/08 Not Specified

	ppbV	ppbV		ug/m3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Compou	nds in Air					
Styrene	1.02	0.200	4.36	0.851		1
Tetrachloroethene	23.0	0.200	156	1.36		1
Tetrahydrofuran	ND	0.200	ND	0.589		1
Toluene	2.06	0.200	7.76	0.753		1
trans-1,2-Dichloroethene	ND	0.200	ND	0.792		1
trans-1,3-Dichloropropene	ND	0.200	ND	0.907		1
Trichloroethene	0.629	0.200	3.38	1.07		1
Trichlorofluoromethane	0.484	0.200	2.72	1.12		1
Vinyl acetate	ND	0.200	ND	0.704		1
Vinyl bromide	ND	0.200	ND	0.874		1
Vinyl chloride	ND	0.200	ND	0.511		1

Project Name: FORMER DARBY DRUG Lab Number: L0813541

Project Number: AVB0801 Report Date: 09/25/08

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 09/17/08 10:06

	ppbV	<u>′ </u>		ug	/m3		Dilution
Parameter	Results	RDL		Results	RDL	Qualifier	Factor
Low Level Volatile Organic Compounds	in Air for s	ample(s):	01-12	Batch:	WG336905-3		
1,1,1-Trichloroethane	ND	0.200		ND	1.09		1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		1
1,1,2-Trichloroethane	ND	0.200		ND	1.09		1
1,1-Dichloroethane	ND	0.200		ND	0.809		1
1,1-Dichloroethene	ND	0.200		ND	0.792		1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48		1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.982		1
1,2-Dibromoethane	ND	0.200		ND	1.54		1
1,2-Dichlorobenzene	ND	0.200		ND	1.20		1
1,2-Dichloroethane	ND	0.200		ND	0.809		1
1,2-Dichloropropane	ND	0.200		ND	0.924		1
1,3,5-Trimethybenzene	ND	0.200		ND	0.982		1
1,3-Butadiene	ND	0.200		ND	0.442		1
1,3-Dichlorobenzene	ND	0.200		ND	1.20		1
1,4-Dichlorobenzene	ND	0.200		ND	1.20		1
1,4-Dioxane	ND	0.200		ND	0.720		1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934		1
2-Butanone	ND	0.200		ND	0.589		1
2-Hexanone	ND	0.200		ND	0.819		1
3-Chloropropene	ND	0.200		ND	0.626		1
4-Ethyltoluene	ND	0.200		ND	0.982		1
Acetone	ND	0.500		ND	1.19		1
Benzene	ND	0.200		ND	0.638		1
Benzyl chloride	ND	0.200		ND	1.03		1
Bromodichloromethane	ND	0.200		ND	1.34		1

Project Name: FORMER DARBY DRUG Lab Number: L0813541

Project Number: AVB0801 Report Date: 09/25/08

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 09/17/08 10:06

	ppbV			ug/m3			Dilution
Parameter	Results	RDL		Results	RDL	Qualifier	Factor
Low Level Volatile Organic Compounds	s in Air for sa	imple(s):	01-12	Batch:	WG336905-3		
Bromoform	ND	0.200		ND	2.06		1
Bromomethane	ND	0.200		ND	0.776		1
Carbon disulfide	ND	0.200		ND	0.622		1
Carbon tetrachloride	ND	0.200		ND	1.26		1
Chlorobenzene	ND	0.200		ND	0.920		1
Chloroethane	ND	0.200		ND	0.527		1
Chloroform	ND	0.200		ND	0.976		1
Chloromethane	ND	0.200		ND	0.413		1
cis-1,2-Dichloroethene	ND	0.200		ND	0.792		1
cis-1,3-Dichloropropene	ND	0.200		ND	0.907		1
Cyclohexane	ND	0.200		ND	0.688		1
Dibromochloromethane	ND	0.200		ND	1.70		1
Dichlorodifluoromethane	ND	0.200		ND	0.988		1
Ethanol	ND	2.50		ND	4.71		1
Ethyl Acetate	ND	0.500		ND	1.80		1
Ethylbenzene	ND	0.200		ND	0.868		1
Freon-113	ND	0.200		ND	1.53		1
Freon-114	ND	0.200		ND	1.40		1
Hexachlorobutadiene	ND	0.200		ND	2.13		1
Isopropanol	ND	0.500		ND	1.23		1
Methylene chloride	ND	0.500		ND	1.74		1
4-Methyl-2-pentanone	ND	0.200		ND	0.819		1
Methyl tert butyl ether	ND	0.200		ND	0.720		1
p/m-Xylene	ND	0.400		ND	1.74		1
o-Xylene	ND	0.200		ND	0.868		1

Project Name: FORMER DARBY DRUG Lab Number: L0813541

Project Number: AVB0801 Report Date: 09/25/08

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 09/17/08 10:06

	ppbV		ug	/m3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Compounds	in Air for	sample(s):	01-12 Batch:	WG336905-3		
Heptane	ND	0.200	ND	0.819		1
n-Hexane	ND	0.200	ND	0.704		1
Propylene	ND	0.200	ND	0.344		1
Styrene	ND	0.200	ND	0.851		1
Tetrachloroethene	ND	0.200	ND	1.36		1
Tetrahydrofuran	ND	0.200	ND	0.589		1
Toluene	ND	0.200	ND	0.753		1
trans-1,2-Dichloroethene	ND	0.200	ND	0.792		1
trans-1,3-Dichloropropene	ND	0.200	ND	0.907		1
Trichloroethene	ND	0.200	ND	1.07		1
Trichlorofluoromethane	ND	0.200	ND	1.12		1
Vinyl acetate	ND	0.200	ND	0.704		1
Vinyl bromide	ND	0.200	ND	0.874		1
Vinyl chloride	ND	0.200	ND	0.511		1

Project Name: FORMER DARBY DRUG Lab Number: L0813541

Project Number: AVB0801 Report Date: 09/25/08

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 09/18/08 12:51

	ppbV			ug	/m3		Dilution
Parameter	Results	RDL		Results	RDL	Qualifier	Factor
Low Level Volatile Organic Compounds	s in Air for sa	mple(s):	07,11	Batch:	WG336905-7		
1,1,1-Trichloroethane	ND	0.200		ND	1.09		1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		1
1,1,2-Trichloroethane	ND	0.200		ND	1.09		1
1,1-Dichloroethane	ND	0.200		ND	0.809		1
1,1-Dichloroethene	ND	0.200		ND	0.792		1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48		1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.982		1
1,2-Dibromoethane	ND	0.200		ND	1.54		1
1,2-Dichlorobenzene	ND	0.200		ND	1.20		1
1,2-Dichloroethane	ND	0.200		ND	0.809		1
1,2-Dichloropropane	ND	0.200		ND	0.924		1
1,3,5-Trimethybenzene	ND	0.200		ND	0.982		1
1,3-Butadiene	ND	0.200		ND	0.442		1
1,3-Dichlorobenzene	ND	0.200		ND	1.20		1
1,4-Dichlorobenzene	ND	0.200		ND	1.20		1
1,4-Dioxane	ND	0.200		ND	0.720		1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934		1
2-Butanone	ND	0.200		ND	0.589		1
2-Hexanone	ND	0.200		ND	0.819		1
3-Chloropropene	ND	0.200		ND	0.626		1
4-Ethyltoluene	ND	0.200		ND	0.982		1
Acetone	ND	0.500		ND	1.19		1
Benzene	ND	0.200		ND	0.638		1
Benzyl chloride	ND	0.200		ND	1.03		1
Bromodichloromethane	ND	0.200		ND	1.34		1

Project Name: FORMER DARBY DRUG Lab Number: L0813541

Project Number: AVB0801 Report Date: 09/25/08

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 09/18/08 12:51

	ppbV		ug/m3			Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Compounds	s in Air for sa	ımple(s): 0	7,11 Batch: WG	336905-7		
Bromoform	ND	0.200	ND	2.06		1
Bromomethane	ND	0.200	ND	0.776		1
Carbon disulfide	ND	0.200	ND	0.622		1
Carbon tetrachloride	ND	0.200	ND	1.26		1
Chlorobenzene	ND	0.200	ND	0.920		1
Chloroethane	ND	0.200	ND	0.527		1
Chloroform	ND	0.200	ND	0.976		1
Chloromethane	ND	0.200	ND	0.413		1
cis-1,2-Dichloroethene	ND	0.200	ND	0.792		1
cis-1,3-Dichloropropene	ND	0.200	ND	0.907		1
Cyclohexane	ND	0.200	ND	0.688		1
Dibromochloromethane	ND	0.200	ND	1.70		1
Dichlorodifluoromethane	ND	0.200	ND	0.988		1
Ethanol	ND	2.50	ND	4.71		1
Ethyl Acetate	ND	0.500	ND	1.80		1
Ethylbenzene	ND	0.200	ND	0.868		1
Freon-113	ND	0.200	ND	1.53		1
Freon-114	ND	0.200	ND	1.40		1
Hexachlorobutadiene	ND	0.200	ND	2.13		1
Isopropanol	ND	0.500	ND	1.23		1
Methylene chloride	ND	0.500	ND	1.74		1
4-Methyl-2-pentanone	ND	0.200	ND	0.819		1
Methyl tert butyl ether	ND	0.200	ND	0.720		1
p/m-Xylene	ND	0.400	ND	1.74		1
o-Xylene	ND	0.200	ND	0.868		1

Project Name: FORMER DARBY DRUG Lab Number: L0813541

Project Number: AVB0801 Report Date: 09/25/08

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 09/18/08 12:51

	ppbV		ug/m3			Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Compounds	in Air for sa	mple(s): 07,11	Batch: Wo	G336905-7		
Heptane	ND	0.200	ND	0.819		1
n-Hexane	ND	0.200	ND	0.704		1
Propylene	ND	0.200	ND	0.344		1
Styrene	ND	0.200	ND	0.851		1
Tetrachloroethene	ND	0.200	ND	1.36		1
Tetrahydrofuran	ND	0.200	ND	0.589		1
Toluene	ND	0.200	ND	0.753		1
trans-1,2-Dichloroethene	ND	0.200	ND	0.792		1
trans-1,3-Dichloropropene	ND	0.200	ND	0.907		1
Trichloroethene	ND	0.200	ND	1.07		1
Trichlorofluoromethane	ND	0.200	ND	1.12		1
Vinyl acetate	ND	0.200	ND	0.704		1
Vinyl bromide	ND	0.200	ND	0.874		1
Vinyl chloride	ND	0.200	ND	0.511		1

Project Name: FORMER DARBY DRUG

Project Number: AVB0801

Lab Number: L0813541

Report Date: 09/25/08

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
ow Level Volatile Organic Compounds in Air	Associated sample(s):	01-12 Batch:	WG336905-2		
1,1,1-Trichloroethane	109	-	70-130	-	
1,1,2,2-Tetrachloroethane	106	-	70-130	-	
1,1,2-Trichloroethane	95	-	70-130	-	
1,1-Dichloroethane	107	-	70-130	-	
1,1-Dichloroethene	101	-	70-130	-	
1,2,4-Trichlorobenzene	123	-	70-130	-	
1,2,4-Trimethylbenzene	118	-	70-130	-	
1,2-Dibromoethane	98	-	70-130	-	
1,2-Dichlorobenzene	113	-	70-130	-	
1,2-Dichloroethane	119	-	70-130	-	
1,2-Dichloropropane	86	-	70-130	-	
1,3,5-Trimethylbenzene	112	-	70-130	-	
1,3-Butadiene	93	-	70-130	-	
1,3-Dichlorobenzene	113	-	70-130	-	
1,4-Dichlorobenzene	111	-	70-130	-	
1,4-Dioxane	106	-	70-130	-	
2,2,4-Trimethylpentane	91	-	70-130	-	
2-Butanone	107	-	70-130	-	
2-Hexanone	104	-	70-130	-	
3-Chloropropene	104	-	70-130	-	
4-Ethyltoluene	114	-	70-130	-	

Project Name: FORMER DARBY DRUG

Project Number: AVB0801

Lab Number:

L0813541

Report Date:

arameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
ow Level Volatile Organic Compounds in Air	Associated sample(s)	: 01-12 Batch:	WG336905-2		
Acetone	104	-	70-130	-	
Benzene	90	-	70-130	-	
Benzyl chloride	112	-	70-130	-	
Bromodichloromethane	100	-	70-130	-	
Bromoform	118	-	70-130	-	
Bromomethane	94	-	70-130	-	
Carbon disulfide	102	-	70-130	-	
Carbon tetrachloride	107	-	70-130	-	
Chlorobenzene	104	-	70-130	-	
Chloroethane	97	-	70-130	-	
Chloroform	115	-	70-130	-	
Chloromethane	94	-	70-130	-	
cis-1,2-Dichloroethene	107	-	70-130	-	
cis-1,3-Dichloropropene	86	-	70-130	-	
Cyclohexane	84	-	70-130	-	
Dibromochloromethane	110	-	70-130	-	
Dichlorodifluoromethane	105	-	70-130	-	
Ethyl Alcohol	105	-	70-130	-	
Ethyl Acetate	100	-	70-130	-	
Ethylbenzene	110	-	70-130	-	
1,1,2-Trichloro-1,2,2-Trifluoroethane	106	-	70-130	-	

FORMER DARBY DRUG

Lab Number: L0813541

5/08

Project Name:	FORMER DARBY DRUG	Batch Quality Control	Lab Number:	L08135
Project Number:	AVB0801		Report Date:	09/25/0

arameter	LCS %Recovery	LCSI %Recov		RPD	RPD Limits
ow Level Volatile Organic Compounds in Air	Associated sample(s):	01-12 Ba	atch: WG336905-2		
1,2-Dichloro-1,1,2,2-tetrafluoroethane	102	-	70-130	-	
Hexachlorobutadiene	124	-	70-130	-	
iso-Propyl Alcohol	96	-	70-130	-	
Methylene chloride	91	-	70-130	-	
4-Methyl-2-pentanone	97	-	70-130	-	
Methyl tert butyl ether	113	-	70-130	-	
p/m-Xylene	106	-	70-130	-	
o-Xylene	115	-	70-130	-	
Heptane	90	-	70-130	-	
n-Hexane	87	-	70-130	-	
Propylene	89	-	70-130	-	
Styrene	106	-	70-130	-	
Tetrachloroethene	115	-	70-130	-	
Tetrahydrofuran	92	-	70-130	-	
Toluene	98	-	70-130	-	
trans-1,2-Dichloroethene	102	-	70-130	-	
trans-1,3-Dichloropropene	80	-	70-130	-	
Trichloroethene	103	-	70-130	-	
Trichlorofluoromethane	118	-	70-130	-	
Vinyl acetate	105	-	70-130	-	
Vinyl bromide	102	-	70-130	-	

Lab Number:

L0813541

Project Number: AVB0801

FORMER DARBY DRUG

Project Name:

Report Date:

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Low Level Volatile Organic Compounds in Air	Associated sample(s):	01-12 Batch:	WG336905-2		
Vinyl chloride	98	-	70-130	-	

Low Level Volatile Organic Compounds in Air	Associated sar	mple(s): 07,11	Batch:	WG336905-6		
1,1,1-Trichloroethane	103		-	70-130	-	
1,1,2,2-Tetrachloroethane	105		-	70-130	-	
1,1,2-Trichloroethane	92		-	70-130	-	
1,1-Dichloroethane	99		-	70-130	-	
1,1-Dichloroethene	94		-	70-130	-	
1,2,4-Trichlorobenzene	116		-	70-130	-	
1,2,4-Trimethylbenzene	112		-	70-130	-	
1,2-Dibromoethane	94		-	70-130	-	
1,2-Dichlorobenzene	104		-	70-130	-	

L0813541

Lab Number:

Lab Control Sample Analysis Batch Quality Control

FORMER DARBY DRUG

Project Number: AVB0801 Report Date: 09/25/08

1,2-Dichloroethane	Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
1,2-Dichloropropane 85 - 70-130 - 1,3,5-Trimethylbenzene 109 - 70-130 - 1,3-Butadiene 88 - 70-130 - 1,3-Dichlorobenzene 108 - 70-130 - 1,4-Dichlorobenzene 105 - 70-130 - 1,4-Dioxane 104 - 70-130 - 2,2,4-Trimethylpentane 88 - 70-130 - 2-Butanone 105 - 70-130 - 2-Hexanone 102 - 70-130 - 3-Chitoropropene 97 - 70-130 - 4-Ethyltoluene 107 - 70-130 - Acetone 104 - 70-130 - Benzene 87 70-130 - Benzene 87 70-130 - Bromodichloromethane 95 - 70-130 - Bromomethane 85 - 70-130 - Carbon disulfide 94 - 70	Low Level Volatile Organic Compounds in Air	Associated sample(s):	07,11 Batch	WG336905-6		
1,3,5-Trimethylbenzene 109 - 70-130 - 1,3-Butadiene 88 - 70-130 - 1,3-Dichlorobenzene 108 - 70-130 - 1,4-Dichlorobenzene 105 - 70-130 - 1,4-Dioxane 104 - 70-130 - 2,2,4-Trimethylpentane 88 - 70-130 - 2-Butanone 105 - 70-130 - 2-Hexanone 102 - 70-130 - 3-Chloropropene 97 - 70-130 - 4-Ethyltoluene 107 - 70-130 - Acetone 104 - 70-130 - Benzene 87 - 70-130 - Benzyl chloride 103 - 70-130 - Bromodichloromethane 95 - 70-130 - Bromoform 111 - 70-130 - Bromomethane 85 - 70-130 - Carbon disulfide 94 </td <td>1,2-Dichloroethane</td> <td>110</td> <td>-</td> <td>70-130</td> <td>-</td> <td></td>	1,2-Dichloroethane	110	-	70-130	-	
1,3-Butadiene 88 - 70-130 - 1,3-Dichlorobenzene 108 - 70-130 - 1,4-Dichlorobenzene 105 - 70-130 - 1,4-Dioxane 104 - 70-130 - 2,2,4-Trimethylpentane 88 - 70-130 - 2-Butanone 105 - 70-130 - 2-Hexanone 102 - 70-130 - 3-Chloropropene 97 - 70-130 - 4-Ethyltoluene 107 - 70-130 - Acetone 104 - 70-130 - Benzene 87 - 70-130 - Benzyl chloride 103 - 70-130 - Bromodichloromethane 95 - 70-130 - Bromoform 111 - 70-130 - Bromomethane 85 - 70-130 - Carbon disulfide 94 - 70-130 - Carbon tetrachloride 101 <td>1,2-Dichloropropane</td> <td>85</td> <td>-</td> <td>70-130</td> <td>-</td> <td></td>	1,2-Dichloropropane	85	-	70-130	-	
1,3-Dichlorobenzene 108 - 70-130 - 1,4-Dichlorobenzene 105 - 70-130 - 1,4-Dioxane 104 - 70-130 - 2,2,4-Trimethylpentane 88 - 70-130 - 2-Butanone 105 - 70-130 - 2-Hexanone 102 - 70-130 - 3-Chloropropene 97 - 70-130 - 4-Ethyltoluene 107 - 70-130 - Acetone 104 - 70-130 - Benzene 87 - 70-130 - Benzyl chloride 103 - 70-130 - Bromodichloromethane 95 - 70-130 - Bromoform 111 - 70-130 - Bromomethane 85 - 70-130 - Carbon disulfide 94 - 70-130 - Carbon tetrachloride 101 - 70-130 -	1,3,5-Trimethylbenzene	109	-	70-130	-	
1,4-Dicklorobenzene 105 - 70-130 - 1,4-Dioxane 104 - 70-130 - 2,2,4-Trimethylpentane 88 - 70-130 - 2-Butanone 105 - 70-130 - 2-Hexanone 102 - 70-130 - 3-Chloropropene 97 - 70-130 - 4-Ethyltoluene 107 - 70-130 - Acetone 104 - 70-130 - Benzene 87 - 70-130 - Benzyl chloride 103 - 70-130 - Bromodichloromethane 95 - 70-130 - Bromoform 111 - 70-130 - Bromomethane 85 - 70-130 - Carbon disulfide 94 - 70-130 - Carbon tetrachloride 101 - 70-130 -	1,3-Butadiene	88	-	70-130	-	
1,4-Dioxane 104 - 70-130 - 2,2,4-Trimethylpentane 88 - 70-130 - 2-Butanone 105 - 70-130 - 2-Hexanone 102 - 70-130 - 3-Chloropropene 97 - 70-130 - 4-Ethyltoluene 107 - 70-130 - Acetone 104 - 70-130 - Benzene 87 - 70-130 - Benzyl chloride 103 - 70-130 - Bromodichloromethane 95 - 70-130 - Bromomethane 85 - 70-130 - Carbon disulfide 94 - 70-130 - Carbon tetrachloride 101 - 70-130 -	1,3-Dichlorobenzene	108	-	70-130	-	
2,2,4-Trimethylpentane 88 - 70-130 - 2-Butanone 105 - 70-130 - 2-Hexanone 102 - 70-130 - 3-Chloropropene 97 - 70-130 - 4-Ethyltoluene 107 - 70-130 - Acetone 104 - 70-130 - Benzene 87 - 70-130 - Benzyl chloride 103 - 70-130 - Bromodichloromethane 95 - 70-130 - Bromoform 111 - 70-130 - Bromomethane 85 - 70-130 - Carbon disulfide 94 - 70-130 - Carbon tetrachloride 101 - 70-130 -	1,4-Dichlorobenzene	105	-	70-130	-	
2-Butanone 105 - 70-130 - 2-Hexanone 102 - 70-130 - 3-Chloropropene 97 - 70-130 - 4-Ethyltoluene 107 - 70-130 - Acetone 104 - 70-130 - Benzene 87 - 70-130 - Benzyl chloride 103 - 70-130 - Bromodichloromethane 95 - 70-130 - Bromoform 111 - 70-130 - Bromomethane 85 - 70-130 - Carbon disulfide 94 - 70-130 - Carbon tetrachloride 101 - 70-130 -	1,4-Dioxane	104	-	70-130	-	
2-Hexanone 102 - 70-130 - 3-Chloropropene 97 - 70-130 - 4-Ethyltoluene 107 - 70-130 - Acetone 104 - 70-130 - Benzene 87 - 70-130 - Benzyl chloride 103 - 70-130 - Bromodichloromethane 95 - 70-130 - Bromoform 111 - 70-130 - Bromomethane 85 - 70-130 - Carbon disulfide 94 - 70-130 - Carbon tetrachloride 101 - 70-130 -	2,2,4-Trimethylpentane	88	-	70-130	-	
3-Chloropropene 97 - 70-130 - 4-Ethyltoluene 107 - 70-130 - Acetone 104 - 70-130 - Benzene 87 - 70-130 - Benzyl chloride 103 - 70-130 - Bromodichloromethane 95 - 70-130 - Bromoform 111 - 70-130 - Bromomethane 85 - 70-130 - Carbon disulfide 94 - 70-130 - Carbon tetrachloride 101 - 70-130 -	2-Butanone	105	-	70-130	-	
4-Ethyltoluene 107 - 70-130 - Acetone 104 - 70-130 - Benzene 87 - 70-130 - Benzyl chloride 103 - 70-130 - Bromodichloromethane 95 - 70-130 - Bromoform 111 - 70-130 - Bromomethane 85 - 70-130 - Carbon disulfide 94 - 70-130 - Carbon tetrachloride 101 - 70-130 -	2-Hexanone	102	-	70-130	-	
Acetone 104 - 70-130 - Benzene 87 - 70-130 - Benzyl chloride 103 - 70-130 - Bromodichloromethane 95 - 70-130 - Bromoform 111 - 70-130 - Bromomethane 85 - 70-130 - Carbon disulfide 94 - 70-130 - Carbon tetrachloride 101 - 70-130 -	3-Chloropropene	97	-	70-130	-	
Benzene 87 - 70-130 - Benzyl chloride 103 - 70-130 - Bromodichloromethane 95 - 70-130 - Bromoform 111 - 70-130 - Bromomethane 85 - 70-130 - Carbon disulfide 94 - 70-130 - Carbon tetrachloride 101 - 70-130 -	4-Ethyltoluene	107	-	70-130	-	
Benzyl chloride 103 - 70-130 - Bromodichloromethane 95 - 70-130 - Bromoform 111 - 70-130 - Bromomethane 85 - 70-130 - Carbon disulfide 94 - 70-130 - Carbon tetrachloride 101 - 70-130 -	Acetone	104	-	70-130	-	
Bromodichloromethane 95 - 70-130 - Bromoform 111 - 70-130 - Bromomethane 85 - 70-130 - Carbon disulfide 94 - 70-130 - Carbon tetrachloride 101 - 70-130 -	Benzene	87	-	70-130	-	
Bromoform 111 - 70-130 - Bromomethane 85 - 70-130 - Carbon disulfide 94 - 70-130 - Carbon tetrachloride 101 - 70-130 -	Benzyl chloride	103	-	70-130	-	
Bromomethane 85 - 70-130 - Carbon disulfide 94 - 70-130 - Carbon tetrachloride 101 - 70-130 -	Bromodichloromethane	95	-	70-130	-	
Carbon disulfide 94 - 70-130 - Carbon tetrachloride 101 - 70-130 -	Bromoform	111	-	70-130	-	
Carbon tetrachloride 101 - 70-130 -	Bromomethane	85	-	70-130	-	
	Carbon disulfide	94	-	70-130	-	
Chlorobenzene 100 - 70-130 -	Carbon tetrachloride	101	-	70-130	-	
	Chlorobenzene	100	-	70-130	-	

Project Name:

Lab Control Sample Analysis

Batch Quality Control

Lab Number: L0813541

Report Date: 09/25/08

Project Name: FORMER DARBY DRUG

Project Number: AVB0801

LCS **LCSD** %Recovery %Recovery %Recovery Limits **RPD RPD Limits** Parameter Low Level Volatile Organic Compounds in Air Associated sample(s): 07,11 Batch: WG336905-6 Chloroethane 93 70-130 Chloroform 111 70-130 Chloromethane 89 70-130 70-130 cis-1.2-Dichloroethene 100 cis-1,3-Dichloropropene 70-130 82 70-130 Cyclohexane 83 Dibromochloromethane 105 70-130 Dichlorodifluoromethane 102 70-130 Ethyl Alcohol 70-130 105 70-130 Ethyl Acetate 114 Ethylbenzene 70-130 100 1,1,2-Trichloro-1,2,2-Trifluoroethane 99 70-130 1,2-Dichloro-1,1,2,2-tetrafluoroethane 70-130 94 Hexachlorobutadiene 70-130 117 iso-Propyl Alcohol 70-130 96 Methylene chloride 87 70-130 4-Methyl-2-pentanone 97 70-130 Methyl tert butyl ether 110 70-130 70-130 p/m-Xylene 104 o-Xylene 70-130 104 87 70-130 Heptane

FORMER DARBY DRUG

Project Number: AVB0801

Project Name:

Lab Number:

L0813541

Report Date:

nrameter	LCS %Recovery		CSD ecovery	%Recovery Limits	RPD	RPD Limits
ow Level Volatile Organic Compounds in Air	Associated sample(s):	07,11	Batch:	WG336905-6		
n-Hexane	96		-	70-130	-	
Propylene	88		-	70-130	-	
Styrene	103		-	70-130	-	
Tetrachloroethene	108		-	70-130	-	
Tetrahydrofuran	110		-	70-130	-	
Toluene	96		-	70-130	-	
trans-1,2-Dichloroethene	96		-	70-130	-	
trans-1,3-Dichloropropene	76		-	70-130	-	
Trichloroethene	97		-	70-130	-	
Trichlorofluoromethane	105		-	70-130	-	
Vinyl acetate	103		-	70-130	-	
Vinyl bromide	97		-	70-130	-	
Vinyl chloride	90		-	70-130	-	

Project Name: FORMER DARBY DRUG

Lab Number:

L0813541

Project Number:	AVB0801	Report Date:	09/25/08
-----------------	---------	--------------	----------

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
ow Level Volatile Organic Compounds in Air 008-05	Associated sample(s): 01-12	QC Batch ID: WG336905-4	QC Sample:	L0813541-05	Client ID: PWG-SG-
1,1,1-Trichloroethane	ND	ND	ppbV	NC	25
1,1,2,2-Tetrachloroethane	ND	ND	ppbV	NC	25
1,1,2-Trichloroethane	ND	ND	ppbV	NC	25
1,1-Dichloroethane	ND	ND	ppbV	NC	25
1,1-Dichloroethene	ND	ND	ppbV	NC	25
1,2,4-Trichlorobenzene	ND	ND	ppbV	NC	25
1,2,4-Trimethylbenzene	ND	ND	ppbV	NC	25
1,2-Dibromoethane	ND	ND	ppbV	NC	25
1,2-Dichlorobenzene	ND	ND	ppbV	NC	25
1,2-Dichloroethane	ND	ND	ppbV	NC	25
1,2-Dichloropropane	ND	ND	ppbV	NC	25
1,3,5-Trimethybenzene	ND	ND	ppbV	NC	25
1,3-Butadiene	ND	ND	ppbV	NC	25
1,3-Dichlorobenzene	ND	ND	ppbV	NC	25
1,4-Dichlorobenzene	2.88	3.03	ppbV	5	25
1,4-Dioxane	ND	ND	ppbV	NC	25
2,2,4-Trimethylpentane	ND	ND	ppbV	NC	25
2-Butanone	143	134	ppbV	6	25
2-Hexanone	2.31	2.37	ppbV	3	25

Project Name: FORMER DARBY DRUG

Project Number: AVB0801

Lab Number:

L0813541

Report Date:

ameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
v Level Volatile Organic Compounds in Ai 08-05	r Associated sample(s): 01-12	QC Batch ID: WG336905-4	QC Sample:	L0813541-05	Client ID: PWG-SG-
3-Chloropropene	ND	ND	ppbV	NC	25
4-Ethyltoluene	ND	ND	ppbV	NC	25
Acetone	>1000	>1000	ppbV	NC	25
Benzene	ND	ND	ppbV	NC	25
Benzyl chloride	ND	ND	ppbV	NC	25
Bromodichloromethane	ND	ND	ppbV	NC	25
Bromoform	ND	ND	ppbV	NC	25
Bromomethane	ND	ND	ppbV	NC	25
Carbon disulfide	ND	ND	ppbV	NC	25
Carbon tetrachloride	ND	ND	ppbV	NC	25
Chlorobenzene	ND	ND	ppbV	NC	25
Chloroethane	ND	ND	ppbV	NC	25
Chloroform	ND	ND	ppbV	NC	25
Chloromethane	ND	ND	ppbV	NC	25
cis-1,2-Dichloroethene	ND	ND	ppbV	NC	25
cis-1,3-Dichloropropene	ND	ND	ppbV	NC	25
Cyclohexane	ND	ND	ppbV	NC	25
Dibromochloromethane	ND	ND	ppbV	NC	25
Dichlorodifluoromethane	ND	ND	ppbV	NC	25

Project Name: FORMER DARBY DRUG

Project Number: AVB0801

Lab Number:

L0813541

Report Date:

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
ow Level Volatile Organic Compounds in Air 008-05	Associated sample(s): 01-12	QC Batch ID: WG336905-4	QC Sample:	L0813541-05	Client ID: PWG-SG-
Ethanol	110	102	ppbV	8	25
Ethyl Acetate	ND	ND	ppbV	NC	25
Ethylbenzene	ND	ND	ppbV	NC	25
Freon-113	ND	ND	ppbV	NC	25
Freon-114	ND	ND	ppbV	NC	25
Hexachlorobutadiene	ND	ND	ppbV	NC	25
Isopropanol	53.0	50.4	ppbV	5	25
Methylene chloride	ND	ND	ppbV	NC	25
4-Methyl-2-pentanone	ND	ND	ppbV	NC	25
Methyl tert butyl ether	ND	ND	ppbV	NC	25
p/m-Xylene	ND	ND	ppbV	NC	25
o-Xylene	ND	ND	ppbV	NC	25
Heptane	ND	ND	ppbV	NC	25
n-Hexane	ND	ND	ppbV	NC	25
Propylene	157	149	ppbV	5	25
Styrene	ND	ND	ppbV	NC	25
Tetrachloroethene	2.95	2.71	ppbV	8	25
Tetrahydrofuran	ND	ND	ppbV	NC	25
Toluene	3.75	3.41	ppbV	9	25

Project Name: FORMER DARBY DRUG

Project Number: AVB0801

Lab Number:

L0813541

Report Date:

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
ow Level Volatile Organic Compounds in Air . 008-05	Associated sample(s): 01-12	QC Batch ID: WG336905-4	QC Sample:	L0813541-05	Client ID: PWG-SG-
trans-1,2-Dichloroethene	ND	ND	ppbV	NC	25
trans-1,3-Dichloropropene	ND	ND	ppbV	NC	25
Trichloroethene	ND	ND	ppbV	NC	25
Trichlorofluoromethane	ND	ND	ppbV	NC	25
Vinyl acetate	ND	ND	ppbV	NC	25
Vinyl bromide	ND	ND	ppbV	NC	25
Vinyl chloride	ND	ND	ppbV	NC	25
ow Level Volatile Organic Compounds in Air .	Associated sample(s): 01-12	QC Batch ID: WG336905-4	QC Sample:	L0813541-05	Client ID: PWG-SG-
Acetone	800	925	ppbV	14	25

Project Name: FORMER DARBY DRUG

Project Number: AVB0801

Lab Number: L0813541

Report Date: 09/25/08

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Cleaning Batch ID	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Out mL/min	Flow In mL/min	% RSD
L0813541-01	PWG-SG-2008-01	0021	#30 SV		-	-	19.6	20.0	2
L0813541-01	PWG-SG-2008-01	452	2.7L Can	10812952	-29.7	-3.7	-	-	-
L0813541-02	PWG-SG-2008-02	0100	#30 AMB		-	-	19.5	20.0	3
L0813541-02	PWG-SG-2008-02	490	2.7L Can	10812952	-29.7	-2.8	-	-	-
L0813541-03	PWG-SG-2008-03	0406	#30 SV		-	-	19.7	21.4	8
L0813541-03	PWG-SG-2008-03	484	2.7L Can	10812952	-29.6	-4.2	-	-	-
L0813541-04	PWG-SG-2008-04	0322	#30 SV		-	-	19.3	19.3	0
L0813541-04	PWG-SG-2008-04	401	2.7L Can	10812952	-29.7	-5.0	-	-	-
L0813541-05	PWG-SG-2008-05	0324	#30 SV		-	-	19.6	19.9	2
L0813541-05	PWG-SG-2008-05	554	2.7L Can	10812952	-29.1	-3.8	-	-	-
L0813541-06	PWG-SG-2008-06	0414	#30 SV		-	-	19.5	20.0	3
L0813541-06	PWG-SG-2008-06	497	2.7L Can	10812952	-29.7	-3.8	-	-	-
L0813541-07	PWG-SG-2008-07	0299	#30 SV		-	-	19.7	20.0	2
L0813541-07	PWG-SG-2008-07	324	2.7L Can	10812952	-29.7	-3.3	-	-	-
L0813541-08	PWG-SG-2008-08	0094	#30 SV		-	-	19.6	20.0	2
L0813541-08	PWG-SG-2008-08	409	2.7L Can	10812952	-29.7	-3.3	-	-	-
L0813541-09	PWG-SG-2008-09	0333	#30 SV		-	-	19.6	20.0	2

Project Name: FORMER DARBY DRUG Lab Number: L0813541

Project Number: AVB0801 Report Date: 09/25/08

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Cleaning Batch ID	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Out mL/min	Flow In mL/min	% RSD
L0813541-09	PWG-SG-2008-09	475	2.7L Can	10812952	-29.7	-3.7	-	-	-
L0813541-10	PWG-SG-2008-10	0347	#30 SV		-	-	19.8	21.1	6
L0813541-10	PWG-SG-2008-10	376	2.7L Can	10812952	-29.7	-4.3	-	-	-
L0813541-11	PWG-SG-2008-11	0098	#16 SV		-	-	19.5	20.0	3
L0813541-11	PWG-SG-2008-11	526	2.7L Can	10812952	-29.7	-3.2	-	-	-
L0813541-12	PWG-SG-2008-12	0337	#30 SV		-	-	19.7	20.0	2
L0813541-12	PWG-SG-2008-12	384	2.7L Can	10812952	-29.7	-3.7	-	-	-

Project Name: FORMER DARBY DRUG Lab Number: L0813541

Project Number: AVB0801 Report Date: 09/25/08

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal N/A Absent

Container Information

Container ID	Container Type	Cooler	рН	Temp	Pres	Seal	Analysis
L0813541-01A	Canister - 2.7 Liter	N/A	NA		NA	Absent	TO15-LL(30)
L0813541-02A	Canister - 2.7 Liter	N/A	NA		NA	Absent	TO15-LL(30)
L0813541-03A	Canister - 2.7 Liter	N/A	NA		NA	Absent	TO15-LL(30)
L0813541-04A	Canister - 2.7 Liter	N/A	NA		NA	Absent	TO15-LL(30)
L0813541-05A	Canister - 2.7 Liter	N/A	NA		NA	Absent	TO15-LL(30)
L0813541-06A	Canister - 2.7 Liter	N/A	NA		NA	Absent	TO15-LL(30)
L0813541-07A	Canister - 2.7 Liter	N/A	NA		NA	Absent	TO15-LL(30)
L0813541-08A	Canister - 2.7 Liter	N/A	NA		NA	Absent	TO15-LL(30)
L0813541-09A	Canister - 2.7 Liter	N/A	NA		NA	Absent	TO15-LL(30)
L0813541-10A	Canister - 2.7 Liter	N/A	NA		NA	Absent	TO15-LL(30)
L0813541-11A	Canister - 2.7 Liter	N/A	NA		NA	Absent	TO15-LL(30)
L0813541-12A	Canister - 2.7 Liter	N/A	NA		NA	Absent	TO15-LL(30)

Project Name:FORMER DARBY DRUGLab Number:L0813541Project Number:AVB0801Report Date:09/25/08

GLOSSARY

Acronyms

- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD- Laboratory Control Sample Duplicate: Refer to LCS.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NI Not Ignitable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- ND Not detected at the reported detection limit for the sample.
- RDL Reported Detection Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

The following data qualifiers have been identified for use under the CT DEP Reasonable Confidence Protocols.

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- J Estimated value. The analyte was tentatively identified; the quantitation is an estimation. (Tentatively identified compounds only.)

Standard Qualifiers

H - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.

Report Format: Not Specified

Project Name:FORMER DARBY DRUGLab Number:L0813541Project Number:AVB0801Report Date:09/25/08

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Woods Hole Labs shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Woods Hole Labs.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

	50,001	9/11/00				\$ \f	108 1845				Pain		Form No: 101-02 (rev.1-Feb-08)	Form No:
See levelse side.	¢		10/1			X								
Terms and Conditions.				4	X	Ž I	A CA			0/1/2				
guities are resolved. All samples submitted are subject to Alpha's	2/ 2/			Section of the sectio		1	3			iled by.) Tollinguis	2		
clock will not start until any ambi-	Date/Time:			Densived By	b		Date/Time			had By:	Dolinguished By:			
Please print clearly, legibly and completely. Samples can not be looged in and turnaround time		· · ·	ır Type	Container Type	-				Outdoor) as/SVE	Ambient Air (Indoor/Outdoo Soil Vapor/Landfill Gas/SVE = Please Specify	AA = Ambient Air (Indoor/Outdoor) SV = Soil Vapor/Landfill Gas/SVE Other = Please Specify	*SAMPLE MATRIX CODES S	*SAMPLE MA	
			3760347	1.7	3	15	-6	33	17:44	10:55	9-10-08-10:55	Pux 56.2008-10	/o Pux	ч.
		٠, د.	475 0333	2.1	∀	SV	7	-30	17:53		9-10-811.00	PW.56.708.09	9 Push	
			404 0094	2.7	M	51	10	-30	12:42	-	4-10-08-10:47	Publ. SG 2008 08	8 Pinh	
		5°	324 0299	ربر	1 %	δV	\$	-30	12:40	PH:01	90-00	Puls - S4-2088 · 07	7 Puk	:
		\propto	hho Lyh	2:7	2	SU	-	-30	12:34	0). (0)	9-10-08 10:40	PWh-50-2008-06	6 Puns	
		×	554 0324	2,7	Į.į	20	\$	-76	15:20	16:34	5-10-08 (0:34	PWG 56, 2008-05	5 Pw6	
		2	401 0322	2.7	7	Š	6	- 30	17:29	10:29	410.08 10:29	Pub 56. 2008-04	4 Puis	
		×	नक्त ०५०६	7.7	7	SS	4	-29	14:35	h:11	7-10-8	Min-Sh - 2008-03	3 PWn	
		\ <u>\</u>	40 0100	2.7	J Z	25	ス	-30	13.30		5.10 08 11.35	Puls Sg. 7008 62	2 Pu6	-
			452 0821	2.7	\vert_ \	SY	-10	-30	13:10	11:16	4-10.08	PW6.56.2008-01	- PW6	
Sample Comments (i.e. PID)	FIXE	70.1	ID ID-Flow	r's Can Size	e Sampler's * Initials	Sample Matrix*	Final Vacuum	Initial	ne End Time	Start Time End Time Vacuum	Date	Sample ID	ALPHA Lab ID (Lab Use Only)	ALPH/ (Lab U
, 10	D GA	4A b		out 0	Filled		st Be	Must	Below	1	II Columns	AII C	c	
D-10	N ISES	V 10							ふ・	sample.	axiyze	do not	できる。は	3'5
		.16	jeter it	ያ ው ሂላ	o dete	to t	test segulator to determine whether		loose. Please		nents:	Other Project Specific Requirements/Comments:	Project Specific Require	Other Proj
								Time:			Date Due:	These samples have been previously analyzed by Alpha	samples have been	☐ These
IS	ANALYSIS						,				10 DAYS	Email: Homasme Puspossoscom	masne	Email:
							porovedi	onfirmed if pre-	□ RUSH (only confirmed if pre-approved!)		Standar	\$705	631 224 8	Fax: (
			ot Manager)	rent than Proje	rt to! (if diffe	Repo				Turn-Around Time	Turn-Ar	35-3	631 589 6353	Phone: (
Program	State/Fed Pr	s	الائسسام الراقة	Tellye Telle	Additional Deliverables					ote #:	ALPHA Quote #:	91111 YU	Bohunk	
nents/R	Regulatory Re		report)	(standard pdf report)	□ EMAIL (star			skos	·Almo	nager: 😾	Project Manager:	en Auc, Ste 7	630 Johnson Auc	Address:
		ated)	(Default based on Regulatory Criteria Indicated))ther Formats:	sed on Regi	(Default based on				1080 & A	AU	Project #:		Pulac	Client:
				hecker	OEx Criteria Checker:	Crit	₹ •	رمال	Rocky	- 1	Project Location:		Client Information	13:5 Client I
info PO#:	☐ Same as Client info				K	□ FAX	ζ'	بر اکس	a- Javoy	Project Name: Termer	Project Na	a, MA 02048 : 508-822-3288	320 Forbes Bivd, Mansfield, MA 02048 TEL: 508-822-9300 FAX: 508-822-3288	
tion	Billing Information	ables	formation - Data Deliverables	nation -	Report Infor	Rep			ס	Project Information	Project I	CHAIN OF CUSTODY		
1458/802	ALPHA Job #:			in Lab:	Date Rec'd in I	Date	of _	PAGE	PA	Sis	VALY	AIR ANALYSIS		
							,)				

/	_																		0 <u>813</u>	:57		
	m No: 101-02 (rev 1-Feb.)			*SAMPLE					TRA-	ALPHA Lab ID (Lab Use Only)		Other Project Spe	☐ These samples have	Email: Hymasmi	Fax: 63/589	Phone: 631 589	Down in	<u> </u>	Client Information	TEL: 508-822-9300 FAX: 508-822-3288	320 Forbes Blvd. Mansfield. MA 02048	
4	08)		ŕ	*SAMPLE MATRIX CODES			>	Philip . Shr 2006-12	PW6.56.2008.	Sample ID	>	Other Project Specific Requirements/Comments:	These samples have been previously analyzed by Alpha	a priciossar con	2018	6353	9)211 6(7	almosm As a S		FAX: 508-822-3288	Sfield, MA 02048	AIR
Faul Du			Relinqu	AA = Ambient Air (Inc SV = Soil Vapor/Land Other = Please Specify					<u></u>	Date	All Columns	Comments:	Alpha Date Due:	Standard 10 DAYS		Turn-	ALPHA	Project M	Project L	Project Name:		AIR ANALYSIS
But	BR	1 / 2/ C	Relinquished By:	AA = Ambient Air (Indoor/Outdoor) SV = Soil Vapor/Landfill Gas/SVE Other = Please Specify				7-10.08 11:11 13	_	Start Time End	Л		ie:			Turn-Around Time	,	anager:	cation:	0	Project Information	SIS,
19-11-08	10	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	, ,	sve				13:02 -30	13:04 -30	Start Time End Time Vacuum			Time:	☐ KUSH (only confirmed if pre-approved!)			1 W. 2000 8	× 41, d	人 (こ)	م المالية	•	PAGE Z
of Iring		60	Date/Time	-				-5	16	Final Vacuum				approved!)						S. S.		7
1/10	Soul So		T _{Re}					2 N		Sample Sampler's Matrix* Initials	Filled					Report to: (if differ	Additional Deliverables:	Other Formats:	Criteria Checker:	D FAX DEX	Report Infor	Date Rec'd in L
we file		CAN TO THE PARTY OF THE PARTY O	Received By:	Container Type				2.7 384	2.7 526	r's Can ID Size Can	Out					(if different than Project Manager)	eliverables	r Formats:	Chefault based on Regulatory Criteria Indicated)		nation - Data	in Lab:
	2	9/18						40357	8,000	I D - Flow Controller	44					er)			Criteria Indicated)		oformation - Data Deliverables	
108 1841		108 11 ×	Date/Time:	2				α		APH FIXE	<u>``</u>			AN			State/Fed	Regulato		□ Same as		ALPHA Job #:
7	See reverse side	6		Please pri completely logged in						Sample	GASES 3A 3/TO-10			ANALYSIS			Program	ory Requireme		☐ Same as Client info PO	Billing Information	
	rse side.	Submitted are subject to repries Terms and Conditions.	guities are resolved. All samples	Please print clearly, legibly and completely. Samples can not be logged in and turnaround time						Comments (i.e. PID)							Criteria	Regulatory Requirements/Report Limits		0#		208/354/

ALPHA ANALYTICAL

Eight Walkup Drive

Westborough, Massachusetts 01581-1019

(508) 898-9220 www.alphalab.com

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

CERTIFICATE OF ANALYSIS

Client: P.W. Grosser Laboratory Job Number: L0813344

Address: 630 Johnson Avenue Date Received: 09-SEP-2008

Suite 7

Bohemia, NY 11716 Date Reported: 25-SEP-2008

Attn: Mr. Kris Almskog Delivery Method: Alpha

Project Number: AVB0801 Site: AVALON BAY

CLIENT IDENTIFICATION	SAMPLE LOCATION
FB090808	80 BANKS AVE., ROCKVILLE CENTRE
TB090808-1	80 BANKS AVE., ROCKVILLE CENTRE
TB090808-2	80 BANKS AVE., ROCKVILLE CENTRE
PWG-DW-2008-01 (7.25-7.75')	80 BANKS AVE., ROCKVILLE CENTRE
PWG-DW-2008-02 (5.25-5.75')	80 BANKS AVE., ROCKVILLE CENTRE
PWG-DW-2008-03 (8.75-9.25')	80 BANKS AVE., ROCKVILLE CENTRE
PWG-DW-2008-04 (7.25-7.75')	80 BANKS AVE., ROCKVILLE CENTRE
PWG-DW-2008-05 (6.75-7.25')	80 BANKS AVE., ROCKVILLE CENTRE
PWG-DW-2008-06 (6.75-7.25')	80 BANKS AVE., ROCKVILLE CENTRE
PWG-DW-2008-07 (6.75-7.25')	80 BANKS AVE., ROCKVILLE CENTRE
PWG-DW-2008-08 (5.25-5.75')	80 BANKS AVE., ROCKVILLE CENTRE
PWG-DW-2008-09 (6.75-7.25')	80 BANKS AVE., ROCKVILLE CENTRE
PWG-DW-2008-10 (6.25-6.75')	80 BANKS AVE., ROCKVILLE CENTRE
PWG-DW-2008-11 (6.75-7.25')	80 BANKS AVE., ROCKVILLE CENTRE
PWG-DW-2008-12 (7.25-7.75')	80 BANKS AVE., ROCKVILLE CENTRE
PWG-DW-2008-13 (7.25-7.75')	80 BANKS AVE., ROCKVILLE CENTRE
PWG-DW-2008-14 (6-6.5')	80 BANKS AVE., ROCKVILLE CENTRE
PWG-DW-2008-15 (7-7.5')	80 BANKS AVE., ROCKVILLE CENTRE
PWG-DW-2008-100 (7-7.5')	80 BANKS AVE., ROCKVILLE CENTRE
PWG-LP-2008-01 (7.75-8.25')	80 BANKS AVE., ROCKVILLE CENTRE
PWG-DW-2008-16 (5.5-6')	80 BANKS AVE., ROCKVILLE CENTRE
PWG-DW-2008-17 (5.5-6')	
PWG-DW-2008-18 (4-4.5')	80 BANKS AVE., ROCKVILLE CENTRE
PWG-DW-2008-19 (4.5-5')	80 BANKS AVE., ROCKVILLE CENTRE
	FB090808 TB090808-1 TB090808-2 PWG-DW-2008-01 (7.25-7.75') PWG-DW-2008-02 (5.25-5.75') PWG-DW-2008-03 (8.75-9.25') PWG-DW-2008-04 (7.25-7.75') PWG-DW-2008-05 (6.75-7.25') PWG-DW-2008-06 (6.75-7.25') PWG-DW-2008-07 (6.75-7.25') PWG-DW-2008-08 (5.25-5.75') PWG-DW-2008-09 (6.75-7.25') PWG-DW-2008-10 (6.25-6.75') PWG-DW-2008-11 (6.75-7.25') PWG-DW-2008-12 (7.25-7.75') PWG-DW-2008-13 (7.25-7.75') PWG-DW-2008-14 (6-6.5') PWG-DW-2008-15 (7-7.5') PWG-DW-2008-10 (7-7.5') PWG-DW-2008-16 (5.5-6') PWG-DW-2008-17 (5.5-6') PWG-DW-2008-17 (5.5-6') PWG-DW-2008-18 (4-4.5')

I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized by:

Technical Representative

09250811:11 Page 1 of 178

ALPHA ANALYTICAL

Laboratory Job Number: L0813344

Date Reported: 25-SEP-2008

ALPHA SA	AMPLE NUMBER (CLIENT IDENTIFI	CATION	SAM	PLE LO	CATION	
L081334	4-25 I	PWG-DW-2008-20	(4.5-5')	80	BANKS	AVE.,ROCKVILLE	CENTRE
L0813344	4-26 I	PWG-DW-2008-22	(5.25-5.75')	80	BANKS	AVE., ROCKVILLE	CENTRE
L0813344	4-27 I	PWG-DW-2008-23	(3-3.5')	80	BANKS	AVE.,ROCKVILLE	CENTRE
L0813344	4-28 I	PWG-DW-2008-24	(6-6.5')	80	BANKS	AVE., ROCKVILLE	CENTRE
L0813344	4-29 I	PWG-DW-2008-25	(5.75-6.25')	80	BANKS	AVE.,ROCKVILLE	CENTRE
L0813344	4-30 I	PWG-DW-2008-26	(4.25-4.75')	80	BANKS	AVE., ROCKVILLE	CENTRE

09250811:11 Page 2 of 178

ALPHA ANALYTICAL NARRATIVE REPORT

Laboratory Job Number: L0813344

Report Submission

This report replaces the report issued September 19, 2008. Upon review of the data validation package it was noticed that sample L0813344-22 for TPH-DRO-D was not properly integrated. The result for the TPH-DRO-D has been amended on L0813344-22.

The samples were received in accordance with the chain of custody and no significant deviations were encountered during preparation or analysis unless otherwise noted below.

Sample Receipt

At the client's request, sample "PWG-DW-2008-10 (6.25-6.75')" was taken off of hold and analyzed NYTCL-8260, NYTCL-8270/8270SIM, TPH-DRO-D, TAL METALS, and TS.

Metals

The following samples have elevated detection limits for Calcium due to the dilutions required to quantitate the results within the calibration range:

L0813344-05, -13: 5x

L0813344-21, -23: 10x

L0813344-26 and -29 have elevated detection limits for Thallium due to the 2x dilutions required by matrix interferences encountered during analysis.

L0813344-29 has an elevated detection limit for Aluminum due to the 2x dilution required to quantitate the result within the calibration range.

The WG335803-1 Laboratory Duplicate RPDs associated with L0813344-26 are outside the acceptance criteria for Aluminum (67%), Arsenic (157%), Chromium (156%), Copper (87%), Iron (153%), Manganese (39%), Nickel (87%), Vanadium (120%), and Zinc (53%). The elevated RPDs have been attributed to the non-homogenous nature of the sample utilized for the laboratory duplicate.

The WG335802-1 Laboratory Duplicate RPDs associated with L0813344-10 are outside the acceptance criteria for Aluminum (60%), Arsenic (38%), Barium (57%), Calcium (102%), Copper (83%), Iron (75%), Lead (74%), Magnesium (101%), Nickel (65%), Vanadium (73%), and Zinc (67%). The elevated RPDs have been attributed to the non-homogenous nature of the sample utilized for the laboratory duplicate.

The WG335803-2 MS recoveries associated with L0813344-26 are outside the acceptance criteria for Antimony (72%), Arsenic (0%), Beryllium (74%), Chromium (0%), Copper (57%), Manganese (40%), Nickel (72%), Vanadium (47%), and Zinc (43%). Post digestion spikes were performed with acceptable recoveries of 104%, 117%, 103%, 99%, 100%, 97%, 94%, 100%, and 97%, respectively. The MS recoveries for Aluminum (0%), Calcium (0%), Iron (0%), and Magnesium (0%) are invalid because the sample concentration is greater than four times the spike amount added.

ALPHA ANALYTICAL NARRATIVE REPORT

Laboratory Job Number: L0813344

Continued

the sample concentration is greater than four times the spike amount added.

The WG336225-4 MS recovery for Mercury (0%) associated with L0813344-25 is invalid because

The WG336007-1/-2 MS/MSD recoveries associated with L0813344-13 are outside the acceptance criteria for Antimony (64%/65%), Lead (MS at 137%), and Manganese (32%/40%). Post digestion spikes were performed with acceptable recoveries of 107%, 84%, and 101%, respectively. The MS/MSD recoveries for Aluminum (437%/308%), Calcium (0%/154%), Iron (1160%/0%), and Magnesium (0%/0%) are invalid because the sample concentration is greater than four times the spike amount added. In addition, the associated MS/MSD RPDs are above the acceptance criteria for Calcium (200%) and Iron (200%).

The WG335802-2/-3 MS/MSD recoveries associated with L0813344-10 are outside the acceptance criteria for Antimony (58%/71%), Copper (140%/160%), Lead (149%/181%), Thallium (MS at 73%), and Zinc (182%/246%). Post digestion spikes were performed with acceptable recoveries of 91%, 88%, 89%, 89%, respectively. The post digestion spike for Zinc had an unacceptable recovery of 67%; this has been attributed to the sample matrix. The MS/MSD recoveries for Aluminum (608%/693%), Calcium (0%/462%), Iron (4710%/2460%) and Magnesium (0%/0%) are invalid because the sample concentration is greater than four times the spike amount added. In addition, the MS/MSD RPDs are above the acceptance criteria for Calcium (200%) and Iron (63%).

The WG336055-3/-4 MS/MSD recoveries associated with L0813344-10 are above the acceptance criteria for Mercury (164%/160%). A post digestion spike was performed with an acceptable recovery of 98%.

The WG336007-3 Method Blank associated with L0813344-13 has a concentration above the reporting limit for Aluminum. Since the associated sample concentration is 10x the blank concentration for this analyte, no corrective action is required. The results of the original analysis are reported.

Volatile Organics

The surrogate recovery for L0813344-17 was outside the acceptance criteria for 4-Bromofluorobenzene (135%); however, re-analysis within the holding time holding time achieved similar results. The results of both analyses are reported.

The surrogate recovery for L0813344-27 is above the acceptance criteria for 4-Bromofluorobenzene (138%). Since the sample was non-detect for all target analytes, reanalysis is not required.

The WG336351-7/-8 MS/MSD recoveries are below the acceptance criteria for Chlorobenzene (53%/58%); however, the associated LCS recoveries are within criteria. No further action was required.

Semivolatile Organics

The following samples have elevated detection limits due to the dilutions required by the sample matrices:

ALPHA ANALYTICAL NARRATIVE REPORT

Laboratory Job Number: L0813344

Continued

L0813344-05, -12, -13, -27, -30: 5x

L0813344-17, -22, -23, -24: 2x

L0813344-10 and -25 have elevated detection limits due to the 2x dilutions required by the matrix interferences encountered during the concentration of the samples and the 5x dilutions required by the sample matrices.

The WG335861-3 LCSD recovery associated with L0813344-13, -20, and -26 through 30 was above the acceptance criteria for 2,4-Dinitrotoluene (90%); however, the associated samples were non-detect for this target compound. The results of the original analysis are reported.

The WG335862-2 LCS recovery associated with L0813344-05 through -10, -12, -14 through -19, and -21 through -25 was above the acceptance criteria for 2,4-Dinitrotoluene (90%); however, the associated samples were non-detect for this target compound. The results of the original analysis are reported.

The WG335862-4/-5 MS/MSD recoveries associated with L0813344-10 were above the acceptance criteria for 2,4-Dinitrophenol (150%/150%) and Pentachlorophenol (150%/150%); however, the associated LCS/LCSD recoveries were within criteria.

The WG335862-5 MSD recovery associated with L0813344-10 was above the acceptance criteria for 2,4-Dinitrotoluene (90%); however, the associated samples were non-detect for this target compound. The results of the original analysis are reported. Semivolatile Organics-SIM

The following samples have elevated detection limits due to the dilutions required by the sample matrices:

 $\verb"L0813344-04", -06", -07", -08", -18", -19", -21", -28": 5x$

L0813344-05, -12, -17, -22, -27, -30: 50x

L0813344-13: 10x

L0813344-14, -15, -26: 2x

L0813344-10 and -25 have elevated detection limits due to the 2x dilutions required by the matrix interferences encountered during the concentration of the samples and the 50x dilutions required by the sample matrices.

L0813344-23 has elevated detection limits due to the 5x dilution required by the matrix interferences encountered during the concentration of the sample and the 10x dilution required by the sample matrix.

The surrogate recoveries for L0813344-05, -10, -12, -17, -22, -23, -25, -27, and -30 are below the acceptance criteria for 2-Fluorophenol, Phenol-d6, Nitrobenzene-d5, 2-Fluorobiphenyl, 2,4,6-Tribromophenol, and 4-Terphenyl-d14 (all ND) due to the dilutions required to quantitate the samples. Re-extraction is not required; therefore, the results of the original analyses are reported.

The WG335863-4 MS recovery associated with L0813344-10 is below the acceptance criteria

ALPHA ANALYTICAL NARRATIVE REPORT

Laboratory Job Number: L0813344

No further action was required.

Continued

for 2-Chloronaphthalene (36%); however, the associated LCS recovery is within criteria.

The surrogate recoveries for WG335863-4/-5 MS/MSD are below the acceptance criteria for 2-Fluorophenol, Phenol-d6, Nitrobenzene-d5, 2-Fluorobiphenyl, 2,4,6-Tribromophenol, and 4-Terphenyl-d14 (all 0%) due to the dilutions required to quantitate the samples. Reextraction is not required; therefore, the results of the original analysis are reported.

TPH-DRO

The following samples have elevated detection limits due to the dilutions required by matrix interferences encountered during the concentration of the samples:

L0813344-05, -27, -30: 5x

L0813344-10: 10x

L0813344-17 and -28 have elevated detection limits due to the 5x dilutions required by the elevated concentrations of target compounds in the samples.

L0813344-25 has an elevated detection limit due to the 5x dilution required by the matrix interferences encountered during the concentration of the sample and the 5x dilution required by the elevated concentrations of target compounds in the sample.

The WG335858-4/-5 MS/MSD recoveries associated with L0813344-10 are outside the acceptance criteria (0%/188%). The unacceptable percent recoveries are attributed to the elevated concentrations of target compounds present in the sample utilized for the MS/MSD. In addition, the associated MS/MSD RPD is above the acceptance criteria (200%).

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813344-01 Date Collected: 08-SEP-2008 16:45

 FB090808
 Date Received : 09-SEP-2008

 WATER
 Date Reported : 25-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

Sample Matrix:

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 82	50B			1 8260B	0911 15:30 PD
Methylene chloride	ND	ug/l	5.0		
1,1-Dichloroethane	ND	ug/l	0.75		
Chloroform	ND	ug/l	0.75		
Carbon tetrachloride	ND	ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75		
Tetrachloroethene	ND	ug/l	0.50		
Chlorobenzene	ND	ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND	ug/l	0.50		
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50		
Chloromethane	ND	ug/l	2.5		
Bromomethane	ND	ug/l	1.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	1.0		
1,1-Dichloroethene	ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/l	0.75		
Trichloroethene	ND	ug/l	0.50		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/l	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND ND	ug/l ug/l	1.0		
o-Xylene	ND	ug/1 ug/l	1.0		
cis-1,2-Dichloroethene	ND ND	ug/1 ug/l	0.50		
Dibromomethane	ND ND	ug/l ug/l	5.0		
1,2,3-Trichloropropane	ND ND	ug/l ug/l	5.0		
Acrylonitrile	ND ND	ug/1 ug/l	5.0		
VCTATOIITCTTTE	עווע	ug/I	5.0		

Laboratory Sample Number: L0813344-01

FB090808

PARAMETER	RESULT	UNITS	RDL	REF METHO	DD PR	DATE EP	I ANAL	ID
Volatile Organics by EPA 826	NB cont'd			1 8260B		ng	11 15:30	חם ו
Styrene	ND	ug/l	1.0	1 02005		0,5	11 13-30	, 15
Dichlorodifluoromethane	ND	ug/l	5.0					
Acetone	ND	ug/l	5.0					
Carbon disulfide	ND	ug/l	5.0					
2-Butanone	ND	ug/l	5.0					
Vinyl acetate	ND	ug/l	5.0					
4-Methyl-2-pentanone	ND	ug/l	5.0					
2-Hexanone	ND	ug/l	5.0					
Bromochloromethane	ND	ug/l	2.5					
2,2-Dichloropropane	ND	ug/l	2.5					
1,2-Dibromoethane	ND	ug/l	2.0					
1,3-Dichloropropane	ND	ug/l	2.5					
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50					
Bromobenzene	ND	ug/l	2.5					
n-Butylbenzene	ND	ug/l	0.50					
sec-Butylbenzene	ND	ug/l	0.50					
tert-Butylbenzene	ND	ug/l	2.5					
o-Chlorotoluene	ND	ug/l	2.5					
p-Chlorotoluene	ND	ug/l	2.5					
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5					
Hexachlorobutadiene	ND	ug/l	0.60					
Isopropylbenzene	ND	ug/l	0.50					
p-Isopropyltoluene	ND	ug/l	0.50					
Naphthalene	ND	ug/l	2.5					
n-Propylbenzene	ND	ug/l	0.50					
1,2,3-Trichlorobenzene	ND	ug/l	2.5					
1,2,4-Trichlorobenzene	ND	ug/l	2.5					
1,3,5-Trimethylbenzene	ND	ug/l	2.5					
1,2,4-Trimethylbenzene	ND	ug/l	2.5					
1,4-Diethylbenzene	ND	ug/l	2.0					
4-Ethyltoluene	ND	ug/l	2.0					
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0					
Surrogate(s)	Recovery		QC Crit	teria				
1,2-Dichloroethane-d4	104	%	70-130					
Toluene-d8	100	%	70-130					
4-Bromofluorobenzene	106	%	70-130					
Dibromofluoromethane	95.0	%	70-130					

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813344-02 Date Collected: 08-SEP-2008 16:50

Sample Matrix: WATER Date Reported: 25-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 8	3260B			1 8260B	0911 16:07 PD
Methylene chloride	ND	ug/l	5.0		
1,1-Dichloroethane	ND	ug/l	0.75		
Chloroform	ND	ug/l	0.75		
Carbon tetrachloride	ND	ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75		
Tetrachloroethene	ND	ug/l	0.50		
Chlorobenzene	ND	ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND	ug/l	0.50		
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50		
Chloromethane	ND	ug/l	2.5		
Bromomethane	ND	ug/l	1.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	1.0		
1,1-Dichloroethene	ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/l	0.75		
Trichloroethene	ND	ug/l	0.50		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/l	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	ND	ug/l	0.50		
Dibromomethane	ND	ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/l	5.0		
Acrylonitrile	ND	ug/l	5.0		

Laboratory Sample Number: L0813344-02

TB090808-1

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DAT: PREP	E ANAL	ID
Volatile Organics by EPA 826	NB contid			1 8260B	0	911 16:0'	7 PD
Styrene	ND	ug/l	1.0	1 02008	0	911 10.0	/ PD
Dichlorodifluoromethane	ND ND	ug/l	5.0				
Acetone	ND	ug/l	5.0				
Carbon disulfide	ND	ug/l	5.0				
2-Butanone	ND	ug/l	5.0				
Vinyl acetate	ND	ug/l	5.0				
4-Methyl-2-pentanone	ND	ug/l	5.0				
2-Hexanone	ND	ug/l	5.0				
Bromochloromethane	ND	ug/l	2.5				
2,2-Dichloropropane	ND	ug/l	2.5				
1,2-Dibromoethane	ND	ug/l	2.0				
1,3-Dichloropropane	ND	ug/l	2.5				
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50				
Bromobenzene	ND	ug/l	2.5				
n-Butylbenzene	ND	ug/l	0.50				
sec-Butylbenzene	ND	ug/l	0.50				
tert-Butylbenzene	ND	ug/l	2.5				
o-Chlorotoluene	ND	ug/l	2.5				
p-Chlorotoluene	ND	ug/l	2.5				
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5				
Hexachlorobutadiene	ND	ug/l	0.60				
Isopropylbenzene	ND	ug/l	0.50				
p-Isopropyltoluene	ND	ug/l	0.50				
Naphthalene	ND	ug/l	2.5				
n-Propylbenzene	ND	ug/l	0.50				
1,2,3-Trichlorobenzene	ND	ug/l	2.5				
1,2,4-Trichlorobenzene	ND	ug/l	2.5				
1,3,5-Trimethylbenzene	ND	ug/l	2.5				
1,2,4-Trimethylbenzene	ND	ug/l	2.5				
1,4-Diethylbenzene	ND	ug/l	2.0				
4-Ethyltoluene	ND	ug/l	2.0				
1,2,4,5-Tetramethylbenzene	ND ND	ug/l ug/l	2.0				
1,2,1,0-1ectameenytbenzene	MD	ug/1	2.0				
Surrogate(s)	Recovery		QC Cri	teria			
1,2-Dichloroethane-d4	104	8	70-130				
Toluene-d8	100	8	70-130				
4-Bromofluorobenzene	102	%	70-130				
Dibromofluoromethane	98.0	%	70-130				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813344-03 Date Collected: 21-AUG-2008 12:00

Sample Matrix: WATER Date Reported: 25-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 82	50B			1 8260B	0911 16:43 PD
Methylene chloride	ND	ug/l	5.0		
1,1-Dichloroethane	ND	ug/l	0.75		
Chloroform	ND	ug/l	0.75		
Carbon tetrachloride	ND	ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75		
Tetrachloroethene	ND	ug/l	0.50		
Chlorobenzene	ND	ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1.2-Dichloroethane	ND	ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND	ug/l	0.50		
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50		
Chloromethane	ND	ug/l	2.5		
Bromomethane	ND	ug/l	1.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	1.0		
1.1-Dichloroethene	ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/l	0.75		
Trichloroethene	ND	ug/l	0.50		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/l	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	ND	ug/l	0.50		
Dibromomethane	ND	ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/l	5.0		
Acrylonitrile	ND ND	ug/1 ug/l	5.0		

Laboratory Sample Number: L0813344-03

TB090808-2

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	D <i>F</i> PREP	ATE ANAL	ID
Volatile Organics by EPA 826	NB contid			1	8260B		0911 16:4	3 DD
Styrene	ND	ug/l	1.0		0200B		0911 10.4	3 PD
Dichlorodifluoromethane	ND	ug/l	5.0					
Acetone	ND	ug/l	5.0					
Carbon disulfide	ND	ug/l	5.0					
2-Butanone	ND	ug/l	5.0					
Vinyl acetate	ND	ug/l	5.0					
4-Methyl-2-pentanone	ND	ug/l	5.0					
2-Hexanone	ND	ug/l	5.0					
Bromochloromethane	ND	ug/l	2.5					
2,2-Dichloropropane	ND	ug/l	2.5					
1,2-Dibromoethane	ND	ug/l	2.0					
1,3-Dichloropropane	ND	ug/l	2.5					
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50					
Bromobenzene	ND	ug/l	2.5					
n-Butylbenzene	ND	ug/l	0.50					
sec-Butylbenzene	ND	ug/l	0.50					
tert-Butylbenzene	ND	ug/l	2.5					
o-Chlorotoluene	ND	ug/l	2.5					
p-Chlorotoluene	ND	ug/l	2.5					
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5					
Hexachlorobutadiene	ND	ug/l	0.60					
Isopropylbenzene	ND	ug/l	0.50					
p-Isopropyltoluene	ND	ug/l	0.50					
Naphthalene	ND	ug/l	2.5					
n-Propylbenzene	ND	ug/l	0.50					
1,2,3-Trichlorobenzene	ND	ug/l	2.5					
1,2,4-Trichlorobenzene	ND	ug/l	2.5					
1,3,5-Trimethylbenzene	ND	ug/l	2.5					
1,2,4-Trimethylbenzene	ND	ug/l	2.5					
1,4-Diethylbenzene	ND	ug/l	2.0					
4-Ethyltoluene	ND	ug/l	2.0					
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0					
Surrogate(s)	Recovery		QC Cri	teria				
1,2-Dichloroethane-d4	103	8	70-130					
Toluene-d8	100	8	70-130					
4-Bromofluorobenzene	104	8	70-130					
Dibromofluoromethane	97.0	%	70-130					

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813344-04 Date Collected: 08-SEP-2008 09:20

PWG-DW-2008-01 (7.25-7.75') Date Received: 09-SEP-2008

Sample Matrix: SOIL Date Reported: 25-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE PREP ANAL	ID
Solids, Total	84	%	0.10	30 2540G	0910 18:4	0 NM
Total Metals						
Aluminum, Total	4300	mg/kg	5.4	1 6010B	0910 13:30 0911 13:5	2 AI
Antimony, Total	ND	mg/kg	2.7	1 6010B	0910 13:30 0911 13:5	2 AI
Arsenic, Total	3.6	mg/kg	0.54	1 6010B	0910 13:30 0911 13:5	2 AI
Barium, Total	28	mg/kg	0.54	1 6010B	0910 13:30 0911 13:5	2 AI
Beryllium, Total	ND	mg/kg	0.27	1 6010B	0910 13:30 0911 13:5	2 AI
Cadmium, Total	2.5	mg/kg	0.54	1 6010B	0910 13:30 0911 13:5	2 AI
Calcium, Total	6700	mg/kg	5.4	1 6010B	0910 13:30 0911 13:5	2 AI
Chromium, Total	14	mg/kg	0.54	1 6010B	0910 13:30 0911 13:5	2 AI
Cobalt, Total	2.6	mg/kg	1.1	1 6010B	0910 13:30 0911 13:5	2 AI
Copper, Total	54	mg/kg	0.54	1 6010B	0910 13:30 0911 13:5	2 AI
Iron, Total	5300	mg/kg	2.7	1 6010B	0910 13:30 0911 13:5	2 AI
Lead, Total	470	mg/kg	2.7	1 6010B	0910 13:30 0911 13:5	2 AI
Magnesium, Total	4400	mg/kg	5.4	1 6010B	0910 13:30 0911 13:5	2 AI
Manganese, Total	37	mg/kg	0.54	1 6010B	0910 13:30 0911 13:5	2 AI
Mercury, Total	0.21	mg/kg	0.09	1 7471A	0911 23:30 0912 14:0	9 RC
Nickel, Total	11	mg/kg	1.4	1 6010B	0910 13:30 0911 13:5	2 AI
Potassium, Total	260	mg/kg	140	1 6010B	0910 13:30 0911 13:5	2 AI
Selenium, Total	ND	mg/kg	1.1	1 6010B	0910 13:30 0911 13:5	2 AI
Silver, Total	1.2	mg/kg	0.54	1 6010B	0910 13:30 0911 13:5	2 AI
Sodium, Total	ND	mg/kg	110	1 6010B	0910 13:30 0911 13:5	2 AI
Thallium, Total	ND	mg/kg	1.1	1 6010B	0910 13:30 0911 13:5	2 AI
Vanadium, Total	31	mg/kg	0.54	1 6010B	0910 13:30 0911 13:5	
Zinc, Total	250	mg/kg	2.7	1 6010B	0910 13:30 0911 13:5	
Volatile Organics by EPA 8	3260B			1 8260в	0911 18:2	9 PD
Methylene chloride	ND	ug/kg	30.			
1,1-Dichloroethane	ND	ug/kg	4.5			
Chloroform	ND	ug/kg	4.5			
Carbon tetrachloride	ND	ug/kg	3.0			
1,2-Dichloropropane	ND	ug/kg	10.			
Dibromochloromethane	ND	ug/kg	3.0			
1,1,2-Trichloroethane	ND	ug/kg	4.5			
Tetrachloroethene	ND	ug/kg	3.0			
Chlorobenzene	ND	ug/kg	3.0			
Trichlorofluoromethane	ND	ug/kg	15.			

Laboratory Sample Number: L0813344-04

PWG-DW-2008-01 (7.25-7.75')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Olatile Organics by EPA 826	OB cont'd			1	8260B		0911 18:	29 PD
1,2-Dichloroethane	ND	ug/kg	3.0					
l,1,1-Trichloroethane	7.5	ug/kg	3.0					
Bromodichloromethane	ND	ug/kg	3.0					
rans-1,3-Dichloropropene	ND	ug/kg	3.0					
sis-1,3-Dichloropropene	ND	ug/kg	3.0					
,1-Dichloropropene	ND	ug/kg	15.					
Bromoform	ND	ug/kg	12.					
,1,2,2-Tetrachloroethane	ND	ug/kg	3.0					
senzene	ND	ug/kg	3.0					
oluene	ND	ug/kg	4.5					
thylbenzene	ND	ug/kg	3.0					
thloromethane	ND	ug/kg	15.					
Bromomethane	ND	ug/kg	6.0					
inyl chloride	ND	ug/kg	6.0					
Chloroethane	ND	ug/kg	6.0					
,1-Dichloroethene	ND	ug/kg	3.0					
rans-1,2-Dichloroethene	ND	ug/kg	4.5					
richloroethene	ND	ug/kg	3.0					
,2-Dichlorobenzene	ND	ug/kg	15.					
,3-Dichlorobenzene	ND	ug/kg	15.					
,4-Dichlorobenzene	ND	ug/kg ug/kg	15.					
ethyl tert butyl ether	ND	ug/kg ug/kg	6.0					
/m-Xylene	ND	ug/kg	6.0					
-Xylene	ND	ug/kg ug/kg	6.0					
is-1,2-Dichloroethene	ND	ug/kg ug/kg	3.0					
bromomethane	ND	ug/kg ug/kg	30.					
tyrene	ND	ug/kg ug/kg	6.0					
Dichlorodifluoromethane	ND	ug/kg ug/kg	30.					
acetone	ND	ug/kg ug/kg	30.					
arbon disulfide	ND	ug/kg ug/kg	30.					
-Butanone			30.					
	ND ND	ug/kg ug/kg	30.					
inyl acetate -Methyl-2-pentanone	ND		30.					
	ND	ug/kg	30.					
.,2,3-Trichloropropane	ND	ug/kg						
-Hexanone romochloromethane	ND	ug/kg	30.					
	ND	ug/kg	15.					
2,2-Dichloropropane	ND	ug/kg	15.					
,,2-Dibromoethane	ND	ug/kg	12.					
.,3-Dichloropropane	ND	ug/kg	15.					
,1,1,2-Tetrachloroethane	ND	ug/kg	3.0					
romobenzene	ND	ug/kg	15.					
-Butylbenzene	ND	ug/kg	3.0					
ec-Butylbenzene	ND	ug/kg	3.0					
ert-Butylbenzene	ND	ug/kg	15.					
-Chlorotoluene	ND	ug/kg	15.					
-Chlorotoluene	ND	ug/kg	15.					
,2-Dibromo-3-chloropropane	ND	ug/kg	15.					
Mexachlorobutadiene	ND	ug/kg	15.					
sopropylbenzene	ND	ug/kg	3.0					

Laboratory Sample Number: L0813344-04

PWG-DW-2008-01 (7.25-7.75')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Valatila Organica by EDA 026	OD contid			-	00600		0011 10.	00 00
Volatile Organics by EPA 826		/1-~	2 0	1	8260B		0911 18:	29 PD
p-Isopropyltoluene	ND	ug/kg	3.0					
Naphthalene	ND	ug/kg	15.					
Acrylonitrile	ND	ug/kg	30.					
n-Propylbenzene	ND	ug/kg	3.0					
1,2,3-Trichlorobenzene	ND	ug/kg	15.					
1,2,4-Trichlorobenzene	ND	ug/kg	15.					
1,3,5-Trimethylbenzene	ND	ug/kg	15.					
1,2,4-Trimethylbenzene	ND	ug/kg	15.					
1,4-Diethylbenzene	ND	ug/kg	12.					
4-Ethyltoluene	ND	ug/kg	12.					
1,2,4,5-Tetramethylbenzene	ND	ug/kg	12.					
Surrogate(s)	Recovery		QC Cr	iteria	L			
1,2-Dichloroethane-d4	106	%	70-130	0				
Toluene-d8	109	%	70-130	0				
4-Bromofluorobenzene	121	%	70-130	0				
Dibromofluoromethane	103	%	70-130	0				
Semivolatile Organics by EPA	8270C			1	8270C	0916 09:50	0916 17:	35 PS
Acenaphthene	ND	ug/kg	400					
1,2,4-Trichlorobenzene	ND	ug/kg	400					
Hexachlorobenzene	ND	ug/kg	400					
Bis(2-chloroethyl)ether	ND	ug/kg	400					
2-Chloronaphthalene	ND	ug/kg	480					
1,2-Dichlorobenzene	ND	ug/kg	400					
1,3-Dichlorobenzene	ND	ug/kg	400					
1,4-Dichlorobenzene	ND	ug/kg	400					
3,3'-Dichlorobenzidine	ND	ug/kg	790					
2,4-Dinitrotoluene	ND	ug/kg ug/kg	400					
2,6-Dinitrotoluene	ND	ug/kg ug/kg	400					
Fluoranthene	ND	ug/kg	400					
4-Chlorophenyl phenyl ether	ND ND	ug/kg ug/kg	400					
4-Chrorophenyl phenyl ether	ND ND	ug/kg ug/kg	400					
Bis(2-chloroisopropyl)ether	ND	ug/kg ug/kg	400					
Bis(2-chlorotsopropyr)ether	ND ND	ug/kg ug/kg	400					
Hexachlorobutadiene	ND ND	ug/kg ug/kg	790					
Hexachlorocyclopentadiene	ND ND	ug/kg ug/kg	790					
Hexachlorocyclopentadiene Hexachloroethane	ND ND	ug/kg ug/kg	400					
Isophorone	ND ND		400					
		ug/kg						
Naphthalene Nitrobenzene	ND	ug/kg	400					
	ND	ug/kg	400					
NitrosoDiPhenylAmine(NDPA)/D		ug/kg	1200					
n-Nitrosodi-n-propylamine	ND	ug/kg	400					
Bis(2-Ethylhexyl)phthalate	ND	ug/kg	790					
Butyl benzyl phthalate	ND	ug/kg	400					
Di-n-butylphthalate	ND	ug/kg	400					
Di-n-octylphthalate	ND	ug/kg	400					
Diethyl phthalate	ND	ug/kg	400					
Dimethyl phthalate	ND	ug/kg	400					

Laboratory Sample Number: L0813344-04

PWG-DW-2008-01 (7.25-7.75')

PARAMETER	RESULT	UNITS	\mathtt{RDL}	REF METHOD	DA:	re ii
					PREP	ANAL
Semivolatile Organics by EPA 8				1 8270C	0916 09:50	0916 17:35 PS
Benzo(a)anthracene	ND	ug/kg	400			
Benzo(a)pyrene	ND	ug/kg	400			
Benzo(b)fluoranthene	ND	ug/kg	400			
enzo(k)fluoranthene	ND	ug/kg	400			
hrysene	ND	ug/kg	400			
cenaphthylene	ND	ug/kg	400			
nthracene	ND	ug/kg	400			
enzo(ghi)perylene	ND	ug/kg	400			
luorene	ND	ug/kg	400			
henanthrene	ND	ug/kg	400			
ibenzo(a,h)anthracene	ND	ug/kg	400			
ndeno(1,2,3-cd)Pyrene	ND	ug/kg	400			
yrene	ND	ug/kg	400			
siphenyl	ND	ug/kg	400			
-Chloroaniline	ND	ug/kg	400			
-Nitroaniline	ND	ug/kg	400			
-Nitroaniline	ND	ug/kg	400			
-Nitroaniline	ND	ug/kg	560			
ibenzofuran	ND	ug/kg	400			
-Methylnaphthalene	ND	ug/kg	400			
,2,4,5-Tetrachlorobenzene	ND	ug/kg	1600			
cetophenone	ND	ug/kg	1600			
,4,6-Trichlorophenol	ND	ug/kg	400			
-Chloro-M-Cresol	ND	ug/kg	400			
-Chlorophenol	ND	ug/kg	480			
,4-Dichlorophenol	ND	ug/kg	790			
,4-Dimethylphenol	ND	ug/kg	400			
-Nitrophenol	ND	ug/kg	1600			
-Nitrophenol	ND	ug/kg	790			
,4-Dinitrophenol	ND	ug/kg	1600			
,6-Dinitro-o-cresol	ND	ug/kg	1600			
entachlorophenol	ND	ug/kg	1600			
henol	ND	ug/kg	560			
-Methylphenol	ND	ug/kg	480			
-Methylphenol/4-Methylphenol	ND	ug/kg	480			
,4,5-Trichlorophenol	ND	ug/kg	400			
enzoic Acid	ND	ug/kg	4000			
enzyl Alcohol	ND	ug/kg	790			
arbazole	ND	ug/kg	400			
urrogate(s)	Recovery		QC Cr:	iteria		
-Fluorophenol	89.0	%	25-120			
henol-d6	90.0	રુ	10-120	0		
itrobenzene-d5	73.0	%	23-120			
-Fluorobiphenyl	76.0	%	30-120			
,4,6-Tribromophenol	104	%	19-120			
-Terphenyl-d14	82.0	%	18-120			

Laboratory Sample Number: L0813344-04

PWG-DW-2008-01 (7.25-7.75')

Semivolatile Organics by EPA	8270C-SIM (PREP	ANAL	
Semivolatile Organics by EPA	8270C-SIM (
Semivolatile Organics by EPA	8270C-SIM (
				1 8270C	0911 03:30	0912 21:0	7 AK
Acenaphthene	ND	ug/kg	79.				
2-Chloronaphthalene	ND	ug/kg	79.				
Fluoranthene	170	ug/kg	79				
Hexachlorobutadiene	ND	ug/kg	200				
Naphthalene	ND	ug/kg	79.				
Benzo(a)anthracene	ND	ug/kg	79.				
Benzo(a)pyrene	ND	ug/kg	79.				
Benzo(b)fluoranthene	ND	ug/kg	79.				
Benzo(k)fluoranthene	ND	ug/kg	79.				
Chrysene	ND	ug/kg	79.				
Acenaphthylene	ND	ug/kg	79.				
Anthracene	ND	ug/kg	79.				
Benzo(ghi)perylene	ND	ug/kg	79.				
Fluorene	ND	ug/kg	79.				
Phenanthrene	ND	ug/kg	79.				
Dibenzo(a,h)anthracene	ND	ug/kg	79.				
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	79.				
Pyrene	170	ug/kg	79				
2-Methylnaphthalene	ND	ug/kg	79.				
Pentachlorophenol	ND	ug/kg	320				
Hexachlorobenzene	ND	ug/kg	320				
Hexachloroethane	ND	ug/kg	320				
Surrogate(s)	Recovery		QC Cri	teria			
2-Fluorophenol	31.0	%	25-120				
Phenol-d6	32.0	%	10-120				
Nitrobenzene-d5	26.0	%	23-120				
2-Fluorobiphenyl	31.0	%	30-120				
2,4,6-Tribromophenol	42.0	8	19-120				
4-Terphenyl-d14	37.0	%	18-120				
Petroleum Hydrocarbon Quantit	tation by G	C-FID		1 8015B(M)	0911 00:15	0912 02:0	3 R:
ГРН	73100	ug/kg	39700				
Surrogate(s)	Recovery		QC Cri				
o-Terphenyl	72.0	%	40-140				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813344-05 Date Collected: 08-SEP-2008 09:35

Sample Matrix: SOIL Date Reported: 25-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER	RESULT	UNITS	\mathtt{RDL}	REF METHOD		ATE	ID
					PREP	ANAL	
Solids, Total	79	%	0.10	30 2540G		0910 18:40) NM
Total Metals							
Aluminum, Total	2600	mg/kg	5.8	1 6010B	0910 13:30	0911 13:55	5 AI
Antimony, Total	ND	mg/kg	2.9	1 6010B	0910 13:30	0911 13:55	AI
Arsenic, Total	0.83	mg/kg	0.58	1 6010B	0910 13:30	0911 13:55	AI
Barium, Total	9.8	mg/kg	0.58	1 6010B	0910 13:30	0911 13:55	AI
Beryllium, Total	ND	mg/kg	0.29	1 6010B	0910 13:30	0911 13:55	5 AI
Cadmium, Total	ND	mg/kg	0.58	1 6010B		0911 13:55	
Calcium, Total	24000	mg/kg	29	1 6010B		0911 19:42	
Chromium, Total	2.3	mg/kg	0.58	1 6010B		0911 13:55	
Cobalt, Total	3.3	mg/kg	1.2	1 6010B		0911 13:55	
Copper, Total	18	mg/kg	0.58	1 6010B	0910 13:30	0911 13:55	5 AT
Iron, Total	6700	mg/kg	2.9	1 6010B		0911 13:55	
Lead, Total	20	mg/kg	2.9	1 6010B		0911 13:55	
Magnesium, Total	15000	mg/kg	5.8	1 6010B		0911 13:55	
Manganese, Total	58	mg/kg	0.58	1 6010B		0911 13:55	
Mercury, Total	ND	mg/kg	0.10	1 7471A		0912 14:11	
Nickel, Total	3.6	mg/kg	1.4	1 6010B		0911 13:55	
Potassium, Total	220	mg/kg	140	1 6010B		0911 13:55	
Selenium, Total	ND	mg/kg	1.2	1 6010B		0911 13:55	
Silver, Total	ND	mg/kg	0.58	1 6010B		0911 13:55	
Sodium, Total	150	mg/kg	120	1 6010B		0911 13:55	
Thallium, Total	ND	mg/kg	1.2	1 6010B		0911 13:55	
Vanadium, Total	24	mg/kg	0.58	1 6010B		0911 13:55	
Zinc, Total	120	mg/kg	2.9	1 6010B		0911 13:55	
		5, 5					
Volatile Organics by EPA 8	3260B			1 8260B		0911 19:05	5 PD
Methylene chloride	ND	ug/kg	32.				
1,1-Dichloroethane	5.1	ug/kg	4.7				
Chloroform	ND	ug/kg	4.7				
Carbon tetrachloride	ND	ug/kg	3.2				
1,2-Dichloropropane	ND	ug/kg	11.				
Dibromochloromethane	ND	ug/kg	3.2				
1,1,2-Trichloroethane	ND	ug/kg	4.7				
Tetrachloroethene	ND	ug/kg	3.2				
Chlorobenzene	ND	ug/kg	3.2				
Trichlorofluoromethane	ND	ug/kg	16.				

Laboratory Sample Number: L0813344-05

PWG-DW-2008-02 (5.25-5.75')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Volatile Organics by EPA 826	OB cont'd			1	8260B		0911 19:	05 PD
1,2-Dichloroethane	ND	ug/kg	3.2					
1,1,1-Trichloroethane	9.5	ug/kg	3.2					
Bromodichloromethane	ND	ug/kg	3.2					
rans-1,3-Dichloropropene	ND	ug/kg	3.2					
cis-1,3-Dichloropropene	ND	ug/kg	3.2					
l,1-Dichloropropene	ND	ug/kg	16.					
Bromoform	ND	ug/kg	13.					
,1,2,2-Tetrachloroethane	ND	ug/kg	3.2					
Benzene	ND	ug/kg	3.2					
Coluene	ND	ug/kg	4.7					
Sthylbenzene	ND	ug/kg	3.2					
Chloromethane	ND	ug/kg	16.					
Bromomethane	ND	ug/kg	6.3					
Jinyl chloride	ND	ug/kg	6.3					
Chloroethane	ND	ug/kg	6.3					
,1-Dichloroethene	ND	ug/kg	3.2					
rans-1,2-Dichloroethene	ND	ug/kg	4.7					
richloroethene	ND	ug/kg	3.2					
,2-Dichlorobenzene	ND	ug/kg	16.					
.,3-Dichlorobenzene	ND	ug/kg	16.					
.,4-Dichlorobenzene	ND	ug/kg	16.					
Methyl tert butyl ether	ND	ug/kg	6.3					
/m-Xylene	ND	ug/kg	6.3					
-Xylene	ND	ug/kg ug/kg	6.3					
sis-1,2-Dichloroethene	ND	ug/kg	3.2					
ibromomethane	ND	ug/kg ug/kg	32.					
Styrene	ND	ug/kg	6.3					
Dichlorodifluoromethane	ND	ug/kg	32.					
Acetone	ND	ug/kg ug/kg	32.					
Carbon disulfide	ND	ug/kg	32.					
-Butanone	ND	ug/kg ug/kg	32.					
inyl acetate	ND	ug/kg ug/kg	32.					
-Methyl-2-pentanone	ND	ug/kg ug/kg	32.					
	ND ND		32.					
.,2,3-Trichloropropane 2-Hexanone		ug/kg	32.					
r-нехапопе Bromochloromethane	ND ND	ug/kg	32. 16.					
		ug/kg						
2,2-Dichloropropane	ND	ug/kg	16.					
.,2-Dibromoethane	ND	ug/kg	13.					
.,3-Dichloropropane	ND	ug/kg	16.					
,1,1,2-Tetrachloroethane	ND	ug/kg	3.2					
romobenzene	ND	ug/kg	16.					
-Butylbenzene	ND	ug/kg	3.2					
ec-Butylbenzene	ND	ug/kg	3.2					
ert-Butylbenzene	ND	ug/kg	16.					
-Chlorotoluene	ND	ug/kg	16.					
o-Chlorotoluene	ND	ug/kg	16.					
,2-Dibromo-3-chloropropane	ND	ug/kg	16.					
Iexachlorobutadiene	ND	ug/kg	16.					
sopropylbenzene	ND	ug/kg	3.2					

Laboratory Sample Number: L0813344-05

PWG-DW-2008-02 (5.25-5.75')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Volatile Organics by EPA 826	OR contid			1	8260B		0911 19:	OF DD
p-Isopropyltoluene	ND	ua /ka	3.2	1	6260B		0911 19.	05 PD
p-isopropyrtoruene Naphthalene		ug/kg	3.2 16.					
	ND	ug/kg	32.					
Acrylonitrile	ND	ug/kg						
n-Propylbenzene 1,2,3-Trichlorobenzene	ND	ug/kg	3.2					
	ND	ug/kg	16.					
1,2,4-Trichlorobenzene	ND	ug/kg	16.					
1,3,5-Trimethylbenzene	ND	ug/kg	16.					
1,2,4-Trimethylbenzene	ND	ug/kg	16.					
1,4-Diethylbenzene	ND	ug/kg	13.					
4-Ethyltoluene	ND	ug/kg	13.					
1,2,4,5-Tetramethylbenzene	ND	ug/kg	13.					
Surrogate(s)	Recovery		QC Cr	iteria	a			
1,2-Dichloroethane-d4	106	%	70-13	0				
Toluene-d8	105	%	70-13	0				
4-Bromofluorobenzene	120	%	70-13	0				
Dibromofluoromethane	99.0	%	70-13	0				
Semivolatile Organics by EPA	8270C			1	8270C	0911 03:30	0913 00:	35 PS
Acenaphthene	ND	ug/kg	2100					
1,2,4-Trichlorobenzene	ND	ug/kg	2100					
Hexachlorobenzene	ND	ug/kg	2100					
Bis(2-chloroethyl)ether	ND	ug/kg	2100					
2-Chloronaphthalene	ND	ug/kg	2500					
1,2-Dichlorobenzene	ND	ug/kg	2100					
1,3-Dichlorobenzene	ND	ug/kg	2100					
1,4-Dichlorobenzene	ND	ug/kg	2100					
3,3'-Dichlorobenzidine	ND	ug/kg	4200					
2,4-Dinitrotoluene	ND	ug/kg	2100					
2,6-Dinitrotoluene	ND	ug/kg	2100					
Fluoranthene	ND	ug/kg	2100					
4-Chlorophenyl phenyl ether	ND	ug/kg	2100					
4-Bromophenyl phenyl ether	ND	ug/kg	2100					
Bis(2-chloroisopropyl)ether	ND	ug/kg	2100					
Bis(2-chloroethoxy)methane	ND	ug/kg	2100					
Hexachlorobutadiene	ND	ug/kg	4200					
Hexachlorocyclopentadiene	ND	ug/kg	4200					
Hexachloroethane	ND	ug/kg ug/kg	2100					
Isophorone	ND	ug/kg ug/kg	2100					
Naphthalene	ND	ug/kg ug/kg	2100					
Naphthalene Nitrobenzene	ND	ug/kg ug/kg	2100					
Nitrosenzene NitrosoDiPhenylAmine(NDPA)/D		ug/kg ug/kg	6300					
n-Nitrosodi-n-propylamine	ND	ug/kg ug/kg	2100					
Bis(2-Ethylhexyl)phthalate	ND ND	ug/kg ug/kg	4200					
Butyl benzyl phthalate	ND ND	ug/kg ug/kg	2100					
	ND ND		2100					
Di-n-butylphthalate		ug/kg						
Di-n-octylphthalate	ND	ug/kg	2100					
Diethyl phthalate	ND	ug/kg	2100					
Dimethyl phthalate	ND	ug/kg	2100					

Laboratory Sample Number: L0813344-05

PWG-DW-2008-02 (5.25-5.75')

Semivolatile Organics by EPA 827 Senzo(a)anthracene Senzo(a)pyrene Senzo(b)fluoranthene Senzo(k)fluoranthene Senzo(k)fluoranthene Senzo(k)fluoranthene Schrysene Scenaphthylene Schrysene Scenaphthylene Schrysene Scenzo(ghi)perylene Schenanthracene Schenanthrene Schenan		ug/kg	2100 2100 2100 2100 2100 2100 2100 2100	1 8270C	0911 03:30	ANAL 0913 00:35	PS
Renzo(a)anthracene Renzo(a)pyrene Renzo(b)fluoranthene Renzo(k)fluoranthene Renzo(k)fluoranthene Renzo(k)fluoranthene Renzo(k)fluoranthene Renzo(k)fluoranthene Renzo(ghi)perylene Renzo(ghi)perylene Renzo(ghi)perylene Renzo(ghi)perylene Renzo(a,h)anthracene Renzo(ghi)perylene Renzo(a,h)anthracene Renzo(ghi)perylene Re		ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	2100 2100 2100 2100 2100 2100	1 8270C	0911 03:30	0913 00:35	PS
Renzo(a)anthracene Renzo(a)pyrene Renzo(b)fluoranthene Renzo(k)fluoranthene Renzo(k)fluoranthene Renzo(k)fluoranthene Renzo(k)fluoranthene Renzo(k)fluoranthene Renzo(ghi)perylene Renzo(ghi)perylene Renzo(ghi)perylene Renzo(ghi)perylene Renzo(a,h)anthracene Renzo(ghi)perylene Renzo(ghi)perylen		ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	2100 2100 2100 2100 2100 2100	1 8270C	0911 03:30	0913 00:35	PS
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(ghi)perylene Benzo(ghi)perylene Benzo(ghi)perylene Benzo(ghi)perylene Benzo(a,h)anthracene Benzo(a,h)anthracene Bibenzo(a,h)anthracene Bibenzo(a,h)anthracene Bibenzo(a,h)anthracene Biphenyl B-Chloroaniline B-Nitroaniline		ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	2100 2100 2100 2100 2100 2100				
Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(h)fluoranthene Benzo(ghi)perylene Benzo(ghi)perylene Benzo(a,h)anthracene Benzo(a,h)ant		ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	2100 2100 2100 2100 2100				
Renzo(k)fluoranthene Chrysene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenacy (ghi)perylene Acenacy (gh		ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	2100 2100 2100 2100				
Chrysene NI Acenaphthylene NI Acenaphthylene NI Acenaphthylene NI Acenaphthylene NI Acenaphthylene NI Acenaphthylene NI Acenacy (ghi)perylene NI Aluorene NI Aluorene NI Achenanthrene NI Achenaniline NI Achitroaniline NI Achitroaniline NI Achitroaniline NI Achitroaniline NI Achenanthrene NI Ache		ug/kg ug/kg ug/kg ug/kg ug/kg	2100 2100 2100				
Acenaphthylene Anthracene Anthracene Benzo(ghi)perylene Fluorene Phenanthrene Dibenzo(a,h)anthracene Andeno(1,2,3-cd)Pyrene Pyrene Biphenyl B-Chloroaniline B-Nitroaniline		ug/kg ug/kg ug/kg ug/kg	2100 2100				
Anthracene Senzo(ghi)perylene Senzo(ghi)perylene Siluorene Shenanthrene Sibenzo(a,h)anthracene Sindeno(1,2,3-cd)Pyrene Siphenyl S		ug/kg ug/kg ug/kg	2100				
Renzo(ghi)perylene Fluorene Phenanthrene Phenanthracene Phenanthracene NI Phenanthra		ug/kg ug/kg					
Pluorene NI Phenanthrene NI Phenanthrene NI Phenanthrene NI Phenanthrene NI Phenancia, h) anthracene NI Phenancia, a, cd) Pyrene NI Pyrene NI P-Chloroaniline NI P-Nitroaniline NI		ug/kg	2100				
Phenanthrene NI Pibenzo(a,h)anthracene NI Pidenzo(a,h)anthracene NI Pi							
Dibenzo(a,h)anthracene Indeno(1,2,3-cd)Pyrene Indeno(1,2,3-cd)Pyrene NI Pyrene Riphenyl R-Chloroaniline R-Nitroaniline R-Nitroaniline R-Nitroaniline NI))	ua/ka	2100				
Indeno(1,2,3-cd)Pyrene Pyrene Siphenyl -Chloroaniline -Nitroaniline -Nitroaniline -Nitroaniline -Nitroaniline -Nitroaniline -Nitroaniline -Nitroaniline NI -Nitroaniline	D		2100				
Pyrene NI Biphenyl NI B-Chloroaniline NI B-Nitroaniline NI		ug/kg	2100				
Siphenyl NI 1-Chloroaniline NI 2-Nitroaniline NI 3-Nitroaniline NI 4-Nitroaniline NI 5-Nitroaniline NI 6-Nitroaniline NI	_	ug/kg	2100				
R-Chloroaniline NI R-Nitroaniline NI R-Nitroaniline NI R-Nitroaniline NI R-Nitroaniline NI R-Nitroaniline NI R-Methylnaphthalene NI R-2,4,5-Tetrachlorobenzene NI		ug/kg	2100				
R-Nitroaniline NI R-Nitroaniline NI R-Nitroaniline NI R-Nitroaniline NI R-Nitroaniline NI R-Methylnaphthalene NI R-1,2,4,5-Tetrachlorobenzene NI	D	ug/kg	2100				
R-Nitroaniline NI R-Nitroaniline NI R-Nitroaniline NI R-Nitroaniline NI R-Nethylnaphthalene NI R-1,2,4,5-Tetrachlorobenzene NI	D	ug/kg	2100				
A-Nitroaniline NI Dibenzofuran NI A-Methylnaphthalene NI L,2,4,5-Tetrachlorobenzene NI	D	ug/kg	2100				
Dibenzofuran NI R-Methylnaphthalene NI L,2,4,5-Tetrachlorobenzene NI	D	ug/kg	2100				
2-Methylnaphthalene NI 1,2,4,5-Tetrachlorobenzene NI	D	ug/kg	3000				
.,2,4,5-Tetrachlorobenzene NI	D	ug/kg	2100				
	D	ug/kg	2100				
vact on honoro	D	ug/kg	8400				
Acetophenone NI	D	ug/kg	8400				
2,4,6-Trichlorophenol NI	D	ug/kg	2100				
P-Chloro-M-Cresol NI	D	ug/kg	2100				
2-Chlorophenol NI	D	ug/kg	2500				
2,4-Dichlorophenol NI	D	ug/kg	4200				
2,4-Dimethylphenol NI	D	ug/kg	2100				
?-Nitrophenol NI	D	ug/kg	8400				
-Nitrophenol NI	D	ug/kg	4200				
2,4-Dinitrophenol NI	D	ug/kg	8400				
,6-Dinitro-o-cresol NI	D	ug/kg	8400				
Pentachlorophenol NI	D	ug/kg	8400				
Phenol NI	D	ug/kg	3000				
2-Methylphenol NI	D	ug/kg	2500				
3-Methylphenol/4-Methylphenol NI		ug/kg	2500				
2,4,5-Trichlorophenol NI		ug/kg	2100				
Benzoic Acid NI		ug/kg	21000				
Senzyl Alcohol NI		ug/kg	4200				
Carbazole NI		ug/kg	2100				
		ر , ح					
_	ecovery		QC Crite	ria			
<u>-</u>	5.0	왕	25-120				
	0.0	왕	10-120				
	3.0	%	23-120				
	0.0	%	30-120				
2,4,6-Tribromophenol 62	2.0	%	19-120				
-Terphenyl-d14 48	8.0	%	18-120				

Laboratory Sample Number: L0813344-05

PWG-DW-2008-02 (5.25-5.75')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA	TE	ID
					PREP	ANAL	
Semivolatile Organics by EP				1 8270C	0911 03:30	0912 21:5	4 AK
Acenaphthene	ND	ug/kg	840				
2-Chloronaphthalene	ND	ug/kg	840				
Fluoranthene	ND	ug/kg	840				
Hexachlorobutadiene	ND	ug/kg	2100				
Naphthalene	ND	ug/kg	840				
Benzo(a)anthracene	ND	ug/kg	840				
Benzo(a)pyrene	ND	ug/kg	840				
Benzo(b)fluoranthene	ND	ug/kg	840				
Benzo(k)fluoranthene	ND	ug/kg	840				
Chrysene	ND	ug/kg	840				
Acenaphthylene	ND	ug/kg	840				
Anthracene	ND	ug/kg	840				
Benzo(ghi)perylene	ND	ug/kg	840				
Fluorene	ND	ug/kg	840				
Phenanthrene	ND	ug/kg	840				
Dibenzo(a,h)anthracene	ND	ug/kg	840				
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	840				
Pyrene	ND	ug/kg	840				
2-Methylnaphthalene	ND	ug/kg	840				
Pentachlorophenol	ND	ug/kg	3400				
Hexachlorobenzene	ND	ug/kg	3400				
Hexachloroethane	ND	ug/kg	3400				
Surrogate(s)	Recovery		QC Cri	teria			
2-Fluorophenol	ND	8	25-120				
Phenol-d6	ND	%	10-120	1			
Nitrobenzene-d5	ND	%	23-120	1			
2-Fluorobiphenyl	ND	%	30-120	1			
2,4,6-Tribromophenol	ND	8	19-120	1			
1-Terphenyl-d14	ND	%	18-120	1			
Petroleum Hydrocarbon Quant	itation by (GC-FID		1 8015B(M)	0911 00:15	0912 02:3	7 RI
ГРН	ND	ug/kg	211000				
Surrogate(s)	Recovery		QC Cri	teria			
o-Terphenyl	85.0	8	40-140				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813344-06 Date Collected: 08-SEP-2008 09:45

Sample Matrix: SOIL Date Reported: 25-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER	RESULT	UNITS	\mathtt{RDL}	REF METHOD	DATE ID
					PREP ANAL
Solids, Total	80	%	0.10	30 2540G	0910 18:40 NM
Total Metals					
Aluminum, Total	1300	mg/kg	5.8	1 6010B	0910 13:30 0911 14:19 AI
Antimony, Total	ND	mg/kg	2.9	1 6010B	0910 13:30 0911 14:19 AI
Arsenic, Total	0.69	mg/kg	0.58	1 6010B	0910 13:30 0911 14:19 AI
Barium, Total	5.2	mg/kg	0.58	1 6010B	0910 13:30 0911 14:19 AI
Beryllium, Total	ND	mg/kg	0.29	1 6010B	0910 13:30 0911 14:19 AI
Cadmium, Total	ND	mg/kg	0.58	1 6010B	0910 13:30 0911 14:19 AI
Calcium, Total	560	mg/kg	5.8	1 6010B	0910 13:30 0911 14:19 AI
Chromium, Total	2.7	mg/kg	0.58	1 6010B	0910 13:30 0911 14:19 AI
Cobalt, Total	ND	mg/kg	1.2	1 6010B	0910 13:30 0911 14:19 AI
Copper, Total	4.6	mg/kg	0.58	1 6010B	0910 13:30 0911 14:19 AI
Iron, Total	1800	mg/kg	2.9	1 6010B	0910 13:30 0911 14:19 AI
Lead, Total	30	mg/kg	2.9	1 6010B	0910 13:30 0911 14:19 AI
Magnesium, Total	520	mg/kg	5.8	1 6010B	0910 13:30 0911 14:19 AI
Manganese, Total	13	mg/kg	0.58	1 6010B	0910 13:30 0911 14:19 AI
Mercury, Total	ND	mg/kg	0.09	1 7471A	0911 23:30 0912 14:13 RC
Nickel, Total	2.0	mg/kg	1.4	1 6010B	0910 13:30 0911 14:19 AI
Potassium, Total	ND	mg/kg	140	1 6010B	0910 13:30 0911 14:19 AI
Selenium, Total	ND	mg/kg	1.2	1 6010B	0910 13:30 0911 14:19 AI
Silver, Total	ND	mg/kg	0.58	1 6010B	0910 13:30 0911 14:19 AI
Sodium, Total	ND	mg/kg	120	1 6010B	0910 13:30 0911 14:19 AI
Thallium, Total	ND	mg/kg	1.2	1 6010B	0910 13:30 0911 14:19 AI
Janadium, Total	4.1	mg/kg	0.58	1 6010B	0910 13:30 0911 14:19 AI
Zinc, Total	29	mg/kg	2.9	1 6010B	0910 13:30 0911 14:19 AI
Olatile Organics by EPA 8	260B			1 8260B	0911 19:42 PD
Methylene chloride	ND	ug/kg	31.		
l,1-Dichloroethane	7.2	ug/kg	4.7		
Chloroform	ND	ug/kg	4.7		
Carbon tetrachloride	ND	ug/kg	3.1		
l,2-Dichloropropane	ND	ug/kg	11.		
Dibromochloromethane	ND	ug/kg	3.1		
l,1,2-Trichloroethane	ND	ug/kg	4.7		
Tetrachloroethene	7.6	ug/kg	3.1		
Chlorobenzene	ND	ug/kg	3.1		
Trichlorofluoromethane	ND	ug/kg	16.		

Laboratory Sample Number: L0813344-06

PWG-DW-2008-03 (8.75-9.25')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
olatile Organics by EPA 826	OB cont'd			1	8260B		0911 19:	42 PD
l,2-Dichloroethane	ND	ug/kg	3.1					
l,1,1-Trichloroethane	13	ug/kg	3.1					
Bromodichloromethane	ND	ug/kg	3.1					
rans-1,3-Dichloropropene	ND	ug/kg	3.1					
cis-1,3-Dichloropropene	ND	ug/kg	3.1					
,1-Dichloropropene	ND	ug/kg	16.					
Bromoform	ND	ug/kg	12.					
.,1,2,2-Tetrachloroethane	ND	ug/kg	3.1					
Benzene	ND	ug/kg	3.1					
oluene	ND	ug/kg	4.7					
thylbenzene	ND	ug/kg	3.1					
hloromethane	ND	ug/kg	16.					
Bromomethane	ND	ug/kg	6.2					
inyl chloride	ND	ug/kg	6.2					
hloroethane	ND	ug/kg	6.2					
,1-Dichloroethene	ND	ug/kg	3.1					
rans-1,2-Dichloroethene	ND	ug/kg	4.7					
richloroethene	ND	ug/kg	3.1					
,2-Dichlorobenzene	ND	ug/kg	16.					
,3-Dichlorobenzene	ND	ug/kg	16.					
,4-Dichlorobenzene	ND	ug/kg	16.					
ethyl tert butyl ether	ND	ug/kg	6.2					
/m-Xylene	ND	ug/kg	6.2					
-Xylene	ND	ug/kg	6.2					
is-1,2-Dichloroethene	4.4	ug/kg	3.1					
pibromomethane	ND	ug/kg	31.					
tyrene	ND	ug/kg	6.2					
oichlorodifluoromethane	ND	ug/kg	31.					
cetone	ND	ug/kg	31.					
arbon disulfide	ND	ug/kg	31.					
-Butanone	ND	ug/kg ug/kg	31.					
inyl acetate	ND	ug/kg ug/kg	31.					
-Methyl-2-pentanone	ND ND	ug/kg ug/kg	31.					
	ND		31.					
,2,3-Trichloropropane -Hexanone		ug/kg	31.					
-нехапопе gromochloromethane	ND ND	ug/kg	31. 16.					
		ug/kg						
2.Dichloropropane	ND ND	ug/kg	16.					
,2-Dighleropropage	ND ND	ug/kg	12. 16					
.,3-Dichloropropane	ND	ug/kg	16.					
,1,1,2-Tetrachloroethane	ND	ug/kg	3.1					
romobenzene	ND	ug/kg	16.					
-Butylbenzene	ND	ug/kg	3.1					
ec-Butylbenzene	ND	ug/kg	3.1					
ert-Butylbenzene	ND	ug/kg	16.					
-Chlorotoluene	ND	ug/kg	16.					
-Chlorotoluene	ND	ug/kg	16.					
,2-Dibromo-3-chloropropane	ND	ug/kg	16.					
Mexachlorobutadiene	ND	ug/kg	16.					
sopropylbenzene	ND	ug/kg	3.1					

Laboratory Sample Number: L0813344-06

PWG-DW-2008-03 (8.75-9.25')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
						PREF	ANAL	
Volatile Organics by EPA 826	OB cont'd			1	8260B		0911 19:	42 PD
p-Isopropyltoluene	ND	ug/kg	3.1					
Naphthalene	ND	ug/kg	16.					
Acrylonitrile	ND	ug/kg	31.					
n-Propylbenzene	ND	ug/kg	3.1					
1,2,3-Trichlorobenzene	ND	ug/kg	16.					
1,2,4-Trichlorobenzene	ND	ug/kg	16.					
l,3,5-Trimethylbenzene	ND	ug/kg	16.					
l,2,4-Trimethylbenzene	ND	ug/kg	16.					
1,4-Diethylbenzene	ND	ug/kg	12.					
1-Ethyltoluene	ND	ug/kg	12.					
1,2,4,5-Tetramethylbenzene	ND	ug/kg	12.					
Surrogate(s)	Recovery		QC Cri	teria	a.			
1,2-Dichloroethane-d4	94.0	%	70-130					
Foluene-d8	94.0	%	70-130					
4-Bromofluorobenzene	113	%	70-130					
Dibromofluoromethane	89.0	ે	70-130					
	00700			_				
Semivolatile Organics by EPA		. /1	400	1	8270C	0911 03:30	0912 18:	59 PS
Acenaphthene	ND	ug/kg	420					
1,2,4-Trichlorobenzene	ND	ug/kg	420					
Mexachlorobenzene	ND	ug/kg	420					
Bis(2-chloroethyl)ether	ND	ug/kg	420					
2-Chloronaphthalene	ND	ug/kg	500					
l,2-Dichlorobenzene	ND	ug/kg	420					
,3-Dichlorobenzene	ND	ug/kg	420					
1,4-Dichlorobenzene	ND	ug/kg	420					
3,3'-Dichlorobenzidine	ND	ug/kg	830					
2,4-Dinitrotoluene	ND	ug/kg	420					
2,6-Dinitrotoluene	ND	ug/kg	420					
luoranthene	ND	ug/kg	420					
4-Chlorophenyl phenyl ether	ND	ug/kg	420					
4-Bromophenyl phenyl ether	ND	ug/kg	420					
Bis(2-chloroisopropyl)ether	ND	ug/kg	420					
Bis(2-chloroethoxy)methane	ND	ug/kg	420					
Hexachlorobutadiene	ND	ug/kg	830					
Hexachlorocyclopentadiene	ND	ug/kg	830					
Hexachloroethane	ND	ug/kg	420					
Isophorone	ND	ug/kg	420					
Naphthalene	ND	ug/kg	420					
Jitrobenzene	ND	ug/kg	420					
NitrosoDiPhenylAmine(NDPA)/D		ug/kg	1200					
n-Nitrosodi-n-propylamine	ND	ug/kg	420					
Bis(2-Ethylhexyl)phthalate	ND	ug/kg	830					
Butyl benzyl phthalate	ND	ug/kg	420					
Di-n-butylphthalate	ND	ug/kg	420					
Di-n-octylphthalate	ND	ug/kg	420					
Diethyl phthalate	ND	ug/kg	420					
Dimethyl phthalate	ND	ug/kg	420					

Laboratory Sample Number: L0813344-06

PWG-DW-2008-03 (8.75-9.25')

					PREP	ANAL	
emivolatile Organics by EPA			400	1 8270C	0911 03:30	0912 18:5	9 PS
enzo(a)anthracene	ND	ug/kg	420				
enzo(a)pyrene	ND	ug/kg	420				
enzo(b)fluoranthene	ND	ug/kg	420				
enzo(k)fluoranthene	ND	ug/kg	420				
hrysene	ND	ug/kg	420				
cenaphthylene	ND	ug/kg	420				
nthracene	ND	ug/kg	420				
enzo(ghi)perylene	ND	ug/kg	420				
luorene	ND	ug/kg	420				
henanthrene	ND	ug/kg	420				
ibenzo(a,h)anthracene	ND	ug/kg	420				
ndeno(1,2,3-cd)Pyrene	ND	ug/kg	420				
yrene	ND	ug/kg	420				
iphenyl	ND	ug/kg	420				
-Chloroaniline	ND	ug/kg	420				
-Nitroaniline	ND	ug/kg	420				
-Nitroaniline	ND	ug/kg	420				
-Nitroaniline	ND	ug/kg	580				
ibenzofuran	ND	ug/kg	420				
-Methylnaphthalene	ND	ug/kg	420				
,2,4,5-Tetrachlorobenzene	ND	ug/kg	1700				
cetophenone	ND	ug/kg	1700				
,4,6-Trichlorophenol	ND	ug/kg	420				
-Chloro-M-Cresol	ND	ug/kg	420				
-Chlorophenol	ND	ug/kg	500				
,4-Dichlorophenol	ND	ug/kg	830				
,4-Dimethylphenol	ND	ug/kg	420				
-Nitrophenol	ND	ug/kg	1700				
-Nitrophenol	ND	ug/kg	830				
,4-Dinitrophenol	ND	ug/kg	1700				
,6-Dinitro-o-cresol	ND	ug/kg	1700				
entachlorophenol	ND	ug/kg	1700				
henol	ND	ug/kg	580				
-Methylphenol	ND	ug/kg	500				
-Methylphenol/4-Methylphenol		ug/kg	500				
,4,5-Trichlorophenol	ND	ug/kg	420				
enzoic Acid	ND	ug/kg	4200				
enzyl Alcohol	ND	ug/kg ug/kg	830				
arbazole	ND	ug/kg ug/kg	420				
41242016	1112	45/12	120				
urrogate(s)	Recovery		QC Cri				
-Fluorophenol	45.0	%	25-120				
henol-d6	44.0	%	10-120				
itrobenzene-d5	40.0	%	23-120				
-Fluorobiphenyl	44.0	%	30-120)			
,4,6-Tribromophenol	68.0	%	19-120)			
-Terphenyl-d14	51.0	%	18-120)			

Laboratory Sample Number: L0813344-06

PWG-DW-2008-03 (8.75-9.25')

ARAMETER	RESULT	UNITS	RDL	REF METHOD	DA		ID
					PREP	ANAL	
an' alat'la Oscar'an h. ED	7 00000 OTM						
emivolatile Organics by EP			0.2	1 8270C	0911 03:30	0912 22:4	0 AF
cenaphthene	ND	ug/kg	83.				
-Chloronaphthalene	ND	ug/kg	83.				
luoranthene	ND	ug/kg	83.				
exachlorobutadiene	ND	ug/kg	210				
aphthalene	ND	ug/kg	83.				
enzo(a)anthracene	ND	ug/kg	83.				
enzo(a)pyrene	ND	ug/kg	83.				
enzo(b)fluoranthene	ND	ug/kg	83.				
enzo(k)fluoranthene	ND	ug/kg	83.				
hrysene	ND	ug/kg	83.				
cenaphthylene	ND	ug/kg	83.				
nthracene	ND	ug/kg	83.				
enzo(ghi)perylene	ND	ug/kg	83.				
luorene	ND	ug/kg	83.				
henanthrene	ND	ug/kg	83.				
ibenzo(a,h)anthracene	ND	ug/kg	83.				
ndeno(1,2,3-cd)Pyrene	ND	ug/kg	83.				
yrene	ND	ug/kg	83.				
-Methylnaphthalene	ND	ug/kg	83.				
entachlorophenol	ND	ug/kg	330				
exachlorobenzene	ND	ug/kg	330				
exachloroethane	ND	ug/kg	330				
urrogate(s)	Recovery		QC Cri	teria			
-Fluorophenol	46.0	%	25-120				
henol-d6	50.0	%	10-120				
itrobenzene-d5	41.0	%	23-120				
-Fluorobiphenyl	52.0	%	30-120				
,4,6-Tribromophenol	67.0	8	19-120				
-Terphenyl-d14	59.0	%	18-120				
etroleum Hydrocarbon Quant	itation by (GC-FID		1 8015B(M)	0911 00:15	0912 03:1	2 R'
PH	374000	ug/kg	41700				
urrogate(s)	Recovery		QC Cri				
-Terphenyl	78.0	8	40-140				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813344-07 Date Collected: 08-SEP-2008 10:00

Sample Matrix: SOIL Date Reported: 25-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID
					PREP ANAL
Solids, Total	77	%	0.10	30 2540G	0910 18:40 NM
Total Metals					
Aluminum, Total	1400	mg/kg	6.4	1 6010B	0910 13:30 0911 14:23 AI
Antimony, Total	ND	mg/kg	3.2	1 6010B	0910 13:30 0911 14:23 AI
Arsenic, Total	0.84	mg/kg	0.64	1 6010B	0910 13:30 0911 14:23 AI
Barium, Total	9.7	mg/kg	0.64	1 6010B	0910 13:30 0911 14:23 AI
Beryllium, Total	ND	mg/kg	0.32	1 6010B	0910 13:30 0911 14:23 AI
Cadmium, Total	ND	mg/kg	0.64	1 6010B	0910 13:30 0911 14:23 AI
Calcium, Total	3600	mg/kg	6.4	1 6010B	0910 13:30 0911 14:23 AI
Chromium, Total	3.6	mg/kg	0.64	1 6010B	0910 13:30 0911 14:23 AI
Cobalt, Total	ND	mg/kg	1.3	1 6010B	0910 13:30 0911 14:23 AI
Copper, Total	5.1	mg/kg	0.64	1 6010B	0910 13:30 0911 14:23 AI
Iron, Total	3000	mg/kg	3.2	1 6010B	0910 13:30 0911 14:23 AI
Lead, Total	35	mg/kg	3.2	1 6010B	0910 13:30 0911 14:23 AI
Magnesium, Total	2100	mg/kg	6.4	1 6010B	0910 13:30 0911 14:23 AI
Manganese, Total	20	mg/kg	0.64	1 6010B	0910 13:30 0911 14:23 AI
Mercury, Total	ND	mg/kg	0.09	1 7471A	0911 23:30 0912 14:15 RC
Nickel, Total	2.1	mg/kg	1.6	1 6010B	0910 13:30 0911 14:23 AI
Potassium, Total	ND	mg/kg	160	1 6010B	0910 13:30 0911 14:23 AI
Selenium, Total	ND	mg/kg	1.3	1 6010B	0910 13:30 0911 14:23 AI
Silver, Total	ND	mg/kg	0.64	1 6010B	0910 13:30 0911 14:23 AI
Sodium, Total	ND	mg/kg	130	1 6010B	0910 13:30 0911 14:23 AI
Thallium, Total	ND	mg/kg	1.3	1 6010B	0910 13:30 0911 14:23 AI
Vanadium, Total	5.6	mg/kg	0.64	1 6010B	0910 13:30 0911 14:23 AI
Zinc, Total	45	mg/kg	3.2	1 6010B	0910 13:30 0911 14:23 AI
Olatile Organics by EPA 8	3260B			1 8260B	0911 20:19 PD
Methylene chloride	ND	ug/kg	32.		
l,1-Dichloroethane	ND	ug/kg	4.9		
Chloroform	ND	ug/kg	4.9		
Carbon tetrachloride	ND	ug/kg	3.2		
l,2-Dichloropropane	ND	ug/kg	11.		
Dibromochloromethane	ND	ug/kg	3.2		
1,1,2-Trichloroethane	ND	ug/kg	4.9		
Tetrachloroethene	ND	ug/kg	3.2		
Chlorobenzene	ND	ug/kg	3.2		
Trichlorofluoromethane	ND	ug/kg	16.		

Laboratory Sample Number: L0813344-07

PWG-DW-2008-04 (7.25-7.75')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Olatile Organics by EPA 826	OB cont'd			1	8260B		0911 20:	19 PD
1,2-Dichloroethane	ND	ug/kg	3.2					
l,1,1-Trichloroethane	ND	ug/kg	3.2					
Bromodichloromethane	ND	ug/kg	3.2					
rans-1,3-Dichloropropene	ND	ug/kg	3.2					
is-1,3-Dichloropropene	ND	ug/kg	3.2					
,1-Dichloropropene	ND	ug/kg	16.					
Bromoform	ND	ug/kg	13.					
,1,2,2-Tetrachloroethane	ND	ug/kg	3.2					
senzene	ND	ug/kg	3.2					
oluene	ND	ug/kg	4.9					
thylbenzene	ND	ug/kg	3.2					
thloromethane	ND	ug/kg	16.					
Bromomethane	ND	ug/kg	6.5					
inyl chloride	ND	ug/kg	6.5					
hloroethane	ND	ug/kg	6.5					
,1-Dichloroethene	ND	ug/kg	3.2					
rans-1,2-Dichloroethene	ND	ug/kg	4.9					
richloroethene	ND	ug/kg	3.2					
,2-Dichlorobenzene	ND	ug/kg	16.					
,3-Dichlorobenzene	ND	ug/kg	16.					
,4-Dichlorobenzene	ND	ug/kg	16.					
ethyl tert butyl ether	ND	ug/kg ug/kg	6.5					
/m-Xylene	ND	ug/kg	6.5					
-Xylene	ND	ug/kg ug/kg	6.5					
is-1,2-Dichloroethene	ND	ug/kg ug/kg	3.2					
bromomethane	ND	ug/kg ug/kg	32.					
tyrene	ND	ug/kg ug/kg	6.5					
Dichlorodifluoromethane	ND	ug/kg ug/kg	32.					
acetone	ND		32.					
arbon disulfide	ND	ug/kg ug/kg	32.					
-Butanone	ND	ug/kg ug/kg	32.					
inyl acetate			32.					
-	ND	ug/kg						
-Methyl-2-pentanone	ND	ug/kg	32. 32.					
.,2,3-Trichloropropane	ND	ug/kg						
-Hexanone romochloromethane	ND	ug/kg	32.					
	ND	ug/kg	16.					
2,2-Dichloropropane	ND	ug/kg	16.					
,,2-Dibromoethane	ND	ug/kg	13.					
.,3-Dichloropropane	ND	ug/kg	16.					
,1,1,2-Tetrachloroethane	ND	ug/kg	3.2					
romobenzene	ND	ug/kg	16.					
-Butylbenzene	ND	ug/kg	3.2					
ec-Butylbenzene	ND	ug/kg	3.2					
ert-Butylbenzene	ND	ug/kg	16.					
-Chlorotoluene	ND	ug/kg	16.					
-Chlorotoluene	ND	ug/kg	16.					
,2-Dibromo-3-chloropropane	ND	ug/kg	16.					
[exachlorobutadiene	ND	ug/kg	16.					
sopropylbenzene	ND	ug/kg	3.2					

Laboratory Sample Number: L0813344-07

PWG-DW-2008-04 (7.25-7.75')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAI	ID
						PREP	ANAL	<u>.</u>
Volatile Organics by EPA 826	OB cont'd			1	8260B		0911 20	:19 PD
p-Isopropyltoluene	ND	ug/kg	3.2					
Naphthalene	ND	ug/kg	16.					
Acrylonitrile	ND	ug/kg	32.					
n-Propylbenzene	ND	ug/kg	3.2					
1,2,3-Trichlorobenzene	ND	ug/kg	16.					
1,2,4-Trichlorobenzene	ND	ug/kg	16.					
1,3,5-Trimethylbenzene	ND	ug/kg	16.					
l,2,4-Trimethylbenzene	ND	ug/kg	16.					
1,4-Diethylbenzene	ND	ug/kg	13.					
4-Ethyltoluene	ND	ug/kg	13.					
1,2,4,5-Tetramethylbenzene	ND	ug/kg	13.					
Surrogate(s)	Recovery		OC Cri	teria	a.			
1,2-Dichloroethane-d4	101	%	70-130					
Foluene-d8	106	%	70-130					
4-Bromofluorobenzene	118	%	70-130					
Dibromofluoromethane	99.0	%	70-130					
Semivolatile Organics by EPA	8270C			1	8270C	0911 03:30	0012 10	. 22 Da
Acenaphthene	ND	ug/kg	430	1	8270C	0911 03.30	0912 19	·22 PS
l,2,4-Trichlorobenzene	ND	ug/kg ug/kg	430					
fexachlorobenzene	ND	ug/kg ug/kg	430					
Bis(2-chloroethyl)ether	ND	ug/kg ug/kg	430					
2-Chloronaphthalene	ND	ug/kg ug/kg	520					
1,2-Dichlorobenzene	ND	ug/kg ug/kg	430					
1,3-Dichlorobenzene	ND	ug/kg ug/kg	430					
1,4-Dichlorobenzene	ND	ug/kg ug/kg	430					
3,3'-Dichlorobenzidine	ND	ug/kg ug/kg	860					
2,4-Dinitrotoluene	ND	ug/kg ug/kg	430					
2,6-Dinitrotoluene	ND	ug/kg ug/kg	430					
Fluoranthene	ND	ug/kg ug/kg	430					
4-Chlorophenyl phenyl ether	ND ND	ug/kg ug/kg	430					
4-Bromophenyl phenyl ether	ND ND	ug/kg ug/kg	430					
Bis(2-chloroisopropyl)ether	ND ND	ug/kg ug/kg	430					
Bis(2-chloroethoxy)methane	ND ND	ug/kg ug/kg	430					
Hexachlorobutadiene	ND ND	ug/kg ug/kg	860					
Hexachlorocyclopentadiene	ND ND	ug/kg ug/kg	860					
Hexachiorocyclopentadiene Hexachloroethane	ND ND	ug/kg ug/kg	430					
Isophorone	ND ND		430					
		ug/kg	430					
Naphthalene Nitrobenzene	ND ND	ug/kg ug/kg	430					
Nitropenzene JitrosoDiPhenylAmine(NDPA)/D		ug/kg ug/kg	1300					
nitrosodiphenyiAmine(NDPA)/D. n-Nitrosodi-n-propylamine	ND		430					
Bis(2-Ethylhexyl)phthalate	ND ND	ug/kg	860					
		ug/kg						
Butyl benzyl phthalate Di-n-butylphthalate	ND	ug/kg	430					
JI = II = DUL VI DIILII d L d L e	ND	ug/kg	430					
	NTD		120					
Di-n-octylphthalate Diethyl phthalate	ND ND	ug/kg ug/kg	430 430					

Laboratory Sample Number: L0813344-07

PWG-DW-2008-04 (7.25-7.75')

Benzo(a) pyrene ND ug/kg 4 Benzo(b) fluoranthene ND ug/kg 4 Benzo(k) fluoranthene ND ug/kg 4 Benzo(k) fluoranthene ND ug/kg 4 Acenaphthylene ND ug/kg 4 Acenaphthylene ND ug/kg 4 Acenaphthylene ND ug/kg 4 Anthracene ND ug/kg 4 Benzo(ghi) perylene ND ug/kg 4 Benzo(ghi) perylene ND ug/kg 4 Fluorene ND ug/kg 4 Phenanthrene ND ug/kg 4 Phenanthrene ND ug/kg 4 Indeno(1,2,3-cd) Pyrene ND ug/kg 4 Fluorene ND ug/kg 4 Indeno(1,2,3-cd) Pyrene ND ug/kg 4 Biphenyl ND ug/kg 4 4-Chloroaniline ND ug/kg 4 4-Chloroaniline ND ug/kg 4 3-Nitroaniline ND ug/kg 4 4-Nitroaniline ND ug/kg 4 1,2,4,5-Tetrachlorobenzene ND ug/kg 4 1,2,4,5-Tetrachlorobenzene ND ug/kg 4 2-Alichlorophenol ND ug/kg 5 2-Alicrophenol ND ug/kg 5 2-Alicrophenol ND ug/kg 6 2-Alicrophenol ND ug/kg 6 2-Alicrophenol ND ug/kg 6 2-Nitrophenol ND ug/kg 7 2-Nitrophenol ND ug/kg 8 2-Alichlorophenol ND ug/kg 8 2-Alichlorophenol ND ug/kg 8 2-Alichlorophenol ND ug/kg 1 2-Alichlorophenol ND ug/kg 1 2-Nitrophenol ND ug/kg 1 2-Nitrophenol ND ug/kg 1 2-Methylphenol ND ug/kg 1 3-Methylphenol ND ug/kg 1 3-Methylphenol ND ug/kg 1 3-Methylphenol/4-Methylphenol ND ug/kg 6 Benzyl Alcohol ND ug/kg 6 Carbazole	1 8270C 0911 03:30 0912 19:22 P 430 430 430 430 430 430
Benzo(a) anthracene Benzo(a) pyrene Benzo(b) fluoranthene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(ghi) perylene Benz	430 430 430 430
denzo(a) anthracene denzo(a) pyrene denzo(b) fluoranthene denzo(b) fluoranthene denzo(k) fluoranthene denzo(ghi) perylene denzo(ghi) perylene denzo(ghi) perylene denzo(ghi) perylene denzo(a, h) anthracene denzo(a) denzo(a, h) denzo(a, h) anthracene denzo(a, h) anthra	430 430 430 430
Senzo(a)pyrene Senzo(b)fluoranthene Senzo(b)fluoranthene Senzo(b)fluoranthene Senzo(b)fluoranthene Senzo(b)fluoranthene Senzo(b)fluoranthene Senzo(b)fluoranthene ND Senzo(ghi)perylene ND Senzo(g	430 430 430
Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene ND ND Ng/kg Acenaphthylene ND ND Ng/kg Acenaphthylene ND ND Ng/kg Benzo(ghi)perylene ND ND Ng/kg Benzo(ghi)perylene ND ND Ng/kg Benzo(ghi)perylene ND ND Ng/kg Benzo(a,h)anthracene ND ND Ng/kg Biphenzo(a,h)anthracene ND ND Ng/kg Biphenyl ND ND Ng/kg Biphenyl ND ND Ng/kg Acethylnaphthalene ND ND Ng/kg Acetophenone ND Ng/kg Acetophenone ND Ng/kg Acetophenone ND Ng/kg Acetophenone ND ND Ng/kg Acetophenone ND Ng/kg Acetophenol Ng	430 430
Senzo(k)fluoranthene Schrysene ND ug/kg Acenaphthylene ND ug/kg Acetophenone ND ug/kg Acetophenol Accenacy Acetophenol Accenacy A	430
Chrysene Acenaphthylene Acenaphthylene Acenaphthylene Anthracene Benzo(ghi)perylene Benzo(ghi)perylene Phenanthrene Dibenzo(a,h)anthracene ND ND Ng/kg Acenaphthylene Acenaphthylene ND Ng/kg Acenaphthylene ND Ng/kg Acenaphthylene ND Ng/kg Acenaphthylene Acenaphthylene ND Ng/kg Acenaphthylene ND Ng/kg Acenaphthylene Acenaphthylene ND Ng/kg Acenaphthylene ND Ng/kg Acenaphthylene Acenaphthylene ND Ng/kg Acenaphthylene Acenaphthylene ND Ng/kg Acenaphthylene Acenaphthylene Acenaphthylene ND Ng/kg Acenaphthylene Acenaphthylene ND Ng/kg Acenaphthylene Acenaphthylene Acenaphthylene ND Ng/kg Acenaphthylene ND Ng/kg Acenaphthylene Acenaphthylene Acenaphthylene ND Ng/kg Acenaphthylene Acenaphthyl	
Acenaphthylene Anthracene Anthrac	430
Anthracene Benzo(ghi)perylene Benzo(ghi)perylene Benzo(ghi)perylene Benzo(ghi)perylene Benzo(ghi)perylene Benzo(ghi)perylene Benzo(ghi)perylene Benzo(a,h)anthracene Dibenzo(a,h)anthracene Dibenzo(a,h)anthracene Dibenzo(a,h)anthracene Dibenzo(a,h)anthracene Dibenzo(a,h)anthracene Dibenzo(a,h)anthracene Dibenzo(a,h)anthracene Dibenzolline Dibenzolline Dibenzolline Dibenzolline Dibenzolline Dibenzolline Dibenzofuran Dib	
Renzo(ghi)perylene Relacion (Serluorene Relacion (S	430
Phenanthrene Phenanthrene Phenanthrene Dibenzo(a,h)anthracene ND ND Ng/kg Phenanthrene ND ND Ng/kg Phenanthrene ND ND Ng/kg Prene ND Ng/kg Prene ND ND Ng/kg Prene ND Ng Ng/kg Prene ND Ng Ng/kg Prene ND Ng Ng/kg Prene ND Ng	430
Phenanthrene Dibenzo(a,h)anthracene Dibenzo(a,h)anthracene Dibenzo(a,h)anthracene Dibenzo(a,h)anthracene Dibenzo(a,h)anthracene Dibenzo(a,h)anthracene Dibenzo(a,h)anthracene Dibenzo(a,h)anthracene Dibenzo(a,h)anthracene Dibenzofil	430
Dibenzo(a,h)anthracene ND Ug/kg Andeno(1,2,3-cd)Pyrene ND Ug/kg Apyrene ND ND Ug/kg Ap	430
Indeno(1,2,3-cd)Pyrene ND ug/kg 4 Pyrene ND ug/k	430
Pyrene ND ug/kg 4 Paiphenyl ND ug/kg 4 P-Chloroaniline ND ug/kg 4 P-Chloroaniline ND ug/kg 4 P-Nitroaniline ND ug/kg 4 P-Methylnaphthalene ND ug/kg 4 P-Chlorophenol ND ug/kg 1 P-Chloro-M-Cresol ND ug/kg 4 P-Chlorophenol ND ug/kg 4 P-Chlorophenol ND ug/kg 4 P-Chlorophenol ND ug/kg 4 P-Nitrophenol ND ug/kg 4 P-Nitrophenol ND ug/kg 4 P-Nitrophenol ND ug/kg 4 P-Nitrophenol ND ug/kg 8 P-Nitrophenol ND ug/kg 1 P-Nitrop	430
Biphenyl ND ug/kg 4 4-Chloroaniline ND ug/kg 4 5-Nitroaniline ND ug/kg 4 6-Nitroaniline ND ug/kg 4 6-Nitroaniline ND ug/kg 6 6-Methylnaphthalene ND ug/kg 6 6-Acetophenone ND ug/kg 1 6-Chlorohenone ND ug/kg 6 6-Chloro-M-Cresol ND ug/kg 6 6-Chloro-M-Cresol ND ug/kg 6 6-Chlorophenol ND ug/kg 6 6-Chlorophenol ND ug/kg 6 6-A-Dinitrophenol ND ug/kg 6 6-A-Dinitrophenol ND ug/kg 6 6-A-Dinitrophenol ND ug/kg 6 6-A-Dinitro-o-cresol ND ug/kg 6 6-A-Dinitro-o	430
4-Chloroaniline 2-Nitroaniline ND 2-Nitroaniline ND 3-Nitroaniline ND 4-Nitroaniline ND 2-Methylnaphthalene ND Acetophenone ND 2-A, 6-Trichlorophenol ND 2-A-Dimethylphenol ND 2-Nitrophenol ND ND ND ND ND ND ND ND ND N	430
2-Nitroaniline 3-Nitroaniline ND ug/kg 4-Nitroaniline ND ug/kg 4-Nitrophenol ND ug/kg 2-4-6-Trichlorophenol ND ug/kg 2-Chlorophenol ND ug/kg 2-Chlorophenol ND ug/kg 2-A-Dichlorophenol ND ug/kg 2-A-Dimethylphenol ND ug/kg 4-Nitrophenol ND ug/kg 4-Nitrophenol ND ug/kg 1-Nitrophenol ND ug/kg	430
3-Nitroaniline 3-Nitroaniline ND ug/kg 4-Nitroaniline ND ug/kg 6-Dibenzofuran ND ug/kg 6-Methylnaphthalene ND ug/kg 1,2,4,5-Tetrachlorobenzene ND ug/kg 1,2,4,5-Tetrachlorobenzene ND ug/kg 1,2,4,6-Trichlorophenol ND ug/kg 2,4,6-Trichlorophenol ND ug/kg 2-Chloro-M-Cresol ND ug/kg 2-Chlorophenol ND ug/kg 2,4-Dichlorophenol ND ug/kg 2,4-Dimethylphenol ND ug/kg 2-Nitrophenol ND ug/kg 1-Nitrophenol ND ug/kg 1-Nitrop	430
4-Nitroaniline Dibenzofuran Dib	430
Dibenzofuran Di	430
2-Methylnaphthalene ND ug/kg 4 1,2,4,5-Tetrachlorobenzene ND ug/kg 1 2,4,6-Trichlorophenol ND ug/kg 4 2-Chloro-M-Cresol ND ug/kg 4 2-Chlorophenol ND ug/kg 8 2-Chlorophenol ND ug/kg 8 2,4-Dichlorophenol ND ug/kg 8 2,4-Dimethylphenol ND ug/kg 8 2-Nitrophenol ND ug/kg 8 2-Nitrophenol ND ug/kg 8 2-Nitrophenol ND ug/kg 1 4-Nitrophenol ND ug/kg 1 4-Oinitrophenol ND ug/kg 1 4-Oinitrophenol ND ug/kg 1 4-Chinitrophenol ND ug/kg 1 5-Chlorophenol ND ug/kg 1 6-Chlorophenol ND ug/kg 1 6-Chlorop	610
Acetophenone ND ug/kg 1 Acetophenone ND ug/kg 4 Acetophenone ND ug/kg 8 Acetophenone ND ug/kg 8 Acetophenone ND ug/kg 1 Acetop	430
Acetophenone ND ug/kg 2,4,6-Trichlorophenol P-Chloro-M-Cresol ND ug/kg 2-Chlorophenol ND ug/kg 2,4-Dichlorophenol ND ug/kg 2,4-Dimethylphenol ND ug/kg 4-Nitrophenol ND ug/kg 4-Nitrophenol ND ug/kg 4-Nitrophenol ND ug/kg 10-A-Dinitro-o-cresol ND ug/kg 11-A-Dinitro-o-cresol ND ug/kg 12-A-Dinitrophenol ND ug/kg 13-A-Dinitro-o-cresol ND ug/kg 14-S-Dinitro-o-cresol ND ug/kg 15-A-Dinitro-o-cresol ND ug/kg 16-A-Dinitro-o-cresol ND ug/kg 17-A-Dinitro-o-cresol ND ug/kg 18-A-Dinitro-o-cresol ND ug/k	430
2,4,6-Trichlorophenol ND ug/kg 4 2-Chloro-M-Cresol ND ug/kg 4 2-Chlorophenol ND ug/kg 5 2,4-Dichlorophenol ND ug/kg 6 2,4-Dimethylphenol ND ug/kg 6 2-Nitrophenol ND ug/kg 1 4-Nitrophenol ND ug/kg 8 2,4-Dinitrophenol ND ug/kg 1 4-Oinitro-o-cresol ND ug/kg 1 2-entachlorophenol ND ug/kg 1 2-henol ND ug/kg 1 2-Methylphenol ND ug/kg 1 3-Methylphenol ND ug/kg 6 2,4,5-Trichlorophenol ND ug/kg 6 3-Methylphenol ND	1700
P-Chloro-M-Cresol ND ug/kg 2 2-Chlorophenol ND ug/kg 8 2,4-Dichlorophenol ND ug/kg 8 2,4-Dimethylphenol ND ug/kg 8 2-Nitrophenol ND ug/kg 8 4-Nitrophenol ND ug/kg 8 2,4-Dinitrophenol ND ug/kg 8 2,4-Dinitrophenol ND ug/kg 1 4,6-Dinitro-o-cresol ND ug/kg 1 2-entachlorophenol ND ug/kg 1 2-methylphenol ND ug/kg 1 2-methylphenol ND ug/kg 8 3-Methylphenol/4-Methylphenol ND ug/kg 8 3-methylphenol ND ug/kg 9 3-methylphenol ND ug/kg 9 3-methylphenol ND ug/kg 9 3-methylphenol ND ug/kg 9 3-m	1700
2-Chlorophenol ND ug/kg 8 2,4-Dichlorophenol ND ug/kg 8 2,4-Dimethylphenol ND ug/kg 4 2-Nitrophenol ND ug/kg 8 4-Nitrophenol ND ug/kg 8 2,4-Dinitrophenol ND ug/kg 8 2,4-Dinitrophenol ND ug/kg 1 4,6-Dinitro-o-cresol ND ug/kg 1 2,4-Dinitrophenol ND ug/kg 1 3-Pentachlorophenol ND ug/kg 1 3-Phenol ND ug/kg 8 3-Methylphenol ND ug/kg 8 3-Methylphenol/4-Methylphenol ND ug/kg 8 3-Methylphenol/4-Methylphenol ND ug/kg 8 3-Alcohol ND ug	430
2,4-Dichlorophenol ND ug/kg 8 2,4-Dimethylphenol ND ug/kg 4 2-Nitrophenol ND ug/kg 1 4-Nitrophenol ND ug/kg 8 2,4-Dinitrophenol ND ug/kg 1 4,6-Dinitro-o-cresol ND ug/kg 1 2-entachlorophenol ND ug/kg 1 2-henol ND ug/kg 1 2-Methylphenol ND ug/kg 6 3-Methylphenol ND ug/kg 5 3-Methylphenol/4-Methylphenol ND ug/kg 6 2,4,5-Trichlorophenol ND ug/kg 6 3-enzoic Acid ND ug/kg 6 3-enzyl Alcohol ND ug/kg 6 3-enzyl Alcohol ND ug/kg 6 3-enzole ND ug/kg 6 3-enzole ND ug/kg 6 3-enzyl Alcohol ND ug/kg 6 3-enzole ND ug/kg 6 3-enzole ND ug/kg 6 3-enzole ND ug/kg 6 3-enzyl Alcohol ND ug/kg 6 3-enzole ND ug/kg 6 3-enzol	430
2,4-Dimethylphenol ND ug/kg 2 2-Nitrophenol ND ug/kg 1 4-Nitrophenol ND ug/kg 8 2,4-Dinitrophenol ND ug/kg 1 4,6-Dinitro-o-cresol ND ug/kg 1 2-entachlorophenol ND ug/kg 1 2-henol ND ug/kg 1 2-Methylphenol ND ug/kg 8 3-Methylphenol/4-Methylphenol ND ug/kg 8 2,4,5-Trichlorophenol ND ug/kg 8 3-enzoic Acid ND ug/kg 8 3-enzyl Alcohol ND ug/kg 8 6-enzyl Alcohol ND ug/kg 8 6-enzole ND ug/kg 8 6-enzole ND ug/kg 8 6-enzyl Alcohol ND ug/kg 8 6-enzole ND ug/kg 8 6-enzyl Alcohol ND ug/kg 8 6-enzyl ND ug/kg 9 6-enzyl N	520
2-Nitrophenol ND ug/kg 1 4-Nitrophenol ND ug/kg 8 2,4-Dinitrophenol ND ug/kg 1 4,6-Dinitro-o-cresol ND ug/kg 1 2,entachlorophenol ND ug/kg 1 2-Methylphenol ND ug/kg 8 3-Methylphenol/4-Methylphenol ND ug/kg 8 2,4,5-Trichlorophenol ND ug/kg 8 3-enzoic Acid ND ug/kg 8 3-enzyl Alcohol ND ug/kg 8 6-carbazole ND ug/kg 9 6-car	860
4-Nitrophenol ND ug/kg 8 2,4-Dinitrophenol ND ug/kg 1 4,6-Dinitro-o-cresol ND ug/kg 1 2,entachlorophenol ND ug/kg 1 2,henol ND ug/kg 6 2-Methylphenol ND ug/kg 5 3-Methylphenol/4-Methylphenol ND ug/kg 6 2,4,5-Trichlorophenol ND ug/kg 6 3-enzoic Acid ND ug/kg 6 3-enzyl Alcohol ND ug/kg 6 3-enzyl ND ug/kg 6 3-enzyl Alcohol ND ug/kg 6 3-enzyl Alco	430
2,4-Dinitrophenol ND ug/kg 1 4,6-Dinitro-o-cresol ND ug/kg 1 Pentachlorophenol ND ug/kg 1 Phenol ND ug/kg 6 2-Methylphenol ND ug/kg 5 3-Methylphenol/4-Methylphenol ND ug/kg 5 2,4,5-Trichlorophenol ND ug/kg 6 Benzoic Acid ND ug/kg 6 Benzyl Alcohol ND ug/kg 6 Carbazole ND ug/kg 6 Car	1700
A,6-Dinitro-o-cresol ND ug/kg 1 Pentachlorophenol ND ug/kg 1 Phenol ND ug/kg 6 2-Methylphenol ND ug/kg 5 3-Methylphenol/4-Methylphenol ND ug/kg 5 2,4,5-Trichlorophenol ND ug/kg 6 Benzoic Acid ND ug/kg 6 Benzyl Alcohol ND ug/kg 6 Carbazole ND ug/kg 6	860
4,6-Dinitro-o-cresol ND ug/kg 1 Pentachlorophenol ND ug/kg 1 Phenol ND ug/kg 6 2-Methylphenol ND ug/kg 5 3-Methylphenol/4-Methylphenol ND ug/kg 5 2,4,5-Trichlorophenol ND ug/kg 6 Benzoic Acid ND ug/kg 6 Benzyl Alcohol ND ug/kg 6 Carbazole ND ug/kg 6	1700
Pentachlorophenol ND ug/kg 1 Phenol ND ug/kg 6 Phenol ND ug/kg 6 Phenol ND ug/kg 5 Phenol ND ug/kg 5 Phenol ND ug/kg 5 Phenol ND ug/kg 5 Phenol ND ug/kg 6 P	1700
Phenol ND ug/kg 6 2-Methylphenol ND ug/kg 5 3-Methylphenol/4-Methylphenol ND ug/kg 5 2,4,5-Trichlorophenol ND ug/kg 6 Benzoic Acid ND ug/kg 6 Benzyl Alcohol ND ug/kg 6 Carbazole ND ug/kg 6	1700
2-Methylphenol ND ug/kg 5 3-Methylphenol/4-Methylphenol ND ug/kg 5 2,4,5-Trichlorophenol ND ug/kg 4 3enzoic Acid ND ug/kg 4 3enzyl Alcohol ND ug/kg 8 Carbazole ND ug/kg 4	610
3-Methylphenol/4-Methylphenol ND ug/kg 5 2,4,5-Trichlorophenol ND ug/kg 4 3enzoic Acid ND ug/kg 4 3enzyl Alcohol ND ug/kg 8 Carbazole ND ug/kg 4	520
2,4,5-Trichlorophenol ND ug/kg 4 Benzoic Acid ND ug/kg 4 Benzyl Alcohol ND ug/kg 8 Carbazole ND ug/kg 4	520
Benzoic Acid ND ug/kg 4 Benzyl Alcohol ND ug/kg 8 Carbazole ND ug/kg 4	430
Benzyl Alcohol ND ug/kg 8 Carbazole ND ug/kg 4	4300
Carbazole ND ug/kg 4	860
	430
	QC Criteria
±	25-120
	10-120
	23-120
	30-120
2,4,6-Tribromophenol 91.0 % 1	19-120
4-Terphenyl-d14 72.0 % 1	

Laboratory Sample Number: L0813344-07

PWG-DW-2008-04 (7.25-7.75')

PARAMETER	RESULT	UNITS	RDL	REF METHOD			II	
					PREP	ANAL		
	7 0070G GTM							
Semivolatile Organics by EP			86.	1 8270C	0911 03:30	0912 23:2	7 AF	
Acenaphthene	ND	ug/kg						
2-Chloronaphthalene Fluoranthene	ND	ug/kg	86.					
riuoranthene Hexachlorobutadiene	ND ND	ug/kg	86. 220					
	ND ND	ug/kg	86.					
Naphthalene		ug/kg						
Benzo(a)anthracene	ND	ug/kg	86.					
Benzo(a)pyrene	ND	ug/kg	86.					
Benzo(b)fluoranthene	ND	ug/kg	86.					
Benzo(k)fluoranthene	ND	ug/kg	86. 86.					
Chrysene	ND	ug/kg	86. 86.					
Acenaphthylene Anthracene	ND	ug/kg	86. 86.					
	ND	ug/kg						
Benzo(ghi)perylene	ND	ug/kg	86.					
Fluorene	ND	ug/kg	86.					
Phenanthrene	ND	ug/kg	86.					
Dibenzo(a,h)anthracene	ND	ug/kg	86.					
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	86.					
Pyrene	ND	ug/kg	86.					
2-Methylnaphthalene	ND	ug/kg	86.					
Pentachlorophenol	ND	ug/kg	350					
Hexachlorobenzene	ND	ug/kg	350					
Hexachloroethane	ND	ug/kg	350					
Surrogate(s)	Recovery		QC Cri	teria				
2-Fluorophenol	41.0	૪	25-120					
Phenol-d6	45.0	૪	10-120					
Nitrobenzene-d5	36.0	૪	23-120					
2-Fluorobiphenyl	45.0	%	30-120					
2,4,6-Tribromophenol	76.0	%	19-120					
1-Terphenyl-d14	71.0	ઇ	18-120					
Petroleum Hydrocarbon Quant	itation by (GC-FID		1 8015B(M)	0911 00:15	0912 03:4	6 R'	
ГРН	89100	ug/kg	43300					
Surrogate(s)	Recovery		QC Cri	teria				
3 u2 2 0 3 u 0 0 (D)	-		~					

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813344-08 Date Collected: 08-SEP-2008 10:10

PWG-DW-2008-05 (6.75-7.25') Date Received: 09-SEP-2008

Sample Matrix: SOIL Date Reported: 25-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD		ATE	ID
					PREP	ANAL	
Solids, Total	86	00	0.10	30 2540G		0910 18:40	NM (
Total Metals							
Aluminum, Total	1200	mg/kg	5.3	1 6010B	0910 13:30	0911 14:26	AI
Antimony, Total	ND	mg/kg	2.7	1 6010B	0910 13:30	0911 14:26	AI
Arsenic, Total	1.1	mg/kg	0.53	1 6010B	0910 13:30	0911 14:26	AI
Barium, Total	17	mg/kg	0.53	1 6010B	0910 13:30	0911 14:26	AI
Beryllium, Total	ND	mg/kg	0.27	1 6010B	0910 13:30	0911 14:26	AI
Cadmium, Total	ND	mg/kg	0.53	1 6010B	0910 13:30	0911 14:26	AI
Calcium, Total	8900	mg/kg	5.3	1 6010B	0910 13:30	0911 14:26	AI
Chromium, Total	2.3	mg/kg	0.53	1 6010B		0911 14:26	
Cobalt, Total	ND	mg/kg	1.1	1 6010B		0911 14:26	
Copper, Total	3.1	mg/kg	0.53	1 6010B	0910 13:30	0911 14:26	AI
Iron, Total	2400	mg/kg	2.7	1 6010B		0911 14:26	
Lead, Total	32	mg/kg	2.7	1 6010B		0911 14:26	
Magnesium, Total	5700	mg/kg	5.3	1 6010B		0911 14:26	
Manganese, Total	34	mg/kg	0.53	1 6010B		0911 14:26	
Mercury, Total	ND	mg/kg	0.09	1 7471A	0911 23:30	0912 14:16	RC
Nickel, Total	1.4	mg/kg	1.3	1 6010B	0910 13:30	0911 14:26	AI
Potassium, Total	ND	mg/kg	130	1 6010B	0910 13:30	0911 14:26	AI
Selenium, Total	ND	mg/kg	1.1	1 6010B	0910 13:30	0911 14:26	AI
Silver, Total	ND	mg/kg	0.53	1 6010B	0910 13:30	0911 14:26	AI
Sodium, Total	ND	mg/kg	110	1 6010B		0911 14:26	
Thallium, Total	ND	mg/kg	1.1	1 6010B		0911 14:26	
Vanadium, Total	3.2	mg/kg	0.53	1 6010B		0911 14:26	
Zinc, Total	21	mg/kg	2.7	1 6010B		0911 14:26	
Volatile Organics by EPA 8	3260B			1 8260B		0911 20:55	5 PD
Methylene chloride	ND	ug/kg	29.				
1,1-Dichloroethane	ND	ug/kg	4.4				
Chloroform	ND	ug/kg	4.4				
Carbon tetrachloride	ND	ug/kg	2.9				
1,2-Dichloropropane	ND	ug/kg	10.				
Dibromochloromethane	ND	ug/kg	2.9				
1,1,2-Trichloroethane	ND	ug/kg	4.4				
Tetrachloroethene	ND	ug/kg	2.9				
Chlorobenzene	ND	ug/kg	2.9				
Trichlorofluoromethane	ND	ug/kg	14.				

Laboratory Sample Number: L0813344-08

PWG-DW-2008-05 (6.75-7.25')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Volatile Organics by EPA 826	OB cont'd			1	8260B		0911 20:	55 PD
1,2-Dichloroethane	ND	ug/kg	2.9					
1,1,1-Trichloroethane	ND	ug/kg	2.9					
Bromodichloromethane	ND	ug/kg	2.9					
rans-1,3-Dichloropropene	ND	ug/kg	2.9					
cis-1,3-Dichloropropene	ND	ug/kg	2.9					
l,1-Dichloropropene	ND	ug/kg	14.					
Bromoform	ND	ug/kg	12.					
,1,2,2-Tetrachloroethane	ND	ug/kg	2.9					
Benzene	ND	ug/kg	2.9					
Coluene	ND	ug/kg	4.4					
Sthylbenzene	ND	ug/kg	2.9					
Chloromethane	ND	ug/kg	14.					
Bromomethane	ND	ug/kg	5.8					
/inyl chloride	ND	ug/kg	5.8					
Chloroethane	ND	ug/kg	5.8					
1,1-Dichloroethene	ND	ug/kg	2.9					
crans-1,2-Dichloroethene	ND	ug/kg ug/kg	4.4					
Trichloroethene	ND	ug/kg	2.9					
.,2-Dichlorobenzene	ND	ug/kg	14.					
.,3-Dichlorobenzene	ND	ug/kg ug/kg	14.					
.,4-Dichlorobenzene	ND	ug/kg ug/kg	14.					
Methyl tert butyl ether	ND	ug/kg ug/kg	5.8					
o/m-Xylene	ND	ug/kg ug/kg	5.8					
o-Xylene	ND	ug/kg ug/kg	5.8					
ris-1,2-Dichloroethene	ND	ug/kg ug/kg	2.9					
bromomethane	ND	ug/kg ug/kg	29.					
Styrene	ND	ug/kg	5.8					
Dichlorodifluoromethane	ND	ug/kg ug/kg	29.					
Acetone	ND	ug/kg ug/kg	29.					
Carbon disulfide	ND		29.					
B-Butanone		ug/kg	29.					
	ND	ug/kg						
Vinyl acetate	ND	ug/kg	29.					
4-Methyl-2-pentanone	ND	ug/kg	29. 29.					
.,2,3-Trichloropropane	ND	ug/kg						
P-Hexanone Bromochloromethane	ND	ug/kg	29.					
	ND	ug/kg	14.					
2,2-Dichloropropane	ND	ug/kg	14.					
.,2-Dibromoethane	ND	ug/kg	12.					
.,3-Dichloropropane	ND	ug/kg	14.					
,1,1,2-Tetrachloroethane	ND	ug/kg	2.9					
romobenzene	ND	ug/kg	14.					
-Butylbenzene	ND	ug/kg	2.9					
ec-Butylbenzene	ND	ug/kg	2.9					
ert-Butylbenzene	ND	ug/kg	14.					
-Chlorotoluene	ND	ug/kg	14.					
o-Chlorotoluene	ND	ug/kg	14.					
.,2-Dibromo-3-chloropropane	ND	ug/kg	14.					
Mexachlorobutadiene	ND	ug/kg	14.					
sopropylbenzene	ND	ug/kg	2.9					

Laboratory Sample Number: L0813344-08

PWG-DW-2008-05 (6.75-7.25')

PARAMETER	RESULT	UNITS	RDL	REF ME	THOD	DA PREP	TE ANAL	ID
Volatile Organisa by EDA 026	OD contid			1 826	0.0		0911 20:	. F.F. D.D.
Volatile Organics by EPA 826		/1-~	2 0	1 820	UB		0911 20	יסט אר
p-Isopropyltoluene	ND	ug/kg	2.9					
Naphthalene	ND	ug/kg	14.					
Acrylonitrile	ND	ug/kg	29.					
n-Propylbenzene	ND	ug/kg	2.9					
1,2,3-Trichlorobenzene	ND	ug/kg	14.					
1,2,4-Trichlorobenzene	ND	ug/kg	14.					
1,3,5-Trimethylbenzene	ND	ug/kg	14.					
1,2,4-Trimethylbenzene	ND	ug/kg	14.					
1,4-Diethylbenzene	ND	ug/kg	12.					
4-Ethyltoluene	ND	ug/kg	12.					
1,2,4,5-Tetramethylbenzene	ND	ug/kg	12.					
Surrogate(s)	Recovery		QC Cri	iteria				
1,2-Dichloroethane-d4	108	%	70-130)				
Toluene-d8	112	%	70-130)				
4-Bromofluorobenzene	122	%	70-130)				
Dibromofluoromethane	104	%	70-130)				
Semivolatile Organics by EPA	8270C			1 827	0C	0911 03:30	0912 19:	46 PS
Acenaphthene	ND	ug/kg	390					
1,2,4-Trichlorobenzene	ND	ug/kg	390					
Hexachlorobenzene	ND	ug/kg	390					
Bis(2-chloroethyl)ether	ND	ug/kg	390					
2-Chloronaphthalene	ND	ug/kg	460					
1,2-Dichlorobenzene	ND	ug/kg	390					
1,3-Dichlorobenzene	ND	ug/kg	390					
1,4-Dichlorobenzene	ND	ug/kg	390					
3,3'-Dichlorobenzidine	ND	ug/kg	780					
2,4-Dinitrotoluene	ND	ug/kg	390					
2,6-Dinitrotoluene	ND	ug/kg	390					
Fluoranthene	ND	ug/kg	390					
4-Chlorophenyl phenyl ether	ND	ug/kg	390					
4-Bromophenyl phenyl ether	ND	ug/kg	390					
Bis(2-chloroisopropyl)ether	ND	ug/kg	390					
Bis(2-chloroethoxy)methane	ND	ug/kg	390					
Hexachlorobutadiene	ND	ug/kg	780					
Hexachlorocyclopentadiene	ND	ug/kg	780					
Hexachloroethane	ND	ug/kg	390					
Isophorone	ND	ug/kg	390					
Naphthalene	ND	ug/kg	390					
Nitrobenzene	ND	ug/kg	390					
NitrosoDiPhenylAmine(NDPA)/D		ug/kg	1200					
n-Nitrosodi-n-propylamine	ND	ug/kg	390					
Bis(2-Ethylhexyl)phthalate	ND	ug/kg	780					
Butyl benzyl phthalate	ND	ug/kg	390					
Di-n-butylphthalate	ND	ug/kg	390					
Di-n-octylphthalate	ND	ug/kg ug/kg	390					
Diethyl phthalate	ND	ug/kg ug/kg	390					
Dimethyl phthalate	ND	ug/kg ug/kg	390					

Laboratory Sample Number: L0813344-08

PWG-DW-2008-05 (6.75-7.25')

Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(ghi)pere Benzo(ghi)perylene Benzo(g						DATE I		
Renzo(a)anthracene Renzo(b)fluoranthene Renzo(b)fluoranthene Renzo(k)fluoranthene Renzo(k)fluoranthene Renzo(k)fluoranthene Renzo(k)fluoranthene Renzo(ghi)lene Renzo(ghi)l						PREP	ANAL	
Renzo(a)anthracene Renzo(b)fluoranthene Renzo(b)fluoranthene Renzo(k)fluoranthene Renzo(k)fluoranthene Renzo(k)fluoranthene Renzo(k)fluoranthene Renzo(ghi)lene Renzo(ghi)l		_						
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(ghi)pere Benzo(ghi)perylene Benzo(ghi)perylene Benzo(ghi)perylene Benzo(ghi)perylene Benzo(a,h)anthracene Benzo(ghi)perylene Benzo(a,h)anthracene Benzo(ghi)perylene Be			222	1 82700	2	0911 03:30	0912 19:4	16 PS
Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(ghi)pere Benzo(ghi)perylene Benzo(g		ug/kg	390					
Renzo(k)fluoranthene Rhrysene Ricenaphthylene Ricetopheno Ricenaphthylene Ricenaphthylene Ricetophenol Ricenaphthylene Ricenaphthylene Ricenaphthylene Ricenaphthylene Ricetophenone Ricenaphthylene Ricetophenone Ricenaphthylene Ricenaphthylene Ricetophenone Ricenaphthylene Ricenaphthylene Ricetophenone Ricenaphthylene	1D	ug/kg	390					
Chrysene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Benzo(ghi)perylene Acetophene Acetophenoe Acetophenoe Acetophenol Acetop	1D	ug/kg	390					
Acenaphthylene Anthracene Benzo(ghi)perylene Fluorene Phenanthrene Dibenzo(a,h)anthracene Endeno(1,2,3-cd)Pyrene Biphenyl B-Chloroaniline B-Nitroaniline B-N	1D	ug/kg	390					
anthracene Senzo(ghi)perylene Senzo(ghi)perylene Siluorene Shenanthrene Sibenzo(a,h)anthracene Sidenzo(a,h)anthracene Sidenzo(a,h)anthrac	1D	ug/kg	390					
Renzo(ghi)perylene Pluorene Phenanthrene Phenanthracene Phenanthrace	1D	ug/kg	390					
Pluorene Phenanthrene Phenanthrene Phenanthrene Phenanthrene Phenanthrene Phenanthrene Phenanthrene Phenance Phenanch Ph	1D	ug/kg	390					
Phenanthrene Dibenzo(a,h)anthracene Endeno(1,2,3-cd)Pyrene Nyrene Riphenyl R-Chloroaniline R-Nitroaniline R-Nit	1D	ug/kg	390					
Dibenzo(a,h)anthracene Endeno(1,2,3-cd)Pyrene Diyrene Biphenyl B-Chloroaniline B-Nitroaniline B-	1D	ug/kg	390					
Indeno(1,2,3-cd)Pyrene Pyrene Riphenyl -Chloroaniline R-Nitroaniline R-Ni	1D	ug/kg	390					
Pyrene Riphenyl R-Chloroaniline R-Nitroaniline R-Ni	1D	ug/kg	390					
Riphenyl N R-Chloroaniline N R-Nitroaniline N R-Methylnaphthalene N R-A,5-Tetrachlorobenzene N R-Cetophenone N R-A,6-Trichlorophenol N R-Chloro-M-Cresol N	1D	ug/kg	390					
R-Chloroaniline R-Nitroaniline R-Methylnaphthalene R-1,2,4,5-Tetrachlorobenzene R-1,2,4,5-Tetrachlorobenzene R-1,4,6-Trichlorophenol R-Chloro-M-Cresol	ID	ug/kg	390					
R-Nitroaniline R-Nitroaniline R-Nitroaniline R-Nitroaniline R-Nitroaniline R-Nitroaniline R-Nitroaniline R-Nitroaniline R-Methylnaphthalene R-1,2,4,5-Tetrachlorobenzene R-2,4,5-Tetrachlorobenzene R-2,4,6-Trichlorophenol R-Chloro-M-Cresol	ID	ug/kg	390					
R-Nitroaniline Note of the Not	ID	ug/kg	390					
P-Nitroaniline Nibenzofuran N-Methylnaphthalene N-2,4,5-Tetrachlorobenzene N-2,4,6-Trichlorophenol N-Chloro-M-Cresol	ID	ug/kg	390					
Dibenzofuran R-Methylnaphthalene N.,2,4,5-Tetrachlorobenzene Nacetophenone N,4,6-Trichlorophenol N-Chloro-M-Cresol	ID	ug/kg	390					
2-Methylnaphthalene N .,2,4,5-Tetrachlorobenzene N acetophenone N 2,4,6-Trichlorophenol N 2-Chloro-M-Cresol N	ID	ug/kg	540					
.,2,4,5-Tetrachlorobenzene Nacetophenone Nacetophenone Nacetophenol Na	ID	ug/kg	390					
Acetophenone N 2,4,6-Trichlorophenol N 2-Chloro-M-Cresol N	ID	ug/kg	390					
2,4,6-Trichlorophenol N P-Chloro-M-Cresol N	ID	ug/kg	1600					
P-Chloro-M-Cresol N	ID	ug/kg	1600					
	ID	ug/kg	390					
?-Chlorophenol N	ID	ug/kg	390					
	ID	ug/kg	460					
2,4-Dichlorophenol N	ID	ug/kg	780					
2,4-Dimethylphenol N	ID	ug/kg	390					
?-Nitrophenol N	ID	ug/kg	1600					
l-Nitrophenol N	ID	ug/kg	780					
2,4-Dinitrophenol N	ID	ug/kg	1600					
	ID	ug/kg	1600					
Pentachlorophenol N	ID	ug/kg	1600					
	ID	ug/kg	540					
2-Methylphenol N	ID	ug/kg	460					
B-Methylphenol/4-Methylphenol N	ID	ug/kg	460					
	ID	ug/kg	390					
	ID	ug/kg	3900					
	ID	ug/kg	780					
	ID	ug/kg	390					
7			00 0 1					
_	Recovery	•	QC Crit	erıa				
<u>-</u>	52.0	8	25-120					
	59.0	%	10-120					
	33.0	%	23-120					
	56.0	8	30-120					
· · · ·	79.0	%	19-120					
-Terphenyl-d14 6	59.0	%	18-120					

Laboratory Sample Number: L0813344-08

PWG-DW-2008-05 (6.75-7.25')

ARAMETER	RESULT	UNITS	RDL	REF METHOD		DATE	
					PREP	ANAL	
	NA 0070G GTM						
emivolatile Organics by EP			F.0	1 8270C	0911 03:30	0913 00:1	4 AF
cenaphthene	ND	ug/kg	78.				
-Chloronaphthalene	ND	ug/kg	78.				
luoranthene	ND	ug/kg	78.				
exachlorobutadiene	ND	ug/kg	190				
aphthalene	ND	ug/kg	78.				
enzo(a)anthracene	ND	ug/kg	78.				
enzo(a)pyrene	ND	ug/kg	78.				
enzo(b)fluoranthene	ND	ug/kg	78.				
enzo(k)fluoranthene	ND	ug/kg	78.				
hrysene	ND	ug/kg	78.				
cenaphthylene	ND	ug/kg	78.				
nthracene	ND	ug/kg	78.				
enzo(ghi)perylene	ND	ug/kg	78.				
luorene	ND	ug/kg	78.				
henanthrene	ND	ug/kg	78.				
ibenzo(a,h)anthracene	ND	ug/kg	78.				
ndeno(1,2,3-cd)Pyrene	ND	ug/kg	78.				
yrene	ND	ug/kg	78.				
-Methylnaphthalene	ND	ug/kg	78.				
entachlorophenol	ND	ug/kg	310				
exachlorobenzene	ND	ug/kg	310				
exachloroethane	ND	ug/kg	310				
urrogate(s)	Recovery		QC Cri	teria			
-Fluorophenol	58.0	8	25-120				
henol-d6	62.0	%	10-120				
itrobenzene-d5	52.0	%	23-120				
-Fluorobiphenyl	57.0	%	30-120				
,4,6-Tribromophenol	70.0	8	19-120				
-Terphenyl-d14	72.0	%	18-120				
etroleum Hydrocarbon Quant	itation by (GC-FID		1 8015B(M)	0911 00:15	0912 04:2	0 R
PH	83900	ug/kg	38800				
urrogate(s)	Recovery		QC Cri				
-Terphenyl	77.0	8	40-140				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813344-09 Date Collected: 08-SEP-2008 10:25

Sample Matrix: SOIL Date Reported: 25-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER	RESULT	UNITS	\mathtt{RDL}	REF METHOD		ATE	ID
					PREP	ANAL	
Solids, Total	84	%	0.10	30 2540G		0910 18:40) NM
Total Metals							
Aluminum, Total	1100	mg/kg	5.7	1 6010B	0910 13:30	0911 14:29) AI
Antimony, Total	ND	mg/kg	2.9	1 6010B	0910 13:30	0911 14:29	AI
Arsenic, Total	0.80	mg/kg	0.57	1 6010B	0910 13:30	0911 14:29	AI
Barium, Total	12	mg/kg	0.57	1 6010B	0910 13:30	0911 14:29	AI
Beryllium, Total	ND	mg/kg	0.29	1 6010B	0910 13:30	0911 14:29) AI
Cadmium, Total	ND	mg/kg	0.57	1 6010B		0911 14:29	
Calcium, Total	14000	mg/kg	5.7	1 6010B		0911 14:29	
Chromium, Total	2.0	mg/kg	0.57	1 6010B		0911 14:29	
Cobalt, Total	ND	mg/kg	1.1	1 6010B		0911 14:29	
Copper, Total	5.6	mg/kg	0.57	1 6010B		0911 14:29	
Iron, Total	2000	mg/kg	2.9	1 6010B		0911 14:29	
Lead, Total	26	mg/kg	2.9	1 6010B		0911 14:29	
Magnesium, Total	8600	mg/kg	5.7	1 6010B		0911 14:29	
Manganese, Total	29	mg/kg	0.57	1 6010B		0911 14:29	
Mercury, Total	ND	mg/kg	0.09	1 7471A		0912 14:18	
Nickel, Total	1.6	mg/kg	1.4	1 6010B		0911 14:29	
Potassium, Total	ND	mg/kg	140	1 6010B		0911 14:29	
Selenium, Total	ND	mg/kg	1.1	1 6010B		0911 14:29	
Silver, Total	ND	mg/kg	0.57	1 6010B		0911 14:29	
Sodium, Total	ND ND	mg/kg	110	1 6010B		0911 14:29	
Thallium, Total	ND ND	mg/kg	1.1	1 6010B		0911 14:29	
Vanadium, Total	3.1	mg/kg	0.57	1 6010B		0911 14:29	
Zinc, Total	31	5 5	2.9				
ZINC, TOTAL	31	mg/kg	2.9	1 6010B	0910 13:30	0911 14:29	, AI
Volatile Organics by EPA 8				1 8260B		0912 20:34	PD
Methylene chloride	ND	ug/kg	30.				
1,1-Dichloroethane	ND	ug/kg	4.5				
Chloroform	ND	ug/kg	4.5				
Carbon tetrachloride	ND	ug/kg	3.0				
1,2-Dichloropropane	ND	ug/kg	10.				
Dibromochloromethane	ND	ug/kg	3.0				
1,1,2-Trichloroethane	ND	ug/kg	4.5				
Tetrachloroethene	6.6	ug/kg	3.0				
Chlorobenzene	ND	ug/kg	3.0				
Trichlorofluoromethane	ND	ug/kg	15.				

Laboratory Sample Number: L0813344-09

PWG-DW-2008-06 (6.75-7.25')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Olatile Organics by EPA 826	OB cont'd			1	8260B		0912 20:	34 PD
1,2-Dichloroethane	ND	ug/kg	3.0					
l,1,1-Trichloroethane	ND	ug/kg	3.0					
Bromodichloromethane	ND	ug/kg	3.0					
rans-1,3-Dichloropropene	ND	ug/kg	3.0					
is-1,3-Dichloropropene	ND	ug/kg	3.0					
,1-Dichloropropene	ND	ug/kg	15.					
Bromoform	ND	ug/kg	12.					
,1,2,2-Tetrachloroethane	ND	ug/kg	3.0					
senzene	ND	ug/kg	3.0					
oluene	ND	ug/kg	4.5					
thylbenzene	ND	ug/kg	3.0					
thloromethane	ND	ug/kg	15.					
romomethane	ND	ug/kg	6.0					
inyl chloride	ND	ug/kg	6.0					
Chloroethane	ND	ug/kg	6.0					
,1-Dichloroethene	ND	ug/kg	3.0					
rans-1,2-Dichloroethene	ND	ug/kg	4.5					
richloroethene	ND	ug/kg	3.0					
,2-Dichlorobenzene	ND	ug/kg	15.					
,3-Dichlorobenzene	ND	ug/kg	15.					
,4-Dichlorobenzene	ND	ug/kg ug/kg	15.					
ethyl tert butyl ether	ND	ug/kg ug/kg	6.0					
/m-Xylene	ND	ug/kg	6.0					
-Xylene	ND	ug/kg ug/kg	6.0					
is-1,2-Dichloroethene	ND	ug/kg ug/kg	3.0					
bromomethane	ND	ug/kg ug/kg	30.					
tyrene	ND	ug/kg ug/kg	6.0					
Dichlorodifluoromethane	ND	ug/kg ug/kg	30.					
acetone	ND	ug/kg ug/kg	30.					
arbon disulfide	ND	ug/kg ug/kg	30.					
-Butanone			30.					
inyl acetate	ND ND	ug/kg ug/kg	30.					
Inyi acetate -Methyl-2-pentanone	ND		30.					
	ND	ug/kg	30.					
.,2,3-Trichloropropane	ND	ug/kg						
-Hexanone romochloromethane	ND	ug/kg	30.					
	ND	ug/kg	15.					
2,2-Dichloropropane	ND	ug/kg	15.					
,,2-Dibromoethane	ND	ug/kg	12.					
.,3-Dichloropropane	ND	ug/kg	15.					
,1,1,2-Tetrachloroethane	ND	ug/kg	3.0					
romobenzene	ND	ug/kg	15.					
-Butylbenzene	ND	ug/kg	3.0					
ec-Butylbenzene	ND	ug/kg	3.0					
ert-Butylbenzene	ND	ug/kg	15.					
-Chlorotoluene	ND	ug/kg	15.					
-Chlorotoluene	ND	ug/kg	15.					
,2-Dibromo-3-chloropropane	ND	ug/kg	15.					
Mexachlorobutadiene	ND	ug/kg	15.					
sopropylbenzene	ND	ug/kg	3.0					

Laboratory Sample Number: L0813344-09

PWG-DW-2008-06 (6.75-7.25')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Volatile Organics by EPA 8260	OR contid			1	8260B		0912 20:	24 DD
p-Isopropyltoluene	ND	ua /ka	3.0	1	0200B		0912 20.	34 PD
		ug/kg						
Naphthalene	ND	ug/kg	15.					
Acrylonitrile	ND	ug/kg	30.					
n-Propylbenzene	ND	ug/kg	3.0					
1,2,3-Trichlorobenzene	ND	ug/kg	15.					
1,2,4-Trichlorobenzene	ND	ug/kg	15.					
1,3,5-Trimethylbenzene	ND	ug/kg	15.					
1,2,4-Trimethylbenzene	ND	ug/kg	15.					
1,4-Diethylbenzene	ND	ug/kg	12.					
4-Ethyltoluene	ND	ug/kg	12.					
1,2,4,5-Tetramethylbenzene	ND	ug/kg	12.					
Surrogate(s)	Recovery		QC Cri	teri	a			
1,2-Dichloroethane-d4	94.0	%	70-130					
Toluene-d8	103	%	70-130					
4-Bromofluorobenzene	112	%	70-130					
Dibromofluoromethane	93.0	%	70-130					
Semivolatile Organics by EPA	8270C			1	8270C	0911 03:30	0912 20:	09 PS
Acenaphthene	ND	ug/kg	400					
1,2,4-Trichlorobenzene	ND	ug/kg	400					
Hexachlorobenzene	ND	ug/kg	400					
Bis(2-chloroethyl)ether	ND	ug/kg	400					
2-Chloronaphthalene	ND	ug/kg	480					
1,2-Dichlorobenzene	ND	ug/kg	400					
1,3-Dichlorobenzene	ND	ug/kg	400					
1,4-Dichlorobenzene	ND	ug/kg	400					
3,3'-Dichlorobenzidine	ND	ug/kg	790					
2,4-Dinitrotoluene	ND	ug/kg ug/kg	400					
2,6-Dinitrotoluene	ND	ug/kg ug/kg	400					
Fluoranthene	ND ND	ug/kg ug/kg	400					
4-Chlorophenyl phenyl ether	ND ND	ug/kg ug/kg	400					
4-Chiorophenyl phenyl ether 4-Bromophenyl phenyl ether	ND ND	ug/kg ug/kg	400					
Bis(2-chloroisopropyl)ether	ND ND		400					
Bis(2-chloroethoxy)methane	ND ND	ug/kg ug/kg	400					
Bis(2-chioroethoxy)methane Hexachlorobutadiene								
	ND	ug/kg	790					
Hexachlorocyclopentadiene	ND	ug/kg	790 400					
Hexachloroethane	ND	ug/kg	400					
Isophorone	ND	ug/kg	400					
Naphthalene	ND	ug/kg	400					
Nitrobenzene	ND	ug/kg	400					
NitrosoDiPhenylAmine(NDPA)/DI		ug/kg	1200					
n-Nitrosodi-n-propylamine	ND	ug/kg	400					
Bis(2-Ethylhexyl)phthalate	ND	ug/kg	790					
Butyl benzyl phthalate	ND	ug/kg	400					
Di-n-butylphthalate	ND	ug/kg	400					
Di-n-octylphthalate	ND	ug/kg	400					
Diethyl phthalate	ND	ug/kg	400					
Dimethyl phthalate	ND	ug/kg	400					

Laboratory Sample Number: L0813344-09

PWG-DW-2008-06 (6.75-7.25')

					PREP	ANAL	
emivolatile Organics by EPA			400	1 8270C	0911 03:30	0912 20:09	PS
enzo(a)anthracene	ND	ug/kg	400				
enzo(a)pyrene	ND	ug/kg	400				
enzo(b)fluoranthene	ND	ug/kg	400				
enzo(k)fluoranthene	ND	ug/kg	400				
hrysene	ND	ug/kg	400				
cenaphthylene	ND	ug/kg	400				
nthracene	ND	ug/kg	400				
enzo(ghi)perylene	ND	ug/kg	400				
luorene	ND	ug/kg	400				
henanthrene	ND	ug/kg	400				
ibenzo(a,h)anthracene	ND	ug/kg	400				
ndeno(1,2,3-cd)Pyrene	ND	ug/kg	400				
yrene	ND	ug/kg	400				
iphenyl	ND	ug/kg	400				
-Chloroaniline	ND	ug/kg	400				
-Nitroaniline	ND	ug/kg	400				
-Nitroaniline	ND	ug/kg	400				
-Nitroaniline	ND	ug/kg	560				
ibenzofuran	ND	ug/kg	400				
-Methylnaphthalene	ND	ug/kg	400				
,2,4,5-Tetrachlorobenzene	ND	ug/kg	1600				
cetophenone	ND	ug/kg	1600				
,4,6-Trichlorophenol	ND	ug/kg	400				
-Chloro-M-Cresol	ND	ug/kg	400				
-Chlorophenol	ND	ug/kg	480				
,4-Dichlorophenol	ND	ug/kg	790				
,4-Dimethylphenol	ND	ug/kg	400				
-Nitrophenol	ND	ug/kg	1600				
-Nitrophenol	ND	ug/kg	790				
,4-Dinitrophenol	ND	ug/kg	1600				
,6-Dinitro-o-cresol	ND	ug/kg	1600				
entachlorophenol	ND	ug/kg	1600				
henol	ND	ug/kg	560				
-Methylphenol	ND	ug/kg	480				
-Methylphenol/4-Methylphenol		ug/kg	480				
,4,5-Trichlorophenol	ND	ug/kg ug/kg	400				
enzoic Acid	ND	ug/kg ug/kg	4000				
enzyl Alcohol	ND	ug/kg ug/kg	790				
arbazole	ND ND	ug/kg ug/kg	400				
arba2016	אוע	ug/ng	400				
urrogate(s)	Recovery		QC Cri				
-Fluorophenol	30.0	%	25-120				
henol-d6	28.0	%	10-120				
itrobenzene-d5	25.0	%	23-120				
-Fluorobiphenyl	30.0	રુ	30-120)			
,4,6-Tribromophenol	46.0	રુ	19-120)			
-Terphenyl-d14	40.0	%	18-120)			

Laboratory Sample Number: L0813344-09

PWG-DW-2008-06 (6.75-7.25')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA' PREP	TE ANAL	ID
Semivolatile Organics by E	PA 8270C-SIM	cont'd		1 8270C	0915 18:00	0916 16:1	2 AK
Acenaphthene	ND	ug/kg	16.				
2-Chloronaphthalene	ND	ug/kg	16.				
Fluoranthene	30	ug/kg	16				
Hexachlorobutadiene	ND	ug/kg	40.				
Naphthalene	ND	ug/kg	16.				
Benzo(a)anthracene	ND	ug/kg	16.				
Benzo(a)pyrene	ND	ug/kg	16.				
Benzo(b)fluoranthene	ND	ug/kg	16.				
Benzo(k)fluoranthene	ND	ug/kg	16.				
Chrysene	ND	ug/kg	16.				
Acenaphthylene	ND	ug/kg	16.				
Anthracene	ND	ug/kg	16.				
Benzo(ghi)perylene	ND	ug/kg	16.				
Fluorene	ND	ug/kg	16.				
Phenanthrene	ND	ug/kg	16.				
Dibenzo(a,h)anthracene	ND	ug/kg	16.				
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	16.				
Pyrene	32	ug/kg	16				
2-Methylnaphthalene	ND	ug/kg	16.				
Pentachlorophenol	ND	ug/kg	63.				
Hexachlorobenzene	ND	ug/kg	63.				
Hexachloroethane	ND	ug/kg	63.				
Surrogate(s)	Recovery		QC Cri	teria			
2-Fluorophenol	38.0	%	25-120				
Phenol-d6	41.0	%	10-120				
Nitrobenzene-d5	36.0	%	23-120				
2-Fluorobiphenyl	34.0	%	30-120				
2,4,6-Tribromophenol	36.0	%	19-120				
4-Terphenyl-d14	42.0	%	18-120				
Petroleum Hydrocarbon Quan	titation by (1 8015B(M)	0911 00:15	0912 04:5	5 RT
ТРН	287000	ug/kg	39700				
Surrogate(s)	Recovery		QC Cri				
o-Terphenyl	74.0	%	40-140				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813344-10 Date Collected: 08-SEP-2008 10:45

Sample Matrix: SOIL Date Reported: 25-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 9-Amber, 3-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID
					PREP ANAL
Solids, Total	73	%	0.10	30 2540G	0910 18:40 NM
Total Metals					
Aluminum, Total	1400	mg/kg	6.4	1 6010B	0910 13:30 0911 13:35 AI
Antimony, Total	ND	mg/kg	3.2	1 6010B	0910 13:30 0911 13:35 AI
Arsenic, Total	0.82	mg/kg	0.64	1 6010B	0910 13:30 0911 13:35 AI
Barium, Total	7.8	mg/kg	0.64	1 6010B	0910 13:30 0911 13:35 AI
Beryllium, Total	ND	mg/kg	0.32	1 6010B	0910 13:30 0911 13:35 AI
Cadmium, Total	ND	mg/kg	0.64	1 6010B	0910 13:30 0911 13:35 AI
Calcium, Total	13000	mg/kg	6.4	1 6010B	0910 13:30 0911 13:35 AI
Chromium, Total	9.2	mg/kg	0.64	1 6010B	0910 13:30 0911 13:35 AI
Cobalt, Total	ND	mg/kg	1.3	1 6010B	0910 13:30 0911 13:35 AI
Copper, Total	14	mg/kg	0.64	1 6010B	0910 13:30 0911 13:35 AI
Iron, Total	2400	mg/kg	3.2	1 6010B	0910 13:30 0911 13:35 AI
Lead, Total	60	mg/kg	3.2	1 6010B	0910 13:30 0911 13:35 AI
Magnesium, Total	8800	mg/kg	6.4	1 6010B	0910 13:30 0911 13:35 AI
Manganese, Total	26	mg/kg	0.64	1 6010B	0910 13:30 0911 13:35 AI
Mercury, Total	ND	mg/kg	0.11	1 7471A	0911 23:30 0912 14:20 RC
Nickel, Total	3.7	mg/kg	1.6	1 6010B	0910 13:30 0911 13:35 AI
Potassium, Total	170	mg/kg	160	1 6010B	0910 13:30 0911 13:35 AI
Selenium, Total	ND	mg/kg	1.3	1 6010B	0910 13:30 0911 13:35 AI
Silver, Total	ND	mg/kg	0.64	1 6010B	0910 13:30 0911 13:35 AI
Sodium, Total	ND	mg/kg	130	1 6010B	0910 13:30 0911 13:35 AI
Thallium, Total	ND	mg/kg	1.3	1 6010B	0910 13:30 0911 13:35 AI
Vanadium, Total	9.3	mg/kg	0.64	1 6010B	0910 13:30 0911 13:35 AI
Zinc, Total	110	mg/kg	3.2	1 6010B	0910 13:30 0911 13:35 AI
Volatile Organics by EPA 8	3260B			1 8260B	0912 11:27 PD
Methylene chloride	ND	ug/kg	34.		
l,1-Dichloroethane	ND	ug/kg	5.1		
Chloroform	ND	ug/kg	5.1		
Carbon tetrachloride	ND	ug/kg	3.4		
l,2-Dichloropropane	ND	ug/kg	12.		
Dibromochloromethane	ND	ug/kg	3.4		
1,1,2-Trichloroethane	ND	ug/kg	5.1		
Tetrachloroethene	6.4	ug/kg	3.4		
Chlorobenzene	ND	ug/kg	3.4		
Trichlorofluoromethane	ND	ug/kg	17.		

Laboratory Sample Number: L0813344-10

PWG-DW-2008-07 (6.75-7.25')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
								
olatile Organics by EPA 826	OB cont'd			1	8260B		0912 11:	27 PD
l,2-Dichloroethane	ND	ug/kg	3.4					
l,1,1-Trichloroethane	ND	ug/kg	3.4					
Bromodichloromethane	ND	ug/kg	3.4					
rans-1,3-Dichloropropene	ND	ug/kg	3.4					
cis-1,3-Dichloropropene	ND	ug/kg	3.4					
,1-Dichloropropene	ND	ug/kg	17.					
3romoform	ND	ug/kg	14.					
,1,2,2-Tetrachloroethane	ND	ug/kg	3.4					
Benzene	ND	ug/kg	3.4					
Coluene	ND	ug/kg	5.1					
thylbenzene	ND	ug/kg	3.4					
Chloromethane	ND	ug/kg	17.					
romomethane	ND	ug/kg	6.8					
inyl chloride	ND	ug/kg ug/kg	6.8					
Chloroethane	ND	ug/kg ug/kg	6.8					
,1-Dichloroethene	ND	ug/kg ug/kg	3.4					
rans-1,2-Dichloroethene	ND	ug/kg ug/kg	5.1					
richloroethene	ND	ug/kg ug/kg	3.4					
,2-Dichlorobenzene	ND	ug/kg ug/kg	17.					
,3-Dichlorobenzene	ND	ug/kg ug/kg	17.					
,4-Dichlorobenzene	ND	ug/kg ug/kg	17.					
ethyl tert butyl ether	ND	ug/kg ug/kg	6.8					
	230							
o/m-Xylene	ND	ug/kg	6.8					
-Xylene		ug/kg	6.8					
eis-1,2-Dichloroethene	ND	ug/kg	3.4					
	ND	ug/kg	34.					
tyrene	ND	ug/kg	6.8					
oichlorodifluoromethane	ND	ug/kg	34.					
cetone	48	ug/kg	34					
arbon disulfide	ND	ug/kg	34.					
-Butanone	ND	ug/kg	34.					
rinyl acetate	ND	ug/kg	34.					
-Methyl-2-pentanone	ND	ug/kg	34.					
,,2,3-Trichloropropane	ND	ug/kg	34.					
-Hexanone	ND	ug/kg	34.					
romochloromethane	ND	ug/kg	17.					
2,2-Dichloropropane	ND	ug/kg	17.					
,2-Dibromoethane	ND	ug/kg	14.					
,3-Dichloropropane	ND	ug/kg	17.					
,1,1,2-Tetrachloroethane	ND	ug/kg	3.4					
romobenzene	ND	ug/kg	17.					
-Butylbenzene	ND	ug/kg	3.4					
ec-Butylbenzene	ND	ug/kg	3.4					
ert-Butylbenzene	ND	ug/kg	17.					
-Chlorotoluene	ND	ug/kg	17.					
-Chlorotoluene	ND	ug/kg	17.					
,2-Dibromo-3-chloropropane	ND	ug/kg	17.					
[exachlorobutadiene	ND	ug/kg	17.					
sopropylbenzene	39	ug/kg	3.4					

Laboratory Sample Number: L0813344-10

PWG-DW-2008-07 (6.75-7.25')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Volatile Organics by EPA 8260	DB contid			1	8260B		0912 11:2	חת 7
p-Isopropyltoluene	ND	ug/kg	3.4	_	02000		0)12 11.2	/ FD
Naphthalene	ND	ug/kg ug/kg	17.					
Acrylonitrile	ND		34.					
-	37	ug/kg	3.4					
n-Propylbenzene		ug/kg	17.					
1,2,3-Trichlorobenzene	ND	ug/kg						
1,2,4-Trichlorobenzene	ND	ug/kg	17.					
1,3,5-Trimethylbenzene	62	ug/kg	17					
1,2,4-Trimethylbenzene	60	ug/kg	17					
1,4-Diethylbenzene	16	ug/kg	14					
4-Ethyltoluene	48	ug/kg	14					
1,2,4,5-Tetramethylbenzene	24	ug/kg	14					
Surrogate(s)	Recovery		QC Cri	teri	a			
1,2-Dichloroethane-d4	103	%	70-130)				
Toluene-d8	105	%	70-130)				
4-Bromofluorobenzene	117	8	70-130)				
Dibromofluoromethane	97.0	%	70-130)				
Semivolatile Organics by EPA	8270C			1	8270C	0911 03:30	0913 00:5	8 PS
Acenaphthene	ND	ug/kg	4600					
1,2,4-Trichlorobenzene	ND	ug/kg	4600					
Hexachlorobenzene	ND	ug/kg	4600					
Bis(2-chloroethyl)ether	ND	ug/kg	4600					
2-Chloronaphthalene	ND	ug/kg	5500					
1,2-Dichlorobenzene	ND	ug/kg	4600					
1,3-Dichlorobenzene	ND	ug/kg	4600					
1,4-Dichlorobenzene	ND	ug/kg	4600					
3,3'-Dichlorobenzidine	ND	ug/kg	9100					
2,4-Dinitrotoluene	ND	ug/kg ug/kg	4600					
2,6-Dinitrotoluene	ND	ug/kg ug/kg	4600					
Fluoranthene	ND		4600					
		ug/kg						
4-Chlorophenyl phenyl ether 4-Bromophenyl phenyl ether	ND	ug/kg	4600 4600					
	ND	ug/kg	4600 4600					
Bis(2-chloroisopropyl)ether	ND	ug/kg	4600					
Bis(2-chloroethoxy)methane	ND	ug/kg	4600					
Hexachlorobutadiene	ND	ug/kg	9100					
Hexachlorocyclopentadiene	ND	ug/kg	9100					
Hexachloroethane	ND	ug/kg	4600					
Isophorone	ND	ug/kg	4600					
Naphthalene	ND	ug/kg	4600					
Nitrobenzene	ND	ug/kg	4600					
NitrosoDiPhenylAmine(NDPA)/DI		ug/kg	14000)				
n-Nitrosodi-n-propylamine	ND	ug/kg	4600					
Bis(2-Ethylhexyl)phthalate	ND	ug/kg	9100					
Butyl benzyl phthalate	ND	ug/kg	4600					
Di-n-butylphthalate	ND	ug/kg	4600					
Di-n-octylphthalate	ND	ug/kg	4600					
Diethyl phthalate	ND	ug/kg	4600					
Dimethyl phthalate	ND	ug/kg	4600					

Laboratory Sample Number: L0813344-10

PWG-DW-2008-07 (6.75-7.25')

Semivolatile Organics by EPA 82700 Senzo(a)anthracene Senzo(a)pyrene Senzo(b)fluoranthene Senzo(k)fluoranthene Senzo(k)fluoranthene Senzo(k)fluoranthene Senzo(k)fluoranthene Senzo(k)fluoranthene Senzo(k)fluoranthene Senzo(ghi)perylene Senzo(ghi)perylene Senzo(ghi)perylene Sphenanthrene Sphenanth	ug/kg	4600 4600 4600 4600 4600 4600 4600 4600		70C	O911 03:30 (ANAL 0913 00:58 PS
Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(ghi)pere Benzo(ghi)perylene Benzo(ghi)perylene Benzo(ghi)perylene Benzo(ghi)perylene Benzo(a,h)anthracene Benzo(a)a,horenee Benzo(a)a,horenee Benzo(ghi)perylene Benzo(a)a,horenee Benzo(ghi)perylene Benzo(a)a,horenee Benzo(ghi)perylene Benzo(ghi)perylene Benzo(a)a,horenee Benzo(ghi)perylene Ben	ug/kg	4600 4600 4600 4600 4600 4600 4600 4600		70C	0911 03:30 (0913 00:58 PS
Renzo(a)anthracene Renzo(b)fluoranthene Renzo(b)fluoranthene Renzo(k)fluoranthene Renzo(k)fluoranthene Renzo(k)fluoranthene Renzo(k)fluoranthene Renzo(k)fluoranthene Renzo(k)fluoranthene Renzo(ghi)pere Renzo(ghi)perylene Renzo(ghi)perylene Renzo(ghi)perylene Renzo(a,h)anthracene Renzo(ghi)perylene Renzo(a,h)anthracene Renzo(a,h)anthracene Renzo(ghi)perylene Renzo(a,h)anthracene Renzo(a,h)anthracene Renzo(a,h)anthracene Renzo(a,h)anthracene Renzo(a,h)anthracene Renzo(a,h)anthracene Renzo(a,h)anthracene Renzo(a,h)anthracene Renzo(a,h)anthracene Renzo(ghi)perylene Renzo(ghi)pe	ug/kg	4600 4600 4600 4600 4600 4600 4600 4600		70C	0911 03:30 (0913 00:58 PS
Renzo(a)pyrene Renzo(b)fluoranthene Renzo(k)fluoranthene Renzo(k)fluoranthene Renzo(k)fluoranthene Renzo(k)fluoranthene Renzo(k)fluoranthene Renzo(k)fluoranthene Renzo(ghi)pere Renzo(ghi)perylene Renzo(ghi)perylene Renzo(ghi)perylene Renzo(a,h)anthracene Renzo(a,h)anthracene Renzo(a,h)anthracene Renzo(a,h)anthracene Renzo(a,h)anthracene Renzo(a,h)anthracene Renzo(a,h)anthracene Renzo(ghi)perylene Renzo(a,h)anthracene Renzo(ghi)perylene Renzo(a,h)anthracene Renzo(a,h)anthracene Renzo(a,h)anthracene Renzo(a) Renzo(ghi)perylene Renzo(ghi)perylene Renzo(a,h)anthracene Renzo(a) Renzo(k)fluoranthene Renzo(k)fluoranthene Renzo(k)fluoranthene Renzo(k)fluoranthene Renzo(k)fluoranthene Renzo(k)fluoranthene Renzo(k)fluoranthene Renzo(ghi)perylene Renzo(ghi)peryle	ug/kg	4600 4600 4600 4600 4600 4600 4600 4600				
Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Chrysene Acenaphthylene Anthracene Benzo(ghi)perylene Benzo(ghi)perylene Fluorene Phenanthrene Dibenzo(a,h)anthracene Indeno(1,2,3-cd)Pyrene Biphenyl A-Chloroaniline B-Nitroaniline B-Nitroaniline B-Nitroaniline B-Nitroaniline B-Dibenzofuran B-Methylnaphthalene B-C-Acetophenone B-C-Acetophenone B-C-Chloro-M-Cresol B-C-Chlorophenol B-C-Nitrophenol B-C-Nitrophenol B-C-Nitrophenol B-C-Chlorophenol B-C-Chlorophenol B-C-Chlorophenol B-C-Nitrophenol B-C-Nitroph	ug/kg	4600 4600 4600 4600 4600 4600 4600 4600				
Benzo(k)fluoranthene Chrysene Acenaphthylene Anthracene Benzo(ghi)perylene Benzo(ghi)perylene Benzo(ghi)perylene Benzo(ghi)perylene Benzo(a,h)anthracene Chenanthrene Chenanth	ug/kg	4600 4600 4600 4600 4600 4600 4600 4600				
Chrysene Acenaphthylene Anthracene Benzo(ghi)perylene Benzo(ghi)perylene Benzo(a,h)anthracene Chenanthrene Ch	ug/kg	4600 4600 4600 4600 4600 4600 4600 4600				
Acenaphthylene Anthracene Anthracene Anthracene Benzo(ghi)perylene Fluorene Phenanthrene Dibenzo(a,h)anthracene Andeno(1,2,3-cd)Pyrene Anthroaniline Benzo(anthroaniline Benzo(anthroanili	ug/kg	4600 4600 4600 4600 4600 4600 4600 4600				
anthracene lenzo(ghi)perylene lenzo(ghi)perylene lenzo(ghi)perylene lenzo(a,h)anthracene libenzo(a,h)anthracene li	ug/kg	4600 4600 4600 4600 4600 4600 4600 4600				
denzo(ghi)perylene ND Pluorene	ug/kg	4600 4600 4600 4600 4600 4600 4600 4600				
cluorene chenanthrene chenaco (a,h) anthracene chenaco (1,2,3-cd) Pyrene chenaco (1	ug/kg	4600 4600 4600 4600 4600 4600 4600 4600				
chenanthrene ND pibenzo(a,h)anthracene ND ndeno(1,2,3-cd)Pyrene ND yrene ND piphenyl ND -Chloroaniline ND -Nitroaniline ND -Chlorofuran ND -Methylnaphthalene ND cetophenone ND -Cthoro-M-Cresol ND -Chlorophenol ND -Chlorophenol ND -Nitrophenol ND -No -Nitrophenol ND -No -Nitrophenol ND -No	ug/kg	4600 4600 4600 4600 4600 4600 4600 4600				
mibenzo(a,h)anthracene mdeno(1,2,3-cd)Pyrene MD Myrene Miphenyl MD Mitroaniline MD Mitroaniline Mitroaniline Mitroaniline MD Mitroaniline MD Methylnaphthalene MD Methylnaphthalene MD Mo Methylnaphthalene MD MO	ug/kg	4600 4600 4600 4600 4600 4600 4600 4600				
ndeno(1,2,3-cd)Pyrene ND yrene ND iphenyl ND -Chloroaniline ND -Nitroaniline ND -Chlorofuran ND -Methylnaphthalene ND (2,4,5-Tetrachlorobenzene ND cetophenone ND -Chloro-M-Cresol ND -Chlorophenol ND -Chlorophenol ND -Nitrophenol ND -Methylphenol ND -Methylphenol ND -Methylphenol ND -Methylphenol/4-Methylphenol ND -Methylphenol/4-Methylphenol ND -Methylphenol/4-Methylphenol ND -Methylphenol/4-Methylphenol ND -Methylphenol/4-Tethylphenol ND -Methylphenol/4-Tethylphenol ND -Methylphenol/4-Tethylphenol ND -Methylphenol/4-Tethylphenol ND	ug/kg	4600 4600 4600 4600 4600 4600 4600 18000 4600 4600				
yrene Siphenyl Siphen	ug/kg	4600 4600 4600 4600 4600 4600 4600 18000 4600 4600				
diphenyl -Chloroaniline -Nitroaniline -Nitrophenol -Chlorophenol -Chlorophenol -Chlorophenol -Nitrophenol	ug/kg	4600 4600 4600 4600 4600 4600 18000 4600 4600				
-Chloroaniline ND -Nitroaniline ND -Methylnaphthalene ND -(2,4,5-Tetrachlorobenzene ND -(2,4,5-Tetrachlorobenzene ND -(3,4,6-Trichlorophenol ND -(4,6-Trichlorophenol ND -(4-Dichlorophenol ND -(4-Dimethylphenol ND -(4-Dimethylphenol ND -(4-Dinitrophenol ND -(4-Dinitrop	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	4600 4600 4600 6400 4600 18000 4600 4600				
-Nitroaniline ND -Methylnaphthalene ND -2,4,5-Tetrachlorobenzene ND -2,4,5-Tetrachlorobenzene ND -Cetophenone ND -4,6-Trichlorophenol ND -Chloro-M-Cresol ND -Chlorophenol ND -A-Dichlorophenol ND -Nitrophenol ND -Nitrophenol ND -Nitrophenol ND -Nitrophenol ND -Oinitro-o-cresol ND -Dinitro-o-cresol ND -Methylphenol ND -Methylphenol ND -Methylphenol/4-Methylphenol ND -Methylphenol/4-Methylphenol ND -Methylphenol/4-Methylphenol ND -Methylphenol/4-Methylphenol ND -Methylphenol/4-Tetrachlorophenol ND -Methylphenol/4-Methylphenol ND -Methylphenol/4-Methylphenol ND -Methylphenol/4-Tetrachlorophenol ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	4600 4600 6400 4600 4600 18000 4600 4600				
-Nitroaniline ND -Nitroaniline ND ibenzofuran ND -Methylnaphthalene ND .2,4,5-Tetrachlorobenzene ND .cetophenone ND .4,6-Trichlorophenol ND -Chloro-M-Cresol ND -Chlorophenol ND .4-Dichlorophenol ND .4-Dimethylphenol ND -Nitrophenol ND -Nitrophenol ND .4-Dinitrophenol ND .4-Dinitrophenol ND .4-Dinitrophenol ND .4-Dinitrophenol ND .4-Dinitrophenol ND .6-Dinitro-o-cresol ND entachlorophenol ND .Methylphenol ND -Methylphenol ND -Methylphenol/4-Methylphenol ND .4,5-Trichlorophenol ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	4600 6400 4600 4600 18000 4600 4600				
-Nitroaniline ND -Methylnaphthalene ND ,2,4,5-Tetrachlorobenzene ND .cetophenone ND -Chloro-M-Cresol ND -Chlorophenol ND -Chlorophenol ND -Chlorophenol ND ,4-Dichlorophenol ND -Nitrophenol ND -Nitrophenol ND -Nitrophenol ND -Nitrophenol ND -Methylphenol 4-Methylphenol ND ,4,5-Trichlorophenol ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	6400 4600 4600 18000 18000 4600				
ibenzofuran ND -Methylnaphthalene ND ,2,4,5-Tetrachlorobenzene ND cetophenone ND ,4,6-Trichlorophenol ND -Chloro-M-Cresol ND -Chlorophenol ND ,4-Dichlorophenol ND -Nitrophenol ND -Nitrophenol ND -Nitrophenol ND -Nitrophenol ND -Nitrophenol ND -Methylphenol ND entachlorophenol ND entachlorophenol ND -Methylphenol ND -Methylphenol ND -Methylphenol ND -Methylphenol/4-Methylphenol ND ,4,5-Trichlorophenol ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	4600 4600 18000 18000 4600 4600				
-Methylnaphthalene ND ,2,4,5-Tetrachlorobenzene ND cetophenone ND ,4,6-Trichlorophenol ND -Chloro-M-Cresol ND -Chlorophenol ND ,4-Dichlorophenol ND ,4-Dimethylphenol ND -Nitrophenol ND -Nitrophenol ND -Nitrophenol ND ,6-Dinitro-o-cresol ND entachlorophenol ND entachlorophenol ND henol ND -Methylphenol/4-Methylphenol ND ,4,5-Trichlorophenol ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	4600 4600 18000 18000 4600 4600				
,2,4,5-Tetrachlorobenzene ND cetophenone ND ,4,6-Trichlorophenol ND -Chloro-M-Cresol ND -Chlorophenol ND ,4-Dichlorophenol ND ,4-Dimethylphenol ND -Nitrophenol ND -Nitrophenol ND ,4-Dinitrophenol ND ,4-Dinitrophenol ND ,6-Dinitro-o-cresol ND entachlorophenol ND entachlorophenol ND -Methylphenol ND -Methylphenol/4-Methylphenol ND ,4,5-Trichlorophenol ND	ug/kg ug/kg ug/kg ug/kg	18000 18000 4600 4600				
,2,4,5-Tetrachlorobenzene ND cetophenone ND ,4,6-Trichlorophenol ND -Chloro-M-Cresol ND -Chlorophenol ND ,4-Dichlorophenol ND ,4-Dimethylphenol ND -Nitrophenol ND -Nitrophenol ND ,4-Dinitrophenol ND ,4-Dinitrophenol ND ,6-Dinitro-o-cresol ND entachlorophenol ND entachlorophenol ND -Methylphenol ND -Methylphenol/4-Methylphenol ND ,4,5-Trichlorophenol ND	ug/kg ug/kg ug/kg ug/kg	18000 18000 4600 4600				
cetophenone ND ,4,6-Trichlorophenol ND -Chloro-M-Cresol ND -Chlorophenol ND ,4-Dichlorophenol ND -Nitrophenol ND -Nitrophenol ND -Nitrophenol ND -A-Dinitrophenol ND ,4-Dinitrophenol ND ,6-Dinitro-o-cresol ND entachlorophenol ND henol ND -Methylphenol/4-Methylphenol ND ,4,5-Trichlorophenol ND	ug/kg ug/kg ug/kg	18000 4600 4600				
,4,6-TrichlorophenolND-Chloro-M-CresolND-ChlorophenolND,4-DichlorophenolND,4-DimethylphenolND-NitrophenolND-NitrophenolND,4-DinitrophenolND,6-Dinitro-o-cresolNDentachlorophenolNDhenolND-MethylphenolND-Methylphenol/4-MethylphenolND,4,5-TrichlorophenolND	ug/kg ug/kg	4600 4600				
-Chloro-M-Cresol ND -Chlorophenol ND ,4-Dichlorophenol ND ,4-Dimethylphenol ND -Nitrophenol ND -Nitrophenol ND ,4-Dinitrophenol ND ,4-Dinitrophenol ND ,6-Dinitro-o-cresol ND entachlorophenol ND henol ND -Methylphenol/4-Methylphenol ND ,4,5-Trichlorophenol ND	ug/kg	4600				
,4-Dichlorophenol ND ,4-Dimethylphenol ND -Nitrophenol ND -Nitrophenol ND ,4-Dinitrophenol ND ,6-Dinitro-o-cresol ND entachlorophenol ND henol ND -Methylphenol ND -Methylphenol/4-Methylphenol ND ,4,5-Trichlorophenol ND						
,4-Dichlorophenol ND ,4-Dimethylphenol ND -Nitrophenol ND -Nitrophenol ND ,4-Dinitrophenol ND ,6-Dinitro-o-cresol ND entachlorophenol ND henol ND -Methylphenol ND -Methylphenol/4-Methylphenol ND ,4,5-Trichlorophenol ND	ug/kg	2200				
,4-Dimethylphenol ND -Nitrophenol ND -Nitrophenol ND ,4-Dinitrophenol ND ,6-Dinitro-o-cresol ND entachlorophenol ND henol ND -Methylphenol ND -Methylphenol/4-Methylphenol ND ,4,5-Trichlorophenol ND	ug/kg					
-Nitrophenol ND -Nitrophenol ND ,4-Dinitrophenol ND ,6-Dinitro-o-cresol ND entachlorophenol ND henol ND -Methylphenol ND -Methylphenol/4-Methylphenol ND ,4,5-Trichlorophenol ND	ug/kg					
-Nitrophenol ND ,4-Dinitrophenol ND ,6-Dinitro-o-cresol ND entachlorophenol ND henol ND -Methylphenol ND -Methylphenol/4-Methylphenol ND ,4,5-Trichlorophenol ND	ug/kg					
,4-Dinitrophenol ND ,6-Dinitro-o-cresol ND entachlorophenol ND henol ND -Methylphenol ND -Methylphenol/4-Methylphenol ND ,4,5-Trichlorophenol ND	ug/kg					
,6-Dinitro-o-cresol ND entachlorophenol ND henol ND -Methylphenol/4-Methylphenol ND ,4,5-Trichlorophenol ND	ug/kg					
entachlorophenol ND henol ND -Methylphenol ND -Methylphenol/4-Methylphenol ND ,4,5-Trichlorophenol ND	ug/kg					
henol ND -Methylphenol ND -Methylphenol/4-Methylphenol ND ,4,5-Trichlorophenol ND	ug/kg					
-Methylphenol ND -Methylphenol/4-Methylphenol ND ,4,5-Trichlorophenol ND	ug/kg					
-Methylphenol/4-Methylphenol ND ,4,5-Trichlorophenol ND	ug/kg					
,4,5-Trichlorophenol ND	ug/kg ug/kg					
	ug/kg ug/kg					
	ug/kg					
_	ug/kg					
arbazole ND	ug/kg	4600				
urrogate(s) Reco	overy	QC Cr	iteria			
-Fluorophenol 100	%	25-12	0			
henol-d6 98.0	%	10-12	0			
itrobenzene-d5 86.0	%	23-12	0			
-Fluorobiphenyl 100	0.	30-12	0			
4,4,6-Tribromophenol 120	%	19-12				
-Terphenyl-d14 89.0	% %					
emivolatile Organics by EPA 82700	%	18-12	U			

Laboratory Sample Number: L0813344-10

PWG-DW-2008-07 (6.75-7.25')

PARAMETER	RESULT	UNITS	RDL	REF METH	IOD	DA PREP	TE ANAL	ID
							MAL	
Semivolatile Organics by EP	A 8270C-SIM	cont'd		1 82700	!	0911 03:30	0913 13:0	l AK
Acenaphthene	ND	ug/kg	1800					
2-Chloronaphthalene	ND	ug/kg	1800					
Fluoranthene	ND	ug/kg	1800					
Hexachlorobutadiene	ND	ug/kg	4600					
Naphthalene	ND	ug/kg	1800					
Benzo(a)anthracene	ND	ug/kg	1800					
Benzo(a)pyrene	ND	ug/kg	1800					
Benzo(b)fluoranthene	ND	ug/kg	1800					
Benzo(k)fluoranthene	ND	ug/kg	1800					
Chrysene	ND	ug/kg	1800					
Acenaphthylene	ND	ug/kg	1800					
Anthracene	ND	ug/kg	1800					
Benzo(ghi)perylene	ND	ug/kg	1800					
Fluorene	ND	ug/kg	1800					
Phenanthrene	ND	ug/kg	1800					
Dibenzo(a,h)anthracene	ND	ug/kg	1800					
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	1800					
Pyrene	ND	ug/kg	1800					
2-Methylnaphthalene	ND	ug/kg	1800					
Pentachlorophenol	ND	ug/kg	7300					
Hexachlorobenzene	ND	ug/kg	7300					
Hexachloroethane	ND	ug/kg	7300					
Surrogate(s)	Recovery		QC Cri	teria				
2-Fluorophenol	ND	%	25-120	1				
Phenol-d6	ND	%	10-120	1				
Nitrobenzene-d5	ND	%	23-120)				
2-Fluorobiphenyl	ND	%	30-120)				
2,4,6-Tribromophenol	ND	%	19-120)				
4-Terphenyl-d14	ND	%	18-120)				
Petroleum Hydrocarbon Quant	itation by G	C-FID		1 8015B	(M)	0911 00:15	0912 04:5	5 RT
TPH	3670000	ug/kg	457000	1				
Surrogate(s)	Recovery		QC Cri					
o-Terphenyl	96.0	8	40-140	1				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813344-11 Date Collected: 08-SEP-2008 11:05

PWG-DW-2008-08 (5.25-5.75') **Date Received:** 09-SEP-2008

Sample Matrix: SOIL Date Reported: 25-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER RESULT UNITS RDL REF METHOD DATE ID
PREP ANAL

***** THIS SAMPLE IS ON HOLD ******

Comments: Complete list of References and Glossary of Terms found in Addendum I

09250811:11 Page 48 of 178

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813344-12 Date Collected: 08-SEP-2008 11:25

Sample Matrix: SOIL Date Reported: 25-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER	RESULT	UNITS	\mathtt{RDL}	REF METHOD	DATE		ID
					PREP	ANAL	
Solids, Total	81	%	0.10	30 2540G		0910 18:40) NM
Total Metals							
Aluminum, Total	2500	mg/kg	5.9	1 6010B	0910 13:30	0911 14:33	B AI
Antimony, Total	ND	mg/kg	3.0	1 6010B	0910 13:30	0911 14:33	B AI
Arsenic, Total	0.77	mg/kg	0.59	1 6010B	0910 13:30	0911 14:33	AI
Barium, Total	9.7	mg/kg	0.59	1 6010B	0910 13:30	0911 14:33	AI
Beryllium, Total	ND	mg/kg	0.30	1 6010B		0911 14:33	
Cadmium, Total	ND	mg/kg	0.59	1 6010B		0911 14:33	
Calcium, Total	230	mg/kg	5.9	1 6010B	0910 13:30	0911 14:33	B AI
Chromium, Total	6.3	mg/kg	0.59	1 6010B	0910 13:30	0911 14:33	B AI
Cobalt, Total	ND	mg/kg	1.2	1 6010B		0911 14:33	
Copper, Total	4.9	mg/kg	0.59	1 6010B	0910 13:30	0911 14:33	3 AI
Iron, Total	3600	mg/kg	3.0	1 6010B	0910 13:30	0911 14:33	3 AI
Lead, Total	21	mg/kg	3.0	1 6010B		0911 14:33	
Magnesium, Total	460	mg/kg	5.9	1 6010B		0911 14:33	
Manganese, Total	13	mg/kg	0.59	1 6010B		0911 14:33	
Mercury, Total	ND	mg/kg	0.10	1 7471A	0911 23:30	0912 14:29	RC
Nickel, Total	3.0	mg/kg	1.5	1 6010B	0910 13:30	0911 14:33	B AI
Potassium, Total	ND	mg/kg	150	1 6010B	0910 13:30	0911 14:33	B AI
Selenium, Total	ND	mg/kg	1.2	1 6010B	0910 13:30	0911 14:33	AI
Silver, Total	ND	mg/kg	0.59	1 6010B	0910 13:30	0911 14:33	B AI
Sodium, Total	ND	mg/kg	120	1 6010B	0910 13:30	0911 14:33	AI
Thallium, Total	ND	mg/kg	1.2	1 6010B	0910 13:30	0911 14:33	3 AI
Vanadium, Total	9.9	mg/kg	0.59	1 6010B		0911 14:33	
Zinc, Total	78	mg/kg	3.0	1 6010B		0911 14:33	
Volatile Organics by EPA 8	3260B			1 8260B		0911 21:32	PD
Methylene chloride	ND	ug/kg	31.				
1,1-Dichloroethane	ND	ug/kg	4.6				
Chloroform	ND	ug/kg	4.6				
Carbon tetrachloride	ND	ug/kg	3.1				
1,2-Dichloropropane	ND	ug/kg	11.				
Dibromochloromethane	ND	ug/kg	3.1				
1,1,2-Trichloroethane	ND	ug/kg	4.6				
Tetrachloroethene	ND	ug/kg	3.1				
Chlorobenzene	ND	ug/kg	3.1				
Trichlorofluoromethane	ND	ug/kg	15.				

Laboratory Sample Number: L0813344-12

PWG-DW-2008-09 (6.75-7.25')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Olatile Organics by EPA 826	OB cont'd			1	8260B		0911 21:	32 PD
l,2-Dichloroethane	ND	ug/kg	3.1					
l,1,1-Trichloroethane	ND	ug/kg	3.1					
Bromodichloromethane	ND	ug/kg	3.1					
rans-1,3-Dichloropropene	ND	ug/kg	3.1					
cis-1,3-Dichloropropene	ND	ug/kg	3.1					
,1-Dichloropropene	ND	ug/kg	15.					
Bromoform	ND	ug/kg	12.					
.,1,2,2-Tetrachloroethane	ND	ug/kg	3.1					
Benzene	ND	ug/kg	3.1					
Coluene	ND	ug/kg	4.6					
thylbenzene	ND	ug/kg	3.1					
Chloromethane	ND	ug/kg	15.					
Bromomethane	ND	ug/kg	6.2					
/inyl chloride	ND	ug/kg	6.2					
Thloroethane	ND	ug/kg	6.2					
,1-Dichloroethene	ND	ug/kg	3.1					
rans-1,2-Dichloroethene	ND	ug/kg	4.6					
richloroethene	ND	ug/kg	3.1					
,2-Dichlorobenzene	ND	ug/kg	15.					
.,3-Dichlorobenzene	ND	ug/kg	15.					
.,4-Dichlorobenzene	ND	ug/kg	15.					
Methyl tert butyl ether	ND	ug/kg	6.2					
/m-Xylene	ND	ug/kg	6.2					
-Xylene	ND	ug/kg	6.2					
sis-1,2-Dichloroethene	ND	ug/kg	3.1					
oibromomethane	ND	ug/kg	31.					
Styrene	ND	ug/kg	6.2					
oichlorodifluoromethane	ND	ug/kg	31.					
cetone	ND	ug/kg	31.					
Carbon disulfide	ND	ug/kg	31.					
-Butanone	ND	ug/kg ug/kg	31.					
inyl acetate	ND	ug/kg ug/kg	31.					
-Methyl-2-pentanone	ND	ug/kg ug/kg	31.					
.,2,3-Trichloropropane	ND	ug/kg ug/kg	31.					
:,2,3-111cmoropropane ?-Hexanone	ND	ug/kg ug/kg	31.					
r-нехапопе Bromochloromethane	ND ND	ug/kg ug/kg	15.					
,2-Dichloropropane		ug/kg ug/kg	15. 15.					
	ND ND		12.					
,2-Dibromoethane ,3-Dichloropropane	ND ND	ug/kg	12. 15.					
		ug/kg						
,1,1,2-Tetrachloroethane	ND	ug/kg	3.1					
romobenzene	ND	ug/kg	15.					
-Butylbenzene	ND	ug/kg	3.1					
ec-Butylbenzene	ND	ug/kg	3.1					
ert-Butylbenzene	ND	ug/kg	15.					
-Chlorotoluene	ND	ug/kg	15.					
o-Chlorotoluene	ND	ug/kg	15.					
,2-Dibromo-3-chloropropane	ND	ug/kg	15.					
Mexachlorobutadiene	ND	ug/kg	15.					
sopropylbenzene	ND	ug/kg	3.1					

Laboratory Sample Number: L0813344-12

PWG-DW-2008-09 (6.75-7.25')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD		TE	ID
						PREP	ANAI	
Volatile Organics by EPA 826	OB cont'd			1	8260B		0911 21	:32 PD
p-Isopropyltoluene	ND	ug/kg	3.1					
Naphthalene	ND	ug/kg	15.					
Acrylonitrile	ND	ug/kg	31.					
n-Propylbenzene	ND	ug/kg	3.1					
1,2,3-Trichlorobenzene	ND	ug/kg	15.					
1,2,4-Trichlorobenzene	ND	ug/kg	15.					
1,3,5-Trimethylbenzene	ND	ug/kg	15.					
1,2,4-Trimethylbenzene	ND	ug/kg	15.					
1,4-Diethylbenzene	ND	ug/kg	12.					
4-Ethyltoluene	ND	ug/kg ug/kg	12.					
1,2,4,5-Tetramethylbenzene	ND		12.					
1,2,4,5-letramethylbenzene	ND	ug/kg	12.					
Surrogate(s)	Recovery		QC Cri	teria	э			
1,2-Dichloroethane-d4	106	%	70-130					
Toluene-d8	114	8	70-130					
4-Bromofluorobenzene	126	%	70-130					
Dibromofluoromethane	102	%	70-130					
Semivolatile Organics by EPA				1	8270C	0911 03:30	0915 20	:07 PS
Acenaphthene	ND	ug/kg	2000					
l,2,4-Trichlorobenzene	ND	ug/kg	2000					
Hexachlorobenzene	ND	ug/kg	2000					
Bis(2-chloroethyl)ether	ND	ug/kg	2000					
2-Chloronaphthalene	ND	ug/kg	2500					
1,2-Dichlorobenzene	ND	ug/kg	2000					
1,3-Dichlorobenzene	ND	ug/kg	2000					
1,4-Dichlorobenzene	ND	ug/kg	2000					
3,3'-Dichlorobenzidine	ND	ug/kg	4100					
2,4-Dinitrotoluene	ND	ug/kg	2000					
2,6-Dinitrotoluene	ND	ug/kg	2000					
Fluoranthene	ND	ug/kg	2000					
4-Chlorophenyl phenyl ether	ND	ug/kg	2000					
4-Bromophenyl phenyl ether	ND	ug/kg	2000					
Bis(2-chloroisopropyl)ether	ND	ug/kg	2000					
Bis(2-chloroethoxy)methane	ND	ug/kg	2000					
Hexachlorobutadiene	ND	ug/kg ug/kg	4100					
Hexachlorocyclopentadiene	ND	ug/kg ug/kg	4100					
Hexachlorocyclopentadiene Hexachloroethane	ND ND	ug/kg ug/kg	2000					
Isophorone	ND ND	ug/kg ug/kg	2000					
_			2000					
Naphthalene	ND	ug/kg						
Nitrobenzene	ND	ug/kg	2000					
NitrosoDiPhenylAmine(NDPA)/Di		ug/kg	6200					
n-Nitrosodi-n-propylamine	ND	ug/kg	2000					
Bis(2-Ethylhexyl)phthalate	ND	ug/kg	4100					
Butyl benzyl phthalate	ND	ug/kg	2000					
Di-n-butylphthalate	ND	ug/kg	2000					
Di-n-octylphthalate	ND	ug/kg	2000					
Diethyl phthalate	ND	ug/kg	2000					
Dimethyl phthalate	ND	ug/kg	2000					

Laboratory Sample Number: L0813344-12

PWG-DW-2008-09 (6.75-7.25')

					PREP	ANAL	
	00000						
emivolatile Organics by EPA			0000	1 8270C	0911 03:30	0915 20:07	7 PS
enzo(a)anthracene	ND	ug/kg	2000				
enzo(a)pyrene	ND	ug/kg	2000				
enzo(b)fluoranthene	ND	ug/kg	2000				
enzo(k)fluoranthene	ND	ug/kg	2000				
hrysene	ND	ug/kg	2000				
cenaphthylene	ND	ug/kg	2000				
nthracene	ND	ug/kg	2000				
enzo(ghi)perylene	ND	ug/kg	2000				
luorene	ND	ug/kg	2000				
henanthrene	ND	ug/kg	2000				
ibenzo(a,h)anthracene	ND	ug/kg	2000				
ndeno(1,2,3-cd)Pyrene	ND	ug/kg	2000				
yrene	ND	ug/kg	2000				
iphenyl	ND	ug/kg	2000				
-Chloroaniline	ND	ug/kg	2000				
-Nitroaniline	ND	ug/kg	2000				
-Nitroaniline	ND	ug/kg	2000				
-Nitroaniline	ND	ug/kg	2900				
ibenzofuran	ND	ug/kg	2000				
-Methylnaphthalene	ND	ug/kg	2000				
,2,4,5-Tetrachlorobenzene	ND	ug/kg	8200				
cetophenone	ND	ug/kg	8200				
,4,6-Trichlorophenol	ND	ug/kg	2000				
-Chloro-M-Cresol	ND	ug/kg	2000				
-Chlorophenol	ND	ug/kg	2500				
,4-Dichlorophenol	ND	ug/kg	4100				
,4-Dimethylphenol	ND	ug/kg	2000				
-Nitrophenol	ND	ug/kg	8200				
-Nitrophenol	ND	ug/kg	4100				
,4-Dinitrophenol	ND	ug/kg	8200				
,6-Dinitro-o-cresol	ND	ug/kg	8200				
entachlorophenol	ND	ug/kg	8200				
henol	ND	ug/kg	2900				
-Methylphenol	ND	ug/kg	2500				
-Methylphenol/4-Methylphenol		ug/kg	2500				
,4,5-Trichlorophenol	ND	ug/kg ug/kg	2000				
enzoic Acid	ND	ug/kg ug/kg	2000				
enzyl Alcohol	ND ND	ug/kg ug/kg	4100				
arbazole	ND	ug/kg ug/kg	2000				
u1Du2016	IND	ug/ng	2000				
urrogate(s)	Recovery			iteria			
-Fluorophenol	76.0	%	25-12				
henol-d6	78.0	%	10-12				
itrobenzene-d5	63.0	%	23-12				
-Fluorobiphenyl	66.0	8	30-12	0			
,4,6-Tribromophenol	89.0	8	19-12	0			
-Terphenyl-d14	68.0	%	18-12	0			

Laboratory Sample Number: L0813344-12

PWG-DW-2008-09 (6.75-7.25')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Semivolatile Organics by F	EPA 8270C-SIM	cont'd		1 8270C	0911 03:30 0913 16:11 AK
Acenaphthene	ND	ug/kg	820		
2-Chloronaphthalene	ND	ug/kg	820		
Fluoranthene	ND	ug/kg	820		
Hexachlorobutadiene	ND	ug/kg	2000		
Naphthalene	ND	ug/kg	820		
Benzo(a)anthracene	ND	ug/kg	820		
Benzo(a)pyrene	ND	ug/kg	820		
Benzo(b)fluoranthene	ND	ug/kg	820		
Benzo(k)fluoranthene	ND	ug/kg	820		
Chrysene	ND	ug/kg	820		
Acenaphthylene	ND	ug/kg	820		
Anthracene	ND	ug/kg	820		
Benzo(ghi)perylene	ND	ug/kg	820		
Fluorene	ND	ug/kg	820		
Phenanthrene	ND	ug/kg	820		
Dibenzo(a,h)anthracene	ND	ug/kg	820		
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	820		
Pyrene	ND	ug/kg	820		
2-Methylnaphthalene	ND	ug/kg	820		
Pentachlorophenol	ND	ug/kg	3300		
Hexachlorobenzene	ND	ug/kg	3300		
Hexachloroethane	ND	ug/kg	3300		
Surrogate(s)	Recovery		QC Crit	teria	
2-Fluorophenol	ND	%	25-120		
Phenol-d6	ND	%	10-120		
Nitrobenzene-d5	ND	%	23-120		
2-Fluorobiphenyl	ND	%	30-120		
2,4,6-Tribromophenol	ND	%	19-120		
4-Terphenyl-d14	ND	%	18-120		
Petroleum Hydrocarbon Quar	ntitation by G	GC-FID		1 8015B(M)	0911 00:15 0912 00:20 RT
TPH	515000	ug/kg	41200		
Surrogate(s)	Recovery		QC Crit	teria	
o-Terphenyl	73.0	%	40-140		

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813344-13 Date Collected: 08-SEP-2008 11:40

PWG-DW-2008-10 (6.25-6.75') Date Received: 09-SEP-2008

Sample Matrix: SOIL Date Reported: 25-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE	ID
					PREP ANAL	
Solids, Total	71	%	0.10	30 2540G	0912 15:07	' SD
Total Metals						
Aluminum, Total	3000	mg/kg	6.5	1 6010B	0911 13:45 0916 20:53	ВМ
Antimony, Total	ND	mg/kg	3.3	1 6010B	0911 13:45 0916 20:53	BM
Arsenic, Total	1.3	mg/kg	0.65	1 6010B	0911 13:45 0916 20:53	BM
Barium, Total	18	mg/kg	0.65	1 6010B	0911 13:45 0916 20:53	ВМ
Beryllium, Total	ND	mg/kg	0.33	1 6010B	0911 13:45 0916 20:53	BM
Cadmium, Total	1.0	mg/kg	0.65	1 6010B	0911 13:45 0916 20:53	BM
Calcium, Total	53000	mg/kg	33	1 6010B	0911 13:45 0918 11:32	AI
Chromium, Total	7.3	mg/kg	0.65	1 6010B	0911 13:45 0916 20:53	BM
Cobalt, Total	1.5	mg/kg	1.3	1 6010B	0911 13:45 0916 20:53	BM
Copper, Total	25	mg/kg	0.65	1 6010B	0911 13:45 0916 20:53	BM
Iron, Total	5000	mg/kg	3.3	1 6010B	0911 13:45 0916 20:53	BM
Lead, Total	82	mg/kg	3.3	1 6010B	0911 13:45 0916 20:53	BM
Magnesium, Total	32000	mg/kg	6.5	1 6010B	0911 13:45 0916 20:53	BM
Manganese, Total	87	mg/kg	0.65	1 6010B	0911 13:45 0916 20:53	BM
Mercury, Total	0.42	mg/kg	0.11	1 7471A	0911 23:30 0912 14:31	RC
Nickel, Total	5.9	mg/kg	1.6	1 6010B	0911 13:45 0916 20:53	BM
Potassium, Total	210	mg/kg	160	1 6010B	0911 13:45 0916 20:53	BM
Selenium, Total	ND	mg/kg	1.3	1 6010B	0911 13:45 0916 20:53	BM
Silver, Total	ND	mg/kg	0.65	1 6010B	0911 13:45 0916 20:53	BM
Sodium, Total	ND	mg/kg	130	1 6010B	0911 13:45 0916 20:53	BM
Thallium, Total	ND	mg/kg	1.3	1 6010B	0911 13:45 0916 20:53	BM
Vanadium, Total	12	mg/kg	0.65	1 6010B	0911 13:45 0916 20:53	BM
Zinc, Total	170	mg/kg	3.3	1 6010B	0911 13:45 0916 20:53	BM
Olatile Organics by EPA 8	3260B			1 8260B	0912 13:16	PD
Methylene chloride	ND	ug/kg	35.			
l,1-Dichloroethane	ND	ug/kg	5.3			
Chloroform	ND	ug/kg	5.3			
Carbon tetrachloride	ND	ug/kg	3.5			
l,2-Dichloropropane	ND	ug/kg	12.			
Dibromochloromethane	ND	ug/kg	3.5			
1,1,2-Trichloroethane	ND	ug/kg	5.3			
Tetrachloroethene	20	ug/kg	3.5			
Chlorobenzene	ND	ug/kg	3.5			
Trichlorofluoromethane	ND	ug/kg	18.			

Laboratory Sample Number: L0813344-13

PWG-DW-2008-10 (6.25-6.75')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Volatile Organics by EPA 826	OB cont'd			1	8260B		0912 13:	16 PD
1,2-Dichloroethane	ND	ug/kg	3.5					
l,1,1-Trichloroethane	ND	ug/kg	3.5					
Bromodichloromethane	ND	ug/kg	3.5					
rans-1,3-Dichloropropene	ND	ug/kg	3.5					
is-1,3-Dichloropropene	ND	ug/kg	3.5					
,1-Dichloropropene	ND	ug/kg	18.					
Bromoform	ND	ug/kg	14.					
,1,2,2-Tetrachloroethane	ND	ug/kg	3.5					
senzene	ND	ug/kg	3.5					
oluene	ND	ug/kg	5.3					
thylbenzene	ND	ug/kg	3.5					
thloromethane	ND	ug/kg	18.					
Bromomethane	ND	ug/kg	7.0					
inyl chloride	ND	ug/kg	7.0					
thloroethane	ND	ug/kg	7.0					
,1-Dichloroethene	ND	ug/kg	3.5					
rans-1,2-Dichloroethene	ND	ug/kg	5.3					
richloroethene	ND	ug/kg	3.5					
,2-Dichlorobenzene	ND	ug/kg	18.					
,3-Dichlorobenzene	ND	ug/kg	18.					
,4-Dichlorobenzene	ND	ug/kg	18.					
ethyl tert butyl ether	ND	ug/kg ug/kg	7.0					
/m-Xylene	ND	ug/kg	7.0					
-Xylene	ND	ug/kg ug/kg	7.0					
is-1,2-Dichloroethene	ND	ug/kg ug/kg	3.5					
oibromomethane	ND	ug/kg ug/kg	35.					
tyrene	ND	ug/kg ug/kg	7.0					
Dichlorodifluoromethane	ND	ug/kg ug/kg	35.					
acetone	67		35.					
arbon disulfide		ug/kg						
	ND	ug/kg	35.					
-Butanone	ND	ug/kg	35.					
inyl acetate	ND	ug/kg	35.					
-Methyl-2-pentanone	ND	ug/kg	35.					
.,2,3-Trichloropropane	ND	ug/kg	35.					
-Hexanone	ND	ug/kg	35.					
romochloromethane	ND	ug/kg	18.					
2,2-Dichloropropane	ND	ug/kg	18.					
,2-Dibromoethane	ND	ug/kg	14.					
,3-Dichloropropane	ND	ug/kg	18.					
,1,1,2-Tetrachloroethane	ND	ug/kg	3.5					
romobenzene	ND	ug/kg	18.					
-Butylbenzene	ND	ug/kg	3.5					
ec-Butylbenzene	ND	ug/kg	3.5					
ert-Butylbenzene	ND	ug/kg	18.					
-Chlorotoluene	ND	ug/kg	18.					
-Chlorotoluene	ND	ug/kg	18.					
,2-Dibromo-3-chloropropane	ND	ug/kg	18.					
exachlorobutadiene	ND	ug/kg	18.					
sopropylbenzene	ND	ug/kg	3.5					

Laboratory Sample Number: L0813344-13

PWG-DW-2008-10 (6.25-6.75')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAI	ID
						PREP	ANAI	.
Volatile Organics by EPA 826	OB cont'd			1	8260B		0912 13	:16 PD
p-Isopropyltoluene	ND	ug/kg	3.5					
Naphthalene	ND	ug/kg	18.					
Acrylonitrile	ND	ug/kg	35.					
n-Propylbenzene	ND	ug/kg	3.5					
1,2,3-Trichlorobenzene	ND	ug/kg	18.					
1,2,4-Trichlorobenzene	ND	ug/kg	18.					
1,3,5-Trimethylbenzene	ND	ug/kg	18.					
1,2,4-Trimethylbenzene	ND	ug/kg	18.					
l,4-Diethylbenzene	ND	ug/kg	14.					
4-Ethyltoluene	ND	ug/kg	14.					
1,2,4,5-Tetramethylbenzene	ND	ug/kg	14.					
Surrogate(s)	Recovery		QC Cri	teria	a.			
1,2-Dichloroethane-d4	92.0	%	70-130					
Foluene-d8	99.0	%	70-130					
1-Bromofluorobenzene	116	%	70-130					
Dibromofluoromethane	92.0	%	70-130					
Semivolatile Organics by EPA	8270C			1	8270C	0911 21:40	0913 18	:09 PS
Acenaphthene	ND	ug/kg	2300	-	02,00	0311 21 10	0,13 10	0, 10
1,2,4-Trichlorobenzene	ND	ug/kg	2300					
Hexachlorobenzene	ND	ug/kg	2300					
Bis(2-chloroethyl)ether	ND	ug/kg	2300					
2-Chloronaphthalene	ND	ug/kg	2800					
1,2-Dichlorobenzene	ND	ug/kg	2300					
L,3-Dichlorobenzene	ND	ug/kg	2300					
l,4-Dichlorobenzene	ND	ug/kg	2300					
3,3'-Dichlorobenzidine	ND	ug/kg	4700					
2,4-Dinitrotoluene	ND	ug/kg	2300					
2,6-Dinitrotoluene	ND	ug/kg	2300					
Fluoranthene	ND	ug/kg	2300					
4-Chlorophenyl phenyl ether	ND	ug/kg	2300					
4-Bromophenyl phenyl ether	ND	ug/kg	2300					
Bis(2-chloroisopropyl)ether	ND	ug/kg	2300					
Bis(2-chloroethoxy)methane	ND	ug/kg	2300					
Hexachlorobutadiene	ND	ug/kg	4700					
Hexachlorocyclopentadiene	ND	ug/kg	4700					
Hexachloroethane	ND	ug/kg ug/kg	2300					
Isophorone	ND	ug/kg ug/kg	2300					
Naphthalene	ND	ug/kg ug/kg	2300					
Naphthalene Nitrobenzene	ND	ug/kg ug/kg	2300					
Vitrosenzene VitrosoDiPhenylAmine(NDPA)/D		ug/kg ug/kg	7000					
n-Nitrosodi-n-propylamine	ND	ug/kg ug/kg	2300					
Bis(2-Ethylhexyl)phthalate	ND	ug/kg ug/kg	4700					
Butyl benzyl phthalate	ND ND	ug/kg ug/kg	2300					
Di-n-butylphthalate	ND	ug/kg ug/kg	2300					
Di-n-octylphthalate	ND	ug/kg ug/kg	2300					
Diethyl phthalate	ND	ug/kg ug/kg	2300					
	1110	ug/kg	2000					

Laboratory Sample Number: L0813344-13

PWG-DW-2008-10 (6.25-6.75')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Semivolatile Organics by EPA 8	3270C cont	'd		1	8270C	0911 21:40	0913 18:	ng ps
Benzo(a)anthracene	ND	ug/kg	2300	-	02700	0,11 21 10	0,10	0, 10
Benzo(a)pyrene	ND	ug/kg ug/kg	2300					
Benzo(b)fluoranthene	ND	ug/kg ug/kg	2300					
Benzo(k)fluoranthene	ND	ug/kg ug/kg	2300					
Chrysene	ND	ug/kg ug/kg	2300					
Acenaphthylene	ND	ug/kg ug/kg	2300					
Anthracene	ND	ug/kg ug/kg	2300					
Benzo(ghi)perylene	ND		2300					
Fluorene	ND	ug/kg	2300					
Phenanthrene	ND	ug/kg	2300					
		ug/kg						
Dibenzo(a,h)anthracene	ND	ug/kg	2300					
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	2300					
Pyrene	ND	ug/kg	2300					
Biphenyl	ND	ug/kg	2300					
4-Chloroaniline	ND	ug/kg	2300					
2-Nitroaniline	ND	ug/kg	2300					
3-Nitroaniline	ND	ug/kg	2300					
1-Nitroaniline	ND	ug/kg	3300					
Dibenzofuran	ND	ug/kg	2300					
2-Methylnaphthalene	ND	ug/kg	2300					
1,2,4,5-Tetrachlorobenzene	ND	ug/kg	9400					
Acetophenone	ND	ug/kg	9400					
2,4,6-Trichlorophenol	ND	ug/kg	2300					
P-Chloro-M-Cresol	ND	ug/kg	2300					
2-Chlorophenol	ND	ug/kg	2800					
2,4-Dichlorophenol	ND	ug/kg	4700					
2,4-Dimethylphenol	ND	ug/kg	2300					
2-Nitrophenol	ND	ug/kg	9400					
1-Nitrophenol	ND	ug/kg	4700					
2,4-Dinitrophenol	ND	ug/kg	9400					
1,6-Dinitro-o-cresol	ND	ug/kg	9400					
Pentachlorophenol	ND	ug/kg	9400					
Phenol	ND	ug/kg	3300					
2-Methylphenol	ND	ug/kg	2800					
3-Methylphenol/4-Methylphenol	ND	ug/kg	2800					
2,4,5-Trichlorophenol	ND	ug/kg	2300					
Benzoic Acid	ND	ug/kg	23000					
Benzyl Alcohol	ND	ug/kg	4700					
Carbazole	ND	ug/kg	2300					
Surrogate(s)	Recovery		QC Cr	iteria	L			
2-Fluorophenol	71.0	%	25-120)				
Phenol-d6	72.0	%	10-120)				
Nitrobenzene-d5	62.0	%	23-120)				
2-Fluorobiphenyl	70.0	%	30-120)				
2,4,6-Tribromophenol	97.0	%	19-120)				
1-Terphenyl-d14	76.0	%	18-120)				

Laboratory Sample Number: L0813344-13

PWG-DW-2008-10 (6.25-6.75')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA: PREP	TE ANAL	ID
Semivolatile Organics by E	PA 8270C-SIM	cont'd		1 8270C	0911 21:40	0914 06:5	1 AK
Acenaphthene	ND	ug/kg	190				
2-Chloronaphthalene	ND	ug/kg	190				
Fluoranthene	ND	ug/kg	190				
Hexachlorobutadiene	ND	ug/kg	470				
Naphthalene	ND	ug/kg	190				
Benzo(a)anthracene	ND	ug/kg	190				
Benzo(a)pyrene	ND	ug/kg	190				
Benzo(b)fluoranthene	ND	ug/kg	190				
Benzo(k)fluoranthene	ND	ug/kg	190				
Chrysene	ND	ug/kg	190				
Acenaphthylene	ND	ug/kg	190				
Anthracene	ND	ug/kg	190				
Benzo(ghi)perylene	ND	ug/kg	190				
Fluorene	ND	ug/kg	190				
Phenanthrene	ND	ug/kg	190				
Dibenzo(a,h)anthracene	ND	ug/kg	190				
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	190				
Pyrene	ND	ug/kg	190				
2-Methylnaphthalene	ND	ug/kg	190				
Pentachlorophenol	ND	ug/kg	750				
Hexachlorobenzene	ND	ug/kg	750				
Hexachloroethane	ND	ug/kg	750				
Surrogate(s)	Recovery		QC Cri	teria			
2-Fluorophenol	68.0	%	25-120				
Phenol-d6	72.0	%	10-120				
Nitrobenzene-d5	58.0	%	23-120				
2-Fluorobiphenyl	69.0	%	30-120				
2,4,6-Tribromophenol	84.0	%	19-120				
4-Terphenyl-d14	72.0	%	18-120				
Petroleum Hydrocarbon Quan	titation by (GC-FID		1 8015B(M)	0911 23:00	0912 10:5	5 JL
ТРН	97400	ug/kg	46900				
Surrogate(s)	Recovery		QC Cri	teria			
o-Terphenyl	68.0	%	40-140				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813344-14 Date Collected: 08-SEP-2008 11:55

PWG-DW-2008-11 (6.75-7.25') Date Received: 09-SEP-2008

Sample Matrix: SOIL Date Reported: 25-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID
					PREP ANAL
Solids, Total	80	%	0.10	30 2540G	0910 18:40 NM
Total Metals					
Aluminum, Total	1900	mg/kg	5.8	1 6010B	0910 13:30 0911 14:36 AI
Antimony, Total	ND	mg/kg	2.9	1 6010B	0910 13:30 0911 14:36 AI
Arsenic, Total	1.6	mg/kg	0.58	1 6010B	0910 13:30 0911 14:36 AI
Barium, Total	15	mg/kg	0.58	1 6010B	0910 13:30 0911 14:36 AI
Beryllium, Total	ND	mg/kg	0.29	1 6010B	0910 13:30 0911 14:36 AI
Cadmium, Total	ND	mg/kg	0.58	1 6010B	0910 13:30 0911 14:36 AI
Calcium, Total	14000	mg/kg	5.8	1 6010B	0910 13:30 0911 14:36 AI
Chromium, Total	6.5	mg/kg	0.58	1 6010B	0910 13:30 0911 14:36 AI
Cobalt, Total	1.2	mg/kg	1.2	1 6010B	0910 13:30 0911 14:36 AI
Copper, Total	14	mg/kg	0.58	1 6010B	0910 13:30 0911 14:36 AI
Iron, Total	2700	mg/kg	2.9	1 6010B	0910 13:30 0911 14:36 AI
Lead, Total	70	mg/kg	2.9	1 6010B	0910 13:30 0911 14:36 AI
Magnesium, Total	8500	mg/kg	5.8	1 6010B	0910 13:30 0911 14:36 AI
Manganese, Total	29	mg/kg	0.58	1 6010B	0910 13:30 0911 14:36 AI
Mercury, Total	0.31	mg/kg	0.10	1 7471A	0911 23:30 0912 14:33 RC
Nickel, Total	3.8	mg/kg	1.5	1 6010B	0910 13:30 0911 14:36 AI
Potassium, Total	160	mg/kg	150	1 6010B	0910 13:30 0911 14:36 AI
Selenium, Total	ND	mg/kg	1.2	1 6010B	0910 13:30 0911 14:36 AI
Silver, Total	ND	mg/kg	0.58	1 6010B	0910 13:30 0911 14:36 AI
Sodium, Total	ND	mg/kg	120	1 6010B	0910 13:30 0911 14:36 AI
Thallium, Total	ND	mg/kg	1.2	1 6010B	0910 13:30 0911 14:36 AI
Vanadium, Total	8.9	mg/kg	0.58	1 6010B	0910 13:30 0911 14:36 AI
Zinc, Total	69	mg/kg	2.9	1 6010B	0910 13:30 0911 14:36 AI
Volatile Organics by EPA 8	3260B			1 8260B	0911 22:09 PD
Methylene chloride	ND	ug/kg	31.		
1,1-Dichloroethane	ND	ug/kg	4.7		
Chloroform	ND	ug/kg	4.7		
Carbon tetrachloride	ND	ug/kg	3.1		
1,2-Dichloropropane	ND	ug/kg	11.		
Dibromochloromethane	ND	ug/kg	3.1		
1,1,2-Trichloroethane	ND	ug/kg	4.7		
Tetrachloroethene	ND	ug/kg	3.1		
Chlorobenzene	ND	ug/kg	3.1		
Trichlorofluoromethane	ND	ug/kg	16.		

Laboratory Sample Number: L0813344-14

PWG-DW-2008-11 (6.75-7.25')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID
					PREP ANAL
Volatile Organics by EPA 826	OB cont'd			1 8260B	0911 22:09 PD
1,2-Dichloroethane	ND	ug/kg	3.1		
1,1,1-Trichloroethane	5.3	ug/kg	3.1		
Bromodichloromethane	ND	ug/kg	3.1		
trans-1,3-Dichloropropene	ND	ug/kg	3.1		
cis-1,3-Dichloropropene	ND	ug/kg	3.1		
l,1-Dichloropropene	ND	ug/kg	16.		
Bromoform	ND	ug/kg	12.		
l,1,2,2-Tetrachloroethane	ND	ug/kg	3.1		
Benzene	ND	ug/kg	3.1		
Toluene	ND	ug/kg	4.7		
Ethylbenzene	ND	ug/kg	3.1		
Chloromethane	ND	ug/kg	16.		
Bromomethane	ND	ug/kg	6.2		
Vinyl chloride	ND	ug/kg	6.2		
Chloroethane	ND	ug/kg	6.2		
1,1-Dichloroethene	ND	ug/kg	3.1		
trans-1,2-Dichloroethene	ND	ug/kg	4.7		
Trichloroethene	ND	ug/kg	3.1		
l,2-Dichlorobenzene	ND	ug/kg	16.		
l,3-Dichlorobenzene	ND	ug/kg	16.		
l,4-Dichlorobenzene	ND	ug/kg	16.		
Methyl tert butyl ether	ND	ug/kg	6.2		
p/m-Xylene	ND	ug/kg	6.2		
o-Xylene	ND	ug/kg	6.2		
cis-1,2-Dichloroethene	ND	ug/kg	3.1		
Dibromomethane	ND	ug/kg	31.		
Styrene	ND	ug/kg	6.2		
Dichlorodifluoromethane	ND	ug/kg	31.		
Acetone	ND	ug/kg	31.		
Carbon disulfide	ND	ug/kg	31.		
2-Butanone	ND	ug/kg	31.		
Jinyl acetate	ND	ug/kg	31.		
4-Methyl-2-pentanone	ND	ug/kg	31.		
1,2,3-Trichloropropane	ND	ug/kg	31.		
2-Hexanone	ND	ug/kg ug/kg	31.		
Bromochloromethane	ND	ug/kg ug/kg	16.		
2,2-Dichloropropane	ND	ug/kg ug/kg	16.		
1,2-Dibromoethane	ND		12.		
l,3-Dichloropropane	ND ND	ug/kg ug/kg	16.		
1,1,1,2-Tetrachloroethane	ND ND	ug/kg ug/kg	3.1		
Bromobenzene			3.1 16.		
	ND	ug/kg			
n-Butylbenzene	ND	ug/kg	3.1		
sec-Butylbenzene	ND	ug/kg	3.1		
tert-Butylbenzene	ND	ug/kg	16.		
o-Chlorotoluene	ND	ug/kg	16.		
p-Chlorotoluene	ND	ug/kg	16.		
1,2-Dibromo-3-chloropropane	ND	ug/kg	16.		
Hexachlorobutadiene	ND	ug/kg	16.		
Isopropylbenzene	ND	ug/kg	3.1		

Laboratory Sample Number: L0813344-14

PWG-DW-2008-11 (6.75-7.25')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD		TE	ID
						PREP	ANAI	<u>.</u>
Volatile Organics by EPA 826	OB cont'd			1	8260B		0911 22	:09 PD
p-Isopropyltoluene	ND	ug/kg	3.1					
Naphthalene	ND	ug/kg	16.					
Acrylonitrile	ND	ug/kg	31.					
n-Propylbenzene	ND	ug/kg	3.1					
1,2,3-Trichlorobenzene	ND	ug/kg	16.					
1,2,4-Trichlorobenzene	ND	ug/kg	16.					
1,3,5-Trimethylbenzene	ND	ug/kg	16.					
1,2,4-Trimethylbenzene	ND	ug/kg	16.					
1,4-Diethylbenzene	ND	ug/kg	12.					
4-Ethyltoluene	ND	ug/kg	12.					
1,2,4,5-Tetramethylbenzene	ND	ug/kg	12.					
Surrogate(s)	Recovery		QC Cri		э			
1,2-Dichloroethane-d4	106	%	70-130					
Toluene-d8	108	%	70-130					
4-Bromofluorobenzene	123	%	70-130					
Dibromofluoromethane	100	%	70-130					
Semivolatile Organics by EPA	8270C			1	8270C	0911 03:30	0912 20	:32 PS
Acenaphthene	ND	ug/kg	420	-	02700	0711 03 30	0,12 20	32 15
1,2,4-Trichlorobenzene	ND	ug/kg	420					
Hexachlorobenzene	ND	ug/kg	420					
Bis(2-chloroethyl)ether	ND	ug/kg	420					
2-Chloronaphthalene	ND	ug/kg	500					
1,2-Dichlorobenzene	ND	ug/kg	420					
1,3-Dichlorobenzene	ND	ug/kg	420					
1,4-Dichlorobenzene	ND	ug/kg	420					
3,3'-Dichlorobenzidine	ND	ug/kg	830					
2,4-Dinitrotoluene	ND	ug/kg ug/kg	420					
2,6-Dinitrotoluene	ND	ug/kg ug/kg	420					
Fluoranthene	ND ND	ug/kg ug/kg	420					
4-Chlorophenyl phenyl ether	ND ND	ug/kg ug/kg	420					
4-Chrorophenyl phenyl ether	ND ND	ug/kg ug/kg	420					
Bis(2-chloroisopropyl)ether	ND ND		420					
Bis(2-chloroethoxy)methane	ND ND	ug/kg	420					
Bis(2-chioroethoxy)methane Hexachlorobutadiene	ND ND	ug/kg	830					
Hexachloroputadiene Hexachlorocyclopentadiene		ug/kg						
Hexachiorocyclopentadiene Hexachloroethane	ND	ug/kg	830					
	ND	ug/kg	420					
Isophorone	ND	ug/kg	420					
Naphthalene	ND	ug/kg	420					
Nitrobenzene	ND	ug/kg	420					
NitrosoDiPhenylAmine(NDPA)/Di		ug/kg	1200					
n-Nitrosodi-n-propylamine	ND	ug/kg	420					
Bis(2-Ethylhexyl)phthalate	ND	ug/kg	830					
Butyl benzyl phthalate	ND	ug/kg	420					
Di-n-butylphthalate	ND	ug/kg	420					
Di-n-octylphthalate	ND	ug/kg	420					
Diethyl phthalate	ND	ug/kg	420					
Dimethyl phthalate	ND	ug/kg	420					

Laboratory Sample Number: L0813344-14

PWG-DW-2008-11 (6.75-7.25')

PARAMETER	RESULT	UNITS	\mathtt{RDL}	REF METHOD	DA:	re ii
					PREP	ANAL
emivolatile Organics by EPA				1 8270C	0911 03:30	0912 20:32 PS
Benzo(a)anthracene	ND	ug/kg	420			
Benzo(a)pyrene	ND	ug/kg	420			
Benzo(b)fluoranthene	ND	ug/kg	420			
senzo(k)fluoranthene	ND	ug/kg	420			
hrysene	ND	ug/kg	420			
cenaphthylene	ND	ug/kg	420			
nthracene	ND	ug/kg	420			
enzo(ghi)perylene	ND	ug/kg	420			
luorene	ND	ug/kg	420			
henanthrene	ND	ug/kg	420			
ibenzo(a,h)anthracene	ND	ug/kg	420			
ndeno(1,2,3-cd)Pyrene	ND	ug/kg	420			
yrene	ND	ug/kg	420			
siphenyl	ND	ug/kg	420			
-Chloroaniline	ND	ug/kg	420			
-Nitroaniline	ND	ug/kg	420			
-Nitroaniline	ND	ug/kg	420			
-Nitroaniline	ND	ug/kg	580			
ibenzofuran	ND	ug/kg	420			
-Methylnaphthalene	ND	ug/kg	420			
,2,4,5-Tetrachlorobenzene	ND	ug/kg	1700			
cetophenone	ND	ug/kg	1700			
,4,6-Trichlorophenol	ND	ug/kg	420			
-Chloro-M-Cresol	ND	ug/kg	420			
-Chlorophenol	ND	ug/kg	500			
,4-Dichlorophenol	ND	ug/kg	830			
,4-Dimethylphenol	ND	ug/kg	420			
-Nitrophenol	ND	ug/kg	1700			
-Nitrophenol	ND	ug/kg	830			
,4-Dinitrophenol	ND	ug/kg	1700			
,6-Dinitro-o-cresol	ND	ug/kg ug/kg	1700			
entachlorophenol	ND	ug/kg	1700			
henol	ND	ug/kg ug/kg	580			
-Methylphenol	ND	ug/kg ug/kg	500			
-Methylphenol/4-Methylphenol	ND	ug/kg ug/kg	500			
,4,5-Trichlorophenol	ND	ug/kg ug/kg	420			
-						
Senzoic Acid	ND	ug/kg	4200			
enzyl Alcohol arbazole	ND	ug/kg	830			
arpazore	ND	ug/kg	420			
urrogate(s)	Recovery		QC Cr	iteria		
-Fluorophenol	38.0	રુ	25-120	0		
henol-d6	39.0	%	10-120	0		
itrobenzene-d5	34.0	%	23-120	0		
-Fluorobiphenyl	35.0	%	30-120			
,4,6-Tribromophenol	55.0	%	19-120			
	44.0	%	18-120			
-Terphenyl-d14	11.0	v		9		

Laboratory Sample Number: L0813344-14

PWG-DW-2008-11 (6.75-7.25')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA		II
					PREP	ANAL	
	7 0070G GTM						
Semivolatile Organics by EP.			2.2	1 8270C	0911 03:30	0913 16:5	8 AI
Acenaphthene	ND	ug/kg	33.				
2-Chloronaphthalene Zluoranthene	ND	ug/kg	33.				
Tuoranthene Mexachlorobutadiene	ND ND	ug/kg	33. 83.				
	ND ND	ug/kg	33.				
Japhthalene		ug/kg					
Benzo(a)anthracene	ND	ug/kg	33.				
Senzo(a)pyrene	ND	ug/kg	33.				
Benzo(b)fluoranthene Benzo(k)fluoranthene	ND ND	ug/kg	33. 33.				
Benzo(k/fluoranthene Chrysene	ND ND	ug/kg ug/kg	33.				
Acenaphthylene	ND ND	ug/kg ug/kg	33.				
anthracene	ND ND	ug/kg ug/kg	33.				
Benzo(ghi)perylene	ND ND		33.				
luorene	ND ND	ug/kg ug/kg	33.				
henanthrene	ND ND	ug/kg ug/kg	33.				
Dibenzo(a,h)anthracene	ND ND	ug/kg ug/kg	33.				
Indeno(1,2,3-cd)Pyrene	ND ND	ug/kg ug/kg	33.				
Pyrene	ND	ug/kg ug/kg	33.				
Z-Methylnaphthalene	ND ND	ug/kg ug/kg	33.				
Pentachlorophenol	ND ND	ug/kg ug/kg	130				
Mexachlorobenzene	ND ND	ug/kg ug/kg	130				
Mexachloroethane	ND ND	ug/kg ug/kg	130				
lexacii1010etilalle	ND	ug/kg	130				
Gurrogate(s)	Recovery		QC Cri	teria			
2-Fluorophenol	33.0	%	25-120				
Phenol-d6	35.0	%	10-120				
Nitrobenzene-d5	29.0	%	23-120				
2-Fluorobiphenyl	32.0	왕	30-120				
2,4,6-Tribromophenol	40.0	8	19-120				
l-Terphenyl-d14	41.0	%	18-120				
Petroleum Hydrocarbon Quant	itation by G	C-FID		1 8015B(M)	0911 00:15	0912 00:5	4 R
PH	180000	ug/kg	41700				
2	Recovery		QC Cri	teria			
Surrogate(s)	ICCCO VCI J		QC CII	CCIIG			

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813344-15 Date Collected: 08-SEP-2008 12:05

PWG-DW-2008-12 (7.25-7.75') Date Received: 09-SEP-2008

Sample Matrix: SOIL Date Reported: 25-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE I
					PREP ANAL
colids, Total	83	9	0.10	30 2540G	0910 18:40 N
Total Metals					
Aluminum, Total	3000	mg/kg	5.9	1 6010B	0910 13:30 0911 14:39 A
Antimony, Total	ND	mg/kg	3.0	1 6010B	0910 13:30 0911 14:39 A
Arsenic, Total	1.2	mg/kg	0.59	1 6010B	0910 13:30 0911 14:39 A
Barium, Total	48	mg/kg	0.59	1 6010B	0910 13:30 0911 14:39 A
Beryllium, Total	ND	mg/kg	0.30	1 6010B	0910 13:30 0911 14:39 A
Cadmium, Total	ND	mg/kg	0.59	1 6010B	0910 13:30 0911 14:39 A
Calcium, Total	17000	mg/kg	5.9	1 6010B	0910 13:30 0911 14:39 A
Chromium, Total	5.7	mg/kg	0.59	1 6010B	0910 13:30 0911 14:39 A
Cobalt, Total	1.5	mg/kg	1.2	1 6010B	0910 13:30 0911 14:39 A
Copper, Total	6.0	mg/kg	0.59	1 6010B	0910 13:30 0911 14:39 A
Iron, Total	4600	mg/kg	3.0	1 6010B	0910 13:30 0911 14:39 A
Lead, Total	42	mg/kg	3.0	1 6010B	0910 13:30 0911 14:39 A
Magnesium, Total	12000	mg/kg	5.9	1 6010B	0910 13:30 0911 14:39 A
Manganese, Total	47	mg/kg	0.59	1 6010B	0910 13:30 0911 14:39 A
Mercury, Total	ND	mg/kg	0.10	1 7471A	0911 23:30 0912 14:34 R
Nickel, Total	2.6	mg/kg	1.5	1 6010B	0910 13:30 0911 14:39 A
Potassium, Total	620	mg/kg	150	1 6010B	0910 13:30 0911 14:39 A
Selenium, Total	ND	mg/kg	1.2	1 6010B	0910 13:30 0911 14:39 A
Silver, Total	ND	mg/kg	0.59	1 6010B	0910 13:30 0911 14:39 A
Sodium, Total	ND	mg/kg	120	1 6010B	0910 13:30 0911 14:39 A
Thallium, Total	ND	mg/kg	1.2	1 6010B	0910 13:30 0911 14:39 A
Janadium, Total	8.6	mg/kg	0.59	1 6010B	0910 13:30 0911 14:39 A
Zinc, Total	42	mg/kg	3.0	1 6010B	0910 13:30 0911 14:39 A
Olatile Organics by EPA 8	3260B			1 8260B	0911 22:45 P
Methylene chloride	ND	ug/kg	30.		
1,1-Dichloroethane	ND	ug/kg	4.5		
Chloroform	ND	ug/kg	4.5		
Carbon tetrachloride	ND	ug/kg	3.0		
l,2-Dichloropropane	ND	ug/kg	10.		
Dibromochloromethane	ND	ug/kg	3.0		
1,1,2-Trichloroethane	ND	ug/kg	4.5		
Tetrachloroethene	ND	ug/kg	3.0		
Chlorobenzene	ND	ug/kg	3.0		
Trichlorofluoromethane	ND	ug/kg	15.		

Laboratory Sample Number: L0813344-15

PWG-DW-2008-12 (7.25-7.75')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Olatile Organics by EPA 826	OB cont'd			1	8260B		0911 22:	45 PD
l,2-Dichloroethane	ND	ug/kg	3.0					
l,1,1-Trichloroethane	ND	ug/kg	3.0					
Bromodichloromethane	ND	ug/kg	3.0					
rans-1,3-Dichloropropene	ND	ug/kg	3.0					
cis-1,3-Dichloropropene	ND	ug/kg	3.0					
,1-Dichloropropene	ND	ug/kg	15.					
Bromoform	ND	ug/kg	12.					
,1,2,2-Tetrachloroethane	ND	ug/kg	3.0					
Benzene	ND	ug/kg	3.0					
'oluene	ND	ug/kg	4.5					
thylbenzene	ND	ug/kg	3.0					
hloromethane	ND	ug/kg	15.					
Bromomethane	ND	ug/kg	6.0					
/inyl chloride	ND	ug/kg	6.0					
Chloroethane	ND	ug/kg	6.0					
,1-Dichloroethene	ND	ug/kg	3.0					
rans-1,2-Dichloroethene	ND	ug/kg	4.5					
richloroethene	ND	ug/kg	3.0					
,2-Dichlorobenzene	ND	ug/kg	15.					
.,3-Dichlorobenzene	ND	ug/kg	15.					
.,4-Dichlorobenzene	ND	ug/kg	15.					
Methyl tert butyl ether	ND	ug/kg	6.0					
p/m-Xylene	ND	ug/kg	6.0					
-Xylene	ND	ug/kg	6.0					
sis-1,2-Dichloroethene	ND	ug/kg	3.0					
oibromomethane	ND	ug/kg	30.					
Styrene	ND	ug/kg	6.0					
Dichlorodifluoromethane	ND	ug/kg	30.					
acetone	ND	ug/kg	30.					
Carbon disulfide	ND	ug/kg	30.					
-Butanone	ND	ug/kg ug/kg	30.					
inyl acetate	ND	ug/kg ug/kg	30.					
	ND	ug/kg ug/kg	30.					
.,2,3-Trichloropropane	ND	ug/kg ug/kg	30.					
?-Hexanone	ND	ug/kg ug/kg	30.					
romochloromethane	ND	ug/kg ug/kg	15.					
,2-Dichloropropane	ND ND	ug/kg ug/kg	15.					
	ND ND		12.					
.,2-Dibromoethane .,3-Dichloropropane	ND ND	ug/kg	15.					
		ug/kg						
,1,1,2-Tetrachloroethane	ND ND	ug/kg	3.0					
romobenzene	ND	ug/kg	15.					
-Butylbenzene	ND	ug/kg	3.0					
ec-Butylbenzene	ND	ug/kg	3.0					
ert-Butylbenzene	ND	ug/kg	15.					
-Chlorotoluene	ND	ug/kg	15.					
o-Chlorotoluene	ND	ug/kg	15.					
,2-Dibromo-3-chloropropane	ND	ug/kg	15.					
Mexachlorobutadiene	ND	ug/kg	15.					
sopropylbenzene	ND	ug/kg	3.0					

Laboratory Sample Number: L0813344-15

PWG-DW-2008-12 (7.25-7.75')

	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Olatile Organics by EPA 826				1 8260B	0911 22:45 PD
p-Isopropyltoluene	ND	ug/kg	3.0		
Naphthalene	ND	ug/kg	15.		
Acrylonitrile	ND	ug/kg	30.		
n-Propylbenzene	ND	ug/kg	3.0		
l,2,3-Trichlorobenzene	ND	ug/kg	15.		
l,2,4-Trichlorobenzene	ND	ug/kg	15.		
l,3,5-Trimethylbenzene	ND	ug/kg	15.		
l,2,4-Trimethylbenzene	ND	ug/kg	15.		
l,4-Diethylbenzene	ND	ug/kg	12.		
1-Ethyltoluene	ND	ug/kg	12.		
1,2,4,5-Tetramethylbenzene	ND	ug/kg	12.		
Surrogate(s)	Recovery		QC Cri	teria	
l,2-Dichloroethane-d4	107	%	70-130)	
Toluene-d8	108	%	70-130)	
1-Bromofluorobenzene	120	%	70-130)	
Dibromofluoromethane	104	%	70-130)	
Semivolatile Organics by EPA	8270C			1 8270C	0911 03:30 0912 20:55 PS
Acenaphthene	ND	ug/kg	400		
l,2,4-Trichlorobenzene	ND	ug/kg	400		
Hexachlorobenzene	ND	ug/kg	400		
Bis(2-chloroethyl)ether	ND	ug/kg	400		
2-Chloronaphthalene	ND	ug/kg	480		
l,2-Dichlorobenzene	ND	ug/kg	400		
l,3-Dichlorobenzene	ND	ug/kg	400		
l,4-Dichlorobenzene	ND	ug/kg	400		
3,3'-Dichlorobenzidine	ND	ug/kg	800		
2,4-Dinitrotoluene	ND	ug/kg	400		
2,6-Dinitrotoluene	ND	ug/kg	400		
Fluoranthene	ND	ug/kg	400		
1-Chlorophenyl phenyl ether	ND	ug/kg	400		
1-Bromophenyl phenyl ether	ND	ug/kg	400		
Bis(2-chloroisopropyl)ether	ND	ug/kg	400		
Bis(2-chloroethoxy)methane	ND	ug/kg	400		
Hexachlorobutadiene	ND	ug/kg	800		
Hexachlorocyclopentadiene	ND	ug/kg	800		
Hexachloroethane	ND	ug/kg ug/kg	400		
Isophorone	ND	ug/kg ug/kg	400		
Naphthalene	ND	ug/kg	400		
Vitrobenzene	ND	ug/kg ug/kg	400		
VitrosoDiPhenylAmine(NDPA)/D		ug/kg ug/kg	1200		
n-Nitrosodi-n-propylamine	ND	ug/kg	400		
Bis(2-Ethylhexyl)phthalate	ND	ug/kg ug/kg	800		
Butyl benzyl phthalate	ND	ug/kg ug/kg	400		
Di-n-butylphthalate	ND	ug/kg ug/kg	400		
or in-pacythiciiarace					
oi-n-ogtvinhthalata					
Di-n-octylphthalate Diethyl phthalate	ND ND	ug/kg ug/kg	400 400		

Laboratory Sample Number: L0813344-15

PWG-DW-2008-12 (7.25-7.75')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Semivolatile Organics by EPA 8	3270C cont	- ' d		1	8270C	0911 03:30	0912 20:	55 PS
Benzo(a)anthracene	ND	ug/kg	400		02.00			
Benzo(a)pyrene	ND	ug/kg ug/kg	400					
Benzo(b)fluoranthene	ND	ug/kg ug/kg	400					
Benzo(k)fluoranthene	ND	ug/kg ug/kg	400					
Chrysene	ND	ug/kg ug/kg	400					
Acenaphthylene	ND	ug/kg ug/kg	400					
Anthracene	ND	ug/kg ug/kg	400					
Benzo(ghi)perylene	ND		400					
Fluorene	ND	ug/kg	400					
Phenanthrene	ND	ug/kg	400					
		ug/kg	400					
Dibenzo(a,h)anthracene	ND	ug/kg						
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	400					
Pyrene	ND	ug/kg	400					
Biphenyl	ND	ug/kg	400					
4-Chloroaniline	ND	ug/kg	400					
2-Nitroaniline	ND	ug/kg	400					
3-Nitroaniline	ND	ug/kg	400					
1-Nitroaniline	ND	ug/kg	560					
Dibenzofuran	ND	ug/kg	400					
2-Methylnaphthalene	ND	ug/kg	400					
1,2,4,5-Tetrachlorobenzene	ND	ug/kg	1600					
Acetophenone	ND	ug/kg	1600					
2,4,6-Trichlorophenol	ND	ug/kg	400					
P-Chloro-M-Cresol	ND	ug/kg	400					
2-Chlorophenol	ND	ug/kg	480					
2,4-Dichlorophenol	ND	ug/kg	800					
2,4-Dimethylphenol	ND	ug/kg	400					
2-Nitrophenol	ND	ug/kg	1600					
1-Nitrophenol	ND	ug/kg	800					
2,4-Dinitrophenol	ND	ug/kg	1600					
1,6-Dinitro-o-cresol	ND	ug/kg	1600					
Pentachlorophenol	ND	ug/kg	1600					
Phenol	ND	ug/kg	560					
2-Methylphenol	ND	ug/kg	480					
3-Methylphenol/4-Methylphenol	ND	ug/kg	480					
2,4,5-Trichlorophenol	ND	ug/kg	400					
Benzoic Acid	ND	ug/kg	4000					
Benzyl Alcohol	ND	ug/kg	800					
Carbazole	ND	ug/kg	400					
Gurrogate(s)	Recovery		QC Cr	iteria	a			
2-Fluorophenol	38.0	%	25-120)				
Phenol-d6	36.0	%	10-120)				
Nitrobenzene-d5	32.0	%	23-120)				
2-Fluorobiphenyl	32.0	%	30-120)				
2,4,6-Tribromophenol	46.0	%	19-120)				
4-Terphenyl-d14	40.0	%	18-120)				

Laboratory Sample Number: L0813344-15

PWG-DW-2008-12 (7.25-7.75')

emivolatile Organics by EPA 8270C-SIM cont'd cenaphthene	PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA		ID
cenaphthene ND ug/kg 32. -Chloronaphthalene ND ug/kg 32. luoranthene 64 ug/kg 32. exachlorobutadiene ND ug/kg 80. aphthalene ND ug/kg 32. enzo(a)anthracene ND ug/kg 32. enzo(a)pyrene ND ug/kg 32. enzo(b)fluoranthene ND ug/kg 32. enzo(k)fluoranthene ND ug/kg 32. hrysene ND ug/kg 32. hrysene ND ug/kg 32. enzo(ghi)perylene ND ug/kg 32. enzo(ghi)perylene ND ug/kg 32. luorene ND ug/kg 32. luorene ND ug/kg 32. henanthrene ND ug/kg 32. yrene 67 ug/kg 32. -Methylnaphthalene ND ug/kg 33.						PREP	ANAL	
cenaphthene ND ug/kg 32. -Chloronaphthalene ND ug/kg 32. luoranthene 64 ug/kg 32. exachlorobutadiene ND ug/kg 80. aphthalene ND ug/kg 32. enzo(a)anthracene ND ug/kg 32. enzo(a)pyrene ND ug/kg 32. enzo(b)fluoranthene ND ug/kg 32. enzo(k)fluoranthene ND ug/kg 32. hrysene ND ug/kg 32. hrysene ND ug/kg 32. enzo(ghi)perylene ND ug/kg 32. enzo(ghi)perylene ND ug/kg 32. luorene ND ug/kg 32. luorene ND ug/kg 32. henanthrene ND ug/kg 32. yrene 67 ug/kg 32. -Methylnaphthalene ND ug/kg 33.	Coming labila Occupian has E	IDA 0270G GTM						
-Chloronaphthalene ND ug/kg 32. luoranthene 64 ug/kg 32. exachlorobutadiene ND ug/kg 80. aphthalene ND ug/kg 32. enzo(a)anthracene ND ug/kg 32. enzo(a)pyrene ND ug/kg 32. enzo(b)fluoranthene ND ug/kg 32. enzo(ghi)perylene ND ug/kg 32. enzo(ghi)perylene ND ug/kg 32. luorene ND ug/kg 32. luorene ND ug/kg 32. luorene ND ug/kg 32. entanthracene ND ug/kg 32. endeno(1,2,3-cd)Pyrene ND ug/kg 32. ententachlorophenol ND ug/kg 32. entachlorobenzene ND ug/kg 32. entachlorobenzene ND ug/kg 130 exachlorobenzene ND ug/kg 130 exachlorobenzene ND ug/kg 130 exachlorophenol 32.0 % 25-120 henol-d6 34.0 % 10-120 itrobenzene-d5 29.0 % 23-120 -Fluorobiphenyl 30.0 % 30-120 ,4,6-Tribromophenol 34.0 % 19-120 -Terphenyl-d14 38.0 % 18-120 etroleum Hydrocarbon Quantitation by GC-FID 1 8015B(M) 0911 00:15 0912 12:37 RT PH 66500 ug/kg 40200				2.0	1 8270C	0911 03:30	0913 17:45	o AK
No	_							
exachlorobutadiene	-							
aphthalene ND ug/kg 32. enzo(a)anthracene ND ug/kg 32. enzo(b)fluoranthene ND ug/kg 32. cenaphthylene ND ug/kg 32. cenaphthylene ND ug/kg 32. enthracene ND ug/kg 32. enzo(ghi)perylene ND ug/kg 32. luorene ND ug/kg 32. luorene ND ug/kg 32. ehenanthrene ND ug/kg 32. eyrene 67 ug/kg 32. eyrene 67 ug/kg 32. ewtachlorobenzene ND ug/kg 130 exachlorobenzene ND ug/kg 130 exachlorobenzene ND ug/kg 130 exachlorobethane		~ -		_				
enzo(a)anthracene ND ug/kg 32. enzo(a)pyrene ND ug/kg 32. enzo(b)fluoranthene ND ug/kg 32. enzo(b)fluoranthene ND ug/kg 32. enzo(k)fluoranthene ND ug/kg 32. hrysene ND ug/kg 32. cenaphthylene ND ug/kg 32. cenaphthylene ND ug/kg 32. enzo(ghi)perylene ND ug/kg 32. luorene ND ug/kg 32. luorene ND ug/kg 32. henanthrene ND ug/kg 32. mdeno(1,2,3-cd)Pyrene ND ug/kg 32. yrene 67 ug/kg 32Methylnaphthalene ND ug/kg 32. entachlorophenol ND ug/kg 130 exachlorobenzene ND ug/kg 130 exachloroethane ND u								
enzo(a)pyrene ND ug/kg 32. enzo(b)flucranthene ND ug/kg 32. enzo(k)flucranthene ND ug/kg 32. hrysene ND ug/kg 32. cenaphthylene ND ug/kg 32. cenaphthylene ND ug/kg 32. nthracene ND ug/kg 32. enzo(ghi)perylene ND ug/kg 32. luorene ND ug/kg 32. luorene ND ug/kg 32. henanthrene ND ug/kg 32. entaco(1,2,3-cd)Pyrene ND ug/kg 32. yrene 67 ug/kg 32 -Methylnaphthalene ND ug/kg 32. entachlorophenol ND ug/kg 130 exachlorobenzene ND ug/kg 130 exachloroethane ND ug/kg 130 exachloroethane ND ug/kg 130 exachloroethane ND ug/kg 130 urrogate(s) Recovery QC Criteria -Fluorophenol 32.0 % 25-120 henol-d6 34.0 % 10-120 itrobenzene-d5 29.0 % 23-120 -Fluorobiphenyl 30.0 % 30-120 ,4,6-Tribromophenol 34.0 % 19-120 -Terphenyl-d14 38.0 % 18-120 etroleum Hydrocarbon Quantitation by GC-FID 1 80158(M) 0911 00:15 0912 12:37 RT PH 66500 ug/kg 40200 urrogate(s) Recovery QC Criteria	<u>-</u>							
enzo(b)fluoranthene ND ug/kg 32. enzo(k)fluoranthene ND ug/kg 32. hrysene ND ug/kg 32. cenaphthylene ND ug/kg 32. enthracene ND ug/kg 32. enzo(ghi)perylene ND ug/kg 32. luorene ND ug/kg 32. luorene ND ug/kg 32. henanthrene henanthrene ND ug/kg 32. henanthrene henanthrene ND ug/kg 130 henanthrene he	• ,							
enzo(k)fluoranthene hrysene ND ug/kg 32. cenaphthylene ND ug/kg 32. nthracene ND ug/kg 32. nthracene ND ug/kg 32. enzo(ghi)perylene ND ug/kg 32. luorene ND ug/kg 32. luorene ND ug/kg 32. henanthrene ND ug/kg 32. henanthrene ND ug/kg 32. henanthracene ND ug/kg 32. henanthracene ND ug/kg 32. yrene deno(1,2,3-cd)Pyrene ND ug/kg 32. yrene 67 ug/kg 32. yrene 67 ug/kg 32. yrene MD Ug/kg 130 VC Criteria WC Criteria								
hrysene ND ug/kg 32. cenaphthylene ND ug/kg 32. enzo(ghi)perylene ND ug/kg 32. enzo(ghi)perylene ND ug/kg 32. luorene ND ug/kg 32. henanthrene ND ug/kg 32. ibenzo(a,h)anthracene ND ug/kg 32. ndeno(1,2,3-cd)Pyrene ND ug/kg 32. yrene 67 ug/kg 32. -Methylnaphthalene ND ug/kg 32. -Methylnaphthalene ND ug/kg 130 exachlorophenol ND ug/kg 130 exachloroethane ND ug/kg 130 urrogate(s) Recovery QC Criteria urrogate(s) Recovery QC Criteria etroleomended 34.0 19-120 -Fluorobiphenol 34.0 19-120 -Fluorobiphenol 34.0 19-120 -Fluorobiphenol								
cenaphthylene ND ug/kg 32. nthracene ND ug/kg 32. enzo(ghi)perylene ND ug/kg 32. luorene ND ug/kg 32. henanthrene ND ug/kg 32. ibenzo(a,h)anthracene ND ug/kg 32. ndeno(1,2,3-cd)Pyrene ND ug/kg 32. yrene 67 ug/kg 32. -Methylnaphthalene ND ug/kg 32. entachlorophenol ND ug/kg 130 exachlorobenzene ND ug/kg 130 exachloroethane ND ug/kg 130 urrogate(s) Recovery QC Criteria -Fluorophenol 32.0 \$ 25-120 henol-d6 34.0 \$ 10-120 itrobenzene-d5 29.0 \$ 23-120 -Fluorobiphenyl 30.0 \$ 30-120 ,4,6-Tribromophenol 34.0 \$ 19-	, ,							
### ND	-							
enzo(ghi)perylene ND ug/kg 32. luorene ND ug/kg 32. henanthrene ND ug/kg 32. ibenzo(a,h)anthracene ND ug/kg 32. idenzo(a,ch)anthracene ND ug/kg 32. rdeno(1,2,3-cd)Pyrene ND ug/kg 32. yrene 67 ug/kg 32Methylnaphthalene ND ug/kg 32Methylnaphthalene ND ug/kg 32. entachlorophenol ND ug/kg 130 exachlorobenzene ND ug/kg 130 exachloroethane ND ug/kg 130 exachloroethane ND ug/kg 130 urrogate(s) Recovery QC Criteria -Fluorophenol 32.0 % 25-120 henol-d6 34.0 % 10-120 itrobenzene-d5 29.0 % 23-120 -Fluorobiphenyl 30.0 % 30-120 ,4,6-Tribromophenol 34.0 % 19-120 -Terphenyl-d14 38.0 % 18-120 etroleum Hydrocarbon Quantitation by GC-FID 1 8015B(M) 0911 00:15 0912 12:37 RT PH 66500 ug/kg 40200 urrogate(s) Recovery QC Criteria								
ND								
henanthrene henanthrene henanthrene hibenzo(a,h)anthracene hobenzo(a,h)anthracene hobenzo(a								
ibenzo(a,h)anthracene ND ug/kg 32. ndeno(1,2,3-cd)Pyrene ND ug/kg 32. yrene 67 ug/kg 32. -Methylnaphthalene ND ug/kg 32. entachlorophenol ND ug/kg 130 exachlorobenzene ND ug/kg 130 exachloroethane ND ug/kg 130 urrogate(s) Recovery QC Criteria -Fluorophenol 32.0 % 25-120 henol-d6 34.0 % 10-120 itrobenzene-d5 29.0 % 23-120 -Fluorobiphenyl 30.0 % 30-120 ,4,6-Tribromophenol 34.0 % 19-120 -Terphenyl-d14 38.0 % 18-120 etroleum Hydrocarbon Quantitation by GC-FID 1 8015B(M) 0911 00:15 0912 12:37 RT PH 66500 urrogate(s) Recovery QC Criteria								
Indeno(1,2,3-cd)Pyrene ND ug/kg 32. yrene 67 ug/kg 32. -Methylnaphthalene ND ug/kg 32. entachlorophenol ND ug/kg 130 exachlorobenzene ND ug/kg 130 urrogate(s) Recovery QC Criteria -Fluorophenol 32.0 % 25-120 henol-d6 34.0 % 10-120 itrobenzene-d5 29.0 % 23-120 -Fluorobiphenyl 30.0 % 30-120 ,4,6-Tribromophenol 34.0 % 19-120 -Terphenyl-d14 38.0 % 18-120 etroleum Hydrocarbon Quantitation by GC-FID 1 8015B(M) 0911 00:15 0912 12:37 RT PH 66500 ug/kg 40200								
yrene 67 ug/kg 32 -Methylnaphthalene ND ug/kg 32. entachlorophenol ND ug/kg 130 exachloroethane ND ug/kg 130 urrogate(s) Recovery QC Criteria -Fluorophenol 32.0 % 25-120 henol-d6 34.0 % 10-120 itrobenzene-d5 29.0 % 23-120 -Fluorobiphenyl 30.0 % 30-120 ,4,6-Tribromophenol 34.0 % 19-120 -Terphenyl-d14 38.0 % 18-120 etroleum Hydrocarbon Quantitation by GC-FID 1 8015B(M) 0911 00:15 0912 12:37 RT PH 66500 ug/kg 40200								
-Methylnaphthalene ND ug/kg 32. entachlorophenol ND ug/kg 130 exachlorobenzene ND ug/kg 130 exachloroethane ND ug/kg 130 urrogate(s) Recovery QC Criteria -Fluorophenol 32.0 % 25-120 henol-d6 34.0 % 10-120 itrobenzene-d5 29.0 % 23-120 -Fluorobiphenyl 30.0 % 30-120 ,4,6-Tribromophenol 34.0 % 19-120 -Terphenyl-d14 38.0 % 19-120 etroleum Hydrocarbon Quantitation by GC-FID 1 8015B(M) 0911 00:15 0912 12:37 RT PH 66500 ug/kg 40200 urrogate(s) Recovery QC Criteria								
entachlorophenol ND ug/kg 130 exachlorobenzene ND ug/kg 130 urrogate(s) Recovery QC Criteria -Fluorophenol 32.0 % 25-120 henol-d6 34.0 % 10-120 itrobenzene-d5 29.0 % 23-120 -Fluorobiphenyl 30.0 % 30-120 ,4,6-Tribromophenol 34.0 % 19-120 -Terphenyl-d14 38.0 % 18-120 etroleum Hydrocarbon Quantitation by GC-FID 1 8015B(M) 0911 00:15 0912 12:37 RT PH 66500 ug/kg 40200 urrogate(s) Recovery QC Criteria	Pyrene	~ ·						
exachlorobenzene ND ug/kg 130 exachloroethane ND ug/kg 130 urrogate(s) Recovery QC Criteria -Fluorophenol 32.0 % 25-120 henol-d6 34.0 % 10-120 itrobenzene-d5 29.0 % 23-120 -Fluorobiphenyl 30.0 % 30-120 ,4,6-Tribromophenol 34.0 % 19-120 -Terphenyl-d14 38.0 % 18-120 etroleum Hydrocarbon Quantitation by GC-FID 1 8015B(M) 0911 00:15 0912 12:37 RT PH 66500 ug/kg 40200 urrogate(s) Recovery QC Criteria		ND		32.				
exachloroethane ND ug/kg 130 urrogate(s) Recovery QC Criteria -Fluorophenol 32.0 \$ 25-120 henol-d6 34.0 \$ 10-120 itrobenzene-d5 29.0 \$ 23-120 -Fluorobiphenyl 30.0 \$ 30-120 ,4,6-Tribromophenol 34.0 \$ 19-120 -Terphenyl-d14 38.0 \$ 18-120 etroleum Hydrocarbon Quantitation by GC-FID 1 8015B(M) 0911 00:15 0912 12:37 RT PH 66500 ug/kg 40200 urrogate(s) Recovery QC Criteria	-	ND						
urrogate(s) Recovery QC Criteria -Fluorophenol 32.0 % 25-120 henol-d6 34.0 % 10-120 itrobenzene-d5 29.0 % 23-120 -Fluorobiphenyl 30.0 % 30-120 ,4,6-Tribromophenol 34.0 % 19-120 -Terphenyl-d14 38.0 % 18-120 etroleum Hydrocarbon Quantitation by GC-FID 1 8015B(M) 0911 00:15 0912 12:37 RT PH 66500 ug/kg 40200 urrogate(s) Recovery QC Criteria	Hexachlorobenzene	ND	ug/kg	130				
-Fluorophenol 32.0 % 25-120 henol-d6 34.0 % 10-120 itrobenzene-d5 29.0 % 23-120 -Fluorobiphenyl 30.0 % 30-120 ,4,6-Tribromophenol 34.0 % 19-120 -Terphenyl-d14 38.0 % 18-120 etroleum Hydrocarbon Quantitation by GC-FID 1 8015B(M) 0911 00:15 0912 12:37 RT PH 66500 ug/kg 40200 urrogate(s) Recovery QC Criteria	Hexachloroethane	ND	ug/kg	130				
henol-d6	Surrogate(s)	Recovery		QC Cr	iteria			
itrobenzene-d5	2-Fluorophenol	32.0	%	25-12	0			
-Fluorobiphenyl 30.0 % 30-120 ,4,6-Tribromophenol 34.0 % 19-120 -Terphenyl-d14 38.0 % 18-120 etroleum Hydrocarbon Quantitation by GC-FID 1 8015B(M) 0911 00:15 0912 12:37 RT PH 66500 ug/kg 40200 urrogate(s) Recovery QC Criteria	Phenol-d6	34.0	%	10-12	0			
,4,6-Tribromophenol 34.0 % 19-120 -Terphenyl-d14 38.0 % 18-120 etroleum Hydrocarbon Quantitation by GC-FID 1 8015B(M) 0911 00:15 0912 12:37 RT PH 66500 ug/kg 40200 urrogate(s) Recovery QC Criteria	Nitrobenzene-d5	29.0	%	23-12	0			
-Terphenyl-d14 38.0 % 18-120 etroleum Hydrocarbon Quantitation by GC-FID 1 8015B(M) 0911 00:15 0912 12:37 RT PH 66500 ug/kg 40200 urrogate(s) Recovery QC Criteria	2-Fluorobiphenyl	30.0	%	30-12	0			
etroleum Hydrocarbon Quantitation by GC-FID 1 8015B(M) 0911 00:15 0912 12:37 RT PH 66500 ug/kg 40200 urrogate(s) Recovery QC Criteria	2,4,6-Tribromophenol	34.0	%	19-12	0			
PH 66500 ug/kg 40200 urrogate(s) Recovery QC Criteria	4-Terphenyl-d14	38.0	%	18-12	0			
PH 66500 ug/kg 40200 urrogate(s) Recovery QC Criteria	Petroleum Hydrocarbon Quan	ntitation by (GC-FID		1 8015B(M)	0911 00:15	0912 12:37	7 RT
~ ~	TPH	-		40200				
-Terphenyl 65.0 % 40-140	Surrogate(s)	Recovery		QC Cr	iteria			
	o-Terphenyl	65.0	%	40-14	0			

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813344-16 Date Collected: 08-SEP-2008 12:20

PWG-DW-2008-13 (7.25-7.75') Date Received: 09-SEP-2008

Sample Matrix: SOIL Date Reported: 25-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA PREP	ANAL	ID
Solids, Total	86	%	0.10	30 2540G		0910 18:40) NM
Total Metals							
Aluminum, Total	1500	mg/kg	5.7	1 6010B	0910 13:30	0911 14:43	3 AI
Antimony, Total	ND	mg/kg	2.8	1 6010B	0910 13:30	0911 14:43	3 AI
Arsenic, Total	1.1	mg/kg	0.57	1 6010B	0910 13:30	0911 14:43	3 AI
Barium, Total	16	mg/kg	0.57	1 6010B	0910 13:30	0911 14:43	3 AI
Beryllium, Total	ND	mg/kg	0.28	1 6010B	0910 13:30	0911 14:43	3 AI
Cadmium, Total	ND	mg/kg	0.57	1 6010B	0910 13:30	0911 14:43	3 AI
Calcium, Total	7000	mg/kg	5.7	1 6010B	0910 13:30	0911 14:43	3 AI
Chromium, Total	2.5	mg/kg	0.57	1 6010B	0910 13:30	0911 14:43	3 AI
Cobalt, Total	ND	mg/kg	1.1	1 6010B	0910 13:30	0911 14:43	3 AI
Copper, Total	3.1	mg/kg	0.57	1 6010B	0910 13:30	0911 14:43	3 AI
Iron, Total	2400	mg/kg	2.8	1 6010B	0910 13:30	0911 14:43	3 AI
Lead, Total	26	mg/kg	2.8	1 6010B	0910 13:30	0911 14:43	3 AI
Magnesium, Total	3900	mg/kg	5.7	1 6010B	0910 13:30	0911 14:43	3 AI
Manganese, Total	31	mg/kg	0.57	1 6010B	0910 13:30	0911 14:43	3 AI
Mercury, Total	ND	mg/kg	0.09	1 7471A	0911 23:30	0912 14:36	5 RC
Nickel, Total	1.4	mg/kg	1.4	1 6010B	0910 13:30	0911 14:43	3 AI
Potassium, Total	ND	mg/kg	140	1 6010B	0910 13:30	0911 14:43	3 AI
Selenium, Total	ND	mg/kg	1.1	1 6010B	0910 13:30	0911 14:43	3 AI
Silver, Total	ND	mg/kg	0.57	1 6010B	0910 13:30	0911 14:43	3 AI
Sodium, Total	ND	mg/kg	110	1 6010B	0910 13:30	0911 14:43	3 AI
Thallium, Total	ND	mg/kg	1.1	1 6010B	0910 13:30	0911 14:43	3 AI
Vanadium, Total	3.8	mg/kg	0.57	1 6010B	0910 13:30	0911 14:43	3 AI
Zinc, Total	24	mg/kg	2.8	1 6010B	0910 13:30	0911 14:43	3 AI
Volatile Organics by EPA 8	3260B			1 8260B		0911 23:22	2 PD
Methylene chloride	ND	ug/kg	29.				
1,1-Dichloroethane	ND	ug/kg	4.4				
Chloroform	ND	ug/kg	4.4				
Carbon tetrachloride	ND	ug/kg	2.9				
1,2-Dichloropropane	ND	ug/kg	10.				
Dibromochloromethane	ND	ug/kg	2.9				
1,1,2-Trichloroethane	ND	ug/kg	4.4				
Tetrachloroethene	ND	ug/kg	2.9				
Chlorobenzene	ND	ug/kg	2.9				
Trichlorofluoromethane	ND	ug/kg	14.				

Laboratory Sample Number: L0813344-16

PWG-DW-2008-13 (7.25-7.75')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID
					PREP ANAL
					
Volatile Organics by EPA 826	OB cont'd			1 8260B	0911 23:22 PD
1,2-Dichloroethane	ND	ug/kg	2.9		
1,1,1-Trichloroethane	ND	ug/kg	2.9		
Bromodichloromethane	ND	ug/kg	2.9		
trans-1,3-Dichloropropene	ND	ug/kg	2.9		
cis-1,3-Dichloropropene	ND	ug/kg	2.9		
l,1-Dichloropropene	ND	ug/kg	14.		
Bromoform	ND	ug/kg	12.		
l,1,2,2-Tetrachloroethane	ND	ug/kg	2.9		
Benzene	ND	ug/kg	2.9		
Toluene	ND	ug/kg	4.4		
Ethylbenzene	ND	ug/kg	2.9		
Chloromethane	ND	ug/kg	14.		
Bromomethane	ND	ug/kg	5.8		
Jinyl chloride	ND	ug/kg	5.8		
Chloroethane	ND	ug/kg	5.8		
l,1-Dichloroethene	ND	ug/kg	2.9		
trans-1,2-Dichloroethene	ND	ug/kg	4.4		
Trichloroethene	ND	ug/kg	2.9		
l,2-Dichlorobenzene	ND	ug/kg	14.		
l,3-Dichlorobenzene	ND	ug/kg	14.		
l,4-Dichlorobenzene	ND	ug/kg	14.		
Methyl tert butyl ether	ND	ug/kg	5.8		
p/m-Xylene	ND	ug/kg	5.8		
o-Xylene	ND	ug/kg	5.8		
cis-1,2-Dichloroethene	ND	ug/kg	2.9		
Dibromomethane	ND	ug/kg	29.		
Styrene	ND	ug/kg	5.8		
Dichlorodifluoromethane	ND	ug/kg	29.		
Acetone	ND	ug/kg	29.		
Carbon disulfide	ND	ug/kg	29.		
2-Butanone	ND	ug/kg	29.		
/inyl acetate	ND	ug/kg	29.		
1-Methyl-2-pentanone	ND	ug/kg	29.		
1,2,3-Trichloropropane	ND	ug/kg ug/kg	29.		
2-Hexanone	ND	ug/kg ug/kg	29.		
Bromochloromethane	ND	ug/kg ug/kg	14.		
2,2-Dichloropropane	ND	ug/kg ug/kg	14.		
1,2-Dibromoethane	ND ND	ug/kg ug/kg	14.		
l,3-Dichloropropane	ND ND	ug/kg ug/kg	14.		
l,1,1,2-Tetrachloroethane	ND ND	ug/kg ug/kg	2.9		
Bromobenzene	ND ND				
aromobenzene n-Butylbenzene		ug/kg	14.		
-	ND	ug/kg	2.9		
sec-Butylbenzene	ND	ug/kg	2.9		
tert-Butylbenzene	ND	ug/kg	14.		
o-Chlorotoluene	ND	ug/kg	14.		
p-Chlorotoluene	ND	ug/kg	14.		
,2-Dibromo-3-chloropropane	ND	ug/kg	14.		
Hexachlorobutadiene	ND	ug/kg	14.		
Isopropylbenzene	ND	ug/kg	2.9		

Laboratory Sample Number: L0813344-16

PWG-DW-2008-13 (7.25-7.75')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Volatile Organics by EPA 826	OR contid			1	8260B		0911 23:	22 DD
p-Isopropyltoluene	ND	ua /ka	2.9		0200B		0911 23.	22 PD
p-isopropyrtoruene Naphthalene		ug/kg						
	ND	ug/kg	14.					
Acrylonitrile	ND	ug/kg	29.					
n-Propylbenzene	ND	ug/kg	2.9					
1,2,3-Trichlorobenzene	ND	ug/kg	14.					
1,2,4-Trichlorobenzene	ND	ug/kg	14.					
1,3,5-Trimethylbenzene	ND	ug/kg	14.					
1,2,4-Trimethylbenzene	ND	ug/kg	14.					
1,4-Diethylbenzene	ND	ug/kg	12.					
4-Ethyltoluene	ND	ug/kg	12.					
1,2,4,5-Tetramethylbenzene	ND	ug/kg	12.					
Surrogate(s)	Recovery		QC Cri	teria	a			
1,2-Dichloroethane-d4	108	%	70-130					
Toluene-d8	110	%	70-130					
4-Bromofluorobenzene	120	%	70-130					
Dibromofluoromethane	106	%	70-130					
Semivolatile Organics by EPA	8270C			1	8270C	0911 03:30	0915 20:	30 PS
Acenaphthene	ND	ug/kg	390					
1,2,4-Trichlorobenzene	ND	ug/kg	390					
Hexachlorobenzene	ND	ug/kg	390					
Bis(2-chloroethyl)ether	ND	ug/kg	390					
2-Chloronaphthalene	ND	ug/kg	460					
1,2-Dichlorobenzene	ND	ug/kg	390					
1,3-Dichlorobenzene	ND	ug/kg	390					
1,4-Dichlorobenzene	ND	ug/kg	390					
3,3'-Dichlorobenzidine	ND	ug/kg	780					
2,4-Dinitrotoluene	ND	ug/kg	390					
2,6-Dinitrotoluene	ND	ug/kg	390					
Fluoranthene	ND ND	ug/kg ug/kg	390					
4-Chlorophenyl phenyl ether	ND ND	ug/kg ug/kg	390					
4-Chiorophenyl phenyl ether	ND ND	ug/kg ug/kg	390					
Bis(2-chloroisopropyl)ether	ND ND		390					
Bis(2-chloroethoxy)methane	ND ND	ug/kg	390					
Bis(2-chioroethoxy)methane Hexachlorobutadiene		ug/kg						
Hexachiorobutadiene Hexachlorocyclopentadiene	ND	ug/kg	780 780					
Hexachiorocyclopentadiene Hexachloroethane	ND	ug/kg	780 390					
	ND	ug/kg	390					
Isophorone	ND	ug/kg	390					
Naphthalene	ND	ug/kg	390					
Nitrobenzene	ND	ug/kg	390					
NitrosoDiPhenylAmine(NDPA)/Di		ug/kg	1200					
n-Nitrosodi-n-propylamine	ND	ug/kg	390					
Bis(2-Ethylhexyl)phthalate	ND	ug/kg	780					
Butyl benzyl phthalate	ND	ug/kg	390					
Di-n-butylphthalate	ND	ug/kg	390					
Di-n-octylphthalate	ND	ug/kg	390					
Diethyl phthalate	ND	ug/kg	390					
Dimethyl phthalate	ND	ug/kg	390					

Laboratory Sample Number: L0813344-16

PWG-DW-2008-13 (7.25-7.75')

emivolatile Organics by EPA enzo(a)anthracene enzo(a)pyrene enzo(b)fluoranthene enzo(k)fluoranthene hrysene cenaphthylene nthracene enzo(ghi)perylene luorene	8270C cont ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg	390 390	1 8270C	PREP 0911 03:30	ANAL
enzo(a)anthracene enzo(a)pyrene enzo(b)fluoranthene enzo(k)fluoranthene hrysene cenaphthylene nthracene enzo(ghi)perylene luorene	ND ND ND ND ND	ug/kg ug/kg ug/kg		1 8270C	0911 03:30	
enzo(a)anthracene enzo(a)pyrene enzo(b)fluoranthene enzo(k)fluoranthene hrysene cenaphthylene nthracene enzo(ghi)perylene luorene	ND ND ND ND ND	ug/kg ug/kg ug/kg		1 8270C	0911 03:30	
enzo(a)pyrene enzo(b)fluoranthene enzo(k)fluoranthene hrysene cenaphthylene nthracene enzo(ghi)perylene luorene	ND ND ND ND	ug/kg ug/kg				0915 20:30 PS
enzo(b)fluoranthene enzo(k)fluoranthene hrysene cenaphthylene nthracene enzo(ghi)perylene luorene	ND ND ND	ug/kg	390			
enzo(k)fluoranthene hrysene cenaphthylene nthracene enzo(ghi)perylene luorene	ND ND					
hrysene cenaphthylene nthracene enzo(ghi)perylene luorene	ND	ua/ka	390			
cenaphthylene nthracene enzo(ghi)perylene luorene			390			
nthracene enzo(ghi)perylene luorene	ND	ug/kg	390			
enzo(ghi)perylene luorene		ug/kg	390			
luorene	ND	ug/kg	390			
	ND	ug/kg	390			
la + la	ND	ug/kg	390			
henanthrene	ND	ug/kg	390			
ibenzo(a,h)anthracene	ND	ug/kg	390			
ndeno(1,2,3-cd)Pyrene	ND	ug/kg	390			
yrene	ND	ug/kg	390			
iphenyl	ND	ug/kg	390			
-Chloroaniline	ND	ug/kg	390			
-Nitroaniline	ND	ug/kg	390			
-Nitroaniline	ND	ug/kg	390			
-Nitroaniline	ND	ug/kg	540			
ibenzofuran	ND	ug/kg	390			
-Methylnaphthalene	ND	ug/kg	390			
,2,4,5-Tetrachlorobenzene	ND	ug/kg	1600			
cetophenone	ND	ug/kg	1600			
,4,6-Trichlorophenol	ND	ug/kg	390			
-Chloro-M-Cresol	ND	ug/kg	390			
-Chlorophenol	ND	ug/kg	460			
,4-Dichlorophenol	ND	ug/kg	780			
,4-Dimethylphenol	ND	ug/kg	390			
-Nitrophenol	ND	ug/kg	1600			
-Nitrophenol	ND	ug/kg	780			
,4-Dinitrophenol	ND	ug/kg	1600			
,6-Dinitro-o-cresol	ND	ug/kg	1600			
entachlorophenol	ND	ug/kg	1600			
henol	ND	ug/kg	540			
-Methylphenol	ND	ug/kg	460			
-Methylphenol/4-Methylphenol	ND	ug/kg	460			
,4,5-Trichlorophenol	ND	ug/kg	390			
enzoic Acid	ND	ug/kg	3900			
enzyl Alcohol	ND	ug/kg	780			
arbazole	ND	ug/kg	390			
	Dame		00.0	taring .		
urrogate(s)	Recovery	0	QC Cri			
-Fluorophenol	40.0	8	25-120			
henol-d6	38.0	8	10-120			
itrobenzene-d5	32.0	%	23-120			
-Fluorobiphenyl	32.0	%	30-120			
,4,6-Tribromophenol	45.0	%	19-120			
-Terphenyl-d14	37.0	%	18-120)		

Laboratory Sample Number: L0813344-16

PWG-DW-2008-13 (7.25-7.75')

ARAMETER	RESULT	UNITS	RDL	REF METHOD	DA	TE	ID
					PREP	ANAL	
Semivolatile Organics by E				1 8270C	0911 03:30	0913 13:4	8 AF
cenaphthene	ND	ug/kg	16.				
2-Chloronaphthalene	ND	ug/kg	16.				
'luoranthene	32	ug/kg	16				
Mexachlorobutadiene	ND	ug/kg	39.				
Japhthalene	ND	ug/kg	16.				
Benzo(a)anthracene	ND	ug/kg	16.				
Benzo(a)pyrene	ND	ug/kg	16.				
Benzo(b)fluoranthene	ND	ug/kg	16.				
Benzo(k)fluoranthene	ND	ug/kg	16.				
hrysene	ND	ug/kg	16.				
cenaphthylene	ND	ug/kg	16.				
nthracene	ND	ug/kg	16.				
Benzo(ghi)perylene	ND	ug/kg	16.				
luorene	ND	ug/kg	16.				
henanthrene	ND	ug/kg	16.				
oibenzo(a,h)anthracene	ND	ug/kg	16.				
indeno(1,2,3-cd)Pyrene	ND	ug/kg	16.				
yrene	33	ug/kg	16				
-Methylnaphthalene	ND	ug/kg	16.				
entachlorophenol	ND	ug/kg	62.				
Iexachlorobenzene	ND	ug/kg	62.				
Mexachloroethane	ND	ug/kg	62.				
Surrogate(s)	Recovery		QC Cr	iteria			
-Fluorophenol	38.0	%	25-12	0			
henol-d6	39.0	%	10-12	0			
Jitrobenzene-d5	35.0	%	23-12	0			
-Fluorobiphenyl	33.0	%	30-12	0			
2,4,6-Tribromophenol	35.0	%	19-12	0			
-Terphenyl-d14	43.0	%	18-12	0			
Petroleum Hydrocarbon Quan	titation by (1 8015B(M)	0911 00:15	0912 12:3	7 R7
'PH	ND	ug/kg	38800				
Surrogate(s)	Recovery		~	iteria			
-Terphenyl	59.0	%	40-14	0			

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813344-17 Date Collected: 08-SEP-2008 12:30

PWG-DW-2008-14 (6-6.5') Date Received: 09-SEP-2008

Sample Matrix: SOIL Date Reported: 25-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID
					PREP ANAL
Solids, Total	69	%	0.10	30 2540G	0910 18:40 NM
Total Metals					
Aluminum, Total	2300	mg/kg	7.0	1 6010B	0910 13:30 0911 14:46 AI
Antimony, Total	ND	mg/kg	3.5	1 6010B	0910 13:30 0911 14:46 AI
Arsenic, Total	0.95	mg/kg	0.70	1 6010B	0910 13:30 0911 14:46 AI
Barium, Total	13	mg/kg	0.70	1 6010B	0910 13:30 0911 14:46 AI
Beryllium, Total	ND	mg/kg	0.35	1 6010B	0910 13:30 0911 14:46 AI
Cadmium, Total	ND	mg/kg	0.70	1 6010B	0910 13:30 0911 14:46 AI
Calcium, Total	10000	mg/kg	7.0	1 6010B	0910 13:30 0911 14:46 AI
Chromium, Total	6.4	mg/kg	0.70	1 6010B	0910 13:30 0911 14:46 AI
Cobalt, Total	2.8	mg/kg	1.4	1 6010B	0910 13:30 0911 14:46 AI
Copper, Total	22	mg/kg	0.70	1 6010B	0910 13:30 0911 14:46 AI
Iron, Total	6200	mg/kg	3.5	1 6010B	0910 13:30 0911 14:46 AI
Lead, Total	65	mg/kg	3.5	1 6010B	0910 13:30 0911 14:46 AI
Magnesium, Total	6300	mg/kg	7.0	1 6010B	0910 13:30 0911 14:46 AI
Manganese, Total	43	mg/kg	0.70	1 6010B	0910 13:30 0911 14:46 AI
Mercury, Total	0.13	mg/kg	0.11	1 7471A	0911 23:30 0912 14:38 RC
Nickel, Total	4.7	mg/kg	1.8	1 6010B	0910 13:30 0911 14:46 AI
Potassium, Total	ND	mg/kg	180	1 6010B	0910 13:30 0911 14:46 AI
Selenium, Total	ND	mg/kg	1.4	1 6010B	0910 13:30 0911 14:46 AI
Silver, Total	ND	mg/kg	0.70	1 6010B	0910 13:30 0911 14:46 AI
Sodium, Total	170	mg/kg	140	1 6010B	0910 13:30 0911 14:46 AI
Thallium, Total	ND	mg/kg	1.4	1 6010B	0910 13:30 0911 14:46 AI
Vanadium, Total	21	mg/kg	0.70	1 6010B	0910 13:30 0911 14:46 AI
Zinc, Total	100	mg/kg	3.5	1 6010B	0910 13:30 0911 14:46 AI
Volatile Organics by EPA 8	260B			1 8260B	0911 23:58 PD
Methylene chloride	ND	ug/kg	36.		
l,1-Dichloroethane	ND	ug/kg	5.4		
Chloroform	ND	ug/kg	5.4		
Carbon tetrachloride	ND	ug/kg	3.6		
l,2-Dichloropropane	ND	ug/kg	13.		
Dibromochloromethane	ND	ug/kg	3.6		
1,1,2-Trichloroethane	ND	ug/kg	5.4		
Tetrachloroethene	ND	ug/kg	3.6		
Chlorobenzene	ND	ug/kg	3.6		
Trichlorofluoromethane	ND	ug/kg	18.		

Laboratory Sample Number: L0813344-17

PWG-DW-2008-14 (6-6.5')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
	.05							
Volatile Organics by EPA 826		. /1	2 6	1	8260B		0911 23:5	58 PD
l,2-Dichloroethane	ND	ug/kg	3.6					
l,1,1-Trichloroethane	ND	ug/kg	3.6					
Bromodichloromethane	ND	ug/kg	3.6					
crans-1,3-Dichloropropene	ND	ug/kg	3.6					
cis-1,3-Dichloropropene	ND	ug/kg	3.6					
1,1-Dichloropropene	ND	ug/kg	18.					
Bromoform	ND	ug/kg	14.					
,1,2,2-Tetrachloroethane	ND	ug/kg	3.6					
Benzene	ND	ug/kg	3.6					
Coluene	25	ug/kg	5.4					
Ethylbenzene	ND	ug/kg	3.6					
Chloromethane	ND	ug/kg	18.					
Bromomethane	ND	ug/kg	7.2					
Jinyl chloride	ND	ug/kg	7.2					
Chloroethane	ND	ug/kg	7.2					
1,1-Dichloroethene	ND	ug/kg	3.6					
rans-1,2-Dichloroethene	ND	ug/kg	5.4					
Trichloroethene	ND	ug/kg	3.6					
,2-Dichlorobenzene	ND	ug/kg	18.					
,3-Dichlorobenzene	ND	ug/kg	18.					
,4-Dichlorobenzene	ND	ug/kg	18.					
Methyl tert butyl ether	ND	ug/kg	7.2					
o/m-Xylene	ND	ug/kg	7.2					
-Xylene	ND	ug/kg	7.2					
cis-1,2-Dichloroethene	ND	ug/kg	3.6					
) Dibromomethane	ND	ug/kg	36.					
Styrene	ND	ug/kg	7.2					
Dichlorodifluoromethane	ND	ug/kg	36.					
Acetone	42	ug/kg	36					
Carbon disulfide	ND	ug/kg	36.					
2-Butanone	ND	ug/kg	36.					
inyl acetate	ND	ug/kg	36.					
l-Methyl-2-pentanone	ND	ug/kg	36.					
1,2,3-Trichloropropane	ND	ug/kg	36.					
2-Hexanone	ND	ug/kg	36.					
r-nexamone Bromochloromethane	ND ND	ug/kg ug/kg	18.					
2,2-Dichloropropane	ND	ug/kg ug/kg	18.					
,,2-Dichioropropane ,,2-Dibromoethane	ND ND	ug/kg ug/kg	14.					
			14.					
,3-Dichloropropane	ND	ug/kg						
	ND	ug/kg	3.6					
Bromobenzene	ND	ug/kg	18.					
n-Butylbenzene	ND	ug/kg	3.6					
sec-Butylbenzene	ND	ug/kg	3.6					
ert-Butylbenzene	ND	ug/kg	18.					
o-Chlorotoluene	ND	ug/kg	18.					
o-Chlorotoluene	ND	ug/kg	18.					
,2-Dibromo-3-chloropropane	ND	ug/kg	18.					
Mexachlorobutadiene	ND	ug/kg	18.					
Isopropylbenzene	ND	ug/kg	3.6					

Laboratory Sample Number: L0813344-17

PWG-DW-2008-14 (6-6.5')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD		TE	ID
						PREP	ANAL	
Volatile Organics by EPA 826	OB cont'd			1	8260B		0911 23:5	58 PD
p-Isopropyltoluene	ND	ug/kg	3.6					
Naphthalene	ND	ug/kg	18.					
Acrylonitrile	ND	ug/kg	36.					
n-Propylbenzene	ND	ug/kg	3.6					
1,2,3-Trichlorobenzene	ND	ug/kg	18.					
1,2,4-Trichlorobenzene	ND	ug/kg ug/kg	18.					
1,3,5-Trimethylbenzene	ND	ug/kg ug/kg	18.					
1,2,4-Trimethylbenzene	ND	ug/kg ug/kg	18.					
1,4-Diethylbenzene	ND	ug/kg ug/kg	14.					
1,4-Diethylbenzene 4-Ethyltoluene	ND	ug/kg ug/kg	14.					
1,2,4,5-Tetramethylbenzene	ND	ug/kg	14.					
Surrogate(s)	Recovery		QC Cr	iteria	a			
1,2-Dichloroethane-d4	113	%	70-130					
Toluene-d8	113	%	70-130)				
4-Bromofluorobenzene	135	%	70-130)				
Dibromofluoromethane	106	%	70-130)				
Volatile Organics by EPA 826	0B			1	8260B		0912 13:5	53 PD
Methylene chloride	ND	ug/kg	36.	_				
1,1-Dichloroethane	ND	ug/kg	5.4					
Chloroform	ND	ug/kg	5.4					
Carbon tetrachloride	ND	ug/kg	3.6					
1,2-Dichloropropane	ND	ug/kg	13.					
Dibromochloromethane	ND	ug/kg ug/kg	3.6					
1,1,2-Trichloroethane	ND	ug/kg ug/kg	5.4					
Tetrachloroethene	ND	ug/kg ug/kg	3.6					
Chlorobenzene	ND	ug/kg ug/kg	3.6					
Trichlorofluoromethane	ND	ug/kg ug/kg	18.					
1.2-Dichloroethane	ND	5 5	3.6					
1,1,1-Trichloroethane	ND ND	ug/kg ug/kg	3.6					
Bromodichloromethane			3.6					
	ND	ug/kg						
trans-1,3-Dichloropropene	ND	ug/kg	3.6					
	ND	ug/kg	3.6					
l,1-Dichloropropene	ND	ug/kg	18.					
Bromoform	ND	ug/kg	14.					
1,1,2,2-Tetrachloroethane	ND	ug/kg	3.6					
Benzene	ND	ug/kg	3.6					
Foluene	28	ug/kg	5.4					
Ethylbenzene	ND	ug/kg	3.6					
Chloromethane	ND	ug/kg	18.					
Bromomethane	ND	ug/kg	7.2					
Vinyl chloride	ND	ug/kg	7.2					
Chloroethane	ND	ug/kg	7.2					
1,1-Dichloroethene	ND	ug/kg	3.6					
trans-1,2-Dichloroethene	ND	ug/kg	5.4					
Trichloroethene	ND	ug/kg	3.6					
l,2-Dichlorobenzene	ND	ug/kg	18.					
1,3-Dichlorobenzene	ND	ug/kg	18.					

Laboratory Sample Number: L0813344-17

PWG-DW-2008-14 (6-6.5')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA' PREP	TE II ANAL
Volatile Organics by EPA 826	OB cont'd			1 8260B		0912 13:53 PI
1,4-Dichlorobenzene	ND	ug/kg	18.			
Methyl tert butyl ether	ND	ug/kg	7.2			
o/m-Xylene	ND	ug/kg	7.2			
o-Xylene	ND	ug/kg	7.2			
cis-1,2-Dichloroethene	ND	ug/kg	3.6			
Dibromomethane	ND	ug/kg	36.			
Styrene	ND	ug/kg	7.2			
Dichlorodifluoromethane	ND	ug/kg	36.			
Acetone	45	ug/kg	36			
Carbon disulfide	ND	ug/kg	36.			
2-Butanone	ND	ug/kg	36.			
Vinyl acetate	ND	ug/kg	36.			
4-Methyl-2-pentanone	ND	ug/kg	36.			
1,2,3-Trichloropropane	ND	ug/kg	36.			
2-Hexanone	ND	ug/kg	36.			
Bromochloromethane	ND	ug/kg	18.			
2,2-Dichloropropane	ND	ug/kg	18.			
1,2-Dibromoethane	ND	ug/kg	14.			
1,3-Dichloropropane	ND	ug/kg	18.			
1,1,1,2-Tetrachloroethane	ND	ug/kg	3.6			
Bromobenzene	ND	ug/kg	18.			
n-Butylbenzene	ND	ug/kg	3.6			
sec-Butylbenzene	ND	ug/kg	3.6			
tert-Butylbenzene	ND	ug/kg	18.			
o-Chlorotoluene	ND	ug/kg	18.			
p-Chlorotoluene	ND	ug/kg ug/kg	18.			
1,2-Dibromo-3-chloropropane	ND	ug/kg ug/kg	18.			
Hexachlorobutadiene	ND	ug/kg ug/kg	18.			
Isopropylbenzene	ND	ug/kg ug/kg	3.6			
p-Isopropyltoluene	ND	ug/kg ug/kg	3.6			
Naphthalene	ND ND	ug/kg ug/kg	18.			
Acrylonitrile	ND		36.			
n-Propylbenzene	ND ND	ug/kg	3.6			
		ug/kg				
1,2,3-Trichlorobenzene	ND	ug/kg	18.			
1,2,4-Trichlorobenzene	ND	ug/kg	18.			
1,3,5-Trimethylbenzene	ND	ug/kg	18.			
1,2,4-Trimethylbenzene	ND	ug/kg	18.			
1,4-Diethylbenzene	ND	ug/kg	14.			
4-Ethyltoluene	ND	ug/kg	14.			
1,2,4,5-Tetramethylbenzene	ND	ug/kg	14.			
Surrogate(s)	Recovery			iteria		
l,2-Dichloroethane-d4	119	%	70-13			
Foluene-d8	126	%	70-13			
4-Bromofluorobenzene	136	%	70-13			
Dibromofluoromethane	118	%	70-13	0		
Semivolatile Organics by EPA	8270C			1 8270C	0911 03:30	0915 20:54 PS
Acenaphthene	ND	ug/kg	970			

Laboratory Sample Number: L0813344-17

PWG-DW-2008-14 (6-6.5')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Semivolatile Organics by EPA	8270C cont	- 'd		1	8270C	0911 03:30	0015 20:	E4 DC
1,2,4-Trichlorobenzene	ND	ug/kg	970		8270C	0911 03:30	0913 20.	J4 F5
Hexachlorobenzene	ND ND		970					
		ug/kg						
Bis(2-chloroethyl)ether	ND	ug/kg	970 1200					
2-Chloronaphthalene	ND	ug/kg	1200					
l,2-Dichlorobenzene l,3-Dichlorobenzene	ND	ug/kg	970					
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ND	ug/kg	970					
•	ND	ug/kg	970					
3,3'-Dichlorobenzidine	ND	ug/kg	1900					
2,4-Dinitrotoluene	ND	ug/kg	970					
2,6-Dinitrotoluene	ND	ug/kg	970					
luoranthene	ND	ug/kg	970					
4-Chlorophenyl phenyl ether	ND	ug/kg	970					
l-Bromophenyl phenyl ether	ND	ug/kg	970					
Bis(2-chloroisopropyl)ether	ND	ug/kg	970					
Bis(2-chloroethoxy)methane	ND	ug/kg	970					
Mexachlorobutadiene	ND	ug/kg	1900					
Mexachlorocyclopentadiene	ND	ug/kg	1900					
Mexachloroethane	ND	ug/kg	970					
sophorone	ND	ug/kg	970					
Japhthalene	ND	ug/kg	970					
Jitrobenzene	ND	ug/kg	970					
JitrosoDiPhenylAmine(NDPA)/DI		ug/kg	2900					
-Nitrosodi-n-propylamine	ND	ug/kg	970					
Bis(2-Ethylhexyl)phthalate	ND	ug/kg	1900					
Butyl benzyl phthalate	ND	ug/kg	970					
Di-n-butylphthalate	ND	ug/kg	970					
Di-n-octylphthalate	ND	ug/kg	970					
Diethyl phthalate	ND	ug/kg	970					
Dimethyl phthalate	ND	ug/kg	970					
Benzo(a)anthracene	ND	ug/kg	970					
Benzo(a)pyrene	ND	ug/kg	970					
Benzo(b)fluoranthene	ND	ug/kg	970					
Benzo(k)fluoranthene	ND	ug/kg	970					
Chrysene	ND	ug/kg	970					
cenaphthylene	ND	ug/kg	970					
nthracene	ND	ug/kg	970					
Benzo(ghi)perylene	ND	ug/kg	970					
luorene	ND	ug/kg	970					
henanthrene	ND	ug/kg	970					
pibenzo(a,h)anthracene	ND	ug/kg	970					
ndeno(1,2,3-cd)Pyrene	ND	ug/kg	970					
yrene	ND	ug/kg	970					
siphenyl	ND	ug/kg	970					
-Chloroaniline	ND	ug/kg	970					
-Nitroaniline	ND	ug/kg	970					
3-Nitroaniline	ND	ug/kg	970					
-Nitroaniline	ND	ug/kg	1400					
Dibenzofuran	ND	ug/kg	970					
-Methylnaphthalene	ND	ug/kg	970					

Laboratory Sample Number: L0813344-17

PWG-DW-2008-14 (6-6.5')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA	
						PREP	ANAL
Semivolatile Organics by EPA	8270C cont	t.'d		1	8270C	0911 03:30	0915 20:54 P
1,2,4,5-Tetrachlorobenzene	ND	ug/kg	3900	_	02700	0511 05.50	0010 20.04 E
Acetophenone	ND	ug/kg ug/kg	3900				
2,4,6-Trichlorophenol	ND	ug/kg ug/kg	970				
P-Chloro-M-Cresol	ND		970				
2-Chlorophenol	ND ND	ug/kg	1200				
2,4-Dichlorophenol	ND	ug/kg	1900				
2,4-Dienforophenol 2,4-Dimethylphenol		ug/kg	970				
	ND	ug/kg	3900				
2-Nitrophenol	ND	ug/kg					
4-Nitrophenol	ND	ug/kg	1900				
2,4-Dinitrophenol	ND	ug/kg	3900				
4,6-Dinitro-o-cresol	ND	ug/kg	3900				
Pentachlorophenol	ND	ug/kg	3900				
Phenol	ND	ug/kg	1400				
2-Methylphenol	ND	ug/kg	1200				
3-Methylphenol/4-Methylphenol		ug/kg	1200				
2,4,5-Trichlorophenol	ND	ug/kg	970				
Benzoic Acid	ND	ug/kg	9700				
Benzyl Alcohol	ND	ug/kg	1900				
Carbazole	ND	ug/kg	970				
Surrogate(s)	Recovery		QC Cri	teria	Э		
2-Fluorophenol	81.0	%	25-120				
Phenol-d6	86.0	%	10-120				
Nitrobenzene-d5	70.0	%	23-120				
2-Fluorobiphenyl	75.0	%	30-120				
2,4,6-Tribromophenol	99.0	%	19-120				
4-Terphenyl-d14	67.0	%	18-120				
Semivolatile Organics by EPA	8270C-SIM			1	8270C	0911 03:30	0913 18:32 A
Acenaphthene	ND	ug/kg	970				
2-Chloronaphthalene	ND	ug/kg	970				
Fluoranthene	ND	ug/kg	970				
Hexachlorobutadiene	ND	ug/kg	2400				
Naphthalene	ND	ug/kg	970				
Benzo(a)anthracene	ND	ug/kg	970				
Benzo(a)pyrene	ND	ug/kg	970				
Benzo(b)fluoranthene	ND	ug/kg	970				
	ND	ug/kg	970				
	1.2		070				
Benzo(k)fluoranthene	ND	ug/kg	970				
Benzo(k)fluoranthene Chrysene		ug/kg ug/kg	970 970				
Benzo(k)fluoranthene Chrysene Acenaphthylene	ND						
Benzo(k)fluoranthene Chrysene Acenaphthylene Anthracene	ND ND	ug/kg	970				
Benzo(k)fluoranthene Chrysene Acenaphthylene Anthracene Benzo(ghi)perylene Fluorene	ND ND ND	ug/kg ug/kg	970 970				
Benzo(k)fluoranthene Chrysene Acenaphthylene Anthracene Benzo(ghi)perylene	ND ND ND	ug/kg ug/kg ug/kg ug/kg	970 970 970 970				
Benzo(k)fluoranthene Chrysene Acenaphthylene Anthracene Benzo(ghi)perylene Fluorene Phenanthrene	ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg	970 970 970 970 970				
Benzo(k)fluoranthene Chrysene Acenaphthylene Anthracene Benzo(ghi)perylene Fluorene Phenanthrene Dibenzo(a,h)anthracene	ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	970 970 970 970 970 970				
Benzo(k)fluoranthene Chrysene Acenaphthylene Anthracene Benzo(ghi)perylene Fluorene Phenanthrene Dibenzo(a,h)anthracene Indeno(1,2,3-cd)Pyrene	ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	970 970 970 970 970 970 970				
Benzo(k)fluoranthene Chrysene Acenaphthylene Anthracene Benzo(ghi)perylene Fluorene Phenanthrene Dibenzo(a,h)anthracene	ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	970 970 970 970 970 970				

Laboratory Sample Number: L0813344-17

PWG-DW-2008-14 (6-6.5')

PARAMETER	RESULT	UNITS	\mathtt{RDL}	REF METHOD	DA	TE	ID
					PREP	ANAL	
Semivolatile Organics by E	PA 8270C-SIM	cont'd		1 8270C	0911 03:30	0913 18:32	2 AK
Hexachlorobenzene	ND	ug/kg	3900				
Hexachloroethane	ND	ug/kg	3900				
Surrogate(s)	Recovery		QC Cr	iteria			
2-Fluorophenol	ND	%	25-120)			
Phenol-d6	ND	%	10-120)			
Nitrobenzene-d5	ND	%	23-120)			
2-Fluorobiphenyl	ND	%	30-120)			
2,4,6-Tribromophenol	ND	%	19-120)			
4-Terphenyl-d14	ND	%	18-120	0			
Petroleum Hydrocarbon Quan	titation by G	C-FID		1 8015B(M)	0911 00:15	0912 14:18	B RT
TPH	841000	ug/kg	242000	0			
Surrogate(s)	Recovery		QC Cr	iteria			
o-Terphenyl	73.0	%	40-140)			

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813344-18 Date Collected: 08-SEP-2008 13:40

PWG-DW-2008-15 (7-7.5') Date Received: 09-SEP-2008

Sample Matrix: SOIL Date Reported: 25-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Solids, Total	84	%	0.10	30 2540G	0910 18:40 NM
Total Metals					
Aluminum, Total	1700	mg/kg	5.7	1 6010B	0910 13:30 0911 14:49 AI
Antimony, Total	ND	mg/kg	2.8	1 6010B	0910 13:30 0911 14:49 AI
Arsenic, Total	1.3	mg/kg	0.57	1 6010B	0910 13:30 0911 14:49 AI
Barium, Total	16	mg/kg	0.57	1 6010B	0910 13:30 0911 14:49 AI
Beryllium, Total	ND	mg/kg	0.28	1 6010B	0910 13:30 0911 14:49 AI
Cadmium, Total	ND	mg/kg	0.57	1 6010B	0910 13:30 0911 14:49 AI
Calcium, Total	6600	ma/ka	5.7	1 6010B	0910 13:30 0911 14:49 AI
Chromium, Total	5.2	mg/kg	0.57	1 6010B	0910 13:30 0911 14:49 AI
Cobalt, Total	ND	mg/kg	1.1	1 6010B	0910 13:30 0911 14:49 AI
Copper, Total	4.7	mg/kg	0.57	1 6010B	0910 13:30 0911 14:49 AI
Iron, Total	4600	mg/kg	2.8	1 6010B	0910 13:30 0911 14:49 AI
Lead, Total	36	mg/kg	2.8	1 6010B	0910 13:30 0911 14:49 AI
Magnesium, Total	2900	mg/kg	5.7	1 6010B	0910 13:30 0911 14:49 AI
Manganese, Total	47	mg/kg	0.57	1 6010B	0910 13:30 0911 14:49 AI
Mercury, Total	ND	mg/kg	0.09	1 7471A	0911 23:30 0912 14:40 RC
Nickel, Total	2.0	mg/kg	1.4	1 6010B	0910 13:30 0911 14:49 AI
Potassium, Total	ND	mg/kg	140	1 6010B	0910 13:30 0911 14:49 AI
Selenium, Total	ND	mg/kg	1.1	1 6010B	0910 13:30 0911 14:49 AI
Silver, Total	ND	mg/kg	0.57	1 6010B	0910 13:30 0911 14:49 AI
Sodium, Total	ND	mg/kg	110	1 6010B	0910 13:30 0911 14:49 AI
Thallium, Total	ND	mg/kg	1.1	1 6010B	0910 13:30 0911 14:49 AI
Vanadium, Total	5.9	mg/kg	0.57	1 6010B	0910 13:30 0911 14:49 AI
Zinc, Total	35	mg/kg	2.8	1 6010B	0910 13:30 0911 14:49 AI
Volatile Organics by EPA 8	260B			1 8260B	0912 00:35 PD
Methylene chloride	ND	ug/kg	30.	_ 22002	0312 00 33 15
1,1-Dichloroethane	ND	ug/kg	4.5		
Chloroform	ND	ug/kg	4.5		
Carbon tetrachloride	ND	ug/kg	3.0		
1,2-Dichloropropane	ND	ug/kg	10.		
Dibromochloromethane	ND	ug/kg	3.0		
1,1,2-Trichloroethane	ND	ug/kg	4.5		
Tetrachloroethene	120	ug/kg	3.0		
Chlorobenzene	ND	ug/kg	3.0		
Trichlorofluoromethane	ND	ug/kg	15.		

Laboratory Sample Number: L0813344-18

PWG-DW-2008-15 (7-7.5')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
7-1-+-1- 0 h ED3 000	(OD							
Volatile Organics by EPA 826		/1	2 0	1	8260B		0912 00:	35 PD
l,2-Dichloroethane	ND	ug/kg	3.0					
1,1,1-Trichloroethane	ND	ug/kg	3.0					
Bromodichloromethane	ND	ug/kg	3.0					
crans-1,3-Dichloropropene	ND	ug/kg	3.0					
cis-1,3-Dichloropropene	ND	ug/kg	3.0					
,1-Dichloropropene	ND	ug/kg	15.					
Bromoform	ND	ug/kg	12.					
.,1,2,2-Tetrachloroethane	ND	ug/kg	3.0					
Senzene	ND	ug/kg	3.0					
oluene	ND	ug/kg	4.5					
thylbenzene	ND	ug/kg	3.0					
Chloromethane	ND	ug/kg	15.					
romomethane	ND	ug/kg	6.0					
inyl chloride	26	ug/kg	6.0					
Chloroethane	ND	ug/kg	6.0					
,1-Dichloroethene	ND	ug/kg	3.0					
rans-1,2-Dichloroethene	ND	ug/kg	4.5					
richloroethene	11	ug/kg	3.0					
,2-Dichlorobenzene	ND	ug/kg	15.					
,3-Dichlorobenzene	ND	ug/kg	15.					
,4-Dichlorobenzene	ND	ug/kg	15.					
ethyl tert butyl ether	ND	ug/kg	6.0					
/m-Xylene	ND	ug/kg	6.0					
-Xylene	ND	ug/kg	6.0					
is-1,2-Dichloroethene	28	ug/kg	3.0					
ibromomethane	ND	ug/kg	30.					
Styrene	ND	ug/kg	6.0					
Dichlorodifluoromethane	ND	ug/kg	30.					
acetone	ND	ug/kg	30.					
arbon disulfide	ND	ug/kg	30.					
-Butanone	ND	ug/kg	30.					
inyl acetate	ND	ug/kg	30.					
l-Methyl-2-pentanone	ND	ug/kg	30.					
.,2,3-Trichloropropane	ND	ug/kg	30.					
-Hexanone	ND	ug/kg	30.					
romochloromethane	ND	ug/kg	15.					
,2-Dichloropropane	ND	ug/kg	15.					
,2-Dibromoethane	ND	ug/kg	12.					
,3-Dichloropropane	ND	ug/kg	15.					
,1,1,2-Tetrachloroethane	ND	ug/kg	3.0					
romobenzene	ND	ug/kg	15.					
-Butylbenzene	ND	ug/kg	3.0					
ec-Butylbenzene	ND	ug/kg	3.0					
ert-Butylbenzene	ND	ug/kg	15.					
-Chlorotoluene	ND	ug/kg	15.					
-Chlorotoluene	ND	ug/kg	15.					
,2-Dibromo-3-chloropropane	ND	ug/kg	15.					
exachlorobutadiene	ND	ug/kg	15.					
sopropylbenzene	ND	ug/kg	3.0					

Laboratory Sample Number: L0813344-18

PWG-DW-2008-15 (7-7.5')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA		ID
						PREP	ANAL	
Volatile Organics by EPA 826	OB cont'd			1	8260B		0912 00:	35 PD
p-Isopropyltoluene	ND	ug/kg	3.0					
Naphthalene	ND	ug/kg	15.					
Acrylonitrile	ND	ug/kg	30.					
n-Propylbenzene	ND	ug/kg	3.0					
1,2,3-Trichlorobenzene	ND	ug/kg	15.					
1,2,4-Trichlorobenzene	ND	ug/kg	15.					
1,3,5-Trimethylbenzene	ND	ug/kg	15.					
1,2,4-Trimethylbenzene	ND	ug/kg	15.					
1,4-Diethylbenzene	ND	ug/kg ug/kg	12.					
4-Ethyltoluene	ND	ug/kg ug/kg	12.					
1,2,4,5-Tetramethylbenzene	ND	ug/kg ug/kg	12.					
1,2,4,3-lectamethylbenzene	ND	ug/kg	12.					
Surrogate(s)	Recovery		QC Cri	teria	a			
1,2-Dichloroethane-d4	106	%	70-130)				
Toluene-d8	105	%	70-130)				
4-Bromofluorobenzene	119	%	70-130					
Dibromofluoromethane	100	%	70-130)				
Semivolatile Organics by EPA	9270C			1	8270C	0911 03:30	0015 01.	17 DG
Acenaphthene	ND	ug/kg	400	1	82700	0911 03.30	0915 21.	17 PS
1,2,4-Trichlorobenzene	ND ND		400					
Hexachlorobenzene	ND ND	ug/kg ug/kg	400					
Bis(2-chloroethyl)ether	ND	ug/kg	400					
2-Chloronaphthalene	ND	ug/kg	480					
1,2-Dichlorobenzene	ND	ug/kg	400					
1,3-Dichlorobenzene	ND	ug/kg	400					
1,4-Dichlorobenzene	ND	ug/kg	400					
3,3'-Dichlorobenzidine	ND	ug/kg	790					
2,4-Dinitrotoluene	ND	ug/kg	400					
2,6-Dinitrotoluene	ND	ug/kg	400					
Fluoranthene	ND	ug/kg	400					
4-Chlorophenyl phenyl ether	ND	ug/kg	400					
4-Bromophenyl phenyl ether	ND	ug/kg	400					
Bis(2-chloroisopropyl)ether	ND	ug/kg	400					
Bis(2-chloroethoxy)methane	ND	ug/kg	400					
Hexachlorobutadiene	ND	ug/kg	790					
Hexachlorocyclopentadiene	ND	ug/kg	790					
Hexachloroethane	ND	ug/kg	400					
Isophorone	ND	ug/kg	400					
Naphthalene	ND	ug/kg	400					
Nitrobenzene	ND	ug/kg	400					
NitrosoDiPhenylAmine(NDPA)/D		ug/kg	1200					
n-Nitrosodi-n-propylamine	ND	ug/kg	400					
Bis(2-Ethylhexyl)phthalate	ND	ug/kg	790					
Butyl benzyl phthalate	ND	ug/kg	400					
Di-n-butylphthalate	ND	ug/kg	400					
Di-n-octylphthalate	ND	ug/kg	400					
Diethyl phthalate	ND	ug/kg	400					
Dimethyl phthalate	ND	ug/kg	400					

Laboratory Sample Number: L0813344-18

PWG-DW-2008-15 (7-7.5')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Semivolatile Organics by EPA 8	3270C cont	- ' d		1	8270C	0911 03:30	0915 21:	17 PS
Benzo(a)anthracene	ND	ug/kg	400	-	02,00	0,11 0,5 50	0,10 11	1, 10
Benzo(a)pyrene	ND	ug/kg ug/kg	400					
Benzo(b)fluoranthene	ND	ug/kg ug/kg	400					
Benzo(k)fluoranthene	ND	ug/kg ug/kg	400					
Chrysene	ND	ug/kg ug/kg	400					
Acenaphthylene	ND	ug/kg ug/kg	400					
Anthracene	ND	ug/kg ug/kg	400					
Benzo(ghi)perylene	ND		400					
Fluorene	ND	ug/kg	400					
Phenanthrene	ND	ug/kg	400					
		ug/kg	400					
Dibenzo(a,h)anthracene	ND	ug/kg						
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	400					
Pyrene	ND	ug/kg	400					
Biphenyl	ND	ug/kg	400					
4-Chloroaniline	ND	ug/kg	400					
2-Nitroaniline	ND	ug/kg	400					
3-Nitroaniline	ND	ug/kg	400					
1-Nitroaniline	ND	ug/kg	560					
Dibenzofuran	ND	ug/kg	400					
2-Methylnaphthalene	ND	ug/kg	400					
1,2,4,5-Tetrachlorobenzene	ND	ug/kg	1600					
Acetophenone	ND	ug/kg	1600					
2,4,6-Trichlorophenol	ND	ug/kg	400					
P-Chloro-M-Cresol	ND	ug/kg	400					
2-Chlorophenol	ND	ug/kg	480					
2,4-Dichlorophenol	ND	ug/kg	790					
2,4-Dimethylphenol	ND	ug/kg	400					
2-Nitrophenol	ND	ug/kg	1600					
1-Nitrophenol	ND	ug/kg	790					
2,4-Dinitrophenol	ND	ug/kg	1600					
1,6-Dinitro-o-cresol	ND	ug/kg	1600					
Pentachlorophenol	ND	ug/kg	1600					
Phenol	ND	ug/kg	560					
2-Methylphenol	ND	ug/kg	480					
3-Methylphenol/4-Methylphenol	ND	ug/kg	480					
2,4,5-Trichlorophenol	ND	ug/kg	400					
Benzoic Acid	ND	ug/kg	4000					
Benzyl Alcohol	ND	ug/kg	790					
Carbazole	ND	ug/kg	400					
Surrogate(s)	Recovery		QC Cr	iteria	a.			
2-Fluorophenol	62.0	%	25-120)				
Phenol-d6	65.0	%	10-120)				
Nitrobenzene-d5	52.0	%	23-120)				
2-Fluorobiphenyl	58.0	%	30-120)				
2,4,6-Tribromophenol	94.0	%	19-120)				
4-Terphenyl-d14	71.0	%	18-120)				

Laboratory Sample Number: L0813344-18

PWG-DW-2008-15 (7-7.5')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE II
					PREP ANAL
	3 0070G GTM				
Semivolatile Organics by EPA				1 8270C	0911 03:30 0913 14:36 AF
Acenaphthene	ND	ug/kg	79.		
2-Chloronaphthalene	ND	ug/kg	79.		
Fluoranthene	ND	ug/kg	79.		
Hexachlorobutadiene	ND	ug/kg	200		
Naphthalene	ND	ug/kg	79.		
Benzo(a)anthracene	ND	ug/kg	79.		
Benzo(a)pyrene	ND	ug/kg	79.		
Benzo(b)fluoranthene	ND	ug/kg	79.		
Benzo(k)fluoranthene	ND	ug/kg	79.		
Chrysene	ND	ug/kg	79.		
Acenaphthylene	ND	ug/kg	79.		
Anthracene	ND	ug/kg	79.		
Benzo(ghi)perylene	ND	ug/kg	79.		
Fluorene	ND	ug/kg	79.		
Phenanthrene	ND	ug/kg	79.		
Dibenzo(a,h)anthracene	ND	ug/kg	79.		
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	79.		
Pyrene	ND	ug/kg	79.		
2-Methylnaphthalene	ND	ug/kg	79.		
Pentachlorophenol	ND	ug/kg	320		
Hexachlorobenzene	ND	ug/kg	320		
Hexachloroethane	ND	ug/kg	320		
Surrogate(s)	Recovery		QC Cri	iteria	
2-Fluorophenol	52.0	%	25-120)	
Phenol-d6	56.0	%	10-120)	
Nitrobenzene-d5	45.0	%	23-120)	
2-Fluorobiphenyl	54.0	%	30-120)	
2,4,6-Tribromophenol	65.0	8	19-120)	
4-Terphenyl-d14	63.0	%	18-120)	
Petroleum Hydrocarbon Quant:	itation by G	C-FID		1 8015B(M)	0911 00:15 0912 13:11 R
ГРН	62100	ug/kg	39700		
Surrogate(s)	Recovery		QC Cri		
o-Terphenyl	58.0	%	40-140)	

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813344-19 Date Collected: 08-SEP-2008 13:50

PWG-DW-2008-100 (7-7.5') Date Received: 09-SEP-2008

Sample Matrix: SOIL Date Reported: 25-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER	RESULT	UNITS	\mathtt{RDL}	REF METHOD	DATE II
					PREP ANAL
Solids, Total	83	%	0.10	30 2540G	0910 18:40 NM
Total Metals					
Aluminum, Total	2100	mg/kg	5.6	1 6010B	0910 13:30 0911 15:05 AI
Antimony, Total	ND	mg/kg	2.8	1 6010B	0910 13:30 0911 15:05 AI
Arsenic, Total	1.4	mg/kg	0.56	1 6010B	0910 13:30 0911 15:05 AI
Barium, Total	15	mg/kg	0.56	1 6010B	0910 13:30 0911 15:05 AI
Beryllium, Total	ND	mg/kg	0.28	1 6010B	0910 13:30 0911 15:05 AI
Cadmium, Total	ND	mg/kg	0.56	1 6010B	0910 13:30 0911 15:05 AI
Calcium, Total	6400	mg/kg	5.6	1 6010B	0910 13:30 0911 15:05 AI
Chromium, Total	4.5	mg/kg	0.56	1 6010B	0910 13:30 0911 15:05 AI
Cobalt, Total	1.2	mg/kg	1.1	1 6010B	0910 13:30 0911 15:05 AI
Copper, Total	5.6	mg/kg	0.56	1 6010B	0910 13:30 0911 15:05 AI
Iron, Total	4600	mg/kg	2.8	1 6010B	0910 13:30 0911 15:05 AI
Lead, Total	32	mg/kg	2.8	1 6010B	0910 13:30 0911 15:05 AI
Magnesium, Total	3900	mg/kg	5.6	1 6010B	0910 13:30 0911 15:05 AI
Manganese, Total	34	mg/kg	0.56	1 6010B	0910 13:30 0911 15:05 AI
Mercury, Total	ND	mg/kg	0.09	1 7471A	0911 23:30 0912 14:42 RC
Nickel, Total	2.2	mg/kg	1.4	1 6010B	0910 13:30 0911 15:05 AI
Potassium, Total	ND	mg/kg	140	1 6010B	0910 13:30 0911 15:05 AI
Selenium, Total	ND	mg/kg	1.1	1 6010B	0910 13:30 0911 15:05 AI
Silver, Total	ND	mg/kg	0.56	1 6010B	0910 13:30 0911 15:05 AI
Sodium, Total	ND	mg/kg	110	1 6010B	0910 13:30 0911 15:05 AI
Thallium, Total	ND	mg/kg	1.1	1 6010B	0910 13:30 0911 15:05 AI
Vanadium, Total	8.3	mg/kg	0.56	1 6010B	0910 13:30 0911 15:05 AI
Zinc, Total	34	mg/kg	2.8	1 6010B	0910 13:30 0911 15:05 AI
Olatile Organics by EPA 8	3260B			1 8260B	0912 01:12 PD
Methylene chloride	ND	ug/kg	30.		
1,1-Dichloroethane	ND	ug/kg	4.5		
Chloroform	ND	ug/kg	4.5		
Carbon tetrachloride	ND	ug/kg	3.0		
l,2-Dichloropropane	ND	ug/kg	10.		
Dibromochloromethane	ND	ug/kg	3.0		
1,1,2-Trichloroethane	ND	ug/kg	4.5		
Tetrachloroethene	110	ug/kg	3.0		
Chlorobenzene	ND	ug/kg	3.0		
Trichlorofluoromethane	ND	ug/kg	15.		

Laboratory Sample Number: L0813344-19

PWG-DW-2008-100 (7-7.5')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
	0.7							
Volatile Organics by EPA 826		/1	2 0	1	8260B		0912 01:	12 PD
l,2-Dichloroethane	ND	ug/kg	3.0					
l,1,1-Trichloroethane	ND	ug/kg	3.0					
Bromodichloromethane	ND	ug/kg	3.0					
rans-1,3-Dichloropropene	ND	ug/kg	3.0					
eis-1,3-Dichloropropene	ND	ug/kg	3.0					
,1-Dichloropropene	ND	ug/kg	15.					
Bromoform	ND	ug/kg	12.					
,1,2,2-Tetrachloroethane	ND	ug/kg	3.0					
Benzene	ND	ug/kg	3.0					
oluene	ND	ug/kg	4.5					
Ethylbenzene	ND	ug/kg	3.0					
hloromethane	ND	ug/kg	15.					
Bromomethane	ND	ug/kg	6.0					
inyl chloride	ND	ug/kg	6.0					
hloroethane	ND	ug/kg	6.0					
,1-Dichloroethene	ND	ug/kg	3.0					
rans-1,2-Dichloroethene	ND	ug/kg	4.5					
richloroethene	ND	ug/kg	3.0					
,2-Dichlorobenzene	ND	ug/kg	15.					
,3-Dichlorobenzene	ND	ug/kg	15.					
,4-Dichlorobenzene	ND	ug/kg	15.					
ethyl tert butyl ether	ND	ug/kg	6.0					
/m-Xylene	ND	ug/kg	6.0					
-Xylene	ND	ug/kg	6.0					
is-1,2-Dichloroethene	ND	ug/kg	3.0					
Dibromomethane	ND	ug/kg	30.					
Styrene	ND	ug/kg	6.0					
ichlorodifluoromethane	ND	ug/kg	30.					
cetone	ND	ug/kg	30.					
arbon disulfide	ND	ug/kg	30.					
-Butanone	ND	ug/kg	30.					
Jinyl acetate	ND	ug/kg	30.					
-Methyl-2-pentanone	ND	ug/kg	30.					
.,2,3-Trichloropropane	ND	ug/kg	30.					
-Hexanone	ND	ug/kg	30.					
romochloromethane	ND	ug/kg	15.					
,2-Dichloropropane	ND	ug/kg	15.					
,2-Dibromoethane	ND	ug/kg	12.					
,3-Dichloropropane	ND	ug/kg	15.					
,1,1,2-Tetrachloroethane	ND	ug/kg	3.0					
gromobenzene	ND	ug/kg	15.					
-Butylbenzene	ND	ug/kg	3.0					
ec-Butylbenzene	ND	ug/kg	3.0					
ert-Butylbenzene	ND	ug/kg	15.					
-Chlorotoluene	ND	ug/kg	15.					
-Chlorotoluene	ND	ug/kg	15.					
,2-Dibromo-3-chloropropane	ND	ug/kg	15.					
exachlorobutadiene	ND	ug/kg	15.					
Isopropylbenzene	ND	ug/kg	3.0					

Laboratory Sample Number: L0813344-19

PWG-DW-2008-100 (7-7.5')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID
Volatile Organics by EPA 826	OB cont'd			1 8260B	0912 01:12 PD
p-Isopropyltoluene	ND	ug/kg	3.0		
Naphthalene	ND	ug/kg	15.		
Acrylonitrile	ND	ug/kg	30.		
n-Propylbenzene	ND	ug/kg	3.0		
1,2,3-Trichlorobenzene	ND	ug/kg	15.		
1,2,4-Trichlorobenzene	ND	ug/kg	15.		
1,3,5-Trimethylbenzene	ND	ug/kg	15.		
1,2,4-Trimethylbenzene	ND	ug/kg	15.		
1,4-Diethylbenzene	ND	ug/kg	12.		
4-Ethyltoluene	ND	ug/kg	12.		
1,2,4,5-Tetramethylbenzene	ND	ug/kg	12.		
Surrogate(s)	Recovery		QC Cri	lteria	
1,2-Dichloroethane-d4	107	%	70-130)	
Toluene-d8	110	%	70-130)	
4-Bromofluorobenzene	122	%	70-130)	
Dibromofluoromethane	105	%	70-130)	
Semivolatile Organics by EPA	8270C			1 8270C	0911 03:30 0915 21:40 PS
Acenaphthene	ND	ug/kg	400		
1,2,4-Trichlorobenzene	ND	ug/kg	400		
Hexachlorobenzene	ND	ug/kg	400		
Bis(2-chloroethyl)ether	ND	ug/kg	400		
2-Chloronaphthalene	ND	ug/kg	480		
l,2-Dichlorobenzene	ND	ug/kg	400		
1,3-Dichlorobenzene	ND	ug/kg	400		
1,4-Dichlorobenzene	ND	ug/kg	400		
3,3'-Dichlorobenzidine	ND	ug/kg	800		
2,4-Dinitrotoluene	ND	ug/kg	400		
2,6-Dinitrotoluene	ND	ug/kg	400		
Fluoranthene	ND	ug/kg	400		
4-Chlorophenyl phenyl ether	ND	ug/kg	400		
4-Bromophenyl phenyl ether	ND	ug/kg	400		
Bis(2-chloroisopropyl)ether	ND	ug/kg	400		
Bis(2-chloroethoxy)methane	ND	ug/kg	400		
Hexachlorobutadiene	ND	ug/kg	800		
Hexachlorocyclopentadiene	ND	ug/kg	800		
Hexachloroethane	ND	ug/kg	400		
Isophorone	ND	ug/kg	400		
Naphthalene	ND	ug/kg	400		
Nitrobenzene	ND	ug/kg	400		
NitrosoDiPhenylAmine(NDPA)/D		ug/kg	1200		
n-Nitrosodi-n-propylamine	ND	ug/kg	400		
Bis(2-Ethylhexyl)phthalate	ND	ug/kg	800		
Butyl benzyl phthalate	ND	ug/kg	400		
Di-n-butylphthalate	ND	ug/kg	400		
Di-n-octylphthalate	ND	ug/kg	400		
Diethyl phthalate	ND	ug/kg	400		
Dimethyl phthalate	ND	ug/kg	400		

Laboratory Sample Number: L0813344-19

PWG-DW-2008-100 (7-7.5')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Semivolatile Organics by EPA 8	8270C cont	'd		1	8270C	0911 03:30	0915 21:4	40 PS
Benzo(a)anthracene	ND	ug/kg	400	-	02,00	0,11 0,3 0	0,10 11	10 10
Benzo(a)pyrene	ND	ug/kg ug/kg	400					
Benzo(b)fluoranthene	ND	ug/kg ug/kg	400					
Benzo(k)fluoranthene	ND	ug/kg ug/kg	400					
Chrysene	ND	ug/kg ug/kg	400					
Acenaphthylene	ND	ug/kg ug/kg	400					
Anthracene	ND	ug/kg ug/kg	400					
Benzo(ghi)perylene	ND		400					
Fluorene	ND	ug/kg	400					
Phenanthrene	ND	ug/kg	400					
		ug/kg						
Dibenzo(a,h)anthracene	ND	ug/kg	400 400					
Indeno(1,2,3-cd)Pyrene	ND	ug/kg						
Pyrene	ND	ug/kg	400					
Biphenyl	ND	ug/kg	400					
4-Chloroaniline	ND	ug/kg	400					
2-Nitroaniline	ND	ug/kg	400					
3-Nitroaniline	ND	ug/kg	400					
1-Nitroaniline	ND	ug/kg	560					
Dibenzofuran	ND	ug/kg	400					
2-Methylnaphthalene	ND	ug/kg	400					
1,2,4,5-Tetrachlorobenzene	ND	ug/kg	1600					
Acetophenone	ND	ug/kg	1600					
2,4,6-Trichlorophenol	ND	ug/kg	400					
P-Chloro-M-Cresol	ND	ug/kg	400					
2-Chlorophenol	ND	ug/kg	480					
2,4-Dichlorophenol	ND	ug/kg	800					
2,4-Dimethylphenol	ND	ug/kg	400					
2-Nitrophenol	ND	ug/kg	1600					
1-Nitrophenol	ND	ug/kg	800					
2,4-Dinitrophenol	ND	ug/kg	1600					
1,6-Dinitro-o-cresol	ND	ug/kg	1600					
Pentachlorophenol	ND	ug/kg	1600					
Phenol	ND	ug/kg	560					
2-Methylphenol	ND	ug/kg	480					
3-Methylphenol/4-Methylphenol	ND	ug/kg	480					
2,4,5-Trichlorophenol	ND	ug/kg	400					
Benzoic Acid	ND	ug/kg	4000					
Benzyl Alcohol	ND	ug/kg	800					
Carbazole	ND	ug/kg	400					
Surrogate(s)	Recovery		QC Cr	iteria	a.			
2-Fluorophenol	85.0	%	25-120)				
Phenol-d6	84.0	%	10-120)				
Nitrobenzene-d5	71.0	%	23-120)				
2-Fluorobiphenyl	69.0	%	30-120)				
2,4,6-Tribromophenol	89.0	%	19-120)				
4-Terphenyl-d14	67.0	%	18-120)				

Laboratory Sample Number: L0813344-19

PWG-DW-2008-100 (7-7.5')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE	
					PREP	ANAL
1	D3 00700 07M					
Semivolatile Organics by E			0.0	1 8270C	0911 03:30 09	913 15:23 AF
Acenaphthene	ND	ug/kg	80.			
2-Chloronaphthalene	ND	ug/kg	80.			
Fluoranthene	150	ug/kg	80			
Hexachlorobutadiene	ND	ug/kg	200			
Naphthalene	ND	ug/kg	80.			
Benzo(a)anthracene	ND	ug/kg	80.			
Benzo(a)pyrene	ND	ug/kg	80.			
Benzo(b)fluoranthene	ND	ug/kg	80.			
Benzo(k)fluoranthene	ND	ug/kg	80.			
Chrysene	ND	ug/kg	80.			
acenaphthylene	ND	ug/kg	80.			
nthracene	ND	ug/kg	80.			
Benzo(ghi)perylene	ND	ug/kg	80.			
'luorene	ND	ug/kg	80.			
henanthrene	ND	ug/kg	80.			
Dibenzo(a,h)anthracene	ND	ug/kg	80.			
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	80.			
Pyrene	160	ug/kg	80			
2-Methylnaphthalene	ND	ug/kg	80.			
Pentachlorophenol	ND	ug/kg	320			
Hexachlorobenzene	ND	ug/kg	320			
Mexachloroethane	ND	ug/kg	320			
Surrogate(s)	Recovery		QC Cri	teria		
2-Fluorophenol	73.0	%	25-120			
Phenol-d6	77.0	%	10-120			
Nitrobenzene-d5	65.0	%	23-120			
2-Fluorobiphenyl	68.0	%	30-120			
2,4,6-Tribromophenol	66.0	%	19-120			
1-Terphenyl-d14	64.0	%	18-120			
Petroleum Hydrocarbon Quan	titation by (GC-FID		1 8015B(M)	0911 00:15 09	912 13:11 R'
ГРН	72400	ug/kg	40200			
Surrogate(s)	Recovery		QC Cri			
o-Terphenyl	68.0	%	40-140			

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813344-20 Date Collected: 08-SEP-2008 14:00

PWG-LP-2008-01 (7.75-8.25') Date Received: 09-SEP-2008

Sample Matrix: SOIL Date Reported: 25-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE
					PREP ANAL
Solids, Total	85	%	0.10	30 2540G	0910 18:40
Total Metals					
Aluminum, Total	1500	mg/kg	5.6	1 6010B	0910 13:30 0911 15:09
Antimony, Total	ND	mg/kg	2.8	1 6010B	0910 13:30 0911 15:09
Arsenic, Total	1.1	mg/kg	0.56	1 6010B	0910 13:30 0911 15:09
Barium, Total	12	mg/kg	0.56	1 6010B	0910 13:30 0911 15:09
Beryllium, Total	ND	mg/kg	0.28	1 6010B	0910 13:30 0911 15:09 .
Cadmium, Total	ND	mg/kg	0.56	1 6010B	0910 13:30 0911 15:09
Calcium, Total	710	mg/kg	5.6	1 6010B	0910 13:30 0911 15:09
Chromium, Total	5.6	mg/kg	0.56	1 6010B	0910 13:30 0911 15:09
Cobalt, Total	2.0	mg/kg	1.1	1 6010B	0910 13:30 0911 15:09
Copper, Total	160	mg/kg	0.56	1 6010B	0910 13:30 0911 15:09
Iron, Total	10000	mg/kg	2.8	1 6010B	0910 13:30 0911 15:09
Lead, Total	59	mg/kg	2.8	1 6010B	0910 13:30 0911 15:09
Magnesium, Total	700	mg/kg	5.6	1 6010B	0910 13:30 0911 15:09
Manganese, Total	66	mg/kg	0.56	1 6010B	0910 13:30 0911 15:09
Mercury, Total	0.10	mg/kg	0.09	1 7471A	0911 23:30 0912 14:43
Nickel, Total	5.4	mg/kg	1.4	1 6010B	0910 13:30 0911 15:09
Potassium, Total	ND	mg/kg	140	1 6010B	0910 13:30 0911 15:09
Selenium, Total	ND	mg/kg	1.1	1 6010B	0910 13:30 0911 15:09
Silver, Total	ND	mg/kg	0.56	1 6010B	0910 13:30 0911 15:09
Sodium, Total	ND	mg/kg	110	1 6010B	0910 13:30 0911 15:09
Thallium, Total	ND	mg/kg	1.1	1 6010B	0910 13:30 0911 15:09
Vanadium, Total	3.8	mg/kg	0.56	1 6010B	0910 13:30 0911 15:09
Zinc, Total	360	mg/kg	2.8	1 6010B	0910 13:30 0911 15:09
Volatile Organics by EPA 8	3260B			1 8260B	0912 01:48
Methylene chloride	ND	ug/kg	29.		
l,1-Dichloroethane	ND	ug/kg	4.4		
Chloroform	ND	ug/kg	4.4		
Carbon tetrachloride	ND	ug/kg	2.9		
l,2-Dichloropropane	ND	ug/kg	10.		
Dibromochloromethane	ND	ug/kg	2.9		
1,1,2-Trichloroethane	ND	ug/kg	4.4		
Tetrachloroethene	120	ug/kg	2.9		
Chlorobenzene	ND	ug/kg	2.9		
Trichlorofluoromethane	ND	ug/kg	15.		

Laboratory Sample Number: L0813344-20

PWG-LP-2008-01 (7.75-8.25')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
								
olatile Organics by EPA 826	OB cont'd			1	8260B		0912 01:	48 PD
l,2-Dichloroethane	ND	ug/kg	2.9					
l,1,1-Trichloroethane	ND	ug/kg	2.9					
Bromodichloromethane	ND	ug/kg	2.9					
rans-1,3-Dichloropropene	ND	ug/kg	2.9					
cis-1,3-Dichloropropene	ND	ug/kg	2.9					
,1-Dichloropropene	ND	ug/kg	15.					
3romoform	ND	ug/kg	12.					
.,1,2,2-Tetrachloroethane	ND	ug/kg	2.9					
Benzene	ND	ug/kg	2.9					
Coluene	ND	ug/kg	4.4					
thylbenzene	ND	ug/kg	2.9					
thloromethane	ND	ug/kg	15.					
romomethane	ND	ug/kg	5.9					
inyl chloride	ND	ug/kg ug/kg	5.9					
Chloroethane	ND	ug/kg ug/kg	5.9					
,1-Dichloroethene	ND	ug/kg ug/kg	2.9					
rans-1,2-Dichloroethene	ND	ug/kg ug/kg	4.4					
richloroethene	8.7	ug/kg ug/kg	2.9					
,2-Dichlorobenzene	ND	ug/kg ug/kg	15.					
,3-Dichlorobenzene	ND	ug/kg ug/kg	15.					
,4-Dichlorobenzene	ND	ug/kg ug/kg	15.					
ethyl tert butyl ether	ND	ug/kg ug/kg	5.9					
			5.9					
o/m-Xylene	ND ND	ug/kg						
-Xylene		ug/kg	5.9					
eis-1,2-Dichloroethene	5.3	ug/kg	2.9					
	ND	ug/kg	29.					
styrene	ND	ug/kg	5.9					
Dichlorodifluoromethane	ND	ug/kg	29.					
cetone	ND	ug/kg	29.					
arbon disulfide	ND	ug/kg	29.					
-Butanone	ND	ug/kg	29.					
inyl acetate	ND	ug/kg	29.					
-Methyl-2-pentanone	ND	ug/kg	29.					
,,2,3-Trichloropropane	ND	ug/kg	29.					
-Hexanone	ND	ug/kg	29.					
romochloromethane	ND	ug/kg	15.					
2,2-Dichloropropane	ND	ug/kg	15.					
,2-Dibromoethane	ND	ug/kg	12.					
,3-Dichloropropane	ND	ug/kg	15.					
,1,1,2-Tetrachloroethane	ND	ug/kg	2.9					
romobenzene	ND	ug/kg	15.					
-Butylbenzene	ND	ug/kg	2.9					
ec-Butylbenzene	ND	ug/kg	2.9					
ert-Butylbenzene	ND	ug/kg	15.					
-Chlorotoluene	ND	ug/kg	15.					
-Chlorotoluene	ND	ug/kg	15.					
,2-Dibromo-3-chloropropane	ND	ug/kg	15.					
exachlorobutadiene	ND	ug/kg	15.					
sopropylbenzene	ND	ug/kg	2.9					

Laboratory Sample Number: L0813344-20

PWG-LP-2008-01 (7.75-8.25')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Volatile Organics by EPA 8260	OR contid			1	8260B		0912 01:	40 DD
p-Isopropyltoluene	ND	ua /ka	2.9	1	0200B		0912 01.	-40 PD
Naphthalene		ug/kg						
	ND	ug/kg	15.					
Acrylonitrile	ND	ug/kg	29.					
n-Propylbenzene	ND	ug/kg	2.9					
1,2,3-Trichlorobenzene	ND	ug/kg	15.					
1,2,4-Trichlorobenzene	ND	ug/kg	15.					
1,3,5-Trimethylbenzene	ND	ug/kg	15.					
1,2,4-Trimethylbenzene	ND	ug/kg	15.					
1,4-Diethylbenzene	ND	ug/kg	12.					
4-Ethyltoluene	ND	ug/kg	12.					
1,2,4,5-Tetramethylbenzene	ND	ug/kg	12.					
Surrogate(s)	Recovery		QC Cri	teri	a			
1,2-Dichloroethane-d4	110	%	70-130					
Toluene-d8	111	%	70-130					
4-Bromofluorobenzene	124	%	70-130					
Dibromofluoromethane	103	%	70-130					
Semivolatile Organics by EPA	8270C			1	8270C	0911 21:40	0913 18:	33 PS
Acenaphthene	ND	ug/kg	390					
1,2,4-Trichlorobenzene	ND	ug/kg	390					
Hexachlorobenzene	ND	ug/kg	390					
Bis(2-chloroethyl)ether	ND	ug/kg	390					
2-Chloronaphthalene	ND	ug/kg	470					
1,2-Dichlorobenzene	ND	ug/kg	390					
1,3-Dichlorobenzene	ND	ug/kg	390					
1,4-Dichlorobenzene	ND	ug/kg ug/kg	390					
3,3'-Dichlorobenzidine	ND	ug/kg ug/kg	780					
2,4-Dinitrotoluene	ND	ug/kg ug/kg	390					
2,6-Dinitrotoluene	ND		390					
z,6-Dinitrotoluene Fluoranthene	ND ND	ug/kg ug/kg	390					
4-Chlorophenyl phenyl ether	ND	ug/kg	390					
4-Bromophenyl phenyl ether	ND	ug/kg	390 390					
Bis(2-chloroisopropyl)ether	ND	ug/kg						
Bis(2-chloroethoxy)methane Hexachlorobutadiene	ND	ug/kg	390 790					
	ND	ug/kg	780 780					
Hexachlorocyclopentadiene	ND	ug/kg	780					
Hexachloroethane	ND	ug/kg	390					
Isophorone	ND	ug/kg	390					
Naphthalene	ND	ug/kg	390					
Nitrobenzene	ND	ug/kg	390					
NitrosoDiPhenylAmine(NDPA)/DI		ug/kg	1200					
n-Nitrosodi-n-propylamine	ND	ug/kg	390					
Bis(2-Ethylhexyl)phthalate	ND	ug/kg	780					
Butyl benzyl phthalate	ND	ug/kg	390					
Di-n-butylphthalate	ND	ug/kg	390					
Di-n-octylphthalate	ND	ug/kg	390					
Diethyl phthalate	ND	ug/kg	390					
Dimethyl phthalate	ND	ug/kg	390					

Laboratory Sample Number: L0813344-20

PWG-LP-2008-01 (7.75-8.25')

					PREP	ANAL	
	00700	L 1 A					
emivolatile Organics by EPA			200	1 8270C	0911 21:40	0913 18:33	PS
enzo(a)anthracene	ND	ug/kg	390				
enzo(a)pyrene	ND	ug/kg	390				
enzo(b)fluoranthene	ND	ug/kg	390				
enzo(k)fluoranthene	ND	ug/kg	390				
hrysene	ND	ug/kg	390				
cenaphthylene	ND	ug/kg	390				
nthracene	ND	ug/kg	390				
enzo(ghi)perylene	ND	ug/kg	390				
luorene	ND	ug/kg	390				
henanthrene	ND	ug/kg	390				
ibenzo(a,h)anthracene	ND	ug/kg	390				
ndeno(1,2,3-cd)Pyrene	ND	ug/kg	390				
yrene	ND	ug/kg	390				
iphenyl	ND	ug/kg	390				
-Chloroaniline	ND	ug/kg	390				
-Nitroaniline	ND	ug/kg	390				
-Nitroaniline	ND	ug/kg	390				
-Nitroaniline	ND	ug/kg	550				
ibenzofuran	ND	ug/kg	390				
-Methylnaphthalene	ND	ug/kg	390				
,2,4,5-Tetrachlorobenzene	ND	ug/kg	1600				
cetophenone	ND	ug/kg	1600				
,4,6-Trichlorophenol	ND	ug/kg	390				
-Chloro-M-Cresol	ND	ug/kg	390				
-Chlorophenol	ND	ug/kg	470				
,4-Dichlorophenol	ND	ug/kg	780				
,4-Dimethylphenol	ND	ug/kg	390				
-Nitrophenol	ND	ug/kg	1600				
-Nitrophenol	ND	ug/kg	780				
,4-Dinitrophenol	ND	ug/kg	1600				
,6-Dinitro-o-cresol	ND	ug/kg	1600				
entachlorophenol	ND	ug/kg	1600				
henol	ND	ug/kg	550				
-Methylphenol	ND	ug/kg	470				
-Methylphenol/4-Methylphenol		ug/kg	470				
,4,5-Trichlorophenol	ND	ug/kg	390				
enzoic Acid	ND	ug/kg ug/kg	3900				
enzyl Alcohol	ND ND	ug/kg ug/kg	780				
arbazole	ND	ug/kg ug/kg	390				
arba2016	IND	ug/ng	390				
urrogate(s)	Recovery			iteria			
-Fluorophenol	73.0	%	25-120				
henol-d6	79.0	%	10-120				
itrobenzene-d5	71.0	%	23-120				
-Fluorobiphenyl	71.0	%	30-120)			
,4,6-Tribromophenol	68.0	%	19-120)			
-Terphenyl-d14	74.0	%	18-120	1			

Laboratory Sample Number: L0813344-20

PWG-LP-2008-01 (7.75-8.25')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE PREP ANA	AL ID
Semivolatile Organics by E				1 8270C	0911 21:40 0914 0	7:38 AK
Acenaphthene	ND	ug/kg	16.			
2-Chloronaphthalene	ND	ug/kg	16.			
Fluoranthene	75	ug/kg	16			
Hexachlorobutadiene	ND	ug/kg	39.			
Naphthalene	ND	ug/kg	16.			
Benzo(a)anthracene	96	ug/kg	16			
Benzo(a)pyrene	120	ug/kg	16			
Benzo(b)fluoranthene	110	ug/kg	16			
Benzo(k)fluoranthene	100	ug/kg	16			
Chrysene	77	ug/kg	16			
Acenaphthylene	47	ug/kg	16			
Anthracene	17	ug/kg	16			
Benzo(ghi)perylene	100	ug/kg	16			
Fluorene	ND	ug/kg	16.			
Phenanthrene	ND	ug/kg	16.			
Dibenzo(a,h)anthracene	49	ug/kg	16			
Indeno(1,2,3-cd)Pyrene	91	ug/kg	16			
Pyrene	75	ug/kg	16			
2-Methylnaphthalene	ND	ug/kg	16.			
Pentachlorophenol	ND	ug/kg	63.			
Hexachlorobenzene	ND	ug/kg	63.			
Hexachloroethane	ND	ug/kg	63.			
Surrogate(s)	Recovery		QC Cr	riteria		
2-Fluorophenol	74.0	%	25-12	10		
Phenol-d6	85.0	%	10-12	10		
Nitrobenzene-d5	82.0	%	23-12			
2-Fluorobiphenyl	75.0	%	30-12	10		
2,4,6-Tribromophenol	57.0	%	19-12	10		
4-Terphenyl-d14	78.0	%	18-12			

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813344-21 Date Collected: 08-SEP-2008 14:20

PWG-DW-2008-16 (5.5-6') **Date Received :** 09-SEP-2008

Sample Matrix: SOIL Date Reported: 25-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID
					PREP ANAL
Solids, Total	86	%	0.10	30 2540G	0910 18:40 NM
Total Metals					
Aluminum, Total	1600	mg/kg	5.4	1 6010B	0910 13:30 0911 15:12 AI
Antimony, Total	ND	mg/kg	2.7	1 6010B	0910 13:30 0911 15:12 AI
Arsenic, Total	1.5	mg/kg	0.54	1 6010B	0910 13:30 0911 15:12 AI
Barium, Total	20	mg/kg	0.54	1 6010B	0910 13:30 0911 15:12 AI
Beryllium, Total	ND	mg/kg	0.27	1 6010B	0910 13:30 0911 15:12 AI
Cadmium, Total	ND	mg/kg	0.54	1 6010B	0910 13:30 0911 15:12 AI
Calcium, Total	33000	mg/kg	54	1 6010B	0910 13:30 0911 19:46 AI
Chromium, Total	3.1	mg/kg	0.54	1 6010B	0910 13:30 0911 15:12 AI
Cobalt, Total	1.4	mg/kg	1.1	1 6010B	0910 13:30 0911 15:12 AI
Copper, Total	5.8	mg/kg	0.54	1 6010B	0910 13:30 0911 15:12 AI
Iron, Total	3200	mg/kg	2.7	1 6010B	0910 13:30 0911 15:12 AI
Lead, Total	51	mg/kg	2.7	1 6010B	0910 13:30 0911 15:12 AI
Magnesium, Total	19000	mg/kg	5.4	1 6010B	0910 13:30 0911 15:12 AI
Manganese, Total	53	mg/kg	0.54	1 6010B	0910 13:30 0911 15:12 AI
Mercury, Total	ND	mg/kg	0.08	1 7471A	0911 23:30 0912 14:49 RC
Nickel, Total	2.8	mg/kg	1.4	1 6010B	0910 13:30 0911 15:12 AI
Potassium, Total	220	mg/kg	140	1 6010B	0910 13:30 0911 15:12 AI
Selenium, Total	ND	mg/kg	1.1	1 6010B	0910 13:30 0911 15:12 AI
Silver, Total	ND	mg/kg	0.54	1 6010B	0910 13:30 0911 15:12 AI
Sodium, Total	ND	mg/kg	110	1 6010B	0910 13:30 0911 15:12 AI
Thallium, Total	ND	mg/kg	1.1	1 6010B	0910 13:30 0911 15:12 AI
Vanadium, Total	4.8	mg/kg	0.54	1 6010B	0910 13:30 0911 15:12 AI
Zinc, Total	47	mg/kg	2.7	1 6010B	0910 13:30 0911 15:12 AI
Volatile Organics by EPA 8	3260B			1 8260B	0912 14:29 PD
Methylene chloride	ND	ug/kg	29.		
l,1-Dichloroethane	ND	ug/kg	4.4		
Chloroform	ND	ug/kg	4.4		
Carbon tetrachloride	ND	ug/kg	2.9		
1,2-Dichloropropane	ND	ug/kg	10.		
Dibromochloromethane	ND	ug/kg	2.9		
1,1,2-Trichloroethane	ND	ug/kg	4.4		
Tetrachloroethene	30	ug/kg	2.9		
Chlorobenzene	ND	ug/kg	2.9		
Trichlorofluoromethane	ND	ug/kg	14.		

Laboratory Sample Number: L0813344-21

PWG-DW-2008-16 (5.5-6')

						PREP	ANAL	
olatile Organics by EPA 82				1	8260B		0912 14:2	29 PD
,2-Dichloroethane	ND	ug/kg	2.9					
,1,1-Trichloroethane	ND	ug/kg	2.9					
romodichloromethane	ND	ug/kg	2.9					
rans-1,3-Dichloropropene	ND	ug/kg	2.9					
is-1,3-Dichloropropene	ND	ug/kg	2.9					
,1-Dichloropropene	ND	ug/kg	14.					
romoform	ND	ug/kg	12.					
,1,2,2-Tetrachloroethane	ND	ug/kg	2.9					
enzene	ND	ug/kg	2.9					
oluene	ND	ug/kg	4.4					
thylbenzene	ND	ug/kg	2.9					
hloromethane	ND	ug/kg	14.					
romomethane	ND	ug/kg	5.8					
inyl chloride	ND	ug/kg	5.8					
hloroethane	ND	ug/kg	5.8					
,1-Dichloroethene	ND	ug/kg	2.9					
rans-1,2-Dichloroethene	ND	ug/kg	4.4					
richloroethene	ND	ug/kg	2.9					
,2-Dichlorobenzene	ND	ug/kg	14.					
,3-Dichlorobenzene	ND	ug/kg	14.					
,4-Dichlorobenzene	ND	ug/kg	14.					
ethyl tert butyl ether	ND	ug/kg	5.8					
/m-Xylene	ND	ug/kg	5.8					
-Xylene	ND	ug/kg	5.8					
is-1,2-Dichloroethene	3.0	ug/kg	2.9					
ibromomethane	ND	ug/kg	29.					
tyrene	ND	ug/kg	5.8					
ichlorodifluoromethane	ND	ug/kg	29.					
cetone	ND	ug/kg	29.					
arbon disulfide	ND	ug/kg	29.					
-Butanone	ND	ug/kg	29.					
inyl acetate	ND	ug/kg	29.					
-Methyl-2-pentanone	ND	ug/kg	29.					
,2,3-Trichloropropane	ND	ug/kg	29.					
-Hexanone	ND	ug/kg	29.					
romochloromethane	ND	ug/kg	14.					
,2-Dichloropropane	ND	ug/kg	14.					
,2-Dibromoethane	ND	ug/kg	12.					
,3-Dichloropropane	ND	ug/kg	14.					
,1,1,2-Tetrachloroethane	ND	ug/kg	2.9					
romobenzene	ND	ug/kg	14.					
-Butylbenzene	ND	ug/kg	2.9					
ec-Butylbenzene	ND	ug/kg	2.9					
ert-Butylbenzene	ND	ug/kg ug/kg	14.					
-Chlorotoluene	ND	ug/kg ug/kg	14.					
-Chlorotoluene	ND	ug/kg ug/kg	14.					
,2-Dibromo-3-chloropropane		ug/kg ug/kg	14.					
exachlorobutadiene	ND	ug/kg	14.					

Laboratory Sample Number: L0813344-21

PWG-DW-2008-16 (5.5-6')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD		TE	ID
						PREP	ANAL	
Volatile Organics by EPA 826	OB cont'd			1	8260B		0912 14	:29 PD
p-Isopropyltoluene	ND	ug/kg	2.9					
Naphthalene	ND	ug/kg	14.					
Acrylonitrile	ND	ug/kg	29.					
n-Propylbenzene	ND	ug/kg	2.9					
1,2,3-Trichlorobenzene	ND	ug/kg	14.					
1,2,4-Trichlorobenzene	ND	ug/kg	14.					
1,3,5-Trimethylbenzene	ND	ug/kg	14.					
1,2,4-Trimethylbenzene	ND	ug/kg	14.					
1,4-Diethylbenzene	ND	ug/kg	12.					
4-Ethyltoluene	ND	ug/kg	12.					
1,2,4,5-Tetramethylbenzene	ND	ug/kg	12.					
, , , ,		-5, 5						
Surrogate(s)	Recovery		QC Cri		a			
1,2-Dichloroethane-d4	97.0	8	70-130					
Toluene-d8	107	%	70-130					
4-Bromofluorobenzene	116	%	70-130					
Dibromofluoromethane	99.0	%	70-130					
Semivolatile Organics by EPA	8270C			1	8270C	0911 03:30	0915 22	: N3 pg
Acenaphthene	ND	ug/kg	390	_	02700	0311 03-30	0713 22	.03 15
1,2,4-Trichlorobenzene	ND	ug/kg	390					
Hexachlorobenzene	ND	ug/kg	390					
Bis(2-chloroethyl)ether	ND	ug/kg ug/kg	390					
2-Chloronaphthalene	ND	ug/kg ug/kg	460					
1,2-Dichlorobenzene	ND	ug/kg ug/kg	390					
1,3-Dichlorobenzene	ND	ug/kg ug/kg	390					
1,4-Dichlorobenzene	ND	ug/kg ug/kg	390					
3,3'-Dichlorobenzidine	ND	ug/kg ug/kg	780					
2,4-Dinitrotoluene	ND ND	ug/kg ug/kg	390					
2,6-Dinitrotoluene 2,6-Dinitrotoluene	ND ND	ug/kg ug/kg	390					
Fluoranthene	ND ND	ug/kg ug/kg	390					
		5 5	390					
4-Chlorophenyl phenyl ether 4-Bromophenyl phenyl ether	ND ND	ug/kg	390					
		ug/kg	390					
Bis(2-chloroisopropyl)ether Bis(2-chloroethoxy)methane	ND	ug/kg	390					
Hexachlorobutadiene	ND ND	ug/kg ug/kg	780					
Hexachioroputadiene Hexachlorocyclopentadiene								
dexacniorocyclopentadiene dexachloroethane	ND	ug/kg	780 390					
	ND	ug/kg	390 390					
Isophorone	ND	ug/kg	390					
Naphthalene	ND	ug/kg	390					
Nitrobenzene	ND	ug/kg	390					
NitrosoDiPhenylAmine(NDPA)/D		ug/kg	1200					
n-Nitrosodi-n-propylamine	ND	ug/kg	390					
Bis(2-Ethylhexyl)phthalate	ND	ug/kg	780					
Butyl benzyl phthalate	ND	ug/kg	390					
Di-n-butylphthalate	ND	ug/kg	390					
Di-n-octylphthalate	ND	ug/kg	390					
Diethyl phthalate	ND	ug/kg	390					
Dimethyl phthalate	ND	ug/kg	390					

Laboratory Sample Number: L0813344-21

PWG-DW-2008-16 (5.5-6')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Semivolatile Organics by EPA 8	3270C cont	:'d		1	8270C	0911 03:30	0915 22:	N3 PS
Benzo(a)anthracene	ND	ug/kg	390	-	02700	0,11 0,3 30	0,10 22	05 15
Benzo(a)pyrene	ND	ug/kg ug/kg	390					
Benzo(b)fluoranthene	ND	ug/kg ug/kg	390					
Benzo(k)fluoranthene	ND	ug/kg ug/kg	390					
Chrysene	ND	ug/kg ug/kg	390					
Acenaphthylene	ND	ug/kg ug/kg	390					
Anthracene	ND	ug/kg ug/kg	390					
Benzo(ghi)perylene	ND	ug/kg ug/kg	390					
luorene	ND		390					
Phenanthrene		ug/kg	390					
	ND	ug/kg						
oibenzo(a,h)anthracene	ND	ug/kg	390					
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	390					
yrene	ND	ug/kg	390					
Siphenyl	ND	ug/kg	390					
-Chloroaniline	ND	ug/kg	390					
-Nitroaniline	ND	ug/kg	390					
-Nitroaniline	ND	ug/kg	390					
-Nitroaniline	ND	ug/kg	540					
Dibenzofuran	ND	ug/kg	390					
-Methylnaphthalene	ND	ug/kg	390					
,2,4,5-Tetrachlorobenzene	ND	ug/kg	1600					
acetophenone	ND	ug/kg	1600					
,4,6-Trichlorophenol	ND	ug/kg	390					
-Chloro-M-Cresol	ND	ug/kg	390					
-Chlorophenol	ND	ug/kg	460					
,4-Dichlorophenol	ND	ug/kg	780					
,4-Dimethylphenol	ND	ug/kg	390					
-Nitrophenol	ND	ug/kg	1600					
-Nitrophenol	ND	ug/kg	780					
,4-Dinitrophenol	ND	ug/kg	1600					
,6-Dinitro-o-cresol	ND	ug/kg	1600					
entachlorophenol	ND	ug/kg	1600					
henol	ND	ug/kg	540					
-Methylphenol	ND	ug/kg	460					
-Methylphenol/4-Methylphenol	ND	ug/kg	460					
,4,5-Trichlorophenol	ND	ug/kg	390					
enzoic Acid	ND	ug/kg	3900					
Benzyl Alcohol	ND	ug/kg	780					
arbazole	ND	ug/kg	390					
Surrogate(s)	Recovery		QC Cri	teria	a			
-Fluorophenol	74.0	%	25-120)				
henol-d6	75.0	%	10-120)				
Jitrobenzene-d5	62.0	%	23-120)				
-Fluorobiphenyl	65.0	%	30-120)				
,4,6-Tribromophenol	84.0	%	19-120)				
l-Terphenyl-d14	69.0	%	18-120	1				

Laboratory Sample Number: L0813344-21

PWG-DW-2008-16 (5.5-6')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA' PREP	TE ANAL	ID
Semivolatile Organics by E	PA 8270C-SIM	cont'd		1 8270C	0911 03:30	0913 19:1	9 AK
Acenaphthene	ND	ug/kg	78.				
2-Chloronaphthalene	ND	ug/kg	78.				
Fluoranthene	160	ug/kg	78				
Hexachlorobutadiene	ND	ug/kg	190				
Naphthalene	ND	ug/kg	78.				
Benzo(a)anthracene	ND	ug/kg	78.				
Benzo(a)pyrene	ND	ug/kg	78.				
Benzo(b)fluoranthene	ND	ug/kg	78.				
Benzo(k)fluoranthene	ND	ug/kg	78.				
Chrysene	ND	ug/kg	78.				
Acenaphthylene	ND	ug/kg	78.				
Anthracene	ND	ug/kg	78.				
Benzo(ghi)perylene	ND	ug/kg	78.				
Fluorene	ND	ug/kg	78.				
Phenanthrene	ND	ug/kg	78.				
Dibenzo(a,h)anthracene	ND	ug/kg	78.				
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	78.				
Pyrene	160	ug/kg	78				
2-Methylnaphthalene	ND	ug/kg	78.				
Pentachlorophenol	ND	ug/kg	310				
Hexachlorobenzene	ND	ug/kg	310				
Hexachloroethane	ND	ug/kg	310				
Surrogate(s)	Recovery		QC Cri	teria			
2-Fluorophenol	63.0	%	25-120				
Phenol-d6	68.0	%	10-120				
Nitrobenzene-d5	57.0	%	23-120				
2-Fluorobiphenyl	63.0	8	30-120				
2,4,6-Tribromophenol	63.0	8	19-120				
4-Terphenyl-d14	65.0	%	18-120				
Petroleum Hydrocarbon Quan	titation by (GC-FID		1 8015B(M)	0911 00:15	0912 14:1	8 RT
ТРН	ND	ug/kg	38800				
Surrogate(s)	Recovery		QC Cri	teria			
o-Terphenyl	64.0	8	40-140				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813344-22 Date Collected: 08-SEP-2008 14:30

PWG-DW-2008-17 (5.5-6') **Date Received :** 09-SEP-2008

Sample Matrix: SOIL Date Reported: 25-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD		ATE	ID
					PREP	ANAL	
Solids, Total	82	90	0.10	30 2540G		0910 18:40	NM
Total Metals							
Aluminum, Total	3700	mg/kg	5.6	1 6010B	0910 13:30	0911 15:17	'AI
Antimony, Total	ND	mg/kg	2.8	1 6010B	0910 13:30	0911 15:17	' AI
Arsenic, Total	3.2	mg/kg	0.56	1 6010B	0910 13:30	0911 15:17	' AI
Barium, Total	32	mg/kg	0.56	1 6010B	0910 13:30	0911 15:17	' AI
Beryllium, Total	ND	mg/kg	0.28	1 6010B	0910 13:30	0911 15:17	' AI
Cadmium, Total	ND	mg/kg	0.56	1 6010B	0910 13:30	0911 15:17	' AI
Calcium, Total	8200	mg/kg	5.6	1 6010B	0910 13:30	0911 15:17	' AI
Chromium, Total	12	mg/kg	0.56	1 6010B	0910 13:30	0911 15:17	' AI
Cobalt, Total	2.1	mg/kg	1.1	1 6010B	0910 13:30	0911 15:17	' AI
Copper, Total	20	mg/kg	0.56	1 6010B	0910 13:30	0911 15:17	' AI
Iron, Total	7700	mg/kg	2.8	1 6010B		0911 15:17	
Lead, Total	160	mg/kg	2.8	1 6010B	0910 13:30	0911 15:17	' AI
Magnesium, Total	5400	mg/kg	5.6	1 6010B		0911 15:17	
Manganese, Total	58	mg/kg	0.56	1 6010B	0910 13:30	0911 15:17	' AI
Mercury, Total	0.17	mg/kg	0.09	1 7471A	0911 23:30	0912 14:51	RC
Nickel, Total	6.0	mg/kg	1.4	1 6010B		0911 15:17	
Potassium, Total	240	mg/kg	140	1 6010B	0910 13:30	0911 15:17	' AI
Selenium, Total	ND	mg/kg	1.1	1 6010B	0910 13:30	0911 15:17	' AI
Silver, Total	ND	mg/kg	0.56	1 6010B		0911 15:17	
Sodium, Total	ND	mg/kg	110	1 6010B		0911 15:17	
Thallium, Total	ND	mg/kg	1.1	1 6010B		0911 15:17	
Vanadium, Total	14	mg/kg	0.56	1 6010B		0911 15:17	
Zinc, Total	140	mg/kg	2.8	1 6010B		0911 15:17	
Volatile Organics by EPA 8	3260B			1 8260B		0912 15:05	5 PD
Methylene chloride	ND	ug/kg	30.				
1,1-Dichloroethane	ND	ug/kg	4.6				
Chloroform	ND	ug/kg	4.6				
Carbon tetrachloride	ND	ug/kg	3.0				
1,2-Dichloropropane	ND	ug/kg	11.				
Dibromochloromethane	ND	ug/kg	3.0				
1,1,2-Trichloroethane	ND	ug/kg	4.6				
Tetrachloroethene	190	ug/kg	3.0				
Chlorobenzene	ND	ug/kg	3.0				
Trichlorofluoromethane	ND	ug/kg	15.				

Laboratory Sample Number: L0813344-22

PWG-DW-2008-17 (5.5-6')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
7-1-+-1- 0 h ED3 000	(OD							
Volatile Organics by EPA 826		/1	2 0	1	8260B		0912 15:	05 PD
l,2-Dichloroethane	ND	ug/kg	3.0					
1,1,1-Trichloroethane	ND	ug/kg	3.0					
Bromodichloromethane	ND	ug/kg	3.0					
rans-1,3-Dichloropropene	ND	ug/kg	3.0					
cis-1,3-Dichloropropene	ND	ug/kg	3.0					
,1-Dichloropropene	ND	ug/kg	15.					
Bromoform	ND	ug/kg	12.					
.,1,2,2-Tetrachloroethane	ND	ug/kg	3.0					
senzene	ND	ug/kg	3.0					
oluene	ND	ug/kg	4.6					
thylbenzene	ND	ug/kg	3.0					
Chloromethane	ND	ug/kg	15.					
romomethane	ND	ug/kg	6.1					
inyl chloride	ND	ug/kg	6.1					
Chloroethane	ND	ug/kg	6.1					
,1-Dichloroethene	ND	ug/kg	3.0					
rans-1,2-Dichloroethene	ND	ug/kg	4.6					
richloroethene	14	ug/kg	3.0					
,2-Dichlorobenzene	ND	ug/kg	15.					
,3-Dichlorobenzene	ND	ug/kg	15.					
,4-Dichlorobenzene	ND	ug/kg	15.					
ethyl tert butyl ether	ND	ug/kg	6.1					
/m-Xylene	ND	ug/kg	6.1					
-Xylene	ND	ug/kg	6.1					
is-1,2-Dichloroethene	86	ug/kg	3.0					
ibromomethane	ND	ug/kg	30.					
Styrene	ND	ug/kg	6.1					
oichlorodifluoromethane	ND	ug/kg	30.					
acetone	ND	ug/kg	30.					
arbon disulfide	ND	ug/kg	30.					
-Butanone	ND	ug/kg	30.					
inyl acetate	ND	ug/kg	30.					
l-Methyl-2-pentanone	ND	ug/kg	30.					
.,2,3-Trichloropropane	ND	ug/kg	30.					
-Hexanone	ND	ug/kg	30.					
romochloromethane	ND	ug/kg	15.					
,2-Dichloropropane	ND	ug/kg	15.					
,2-Dibromoethane	ND	ug/kg	12.					
,3-Dichloropropane	ND	ug/kg	15.					
,1,1,2-Tetrachloroethane	ND	ug/kg	3.0					
romobenzene	ND	ug/kg	15.					
-Butylbenzene	ND	ug/kg	3.0					
ec-Butylbenzene	ND	ug/kg	3.0					
ert-Butylbenzene	ND	ug/kg	15.					
-Chlorotoluene	ND	ug/kg	15.					
-Chlorotoluene	ND	ug/kg	15.					
,2-Dibromo-3-chloropropane	ND	ug/kg	15.					
exachlorobutadiene	ND	ug/kg	15.					
Sopropylbenzene	ND	ug/kg	3.0					

Laboratory Sample Number: L0813344-22

PWG-DW-2008-17 (5.5-6')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA		ID
						PREP	ANAL	
Volatile Organics by EPA 826	OB cont'd			1	8260B		0912 15:	05 PD
p-Isopropyltoluene	ND	ug/kg	3.0					
Naphthalene	ND	ug/kg	15.					
Acrylonitrile	ND	ug/kg	30.					
n-Propylbenzene	ND	ug/kg	3.0					
1,2,3-Trichlorobenzene	ND	ug/kg	15.					
1,2,4-Trichlorobenzene	ND	ug/kg	15.					
1,3,5-Trimethylbenzene	ND	ug/kg	15.					
1,2,4-Trimethylbenzene	ND	ug/kg	15.					
1,4-Diethylbenzene	ND	ug/kg	12.					
4-Ethyltoluene	ND	ug/kg	12.					
1,2,4,5-Tetramethylbenzene	ND	ug/kg	12.					
Surrogate(s)	Recovery		OC Cri	teri	a			
1,2-Dichloroethane-d4	95.0	%	70-130		~			
Foluene-d8	103	%	70-130					
4-Bromofluorobenzene	111	%	70-130					
Dibromofluoromethane	94.0	8	70-130					
of the state of th	51.0	· ·	70 130					
Semivolatile Organics by EPA		. (1	010	1	8270C	0911 03:30	0915 22:	27 PS
Acenaphthene	ND	ug/kg	810					
1,2,4-Trichlorobenzene	ND	ug/kg	810					
Hexachlorobenzene	ND	ug/kg	810					
Bis(2-chloroethyl)ether	ND	ug/kg	810					
2-Chloronaphthalene	ND	ug/kg	980					
l,2-Dichlorobenzene	ND	ug/kg	810					
l,3-Dichlorobenzene	ND	ug/kg	810					
l,4-Dichlorobenzene	ND	ug/kg	810					
3,3'-Dichlorobenzidine	ND	ug/kg	1600					
2,4-Dinitrotoluene	ND	ug/kg	810					
2,6-Dinitrotoluene	ND	ug/kg	810					
Fluoranthene	ND	ug/kg	810					
4-Chlorophenyl phenyl ether	ND	ug/kg	810					
4-Bromophenyl phenyl ether	ND	ug/kg	810					
Bis(2-chloroisopropyl)ether	ND	ug/kg	810					
Bis(2-chloroethoxy)methane	ND	ug/kg	810					
Hexachlorobutadiene	ND	ug/kg	1600					
Hexachlorocyclopentadiene	ND	ug/kg	1600					
Hexachloroethane	ND	ug/kg	810					
Isophorone	ND	ug/kg	810					
Naphthalene	ND	ug/kg	810					
Nitrobenzene	ND	ug/kg	810					
NitrosoDiPhenylAmine(NDPA)/D		ug/kg	2400					
n-Nitrosodi-n-propylamine	ND	ug/kg	810					
Bis(2-Ethylhexyl)phthalate	2000	ug/kg	1600					
Butyl benzyl phthalate	ND	ug/kg	810					
Di-n-butylphthalate	ND	ug/kg	810					
Di-n-octylphthalate	ND	ug/kg	810					
Diethyl phthalate	ND	ug/kg	810					
Dimethyl phthalate	ND	ug/kg	810					

Laboratory Sample Number: L0813344-22

PWG-DW-2008-17 (5.5-6')

PARAMETER	RESULT	UNITS	RDL	REF ME	THOD	DA PREP	TE ANAL	ID
Semivolatile Organics by EPA 8	3270C cont	- ' d		1 827	0.0	0911 03:30	0015 22:	27 DC
Benzo(a)anthracene	ND	ug/kg	810	1 027	00	0911 03:30	0913 22.	21 25
Benzo(a)pyrene	ND		810					
Benzo(b)fluoranthene		ug/kg						
	ND	ug/kg	810					
Benzo(k)fluoranthene	ND	ug/kg	810					
Chrysene	ND	ug/kg	810					
Acenaphthylene Anthracene	ND	ug/kg	810					
	ND	ug/kg	810					
Benzo(ghi)perylene	ND	ug/kg	810					
Fluorene	ND	ug/kg	810					
Phenanthrene	ND	ug/kg	810					
Dibenzo(a,h)anthracene	ND	ug/kg	810					
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	810					
Pyrene	ND	ug/kg	810					
Biphenyl	ND	ug/kg	810					
4-Chloroaniline	ND	ug/kg	810					
2-Nitroaniline	ND	ug/kg	810					
3-Nitroaniline	ND	ug/kg	810					
1-Nitroaniline	ND	ug/kg	1100					
Dibenzofuran	ND	ug/kg	810					
2-Methylnaphthalene	ND	ug/kg	810					
1,2,4,5-Tetrachlorobenzene	ND	ug/kg	3200					
Acetophenone	ND	ug/kg	3200					
2,4,6-Trichlorophenol	ND	ug/kg	810					
P-Chloro-M-Cresol	ND	ug/kg	810					
2-Chlorophenol	ND	ug/kg	980					
2,4-Dichlorophenol	ND	ug/kg	1600					
2,4-Dimethylphenol	ND	ug/kg	810					
2-Nitrophenol	ND	ug/kg	3200					
1-Nitrophenol	ND	ug/kg	1600					
2,4-Dinitrophenol	ND	ug/kg	3200					
1,6-Dinitro-o-cresol	ND	ug/kg	3200					
Pentachlorophenol	ND	ug/kg	3200					
Phenol	ND	ug/kg	1100					
2-Methylphenol	ND	ug/kg	980					
3-Methylphenol/4-Methylphenol	ND	ug/kg	980					
2,4,5-Trichlorophenol	ND	ug/kg	810					
Benzoic Acid	ND	ug/kg	8100					
Benzyl Alcohol	ND	ug/kg	1600					
Carbazole	ND	ug/kg	810					
Surrogate(s)	Recovery		QC Cr	iteria				
2-Fluorophenol	74.0	%	25-120)				
Phenol-d6	78.0	%	10-120)				
Nitrobenzene-d5	62.0	%	23-120)				
2-Fluorobiphenyl	72.0	%	30-120					
2,4,6-Tribromophenol	104	%	19-120					
l-Terphenyl-d14	74.0	%	18-120					

Laboratory Sample Number: L0813344-22

PWG-DW-2008-17 (5.5-6')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA' PREP	TE ANAL	ID
					PREP	ANAL	
Semivolatile Organics by	EPA 8270C-SIM	cont.'d		1 8270C	0911 03:30	0913 20:06	5 AK
Acenaphthene	ND	ug/kg	810	1 02/00	0711 03.30	0515 20.00	J 1110
2-Chloronaphthalene	ND	ug/kg	810				
Fluoranthene	ND	ug/kg	810				
Hexachlorobutadiene	ND	ug/kg	2000				
Naphthalene	ND	ug/kg	810				
Benzo(a)anthracene	ND	ug/kg	810				
Benzo(a)pyrene	ND	ug/kg	810				
Benzo(b)fluoranthene	ND	ug/kg	810				
Benzo(k)fluoranthene	ND	ug/kg	810				
Chrysene	ND	ug/kg	810				
Acenaphthylene	ND	ug/kg	810				
Anthracene	ND	ug/kg	810				
Benzo(ghi)perylene	ND	ug/kg	810				
Fluorene	ND	ug/kg	810				
Phenanthrene	ND	ug/kg	810				
Dibenzo(a,h)anthracene	ND	ug/kg	810				
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	810				
Pyrene	ND	ug/kg	810				
2-Methylnaphthalene	ND	ug/kg	810				
Pentachlorophenol	ND	ug/kg	3200				
Hexachlorobenzene	ND	ug/kg	3200				
Hexachloroethane	ND	ug/kg	3200				
Surrogate(s)	Recovery		QC Cri	iteria			
2-Fluorophenol	ND	%	25-120)			
Phenol-d6	ND	8	10-120)			
Nitrobenzene-d5	ND	8	23-120)			
2-Fluorobiphenyl	ND	%	30-120)			
2,4,6-Tribromophenol	ND	8	19-120)			
4-Terphenyl-d14	ND	%	18-120)			
Petroleum Hydrocarbon Qua	ntitation by (GC-FID		1 8015B(M)	0911 00:15	0912 13:44	4 RT
ТРН	263000	ug/kg	40600				
Surrogate(s)	Recovery		QC Cri	iteria			
o-Terphenyl	68.0	용	40-140)			

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813344-23 Date Collected: 08-SEP-2008 14:40

Sample Matrix: SOIL Date Reported: 25-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Solids, Total	78	%	0.10	30 2540G	0910 18:40 NM
Total Metals					
Aluminum, Total	1500	mg/kg	6.0	1 6010B	0910 13:30 0911 15:20 AI
Antimony, Total	ND	mg/kg	3.0	1 6010B	0910 13:30 0911 15:20 AI
Arsenic, Total	0.76	mg/kg	0.60	1 6010B	0910 13:30 0911 15:20 AI
Barium, Total	7.9	mg/kg	0.60	1 6010B	0910 13:30 0911 15:20 AI
Beryllium, Total	ND	mg/kg	0.30	1 6010B	0910 13:30 0911 15:20 AI
Cadmium, Total	ND	mg/kg	0.60	1 6010B	0910 13:30 0911 15:20 AI
Calcium, Total	31000	mg/kg	60	1 6010B	0910 13:30 0911 19:49 AI
Chromium, Total	7.8	mg/kg	0.60	1 6010B	0910 13:30 0911 15:20 AI
Cobalt, Total	2.3	mg/kg	1.2	1 6010B	0910 13:30 0911 15:20 AI
Copper, Total	42	mg/kg	0.60	1 6010B	0910 13:30 0911 15:20 AI
Iron, Total	6000	mg/kg	3.0	1 6010B	0910 13:30 0911 15:20 AI
Lead, Total	44	mg/kg	3.0	1 6010B	0910 13:30 0911 15:20 AI
Magnesium, Total	18000	mg/kg	6.0	1 6010B	0910 13:30 0911 15:20 AI
Manganese, Total	64	mg/kg	0.60	1 6010B	0910 13:30 0911 15:20 AI
Mercury, Total	ND	mg/kg	0.10	1 7471A	0911 23:30 0912 14:53 RC
Nickel, Total	5.4	mg/kg	1.5	1 6010B	0910 13:30 0911 15:20 AI
Potassium, Total	ND	mg/kg	150	1 6010B	0910 13:30 0911 15:20 AI
Selenium, Total	ND	mg/kg	1.2	1 6010B	0910 13:30 0911 15:20 AI
Silver, Total	ND	mg/kg	0.60	1 6010B	0910 13:30 0911 15:20 AI
Sodium, Total	ND	mg/kg	120	1 6010B	0910 13:30 0911 15:20 AI
Thallium, Total	ND	mg/kg	1.2	1 6010B	0910 13:30 0911 15:20 AI
Vanadium, Total	19	mg/kg	0.60	1 6010B	0910 13:30 0911 15:20 AI
Zinc, Total	50	mg/kg	3.0	1 6010B	0910 13:30 0911 15:20 AI
Volatile Organics by EPA 8	260B			1 8260B	0912 15:42 PD
Methylene chloride	ND	ug/kg	32.		
1,1-Dichloroethane	ND	ug/kg	4.8		
Chloroform	ND	ug/kg	4.8		
Carbon tetrachloride	ND	ug/kg	3.2		
1,2-Dichloropropane	ND	ug/kg	11.		
Dibromochloromethane	ND	ug/kg	3.2		
1,1,2-Trichloroethane	ND	ug/kg	4.8		
Tetrachloroethene	18	ug/kg	3.2		
Chlorobenzene	ND	ug/kg	3.2		
Trichlorofluoromethane	ND	ug/kg	16.		

Laboratory Sample Number: L0813344-23

PWG-DW-2008-18 (4-4.5')

ARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
olatile Organics by EPA 826				1	8260B		0912 15:	42 PD
,2-Dichloroethane	ND	ug/kg	3.2					
,1,1-Trichloroethane	ND	ug/kg	3.2					
romodichloromethane	ND	ug/kg	3.2					
rans-1,3-Dichloropropene	ND	ug/kg	3.2					
is-1,3-Dichloropropene	ND	ug/kg	3.2					
,1-Dichloropropene	ND	ug/kg	16.					
romoform	ND	ug/kg	13.					
,1,2,2-Tetrachloroethane	ND	ug/kg	3.2					
enzene	ND	ug/kg	3.2					
oluene	ND	ug/kg	4.8					
thylbenzene	ND	ug/kg	3.2					
hloromethane	ND	ug/kg	16.					
romomethane	ND	ug/kg	6.4					
inyl chloride	ND	ug/kg	6.4					
hloroethane	ND	ug/kg	6.4					
,1-Dichloroethene	ND	ug/kg	3.2					
rans-1,2-Dichloroethene	ND	ug/kg	4.8					
richloroethene	ND	ug/kg	3.2					
,2-Dichlorobenzene	ND	ug/kg	16.					
,3-Dichlorobenzene	ND	ug/kg	16.					
,4-Dichlorobenzene	ND	ug/kg	16.					
ethyl tert butyl ether	ND	ug/kg	6.4					
/m-Xylene	ND	ug/kg	6.4					
-Xylene	ND	ug/kg	6.4					
is-1,2-Dichloroethene	ND	ug/kg	3.2					
ibromomethane	ND	ug/kg	32.					
tyrene	ND	ug/kg	6.4					
ichlorodifluoromethane	ND	ug/kg	32.					
cetone	ND	ug/kg	32.					
arbon disulfide	ND	ug/kg	32.					
-Butanone	ND	ug/kg	32.					
inyl acetate	ND	ug/kg	32.					
-Methyl-2-pentanone	ND	ug/kg	32.					
,2,3-Trichloropropane	ND	ug/kg	32.					
-Hexanone	ND	ug/kg	32.					
romochloromethane	ND	ug/kg	16.					
,2-Dichloropropane	ND	ug/kg	16.					
,2-Dibromoethane	ND	ug/kg	13.					
,3-Dichloropropane	ND	ug/kg	16.					
,1,1,2-Tetrachloroethane	ND	ug/kg	3.2					
romobenzene	ND	ug/kg	16.					
-Butylbenzene	ND	ug/kg ug/kg	3.2					
ec-Butylbenzene	ND	ug/kg	3.2					
ert-Butylbenzene	ND	ug/kg ug/kg	16.					
-Chlorotoluene	ND	ug/kg ug/kg	16.					
-Chlorotoluene	ND	ug/kg ug/kg	16.					
	ND	ug/kg ug/kg	16.					
		ug/129	±0.					
,2-Dibromo-3-chloropropane exachlorobutadiene	ND	ug/kg	16.					

Laboratory Sample Number: L0813344-23

PWG-DW-2008-18 (4-4.5')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA		ID
						PREP	ANAL	
Volatile Organics by EPA 826	OB cont'd			1	8260B		0912 15:	42 PD
p-Isopropyltoluene	ND	ug/kg	3.2					
Naphthalene	ND	ug/kg	16.					
Acrylonitrile	ND	ug/kg	32.					
n-Propylbenzene	ND	ug/kg	3.2					
1,2,3-Trichlorobenzene	ND	ug/kg	16.					
1,2,4-Trichlorobenzene	ND	ug/kg	16.					
1,3,5-Trimethylbenzene	ND	ug/kg	16.					
1,2,4-Trimethylbenzene	ND	ug/kg	16.					
1,4-Diethylbenzene	ND	ug/kg	13.					
4-Ethyltoluene	ND	ug/kg	13.					
1,2,4,5-Tetramethylbenzene	ND	ug/kg	13.					
Surrogate(s)	Recovery		OC Cri	teri	a			
1,2-Dichloroethane-d4	93.0	%	70-130		~			
Foluene-d8	104	%	70-130					
4-Bromofluorobenzene	109	%	70-130					
Dibromofluoromethane	93.0	%	70-130					
of the state of th	23.0	Ü	70 130	,				
Semivolatile Organics by EPA		/1	0.5.0	1	8270C	0911 03:30	0913 15:	03 PS
Acenaphthene	ND	ug/kg	850					
1,2,4-Trichlorobenzene	ND	ug/kg	850					
Hexachlorobenzene	ND	ug/kg	850					
Bis(2-chloroethyl)ether	ND	ug/kg	850					
2-Chloronaphthalene	ND	ug/kg	1000					
l,2-Dichlorobenzene	ND	ug/kg	850					
l,3-Dichlorobenzene	ND	ug/kg	850					
l,4-Dichlorobenzene	ND	ug/kg	850					
3,3'-Dichlorobenzidine	ND	ug/kg	1700					
2,4-Dinitrotoluene	ND	ug/kg	850					
2,6-Dinitrotoluene	ND	ug/kg	850					
Fluoranthene	ND	ug/kg	850					
4-Chlorophenyl phenyl ether	ND	ug/kg	850					
4-Bromophenyl phenyl ether	ND	ug/kg	850					
Bis(2-chloroisopropyl)ether	ND	ug/kg	850					
Bis(2-chloroethoxy)methane	ND	ug/kg	850					
Hexachlorobutadiene	ND	ug/kg	1700					
Hexachlorocyclopentadiene	ND	ug/kg	1700					
Hexachloroethane	ND	ug/kg	850					
Isophorone	ND	ug/kg	850					
Naphthalene	ND	ug/kg	850					
Nitrobenzene	ND	ug/kg	850					
NitrosoDiPhenylAmine(NDPA)/D		ug/kg	2600					
n-Nitrosodi-n-propylamine	ND	ug/kg	850					
Bis(2-Ethylhexyl)phthalate	ND	ug/kg	1700					
Butyl benzyl phthalate	ND	ug/kg	850					
Di-n-butylphthalate	ND	ug/kg	850					
Di-n-octylphthalate	ND	ug/kg	850					
Diethyl phthalate	ND	ug/kg	850					
Dimethyl phthalate	ND	ug/kg	850					

Laboratory Sample Number: L0813344-23

PWG-DW-2008-18 (4-4.5')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Semivolatile Organics by EPA (3270C cont	'd		1	8270C	0911 03:30	0913 15:	03 PS
Benzo(a)anthracene	ND	ug/kg	850	-	02,00	0,11 0,3 30	0,10 10	05 15
Benzo(a)pyrene	ND	ug/kg ug/kg	850					
Benzo(b)fluoranthene	ND	ug/kg ug/kg	850					
Benzo(k)fluoranthene	ND	ug/kg ug/kg	850					
Chrysene	ND	ug/kg ug/kg	850					
Acenaphthylene	ND	ug/kg ug/kg	850					
Anthracene	ND	ug/kg ug/kg	850					
Benzo(ghi)perylene	ND	ug/kg ug/kg	850					
Fluorene	ND		850					
Phenanthrene	ND	ug/kg	850					
		ug/kg						
Dibenzo(a,h)anthracene	ND	ug/kg	850					
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	850					
Pyrene	ND	ug/kg	850					
Biphenyl	ND	ug/kg	850					
4-Chloroaniline	ND	ug/kg	850					
2-Nitroaniline	ND	ug/kg	850					
3-Nitroaniline	ND	ug/kg	850					
1-Nitroaniline	ND	ug/kg	1200					
Dibenzofuran	ND	ug/kg	850					
2-Methylnaphthalene	ND	ug/kg	850					
1,2,4,5-Tetrachlorobenzene	ND	ug/kg	3400					
Acetophenone	ND	ug/kg	3400					
2,4,6-Trichlorophenol	ND	ug/kg	850					
P-Chloro-M-Cresol	ND	ug/kg	850					
2-Chlorophenol	ND	ug/kg	1000					
2,4-Dichlorophenol	ND	ug/kg	1700					
2,4-Dimethylphenol	ND	ug/kg	850					
2-Nitrophenol	ND	ug/kg	3400					
1-Nitrophenol	ND	ug/kg	1700					
2,4-Dinitrophenol	ND	ug/kg	3400					
1,6-Dinitro-o-cresol	ND	ug/kg	3400					
Pentachlorophenol	ND	ug/kg	3400					
Phenol	ND	ug/kg	1200					
2-Methylphenol	ND	ug/kg	1000					
3-Methylphenol/4-Methylphenol	ND	ug/kg	1000					
2,4,5-Trichlorophenol	ND	ug/kg	850					
Benzoic Acid	ND	ug/kg	8500					
Benzyl Alcohol	ND	ug/kg	1700					
Carbazole	ND	ug/kg	850					
Surrogate(s)	Recovery		QC Cr	iteria	a.			
2-Fluorophenol	61.0	%	25-120)				
Phenol-d6	62.0	%	10-120)				
Nitrobenzene-d5	50.0	%	23-120)				
2-Fluorobiphenyl	49.0	%	30-120)				
2,4,6-Tribromophenol	74.0	%	19-120)				
4-Terphenyl-d14	50.0	%	18-120)				

Laboratory Sample Number: L0813344-23

PWG-DW-2008-18 (4-4.5')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA	TE	ID
					PREP	ANAL	
	2. 00500 071						
Semivolatile Organics by EP			0.5.0	1 8270C	0915 18:00	0916 16:5	9 AK
Acenaphthene	ND	ug/kg	850				
2-Chloronaphthalene	ND	ug/kg	850				
luoranthene	ND	ug/kg	850				
Mexachlorobutadiene	ND	ug/kg	2100				
Maphthalene	ND	ug/kg	850				
Benzo(a)anthracene	ND	ug/kg	850				
Benzo(a)pyrene	ND	ug/kg	850				
Benzo(b)fluoranthene	ND	ug/kg	850				
Benzo(k)fluoranthene	ND	ug/kg	850				
Chrysene	ND	ug/kg	850				
Acenaphthylene	ND	ug/kg	850				
Anthracene	ND	ug/kg	850				
Benzo(ghi)perylene	ND	ug/kg	850				
luorene	ND	ug/kg	850				
Phenanthrene	ND	ug/kg	850				
Dibenzo(a,h)anthracene	ND	ug/kg	850				
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	850				
yrene	ND	ug/kg	850				
2-Methylnaphthalene	ND	ug/kg	850				
Pentachlorophenol	ND	ug/kg	3400				
Hexachlorobenzene	ND	ug/kg	3400				
Hexachloroethane	ND	ug/kg	3400				
Surrogate(s)	Recovery		QC Cri	teria			
2-Fluorophenol	ND	%	25-120)			
Phenol-d6	ND	%	10-120)			
Jitrobenzene-d5	ND	%	23-120)			
2-Fluorobiphenyl	ND	%	30-120)			
2,4,6-Tribromophenol	ND	%	19-120)			
l-Terphenyl-d14	ND	%	18-120)			
Petroleum Hydrocarbon Quant	itation by G	C-FID		1 8015B(M)	0911 00:15	0912 14:5	2 RT
ГРН	194000	ug/kg	42700				
Turrogato (g)	Recovery		OC Cri	teria			
Surrogate(s) -Terphenyl	110001017		40-140				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813344-24 Date Collected: 08-SEP-2008 14:55

PWG-DW-2008-19 (4.5-5') Date Received: 09-SEP-2008

Sample Matrix: SOIL Date Reported: 25-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE I
					PREP ANAL
olids, Total	84	90	0.10	30 2540G	0910 18:40 N
Total Metals					
Aluminum, Total	2500	mg/kg	5.6	1 6010B	0910 13:30 0911 15:24 A
Antimony, Total	ND	mg/kg	2.8	1 6010B	0910 13:30 0911 15:24 2
Arsenic, Total	1.6	mg/kg	0.56	1 6010B	0910 13:30 0911 15:24 4
Barium, Total	24	mg/kg	0.56	1 6010B	0910 13:30 0911 15:24 4
Beryllium, Total	ND	mg/kg	0.28	1 6010B	0910 13:30 0911 15:24 #
Cadmium, Total	ND	mg/kg	0.56	1 6010B	0910 13:30 0911 15:24 #
Calcium, Total	7200	mg/kg	5.6	1 6010B	0910 13:30 0911 15:24 #
Chromium, Total	6.8	mg/kg	0.56	1 6010B	0910 13:30 0911 15:24 #
Cobalt, Total	1.4	mg/kg	1.1	1 6010B	0910 13:30 0911 15:24 #
Copper, Total	12	mg/kg	0.56	1 6010B	0910 13:30 0911 15:24 2
Iron, Total	5000	mg/kg	2.8	1 6010B	0910 13:30 0911 15:24 A
Lead, Total	120	mg/kg	2.8	1 6010B	0910 13:30 0911 15:24 A
Magnesium, Total	4000	mg/kg	5.6	1 6010B	0910 13:30 0911 15:24 A
Manganese, Total	38	mg/kg	0.56	1 6010B	0910 13:30 0911 15:24 A
Mercury, Total	ND	mg/kg	0.09	1 7471A	0911 23:30 0912 14:54 F
Nickel, Total	3.5	mg/kg	1.4	1 6010B	0910 13:30 0911 15:24 7
Potassium, Total	180	mg/kg	140	1 6010B	0910 13:30 0911 15:24 7
Selenium, Total	ND	mg/kg	1.1	1 6010B	0910 13:30 0911 15:24 7
Silver, Total	ND	mg/kg	0.56	1 6010B	0910 13:30 0911 15:24 4
Sodium, Total	ND	mg/kg	110	1 6010B	0910 13:30 0911 15:24 7
Thallium, Total	ND	mg/kg	1.1	1 6010B	0910 13:30 0911 15:24 4
Janadium, Total	8.4	mg/kg	0.56	1 6010B	0910 13:30 0911 15:24 4
Zinc, Total	110	mg/kg	2.8	1 6010B	0910 13:30 0911 15:21 7
1110, 10001		9, 129	2.0	1 00102	0,10 13 30 0,11 13 11 1
Olatile Organics by EPA 8	3260B			1 8260B	0915 14:16 1
Methylene chloride	ND	ug/kg	30.		
,1-Dichloroethane	ND	ug/kg	4.5		
Chloroform	ND	ug/kg	4.5		
Carbon tetrachloride	ND	ug/kg	3.0		
l,2-Dichloropropane	ND	ug/kg	10.		
Dibromochloromethane	ND	ug/kg	3.0		
1,1,2-Trichloroethane	ND	ug/kg	4.5		
Tetrachloroethene	82	ug/kg	3.0		
Chlorobenzene	ND	ug/kg	3.0		
Trichlorofluoromethane	ND	ug/kg	15.		

Laboratory Sample Number: L0813344-24

PWG-DW-2008-19 (4.5-5')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
7-1-+-1- 0	0D							
Volatile Organics by EPA 826		/1	2 0	1	8260B		0915 14:	16 PD
l,2-Dichloroethane	ND	ug/kg	3.0					
1,1,1-Trichloroethane	ND	ug/kg	3.0					
Bromodichloromethane	ND	ug/kg	3.0					
rans-1,3-Dichloropropene	ND	ug/kg	3.0					
cis-1,3-Dichloropropene	ND	ug/kg	3.0					
,1-Dichloropropene	ND	ug/kg	15.					
Bromoform	ND	ug/kg	12.					
.,1,2,2-Tetrachloroethane	ND	ug/kg	3.0					
senzene	ND	ug/kg	3.0					
oluene	ND	ug/kg	4.5					
thylbenzene	ND	ug/kg	3.0					
Chloromethane	ND	ug/kg	15.					
romomethane	ND	ug/kg	6.0					
inyl chloride	ND	ug/kg	6.0					
Chloroethane	ND	ug/kg	6.0					
,1-Dichloroethene	ND	ug/kg	3.0					
rans-1,2-Dichloroethene	ND	ug/kg	4.5					
richloroethene	ND	ug/kg	3.0					
,2-Dichlorobenzene	ND	ug/kg	15.					
,3-Dichlorobenzene	ND	ug/kg	15.					
,4-Dichlorobenzene	ND	ug/kg	15.					
ethyl tert butyl ether	ND	ug/kg	6.0					
/m-Xylene	ND	ug/kg	6.0					
-Xylene	ND	ug/kg	6.0					
is-1,2-Dichloroethene	ND	ug/kg	3.0					
ibromomethane	ND	ug/kg	30.					
Styrene	ND	ug/kg	6.0					
Dichlorodifluoromethane	ND	ug/kg	30.					
acetone	ND	ug/kg	30.					
arbon disulfide	ND	ug/kg	30.					
-Butanone	ND	ug/kg	30.					
inyl acetate	ND	ug/kg	30.					
-Methyl-2-pentanone	ND	ug/kg	30.					
.,2,3-Trichloropropane	ND	ug/kg	30.					
-Hexanone	ND	ug/kg	30.					
romochloromethane	ND	ug/kg	15.					
,2-Dichloropropane	ND	ug/kg	15.					
,2-Dibromoethane	ND	ug/kg	12.					
,3-Dichloropropane	ND	ug/kg	15.					
,1,1,2-Tetrachloroethane	ND	ug/kg	3.0					
romobenzene	ND	ug/kg	15.					
-Butylbenzene	ND	ug/kg	3.0					
ec-Butylbenzene	ND	ug/kg	3.0					
ert-Butylbenzene	ND	ug/kg	15.					
-Chlorotoluene	ND	ug/kg	15.					
-Chlorotoluene	ND	ug/kg	15.					
,2-Dibromo-3-chloropropane	ND	ug/kg	15.					
exachlorobutadiene	ND	ug/kg	15.					
Sopropylbenzene	ND	ug/kg	3.0					

Laboratory Sample Number: L0813344-24

PWG-DW-2008-19 (4.5-5')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD		TE	ID
						PREP	ANAL	
Volatile Organics by EPA 8260	OB cont'd			1	8260B		0915 14:	:16 PD
p-Isopropyltoluene	ND	ug/kg	3.0					
Naphthalene	ND	ug/kg	15.					
Acrylonitrile	ND	ug/kg	30.					
n-Propylbenzene	ND	ug/kg	3.0					
1,2,3-Trichlorobenzene	ND	ug/kg	15.					
1,2,4-Trichlorobenzene	ND	ug/kg	15.					
1,3,5-Trimethylbenzene	ND	ug/kg ug/kg	15.					
1,2,4-Trimethylbenzene	ND	ug/kg ug/kg	15.					
1,4-Diethylbenzene	ND	ug/kg ug/kg	12.					
4-Ethyltoluene	ND	ug/kg ug/kg	12.					
1,2,4,5-Tetramethylbenzene	ND	ug/kg	12.					
Surrogate(s)	Recovery		QC Cri		а			
1,2-Dichloroethane-d4	89.0	%	70-130					
Toluene-d8	100	%	70-130					
4-Bromofluorobenzene	115	%	70-130					
Dibromofluoromethane	90.0	ે	70-130					
Semivolatile Organics by EPA	8270C			1	8270C	0911 03:30	0913 15	27 PS
Acenaphthene	ND	ug/kg	790					
1,2,4-Trichlorobenzene	ND	ug/kg	790					
Hexachlorobenzene	ND	ug/kg	790					
Bis(2-chloroethyl)ether	ND	ug/kg	790					
2-Chloronaphthalene	ND	ug/kg	950					
L,2-Dichlorobenzene	ND	ug/kg	790					
1,3-Dichlorobenzene	ND	ug/kg ug/kg	790					
1,4-Dichlorobenzene	ND	ug/kg ug/kg	790					
3,3'-Dichlorobenzidine	ND	ug/kg	1600					
2,4-Dinitrotoluene	ND	ug/kg ug/kg	790					
2,6-Dinitrotoluene	ND	ug/kg ug/kg	790					
z,6-Dinitrotoluene Fluoranthene	ND ND	ug/kg ug/kg	790 790					
		5 5						
4-Chlorophenyl phenyl ether	ND	ug/kg	790 790					
4-Bromophenyl phenyl ether	ND	ug/kg	790 790					
Bis(2-chloroisopropyl)ether	ND	ug/kg	790 700					
Bis(2-chloroethoxy)methane	ND	ug/kg	790 1600					
Hexachlorobutadiene	ND	ug/kg	1600					
Hexachlorocyclopentadiene	ND	ug/kg	1600					
Hexachloroethane	ND	ug/kg	790					
Isophorone	ND	ug/kg	790					
Naphthalene	ND	ug/kg	790					
Nitrobenzene	ND	ug/kg	790					
NitrosoDiPhenylAmine(NDPA)/DI		ug/kg	2400					
n-Nitrosodi-n-propylamine	ND	ug/kg	790					
Bis(2-Ethylhexyl)phthalate	ND	ug/kg	1600					
Butyl benzyl phthalate	ND	ug/kg	790					
Di-n-butylphthalate	ND	ug/kg	790					
Di-n-octylphthalate	ND	ug/kg	790					
Diethyl phthalate	ND	ug/kg	790					
Dimethyl phthalate	ND	ug/kg	790					

Laboratory Sample Number: L0813344-24

PWG-DW-2008-19 (4.5-5')

PARAMETER	RESULT	UNITS	RDL	KEF	METHOD	DA PREP	TE ANAL	ID
Semivolatile Organics by EPA	2270C cont	- ' d		1	8270C	0911 03:30	0012 15.0	17. DG
Senzo(a)anthracene	ND		790	1	82700	0911 03.30	0913 15.2	7 PS
Senzo(a)anthracene Senzo(a)pyrene	ND	ug/kg	790 790					
Senzo(a)pyrene Senzo(b)fluoranthene		ug/kg	790					
	ND	ug/kg	790 790					
Senzo(k)fluoranthene	ND	ug/kg						
Thrysene Acenaphthylene	ND	ug/kg	790					
nthracene	ND ND	ug/kg ug/kg	790 790					
Benzo(ghi)perylene	ND	ug/kg	790					
luorene	ND	ug/kg	790					
henanthrene	ND	ug/kg	790					
oibenzo(a,h)anthracene	ND	ug/kg	790					
indeno(1,2,3-cd)Pyrene	ND	ug/kg	790					
yrene	ND	ug/kg	790					
Siphenyl	ND	ug/kg	790					
-Chloroaniline	ND	ug/kg	790					
2-Nitroaniline	ND	ug/kg	790					
3-Nitroaniline	ND	ug/kg	790					
-Nitroaniline	ND	ug/kg	1100					
Dibenzofuran	ND	ug/kg	790					
2-Methylnaphthalene	ND	ug/kg	790					
,2,4,5-Tetrachlorobenzene	ND	ug/kg	3200					
acetophenone	ND	ug/kg	3200					
2,4,6-Trichlorophenol	ND	ug/kg	790					
P-Chloro-M-Cresol	ND	ug/kg	790					
-Chlorophenol	ND	ug/kg	950					
,4-Dichlorophenol	ND	ug/kg	1600					
,4-Dimethylphenol	ND	ug/kg	790					
-Nitrophenol	ND	ug/kg	3200					
-Nitrophenol	ND	ug/kg	1600					
,4-Dinitrophenol	ND	ug/kg	3200					
,6-Dinitro-o-cresol	ND	ug/kg	3200					
Pentachlorophenol	ND	ug/kg	3200					
Phenol	ND	ug/kg	1100					
-Methylphenol	ND	ug/kg	950					
-Methylphenol/4-Methylphenol	ND	ug/kg	950					
2,4,5-Trichlorophenol	ND	ug/kg	790					
Benzoic Acid	ND	ug/kg	7900					
Benzyl Alcohol	ND	ug/kg	1600					
Carbazole	ND	ug/kg	790					
Gurrogate(s)	Recovery		QC Cri	iteria	ı			
-Fluorophenol	76.0	%	25-120)				
henol-d6	76.0	%	10-120)				
Jitrobenzene-d5	63.0	%	23-120)				
-Fluorobiphenyl	63.0	%	30-120)				
2,4,6-Tribromophenol	78.0	%	19-120)				
-Terphenyl-d14	71.0	%	18-120)				

Laboratory Sample Number: L0813344-24

PWG-DW-2008-19 (4.5-5')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DAT PREP	E ANAL	ID
Semivolatile Organics by E				1 8270C	0911 03:30 0	913 21:4	1 AK
Acenaphthene	ND	ug/kg	16.				
2-Chloronaphthalene	ND	ug/kg	16.				
Fluoranthene	53	ug/kg	16				
Hexachlorobutadiene	ND	ug/kg	40.				
Naphthalene	ND	ug/kg	16.				
Benzo(a)anthracene	18	ug/kg	16				
Benzo(a)pyrene	36	ug/kg	16				
Benzo(b)fluoranthene	32	ug/kg	16				
Benzo(k)fluoranthene	34	ug/kg	16				
Chrysene	16	ug/kg	16				
Acenaphthylene	ND	ug/kg	16.				
Anthracene	ND	ug/kg	16.				
Benzo(ghi)perylene	ND	ug/kg	16.				
Fluorene	ND	ug/kg	16.				
Phenanthrene	16	ug/kg	16				
Dibenzo(a,h)anthracene	ND	ug/kg	16.				
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	16.				
Pyrene	49	ug/kg	16				
2-Methylnaphthalene	ND	ug/kg	16.				
Pentachlorophenol	ND	ug/kg	63.				
Hexachlorobenzene	ND	ug/kg	63.				
Hexachloroethane	ND	ug/kg	63.				
Surrogate(s)	Recovery		QC Cri	teria			
2-Fluorophenol	36.0	%	25-120				
Phenol-d6	37.0	%	10-120				
Nitrobenzene-d5	34.0	%	23-120				
2-Fluorobiphenyl	31.0	8	30-120				
2,4,6-Tribromophenol	29.0	%	19-120				
4-Terphenyl-d14	39.0	%	18-120				
Petroleum Hydrocarbon Quan	titation by (GC-FID		1 8015B(M)	0911 00:15 0	912 13:4	4 RT
ТРН	86400	ug/kg	39700				
Surrogate(s)	Recovery		QC Cri	teria			
o-Terphenyl	65.0	%	40-140				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813344-25 Date Collected: 08-SEP-2008 15:20

PWG-DW-2008-20 (4.5-5') **Date Received :** 09-SEP-2008

Sample Matrix: SOIL Date Reported: 25-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID
					PREP ANAL
Solids, Total	71	%	0.10	30 2540G	0910 18:40 NM
Total Metals					
Aluminum, Total	4500	mg/kg	6.7	1 6010B	0910 13:30 0911 15:27 AI
Antimony, Total	ND	mg/kg	3.4	1 6010B	0910 13:30 0911 15:27 AI
Arsenic, Total	1.6	mg/kg	0.67	1 6010B	0910 13:30 0911 15:27 AI
Barium, Total	46	mg/kg	0.67	1 6010B	0910 13:30 0911 15:27 AI
Beryllium, Total	ND	mg/kg	0.34	1 6010B	0910 13:30 0911 15:27 AI
Cadmium, Total	3.3	mg/kg	0.67	1 6010B	0910 13:30 0911 15:27 AI
Calcium, Total	10000	mg/kg	6.7	1 6010B	0910 13:30 0911 15:27 AI
Chromium, Total	22	mg/kg	0.67	1 6010B	0910 13:30 0911 15:27 AI
Cobalt, Total	4.6	mg/kg	1.3	1 6010B	0910 13:30 0911 15:27 AI
Copper, Total	73	mg/kg	0.67	1 6010B	0910 13:30 0911 15:27 AI
Iron, Total	10000	mg/kg	3.4	1 6010B	0910 13:30 0911 15:27 AI
Lead, Total	960	mg/kg	3.4	1 6010B	0910 13:30 0911 15:27 AI
Magnesium, Total	6700	mg/kg	6.7	1 6010B	0910 13:30 0911 15:27 AI
Manganese, Total	89	mg/kg	0.67	1 6010B	0910 13:30 0911 15:27 AI
Mercury, Total	1.1	mg/kg	0.11	1 7471A	0912 20:30 0914 13:52 HG
Nickel, Total	17	mg/kg	1.7	1 6010B	0910 13:30 0911 15:27 AI
Potassium, Total	320	mg/kg	170	1 6010B	0910 13:30 0911 15:27 AI
Selenium, Total	ND	mg/kg	1.3	1 6010B	0910 13:30 0911 15:27 AI
Silver, Total	ND	mg/kg	0.67	1 6010B	0910 13:30 0911 15:27 AI
Sodium, Total	300	mg/kg	130	1 6010B	0910 13:30 0911 15:27 AI
Thallium, Total	ND	mg/kg	1.3	1 6010B	0910 13:30 0911 15:27 AI
Vanadium, Total	43	mg/kg	0.67	1 6010B	0910 13:30 0911 15:27 AI
Zinc, Total	340	mg/kg	3.4	1 6010B	0910 13:30 0911 15:27 AI
Volatile Organics by EPA 8	1260B			1 8260B	0912 16:55 PD
Methylene chloride	ND	ug/kg	35.	1 02000	0712 10:33 PD
1,1-Dichloroethane	ND ND	ug/kg ug/kg	5.3		
Chloroform	ND ND	ug/kg ug/kg	5.3		
Carbon tetrachloride	ND	ug/kg ug/kg	3.5		
1,2-Dichloropropane	ND	ug/kg ug/kg	12.		
Dibromochloromethane	ND ND	ug/kg ug/kg	3.5		
1,1,2-Trichloroethane	ND ND	ug/kg ug/kg	5.3		
Tetrachloroethene	ND ND	ug/kg ug/kg	3.5		
Chlorobenzene	ND ND		3.5		
Chioropenzene Trichlorofluoromethane		ug/kg	3.5 18.		
rrichiororiuoromethane	ND	ug/kg	Το.		

Laboratory Sample Number: L0813344-25

PWG-DW-2008-20 (4.5-5')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
7-1-+-1- 0 h EDN 000	00							
Volatile Organics by EPA 826		/1	2 -	1	8260B		0912 16:	55 PD
l,2-Dichloroethane	ND	ug/kg	3.5					
1,1,1-Trichloroethane	ND	ug/kg	3.5					
Bromodichloromethane	ND	ug/kg	3.5					
rans-1,3-Dichloropropene	ND	ug/kg	3.5					
cis-1,3-Dichloropropene	ND	ug/kg	3.5					
,1-Dichloropropene	ND	ug/kg	18.					
Bromoform	ND	ug/kg	14.					
.,1,2,2-Tetrachloroethane	ND	ug/kg	3.5					
senzene	ND	ug/kg	3.5					
oluene	ND	ug/kg	5.3					
thylbenzene	ND	ug/kg	3.5					
Chloromethane	ND	ug/kg	18.					
romomethane	ND	ug/kg	7.0					
Vinyl chloride	ND	ug/kg	7.0					
Chloroethane	ND	ug/kg	7.0					
,1-Dichloroethene	ND	ug/kg	3.5					
rans-1,2-Dichloroethene	ND	ug/kg	5.3					
richloroethene	ND	ug/kg	3.5					
,2-Dichlorobenzene	ND	ug/kg	18.					
,3-Dichlorobenzene	ND	ug/kg	18.					
,4-Dichlorobenzene	ND	ug/kg	18.					
ethyl tert butyl ether	ND	ug/kg	7.0					
/m-Xylene	ND	ug/kg	7.0					
-Xylene	ND	ug/kg	7.0					
is-1,2-Dichloroethene	ND	ug/kg	3.5					
ibromomethane	ND	ug/kg	35.					
Styrene	ND	ug/kg	7.0					
pichlorodifluoromethane	ND	ug/kg	35.					
cetone	ND	ug/kg	35.					
arbon disulfide	ND	ug/kg	35.					
-Butanone	ND	ug/kg	35.					
inyl acetate	ND	ug/kg	35.					
-Methyl-2-pentanone	ND	ug/kg	35.					
.,2,3-Trichloropropane	ND	ug/kg	35.					
-Hexanone	ND	ug/kg	35.					
romochloromethane	ND	ug/kg	18.					
,2-Dichloropropane	ND	ug/kg	18.					
,2-Dibromoethane	ND	ug/kg	14.					
,3-Dichloropropane	ND	ug/kg	18.					
,1,1,2-Tetrachloroethane	ND	ug/kg	3.5					
romobenzene	ND	ug/kg	18.					
-Butylbenzene	ND	ug/kg	3.5					
ec-Butylbenzene	ND	ug/kg	3.5					
ert-Butylbenzene	ND	ug/kg	18.					
-Chlorotoluene	ND	ug/kg	18.					
-Chlorotoluene	ND	ug/kg	18.					
,2-Dibromo-3-chloropropane	ND	ug/kg	18.					
exachlorobutadiene	ND	ug/kg	18.					
Sopropylbenzene	ND	ug/kg	3.5					

Laboratory Sample Number: L0813344-25

PWG-DW-2008-20 (4.5-5')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
						PREP	ANAL	
Volatile Organics by EPA 826	OB cont'd			1	8260B		0912 16:	55 PD
p-Isopropyltoluene	ND	ug/kg	3.5					
Naphthalene	ND	ug/kg	18.					
Acrylonitrile	ND	ug/kg	35.					
n-Propylbenzene	ND	ug/kg	3.5					
1,2,3-Trichlorobenzene	ND	ug/kg	18.					
1,2,4-Trichlorobenzene	ND	ug/kg	18.					
1,3,5-Trimethylbenzene	ND	ug/kg	18.					
1,2,4-Trimethylbenzene	ND	ug/kg	18.					
1,4-Diethylbenzene	ND	ug/kg	14.					
4-Ethyltoluene	ND	ug/kg	14.					
l,2,4,5-Tetramethylbenzene	ND	ug/kg	14.					
Surrogate(s)	Recovery		QC Cri	teria	a			
1,2-Dichloroethane-d4	98.0	%	70-130					
roluene-d8	108	%	70-130					
4-Bromofluorobenzene	116	%	70-130					
Dibromofluoromethane	99.0	ે	70-130					
	00700							
Semivolatile Organics by EPA		. /1	4700	1	8270C	0911 03:30	0913 15:	49 PS
Acenaphthene	ND	ug/kg	4700					
1,2,4-Trichlorobenzene	ND	ug/kg	4700					
Hexachlorobenzene	ND	ug/kg	4700					
Bis(2-chloroethyl)ether	ND	ug/kg	4700					
2-Chloronaphthalene	ND	ug/kg	5600					
l,2-Dichlorobenzene	ND	ug/kg	4700					
1,3-Dichlorobenzene	ND	ug/kg	4700					
1,4-Dichlorobenzene	ND	ug/kg	4700					
3,3'-Dichlorobenzidine	ND	ug/kg	9400					
2,4-Dinitrotoluene	ND	ug/kg	4700					
2,6-Dinitrotoluene	ND	ug/kg	4700					
Fluoranthene	ND	ug/kg	4700					
4-Chlorophenyl phenyl ether	ND	ug/kg	4700					
4-Bromophenyl phenyl ether	ND	ug/kg	4700					
Bis(2-chloroisopropyl)ether	ND	ug/kg	4700					
Bis(2-chloroethoxy)methane	ND	ug/kg	4700					
Hexachlorobutadiene	ND	ug/kg	9400					
Hexachlorocyclopentadiene	ND	ug/kg	9400					
Hexachloroethane	ND	ug/kg	4700					
Isophorone	ND	ug/kg	4700					
Naphthalene	ND	ug/kg	4700					
Nitrobenzene	ND	ug/kg	4700					
NitrosoDiPhenylAmine(NDPA)/D		ug/kg	14000					
n-Nitrosodi-n-propylamine	ND	ug/kg	4700					
Bis(2-Ethylhexyl)phthalate	12000	ug/kg	9400					
Butyl benzyl phthalate	ND	ug/kg	4700					
Di-n-butylphthalate	ND	ug/kg	4700					
Di-n-octylphthalate	ND	ug/kg	4700					
Diethyl phthalate	ND	ug/kg	4700					
Dimethyl phthalate	ND	ug/kg	4700					

Laboratory Sample Number: L0813344-25

PWG-DW-2008-20 (4.5-5')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Comissolatila Organias by EDA	00700 cont	- 1 A			00504	0011 00.00	0010 15	40.50
Semivolatile Organics by EPA			4700	1	8270C	0911 03:30	0913 15:	49 PS
Benzo(a)anthracene	ND	ug/kg	4700					
Benzo(a)pyrene	ND	ug/kg	4700					
Benzo(b)fluoranthene	ND	ug/kg	4700					
Benzo(k)fluoranthene	ND	ug/kg	4700					
Chrysene	ND	ug/kg	4700					
Acenaphthylene	ND	ug/kg	4700					
Anthracene	ND	ug/kg	4700					
Benzo(ghi)perylene	ND	ug/kg	4700					
Fluorene	ND	ug/kg	4700					
Phenanthrene	ND	ug/kg	4700					
Dibenzo(a,h)anthracene	ND	ug/kg	4700					
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	4700					
Pyrene	ND	ug/kg	4700					
Biphenyl	ND	ug/kg	4700					
1-Chloroaniline	ND	ug/kg	4700					
2-Nitroaniline	ND	ug/kg	4700					
3-Nitroaniline	ND	ug/kg	4700					
l-Nitroaniline	ND	ug/kg	6600					
Dibenzofuran	ND	ug/kg	4700					
2-Methylnaphthalene	ND	ug/kg	4700					
.,2,4,5-Tetrachlorobenzene	ND	ug/kg	19000					
Acetophenone	ND	ug/kg	19000					
2,4,6-Trichlorophenol	ND	ug/kg	4700					
P-Chloro-M-Cresol	ND	ug/kg	4700					
2-Chlorophenol	ND	ug/kg	5600					
2,4-Dichlorophenol	ND	ug/kg	9400					
2,4-Dimethylphenol	ND	ug/kg	4700					
2-Nitrophenol	ND	ug/kg	19000					
1-Nitrophenol	ND	ug/kg	9400					
2,4-Dinitrophenol	ND	ug/kg	19000					
1,6-Dinitro-o-cresol	ND	ug/kg	19000					
Pentachlorophenol	ND	ug/kg	19000					
Phenol	ND	ug/kg	6600					
2-Methylphenol	ND	ug/kg	5600					
B-Methylphenol/4-Methylphenol	ND	ug/kg	5600					
2,4,5-Trichlorophenol	ND	ug/kg	4700					
Benzoic Acid	ND	ug/kg	47000					
Benzyl Alcohol	ND	ug/kg	9400					
Carbazole	ND	ug/kg	4700					
Surrogate(s)	Recovery		QC Cri	teria	a.			
2-Fluorophenol	98.0	%	25-120					
Phenol-d6	96.0	%	10-120					
Nitrobenzene-d5	85.0	8	23-120					
2-Fluorobiphenyl	94.0	%	30-120					
2,4,6-Tribromophenol	116	%	19-120					
l-Terphenyl-d14	88.0	%	18-120					

Laboratory Sample Number: L0813344-25

PWG-DW-2008-20 (4.5-5')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE PREP ANAL	ID
					PREP ANAL	
Semivolatile Organics by B	EPA 8270C-STM	cont.'d		1 8270C	0911 03:30 0913 22:2	28 AK
Acenaphthene	ND	ug/kg	1900		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
2-Chloronaphthalene	ND	ug/kg	1900			
luoranthene	ND	ug/kg	1900			
Hexachlorobutadiene	ND	ug/kg	4700			
Japhthalene	ND	ug/kg	1900			
Benzo(a)anthracene	ND	ug/kg	1900			
Benzo(a)pyrene	ND	ug/kg	1900			
Benzo(b)fluoranthene	ND	ug/kg	1900			
Benzo(k)fluoranthene	ND	ug/kg	1900			
Chrysene	ND	ug/kg	1900			
Acenaphthylene	ND	ug/kg	1900			
Anthracene	ND	ug/kg	1900			
Benzo(ghi)perylene	ND	ug/kg	1900			
Fluorene	ND	ug/kg	1900			
Phenanthrene	ND	ug/kg	1900			
Dibenzo(a,h)anthracene	ND	ug/kg	1900			
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	1900			
Pyrene	ND	ug/kg	1900			
2-Methylnaphthalene	ND	ug/kg	1900			
Pentachlorophenol	ND	ug/kg	7500			
Hexachlorobenzene	ND	ug/kg	7500			
Hexachloroethane	ND	ug/kg	7500			
Surrogate(s)	Recovery		QC Cri	iteria		
2-Fluorophenol	ND	%	25-120	0		
Phenol-d6	ND	%	10-120)		
Nitrobenzene-d5	ND	%	23-120)		
2-Fluorobiphenyl	ND	%	30-120	0		
2,4,6-Tribromophenol	ND	%	19-120	O		
1-Terphenyl-d14	ND	%	18-120)		
Petroleum Hydrocarbon Quar	ntitation by G	C-FID		1 8015B(M)	0911 00:15 0912 16:5	52 RT
ГРН	5430000	ug/kg	117000	00		
Surrogate(s)	Recovery		~	iteria		
o-Terphenyl	86.0	%	40-140	0		

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813344-26 Date Collected: 08-SEP-2008 15:30

PWG-DW-2008-22 (5.25-5.75') Date Received: 09-SEP-2008

Sample Matrix: SOIL Date Reported: 25-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA PREP	ANAL	ID
						MAL	
Solids, Total	87	%	0.10	30 2540G		0910 19:00) NM
Total Metals							
Aluminum, Total	2200	mg/kg	5.3	1 6010B	0910 13:30	0911 15:57	7 AI
Antimony, Total	ND	mg/kg	2.6	1 6010B	0910 13:30	0911 15:57	7 AI
Arsenic, Total	7.2	mg/kg	0.53	1 6010B	0910 13:30	0911 15:57	7 AI
Barium, Total	6.9	mg/kg	0.53	1 6010B	0910 13:30	0911 15:57	7 AI
Beryllium, Total	0.34	mg/kg	0.26	1 6010B	0910 13:30	0911 15:57	7 AI
Cadmium, Total	ND	mg/kg	0.53	1 6010B	0910 13:30	0911 15:57	7 AI
Calcium, Total	11000	mg/kg	5.3	1 6010B	0910 13:30	0911 15:57	7 AI
Chromium, Total	26	mg/kg	0.53	1 6010B	0910 13:30	0911 15:57	7 AI
Cobalt, Total	1.7	mg/kg	1.0	1 6010B	0910 13:30	0911 15:57	7 AI
Copper, Total	6.1	mg/kg	0.53	1 6010B	0910 13:30	0911 15:57	7 AI
Iron, Total	15000	mg/kg	2.6	1 6010B	0910 13:30	0911 15:57	7 AI
Lead, Total	12	mg/kg	2.6	1 6010B	0910 13:30	0911 15:57	7 AI
Magnesium, Total	7200	mg/kg	5.3	1 6010B	0910 13:30	0911 15:57	7 AI
Manganese, Total	34	mg/kg	0.53	1 6010B	0910 13:30	0911 15:57	7 AI
Mercury, Total	ND	mg/kg	0.09	1 7471A	0912 20:30	0914 13:58	3 но
Nickel, Total	3.8	mg/kg	1.3	1 6010B	0910 13:30	0911 15:57	7 AI
Potassium, Total	130	mg/kg	130	1 6010B	0910 13:30	0911 15:57	7 AI
Selenium, Total	ND	mg/kg	1.0	1 6010B	0910 13:30	0911 15:57	7 AI
Silver, Total	ND	mg/kg	0.53	1 6010B	0910 13:30	0911 15:57	7 AI
Sodium, Total	ND	mg/kg	100	1 6010B	0910 13:30	0911 15:57	7 AI
Thallium, Total	ND	mg/kg	2.1	1 6010B	0910 13:30	0911 19:55	5 AI
Vanadium, Total	14	mg/kg	0.53	1 6010B	0910 13:30	0911 15:57	7 AI
Zinc, Total	24	mg/kg	2.6	1 6010B	0910 13:30	0911 15:57	7 AI
Volatile Organics by EPA 8	3260B			1 8260B		0912 17:31	L PD
Methylene chloride	ND	ug/kg	29.				
1,1-Dichloroethane	ND	ug/kg	4.3				
Chloroform	ND	ug/kg	4.3				
Carbon tetrachloride	ND	ug/kg	2.9				
1,2-Dichloropropane	ND	ug/kg	10.				
Dibromochloromethane	ND	ug/kg	2.9				
1,1,2-Trichloroethane	ND	ug/kg	4.3				
Tetrachloroethene	ND	ug/kg	2.9				
Chlorobenzene	ND	ug/kg	2.9				
Trichlorofluoromethane	ND	ug/kg	14.				

Laboratory Sample Number: L0813344-26

PWG-DW-2008-22 (5.25-5.75')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
olatile Organics by EPA 826	OB cont'd			1	8260B		0912 17:3	31 PD
l,2-Dichloroethane	ND	ug/kg	2.9					
l,1,1-Trichloroethane	ND	ug/kg	2.9					
Bromodichloromethane	ND	ug/kg	2.9					
rans-1,3-Dichloropropene	ND	ug/kg	2.9					
is-1,3-Dichloropropene	ND	ug/kg	2.9					
,1-Dichloropropene	ND	ug/kg	14.					
3romoform	ND	ug/kg	11.					
,1,2,2-Tetrachloroethane	ND	ug/kg	2.9					
Benzene	ND	ug/kg	2.9					
Coluene	ND	ug/kg	4.3					
thylbenzene	ND	ug/kg	2.9					
thloromethane	ND	ug/kg	14.					
romomethane	ND	ug/kg	5.7					
inyl chloride	ND	ug/kg ug/kg	5.7					
Chloroethane	ND	ug/kg ug/kg	5.7					
,1-Dichloroethene	ND	ug/kg ug/kg	2.9					
rans-1,2-Dichloroethene	ND	ug/kg ug/kg	4.3					
richloroethene	ND	ug/kg ug/kg	2.9					
,2-Dichlorobenzene	ND	ug/kg ug/kg	14.					
.,3-Dichlorobenzene	ND	ug/kg ug/kg	14.					
,,4-Dichlorobenzene	ND	ug/kg ug/kg	14.					
Methyl tert butyl ether	ND	ug/kg ug/kg	5.7					
			5.7					
o/m-Xylene	ND ND	ug/kg						
-Xylene		ug/kg	5.7					
eis-1,2-Dichloroethene	ND	ug/kg	2.9					
	ND	ug/kg	29.					
styrene	ND	ug/kg	5.7					
Dichlorodifluoromethane	ND	ug/kg	29.					
cetone	ND	ug/kg	29.					
arbon disulfide	ND	ug/kg	29.					
-Butanone	ND	ug/kg	29.					
inyl acetate	ND	ug/kg	29.					
-Methyl-2-pentanone	ND	ug/kg	29.					
.,2,3-Trichloropropane	ND	ug/kg	29.					
-Hexanone	ND	ug/kg	29.					
romochloromethane	ND	ug/kg	14.					
,2-Dichloropropane	ND	ug/kg	14.					
,2-Dibromoethane	ND	ug/kg	11.					
,3-Dichloropropane	ND	ug/kg	14.					
,1,1,2-Tetrachloroethane	ND	ug/kg	2.9					
romobenzene	ND	ug/kg	14.					
-Butylbenzene	ND	ug/kg	2.9					
ec-Butylbenzene	ND	ug/kg	2.9					
ert-Butylbenzene	ND	ug/kg	14.					
-Chlorotoluene	ND	ug/kg	14.					
-Chlorotoluene	ND	ug/kg	14.					
,2-Dibromo-3-chloropropane	ND	ug/kg	14.					
exachlorobutadiene	ND	ug/kg	14.					
sopropylbenzene	ND	ug/kg	2.9					

Laboratory Sample Number: L0813344-26

PWG-DW-2008-22 (5.25-5.75')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD		TE	ID
						PREP	ANAL	
Volatile Organics by EPA 826	OB cont'd			1	8260B		0912 17:	31 PD
p-Isopropyltoluene	ND	ug/kg	2.9					
Naphthalene	ND	ug/kg	14.					
Acrylonitrile	ND	ug/kg	29.					
n-Propylbenzene	ND	ug/kg	2.9					
1,2,3-Trichlorobenzene	ND	ug/kg	14.					
1,2,4-Trichlorobenzene	ND	ug/kg	14.					
1,3,5-Trimethylbenzene	ND	ug/kg	14.					
1,2,4-Trimethylbenzene	ND	ug/kg	14.					
1,4-Diethylbenzene	ND	ug/kg	11.					
4-Ethyltoluene	ND	ug/kg ug/kg	11.					
1,2,4,5-Tetramethylbenzene	ND		11.					
1,2,4,5-recramethyrbenzene	ND	ug/kg	11.					
Surrogate(s)	Recovery		QC Cri	teria	а			
1,2-Dichloroethane-d4	96.0	%	70-130					
Toluene-d8	105	%	70-130					
4-Bromofluorobenzene	112	%	70-130					
Dibromofluoromethane	96.0	%	70-130					
Semivolatile Organics by EPA	8270C			1	8270C	0911 00:30	0913 16:	12 PS
Acenaphthene	ND	ug/kg	380	_	02700	0311 00-30	0313 101	12 10
1,2,4-Trichlorobenzene	ND	ug/kg	380					
Hexachlorobenzene	ND	ug/kg	380					
Bis(2-chloroethyl)ether	ND	ug/kg ug/kg	380					
2-Chloronaphthalene	ND	ug/kg ug/kg	460					
1,2-Dichlorobenzene	ND	ug/kg ug/kg	380					
1,3-Dichlorobenzene	ND ND	ug/kg ug/kg	380					
1,4-Dichlorobenzene	ND ND	ug/kg ug/kg	380					
3,3'-Dichlorobenzidine			770					
	ND	ug/kg						
2,4-Dinitrotoluene	ND	ug/kg	380					
2,6-Dinitrotoluene	ND	ug/kg	380					
Fluoranthene	ND	ug/kg	380					
4-Chlorophenyl phenyl ether	ND	ug/kg	380					
4-Bromophenyl phenyl ether	ND	ug/kg	380					
Bis(2-chloroisopropyl)ether	ND	ug/kg	380					
Bis(2-chloroethoxy)methane	ND	ug/kg	380					
Hexachlorobutadiene	ND	ug/kg	770					
Hexachlorocyclopentadiene	ND	ug/kg	770					
Hexachloroethane	ND	ug/kg	380					
Isophorone	ND	ug/kg	380					
Naphthalene	ND	ug/kg	380					
Nitrobenzene	ND	ug/kg	380					
NitrosoDiPhenylAmine(NDPA)/D	PA ND	ug/kg	1100					
n-Nitrosodi-n-propylamine	ND	ug/kg	380					
Bis(2-Ethylhexyl)phthalate	ND	ug/kg	770					
Butyl benzyl phthalate	ND	ug/kg	380					
Di-n-butylphthalate	ND	ug/kg	380					
Di-n-octylphthalate	ND	ug/kg	380					
Diethyl phthalate	ND	ug/kg	380					
<u> </u>			380					

Laboratory Sample Number: L0813344-26

PWG-DW-2008-22 (5.25-5.75')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Semivolatile Organics by EPA	8270C cont	- ' d		1	8270C	0911 00:30	0913 16:	12 PS
Benzo(a)anthracene	ND	ug/kg	380	-	02700	0311 00 30	0,10	12 10
Benzo(a)pyrene	ND	ug/kg ug/kg	380					
Benzo(b)fluoranthene	ND	ug/kg ug/kg	380					
Benzo(k)fluoranthene	ND	ug/kg ug/kg	380					
Chrysene	ND	ug/kg ug/kg	380					
Acenaphthylene	ND	ug/kg ug/kg	380					
Acenaphthyrene Anthracene	ND		380					
		ug/kg						
Benzo(ghi)perylene Fluorene	ND	ug/kg	380					
	ND	ug/kg	380					
Phenanthrene	ND	ug/kg	380					
Dibenzo(a,h)anthracene	ND	ug/kg	380					
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	380					
Pyrene	ND	ug/kg	380					
Biphenyl	ND	ug/kg	380					
1-Chloroaniline	ND	ug/kg	380					
2-Nitroaniline	ND	ug/kg	380					
3-Nitroaniline	ND	ug/kg	380					
1-Nitroaniline	ND	ug/kg	540					
Dibenzofuran	ND	ug/kg	380					
2-Methylnaphthalene	ND	ug/kg	380					
l,2,4,5-Tetrachlorobenzene	ND	ug/kg	1500					
Acetophenone	ND	ug/kg	1500					
2,4,6-Trichlorophenol	ND	ug/kg	380					
P-Chloro-M-Cresol	ND	ug/kg	380					
2-Chlorophenol	ND	ug/kg	460					
2,4-Dichlorophenol	ND	ug/kg	770					
2,4-Dimethylphenol	ND	ug/kg	380					
2-Nitrophenol	ND	ug/kg	1500					
1-Nitrophenol	ND	ug/kg	770					
2,4-Dinitrophenol	ND	ug/kg	1500					
1,6-Dinitro-o-cresol	ND	ug/kg	1500					
Pentachlorophenol	ND	ug/kg	1500					
Phenol	ND	ug/kg	540					
2-Methylphenol	ND	ug/kg	460					
3-Methylphenol/4-Methylphenol	ND	ug/kg	460					
2,4,5-Trichlorophenol	ND	ug/kg	380					
Benzoic Acid	ND	ug/kg	3800					
Benzyl Alcohol	ND	ug/kg	770					
Carbazole	ND	ug/kg	380					
Surrogate(s)	Recovery		QC Cr	iteria	L			
2-Fluorophenol	55.0	%	25-120)				
Phenol-d6	53.0	%	10-120)				
Nitrobenzene-d5	47.0	%	23-120					
2-Fluorobiphenyl	47.0	%	30-120					
2,4,6-Tribromophenol	69.0	%	19-120					
4-Terphenyl-d14	61.0	%	18-120					

Laboratory Sample Number: L0813344-26

PWG-DW-2008-22 (5.25-5.75')

PARAMETER	RESULT	UNITS	\mathtt{RDL}	REF METHOD	DA	TE	ID
					PREP	ANAL	
Gara' alat'la Garan'an h. E	D. 00700 GTM						
Semivolatile Organics by E			2.1	1 8270C	0911 00:30	0914 02:5	'/ AK
Acenaphthene	ND	ug/kg	31.				
2-Chloronaphthalene	ND	ug/kg	31.				
Fluoranthene	ND	ug/kg	31.				
Hexachlorobutadiene	ND	ug/kg	77.				
Naphthalene	ND	ug/kg	31.				
Benzo(a)anthracene	ND	ug/kg	31.				
Benzo(a)pyrene	ND	ug/kg	31.				
Benzo(b)fluoranthene	ND	ug/kg	31.				
Benzo(k)fluoranthene	ND	ug/kg	31.				
Chrysene	ND	ug/kg	31.				
Acenaphthylene	ND	ug/kg	31.				
Anthracene	ND	ug/kg	31.				
Benzo(ghi)perylene	ND	ug/kg	31.				
Fluorene	ND	ug/kg	31.				
Phenanthrene	ND	ug/kg	31.				
Dibenzo(a,h)anthracene	ND	ug/kg	31.				
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	31.				
Pyrene	ND	ug/kg	31.				
2-Methylnaphthalene	ND	ug/kg	31.				
Pentachlorophenol	ND	ug/kg	120				
Hexachlorobenzene	ND	ug/kg	120				
Hexachloroethane	ND	ug/kg	120				
Surrogate(s)	Recovery		QC Cr	iteria			
2-Fluorophenol	65.0	%	25-120	0			
Phenol-d6	72.0	૪	10-120	0			
Nitrobenzene-d5	62.0	%	23-120	0			
2-Fluorobiphenyl	61.0	%	30-120	0			
2,4,6-Tribromophenol	66.0	%	19-120	0			
4-Terphenyl-d14	87.0	રુ	18-120	0			
Petroleum Hydrocarbon Quan	titation by (1 8015B(M)	0911 01:00	0912 01:2	9 JI
ГРН	ND	ug/kg	38300				
Surrogate(s)	Recovery		~	iteria			
o-Terphenyl	69.0	%	40-140	Λ			

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813344-27 Date Collected: 08-SEP-2008 15:40

Sample Matrix: SOIL Date Reported: 25-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE II
					PREP ANAL
Solids, Total	79	8	0.10	30 2540G	0910 19:00 NN
Total Metals					
Aluminum, Total	1400	mg/kg	6.1	1 6010B	0910 13:30 0911 16:10 A
Antimony, Total	ND	mg/kg	3.0	1 6010B	0910 13:30 0911 16:10 A
Arsenic, Total	1.0	mg/kg	0.61	1 6010B	0910 13:30 0911 16:10 A
Barium, Total	10	mg/kg	0.61	1 6010B	0910 13:30 0911 16:10 A
Beryllium, Total	ND	mg/kg	0.30	1 6010B	0910 13:30 0911 16:10 A
Cadmium, Total	ND	mg/kg	0.61	1 6010B	0910 13:30 0911 16:10 A
Calcium, Total	13000	mg/kg	6.1	1 6010B	0910 13:30 0911 16:10 A
Chromium, Total	10	mg/kg	0.61	1 6010B	0910 13:30 0911 16:10 A
Cobalt, Total	2.0	mg/kg	1.2	1 6010B	0910 13:30 0911 16:10 A
Copper, Total	170	mg/kg	0.61	1 6010B	0910 13:30 0911 16:10 A
Iron, Total	7600	mg/kg	3.0	1 6010B	0910 13:30 0911 16:10 A
Lead, Total	67	mg/kg	3.0	1 6010B	0910 13:30 0911 16:10 A
Magnesium, Total	8300	mg/kg	6.1	1 6010B	0910 13:30 0911 16:10 A
Manganese, Total	58	mg/kg	0.61	1 6010B	0910 13:30 0911 16:10 A
Mercury, Total	0.13	mg/kg	0.10	1 7471A	0912 20:30 0914 13:59 но
Nickel, Total	13	mg/kg	1.5	1 6010B	0910 13:30 0911 16:10 A
Potassium, Total	180	mg/kg	150	1 6010B	0910 13:30 0911 16:10 A
Selenium, Total	ND	mg/kg	1.2	1 6010B	0910 13:30 0911 16:10 A
Silver, Total	ND	mg/kg	0.61	1 6010B	0910 13:30 0911 16:10 A
Sodium, Total	ND	mg/kg	120	1 6010B	0910 13:30 0911 16:10 A
Thallium, Total	ND	mg/kg	1.2	1 6010B	0910 13:30 0911 16:10 A
Janadium, Total	12	mg/kg	0.61	1 6010B	0910 13:30 0911 16:10 A
Zinc, Total	180	mg/kg	3.0	1 6010B	0910 13:30 0911 16:10 A
Volatile Organics by EPA 8	3260B			1 8260B	0912 18:08 PI
Methylene chloride	ND	ug/kg	32.		
l,1-Dichloroethane	ND	ug/kg	4.7		
Chloroform	ND	ug/kg	4.7		
Carbon tetrachloride	ND	ug/kg	3.2		
l,2-Dichloropropane	ND	ug/kg	11.		
Dibromochloromethane	ND	ug/kg	3.2		
1,1,2-Trichloroethane	ND	ug/kg	4.7		
Tetrachloroethene	ND	ug/kg	3.2		
Chlorobenzene	ND	ug/kg	3.2		
Trichlorofluoromethane	ND	ug/kg	16.		

Laboratory Sample Number: L0813344-27

PWG-DW-2008-23 (3-3.5')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
7.1.1.1.0.1.1.772.006								
Volatile Organics by EPA 826		/1	2 0	1	8260B		0912 18:0	08 PD
l,2-Dichloroethane	ND	ug/kg	3.2					
l,1,1-Trichloroethane	ND	ug/kg	3.2					
Bromodichloromethane	ND	ug/kg	3.2					
rans-1,3-Dichloropropene	ND	ug/kg	3.2					
cis-1,3-Dichloropropene	ND	ug/kg	3.2					
1,1-Dichloropropene	ND	ug/kg	16.					
Bromoform	ND	ug/kg	13.					
,1,2,2-Tetrachloroethane	ND	ug/kg	3.2					
Benzene	ND	ug/kg	3.2					
Coluene	ND	ug/kg	4.7					
Sthylbenzene	ND	ug/kg	3.2					
hloromethane	ND	ug/kg	16.					
Bromomethane	ND	ug/kg	6.3					
Jinyl chloride	ND	ug/kg	6.3					
Chloroethane	ND	ug/kg	6.3					
,1-Dichloroethene	ND	ug/kg	3.2					
rans-1,2-Dichloroethene	ND	ug/kg	4.7					
Crichloroethene	ND	ug/kg	3.2					
,2-Dichlorobenzene	ND	ug/kg	16.					
.,3-Dichlorobenzene	ND	ug/kg	16.					
.,4-Dichlorobenzene	ND	ug/kg	16.					
Methyl tert butyl ether	ND	ug/kg	6.3					
o/m-Xylene	ND	ug/kg	6.3					
-Xylene	ND	ug/kg	6.3					
cis-1,2-Dichloroethene	ND	ug/kg	3.2					
) ibromomethane	ND	ug/kg	32.					
Styrene	ND	ug/kg	6.3					
Dichlorodifluoromethane	ND	ug/kg	32.					
Acetone	ND	ug/kg	32.					
Carbon disulfide	ND	ug/kg	32.					
R-Butanone	ND	ug/kg	32.					
inyl acetate	ND	ug/kg	32.					
l-Methyl-2-pentanone	ND	ug/kg	32.					
1,2,3-Trichloropropane	ND	ug/kg	32.					
2-Hexanone	ND	ug/kg	32.					
Bromochloromethane	ND	ug/kg	16.					
2,2-Dichloropropane	ND	ug/kg ug/kg	16.					
,,2-Dichiolopiopane ,,2-Dibromoethane	ND	ug/kg ug/kg	13.					
1,3-Dichloropropane	ND	ug/kg ug/kg	16.					
.,1,1,2-Tetrachloroethane	ND	ug/kg ug/kg	3.2					
Bromobenzene	ND		16.					
		ug/kg						
-Butylbenzene	ND	ug/kg	3.2					
sec-Butylbenzene	ND	ug/kg	3.2					
ert-Butylbenzene	ND	ug/kg	16.					
-Chlorotoluene	ND	ug/kg	16.					
o-Chlorotoluene	ND	ug/kg	16.					
,2-Dibromo-3-chloropropane	ND	ug/kg	16.					
Mexachlorobutadiene	ND	ug/kg	16.					
Isopropylbenzene	ND	ug/kg	3.2					

Laboratory Sample Number: L0813344-27

PWG-DW-2008-23 (3-3.5')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
						PREP	ANAL	
Volatile Organics by EPA 826	OB cont'd			1	8260B		0912 18:	08 PD
p-Isopropyltoluene	ND	ug/kg	3.2					
Naphthalene	ND	ug/kg	16.					
Acrylonitrile	ND	ug/kg	32.					
n-Propylbenzene	ND	ug/kg	3.2					
1,2,3-Trichlorobenzene	ND	ug/kg	16.					
1,2,4-Trichlorobenzene	ND	ug/kg	16.					
1,3,5-Trimethylbenzene	ND	ug/kg	16.					
1,2,4-Trimethylbenzene	ND	ug/kg	16.					
1,4-Diethylbenzene	ND	ug/kg	13.					
4-Ethyltoluene	ND	ug/kg	13.					
1,2,4,5-Tetramethylbenzene	ND	ug/kg	13.					
Surrogate(s)	Recovery		OC Cri	teria	a			
1,2-Dichloroethane-d4	115	%	70-130					
roluene-d8	120	%	70-130					
4-Bromofluorobenzene	138	%	70-130					
Dibromofluoromethane	114	%	70-130					
Semivolatile Organics by EPA	8270C			1	8270C	0911 00:30	0012 16.	26 DC
Acenaphthene	ND	ug/kg	2100	1	82700	0911 00:30	0913 10.	30 PS
1,2,4-Trichlorobenzene	ND	ug/kg ug/kg	2100					
Hexachlorobenzene	ND	ug/kg ug/kg	2100					
Bis(2-chloroethyl)ether	ND		2100					
2-Chloronaphthalene	ND	ug/kg ug/kg	2500					
1,2-Dichlorobenzene			2100					
1,2-Dichlorobenzene 1,3-Dichlorobenzene	ND ND	ug/kg						
1,4-Dichlorobenzene	ND	ug/kg ug/kg	2100 2100					
3,3'-Dichlorobenzidine			4200					
2,4-Dinitrotoluene	ND	ug/kg	2100					
2,6-Dinitrotoluene 2,6-Dinitrotoluene	ND	ug/kg						
z,6-Dinitrotoluene Fluoranthene	ND	ug/kg	2100					
	ND	ug/kg	2100					
4-Chlorophenyl phenyl ether	ND	ug/kg	2100					
4-Bromophenyl phenyl ether	ND	ug/kg	2100					
Bis(2-chloroisopropyl)ether	ND	ug/kg	2100					
Bis(2-chloroethoxy)methane Hexachlorobutadiene	ND	ug/kg	2100					
	ND	ug/kg	4200					
Hexachlorocyclopentadiene	ND	ug/kg	4200					
Hexachloroethane Isophorone	ND ND	ug/kg	2100					
-	ND	ug/kg	2100					
Naphthalene Nitrobenzene	ND	ug/kg	2100					
	ND	ug/kg	2100					
NitrosoDiPhenylAmine(NDPA)/D		ug/kg	6300					
n-Nitrosodi-n-propylamine	ND	ug/kg	2100					
Bis(2-Ethylhexyl)phthalate	ND	ug/kg	4200					
Butyl benzyl phthalate	ND	ug/kg	2100					
Di-n-butylphthalate	ND	ug/kg	2100					
Di-n-octylphthalate	ND	ug/kg	2100					
Diethyl phthalate	ND	ug/kg	2100					
Dimethyl phthalate	ND	ug/kg	2100					

Laboratory Sample Number: L0813344-27

PWG-DW-2008-23 (3-3.5')

	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Semivolatile Organics by EPA	8270C cont	- ' d		1	8270C	0911 00:30	0012 16	· 26 DC
Benzo(a)anthracene	ND	ug/kg	2100		8270C	0911 00:30	0913 10	. 30 PS
Benzo(a)pyrene	ND ND		2100					
· · · · · · · · · · · · · · · · · · ·		ug/kg						
Benzo(b)fluoranthene	ND	ug/kg ug/kg	2100					
Benzo(k)fluoranthene	ND		2100					
Chrysene	ND	ug/kg	2100					
Acenaphthylene Anthracene	ND	ug/kg	2100					
	ND	ug/kg	2100					
Benzo(ghi)perylene	ND	ug/kg	2100					
luorene	ND	ug/kg	2100					
Phenanthrene	ND	ug/kg	2100					
pibenzo(a,h)anthracene	ND	ug/kg	2100					
indeno(1,2,3-cd)Pyrene	ND	ug/kg	2100					
yrene	ND	ug/kg	2100					
Siphenyl	ND	ug/kg	2100					
l-Chloroaniline	ND	ug/kg	2100					
R-Nitroaniline	ND	ug/kg	2100					
3-Nitroaniline	ND	ug/kg	2100					
-Nitroaniline	ND	ug/kg	3000					
Dibenzofuran	ND	ug/kg	2100					
-Methylnaphthalene	ND	ug/kg	2100					
,2,4,5-Tetrachlorobenzene	ND	ug/kg	8400					
cetophenone	ND	ug/kg	8400					
2,4,6-Trichlorophenol	ND	ug/kg	2100					
P-Chloro-M-Cresol	ND	ug/kg	2100					
-Chlorophenol	ND	ug/kg	2500					
2,4-Dichlorophenol	ND	ug/kg	4200					
2,4-Dimethylphenol	ND	ug/kg	2100					
2-Nitrophenol	ND	ug/kg	8400					
l-Nitrophenol	ND	ug/kg	4200					
2,4-Dinitrophenol	ND	ug/kg	8400					
,6-Dinitro-o-cresol	ND	ug/kg	8400					
Pentachlorophenol	ND	ug/kg	8400					
Phenol	ND	ug/kg	3000					
2-Methylphenol	ND	ug/kg	2500					
-Methylphenol/4-Methylpheno	ol ND	ug/kg	2500					
,4,5-Trichlorophenol	ND	ug/kg	2100					
Benzoic Acid	ND	ug/kg	21000					
Benzyl Alcohol	ND	ug/kg	4200					
arbazole	ND	ug/kg	2100					
urrogate(s)	Recovery		QC Cr	iteria	a			
-Fluorophenol	71.0	%	25-120)				
henol-d6	78.0	%	10-120)				
Jitrobenzene-d5	68.0	%	23-120)				
-Fluorobiphenyl	82.0	%	30-120)				
,4,6-Tribromophenol	90.0	8	19-120					
-Terphenyl-d14	76.0	%	18-120					

Laboratory Sample Number: L0813344-27

PWG-DW-2008-23 (3-3.5')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA		ID
					PREP	ANAL	
7	D3 00700 GTM						
Semivolatile Organics by E			0.40	1 8270C	0911 00:30	0914 03:4	4 AK
Acenaphthene	ND	ug/kg	840				
2-Chloronaphthalene	ND	ug/kg	840				
Fluoranthene	ND	ug/kg	840				
Hexachlorobutadiene	ND	ug/kg	2100				
Naphthalene	ND	ug/kg	840				
Benzo(a)anthracene	ND	ug/kg	840				
Benzo(a)pyrene	ND	ug/kg	840				
Benzo(b)fluoranthene	ND	ug/kg	840				
Benzo(k)fluoranthene	ND	ug/kg	840				
Chrysene	ND	ug/kg	840				
Acenaphthylene	ND	ug/kg	840				
Anthracene	ND	ug/kg	840				
Benzo(ghi)perylene	ND	ug/kg	840				
Fluorene	ND	ug/kg	840				
Phenanthrene	ND	ug/kg	840				
Dibenzo(a,h)anthracene	ND	ug/kg	840				
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	840				
Pyrene	ND	ug/kg	840				
2-Methylnaphthalene	ND	ug/kg	840				
Pentachlorophenol	ND	ug/kg	3400				
Hexachlorobenzene	ND	ug/kg	3400				
Hexachloroethane	ND	ug/kg	3400				
Surrogate(s)	Recovery		QC Cri	teria			
2-Fluorophenol	ND	%	25-120	1			
Phenol-d6	ND	%	10-120	1			
Nitrobenzene-d5	ND	%	23-120)			
2-Fluorobiphenyl	ND	8	30-120)			
2,4,6-Tribromophenol	ND	8	19-120)			
4-Terphenyl-d14	ND	%	18-120	1			
Petroleum Hydrocarbon Quan	titation by (GC-FID		1 8015B(M)	0911 01:00	0912 02:0	3 JI
ГРН	ND	ug/kg	211000	1			
Surrogate(s)	Recovery		QC Cri				
o-Terphenyl	84.0	%	40-140				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813344-28 Date Collected: 08-SEP-2008 15:50

Sample Matrix: SOIL Date Reported: 25-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID
					PREP ANAL
Solids, Total	75	ે	0.10	30 2540G	0910 19:00 NM
Total Metals					
Aluminum, Total	2800	mg/kg	6.1	1 6010B	0910 13:30 0911 16:14 AI
Antimony, Total	ND	mg/kg	3.1	1 6010B	0910 13:30 0911 16:14 AI
Arsenic, Total	1.4	mg/kg	0.61	1 6010B	0910 13:30 0911 16:14 AI
Barium, Total	6.2	mg/kg	0.61	1 6010B	0910 13:30 0911 16:14 AI
Beryllium, Total	ND	mg/kg	0.31	1 6010B	0910 13:30 0911 16:14 AI
Cadmium, Total	ND	mg/kg	0.61	1 6010B	0910 13:30 0911 16:14 AI
Calcium, Total	3400	mg/kg	6.1	1 6010B	0910 13:30 0911 16:14 AI
Chromium, Total	7.2	mg/kg	0.61	1 6010B	0910 13:30 0911 16:14 AI
Cobalt, Total	ND	mg/kg	1.2	1 6010B	0910 13:30 0911 16:14 AI
Copper, Total	13	mg/kg	0.61	1 6010B	0910 13:30 0911 16:14 AI
Iron, Total	4400	mg/kg	3.1	1 6010B	0910 13:30 0911 16:14 AI
Lead, Total	37	mg/kg	3.1	1 6010B	0910 13:30 0911 16:14 AI
Magnesium, Total	2300	mg/kg	6.1	1 6010B	0910 13:30 0911 16:14 AI
Manganese, Total	15	mg/kg	0.61	1 6010B	0910 13:30 0911 16:14 AI
Mercury, Total	0.29	mg/kg	0.11	1 7471A	0912 20:30 0914 14:01 HG
Nickel, Total	4.0	mg/kg	1.5	1 6010B	0910 13:30 0911 16:14 AI
Potassium, Total	ND	mg/kg	150	1 6010B	0910 13:30 0911 16:14 AI
Selenium, Total	ND	mg/kg	1.2	1 6010B	0910 13:30 0911 16:14 AI
Silver, Total	ND	mg/kg	0.61	1 6010B	0910 13:30 0911 16:14 AI
Sodium, Total	ND	mg/kg	120	1 6010B	0910 13:30 0911 16:14 AI
Thallium, Total	ND	mg/kg	1.2	1 6010B	0910 13:30 0911 16:14 AI
Vanadium, Total	10	mg/kg	0.61	1 6010B	0910 13:30 0911 16:14 AI
Zinc, Total	54	mg/kg	3.1	1 6010B	0910 13:30 0911 16:14 AI
Volatile Organics by EPA 8	3260B			1 8260B	0912 18:44 PD
Methylene chloride	ND	ug/kg	33.		
1,1-Dichloroethane	ND	ug/kg	5.0		
Chloroform	ND	ug/kg	5.0		
Carbon tetrachloride	ND	ug/kg	3.3		
1,2-Dichloropropane	ND	ug/kg	12.		
Dibromochloromethane	ND	ug/kg	3.3		
1,1,2-Trichloroethane	ND	ug/kg	5.0		
Tetrachloroethene	ND	ug/kg	3.3		
Chlorobenzene	ND	ug/kg	3.3		
Trichlorofluoromethane	ND	ug/kg	17.		

Laboratory Sample Number: L0813344-28

PWG-DW-2008-24 (6-6.5')

Volatile Organics by EPA 8260B cont'd 1 8260R 0912 1818 1,2-Dichloroethane ND ug/kg 3.3 1,1,1-Trichloroethane ND ug/kg 3.3 1,1,1-Trichloroethane ND ug/kg 3.3 1,1-Dichloropropene ND ug/kg 3.3 1,1-Dichloropropene ND ug/kg 3.3 1,1-Dichloropropene ND ug/kg 17. 1,1-1,2-Tetrachloroethane ND ug/kg 13. 1,1,2,2-Tetrachloroethane ND ug/kg 3.3 1,1,2,2-Tetrachloroethane ND ug/kg 3.3 1,2-Dichloroethane ND ug/kg 3.3 1,1-Dichloroethane ND ug/kg 3.3 1,1-Dichloroethane ND ug/kg 3.3 1,1-Dichloroethane ND ug/kg 17. 1,1-Dichloroethane ND ug/kg 6.7 1,1-Dichloroethane ND ug/kg 3.3 1,1-Dichloroethane ND ug/kg	ARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA' PREP	TE ANAL	ID
	olatile Organics by EPA 82	60B cont'd			1	8260B		0912 18:	44 PD
### Stromodichloromethame ND	,2-Dichloroethane	ND	ug/kg	3.3					
Description	,1,1-Trichloroethane	ND	ug/kg	3.3					
ris-1,3-bichloropropene ND ug/kg 17. aromoform ND ug/kg 17. aromoform ND ug/kg 3.3 Benzene ND ug/kg 3.3 Benzenee ND ug/kg 3.3 Column ND ug/kg 5.0 Sthylbenzene ND ug/kg 5.0 Chloromethane ND ug/kg 6.7 Linyl chloride ND ug/kg 6.7 Linyl chlorotenane ND ug/kg 6.7 Lin-Dichloroethene ND ug/kg 3.3 Urans-1,2-Dichloroethene ND ug/kg 3.3 Urans-1,2-Dichloroethene ND ug/kg 3.3 Urans-1,4-Dichlorobenzene ND ug/kg 17. U,3-Dichlorobenzene ND ug/kg 6.7 V/m-Xylene ND ug/kg 6.7 D-Xylene ND ug/kg 3.3 Obbromomethane ND ug/kg </td <td>romodichloromethane</td> <td>ND</td> <td>ug/kg</td> <td>3.3</td> <td></td> <td></td> <td></td> <td></td> <td></td>	romodichloromethane	ND	ug/kg	3.3					
1,1-Dichloropropene ND	rans-1,3-Dichloropropene	ND	ug/kg	3.3					
### ND	is-1,3-Dichloropropene	ND	ug/kg	3.3					
1,1,2,2-Tetrachloroethane	,1-Dichloropropene	ND	ug/kg	17.					
### Senzene ND ug/kg 3.3 1.3	romoform	ND	ug/kg	13.					
Column ND ug/kg 5.0 Athylbenzene ND ug/kg 3.3 Athoromethane ND ug/kg 17. Aromomethane ND ug/kg 6.7 Athorotethane ND ug/kg 6.7 Athorotethane ND ug/kg 3.3 Arans-1,2-Dichlorotehene ND ug/kg 3.3 Arans-1,2-Dichlorotehene ND ug/kg 3.3 Ay-Dichlorobenzene ND ug/kg 17. Ay-Dichlorobenzene ND ug/kg 17. Athylene ND ug/kg 6.7 Arylene ND ug/kg 6.7 Arylene ND ug/kg 6.7 Arylene ND ug/kg 3.3 Ayrene ND ug/kg 3.3 Ayrene ND ug/kg 3.3 Ayrene ND ug/kg 6.7 Ayrene ND ug/kg 3.3 <td< td=""><td>,1,2,2-Tetrachloroethane</td><td>ND</td><td>ug/kg</td><td>3.3</td><td></td><td></td><td></td><td></td><td></td></td<>	,1,2,2-Tetrachloroethane	ND	ug/kg	3.3					
## Sthylbenzene	enzene	ND	ug/kg	3.3					
## District Commethane ND	oluene	ND	ug/kg	5.0					
## Stromomethane ND	thylbenzene	ND	ug/kg	3.3					
### Annual Company of the Company of		ND							
### Ainstructure	romomethane	ND	ug/kg	6.7					
### Chloroethane	inyl chloride	ND							
Strans=1,2-Dichloroethene	hloroethane	ND	ug/kg	6.7					
	,1-Dichloroethene	ND	ug/kg	3.3					
### Arichloroethene	rans-1,2-Dichloroethene	ND		5.0					
1.,2-Dichlorobenzene ND	richloroethene	ND	ug/kg						
1. 1. 1. 1. 1. 1. 1. 1.	,2-Dichlorobenzene	ND							
.,4-Dichlorobenzene ND ug/kg 17. lethyl tert butyl ether ND ug/kg 6.7 ./m-Xylene ND ug/kg 6.7 ./m-Xylene ND ug/kg 6.7 ./m-Xylene ND ug/kg 6.7 ./mais-1,2-Dichloroethene ND ug/kg 3.3 ./mais-1,2-Dichloroethene ND ug/kg 33. ./mais-1,2-Dichloroethene ND ug/kg 33. ./mais-1,2-Dichloromethane ND ug/kg 17. ./mais-1,2-Dichloromethane ND ug/kg 17. ./mais-1,2-Dichloromethane ND ug/kg 17. ./mais-1,2-Dichloromethane ND ug/kg 17. ./mais-1,2-Dichloromethane ND		ND		17.					
### Sethyl tert butyl ether ND ug/kg 6.7 ### Sylene ND ug/kg 6.7 ### Sis-1,2-Dichloroethene ND ug/kg 3.3 ### Styrene ND ug/kg 3.3 ### Styrene ND ug/kg 33. ### Styrene ND ug/kg 33. ### Sichondisulfide ND ug/kg 17. ### Sichondisulfide ND ug/kg 17. ### Sichondisulfide ND ug/kg 17. ### Sichondisulfide ND ug/kg 3.3 ### Sichondisulfide ND u		ND							
n/m-Xylene ND ug/kg 6.7 0-Xylene ND ug/kg 6.7 cis-1,2-Dichloroethene ND ug/kg 3.3 obstromomethane ND ug/kg 33. styrene ND ug/kg 33. obstromodifluoromethane ND ug/kg 33. obstromedification ND ug/kg 33. carbon disulfide ND ug/kg		ND							
### Arabic ND		ND							
		ND							
Dibromomethane ND ug/kg 33. Styrene ND ug/kg 6.7 Dichlorodifluoromethane ND ug/kg 33. Scetone ND ug/kg 33. Carbon disulfide ND ug/kg 33. Barbanone ND ug/kg 33. Invalidation ND ug/kg 17. Invalidation ND ug/kg 17. Invalidation ND ug/kg 17. Invalidation ND ug/kg 17. <t< td=""><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		ND							
Styrene ND ug/kg 33. Science ND ug/kg 17. Science ND ug/kg 17. Science ND ug/kg 17. Science ND ug/kg 13. Science ND ug/kg 17. Science ND ug/kg 3.3 Science N		ND							
Dichlorodifluoromethane ND ND ND ND ND ND ND ND ND N	tyrene	ND							
Acetone ND ug/kg 33. Arabon disulfide ND ug/kg 17. Arabon disulfide ND ug/kg 3.3 Arabon disulfide ND ug/kg 17.	-	ND							
Carbon disulfide ND Ug/kg 33. P-Butanone ND Ug/kg 33. P-Methyl-2-pentanone ND Ug/kg 33. P-Hexanone ND Ug/kg 17. P-Point of the pentanone ND Ug/kg 17. Ug/kg									
### Butanone			5 5						
rinyl acetate ND ug/kg 33. R-Methyl-2-pentanone ND ug/kg 33. R-Hexanone ND ug/kg 33. R-Hexanone ND ug/kg 33. R-Hexanone ND ug/kg 33. R-Omochloromethane ND ug/kg 17. R.2-Dichloropropane ND ug/kg 17. R.2-Dibromoethane ND ug/kg 13. R.3-Dichloropropane ND ug/kg 17. R.3-Dichloropropane ND ug/kg 17. R.3-Dichloropropane ND ug/kg 17. R.3-Dichloropropane ND ug/kg 3.3 Romobenzene ND ug/kg 3.3 Romobenzene ND ug/kg 3.3 Romobenzene ND ug/kg 17. R-Butylbenzene ND ug/kg 3.3 Roec-Butylbenzene ND ug/kg 17. R-Chlorotoluene ND ug/kg 17.									
A-Methyl-2-pentanone ND ug/kg 33. A-A-Trichloropropane ND ug/kg 33. B-Hexanone ND ug/kg 33. Bromochloromethane ND ug/kg 17. A-2-Dichloropropane ND ug/kg 17. A-2-Dibromoethane ND ug/kg 13. A-3-Dichloropropane ND ug/kg 17. A-3-Dichloropropane ND ug/kg 17. A-1,1,2-Tetrachloroethane ND ug/kg 3.3 Bromobenzene ND ug/kg 17. B-Butylbenzene ND ug/kg 3.3 Bromotherzene ND ug/kg 3.3 Bromotherzene ND ug/kg 17. B-Butylbenzene ND ug/kg 3.3 Bromotherzene ND ug/kg 17. B-Butylbenzene ND ug/kg 17. B-Chlorotoluene ND ug/kg 17.									
ug/kg 33. 2-Hexanone ND ug/kg 33. 3-Dichloropropane ND ug/kg 17. 3-Dichloropropane ND ug/kg 3.3 3-Dichloropropane ND ug/kg 3.3 3-Dichloropropane ND ug/kg 3.3 3-Dichloropropane ND ug/kg 17. 3-Dichloropropane ND ug/kg 17. 3-Dichlorotoluene ND ug/kg 17. 3-Dichlorotoluene ND ug/kg 17. 3-Dichlorotoluene ND ug/kg 17. 3-Dichlorotoluene ND ug/kg 17. 3-Dichloropropane ND ug/kg 17. 3-Dichloropropane ND ug/kg 17.	-								
R-Hexanone ND ug/kg 33. Bromochloromethane ND ug/kg 17. R,2-Dichloropropane ND ug/kg 17. R,2-Dibromoethane ND ug/kg 13. R,3-Dichloropropane ND ug/kg 17. R,1,1,2-Tetrachloroethane ND ug/kg 3.3 Bromobenzene ND ug/kg 17. R-Butylbenzene ND ug/kg 3.3 Bec-Butylbenzene ND ug/kg 3.3 Bec-Butylbenzene ND ug/kg 17. R-Chlorotoluene ND ug/kg 17. R-Chlorotoluene ND ug/kg 17. R-Chlorotoluene ND ug/kg 17. R-Chloromo-3-chloropropane ND ug/kg 17.									
Bromochloromethane ND ug/kg 17. 2.2-Dichloropropane ND ug/kg 13. 2.3-Dichloropropane ND ug/kg 13. 3.3-Dichloropropane ND ug/kg 17. 3.1,1,2-Tetrachloroethane ND ug/kg 3.3 Bromobenzene ND ug/kg 17. 1-Butylbenzene ND ug/kg 3.3 sec-Butylbenzene ND ug/kg 3.3 sec-Butylbenzene ND ug/kg 17. 1-Chlorotoluene ND ug/kg 17. 18. 19. 19. 10. 10. 10. 10. 11. 11									
### Page 17									
ug/kg 13. 1,3-Dichloropropane ND ug/kg 17. 1,1,2-Tetrachloroethane ND ug/kg 3.3 Bromobenzene ND ug/kg 17. 1-Butylbenzene ND ug/kg 3.3 Bec-Butylbenzene ND ug/kg 3.3 Bec-Butylbenzene ND ug/kg 17. 1-Chlorotoluene ND ug/kg 17. 1-Chlorotoluene ND ug/kg 17. 1-Chlorotoluene ND ug/kg 17. 1,2-Dibromo-3-chloropropane ND ug/kg 17.									
ug/kg 17. ug/kg 3.3 Bromobenzene ND ug/kg 17. ug/kg 17. ug/kg 17. ug/kg 17. ug/kg 17. ug/kg 3.3 Bromobenzene ND ug/kg 3.3 sec-Butylbenzene ND ug/kg 3.3 sec-Butylbenzene ND ug/kg 17.									
ug/kg 3.3 Bromobenzene ND ug/kg 17. D-Butylbenzene ND ug/kg 3.3 Bec-Butylbenzene ND ug/kg 3.3 Bec-Butylbenzene ND ug/kg 3.3 Bec-Butylbenzene ND ug/kg 17. D-Chlorotoluene ND ug/kg 17.									
Bromobenzene ND ug/kg 17. n-Butylbenzene ND ug/kg 3.3 sec-Butylbenzene ND ug/kg 3.3 sert-Butylbenzene ND ug/kg 17. n-Chlorotoluene ND ug/kg 17.									
H-Butylbenzene ND ug/kg 3.3 Hec-Butylbenzene ND ug/kg 3.3 Hert-Butylbenzene ND ug/kg 17. Hert-Chlorotoluene ND ug/kg 17.									
sec-Butylbenzene ND ug/kg 3.3 sert-Butylbenzene ND ug/kg 17. o-Chlorotoluene ND ug/kg 17. o-Chlorotoluene ND ug/kg 17. o-Chlorotoluene ND ug/kg 17. o-Chloromo-3-chloropropane ND ug/kg 17.									
ert-Butylbenzene ND ug/kg 17Chlorotoluene ND ug/kg 17Chlorotoluene ND ug/kg 17. ,2-Dibromo-3-chloropropane ND ug/kg 17.									
-Chlorotoluene ND ug/kg 17. -Chlorotoluene ND ug/kg 17. ,2-Dibromo-3-chloropropane ND ug/kg 17.									
o-Chlorotoluene ND ug/kg 17. .,2-Dibromo-3-chloropropane ND ug/kg 17.	-								
,2-Dibromo-3-chloropropane ND ug/kg 17.									
exactitoropucatione in ug/kg 1/.									
Esopropylbenzene ND ug/kg 3.3									

Laboratory Sample Number: L0813344-28

PWG-DW-2008-24 (6-6.5')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA		ID
						PREP	ANAL	
Volatile Organics by EPA 826	OB cont'd			1	8260B		0912 18:	44 PD
p-Isopropyltoluene	ND	ug/kg	3.3					
Naphthalene	ND	ug/kg	17.					
Acrylonitrile	ND	ug/kg	33.					
n-Propylbenzene	ND	ug/kg	3.3					
1,2,3-Trichlorobenzene	ND	ug/kg	17.					
1,2,4-Trichlorobenzene	ND	ug/kg	17.					
1,3,5-Trimethylbenzene	ND	ug/kg	17.					
1,2,4-Trimethylbenzene	ND	ug/kg	17.					
1,4-Diethylbenzene	ND	ug/kg	13.					
4-Ethyltoluene	ND	ug/kg	13.					
1,2,4,5-Tetramethylbenzene	ND	ug/kg	13.					
Surrogate(s)	Recovery		OC Cri	teri:	a			
1,2-Dichloroethane-d4	98.0	%	70-130		~			
Foluene-d8	108	%	70-130					
4-Bromofluorobenzene	95.0	%	70-130					
Dibromofluoromethane	95.0	%	70-130					
121 onor raor one chanc	75.0		, , , , , ,					
Semivolatile Organics by EPA		(1	4.4.0	1	8270C	0911 00:30	0913 16:	59 PS
Acenaphthene	ND	ug/kg	440					
1,2,4-Trichlorobenzene	ND	ug/kg	440					
Hexachlorobenzene	ND	ug/kg	440					
Bis(2-chloroethyl)ether	ND	ug/kg	440					
2-Chloronaphthalene	ND	ug/kg	530					
l,2-Dichlorobenzene	ND	ug/kg	440					
l,3-Dichlorobenzene	ND	ug/kg	440					
l,4-Dichlorobenzene	ND	ug/kg	440					
3,3'-Dichlorobenzidine	ND	ug/kg	890					
2,4-Dinitrotoluene	ND	ug/kg	440					
2,6-Dinitrotoluene	ND	ug/kg	440					
Fluoranthene	ND	ug/kg	440					
4-Chlorophenyl phenyl ether	ND	ug/kg	440					
4-Bromophenyl phenyl ether	ND	ug/kg	440					
Bis(2-chloroisopropyl)ether	ND	ug/kg	440					
Bis(2-chloroethoxy)methane	ND	ug/kg	440					
Hexachlorobutadiene	ND	ug/kg	890					
Hexachlorocyclopentadiene	ND	ug/kg	890					
Hexachloroethane	ND	ug/kg	440					
Isophorone	ND	ug/kg	440					
Naphthalene	ND	ug/kg	440					
Nitrobenzene	ND	ug/kg	440					
NitrosoDiPhenylAmine(NDPA)/D	PA ND	ug/kg	1300					
n-Nitrosodi-n-propylamine	ND	ug/kg	440					
Bis(2-Ethylhexyl)phthalate	ND	ug/kg	890					
Butyl benzyl phthalate	ND	ug/kg	440					
Di-n-butylphthalate	ND	ug/kg	440					
Di-n-octylphthalate	ND	ug/kg	440					
Diethyl phthalate	ND	ug/kg	440					
Dimethyl phthalate	ND	ug/kg	440					

Laboratory Sample Number: L0813344-28

PWG-DW-2008-24 (6-6.5')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA' PREP	TE ANAL	ID
Semivolatile Organics by EPA 8	3270C cont	'd		1	8270C	0911 00:30	0913 16:	59 PS
Benzo(a)anthracene	ND	ug/kg	440	-	02700	0311 00 30	0,10 10 .	,, 10
Benzo(a)pyrene	ND	ug/kg ug/kg	440					
Benzo(b)fluoranthene	ND	ug/kg ug/kg	440					
Benzo(k)fluoranthene	ND	ug/kg ug/kg	440					
Chrysene	ND	ug/kg ug/kg	440					
Acenaphthylene	ND	ug/kg ug/kg	440					
Anthracene	ND	ug/kg ug/kg	440					
Benzo(ghi)perylene	ND	ug/kg ug/kg	440					
Fluorene	ND		440					
Phenanthrene	ND	ug/kg	440					
		ug/kg						
Dibenzo(a,h)anthracene	ND	ug/kg	440					
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	440					
Pyrene	ND	ug/kg	440					
Biphenyl	ND	ug/kg	440					
4-Chloroaniline	ND	ug/kg	440					
2-Nitroaniline	ND	ug/kg	440					
3-Nitroaniline	ND	ug/kg	440					
1-Nitroaniline	ND	ug/kg	620					
Dibenzofuran	ND	ug/kg	440					
2-Methylnaphthalene	ND	ug/kg	440					
1,2,4,5-Tetrachlorobenzene	ND	ug/kg	1800					
Acetophenone	ND	ug/kg	1800					
2,4,6-Trichlorophenol	ND	ug/kg	440					
P-Chloro-M-Cresol	ND	ug/kg	440					
2-Chlorophenol	ND	ug/kg	530					
2,4-Dichlorophenol	ND	ug/kg	890					
2,4-Dimethylphenol	ND	ug/kg	440					
2-Nitrophenol	ND	ug/kg	1800					
1-Nitrophenol	ND	ug/kg	890					
2,4-Dinitrophenol	ND	ug/kg	1800					
1,6-Dinitro-o-cresol	ND	ug/kg	1800					
Pentachlorophenol	ND	ug/kg	1800					
Phenol	ND	ug/kg	620					
2-Methylphenol	ND	ug/kg	530					
3-Methylphenol/4-Methylphenol	ND	ug/kg	530					
2,4,5-Trichlorophenol	ND	ug/kg	440					
Benzoic Acid	ND	ug/kg	4400					
Benzyl Alcohol	ND	ug/kg	890					
Carbazole	ND	ug/kg	440					
Surrogate(s)	Recovery		QC Cr	iteria	L			
2-Fluorophenol	68.0	%	25-120)				
Phenol-d6	67.0	%	10-120)				
Nitrobenzene-d5	56.0	%	23-120)				
2-Fluorobiphenyl	60.0	%	30-120)				
2,4,6-Tribromophenol	77.0	%	19-120)				
1-Terphenyl-d14	59.0	%	18-120	1				

Laboratory Sample Number: L0813344-28

PWG-DW-2008-24 (6-6.5')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Semivolatile Organics by E	PA 8270C-SIM	cont'd		1 8270C	0911 00:30 0914 04:31 AK
Acenaphthene	ND	uq/kq	89.		
2-Chloronaphthalene	ND	ug/kg	89.		
Fluoranthene	170	ug/kg	89		
Hexachlorobutadiene	ND	ug/kg	220		
Naphthalene	ND	ug/kg	89.		
Benzo(a)anthracene	ND	ug/kg	89.		
Benzo(a)pyrene	ND	ug/kg	89.		
Benzo(b)fluoranthene	ND	ug/kg	89.		
Benzo(k)fluoranthene	ND	ug/kg	89.		
Chrysene	ND	ug/kg	89.		
Acenaphthylene	ND	ug/kg	89.		
Anthracene	ND	ug/kg	89.		
Benzo(ghi)perylene	ND	ug/kg	89.		
Fluorene	ND	ug/kg	89.		
Phenanthrene	ND	ug/kg	89.		
Dibenzo(a,h)anthracene	ND	ug/kg	89.		
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	89.		
Pyrene	210	ug/kg	89		
2-Methylnaphthalene	ND	ug/kg	89.		
Pentachlorophenol	ND	ug/kg	360		
Hexachlorobenzene	ND	ug/kg	360		
Hexachloroethane	ND	ug/kg	360		
Surrogate(s)	Recovery		QC Crit	teria	
2-Fluorophenol	57.0	%	25-120		
Phenol-d6	60.0	%	10-120		
Nitrobenzene-d5	49.0	%	23-120		
2-Fluorobiphenyl	54.0	%	30-120		
2,4,6-Tribromophenol	53.0	%	19-120		
4-Terphenyl-d14	49.0	%	18-120		
Petroleum Hydrocarbon Quan	ntitation by G			1 8015B(M)	0911 01:00 0912 11:29 JL
TPH	934000	ug/kg	222000		
Surrogate(s)	Recovery		QC Crit	teria	
o-Terphenyl	73.0	%	40-140		

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813344-29 Date Collected: 08-SEP-2008 16:05

Sample Matrix: SOIL Date Reported: 25-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE II
					PREP ANAL
Solids, Total	80	%	0.10	30 2540G	0910 19:00 NM
Total Metals					
Aluminum, Total	16000	mg/kg	12	1 6010B	0910 13:30 0916 11:58 MG
Antimony, Total	ND	mg/kg	3.0	1 6010B	0910 13:30 0911 16:17 AI
Arsenic, Total	3.0	mg/kg	0.60	1 6010B	0910 13:30 0911 16:17 AI
Barium, Total	43	mg/kg	0.60	1 6010B	0910 13:30 0911 16:17 AI
Beryllium, Total	ND	mg/kg	0.30	1 6010B	0910 13:30 0911 16:17 AI
Cadmium, Total	ND	mg/kg	0.60	1 6010B	0910 13:30 0911 16:17 AI
Calcium, Total	3900	mg/kg	6.0	1 6010B	0910 13:30 0911 16:17 AI
Chromium, Total	20	mg/kg	0.60	1 6010B	0910 13:30 0911 16:17 AI
Cobalt, Total	4.4	mg/kg	1.2	1 6010B	0910 13:30 0911 16:17 AI
Copper, Total	14	mg/kg	0.60	1 6010B	0910 13:30 0911 16:17 AI
Iron, Total	24000	mg/kg	3.0	1 6010B	0910 13:30 0911 16:17 AI
Lead, Total	13	mg/kg	3.0	1 6010B	0910 13:30 0911 16:17 AI
Magnesium, Total	5200	mg/kg	6.0	1 6010B	0910 13:30 0911 16:17 AI
Manganese, Total	130	mg/kg	0.60	1 6010B	0910 13:30 0911 16:17 AI
Mercury, Total	ND	mg/kg	0.10	1 7471A	0912 20:30 0914 14:03 HG
Nickel, Total	12	mg/kg	1.5	1 6010B	0910 13:30 0911 16:17 AI
Potassium, Total	1300	mg/kg	150	1 6010B	0910 13:30 0911 16:17 AI
Selenium, Total	ND	mg/kg	1.2	1 6010B	0910 13:30 0911 16:17 AI
Silver, Total	ND	mg/kg	0.60	1 6010B	0910 13:30 0911 16:17 AI
Sodium, Total	ND	mg/kg	120	1 6010B	0910 13:30 0911 16:17 AI
Thallium, Total	ND	mg/kg	2.4	1 6010B	0910 13:30 0916 11:58 MG
Vanadium, Total	31	mg/kg	0.60	1 6010B	0910 13:30 0911 16:17 AI
Zinc, Total	37	mg/kg	3.0	1 6010B	0910 13:30 0911 16:17 AI
Olatile Organics by EPA 8				1 8260B	0912 19:21 PD
Methylene chloride	ND	ug/kg	31.		
1,1-Dichloroethane	ND	ug/kg	4.7		
Chloroform	ND	ug/kg	4.7		
Carbon tetrachloride	ND	ug/kg	3.1		
1,2-Dichloropropane	ND	ug/kg	11.		
Dibromochloromethane	ND	ug/kg	3.1		
1,1,2-Trichloroethane	ND	ug/kg	4.7		
Tetrachloroethene	ND	ug/kg	3.1		
Chlorobenzene	ND	ug/kg	3.1		
Trichlorofluoromethane	ND	ug/kg	16.		

Laboratory Sample Number: L0813344-29

PWG-DW-2008-25 (5.75-6.25')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID
					PREP ANAL
Volatile Organics by EPA 826	OB cont'd			1 8260B	0912 19:21 PD
1,2-Dichloroethane	ND	ug/kg	3.1		
1,1,1-Trichloroethane	ND	ug/kg	3.1		
Bromodichloromethane	ND	ug/kg	3.1		
rans-1,3-Dichloropropene	ND	ug/kg	3.1		
cis-1,3-Dichloropropene	ND	ug/kg	3.1		
l,1-Dichloropropene	ND	ug/kg	16.		
Bromoform	ND	ug/kg	12.		
1,1,2,2-Tetrachloroethane	ND	ug/kg	3.1		
Benzene	ND	ug/kg	3.1		
Toluene	ND	ug/kg	4.7		
Ethylbenzene	ND	ug/kg	3.1		
Chloromethane	ND	ug/kg	16.		
Bromomethane	ND	ug/kg	6.2		
Jinyl chloride	ND	ug/kg	6.2		
Chloroethane	ND	ug/kg	6.2		
1,1-Dichloroethene	ND	ug/kg	3.1		
crans-1,2-Dichloroethene	ND	ug/kg	4.7		
richloroethene	ND	ug/kg	3.1		
1,2-Dichlorobenzene	ND	ug/kg	16.		
L,3-Dichlorobenzene	ND	ug/kg	16.		
L,4-Dichlorobenzene	ND	ug/kg	16.		
Methyl tert butyl ether	ND	ug/kg	6.2		
o/m-Xylene	ND	ug/kg	6.2		
o-Xylene	ND	ug/kg	6.2		
cis-1,2-Dichloroethene	ND	ug/kg	3.1		
Dibromomethane	ND	ug/kg	31.		
Styrene	ND	ug/kg	6.2		
Dichlorodifluoromethane	ND	ug/kg	31.		
Acetone	ND	ug/kg ug/kg	31.		
Carbon disulfide	ND	ug/kg	31.		
2-Butanone	ND	ug/kg ug/kg	31.		
inyl acetate	ND	ug/kg ug/kg	31.		
4-Methyl-2-pentanone	ND	ug/kg ug/kg	31.		
l,2,3-Trichloropropane	ND ND	ug/kg ug/kg	31.		
2-Hexanone Bromochloromethane	ND ND	ug/kg	31. 16.		
		ug/kg			
2,2-Dichloropropane	ND	ug/kg	16.		
,2-Dibromoethane	ND	ug/kg	12.		
1,3-Dichloropropane	ND	ug/kg	16.		
1,1,1,2-Tetrachloroethane	ND	ug/kg	3.1		
Bromobenzene	ND	ug/kg	16.		
n-Butylbenzene	ND	ug/kg	3.1		
sec-Butylbenzene	ND	ug/kg	3.1		
tert-Butylbenzene	ND	ug/kg	16.		
o-Chlorotoluene	ND	ug/kg	16.		
o-Chlorotoluene	ND	ug/kg	16.		
1,2-Dibromo-3-chloropropane	ND	ug/kg	16.		
Mexachlorobutadiene	ND	ug/kg	16.		
Isopropylbenzene	ND	ug/kg	3.1		

Laboratory Sample Number: L0813344-29

PWG-DW-2008-25 (5.75-6.25')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA		ID
						PREP	ANAL	
Volatile Organics by EPA 826	OB cont'd			1	8260B		0912 19:	21 PD
p-Isopropyltoluene	ND	ug/kg	3.1					
Naphthalene	ND	ug/kg	16.					
Acrylonitrile	ND	ug/kg	31.					
n-Propylbenzene	ND	ug/kg	3.1					
1,2,3-Trichlorobenzene	ND	ug/kg	16.					
1,2,4-Trichlorobenzene	ND	ug/kg	16.					
1,3,5-Trimethylbenzene	ND	ug/kg	16.					
1,2,4-Trimethylbenzene	ND	ug/kg	16.					
1,4-Diethylbenzene	ND	ug/kg	12.					
4-Ethyltoluene	ND	ug/kg	12.					
1,2,4,5-Tetramethylbenzene	ND	ug/kg	12.					
Surrogate(s)	Recovery		QC Cri	teri	a			
1,2-Dichloroethane-d4	96.0	%	70-130		~			
Foluene-d8	103	%	70-130					
4-Bromofluorobenzene	108	%	70-130					
Dibromofluoromethane	92.0	%	70-130					
of the state of th	<i>52.</i> 0	Ü	70 130					
Semivolatile Organics by EPA		(1	400	1	8270C	0911 00:30	0913 17:	23 PS
Acenaphthene	ND	ug/kg	420					
1,2,4-Trichlorobenzene	ND	ug/kg	420					
Hexachlorobenzene	ND	ug/kg	420					
Bis(2-chloroethyl)ether	ND	ug/kg	420					
2-Chloronaphthalene	ND	ug/kg	500					
l,2-Dichlorobenzene	ND	ug/kg	420					
l,3-Dichlorobenzene	ND	ug/kg	420					
l,4-Dichlorobenzene	ND	ug/kg	420					
3,3'-Dichlorobenzidine	ND	ug/kg	830					
2,4-Dinitrotoluene	ND	ug/kg	420					
2,6-Dinitrotoluene	ND	ug/kg	420					
Fluoranthene	ND	ug/kg	420					
4-Chlorophenyl phenyl ether	ND	ug/kg	420					
4-Bromophenyl phenyl ether	ND	ug/kg	420					
Bis(2-chloroisopropyl)ether	ND	ug/kg	420					
Bis(2-chloroethoxy)methane	ND	ug/kg	420					
Hexachlorobutadiene	ND	ug/kg	830					
Hexachlorocyclopentadiene	ND	ug/kg	830					
Hexachloroethane	ND	ug/kg	420					
Isophorone	ND	ug/kg	420					
Naphthalene	ND	ug/kg	420					
Nitrobenzene	ND	ug/kg	420					
NitrosoDiPhenylAmine(NDPA)/D		ug/kg	1200					
n-Nitrosodi-n-propylamine	ND	ug/kg	420					
Bis(2-Ethylhexyl)phthalate	ND	ug/kg	830					
Butyl benzyl phthalate	ND	ug/kg	420					
Di-n-butylphthalate	ND	ug/kg	420					
Di-n-octylphthalate	ND	ug/kg	420					
Diethyl phthalate	ND	ug/kg	420					
Dimethyl phthalate	ND	ug/kg	420					

Laboratory Sample Number: L0813344-29

PWG-DW-2008-25 (5.75-6.25')

Semivolatile Organics by EPA 8270C of Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene ND Chrysene Acenaphthylene Anthracene Benzo(ghi)perylene Fluorene Phenanthrene Dibenzo(a,h)anthracene Biphenyl A-Chloroaniline 2-Nitroaniline 3-Nitroaniline MD Dibenzofuran 2-Methylnaphthalene ND Acetophenone 2,4,6-Trichlorophenol P-Chloro-M-Cresol ND	ug/kg	420 420 420 420 420 420 420 420 420 420	1 8270C	O911 00:30 (ANAL 0913 17:23 PS
Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene ND Chrysene ND Acenaphthylene Anthracene Benzo(ghi)perylene Fluorene Phenanthrene Dibenzo(a,h)anthracene Biphenyl A-Chloroaniline ND A-Chloroaniline ND A-Nitroaniline ND ND A-Nitroaniline ND ND Acetophenone ND Acetophenone ND Acetophenol ND A-Dichlorophenol ND A-Dichlorophenol ND	ug/kg	420 420 420 420 420 420 420 420 420 420	1 8270C	0911 00:30 (0913 17:23 PS
Renzo(a)anthracene Renzo(a)pyrene Renzo(b)fluoranthene Renzo(k)fluoranthene Renzo(k)fluoranthene Renzo(k)fluoranthene Renzo(k)fluoranthene Renzo(k)fluoranthene Renzo(k)fluoranthene Renzo(ghi)peryene Renzo(ghi)perylene Renzo(ghi)perylene Renzo(ghi)perylene Renzo(ghi)perylene Renzo(a,h)anthracene Renzo(ghi)perylene Renzo(a,h)anthracene Renzo(a,h)anthracene Renzo(ghi)perylene Renzo(a,h)anthracene Renzo(ghi)perylene Renzo(ghi)peryl	ug/kg	420 420 420 420 420 420 420 420 420 420	1 8270C	0911 00:30 (0913 17:23 PS
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(ghi)perylene Benzo(ghi)perylene Benzo(ghi)perylene Benzo(ghi)perylene Benzo(ghi)perylene Benzo(a,h)anthracene Benzo(ghi)perylene Benzo(a,h)anthracene Benzo(a,h)anthracene Benzo(a,h)anthracene Benzo(ghi)perylene Benzo(a,h)anthracene Benzo(a,h)anthracene Benzo(ghi)perylene Benzo(a,h)anthracene Benzo(ghi)perylene Benzo(a,h)anthracene Benzo(a,h)anthracene Benzo(a,h)anthracene Benzo(a,h)anthracene Benzo(a,h)anthracene Benzo(a,h)anthracene Benzo(a,h)anthracene Benzo(a,h)anthracene Benzo(a,h)anthracene Benzo(ghi)perylene Benzo(ug/kg	420 420 420 420 420 420 420 420 420 420			
Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Chrysene Acenaphthylene Anthracene Benzo(ghi)perylene Benzo(ghi)perylene Fluorene Phenanthrene Dibenzo(a,h)anthracene Indeno(1,2,3-cd)Pyrene Biphenyl A-Chloroaniline Boibenzofuran Boibenzofuran Dibenzofuran Dibenzof	ug/kg	420 420 420 420 420 420 420 420 420 420			
Benzo(k)fluoranthene Chrysene Acenaphthylene Anthracene Benzo(ghi)perylene Benzo(ghi)perylene Fluorene Phenanthrene Dibenzo(a,h)anthracene Biphenyl A-Chloroaniline Biphenyl A-Nitroaniline Boibenzofuran Dibenzofuran Dibenzofura	ug/kg	420 420 420 420 420 420 420 420 420 420			
Chrysene Acenaphthylene Anthracene Benzo(ghi)perylene Fluorene Phenanthrene Dibenzo(a,h)anthracene Indeno(1,2,3-cd)Pyrene Pyrene Biphenyl A-Chloroaniline Dibenzofuran ND A-Nitroaniline ND A-Nitroaniline ND Acetophenone Acetophenone Di-Chloro-M-Cresol D-Chlorophenol D-Chlorophenol D-Chlorophenol D-Chitrophenol D-Chitrophenol D-Chlorophenol D-Chloroph	ug/kg	420 420 420 420 420 420 420 420 420 420			
Accenaphthylene Anthracene Anthracene Benzo(ghi)perylene Fluorene Phenanthrene Dibenzo(a,h)anthracene Indeno(1,2,3-cd)Pyrene Biphenyl A-Chloroaniline Boibenzofuran Dibenzofuran Dibenzofur	ug/kg	420 420 420 420 420 420 420 420 420 420			
Anthracene Benzo(ghi)perylene Fluorene Phenanthrene Dibenzo(a,h)anthracene Indeno(1,2,3-cd)Pyrene Pyrene Biphenyl A-Chloroaniline Dibenzofuran Dibenzofuran Dibenzofuran Denthylnaphthalene I,2,4,5-Tetrachlorobenzene I,2,4,6-Trichlorophenol De-Chloro-M-Cresol De-Chlorophenol De-Chlorophe	ug/kg	420 420 420 420 420 420 420 420 420 420			
Benzo(ghi)perylene Fluorene Phenanthrene Dibenzo(a,h)anthracene Indeno(1,2,3-cd)Pyrene Pryrene Biphenyl A-Chloroaniline Dibenzofuran Di	ug/kg	420 420 420 420 420 420 420 420 420 420			
Fluorene ND Phenanthrene ND Dibenzo(a,h)anthracene ND Indeno(1,2,3-cd)Pyrene ND Pyrene ND Siphenyl ND 4-Chloroaniline ND 3-Nitroaniline ND Dibenzofuran ND C-Methylnaphthalene ND Acetophenone ND C-Chloro-M-Cresol ND C-Chlorophenol ND C-A-Dintrophenol ND C-Nitrophenol ND C-Nitrop	ug/kg	420 420 420 420 420 420 420 420 420 580 420 1700 1700 420			
Phenanthrene Dibenzo(a,h)anthracene Indeno(1,2,3-cd)Pyrene Pyrene Biphenyl A-Chloroaniline Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dicenterophenone Dicenterophenol Dicenteropheno	ug/kg	420 420 420 420 420 420 420 420 580 420 1700 1700 420			
Dibenzo(a,h)anthracene Indeno(1,2,3-cd)Pyrene Indeno(1,2,3-cd)Pyrene Pyrene Riphenyl RIPHEND R	ug/kg	420 420 420 420 420 420 420 580 420 420 1700 1700 420			
Indeno(1,2,3-cd)Pyrene ND Pyrene ND Siphenyl ND A-Chloroaniline ND A-Chloroaniline ND A-Nitroaniline ND A-Nitroaniline ND A-Nitroaniline ND A-Nitroaniline ND A-Hethylnaphthalene ND A-Cetophenone ND A-Cetophenone ND A-Chloro-M-Cresol ND A-Chlorophenol ND A-Dichlorophenol ND A-Nitrophenol ND	ug/kg	420 420 420 420 420 580 420 1700 1700 420			
Pyrene ND Biphenyl ND A-Chloroaniline ND C-Nitroaniline ND B-Nitroaniline ND A-Nitroaniline ND C-Methylnaphthalene ND Acetophenone ND C-Acetophenone ND C-Chloro-M-Cresol ND C-Chlorophenol ND C-A-Dichlorophenol ND C-Nitrophenol	ug/kg	420 420 420 420 420 580 420 420 1700 1700 420			
Biphenyl 4-Chloroaniline ND 2-Nitroaniline ND 4-Nitroaniline ND 4-Nitroaniline ND 2-Methylnaphthalene 1,2,4,5-Tetrachlorobenzene ND Acetophenone 2,4,6-Trichlorophenol 2-Chloro-M-Cresol 2-Chlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 3-Nitrophenol ND 2-Nitrophenol ND 3-Methylphenol/4-Methylphenol ND	ug/kg	420 420 420 580 420 420 1700 1700 420			
4-Chloroaniline 2-Nitroaniline 3-Nitroaniline 3-Nitroaniline 3-Nitroaniline 3-Nitroaniline MD 4-Nitroaniline ND 2-Methylnaphthalene 1,2,4,5-Tetrachlorobenzene ND 4-Cetophenone 2,4,6-Trichlorophenol 2-Chloro-M-Cresol 2-Chlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 3-Nitrophenol 4,6-Dinitro-o-cresol ND 2-A-Dinitrophenol ND 2-A-Dinitrophenol ND 3-Methylphenol ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	420 420 420 580 420 420 1700 1700 420			
2-Nitroaniline 3-Nitroaniline 3-Nitroaniline 4-Nitroaniline 10-ND 2-Methylnaphthalene 10-1,2,4,5-Tetrachlorobenzene 10-1,2,4,5-Tetrachlorobenzene 10-1,2,4,5-Tetrachlorobenzene 10-1,2,4,5-Tetrachlorobenzene 10-1,2,4,5-Tetrachlorobenzene 10-1,2,4,5-Tetrachlorobenzene 10-1,2,4,6-Trichlorophenol 10-1,2,4,6-Trichlorophenol 10-1,2-Chlorophenol 10-1,2-Chlorophenol 10-1,2-Chlorophenol 10-1,3-Dinitrophenol 10-1,4-Dinitrophenol 10-1,4-	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	420 420 580 420 420 1700 1700 420			
3-Nitroaniline A-Nitroaniline ND Dibenzofuran ND 2-Methylnaphthalene ND Acetophenone ND D-Chloro-M-Cresol ND D-Chlorophenol ND D-Chlorophe	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	420 580 420 420 1700 1700 420			
A-Nitroaniline Dibenzofuran A-Nitroaniline Dibenzofuran A-Methylnaphthalene Diagram Acetophenone Diagram A	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	580 420 420 1700 1700 420			
Dibenzofuran R-Methylnaphthalene L,2,4,5-Tetrachlorobenzene ND Acetophenone R,4,6-Trichlorophenol R-Chloro-M-Cresol R-Chlorophenol R,4-Dichlorophenol R-Nitrophenol R-Nitropheno	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	420 420 1700 1700 420			
2-Methylnaphthalene ND 1,2,4,5-Tetrachlorobenzene ND Acetophenone ND 2,4,6-Trichlorophenol ND 2-Chloro-M-Cresol ND 2-Chlorophenol ND 2,4-Dichlorophenol ND 2,4-Dimethylphenol ND 2-Nitrophenol ND 4-Nitrophenol ND 2,4-Dinitrophenol ND 2,4-Dinitro-o-cresol ND 2-Methylphenol ND 2-Methylphenol ND 3-Methylphenol/4-Methylphenol ND	ug/kg ug/kg ug/kg ug/kg ug/kg	420 1700 1700 420			
A.2,4,5-Tetrachlorobenzene ND Acetophenone ND Acethoro-M-Cresol ND Acethorophenol ND	ug/kg ug/kg ug/kg ug/kg	1700 1700 420			
Acetophenone ND 2,4,6-Trichlorophenol ND 2-Chloro-M-Cresol ND 2-Chlorophenol ND 2,4-Dichlorophenol ND 2,4-Dimethylphenol ND 2-Nitrophenol ND 4-Nitrophenol ND 2,4-Dinitrophenol ND 2-Methylphenol ND 3-Methylphenol/4-Methylphenol ND	ug/kg ug/kg ug/kg	1700 420			
2,4,6-Trichlorophenol ND 2-Chloro-M-Cresol ND 2-Chlorophenol ND 2,4-Dichlorophenol ND 2,4-Dimethylphenol ND 2-Nitrophenol ND 4-Nitrophenol ND 2,4-Dinitrophenol ND 2,4-Dinitrophenol ND 2,4-Dinitrophenol ND 2,4-Dinitrophenol ND 2,4-Dinitrophenol ND 2,4-Dinitro-o-cresol ND 2-Methylphenol ND 2-Methylphenol ND 3-Methylphenol/4-Methylphenol ND	ug/kg ug/kg	420			
P-Chloro-M-Cresol ND P-Chlorophenol ND P-Chlorophenol ND P-Chlorophenol ND P-Nitrophenol ND	ug/kg				
2-Chlorophenol ND 2,4-Dichlorophenol ND 2,4-Dimethylphenol ND 2-Nitrophenol ND 4-Nitrophenol ND 2,4-Dinitrophenol ND 4,6-Dinitro-o-cresol ND 2-entachlorophenol ND 2-Methylphenol ND 3-Methylphenol/4-Methylphenol ND		420			
2,4-Dichlorophenol ND 2,4-Dimethylphenol ND 2-Nitrophenol ND 4-Nitrophenol ND 2,4-Dinitrophenol ND 4,6-Dinitro-o-cresol ND 2-entachlorophenol ND 2-methylphenol ND 3-Methylphenol/4-Methylphenol ND	/3				
2,4-Dimethylphenol ND 2-Nitrophenol ND 4-Nitrophenol ND 2,4-Dinitrophenol ND 4,6-Dinitro-o-cresol ND 2,entachlorophenol ND 2-Methylphenol ND 3-Methylphenol/4-Methylphenol ND	ug/kg	500			
2-Nitrophenol ND 4-Nitrophenol ND 2,4-Dinitrophenol ND 4,6-Dinitro-o-cresol ND 2-entachlorophenol ND 2-Methylphenol ND 3-Methylphenol/4-Methylphenol ND	ug/kg	830			
4-Nitrophenol ND 2,4-Dinitrophenol ND 4,6-Dinitro-o-cresol ND Pentachlorophenol ND Phenol ND 2-Methylphenol ND 3-Methylphenol/4-Methylphenol ND	ug/kg	420			
2,4-Dinitrophenol ND 4,6-Dinitro-o-cresol ND Pentachlorophenol ND Phenol ND 2-Methylphenol ND 3-Methylphenol/4-Methylphenol ND	ug/kg	1700			
4,6-Dinitro-o-cresol ND Pentachlorophenol ND Phenol ND 2-Methylphenol ND 3-Methylphenol/4-Methylphenol ND	ug/kg	830			
4,6-Dinitro-o-cresol ND Pentachlorophenol ND Phenol ND 2-Methylphenol ND 3-Methylphenol/4-Methylphenol ND	ug/kg	1700			
Pentachlorophenol ND Phenol ND 2-Methylphenol ND 3-Methylphenol/4-Methylphenol ND	ug/kg	1700			
Phenol ND 2-Methylphenol ND 3-Methylphenol/4-Methylphenol ND	ug/kg	1700			
3-Methylphenol/4-Methylphenol ND	ug/kg	580			
3-Methylphenol/4-Methylphenol ND	ug/kg	500			
	ug/kg	500			
2,4,5-Trichlorophenol ND	ug/kg	420			
Benzoic Acid ND	ug/kg	4200			
Benzyl Alcohol ND	ug/kg	830			
Carbazole ND	ug/kg	420			
		22 -			
Surrogate(s) Recove	=		iteria		
2-Fluorophenol 60.0	%	25-120			
Phenol-d6 60.0	%	10-120			
Nitrobenzene-d5 55.0	8	23-120			
2-Fluorobiphenyl 56.0	%	30-120			
2,4,6-Tribromophenol 67.0	0	19-120			
4-Terphenyl-d14 59.0	રું અ	18-120	0		

Laboratory Sample Number: L0813344-29

PWG-DW-2008-25 (5.75-6.25')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA:		ID
					PREP	ANAL	
Comissolatila Ossaniaa bu El	NA 0070G GTM	~~~+ 1 d			0011 00.00	0014 05:14	
Semivolatile Organics by EF			1 77	1 8270C	0911 00:30	0914 05:18	3 AK
Acenaphthene	ND	ug/kg	17.				
2-Chloronaphthalene	ND	ug/kg	17.				
Fluoranthene	ND	ug/kg	17.				
Hexachlorobutadiene	ND	ug/kg	42.				
Naphthalene	ND	ug/kg	17.				
Benzo(a)anthracene	ND	ug/kg	17.				
Benzo(a)pyrene	ND	ug/kg	17.				
Benzo(b)fluoranthene	ND	ug/kg	17.				
Benzo(k)fluoranthene	ND	ug/kg	17.				
Chrysene	ND	ug/kg	17.				
Acenaphthylene	ND	ug/kg	17.				
Anthracene	ND	ug/kg	17.				
Benzo(ghi)perylene	ND	ug/kg	17.				
Fluorene	ND	ug/kg	17.				
Phenanthrene	ND	ug/kg	17.				
Dibenzo(a,h)anthracene	ND	ug/kg	17.				
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	17.				
Pyrene	ND	ug/kg	17.				
2-Methylnaphthalene	ND	ug/kg	17.				
Pentachlorophenol	ND	ug/kg	67.				
Hexachlorobenzene	ND	ug/kg	67.				
Hexachloroethane	ND	ug/kg	67.				
Surrogate(s)	Recovery		QC Cr	iteria			
2-Fluorophenol	60.0	용	25-12	0			
Phenol-d6	64.0	%	10-12	0			
Nitrobenzene-d5	60.0	%	23-12	0			
2-Fluorobiphenyl	54.0	%	30-12	0			
2,4,6-Tribromophenol	53.0	%	19-12	0			
4-Terphenyl-d14	66.0	%	18-12	0			
Petroleum Hydrocarbon Quant	itation by G	C-FID		1 8015B(M)	0911 01:00	0912 03:12	2 JL
ТРН	ND	ug/kg	41700				
Surrogate(s)	Recovery		QC Cr	iteria			
o-Terphenyl	71.0	%	40-14	0			

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813344-30 Date Collected: 08-SEP-2008 16:15

Sample Matrix: SOIL Date Reported: 25-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE II PREP ANAL
					PREP ANAL
Solids, Total	84	8	0.10	30 2540G	0910 19:00 NR
Total Metals					
Aluminum, Total	1100	mg/kg	5.8	1 6010B	0910 13:30 0911 16:20 A
Antimony, Total	ND	mg/kg	2.9	1 6010B	0910 13:30 0911 16:20 A
Arsenic, Total	ND	mg/kg	0.58	1 6010B	0910 13:30 0911 16:20 A
Barium, Total	7.3	mg/kg	0.58	1 6010B	0910 13:30 0911 16:20 A
Beryllium, Total	ND	mg/kg	0.29	1 6010B	0910 13:30 0911 16:20 A
Cadmium, Total	ND	mg/kg	0.58	1 6010B	0910 13:30 0911 16:20 A
Calcium, Total	6400	mg/kg	5.8	1 6010B	0910 13:30 0911 16:20 A
Chromium, Total	4.7	mg/kg	0.58	1 6010B	0910 13:30 0911 16:20 A
Cobalt, Total	1.6	mg/kg	1.2	1 6010B	0910 13:30 0911 16:20 A
Copper, Total	11	mg/kg	0.58	1 6010B	0910 13:30 0911 16:20 A
Iron, Total	3600	mg/kg	2.9	1 6010B	0910 13:30 0911 16:20 A
Lead, Total	14	mg/kg	2.9	1 6010B	0910 13:30 0911 16:20 A
Magnesium, Total	4000	mg/kg	5.8	1 6010B	0910 13:30 0911 16:20 A
Manganese, Total	34	mg/kg	0.58	1 6010B	0910 13:30 0911 16:20 A
Mercury, Total	ND	mg/kg	0.10	1 7471A	0912 20:30 0914 14:05 HG
Nickel, Total	2.3	mg/kg	1.5	1 6010B	0910 13:30 0911 16:20 A
Potassium, Total	ND	mg/kg	150	1 6010B	0910 13:30 0911 16:20 A
Selenium, Total	ND	mg/kg	1.2	1 6010B	0910 13:30 0911 16:20 A
Silver, Total	ND	mg/kg	0.58	1 6010B	0910 13:30 0911 16:20 A
Sodium, Total	ND	mg/kg	120	1 6010B	0910 13:30 0911 16:20 A
Thallium, Total	ND	mg/kg	1.2	1 6010B	0910 13:30 0911 16:20 A
Vanadium, Total	17	mg/kg	0.58	1 6010B	0910 13:30 0911 16:20 A
Zinc, Total	54	mg/kg	2.9	1 6010B	0910 13:30 0911 16:20 A
Volatile Organics by EPA 8	3260B			1 8260B	0912 19:57 PI
Methylene chloride	ND	ug/kg	30.		
l,1-Dichloroethane	ND	ug/kg	4.5		
Chloroform	ND	ug/kg	4.5		
Carbon tetrachloride	ND	ug/kg	3.0		
1,2-Dichloropropane	ND	ug/kg	10.		
Dibromochloromethane	ND	ug/kg	3.0		
l,1,2-Trichloroethane	ND	ug/kg	4.5		
Tetrachloroethene	ND	ug/kg	3.0		
Chlorobenzene	ND	ug/kg	3.0		
Trichlorofluoromethane	ND	ug/kg	15.		

Laboratory Sample Number: L0813344-30

PWG-DW-2008-26 (4.25-4.75')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
7.1.1.1.1. O	0.00							
Volatile Organics by EPA 826		. /1	2 0	1	8260B		0912 19:	57 PD
1,2-Dichloroethane	ND	ug/kg	3.0					
1,1,1-Trichloroethane	ND	ug/kg	3.0					
Bromodichloromethane	ND	ug/kg	3.0					
crans-1,3-Dichloropropene	ND	ug/kg	3.0					
cis-1,3-Dichloropropene	ND	ug/kg	3.0					
,1-Dichloropropene	ND	ug/kg	15.					
Bromoform	ND	ug/kg	12.					
,1,2,2-Tetrachloroethane	ND	ug/kg	3.0					
Benzene -	ND	ug/kg	3.0					
Coluene	ND	ug/kg	4.5					
Ethylbenzene	ND	ug/kg	3.0					
Chloromethane	ND	ug/kg	15.					
Bromomethane	ND	ug/kg	6.0					
Jinyl chloride	ND	ug/kg	6.0					
Chloroethane	ND	ug/kg	6.0					
1,1-Dichloroethene	ND	ug/kg	3.0					
rans-1,2-Dichloroethene	ND	ug/kg	4.5					
Crichloroethene	ND	ug/kg	3.0					
,2-Dichlorobenzene	ND	ug/kg	15.					
.,3-Dichlorobenzene	ND	ug/kg	15.					
,4-Dichlorobenzene	ND	ug/kg	15.					
Methyl tert butyl ether	ND	ug/kg	6.0					
o/m-Xylene	ND	ug/kg	6.0					
-Xylene	ND	ug/kg	6.0					
cis-1,2-Dichloroethene	ND	ug/kg	3.0					
Dibromomethane	ND	ug/kg	30.					
Styrene	ND	ug/kg	6.0					
Dichlorodifluoromethane	ND	ug/kg	30.					
Acetone	ND	ug/kg	30.					
Carbon disulfide	ND	ug/kg	30.					
-Butanone	ND	ug/kg	30.					
Jinyl acetate	ND	ug/kg	30.					
l-Methyl-2-pentanone	ND	ug/kg	30.					
.,2,3-Trichloropropane	ND	ug/kg	30.					
2-Hexanone	ND	ug/kg	30.					
romochloromethane	ND	ug/kg	15.					
2,2-Dichloropropane	ND	ug/kg	15.					
l,2-Dibromoethane	ND	ug/kg	12.					
.,3-Dichloropropane	ND	ug/kg	15.					
.,1,1,2-Tetrachloroethane	ND	ug/kg	3.0					
Bromobenzene	ND	ug/kg	15.					
-Butylbenzene	ND	ug/kg	3.0					
sec-Butylbenzene	ND	ug/kg	3.0					
ert-Butylbenzene	ND	ug/kg	15.					
-Chlorotoluene	ND	ug/kg	15.					
-Chlorotoluene	ND	ug/kg	15.					
.,2-Dibromo-3-chloropropane	ND	ug/kg	15.					
Mexachlorobutadiene	ND	ug/kg	15.					
Isopropylbenzene	ND	ug/kg	3.0					

Laboratory Sample Number: L0813344-30

PWG-DW-2008-26 (4.25-4.75')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DATE	ID
						PREP ANAL	
Volatile Organics by EPA 8260		. (1	2 0	1	8260B	0912 19:5	7 PD
p-Isopropyltoluene	ND	ug/kg	3.0				
Naphthalene	ND	ug/kg	15.				
Acrylonitrile	ND	ug/kg	30.				
n-Propylbenzene	ND	ug/kg	3.0				
.,2,3-Trichlorobenzene	ND	ug/kg	15.				
.,2,4-Trichlorobenzene	ND	ug/kg	15.				
,3,5-Trimethylbenzene	ND	ug/kg	15.				
,2,4-Trimethylbenzene	ND	ug/kg	15.				
,4-Diethylbenzene	ND	ug/kg	12.				
-Ethyltoluene	ND	ug/kg	12.				
,2,4,5-Tetramethylbenzene	ND	ug/kg	12.				
Surrogate(s)	Recovery		QC Crit	eria	Э		
,2-Dichloroethane-d4	115	%	70-130				
Coluene-d8	130	%	70-130				
-Bromofluorobenzene	130	%	70-130				
Dibromofluoromethane	113	%	70-130				
Semivolatile Organics by EPA	8270C			1	8270C	0911 00:30 0913 17:4	6 PS
cenaphthene	ND	ug/kg	2000				
,2,4-Trichlorobenzene	ND	ug/kg	2000				
[exachlorobenzene	ND	ug/kg	2000				
is(2-chloroethyl)ether	ND	ug/kg	2000				
-Chloronaphthalene	ND	ug/kg	2400				
,2-Dichlorobenzene	ND	ug/kg	2000				
,3-Dichlorobenzene	ND	ug/kg	2000				
,4-Dichlorobenzene	ND	ug/kg	2000				
3,3'-Dichlorobenzidine	ND	ug/kg	4000				
2,4-Dinitrotoluene	ND	ug/kg	2000				
2,6-Dinitrotoluene	ND	ug/kg	2000				
'luoranthene	ND	ug/kg	2000				
-Chlorophenyl phenyl ether	ND	ug/kg	2000				
-Bromophenyl phenyl ether	ND	ug/kg	2000				
Bis(2-chloroisopropyl)ether	ND	ug/kg	2000				
Bis(2-chloroethoxy)methane	ND	ug/kg	2000				
exachlorobutadiene	ND	ug/kg	4000				
[exachlorocyclopentadiene	ND	ug/kg	4000				
exachloroethane	ND	ug/kg	2000				
sophorone	ND	ug/kg	2000				
Saphthalene	ND	ug/kg	2000				
Sitrobenzene	ND	ug/kg	2000				
TitrosoDiPhenylAmine(NDPA)/DI		ug/kg	6000				
-Nitrosodi-n-propylamine	ND	ug/kg	2000				
sis(2-Ethylhexyl)phthalate	ND	ug/kg ug/kg	4000				
utyl benzyl phthalate	ND	ug/kg ug/kg	2000				
oi-n-butylphthalate	ND	ug/kg ug/kg	2000				
oi-n-octylphthalate	ND	ug/kg ug/kg	2000				
oiethyl phthalate	ND ND	ug/kg ug/kg	2000				
Dimethyl phthalate	ND	ug/kg	2000				

Laboratory Sample Number: L0813344-30

PWG-DW-2008-26 (4.25-4.75')

Semivolatile Organics by EPA 8270C cont'd	PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE II
Benzo(a)anthracene						PREP ANAL
emzo(a) pyrene						
				0000	1 8270C	0911 00:30 0913 17:46 PS
Renzo(b)fluoranthene						
	· · · · · · · · · · · · · · · · · · ·					
Chrysene	, ,					
Second S	, ,					
### ### ##############################	-					
enzo(ghi)perylene ND ug/kg 2000 luorene ND ug/kg 2000 henanthrene ND ug/kg 2000 ibenzo(a,h)anthracene ND ug/kg 2000 mdeno(1,2,3-cd)Pyrene ND ug/kg 2000 yrene ND ug/kg 2000 iphenyl ND ug/kg 2000 -Chloroaniline ND ug/kg 2000 -Nitroaniline ND ug/kg 2000 -Methylnaphthalene ND ug/kg 2000 -Chloro-M-Cresol ND ug/kg 2000 -Chloro-M-Cresol ND ug/kg 2000 -Chloro-M-Cresol ND ug/kg 2000 -Chlorophenol ND ug/kg 2000 -Chlorophenol ND ug/kg 2000 -Nitrophenol ND ug/kg 2000						
Lucrene ND						
henanthrene ND		ND				
ND		ND				
yrene		ND				
iphenyl -Chloroaniline ND ug/kg 2000 -Nitroaniline ND ug/kg 2000 -Methylnaphthalene ND ug/kg 2000 -Methylnaphthalene ND ug/kg 2000 -Methylnaphthalene ND ug/kg 7900 cetophenone ND ug/kg 7900 -Chloro-M-Cresol ND ug/kg 2000 -Chlorophenol ND ug/kg 2000 -Chlorophenol ND ug/kg 2000 -Nitrophenol ND ug/kg 2000 -Nitrophenol ND ug/kg 2000 -Nitrophenol ND ug/kg 7900 -Nitrophenol ND ug/kg 4000 -A-Dimitro-o-cresol ND ug/kg 7900 -Methylphenol ND ug/kg 7900 -Methylphenol ND ug/kg 2800 -Methylphenol ND ug/kg 2400 -Methylphenol -Methylphenol -Methylphenol ND ug/kg 2400 -Methylphenol -Methylphen	ndeno(1,2,3-cd)Pyrene	ND	ug/kg			
-Chloroaniline		ND	ug/kg	2000		
### ND	iphenyl	ND	ug/kg	2000		
-Nitroaniline	-Chloroaniline	ND	ug/kg	2000		
-Nitroaniline	-Nitroaniline	ND	ug/kg	2000		
Ibenzofuran	-Nitroaniline	ND	ug/kg	2000		
-Methylnaphthalene ND ug/kg 2000 ,2,4,5-Tetrachlorobenzene ND ug/kg 7900 cetophenone ND ug/kg 7900 ,4,6-Trichlorophenol ND ug/kg 2000 -Chloro-M-Cresol ND ug/kg 2000 -Chlorophenol ND ug/kg 2000 -Chlorophenol ND ug/kg 2400 ,4-Dichlorophenol ND ug/kg 2000 -Mitrophenol ND ug/kg 2000 -Nitrophenol ND ug/kg 2000 -Nitrophenol ND ug/kg 4000 ,4-Dimethylphenol ND ug/kg 7900 -Nitrophenol ND ug/kg 7900 -Nitrophenol ND ug/kg 7900 -Nitrophenol ND ug/kg 7900 -Nitrophenol ND ug/kg 7900 -A-Dinitrophenol ND ug/kg 7900 -Methylphenol ND ug/kg 7900 -Methylphenol ND ug/kg 2800 -Methylphenol ND ug/kg 2800 -Methylphenol ND ug/kg 2400 -Methylphenol/4-Methylphenol ND ug/kg 2400 -Methylphenol/4-Methylphenol ND ug/kg 2400 -Methylphenol/4-Methylphenol ND ug/kg 2000 -enzolc Acid ND ug/kg 2000 -enzolc Acid ND ug/kg 2000 -enzyl Alcohol ND ug/kg 2000	-Nitroaniline	ND	ug/kg	2800		
,2,4,5-Tetrachlorobenzene ND ug/kg 7900 cetophenone ND ug/kg 7900 ,4,6-Trichlorophenol ND ug/kg 2000 -Chloro-M-Cresol ND ug/kg 2000 -Chlorophenol ND ug/kg 2400 ,4-Dichlorophenol ND ug/kg 4000 ,4-Dimethylphenol ND ug/kg 7900 -Nitrophenol ND ug/kg 7900 -Nitrophenol ND ug/kg 7900 -Nitrophenol ND ug/kg 7900 ,4-Dinitrophenol ND ug/kg 7900 ,6-Dinitro-o-cresol ND ug/kg 7900 entachlorophenol ND ug/kg 7900 entachlorophenol ND ug/kg 2800 -Methylphenol ND ug/kg 2400 -Methylphenol/4-Methylphenol ND ug/kg 2400 ,4,5-Trichlorophenol ND ug/kg 2000 enzolc Acid ND ug/kg 2000 enzyl Alcohol	ibenzofuran	ND	ug/kg	2000		
cetophenone ND ug/kg 7900 ,4,6-Trichlorophenol ND ug/kg 2000 -Chloro-M-Cresol ND ug/kg 2000 -Chlorophenol ND ug/kg 2400 ,4-Dichlorophenol ND ug/kg 4000 ,4-Dimethylphenol ND ug/kg 7900 -Nitrophenol ND ug/kg 7900 -Poinitro-o-cresol ND ug/kg 7900 entachlorophenol ND ug/kg 2800 -Methylphenol ND ug/kg 2400 -Methylphenol ND ug/kg 2400 -Methylphenol ND ug/kg 2000 enzoic Acid ND u	-Methylnaphthalene	ND	ug/kg	2000		
,4,6-Trichlorophenol ND ug/kg 2000 -Chloro-M-Cresol ND ug/kg 2000 -Chlorophenol ND ug/kg 2400 ,4-Dichlorophenol ND ug/kg 4000 ,4-Dimethylphenol ND ug/kg 7900 -Nitrophenol ND ug/kg 7900 -Poinitro-o-cresol ND ug/kg 7900 entachlorophenol ND ug/kg 2800 -Methylphenol ND ug/kg 2400 -Methylphenol/4-Methylphenol ND ug/kg 2400 -Methylphenol/4-Methylphenol ND ug/kg 2000 enzoic Acid ND ug/kg 2000 enzoic Acid ND ug/kg 2000 enzyl Alcohol ND	,2,4,5-Tetrachlorobenzene	ND	ug/kg	7900		
-Chloro-M-Cresol ND ug/kg 2000 -Chlorophenol ND ug/kg 2400 ,4-Dichlorophenol ND ug/kg 4000 ,4-Dimethylphenol ND ug/kg 2000 -Nitrophenol ND ug/kg 7900 -Nitrophenol ND ug/kg 7900 -Nitrophenol ND ug/kg 7900 ,4-Dinitrophenol ND ug/kg 7900 ,6-Dinitro-o-cresol ND ug/kg 7900 entachlorophenol ND ug/kg 7900 entachlorophenol ND ug/kg 7900 henol ND ug/kg 7900 -Methylphenol ND ug/kg 2800 -Methylphenol ND ug/kg 2400 -Methylphenol/4-Methylphenol ND ug/kg 2400 ,4,5-Trichlorophenol ND ug/kg 2000 enzoic Acid ND ug/kg 2000 enzoic Acid ND ug/kg 2000 enzoic Acid ND ug/kg 2000 ug/kg 2000 uurrogate(s) Recovery QC Criteria -Fluorophenol 78.0 % 25-120 henol-d6 80.0 % 10-120 itrobenzene-d5 73.0 % 23-120 -Fluorobiphenyl 80.0 % 30-120	cetophenone	ND	ug/kg	7900		
-Chloro-M-Cresol ND ug/kg 2000 -Chlorophenol ND ug/kg 2400 ,4-Dichlorophenol ND ug/kg 4000 ,4-Dimethylphenol ND ug/kg 2000 -Nitrophenol ND ug/kg 7900 -Nitrophenol ND ug/kg 7900 -Nitrophenol ND ug/kg 7900 ,4-Dinitrophenol ND ug/kg 7900 ,6-Dinitro-o-cresol ND ug/kg 7900 entachlorophenol ND ug/kg 7900 entachlorophenol ND ug/kg 7900 henol ND ug/kg 2800 -Methylphenol ND ug/kg 2800 -Methylphenol ND ug/kg 2400 ,4,5-Trichlorophenol ND ug/kg 2000 enzoic Acid ND ug/kg 2000 enzoic Acid ND ug/kg 2000 enzolc Acid ND ug/	,4,6-Trichlorophenol	ND	ug/kg	2000		
,4-Dichlorophenol ND ug/kg 4000 ,4-Dimethylphenol ND ug/kg 2000 -Nitrophenol ND ug/kg 7900 -Nitrophenol ND ug/kg 7900 -Nitrophenol ND ug/kg 7900 ,4-Dinitrophenol ND ug/kg 7900 ,6-Dinitro-o-cresol ND ug/kg 7900 entachlorophenol ND ug/kg 2800 -methylophenol ND ug/kg 2800 -Methylphenol ND ug/kg 2400 -Methylphenol/4-Methylphenol ND ug/kg 2400 -Methylphenol/4-Methylphenol ND ug/kg 2000 enzoic Acid ND ug/kg 2000 enzoic Acid ND ug/kg 2000 enzyl Alcohol ND ug/kg 2000 urrogate(s) Recovery QC Criteria -Fluorophenol 78.0 \$ 25-120 henol-d6 80.0 \$ 10-120 itrobenzene-d5 73.0 \$	-Chloro-M-Cresol	ND	ug/kg	2000		
,4-Dichlorophenol ND ug/kg 4000 ,4-Dimethylphenol ND ug/kg 2000 -Nitrophenol ND ug/kg 7900 -Nitrophenol ND ug/kg 7900 -Nitrophenol ND ug/kg 7900 ,4-Dinitrophenol ND ug/kg 7900 ,6-Dinitro-o-cresol ND ug/kg 7900 entachlorophenol ND ug/kg 2800 -Methylophenol ND ug/kg 2400 -Methylphenol ND ug/kg 2400 -Methylphenol/4-Methylphenol ND ug/kg 2000 enzoic Acid ND ug/kg 2000 enzoic Acid ND ug/kg 2000 enzyl Alcohol ND ug/kg 2000 urrogate(s) Recovery QC Criteria -Fluorophenol 78.0 % 25-120 henol-d6 80.0 % 10-120 itrobenzene-d5 73.0 % 23-120 -Fluorobiphenyl 80.0 % 30-120	-Chlorophenol	ND	ug/kg	2400		
,4-Dimethylphenol ND ug/kg 2000 -Nitrophenol ND ug/kg 7900 -Nitrophenol ND ug/kg 4000 ,4-Dinitrophenol ND ug/kg 7900 ,6-Dinitro-o-cresol ND ug/kg 7900 entachlorophenol ND ug/kg 7900 henol ND ug/kg 2800 -Methylphenol ND ug/kg 2400 -Methylphenol/4-Methylphenol ND ug/kg 2400 -Methylphenol/4-Methylphenol ND ug/kg 2000 enzoic Acid ND ug/kg 2000 enzoic Acid ND ug/kg 2000 enzyl Alcohol ND ug/kg 2000 urrogate(s) Recovery QC Criteria -Fluorophenol 78.0 % 25-120 henol-d6 80.0 % 10-120 itrobenzene-d5 73.0 % 23-120 -Fluorobiphenyl 80.0 % 30-120	,4-Dichlorophenol	ND		4000		
-Nitrophenol ND ug/kg 7900 -Nitrophenol ND ug/kg 4000 ,4-Dinitrophenol ND ug/kg 7900 ,6-Dinitro-o-cresol ND ug/kg 7900 entachlorophenol ND ug/kg 7900 henol ND ug/kg 7900 henol ND ug/kg 2800 -Methylphenol ND ug/kg 2400 -Methylphenol/4-Methylphenol ND ug/kg 2400 -Methylphenol/4-Methylphenol ND ug/kg 2000 enzoic Acid ND ug/kg 2000 enzoic Acid ND ug/kg 2000 enzyl Alcohol ND ug/kg 3000 enzyl Alcohol ND ug/kg 4000 enzyl Alcohol ND ug/kg 4000 enzyl Alcohol ND ug/kg 3000 enzyl Alco		ND		2000		
-Nitrophenol ND ug/kg 4000 ,4-Dinitrophenol ND ug/kg 7900 ,6-Dinitro-o-cresol ND ug/kg 7900 entachlorophenol ND ug/kg 7900 henol ND ug/kg 2800 -Methylphenol ND ug/kg 2400 -Methylphenol/4-Methylphenol ND ug/kg 2400 ,4,5-Trichlorophenol ND ug/kg 2000 enzoic Acid ND ug/kg 2000 enzoic Acid ND ug/kg 2000 enzyl Alcohol ND ug/kg 4000 arbazole ND ug/kg 2000 urrogate(s) Recovery QC Criteria -Fluorophenol 78.0 % 25-120 henol-d6 80.0 % 10-120 citrobenzene-d5 73.0 % 23-120 -Fluorobiphenyl 80.0 % 30-120		ND		7900		
,4-Dinitrophenol ND ug/kg 7900 ,6-Dinitro-o-cresol ND ug/kg 7900 entachlorophenol ND ug/kg 2800 henol ND ug/kg 2400 -Methylphenol/4-Methylphenol ND ug/kg 2400 -Methylphenol/4-Methylphenol ND ug/kg 2000 enzoic Acid ND ug/kg 2000 enzyl Alcohol ND ug/kg 4000 arbazole ND ug/kg 2000 urrogate(s) Recovery QC Criteria -Fluorophenol 78.0 % 25-120 henol-d6 80.0 % 10-120 itrobenzene-d5 73.0 % 23-120 -Fluorobiphenyl 80.0 % 30-120		ND		4000		
,6-Dinitro-o-cresol ND ug/kg 7900 eentachlorophenol ND ug/kg 7900 henol ND ug/kg 2800 -Methylphenol ND ug/kg 2400 -Methylphenol/4-Methylphenol ND ug/kg 2000 -A,5-Trichlorophenol ND ug/kg 2000 denzoic Acid ND ug/kg 20000 denzyl Alcohol ND ug/kg 4000 darbazole ND ug/kg 2000 durrogate(s) Recovery QC Criteria -Fluorophenol 78.0 % 25-120 henol-d6 80.0 % 10-120 fitrobenzene-d5 73.0 % 23-120 -Fluorobiphenyl 80.0 % 30-120		ND				
entachlorophenol ND ug/kg 7900 henol ND ug/kg 2800 -Methylphenol ND ug/kg 2400 -Methylphenol/4-Methylphenol ND ug/kg 2400 ,4,5-Trichlorophenol ND ug/kg 2000 enzoic Acid ND ug/kg 20000 enzyl Alcohol ND ug/kg 4000 arbazole ND ug/kg 2000 urrogate(s) Recovery QC Criteria -Fluorophenol 78.0 % 25-120 henol-d6 80.0 % 10-120 itrobenzene-d5 73.0 % 23-120 -Fluorobiphenyl 80.0 % 30-120	=					
henol ND ug/kg 2800 -Methylphenol ND ug/kg 2400 -Methylphenol/4-Methylphenol ND ug/kg 2400 ,4,5-Trichlorophenol ND ug/kg 2000 enzoic Acid ND ug/kg 2000 enzyl Alcohol ND ug/kg 4000 arbazole ND ug/kg 2000 urrogate(s) Recovery QC Criteria -Fluorophenol 78.0 \$ 25-120 henol-d6 80.0 \$ 10-120 itrobenzene-d5 73.0 \$ 23-120 -Fluorobiphenyl 80.0 \$ 30-120						
-Methylphenol ND ug/kg 2400 -Methylphenol/4-Methylphenol ND ug/kg 2400 ,4,5-Trichlorophenol ND ug/kg 2000 enzoic Acid ND ug/kg 20000 enzyl Alcohol ND ug/kg 4000 arbazole ND ug/kg 2000 urrogate(s) Recovery QC Criteria -Fluorophenol 78.0 % 25-120 henol-d6 80.0 % 10-120 itrobenzene-d5 73.0 % 23-120 -Fluorobiphenyl 80.0 % 30-120						
-Methylphenol/4-Methylphenol ND ug/kg 2400 ,4,5-Trichlorophenol ND ug/kg 2000 enzoic Acid ND ug/kg 20000 enzyl Alcohol ND ug/kg 4000 arbazole ND ug/kg 2000 urrogate(s) Recovery QC Criteria -Fluorophenol 78.0 % 25-120 henol-d6 80.0 % 10-120 citrobenzene-d5 73.0 % 23-120 -Fluorobiphenyl 80.0 % 30-120						
,4,5-Trichlorophenol ND ug/kg 2000 enzoic Acid ND ug/kg 20000 enzyl Alcohol ND ug/kg 4000 arbazole ND ug/kg 2000 urrogate(s) Recovery QC Criteria -Fluorophenol 78.0 % 25-120 henol-d6 80.0 % 10-120 itrobenzene-d5 73.0 % 23-120 -Fluorobiphenyl 80.0 % 30-120						
enzoic Acid ND ug/kg 20000 enzyl Alcohol ND ug/kg 4000 arbazole ND ug/kg 2000 urrogate(s) Recovery QC Criteria -Fluorophenol 78.0 % 25-120 henol-d6 80.0 % 10-120 itrobenzene-d5 73.0 % 23-120 -Fluorobiphenyl 80.0 % 30-120						
enzyl Alcohol ND ug/kg 4000 arbazole ND ug/kg 2000 urrogate(s) Recovery QC Criteria -Fluorophenol 78.0 % 25-120 henol-d6 80.0 % 10-120 itrobenzene-d5 73.0 % 23-120 -Fluorobiphenyl 80.0 % 30-120	-					
Varbazole ND ug/kg 2000 Surrogate(s) Recovery QC Criteria 2-Fluorophenol 78.0 % 25-120 2-henol-d6 80.0 % 10-120 2-Fluorobiphenyl 80.0 % 23-120 30-120						
Turrogate(s) Recovery QC Criteria 78.0 % 25-120 henol-d6 80.0 % 10-120 fitrobenzene-d5 73.0 % 23-120 -Fluorobiphenyl 80.0 % 30-120	-					
-Fluorophenol 78.0 % 25-120 henol-d6 80.0 % 10-120 itrobenzene-d5 73.0 % 23-120 -Fluorobiphenyl 80.0 % 30-120	arba2016	IND	ug/ng	2000		
henol-d6 80.0 % 10-120 "itrobenzene-d5 73.0 % 23-120 -Fluorobiphenyl 80.0 % 30-120		=				
Titrobenzene-d5 73.0 % 23-120 -Fluorobiphenyl 80.0 % 30-120	-					
-Fluorobiphenyl 80.0 % 30-120			%			
		73.0	%	23-12	0	
4. C. T. 'la la 101 0 10.100	-Fluorobiphenyl	80.0	%	30-12	0	
	,4,6-Tribromophenol	101	%	19-12	0	
-Terphenyl-d14 75.0 % 18-120	-Terphenyl-d14	75.0	%	18-12	0	
emivolatile Organics by EPA 8270C-SIM 1 8270C 0911 00:30 0914 06:		00700 075				0911 00:30 0914 06:04 AF

Laboratory Sample Number: L0813344-30

PWG-DW-2008-26 (4.25-4.75')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA' PREP	TE ANAL	ID
Semivolatile Organics by E	PA 8270C-SIM	cont'd		1 8270C	0911 00:30	0914 06:0	4 AK
Acenaphthene	ND	ug/kg	790				
2-Chloronaphthalene	ND	ug/kg	790				
Fluoranthene	ND	ug/kg	790				
Hexachlorobutadiene	ND	ug/kg	2000				
Naphthalene	ND	ug/kg	790				
Benzo(a)anthracene	ND	ug/kg	790				
Benzo(a)pyrene	ND	ug/kg	790				
Benzo(b)fluoranthene	ND	ug/kg	790				
Benzo(k)fluoranthene	ND	ug/kg	790				
Chrysene	ND	ug/kg	790				
Acenaphthylene	ND	ug/kg	790				
Anthracene	ND	ug/kg	790				
Benzo(ghi)perylene	ND	ug/kg	790				
Fluorene	ND	ug/kg	790				
Phenanthrene	ND	ug/kg	790				
Dibenzo(a,h)anthracene	ND	ug/kg	790				
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	790				
Pyrene	ND	ug/kg	790				
2-Methylnaphthalene	ND	ug/kg	790				
Pentachlorophenol	ND	ug/kg	3200				
Hexachlorobenzene	ND	ug/kg	3200				
Hexachloroethane	ND	ug/kg	3200				
Surrogate(s)	Recovery		QC Cri	teria			
2-Fluorophenol	ND	%	25-120				
Phenol-d6	ND	8	10-120				
Nitrobenzene-d5	ND	%	23-120				
2-Fluorobiphenyl	ND	%	30-120				
2,4,6-Tribromophenol	ND	%	19-120				
4-Terphenyl-d14	ND	%	18-120				
Petroleum Hydrocarbon Quan	titation by G	GC-FID		1 8015B(M)	0911 01:00	0912 03:4	6 JL
ТРН	748000	ug/kg	198000				
Surrogate(s)	Recovery		QC Cri	teria			
o-Terphenyl	87.0	%	40-140				

ALPHA ANALYTICAL QUALITY ASSURANCE BATCH DUPLICATE ANALYSIS

Laboratory Job Number: L0813344

Parameter	Value 1	Value 2	Units	RPD	RPD Limits
Soli	ds, Total for sa	amnle(s) 13	(T.0813279_	02 MG33	6159_1)
Solids, Total	as, local for se	90	%	02, WG33 1	20
Solids, To	tal for sample(s	s) 04-10,12	,14-25 (L08	13344-04	, WG335817-1)
Solids, Total	84	84	%	0	20
	, Total for samp				
Solids, Total	82	81	%	1	20
Total	Metals for samp	ole(s) 26-3	0 (L0813344	-26. WG3:	35803-1)
Aluminum, Total	2200	1100	mg/kg	67	35
Antimony, Total	ND	ND	mg/kg	NC	35
Arsenic, Total	7.2	0.87	mg/kg	157	35
Barium, Total	6.9	5.2	mg/kg	28	35
Beryllium, Total	0.34	ND	mg/kg	NC	35
Cadmium, Total	ND	ND	mg/kg	NC	35
Calcium, Total	11000	8200	mg/kg	29	35
Chromium, Total	26	3.2	mg/kg	156	35
Cobalt, Total	1.7	ND	mg/kg	NC	35
Copper, Total	6.1	2.4	mg/kg	87	35
Iron, Total	15000	2000	mg/kg	153	35
Lead, Total	12	9.8	mg/kg	20	35
Magnesium, Total	7200	5100	mg/kg	34	35
Manganese, Total	34	23	mg/kg	39	35
Nickel, Total	3.8	1.5	mg/kg	87 NG	35
Potassium, Total Selenium, Total	130	ND ND	mg/kg	NC NC	35 35
Silver, Total	ND ND	ND	mg/kg mg/kg	NC	35
Sodium, Total	ND	ND	mg/kg	NC	35
Thallium, Total	ND	ND	mg/kg	NC	35
Vanadium, Total	14	3.5	mg/kg	120	35
Zinc, Total	24	14	mg/kg	53	35
	ls for sample(s)				
Aluminum, Total	1400	2600	mg/kg	60	35
Antimony, Total	ND	ND	mg/kg	NC	35
Arsenic, Total Barium, Total	0.82	1.2	mg/kg	38 57	35 25
Barium, Total Beryllium, Total	7.8 ND	14 ND	mg/kg mg/kg	57 NC	35 35
Cadmium, Total	ND	1.1	mg/kg	NC NC	35
Calcium, Total	13000	4200	mg/kg	102	35
Chromium, Total	9.2	12	mg/kg	26	35
Cobalt, Total	ND	2.6	mg/kg	NC	35
Copper, Total	14	34	mg/kg	83	35
Iron, Total	2400	5300	mg/kg	75	35
Lead, Total	60	130	mg/kg	74	35
Magnesium, Total	8800	2900	mg/kg	101	35
Manganese, Total	26	34	mg/kg	27	35
Nickel, Total	3.7	7.3	mg/kg	65	35

09250811:11 Page 146 of 178

ALPHA ANALYTICAL QUALITY ASSURANCE BATCH DUPLICATE ANALYSIS

Laboratory Job Number: L0813344

Continued

Parameter	Value 1	Value 2	Units	RPD	RPD Lin	nits
Total Metals for	sample(s)	04-10,12,1	4-25 (L0813	344-10,	WG335802-	-1)
Potassium, Total	170	220	mg/kg	26	35	
Selenium, Total	ND	ND	mg/kg	NC	35	
Silver, Total	ND	ND	mg/kg	NC	35	
Sodium, Total	ND	ND	mg/kg	NC	35	
Thallium, Total	ND	ND	mg/kg	NC	35	
Vanadium, Total	9.3	20	mg/kg	73	35	
Zinc, Total	110	220	mg/kg	67	35	
Total Metal	s for samp	le(s) 25-30	(L0813344-	25, WG33	6225-3)	
Mercury, Total	1.1	0.80	mg/kg	32	35	
Petroleum Hydrocarbon Quantita	ation by GC	-FID for sat	mple(s) 04-	10,12,14	-19,21-25	5 (L0813344-16, W
ТРН	ND	ND	ug/kg	NC	40	
Surrogate(s)	Reco	very				QC Criteria
o-Terphenyl	59.0	71.0	ર્જ			40-140
Petroleum Hydrocarbon Quantit	ation by G	C-FID for sa	ample(s) 13	,26-30 (L0813330-	-01, WG335859-3)
ТРН	ND	ND	ug/kg	NC	40	
Surrogate(s)	Reco	very				QC Criteria
o-Terphenyl	80.0	80.0	%			40-140

ALPHA ANALYTICAL QUALITY ASSURANCE BATCH SPIKE ANALYSES

Laboratory Job Number: L0813344

% Recovery QC Criteria	
for sample(s) 13 (WG336007-4)	
97 75-125	
95 75-125	
91 75-125	
93 75-125	
96 75-125	
89 75-125	
93 75–125	
93 75-125	
89 75-125	
91 75-125	
96 75-125	
87 75-125	
89 75-125	
89 75-125	
81 75-125	
90 75-125	
95 75-125	
95 75-125 89 75-125	
95 75-125	
	for sample(s) 13 (WG336007-4) 105

ALPHA ANALYTICAL QUALITY ASSURANCE BATCH SPIKE ANALYSES

Laboratory Job Number: L0813344

Continued

Parameter	% Recovery	QC Criter	ia		
Total Metals LCS for sa	ample(s) 04-10,12,14	4-25 (WG335	5802-5)		
Aluminum, Total	92	75-125	,		
Antimony, Total	93	75-125			
Arsenic, Total	100	75-125			
Barium, Total	94	75-125			
Beryllium, Total	97	75-125			
Cadmium, Total	99	75-125			
Calcium, Total	93	75-125			
Chromium, Total	97	75-125			
Cobalt, Total	97	75-125			
Copper, Total	97	75-125			
Iron, Total	95	75-125			
Lead, Total	99	75-125			
Lead, Total Magnesium, Total	99	75-125 75-125			
Manganese, Total	93	75-125			
Nickel, Total	93	75-125			
Potassium, Total	87	75-125			
Selenium, Total	96	75-125			
Silver, Total	101	75-125			
Sodium, Total	93	75-125			
mb = 1 1 m = = 1	94	75-125			
Thallium, Total					
Vanadium, Total	97	75-125			
•		75-125 75-125			
Vanadium, Total Zinc, Total	97 97	75-125	55-2)		
Vanadium, Total	97 97	75-125	55-2)		
Vanadium, Total Zinc, Total Total Metals LCS for s Mercury, Total	97 97 sample(s) 04-10,12-2 104	75-125 24 (WG33605 80-120			
Vanadium, Total Zinc, Total Total Metals LCS for s Mercury, Total Total Metals LCS fo	97 97 sample(s) 04-10,12-2 104 or sample(s) 25-30	75-125 24 (WG33605 80-120 (WG336225-2			
Vanadium, Total Zinc, Total Total Metals LCS for s Mercury, Total	97 97 sample(s) 04-10,12-2 104	75-125 24 (WG33605 80-120			
Vanadium, Total Zinc, Total Total Metals LCS for s Mercury, Total Total Metals LCS fo	97 97 sample(s) 04-10,12-2 104 or sample(s) 25-30 101 n by GC-FID LCS for	75-125 24 (WG33605 80-120 (WG336225-2 80-120 sample(s)	2)	-19,21-25	(WG335858
Vanadium, Total Zinc, Total Total Metals LCS for s Mercury, Total Total Metals LCS fo Mercury, Total	97 97 sample(s) 04-10,12-2 104 or sample(s) 25-30 101	75-125 24 (WG33605 80-120 (WG336225-2 80-120	2)	-19,21-25	(WG335858
Vanadium, Total Zinc, Total Total Metals LCS for s Mercury, Total Total Metals LCS fo Mercury, Total Petroleum Hydrocarbon Quantitation TPH	97 97 sample(s) 04-10,12-2 104 or sample(s) 25-30 101 n by GC-FID LCS for	75-125 24 (WG33605 80-120 (WG336225-2 80-120 sample(s)	2)	-19,21-25	(WG335858
Vanadium, Total Zinc, Total Total Metals LCS for s Mercury, Total Total Metals LCS fo Mercury, Total Petroleum Hydrocarbon Quantitation TPH Surrogate(s)	97 97 sample(s) 04-10,12-2 104 or sample(s) 25-30 101 h by GC-FID LCS for 82	75-125 24 (WG33605 80-120 (WG336225-2 80-120 sample(s) 40-140	2)	-19,21-25	(WG335858
Vanadium, Total Zinc, Total Total Metals LCS for s Mercury, Total Total Metals LCS fo Mercury, Total Petroleum Hydrocarbon Quantitation TPH	97 97 sample(s) 04-10,12-2 104 or sample(s) 25-30 101 n by GC-FID LCS for	75-125 24 (WG33605 80-120 (WG336225-2 80-120 sample(s)	2)	-19,21-25	(WG335858
Vanadium, Total Zinc, Total Total Metals LCS for s Mercury, Total Total Metals LCS fo Mercury, Total Petroleum Hydrocarbon Quantitation TPH Surrogate(s)	97 97 sample(s) 04-10,12-2 104 or sample(s) 25-30 101 a by GC-FID LCS for 82	75-125 24 (WG33605 80-120 (WG336225-2 80-120 sample(s) 40-140	?) 04-10,12,14		
Vanadium, Total Zinc, Total Total Metals LCS for s Mercury, Total Total Metals LCS fo Mercury, Total Petroleum Hydrocarbon Quantitation TPH Surrogate(s) o-Terphenyl	97 97 sample(s) 04-10,12-2 104 or sample(s) 25-30 101 a by GC-FID LCS for 82	75-125 24 (WG33605 80-120 (WG336225-2 80-120 sample(s) 40-140	?) 04-10,12,14		
Vanadium, Total Zinc, Total Total Metals LCS for s Mercury, Total Total Metals LCS fo Mercury, Total Petroleum Hydrocarbon Quantitation TPH Surrogate(s) o-Terphenyl Petroleum Hydrocarbon Quantitation TPH	97 97 sample(s) 04-10,12-2 104 or sample(s) 25-30 101 a by GC-FID LCS for 82 77	75-125 24 (WG33605 80-120 (WG336225-2 80-120 sample(s) 40-140 40-140 sample(s)	?) 04-10,12,14		
Vanadium, Total Zinc, Total Total Metals LCS for s Mercury, Total Total Metals LCS fo Mercury, Total Petroleum Hydrocarbon Quantitation TPH Surrogate(s) o-Terphenyl Petroleum Hydrocarbon Quantitation TPH Surrogate(s)	97 97 sample(s) 04-10,12-2 104 or sample(s) 25-30 101 a by GC-FID LCS for 82 77 a by GC-FID LCS for 87	75-125 24 (WG33605 80-120 (WG336225-2 80-120 sample(s) 40-140 sample(s) 40-140	?) 04-10,12,14		
Vanadium, Total Zinc, Total Total Metals LCS for s Mercury, Total Total Metals LCS fo Mercury, Total Petroleum Hydrocarbon Quantitation TPH Surrogate(s) o-Terphenyl Petroleum Hydrocarbon Quantitation TPH	97 97 sample(s) 04-10,12-2 104 or sample(s) 25-30 101 a by GC-FID LCS for 82 77	75-125 24 (WG33605 80-120 (WG336225-2 80-120 sample(s) 40-140 40-140 sample(s)	?) 04-10,12,14		
Vanadium, Total Zinc, Total Total Metals LCS for s Mercury, Total Total Metals LCS fo Mercury, Total Petroleum Hydrocarbon Quantitation TPH Surrogate(s) o-Terphenyl Petroleum Hydrocarbon Quantitation TPH Surrogate(s)	97 97 sample(s) 04-10,12-2 104 or sample(s) 25-30 101 a by GC-FID LCS for 82 77 a by GC-FID LCS for 87	75-125 24 (WG33605 80-120 (WG336225-2 80-120 sample(s) 40-140 sample(s) 40-140 40-140	2) 04-10,12,14 13,26-30 (W		
Vanadium, Total Zinc, Total Total Metals LCS for s Mercury, Total Total Metals LCS for Mercury, Total Petroleum Hydrocarbon Quantitation TPH Surrogate(s) o-Terphenyl Petroleum Hydrocarbon Quantitation TPH Surrogate(s) o-Terphenyl	97 97 sample(s) 04-10,12-2 104 or sample(s) 25-30 101 a by GC-FID LCS for 82 77 a by GC-FID LCS for 87	75-125 24 (WG33605 80-120 (WG336225-2 80-120 sample(s) 40-140 sample(s) 40-140 40-140	2) 04-10,12,14 13,26-30 (W		
Vanadium, Total Zinc, Total Total Metals LCS for s Mercury, Total Total Metals LCS for Mercury, Total Petroleum Hydrocarbon Quantitation TPH Surrogate(s) o-Terphenyl Petroleum Hydrocarbon Quantitation TPH Surrogate(s) Total Metals SPIKE for sam	97 97 sample(s) 04-10,12-2 104 or sample(s) 25-30 101 h by GC-FID LCS for 82 77 h by GC-FID LCS for 87 84 mple(s) 26-30 (L0813)	75-125 24 (WG33605 80-120 (WG336225-2 80-120 sample(s) 40-140 sample(s) 40-140 40-140	2) 04-10,12,14 13,26-30 (W		
Vanadium, Total Zinc, Total Total Metals LCS for s Mercury, Total Total Metals LCS for Mercury, Total Petroleum Hydrocarbon Quantitation TPH Surrogate(s) o-Terphenyl Petroleum Hydrocarbon Quantitation TPH Surrogate(s) o-Terphenyl Total Metals SPIKE for sam Aluminum, Total Antimony, Total	97 97 sample(s) 04-10,12-2 104 or sample(s) 25-30 101 h by GC-FID LCS for 82 77 h by GC-FID LCS for 87 84 mple(s) 26-30 (L0813)	75-125 24 (WG33605 80-120 (WG336225-2 80-120 sample(s) 40-140 40-140 40-140 40-140 3344-26, WG 75-125 75-125	2) 04-10,12,14 13,26-30 (W		
Vanadium, Total Zinc, Total Total Metals LCS for s Mercury, Total Total Metals LCS for Mercury, Total Petroleum Hydrocarbon Quantitation TPH Surrogate(s) o-Terphenyl Petroleum Hydrocarbon Quantitation TPH Surrogate(s) o-Terphenyl Total Metals SPIKE for sam Aluminum, Total Antimony, Total Arsenic, Total	97 97 sample(s) 04-10,12-2 104 or sample(s) 25-30 101 h by GC-FID LCS for 82 77 h by GC-FID LCS for 87 84 mple(s) 26-30 (L0813) 0 72 0	75-125 24 (WG33605 80-120 (WG336225-2 80-120 sample(s) 40-140 40-140 40-140 40-140 3344-26, WG 75-125 75-125 75-125	2) 04-10,12,14 13,26-30 (W		
Vanadium, Total Zinc, Total Total Metals LCS for s Mercury, Total Total Metals LCS for Mercury, Total Petroleum Hydrocarbon Quantitation TPH Surrogate(s) o-Terphenyl Petroleum Hydrocarbon Quantitation TPH Surrogate(s) o-Terphenyl Total Metals SPIKE for sam Aluminum, Total Antimony, Total	97 97 sample(s) 04-10,12-2 104 or sample(s) 25-30 101 h by GC-FID LCS for 82 77 h by GC-FID LCS for 87 84 aple(s) 26-30 (L0813) 0 72	75-125 24 (WG33605 80-120 (WG336225-2 80-120 sample(s) 40-140 40-140 40-140 40-140 3344-26, WG 75-125 75-125	2) 04-10,12,14 13,26-30 (W		

09250811:11 Page 149 of 178

ALPHA ANALYTICAL QUALITY ASSURANCE BATCH SPIKE ANALYSES

Laboratory Job Number: L0813344

Continued

Parameter	% Recovery	QC Criteria
Total Metals SPIKE for sample(s)	26-30 (L0813	3344-26, WG335803-2)
Calcium, Total	0	75-125
Chromium, Total	0	75-125
Cobalt, Total	80	75-125
Copper, Total	57	75-125
Iron, Total	0	75-125
Lead, Total	77	75-125
Magnesium, Total	0	75-125
Manganese, Total	40	75-125
Nickel, Total	72	75-125
Potassium, Total	124	75-125
Selenium, Total	87	75-125
Silver, Total	90	75-125
Sodium, Total	97	75-125
Thallium, Total	94	75-125
Vanadium, Total	47	75-125
Zinc, Total	43	75-125
Total Metals SPIKE for sample(s)	25-30 (L0813	3344-25, WG336225-4)
Mercury, Total	0	70-130

Laboratory Job Number: L0813344

Parameter	LCS	% LCSD %	RPD	RPD Limit	QC Limits
Volatile Organics by EPA 8260E	3 for	sample(s) 24	(WG336400-4,	WG336400-5)	
Chlorobenzene	101	97	4	30	60-133
Benzene	95	94	1	30	66-142
Toluene	98	95	3	30	59-139
1,1-Dichloroethene	91	92	1	30	59-172
Frichloroethene	95	93	2	30	62-137
Surrogate(s)					
1,2-Dichloroethane-d4	83	90	8		70-130
Coluene-d8	94	102	8		70-130
1-Bromofluorobenzene	92	102	10		70-130
Dibromofluoromethane	89	97	9		70-130
Olatile Organics by EPA 8260B for	sam <u>r</u>	ole(s) 04-08,1	2,14-20 (WG3	36351-1, WG336	351-2)
Chlorobenzene	98	103	5	30	60-133
Benzene	92	97	5	30	66-142
Coluene	94	99	5	30	59-139
1,1-Dichloroethene	90	96	6	30	59-172
Trichloroethene	94	100	6	30	62-137
Surrogate(s)					
1,2-Dichloroethane-d4	100	111	10		70-130
Coluene-d8	103	112	8		70-130
l-Bromofluorobenzene	102	110	8		70-130
Dibromofluoromethane	102	112	9		70-130
Volatile Organics by EPA 8260B f					
Chlorobenzene	106	95	11	20	75-130
Benzene	106	96	10	20	76-127
Toluene	106	97	9	20	76-125
l,1-Dichloroethene	104	95	9	20	61-145
Trichloroethene	101	92	9	20	71-120
Surrogate(s)					
,2-Dichloroethane-d4	101	102	1		70-130
Coluene-d8	100	100	0		70-130
l-Bromofluorobenzene	100	101	1		70-130
Dibromofluoromethane	98	99	1		70-130
Volatile Organics by EPA 8260B f		-			
Chlorobenzene	100	103	3	30	60-133
Benzene	95	99	4	30	66-142
Toluene	100	106	6	30	59-139
l,1-Dichloroethene	92	100	8	30	59-172
Trichloroethene	97	102	5	30	62-137
Surrogate(s)					
1,2-Dichloroethane-d4	99	101	2		70-130
Toluene-d8	104	107	3		70-130

Laboratory Job Number: L0813344

Continued

Parameter	LCS %	LCSD %	RPD	RPD Limit	QC Limits
Volatile Organics by EPA 8260	B for sample	e(s) 26-30 (WG336400-1	. WG336400-2)	
4-Bromofluorobenzene	101	104	3		70-130
Dibromofluoromethane	100	104	4		70-130
2 2 2 2 3 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4	100	_01	-		70 100
Volatile Organics by EPA 8260B	for sample(s	3) 09-10,13,	17,21-23,2	25 (WG336351-4,	WG336351-5
Chlorobenzene	100	103	5	30	60-133
Benzene	95	99	7	30	66-142
Toluene	100	106	12	30	59-139
1,1-Dichloroethene	92	100	11	30	59-172
Trichloroethene	97	102	8	30	62-137
Surrogato(g)					
Surrogate(s) 1,2-Dichloroethane-d4	99	101	2		70-130
r,z-bichioroethane-d4 Toluene-d8	104	107	3		70-130
roluene-d8 4-Bromofluorobenzene	101	107	3		70-130
Dibromofluoromethane	100	104	4		70-130
Semivolatile Organics by EPA	8270C for sa	ample(s) 04	(WG336664-	-2, WG336664-3)	
Acenaphthene	68	71	4	50	31-137
1,2,4-Trichlorobenzene	62	63	2	50	38-107
2-Chloronaphthalene	62	66	6	50	40-140
1,2-Dichlorobenzene	64	68	6	50	40-140
1,4-Dichlorobenzene	57	63	10	50	28-104
2,4-Dinitrotoluene	84	86	2	50	28-89
2,6-Dinitrotoluene	63	64	2	50	40-140
Fluoranthene	85	83	2	50	40-140
4-Chlorophenyl phenyl ether	71	73	3	50	40-140
n-Nitrosodi-n-propylamine	66	68	3	50	41-126
Butyl benzyl phthalate	90	87	3	50	40-140
Anthracene	78	80	3	50	40-140
Pyrene	81	78	4	50	35-142
P-Chloro-M-Cresol	63	68	8	50	26-103
2-Chlorophenol	63	65	3	50	25-102
2-Nitrophenol	62	68	9	50	30-130
4-Nitrophenol	71	77	8	50	11-114
2,4-Dinitrophenol	36	40	11	50	30-130
Pentachlorophenol	56 67	62	8	50	17-109
-					
Phenol	61	66	8	50	26-90
Surrogate(s)					
2-Fluorophenol	74	75	1		25-120
Phenol-d6	68	72	6		10-120
Nitrobenzene-d5	62	66	6		23-120
2-Fluorobiphenyl	62	63	2		30-120
2,4,6-Tribromophenol	82	83	1		19-120
4-Terphenyl-d14	68	65	5		18-120

09250811:11 Page 152 of 178

Laboratory Job Number: L0813344

Continued

Parameter	LCS	% LCs	SD % RPD	RPD Limit	QC Limits
Semivolatile Organics by EPA 8270C	for	sample(s)	13,20,26-30	(WG335861-2, WG3	35861-3)
Acenaphthene	77	72	7	50	31-137
1,2,4-Trichlorobenzene	74	71	4	50	38-107
2-Chloronaphthalene	76	72	5	50	40-140
1,2-Dichlorobenzene	77	71	8	50	40-140
1,4-Dichlorobenzene	72	71	1	50	28-104
2,4-Dinitrotoluene	86	90	5	50	28-89
2,6-Dinitrotoluene	71	71	0	50	40-140
Fluoranthene	88	87	1	50	40-140
4-Chlorophenyl phenyl ether	76	73	4	50	40-140
n-Nitrosodi-n-propylamine	79	73	8	50	41-126
Butyl benzyl phthalate	86	88	2	50	40-140
Anthracene	84	83	1	50	40-140
Pyrene	86	84	2	50	35-142
Pyrene P-Chloro-M-Cresol	78	73	7	50	26-103
2-Chlorophenol	77	73	5	50	25-102
2-Nitrophenol	78	73	8	50	30-130
4-Nitrophenol	78 79	68	15	50	11-114
4-Nitrophenoi 2,4-Dinitrophenol	37	38		50	30-130
	57 61	64	3	50	17-109
Pentachlorophenol Phenol	80	72	5 11	50	26-90
PHEHOI	80	12	11	50	26-90
Surrogate(s)			_		
2-Fluorophenol	86	81	6		25-120
Phenol-d6	84	78	7		10-120
Nitrobenzene-d5	80	73	9		23-120
2-Fluorobiphenyl	72	71	1		30-120
2,4,6-Tribromophenol	89	86	3		19-120
4-Terphenyl-d14	72	71	1		18-120
Semivolatile Organics by EPA 8270C	for	sample(s)	05-10,12,14-	-19,21-25 (WG3358	62-2, WG335862-
Acenaphthene	72	81	12	50	31-137
1,2,4-Trichlorobenzene	68	68	0	50	38-107
2-Chloronaphthalene	78	79	1	50	40-140
1,2-Dichlorobenzene	66	72	9	50	40-140
1,4-Dichlorobenzene	61	69	12	50	28-104
2,4-Dinitrotoluene	90	88	2	50	28-89
2,6-Dinitrotoluene	74	83	11	50	40-140
Fluoranthene	85	92	8	50	40-140
4-Chlorophenyl phenyl ether	77	83	8	50	40-140
n-Nitrosodi-n-propylamine	72	80	11	50	41-126
Butyl benzyl phthalate	91	92	1	50	40-140
Anthracene	79	90	13	50	40-140
Pyrene	82	88	7	50	35-142
P-Chloro-M-Cresol	78	86	10	50	26-103
2-Chlorophenol	66	71	7	50	25-103
2-Chitrophenol	64	68	6	50	30-130
z-Nitrophenoi 4-Nitrophenol	76	71	7	50	11-114

09250811:11 Page 153 of 178

Laboratory Job Number: L0813344

Continued

Parameter	LCS %	LCSD %	RPD	RPD Limit	QC Limits
Semivolatile Organics by EPA 827	OC for sam	mple(s) 05-1	10,12,14-19,21	25 (WG335862	2-2, WG335862-3
2,4-Dinitrophenol	46	49	6	50	30-130
Pentachlorophenol	65	73	12	50	17-109
Phenol	66	72	9	50	26-90
Surrogate(s)					
2-Fluorophenol	76	78	3		25-120
Phenol-d6	74	76	3		10-120
Nitrobenzene-d5	72	72	0		23-120
2-Fluorobiphenyl	72	76	5		30-120
2,4,6-Tribromophenol	79	92	15		19-120
4-Terphenyl-d14	69	71	3		18-120
Semivolatile Organics by EPA 827			04-08,10,12,1	4-19,21-22,24	
Acenaphthene	88	89	1		31-137
2-Chloronaphthalene	91	91	0		40-140
Fluoranthene	105	99	6		40-140
Anthracene	105	105	0		40-140
Pyrene	106	99	7		35-142
Pentachlorophenol	77	73	5		17-109
Surrogate(s)					
2-Fluorophenol	92	83	10		25-120
Phenol-d6	98	90	9		10-120
Nitrobenzene-d5	85	79	7		23-120
2-Fluorobiphenyl	86	84	2		30-120
2,4,6-Tribromophenol	91	88	3		19-120
4-Terphenyl-d14	91	84	8		18-120
Semivolatile Organics by EPA 827				734-2, WG33673	
Acenaphthene	77	83	8		31-137
2-Chloronaphthalene	80	88	10		40-140
Fluoranthene	103	107	4		40-140
Anthracene	88	96	9		40-140
Pyrene	98	103	5		35-142
Pentachlorophenol	79	48	49		17-109
Surrogate(s)		_	_		
2-Fluorophenol	80	86	7		25-120
Phenol-d6	85	90	6		10-120
Nitrobenzene-d5	78	83	6		23-120
2-Fluorobiphenyl	72	76	5		30-120
2,4,6-Tribromophenol	91	90	1		19-120
4-Terphenyl-d14	87	88	1		18-120

Laboratory Job Number: L0813344

Continued

LCS %	LCSD %	RPD	RPD Limit	QC Limits	
8270C-SIM for	r sample(s)	13,20,26-30	(WG335860-2,	WG335860-3)	
84	80	5		31-137	
82	78	5		40-140	
89	90	1		40-140	
94	87	8		40-140	
89	88	1		35-142	
62	46	30		17-109	
88	82	7		25-120	
91	87	4		10-120	
85	80	6		23-120	
77	72	7		30-120	
82	76	8		19-120	
83	78	6		18-120	
	8270C-SIM for 84 82 89 94 89 62 88 91 85 77 82	8270C-SIM for sample(s) 84 80 82 78 89 90 94 87 89 88 62 46 88 82 91 87 85 80 77 72 82 76	8270C-SIM for sample(s) 13,20,26-30 84 80 5 82 78 5 89 90 1 94 87 8 89 88 1 62 46 30 88 82 7 91 87 4 85 80 6 77 72 7 82 76 8	8270C-SIM for sample(s) 13,20,26-30 (WG335860-2, 84 80 5 82 78 5 89 90 1 94 87 8 89 88 1 62 46 30 88 82 7 91 87 4 85 80 6 77 72 7 82 76 8	8270C-SIM for sample(s) 13,20,26-30 (WG335860-2, WG335860-3) 84 80 5 31-137 82 78 5 40-140 89 90 1 40-140 94 87 8 40-140 89 88 1 35-142 62 46 30 17-109 88 82 7 25-120 91 87 4 10-120 85 80 6 23-120 77 72 7 30-120 82 76 8

09250811:11 Page 155 of 178

Laboratory Job Number: L0813344

Parameter	MS %	MSD %	RPD	RPD Limit	MS/MSD Limit
Total Metals f	or sample(s) 13	/T.0813344_13	NG336007	-2)	
Aluminum, Total	437	308	35	35	75-125
Antimony, Total	64	65	2	35	75-125
Arsenic, Total	106	108	2	35	75-125
Barium, Total	96	94	2	35	75-125
Beryllium, Total	99	99	0	35	75-125
Cadmium, Total	97	94	3	35	75-125
Calcium, Total	0	154	200	35	75-125
Chromium, Total	122	90	30	35	75-125
	86	90 85		35 35	
Cobalt, Total	111	105	1 6	35 35	75-125
Copper, Total					75-125
Iron, Total	1160	0	200	35	75-125
Lead, Total	137	115	17	35	75-125
Magnesium, Total	0	0	NC	35	75-125
Manganese, Total	32	40	22	35	75-125
Nickel, Total	85	80	6	35	75-125
Potassium, Total	100	99	1	35	75-125
Selenium, Total	102	101	1	35	75-125
Silver, Total	102	108	6	35	75-125
Sodium, Total	112	112	0	35	75-125
Thallium, Total	78	77	1	35	75-125
Vanadium, Total	90	86	5	35	75-125
Zinc, Total	116	123	6	35	75-125
Total Metals for sam	ple(s) 04-10,12,	14-25 (L0813	3344-10, WG	335802-3)	
Aluminum, Total	608	693	13	35	75-125
Antimony, Total	58	71	20	35	75-125
Arsenic, Total	83	100	19	35	75-125
Barium, Total	78	94	19	35	75-125
Beryllium, Total	76	89	16	35	75-125
Cadmium, Total	98	115	16	35	75-125
Calcium, Total	0	462	200	35	75-125
Chromium, Total	82	98	18	35	75-125
Cobalt, Total	82	95	15	35	75-125
Copper, Total	140	160	13	35	75-125
Iron, Total	4710	2460	63	35	75-125
Lead, Total	149	181	19	35	75-125
Magnesium, Total	0	0	NC	35	75-125
Manganese, Total	82	114	33	35	75-125
Nickel, Total	77	90	16	35	75-125
Potassium, Total	85	119	33	35	75-125
Selenium, Total	76	90	17	35	75-125
Silver, Total	81	98	19	35	75-125
Sodium, Total	90	112	22	35	75-125
Thallium, Total	73	85	15	35	75-125
Vanadium, Total	93	113	19	35	75-125
· allaatam, todat	75	246	30	35	75-125

Laboratory Job Number: L0813344

Continued

Parameter	MS %	MSD %	RPD	RPD Limit	MS/MSD Limits
Total Metals for sample(s) 04-10,12	2-24 (L08133	344-10, WG3	36055-4)	
Mercury, Total	164	160	2	35	70-130
Volatile Organics by EPA 8260B f	or sample(s	s) 04-10,12-	-23,25 (L08	13344-10, WG3	36351-8)
Chlorobenzene	53	58	9	30	60-133
Benzene	73	77	5	30	66-142
Toluene	68	67	1	30	59-139
l,1-Dichloroethene	76	77	1	30	59-172
Trichloroethene	64	67	5	30	62-137
Surrogate(s)					
l,2-Dichloroethane-d4	97	93	4		70-130
Toluene-d8	104	102	2		70-130
4-Bromofluorobenzene	113	105	7		70-130
Dibromofluoromethane	98	97	1		70-130
Semivolatile Organics by EPA 827	OC for samp	ple(s) 05-10),12,14-19,	21-25 (L08133	44-10, WG335862
cenaphthene	96	96	0	50	31-137
,2,4-Trichlorobenzene	82	82	0	50	38-107
-Chloronaphthalene	77	82	6	50	40-140
,2-Dichlorobenzene	71	88	21	50	40-140
.,4-Dichlorobenzene	66	79	18	50	28-104
2,4-Dinitrotoluene	77	90	16	50	28-89
2,6-Dinitrotoluene	68	66	3	50	40-140
luoranthene	100	120	18	50	40-140
1-Chlorophenyl phenyl ether	88	93	6	50	40-140
n-Nitrosodi-n-propylamine	79	96	19	50	41-126
Butyl benzyl phthalate	110	130	17	50	40-140
Anthracene	93	100	7	50	40-140
yrene	96	110	14	50	35-142
P-Chloro-M-Cresol	77	85	10	50	26-103
2-Chlorophenol	74	88	17	50	25-102
2-Nitrophenol	71	93	27	50	30-130
-Nitrophenol	66	79	18	50	11-114
2,4-Dinitrophenol	150	150	0	50	30-130
Pentachlorophenol	150	150	0	50	17-109
Phenol	79	85	7	50	26-90
Surrogate(s)					
2-Fluorophenol	81	89	9		25-120
Phenol-d6	86	88	2		10-120
Jitrobenzene-d5	69	79	14		23-120
2-Fluorobiphenyl	73	75	3		30-120
2,4,6-Tribromophenol	91	95	4		19-120
1-Terphenyl-d14	69	76	10		18-120

Laboratory Job Number: L0813344

Continued

Parameter		MS %	MSD %	RPD	RPD Limit	MS/MSD Limits	3
Comissolatila Ossaniaa	br. EDA 02700	a can fo	70 gommlo(g)	04 00 10 10	0 14 10 01 00 0	4 DE (T001224/	
Semivolatile Organics Acenaphthene	DY EPA 82/00	33	r sample(s) 38	14	3,14-19,21-22,2 50	4-25 (LU813344 31-137	-TO
2-Chloronaphthalene		35 36	42	15	50	40-140	
-				_			
Fluoranthene		54	60	11	50	40-140	
Anthracene		41	47	14	50	40-140	
Pyrene		54	61	12	50	35-142	
Pentachlorophenol		32	34	6	50	17-109	
Surrogate(s)							
2-Fluorophenol		0	0	NC		25-120	
Phenol-d6		0	0	NC		10-120	
Nitrobenzene-d5		0	0	NC		23-120	
2-Fluorobiphenyl		0	0	NC		30-120	
2,4,6-Tribromophenol		0	0	NC		19-120	
4-Terphenyl-d14		0	0	NC		18-120	
Petroleum Hydrocarbon	Ouantitation	n by GC-	FID for sam	ple(s) 04-10),12,14-19,21-2	5 (L0813344-10), W
TPH		0	188	200	40	40-140	
Surrogate(s)							
o-Terphenyl		87	84	4		40-140	

Laboratory Job Number: L0813344

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA	TE	-
						PREP	ANAL	
	Analysis for sample(s)	04-10,1	2,14-25	(WG335	5802-4)			
Total Metals								
Aluminum, Total	ND	mg/kg	5.0	1	6010B	0910 13:30	0911 13:	25
Antimony, Total	ND	mg/kg	2.5	1	6010B	0910 13:30	0911 13:	25
Arsenic, Total	ND	mg/kg	0.50	1	6010B	0910 13:30	0911 13:	25
Barium, Total	ND	mg/kg	0.50	1	6010B	0910 13:30	0911 13:	25
Beryllium, Total	ND	mg/kg	0.25	1	6010B	0910 13:30	0911 13:	25
Cadmium, Total	ND	mg/kg	0.50	1	6010B	0910 13:30	0911 13:	25
Calcium, Total	ND	mg/kg	5.0	1	6010B	0910 13:30	0911 13:	25
Chromium, Total	ND	mg/kg	0.50	1	6010B	0910 13:30	0911 13:	25
Cobalt, Total	ND	mg/kg	1.0	1	6010B	0910 13:30	0911 13:	25
Copper, Total	ND	mg/kg	0.50	1	6010B	0910 13:30	0911 13:	25
ron, Total	ND	mg/kg	2.5	1	6010B	0910 13:30	0911 13:	25
Lead, Total	ND	mg/kg	2.5	1	6010B	0910 13:30	0911 13:	25
Magnesium, Total	ND	mg/kg	5.0	1	6010B	0910 13:30	0911 13:	25
Manganese, Total	ND	mg/kg	0.50	1	6010B	0910 13:30	0911 13:	25
Nickel, Total	ND	mg/kg	1.2	1	6010B	0910 13:30	0911 13:	25
otassium, Total	ND	mg/kg	120	1	6010B	0910 13:30	0911 13:	25
Selenium, Total	ND	mg/kg	1.0	1	6010B	0910 13:30	0911 13:	25
Silver, Total	ND	mg/kg	0.50	1	6010B	0910 13:30	0911 13:	25
Sodium, Total	ND	mg/kg	100	1	6010B	0910 13:30	0911 13:	25
hallium, Total	ND	mg/kg	1.0	1	6010B	0910 13:30	0911 13:	25
anadium, Total	ND	mg/kg	0.50	1	6010B	0910 13:30	0911 13:	25
Zinc, Total	ND	mg/kg	2.5	1	6010B	0910 13:30	0911 13:	25
Bla	ank Analysis for sampl	e(s) 26-1	30 (WG33	35803-3	3)			
Cotal Metals	1				,			
.]	ND	/1	Г 0	_				
Aluminum, Total	ND	mg/kg	5.0	1	6010B	0910 13:30		
antimony, Total	ND	mg/kg	2.5	1	6010B	0910 13:30		
Arsenic, Total	ND	mg/kg	0.50	1	6010B	0910 13:30		
Barium, Total	ND	mg/kg	0.50	1	6010B	0910 13:30		
Beryllium, Total	ND	mg/kg	0.25		6010B	0910 13:30		
Cadmium, Total	ND	mg/kg	0.50	1	6010B	0910 13:30		
Calcium, Total	ND	mg/kg	5.0	1	6010B	0910 13:30		
Chromium, Total	ND	mg/kg	0.50	1	6010B	0910 13:30		
Cobalt, Total	ND	mg/kg	1.0	1	6010B	0910 13:30		
Copper, Total	ND	mg/kg	0.50	1	6010B	0910 13:30		
ron, Total	ND	mg/kg	2.5	1	6010B	0910 13:30		
ead, Total	ND	mg/kg	2.5	1	6010B	0910 13:30		
Magnesium, Total	ND	mg/kg	5.0	1	6010B	0910 13:30		
Manganese, Total	ND	mg/kg	0.50	1	6010B	0910 13:30		
Nickel, Total	ND	mg/kg	1.2	1	6010B	0910 13:30		
Potassium, Total	ND	mg/kg	120	1	6010B	0910 13:30		
•		mg/kg	1.0	1	6010B	0910 13:30	0911 15:	33
Selenium, Total	ND							
Selenium, Total Silver, Total Sodium, Total	ND ND ND	mg/kg mg/kg	0.50 100	1	6010B 6010B	0910 13:30 0910 13:30	0911 15:	

09250811:11 Page 159 of 178

Laboratory Job Number: L0813344

Continued

DADAMEMED		INITEG	DDI	DEE MEMILOD	DATE ID
PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
-1 1 -		7 () 06 6		5000 01	
Total Metals	Analysis for sam	ple(s) 26-3	30 (WG33	5803-3)	
IOCAI MECAIS					
Thallium, Total	ND	mg/kg	1.0	1 6010B	0910 13:30 0911 15:33 AI
Vanadium, Total	ND	mg/kg	0.50	1 6010B	0910 13:30 0911 15:33 AI
Zinc, Total	ND	mg/kg	2.5	1 6010B	0910 13:30 0911 15:33 AI
	1.2	9, 229		1 00102	0,10 13,80 0,11 13,80 III
Blank	Analysis for s	ample(s) 13	3 (WG336)	007-3)	
Total Metals					
Aluminum, Total	5.1	mg/kg	5.0	1 6010B	0911 13:45 0916 20:44 BM
Antimony, Total	ND	mg/kg	2.5	1 6010B	0911 13:45 0916 20:44 BM
Arsenic, Total	ND	mg/kg	0.50	1 6010B	0911 13:45 0916 20:44 BM
Barium, Total	ND	mg/kg	0.50	1 6010B	0911 13:45 0916 20:44 BM
Beryllium, Total	ND	mg/kg	0.25	1 6010B	0911 13:45 0916 20:44 BM
Cadmium, Total	ND	mg/kg	0.50	1 6010B	0911 13:45 0916 20:44 BM
Calcium, Total	ND	mg/kg	5.0	1 6010B	0911 13:45 0916 20:44 BM
Chromium, Total	ND	mg/kg	0.50	1 6010B	0911 13:45 0916 20:44 BM
Cobalt, Total	ND	mg/kg	1.0	1 6010B	0911 13:45 0916 20:44 BM
Copper, Total	ND	mg/kg	0.50	1 6010B	0911 13:45 0916 20:44 BM
Iron, Total	ND	mg/kg	2.5 2.5	1 6010B	0911 13:45 0916 20:44 BM
Lead, Total	ND	mg/kg		1 6010B	0911 13:45 0916 20:44 BM
Magnesium, Total	ND ND	mg/kg	5.0 0.50	1 6010B	0911 13:45 0916 20:44 BM
Manganese, Total Nickel, Total	ND ND	mg/kg mg/kg	1.2	1 6010B 1 6010B	0911 13:45 0916 20:44 BM
Potassium, Total	ND ND	mg/kg	120	1 6010B 1 6010B	0911 13:45 0916 20:44 BM 0911 13:45 0916 20:44 BM
Selenium, Total	ND	mg/kg	1.0	1 6010B	0911 13:45 0916 20:44 BM
Silver, Total	ND	mg/kg	0.50	1 6010B	0911 13:45 0916 20:44 BM
Sodium, Total	ND	mg/kg	100	1 6010B	0911 13:45 0916 20:44 BM
Thallium, Total	ND	mg/kg	1.0	1 6010B	0911 13:45 0916 20:44 BM
Vanadium, Total	ND	mg/kg	0.50	1 6010B	0911 13:45 0916 20:44 BM
Zinc, Total	ND	mg/kg	2.5	1 6010B	0911 13:45 0916 20:44 BM
zine, rocar	ND	1119/119	2.5	1 0010B	0)11 13.43 0)10 20.44 BM
Blank Anal	ysis for sample	(s) 04-10,1	L2-24 (W	G336055-1)	
Total Metals					
Mercury, Total	ND	mg/kg	0.08	1 7471A	0911 23:30 0912 14:06 RC
Dlank	analygig for com	nle(a) 25 3	30 (MC33)	6225_1\	
Total Metals	analysis for sam	DTE(P) 73-3	o (WG33)	0223-1)	
TOCAL PICCALS					
Mercury, Total	ND	mg/kg	0.08	1 7471A	0912 20:30 0914 13:49 HG
- ·- · · · · · · · · · · · · · · · · ·		ن <i>،</i> د			
	analysis for sam	ple(s) 01-0)3 (WG33	6088-3)	
Volatile Organics by EF	PA 8260B			1 8260B	0911 10:00 PD
Methylene chloride	ND	ug/l	5.0		
1,1-Dichloroethane	ND	ug/l	0.75		
Chloroform	ND	ug/l	0.75		

09250811:11 Page 160 of 178

Laboratory Job Number: L0813344

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Blank Analys		ple(s) 01-0	3 (WG33	6088-3)	
Volatile Organics by EPA 826	0B cont'd			1 8260B	0911 10:00 PD
Carbon tetrachloride	ND	ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75		
Tetrachloroethene	ND	ug/l	0.50		
Chlorobenzene	ND	ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND	ug/l	0.50		
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50		
Chloromethane	ND	ug/l	2.5		
Bromomethane	ND	ug/l	1.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	1.0		
1,1-Dichloroethene	ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/l	0.75		
Trichloroethene	ND	ug/l	0.50		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/l	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	ND	ug/l	0.50		
Dibromomethane	ND	ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/l	5.0		
Acrylonitrile	ND	ug/l	5.0		
Styrene	ND	ug/l	1.0		
Dichlorodifluoromethane	ND	ug/l	5.0		
Acetone	ND	ug/l	5.0		
Carbon disulfide	ND	ug/l	5.0		
2-Butanone	ND	ug/l	5.0		
Vinyl acetate	ND	ug/l	5.0		
4-Methyl-2-pentanone	ND	ug/l	5.0		
2-Hexanone	ND	ug/l	5.0		
Bromochloromethane	ND	ug/l	2.5		
2,2-Dichloropropane	ND	ug/l	2.5		
1,2-Dibromoethane	ND	ug/l	2.0		

Laboratory Job Number: L0813344

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Disale Analese		1-(-) 01 0	12 /FIG2.26	000 2)	
Blank Analys: Volatile Organics by EPA 826		ole(s) Ul-U	13 (WG336		0011 10.00 pp
		110 / 1	2 5	1 8260B	0911 10:00 PD
1,3-Dichloropropane	ND	ug/l	2.5		
1,1,1,2-Tetrachloroethane Bromobenzene	ND	ug/l	0.50		
	ND	ug/l	2.5		
n-Butylbenzene	ND	ug/l	0.50		
sec-Butylbenzene	ND	ug/l	0.50		
tert-Butylbenzene	ND	ug/l	2.5		
o-Chlorotoluene	ND	ug/l	2.5		
p-Chlorotoluene	ND	ug/l	2.5		
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5		
Hexachlorobutadiene	ND	ug/l	0.60		
Isopropylbenzene	ND	ug/l	0.50		
p-Isopropyltoluene	ND	ug/l	0.50		
Naphthalene	ND	ug/l	2.5		
n-Propylbenzene	ND	ug/l	0.50		
1,2,3-Trichlorobenzene	ND	ug/l	2.5		
1,2,4-Trichlorobenzene	ND	ug/l	2.5		
1,3,5-Trimethylbenzene	ND	ug/l	2.5		
1,2,4-Trimethylbenzene	ND	ug/l	2.5		
1,4-Diethylbenzene	ND	ug/l	2.0		
4-Ethyltoluene	ND	ug/l	2.0		
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0		
Surrogate(s)	Recovery		QC Cri	teria	
1,2-Dichloroethane-d4	102	%	70-130		
Toluene-d8	100	%	70-130		
4-Bromofluorobenzene	105	%	70-130		
Dibromofluoromethane	97.0	%	70-130		
Blank Analysis fo	or sample(s	3) 04-08,12	2,14-20 (WG336351-3)	
Volatile Organics by EPA 826			,	1 8260B	0911 16:39 PD
Methylene chloride	ND	ug/kg	25.		
1,1-Dichloroethane	ND	ug/kg	3.8		
Chloroform	ND	ug/kg	3.8		
Carbon tetrachloride	ND	ug/kg	2.5		
1,2-Dichloropropane	ND	ug/kg	8.8		
Dibromochloromethane	ND	ug/kg	2.5		
1,1,2-Trichloroethane	ND	ug/kg ug/kg	3.8		
Tetrachloroethene	ND	ug/kg ug/kg	2.5		
Chlorobenzene	ND	ug/kg ug/kg	2.5		
Trichlorofluoromethane	ND	ug/kg ug/kg	12.		
1,2-Dichloroethane	ND ND	ug/kg ug/kg	2.5		
1,1,1-Trichloroethane	ND	ug/kg ug/kg	2.5		
Bromodichloromethane	ND ND		2.5		
		ug/kg			
trans-1,3-Dichloropropene	ND	ug/kg	2.5		
cis-1,3-Dichloropropene	ND	ug/kg	2.5		
1,1-Dichloropropene	ND	ug/kg	12.		

09250811:11 Page 162 of 178

Laboratory Job Number: L0813344

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Blank Analysis fo	or sample(s)	04-08.12	2.14-20	(WG336351-3)	
Volatile Organics by EPA 826			_,	1 8260B	0911 16:39 PD
Bromoform	ND	ug/kg	10.		
1,1,2,2-Tetrachloroethane	ND	ug/kg	2.5		
Benzene	ND	ug/kg	2.5		
Toluene	ND	ug/kg	3.8		
Ethylbenzene	ND	ug/kg	2.5		
Chloromethane	ND	ug/kg	12.		
Bromomethane	ND	ug/kg	5.0		
Vinyl chloride	ND	ug/kg	5.0		
Chloroethane	ND	ug/kg	5.0		
1,1-Dichloroethene	ND	ug/kg	2.5		
trans-1,2-Dichloroethene	ND	ug/kg	3.8		
Trichloroethene	ND	ug/kg	2.5		
1.2-Dichlorobenzene	ND	ug/kg	12.		
1,3-Dichlorobenzene	ND	ug/kg	12.		
1,4-Dichlorobenzene	ND	ug/kg	12.		
Methyl tert butyl ether	ND	ug/kg	5.0		
p/m-Xylene	ND	ug/kg	5.0		
o-Xylene	ND	ug/kg	5.0		
cis-1,2-Dichloroethene	ND	ug/kg	2.5		
Dibromomethane	ND	ug/kg	25.		
Styrene	ND	ug/kg	5.0		
Dichlorodifluoromethane	ND	ug/kg	25.		
Acetone	ND	ug/kg	25.		
Carbon disulfide	ND	ug/kg	25.		
2-Butanone	ND	ug/kg	25.		
Vinyl acetate	ND	ug/kg	25.		
4-Methyl-2-pentanone	ND	ug/kg	25.		
1,2,3-Trichloropropane	ND	ug/kg	25.		
2-Hexanone	ND	ug/kg	25.		
Bromochloromethane	ND	ug/kg	12.		
2,2-Dichloropropane	ND	ug/kg	12.		
1,2-Dibromoethane	ND	ug/kg	10.		
1,3-Dichloropropane	ND	ug/kg	12.		
1,1,1,2-Tetrachloroethane	ND	ug/kg	2.5		
Bromobenzene	ND	ug/kg	12.		
n-Butylbenzene	ND	ug/kg	2.5		
sec-Butylbenzene	ND	ug/kg	2.5		
tert-Butylbenzene	ND	ug/kg	12.		
o-Chlorotoluene	ND	ug/kg	12.		
p-Chlorotoluene	ND	ug/kg	12.		
1,2-Dibromo-3-chloropropane	ND	ug/kg	12.		
Hexachlorobutadiene	ND	ug/kg	12.		
Isopropylbenzene	ND	ug/kg	2.5		
p-Isopropyltoluene	ND	ug/kg	2.5		
Naphthalene	ND	ug/kg	12.		
Acrylonitrile	ND	ug/kg	25.		

09250811:11 Page 163 of 178

Laboratory Job Number: L0813344

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Blank Analysis f	or sample(s)	04-08,12	2,14-20 (WG336351-3)	
Volatile Organics by EPA 826	OB cont'd			1 8260B	0911 16:39 PD
n-Propylbenzene	ND	ug/kg	2.5		
1,2,3-Trichlorobenzene	ND	ug/kg	12.		
1,2,4-Trichlorobenzene	ND	ug/kg	12.		
1,3,5-Trimethylbenzene	ND	ug/kg	12.		
1,2,4-Trimethylbenzene	ND	ug/kg	12.		
1,4-Diethylbenzene	ND	ug/kg	10.		
4-Ethyltoluene	ND	ug/kg	10.		
1,2,4,5-Tetramethylbenzene	ND	ug/kg	10.		
Surrogate(s)	Recovery		QC Cri	teria	
1,2-Dichloroethane-d4	95.0	%	70-130)	
Toluene-d8	105	%	70-130)	
4-Bromofluorobenzene	115	%	70-130)	
Dibromofluoromethane	99.0	%	70-130)	
Blank Analysis for	sample(s) 09	-10,13,17	7,21-23,2	25 (WG336351-6)	
Volatile Organics by EPA 826				1 8260B	0912 10:07 PD
Methylene chloride	ND	ug/kg	25.		
1,1-Dichloroethane	ND	ug/kg	3.8		
Chloroform	ND	ug/kg	3.8		
Carbon tetrachloride	ND	ug/kg	2.5		
1,2-Dichloropropane	ND	ug/kg	8.8		
Dibromochloromethane	ND	ug/kg	2.5		
1,1,2-Trichloroethane	ND	ug/kg	3.8		
Tetrachloroethene	ND	ug/kg	2.5		
Chlorobenzene	ND	ug/kg	2.5		
Trichlorofluoromethane	ND	ug/kg	12.		
1,2-Dichloroethane	ND	ug/kg	2.5		
1,1,1-Trichloroethane	ND	ug/kg	2.5		
Bromodichloromethane	ND	ug/kg	2.5		
trans-1,3-Dichloropropene	ND	ug/kg	2.5		
cis-1,3-Dichloropropene	ND	ug/kg	2.5		
1,1-Dichloropropene	ND	ug/kg	12.		
Bromoform	ND	ug/kg	10.		
1,1,2,2-Tetrachloroethane	ND	ug/kg	2.5		
Benzene	ND	ug/kg	2.5		
Toluene	ND	ug/kg	3.8		
Ethylbenzene	ND	ug/kg	2.5		
Chloromethane	ND	ug/kg	12.		
Bromomethane	ND	ug/kg	5.0		
Vinyl chloride	ND	ug/kg	5.0		
Chloroethane	ND	ug/kg	5.0		
1,1-Dichloroethene	ND	ug/kg	2.5		
trans-1,2-Dichloroethene	ND	ug/kg	3.8		
Trichloroethene	ND	ug/kg	2.5		
1,2-Dichlorobenzene	ND	ug/kg	12.		

09250811:11 Page 164 of 178

Laboratory Job Number: L0813344

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
				05 (
Blank Analysis for		09-10,13,1	7,21-23,		
Volatile Organics by EPA 826		. /1	1.0	1 8260B	0912 10:07 PD
1,3-Dichlorobenzene	ND	ug/kg	12.		
1,4-Dichlorobenzene	ND	ug/kg	12.		
Methyl tert butyl ether	ND	ug/kg	5.0		
p/m-Xylene	ND	ug/kg	5.0		
o-Xylene	ND	ug/kg	5.0		
cis-1,2-Dichloroethene	ND	ug/kg	2.5		
Dibromomethane	ND	ug/kg	25.		
Styrene	ND	ug/kg	5.0		
Dichlorodifluoromethane	ND	ug/kg	25.		
Acetone	ND	ug/kg	25.		
Carbon disulfide	ND	ug/kg	25.		
2-Butanone	ND	ug/kg	25.		
Vinyl acetate	ND	ug/kg	25.		
4-Methyl-2-pentanone	ND	ug/kg	25.		
1,2,3-Trichloropropane	ND	ug/kg	25.		
2-Hexanone	ND	ug/kg	25.		
Bromochloromethane	ND	ug/kg	12.		
2,2-Dichloropropane	ND	ug/kg	12.		
1,2-Dibromoethane	ND	ug/kg	10.		
1,3-Dichloropropane	ND	ug/kg	12.		
1,1,1,2-Tetrachloroethane	ND	ug/kg	2.5		
Bromobenzene	ND	ug/kg	12.		
n-Butylbenzene	ND	ug/kg	2.5		
sec-Butylbenzene	ND	ug/kg	2.5		
tert-Butylbenzene	ND	ug/kg	12.		
o-Chlorotoluene	ND	ug/kg	12.		
p-Chlorotoluene	ND	ug/kg	12.		
1,2-Dibromo-3-chloropropane	ND	ug/kg	12.		
Hexachlorobutadiene	ND	ug/kg	12.		
Isopropylbenzene	ND	ug/kg	2.5		
p-Isopropyltoluene	ND	ug/kg	2.5		
Naphthalene	ND	ug/kg	12.		
Acrylonitrile	ND	ug/kg	25.		
n-Propylbenzene	ND	ug/kg	2.5		
1,2,3-Trichlorobenzene	ND	ug/kg	12.		
1,2,4-Trichlorobenzene	ND	ug/kg	12.		
1,3,5-Trimethylbenzene	ND	ug/kg	12.		
1,2,4-Trimethylbenzene	ND	ug/kg	12.		
1,4-Diethylbenzene	ND	ug/kg	10.		
4-Ethyltoluene	ND	ug/kg	10.		
1,2,4,5-Tetramethylbenzene	ND	ug/kg	10.		
Surrogate(s)	Recovery	7	QC Cr	iteria	
1,2-Dichloroethane-d4	98.0	%	70-13	0	
Toluene-d8	103	%	70-13	0	
4-Bromofluorobenzene	112	%	70-13	0	

Laboratory Job Number: L0813344

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
			7 01 00	05 (
Blank Analysis for		09-10,13,1	/,21-23,		
Volatile Organics by EPA 826		_		1 8260B	0912 10:07 PD
ibromofluoromethane	97.0	%	70-13	0	
Blank Analys		ple(s) 26-3	30 (WG33	6400-3)	
olatile Organics by EPA 820	50B			1 8260B	0912 10:07 PD
Methylene chloride	ND	ug/kg	25.		
,1-Dichloroethane	ND	ug/kg	3.8		
Chloroform	ND	ug/kg	3.8		
Carbon tetrachloride	ND	ug/kg	2.5		
,2-Dichloropropane	ND	ug/kg	8.8		
ibromochloromethane	ND	ug/kg	2.5		
,1,2-Trichloroethane	ND	ug/kg	3.8		
etrachloroethene	ND	ug/kg	2.5		
hlorobenzene	ND	ug/kg	2.5		
richlorofluoromethane	ND	ug/kg	12.		
,2-Dichloroethane	ND	ug/kg	2.5		
,1,1-Trichloroethane	ND	ug/kg	2.5		
romodichloromethane	ND	ug/kg	2.5		
rans-1,3-Dichloropropene	ND	ug/kg	2.5		
is-1,3-Dichloropropene	ND	ug/kg	2.5		
,1-Dichloropropene	ND	ug/kg	12.		
romoform	ND	ug/kg	10.		
,1,2,2-Tetrachloroethane	ND	ug/kg	2.5		
enzene	ND	ug/kg	2.5		
oluene	ND	ug/kg	3.8		
thylbenzene	ND	ug/kg ug/kg	2.5		
thloromethane	ND		12.		
Bromomethane		ug/kg			
	ND	ug/kg	5.0		
inyl chloride	ND	ug/kg	5.0		
hloroethane	ND	ug/kg	5.0		
,1-Dichloroethene	ND	ug/kg	2.5		
rans-1,2-Dichloroethene	ND	ug/kg	3.8		
richloroethene	ND	ug/kg	2.5		
,2-Dichlorobenzene	ND	ug/kg	12.		
,3-Dichlorobenzene	ND	ug/kg	12.		
,4-Dichlorobenzene	ND	ug/kg	12.		
Methyl tert butyl ether	ND	ug/kg	5.0		
/m-Xylene	ND	ug/kg	5.0		
-Xylene	ND	ug/kg	5.0		
is-1,2-Dichloroethene	ND	ug/kg	2.5		
ibromomethane	ND	ug/kg	25.		
tyrene	ND	ug/kg	5.0		
ichlorodifluoromethane	ND	ug/kg	25.		
cetone	ND	ug/kg	25.		
arbon disulfide	ND	ug/kg	25.		
-Butanone	ND	ug/kg	25.		
inyl acetate	ND	ug/kg ug/kg	25.		

09250811:11 Page 166 of 178

Laboratory Job Number: L0813344

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE PREP ANAL	ID
Blank Analys:	is for samp	le(s) 26-3	0 (WG33	6400-3)		
Volatile Organics by EPA 826				1 8260B	0912 10:0)7 PD
4-Methyl-2-pentanone	ND	ug/kg	25.			
1,2,3-Trichloropropane	ND	ug/kg	25.			
2-Hexanone	ND	ug/kg	25.			
Bromochloromethane	ND	ug/kg	12.			
2,2-Dichloropropane	ND	ug/kg	12.			
1,2-Dibromoethane	ND	ug/kg	10.			
1,3-Dichloropropane	ND	ug/kg	12.			
1,1,1,2-Tetrachloroethane	ND	ug/kg	2.5			
Bromobenzene	ND	ug/kg	12.			
n-Butylbenzene	ND	ug/kg	2.5			
sec-Butylbenzene	ND	ug/kg	2.5			
tert-Butylbenzene	ND	ug/kg	12.			
o-Chlorotoluene	ND	ug/kg	12.			
p-Chlorotoluene	ND	ug/kg	12.			
1,2-Dibromo-3-chloropropane	ND	ug/kg	12.			
Hexachlorobutadiene	ND	ug/kg	12.			
Isopropylbenzene	ND	ug/kg	2.5			
p-Isopropyltoluene	ND	ug/kg	2.5			
Naphthalene	ND	ug/kg	12.			
Acrylonitrile	ND	ug/kg	25.			
n-Propylbenzene	ND	ug/kg	2.5			
1,2,3-Trichlorobenzene	ND	ug/kg	12.			
1,2,4-Trichlorobenzene	ND	ug/kg	12.			
1,3,5-Trimethylbenzene	ND	ug/kg	12.			
1,2,4-Trimethylbenzene	ND	ug/kg	12.			
1,4-Diethylbenzene	ND	ug/kg	10.			
4-Ethyltoluene	ND	ug/kg	10.			
1,2,4,5-Tetramethylbenzene	ND	ug/kg	10.			
Surrogate(s)	Recovery		QC Cr	iteria		
1,2-Dichloroethane-d4	98.0	%	70-13	0		
Toluene-d8	103	%	70-13	0		
4-Bromofluorobenzene	112	%	70-13	0		
Dibromofluoromethane	97.0	%	70-13	0		
Blank Analy		mple(s) 24	(WG336			
Volatile Organics by EPA 826				1 8260B	0915 13:3	81 PD
Methylene chloride	ND	ug/kg	25.			
1,1-Dichloroethane	ND	ug/kg	3.8			
Chloroform	ND	ug/kg	3.8			
Carbon tetrachloride	ND	ug/kg	2.5			
1,2-Dichloropropane	ND	ug/kg	8.8			
Dibromochloromethane	ND	ug/kg	2.5			
1,1,2-Trichloroethane	ND	ug/kg	3.8			
Tetrachloroethene	ND	ug/kg	2.5			
Chlorobenzene	ND	ug/kg	2.5			

09250811:11 Page 167 of 178

Laboratory Job Number: L0813344

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Rlank Ana	lysis for sa	ample(s) 24	4 (WG336	5400-6)	
Volatile Organics by EPA 820		impic(b) Z	1 (110330	1 8260B	0915 13:31 PD
Trichlorofluoromethane	ND	ug/kg	12.	1 0200B	0913 13:31 PD
1,2-Dichloroethane	ND	ug/kg ug/kg	2.5		
1,1,1-Trichloroethane	ND	ug/kg ug/kg	2.5		
Bromodichloromethane	ND	ug/kg	2.5		
trans-1,3-Dichloropropene	ND	ug/kg	2.5		
cis-1,3-Dichloropropene	ND	ug/kg	2.5		
1,1-Dichloropropene	ND	ug/kg	12.		
Bromoform	ND	ug/kg	10.		
1,1,2,2-Tetrachloroethane	ND	ug/kg	2.5		
Benzene	ND	ug/kg	2.5		
Toluene	ND	ug/kg	3.8		
Ethylbenzene	ND	ug/kg	2.5		
Chloromethane	ND	ug/kg	12.		
Bromomethane	ND	ug/kg ug/kg	5.0		
Vinyl chloride	ND	ug/kg ug/kg	5.0		
Chloroethane	ND	ug/kg	5.0		
1,1-Dichloroethene	ND	ug/kg	2.5		
trans-1,2-Dichloroethene	ND	ug/kg	3.8		
Trichloroethene	ND	ug/kg	2.5		
1,2-Dichlorobenzene	ND	ug/kg	12.		
1,3-Dichlorobenzene	ND	ug/kg	12.		
1,4-Dichlorobenzene	ND	ug/kg	12.		
Methyl tert butyl ether	ND	ug/kg	5.0		
p/m-Xylene	ND	ug/kg	5.0		
o-Xylene	ND	ug/kg	5.0		
cis-1,2-Dichloroethene	ND	ug/kg	2.5		
Dibromomethane	ND	ug/kg	25.		
Styrene	ND	ug/kg	5.0		
Dichlorodifluoromethane	ND	ug/kg	25.		
Acetone	ND	ug/kg	25.		
Carbon disulfide	ND	ug/kg	25.		
2-Butanone	ND	ug/kg	25.		
Vinyl acetate	ND	ug/kg	25.		
4-Methyl-2-pentanone	ND	ug/kg	25.		
1,2,3-Trichloropropane	ND	ug/kg	25.		
2-Hexanone	ND	ug/kg	25.		
Bromochloromethane	ND	ug/kg	12.		
2,2-Dichloropropane	ND	ug/kg	12.		
1,2-Dibromoethane	ND	ug/kg	10.		
1,3-Dichloropropane	ND	ug/kg	12.		
1,1,1,2-Tetrachloroethane	ND	ug/kg	2.5		
Bromobenzene	ND	ug/kg	12.		
n-Butylbenzene	ND	ug/kg	2.5		
sec-Butylbenzene	ND	ug/kg	2.5		
tert-Butylbenzene	ND	ug/kg	12.		
o-Chlorotoluene	ND	ug/kg	12.		
-		J. J	-		

Laboratory Job Number: L0813344

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Blank Analy	ysis for sa	ample(s) 24	(WG336	400-6)	
Volatile Organics by EPA 8260				1 8260B	0915 13:31 PD
p-Chlorotoluene	ND	ug/kg	12.		
1,2-Dibromo-3-chloropropane	ND	ug/kg	12.		
Hexachlorobutadiene	ND	ug/kg	12.		
Isopropylbenzene	ND	ug/kg	2.5		
p-Isopropyltoluene	ND	ug/kg	2.5		
Naphthalene	ND	ug/kg	12.		
Acrylonitrile	ND	ug/kg	25.		
n-Propylbenzene	ND	ug/kg	2.5		
1,2,3-Trichlorobenzene	ND	ug/kg	12.		
1,2,4-Trichlorobenzene	ND	ug/kg	12.		
1,3,5-Trimethylbenzene	ND	ug/kg	12.		
1,2,4-Trimethylbenzene	ND	ug/kg ug/kg	12.		
1,4-Diethylbenzene	ND	ug/kg ug/kg	10.		
4-Ethyltoluene	ND	ug/kg ug/kg	10.		
1,2,4,5-Tetramethylbenzene	ND ND	ug/kg ug/kg	10.		
1,2,4,5-recramecity identifies	ND	ug/kg	10.		
Surrogate(s)	Recovery			iteria	
1,2-Dichloroethane-d4	94.0	%	70-13		
Toluene-d8	109	%	70-13		
4-Bromofluorobenzene	115	%	70-13		
Dibromofluoromethane	98.0	%	70-13	0	
Blank Analysis	for sample	(s) 13,20,2	6-30 (W	G335861-1)	
Semivolatile Organics by EPA	8270C			1 8270C	0911 00:30 0911 13:59 PS
Acenaphthene	ND	ug/kg	330		
1,2,4-Trichlorobenzene	ND	ug/kg	330		
Hexachlorobenzene	ND	ug/kg	330		
Bis(2-chloroethyl)ether	ND	ug/kg	330		
2-Chloronaphthalene	ND	ug/kg	400		
1,2-Dichlorobenzene					
	ND	ug/kg	330		
1,3-Dichlorobenzene	ND ND	ug/kg ug/kg			
1,3-Dichlorobenzene 1,4-Dichlorobenzene		ug/kg	330 330 330		
	ND	ug/kg ug/kg	330		
1,4-Dichlorobenzene 3,3'-Dichlorobenzidine	ND ND	ug/kg ug/kg ug/kg	330 330 670		
1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dinitrotoluene	ND ND	ug/kg ug/kg ug/kg ug/kg	330 330 670 330		
1,4-Dichlorobenzene 3,3'-Dichlorobenzidine	ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 670 330 330		
1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dinitrotoluene 2,6-Dinitrotoluene Fluoranthene	ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 670 330 330 330		
1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dinitrotoluene 2,6-Dinitrotoluene Fluoranthene 4-Chlorophenyl phenyl ether	ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 670 330 330 330 330		
1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dinitrotoluene 2,6-Dinitrotoluene Fluoranthene 4-Chlorophenyl phenyl ether 4-Bromophenyl phenyl ether	ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 670 330 330 330 330 330		
1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dinitrotoluene 2,6-Dinitrotoluene Fluoranthene 4-Chlorophenyl phenyl ether 4-Bromophenyl phenyl ether Bis(2-chloroisopropyl)ether	ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 670 330 330 330 330 330 330		
1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dinitrotoluene 2,6-Dinitrotoluene Fluoranthene 4-Chlorophenyl phenyl ether 4-Bromophenyl phenyl ether Bis(2-chloroisopropyl)ether Bis(2-chloroethoxy)methane	ND N	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 670 330 330 330 330 330 330 330		
1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dinitrotoluene 2,6-Dinitrotoluene Fluoranthene 4-Chlorophenyl phenyl ether 4-Bromophenyl phenyl ether Bis(2-chloroisopropyl)ether Bis(2-chloroethoxy)methane Hexachlorobutadiene	ND N	ug/kg	330 330 670 330 330 330 330 330 330 330 670		
1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dinitrotoluene 2,6-Dinitrotoluene Fluoranthene 4-Chlorophenyl phenyl ether 4-Bromophenyl phenyl ether Bis(2-chloroisopropyl)ether Bis(2-chloroethoxy)methane Hexachlorobutadiene Hexachlorocyclopentadiene	ND N	ug/kg	330 330 670 330 330 330 330 330 330 330 670 670		
1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dinitrotoluene 2,6-Dinitrotoluene Fluoranthene 4-Chlorophenyl phenyl ether 4-Bromophenyl phenyl ether Bis(2-chloroisopropyl)ether Bis(2-chloroethoxy)methane Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane	ND N	ug/kg	330 330 670 330 330 330 330 330 330 670 670 330		
1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dinitrotoluene 2,6-Dinitrotoluene Fluoranthene 4-Chlorophenyl phenyl ether 4-Bromophenyl phenyl ether Bis(2-chloroisopropyl)ether Bis(2-chloroethoxy)methane Hexachlorocyclopentadiene Hexachloroethane Isophorone	ND N	ug/kg	330 330 670 330 330 330 330 330 330 670 670 330 330		
1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dinitrotoluene 2,6-Dinitrotoluene Fluoranthene 4-Chlorophenyl phenyl ether 4-Bromophenyl phenyl ether Bis(2-chloroisopropyl)ether Bis(2-chloroethoxy)methane Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane	ND N	ug/kg	330 330 670 330 330 330 330 330 330 670 670 330		

09250811:11 Page 169 of 178

Laboratory Job Number: L0813344

Continued

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DATE PREP ANAL	ID
Blank Analysis f	or sample(s	s) 13,20,2	6-30 (WG	3358	61-1)		
Semivolatile Organics by EPA	8270C cont	'd		1	8270C	0911 00:30 0911 13:59	PS
NitrosoDiPhenylAmine(NDPA)/DP	A ND	ug/kg	1000				
n-Nitrosodi-n-propylamine	ND	ug/kg	330				
Bis(2-Ethylhexyl)phthalate	ND	ug/kg	670				
Butyl benzyl phthalate	ND	ug/kg	330				
Di-n-butylphthalate	ND	ug/kg	330				
Di-n-octylphthalate	ND	ug/kg	330				
Diethyl phthalate	ND	ug/kg	330				
Dimethyl phthalate	ND	ug/kg	330				
Benzo(a)anthracene	ND	ug/kg	330				
Benzo(a)pyrene	ND	ug/kg	330				
Benzo(b)fluoranthene	ND	ug/kg	330				
Benzo(k)fluoranthene	ND	ug/kg	330				
Chrysene	ND	ug/kg	330				
Acenaphthylene	ND	ug/kg	330				
Anthracene	ND	ug/kg	330				
Benzo(ghi)perylene	ND	ug/kg	330				
Fluorene	ND	ug/kg	330				
Phenanthrene	ND	ug/kg	330				
Dibenzo(a,h)anthracene	ND	ug/kg	330				
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	330				
Pyrene	ND	ug/kg	330				
Biphenyl	ND	ug/kg	330				
4-Chloroaniline	ND	ug/kg	330				
2-Nitroaniline	ND	ug/kg	330				
3-Nitroaniline	ND	ug/kg	330				
4-Nitroaniline	ND	ug/kg	470				
Dibenzofuran	ND	ug/kg	330				
2-Methylnaphthalene	ND	ug/kg	330				
1,2,4,5-Tetrachlorobenzene	ND	ug/kg	1300				
Acetophenone	ND	ug/kg	1300				
2,4,6-Trichlorophenol	ND	ug/kg	330				
P-Chloro-M-Cresol	ND	ug/kg	330				
2-Chlorophenol	ND	ug/kg	400				
2,4-Dichlorophenol	ND	ug/kg	670				
2,4-Dimethylphenol	ND	ug/kg	330				
2-Nitrophenol	ND	ug/kg	1300				
4-Nitrophenol	ND	ug/kg	670				
2,4-Dinitrophenol	ND	ug/kg	1300				
4,6-Dinitro-o-cresol	ND	ug/kg	1300				
Pentachlorophenol	ND	ug/kg	1300				
Phenol	ND	ug/kg	470				
2-Methylphenol	ND	ug/kg	400				
3-Methylphenol/4-Methylphenol		ug/kg	400				
2,4,5-Trichlorophenol	ND	ug/kg	330				
Benzoic Acid	ND	ug/kg	3300				
Benzyl Alcohol	ND	ug/kg	670				
-		J. J	-				

09250811:11 Page 170 of 178

Laboratory Job Number: L0813344

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE I PREP ANAL
Dl-ul- 7		/-\ 12 20 G) () () () () ()	1225061 11	
Blank Analysis f Semivolatile Organics by EPA			20-30 (WG	1 8270C	0011 00.20 0011 12.50 D
Carbazole			330	1 8270C	0911 00:30 0911 13:59 P
Carbazole	ND	ug/kg	330		
Surrogate(s)	Recovery		QC Cri	teria	
2-Fluorophenol	78.0	%	25-120		
Phenol-d6	74.0	%	10-120		
Nitrobenzene-d5	69.0	%	23-120		
2-Fluorobiphenyl	70.0	%	30-120		
2,4,6-Tribromophenol	80.0	%	19-120		
1-Terphenyl-d14	66.0	%	18-120		
Blank Analysis for s	sample(s) (05-10,12,14	1-19,21-2	5 (WG335862-1	.)
Semivolatile Organics by EPA				1 8270C	0911 03:30 0912 12:01 P
Acenaphthene	ND	ug/kg	330		
1,2,4-Trichlorobenzene	ND	ug/kg	330		
Hexachlorobenzene	ND	ug/kg	330		
Bis(2-chloroethyl)ether	ND	ug/kg	330		
2-Chloronaphthalene	ND	ug/kg	400		
l,2-Dichlorobenzene	ND	ug/kg	330		
,3-Dichlorobenzene	ND	ug/kg	330		
l,4-Dichlorobenzene	ND	ug/kg	330		
3,3'-Dichlorobenzidine	ND	ug/kg	670		
2,4-Dinitrotoluene	ND	ug/kg	330		
2,6-Dinitrotoluene	ND	ug/kg	330		
Fluoranthene	ND	ug/kg	330		
1-Chlorophenyl phenyl ether	ND	ug/kg	330		
1-Bromophenyl phenyl ether	ND	ug/kg	330		
Bis(2-chloroisopropyl)ether	ND	ug/kg	330		
Bis(2-chloroethoxy)methane	ND	ug/kg	330		
Hexachlorobutadiene	ND	ug/kg	670		
Hexachlorocyclopentadiene	ND	ug/kg	670		
Hexachloroethane	ND	ug/kg	330		
Isophorone	ND	ug/kg	330		
Naphthalene	ND	ug/kg	330		
- Nitrobenzene	ND	ug/kg	330		
JitrosoDiPhenylAmine(NDPA)/DI	PA ND	ug/kg	1000		
n-Nitrosodi-n-propylamine	ND	ug/kg	330		
Bis(2-Ethylhexyl)phthalate	ND	ug/kg	670		
Butyl benzyl phthalate	ND	ug/kg	330		
Di-n-butylphthalate	ND	ug/kg	330		
Di-n-octylphthalate	ND	ug/kg	330		
Diethyl phthalate	ND	ug/kg	330		
Dimethyl phthalate	ND	ug/kg	330		
Benzo(a)anthracene	ND	ug/kg	330		
Benzo(a)pyrene	ND	ug/kg	330		
Benzo(b)fluoranthene	ND	ug/kg	330		
Benzo(k)fluoranthene	ND	ug/kg	330		

09250811:11 Page 171 of 178

Laboratory Job Number: L0813344

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE I PREP ANAL	D
Blank Analysis for s	ample(g)	05-10 12 14	1_19 21_	25 (WG335862-1	1	
Semivolatile Organics by EPA			1 17,21	1 8270C	0911 03:30 0912 12:01 P	S
Chrysene	ND	ug/kg	330	1 02700	0711 03.30 0712 12.01 1	D
Acenaphthylene	ND	ug/kg	330			
Anthracene	ND	ug/kg	330			
Benzo(ghi)perylene	ND	ug/kg	330			
Fluorene	ND	ug/kg	330			
Phenanthrene	ND	ug/kg	330			
Dibenzo(a,h)anthracene	ND	ug/kg ug/kg	330			
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	330			
Pyrene	ND	ug/kg ug/kg	330			
Biphenyl	ND	ug/kg ug/kg	330			
4-Chloroaniline	ND	ug/kg	330			
2-Nitroaniline	ND	ug/kg ug/kg	330			
3-Nitroaniline	ND	ug/kg ug/kg	330			
4-Nitroaniline	ND	ug/kg ug/kg	470			
Dibenzofuran	ND	ug/kg ug/kg	330			
2-Methylnaphthalene	ND	ug/kg ug/kg	330			
1,2,4,5-Tetrachlorobenzene	ND	ug/kg ug/kg	1300			
Acetophenone	ND		1300			
2,4,6-Trichlorophenol	ND	ug/kg	330			
P-Chloro-M-Cresol	ND	ug/kg	330			
2-Chlorophenol	ND ND	ug/kg	400			
2,4-Dichlorophenol	ND	ug/kg	670			
		ug/kg				
2,4-Dimethylphenol	ND	ug/kg	330			
2-Nitrophenol	ND	ug/kg	1300			
4-Nitrophenol	ND	ug/kg	670			
2,4-Dinitrophenol	ND	ug/kg	1300			
4,6-Dinitro-o-cresol	ND	ug/kg	1300			
Pentachlorophenol	ND	ug/kg	1300			
Phenol	ND	ug/kg	470			
2-Methylphenol	ND	ug/kg	400			
3-Methylphenol/4-Methylphenol		ug/kg	400			
2,4,5-Trichlorophenol	ND	ug/kg	330			
Benzoic Acid	ND	ug/kg	3300			
Benzyl Alcohol	ND	ug/kg	670			
Carbazole	ND	ug/kg	330			
Surrogate(s)	Recovery			iteria		
2-Fluorophenol	58.0	8	25-12			
Phenol-d6	54.0	8	10-12			
Nitrobenzene-d5	52.0	%	23-12	0		
2-Fluorobiphenyl	51.0	%	30-12	0		
2,4,6-Tribromophenol	57.0	%	19-12	0		
4-Terphenyl-d14	61.0	%	18-12	0		
Blank Analy	sis for s	ample(s) 04	1 (WG336	664-1)		

Semivolatile Organics by EPA 8270C 1 8270C 0916 09:50 0916 16:02 PS

Laboratory Job Number: L0813344

Continued

	RESULT	UNITS	\mathtt{RDL}	REF METHOD	DATE ID
					PREP ANAL
Blank Analy			(WG336	664-1)	
Semivolatile Organics by EPA	8270C cont	'd		1 8270C	0916 09:50 0916 16:02 PS
Acenaphthene	ND	ug/kg	330		
1,2,4-Trichlorobenzene	ND	ug/kg	330		
Hexachlorobenzene	ND	ug/kg	330		
Bis(2-chloroethyl)ether	ND	ug/kg	330		
2-Chloronaphthalene	ND	ug/kg	400		
1,2-Dichlorobenzene	ND	ug/kg	330		
1,3-Dichlorobenzene	ND	ug/kg	330		
1,4-Dichlorobenzene	ND	ug/kg	330		
3,3'-Dichlorobenzidine	ND	ug/kg	670		
2,4-Dinitrotoluene	ND	ug/kg	330		
2,6-Dinitrotoluene	ND	ug/kg	330		
Fluoranthene	ND	ug/kg	330		
4-Chlorophenyl phenyl ether	ND	ug/kg	330		
4-Bromophenyl phenyl ether	ND	ug/kg	330		
Bis(2-chloroisopropyl)ether	ND	ug/kg	330		
Bis(2-chloroethoxy)methane	ND	ug/kg	330		
Hexachlorobutadiene	ND	ug/kg	670		
Hexachlorocyclopentadiene	ND	ug/kg	670		
Hexachloroethane	ND	ug/kg	330		
Isophorone	ND	ug/kg	330		
Naphthalene	ND	ug/kg	330		
Nitrobenzene	ND	ug/kg	330		
NitrosoDiPhenylAmine(NDPA)/DP	A ND	ug/kg	1000		
n-Nitrosodi-n-propylamine	ND	ug/kg	330		
Bis(2-Ethylhexyl)phthalate	ND	ug/kg	670		
Butyl benzyl phthalate	ND	ug/kg	330		
Di-n-butylphthalate	ND	ug/kg	330		
Di-n-octylphthalate	ND	ug/kg	330		
Diethyl phthalate	ND	ug/kg	330		
Dimethyl phthalate	ND	ug/kg	330		
Benzo(a)anthracene	ND	ug/kg	330		
Benzo(a)pyrene	ND	ug/kg	330		
Benzo(b)fluoranthene	ND	ug/kg	330		
Benzo(k)fluoranthene	ND	ug/kg	330		
Chrysene	ND	ug/kg	330		
Acenaphthylene	ND	ug/kg	330		
Anthracene	ND	ug/kg	330		
Benzo(ghi)perylene	ND	ug/kg	330		
Fluorene	ND	ug/kg	330		
Phenanthrene	ND	ug/kg	330		
Dibenzo(a,h)anthracene	ND	ug/kg	330		
<pre>Indeno(1,2,3-cd)Pyrene</pre>	ND	ug/kg	330		
Pyrene	ND	ug/kg	330		
Biphenyl	ND	ug/kg	330		
4-Chloroaniline	ND	ug/kg	330		
2-Nitroaniline	ND	ug/kg	330		

09250811:11 Page 173 of 178

Laboratory Job Number: L0813344

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID
					PREP ANAL
Dlank Ana	leada for a	ample(a) 0	1 /140226/	664 1)	
Semivolatile Organics by EPA	lysis for sa		± (WG3300	1 8270C	0916 09:50 0916 16:02 PS
3-Nitroaniline	ND	ug/kg	330	1 82700	0916 09:50 0916 16:02 PS
4-Nitroaniline	ND ND	ug/kg ug/kg	470		
Dibenzofuran	ND	ug/kg ug/kg	330		
2-Methylnaphthalene	ND	ug/kg ug/kg	330		
1,2,4,5-Tetrachlorobenzene	ND	ug/kg ug/kg	1300		
Acetophenone	ND	ug/kg ug/kg	1300		
2,4,6-Trichlorophenol	ND	ug/kg ug/kg	330		
P-Chloro-M-Cresol	ND	ug/kg	330		
2-Chlorophenol	ND	ug/kg ug/kg	400		
2,4-Dichlorophenol	ND ND	ug/kg ug/kg	670		
2,4-Dimethylphenol	ND	ug/kg ug/kg	330		
2-Nitrophenol	ND ND	ug/kg ug/kg	1300		
4-Nitrophenol	ND	ug/kg ug/kg	670		
2,4-Dinitrophenol	ND	ug/kg ug/kg	1300		
4,6-Dinitro-o-cresol	ND	ug/kg ug/kg	1300		
Pentachlorophenol	ND	ug/kg ug/kg	1300		
Phenol	ND	ug/kg	470		
2-Methylphenol	ND	ug/kg ug/kg	400		
3-Methylphenol/4-Methylpheno		ug/kg	400		
2,4,5-Trichlorophenol	ND	ug/kg ug/kg	330		
Benzoic Acid	ND	ug/kg	3300		
Benzyl Alcohol	ND	ug/kg ug/kg	670		
Carbazole	ND	ug/kg	330		
Surrogate(s)	Recovery		QC Cri	iteria	
2-Fluorophenol	79.0	%	25-120	0	
Phenol-d6	75.0	%	10-120	0	
Nitrobenzene-d5	68.0	%	23-120	0	
2-Fluorobiphenyl	66.0	%	30-120	0	
2,4,6-Tribromophenol	74.0	%	19-120	0	
4-Terphenyl-d14	74.0	%	18-120	0	
Blank Analysis			26-30 (WC	G335860-1)	
Semivolatile Organics by EPA	A 8270C-SIM			1 8270C	0911 00:30 0914 00:36 AK
Acenaphthene	ND	ug/kg	13.		
2-Chloronaphthalene	ND	ug/kg	13.		
Fluoranthene	ND	ug/kg	13.		
Hexachlorobutadiene	ND	ug/kg	33.		
Naphthalene	ND	ug/kg	13.		
Benzo(a)anthracene	ND	ug/kg	13.		
Benzo(a)pyrene	ND	ug/kg	13.		
Benzo(b)fluoranthene	ND	ug/kg	13.		
Benzo(k)fluoranthene	ND	ug/kg	13.		
	ND	ug/kg	13.		
Chrysene Acenaphthylene	ND	ug/kg	13.		

09250811:11 Page 174 of 178

Laboratory Job Number: L0813344

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Blank Analysi			26-30 (W		
Semivolatile Organics by E				1 8270C	0911 00:30 0914 00:36 AK
Benzo(ghi)perylene	ND	ug/kg	13.		
Fluorene	ND	ug/kg	13.		
Phenanthrene	ND	ug/kg	13.		
Dibenzo(a,h)anthracene	ND	ug/kg	13.		
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	13.		
Pyrene	ND	ug/kg	13.		
2-Methylnaphthalene	ND	ug/kg	13.		
Pentachlorophenol	ND	ug/kg	53.		
Hexachlorobenzene	ND	ug/kg	53.		
Hexachloroethane	ND	ug/kg	53.		
Surrogate(s)	Recovery		QC Cr	iteria	
2-Fluorophenol	78.0	%	25-12	0	
Phenol-d6	82.0	%	10-12	0	
Nitrobenzene-d5	77.0	%	23-12	0	
2-Fluorobiphenyl	68.0	8	30-12	0	
2,4,6-Tribromophenol	67.0	%	19-12		
4-Terphenyl-d14	77.0	%	18-12		
Blank Analysis for sam		,10,12,14-1	19,21-22		
Semivolatile Organics by E	PA 8270C-SIM			,24-25 (WG3358 1 8270c	0911 03:30 0912 18:46 AK
Semivolatile Organics by E. Acenaphthene	PA 8270C-SIM ND	ug/kg	13.		
Semivolatile Organics by E Acenaphthene 2-Chloronaphthalene	PA 8270C-SIM ND ND	ug/kg ug/kg	13. 13.		
Semivolatile Organics by E Acenaphthene 2-Chloronaphthalene Fluoranthene	PA 8270C-SIM ND ND ND	ug/kg ug/kg ug/kg	13. 13. 13.		
Semivolatile Organics by E Acenaphthene 2-Chloronaphthalene Fluoranthene Hexachlorobutadiene	PA 8270C-SIM ND ND ND ND	ug/kg ug/kg ug/kg ug/kg	13. 13. 13. 33.		
Semivolatile Organics by E Acenaphthene 2-Chloronaphthalene Fluoranthene Hexachlorobutadiene Naphthalene	PA 8270C-SIM ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg	13. 13. 13. 33.		
Semivolatile Organics by E Acenaphthene 2-Chloronaphthalene Fluoranthene Hexachlorobutadiene Naphthalene Benzo(a)anthracene	PA 8270C-SIM ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	13. 13. 13. 33. 13.		
Semivolatile Organics by E Acenaphthene 2-Chloronaphthalene Fluoranthene Hexachlorobutadiene Naphthalene Benzo(a)anthracene Benzo(a)pyrene	PA 8270C-SIM ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	13. 13. 13. 33. 13.		
Semivolatile Organics by E Acenaphthene 2-Chloronaphthalene Fluoranthene Hexachlorobutadiene Naphthalene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	PA 8270C-SIM ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	13. 13. 13. 33. 13. 13.		
Semivolatile Organics by E Acenaphthene 2-Chloronaphthalene Fluoranthene Hexachlorobutadiene Naphthalene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene	PA 8270C-SIM ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	13. 13. 13. 33. 13. 13. 13.		
Semivolatile Organics by E Acenaphthene 2-Chloronaphthalene Fluoranthene Hexachlorobutadiene Naphthalene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene	PA 8270C-SIM ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	13. 13. 13. 33. 13. 13. 13. 13.		
Semivolatile Organics by E Acenaphthene 2-Chloronaphthalene Fluoranthene Hexachlorobutadiene Naphthalene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Acenaphthylene	PA 8270C-SIM ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	13. 13. 13. 33. 13. 13. 13. 13. 13.		
Semivolatile Organics by E Acenaphthene 2-Chloronaphthalene Fluoranthene Hexachlorobutadiene Naphthalene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Acenaphthylene	PA 8270C-SIM ND	ug/kg	13. 13. 13. 33. 13. 13. 13. 13.		
Semivolatile Organics by E Acenaphthene 2-Chloronaphthalene Fluoranthene Hexachlorobutadiene Naphthalene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Acenaphthylene Anthracene	PA 8270C-SIM ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	13. 13. 13. 33. 13. 13. 13. 13. 13.		
Semivolatile Organics by E Acenaphthene 2-Chloronaphthalene Fluoranthene Hexachlorobutadiene Naphthalene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Acenaphthylene Anthracene Benzo(ghi)perylene	PA 8270C-SIM ND	ug/kg	13. 13. 13. 33. 13. 13. 13. 13. 13. 13.		
Semivolatile Organics by E Acenaphthene 2-Chloronaphthalene Fluoranthene Hexachlorobutadiene Naphthalene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Acenaphthylene Anthracene Benzo(ghi)perylene Fluorene	PA 8270C-SIM ND	ug/kg	13. 13. 13. 33. 13. 13. 13. 13. 13. 13.		
Semivolatile Organics by E Acenaphthene 2-Chloronaphthalene Fluoranthene Hexachlorobutadiene Naphthalene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Acenaphthylene Anthracene Benzo(ghi)perylene Fluorene Phenanthrene	PA 8270C-SIM ND	ug/kg	13. 13. 13. 33. 13. 13. 13. 13. 13. 13.		
Semivolatile Organics by E Acenaphthene 2-Chloronaphthalene Fluoranthene Hexachlorobutadiene Naphthalene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Acenaphthylene Anthracene Benzo(ghi)perylene Fluorene Phenanthrene	PA 8270C-SIM ND	ug/kg	13. 13. 13. 33. 13. 13. 13. 13. 13. 13.		
Semivolatile Organics by E Acenaphthene 2-Chloronaphthalene Fluoranthene Hexachlorobutadiene Naphthalene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Chrysene Acenaphthylene Anthracene Benzo(ghi)perylene Fluorene Phenanthrene Dibenzo(a,h)anthracene Indeno(1,2,3-cd)Pyrene	PA 8270C-SIM ND	ug/kg	13. 13. 13. 13. 13. 13. 13. 13. 13. 13.		
Semivolatile Organics by E Acenaphthene 2-Chloronaphthalene Fluoranthene Hexachlorobutadiene Naphthalene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Acenaphthylene Anthracene Benzo(ghi)perylene Fluorene Phenanthrene Dibenzo(a,h)anthracene Indeno(1,2,3-cd)Pyrene Pyrene	PA 8270C-SIM ND	ug/kg	13. 13. 13. 13. 13. 13. 13. 13. 13. 13.		
Semivolatile Organics by E Acenaphthene 2-Chloronaphthalene Fluoranthene Hexachlorobutadiene Naphthalene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Chrysene Acenaphthylene Anthracene Benzo(ghi)perylene Fluorene Phenanthrene Dibenzo(a,h)anthracene Indeno(1,2,3-cd)Pyrene Pyrene 2-Methylnaphthalene	PA 8270C-SIM ND	ug/kg	13. 13. 13. 13. 13. 13. 13. 13. 13. 13.		
Semivolatile Organics by E Acenaphthene 2-Chloronaphthalene Fluoranthene Hexachlorobutadiene Naphthalene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Chrysene Acenaphthylene Anthracene Benzo(ghi)perylene Fluorene Phenanthrene Dibenzo(a,h)anthracene Indeno(1,2,3-cd)Pyrene	PA 8270C-SIM ND	ug/kg	13. 13. 13. 13. 13. 13. 13. 13. 13. 13.		

09250811:11 Page 175 of 178

Laboratory Job Number: L0813344

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Dignit Anglessis for som	710(7) 04 00	10 10 14 1	0 01 00	24 25 (WG2250	062 11
Blank Analysis for sam Semivolatile Organics by E			.9,21-22,	1 8270C	0911 03:30 0912 18:46 AK
Surrogate(s)	Recovery	Conc a	OC Cri		0911 03-30 0912 18-46 AK
2-Fluorophenol	68.0	%	25-120		
2-Fidorophenoi Phenol-d6	72.0	6 %	10-120		
Nitrobenzene-d5	65.0	% %	23-120		
2-Fluorobiphenyl	62.0	6 %	30-120		
2,4,6-Tribromophenol	75.0	% %	19-120		
4-Terphenyl-d14	86.0	% %	18-120		
4-lerphenyl-d14	86.0	6	10-120)	
	ysis for samp	ple(s) 09,2	23 (WG336		
Semivolatile Organics by E				1 8270C	0915 18:00 0916 13:52 AK
Acenaphthene	ND	ug/kg	13.		
2-Chloronaphthalene	ND	ug/kg	13.		
Fluoranthene	ND	ug/kg	13.		
Hexachlorobutadiene	ND	ug/kg	33.		
Naphthalene	ND	ug/kg	13.		
Benzo(a)anthracene	ND	ug/kg	13.		
Benzo(a)pyrene	ND	ug/kg	13.		
Benzo(b)fluoranthene	ND	ug/kg	13.		
Benzo(k)fluoranthene	ND	ug/kg	13.		
Chrysene	ND	ug/kg	13.		
Acenaphthylene	ND	ug/kg	13.		
Anthracene	ND	ug/kg	13.		
Benzo(ghi)perylene	ND	ug/kg	13.		
Fluorene	ND	ug/kg	13.		
Phenanthrene	ND	ug/kg	13.		
Dibenzo(a,h)anthracene	ND	ug/kg	13.		
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	13.		
Pyrene	ND	ug/kg	13.		
2-Methylnaphthalene	ND	ug/kg	13.		
Pentachlorophenol	ND	ug/kg	53.		
Hexachlorobenzene	ND	ug/kg	53.		
Hexachloroethane	ND	ug/kg	53.		
Surrogate(s)	Recovery		QC Cri	teria	
2-Fluorophenol	67.0	%	25-120		
Phenol-d6	70.0	%	10-120		
Nitrobenzene-d5	65.0	%	23-120		
2-Fluorobiphenyl	60.0	%	30-120		
2,4,6-Tribromophenol	66.0	%	19-120		
4-Terphenyl-d14	77.0	%	18-120		
i icibiiciili i ari	77.0	·o	10-120	,	
Blank Analysis fo			1-19,21-2	25 (WG335858-1	.)
Petroleum Hydrocarbon Quan	titation by (GC-FID		1 8015B(M)	0911 00:15 0912 00:20 RT

ND ug/kg 33300

TPH

Laboratory Job Number: L0813344

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA	TE	ID
					PREP	ANAL	
,							
Blank Analysis for	sample(s) 0	4-10,12,14	1-19,21-2	5 (WG335858-1)		
Petroleum Hydrocarbon Quanti				1 8015B(M)	0911 00:15	0912 00:2	0 RT
Surrogate(s)	Recovery		QC Cri	teria			
o-Terphenyl	73.0	%	40-140				
Blank Analysi	s for sample	e(s) 13,26	5-30 (WG3	35859-1)			
Petroleum Hydrocarbon Quanti	tation by G	C-FID		1 8015B(M)	0911 01:00	0911 12:1	4 JL
ТРН	ND	ug/kg	33300				
Surrogate(s)	Recovery		QC Cri				
o-Terphenyl	70.0	%	40-140				

09250811:11 Page 177 of 178

ALPHA ANALYTICAL ADDENDUM I

REFERENCES

- 1. Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IIIA, 1997.
- 30. Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.

GLOSSARY OF TERMS AND SYMBOLS

REF Reference number in which test method may be found.

METHOD Method number by which analysis was performed.

ID Initials of the analyst.

ND Not detected in comparison to the reported detection limit.

NI Not Ignitable.

ug/cart Micrograms per Cartridge.

The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.

LIMITATION OF LIABILITIES

Alpha Analytical, Inc. performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical, Inc., shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical, Inc. be held liable for any incidental consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical, Inc.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding times and splitting of samples in the field.

09250811:11 Page 178 of 178

IS YOUR PROJECT MA MCP or CT RCP?	700	2 18090309 9408 2 18090808-2 (25-25-25) 18088 2 180908-01-2008-01 (125-125) 18088 2 18090808-2 (25-25-25) 18088	nments	Phone: 631-589-6353 Fax: 631-589-8705 Email: ☐ These sampes have been Previously analyzed by Alpha	Clent: P.W. Grosser Address: 630 Johnson Avenue, Suite 7 Bohemia, NY 11716	CHAIN OF C
		50 00 00 00 00 00 00 00 00 00 00 00 00 0	Date Time	Turn-Around Time X Standard Due Date: 9 / 1/6 T	Project #: AVBOSC i Project Manager: Kris Almsko 5 ALPHA Quote #:	Project Information Project Name: Andon Broy Project Name: Andon Broy
Container Type Preservative Relinquished By:	4	~ ~ ~ ~ ~	Sample Matrix	Rush (ONLY IF PRE-APPROVED)	S. Almskog	PAGE 1
1 Type 40 1 452 802 vative HE	<	X X X	Sampler's \$260 8260 TCi	ANALYSIS OVED)	MCP PRES	Report Info
702 802 Received By:	<	- X - X	8270 RAW TCI TPH 8015 RERA Metals 6010 TAL	/7000	UMPTIVE CERT	ab: 9/4 ormation Data Deliverables ☐ EMAIL ☐ Add'l Deliverables Requirements/Report Limits
Date/Time 1					Criteria Criteria Criteria Criteria Control ALPHA Job #: Billing Informat	
Please print dearly, legibly and completely. Samples car not be logged in and furnaround time clock will not start until any ambiguities are resolved. All samples submitted are subject to Alpha's Payment Terms.	4	2 4 4 92	Preservation Lab to do (Please specify below) Sample Specific Comments	SAMPLE HANDLING Filtration Done Not Needed Lab to do B	FIDENCE PROTOCOL	10813344 100 PO#

PLEASE ANSWER QUESTIONS ABOVE! p446 MA MCP or CT RCP? IS YOUR PROJECT Fax: 631-589-8705 Phone: 631-589-6353 Bohemia, NY 1716 Address: 630 Johnson Avenue, Suite 7 Client: P.W. Gosser Client Information Other Projec: Specific Requirements/Comments/Detection Limits: FAX: 508-898-9193 TEL. 508-898-9220 Westborough, MA ALPHA Lab ID These samples have been Previously analyzed by Alpha Lab Use Only) ANALYTICAL Paria 7 FAX: 508-822-3288 TEL: 508-822-9300 Mansfield, MA PWG-DU-2008 - 15 (7-7.5") PWG-DW-2008 -94(6-6.51) MiG-DW-2008-09(6,75-7,25) PWG-DW-2008-08 (5,55-4,75) PMG-DW-2008-11(6,75-7.25') PW6-DW-2008-10(6,75-6.75") (W6-DW-2008-07(6.75-7.25)) msb (MG-DW-2003 73 (7.25-7.75") PMC-DW-2008-12 (7,15-7,75) PWG-Di-2008-076.75-7.25)MJ 9/8/08 CHAIN OF CUSTODY X Standard Project Location: So July Ave Project Name: Andon Buy Turn-Around Time Project Manager: Kris Almskos **Project Information** Due Date: ALPHA Quote #: Project #: AVBOSO i Date Collection 15,0 S, 1045 2,70 کن7/ ESS 1125 Time 1140 ひやひ 22 Time Rush (ONLY IF PRE-APPROVED) Relinquished By PAGE 2 OF Y Sample Matrix 5 Container Type 402 Ruckulli Centra Preservative コンピ Sampler's 8260 TCL ☐ Yes MCP PRESUMPTIVE CERTAINTY-CT REASONABLE CONFIDENCE PROTOCOLS Regulatory Requirements/Report Limits ☐ ADEx FAX Report Information ANALYSIS State/Fed Program Date Rec'd in Lab Date/Time 208 208 TPH 8015 Analytical services (noted) (ASP) □ 8 □ No 200 RCRA Metal, 6010/7000 Data Deliverables ☐ Add'l Deliverables ☐ EMAIL Are CT RCP (Reasonable Confidence Protocols) Required? Are MCP Analytical Methods Required: Q ALPHA Job #: 60813344 Criteria **Billing Information** Same as Client info)ate/Time Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any embiguities are resolved. All samples PO # HOLD SAME A2D (Please specify below) submitted are subject to Alpha's Paymert Terms. ☐ Lab to do SAMPLE HANCLING Sample Specific Comments ☐ Lab to do □ Not Needed □ Done Filtration Preservation SAMPLE SELIIOB # FDH0H

	IS YOUR PROJECT MA MCP or CT RCP?		PLEASE ANSWER QUESTIONS ABOVE!	25 pub. Du- 2008 - 24 (6-65)	27 Puc - Dw - 2008 - 23(3-3,5")	26 PWC-DW-2008-22 (5.25-5.75)	25 PWG-DW-2008-20(4,51-51)	24 pwg. Div-2008-14(4,5-51)		12 PUG-DW-2008-17(5.5-C)	21 pub-Dw-2008-16(55-6)	20 PWG-LP-2008-01(7:75-8.25)	3744. 19 MG-DU- 2006-100 (7-7.5')	(Lab Use Only)	ALPHA Lab ID Sample ID			Other Project Specific Requirements/Comments/Detection Limits:	☐ These samples have been Previously analyzed by Alpha D	Email:	Fax: 631-589-8705	Phone: 631-589-6353	Bohemia, NY 11716	on Avenue, Suite 7			508-822-3288	Mansfield, MA TEL. 508-822-9300	FICAL		CHAIN OF CUSTODY
	Relinquished By:	Preservative	Container Type	1550 1	1540	5.) 1230	1520	1458	1940	1430	OTH	(1)	8/8/08 1350 S JLL	Date Time Matrix Initials	Collection Sample Sampler's			etection Limits:	Due Date: 1/10 Time:		Standard Rush (ONLY IF PRE-APPROVED)	Turn-Around Time	ALPHA Quote #:	Project Manager: Kris Almsko	Project #: AVIOSOI	FIGER EDUCATION TO JUNE THE TWO IN CONTRICTOR	>	Project Name: A wilon Bay			USTODY PAGE 3 OF 4
1111	Date/Time Received By: 1/4/08 115 5 June / F) ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	407 808 822 802 407 808 80E	* * *							XXXX	XXX	<u> </u>	87 TI FEE TC TC	70. PH	TCC 8019 Meta 8260 8270 Metals	ナC ら ,	601				ANALYSIS	□ No		MCP PRESUMPTIVE CERTAINTY-CT R	Marie of Togram		☐ ADEx ☐ Add'l Deliverables	В	Report Information Data Deliverables	Date Rec'd in Lab: 9/9
9/9 1750	Date/Time tumaround time dock will not start until any arrbiguities are resolved. All samples submitted are subject to subma's Payment Terms.	Please print clearly, legibly and completely. Samples can											4	Sample Specific Comments			(Please specify below)	Preservation T	Lab to do		SAMPLE HANDLING A		Are CT RCP (Reasonable Confidence Protocols) Required?	Are MCP Analytical Methods Required?	MPTIVE CERTAINTY-CT REASONABLE CONFIDENCE PROTOCOLS	Criteria			Same as Client info PO #:	ation	ALPHA Job #: 60813344

	CHAIN OF CUSTODY PAGE 4 OF 9	Date Rec'd in Lab: 9/9	ALPHA Job #: 408/3344
MANSFIELD, MA	Project Information	Report Information - Data Deliverables	Billing Information
	Project Name: Awlun Bay	□ FAX □ EMAIL	₩Same as Client info PO#:
	Project Location: & Rocks Are Bocks i'll Carthe	Cartic DADEx Deliverables	
inflored was us		Regulatory Requirements/Report Limits	
7	Project Manager: V. Al.	State /Fed Program Criteria	
In I I I I I I I I I I I I I I I I I I	VI BUY COSTO #:		
17/16	ALPHA Quote #:	MA MCP PRESUMPTIVE CERTAINTY C	TAINTY CT REASONABLE CONFIDENCE PROTO-
631-584-6353	Turn-Around Time	☐ Yes ☐ No Are MCP Analytical Methods Required?	Required?
631-587-8705	Standard RUSH (only confirmed if pre-approved!)	O No	nfidence Protocols) Required?
samples have been previously analyzed by Alpha	Date Due: $q/6$		SAMPLE HANDLING
Project Specific Requirements/Comments/Detection	ents/Detection Limits:	MAL) CL Con.	Filtration
خشن		A TCL	eded do tion
i y	Collection Sample Sampler's	8260 270	(Please specify below)
se Only)	me Matrix	8/1	Sample Specific Comments S
29 Ruby- Zas-25 (5.75-6.25")	15.) NOVA 1102 S 201	Х Х Х	A
30 PWG DW-2018-26 (4,25-4.751)	(s) 1 1615 A A	* * *	*
SE ANSWER QUESTIONS ABOVE!	Container Type	ype 402 802 802 802	Please print clearly, legibly and com-
	Preservative	 	pletely. Samples can not be logged in and turnaround time clock will not
MCP or CT RCP?	Relinquished By: Date/Time	Received By:	Date/Time start until any ambiguities are resolved. All samples submitted are subject to
201 100 11 Nov 1	Jore 18 18/20 1000 1000 1000 1000 1000 1000 1000 1	110 3/201/2 3/18	Alpha's Terms and Conditions. See reverse side.
	Marie - Company		. /
	7/1/00	01/1/1/19	19 1750

ALPHA ANALYTICAL

Eight Walkup Drive

Westborough, Massachusetts 01581-1019 (508) 898-9220 www.alphalab.com

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

CERTIFICATE OF ANALYSIS

Client: P.W. Grosser Laboratory Job Number: L0813196

Address: 630 Johnson Avenue Date Received: 05-SEP-2008

Suite 7

Bohemia, NY 11716 Date Reported: 15-SEP-2008

Attn: Mr. Kris Almskog Delivery Method: Alpha

Project Number: AVB0801 Site: FORMER DARBY DRUG

ALPHA SAMPLE NUMBER	CLIENT IDENTIFICATION	SAMPLE LOCATION
L0813196-01	PWG.SB.2008.05@5-10'	RUC
L0813196-02	PWG.GW.2008.05	RUC
L0813196-03	PWG.SB.2008.03@10-15'	RUC
L0813196-04	PWG.GW.2008.03	RUC
L0813196-05	PWG.SB.2008.08@5-10'	RUC
L0813196-06	PWG.GW.2008.08	RUC
L0813196-07	FB090308 (SOIL)	RUC
L0813196-08	PWG.SB.2008.02@5-10'	RUC
L0813196-09	PWG.GW.2008.02	RUC
L0813196-10	PWG.SB.2008.04@5-10'	RUC
L0813196-11	PWG.GW.2008.04	RUC
L0813196-12	PWG.GW.2008.24	RUC
L0813196-13	PWG.SB.2008.06@5-10'(MS/MSD)	RUC
L0813196-14	PWG.GW.2008.06	RUC
L0813196-15	FB090308 (GW)	RUC
L0813196-16	TB090308	RUC
L0813196-17	FB090408(GW)	RUC
L0813196-18	PWG.SB.2008.07@10-15'	RUC
L0813196-19	PWG.GW.2008.07	RUC
L0813196-20	PWG.SB.2008.01@5-10'	RUC
L0813196-21	PWG.SB.2008.21@5-10'	RUC
L0813196-22	PWG.GW.2008.01	RUC
L0813196-23	PWG.GW.2008.15	RUC
L0813196-24	PWG.SB.2008.13@5-10'	RUC

I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized by:

Technical Representative

09150810:51 Page 1 of 126

ALPHA ANALYTICAL

Laboratory Job Number: L0813196
Date Reported: 15-SEP-2008

ALPHA SAMPLE NUMBER	CLIENT IDENTIFICATION	SAMPLE LOCATION
L0813196-25	PWG.SB.2008.13@10-15'	RUC
L0813196-26	PWG.GW.2008.13	RUC
L0813196-27	PWG.SB.2008.14@0-5'	RUC
L0813196-28	PWG.SB.2008.14@10-15'	RUC
L0813196-29	PWG.GW.2008.14	RUC
L0813196-30	PWG.SB.2008.10@5-10'	RUC
L0813196-31	PWG.SB.2008.10@10-15'	RUC
L0813196-32	PWG.SB.2008.09@5-10'	RUC
L0813196-33	PWG.SB.2008.09@15-20'(MS/MSD)	RUC
L0813196-34	PWG.SB.2008.11@5-10'	RUC
L0813196-35	PWG.SB.2008.11@15-20'	RUC
L0813196-36	PWG.SB.2008.12@5-10'	RUC
L0813196-37	PWG.SB.2008.22@5-10'	RUC
L0813196-38	PWG.SB.2008.12@10-15'	RUC
L0813196-39	FB090508 (SOIL)	RUC
L0813196-40	FB090408 (SOIL)	RUC

ALPHA ANALYTICAL NARRATIVE REPORT

Laboratory Job Number: L0813196

The samples were received in accordance with the chain of custody and no significant deviations were encountered during preparation or analysis unless otherwise noted below.

Sample Receipt

A sample identified as "FB 090408 (SOIL)" was received but not listed on the Chain of Custody. At the client's request, this sample was analyzed for TCL VOCs.

Volatile Organics

L0813196-26 has elevated detection limits due to the 20x dilution required by the elevated concentrations of target compounds in the sample.

L0813196-28 has elevated detection limits due to the 2x dilution required by the elevated concentrations of target compounds in the sample.

L0813196-29 required re-analysis on a 10x dilution in order to quantitate the sample within the calibration range. The result is reported as a "greater than" value for the compound that exceeded the calibration on the initial analysis. The re-analysis was performed only for the compound which exceeded the calibration range.

The surrogate recovery for L0813196-33 is above the acceptance criteria for 4-Bromofluorobenzene (140%). Since the sample was non-detect for all target analytes, reanalysis is not required.

The surrogate recovery for L0813196-35 is above the acceptance criteria for 1,2-Dichloroethane-d4 (134%) and 4-Bromofluorobenzene (139%). Since the sample was non-detect for all target analytes, re-analysis is not required.

Metals

The WG335841-3 Laboratory Duplicate RPD for Mercury (117%) associated with L0813196-21 is outside the acceptance criteria. The elevated RPD has been attributed to the non-homogenous nature of the sample utilized for the laboratory duplicate.

The WG335482-2 MS recoveries for Antimony (50%), Calcium (166%), Chromium (74%), Lead (69%), Magnesium (64%), Manganese (133%), and Zinc (62%) associated with L0813196-21 are outside the acceptance criteria. Post digestion spikes were performed with acceptable recoveries of 100% for Antimony, 96% for Calcium, 91% for Chromium, 102% for Lead, 88% for Magnesium, 88% for Manganese, and 88% for Zinc.

The MS recoveries for Aluminum (0%) and Iron (0%) are invalid because the sample concentration is greater than four times the spike amount added.

The WG335841-4 MS recovery for Mercury (6%) associated with L0813196-21 is below the acceptance criteria. A post digestion spike was performed with an acceptable recovery of 98%.

Pesticides

ALPHA ANALYTICAL NARRATIVE REPORT

Laboratory Job Number: L0813196

Continued

The WG335356-3 LCS/LCSD RPDs associated with L0813196-05, -20, -21, -27, and -30 are above the acceptance criteria for Delta-BHC (37%), Lindane (32%), Alpha-BHC (34%), Beta-BHC

(31%), Heptachlor (34%), Aldrin (35%), Heptachlor epoxide (35%), Endrin (39%), Endrin ketone (36%), Dieldrin (38%), 4,4'-DDE (37%), 4,4'-DDD (40%), 4,4'-DDT (40%), Endosulfan I (37%), Endosulfan II (39%), Endosulfan sulfate (41%), Methoxychlor (41%), and trans-Chlordane (34%); however, the individual LCS/LCSD recoveries are within method limits. The results of the associated samples are reported.

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813196-01 Date Collected: 03-SEP-2008 09:50

PWG.SB.2008.05@5-10' Date Received: 05-SEP-2008

Sample Matrix: SOIL Date Reported: 15-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE	ID
					PREP ANAL	
Solids, Total	84	%	0.10	30 2540G	0011 15.1	5 an
Solids, local	04	6	0.10	30 2540G	0911 15:1	5 SD
Volatile Organics by EPA 820	60B			1 8260B	0906 16:2	2 PD
Methylene chloride	ND	ug/kg	30.			
1,1-Dichloroethane	ND	ug/kg	4.5			
Chloroform	ND	ug/kg	4.5			
Carbon tetrachloride	ND	ug/kg	3.0			
1,2-Dichloropropane	ND	ug/kg	10.			
Dibromochloromethane	ND	ug/kg	3.0			
1,1,2-Trichloroethane	ND	ug/kg	4.5			
Tetrachloroethene	ND	ug/kg	3.0			
Chlorobenzene	ND	ug/kg	3.0			
Trichlorofluoromethane	ND	ug/kg	15.			
1,2-Dichloroethane	ND	ug/kg	3.0			
1,1,1-Trichloroethane	ND	ug/kg	3.0			
Bromodichloromethane	ND	ug/kg	3.0			
trans-1,3-Dichloropropene	ND	ug/kg	3.0			
cis-1,3-Dichloropropene	ND	ug/kg	3.0			
1,1-Dichloropropene	ND	ug/kg	15.			
Bromoform	ND	ug/kg	12.			
1,1,2,2-Tetrachloroethane	ND	ug/kg	3.0			
Benzene	ND	ug/kg	3.0			
Toluene	ND	ug/kg	4.5			
Ethylbenzene	ND	ug/kg	3.0			
Chloromethane	ND	ug/kg	15.			
Bromomethane	ND	ug/kg	6.0			
Vinyl chloride	ND	ug/kg	6.0			
Chloroethane	ND	ug/kg	6.0			
1,1-Dichloroethene	ND	ug/kg	3.0			
trans-1,2-Dichloroethene	ND	ug/kg	4.5			
Trichloroethene	ND	ug/kg	3.0			
1,2-Dichlorobenzene	ND	ug/kg	15.			
1,3-Dichlorobenzene	ND	ug/kg	15.			
1,4-Dichlorobenzene	ND	ug/kg	15.			
Methyl tert butyl ether	ND	ug/kg	6.0			
p/m-Xylene	ND	ug/kg	6.0			
o-Xylene	ND	ug/kg	6.0			
cis-1,2-Dichloroethene	ND	ug/kg	3.0			
Dibromomethane	ND	ug/kg	30.			

Laboratory Sample Number: L0813196-01

PWG.SB.2008.05@5-10'

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA	ΙΈ	ID
					PREP	ANAL	
Volatile Organics by EPA 826	OB cont'd			1 8260B		0906 16:2	2 PD
Styrene	ND	ug/kg	6.0				
Dichlorodifluoromethane	ND	ug/kg	30.				
Acetone	ND	ug/kg	30.				
Carbon disulfide	ND	ug/kg	30.				
2-Butanone	ND	ug/kg	30.				
Vinyl acetate	ND	ug/kg	30.				
4-Methyl-2-pentanone	ND	ug/kg	30.				
1,2,3-Trichloropropane	ND	ug/kg	30.				
2-Hexanone	ND	ug/kg	30.				
Bromochloromethane	ND	ug/kg	15.				
2,2-Dichloropropane	ND	ug/kg	15.				
1,2-Dibromoethane	ND	ug/kg	12.				
1,3-Dichloropropane	ND	ug/kg	15.				
1,1,1,2-Tetrachloroethane	ND	ug/kg	3.0				
Bromobenzene	ND	ug/kg	15.				
n-Butylbenzene	ND	ug/kg	3.0				
sec-Butylbenzene	ND	ug/kg	3.0				
tert-Butylbenzene	ND	ug/kg	15.				
o-Chlorotoluene	ND	ug/kg	15.				
p-Chlorotoluene	ND	ug/kg	15.				
1,2-Dibromo-3-chloropropane	ND	ug/kg	15.				
Hexachlorobutadiene	ND	ug/kg	15.				
Isopropylbenzene	ND	ug/kg	3.0				
p-Isopropyltoluene	ND	ug/kg	3.0				
Naphthalene	ND	ug/kg	15.				
Acrylonitrile	ND	ug/kg	30.				
n-Propylbenzene	ND	ug/kg	3.0				
1,2,3-Trichlorobenzene	ND	ug/kg	15.				
1,2,4-Trichlorobenzene	ND	ug/kg	15.				
1,3,5-Trimethylbenzene	ND	ug/kg	15.				
1,2,4-Trimethylbenzene	ND	ug/kg ug/kg	15.				
1,4-Diethylbenzene	ND	ug/kg ug/kg	12.				
4-Ethyltoluene	ND	ug/kg ug/kg	12.				
1,2,4,5-Tetramethylbenzene	ND	ug/kg ug/kg	12.				
1,2,4,5-recramethyrbenzene	אות	ug/ng	14.				
Surrogate(s)	Recovery		QC Cri	teria			
1,2-Dichloroethane-d4	107	%	70-130				
Toluene-d8	108	%	70-130				
4-Bromofluorobenzene	119	%	70-130				
Dibromofluoromethane	103	8	70-130				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813196-02 Date Collected: 03-SEP-2008 10:05

Sample Matrix: WATER Date Reported: 15-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 820	50B			1 8260B	0909 19:59 PD
Methylene chloride	ND	ug/l	5.0	1 02005	0303 13.33 15
1,1-Dichloroethane	ND	ug/l	0.75		
Chloroform	ND	ug/l	0.75		
Carbon tetrachloride	ND	ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75		
Tetrachloroethene	ND	ug/l	0.50		
Chlorobenzene	ND	ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND	ug/l	0.50		
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50		
Chloromethane	ND	ug/l	2.5		
Bromomethane	ND	ug/l	1.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	1.0		
1,1-Dichloroethene	ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/l	0.75		
Trichloroethene	ND	ug/l	0.50		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/l	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	ND	ug/l	0.50		
Dibromomethane	ND	ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/l	5.0		
Acrylonitrile	ND	ug/l	5.0		

Laboratory Sample Number: L0813196-02

PWG.GW.2008.05

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Volatile Organics by EPA 826	OB cont'd			1	8260B		0909 19:	59 PD
Styrene	ND	ug/l	1.0					
Dichlorodifluoromethane	ND	ug/l	5.0					
Acetone	ND	ug/l	5.0					
Carbon disulfide	ND	ug/l	5.0					
2-Butanone	ND	ug/l	5.0					
Vinyl acetate	ND	ug/l	5.0					
4-Methyl-2-pentanone	ND	ug/l	5.0					
2-Hexanone	ND	ug/l	5.0					
Bromochloromethane	ND	ug/l	2.5					
2,2-Dichloropropane	ND	ug/l	2.5					
1,2-Dibromoethane	ND	ug/l	2.0					
1,3-Dichloropropane	ND	ug/l	2.5					
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50					
Bromobenzene	ND	ug/l	2.5					
n-Butylbenzene	ND	ug/l	0.50					
sec-Butylbenzene	ND	ug/l	0.50					
tert-Butylbenzene	ND	ug/l	2.5					
o-Chlorotoluene	ND	ug/l	2.5					
p-Chlorotoluene	ND	ug/l	2.5					
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5					
Hexachlorobutadiene	ND	ug/l	0.60					
Isopropylbenzene	ND	ug/l	0.50					
p-Isopropyltoluene	ND	ug/l	0.50					
Naphthalene	ND	ug/l	2.5					
n-Propylbenzene	ND	ug/l	0.50					
1,2,3-Trichlorobenzene	ND	ug/l	2.5					
1,2,4-Trichlorobenzene	ND	ug/l	2.5					
1,3,5-Trimethylbenzene	ND	ug/l	2.5					
1,2,4-Trimethylbenzene	ND	ug/l	2.5					
1,4-Diethylbenzene	ND	ug/l	2.0					
4-Ethyltoluene	ND	ug/l	2.0					
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0					
Surrogate(s)	Recovery		QC Crit	teria	ì			
1,2-Dichloroethane-d4	101	%	70-130					
Toluene-d8	99.0	%	70-130					
4-Bromofluorobenzene	105	%	70-130					
Dibromofluoromethane	96.0	%	70-130					

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813196-03 Date Collected: 03-SEP-2008 10:40

PWG.SB.2008.03@10-15' Date Received: 05-SEP-2008

Sample Matrix: SOIL Date Reported: 15-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE	ID
					PREP ANAL	
Solids, Total	79	%	0.10	30 2540G	0011 15.	1 F GD
Solids, local	79	6	0.10	30 2540G	0911 15:	15 SD
Volatile Organics by EPA 820	60B			1 8260B	0906 16:	59 PD
Methylene chloride	ND	ug/kg	32.			
1,1-Dichloroethane	ND	ug/kg	4.7			
Chloroform	ND	ug/kg	4.7			
Carbon tetrachloride	ND	ug/kg	3.2			
1,2-Dichloropropane	ND	ug/kg	11.			
Dibromochloromethane	ND	ug/kg	3.2			
1,1,2-Trichloroethane	ND	ug/kg	4.7			
Tetrachloroethene	ND	ug/kg	3.2			
Chlorobenzene	ND	ug/kg	3.2			
Trichlorofluoromethane	ND	ug/kg	16.			
1,2-Dichloroethane	ND	ug/kg	3.2			
1,1,1-Trichloroethane	ND	ug/kg	3.2			
Bromodichloromethane	ND	ug/kg	3.2			
trans-1,3-Dichloropropene	ND	ug/kg	3.2			
cis-1,3-Dichloropropene	ND	ug/kg	3.2			
1,1-Dichloropropene	ND	ug/kg	16.			
Bromoform	ND	ug/kg	13.			
1,1,2,2-Tetrachloroethane	ND	ug/kg	3.2			
Benzene	ND	ug/kg	3.2			
Toluene	ND	ug/kg	4.7			
Ethylbenzene	ND	ug/kg	3.2			
Chloromethane	ND	ug/kg	16.			
Bromomethane	ND	ug/kg	6.3			
Vinyl chloride	ND	ug/kg	6.3			
Chloroethane	ND	ug/kg	6.3			
1,1-Dichloroethene	ND	ug/kg	3.2			
trans-1,2-Dichloroethene	ND	ug/kg	4.7			
Trichloroethene	ND	ug/kg	3.2			
1,2-Dichlorobenzene	ND	ug/kg	16.			
1,3-Dichlorobenzene	ND	ug/kg	16.			
1,4-Dichlorobenzene	ND	ug/kg	16.			
Methyl tert butyl ether	ND	ug/kg	6.3			
p/m-Xylene	ND	ug/kg	6.3			
o-Xylene	ND	ug/kg	6.3			
cis-1,2-Dichloroethene	ND	ug/kg	3.2			
Dibromomethane	ND	ug/kg	32.			

Laboratory Sample Number: L0813196-03

PWG.SB.2008.03@10-15'

Dichlorodifluoromethane	PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA PREP	ANAL	ID
Dichlorodifluoromethane ND ug/kg 32.	Volatile Organics by EPA 826	OB cont'd			1 8260B		0906 16:5	9 PD
Dichlorodifluoromethane ND ug/kg 32. Acetone ND ug/kg 32. Carbon disulfide ND ug/kg 32. 2-Butanone ND ug/kg 32. 4-Methyl-2-pentanone ND ug/kg 32. 4-Methyl-2-pentanone ND ug/kg 32. 2-Hexanone ND ug/kg 32. Bromochloromethane ND ug/kg 16. 2,2-Dichloropropane ND ug/kg 16. 1,3-Dichloropropane ND ug/kg 16. 1-Butylbenzene ND ug/kg 16. 1-Butylbenzene ND ug/kg 16. 1-Chlorotoluene	Styrene		ug/kg	6.3				
ND	Dichlorodifluoromethane	ND		32.				
Carbon disulfide ND ug/kg 32. 2-Butanone ND ug/kg 32. 4-Methyl-2-pentanone ND ug/kg 32. 4-Methyl-2-pentanone ND ug/kg 32. 1,2,3-Trichloropropane ND ug/kg 32. 2-Hexanone ND ug/kg 32. 2-Hexanone ND ug/kg 32. 2-Remonchloromethane ND ug/kg 16. 2,2-Dichloropropane ND ug/kg 16. 1,2-Dibromoethane ND ug/kg 16. 1,1,1,2-Tetrachloroethane ND ug/kg 16. 1,1,1,2-Tetrachloroethane ND ug/kg 16. 1,1,1,2-Tetrachloroethane ND ug/kg 16. 1,1,1,2-Tetrachloroethane ND ug/kg 16. 1-Butylbenzene ND ug/kg 16. 1-Butylbenzene ND ug/kg 3.2 1-Beromobenzene ND ug/kg 16. 1-Butylbenzene ND ug/kg 16. 1-Chlorotoluene ND ug/kg 3.2 1-Chlorotoluene	Acetone	ND						
2-Butanone ND	Carbon disulfide	ND		32.				
Vinyl acetate	2-Butanone	ND						
4-Methyl-2-pentanone ND ug/kg 32. 1,2,3-Trichloropropane ND ug/kg 32. 2-Hexanone ND ug/kg 32. 8-Promochloromethane ND ug/kg 16. 2,2-Dichloropropane ND ug/kg 16. 1,2-Dibromoethane ND ug/kg 16. 1,2-Dibromoethane ND ug/kg 16. 1,1,1,2-Tetrachloropropane ND ug/kg 16. 1,1,1,2-Tetrachloropthane ND ug/kg 16. 1,1,1,2-Tetrachloroethane ND ug/kg 3.2 8-Romobenzene ND ug/kg 16. 10-Chlorotoluene ND ug/kg 3.2 10-Froprylbenzene ND ug/kg 3.2 10-Froprylbenzene ND ug/kg 3.2 10-Froprylbenzene ND ug/kg 3.2 10-Propylbenzene ND ug/kg 3.2 10-Propylb	Vinyl acetate	ND						
1,2,3-Trichloropropane	-	ND						
2-Hexanone Bromochloromethane ND Ug/kg 16. 2,2-Dichloropropane ND Ug/kg 16. 1,2-Dibromoethane ND Ug/kg 16. 1,3-Dichloropropane ND Ug/kg 16. 1,1,1,2-Tetrachloroethane ND Ug/kg 16. 1,1,1,2-Tetrachloroethane ND Ug/kg 16. 1,1,1,2-Tetrachloroethane ND Ug/kg 16. n-Butylbenzene ND Ug/kg 3.2 sec-Butylbenzene ND Ug/kg 3.2 tetr-Butylbenzene ND Ug/kg 16. o-Chlorotoluene ND Ug/kg 16. o-Chlorotoluene ND Ug/kg 16. 1,2-Dibromo-3-chloropropane ND Ug/kg 16. 15-Dibromo-3-chloropropane ND Ug/kg 16. 15-Dibromo-3-chloropropane ND Ug/kg 16. 16-De-Toluene ND Ug/kg 16. 18-De-Toluene ND Ug/kg 16. 18-De-Toluene ND Ug/kg 16. 19-Isopropylbenzene ND Ug/kg 3.2 p-Isopropylbenzene ND	1,2,3-Trichloropropane	ND						
### Seromochloromethane ND ug/kg 16. 2,2-Dichloropropane ND ug/kg 16. 1,2-Dibromoethane ND ug/kg 13. 1,3-Dichloropropane ND ug/kg 16. 1,1,1,2-Tetrachloroethane ND ug/kg 3.2 #### Seromobenzene ND ug/kg 3.2 #### Sec-Butylbenzene ND ug/kg 16. ### O-Chlorotoluene ND ug/kg 16. ### O-Chlorotoluene ND ug/kg 16. ### Sec-Butylbenzene ND ug/kg 3.2 ### Sec-Butylbenzene ND ug/kg 3.3 ##	2-Hexanone	ND						
2,2-Dichloropropane	Bromochloromethane	ND						
1,2-Dibromoethane	2,2-Dichloropropane	ND						
1,3-Dichloropropane	1,2-Dibromoethane	ND						
1,1,1,2-Tetrachloroethane	-	ND		16.				
### Bromobenzene ND		ND						
### Butylbenzene	Bromobenzene	ND						
ND	n-Butylbenzene	ND						
ND	-	ND						
Decklorotoluene		ND						
December ND	o-Chlorotoluene	ND						
1,2-Dibromo-3-chloropropane	p-Chlorotoluene	ND						
Hexachlorobutadiene ND ug/kg 16. Isopropylbenzene ND ug/kg 3.2 P-Isopropyltoluene ND ug/kg 3.2 Naphthalene ND ug/kg 16. Acrylonitrile ND ug/kg 32. n-Propylbenzene ND ug/kg 3.2 1,2,3-Trichlorobenzene ND ug/kg 16. 1,2,4-Trichlorobenzene ND ug/kg 16. 1,3,5-Trimethylbenzene ND ug/kg 16. 1,2,4-Trimethylbenzene ND ug/kg 16. 1,4-Diethylbenzene ND ug/kg 13. 4-Ethyltoluene ND ug/kg 13. Surrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 105 % 70-130 Toluene-d8 107 % 70-130 4-Bromofluorobenzene 121 % 70-130	-							
ND	Hexachlorobutadiene							
Description ND Ug/kg 3.2	Isopropylbenzene	ND		3.2				
Naphthalene ND ug/kg 16. Acrylonitrile ND ug/kg 32. n-Propylbenzene ND ug/kg 3.2 1,2,3-Trichlorobenzene ND ug/kg 16. 1,2,4-Trichlorobenzene ND ug/kg 16. 1,3,5-Trimethylbenzene ND ug/kg 16. 1,2,4-Trimethylbenzene ND ug/kg 13. 1,4-Diethylbenzene ND ug/kg 13. 4-Ethyltoluene ND ug/kg 13. 1,2,4,5-Tetramethylbenzene ND ug/kg 13. Surrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 105 % 70-130 Toluene-d8 107 % 70-130 4-Bromofluorobenzene 121 % 70-130		ND						
Acrylonitrile ND ug/kg 32. n-Propylbenzene ND ug/kg 16. 1,2,3-Trichlorobenzene ND ug/kg 16. 1,2,4-Trichlorobenzene ND ug/kg 16. 1,3,5-Trimethylbenzene ND ug/kg 16. 1,2,4-Trimethylbenzene ND ug/kg 16. 1,2,4-Trimethylbenzene ND ug/kg 16. 1,2,4-Trimethylbenzene ND ug/kg 13. 4-Ethyltoluene ND ug/kg 13. 1,2,4,5-Tetramethylbenzene ND ug/kg 13. Surrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 105 Recovery 70-130 Toluene-d8 4-Bromofluorobenzene 121 % 70-130		ND						
n-Propylbenzene ND ug/kg 3.2 1,2,3-Trichlorobenzene ND ug/kg 16. 1,2,4-Trichlorobenzene ND ug/kg 16. 1,3,5-Trimethylbenzene ND ug/kg 16. 1,2,4-Trimethylbenzene ND ug/kg 16. 1,4-Diethylbenzene ND ug/kg 13. 4-Ethyltoluene ND ug/kg 13. 1,2,4,5-Tetramethylbenzene ND ug/kg 13. Surrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 105 % 70-130 Toluene-d8 107 % 70-130 4-Bromofluorobenzene 121 % 70-130		ND						
1,2,3-Trichlorobenzene ND ug/kg 16. 1,2,4-Trichlorobenzene ND ug/kg 16. 1,3,5-Trimethylbenzene ND ug/kg 16. 1,2,4-Trimethylbenzene ND ug/kg 13. 1,4-Diethylbenzene ND ug/kg 13. 4-Ethyltoluene ND ug/kg 13. 1,2,4,5-Tetramethylbenzene ND ug/kg 13. Surrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 105 % 70-130 Toluene-d8 107 % 70-130 4-Bromofluorobenzene 121 % 70-130		ND						
1,2,4-Trichlorobenzene ND ug/kg 16. 1,3,5-Trimethylbenzene ND ug/kg 16. 1,2,4-Trimethylbenzene ND ug/kg 16. 1,4-Diethylbenzene ND ug/kg 13. 4-Ethyltoluene ND ug/kg 13. 1,2,4,5-Tetramethylbenzene ND ug/kg 13. Surrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 105 % 70-130 Toluene-d8 107 % 70-130 4-Bromofluorobenzene 121 % 70-130		ND						
1,3,5-Trimethylbenzene ND ug/kg 16. 1,2,4-Trimethylbenzene ND ug/kg 16. 1,4-Diethylbenzene ND ug/kg 13. 4-Ethyltoluene ND ug/kg 13. 1,2,4,5-Tetramethylbenzene ND ug/kg 13. Surrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 105 % 70-130 Toluene-d8 107 % 70-130 4-Bromofluorobenzene 121 % 70-130		ND						
1,2,4-Trimethylbenzene ND ug/kg 16. 1,4-Diethylbenzene ND ug/kg 13. 4-Ethyltoluene ND ug/kg 13. 1,2,4,5-Tetramethylbenzene ND ug/kg 13. Surrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 105 % 70-130 Toluene-d8 107 % 70-130 4-Bromofluorobenzene 121 % 70-130		ND						
1,4-Diethylbenzene ND ug/kg 13. 4-Ethyltoluene ND ug/kg 13. 1,2,4,5-Tetramethylbenzene ND ug/kg 13. Surrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 105 % 70-130 Toluene-d8 107 % 70-130 4-Bromofluorobenzene 121 % 70-130	_							
4-Ethyltoluene ND ug/kg 13. 1,2,4,5-Tetramethylbenzene ND ug/kg 13. Surrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 105 % 70-130 Toluene-d8 107 % 70-130 4-Bromofluorobenzene 121 % 70-130	-							
1,2,4,5-Tetramethylbenzene ND ug/kg 13. Surrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 105 % 70-130 Toluene-d8 107 % 70-130 4-Bromofluorobenzene 121 % 70-130	-							
1,2-Dichloroethane-d4 105 % 70-130 Toluene-d8 107 % 70-130 4-Bromofluorobenzene 121 % 70-130	1,2,4,5-Tetramethylbenzene							
1,2-Dichloroethane-d4 105 % 70-130 Foluene-d8 107 % 70-130 4-Bromofluorobenzene 121 % 70-130	Surrogate(s)	Recovery		QC Cr	iteria			
Toluene-d8 107 % 70-130 4-Bromofluorobenzene 121 % 70-130	1,2-Dichloroethane-d4	105	8	70-13	0			
4-Bromofluorobenzene 121 % 70-130	Toluene-d8							
	4-Bromofluorobenzene							
	Dibromofluoromethane							

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813196-04 Date Collected: 03-SEP-2008 10:55

Sample Matrix: WATER Date Reported: 15-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 8	3260B			1 8260B	0909 20:35 PD
Methylene chloride	ND	ug/l	5.0		
1,1-Dichloroethane	ND	ug/l	0.75		
Chloroform	ND	ug/l	0.75		
Carbon tetrachloride	ND	ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75		
Tetrachloroethene	ND	ug/l	0.50		
Chlorobenzene	ND	ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND	ug/l	0.50		
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50		
Chloromethane	ND	ug/l	2.5		
Bromomethane	ND	ug/l	1.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	1.0		
1,1-Dichloroethene	ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/l	0.75		
Trichloroethene	ND	ug/l	0.50		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/l	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	ND	ug/l	0.50		
Dibromomethane	ND	ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/l	5.0		
Acrylonitrile	ND	ug/l	5.0		

Laboratory Sample Number: L0813196-04

PWG.GW.2008.03

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	ANAL	ID
Volatile Organics by EPA 826	OB contid			1	8260B		0909 20:3	5 DD
Styrene	ND	ug/l	1.0		02008		0909 20.3	J PD
Dichlorodifluoromethane	ND ND	ug/l ug/l	5.0					
Acetone	ND	ug/l	5.0					
Carbon disulfide	ND ND	ug/l ug/l	5.0					
2-Butanone	ND	ug/l	5.0					
Vinyl acetate	ND	ug/l	5.0					
4-Methyl-2-pentanone	ND	ug/l	5.0					
2-Hexanone	ND	ug/l	5.0					
Bromochloromethane	ND	ug/l	2.5					
2,2-Dichloropropane	ND	ug/l	2.5					
1,2-Dibromoethane	ND	ug/l	2.0					
1,3-Dichloropropane	ND	ug/l	2.5					
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50					
Bromobenzene	ND	ug/l	2.5					
n-Butylbenzene	ND	ug/l	0.50					
sec-Butylbenzene	ND	ug/l	0.50					
tert-Butylbenzene	ND	ug/l	2.5					
o-Chlorotoluene	ND	ug/l	2.5					
p-Chlorotoluene	ND	ug/l	2.5					
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5					
Hexachlorobutadiene	ND	ug/l	0.60					
Isopropylbenzene	ND	ug/l	0.50					
p-Isopropyltoluene	ND	ug/l	0.50					
Naphthalene	ND	ug/l	2.5					
n-Propylbenzene	ND	ug/l	0.50					
1,2,3-Trichlorobenzene	ND	ug/l	2.5					
1,2,4-Trichlorobenzene	ND	ug/l	2.5					
1,3,5-Trimethylbenzene	ND	ug/l	2.5					
1,2,4-Trimethylbenzene	ND	ug/l	2.5					
1,4-Diethylbenzene	ND	ug/l	2.0					
4-Ethyltoluene	ND	ug/l	2.0					
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0					
Surrogate(s)	Recovery		QC Crit	teria	Ĺ			
1,2-Dichloroethane-d4	102	%	70-130					
Toluene-d8	99.0	%	70-130					
4-Bromofluorobenzene	102	8	70-130					
Dibromofluoromethane	98.0	%	70-130					

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813196-05 Date Collected: 03-SEP-2008 11:40

PWG.SB.2008.08@5-10' Date Received: 05-SEP-2008

Sample Matrix: SOIL Date Reported: 15-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Solids, Total	86	%	0.10	30 2540G	0909 18:20 NM
Total Metals					
Aluminum, Total	2500	mg/kg	5.6	1 6010B	0908 14:00 0910 19:44 TD
Antimony, Total	ND	mg/kg	2.8	1 6010B	0908 14:00 0910 19:44 TD
Arsenic, Total	1.8	mg/kg	0.56	1 6010B	0908 14:00 0910 19:44 TD
Barium, Total	14	mg/kg	0.56	1 6010B	0908 14:00 0910 19:44 TD
Beryllium, Total	ND	mg/kg	0.28	1 6010B	0908 14:00 0910 19:44 TD
Cadmium, Total	ND	mg/kg	0.56	1 6010B	0908 14:00 0910 19:44 TD
Calcium, Total	92	mg/kg	5.6	1 6010B	0908 14:00 0910 19:44 TD
Chromium, Total	4.7	mg/kg	0.56	1 6010B	0908 14:00 0910 19:44 TD
Cobalt, Total	9.0	mg/kg	1.1	1 6010B	0908 14:00 0910 19:44 TD
Copper, Total	5.8	mg/kg	0.56	1 6010B	0908 14:00 0910 19:44 TD
Iron, Total	6900	mg/kg	2.8	1 6010B	0908 14:00 0910 19:44 TD
Lead, Total	ND	mg/kg	2.8	1 6010B	0908 14:00 0910 19:44 TD
Magnesium, Total	340	mg/kg	5.6	1 6010B	0908 14:00 0910 19:44 TD
Manganese, Total	650	mg/kg	0.56	1 6010B	0908 14:00 0910 19:44 TD
Mercury, Total	ND	mg/kg	0.09	1 7471A	0910 21:30 0911 17:14 HG
Nickel, Total	5.6	mg/kg	1.4	1 6010B	0908 14:00 0910 19:44 TD
Potassium, Total	240	mg/kg	140	1 6010B	0908 14:00 0910 19:44 TD
Selenium, Total	ND	mg/kg	1.1	1 6010B	0908 14:00 0910 19:44 TD
Silver, Total	ND	mg/kg	0.56	1 6010B	0908 14:00 0910 19:44 TD
Sodium, Total	ND	mg/kg	110	1 6010B	0908 14:00 0910 19:44 TD
Thallium, Total	ND	mg/kg	1.1	1 6010B	0908 14:00 0910 19:44 TD
Vanadium, Total	7.5	mg/kg	0.56	1 6010B	0908 14:00 0910 19:44 TD
Zinc, Total	25	mg/kg	2.8	1 6010B	0908 14:00 0910 19:44 TD
Volatile Organics by EPA 8	3260B			1 8260B	0906 17:36 PD
Methylene chloride	ND	ug/kg	29.		
1,1-Dichloroethane	ND	ug/kg	4.4		
Chloroform	ND	ug/kg	4.4		
Carbon tetrachloride	ND	ug/kg	2.9		
1,2-Dichloropropane	ND	ug/kg	10.		
Dibromochloromethane	ND	ug/kg	2.9		
1,1,2-Trichloroethane	ND	ug/kg	4.4		
Tetrachloroethene	ND	ug/kg	2.9		
Chlorobenzene	ND	ug/kg	2.9		
Trichlorofluoromethane	ND	ug/kg	14.		

Laboratory Sample Number: L0813196-05

PWG.SB.2008.08@5-10'

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Volatile Organics by EPA 826	OB cont'd			1	8260B		0906 17:	36 PD
l,2-Dichloroethane	ND	ug/kg	2.9					
l,1,1-Trichloroethane	ND	ug/kg	2.9					
Bromodichloromethane	ND	ug/kg	2.9					
rans-1,3-Dichloropropene	ND	ug/kg	2.9					
is-1,3-Dichloropropene	ND	ug/kg	2.9					
.,1-Dichloropropene	ND	ug/kg	14.					
3romoform	ND	ug/kg	12.					
.,1,2,2-Tetrachloroethane	ND	ug/kg	2.9					
Benzene	ND	ug/kg	2.9					
'oluene	ND	ug/kg	4.4					
thylbenzene	ND	ug/kg	2.9					
thloromethane	ND	ug/kg	14.					
Bromomethane	ND	ug/kg	5.8					
inyl chloride	ND	ug/kg	5.8					
Chloroethane	ND	ug/kg	5.8					
,1-Dichloroethene	ND	ug/kg	2.9					
rans-1,2-Dichloroethene	ND	ug/kg	4.4					
richloroethene	ND	ug/kg	2.9					
,2-Dichlorobenzene	ND	ug/kg	14.					
,3-Dichlorobenzene	ND	ug/kg	14.					
,4-Dichlorobenzene	ND	ug/kg	14.					
ethyl tert butyl ether	ND	ug/kg	5.8					
/m-Xylene	ND	ug/kg	5.8					
-Xylene	ND	ug/kg ug/kg	5.8					
is-1,2-Dichloroethene	ND	ug/kg ug/kg	2.9					
bromomethane	ND	ug/kg ug/kg	29.					
Styrene	ND	ug/kg	5.8					
Dichlorodifluoromethane	ND	ug/kg ug/kg	29.					
acetone	ND	ug/kg ug/kg	29.					
arbon disulfide	ND	ug/kg ug/kg	29.					
-Butanone	ND	ug/kg ug/kg	29.					
			29.					
Vinyl acetate	ND	ug/kg						
-Methyl-2-pentanone	ND	ug/kg	29. 29.					
.,2,3-Trichloropropane	ND	ug/kg						
-Hexanone romochloromethane	ND	ug/kg	29.					
	ND	ug/kg	14.					
2. Dibumanthan	ND	ug/kg	14.					
,,2-Dibromoethane	ND	ug/kg	12.					
.,3-Dichloropropane	ND	ug/kg	14.					
,1,1,2-Tetrachloroethane	ND	ug/kg	2.9					
romobenzene	ND	ug/kg	14.					
-Butylbenzene	ND	ug/kg	2.9					
ec-Butylbenzene	ND	ug/kg	2.9					
ert-Butylbenzene	ND	ug/kg	14.					
-Chlorotoluene	ND	ug/kg	14.					
-Chlorotoluene	ND	ug/kg	14.					
,2-Dibromo-3-chloropropane	ND	ug/kg	14.					
[exachlorobutadiene	ND	ug/kg	14.					
sopropylbenzene	ND	ug/kg	2.9					

Laboratory Sample Number: L0813196-05

PWG.SB.2008.08@5-10'

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Volatile Organics by EPA 8260	NB contid			1	8260B		0906 17:	26 DD
p-Isopropyltoluene	ND	ua /ka	2.9	1	020UB		0900 17.	30 PD
p-isopropyrtoruene Naphthalene		ug/kg						
	ND	ug/kg	14.					
Acrylonitrile	ND	ug/kg	29.					
n-Propylbenzene	ND	ug/kg	2.9					
1,2,3-Trichlorobenzene	ND	ug/kg	14.					
1,2,4-Trichlorobenzene	ND	ug/kg	14.					
1,3,5-Trimethylbenzene	ND	ug/kg	14.					
1,2,4-Trimethylbenzene	ND	ug/kg	14.					
1,4-Diethylbenzene	ND	ug/kg	12.					
4-Ethyltoluene	ND	ug/kg	12.					
1,2,4,5-Tetramethylbenzene	ND	ug/kg	12.					
Surrogate(s)	Recovery		QC Cri	teria	a			
1,2-Dichloroethane-d4	104	%	70-130					
Toluene-d8	107	%	70-130					
4-Bromofluorobenzene	121	%	70-130					
Dibromofluoromethane	101	%	70-130					
Semivolatile Organics by EPA	8270C			1	8270C	0906 12:05	0910 16:	17 PS
Acenaphthene	ND	ug/kg	390					
1,2,4-Trichlorobenzene	ND	ug/kg	390					
Hexachlorobenzene	ND	ug/kg	390					
Bis(2-chloroethyl)ether	ND	ug/kg	390					
2-Chloronaphthalene	ND	ug/kg	460					
1,2-Dichlorobenzene	ND	ug/kg	390					
1,3-Dichlorobenzene	ND	ug/kg	390					
1,4-Dichlorobenzene	ND	ug/kg	390					
3,3'-Dichlorobenzidine	ND	ug/kg	780					
2,4-Dinitrotoluene	ND	ug/kg	390					
2,6-Dinitrotoluene	ND	ug/kg ug/kg	390					
Fluoranthene	ND ND	ug/kg ug/kg	390					
4-Chlorophenyl phenyl ether	ND ND	ug/kg ug/kg	390					
4-Chrorophenyl phenyl ether	ND ND	ug/kg ug/kg	390					
Bis(2-chloroisopropyl)ether	ND ND		390					
Bis(2-chloroethoxy)methane	ND ND	ug/kg	390					
Bis(2-chioroethoxy)methane Hexachlorobutadiene	ND ND	ug/kg	780					
Hexachioroputadiene Hexachlorocyclopentadiene		ug/kg						
Hexachiorocyclopentadiene Hexachloroethane	ND	ug/kg	780					
	ND	ug/kg	390					
Isophorone	ND	ug/kg	390					
Naphthalene	ND	ug/kg	390					
Nitrobenzene	ND	ug/kg	390					
NitrosoDiPhenylAmine(NDPA)/DI		ug/kg	1200					
n-Nitrosodi-n-propylamine	ND	ug/kg	390					
Bis(2-Ethylhexyl)phthalate	ND	ug/kg	780					
Butyl benzyl phthalate	ND	ug/kg	390					
Di-n-butylphthalate	ND	ug/kg	390					
Di-n-octylphthalate	ND	ug/kg	390					
Diethyl phthalate	ND	ug/kg	390					
Dimethyl phthalate	ND	ug/kg	390					

Laboratory Sample Number: L0813196-05

PWG.SB.2008.08@5-10'

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Semivolatile Organics by EPA	8270C cont	- ' d		1	8270C	0906 12:05	0910 16:	17 pg
Benzo(a)anthracene	ND	ug/kg	390		02700	0,000 12.03	0,10 10.	17 15
Benzo(a)pyrene	ND	ug/kg ug/kg	390					
Benzo(b)fluoranthene	ND		390					
Benzo(k)fluoranthene	ND	ug/kg	390					
henzo(k)ffuoranchene hrysene	ND	ug/kg ug/kg	390					
acenaphthylene	ND		390					
nthracene	ND	ug/kg	390					
		ug/kg						
senzo(ghi)perylene 'luorene	ND	ug/kg	390					
henanthrene	ND	ug/kg	390					
	ND	ug/kg	390					
pibenzo(a,h)anthracene	ND	ug/kg	390					
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	390					
yrene	ND	ug/kg	390					
Siphenyl	ND	ug/kg	390					
l-Chloroaniline	ND	ug/kg	390					
-Nitroaniline	ND	ug/kg	390					
-Nitroaniline	ND	ug/kg	390					
-Nitroaniline	ND	ug/kg	540					
ibenzofuran	ND	ug/kg	390					
-Methylnaphthalene	ND	ug/kg	390					
,2,4,5-Tetrachlorobenzene	ND	ug/kg	1600					
cetophenone	ND	ug/kg	1600					
,4,6-Trichlorophenol	ND	ug/kg	390					
-Chloro-M-Cresol	ND	ug/kg	390					
-Chlorophenol	ND	ug/kg	460					
,4-Dichlorophenol	ND	ug/kg	780					
,4-Dimethylphenol	ND	ug/kg	390					
-Nitrophenol	ND	ug/kg	1600					
-Nitrophenol	ND	ug/kg	780					
,4-Dinitrophenol	ND	ug/kg	1600					
,6-Dinitro-o-cresol	ND	ug/kg	1600					
entachlorophenol	ND	ug/kg	1600					
henol	ND	ug/kg	540					
-Methylphenol	ND	ug/kg	460					
-Methylphenol/4-Methylphenol	ND	ug/kg	460					
,4,5-Trichlorophenol	ND	ug/kg	390					
enzoic Acid	ND	ug/kg	3900					
Benzyl Alcohol	ND	ug/kg	780					
arbazole	ND	ug/kg	390					
urrogate(s)	Recovery		QC Cr	iteria	ι			
-Fluorophenol	53.0	%	25-120)				
henol-d6	49.0	%	10-120)				
Titrobenzene-d5	46.0	%	23-120)				
-Fluorobiphenyl	44.0	%	30-120					
,4,6-Tribromophenol	52.0	ર	19-120					
-Terphenyl-d14	48.0	%	18-120					

Laboratory Sample Number: L0813196-05

PWG.SB.2008.08@5-10'

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA		ID
						PREP	ANA	.L
Semivolatile Organics by EPA	8270C-STM	cont'd		1	8270C	0906 12:05	0911 0	4·13 NK
Acenaphthene	ND	ug/kg	16.	_	02700	0,000 12.03	0,11 0	1-15 1110
2-Chloronaphthalene	ND	ug/kg ug/kg	16.					
Fluoranthene	ND	ug/kg	16.					
Hexachlorobutadiene	ND	ug/kg ug/kg	39.					
Naphthalene	ND	ug/kg ug/kg	16.					
Benzo(a)anthracene	ND	ug/kg ug/kg	16.					
Benzo(a)pyrene	ND	ug/kg	16.					
Benzo(b)fluoranthene	ND	ug/kg	16.					
Benzo(k)fluoranthene	ND	ug/kg ug/kg	16.					
Chrysene	ND	ug/kg ug/kg	16.					
Acenaphthylene	ND	ug/kg ug/kg	16.					
Acenaphthyrene Anthracene			16.					
	ND	ug/kg						
Benzo(ghi)perylene Fluorene	ND	ug/kg	16. 16.					
	ND	ug/kg						
Phenanthrene	ND	ug/kg	16.					
Dibenzo(a,h)anthracene	ND	ug/kg	16.					
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	16.					
Pyrene	ND	ug/kg	16.					
2-Methylnaphthalene	ND	ug/kg	16.					
Pentachlorophenol	ND	ug/kg	62.					
Hexachlorobenzene	ND	ug/kg	62.					
Hexachloroethane	ND	ug/kg	62.					
Surrogate(s)	Recovery		QC Cri		Э			
2-Fluorophenol	50.0	8	25-120)				
Phenol-d6	53.0	%	10-120)				
Nitrobenzene-d5	50.0	%	23-120)				
2-Fluorobiphenyl	48.0	%	30-120)				
2,4,6-Tribromophenol	72.0	%	19-120)				
4-Terphenyl-d14	63.0	%	18-120)				
Polychlorinated Biphenyls by	EPA 8082			1	8082	0909 23:00	0910 1	6:25 SH
Aroclor 1016	ND	ug/kg	38.8					
Aroclor 1221	ND	ug/kg	38.8					
Aroclor 1232	ND	ug/kg	38.8					
Aroclor 1242	ND	ug/kg	38.8					
Aroclor 1248	ND	ug/kg	38.8					
Aroclor 1254	ND	ug/kg	38.8					
Aroclor 1260	ND	ug/kg	38.8					
Surrogate(s)	Recovery		QC Cri	teria	a			
2,4,5,6-Tetrachloro-m-xylene	60.0	%	30-150					
Decachlorobiphenyl	67.0	%	30-150					
Organochlorine Pesticides by	EPA 8081A			1	8081A	0906 10:30	0910 1	7:12 SS
Delta-BHC	ND	ug/kg	3.88					
Lindane	ND	ug/kg	3.88					
Alpha-BHC	ND	ug/kg	3.88					
		,						

Laboratory Sample Number: L0813196-05

PWG.SB.2008.08@5-10'

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA PREP	TE ANAL	ID
Organochlorine Pesticides by	EPA 8081A	cont'd		1 8081A	0906 10:30	0910 17:12	SS
Heptachlor	ND	ug/kg	3.88				
Aldrin	ND	ug/kg	3.88				
Heptachlor epoxide	ND	ug/kg	3.88				
Endrin	ND	ug/kg	3.88				
Endrin ketone	ND	ug/kg	3.88				
Dieldrin	ND	ug/kg	3.88				
4,4'-DDE	ND	ug/kg	3.88				
4,4'-DDD	ND	ug/kg	3.88				
4,4'-DDT	ND	ug/kg	3.88				
Endosulfan I	ND	ug/kg	3.88				
Endosulfan II	ND	ug/kg	3.88				
Endosulfan sulfate	ND	ug/kg	3.88				
Methoxychlor	ND	ug/kg	15.5				
trans-Chlordane	ND	ug/kg	3.88				
Chlordane	ND	ug/kg	38.8				
Surrogate(s)	Recovery		QC Crit	teria			
2,4,5,6-Tetrachloro-m-xylene	51.0	%	30-150				
Decachlorobiphenyl	65.0	%	30-150				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813196-06 Date Collected: 03-SEP-2008 11:50

Sample Matrix: WATER Date Reported: 15-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 8	260B			1 8260B	0909 21:12 PD
Methylene chloride	ND	ug/l	5.0		
1,1-Dichloroethane	ND	ug/l	0.75		
Chloroform	ND	ug/l	0.75		
Carbon tetrachloride	ND	ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75		
Tetrachloroethene	ND	ug/l	0.50		
Chlorobenzene	ND	ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND	ug/l	0.50		
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50		
Chloromethane	ND	ug/l	2.5		
Bromomethane	ND	ug/l	1.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	1.0		
1,1-Dichloroethene	ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/l	0.75		
Trichloroethene	ND	ug/l	0.50		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/l	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	ND	ug/l	0.50		
Dibromomethane	ND	ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/l	5.0		
Acrylonitrile	ND	ug/l	5.0		

Laboratory Sample Number: L0813196-06

PWG.GW.2008.08

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 826	NB contid			1 8260B	0909 21:12 PD
Styrene	ND	ug/l	1.0	1 0200B	0909 ZI:1Z FD
Dichlorodifluoromethane	ND	ug/l	5.0		
Acetone	ND	ug/l	5.0		
Carbon disulfide	ND	ug/l	5.0		
2-Butanone	ND	ug/l	5.0		
Vinyl acetate	ND	ug/l	5.0		
4-Methyl-2-pentanone	ND	ug/l	5.0		
2-Hexanone	ND	ug/l	5.0		
Bromochloromethane	ND	ug/l	2.5		
2,2-Dichloropropane	ND	ug/l	2.5		
1,2-Dibromoethane	ND	ug/l	2.0		
1,3-Dichloropropane	ND	ug/l	2.5		
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50		
Bromobenzene	ND	ug/l	2.5		
n-Butylbenzene	ND	ug/l	0.50		
sec-Butylbenzene	ND	ug/l	0.50		
tert-Butylbenzene	ND	ug/l	2.5		
o-Chlorotoluene	ND	ug/l	2.5		
p-Chlorotoluene	ND	ug/l	2.5		
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5		
Hexachlorobutadiene	ND	ug/l	0.60		
Isopropylbenzene	ND	ug/l	0.50		
p-Isopropyltoluene	ND	ug/l	0.50		
Naphthalene	ND	ug/l	2.5		
n-Propylbenzene	ND	ug/l	0.50		
1,2,3-Trichlorobenzene	ND	ug/l	2.5		
1,2,4-Trichlorobenzene	ND	ug/l	2.5		
1,3,5-Trimethylbenzene	ND	ug/l	2.5		
1,2,4-Trimethylbenzene	ND	ug/l	2.5		
1,4-Diethylbenzene	ND	ug/l	2.0		
4-Ethyltoluene	ND	ug/l	2.0		
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0		
Surrogate(s)	Recovery		QC Crit	teria	
1,2-Dichloroethane-d4	100	8	70-130		
Toluene-d8	100	%	70-130		
4-Bromofluorobenzene	105	%	70-130		
Dibromofluoromethane	98.0	%	70-130		

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813196-07 Date Collected: 03-SEP-2008 13:00

FB090308 (SOIL) **Date Received :** 05-SEP-2008

Sample Matrix: WATER Date Reported: 15-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 82	260B			1 8260B	0909 21:48 PD
Methylene chloride	ND	ug/l	5.0		
1,1-Dichloroethane	ND	ug/l	0.75		
Chloroform	ND	ug/l	0.75		
Carbon tetrachloride	ND	ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75		
Tetrachloroethene	ND	ug/l	0.50		
Chlorobenzene	ND	ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND	ug/l	0.50		
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50		
Chloromethane	ND	ug/l	2.5		
Bromomethane	ND	ug/l	1.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	1.0		
1,1-Dichloroethene	ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/l	0.75		
Trichloroethene	ND	ug/l	0.50		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/l	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	ND	ug/l	0.50		
Dibromomethane	ND	ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/l	5.0		
Acrylonitrile	ND	ug/l	5.0		

Laboratory Sample Number: L0813196-07

FB090308 (SOIL)

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Volatile Organics by EPA 826	OB cont'd			1	8260B		0909 21:4	18 PD
Styrene	ND	ug/l	1.0					
Dichlorodifluoromethane	ND	ug/l	5.0					
Acetone	ND	ug/l	5.0					
Carbon disulfide	ND	ug/l	5.0					
2-Butanone	ND	ug/l	5.0					
Vinyl acetate	ND	ug/l	5.0					
4-Methyl-2-pentanone	ND	ug/l	5.0					
2-Hexanone	ND	ug/l	5.0					
Bromochloromethane	ND	ug/l	2.5					
2,2-Dichloropropane	ND	ug/l	2.5					
1,2-Dibromoethane	ND	ug/l	2.0					
1,3-Dichloropropane	ND	ug/l	2.5					
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50					
Bromobenzene	ND	ug/l	2.5					
n-Butylbenzene	ND	ug/l	0.50					
sec-Butylbenzene	ND	ug/l	0.50					
tert-Butylbenzene	ND	ug/l	2.5					
o-Chlorotoluene	ND	ug/l	2.5					
p-Chlorotoluene	ND	ug/l	2.5					
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5					
Hexachlorobutadiene	ND	ug/l	0.60					
Isopropylbenzene	ND	ug/l	0.50					
p-Isopropyltoluene	ND	ug/l	0.50					
Naphthalene	ND	ug/l	2.5					
n-Propylbenzene	ND	ug/l	0.50					
1,2,3-Trichlorobenzene	ND	ug/l	2.5					
1,2,4-Trichlorobenzene	ND	ug/l	2.5					
1,3,5-Trimethylbenzene	ND	ug/l	2.5					
1,2,4-Trimethylbenzene	ND	ug/l	2.5					
1,4-Diethylbenzene	ND	ug/l	2.0					
4-Ethyltoluene	ND	ug/l	2.0					
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0					
Surrogate(s)	Recovery		QC Crit	teria	L			
1,2-Dichloroethane-d4	102	8	70-130					
Toluene-d8	101	%	70-130					
4-Bromofluorobenzene	104	%	70-130					
Dibromofluoromethane	99.0	%	70-130					

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813196-08 Date Collected: 03-SEP-2008 13:30

PWG.SB.2008.02@5-10' Date Received: 05-SEP-2008

Sample Matrix: SOIL Date Reported: 15-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Solids, Total	98	%	0.10	30 2540G	0911 15:15 SD
Volatile Organics by EPA 820	50B			1 8260B	0906 18:13 PD
Methylene chloride	ND	ug/kg	26.		
1,1-Dichloroethane	ND	ug/kg	3.8		
Chloroform	ND	ug/kg	3.8		
Carbon tetrachloride	ND	ug/kg	2.6		
1,2-Dichloropropane	ND	ug/kg	8.9		
Dibromochloromethane	ND	ug/kg	2.6		
1,1,2-Trichloroethane	ND	ug/kg	3.8		
Tetrachloroethene	ND	ug/kg	2.6		
Chlorobenzene	ND	ug/kg	2.6		
Trichlorofluoromethane	ND	ug/kg	13.		
1,2-Dichloroethane	ND	ug/kg	2.6		
1,1,1-Trichloroethane	ND	ug/kg	2.6		
Bromodichloromethane	ND	ug/kg	2.6		
trans-1,3-Dichloropropene	ND	ug/kg	2.6		
cis-1,3-Dichloropropene	ND	ug/kg	2.6		
1,1-Dichloropropene	ND	ug/kg	13.		
Bromoform	ND	ug/kg	10.		
1,1,2,2-Tetrachloroethane	ND	ug/kg	2.6		
Benzene	ND	ug/kg	2.6		
Toluene	ND	ug/kg	3.8		
Ethylbenzene	ND	ug/kg	2.6		
Chloromethane	ND	ug/kg	13.		
Bromomethane	ND	ug/kg	5.1		
Vinyl chloride	ND	ug/kg	5.1		
Chloroethane	ND	ug/kg	5.1		
1,1-Dichloroethene	ND	ug/kg	2.6		
trans-1,2-Dichloroethene	ND	ug/kg	3.8		
Trichloroethene	ND	ug/kg	2.6		
1,2-Dichlorobenzene	ND	ug/kg	13.		
1,3-Dichlorobenzene	ND	ug/kg	13.		
1,4-Dichlorobenzene	ND	ug/kg	13.		
Methyl tert butyl ether	ND	ug/kg	5.1		
p/m-Xylene	ND	ug/kg	5.1		
o-Xylene	ND	ug/kg	5.1		
cis-1,2-Dichloroethene	ND	ug/kg	2.6		
Dibromomethane	ND	ug/kg	26.		

Laboratory Sample Number: L0813196-08

PWG.SB.2008.02@5-10'

PARAMETER	RESULT	UNITS	RDL	REF METHOD	D#	ATE	ID	
					PREP	ANAL		
	0-							
Volatile Organics by EPA 826				1 8260B		0906 18:1	3 PD	
Styrene	ND	ug/kg	5.1					
Dichlorodifluoromethane	ND	ug/kg	26.					
Acetone	ND	ug/kg	26.					
Carbon disulfide	ND	ug/kg	26.					
2-Butanone	ND	ug/kg	26.					
Vinyl acetate	ND	ug/kg	26.					
4-Methyl-2-pentanone	ND	ug/kg	26.					
1,2,3-Trichloropropane	ND	ug/kg	26.					
2-Hexanone	ND	ug/kg	26.					
Bromochloromethane	ND	ug/kg	13.					
2,2-Dichloropropane	ND	ug/kg	13.					
1,2-Dibromoethane	ND	ug/kg	10.					
1,3-Dichloropropane	ND	ug/kg	13.					
1,1,1,2-Tetrachloroethane	ND	ug/kg	2.6					
Bromobenzene	ND	ug/kg	13.					
n-Butylbenzene	ND	ug/kg	2.6					
sec-Butylbenzene	ND	ug/kg	2.6					
tert-Butylbenzene	ND	ug/kg	13.					
o-Chlorotoluene	ND	ug/kg	13.					
p-Chlorotoluene	ND	ug/kg	13.					
1,2-Dibromo-3-chloropropane	ND	ug/kg	13.					
Hexachlorobutadiene	ND	ug/kg	13.					
Isopropylbenzene	ND	ug/kg	2.6					
p-Isopropyltoluene	ND	ug/kg ug/kg	2.6					
Naphthalene	ND	ug/kg ug/kg	13.					
_	ND ND		26.					
Acrylonitrile		ug/kg	26.					
n-Propylbenzene	ND	ug/kg						
1,2,3-Trichlorobenzene	ND	ug/kg	13.					
1,2,4-Trichlorobenzene	ND	ug/kg	13.					
1,3,5-Trimethylbenzene	ND	ug/kg	13.					
1,2,4-Trimethylbenzene	ND	ug/kg	13.					
1,4-Diethylbenzene	ND	ug/kg	10.					
4-Ethyltoluene	ND	ug/kg	10.					
1,2,4,5-Tetramethylbenzene	ND	ug/kg	10.					
Surrogate(s)	Recovery		QC Cri	teria				
1,2-Dichloroethane-d4	107	%	70-130)				
Toluene-d8	108	%	70-130)				
4-Bromofluorobenzene	120	%	70-130)				
Dibromofluoromethane	101	%	70-130					

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813196-09 Date Collected: 03-SEP-2008 13:40

PWG.GW.2008.02

Date Received: 05-SEP-2008 Sample Matrix: WATER Date Reported: 15-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 8	3260B			1 8260B	0909 22:24 PD
Methylene chloride	ND	ug/l	5.0		
1,1-Dichloroethane	ND	ug/l	0.75		
Chloroform	ND	ug/l	0.75		
Carbon tetrachloride	ND	ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75		
Tetrachloroethene	ND	ug/l	0.50		
Chlorobenzene	ND	ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND	ug/l	0.50		
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50		
Chloromethane	ND	ug/l	2.5		
Bromomethane	ND	ug/l	1.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	1.0		
1,1-Dichloroethene	ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/l	0.75		
Trichloroethene	ND	ug/l	0.50		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/l	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	ND	ug/l	0.50		
Dibromomethane	ND	ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/l	5.0		
Acrylonitrile	ND	ug/l	5.0		

Laboratory Sample Number: L0813196-09

PWG.GW.2008.02

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE PREP ANAL	ID
					TREF ANALI	
Volatile Organics by EPA 826	0B cont'd			1 8260B	0909 22:2	24 PD
Styrene	ND	ug/l	1.0			
Dichlorodifluoromethane	ND	ug/l	5.0			
Acetone	ND	ug/l	5.0			
Carbon disulfide	ND	ug/l	5.0			
2-Butanone	ND	ug/l	5.0			
Vinyl acetate	ND	ug/l	5.0			
4-Methyl-2-pentanone	ND	ug/l	5.0			
2-Hexanone	ND	ug/l	5.0			
Bromochloromethane	ND	ug/l	2.5			
2,2-Dichloropropane	ND	ug/l	2.5			
1,2-Dibromoethane	ND	ug/l	2.0			
1,3-Dichloropropane	ND	ug/l	2.5			
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50			
Bromobenzene	ND	ug/l	2.5			
n-Butylbenzene	ND	ug/l	0.50			
sec-Butylbenzene	ND	ug/l	0.50			
tert-Butylbenzene	ND	ug/l	2.5			
o-Chlorotoluene	ND	ug/l	2.5			
o-Chlorotoluene	ND	ug/l	2.5			
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5			
Hexachlorobutadiene	ND	ug/l	0.60			
Isopropylbenzene	ND	ug/l	0.50			
p-Isopropyltoluene	ND	ug/l	0.50			
Naphthalene	ND	ug/l	2.5			
n-Propylbenzene	ND	ug/l	0.50			
1,2,3-Trichlorobenzene	ND	ug/l	2.5			
1,2,4-Trichlorobenzene	ND	ug/l	2.5			
1,3,5-Trimethylbenzene	ND	ug/l	2.5			
1,2,4-Trimethylbenzene	ND	ug/l	2.5			
1,4-Diethylbenzene	ND	ug/l	2.0			
4-Ethyltoluene	ND	ug/l	2.0			
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0			
Surrogate(s)	Recovery		QC Crit	teria		
1,2-Dichloroethane-d4	104	%	70-130			
Foluene-d8	99.0	%	70-130			
4-Bromofluorobenzene	105	%	70-130			
Dibromofluoromethane	99.0	%	70-130			

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813196-10 Date Collected: 03-SEP-2008 14:30

PWG.SB.2008.04@5-10' Date Received: 05-SEP-2008

Sample Matrix: SOIL Date Reported: 15-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Solids, Total	98	%	0.10	30 2540G	0911 15:15 SD
Volatile Organics by EPA 820	50B			1 8260B	0906 18:50 PD
Methylene chloride	ND	ug/kg	26.		
1,1-Dichloroethane	ND	ug/kg	3.8		
Chloroform	ND	ug/kg	3.8		
Carbon tetrachloride	ND	ug/kg	2.6		
1,2-Dichloropropane	ND	ug/kg	8.9		
Dibromochloromethane	ND	ug/kg	2.6		
1,1,2-Trichloroethane	ND	ug/kg	3.8		
Tetrachloroethene	ND	ug/kg	2.6		
Chlorobenzene	ND	ug/kg	2.6		
Trichlorofluoromethane	ND	ug/kg	13.		
1,2-Dichloroethane	ND	ug/kg	2.6		
1,1,1-Trichloroethane	ND	ug/kg	2.6		
Bromodichloromethane	ND	ug/kg	2.6		
trans-1,3-Dichloropropene	ND	ug/kg	2.6		
cis-1,3-Dichloropropene	ND	ug/kg	2.6		
1,1-Dichloropropene	ND	ug/kg	13.		
Bromoform	ND	ug/kg	10.		
1,1,2,2-Tetrachloroethane	ND	ug/kg	2.6		
Benzene	ND	ug/kg	2.6		
Toluene	ND	ug/kg	3.8		
Ethylbenzene	ND	ug/kg	2.6		
Chloromethane	ND	ug/kg	13.		
Bromomethane	ND	ug/kg	5.1		
Vinyl chloride	ND	ug/kg	5.1		
Chloroethane	ND	ug/kg	5.1		
1,1-Dichloroethene	ND	ug/kg	2.6		
trans-1,2-Dichloroethene	ND	ug/kg	3.8		
Trichloroethene	ND	ug/kg	2.6		
1,2-Dichlorobenzene	ND	ug/kg	13.		
1,3-Dichlorobenzene	ND	ug/kg	13.		
1,4-Dichlorobenzene	ND	ug/kg	13.		
Methyl tert butyl ether	ND	ug/kg	5.1		
p/m-Xylene	ND	ug/kg	5.1		
o-Xylene	ND	ug/kg	5.1		
cis-1,2-Dichloroethene	ND	ug/kg	2.6		
Dibromomethane	ND	ug/kg	26.		

Laboratory Sample Number: L0813196-10

PWG.SB.2008.04@5-10'

Dichlorodifluoromethane	PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA PREP	TE ANAL	ID
Dichlorodifluoromethane ND ug/kg 26.	Volatile Organics by EPA 826	OB cont'd			1 8260B		0906 18:50	0 PD
Dichlorodifluoromethane ND ug/kg 26. Carbon disulfide ND ug/kg 26. Carbon disulfide ND ug/kg 26. Vinyl acetate ND ug/kg 26. 4-Methyl-2-pentanone ND ug/kg 26. 2-Hexanone ND ug/kg 26. Bromochloromethane ND ug/kg 13. 2,2-Dichloropropane ND ug/kg 13. 1,2-Dichloropropane ND ug/kg 13. 1,3-Dichloropropane ND ug/kg 13. 1,2-Dichloropropane ND ug/kg 13. 1,3-Dichloropropane ND ug/kg 13. 1,3-Dichloropropane ND ug/kg 13. 1-Butylbenzene ND ug/kg 13. 8-Bromobenzene ND ug/kg 13. 8-Butylbenzene ND ug/kg 13. 9-Chlorotoluene ND ug/kg 13. 1,2-Dibromo-3-chlor	Styrene		ug/kg	5.1				
ND	Dichlorodifluoromethane	ND		26.				
Carbon disulfide	Acetone	ND		26.				
2-Butanone	Carbon disulfide	ND		26.				
Vinyl acetate ND ug/kg 26. 4-Methyl-2-pentanone ND ug/kg 26. 2-Mexanone ND ug/kg 26. 2-Hexanone ND ug/kg 26. 2-Hexanone ND ug/kg 26. 3-Dichloropropane ND ug/kg 13. 1,2-Dibromoethane ND ug/kg 13. 1,1,1,2-Tetrachloropropane ND ug/kg 13. 1,1,1,2-Tetrachloroethane ND ug/kg 13. 1-Butylbenzene ND ug/kg 13. 1-Butylbenzene ND ug/kg 2.6 8-Sec-Butylbenzene ND ug/kg 2.6 8-Eromobenzene ND ug/kg 13. 1-Butylbenzene ND ug/kg 13. 1-Collorotoluene ND ug/kg 13. 1-Co	2-Butanone	ND		26.				
4-Methyl-2-pentanone ND ug/kg 26. 1,2,3-Trichloropropane ND ug/kg 26. 2-Hexanone ND ug/kg 26. 8-romochloromethane ND ug/kg 13. 2,2-Dichloropropane ND ug/kg 13. 1,2-Dibromoethane ND ug/kg 13. 1,2-Dibromoethane ND ug/kg 10. 1,3-Dichloropropane ND ug/kg 13. 1,1,1,2-Tetrachloroethane ND ug/kg 13. 1,1,1,2-Tetrachloroethane ND ug/kg 2.6 8-romobenzene ND ug/kg 13. n-Butylbenzene ND ug/kg 2.6 8-c-Butylbenzene ND ug/kg 2.6 8-c-tetr-Butylbenzene ND ug/kg 13. 0-Chlorotoluene ND ug/kg 13. 1,2-Dibromo-3-chloropropane ND ug/kg 13. 1sopropylbenzene ND ug/kg 13. 1sopropylbenzene ND ug/kg 2.6 0-Isopropyltoluene ND ug/kg 2.6 0-Isopropyltontene ND ug/kg 13. 0-I,2,3-Trichlorobenzene ND ug/kg 13. 0-I,2,4-Trimethylbenzene ND ug/kg 13. 0-I,2,4-Trimethylbenzene ND ug/kg 13. 0-I,2,4-Trimethylbenzene ND ug/kg 13. 0-I,2,4-Trimethylbenzene ND ug/kg 10. 0-Isopropylene ND ug/kg 10. 0-Isoprop	Vinyl acetate	ND						
1,2,3-Trichloropropane	-	ND		26.				
2-Hexanone ND	1,2,3-Trichloropropane	ND						
### Stromochloromethane ND ug/kg 13. 2,2-Dichloropropane ND ug/kg 13. 1,2-Dibromochlane ND ug/kg 10. 1,3-Dichloropropane ND ug/kg 13. 1,1,1,2-Tetrachloroethane ND ug/kg 2.6 #### Bromobenzene ND ug/kg 3. #### Bromobenzene ND ug/kg 13. #### Bromobenzene ND ug/kg 2.6 #### Bromobenzene ND ug/kg 3. ##### Bromobenzene ND ug/kg 3. ##### Bromobenzene ND ug/kg 3. ##### Bromobenzene ND ug/kg 3. ######## Bromobenzene ND ug/kg 3. ####################################	2-Hexanone	ND						
2,2-Dichloropropane	Bromochloromethane	ND						
1,2-Dibromoethane	2,2-Dichloropropane	ND						
1,3-Dichloropropane	1,2-Dibromoethane	ND						
1,1,1,2-Tetrachloroethane	1,3-Dichloropropane	ND		13.				
### Spromobenzene ND	1,1,1,2-Tetrachloroethane	ND						
### Butylbenzene	Bromobenzene	ND						
ND	n-Butylbenzene	ND						
ND	-	ND						
Decklorotoluene		ND						
December ND	o-Chlorotoluene	ND						
1,2-Dibromo-3-chloropropane	p-Chlorotoluene	ND						
## Hexachlorobutadiene ND ug/kg 13. ## Isopropylbenzene ND ug/kg 2.6 ## Isopropyltoluene ND ug/kg 2.6 ## Naphthalene ND ug/kg 13. ## Acrylonitrile ND ug/kg 26. ## Arrylonitrile ND ug/kg 26. ## Isopropylbenzene ND ug/kg 26. ## Isopropylbenzene ND ug/kg 13. ## Isopropylbenzene ND ug/kg 10. ## Isopropylbenzene ND ug/kg 13. ## Isopropylbe	-							
ND	Hexachlorobutadiene							
Decorate ND	Isopropylbenzene	ND						
Naphthalene ND ug/kg 13. Acrylonitrile ND ug/kg 26. n-Propylbenzene ND ug/kg 2.6 1,2,3-Trichlorobenzene ND ug/kg 13. 1,2,4-Trichlorobenzene ND ug/kg 13. 1,3,5-Trimethylbenzene ND ug/kg 13. 1,2,4-Trimethylbenzene ND ug/kg 13. 1,4-Diethylbenzene ND ug/kg 10. 4-Ethyltoluene ND ug/kg 10. 1,2,4,5-Tetramethylbenzene ND ug/kg 10. Surrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 112 % 70-130 Toluene-d8 108 % 70-130 4-Bromofluorobenzene 122 % 70-130		ND						
Acrylonitrile ND ug/kg 26. n-Propylbenzene ND ug/kg 13. 1,2,4-Trichlorobenzene ND ug/kg 13. 1,3,5-Trimethylbenzene ND ug/kg 13. 1,2,4-Trimethylbenzene ND ug/kg 13. 1,2,4-Trimethylbenzene ND ug/kg 13. 1,2,4-Trimethylbenzene ND ug/kg 10. 4-Ethyltoluene ND ug/kg 10. 1,2,4,5-Tetramethylbenzene ND ug/kg 10. Currogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 112 Recovery QC Criteria 1,2-Dichloroethane-d4 112 Recovery QC Criteria 1,2-Dichloroethane-d4 112 Recovery 70-130 Toluene-d8 4-Bromofluorobenzene 122 Rocovery 70-130		ND						
n-Propylbenzene ND ug/kg 2.6 1,2,3-Trichlorobenzene ND ug/kg 13. 1,2,4-Trichlorobenzene ND ug/kg 13. 1,3,5-Trimethylbenzene ND ug/kg 13. 1,2,4-Trimethylbenzene ND ug/kg 13. 1,4-Diethylbenzene ND ug/kg 10. 4-Ethyltoluene ND ug/kg 10. 1,2,4,5-Tetramethylbenzene ND ug/kg 10. Surrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 112 % 70-130 Toluene-d8 108 % 70-130 4-Bromofluorobenzene 122 % 70-130		ND		26.				
1,2,3-Trichlorobenzene ND ug/kg 13. 1,2,4-Trichlorobenzene ND ug/kg 13. 1,3,5-Trimethylbenzene ND ug/kg 13. 1,2,4-Trimethylbenzene ND ug/kg 10. 1,4-Diethylbenzene ND ug/kg 10. 4-Ethyltoluene ND ug/kg 10. 1,2,4,5-Tetramethylbenzene ND ug/kg 10. Surrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 112 % 70-130 Toluene-d8 108 % 70-130 4-Bromofluorobenzene 122 % 70-130		ND						
1,2,4-Trichlorobenzene ND ug/kg 13. 1,3,5-Trimethylbenzene ND ug/kg 13. 1,2,4-Trimethylbenzene ND ug/kg 13. 1,4-Diethylbenzene ND ug/kg 10. 4-Ethyltoluene ND ug/kg 10. 1,2,4,5-Tetramethylbenzene ND ug/kg 10. Surrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 112 % 70-130 Toluene-d8 108 % 70-130 4-Bromofluorobenzene 122 % 70-130		ND						
1,3,5-Trimethylbenzene ND ug/kg 13. 1,2,4-Trimethylbenzene ND ug/kg 13. 1,4-Diethylbenzene ND ug/kg 10. 4-Ethyltoluene ND ug/kg 10. 1,2,4,5-Tetramethylbenzene ND ug/kg 10. Surrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 112 % 70-130 Toluene-d8 108 % 70-130 4-Bromofluorobenzene 122 % 70-130		ND						
1,2,4-Trimethylbenzene ND ug/kg 13. 1,4-Diethylbenzene ND ug/kg 10. 4-Ethyltoluene ND ug/kg 10. 1,2,4,5-Tetramethylbenzene ND ug/kg 10. Surrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 112 % 70-130 Toluene-d8 108 % 70-130 4-Bromofluorobenzene 122 % 70-130		ND						
1,4-Diethylbenzene ND ug/kg 10. 4-Ethyltoluene ND ug/kg 10. 1,2,4,5-Tetramethylbenzene ND ug/kg 10. Surrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 112 % 70-130 Foluene-d8 108 % 70-130 4-Bromofluorobenzene 122 % 70-130	-							
4-Ethyltoluene ND ug/kg 10. 1,2,4,5-Tetramethylbenzene ND ug/kg 10. Surrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 112 % 70-130 Toluene-d8 108 % 70-130 4-Bromofluorobenzene 122 % 70-130								
1,2,4,5-Tetramethylbenzene ND ug/kg 10. Surrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 112 % 70-130 Foluene-d8 108 % 70-130 4-Bromofluorobenzene 122 % 70-130	-	ND						
1,2-Dichloroethane-d4 112 % 70-130 Foluene-d8 108 % 70-130 4-Bromofluorobenzene 122 % 70-130	1,2,4,5-Tetramethylbenzene							
1,2-Dichloroethane-d4 112 % 70-130 Foluene-d8 108 % 70-130 4-Bromofluorobenzene 122 % 70-130	Surrogate(s)	Recovery		QC Cr:	iteria			
Toluene-d8 108 % 70-130 4-Bromofluorobenzene 122 % 70-130	1,2-Dichloroethane-d4	112	8	70-130)			
4-Bromofluorobenzene 122 % 70-130	Toluene-d8	108	%					
	4-Bromofluorobenzene							
	Dibromofluoromethane							

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813196-11 Date Collected: 03-SEP-2008 14:40

PWG.GW.2008.04 Date Received: 05-SEP-2008

Sample Matrix: WATER Date Reported: 15-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

					PREP ANAL
Volatile Organics by EPA 826	50B			1 8260B	0909 23:01 PD
Methylene chloride	ND	ug/l	5.0		
1,1-Dichloroethane	ND	ug/l	0.75		
Chloroform	ND	ug/l	0.75		
Carbon tetrachloride	ND	ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75		
Tetrachloroethene	ND	ug/l	0.50		
Chlorobenzene	ND	ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND	ug/l	0.50		
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50		
Chloromethane	ND	ug/l	2.5		
Bromomethane	ND	ug/l	1.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	1.0		
1,1-Dichloroethene	ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/l	0.75		
Trichloroethene	ND	ug/l	0.50		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/l	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	ND	ug/l	0.50		
Dibromomethane	ND	ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/l	5.0		
Acrylonitrile	ND	ug/l	5.0		

Laboratory Sample Number: L0813196-11

PWG.GW.2008.04

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	D <i>P</i> PREP	ANAL	ID
Volatile Organics by EPA 8260	DB contid			1	8260B		0909 23:0	מת 1
Styrene	ND	ug/l	1.0	1	0200B		0909 23.0.	I PD
Dichlorodifluoromethane	ND	ug/l ug/l	5.0					
Acetone	ND	ug/l	5.0					
Carbon disulfide	ND	ug/l ug/l	5.0					
2-Butanone	ND	ug/l	5.0					
Vinyl acetate	ND	ug/l	5.0					
4-Methyl-2-pentanone	ND	ug/l	5.0					
2-Hexanone	ND	ug/l	5.0					
Bromochloromethane	ND	ug/l	2.5					
2,2-Dichloropropane	ND	ug/l	2.5					
1,2-Dibromoethane	ND	ug/l	2.0					
1,3-Dichloropropane	ND	ug/l	2.5					
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50					
Bromobenzene	ND	ug/l	2.5					
n-Butylbenzene	ND	ug/l	0.50					
sec-Butylbenzene	ND	ug/l	0.50					
tert-Butylbenzene	ND	ug/l	2.5					
o-Chlorotoluene	ND	ug/l	2.5					
p-Chlorotoluene	ND	ug/l	2.5					
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5					
Hexachlorobutadiene	ND	ug/l	0.60					
Isopropylbenzene	ND	ug/l	0.50					
p-Isopropyltoluene	ND	ug/l	0.50					
Naphthalene	ND	ug/l	2.5					
n-Propylbenzene	ND	ug/l	0.50					
1,2,3-Trichlorobenzene	ND	ug/l	2.5					
1,2,4-Trichlorobenzene	ND	ug/l	2.5					
1,3,5-Trimethylbenzene	ND	ug/l	2.5					
1,2,4-Trimethylbenzene	ND	ug/l	2.5					
1,4-Diethylbenzene	ND	ug/l	2.0					
4-Ethyltoluene	ND	ug/l ug/l	2.0					
1,2,4,5-Tetramethylbenzene	ND	ug/l ug/l	2.0					
1,2,1,5-16c1amechy identified	עווז	ug/1	2.0					
Surrogate(s)	Recovery		QC Cri	teria	ı			
1,2-Dichloroethane-d4	102	%	70-130)				
Toluene-d8	100	%	70-130)				
4-Bromofluorobenzene	103	8	70-130)				
Dibromofluoromethane	98.0	%	70-130)				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813196-12 Date Collected: 03-SEP-2008 14:40

Sample Matrix: WATER Date Reported: 15-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 82	50B			1 8260B	0909 23:38 PD
Methylene chloride	ND	ug/l	5.0	1 02000	0,000 23.30 FD
1,1-Dichloroethane	ND	ug/l	0.75		
Chloroform	ND	ug/l	0.75		
Carbon tetrachloride	ND	ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND ND	ug/l	0.75		
Tetrachloroethene	ND	ug/l	0.50		
Chlorobenzene	ND	ug/1 ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/1 ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND ND	ug/l	0.50		
Toluene	ND	ug/1 ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50		
Chloromethane	ND ND	ug/1 ug/l	2.5		
Bromomethane	ND	ug/1 ug/l	1.0		
Vinyl chloride	ND ND	ug/l	1.0		
Chloroethane	ND	ug/1 ug/l	1.0		
1,1-Dichloroethene	ND ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND ND	ug/1 ug/l	0.75		
Trichloroethene	ND ND	ug/l ug/l	0.75		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/1 ug/l	2.5		
1,4-Dichlorobenzene	ND ND	ug/1 ug/l	2.5		
Methyl tert butyl ether	ND ND	_	1.0		
p/m-Xylene	ND ND	ug/l ug/l	1.0		
o-Xylene	ND ND	ug/l ug/l	1.0		
cis-1,2-Dichloroethene	ND ND	ug/l ug/l	0.50		
Dibromomethane	ND ND	_	5.0		
		ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/l			
Acrylonitrile	ND	ug/l	5.0		

Laboratory Sample Number: L0813196-12

PWG.GW.2008.24

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	ANAL	ID
Volatile Organics by EPA 8260	DB contid			1	8260B		0909 23:3	0 חח
Styrene	ND	ug/l	1.0	1	0200B		0909 23.3	O PD
Dichlorodifluoromethane	ND	ug/l ug/l	5.0					
Acetone	ND	ug/l	5.0					
Carbon disulfide	ND	ug/l ug/l	5.0					
2-Butanone	ND	ug/l	5.0					
Vinyl acetate	ND	ug/l	5.0					
4-Methyl-2-pentanone	ND	ug/l ug/l	5.0					
2-Hexanone	ND	ug/l ug/l	5.0					
Bromochloromethane	ND	ug/l ug/l	2.5					
2,2-Dichloropropane	ND	ug/l ug/l	2.5					
1,2-Dibromoethane	ND	ug/l ug/l	2.0					
1,3-Dichloropropane	ND	ug/l ug/l	2.5					
1,1,1,2-Tetrachloroethane	ND	ug/l ug/l	0.50					
Bromobenzene	ND	ug/l ug/l	2.5					
n-Butylbenzene	ND	ug/l ug/l	0.50					
sec-Butylbenzene	ND	ug/l ug/l	0.50					
tert-Butylbenzene	ND	ug/l ug/l	2.5					
o-Chlorotoluene	ND	ug/l ug/l	2.5					
p-Chlorotoluene	ND	ug/l ug/l	2.5					
1,2-Dibromo-3-chloropropane	ND	ug/l ug/l	2.5					
Hexachlorobutadiene	ND	ug/l ug/l	0.60					
Isopropylbenzene	ND	ug/l ug/l	0.50					
p-Isopropyltoluene	ND	ug/l ug/l	0.50					
Naphthalene	ND	ug/l ug/l	2.5					
n-Propylbenzene	ND	ug/l ug/l	0.50					
1,2,3-Trichlorobenzene	ND	ug/l ug/l	2.5					
1,2,4-Trichlorobenzene	ND	ug/l ug/l	2.5					
	ND	_	2.5					
1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene	ND	ug/l ug/l	2.5					
	ND ND	_	2.0					
1,4-Diethylbenzene	ND ND	ug/l	2.0					
4-Ethyltoluene	ND ND	ug/l	2.0					
1,2,4,5-Tetramethylbenzene	עוא	ug/l	∠.∪					
Surrogate(s)	Recovery		QC Cri	teria	a			
1,2-Dichloroethane-d4	103	8	70-130					
Toluene-d8	98.0	8	70-130					
4-Bromofluorobenzene	102	%	70-130					
Dibromofluoromethane	101	%	70-130					

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813196-13 Date Collected: 03-SEP-2008 15:05

PWG.SB.2008.06@5-10'(MS/MSD) **Date Received:** 05-SEP-2008

Sample Matrix: SOIL Date Reported: 15-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Solids, Total	81	%	0.10	30 2540G	0911 15:15 SD
Volatile Organics by EPA 820	50B			1 8260B	0906 19:27 PD
Methylene chloride	ND	ug/kg	31.		
1,1-Dichloroethane	ND	ug/kg	4.6		
Chloroform	ND	ug/kg	4.6		
Carbon tetrachloride	ND	ug/kg	3.1		
1,2-Dichloropropane	ND	ug/kg	11.		
Dibromochloromethane	ND	ug/kg	3.1		
1,1,2-Trichloroethane	ND	ug/kg	4.6		
Tetrachloroethene	ND	ug/kg	3.1		
Chlorobenzene	ND	ug/kg	3.1		
Trichlorofluoromethane	ND	ug/kg	15.		
1,2-Dichloroethane	ND	ug/kg	3.1		
1,1,1-Trichloroethane	ND	ug/kg	3.1		
Bromodichloromethane	ND	ug/kg	3.1		
trans-1,3-Dichloropropene	ND	ug/kg	3.1		
cis-1,3-Dichloropropene	ND	ug/kg	3.1		
1,1-Dichloropropene	ND	ug/kg	15.		
Bromoform	ND	ug/kg	12.		
1,1,2,2-Tetrachloroethane	ND	ug/kg	3.1		
Benzene	ND	ug/kg	3.1		
Toluene	ND	ug/kg	4.6		
Ethylbenzene	ND	ug/kg	3.1		
Chloromethane	ND	ug/kg	15.		
Bromomethane	ND	ug/kg	6.2		
Vinyl chloride	ND	ug/kg	6.2		
Chloroethane	ND	ug/kg	6.2		
1,1-Dichloroethene	ND	ug/kg	3.1		
trans-1,2-Dichloroethene	ND	ug/kg	4.6		
Trichloroethene	ND	ug/kg	3.1		
1,2-Dichlorobenzene	ND	ug/kg	15.		
1,3-Dichlorobenzene	ND	ug/kg	15.		
1,4-Dichlorobenzene	ND	ug/kg	15.		
Methyl tert butyl ether	ND	ug/kg	6.2		
p/m-Xylene	ND	ug/kg	6.2		
o-Xylene	ND	ug/kg	6.2		
cis-1,2-Dichloroethene	ND	ug/kg	3.1		
Dibromomethane	ND	ug/kg	31.		

Laboratory Sample Number: L0813196-13

PWG.SB.2008.06@5-10'(MS/MSD)

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA	TE	ID
					PREP	ANAL	
Volatile Organics by EPA 826	OB cont'd			1 8260B		0906 19:2	7 PD
Styrene	ND	ug/kg	6.2				
Dichlorodifluoromethane	ND	ug/kg	31.				
Acetone	ND	ug/kg	31.				
Carbon disulfide	ND	ug/kg	31.				
2-Butanone	ND	ug/kg	31.				
Vinyl acetate	ND	ug/kg	31.				
4-Methyl-2-pentanone	ND	ug/kg	31.				
1,2,3-Trichloropropane	ND	ug/kg	31.				
2-Hexanone	ND	ug/kg	31.				
Bromochloromethane	ND	ug/kg	15.				
2,2-Dichloropropane	ND	ug/kg	15.				
1,2-Dibromoethane	ND	ug/kg	12.				
1,3-Dichloropropane	ND	ug/kg	15.				
1,1,1,2-Tetrachloroethane	ND	ug/kg	3.1				
Bromobenzene	ND	ug/kg	15.				
n-Butylbenzene	ND	ug/kg	3.1				
sec-Butylbenzene	ND	ug/kg	3.1				
tert-Butylbenzene	ND	ug/kg	15.				
o-Chlorotoluene	ND	ug/kg	15.				
p-Chlorotoluene	ND	ug/kg	15.				
1,2-Dibromo-3-chloropropane	ND	ug/kg ug/kg	15.				
Hexachlorobutadiene	ND	ug/kg ug/kg	15.				
Isopropylbenzene	ND		3.1				
		ug/kg	3.1				
p-Isopropyltoluene	ND	ug/kg					
Naphthalene	ND	ug/kg	15.				
Acrylonitrile	ND	ug/kg	31.				
n-Propylbenzene	ND	ug/kg	3.1				
1,2,3-Trichlorobenzene	ND	ug/kg	15.				
1,2,4-Trichlorobenzene	ND	ug/kg	15.				
1,3,5-Trimethylbenzene	ND	ug/kg	15.				
1,2,4-Trimethylbenzene	ND	ug/kg	15.				
1,4-Diethylbenzene	ND	ug/kg	12.				
4-Ethyltoluene	ND	ug/kg	12.				
1,2,4,5-Tetramethylbenzene	ND	ug/kg	12.				
Surrogate(s)	Recovery		QC Cri	lteria			
1,2-Dichloroethane-d4	112	%	70-130)			
Toluene-d8	111	%	70-130)			
4-Bromofluorobenzene	125	%	70-130)			
Dibromofluoromethane	104	%	70-130				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813196-14 Date Collected: 03-SEP-2008 15:15

Sample Matrix: WATER Date Reported: 15-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

	RESULT	UNITS	RDL	REF METHOD	DATE PREP AN	ID IAL
Volatile Organics by EPA 82	60B			1 8260B	0910	00:14 PD
Methylene chloride	ND	ug/l	5.0	1 02005	0710	00.14 FD
1,1-Dichloroethane	ND	ug/l	0.75			
Chloroform	ND	ug/l	0.75			
Carbon tetrachloride	ND	ug/l	0.50			
1,2-Dichloropropane	ND	ug/l	1.8			
Dibromochloromethane	ND	ug/l	0.50			
1,1,2-Trichloroethane	ND ND	ug/l	0.75			
Tetrachloroethene	ND	ug/l	0.50			
Chlorobenzene	ND	ug/1 ug/l	0.50			
Trichlorofluoromethane	ND	ug/l	2.5			
1,2-Dichloroethane	ND	ug/l	0.50			
1,1,1-Trichloroethane	ND	ug/l	0.50			
Bromodichloromethane	ND	ug/l	0.50			
trans-1,3-Dichloropropene	ND	ug/l	0.50			
cis-1,3-Dichloropropene	ND	ug/l	0.50			
1,1-Dichloropropene	ND	ug/l	2.5			
Bromoform	ND	ug/l	2.0			
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50			
Benzene	ND ND	ug/l	0.50			
Toluene	ND	ug/l	0.75			
Ethylbenzene	ND ND	ug/1 ug/l	0.75			
Chloromethane	ND ND	ug/1 ug/l	2.5			
Bromomethane	ND	ug/1 ug/l	1.0			
Vinyl chloride	ND ND	ug/l	1.0			
Chloroethane	ND	ug/1 ug/l	1.0			
1,1-Dichloroethene	ND ND	ug/l	0.50			
trans-1,2-Dichloroethene	ND ND	ug/1 ug/l	0.75			
Trichloroethene	ND ND	ug/l ug/l	0.75			
1,2-Dichlorobenzene	ND	ug/l	2.5			
1,3-Dichlorobenzene	ND ND	ug/l ug/l	2.5			
1,4-Dichlorobenzene	ND ND	ug/1 ug/l	2.5			
Methyl tert butyl ether	ND ND	_	1.0			
o/m-Xylene	ND ND	ug/l ug/l	1.0			
o-Xylene	ND ND	ug/l ug/l	1.0			
cis-1,2-Dichloroethene	ND ND	ug/l ug/l	0.50			
Dibromomethane	ND ND	_	5.0			
		ug/l	5.0			
1,2,3-Trichloropropane Acrylonitrile	ND ND	ug/l ug/l	5.0			

Laboratory Sample Number: L0813196-14

PWG.GW.2008.06

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	ANAL	ID
Volatile Organics by EPA 826	NB contid			11	8260B		0910 00:1	4 DD
Styrene	ND	ug/l	1.0	1	0200B		0910 00:1	T PD
Dichlorodifluoromethane	ND ND	ug/l ug/l	5.0					
Acetone	ND	ug/l	5.0					
Carbon disulfide	ND	ug/l ug/l	5.0					
2-Butanone	ND	ug/l	5.0					
Vinyl acetate	ND	ug/l ug/l	5.0					
4-Methyl-2-pentanone	ND ND	ug/l ug/l	5.0					
2-Hexanone	ND	ug/l ug/l	5.0					
Bromochloromethane	ND ND	ug/l ug/l	2.5					
2,2-Dichloropropane	ND ND	ug/l ug/l	2.5					
1,2-Dibromoethane	ND ND	ug/l ug/l	2.0					
1,3-Dichloropropane	ND ND	ug/l ug/l	2.5					
1,1,1,2-Tetrachloroethane	ND	ug/l ug/l	0.50					
Bromobenzene	ND ND	ug/l ug/l	2.5					
n-Butylbenzene	ND ND	ug/l ug/l	0.50					
sec-Butylbenzene	ND ND	ug/l ug/l	0.50					
tert-Butylbenzene	ND ND	ug/l ug/l	2.5					
o-Chlorotoluene	ND	ug/l ug/l	2.5					
p-Chlorotoluene	ND ND	ug/l ug/l	2.5					
1,2-Dibromo-3-chloropropane	ND ND	ug/l ug/l	2.5					
Hexachlorobutadiene	ND ND	ug/l ug/l	0.60					
Isopropylbenzene	ND ND	ug/l ug/l	0.50					
p-Isopropyltoluene	ND	ug/l ug/l	0.50					
Naphthalene	ND ND	ug/l ug/l	2.5					
n-Propylbenzene	ND ND	ug/l ug/l	0.50					
1,2,3-Trichlorobenzene	ND ND	ug/l ug/l	2.5					
1,2,4-Trichlorobenzene	ND ND	ug/l ug/l	2.5					
	ND ND	_	2.5					
1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene	ND ND	ug/l ug/l	2.5					
		_	2.0					
1,4-Diethylbenzene 4-Ethyltoluene	ND ND	ug/l	2.0					
	ND ND	ug/l	2.0					
1,2,4,5-Tetramethylbenzene	מאז	ug/l	∠.∪					
Surrogate(s)	Recovery		QC Cri	teria	a			
1,2-Dichloroethane-d4	102	%	70-130)				
Toluene-d8	99.0	%	70-130)				
4-Bromofluorobenzene	102	8	70-130)				
Dibromofluoromethane	100	४	70-130)				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813196-15 Date Collected: 03-SEP-2008 15:45

FB090308 (GW) **Date Received:** 05-SEP-2008

Sample Matrix: WATER Date Reported: 15-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 83	260B			1 8260B	0910 00:51 PD
Methylene chloride	ND	ug/l	5.0		
1,1-Dichloroethane	ND	ug/l	0.75		
Chloroform	ND	ug/l	0.75		
Carbon tetrachloride	ND	ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75		
Tetrachloroethene	ND	ug/l	0.50		
Chlorobenzene	ND	ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND	ug/l	0.50		
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50		
Chloromethane	ND	ug/l	2.5		
Bromomethane	ND	ug/l	1.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	1.0		
1,1-Dichloroethene	ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/l	0.75		
Trichloroethene	ND	ug/l	0.50		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/l	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	ND	ug/l	0.50		
Dibromomethane	ND	ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/l	5.0		
Acrylonitrile	ND	ug/l	5.0		

Laboratory Sample Number: L0813196-15

FB090308 (GW)

PARAMETER	RESULT	UNITS	RDL	REF METHO	OD	DA PREP	ATE ANAL	ID
Volatile Organics by EPA 826	NB contid			1 8260B			0910 00:5	חם 1
Styrene	ND	ug/l	1.0	1 02005			0,10 00.3	I ID
Dichlorodifluoromethane	ND	ug/l	5.0					
Acetone	ND	ug/l	5.0					
Carbon disulfide	ND	ug/l	5.0					
2-Butanone	ND	ug/l	5.0					
Vinyl acetate	ND	ug/l	5.0					
4-Methyl-2-pentanone	ND	ug/l	5.0					
2-Hexanone	ND	ug/l	5.0					
Bromochloromethane	ND	ug/l	2.5					
2,2-Dichloropropane	ND	ug/l	2.5					
1,2-Dibromoethane	ND	ug/l	2.0					
1,3-Dichloropropane	ND	ug/l	2.5					
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50					
Bromobenzene	ND	ug/l	2.5					
n-Butylbenzene	ND	ug/l	0.50					
sec-Butylbenzene	ND	ug/l	0.50					
tert-Butylbenzene	ND	ug/l	2.5					
o-Chlorotoluene	ND	ug/l	2.5					
p-Chlorotoluene	ND	ug/l	2.5					
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5					
Hexachlorobutadiene	ND	ug/l	0.60					
Isopropylbenzene	ND	ug/l	0.50					
p-Isopropyltoluene	ND	ug/l	0.50					
Naphthalene	ND	ug/l	2.5					
n-Propylbenzene	ND	ug/l	0.50					
1,2,3-Trichlorobenzene	ND	ug/l	2.5					
1,2,4-Trichlorobenzene	ND	ug/l	2.5					
1,3,5-Trimethylbenzene	ND	ug/l	2.5					
1,2,4-Trimethylbenzene	ND	ug/l	2.5					
1,4-Diethylbenzene	ND	ug/l	2.0					
4-Ethyltoluene	ND	ug/l	2.0					
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0					
Surrogate(s)	Recovery		QC Crit	teria				
1,2-Dichloroethane-d4	104	%	70-130					
Toluene-d8	100	%	70-130					
4-Bromofluorobenzene	102	%	70-130					
Dibromofluoromethane	99.0	%	70-130					

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813196-16 Date Collected: 19-AUG-2008 17:15

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

Sample Matrix:

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 820	50B			1 8260B	0910 01:27 PD
Methylene chloride	ND	ug/l	5.0	1 0200B	0910 01:27 PD
1,1-Dichloroethane	ND ND	ug/l	0.75		
Chloroform	ND	ug/1 ug/l	0.75		
Carbon tetrachloride	ND	ug/1 ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75		
Tetrachloroethene	ND	ug/l	0.50		
Chlorobenzene	ND	ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND	ug/l	0.50		
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50		
Chloromethane	ND	ug/l	2.5		
Bromomethane	ND	ug/l	1.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	1.0		
1,1-Dichloroethene	ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/l	0.75		
Trichloroethene	ND	ug/l	0.50		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/l	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	ND	ug/l	0.50		
Dibromomethane	ND	ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/l	5.0		
Acrylonitrile	ND	ug/l	5.0		

Laboratory Sample Number: L0813196-16

TB090308

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE PREP ANAL	ID
Volatile Organics by EPA 8260	DB contid			1 8260B	0910 01:2	7 PD
Styrene	ND	ug/l	1.0	1 0200B	0910 01.2	/ PD
Dichlorodifluoromethane	ND ND	ug/l	5.0			
Acetone	ND	ug/l	5.0			
Carbon disulfide	ND	ug/l	5.0			
2-Butanone	ND	ug/l	5.0			
Vinyl acetate	ND	ug/l	5.0			
4-Methyl-2-pentanone	ND	ug/l	5.0			
2-Hexanone	ND	ug/l	5.0			
Bromochloromethane	ND	ug/l	2.5			
2,2-Dichloropropane	ND	ug/l	2.5			
1,2-Dibromoethane	ND	ug/l	2.0			
1,3-Dichloropropane	ND	ug/l	2.5			
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50			
Bromobenzene	ND	ug/l	2.5			
n-Butylbenzene	ND	ug/l	0.50			
sec-Butylbenzene	ND	ug/l	0.50			
tert-Butylbenzene	ND	ug/l	2.5			
o-Chlorotoluene	ND	ug/l	2.5			
p-Chlorotoluene	ND	ug/l	2.5			
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5			
Hexachlorobutadiene	ND	ug/l	0.60			
Isopropylbenzene	ND	ug/l	0.50			
p-Isopropyltoluene	ND	ug/l	0.50			
Naphthalene	ND	ug/l	2.5			
n-Propylbenzene	ND	ug/l	0.50			
1,2,3-Trichlorobenzene	ND	ug/l	2.5			
1,2,4-Trichlorobenzene	ND	ug/l	2.5			
1,3,5-Trimethylbenzene	ND	ug/l	2.5			
1,2,4-Trimethylbenzene	ND	ug/l	2.5			
1,4-Diethylbenzene	ND	ug/l	2.0			
4-Ethyltoluene	ND ND	ug/l	2.0			
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0			
1,2,1,5-16cramechy identifier	IND	ug/ 1	2.0			
Surrogate(s)	Recovery		QC Cri	teria		
1,2-Dichloroethane-d4	104	%	70-130			
Toluene-d8	99.0	%	70-130			
4-Bromofluorobenzene	102	%	70-130			
Dibromofluoromethane	98.0	8	70-130			

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813196-17 Date Collected: 04-SEP-2008 09:45

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

Sample Matrix:

	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 82	60B			1 8260B	0910 02:03 PD
Methylene chloride	ND	ug/l	5.0	1 02005	0710 02:03 FD
1,1-Dichloroethane	ND	ug/l	0.75		
Chloroform	ND	ug/l	0.75		
Carbon tetrachloride	ND	ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75		
Tetrachloroethene	ND	ug/l	0.50		
Chlorobenzene	ND	ug/1 ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/1 ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND ND	ug/l	0.50		
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND ND	ug/1 ug/l	0.75		
Chloromethane	ND ND	ug/1 ug/l	2.5		
Bromomethane	ND ND	ug/l ug/l	1.0		
Vinyl chloride	ND ND	ug/l	1.0		
Chloroethane	ND	ug/1 ug/l	1.0		
1,1-Dichloroethene	ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND ND	ug/1 ug/l	0.75		
Trichloroethene	ND ND	ug/l ug/l	0.75		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND ND	ug/l ug/l	2.5		
1,4-Dichlorobenzene	ND ND	ug/1 ug/l	2.5		
Methyl tert butyl ether	ND ND	_	1.0		
o/m-Xylene	ND ND	ug/l ug/l	1.0		
o-Xylene	ND ND	ug/l ug/l	1.0		
cis-1,2-Dichloroethene	ND ND	ug/l ug/l	0.50		
Dibromomethane	ND ND	_	5.0		
		ug/l	5.0		
1,2,3-Trichloropropane Acrylonitrile	ND ND	ug/l ug/l	5.0		

Laboratory Sample Number: L0813196-17

FB090408(GW)

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	D <i>P</i> PREP	ANAL	ID
Volatile Organics by EPA 8260)B contid			11	8260B		0910 02:0	מם 2
Styrene	ND	ug/l	1.0	1	0200B		0910 02:0	3 PD
Dichlorodifluoromethane	ND	ug/l ug/l	5.0					
Acetone	ND	ug/l	5.0					
Carbon disulfide	ND	ug/l ug/l	5.0					
2-Butanone	ND	ug/l	5.0					
Vinyl acetate	ND	ug/l ug/l	5.0					
4-Methyl-2-pentanone	ND	ug/l ug/l	5.0					
2-Hexanone	ND	ug/l ug/l	5.0					
Bromochloromethane	ND	ug/l ug/l	2.5					
2,2-Dichloropropane	ND	ug/l ug/l	2.5					
1,2-Dibromoethane	ND	ug/l ug/l	2.0					
1,3-Dichloropropane	ND	ug/l ug/l	2.5					
1,1,1,2-Tetrachloroethane	ND	ug/l ug/l	0.50					
Bromobenzene	ND	ug/l ug/l	2.5					
n-Butylbenzene	ND	ug/l ug/l	0.50					
sec-Butylbenzene	ND	ug/l ug/l	0.50					
tert-Butylbenzene	ND	ug/l ug/l	2.5					
o-Chlorotoluene	ND	ug/l ug/l	2.5					
p-Chlorotoluene	ND	ug/l ug/l	2.5					
1,2-Dibromo-3-chloropropane	ND	ug/l ug/l	2.5					
Hexachlorobutadiene	ND	ug/l ug/l	0.60					
Isopropylbenzene	ND	ug/l ug/l	0.50					
p-Isopropyltoluene	ND	ug/l ug/l	0.50					
Naphthalene	ND	ug/l ug/l	2.5					
n-Propylbenzene	ND	ug/l ug/l	0.50					
1,2,3-Trichlorobenzene	ND	ug/l ug/l	2.5					
1,2,4-Trichlorobenzene	ND	ug/l ug/l	2.5					
	ND ND	_	2.5					
1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene	ND	ug/l ug/l	2.5					
		_	2.0					
1,4-Diethylbenzene 4-Ethyltoluene	ND ND	ug/l	2.0					
	ND ND	ug/l	2.0					
1,2,4,5-Tetramethylbenzene	עוא	ug/l	∠.∪					
Surrogate(s)	Recovery		QC Cri	teria	ı			
1,2-Dichloroethane-d4	104	%	70-130)				
Toluene-d8	100	%	70-130)				
4-Bromofluorobenzene	106	8	70-130)				
Dibromofluoromethane	100	%	70-130)				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813196-18 Date Collected: 04-SEP-2008 09:30

PWG.SB.2008.07@10-15' Date Received: 05-SEP-2008

Sample Matrix: SOIL Date Reported: 15-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Solids, Total	84	%	0.10	30 2540G	0911 15:15 SD
Volatile Organics by EPA 820	50B			1 8260B	0906 20:03 PD
Methylene chloride	ND	ug/kg	30.		
1,1-Dichloroethane	ND	ug/kg	4.5		
Chloroform	ND	ug/kg	4.5		
Carbon tetrachloride	ND	ug/kg	3.0		
1,2-Dichloropropane	ND	ug/kg	10.		
Dibromochloromethane	ND	ug/kg	3.0		
1,1,2-Trichloroethane	ND	ug/kg	4.5		
Tetrachloroethene	ND	ug/kg	3.0		
Chlorobenzene	ND	ug/kg	3.0		
Trichlorofluoromethane	ND	ug/kg	15.		
1,2-Dichloroethane	ND	ug/kg	3.0		
1,1,1-Trichloroethane	ND	ug/kg	3.0		
Bromodichloromethane	ND	ug/kg	3.0		
trans-1,3-Dichloropropene	ND	ug/kg	3.0		
cis-1,3-Dichloropropene	ND	ug/kg	3.0		
1,1-Dichloropropene	ND	ug/kg	15.		
Bromoform	ND	ug/kg	12.		
1,1,2,2-Tetrachloroethane	ND	ug/kg	3.0		
Benzene	ND	ug/kg	3.0		
Toluene	ND	ug/kg	4.5		
Ethylbenzene	ND	ug/kg	3.0		
Chloromethane	ND	ug/kg	15.		
Bromomethane	ND	ug/kg	6.0		
Vinyl chloride	ND	ug/kg	6.0		
Chloroethane	ND	ug/kg	6.0		
1,1-Dichloroethene	ND	ug/kg	3.0		
trans-1,2-Dichloroethene	ND	ug/kg	4.5		
Trichloroethene	ND	ug/kg	3.0		
1,2-Dichlorobenzene	ND	ug/kg	15.		
1,3-Dichlorobenzene	ND	ug/kg	15.		
1,4-Dichlorobenzene	ND	ug/kg	15.		
Methyl tert butyl ether	ND	ug/kg	6.0		
p/m-Xylene	ND	ug/kg	6.0		
o-Xylene	ND	ug/kg	6.0		
cis-1,2-Dichloroethene	ND	ug/kg	3.0		
Dibromomethane	ND	ug/kg	30.		

Laboratory Sample Number: L0813196-18

PWG.SB.2008.07@10-15'

Dichlorodifluoromethane	PARAMETER	RESULT	UNITS	RDL	REF M	ETHOD	DA PREP	ANAL	ID
Dichlorodifluoromethane ND	Volatile Organics by EPA 826	OB cont'd			1 8:	260B		0906 20:0	3 PD
Dichlorodifluoromethane ND ug/kg 30. Acetone ND ug/kg 30. Carbon disulfide ND ug/kg 30. Vinyl acetate ND ug/kg 30. 4-Methyl-2-pentanone ND ug/kg 30. 1,2,3-Trichloropropane ND ug/kg 30. 2-Hexanone ND ug/kg 30. Bromochloromethane ND ug/kg 15. 2,2-Dichloropropane ND ug/kg 15. 1,3-Dichloropropane ND ug/kg 15. 1,3-Dichloropropane ND ug/kg 15. 1,3-Dichloropropane ND ug/kg 15. 1,3-Dichloropropane ND ug/kg 15. n-Butylbenzene ND ug/kg 15. n-Butylbenzene ND ug/kg 15. n-Butylbenzene ND ug/kg 15. p-Chlorotoluene ND ug/kg 15. p-Chlorotoluene	Styrene		ug/kg	6.0					
Acetone	Dichlorodifluoromethane	ND		30.					
Carbon disulfide	Acetone	ND							
2-Butanone	Carbon disulfide	ND		30.					
Vinyl acetate ND ug/kg 30. 4-Methyl-2-pentanone ND ug/kg 30. 1, 2, 3-Trichloropropane ND ug/kg 30. 2-Hexanone ND ug/kg 30. Bromochloromethane ND ug/kg 15. 2, 2-Dichloropropane ND ug/kg 15. 1, 2-Dibromoethane ND ug/kg 15. 1, 3-Dichloropropane ND ug/kg 15. 1, 1, 1, 2-Tetrachloropethane ND ug/kg 15. 1, 3-Dichloropropane ND ug/kg 15. 1, 1, 1, 2-Tetrachloroethane ND ug/kg 3. 0 Bromobenzene ND ug/kg 3. 0 Bromobenzene ND ug/kg 15. 1-Butylbenzene ND ug/kg 3. 0 Bromobenzene ND ug/kg 15. 1-Butylbenzene ND ug/kg 3. 0 Bromobenzene ND ug/kg 15. 1, 2-Dibromo-3-chloropropane ND ug/kg 15. 1, 2-Dibromo-3-chloropropane ND ug/kg 15. 1, 2-Dibromo-3-chloropropane ND ug/kg 3. 0 Bromobenzene ND ug/kg 15. Bromobenzene ND ug/k	2-Butanone	ND							
4-Methyl-2-pentanone ND ug/kg 30. 1,2,3-Trichloropropane ND ug/kg 30. 2-Hexanone ND ug/kg 30. 2,2-Dichloropropane ND ug/kg 15. 2,2-Dichloropropane ND ug/kg 15. 1,2-Dibromoethane ND ug/kg 15. 1,1,1,2-Tetrachloropthane ND ug/kg 15. 1,1,1,2-Tetrachloropthane ND ug/kg 15. 1,1,1,2-Tetrachloropthane ND ug/kg 3.0 Bromobenzene ND ug/kg 3.0 Bromobenzene ND ug/kg 3.0 Bromobenzene ND ug/kg 3.0 Bromobenzene ND ug/kg 15. 1-Butylbenzene ND ug/kg 3.0 Bromobenzene ND ug/kg 15. 1-Dibromo-3-chloropropane ND ug/kg 15. 1,2-Dibromo-3-chloropropane ND ug/kg 15. 1,2-Dibromo-3-chloropropane ND ug/kg 15. Isopropylbenzene ND ug/kg 3.0 P-Isopropyltoluene ND ug/kg 3.0 1,2,3-Trichlorobenzene ND ug/kg 3.0 1,2,3-Trichlorobenzene ND ug/kg 3.0 1,2,3-Trichlorobenzene ND ug/kg 3.0 1,2,3-Trichlorobenzene ND ug/kg 15. 1,2,4-Trimethylbenzene ND ug/kg 15. 1,2,4-Trimethylbenzene ND ug/kg 15. 1,4-Diethylbenzene ND ug/kg 15. 1,4-Diethylbenzene ND ug/kg 12. 4-Ethyltoluene ND ug/kg 12. 4-Ethyltoluene ND ug/kg 12. Surrogate(s) Recovery QC Criteria 1,2-4-Drimethylbenzene ND ug/kg 12. 1,2-Dichloroethane-d4 105 % 70-130	Vinyl acetate	ND							
1,2,3-Trichloropropane	-	ND							
2-Hexanone Bromochloromethane ND Ug/kg 15. 2,2-Dichloropropane ND Ug/kg 15. 1,3-Dichloropropane ND Ug/kg 15. 1,1,1,2-Tetrachloroethane ND Ug/kg 15. 1,1,1,2-Tetrachloroethane ND Ug/kg 15. 1,1,1,2-Tetrachloroethane ND Ug/kg 15. 1,1,1,2-Tetrachloroethane ND Ug/kg 15. n-Butylbenzene ND Ug/kg 3.0 sec-Butylbenzene ND Ug/kg 3.0 sec-Butylbenzene ND Ug/kg 15. o-Chlorotoluene ND Ug/kg 15. o-Chlorotoluene ND Ug/kg 15. o-Chlorotoluene ND Ug/kg 15. leachlorobutadiene ND Ug/kg 15. leachlorobenzene ND Ug/kg 16. leachlorobenzene ND Ug/kg 17. leachlorobenzene ND Ug/kg 18. leachlorobenzene ND Ug/kg 19. leachloroben	1,2,3-Trichloropropane	ND							
### Spromochloromethane ND	2-Hexanone	ND							
2,2-Dichloropropane ND ug/kg 15. 1,2-Dibromoethane ND ug/kg 12. 1,3-Dichloropropane ND ug/kg 15. 1,1,1,2-Tetrachloroethane ND ug/kg 3.0 Bromobenzene ND ug/kg 15. n-Butylbenzene ND ug/kg 3.0 sec-Butylbenzene ND ug/kg 15. o-Chlorotoluene ND ug/kg 3.0 o-Chlorotoluene ND ug/kg 3.0 p-Isopropylbenzene ND ug	Bromochloromethane	ND							
1,2-Dibromoethane ND ug/kg 12. 1,3-Dichloropropane ND ug/kg 15. 1,1,1,2-Tetrachloroethane ND ug/kg 3.0 Bromobenzene ND ug/kg 3.0 n-Butylbenzene ND ug/kg 3.0 sec-Butylbenzene ND ug/kg 3.0 tert-Butylbenzene ND ug/kg 15. o-Chlorotoluene ND ug/kg 15. o-Chlorotoluene ND ug/kg 15. p-Chloromo-3-chloropropane ND ug/kg 15. Hexachlorobutadiene ND ug/kg 15. Hexachlorobutadiene ND ug/kg 3.0 p-Isopropylbenzene ND ug/kg 3.0 p-Isopropylbenzene ND ug/kg 3.0 p-Isopropyltoluene ND ug/kg 3.0 Naphthalene ND ug/kg 3.0 Acrylonitrile ND ug/kg 3.0 n-Propylbenzene ND ug/kg 3.0 1,2,4-Trinethorobenzene	2,2-Dichloropropane	ND		15.					
1,3-Dichloropropane ND ug/kg 15. 1,1,1,2-Tetrachloroethane ND ug/kg 3.0 Bromobenzene ND ug/kg 3.0 n-Butylbenzene ND ug/kg 3.0 sec-Butylbenzene ND ug/kg 3.0 tert-Butylbenzene ND ug/kg 15. o-Chlorotoluene ND ug/kg 15. p-Chlorotoluene ND ug/kg 15. 1,2-Dibromo-3-chloropropane ND ug/kg 15. Hexachlorobutadiene ND ug/kg 15. Hexachlorobutadiene ND ug/kg 15. Isopropylbenzene ND ug/kg 3.0 Po-Isopropylbenzene ND ug/kg 3.0 Naphthalene ND ug/kg 3.0 N-Propylbenzene ND ug/kg 3.0 n-Propylbenzene ND ug/kg 3.0 1,2,4-Trichlorobenzene ND ug/kg 15. 1,3,5-Trimethylbenzene ND ug/kg 15. 1,4-Ethyltoluene	1,2-Dibromoethane	ND							
1,1,1,2-Tetrachloroethane		ND		15.					
### Bromobenzene ND	1,1,1,2-Tetrachloroethane	ND							
### Butylbenzene	Bromobenzene	ND							
Sec_Butylbenzene	n-Butylbenzene	ND							
tert-Butylbenzene ND ug/kg 15. o-Chlorotoluene ND ug/kg 15. p-Chlorotoluene ND ug/kg 15. 1,2-Dibromo-3-chloropropane ND ug/kg 15. Hexachlorobutadiene ND ug/kg 15. Isopropylbenzene ND ug/kg 3.0 p-Isopropyltoluene ND ug/kg 3.0 Naphthalene ND ug/kg 15. Acrylonitrile ND ug/kg 30. n-Propylbenzene ND ug/kg 30. n-Propylbenzene ND ug/kg 3.0 1,2,3-Trichlorobenzene ND ug/kg 15. 1,3,5-Trimethylbenzene ND ug/kg 15. 1,2,4-Trichlorobenzene ND ug/kg 15. 1,2,4-Trimethylbenzene ND ug/kg 12. 4-Ethyltoluene ND ug/kg 12. 4-Ethyltoluene ND ug/kg 12. 5-Trichloroethane-d4 105 % 70-130 Toluene-d8 106 % 70-130 4-Bromofluorobenzene 115 % 70-130	-	ND							
Description		ND							
p-Chlorotoluene ND ug/kg 15. 1,2-Dibromo-3-chloropropane ND ug/kg 15. Hexachlorobutadiene ND ug/kg 15. Isopropylbenzene ND ug/kg 3.0 p-Isopropyltoluene ND ug/kg 3.0 Naphthalene ND ug/kg 30. Naphthalene ND ug/kg 30. N-Propylbenzene ND ug/kg 30. n-Propylbenzene ND ug/kg 3.0 1,2,3-Trichlorobenzene ND ug/kg 15. 1,2,4-Trichlorobenzene ND ug/kg 15. 1,2,4-Trimethylbenzene ND ug/kg 12. 4-Ethyltoluene ND ug/kg 12. 5urrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 105 % 70-130 Toluene-d8 4-Bromofluorobenzene 115 % 70-130	o-Chlorotoluene	ND							
1,2-Dibromo-3-chloropropane	p-Chlorotoluene	ND							
Hexachlorobutadiene ND ug/kg 15. Isopropylbenzene ND ug/kg 3.0 p-Isopropyltoluene ND ug/kg 3.0 Naphthalene ND ug/kg 15. Acrylonitrile ND ug/kg 30. n-Propylbenzene ND ug/kg 3.0 1,2,3-Trichlorobenzene ND ug/kg 15. 1,2,4-Trichlorobenzene ND ug/kg 15. 1,3,5-Trimethylbenzene ND ug/kg 15. 1,2,4-Trimethylbenzene ND ug/kg 15. 1,4-Diethylbenzene ND ug/kg 15. 1,4-Diethylbenzene ND ug/kg 12. 4-Ethyltoluene ND ug/kg 12. Surrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 105 % 70-130 Toluene-d8 106 % 70-130 4-Bromofluorobenzene 115 % 70-130	1,2-Dibromo-3-chloropropane	ND							
ND	Hexachlorobutadiene								
ND	Isopropylbenzene	ND		3.0					
Naphthalene ND ug/kg 15. Acrylonitrile ND ug/kg 30. n-Propylbenzene ND ug/kg 3.0 1,2,3-Trichlorobenzene ND ug/kg 15. 1,2,4-Trichlorobenzene ND ug/kg 15. 1,3,5-Trimethylbenzene ND ug/kg 15. 1,2,4-Trimethylbenzene ND ug/kg 15. 1,4-Diethylbenzene ND ug/kg 12. 4-Ethyltoluene ND ug/kg 12. 1,2,4,5-Tetramethylbenzene ND ug/kg 12. Surrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 105 % 70-130 Toluene-d8 106 % 70-130 4-Bromofluorobenzene 115 % 70-130		ND							
Acrylonitrile		ND							
n-Propylbenzene ND ug/kg 3.0 1,2,3-Trichlorobenzene ND ug/kg 15. 1,2,4-Trichlorobenzene ND ug/kg 15. 1,3,5-Trimethylbenzene ND ug/kg 15. 1,2,4-Trimethylbenzene ND ug/kg 12. 1,4-Diethylbenzene ND ug/kg 12. 4-Ethyltoluene ND ug/kg 12. 1,2,4,5-Tetramethylbenzene ND ug/kg 12. Surrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 105 % 70-130 Toluene-d8 106 % 70-130 4-Bromofluorobenzene 115 % 70-130		ND							
1,2,3-Trichlorobenzene ND ug/kg 15. 1,2,4-Trichlorobenzene ND ug/kg 15. 1,3,5-Trimethylbenzene ND ug/kg 15. 1,2,4-Trimethylbenzene ND ug/kg 15. 1,4-Diethylbenzene ND ug/kg 12. 4-Ethyltoluene ND ug/kg 12. 1,2,4,5-Tetramethylbenzene ND ug/kg 12. Surrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 105 % 70-130 Toluene-d8 106 % 70-130 4-Bromofluorobenzene 115 % 70-130									
1,2,4-Trichlorobenzene ND ug/kg 15. 1,3,5-Trimethylbenzene ND ug/kg 15. 1,2,4-Trimethylbenzene ND ug/kg 15. 1,4-Diethylbenzene ND ug/kg 12. 4-Ethyltoluene ND ug/kg 12. 1,2,4,5-Tetramethylbenzene ND ug/kg 12. Surrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 105 % 70-130 Toluene-d8 106 % 70-130 4-Bromofluorobenzene 115 % 70-130		ND							
1,3,5-Trimethylbenzene ND ug/kg 15. 1,2,4-Trimethylbenzene ND ug/kg 15. 1,4-Diethylbenzene ND ug/kg 12. 4-Ethyltoluene ND ug/kg 12. 1,2,4,5-Tetramethylbenzene ND ug/kg 12. Surrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 105 % 70-130 Toluene-d8 106 % 70-130 4-Bromofluorobenzene 115 % 70-130		ND							
1,2,4-Trimethylbenzene ND ug/kg 15. 1,4-Diethylbenzene ND ug/kg 12. 4-Ethyltoluene ND ug/kg 12. 1,2,4,5-Tetramethylbenzene ND ug/kg 12. Surrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 105 % 70-130 Toluene-d8 106 % 70-130 4-Bromofluorobenzene 115 % 70-130		ND							
1,4-Diethylbenzene ND ug/kg 12. 4-Ethyltoluene ND ug/kg 12. 1,2,4,5-Tetramethylbenzene ND ug/kg 12. Surrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 105 % 70-130 Toluene-d8 106 % 70-130 4-Bromofluorobenzene 115 % 70-130	- · ·								
4-Ethyltoluene ND ug/kg 12. 1,2,4,5-Tetramethylbenzene ND ug/kg 12. Surrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 105 % 70-130 Toluene-d8 106 % 70-130 4-Bromofluorobenzene 115 % 70-130									
1,2,4,5-Tetramethylbenzene ND ug/kg 12. Surrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 105 % 70-130 Toluene-d8 106 % 70-130 4-Bromofluorobenzene 115 % 70-130	-								
1,2-Dichloroethane-d4 105 % 70-130 Toluene-d8 106 % 70-130 4-Bromofluorobenzene 115 % 70-130	1,2,4,5-Tetramethylbenzene								
1,2-Dichloroethane-d4 105 % 70-130 Toluene-d8 106 % 70-130 4-Bromofluorobenzene 115 % 70-130	Surrogate(s)	Recovery		QC Cr	iteria				
Toluene-d8 106 % 70-130 4-Bromofluorobenzene 115 % 70-130	1,2-Dichloroethane-d4	105	8	70-13	0				
4-Bromofluorobenzene 115 % 70-130	Toluene-d8	106	%						
	4-Bromofluorobenzene								
	Dibromofluoromethane								

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813196-19 Date Collected: 04-SEP-2008 09:55

Sample Matrix: WATER Date Reported: 15-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 83	260B			1 8260B	0910 02:39 PD
Methylene chloride	ND	ug/l	5.0		
1,1-Dichloroethane	ND	ug/l	0.75		
Chloroform	ND	ug/l	0.75		
Carbon tetrachloride	ND	ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75		
Tetrachloroethene	ND	ug/l	0.50		
Chlorobenzene	ND	ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND	ug/l	0.50		
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50		
Chloromethane	ND	ug/l	2.5		
Bromomethane	ND	ug/l	1.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	1.0		
1,1-Dichloroethene	ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/l	0.75		
Trichloroethene	ND	ug/l	0.50		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/l	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	ND	ug/l	0.50		
Dibromomethane	ND	ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/l	5.0		
Acrylonitrile	ND	ug/l	5.0		

Laboratory Sample Number: L0813196-19

PWG.GW.2008.07

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	D <i>P</i> PREP	ATE ANAL	ID
Volatile Organics by EPA 826	NB contid			1	8260B		0910 02:3	9 DD
Styrene	ND	ug/l	1.0	1	02008		0910 02.3	J PD
Dichlorodifluoromethane	ND ND	ug/l	5.0					
Acetone	ND	ug/l	5.0					
Carbon disulfide	ND	ug/l	5.0					
2-Butanone	ND	ug/l	5.0					
Vinyl acetate	ND	ug/l	5.0					
4-Methyl-2-pentanone	ND	ug/l	5.0					
2-Hexanone	ND	ug/l	5.0					
Bromochloromethane	ND	ug/l	2.5					
2,2-Dichloropropane	ND	ug/l	2.5					
1,2-Dibromoethane	ND	ug/l	2.0					
1,3-Dichloropropane	ND	ug/l	2.5					
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50					
Bromobenzene	ND	ug/l	2.5					
n-Butylbenzene	ND	ug/l	0.50					
sec-Butylbenzene	ND	ug/l	0.50					
tert-Butylbenzene	ND	ug/l	2.5					
o-Chlorotoluene	ND	ug/l	2.5					
p-Chlorotoluene	ND	ug/l	2.5					
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5					
Hexachlorobutadiene	ND	ug/l	0.60					
Isopropylbenzene	ND	ug/l	0.50					
p-Isopropyltoluene	ND	ug/l	0.50					
Naphthalene	ND	ug/l	2.5					
n-Propylbenzene	ND	ug/l	0.50					
1,2,3-Trichlorobenzene	ND	ug/l	2.5					
1,2,4-Trichlorobenzene	ND	ug/l	2.5					
1,3,5-Trimethylbenzene	ND	ug/l	2.5					
1,2,4-Trimethylbenzene	ND	ug/l	2.5					
1,4-Diethylbenzene	ND	ug/l	2.0					
4-Ethyltoluene	ND	ug/l	2.0					
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0					
Surrogate(s)	Recovery		QC Crit	teria	Ļ			
1,2-Dichloroethane-d4	103	%	70-130					
Toluene-d8	101	%	70-130					
4-Bromofluorobenzene	105	8	70-130					
Dibromofluoromethane	100	%	70-130					

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813196-20 Date Collected: 04-SEP-2008 10:35

PWG.SB.2008.01@5-10' Date Received: 05-SEP-2008

Sample Matrix: SOIL Date Reported: 15-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Solids, Total	81	8	0.10	30 2540G	0909 18:20 NM
Total Metals					
Aluminum, Total	4700	mg/kg	5.8	1 6010B	0908 14:00 0910 19:48 TD
Antimony, Total	ND	mg/kg	2.9	1 6010B	0908 14:00 0910 19:48 TD
Arsenic, Total	2.2	mg/kg	0.58	1 6010B	0908 14:00 0910 19:48 TD
Barium, Total	40	mg/kg	0.58	1 6010B	0908 14:00 0910 19:48 TD
Beryllium, Total	ND	mg/kg	0.29	1 6010B	0908 14:00 0910 19:48 TD
Cadmium, Total	ND	mg/kg	0.58	1 6010B	0908 14:00 0910 19:48 TD
Calcium, Total	1000	mg/kg	5.8	1 6010B	0908 14:00 0910 19:48 TD
Chromium, Total	6.4	mg/kg	0.58	1 6010B	0908 14:00 0910 19:48 TD
Cobalt, Total	2.8	mg/kg	1.2	1 6010B	0908 14:00 0910 19:48 TD
Copper, Total	9.4	mg/kg	0.58	1 6010B	0908 14:00 0910 19:48 TD
Iron, Total	7500	mg/kg	2.9	1 6010B	0908 14:00 0910 19:48 TD
Lead, Total	87	mg/kg	2.9	1 6010B	0908 14:00 0910 19:48 TD
Magnesium, Total	690	mg/kg	5.8	1 6010B	0908 14:00 0910 19:48 TD
Manganese, Total	100	mg/kg	0.58	1 6010B	0908 14:00 0910 19:48 TD
Mercury, Total	0.10	mg/kg	0.09	1 7471A	0910 21:30 0911 17:16 HG
Nickel, Total	5.2	mg/kg	1.5	1 6010B	0908 14:00 0910 19:48 TD
Potassium, Total	320	mg/kg	150	1 6010B	0908 14:00 0910 19:48 TD
Selenium, Total	ND	mg/kg	1.2	1 6010B	0908 14:00 0910 19:48 TD
Silver, Total	ND	mg/kg	0.58	1 6010B	0908 14:00 0910 19:48 TD
Sodium, Total	ND	mg/kg	120	1 6010B	0908 14:00 0910 19:48 TD
Thallium, Total	ND	mg/kg	1.2	1 6010B	0908 14:00 0910 19:48 TD
Vanadium, Total	9.3	mg/kg	0.58	1 6010B	0908 14:00 0910 19:48 TD
Zinc, Total	58	mg/kg	2.9	1 6010B	0908 14:00 0910 19:48 TD
Volatile Organics by EPA 8	260B			1 8260B	0906 20:40 PD
Methylene chloride	ND	ug/kg	31.		
1,1-Dichloroethane	ND	ug/kg	4.6		
Chloroform	ND	ug/kg	4.6		
Carbon tetrachloride	ND	ug/kg	3.1		
1,2-Dichloropropane	ND	ug/kg	11.		
Dibromochloromethane	ND	ug/kg	3.1		
1,1,2-Trichloroethane	ND	ug/kg	4.6		
Tetrachloroethene	ND	ug/kg	3.1		
Chlorobenzene	ND	ug/kg	3.1		
Trichlorofluoromethane	ND	ug/kg	15.		

Laboratory Sample Number: L0813196-20

PWG.SB.2008.01@5-10'

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
W-1-41- 0	OD							
Volatile Organics by EPA 826		. /1	2 1	1	8260B		0906 20:4	10 PD
1,2-Dichloroethane	ND	ug/kg	3.1					
1,1,1-Trichloroethane	ND	ug/kg	3.1					
Bromodichloromethane	ND	ug/kg	3.1					
crans-1,3-Dichloropropene	ND	ug/kg	3.1					
cis-1,3-Dichloropropene	ND	ug/kg	3.1					
l,1-Dichloropropene	ND	ug/kg	15.					
Bromoform	ND	ug/kg	12.					
,1,2,2-Tetrachloroethane	ND	ug/kg	3.1					
Benzene	ND	ug/kg	3.1					
Coluene	ND	ug/kg	4.6					
Ithylbenzene	ND	ug/kg	3.1					
Chloromethane	ND	ug/kg	15.					
Bromomethane	ND	ug/kg	6.2					
Jinyl chloride	ND	ug/kg	6.2					
Chloroethane	ND	ug/kg	6.2					
,1-Dichloroethene	ND	ug/kg	3.1					
rans-1,2-Dichloroethene	ND	ug/kg	4.6					
Trichloroethene	ND	ug/kg	3.1					
.,2-Dichlorobenzene	ND	ug/kg	15.					
,3-Dichlorobenzene	ND	ug/kg	15.					
,4-Dichlorobenzene	ND	ug/kg	15.					
Methyl tert butyl ether	ND	ug/kg	6.2					
o/m-Xylene	ND	ug/kg	6.2					
o-Xylene	ND	ug/kg	6.2					
cis-1,2-Dichloroethene	ND	ug/kg	3.1					
Dibromomethane	ND	ug/kg	31.					
Styrene	ND	ug/kg	6.2					
Dichlorodifluoromethane	ND	ug/kg	31.					
Acetone	ND	ug/kg	31.					
Carbon disulfide	ND	ug/kg	31.					
2-Butanone	ND	ug/kg ug/kg	31.					
/inyl acetate	ND	ug/kg ug/kg	31.					
1-Methyl-2-pentanone	ND	ug/kg ug/kg	31.					
1,2,3-Trichloropropane	ND	ug/kg ug/kg	31.					
2-Hexanone	ND	ug/kg ug/kg	31.					
romochloromethane	ND		15.					
		ug/kg						
2,2-Dichloropropane	ND	ug/kg	15.					
,2-Dibromoethane	ND	ug/kg	12.					
.,3-Dichloropropane	ND	ug/kg	15.					
.,1,1,2-Tetrachloroethane	ND	ug/kg	3.1					
Bromobenzene	ND	ug/kg	15.					
n-Butylbenzene	ND	ug/kg	3.1					
sec-Butylbenzene	ND	ug/kg	3.1					
ert-Butylbenzene	ND	ug/kg	15.					
o-Chlorotoluene	ND	ug/kg	15.					
o-Chlorotoluene	ND	ug/kg	15.					
,2-Dibromo-3-chloropropane	ND	ug/kg	15.					
Mexachlorobutadiene	ND	ug/kg	15.					
Isopropylbenzene	ND	ug/kg	3.1					

Laboratory Sample Number: L0813196-20

PWG.SB.2008.01@5-10'

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Volatile Organics by EPA 8260)B contid			1	8260B		0906 20:	40 PD
p-Isopropyltoluene	ND	ug/kg	3.1		0200B		0900 201	10 PD
p-isopropyrtoruene Naphthalene								
	ND	ug/kg	15.					
Acrylonitrile	ND	ug/kg	31.					
n-Propylbenzene	ND	ug/kg	3.1					
1,2,3-Trichlorobenzene	ND	ug/kg	15.					
1,2,4-Trichlorobenzene	ND	ug/kg	15.					
1,3,5-Trimethylbenzene	ND	ug/kg	15.					
1,2,4-Trimethylbenzene	ND	ug/kg	15.					
1,4-Diethylbenzene	ND	ug/kg	12.					
4-Ethyltoluene	ND	ug/kg	12.					
1,2,4,5-Tetramethylbenzene	ND	ug/kg	12.					
Surrogate(s)	Recovery		QC Cri	teria	a.			
1,2-Dichloroethane-d4	108	%	70-130					
Toluene-d8	107	%	70-130					
4-Bromofluorobenzene	121	8	70-130					
Dibromofluoromethane	101	%	70-130					
Semivolatile Organics by EPA	8270C			1	8270C	0906 12:05	0910 16:	40 PS
Acenaphthene	ND	ug/kg	410					
1,2,4-Trichlorobenzene	ND	ug/kg	410					
Hexachlorobenzene	ND	ug/kg	410					
Bis(2-chloroethyl)ether	ND	ug/kg	410					
2-Chloronaphthalene	ND	ug/kg	490					
1,2-Dichlorobenzene	ND	ug/kg	410					
1,3-Dichlorobenzene	ND	ug/kg	410					
1,4-Dichlorobenzene	ND	ug/kg	410					
3,3'-Dichlorobenzidine	ND	ug/kg ug/kg	820					
2,4-Dinitrotoluene	ND	ug/kg ug/kg	410					
2,6-Dinitrotoluene	ND	ug/kg ug/kg	410					
Fluoranthene	ND ND		410					
		ug/kg						
4-Chlorophenyl phenyl ether 4-Bromophenyl phenyl ether	ND	ug/kg	410					
	ND	ug/kg	410 410					
Bis(2-chloroisopropyl)ether	ND	ug/kg						
Bis(2-chloroethoxy)methane Hexachlorobutadiene	ND	ug/kg	410					
	ND	ug/kg	820					
Hexachlorocyclopentadiene	ND	ug/kg	820					
Hexachloroethane	ND	ug/kg	410					
Isophorone	ND	ug/kg	410					
Naphthalene	ND	ug/kg	410					
Nitrobenzene	ND	ug/kg	410					
NitrosoDiPhenylAmine(NDPA)/DI		ug/kg	1200					
n-Nitrosodi-n-propylamine	ND	ug/kg	410					
Bis(2-Ethylhexyl)phthalate	ND	ug/kg	820					
Butyl benzyl phthalate	ND	ug/kg	410					
Di-n-butylphthalate	ND	ug/kg	410					
Di-n-octylphthalate	ND	ug/kg	410					
Diethyl phthalate	ND	ug/kg	410					
Dimethyl phthalate	ND	ug/kg	410					

Laboratory Sample Number: L0813196-20

PWG.SB.2008.01@5-10'

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA' PREP	TE ANA	ID L
Semivolatile Organics by EPA 8	8270C cont	- ' d		1	8270C	0906 12:05	0910 10	6:40 pg
Benzo(a)anthracene	ND	ug/kg	410		02700	0,000 12:03	0010 1	0.40 FD
Benzo(a)pyrene	ND	ug/kg ug/kg	410					
Benzo(b)fluoranthene	ND		410					
Benzo(k)fluoranthene	ND	ug/kg	410					
chrysene	ND	ug/kg ug/kg	410					
acenaphthylene	ND		410					
nthracene	ND	ug/kg	410					
		ug/kg	410					
senzo(ghi)perylene 'luorene	ND	ug/kg						
luorene henanthrene	ND	ug/kg	410					
	ND	ug/kg	410					
ribenzo(a,h)anthracene	ND	ug/kg	410					
ndeno(1,2,3-cd)Pyrene	ND	ug/kg	410					
yrene	ND	ug/kg	410					
iphenyl	ND	ug/kg	410					
-Chloroaniline	ND	ug/kg	410					
-Nitroaniline	ND	ug/kg	410					
-Nitroaniline	ND	ug/kg	410					
-Nitroaniline	ND	ug/kg	580					
ibenzofuran	ND	ug/kg	410					
-Methylnaphthalene	ND	ug/kg	410					
,2,4,5-Tetrachlorobenzene	ND	ug/kg	1600					
cetophenone	ND	ug/kg	1600					
,4,6-Trichlorophenol	ND	ug/kg	410					
-Chloro-M-Cresol	ND	ug/kg	410					
-Chlorophenol	ND	ug/kg	490					
,4-Dichlorophenol	ND	ug/kg	820					
,4-Dimethylphenol	ND	ug/kg	410					
-Nitrophenol	ND	ug/kg	1600					
-Nitrophenol	ND	ug/kg	820					
,4-Dinitrophenol	ND	ug/kg	1600					
,6-Dinitro-o-cresol	ND	ug/kg	1600					
entachlorophenol	ND	ug/kg	1600					
henol	ND	ug/kg	580					
-Methylphenol	ND	ug/kg	490					
-Methylphenol/4-Methylphenol	ND	ug/kg	490					
,4,5-Trichlorophenol	ND	ug/kg	410					
enzoic Acid	ND	ug/kg	4100					
Benzyl Alcohol	ND	ug/kg	820					
arbazole	ND	ug/kg	410					
urrogate(s)	Recovery		QC Cr	iteria	L			
-Fluorophenol	57.0	%	25-120	0				
henol-d6	56.0	%	10-120	0				
itrobenzene-d5	51.0	%	23-120	0				
-Fluorobiphenyl	51.0	%	30-120					
,4,6-Tribromophenol	68.0	ર	19-120					
-Terphenyl-d14	57.0	%	18-120					

Laboratory Sample Number: L0813196-20

PWG.SB.2008.01@5-10'

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA' PREP	re anal	ID
Semivolatile Organics by EPA				1	8270C	0906 12:05	0911 04:	59 AK
Acenaphthene	ND	ug/kg	16.					
2-Chloronaphthalene	ND	ug/kg	16.					
Fluoranthene	120	ug/kg	16					
Hexachlorobutadiene	ND	ug/kg	41.					
Naphthalene	ND	ug/kg	16.					
Benzo(a)anthracene	48	ug/kg	16					
Benzo(a)pyrene	64	ug/kg	16					
Benzo(b)fluoranthene	58	ug/kg	16					
Benzo(k)fluoranthene	58	ug/kg	16					
Chrysene	55	ug/kg	16					
Acenaphthylene	ND	ug/kg	16.					
Anthracene	ND	ug/kg	16.					
Benzo(ghi)perylene	51	ug/kg	16					
Fluorene	ND	ug/kg	16.					
Phenanthrene	47	ug/kg	16					
Dibenzo(a,h)anthracene	ND	ug/kg	16.					
Indeno(1,2,3-cd)Pyrene	52	ug/kg	16					
Pyrene	120	ug/kg	16					
2-Methylnaphthalene	ND	ug/kg	16.					
Pentachlorophenol	ND	ug/kg	66.					
Hexachlorobenzene	ND	ug/kg	66.					
Hexachloroethane	ND	ug/kg	66.					
Surrogate(s)	Recovery		QC Cri	teria	a			
2-Fluorophenol	61.0	%	25-120)				
Phenol-d6	63.0	%	10-120)				
Nitrobenzene-d5	58.0	%	23-120)				
2-Fluorobiphenyl	56.0	%	30-120)				
2,4,6-Tribromophenol	95.0	용	19-120)				
4-Terphenyl-d14	73.0	%	18-120)				
Polychlorinated Biphenyls by	EPA 8082			1	8082	0909 23:00	0910 16:	39 SH
Aroclor 1016	ND	ug/kg	41.2					
Aroclor 1221	ND	ug/kg	41.2					
Aroclor 1232	ND	ug/kg	41.2					
Aroclor 1242	ND	ug/kg	41.2					
Aroclor 1248	ND	ug/kg	41.2					
Aroclor 1254	ND	ug/kg	41.2					
Aroclor 1260	ND	ug/kg	41.2					
Surrogate(s)	Recovery		QC Cri	teria	ì			
2,4,5,6-Tetrachloro-m-xylene	57.0	%	30-150)				
Decachlorobiphenyl	61.0	%	30-150	1				
Organochlorine Pesticides by	EPA 8081A			1	8081A	0906 10:30	0910 17:	25 SS
Delta-BHC	ND	ug/kg	4.12					
Lindane	ND	ug/kg	4.12					
Alpha-BHC	ND	ug/kg	4.12					
Beta-BHC	ND	ug/kg	4.12					

Laboratory Sample Number: L0813196-20

PWG.SB.2008.01@5-10'

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA		ID
					PREP	ANAL	
Organochlorine Pesticides by	EPA 8081A 0	cont.'d		1 8081A	0906 10:30	0910 17:25	SS
Heptachlor	ND	ug/kg	4.12	1 000111	0,00 10 50	0,10 1, 20	
Aldrin	ND	ug/kg	4.12				
Heptachlor epoxide	ND	ug/kg	4.12				
Endrin	ND	ug/kg	4.12				
Endrin ketone	ND	ug/kg	4.12				
Dieldrin	ND	ug/kg	4.12				
4,4'-DDE	ND	ug/kg	4.12				
4,4'-DDD	ND	ug/kg	4.12				
4,4'-DDT	4.73	ug/kg	4.12				
Endosulfan I	ND	ug/kg	4.12				
Endosulfan II	ND	ug/kg	4.12				
Endosulfan sulfate	ND	ug/kg	4.12				
Methoxychlor	ND	ug/kg	16.5				
trans-Chlordane	ND	ug/kg	4.12				
Chlordane	ND	ug/kg	41.2				
Surrogate(s)	Recovery		QC Cri	teria			
2,4,5,6-Tetrachloro-m-xylene	64.0	%	30-150				
Decachlorobiphenyl	84.0	%	30-150				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813196-21 Date Collected: 04-SEP-2008 10:35

PWG.SB.2008.21@5-10' Date Received: 04-SEP-2008

Sample Matrix: SOIL Date Reported: 15-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE I
					PREP ANAL
Solids, Total	96	%	0.10	30 2540G	0909 18:20 N
Total Metals					
Aluminum, Total	2900	mg/kg	5.0	1 6010B	0908 14:00 0910 19:30 1
Antimony, Total	ND	mg/kg	2.5	1 6010B	0908 14:00 0910 19:30 7
Arsenic, Total	1.2	mg/kg	0.50	1 6010B	0908 14:00 0910 19:30 7
Barium, Total	20	mg/kg	0.50	1 6010B	0908 14:00 0910 19:30 7
Beryllium, Total	ND	mg/kg	0.25	1 6010B	0908 14:00 0910 19:30 7
Cadmium, Total	ND	mg/kg	0.50	1 6010B	0908 14:00 0910 19:30 7
Calcium, Total	500	mg/kg	5.0	1 6010B	0908 14:00 0910 19:30 7
Chromium, Total	4.9	mg/kg	0.50	1 6010B	0908 14:00 0910 19:30 7
Cobalt, Total	2.4	mg/kg	1.0	1 6010B	0908 14:00 0910 19:30 7
Copper, Total	5.6	mg/kg	0.50	1 6010B	0908 14:00 0910 19:30 7
Iron, Total	6400	mg/kg	2.5	1 6010B	0908 14:00 0910 19:30 7
Lead, Total	30	mg/kg	2.5	1 6010B	0908 14:00 0910 19:30 7
Magnesium, Total	560	mg/kg	5.0	1 6010B	0908 14:00 0910 19:30 7
Manganese, Total	88	mg/kg	0.50	1 6010B	0908 14:00 0910 19:30 7
Mercury, Total	0.25	mg/kg	0.08	1 7471A	0910 21:30 0911 17:17 F
Nickel, Total	4.5	mg/kg	1.2	1 6010B	0908 14:00 0910 19:30 7
Potassium, Total	260	mg/kg	120	1 6010B	0908 14:00 0910 19:30 7
Selenium, Total	ND	mg/kg	1.0	1 6010B	0908 14:00 0910 19:30 7
Silver, Total	ND	mg/kg	0.50	1 6010B	0908 14:00 0910 19:30 7
Sodium, Total	ND	mg/kg	100	1 6010B	0908 14:00 0910 19:30 7
Thallium, Total	ND	mg/kg	1.0	1 6010B	0908 14:00 0910 19:30 7
Vanadium, Total	6.3	mg/kg	0.50	1 6010B	0908 14:00 0910 19:30 7
Zinc, Total	24	mg/kg	2.5	1 6010B	0908 14:00 0910 19:30 7
Volatile Organics by EPA 8	260B			1 8260B	0908 12:22 E
Methylene chloride	ND	ug/kg	26.		
l,1-Dichloroethane	ND	ug/kg	3.9		
Chloroform	ND	ug/kg	3.9		
Carbon tetrachloride	ND	ug/kg	2.6		
l,2-Dichloropropane	ND	ug/kg	9.1		
Dibromochloromethane	ND	ug/kg	2.6		
1,1,2-Trichloroethane	ND	ug/kg	3.9		
Tetrachloroethene	ND	ug/kg	2.6		
Chlorobenzene	ND	ug/kg	2.6		
Trichlorofluoromethane	ND	ug/kg	13.		

Laboratory Sample Number: L0813196-21

PWG.SB.2008.21@5-10'

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Volatile Organics by EPA 826		(1	0 -	1	8260B		0908 12:	22 PD
l,2-Dichloroethane	ND	ug/kg	2.6					
l,1,1-Trichloroethane	ND	ug/kg	2.6					
Bromodichloromethane	ND	ug/kg	2.6					
crans-1,3-Dichloropropene	ND	ug/kg	2.6					
cis-1,3-Dichloropropene	ND	ug/kg	2.6					
l,1-Dichloropropene	ND	ug/kg	13.					
Bromoform	ND	ug/kg	10.					
,1,2,2-Tetrachloroethane	ND	ug/kg	2.6					
Benzene	ND	ug/kg	2.6					
Coluene	ND	ug/kg	3.9					
Sthylbenzene	ND	ug/kg	2.6					
Chloromethane	ND	ug/kg	13.					
Bromomethane	ND	ug/kg	5.2					
Vinyl chloride	ND	ug/kg	5.2					
Chloroethane	ND	ug/kg	5.2					
,1-Dichloroethene	ND	ug/kg	2.6					
rans-1,2-Dichloroethene	ND	ug/kg	3.9					
richloroethene	ND	ug/kg	2.6					
,2-Dichlorobenzene	ND	ug/kg	13.					
,3-Dichlorobenzene	ND	ug/kg	13.					
,4-Dichlorobenzene	ND	ug/kg	13.					
Methyl tert butyl ether	ND	ug/kg	5.2					
/m-Xylene	ND	ug/kg	5.2					
-Xylene	ND	ug/kg	5.2					
is-1,2-Dichloroethene	ND	ug/kg	2.6					
ibromomethane	ND	ug/kg	26.					
Styrene	ND	ug/kg	5.2					
Dichlorodifluoromethane	ND	ug/kg	26.					
cetone	ND	ug/kg	26.					
Carbon disulfide	ND	ug/kg	26.					
-Butanone	ND	ug/kg	26.					
inyl acetate	ND	ug/kg	26.					
-Methyl-2-pentanone	ND	ug/kg	26.					
.,2,3-Trichloropropane	ND	ug/kg	26.					
-Hexanone	ND	ug/kg	26.					
romochloromethane	ND	ug/kg	13.					
2,2-Dichloropropane	ND	ug/kg	13.					
,2-Dibromoethane	ND	ug/kg	10.					
,3-Dichloropropane	ND	ug/kg	13.					
.,1,1,2-Tetrachloroethane	ND	ug/kg	2.6					
romobenzene	ND	ug/kg	13.					
-Butylbenzene	ND	ug/kg	2.6					
ec-Butylbenzene	ND	ug/kg	2.6					
ert-Butylbenzene	ND	ug/kg	13.					
-Chlorotoluene	ND	ug/kg	13.					
-Chlorotoluene	ND	ug/kg	13.					
.,2-Dibromo-3-chloropropane	ND	ug/kg	13.					
Mexachlorobutadiene	ND	ug/kg	13.					
Isopropylbenzene	ND	ug/kg	2.6					

Laboratory Sample Number: L0813196-21

PWG.SB.2008.21@5-10'

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Volatile Organics by EPA 8260	DR contid			1	8260B		0908 12:	22 DD
		/ 1- ~	2.6	1	8260B		0908 12.	22 PD
p-Isopropyltoluene	ND	ug/kg						
Naphthalene	ND	ug/kg	13.					
Acrylonitrile	ND	ug/kg	26.					
n-Propylbenzene	ND	ug/kg	2.6					
1,2,3-Trichlorobenzene	ND	ug/kg	13.					
1,2,4-Trichlorobenzene	ND	ug/kg	13.					
1,3,5-Trimethylbenzene	ND	ug/kg	13.					
1,2,4-Trimethylbenzene	ND	ug/kg	13.					
1,4-Diethylbenzene	ND	ug/kg	10.					
4-Ethyltoluene	ND	ug/kg	10.					
1,2,4,5-Tetramethylbenzene	ND	ug/kg	10.					
Surrogate(s)	Recovery		QC Cri	teria	a			
1,2-Dichloroethane-d4	99.0	%	70-130					
Toluene-d8	98.0	%	70-130					
4-Bromofluorobenzene	114	%	70-130					
Dibromofluoromethane	94.0	%	70-130					
Semivolatile Organics by EPA	8270C			1	8270C	0906 12:05	0910 17:	04 PS
Acenaphthene	ND	ug/kg	350					
1,2,4-Trichlorobenzene	ND	ug/kg	350					
Hexachlorobenzene	ND	ug/kg	350					
Bis(2-chloroethyl)ether	ND	ug/kg	350					
2-Chloronaphthalene	ND	ug/kg	420					
1,2-Dichlorobenzene	ND	ug/kg	350					
1,3-Dichlorobenzene	ND	ug/kg	350					
1,4-Dichlorobenzene	ND	ug/kg	350					
3,3'-Dichlorobenzidine	ND	ug/kg	690					
2,4-Dinitrotoluene	ND	ug/kg	350					
2,6-Dinitrotoluene	ND	ug/kg	350					
Fluoranthene	ND	ug/kg ug/kg	350					
4-Chlorophenyl phenyl ether	ND	ug/kg ug/kg	350					
4-Chiorophenyi phenyi ether 4-Bromophenyl phenyl ether	ND ND	ug/kg ug/kg	350					
Bis(2-chloroisopropyl)ether	ND ND		350					
Bis(2-chloroethoxy)methane	ND ND	ug/kg	350					
Bis(2-chioroethoxy)methane Hexachlorobutadiene		ug/kg						
Hexachioroputadiene Hexachlorocyclopentadiene	ND	ug/kg	690					
Hexachiorocyclopentadiene Hexachloroethane	ND	ug/kg	690 350					
	ND	ug/kg	350					
Isophorone	ND	ug/kg	350					
Naphthalene	ND	ug/kg	350					
Nitrobenzene	ND	ug/kg	350					
NitrosoDiPhenylAmine(NDPA)/DI		ug/kg	1000					
n-Nitrosodi-n-propylamine	ND	ug/kg	350					
Bis(2-Ethylhexyl)phthalate	ND	ug/kg	690					
Butyl benzyl phthalate	ND	ug/kg	350					
Di-n-butylphthalate	ND	ug/kg	350					
Di-n-octylphthalate	ND	ug/kg	350					
Diethyl phthalate	ND	ug/kg	350					
Dimethyl phthalate	ND	ug/kg	350					

Laboratory Sample Number: L0813196-21

PWG.SB.2008.21@5-10'

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Semivolatile Organics by EPA 8	3270C cont	.'d		1	8270C	0906 12:05	0910 17:	04 PS
Benzo(a)anthracene	ND	ug/kg	350	_		7777 77		
Benzo(a)pyrene	ND	ug/kg	350					
Benzo(b)fluoranthene	ND	ug/kg	350					
Benzo(k)fluoranthene	ND	ug/kg	350					
Chrysene	ND	ug/kg	350					
Acenaphthylene	ND	ug/kg	350					
Anthracene	ND	ug/kg	350					
Benzo(ghi)perylene	ND	ug/kg ug/kg	350					
Fluorene	ND	ug/kg ug/kg	350					
Phenanthrene	ND	ug/kg ug/kg	350					
Dibenzo(a,h)anthracene	ND		350					
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	350					
		ug/kg						
Pyrene Biphenyl	ND	ug/kg	350					
gipnenyi 4-Chloroaniline	ND	ug/kg	350					
e-Chioroaniline 2-Nitroaniline	ND	ug/kg	350					
	ND	ug/kg	350					
3-Nitroaniline 4-Nitroaniline	ND	ug/kg	350					
	ND	ug/kg	490					
Dibenzofuran	ND	ug/kg	350					
2-Methylnaphthalene	ND	ug/kg	350					
1,2,4,5-Tetrachlorobenzene	ND	ug/kg	1400					
Acetophenone	ND	ug/kg	1400					
2,4,6-Trichlorophenol	ND	ug/kg	350					
P-Chloro-M-Cresol	ND	ug/kg	350					
2-Chlorophenol	ND	ug/kg	420					
2,4-Dichlorophenol	ND	ug/kg	690					
2,4-Dimethylphenol	ND	ug/kg	350					
2-Nitrophenol	ND	ug/kg	1400					
1-Nitrophenol	ND	ug/kg	690					
2,4-Dinitrophenol	ND	ug/kg	1400					
1,6-Dinitro-o-cresol	ND	ug/kg	1400					
Pentachlorophenol	ND	ug/kg	1400					
Phenol	ND	ug/kg	490					
2-Methylphenol	ND	ug/kg	420					
3-Methylphenol/4-Methylphenol	ND	ug/kg	420					
2,4,5-Trichlorophenol	ND	ug/kg	350					
Benzoic Acid	ND	ug/kg	3500					
Benzyl Alcohol	ND	ug/kg	690					
Carbazole	ND	ug/kg	350					
Surrogate(s)	Recovery		QC Cr		a			
2-Fluorophenol	56.0	%	25-120)				
Phenol-d6	53.0	%	10-120)				
Nitrobenzene-d5	51.0	%	23-120)				
2-Fluorobiphenyl	45.0	%	30-120)				
2,4,6-Tribromophenol	56.0	%	19-120)				
1-Terphenyl-d14	51.0	%	18-120)				

Laboratory Sample Number: L0813196-21

PWG.SB.2008.21@5-10'

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA	TE	ID
						PREP	ANAL	
Semivolatile Organics by EPA	8270C-SIM	cont'd		1	8270C	0906 12:05	0911 05:4	5 AK
Acenaphthene	ND	ug/kg	14.					
2-Chloronaphthalene	ND	ug/kg	14.					
Fluoranthene	99	ug/kg	14					
Hexachlorobutadiene	ND	ug/kg	35.					
Naphthalene	ND	ug/kg	14.					
Benzo(a)anthracene	40	ug/kg	14					
Benzo(a)pyrene	53	ug/kg	14					
Benzo(b)fluoranthene	50	ug/kg	14					
Benzo(k)fluoranthene	48	ug/kg	14					
Chrysene	45	ug/kg	14					
Acenaphthylene	ND	ug/kg	14.					
Anthracene	ND	ug/kg	14.					
Benzo(ghi)perylene	43	ug/kg	14					
Fluorene	ND	ug/kg	14.					
Phenanthrene	56	ug/kg	14					
Dibenzo(a,h)anthracene	ND	ug/kg	14.					
Indeno(1,2,3-cd)Pyrene	44	ug/kg	14					
Pyrene	93	ug/kg	14					
2-Methylnaphthalene	ND	ug/kg ug/kg	14.					
Pentachlorophenol	ND	ug/kg	56.					
Hexachlorobenzene	ND	ug/kg ug/kg	56.					
Hexachloroethane	ND	ug/kg	56.					
Surrogate(s)	Recovery		QC Cri	teria	a.			
2-Fluorophenol	53.0	용	25-120					
Phenol-d6	57.0	용	10-120					
Nitrobenzene-d5	54.0	용	23-120					
2-Fluorobiphenyl	51.0	%	30-120					
2,4,6-Tribromophenol	71.0	%	19-120					
4-Terphenyl-d14	64.0	%	18-120					
Polychlorinated Biphenyls by	EPA 8082			1	8082	0906 12:00	0909 20:5	9 SH
Aroclor 1016	ND	ug/kg	34.7					
Aroclor 1221	ND	ug/kg	34.7					
Aroclor 1232	ND	ug/kg	34.7					
Aroclor 1242	ND	ug/kg	34.7					
Aroclor 1248	ND	ug/kg	34.7					
Aroclor 1254	ND	ug/kg	34.7					
Aroclor 1260	ND	ug/kg	34.7					
Surrogate(s)	Recovery	•	QC Cri		a			
2,4,5,6-Tetrachloro-m-xylene	55.0	8	30-150					
Decachlorobiphenyl	52.0	8	30-150					
Organochlorine Pesticides by				1	8081A	0906 10:30	0910 17:5	2 SS
Delta-BHC	ND	ug/kg	3.47					
Lindane	ND	ug/kg	3.47					
Alpha-BHC	ND	ug/kg	3.47					
Beta-BHC	ND	ug/kg	3.47					

Laboratory Sample Number: L0813196-21

PWG.SB.2008.21@5-10'

PARAMETER	RESULT	UNITS	RDL	REF 1	METHOD	DA PREP	TE ANAL	ID
Organochlorine Pesticides by	EPA 8081A c	cont'd		1	8081A	0906 10:30	0910 17:52	SS
Heptachlor	ND	ug/kg	3.47					
Aldrin	ND	ug/kg	3.47					
Heptachlor epoxide	ND	ug/kg	3.47					
Endrin	ND	ug/kg	3.47					
Endrin ketone	ND	ug/kg	3.47					
Dieldrin	ND	ug/kg	3.47					
4,4'-DDE	ND	ug/kg	3.47					
4,4'-DDD	ND	ug/kg	3.47					
4,4'-DDT	ND	ug/kg	3.47					
Endosulfan I	ND	ug/kg	3.47					
Endosulfan II	ND	ug/kg	3.47					
Endosulfan sulfate	ND	ug/kg	3.47					
Methoxychlor	ND	ug/kg	13.9					
trans-Chlordane	ND	ug/kg	3.47					
Chlordane	ND	ug/kg	34.7					
Surrogate(s)	Recovery		QC Crit	ceria				
2,4,5,6-Tetrachloro-m-xylene	59.0	8	30-150					
Decachlorobiphenyl	77.0	%	30-150					

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813196-22 Date Collected: 04-SEP-2008 10:45

Sample Matrix: WATER Date Reported: 15-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 82	60B			1 8260B	0910 03:16 PD
Methylene chloride	ND	ug/l	5.0	1 02000	0510 03:10 FD
1,1-Dichloroethane	ND	ug/l	0.75		
Chloroform	ND	ug/l	0.75		
Carbon tetrachloride	ND	ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND ND	ug/l	0.75		
Tetrachloroethene	ND	ug/l	0.50		
Chlorobenzene	ND	ug/1 ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/1 ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND ND	ug/l	0.50		
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND ND	ug/1 ug/l	0.75		
Chloromethane	ND	ug/1 ug/l	2.5		
Bromomethane	ND ND	ug/l ug/l	1.0		
Vinyl chloride	ND ND	ug/l	1.0		
Chloroethane	ND	ug/1 ug/l	1.0		
1,1-Dichloroethene	ND ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/1 ug/l	0.75		
Trichloroethene	ND ND	ug/l ug/l	0.75		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/1 ug/l	2.5		
1,4-Dichlorobenzene	ND ND	ug/1 ug/l	2.5		
Methyl tert butyl ether	ND	_	1.0		
o/m-Xylene	ND ND	ug/l ug/l	1.0		
o-Xylene	ND ND	ug/l ug/l	1.0		
cis-1,2-Dichloroethene	ND ND	ug/l ug/l	0.50		
Dibromomethane	ND ND	_	5.0		
		ug/l	5.0		
1,2,3-Trichloropropane Acrylonitrile	ND ND	ug/l ug/l	5.0		

Laboratory Sample Number: L0813196-22

PWG.GW.2008.01

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	ANAL	ID
Volatile Organics by EPA 826	OB contid			1	8260B		0910 03:1	6 DD
Styrene	ND	ug/l	1.0		02005		0910 03.1	O PD
Dichlorodifluoromethane	ND ND	ug/l ug/l	5.0					
Acetone	ND	ug/l	5.0					
Carbon disulfide	ND	ug/l ug/l	5.0					
2-Butanone	ND	ug/l	5.0					
Vinyl acetate	ND	ug/l	5.0					
4-Methyl-2-pentanone	ND	ug/l	5.0					
2-Hexanone	ND	ug/l	5.0					
Bromochloromethane	ND	ug/l	2.5					
2,2-Dichloropropane	ND	ug/l	2.5					
1,2-Dibromoethane	ND	ug/l	2.0					
1,3-Dichloropropane	ND	ug/l	2.5					
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50					
Bromobenzene	ND	ug/l	2.5					
n-Butylbenzene	ND	ug/l	0.50					
sec-Butylbenzene	ND	ug/l	0.50					
tert-Butylbenzene	ND	ug/l	2.5					
o-Chlorotoluene	ND	ug/l	2.5					
p-Chlorotoluene	ND	ug/l	2.5					
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5					
Hexachlorobutadiene	ND	ug/l	0.60					
Isopropylbenzene	ND	ug/l	0.50					
p-Isopropyltoluene	ND	ug/l	0.50					
Naphthalene	ND	ug/l	2.5					
n-Propylbenzene	ND	ug/l	0.50					
1,2,3-Trichlorobenzene	ND	ug/l	2.5					
1,2,4-Trichlorobenzene	ND	ug/l	2.5					
1,3,5-Trimethylbenzene	ND	ug/l	2.5					
1,2,4-Trimethylbenzene	ND	ug/l	2.5					
1,4-Diethylbenzene	ND	ug/l	2.0					
4-Ethyltoluene	ND ND	ug/l ug/l	2.0					
1,2,4,5-Tetramethylbenzene	ND ND	ug/l ug/l	2.0					
1,2,1,5-16c1amechy idenzene	אות	ug/1	2.0					
Surrogate(s)	Recovery		QC Cri	teria	ι			
1,2-Dichloroethane-d4	104	%	70-130)				
Toluene-d8	99.0	%	70-130)				
4-Bromofluorobenzene	105	8	70-130)				
Dibromofluoromethane	100	४	70-130)				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813196-23 Date Collected: 04-SEP-2008 11:40

Sample Matrix: WATER Date Reported: 15-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE II PREP ANAL
Volatile Organics by EPA 820	50B			1 8260B	0910 03:53 PI
Methylene chloride	ND	ug/l	5.0	1 02006	0910 03:33 FI
1,1-Dichloroethane	ND ND	ug/l	0.75		
Chloroform	ND	ug/l	0.75		
Carbon tetrachloride	ND	ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND ND	ug/l	0.75		
Tetrachloroethene	73	ug/l	0.50		
Chlorobenzene	ND	ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/1 ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND ND	ug/l	0.50		
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND	ug/1 ug/l	0.75		
Chloromethane	ND ND	ug/1 ug/l	2.5		
Bromomethane	ND	ug/l ug/l	1.0		
Vinyl chloride	ND ND	ug/l	1.0		
Chloroethane	ND	ug/1 ug/l	1.0		
1,1-Dichloroethene	ND ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/1 ug/l	0.75		
Trichloroethene	2.2	ug/l ug/l	0.75		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/1 ug/l	2.5		
1,4-Dichlorobenzene	ND ND	ug/1 ug/l	2.5		
Methyl tert butyl ether	ND	ug/1 ug/l	1.0		
p/m-Xylene	ND ND	ug/1 ug/l	1.0		
o-Xylene	ND ND	ug/l ug/l	1.0		
o-xylene cis-1,2-Dichloroethene	ND ND	ug/l ug/l	0.50		
Dibromomethane	ND ND	_	5.0		
1,2,3-Trichloropropane	ND ND	ug/l ug/l	5.0		
T,Z,3-IIICIIIOIOPIOPAIle	ND ND	ug/l ug/l	5.0		

Laboratory Sample Number: L0813196-23

PWG.GW.2008.15

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	ANAL	ID
Volatile Organics by EPA 826	OB cont'd			1	8260B		0910 03:5	3 PD
Styrene	ND	ug/l	1.0					
Dichlorodifluoromethane	ND	ug/l	5.0					
Acetone	ND	ug/l	5.0					
Carbon disulfide	ND	ug/l	5.0					
2-Butanone	ND	ug/l	5.0					
Vinyl acetate	ND	ug/l	5.0					
4-Methyl-2-pentanone	ND	ug/l	5.0					
2-Hexanone	ND	ug/l	5.0					
Bromochloromethane	ND	ug/l	2.5					
2,2-Dichloropropane	ND	ug/l	2.5					
1,2-Dibromoethane	ND	ug/l	2.0					
1,3-Dichloropropane	ND	ug/l	2.5					
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50					
Bromobenzene	ND	ug/l	2.5					
n-Butylbenzene	ND	ug/l	0.50					
sec-Butylbenzene	ND	ug/l	0.50					
tert-Butylbenzene	ND	ug/l	2.5					
o-Chlorotoluene	ND	ug/l	2.5					
p-Chlorotoluene	ND	ug/l	2.5					
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5					
Hexachlorobutadiene	ND	ug/l	0.60					
Isopropylbenzene	ND	ug/l	0.50					
p-Isopropyltoluene	ND	ug/l	0.50					
Naphthalene	ND	ug/l	2.5					
n-Propylbenzene	ND	ug/l	0.50					
1,2,3-Trichlorobenzene	ND	ug/l	2.5					
1,2,4-Trichlorobenzene	ND	ug/l	2.5					
1,3,5-Trimethylbenzene	ND	ug/l	2.5					
1,2,4-Trimethylbenzene	ND	ug/l	2.5					
1,4-Diethylbenzene	ND	ug/l	2.0					
4-Ethyltoluene	ND	ug/l	2.0					
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0					
Surrogate(s)	Recovery		QC Crit	teria	L			
1,2-Dichloroethane-d4	104	%	70-130					
Toluene-d8	98.0	%	70-130					
4-Bromofluorobenzene	102	%	70-130					
Dibromofluoromethane	98.0	%	70-130					

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813196-24 Date Collected: 04-SEP-2008 12:40

PWG.SB.2008.13@5-10' Date Received: 05-SEP-2008

Sample Matrix: SOIL Date Reported: 15-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Solids, Total	78	%	0.10	30 2540G	0911 15:15 SD
Volatile Organics by EPA 820	50B			1 8260B	0906 21:54 PD
Methylene chloride	ND	ug/kg	32.		
1,1-Dichloroethane	ND	ug/kg	4.8		
Chloroform	ND	ug/kg	4.8		
Carbon tetrachloride	ND	ug/kg	3.2		
1,2-Dichloropropane	ND	ug/kg	11.		
Dibromochloromethane	ND	ug/kg	3.2		
1,1,2-Trichloroethane	ND	ug/kg	4.8		
Tetrachloroethene	14	ug/kg	3.2		
Chlorobenzene	ND	ug/kg	3.2		
Trichlorofluoromethane	ND	ug/kg	16.		
1,2-Dichloroethane	ND	ug/kg	3.2		
1,1,1-Trichloroethane	ND	ug/kg	3.2		
Bromodichloromethane	ND	ug/kg	3.2		
trans-1,3-Dichloropropene	ND	ug/kg	3.2		
cis-1,3-Dichloropropene	ND	ug/kg	3.2		
1,1-Dichloropropene	ND	ug/kg	16.		
Bromoform	ND	ug/kg	13.		
1,1,2,2-Tetrachloroethane	ND	ug/kg	3.2		
Benzene	ND	ug/kg	3.2		
Toluene	ND	ug/kg	4.8		
Ethylbenzene	ND	ug/kg	3.2		
Chloromethane	ND	ug/kg	16.		
Bromomethane	ND	ug/kg	6.4		
Vinyl chloride	ND	ug/kg	6.4		
Chloroethane	ND	ug/kg	6.4		
1,1-Dichloroethene	ND	ug/kg	3.2		
trans-1,2-Dichloroethene	ND	ug/kg	4.8		
Trichloroethene	ND	ug/kg	3.2		
1,2-Dichlorobenzene	ND	ug/kg	16.		
1,3-Dichlorobenzene	ND	ug/kg	16.		
1,4-Dichlorobenzene	ND	ug/kg	16.		
Methyl tert butyl ether	ND	ug/kg	6.4		
p/m-Xylene	ND	ug/kg	6.4		
o-Xylene	ND	ug/kg	6.4		
cis-1,2-Dichloroethene	ND	ug/kg	3.2		
Dibromomethane	ND	ug/kg	32.		

Laboratory Sample Number: L0813196-24

PWG.SB.2008.13@5-10'

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE PREP ANAL	ID
Volatile Organics by EPA 826	OB cont'd			1 8260B	0906 21:54	4 PD
Styrene	ND	ug/kg	6.4		7777 22 7	
Dichlorodifluoromethane	ND	ug/kg	32.			
Acetone	ND	ug/kg	32.			
Carbon disulfide	ND	ug/kg	32.			
2-Butanone	ND	ug/kg	32.			
Vinyl acetate	ND	ug/kg	32.			
4-Methyl-2-pentanone	ND	ug/kg	32.			
1,2,3-Trichloropropane	ND	ug/kg	32.			
2-Hexanone	ND	ug/kg	32.			
Bromochloromethane	ND	ug/kg	16.			
2,2-Dichloropropane	ND	ug/kg	16.			
1,2-Dibromoethane	ND	ug/kg	13.			
1,3-Dichloropropane	ND	ug/kg	16.			
1,1,1,2-Tetrachloroethane	ND	ug/kg	3.2			
Bromobenzene	ND	ug/kg	16.			
n-Butylbenzene	ND	ug/kg	3.2			
sec-Butylbenzene	ND	ug/kg	3.2			
tert-Butylbenzene	ND	ug/kg	16.			
o-Chlorotoluene	ND	ug/kg	16.			
p-Chlorotoluene	ND	ug/kg	16.			
1,2-Dibromo-3-chloropropane	ND	ug/kg ug/kg	16.			
Hexachlorobutadiene	ND	ug/kg	16.			
Isopropylbenzene	ND	ug/kg	3.2			
p-Isopropyltoluene	ND	ug/kg ug/kg	3.2			
Naphthalene	ND	ug/kg	16.			
Acrylonitrile	ND	ug/kg ug/kg	32.			
n-Propylbenzene	ND	ug/kg ug/kg	3.2			
1,2,3-Trichlorobenzene	ND	ug/kg	16.			
1,2,4-Trichlorobenzene	ND	ug/kg ug/kg	16.			
1,3,5-Trimethylbenzene	ND	ug/kg	16.			
1,2,4-Trimethylbenzene	ND	ug/kg ug/kg	16.			
1,4-Diethylbenzene	ND	ug/kg ug/kg	13.			
4-Ethyltoluene	ND	ug/kg ug/kg	13.			
1,2,4,5-Tetramethylbenzene	ND	ug/kg ug/kg	13.			
1,2,1,5 recramedly inclination	1112	42/12	10.			
Surrogate(s)	Recovery		QC Crit	ceria		
1,2-Dichloroethane-d4	114	8	70-130			
Toluene-d8	113	%	70-130			
4-Bromofluorobenzene	127	%	70-130			
Dibromofluoromethane	108	%	70-130			

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813196-25 Date Collected: 04-SEP-2008 12:50

PWG.SB.2008.13@10-15' Date Received: 05-SEP-2008

Sample Matrix: SOIL Date Reported: 15-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Solids, Total	78	%	0.10	30 2540G	0911 15:15 SD
Volatile Organics by EPA 820	50B			1 8260B	0906 22:31 PD
Methylene chloride	ND	ug/kg	32.		
1,1-Dichloroethane	ND	ug/kg	4.8		
Chloroform	ND	ug/kg	4.8		
Carbon tetrachloride	ND	ug/kg	3.2		
1,2-Dichloropropane	ND	ug/kg	11.		
Dibromochloromethane	ND	ug/kg	3.2		
1,1,2-Trichloroethane	ND	ug/kg	4.8		
Tetrachloroethene	44	ug/kg	3.2		
Chlorobenzene	ND	ug/kg	3.2		
Trichlorofluoromethane	ND	ug/kg	16.		
1,2-Dichloroethane	ND	ug/kg	3.2		
1,1,1-Trichloroethane	ND	ug/kg	3.2		
Bromodichloromethane	ND	ug/kg	3.2		
trans-1,3-Dichloropropene	ND	ug/kg	3.2		
cis-1,3-Dichloropropene	ND	ug/kg	3.2		
1,1-Dichloropropene	ND	ug/kg	16.		
Bromoform	ND	ug/kg	13.		
1,1,2,2-Tetrachloroethane	ND	ug/kg	3.2		
Benzene	ND	ug/kg	3.2		
Toluene	ND	ug/kg	4.8		
Ethylbenzene	ND	ug/kg	3.2		
Chloromethane	ND	ug/kg	16.		
Bromomethane	ND	ug/kg	6.4		
Vinyl chloride	ND	ug/kg	6.4		
Chloroethane	ND	ug/kg	6.4		
1,1-Dichloroethene	ND	ug/kg	3.2		
trans-1,2-Dichloroethene	ND	ug/kg	4.8		
Trichloroethene	ND	ug/kg	3.2		
1,2-Dichlorobenzene	ND	ug/kg	16.		
1,3-Dichlorobenzene	ND	ug/kg	16.		
1,4-Dichlorobenzene	ND	ug/kg	16.		
Methyl tert butyl ether	ND	ug/kg	6.4		
p/m-Xylene	ND	ug/kg	6.4		
o-Xylene	ND	ug/kg	6.4		
cis-1,2-Dichloroethene	ND	ug/kg	3.2		
Dibromomethane	ND	ug/kg	32.		

Laboratory Sample Number: L0813196-25

PWG.SB.2008.13@10-15'

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA PREP	ANAL	ID
Volatile Organics by EPA 826	OB cont'd			1 8260B		0906 22:3	1 PD
Styrene	ND	ug/kg	6.4				
Dichlorodifluoromethane	ND	ug/kg	32.				
Acetone	ND	ug/kg	32.				
Carbon disulfide	ND	ug/kg	32.				
2-Butanone	ND	ug/kg	32.				
Vinyl acetate	ND	ug/kg	32.				
4-Methyl-2-pentanone	ND	ug/kg	32.				
1,2,3-Trichloropropane	ND	ug/kg	32.				
2-Hexanone	ND	ug/kg	32.				
Bromochloromethane	ND	ug/kg	16.				
2,2-Dichloropropane	ND	ug/kg	16.				
1,2-Dibromoethane	ND	ug/kg	13.				
1,3-Dichloropropane	ND	ug/kg	16.				
1,1,1,2-Tetrachloroethane	ND	ug/kg	3.2				
Bromobenzene	ND	ug/kg	16.				
n-Butylbenzene	ND	ug/kg	3.2				
sec-Butylbenzene	ND	ug/kg	3.2				
tert-Butylbenzene	ND	ug/kg	16.				
o-Chlorotoluene	ND	ug/kg	16.				
p-Chlorotoluene	ND	ug/kg	16.				
1,2-Dibromo-3-chloropropane	ND	ug/kg	16.				
Hexachlorobutadiene	ND	ug/kg	16.				
Isopropylbenzene	ND	ug/kg	3.2				
p-Isopropyltoluene	ND	ug/kg	3.2				
Naphthalene	ND	ug/kg	16.				
Acrylonitrile	ND	ug/kg	32.				
n-Propylbenzene	ND	ug/kg	3.2				
1,2,3-Trichlorobenzene	ND	ug/kg	16.				
1,2,4-Trichlorobenzene	ND	ug/kg	16.				
1,3,5-Trimethylbenzene	ND	ug/kg	16.				
1,2,4-Trimethylbenzene	ND	ug/kg	16.				
1,4-Diethylbenzene	ND	ug/kg	13.				
4-Ethyltoluene	ND	ug/kg	13.				
1,2,4,5-Tetramethylbenzene	ND	ug/kg	13.				
Surrogate(s)	Recovery			iteria			
1,2-Dichloroethane-d4	100	%	70-13				
Toluene-d8	99.0	%	70-13	0			
4-Bromofluorobenzene	115	%	70-13	0			
Dibromofluoromethane	94.0	%	70-13	0			

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813196-26 Date Collected: 04-SEP-2008 13:00

Sample Matrix: WATER Date Reported: 15-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 820	50B			1 8260B	0910 04:29 PD
Methylene chloride	ND	ug/l	100	1 0200B	0910 04.29 PD
1,1-Dichloroethane	ND ND	ug/l	15.		
Chloroform	ND ND	ug/1 ug/l	15.		
Carbon tetrachloride	ND	ug/l	10.		
1,2-Dichloropropane	ND	ug/l	35.		
Dibromochloromethane	ND	ug/l	10.		
1,1,2-Trichloroethane	ND	ug/l	15.		
Tetrachloroethene	1800	ug/l	10		
Chlorobenzene	ND	ug/l	10.		
Trichlorofluoromethane	ND	ug/l	50.		
1,2-Dichloroethane	ND	ug/l	10.		
1,1,1-Trichloroethane	ND	ug/l	10.		
Bromodichloromethane	ND	ug/l	10.		
trans-1,3-Dichloropropene	ND	ug/l	10.		
cis-1,3-Dichloropropene	ND	ug/l	10.		
1,1-Dichloropropene	ND	ug/l	50.		
Bromoform	ND	ug/l	40.		
1,1,2,2-Tetrachloroethane	ND	ug/l	10.		
Benzene	ND	ug/l	10.		
Toluene	ND	ug/l	15.		
Ethylbenzene	ND	ug/l	10.		
Chloromethane	ND	ug/l	50.		
Bromomethane	ND	ug/l	20.		
Vinyl chloride	ND	ug/l	20.		
Chloroethane	ND	ug/l	20.		
1,1-Dichloroethene	ND	ug/l	10.		
trans-1,2-Dichloroethene	ND	ug/l	15.		
Trichloroethene	11	ug/l	10		
1,2-Dichlorobenzene	ND	ug/l	50.		
1,3-Dichlorobenzene	ND	ug/l	50.		
1,4-Dichlorobenzene	ND	ug/l	50.		
Methyl tert butyl ether	ND	ug/l	20.		
p/m-Xylene	ND	ug/l	20.		
o-Xylene	ND	ug/l	20.		
cis-1,2-Dichloroethene	11	ug/l	10		
Dibromomethane	ND	ug/l	100		
1,2,3-Trichloropropane	ND	ug/l	100		
Acrylonitrile	ND	ug/l	100		

Laboratory Sample Number: L0813196-26

PWG.GW.2008.13

PARAMETER	RESULT	UNITS	RDL	REF 1	METHOD	DA PREP	ANAL	ID
Volatile Organics by EPA 8260	DR contid			1	8260B		0910 04:29	0 00
Styrene	ND	ug/l	20.	1	02006		0910 04.2	9 PD
Dichlorodifluoromethane	ND	ug/l ug/l	100					
Acetone	ND	ug/l ug/l	100					
Carbon disulfide	ND	ug/l ug/l	100					
2-Butanone	ND	ug/l ug/l	100					
Vinyl acetate	ND	ug/l	100					
4-Methyl-2-pentanone	ND	ug/l ug/l	100					
2-Hexanone	ND	ug/l ug/l	100					
Bromochloromethane	ND	ug/l ug/l	50.					
2,2-Dichloropropane	ND	ug/l ug/l	50.					
1,2-Dibromoethane	ND	ug/l ug/l	40.					
1,3-Dichloropropane	ND	ug/l ug/l	50.					
1,1,1,2-Tetrachloroethane	ND	ug/l ug/l	10.					
Bromobenzene	ND	ug/l ug/l	50.					
n-Butylbenzene	ND	ug/l ug/l	10.					
sec-Butylbenzene	ND	ug/l ug/l	10.					
tert-Butylbenzene	ND	ug/l ug/l	50.					
o-Chlorotoluene	ND	ug/l ug/l	50.					
p-Chlorotoluene	ND	ug/l ug/l	50.					
1,2-Dibromo-3-chloropropane	ND	ug/l ug/l	50.					
Hexachlorobutadiene	ND	ug/l ug/l	12.					
Isopropylbenzene	ND	ug/l ug/l	10.					
p-Isopropyltoluene	ND	_	10.					
Naphthalene	ND	ug/l ug/l	50.					
n-Propylbenzene	ND	ug/l ug/l	10.					
1,2,3-Trichlorobenzene	ND	ug/l ug/l	50.					
1,2,4-Trichlorobenzene	ND	ug/l ug/l	50.					
1,3,5-Trimethylbenzene	ND ND	ug/l ug/l	50.					
1,2,4-Trimethylbenzene	ND	ug/l ug/l	50.					
	ND	_	40.					
1,4-Diethylbenzene 4-Ethyltoluene	ND ND	ug/l	40.					
		ug/l	40.					
1,2,4,5-Tetramethylbenzene	ND	ug/l	40.					
Surrogate(s)	Recovery		QC Cr	iteria				
1,2-Dichloroethane-d4	103	%	70-13	0				
Toluene-d8	98.0	%	70-13	0				
4-Bromofluorobenzene	105	%	70-13	0				
Dibromofluoromethane	98.0	%	70-13	0				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813196-27 Date Collected: 04-SEP-2008 13:30

PWG.SB.2008.14@0-5' Date Received: 04-SEP-2008

Sample Matrix: SOIL Date Reported: 15-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE	ID
					PREP ANAL	
olids, Total	94	9	0.10	30 2540G	0909 18:20	NM (
Total Metals						
Aluminum, Total	4000	mg/kg	5.0	1 6010B	0908 14:00 0910 19:51	L TD
Antimony, Total	ND	mg/kg	2.5	1 6010B	0908 14:00 0910 19:51	L TD
Arsenic, Total	1.1	mg/kg	0.50	1 6010B	0908 14:00 0910 19:51	l TD
Barium, Total	19	mg/kg	0.50	1 6010B	0908 14:00 0910 19:51	L TD
Beryllium, Total	ND	mg/kg	0.25	1 6010B	0908 14:00 0910 19:51	L TD
Cadmium, Total	ND	mg/kg	0.50	1 6010B	0908 14:00 0910 19:51	L TD
Calcium, Total	350	mg/kg	5.0	1 6010B	0908 14:00 0910 19:51	l TD
Chromium, Total	4.2	mg/kg	0.50	1 6010B	0908 14:00 0910 19:51	l TD
Cobalt, Total	ND	mg/kg	1.0	1 6010B	0908 14:00 0910 19:51	l TD
Copper, Total	3.3	mg/kg	0.50	1 6010B	0908 14:00 0910 19:51	L TD
ron, Total	3800	mg/kg	2.5	1 6010B	0908 14:00 0910 19:51	L TD
Lead, Total	21	mg/kg	2.5	1 6010B	0908 14:00 0910 19:51	L TE
Magnesium, Total	380	mg/kg	5.0	1 6010B	0908 14:00 0910 19:51	L TD
Manganese, Total	55	mg/kg	0.50	1 6010B	0908 14:00 0910 19:51	L TI
Mercury, Total	ND	mg/kg	0.09	1 7471A	0910 21:30 0911 17:23	3 HG
Nickel, Total	2.3	mg/kg	1.2	1 6010B	0908 14:00 0910 19:51	L TD
Potassium, Total	150	mg/kg	120	1 6010B	0908 14:00 0910 19:51	L TD
Selenium, Total	ND	mg/kg	1.0	1 6010B	0908 14:00 0910 19:51	l TD
Silver, Total	ND	mg/kg	0.50	1 6010B	0908 14:00 0910 19:51	L TE
Sodium, Total	ND	mg/kg	100	1 6010B	0908 14:00 0910 19:51	L TE
Thallium, Total	ND	mg/kg	1.0	1 6010B	0908 14:00 0910 19:51	l TD
Janadium, Total	6.2	mg/kg	0.50	1 6010B	0908 14:00 0910 19:51	L TD
Zinc, Total	26	mg/kg	2.5	1 6010B	0908 14:00 0910 19:51	L TD
Volatile Organics by EPA 8	3260B			1 8260B	0906 23:08	3 PD
Methylene chloride	ND	ug/kg	26.			
l,1-Dichloroethane	ND	ug/kg	4.0			
Chloroform	ND	ug/kg	4.0			
Carbon tetrachloride	ND	ug/kg	2.6			
1,2-Dichloropropane	ND	ug/kg	9.3			
Dibromochloromethane	ND	ug/kg	2.6			
l,1,2-Trichloroethane	ND	ug/kg	4.0			
Tetrachloroethene	56	ug/kg	2.6			
Chlorobenzene	ND	ug/kg	2.6			
Trichlorofluoromethane	ND	ug/kg	13.			

Laboratory Sample Number: L0813196-27

PWG.SB.2008.14@0-5'

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Olatile Organics by EPA 826				1	8260B		0906 23:0	18 PD
l,2-Dichloroethane	ND	ug/kg	2.6					
1,1,1-Trichloroethane	ND	ug/kg	2.6					
Bromodichloromethane	ND	ug/kg	2.6					
rans-1,3-Dichloropropene	ND	ug/kg	2.6					
sis-1,3-Dichloropropene	ND	ug/kg	2.6					
,1-Dichloropropene	ND	ug/kg	13.					
Bromoform	ND	ug/kg	11.					
.,1,2,2-Tetrachloroethane	ND	ug/kg	2.6					
Benzene	ND	ug/kg	2.6					
'oluene	ND	ug/kg	4.0					
Sthylbenzene	ND	ug/kg	2.6					
Chloromethane	ND	ug/kg	13.					
Bromomethane	ND	ug/kg	5.3					
Jinyl chloride	ND	ug/kg	5.3					
Chloroethane	ND	ug/kg	5.3					
,1-Dichloroethene	ND	ug/kg	2.6					
rans-1,2-Dichloroethene	ND	ug/kg	4.0					
richloroethene	ND	ug/kg	2.6					
,2-Dichlorobenzene	ND	ug/kg	13.					
,3-Dichlorobenzene	ND	ug/kg	13.					
,4-Dichlorobenzene	ND	ug/kg	13.					
Methyl tert butyl ether	ND	ug/kg	5.3					
o/m-Xylene	ND	ug/kg	5.3					
-Xylene	ND	ug/kg	5.3					
is-1,2-Dichloroethene	ND	ug/kg	2.6					
Dibromomethane	ND	ug/kg	26.					
Styrene	ND	ug/kg	5.3					
Dichlorodifluoromethane	ND	ug/kg	26.					
acetone	ND	ug/kg	26.					
Carbon disulfide	ND	ug/kg	26.					
-Butanone	ND	ug/kg	26.					
inyl acetate	ND	ug/kg	26.					
l-Methyl-2-pentanone	ND	ug/kg	26.					
.,2,3-Trichloropropane	ND	ug/kg	26.					
2-Hexanone	ND	ug/kg	26.					
Bromochloromethane	ND	ug/kg	13.					
2,2-Dichloropropane	ND	ug/kg	13.					
,2-Dibromoethane	ND	ug/kg	11.					
,3-Dichloropropane	ND	ug/kg	13.					
,1,1,2-Tetrachloroethane	ND	ug/kg	2.6					
Bromobenzene	ND	ug/kg	13.					
-Butylbenzene	ND	ug/kg	2.6					
ec-Butylbenzene	ND	ug/kg	2.6					
ert-Butylbenzene	ND	ug/kg	13.					
-Chlorotoluene	ND	ug/kg	13.					
-Chlorotoluene	ND	ug/kg	13.					
.,2-Dibromo-3-chloropropane	ND	ug/kg	13.					
exachlorobutadiene	ND	ug/kg ug/kg	13.					
Isopropylbenzene	ND	ug/kg	2.6					

Laboratory Sample Number: L0813196-27

PWG.SB.2008.14@0-5'

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Volatile Organics by EPA 826	DR gontid			1	8260B		0906 23:	00 DD
p-Isopropyltoluene	ND	ug/kg	2.6		02006		0900 23.0	00 PD
Naphthalene			13.					
	ND	ug/kg	26.					
Acrylonitrile	ND	ug/kg						
n-Propylbenzene	ND	ug/kg	2.6					
1,2,3-Trichlorobenzene	ND	ug/kg	13.					
1,2,4-Trichlorobenzene	ND	ug/kg	13.					
1,3,5-Trimethylbenzene	ND	ug/kg	13.					
1,2,4-Trimethylbenzene	ND	ug/kg	13.					
1,4-Diethylbenzene	ND	ug/kg	11.					
4-Ethyltoluene	ND	ug/kg	11.					
1,2,4,5-Tetramethylbenzene	ND	ug/kg	11.					
Surrogate(s)	Recovery		QC Cri		à			
1,2-Dichloroethane-d4	109	%	70-130					
Toluene-d8	105	%	70-130					
4-Bromofluorobenzene	120	%	70-130)				
Dibromofluoromethane	99.0	%	70-130)				
Semivolatile Organics by EPA	8270C			1	8270C	0906 12:05	0910 17:	27 PS
Acenaphthene	ND	ug/kg	350					
1,2,4-Trichlorobenzene	ND	ug/kg	350					
Hexachlorobenzene	ND	ug/kg	350					
Bis(2-chloroethyl)ether	ND	ug/kg	350					
2-Chloronaphthalene	ND	ug/kg	420					
1,2-Dichlorobenzene	ND	ug/kg	350					
1,3-Dichlorobenzene	ND	ug/kg	350					
1,4-Dichlorobenzene	ND	ug/kg	350					
3,3'-Dichlorobenzidine	ND	ug/kg	710					
2,4-Dinitrotoluene	ND	ug/kg	350					
2,6-Dinitrotoluene	ND	ug/kg	350					
Fluoranthene	ND	ug/kg	350					
4-Chlorophenyl phenyl ether	ND	ug/kg	350					
4-Bromophenyl phenyl ether	ND	ug/kg	350					
Bis(2-chloroisopropyl)ether	ND	ug/kg	350					
Bis(2-chloroethoxy)methane	ND	ug/kg	350					
Hexachlorobutadiene	ND	ug/kg	710					
Hexachlorocyclopentadiene	ND	ug/kg	710					
Hexachloroethane	ND	ug/kg	350					
Isophorone	ND	ug/kg	350					
Naphthalene	ND	ug/kg	350					
Nitrobenzene	ND	ug/kg	350					
NitrosoDiPhenylAmine(NDPA)/D		ug/kg	1100					
n-Nitrosodi-n-propylamine	ND	ug/kg	350					
Bis(2-Ethylhexyl)phthalate	ND	ug/kg	710					
Butyl benzyl phthalate	ND	ug/kg	350					
Di-n-butylphthalate	ND	ug/kg	350					
Di-n-octylphthalate	ND	ug/kg ug/kg	350					
Diethyl phthalate	ND	ug/kg ug/kg	350					
JICCIII I PIICIIAIACC	1410	49/119	350					

Laboratory Sample Number: L0813196-27

PWG.SB.2008.14@0-5'

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Semivolatile Organics by EPA (3270C cont	'd		1	8270C	0906 12:05	0910 17:2	27 PS
Benzo(a)anthracene	ND	ug/kg	350	_				
Benzo(a)pyrene	ND	ug/kg ug/kg	350					
Benzo(b)fluoranthene	ND	ug/kg ug/kg	350					
Benzo(k)fluoranthene	ND	ug/kg ug/kg	350					
Chrysene	ND	ug/kg ug/kg	350					
Acenaphthylene	ND	ug/kg ug/kg	350					
Anthracene	ND		350					
		ug/kg						
Benzo(ghi)perylene	ND	ug/kg	350					
Fluorene	ND	ug/kg	350					
Phenanthrene	ND	ug/kg	350					
Dibenzo(a,h)anthracene	ND	ug/kg	350					
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	350					
Pyrene	ND	ug/kg	350					
Biphenyl	ND	ug/kg	350					
4-Chloroaniline	ND	ug/kg	350					
2-Nitroaniline	ND	ug/kg	350					
3-Nitroaniline	ND	ug/kg	350					
1-Nitroaniline	ND	ug/kg	500					
Dibenzofuran	ND	ug/kg	350					
2-Methylnaphthalene	ND	ug/kg	350					
1,2,4,5-Tetrachlorobenzene	ND	ug/kg	1400					
Acetophenone	ND	ug/kg	1400					
2,4,6-Trichlorophenol	ND	ug/kg	350					
P-Chloro-M-Cresol	ND	ug/kg	350					
2-Chlorophenol	ND	ug/kg	420					
2,4-Dichlorophenol	ND	ug/kg	710					
2,4-Dimethylphenol	ND	ug/kg	350					
2-Nitrophenol	ND	ug/kg	1400					
1-Nitrophenol	ND	ug/kg	710					
2,4-Dinitrophenol	ND	ug/kg	1400					
1,6-Dinitro-o-cresol	ND	ug/kg	1400					
Pentachlorophenol	ND	ug/kg	1400					
Phenol	ND	ug/kg	500					
2-Methylphenol	ND	ug/kg	420					
3-Methylphenol/4-Methylphenol	ND	ug/kg	420					
2,4,5-Trichlorophenol	ND	ug/kg	350					
Benzoic Acid	ND	ug/kg	3500					
Benzyl Alcohol	ND	ug/kg	710					
Carbazole	ND	ug/kg	350					
Surrogate(s)	Recovery		QC Cr	iteria	a			
2-Fluorophenol	53.0	%	25-120)				
Phenol-d6	53.0	%	10-120)				
Nitrobenzene-d5	47.0	%	23-120)				
2-Fluorobiphenyl	48.0	%	30-120)				
2,4,6-Tribromophenol	60.0	%	19-120)				
4-Terphenyl-d14	51.0	%	18-120					

Laboratory Sample Number: L0813196-27

PWG.SB.2008.14@0-5'

Semivolatile Organics by EPA 8270C-SIM cont'd	PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE	
Acemaphthene ND ug/kg 14. 2-Chloronaphthalene ND ug/kg 14. Fluoranthene ND ug/kg 14. Fluoranthene ND ug/kg 14. Fluoranthene ND ug/kg 35. Naphthalene ND ug/kg 14. Benzo(a) anthracene ND ug/kg 14. Benzo(a) pyrene ND ug/kg 14. Benzo(a) pyrene ND ug/kg 14. Benzo(b) fluoranthene ND ug/kg 14. Benzo(b) fluoranthene ND ug/kg 14. Benzo(b) fluoranthene ND ug/kg 14. Chrysene ND ug/kg 57. Chrysene ND ug/kg 57. Chrysene ND ug/kg 57. Chrysene ND ug/kg 57. Chrysene Chry						PREP	ANAL
Acceptable ND	Semivolatile Organics by	, EPA 8270C-STM	cont'd		1 82700	0906 12:05 09	11 06:30 AK
2-Chloronaphthalene ND				14	1 02,00	0,00 11 05 0	11 00 00 III
Fluoranthene ND	-						
Mexachlorobutadiene	-						
Maphthalene ND ug/kg 14. Benzo(a)anthracene ND ug/kg 14. Benzo(b)fluoranthene ND ug/kg 14. Benzo(b)fluoranthene ND ug/kg 14. Benzo(k)fluoranthene ND ug/kg 14. Chrysene ND ug/kg 14. Acenaphthylene ND ug/kg 14. Acenaphthylene ND ug/kg 14. Acenaphthylene ND ug/kg 14. Benzo(ghi)perylene ND ug/kg 14. Pleanthylene ND ug/kg 14. Pleanathrene ND ug/kg 14. Dibenzo(a,h)anthracene ND ug/kg 14. Dibenzo(a,h)anthracene ND ug/kg 14. Dibenzo(a,h)anthracene ND ug/kg 14. Dibenzo(a,h)anthracene ND ug/kg 14. Privere ND ug/kg 14. Pertenzo(a,h)anthracene							
Benzo(a) anthracene ND ug/kg 14. Benzo(a) pyrene ND ug/kg 14. Benzo(b) fluoranthene ND ug/kg 14. Benzo(k) fluoranthene ND ug/kg 14. Chrysene ND ug/kg 14. Benzo(ghi) perylene ND ug/kg 14. Benzo(a,h) anthracene ND ug/kg 14. Dibenzo(a,h) anthracene ND ug/kg 57. Benzo(a) Pyrene ND ug/kg 57. Benzo(a) ND ug/kg 35.5 Benzo(a) ND ug/kg 3							
Benzo(a)pyrene ND ug/kg 14. Benzo(b)fluoranthene ND ug/kg 14. Benzo(b)fluoranthene ND ug/kg 14. Chrysene ND ug/kg 57. Chrysene ND ug/kg 35.5 Chrysene ND ug/kg	-						
Benzo(b)fluoranthene ND ug/kg 14. Benzo(k)fluoranthene ND ug/kg 14. Chrysene ND ug/kg 14. Chrysene ND ug/kg 14. Acenaphthylene ND ug/kg 14. Benzo(ghi)perylene ND ug/kg 14. Benzo(ghi)perylene ND ug/kg 14. Benzo(ghi)perylene ND ug/kg 14. Pluorene ND ug/kg 14. Prenanthrene ND ug/kg 14. Prenanthrene ND ug/kg 14. Prene ND ug/kg 14. Prene ND ug/kg 14. Prene ND ug/kg 57. Hexachlorophenol ND ug/kg 57. Hexachlorobenzene ND ug/kg 57. Hexachloroethane ND ug/kg 35.5 Hexaclor 1240 ND ug/kg 35.5 Hexaclor 1241 ND ug/kg 35.5 Hexaclor 1242 ND ug/kg 35.5 Hexaclor 1248 ND ug/kg 35.5 Hexaclor 1254 ND ug/kg 35.5 Hexaclor 1260 ND ug/kg							
### Benzo(k)fluoranthene							
Chrysene ND ug/kg 14. Acenaphthylene ND ug/kg 14. Acenaphthylene ND ug/kg 14. Benzo(ghi)perylene ND ug/kg 14. Fluorene ND ug/kg 14. Phenanthrene ND ug/kg 14. Phenanthrene ND ug/kg 14. Phenanthrene ND ug/kg 14. Dibenzo(a,h)anthracene ND ug/kg 14. Indeno(1,2,3-cd)Pyrene ND ug/kg 14. Pyrene ND ug/kg 14. Pyrene ND ug/kg 14. Pentachlorophenol ND ug/kg 57. Hexachlorobenzene ND ug/kg 57. Hexachlorobenzene ND ug/kg 57. Surrogate(s) Recovery QC Criteria 25-120 Phenol-d6 56.0 % 10-120 Nitrobenzene-d5 50.0 % 25-120 Phenol-d6 56.0 % 10-120 Nitrobenzene-d5 50.0 % 23-120 2-Fluorobiphenyl 51.0 % 30-120 2,4,6-Tribromophenol 72.0 % 19-120 4-Terphenyl-d14 64.0 % 18-120 Polychlorinated Biphenyls by EPA 8082 1 8082 0906 12:00 090 Aroclor 1016 ND ug/kg 35.5 Aroclor 1232 ND ug/kg 35.5 Aroclor 1242 ND ug/kg 35.5 Aroclor 1248 ND ug/kg 35.5 Aroclor 1254 ND ug/kg 35.5 Surrogate(s) Recovery QC Criteria 35.5 Aroclor 1254 ND ug/kg 35.5 Surrogate(s) Recovery QC Criteria 35.5 Aroclor 1254 ND ug/kg 35.5 Aroclor 1254 ND ug/kg 35.5 Surrogate(s) Recovery QC Criteria 35.5 Aroclor 1254 ND ug/kg 35.5 Surrogate(s) Recovery QC Criteria 35.7 2,4,5,6-Tetrachloro-m-xylene 63.0 % 30-150 Decachlorobiphenyl 57.0 % 30-150 Decachlorobiphenyl 57.0 % 30-150	, ,						
Acenaphthylene Anthracene ND ug/kg 14. Anthracene ND ug/kg 14. Benzo(ghi)perylene ND ug/kg 14. Fluorene ND ug/kg 57. Fluorene ND ug/kg 57. Fluorene Fluorene ND ug/kg 57. Fluorene Fluorene ND ug/kg 57. Fluorene Fluorene Fluorene ND ug/kg 57. Fluorene Fluore	` '						
Anthracene Senzo(ghi)perylene Senzo(ghi)perylene ND Ug/kg 14. Fluorene ND Ug/kg 14. Fluorene ND ND Ng/kg 157. Fluorene ND ND ND Ng/kg 16. Fluorene ND ND Ng/kg 16. Fluorene ND ND Ng/kg ND ND Ng/kg NG							
### Benzo(ghi)perylene							
Fluorene ND ug/kg 14. Phenanthrene ND ug/kg 14. Dibenzo(a,h)anthracene ND ug/kg 14. Indeno(1,2,3-cd)Pyrene ND ug/kg 14. Pyrene ND ug/kg 14. Pyrene ND ug/kg 14. Pyrene ND ug/kg 14. Pentachlorophenol ND ug/kg 57. Hexachlorobenzene ND ug/kg 57. Surrogate(s) Recovery QC Criteria 2-120 Phenol-d6 56.0 % 10-120 Nitrobenzene-d5 50.0 % 23-120 Phenol-d6 56.0 % 10-120 Nitrobenzene-d5 50.0 % 23-120 Phenol-d6 56.0 % 19-120 Phenol-d6 6 56.0 % 19-120 Phenol-d6 6 56.0							
Phenanthrene ND							
Dibenzo(a,h)anthracene ND ug/kg 14. Indeno(1,2,3-cd)Pyrene ND ug/kg 14. Pyrene ND ug/kg 14. 2-Methylnaphthalene ND ug/kg 14. Pentachlorophenol ND ug/kg 57. Hexachlorobenzene ND ug/kg 57. Hexachloroethane ND ug/kg 57. Surrogate(s) Recovery QC Criteria 2-Fluorophenol 50.0 % 25-120 Phenol-d6 56.0 % 10-120 Nitrobenzene-d5 50.0 % 23-120 2-Fluorobiphenyl 51.0 % 30-120 2,4,6-Tribromophenol 72.0 % 19-120 4-Terphenyl-d14 64.0 % 18-120 Polychlorinated Biphenyls by EPA 8082 1 8082 0906 12:00 090 Aroclor 1016 ND ug/kg 35.5 Aroclor 1221 ND ug/kg 35.5 Aroclor 1232 ND ug/kg 35.5 Aroclor 1242 ND ug/kg 35.5 Aroclor 1248 ND ug/kg 35.5 Aroclor 1248 ND ug/kg 35.5 Aroclor 1254 ND ug/kg 35.5 Surrogate(s) Recovery QC Criteria 2,4,5,6-Tetrachloro-m-xylene 63.0 % 30-150 Organochlorine Pesticides by EPA 8081A 1 8081A 0906 10:30 091 Delta-BHC ND ug/kg 3.55							
Indeno(1,2,3-cd)Pyrene ND ug/kg 14. Pyrene ND ug/kg 14. 2-Methylnaphthalene ND ug/kg 14. Pentachlorophenol ND ug/kg 57. Hexachlorobenzene ND ug/kg 57. Hexachloroethane ND ug/kg 57. Surrogate(s) Recovery QC Criteria 2-Fluorophenol 50.0 % 25-120 Phenol-d6 56.0 % 10-120 Nitrobenzene-d5 50.0 % 23-120 2-Fluorobiphenyl 51.0 % 30-120 2-Fluorobiphenyl 51.0 % 30-120 2-4,6-Tribromophenol 72.0 % 19-120 4-Terphenyl-d14 64.0 % 18-120 Polychlorinated Biphenyls by EPA 8082 1 8082 0906 12:00 090 Aroclor 1016 ND ug/kg 35.5 Aroclor 1221 ND ug/kg 35.5 Aroclor 1232 ND ug/kg 35.5 Aroclor 1242 ND ug/kg 35.5 Aroclor 1242 ND ug/kg 35.5 Aroclor 1254 ND ug/kg 35.5 Aroclor 1254 ND ug/kg 35.5 Surrogate(s) Recovery QC Criteria 2,4,5,6-Tetrachloro-m-xylene 63.0 % 30-150 Decachlorobiphenyl 57.0 % 30-150 Organochlorine Pesticides by EPA 8081A 1 8081A 0906 10:30 091 Delta-BHC ND ug/kg 3.55							
Pyrene ND ug/kg 14. 2-Methylnaphthalene ND ug/kg 14. Pentachlorophenol ND ug/kg 57. Hexachlorobenzene ND ug/kg 57. Hexachloroethane ND ug/kg 57. Surrogate(s) Recovery QC Criteria 2-Fluorophenol 50.0 % 25-120 Phenol-d6 56.0 % 10-120 Nitrobenzene-d5 50.0 % 23-120 2-Fluorobiphenyl 51.0 % 30-120 2-Fluorobiphenyl 51.0 % 30-120 4-Terphenyl-d14 64.0 % 18-120 Polychlorinated Biphenyls by EPA 8082 1 8082 0906 12:00 090 Aroclor 1016 ND ug/kg 35.5 Aroclor 1221 ND ug/kg 35.5 Aroclor 1232 ND ug/kg 35.5 Aroclor 1242 ND ug/kg 35.5 Aroclor 1242 ND ug/kg 35.5 Aroclor 1254 ND ug/kg 35.5 Aroclor 1254 ND ug/kg 35.5 Surrogate(s) Recovery QC Criteria 2-4,5,6-Tetrachloro-m-xylene 63.0 % 30-150 Decachlorobiphenyl 57.0 % 30-150 Doganochlorine Pesticides by EPA 8081A 1 8081A 0906 10:30 091 Doganochlorine Pesticides by EPA 8081A 1 8081A 0906 10:30 091							
2-Methylnaphthalene ND ug/kg 14. Pentachlorophenol ND ug/kg 57. Hexachlorophenol ND ug/kg 57. Hexachloroethane ND ug/kg 57. Hexachloroethane ND ug/kg 57. Surrogate(s) Recovery QC Criteria 2-Fluorophenol 50.0 % 25-120 Phenol-d6 56.0 % 10-120 Phenol-d6 50.0 % 23-120 2-Fluorobiphenyl 51.0 % 30-120 2-Fluorobiphenyl 51.0 % 30-120 2-Fluorobiphenyl 64.0 % 19-120 4-Terphenyl-d14 64.0 % 18-120 Polychlorinated Biphenyls by EPA 8082 1 8082 0906 12:00 090 Aroclor 1016 ND ug/kg 35.5 Aroclor 1221 ND ug/kg 35.5 Aroclor 1242 ND ug/kg 35.5 Aroclor 1242 ND ug/kg 35.5 Aroclor 1248 ND ug/kg 35.5 Aroclor 1254 ND ug/kg 35.5 Aroclor 1260 ND ug/kg 35.5 Surrogate(s) Recovery QC Criteria 2-4,4,5,6-Tetrachloro-m-xylene 63.0 % 30-150 Decachlorobiphenyl 57.0 % 30-150 Decachlorine Pesticides by EPA 8081A 1 8081A 0906 10:30 091 Delta-BHC ND ug/kg 3.55	=						
Pentachlorophenol ND ug/kg 57. Hexachlorobenzene ND ug/kg 57. Hexachloroethane ND ug/kg 57. Surrogate(s) Recovery QC Criteria 2-Fluorophenol 50.0 % 25-120 Phenol-d6 56.0 % 10-120 Nitrobenzene-d5 50.0 % 23-120 2-Fluorobiphenyl 51.0 % 30-120 2-fluorobiphenyl 51.0 % 30-120 4-Terphenyl-d14 64.0 % 18-120 Polychlorinated Biphenyls by EPA 8082 1 8082 0906 12:00 090 Aroclor 1016 ND ug/kg 35.5 Aroclor 1221 ND ug/kg 35.5 Aroclor 1232 ND ug/kg 35.5 Aroclor 1242 ND ug/kg 35.5 Aroclor 1242 ND ug/kg 35.5 Aroclor 1248 ND ug/kg 35.5 Aroclor 1254 ND ug/kg 35.5 Surrogate(s) Recovery QC Criteria 2-4,5,6-Tetrachloro-m-xylene 63.0 % 30-150 Decachlorobiphenyl 57.0 % 30-150 Organochlorine Pesticides by EPA 8081A 1 8081A 0906 10:30 091 Delta-BHC ND ug/kg 3.55	-						
Hexachlorobenzene ND ug/kg 57. Hexachloroethane ND ug/kg 57. Surrogate(s) Recovery QC Criteria 2-Fluorophenol 50.0 % 25-120 Phenol-d6 56.0 % 10-120 Nitrobenzene-d5 50.0 % 23-120 2-Fluorobiphenyl 51.0 % 30-120 2-4,6-Tribromophenol 72.0 % 19-120 4-Terphenyl-d14 64.0 % 18-120 Polychlorinated Biphenyls by EPA 8082 1 8082 0906 12:00 090 Aroclor 1016 ND ug/kg 35.5 Aroclor 1221 ND ug/kg 35.5 Aroclor 1232 ND ug/kg 35.5 Aroclor 1242 ND ug/kg 35.5 Aroclor 1242 ND ug/kg 35.5 Aroclor 1248 ND ug/kg 35.5 Aroclor 1254 ND ug/kg 35.5 Aroclor 1260 ND ug/kg 35.5 Surrogate(s) Recovery QC Criteria 2,4,5,6-Tetrachloro-m-xylene 63.0 % 30-150 Decachlorobiphenyl 57.0 % 30-150 Organochlorine Pesticides by EPA 8081A 1 8081A 0906 10:30 091 Delta-BHC ND ug/kg 3.55							
Recovery QC Criteria QC	-						
Surrogate(s) Recovery QC Criteria 2-Fluorophenol 50.0 8 25-120 Phenol-d6 56.0 8 10-120 Nitrobenzene-d5 50.0 8 23-120 2-Fluorobiphenyl 51.0 8 30-120 2-4,6-Tribromophenol 72.0 8 19-120 4-Terphenyl-d14 64.0 8 18-120 Polychlorinated Biphenyls by EPA 8082 Aroclor 1016 ND ug/kg 35.5 Aroclor 1221 ND ug/kg 35.5 Aroclor 1242 ND ug/kg 35.5 Aroclor 1242 ND ug/kg 35.5 Aroclor 1248 ND ug/kg 35.5 Aroclor 1254 ND ug/kg 35.5 Aroclor 1254 ND ug/kg 35.5 Aroclor 1260 ND ug/kg 35.5 Aroclor 1270 Aroclor 1280 Aroclor 1290 Aroclor 1290 Aroclor 1290 Aroclor 1200 ND ug/kg 35.5 Aroclor 1200 ND ug/kg 35.5 Aroclor 1254 ND ug/kg 35.5 Aroclor 1260 ND ug/kg 35.5							
2-Fluorophenol 50.0 % 25-120 Phenol-d6 56.0 % 10-120 Nitrobenzene-d5 50.0 % 23-120 2-Fluorobiphenyl 51.0 % 30-120 2,4,6-Tribromophenol 72.0 % 19-120 4-Terphenyl-d14 64.0 % 18-120 Polychlorinated Biphenyls by EPA 8082 1 8082 0906 12:00 090 Aroclor 1016 ND ug/kg 35.5 Aroclor 1221 ND ug/kg 35.5 Aroclor 1232 ND ug/kg 35.5 Aroclor 1242 ND ug/kg 35.5 Aroclor 1248 ND ug/kg 35.5 Aroclor 1254 ND ug/kg 35.5 Aroclor 1260 ND ug/kg 35.5 Surrogate(s) Recovery QC Criteria 2,4,5,6-Tetrachloro-m-xylene 63.0 % 30-150 Decachlorobiphenyl 57.0 % 30-150 Organochlorine Pesticides by EPA 8081A 1 8081A 0906 10:30 091 Delta-BHC ND ug/kg 3.55	Hexachioroethane	ND	ug/kg	5/.			
Phenol-d6	_	-					
Nitrobenzene-d5 50.0 % 23-120 2-Fluorobiphenyl 51.0 % 30-120 2,4,6-Tribromophenol 72.0 % 19-120 4-Terphenyl-d14 64.0 % 18-120 Polychlorinated Biphenyls by EPA 8082 1 8082 0906 12:00 090 Arcolor 1016 ND ug/kg 35.5 Arcolor 1221 ND ug/kg 35.5 Arcolor 1232 ND ug/kg 35.5 Arcolor 1242 ND ug/kg 35.5 Arcolor 1248 ND ug/kg 35.5 Arcolor 1254 ND ug/kg 35.5 Arcolor 1260 ND ug/kg 35.5 Surrogate(s) Recovery QC Criteria 2,4,5,6-Tetrachloro-m-xylene 63.0 % 30-150 Decachlorobiphenyl 57.0 % 30-150 Organochlorine Pesticides by EPA 8081A 1 8081A 0906 10:30 091 Delta-BHC ND ug/kg 3.55	2-Fluorophenol		왕				
2-Fluorobiphenyl 51.0 % 30-120 2,4,6-Tribromophenol 72.0 % 19-120 4-Terphenyl-d14 64.0 % 18-120 Polychlorinated Biphenyls by EPA 8082 1 8082 0906 12:00 090 Aroclor 1016 ND ug/kg 35.5 Aroclor 1221 ND ug/kg 35.5 Aroclor 1232 ND ug/kg 35.5 Aroclor 1242 ND ug/kg 35.5 Aroclor 1248 ND ug/kg 35.5 Aroclor 1254 ND ug/kg 35.5 Aroclor 1260 ND ug/kg 35.5 Surrogate(s) Recovery QC Criteria 2,4,5,6-Tetrachloro-m-xylene 63.0 % 30-150 Decachlorobiphenyl 57.0 % 30-150 Decachlorine Pesticides by EPA 8081A 1 8081A 0906 10:30 091 Delta-BHC ND ug/kg 3.55		56.0	%				
2,4,6-Tribromophenol 72.0 % 19-120 4-Terphenyl-d14 64.0 % 18-120 Polychlorinated Biphenyls by EPA 8082 1 8082 0906 12:00 090 Aroclor 1016 ND ug/kg 35.5 Aroclor 1221 ND ug/kg 35.5 Aroclor 1232 ND ug/kg 35.5 Aroclor 1242 ND ug/kg 35.5 Aroclor 1248 ND ug/kg 35.5 Aroclor 1254 ND ug/kg 35.5 Aroclor 1260 ND ug/kg 35.5 Surrogate(s) Recovery QC Criteria 2,4,5,6-Tetrachloro-m-xylene 63.0 % 30-150 Decachlorobiphenyl 57.0 % 30-150 Organochlorine Pesticides by EPA 8081A 1 8081A 0906 10:30 091 Delta-BHC ND ug/kg 3.55		50.0	%	23-120)		
### Terphenyl-d14		51.0	%	30-120)		
Polychlorinated Biphenyls by EPA 8082 Aroclor 1016 Anoclor 1221 Anoclor 1221 Anoclor 1232 Anoclor 1242 Anoclor 1242 Anoclor 1248 Anoclor 1254 Anoclor 1254 Anoclor 1260 ND Ug/kg 35.5 Aroclor 1260 ND Ug/kg 35.5 Aroclor 1250 Anoclor 1260 ND Ug/kg 35.5 Aroclor 1260 ND Ug/kg 35.5	2,4,6-Tribromophenol	72.0	%	19-120)		
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1260 Recovery 2,4,5,6-Tetrachloro-m-xylene 63.0 Decachlorobiphenyl Delta-BHC ND ug/kg 35.5 ND ug/kg 35.5 ND ug/kg 35.5 ND ug/kg 35.5 QC Criteria 30-150 30-150 1 8081A 0906 10:30 091	4-Terphenyl-d14	64.0	%	18-120)		
Aroclor 1221	Polychlorinated Bipheny	Ls by EPA 8082			1 8082	0906 12:00 09	09 21:13 SH
Aroclor 1232 ND ug/kg 35.5 Aroclor 1242 ND ug/kg 35.5 Aroclor 1248 ND ug/kg 35.5 Aroclor 1254 ND ug/kg 35.5 Aroclor 1260 ND ug/kg 35.5 Surrogate(s) Recovery QC Criteria 2.4,5,6-Tetrachloro-m-xylene 63.0 % 30-150 Decachlorobiphenyl 57.0 % 30-150 Organochlorine Pesticides by EPA 8081A 1 8081A 0906 10:30 091 Delta-BHC ND ug/kg 3.55	Aroclor 1016	ND	ug/kg	35.5			
Aroclor 1232	Aroclor 1221	ND	ug/kg	35.5			
Aroclor 1242 ND ug/kg 35.5 Aroclor 1248 ND ug/kg 35.5 Aroclor 1254 ND ug/kg 35.5 Aroclor 1260 ND ug/kg 35.5 Surrogate(s) Recovery QC Criteria 30-150 Decachlorobiphenyl 57.0 % 30-150 Organochlorine Pesticides by EPA 8081A 1 8081A 0906 10:30 091 Delta-BHC ND ug/kg 3.55	Aroclor 1232	ND	ug/kg				
Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260 ND Ug/kg 35.5 Aroclor 1260 ND Ug/kg 35.5 Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene 63.0 Decachlorobiphenyl 57.0 Corganochlorine Pesticides by EPA 8081A Delta-BHC ND Ug/kg 35.5 QC Criteria 30-150 30-150 1 8081A 0906 10:30 091		ND					
Aroclor 1254 ND ug/kg 35.5 Aroclor 1260 ND ug/kg 35.5 Surrogate(s) Recovery QC Criteria 2,4,5,6-Tetrachloro-m-xylene 63.0 % 30-150 Decachlorobiphenyl 57.0 % 30-150 Organochlorine Pesticides by EPA 8081A 1 8081A 0906 10:30 091 Delta-BHC ND ug/kg 3.55		ND					
Aroclor 1260 ND ug/kg 35.5 Surrogate(s) Recovery QC Criteria 2,4,5,6-Tetrachloro-m-xylene 63.0 % 30-150 Decachlorobiphenyl 57.0 % 30-150 Organochlorine Pesticides by EPA 8081A 1 8081A 0906 10:30 091 Delta-BHC ND ug/kg 3.55	Aroclor 1254						
2,4,5,6-Tetrachloro-m-xylene 63.0 % 30-150 Decachlorobiphenyl 57.0 % 30-150 Organochlorine Pesticides by EPA 8081A 1 8081A 0906 10:30 091 Delta-BHC ND ug/kg 3.55	Aroclor 1260	ND					
2,4,5,6-Tetrachloro-m-xylene 63.0 % 30-150 Decachlorobiphenyl 57.0 % 30-150 Organochlorine Pesticides by EPA 8081A 1 8081A 0906 10:30 091 Delta-BHC ND ug/kg 3.55	Surrogate(s)	Recovery		QC Cr	iteria		
Decachlorobiphenyl 57.0 % 30-150 Organochlorine Pesticides by EPA 8081A 1 8081A 0906 10:30 091 Delta-BHC ND ug/kg 3.55		-					
Delta-BHC ND ug/kg 3.55							
Delta-BHC ND ug/kg 3.55	Organochlorine Pesticide	es by EPA 8081A			1 8081A	0906 10:30 09	10 18:05 SS
				3.55	_ 000111	1100 10.00 00	0 05 55
hindane ND ua/ka 3.55	Lindane	ND	ug/kg	3.55			
Alpha-BHC ND ug/kg 3.55							
Beta-BHC ND ug/kg 3.55							

Laboratory Sample Number: L0813196-27

PWG.SB.2008.14@0-5'

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA PREP	TE ANAL	ID
Organochlorine Pesticides by	EPA 8081A	cont'd		1 8081A	0906 10:30	0910 18:05	SS
Heptachlor	ND	ug/kg	3.55				
Aldrin	ND	ug/kg	3.55				
Heptachlor epoxide	ND	ug/kg	3.55				
Endrin	ND	ug/kg	3.55				
Endrin ketone	ND	ug/kg	3.55				
Dieldrin	ND	ug/kg	3.55				
4,4'-DDE	ND	ug/kg	3.55				
4,4'-DDD	ND	ug/kg	3.55				
4,4'-DDT	ND	ug/kg	3.55				
Endosulfan I	ND	ug/kg	3.55				
Endosulfan II	ND	ug/kg	3.55				
Endosulfan sulfate	ND	ug/kg	3.55				
Methoxychlor	ND	ug/kg	14.2				
trans-Chlordane	ND	ug/kg	3.55				
Chlordane	ND	ug/kg	35.5				
Surrogate(s)	Recovery		QC Cri	teria			
2,4,5,6-Tetrachloro-m-xylene	59.0	%	30-150				
Decachlorobiphenyl	76.0	૪	30-150				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813196-28 Date Collected: 04-SEP-2008 13:35

PWG.SB.2008.14@10-15' Date Received: 05-SEP-2008

Sample Matrix: SOIL Date Reported: 15-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Solids, Total	76	%	0.10	30 2540G	0911 15:15 SD
Volatile Organics by EPA 820	50B			1 8260B	0908 12:59 PD
Methylene chloride	ND	ug/kg	66.		
1,1-Dichloroethane	ND	ug/kg	9.9		
Chloroform	ND	ug/kg	9.9		
Carbon tetrachloride	ND	ug/kg	6.6		
1,2-Dichloropropane	ND	ug/kg	23.		
Dibromochloromethane	ND	ug/kg	6.6		
1,1,2-Trichloroethane	ND	ug/kg	9.9		
Tetrachloroethene	290	ug/kg	6.6		
Chlorobenzene	ND	ug/kg	6.6		
Trichlorofluoromethane	ND	ug/kg	33.		
1,2-Dichloroethane	ND	ug/kg	6.6		
1,1,1-Trichloroethane	ND	ug/kg	6.6		
Bromodichloromethane	ND	ug/kg	6.6		
trans-1,3-Dichloropropene	ND	ug/kg	6.6		
cis-1,3-Dichloropropene	ND	ug/kg	6.6		
1,1-Dichloropropene	ND	ug/kg	33.		
Bromoform	ND	ug/kg	26.		
1,1,2,2-Tetrachloroethane	ND	ug/kg	6.6		
Benzene	ND	ug/kg	6.6		
Toluene	ND	ug/kg	9.9		
Ethylbenzene	ND	ug/kg	6.6		
Chloromethane	ND	ug/kg	33.		
Bromomethane	ND	ug/kg	13.		
Vinyl chloride	ND	ug/kg	13.		
Chloroethane	ND	ug/kg	13.		
1,1-Dichloroethene	ND	ug/kg	6.6		
trans-1,2-Dichloroethene	ND	ug/kg	9.9		
Trichloroethene	ND	ug/kg	6.6		
1,2-Dichlorobenzene	ND	ug/kg	33.		
1,3-Dichlorobenzene	ND	ug/kg	33.		
1,4-Dichlorobenzene	ND	ug/kg	33.		
Methyl tert butyl ether	ND	ug/kg	13.		
p/m-Xylene	ND	ug/kg	13.		
o-Xylene	ND	ug/kg	13.		
cis-1,2-Dichloroethene	ND	ug/kg	6.6		
Dibromomethane	ND	ug/kg	66.		

Laboratory Sample Number: L0813196-28

PWG.SB.2008.14@10-15'

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DAT PREP	E ANAL	ID
Volatile Organics by EPA 826	OB contid			1 8260B		0908 12:59	חק (
Styrene	ND	ug/kg	13.	1 02002		0,00 12 0,	- 12
Dichlorodifluoromethane	ND	ug/kg	66.				
Acetone	ND	ug/kg	66.				
Carbon disulfide	ND	ug/kg	66.				
2-Butanone	ND	ug/kg	66.				
Vinyl acetate	ND	ug/kg	66.				
4-Methyl-2-pentanone	ND	ug/kg	66.				
1,2,3-Trichloropropane	ND	ug/kg	66.				
2-Hexanone	ND	ug/kg	66.				
Bromochloromethane	ND	ug/kg	33.				
2,2-Dichloropropane	ND	ug/kg	33.				
1,2-Dibromoethane	ND	ug/kg	26.				
1,3-Dichloropropane	ND	ug/kg	33.				
1,1,1,2-Tetrachloroethane	ND	ug/kg	6.6				
Bromobenzene	ND	ug/kg	33.				
n-Butylbenzene	ND	ug/kg	6.6				
sec-Butylbenzene	ND	ug/kg	6.6				
tert-Butylbenzene	ND	ug/kg	33.				
o-Chlorotoluene	ND	ug/kg	33.				
p-Chlorotoluene	ND	ug/kg	33.				
1,2-Dibromo-3-chloropropane	ND	ug/kg	33.				
Hexachlorobutadiene	ND	ug/kg	33.				
Isopropylbenzene	ND	ug/kg	6.6				
p-Isopropyltoluene	ND	ug/kg	6.6				
Naphthalene	ND	ug/kg	33.				
Acrylonitrile	ND	ug/kg	66.				
n-Propylbenzene	ND	ug/kg	6.6				
1,2,3-Trichlorobenzene	ND	ug/kg	33.				
1,2,4-Trichlorobenzene	ND	ug/kg	33.				
1,3,5-Trimethylbenzene	ND	ug/kg	33.				
1,2,4-Trimethylbenzene	ND	ug/kg	33.				
1,4-Diethylbenzene	ND	ug/kg	26.				
4-Ethyltoluene	ND	ug/kg	26.				
1,2,4,5-Tetramethylbenzene	ND	ug/kg	26.				
Surrogate(s)	Recovery		QC Cr	iteria			
1,2-Dichloroethane-d4	100	왕	70-130	0			
Toluene-d8	97.0	%	70-130	0			
4-Bromofluorobenzene	116	%	70-130	0			
Dibromofluoromethane	93.0	%	70-130	0			

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813196-29 Date Collected: 05-SEP-2008 09:25

Sample Matrix: WATER Date Reported: 15-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 82	260B			1 8260B	0910 05:06 PD
Methylene chloride	ND	ug/l	5.0		
1,1-Dichloroethane	ND	ug/l	0.75		
Chloroform	ND	ug/l	0.75		
Carbon tetrachloride	ND	ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75		
Tetrachloroethene	>100	ug/l	.5		
Chlorobenzene	ND	ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND	ug/l	0.50		
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50		
Chloromethane	ND	ug/l	2.5		
Bromomethane	ND	ug/l	1.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	1.0		
1,1-Dichloroethene	ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/l	0.75		
Trichloroethene	4.6	ug/l	0.50		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/l	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	13	ug/l	0.50		
Dibromomethane	ND	ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/l	5.0		
Acrylonitrile	ND	ug/l	5.0		

Laboratory Sample Number: L0813196-29

PWG.GW.2008.14

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA: PREP	TE II ANAL
Volatile Organics by EPA 8260	B cont'd			1 8260B		0910 05:06 PD
Styrene	ND	ug/l	1.0			
Dichlorodifluoromethane	ND	ug/l	5.0			
Acetone	ND	ug/l	5.0			
Carbon disulfide	ND	ug/l	5.0			
2-Butanone	ND	ug/l	5.0			
inyl acetate	ND	ug/l	5.0			
-Methyl-2-pentanone	ND	ug/l	5.0			
-Hexanone	ND	ug/l	5.0			
romochloromethane	ND	ug/l	2.5			
,2-Dichloropropane	ND	ug/l	2.5			
,2-Dibromoethane	ND	ug/l	2.0			
.,3-Dichloropropane	ND	ug/l	2.5			
.,1,1,2-Tetrachloroethane	ND	ug/l	0.50			
Bromobenzene	ND	ug/l	2.5			
n-Butylbenzene	ND	ug/l	0.50			
sec-Butylbenzene	ND	ug/l	0.50			
ert-Butylbenzene	ND	ug/l	2.5			
-Chlorotoluene	ND	ug/l	2.5			
-Chlorotoluene	ND	ug/l	2.5			
,2-Dibromo-3-chloropropane	ND	ug/l	2.5			
exachlorobutadiene	ND	ug/l	0.60			
sopropylbenzene	ND	ug/l	0.50			
-Isopropyltoluene	ND	ug/l	0.50			
aphthalene	ND	ug/l	2.5			
-Propylbenzene	ND	ug/l	0.50			
.,2,3-Trichlorobenzene	ND	ug/l	2.5			
.,2,4-Trichlorobenzene	ND	ug/l	2.5			
,3,5-Trimethylbenzene	ND	ug/l	2.5			
,2,4-Trimethylbenzene	ND	ug/l	2.5			
,4-Diethylbenzene	ND	ug/l	2.0			
-Ethyltoluene	ND	ug/l	2.0			
,2,4,5-Tetramethylbenzene	ND	ug/l	2.0			
, 2, 4, 5 Tectametry identifie	ND	ug/I	2.0			
durrogate(s)	Recovery		QC Cri	iteria		
,2-Dichloroethane-d4	105	%	70-130)		
oluene-d8	98.0	%	70-130)		
-Bromofluorobenzene	105	%	70-130)		
bibromofluoromethane	100	%	70-130)		
olatile Organics by EPA 8260)B			1 8260B		0910 21:34 PD
Tetrachloroethene	240	ug/l	5.0	1 02000		0010 21.01 EL
Surrogate(s)	Recovery		QC Cri			
,2-Dichloroethane-d4	104	%	70-130			
oluene-d8	99.0	%	70-130			
-Bromofluorobenzene	105	%	70-130			
ibromofluoromethane	96.0	%	70-130)		

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813196-30 Date Collected: 05-SEP-2008 09:50

PWG.SB.2008.10@5-10' Date Received: 05-SEP-2008

Sample Matrix: SOIL Date Reported: 15-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Amber,1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID		
					PREP ANAL		
Solids, Total	78	%	0.10	30 2540G	0909 18:20 NM		
Total Metals							
Aluminum, Total	1100	mg/kg	6.0	1 6010B	0908 14:00 0910 19:55 TD		
Antimony, Total	ND	mg/kg	3.0	1 6010B	0908 14:00 0910 19:55 TD		
Arsenic, Total	1.0	mg/kg	0.60	1 6010B	0908 14:00 0910 19:55 TD		
Barium, Total	3.0	mg/kg	0.60	1 6010B	0908 14:00 0910 19:55 TD		
Beryllium, Total	ND	mg/kg	0.30	1 6010B	0908 14:00 0910 19:55 TD		
Cadmium, Total	ND	mg/kg	0.60	1 6010B	0908 14:00 0910 19:55 TD		
Calcium, Total	64	mg/kg	6.0	1 6010B	0908 14:00 0910 19:55 TD		
Chromium, Total	3.2	mg/kg	0.60	1 6010B	0908 14:00 0910 19:55 TD		
Cobalt, Total	ND	mg/kg	1.2	1 6010B	0908 14:00 0910 19:55 TD		
Copper, Total	1.2	mg/kg	0.60	1 6010B	0908 14:00 0910 19:55 TD		
Iron, Total	2500	mg/kg	3.0	1 6010B	0908 14:00 0910 19:55 TD		
Lead, Total	ND	mg/kg	3.0	1 6010B	0908 14:00 0910 19:55 TD		
Magnesium, Total	80	mg/kg	6.0	1 6010B	0908 14:00 0910 19:55 TD		
Manganese, Total	7.8	mg/kg	0.60	1 6010B	0908 14:00 0910 19:55 TD		
Mercury, Total	ND	mg/kg	0.09	1 7471A	0910 21:30 0911 17:25 HG		
Nickel, Total	ND	mg/kg	1.5	1 6010B	0908 14:00 0910 19:55 TD		
Potassium, Total	ND	mg/kg	150	1 6010B	0908 14:00 0910 19:55 TD		
Selenium, Total	ND	mg/kg	1.2	1 6010B	0908 14:00 0910 19:55 TD		
Silver, Total	ND	mg/kg	0.60	1 6010B	0908 14:00 0910 19:55 TD		
Sodium, Total	ND	mg/kg	120	1 6010B	0908 14:00 0910 19:55 TD		
Thallium, Total	ND	mg/kg	1.2	1 6010B	0908 14:00 0910 19:55 TD		
Vanadium, Total	3.4	mg/kg	0.60	1 6010B	0908 14:00 0910 19:55 TD		
Zinc, Total	6.5	mg/kg	3.0	1 6010B	0908 14:00 0910 19:55 TD		
Volatile Organics by EPA 8	260B			1 8260B	0907 00:21 PD		
Methylene chloride	ND	ug/kg	32.				
1,1-Dichloroethane	ND	ug/kg	4.8				
Chloroform	ND	ug/kg	4.8				
Carbon tetrachloride	ND	ug/kg	3.2				
1,2-Dichloropropane	ND	ug/kg	11.				
Dibromochloromethane	ND	ug/kg	3.2				
1,1,2-Trichloroethane	ND	ug/kg	4.8				
Tetrachloroethene	5.5	ug/kg	3.2				
Chlorobenzene	ND	ug/kg	3.2				
Trichlorofluoromethane	ND	ug/kg	16.				

Laboratory Sample Number: L0813196-30

PWG.SB.2008.10@5-10'

PARAMETER	RESULT	UNITS	\mathtt{RDL}	REF	METHOD	DA	TE	ID
						PREP	ANAL	
Valatila Organica ha EDN 026	OD contid				0050-			01
Volatile Organics by EPA 826		/1	2 2	1	8260B		0907 00:	21 PD
1,2-Dichloroethane	ND	ug/kg	3.2					
1,1,1-Trichloroethane	ND	ug/kg	3.2					
Bromodichloromethane	ND	ug/kg	3.2					
trans-1,3-Dichloropropene	ND	ug/kg	3.2					
cis-1,3-Dichloropropene	ND	ug/kg	3.2					
1,1-Dichloropropene	ND	ug/kg	16.					
Bromoform	ND	ug/kg	13.					
1,1,2,2-Tetrachloroethane	ND	ug/kg	3.2					
Benzene	ND	ug/kg	3.2					
roluene	ND	ug/kg	4.8					
Ethylbenzene	ND	ug/kg	3.2					
Chloromethane	ND	ug/kg	16.					
Bromomethane	ND	ug/kg	6.4					
Vinyl chloride	ND	ug/kg	6.4					
Chloroethane	ND	ug/kg	6.4					
1,1-Dichloroethene	ND	ug/kg	3.2					
trans-1,2-Dichloroethene	ND	ug/kg	4.8					
Trichloroethene	ND	ug/kg	3.2					
1,2-Dichlorobenzene	ND	ug/kg	16.					
1,3-Dichlorobenzene	ND	ug/kg	16.					
1,4-Dichlorobenzene	ND	ug/kg	16.					
Methyl tert butyl ether	ND	ug/kg	6.4					
p/m-Xylene	ND	ug/kg	6.4					
o-Xylene	ND	ug/kg	6.4					
cis-1,2-Dichloroethene	ND	ug/kg	3.2					
Dibromomethane	ND	ug/kg	32.					
Styrene	ND	ug/kg	6.4					
Dichlorodifluoromethane	ND	ug/kg	32.					
Acetone	ND	ug/kg	32.					
Carbon disulfide	ND	ug/kg	32.					
2-Butanone	ND	ug/kg	32.					
Vinyl acetate	ND	ug/kg	32.					
4-Methyl-2-pentanone	ND	ug/kg	32.					
1,2,3-Trichloropropane	ND	ug/kg	32.					
2-Hexanone	ND	ug/kg	32.					
Bromochloromethane	ND	ug/kg	16.					
2,2-Dichloropropane	ND	ug/kg	16.					
1,2-Dibromoethane	ND	ug/kg	13.					
1,3-Dichloropropane	ND	ug/kg	16.					
1,1,1,2-Tetrachloroethane	ND	ug/kg	3.2					
Bromobenzene	ND	ug/kg	16.					
n-Butylbenzene	ND	ug/kg	3.2					
sec-Butylbenzene	ND	ug/kg	3.2					
tert-Butylbenzene	ND	ug/kg	16.					
o-Chlorotoluene	ND	ug/kg	16.					
p-Chlorotoluene	ND	ug/kg	16.					
1,2-Dibromo-3-chloropropane	ND	ug/kg	16.					
Hexachlorobutadiene	ND	ug/kg	16.					
Isopropylbenzene	ND	ug/kg	3.2					

Laboratory Sample Number: L0813196-30

PWG.SB.2008.10@5-10'

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Volatile Organics by EPA 8260	NB contid			1	8260B		0907 00:2	חם 1
p-Isopropyltoluene	ND	ug/kg	3.2		02000		0007 0012	I FD
Naphthalene	ND	ug/kg ug/kg	16.					
Acrylonitrile	ND	ug/kg ug/kg	32.					
n-Propylbenzene	ND ND	ug/kg ug/kg	3.2					
1,2,3-Trichlorobenzene	ND	ug/kg ug/kg	16.					
1,2,4-Trichlorobenzene	ND	ug/kg ug/kg	16.					
1,3,5-Trimethylbenzene	ND ND		16.					
1,2,4-Trimethylbenzene	ND ND	ug/kg	16.					
	ND ND	ug/kg	13.					
1,4-Diethylbenzene	ND ND	ug/kg	13.					
4-Ethyltoluene		ug/kg						
1,2,4,5-Tetramethylbenzene	ND	ug/kg	13.					
Surrogate(s)	Recovery		QC Cri	teri	a			
1,2-Dichloroethane-d4	115	8	70-130					
Toluene-d8	108	%	70-130					
4-Bromofluorobenzene	124	%	70-130					
Dibromofluoromethane	104	%	70-130					
Semivolatile Organics by EPA	8270C			1	8270C	0906 12:05	0910 17:	51 PS
Acenaphthene	ND	ug/kg	430					
1,2,4-Trichlorobenzene	ND	ug/kg	430					
Hexachlorobenzene	ND	ug/kg	430					
Bis(2-chloroethyl)ether	ND	ug/kg	430					
2-Chloronaphthalene	ND	ug/kg	510					
1,2-Dichlorobenzene	ND	ug/kg	430					
1,3-Dichlorobenzene	ND	ug/kg ug/kg	430					
1,4-Dichlorobenzene	ND	ug/kg ug/kg	430					
3,3'-Dichlorobenzidine	ND	ug/kg ug/kg	850					
2,4-Dinitrotoluene	ND	ug/kg ug/kg	430					
2,6-Dinitrotoluene	ND	ug/kg ug/kg	430					
Fluoranthene	ND	ug/kg ug/kg	430					
4-Chlorophenyl phenyl ether	ND ND	ug/kg ug/kg	430					
4-Bromophenyl phenyl ether	ND ND	ug/kg ug/kg	430					
Bis(2-chloroisopropyl)ether	ND ND		430					
Bis(2-chlorothoxy)methane	ND ND	ug/kg ug/kg	430					
Bis(z-chioroethoxy)methane Hexachlorobutadiene	ND ND		430 850					
Hexachioroputadiene Hexachlorocyclopentadiene		ug/kg						
Hexachiorocyclopentadiene Hexachloroethane	ND	ug/kg	850 430					
	ND	ug/kg	430					
Isophorone	ND	ug/kg	430					
Naphthalene	ND	ug/kg	430					
Nitrobenzene	ND	ug/kg	430					
NitrosoDiPhenylAmine(NDPA)/DI		ug/kg	1300					
n-Nitrosodi-n-propylamine	ND	ug/kg	430					
Bis(2-Ethylhexyl)phthalate	ND	ug/kg	850					
Butyl benzyl phthalate	ND	ug/kg	430					
Di-n-butylphthalate	ND	ug/kg	430					
Di-n-octylphthalate	ND	ug/kg	430					
Diethyl phthalate	ND	ug/kg	430					
Dimethyl phthalate	ND	ug/kg	430					

Laboratory Sample Number: L0813196-30

PWG.SB.2008.10@5-10'

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAI	ID
Semivolatile Organics by EPA 8	8270C cont	- ' d		1	8270C	0906 12:05	0910 17	:51 pg
Benzo(a)anthracene	ND	ug/kg	430	_	02700	0,000 12.03	0010 17	.31 13
Benzo(a)pyrene	ND	ug/kg ug/kg	430					
Benzo(b)fluoranthene	ND		430					
Benzo(k)fluoranthene	ND	ug/kg	430					
chrysene	ND	ug/kg ug/kg	430					
acenaphthylene	ND	ug/kg ug/kg	430					
anthracene	ND	ug/kg ug/kg	430					
Benzo(ghi)perylene	ND		430					
luorene	ND	ug/kg	430					
henanthrene	ND	ug/kg	430					
		ug/kg	430					
oibenzo(a,h)anthracene	ND	ug/kg						
indeno(1,2,3-cd)Pyrene	ND	ug/kg	430					
yrene	ND	ug/kg	430					
Siphenyl	ND	ug/kg	430					
l-Chloroaniline	ND	ug/kg	430					
-Nitroaniline	ND	ug/kg	430					
-Nitroaniline	ND	ug/kg	430					
-Nitroaniline	ND	ug/kg	600					
ibenzofuran	ND	ug/kg	430					
-Methylnaphthalene	ND	ug/kg	430					
,2,4,5-Tetrachlorobenzene	ND	ug/kg	1700					
cetophenone	ND	ug/kg	1700					
,4,6-Trichlorophenol	ND	ug/kg	430					
-Chloro-M-Cresol	ND	ug/kg	430					
-Chlorophenol	ND	ug/kg	510					
,4-Dichlorophenol	ND	ug/kg	850					
,4-Dimethylphenol	ND	ug/kg	430					
-Nitrophenol	ND	ug/kg	1700					
-Nitrophenol	ND	ug/kg	850					
,4-Dinitrophenol	ND	ug/kg	1700					
,6-Dinitro-o-cresol	ND	ug/kg	1700					
entachlorophenol	ND	ug/kg	1700					
henol	ND	ug/kg	600					
-Methylphenol	ND	ug/kg	510					
-Methylphenol/4-Methylphenol	ND	ug/kg	510					
,4,5-Trichlorophenol	ND	ug/kg	430					
enzoic Acid	ND	ug/kg	4300					
Benzyl Alcohol	ND	ug/kg	850					
arbazole	ND	ug/kg	430					
urrogate(s)	Recovery		QC Cr	iteria	L			
-Fluorophenol	37.0	%	25-120	0				
henol-d6	37.0	%	10-120	0				
itrobenzene-d5	35.0	%	23-120	0				
-Fluorobiphenyl	33.0	%	30-120	0				
,4,6-Tribromophenol	36.0	%	19-120	0				
-Terphenyl-d14	38.0	%	18-120	0				

Laboratory Sample Number: L0813196-30

PWG.SB.2008.10@5-10'

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA	TE	ID
						PREP	ANAL	
Semivolatile Organics by EPA	8270C-SIM (cont'd		1	8270C	0906 12:05	0911 07:1	6 AK
Acenaphthene	ND	ug/kg	17.					
2-Chloronaphthalene	ND	ug/kg	17.					
Fluoranthene	ND	ug/kg	17.					
Hexachlorobutadiene	ND	ug/kg	43.					
Naphthalene	ND	ug/kg	17.					
Benzo(a)anthracene	ND	ug/kg	17.					
Benzo(a)pyrene	ND	ug/kg	17.					
Benzo(b)fluoranthene	ND	ug/kg	17.					
Benzo(k)fluoranthene	ND	ug/kg	17.					
Chrysene	ND	ug/kg	17.					
Acenaphthylene	ND	ug/kg	17.					
Anthracene	ND	ug/kg	17.					
Benzo(ghi)perylene	ND	ug/kg	17.					
Fluorene	ND	ug/kg	17.					
Phenanthrene	ND	ug/kg	17.					
Dibenzo(a,h)anthracene	ND	ug/kg	17.					
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	17.					
Pyrene	ND	ug/kg	17.					
2-Methylnaphthalene	ND	ug/kg	17.					
Pentachlorophenol	ND	ug/kg	68.					
Hexachlorobenzene	ND	ug/kg	68.					
Hexachloroethane	ND	ug/kg	68.					
Surrogate(s)	Recovery		QC Cri	teria	a.			
2-Fluorophenol	36.0	용	25-120					
Phenol-d6	41.0	%	10-120					
Nitrobenzene-d5	37.0	%	23-120					
2-Fluorobiphenyl	36.0	%	30-120					
2,4,6-Tribromophenol	43.0	용	19-120					
4-Terphenyl-d14	47.0	%	18-120					
Polychlorinated Biphenyls by	EPA 8082			1	8082	0906 12:00	0909 21:2	7 SH
Aroclor 1016	ND	ug/kg	42.7					
Aroclor 1221	ND	ug/kg	42.7					
Aroclor 1232	ND	ug/kg	42.7					
Aroclor 1242	ND	ug/kg	42.7					
Aroclor 1248	ND	ug/kg	42.7					
Aroclor 1254	ND	ug/kg	42.7					
Aroclor 1260	ND	ug/kg	42.7					
Surrogate(s)	Recovery		QC Cri		a			
2,4,5,6-Tetrachloro-m-xylene	66.0	8	30-150					
Decachlorobiphenyl	58.0	8	30-150					
Organochlorine Pesticides by				1	8081A	0906 10:30	0910 20:5	6 SS
Delta-BHC	ND	ug/kg	4.27					
Lindane	ND	ug/kg	4.27					
Alpha-BHC	ND	ug/kg	4.27					
Beta-BHC	ND	ug/kg	4.27					

Laboratory Sample Number: L0813196-30

PWG.SB.2008.10@5-10'

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA PREP	TE ANAL	ID
Organochlorine Pesticides by	EPA 8081A	cont'd		1 8081A	0906 10:30	0910 20:56	s ss
Heptachlor	ND	ug/kg	4.27				
Aldrin	ND	ug/kg	4.27				
Heptachlor epoxide	ND	ug/kg	4.27				
Endrin	ND	ug/kg	4.27				
Endrin ketone	ND	ug/kg	4.27				
Dieldrin	ND	ug/kg	4.27				
4,4'-DDE	ND	ug/kg	4.27				
4,4'-DDD	ND	ug/kg	4.27				
4,4'-DDT	ND	ug/kg	4.27				
Endosulfan I	ND	ug/kg	4.27				
Endosulfan II	ND	ug/kg	4.27				
Endosulfan sulfate	ND	ug/kg	4.27				
Methoxychlor	ND	ug/kg	17.1				
trans-Chlordane	ND	ug/kg	4.27				
Chlordane	ND	ug/kg	42.7				
Surrogate(s)	Recovery		QC Crit	ceria			
2,4,5,6-Tetrachloro-m-xylene	52.0	%	30-150				
Decachlorobiphenyl	83.0	%	30-150				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813196-31 Date Collected: 05-SEP-2008 09:55

PWG.SB.2008.10@10-15' Date Received: 05-SEP-2008

Sample Matrix: SOIL Date Reported: 15-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Solids, Total	81	%	0.10	30 2540G	0911 15:15 SD
Volatile Organics by EPA 820	50B			1 8260B	0907 00:58 PD
Methylene chloride	ND	ug/kg	31.		
1,1-Dichloroethane	ND	ug/kg	4.6		
Chloroform	ND	ug/kg	4.6		
Carbon tetrachloride	ND	ug/kg	3.1		
1,2-Dichloropropane	ND	ug/kg	11.		
Dibromochloromethane	ND	ug/kg	3.1		
1,1,2-Trichloroethane	ND	ug/kg	4.6		
Tetrachloroethene	45	ug/kg	3.1		
Chlorobenzene	ND	ug/kg	3.1		
Trichlorofluoromethane	ND	ug/kg	15.		
1,2-Dichloroethane	ND	ug/kg	3.1		
1,1,1-Trichloroethane	ND	ug/kg	3.1		
Bromodichloromethane	ND	ug/kg	3.1		
trans-1,3-Dichloropropene	ND	ug/kg	3.1		
cis-1,3-Dichloropropene	ND	ug/kg	3.1		
1,1-Dichloropropene	ND	ug/kg	15.		
Bromoform	ND	ug/kg	12.		
1,1,2,2-Tetrachloroethane	ND	ug/kg	3.1		
Benzene	ND	ug/kg	3.1		
Toluene	ND	ug/kg	4.6		
Ethylbenzene	ND	ug/kg	3.1		
Chloromethane	ND	ug/kg	15.		
Bromomethane	ND	ug/kg	6.2		
Vinyl chloride	ND	ug/kg	6.2		
Chloroethane	ND	ug/kg	6.2		
1,1-Dichloroethene	ND	ug/kg	3.1		
trans-1,2-Dichloroethene	ND	ug/kg	4.6		
Trichloroethene	ND	ug/kg	3.1		
1,2-Dichlorobenzene	ND	ug/kg	15.		
1,3-Dichlorobenzene	ND	ug/kg	15.		
1,4-Dichlorobenzene	ND	ug/kg	15.		
Methyl tert butyl ether	ND	ug/kg	6.2		
p/m-Xylene	ND	ug/kg	6.2		
o-Xylene	ND	ug/kg	6.2		
cis-1,2-Dichloroethene	ND	ug/kg	3.1		
Dibromomethane	ND	ug/kg	31.		

Laboratory Sample Number: L0813196-31

PWG.SB.2008.10@10-15'

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE PREP ANAL	ID
Volatile Organics by EPA 826	OB cont'd			1 8260B	0907 00:5	58 PD
Styrene	ND	ug/kg	6.2			
Dichlorodifluoromethane	ND	ug/kg	31.			
Acetone	ND	ug/kg	31.			
Carbon disulfide	ND	ug/kg	31.			
2-Butanone	ND	ug/kg	31.			
Vinyl acetate	ND	ug/kg	31.			
4-Methyl-2-pentanone	ND	ug/kg	31.			
1,2,3-Trichloropropane	ND	ug/kg	31.			
2-Hexanone	ND	ug/kg	31.			
Bromochloromethane	ND	ug/kg	15.			
2,2-Dichloropropane	ND	ug/kg	15.			
1,2-Dibromoethane	ND	ug/kg	12.			
1,3-Dichloropropane	ND	ug/kg	15.			
1,1,1,2-Tetrachloroethane	ND	ug/kg	3.1			
Bromobenzene	ND	ug/kg	15.			
n-Butylbenzene	ND	ug/kg	3.1			
sec-Butylbenzene	ND	ug/kg	3.1			
tert-Butylbenzene	ND	ug/kg	15.			
o-Chlorotoluene	ND	ug/kg	15.			
p-Chlorotoluene	ND	ug/kg	15.			
1,2-Dibromo-3-chloropropane	ND	ug/kg	15.			
Hexachlorobutadiene	ND	ug/kg	15.			
Isopropylbenzene	ND	ug/kg	3.1			
p-Isopropyltoluene	ND	ug/kg	3.1			
Naphthalene	ND	ug/kg	15.			
- Acrylonitrile	ND	ug/kg	31.			
n-Propylbenzene	ND	ug/kg	3.1			
1,2,3-Trichlorobenzene	ND	ug/kg	15.			
1,2,4-Trichlorobenzene	ND	ug/kg	15.			
1,3,5-Trimethylbenzene	ND	ug/kg	15.			
1,2,4-Trimethylbenzene	ND	ug/kg	15.			
1,4-Diethylbenzene	ND	ug/kg	12.			
4-Ethyltoluene	ND	ug/kg	12.			
1,2,4,5-Tetramethylbenzene	ND	ug/kg	12.			
Surrogate(s)	Recovery		QC Cr	iteria		
1,2-Dichloroethane-d4	116	%	70-13			
Toluene-d8	112	%	70-13			
4-Bromofluorobenzene	125	%	70-13			
Dibromofluoromethane	105	8	70-13			

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813196-32 Date Collected: 05-SEP-2008 10:55

PWG.SB.2008.09@5-10' Date Received: 05-SEP-2008

Sample Matrix: SOIL Date Reported: 15-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE	ID
					PREP ANAL	
Solids, Total	92	%	0.10	30 2540G	0911 15:15	C.D.
Solius, local	92	6	0.10	30 2540G	0911 15:15	SD
Volatile Organics by EPA 820	50B			1 8260B	0907 01:35	PD
Methylene chloride	ND	ug/kg	27.			
1,1-Dichloroethane	ND	ug/kg	4.1			
Chloroform	ND	ug/kg	4.1			
Carbon tetrachloride	ND	ug/kg	2.7			
1,2-Dichloropropane	ND	ug/kg	9.5			
Dibromochloromethane	ND	ug/kg	2.7			
1,1,2-Trichloroethane	ND	ug/kg	4.1			
Tetrachloroethene	ND	ug/kg	2.7			
Chlorobenzene	ND	ug/kg	2.7			
Trichlorofluoromethane	ND	ug/kg	14.			
1,2-Dichloroethane	ND	ug/kg	2.7			
1,1,1-Trichloroethane	ND	ug/kg	2.7			
Bromodichloromethane	ND	ug/kg	2.7			
trans-1,3-Dichloropropene	ND	ug/kg	2.7			
cis-1,3-Dichloropropene	ND	ug/kg	2.7			
1,1-Dichloropropene	ND	ug/kg	14.			
Bromoform	ND	ug/kg	11.			
1,1,2,2-Tetrachloroethane	ND	ug/kg	2.7			
Benzene	ND	ug/kg	2.7			
Toluene	ND	ug/kg	4.1			
Ethylbenzene	ND	ug/kg	2.7			
Chloromethane	ND	ug/kg	14.			
Bromomethane	ND	ug/kg	5.4			
Vinyl chloride	ND	ug/kg	5.4			
Chloroethane	ND	ug/kg	5.4			
1,1-Dichloroethene	ND	ug/kg	2.7			
trans-1,2-Dichloroethene	ND	ug/kg	4.1			
Trichloroethene	ND	ug/kg	2.7			
1,2-Dichlorobenzene	ND	ug/kg	14.			
1,3-Dichlorobenzene	ND	ug/kg	14.			
1,4-Dichlorobenzene	ND	ug/kg	14.			
Methyl tert butyl ether	ND	ug/kg	5.4			
p/m-Xylene	ND	ug/kg	5.4			
o-Xylene	ND	ug/kg	5.4			
cis-1,2-Dichloroethene	ND	ug/kg	2.7			
Dibromomethane	ND	ug/kg	27.			

Laboratory Sample Number: L0813196-32

PWG.SB.2008.09@5-10'

Volatile Organics by EPA 8260 Styrene Dichlorodifluoromethane Acetone Carbon disulfide	DB cont'd ND ND ND	ug/kg				 	
Styrene Dichlorodifluoromethane Acetone	ND ND	ua/ka		1 8	260B	0907 01:3	5 PD
Acetone			5.4				
	MID	ug/kg	27.				
Carbon disulfide	ND	ug/kg	27.				
	ND	ug/kg	27.				
2-Butanone	ND	ug/kg	27.				
Vinyl acetate	ND	ug/kg	27.				
4-Methyl-2-pentanone	ND	ug/kg	27.				
1,2,3-Trichloropropane	ND	ug/kg	27.				
2-Hexanone	ND	ug/kg	27.				
Bromochloromethane	ND	ug/kg	14.				
2,2-Dichloropropane	ND	ug/kg	14.				
1,2-Dibromoethane	ND	ug/kg	11.				
1,3-Dichloropropane	ND	ug/kg	14.				
1,1,1,2-Tetrachloroethane	ND	ug/kg	2.7				
Bromobenzene	ND	ug/kg	14.				
n-Butylbenzene	ND	ug/kg	2.7				
sec-Butylbenzene	ND	ug/kg	2.7				
tert-Butylbenzene	ND	ug/kg	14.				
o-Chlorotoluene	ND	ug/kg	14.				
p-Chlorotoluene	ND	ug/kg	14.				
1,2-Dibromo-3-chloropropane	ND	ug/kg	14.				
Hexachlorobutadiene	ND	ug/kg	14.				
Isopropylbenzene	ND	ug/kg	2.7				
p-Isopropyltoluene	ND	ug/kg	2.7				
Naphthalene	ND	ug/kg	14.				
Acrylonitrile	ND	ug/kg	27.				
n-Propylbenzene	ND	ug/kg	2.7				
1,2,3-Trichlorobenzene	ND	ug/kg	14.				
1,2,4-Trichlorobenzene	ND	ug/kg	14.				
1,3,5-Trimethylbenzene	ND	ug/kg	14.				
1,2,4-Trimethylbenzene	ND	ug/kg	14.				
1,4-Diethylbenzene	ND	ug/kg	11.				
4-Ethyltoluene	ND	ug/kg	11.				
1,2,4,5-Tetramethylbenzene	ND	ug/kg	11.				
Surrogate(s)	Recovery		QC Cr	iteria			
1,2-Dichloroethane-d4	117	%	70-13	0			
Toluene-d8	110	%	70-13				
4-Bromofluorobenzene	129	%	70-13				
Dibromofluoromethane	106	%	70-13				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813196-33 Date Collected: 05-SEP-2008 11:15

PWG.SB.2008.09@15-20'(MS/MSD) Date Received: 05-SEP-2008

Sample Matrix: SOIL Date Reported: 15-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 3-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Colida Motol	84	%	0.10	22.05427	
Solids, Total	04	6	0.10	30 2540G	0911 15:15 SD
Volatile Organics by EPA 82	60B			1 8260B	0908 13:36 PD
Methylene chloride	ND	ug/kg	30.		
1,1-Dichloroethane	ND	ug/kg	4.5		
Chloroform	ND	ug/kg	4.5		
Carbon tetrachloride	ND	ug/kg	3.0		
1,2-Dichloropropane	ND	ug/kg	10.		
Dibromochloromethane	ND	ug/kg	3.0		
1,1,2-Trichloroethane	ND	ug/kg	4.5		
Tetrachloroethene	ND	ug/kg	3.0		
Chlorobenzene	ND	ug/kg	3.0		
Trichlorofluoromethane	ND	ug/kg	15.		
1,2-Dichloroethane	ND	ug/kg	3.0		
1,1,1-Trichloroethane	ND	ug/kg	3.0		
Bromodichloromethane	ND	ug/kg	3.0		
trans-1,3-Dichloropropene	ND	ug/kg	3.0		
cis-1,3-Dichloropropene	ND	ug/kg	3.0		
1,1-Dichloropropene	ND	ug/kg	15.		
Bromoform	ND	ug/kg	12.		
1,1,2,2-Tetrachloroethane	ND	ug/kg	3.0		
Benzene	ND	ug/kg	3.0		
Toluene	ND	ug/kg	4.5		
Ethylbenzene	ND	ug/kg	3.0		
Chloromethane	ND	ug/kg	15.		
Bromomethane	ND	ug/kg	6.0		
Vinyl chloride	ND	ug/kg	6.0		
Chloroethane	ND	ug/kg	6.0		
1,1-Dichloroethene	ND	ug/kg	3.0		
trans-1,2-Dichloroethene	ND	ug/kg	4.5		
Trichloroethene	ND	ug/kg	3.0		
1,2-Dichlorobenzene	ND	ug/kg	15.		
1,3-Dichlorobenzene	ND	ug/kg	15.		
1,4-Dichlorobenzene	ND	ug/kg	15.		
Methyl tert butyl ether	ND	ug/kg	6.0		
p/m-Xylene	ND	ug/kg	6.0		
o-Xylene	ND	ug/kg	6.0		
cis-1,2-Dichloroethene	ND	ug/kg	3.0		
Dibromomethane	ND	ug/kg	30.		

Laboratory Sample Number: L0813196-33

PWG.SB.2008.09@15-20'(MS/MSD)

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA	TE	ID	
					PREP	ANAL		
Volatile Organics by EPA 826				1 8260B		0908 13:36	6 PD	
Styrene	ND	ug/kg	6.0					
Dichlorodifluoromethane	ND	ug/kg	30.					
Acetone	ND	ug/kg	30.					
Carbon disulfide	ND	ug/kg	30.					
2-Butanone	ND	ug/kg	30.					
Vinyl acetate	ND	ug/kg	30.					
4-Methyl-2-pentanone	ND	ug/kg	30.					
1,2,3-Trichloropropane	ND	ug/kg	30.					
2-Hexanone	ND	ug/kg	30.					
Bromochloromethane	ND	ug/kg	15.					
2,2-Dichloropropane	ND	ug/kg	15.					
1,2-Dibromoethane	ND	ug/kg	12.					
1,3-Dichloropropane	ND	ug/kg	15.					
1,1,1,2-Tetrachloroethane	ND	ug/kg	3.0					
Bromobenzene	ND	ug/kg	15.					
n-Butylbenzene	ND	ug/kg	3.0					
sec-Butylbenzene	ND	ug/kg	3.0					
tert-Butylbenzene	ND	ug/kg	15.					
o-Chlorotoluene	ND	ug/kg	15.					
p-Chlorotoluene	ND	ug/kg	15.					
1,2-Dibromo-3-chloropropane	ND	ug/kg	15.					
Hexachlorobutadiene	ND	ug/kg	15.					
Isopropylbenzene	ND	ug/kg	3.0					
p-Isopropyltoluene	ND	ug/kg	3.0					
Naphthalene	ND	ug/kg	15.					
Acrylonitrile	ND	ug/kg ug/kg	30.					
n-Propylbenzene	ND	ug/kg ug/kg	3.0					
1,2,3-Trichlorobenzene	ND	ug/kg ug/kg	15.					
1,2,4-Trichlorobenzene	ND ND		15.					
		ug/kg						
1,3,5-Trimethylbenzene	ND	ug/kg	15.					
1,2,4-Trimethylbenzene	ND	ug/kg	15.					
1,4-Diethylbenzene	ND	ug/kg	12.					
4-Ethyltoluene	ND	ug/kg	12.					
1,2,4,5-Tetramethylbenzene	ND	ug/kg	12.					
Surrogate(s)	Recovery		QC Cri	iteria				
1,2-Dichloroethane-d4	125	8	70-130)				
Toluene-d8	121	%	70-130)				
4-Bromofluorobenzene	140	%	70-130)				
Dibromofluoromethane	119	%	70-130					

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813196-34 Date Collected: 05-SEP-2008 11:30

PWG.SB.2008.11@5-10' Date Received: 05-SEP-2008

Sample Matrix: SOIL Date Reported: 15-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Solids, Total	94	%	0.10	30 2540G	0911 15:15 SD
Volatile Organics by EPA 820	50B			1 8260B	0908 15:25 PD
Methylene chloride	ND	ug/kg	26.		
1,1-Dichloroethane	ND	ug/kg	4.0		
Chloroform	ND	ug/kg	4.0		
Carbon tetrachloride	ND	ug/kg	2.6		
1,2-Dichloropropane	ND	ug/kg	9.3		
Dibromochloromethane	ND	ug/kg	2.6		
1,1,2-Trichloroethane	ND	ug/kg	4.0		
Tetrachloroethene	ND	ug/kg	2.6		
Chlorobenzene	ND	ug/kg	2.6		
Trichlorofluoromethane	ND	ug/kg	13.		
1,2-Dichloroethane	ND	ug/kg	2.6		
1,1,1-Trichloroethane	ND	ug/kg	2.6		
Bromodichloromethane	ND	ug/kg	2.6		
trans-1,3-Dichloropropene	ND	ug/kg	2.6		
cis-1,3-Dichloropropene	ND	ug/kg	2.6		
1,1-Dichloropropene	ND	ug/kg	13.		
Bromoform	ND	ug/kg	11.		
1,1,2,2-Tetrachloroethane	ND	ug/kg	2.6		
Benzene	ND	ug/kg	2.6		
Toluene	ND	ug/kg	4.0		
Ethylbenzene	ND	ug/kg	2.6		
Chloromethane	ND	ug/kg	13.		
Bromomethane	ND	ug/kg	5.3		
Vinyl chloride	ND	ug/kg	5.3		
Chloroethane	ND	ug/kg	5.3		
1,1-Dichloroethene	ND	ug/kg	2.6		
trans-1,2-Dichloroethene	ND	ug/kg	4.0		
Trichloroethene	ND	ug/kg	2.6		
1,2-Dichlorobenzene	ND	ug/kg	13.		
1,3-Dichlorobenzene	ND	ug/kg	13.		
1,4-Dichlorobenzene	ND	ug/kg	13.		
Methyl tert butyl ether	ND	ug/kg	5.3		
p/m-Xylene	ND	ug/kg	5.3		
o-Xylene	ND	ug/kg	5.3		
cis-1,2-Dichloroethene	ND	ug/kg	2.6		
Dibromomethane	ND	ug/kg	26.		

Laboratory Sample Number: L0813196-34

PWG.SB.2008.11@5-10'

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA	ATE	ID
					PREP	ANAL	
Volatile Organics by EPA 826				1 8260B		0908 15:2	5 PD
Styrene	ND	ug/kg	5.3				
Dichlorodifluoromethane	ND	ug/kg	26.				
Acetone	ND	ug/kg	26.				
Carbon disulfide	ND	ug/kg	26.				
2-Butanone	ND	ug/kg	26.				
Vinyl acetate	ND	ug/kg	26.				
4-Methyl-2-pentanone	ND	ug/kg	26.				
1,2,3-Trichloropropane	ND	ug/kg	26.				
2-Hexanone	ND	ug/kg	26.				
Bromochloromethane	ND	ug/kg	13.				
2,2-Dichloropropane	ND	ug/kg	13.				
1,2-Dibromoethane	ND	ug/kg	11.				
1,3-Dichloropropane	ND	ug/kg	13.				
1,1,1,2-Tetrachloroethane	ND	ug/kg	2.6				
Bromobenzene	ND	ug/kg	13.				
n-Butylbenzene	ND	ug/kg	2.6				
sec-Butylbenzene	ND	ug/kg	2.6				
tert-Butylbenzene	ND	ug/kg	13.				
o-Chlorotoluene	ND	ug/kg	13.				
p-Chlorotoluene	ND	ug/kg	13.				
1,2-Dibromo-3-chloropropane	ND	ug/kg	13.				
Hexachlorobutadiene	ND	ug/kg	13.				
Isopropylbenzene	ND	ug/kg	2.6				
p-Isopropyltoluene	ND	ug/kg	2.6				
Naphthalene	ND	ug/kg	13.				
Acrylonitrile	ND	ug/kg	26.				
n-Propylbenzene	ND	ug/kg	2.6				
1,2,3-Trichlorobenzene	ND	ug/kg	13.				
1,2,4-Trichlorobenzene	ND	ug/kg	13.				
1,3,5-Trimethylbenzene	ND	ug/kg	13.				
1,2,4-Trimethylbenzene	ND	ug/kg	13.				
1,4-Diethylbenzene	ND	ug/kg	11.				
4-Ethyltoluene	ND	ug/kg	11.				
1,2,4,5-Tetramethylbenzene	ND	ug/kg	11.				
	_						
Surrogate(s)	Recovery	_	QC Crit	eria			
1,2-Dichloroethane-d4	102	8	70-130				
Toluene-d8	102	8	70-130				
4-Bromofluorobenzene	113	%	70-130				
Dibromofluoromethane	95.0	%	70-130				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813196-35 Date Collected: 05-SEP-2008 11:45

PWG.SB.2008.11@15-20' Date Received: 05-SEP-2008

Sample Matrix: SOIL Date Reported: 15-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Solids, Total	76	%	0.10	30 2540G	0911 15:15 SD
Volatile Organics by EPA 820	50B			1 8260B	0908 16:02 PD
Methylene chloride	ND	ug/kg	33.		
1,1-Dichloroethane	ND	ug/kg	4.9		
Chloroform	ND	ug/kg	4.9		
Carbon tetrachloride	ND	ug/kg	3.3		
1,2-Dichloropropane	ND	ug/kg	12.		
Dibromochloromethane	ND	ug/kg	3.3		
1,1,2-Trichloroethane	ND	ug/kg	4.9		
Tetrachloroethene	ND	ug/kg	3.3		
Chlorobenzene	ND	ug/kg	3.3		
Trichlorofluoromethane	ND	ug/kg	16.		
1,2-Dichloroethane	ND	ug/kg	3.3		
1,1,1-Trichloroethane	ND	ug/kg	3.3		
Bromodichloromethane	ND	ug/kg	3.3		
trans-1,3-Dichloropropene	ND	ug/kg	3.3		
cis-1,3-Dichloropropene	ND	ug/kg	3.3		
1,1-Dichloropropene	ND	ug/kg	16.		
Bromoform	ND	ug/kg	13.		
1,1,2,2-Tetrachloroethane	ND	ug/kg	3.3		
Benzene	ND	ug/kg	3.3		
Toluene	ND	ug/kg	4.9		
Ethylbenzene	ND	ug/kg	3.3		
Chloromethane	ND	ug/kg	16.		
Bromomethane	ND	ug/kg	6.6		
Vinyl chloride	ND	ug/kg	6.6		
Chloroethane	ND	ug/kg	6.6		
1,1-Dichloroethene	ND	ug/kg	3.3		
trans-1,2-Dichloroethene	ND	ug/kg	4.9		
Trichloroethene	ND	ug/kg	3.3		
1,2-Dichlorobenzene	ND	ug/kg	16.		
1,3-Dichlorobenzene	ND	ug/kg	16.		
1,4-Dichlorobenzene	ND	ug/kg	16.		
Methyl tert butyl ether	ND	ug/kg	6.6		
p/m-Xylene	ND	ug/kg	6.6		
o-Xylene	ND	ug/kg	6.6		
cis-1,2-Dichloroethene	ND	ug/kg	3.3		
Dibromomethane	ND	ug/kg	33.		

Laboratory Sample Number: L0813196-35

PWG.SB.2008.11@15-20'

No.	PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA' PREP	TE ANAL	ID
ND	Volatile Organics by EPA 826	OB cont'd			1 8260B		0908 16:0	2 PD
No.	Styrene		ug/kg	6.6				
Section ND	Dichlorodifluoromethane	ND		33.				
Parbon disulfide	Acetone	ND						
	Carbon disulfide	ND						
Sinyl acetate	2-Butanone	ND						
	Vinyl acetate	ND						
ND		ND						
### A Primer ND	1,2,3-Trichloropropane	ND						
## Aromochloromethane ND ug/kg 16. ,2-Dichloropropane ND ug/kg 16. ,2-Dibromoethane ND ug/kg 13. ,3-Dichloropropane ND ug/kg 16. ,1,1,2-Tetrachloroethane ND ug/kg 3.3	2-Hexanone	ND						
	Bromochloromethane	ND						
13. 13.	2,2-Dichloropropane	ND						
1,3-Dichloropropane ND	1,2-Dibromoethane	ND						
1,1,2-Tetrachloroethane	1,3-Dichloropropane	ND		16.				
## Aromobenzene	1,1,1,2-Tetrachloroethane	ND						
### Butylbenzene	Bromobenzene	ND						
ND	n-Butylbenzene	ND						
rert-Butylbenzene ND ug/kg 16. Chlorotoluene ND ug/kg 3.3 Chlorotoluene ND ug/kg 16. Chlorotoluene ND ug/kg 16. Chlorotoluene ND ug/kg 16. Chlorotoluene ND ug/kg 16. Chlorotoluene ND ug/kg 13. Ch	_	ND						
## Description of the control of the		ND						
n-Chlorotoluene ND ug/kg 16. n,2-Dibromo-3-chloropropane ND ug/kg 16. lexachlorobutadiene ND ug/kg 16. lexachlorobutadiene ND ug/kg 3.3 lexachlorobutadiene ND ug/kg 3.3 lexachlorobutadiene ND ug/kg 3.3 lexachlorobutadiene ND ug/kg 3.3 lexachloropylbenzene ND ug/kg 3.3 lexachloropylbenzene ND ug/kg 3.3 lexachlorobutadiene ND ug/kg 3.3 lexachloropylbenzene ND ug/kg 3.3 lexachlorobutadiene ND ug/kg 16. lexachlorobutadiene ND ug/kg 3.3 lexachlorobutadiene ND ug/kg 3.3 lexachlorobutadiene ND ug/kg 3.3 lexachlorobutadiene ND ug/kg 16. lexachlorobutadiene ND ug/kg 13. lexachlorobutadiene ND ug/kg 14. lexachlorobutadiene ND ug/kg 16. lexachlorobutadiene ND ug/kg 16. lexachlorobutadiene ND ug/kg 16.	o-Chlorotoluene	ND						
	p-Chlorotoluene	ND						
Mexachlorobutadiene ND ug/kg 16. Sopropylbenzene ND ug/kg 3.3 Japhthalene ND ug/kg 16. Maphthalene ND ug/kg 16. Maphthalene ND ug/kg 33. Maphthalene ND ug/kg 33. Maphthalene ND ug/kg 33. Maphthalene ND ug/kg 33. Maphthalene ND ug/kg 16. Maphthalene Maphthalene ND ug/kg 16. Maphthalene Maphthalene ND ug/kg 13. Maphthalene	-							
Sopropylbenzene ND	Hexachlorobutadiene							
ND	Isopropylbenzene	ND		3.3				
JaphthaleneNDug/kg16.McrylonitrileNDug/kg33.1-PropylbenzeneNDug/kg3.31.2,3-TrichlorobenzeneNDug/kg16.1.2,4-TrichlorobenzeneNDug/kg16.1.3,5-TrimethylbenzeneNDug/kg16.1.2,4-TrimethylbenzeneNDug/kg13.1.2-EthylbenzeneNDug/kg13.1.2-EthyltolueneNDug/kg13.1.2,2,4,5-TetramethylbenzeneNDug/kg13.Murrogate(s)RecoveryQC Criteria1.2-Dichloroethane-d4134%70-130Coluene-d8129%70-1301-Bromofluorobenzene139%70-130		ND						
Acrylonitrile ND ug/kg 33. 1-Propylbenzene ND ug/kg 3.3 1,2,3-Trichlorobenzene ND ug/kg 16. 1,2,4-Trichlorobenzene ND ug/kg 16. 1,3,5-Trimethylbenzene ND ug/kg 16. 1,2,4-Trimethylbenzene ND ug/kg 16. 1,2,4-Trimethylbenzene ND ug/kg 16. 1,2,4-Trimethylbenzene ND ug/kg 13. 1-Ethyltoluene	ND							
n-Propylbenzene ND ug/kg 3.3 1,2,3-Trichlorobenzene ND ug/kg 16. 1,2,4-Trichlorobenzene ND ug/kg 16. 1,3,5-Trimethylbenzene ND ug/kg 16. 1,2,4-Trimethylbenzene ND ug/kg 16. 1,4-Diethylbenzene ND ug/kg 13. 1-Ethyltoluene ND ug/kg 13. 1-Ethyltoluene ND ug/kg 13. 1,2,4,5-Tetramethylbenzene ND ug/kg 13. 2,2,4,5-Tetramethylbenzene ND ug/kg 13. 3. 3. 4. 5. 5. 6. 6. 7. 7. 7. 8. 8. 8. 8. 8. 8. 8		ND						
.,2,3-Trichlorobenzene ND ug/kg 16,2,4-Trichlorobenzene ND ug/kg 16,3,5-Trimethylbenzene ND ug/kg 16,2,4-Trimethylbenzene ND ug/kg 16,4-Diethylbenzene ND ug/kg 13Ethyltoluene ND ug/kg 13Ethyltoluene ND ug/kg 13,2,4,5-Tetramethylbenzene ND ug/kg 13;2,4,5-Tetramethylbenzene ND ug/kg 13;2-Dichloroethane-d4 134 % 70-130 .;2-Dichloroethane-d4 129 % 70-130Bromofluorobenzene 139 % 70-130		ND						
.,2,4-Trichlorobenzene ND ug/kg 16,3,5-Trimethylbenzene ND ug/kg 16,2,4-Trimethylbenzene ND ug/kg 16,4-Diethylbenzene ND ug/kg 13Ethyltoluene ND ug/kg 132,4,5-Tetramethylbenzene ND ug/kg 13,2,4,5-Tetramethylbenzene ND ug/kg 13;2-Dichloroethane-d4 134 % 70-130 .;2-Dichloroethane-d4 129 % 70-130Bromofluorobenzene 139 % 70-130		ND						
.,3,5-Trimethylbenzene ND ug/kg 16,2,4-Trimethylbenzene ND ug/kg 16,4-Diethylbenzene ND ug/kg 13Ethyltoluene ND ug/kg 13,2,4,5-Tetramethylbenzene ND ug/kg 13,2,4,5-Tetramethylbenzene ND ug/kg 13,2-Dichloroethane-d4 134 % 70-130 .,2-Dichloroethane-d4 129 % 70-130Bromofluorobenzene 139 % 70-130		ND						
.,2,4-Trimethylbenzene ND ug/kg 16,4-Diethylbenzene ND ug/kg 13Ethyltoluene ND ug/kg 13,2,4,5-Tetramethylbenzene ND ug/kg 13. Surrogate(s) Recovery QC Criteria .,2-Dichloroethane-d4 134 % 70-130 Coluene-d8 129 % 70-130Bromofluorobenzene 139 % 70-130		ND						
.,4-Diethylbenzene ND ug/kg 13. Ethyltoluene ND ug/kg 13,2,4,5-Tetramethylbenzene ND ug/kg 13. Surrogate(s) Recovery QC Criteria .,2-Dichloroethane-d4 134 % 70-130 Coluene-d8 129 % 70-130 E-Bromofluorobenzene 139 % 70-130	-							
H-Ethyltoluene ND ug/kg 13. L,2,4,5-Tetramethylbenzene ND ug/kg 13. Surrogate(s) Recovery QC Criteria L,2-Dichloroethane-d4 134 % 70-130 Coluene-d8 129 % 70-130 H-Bromofluorobenzene 139 % 70-130								
Recovery QC Criteria 1,2-Dichloroethane-d4 134 % 70-130 1-Bromofluorobenzene 139 % 70-130	-	ND						
70-130 % 70-	1,2,4,5-Tetramethylbenzene							
70-130 % 70-	Surrogate(s)	Recovery		QC Cr	iteria			
Coluene-d8 129 % 70-130 H-Bromofluorobenzene 139 % 70-130	1,2-Dichloroethane-d4	134	8	70-13	0			
-Bromofluorobenzene 139 % 70-130	Toluene-d8	129	%					
	4-Bromofluorobenzene							
	Dibromofluoromethane							

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813196-36 Date Collected: 05-SEP-2008 12:25

PWG.SB.2008.12@5-10' Date Received: 05-SEP-2008

Sample Matrix: SOIL Date Reported: 15-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE	ID	
					PREP ANAL		
- 111 1							
Solids, Total	88	%	0.10	30 2540G	0911 15:1	5 SD	
Volatile Organics by EPA 820	50B			1 8260B	0908 16:3	9 PD	
Methylene chloride	ND	ug/kg	28.				
1,1-Dichloroethane	ND	ug/kg	4.3				
Chloroform	ND	ug/kg	4.3				
Carbon tetrachloride	ND	ug/kg	2.8				
1,2-Dichloropropane	ND	ug/kg	9.9				
Dibromochloromethane	ND	ug/kg	2.8				
1,1,2-Trichloroethane	ND	ug/kg	4.3				
Tetrachloroethene	ND	ug/kg	2.8				
Chlorobenzene	ND	ug/kg	2.8				
Trichlorofluoromethane	ND	ug/kg	14.				
1,2-Dichloroethane	ND	ug/kg	2.8				
1,1,1-Trichloroethane	ND	ug/kg	2.8				
Bromodichloromethane	ND	ug/kg	2.8				
trans-1,3-Dichloropropene	ND	ug/kg	2.8				
cis-1,3-Dichloropropene	ND	ug/kg	2.8				
1,1-Dichloropropene	ND	ug/kg	14.				
Bromoform	ND	ug/kg	11.				
1,1,2,2-Tetrachloroethane	ND	ug/kg	2.8				
Benzene	ND	ug/kg	2.8				
Toluene	ND	ug/kg	4.3				
Ethylbenzene	ND	ug/kg	2.8				
Chloromethane	ND	ug/kg	14.				
Bromomethane	ND	ug/kg	5.7				
Vinyl chloride	ND	ug/kg	5.7				
Chloroethane	ND	ug/kg	5.7				
1,1-Dichloroethene	ND	ug/kg	2.8				
trans-1,2-Dichloroethene	ND	ug/kg	4.3				
Trichloroethene	ND	ug/kg	2.8				
1,2-Dichlorobenzene	ND	ug/kg	14.				
1,3-Dichlorobenzene	ND	ug/kg	14.				
1,4-Dichlorobenzene	ND	ug/kg	14.				
Methyl tert butyl ether	ND	ug/kg	5.7				
p/m-Xylene	ND	ug/kg	5.7				
o-Xylene	ND	ug/kg	5.7				
cis-1,2-Dichloroethene	ND	ug/kg	2.8				
Dibromomethane	ND	ug/kg	28.				

Laboratory Sample Number: L0813196-36

PWG.SB.2008.12@5-10'

No.	PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA PREP	TE ANAL	ID
ND	Volatile Organics by EPA 826	OB cont'd			1 8260B		0908 16:3	9 PD
No.	Styrene		ug/kg	5.7				
Section ND	Dichlorodifluoromethane	ND						
### Arabon disulfide -Butanome	Acetone	ND						
	Carbon disulfide	ND						
Sinyl acetate	2-Butanone	ND						
Methyl-2-pentanone	Vinyl acetate	ND						
ND		ND						
### A Primetry Prime	1,2,3-Trichloropropane	ND						
## Aromochloromethane ND ug/kg 14.	2-Hexanone	ND						
	Bromochloromethane	ND						
1. 1. 2. 2. 2. 3. 3. 3. 3. 3	2,2-Dichloropropane	ND		14.				
14. 17. 2-Tetrachloroethane ND	1,2-Dibromoethane	ND		11.				
1,1,2-Tetrachloroethane		ND		14.				
## Aromobenzene ## ND	1,1,1,2-Tetrachloroethane	ND						
### Butylbenzene	Bromobenzene	ND						
ND	n-Butylbenzene	ND		2.8				
rert-Butylbenzene ND ug/kg 14. Chlorotoluene ND ug/kg 2.8 Chlorotoluene ND ug/kg 14. Chlorotoluene ND ug/kg 11. Chlorotoluene ND ug/kg 12. Chlorotoluene ND ug/kg 12. Chlorotoluene ND ug/kg 12. Chlorotoluene ND ug/kg 12. Chlorotoluene ND ug/kg 14. Chlorotoluene ND ug/kg 14. Chlorotoluene ND ug/kg 14. Chlorotoluene ND ug/kg 14. Ch	-	ND						
## Description of the control of the		ND						
D-Chlorotoluene ND ug/kg 14. (2-Dibromo-3-chloropropane ND ug/kg 14. (2-Exachlorobutadiene ND ug/kg 14. (3-Exachlorobutadiene ND ug/kg 14. (3-Exachlorobutadiene ND ug/kg 14. (3-Exachlorobutadiene ND ug/kg 2.8 (3-Exachlorobutadiene ND ug/kg 2.8 (3-Exachloropylbenzene ND ug/kg 14. (3-Exachlorobutadiene ND ug/kg 2.8 (3-Exachlorobutadiene ND ug/kg 28. (3-Exachlorobutadiene ND ug/kg 28. (3-Exachlorobutadiene ND ug/kg 28. (3-Exachlorobutadiene ND ug/kg 14. (3-Exachlorobutadiene ND ug/kg 11. (3-Exachlorobutadiene ND ug/kg 12. (3-Exachlorobutadiene ND ug/kg 12. (3-Exachlorobutadiene ND ug/kg 12. (3-Exachlorobutadiene ND ug/kg 14. (3-Exachlorobutadiene ND ug/kg 14. (3-Exachlorobutadiene ND ug/k	o-Chlorotoluene	ND						
	p-Chlorotoluene	ND						
MEXACT Control (Included Included	-							
Sopropylbenzene ND	Hexachlorobutadiene							
ND	Isopropylbenzene	ND		2.8				
JaphthaleneNDug/kg14.MarylonitrileNDug/kg28.1-PropylbenzeneNDug/kg2.81-2,3-TrichlorobenzeneNDug/kg14.1-2,4-TrichlorobenzeneNDug/kg14.1-3,5-TrimethylbenzeneNDug/kg14.1-2,4-TrimethylbenzeneNDug/kg11.1-2+TrimethylbenzeneNDug/kg11.1-EthyltolueneNDug/kg11.1-2,4,5-TetramethylbenzeneNDug/kg11.Murrogate(s)RecoveryQC Criteria1-2-Dichloroethane-d4109%70-130Coluene-d8105%70-1301-Bromofluorobenzene122%70-130		ND						
Acrylonitrile ND ug/kg 28. 1-Propylbenzene ND ug/kg 2.8 1.2.3-Trichlorobenzene ND ug/kg 14. 1.2.4-Trichlorobenzene ND ug/kg 14. 1.3.5-Trimethylbenzene ND ug/kg 14. 1.2.4-Trimethylbenzene ND ug/kg 14. 1.2.4-Trimethylbenzene ND ug/kg 11. 1.2-Ethyltoluene ND ug/kg 11. 1.2-Ethyltoluene ND ug/kg 11. 1.3-Ethyltoluene ND ug/kg 11. 1.4-Coluene ND ug/kg 11. 1.5-Coluene ND ug/kg 11. 1.6-Coluene ND ug/kg 11. 1.6-Coluene ND ug/kg 11. 1.7-Coluene ND ug/kg 11.		ND						
n-Propylbenzene ND ug/kg 2.8 1,2,3-Trichlorobenzene ND ug/kg 14. 1,2,4-Trichlorobenzene ND ug/kg 14. 1,3,5-Trimethylbenzene ND ug/kg 14. 1,2,4-Trimethylbenzene ND ug/kg 14. 1,2,4-Trimethylbenzene ND ug/kg 11. 1,2-Ethyltoluene ND ug/kg 11. 1,2,4,5-Tetramethylbenzene ND ug/kg 11. 2,2,4,5-Tetramethylbenzene ND ug/kg 11. 3,2-Dichloroethane-d4 109 % 70-130 3,2-Dichloroethane-d4 105 % 70-130 3,2-Bromofluorobenzene 122 % 70-130		ND						
ug/kg 14. 1,2,4-Trichlorobenzene ND ug/kg 14. 1,3,5-Trimethylbenzene ND ug/kg 14. 1,2,4-Trimethylbenzene ND ug/kg 14. 1,2,4-Trimethylbenzene ND ug/kg 14. 1,4-Diethylbenzene ND ug/kg 11. 1-Ethyltoluene ND ug/kg 11. 1-2,4,5-Tetramethylbenzene ND ug/kg 11. 3urrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 109 % 70-130 2oluene-d8 105 % 70-130 1-Bromofluorobenzene 122 % 70-130		ND						
ug/kg 14. 1,2,4-Trichlorobenzene ND ug/kg 14. 1,2,4-Trimethylbenzene ND ug/kg 14. 1,2,4-Trimethylbenzene ND ug/kg 14. 1,4-Diethylbenzene ND ug/kg 11. 1-Ethyltoluene ND ug/kg 11. 1-2,4,5-Tetramethylbenzene ND ug/kg 11. 3urrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 109 % 70-130 10luene-d8 105 % 70-130 1-Bromofluorobenzene 122 % 70-130		ND						
ug/kg 14,2,4-Trimethylbenzene ND ug/kg 14,4-Diethylbenzene ND ug/kg 11Ethyltoluene ND ug/kg 11,2,4,5-Tetramethylbenzene ND ug/kg 11. Surrogate(s) Recovery QC Criteria .,2-Dichloroethane-d4 109 % 70-130 Coluene-d8 105 % 70-130Bromofluorobenzene 122 % 70-130		ND						
ug/kg 14. 1,4-Diethylbenzene ND ug/kg 11. 2-Ethyltoluene ND ug/kg 11. 3-2,4,5-Tetramethylbenzene ND ug/kg 11. 3-2,4,5-Tetramethylbenzene ND ug/kg 11. 3-2-Dichloroethane-d4 109 % 70-130 3-2-Dichloroethane-d4 105 % 70-130 3-Bromofluorobenzene 122 % 70-130		ND						
.,4-Diethylbenzene ND ug/kg 11. E-Ethyltoluene ND ug/kg 11,2,4,5-Tetramethylbenzene ND ug/kg 11. Surrogate(s) Recovery QC Criteria .,2-Dichloroethane-d4 109 % 70-130 Coluene-d8 105 % 70-130 E-Bromofluorobenzene 122 % 70-130	_							
He-Ethyltoluene ND ug/kg 11. L,2,4,5-Tetramethylbenzene ND ug/kg 11. Surrogate(s) Recovery QC Criteria L,2-Dichloroethane-d4 109 % 70-130 Soluene-d8 105 % 70-130 He-Bromofluorobenzene 122 % 70-130	1,4-Diethylbenzene							
ug/kg 11. Surrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 109 % 70-130 Coluene-d8 105 % 70-130 E-Bromofluorobenzene 122 % 70-130	-	ND						
70-130 % 70-	1,2,4,5-Tetramethylbenzene							
70-130 % 70-	Surrogate(s)	Recovery		QC Cri	iteria			
Toluene-d8 105 % 70-130 H-Bromofluorobenzene 122 % 70-130	1,2-Dichloroethane-d4	109	8	70-130)			
-Bromofluorobenzene 122 % 70-130	Toluene-d8							
	4-Bromofluorobenzene							
	Dibromofluoromethane							

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813196-37 Date Collected: 05-SEP-2008 12:25

PWG.SB.2008.22@5-10' Date Received: 05-SEP-2008

Sample Matrix: SOIL Date Reported: 15-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Solids, Total	93	%	0.10	30 2540G	0911 15:15 SD
Volatile Organics by EPA 820	50B			1 8260B	0908 17:15 PD
Methylene chloride	ND	ug/kg	27.		
1,1-Dichloroethane	ND	ug/kg	4.0		
Chloroform	ND	ug/kg	4.0		
Carbon tetrachloride	ND	ug/kg	2.7		
1,2-Dichloropropane	ND	ug/kg	9.4		
Dibromochloromethane	ND	ug/kg	2.7		
1,1,2-Trichloroethane	ND	ug/kg	4.0		
Tetrachloroethene	ND	ug/kg	2.7		
Chlorobenzene	ND	ug/kg	2.7		
Trichlorofluoromethane	ND	ug/kg	13.		
1,2-Dichloroethane	ND	ug/kg	2.7		
1,1,1-Trichloroethane	ND	ug/kg	2.7		
Bromodichloromethane	ND	ug/kg	2.7		
trans-1,3-Dichloropropene	ND	ug/kg	2.7		
cis-1,3-Dichloropropene	ND	ug/kg	2.7		
1,1-Dichloropropene	ND	ug/kg	13.		
Bromoform	ND	ug/kg	11.		
1,1,2,2-Tetrachloroethane	ND	ug/kg	2.7		
Benzene	ND	ug/kg	2.7		
Toluene	ND	ug/kg	4.0		
Ethylbenzene	ND	ug/kg	2.7		
Chloromethane	ND	ug/kg	13.		
Bromomethane	ND	ug/kg	5.4		
Vinyl chloride	ND	ug/kg	5.4		
Chloroethane	ND	ug/kg	5.4		
l,1-Dichloroethene	ND	ug/kg	2.7		
trans-1,2-Dichloroethene	ND	ug/kg	4.0		
Trichloroethene	ND	ug/kg	2.7		
1,2-Dichlorobenzene	ND	ug/kg	13.		
1,3-Dichlorobenzene	ND	ug/kg	13.		
1,4-Dichlorobenzene	ND	ug/kg	13.		
Methyl tert butyl ether	ND	ug/kg	5.4		
p/m-Xylene	ND	ug/kg	5.4		
o-Xylene	ND	ug/kg	5.4		
cis-1,2-Dichloroethene	ND	ug/kg	2.7		
Dibromomethane	ND	ug/kg	27.		

Laboratory Sample Number: L0813196-37

PWG.SB.2008.22@5-10'

PARAMETER	RESULT	UNITS	RDL	REF METHOD		TE	ID
					PREP	ANAL	
77-1-1-1-1- 0	0.D						
Volatile Organics by EPA 826		/1	5 4	1 8260B		0908 17:19	5 PD
Styrene	ND	ug/kg	5.4				
Dichlorodifluoromethane	ND	ug/kg	27.				
Acetone	ND	ug/kg	27.				
Carbon disulfide	ND	ug/kg	27.				
2-Butanone	ND	ug/kg	27.				
Vinyl acetate	ND	ug/kg	27.				
4-Methyl-2-pentanone	ND	ug/kg	27.				
1,2,3-Trichloropropane	ND	ug/kg	27.				
2-Hexanone	ND	ug/kg	27.				
Bromochloromethane	ND	ug/kg	13.				
2,2-Dichloropropane	ND	ug/kg	13.				
1,2-Dibromoethane	ND	ug/kg	11.				
1,3-Dichloropropane	ND	ug/kg	13.				
1,1,1,2-Tetrachloroethane	ND	ug/kg	2.7				
Bromobenzene	ND	ug/kg	13.				
n-Butylbenzene	ND	ug/kg	2.7				
sec-Butylbenzene	ND	ug/kg	2.7				
tert-Butylbenzene	ND	ug/kg	13.				
o-Chlorotoluene	ND	ug/kg	13.				
p-Chlorotoluene	ND	ug/kg	13.				
1,2-Dibromo-3-chloropropane	ND	ug/kg	13.				
Hexachlorobutadiene	ND	ug/kg	13.				
Isopropylbenzene	ND	ug/kg	2.7				
p-Isopropyltoluene	ND	ug/kg	2.7				
Naphthalene	ND	ug/kg ug/kg	13.				
Acrylonitrile	ND	ug/kg ug/kg	27.				
n-Propylbenzene	ND	ug/kg ug/kg	2.7				
1,2,3-Trichlorobenzene	ND	ug/kg ug/kg	13.				
1,2,4-Trichlorobenzene			13.				
	ND	ug/kg					
1,3,5-Trimethylbenzene	ND	ug/kg	13.				
1,2,4-Trimethylbenzene	ND	ug/kg	13.				
1,4-Diethylbenzene	ND	ug/kg	11.				
4-Ethyltoluene	ND	ug/kg	11.				
1,2,4,5-Tetramethylbenzene	ND	ug/kg	11.				
Surrogate(s)	Recovery		QC Cr	iteria			
1,2-Dichloroethane-d4	109	%	70-130	0			
Toluene-d8	105	8	70-130	0			
4-Bromofluorobenzene	120	8	70-130	0			
Dibromofluoromethane	103	%	70-130	0			

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813196-38 Date Collected: 05-SEP-2008 12:40

PWG.SB.2008.12@10-15' Date Received: 05-SEP-2008

Sample Matrix: SOIL Date Reported: 15-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Solids, Total	81	%	0.10	30 2540G	0911 15:15 SD
Volatile Organics by EPA 820	50B			1 8260B	0908 17:52 PD
Methylene chloride	ND	ug/kg	31.		
1,1-Dichloroethane	ND	ug/kg	4.6		
Chloroform	ND	ug/kg	4.6		
Carbon tetrachloride	ND	ug/kg	3.1		
1,2-Dichloropropane	ND	ug/kg	11.		
Dibromochloromethane	ND	ug/kg	3.1		
1,1,2-Trichloroethane	ND	ug/kg	4.6		
Tetrachloroethene	ND	ug/kg	3.1		
Chlorobenzene	ND	ug/kg	3.1		
Trichlorofluoromethane	ND	ug/kg	15.		
1,2-Dichloroethane	ND	ug/kg	3.1		
1,1,1-Trichloroethane	ND	ug/kg	3.1		
Bromodichloromethane	ND	ug/kg	3.1		
trans-1,3-Dichloropropene	ND	ug/kg	3.1		
cis-1,3-Dichloropropene	ND	ug/kg	3.1		
1,1-Dichloropropene	ND	ug/kg	15.		
Bromoform	ND	ug/kg	12.		
1,1,2,2-Tetrachloroethane	ND	ug/kg	3.1		
Benzene	ND	ug/kg	3.1		
Toluene	ND	ug/kg	4.6		
Ethylbenzene	ND	ug/kg	3.1		
Chloromethane	ND	ug/kg	15.		
Bromomethane	ND	ug/kg	6.2		
Vinyl chloride	ND	ug/kg	6.2		
Chloroethane	ND	ug/kg	6.2		
1,1-Dichloroethene	ND	ug/kg	3.1		
trans-1,2-Dichloroethene	ND	ug/kg	4.6		
Trichloroethene	ND	ug/kg	3.1		
1,2-Dichlorobenzene	ND	ug/kg	15.		
1,3-Dichlorobenzene	ND	ug/kg	15.		
1,4-Dichlorobenzene	ND	ug/kg	15.		
Methyl tert butyl ether	ND	ug/kg	6.2		
p/m-Xylene	ND	ug/kg	6.2		
o-Xylene	ND	ug/kg	6.2		
cis-1,2-Dichloroethene	ND	ug/kg	3.1		
Dibromomethane	ND	ug/kg	31.		

Laboratory Sample Number: L0813196-38

PWG.SB.2008.12@10-15'

Nation N	PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA PREP	ANAL	ID
ND	Volatile Organics by EPA 826	OB cont'd			1 8260B		0908 17:5	2 PD
No.	Styrene		ug/kg	6.2				
Acarbon disulfide ND ug/kg 31. All-Butanone ND ug/kg 31. All-Butanone ND ug/kg 31. All-Butanone ND ug/kg 31. All-Butanone ND ug/kg 31. All-Methyl-2-pentanone ND ug/kg 31. All-Methyl-2-pentanone ND ug/kg 31. All-Butanone ND ug/kg 15. All-Butanone ND ug/kg 15. All-Butanone ND ug/kg 15. All-Butanone ND ug/kg 15. All-Butanone ND ug/kg 3.1 All-Butanone ND ug/kg 15. All-Butanone ND ug/kg 15. All-Butanone ND ug/kg 3.1 All-Butanone ND ug/kg 3	Dichlorodifluoromethane	ND		31.				
Arbon disulfide	Acetone	ND		31.				
Restance	Carbon disulfide	ND		31.				
Minyl acetate	2-Butanone	ND						
### ### ### ### ### ### ### ### ### ##	Vinyl acetate	ND						
ND	-	ND						
### A Primetry Interview	1,2,3-Trichloropropane	ND						
## Architecture ND	2-Hexanone	ND						
2,2-Dichloropropane	Bromochloromethane	ND						
12 12 13 15 15 15 15 15 15 15	2,2-Dichloropropane	ND						
15. 17.2 15. 15. 17.2 15. 17.2 15. 17.2 15. 17.2 15. 17.2 15. 17.2 15. 17.2 15. 17.2 15. 17.2 15. 17.2 15. 17.2 15. 17.2 15. 15. 17.2 15. 15	1,2-Dibromoethane	ND						
### And Provided Health	-	ND		15.				
### Aromobenzene	1,1,1,2-Tetrachloroethane	ND						
### Butylbenzene	Bromobenzene	ND						
ND	n-Butylbenzene	ND						
ND	-	ND						
## Description of the control of the		ND						
D-Chlorotoluene ND ug/kg 15. 1,2-Dibromo-3-chloropropane ND ug/kg 15. Rexachlorobutadiene ND ug/kg 15. Rexachlorobutadiene ND ug/kg 3.1 Resopropylbenzene ND ug/kg 3.1 Report ND ug/kg 3.1 Report ND ug/kg 3.1 Repropylbenzene ND ug/kg 31. Repropylbenzene ND ug/kg 31. Repropylbenzene ND ug/kg 31. Repropylbenzene ND ug/kg 3.1 Repropylbenzene ND ug/kg 3.1 Repropylbenzene ND ug/kg 15. Re	o-Chlorotoluene	ND						
15.	p-Chlorotoluene	ND						
Mexachlorobutadiene ND ug/kg 15. Sopropylbenzene ND ug/kg 3.1 D-Isopropyltoluene ND ug/kg 3.1 Maphthalene ND ug/kg 15. Marylonitrile ND ug/kg 31. Marylonitrile ND ug/kg 15. Marylonitrile ND ug/kg	-							
Sopropylbenzene ND ug/kg 3.1 sopropyltoluene ND ug/kg 3.1 sopropyltoluene ND ug/kg 15. sopropyltoluene ND ug/kg 31. sopropylbenzene ND ug/kg 3.1 sopropylbenzene ND ug/kg 3.1 sopropylbenzene ND ug/kg 3.1 sopropylbenzene ND ug/kg 15. sopropylbenzene ND ug/kg 12. sopropylbenzene ND ug/kg 12. sopropylbenzene ND ug/kg 12. sopropylbenzene ND ug/kg 12. sopropylbenzene Surrogate(s) Recovery QC Criteria sopropylbenzene Soprop	Hexachlorobutadiene							
ND	Isopropylbenzene	ND		3.1				
<pre>Maphthalene</pre>								
Acrylonitrile ND ug/kg 31. 1-Propylbenzene ND ug/kg 3.1 1.2,3-Trichlorobenzene ND ug/kg 15. 1.2,4-Trichlorobenzene ND ug/kg 15. 1.3,5-Trimethylbenzene ND ug/kg 15. 1.4-Diethylbenzene ND ug/kg 15. 1.4-Diethylbenzene ND ug/kg 12. 1-Ethyltoluene ND ug/kg 13. 1-Ethyltoluene ND ug/kg 12. 1-Ethyltoluene ND ug/kg 13. 1-Ethyltoluene ND ug/kg 12.		ND						
n-Propylbenzene ND ug/kg 3.1 1,2,3-Trichlorobenzene ND ug/kg 15. 1,2,4-Trichlorobenzene ND ug/kg 15. 1,3,5-Trimethylbenzene ND ug/kg 15. 1,2,4-Trimethylbenzene ND ug/kg 15. 1,4-Diethylbenzene ND ug/kg 12. 1-Ethyltoluene ND ug/kg 12. 1-Ethyltoluene ND ug/kg 12. 1-2,4,5-Tetramethylbenzene ND ug/kg 12. 3-2,4,5-Tetramethylbenzene ND ug/kg 12. 3-2-Dichloroethane-d4 110 % 70-130 3-2-Dichloroethane-d4 104 % 70-130 3-3-Bromofluorobenzene 117 % 70-130		ND						
ug/kg 15,2,4-Trichlorobenzene ND ug/kg 15,3,5-Trimethylbenzene ND ug/kg 15,2,4-Trimethylbenzene ND ug/kg 15,2,4-Trimethylbenzene ND ug/kg 15,4-Diethylbenzene ND ug/kg 12Ethyltoluene ND ug/kg 12Ethyltoluene ND ug/kg 122,4,5-Tetramethylbenzene ND ug/kg 122,4,5-Tetramethylbenzene ND ug/kg 12		ND						
ug/kg 15. 1,2,4-Trichlorobenzene ND ug/kg 15. 1,2,4-Trimethylbenzene ND ug/kg 15. 1,2,4-Trimethylbenzene ND ug/kg 15. 1,4-Diethylbenzene ND ug/kg 12. 1-Ethyltoluene ND ug/kg 12. 1-Ethyltoluene ND ug/kg 12. 1,2,4,5-Tetramethylbenzene ND ug/kg 12. 3urrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 110 % 70-130 2cluene-d8 104 % 70-130 3-Bromofluorobenzene 117 % 70-130		ND						
ug/kg 15,2,4-Trimethylbenzene ND ug/kg 15,4-Diethylbenzene ND ug/kg 12. L-Ethyltoluene ND ug/kg 12,2,4,5-Tetramethylbenzene ND ug/kg 12. Surrogate(s) Recovery QC Criteria .,2-Dichloroethane-d4 110 % 70-130 Coluene-d8 104 % 70-130 L-Bromofluorobenzene 117 % 70-130		ND						
ug/kg 15,4-Diethylbenzene ND ug/kg 12. l-Ethyltoluene ND ug/kg 12,2,4,5-Tetramethylbenzene ND ug/kg 12. Surrogate(s) Recovery QC Criteria .,2-Dichloroethane-d4 110 % 70-130 Coluene-d8 104 % 70-130 l-Bromofluorobenzene 117 % 70-130		ND						
A,4-Diethylbenzene ND ug/kg 12. A-Ethyltoluene ND ug/kg 12. A,2,4,5-Tetramethylbenzene ND ug/kg 12. Surrogate(s) Recovery QC Criteria A,2-Dichloroethane-d4 110 % 70-130 Acoluene-d8 104 % 70-130 A-Bromofluorobenzene 117 % 70-130	-							
H-Ethyltoluene ND ug/kg 12. L,2,4,5-Tetramethylbenzene ND ug/kg 12. Gurrogate(s) Recovery QC Criteria L,2-Dichloroethane-d4 110 % 70-130 Goluene-d8 104 % 70-130 H-Bromofluorobenzene 117 % 70-130								
Surrogate(s) Recovery QC Criteria 1,2-Dichloroethane-d4 110 8 70-130 Coluene-d8 104 8 70-130 R-Bromofluorobenzene 117 8 70-130	-	ND						
70-130 % 70-	1,2,4,5-Tetramethylbenzene							
70-130 % 70-	Surrogate(s)	Recovery		QC Cri	iteria			
Toluene-d8 104 % 70-130 H-Bromofluorobenzene 117 % 70-130	1,2-Dichloroethane-d4	110	8	70-130)			
-Bromofluorobenzene 117 % 70-130	Toluene-d8	104	%					
	4-Bromofluorobenzene							
	Dibromofluoromethane							

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813196-39 Date Collected: 05-SEP-2008 12:25

FB090508 (SOIL) **Date Received :** 05-SEP-2008

Sample Matrix: WATER Date Reported: 15-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 82	160B			1 8260B	0910 22:10 PD
Methylene chloride	ND	ug/l	5.0		
1,1-Dichloroethane	ND	ug/l	0.75		
Chloroform	ND	ug/l	0.75		
Carbon tetrachloride	ND	ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75		
Tetrachloroethene	ND	ug/l	0.50		
Chlorobenzene	ND	ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND	ug/l	0.50		
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50		
Chloromethane	ND	ug/l	2.5		
Bromomethane	ND	ug/l	1.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	1.0		
1,1-Dichloroethene	ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/l	0.75		
Trichloroethene	ND	ug/l	0.50		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/l	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	ND	ug/l	0.50		
Dibromomethane	ND	ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/l	5.0		
Acrylonitrile	ND	ug/l	5.0		

Laboratory Sample Number: L0813196-39

FB090508 (SOIL)

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 826	OB contid			1 8260B	0910 22:10 PD
Styrene	ND	ug/l	1.0	1 02006	0910 ZZ:10 PD
Dichlorodifluoromethane	ND	ug/l	5.0		
Acetone	ND	ug/l	5.0		
Carbon disulfide	ND	ug/l	5.0		
2-Butanone	ND	ug/l	5.0		
Vinyl acetate	ND	ug/l	5.0		
4-Methyl-2-pentanone	ND	ug/l	5.0		
2-Hexanone	ND	ug/l	5.0		
Bromochloromethane	ND	ug/l	2.5		
2,2-Dichloropropane	ND	ug/l	2.5		
1,2-Dibromoethane	ND	ug/l	2.0		
1,3-Dichloropropane	ND	ug/l	2.5		
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50		
Bromobenzene	ND	ug/l	2.5		
n-Butylbenzene	ND	ug/l	0.50		
sec-Butylbenzene	ND	ug/l	0.50		
tert-Butylbenzene	ND	ug/l	2.5		
o-Chlorotoluene	ND	ug/l	2.5		
p-Chlorotoluene	ND	ug/l	2.5		
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5		
Hexachlorobutadiene	ND	ug/l	0.60		
Isopropylbenzene	ND	ug/l	0.50		
p-Isopropyltoluene	ND	ug/l	0.50		
Naphthalene	ND	ug/l	2.5		
n-Propylbenzene	ND	ug/l	0.50		
1,2,3-Trichlorobenzene	ND	ug/l	2.5		
1,2,4-Trichlorobenzene	ND	ug/l	2.5		
1,3,5-Trimethylbenzene	ND	ug/l	2.5		
1,2,4-Trimethylbenzene	ND	ug/l	2.5		
1,4-Diethylbenzene	ND	ug/l	2.0		
4-Ethyltoluene	ND	ug/l	2.0		
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0		
Surrogate(s)	Recovery		QC Crit	ceria	
1,2-Dichloroethane-d4	101	%	70-130		
Toluene-d8	101	%	70-130		
4-Bromofluorobenzene	101	%	70-130		
Dibromofluoromethane	97.0	૪	70-130		

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0813196-40 Date Collected: 04-SEP-2008 13:10

Sample Matrix: WATER Date Reported: 15-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 820	50B			1 8260B	0910 20:57 PD
Methylene chloride	ND	ug/l	5.0	1 0200B	0910 Z0:37 FD
1,1-Dichloroethane	ND ND	ug/1 ug/l	0.75		
Chloroform	ND	ug/1 ug/l	0.75		
Carbon tetrachloride	ND	ug/1 ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75		
Tetrachloroethene	ND	ug/l	0.50		
Chlorobenzene	ND	ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND	ug/l	0.50		
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50		
Chloromethane	ND	ug/l	2.5		
Bromomethane	ND	ug/l	1.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	1.0		
1,1-Dichloroethene	ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/l	0.75		
Trichloroethene	ND	ug/l	0.50		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/l	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	ND	ug/l	0.50		
Dibromomethane	ND	ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/l	5.0		
Acrylonitrile	ND	ug/l	5.0		

Laboratory Sample Number: L0813196-40

FB090408 (SOIL)

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DAT: PREP	E ANAL	ID
Volatile Organics by EPA 826	OB contid			1 8260B	0	910 20:5'	7 PD
Styrene	ND	ug/l	1.0	1 0200B	0	910 20.5	/ PD
Dichlorodifluoromethane	ND ND	ug/l	5.0				
Acetone	ND	ug/l	5.0				
Carbon disulfide	ND	ug/l	5.0				
2-Butanone	ND	ug/l	5.0				
Vinyl acetate	ND	ug/l	5.0				
4-Methyl-2-pentanone	ND	ug/l	5.0				
2-Hexanone	ND	ug/l	5.0				
Bromochloromethane	ND	ug/l	2.5				
2,2-Dichloropropane	ND	ug/l	2.5				
1,2-Dibromoethane	ND	ug/l	2.0				
1,3-Dichloropropane	ND	ug/l	2.5				
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50				
Bromobenzene	ND	ug/l	2.5				
n-Butylbenzene	ND	ug/l	0.50				
sec-Butylbenzene	ND	ug/l	0.50				
tert-Butylbenzene	ND	ug/l	2.5				
o-Chlorotoluene	ND	ug/l	2.5				
p-Chlorotoluene	ND	ug/l	2.5				
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5				
Hexachlorobutadiene	ND	ug/l	0.60				
Isopropylbenzene	ND	ug/l	0.50				
p-Isopropyltoluene	ND	ug/l	0.50				
Naphthalene	ND	ug/l	2.5				
n-Propylbenzene	ND	ug/l	0.50				
1,2,3-Trichlorobenzene	ND	ug/l	2.5				
1,2,4-Trichlorobenzene	ND	ug/l	2.5				
1,3,5-Trimethylbenzene	ND	ug/l	2.5				
1,2,4-Trimethylbenzene	ND	ug/l	2.5				
1,4-Diethylbenzene	ND	ug/l	2.0				
4-Ethyltoluene	ND	ug/l	2.0				
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0				
Surrogate(s)	Recovery		QC Crit	ceria			
1,2-Dichloroethane-d4	104	8	70-130				
Toluene-d8	99.0	%	70-130				
4-Bromofluorobenzene	104	8	70-130				
Dibromofluoromethane	99.0	8	70-130				

ALPHA ANALYTICAL QUALITY ASSURANCE BATCH DUPLICATE ANALYSIS

Laboratory Job Number: L0813196

Parameter	Value 1	Value 2	Units	RPD	RPD Limits
Solide Tota	l for sample(s) 05 20-21	27 30 (T.08	13121-08	WG335668-1)
Solids, Total	58	60	,27,30 (HOO %	3	20
Solids, Total for sam	ple(s) 01.03.0	8.10.13.18	,24-25,28,3	1-38 (L0	813196-33, WG335977-1
Solids, Total	84	85	8	1	20
Total Metals	for sample(s)	05,20-21,	27,30 (L081	3196-21,	WG335482-1)
Aluminum, Total	2900	2700	mg/kg	7	35
Antimony, Total	ND	ND	mg/kg	NC	35
Arsenic, Total	1.2	1.4	mg/kg	15	35
Barium, Total	20	19	mg/kg	5	35
Beryllium, Total	ND	ND	mg/kg	NC	35
Cadmium, Total	ND	ND	mg/kg	NC	35
Calcium, Total	500	400	mg/kg	22	35
Chromium, Total	4.9	4.8	mg/kg	2	35
Cobalt, Total	2.4	2.6	mg/kg	8	35
Copper, Total	5.6	5.0	mg/kg	11	35
Iron, Total	6400	6100	mg/kg	5	35
Lead, Total	30	28	mg/kg	7	35
Magnesium, Total	560	510	mg/kg	9	35
Manganese, Total	88	85	mg/kg	3	35
Nickel, Total	4.5	4.0	mg/kg	12	35
Potassium, Total	260	240	mg/kg	8	35
Selenium, Total	ND	ND	mg/kg	NC	35
Silver, Total	ND	ND	mg/kg	NC	35
Sodium, Total	ND	ND	mg/kg	NC	35
Thallium, Total	ND	ND	mg/kg	NC	35
Vanadium, Total	6.3	5.8	mg/kg	8	35
Zinc, Total	24	24	mg/kg	0	35
Total Metals	for sample(s)	05,20-21,	27,30 (L081	3196-21,	WG335841-3)
Mercury, Total	0.25	0.96	mg/kg	117	35

ALPHA ANALYTICAL QUALITY ASSURANCE BATCH SPIKE ANALYSES

Laboratory Job Number: L0813196

Parameter	% Recovery QC Criteria
Total Metals	LCS for sample(s) 05,20-21,27,30 (WG335482-4)
Aluminum, Total	100 75-125
Antimony, Total	100 75-125
Arsenic, Total	104 75-125
Barium, Total	100 75-125
Beryllium, Total	100 75-125
Cadmium, Total	106 75–125
Calcium, Total	98 75-125
Chromium, Total	101 75-125
•	100 75-125
Cobalt, Total	
Copper, Total	100 75-125
Iron, Total	100 75-125
Lead, Total	102 75-125
Magnesium, Total	98 75-125
Manganese, Total	100 75-125
Nickel, Total	100 75-125
Potassium, Total	94 75-125
Selenium, Total	97 75-125
Silver, Total	96 75–125
Sodium, Total	100 75-125
Thallium, Total	102 75-125
-	
Vanadium, Total	100 75-125
-	100 75-125 96 75-125
Vanadium, Total Zinc, Total	96 75-125
Vanadium, Total Zinc, Total Total Metals	96 75-125 LCS for sample(s) 05,20-21,27,30 (WG335841-2)
Vanadium, Total Zinc, Total	96 75-125
Vanadium, Total Zinc, Total Total Metals Mercury, Total	96 75-125 LCS for sample(s) 05,20-21,27,30 (WG335841-2) 112 80-120
Vanadium, Total Zinc, Total Total Metals Mercury, Total Total Metals SPIKE f	96 75-125 LCS for sample(s) 05,20-21,27,30 (WG335841-2) 112 80-120 or sample(s) 05,20-21,27,30 (L0813196-21, WG335482-2)
Vanadium, Total Zinc, Total Total Metals Mercury, Total Total Metals SPIKE f Aluminum, Total	96 75-125 LCS for sample(s) 05,20-21,27,30 (WG335841-2) 112 80-120 or sample(s) 05,20-21,27,30 (L0813196-21, WG335482-2) 0 75-125
Vanadium, Total Zinc, Total Total Metals Mercury, Total Total Metals SPIKE f Aluminum, Total Antimony, Total	96 75-125 LCS for sample(s) 05,20-21,27,30 (WG335841-2) 112 80-120 or sample(s) 05,20-21,27,30 (L0813196-21, WG335482-2) 0 75-125 50 75-125
Vanadium, Total Zinc, Total Total Metals Mercury, Total Total Metals SPIKE f Aluminum, Total Antimony, Total Arsenic, Total	96 75-125 LCS for sample(s) 05,20-21,27,30 (WG335841-2) 112 80-120 or sample(s) 05,20-21,27,30 (L0813196-21, WG335482-2) 0 75-125 50 75-125 88 75-125
Vanadium, Total Zinc, Total Total Metals Mercury, Total Total Metals SPIKE f Aluminum, Total Antimony, Total Arsenic, Total Barium, Total	96 75-125 LCS for sample(s) 05,20-21,27,30 (WG335841-2) 112 80-120 or sample(s) 05,20-21,27,30 (L0813196-21, WG335482-2) 0 75-125 50 75-125 88 75-125 83 75-125
Vanadium, Total Zinc, Total Total Metals Mercury, Total Total Metals SPIKE f Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total	96 75-125 LCS for sample(s) 05,20-21,27,30 (WG335841-2) 112 80-120 or sample(s) 05,20-21,27,30 (L0813196-21, WG335482-2) 0 75-125 50 75-125 88 75-125 87 75-125
Vanadium, Total Zinc, Total Total Metals Mercury, Total Total Metals SPIKE f Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total	96 75-125 LCS for sample(s) 05,20-21,27,30 (WG335841-2) 112 80-120 or sample(s) 05,20-21,27,30 (L0813196-21, WG335482-2) 0 75-125 50 75-125 88 75-125 87 75-125 89 75-125
Vanadium, Total Zinc, Total Total Metals Mercury, Total Total Metals SPIKE f Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Calcium, Total	96 75-125 LCS for sample(s) 05,20-21,27,30 (WG335841-2) 112 80-120 or sample(s) 05,20-21,27,30 (L0813196-21, WG335482-2) 0 75-125 50 75-125 88 75-125 87 75-125 89 75-125 166 75-125
Vanadium, Total Zinc, Total Total Metals Mercury, Total Total Metals SPIKE f Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Calcium, Total Chromium, Total	96 75-125 LCS for sample(s) 05,20-21,27,30 (WG335841-2) 112 80-120 or sample(s) 05,20-21,27,30 (L0813196-21, WG335482-2) 0 75-125 50 75-125 88 75-125 87 75-125 89 75-125 166 75-125 74 75-125
Vanadium, Total Zinc, Total Total Metals Mercury, Total Total Metals SPIKE f Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Calcium, Total Chromium, Total Cobalt, Total	96 75-125 LCS for sample(s) 05,20-21,27,30 (WG335841-2) 112 80-120 or sample(s) 05,20-21,27,30 (L0813196-21, WG335482-2) 0 75-125 50 75-125 88 75-125 87 75-125 89 75-125 166 75-125 74 75-125 85 75-125
Vanadium, Total Zinc, Total Total Metals Mercury, Total Total Metals SPIKE f Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Calcium, Total Chromium, Total Cobalt, Total Copper, Total	96 75-125 LCS for sample(s) 05,20-21,27,30 (WG335841-2) 112 80-120 or sample(s) 05,20-21,27,30 (L0813196-21, WG335482-2) 0 75-125 50 75-125 88 75-125 87 75-125 89 75-125 166 75-125 74 75-125 85 75-125 78 75-125
Vanadium, Total Zinc, Total Total Metals Mercury, Total Total Metals SPIKE f Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Calcium, Total Chromium, Total Cobalt, Total Copper, Total Iron, Total	96 75-125 LCS for sample(s) 05,20-21,27,30 (WG335841-2) 112 80-120 or sample(s) 05,20-21,27,30 (L0813196-21, WG335482-2) 0 75-125 50 75-125 88 75-125 87 75-125 89 75-125 166 75-125 74 75-125 85 75-125 78 75-125 78 75-125
Vanadium, Total Zinc, Total Total Metals Mercury, Total Total Metals SPIKE f Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Calcium, Total Chromium, Total Chromium, Total Cobalt, Total Copper, Total Iron, Total Lead, Total	96 75-125 LCS for sample(s) 05,20-21,27,30 (WG335841-2) 112 80-120 or sample(s) 05,20-21,27,30 (L0813196-21, WG335482-2) 0 75-125 50 75-125 88 75-125 87 75-125 89 75-125 166 75-125 74 75-125 75 75-125 76 75-125 77 75-125 78 75-125 78 75-125 78 75-125 78 75-125 78 75-125
Vanadium, Total Zinc, Total Total Metals Mercury, Total Total Metals SPIKE f Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Calcium, Total Chromium, Total Chromium, Total Copper, Total Iron, Total Lead, Total Magnesium, Total	96 75-125 LCS for sample(s) 05,20-21,27,30 (WG335841-2) 112 80-120 or sample(s) 05,20-21,27,30 (L0813196-21, WG335482-2) 0 75-125 50 75-125 88 75-125 87 75-125 89 75-125 166 75-125 74 75-125 75 725 78 75-125 78 75-125 69 75-125 69 75-125
Vanadium, Total Zinc, Total Total Metals Mercury, Total Total Metals SPIKE f Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Calcium, Total Chromium, Total Chromium, Total Chromium, Total Copper, Total Iron, Total Lead, Total Magnesium, Total Manganese, Total	DCS for sample(s) 05,20-21,27,30 (WG335841-2) 112 80-120 or sample(s) 05,20-21,27,30 (L0813196-21, WG335482-2) 0 75-125 50 75-125 88 75-125 87 75-125 89 75-125 166 75-125 74 75-125 75 75 125 75 75 125 75 75 125 75 75 125 75 75 125 75 75 125 75 75 125 75 75 125 75 75 125 75 75 125 75 75 125 75 75 125 75 75 125
Vanadium, Total Zinc, Total Total Metals Mercury, Total Total Metals SPIKE f Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Calcium, Total Chromium, Total Chromium, Total Chpper, Total Iron, Total Iron, Total Lead, Total Magnesium, Total Manganese, Total Nickel, Total	96 75-125 LCS for sample(s) 05,20-21,27,30 (WG335841-2) 112 80-120 or sample(s) 05,20-21,27,30 (L0813196-21, WG335482-2) 0 75-125 50 75-125 88 75-125 87 75-125 89 75-125 166 75-125 74 75-125 74 75-125 78 75-125 78 75-125 69 75-125 69 75-125 64 75-125 133 75-125 85 75-125
Vanadium, Total Zinc, Total Total Metals Mercury, Total Total Metals SPIKE f Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Calcium, Total Chromium, Total Chromium, Total Chromium, Total Lead, Total Iron, Total Lead, Total Magnesium, Total Magnesium, Total Nickel, Total Potassium, Total	96 75-125 LCS for sample(s) 05,20-21,27,30 (WG335841-2) 112 80-120 or sample(s) 05,20-21,27,30 (L0813196-21, WG335482-2) 0 75-125 50 75-125 88 75-125 88 75-125 89 75-125 166 75-125 74 75-125 74 75-125 78 75-125 78 75-125 69 75-125 69 75-125 64 75-125 133 75-125 85 75-125 91 75-125
Vanadium, Total Zinc, Total Total Metals Mercury, Total Total Metals SPIKE f Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Calcium, Total Calcium, Total Chromium, Total Chromium, Total Copper, Total Iron, Total Iron, Total Lead, Total Magnesium, Total Magnesium, Total Nickel, Total Potassium, Total Selenium, Total	96 75-125 LCS for sample(s) 05,20-21,27,30 (WG335841-2) 112 80-120 or sample(s) 05,20-21,27,30 (L0813196-21, WG335482-2) 0 75-125 50 75-125 88 75-125 87 75-125 89 75-125 166 75-125 74 75-125 78 75-125 78 75-125 69 75-125 69 75-125 64 75-125 64 75-125 69 75-125 85 75-125 85 75-125 85 75-125 85 75-125
Vanadium, Total Zinc, Total Total Metals Mercury, Total Total Metals SPIKE f Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Calcium, Total Chromium, Total Chromium, Total Chromium, Total Chromium, Total Lead, Total Iron, Total Lead, Total Magnesium, Total Mickel, Total Potassium, Total Selenium, Total Silver, Total	96 75-125 LCS for sample(s) 05,20-21,27,30 (WG335841-2) 112 80-120 or sample(s) 05,20-21,27,30 (L0813196-21, WG335482-2) 0 75-125 50 75-125 88 75-125 89 75-125 166 75-125 74 75-125 74 75-125 75 70 75-125 75 70 75-125 75 70 75-125 75 70 75-125 75 70 75-125 75 70 75-125 75 70 75-125 75 70 75-125 75 70 75-125 75 70 75-125 75 70 75-125 75 70 75-125 75 70 75-125 75 70 75-125 75 70 75-125 75 70 75-125 75 70 75-125 75 70 75-125 75 75-125 75 75-125
Vanadium, Total Zinc, Total Total Metals Mercury, Total Total Metals SPIKE f Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Calcium, Total Chromium, Total Copper, Total Iron, Total Lead, Total Magnesium, Total Manganese, Total Nickel, Total Potassium, Total Selenium, Total Sodium, Total	96 75-125 LCS for sample(s) 05,20-21,27,30 (WG335841-2) 112 80-120 or sample(s) 05,20-21,27,30 (L0813196-21, WG335482-2) 0 75-125 50 75-125 88 75-125 88 75-125 89 75-125 166 75-125 74 75-125 85 75-125 69 75-125 69 75-125 64 75-125 69 75-125 69 75-125 64 75-125 69 75-125
Vanadium, Total Zinc, Total Total Metals Mercury, Total Total Metals SPIKE f Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Calcium, Total Chromium, Total Chromium, Total Chromium, Total Chromium, Total Lead, Total Iron, Total Lead, Total Magnesium, Total Mickel, Total Potassium, Total Selenium, Total Silver, Total	96 75-125 LCS for sample(s) 05,20-21,27,30 (WG335841-2) 112 80-120 or sample(s) 05,20-21,27,30 (L0813196-21, WG335482-2) 0 75-125 50 75-125 88 75-125 89 75-125 166 75-125 74 75-125 74 75-125 75 70 75-125 75 70 75-125 75 70 75-125 75 70 75-125 75 70 75-125 75 70 75-125 75 70 75-125 75 70 75-125 75 70 75-125 75 70 75-125 75 70 75-125 75 70 75-125 75 70 75-125 75 70 75-125 75 70 75-125 75 70 75-125 75 70 75-125 75 70 75-125 75 75-125 75 75-125

09150810:51 Page 106 of 126

ALPHA ANALYTICAL QUALITY ASSURANCE BATCH SPIKE ANALYSES

Laboratory Job Number: L0813196

Continued

Parameter	% Recovery QC Criteria									
Total Metals SPIKE for sar Zinc, Total	umple(s) 05,20-21,27,30 (L0813196-21, WG335482-2) 62 75-125									
Total Metals SPIKE for san Mercury, Total	mple(s) 05,20-21,27,30 (L0813196-21, WG335841-4) 6 70-130									

09150810:51 Page 107 of 126

ALPHA ANALYTICAL QUALITY ASSURANCE BATCH LCS/LCSD ANALYSIS

Laboratory Job Number: L0813196

Parameter	LCS %	LCSD %	RPD	RPD Limit	QC Limits
Volatile Organics by EPA 8260B for	sample(s)	01,03.05.0	08,10.13.1	8,20,24-25,27.3	30-32 (WG335931
Chlorobenzene	94	93	1	30	60-133
Benzene	96	92	4	30	66-142
Toluene	93	94	1	30	59-139
1,1-Dichloroethene	95	91	4	30	59-172
Trichloroethene	95	92	3	30	62-137
G					
Surrogate(s)	100	100	0		EO 120
1,2-Dichloroethane-d4	102	102	0		70-130
Toluene-d8	104	104	0		70-130
4-Bromofluorobenzene	102	103	1		70-130
Dibromofluoromethane	103	101	2		70-130
Volatile Organics by EPA 8260B fo					
Chlorobenzene	95	96	1	30	60-133
Benzene	97	99	2	30	66-142
Toluene	97	98	1	30	59-139
1,1-Dichloroethene	94	100	6	30	59-172
Trichloroethene	98	100	2	30	62-137
Surrogate(s)					
1,2-Dichloroethane-d4	101	104	3		70-130
Toluene-d8	96	101	5		70-130
4-Bromofluorobenzene	97	100	3		70-130
Dibromofluoromethane	97	102	5		70-130
Volatile Organics by EPA 8260B for	sample(s)	02,04,06-0	07,09,11-1	2,14-17,19,22-2	23,26,29 (WG335
Chlorobenzene	98	98	0	20	75-130
Benzene	94	91	3	20	76-127
Toluene	97	97	0	20	76-125
1,1-Dichloroethene	91	89	2	20	61-145
Trichloroethene	94	92	2	20	71-120
Surrogate(s)					
1,2-Dichloroethane-d4	101	99	2		70-130
Toluene-d8	99	98	1		70-130
4-Bromofluorobenzene	104	102	2		70-130
Dibromofluoromethane	99	98	1		70-130
Volatile Organics by EPA 8260B for Chlorobenzene				31-4, WG335931-	
	95	96	1	30	60-133
Benzene	97	99	2	30	66-142
Toluene	97	98	1	30	59-139
1,1-Dichloroethene	94	100	6	30	59-172
Trichloroethene	98	100	2	30	62-137
Surrogate(s) 1,2-Dichloroethane-d4	101	104	3		70-130

09150810:51 Page 108 of 126

ALPHA ANALYTICAL QUALITY ASSURANCE BATCH LCS/LCSD ANALYSIS

Laboratory Job Number: L0813196

Continued

Parameter	LCS %	LCSD %	RPD	RPD Limit	QC Limits
Volatile Organics by EPA 8260B for	r gamplo/g) 21 20 24-	-27 (MC2250	21_1 WC225021	- E)
4-Bromofluorobenzene	97	100		731-4, WG333931	70-130
i-Bromofluoromethane	97 97	100	3 5		
Dibromofiuoromethane	97	102	5		70-130
Volatile Organics by EPA 8260B fo) (WG335914	1-4, WG335914-5	
Chlorobenzene	104	101	3	20	75-130
Benzene	98	96	2	20	76-127
Toluene	102	100	2	20	76-125
1,1-Dichloroethene	93	91	2	20	61-145
Trichloroethene	96	93	3	20	71-120
Surrogate(s)					
1,2-Dichloroethane-d4	101	101	0		70-130
Гоluene-d8	100	99	1		70-130
4-Bromofluorobenzene	100	102	2		70-130
Dibromofluoromethane	99	97	2		70-130
Semivolatile Organics by EPA 82700	T for samp] o (g) 05 2 (1_21 27 20	(WC225262-2 W	~225262_2\
Acenaphthene	66 samp	76	14	50	31-137
l,2,4-Trichlorobenzene	66	68	3	50	38-107
	70	71	1	50	40-140
2-Chloronaphthalene 1,2-Dichlorobenzene	70 71	71 68	4	50 50	40-140
	71 69	65	6	50 50	28-104
1,4-Dichlorobenzene			-		
2,4-Dinitrotoluene	79	82	4	50	28-89
2,6-Dinitrotoluene	68	72	6	50	40-140
Fluoranthene	79	80	1	50	40-140
4-Chlorophenyl phenyl ether	70	76	8	50	40-140
n-Nitrosodi-n-propylamine	70	67	4	50	41-126
Butyl benzyl phthalate	81	81	0	50	40-140
Anthracene	78	76	3	50	40-140
Pyrene	77	75	3	50	35-142
P-Chloro-M-Cresol	75	72	4	50	26-103
2-Chlorophenol	71	66	7	50	25-102
2-Nitrophenol	70	66	6	50	30-130
4-Nitrophenol	70	62	12	50	11-114
2,4-Dinitrophenol	45	41	9	50	30-130
Pentachlorophenol	54	53	2	50	17-109
Phenol	66	65	2	50	26-90
Surrogate(s)					
2-Fluorophenol	76	68	11		25-120
Phenol-d6	72	65	10		10-120
Nitrobenzene-d5	69	60	14		23-120
2-Fluorobiphenyl	64	63	2		30-120
	80	70	13		19-120
2,4,6-Tribromophenol					

09150810:51 Page 109 of 126

ALPHA ANALYTICAL QUALITY ASSURANCE BATCH LCS/LCSD ANALYSIS

Laboratory Job Number: L0813196

Continued

Parameter	LCS	% LCSD	% RPD	RPD Limit	QC Limits
Semivolatile Organics by EPA 8	3270C-SIM	for sample(s	05.20-21.27.	30 (WG335365-2	, WG335365-3
Acenaphthene	45	68	41	(31-137
2-Chloronaphthalene	47	71	41		40-140
Fluoranthene	65	74	13		40-140
Anthracene	57	74	26		40-140
Pyrene	66	76	14		35-142
Pentachlorophenol	19	31	48		17-109
Surrogate(s)					
2-Fluorophenol	46	67	37		25-120
Phenol-d6	50	72	36		10-120
Nitrobenzene-d5	46	66	36		23-120
2-Fluorobiphenyl	44	64	37		30-120
2,4,6-Tribromophenol	70	91	26		19-120
4-Terphenyl-d14	57	69	19		18-120
Polychlorinated Biphenyls by B	EPA 8082 f	or sample(s)	05,20 (WG3361	.09-2, WG336109	-3)
Aroclor 1016	62	72	15	30	40-140
Aroclor 1260	69	80	15	30	40-140
Surrogate(s)					
2,4,5,6-Tetrachloro-m-xylene	52	69	28		30-150
Decachlorobiphenyl	66	91	32		30-150
Polychlorinated Biphenyls by I	EPA 8082 f		21,27,30 (WG3	335372-2, WG335	
Aroclor 1016	44	53	19	30	40-140
Aroclor 1260	40	50	22	30	40-140
Surrogate(s)		4.5			22.152
2,4,5,6-Tetrachloro-m-xylene	44	46	4		30-150
Decachlorobiphenyl	39	51	27		30-150
Organochlorine Pesticides by F					
Delta-BHC	74	51	37	30	30-150
Lindane	79	57	32	30	30-150
Alpha-BHC	79	56	34	30	30-150
Beta-BHC	75	55	31	30	30-150
Heptachlor	87	62	34	30	30-150
Aldrin	80	56	35	30	30-150
Heptachlor epoxide	90	63	35	30	30-150
Endrin	95	64	39	30	30-150
Endrin ketone	101	70	36	30	30-150
Dieldrin	95	65	38	30	30-150
4,4'-DDE	89	61	37	30	30-150
4,4'-DDD	97	65	40	30	30-150
4,4'-DDT	111	74	40	30	30-150
Endosulfan I	90	62	37	30	30-150
Endosulfan II	92	62	39	30	30-150

Laboratory Job Number: L0813196

Continued

Parameter	LCS	%	LCSD %	RPD	RPD Limit	QC Limits
Organochlorine Pesticides by EPA	8081A	for s	sample(s)	05,20-21,27,30	(WG335356-2	, WG335356-3)
Endosulfan sulfate	94		62	41	30	30-150
Methoxychlor	115		76	41	30	30-150
trans-Chlordane	86		61	34	30	30-150
Surrogate(s)						
2,4,5,6-Tetrachloro-m-xylene	69		50	32		30-150
Decachlorobiphenyl	98		70	33		30-150

09150810:51 Page 111 of 126

ALPHA ANALYTICAL QUALITY ASSURANCE BATCH MS/MSD ANALYSIS

Laboratory Job Number: L0813196

Parameter	MS %	MSD %	RPD	RPD Limit	MS/MSD Limits
	7 ()	01 02 05	00 10 10 1	0.00.01.04.05	05 00 20 20 24 25
Volatile Organics by EPA 8260B fo					
Chlorobenzene	79	89	12	30	60-133
Benzene	85	102	18	30	66-142
Toluene	82	97	17	30	59-139
1,1-Dichloroethene	88	103	16	30	59-172
Trichloroethene	83	99	18	30	62-137
Surrogate(s)					
1,2-Dichloroethane-d4	106	124	16		70-130
Toluene-d8	102	120	16		70-130
4-Bromofluorobenzene	108	133	21		70-130
Dibromofluoromethane	103	122	17		70-130
Volatile Organics by EPA 8260B	for sample(s) 33,38 (L0813196-3	33, WG335933-5)	
Chlorobenzene	78	72	8	30	60-133
Benzene	82	78	5	30	66-142
Toluene	80	76	5	30	59-139
1,1-Dichloroethene	81	76	6	30	59-172
Trichloroethene	81	72	12	30	62-137
Surrogate(s)					
1,2-Dichloroethane-d4	101	104	3		70-130
Toluene-d8	99	102	3		70-130
4-Bromofluorobenzene	101	105	4		70-130
Dibromofluoromethane	98	100	2		70-130

Laboratory Job Number: L0813196

PARAMETER	RESULT UNITS		RDL	REF METHOD	DATE I	
					PREP ANAL	
Blank Analysis	for sample(s)	05,20-23	,27,30	(WG335482-3)		
Total Metals						
Aluminum, Total	ND	mg/kg	5.0	1 6010B	0908 14:00 0910 19:02 T	
Antimony, Total	ND	mg/kg	2.5	1 6010B	0908 14:00 0910 19:02 T	
Arsenic, Total	ND	mg/kg	0.50	1 6010B	0908 14:00 0910 19:02 T	
Barium, Total	ND	mg/kg	0.50	1 6010B	0908 14:00 0910 19:02 T	
Beryllium, Total	ND	mg/kg	0.25	1 6010B	0908 14:00 0910 19:02 T	
Cadmium, Total	ND	mg/kg	0.50	1 6010B	0908 14:00 0910 19:02 T	
Calcium, Total	ND	mg/kg	5.0	1 6010B	0908 14:00 0910 19:02 T	
Chromium, Total	ND	mg/kg	0.50	1 6010B	0908 14:00 0910 19:02 T	
Cobalt, Total	ND	mg/kg	1.0	1 6010B	0908 14:00 0910 19:02 T	
Copper, Total	ND	mg/kg	0.50	1 6010B	0908 14:00 0910 19:02 T	
Iron, Total	ND	mg/kg	2.5	1 6010B	0908 14:00 0910 19:02 T	
Lead, Total	ND	mg/kg	2.5	1 6010B	0908 14:00 0910 19:02 T	
Magnesium, Total	ND	mg/kg	5.0	1 6010B	0908 14:00 0910 19:02 T	
Manganese, Total	ND	mg/kg	0.50	1 6010B	0908 14:00 0910 19:02 T	
Nickel, Total	ND	mg/kg	1.2	1 6010B	0908 14:00 0910 19:02 T	
Potassium, Total	ND	mg/kg	120	1 6010B	0908 14:00 0910 19:02 T	
Selenium, Total	ND	mg/kg	1.0	1 6010B	0908 14:00 0910 19:02 T	
Silver, Total	ND	mg/kg	0.50	1 6010B	0908 14:00 0910 19:02 T	
Sodium, Total	ND	mg/kg	100	1 6010B	0908 14:00 0910 19:02 T	
Thallium, Total	ND	mg/kg	1.0	1 6010B	0908 14:00 0910 19:02 T	
Vanadium, Total	ND	mg/kg	0.50	1 6010B	0908 14:00 0910 19:02 T	
Zinc, Total	ND	mg/kg	2.5	1 6010B	0908 14:00 0910 19:02 T	
•						
		OF 20 21	27 20	(WG335841-1)		
Blank Analysis	for sample(s)	05,20-2.	_,/,	(
	for sample(s)	05,20-2	1,27,30	(
Total Metals	for sample(s)	mg/kg	0.08	1 7471A	0910 21:30 0911 17:10 H	
Total Metals Mercury, Total	ND	mg/kg	0.08	1 7471A		
Total Metals Mercury, Total Blank Analysis for sample(s	ND) 02,04,06-07	mg/kg	0.08	1 7471A		
Total Metals Mercury, Total Blank Analysis for sample(s Volatile Organics by EPA 82 Methylene chloride	ND) 02,04,06-07	mg/kg	0.08	1 7471A 19,22-23,26,29	(WG335914-3)	
Total Metals Mercury, Total Blank Analysis for sample(s Volatile Organics by EPA 82 Methylene chloride	ND) 02,04,06-07 60B	mg/kg ,09,11-12	0.08 2,14-17,	1 7471A 19,22-23,26,29	(WG335914-3)	
Total Metals Mercury, Total Blank Analysis for sample(s Volatile Organics by EPA 82 Methylene chloride 1,1-Dichloroethane	ND) 02,04,06-07 60B ND	mg/kg ,09,11-12 ug/l	0.08 2,14-17, 5.0	1 7471A 19,22-23,26,29	(WG335914-3)	
Total Metals Mercury, Total Blank Analysis for sample(s Volatile Organics by EPA 82 Methylene chloride 1,1-Dichloroethane Chloroform	ND) 02,04,06-07 60B ND ND	mg/kg ,09,11-12 ug/l ug/l	0.08 2,14-17, 5.0 0.75	1 7471A 19,22-23,26,29	(WG335914-3)	
Total Metals Mercury, Total Blank Analysis for sample(s Volatile Organics by EPA 82 Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride	ND) 02,04,06-07 60B ND ND ND ND	mg/kg ,09,11-12 ug/l ug/l ug/l	0.08 2,14-17, 5.0 0.75 0.75	1 7471A 19,22-23,26,29	(WG335914-3)	
Total Metals Mercury, Total Blank Analysis for sample(s Volatile Organics by EPA 82 Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane	ND) 02,04,06-07 60B ND ND ND ND ND	mg/kg ,09,11-12 ug/l ug/l ug/l ug/l	0.08 2,14-17, 5.0 0.75 0.75 0.50	1 7471A 19,22-23,26,29	(WG335914-3)	
Fotal Metals Mercury, Total Blank Analysis for sample(s Volatile Organics by EPA 82 Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane	ND) 02,04,06-07 60B	mg/kg ,09,11-12 ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.08 2,14-17, 5.0 0.75 0.75 0.50 1.8	1 7471A 19,22-23,26,29	(WG335914-3)	
Mercury, Total Blank Analysis for sample(s Volatile Organics by EPA 82 Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane	ND) 02,04,06-07 60B	mg/kg ,09,11-12 ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.08 2,14-17, 5.0 0.75 0.75 0.50 1.8 0.50	1 7471A 19,22-23,26,29	(WG335914-3)	
Mercury, Total Blank Analysis for sample(s Wolatile Organics by EPA 82 Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene	ND) 02,04,06-07 60B	mg/kg ,09,11-12 ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.08 2,14-17, 5.0 0.75 0.50 1.8 0.50 0.75 0.50	1 7471A 19,22-23,26,29	(WG335914-3)	
Mercury, Total Blank Analysis for sample(s Wolatile Organics by EPA 82 Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene	ND) 02,04,06-07 60B	mg/kg ,09,11-12 ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.08 2,14-17, 5.0 0.75 0.50 1.8 0.50 0.75 0.50 0.50	1 7471A 19,22-23,26,29	(WG335914-3)	
Mercury, Total Blank Analysis for sample(s Volatile Organics by EPA 82 Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane	ND) 02,04,06-07 60B ND	mg/kg ,09,11-12 ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.08 2,14-17, 5.0 0.75 0.75 0.50 1.8 0.50 0.75 0.50 0.50	1 7471A 19,22-23,26,29	(WG335914-3)	
Mercury, Total Blank Analysis for sample(s Volatile Organics by EPA 82 Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichlorofluoromethane	ND) 02,04,06-07 60B ND	mg/kg ,09,11-12 ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.08 2,14-17, 5.0 0.75 0.75 0.50 1.8 0.50 0.75 0.50 0.50 2.5 0.50	1 7471A 19,22-23,26,29	(WG335914-3)	
Mercury, Total Blank Analysis for sample(s Volatile Organics by EPA 82 Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,2-Dichloroethane	ND) 02,04,06-07 60B	mg/kg ,09,11-12 ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.08 2,14-17, 5.0 0.75 0.75 0.50 1.8 0.50 0.75 0.50 0.50 0.50	1 7471A 19,22-23,26,29	(WG335914-3)	
Blank Analysis Total Metals Mercury, Total Blank Analysis for sample(s Volatile Organics by EPA 82 Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene	ND) 02,04,06-07 60B ND	mg/kg ,09,11-12 ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.08 2,14-17, 5.0 0.75 0.75 0.50 1.8 0.50 0.75 0.50 0.50 2.5 0.50	1 7471A 19,22-23,26,29	(WG335914-3)	

09150810:51 Page 113 of 126

Laboratory Job Number: L0813196

Continued

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANA	ID L
Blank Analysis for sample(s)		07,09,11-1	2,14-17,			(WG33591		
Volatile Organics by EPA 826				1	8260B		0909 19	9:22 PD
1,1-Dichloropropene	ND	ug/l	2.5					
Bromoform	ND	ug/l	2.0					
l,1,2,2-Tetrachloroethane	ND	ug/l	0.50					
Benzene	ND	ug/l	0.50					
roluene	ND	ug/l	0.75					
Ethylbenzene	ND	ug/l	0.50					
Chloromethane	ND	ug/l	2.5					
Bromomethane	ND	ug/l	1.0					
/inyl chloride	ND	ug/l	1.0					
Chloroethane	ND	ug/l	1.0					
,1-Dichloroethene	ND	ug/l	0.50					
crans-1,2-Dichloroethene	ND	ug/l	0.75					
Trichloroethene	ND	ug/l	0.50					
1,2-Dichlorobenzene	ND	ug/l	2.5					
1,3-Dichlorobenzene	ND	ug/l	2.5					
,4-Dichlorobenzene	ND	ug/l	2.5					
Methyl tert butyl ether	ND	ug/l	1.0					
o/m-Xylene	ND	ug/l	1.0					
o-Xylene	ND	ug/l	1.0					
cis-1,2-Dichloroethene	ND	ug/l	0.50					
Dibromomethane	ND	ug/l	5.0					
.,2,3-Trichloropropane	ND	ug/l	5.0					
acrylonitrile	ND	ug/l	5.0					
Styrene	ND	ug/l	1.0					
Dichlorodifluoromethane	ND	ug/l	5.0					
Acetone	ND	ug/l	5.0					
Carbon disulfide	ND	ug/l	5.0					
2-Butanone	ND	ug/l	5.0					
Vinyl acetate	ND	ug/l	5.0					
1-Methyl-2-pentanone	ND	ug/l	5.0					
2-Hexanone	ND	ug/l	5.0					
Bromochloromethane	ND	ug/l	2.5					
2,2-Dichloropropane	ND	ug/l	2.5					
,2-Dibromoethane	ND	ug/l	2.0					
,3-Dichloropropane	ND	ug/l	2.5					
,1,1,2-Tetrachloroethane	ND	ug/l	0.50					
Bromobenzene	ND	ug/l	2.5					
n-Butylbenzene	ND	ug/l	0.50					
sec-Butylbenzene	ND	ug/l	0.50					
ert-Butylbenzene	ND	ug/l	2.5					
o-Chlorotoluene	ND	ug/l	2.5					
o-Chlorotoluene	ND	ug/l	2.5					
,2-Dibromo-3-chloropropane	ND	ug/l	2.5					
Mexachlorobutadiene	ND	ug/l	0.60					
[sopropylbenzene	ND	ug/l	0.50					
o-Isopropyltoluene	ND	ug/1	0.50					

Laboratory Job Number: L0813196

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE II PREP ANAL
Blank Analysis for sample(s)	02.04.06-0	07.09.11-1:	2.14-17.	19.22-23.26.29	(WG335914-3)
Volatile Organics by EPA 826		. , ,	_,,	1 8260B	0909 19:22 PI
Naphthalene	ND	ug/l	2.5		1717 27 22 23
n-Propylbenzene	ND	ug/l	0.50		
1,2,3-Trichlorobenzene	ND	ug/l	2.5		
1,2,4-Trichlorobenzene	ND	ug/l	2.5		
1,3,5-Trimethylbenzene	ND	ug/l	2.5		
1,2,4-Trimethylbenzene	ND	ug/l	2.5		
1,4-Diethylbenzene	ND	ug/l	2.0		
4-Ethyltoluene	ND	ug/l	2.0		
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0		
Surrogate(s)	Recovery		QC Cr:	iteria	
1,2-Dichloroethane-d4	100	%	70-130	0	
Toluene-d8	98.0	%	70-130	0	
4-Bromofluorobenzene	104	%	70-130	0	
Dibromofluoromethane	96.0	%	70-130	0	
Blank Analysi	s for samp	le(s) 29,3	9-40 (WG:	335914-6)	
Volatile Organics by EPA 826	0B			1 8260B	0910 16:08 PI
Methylene chloride	ND	ug/l	5.0		
1,1-Dichloroethane	ND	ug/l	0.75		
Chloroform	ND	ug/l	0.75		
Carbon tetrachloride	ND	ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75		
Tetrachloroethene	ND	ug/l	0.50		
Chlorobenzene	ND	ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND	ug/l	0.50		
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50		
Chloromethane	ND	ug/l	2.5		
Bromomethane	ND	ug/l	1.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	1.0		
1,1-Dichloroethene	ND	ug/l	0.50		
T/T DIGITOLOCCIICIIC					
trans-1,2-Dichloroethene	ND	ug/l	0.75		

09150810:51 Page 115 of 126

Laboratory Job Number: L0813196

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Blank Analysi	a for appl	0(0) 20 21	0 40 / 140	225014 6)	
Blank Analysi Volatile Organics by EPA 826		.e(s) 29,3	9-40 (WG		0010 16.00 pp
		11 0 / 1	2.5	1 8260B	0910 16:08 PD
1,2-Dichlorobenzene	ND	ug/l			
1,3-Dichlorobenzene	ND	ug/l	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene Dibromomethane	ND	ug/l	0.50		
	ND	ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/l	5.0		
Acrylonitrile	ND	ug/l	5.0		
Styrene	ND	ug/l	1.0		
Dichlorodifluoromethane	ND	ug/l	5.0		
Acetone	ND	ug/l	5.0		
Carbon disulfide	ND	ug/l	5.0		
2-Butanone	ND	ug/l	5.0		
Vinyl acetate	ND	ug/l	5.0		
4-Methyl-2-pentanone	ND	ug/l	5.0		
2-Hexanone	ND	ug/l	5.0		
Bromochloromethane	ND	ug/l	2.5		
2,2-Dichloropropane	ND	ug/l	2.5		
1,2-Dibromoethane	ND	ug/l	2.0		
1,3-Dichloropropane	ND	ug/l	2.5		
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50		
Bromobenzene	ND	ug/l	2.5		
n-Butylbenzene	ND	ug/l	0.50		
sec-Butylbenzene	ND	ug/l	0.50		
tert-Butylbenzene	ND	ug/l	2.5		
o-Chlorotoluene	ND	ug/l	2.5		
p-Chlorotoluene	ND	ug/l	2.5		
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5		
Hexachlorobutadiene	ND	ug/l	0.60		
Isopropylbenzene	ND	ug/l	0.50		
p-Isopropyltoluene	ND	ug/l	0.50		
Naphthalene	ND	ug/l	2.5		
n-Propylbenzene	ND	ug/l	0.50		
1,2,3-Trichlorobenzene	ND	ug/l	2.5		
1,2,4-Trichlorobenzene	ND	ug/l	2.5		
1,3,5-Trimethylbenzene	ND	ug/l	2.5		
1,2,4-Trimethylbenzene	ND	ug/l	2.5		
1,4-Diethylbenzene	ND	ug/l	2.0		
4-Ethyltoluene	ND	ug/l	2.0		
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0		
Surrogate(s)	Recovery		~	iteria	
1,2-Dichloroethane-d4	102	%	70-13	0	
Toluene-d8	100	%	70-13	0	

Laboratory Job Number: L0813196

Continued

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	ANAL	II
Blank Analys:		le(s) 29,3	9-40 (WG					
Volatile Organics by EPA 826					8260B		0910 16:08	PI
4-Bromofluorobenzene	104	%	70-13					
Dibromofluoromethane	97.0	&	70-13	0				
Blank Analysis for sample(s	01,03,05,	08,10,13,1	8,20,24-	25,27	,30-32 (WG	335931-3	;)	
Volatile Organics by EPA 820	50B			1	8260B		0906 15:45	PI
Methylene chloride	ND	ug/kg	25.					
1,1-Dichloroethane	ND	ug/kg	3.8					
Chloroform	ND	ug/kg	3.8					
Carbon tetrachloride	ND	ug/kg	2.5					
1,2-Dichloropropane	ND	ug/kg	8.8					
Dibromochloromethane	ND	ug/kg	2.5					
1,1,2-Trichloroethane	ND	ug/kg	3.8					
Tetrachloroethene	ND	ug/kg	2.5					
Chlorobenzene	ND	ug/kg	2.5					
Trichlorofluoromethane	ND	ug/kg	12.					
1,2-Dichloroethane	ND	ug/kg	2.5					
1,1,1-Trichloroethane	ND	ug/kg	2.5					
Bromodichloromethane	ND	ug/kg	2.5					
trans-1,3-Dichloropropene	ND	ug/kg	2.5					
cis-1,3-Dichloropropene	ND	ug/kg	2.5					
1,1-Dichloropropene	ND	ug/kg	12.					
Bromoform	ND	ug/kg	10.					
1,1,2,2-Tetrachloroethane	ND	ug/kg	2.5					
Benzene	ND	ug/kg	2.5					
Toluene	ND	ug/kg	3.8					
Ethylbenzene	ND	ug/kg	2.5					
Chloromethane	ND	ug/kg	12.					
Bromomethane	ND	ug/kg ug/ka	5.0					
Vinyl chloride	ND	ug/kg ug/kg	5.0					
Chloroethane	ND	ug/kg ug/kg	5.0					
1,1-Dichloroethene	ND	ug/kg ug/kg	2.5					
trans-1,2-Dichloroethene	ND ND	ug/kg ug/kg	3.8					
Trichloroethene 1,2-Dichlorobenzene	ND ND	ug/kg	2.5 12.					
1,2-Dichlorobenzene 1.3-Dichlorobenzene		ug/kg	12.					
, -	ND	ug/kg	12. 12.					
1,4-Dichlorobenzene	ND	ug/kg						
Methyl tert butyl ether	ND	ug/kg	5.0					
p/m-Xylene	ND	ug/kg	5.0					
o-Xylene	ND	ug/kg	5.0					
cis-1,2-Dichloroethene	ND	ug/kg	2.5					
Dibromomethane	ND	ug/kg	25.					
Styrene	ND	ug/kg	5.0					
Dichlorodifluoromethane	ND	ug/kg	25.					
Acetone	ND	ug/kg	25.					
Carbon disulfide	ND	ug/kg	25.					
2-Butanone	ND	ug/kg	25.					

09150810:51 Page 117 of 126

Laboratory Job Number: L0813196

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Blank Analysis for sample(s)	01,03,05,0	08,10,13,18	3,20,24-2	5,27,30-32 (WG	335931-3)
Volatile Organics by EPA 826				1 8260B	0906 15:45 PD
Vinyl acetate	ND	ug/kg	25.		
4-Methyl-2-pentanone	ND	ug/kg	25.		
1,2,3-Trichloropropane	ND	ug/kg	25.		
2-Hexanone	ND	ug/kg	25.		
Bromochloromethane	ND	ug/kg	12.		
2,2-Dichloropropane	ND	ug/kg	12.		
1,2-Dibromoethane	ND	ug/kg	10.		
1,3-Dichloropropane	ND	ug/kg	12.		
1,1,1,2-Tetrachloroethane	ND	ug/kg	2.5		
Bromobenzene	ND	ug/kg ug/kg	12.		
n-Butylbenzene	ND	ug/kg ug/kg	2.5		
sec-Butylbenzene	ND	ug/kg ug/kg	2.5		
tert-Butylbenzene	ND	ug/kg ug/kg	12.		
o-Chlorotoluene	ND ND		12.		
p-Chlorotoluene	ND ND	ug/kg	12.		
		ug/kg	12.		
1,2-Dibromo-3-chloropropane Hexachlorobutadiene	ND	ug/kg			
	ND	ug/kg	12.		
Isopropylbenzene	ND	ug/kg	2.5		
p-Isopropyltoluene	ND	ug/kg	2.5		
Naphthalene	ND	ug/kg	12.		
Acrylonitrile	ND	ug/kg	25.		
n-Propylbenzene	ND	ug/kg	2.5		
1,2,3-Trichlorobenzene	ND	ug/kg	12.		
1,2,4-Trichlorobenzene	ND	ug/kg	12.		
1,3,5-Trimethylbenzene	ND	ug/kg	12.		
1,2,4-Trimethylbenzene	ND	ug/kg	12.		
1,4-Diethylbenzene	ND	ug/kg	10.		
4-Ethyltoluene	ND	ug/kg	10.		
1,2,4,5-Tetramethylbenzene	ND	ug/kg	10.		
Surrogate(s)	Recovery		QC Cri		
1,2-Dichloroethane-d4	104	%	70-130		
Toluene-d8	105	8	70-130		
4-Bromofluorobenzene	118	8	70-130		
Dibromofluoromethane	98.0	%	70-130		
Blank Analysis		(s) 21,28,3	34-37 (WG	335931-6)	
Volatile Organics by EPA 826	0B			1 8260B	0908 09:56 PD
Methylene chloride	ND	ug/kg	25.		
1,1-Dichloroethane	ND	ug/kg	3.8		
Chloroform	ND	ug/kg	3.8		
Carbon tetrachloride	ND	ug/kg	2.5		
1,2-Dichloropropane	ND	ug/kg	8.8		
Dibromochloromethane	ND	ug/kg	2.5		
1,1,2-Trichloroethane	ND	ug/kg	3.8		
Tetrachloroethene	ND	ug/kg	2.5		

09150810:51 Page 118 of 126

Laboratory Job Number: L0813196

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Blank Analysis	for sample	(s) 21.28.3	34-37 (W	G335931-6)	
Volatile Organics by EPA 82		(2) 21,20,5	31 37 (11	1 8260B	0908 09:56 PD
Chlorobenzene	ND	ug/kg	2.5		
Trichlorofluoromethane	ND	ug/kg	12.		
1,2-Dichloroethane	ND	ug/kg	2.5		
1,1,1-Trichloroethane	ND	ug/kg	2.5		
Bromodichloromethane	ND	ug/kg	2.5		
trans-1,3-Dichloropropene	ND	ug/kg	2.5		
cis-1,3-Dichloropropene	ND	ug/kg	2.5		
1,1-Dichloropropene	ND	ug/kg	12.		
Bromoform	ND	ug/kg	10.		
1,1,2,2-Tetrachloroethane	ND	ug/kg	2.5		
Benzene	ND	ug/kg	2.5		
Toluene	ND	ug/kg	3.8		
Ethylbenzene	ND	ug/kg	2.5		
Chloromethane	ND	ug/kg	12.		
Bromomethane	ND	ug/kg	5.0		
Vinyl chloride	ND	ug/kg	5.0		
Chloroethane	ND	ug/kg	5.0		
1,1-Dichloroethene	ND	ug/kg	2.5		
trans-1,2-Dichloroethene	ND	ug/kg	3.8		
Trichloroethene	ND	ug/kg	2.5		
1,2-Dichlorobenzene	ND	ug/kg	12.		
1,3-Dichlorobenzene	ND	ug/kg	12.		
1,4-Dichlorobenzene	ND	ug/kg	12.		
Methyl tert butyl ether	ND	ug/kg	5.0		
p/m-Xylene	ND	ug/kg	5.0		
o-Xylene	ND	ug/kg	5.0		
cis-1,2-Dichloroethene	ND	ug/kg	2.5		
Dibromomethane	ND	ug/kg	25.		
Styrene	ND	ug/kg	5.0		
Dichlorodifluoromethane	ND	ug/kg	25.		
Acetone	ND	ug/kg	25.		
Carbon disulfide	ND	ug/kg	25.		
2-Butanone	ND	ug/kg	25.		
Vinyl acetate	ND	ug/kg	25.		
4-Methyl-2-pentanone	ND	ug/kg	25.		
1,2,3-Trichloropropane	ND	ug/kg	25.		
2-Hexanone	ND	ug/kg	25.		
Bromochloromethane	ND	ug/kg	12.		
2,2-Dichloropropane	ND	ug/kg	12.		
1,2-Dibromoethane	ND	ug/kg	10.		
1,3-Dichloropropane	ND	ug/kg	12.		
1,1,1,2-Tetrachloroethane	ND	ug/kg	2.5		
Bromobenzene	ND	ug/kg	12.		
n-Butylbenzene	ND	ug/kg	2.5		
sec-Butylbenzene	ND	ug/kg	2.5		
tert-Butylbenzene	ND	ug/kg	12.		

Laboratory Job Number: L0813196

Continued

PARAMETER	RESULT	UNITS	\mathtt{RDL}	REF METHOD	DATE ID
					PREP ANAL
Blank Analysis	for sample	(s) 21.28.3	84-37 (W	G335931-6)	
Volatile Organics by EPA 826		(5) 21,20,5) 1 3 / (III	1 8260B	0908 09:56 PD
o-Chlorotoluene	ND	ug/kg	12.		
p-Chlorotoluene	ND	ug/kg	12.		
1,2-Dibromo-3-chloropropane	ND	ug/kg	12.		
Hexachlorobutadiene	ND	ug/kg	12.		
Isopropylbenzene	ND	ug/kg	2.5		
p-Isopropyltoluene	ND	ug/kg	2.5		
Naphthalene	ND	ug/kg	12.		
Acrylonitrile	ND	ug/kg	25.		
n-Propylbenzene	ND	ug/kg	2.5		
1,2,3-Trichlorobenzene	ND	ug/kg	12.		
1,2,4-Trichlorobenzene	ND	ug/kg ug/kg	12.		
1,3,5-Trimethylbenzene	ND	ug/kg ug/kg	12.		
1,2,4-Trimethylbenzene	ND	ug/kg ug/kg	12.		
1,4-Diethylbenzene	ND ND	ug/kg ug/kg	10.		
4-Ethyltoluene	ND ND	ug/kg ug/kg	10.		
1,2,4,5-Tetramethylbenzene	ND ND		10.		
1,2,4,5-letramethylbenzene	ND	ug/kg	10.		
Surrogate(s)	Recovery		-	iteria	
1,2-Dichloroethane-d4	104	8	70-13		
Toluene-d8	105	8	70-13	0	
4-Bromofluorobenzene	121	8	70-13		
Dibromofluoromethane	98.0	%	70-13	0	
Blank Analys		ple(s) 33,3	38 (WG33	5933-3)	
Volatile Organics by EPA 826	0B			1 8260B	0908 09:56 PD
Methylene chloride	ND	ug/kg	25.		
1,1-Dichloroethane	ND	ug/kg	3.8		
Chloroform	ND	ug/kg	3.8		
Carbon tetrachloride	ND	ug/kg	2.5		
1,2-Dichloropropane	ND	ug/kg	8.8		
Dibromochloromethane	ND	ug/kg	2.5		
1,1,2-Trichloroethane	ND	ug/kg	3.8		
Tetrachloroethene	ND	ug/kg	2.5		
Chlorobenzene	ND	ug/kg	2.5		
	MID	ug/kg	12.		
Trichlorofluoromethane	ND	ريد روس			
Trichlorofluoromethane 1,2-Dichloroethane	ND	ug/kg	2.5		
1,2-Dichloroethane	ND	ug/kg	2.5		
1,2-Dichloroethane 1,1,1-Trichloroethane	ND ND	ug/kg ug/kg	2.5 2.5		
1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane	ND ND ND	ug/kg ug/kg ug/kg	2.5 2.5 2.5		
1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene	ND ND ND ND	ug/kg ug/kg ug/kg ug/kg	2.5 2.5 2.5 2.5		
1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene 1,1-Dichloropropene	ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg	2.5 2.5 2.5 2.5 2.5		
1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene 1,1-Dichloropropene	ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	2.5 2.5 2.5 2.5 2.5 12.		
1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene 1,1-Dichloropropene Bromoform	ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	2.5 2.5 2.5 2.5 2.5 12.		
1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene 1,1-Dichloropropene Bromoform 1,1,2,2-Tetrachloroethane	ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	2.5 2.5 2.5 2.5 2.5 12. 10. 2.5		

09150810:51 Page 120 of 126

Laboratory Job Number: L0813196

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Blank Analys	gig for gamr	nle(e) 33 3	18 (MC33	5933_3)	
Volatile Organics by EPA 826		710(8) 3373	, , , , , ,	1 8260B	0908 09:56 PD
Chloromethane	ND	ug/kg	12.		
Bromomethane	ND	ug/kg	5.0		
Vinyl chloride	ND	ug/kg	5.0		
Chloroethane	ND	ug/kg	5.0		
1,1-Dichloroethene	ND	ug/kg	2.5		
trans-1,2-Dichloroethene	ND	ug/kg	3.8		
Trichloroethene	ND	ug/kg	2.5		
1,2-Dichlorobenzene	ND	ug/kg	12.		
1,3-Dichlorobenzene	ND	ug/kg	12.		
1,4-Dichlorobenzene	ND	ug/kg	12.		
Methyl tert butyl ether	ND	ug/kg	5.0		
p/m-Xylene	ND	ug/kg	5.0		
o-Xylene	ND	ug/kg	5.0		
cis-1,2-Dichloroethene	ND	ug/kg	2.5		
Dibromomethane	ND	ug/kg	25.		
Styrene	ND	ug/kg	5.0		
Dichlorodifluoromethane	ND	ug/kg	25.		
Acetone	ND	ug/kg	25.		
Carbon disulfide	ND	ug/kg	25.		
2-Butanone	ND	ug/kg	25.		
Vinyl acetate	ND	ug/kg	25.		
4-Methyl-2-pentanone	ND	ug/kg	25.		
1,2,3-Trichloropropane	ND	ug/kg	25.		
2-Hexanone	ND	ug/kg	25.		
Bromochloromethane	ND	ug/kg	12.		
2,2-Dichloropropane	ND	ug/kg	12.		
1,2-Dibromoethane	ND	ug/kg	10.		
1,3-Dichloropropane	ND	ug/kg	12.		
1,1,1,2-Tetrachloroethane	ND	ug/kg	2.5		
Bromobenzene	ND	ug/kg	12.		
n-Butylbenzene	ND	ug/kg	2.5		
sec-Butylbenzene	ND	ug/kg	2.5		
tert-Butylbenzene	ND	ug/kg	12.		
o-Chlorotoluene	ND	ug/kg	12.		
p-Chlorotoluene	ND	ug/kg	12.		
1,2-Dibromo-3-chloropropane	ND	ug/kg	12.		
Hexachlorobutadiene	ND	ug/kg	12.		
Isopropylbenzene	ND	ug/kg	2.5		
p-Isopropyltoluene	ND	ug/kg	2.5		
Naphthalene	ND	ug/kg	12.		
Acrylonitrile	ND	ug/kg	25.		
n-Propylbenzene	ND	ug/kg	2.5		
1,2,3-Trichlorobenzene	ND	ug/kg	12.		
1,2,4-Trichlorobenzene	ND	ug/kg	12.		
1,3,5-Trimethylbenzene	ND	ug/kg	12.		
1,2,4-Trimethylbenzene	ND	ug/kg	12.		

Laboratory Job Number: L0813196

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE II PREP ANAL
Blank Analys:	ig for gamp	lo(g) 22 1)	E022-2\	
Volatile Organics by EPA 8260		IE(S) 33,3	o (WG33:	1 8260B	0908 09:56 PI
1,4-Diethylbenzene	ND	ug/kg	10.	1 0200B	0906 09.56 PI
4-Ethyltoluene	ND	ug/kg ug/kg	10.		
1,2,4,5-Tetramethylbenzene	ND	ug/kg ug/kg	10.		
	110	49/119	10.		
Surrogate(s)	Recovery		QC Cr	iteria	
1,2-Dichloroethane-d4	104	8	70-130	0	
Toluene-d8	105	%	70-130	0	
4-Bromofluorobenzene	121	%	70-130	0	
Dibromofluoromethane	98.0	%	70-130	0	
Blank Analysis fo	or sample(s) 05 20-21	. 27 . 30	(WG335363-1)	
Semivolatile Organics by EPA		, 00,20 21	, _ , , , 50	1 8270C	0906 12:05 0910 11:38 P
Acenaphthene	ND	ug/kg	330		
1,2,4-Trichlorobenzene	ND	ug/kg	330		
Hexachlorobenzene	ND	ug/kg	330		
Bis(2-chloroethyl)ether	ND	ug/kg	330		
2-Chloronaphthalene	ND	ug/kg	400		
1,2-Dichlorobenzene	ND	ug/kg	330		
1,3-Dichlorobenzene	ND	ug/kg	330		
1,4-Dichlorobenzene	ND	ug/kg	330		
3,3'-Dichlorobenzidine	ND	ug/kg	670		
2,4-Dinitrotoluene	ND	ug/kg	330		
2,6-Dinitrotoluene	ND	ug/kg	330		
Fluoranthene	ND	ug/kg	330		
4-Chlorophenyl phenyl ether	ND	ug/kg	330		
4-Bromophenyl phenyl ether	ND	ug/kg	330		
Bis(2-chloroisopropyl)ether	ND	ug/kg	330		
Bis(2-chloroethoxy)methane	ND	ug/kg	330		
Hexachlorobutadiene	ND	ug/kg	670		
Hexachlorocyclopentadiene	ND	ug/kg	670		
Hexachloroethane	ND	ug/kg	330		
Isophorone	ND	ug/kg	330		
Naphthalene	ND	ug/kg	330		
Nitrobenzene	ND	ug/kg	330		
NitrosoDiPhenylAmine(NDPA)/DB		ug/kg	1000		
n-Nitrosodi-n-propylamine	ND	ug/kg	330		
Bis(2-Ethylhexyl)phthalate	ND	ug/kg	670		
Butyl benzyl phthalate	ND	ug/kg	330		
Di-n-butylphthalate	ND	ug/kg	330		
Di-n-octylphthalate	ND	ug/kg	330		
Diethyl phthalate	ND	ug/kg	330		
Dimethyl phthalate	ND	ug/kg	330		
Benzo(a)anthracene	ND	ug/kg	330		
Benzo(a)pyrene	ND	ug/kg	330		
Benzo(b)fluoranthene	ND	ug/kg	330		
Benzo(k)fluoranthene	ND	ug/kg	330		

09150810:51 Page 122 of 126

Laboratory Job Number: L0813196

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE I PREP ANAL	D
Blank Analysis fo	r sample(s)	05 20-21	27 30	(WC335363-1)		
Semivolatile Organics by EPA			, 27, 30	1 8270C	0906 12:05 0910 11:38 F	20
Chrysene	ND	ug/kg	330	1 02/00	0900 12:03 0910 11:30 P	.D
Acenaphthylene	ND	ug/kg ug/kg	330			
Anthracene	ND	ug/kg ug/kg	330			
Benzo(ghi)perylene	ND	ug/kg ug/kg	330			
Fluorene	ND	ug/kg ug/kg	330			
Phenanthrene	ND	ug/kg ug/kg	330			
Dibenzo(a,h)anthracene	ND	ug/kg ug/kg	330			
Indeno(1,2,3-cd)Pyrene	ND	ug/kg ug/kg	330			
Pyrene	ND	ug/kg	330			
Biphenyl	ND	ug/kg	330			
4-Chloroaniline 2-Nitroaniline	ND	ug/kg	330			
	ND	ug/kg	330			
3-Nitroaniline 4-Nitroaniline	ND	ug/kg	330			
	ND	ug/kg	470			
Dibenzofuran	ND	ug/kg	330			
2-Methylnaphthalene	ND	ug/kg	330			
1,2,4,5-Tetrachlorobenzene	ND	ug/kg	1300			
Acetophenone	ND	ug/kg	1300			
2,4,6-Trichlorophenol	ND	ug/kg	330			
P-Chloro-M-Cresol	ND	ug/kg	330			
2-Chlorophenol	ND	ug/kg	400			
2,4-Dichlorophenol	ND	ug/kg	670			
2,4-Dimethylphenol	ND	ug/kg	330			
2-Nitrophenol	ND	ug/kg	1300			
4-Nitrophenol	ND	ug/kg	670			
2,4-Dinitrophenol	ND	ug/kg	1300			
4,6-Dinitro-o-cresol	ND	ug/kg	1300			
Pentachlorophenol	ND	ug/kg	1300			
Phenol	ND	ug/kg	470			
2-Methylphenol	ND	ug/kg	400			
3-Methylphenol/4-Methylphenol	ND	ug/kg	400			
2,4,5-Trichlorophenol	ND	ug/kg	330			
Benzoic Acid	ND	ug/kg	3300			
Benzyl Alcohol	ND	ug/kg	670			
Carbazole	ND	ug/kg	330			
Surrogate(s)	Recovery		QC Cr	iteria		
2-Fluorophenol	76.0	%	25-12	0		
Phenol-d6	71.0	%	10-12	0		
Nitrobenzene-d5	67.0	%	23-12	0		
2-Fluorobiphenyl	61.0	%	30-12	0		
2,4,6-Tribromophenol	65.0	%	19-12	0		
4-Terphenyl-d14	57.0	%	18-12	0		
Blank Analysis fo	r sample(s)	05,20-21	,27,30	(WG335365-1)		
Semivolatile Organics by EPA				1 8270C	0906 12:05 0911 01:54 A	λK

09150810:51 Page 123 of 126

Laboratory Job Number: L0813196

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Blank Analysis fo	or sample(s) 05.20-23	1.27.30	(WG335365-1)	
Semivolatile Organics by EPA			, , ,	1 8270C	0906 12:05 0911 01:54 AK
Acenaphthene	ND	ug/kg	13.		
2-Chloronaphthalene	ND	ug/kg	13.		
Fluoranthene	ND	ug/kg	13.		
Hexachlorobutadiene	ND	ug/kg	33.		
Naphthalene	ND	ug/kg	13.		
Benzo(a)anthracene	ND	ug/kg	13.		
Benzo(a)pyrene	ND	ug/kg	13.		
Benzo(b)fluoranthene	ND	ug/kg	13.		
Benzo(k)fluoranthene	ND	ug/kg	13.		
Chrysene	ND	ug/kg	13.		
Acenaphthylene	ND	ug/kg	13.		
Anthracene	ND	ug/kg	13.		
Benzo(ghi)perylene	ND	ug/kg	13.		
Fluorene	ND	ug/kg	13.		
Phenanthrene	ND	ug/kg	13.		
Dibenzo(a,h)anthracene	ND	ug/kg	13.		
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	13.		
Pyrene	ND	ug/kg	13.		
2-Methylnaphthalene	ND	ug/kg	13.		
Pentachlorophenol	ND	ug/kg	53.		
Hexachlorobenzene	ND	ug/kg	53.		
Hexachloroethane	ND	ug/kg	53.		
Surrogate(s)	Recovery		QC Cr	iteria	
2-Fluorophenol	90.0	8	25-12	0	
Phenol-d6	96.0	%	10-12	0	
Nitrobenzene-d5	87.0	%	23-12	0	
2-Fluorobiphenyl	83.0	%	30-12	0	
2,4,6-Tribromophenol	111	%	19-12	0	
4-Terphenyl-d14	89.0	%	18-12	0	
Blank Analysis	for sample	e(s) 21,25	7,30 (WG	335372-1)	
Polychlorinated Biphenyls by	EPA 8082			1 8082	0906 12:00 0909 19:22 SH
Aroclor 1016	ND	ug/kg	33.3		
Aroclor 1221	ND	ug/kg	33.3		
Aroclor 1232	ND	ug/kg	33.3		
Aroclor 1242	ND	ug/kg	33.3		
Aroclor 1248	ND	ug/kg	33.3		
Aroclor 1254	ND	ug/kg	33.3		
Aroclor 1260	ND	ug/kg	33.3		
Surrogate(s)	Recovery		QC Cr	iteria	
2,4,5,6-Tetrachloro-m-xylene	58.0	%	30-15	0	
Decachlorobiphenyl	56.0	રુ	30-15	0	

09150810:51 Page 124 of 126

Laboratory Job Number: L0813196

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Blank Analysi	s for sampl	le(s) 05,20) (WG336	109-1)	
Polychlorinated Biphenyls by	EPA 8082			1 8082	0909 23:00 0911 12:30 SH
Aroclor 1016	ND	ug/kg	33.3		
Aroclor 1221	ND	ug/kg	33.3		
Aroclor 1232	ND	ug/kg	33.3		
Aroclor 1242	ND	ug/kg	33.3		
Aroclor 1248	ND	ug/kg	33.3		
Aroclor 1254	ND	ug/kg	33.3		
Aroclor 1260	ND	ug/kg	33.3		
Surrogate(s)	Recovery		QC Cri	teria	
2,4,5,6-Tetrachloro-m-xylene	63.0	%	30-150		
Decachlorobiphenyl	83.0	%	30-150		
Blank Analysis fo	or sample(s)	05,20-21	,27,30 (WG335356-1)	
Organochlorine Pesticides by	EPA 8081A			1 8081A	0906 10:30 0910 15:27 SS
Delta-BHC	ND	ug/kg	3.33		
Lindane	ND	ug/kg	3.33		
Alpha-BHC	ND	ug/kg	3.33		
Beta-BHC	ND	ug/kg	3.33		
Heptachlor	ND	ug/kg	3.33		
Aldrin	ND	ug/kg	3.33		
Heptachlor epoxide	ND	ug/kg	3.33		
Endrin	ND	ug/kg	3.33		
Endrin ketone	ND	ug/kg	3.33		
Dieldrin	ND	ug/kg	3.33		
4,4'-DDE	ND	ug/kg	3.33		
4,4'-DDD	ND	ug/kg	3.33		
4,4'-DDT	ND	ug/kg	3.33		
Endosulfan I	ND	ug/kg	3.33		
Endosulfan II	ND	ug/kg	3.33		
Endosulfan sulfate	ND	ug/kg	3.33		
Methoxychlor	ND	ug/kg	13.3		
trans-Chlordane	ND	ug/kg	3.33		
Chlordane	ND	ug/kg	33.3		
Surrogate(s)	Recovery		QC Cri	teria	
2,4,5,6-Tetrachloro-m-xylene	63.0	%	30-150		
Decachlorobiphenyl	95.0	8	30-150		

09150810:51 Page 125 of 126

ALPHA ANALYTICAL ADDENDUM I

REFERENCES

- 1. Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IIIA, 1997.
- 30. Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.

GLOSSARY OF TERMS AND SYMBOLS

REF Reference number in which test method may be found.

METHOD Method number by which analysis was performed.

ID Initials of the analyst.

ND Not detected in comparison to the reported detection limit.

NI Not Ignitable.

ug/cart Micrograms per Cartridge.

The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.

LIMITATION OF LIABILITIES

Alpha Analytical, Inc. performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical, Inc., shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical, Inc. be held liable for any incidental consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical, Inc.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding times and splitting of samples in the field.

09150810:51 Page 126 of 126

	1/5/83			200		1011		red of						
Alpha's Payment Terms.	18.5.91		M	2 5	16.	1/3/08	, , ,	The state of the s		7				3 £
submitted are subject to	1,0	1	1	١١٥	200			3	1	1		T RCP?	_	MA MCP
turnaround time clock will r start until any ambiguittes s	te/Time	Received By:	7	ا ﴿		Date		Relinquished By:	Relin			PROJECT		IS YOUR
and completely. Samples not be logged in and					-	, ,	Preservative							
							Container Type	Co		•		NS ABOVE!	R QUESTIO	PLEASE ANSWER QUESTIONS ABOVE
			X	-	X	*	THE THE	S	1035	14/08	5-10' 6	10	10 such.	
				\vdash	-	8	Tin	3	188	14/08	S	9Wh. GW. 2008-07		
				-	-	*	12/2	O	930	40/4/2	10-15/	.070	P Pwa.	12.1
				-	-	X	3	3	245	9/4/08	A	FB 010408 (GW)	17 43 09	
				-	-	K		٤				TB 090308	7500	dir.
						X	TM	٤	1545	\vdash	9	\$309030B(GW)	5094 3	
						۲	7WL	ε	1515		۲,	PWG. GW-2008 - 06	Signal A	
						X	TW	8	is di		3 (gen/cm)	twh. 58-2008, obe 5-10'		٤]
						X	TM	٤	0441	9/3/08		PW6.6W.2008.24	2 PWG.	
						ď	14	ع	OPH	c/3/ 9 8	2	PWG. GW. 2008 - 04	Pw6.	3196.11
Sample Specific Comments			ML	Pest/ TAL	ICL S	TCL	Sampler's Initials	Sample Matrix	Time	Collection Date 7		Sample ID		ALPHA Lab ID (Lab Use Only)
			retel											
☐ Lab to do (Please specify below)			>			S				on Limits:	(s/Detection	Other Project Specific Requirements/Comments/Detection Limits.	Specific Rec	Other Project
☐ Lab to do Preservation									Time:	ite: / /	Due Date: (/	isly analyzed by Alpha	ave been Previou	These samples have been Previously analyzed by Alpha
☐ Not Needed									17	9/	ı			Email:
Filtration							-APPROVED)	Rush (ONLY IF PRE-APPROVED)	Rus	ndard	_ 🗌 Standard		05	Fax: 631-589-8705
SAMPLE HANDLING				+	SISA	ANAL			me	Turn-Around Time	Turn-/		-6353	Phone: 631-589-6353
s) Required?	Are CT RCP (Reasonable Confidence Protocols) Required?	Are CT RCP (Reasor	°	□ No		☐ Yes				ALPHA Quote #:	ALPHA		716	Bohemia, NY 11716
	Wethods Required?	Are MCP Analytical Methods Required?	0	□ No		☐ Yes		(Show)	K. Alm sho	Project Manager:	Project	e, Suite 7	hnson Avenu	Address: 630 Johnson Avenue, Suite
ENCE PROTOCOL	RESUMPTIVE CERTAINTY-CT REASONABLE CONFIDENCE PROTOCOL	TAINTY-CT REA	VE CER	MPT	RESU	MCP P		.[-	ANGO80		Project #:		sser	Client P.W. Grosser
	Criteria			m	d Progr	State/Fed Program			RUC	Project Location:	Project		ation	Client Information
		itory Requirements/Report Limits	rements	Requi	atory	Regula		Drug	Dark	tornes		-3288	FAX: 508-822-3288	FAX: 508-898-9193
		Add'I Deliverables			ı 'x'	A FIDEX		•		Name:	Project Name:	9300	Mansfield, MA	Westborough, MA
PO#:	Billing Information ☐ Same as Client info	iverables		Information	t Info	Report			tion	Project Information	Projec		アジン	
08/3/96	ALPHA Job#: 🗸	9/5 1		ά	o'd in La	Date Rec'd in Lab		PAGE 2 OF	 	TOD	cus	CHAIN OF CUSTODY	0	

		// //										
	21 -1	2	7	•	250	8	5) Me				To application of the state of
Alpha's Payment Terms.	1	12ml	L Day	100	2/20	N	000/1	4		•		EOBM NO: 01-01(I)
resolved. All samples	5/5/00 /3:00	well,	7	305) 81	2/5/08		\	12	N	RCP?	_	MA MCP
not be logged in and turnaround lime clock will r	Date/Time	Received By:	ا مدّر	Date/⊺ime	Date		Relinquished By:	Relin		CT	R PROJECT	IS YOUR
Please print clearly, legibly and completely. Samples	1	-		•		Preservative	-					
						Container Type	င္ပ			30VE!	R QUESTIONS AE	PLEASE ANSWER QUESTIONS ABOVE!
			-		×	¥	3	575)	3/5/08	18 (soci)	_	3
					X	M	8	cha	5/5/08	PWG-58-2008-17610-15"	+	36
					χ	TM	5	1225	9/5/08	08.22.05-101	,	44
					×	1	v	(225	1/5/08	101-5 321.8002 -9c. mg	L	36
					K	TM	5	155	2508	PWG. 57 208. 116 15-20'	-	36
					٧	7	~	1130	9 (5/08	PWG-58 2008. 11 & 5-10'		he
					×	74	8	1115	Ω	PW4-54- 2008-04.0 (5-20' (M5/M5D)		34
					४	774	5	750	2/5/08	DUK-78-2008-09 (0 5-10'	32 DUN-73-200	ا ا
					K	The	S	455	9/5/08	100 10-15	1 pwg. 587.100	5/96 3
Sample Specific Comments			TA		Tu	Initials	Matrix	Time	Date	Žo.		(Lab Use Only)
			 L /		_ V	Sampler's	Sample	Collection	Coll	Sample ID		ैALPHA Lab ID
			l prig Wetel	pck	Ώ5							
(Please specify below)			Ş							verles	ASP Cat is dimorales	15% C
☐ Lab to do								ts:	tection Limi	Other Project Specific Requirements/Comments/Detection Limits:	Specific Requiren	Other Project (
☐ Lab to do								Time:	Due Date: 1	yzed by Alpha Dı	☐ These samples have been Previously analyzed by Alpha	These samples h
☐ Done ☐ Not Needed								7	<i>(</i> 2)			Email:
Filtration						(E-APPROVED)	Rush (ONLY IF PRE-APPROVED)	, □ Ru	Standard		705	Fax: 631-589-8705
				ANALYSIS	ANAL			Time	Turn-Around Time	T	-6353	Phone: 631-589-6353
ls) Required?	Are CT RCP (Reasonable Confidence Protocols) Required?	Are CT RCP (Reason		<u></u>	☐ Yes		•	拼	ALPHA Quote #:	A	716	Bohemia, NY 11716
	ethods Required?	Are MCP Analytical Methods Required?	No	S	□ Yes		K. Alushry		Project Manager:		Address: 630 Johnson Avenue, Suite 7	Address: 630 Jo
DENCE PROTOCO	RESUMPTIVE CERTAINTY-CT REASONABLE CONFIDENCE PROTOCO	TAINTY-CT REAS	PTIVE CER	PRESUN	MCP P			418080	Project #: A		sser	Client: P.W. Grosser
	Criteria	C		State/Fed Program	State/F			n: RUC	Project Location: RUC	Pi	ation	Client Information
		tory Requirements/Report Limits	equirements	ılatory Re	Regula		1 July	76.27	121 m		FAX: 508-822-3288	FAX: 508-898-9193
		Add'I Deliverables	□ Adı)Ex	ADEX		-y/		Project Name:	7	Mansfield, MA TEL: 508-822-9300	્રે.Westborough, MA ુ∓EL: 508-898-9220
PO#:	Same as Client info	IVELADICS	EMAIL Date Del	AX AX	□ FAX			mation	Project Information	U	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	LL TIOAL
10817196	Billing Information		ation Data	Papart Inform	Dane	П	PAGE OF	-			-	>
		1/0		loa'd in lab				7	OTO OTO		2	3

ALPHA ANALYTICAL

Eight Walkup Drive

Westborough, Massachusetts 01581-1019 (508) 898-9220 www.alphalab.com

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

CERTIFICATE OF ANALYSIS

Client: P.W. Grosser Laboratory Job Number: L0814755

Address: 630 Johnson Avenue Date Received: 06-OCT-2008

Suite 7

Bohemia, NY 11716 Date Reported: 14-OCT-2008

Attn: Mr. Kris Almskog Delivery Method: Alpha

Project Number: AVB0801 Site: AVB0801

ALPHA SAMPLE NUMBER	CLIENT IDENTIFICATION	SAMPLE	LOCATION
L0814755-01	PWG-LP-2008-01 (9-11')	80-100	BANKS AVE., ROCKVILLE
L0814755-02	MW-1	80-100	BANKS AVE., ROCKVILLE
L0814755-03	MW-2	80-100	BANKS AVE., ROCKVILLE
L0814755-04	MW-4	80-100	BANKS AVE., ROCKVILLE
L0814755-05	MW-5	80-100	BANKS AVE., ROCKVILLE
L0814755-06	MW-6	80-100	BANKS AVE., ROCKVILLE
L0814755-07	DIFFW-01	80-100	BANKS AVE., ROCKVILLE
L0814755-08	DIFFW-02	80-100	BANKS AVE., ROCKVILLE
L0814755-09	DIFFW-03	80-100	BANKS AVE., ROCKVILLE
L0814755-10	DIFFW-100	80-100	BANKS AVE., ROCKVILLE
L0814755-11	FB100308-01	80-100	BANKS AVE., ROCKVILLE
L0814755-12	TB100308-01	80-100	BANKS AVE., ROCKVILLE
L0814755-13	TB100308-02	80-100	BANKS AVE., ROCKVILLE
L0814755-14	TB100608-03	80-100	BANKS AVE., ROCKVILLE
L0814755-15	TB100608-04	80-100	BANKS AVE., ROCKVILLE
L0814755-16	TB100608-05	80-100	BANKS AVE., ROCKVILLE
L0814755-17	MW-4 (EXTRA VOLUME)	80-100	BANKS AVE., ROCKVILLE

Authorized by: <u>Ububeth Jumus</u>

Technical Representative

10140812:33 Page 1 of 93

I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

ALPHA ANALYTICAL NARRATIVE REPORT

Laboratory Job Number: L0814755

The samples were received in accordance with the chain of custody and no significant deviations were encountered during preparation or analysis unless otherwise noted below.

Metals

L0814755-02, -06, and -10 have elevated detection limits for Iron due to the 5x dilutions required to quantitate the results within the calibration range.

L0814755-07 has an elevated detection limit for Iron due to the 5x dilution required by non-target analyte spectral interferences encountered during analysis.

The following samples have elevated detection limits for Arsenic due to the dilutions required by non-target analyte spectral interferences encountered during analysis:

L0814755-04: 10x

L0814755-07, -10: 20x

The WG339213-1 Laboratory Duplicate RPDs associated with L0814755-01 are outside the acceptance criteria for Calcium (44%), Copper (62%), Iron (40%), Lead (86%), and Zinc (39%). The elevated RPDs have been attributed to the non-homogenous nature of the sample utilized for the laboratory duplicate.

The WG338986-2 MS recovery for Iron (0%) associated with L0814755-04 is invalid because the sample concentration is greater than four times the spike amount added.

The WG339213-2 MS recoveries associated with L0814755-01 are below the acceptance criteria for Antimony (68%), Calcium (64%), Copper (0%), Lead (49%), Magnesium (73%), Manganese (47%), and Zinc (0%). Post digestion spikes were performed with acceptable recoveries of 94%, 103%, 119%, 101%, 92%, 103%, and 125%, respectively.

The WG339213-2 MS recovery for Iron (0%) associated with L0814755-01 is invalid because the sample concentration is greater than four times the spike amount added.

Volatile Organics

L0814755-06, -08, -09, -10, -14, -15, and -16: The pH of the samples were greater than two; however, the samples were analyzed within the method required holding time. The samples were received in unpreserved vials.

L0814755-06 has elevated detection limits due to the 20x dilution required by the elevated concentrations of target compounds in the sample.

Semivolatile Organics

The WG339098-2/-3 LCS/LCSD recoveries associated with L0814755-02 through -07, -10, and -11 were above the acceptance criteria for 2,4-Dinitrotoluene (119%/115%), p-Chloro-m-cresol (LCS at 98%), and Pentachlorophenol (LCS at 104%); however, the associated samples were non-detect for these target compounds. The results of the original analysis are

ALPHA ANALYTICAL NARRATIVE REPORT

Laboratory Job Number: L0814755

Continued

reported.

The WG339098-4 MS recovery associated with L0814755-02 through -07, -10, and -11 was above the acceptance criteria for 2,4-Dinitrotoluene (100%); however, the associated samples were non-detect for this target compound. The results of the original analysis are reported.

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0814755-01 Date Collected: 03-OCT-2008 12:30

PWG-LP-2008-01 (9-11') Date Received: 06-OCT-2008

Sample Matrix: SOIL Date Reported: 14-OCT-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 1-Amber,1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID
					PREP ANAL
Colida motol	76	90	0.10	20.05404	1000 16.41 55
Solids, Total	76	6	0.10	30 2540G	1009 16:41 SD
Total Metals					
Aluminum, Total	1500	mg/kg	6.4	1 6010B	1008 16:30 1010 15:09 AI
Antimony, Total	ND	mg/kg	3.2	1 6010B	1008 16:30 1010 15:09 AI
Arsenic, Total	ND	mg/kg	0.64	1 6010B	1008 16:30 1010 15:09 AI
Barium, Total	9.6	mg/kg	0.64	1 6010B	1008 16:30 1010 15:09 AI
Beryllium, Total	ND	mg/kg	0.32	1 6010B	1008 16:30 1010 15:09 AI
Cadmium, Total	ND	mg/kg	0.64	1 6010B	1008 16:30 1010 15:09 AI
Calcium, Total	440	mg/kg	6.4	1 6010B	1008 16:30 1010 15:09 AI
Chromium, Total	6.9	mg/kg	0.64	1 6010B	1008 16:30 1010 15:09 AI
Cobalt, Total	ND	mg/kg	1.3	1 6010B	1008 16:30 1010 15:09 AI
Copper, Total	36	mg/kg	0.64	1 6010B	1008 16:30 1010 15:09 AI
Iron, Total	6600	mg/kg	3.2	1 6010B	1008 16:30 1010 15:09 AI
Lead, Total	23	mg/kg	3.2	1 6010B	1008 16:30 1010 15:09 AI
Magnesium, Total	410	mg/kg	6.4	1 6010B	1008 16:30 1010 15:09 AI
Manganese, Total	33	mg/kg	0.64	1 6010B	1008 16:30 1010 15:09 AI
Mercury, Total	ND	mg/kg	0.10	1 7471A	1007 20:00 1008 12:17 HG
Nickel, Total	3.0	mg/kg	1.6	1 6010B	1008 16:30 1010 15:09 AI
Potassium, Total	ND	mg/kg	160	1 6010B	1008 16:30 1010 15:09 AI
Selenium, Total	ND	mg/kg	1.3	1 6010B	1008 16:30 1010 15:09 AI
Silver, Total	ND	mg/kg	0.64	1 6010B	1008 16:30 1010 15:09 AI
Sodium, Total	ND	mg/kg	130	1 6010B	1008 16:30 1010 15:09 AI
Thallium, Total	ND	mg/kg	1.3	1 6010B	1008 16:30 1010 15:09 AI
Vanadium, Total	6.0	mg/kg	0.64	1 6010B	1008 16:30 1010 15:09 AI
Zinc, Total	120	mg/kg	3.2	1 6010B	1008 16:30 1010 15:09 AI
Volatile Organics by EPA 8	260B			1 8260B	1010 13:59 PD
Methylene chloride	ND	ug/kg	33.		
l,1-Dichloroethane	ND	ug/kg	4.9		
Chloroform	ND	ug/kg	4.9		
Carbon tetrachloride	ND	ug/kg	3.3		
l,2-Dichloropropane	ND	ug/kg	12.		
Dibromochloromethane	ND	ug/kg	3.3		
l,1,2-Trichloroethane	ND	ug/kg	4.9		
Tetrachloroethene	4.9	ug/kg	3.3		
Chlorobenzene	ND	ug/kg	3.3		
Trichlorofluoromethane	ND	ug/kg	16.		

Comments: Complete list of References and Glossary of Terms found in Addendum I

Laboratory Sample Number: L0814755-01

PWG-LP-2008-01 (9-11')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
olatile Organics by EPA 826	50B cont'd			1	8260B		1010 13:5	59 PD
l,2-Dichloroethane	ND	ug/kg	3.3					
,1,1-Trichloroethane	ND	ug/kg	3.3					
Bromodichloromethane	ND	ug/kg	3.3					
rans-1,3-Dichloropropene	ND	ug/kg	3.3					
is-1,3-Dichloropropene	ND	ug/kg	3.3					
,1-Dichloropropene	ND	ug/kg	16.					
Bromoform	ND	ug/kg	13.					
.,1,2,2-Tetrachloroethane	ND	ug/kg	3.3					
Benzene	ND	ug/kg	3.3					
'oluene	ND	ug/kg	4.9					
Ithylbenzene	ND	ug/kg	3.3					
Chloromethane	ND	ug/kg	16.					
Bromomethane	ND	ug/kg	6.6					
inyl chloride	ND	ug/kg	6.6					
hloroethane	ND	ug/kg	6.6					
,1-Dichloroethene	ND	ug/kg	3.3					
rans-1,2-Dichloroethene	ND	ug/kg	4.9					
richloroethene	ND	ug/kg	3.3					
,2-Dichlorobenzene	ND	ug/kg	16.					
,3-Dichlorobenzene	ND	ug/kg	16.					
,4-Dichlorobenzene	ND	ug/kg	16.					
Methyl tert butyl ether	ND	ug/kg	6.6					
/m-Xylene	ND	ug/kg	6.6					
-Xylene	ND	ug/kg	6.6					
is-1,2-Dichloroethene	ND	ug/kg	3.3					
ibromomethane	ND	ug/kg	33.					
Styrene	ND	ug/kg	6.6					
Dichlorodifluoromethane	ND	ug/kg	33.					
acetone	ND	ug/kg	33.					
Carbon disulfide	ND	ug/kg	33.					
-Butanone	ND	ug/kg	33.					
inyl acetate	ND	ug/kg	33.					
-Methyl-2-pentanone	ND	ug/kg	33.					
.,2,3-Trichloropropane	ND	ug/kg	33.					
Hexanone	ND	ug/kg	33.					
Bromochloromethane	ND	ug/kg	16.					
,2-Dichloropropane	ND	ug/kg	16.					
.,2-Dibromoethane	ND	ug/kg ug/kg	13.					
.,3-Dichloropropane	ND	ug/kg	16.					
.,1,1,2-Tetrachloroethane	ND	ug/kg	3.3					
gromobenzene	ND	ug/kg ug/kg	16.					
-Butylbenzene	ND	ug/kg ug/kg	3.3					
ec-Butylbenzene	ND	ug/kg ug/kg	3.3					
ert-Butylbenzene	ND	ug/kg ug/kg	16.					
-Chlorotoluene	ND	ug/kg ug/kg	16.					
Chiorotoluene Chlorotoluene	ND ND		16.					
.,2-Dibromo-3-chloropropane		ug/kg	16.					
exachlorobutadiene	ND ND	ug/kg	16. 16.					
		ug/kg						
sopropylbenzene	ND	ug/kg	3.3					

Laboratory Sample Number: L0814755-01

PWG-LP-2008-01 (9-11')

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Volatile Organics by EPA 826	OR contid			1	8260B		1010 13:	EQ DD
p-Isopropyltoluene	ND	ug/kg	3.3		02006		1010 13.	39 PD
p-isopropyrtoruene Naphthalene			16.					
_	ND	ug/kg	33.					
Acrylonitrile	ND	ug/kg						
n-Propylbenzene	ND	ug/kg	3.3					
1,2,3-Trichlorobenzene	ND	ug/kg	16.					
1,2,4-Trichlorobenzene 1,3,5-Trimethylbenzene	ND	ug/kg	16. 16.					
	ND	ug/kg						
1,2,4-Trimethylbenzene	ND	ug/kg	16.					
1,4-Diethylbenzene	ND	ug/kg	13.					
4-Ethyltoluene	ND	ug/kg	13.					
1,2,4,5-Tetramethylbenzene	ND	ug/kg	13.					
Surrogate(s)	Recovery		QC Cr		à			
1,2-Dichloroethane-d4	104	8	70-13					
Toluene-d8	102	%	70-13	0				
4-Bromofluorobenzene	112	%	70-13	0				
Dibromofluoromethane	99.0	ે	70-13	0				
Semivolatile Organics by EPA	8270C			1	8270C	1008 00:30	1009 12:	40 PS
Acenaphthene	ND	ug/kg	440					
1,2,4-Trichlorobenzene	ND	ug/kg	440					
Hexachlorobenzene	ND	ug/kg	440					
Bis(2-chloroethyl)ether	ND	ug/kg	440					
2-Chloronaphthalene	ND	ug/kg	530					
1,2-Dichlorobenzene	ND	ug/kg	440					
1,3-Dichlorobenzene	ND	ug/kg	440					
1,4-Dichlorobenzene	ND	ug/kg	440					
3,3'-Dichlorobenzidine	ND	ug/kg	880					
2,4-Dinitrotoluene	ND	ug/kg	440					
2,6-Dinitrotoluene	ND	ug/kg	440					
Fluoranthene	ND	ug/kg	440					
4-Chlorophenyl phenyl ether	ND	ug/kg	440					
4-Bromophenyl phenyl ether	ND	ug/kg	440					
Bis(2-chloroisopropyl)ether	ND	ug/kg	440					
Bis(2-chloroethoxy)methane	ND	ug/kg	440					
Hexachlorobutadiene	ND	ug/kg	880					
Hexachlorocyclopentadiene	ND	ug/kg	880					
Hexachloroethane	ND	ug/kg ug/kg	440					
Isophorone	ND	ug/kg ug/kg	440					
Naphthalene	ND	ug/kg ug/kg	440					
Naphthalene Nitrobenzene	ND	ug/kg ug/kg	440					
Nitropenzene NitrosoDiPhenylAmine(NDPA)/D		ug/kg ug/kg	1300					
n-Nitrosodi-n-propylamine	ND	ug/kg ug/kg	440					
Bis(2-Ethylhexyl)phthalate	ND ND	ug/kg ug/kg	880					
Butyl benzyl phthalate	ND ND	ug/kg ug/kg	440					
Butyi benzyi phthalate Di-n-butylphthalate	ND ND		440					
		ug/kg						
Di-n-octylphthalate	ND	ug/kg	440					
Diethyl phthalate	ND	ug/kg	440					
Dimethyl phthalate	ND	ug/kg	440					

Laboratory Sample Number: L0814755-01

PWG-LP-2008-01 (9-11')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DAT PREP	E ID ANAL
Semivolatile Organics by EPA 8	8270C cont	- ' d		1 8270C	1008 00:30 1	009 12:40 PS
Benzo(a)anthracene	ND	ug/kg	440	1 02/00	1000 00:30 1	00) 12·40 FB
Benzo(a)pyrene	ND	ug/kg ug/kg	440			
Benzo(b)fluoranthene	ND		440			
Benzo(b)fluoranthene	ND	ug/kg ug/kg	440			
thrysene	ND	ug/kg ug/kg	440			
acenaphthylene	ND	ug/kg ug/kg	440			
nthracene	ND	ug/kg ug/kg	440			
Benzo(ghi)perylene	ND	ug/kg ug/kg	440			
luorene	ND		440			
henanthrene	ND	ug/kg	440			
		ug/kg	440			
oibenzo(a,h)anthracene	ND	ug/kg				
ndeno(1,2,3-cd)Pyrene	ND	ug/kg	440			
yrene	ND	ug/kg	440			
siphenyl	ND	ug/kg	440			
l-Chloroaniline	ND	ug/kg	440			
-Nitroaniline	ND	ug/kg	440			
-Nitroaniline	ND	ug/kg	440			
-Nitroaniline	ND	ug/kg	610			
ibenzofuran	ND	ug/kg	440			
-Methylnaphthalene	ND	ug/kg	440			
,2,4,5-Tetrachlorobenzene	ND	ug/kg	1800			
cetophenone	ND	ug/kg	1800			
,4,6-Trichlorophenol	ND	ug/kg	440			
-Chloro-M-Cresol	ND	ug/kg	440			
-Chlorophenol	ND	ug/kg	530			
,4-Dichlorophenol	ND	ug/kg	880			
,4-Dimethylphenol	ND	ug/kg	440			
-Nitrophenol	ND	ug/kg	1800			
-Nitrophenol	ND	ug/kg	880			
,4-Dinitrophenol	ND	ug/kg	1800			
,6-Dinitro-o-cresol	ND	ug/kg	1800			
entachlorophenol	ND	ug/kg	1800			
henol	ND	ug/kg	610			
-Methylphenol	ND	ug/kg	530			
-Methylphenol/4-Methylphenol	ND	ug/kg	530			
,4,5-Trichlorophenol	ND	ug/kg	440			
enzoic Acid	ND	ug/kg	4400			
Benzyl Alcohol	ND	ug/kg	880			
arbazole	ND	ug/kg	440			
urrogate(s)	Recovery		QC Cr	iteria		
-Fluorophenol	65.0	%	25-120	0		
henol-d6	63.0	%	10-120	0		
itrobenzene-d5	56.0	%	23-120	0		
-Fluorobiphenyl	58.0	%	30-120	0		
,4,6-Tribromophenol	76.0	%	19-120	O		
-Terphenyl-d14	62.0	%	18-120)		

Laboratory Sample Number: L0814755-01

PWG-LP-2008-01 (9-11')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA	TE	ID
					PREP	ANAL	
Semivolatile Organics by I	EPA 8270C-SIM	cont'd		1 8270C	1008 01:00	1013 20:5	l AK
Acenaphthene	ND	ug/kg	18.				
2-Chloronaphthalene	ND	ug/kg	18.				
Fluoranthene	ND	ug/kg	18.				
Hexachlorobutadiene	ND	ug/kg	44.				
Naphthalene	ND	ug/kg	18.				
Benzo(a)anthracene	ND	ug/kg	18.				
Benzo(a)pyrene	ND	ug/kg	18.				
Benzo(b)fluoranthene	ND	ug/kg	18.				
Benzo(k)fluoranthene	ND	ug/kg	18.				
Chrysene	ND	ug/kg	18.				
Acenaphthylene	ND	ug/kg	18.				
Anthracene	ND	ug/kg	18.				
Benzo(ghi)perylene	ND	ug/kg	18.				
Fluorene	ND	ug/kg	18.				
Phenanthrene	ND	ug/kg	18.				
Dibenzo(a,h)anthracene	ND	ug/kg	18.				
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	18.				
Pyrene	ND	ug/kg	18.				
2-Methylnaphthalene	ND	ug/kg	18.				
Pentachlorophenol	ND	ug/kg	70.				
Hexachlorobenzene	ND	ug/kg	70.				
Hexachloroethane	ND	ug/kg	70.				
Surrogate(s)	Recovery		QC Cr	iteria			
2-Fluorophenol	74.0	8	25-12	0			
Phenol-d6	78.0	8	10-12	0			
Nitrobenzene-d5	72.0	8	23-12	0			
2-Fluorobiphenyl	67.0	%	30-12	0			
2,4,6-Tribromophenol	75.0	%	19-12	0			
4-Terphenyl-d14	71.0	%	18-12	0			

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0814755-02 Date Collected: 03-OCT-2008 12:20

MW-1 **Date Received :** 06-OCT-2008 WATER **Date Reported :** 14-OCT-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 6-Amber, 1-Plastic, 2-Vial

Sample Matrix:

DADAMENTO.		IDITE C			VERTICE			
PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA: PREP	re Anal	ID
						FREE		
Tabal Mahala								
Total Metals								
Aluminum, Total	190	mg/l	0.10	1	6010B	1007 11:00	1010 14:2	7 AI
Antimony, Total	ND	mg/l	0.050	1	6010B	1007 11:00	1010 14:2	7 AI
Arsenic, Total	0.291	mg/l	0.005	1	6010B	1007 11:00	1010 14:2	7 AI
Barium, Total	0.576	mg/1	0.010	1	6010B	1007 11:00	1010 14:2	7 AI
Beryllium, Total	0.008	mg/1	0.005	1	6010B	1007 11:00	1010 14:2	7 AI
Cadmium, Total	0.011	mg/1	0.005	1	6010B	1007 11:00	1010 14:2	7 AI
Calcium, Total	57	mg/1	0.10	1	6010B	1007 11:00	1010 14:2	7 AI
Chromium, Total	0.40	mg/1	0.01	1	6010B	1007 11:00	1010 14:2	7 AI
Cobalt, Total	0.198	mg/l	0.020	1	6010B	1007 11:00	1010 14:2	7 AI
Copper, Total	0.312	mg/l	0.010	1	6010B	1007 11:00		
Iron, Total	360	mg/l	0.25	1	6010B	1007 11:00	1010 15:26	6 AI
Lead, Total	0.394	mg/l	0.010	1	6010B	1007 11:00	1010 14:2	7 AI
Magnesium, Total	54	mg/l	0.10	1	6010B	1007 11:00	1010 14:2	7 AI
Manganese, Total	5.13	mg/l	0.010	1	6010B	1007 11:00	1010 14:2	7 AI
Mercury, Total	0.0027	mg/l	0.0002	1	7470A	1007 22:00	1008 11:39	5 HG
Nickel, Total	0.341	mg/l	0.025	1	6010B	1007 11:00		
Potassium, Total	16	mg/l	2.5	1	6010B	1007 11:00		
Selenium, Total	ND	mg/l	0.010	1		1007 11:00		
Silver, Total	ND	mg/l	0.007	1	6010B	1007 11:00		
Sodium, Total	15	mq/1	2.0	1		1007 11:00		
Thallium, Total	ND	mg/l	0.020	1		1007 11:00		
Vanadium, Total	0.602	mg/l	0.010	1		1007 11:00		
Zinc, Total	1.32	mg/l	0.050	1	6010B	1007 11:00		
2212, 20002	1.32	9, =	0.000	-	00102	100, 11,00	1010 11 2	
Volatile Organics by EPA 82	260B			1	8260B		1009 17:52	2 PD
Methylene chloride	ND	ug/l	5.0					
1,1-Dichloroethane	ND	ug/l	0.75					
Chloroform	ND	ug/l	0.75					
Carbon tetrachloride	ND	ug/l	0.50					
1,2-Dichloropropane	ND	ug/l	1.8					
Dibromochloromethane	ND	ug/l	0.50					
1,1,2-Trichloroethane	ND	ug/l	0.75					
Tetrachloroethene	ND	ug/l	0.50					
Chlorobenzene	ND	ug/l	0.50					
Trichlorofluoromethane	ND	ug/l	2.5					
1,2-Dichloroethane	ND	ug/l	0.50					
,								

Comments: Complete list of References and Glossary of Terms found in Addendum I

Laboratory Sample Number: L0814755-02

MW-1

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Volatile Organics by EPA 826	OB cont'd			1	8260B		1009 17:	52 PD
Bromodichloromethane	ND	ug/l	0.50					
rans-1,3-Dichloropropene	ND	ug/l	0.50					
cis-1,3-Dichloropropene	ND	ug/l	0.50					
,1-Dichloropropene	ND	ug/l	2.5					
Bromoform	ND	ug/l	2.0					
.,1,2,2-Tetrachloroethane	ND	ug/l	0.50					
Benzene	ND	ug/l	0.50					
Coluene	ND	ug/l	0.75					
Sthylbenzene	ND	ug/l	0.50					
hloromethane	ND	ug/l	2.5					
Bromomethane	ND	ug/l	1.0					
inyl chloride	ND	ug/l	1.0					
hloroethane	ND	ug/l	1.0					
,1-Dichloroethene	ND	ug/l	0.50					
rans-1,2-Dichloroethene	ND	ug/l	0.75					
richloroethene	ND	ug/l	0.50					
,2-Dichlorobenzene	ND	ug/l	2.5					
,3-Dichlorobenzene	ND	ug/l	2.5					
,4-Dichlorobenzene	ND	ug/l	2.5					
ethyl tert butyl ether	ND	ug/l	1.0					
/m-Xylene	ND	ug/l	1.0					
-Xylene	ND	ug/l	1.0					
is-1,2-Dichloroethene	ND	ug/l	0.50					
ibromomethane	ND	ug/l	5.0					
,2,3-Trichloropropane	ND	ug/l	5.0					
crylonitrile	ND	ug/l	5.0					
tyrene	ND	ug/l	1.0					
ichlorodifluoromethane	ND	ug/l	5.0					
cetone	ND	ug/l	5.0					
arbon disulfide	ND	ug/l	5.0					
-Butanone	ND	ug/l	5.0					
inyl acetate	ND	ug/l	5.0					
-Methyl-2-pentanone	ND	ug/l	5.0					
-Hexanone	ND	ug/l	5.0					
romochloromethane	ND	ug/l	2.5					
,2-Dichloropropane	ND	ug/l	2.5					
,2-Dibromoethane	ND	ug/l	2.0					
,3-Dichloropropane	ND ND	ug/1 ug/l	2.5					
,1,1,2-Tetrachloroethane	ND ND	ug/l ug/l	0.50					
romobenzene	ND ND		2.5					
-Butylbenzene	ND ND	ug/l ug/l	2.5 0.50					
ec-Butylbenzene	ND	ug/l ug/l	0.50					
ec-Butylbenzene ert-Butylbenzene			2.5					
-Chlorotoluene	ND ND	ug/l						
	ND ND	ug/l	2.5					
-Chlorotoluene	ND	ug/l	2.5					
,2-Dibromo-3-chloropropane	ND	ug/l	2.5					
exachlorobutadiene	ND	ug/l	0.60					
sopropylbenzene	ND	ug/l	0.50					
-Isopropyltoluene	ND	ug/l	0.50					

Laboratory Sample Number: L0814755-02

MW-1

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Volatile Organics by EPA 8260	OB cont'd			1	8260B		1009 17:5	2 PD
Naphthalene	ND	ug/l	2.5					
n-Propylbenzene	ND	ug/l	0.50					
1,2,3-Trichlorobenzene	ND	ug/l	2.5					
1,2,4-Trichlorobenzene	ND	ug/l	2.5					
1,3,5-Trimethylbenzene	ND	ug/l	2.5					
1,2,4-Trimethylbenzene	ND	ug/l	2.5					
1,4-Diethylbenzene	ND	ug/l	2.0					
4-Ethyltoluene	ND	ug/l	2.0					
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0					
Surrogate(s)	Recovery		QC Cri	teria	a.			
1,2-Dichloroethane-d4	104	%	70-130					
Toluene-d8	99.0	%	70-130					
4-Bromofluorobenzene	107	%	70-130					
Dibromofluoromethane	97.0	%	70-130					
Semivolatile Organics by EPA	8270C			1	8270C	1008 00:45	1010 15:13	1 PS
Acenaphthene	ND	ug/l	4.9					
1,2,4-Trichlorobenzene	ND	ug/l	4.9					
Hexachlorobenzene	ND	ug/l	4.9					
Bis(2-chloroethyl)ether	ND	ug/l	4.9					
2-Chloronaphthalene	ND	ug/l	5.9					
1,2-Dichlorobenzene	ND	ug/l	4.9					
1,3-Dichlorobenzene	ND	ug/l	4.9					
1,4-Dichlorobenzene	ND	ug/l	4.9					
3,3'-Dichlorobenzidine	ND	ug/l	49.					
2,4-Dinitrotoluene	ND	ug/l	5.9					
2,6-Dinitrotoluene	ND	ug/l	4.9					
Fluoranthene	ND	ug/l	4.9					
4-Chlorophenyl phenyl ether	ND	ug/l	4.9					
4-Bromophenyl phenyl ether	ND	ug/l	4.9					
Bis(2-chloroisopropyl)ether	ND	ug/l	4.9					
Bis(2-chloroethoxy)methane	ND	ug/l	4.9					
Hexachlorobutadiene	ND	ug/l	9.8					
Hexachlorocyclopentadiene	ND	ug/l	29.					
Hexachloroethane	ND	ug/l	4.9					
Isophorone	ND	ug/l	4.9					
Naphthalene	ND	ug/l	4.9					
Nitrobenzene	ND	ug/l	4.9					
NitrosoDiPhenylAmine(NDPA)/D		ug/l	15.					
n-Nitrosodi-n-propylamine	ND	ug/l	4.9					
Bis(2-Ethylhexyl)phthalate	ND	ug/l	4.9					
Butyl benzyl phthalate	ND	ug/l	4.9					
Di-n-butylphthalate	ND	ug/l	4.9					
Di-n-octylphthalate	ND	ug/l	4.9					
Diethyl phthalate	ND	ug/l	4.9					
Dimethyl phthalate	ND	ug/l	4.9					
Benzo(a)anthracene	ND	ug/l	4.9					
Benzo(a)pyrene	ND	ug/l	4.9					

Laboratory Sample Number: L0814755-02

MW-1

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE PREP AN	ID IAL
Semivolatile Organics by EPA	8270C cont	- ' d		1 8270C	1008 00:45 1010	15:11 pc
Benzo(b)fluoranthene	ND		4.9	1 02/00	1000 00:43 1010	13.11 PS
,		ug/l				
Benzo(k)fluoranthene	ND	ug/l	4.9			
Chrysene	ND	ug/l	4.9			
Acenaphthylene	ND	ug/l	4.9			
Anthracene	ND	ug/l	4.9			
Benzo(ghi)perylene	ND	ug/l	4.9			
Fluorene	ND	ug/l	4.9			
Phenanthrene	ND	ug/l	4.9			
Dibenzo(a,h)anthracene	ND	ug/l	4.9			
Indeno(1,2,3-cd)Pyrene	ND	ug/l	6.8			
Pyrene	ND	ug/l	4.9			
Biphenyl	ND	ug/l	4.9			
4-Chloroaniline	ND	ug/l	4.9			
2-Nitroaniline	ND	ug/1	4.9			
3-Nitroaniline	ND	ug/l	4.9			
4-Nitroaniline	ND	ug/l	6.8			
Dibenzofuran	ND	ug/1	4.9			
2-Methylnaphthalene	ND	ug/1	4.9			
1,2,4,5-Tetrachlorobenzene	ND	ug/l	20.			
Acetophenone	ND	ug/l	20.			
2,4,6-Trichlorophenol	ND	ug/l	4.9			
P-Chloro-M-Cresol	ND	ug/l	4.9			
2-Chlorophenol	ND	ug/l	5.9			
2,4-Dichlorophenol	ND	ug/l	9.8			
2,4-Dimethylphenol	ND	ug/l	9.8			
2-Nitrophenol	ND	ug/l	20.			
4-Nitrophenol	ND	ug/l	9.8			
2,4-Dinitrophenol	ND	ug/l	29.			
4,6-Dinitro-o-cresol	ND	ug/l	20.			
Pentachlorophenol	ND	ug/l	9.8			
Phenol	ND	ug/l	6.8			
2-Methylphenol	ND	ug/l	5.9			
3-Methylphenol/4-Methylphenol		ug/l	5.9			
2,4,5-Trichlorophenol	ND	ug/l	4.9			
Benzoic Acid	ND	ug/l	49.			
Benzyl Alcohol	ND	ug/1 ug/l	9.8			
Carbazole	ND	ug/1 ug/l	4.9			
Calbazole	ND	ug/1	4.7			
Surrogate(s)	Recovery		0C Cr	riteria		
2-Fluorophenol	53.0	%	21-12			
Phenol-d6	35.0	%	10-12			
Nitrobenzene-d5	70.0	% %	23-12			
2-Fluorobiphenyl	70.0	% %	43-12			
2,4,6-Tribromophenol	110	% %	10-12			
4-Terphenyl-d14	91.0	6 %	33-12			
Semivolatile Organics by EPA	8270C-SIM			1 8270C	1008 00:45 1011	01:09 AK
Acenaphthene	ND	ug/l	0.20			
2-Chloronaphthalene	ND	ug/l	0.20			
		~	0.20			

Laboratory Sample Number: L0814755-02

MW-1

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Semivolatile Organics by EPA	8270C-STM	cont'd		1	8270C	1008 00:45	1011 01:0	O VK
Fluoranthene	ND	ug/l	0.20		6270C	1008 00.43	1011 01.0) AK
Hexachlorobutadiene	ND ND		0.20					
Naphthalene		ug/l						
-	ND	ug/l	0.20					
Benzo(a)anthracene	ND	ug/l	0.20 0.20					
Benzo(a)pyrene	ND	ug/l						
Benzo(b)fluoranthene Benzo(k)fluoranthene	ND	ug/l	0.20					
	ND	ug/l	0.20					
Chrysene	ND	ug/l	0.20					
Acenaphthylene	ND	ug/l	0.20					
Anthracene	ND	ug/l	0.20					
Benzo(ghi)perylene	ND	ug/l	0.20					
Fluorene	ND	ug/l	0.20					
Phenanthrene	ND	ug/l	0.20					
Dibenzo(a,h)anthracene	ND	ug/l	0.20					
Indeno(1,2,3-cd)Pyrene	ND	ug/l	0.20					
Pyrene	ND	ug/l	0.20					
2-Methylnaphthalene	ND	ug/l	0.20					
Pentachlorophenol	ND	ug/l	0.78					
Hexachlorobenzene	ND	ug/l	0.78					
Hexachloroethane	ND	ug/l	0.78					
Surrogate(s)	Recovery		QC Cri	teri	a			
2-Fluorophenol	51.0	%	21-120)				
Phenol-d6	37.0	%	10-120)				
Nitrobenzene-d5	78.0	%	23-120)				
2-Fluorobiphenyl	73.0	%	43-120)				
2,4,6-Tribromophenol	94.0	%	10-120)				
4-Terphenyl-d14	88.0	%	33-120)				
Polychlorinated Biphenyls by	EPA 8082			1	8082	1008 02:30	1009 15:2	9 SS
Aroclor 1016	ND	ug/l	0.100					
Aroclor 1221	ND	ug/l	0.100					
Aroclor 1232	ND	ug/l	0.100					
Aroclor 1242	ND	ug/l	0.100					
Aroclor 1248	ND	ug/l	0.100					
Aroclor 1254	ND	ug/l	0.100					
Aroclor 1260	ND	ug/l	0.100					
Surrogate(s)	Recovery		QC Cri	teria	a			
2,4,5,6-Tetrachloro-m-xylene	58.0	%	30-150)				
Decachlorobiphenyl	94.0	%	30-150)				
Organochlorine Pesticides by	EPA 8081A			1	8081A	1008 05:00	1009 12:4	6 JB
Delta-BHC	ND	ug/l	0.021					
Lindane	ND	ug/l	0.021					
Alpha-BHC	ND	ug/l	0.021					
	ND	ug/l	0.021					
Beta-BHC	עוו	45/1	0.021					
Beta-BHC Heptachlor	ND	ug/l	0.021					

Laboratory Sample Number: L0814755-02

MW-1

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA	TE	ID
					PREP	ANAL	
Organochlorine Pesticides by	EPA 8081A (cont.'d		1 8081A	1008 05:00	1009 12:46	.TB
Heptachlor epoxide	ND	ug/l	0.021	1 000111	1000 05 00	1009 12 10	02
Endrin	ND	ug/l	0.021				
Endrin ketone	ND	ug/l	0.041				
Dieldrin	ND	ug/l ug/l	0.041				
4,4'-DDE	ND ND	ug/l ug/l	0.041				
•		_					
4,4'-DDD	ND	ug/l	0.041				
4,4'-DDT	ND	ug/l	0.041				
Endosulfan I	ND	ug/l	0.021				
Endosulfan II	ND	ug/l	0.041				
Endosulfan sulfate	ND	ug/l	0.041				
Methoxychlor	ND	ug/l	0.206				
trans-Chlordane	ND	ug/l	0.021				
Chlordane	ND	ug/l	0.206				
Surrogate(s)	Recovery		QC Crit	eria			
2,4,5,6-Tetrachloro-m-xylene	89.0	%	~ 30-150				
Decachlorobiphenyl	74.0	%	30-150				
		-					

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0814755-03 Date Collected: 03-OCT-2008 10:25

MW-2 **Date Received :** 06-OCT-2008 WATER **Date Reported :** 14-OCT-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 6-Amber, 1-Plastic, 2-Vial

Sample Matrix:

	DECITE INTE							
PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DAT PREP	E ANAL	ID
						PREP	ANAL	
Total Metals								
Aluminum, Total	0.63	mg/l	0.10	1	6010B	1007 11:00 1	1010 14:14	1 AI
Antimony, Total	ND	mg/1	0.050	1	6010B	1007 11:00 1	1010 14:14	1 AI
Arsenic, Total	0.007	mg/1	0.005	1	6010B	1007 11:00 1	1010 14:14	1 AI
Barium, Total	ND	mg/1	0.010	1	6010B	1007 11:00 1	1010 14:14	1 AI
Beryllium, Total	ND	mg/1	0.005	1	6010B	1007 11:00 1	1010 14:14	1 AI
Cadmium, Total	ND	mg/1	0.005	1	6010B	1007 11:00 1	1010 14:14	1 AI
Calcium, Total	13	mg/1	0.10	1	6010B	1007 11:00 1	1010 14:14	1 AI
Chromium, Total	ND	mg/1	0.01	1	6010B	1007 11:00 1	1010 14:14	1 AI
Cobalt, Total	ND	mg/l	0.020	1	6010B	1007 11:00 1	1010 14:14	1 AI
Copper, Total	ND	mg/l	0.010	1	6010B	1007 11:00 1		
Iron, Total	11	mq/1	0.05	1	6010B	1007 11:00 1	1010 14:14	1 AI
Lead, Total	ND	mg/l	0.010	1	6010B	1007 11:00 1	1010 14:14	1 AI
Magnesium, Total	2.6	mq/1	0.10	1		1007 11:00 1		
Manganese, Total	0.280	mg/l	0.010	1		1007 11:00 1		
Mercury, Total	ND	mq/1	0.0002	1		1007 22:00 1		
Nickel, Total	ND	mg/l	0.025	1	6010B	1007 11:00 1		
Potassium, Total	ND	mg/l	2.5	1	6010B	1007 11:00		
Selenium, Total	ND	mg/l	0.010	1	6010B	1007 11:00 1		
Silver, Total	ND	mg/l	0.007	1	6010B	1007 11:00		
Sodium, Total	ND	mg/l	2.0	1		1007 11:00		
Thallium, Total	ND	mg/l	0.020	1		1007 11:00		
Vanadium, Total	ND	mg/l	0.010	1	6010B	1007 11:00		
Zinc, Total	ND ND	mg/l	0.010	1	6010B	1007 11:00		
Zine, iotai	ND	mg/I	0.050	1	9010B	1007 11.00	1010 14.14	ŧ Al
Volatile Organics by EPA 8	260B			1	8260B	<u> </u>	1009 18:29	PD
Methylene chloride	ND	ug/1	5.0					
1,1-Dichloroethane	ND	ug/1	0.75					
Chloroform	ND	ug/l	0.75					
Carbon tetrachloride	ND	ug/l	0.50					
1,2-Dichloropropane	ND	ug/l	1.8					
Dibromochloromethane	ND	ug/l	0.50					
1,1,2-Trichloroethane	ND	ug/l	0.75					
Tetrachloroethene	ND	ug/l	0.50					
Chlorobenzene	ND	ug/l	0.50					
Trichlorofluoromethane	ND	ug/l	2.5					
1,2-Dichloroethane	ND	ug/l	0.50					
1,1,1-Trichloroethane	ND	ug/l	0.50					

Comments: Complete list of References and Glossary of Terms found in Addendum I

Laboratory Sample Number: L0814755-03

MW-2

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Olatile Organics by EPA 826	OB cont'd			1	8260B		1009 18:2	9 PD
Bromodichloromethane	ND	ug/l	0.50					
trans-1,3-Dichloropropene	ND	ug/l	0.50					
cis-1,3-Dichloropropene	ND	ug/l	0.50					
1,1-Dichloropropene	ND	ug/l	2.5					
Bromoform	ND	ug/l	2.0					
.,1,2,2-Tetrachloroethane	ND	ug/l	0.50					
senzene	ND	ug/l	0.50					
'oluene	ND	ug/l	0.75					
thylbenzene	ND	ug/l	0.50					
hloromethane	ND	ug/l	2.5					
romomethane	ND	ug/l	1.0					
inyl chloride	ND	ug/l	1.0					
thloroethane	ND	ug/l	1.0					
.,1-Dichloroethene	ND	ug/l	0.50					
rans-1,2-Dichloroethene	ND	ug/l	0.75					
richloroethene	ND	ug/l	0.50					
,2-Dichlorobenzene	ND	ug/l	2.5					
,3-Dichlorobenzene	ND	ug/l	2.5					
,4-Dichlorobenzene	ND	ug/l	2.5					
ethyl tert butyl ether	ND	ug/l	1.0					
/m-Xylene	ND	ug/l	1.0					
-Xylene	ND	ug/l	1.0					
is-1,2-Dichloroethene	ND	ug/l	0.50					
ibromomethane	ND	ug/l	5.0					
,2,3-Trichloropropane	ND	ug/l	5.0					
acrylonitrile	ND	ug/l	5.0					
tyrene	ND	ug/l	1.0					
oichlorodifluoromethane	ND	ug/l	5.0					
acetone	ND	_	5.0					
arbon disulfide		ug/l						
-Butanone	ND ND	ug/l	5.0 5.0					
		ug/l	5.0					
inyl acetate	ND	ug/l						
-Methyl-2-pentanone -Hexanone	ND ND	ug/l	5.0 5.0					
r-нехапопе Bromochloromethane	ND ND	ug/l	2.5					
	ND ND	ug/l	2.5					
,2-Dichloropropane		ug/l						
,2-Dibromoethane ,3-Dichloropropane	ND ND	ug/l	2.0					
,,3-Dichioropropane ,,1,1,2-Tetrachloroethane	ND ND	ug/l	2.5					
		ug/l	0.50					
romobenzene	ND	ug/l	2.5					
-Butylbenzene	ND	ug/l	0.50					
ec-Butylbenzene	ND	ug/l	0.50					
ert-Butylbenzene	ND	ug/l	2.5					
-Chlorotoluene	ND	ug/l	2.5					
-Chlorotoluene	ND	ug/l	2.5					
,2-Dibromo-3-chloropropane	ND	ug/l	2.5					
exachlorobutadiene	ND	ug/l	0.60					
sopropylbenzene	ND	ug/l	0.50					
-Isopropyltoluene	ND	ug/l	0.50					

Laboratory Sample Number: L0814755-03

MW-2

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Olatile Organics by EPA 8260	OB cont'd			1	8260B		1009 18:2	9 PD
Naphthalene	ND	ug/l	2.5					
n-Propylbenzene	ND	ug/l	0.50					
1,2,3-Trichlorobenzene	ND	ug/l	2.5					
1,2,4-Trichlorobenzene	ND	ug/l	2.5					
1,3,5-Trimethylbenzene	ND	ug/l	2.5					
1,2,4-Trimethylbenzene	ND	ug/l	2.5					
l,4-Diethylbenzene	ND	ug/l	2.0					
4-Ethyltoluene	ND	ug/l	2.0					
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0					
Surrogate(s)	Recovery		QC Cri	teria	а			
1,2-Dichloroethane-d4	107	%	70-130)				
Toluene-d8	101	%	70-130)				
4-Bromofluorobenzene	108	%	70-130)				
Dibromofluoromethane	95.0	%	70-130)				
Semivolatile Organics by EPA	8270C			1	8270C	1008 00:45	1010 15:3	5 PS
Acenaphthene	ND	ug/l	4.9					
1,2,4-Trichlorobenzene	ND	ug/l	4.9					
Mexachlorobenzene	ND	ug/l	4.9					
Bis(2-chloroethyl)ether	ND	ug/l	4.9					
2-Chloronaphthalene	ND	ug/l	5.9					
,2-Dichlorobenzene	ND	ug/l	4.9					
,3-Dichlorobenzene	ND	ug/l	4.9					
l,4-Dichlorobenzene	ND	ug/l	4.9					
3,3'-Dichlorobenzidine	ND	ug/l	49.					
2,4-Dinitrotoluene	ND	ug/l	5.9					
2,6-Dinitrotoluene	ND	ug/l	4.9					
Fluoranthene	ND	ug/l	4.9					
1-Chlorophenyl phenyl ether	ND	ug/l	4.9					
1-Bromophenyl phenyl ether	ND	ug/l	4.9					
Bis(2-chloroisopropyl)ether	ND	ug/l	4.9					
Bis(2-chloroethoxy)methane	ND	ug/l	4.9					
Hexachlorobutadiene	ND	ug/l	9.8					
Hexachlorocyclopentadiene	ND	ug/l	29.					
lexachloroethane	ND	ug/l	4.9					
Isophorone	ND	ug/l	4.9					
Naphthalene	ND	ug/l	4.9					
Iitrobenzene	ND	ug/l	4.9					
NitrosoDiPhenylAmine(NDPA)/DI	PA ND	ug/l	15.					
n-Nitrosodi-n-propylamine	ND	ug/l	4.9					
Bis(2-Ethylhexyl)phthalate	ND	ug/l	4.9					
Butyl benzyl phthalate	ND	ug/l	4.9					
Di-n-butylphthalate	ND	ug/l	4.9					
Di-n-octylphthalate	ND	ug/l	4.9					
Diethyl phthalate	ND	ug/l	4.9					
Dimethyl phthalate	ND	ug/l	4.9					
Benzo(a)anthracene	ND	ug/l	4.9					
Benzo(a)pyrene	ND	ug/l	4.9					

Laboratory Sample Number: L0814755-03

MW-2

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID		
					PREP	ANAL	
Semivolatile Organics by EPA	8270C cont	.'d		1 8270C	1008 00:45	1010 15:35 PS	
Benzo(b)fluoranthene	ND	ug/l	4.9	1 02/00	1000 00 15	1010 13 33 15	
Benzo(k)fluoranthene	ND	ug/l	4.9				
Chrysene	ND	ug/l	4.9				
Acenaphthylene	ND	ug/l	4.9				
Anthracene	ND	ug/l	4.9				
Benzo(ghi)perylene	ND	ug/l	4.9				
Fluorene	ND	ug/l	4.9				
Phenanthrene	ND	ug/l	4.9				
Dibenzo(a,h)anthracene	ND	ug/l	4.9				
Indeno(1,2,3-cd)Pyrene	ND	ug/l	6.8				
Pyrene	ND	ug/l	4.9				
Biphenyl	ND	ug/l	4.9				
4-Chloroaniline	ND		4.9				
2-Nitroaniline	ND	ug/l	4.9				
z-Nitroaniline 3-Nitroaniline	ND	ug/l	4.9				
4-Nitroaniline	ND	ug/l	6.8				
4-Nitroaniiine Dibenzofuran		ug/l					
	ND	ug/l	4.9				
2-Methylnaphthalene	ND	ug/l	4.9 20.				
1,2,4,5-Tetrachlorobenzene	ND	ug/l					
Acetophenone	ND	ug/l	20.				
2,4,6-Trichlorophenol	ND	ug/l	4.9				
P-Chloro-M-Cresol	ND	ug/l	4.9				
2-Chlorophenol	ND	ug/l	5.9				
2,4-Dichlorophenol	ND	ug/l	9.8				
2,4-Dimethylphenol	ND	ug/l	9.8				
2-Nitrophenol	ND	ug/l	20.				
4-Nitrophenol	ND	ug/l	9.8				
2,4-Dinitrophenol	ND	ug/l	29.				
4,6-Dinitro-o-cresol	ND	ug/l	20.				
Pentachlorophenol	ND	ug/l	9.8				
Phenol	ND	ug/l	6.8				
2-Methylphenol	ND	ug/l	5.9				
3-Methylphenol/4-Methylphenol		ug/l	5.9				
2,4,5-Trichlorophenol	ND	ug/l	4.9				
Benzoic Acid	ND	ug/l	49.				
Benzyl Alcohol	ND	ug/l	9.8				
Carbazole	ND	ug/l	4.9				
Surrogate(s)	Recovery		~	iteria			
2-Fluorophenol	44.0	%	21-12				
Phenol-d6	30.0	%	10-12	0			
Nitrobenzene-d5	61.0	%	23-12	0			
2-Fluorobiphenyl	66.0	%	43-12	0			
2,4,6-Tribromophenol	105	%	10-12	0			
4-Terphenyl-d14	88.0	%	33-12				
Semivolatile Organics by EPA	8270C-SIM			1 8270C	1008 00:45	1011 01:55 AK	
	ND	ug/l	0.20				
Acenaphthene							

Laboratory Sample Number: L0814755-03

MW-2

PARAMETER	RESULT	UNITS	RDL	REF METHO	D DATE ID
					PREP ANAL
Semivolatile Organics by EPA			0.00	1 8270C	1008 00:45 1011 01:55 AK
Fluoranthene	ND	ug/l	0.20		
Hexachlorobutadiene	ND	ug/l	0.49		
Naphthalene	ND	ug/l	0.20		
Benzo(a)anthracene	ND	ug/l	0.20		
Benzo(a)pyrene	ND	ug/l	0.20		
Benzo(b)fluoranthene	ND	ug/l	0.20		
Benzo(k)fluoranthene	ND	ug/l	0.20		
Chrysene	ND	ug/l	0.20		
Acenaphthylene	ND	ug/l	0.20		
Anthracene	ND	ug/l	0.20		
Benzo(ghi)perylene	ND	ug/l	0.20		
Fluorene	ND	ug/l	0.20		
Phenanthrene	ND	ug/l	0.20		
Dibenzo(a,h)anthracene	ND	ug/l	0.20		
Indeno(1,2,3-cd)Pyrene	ND	ug/l	0.20		
Pyrene	ND	ug/l	0.20		
2-Methylnaphthalene	ND	ug/l	0.20		
Pentachlorophenol	ND	ug/l	0.78		
Hexachlorobenzene	ND	ug/l	0.78		
Hexachloroethane	ND	ug/l	0.78		
Surrogate(s)	Recovery		QC Cri	teria	
2-Fluorophenol	44.0	%	21-120		
Phenol-d6	34.0	%	10-120		
Nitrobenzene-d5	71.0	%	23-120		
2-Fluorobiphenyl	72.0	%	43-120		
2,4,6-Tribromophenol	91.0	%	10-120		
4-Terphenyl-d14	90.0	%	33-120		
Polychlorinated Biphenyls by	EPA 8082			1 8082	1008 02:30 1009 15:42 SS
Aroclor 1016	ND	ug/l	0.100		
Aroclor 1221	ND	ug/l	0.100		
Aroclor 1232	ND	ug/l	0.100		
Aroclor 1242	ND	ug/l	0.100		
Aroclor 1248	ND	ug/l	0.100		
Aroclor 1254	ND	ug/l	0.100		
Aroclor 1260	ND	ug/l	0.100		
Surrogate(s)	Recovery		QC Cri	teria	
2,4,5,6-Tetrachloro-m-xylene	70.0	%	30-150		
Decachlorobiphenyl	92.0	%	30-150		
Organochlorine Pesticides by	EPA 8081A			1 8081A	1008 05:00 1009 12:33 JB
Delta-BHC	ND	ug/l	0.020		
Lindane	ND	ug/l	0.020		
Alpha-BHC	ND	ug/l	0.020		
	ND	ug/l	0.020		
Beta-BHC		J			
зета-внс Heptachlor	ND	ug/l	0.020		

Laboratory Sample Number: L0814755-03

MW-2

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Organochlorine Pesticides by	EPA 8081A	cont'd		1 8081A	1008 05:00 1009 12:33 JB
Heptachlor epoxide	ND	ug/l	0.020		
Endrin	ND	ug/l	0.040		
Endrin ketone	ND	ug/l	0.040		
Dieldrin	ND	ug/l	0.040		
4,4'-DDE	ND	ug/l	0.040		
4,4'-DDD	ND	ug/l	0.040		
4,4'-DDT	ND	ug/l	0.040		
Endosulfan I	ND	ug/l	0.020		
Endosulfan II	ND	ug/l	0.040		
Endosulfan sulfate	ND	ug/l	0.040		
Methoxychlor	ND	ug/l	0.200		
trans-Chlordane	ND	ug/l	0.020		
Chlordane	ND	ug/l	0.200		
Surrogate(s)	Recovery		QC Cri	teria	
2,4,5,6-Tetrachloro-m-xylene	85.0	%	30-150		
Decachlorobiphenyl	79.0	%	30-150		

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0814755-04 Date Collected: 03-OCT-2008 14:40

 MW-4
 Date Received : 06-OCT-2008

 WATER
 Date Reported : 14-OCT-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 18-Amber, 2-Plastic, 6-Vial

Sample Matrix:

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DATE ID
						PREP ANAL
Total Metals						
Aluminum, Total	10	mg/l	0.10	1	6010B	1007 11:00 1010 13:36 AI
Antimony, Total	ND	mg/l	0.050	1	6010B	1007 11:00 1010 13:36 AI
Arsenic, Total	ND	mg/l	0.050	1		1007 11:00 1010 16:44 AI
Barium, Total	0.039	mq/l	0.010	1	6010B	1007 11:00 1010 13:36 AI
Beryllium, Total	ND	mg/l	0.005	1	6010B	1007 11:00 1010 13:36 AI
Cadmium, Total	ND	mg/l	0.005	1	6010B	1007 11:00 1010 13:36 AI
Calcium, Total	17	mg/l	0.10	1	6010B	1007 11:00 1010 13:36 AI
Chromium, Total	0.02	mg/l	0.01	1	6010B	1007 11:00 1010 13:36 AI
Cobalt, Total	ND	mg/l	0.020	1	6010B	1007 11:00 1010 13:36 AI
Copper, Total	0.011	mg/l	0.010	1	6010B	1007 11:00 1010 13:36 AI
Iron, Total	150	mg/l	0.05	1	6010B	1007 11:00 1010 13:36 AI
Lead, Total	0.015	mg/l	0.010	1	6010B	1007 11:00 1010 13:36 AI
Magnesium, Total	16	mg/l	0.10	1	6010B	1007 11:00 1010 13:36 AI
Manganese, Total	0.795	mg/l	0.010	1	6010B	1007 11:00 1010 13:36 AI
Mercury, Total	ND	mg/l	0.0002	1	7470A	1007 22:00 1008 11:38 HG
Nickel, Total	ND	mg/l	0.025	1	6010B	1007 11:00 1010 13:36 AI
Potassium, Total	3.8	mg/l	2.5	1	6010B	1007 11:00 1010 13:36 AI
Selenium, Total	ND	mg/l	0.010	1	6010B	1007 11:00 1010 13:36 AI
Silver, Total	ND	mg/l	0.007	1	6010B	1007 11:00 1010 13:36 AI
Sodium, Total	30	mg/l	2.0	1	6010B	1007 11:00 1010 13:36 AI
Thallium, Total	ND	mg/l	0.020	1	6010B	1007 11:00 1010 13:36 AI
Vanadium, Total	0.030	mg/l	0.010	1	6010B	1007 11:00 1010 13:36 AI
Zinc, Total	0.217	mg/l	0.050	1	6010B	1007 11:00 1010 13:36 AI
Volatile Organics by EPA 82	260B			1	8260B	1009 19:05 PD
Methylene chloride	ND	ug/l	5.0	_		2007 27 00 22
1,1-Dichloroethane	ND	ug/l	0.75			
Chloroform	ND	ug/l	0.75			
Carbon tetrachloride	ND	ug/l	0.50			
1,2-Dichloropropane	ND	ug/l	1.8			
Dibromochloromethane	ND	ug/l	0.50			
1,1,2-Trichloroethane	ND	ug/l	0.75			
Tetrachloroethene	ND	ug/l	0.50			
Chlorobenzene	ND	ug/l	0.50			
Trichlorofluoromethane	ND	ug/l	2.5			
1,2-Dichloroethane	ND	ug/l	0.50			
1,1,1-Trichloroethane	ND	ug/l	0.50			
,,_	112	~5/ ±	0.50			

Laboratory Sample Number: L0814755-04

MW-4

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DATE		ID
						PREP	ANAL	
olatile Organics by EPA 826	OB cont'd			1	8260B		1009 19:0)5 PD
Bromodichloromethane	ND	ug/l	0.50					
crans-1,3-Dichloropropene	ND	ug/l	0.50					
cis-1,3-Dichloropropene	ND	ug/l	0.50					
.,1-Dichloropropene	ND	ug/l	2.5					
romoform	ND	ug/l	2.0					
,1,2,2-Tetrachloroethane	ND	ug/l	0.50					
enzene	ND	ug/l	0.50					
oluene	ND	ug/l	0.75					
thylbenzene	ND	ug/l	0.50					
hloromethane	ND	ug/l	2.5					
romomethane	ND	ug/l	1.0					
inyl chloride	ND	ug/l	1.0					
hloroethane	ND	ug/l	1.0					
,1-Dichloroethene	ND	ug/1 ug/l	0.50					
rans-1,2-Dichloroethene	ND	ug/l	0.75					
richloroethene	ND	ug/1 ug/l	0.50					
,2-Dichlorobenzene	ND	ug/1 ug/l	2.5					
,3-Dichlorobenzene	ND	ug/1 ug/l	2.5					
,4-Dichlorobenzene	ND	ug/1 ug/l	2.5					
ethyl tert butyl ether		_	1.0					
/m-Xylene	ND ND	ug/l	1.0					
		ug/l	1.0					
-Xylene	ND	ug/l						
is-1,2-Dichloroethene ibromomethane	ND ND	ug/l	0.50					
		ug/l	5.0					
,2,3-Trichloropropane	ND	ug/l	5.0					
crylonitrile	ND	ug/l	5.0					
tyrene	ND	ug/l	1.0					
ichlorodifluoromethane	ND	ug/l	5.0					
cetone	ND	ug/l	5.0					
arbon disulfide	ND	ug/l	5.0					
-Butanone	ND	ug/l	5.0					
inyl acetate	ND	ug/l	5.0					
-Methyl-2-pentanone	ND	ug/l	5.0					
-Hexanone	ND	ug/l	5.0					
romochloromethane	ND	ug/l	2.5					
,2-Dichloropropane	ND	ug/l	2.5					
,2-Dibromoethane	ND	ug/l	2.0					
,3-Dichloropropane	ND	ug/l	2.5					
,1,1,2-Tetrachloroethane	ND	ug/l	0.50					
romobenzene	ND	ug/l	2.5					
-Butylbenzene	ND	ug/l	0.50					
ec-Butylbenzene	ND	ug/l	0.50					
ert-Butylbenzene	ND	ug/l	2.5					
-Chlorotoluene	ND	ug/l	2.5					
-Chlorotoluene	ND	ug/l	2.5					
,2-Dibromo-3-chloropropane	ND	ug/l	2.5					
exachlorobutadiene	ND	ug/l	0.60					
sopropylbenzene	ND	ug/l	0.50					
-Isopropyltoluene	ND	ug/1	0.50					

Laboratory Sample Number: L0814755-04

MW-4

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Volatile Organics by EPA 8260)B cont'd			1	8260B		1009 19:0)5 PD
Naphthalene	ND	ug/l	2.5					
n-Propylbenzene	ND	ug/l	0.50					
1,2,3-Trichlorobenzene	ND	ug/l	2.5					
1,2,4-Trichlorobenzene	ND	ug/l	2.5					
1,3,5-Trimethylbenzene	ND	ug/l	2.5					
1,2,4-Trimethylbenzene	ND	ug/l	2.5					
1,4-Diethylbenzene	ND	ug/l	2.0					
4-Ethyltoluene	ND	ug/l	2.0					
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0					
Surrogate(s)	Recovery		QC Cri	teria	a.			
1,2-Dichloroethane-d4	107	%	70-130					
Toluene-d8	102	%	70-130					
4-Bromofluorobenzene	106	%	70-130					
Dibromofluoromethane	96.0	%	70-130					
Semivolatile Organics by EPA	8270C			1	8270C	1008 00:45	1010 15:5	8 PS
Acenaphthene	ND	ug/l	4.9					
1,2,4-Trichlorobenzene	ND	ug/l	4.9					
Hexachlorobenzene	ND	ug/l	4.9					
Bis(2-chloroethyl)ether	ND	ug/l	4.9					
2-Chloronaphthalene	ND	ug/l	5.9					
l,2-Dichlorobenzene	ND	ug/l	4.9					
l,3-Dichlorobenzene	ND	ug/l	4.9					
l,4-Dichlorobenzene	ND	ug/l	4.9					
3,3'-Dichlorobenzidine	ND	ug/l	49.					
2,4-Dinitrotoluene	ND	ug/l	5.9					
2,6-Dinitrotoluene	ND	ug/l	4.9					
Fluoranthene	ND	ug/l	4.9					
4-Chlorophenyl phenyl ether	ND	ug/l	4.9					
1-Bromophenyl phenyl ether	ND	ug/l	4.9					
Bis(2-chloroisopropyl)ether	ND	ug/l	4.9					
Bis(2-chloroethoxy)methane	ND	ug/l	4.9					
Hexachlorobutadiene	ND	ug/l	9.9					
Hexachlorocyclopentadiene	ND	ug/l	30.					
Hexachloroethane	ND	ug/l	4.9					
Isophorone	ND	ug/l	4.9					
Naphthalene	ND	ug/l	4.9					
Nitrobenzene	ND	ug/l	4.9					
VitrosoDiPhenylAmine(NDPA)/DI		ug/l	15.					
n-Nitrosodi-n-propylamine	ND	ug/l	4.9					
Bis(2-Ethylhexyl)phthalate	ND	ug/l	4.9					
Butyl benzyl phthalate	ND	ug/l	4.9					
Di-n-butylphthalate	ND	ug/l	4.9					
Di-n-octylphthalate	ND	ug/l	4.9					
Diethyl phthalate	ND	ug/l	4.9					
Dimethyl phthalate	ND	ug/l	4.9					
Benzo(a)anthracene	ND	ug/l	4.9					
Benzo(a)pyrene	ND	ug/l	4.9					

Laboratory Sample Number: L0814755-04

MW-4

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE II PREP ANAL
Semivolatile Organics by EPA	8270C cont	- ' d		1 8270C	1008 00:45 1010 15:58 PS
Benzo(b)fluoranthene	ND	ug/l	4.9	1 02/00	1000 00:13 1010 13:30 12
Benzo(k)fluoranthene	ND	ug/l	4.9		
	ND		4.9		
Chrysene Acenaphthylene	ND	ug/l ug/l	4.9		
Anthracene	ND	ug/1 ug/l	4.9		
Benzo(ghi)perylene	ND		4.9		
Fluorene	ND	ug/l	4.9		
Phenanthrene	ND	ug/l	4.9		
Phenanthrene Dibenzo(a,h)anthracene	ND	ug/l	4.9		
	ND	ug/l	6.9		
Indeno(1,2,3-cd)Pyrene		ug/l	4.9		
Pyrene	ND	ug/l			
Biphenyl 4-Chloroaniline	ND	ug/l	4.9		
4-Chioroaniline 2-Nitroaniline	ND	ug/l	4.9		
	ND	ug/l	4.9		
3-Nitroaniline	ND	ug/l	4.9		
4-Nitroaniline Dibenzofuran	ND	ug/l	6.9		
	ND	ug/l	4.9		
2-Methylnaphthalene	ND	ug/l	4.9		
1,2,4,5-Tetrachlorobenzene	ND	ug/l	20.		
Acetophenone	ND	ug/l	20.		
2,4,6-Trichlorophenol	ND	ug/l	4.9		
P-Chloro-M-Cresol	ND	ug/l	4.9		
2-Chlorophenol	ND	ug/l	5.9		
2,4-Dichlorophenol	ND	ug/l	9.9		
2,4-Dimethylphenol	ND	ug/l	9.9		
2-Nitrophenol	ND	ug/l	20.		
4-Nitrophenol	ND	ug/l	9.9		
2,4-Dinitrophenol	ND	ug/l	30.		
4,6-Dinitro-o-cresol	ND	ug/l	20.		
Pentachlorophenol	ND	ug/l	9.9		
Phenol	ND	ug/l	6.9		
2-Methylphenol	ND	ug/l	5.9		
3-Methylphenol/4-Methylphenol		ug/l	5.9		
2,4,5-Trichlorophenol	ND	ug/l	4.9		
Benzoic Acid	ND	ug/l	49.		
Benzyl Alcohol	ND	ug/l	9.9		
Carbazole	ND	ug/l	4.9		
Surrogate(s)	Recovery		QC Cr	iteria	
2-Fluorophenol	51.0	%	21-12		
Phenol-d6	35.0	%	10-12	10	
Nitrobenzene-d5	80.0	%	23-12		
2-Fluorobiphenyl	83.0	%	43-12	10	
2,4,6-Tribromophenol	100	%	10-12		
4-Terphenyl-d14	94.0	%	33-12		
Semivolatile Organics by EPA	8270C-SIM			1 8270C	1008 00:45 1011 02:41 AK
Acenaphthene	ND	ug/l	0.20		
2-Chloronaphthalene	ND	ug/l	0.20		
		~5/ ±	0.20		

Laboratory Sample Number: L0814755-04

MW-4

PARAMETER	RESULT	UNITS	\mathtt{RDL}	REF METHOD	DATE ID		
					PREP ANAL		
Semivolatile Organics by EPA			0.00	1 8270C	1008 00:45 1011 02:41 AK		
Fluoranthene	ND	ug/l	0.20				
Hexachlorobutadiene	ND	ug/l	0.49				
Naphthalene	ND	ug/l	0.20				
Benzo(a)anthracene	ND	ug/l	0.20				
Benzo(a)pyrene	ND	ug/l	0.20				
Benzo(b)fluoranthene	ND	ug/l	0.20				
Benzo(k)fluoranthene	ND	ug/l	0.20				
Chrysene	ND	ug/l	0.20				
Acenaphthylene	ND	ug/l	0.20				
Anthracene	ND	ug/l	0.20				
Benzo(ghi)perylene	ND	ug/l	0.20				
Fluorene	ND	ug/l	0.20				
Phenanthrene	ND	ug/l	0.20				
Dibenzo(a,h)anthracene	ND	ug/l	0.20				
Indeno(1,2,3-cd)Pyrene	ND	ug/l	0.20				
Pyrene	ND	ug/l	0.20				
2-Methylnaphthalene	ND	ug/l	0.20				
Pentachlorophenol	ND	ug/l	0.79				
Hexachlorobenzene	ND	ug/l	0.79				
Hexachloroethane	ND	ug/l	0.79				
Surrogate(s)	Recovery		QC Cri	teria			
2-Fluorophenol	49.0	%	21-120				
Phenol-d6	37.0	8	10-120				
Nitrobenzene-d5	84.0	%	23-120				
2-Fluorobiphenyl	81.0	%	43-120				
2,4,6-Tribromophenol	89.0	%	10-120				
4-Terphenyl-d14	91.0	%	33-120				
Polychlorinated Biphenyls by	EDA 8082			1 8082	1008 02:30 1009 15:56 SS		
Aroclor 1016	ND	ug/l	0.100	1 0002	1006 02.30 1009 13.30 33		
Aroclor 1221	ND	ug/l ug/l	0.100				
Aroclor 1232	ND ND	ug/l ug/l	0.100				
Aroclor 1242	ND	ug/l	0.100				
Aroclor 1248	ND	ug/l	0.100				
Aroclor 1254	ND	ug/l	0.100				
Aroclor 1260	ND	ug/l	0.100				
1200	ND	ug/ 1	0.100				
Surrogate(s)	Recovery		QC Cri	teria			
2,4,5,6-Tetrachloro-m-xylene	49.0	%	30-150				
Decachlorobiphenyl	70.0	%	30-150				
Organochlorine Pesticides by	EPA 8081A			1 8081A	1008 05:00 1009 13:12 JB		
Delta-BHC	ND	ug/l	0.023				
Lindane	ND	ug/l	0.023				
Alpha-BHC	ND	ug/l	0.023				
Beta-BHC	ND	ug/l	0.023				
		~⊃, _	0.023				
Heptachlor	ND	ug/l	0.023				

Laboratory Sample Number: L0814755-04

MW-4

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID
					PREP ANAL
Organochlorine Pesticides by	EPA 8081A	cont'd		1 8081A	1008 05:00 1009 13:12 JB
Heptachlor epoxide	ND	ug/l	0.023		
Endrin	ND	ug/l	0.046		
Endrin ketone	ND	ug/l	0.046		
Dieldrin	ND	ug/l	0.046		
4,4'-DDE	ND	ug/l	0.046		
4,4'-DDD	ND	ug/l	0.046		
4,4'-DDT	ND	ug/l	0.046		
Endosulfan I	ND	ug/l	0.023		
Endosulfan II	ND	ug/l	0.046		
Endosulfan sulfate	ND	ug/l	0.046		
Methoxychlor	ND	ug/l	0.228		
trans-Chlordane	ND	ug/l	0.023		
Chlordane	ND	ug/l	0.228		
Surrogate(s)	Recovery		QC Cri	teria	
2,4,5,6-Tetrachloro-m-xylene	87.0	8	30-150		
Decachlorobiphenyl	96.0	%	30-150		

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0814755-05 Date Collected: 06-OCT-2008 09:30

MW-5 **Date Received :** 06-OCT-2008 WATER **Date Reported :** 14-OCT-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 6-Amber, 1-Plastic, 2-Vial

Sample Matrix:

Total Metals Aluminum, Total	1 1 1 1 1 1 1 1 1 1	6010B 6010B 6010B 6010B 6010B 6010B	1007 11:00 1007 11:00 1007 11:00 1007 11:00 1007 11:00 1007 11:00	0 1010 14: 0 1010 14: 0 1010 14: 0 1010 14:	17 AI 17 AI 17 AI 17 AI
Aluminum, Total 58 mg/l 0.10 Antimony, Total ND mg/l 0.050 Arsenic, Total 0.040 mg/l 0.005 Barium, Total 0.158 mg/l 0.010 Beryllium, Total ND mg/l 0.005 Cadmium, Total ND mg/l 0.005 Cadmium, Total ND mg/l 0.005 Calcium, Total 18 mg/l 0.10 Chromium, Total 0.12 mg/l 0.01 Cobalt, Total 0.044 mg/l 0.020 Copper, Total 0.113 mg/l 0.010 Iron, Total 160 mg/l 0.05 Lead, Total 0.349 mg/l 0.010 Magnesium, Total 1.33 mg/l 0.010 Manganese, Total 1.33 mg/l 0.010 Mercury, Total 1.33 mg/l 0.010 Mercury, Total 0.0008 mg/l 0.0002 Nickel, Total 0.110 mg/l 0.025 Potassium, Total 7.3 mg/l 2.5 Selenium, Total ND mg/l 0.010 Silver, Total ND mg/l 0.007 Sodium, Total ND mg/l 0.007 Sodium, Total ND mg/l 0.007 Sodium, Total ND mg/l 0.020 Vanadium, Total 0.194 mg/l 0.010 Zinc, Total 0.740 mg/l 0.050 Volatile Organics by EPA 8260B	1 1 1 1 1 1 1	6010B 6010B 6010B 6010B 6010B 6010B 6010B	1007 11:00 1007 11:00 1007 11:00 1007 11:00	0 1010 14: 0 1010 14: 0 1010 14: 0 1010 14:	17 AI 17 AI 17 AI
Aluminum, Total 58 mg/l 0.10 Antimony, Total ND mg/l 0.050 Arsenic, Total 0.040 mg/l 0.005 Barium, Total 0.158 mg/l 0.010 Beryllium, Total ND mg/l 0.005 Cadmium, Total ND mg/l 0.005 Calcium, Total ND mg/l 0.005 Calcium, Total 18 mg/l 0.10 Chromium, Total 0.12 mg/l 0.01 Cobalt, Total 0.044 mg/l 0.020 Copper, Total 0.113 mg/l 0.010 Cron, Total 160 mg/l 0.05 Cadadium, Total 0.349 mg/l 0.010 Cadagnesium, Total 0.349 mg/l 0.010 Cadagnesium, Total 1.33 mg/l 0.0002 Cadagnesium, Total 1.33 mg/l 0.0002 Cadagnesium, Total 1.34 mg/l 0.0002 Cadagnesium, Total 1.35 mg/l 0.025 Cadagnesium, Total 1.36 Cadagnesium, Total 1.37 mg/l 0.025 Cadagnesium, Total 1.38 mg/l 0.010 Cadagnesium, Total 1.39 mg/l 0.0002 Cadagnesium, Total 1.39 mg/l 0.0002 Cadagnesium, Total 1.39 mg/l 0.0002 Cadagnesium, Total 1.39 mg/l 0.00002 Cadagnesium, Total 1.39 mg/l 0.0000 Cadagnesium, Total 1.30 mg/l 0.0000 Cadagnesium, Total 1.	1 1 1 1 1 1 1	6010B 6010B 6010B 6010B 6010B 6010B 6010B	1007 11:00 1007 11:00 1007 11:00 1007 11:00	0 1010 14: 0 1010 14: 0 1010 14: 0 1010 14:	17 AI 17 AI 17 AI
Antimony, Total ND mg/l 0.050 Arsenic, Total 0.040 mg/l 0.005 Barium, Total 0.158 mg/l 0.010 Beryllium, Total ND mg/l 0.005 Cadmium, Total ND mg/l 0.005 Cadmium, Total ND mg/l 0.005 Calcium, Total 18 mg/l 0.10 Chromium, Total 0.12 mg/l 0.01 Cobalt, Total 0.044 mg/l 0.020 Copper, Total 0.113 mg/l 0.010 Cron, Total 160 mg/l 0.05 Cadmium, Total 160 mg/l 0.05 Calcium, Total 160 mg/l 0.05 Capper, Total 160 mg/l 0.010 Capper, Total 160 mg/l 0.0002 Capper, Total 160 mg/l	1 1 1 1 1 1 1	6010B 6010B 6010B 6010B 6010B 6010B 6010B	1007 11:00 1007 11:00 1007 11:00 1007 11:00	0 1010 14: 0 1010 14: 0 1010 14: 0 1010 14:	17 AI 17 AI 17 AI
Arsenic, Total 0.040 mg/l 0.005 Barium, Total 0.158 mg/l 0.010 Beryllium, Total ND mg/l 0.005 Cadmium, Total ND mg/l 0.005 Calcium, Total 18 mg/l 0.10 Chromium, Total 0.12 mg/l 0.01 Cobalt, Total 0.044 mg/l 0.020 Copper, Total 0.113 mg/l 0.010 Iron, Total 160 mg/l 0.05 Lead, Total 0.349 mg/l 0.010 Magnesium, Total 24 mg/l 0.10 Manganese, Total 1.33 mg/l 0.010 Mercury, Total 1.33 mg/l 0.010 Mercury, Total 0.0008 mg/l 0.002 Nickel, Total 0.110 mg/l 0.025 Potassium, Total 7.3 mg/l 2.5 Selenium, Total ND mg/l 0.007 Sodium, Total ND mg/l 0.007 Sodium, Total ND mg/l 0.007 Sodium, Total ND mg/l 0.007 Vanadium, Total 0.194 mg/l 0.010 Zinc, Total 0.740 mg/l 0.050 Volatile Organics by EPA 8260B	1 1 1 1 1 1	6010B 6010B 6010B 6010B 6010B 6010B	1007 11:00 1007 11:00 1007 11:00 1007 11:00	0 1010 14: 0 1010 14: 0 1010 14:	17 AI 17 AI
Barium, Total 0.158 mg/l 0.010 Beryllium, Total ND mg/l 0.005 Cadmium, Total ND mg/l 0.005 Calcium, Total 18 mg/l 0.10 Chromium, Total 0.12 mg/l 0.01 Cobalt, Total 0.044 mg/l 0.020 Copper, Total 160 mg/l 0.05 Lead, Total 0.349 mg/l 0.010 Magnesium, Total 24 mg/l 0.10 Manganese, Total 1.33 mg/l 0.010 Mercury, Total 0.0008 mg/l 0.002 Nickel, Total 0.110 mg/l 0.025 Potassium, Total 7.3 mg/l 2.5 Potassium, Total ND mg/l 0.007 Sodium, Total ND mg/l 0.007 Thallium, Total ND mg/l 0.020 Vanadium, Total 0.194 mg/l 0.010 Zinc, Total 0.740 mg/l 0.050	1 1 1 1 1 1	6010B 6010B 6010B 6010B	1007 11:00 1007 11:00 1007 11:00	1010 14: 0 1010 14:	17 AI
Beryllium, Total ND mg/l 0.005 Cadmium, Total ND mg/l 0.005 Calcium, Total 18 mg/l 0.10 Chromium, Total 0.12 mg/l 0.01 Cobalt, Total 0.044 mg/l 0.020 Copper, Total 160 Magnesium, Total 1.33 Mg/l 0.010 Magnesium, Total Manganese, Total ND Mercury, Total No No Mercury, Total No No No No No Selenium, Total No Silver, Total No Total No Total No Magnesium, Total No No Magnesium,	1 1 1 1 1	6010B 6010B 6010B 6010B	1007 11:00 1007 11:00	1010 14:	
Cadmium, Total ND mg/l 0.005 Calcium, Total 18 mg/l 0.10 Chromium, Total 0.12 mg/l 0.01 Cobalt, Total 0.044 mg/l 0.020 Copper, Total 0.113 mg/l 0.010 Iron, Total 160 mg/l 0.05 Lead, Total 0.349 mg/l 0.010 Magnesium, Total 24 mg/l 0.10 Manganese, Total 1.33 mg/l 0.010 Mercury, Total 0.0008 mg/l 0.0002 Nickel, Total 0.110 mg/l 0.025 Potassium, Total 7.3 mg/l 0.010 Selenium, Total ND mg/l 0.007 Sodium, Total ND mg/l 0.020 Wanadium, Total 0.194 mg/l 0.010 Wanadium, Total 0.740 mg/l 0.050	1 1 1 1	6010B 6010B 6010B	1007 11:00		17 AI
Calcium, Total Chromium, Total Chromium, Total Cobalt, Total Copper, Total C	1 1 1	6010B 6010B		1010 14.	
Chromium, Total 0.12 mg/l 0.01 Cobalt, Total 0.044 mg/l 0.020 Copper, Total 0.113 mg/l 0.010 Iron, Total 160 mg/l 0.05 Lead, Total 0.349 mg/l 0.010 Magnesium, Total 24 mg/l 0.10 Manganese, Total 1.33 mg/l 0.010 Mercury, Total 0.0008 mg/l 0.0002 Nickel, Total 0.110 mg/l 0.025 Potassium, Total 7.3 mg/l 2.5 Selenium, Total ND mg/l 0.010 Silver, Total ND mg/l 0.007 Sodium, Total 7.0 mg/l 0.007 Thallium, Total ND mg/l 0.020 Wanadium, Total 0.194 mg/l 0.010 Zinc, Total 0.740 mg/l 0.050	1 1 1	6010B	1007 11:00	1010 14.	17 AI
Cobalt, Total 0.044 mg/l 0.020 Copper, Total 0.113 mg/l 0.010 Iron, Total 160 mg/l 0.05 Lead, Total 0.349 mg/l 0.010 Magnesium, Total 24 mg/l 0.10 Manganese, Total 1.33 mg/l 0.010 Mercury, Total 0.0008 mg/l 0.0002 Nickel, Total 0.110 mg/l 0.025 Potassium, Total 7.3 mg/l 2.5 Selenium, Total ND mg/l 0.010 Silver, Total ND mg/l 0.007 Sodium, Total 7.0 mg/l 0.020 Vanadium, Total 0.194 mg/l 0.010 Zinc, Total 0.740 mg/l 0.050	1			1010 14:	17 AI
Copper, Total 0.113 mg/l 0.010 Iron, Total 160 mg/l 0.05 Lead, Total 0.349 mg/l 0.010 Magnesium, Total 24 mg/l 0.10 Manganese, Total 1.33 mg/l 0.010 Mercury, Total 0.0008 mg/l 0.0002 Nickel, Total 0.110 mg/l 0.025 Potassium, Total 7.3 mg/l 2.5 Selenium, Total ND mg/l 0.010 Silver, Total ND mg/l 0.007 Sodium, Total 7.0 mg/l 0.020 Vanadium, Total 0.194 mg/l 0.010 Zinc, Total 0.740 mg/l 0.050	1	6010D	1007 11:00	1010 14:	17 AI
Tron, Total 160 mg/l 0.05		OUTUR	1007 11:00	1010 14:	17 AI
Lead, Total 0.349 mg/l 0.010 Magnesium, Total 24 mg/l 0.10 Manganese, Total 1.33 mg/l 0.010 Mercury, Total 0.0008 mg/l 0.0002 Nickel, Total 0.110 mg/l 0.025 Potassium, Total 7.3 mg/l 2.5 Selenium, Total ND mg/l 0.010 Silver, Total ND mg/l 0.007 Sodium, Total 7.0 mg/l 0.007 Sodium, Total ND mg/l 0.007 Thallium, Total ND mg/l 0.020 Wanadium, Total 0.194 mg/l 0.010 Zinc, Total 0.740 mg/l 0.050	1	6010B	1007 11:00	1010 14:	17 AI
Magnesium, Total 24 mg/l 0.10 Manganese, Total 1.33 mg/l 0.010 Mercury, Total 0.0008 mg/l 0.0002 Nickel, Total 0.110 mg/l 0.025 Potassium, Total 7.3 mg/l 2.5 Selenium, Total ND mg/l 0.010 Silver, Total ND mg/l 0.007 Sodium, Total 7.0 mg/l 2.0 Thallium, Total ND mg/l 0.020 Vanadium, Total 0.194 mg/l 0.010 Zinc, Total 0.740 mg/l 0.050		6010B	1007 11:00	1010 14:	17 AI
Manganese, Total 1.33 mg/l 0.010 Mercury, Total 0.0008 mg/l 0.0002 Nickel, Total 0.110 mg/l 0.025 Potassium, Total 7.3 mg/l 2.5 Selenium, Total ND mg/l 0.010 Silver, Total ND mg/l 0.007 Sodium, Total 7.0 mg/l 2.0 Thallium, Total ND mg/l 0.020 Wanadium, Total 0.194 mg/l 0.010 Zinc, Total 0.740 mg/l 0.050 Wolatile Organics by EPA 8260B	1	6010B	1007 11:00	1010 14:	17 AI
Mercury, Total 0.0008 mg/l 0.0002 Nickel, Total 0.110 mg/l 0.025 Potassium, Total 7.3 mg/l 2.5 Selenium, Total ND mg/l 0.010 Silver, Total ND mg/l 0.007 Sodium, Total 7.0 mg/l 2.0 Thallium, Total ND mg/l 0.020 Vanadium, Total 0.194 mg/l 0.010 Zinc, Total 0.740 mg/l 0.050	1	6010B	1007 11:00	1010 14:	17 AI
Nickel, Total 0.110 mg/l 0.025 Potassium, Total 7.3 mg/l 2.5 Selenium, Total ND mg/l 0.010 Silver, Total ND mg/l 0.007 Sodium, Total 7.0 mg/l 2.0 Thallium, Total ND mg/l 0.020 Vanadium, Total 0.194 mg/l 0.010 Zinc, Total 0.740 mg/l 0.050	1	6010B	1007 11:00	1010 14:	17 AI
Potassium, Total 7.3 mg/l 2.5 Selenium, Total ND mg/l 0.010 Silver, Total ND mg/l 0.007 Sodium, Total 7.0 mg/l 2.0 Thallium, Total ND mg/l 0.020 Vanadium, Total 0.194 mg/l 0.010 Zinc, Total 0.740 mg/l 0.050	1	7470A	1007 22:00	1008 11:	44 HG
Selenium, Total ND mg/l 0.010 Silver, Total ND mg/l 0.007 Sodium, Total 7.0 mg/l 2.0 Thallium, Total ND mg/l 0.020 Vanadium, Total 0.194 mg/l 0.010 Zinc, Total 0.740 mg/l 0.050 Volatile Organics by EPA 8260B	1	6010B	1007 11:00	1010 14:	17 AI
Silver, Total	1	6010B	1007 11:00	1010 14:	17 AI
Sodium, Total 7.0 mg/l 2.0 Thallium, Total ND mg/l 0.020 Wanadium, Total 0.194 mg/l 0.010 Wanadium, Total 0.740 mg/l 0.050 Wolatile Organics by EPA 8260B	1	6010B	1007 11:00		
Sodium, Total 7.0 mg/l 2.0 Thallium, Total ND mg/l 0.020 Wanadium, Total 0.194 mg/l 0.010 Wanadium, Total 0.740 mg/l 0.050 Wolatile Organics by EPA 8260B	1	6010B	1007 11:00	1010 14:	17 AI
Thallium, Total ND mg/l 0.020 Vanadium, Total 0.194 mg/l 0.010 Zinc, Total 0.740 mg/l 0.050 Volatile Organics by EPA 8260B	1	6010B	1007 11:00	1010 14:	17 AI
Vanadium, Total 0.194 mg/l 0.010 Zinc, Total 0.740 mg/l 0.050 Volatile Organics by EPA 8260B	1	6010B	1007 11:00	1010 14:	17 AI
Zinc, Total 0.740 mg/l 0.050 Volatile Organics by EPA 8260B	1		1007 11:00		
-	1	6010B	1007 11:00		
	1	8260B		1009 20:	53 PD
ACCITATOTIC CITTOTICE ND MALT 2.0					
1,1-Dichloroethane ND ug/l 0.75					
Chloroform ND ug/1 0.75					
Carbon tetrachloride ND ug/l 0.50					
1,2-Dichloropropane ND ug/l 1.8					
Dibromochloromethane ND ug/1 0.50					
1,1,2-Trichloroethane ND ug/l 0.75					
Tetrachloroethene ND ug/l 0.50					
Chlorobenzene ND ug/1 0.50					
Trichlorofluoromethane ND ug/l 2.5					
1,2-Dichloroethane ND ug/l 0.50					
1,1,1-Trichloroethane ND ug/1 0.50					

Laboratory Sample Number: L0814755-05

MW-5

Volatile Organics by EPA 8260B conomodichloromethane Drans-1,3-Dichloropropene Dris-1,3-Dichloropropene ND ND ND ND ND ND ND ND ND N					PREP	ANAL	
Aromodichloromethane Arans-1,3-Dichloropropene Bis-1,3-Dichloropropene Bis-1,3-Dichloropropene Bromoform Bromomethane B							
rans-1,3-Dichloropropene ris-1,3-Dichloropropene ris-1,3-Dichloropropene ris-1,3-Dichloropropene ris-1,3-Dichloropropene ris-1,3-Dichloropropene ris-1,2-Z-Tetrachloroethane ris-1,2-Dichloroethane ris-1,2-Dichloroethene ris-1,2-Dichloropropane ris-1,2-Dichloromethane ris-1,2-Dichloromethane ris-1,2-Dichloromethane ris-1,2-Dichloromethane ris-1,2-Dichloromethane ris-1,2-Dichloromethane ris-1,2-Dichloropropane ris-1,2-Dichloropropan	nt'd		1	8260B		1009 20:5	53 PD
dis-1,3-Dichloropropene 1,1-Dichloropropene 3,1,2,2-Tetrachloroethane 3,1,2,2-Tetrachloroethane 3,1,2,2-Tetrachloroethane 3,1,2,2-Tetrachloroethane 3,1,2,2-Tetrachloroethane 3,1,2,2-Tetrachloroethane 3,1,2,2-Tetrachloroethane 3,2,1,2-Dichloroethene 3,3-Dichlorobenzene 3,4-Dichloroethene 3,3-Dichloroethene 3,4-Dichloroethene 3,2,3-Trichloroethene 3,2,3-Trichloropropane 3,2,3-Trichloropropane 3,2,3-Trichloropropane 3,2,3-Trichloropropane 3,2,3-Trichloropropane 3,2,3-Trichloropropane 3,2,3-Trichloropropane 4,2,3-Trichloropropane 5,2,3-Trichloropropane 5,2-Dichlorodifluoromethane 6,2-Dichloropropane 7,2-Dichloropropane 8,2-Dichloropropane 8,3-Dichloropropane 8,3-Dichloropropane 8,3-Dichloropropane 8,3-Dichloropropane 8,3-Dichloropropane 8,1,1,2-Tetrachloroethane 8,3-Dichloropropane 8,1,1,2-Tetrachloroethane 8,2-Dichloropropane 8,3-Dichloropropane 9,1,1,2-Tetrachloroethane 8,2-Dichloropropane 9,2-Butylbenzene	ug/l	0.50					
And a proposed in the proposed	ug/l	0.50					
Aromoform 1,1,2,2-Tetrachloroethane 3chylbenzene Chloromethane Aromomethane Aromo	ug/l	0.50					
enzene ND Schuene ND S	ug/l	2.5					
Senzene Soluene Schloromethane Schlo	ug/l	2.0					
Coluene Chloromethane Chlorome	ug/l	0.50					
Sthylbenzene Shloromethane Shloromethane Shloromethane Shloromethane Shloromethane Shloroethane	ug/l	0.50					
Chloromethane Cromomethane Crinyl chloride Chloroethane Chlorobenzene Chloromethane Chloromethane Chloromethane Chloromethane Chlorodifluoromethane Chlorodifluoromethane Chlorodifluoromethane Chlorodifluoromethane Chlorodifluoromethane Chlorodifluoromethane Chlorodifluoromethane Chloromethane Chloromethane Chloromethane Chloromethane Chloromethane Chloromethane Chloromethane Chloropropane Chloropropane Chloropropane Chloropropane Chloropropane Chloropropane Chloromethane Chloromethane Chloropropane Chloropropan	ug/l	0.75					
romomethane Tinyl chloride Thloroethane Thloroethane The promomethane The promo	ug/l	0.50					
inyl chloride hloroethane ,1-Dichloroethene rans-1,2-Dichloroethene richloroethene ,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene ethyl tert butyl ether /m-Xylene -Xylene is-1,2-Dichloroethene ibromomethane ,2,3-Trichloropropane crylonitrile tyrene ichlorodifluoromethane cetone arbon disulfide -Butanone inyl acetate -Methyl-2-pentanone -Hexanone romochloromethane ,2-Dichloropropane cylonitrine inyl acetate -Methyl-2-pentanone -Hexanone romochloromethane xD ,2-Dichloropropane xD ,2-Dichloropropane xD ,1,1,2-Tetrachloroethane romobenzene -Butylbenzene ec-Butylbenzene ND	ug/l	2.5					
Ahloroethane ,1-Dichloroethene rans-1,2-Dichloroethene Prichloroethene ND ,2-Dichlorobenzene ,3-Dichlorobenzene ND ,4-Dichlorobenzene ND Methyl tert butyl ether ND Mexylene ND ND ND ND ND ND ND ND ND N	ug/l	1.0					
,1-Dichloroethene nD rans-1,2-Dichloroethene nD richloroethene nD	ug/l	1.0					
rans-1,2-Dichloroethene richloroethene ,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene whethyl tert butyl ether whom-Xylene whom-Xylene whom-Xylene whomethane yellorobenzene is-1,2-Dichloroethene whomethane yelloromomethane whomethane whomethene who	ug/l	1.0					
richloroethene ND ,2-Dichlorobenzene ND ,4-Dichlorobenzene ND dethyl tert butyl ether ND //m-Xylene ND //s-1,2-Dichloroethene ND dibromomethane ND drylonitrile ND drylonitrile ND drylonitrile ND drylonidifluoromethane ND drylonitrile	ug/l	0.50					
.,2-Dichlorobenzene ND .,3-Dichlorobenzene ND .,4-Dichlorobenzene ND .,4-Dichlorobenzene ND .,4-Dichlorobenzene ND .,2,4-Dichloroethene ND .,2,3-Trichloroethene ND .,2,3-Trichloropropane ND .,2,3-Trichloropropane ND .,2,3-Trichloromethane ND .,2,10-Dichloromethane ND .,2,10-Dichloromethane ND .,2,10-Dichloromethane ND .,2,10-Dichloromethane ND .,2,10-Dichloropropane ND .,10-Dichloropropane ND .,2-Dichloropropane ND .,3-Dichloropropane ND	ug/l	0.75					
,3-Dichlorobenzene ND ,4-Dichlorobenzene ND dethyl tert butyl ether ND /m-Xylene ND is-1,2-Dichloroethene ND dibromomethane ND crylonitrile ND drylene ND drylonitrile ND dryl	ug/l	0.50					
,4-Dichlorobenzene ND lethyl tert butyl ether ND lethyl tert butyl ether ND lethyl tert butyl ether ND lethylene ND lethylene ND lis-1,2-Dichloroethene ND libromomethane ND letyrene ND letyrene ND letyrene ND lethorodifluoromethane ND lethorodifluorome	ug/l	2.5					
dethyl tert butyl ether ND /m-Xylene ND is-1,2-Dichloroethene ND ibromomethane ND crylonitrile ND crylonitrile ND crylonitrile ND crylonidide ND cromochloromethane ND cromochloromethane ND cromochloromethane ND cromochloropropane ND cromochloropropane ND cromobenzene ND cromobenzene ND cromobenzene ND cromobenzene ND	ug/l	2.5					
/m-XyleneND-XyleneNDis-1,2-DichloroetheneNDibromomethaneND,2,3-TrichloropropaneNDcrylonitrileNDtyreneNDichlorodifluoromethaneNDcetoneNDarbon disulfideND-ButanoneNDinyl acetateND-Methyl-2-pentanoneND-HexanoneNDromochloromethaneND,2-DichloropropaneND,2-DibromoethaneND,3-DichloropropaneND,1,1,2-TetrachloroethaneNDromobenzeneND-ButylbenzeneNDec-ButylbenzeneND	ug/l	2.5					
/m-Xylene ND is-1,2-Dichloroethene ND ibromomethane ND ,2,3-Trichloropropane ND crylonitrile ND tyrene ND ichlorodifluoromethane ND cetone ND arbon disulfide ND -Butanone ND inyl acetate ND -Methyl-2-pentanone ND -Hexanone ND romochloromethane ND romochloropropane ND ,2-Dichloropropane ND ,2-Dichloropropane ND ,1,1,2-Tetrachloroethane ND romobenzene ND -Butylbenzene ND ce-Butylbenzene ND	ug/l	1.0					
-Xylene is-1,2-Dichloroethene ND ibromomethane ND ,2,3-Trichloropropane ND crylonitrile ND tyrene ND ichlorodifluoromethane ND cetone ND arbon disulfide ND -Butanone ND inyl acetate ND -Methyl-2-pentanone ND -Hexanone ND romochloromethane ND ,2-Dichloropropane ND ,2-Dibromoethane ND ,3-Dichloropropane ND ,1,1,2-Tetrachloroethane ND romobenzene ND -Butylbenzene ND ec-Butylbenzene ND	ug/l	1.0					
is-1,2-Dichloroethene ND ibromomethane ND ,2,3-Trichloropropane ND crylonitrile ND tyrene ND ichlorodifluoromethane ND cetone ND arbon disulfide ND -Butanone ND inyl acetate ND -Methyl-2-pentanone ND -Hexanone ND romochloromethane ND ,2-Dichloropropane ND ,2-Dibromoethane ND ,3-Dichloropropane ND ,1,1,2-Tetrachloroethane ND romobenzene ND -Butylbenzene ND	ug/l	1.0					
ibromomethane ND ,2,3-Trichloropropane ND crylonitrile ND tyrene ND ichlorodifluoromethane ND cetone ND arbon disulfide ND -Butanone ND inyl acetate ND -Methyl-2-pentanone ND -Hexanone ND romochloromethane ND ,2-Dichloropropane ND ,2-Dibromoethane ND ,2-Dibromoethane ND ,3-Dichloropropane ND ,1,1,2-Tetrachloroethane ND romobenzene ND -Butylbenzene ND	ug/l	0.50					
crylonitrile ND tyrene ND ichlorodifluoromethane ND cetone ND arbon disulfide ND -Butanone ND inyl acetate ND -Methyl-2-pentanone ND -Hexanone ND romochloromethane ND ,2-Dichloropropane ND ,2-Dibromoethane ND ,2-Dichloropropane ND ,1,1,2-Tetrachloroethane ND romobenzene ND -Butylbenzene ND	ug/l	5.0					
crylonitrile ND tyrene ND ichlorodifluoromethane ND cetone ND arbon disulfide ND -Butanone ND inyl acetate ND -Methyl-2-pentanone ND -Hexanone ND romochloromethane ND ,2-Dichloropropane ND ,2-Dibromoethane ND ,2-Dichloropropane ND ,1,1,2-Tetrachloroethane ND romobenzene ND -Butylbenzene ND	ug/l	5.0					
ttyrene ND cichlorodifluoromethane ND cetone ND arbon disulfide ND -Butanone ND inyl acetate ND -Methyl-2-pentanone ND -Hexanone ND cromochloromethane ND ,2-Dichloropropane ND ,2-Dibromoethane ND ,1,1,2-Tetrachloroethane ND cromobenzene ND -Butylbenzene ND ec-Butylbenzene ND	ug/l	5.0					
pichlorodifluoromethane ND Acetone ND Arbon disulfide ND Arbon disulfi	ug/l	1.0					
dectone ND darbon disulfide ND darbon dectate ND darbon disulfide ND darbon disulf	ug/l	5.0					
Carbon disulfide ND R-Butanone ND Rinyl acetate ND R-Methyl-2-pentanone ND R-Hexanone ND R-Hexanone ND R-J-Dichloropropane ND R-J-Dichloropropane ND R-J-Dichloropropane ND R-J-Tetrachloroethane ND R-J-Tetrachloroethane ND R-R-Butylbenzene ND R-Butylbenzene ND R-Butylbenzene ND	ug/l	5.0					
-Butanone ND Inyl acetate ND -Methyl-2-pentanone ND -Hexanone ND romochloromethane ND ,2-Dichloropropane ND ,2-Dibromoethane ND ,1,1,2-Tetrachloroethane ND romobenzene ND -Butylbenzene ND ec-Butylbenzene ND	ug/l	5.0					
inyl acetate ND -Methyl-2-pentanone ND -Hexanone ND romochloromethane ND ,2-Dichloropropane ND ,2-Dibromoethane ND ,3-Dichloropropane ND ,1,1,2-Tetrachloroethane ND romobenzene ND -Butylbenzene ND	ug/l	5.0					
-Methyl-2-pentanone ND -Hexanone ND romochloromethane ND ,2-Dichloropropane ND ,2-Dibromoethane ND ,3-Dichloropropane ND ,1,1,2-Tetrachloroethane ND romobenzene ND -Butylbenzene ND ec-Butylbenzene ND	ug/l	5.0					
-Hexanone ND romochloromethane ND ,2-Dichloropropane ND ,2-Dibromoethane ND ,3-Dichloropropane ND ,1,1,2-Tetrachloroethane ND romobenzene ND -Butylbenzene ND ec-Butylbenzene ND	ug/l	5.0					
romochloromethane ND ,2-Dichloropropane ND ,2-Dibromoethane ND ,3-Dichloropropane ND ,1,1,2-Tetrachloroethane ND romobenzene ND -Butylbenzene ND ec-Butylbenzene ND	ug/l	5.0					
,2-Dichloropropane ND ,2-Dibromoethane ND ,3-Dichloropropane ND ,1,1,2-Tetrachloroethane ND cromobenzene ND -Butylbenzene ND ec-Butylbenzene ND	ug/l	2.5					
,2-Dibromoethane ND ,3-Dichloropropane ND ,1,1,2-Tetrachloroethane ND romobenzene ND -Butylbenzene ND ec-Butylbenzene ND	ug/1	2.5					
,3-Dichloropropane ND ,1,1,2-Tetrachloroethane ND romobenzene ND -Butylbenzene ND ec-Butylbenzene ND	ug/1	2.0					
,1,1,2-Tetrachloroethane ND romobenzene ND -Butylbenzene ND ec-Butylbenzene ND	ug/1 ug/l	2.5					
romobenzene ND -Butylbenzene ND ec-Butylbenzene ND	ug/l	0.50					
-Butylbenzene ND ec-Butylbenzene ND	ug/l	2.5					
ec-Butylbenzene ND	ug/1 ug/l	0.50					
	ug/l	0.50					
	ug/l ug/l	2.5					
ert-Butylbenzene ND -Chlorotoluene ND	ug/l ug/l	2.5					
-Chlorotoluene ND		2.5					
,2-Dibromo-3-chloropropane ND	ug/l ug/l	2.5					
exachlorobutadiene ND							
	ug/l	0.60					
sopropylbenzene ND -Isopropyltoluene ND	ug/l ug/l	0.50 0.50					

Laboratory Sample Number: L0814755-05

MW-5

PARAMETER	RESULT	UNITS	RDL	REF METH	OD DA PREP	ATE ANAL	ID
Valatila Organica by EDA 006	OD gowtld					1000 00.50	
Volatile Organics by EPA 826		/7	2 5	1 8260B		1009 20:53	PD
Naphthalene	ND	ug/l	2.5				
n-Propylbenzene	ND	ug/l	0.50				
1,2,3-Trichlorobenzene	ND	ug/l	2.5				
1,2,4-Trichlorobenzene	ND	ug/l	2.5				
1,3,5-Trimethylbenzene	ND	ug/l	2.5				
1,2,4-Trimethylbenzene	ND	ug/l	2.5				
1,4-Diethylbenzene	ND	ug/l	2.0				
4-Ethyltoluene	ND	ug/l	2.0				
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0				
Surrogate(s)	Recovery		QC Cr	iteria			
l,2-Dichloroethane-d4	105	%	70-13				
Foluene-d8	100	8	70-13	0			
1-Bromofluorobenzene	107	ે	70-13	0			
Dibromofluoromethane	96.0	રુ	70-13	0			
Semivolatile Organics by EPA	8270C			1 8270C	1008 00:45	5 1010 16:21	PS
Acenaphthene	ND	ug/l	4.8				
l,2,4-Trichlorobenzene	ND	ug/l	4.8				
Hexachlorobenzene	ND	ug/l	4.8				
Bis(2-chloroethyl)ether	ND	ug/l	4.8				
2-Chloronaphthalene	ND	ug/l	5.8				
l,2-Dichlorobenzene	ND	ug/l	4.8				
1,3-Dichlorobenzene	ND	ug/l	4.8				
1,4-Dichlorobenzene	ND	ug/l	4.8				
3,3'-Dichlorobenzidine	ND	ug/l	48.				
2,4-Dinitrotoluene	ND	ug/l	5.8				
2,6-Dinitrotoluene	ND	ug/l	4.8				
Fluoranthene	ND	ug/l	4.8				
4-Chlorophenyl phenyl ether	ND	ug/l	4.8				
1-Bromophenyl phenyl ether	ND	ug/l	4.8				
Bis(2-chloroisopropyl)ether	ND	ug/l	4.8				
Bis(2-chloroethoxy)methane	ND	ug/l	4.8				
Hexachlorobutadiene	ND	ug/l	9.7				
Hexachlorocyclopentadiene	ND	ug/l	29.				
Hexachloroethane	ND	ug/l	4.8				
Isophorone	ND	ug/l	4.8				
Naphthalene	ND	ug/l	4.8				
Nitrobenzene	ND	ug/l	4.8				
NitrosoDiPhenylAmine(NDPA)/D		ug/l	14.				
n-Nitrosodi-n-propylamine	ND	ug/l	4.8				
Bis(2-Ethylhexyl)phthalate	ND	ug/l	4.8				
Butyl benzyl phthalate	ND	ug/l	4.8				
Di-n-butylphthalate	ND	ug/l	4.8				
Di-n-octylphthalate	ND	ug/l	4.8				
Diethyl phthalate	ND	ug/l	4.8				
Dimethyl phthalate	ND	ug/1 ug/l	4.8				
Benzo(a)anthracene	ND	ug/l ug/l	4.8				
JCIIZO (a / allClil aCEllE	IND	ug/I	7.0				

Laboratory Sample Number: L0814755-05

MW-5

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DAT: PREP	E ANAL	ID
Semivolatile Organics by EPA	8270C cont	- ' d		1 8270C	1008 00:45 1	010 16:21	l DC
Benzo(b)fluoranthene	ND	ug/l	4.8	1 02/00	1000 00:43 1	010 10.21	LPS
, ,							
Benzo(k)fluoranthene	ND	ug/l	4.8				
Chrysene	ND	ug/l	4.8				
Acenaphthylene	ND	ug/l	4.8				
Anthracene	ND	ug/l	4.8				
Benzo(ghi)perylene Fluorene	ND	ug/l	4.8				
	ND	ug/l	4.8				
Phenanthrene	ND	ug/l	4.8				
Dibenzo(a,h)anthracene	ND	ug/l	4.8				
Indeno(1,2,3-cd)Pyrene	ND	ug/l	6.8				
Pyrene	ND	ug/l	4.8				
Biphenyl	ND	ug/l	4.8				
4-Chloroaniline	ND	ug/l	4.8				
2-Nitroaniline	ND	ug/l	4.8				
3-Nitroaniline	ND	ug/l	4.8				
4-Nitroaniline	ND	ug/l	6.8				
Dibenzofuran	ND	ug/l	4.8				
2-Methylnaphthalene	ND	ug/l	4.8				
1,2,4,5-Tetrachlorobenzene	ND	ug/l	19.				
Acetophenone	ND	ug/l	19.				
2,4,6-Trichlorophenol	ND	ug/l	4.8				
P-Chloro-M-Cresol	ND	ug/l	4.8				
2-Chlorophenol	ND	ug/l	5.8				
2,4-Dichlorophenol	ND	ug/l	9.7				
2,4-Dimethylphenol	ND	ug/l	9.7				
2-Nitrophenol	ND	ug/l	19.				
4-Nitrophenol	ND	ug/l	9.7				
2,4-Dinitrophenol	ND	ug/l	29.				
4,6-Dinitro-o-cresol	ND	ug/l	19.				
Pentachlorophenol	ND	ug/l	9.7				
Phenol	ND	ug/l	6.8				
2-Methylphenol	ND	ug/l	5.8				
3-Methylphenol/4-Methylphenol		ug/l	5.8				
2,4,5-Trichlorophenol	ND	ug/l	4.8				
Benzoic Acid	ND	ug/l	48.				
Benzyl Alcohol	ND	ug/l	9.7				
Carbazole	ND	ug/l	4.8				
Surrogate(s)	Recovery		QC Cr	iteria			
2-Fluorophenol	43.0	%	21-12				
Phenol-d6	28.0	%	10-12	0			
Nitrobenzene-d5	62.0	રુ	23-12				
2-Fluorobiphenyl	66.0	રુ	43-12				
2,4,6-Tribromophenol	109	%	10-12				
4-Terphenyl-d14	86.0	%	33-12				
Semivolatile Organics by EPA	8270C-SIM			1 8270C	1008 00:45 1	011 03:27	7 AK
Acenaphthene	ND	ug/l	0.19				
2-Chloronaphthalene	ND	ug/l	0.19				
- CIIIOI OIIAPIICIIAI CIIC	1111	49/1	0.10				

Laboratory Sample Number: L0814755-05

MW-5

PARAMETER	RESULT	UNITS	\mathtt{RDL}	REF METHOD	DATE II
					PREP ANAL
Semivolatile Organics by EPA			0 10	1 8270C	1008 00:45 1011 03:27 AK
Fluoranthene	ND	ug/l	0.19		
Hexachlorobutadiene	ND	ug/l	0.48		
Naphthalene	ND	ug/l	0.19		
Benzo(a)anthracene	ND	ug/l	0.19		
Benzo(a)pyrene	ND	ug/l	0.19		
Benzo(b)fluoranthene	ND	ug/l	0.19		
Benzo(k)fluoranthene	ND	ug/l	0.19		
Chrysene	ND	ug/l	0.19		
Acenaphthylene	ND	ug/l	0.19		
Anthracene	ND	ug/l	0.19		
Benzo(ghi)perylene	ND	ug/l	0.19		
Fluorene	ND	ug/l	0.19		
Phenanthrene	ND	ug/l	0.19		
Dibenzo(a,h)anthracene	ND	ug/l	0.19		
Indeno(1,2,3-cd)Pyrene	ND	ug/l	0.19		
Pyrene	ND	ug/l	0.19		
2-Methylnaphthalene	ND	ug/l	0.19		
Pentachlorophenol	ND	ug/l	0.78		
Hexachlorobenzene	ND	ug/l	0.78		
Hexachloroethane	ND	ug/l	0.78		
Surrogate(s)	Recovery		QC Cri	teria	
2-Fluorophenol	43.0	용	21-120		
Phenol-d6	32.0	%	10-120		
Nitrobenzene-d5	73.0	%	23-120		
2-Fluorobiphenyl	68.0	8	43-120		
2,4,6-Tribromophenol	87.0	%	10-120		
4-Terphenyl-d14	79.0	%	33-120		
Polychlorinated Biphenyls by	EPA 8082			1 8082	1008 02:30 1009 16:10 SS
Aroclor 1016	ND	ug/l	0.100		
Aroclor 1221	ND	ug/l	0.100		
Aroclor 1232	ND	ug/l	0.100		
Aroclor 1242	ND	ug/l	0.100		
Aroclor 1248	ND	ug/l	0.100		
Aroclor 1254	ND	ug/l	0.100		
Aroclor 1260	ND	ug/l	0.100		
Surrogate(s)	Recovery		OC Cri	teria	
2,4,5,6-Tetrachloro-m-xylene	56.0	%	30-150		
Decachlorobiphenyl	54.0	%	30-150		
Organoghlowing Dogtisias 1	EDA 0001*			1 000=	1000 05:00 1000 10
Organochlorine Pesticides by		110 / 1	0 001	1 8081A	1008 05:00 1009 13:26 JE
Delta-BHC	ND	ug/l	0.021		
Lindane	ND	ug/l	0.021		
Alpha-BHC	ND	ug/l	0.021		
Beta-BHC	ND	ug/l	0.021		
Heptachlor	ND	ug/l	0.021		
Aldrin	ND	ug/l	0.021		

Laboratory Sample Number: L0814755-05

MW-5

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Organochlorine Pesticides by	EPA 8081A	cont'd		1 8081A	1008 05:00 1009 13:26 ЈВ
Heptachlor epoxide	ND	ug/l	0.021		
Endrin	ND	ug/l	0.043		
Endrin ketone	ND	ug/l	0.043		
Dieldrin	ND	ug/l	0.043		
4,4'-DDE	ND	ug/l	0.043		
4,4'-DDD	ND	ug/l	0.043		
4,4'-DDT	ND	ug/l	0.043		
Endosulfan I	ND	ug/l	0.021		
Endosulfan II	ND	ug/l	0.043		
Endosulfan sulfate	ND	ug/l	0.043		
Methoxychlor	ND	ug/l	0.213		
trans-Chlordane	ND	ug/l	0.021		
Chlordane	ND	ug/l	0.213		
Surrogate(s)	Recovery		QC Cri	teria	
2,4,5,6-Tetrachloro-m-xylene	91.0	%	30-150		
Decachlorobiphenyl	80.0	%	30-150		

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0814755-06 Date Collected: 06-OCT-2008 10:50

MW-6 Date Received: 06-OCT-2008 WATER Date Reported: 14-OCT-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 6-Amber, 1-Plastic, 2-Vial

Sample Matrix:

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DATE ID
						PREP ANAL
Total Metals						
Aluminum, Total	190	mg/l	0.10	1	6010B	1007 11:00 1010 14:30 AI
Antimony, Total	ND	mg/l	0.050	1	6010B	1007 11:00 1010 14:30 AI
Arsenic, Total	0.177	mg/l	0.005	1	6010B	1007 11:00 1010 14:30 AI
Barium, Total	0.428	mg/l	0.010	1	6010B	1007 11:00 1010 14:30 AI
Beryllium, Total	0.013	mg/l	0.005	1	6010B	1007 11:00 1010 14:30 AI
Cadmium, Total	0.013	mg/l	0.005	1	6010B	1007 11:00 1010 14:30 AI
Calcium, Total	49	mg/l	0.10	1	6010B	1007 11:00 1010 14:30 AI
Chromium, Total	0.38	mg/l	0.01	1	6010B	1007 11:00 1010 14:30 AI
Cobalt, Total	0.184	mg/l	0.020	1	6010B	1007 11:00 1010 14:30 AI
Copper, Total	0.333	mg/l	0.010	1	6010B	1007 11:00 1010 14:30 AI
Iron, Total	520	mg/l	0.25	1	6010B	1007 11:00 1010 15:43 AI
Lead, Total	0.254	mg/l	0.010	1	6010B	1007 11:00 1010 14:30 AI
Magnesium, Total	78	mg/l	0.10	1	6010B	1007 11:00 1010 14:30 AI
Manganese, Total	6.81	mg/l	0.010	1	6010B	1007 11:00 1010 14:30 AI
Mercury, Total	0.0011	mg/l	0.0002	1	7470A	1007 22:00 1008 11:46 HG
Nickel, Total	0.420	mg/l	0.025	1	6010B	1007 11:00 1010 14:30 AI
Potassium, Total	21	mg/l	2.5	1	6010B	1007 11:00 1010 14:30 AI
Selenium, Total	ND	mg/l	0.010	1	6010B	1007 11:00 1010 14:30 AI
Silver, Total	ND	mg/l	0.007	1	6010B	1007 11:00 1010 14:30 AI
Sodium, Total	7.5	mg/l	2.0	1	6010B	1007 11:00 1010 14:30 AI
Thallium, Total	ND	mg/l	0.020	1	6010B	1007 11:00 1010 14:30 AI
Vanadium, Total	0.679	mg/l	0.010	1	6010B	1007 11:00 1010 14:30 AI
Zinc, Total	1.70	mg/l	0.050	1	6010B	1007 11:00 1010 14:30 AI
Volatile Organics by EPA 82	260B			1	8260B	1009 21:29 PD
Methylene chloride	ND	ug/l	100			
1,1-Dichloroethane	ND	ug/l	15.			
Chloroform	ND	ug/l	15.			
Carbon tetrachloride	ND	ug/l	10.			
1,2-Dichloropropane	ND	ug/l	35.			
Dibromochloromethane	ND	ug/l	10.			
1,1,2-Trichloroethane	ND	ug/l	15.			
Tetrachloroethene	200	ug/l	10			
Chlorobenzene	ND	ug/l	10.			
Trichlorofluoromethane	ND	ug/l	50.			
1,2-Dichloroethane	ND	ug/l	10.			
1,1,1-Trichloroethane	ND	ug/l	10.			
, , = =================================		/	·			

Laboratory Sample Number: L0814755-06

MW-6

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Volatile Organics by EPA 826	OB contid			1	8260B		1009 21:2	9 DD
Bromodichloromethane	ND	ug/l	10.	1	0200B		1009 21.2	<i>9</i> PD
trans-1,3-Dichloropropene	ND	ug/l	10.					
	ND	_	10.					
cis-1,3-Dichloropropene	ND ND	ug/l	50.					
l,1-Dichloropropene Bromoform	ND ND	ug/l	40.					
		ug/l						
l,1,2,2-Tetrachloroethane Benzene	ND	ug/l	10. 10.					
	ND	ug/l						
Toluene	ND	ug/l	15.					
Ethylbenzene Chloromethane	ND	ug/l	10.					
	ND	ug/l	50.					
Bromomethane	ND	ug/l	20.					
Jinyl chloride	ND	ug/l	20.					
Chloroethane	ND	ug/l	20.					
1,1-Dichloroethene	ND	ug/l	10.					
trans-1,2-Dichloroethene	22	ug/l	15					
Trichloroethene	54	ug/l	10					
1,2-Dichlorobenzene	ND	ug/l	50.					
l,3-Dichlorobenzene	ND	ug/l	50.					
l,4-Dichlorobenzene	ND	ug/l	50.					
Methyl tert butyl ether	ND	ug/l	20.					
p/m-Xylene	ND	ug/l	20.					
o-Xylene	ND	ug/l	20.					
cis-1,2-Dichloroethene	920	ug/l	10					
Dibromomethane	ND	ug/l	100					
1,2,3-Trichloropropane	ND	ug/l	100					
Acrylonitrile	ND	ug/l	100					
Styrene	ND	ug/l	20.					
Dichlorodifluoromethane	ND	ug/l	100					
Acetone	ND	ug/l	100					
Carbon disulfide	ND	ug/l	100					
2-Butanone	ND	ug/l	100					
/inyl acetate	ND	ug/l	100					
4-Methyl-2-pentanone	ND	ug/l	100					
2-Hexanone	ND	ug/l	100					
Bromochloromethane	ND	ug/l	50.					
2,2-Dichloropropane	ND	ug/l	50.					
1,2-Dibromoethane	ND	ug/l	40.					
l,3-Dichloropropane	ND	ug/l	50.					
1,1,1,2-Tetrachloroethane	ND	ug/l	10.					
Bromobenzene	ND	ug/l	50.					
n-Butylbenzene	ND	ug/l	10.					
sec-Butylbenzene	ND	ug/l	10.					
tert-Butylbenzene	ND	ug/l	50.					
o-Chlorotoluene	ND	ug/l	50.					
o-Chlorotoluene	ND	ug/l	50.					
,2-Dibromo-3-chloropropane	ND	ug/l	50.					
Hexachlorobutadiene	ND	ug/l	12.					
Isopropylbenzene	ND	ug/l	10.					
o-Isopropyltoluene	ND	ug/l	10.					

Laboratory Sample Number: L0814755-06

MW-6

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Talatile 0 b ED3. 0066	20				
Volatile Organics by EPA 8260		/7	Ε0	1 8260B	1009 21:29 PD
Naphthalene	ND	ug/l	50.		
n-Propylbenzene	ND	ug/l	10.		
1,2,3-Trichlorobenzene	ND	ug/l	50.		
1,2,4-Trichlorobenzene	ND	ug/l	50.		
1,3,5-Trimethylbenzene	ND	ug/l	50.		
1,2,4-Trimethylbenzene	ND	ug/l	50. 40.		
1,4-Diethylbenzene	ND	ug/l			
4-Ethyltoluene	ND	ug/l	40.		
1,2,4,5-Tetramethylbenzene	ND	ug/l	40.		
Surrogate(s)	Recovery			iteria	
1,2-Dichloroethane-d4	105	%	70-13		
Toluene-d8	101	%	70-13		
4-Bromofluorobenzene	109	%	70-13		
Dibromofluoromethane	97.0	%	70-13	0	
Semivolatile Organics by EPA	8270C			1 8270C	1008 00:45 1010 16:44 PS
Acenaphthene	ND	ug/l	4.8		
l,2,4-Trichlorobenzene	ND	ug/l	4.8		
Hexachlorobenzene	ND	ug/l	4.8		
Bis(2-chloroethyl)ether	ND	ug/l	4.8		
2-Chloronaphthalene	ND	ug/l	5.8		
l,2-Dichlorobenzene	ND	ug/l	4.8		
l,3-Dichlorobenzene	ND	ug/l	4.8		
1,4-Dichlorobenzene	ND	ug/l	4.8		
3,3'-Dichlorobenzidine	ND	ug/l	48.		
2,4-Dinitrotoluene	ND	ug/l	5.8		
2,6-Dinitrotoluene	ND	ug/l	4.8		
Fluoranthene	ND	ug/l	4.8		
4-Chlorophenyl phenyl ether	ND	ug/l	4.8		
1-Bromophenyl phenyl ether	ND	ug/l	4.8		
Bis(2-chloroisopropyl)ether	ND	ug/l	4.8		
Bis(2-chloroethoxy)methane	ND	ug/l	4.8		
Hexachlorobutadiene	ND	ug/l	9.7		
Hexachlorocyclopentadiene	ND	ug/l	29.		
Hexachloroethane	ND	ug/l	4.8		
Isophorone	ND	ug/l	4.8		
Naphthalene	ND	ug/l	4.8		
Nitrobenzene	ND	ug/l	4.8		
NitrosoDiPhenylAmine(NDPA)/D		ug/l	14.		
n-Nitrosodi-n-propylamine	ND	ug/l	4.8		
Bis(2-Ethylhexyl)phthalate	ND	ug/l	4.8		
Butyl benzyl phthalate	ND	ug/l	4.8		
Di-n-butylphthalate	ND	ug/l	4.8		
Di-n-octylphthalate	ND	ug/l	4.8		
Diethyl phthalate	ND	ug/l	4.8		
Dimethyl phthalate	ND	ug/l	4.8		
Benzo(a)anthracene	ND	ug/l	4.8		
Benzo(a)pyrene	ND	ug/l	4.8		

Laboratory Sample Number: L0814755-06

MW-6

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE II PREP ANAL
Semivolatile Organics by EPA	8270C cont	- ' d		1 8270C	1008 00:45 1010 16:44 PS
Benzo(b)fluoranthene	ND	ug/l	4.8	1 02/00	1000 00113 1010 10111 11
Benzo(k)fluoranthene	ND	ug/l	4.8		
	ND	_	4.8		
Chrysene Acenaphthylene	ND	ug/l ug/l	4.8		
Anthracene	ND	ug/1 ug/l	4.8		
Benzo(ghi)perylene	ND		4.8		
Fluorene	ND ND	ug/l ug/l	4.8		
Phenanthrene	ND		4.8		
Phenanthrene Dibenzo(a,h)anthracene		ug/l			
	ND	ug/l	4.8		
Indeno(1,2,3-cd)Pyrene	ND	ug/l	6.8		
Pyrene	ND	ug/l	4.8		
Biphenyl	ND	ug/l	4.8		
4-Chloroaniline 2-Nitroaniline	ND	ug/l	4.8		
	ND	ug/l	4.8		
3-Nitroaniline	ND	ug/l	4.8		
4-Nitroaniline Dibenzofuran	ND	ug/l	6.8		
	ND	ug/l	4.8		
2-Methylnaphthalene	ND	ug/l	4.8		
1,2,4,5-Tetrachlorobenzene	ND	ug/l	19.		
Acetophenone	ND	ug/l	19.		
2,4,6-Trichlorophenol	ND	ug/l	4.8		
P-Chloro-M-Cresol	ND	ug/l	4.8		
2-Chlorophenol	ND	ug/l	5.8		
2,4-Dichlorophenol	ND	ug/l	9.7		
2,4-Dimethylphenol	ND	ug/l	9.7		
2-Nitrophenol	ND	ug/l	19.		
4-Nitrophenol	ND	ug/l	9.7		
2,4-Dinitrophenol	ND	ug/l	29.		
4,6-Dinitro-o-cresol	ND	ug/l	19.		
Pentachlorophenol	ND	ug/l	9.7		
Phenol	ND	ug/l	6.8		
2-Methylphenol	ND	ug/l	5.8		
3-Methylphenol/4-Methylphenol		ug/l	5.8		
2,4,5-Trichlorophenol	ND	ug/l	4.8		
Benzoic Acid	ND	ug/l	48.		
Benzyl Alcohol	ND	ug/l	9.7		
Carbazole	ND	ug/l	4.8		
Surrogate(s)	Recovery		QC Cr	riteria	
2-Fluorophenol	55.0	8	21-12		
Phenol-d6	35.0	%	10-12	20	
Nitrobenzene-d5	71.0	ર	23-12		
2-Fluorobiphenyl	67.0	ર	43-12		
2,4,6-Tribromophenol	101	%	10-12		
4-Terphenyl-d14	79.0	%	33-12		
Semivolatile Organics by EPA	8270C-SIM			1 8270C	1008 00:45 1011 04:13 AF
Acenaphthene	ND	ug/l	0.19		
2-Chloronaphthalene	ND	ug/l	0.19		
		~5/ -	0.10		

Laboratory Sample Number: L0814755-06

MW-6

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Semivolatile Organics by EPA	8270C-STM /	cont'd		1	8270C	1008 00:45	1011 04:17	2 AV
Fluoranthene	ND	ug/l	0.19	1	6270C	1006 00:45	1011 04.1.	J AR
Hexachlorobutadiene	ND	ug/l ug/l	0.19					
Naphthalene	ND	ug/l	0.19					
Benzo(a)anthracene	ND	ug/l ug/l	0.19					
Benzo(a)pyrene	ND	ug/l ug/l	0.19					
Benzo(b)fluoranthene	ND	ug/l ug/l	0.19					
Benzo(k)fluoranthene	ND ND	ug/l ug/l	0.19					
		_	0.19					
Chrysene	ND	ug/l						
Acenaphthylene	ND	ug/l	0.19					
Anthracene	ND	ug/l	0.19					
Benzo(ghi)perylene Fluorene	ND	ug/l	0.19					
	ND	ug/l	0.19					
Phenanthrene	ND	ug/l	0.19					
Dibenzo(a,h)anthracene	ND	ug/l	0.19					
Indeno(1,2,3-cd)Pyrene	ND	ug/l	0.19					
Pyrene	ND	ug/l	0.19					
2-Methylnaphthalene	ND	ug/l	0.19					
Pentachlorophenol Hexachlorobenzene	ND	ug/l	0.78					
	ND	ug/l	0.78					
Hexachloroethane	ND	ug/l	0.78					
Surrogate(s)	Recovery		QC Cri	teri	a			
2-Fluorophenol	53.0	%	21-120					
Phenol-d6	39.0	%	10-120					
Nitrobenzene-d5	80.0	%	23-120)				
2-Fluorobiphenyl	70.0	%	43-120					
2,4,6-Tribromophenol	82.0	%	10-120					
4-Terphenyl-d14	71.0	8	33-120					
Polychlorinated Biphenyls by Aroclor 1016		/7	0 100	1	8082	1008 02:30	1009 16:24	4 SS
	ND	ug/l	0.100					
Aroclor 1221	ND	ug/l	0.100					
Aroclor 1232	ND	ug/l	0.100 0.100					
Aroclor 1242	ND	ug/l						
Aroclor 1248	ND	ug/l	0.100					
Aroclor 1254	ND	ug/l	0.100					
Aroclor 1260	ND	ug/l	0.100					
Surrogate(s)	Recovery		QC Cri	teri	a			
2,4,5,6-Tetrachloro-m-xylene	47.0	%	30-150					
Decachlorobiphenyl	38.0	%	30-150					
Organochlorine Pesticides by		/ 3	0.000	1	8081A	1008 05:00	1009 13:39	9 JB
Delta-BHC	ND	ug/l	0.021					
Lindane	ND	ug/l	0.021					
Alpha-BHC	ND	ug/l	0.021					
Beta-BHC	ND	ug/l	0.021					
Heptachlor	ND	ug/l	0.021					
Aldrin	ND	ug/l	0.021					

Laboratory Sample Number: L0814755-06

MW-6

PARAMETER	RESULT	UNITS	RDL RE	F METHOD	DA PREP	TE ANAL	ID
	00013						
Organochlorine Pesticides by			0.001	1 8081A	1008 05:00	1009 13:39	Э ЈВ
Heptachlor epoxide	ND	ug/l	0.021				
Endrin	ND	ug/l	0.041				
Endrin ketone	ND	ug/l	0.041				
Dieldrin	ND	ug/l	0.041				
4,4'-DDE	ND	ug/l	0.041				
4,4'-DDD	ND	ug/l	0.041				
4,4'-DDT	ND	ug/l	0.041				
Endosulfan I	ND	ug/l	0.021				
Endosulfan II	ND	ug/l	0.041				
Endosulfan sulfate	ND	ug/l	0.041				
Methoxychlor	ND	ug/l	0.206				
trans-Chlordane	ND	ug/l	0.021				
Chlordane	ND	ug/l	0.206				
Surrogate(s)	Recovery		QC Criter	ria			
2,4,5,6-Tetrachloro-m-xylene	80.0	%	30-150				
Decachlorobiphenyl	48.0	%	30-150				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0814755-07 Date Collected: 06-OCT-2008 11:45

DIFFW-01 Date Received: 06-OCT-2008 WATER Date Reported: 14-OCT-2008

Field Prep: None

Number & Type of Containers: 6-Amber, 1-Plastic, 2-Vial

Condition of Sample: Satisfactory

Sample Matrix:

RESULT	UNITS	RDL	222	MERCE			DATE ID			
		KDL	REF	METHOD	DATE					
					PREP	ANAL				
2.1	mg/l	0.10	1	6010B	1007 11:00	1010 14:24	4 AI			
ND	mg/l	0.050	1	6010B	1007 11:00	1010 14:24	4 AI			
ND	mg/l	0.100	1	6010B	1007 11:00	1010 16:28	8 AI			
0.062	mg/1	0.010	1	6010B	1007 11:00	1010 14:24	4 AI			
ND	mg/1	0.005	1	6010B	1007 11:00	1010 14:24	4 AI			
0.009	mg/1	0.005	1	6010B	1007 11:00	1010 14:24	4 AI			
20	mg/1	0.10	1	6010B	1007 11:00	1010 14:24	4 AI			
0.04	mg/1	0.01	1	6010B	1007 11:00	1010 14:24	4 AI			
0.034	mg/l	0.020	1	6010B	1007 11:00	1010 14:24	4 AI			
0.726	mg/l	0.010	1	6010B	1007 11:00	1010 14:24	4 AI			
340	mg/1	0.25	1	6010B	1007 11:00	1010 15:46	6 AI			
0.012	mg/l	0.010	1	6010B	1007 11:00	1010 14:24	4 AI			
15	mg/l	0.10	1	6010B	1007 11:00	1010 14:24	4 AI			
4.74	mg/l	0.010	1	6010B	1007 11:00	1010 14:24	4 AI			
0.0002	mg/l	0.0002	1	7470A	1007 22:00	1008 11:47	7 HG			
ND	mg/1	0.025	1	6010B	1007 11:00	1010 14:24	4 AI			
4.2	mg/l	2.5	1	6010B	1007 11:00	1010 14:24	4 AI			
ND	mg/l	0.010	1	6010B	1007 11:00	1010 14:24	4 AI			
ND	mg/1	0.007	1	6010B	1007 11:00	1010 14:24	4 AI			
25	mg/l	2.0	1	6010B	1007 11:00	1010 14:24	4 AI			
ND	mg/l	0.020	1	6010B	1007 11:00	1010 14:24	4 AI			
ND	mg/l	0.010	1	6010B	1007 11:00	1010 14:24	4 AI			
0.670	mg/l	0.050	1	6010B	1007 11:00	1010 14:24	4 AI			
60B			1	8260B		1009 22:05	5 PD			
ND	uq/l	5.0								
ND	_	0.75								
ND	_									
	_									
ND	_	1.8								
ND	_									
ND	_									
	_									
	_									
	_									
TAIL	ug/1 ug/l	0.50								
	ND ND 0.062 ND 0.009 20 0.04 0.034 0.726 340 0.012 15 4.74 0.0002 ND 4.2 ND ND 25 ND ND 0.670	ND mg/l ND mg/l 0.062 mg/l ND mg/l 0.009 mg/l 20 mg/l 0.04 mg/l 0.034 mg/l 0.726 mg/l 340 mg/l 0.012 mg/l 15 mg/l 4.74 mg/l 0.0002 mg/l ND ug/l ND ug/l	ND mg/l 0.050 ND mg/l 0.100 0.062 mg/l 0.010 ND mg/l 0.005 0.009 mg/l 0.005 20 mg/l 0.10 0.04 mg/l 0.01 0.034 mg/l 0.01 0.726 mg/l 0.010 340 mg/l 0.25 0.012 mg/l 0.010 15 mg/l 0.010 0.0002 mg/l 0.010 0.0002 mg/l 0.0025 ND mg/l 0.025 ND mg/l 0.025 ND mg/l 0.0025 ND mg/l 0.005 ND mg/l 0.050 ND mg/l 0.050 ND mg/l 0.050 60B ND ug/l 0.75 ND ug/l 0.50	ND mg/l 0.050 1 ND mg/l 0.100 1 0.062 mg/l 0.010 1 ND mg/l 0.005 1 0.009 mg/l 0.005 1 0.009 mg/l 0.10 1 0.04 mg/l 0.01 1 0.034 mg/l 0.020 1 0.726 mg/l 0.010 1 340 mg/l 0.25 1 0.012 mg/l 0.10 1 15 mg/l 0.10 1 4.74 mg/l 0.010 1 4.74 mg/l 0.010 1 ND mg/l 0.025 1 ND mg/l 0.002 1 ND mg/l 0.002 1 ND mg/l 0.002 1 ND mg/l 0.0002 1 ND mg/l 0.0002 1 ND mg/l 0.0003 1 0.670 mg/l 0.0007 1 0.670 mg/l 0.050 1 60B 1 ND ug/l 0.75 ND ug/l 0.50	ND mg/l 0.050 1 6010B ND mg/l 0.100 1 6010B 0.062 mg/l 0.010 1 6010B 0.009 mg/l 0.005 1 6010B 0.009 mg/l 0.005 1 6010B 0.04 mg/l 0.01 1 6010B 0.726 mg/l 0.010 1 6010B 0.0726 mg/l 0.010 1 6010B 0.012 mg/l 0.010 1 6010B 0.012 mg/l 0.10 1 6010B 0.0002 mg/l 0.10 1 6010B 0.0002 mg/l 0.010 1 6010B 0.0002 mg/l 0.0002 1 7470A ND mg/l 0.025 1 6010B ND mg/l 0.010 1 6010B ND mg/l 0.010 1 6010B ND mg/l 0.010 1 6010B ND mg/l 0.007 1 6010B ND mg/l 0.007 1 6010B ND mg/l 0.000 1 6010B ND mg/l 0.000 1 6010B ND mg/l 0.050 1 6010B ND mg/l 0.050 1 6010B ND ug/l 0.75 ND ug/l 0.75 ND ug/l 0.50	ND mg/l 0.050 1 6010B 1007 11:00 ND mg/l 0.100 1 6010B 1007 11:00 0.062 mg/l 0.010 1 6010B 1007 11:00 0.009 mg/l 0.005 1 6010B 1007 11:00 20 mg/l 0.10 1 6010B 1007 11:00 0.04 mg/l 0.01 1 6010B 1007 11:00 0.034 mg/l 0.020 1 6010B 1007 11:00 0.726 mg/l 0.010 1 6010B 1007 11:00 340 mg/l 0.25 1 6010B 1007 11:00 0.012 mg/l 0.010 1 6010B 1007 11:00 15 mg/l 0.10 1 6010B 1007 11:00 0.0002 mg/l 0.010 1 6010B 1007 11:00 4.74 mg/l 0.010 1 6010B 1007 11:00 0.0002 mg/l 0.0002 1 7470A 1007 22:00 ND mg/l 0.025 1 6010B 1007 11:00 4.2 mg/l 0.025 1 6010B 1007 11:00 MD mg/l 0.025 1 6010B 1007 11:00 ND mg/l 0.025 1 6010B 1007 11:00 ND mg/l 0.025 1 6010B 1007 11:00 A.2 mg/l 0.010 1 6010B 1007 11:00 ND mg/l 0.025 1 6010B 1007 11:00 ND mg/l 0.025 1 6010B 1007 11:00 ND mg/l 0.025 1 6010B 1007 11:00 ND mg/l 0.050 1 6010B 1007 11:00 ND mg/l 0.010 1 6010B 1007 11:00 ND mg/l 0.050 1 6010B 1007 11:00 ND ug/l 0.75 ND ug/l 0.75 ND ug/l 0.50 ND ug/l 0.550 ND ug/l 0.50 ND ug/l 0.550 ND mg/l 0.050 1 6010B 1007 11:00 1010 14:2: ND mg/l 0.100 1 6010B 1007 11:00 1010 14:2: ND mg/l 0.010 1 6010B 1007 11:00 1010 16:20 0.062 mg/l 0.010 1 6010B 1007 11:00 1010 14:2: ND mg/l 0.005 1 6010B 1007 11:00 1010 14:2: 0.009 mg/l 0.005 1 6010B 1007 11:00 1010 14:2: 0.009 mg/l 0.10 1 6010B 1007 11:00 1010 14:2: 0.04 mg/l 0.01 1 6010B 1007 11:00 1010 14:2: 0.034 mg/l 0.020 1 6010B 1007 11:00 1010 14:2: 0.726 mg/l 0.010 1 6010B 1007 11:00 1010 14:2: 340 mg/l 0.25 1 6010B 1007 11:00 1010 14:2: 15 mg/l 0.010 1 6010B 1007 11:00 1010 14:2: 15 mg/l 0.010 1 6010B 1007 11:00 1010 14:2: 4.74 mg/l 0.010 1 6010B 1007 11:00 1010 14:2: 4.74 mg/l 0.010 1 6010B 1007 11:00 1010 14:2: ND mg/l 0.0002 1 7470A 1007 22:00 1008 11:4: 4.2 mg/l 0.025 1 6010B 1007 11:00 1010 14:2: ND mg/l 0.025 1 6010B 1007 11:00 1010 14:2: ND mg/l 0.005 1 6010B 1007 11:00 1010 14:2: ND mg/l 0.010 1 6010B 1007 11:00 1010 14:2: ND mg/l 0.010 1 6010B 1007 11:00 1010 14:2: ND mg/l 0.010 1 6010B 1007 11:00 1010 14:2: ND mg/l 0.010 1 6010B 1007 11:00 1010 14:2: ND mg/l 0.010 1 6010B 1007 11:00 1010 14:2: ND mg/l 0.010 1 6010B 1007 11:00 1010 14:2: ND mg/l 0.010 1 6010B 1007 11:00 1010 14:2: ND mg/l 0.050 1 6010B 1007 11:00 1010 14:2: ND mg/l 0.050 1 6010B 1007 11:00 1010 14:2: ND mg/l 0.050 1 6010B 1007 11:00 1010 14:2: ND mg/l 0.050 1 6010B 1007 11:00 1010 14:2: ND mg/l 0.050 1 6010B 1007 11:00 1010 14:2: ND mg/l 0.050 1 6010B 1007 11:00 1010 14:2: ND mg/l 0.550 ND ug/l 0.550				

Laboratory Sample Number: L0814755-07

DIFFW-01

Colatile Organics by EPA 8260B or comodichloromethane NE crans-1,3-Dichloropropene NE crans-1,3-Dichloropropene NE crans-1,3-Dichloropropene NE crans-1,3-Dichloropropene NE crans-1,2-Z-Tetrachloroethane NE crans-1 NE crans-1 NE crans-1 NE crans-1 NE crans-1 NE crans-1,2-Dichloroethane NE crans-1,2-Dichloropropane NE crans-1,2-Dichloropropane NE crans-1,2-Dichloropropane NE crans-1,2-Dichloromethane NE crans-1,2-Dichloromethane NE crans-1,2-Dichloropropane NE cr					PREP	ANAL	
Aromodichloromethane Arans-1,3-Dichloropropene Ais-1,3-Dichloropropene Ais-1,3-Dichloropropene Ais-1,3-Dichloropropene Ais-1,2-Dichloropropene Ais-1,2,2-Tetrachloroethane Ais-1,2-Dichloroethane Airomomethane							
rans-1,3-Dichloropropene ris-1,3-Dichloropropene ris-1,3-Dichloropropene ris-1,3-Dichloropropene ris-1,3-Dichloropropene romoform richloropropene roluene rolu	ont ' d		1	8260B		1009 22:0	5 PD
dis-1,3-Dichloropropene 1,1-Dichloropropene 3,1,2,2-Tetrachloroethane 3,1,2,2-Tetrachloroethane 3,1,2,2-Tetrachloroethane 3,1,2,2-Tetrachloroethane 3,1,2,2-Tetrachloroethane 3,1,2,2-Tetrachloroethane 3,1,2,2-Tetrachloroethane 3,1,1,2-Dichloroethene 3,2,3-Trichloropropane 3,2-Dichloropropane 3,2-Dichloropropane 3,2-Dichloropropane 3,2-Dichloropropane 3,2-Dichloropropane 3,2-Dichloropropane 3,2-Dichloropropane 3,2-Dichloropropane 3,3-Dichloropropane 4,3-Dichloropropane 4,3-Dichloropropane 5,3-Dichloropropane 5,3-D	ug	/1 ().50				
And a proposed in the proposed	ug	/1 ().50				
Aromoform 1,1,2,2-Tetrachloroethane 2,1,2,2-Tetrachloroethane 3,1,2,2-Tetrachloroethane 3,1,2,2-Tetrachloroethane 3,1,2,2-Tetrachloroethane 3,1,2,2-Tetrachloroethane 3,1,2,2-Tetrachloromethane 3,1,2-Dichloroethene 3,2-Dichlorobenzene 3,3-Dichlorobenzene 3,4-Dichlorobenzene 3,4-Dichlorobenzene 3,4-Dichlorobenzene 3,2-Dichloroethane 3,2,3-Trichloroethane 3,2,3-Trichloropropane 3,2,3-Trichloropropane 3,2,3-Trichloropropane 3,2,3-Trichloropropane 3,2,3-Trichloropropane 3,2-Dichloromethane 3,2-Dichloropropane 3,2-Dichloropropane 3,2-Dichloropropane 3,2-Dichloropropane 3,3-Dichloropropane 3,3-Dichloropropane 3,3-Dichloropropane 3,1,1,2-Tetrachloroethane 3,3-Dichloropropane 3,1,1,2-Tetrachloroethane 3,2-Dibromoethane 3,3-Dichloropropane 3,1,1,2-Tetrachloroethane 3,3-Dichloropropane 3,1,1,2-Tetrachloroethane 4,2-Dibromoethane 4,3-Dichloropropane 4,1,1,2-Tetrachloroethane 4,1,1,2-Tetrachloroethane	ug	/1 ().50				
contained in the series of the	ug	/1 2	2.5				
Senzene Soluene Schylbenzene Schloromethane Schomomethane Schomomethane Schloroethane Schloroethane Schloroethane Schloroethane Schloroethane Schloroethane Schlorobenzene Schloropenzene Schloropenzene Schloromethane Schlorodifluoromethane Schlorodifluoromethane Schlorodifluoromethane Schlorodifluoromethane Schlorodifluoromethane Schloropenzene Schlo	ug	/1 2	2.0				
Coluene Chloromethane Chloromethane Chloromethane Chloroethane Chlorobenzene Chloropenane Chloromethane Chloromethane Chlorodifluoromethane Chlorodifluoromethane Chlorodifluoromethane Chlorodifluoromethane Chlorodifluoromethane Chlorodifluoromethane Chlorodifluoromethane Chloropropane Chlor	ug	/1 ().50				
Athylbenzene Ahloromethane Aromomethane Arom	ug	/1 ().50				
Chloromethane Cromomethane Crinyl chloride Chloroethane Clinyl chloroethane Crichloroethane Clichloroethane Clichlorobenzene Clethyl tert butyl ether Chloromethane Clichloroethane Clichloroethane Clichloroethane Clichlorodifluoromethane Clinyl acetate Chloropropane Clinyl acetate Chloropropane Clichloropropane Clinyl acetate Chloropropane Clichloropropane Clinyl acetate Chloropropane Chlo	ug	/1 ().75				
romomethane finyl chloride hloroethane ,1-Dichloroethene rans-1,2-Dichloroethene richloroethene ,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene ethyl tert butyl ether /m-Xylene -Xylene is-1,2-Dichloroethene ibromomethane ,2,3-Trichloropropane crylonitrile tyrene ichlorodifluoromethane cetone arbon disulfide -Butanone inyl acetate -Methyl-2-pentanone -Hexanone romochloromethane ,2-Dichloropropane ,2-Dibromoethane ,2-Dichloropropane ,2-Dibromoethane ,2-Dichloropropane ,1,1,2-Tetrachloroethane romobenzene -Butylbenzene	ug	/1 ().50				
inyl chloride hloroethane ,1-Dichloroethene rans-1,2-Dichloroethene richloroethene ,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene ethyl tert butyl ether /m-Xylene -Xylene is-1,2-Dichloroethene ibromomethane ,2,3-Trichloropropane crylonitrile tyrene ichlorodifluoromethane cetone arbon disulfide -Butanone inyl acetate -Methyl-2-pentanone -Hexanone romochloromethane ,2-Dichloropropane ,2-Dibromoethane ,2-Dichloropropane ,2-Dichloropropane ,2-Dichloropropane ,2-Dichloropropane ,1,1,2-Tetrachloroethane romobenzene -Butylbenzene	ug	/1 2	2.5				
hloroethane ,1-Dichloroethene rans-1,2-Dichloroethene richloroethene ,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene ethyl tert butyl ether /m-Xylene -Xylene is-1,2-Dichloroethene ibromomethane ,2,3-Trichloropropane crylonitrile tyrene ichlorodifluoromethane cetone arbon disulfide -Butanone inyl acetate -Methyl-2-pentanone -Hexanone romochloromethane ,2-Dichloropropane cy-Dichloropropane romochloromethane ,2-Dichloropropane ,1,1,2-Tetrachloroethane romobenzene -Butylbenzene	ug	/1	L.O				
,1-Dichloroethene rans-1,2-Dichloroethene richloroethene .2-Dichlorobenzene .3-Dichlorobenzene .4-Dichlorobenzene ethyl tert butyl ether .Xylene .Xylene is-1,2-Dichloroethene ibromomethane .2,3-Trichloropropane crylonitrile tyrene ichlorodifluoromethane cetone arbon disulfide -Butanone inyl acetate -Methyl-2-pentanone -Hexanone romochloromethane .2-Dichloropropane .2-Dichloropropane .Dichloropropane .Dichloropropane .Dichloropropane .Dichloropropane .Dichloropropane .1,1,2-Tetrachloroethane .Dichloropropane .Di	ug	/1	L.O				
rans-1,2-Dichloroethene richloroethene ,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene ethyl tert butyl ether -Xylene is-1,2-Dichloroethene ibromomethane ,2,3-Trichloropropane crylonitrile tyrene ichlorodifluoromethane cetone arbon disulfide -Butanone inyl acetate -Methyl-2-pentanone -Hexanone romochloromethane ,2-Dichloropropane ,2-Dichloropropane ,2-Dichloropropane ,2-Dichloropropane ,1,1,2-Tetrachloroethane romobenzene -Butylbenzene	ug	/1 1	L.O				
richloroethene ,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene ME Mathematical description of the properties	ug	/1 ().50				
,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene wethyl tert butyl ether ix/m-Xylene ix-1,2-Dichloroethene ibromomethane ,2,3-Trichloropropane crylonitrile ityrene ichlorodifluoromethane catone arbon disulfide -Butanone inyl acetate -Methyl-2-pentanone -Hexanone iromochloromethane x-Dichloropropane	ug	/1 (.75				
,3-Dichlorobenzene ,4-Dichlorobenzene ethyl tert butyl ether /M-Xylene -Xylene is-1,2-Dichloroethene ibromomethane ,2,3-Trichloropropane crylonitrile tyrene ichlorodifluoromethane cetone arbon disulfide -Butanone inyl acetate -Methyl-2-pentanone -Hexanone romochloromethane y2-Dichloropropane ,2-Dichloropropane ,2-Dibromoethane ,3-Dichloropropane ,1,1,2-Tetrachloroethane romobenzene -Butylbenzene	3 ug	/1 ().50				
,4-Dichlorobenzene ethyl tert butyl ether /m-Xylene -Xylene sis-1,2-Dichloroethene ibromomethane ,2,3-Trichloropropane crylonitrile tyrene ichlorodifluoromethane cetone arbon disulfide -Butanone inyl acetate -Methyl-2-pentanone -Hexanone romochloromethane y2-Dichloropropane ,2-Dibromoethane ,3-Dichloropropane ,1,1,2-Tetrachloroethane romobenzene -Butylbenzene	ug	/1 2	2.5				
ethyl tert butyl ether /m-Xylene -Xylene is-1,2-Dichloroethene ibromomethane ,2,3-Trichloropropane crylonitrile tyrene ichlorodifluoromethane cetone arbon disulfide -Butanone inyl acetate -Methyl-2-pentanone -Hexanone romochloromethane y2-Dichloropropane ,2-Dibromoethane ,2-Dichloropropane ,1,1,2-Tetrachloroethane romobenzene -Butylbenzene ND 7. N	ug	/1 2	2.5				
/m-Xylene ND -Xylene ND is-1,2-Dichloroethene 32 ibromomethane ND ,2,3-Trichloropropane ND crylonitrile ND tyrene ND ichlorodifluoromethane ND cetone ND arbon disulfide ND -Butanone ND inyl acetate ND -Methyl-2-pentanone ND -Hexanone ND -Hexanone ND -Hexanone ND -Joichloropropane ND ,2-Dibromoethane ND ,3-Dichloropropane ND ,1,1,2-Tetrachloroethane ND -Butylbenzene ND	ug	/1 2	2.5				
/m-Xylene ND -Xylene ND is-1,2-Dichloroethene 32 ibromomethane ND ,2,3-Trichloropropane ND crylonitrile ND tyrene ND ichlorodifluoromethane ND cetone ND arbon disulfide ND -Butanone ND -Hexanone ND -Hexanone ND -Hexanone ND -Hexanone ND -Hexanone ND -Hexanone ND -Joichloropropane ND ,2-Dibromoethane ND ,3-Dichloropropane ND ,1,1,2-Tetrachloroethane ND -Butylbenzene ND	3 ug	/1 :	L.O				
-Xylene is-1,2-Dichloroethene is-1,2-Dichloroethene ibromomethane ,2,3-Trichloropropane crylonitrile tyrene ichlorodifluoromethane cetone arbon disulfide -Butanone inyl acetate -Methyl-2-pentanone -Hexanone romochloromethane ,2-Dichloropropane ,2-Dibromoethane ,3-Dichloropropane ,1,1,2-Tetrachloroethane romobenzene -Butylbenzene	ug	/1 :	L.O				
is-1,2-Dichloroethene ibromomethane ,2,3-Trichloropropane crylonitrile tyrene ichlorodifluoromethane cetone arbon disulfide -Butanone inyl acetate -Methyl-2-pentanone -Hexanone romochloromethane ,2-Dichloropropane ,2-Dichloropropane ,3-Dichloropropane ,1,1,2-Tetrachloroethane romobenzene -Butylbenzene NE 32 ND	ug	/1 :	L.O				
ibromomethane ND ,2,3-Trichloropropane NE crylonitrile NE tyrene ND ichlorodifluoromethane ND cetone ND arbon disulfide ND -Butanone ND inyl acetate ND -Hexanone ND -Hexanone ND -Hexanone ND -Joichloropropane ND ,2-Dichloropropane ND ,2-Dichloropropane ND ,1,1,2-Tetrachloroethane ND romobenzene ND -Butylbenzene ND	ug).50				
crylonitrile tyrene ichlorodifluoromethane cetone arbon disulfide -Butanone inyl acetate -Methyl-2-pentanone -Hexanone romochloromethane ,2-Dichloropropane ,2-Dibromoethane ,3-Dichloropropane ,1,1,2-Tetrachloroethane romobenzene -Butylbenzene	ug		5.0				
crylonitrile tyrene ichlorodifluoromethane cetone arbon disulfide -Butanone inyl acetate -Methyl-2-pentanone -Hexanone romochloromethane ,2-Dichloropropane ,2-Dibromoethane ,3-Dichloropropane ,1,1,2-Tetrachloroethane romobenzene -Butylbenzene	ug		5.0				
tyrene ichlorodifluoromethane ne cetone ne n	ug		5.0				
ichlorodifluoromethane cetone arbon disulfide -Butanone Inyl acetate -Methyl-2-pentanone -Hexanone Iromochloromethane ,2-Dichloropropane ,2-Dibromoethane ,3-Dichloropropane ,1,1,2-Tetrachloroethane Iromobenzene -Butylbenzene NE	ug		L.O				
detone NE darbon disulfide	ug		5.0				
arbon disulfide -Butanone ND Inyl acetate -Methyl-2-pentanone -Hexanone romochloromethane ,2-Dichloropropane ,2-Dibromoethane ,3-Dichloropropane ,1,1,2-Tetrachloroethane romobenzene -Butylbenzene	ug		5.0				
-Butanone NE inyl acetate NE -Methyl-2-pentanone NE -Hexanone NE romochloromethane NE ,2-Dichloropropane NE ,2-Dibromoethane NE ,3-Dichloropropane NE ,1,1,2-Tetrachloroethane NE romobenzene NE -Butylbenzene NE	ug		5.0				
inyl acetate -Methyl-2-pentanone -Hexanone romochloromethane ,2-Dichloropropane ,2-Dibromoethane ,3-Dichloropropane ,1,1,2-Tetrachloroethane romobenzene -Butylbenzene	ug		5.0				
-Methyl-2-pentanone ND -Hexanone ND romochloromethane ND ,2-Dichloropropane ND ,2-Dibromoethane ND ,3-Dichloropropane ND ,1,1,2-Tetrachloroethane ND romobenzene ND -Butylbenzene ND	ug		5.0				
-Hexanone NE romochloromethane ND ,2-Dichloropropane ND ,3-Dichloropropane ND ,1,1,2-Tetrachloroethane ND romobenzene NDButylbenzene ND	uq		5.0				
romochloromethane NE ,2-Dichloropropane ND ,2-Dibromoethane NE ,3-Dichloropropane ND ,1,1,2-Tetrachloroethane ND romobenzene ND -Butylbenzene ND	ug		5.0				
,2-Dichloropropane NE ,2-Dibromoethane NE ,3-Dichloropropane NE ,1,1,2-Tetrachloroethane NE romobenzene NE -Butylbenzene NE	ug		2.5				
,2-Dibromoethane ND ,3-Dichloropropane ND ,1,1,2-Tetrachloroethane ND romobenzene ND -Butylbenzene ND	ug		2.5				
,3-Dichloropropane ND ,1,1,2-Tetrachloroethane ND romobenzene ND -Butylbenzene ND	ug		2.0				
,1,1,2-Tetrachloroethane ND romobenzene ND -Butylbenzene ND	ug		2.5				
romobenzene ND -Butylbenzene ND	ug).50				
-Butylbenzene ND	ug		2.5				
_	ug).50				
CC DUCYINCIIZEIIE IND	ug).50				
ert-Butylbenzene ND	ug		2.5				
-Chlorotoluene ND	ug ug		2.5 2.5				
-Chlorotoluene ND			2.5 2.5				
,2-Dibromo-3-chloropropane ND	ug ug		2.5 2.5				
exachlorobutadiene ND							
	ug).60				
sopropylbenzene ND -Isopropyltoluene ND	ug ug).50).50				

Laboratory Sample Number: L0814755-07

DIFFW-01

ARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA		ID
						PREP	ANAL	
olatile Organics by EPA 8260)B cont'd			1	8260B		1009 22:0	05 PD
Taphthalene	ND	ug/l	2.5					
-Propylbenzene	ND	ug/l	0.50					
,2,3-Trichlorobenzene	ND	ug/l	2.5					
,2,4-Trichlorobenzene	ND	ug/l	2.5					
,3,5-Trimethylbenzene	ND	ug/l	2.5					
,2,4-Trimethylbenzene	ND	ug/l	2.5					
,4-Diethylbenzene	ND	ug/l	2.0					
-Ethyltoluene	ND	ug/l	2.0					
,2,4,5-Tetramethylbenzene	ND	ug/l	2.0					
Surrogate(s)	Recovery		QC Cri	teria	a			
,2-Dichloroethane-d4	105	%	70-130					
oluene-d8	101	%	70-130					
-Bromofluorobenzene	105	%	70-130					
pibromofluoromethane	97.0	%	70-130					
Semivolatile Organics by EPA	8270C			1	8270C	1008 00:45	1010 17:0	07 PS
cenaphthene	ND	ug/l	4.8					
,2,4-Trichlorobenzene	ND	ug/l	4.8					
exachlorobenzene	ND	ug/l	4.8					
is(2-chloroethyl)ether	ND	ug/l	4.8					
-Chloronaphthalene	ND	ug/l	5.7					
,2-Dichlorobenzene	ND	ug/l	4.8					
,3-Dichlorobenzene	ND	ug/l	4.8					
,4-Dichlorobenzene	ND	ug/l	4.8					
,3'-Dichlorobenzidine	ND	ug/l	48.					
,4-Dinitrotoluene	ND	ug/l	5.7					
,6-Dinitrotoluene	ND	ug/l	4.8					
'luoranthene	ND	ug/l	4.8					
-Chlorophenyl phenyl ether	ND	ug/l	4.8					
-Bromophenyl phenyl ether	ND	ug/l	4.8					
sis(2-chloroisopropyl)ether	ND	ug/l	4.8					
sis(2-chloroethoxy)methane	ND	ug/l	4.8					
exachlorobutadiene	ND	ug/l	9.5					
exachlorocyclopentadiene	ND	ug/l	28.					
Mexachlorocyclopentadiene	ND	ug/l	4.8					
sophorone	ND	ug/l	4.8					
Saphthalene	ND	ug/1 ug/l	4.8					
itrobenzene	ND ND	ug/l ug/l	4.8					
litropenzene JitrosoDiPhenylAmine(NDPA)/DI		ug/l ug/l	14.					
-Nitrosodi-n-propylamine	ND	ug/1 ug/l	4.8					
is(2-Ethylhexyl)phthalate	ND	ug/l ug/l	4.8					
cutyl benzyl phthalate	ND	ug/l ug/l	4.8					
vi-n-butylphthalate	ND	ug/l ug/l	4.8					
oi-n-butyiphthalate	ND ND		4.8					
iethyl phthalate	ND ND	ug/l ug/l	4.8					
	שוא							
	MD	110 / 1	⊿ o					
pimethyl phthalate Senzo(a)anthracene	ND ND	ug/l ug/l	4.8 4.8					

Laboratory Sample Number: L0814755-07

DIFFW-01

	RESULT	UNITS	RDL	REF METHOD	DA' PREP	ANAL	ID
	0.07.00	. 5					
Semivolatile Organics by EPA			4 0	1 8270C	1008 00:45	1010 17:0	07 PS
Benzo(b)fluoranthene	ND	ug/l	4.8				
Benzo(k)fluoranthene	ND	ug/l	4.8				
Chrysene	ND	ug/l	4.8				
Acenaphthylene	ND	ug/l	4.8				
Anthracene	ND	ug/l	4.8				
Benzo(ghi)perylene	ND	ug/l	4.8				
Fluorene	ND	ug/l	4.8				
Phenanthrene	ND	ug/l	4.8				
Dibenzo(a,h)anthracene	ND	ug/l	4.8				
Indeno(1,2,3-cd)Pyrene	ND	ug/l	6.7				
Pyrene	ND	ug/l	4.8				
Biphenyl	ND	ug/l	4.8				
4-Chloroaniline	ND	ug/l	4.8				
2-Nitroaniline	ND	ug/l	4.8				
3-Nitroaniline	ND	ug/l	4.8				
4-Nitroaniline	ND	ug/l	6.7				
Dibenzofuran	ND	ug/l	4.8				
2-Methylnaphthalene	ND	ug/l	4.8				
1,2,4,5-Tetrachlorobenzene	ND	ug/l	19.				
Acetophenone	ND	ug/l	19.				
2,4,6-Trichlorophenol	ND	ug/l	4.8				
P-Chloro-M-Cresol	ND	ug/l	4.8				
2-Chlorophenol	ND	ug/l	5.7				
2,4-Dichlorophenol	ND	ug/l	9.5				
2,4-Dimethylphenol	ND	ug/l	9.5				
2-Nitrophenol	ND	ug/l	19.				
4-Nitrophenol	ND	ug/l	9.5				
2,4-Dinitrophenol	ND	ug/l	28.				
4,6-Dinitro-o-cresol	ND	ug/l	19.				
Pentachlorophenol	ND	ug/l	9.5				
Phenol	ND	ug/l	6.7				
2-Methylphenol	ND	ug/1	5.7				
3-Methylphenol/4-Methylphenol	ND	ug/1	5.7				
2,4,5-Trichlorophenol	ND	ug/l	4.8				
Benzoic Acid	ND	ug/1	48.				
Benzyl Alcohol	ND	ug/1	9.5				
Carbazole	ND	ug/l	4.8				
Surrogate(s)	Recovery		QC Cr	iteria			
2-Fluorophenol	51.0	8	21-12	0			
Phenol-d6	32.0	%	10-12				
Nitrobenzene-d5	68.0	%	23-12				
2-Fluorobiphenyl	74.0	8	43-12	0			
2,4,6-Tribromophenol	103	%	10-12				
4-Terphenyl-d14	91.0	%	33-12				
Semivolatile Organics by EPA	8270C-SIM			1 8270C	1008 00:45	1011 04:	59 AK
Acenaphthene	ND	ug/l	0.19	_ 02700		01.	
<u></u>							

Laboratory Sample Number: L0814755-07

DIFFW-01

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Semivolatile Organics by EPA	8270C-SIM	cont'd		1	8270C	1008 00:45	1011 04:5	9 AK
Fluoranthene	ND	ug/l	0.19					
Hexachlorobutadiene	ND	ug/l	0.48					
Naphthalene	ND	ug/l	0.19					
Benzo(a)anthracene	ND	ug/l	0.19					
Benzo(a)pyrene	ND	ug/l	0.19					
Benzo(b)fluoranthene	ND	ug/l	0.19					
Benzo(k)fluoranthene	ND	ug/l	0.19					
Chrysene	ND	ug/l	0.19					
Acenaphthylene	ND	ug/l	0.19					
Anthracene	ND	ug/l	0.19					
Benzo(ghi)perylene	ND	ug/l	0.19					
Fluorene	ND	ug/l	0.19					
Phenanthrene	ND	ug/l	0.19					
Dibenzo(a,h)anthracene	ND	ug/l	0.19					
Indeno(1,2,3-cd)Pyrene	ND	ug/l	0.19					
Pyrene	ND ND	ug/1 ug/l	0.19					
2-Methylnaphthalene	ND	ug/1 ug/l	0.19					
Pentachlorophenol		_	0.19					
Hexachlorobenzene	ND ND	ug/l	0.76					
		ug/l						
Hexachloroethane	ND	ug/l	0.76					
Surrogate(s)	Recovery		QC Cri	teria	a			
2-Fluorophenol	55.0	%	21-120					
Phenol-d6	40.0	%	10-120					
Nitrobenzene-d5	86.0	%	23-120					
2-Fluorobiphenyl	80.0	%	43-120					
2,4,6-Tribromophenol	96.0	%	10-120					
4-Terphenyl-d14	94.0	%	33-120					
Polychlorinated Biphenyls by	EPA 8082			1	8082	1008 02:30	1009 16:5	2 SS
Aroclor 1016	ND	ug/l	0.100					
Aroclor 1221	ND	ug/l	0.100					
Aroclor 1232	ND	ug/l	0.100					
Aroclor 1242	ND	ug/l	0.100					
Aroclor 1248	ND	ug/l	0.100					
Aroclor 1254	ND	ug/l	0.100					
Aroclor 1260	ND	ug/l	0.100					
Surregate (a)	Dogoros		00 0===	+ 0324 -				
Surrogate(s)	Recovery	0.	QC Crit	rerla	1			
2,4,5,6-Tetrachloro-m-xylene	62.0	%	30-150					
Decachlorobiphenyl	98.0	%	30-150					
Organochlorine Pesticides by	EPA 8081A			1	8081A	1008 05:00	1009 13:5	2 JB
Delta-BHC	ND	ug/l	0.021					
Lindane	ND	ug/l	0.021					
Alpha-BHC	ND	ug/l	0.021					
Beta-BHC	ND	ug/l	0.021					
Heptachlor	ND	ug/l	0.021					

Laboratory Sample Number: L0814755-07

DIFFW-01

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA PREP	TE ANAL	ID
Omanachlasina Dagtigidas ha	ED7 00017	~~~+!d		1 0001-	1000.05.00	1000 10.5	
Organochlorine Pesticides by			0 001	1 8081A	1008 05:00	1009 13:52	2 JB
Heptachlor epoxide	ND	ug/l	0.021				
Endrin	ND	ug/l	0.043				
Endrin ketone	ND	ug/l	0.043				
Dieldrin	ND	ug/l	0.043				
4,4'-DDE	ND	ug/l	0.043				
4,4'-DDD	ND	ug/l	0.043				
4,4'-DDT	ND	ug/l	0.043				
Endosulfan I	ND	ug/l	0.021				
Endosulfan II	ND	ug/l	0.043				
Endosulfan sulfate	ND	ug/l	0.043				
Methoxychlor	ND	ug/l	0.213				
trans-Chlordane	ND	ug/l	0.021				
Chlordane	ND	ug/l	0.213				
Surrogate(s)	Recovery		QC Crit	teria			
2,4,5,6-Tetrachloro-m-xylene	71.0	%	30-150				
Decachlorobiphenyl	96.0	%	30-150				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0814755-08 Date Collected: 06-OCT-2008 13:05

DIFFW-02 Date Received: 06-OCT-2008 WATER Date Reported: 14-OCT-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

Sample Matrix:

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA	ATE	ID
						PREP	ANAL	
Volatile Organics by EPA 826				1	8260B		1009 22:41	l PD
Methylene chloride	ND	ug/l	5.0					
l,1-Dichloroethane	ND	ug/l	0.75					
Chloroform	ND	ug/l	0.75					
Carbon tetrachloride	ND	ug/l	0.50					
l,2-Dichloropropane	ND	ug/l	1.8					
Dibromochloromethane	ND	ug/l	0.50					
l,1,2-Trichloroethane	ND	ug/l	0.75					
Tetrachloroethene	ND	ug/l	0.50					
Chlorobenzene	ND	ug/l	0.50					
Trichlorofluoromethane	ND	ug/l	2.5					
1,2-Dichloroethane	ND	ug/1	0.50					
1,1,1-Trichloroethane	ND	ug/1	0.50					
Bromodichloromethane	ND	ug/1	0.50					
trans-1,3-Dichloropropene	ND	ug/1	0.50					
cis-1,3-Dichloropropene	ND	ug/1	0.50					
1,1-Dichloropropene	ND	ug/1	2.5					
Bromoform	ND	ug/1	2.0					
l,1,2,2-Tetrachloroethane	ND	ug/l	0.50					
Benzene	ND	ug/1	0.50					
Toluene	ND	ug/1	0.75					
Ethylbenzene	ND	ug/1	0.50					
Chloromethane	ND	ug/1	2.5					
Bromomethane	ND	ug/1	1.0					
Jinyl chloride	ND	ug/1	1.0					
Chloroethane	ND	ug/1	1.0					
l,1-Dichloroethene	ND	ug/l	0.50					
trans-1,2-Dichloroethene	ND	ug/l	0.75					
Trichloroethene	ND	ug/l	0.50					
l,2-Dichlorobenzene	ND	ug/l	2.5					
l,3-Dichlorobenzene	ND	ug/l	2.5					
1,4-Dichlorobenzene	ND	ug/l	2.5					
Methyl tert butyl ether	ND	ug/l	1.0					
p/m-Xylene	ND	ug/l	1.0					
o-Xylene	ND	ug/l	1.0					
cis-1,2-Dichloroethene	7.7	ug/1	0.50					
Dibromomethane	ND	ug/l	5.0					
1,2,3-Trichloropropane	ND	ug/l	5.0					
Acrylonitrile	ND	ug/l	5.0					

Laboratory Sample Number: L0814755-08

DIFFW-02

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Volatile Organics by EPA 826	OB cont'd			1	8260B		1009 22:4	1 PD
Styrene	ND	ug/l	1.0					
Dichlorodifluoromethane	ND	ug/l	5.0					
Acetone	ND	ug/l	5.0					
Carbon disulfide	ND	ug/l	5.0					
2-Butanone	ND	ug/l	5.0					
Vinyl acetate	ND	ug/l	5.0					
4-Methyl-2-pentanone	ND	ug/l	5.0					
2-Hexanone	ND	ug/l	5.0					
Bromochloromethane	ND	ug/l	2.5					
2,2-Dichloropropane	ND	ug/l	2.5					
1,2-Dibromoethane	ND	ug/l	2.0					
1,3-Dichloropropane	ND	ug/l	2.5					
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50					
Bromobenzene	ND	ug/l	2.5					
n-Butylbenzene	ND	ug/l	0.50					
sec-Butylbenzene	ND	ug/l	0.50					
tert-Butylbenzene	ND	ug/l	2.5					
o-Chlorotoluene	ND	ug/l	2.5					
p-Chlorotoluene	ND	ug/l	2.5					
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5					
Hexachlorobutadiene	ND	ug/l	0.60					
Isopropylbenzene	ND	ug/l	0.50					
p-Isopropyltoluene	ND	ug/l	0.50					
Naphthalene	ND	ug/l	2.5					
n-Propylbenzene	ND	ug/l	0.50					
1,2,3-Trichlorobenzene	ND	ug/l	2.5					
1,2,4-Trichlorobenzene	ND	ug/l	2.5					
1,3,5-Trimethylbenzene	ND	ug/l	2.5					
1,2,4-Trimethylbenzene	ND	ug/l	2.5					
1,4-Diethylbenzene	ND	ug/l	2.0					
4-Ethyltoluene	ND	ug/l	2.0					
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0					
Surrogate(s)	Recovery		QC Crit	teria	L			
1,2-Dichloroethane-d4	105	%	70-130					
Toluene-d8	100	%	70-130					
4-Bromofluorobenzene	105	%	70-130					
Dibromofluoromethane	95.0	%	70-130					

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0814755-09 Date Collected: 06-OCT-2008 13:20

DIFFW-03 Date Received: 06-OCT-2008 WATER Date Reported: 14-OCT-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

Sample Matrix:

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 83	260B			1 8260B	1009 23:18 PD
Methylene chloride	ND	ug/l	5.0		
1,1-Dichloroethane	ND	ug/l	0.75		
Chloroform	ND	ug/l	0.75		
Carbon tetrachloride	ND	ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75		
Tetrachloroethene	ND	ug/l	0.50		
Chlorobenzene	ND	ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND	ug/l	0.50		
Toluene	1.1	ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50		
Chloromethane	ND	ug/l	2.5		
Bromomethane	ND	ug/l	1.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	1.0		
1,1-Dichloroethene	ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/l	0.75		
Trichloroethene	0.53	ug/l	0.50		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/l	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	21	ug/l	0.50		
Dibromomethane	ND	ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/l	5.0		
Acrylonitrile	ND	ug/l	5.0		

Laboratory Sample Number: L0814755-09

DIFFW-03

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Volatile Organics by EPA 826				1	8260B		1009 23:1	.8 PD
Styrene	ND	ug/l	1.0					
Dichlorodifluoromethane	ND	ug/l	5.0					
Acetone	ND	ug/l	5.0					
Carbon disulfide	ND	ug/l	5.0					
2-Butanone	ND	ug/l	5.0					
Vinyl acetate	ND	ug/l	5.0					
4-Methyl-2-pentanone	ND	ug/l	5.0					
2-Hexanone	ND	ug/l	5.0					
Bromochloromethane	ND	ug/l	2.5					
2,2-Dichloropropane	ND	ug/l	2.5					
1,2-Dibromoethane	ND	ug/1	2.0					
1,3-Dichloropropane	ND	ug/1	2.5					
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50					
Bromobenzene	ND	ug/l	2.5					
n-Butylbenzene	ND	ug/l	0.50					
sec-Butylbenzene	ND	ug/l	0.50					
tert-Butylbenzene	ND	ug/l	2.5					
o-Chlorotoluene	ND	ug/l	2.5					
p-Chlorotoluene	ND	ug/l	2.5					
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5					
Hexachlorobutadiene	ND	ug/l	0.60					
Isopropylbenzene	ND	ug/l	0.50					
p-Isopropyltoluene	ND	ug/l	0.50					
Naphthalene	ND	ug/l	2.5					
n-Propylbenzene	ND	ug/l	0.50					
1,2,3-Trichlorobenzene	ND	ug/l	2.5					
1,2,4-Trichlorobenzene	ND	ug/l	2.5					
1,3,5-Trimethylbenzene	ND	ug/l	2.5					
1,2,4-Trimethylbenzene	ND	ug/l	2.5					
1,4-Diethylbenzene	ND	ug/l	2.0					
4-Ethyltoluene	ND	ug/l	2.0					
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0					
Surrogate(s)	Recovery		QC Cri	teria	ı			
1,2-Dichloroethane-d4	108	%	70-130					
Toluene-d8	98.0	%	70-130					
4-Bromofluorobenzene	109	%	70-130					
Dibromofluoromethane	98.0	%	70-130					

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0814755-10 Date Collected: 06-OCT-2008 11:50

DIFFW-100 Date Received: 06-OCT-2008
WATER Date Reported: 14-OCT-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 6-Amber, 1-Plastic, 2-Vial

Sample Matrix:

=======================================								
PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DATE	ANAL	ID
						PREP .	ANAL	
Total Metals								
Aluminum, Total	1.8	mg/l	0.10	1	6010B	1007 11:00 10	10 14:20) AI
Antimony, Total	ND	mg/1	0.050	1	6010B	1007 11:00 10	10 14:20) AI
Arsenic, Total	ND	mg/l	0.100	1	6010B	1007 11:00 10	10 16:31	L AI
Barium, Total	0.060	mg/1	0.010	1	6010B	1007 11:00 10	10 14:20) AI
Beryllium, Total	ND	mg/1	0.005	1	6010B	1007 11:00 10	10 14:20) AI
Cadmium, Total	0.007	mg/1	0.005	1	6010B	1007 11:00 10	10 14:20) AI
Calcium, Total	20	mg/1	0.10	1	6010B	1007 11:00 10	10 14:20) AI
Chromium, Total	0.03	mg/l	0.01	1	6010B	1007 11:00 10	10 14:20) AI
Cobalt, Total	0.030	mg/l	0.020	1	6010B	1007 11:00 10	10 14:20) AI
Copper, Total	0.622	mg/l	0.010	1	6010B	1007 11:00 103		
Iron, Total	300	mg/l	0.25	1	6010B	1007 11:00 103	10 15:49) AI
Lead, Total	0.011	mg/l	0.010	1	6010B	1007 11:00 10	10 14:20) AI
Magnesium, Total	15	mg/l	0.10	1	6010B	1007 11:00 10	10 14:20) AI
Manganese, Total	4.37	mg/l	0.010	1	6010B	1007 11:00 10	10 14:20) AI
Mercury, Total	ND	mg/l	0.0002	1	7470A	1007 22:00 100		
Nickel, Total	ND	mg/l	0.025	1	6010B	1007 11:00 10		
Potassium, Total	4.1	mg/l	2.5	1	6010B	1007 11:00 10		
Selenium, Total	ND	mg/l	0.010	1		1007 11:00 10		
Silver, Total	ND	mg/l	0.007	1	6010B	1007 11:00 10		
Sodium, Total	25	mq/1	2.0	1		1007 11:00 10		
Thallium, Total	ND	mg/l	0.020	1		1007 11:00 10		
Vanadium, Total	ND	mg/l	0.010	1		1007 11:00 10:		
Zinc, Total	0.589	mg/l	0.050	1	6010B	1007 11:00 10		
Zine, recar	0.303	9/ 1	0.050	_	00102	1007 11-00 10	10 11-20	, ,,,
Volatile Organics by EPA 8	260B			1	8260B	100	09 23:54	1 PD
Methylene chloride	ND	ug/l	5.0					
1,1-Dichloroethane	ND	ug/l	0.75					
Chloroform	ND	ug/l	0.75					
Carbon tetrachloride	ND	ug/l	0.50					
1,2-Dichloropropane	ND	ug/l	1.8					
Dibromochloromethane	ND	ug/l	0.50					
1,1,2-Trichloroethane	ND	ug/l	0.75					
Tetrachloroethene	1.3	ug/l	0.50					
Chlorobenzene	ND	ug/l	0.50					
Trichlorofluoromethane	ND	ug/l	2.5					
1,2-Dichloroethane	ND	ug/l	0.50					
1,1,1-Trichloroethane	ND	ug/l	0.50					

Laboratory Sample Number: L0814755-10

DIFFW-100

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Volatile Organics by EPA 826	OR contid			1	8260B		1009 23:5	4 DD
Bromodichloromethane	ND	ug/l	0.50	1	0200B		1009 23.3	4 PD
trans-1,3-Dichloropropene	ND ND	ug/l ug/l	0.50					
	ND ND		0.50					
cis-1,3-Dichloropropene	ND ND	ug/l	2.5					
l,1-Dichloropropene Bromoform	ND ND	ug/l	2.0					
		ug/l						
1,1,2,2-Tetrachloroethane Benzene	ND ND	ug/l	0.50					
Foluene		ug/l	0.50 0.75					
	ND	ug/l						
Ethylbenzene Chloromethane	ND	ug/l	0.50					
	ND	ug/l	2.5					
Bromomethane	ND	ug/l	1.0					
/inyl chloride	1.6	ug/l	1.0					
Chloroethane	ND	ug/l	1.0					
l,1-Dichloroethene	ND	ug/l	0.50					
rans-1,2-Dichloroethene	ND	ug/l	0.75					
Trichloroethene	2.3	ug/l	0.50					
1,2-Dichlorobenzene	ND	ug/l	2.5					
1,3-Dichlorobenzene	ND	ug/l	2.5					
,4-Dichlorobenzene	ND	ug/l	2.5					
Methyl tert butyl ether	8.0	ug/l	1.0					
o/m-Xylene	ND	ug/l	1.0					
o-Xylene	ND	ug/l	1.0					
cis-1,2-Dichloroethene	32	ug/l	0.50					
Dibromomethane	ND	ug/l	5.0					
,2,3-Trichloropropane	ND	ug/l	5.0					
Acrylonitrile	ND	ug/l	5.0					
Styrene	ND	ug/l	1.0					
Dichlorodifluoromethane	ND	ug/l	5.0					
Acetone	ND	ug/l	5.0					
Carbon disulfide	ND	ug/l	5.0					
2-Butanone	ND	ug/l	5.0					
<i>I</i> inyl acetate	ND	ug/l	5.0					
l-Methyl-2-pentanone	ND	ug/l	5.0					
2-Hexanone	ND	ug/l	5.0					
Bromochloromethane	ND	ug/l	2.5					
2,2-Dichloropropane	ND	ug/l	2.5					
,2-Dibromoethane	ND	ug/l	2.0					
l,3-Dichloropropane	ND	ug/l	2.5					
,1,1,2-Tetrachloroethane	ND	ug/l	0.50					
Bromobenzene	ND	ug/l	2.5					
ı-Butylbenzene	ND	ug/l	0.50					
sec-Butylbenzene	ND	ug/l	0.50					
ert-Butylbenzene	ND	ug/l	2.5					
-Chlorotoluene	ND	ug/l	2.5					
-Chlorotoluene	ND	ug/l	2.5					
,2-Dibromo-3-chloropropane	ND	ug/l	2.5					
Hexachlorobutadiene	ND	ug/l	0.60					
Isopropylbenzene	ND	ug/l	0.50					
o-Isopropyltoluene	ND	ug/l	0.50					

Laboratory Sample Number: L0814755-10

DIFFW-100

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
7-1-1-1- 0	OD							
Volatile Organics by EPA 826		/7	2 -	1	8260B		1009 23:	54 PD
Naphthalene	ND	ug/l	2.5					
n-Propylbenzene	ND	ug/l	0.50					
1,2,3-Trichlorobenzene	ND	ug/l	2.5					
1,2,4-Trichlorobenzene	ND	ug/l	2.5					
1,3,5-Trimethylbenzene	ND	ug/l	2.5					
1,2,4-Trimethylbenzene	ND	ug/l	2.5					
1,4-Diethylbenzene	ND	ug/l	2.0					
4-Ethyltoluene	ND	ug/l	2.0					
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0					
Surrogate(s)	Recovery		QC Cr		a.			
1,2-Dichloroethane-d4	106	8	70-13					
Toluene-d8	101	&	70-13					
4-Bromofluorobenzene	106	8	70-13					
Dibromofluoromethane	98.0	%	70-13	0				
Semivolatile Organics by EPA	8270C			1	8270C	1008 00:45	1010 17:	31 PS
Acenaphthene	ND	ug/l	5.0					
l,2,4-Trichlorobenzene	ND	ug/1	5.0					
Hexachlorobenzene	ND	ug/l	5.0					
Bis(2-chloroethyl)ether	ND	ug/l	5.0					
2-Chloronaphthalene	ND	ug/l	6.0					
l,2-Dichlorobenzene	ND	ug/l	5.0					
l,3-Dichlorobenzene	ND	ug/l	5.0					
l,4-Dichlorobenzene	ND	ug/l	5.0					
3,3'-Dichlorobenzidine	ND	ug/l	50.					
2,4-Dinitrotoluene	ND	ug/l	6.0					
2,6-Dinitrotoluene	ND	ug/l	5.0					
Fluoranthene	ND	ug/l	5.0					
4-Chlorophenyl phenyl ether	ND	ug/l	5.0					
4-Bromophenyl phenyl ether	ND	ug/l	5.0					
Bis(2-chloroisopropyl)ether	ND	ug/l	5.0					
Bis(2-chloroethoxy)methane	ND	ug/l	5.0					
Hexachlorobutadiene	ND	ug/l	10.					
Hexachlorocyclopentadiene	ND	ug/l	30.					
Hexachloroethane	ND	ug/l	5.0					
Isophorone	ND	ug/l	5.0					
Naphthalene	ND	ug/l	5.0					
Nitrobenzene	ND	ug/l	5.0					
NitrosoDiPhenylAmine(NDPA)/D	PA ND	ug/l	15.					
n-Nitrosodi-n-propylamine	ND	ug/l	5.0					
Bis(2-Ethylhexyl)phthalate	ND	ug/l	5.0					
Butyl benzyl phthalate	ND	ug/l	5.0					
Di-n-butylphthalate	ND	ug/l	5.0					
Di-n-octylphthalate	ND	ug/l	5.0					
Diethyl phthalate	ND	ug/l	5.0					
Dimethyl phthalate	ND	ug/l	5.0					
Benzo(a)anthracene	ND	ug/l	5.0					
Benzo(a)pyrene	ND	ug/l	5.0					

Laboratory Sample Number: L0814755-10

DIFFW-100

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA PREP	TE ANAL	ID
	0.0000						
Semivolatile Organics by EPA				1 8270C	1008 00:45	1010 17:3	B1 PS
Benzo(b)fluoranthene	ND	ug/l	5.0				
Benzo(k)fluoranthene	ND	ug/l	5.0				
Chrysene	ND	ug/1	5.0				
Acenaphthylene	ND	ug/1	5.0				
Anthracene	ND	ug/1	5.0				
Benzo(ghi)perylene	ND	ug/1	5.0				
Fluorene	ND	ug/1	5.0				
Phenanthrene	ND	ug/1	5.0				
Dibenzo(a,h)anthracene	ND	ug/l	5.0				
Indeno(1,2,3-cd)Pyrene	ND	ug/l	7.0				
Pyrene	ND	ug/l	5.0				
Biphenyl	ND	ug/l	5.0				
4-Chloroaniline	ND	ug/l	5.0				
2-Nitroaniline	ND	ug/l	5.0				
3-Nitroaniline	ND	ug/l	5.0				
4-Nitroaniline	ND	ug/1 ug/l	7.0				
Dibenzofuran	ND		5.0				
		ug/l					
2-Methylnaphthalene	ND	ug/l	5.0				
1,2,4,5-Tetrachlorobenzene	ND	ug/l	20.				
Acetophenone	ND	ug/l	20.				
2,4,6-Trichlorophenol	ND	ug/l	5.0				
P-Chloro-M-Cresol	ND	ug/l	5.0				
2-Chlorophenol	ND	ug/l	6.0				
2,4-Dichlorophenol	ND	ug/1	10.				
2,4-Dimethylphenol	ND	ug/1	10.				
2-Nitrophenol	ND	ug/l	20.				
4-Nitrophenol	ND	ug/1	10.				
2,4-Dinitrophenol	ND	ug/1	30.				
4,6-Dinitro-o-cresol	ND	ug/1	20.				
Pentachlorophenol	ND	ug/l	10.				
Phenol	ND	ug/l	7.0				
2-Methylphenol	ND	ug/l	6.0				
3-Methylphenol/4-Methylphenol		ug/l	6.0				
2,4,5-Trichlorophenol	ND	ug/l	5.0				
Benzoic Acid	ND	ug/l	50.				
Benzyl Alcohol	ND	ug/1 ug/l	10.				
Carbazole	ND	ug/l ug/l	5.0				
Surrogate(s)	Recovery		0C C~	iteria			
2-Fluorophenol	51.0	%	21-12				
Phenol-d6	33.0	6 %	10-12				
Phenoi-ab Nitrobenzene-d5							
	73.0	%	23-12				
2-Fluorobiphenyl	76.0	%	43-12				
2,4,6-Tribromophenol 4-Terphenyl-d14	115 98.0	%	10-12 33-12				
Semivolatile Organics by EPA	8270C-SIM			1 8270C	1008 00:45	1011 05:4	4 AK
Acenaphthene	ND	ug/l	0.20	_ 02.00			
2-Chloronaphthalene	ND	ug/l	0.20				
z-curoronapucharene	עוא	ug/I	0.20				

Laboratory Sample Number: L0814755-10

DIFFW-100

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Semivolatile Organics by EPA	8270C_STM	contid		1	8270C	1008 00:45	1011 05.4	4 av
Fluoranthene	ND	ug/l	0.20	1	82700	1008 00.45	1011 05.4	4 AK
Hexachlorobutadiene	ND ND	ug/l ug/l	0.50					
Naphthalene	ND	ug/l	0.20					
Benzo(a)anthracene	ND	ug/l	0.20					
Benzo(a)pyrene	ND	ug/l	0.20					
Benzo(b)fluoranthene	ND	ug/l	0.20					
Benzo(k)fluoranthene	ND	ug/l	0.20					
Chrysene	ND	ug/l	0.20					
Acenaphthylene	ND	ug/l	0.20					
Anthracene	ND	ug/l	0.20					
Benzo(ghi)perylene	ND	ug/l	0.20					
Fluorene	ND	ug/l	0.20					
Phenanthrene	ND ND	ug/1 ug/l	0.20					
Dibenzo(a,h)anthracene	ND ND	ug/l ug/l	0.20					
Indeno(1,2,3-cd)Pyrene	ND	ug/l	0.20					
Pyrene	ND ND	ug/l ug/l	0.20					
2-Methylnaphthalene	ND	ug/l	0.20					
Pentachlorophenol	ND	ug/l	0.80					
Hexachlorobenzene	ND ND	ug/l ug/l	0.80					
Hexachloroethane	ND	ug/l	0.80					
nexaciiioi decilalle	ND	ug/1	0.00					
Surrogate(s)	Recovery		QC Cri	iteri	a			
2-Fluorophenol	48.0	%	21-120					
Phenol-d6	35.0	%	10-120					
Nitrobenzene-d5	76.0	%	23-120)				
2-Fluorobiphenyl	74.0	%	43-120					
2,4,6-Tribromophenol	95.0	%	10-120)				
4-Terphenyl-d14	89.0	%	33-120					
Polychlorinated Biphenyls by	EDV 8U83			1	8082	1008 02:30	1000 17:0	6 00
Aroclor 1016	ND	ug/l	0.100	1	8082	1008 02.30	1009 17:00	0 33
Aroclor 1221	ND	ug/l	0.100					
Aroclor 1232	ND	ug/l	0.100					
Aroclor 1232 Aroclor 1242	ND	ug/l	0.100					
Aroclor 1248	ND	ug/l	0.100					
Aroclor 1246 Aroclor 1254	ND	ug/l	0.100					
Aroclor 1254 Aroclor 1260	ND	ug/l	0.100					
-		J / =	,					
Surrogate(s)	Recovery		QC Cri	iteri	a			
2,4,5,6-Tetrachloro-m-xylene	53.0	왕	30-150)				
Decachlorobiphenyl	79.0	%	30-150)				
Organochlorine Pesticides by	EPA 8081A			1	8081A	1008 05:00	1009 14:0	5 JB
Delta-BHC	ND	ug/l	0.023					
Lindane	ND	ug/l	0.023					
Alpha-BHC	ND	ug/l	0.023					
Beta-BHC	ND	ug/l	0.023					
Heptachlor	ND	ug/l	0.023					
Aldrin	ND	ug/l	0.023					
TAT III	עווע	ug/I	0.043					

Laboratory Sample Number: L0814755-10

DIFFW-100

PARAMETER	RESULT	UNITS	RDL R	EF METHOD	DA PREP	TE ANAL	ID
	0001z						
Organochlorine Pesticides by				1 8081A	1008 05:00	1009 14:09	5 JB
Heptachlor epoxide	ND	ug/l	0.023				
Endrin	ND	ug/l	0.045				
Endrin ketone	ND	ug/l	0.045				
Dieldrin	ND	ug/l	0.045				
4,4'-DDE	ND	ug/l	0.045				
4,4'-DDD	ND	ug/l	0.045				
4,4'-DDT	ND	ug/l	0.045				
Endosulfan I	ND	ug/l	0.023				
Endosulfan II	ND	ug/l	0.045				
Endosulfan sulfate	ND	ug/l	0.045				
Methoxychlor	ND	ug/l	0.227				
trans-Chlordane	ND	ug/l	0.023				
Chlordane	ND	ug/l	0.227				
Surrogate(s)	Recovery		QC Crite	ria			
2,4,5,6-Tetrachloro-m-xylene	73.0	%	30-150				
Decachlorobiphenyl	96.0	%	30-150				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0814755-11 Date Collected: 03-OCT-2008 14:15

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 6-Amber, 1-Plastic, 2-Vial

Sample Matrix:

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DAT PREP	'E ANAL	ID
						PREP	ANAL	
Total Metals								
Aluminum, Total	ND	mg/l	0.10	1	6010B	1007 11:00 1	1010 13:29	9 AI
Antimony, Total	ND	mg/1	0.050	1	6010B	1007 11:00 1	1010 13:29	9 AI
Arsenic, Total	ND	mg/1	0.005	1	6010B	1007 11:00 1	1010 13:29	9 AI
Barium, Total	ND	mg/1	0.010	1	6010B	1007 11:00 1	1010 13:29) AI
Beryllium, Total	ND	mg/1	0.005	1	6010B	1007 11:00 1	1010 13:29) AI
Cadmium, Total	ND	mg/1	0.005	1	6010B	1007 11:00 1	1010 13:29) AI
Calcium, Total	ND	mg/1	0.10	1	6010B	1007 11:00 1	1010 13:29	9 AI
Chromium, Total	ND	mg/1	0.01	1	6010B	1007 11:00 1	1010 13:29) AI
Cobalt, Total	ND	mg/1	0.020	1	6010B	1007 11:00 1	1010 13:29	AI
Copper, Total	ND	mg/l	0.010	1	6010B	1007 11:00 1	1010 13:29	AI
Iron, Total	ND	mg/l	0.05	1	6010B	1007 11:00 1	1010 13:29	AI
Lead, Total	ND	mq/1	0.010	1	6010B	1007 11:00 1	1010 13:29	9 AI
Magnesium, Total	ND	mg/l	0.10	1	6010B	1007 11:00 1	1010 13:29	9 AI
Manganese, Total	ND	mg/l	0.010	1	6010B	1007 11:00 1	1010 13:29) AI
Mercury, Total	ND	mg/l	0.0002	1	7470A	1007 22:00 1		
Nickel, Total	ND	mq/1	0.025	1	6010B	1007 11:00 1	1010 13:29) AI
Potassium, Total	ND	mg/l	2.5	1	6010B	1007 11:00 1	1010 13:29	9 AI
Selenium, Total	ND	mg/l	0.010	1	6010B	1007 11:00 1		
Silver, Total	ND	mg/l	0.007	1	6010B	1007 11:00 1	1010 13:29) AI
Sodium, Total	ND	mg/l	2.0	1	6010B	1007 11:00 1	1010 13:29) AI
Thallium, Total	ND	mq/l	0.020	1	6010B	1007 11:00 1	1010 13:29) AI
Vanadium, Total	ND	mq/1	0.010	1	6010B	1007 11:00 1		
Zinc, Total	ND	mg/l	0.050	1	6010B	1007 11:00 1		
Volatile Organics by EPA 8	260B			1	8260B	1	1010 00:30) PD
Methylene chloride	ND	ug/1	5.0					
1,1-Dichloroethane	ND	ug/1	0.75					
Chloroform	ND	ug/1	0.75					
Carbon tetrachloride	ND	ug/l	0.50					
1,2-Dichloropropane	ND	ug/1	1.8					
Dibromochloromethane	ND	ug/1	0.50					
1,1,2-Trichloroethane	ND	ug/l	0.75					
Tetrachloroethene	ND	ug/l	0.50					
Chlorobenzene	ND	ug/l	0.50					
Trichlorofluoromethane	ND	ug/l	2.5					
1,2-Dichloroethane	ND	ug/l	0.50					
1,1,1-Trichloroethane	ND	ug/l	0.50					

Laboratory Sample Number: L0814755-11

FB100308-01

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Olatile Organics by EPA 826	OB cont'd			1	8260B		1010 00:3	30 PD
Bromodichloromethane	ND	ug/l	0.50					
rans-1,3-Dichloropropene	ND	ug/l	0.50					
cis-1,3-Dichloropropene	ND	ug/l	0.50					
l,1-Dichloropropene	ND	ug/l	2.5					
Bromoform	ND	ug/l	2.0					
,1,2,2-Tetrachloroethane	ND	ug/l	0.50					
Benzene	ND	ug/l	0.50					
Coluene	ND	ug/l	0.75					
Sthylbenzene	ND	ug/l	0.50					
hloromethane	ND	ug/l	2.5					
romomethane	ND	ug/l	1.0					
inyl chloride	ND	ug/l	1.0					
hloroethane	ND	ug/l	1.0					
,1-Dichloroethene	ND	ug/l	0.50					
rans-1,2-Dichloroethene	ND	ug/l	0.75					
richloroethene	ND	ug/l	0.50					
,2-Dichlorobenzene	ND	ug/l	2.5					
,3-Dichlorobenzene	ND	ug/l	2.5					
,4-Dichlorobenzene	ND	ug/l	2.5					
ethyl tert butyl ether	ND	ug/l	1.0					
/m-Xylene	ND	ug/l	1.0					
-Xylene	ND	ug/l	1.0					
is-1,2-Dichloroethene	ND	ug/l	0.50					
ibromomethane	ND	ug/l	5.0					
,2,3-Trichloropropane	ND	ug/l	5.0					
crylonitrile	ND	ug/l	5.0					
tyrene	ND	ug/l	1.0					
oichlorodifluoromethane	ND	ug/l	5.0					
cetone	ND	ug/l	5.0					
arbon disulfide	ND	ug/l	5.0					
-Butanone	ND	ug/l	5.0					
inyl acetate	ND	ug/l	5.0					
-Methyl-2-pentanone	ND	ug/l	5.0					
-Hexanone	ND	ug/l	5.0					
romochloromethane	ND		2.5					
,2-Dichloropropane	ND ND	ug/l ug/l	2.5					
,2-Dibromoethane	ND ND	ug/l ug/l	2.0					
,3-Dichloropropane	ND ND	ug/l ug/l	2.5					
,,1,1,2-Tetrachloroethane	ND ND	_	2.5 0.50					
romobenzene		ug/l	2.5					
romopenzene Butylbenzene	ND ND	ug/l	2.5 0.50					
		ug/l						
ec-Butylbenzene	ND	ug/l	0.50					
ert-Butylbenzene	ND	ug/l	2.5					
-Chlorotoluene	ND	ug/l	2.5					
-Chlorotoluene	ND	ug/l	2.5					
,2-Dibromo-3-chloropropane	ND	ug/l	2.5					
exachlorobutadiene	ND	ug/l	0.60					
sopropylbenzene	ND	ug/l	0.50					
-Isopropyltoluene	ND	ug/l	0.50					

Laboratory Sample Number: L0814755-11

FB100308-01

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Volatile Organics by EPA 8260				1	8260B		1010 00:	30 PD
Naphthalene	ND	ug/l	2.5					
n-Propylbenzene	ND	ug/l	0.50					
1,2,3-Trichlorobenzene	ND	ug/l	2.5					
1,2,4-Trichlorobenzene	ND	ug/l	2.5					
1,3,5-Trimethylbenzene	ND	ug/l	2.5					
1,2,4-Trimethylbenzene	ND	ug/l	2.5					
1,4-Diethylbenzene	ND	ug/l	2.0					
4-Ethyltoluene	ND	ug/l	2.0					
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0					
Surrogate(s)	Recovery		QC Cr		Э			
1,2-Dichloroethane-d4	107	%	70-13					
Toluene-d8	101	%	70-13					
4-Bromofluorobenzene	106	%	70-13	0				
Dibromofluoromethane	97.0	%	70-13	0				
Semivolatile Organics by EPA	8270C			1	8270C	1008 00:45	1010 17:	54 PS
Acenaphthene	ND	ug/l	5.0					
1,2,4-Trichlorobenzene	ND	ug/l	5.0					
Hexachlorobenzene	ND	ug/l	5.0					
Bis(2-chloroethyl)ether	ND	ug/l	5.0					
2-Chloronaphthalene	ND	ug/l	6.0					
1,2-Dichlorobenzene	ND	ug/l	5.0					
1,3-Dichlorobenzene	ND	ug/l	5.0					
1,4-Dichlorobenzene	ND	ug/l	5.0					
3,3'-Dichlorobenzidine	ND	ug/l	50.					
2,4-Dinitrotoluene	ND	ug/l	6.0					
2,6-Dinitrotoluene	ND	ug/l	5.0					
Fluoranthene	ND	ug/l	5.0					
4-Chlorophenyl phenyl ether	ND	ug/l	5.0					
4-Bromophenyl phenyl ether	ND	ug/l	5.0					
Bis(2-chloroisopropyl)ether	ND	ug/l	5.0					
Bis(2-chloroethoxy)methane	ND	ug/l	5.0					
Hexachlorobutadiene	ND	ug/l	10.					
Hexachlorocyclopentadiene	ND	ug/l	30.					
Hexachloroethane	ND	ug/l	5.0					
Isophorone	ND	ug/l	5.0					
Naphthalene	ND	ug/l	5.0					
Nitrobenzene	ND	ug/l	5.0					
NitrosoDiPhenylAmine(NDPA)/DB	PA ND	ug/l	15.					
n-Nitrosodi-n-propylamine	ND	ug/l	5.0					
Bis(2-Ethylhexyl)phthalate	ND	ug/l	5.0					
Butyl benzyl phthalate	ND	ug/l	5.0					
Di-n-butylphthalate	ND	ug/l	5.0					
Di-n-octylphthalate	ND	ug/l	5.0					
Diethyl phthalate	ND	ug/l	5.0					
Dimethyl phthalate	ND	ug/l	5.0					
Benzo(a)anthracene	ND	ug/l	5.0					
Benzo(a)pyrene	ND	ug/l	5.0					

Laboratory Sample Number: L0814755-11

FB100308-01

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA PREP	TE ANAL	ID
	20709						
Semivolatile Organics by EPA				1 8270C	1008 00:45	1010 17:	54 PS
Benzo(b)fluoranthene	ND	ug/l	5.0				
Benzo(k)fluoranthene	ND	ug/l	5.0				
Chrysene	ND	ug/1	5.0				
Acenaphthylene	ND	ug/l	5.0				
Anthracene	ND	ug/l	5.0				
Benzo(ghi)perylene	ND	ug/l	5.0				
Fluorene	ND	ug/l	5.0				
Phenanthrene	ND	ug/1	5.0				
Dibenzo(a,h)anthracene	ND	ug/l	5.0				
Indeno(1,2,3-cd)Pyrene	ND	ug/l	7.0				
Pyrene	ND	ug/l	5.0				
Biphenyl	ND	ug/l	5.0				
4-Chloroaniline	ND	ug/l	5.0				
2-Nitroaniline	ND	ug/l	5.0				
3-Nitroaniline	ND	ug/l	5.0				
4-Nitroaniline	ND	ug/l	7.0				
Dibenzofuran	ND	ug/l	5.0				
2-Methylnaphthalene	ND	ug/l	5.0				
1,2,4,5-Tetrachlorobenzene	ND	ug/l	20.				
Acetophenone			20.				
-	ND	ug/l					
2,4,6-Trichlorophenol	ND	ug/l	5.0				
P-Chloro-M-Cresol	ND	ug/l	5.0				
2-Chlorophenol	ND	ug/l	6.0				
2,4-Dichlorophenol	ND	ug/l	10.				
2,4-Dimethylphenol	ND	ug/l	10.				
2-Nitrophenol	ND	ug/l	20.				
4-Nitrophenol	ND	ug/l	10.				
2,4-Dinitrophenol	ND	ug/1	30.				
4,6-Dinitro-o-cresol	ND	ug/l	20.				
Pentachlorophenol	ND	ug/1	10.				
Phenol	ND	ug/1	7.0				
2-Methylphenol	ND	ug/l	6.0				
3-Methylphenol/4-Methylphenol	ND	ug/l	6.0				
2,4,5-Trichlorophenol	ND	ug/l	5.0				
Benzoic Acid	ND	ug/l	50.				
Benzyl Alcohol	ND	ug/l	10.				
Carbazole	ND	ug/l	5.0				
Surrogate(s)	Recovery		QC Cr	iteria			
2-Fluorophenol	49.0	%	21-12				
Phenol-d6	33.0	%	10-12				
Nitrobenzene-d5	63.0	%	23-12				
2-Fluorobiphenyl	62.0	%	43-12				
2,4,6-Tribromophenol	95.0	%	10-12				
4-Terphenyl-d14	86.0	%	33-12				
Semivolatile Organics by EPA	8270C-SIM			1 8270C	1008 00:45	1011 06:	30 AK
Acenaphthene	ND	ug/l	0.20				
-		-					

Laboratory Sample Number: L0814755-11

FB100308-01

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Semivolatile Organics by EPA	9270C_GTM	contid		1	8270C	1008 00:45	1011 06.3	0.75
Fluoranthene	ND		0.20	1	8270C	1008 00.45	1011 06.3	J AK
Fluoranthene Hexachlorobutadiene		ug/l	0.20					
	ND	ug/l						
Naphthalene	ND	ug/l	0.20 0.20					
Benzo(a)anthracene	ND	ug/l	0.20					
Benzo(a)pyrene Benzo(b)fluoranthene	ND	ug/l	0.20					
Benzo(b):Tuoranthene Benzo(k)fluoranthene	ND	ug/l	0.20					
()	ND	ug/l						
Chrysene	ND	ug/l	0.20					
Acenaphthylene	ND	ug/l	0.20					
Anthracene	ND	ug/l	0.20					
Benzo(ghi)perylene	ND	ug/l	0.20					
Fluorene	ND	ug/l	0.20					
Phenanthrene	ND	ug/l	0.20					
Dibenzo(a,h)anthracene	ND	ug/l	0.20					
Indeno(1,2,3-cd)Pyrene	ND	ug/l	0.20					
Pyrene	ND	ug/l	0.20					
2-Methylnaphthalene	ND	ug/l	0.20					
Pentachlorophenol	ND	ug/l	0.80					
Hexachlorobenzene	ND	ug/l	0.80					
Hexachloroethane	ND	ug/l	0.80					
Surrogate(s)	Recovery		QC Cri	teria	a			
2-Fluorophenol	49.0	%	21-120	1				
Phenol-d6	37.0	%	10-120					
Nitrobenzene-d5	70.0	%	23-120	1				
2-Fluorobiphenyl	67.0	%	43-120	1				
2,4,6-Tribromophenol	83.0	%	10-120	1				
4-Terphenyl-d14	83.0	%	33-120					
Polychlorinated Biphenyls by	EPA 8082			1	8082	1008 02:30	1009 17:1	9 SS
Aroclor 1016	ND	ug/l	0.100					
Aroclor 1221	ND	ug/l	0.100					
Aroclor 1232	ND	ug/l	0.100					
Aroclor 1242	ND	ug/l	0.100					
Aroclor 1248	ND	ug/l	0.100					
Aroclor 1254	ND	ug/l	0.100					
Aroclor 1260	ND	ug/l	0.100					
Surrogate(s)	Recovery		QC Cri	tari	a			
		9.			a			
2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl	61.0 99.0	olo olo	30-150 30-150					
becaciiioi obipileliyi	JJ.U	6	20-120	1				
Organochlorine Pesticides by				1	8081A	1008 05:00	1009 14:1	8 JB
Delta-BHC	ND	ug/l	0.026					
Lindane	ND	ug/l	0.026					
Alpha-BHC	ND	ug/l	0.026					
Beta-BHC	ND	ug/l	0.026					
Heptachlor	ND	ug/l	0.026					
Aldrin	ND	ug/l	0.026					

Laboratory Sample Number: L0814755-11

FB100308-01

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA PREP	TE ID	
Organochlorine Pesticides by				1 8081A	1008 05:00	1009 14:18 JB	
Heptachlor epoxide	ND	ug/l	0.026				
Endrin	ND	ug/l	0.053				
Endrin ketone	ND	ug/l	0.053				
Dieldrin	ND	ug/l	0.053				
4,4'-DDE	ND	ug/l	0.053				
4,4'-DDD	ND	ug/l	0.053				
4,4'-DDT	ND	ug/l	0.053				
Endosulfan I	ND	ug/l	0.026				
Endosulfan II	ND	ug/l	0.053				
Endosulfan sulfate	ND	ug/l	0.053				
Methoxychlor	ND	ug/l	0.263				
trans-Chlordane	ND	ug/l	0.026				
Chlordane	ND	ug/l	0.263				
Surrogate(s)	Recovery		QC Crit	eria			
2,4,5,6-Tetrachloro-m-xylene	71.0	8	30-150				
Decachlorobiphenyl	75.0	%	30-150				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0814755-12 Date Collected: 03-OCT-2008 13:40

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

Sample Matrix:

	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 82	60B			1 8260B	1010 01:06 PD
Methylene chloride	ND	ug/l	5.0	1 02005	1010 01.00 FD
1,1-Dichloroethane	ND	ug/l	0.75		
Chloroform	ND	ug/l	0.75		
Carbon tetrachloride	ND	ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75		
Tetrachloroethene	ND	ug/l	0.50		
Chlorobenzene	ND	ug/1 ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/1 ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND ND	ug/l	0.50		
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND ND	ug/1 ug/l	0.75		
Chloromethane	ND ND	ug/1 ug/l	2.5		
Bromomethane	ND ND	ug/l ug/l	1.0		
Vinyl chloride	ND ND	ug/l	1.0		
Chloroethane	ND	ug/1 ug/l	1.0		
1,1-Dichloroethene	ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND ND	ug/1 ug/l	0.75		
Trichloroethene	ND ND	ug/l ug/l	0.75		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/1 ug/l	2.5		
1,4-Dichlorobenzene	ND ND	ug/1 ug/l	2.5		
Methyl tert butyl ether	ND	ug/1 ug/l	1.0		
o/m-Xylene	ND ND	ug/1 ug/l	1.0		
o-Xylene	ND ND	ug/l ug/l	1.0		
cis-1,2-Dichloroethene	ND ND	ug/l ug/l	0.50		
Dibromomethane	ND ND	_	5.0		
		ug/l	5.0		
1,2,3-Trichloropropane Acrylonitrile	ND ND	ug/l ug/l	5.0		

Laboratory Sample Number: L0814755-12

TB100308-01

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Volatile Organics by EPA 826	OB cont'd			1	8260B		1010 01:0)6 PD
Styrene	ND	ug/l	1.0					
Dichlorodifluoromethane	ND	ug/l	5.0					
Acetone	ND	ug/l	5.0					
Carbon disulfide	ND	ug/l	5.0					
2-Butanone	ND	ug/l	5.0					
Vinyl acetate	ND	ug/l	5.0					
4-Methyl-2-pentanone	ND	ug/l	5.0					
2-Hexanone	ND	ug/l	5.0					
Bromochloromethane	ND	ug/l	2.5					
2,2-Dichloropropane	ND	ug/l	2.5					
1,2-Dibromoethane	ND	ug/l	2.0					
1,3-Dichloropropane	ND	ug/l	2.5					
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50					
Bromobenzene	ND	ug/l	2.5					
n-Butylbenzene	ND	ug/l	0.50					
sec-Butylbenzene	ND	ug/l	0.50					
tert-Butylbenzene	ND	ug/l	2.5					
o-Chlorotoluene	ND	ug/l	2.5					
p-Chlorotoluene	ND	ug/l	2.5					
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5					
Hexachlorobutadiene	ND	ug/l	0.60					
Isopropylbenzene	ND	ug/l	0.50					
p-Isopropyltoluene	ND	ug/l	0.50					
Naphthalene	ND	ug/l	2.5					
n-Propylbenzene	ND	ug/l	0.50					
1,2,3-Trichlorobenzene	ND	ug/l	2.5					
1,2,4-Trichlorobenzene	ND	ug/l	2.5					
1,3,5-Trimethylbenzene	ND	ug/l	2.5					
1,2,4-Trimethylbenzene	ND	ug/l	2.5					
1,4-Diethylbenzene	ND	ug/l	2.0					
4-Ethyltoluene	ND	ug/l	2.0					
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0					
Surrogate(s)	Recovery		QC Crit	teria	L			
1,2-Dichloroethane-d4	108	%	70-130					
Toluene-d8	101	%	70-130					
4-Bromofluorobenzene	108	%	70-130					
Dibromofluoromethane	97.0	%	70-130					

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0814755-13 Date Collected: 03-OCT-2008 13:45

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

Sample Matrix:

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 82	260B			1 8260B	1010 01:42 PD
Methylene chloride	ND	ug/l	5.0		
1,1-Dichloroethane	ND	ug/l	0.75		
Chloroform	ND	ug/l	0.75		
Carbon tetrachloride	ND	ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75		
Tetrachloroethene	ND	ug/l	0.50		
Chlorobenzene	ND	ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND	ug/l	0.50		
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50		
Chloromethane	ND	ug/l	2.5		
Bromomethane	ND	ug/l	1.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	1.0		
1,1-Dichloroethene	ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/l	0.75		
Trichloroethene	ND	ug/l	0.50		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/l	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	ND	ug/l	0.50		
Dibromomethane	ND	ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/l	5.0		
Acrylonitrile	ND	ug/l	5.0		

Laboratory Sample Number: L0814755-13

TB100308-02

PARAMETER	RESULT	UNITS	RDL	REF METHO		ID NAL
Volatile Organics by EPA 826	OB cont'd			1 8260B	1010	01:42 PD
Styrene	ND	ug/l	1.0	1 02005	1010	01-12-15
Dichlorodifluoromethane	ND	ug/l	5.0			
Acetone	ND	ug/l	5.0			
Carbon disulfide	ND	ug/l	5.0			
2-Butanone	ND	ug/l	5.0			
Vinyl acetate	ND	ug/l	5.0			
4-Methyl-2-pentanone	ND	ug/l	5.0			
2-Hexanone	ND	ug/l	5.0			
Bromochloromethane	ND	ug/l	2.5			
2,2-Dichloropropane	ND	ug/l	2.5			
1,2-Dibromoethane	ND	ug/l	2.0			
1,3-Dichloropropane	ND	ug/l	2.5			
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50			
Bromobenzene	ND	ug/l	2.5			
n-Butylbenzene	ND	ug/l	0.50			
sec-Butylbenzene	ND	ug/l	0.50			
tert-Butylbenzene	ND	ug/l	2.5			
o-Chlorotoluene	ND	ug/l	2.5			
p-Chlorotoluene	ND	ug/l	2.5			
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5			
Hexachlorobutadiene	ND	ug/l	0.60			
Isopropylbenzene	ND	ug/l	0.50			
p-Isopropyltoluene	ND	ug/l	0.50			
Naphthalene	ND	ug/l	2.5			
n-Propylbenzene	ND	ug/l	0.50			
1,2,3-Trichlorobenzene	ND	ug/l	2.5			
1,2,4-Trichlorobenzene	ND	ug/l	2.5			
1,3,5-Trimethylbenzene	ND	ug/l	2.5			
1,2,4-Trimethylbenzene	ND	ug/l	2.5			
1,4-Diethylbenzene	ND	ug/l	2.0			
4-Ethyltoluene	ND	ug/l	2.0			
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0			
Surrogate(s)	Recovery		QC Crit	teria		
1,2-Dichloroethane-d4	108	%	70-130			
Toluene-d8	99.0	%	70-130			
4-Bromofluorobenzene	107	%	70-130			
Dibromofluoromethane	97.0	%	70-130			

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0814755-14 Date Collected: 06-OCT-2008 13:55

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

Sample Matrix:

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 820	50B			1 8260B	1010 02:19 PD
Methylene chloride	ND	ug/l	5.0	1 0200B	1010 02:19 PD
1,1-Dichloroethane	ND ND	ug/l	0.75		
Chloroform	ND ND	ug/1 ug/l	0.75		
Carbon tetrachloride	ND	ug/1 ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75		
Tetrachloroethene	ND	ug/l	0.50		
Chlorobenzene	ND	ug/l	0.50		
Trichlorofluoromethane	ND	ug/1	2.5		
1,2-Dichloroethane	ND	ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND	ug/l	0.50		
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50		
Chloromethane	ND	ug/l	2.5		
Bromomethane	ND	ug/l	1.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	1.0		
1,1-Dichloroethene	ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/l	0.75		
Trichloroethene	ND	ug/l	0.50		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/l	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	ND	ug/l	0.50		
Dibromomethane	ND	ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/l	5.0		
Acrylonitrile	ND	ug/l	5.0		

Laboratory Sample Number: L0814755-14

TB100608-03

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE I PREP ANAL	ID
Volatile Organics by EPA 826	ins contid			1 8260B	1010 02:19	חם
Styrene	ND	ug/l	1.0	1 0200B	1010 02-19	PD
Dichlorodifluoromethane	ND ND	ug/l	5.0			
Acetone	ND	ug/l	5.0			
Carbon disulfide	ND	ug/l	5.0			
2-Butanone	ND	ug/l	5.0			
Vinyl acetate	ND	ug/l	5.0			
4-Methyl-2-pentanone	ND	ug/l	5.0			
2-Hexanone	ND	ug/l	5.0			
Bromochloromethane	ND	ug/l	2.5			
2,2-Dichloropropane	ND	ug/l	2.5			
1,2-Dibromoethane	ND	ug/l	2.0			
1,3-Dichloropropane	ND	ug/l	2.5			
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50			
Bromobenzene	ND	ug/l	2.5			
n-Butylbenzene	ND	ug/l	0.50			
sec-Butylbenzene	ND	ug/l	0.50			
tert-Butylbenzene	ND	ug/l	2.5			
o-Chlorotoluene	ND	ug/l	2.5			
p-Chlorotoluene	ND	ug/l	2.5			
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5			
Hexachlorobutadiene	ND	ug/l	0.60			
Isopropylbenzene	ND	ug/l	0.50			
p-Isopropyltoluene	ND	ug/l	0.50			
Naphthalene	ND	ug/l	2.5			
n-Propylbenzene	ND	ug/l	0.50			
1,2,3-Trichlorobenzene	ND	ug/l	2.5			
1,2,4-Trichlorobenzene	ND	ug/l	2.5			
1,3,5-Trimethylbenzene	ND	ug/l	2.5			
1,2,4-Trimethylbenzene	ND	ug/l	2.5			
1,4-Diethylbenzene	ND	ug/l	2.0			
4-Ethyltoluene	ND	ug/l	2.0			
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0			
Surrogate(s)	Recovery		QC Crit	eria		
1,2-Dichloroethane-d4	108	%	70-130			
Toluene-d8	100	%	70-130			
4-Bromofluorobenzene	108	%	70-130			
Dibromofluoromethane	96.0	૪	70-130			

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0814755-15 Date Collected: 06-OCT-2008 13:55

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

Sample Matrix:

	RESULT	UNITS	RDL	REF METHOD	DATE :	ID
Volatile Organics by EPA 82	60B			1 8260B	1010 02:55	DD
Methylene chloride	ND	ug/l	5.0	1 02000	1010 02.55	ГD
1,1-Dichloroethane	ND	ug/l	0.75			
Chloroform	ND	ug/l	0.75			
Carbon tetrachloride	ND	ug/l	0.50			
1,2-Dichloropropane	ND	ug/l	1.8			
Dibromochloromethane	ND	ug/l	0.50			
1,1,2-Trichloroethane	ND ND	ug/l	0.75			
Tetrachloroethene	ND	ug/l	0.50			
Chlorobenzene	ND	ug/1 ug/l	0.50			
Trichlorofluoromethane	ND	ug/l	2.5			
1,2-Dichloroethane	ND	ug/1 ug/l	0.50			
1,1,1-Trichloroethane	ND	ug/l	0.50			
Bromodichloromethane	ND	ug/l	0.50			
trans-1,3-Dichloropropene	ND	ug/l	0.50			
cis-1,3-Dichloropropene	ND	ug/l	0.50			
1,1-Dichloropropene	ND	ug/l	2.5			
Bromoform	ND	ug/l	2.0			
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50			
Benzene	ND ND	ug/l	0.50			
Toluene	ND	ug/l	0.75			
Ethylbenzene	ND ND	ug/1 ug/l	0.75			
Chloromethane	ND ND	ug/1 ug/l	2.5			
Bromomethane	ND ND	ug/l ug/l	1.0			
Vinyl chloride	ND ND	ug/l	1.0			
Chloroethane	ND	ug/1 ug/l	1.0			
1,1-Dichloroethene	ND ND	ug/l	0.50			
trans-1,2-Dichloroethene	ND ND	ug/1 ug/l	0.75			
Trichloroethene	ND ND	ug/l ug/l	0.75			
1,2-Dichlorobenzene	ND	ug/l	2.5			
1,3-Dichlorobenzene	ND	ug/1 ug/l	2.5			
1,4-Dichlorobenzene	ND ND	ug/1 ug/l	2.5			
Methyl tert butyl ether	ND ND	_	1.0			
o/m-Xylene	ND ND	ug/l ug/l	1.0			
o-Xylene	ND ND	ug/l ug/l	1.0			
cis-1,2-Dichloroethene	ND ND	ug/l ug/l	0.50			
Dibromomethane	ND ND	_	5.0			
		ug/l	5.0			
1,2,3-Trichloropropane Acrylonitrile	ND ND	ug/l ug/l	5.0			

Laboratory Sample Number: L0814755-15

TB100608-04

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 826	OB contid			1 8260B	1010 02:55 PD
Styrene	ND	ug/l	1.0	1 02008	1010 02.33 PD
Dichlorodifluoromethane	ND	ug/l	5.0		
Acetone	ND	ug/l	5.0		
Carbon disulfide	ND	ug/l	5.0		
2-Butanone	ND	ug/l	5.0		
Vinyl acetate	ND	ug/l	5.0		
4-Methyl-2-pentanone	ND	ug/l	5.0		
2-Hexanone	ND	ug/l	5.0		
Bromochloromethane	ND	ug/l	2.5		
2,2-Dichloropropane	ND	ug/l	2.5		
1,2-Dibromoethane	ND	ug/l	2.0		
1,3-Dichloropropane	ND	ug/l	2.5		
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50		
Bromobenzene	ND	ug/l	2.5		
n-Butylbenzene	ND	ug/l	0.50		
sec-Butylbenzene	ND	ug/l	0.50		
tert-Butylbenzene	ND	ug/l	2.5		
o-Chlorotoluene	ND	ug/l	2.5		
p-Chlorotoluene	ND	ug/l	2.5		
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5		
Hexachlorobutadiene	ND	ug/l	0.60		
Isopropylbenzene	ND	ug/l	0.50		
p-Isopropyltoluene	ND	ug/l	0.50		
Naphthalene	ND	ug/l	2.5		
n-Propylbenzene	ND	ug/l	0.50		
1,2,3-Trichlorobenzene	ND	ug/l	2.5		
1,2,4-Trichlorobenzene	ND	ug/l	2.5		
1,3,5-Trimethylbenzene	ND	ug/l	2.5		
1,2,4-Trimethylbenzene	ND	ug/l	2.5		
1,4-Diethylbenzene	ND	ug/l	2.0		
4-Ethyltoluene	ND	ug/l	2.0		
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0		
Surrogate(s)	Recovery		QC Crit	teria	
1,2-Dichloroethane-d4	108	%	70-130		
Toluene-d8	101	8	70-130		
4-Bromofluorobenzene	106	8	70-130		
Dibromofluoromethane	95.0	%	70-130		

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0814755-16 Date Collected: 06-OCT-2008 13:55

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Vial

Sample Matrix:

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE I PREP ANAL	D
Volatile Organics by EPA 820	50B			1 8260B	1010 03:31 P	OD.
Methylene chloride	ND	ug/l	5.0	1 0200B	1010 03:31 P	ים
1,1-Dichloroethane	ND ND	ug/l	0.75			
Chloroform	ND ND	ug/1 ug/l	0.75			
Carbon tetrachloride	ND	ug/1 ug/l	0.50			
1,2-Dichloropropane	ND	ug/l	1.8			
Dibromochloromethane	ND	ug/l	0.50			
1,1,2-Trichloroethane	ND	ug/l	0.75			
Tetrachloroethene	ND	ug/l	0.50			
Chlorobenzene	ND	ug/l	0.50			
Trichlorofluoromethane	ND	ug/1	2.5			
1,2-Dichloroethane	ND	ug/l	0.50			
1,1,1-Trichloroethane	ND	ug/l	0.50			
Bromodichloromethane	ND	ug/l	0.50			
trans-1,3-Dichloropropene	ND	ug/l	0.50			
cis-1,3-Dichloropropene	ND	ug/l	0.50			
1,1-Dichloropropene	ND	ug/l	2.5			
Bromoform	ND	ug/l	2.0			
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50			
Benzene	ND	ug/l	0.50			
Toluene	ND	ug/l	0.75			
Ethylbenzene	ND	ug/l	0.50			
Chloromethane	ND	ug/l	2.5			
Bromomethane	ND	ug/l	1.0			
Vinyl chloride	ND	ug/l	1.0			
Chloroethane	ND	ug/l	1.0			
1,1-Dichloroethene	ND	ug/l	0.50			
trans-1,2-Dichloroethene	ND	ug/l	0.75			
Trichloroethene	ND	ug/l	0.50			
1,2-Dichlorobenzene	ND	ug/l	2.5			
1,3-Dichlorobenzene	ND	ug/l	2.5			
1,4-Dichlorobenzene	ND	ug/l	2.5			
Methyl tert butyl ether	ND	ug/l	1.0			
p/m-Xylene	ND	ug/l	1.0			
o-Xylene	ND	ug/l	1.0			
cis-1,2-Dichloroethene	ND	ug/l	0.50			
Dibromomethane	ND	ug/l	5.0			
1,2,3-Trichloropropane	ND	ug/l	5.0			
Acrylonitrile	ND	ug/l	5.0			

Laboratory Sample Number: L0814755-16

TB100608-05

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by EPA 826	NB contid			1 8260B	1010 03:31 PD
Styrene	ND	ug/l	1.0	1 0200B	1010 03:31 PD
Dichlorodifluoromethane	ND	ug/l	5.0		
Acetone	ND	ug/l	5.0		
Carbon disulfide	ND	ug/l	5.0		
2-Butanone	ND	ug/l	5.0		
Vinyl acetate	ND	ug/l	5.0		
4-Methyl-2-pentanone	ND	ug/l	5.0		
2-Hexanone	ND	ug/l	5.0		
Bromochloromethane	ND	ug/l	2.5		
2,2-Dichloropropane	ND	ug/l	2.5		
1,2-Dibromoethane	ND	ug/l	2.0		
1,3-Dichloropropane	ND	ug/l	2.5		
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50		
Bromobenzene	ND	ug/l	2.5		
n-Butylbenzene	ND	ug/l	0.50		
sec-Butylbenzene	ND	ug/l	0.50		
tert-Butylbenzene	ND	ug/l	2.5		
o-Chlorotoluene	ND	ug/l	2.5		
p-Chlorotoluene	ND	ug/l	2.5		
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5		
Hexachlorobutadiene	ND	ug/l	0.60		
Isopropylbenzene	ND	ug/l	0.50		
p-Isopropyltoluene	ND	ug/l	0.50		
Naphthalene	ND	ug/l	2.5		
n-Propylbenzene	ND	ug/l	0.50		
1,2,3-Trichlorobenzene	ND	ug/l	2.5		
1,2,4-Trichlorobenzene	ND	ug/l	2.5		
1,3,5-Trimethylbenzene	ND	ug/l	2.5		
1,2,4-Trimethylbenzene	ND	ug/l	2.5		
1,4-Diethylbenzene	ND	ug/l	2.0		
4-Ethyltoluene	ND	ug/l	2.0		
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0		
Surrogate(s)	Recovery		QC Crit	teria	
1,2-Dichloroethane-d4	109	8	70-130		
Toluene-d8	101	8	70-130		
4-Bromofluorobenzene	106	8	70-130		
Dibromofluoromethane	97.0	%	70-130		

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LAO00065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0814755-17 Date Collected: 03-OCT-2008 14:40

MW-4 (EXTRA VOLUME) Date Received: 06-OCT-2008

Sample Matrix: WATER Date Reported: 14-OCT-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 1-Plastic

PARAMETER RESULT UNITS RDL REF METHOD DATE ID
PREP ANAL

***** THIS SAMPLE IS ON HOLD ******

Comments: Complete list of References and Glossary of Terms found in Addendum I

10140812:33 Page 71 of 93

Laboratory Job Number: L0814755

Parameter	Value 1	Value 2	Units	RPD	RPD Limits
501	ids, Total for sa	mple(s) 01	(1,0810934-	07. WG33	9401-1)
Solids, Total	70	71	%	1	20
To b.	al Metals for sam	nle/a\ 01 /	T.0814755.0	1, WG339:	212_1\
Aluminum, Total	al Metals for sam 1500	pie(s) ui (1400	шив14/55-и mg/kg	ı, WG339. 7	35
Antimony, Total	ND	ND	mg/kg	NC	35
Arsenic, Total	ND ND	ND ND	mg/kg	NC	35
Barium, Total	9.6	7.9	mg/kg	19	35
Beryllium, Total	ND			NC	35
Cadmium, Total	ND ND	ND ND	mg/kg mg/kg	NC NC	35
Calcium, Total	440	280		44	35
Chromium, Total	6.9	6.1	mg/kg mg/kg	12	35 35
Cobalt, Total		ND	mg/kg mg/kg		35 35
•	ND 36	ND 19	mg/kg	NC 62	
Copper, Total			mg/kg		35 25
Iron, Total	6600	4400	mg/kg	40	35 25
Lead, Total	23	9.2	mg/kg	86 34	35
Magnesium, Total	410	290	mg/kg	34	35
Manganese, Total	33	34	mg/kg	3	35
Nickel, Total	3.0	2.2	mg/kg	31 NG	35
Potassium, Total	ND	ND	mg/kg	NC	35
Selenium, Total	ND	ND	mg/kg	NC	35
Silver, Total	ND	ND	mg/kg	NC	35
Sodium, Total	ND	ND	mg/kg	NC	35
Thallium, Total	ND	ND	mg/kg	NC	35
Vanadium, Total	6.0	5.1	mg/kg	16	35
Zinc, Total	120	81	mg/kg	39	35
Total Me	etals for sample(s) 02-07,10)-11 (L0814	755-04, 1	WG338986-1)
Aluminum, Total	10	9.4	mg/l	6	20
Antimony, Total	ND	ND	mg/l	NC	20
Arsenic, Total	ND	ND	mg/l	NC	20
Barium, Total	0 020	0.038			
,	0.039	0.036	mg/l	3	20
Beryllium, Total	ND	ND	mg/l mg/l	3 NC	
			_		20
Beryllium, Total	ND	ND	mg/l	NC	20 20
Beryllium, Total Cadmium, Total	ND ND	ND ND	mg/l mg/l mg/l	NC NC	20 20 20
Beryllium, Total Cadmium, Total Calcium, Total	ND ND 17	ND ND 16	mg/l mg/l	NC NC	20 20 20 20
Beryllium, Total Cadmium, Total Calcium, Total Chromium, Total Cobalt, Total	ND ND 17 0.02 ND	ND ND 16 0.02 ND	mg/l mg/l mg/l mg/l mg/l	NC NC 6 6 NC	20 20 20 20 20 20
Beryllium, Total Cadmium, Total Calcium, Total Chromium, Total	ND ND 17 0.02	ND ND 16 0.02	mg/l mg/l mg/l mg/l	NC NC 6 6	20 20 20 20 20
Beryllium, Total Cadmium, Total Calcium, Total Chromium, Total Cobalt, Total Copper, Total	ND ND 17 0.02 ND 0.011	ND ND 16 0.02 ND 0.011	mg/l mg/l mg/l mg/l mg/l mg/l	NC NC 6 6 NC 4	20 20 20 20 20 20 20 20
Beryllium, Total Cadmium, Total Calcium, Total Chromium, Total Cobalt, Total Copper, Total Iron, Total	ND ND 17 0.02 ND 0.011 150	ND ND 16 0.02 ND 0.011 150	mg/l mg/l mg/l mg/l mg/l mg/l mg/l	NC NC 6 6 NC 4 0	20 20 20 20 20 20 20 20 20
Beryllium, Total Cadmium, Total Calcium, Total Chromium, Total Cobalt, Total Copper, Total Iron, Total Lead, Total Magnesium, Total	ND ND 17 0.02 ND 0.011 150 0.015	ND ND 16 0.02 ND 0.011 150 0.012	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	NC NC 6 6 NC 4 0	20 20 20 20 20 20 20 20 20 20
Beryllium, Total Cadmium, Total Calcium, Total Chromium, Total Cobalt, Total Copper, Total Iron, Total Lead, Total Magnesium, Total Manganese, Total	ND ND 17 0.02 ND 0.011 150 0.015	ND ND 16 0.02 ND 0.011 150 0.012	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	NC NC 6 6 NC 4 0 20	20 20 20 20 20 20 20 20 20 20
Beryllium, Total Cadmium, Total Calcium, Total Chromium, Total Cobalt, Total Copper, Total Iron, Total Lead, Total Magnesium, Total Manganese, Total Nickel, Total	ND ND 17 0.02 ND 0.011 150 0.015 16 0.795	ND ND 16 0.02 ND 0.011 150 0.012 16 0.766	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	NC NC 6 6 NC 4 0 20 0	20 20 20 20 20 20 20 20 20 20 20
Beryllium, Total Cadmium, Total Calcium, Total Chromium, Total Cobalt, Total Copper, Total Iron, Total Lead, Total Magnesium, Total Manganese, Total Nickel, Total Potassium, Total	ND ND 17 0.02 ND 0.011 150 0.015 16 0.795 ND 3.8	ND ND 16 0.02 ND 0.011 150 0.012 16 0.766 ND 3.6	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	NC NC 6 6 NC 4 0 20 0 4 NC 5	20 20 20 20 20 20 20 20 20 20 20 20 20
Beryllium, Total Cadmium, Total Calcium, Total Chromium, Total Cobalt, Total Copper, Total Iron, Total Lead, Total Magnesium, Total Manganese, Total Nickel, Total Potassium, Total Selenium, Total	ND ND 17 0.02 ND 0.011 150 0.015 16 0.795 ND	ND ND 16 0.02 ND 0.011 150 0.012 16 0.766 ND 3.6	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	NC NC 6 6 NC 4 0 20 0 4 NC 5 NC	20 20 20 20 20 20 20 20 20 20 20 20 20 2
Beryllium, Total Cadmium, Total Calcium, Total Chromium, Total Chromium, Total Cobalt, Total Copper, Total Iron, Total Lead, Total Magnesium, Total Manganese, Total Nickel, Total Potassium, Total Selenium, Total Silver, Total	ND ND 17 0.02 ND 0.011 150 0.015 16 0.795 ND 3.8 ND	ND ND 16 0.02 ND 0.011 150 0.012 16 0.766 ND 3.6 ND	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	NC NC 6 6 NC 4 0 20 0 4 NC 5 NC	20 20 20 20 20 20 20 20 20 20 20 20 20 2
Beryllium, Total Cadmium, Total Calcium, Total Chromium, Total Cobalt, Total Copper, Total Iron, Total Lead, Total Magnesium, Total Manganese, Total Nickel, Total Potassium, Total Selenium, Total	ND ND 17 0.02 ND 0.011 150 0.015 16 0.795 ND 3.8 ND	ND ND 16 0.02 ND 0.011 150 0.012 16 0.766 ND 3.6	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	NC NC 6 6 NC 4 0 20 0 4 NC 5 NC	20 20 20 20 20 20 20 20 20 20 20 20 20 2

Laboratory Job Number: L0814755

Continued

Parameter	Valu	e 1 Value	2 Units	RPD	RPD Limits
	Total Metals for sa	mple(s) 02-0	7,10-11 (L08	14755-04, W	G338986-1)
Zinc, Total	0.21			•	20
	Total Metals fo	r sample(s)	01 (L0814755	-01, WG3390	60-3)
Mercury, Total	ND	ND	mg/kg	NC	35

10140812:33 Page 73 of 93

ALPHA ANALYTICAL QUALITY ASSURANCE BATCH SPIKE ANALYSES

Laboratory Job Number: L0814755

Parameter	% Recovery QC Criteria
Total Metals I.CS f	or sample(s) 02-07,10-11 (WG338986-5)
Aluminum, Total	105 80-120
Antimony, Total	107 80-120
Arsenic, Total	113 80-120
Barium, Total	106 80-120
Beryllium, Total	106 80-120
Cadmium, Total	111 80-120
Calcium, Total	100 80-120
Chromium, Total	105 80-120
Cobalt, Total	104 80-120
Copper, Total	103 80-120
Iron, Total	100 80-120
Lead, Total	106 80-120
Magnesium, Total	100 80-120 104 80-120
Manganese, Total	
Nickel, Total	104 80-120
Potassium, Total	100 80-120
Selenium, Total	116 80-120
Silver, Total	102 80-120
Sodium, Total	100 80-120
Thallium, Total	109 80-120
Vanadium, Total	105 80-120
Zinc, Total	106 80-120
Total Metals	LCS for sample(s) 01 (WG339213-4)
Aluminum, Total	92 75-125
Antimony, Total	88 75-125
Arsenic, Total	95 75-125
Barium, Total	93 75-125
Beryllium, Total	92 75-125
Cadmium, Total	94 75-125
Calcium, Total	90 75-125
Chromium, Total	93 75-125
Cobalt, Total	92 75-125
Copper, Total	88 75-125
Iron, Total	92 75-125
Lead, Total	90 75-125
Magnesium, Total	88 75–125
Magnesium, 10tal Manganese, Total	88 75-125
Nickel, Total	
Potassium, Total	90 75-125
Selenium, Total	91 75–125
Silver, Total	95 75-125
Sodium, Total	90 75-125
Thallium, Total	91 75–125
Vanadium, Total	92 75-125
Zinc, Total	88 75-125

ALPHA ANALYTICAL QUALITY ASSURANCE BATCH SPIKE ANALYSES

Laboratory Job Number: L0814755

Continued

07,10-11 (W001 8) -11 (L08147) 00 7,5 7,1 7,02 7,03 7,11 7,00 7,7 7,01 7,01 7,01	0-120 G339073-2) 0-120 55-04, WG338986-2) 5-125 5-125 5-125 5-125 5-125 5-125 5-125 5-125
01 8 07,10-11 (We) 01 8 -11 (L08147) 00 7 5 7 1 7 02 7 03 7 11 7 0 7 7 7 01 7	0-120 G339073-2) 0-120 55-04, WG338986-2) 5-125 5-125 5-125 5-125 5-125 5-125 5-125 5-125
01 8 -11 (L08147 00 7 5 7 1 7 02 7 03 7 11 7 0 7 7 01 7	0-120 55-04, WG338986-2) 5-125 5-125 5-125 5-125 5-125 5-125 5-125
-11 (L08147 00 7 5 7 1 7 02 7 03 7 11 7 0 7 7 01 7	55-04, WG338986-2) 5-125 5-125 5-125 5-125 5-125 5-125 5-125
000 7 5 7 1 7 002 7 003 7 11 7 00 7 7 7 001 7	5-125 5-125 5-125 5-125 5-125 5-125 5-125
5 7. 1 7. 02 7. 03 7. 11 7. 0 7. 7. 01 7.	5-125 5-125 5-125 5-125 5-125 5-125
1 7.02 7.03 7.11 7.00 7.7 7.01 7.01 7.01	5-125 5-125 5-125 5-125 5-125
02 7 03 7 11 7 0 7 7 7 01 7	5-125 5-125 5-125 5-125
03 7 11 7 0 7 7 7 01 7	5-125 5-125 5-125
11 7, 0 7, 7 7, 01 7,	5-125 5-125
0 7 7 7 01 7 01 7	5-125
7 7 01 7 01 7	
01 7. 01 7.	Г 10Г
01 7	5-125
	5-125
	5-125
u /:	5-125
	5-125
	5-125
	5-125
	5-125
	5-125 5-125
	5-125 5-125
	5-125 5-125
	5-125
	5-125
	5-125
7 7.	5-125
	, WG339213-2)
	5-125
	5-125
	5-125
	5-125
	5-125
	5-125
	5-125
	5-125
0 7.	5-125
0 7.	5-125
0 7.	5-125
9 7.	5-125
3 7.	5-125
7 7.	5-125
	5-125
	5-125
	5-125
0 7.	5-125
	B 7 22 7 56 7 50 7 500 7 44 7 B 7 50 7 50 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

10140812:33 Page 75 of 93

ALPHA ANALYTICAL QUALITY ASSURANCE BATCH SPIKE ANALYSES

Laboratory Job Number: L0814755

Continued

Parameter	% Recovery QC Criteria
Total Metals SPIKE for sample(s)	01 (L0814755-01, WG339213-2)
Sodium, Total	88 75-125
Thallium, Total	85 75-125
Vanadium, Total	87 75-125
Zinc, Total	0 75-125
Total Metals SPIKE for sample(s)	01 (L0814755-01, WG339060-4)
Mercury, Total	109 70-130

10140812:33 Page 76 of 93

Laboratory Job Number: L0814755

Parameter	LCS %	LCSD %	RPD	RPD Limit	QC Limits
Volatile Organics by EPA 820	SOR for samr	ole(g) O1 (W	2339552_1	WC339552-2)	
Chlorobenzene	107	101	6	30	60-133
Benzene	108	103	5	30	66-142
Toluene	110	104	6	30	59-139
1,1-Dichloroethene	80	104 79	1	30	59-139 59-172
Trichloroethene			3		
irichioroethene	105	102	3	30	62-137
Surrogate(s)					
1,2-Dichloroethane-d4	99	96	3		70-130
Toluene-d8	99	98	1		70-130
4-Bromofluorobenzene	98	97	1		70-130
Dibromofluoromethane	99	97	2		70-130
Volatile Organics by EPA 8260	3 for sample	e(s) 02-16 (WG339486-1,	WG339486-2)	
Chlorobenzene	98	105	7	20	75-130
Benzene	96	102	6	20	76-127
Toluene	99	106	7	20	76-125
1,1-Dichloroethene	91	97	6	20	61-145
Trichloroethene	91	98	7	20	71-120
Surrogate(s)					
1,2-Dichloroethane-d4	104	105	1		70-130
roluene-d8	102	101	1		70-130
4-Bromofluorobenzene	104	101	3		70-130
Dibromofluoromethane	97	97	0		70-130
Semivolatile Organics by EPA 8					
Acenaphthene	64	64	0	50	31-137
1,2,4-Trichlorobenzene	61	61	0	50	38-107
2-Chloronaphthalene	63	61	3	50	40-140
l,2-Dichlorobenzene	64	61	5	50	40-140
l,4-Dichlorobenzene	60	57	5	50	28-104
2,4-Dinitrotoluene	80	73	9	50	28-89
2,6-Dinitrotoluene	71	64	10	50	40-140
Fluoranthene	82	71	14	50	40-140
4-Chlorophenyl phenyl ether	71	70	1	50	40-140
n-Nitrosodi-n-propylamine	65	58	11	50	41-126
Butyl benzyl phthalate	88	72	20	50	40-140
Anthracene	80	70	13	50	40-140
Pyrene	79	69	14	50	35-142
P-Chloro-M-Cresol	70	67	4	50	26-103
2-Chlorophenol	65	61	6	50	25-102
2-Nitrophenol	63	57	10	50	30-130
z-Nitrophenol 4-Nitrophenol	69	58	17	50	11-114
4-Nitrophenoi 2,4-Dinitrophenol	66		6	50	
=		62 65			30-130
Pentachlorophenol	72	65	10	50	17-109
Phenol	61	58	5	50	26-90

Laboratory Job Number: L0814755

Continued

Parameter	LCS %	LCSD %	RPD	RPD Limit	QC Limits
Semivolatile Organics by EPA	8270C for sa	ample(s) 01	(WG339103-	2, WG339103-3)	
Surrogate(s)					
2-Fluorophenol	70	64	9		25-120
Phenol-d6	66	62	6		10-120
Nitrobenzene-d5	59	54	9		23-120
2-Fluorobiphenyl	59	57	3		30-120
2,4,6-Tribromophenol	89	74	18		19-120
l-Terphenyl-d14	69	56	21		18-120
emivolatile Organics by EPA 82	70C for samp	ole(s) 02-0	7,10-11 (WG	339098-2, WG339	9098-3)
cenaphthene	99	99	0	30	46-118
,2,4-Trichlorobenzene	82	78	5	30	39-98
-Chloronaphthalene	90	86	5	30	40-140
,2-Dichlorobenzene	81	75	8	30	40-140
,4-Dichlorobenzene	74	68	8	30	36-97
,4-Dinitrotoluene	119	115	3	30	24-96
,6-Dinitrotoluene	104	96	8	30	40-140
luoranthene	120	116	3	30	40-140
-Chlorophenyl phenyl ether	100	100	0	30	40-140
-Nitrosodi-n-propylamine	87	81	7	30	41-116
utyl benzyl phthalate	121	119	2	30	40-140
nthracene	107	102	5	30	40-140
yrene	115	113	2	30	26-127
-Chloro-M-Cresol	98	96	2	30	23-97
-Chlorophenol	85	83	2	30	27-123
-Nitrophenol	95	90	5	30	30-130
-Nitrophenol	47	48	2	30	10-80
,4-Dinitrophenol	97	99	2	30	30-130
entachlorophenol	104	102	2	30	9-103
henol	38	39	3	30	12-110
urrogate(s)					
-Fluorophenol	58	60	3		21-120
henol-d6	40	41	2		10-120
itrobenzene-d5	84	81	4		23-120
-Fluorobiphenyl	87	88	1		43-120
,4,6-Tribromophenol	118	118	0		10-120
-Terphenyl-d14	98	96	2		33-120
emivolatile Organics by EPA 82	70C-SIM for	sample(s)	01 (WG33910	5-2, WG339105-3	3)
cenaphthene	78	62	23		31-137
-Chloronaphthalene	80	64	22		40-140
luoranthene	95	95	0		40-140
nthracene	100	95	5		40-140
yrene	93	93	0		35-142
Pentachlorophenol	50	50	0		17-109

Laboratory Job Number: L0814755

Continued

Parameter	LCS 9	k LCSD	% RPD	RPD Limit	QC Limits
Semivolatile Organics by EPA	8270C-SIM 1	for sample(s) 01 (WG33910)5-2, WG339105-	-3)
Surrogate(s)					
2-Fluorophenol	74	59	23		25-120
Phenol-d6	80	66	19		10-120
Nitrobenzene-d5	72	57	23		23-120
2-Fluorobiphenyl	69	55	23		30-120
2,4,6-Tribromophenol	80	75	6		19-120
4-Terphenyl-d14	70	71	1		18-120
Semivolatile Organics by EPA	8270C-SIM 1	for sample(s) 02-07,10-11	L (WG339099-2,	WG339099-3)
Acenaphthene	73	90	21		40-140
2-Chloronaphthalene	70	85	19		40-140
Fluoranthene	114	117	3		40-140
Anthracene	98	103	5		40-140
Pyrene	115	118	3		40-140
Pentachlorophenol	82	88	7		30-130
Surrogate(s)					
2-Fluorophenol	51	64	23		21-120
Phenol-d6	36	45	22		10-120
Nitrobenzene-d5	76	97	24		23-120
2-Fluorobiphenyl	66	89	30		43-120
2,4,6-Tribromophenol	97	115	17		10-120
4-Terphenyl-d14	94	102	8		33-120
Polychlorinated Biphenyls by	EPA 8082 fo	or sample(s)	02-07,10-11	(WG339104-2, N	WG339104-3)
Aroclor 1016	74	78	6	30	40-140
Aroclor 1260	88	86	2	30	40-140
Surrogate(s)					
2,4,5,6-Tetrachloro-m-xylene	56	68	19		30-150
Decachlorobiphenyl	93	91	2		30-150

ALPHA ANALYTICAL QUALITY ASSURANCE BATCH MS/MSD ANALYSIS

Laboratory Job Number: L0814755

Total Metals for sample(s) 02-07,10-11 (L0814755-04, We Mercury, Total 118 116 2 Volatile Organics by EPA 8260B for sample(s) 02-16 (L0814755 Chlorobenzene 98 92 6 Benzene 97 91 6 Toluene 100 94 6 1,1-Dichloroethene 96 88 9 Trichloroethene 92 85 8 Surrogate(s) 1,2-Dichloroethane-d4 103 103 0 Toluene-d8 101 101 0 4-Bromofluorobenzene 104 106 2	20	70-130 75-130 76-127 76-125 61-145 71-120
Mercury, Total 118 116 2 Volatile Organics by EPA 8260B for sample(s) 02-16 (L0814755 Chlorobenzene 98 92 6 Benzene 97 91 6 Toluene 100 94 6 1,1-Dichloroethene 96 88 9 Trichloroethene 92 85 8 Surrogate(s) 1,2-Dichloroethane-d4 103 103 0 Toluene-d8 101 101 0 4-Bromofluorobenzene 104 106 2	20 -04, WG339486-5) 20 20 20 20	75-130 76-127 76-125 61-145
Chlorobenzene 98 92 6 Benzene 97 91 6 Toluene 100 94 6 1,1-Dichloroethene 96 88 9 Trichloroethene 92 85 8 Surrogate(s) 1,2-Dichloroethane-d4 103 103 0 Toluene-d8 101 101 0 4-Bromofluorobenzene 104 106 2	20 20 20 20	75-130 76-127 76-125 61-145
Chlorobenzene 98 92 6 Benzene 97 91 6 Toluene 100 94 6 1,1-Dichloroethene 96 88 9 Trichloroethene 92 85 8 Surrogate(s) 1,2-Dichloroethane-d4 103 103 0 Toluene-d8 101 101 0 4-Bromofluorobenzene 104 106 2	20 20 20 20	75-130 76-127 76-125 61-145
Toluene 100 94 6 1,1-Dichloroethene 96 88 9 Trichloroethene 92 85 8 Surrogate(s) 1,2-Dichloroethane-d4 103 103 0 Toluene-d8 101 101 0 4-Bromofluorobenzene 104 106 2	20 20	76-125 61-145
1,1-Dichloroethene 96 88 9 Trichloroethene 92 85 8 Surrogate(s) 1,2-Dichloroethane-d4 103 103 0 Toluene-d8 101 101 0 4-Bromofluorobenzene 104 106 2	20	61-145
Trichloroethene 92 85 8 Surrogate(s) 1,2-Dichloroethane-d4 103 103 0 Toluene-d8 101 101 0 4-Bromofluorobenzene 104 106 2		
Trichloroethene 92 85 8 Surrogate(s) 1,2-Dichloroethane-d4 103 103 0 Toluene-d8 101 101 0 4-Bromofluorobenzene 104 106 2	20	71-120
1,2-Dichloroethane-d4 103 103 0 Toluene-d8 101 101 0 4-Bromofluorobenzene 104 106 2		
Toluene-d8 101 101 0 4-Bromofluorobenzene 104 106 2		
4-Bromofluorobenzene 104 106 2		70-130
		70-130
		70-130
Dibromofluoromethane 98 96 2		70-130
Semivolatile Organics by EPA 8270C for sample(s) 02-07,10-11 (L0814755-04, WG3	39098-5)
Acenaphthene 81 77 5	30	46-118
1,2,4-Trichlorobenzene 72 63 13	30	39-98
2-Chloronaphthalene 77 72 7	30	40-140
1,2-Dichlorobenzene 68 63 8	30	40-140
1,4-Dichlorobenzene 63 59 7	30	36-97
2,4-Dinitrotoluene 100 95 5	30	24-96
2,6-Dinitrotoluene 90 81 11	30	40-140
Fluoranthene 110 99 11	30	40-140
4-Chlorophenyl phenyl ether 90 81 11	30	40-140
n-Nitrosodi-n-propylamine 72 68 6	30	41-116
Butyl benzyl phthalate 110 99 11	30	40-140
Anthracene 99 90 10	30	40-140
Pyrene 110 99 11	30	26-127
P-Chloro-M-Cresol 83 79 5	30	23-97
2-Chlorophenol 74 70 6	30	27-123
2-Nitrophenol 79 72 9	30	30-130
4-Nitrophenol 65 61 6	30	10-80
2,4-Dinitrophenol 90 83 8	30	30-130
Pentachlorophenol 99 90 10	30	9-103
Phenol 50 47 6	30	12-110
Surrogate(s)		
2-Fluorophenol 66 62 6		21-120
Phenol-d6 52 50 4		10-120
Nitrobenzene-d5 69 67 3		23-120
2-Fluorobiphenyl 72 65 10		43-120
2,4,6-Tribromophenol 106 97 9		10-120
4-Terphenyl-d14 85 79 7		
T TETPHENYI - UIT 00 /9 /9		33-120

ALPHA ANALYTICAL QUALITY ASSURANCE BATCH MS/MSD ANALYSIS

Laboratory Job Number: L0814755

Continued

Semivolatile Organics by EPA 8270C-SIM for sample(s) 02-07,10-11 (L0814755-04, WG339099-5) Acenaphthene 95 90 5 40 40-140 2-Chloronaphthalene 90 81 11 40 40-140 Fluoranthene 130 130 0 40 40-140 Anthracene 110 110 0 40 40-140 Pyrene 130 120 8 40 40-140 Pyrene 130 120 8 40 40-140 Pentachlorophenol 97 92 5 40 30-130 Surrogate(s) 2-Fluorophenol 65 62 5 21-120 Phenol-d6 59 57 3 10-120 Nitrobenzene-d5 82 77 6 23-120 2-Fluorobiphenyl 82 79 4 43-120 2-4,6-Tribromophenol 102 98 4 10-120 4-Terphenyl-d14 109 108 1 33-120 Polychlorinated Biphenyls by EPA 8082 for sample(s) 02-07,10-11 (L0814755-04, WG339104-5) Aroclor 1016 69 73 6 30 40-140 Aroclor 1260 83 86 4 30 40-140 Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene 63 69 9 3 30-150 Decachlorobiphenyl 69 69 0 30-150 Organochlorine Pesticides by EPA 8081A for sample(s) 02-07,10-11 (L0814755-04, WG339110-5) Delta-BHC 89 101 13 30 30-150 Beta-BHC 100 115 14 30 30-150 Beta-BHC 100 117 16 30 30-150	Parameter	MS %	MSD %	RPD	RPD Limit	MS/MSD Limits
Acenaphthene 95 90 5 40 40-140 2-0-140 ronaphthalene 90 81 11 40 40-140 Fluoranthene 130 130 0 40 40 40-140 Anthracene 1110 110 0 40 40 40-140 Pyrene 130 120 8 40 40-140 Pentachlorophenol 97 92 5 40 30-130 Fluoranthene 130 120 8 40 40-140 Pentachlorophenol 97 92 5 40 30-130 Fluoranthene 130 120 8 40 40-140 Pentachlorophenol 97 92 5 40 30-130 Fluorophenol 97 92 92 93 94 94 94 94 94 94 94 94 94 94 94 94 94				KFD		MS/MSD HIMICS
2-Chioronaphthalene 90 81 11 40 40-140 Fluorantheme 130 130 130 0 40 40-140 Anthracene 110 110 0 40 40-140 Pyrene 130 120 8 40 40-140 Pyrene 150 120 98 40 40-140 Pyrene 150 120 98 40 10-120 Phenol-d6 59 57 3 10-120 Phenol-d6 59 57 3 10-120 Phenol-d6 59 57 3 10-120 Pyrene 150 120 98 4 10-120 4-Terphenyl 82 79 4 43-120 2-4,6-Tribromophenol 102 98 4 10-120 4-Terphenyl-d14 109 108 1 33-120 Polychlorinated Biphenyls by EPA 8082 for sample(s) 02-07,10-11 (L0814755-04, WG339104-5) Arcolor 1016 69 73 6 30 40-140 Pyrene 166 89 86 4 30 40-140 Pyrene 166 89 86 4 30 40-140 Pyrene 166 89 80 9 9 30-150 Polychlorinated Biphenyl 69 69 69 0 30-150 Polychlorine Pesticides by EPA 8081A for sample(s) 02-07,10-11 (L0814755-04, WG339105) Polychlorine Pesticides by EPA 8081A for sample(s) 02-07,10-11 (L0814755-04, WG339105) Polychlorine Pesticides by EPA 8081A for sample(s) 02-07,10-11 (L0814755-04, WG339105) Polychlorine Pesticides by EPA 8081A for sample(s) 02-07,10-11 (L0814755-04, WG339105) Polychlorine Pesticides by EPA 8081A for sample(s) 02-07,10-11 (L0814755-04, WG339105) Polychlorine Pesticides by EPA 8081A for sample(s) 02-07,10-11 (L0814755-04, WG339105) Polychlorine Pesticides by EPA 8081A for sample(s) 02-07,10-11 (L0814755-04, WG339105) Polychlorine Pesticides by EPA 8081A for sample(s) 02-07,10-11 (L0814755-04, WG339105) Polychlorine Pesticides by EPA 8081A for sample(s) 02-07,10-11 (L0814755-04, WG339105) Polychlorine Pesticides by EPA 8081A for sample(s) 02-07,10-11 (L0814755-04, WG339105) Polychlorine Pesticides by EPA 8081A for sample(s) 02-07,10-11 (L0814755-04, WG339105) Polychlorine Pesticides by EPA 8081A for sample(s) 02-07,10-11 (L0814755-04, WG339105) Polychlorine Pesticides by EPA 8081A for sample(s) 02-07,10-11 (L0814755-04, WG3391105) Polychlorine Pesticides by EPA 8081A for sample(s) 02-07,10	Semivolatile Organics by EPA	8270C-SIM for	sample(s)	02-07,10-11	(L0814755-04,	WG339099-5)
Plucranthene	Acenaphthene		90	5	40	40-140
Anthracene 110 110 0 40 40-140 Pyrene 130 120 8 40 40-140 40-140 Pyrene 130 120 8 40 40-140	2-Chloronaphthalene	90	81	11	40	40-140
Pyrene 130 120 8 40 40-140 Pentachlorophenol 97 92 5 40 30-130 Surrogate(s) 2-Fluorophenol 65 62 5 21-120 Phenol-d6 59 57 3 10-120 Nitrobenzene-d5 82 77 6 23-120 2-Fluorobiphenyl 82 79 4 43-120 2,4,6-Tribromophenol 102 98 4 10-120 4-Terphenyl-d14 109 108 1 33-120 Polychlorinated Biphenyls by EPA 8082 for sample(s) 02-07,10-11 (L0814755-04, WG339104-5) 33-120 Arcolor 1260 83 86 4 30 40-140 Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene 63 69 9 30-150 Organochlorine Pesticides by EPA 8081A for sample(s) 02-07,10-11 (L0814755-04, WG339110-5) Delta-BHC 89 101 13 30 30-150 Alpha-BBC 100 117 16 30 30-150	Fluoranthene	130	130	0	40	40-140
Pentachlorophenol 97 92 5 40 30-130 Surrogate(s) 2-Fluorophenol 65 62 5 21-120 Phenol-d6 59 57 3 10-120 Nitrobenzene-d5 82 77 6 23-120 2-Fluorobiphenyl 82 79 4 43-120 2-fluorobiphenyl 82 79 4 10-120 4-Terphenyl-d14 109 108 1 33-120 Polychlorinated Biphenyls by EPA 8082 for sample(s) 02-07,10-11 (L0814755-04, WG339104-5) Aroclor 1016 69 73 6 30 40-140 Aroclor 1260 83 86 4 30 40-140 Surrogate(s) 2.4,5,6-Tetrachloro-m-xylene 63 69 9 9 30-150 Decachlorobiphenyl 69 69 0 30-150 Organochlorine Pesticides by EPA 8081A for sample(s) 02-07,10-11 (L0814755-04, WG339110-5) Delta-BHC 89 101 13 30 30-150 Alpha-BHC 100 115 14 30 30-150 Alpha-BHC 100 115 14 30 30-150 Alpha-BHC 100 117 16 30 30-150 Aldrin 94 111 17 30 30-150 Beta-BHC 107 120 11 30 30-150 Endrin 114 129 12 30 30-150 Endrin 10 126 14 30 30-150 Endrin 110 126 14 30 30-150 Endosulfan I 109 124 13 30 30-150 Endosulfan I 109 124 13 30 30-150 Endosulfan I 109 124 13 30 30-150 Endosulfan I 14 129 12 30 30-150 Endosulfan Sulfate 109 124 13 30 30-150	Anthracene	110	110	0	40	40-140
Surrogate(s) 2-Fluorophenol 65 62 5 21-120 Phenol-d6 59 57 3 10-120 Nitrobenzene-d5 82 77 6 23-120 2-Fluorobiphenyl 82 79 4 43-120 2-Fluorobiphenyl 102 98 4 10-120 Phenol 105 102 98 4 10-120 Phenol 106 69 73 6 30 40-140 Phenol 106 69 73 6 30 40-140 Phenol 106 83 86 4 30 40-140 Phenol 106 83 86 4 30 40-140 Phenol 106 83 86 4 30 40-140 Phenol 106 83 86 86 4 30 40-140 Phenol 106 89 9 9 30-150 Phenol 106 89 9 9 30-150 Phenol 106 89 9 9 30-150 Phenol 106 89 101 13 30 30-150 Phenol 106 100 117 16 30 30-150 Phenol 106 107 124 12 30 30-150 Phenol 106 107 124 12 30 30-150 Phenol 106 107 120 11 30 30-150 Phenol 106 107 120 11 30 30-150 Phenol 106 120 12 30 30-150 Phenol 110 126 14 30 30-150 Phenol 110 110 126 14 30	Pyrene	130	120	8	40	40-140
2-Fluorophenol 65 62 5 21-120 Phenol-d6 59 57 3 10-120 Nitrobenzene-d5 82 77 6 23-120 2-Fluorobiphenyl 82 77 6 23-120 2-Fluorobiphenyl 82 79 4 43-120 2-4,4,6-Tribromophenol 102 98 4 10-120 4-Terphenyl-d14 109 108 1 33-120 Polychlorinated Biphenyls by EPA 8082 for sample(s) 02-07,10-11 (L0814755-04, WG339104-5) Aroclor 1016 69 73 6 30 40-140 Aroclor 1260 83 86 4 30 40-140 Aroclor 1260 83 86 4 30 40-140 Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene 63 69 9 9 30-150 Decachlorobiphenyl 69 69 9 30-150 Decachlorobiphenyl 69 69 9 0 30-150 Delta-BHC 89 101 13 30 30-150 Alpha-BHC 100 115 14 30 30-150 Alpha-BHC 100 115 14 30 30-150 Alpha-BHC 100 117 16 30 30-150 Alpha-BHC 100 124 12 30 30-150 Algha-BHC 100 124 12 30 30-150 Alghin 97 114 16 30 30-150 Heptachlor 97 114 16 30 30-150 Heptachlor epoxide 107 120 11 30 30-150 Heptachlor epoxide 107 120 11 30 30-150 Endrin 114 129 12 30 30-150 Endrin tetone 105 117 11 30 30-150 Dieldrin 110 125 13 30 30-150 Endrin tetone 105 117 11 30 30-150 Dieldrin 110 125 13 30 30-150 Endrin 110 125 13 30 30-150 Endrin 110 125 13 30 30-150 Endrin 110 125 13 30 30-150 Dieldrin 111 114 129 12 30 30-150 Dieldrin 111 114 129 12 30 30-150 Dieldrin 111 114 129 12 30 30-150 Endosulfan II 114 129 12 30 30-150	Pentachlorophenol	97	92	5	40	30-130
Phenol-d6 59 57 3 10-120 Nitrobenzene-d5 82 77 6 23-120 Z-Fluorobiphenyl 82 79 4 43-120 2,4,6-Tribromophenol 102 98 4 10-120 4-Terphenyl-d14 109 108 1 33-120 Polychlorinated Biphenyls by EPA 8082 for sample(s) 02-07,10-11 (L0814755-04, WG339104-5) Arcolor 1016 69 73 6 30 40-140 Arcolor 1260 83 86 4 30 40-140 Arcolor 1260 83 86 4 30 40-140 Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene 63 69 9 9 30-150 Decachlorobiphenyl 69 69 69 0 30-150 Organochlorine Pesticides by EPA 8081A for sample(s) 02-07,10-11 (L0814755-04, WG339110-5) Delta-BHC 89 101 13 30 30-150 Lindane 100 115 14 30 30-150 Alpha-BHC 100 117 16 30 30-150 Beta-BHC 100 117 16 30 30-150 Heptachlor 97 114 16 30 30-150 Heptachlor epoxide 107 120 11 30 30-150 Aldrin 94 111 17 30 30-150 Endrin ketone 105 117 11 30 30-150 Endrin ketone 105 117 11 30 30-150 Endrin 110 125 13 30 30-150 Endrin 100 113 12 30 30-150 Endosulfan 1 10 125 13 30 30-150 Endosulfan 1 10 126 14 30 30-150 Endosulfan 1 10 125 13 30 30-150 Endosulfan 1 10 126 14 30 30-150 Endosulfan 100 113 12 30 30-150 Endosulfan 100 124 13 30 30-150 Endosulfan 109 124 13 30 30-150 Endosulfan 109 124 13 30 30-150 Endosulfan 109 124 13 30 30-150 Endosulfan 100 114 129 12 30 30-150 Endosulfan 100 126 14 12 30 30-150 Endosulfan 100 124 12 30 30-150 Endosulfan 100 124 13						
Nitrobenzene-d5 82 77 6 23-120 2-Fluorobiphenyl 82 79 4 43-120 2-fluorobiphenyl 102 98 4 10-120 4-Terphenyl-d14 109 108 1 33-120 Polychlorinated Biphenyls by EPA 8082 for sample(s) 02-07,10-11 (L0814755-04, WG339104-5) Aroclor 1016 69 73 6 30 40-140 Aroclor 1260 83 86 4 30 40-140 Surrogate(s) 2.4,5,6-Tetrachloro-m-xylene 63 69 9 9 30-150 Decachlorobiphenyl 69 69 9 0 30-150 Organochlorine Pesticides by EPA 8081A for sample(s) 02-07,10-11 (L0814755-04, WG339110-5) Delta-BHC 89 101 13 30 30-150 Delta-BHC 89 101 13 30 30-150 Beta-BHC 110 115 14 30 30-150 Beta-BHC 110 117 16 30 30-150 Beta-BHC 110 124 12 30 30-150 Heptachlor 97 114 16 30 30-150 Heptachlor 97 114 16 30 30-150 Heptachlor epoxide 107 120 11 30 30-150 Heptachlor epoxide 107 120 11 30 30-150 Endrin 114 129 12 30 30-150 Endrin 114 129 12 30 30-150 Endrin 114 129 12 30 30-150 Deldrin 110 126 14 30 30-150 Endrin 110 126 14 30 30-150 Endosulfan II 110 126 13 30 30-150 Endosulfan II 110 126 14 13 30 30-150 Endosulfan II 110 126 120 12 30 30-150 Endosulfan II 114 129 12 30 30-150	2-Fluorophenol		62	5		21-120
2-Fluorobiphenyl 82 79 4 10-120 2,4,6-Tribromophenol 102 98 4 10-120 4-Terphenyl-d14 109 108 1 33-120 Polychlorinated Biphenyls by EPA 8082 for sample(s) 02-07,10-11 (L0814755-04, WG339104-5) Aroclor 1016 69 73 6 30 40-140 Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene 63 69 9 9 30-150 Decachlorobiphenyl 69 69 0 0 30-150 Organochlorine Pesticides by EPA 8081A for sample(s) 02-07,10-11 (L0814755-04, WG3391010-5) Delta-BHC 89 101 13 30 30-150 Alpha-BHC 100 115 14 30 30-150 Alpha-BHC 100 117 16 30 30-150 Alpha-BHC 100 117 16 30 30-150 Beta-BHC 110 124 12 30 30-150 Aldrin 94 111 17 30 30-150 Aldrin 94 111 17 30 30-150 Endarin 114 129 12 30 30-150 Endarin 126 14 30 30-150 Endarin 107 120 11 30 30-150 Endarin 108 114 129 12 30 30-150 Endarin 109 124 13 30 30-150 Endarin 100 125 13 30 30-150 Endarin 100 126 14 30 30-150 Endarin 100 127 120 11 30 30-150 Endarin 100 128 129 12 30 30-150 Endarin 100 126 14 30 30-150 Endosulfan 1 100 126 13 30 30-150 Endosulfan 1 100 127 120 11 30 30-150 Endosulfan 2 100 114 129 12 30 30-150 Endosulfan 30-150 Endosulfan 30-150 Endosulfan 30-150 Endosulfan 30-150 Endosulfan 40-150 120 120 120 120 120 120 120 120 120 12	Phenol-d6	59	57	3		10-120
2,4,6-Tribromophenol 102 98 4 10-120 4-Terphenyl-d14 109 108 1 33-120 Polychlorinated Biphenyls by EPA 8082 for sample(s) 02-07,10-11 (L0814755-04, WG339104-5) Arcolor 1016 69 73 6 30 40-140 Arcolor 1260 83 86 4 30 40-140 Polychlorinated Biphenyls by EPA 8082 for sample(s) 02-07,10-11 (L0814755-04, WG339104-5) Polychlorinated Biphenyls by EPA 8081A for sample(s) 02-07,10-11 (L0814755-04, WG339104-5) Polychlorinated Biphenyl 69 69 9 0 30-150 Polychlorinated Biphenyl 69 69 0 30-150 P	Nitrobenzene-d5	82	77	6		23-120
### A-Terphenyl-d14	2-Fluorobiphenyl	82	79	4		43-120
Polychlorinated Biphenyls by EPA 8082 for sample(s) 02-07,10-11 (L0814755-04, WG339104-5) Aroclor 1016 69 73 6 30 40-140 Aroclor 1260 83 86 4 30 40-140 Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene 63 69 9 0 30-150 Decachlorobiphenyl 69 69 0 0 30-150 Organochlorine Pesticides by EPA 8081A for sample(s) 02-07,10-11 (L0814755-04, WG339110-5) Delta-BHC 89 101 13 30 30-150 Lindane 100 115 14 30 30-150 Beta-BHC 100 117 16 30 30-150 Beta-BHC 110 124 12 30 30-150 Heptachlor 97 114 16 30 30-150 Heptachlor 97 114 16 30 30-150 Aldrin 94 111 17 30 30-150 Heptachlor epoxide 107 120 11 30 30-150 Endrin 114 129 12 30 30-150 Endrin ketone 105 117 11 30 30-150 Endrin ketone 105 117 11 30 30-150 Endrin ketone 105 117 11 30 30-150 4,4'-DDE 110 125 13 30 30-150 4,4'-DDE 110 125 13 30 30-150 4,4'-DDT 100 113 12 30 30-150 Endosulfan II 109 124 13 30 30-150 Endosulfan II 109 124 13 30 30-150 Endosulfan II 114 129 12 30 30-150 Endosulfan II 114 129 30 30-150 Endosulfan II 114 129 30 30-150	2,4,6-Tribromophenol	102	98	4		10-120
Aroclor 1016 Aroclor 1260 83 86 40 30 40-140 Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene 63 69 99 30-150 Decachlorobiphenyl 69 69 69 00 30-150 Organochlorine Pesticides by EPA 8081A for sample(s) 02-07,10-11 (L0814755-04, WG339110-5) Delta-BHC 89 101 13 30 30-150 Alpha-BHC 100 115 14 30 30-150 Beta-BHC 100 117 16 30 30-150 Beta-BHC 110 124 12 30 30-150 Heptachlor 97 114 16 30 30-150 Heptachlor 97 114 16 30 30-150 Heptachlor epoxide 107 120 111 17 30 30-150 Endrin 114 129 12 30 30-150 Endrin ketone 105 117 11 30 30-150 Endrin 10 126 14 30 30-150 A,4'-DDE 110 125 13 30 30-150 4,4'-DDT 100 113 120 121 30 30-150 A,4'-DDT 100 113 122 30 30-150 Endosulfan I 109 124 13 30 30-150 Endosulfan I 114 129 12 30 30-150 Endosulfan Sulfate 109 124 13 30 30-150	4-Terphenyl-d14	109	108	1		33-120
Aroclor 1260 83 86 4 30 40-140 Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene 63 69 9 0 30-150 Decachlorobiphenyl 69 69 0 0 30-150 Organochlorine Pesticides by EPA 8081A for sample(s) 02-07,10-11 (L0814755-04, WG339110-5) Delta-BHC 89 101 13 30 30-150 Lindane 100 115 14 30 30-150 Alpha-BHC 100 117 16 30 30-150 Beta-BHC 110 124 12 30 30-150 Heptachlor 97 114 16 30 30-150 Aldrin 94 111 17 30 30-150 Heptachlor epoxide 107 120 11 30 30-150 Endrin ketone 105 117 11 30 30-150 Endrin ketone 105 117 11 30 30-150 Dieldrin 110 126 14 30 30-150 Dieldrin 110 126 14 30 30-150 A,4'-DDE 110 125 13 30 30-150 A,4'-DDD 106 120 12 30 30-150 A,4'-DDT 100 113 12 30 30-150 Endosulfan I 109 124 13 30 30-150 Endosulfan I 109 124 13 30 30-150 Endosulfan I 114 129 12 30 30-150 Endosulfan sulfate 109 124 13 30 30-150 Methoxychlor 121 135 11 30 30-150 Methoxychlor 121 135 11 30 30-150 Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene 82 98 18 50-150	Polychlorinated Biphenyls by	EPA 8082 for	sample(s)	02-07,10-11	(L0814755-04,	WG339104-5)
Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene 63 69 9 0 30-150 Decachlorobiphenyl 69 69 0 30-150 Organochlorine Pesticides by EPA 8081A for sample(s) 02-07,10-11 (L0814755-04, WG339110-5) Delta-BHC 89 101 13 30 30-150 Lindane 100 115 14 30 30-150 Alpha-BHC 100 117 16 30 30-150 Beta-BHC 110 124 12 30 30-150 Heptachlor 97 114 16 30 30-150 Aldrin 94 111 17 30 30-150 Heptachlor epoxide 107 120 11 30 30-150 Endrin 114 129 12 30 30-150 Endrin ketone 105 117 11 30 30-150 Dieldrin 110 126 14 30 30-150 Dieldrin 110 125 13 30 30-150 A,4'-DDE 110 125 13 30 30-150 A,4'-DDD 106 120 12 30 30-150 Endosulfan I 109 124 13 30 30-150 Endosulfan I 109 124 13 30 30-150 Endosulfan II 114 129 12 30 30-150 Endosulfan II 114 129 12 30 30-150 Endosulfan sulfate 109 124 13 30 30-150 Methoxychlor 121 135 11 30 30-150 Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene 82 98 18	Aroclor 1016	69	73	6	30	40-140
2,4,5,6-Tetrachloro-m-xylene 63 69 9 0 30-150 Decachlorobiphenyl 69 69 0 0 30-150 Organochlorine Pesticides by EPA 8081A for sample(s) 02-07,10-11 (L0814755-04, WG339110-5) Delta-BHC 89 101 13 30 30-150 Lindane 100 115 14 30 30-150 Alpha-BHC 100 117 16 30 30-150 Beta-BHC 110 124 12 30 30-150 Heptachlor 97 114 16 30 30-150 Aldrin 94 111 17 30 30-150 Heptachlor epoxide 107 120 11 30 30-150 Endrin 114 129 12 30 30-150 Endrin 105 117 11 30 30-150 Endrin 100 126 14 30 30-150 Endrin 100 126 14 30 30-150 4,4'-DDE 110 125 13 30 30-150 4,4'-DDE 110 125 13 30 30-150 4,4'-DDD 106 120 12 30 30-150 4,4'-DDD 106 120 12 30 30-150 Hendosulfan I 109 124 13 30 30-150 Endosulfan II 114 129 12 30 30-150 Endosulfan Sulfate 109 124 13 30 30-150 Methoxychlor 121 135 11 30 30-150 Methoxychlor 121 135 11 30 30-150 Surrogate(s) Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene 82 98 18 30-150	Aroclor 1260	83	86	4	30	40-140
Decachlorobiphenyl 69 69 0 30-150 Organochlorine Pesticides by EPA 8081A for sample(s) 02-07,10-11 (L0814755-04, WG339110-5) Delta-BHC 89 101 13 30 30-150 Lindane 100 115 14 30 30-150 Alpha-BHC 100 117 16 30 30-150 Beta-BHC 110 124 12 30 30-150 Heptachlor 97 114 16 30 30-150 Heptachlor 97 114 16 30 30-150 Heptachlor epoxide 107 120 11 30 30-150 Endrin 114 129 12 30 30-150 Endrin ketone 105 117 11 30 30-150 Endrin ketone 105 117 11 30 30-150 Dieldrin 110 126 14 30 30-150 4,4'-DDE 110 125 13 30 30-150 4,4'-DDD 106 120 12 30 30-150 4,4'-DDT 100 113 12 30 30-150 Endosulfan I 109 124 13 30 30-150 Endosulfan I 109 124 13 30 30-150 Endosulfan sulfate 109 124 13 30 30-150 Endosulfan sulfate 109 124 13 30 30-150 Methoxychlor 121 135 11 30 30-150 Surrogate(s) Surrogate(s) Surrogate(s)	Surrogate(s)					
Organochlorine Pesticides by EPA 8081A for sample(s) 02-07,10-11 (L0814755-04, WG339110-5) Delta-BHC 89 101 13 30 30-150 Lindane 100 115 14 30 30-150 Alpha-BHC 100 117 16 30 30-150 Beta-BHC 110 124 12 30 30-150 Heptachlor 97 114 16 30 30-150 Aldrin 94 111 17 30 30-150 Heptachlor epoxide 107 120 11 30 30-150 Endrin 114 129 12 30 30-150 Endrin ketone 105 117 11 30 30-150 Dieldrin 110 126 14 30 30-150 Dieldrin 110 126 14 30 30-150 A,4'-DDE 110 125 13 30 30-150 A,4'-DDD 106 120 12 30 30-150 A,4'-DDT 100 113 12 30 30-150 Endosulfan I 109 124 13 30 30-150 Endosulfan II 114 129 12 30 30-150 Endosulfan sulfate 109 124 13 30 30-150	2,4,5,6-Tetrachloro-m-xylene	63	69	9		30-150
Delta-BHC	Decachlorobiphenyl	69	69	0		30-150
Lindane 100 115 14 30 30-150 Alpha-BHC 100 117 16 30 30-150 Beta-BHC 110 124 12 30 30-150 Heptachlor 97 114 16 30 30-150 Aldrin 94 111 17 30 30-150 Heptachlor epoxide 107 120 11 30 30-150 Endrin 114 129 12 30 30-150 Endrin ketone 105 117 11 30 30-150 Dieldrin 10 126 14 30 30-150 Dieldrin 10 126 14 30 30-150 A,4'-DDE 110 125 13 30 30-150 A,4'-DDD 106 120 12 30 30-150 A,4'-DDT 100 113 12 30 30-150 Endosulfan I 109 124 13 30 30-150 Endosulfan II 114 129 12 30 30-150 Endosulfan Sulfate 109 124 13 30 30-150	Organochlorine Pesticides by	EPA 8081A for	sample(s)	02-07,10-11	(L0814755-04,	WG339110-5)
Alpha-BHC Beta-BHC 110 124 12 30 30-150 Heptachlor Heptachlor Aldrin 94 111 17 30 30-150 Heptachlor epoxide 107 114 16 30 30-150 Heptachlor epoxide 107 120 11 30 30-150 Heptachlor epoxide 107 120 11 30 30-150 Endrin Heptachlor epoxide 107 114 129 12 30 30-150 Endrin ketone 105 117 11 30 30-150 Endrin ketone 105 117 11 30 30-150 Dieldrin 110 126 14 30 30-150 4,4'-DDE 110 125 13 30 30-150 4,4'-DDD 106 120 12 30 30-150 4,4'-DDT 100 113 12 30 30-150 Endosulfan I Endosulfan I Endosulfan II 114 129 12 30 30-150 Endosulfan sulfate 109 124 13 30 30-150 Methoxychlor 121 135 11 30 30-150 Surrogate(s) Surrogate(s) Surrogate(s)	Delta-BHC	89	101	13	30	30-150
Beta-BHC	Lindane	100	115	14	30	30-150
Heptachlor 97 114 16 30 30-150 Aldrin 94 111 17 30 30-150 Heptachlor epoxide 107 120 11 30 30-150 Endrin 14 129 12 30 30-150 Endrin ketone 105 117 11 30 30-150 Dieldrin 10 126 14 30 30-150 4,4'-DDE 110 125 13 30 30-150 4,4'-DDD 106 120 12 30 30-150 4,4'-DDT 100 113 12 30 30-150 Endosulfan I 109 124 13 30 30-150 Endosulfan II 114 129 12 30 30-150 Endosulfan Sulfate 109 124 13 30 30-150 Methoxychlor 121 135 11 30 30-150 Surrogate(s) Surrogate(s) Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene 82 98 18	Alpha-BHC	100	117	16	30	30-150
Aldrin 94 111 17 30 30-150 Heptachlor epoxide 107 120 11 30 30-150 Endrin 114 129 12 30 30-150 Endrin ketone 105 117 11 30 30-150 Dieldrin 110 126 14 30 30-150 4,4'-DDE 110 125 13 30 30-150 4,4'-DDD 106 120 12 30 30-150 4,4'-DDT 100 113 12 30 30-150 Endosulfan I 109 124 13 30 30-150 Endosulfan II 114 129 12 30 30-150 Endosulfan sulfate 109 124 13 30 30-150 Endosulfan sulfate 109 124 13 30 30-150 Endosychlor 121 135 11 30 30-150	Beta-BHC	110	124	12	30	30-150
Heptachlor epoxide 107 120 11 30 30-150 Endrin 114 129 12 30 30-150 Endrin ketone 105 117 11 30 30-150 Dieldrin 110 126 14 30 30-150 4,4'-DDE 110 125 13 30 30-150 4,4'-DDD 106 120 12 30 30-150 4,4'-DDT 100 113 12 30 30-150 Endosulfan I 109 124 13 30 30-150 Endosulfan II 114 129 12 30 30-150 Endosulfan sulfate 109 124 13 30 30-150 Endosulfan sulfate 109 124 13 30 30-150 Methoxychlor 121 135 11 30 30-150 Methoxychlor 121 135 11 30 30-150 Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene 82 98 18 30-150	Heptachlor	97	114	16	30	30-150
Endrin	Aldrin	94	111	17	30	30-150
Endrin ketone 105 117 11 30 30-150 Dieldrin 110 126 14 30 30-150 4,4'-DDE 110 125 13 30 30-150 4,4'-DDD 106 120 12 30 30-150 4,4'-DDT 100 113 12 30 30-150 Endosulfan I 109 124 13 30 30-150 Endosulfan sulfate 101 114 12 30 30 30-150 Endosulfa	Heptachlor epoxide	107	120	11	30	30-150
Dieldrin 110 126 14 30 30-150 4,4'-DDE 110 125 13 30 30-150 4,4'-DDD 106 120 12 30 30-150 4,4'-DDT 100 113 12 30 30-150 Endosulfan I 109 124 13 30 30-150 Endosulfan II 114 129 12 30 30-150 Endosulfan sulfate 109 124 13 30 30-150 Endosulfan sulfate 101 114 12 30 30 30-150 Endosulfa	Endrin	114	129	12	30	30-150
4,4'-DDE 110 125 13 30 30-150 4,4'-DDD 106 120 12 30 30-150 4,4'-DDT 100 113 12 30 30-150 Endosulfan I 109 124 13 30 30-150 Endosulfan II 114 129 12 30 30-150 Endosulfan sulfate 109 124 13 30 30-150 Methoxychlor 121 135 11 30 30-150 trans-Chlordane 101 114 12 30 30-150 Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene 82 98 18 30-150	Endrin ketone	105	117	11	30	30-150
4,4'-DDD 106 120 12 30 30-150 4,4'-DDT 100 113 12 30 30-150 Endosulfan I 109 124 13 30 30-150 Endosulfan II 114 129 12 30 30-150 Endosulfan sulfate 109 124 13 30 30-150 Methoxychlor 121 135 11 30 30-150 trans-Chlordane 101 114 12 30 30-150 Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene 82 98 18 30-150						
4,4'-DDT 100 113 12 30 30-150 Endosulfan I 109 124 13 30 30-150 Endosulfan II 114 129 12 30 30-150 Endosulfan sulfate 109 124 13 30 30-150 Methoxychlor 121 135 11 30 30-150 trans-Chlordane 101 114 12 30 30-150 Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene 82 98 18 30-150	4,4'-DDE	110			30	
Endosulfan I 109 124 13 30 30-150 Endosulfan II 114 129 12 30 30-150 Endosulfan sulfate 109 124 13 30 30-150 Methoxychlor 121 135 11 30 30-150 trans-Chlordane 101 114 12 30 30-150 Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene 82 98 18 30-150		106	120	12		30-150
Endosulfan II 114 129 12 30 30-150 Endosulfan sulfate 109 124 13 30 30-150 Methoxychlor 121 135 11 30 30-150 trans-Chlordane 101 114 12 30 30-150 Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene 82 98 18 30-150			113	12		30-150
Endosulfan sulfate 109 124 13 30 30-150 Methoxychlor 121 135 11 30 30-150 trans-Chlordane 101 114 12 30 30-150 Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene 82 98 18 30-150						
Methoxychlor 121 135 11 30 30-150 trans-Chlordane 101 114 12 30 30-150 Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene 82 98 18 30-150						30-150
trans-Chlordane 101 114 12 30 30-150 Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene 82 98 18 30-150						
Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene 82 98 18 30-150						
2,4,5,6-Tetrachloro-m-xylene 82 98 18 30-150	trans-Chlordane	101	114	12	30	30-150
Decachlorobiphenyl 73 79 8 30-150		82	98	18		
	Decachlorobiphenyl	73	79	8		30-150

Laboratory Job Number: L0814755

s for sample ND ND ND ND	(s) 02-07,1	.0-11 (WG	3389	36-4)	
ND ND		.0-11 (WG	3389	86-4)	
ND	mq/l				
ND	mg/l				
	<u> </u>	0.10	1	6010B	1007 11:00 1010 13:22
MD	mg/1	0.050	1	6010B	1007 11:00 1010 13:22
ND	mg/1	0.005	1	6010B	1007 11:00 1010 13:22
ND	mg/1	0.010	1	6010B	1007 11:00 1010 13:22
ND	mg/1	0.005	1	6010B	1007 11:00 1010 13:22
ND	mg/1	0.005	1	6010B	1007 11:00 1010 13:22
ND	mg/l	0.10	1	6010B	1007 11:00 1010 13:22
ND	mq/1	0.01	1	6010B	1007 11:00 1010 13:22
ND	mq/1	0.020	1	6010B	1007 11:00 1010 13:22
ND	_	0.010	1	6010B	1007 11:00 1010 13:22
ND	_	0.05	1	6010B	1007 11:00 1010 13:22
	_		1		1007 11:00 1010 13:22
	_				1007 11:00 1010 13:22
	_				1007 11:00 1010 13:22
	_				1007 11:00 1010 13:22
	_				1007 11:00 1010 13:22
	_				
	_				1007 11:00 1010 13:22
	_				1007 11:00 1010 13:22
	_				1007 11:00 1010 13:22
	_				1007 11:00 1010 13:22
	_				1007 11:00 1010 13:22
ND	1119/1	0.050	1	6010B	1007 11:00 1010 13:22
alysis for s	ample(s) 01	. (WG3392	13-3)	
ND	mg/kg	5.0	1	6010B	1008 16:30 1010 14:59
ND	mg/kg	2.5	1	6010B	1008 16:30 1010 14:59
ND	mg/kg	0.50	1	6010B	1008 16:30 1010 14:59
ND	mg/kg	0.50	1	6010B	1008 16:30 1010 14:59
ND	mg/kg	0.25	1	6010B	1008 16:30 1010 14:59
ND	mg/kg	0.50	1	6010B	1008 16:30 1010 14:59
ND	mg/kg		1	6010B	1008 16:30 1010 14:59
ND	mg/kg		1	6010B	1008 16:30 1010 14:59
					1008 16:30 1010 14:59
					1008 16:30 1010 14:59
					1008 16:30 1010 14:59
					1008 16:30 1010 14:59
					1008 16:30 1010 14:59
					1008 16:30 1010 14:59
					1008 16:30 1010 14:59
					1008 16:30 1010 14:59
					1008 16:30 1010 14:59
					1008 16:30 1010 14:59 1008 16:30 1010 14:59
	ND N	ND mg/l ND mg/kg ND mg/kg	ND mg/l 0.10 ND mg/l 0.01 ND mg/l 0.020 ND mg/l 0.010 ND mg/l 0.05 ND mg/l 0.010 ND mg/l 0.025 ND mg/l 0.025 ND mg/l 0.025 ND mg/l 0.007 ND mg/l 0.007 ND mg/l 0.007 ND mg/l 0.007 ND mg/l 0.050 ND mg/l 0.050 ND mg/l 0.050 ND mg/l 0.050 ND mg/kg 0.50 ND mg/kg 1.0 ND mg/kg 1.0 ND mg/kg 1.2 ND mg/kg 1.2 ND mg/kg 1.2 ND mg/kg 1.0 ND mg/kg 1.0 ND mg/kg 1.0 ND mg/kg 1.2 ND mg/kg 1.0	ND mg/l 0.10 1 ND mg/l 0.01 1 ND mg/l 0.020 1 ND mg/l 0.010 1 ND mg/l 0.05 1 ND mg/l 0.010 1 ND mg/l 0.025 1 ND mg/l 0.025 1 ND mg/l 0.007 1 ND mg/l 0.007 1 ND mg/l 0.007 1 ND mg/l 0.020 1 ND mg/l 0.050 1 ND mg/kg 0.50 1 ND mg/kg 1.0 1 ND mg/kg 1.2 1 ND mg/kg 1.0 1 ND mg/kg 1.2 1 ND mg/kg 1.0 1	ND mg/l 0.10 1 6010B ND mg/l 0.01 1 6010B ND mg/l 0.020 1 6010B ND mg/l 0.020 1 6010B ND mg/l 0.010 1 6010B ND mg/l 0.05 1 6010B ND mg/l 0.010 1 6010B ND mg/l 0.010 1 6010B ND mg/l 0.10 1 6010B ND mg/l 0.010 1 6010B ND mg/l 0.010 1 6010B ND mg/l 0.025 1 6010B ND mg/l 0.025 1 6010B ND mg/l 0.010 1 6010B ND mg/l 0.010 1 6010B ND mg/l 0.010 1 6010B ND mg/l 0.007 1 6010B ND mg/l 0.007 1 6010B ND mg/l 0.020 1 6010B ND mg/l 0.020 1 6010B ND mg/l 0.050 1 6010B ND mg/l 0.050 1 6010B ND mg/kg 0.50 1 6010B ND mg/kg 1.0 1 6010B ND mg/kg 1.2 1 6010B ND mg/kg 1.2 1 6010B ND mg/kg 1.2 1 6010B ND mg/kg 1.0 1 6010B ND mg/kg 1.2 1 6010B ND mg/kg 1.0 1 6010B ND mg/kg 1.0 1 6010B

Laboratory Job Number: L0814755

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Blank Ana	lysis for s	ample(s) 01	(WG3392	13-3)	
Total Metals					
Thallium, Total	ND	mg/kg	1.0	1 6010B	1008 16:30 1010 14:59 AI
Vanadium, Total	ND	mg/kg	0.50	1 6010B	1008 16:30 1010 14:59 AI
Zinc, Total	ND	mg/kg	2.5	1 6010B	1008 16:30 1010 14:59 AI
Blank Anal	lysis for sa	ample(s) 01	(WG3390	60-1)	
Cotal Metals					
Mercury, Total	ND	mg/kg	0.08	1 7471A	1007 20:00 1008 12:13 HG
Blank Analysis	for sample	(s) 02-07.1	0-11 (WG	339073-1)	
Total Metals	_or bampic	(3, 02 07,1		-320.3 1	
Mercury, Total	ND	mg/l	0.0002	1 7470A	1007 22:00 1008 11:31 HG
.02.042// 10041		9/ ±	0.0002	1 /1/VA	100, 22.00 1000 II.31 NG
Blank Analys Jolatile Organics by EPA 826		ple(s) 02-1	.6 (WG339		1000 18.15
		/7	Г О	1 8260B	1009 17:16 PD
Methylene chloride	ND	ug/l	5.0		
.,1-Dichloroethane Chloroform	ND	ug/l	0.75		
Carbon tetrachloride	ND	ug/l	0.75		
.,2-Dichloropropane	ND	ug/l	0.50 1.8		
Dibromochloromethane	ND ND	ug/l	0.50		
1,1,2-Trichloroethane	ND ND	ug/l	0.30		
Tetrachloroethene	ND ND	ug/l ug/l	0.75		
Chlorobenzene	ND ND	_	0.50		
Trichlorofluoromethane	ND ND	ug/l ug/l	2.5		
l,2-Dichloroethane	ND ND	ug/1 ug/l	0.50		
1,2-Dichioroethane	ND ND	ug/1 ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
crans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND	ug/l	0.50		
Foluene	ND	ug/l	0.75		
Ethylbenzene	ND	ug/l	0.75		
Chloromethane	ND	ug/l	2.5		
Bromomethane	ND	ug/l	1.0		
inyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	1.0		
.,1-Dichloroethene	ND	ug/l	0.50		
crans-1,2-Dichloroethene	ND	ug/l	0.75		
Trichloroethene	ND	ug/l	0.75		
l,2-Dichlorobenzene	ND ND	ug/l ug/l	2.5		

Laboratory Job Number: L0814755

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Blank Analys:	is for samr	ole(s) 02-1	16 (WG339	9486-3)	
Volatile Organics by EPA 8260		10(2) 01	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 8260B	1009 17:16 PD
1,3-Dichlorobenzene	ND	ug/l	2.5	1 02002	1005 17710 12
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	ND	ug/l	0.50		
Dibromomethane	ND	ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/l	5.0		
Acrylonitrile	ND	ug/l	5.0		
Styrene	ND	ug/l	1.0		
Dichlorodifluoromethane	ND	ug/l	5.0		
Acetone	ND	ug/l	5.0		
Carbon disulfide	ND	ug/l	5.0		
2-Butanone	ND	ug/l	5.0		
Vinyl acetate	ND	ug/l	5.0		
4-Methyl-2-pentanone	ND	ug/l	5.0		
2-Hexanone	ND	ug/l	5.0		
Bromochloromethane	ND	ug/l	2.5		
2,2-Dichloropropane	ND ND	ug/l ug/l	2.5		
1,2-Dibromoethane	ND ND	ug/l ug/l	2.0		
1,3-Dichloropropane	ND		2.5		
1,1,1,2-Tetrachloroethane	ND ND	ug/l	0.50		
Bromobenzene		ug/l			
	ND	ug/l	2.5		
n-Butylbenzene	ND ND	ug/l	0.50 0.50		
sec-Butylbenzene		ug/l			
tert-Butylbenzene o-Chlorotoluene	ND	ug/l	2.5		
	ND	ug/l	2.5		
p-Chlorotoluene	ND	ug/l	2.5		
1,2-Dibromo-3-chloropropane Hexachlorobutadiene	ND	ug/l	2.5		
	ND	ug/l	0.60		
Isopropylbenzene	ND	ug/l	0.50		
p-Isopropyltoluene	ND	ug/l	0.50		
Naphthalene	ND	ug/l	2.5		
n-Propylbenzene	ND	ug/l	0.50		
1,2,3-Trichlorobenzene	ND	ug/l	2.5		
1,2,4-Trichlorobenzene	ND	ug/l	2.5		
1,3,5-Trimethylbenzene	ND	ug/l	2.5		
1,2,4-Trimethylbenzene	ND	ug/l	2.5		
1,4-Diethylbenzene	ND	ug/l	2.0		
4-Ethyltoluene	ND	ug/l	2.0		
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0		
Surrogate(s)	Recovery		QC Cri		
1,2-Dichloroethane-d4	104	%	70-130		
Toluene-d8	101	%	70-130		
4-Bromofluorobenzene	108	%	70-130)	

Laboratory Job Number: L0814755

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Blank Analys		ole(s) 02-1	16 (WG33		
Volatile Organics by EPA 826		_		1 8260B	1009 17:16 PD
bibromofluoromethane	96.0	%	70-13	0	
	ysis for sa	ample(s) 03	l (WG339		
Volatile Organics by EPA 826				1 8260B	1010 13:21 PD
Methylene chloride	ND	ug/kg	25.		
l,1-Dichloroethane	ND	ug/kg	3.8		
Chloroform	ND	ug/kg	3.8		
Carbon tetrachloride	ND	ug/kg	2.5		
,2-Dichloropropane	ND	ug/kg	8.8		
bibromochloromethane	ND	ug/kg	2.5		
,1,2-Trichloroethane	ND	ug/kg	3.8		
etrachloroethene	ND	ug/kg	2.5		
Chlorobenzene	ND	ug/kg	2.5		
richlorofluoromethane	ND	ug/kg	12.		
,2-Dichloroethane	ND	ug/kg	2.5		
.,1,1-Trichloroethane	ND	ug/kg	2.5		
romodichloromethane	ND	ug/kg	2.5		
rans-1,3-Dichloropropene	ND	ug/kg	2.5		
is-1,3-Dichloropropene	ND	ug/kg	2.5		
,1-Dichloropropene	ND	ug/kg	12.		
romoform	ND	ug/kg	10.		
,1,2,2-Tetrachloroethane	ND	ug/kg	2.5		
Benzene	ND	ug/kg	2.5		
oluene	ND	ug/kg	3.8		
Ethylbenzene	ND	ug/kg	2.5		
Chloromethane	ND	ug/kg	12.		
Bromomethane	ND	ug/kg	5.0		
inyl chloride	ND	ug/kg	5.0		
Chloroethane	ND	ug/kg	5.0		
.,1-Dichloroethene	ND	ug/kg ug/kg	2.5		
rans-1,2-Dichloroethene	ND	ug/kg ug/kg	3.8		
Trichloroethene	ND	ug/kg ug/kg	2.5		
.,2-Dichlorobenzene	ND	ug/kg ug/kg	12.		
.,3-Dichlorobenzene	ND	ug/kg	12.		
.,4-Dichlorobenzene	ND	ug/kg	12.		
Methyl tert butyl ether	ND	ug/kg	5.0		
/m-Xylene	ND	ug/kg	5.0		
-Xylene	ND	ug/kg	5.0		
is-1,2-Dichloroethene	ND	ug/kg	2.5		
ibromomethane	ND	ug/kg	25.		
tyrene	ND	ug/kg	5.0		
oichlorodifluoromethane	ND	ug/kg	25.		
acetone	ND	ug/kg	25.		
Carbon disulfide	ND	ug/kg	25.		
2-Butanone	ND	ug/kg	25.		
inyl acetate	ND	ug/kg	25.		

10140812:33 Page 85 of 93

Laboratory Job Number: L0814755

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE PREP ANAL	ID
Blank Anal	ysis for sa	ample(s) 01	l (WG3395	52-3)		
Volatile Organics by EPA 826	OB cont'd	-		1 8260B	1010 13:21	1 PD
4-Methyl-2-pentanone	ND	ug/kg	25.			
1,2,3-Trichloropropane	ND	ug/kg	25.			
2-Hexanone	ND	ug/kg	25.			
Bromochloromethane	ND	ug/kg	12.			
2,2-Dichloropropane	ND	ug/kg	12.			
1,2-Dibromoethane	ND	ug/kg	10.			
1,3-Dichloropropane	ND	ug/kg	12.			
1,1,1,2-Tetrachloroethane	ND	ug/kg	2.5			
Bromobenzene	ND	ug/kg	12.			
n-Butylbenzene	ND	ug/kg	2.5			
sec-Butylbenzene	ND	ug/kg	2.5			
tert-Butylbenzene	ND	ug/kg	12.			
o-Chlorotoluene	ND	ug/kg	12.			
p-Chlorotoluene	ND	ug/kg ug/kg	12.			
1,2-Dibromo-3-chloropropane	ND	ug/kg ug/kg	12.			
Hexachlorobutadiene	ND	ug/kg ug/kg	12.			
Isopropylbenzene	ND	ug/kg ug/kg	2.5			
p-Isopropyltoluene	ND		2.5			
Naphthalene	ND	ug/kg	12.			
Acrylonitrile	ND ND	ug/kg	25.			
n-Propylbenzene	ND	ug/kg	25.			
1,2,3-Trichlorobenzene	ND ND	ug/kg	12.			
		ug/kg	12.			
1,2,4-Trichlorobenzene	ND	ug/kg	12.			
1,3,5-Trimethylbenzene	ND	ug/kg				
1,2,4-Trimethylbenzene	ND	ug/kg	12.			
1,4-Diethylbenzene	ND	ug/kg	10.			
4-Ethyltoluene	ND	ug/kg	10.			
1,2,4,5-Tetramethylbenzene	ND	ug/kg	10.			
Surrogate(s)	Recovery		QC Cri			
1,2-Dichloroethane-d4	102	8	70-130			
Toluene-d8	99.0	8	70-130			
4-Bromofluorobenzene	106	%	70-130			
Dibromofluoromethane	99.0	%	70-130			
Blank Analysis		(s) 02-07,1	10-11 (WG	339098-1)		
Semivolatile Organics by EPA	8270C			1 8270C	1008 00:45 1010 12:05	5 PS
Acenaphthene	ND	ug/l	5.0			
1,2,4-Trichlorobenzene	ND	ug/l	5.0			
Hexachlorobenzene	ND	ug/l	5.0			
Bis(2-chloroethyl)ether	ND	ug/l	5.0			
2-Chloronaphthalene	ND	ug/l	6.0			
1,2-Dichlorobenzene	ND	ug/l	5.0			
1,3-Dichlorobenzene	ND	ug/l	5.0			
1,4-Dichlorobenzene	ND	ug/l	5.0			
3,3'-Dichlorobenzidine	ND	ug/l	50.			
,		<u>J</u> , –				

10140812:33 Page 86 of 93

Laboratory Job Number: L0814755

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Blank Analysis	for gample	a) 02-07 1	10_11 /w	ra220000_1)	
Semivolatile Organics by EPA			TO-TT (M	1 8270C	1008 00:45 1010 12:05 PS
2,4-Dinitrotoluene	ND	ug/l	6.0	1 62/00	1006 00.45 1010 12.05 PS
2,6-Dinitrotoluene	ND	ug/l	5.0		
Fluoranthene	ND	ug/l	5.0		
4-Chlorophenyl phenyl ether	ND	ug/l	5.0		
4-Bromophenyl phenyl ether	ND	ug/l	5.0		
Bis(2-chloroisopropyl)ether	ND	ug/l	5.0		
Bis(2-chloroethoxy)methane	ND	ug/l	5.0		
Hexachlorobutadiene	ND	ug/l	10.		
Hexachlorocyclopentadiene	ND	ug/l	30.		
Hexachloroethane	ND	ug/l	5.0		
Isophorone	ND	ug/l	5.0		
Naphthalene	ND	ug/l	5.0		
Nitrobenzene	ND	ug/l	5.0		
NitrosoDiPhenylAmine(NDPA)/D		ug/l	15.		
n-Nitrosodi-n-propylamine	ND	ug/l	5.0		
Bis(2-Ethylhexyl)phthalate	ND	ug/l	5.0		
Butyl benzyl phthalate	ND	ug/l	5.0		
Di-n-butylphthalate	ND	ug/l	5.0		
Di-n-octylphthalate	ND	ug/l	5.0		
Diethyl phthalate	ND	ug/l	5.0		
Dimethyl phthalate	ND	ug/l	5.0		
Benzo(a)anthracene	ND	ug/l	5.0		
Benzo(a)pyrene	ND	ug/l	5.0		
Benzo(b)fluoranthene	ND	ug/l	5.0		
Benzo(k)fluoranthene	ND	ug/l	5.0		
Chrysene	ND	ug/l	5.0		
Acenaphthylene	ND	ug/l	5.0		
Anthracene	ND	ug/l	5.0		
Benzo(ghi)perylene	ND	ug/l	5.0		
Fluorene	ND	ug/l	5.0		
Phenanthrene	ND	ug/l	5.0		
Dibenzo(a,h)anthracene	ND	ug/l	5.0		
Indeno(1,2,3-cd)Pyrene	ND	ug/l	7.0		
Pyrene	ND	ug/l	5.0		
Biphenyl	ND	ug/l	5.0		
4-Chloroaniline	ND	ug/l	5.0		
2-Nitroaniline	ND	ug/l	5.0		
3-Nitroaniline	ND	ug/l	5.0		
4-Nitroaniline	ND	ug/l	7.0		
Dibenzofuran	ND	ug/l	5.0		
2-Methylnaphthalene	ND	ug/l	5.0		
1,2,4,5-Tetrachlorobenzene	ND	ug/l	20.		
Acetophenone	ND	ug/l ug/l	20.		
2,4,6-Trichlorophenol	ND	ug/l	5.0		
P-Chloro-M-Cresol	ND	ug/l	5.0		
2-Chlorophenol	ND	ug/l	6.0		
2 chilorophenor	IND	ug/ I	0.0		

Laboratory Job Number: L0814755

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE II PREP ANAL
Blank Analysis	for sample	(s) 02-07,1	.0-11 (W	G339098-1)	
Semivolatile Organics by EPA				1 8270C	1008 00:45 1010 12:05 PS
2,4-Dichlorophenol	ND	ug/l	10.		
2,4-Dimethylphenol	ND	ug/l	10.		
2-Nitrophenol	ND	ug/l	20.		
4-Nitrophenol	ND	ug/l	10.		
2,4-Dinitrophenol	ND	ug/l	30.		
4,6-Dinitro-o-cresol	ND	ug/l	20.		
Pentachlorophenol	ND	ug/l	10.		
Phenol	ND	ug/l	7.0		
2-Methylphenol	ND	ug/l	6.0		
3-Methylphenol/4-Methylphenol	L ND	ug/l	6.0		
2,4,5-Trichlorophenol	ND	ug/l	5.0		
Benzoic Acid	ND	ug/l	50.		
Benzyl Alcohol	ND	ug/l	10.		
Carbazole	ND	ug/l	5.0		
Surrogate(s)	Recovery		QC Cr	iteria	
2-Fluorophenol	55.0	%	21-12	0	
Phenol-d6	33.0	%	10-12	0	
Nitrobenzene-d5	73.0	%	23-12	0	
2-Fluorobiphenyl	73.0	%	43-12	0	
2,4,6-Tribromophenol	105	%	10-12	0	
4-Terphenyl-d14	97.0	%	33-12	0	
Blank Analy		ample(s) 01	. (WG339	103-1)	
Semivolatile Organics by EPA				1 8270C	1008 00:30 1009 11:07 PS
Acenaphthene	ND	ug/kg	330		
1,2,4-Trichlorobenzene	ND	ug/kg	330		
Hexachlorobenzene	ND	ug/kg	330		
Bis(2-chloroethyl)ether	ND	ug/kg	330		
2-Chloronaphthalene	ND	ug/kg	400		
1,2-Dichlorobenzene	ND	ug/kg	330		
1,3-Dichlorobenzene	ND	ug/kg	330		
1,4-Dichlorobenzene	ND	ug/kg	330		
3,3'-Dichlorobenzidine	ND	ug/kg	670		
2,4-Dinitrotoluene	ND	ug/kg	330		
2,6-Dinitrotoluene	ND	ug/kg	330		
Fluoranthene	ND	ug/kg	330		
4-Chlorophenyl phenyl ether	ND	ug/kg	330		
4-Bromophenyl phenyl ether	ND	ug/kg	330		
Bis(2-chloroisopropyl)ether	ND	ug/kg	330		
		110 /lea	330		
Bis(2-chloroethoxy)methane	ND	ug/kg			
Hexachlorobutadiene	ND	ug/kg	670		
Hexachlorobutadiene Hexachlorocyclopentadiene	ND ND	ug/kg ug/kg	670 670		
Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane	ND ND ND	ug/kg ug/kg ug/kg	670 670 330		
Bis(2-chloroethoxy)methane Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Isophorone Naphthalene	ND ND	ug/kg ug/kg	670 670		

10140812:33 Page 88 of 93

Laboratory Job Number: L0814755

Continued

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DATE PREP ANAL	ID
Blank Analy	raia for a	amplo(g) 01	/ WC 2 2 Q 1	02_1	\		
Semivolatile Organics by EPA			(MG3371		8270C	1008 00:30 1009 11:07	7 DC
Nitrobenzene	ND	ug/kg	330		02700	1000 00.30 1007 11.07	FD
NitrosoDiPhenylAmine(NDPA)/DF		ug/kg	1000				
n-Nitrosodi-n-propylamine	ND	ug/kg	330				
Bis(2-Ethylhexyl)phthalate	ND	ug/kg	670				
Butyl benzyl phthalate	ND	ug/kg ug/kg	330				
Di-n-butylphthalate	ND	ug/kg	330				
Di-n-octylphthalate	ND	ug/kg ug/kg	330				
Diethyl phthalate	ND	ug/kg ug/kg	330				
Dimethyl phthalate	ND	ug/kg ug/kg	330				
Benzo(a)anthracene	ND	ug/kg ug/kg	330				
Benzo(a)pyrene	ND	ug/kg ug/kg	330				
Benzo(b)fluoranthene	ND ND	ug/kg ug/kg	330				
Benzo(k)fluoranthene	ND ND		330				
	ND ND	ug/kg	330				
Chrysene Acenaphthylene	ND ND	ug/kg ug/kg	330				
Anthracene	ND ND		330				
Benzo(ghi)perylene	ND ND	ug/kg	330				
Fluorene		ug/kg					
Phenanthrene	ND ND	ug/kg ug/kg	330 330				
Dibenzo(a,h)anthracene	ND ND		330				
	ND ND	ug/kg	330				
Indeno(1,2,3-cd)Pyrene Pyrene	ND ND	ug/kg ug/kg	330				
Biphenyl	ND ND		330				
4-Chloroaniline	ND ND	ug/kg ug/kg	330				
2-Nitroaniline	ND ND	ug/kg ug/kg	330				
3-Nitroaniline	ND ND		330				
4-Nitroaniline	ND ND	ug/kg	470				
Dibenzofuran		ug/kg					
	ND	ug/kg	330				
2-Methylnaphthalene 1,2,4,5-Tetrachlorobenzene	ND	ug/kg	330				
	ND	ug/kg	1300				
Acetophenone	ND	ug/kg	1300				
2,4,6-Trichlorophenol P-Chloro-M-Cresol	ND	ug/kg	330 330				
2-Chlorophenol	ND ND	ug/kg	400				
2,4-Dichlorophenol	ND	ug/kg	670				
	ND	ug/kg					
2,4-Dimethylphenol 2-Nitrophenol	ND ND	ug/kg	330 1300				
		ug/kg					
4-Nitrophenol	ND	ug/kg	670				
2,4-Dinitrophenol	ND	ug/kg	1300				
4,6-Dinitro-o-cresol	ND ND	ug/kg	1300				
Pentachlorophenol	ND	ug/kg	1300				
Phenol	ND	ug/kg	470				
2-Methylphenol	ND	ug/kg	400				
3-Methylphenol/4-Methylphenol		ug/kg	400				
2,4,5-Trichlorophenol Benzoic Acid	ND ND	ug/kg	330				
Delizoto Actu	ND	ug/kg	3300				

Laboratory Job Number: L0814755

Continued

### Surrogate(s) Recovery QC Criteria	PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Semivolatile Organics by EPA 8270C cont.'d	Dlank An	valuata for a	amplo(a) O	1 / 1,17,2,2,0,1	102 1)	
Semzyl Alcohol ND		_	_	I (MG3391		1008 00:30 1009 11:07 DS
Parbazole				670	1 02/00	1000 00.30 1009 11.07 F3
Principhenol 68.0	Carbazole					
### Price	Surrogate(s)	Recovery		QC Cri	iteria	
## Annoloo	_	-	8	25-120)	
## P-Fluorobiphenyl	Phenol-d6	66.0	8	10-120)	
### Blank Analysis for sample(s) 02-07,10-11 (WG339099-1) ### Blank Analysis for sample(s) 02-07,10-11 (WG339099-1) #### Blank Analysis for sample(s) 01 (WG33905-1)	Nitrobenzene-d5	57.0	8	23-120)	
### Blank Analysis for sample(s) 02-07,10-11 (WG339099-1) ### Blank Analysis for sample(s) 02-07,10-11 (WG339099-1) #### Blank Analysis for sample(s) 01 (WG339105-1)	2-Fluorobiphenyl	60.0	%	30-120)	
Blank Analysis for sample(s) 02-07,10-11 (WG339099-1) Semivolatile Organics by EPA 8270C-SIM			%	19-120)	
Semivolatile Organics by EPA 8270C-SIM	4-Terphenyl-d14					
Second S	Blank Analysi	s for sample	(s) 02-07,	10-11 (WC	339099-1)	
Second S						1008 00:45 1010 21:18 AK
### Process of the company of the co	Acenaphthene	ND	ug/l	0.20		
ND	2-Chloronaphthalene	ND		0.20		
Maphthalene ND ug/l 0.20 Menzo(a)anthracene ND ug/l 0.20 Menzo(a)pyrene ND ug/l 0.20 Menzo(b)fluoranthene ND ug/l 0.20 Menzo(k)fluoranthene ND ug/l 0.20 Mcenaphthylene ND ug/l 0.20 Mcenaphthylene ND ug/l 0.20 Mcenaphthylene ND ug/l 0.20 Mchracene ND ug/l 0.20 Muthracene ND ug/l 0.20 Mchenathrene ND ug/l 0.20 </td <td>Fluoranthene</td> <td>ND</td> <td>ug/l</td> <td>0.20</td> <td></td> <td></td>	Fluoranthene	ND	ug/l	0.20		
Raphthalene ND ug/l 0.20 Benzo(a)anthracene ND ug/l 0.20 Benzo(b)fluoranthene ND ug/l 0.20 Benzo(k)fluoranthene ND ug/l 0.20 Benzo(k)fluoranthene ND ug/l 0.20 Chrysene ND ug/l 0.20 Acenaphthylene ND ug/l 0.20 Benzo(ghi)perylene ND ug/l 0.20 Benzo(ghi)perylene ND ug/l 0.20 Pluorene ND ug/l 0.20 Pluorene ND ug/l 0.20 Plenathrene ND ug/l 0.20 Plenathrene ND ug/l 0.20 Plenathrene ND ug/l 0.20 Prene ND ug/l 0.20 Prene ND ug/l 0.20 Prene ND ug/l 0.80 Berachlorophenol ND ug/l 0.80	Hexachlorobutadiene	ND	ug/l	0.50		
Renzo(a) anthracene ND ug/1 0.20 Renzo(b) fluoranthene ND ug/1 0.20 Renzo(ghi) perylene ND ug/1 0.20 Renzo(a) fluorene ND ug/1 0.	Naphthalene	ND				
Renzo(a)pyrene ND ug/1 0.20 Renzo(b)fluoranthene ND ug/1 0.20 Renzo(k)fluoranthene ND ug/1 0.20 Renzo(k)fluoranthene ND ug/1 0.20 Renzo(k)fluoranthene ND ug/1 0.20 Renzo(a)pyrene ND ug/1 0.20 Renzo(b)fluoranthene ND ug/1 0.20 Renzo(a)pyrene ND ug/1 0.20 Renzo(ghi)perylene ND ug/1 0.20 Renzo(ghi)perylene ND ug/1 0.20 Renzo(ghi)perylene ND ug/1 0.20 Renzo(a)pyrene N	-					
Senzo(b) Fluoranthene						
Senzo(k) fluoranthene						
## Chrysene						
Accenaphthylene Anthracene Anthra						
### Anthracene ND ug/l 0.20 0			_			
### Senzo(ghi)perylene						
Pluorene						
## Phenanthrene						
### Dibenzo(a,h)anthracene ### ND						
Cindeno(1,2,3-cd)Pyrene ND ug/l 0.20						
Pyrene ND ug/l 0.20 P-Methylnaphthalene ND ug/l 0.20 Pentachlorophenol ND ug/l 0.80 Hexachlorobenzene ND ug/l 0.80 Hexachloroethane ND ug/l 0.80 Surrogate(s) Recovery QC Criteria P-Fluorophenol 53.0 % 21-120 P-Henol-d6 36.0 % 10-120 Hitrobenzene-d5 80.0 % 23-120 P-Fluorobiphenyl 74.0 % 43-120 P-Fluorobiphenyl 74.0 % 43-120 P-Fluorophenol 91.0 % 10-120 P-Terphenyl-d14 94.0 % 33-120 Blank Analysis for sample(s) 01 (WG339105-1)						
### Pentachlorophenol	-					
Pentachlorophenol ND ug/l 0.80 Hexachlorobenzene ND ug/l 0.80 Hexachloroethane ND ug/l 0.80 Surrogate(s) Recovery QC Criteria Perfluorophenol 53.0 % 21-120 Phenol-d6 36.0 % 10-120 Pitrobenzene-d5 80.0 % 23-120 Perfluorobiphenyl 74.0 % 43-120 Perfluorobiphenyl 74.0 % 43-120 Perfluorobiphenyl 91.0 % 10-120 Perfluorophenol 91.0 % 33-120 Blank Analysis for sample(s) 01 (WG339105-1)	2					
Mexachlorobenzene ND ug/l 0.80 Mexachloroethane ND ug/l 0.80 Surrogate(s) Recovery QC Criteria 2-Fluorophenol 53.0 \$ 21-120 Phenol-d6 36.0 \$ 10-120 Witrobenzene-d5 80.0 \$ 23-120 2-Fluorobiphenyl 74.0 \$ 43-120 2,4,6-Tribromophenol 91.0 \$ 10-120 4-Terphenyl-d14 94.0 \$ 33-120 Blank Analysis for sample(s) 01 (WG339105-1)			_			
Hexachloroethane ND ug/l 0.80 Surrogate(s) Recovery QC Criteria 2-Fluorophenol 53.0 % 21-120 Phenol-d6 36.0 % 10-120 Sitrobenzene-d5 80.0 % 23-120 2-Fluorobiphenyl 74.0 % 43-120 2,4,6-Tribromophenol 91.0 % 10-120 2-Terphenyl-d14 94.0 % 33-120 Blank Analysis for sample(s) 01 (WG339105-1)						
2-Fluorophenol 53.0 % 21-120 Phenol-d6 36.0 % 10-120 Witrobenzene-d5 80.0 % 23-120 P-Fluorobiphenyl 74.0 % 43-120 P-Fluorophenol 91.0 % 10-120 P-Terphenyl-d14 94.0 % 33-120 Blank Analysis for sample(s) 01 (WG339105-1)	Hexachloroethane		_			
2-Fluorophenol 53.0 % 21-120 Phenol-d6 36.0 % 10-120 Witrobenzene-d5 80.0 % 23-120 P-Fluorobiphenyl 74.0 % 43-120 P-Fluorophenol 91.0 % 10-120 P-Terphenyl-d14 94.0 % 33-120 Blank Analysis for sample(s) 01 (WG339105-1)	Surrogate(s)	Recovery		OC Cri	iteria	
Phenol-d6 36.0 % 10-120 Witrobenzene-d5 80.0 % 23-120 P-Fluorobiphenyl 74.0 % 43-120 P-Fluorobiphenyl 91.0 % 10-120 P-Terphenyl-d14 94.0 % 33-120 Blank Analysis for sample(s) 01 (WG339105-1)		-	<u>ે</u>			
### Sitrobenzene-d5						
2-Fluorobiphenyl 74.0 % 43-120 2,4,6-Tribromophenol 91.0 % 10-120 4-Terphenyl-d14 94.0 % 33-120 Blank Analysis for sample(s) 01 (WG339105-1)						
2,4,6-Tribromophenol 91.0 % 10-120 4-Terphenyl-d14 94.0 % 33-120 Blank Analysis for sample(s) 01 (WG339105-1)						
H-Terphenyl-d14 94.0 % 33-120 Blank Analysis for sample(s) 01 (WG339105-1)						
	4-Terphenyl-d14					
	Blank An	alysis for sa	ample(s) 0	1 (WG3391	L05-1)	
						1008 01:00 1008 13:21 AK

10140812:33 Page 90 of 93

Laboratory Job Number: L0814755

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE PREP ANAL	ID
Blank Analy	sis for sa	mple(s) 01	(WG3391	05-1)		
Semivolatile Organics by EPA	8270C-SIM	cont'd		1 8270C	1008 01:00 1008 13:21	1 AK
Acenaphthene	ND	ug/kg	13.			
2-Chloronaphthalene	ND	ug/kg	13.			
Fluoranthene	ND	ug/kg	13.			
Hexachlorobutadiene	ND	ug/kg	33.			
Naphthalene	ND	ug/kg	13.			
Benzo(a)anthracene	ND	ug/kg	13.			
Benzo(a)pyrene	ND	ug/kg	13.			
Benzo(b)fluoranthene	ND	ug/kg	13.			
Benzo(k)fluoranthene	ND	ug/kg	13.			
Chrysene	ND	ug/kg	13.			
Acenaphthylene	ND	ug/kg	13.			
Anthracene	ND	ug/kg	13.			
Benzo(ghi)perylene	ND	ug/kg	13.			
Fluorene	ND	ug/kg	13.			
Phenanthrene	ND	ug/kg	13.			
Dibenzo(a,h)anthracene	ND	ug/kg	13.			
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	13.			
Pyrene	ND	ug/kg	13.			
2-Methylnaphthalene	ND	ug/kg	13.			
Pentachlorophenol	ND	ug/kg	53.			
Hexachlorobenzene	ND	ug/kg	53.			
Hexachloroethane	ND	ug/kg	53.			
Surrogate(s)	Recovery		QC Cri	teria		
2-Fluorophenol	82.0	8	25-120			
Phenol-d6	87.0	%	10-120			
Nitrobenzene-d5	79.0	%	23-120			
2-Fluorobiphenyl	75.0	%	30-120			
2,4,6-Tribromophenol	87.0	%	19-120			
4-Terphenyl-d14	82.0	%	18-120			
Blank Analysis f	for sample(s) 02-07,1	0-11 (WG	339104-1)		
Polychlorinated Biphenyls by	EPA 8082			1 8082	1008 02:30 1009 14:19	9 SS
Aroclor 1016	ND	ug/l	0.100			
Aroclor 1221	ND	ug/l	0.100			
Aroclor 1232	ND	ug/l	0.100			
Aroclor 1242	ND	ug/l	0.100			
Aroclor 1248	ND	ug/l	0.100			
Aroclor 1254	ND	ug/l	0.100			
Aroclor 1260	ND	ug/l	0.100			
Surrogate(s)	Recovery		QC Cri	teria		
2,4,5,6-Tetrachloro-m-xylene	77.0	%	30-150			
Decachlorobiphenyl	97.0	%	30-150			

10140812:33 Page 91 of 93

Laboratory Job Number: L0814755

Continued

PARAMETER	RESULT	UNITS	RDL	REF 1	METHOD	DA'	ΓE	ID
						PREP	ANAL	
Blank Analysis f	or sample(s	s) 02-07,10	0-11 (WG3	339110	0-1)			
Organochlorine Pesticides by	EPA 8081A			1 8	8081A	1008 05:00	1009 11:4	0 JB
Delta-BHC	ND	ug/l	0.020					
Lindane	ND	ug/l	0.020					
Alpha-BHC	ND	ug/l	0.020					
Beta-BHC	ND	ug/l	0.020					
Heptachlor	ND	ug/l	0.020					
Aldrin	ND	ug/l	0.020					
Heptachlor epoxide	ND	ug/l	0.020					
Endrin	ND	ug/l	0.040					
Endrin ketone	ND	ug/l	0.040					
Dieldrin	ND	ug/l	0.040					
4,4'-DDE	ND	ug/l	0.040					
4,4'-DDD	ND	ug/l	0.040					
4,4'-DDT	ND	ug/l	0.040					
Endosulfan I	ND	ug/l	0.020					
Endosulfan II	ND	ug/l	0.040					
Endosulfan sulfate	ND	ug/l	0.040					
Methoxychlor	ND	ug/l	0.200					
trans-Chlordane	ND	ug/l	0.020					
Chlordane	ND	ug/l	0.200					
Surrogate(s)	Recovery		QC Crit	teria				
2,4,5,6-Tetrachloro-m-xylene	81.0	%	30-150					
Decachlorobiphenyl	84.0	%	30-150					

ALPHA ANALYTICAL ADDENDUM I

REFERENCES

- 1. Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IIIA, 1997.
- 30. Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.

GLOSSARY OF TERMS AND SYMBOLS

REF Reference number in which test method may be found.

METHOD Method number by which analysis was performed.

ID Initials of the analyst.

ND Not detected in comparison to the reported detection limit.

NI Not Ignitable.

ug/cart Micrograms per Cartridge.

H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.

LIMITATION OF LIABILITIES

Alpha Analytical, Inc. performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical, Inc., shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical, Inc. be held liable for any incidental consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical, Inc.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding times and splitting of samples in the field.

10140812:33 Page 93 of 93

CHAIN OF CUSTODY PAGE / OF 7	/6 (B)	ALPHA Job #: 1 0 X1475
Project Information	Information Data Deliverables	Billing Information Same as Client info PO #:
Project Name:	☐ ADEx ☐ Add'l Deliverables	
MR Oxol		
Project Location: 20-100 Banks he hochilleforde, N	State/Fed Program	Criteria
Project #: \$1/80801	NZ VEC	
Project Manager: Kris Almskoz		SUNABLE CONFIDENCE PROTOCO
ALPHA Quo:e #:	N 8	Are CT RCP (Reasonable Confidence Protocols) Required?
Turn-Around Time		
Standard Rush (ONLY IF PRE-APPROVED)	00 (45-2-	SAMPLE HANDLING Filtration
-	100	□ Done
Due Date: (0 /13 /0) Time:) 70 10/ 10/	☐ Lab to do
Other Project Specific Requirements/Comments/Detection Limits!	82- 82- 85 60 885.	Preservation ☐ Lab to do (Please spacify
	VOC: Neta des/f	DELON)
Collection Sample Sampler's Date Time Matrix Initials	TCLI TCLS TAL Pestici	Sample Specific
1230 So?1	× × /	
120 6		
1440		
1/40		
¥ 144°		
101/18 0930		
USB 8207		
1145	4	
V 1305 V V		
Container Type	402 802 802	
Preservative	A Sare	Please print clearly, legibly and completely. Samples
	Date/Time Received By:	not be logged in and Date/Time turnaround time clock will n
cery of the		3
5.00		10 10 10 10 10 10 10 10 10 10 10 10 10 1
		1
	ation 80-100 Banks An Achilletedry 8080) Kris Almskoz Time Rush (ONLY IF PRE-APPROVED, 1330 Sold KEA 1320 L 1345 1445 Container Type Relinquished By: Relinquished By: Reservative	ation PAGE OF Z Date Rec'd in Lab: O

	MA MCP or CT RCP?		PLEASE ANSWER QUESTIONS ABOVE!	THO COME TO	(2) 18 1000 X 19	+,	4	1 1	FB100308-01	10 DAA-100	147575 9 Pithw-07	(Lab Use Only)	ALPHA Lab ID Sample ID		, sonita.	Other Project Specific Requirements/Comments/Detection Limits:	These samples have been Previously analyzed by Alpha Due	Email: Krishe Rypesicon	Fax 631-589-8705	Phone: 631-589-6353	Bohemia, NY 11716 ALP	Address: 630 Johnson Avenue, Suite 7 Proj	Client: P.W. Grosser Proj	Client Information Proj	FAX: 508-822-3288		Property	CHAIN OF CUSTODY
	Relinquished By:	Preservative	Container Type	1355	755	1986 1355	A 1842	13/0	(0)168 1415	4 1/50 1	10/6/01 1320 L JLL	Date Tirre Matrix Initials	Collection Sample Sampler's			ction Limits:	Due Date: (D 13 b) Time:	-	Standard Rush (ONLY IF PRE-APPROVED)	Turn-Around Time		Project Manager: Kris Alaka	Project #: AVBOSOI NY	Project Location: 80-100 Buts Ave Rainle Cuts	Ανηυερ	Project Name:	Project Information	SIODY PAGE 2 OF 2
1916/08 1810 1	2 Sate							/	4, 4,	-XXXXX	X 	TCL TCI TAL Pest.	sv m	vc, etalj	82. 601 601	טנ 10/7	81/8	িথ বিশ্ব	-	SIS	□ 0 8	MCP PRESOMPTIVE CERTAINTY-CT RE		State/Fed Program	ory Requirem	_	Report Information Data Deliverables	Date Rec'd in Lab: LO/6/08
40/6/01/1916		Please print clearly, legibly and completely. Samples										Sample Specific Comments			(Please specify below)	Preservation Lab to do	☐ Not Needed	□ Done	SAMPLE HANDLING		Are CT RCP (Reasonable Confidence Protocols) Required?	RESUMPTIVE CERTAINTY-CT REASONABLE CONFIDENCE PROTOCO		Criteria			Billing Information Same as Client info PO#:	ALPHA JOS # COB 14753

APPENDIX G DATA VALIDATION REPORT

DATA USABILITY SUMMARY REPORT (DUSR)

Site Name:

80-100 Banks Ave, Rockville Centre, NY

Performing Laboratory:

Alpha Analytical Laboratories, Massachusetts

P.W. Grosser Project No. AVB0801

Project Manager

Kris E. Almskog, Senior Project Manager

Stone Project Number:

082074-F, Phase II

TCL VOA by Method 8260, TCL SVOCs by Method 8270, TAL Metals by

Analyses/Methods:

Method 6010/7000, TCL Pesticides/PCBs by Methods 8081/8082, TPH-DRO

by Method 8015

Data Validation Level

Limited. Full on 5% or one sample from each SDG.

Prepared by: Kim Watson, Stone Environmental, Inc.

Completed on: 12/12/08

Reviewed by: Lesley Allen, Stone Environmental, Inc.

SDG Nos.: L0812845, L0812904, L0813196, L0813344, L0813447, L0813541, L0814755,

and L0814991

Stone Environmental, Inc. (Stone) has performed a quality assurance (QA) evaluation on the data reports from Alpha Analytical Laboratories in Massachusetts. The samples were collected and analyzed for the parameters as listed on the chain of custody records provided in Attachment A. The DUSR was based on a review of each laboratory sample delivery group (SDG) case narrative and the full "Tier III" third-party data validation report, which are provided in Attachment B and Attachment C, respectively. Full data validation in accordance with Region II SOPs for validating organic and inorganic analyses was performed on 5% of the data or one to two samples from each SDG as outlined in the approved project plan for volatile and semivolatile organics, polychlorinated biphenyls (PCBs) as Aroclors, pesticides, TPH-DRO, and metals data in soil and water samples, and volatiles in air samples. The remaining data received a summary validation as outlined in this report. The laboratory met all commitments and the final data packages were received at P.W. Grosser by October 26, 2008 and received at Stone for evaluation on October 31, 2008 with amendments received on December 10 and 11, 2008. The laboratory reported the data under SDG Nos. L0812845, L0812904, L0813196, L0813344, L0813447, L0813541, L0814755, and L0814991. The DUSR data evaluation included a review of the following as based on the case narratives and the full data validation: data package completeness, holding times, initial and continuing calibrations, reporting Limits, laboratory and field blanks, laboratory control samples, field duplicates, sample result verification, and method-specific QC samples (e.g., GC/MS Tunes).

The data selected for full validation were qualified following the guidelines in EPA Region II's Standard Operating Procedures (SOPs) from the EPA Hazardous Waste Support Branch: SOP#HW-24 "SOP for the Validation of Organic Data Acquired Using SW-846 Method 8260" (Rev2, Dec 1996), SOP#HW-22 "Validating Semivolatile Organic Compounds By Gas Chromatography/Mass Spectrometry SW-846 Method 8270D", SOP#HW-44 "Validating Pesticide Compounds Organochlorine Pesticides by Gas Chromatography SW-846 Method 8081B", SOP#HW-45 "Validating PCB Compounds PCBs By Gas Chromatography SW-846 8082A", SOP#HW-2 "Validation of Metals for the Contract Laboratory Program (CLP) based on SOW ILMO5.3" (SOP Revision 13), and SOP#HW-31 "Validation Air Samples Volatile Organic Analysis of Ambient Air In Canister By Method TO-15". In addition, the EPA's "National Functional Guidelines for Organic Data Review" (EPA 540/R-99/008, 10/99), EPA's "National Functional Guidelines for Inorganic Data Review" (EPA 540-R-04-004, October 2004) and professional judgment were considered during the data validation effort.

All laboratory deliverables were received in accordance with the work plan and general reporting requirements from the NYSDEC's Analytical Services Protocol (ASP) (2005). Any deviations from acceptable QC specifications are discussed in detail in each case narrative and laboratory qualifiers (as defined in the data deliverables) were added to the data, when appropriate, to indicate potential concerns with data usability, and these qualifiers were reported on the Form I's by the laboratory.

Due to the need for dilutions or reanalyses due to QC outliers, multiple data sets were provided for some of the samples. Therefore, in the case of dilution analyses, the result from the more concentrated analysis shall be replaced with the appropriate concentration from the dilution analysis; in the case of re-analyses, and as indicated in the case narrative that the outliers replicated, the original results will be considered for use with qualification as estimated (J/UJ).

Summary of Data Usability

Based on review of the results reported by the laboratory, the overall Quality Control data provided in the laboratory reports, and the case narratives, the data are representative of adequate method accuracy and precision with regard to project objectives. As noted in the full data validation report, some of the data points were qualified as estimated (J/UJ) due to laboratory accuracy and precision outliers or potential interferences. However, the completeness level attained for the analysis of the field samples was greater than 95%. For all data, the overall quality of the data is acceptable and all results as qualified are considered usable.

<u>ATTACHMENT A</u>

CHAIN OF CUSTODY RECORDS

SDG Nos. L0812845, L0812904, L0813196, L0813344, L0813447, L0813541, L0814755, and L0814991

Volatiles, Semivolatiles, Total Petroleum Hydrocarbons (TPH), Diesel Range Organics (DRO), Pesticides/Polychlorinated biphenyls, and Metals in Water and Soil Samples, and Volatiles in Air Samples

CHAIN OF CUSTO	\ \ \	Value Decidion - the Control of the Control	
	A PAGE 1 OF A	0012400	ALPHA Job #: COO LONG
CELTY.	Project Information	Information	Eilling Information
Westborough MA Mansfield wa		L FAX	Same as Client info PO #:
	Project Name:	☐ ADEx ☐ Add'l Deliverables	
744 Stor-date-9155 744 Str-522-3288		Regulatory Requirements/Report Limits	ts
Client Intormation	Project Location: D-100 Buck, Ave bock or Re	State/Fed Program	Criteria , I
Client: P.W. Grosser	Project #: AVB 0801	NYCHEC AT CAT OF	O Valiverables
Address: 630 Johnson Avenue, Suite 7	Project Manager: Kos Almskos	MCP PRESUMPTIVE CERTAINTY-CT	MCP PRESUMPTIVE CERTAINTY-CT REASONABLE CONFIDENCE PROTOCO
Bohemia, NY 11716	1	T Yes II No Are MCP Analyt	Are MCP Analytical Mathods Required?
Phone: 631-589-6353	Turn-Around Time	Sisy	Are C. I. Not (neasonable Considerice Protocols) Required?
Fax 631-589-8705	Standard Page Anna Standard		SAMPLE HANDLING
Email:	9/8/0X	0°	Filtration
These samples have been Previously analyzed by Alpha	Due Date:	97	Not Needed
Other Project Specific Registements/Comments/Detection Limits	ľ	:8	- Lab to do
NXOFC ASD B DIMERHAL	Potential Laures.		□ Lab to de
7		\$2000	(Please specify below)
		1	
ALPHA Lab ID Sample ID (Lab Use Only)	Collection Sample Sampler's	7.7	
	מפור וודפ אפטוא		Sample Specule Conurents
10-802-11-5M	(120) 8/2668 1045 L JL	/ X	
7	1/30 1		
	35-40,00		
	(3c-10/hrs/D) 1/30		
25)	(56-60) 1500		
92)	(76-80) \$\square\$ (6/5)		
>	05/1 80/CL/8 (100+96		
(102-11) EO-8002-11-9MP	7 1320		
7 (2/-)	(21-40) 13.50 NJB		
(09-95)	↑ 00S1 V	>	*
PLEASE ANSWER QUESTIONS ABOVE!	Container Type	Prof.	
	Preservative	#C	Please print clearly, legibly and completely. Semples c.
IS YOUR PROJECT	Relinquished By:	Date/Fime , Regeived Byn	Date/Time hardward that and Date/Time turnatural date dock will not be longer and
MA MCP of CT RCP?	3 Franker Com	speno of Tum dage Lan	Solved All samples at submitted are subject to
راية المحاورة معا	the way to all	1,200 HVS X	Alpha's Paymont Tomas.
	Luak 8/2	Marie and	8 zelog 17 0
		, ,	

Page 8 / 460

4 of 145

CHAIN OF CUSTO	DΥ	PAGE Z OF Z	Date Rec'd in Lab:	X 7.9 6X	ALPHA Job #:	1.6817848
ALPHA	Project Information		Report Information	Report Information Data Deliverables	Billing Information	
7 E.			☐ FAX	EMAIL	Same as Client info	PO#.
Westborough, MA Mansfield, MA TEL 508-898-9220 TEL: 508-892-0410	Project Name:		□ ADEX	☐ Add'l Deliverables		
			Poor Patron Poor	Chimi I bear of other monitors of motel most		
Client Information	Project Location: 80-100 Parks A. Poksill	K. A. Rokille	State/Fed Program	Charles its included in the charles	Criteria	
Client: P.W. Grosser	Project # AVROXO	Centre	NYSDEC	ASPCA+ BOUL	Twerables	
Address: 630 Johnson Avenue, Suite 7	Z V V	N. K.	MCP PRESUMPT	MCP PRESUMPTIVE CERTAINTY-CT REASONABLE CONFIDENCE PROTOCO	ASONABLE CONFID	ENCE PROTOCO
Bohamis NY 11716	122	m5/10¢		-	Are MCP Analytical Methods Required?	
	ALTIN Quote #:		LI Yes		Are CT RCP (Reasonable Confidence Protocols) Required?	s) Required?
Phone: 631-589-6353	Turn-Around Time		ANALYSIS			
Fax 631-589-8705		Bush (ONI V IE BOE ABBOOMED)				SAMPLE HANDLING
	Solvio		-			Filtration
			79			Not Nesded
inese samples nave been Previously analyzed by Alpha	Due Date: Ime:		72			☐ Lab to do
Other Project Specific Requirements/Comments/Detection Limits:	/Detection Limits:		3			Preservation
						Lab to 30
			<i>D</i> (****	(riease specify below)
			2/1			
					-	
ALPHA Lab ID Sample ID	ollection	S	ָּכִר			
	. Date Time	Matrix initials	上			Sample Specific Comments
12845.9 TB-01	7 OOK 1 80/12/8	- RG	/ X			
10 - 12-01	8/26/08 1030	Z Z				2,3
11 PW6-4P-2008-23(76-8	76-801) 8/27/08 1705	MUB	,	/		X.
						•
17						
	/					
		/			/	
			1		/	
					/	
PLEASE ANSWER QUESTIONS ABOVE!		Container Type 40m	<i>M</i> 0 <i>h</i> 1			
•		Preservative	#cf			Please print clearly, legibly and completely. Samples of
IS YOUR PROJECT	Relinquished By	ed By:	Date/Time	, } Received By,	Date/Time	not be logged in and turnaround time clock will re
MA MCP or CT RCP?	Mr. Tank	Lens	Source dos	um stored del	08/28/68 0805	start until any ambiguities ar resolved. Al samples
FORBIA NO. 34-OF (1) (PPV - 30-UU-47)	Kelisa Jarciafile	,	8/2×10x	S HOC!	20xa/	Submitted are subject to Alpha's Payment Terms.
	22	4/6/	825/10 11:45 V	MADE	8/24 m	
	TARA	18 A		nner	Schafer nie	
			Pag	Page 9 / 460		

5 of 145

	CTOLO DO MINIO	20			C		
-		בו	PAGE 205 2	Date Recid in Lab.	31.30lOK	A_PHA Joh# (05 1 2400	1 2404
というながら	~~ ·	Project Information		Report Informat	Report Information Data Deliverables	B Iling Information	iii Co
Westborough, MA Ma	Mansfield Ma			<u>:</u>	; ;	Comic as Cight and	
	TEL 508-822-9300	Project Name:	.,	☐ ĄĘ	Add'l Deliverables		
FAX: 508-898-9153 F.	FAX 508-822-3285			Requisitory Red	Regulatory Regulrements/Report Limits		
Client Information	<u>u</u>	Project Location, B-600 Parks AR	Bonks AM.			Crteria	
Client: P.W. Grosser		Project # 4180801	Low fit		438A Probacil		
Address: 630 Johnson Avenue, Suite 7	n Avenue, Suite 7	Project Manager Kas Anskon	nskon	-	E CER	ASONABLE CONFID	ENCE PROTOCOLS
Bohemia, NY 11716		Al PHA Owner at	B	S %	☐ No Are IMCP Analytical	Are MCP Analytical Methods Required?	the Character of the Ch
Phone: 631-589-6353	***************************************	Turn Around Trace		Sign			
Fax: 631-589-8715							SAMPLE HANDLING
Email		Kush Li Kush	Kush (ONLY IF PRE-APPROVED)			A. T. S. Saurenia, and	Fibration
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					Constant Napoles
These samples have be	These samples have been Previously anayzed by Alpha	Due Date: (0 Time:					
Other Project Spec	Other Project Specific Requirements/Comments/Detecton Limits.	Detection Limits:		05			Preservation
				92)			(Picase specify
				\$ <i>0.</i> 0			
ALPHA Lab ID	Sample ID	Collection	Sample Sampler's	1			
(Lab Use Only)		Date		721		11 0-04	Sample Specific Comments
304. 1	7002	COS1 801 12/8	97 7	/ X			
	PWG-18-22-8-03 (96-10)	1	1 5/4				
3	PWG-49-2008-02 (16-20)	052) 10			/		
2	(05-25) 20-8002-07-9mg					/	
2	146-19-2008-02 (x-10)	(4)					
0	Pub-42008-02 (76-80)	(620)				/	
7 /	PWG-19-2008-02 (4-40)	30%				1	
8	PWG-18-208-01 (1-201)	80.25%					/
2	(1)-8) 18 87 - JA 97	0)-80					
0/	(107-25) 10-8002-NI-DIM	>	P	7			
PLEASE ANSWER QUESTIONS ABOVE!	ESTIONS ABOVE!		Container Type	Lond			
(Preservative	- Hor			Flease print dearly, legibly and completely. Samples can
IS YOUR F	ROJECT	Relinqui	Relinquished By:	Date/Time	Received By	Даје/Тіте	not be tagged in a rule to turnaround time clock will not stady until any ambiouities are
MA MCP O	MA MCP or CT RCP?	min som	15	8 0	The transled	S/29/08 1334	resolved. All samples submitted are subject to Aloba's Payment Terms.
נייה שסייטענקקין		Michael March	9	15808/10/87	MARKANA	5 STANCE AND	יילו אין פאוונגיו זינו ייני
			7		the second secon		

CHAIN OF CLISTO	N/	Date Rec'd in Lab.	Sylve	A 1 DUA 1-8-4. 1 4.6	10000
	PAGE LOF A		0120108	ALTHA JOD# (08/04/00	810407
ZLPKA ************************************	Project Information	Report Informatio	Report Information Data Deliverables	Billing Information	# C
	Project Name.		Sept. Dollars		
FL 508-828-9220 TEL 508-822-9300 FAX 508-898-9193 FAX: 508-822-3288			Sald Deliver Deliver		
匮	Projec Location: 80 - 100 Carte, for Literal	-	Regulatory Requirements/Report Limits	Citoria	
Client P.W. Grosser		ļ 1	at paped		
Address: 630 Johnson Avenue, Suite 7	Project Manager Krit Alms & S	MCP PRESUMPTI	E CER	ASONABLE CONFIDE	INCE PROTOCOLS
Bohemia, NY 11716	Al PHA Oliote #:	N Ves		Are MCP Analytical Methods Required?	Sporing Charitan
Phone: 631-589-5353	Turn-Around Time	Sis			
Fax. 631-589-8705					SAMPLE HANDLING
Email:	// / / / / / / / / / / / / / / / / / /			-	Fritzstron Done
These samples have been Previously analyzer by Alicha	Die Date				F-Not Needed
Other Designation of the Control of					
Outer moject specific Requirements/Comments/Detection Limits;	/Detection Limits:				
		4			(Please specify below)
		5001	-		
ALPHA Lab ID Sample ID (Lab Use Only)	Collection Sampie Sampler's Date Time Matrix Initials	721			Sampie Specific Comments
PO-8002-04-9md	1/2008 1100 6	/ ×			
(19048) 10-802-01-97/ (8-400)	oi) & 1510 \$	/ •			
			/		
			/		
			Z		
				/	
			-		
PLEASE ANSWER QUESTIONS ABOVE	Cortainer Type	±60±			
	Freservative	· 			Please print clearly, legibly and completely. Samples cen
IS YOUR PROJECT	Relinquished By	ſĔΙ.	Received By	Date/ ine	not be rought in the control and some co
MAINOFOT KOF!	Live Marille	125/2 1445 S	In Marile	820x 103	submitted are surject to Abha's Peymen Terms.
in the second se				_	***************************************

CHAIN OF	CHAIN OF CUSTODY PAGE 1 of 14	Date Rec'd in Lab: Report Information	م / {ر Data Deliverables	ALPHA Job #: LG & Billing Information	1-08/2/46
~. ∢ :	Froject infollidation	□ FAX	☐ EMAIL	Same as Client info PO#	
	Project Name:	X NDEX	Add'l Deliverables		
FAX 508-598-9153 FAX 508-822-3288 Cifent Information	Project Location: RVC	State/Fed Program	State/Fed Program	Crteria	
Client P.W. Grosser	100	VITOMI ISBOD ODM	E CERTAINTY OT R	MCD PRESUMPTIVE CERTAINTY.CT REASONABLE CONFIDENCE PROTOCOL	= PEOTOPOI
Address: 630 Johnson Avenue, Suite 7	Project Manager: K. Alw Sloc	□ Yes	Are MCP Analytic	Are MCP Analytical Methods Required?	
Bohenia, NY 11716			Are CT RCP (Rea	Are CT RCP (Reasonable Confidence Protocols) Required?	ired?
Phone: 631-589-6353	Turn-Around Time	ANALYSIS			
Fax: 531-589-8705	Standard ERush (ONLY IF PRE-APPROVED)	,ED,		SAMPLE	SAMPLE HANDLING Filtration
Email:	6/6			Done C	Done Not Needed
These samples have been Previously analyzed by Alpha	Due Date: $\sqrt{\mathcal{L}}$ Time:				□ Lab to do
Other Project Specific Requirements/Comments/Detection Limits:	its/Detection Limits:			Prase C La	Preservation ☐ Lab to do
ASP Cet. 3 Johnson bles		5)		(wojeq	(Please specify below)
ALPHA Lab ID Sample ID	Sample	Sampler's TCL !			
(rap ose only)	2	<u>.</u>		Comme	Comments
7196 . 1 Puc. 58-2008.05 @ 5-10	3 350 81/5/P	TA X			
7	9/3/08 1005 W	74 X			
ම	1040 S	R			
FPWG. GW. 2008.03	1055	7M X			
\$ 904.58.2008.080510' 913/08	११५७ ड	X X X X			
6 Pus. \$ 2008 08	3 05=	フペ ス			
7- FB 090308 (5:1)	9/3/08 1300 ~	XXX			
مد	9/3/08 (330 5	×××			
	9/3/08 1340 BV				
10 PUG-53-2008-04@5-10'	9/3/08 1430 S	メメ			
PLEASE ANSWER QUESTIONS ABOVE	Container Type	Туре		:	
ting.	Preservative	vative -	-	Please and co	Please print dearly, legibly and completely. Samples
IS YOUR PROJECT	Relinquished By:	Date/Time	Received By:	Dafe/Time turnard start to start to	trix bellogged in and turnaround time clock will r start until any ambiguities a resolved dil semnice
MA WOF OF CIRCLY FORMALCHORS GOVERNMENTORS	S walk to a	1 16	Salland	10	submitted are subject to Alpha's Payment Terms.
		8		PES/ 5/6	

Page 15 / 2903

Page 16 / 2903

Page 17 / 2903

PAK Date Deliverables Elling Information Pak Deliverables Elling Information Pak Deliverables Elling Information Pak Deliverables Elling Information Pak Deliverables Deliverables Pak Deliverables	CHAIN OF CUSTO	Δ	PAGE 2 OF Y	Date Recid in Lab	i	9/6	ALPHA Job #: //	06133610	1
Project Name, A via, B v.g. Course Name, A via, B v.g.	t: 4	nation		Report Info	mation [Jata Deliverables	Silling Information	**Oa	
Project to attend for the first of the fir				□ ADEX		4dd' Deliverables	₹		
Project # Affiliation Project Manager, Kris Affins Affiliation American Amarysis American	Client Information	Project Location: 50 1 1 1			me am	ensineport Ellin			
Project Manager, Kris Allers (C)	Clent: P.W. Grosser	Project #: AVBO301		~	النار وأعمة	Serves Popod OS	Ų.		
Turn-Actural Trans	Address: 630 Johnson Avenue, Suite 7	is A	ns ke s	MCP PRES	IMPTIVE	CERTAINTY-CT R	EASONABLE CONFIL	PENCE PROTOCO	W
Turn-Arcund Time Turn-Arcund Time ANALYSIS	Bohernia. Nº 11716		C	Yes Es	2 2 3 13	Are CT RCP (Res	al Methods Required?	(s) Required?	
Comments/Detection Limits. Comments/Detection Limits/Detection Limits/Detection Limits/Detection Li	Phone: 631-389-6353	Turn-Around Time		ANALYSIS					 (
Comments/Detection Limits: Comments/Detec	FEX: 631-589-8705		CONLY IF PRE-GPPROVED.					SAMPLE HANDLING) ⊢ ∢
Comments/Detection Limits: True: Sample:		_				00		Filtration Done	1
Comments/Detection Limits: Collection Sample Sample's Collection Sample S	se sampes have been Previously analyzed by Alpha	2				006.7		O Not Needed	it (
Colection Sample's Sample'	Other Project Specific Requirements/Comments/							Preservation	w O i
Collection Samplers Collection Samplers Collection Samplers Collection Samplers Collection Samplers Collection						09		Clabto do	- H .
Collection Sample Samplers Collection Sample Samplers Collection Matrix Initials Collection Matrix Initials Collection C	parte signific				5/0	7400		(Mease specify below)	ı III O
14,08 14,5 15 15 15 15 15 15 15		Collection		09	78 /				
94(108 1645 L 512 X X X X X X X X X	(Lab Use Only)			28	111	\ <u>\</u>		Sample Specific Comments	
97.47.8 16.50		-	7 34	X					1,7
91 (755-7.75) 94408 (72.05 V R.C. V X X X X X X X X X X X X X X X X X X	2 1809488-1		→						- ~~
01 (725-735) 9(4/08 0420 S X X X X X X X X X X X X X X X X X X			J RC)		/			 >
02 (5.75.5.78.) 045 -03 (1.75.7.78.) 1000 -05 (1.75.7.78.) 1025 -05 (1.75.7.78.) 1025 -05 (1.75.7.78.) 1025 -05 (1.75.7.78.) 1025 -05 (1.75.7.78.) 1025 -05 (1.75.7.78.) 1025 -05 (1.75.7.78.) 1025 -05 (1.75.7.78.) 1025 -05 (1.75.7.78.) 1025 -05 (1.75.7.78.) 1027 -05 (1.75.78.) 1027 -05 (1.7	PUG. JU-2005-011	-	2	X	X				12
-05(4,75-755)	5 Parl-2003-UZ (525.5)	j			_				-
- シャイハ5・7.37) (シン (シン (シン (シン (ルン・スポン)) (リン・カン (カン・ルン・スポン) (リン・カン・カン・カン・カン・カン・カン・カン・カン・カン・カン・カン・カン・カン	4								1
205 (L.75-735y) (1025) V V V V V V V V V V V V V V V V V V V	7 PW6- IN- BUS WY (735")								+
Preservative HEI — Received By Potentine Fyor May 1110			-						+
Container Type 40.4. 472 802 302 802 Preservative HEI	9 PWG-DW-2008-06(6.5.7)								┼
Preservative HEI — Perservative	10 PMG-DW-2008-07(175-7.	>	* *	>	, > -	-			1>
Reinquished By Daterfirme Received By: DeterTime 9/40/1 ittle	PLEASE ANSWER QUESTIONS ABOVE!		Container Type	422	302	2.		Piease print dearly legab	.
Their control by Sale inc Received By. Sale inc	HO 11 O 10		רופטפועם				Π	and completely. Samples not be logged in and	ğ
Show of the way	MA MCP of CT RCP2	Keindais	shed by	Si Cate	~	Received By	. 1,	turnaround tine clock will start until any ambiguities resolved. All samples	are are
Me When	responding		2///2	Kill		10 CH	ながら	Alpha's Payment Terms.	
			7	10 1	9	1	7 / /		

Pay	CHAIN OF CUSIO	CUSTODY MGE 2 OF Y	Date Recidin Lab 9/9	ALPHA Job #: 60873344
	r (nation	Report Information Data Deliverables PAX Report Information Data Deliverables	
Indication]		ADEx Add: Deliverables Requirements/Report Imit	
Michael Mich	Client Information	AK	State/Fed Prog	
Figher Manager Project Project Manager Project Manager Project Project Manager Project P	Client: P.W. Gosser		`-	
1-589-5735 Turn-Around Times ANALYSIS APPRA OLOGE #: ANALYSIS APPRA OLOGE #: ANALYSIS APPRA OLOGE #: ANALYSIS APPRA OLOGE #: ANALYSIS ANALYSI	Address: 630 Johnson Avenue, Suite 7	Project Manager, KTS Alms Ko 9	MICP PRESUMPTIVE CERTAIN 1.4-CT R	EASONABLE CONFIDENCE PROTOCOL
Sample ID Container Organic Activation of the Container Organi	Bohemia, NY 1716	ALPHA Quote #:	O No	asonable Confidence Protocols) Required?
1-586-3706	Phone: 631-569-6353	Turn-Around Time		
Color Colo	Fax: 631-589-8705		0	SAMPLE HANGLING
Comparison Com	Email:	0	002	Done Naphada
Poleic Specific Requirements/Comments/Detection Limits: Collection Colle	These sample; have been Praviously analyzed by Alpha	$Q_{i,j}$	1./0	
Cape Collection Sample Date Time Metric Infinite Sample S	Other Projec: Specific Requirements/Comments	/Detection Limits:		_
Lab C Sample D Collection Sample S			71	(Please specify L. below) E
10 PMG-DL-2xx3-C7M, T-7.25 M3 M4 M3 M3 M3 M3 M3 M3			510,	
10 PMC-Div-2x/8-C7(L/T-7.25') MS 9/4/9' C4/5 L 5/11 X X X X X X X X X		ection Sample	04	
10 (W6-Div-2x08-07(6.75-7.25)/m\$ 9/8/m\$ (04/5 L 5/L X X X X X X) 11 (W6-Div-2x08-07(6.75-7.25)/m\$ (1/25 1/1	(ilup Ose Only)	Time Matrix	78	Sample Specific Comments
10	0)	7 Sho) KUSh	/XXXX	
(6.25-2.25) (105	10	-		
(6.75-7.25') (1/25) (1/25') (1/35') (1	5 2-25-50 80-2005-WG-DWG-11			HUD SAMA
(6.75-7.75') 11.35 (7.75-7.75') 12.25 (7.75-7.75') 12.25 (7.75-7.75') 12.25 (6-6.5') 12.25 (6-6.5') 12.25 (6-6.5') 12.25 (6-6.5') 12.25 (6-6.5') 12.25 (6-6.5') 12.25 (6-6.5') 12.25 (6-6.5') 12.25 (6-6.5') 12.25 (6-6.5') 12.25 (6-6.5') 12.25 (6-6.5') 12.25 (6-6.5') 12.25 (6-6.5') 12.25 (6-6.5') 12.25 (6-6.5') 12.25 (7.75-7.75') 74.05 (7.75-7.75') 74.05 (8-6.5') 12.25 (9-6.5') 12.	12 MG-DW-2008-C966.75-7.2			
(7.75.7.75') 17.05		_		HOLD SANNER
(7.25.7,75') 1220 (7-25.7,75') 1220 (7-25.7,75') 1230 Container Type 432 \$02.832 \$6.2 Please print des and completely not be logged in an and completely not be logged in a second time and an analysis of the logged in a second time and an analysis of the logged in a second time and an analysis of the logged in a second time and an analysis of the logged in a second time are as a second time are as a second time are a second time are as a second time are				
(7-75.7) 12.20 Container Type 43.2 56.2. Please pmt clear and completely miss of the container Type 43.2 56.2	15 PMC-DW-2218-12 (7.15-7.7			
(6-6.51) 12.0 Container Type 4/32 \$42.8/32 \$6.2 Preservative ————————————————————————————————————	16 PWG-DW-ZOCB 73 (7.25.7.7	-		
Container Type 4/32 \$6.2 Please print del and completely and com	17-10-10- NW-2008 -4416-6-51			
Container Type 432 502 Please print clear	-15 (<i>0</i> ha >	,	
Relinquished By Date/Time Regarded By: Date/Time Indianopalities and completely must be bagged in the begage and sample a	PLEASE ANSWER QUESTIONS ABOVE	Container Typ	208 208 20h	Please print clearly, legibly
7. 4. Cold (10 5 Cold (10 5) C	4	1.		and completely
2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IS YOUR PROJECT	Kelinquished by:	Date/Time Receiv	(
	MA MCP or CT RCP?	Thothe !	200	Light To Instruct are subject to Aphre s Payment Terms
٠,			1/DX (+50 - 10-	79/2/200

Allon Bray	CHAIN OF CUSTO	CUSTODY	7 20 5 500 A	Date Rec	Date Rec's in Lab		9/9	Al PHA Joh#: /	1513360	
Project Name: Aulon Bus Project Location: \$0 3. \$1 Au		Project Information		Repor	informati	on Data	/ / eliverables	Billing Information	# Od	
Project Location: To 3. is Aux Ruckilk GAM	"		e	O ADE	× 20 /200	ğ I	') Deliverables			
Project #. AVB0 fc ALPHA Quote #: Turn-Around Time Standard Due Date: {	Client Information	1 (1	AK		1 Program			- 1		
Project Manager. Kris Alms Icol. Turn-Around Time	Client: P.W. Gosser	Project #: AVBOSO!		`-	رائم <i>الرائ</i>	اندا كووس	es frotocy (AS)	ñ		Ī
Alpha Guode #: Turn-Around Time	Address: 630 Johnson Avenue, Suite 7	Project Manager: Kris A.	mskes		KESS IN	WE CEK	AINTY-CT R	EASONABLE CONFI	DENCE PROTOCOL	ဟု
Turn-Yound Time	Bohemia, NY 11716	ALPHA Quote #:	9			1	Are CT RCP (Res	sa Metrods Required?	ols) Required?]
Standard	Phone: 631-589-6353			ANAL						⊢ 0
Due Date: 4 16 Time: Due Date: 4 17 Time: Due Date: 4 17 Time: Due Date: 4 Time: 4			ONLY IF PRE-APPROVED		.,				SAMPLE HANDLING	۲α
Due Date						.00	00	-	Done	
The state of the s	e samplethave been Previously analyzed by Aloha					11.	06,		☐ Not Needed	4F (1
Collection Sample	Other Projec Specific Requirements/Comments/					100	101		Preservation	0 -1
Collection Sample Samples Sa							09		(Please specify	<u> م</u>
Collection Sample Samplers Collection Samplers Collection Samplers Collection					5/08	092			pelow)	ıı so
175. 944/8 1350 5 7.24 7		Collection		09	' H	8 7				
7.7.5.) 9(4/86 1350 5 7.12 × × × × × × × × × × × × × × × × × ×	(Lab Use Only)			78	HL	171			Sample Specific Comments	
1722 1722 1722 1723	19	8/8/18		X	X	-	-			7
1420 1430 1430 1430 1430 1430 1430 1430 1430 1430 1430 1430 1430 1430 1530						X	X			
1432 1432 1432 1432 1432 1432 1432 1432 1432 1520				X	X		}			┼
1435 1440 1455 1520					-				,	┼
(3-3.7) (52.0) (52.0) (5.25.5.73.1) (52.0) (5.25.5.73.1) (5.20) (5.25.5.73.1) (5.20) (/		+-
(5.25.5.75') (5.20') (5.25.5.75') (5.20') (6.65') (5.20') (6.65') (5.20') (6.65') (5.20') (6.65') (5.20') (6.65') (5.20') (6.65') (5.20') (6.65') (5.20') (6.65') (5.20') (6.65') (5.20') (6.65') (5.20') (7.2										┼
(3-3,5") (530) (3-3,5") (540) (4-65") (550) (5-65") (550) (6-65") (550) (6-65") (550) (6-65") (550) (6-65") (550) (6-65") (550) (6-65") (550) (6-65") (500) (6-65") (500) (6-65") (500) (6-65") (500) (7-65") (7-65")										├
(3–3,5") (15°40 V V V V V V V V V V V V V V V V V V V	- 1									├
Container Type 407 Soz Y-2 402 Soz Suz S	Pub - Du									├
Container Type 4/07 \$02 \$7.5 \$6.2 Please particle Please par	- 1	>	7	\ 	^ ^ /					+>
Preservative and com Relinquished By: Date/Time Recayed By: Date/Time Immany Stanton	PLEASE ANSWER QUESTIONS ABOVE!		Container Tyl	20%		20)	-		Please print clearly, legibly	1
Relinquished By. Date/Time Recily Date/Time A/4/10/8/11/10 SUSPELL STAR LILLO SUSPELL S			Preservati) 	<u>}</u>		<u>.</u>		and completely. Samples not be tonged in and	Ē
The state of the s	IS YOUR PROJECT	Reling	shed By	Date	шe	2	caived By:	Date/тime	tumaround time dock will rest	2 g
2	MA MCP or CT RCP?		1123	3 3	3 7		de la		resolved. All samples submitted are subject to Terms.	<u> </u>
			200					910 15		

VILLA IN DE CHETORY		Parts Rec	Date Rec'd to Lab:	G/11 103	AI DHA Joh #-	5000
	COOLOGIC SAGE OF			00 x 110		1011
LPTA ANALYSISA	Project Information	Report	Informatio	Report Information Data Deliverables Report Information Data Deliverables	Ellling Information \[\begin{align*} a	PO#:
	Project Name: Auto Bas	D ADEX	×	ADEX Add't Deliverables	9	
FAX. 508-894-9193 FAX. 508-822-5288	Project project & Ret lister 16	- (* Y-9)	arony wayan d <i>Program</i>		Criteria	
Clicate DAY Green	Project # Digital		XC Ambriel	ict Serves Proced (AM)	()	
Address: 630 Johnson Avenue, Suite 7	1 =	MCP P		VE CERITAINIY-CITR	MCP PRESUMPTIVE CERTAINTY-CT REASONABLE CONFIDENCE PROJUCCES	ENCE PROJUCIES
Roboria NV 147.5		2 0			Are CT RCP (Reasonable Confidence Protocols) Required?	s) Required?
Phone: 631-589-6353	Turn-Around Time	ANALYSIS	SIS			E ON TOWARD IN CAMES
Fax: 631-589-8705	Standard Rush ; ONLY IF PRE-APPROVED	OVED.	Car			
Email:	,		12.1			☐ Done □ Not Needed □
These samples have been Previously analyzed by Alpha	Due Date Q (K) A Time:	Abstract	27			
Other Project Specific Requirements/Comments/Detection Life	s/Detection Limits:		7			□ Lab to do
						(Please specify below)
		0928	14 ru 0628	0 180		
ALPHA Lab iD Sample ID	Collection Sample Sa		, -	22		
	Date Time Matrix	D/ D/	741	1X 431		Sample Specific Comments
17809 POST	7		` `	X		7
, , ,	131) 4/10/28 OSIS S JE	27 72	XX			7
" Put. D. 200-25 (12-12.5")	-					
2 ple- x-2-05 (10 405)						
(Part DU-Zan- 30(8.5-9.7)	090					
6 pue. Di-208-31 (8-8,5")) 0445					
1 Pul-pu-zour-13 (7-7.5)	0000					
8 pec-00-2015 -34(5.56)	1000					
6 1216 - 134- 2015 37 (11-11.5)				-		
WALC DUT. 1-101 (5,5-6)	, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ラ	>			
PLEASE ANSWERQUESTIONS ABOVE!	Cortainer Type	402	8 208 23	Total 308		Vidical Vision spin second
	Press	Preservative) 	- #a_		and complexely. Samples can not be logged in and
IS YOUR PROJECT	Reinquished By:	DateTime	Time	Received By:	Date/Time	turnaround time clock will not start until any ambiguities are
MA MCP or CT RCP?	1. 4.	\$101.5	332	Mars 40	1 / John 50	resolved. All samples submitted are subject to alpha's Payment Terros.
PORM ND CHOIL	- Street	O XIIIXO		Track of the second	2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	- Control of the Cont	7411				

CHAIN OF CHAT	\U	Are Lei Prince Grand	
	PAGE OF		ALPHA JOD#: (_OX 1577)
CHCT.	Project Information	Report Information Data Deliverables	Billing Information Ray Same as Clentinfo PO#
Westborough, MA Mansfield, MA TEL 508-898-9220 TEL: 508-822-8300 FAX: 508-898-9193	Project Name:	☐ ADEx ☐ Add'l Deliverables	
퍐	Project Location: 91 Ports, Art. Burlin Chr.	Regulatory Requirements/Report Limits	Scriens
Client: P.W. Grosser	Project# A 18 00.	MYKC Analyted Serves, Parkeul (ASP)	
Address: 630 Johnson Avenue, Suite 7	Project Manager Ko. Alonko.	MCP PRESUMPTIVE CERTAINTY-CT R	MCP PRESUMPTIVE CERTAINTY-CT REASONABLE CONFIDENCE PROTOCOLS
Bohemia, NY 11716		☐ Yes ☐ No Are CT RCP (Res	Are MCP Analytical Methods Required? Are CT RCP (Reasonable Confidence Protocols) Required?
Phone: 631-589-6353	Turn-Around Time		
Fax: 631-589-87C5	X Standard Rush (ONLY IF PRE-APPROVED,	-	SAMPLE HANDLING FINANCOM
Email:	***	<u> </u>	
These samples hare been Previously analyzed by Alpha	Due Date. Of (M. Time:	72/	□ Not Needed □ □ Lab to do
Other Project Specific Requirements/Comments/Detection Limits:	/Detection Limits:	701	
		07	(Please specify
	-		below)
ALPHA Lab ID Sample ID	Sample S	7 7	
(Lab Use Only)	Date Time Matrix Initials	77 77 1977	Sample Specific
1349) 11 RGDUZUSTS (7-7.5)	7/with 4045- 5 Jet		6
(1 fee - De- we 34 (8)-41)	1 (2)		
3 pro- gray- 40(6-65)	C//I		
14 ple Duzwey/(9-9,5")	22/1		
15 pull Berns 47 (2-51)	J 135 V	7777	Hold know
PLEASE ANSWERQUESTIONS ABOVE	Container Type	407 Er & & &	
	Preservative	1	Please print clearly, icality in the control of the
IS YOUR PROJECT	Reinquished By:		Date/Lime transcent and cock will not continue with the cock will not co
MA MCP or CT RCP?	The state of the s	11/2 1 140 St. 140 St. 140 St.	Submitted at samples submitted are subject to Alpha's Payment Terms
	A RECORD		1 dill 108 1x0

ALPHA Job #: 408/354/	Billing Information	☐ Same as Client info PO #:			nents/R	State/Fed Program Criteria			ANALYSIS			SES	VO ((F. R)											Please print clearly, legibly and completely. Samples can not be logged in and turnaround time	Date/Time: dock will not start until any ambi- dock will not start until any ambi- guities are resolved. All samples submitted are subject to Alpha's lems and Conditions. lems and Conditions. See reverse side.
Date Rec'd in Lab:	Report Information - Data Deliverables		Criteria Checker.	(Default based on Regulatory Criteria Indicated)	☐ EMAIL (standard pdf report)	A Additional Deliverables, [w.] es	Report to. (if different than Project Manager)				test cerulator to deternine whether it is	01	Filled Out	Sample Sampler's Can 1D 1D-Flow 6/6/6 Matrix* Initials Size Can Controller	SV TM 2.7 452 0821 X	SV TM 2.7 490 0100 X	SV TM 2.7 484 0406 X	SV TM Z.7 401 0322 X	SU TM 2.7 554 0324 X	SU TN 2.7 497 0414 X	SU TM 27 324 029 Y	SV TM 2-7 404 0094 5	SV TM 2.1 475 0335 8	5V TM 27 376 0347 Y	Container Type	Received By: Day A State of the Control of the Cont
AIR ANALYSIS PAGE 1 OF Z	Project Information	Project Name: Texand Duby Dury	Project Location: Roden, It Confir	Project #: AV & 080 (Project Manager: K. Alas Kos	ALPHA Quote #:	Turn-Around Time		L KUSH (mys	F	please	- N	<u> </u>	Collections Initial Final Start Time Vacuum Vacuum	11:16 13:	9-135 1330 -30 -5	9-10-08 11:44 13:34 1-29 -5 3	410-08 10:29 17.29 -30 -6	5-10-38 (0:34 PE:31 8-01-5	9-10-08 10:40 12:34 -30 -c	8- 05- 04:21 44:01 80-01-3	9-10-05- 12:42 1-30 -10	9-16-08 11:00 12:53 -30 -5	1 -30 -6	AA = Ambient Air (Indoor/Outdoor) SV = Soil Vapor/Landfill Gas/SVE Other = Please Specify	Retinquished By: Date/Time
7	USTODY	320 Forbes Elvo, Mansheld, MA U2046 TEL: 508-822-9300 FAX: 508-822-3288	Client Information	Client: PWEC	ohner Ave, St. 7	911	Phone: 631 589 6353	Fax: 631 589 8705	Spossecon	These samples have been previously analyzed by Alpha	Other Project Specific Requirements/Comments:	is to kind. It do, so not a	All Co	ALPHA Lab ID Sample ID (Lab Use Only)	1 1946-56-2008-01			4 PWS-54-1008-04	h ∽		7 Pulk. 54. 2038.07	8 Pub. SG . 2008 . O.B.	60.807.55. My 5	01-2007. 95. 42mg of	*SAMPLE MATRIX CODES SV Out	Form No: 101-02 (rev.1-Feb-08)

ALPHA Job#: 206/334/	rables Billing Information		(pajec	Regulatory Requirements/Report Limits	State/Fed Program Criteria			ANALYSIS		SES	21.0 21.0 21.0 M2 21.0 A0 03X A0 13.0	77 77 77 77 77 77 77 77 77 77 77 77 77		2					Please print clearly, legibly and completely. Samples can not be looped in and turnaround time	Date/Time: clock will not start until any ambiguities are resolved. All samples	
Date Rec'd in Lab:	Report Information - Data Deliverables	D FAX Addex Criteria Cherker	(Default based on Regulatory Criteria Indicated)	Uner Formats: □ EMAIL (standard pdf report)	Additional Deliverables:	Report to: (if different than Project Manager)			1		Sample Sampler's Can 10 10-Flow	Initials Size	100 TO	06 7.70				,	Container Type	Received By.	
AIR ANALYSIS MORE Z OF Z	Project Information	Project Location: R.U. C.	Project #: Ay& OBO	Project Manager: K-4 lw Los	ALPHA Quote #:	Turn-Around Time	130100	Scandard A KUSH (only confirmed if pre-approved) to Days				Date Start Time End Time Vacuum Vacuum C. 12. Ad	12. 07 .30 -						AA = Ambient Air (Indoor/Outdoor) SV = Soil Vapor/Landfill Gas/SVE Other = Please Specify	Relinquished By: Date/Time	3
	STODY	TEL: 508-822-9300 PAX: 508-822-3288 Client Information	Client: DUSC	Tojnson Aroske 7	4)711 Y()	Phone: 631 589 6353	505	mail: Hoomasing puggossior. Com	Un These samples have been previously analyzed by Apha Other Project Specific Requirements/Comments:		Ol elomes	Dr V C C. Spr. Br. (1)		7, 907, 17 (5m)	100				*SAMPLE MATRIX CODES SV-Other	*	

CHAIN OF CUSTOD	> -	PAGE OF Z	Date Rec'd in Lab;	(c) (c)	ALPHA Job #: 1	YYCHIX
△Pi A	Project Information		Report Informa	Report Information Data Deliverables	Billing Information	
ř.			□ FAX	□ EMAIL	Same as Client info	PO#
Westborough, MA Mansfield, MA TEL: 508-898-9220 TEL: 508-822-9300	Project Name:		O ADEX	☐ Add'l Deliverables		
FAX. 508-898-9193 FAX. 508-822-3288	HUB ONO!		Regulatory Rec	Regulatory Requirements/Report Limits	· ·	
Client Information	Project Location: 30-190 Ban	0-100 Banks the Praticilly ede. NY			Criteria	
Client: P.W. Grosser			_	Andyral Serves, Indical (ASP)		
Address: 630 Johnson Avenue, Suite 7	Project Manager: Kris Almskos	Skor		II CER	EASONABLE CONFI	DENCE PROTOCO
Bohemia, NY 11716	ALPHA Quote #:	0		☐ No Are CT RCP (Res	Are CT RCP (Reasonable Confidence Protocols) Benninger	Securios.
Phone: 631-589-6353	Turn-Around Time		ANALYSIS			
Fax: 631-589-8705	İ	Rush (ON Y IF PRE-APPROVED)	0	74		SAMPLE HANDLING
Email: Krisa O DWS rosser, com			00	·3//		Fittration □ Done
These samples have been Previously analyzed by Alpha	Due Date: 10 17 10 Time:		0	1.50		□ Not Neaded
Other Project Specific Requirements/Comments/Detection Limits.			210 L? D?	86		Preservation
•			9 5/ 02 000	59:		☐ Lab to do
			16491 DO	73/		balow)
Al PHA Lah ID	and the Control of th	-	Y NS DN	(ap/		
	Date	Matrix Initials	7/	5.74		
			工工	238		Sample Specific Comments
1975 - 1 PWG-LP-2008-01(9-11) 10/3/08	1330	Soll KEA	××			
2 00-2	022/ / /	6 Tuc	XXX			
3 Mu-2	5250	,	/ /			
7-00 h	0/6/1					
- I many ms	0440			/		
dim y-min	4.44					
5 MV-5	10/6 bis 0930				/	
6 m-6	escon				/	
7 DiAM-01	11.45		ファラ			
S DiffeW-O'L	1305	>	X		1	
PLEASE ANSWER QUESTIONS ABOVE!		Container Type	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
		Preservative	K			Please print dearly, legibly
IS YOUR PROJECT	Relinquished By		Date/Time	.Received Bv.	Date	and completely. Samples on not be logged in and
MA MCP or CT RCP?	1 Jan	note leag	DA 8010	Man I was	11/10 (60	Start until any ambiguities ar resolved. All sample.
		3746	\$d.9		P 1606 19.7	
			0/10/ex 15/0/	2	CHO/2/08 1410	
fue.						

CHAIN OF CLISTOF	` }(Data Bard in [-1.	- 1
	PAGE ZOF J	2016 / O / O / O / O / O	ALPHA Job# (02 14.)5 \
	Project Information	Information	Billing Information
Westborough MA Manefield M.		☐ FAX ☐ EMAIL	Same as Client info PO #:
	Project Nane:	☐ ADEx ☐ Add'l Deliverables	
	71V5087)	Regulatory Requirements/Report Limits	
Client Information	Project Location: 80-60 L. H. Av. Rahal Cats	• 1	Criteria
Client: P.W. Grosser	Project #: AV8050/		
Adcress: 630 Johnson Avenue, Suite 7	Project Manager: Kris Hands	RESUMPTIVE CER	EASONABLE CONFIDENCE PROTOCO
Bohemia, NY 11716	ALPHA Quote #:	☐ Yes ☐ No Are MCP Analytic	Are MCP Analytical Methods Required?
Phone: 631-589-6353		ON TO SIGN	Are CI nor (negadificine Confidence Protocols) Required?
Fax 631-589-8705	Standard Bush Cally in Standard		SAMPLE HANDLING
Email: Kris C My Sur Co.		Žš.	Filtration
These samples have been Previously enalized by Alpha	Due Date: [D (3 of Time:	%/I	□ Not Needed
Other Project Specific Requirements/Comments/Detection Limits:			☐ Lab to do
He		8/01	☐ Lab to do
ig of the second		23	(Please specify below)
√₹	Collection Sample Sampler's	71' 1215	
(lab Use Only)		74 10. 10.	Sample Specific
[WYST 9 DIGW-0]	10/1.64 1200 1 F		Conments
10 Diffu-100	7 22/		
1 FB10030 8-01	10h 1mg 1115	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
12 TB100308-01		> >	
(3 TB10030x02	1285		
14 TB100608-03	1940x 135		
(5 TB 130608-04	735		
16-7000 Cloth	V355 V	\	
DI CAST Astron			1
FEASE ANSWER QUESTIONS ABOVE:			
S YOUR PROJECT	Preservative Relinguisher By:		Please print Geerly, legibly and controlled and controlled in the formal controlled in the forma
MA MCP or CT RCP?	www.	POLI SA 1CT	Date-Time the interaction of the state will provide the state of the s
		Jolos 1916 (A	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Sample ID Sample ID Contained to Account of The Sample ID Contained to Account of The Sample ID Contained to Account of The Sample ID Contained to Account of The Sample ID Contained to Account of The Sample ID Contained to Account of The Sample ID Contained to Account of The Sample ID Contained to Account of The Account of Th	くにして			Information Data No		Billing Information	
Container Type Cont	A L	Project Information	reyon □	Indiniation Data De		Same as Client info	PO #:
Project Location Yorks Angle Ang	iansfield, NA EL 508-822-9300	Project Name:	☐ ADEX	☐ Add'i	Deliverables		
Project # #W89' N/94 And Suite 7 Project # #W89' N/94 And Suite 7 Project # #W99' N/94 And Suite 7 Project Manage Ki Min Mi	Ay, 500-944 5250	12-10 Rate to	, 1	Program		Sitteria	
AMALYSIS Project Manager, Lo. Manager, L			_	right Services Probe	(QiP)		
Alpha Quote # Alpha Quote # Direct Continued Time Direct Continued Tim	on Avenue, Suite 7	Project Manage: Koi Hingh	Tes	No Ar	e MCP Analytical N	SONABLE CONFID	ENCE PROTOCOLS
Sample ID		ALPHA Quote #:	Sa. □		e CT RCP (Feason	iable Confidence Protocol	s) Required?
Sample ID Dee Collection Limits: Sample ID Dee Time: Sample ID Dee Time: Sample ID Dee Time Dee Time Dee Time Dee	53	Turn-Around Time	ANALY	SIS	 	1	_,,,
Sample ID			oveb,	2.			TANDLING.
Time Matrix Initials Sampler's S	سرجار الماده مريس			818, OC			-
Sample S	f) been Previously analyzed by Alpha	Due Date: 10 /ft. / M Time:		1 18 VL/			2
Date Time Mutrix Inchass (C. L.	ecific Requirements/Comments	/Detection Limits:	012	os . (0105)			
Dere Time Matrix Initials C C C C C C C C C			3.77 8 \$70,	[3.V] (3.V)			
Date Time Matrix Initials (2 12 12 12 12 12 12 12 12 12 12 12 12 12	Sample ID	Sample		1917 W			
Date Container Type Preservative Preservati		Time Matrix		1781 781			Sample Specific Comments
1905 1905	10-800087		X				
140 1905 1	1073		X	X			
1945 W. Container Type Preservative Prese	5W-62						
Date/Time Preservative Preserv	50703						
Container Type	40 MH/C	73	>				
Container Type							
Container Type							
Container Type	And the second s						
Preservative Pres		/-					
Preservative Pres							
Preservative	QUESTIONS ABOVE!	Contain	ar Type		-		
Date/Time Recaived By: Date/Time Recaived By: Date/Time Process By		Presi	rvative	ᅦ	•	,	riease print deany, legibly and completely. Samples car not be focused to and
10/8/18 1305 Aut Lulius Intoke 1230	PROJECT	13		7	eived By:	Date/Tim	tumaround time clock will not start until any ambiguities are
	or CI RCP?		13/2	1705 Pull		50/5/01	~

ATTACHMENT B

CASE NARRATIVES

SDG Nos. L0812845, L0812904, L0813196, L0813344, L0813447, L0813541, L0814755, and L0814991

Volatiles, Semivolatiles, Total Petroleum Hydrocarbons (TPH), Diesel Range Organics (DRO), Pesticides/Polychlorinated biphenyls, and Metals in Water and Soil Samples, and Volatiles in Air Samples

SDG NARRATIVE L0812845

Volatile Organics

L0812845-08 required re-analysis on a 4x dilution in order to quantitate the sample within the calibration range. The result is reported as a "greater than" value for the compound that exceeded the calibration on the initial analysis. The re-analysis was performed only for the compound which exceeded the calibration range.

L0812845-08, -11: The concentrations of Isopropylbenzene should be considered estimated because the %D for this analyte was outside method acceptance criteria in the associated CCAL (34%).

Instrument Information: Volatile Organics: Elaine

Instrument: Agilent 5973 MSD

Trap: Supelco K Trap (VOACARB 3000)

Concentrator: Teledyne Velocity Autosampler: Teledyne Solatek

Purge time: 11 min

Column Type: Restek RTX-502.2

Column Length: 40 Meters

df: 1.00 um ID: 0.18 mm Desorb: 2 min

Note: Sample calculations to final concentration for each specific fraction are located in each fraction section of the data package.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data Package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Lisa S. Westerlind

Reporting Manager / Technical Representative

SDG NARRATIVE L0812904

Sample Receipt

Headspace was noted in both of the sample containers submitted for Volatile Organics for samples "PWG-VP-2008-03 (96-100')", "PWG-VP-2008-02 (56-60')", "PWG-VP-2008-02 (96-100')", and "PWG-VP-2008-01 (96-100')"; and in one of the sample containers for samples "PWG-VP-2008-01 (36-40')" and "PWG-VP-2008-01 (76-80')". The analysis was performed at the client's request.

Volatile Organics

The following samples have elevated detection limits due to the dilutions required by the elevated concentrations of target compounds in the samples:

L0812904-03: 5x L0812904-04: 100x L0812904-05: 2.5x

L0812904-06, -07, -12: 2x

L0812904-05 and -07 required re-analysis on 10x dilutions in order to quantitate the samples within the calibration range. The result is reported as a "greater than" value for the compound that exceeded the calibration on the initial analysis. The re-analysis was performed only for the compound which exceeded the calibration range.

Instrument Information: Volatile Organics: Elaine

Instrument: Agilent 5973 MSD

Trap: Supelco K Trap (VOACARB 3000)

Concentrator: Teledyne Velocity Autosampler: Teledyne Solatek

Purge time: 11 min

Column Type: Restek RTX-502.2

Column Length: 40 Meters

df: 1.00 um ID: 0.18 mm Desorb: 2 min

Note: Sample calculations to final concentration for each specific fraction are located in each fraction section of the data package.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data Package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Lisa S. Westerlind

Reporting Manager / Technical Representative

SDG NARRATIVE L0813196

Sample Receipt

A sample identified as "FB 090408 (SOIL)" was received but not listed on the Chain of Custody. At the client's request, this sample was analyzed for TCL VOCs.

Volatile Organics

L0813196-26 has elevated detection limits due to the 20x dilution required by the elevated concentrations of target compounds in the sample.

L0813196-28 has elevated detection limits due to the 2x dilution required by the elevated concentrations of target compounds in the sample.

L0813196-29 required re-analysis on a 10x dilution in order to quantitate the sample within the calibration range. The result is reported as a "greater than" value for the compound that exceeded the calibration on the initial analysis. The re-analysis was performed only for the compound which exceeded the calibration range.

The surrogate recovery for L0813196-33 is above the acceptance criteria for 4-Bromofluorobenzene (140%). Since the sample was non-detect for all target analytes, re-analysis is not required.

The surrogate recovery for L0813196-35 is above the acceptance criteria for 1,2-Dichloroethane-d4 (134%) and 4-Bromofluorobenzene (139%). Since the sample was non-detect for all target analytes, re-analysis is not required.

Metals

The WG335841-3 Laboratory Duplicate RPD for Mercury (117%) associated with L0813196-21 is outside the acceptance criteria. The elevated RPD has been attributed to the non-homogenous nature of the sample utilized for the laboratory duplicate.

The WG335482-2 MS recoveries for Antimony (50%), Calcium (166%), Chromium (74%), Lead (69%), Magnesium (64%), Manganese (133%), and Zinc (62%) associated with L0813196-21 are outside the acceptance criteria. Post digestion spikes were performed with acceptable recoveries of 100% for Antimony, 96% for Calcium, 91% for Chromium, 102% for Lead, 88% for Magnesium, 88% for Manganese, and 88% for Zinc.

The MS recoveries for Aluminum (0%) and Iron (0%) are invalid because the sample concentration is greater than four times the spike amount added. The WG335841-4 MS recovery for Mercury (6%) associated with L0813196-21 is below the acceptance criteria. A post digestion spike was performed with an acceptable recovery of 98%.

Pesticides

The WG335356-3 LCS/LCSD RPDs associated with L0813196-05, -20, -21, -27, and -30 are above the acceptance criteria for Delta-BHC (37%), Lindane (32%), Alpha-BHC (34%), Beta-BHC (31%), Heptachlor (34%), Aldrin (35%), Heptachlor epoxide (35%), Endrin (39%), Endrin ketone (36%), Dieldrin (38%), 4,4'-DDE (37%), 4,4'-DDD (40%), 4,4'-DDT (40%), Endosulfan I (37%), Endosulfan II (39%), Endosulfan sulfate (41%), Methoxychlor (41%), and trans-Chlordane (34%); however, the individual LCS/LCSD recoveries are within method limits. The results of the associated samples are reported.

Instrument Information: Volatile Organics: Elaine

Instrument: Agilent 5973 MSD Column Type: Restek RTX-502.2

Trap: Supelco K Trap (VOACARB 3000) Column Length: 40 Meters

Concentrator: Teledyne Velocity
Autosampler: Teledyne Solatek
Purge time: 11 min

df: 1.00 um
ID: 0.18 mm
Desorb: 2 min

Volatile Organics: Curly

Instrument: Agilent 5972 MSD Column Type: Restek RTX-502.2

Trap: Supelco K Trap (VOACARB 3000) Column Length: 40 Meters

Concentrator: Tekmar 3000 df: 1.00 um
Autosampler: Archon ID: 0.18 mm
Purge time: 11 min Desorb: 2 min

Semivolatile Organics (Acid/Base/Neutral Extractables): Buffy & Juliet

Instrument: Agilent 5973N MSD Injection volume: 1 ul

Column Type: Restek RXI-5SILMS df: 0.25 um
Column Length: 30 Meters ID: 0.25 mm

Polynuclear Aromatic Hydrocarbons by 8270 SIM: Mindy

Instrument: Agilent 5973 MSD Injection volume: 1 ul

Column Type: Restek RTX-5MS df: 0.25 um
Column Length: 30 Meters ID: 0.25 mm

Pesticides/PCBs:

Instrument: Agilent 6890 w/Dual Micro ECDs Injection Volume: 1uL

Column Type: Restek RTX-CL (primary) df: 0.32 Column: Restek RTX-CLPPesticide II (confirmation) df: 0.25

Column Length: 30 Meters

ID: 0.32 mm

Note: Sample calculations to final concentration for each specific fraction are located in each fraction section of the data package.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data Package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

In the Control of 17/08

Lisa S. Westerlind Date

Reporting Manager / Technical Representative

SDG NARRATIVE L0813344

Sample Receipt

At the client's request, sample "PWG-DW-2008-10 (6.25-6.75')" was taken off of hold and analyzed NYTCL-8260, NYTCL-8270/8270SIM, TPH-DRO-D, TAL METALS, and TS.

Metals

The following samples have elevated detection limits for Calcium due to the dilutions required to quantitate the results within the calibration range:

L0813344-05, -13: 5x

laboratory duplicate.

L0813344-21, -23: 10x

L0813344-26 and -29 have elevated detection limits for Thallium due to the 2x dilutions required by matrix interferences encountered during analysis.

L0813344-29 has an elevated detection limit for Aluminum due to the 2x dilution required to quantitate the result within the calibration range.

The WG335803-1 Laboratory Duplicate RPDs associated with L0813344-26 are outside the acceptance criteria for Aluminum (67%), Arsenic (157%), Chromium (156%), Copper (87%), Iron (153%), Manganese (39%), Nickel (87%), Vanadium (120%), and Zinc (53%). The elevated RPDs have been attributed to the non-homogenous nature of the sample utilized for the laboratory duplicate. The WG335802-1 Laboratory Duplicate RPDs associated with L0813344-10 are outside the acceptance criteria for Aluminum (60%), Arsenic (38%), Barium (57%), Calcium (102%), Copper (83%), Iron (75%), Lead (74%), Magnesium (101%), Nickel (65%), Vanadium (73%), and Zinc (67%). The elevated RPDs have been attributed to the non-homogenous nature of the sample utilized for the

The WG335803-2 MS recoveries associated with L0813344-26 are outside the acceptance criteria for Antimony (72%), Arsenic (0%), Beryllium (74%), Chromium (0%), Copper (57%), Manganese (40%), Nickel (72%), Vanadium (47%), and Zinc (43%). Post digestion spikes were performed with acceptable recoveries of 104%, 117%, 103%, 99%, 100%, 97%, 94%, 100%, and 97%, respectively. The MS recoveries for Aluminum (0%), Calcium (0%), Iron (0%), and Magnesium (0%) are invalid because the sample concentration is greater than four times the spike amount added.

The WG336225-4 MS recovery for Mercury (0%) associated with L0813344-25 is invalid because the sample concentration is greater than four times the spike amount added.

The WG336007-1/-2 MS/MSD recoveries associated with L0813344-13 are outside the acceptance criteria for Antimony (64%/65%), Lead (MS at 137%), and Manganese (32%/40%). Post digestion spikes were performed with

acceptable recoveries of 107%, 84%, and 101%, respectively. The MS/MSD recoveries for Aluminum (437%/308%), Calcium (0%/154%), Iron (1160%/0%), and Magnesium (0%/0%) are invalid because the sample concentration is greater than four times the spike amount added. In addition, the associated MS/MSD RPDs are above the acceptance criteria for Calcium (200%) and Iron (200%).

The WG335802-2/-3 MS/MSD recoveries associated with L0813344-10 are outside the acceptance criteria for Antimony (58%/71%), Copper (140%/160%), Lead (149%/181%), Thallium (MS at 73%), and Zinc (182%/246%). Post digestion spikes were performed with acceptable recoveries of 91%, 88%, 89%, 89%, respectively. The post digestion spike for Zinc had an unacceptable recovery of 67%; this has been attributed to the sample matrix. The MS/MSD recoveries for Aluminum (608%/693%), Calcium (0%/462%), Iron (4710% / 2460%) and Magnesium (0%/0%) are invalid because the sample concentration is greater than four times the spike amount added. In addition, the MS/MSD RPDs are above the acceptance criteria for Calcium (200%) and Iron (63%). The WG336055-3/-4 MS/MSD recoveries associated with L0813344-10 are above the acceptance criteria for Mercury (164%/160%). A post digestion spike was performed with an acceptable recovery of 98%.

The WG336007-3 Method Blank associated with L0813344-13 has a concentration above the reporting limit for Aluminum. Since the associated sample concentration is 10x the blank concentration for this analyte, no corrective action is required. The results of the original analysis are reported.

Volatile Organics

The surrogate recovery for L0813344-17 was outside the acceptance criteria for 4-Bromofluorobenzene (135%); however, re-analysis within the holding time holding time achieved similar results. The results of both analyses are reported. The surrogate recovery for L0813344-27 is above the acceptance criteria for 4-Bromofluorobenzene (138%). Since the sample was non-detect for all target analytes, re-analysis is not required.

The WG336351-7/-8 MS/MSD recoveries are below the acceptance criteria for Chlorobenzene (53%/58%); however, the associated LCS recoveries are within criteria. No further action was required.

Semivolatile Organics

The following samples have elevated detection limits due to the dilutions required by the sample matrices:

L0813344-05, -12, -13, -27, -30: 5x

L0813344-17, -22, -23, -24: 2x

L0813344-10 and -25 have elevated detection limits due to the 2x dilutions required by the matrix interferences encountered during the concentration of the samples and the 5x dilutions required by the sample matrices.

The WG335861-3 LCSD recovery associated with L0813344-13, -20, and -26 through 30 was above the acceptance criteria for 2,4-Dinitrotoluene (90%);

however, the associated samples were non-detect for this target compound. The results of the original analysis are reported.

The WG335862-2 LCS recovery associated with L0813344-05 through -10, -12, -14 through -19, and -21 through -25 was above the acceptance criteria for 2,4-Dinitrotoluene (90%); however, the associated samples were non-detect for this target compound. The results of the original analysis are reported.

The WG335862-4/-5 MS/MSD recoveries associated with L0813344-10 were above the acceptance criteria for 2,4-Dinitrophenol (150%/150%) and Pentachlorophenol (150%/150%); however, the associated LCS/LCSD recoveries were within criteria.

The WG335862-5 MSD recovery associated with L0813344-10 was above the acceptance criteria for 2,4-Dinitrotoluene (90%); however, the associated samples were non-detect for this target compound. The results of the original analysis are reported.

Instrument Information: Volatile Organics: Elaine

Instrument: Agilent 5973 MSD Column Type: Restek RTX-502.2

Trap: Supelco K Trap (VOACARB 3000) Column Length: 40 Meters

Concentrator: Teledyne Velocity
Autosampler: Teledyne Solatek
Purge time: 11 min

Concentrator: Teledyne Velocity
D: 0.18 mm
Desorb: 2 min

Volatile Organics: Curly

Instrument: Agilent 5972 MSD Column Type: Restek RTX-502.2

Trap: Supelco K Trap (VOACARB 3000) Column Length: 40 Meters

Concentrator: Tekmar 3000 df: 1.00 um
Autosampler: Archon ID: 0.18 mm
Purge time: 11 min Desorb: 2 min

Semivolatile Organics (Acid/Base/Neutral Extractables): Buffy

Instrument: Agilent 5973N MSD Injection volume: 1 ul

Column Type: Restek RXI-5SILMS df: 0.25 um
Column Length: 30 Meters ID: 0.25 mm

Polynuclear Aromatic Hydrocarbons by 8270 SIM: Mindy

Instrument: Agilent 5973 MSD Injection volume: 1 ul

Column Type: Restek RTX-5MS df: 0.25 um
Column Length: 30 Meters ID: 0.25 mm

TPH: Petro9A / 9B

Instrument: Agilent 6890 w FID Injection Volume: 1uL

Column Type: Restek RTX-5 df: 0.25

Column Length: 30 Meters

ID: 0.32 mm

Note: Sample calculations to final concentration for each specific fraction are located in each fraction section of the data package.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data Package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

hués L. Westerlind 913
Lisa S. Westerlind Date

Reporting Manager / Technical Representative

SDG NARRATIVE L0813447

Metals

L0813447-08 and -10 have elevated detection limits for Mercury due to the 5x dilutions required to quantitate the results within the calibration range. The WG336219-1/-2 MS/MSD recoveries associated with L0813447-13 are outside the acceptance criteria for Antimony, Arsenic (MSD only), Chromium, Copper (MS only), Lead, and Manganese. Post-digestion spikes were performed with acceptable recoveries of 108%, 113%, 77%, 80%, 77%, and 98%, respectively. The MS recoveries for Aluminum, Calcium, Iron, Magnesium, and Zinc are invalid because the sample concentration is greater than four times the spike amount added. In addition, the associated MS/MSD RPDs are outside the acceptance criteria for Aluminum, Manganese, and Zinc. The elevated RPDs have been attributed to the non-homogenous nature of the sample utilized for the MS/MSD.

Volatile Organics

The surrogate recovery for L0813447-05 is above the acceptance criteria for 4-Bromofluorobenzene; however, the sample was not re-analyzed due to coelution with obvious interferences. A copy of the chromatogram is included as an attachment to this report. The results are not considered to be biased. L0813447-10: The internal standard (IS) response for 1,4-Dichlorobenzene-d4 is below and the surrogate recoveries for Toluene-d8 and 4-Bromofluorobenzene are above the acceptance criteria; however, re-analysis achieved similar results. The results of both analyses are reported.

L0813447-11: The internal standard (IS) response for 1,4-Dichlorobenzene-d4 is below and the surrogate recovery for 4-Bromofluorobenzene is above the acceptance criteria; however, re-analysis achieved similar results. The results of both analyses are reported.

L0813447-11 re-analysis has elevated detection limits due to the 4x dilution required by the elevated concentrations of non-target compounds in the sample.

Semivolatile Organics

The following samples have elevated detection limits due to the dilutions required by matrix interferences encountered during the concentration of the samples: L0813447-05, -07, -08, -10, -11, -12: 15x

L0813447-13: 5x

L0813447-06 has elevated detection limits due to the 10x dilution required by the sample matrix.

L0813447-09 has elevated detection limits due to the 10x dilution required by the matrix interferences encountered during the concentration of the sample and the 5x dilution required by the sample matrix.

The surrogate recoveries for L0813447-09 are below the acceptance criteria for 2-Fluorophenol, Phenol-d6, Nitrobenzene-d5, 2-Fluorobiphenyl, 2,4,6-

Tribromophenol and 4-Terphenyl-d14 due to the dilutions required to quantitate the sample. Re-extraction is not required; therefore, the results of the original analysis are reported.

The WG336983-2/-3 LCS/LCSD recoveries associated with L0813447-02 through -14 was above the acceptance criteria for 2,4-Dinitrotoluene; however, the associated samples were non-detect for this target compound. The results of the original analysis are reported.

Instrument Information: Volatile Organics: Elaine

Instrument: Agilent 5973 MSD Column Type: Restek RTX-502.2

Trap: Supelco K Trap (VOACARB 3000) Column Length: 40 Meters

Concentrator: Teledyne Velocity
Autosampler: Teledyne Solatek
Purge time: 11 min

Grant 2519

df: 1.00 um

ID: 0.18 mm

Desorb: 2 min

Volatile Organics: Curly

Instrument: Agilent 5972 MSD Column Type: Restek RTX-502.2

Trap: Supelco K Trap (VOACARB 3000) Column Length: 40 Meters

Concentrator: Tekmar 3000 df: 1.00 um
Autosampler: Archon ID: 0.18 mm
Purge time: 11 min Desorb: 2 min

Semivolatile Organics (Acid/Base/Neutral Extractables): Buffy

Instrument: Agilent 5973N MSD Injection volume: 1 ul

Column Type: Restek RXI-5SILMS df: 0.25 um
Column Length: 30 Meters ID: 0.25 mm

Polynuclear Aromatic Hydrocarbons by 8270 SIM: Mindy

Instrument: Agilent 5973 MSD Injection volume: 1 ul

Column Type: Restek RTX-5MS df: 0.25 um Column Length: 30 Meters lD: 0.25 mm

TPH: Petro9A / 9B

Instrument: Agilent 6890 w FID Injection Volume: 1uL

Column Type: Restek RTX-5 df: 0.25

Column Length: 30 Meters

ID: 0.32 mm

Note: Sample calculations to final concentration for each specific fraction are located in each fraction section of the data package.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data Package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Lisa S. Westerlind Date

Reporting Manager / Technical Representative

SDG NARRATIVE L0813541

TO-15

L0813541-01 and -03: results for Propylene should be considered estimated due to co-elution with a non-target peak.

L0813541-05, WG336905-4 Duplicate, L0813541-07, -09 through -11 have elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

L0813541-05, -07 and -11 required re-analysis on a dilution in order to quantitate the sample within the calibration range. The result is reported as a "greater than" value for the compound that exceeded the calibration on the initial analysis. The re-analysis was performed only for the compound which exceeded the calibration range.

Instrument Information Volatile Organics in Air:

Instrument: Agilent 6890 GC / 5975 MSD

Column Type: Restek RTX-1

Column Length: 60 Meters

Concentrator: Entech 7100A Autosampler: Entech 7016CA df: 1.00 um ID: 0.52 mm

Note: Sample calculations to final concentration for each specific fraction are located in each fraction section of the data package.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data Package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Kathleen O'Brien Technical Representative

10|6|0

SDG NARRATIVE L0814755

Metals

L0814755-02, -06, and -10 have elevated detection limits for Iron due to the 5x dilutions required to quantitate the results within the calibration range. L0814755-07 has an elevated detection limit for Iron due to the 5x dilution required by non-target analyte spectral interferences encountered during analysis.

The following samples have elevated detection limits for Arsenic due to the dilutions required by non-target analyte spectral interferences encountered during analysis:

L0814755-04: 10x

L0814755-07, -10: 20x

The WG339213-1 Laboratory Duplicate RPDs associated with L0814755-01 are outside the acceptance criteria for Calcium (44%), Copper (62%), Iron (40%), Lead (86%), and Zinc (39%). The elevated RPDs have been attributed to the non-homogenous nature of the sample utilized for the laboratory duplicate. The WG338986-2/-3 MS/MSD recoveries for Iron (0%/0%) associated with L0814755-04 are invalid because the sample concentration is greater than four times the spike amount added.

The WG339213-2 MS recoveries associated with L0814755-01 are below the acceptance criteria for Antimony (68%), Calcium (64%), Copper (0%), Lead (49%), Magnesium (73%), Manganese (47%), and Zinc (0%). Post digestion spikes were performed with acceptable recoveries of 94%, 103%, 119%, 101%, 92%, 103%, and 125%, respectively.

The WG339213-2 MS recovery for Iron (0%) associated with L0814755-01 is invalid because the sample concentration is greater than four times the spike amount added.

Volatile Organics

L0814755-06, -08, -09, -10, -14, -15, and -16: The pH of the samples were greater than two; however, the samples were analyzed within the method required holding time. The samples were received in unpreserved vials. L0814755-06 has elevated detection limits due to the 20x dilution required by the elevated concentrations of target compounds in the sample. Semivolatile Organics

The WG339098-2/-3 LCS/LCSD recoveries associated with L0814755-02 through -07, -10, and -11 were above the acceptance criteria for 2,4-Dinitrotoluene (119%/115%), p-Chloro-m-cresol (LCS at 98%), and Pentachlorophenol (LCS at 104%); however, the associated samples were non-

detect for these target compounds. The results of the original analysis are reported.

The WG339098-4 MS recovery associated with L0814755-02 through -07, -10, and -11 was above the acceptance criteria for 2,4-Dinitrotoluene (100%); however, the associated samples were non-detect for this target compound. The results of the original analysis are reported.

Instrument Information: Volatile Organics: Elaine

Instrument: Agilent 5973 MSD

Trap: Supelco K Trap (VOACARB 3000)

Concentrator: Teledyne Velocity Autosampler: Teledyne Solatek

Purge time: 11 min

Column Type: Restek RTX-502.2

Column Length: 40 Meters

df: 1.00 um ID: 0.18 mm Desorb: 2 min

Volatile Organics: Curly

Instrument: Agilent 5972 MSD

Trap: Supelco K Trap (VOACARB 3000)

Concentrator: Tekmar 3000 Autosampler: Archon Purge time: 11 min

Column Type: Restek RTX-502.2

Column Length: 40 Meters

df: 1.00 um ID: 0.18 mm Desorb: 2 min

Semivolatile Organics (Acid/Base/Neutral Extractables): Buffy

Instrument: Agilent 5973N MSD

Column Type: Restek RXI-5SILMS

Column Length: 30 Meters

Injection volume: 1 ul

df: 0.25 um ID: 0.25 mm

Polynuclear Aromatic Hydrocarbons by 8270 SIM: Mindy

Instrument: Agilent 5973 MSD

Column Type: Restek RTX-5MS

Column Length: 30 Meters

Injection volume: 1 ul

df: 0.25 um ID: 0.25 mm

Pesticides/PCB:

Instrument: Agilent 6890 w/Dual Micro ECDs

Injection Volume: 1uL df: 0.32

Column Type: Restek RTX-CL (primary) Column: Restek RTX-CLPPesticide II (confirmation) df: 0.25

Column Length: 30 Meters

ID: 0.32 mm

Note: Sample calculations to final concentration for each specific fraction are located in each fraction section of the data package.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data Package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

lizabeth H. Simmons

Technical Representative

Westborough, MA 508,898,9220 | Mansfield, MA 508,822,9300

SDG NARRATIVE L0814991

Volatile Organics

The pH of L0814991-01 through -05 was greater than two; however, the samples were analyzed within the method required holding time.

こう いんか 連出

L0814991-05 has elevated detection limits due to the 50x dilution required by the elevated concentrations of target compounds in the sample.

Metals

L0814991-02 has an elevated detection limit for Arsenic due to the 2x dilution required by matrix interferences encountered during analysis.

The WG339771-2 MS recovery associated with L0814991-02 is below acceptance criteria for Iron (0%); however, the recovery is invalid because the sample concentration is greater than four times the spike amount added.

Semivolatile Organics

The surrogate recovery for L0814991-02 was outside the acceptance criteria for 2-Fluorobiphenyl (38%); however, the criteria was achieved upon re-extraction outside of holding time. The results of both extractions are reported; however, all associated compounds are considered to have a potential bias.

The surrogate recoveries for the WG339803-1 Method blank are below the acceptance criteria for 2-Fluorophenol (20%) and 2-Fluorobiphenyl (39%). The Method blank associated with the re-extract had surrogate recoveries within the acceptance criteria for 2-Fluorophenol (50%) and 2-Fluorobiphenyl (73%).

Semivolatile Organics-SIM

The surrogate recovery for L0814991-02 was below the acceptance criteria for 2-Fluorobiphenyl (40%); however, the criteria was achieved upon re-extraction outside of holding time. The results of both extractions are reported; however, all associated compounds are considered to have a potential bias.

Pesticides

L0814991-02 has elevated detection limits due to the 5x dilution required by the elevated concentrations of non-target compounds in the sample.

Instrument Information: Volatile Organics: Elaine

Instrument: Agilent 5973 MSD

Trap: Supelco K Trap (VOACARB 3000)

Concentrator: Teledyne Velocity Autosampler: Teledyne Solatek

Purge time: 11 min

i criterio Por Maria

Column Type: Restek RTX-502.2

Column Length: 40 Meters

df: 1.00 um ID: 0.18 mm Desorb: 2 min

Semivolatile Organics (Acid/Base/Neutral Extractables):

Instrument: Agilent 5973N MSD

Column Type: Restek RXI-5SILMS

Column Length: 30 Meters

Injection volume: 1 ul

df: 0.25 um ID: 0.25 mm

Polynuclear Aromatic Hydrocarbons by 8270 SIM:

Instrument: Agilent 5973 MSD

Column Type: Restek RTX-5MS Column Length: 30 Meters

Injection volume: 1 ul

df: 0.25 um ID: 0.25 mm

Pesticides/PCB:

Instrument: Agilent 6890 w/Dual Micro ECDs

Injection Volume: 1uL

Column Type: Restek RTX-CL (primary)

df: 0.32

Column: Restek RTX-CLPPesticide II (confirmation) df: 0.25

Column Length: 30 Meters

ID: 0.32 mm

Note: Sample calculations to final concentration for each specific fraction are located in each fraction section of the data package.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data Package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Contract Contract

hud J. Westerlind

10/32/08 Date

Reporting Manager / Technical Representative

Exhibit B -- Section 3
Form Instructions
Forms IA-IN and IB-IN (Con't)

analyte, adjusted if necessary and corrected for any dilutions, if the concentration is less than the MDL. The concentration result shall be reported to two significant figures if the result is less than 10 or three significant figures if the value is greater than or equal to 10.

3.4.2.2.5 Under the columns labeled "C", "Q", and "M", enter result qualifiers as identified below. If additional qualifiers are used, their explicit definitions shall be included on the Cover Page in the "Comments" section.

Forms IA-IN and IB-IN include fields for three types of result qualifiers. These qualifiers shall be completed as follows:

3.4.2.2.5.1 C (Concentration) Qualifier. Enter "J" if the reported value was obtained from a reading that was less than the CRQL but greater than or equal to the MDL. If the reading was less than the MDL, a "U" shall be entered.

The MDL obtained for a given preparation method, analysis method, and instrument shall be used for qualification of the results for samples associated with that preparation method, analysis method, and instrument. Serial dilution and post-digestion spike results shall be qualified using the MDL and CRQL values utilized for the corresponding field sample.

All three values (i.e., the instrument reading, CRQL, and MDL) shall be converted to the same units prior to determining the appropriate C (Concentration) Qualifier.

NOTE: The water CRQL (in ug/L) and the MDL obtained from direct analysis (Preparation Method "NP1") for a given analysis method and instrument shall be used to qualify the results of samples and instrument QC standards that are not taken through a preparation procedure [e.g., ICP-MS samples with turbidity less than 1 Nephelolometric Turbidity Unit (NTU), ICB, CCB, and CRI for ICP-AES].

DEFINITION

DEFINITION

OF Q"

QUALIER

QUALIER

THORGANIC

REPORTS

Q Qualifier. Specified entries and their meanings are as follows:

E: The reported value is estimated due to the presence of interference. An explanatory note shall be included under "Comments" on the Cover Page (if the problem applies to all samples), or on the specific Form IA-IN or Form IB-IN (if it is an isolated problem).

- N: Spiked sample recovery not within control limits.
- *: Duplicate analysis not within control limits.
- D: The reported value is from a dilution.

KBW 12/12/08 - SOW CLP ILM

ILM05.2

ATTACHMENT C

DATA VALIDATION REPORT

SDG Nos. L0812845, L0812904, L0813196, L0813344, L0813447, L0813541, L0814755, and L0814991

Volatiles, Semivolatiles, Total Petroleum Hydrocarbons (TPH), Diesel Range Organics (DRO), Pesticides/Polychlorinated biphenyls, and Metals in Water and Soil Samples, and Volatiles in Air Samples

DATA VALIDATION

FOR

ROCKVILLE CENTRE, NEW YORK August, September, and October 2008 Sampling Round

ANALYSIS DATA

Volatiles, Semivolatiles, Total Petroleum Hydrocarbons (TPH), Diesel Range Organics (DRO), Pesticides/Polychlorinated Biphenyls (PCBs) and Metals in Water and Soil Samples, and Volatiles in Air Samples

Sample Delivery Group (SDG) Nos. L0812845, L0812904, L0813196, L0813344, L0813447, L0813541, L0814755, and L0814991

Chemical Analyses Performed By:

Alpha Analytical Eight Walkup Drive Westborough, MA 01581-101

For:

Kris Almskog P.W. Grosser Consulting 630 Johnson Avenue, Suite 7 Bohemia, NY 11716

Data Validation Report By:

Kim B. Watson Stone Environmental, Inc. 535 Stone Cutters Way Montpelier, VT 05602

December 12, 2008

Reference #082074-F Phase II Validation Report_12845_2904_3196_3344_3447_3541_4755_4991//kbw

EXECUTIVE SUMMARY

Stone Environmental, Inc. (Stone) has completed the third-party data validation on the organics and inorganic analyses for volatile organic (VOA) and semivolatile organic analyses (SVOA), polychlorinated biphenyls (PCBs) as Aroclors, pesticides, TPH-DRO, and metals data in soil and water samples, and volatiles in air samples as prepared by Alpha Analytical from the Rockville Centre site in Rockville Centre, New York. The laboratory reported the data under Sample Delivery Group (SDG) Nos. L0812845, L0812904, L0813196, L0813344, L0813447, L0813541, L0814755, and L0814991 that were submitted as eight data packages received by Stone (electronically) on October 31, 2008. As required by the Project plan, approximately 5% or one sample from each SDG, whichever is greater, was considered for validation. The samples below were selected for validation as follows:

SDG No.	Sample No.	Laboratory ID	Parameter
L0812845	PWG-VP-2008-04 (36-40')	L0812845-02	SDG VOA only
L0812904	PWG-VP-2008-02 (16-20")	L0812904-03	SDG VOA only
L0813196	PWG-GW-2008-04	L0813196-11	VOA only
L0813196	PWG-GW-2008-24	L0813196-12	VOA only (field dup)
L0813196	PWG-SB-2008-01@5-10'	L0813196-20	VOA, SVOA, Pest/PCB, metals
L0813196	PWG-SB-2008-21@5-10'	L0813196-21	VOA, SVOA, Pest/PCB, metals (field dup)
L0813196	PWG-SB-2008-12@5-10'	L0813196-36	VOA only
L0813196	PWG-SB-2008-22@5-10'	L0813196-37	VOA only (field dup)
L0813344	PWG-DW-2008-15(7-7.5')	L0813344-18	VOA, SVOA, TPHDRO, metals
L0813344	PWG-DW-2008-100 (7-7.5')	L0813344-19	VOA, SVOA, TPHDRO, metals (field dup)
L0813447	PWG-DW-2008-34(5.5-6')	L0813347-08	VOA, SVOA, TPHDRO, metals
L0813541	PWG-DW-2008-08	L0813541-08	TO15 Soil Gas
L0814755	DIFFW-01	L0814755-07	VOA, SVOA, Pest/PCB, metals
L0814991	DIFFW-04	L0814991-05	VOA (only)

The samples in this data set represent the sample collections from August 26, 27, 28, and 29, September 3, 4, 5, 8, and 10, and October 3, 6, 7, and 8, 2008. The samples were received at the laboratory on August 29 and 30, September 5, 9, 11, and 12, and October 5 and 9, 2008.

Findings of the validation effort resulted in the following qualifications of sample results:

- The following results were qualified as estimated (J, UJ):
 - Results for chloromethane, bromomethane, isopropylbenzene, 1,2,3-trichloropropane and naphthalene in PWG-VP-2008-04 (36-40') and PWG-VP-2008-02 (16-20').
 - Results for dichlorodifluoromethane, chloromethane, carbon disulfide, isopropyl benzene and p-diethylbenzene in PWG.GW.2008.04 and PWG.GW.2008.24.
 - Results for isophorone 1,4-dichlorobenzene, 2,4-dinitrotoluene, 3-nitroaniline and 4-nitroaniline in PWG.SB.2008.01@5-10' and PWG.SB.2008.21@5-10'.
 - Results for dichlorodifluoromethane and 1,2,3-trichloropropane in PWG-DW-2008-15(7-7.5') and in PWG-DW-2008-100(7-7.5').
 - Results for dichlorodifluoromethane, carbon disulfide, vinyl acetate, and 1,2,3-trichloropropane in PWG-DW-2008-34 (5.5-6').
 - Results for dichlorodifluoromethane, chloromethane, bromomethane, and isopropyl benzene in DIFFW-01.
 - Results for dichlorodifluoromethane, chloromethane, 2-butanone, acetone, and isopropylbenzene in DIFFW-04.
- In SDG No. L0813344 for metals and mercury analyses, several compounds as outlined in the narrative exhibited recoveries outside the acceptance windows. The laboratory appropriately applied "N" and "*" qualifiers on the compounds that exceeded the acceptance criteria. As a result of the recovery failures, results flagged by the laboratory with an "N" or "*" were qualified as estimated (J, UJ) in samples PWG-DW-2008-15 (7-7.5') and PWG-DW-2008-100 (7-7.5'). The laboratory appropriately performed a post-digestion spike analysis and the post-digestion spike was acceptable.
- In SDG No. L0813447 for metals and mercury analyses and in SDG No. L0813447 for
 metals analyses, several compounds as outlined in the narrative exhibited recoveries
 outside the acceptance windows. The laboratory appropriately applied "N" qualifiers on
 the compounds that exceeded the criteria. As a result of the recovery failures, results
 flagged by the laboratory with an "N" were qualified as estimated (J, UJ) in sample PWGDW-2008-34 (5.5-6").

- The following results were qualified as estimated (J, UJ):
 - Results for 4,4'-DDT in PWG-SB-2008-01@5-10' and PWG-SB-2008-21@5-10'.
 - Results for cis-1,2-dichloroethene, trichloroethene, vinyl chloride, fluoranthene, and pyrene in PWG-DW-2008-15(7-7.5') and PWG-DW-2008-100(7-7.5').
 - Results for acetone, 2-butanone, n-butylbenzene, isopropylbenzene and 2-methylnaphthalene in PWG-DW-2008-34 (5.5-6').
 - The result for vinyl chloride in DIFFW-01.
- In the inorganic field duplicate pairs, the following results were qualified as estimated (J, UJ):
 - Results for aluminum, arsenic, barium, calcium, copper, lead, vanadium, zinc, and mercury in PWG-SB-2008-01@5-10' and in PWG-SB-2008-21@5-10'.
 - The result for silver in PWG-DW-2008-34(5.5-6').

Although, acetone and methylene chloride were not detected above the reporting limit in any of the VOA method blanks (MBs), chromatographic peaks were observed in the raw data for these compounds in associated MBs. Therefore, the validator recommends caution in the use of these compounds in samples since they are common laboratory contaminants and the low concentrations observed in the soil samples may not be site related.

The Overall Evaluation of Data (Section XVI) presents the rationale for the decisions that have been implemented and are summarized above. The validation findings and conclusions for each analytical parameter are detailed in the remaining sections of this report and are based on the following information.

QC Criteria	Were acceptanc	e criteria met for Concern?	Contaminates of
	Yes	No	NA
Chain of custody (COC)/sample integrity/holding times	√		
Data completeness		٧	
Holding times and sample preservation	V		
GC/MS performance checks	√		
Calibrations		٧	
CRQL Standards (metals only)	√		
Laboratory method blanks/equipment blanks	V		
ICP Interference Check Sample (metals only)	√		
Matrix spike/matrix spike duplicate (MS/MSD) results		V	
Post Digestion Spike (metals only)	√		
Laboratory control samples and reference materials	√		
Field duplicate results		4	
ICP Serial Dilution		1	
Surrogate recoveries	√		
Internal standard results	√		
Compound identification	٧		
Sample results	V		
% solids	V		
Calculations/transcriptions	1		

Notes: See documentation Section XVII for amendments provided by the laboratory upon request.

NA - Not applicable indicates that either the QC is not applicable to this data set or not required by the method.

Documentation problems observed in the data package and on the chain of custody records are described in Section XVII.

This validation report shall be considered <u>part of the data package</u> for all future distributions of the volatiles, semivolatiles, TPH DRO, Pesticides/PCBs, and metals analysis data.

INTRODUCTION

Analyses of water and soil samples were performed according to US EPA SW846 Methodologies: Method 8260 GC/MS analyses for Volatiles, Method 8270D GC/MS analyses for semivolatiles, (extractions: 3510 water separatory funnel extraction/3541automated soxhlet soil-extraction), Method 8270D by GC/MS Selective Ion Monitoring for Polynuclear aromatic hydrocarbons, Method 8081 GC analysis for the pesticides, Method 8082 GC analysis for the PCBs, Method 8015 GC analysis for TPH-DRO and 6010B for metals. The target compound lists included all standard target analytes typically specified under the US EPA Contract Laboratory Program (CLP) for these methods.

To the extent possible, Stone's validation was performed in conformance with Tier III guidelines as defined by EPA Region I, "Region I EPA-NE Data Validation Functional Guidelines for Evaluating Environmental Analyses", March 1996. The data were evaluated in accordance with EPA Region II's Standard Operating Procedures (SOPs) from the EPA Hazardous Waste Support Branch: SOP#HW-24 "SOP for the Validation of Organic Data Acquired Using SW-846 Method 8260" (Rev2, Dec 1996), SOP#HW-22 "Validating Semivolatile Organic Compounds By Gas Chromatography/Mass Spectrometry SW-846 Method 8270D", SOP#HW-44 "Validating Pesticide Compounds Organochlorine Pesticides by Gas Chromatography SW-846 Method 8081B", SOP#HW-45 "Validating PCB Compounds PCBs By Gas Chromatography SW-846 8082A", SOP#HW-2 "Validation of Metals for the Contract Laboratory Program (CLP) based on SOW ILMO5.3" (SOP Revision 13), and SOP#HW-31 "Validation Air Samples Volatile Organic Analysis of Ambient Air In Canister By Method TO-15". EPA's "National Functional Guidelines for Organic Data Review" (EPA 540/R-99/008, 10/99) and EPA's "National Functional Guidelines for Inorganic Data Review" (EPA 540-R-04-004, October 2004) were also considered during the evaluation, and professional judgment was applied as necessary and appropriate.

As specified in the workplan, an independent third party data validation was performed on 5% of the sample data or on one sample (sometimes two) from each sample delivery group (SDG). In addition, the validation effect was used to complete the data usability evaluation for the data collected during the remediation investigation. The data usability summary report (DUSR) was prepared based on findings in this validation report and extrapolated to all deliverables.

The data validation process evaluates data on a technical basis for chemical analyses conducted under the CLP or other well-defined methods. Contract compliance is evaluated only in specific situations. Issues pertaining to contractual compliance are noted where applicable. It is assumed that the data package is presented in accordance with the CLP requirements. It is also assumed that the data package represents the best efforts of the laboratory and has already been subjected to adequate and sufficient quality review prior to submission for validation.

Results of sample analyses are reported by the laboratory as either qualified or unqualified; various qualifier codes are used by the laboratory to denote specific information regarding the analytical results. During the validation process, laboratory data are verified against all available supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data validator as necessary and appropriate. Raw data is examined in detail to check calculations, compound identification, and/or transcription errors in reference to samples in

the Executive Summary only. Validated results are either qualified or unqualified; if results are unqualified, this means that the reported values may be used without reservation. Final validated results are annotated with the following codes, as defined in EPA Region II Standard Operating Procedures:

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated numerical value is the sample quantitation limit. The sample quantitation limit accounts for sample-specific dilution factors and percent solids corrections or sample sizes that deviate from those required by the method.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified. The R replaces the numerical value or sample quantitation limit. In some instances (e.g., a dilution) a result may be indicated as "rejected" to avoid confusion when a more quantitatively accurate result is available.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."
- JN The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

These codes are recorded in the Analysis Data Sheets (Form I) in Attachment A of this validation report to indicate qualifications placed on the data as a result of the validation effort.

All data users should note two facts. First, the "R" qualifier means that the laboratory-reported value is completely unusable. The analysis is invalid due to significant quality control problems and provides no information as to whether the compound is present or not. Rejected values should not appear on data tables because they have no useful purpose under any circumstances. Second, no analyte concentration is guaranteed to be accurate even if all associated quality control is acceptable. While strict quality control conformance provides well-defined confidence in the reported results, any analytical result will always contain some uncertainty as demonstrated in the laboratory-derived control limits.

The user is also cautioned that the validation effort is based on the materials provided by the laboratory. Software manipulation, resulting in misleading raw data printouts, cannot be routinely detected during validation; unless otherwise stated in the report, these kinds of issues are outside the scope of this review.

Detailed Findings of Measurement Error Associated with the Analytical Analysis

I. Preservation and Technical Holding Times (Sample Integrity)

The soil and water samples for these analyses were collected on August 26, 27, 28, and 29, September 3, 4, 5, 8, and 10, and October 3 and 6, 2008. The samples were received at the laboratory on August 29, and 30, September 5, 9, 11, and 12, and October 6 and 10, 2008. According to chain of custody records and laboratory records, all samples were appropriately preserved in the field prior to collection. All holding times for analysis were met for all samples. All samples were received at the laboratory at the appropriate temperature (<10°C).

According to the case narrative for SDG No. 0812904, both vials for samples PWG-VP-2008-03 (96-100'), PWG-VP-2008-02 (56-60), PWG-VP-2008-02 (96-100'), and PWG-VP-2008-01 (96-100'), and one vial for samples PWG-VP-2008-01 (36-40') and PWG-VP-2008-01 (76-80') were received with a large headspace. Although vials for the samples being validated were acceptable, the validator recommends caution in the use of results for these samples. Results for all compounds in PWG-VP-2008-03 (96-100'), PWG-VP-2008-02 (56-60), PWG-VP-2008-02 (96-100'), and PWG-VP-2008-01 (96-100') shall be considered as estimated (J, UJ).

II. GC/MS Instrument Performance Check (Tuning), GC Check Sample (Breakdown), and Calibration Verification

The tuning of the instruments for VOA analyses was demonstrated with the analysis of 4-bromofluorobenzene (BFB), the tuning of the instruments for SVOA analyses was demonstrated with analysis of decafluorotriphenylphosphine (DFTPP); tunes were analyzed for each shift (12-hour period) during which the samples or associated standards were analyzed. All tunes as recorded on Form V-like summaries in this data set were acceptable.

A performance check sample for endrin and DDT breakdown, as required by EPA methodology, were analyzed at the proper frequency, reported in the data package, and were acceptable in the pesticide analysis.

Initial and continuing calibration verification (ICV/CCV) standards were run at the required frequencies in the ICP/CV analysis series for all target elements. Results for all ICV/CCV standards bracketing samples were correctly reported on the summary forms and recoveries of all target analytes were within the applicable acceptance limits. The reported correlation coefficient of the initial calibration for the mercury analysis was greater than the minimum acceptance limit of 0.995.

Contract required quantitation limit (CRQL) standards as specified in the EPA Inorganic (ILM) Statement of Work were analyzed at the required frequencies for selected metals and concentrations for all applicable analytes on the ICP analyzers. Percent recoveries were accurately reported and were acceptable, with the exception of calcium at (306 and 307%) in the CRDL standard on 9/18/08. Since calcium was not reported from this sequence, no data was qualified on this basis.

Initial and continuing calibration verifications were performed for all organic analyses and were acceptable with the following exceptions:

Analysis Date	Analysis Time	Compound	%RSD % D	Action
9/4/08 (WG330394-CC)	1535	Chloromethane	34	Est.
9/04/08 (WG330394-CC)	1535	Bromomethane	71	Est.
9/04/08 (WG330394-CC)	1535	Isopropylbenzene	-34	Est.
9/04/08 (WG330394-CC)	1535	1,2,3-trichloropropane	-32	Est.
9/04/08 (WG330394-CC)	1535	Naphthalene	-28	Est.
9/09/08 (WG335914-CC)	1809	Dichlorodifluoromethane	36	Est.
9/09/08 (WG335914-CC)	1809	Chloromethane	27	Est.
9/09/08 (WG335914-CC)	1809	Carbon disulfide	32	Est.
9/09/08 (WG335914-CC)	1809	Isopropylbenzene	-30	Est.
9/09/08 (WG335914-CC)	1809	p-diethylbenzene	29	Est.
9/10/09 (8260-CCAL)	1455	Carbon disulfide	41	Est.
9/10/09 (8260-CCAL)	1455	Vinyl acetate	26	Est.
9/10/09 (8260-CCAL)	1455	Isopropylbenzene	-28	Est.
9/10/09 (8260-CCAL)	1455	p-diethylbenzene	28	Est.
9/11/09 (8260-CCAL)	1525	Dichlorodifluoromethane	36	Est.
9/11/09 (8260-CCAL)	1525	1,2,3-trichloropropane	-31	Est.
9/15/09 (8260-CCAL)	1218	Carbon disulfide	59	Est.
9/15/09 (8260-CCAL)	1218	Dichlorodifluoromethane	27	Est.
9/15/09 (8260-CCAL)	1218	Vinyl acetate	22	Est.
9/15/09 (8260-CCAL)	1218	1,2,3-trichloropropane	-25	Est.
10/09/08 (8260-CCAL)	1640	Dichlorodifluoromethane	46	Est.
10/09/08 (8260-CCAL)	1640	Chloromethane	34	Est.
10/09/08 (8260-CCAL)	1640	Bromomethane	-32	Est.
10/09/08 (8260-CCAL)	1640	Isopropylbenzene	-29	Est.
10/14/08 (8260-CCAL)	1252	Dichlorodifluoromethane	43	Est.
10/14/08 (8260-CCAL)	1252	Chloromethane	37	Est.
10/14/08 (8260-CCAL)	1252	Acetone	-21	Est.
10/14/08 (8260-CCAL)	1252	2-butanone	-23	Est.
10/14/08 (8260-CCAL)	1252	Isopropylbenzene	-34	Est.
9/10/08 (abn 050 cc)	1015	Isophorone	24	Est.
9/10/08 (abn 050 cc)	1015	1,4-dichorobenzene	24	Est.
9/10/08 (abn 050 cc)	1015	3-nitroaniline	27	Est.
9/10/08 (abn 050 cc)	1015	2,4-dinitrotoluene	30	Est.
9/10/08 (abn 050 cc)	1015	4-nitroaniline	24	Est.
9/15/08 (abn 050 cc)	1220	Isophorone	41	Est.
9/15/08 (abn 050 cc)	1220	Acetophenone	33	Est.
9/18/08 (abn 050 cc)	0953	Isophorone	30	Est.
9/18/08 (abn 050 cc)	0953	Hexachlorocyclopentadiene	-24	Est.
10/10/08 (abn 050 cc)	1116	Benzoic acid	-26	Est.
10/10/08 (abn 050 cc)	1116	Hexachlorocyclopentadiene	-32	Est.

Initial Calibration (IC) limits = ≤15%RSD or <0.995, Continuing Calibration (CC) limits = 25%D Est. = Estimate (J, UJ) associated samples.

It should be noted that negative % difference values will result in a low bias for positive detects, and a positive % difference will result in a high bias for positive detects.

Based on unacceptable %D values in the associated calibration standards, the following results were qualified as estimated (J, UJ):

- Results for chloromethane, bromomethane, isopropylbenzene, 1,2,3-trichloropropane, and naphthalene in PWG-VP-2008-04 (36-40') and PWG-VP-2008-02 (16-20').
- Results for dichlorodifluoromethane, chloromethane, carbon disulfide, isopropyl benzene and p-diethylbenzene in PWG.GW.2008.04 and PWG.GW.2008.24.
- Results for isophorone 1,4-dichlorobenzene, 2,4-dintrotoluene, 3-nitroaniline and 4-nitroaniline in PWG.SB.2008.01@5-10' and PWG.SB.2008.21@5-10'.
- Results for dichlorodifluoromethane and 1,2,3-trichloropropane in PWG-DW-2008-15(7-7.5') and in PWG-DW-2008-100(7-7.5').
- Results for dichlorodifluoromethane, carbon disulfide, vinyl acetate, and 1,2,3-trichloropropane in PWG-DW-2008-34 (5.5-6').
- Results for dichlorodifluoromethane, chloromethane, bromomethane, and isopropyl benzene in DIFFW-01.
- Results for dichlorodifluoromethane, chloromethane, 2-butanone, acetone, and isopropyl benzene in DIFFW-04.

In the Pesticide/PCB analyses, initial and continuing calibration verifications were performed at the appropriate frequency and on one column or the other, there were outliners that exceeded the calibration criteria by marginal amounts. However, in all cases, all samples were non-detect for these compounds except a trace amount of 4,4'DDT in PWG.SB.2008.01@5-10' (suspected interference); therefore, no data was qualified on this basis.

III. Blanks: Laboratory, Preparation and Method Blanks, and Trip Blanks

Preparation blanks and/or laboratory method blanks (MB) were prepared with each preparation batch and were acceptable with the following exceptions noted below.

No target analytes were detected in any of the VOA method blanks. Although acetone and methylene chloride were not detected above the reporting limit in any of the VOA method blanks, chromatographic peaks were observed in the raw data for these compounds in associated MBs. Therefore, the validator recommends caution in the use of these compounds in samples since they are common laboratory contaminants and the low concentrations observed in the soil samples may not be site related.

SDG Nos. L0812845 to L0814991

Stone Environmental, Inc. December 12, 2008

No target analytes were detected in any of the SVOA, pesticide/PCB or TPH-DRO method blanks.

The initial and continuing blanks for the metals analyses detected trace amounts of the target elements (<reporting limit for lead, selenium, aluminum, and beryllium). Since target compounds were greater than the reporting limits (action limit), no data was qualified based on the trace amounts observed in these blanks. A preparation blank was reported with each preparation batch of twenty soil samples. No target compounds were detected above the reporting limit in any metal preparation blanks.

Trip blanks (TBs) were submitted with each set of samples in this data set (per SDG). No target analytes were detected in the TBs.

Field blanks (FBs) were submitted with the samples in the data set. No target analytes were detected in the FBs.

IV. Surrogate Compounds

Percent recoveries of the VOA surrogates (1,2-dichloroethane-d4, 4-bromofluorobenzene, dibromofluoromethane, toluene-d8) were correctly reported on the Form summaries and within acceptance limits for the samples in these data sets.

Percent recoveries of the SVOA surrogates (1,2-dichlorobenzene-d4, 2,4,6-tribromophenol, 2-chlorophenol-d4, 2-fluorobiphenyl, 2-fluorophenol, nitrobenzene-d5, phenol-d6, p-terphenyl-d14) were correctly reported on the Form summaries and within acceptance limits for the samples in these data sets with the exceptions of recoveries in the SIM analyses of PWG-2008-34(5.5-6'). The reported recoveries of the surrogates were at 0% due to the required dilution analyses based on the presence of hydrocarbons. Since recoveries were acceptable in the LCS and blank, no data was qualified on this basis.

Percent recoveries of the surrogates in the Pesticides/PCB and TPH-DRO analyses were correctly reported on the Form II-like summaries and within acceptance limits for the samples in these data sets.

V. Internal Standards (IS)

All IS areas and retention times (RT), as reported on the Form VIII summaries, were within the established QC limits for all reported sample analyses in these data packages.

VI. Matrix Spike/Matrix Spike Duplicate/Laboratory Duplicate (MS/MSD/Dup)

Samples for matrix spikes (MS), matrix spike duplicates (MSD) and duplicate analyses were collected and analyzed from PWG-VP-2008-04 (36-40'), PWG.SB.2008.05@5-10', PWG.SB.2008.09@15-20', and PWG-DW-2008-07 (6.75-7.25') for the VOA analyses, PWG.SB.2008.21@5-10' for metals in SDG No. L0813196, and PWG-DW-2008-07(6.75-7.25') for SVOA, SVOA SIM, and TPH-DRO analysis in SDG No. L0813344. The following table lists the compounds that did not meet acceptance criteria for the MS/MSD Recovery (R) or relative percent differences (RPD) between pair results and explains the action taken for the results from the unspiked sample.

Sample ID	Compound	MS%R	MSD %R	DUP % RPD	Post Digestio n %R	QC Limits	Action
PWG.SB.2008.21@5-10'	Aluminum	0		7	NA	75-125/20	NAC*
PWG.SB.2008.21@5-10'	Iron	0		5	NA	75-125/20	NAC*
PWG.SB.2008.21@5-10'	Antimony	50		NA	100	75-125/20	Est.
PWG.SB.2008.21@5-10'	Calcium	166		22	96	75-125/20	Est.
PWG.SB.2008.21@5-10'	Chromium	74		2	91	75-125/20	Est.
PWG.SB.2008.21@5-10'	Lead	69		7	102	75-125/20	Est.
PWG.SB.2008.21@5-10'	Magnesium	64		9	88	75-125/20	Est.
PWG.SB.2008.21@5-10'	Manganese	133		3	88	75-125/20	Est.
PWG.SB.2008.21@5-10'	Zinc	62		0	88	75-125/20	Est.
PWG.SB.2008.21@5-10'	Mercury	6		117	98	75-125/20	Est.
PWG-DW-2008-07(6.75- 7.25')	Chlorobenzene	53	58	9	NA	60-133/30	NAC
PWG-DW-2008-07(6.75- 7.25')	2,4-dinitrophenol	150	58	9	NA	30-130/50	NAC
PWG-DW-2008-07(6.75- 7.25')	Pentachlorophenol	150	58	9	NA	17-109/50	NAC
PWG-DW-2008-07(6.75- 7.25')	2,4-dinitrotoluene	77	90	16	NA	28-89/50	NAC
PWG-DW-2008-07(6.75- 7.25')	2- chloronaphthalene	36	42	15	NA	40-140/	NAC
PWG-DW-2008-07(6.75- 7.25')	TPH	0	188	200	NA NA	10-140/40	NAC*

NA=Not Applicable, NAC=No Action *sample concentration greater than 4X the spike concentration; therefore, no action. Est. = Estimate (J, UJ) associated sample. Note: the laboratory limit for Metals MS/MSD was 80-120, the validation limits used were 75-125%.

Although, the recovery of mercury fell just below the limit for rejection at 6% in sample PWG.SB.2008.21@5-10', the laboratory performed a post-digestion spike (not formally presented but found within the raw data, and noted in the case narrative) which exhibited acceptable recovery of mercury; therefore, results were estimated (J) in PWG.SB.2008.21@5-10' rather than rejected based on professional judgment and the non-homogeneous nature of the field sample and its duplicate. Sample PWG.SB.2008.21@5-10' was the field duplicate of PWG.SB.2008.01(@5-10' and the concentration reported in the MS spike replicated that of the parent sample; therefore, the

elevated results of the field duplicate (PWG.SB.2008.21@5-10') may be an anomaly and should not be considered for use.

In SDG No. L0813344 matrix spike, matrix spike duplicate, and duplicate analyses were performed on samples PWG-DW-2008-07(6.75-7.25'), PWG-DW-2008-22 (5.25-5.75'), and PWG-DW-2008-10(6.25-6.75'), and PWG-DW-2008-20 (3.5-5')[mercury only] for metals and mercury analyses. Several compounds as outlined in the narrative exhibited recoveries outside the acceptance windows similar to the MS sample listed above. The laboratory appropriately applied "N" and "*" qualifiers on the compounds that exceeded the criteria. As a result of the recovery failures, results flagged by the laboratory with an "N" or "*" were qualified as estimated (J, UJ) in samples PWG-DW-2008-15 (7-7.5') and PWG-DW-2008-100 (7-7.5'). The laboratory appropriately performed a post-digestion spike analyses and the post-digestion spike was acceptable.

In SDG No. L0813447 matrix spike, matrix spike duplicate, and duplicate analyses were performed on samples PWG-DW-2008-40 (6-6.5') for metals analyses. Several compounds as outlined in the narrative exhibited recoveries outside the acceptance windows. The laboratory appropriately applied "N" qualifiers on the compounds that exceeded the criteria. As a result of the recovery failures, results flagged by the laboratory with an "N" were qualified as estimated (J, UJ) in sample PWG-DW-2008-34 (5.5-6').

In SDG No. L0814755, matrix spike, matrix spike duplicate, and duplicate analyses were performed on sample MW-4 for the VOA, SVOA SIM PAH, Pesticide/PCB analyses and metals. All recoveries were acceptable, except in the SVOA analyses: 2,4-dinitrotoluene was at 100% just outside the limit (24-96%). Since the recovery was at 100%, just outside the limit and not detected in the parent sample, no data was qualified on this basis.

VII. Field Duplicate Precision

Samples PWG-GW-2008-24 (VOA), PWG-SB-2008-21@5-10' (VOA, SVOA, SVOA, SVOA SIM PAH, Pest/PCB and metals), PWG-SB-2008-22@5-10'(VOA), PWG-DW-2008-100(7-7.5') (VOA, SVOA, SVOA SIM PAH, TPHDRO, and metals), PWG-DW-2008-101(5.5-6') (VOA, SVOA, SVOA SIM PAH, TPHDRO and metals), and DIFFW-100 (VOA, SVOA, SVOA SIM PAH, Pest/PCB and metals) were field duplicate samples of PWG-GW-2008-04, PWG-SB-2008-01@5-10', PWG-SB-2008-12@5-10', PWG-DW-2008-15 (7-7.5'), PWG-DW-2008-34 (5.5-6') and DIFFW-01 respectively for the analyses indicated in parentheses. If target compounds were non-detect in the field duplicate pair, then no assessment of precision could be made. Unless noted below, paired results were acceptable and no qualification of data was required.

Sample Name	Compound	Actio n Limit	Sample Conc.	С	Duplicate Conc.	RPD	Difference	Q	RL (mg/k g)
PWG.SB.2008.0 1@5-10'	4,4'-DDT	50	4.73		ND<3.47	200	0.99	J, UJ	4.12
PWG-DW-2008- 15(7-7.5')	Cis-1,2- dichloroethene	50	28		ND <3	200	25	J, UJ	3.0
PWG-DW-2008- 15(7-7.5')	trichloroethene	50	11		ND <3	200	8	J, UJ	3.0

Sample Name	Compound	Actio n Limit	Sample Conc.	С	Duplicate Conc.	RPD	Difference	Q	RL (mg/k g)
PWG-DW-2008- 15(7-7.5')	Vinyl chloride	50	26		ND <6.0	200	20	J, UJ	6.0
PWG-DW-2008- 15(7-7.5')	Fluoranthene	50	ND <79		150	200	74	J, UJ	79
PWG-DW-2008- 15(7-7.5')	Pyrene	50	ND <79		160	200	81	J, UJ	79
PWG-DW-2008- 34 (5.5-6')	Acetone	50	48		180	86	72	J, UJ	38
PWG-DW-2008- 34 (5.5-6')	2-butanone	50	ND <38		58	42	20	J, UJ	38
PWG-DW-2008- 34 (5.5-6')	n-butylbenzene	50	ND <3.8		7.5	70	4.1	J, UJ	38
PWG-DW-2008- 34 (5.5-6')	Isopropylbenzene	50	ND <3.8		3.9	141	18.2	J, UJ	38
PWG-DW-2008- 34 (5.5-6')	2- methylnaphthalene	50	ND<7600		8600	200	1000	J, UJ	2000
PWG-DW-2008- 34 (5.5-6')	Phenanthrene	50	2000		ND<2100	200	100	J, UJ	2000
DIFFW-01	Vinyl chloride	50	ND<1.0		1.6	200	0.6	J, UJ	1.0

Based on poor reproducibility in the organic field duplicate pairs, the following results were qualified as estimated (J, UJ):

- Results for 4,4'-DDT in PWG-SB-2008-01@5-10' and PWG-SB-2008-21@5-10'
- Results for cis-1,2-dichloroethene, trichloroethene, vinyl chloride, fluoranthene, pyrene in PWG-DW-2008-15(7-7.5') and PWG-DW-2008-100(7-7.5').
- Results for acetone, 2-butanone, n-butylbenzene, isopropylbenzene, and 2-methylnaphthalene in PWG-DW-2008-34 (5.5-6').
- The result for vinyl chloride in DIFFW-01.

Sample ID	Compoun d	Action Limit	Sample Conc.	С	Duplicate Conc.	RPD	Difference	Q	RL (mg/k g)
PWG.SB.2008.0 1@5-10'	Aluminum	35	4700		2900	47	1800	J	5.0
PWG.SB.2008.01 @5-10'	Arsenic	>±2XRL	2.2		1.2	59	1.0	J	0.5
PWG.SB.2008.01 @5-10'	Barium	35	40		20	67	20	J	0.5
PWG.SB.2008.01 @5-10'	Calcium	35	1000		500	67	500	J	5.0
PWG.SB.2008.01 @5-10'	Copper	35	9.4		5.6	51	3.8	J	0.50
PWG.SB.2008.01 @5-10'	Lead	35	87		30	97	57	J	2.5

Sample ID	Compoun d	Action Limit	Sample Conc.	С	Duplicate Conc.	RPD	Difference	Q	RL (mg/k g)
PWG.SB.2008.01 @5-10'	Vanadium	35	9.3		6.3	38	3.0	J	0.5
PWG.SB.2008.01 @5-10'	Zinc	35	58		24	83	34	J	2.5
PWG.SB.2008.01 @5-10'	Mercury	>±2XRL	0.10		0.25	86	-0.15	J	0.08
PWG-DW-2008- 34(5.5-6')	Silver	35	4.4		1.0	127	3.4	J, UJ	0.5

Based on poor reproducibility in the inorganic field duplicate pairs, the following results were qualified as estimated (J, UJ):

- Results for aluminum, arsenic, barium, calcium, copper, lead, vanadium, zinc, and mercury in PWG.SB.2008.01@5-10' and PWG.SB.2008.21@5-10'.
- The result for silver in PWG-DW-2008-34(5.5-6').

VIII. Performance Evaluation Samples (PES)/Accuracy Check

Zero blank PE samples commonly known as laboratory control samples or laboratory control sample duplicates (LCS/LCSD) were performed at the required frequency and results were provided on Form III-Like summaries for all analyses. Recoveries were within the laboratory-derived acceptance limits with exceptions as outlined in the table below:

It should be noted that the narrative for SDG No. L0813196 indicated that the RPD values in LCS/LCSD batch WG335356 were outside the QC limits for certain pesticides; however, the Form III summary indicates that the laboratory's limit was at 50% for these pesticides which would indicate that all pesticides RPDs were within the limits. Since all recoveries were within laboratory-derived limits and the sample was non-detect, no data was qualified on this basis.

Sample ID	Compound	LCS %R	LCSD %R	% RPD	QC Limits	Action
WG336983-2LCS	2,4-dinitrotoluene	107	106	1	28-89/50	NAC
WG339098-2LCS	2,4-dinitrotoluene	119	115	3	24-96/30	NAC
WG339098-2LCS	Pentachlorophenol	104	102	2	9-103/30	NAC

NA=Not Applicable, NAC=No Action

Although, the recoveries for the SVOA compounds are outside the acceptance limits listed above, the limits were just marginally above the QC criteria and these compounds were not detected in the associated samples; therefore, no data was qualified on this basis.

ICP serial dilutions were performed on the same samples as the MS/MSD pairs. Percent difference (%D) values were less than the maximum acceptance limit of 15% for all target analytes in which the original concentration (in the undiluted sample) was greater than 50 times the MDL.

IX. Target Compound Identification

Reported target compounds were correctly identified with supporting spectra present for all field samples in this data set.

X. Compound Quantitation and Reported Quantitation Limits

Target compound concentrations and quantitation limits were appropriately reported on the Form I. Several samples were analyzed at a dilution due to the presence of hydrocarbons. Reporting limits were adjusted accordingly by the laboratory. The laboratory appropriately applied "J" qualifiers to the sample Form I's when the concentration of an analyte was less than the sample-specific reporting limit (RL). The validator did not remove these qualifiers.

Sample-specific results for all analytes may be found on the laboratory-generated Form Is for each sample and the laboratory generated Form Is have been annotated with the data validation qualifiers as defined in this reported and provided in Attachment A.

XI. System Performance

The analytical systems appear to have been working well at the time of these analyses based on evaluation of the available raw data.

XII. Overall Evaluation of Data

Findings of the validation effort resulted in the following qualifications of sample results:

- Based on unacceptable %D values in the associated calibration standards, the following results were qualified as estimated (J, UJ):
 - Results for chloromethane, bromomethane, isopropylbenzene, 1,2,3-trichloropropane and naphthalene in PWG-VP-2008-04 (36-40') and PWG-VP-2008-02 (16-20').
 - Results for dichlorodifluoromethane, chloromethane, carbon disulfide, isopropyl benzene and p-diethylbenzene in PWG.GW.2008.04 and PWG.GW.2008.24.
 - Results for isophorone, 1,4-dichlorobenzene, 2,4-dinitrotoluene, 3-nitroaniline and 4-nitroaniline in PWG.SB.2008.01@5-10' and PWG.SB.2008.21@5-10'.
 - Results for dichlorodifluoromethane and 1,2,3-trichloropropane in PWG-DW-2008-15(7-7.5') and in PWG-DW-2008-100(7-7.5').

- Results for dichlorodifluoromethane, carbon disulfide, vinyl acetate, and 1,2,3-trichloropropane in PWG-DW-2008-34 (5.5-6').
- Results for dichlorodifluoromethane, chloromethane, bromomethane, and isopropyl benzene in DIFFW-01.
- Results for dichlorodifluoromethane, chloromethane, 2-butanone, acetone, and isopropylbenzene in DIFFW-04.
- Due to poor MS/MSD/DUP recoveries in SDG No. L0813344 for metals and mercury analyses, several compounds as outlined in the narrative exhibited recoveries outside the acceptance windows. The laboratory appropriately applied "N" and "*" qualifiers on the compounds that exceeded the criteria. As a result of the recovery failures, results flagged by the laboratory with an "N" or "*" were qualified as estimated (J, UJ) in samples PWG-DW-2008-15 (7-7.5') and PWG-DW-2008-100 (7-7.5'). The laboratory appropriately performed a post-digestion spike analyses and the post-digestion spike was acceptable.
- Due to poor MS/MSD/DUP recoveries in SDG No. L0813447 for metals and mercury analyses in SDG No. L0813447 for metals analyses, several compounds as outlined in the narrative exhibited recoveries outside the acceptance windows. The laboratory appropriately applied "N" qualifiers on the compounds that exceeded the criteria. As a result of the recovery failures, results flagged by the laboratory with an "N" were qualified as estimated (J, UJ) in sample PWG-DW-2008-34 (5.5-6').
- Based on poor reproducibility in the organic field duplicate pairs, the following results were qualified as estimated (J, UJ):
 - Results for 4,4'-DDT in PWG-SB-2008-01@5-10' and PWG-SB-2008-21@5-10'.
 - Results for cis-1,2-dichloroethene, trichloroethene, vinyl chloride, fluoranthene, pyrene in PWG-DW-2008-15(7-7.5') and PWG-DW-2008-100(7-7.5').
 - Results for acetone, 2-butanone, n-butylbenzene, isopropylbenzene, and 2-methylnaphthalene in PWG-DW-2008-34 (5.5-6').
 - The result for vinyl chloride in DIFFW-01.
- Based on poor reproducibility in the inorganic field duplicate pairs, the following results were qualified as estimated (J, UJ):
 - Results for aluminum, arsenic, barium, calcium, copper, lead, vanadium, zinc, and mercury in PWG.SB.2008.01@5-10' and in PWG.SB.2008.21@5-10'.
 - The result for silver in PWG-DW-2008-34(5.5-6').

Although acetone and methylene chloride were not detected above the reporting limit in any of the VOA method blanks, chromatographic peaks were observed in the raw data for these compounds in associated MBs. Therefore, the validator recommends caution in the use of these compounds in samples since they are common laboratory contaminants and the low concentrations observed in the soil samples may not be site related.

XIII. Documentation

The chain of custody records were present and accurately completed for all reported samples in this data set and the data package was complete with the following exceptions:

- The VOA instrument Identifications on the forms were incorrect for SDG No. L0813196.
 The Form 5s within the data package reference the wrong instrument identification for
 the initial calibration sequence on instrument "Curly". Although the raw data was correct
 the forms are incorrect. Revisions were requested and an amended data package was
 received on 12/11/08.
- For SDG No. L0813196, the QC Batch reference for the PCBs samples that were extracted on 9/8/08, L0813196-5 and -20 appear as WG336109. However, the extraction batch sheet references the batch as WG335107 (page 2242). As a result, a complete resubmittal was received on 12/11/08 to update the data package accordingly.
- In SDG No. L0813196, the Form 8 is incorrect for the PCB batch and the second column
 is missing or the other is missing samples and QC samples. The laboratory submitted a
 correction to the data package for these forms on 12/11/08.
- The Form I was missing for the metals analysis of FB100308 in SDG No. L0814755. The laboratory submitted the data Form I upon request on 12/11/08.
- The Cleaning Canister certification was missing for the data package in SDG No. L0813541. The cleaning canister certification data package was submitted on 12/11/08 and should be amended to the data package L0813541.
- In SDG No. L0813196, no client identification was available on the summary Form on page 2839, and in SDG No. L0813344, no client identification was available on the summary Form. At the discretion of the data user this data form should be resubmitted for future reference.
- Improper edits were made on the COC records: any change in an entry should be made so as not to obscure the original entry, by the person making the change striking a single line through the entry and dating and initialing (signing) the change.

This validation report shall be considered <u>part of the data package</u> for all future distributions of the volatiles, semivolatiles, TPH DRO, Pesticides/PCBs, and metals analysis data.

ATTACHMENT A

ANALYSIS DATA SUMMARY SHEETS (Form I)

SDG Nos. L0812845, L0812904, L0813196, L0813344, L0813447, L0813541, L0814755, and L0814991

Volatiles, Semivolatiles, Total Petroleum Hydrocarbons (TPH) Diesel Range Organics (DRO), Pesticides/Polychlorinated Biphenyls (PCBs) and Metals in Water and Soil Samples, and Volatiles in Air Samples

CLIENT SAMPLE NO.

PWG-VP-2008-04 (36-40')

Lab Name: Alpha Analytical Labs

SDG No.: L0812845

Matrix: (soil/water) WATER Lab Sample ID: L0812845-02

Sample wt/vol: 10 (g/mL) ml Lab File ID: 0904N05

Level: (low/med) LOW Date Received: 08/29/08

%Solids: N/A Date Analyzed: 09/04/08

Dilution Factor: 1

Soil Extract Volume: (uL) Soil Aliguot Volume: (uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L Q 75-09-2----Methylene chloride 5.0 U 75-34-3-----1,1-Dichloroethane 0.75 U 67-66-3-----Chloroform 0.75 U 56-23-5-----Carbon tetrachloride U 0.50 78-87-5-----1,2-Dichloropropane_ 124-48-1-----Dibromochloromethane 1.8 U 0.50 U 79-00-5----1,1,2-Trichloroethane_ 0.75 U 127-18-4-----Tetrachloroethene 0.50 U 108-90-7-----Chlorobenzene 0.50 U 75-69-4-----Trichlorofluoromethane U 2.5 107-06-2----1,2-Dichloroethane 0.50 U 71-55-6-----1,1,1-Trichloroethane 0.50 U 75-27-4-----Bromodichloromethane 0.50 U 10061-02-6----trans-1,3-Dichloropropene 10061-01-5----cis-1,3-Dichloropropene 563-58-6-----1,1-Dichloropropene 0.50 Ű 0.50 U U 2.5 75-25-2-----Bromoform 2.0 U 79-34-5----1,1,2,2-Tetrachloroethane U 0.50 71-43-2-----Benzene U 0.50 108-88-3-----Toluene 0.75 U 100-41-4-----Ethylbenzene 0.50 U 74-87-3-----Chloromethane บไ 2.5 74-83-9-----Bromomethane υŤ 1.0 75-01-4-----Vinyl chloride 1.0 U 75-00-3-----Chloroethane 1.0 U 75-35-4-----1,1-Dichloroethene 0.50 ۲ĭ 156-60-5-----trans-1,2-Dichloroethene U 0.75 79-01-6-----Trichloroethene 0.50 U 95-50-1----1,2-Dichlorobenzene 2.5 U 541-73-1----1,3-Dichlorobenzene 2.5 U 106-46-7-----1,4-Dichlorobenzene 2.5 U 1634-04-4-----Methyl tert butyl ether 1.0 U 106-42-3/108-38-p/m-Xylene IJ 1.0 95-47-6------O-Xylene 1.0 Ū 156-59-2----cis-1,2-Dichloroethene U 0.50

FORM I VOA-1

KPM 12/3/06

CLIENT SAMPLE NO.

PWG-VP-2008-04 (36-40')

Lab Name: Alpha Analytical Labs

SDG No.: L0812845

Matrix: (soil/water) WATER Lab Sample ID: L0812845-02

Sample wt/vol: 10 (g/mL) ml

(g/mL) ml Lab File ID: 0904N05

Level: (low/med) LOW Date Received: 08/29/08

%Solids: N/A Date Analyzed: 09/04/08

Dilution Factor: 1

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/kg) ug/L Q

74-95-3	Dibromomethane	5.0	U
	1,2,3-Trichloropropane	5.0	U I
107-13-1	Acrylonitrile	5.0	Ū
100-42-5	Styrene	1.0	υ
75-71-8	Dichlorodifluoromethane	5.0	Ū
67-64-1	Acetone	5.0	ט
	Carbon disulfide	5.0	U
	2-Butanone	5.0	U
108-05-4	Vinyl acetate	5.0	U
108-10-1	4-Methyl-2-pentanone	5.0	ט
591-78-6	2-Hexanone	5.0	U
74-97-5	Bromochloromethane	2.5	U
594-20-7	2,2-Dichloropropane	2.5	υ
106-93-4	1,2-Dibromoethane	2.0	U
142-28-9	1,3-Dichloropropane	2.5	U
630-20-6	1,1,1,2-Tetrachloroethane	0.50	U
108-86-1	Bromobenzene	2.5	ש
104-51-8	n-Butylbenzene	0.50	U
135-98-8	sec-Butylbenzene	0.50	U
98-06-6	tert-Butylbenzene	2.5	ט
95-49-8	o-Chlorotoluene	2.5	ט
106-43-4	p-Chlorotoluene	2.5	U
96-12-8	1,2-Dibromo-3-chloropropane	2.5	U
87-68-3	Hexachlorobutadiene	0.60	U
98-82-8	Isopropylbenzene	0.50	UJ
99-87-6	p-Isopropyltoluene	0.50	υ
91-20-3	Naphthalene	2.5	UJ
103-65-1	n-Propylbenzene	0.50	"U
87-61-6	1,2,3-Trichlorobenzene	2.5	U
120-82-1	1,2,4-Trichlorobenzene	2,5	U
108-67-8	1,3,5-Trimethylbenzene	2.5	ש
95-63-6	1,2,4-Trimethylbenzene	2.5	l ΰ
105-05-5	1,4-Diethylbenzene	2.0	Ū
622-96-9	4-Ethyltoluene	2.0	Ü
044-30-0			

FORM I VOA-1

12/3/08

CLIENT SAMPLE NO.

PWG-VP-2008-02 (16-20')

Lab Name: Alpha Analytical Labs

SDG No.: L0812904

Matrix: (soil/water) WATER

Lab Sample ID: L0812904-03

Sample wt/vol: 2

(g/mL) ml

Lab File ID: 0904N19

Level:

(low/med) LOW

Date Received: 08/30/08

%Solids: N/A

Date Analyzed: 09/05/08

Dilution Factor: 5

Soil Extract Volume:

(uL)

Soil Aliquot Volume:

(uL)

CAS NO.

COMPOUND

(ug/L or ug/Kg) ug/L

CONCENTRATION UNITS:

Q

75-09-2Methylene chloride		
75-34-3	25 3.8 3.8 2.5 8.8 2.5 8.2 3.8 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	משטשטשט מט מטטטטטטטטטטטטטטטטטטטטטטטטטטט

FORM I VOA-1

Hand 12/3/08

CLIENT SAMPLE NO.

PWG-VP-2008-02 (16-20')

Lab Name: Alpha Analytical Labs

SDG No.: L0812904

Matrix: (soil/water) WATER Lab Sample ID: L0812904-03

Sample wt/vol: 2 (g/mL) ml Lab File ID: 0904N19

Level: (low/med) LOW Date Received: 08/30/08

%Solids: N/A Date Analyzed: 09/05/08

Dilution Factor: 5

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L Q

74-95-3	Dibromomethane	25	ט
96-18-4	1,2,3-Trichloropropane	25	ŭ j
107-13-1	Acrylonitrile	25	U U
100-42-5	Styrene	5.0	Ū
75-71-8	Dichlorodifluoromethane	25	lΰ
67-64-1	Acetone	28	"
75-15-0	Carbon disulfide	25	13
78-93-3	2-Butanone	25	l Ū
108-05-4	Vinyl acetate	25	Ιŭ
108-10-1	4-Methyl-2-pentanone	25	υ
591-78-6	2-Hexanone	25	lΰ
74-97-5	Bromochloromethane	12	Ŭ
594-20-7	2,2-Dichloropropane	12	Ιŭ
106-93-4	1,2-Dibromoethane	10	Ιŭ
142-28-9	1,3-Dichloropropane	12	Ιŭ
630-20-6	1,1,1,2-Tetrachloroethane	2.5	Ιŭ
108-86-1	Bromobenzene	12	Ŭ
104-51-8	·n-Butylbenzene	2.5	Ιŭ
135-98-8	sec-Butylbenzene	2.5	ΙŬ
98-06-6	tert-Butylbenzene	12	ΙŪ
95-49-8	o-Chlorotoluene	$\overline{12}$	ΙŪ
106-43-4	p-Chlorotoluene	12	ΙŪ
96-12-8	1,2-Dibromo-3-chloropropane	12	Ū
87-68-3	Hexachlorobutadiene	3.0	l tī
98-82-8	Isopropylbenzene	2.5	ת ש
99-87-6	p-Isopropyltoluene	2.5	U
91-20-3	Naphthalene	12	ŬIJ
1.03-65-1	n-Propylbenzene	2.5	וֹז
37-61-6	1,2,3-Trichlorobenzene	12	Ü
120-82-1	1,2,4-Trichlorobenzene	12	II
108-67-8	1,3,5-Trimethylbenzene	12	l ii
95-63-6	1,2,4-Trimethylbenzene	12	Ü
1.05-05-5	1,4-Diethvlbenzene	10	ΙÜ
522-96-8	4-Ethvltoluene	10	lΰ
95-93-2	1,2,4,5-Tetramethylbenzene	10	Ü

FORM I VOA-1

12/3/06

CLIENT SAMPLE NO.

PWG.GW,2008.04

0

Lab Name: Alpha Analytical Labs

SDG No.: L0813196

Matrix: (soil/water) WATER Lab Sample ID: L0813196-11

Sample wt/vol: 10 (q/mL) ml Lab File ID: 0909N09

COMPOUND

Level: (low/med) LOW Date Received: 09/05/08

%Solids: N/A Date Analyzed: 09/09/08

Dilution Factor: 1

CAS NO.

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

(ug/L or ug/Kg) ug/L

75-09-2-----Methylene chloride 5.0 75-34-3-----1,1-Dichloroethane 0.75 U 67-66-3-----Chloroform 0.75 U 56-23-5-----Carbon tetrachloride U 0.50 78-87-5-----1,2-Dichloropropane_ 1.8 U 124-48-1-----Dibromochloromethane 0.50 U 79-00-5-----1,1,2-Trichloroethane_ 0.75 IJ 127-18-4-----Tetrachloroethene 0.50 U 108-90-7-----Chlorobenzene U 0.50 75-69-4-----Trichlorofluoromethane Ū 2.5 107-06-2-----1, 2-Dichloroethane 0.50 U 71-55-6----1, 1, 1-Trichloroethane 0.50 U 75-27-4-----Bromodichloromethane 0.50 U 10061-02-6----trans-1,3-Dichloropropene 10061-01-5----cis-1,3-Dichloropropene 563-58-6-----1,1-Dichloropropene 0.50 IJ 0.50 U U 2.5 75-25-2-----Bromoform 2.0 U 79-34-5-----1,1,2,2-Tetrachloroethane U 0.50 71-43-2-----Benzene 0.50 U 108-88-3-----Toluene 0.75 Ü 100-41-4-----Ethylbenzene 0.50 TT 74-87-3-----Chloromethane UI 2.5 74-83-9-----Bromomethane U 1.0 75-01-4------Vinyl chloride 1.0 U 75-00-3-----Chloroethane 1.0 IJ 75-35-4----1,1-Dichloroethene U 0.50 156-60-5-----trans-1,2-Dichloroethene 0.75 U 79-01-6-----Trichloroethene 0.50 U 95-50-1-----1,2-Dichlorobenzene U 2.5 541-73-1-----1,3-Dichlorobenzene 2.5 U 106-46-7----1,4-Dichlorobenzene 2.5 U 1634-04-4----Methyl tert butyl ether 1.0 U 106-42-3/108-38-p/m-Xylene U 1.0 95-47-6----o-Xylene 1.0 U

FORM I VOA-1

156-59-2-----cis-1,2-Dichloroethene_

FFm 12/4/08

U

0.50

CLIENT SAMPLE NO.

PWG.GW.2008.04

Lab Name: Alpha Analytical Labs

SDG No.: L0813196

Matrix: (soil/water) WATER

Lab Sample ID: L0813196-11

Sample wt/vol: 10

(g/mL) ml

Lab File ID: 0909N09

Level:

(low/med)

Date Received: 09/05/08

%Solids: N/A

Date Analyzed: 09/09/08

Dilution Factor: 1

Soil Extract Volume:

(uL)

Soil Aliquot Volume:

(uL)

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

(-g/,	.5/5/5/	*
74-95-3	00000000055055555555555555555555555555	

FORM I VOA-1

CLIENT SAMPLE NO.

PWG.GW.2008.24

Lab Name: Alpha Analytical Labs

SDG No.: L0813196

Matrix: (soil/water) WATER Lab Sample ID: L0813196~12

Sample wt/vol: 10 (g/mL) ml Lab File ID: 0909N10

Level: (low/med) LOW Date Received: 09/05/08

%Solids: N/A Date Analyzed: 09/09/08

Dilution Factor: 1

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

75-09-2Methylene chloride 5.0 75-34-31,1-Dichloroethane 0.75 67-66-3Chloroform 0.75 56-23-5Carbon tetrachloride 0.50 78-87-51,2-Dichloropropane 1.8 124-48-1Dibromochloromethane 0.50 79-00-51,1,2-Trichloroethane 0.75	, Ö
127-18-4Tetrachloroethene 0.50 108-90-7	מממסטממסטממטמסטטמטטמטטטטטטטטטטטטטטטטטט

FORM I VOA-1

Kon 15/4/0,8

PWG.GW.2008.24

Lab Name: Alpha Analytical Labs

SDG No.: L0813196

Matrix: (soil/water) WATER Lab Sample ID: L0813196-12

Sample wt/vol: 10 (g/mL) ml Lab File ID: 0909N10

Level: (low/med) LOW Date Received: 09/05/08

%Solids: N/A Date Analyzed: 09/09/08

Dilution Factor: 1

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/kg) ug/L Q

74-95-3

FORM I VOA-1

ton 13/4/0.8

CLIENT SAMPLE NO.

PWG.SB.2008.01@ 5-10'

Lab Name: Alpha Analytical Labs

SDG No.: L0813196

Matrix: (soil/water) SOIL

Lab Sample ID: L0813196-20

Sample wt/vol: 2

(g/mL) g

Lab File ID: 0906A12

Level: (low/med)

v/med) LOW

Date Received: 09/05/08

%Solids: 81

Date Analyzed: 09/06/08

Dilution Factor: 1

Soil Extract Volume:

(uL)

Soil Aliquot Volume:

(uL)

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/kg) ug/kg

	(49)	~ J / * · J / · · J	×
75-09-2	Methylene chloride	31	U
75-34-3	1,1-Dichloroethane	4.6	U
67-66-3	Chloroform	4.6	U
56-23-5	Carbon tetrachloride	3.1	ט
78-87-5	1,2-Dichloropropane	⁻ 11	U
124-48-1	Dibromochloromethane	3.1	ט
79-00-5	1,1,2-Trichloroethane	4.6	ט
127-18-4	Tetrachloroethene	~ 3,1	lυ
108-90-7	Chlorobenzene	⁻ 3,1	lυ
75-69-4	Trichlorofluoromethane	⁻ 15	ט
107-06-2	1.2-Dichloroethane	1 3.1	U
71-55-6	1,1,1-Trichloroethane	3.1	lυ
75-27-4	Bromodichloromethane	1 3.1	Ü
10061-02-6	trans-1.3-Dichloropropene	_ 3.1	Ū
10061-01-5	cis-1,3-Dichloropropene	3.1	ΙŪ
563-58-6	1,1-Dichloropropene	~ 15	שו
75-25-2	Bromoform	12	lυ
	1,1,2,2-Tetrachloroethane	- 3.1	lυ
71-43-2		3.1	Ū
108-88-3	Toluene	4.6	ΙŪ
	Ethylbenzene	3.1	υ
	Chloromethane	15	Ū
74-83-9	Bromomethane	6.2	U
75-01-4	Vinyl chloride	6.2	Ū
75-00-3	Chloroethane	6.2	Ū
	1,1-Dichloroethene	3.1	ΙŪ
	trans-1,2-Dichloroethene	4.6	υ
79-01-6	Trichloroethene	3.1	ľΰ
	1,2-Dichlorobenzene	15	υ
541-73-1	1,3-Dichlorobenzene	15	Ū
106-46-7	1,4-Dichlorobenzene	15	Ü
1634-04-4	Methyl tert butyl ether	6.2	Ū
106-42-3/108	-38-p/m-Xylene	6.2	Ū
95-47-6	ō-Xvlėne	6.2	Ū
156-59-2	cis-1,2-Dichloroethene	3.1	Ü
		-	1
		I	

FORM I VOA-1

(g/mL)g

CLIENT SAMPLE NO.

PWG.SB.2008.01@

Lab Name: Alpha Analytical Labs

SDG No.: L0813196

Matrix: (soil/water) SOIL

Lab Sample ID: L0813196-20

Sample wt/vol: 2

Lab File ID: 0906A12

Level: (low/med)

LOW

Date Received: 09/05/08

%Solids: 81

Date Analyzed: 09/06/08

Dilution Factor: 1

Soil Extract Volume:

(uL)

Soil Aliquot Volume:

(uL)

CAS NO.

COMPOUND

(ug/L or ug/Kg) ug/Kg

CONCENTRATION UNITS:

Q

74-95-3	Dibromomethane	31	υ
100-42-5	Styrene	6.2	ΙŪ
75-71-8	Dichlorodifluoromethane	31	Ιŭ
67-64-1	Acetone	31	Ü
75-15-0	Carbon disulfide	31	Ŭ
78-93-3	2-Butanone	31	lΰ
108-05-4	Vinyl acetate	31	ט
108-10-1	4-Methyl-2-pentanone	31	Ιŭ
96-18-4	1,2,3-Trichloropropane	31	lΰ
		31	lΰ
74-97-5	2-Hexanone Bromochloromethane	15	lΰ
594-20-7	2,2-Dichloropropane	15	ΰ
306 03 4	1,2-Dibromoethane	12	ט
	1,3-Dichloropropane		ΰ
		15	
100 00 1	1,1,1,2-Tetrachloroethane	3.1	ט
T08-80-T	Bromobenzene	15	Ü
	n-Butylbenzene	3.1	Ü
135-98-8	sec-Butylbenzene	3.1	U
98-06-6	tert-Butylbenzene	15	U
95-49-8	o-Chlorotoluene	15	U
106-43-4	p-Chlorotoluene	15	U
96-12-8	1,2-Dibromo-3-chloropropane	15	U
87-68-3	Hexachlorobutadiene	15	ΰ
98-82-8	Isopropylbenzene	3.1	U
99-87-6	p-Isopropyltoluene	3.1	U
91-20-3	Naphthalene	15	Ŭ
107-13-1	Acrylonitrile	31	υ
103-65-1	n-Propylbenzene	3.1	U
87-61-6	1,2,3-Trichlorobenzene	15	U
120-82-1	1,2,4-Trichlorobenzene	1.5	U
108-67-8	1,3,5-Trimethylbenzene	1.5	U
95-63-6	1,2,4-Trimethylbenzene	15	Ū
105-05-5	1,4-Diethylbenzene	12	ט
622.06.0	4-Ethyltoluene	12	Ū
044-30-0			

FORM I VOA-1

CLIENT SAMPLE NO.

PWG.SB.2008.21@

Lab Name: Alpha Analytical Labs

SDG No.: L0813196

Matrix: (soil/water) SOIL Lab Sample ID: L0813196-21

Sample wt/vol: 2 (g/mL) g Lab File ID: 0908A07

Level: (low/med) LOW Date Received: 09/05/08

%Solids: 96 Date Analyzed: 09/08/08

Dilution Factor: 1

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CAS NO. COMPOUND CONCENTRATION UNITS:
(ug/L or ug/Kg) ug/Kg Q

CAS NO.	COMPOUND	(ug/L OL	ug/ kg/	ug/ Ng	Q
75-09-2 75-34-3 67-66-3 78-87-5 124-48-1 108-90-7 107-06-2 75-69-4 107-06-2 75-27-4 10061-01-5 563-58-6 75-25-2 71-43-2 108-88-3 100-41-4 74-87-3 75-01-4 75-35-4 75-35-4 75-35-4 156-60-5 79-01-6 95-50-1 541-73-1	Methylene chloro	cride chane cloride copane cethane coethane coethane chane coethane	26 3. 3. 2. 9. 2. 3. 2. 13 2. 2.	99616966 66666 6696 22269	מממממממממממממממממממממממממממממממממממממממ
95-50-1 541-73-1 106-46-7 1634-04-4 106-42-3/108 95-47-6	1,2-Dichlorobe 1,3-Dichlorobe 1,4-Dichlorobe Methyl tert bu -38-p/m-Xylene	nzene nzene nzene tyl ether	13 13 13 5.	2 2 2	ប ប

FORM I VOA-1

CLIENT SAMPLE NO.

PWG.SB.2008.21@ 5-10'

Lab Name: Alpha Analytical Labs

SDG No.: L0813196

Matrix: (soil/water) SOIL

Lab Sample ID: L0813196-21

Sample wt/vol: 2 (g/mL) g

Lab File ID: 0908A07

Level: (low/med) LOW

Date Received: 09/05/08

%Solids: 96

Date Analyzed: 09/08/08

Dilution Factor: 1

Soil Extract Volume:

(uL)

Soil Aliquot Volume:

(uL)

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

		··
74-95-3Dibromomethane	26	U
100-42-5Styrene	5.2	ΙŪ
75-71-8Dichlorodifluoromethane	26	۱ū
67-64-1Acetone	26	Ū
75-15-0Carbon disulfide	26	ان
78-93-32-Butanone	26	U
108-05-4Vinyl acetate	26	U
108-10-14-Methyl-2-pentanone	26	U
96-18-41,2,3-Trichloropropane	26	U
591-78-62-Hexanone	26	ט
74-97-5Bromochloromethane	13	Ū
594-20-72,2-Dichloropropane	13	lū
106-93-41,2-Dibromoethane	10	۱ū
142-28-91,3-Dichloropropane	13	ט ו
630-20-61,1,1,2-Tetrachloroethane	2.6	ا ت
108-86-1Bromobenzene	13	שׁ
104-51-8n-Butylbenzene	2.6	ΙŪ
135-98-8sec-Butylbenzene	2.6	Ιũ
98-06-6tert-Butylbenzene	13	١Ū
95-49-8o-Chlorotoluene	13	ט ו
106-43-4p-Chlorotoluene	13	ΙŪ
96-12-81, 2-Dibromo-3-chloropropane	13	ן ת
87-68-3Hexachlorobutadiene	13	ΙŪ
98-82-8Isopropylbenzene	2.6	ן ט
99-87-6p-Isopropyltoluene	2.6	ΙŪ
91-20-3Naphthalene	13	ΙŪ
107-13-1Acrylonitrile	26	lσ
103-65-1n-Propylbenzene	2.6	ت ا
87-61-61,2,3-Trichlorobenzene	13	lυ
120-82-11,2,4-Trichlorobenzene	13	lΰ
108-67-81,3,5-Trimethylbenzene	13	ט
95-63-61,2,4-Trimethylbenzene	13	Ū
105-05-51,4-Diethylbenzene	10	υ
622-96-84-Ethyltoluene	10	Ü
95-93-21, 2, 4, 5-Tetramethylbenzene	10	Ü
	, i	
	,	_ ,

FORM I VOA-1

COMPOUND

CLIENT SAMPLE NO.

PWG.SB.2008.12@ 5-10'

Lab Name: Alpha Analytical Labs

SDG No.: L0813196

Matrix: (soil/water) SOIL

Lab Sample ID: L0813196-36

Sample wt/vol: 2 (g/mL) g

Lab File ID: 0908A14

Level: (low/med) LOW

Date Received: 09/05/08

%Solids: 88

Date Analyzed: 09/08/08

Dilution Factor: 1

CAS NO.

Soil Extract Volume:

(uL) Soil Aliquot Volume:

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg Q

(uL)

75-09-2Methylene chloride 28 75-34-31,1-Dichloroethane 4.3 67-66-3Chloroform 4.3 56-23-5Carbon tetrachloride 2.8	J J
75-34-31,1-Dichloroethane 4.3 U 67-66-3Chloroform 4.3 U 56-23-5Carbon tetrachloride 2.8 U	J J
67-66-3Chloroform 4.3 U 56-23-5Carbon tetrachloride 2.8 U	J J J
56-23-5Carbon tetrachloride 2.8 U	J J
	J
78-87-51,2-Dichloropropane 9.9 U	
124-48-1Dibromochloromethane 2.8	
79-00-51,1,2-Trichloroethane 4.3	_
127-18-4Tetrachloroethene 2.8 U	_
108-90-7	-
75-69-4Trichlorofluoromethane	_
107-06-21,2-Dichloroethane 2.8 U	
71-55-61,1,1-Trichloroethane 2.8 U	
75-27-4Bromodichloromethane 2.8 U	
10061-02-6trans-1,3-Dichloropropene 2.8 U	-
10061-02-6trans-1,3-Dichloropropene 2.8 U	_
10061-01-5cis-1,3-Dichloropropene 2.8 U 563-58-61,1-Dichloropropene 14 U	_
75-25-2Bromoform	_
79-34-51,1,2,2-Tetrachloroethane 2.8 U	
71-43-2Benzene 2.8 U	
108-88-3Toluene	_
	_
75-01-4	
75-00-3Chloroethane 5.7 U	
75-35-41,1-Dichloroethene 2.8 U	
156-60-5trans-1,2-Dichloroethene	
79-01-6Trichloroethene 2.8 U	
95-50-11,2-Dichlorobenzene 14 U	-
541-73-11,3-Dichlorobenzene 14 U	
106-46-71,4-Dichlorobenzene 14 U	
1634-04-4Methyl tert butyl ether 5.7 U	
106-42-3/108-38-p/m-Xylene 5.7 U	-
95-47-6	_
156-59-2cis-1,2-Dichloroethene 2.8 U	J

FORM I VOA-1

CLIENT SAMPLE NO.

PWG.SB.2008.12@ 5-10'

Lab Name: Alpha Analytical Labs

SDG No.: L0813196

Matrix: (soil/water) SOIL Lab Sample ID: L0813196-36

Sample wt/vol: 2 (g/mL) g Lab File ID: 0908A14

Level: (low/med) LOW Date Received: 09/05/08

%Solids: 88 Date Analyzed: 09/08/08

Dilution Factor: 1

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CAS NO. COMPOUND CONCENTRATION UNITS:

(ug/L or ug/Kg) ug/Kg Q

74-95-3	Dibromomethane	28	ט
100-42-5	Styrene	5.7	U
	Dichlorodifluoromethane	28	ប
57-64-1		28	U
75-15-0	Carbon disulfide	28	ប
	2-Butanone	28	U
L08-05-4	Vinyl acetate	28	บ
108-10-1	4-Methyl-2-pentanone	28	ប
96-18-4	1,2,3-Trichloropropane	28	ן ט
591-78-6	2-Hexanone	28	ט
74-97-5	Bromochloromethane	14	ט
594-20-7	2,2-Dichloropropane	14	ט
106-93-4	1,2-Dibromoethane	11	ט ו
142-28-9	1,3-Dichloropropane	14	ט
530-20-6	1,1,1,2-Tetrachloroethane	2.8	ט ו
108-86-1	Bromobenzene	14	ט
104-51-8	n-Butylbenzene	2.8	ט
	sec-Butylbenzene	2.8	ט ו
98-06-6	tert-Butylbenzene	14	ΙŪ
95-49-8	o-Chlorotoluene	14	ש
	p-Chlorotoluene	14	Ū
	1,2-Dibromo-3-chloropropane	14	ט ו
37-68-3	Hexachlorobutadiene	14	١Ū
98-82-8	Isopropylbenzene	2.8	υ
99-87-6	p-Isopropyltoluene	2.8	11
91-20-3	Naphthalene	14	l ū
07-13-1	Acrylonitrile	28	ΙŪ
03-65-1	n-Propylbenzene	2.8	11
37-61-6	1,2,3-Trichlorobenzene	1.4	Ü
20-82-1	1,2,4-Trichlorobenzene	14	Ü
108-67-8	1,3,5-Trimethylbenzene	14	U
35-63-6	1,2,4-Trimethylbenzene	14	Ιŭ
105-05-5	1,4-Diethylbenzene	1 11	Ιŭ
	4-Ethyltoluene	1 11	lΰ
75-93-2	1,2,4,5-Tetramethylbenzene	1 11	UÜ

FORM I VOA-1

CLIENT SAMPLE NO.

PWG.SB.2008.22@ 5-10'

Lab Name: Alpha Analytical Labs

SDG No.: L0813196

Matrix: (soil/water) SOIL Lab Sample ID: L0813196-37

Sample wt/vol: 2 (g/mL) g Lab File ID: 0908A15

Level: (low/med) LOW Date Received: 09/05/08

%Solids: 93 Date Analyzed: 09/08/08

Dilution Factor: 1

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/Kg Q 75-09-2-----Methylene chloride 27 75-34-3-----1,1-Dichloroethane 4.0 П 67-66-3-----Chloroform 4.0 U 56-23-5-----Carbon tetrachloride 2.7 U 78-87-5-----1,2-Dichloropropane 9.4 U 124-48-1------Dibromochloromethan 2.7 U 79-00-5-----1,1,2-Trichloroethane 4.0 U 127-18-4-----Tetrachloroethene U 2.7 108-90-7-----Chlorobenzene 2.7 U 75-69-4-----Trichlorofluoromethane U 13 107-06-2----1, 2-Dichloroethane 2.7 U 71-55-6----1,1,1-Trichloroethane 2.7 U 75-27-4-----Bromodichloromethane 2.7 U U 10061-02-6----trans-1,3-Dichloropropene 2,7 10061-01-5----cis-1,3-Dichloropropene_ 2.7 U 563-58-6-----1,1-Dichloropropene U 13 75-25-2----Bromoform 11 U 2.7 79-34-5-----1,1,2,2-Tetrachloroethane U 71-43-2-----Benzene 2.7 U 108-88-3-----Toluene 4.0 U 100-41-4-----Ethylbenzene 2.7 U 74-87-3-----Chloromethane U 13 74-83-9-----Bromomethane U 5.4 75-01-4-----Vinyl chloride 5.4 U 75-00-3-----Chloroethane 5.4 Ū 75-35-4----1,1-Dichloroethene U 2.7 156-60-5-----trans-1,2-Dichloroethene U 4.0 79-01-6-----Trichloroethene U 2.7 95-50-1-----1,2-Dichlorobenzene U 1.3 541-73-1----1,3-Dichlorobenzene 13 U 106-46-7-----1,4-Dichlorobenzene Ų 13 1634-04-4-----Methyl tert butyl ether 5.4 U 106-42-3/108-38-p/m-Xylene 5.4 IJ 95-47-6-------O-Xylene 5.4 U 156-59-2-----cis-1,2-Dichloroethene U 2.7

FORM I VOA-1

CLIENT SAMPLE NO.

PWG.SB.2008.22@

Lab Name: Alpha Analytical Labs

SDG No.: L0813196

Matrix: (soil/water) SOIL

Lab Sample ID: L0813196-37

Sample wt/vol: 2 (g/mL) g

Lab File ID: 0908A15

Level: (low/med)

Date Received: 09/05/08

%Solids: 93

Date Analyzed: 09/08/08

Dilution Factor: 1

Soil Extract Volume:

(uL)

Soil Aliquot Volume:

(uL)

CAS NO. COMPOUND

LOW

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

ı

74-95-3	Dibromomethane	27	บ
100-42-5	Styrene	5.4	ן ט
75-71-8	Dichlorodifluoromethane	27	U
	Acetone	27	ן ט
75-15-0	Carbon disulfide	27	ן ט
	·2-Butanone	27	ן ט
108-05-4	Vinyl acetate	27	יט (
108-10-1	4-Methyl-2-pentanone	27	υ
96-18-4	1,2,3-Trichloropropane	27	្រ ប
591-78-6	2-Hexanone	27	ប
74-97-5	Bromochloromethane	13	ט
594-20-7	2,2-Dichloropropane	13	ט ו
106-93-4	1,2-Dibromoethane	11	ט ו
	1,3-Dichloropropane	13	ט ו
630-20-6	1,1,1,2-Tetrachloroethane	2.7	lΰ
108-86-1	Bromobenzene	13	ΙÜ
104-51-8	n-Butylbenzene	2.7	Ū
135-98-8	sec-Butylbenzene	2.7	יט
98-06-6	tert-Butylbenzene	13	Ū
95-49-8	o-Chlorotoluene	13	ט
	p-Chlorotoluene	13	١ũ
96-12-8	1,2-Dibromo-3-chloropropane	13	ΙÜ
87-68-3	Hexachlorobutadiene	13	Ιŭ
	Isopropylbenzene	2.7	ΙŪ
	p-Isopropyltoluene	2.7	١Ū
91-20-3	Naphthalene	13	اَتَ
107-13-1	Acrylonitrile	27	Ū
103-65-1	n-Propylbenzene	2.7	Ü
37-61-6	1,2,3-Trichlorobenzene	13	١ŭ
120-82-1	1.2.4-Trichlorobenzene	13	ΰ
108-67-8	1,2,4-Trichlorobenzene	13	Ŭ
95-63-6	1,2,4-Trimethylbenzene	13	Ιŭ
105-05-5	1,4-Diethylbenzene	11	lΰ
	4-Ethyltoluene	11	lυ
95-93-2	1,2,4,5-Tetramethylbenzene	11	lΰ

FORM I VOA-1

CLIENT SAMPLE NO.

PWG.SB.2008.01@

Lab Name: Alpha Analytical Labs

SDG No.: L0813196

Matrix: (soil/water) SOIL Lab Sample ID: L0813196-20

Sample wt/vol: 15 (g/mL) g Lab File ID: 13196-20

Level: (low/med) LOW Date Received: 09/05/08

% Solids: 81 Date Extracted:06-SEP-08

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 09/10/08

Injection Volume: 1 (uL) Dilution Factor: 1

GPC Cleanup: (Y/N) N

CONCENTRATION UNITS:
CAS NO. COMPOUND (ug/L or ug/Kg) ug/Kg

	•	
83-32-9Acenaphthene	410	ט
120-82-11,2,4-Trichlorobenzene	410	lΰ
118-74-1Hexachlorobenzene	410	Ŭ
111-44-4Bis(2-chloroethyl)ether	410	Ιŭ
91-58-72-Chloronaphthalene	490	Ŭ
95-50-11,2-Dichlorobenzene	410	lΰ
541-73-11,3-Dichlorobenzene	410	Ü
106-46-71,4-Dichlorobenzene	410	บัว
91-94-13,3'-Dichlorobenzidine	820	U J
121-14-22,4-Dinitrotoluene	410	ŭJ
606-20-22,6-Dinitrotoluene	410	บัง
206-44-0Fluoranthene	410	ן ט
7005-72-34-Chlorophenyl phenyl ether	410	lΰ
101-55-34-Bromophenyl phenyl ether	410	υ
108-60-1Bis(2-chloroisopropyl)ether	410	υ
111-91-1Bis (2-chloroethoxy) methane	410	υ
87-68-3Hexachlorobutadiene	820	υ
77 47 4 Warrachlonguadiene	820	ן ט
77-47-4Hexachlorocyclopentadiene	~ - *	ט ט
67-72-1Hexachloroethane	410	
78-59-1Isophorone	410	U.J
91-20-3Naphthalene	410	Ü
98-95-3Nitrobenzene	410	Ü
86-30-6NitrosoDiPhenylAmine(NDPA)/DP	1200	U
621-64-7n-Nitrosodi-n-propylamine	410	U
117-81-7Bis(2-Ethylhexyl)phthalate	820	U
85-68-7Butyl benzyl phthalate	410	ן ט
84-74-2Di-n-butylphthalate	410	U
117-84-0Di-n-octylphthalate	410	U
84-66-2Diethyl phthalate	410	U
131-11-3Dimethyl phthalate	410	U
56-55-3Benzo(a)anthracene	410	U
50-32-8Benzo(a)pyrene	410	U
205-99-2Benzo(b) fluoranthene	410	ט
207-08-9Benzo(k) fluoranthene	410	U
·		

FORM I SV-1

CLIENT SAMPLE NO.

PWG.SB.2008.01@ 5-10'

Lab Name: Alpha Analytical Labs

SDG No.: L0813196

Matrix: (soil/water) SOIL Lab Sample ID: L0813196-20

Sample wt/vol: 15 (g/mL) g Lab File ID: 13196-20

Level: (low/med) LOW Date Received: 09/05/08

% Solids: 81 Date Extracted:06-SEP-08

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 09/10/08

Injection Volume: 1 (uL) Dilution Factor: 1

GPC Cleanup: (Y/N) N

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

218-01-9Chrysene	410	ן ט
208-96-8Acenaphthylene	410	Ū
120-12-7Anthracene	410	U
191-24-2Benzo(ghi)perylene	410	ן ט
86-73-7Fluorene	410	ַ עֿ
85-01-8Phenanthrene	410	ט
53-70-3Dibenzo(a,h)anthracene	410	יט 📗
193-39-5Indeno(1,2,3-cd)Pyrene	410	ן ט
129-00-0Pyrene	410	Ü
92-52-4Biphenyl	410	U
106-47-84-Chloroaniline	410	ט
88-74-42-Nitroaniline	410	U
99-09-23-Nitroaniline	410	UJ
100-01-64-Nitroaniline	580	บร
132-64-9Dibenzofuran	410	ן ט
91-57-62-Methylnaphthalene	410	ן ט
95-94-31,2,4,5-Tetrachlorobenzene	1600	ا تا
98-86-2Acetophenone	1600	ו טו
88-06-22,4,6-Trichlorophenol	410	Ü
59-50-7P-Chloro-M-Cresol	410	ט
95-57-82-Chlorophenol	490	Üΰ
120-83-22,4-Dichlorophenol	820	ן ט
105-67-92,4-Dimethylphenol	410	ט
88-75-52-Nitrophenol	1600	ט
100-02-74-Nitrophenol	820	ש
51-28-52,4-Dinitrophenol	1600	υ
534-52-14,6-Dinitro-o-cresol	1600	Ū
87-86-5Pentachlorophenol	1600	ΙŪ
108-95-2Phenol	580	ÜΪ
95-48-72-Methylphenol	490	ו טֿ
108-39-43-Methylphenol/4-Methylphenol	490	ו טֿ
95-95-42,4,5-Trichlorophenol	410	Ū
65-85-0Benzoic Acid	4100	ן טו
100-51-6Benzyl Alcohol	820	ا تَ ا
4		_

FORM I SV-2

CLIENT SAMPLE NO.

PWG.SB.2008.01@ 5-10'

Lab Name: Alpha Analytical Labs

SDG No.: L0813196

Matrix: (soil/water) SOIL Lab Sample ID: L0813196-20

Sample wt/vol: 15 (g/mL) g Lab File ID: 13196-20

Level: (low/med) LOW Date Received: 09/05/08

% Solids: 81 Date Extracted:06-SEP-08

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 09/10/08

Injection Volume: 1 (uL) Dilution Factor: 1

GPC Cleanup: (Y/N) N

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

86-74-8-----Carbazole________410 U

FORM I SV-1

CLIENT SAMPLE NO.

PWG.SB.2008.21@ 5-10'

Lab Name: Alpha Analytical Labs

SDG No.: L0813196

Matrix: (soil/water) SOIL Lab Sample ID: L0813196-21

Sample wt/vol: 15 (g/mL) g Lab File ID: 13196-21

Level: (low/med) LOW Date Received: 09/05/08

% Solids: 96 Date Extracted:06-SEP-08

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 09/10/08

Injection Volume: 1 (uL) Dilution Factor: 1

GPC Cleanup: (Y/N) N

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

		1
83-32-9Acenaphthene	350	υ
120-82-11,2,4-Trichlorobenzene	350	l ŭ
118-74-1Hexachlorobenzene	350	l ü
111-44-4Bis(2-chloroethyl)ether	350	l tr
91-58-72-Chloronaphthalene	420	l ŭ
95-50-11,2-Dichlorobenzene	350	ľű
541-73-11,3-Dichlorobenzene	350	Ŭ
106-46-71,4-Dichlorobenzene	350	U.T
91-94-13,3'-Dichlorobenzidine	690	l Ŭ '
121-14-22,4-Dinitrotoluene	350	Ŭ 1
606-20-22,6-Dinitrotoluene	350	Ü
206-44-0Fluoranthene	350	Ŭ
7005-72-34-Chlorophenyl phenyl ether	350	Ü
101-55-34-Bromophenyl phenyl ether	350	۱ŭ
108-60-1Bis(2-chloroisopropyl)ether	350	ΙŭΙ
111-91-1Bis (2-chloroethoxy) methane	350	Ιΰ
87-68-3Hexachlorobutadiene	690	Ιŭ
77-47-4Hexachlorocyclopentadiene	690	Ü
67-72-1Hexachloroethane	350	ΙŪ
78-59-1Isophorone	350	ŪĴ
91-20-3Naphthalene	350	ľΰ~
98-95-3Nitrobenzene	350	Ιŭ
86-30-6NitrosoDiPhenylAmine(NDPA)/DF		ΙŪ
621-64-7n-Nitrosodi-n-propylamine	350	Ü
117-81-7Bis(2-Ethylhexyl)phthalate	690	Ιŭ
85-68-7Butyl benzyl phthalate	350	Ū.
84-74-2Di-n-butylphthalate	350	Ū
117-84-0Di-n-octylphthalate	350	Ū
84-66-2Diethyl phthalate	350	Ü
131-11-3Dimethyl phthalate	350	Ū
56-55-3Benzo(a) anthracene	350	Ū
50-32-8Benzo(a) pyrene	350	υ
205-99-2Benzo(b) fluoranthene	350	Ü
207-08-9Benzo(k) fluoranthene	350	ΰ
• • • • • • • • • • • • • • • • • • • •		

FORM I SV-1

CLIENT SAMPLE NO.

PWG.SB.2008.21@

Lab Name: Alpha Analytical Labs

SDG No.: L0813196

Matrix: (soil/water) SOIL Lab Sample ID: L0813196-21

Sample wt/vol: 15 (g/mL) g Lab File ID: 13196-21

Level: (low/med) LOW Date Received: 09/05/08

% Solids: 96
Date Extracted:06-SEP-08

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 09/10/08

Injection Volume: 1 (uL) Dilution Factor: 1

GPC Cleanup: (Y/N) N

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

218-01-9	Chrysene	350	ט
208-96-8 <i></i>	cenaphthylene	350	U
120-12-7		350	υ
191-24-2	Benzo(ghi)perylene	350	U
86-73-7	luorene	350	U
85-01-8		350	U
53-70-3I	Dibenzo(a,h) anthracene	350	U
193-39-5	Indeno(1,2,3-cd)Pyrene	350	U
129-00-0	yrene	350	U
92-52-4E	Siphenyl	350	U
106-47-84	-Chloroaniline	350	U
88-74-42	-Nitroaniline	350	U
99-09-23	-Nitroaniline	350	UJ
100-01-64	-Nitroaniline	490	UJ
132-64-9	ibenzofuran	350	ָ ע '
91-57-62	-Methylnaphthalene	350	U
95-94-31	.,2,4,5-Tetrachlorobenzene	1400	ש
98-86-2 <i>-</i>	cetophenone	1400	U
88-06-22	,4,6-Trichlorophenol	350	ט
59-50-7	-Chloro-M-Cresol	350	U
95-57-82	-Chlorophenol	420	U
120-83-22	.4-Dichlorophenol	690	ש
105-67-92	,4-Dimethylphenol	350	U
88-75-52	-Nitrophenol	1400	U
100-02-74	-Nitrophenol	690	ן ט
51-28-52	,4-Dinitrophenol	1400	U
534-52-14	,6-Dinitro-o-cresol	1400	U
87-86-5F	Pentachlorophenol	1400	U
108-95-2F	henol	490	U
95-48-72	-Methylphenol	420	U
	-Methylphenol/4-Methylphenol	420	Ū
95-95-42	,4,5-Trichlorophenol	350	Ū
65-85-0E	lenzoic Acid	3500	Ü
03-03-0			

FORM I SV-2

85 of 145

CLIENT SAMPLE NO.

PWG.SB.2008.21@ 5-10'

Lab Name: Alpha Analytical Labs

SDG No.: L0813196

Matrix: (soil/water) SOIL

Lab Sample ID: L0813196-21

Sample wt/vol:

15 (g/mL) g

Lab File ID: 13196-21

Level: (low/med)

LOW

Date Received: 09/05/08

% Solids: 96

Date Extracted:06-SEP-08

Concentrated Extract Volume: 1000

(uL)

Date Analyzed: 09/10/08

Injection Volume: 1

(uL)

Dilution Factor: 1

GPC Cleanup: (Y/N) N

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

86-74-8------Carbazole 350 U

FORM I SV-1

CLIENT SAMPLE NO.

PWG.SB.2008.01@

Lab Name: Alpha Analytical Labs

SDG No.: L0813196

Matrix: (soil/water) SOIL Lab Sample ID: L0813196-20

Sample wt/vol: 15 (g/mL) g Lab File ID: 13196-20

Level: (low/med) LOW Date Received: 09/05/08

% Solids: 81 Date Extracted:06-SEP-08

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 09/11/08

Injection Volume: 1 (uL) Dilution Factor: 1

GPC Cleanup: (Y/N) N

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/kg) ug/kg

83-32-9Acenaphthene	16	U
91-58-72-Chloronaphthalene	16	ט
206-44-0Fluoranthene	120	
87-68-3Hexachlorobutadiene	41	ט
91-20-3Naphthalene	16	Ū
56-55-3Benzo(a)anthracene	48	_
50-32-8Benzo(a)pyrene	64	l
205-99-2Benzo(b) fluoranthene	58	
207-08-9Benzo(k) fluoranthene	58	
218-01-9Chrysene	55	
208-96-8Acenaphthylene	16	U
120-12-7Anthracene	16	ט ו
191-24-2Benzo(ghi)perylene	51	
86-73-7Fluorene	16	ט
85-01-8Phenanthrene	47	
53-70-3Dibenzo(a,h)anthracene	16	ט
193-39-5Indeno(1,2,3-cd)Pyrene	52	
129-00-0Pyrene	120	
91-57-62-Methylnaphthalene	16	ט
87-86-5Pentachlorophenol	66	Ū
118-74-1Hexachlorobenzene	66	U
67-72-1Hexachloroethane	66	U

FORM I SV-1

CLIENT SAMPLE NO.

PWG.SB.2008.21@ 5-10'

Lab Name: Alpha Analytical Labs

SDG No.: L0813196

Matrix: (soil/water) SOIL Lab Sample ID: L0813196-21

Sample wt/vol: 15 (g/mL) g Lab File ID: 13196-21

Level: (low/med) LOW Date Received: 09/05/08

% Solids: 96 Date Extracted:06-SEP-08

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 09/11/08

Injection Volume: 1 (uL) Dilution Factor: 1

GPC Cleanup: (Y/N) N

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/kg) ug/kg

83-32-9Acenaphthene	14	ט
91-58-72-Chloronaphthalene	14	Ū
206-44-0Fluoranthene	99	_
87-68-3Hexachlorobutadiene	35	U
91-20-3Naphthalene	14	ľű
56-55-3Benzo(a)anthracene	40	"
50-32-8Benzo(a) pyrene	53	
205-99-2Benzo(b) fluoranthene	50	
207-08-9Benzo(k) fluoranthene	48	
218-01-9Chrysene	45	
208-96-8Acenaphthylene	14	11
120-12-7Anthracene	$\overline{14}$	ŭ
191-24-2Benzo(ghi)perylene	43	
86-73-7Fluorene	14	TT
85-01-8Phenanthrene	56	
53-70-3Dibenzo(a,h)anthracene	14	[]
193-39-5Indeno(1,2,3-cd)Pyrene	$\frac{1}{4}$	
129-00-0Pyrene	93	
91-57-62-Methylnaphthalene	14	11
87-86-5Pentachlorophenol	56	🗓
118-74-1Hexachlorobenzene	56	Ū
67-72-1Hexachloroethane	56	11
	~ ~	
l ,		ı

FORM I SV-1

1E PCB ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

PWG.SB.2008.01@ 5-10'

Lab Name: Alpha Analytical Labs

SDG No.: L0813196 GC Column:

Matrix: (soil/water) SOIL Lab Sample ID: L0813196-20

Sample wt/vol: 15 (g/mL) g Lab File ID: 0910ca016

% Solids: 81 Date Received: 09/05/08

Extraction: (Type) Date Extracted:09-SEP-08

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 09/10/08

Injection Volume: 1 (uL) Dilution Factor: 1

GPC Cleanup: (Y/N) N Sulfur Cleanup: (Y/N) N

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/Kg Q

11096-82-5Aroclor 1260 41.2 U	12674-11-2Aroclor 1016 11104-28-2Aroclor 1221 11141-16-5Aroclor 1232 53469-21-9Aroclor 1242 12672-29-6Aroclor 1248 11097-69-1Aroclor 1254 11096-82-5Aroclor 1260	41.2 41.2 41.2 41.2 41.2 41.2	ט ט ט ט
-------------------------------	--	--	------------------

FORM I PCB

PCB ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

PWG.SB.2008.21@

Lab Name: Alpha Analytical Labs

SDG No.: L0813196

Matrix: (soil/water) SOIL Lab Sample ID: L0813196-21

Sample wt/vol: 15 (g/mL) g Lab File ID: 0909cna016

GC Column:

24 Tite 12 (3) (3)

% Solids: 96 Date Received: 09/05/08

Extraction: (Type) Date Extracted:06-SEP-08

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 09/09/08

Injection Volume: 1 (uL) Dilution Factor: 1

GPC Cleanup: (Y/N) N Sulfur Cleanup: (Y/N) N

CONCENTRATION UNITS:
CAS NO. COMPOUND (ug/L or ug/Kg) ug/Kg

12674-11-2Aroclor 1016	34.7	T _I
11104-28-2Aroclor 1221	34.7	Ŭ
11141-16-5Aroclor 1232 53469-21-9Aroclor 1242	$-\begin{vmatrix} 34.7 \\ 34.7 \end{vmatrix}$	Ų
12672-29-6Aroclor 1248	$\begin{array}{c c} & 34.7 \\ 34.7 \end{array}$	ט
11097-69-1Aroclor 1254	34.7	Ū
11096-82-5Aroclor 1260	- 34.7	ט

FORM I PCB

1EPESTICIDE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

PWG.SB.2008.01@ 5-10'

Lab Name: Alpha Analytical Labs

SDG No.: L0813196

GC Column:

Matrix: (soil/water) SOIL

Lab Sample ID: L0813196-20

Sample wt/vol: 15 (g/mL) g

Lab File ID: 09100014

% Solids: 81

Date Received: 09/05/08

Extraction: (Type)

Date Extracted:06-SEP-08

Concentrated Extract Volume: 50000(uL)

Date Analyzed: 09/10/08

Injection Volume: 1

(uL)

Dilution Factor:

GPC Cleanup:

(Y/N) N

Sulfur Cleanup: (Y/N) N

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) ug/Kg

319-86-8	4.12 4.12 4.12 4.12 4.12 4.12 4.12 4.12	מממממ מממממממממ
----------	--	-----------------

FORM I PEST

1E PESTICIDE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

PWG.SB.2008.21@ 5-10'

Lab Name: Alpha Analytical Labs

SDG No.: L0813196

GC Column:

Matrix: (soil/water) SOIL

Lab Sample ID: L0813196-21

Sample wt/vol: 15

(g/mL) g

Lab File ID: 09100016

% Solids: 96

Date Received: 09/05/08

Extraction: (Type)

Date Extracted: 06-SEP-08

Concentrated Extract Volume: 50000(uL)

Date Analyzed: 09/10/08

Injection Volume: 1

(uL)

Dilution Factor:

GPC Cleanup:

(Y/N) N

Sulfur Cleanup: (Y/N) N

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

FORM I PEST

U.S. EPA - CLP 1 - IN

INORGANIC ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

PWG.SB.2008.01@5

10'

SDG No.: L0813196

Lab Code: AAL

Lab Name: Alpha Analytical

Matrix (soil/water`): SOIL

Lab Sample ID: <u>L0813196-20</u>

Date Received: 09/05/08

% Solids:

81

Concentration Units: mg/kg

CAS No.	Analyte	Concentration	С		
7429-90-5	Aluminum	4700			
7440-36-0	Antimony	2.9	Ū	N UJ	
7440-38-2	Arsenic	2,2		"	
7440-39-3	Barium	40			
7440-41-7	Beryllium	0.29	Ū		
7440-43-9	Cadmium	0.58	Ū		
7440-70-2	Calcium	1000		M J	
7440-47-3	Chromium	6.4		W J	
7440-48-4	Cobalt	2,8	1	7=	
7440-50-8	Copper	9.4			
7439-89-6	Iron	7500		_	
7439-92-1	Lead	87		W 3	
7439-95-4	Magnesium	690		N 1	
7439-96-5	Manganese	100		WI	
7439-97-6	Mercury				
7439-98-7	Molybdenum				
7440-02-0	Nickel	5.2			
7440-09-7	Potassium	320			
7782-49-2	Selenium	1.2	Ū		
7440-22-4	Silver	0.58	Ū		
7440-23-5	Sodium	120	U		
7440-24-6	Strontium				
7440-28-0	Thallium	1,2	U		
7440-62-2	Vanadium	9.3			
7440-66-6	Zinc	58		W J	
7440-31-5	Tin				
7440-42-8	Boron				
57-12-5	Cyanide				
END					

Kan,	2/6/04
------	--------

Comments:

ILM05.0

U.S. EPA - CLP 1 - IN INORGANIC ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

PWG.SB.2008.01@5

PWG	•	28	٠	20	U	В	٠	U	T	(Q)	:
101											

SDG No.: L0813196

Lab Name: Alpha Analytical

AAL

Matrix (soil/water): SOIL

Lab Sample ID: L0813196-20

Date Received: 09/05/08

% Solids:

Lab Code:

81

		Concentratio	n Units:	mg/kg	-
CAS No.	Analyte	Concentration	С		
7429-90-5	Aluminum				\top
7440-36-0	Antimony	•			
7440-38-2	Arsenic				
7440-39-3	Barium				1
7440-41-7	Beryllium				1
7440-43-9	Cadmium				1
7440-70-2	Calcium				1
7440-47-3	Chromium				1
7440-48-4	Cobalt				1
7440-50-8	Copper				
7439-89-6	Iron				\top
7439-92-1	Lead				1
7439-95-4	Magnesium				1
7439-96-5	Manganese			/ ,	
7439-97-6	Mercury	0.10		** 3	
7439-98-7	Molybdenum			•	
7440-02-0	Nickel				
7440-09-7	Potassium				\top
7782-49-2	Selenium				T
7440-22-4	Silver				Т
7440-23-5	Sodium				T
7440-24-6	Strontium				T
7440-28-0	Thallium				T
7440-62-2	Vanadium				
7440-66-6	Zinc				
7440-31-5	Tin				1
7440-42-8	Boron				
57-12-5	Cyanide				1
END					T
					1
	<u> </u>				1

Kan 15/10/0,8

Comments:

U.S. EPA - CLP 1-IN INORGANIC ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

PWG.SB.2008.21@5
10'

Lab Name: Alpha Analytical

SDG No.: L0813196

Matrix (soil/water): SOIL

Lab Code: AAL

Lab Sample ID: L0813196-21

Date Received: 09/05/08

% Solids:

96

Concentration Units: mg/kg

CAS No.	Analyte	Concentration	С	
7429-90-5	Aluminum	2900		
7440-36-0	Antimony	2.5	Ū	N U3
7440-38-2	Arsenic	1.2	1	
7440-39-3	Barium	20		
7440-41-7	Beryllium	0.25	Ü	
7440-43-9	Cadmium	0.50	Ü	
7440-70-2	Calcium	500		ב א
7440-47-3	Chromium	4.9		WT
7440-48-4	Cobalt	2.4		***************************************
7440-50-8	Copper	5.6		
7439-89-6	Iron	6400		
7439-92-1	Lead	30		N]
7439-95-4	Magnesium	560		N T
7439-96-5	Manganese	88		N-T
7439-97-6	Mercury			
7439-98-7	Molybdenum	,		
7440-02-0	Nickel	4,5		
7440-09-7	Potassium	260		
7782-49-2	Selenium	1.0	U	
7440-22-4	Silver	0.50	U	
7440-23-5	Sodium	100	U	
7440-24-6	Strontium			
7440-28-0	Thallium	1.0	U	
7440-62-2	Vanadium	6.3		
7440-66-6	Zinc	24	1	x J
7440-31-5	Tin			
7440-42-8	Boron			
57-12-5	Cyanide			
END				
			1	

Comments:	Assur 10/08
Commerces.	,

$\begin{array}{ccccc} U.\,S. & EPA & - & CLP \\ & & 1-\,IN \\ \\ INORGANIC & ANALYSIS & DATA & SHEET \\ \end{array}$

CLIENT SAMPLE NO.

PWG.SB.2008.21@5
10'

Lab	Code:	AAL	SDG No	o.: L0813196

Matrix (soil/water): SOIL Lab Sample ID: L0813196-21

Date Received: 09/05/08

% Solids: 96

Lab Name: Alpha Analytical

Concentration Units: mg/kg

CAS No.	Analyte	Concentration	С	,	
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead				
7439-95-4	Magnesium				
7439-96-5	Manganese			/ /	
7439-97-6	Mercury	0.25		*X()	
7439-98-7	Molybdenum			₹ <u> </u>	
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-24-6	Strontium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
7440-31-5	Tin				
7440-42-8	Boron				
57-12-5	Cyanide				
END					

Comments:	Dx 15/1/6
Comments:	12/6/

WET CHEMISTRY DATA SHEET

CLIENT SAMPLE NO.

PWG.SB.2008.01@ 5-10'

Lab Name: Alpha Analytical Labs

SDG No.: L0813196

Matrix: (soil/water) SOIL

Lab Sample ID: L0813196-20

Sample wt/vol:

(g/mL)

Lab File ID: 09-SEP-08

Date Received: 09/05/08

% Solids: 81

Date Extracted:

Date Analyzed: 09/09/08

Dilution Factor: 1

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) %

NONE-----Solids, Total___ 81

FORM I WETCHEM

1B WET CHEMISTRY DATA SHEET

CLIENT SAMPLE NO.

PWG.SB.2008.21@ 5-10'

Lab Name: Alpha Analytical Labs

SDG No.: L0813196

Matrix: (soil/water) SOIL

Lab Sample ID: L0813196-21

Sample wt/vol:

(g/mL)

Lab File ID: 09-SEP-08

Date Received: 09/05/08

% Solids: 96

Date Extracted:

Date Analyzed: 09/09/08

Dilution Factor: 1

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) %

NONE-----Solids, Total 96

FORM I WETCHEM

CLIENT SAMPLE NO.

PWG-DW-2008-15 (7-7.5')

Lab Name: Alpha Analytical Labs

SDG No.: L0813344

Matrix: (soil/water) SOIL

Lab Sample ID: L0813344-18

Sample wt/vol: 2 (g/mL) g

Lab File ID: 0911A17

Level: (low/med) LOW

Date Received: 09/09/08

%Solids: 84

Date Analyzed: 09/12/08

Dilution Factor: 1

Soil Extract Volume:

(uL)

Soil Aliquot Volume:

(uL)

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

			1
75-09-2Methylene chloride	30	ט	
75-34-31,1-Dichloroethane	4.5	ן ט ן	
67-66-3Chloroform	4.5	ן ט ן	
56-23-5Carbon tetrachloride	3.0	ט	
78-87-51,2-Dichloropropane	_ ₁₀	ט	
124-48-1Dibromochloromethane	3.0	ן ט	
79-00-51,1,2-Trichloroethane	4.5	ט	
127-18-4Tetrachloroethene	_ ₁₂₀		
108-90-7Chlorobenzene	_ 3.0	ן ט	
75-69-4Trichlorofluoromethane	15	ע	
107-06-21,2-Dichloroethane	3.0	U	
71-55-61,1,1-Trichloroethane	3.0	U	
75-27-4Bromodichloromethane	_ _{3.0}	U	
10061-02-6trans-1,3-Dichloropropene	3.0	ט	
10061-01-5cis-1,3-Dichloropropene	3.0	ן ט	
563-58-61,1-Dichloropropene	15	U	
75-25-2Bromoform	12	U	
79-34-51,1,2,2-Tetrachloroethane	3.0	บ	
71-43-2Benzene	3.0	ן ט	
108-88-3Toluene	4.5	U	
100-41-4Ethylbenzene	3.0	U	
74-87-3Chloromethane	15	U	
74-83-9Bromomethane	6.0	U	A
75-01-4Vinyl chloride	26		J
75-00-3Chloroethane	_ 6.0	ן ט	
75-35-41,1-Dichloroethene	3.0	ן ט	
156-60-5trans-1,2-Dichloroethene	4.5	ן ט	1
79-01-6Trichloroethene	_ 11		3
95-50-11,2-Dichlorobenzene	15	ן ט ן	
541-73-11,3-Dichlorobenzene	15	ן ט	
106-46-71,4-Dichlorobenzene	15	ן ט	
1634-04-4Methyl tert butyl ether	_ 6.0	ן ט	
106-42-3/108-38-p/m-Xylene	6.0	ן ט	
95-47-6o-Xylene	6.0	U	ر ا
156-59-2cis-1,2-Dichloroethene	28	<u> </u>	13
			~

FORM I VOA-1

CLIENT SAMPLE NO.

PWG-DW-2008-15 (7-7.5')

Lab Name: Alpha Analytical Labs

SDG No.: L0813344

Matrix: (soil/water) SOIL Lab Sample ID: L0813344-18

Sample wt/vol: 2 (g/mL) g Lab File ID: 0911A17

Level: (low/med) LOW Date Received: 09/09/08

%Solids: 84 Date Analyzed: 09/12/08

Dilution Factor: 1

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/Kg Q

100-42-5		()	3, 33, 33, 33	
100-42-5	74-95-3	Dibromomethane	30	U
75-71-8	100-42-5	Styrene	6.0	ע ו
67-64-1	75-71-8	Dichlorodifluoromethane	30	l u 🕽
75-15-0			30	U ~
78-93-3	75-15-0	Carbon disulfide	· 30	ט
108-05-4		2 Butanono	· 30	ט
108-10-14-Methyl-2-pentanone 30 96-18-41,2,3-Trichloropropane 30 591-78-62-Hexanone 30 74-97-5Bromochloromethane 15 594-20-72,2-Dichloropropane 15 106-93-41,2-Dibromoethane 12 142-28-91,3-Dichloropropane 15 630-20-61,1,1,2-Tetrachloroethane 3.0 108-86-1Bromobenzene 3.0 104-51-8			30	υ
96-18-41,2,3-Trichloropropane 30 591-78-62-Hexanone 30 74-97-5Bromochloromethane 15 106-93-42,2-Dichloropropane 15 106-93-41,2-Dibromoethane 12 142-28-91,3-Dichloropropane 15 630-20-61,1,1,2-Tetrachloroethane 3.0 108-86-1Bromobenzene 15 104-51-8Butylbenzene 3.0 135-98-8sec-Butylbenzene 3.0 98-06-6tetr-Butylbenzene 15 98-06-6tetr-Butylbenzene 15 95-49-8	108-10-1	4-Methyl-2-pentanone	30	ر تا ا
591-78-62-Hexanone 30 74-97-5Bromochloromethane 15 594-20-72,2-Dichloropropane 15 106-93-41,2-Dibromoethane 12 142-28-91,3-Dichloropropane 15 630-20-61,1,1,2-Tetrachloroethane 3.0 108-86-1Bromobenzene 15 104-51-8Bromobenzene 3.0 135-98-8Butylbenzene 3.0 98-06-6	96-18-4	1.2.3-Trichloropropane	30	U1
74-97-5	591-78-6	2-Hexanone		ָד יֹי ^י
594-20-72,2-Dichloropropane 15 106-93-41,2-Dibromoethane 12 142-28-91,3-Dichloropropane 15 630-20-61,1,1,2-Tetrachloroethane 3.0 108-86-1Bromobenzene 15 104-51-8Bromobenzene 3.0 135-98-8sec-Butylbenzene 3.0 98-06-6tett-Butylbenzene 15 95-49-8o-Chlorotoluene 15 106-43-4p-Chlorotoluene 15 96-12-81,2-Dibromo-3-chloropropane 15 87-68-3			15	Ū
106-93-41,2-Dibromoethane 12 142-28-91,3-Dichloropropane 15 630-20-61,1,1,2-Tetrachloroethane 3.0 108-86-1Bromobenzene 15 104-51-8n-Butylbenzene 3.0 135-98-8sec-Butylbenzene 3.0 98-06-6tert-Butylbenzene 15 95-49-8	594-20-7	2.2-Dichloropropane	15	י ט ו
142-28-91,3-Dichloropropane 15 630-20-61,1,1,2-Tetrachloroethane 3.0 108-86-1Bromobenzene 15 104-51-8Butylbenzene 3.0 135-98-8sec-Butylbenzene 3.0 98-06-6	106-93-4	1.2-Dibromoethane	$1\overline{2}$	ΙŪ
630-20-61,1,1,2-Tetrachloroethane 3.0 108-86-1Bromobenzene 15 104-51-8n-Butylbenzene 3.0 135-98-8sec-Butylbenzene 3.0 98-06-6tert-Butylbenzene 15 95-49-8	142-28-9	1.3-Dichloropropane		Ιΰ
108-86-1Bromobenzene 15 104-51-8n-Butylbenzene 3.0 135-98-8sec-Butylbenzene 3.0 98-06-6tert-Butylbenzene 15 95-49-8chlorotoluene 15 106-43-4	630-20-6	1.1.1.2-Tetrachloroethane		ΙŪ
104-51-8n-Butylbenzene 3.0 135-98-8sec-Butylbenzene 3.0 98-06-6tert-Butylbenzene 15 95-49-8chlorotoluene 15 106-43-4p-Chlorotoluene 15 96-12-81,2-Dibromo-3-chloropropane 15 87-68-3	108-86-1	Bromobenzene		Ü
135-98-8sec-Butylbenzene 3.0 98-06-6tert-Butylbenzene 15 95-49-8chlorotoluene 15 106-43-4	104-51-8	n-Butylbenzene	.	Ιŭ
98-06-6tert-Butylbenzene 15 95-49-8	135-98-8	sec-Butvlbenzene	. 1	ΙŪ
95-49-8	98-06-6	tert-Butylbenzene		Ιŭ
106-43-4	95-49-8	o-Chlorotoluene		Ü
96-12-81, 2-Dibromo-3-chloropropane 15 87-68-3	106-43-4	p-Chlorotoluene	. 1 – –	ΙŪ
87-68-3	96-12-8	1 2-Dibromo-3-chloropropane		Ü
98-82-8	87-68-3	Hexachlorobutadiene		Ιŭ
99-87-6	98-82-8	Igopropylbenzene		Ü
91-20-3Naphthalene 15 107-13-1Acrylonitrile 30 103-65-1	99-87-6	n-Isopropyltoluene		υ
107-13-1	91-20-3	Nanhthalene		Ū
103-65-1n-Propylbenzene 3.0 87-61-61,2,3-Trichlorobenzene 15 120-82-11,2,4-Trichlorobenzene 15 108-67-81,3,5-Trimethylbenzene 15 95-63-61,2,4-Trimethylbenzene 15 105-05-51,4-Diethylbenzene 12	107-13-1	Acrylonitrile	.	Ü
87-61-61,2,3-Trichlorobenzene 15 120-82-11,2,4-Trichlorobenzene 15 108-67-81,3,5-Trimethylbenzene 15 95-63-61,2,4-Trimethylbenzene 15 105-05-51,4-Diethylbenzene 12	103-65-1	n-Propylbenzene	.	Ü
120-82-11,2,4-Trichlorobenzene 15 108-67-81,3,5-Trimethylbenzene 15 95-63-61,2,4-Trimethylbenzene 15 105-05-51,4-Diethylbenzene 12	87-61-6	1 2 3-Trichlorobenzene	.	Ιŭ
108-67-81,3,5-Trimethylbenzene 15 95-63-61,2,4-Trimethylbenzene 15 105-05-51,4-Diethylbenzene 12	120-82-1	1 2 4-Trichlorobenzene		lΰ
95-63-61,2,4-Trimethylbenzene 15 105-05-51,4-Diethylbenzene 12	108-67-8	1 3 5-Trimethylbenzene	.	lΰ
105-05-51,4-Diethylbenzene 12	95-63-6	1 2 4-Trimethylbenzene		lΰ
105 05 5 1,4 Dicenyipenzene 12	105-05-5	1 4-Diethylbenzene	.	Ü
622-96-84-Ethyltoluene 12 t	622-96-8	4-Ethyltoluene	12	ŭ
	95-93-2	1 2 4 5-Tetramethylbengene	.	ŭ
			. I 	

FORM I VOA-1

CLIENT SAMPLE NO.

PWG-DW-2008-100

Lab Name: Alpha Analytical Labs

SDG No.: L0813344

Matrix: (soil/water) SOIL Lab Sample ID: L0813344-19

Sample wt/vol: 2 (g/mL) g Lab File ID: 0911A18

Level: (low/med) LOW Date Received: 09/09/08

%Solids: 83 Date Analyzed: 09/12/08

Dilution Factor: 1

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

FORM I VOA-1

CLIENT SAMPLE NO.

PWG-DW-2008-100 (7-7.5')

Lab Name: Alpha Analytical Labs

SDG No.: L0813344

Matrix: (soil/water) SOIL

Lab Sample ID: L0813344-19

Sample wt/vol: 2

(g/mL) g Lab File ID: 0911A18

Level: (

(low/med) LOW

Date Received: 09/09/08

%Solids: 83

Date Analyzed: 09/12/08

Dilution Factor: 1

Soil Extract Volume:

(uL)

Soil Aliquot Volume:

(uL)

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

Q

		g/kg/ ug/kg	
74-95-3	Dibromomethane	30	U
100-42-5	Stvrene	6.0	U.
75-71-8	Dichlorodifluoromethane	30	l uj
67-64-1	Acetone	30	U~
75-15-0	Carbon disulfide	30	Ü
	2-Butanone	30	Ū
108-05-4	Vinyl acetate	30	Ū
	4-Methyl-2-pentanone	30	ΙŪ
96-18-4	1,2,3-Trichloropropane	30	ŭ 1
	2-Hexanone	30	7 ن ا
	Bromochloromethane	15	Ιŭ
74 J/ J 594-20-7	2,2-Dichloropropane	15	Ιŭ
JJ4 40 7 106-93-4	1,2-Dibromoethane	12	Ιŭ
142-20-0	1,3-Dichloropropane	15	Ιŭ
144-70-3	1,1,1,2-Tetrachloroethane	3.0	lΰ
	Bromobenzene	15	lυ
			lυ
	n-Butylbenzene	3.0	ដ
135-98-8	sec-Butylbenzene_	3.0	_
98-06-6	tert-Butylbenzene	15	Ü
	o-Chlorotoluene	15	Ü
106-43-4	p-Chlorotoluene	1.5	Ü
96-12-8	1,2-Dibromo-3-chloropropane	15	U
87-68-3	Hexachlorobutadiene	15	U
98-82-8	Isopropylbenzene	3.0	U
99-87-6	p-Isopropyltoluene	3.0	l ü
91-20-3	Naphthalene	15	U
107-13-1	Acrylonitrile	30	ן ט
103-65-1	n-Propylbenzene	3.0	U
87-61-6	1,2,3-Trichlorobenzene	15	ן ט
120-82-1	1,2,4-Trichlorobenzene	15	ט
108-67-8	1,3,5-Trimethylbenzene	15	ט
	1,2,4-Trimethylbenzene	15	ľΰ
	1,4-Diethylbenzene	12	Ŭ
	4-Ethyltoluene	12	Ŭ
95-93-2	1,2,4,5-Tetramethylbenzene	12	Ü
,, ,, ,,	T/2/1/0 TOOLAMOONY LOOMACHO	1	1

FORM I VOA-1

PWG-DW-2008-15 (7-7.5')

Lab Name: Alpha Analytical Labs

SDG No.: L0813344

Matrix: (soil/water) SOIL Lab Sample ID: L0813344-18

Sample wt/vol: 15 (g/mL) g Lab File ID: 13344-18

Level: (low/med) LOW Date Received: 09/09/08

% Solids: 84 Date Extracted:11-SEP-08

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 09/15/08

Injection Volume: 1 (uL) Dilution Factor: 1

GPC Cleanup: (Y/N) N

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

83-32-9	Acenaphthene	400	ט
120-82-1	1,2,4-Trichlorobenzene	400	U
	Hexachlorobenzene	400	U
	Bis(2-chloroethyl)ether	400	U
91-58-7	2-Chloronaphthalene	480	U
95-50-1	1,2-Dichlorobenzene	400	ט
541-73-1	1,3-Dichlorobenzene	400	U
106-46-7	1,4-Dichlorobenzene	400	ט
91-94-1	3,3'-Dichlorobenzidine	790	ט
121-14-2	2,4-Dinitrotoluene	400	ט
606-20-2	2,6-Dinitrotoluene	400	บ
	Fluoranthene	400	U
	4-Chlorophenyl phenyl ether_	400	lυ
101-55-3	4-Bromophenyl phenyl ether	400	บ
	Bis(2-chloroisopropyl)ether	400	U
	Bis(2-chloroethoxy)methane	400	ΙŪ
	Hexachlorobutadiene	790	U
	Hexachlorocyclopentadiene	790	lΰ
	Hexachloroethane	400	ي ت ا
	Isophorone	400	ΙŪĴ
	Naphthalene	400	Ιΰ
	Nitrobenzene	400	Ιŭ
	NitrosoDiPhenylAmine(NDPA)/DP	1200	Ιū
	n-Nitrosodi-n-propylamine	400	ΙŪ
	Bis(2-Ethylhexyl)phthalate	790	Ιΰ
25-62-7	Butyl benzyl phthalate	400	Ŭ
94-74-9	Di-n-butylphthalate	400	Ü
117 04 0	Di-n-octylphthalate	400	Ŭ
TT1-04-0	Diethyl phthalate	400	Ιŭ
	Dimethyl phthalate	400	l II
		400	1 11
	Benzo(a) anthracene	400	υ
	Benzo(a)pyrene	400	lü
	Benzo(b)fluoranthene Benzo(k)fluoranthene	400	l ti

FORM I SV-1

PWG-DW-2008-15 (7-7.5')

Lab Name: Alpha Analytical Labs

SDG No.: L0813344

Matrix: (soil/water) SOIL Lab Sample ID: L0813344-18

Sample wt/vol: 15 (g/mL) g Lab File ID: 13344-18

Level: (low/med) LOW Date Received: 09/09/08

% Solids: 84 Date Extracted:11-SEP-08

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 09/15/08

Injection Volume: 1 (uL) Dilution Factor: 1

GPC Cleanup: (Y/N) N

		CONCENTRATION UNITS:
CAS NO.	COMPOUND	(ug/L or ug/Kg) ug/Kg

218-01-9Chrysene	400	U
208-96-8Acenaphthylene	400	U
120-12-7Anthracene	400	U
191-24-2Benzo(ghi)perylene	400	υ
36-73-7Fluorene	 400	ט
35-01-8Phenanthrene	<u> </u>	ט
53-70-3Dibenzo(a,h)anthracene	400	ט
193-39-5Indeno(1,2,3-cd)Pyrene	400	ט
129-00-0Pyrene	400	ט
92-52-4Biphenyl	400	ט
L06-47-84-Chloroaniline	 400	ט
38-74-42-Nitroaniline	 400	ט
99-09-23-Nitroaniline	400	U
L00-01-64-Nitroaniline	560	ט
L32-64-9Dibenzofuran	400	ן ש
01-57-62-Methylnaphthalene	400	ΰ
95-94-31,2,4,5-Tetrachlorobenzene_	 1600	ן ע _
98-86-2Acetophenone	 1600	ប៊ 🕽
38-06-22,4,6-Trichlorophenol	 400	U
59-50-7P-Chloro-M-Cresol	400	U
95-57-82-Chlorophenol	480	U
120-83-22,4-Dichlorophenol	790	U
105-67-92,4-Dimethylphenol	 400	ן ט
38-75-52-Nitrophenol	1600	U
100-02-74-Nitrophenol	 790	ט
51-28-52,4-Dinitrophenol	1600	ן ט
534-52-14,6-Dinitro-o-cresol	1600	ט
37-86-5Pentachlorophenol	 1600	ט
108-95-2Phenol	— ₅₆₀	lυ
95-48-72-Methylphenol	480	U
108-39-43-Methylphenol/4-Methylphen	<u>ol</u> 480	U
95-95-42,4,5-Trichlorophenol	400	ט
55-85-0Benzoic Acid	4000	ט
100-51-6Benzyl Alcohol	 7 90	ΙŪ

FORM I SV-2

CLIENT SAMPLE NO.

PWG-DW-2008-15 (7-7.51)

U

Lab Name: Alpha Analytical Labs

SDG No.: L0813344

Matrix: (soil/water) SOIL

Lab Sample ID: L0813344-18

Sample wt/vol:

15 (g/mL) g

Lab File ID: 13344-18

Level: (low/med) LOW

Date Received: 09/09/08

% Solids: 84

Date Extracted: 11-SEP-08

Concentrated Extract Volume: 1000 (uL)

Date Analyzed: 09/15/08

Injection Volume: 1 (uL)

CAS NO.

COMPOUND

Dilution Factor: 1

GPC Cleanup: (Y/N) N

CONCENTRATION UNITS:

(ug/L or ug/Kg) ug/Kg

86-74-8-----Carbazole 400

FORM I SV-1

PWG-DW-2008-100 (7-7.5')

Lab Name: Alpha Analytical Labs

SDG No.: L0813344

Matrix: (soil/water) SOIL Lab Sample ID: L0813344-19

Sample wt/vol: 15 (g/mL) g Lab File ID: 13344-19

Level: (low/med) LOW Date Received: 09/09/08

% Solids: 83 Date Extracted:11-SEP-08

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 09/15/08

Injection Volume: 1 (uL) Dilution Factor: 1

GPC Cleanup: (Y/N) N

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/kg) ug/kg

83-32-9Acenaphthene	400	U
120-82-11,2,4-Trichlorobenzene	400	ΙŪ
118-74-1Hexachlorobenzene	400	lŪ
111-44-4Bis(2-chloroethyl)ether	400	U
91-58-72-Chloronaphthalene	480	Ü
95-50-11,2-Dichlorobenzene	400	ΙŪ
541-73-11,3-Dichlorobenzene	400	ט
106-46-71,4-Dichlorobenzene	400	lΰ
91-94-13,3'-Dichlorobenzidine	800	ΙŪ
121-14-22,4-Dinitrotoluene	400	טו
606-20-22,6-Dinitrotoluene	400	ט
206-44-0Fluoranthene	400	ט
7005-72-34-Chlorophenyl phenyl ether	400	U
101-55-34-Bromophenyl phenyl ether	400	U
108-60-1Bis(2-chloroisopropyl)ether	400	ט
111-91-1Bis(2-chloroethoxy) methane	400	U
87-68-3Hexachlorobutadiene	800	υ
77-47-4Hexachlorocyclopentadiene	800	U
67-72-1Hexachloroethane	400	ע ו
78-59-1Isophorone	400	U 🕽
91-20-3Naphthalene	400	ט
98-95-3Nitrobenzene	400	ן ט
86-30-6NitrosoDiPhenylAmine(NDPA)/DP	1200	ט
621-64-7n-Nitrosodi-n-propylamine	400	ט
117-81-7Bis(2-Ethylhexyl)phthalate	800	ט
85-68-7Butyl benzyl phthalate	400	ט
84-74-2Di-n-butylphthalate	400	U
117-84-0Di-n-octylphthalate	400	U
84-66-2Diethyl phthalate	400	ט
131-11-3Dimethyl phthalate	400	ט ו
56-55-3Benzo(a)anthracene	400	U
50-32-8Benzo(a)pyrene	400	U
205-99-2Benzo(b) fluoranthene	400	U
207-08-9Benzo(k) fluoranthene	400	Ū
207-08-9Benzo(k) fluoranthene	400	

FORM I SV-1

PWG-DW-2008-100 (7-7.5')

Lab Name: Alpha Analytical Labs

SDG No.: L0813344

Matrix: (soil/water) SOIL Lab Sample ID: L0813344-19

Sample wt/vol: 15 (g/mL) g Lab File ID: 13344-19

Level: (low/med) LOW Date Received: 09/09/08

% Solids: 83 Date Extracted:11-SEP-08

Concentrated Extract Volume:1000 (uL) Date Analyzed: 09/15/08

Injection Volume: 1 (uL) Dilution Factor: 1

GPC Cleanup: (Y/N) N

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

218-01-9	Chrysene	400	ן ט	
	Acenaphthylene	400	ט	
	Anthracene	400	ט	
191-24-2	91-24-2Benzo(ghi)perylene			
86-73-7	Fluorene	400	บ	
85-01-8	Phenanthrene	400	U	
53-70-3	Dibenzo(a,h) anthracene	400	ט	
	Indeno(1,2,3-cd)Pyrene	400	U	
129-00-0		400	U	
	Biphenyl	400	U	
	4-Chloroaniline	400	U	
88-74-4	2-Nitroaniline	400	U	
99-09-2	3-Nitroaniline	400	U	
	4-Nitroaniline	560	U	
132-64-9	Dibenzofuran	400	ľΰ	
91-57-6	2-Methylnaphthalene	400	U	
95-94-3	1,2,4,5-Tetrachlorobenzene	1600	ہ ∪ ا	
	Acetophenone	1600	U J	
	2,4,6-Trichlorophenol	400	ט	
59-50-7	P-Chloro-M-Cresol	400	U	
95-57-8	2-Chlorophenol	480	U	
	2,4-Dichlorophenol	800	U	
	2,4-Dimethylphenol	400	υ	
	2-Nitrophenol	1600	U	
	4-Nitrophenol	800	Ü	
	2,4-Dinitrophenol	1600	ט	
	4,6-Dinitro-o-cresol	1600	ט ו	
87-86-5	Pentachlorophenol	1600	ט	
108-95-2		560	ט ו	
95-48-7	2-Methvlphenol	480	ΙŪ	
	3-Methylphenol/4-Methylphenol		Ιŭ	
95-95-4	2,4,5-Trichlorophenol	400	ن ا	
	Benzoic Acid	4000	ت ا	
	Benzyl Alcohol	800	Ū	

FORM I SV-2

CLIENT SAMPLE NO.

PWG-DW-2008-100 (7-7.5!)

Lab Name: Alpha Analytical Labs

SDG No.: L0813344

Matrix: (soil/water) SOIL

Lab Sample ID: L0813344-19

Sample wt/vol: 15 (g/mL) g Lab File ID: 13344-19

Level: (low/med) LOW

Date Received: 09/09/08

% Solids: 83

Date Extracted:11-SEP-08

Concentrated Extract Volume: 1000 (uL)

Date Analyzed: 09/15/08

Injection Volume: 1

(uL)

Dilution Factor: 1

GPC Cleanup: (Y/N) N

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) ug/Kg

86-74-8-----Carbazole 400 U

FORM I SV-1

CLIENT SAMPLE NO.

PWG-DW-2008-15 (7-7.5')

Lab Name: Alpha Analytical Labs

SDG No.: L0813344

Matrix: (soil/water) SOIL

Lab Sample ID: L0813344-18

Sample wt/vol:

15 (g/mL) g

Lab File ID: 13344-18

Level: (

(low/med) LOW

Date Received: 09/09/08

% Solids: 84

Date Extracted: 11-SEP-08

Concentrated Extract Volume: 1000

(uL)

Date Analyzed: 09/13/08

Injection Volume: 1

(uL)

Dilution Factor: 5

GPC Cleanup:

(Y/N) N

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

83-32-9	79 79 79 200 - 79 - 79 - 79 - 79 - 79 - 79 - 79	ט מ מ מ מ מ מ מ מ מ מ מ מ מ
86-73-7Fluorene 85-01-8Phenanthrene	79 - 79	ŭ
53-70-3Dibenzo(a,h)anthracene 193-39-5Indeno(1,2,3-cd)Pyrene	79 79	U U
129-00-0Pyrene 91-57-62-Methylnaphthalene 87-86-5Pentachlorophenol	- 79 - 320	U U
118-74-1Hexachlorobenzene 67-72-1	320 320 320	ָ บ บ

FORM I SV-1

CLIENT SAMPLE NO.

PWG-DW-2008-100 (7-7.5')

Lab Name: Alpha Analytical Labs

SDG No.: L0813344

Matrix: (soil/water) SOIL Lab Sample ID: L0813344-19

Sample wt/vol: 15 (g/mL) g Lab File ID: 13344-19

Level: (low/med) LOW Date Received: 09/09/08

% Solids: 83 Date Extracted:11-SEP-08

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 09/13/08

Injection Volume: 1 (uL) Dilution Factor: 5

GPC Cleanup: (Y/N) N

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

83-32-9Acenaphthene	80	U
91-58-72-Chloronaphthalene	80	U
206-44-0Fluoranthene	150	1 3
87-68-3Hexachlorobutadiene	200	ן ט -
91-20-3Naphthalene	80	U
56-55-3Benzo(a)anthracene	80	ן ט
50-32-8Benzo(a)pyrene	80	บ
205-99-2Benzo(b) fluoranthene	80	U
207-08-9Benzo(k) fluoranthene	80	U
218-01-9Chrysene	80	ט
208-96-8Acenaphthylene	80	ט
120-12-7Anthracene	80	ט
191-24-2Benzo(ghi)perylene	80	U
86-73-7Fluorene	80	ΰ
85-01-8Phenanthrene	80	U
53-70-3Dibenzo(a,h)anthracene	80	U
193-39-5Indeno(1,2,3-cd)Pyrene	80	U A
129-00-0Pyrene	160	3
91-57-62-Methylnaphthalene	80	U
87-86-5Pentachlorophenol	320	U
118-74-1Hexachlorobenzene	320	U
67-72-1Hexachloroethane	320	U

FORM I SV-1

1E GC ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

PWG-DW-2008-15 (7-7.5!)

Lab Name: Alpha Analytical Labs

SDG No.: L0813344

GC Column:

Matrix: (soil/water) SOIL

Lab Sample ID: L0813344-18

Sample wt/vol: 15 (g/mL) g

Lab File ID: DATA059

% Solids: 84

Date Received: 09/09/08

Extraction: (Type)

Date Extracted: 11-SEP-08

Concentrated Extract Volume: 1000 (uL)

Date Analyzed: 09/12/08

Injection Volume: 1

(uL)

Dilution Factor: 1

GPC Cleanup: (Y/N) N

Sulfur Cleanup: (Y/N) N

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

CAS NO.

COMPOUND

NONE----TPH 62100

FORM I TPHDROD-S

1EGC ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

PWG-DW-2008-100 (7-7.5!)

Lab Name: Alpha Analytical Labs

SDG No.: L0813344

GC Column:

Matrix: (soil/water) SOIL

Lab Sample ID: L0813344-19

Sample wt/vol: 15 (g/mL) g

Lab File ID: DATA009

% Solids: 83

Date Received: 09/09/08

Date Analyzed: 09/12/08

Extraction: (Type)

Concentrated Extract Volume: 1000 (uL)

Date Extracted: 11-SEP-08

Injection Volume: 1

(uL)

Dilution Factor: 1

Sulfur Cleanup: (Y/N) N

GPC Cleanup: (Y/N) N

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) ug/Kg

NONE-----TPH

72400

FORM I TPHDROD-S

CLIENT SAMPLE NO.

PWG-DW-2008-15 (7-7.5')

SDG No.: L0813344

Lab Code: AAL

Lab Name: Alpha Analytical

END

Matrix (soil/water): SOIL

Lab Sample ID: L0813344-18

Date Received: 09/09/08

Concentration Units: mg/kg

% Solids:

84

CAS No. **Analyte** Concentration С 1700 7429-90-5 Aluminum Antimony 7440-36-0 2.8 7440-38-2 Arsenic 7440-39-3 Barium 7440-41-7 Beryllium 0.28 7440-43-9 Cadmium 0.57 7440-70-2 Calcium 6600 Chromium 7440-47-3 5,2 7440-48-4 Cobalt 1.1 7440-50-8 Copper 4.7 7439-89-6 Iron 4600 7439-92-1 Lead 36 ₹Ν Magnesium 2900 7439-95-4 47 7439-96-5 Manganese 7439-97-6 Mercury Molybdenum 7439-98-7 2.0 7440-02-0 Nickel 7440-09-7 Potassium 140 U 7782-49-2 Selenium 1.1 U Silver 0.57 7440-22-4 U Sodium 110 U 7440-23-5 Strontium 7440-24-6 1.1 U 7440-28-0 Thallium 7440-62-2 Vanadium 5.9 Zinc 7440-66-6 35 Tin 7440-31-5 7440-42-8 Boron 57-12-5 Cyanide

12/a/08

Comments:	

CLIENT SAMPLE NO.

PWG-DW-2008-15

(7-7.5')
SDG No.: L0813344

Lab Name: Alpha Analytical

Lab Code: AAL

Matrix (soil/water): SOIL

Lab Sample ID: L0813344-18

Date Received: 09/09/08

% Solids:

84

Concentration Units: mg/kg

CAC No	N		- C		
CAS No.	Analyte	Concentration	C		
7429-90-5	Aluminum				t
7440-36-0	Antimony				1
7440-38-2	Arsenic				_
7440-39-3	Barium				_
7440-41-7	Beryllium				⇈
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium		1		\vdash
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead				
7439-95-4	Magnesium	**			
7439-96-5	Manganese		_	_	
7439-97-6	Mercury	0.09	UJ	X	
7439-98-7	Molybdenum			· · · · · · · · · · · · · · · · · · ·	
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium	"" 			
7440-22-4	Silver		1		
7440-23-5	Sodium				
7440-24-6	Strontium				
7440-28-0	Thallium		1		
7440-62-2	Vanadium				
7440-66-6	Zinc				
7440-31-5	Tin				
7440-42-8	Boron	•••			
57-12-5	Cyanide				
END				·	
			1		

KROW 9/08

CLIENT SAMPLE NO.

PWG-DW-2008-100

(7~7.5')

SDG No.: L0813344

Lab Code: AAL

Matrix (soil/water): SOIL

Lab Name: Alpha Analytical

Lab Sample ID: L0813344-19

Date Received: 09/09/08

% Solids:

83

Concentration Units: mg/kg

CAS No.	Analyte	Concentration	С		
7429-90-5	Aluminum	2100		11	
7440-36-0	Antimony	2,8	Ŭ	W 7	
7440-38-2	Arsenic	1.4		1	
7440-39-3	Barium	15		1	
7440-41-7	Beryllium	0.28	U	3	
7440-43-9	Cadmium	0,56	U		
7440-70-2	Calcium	6400		1	
7440-47-3	Chromium	4.5			Ì
7440-48-4	Cobalt	1.2			
7440-50-8	Copper	5.6		**)	
7439-89-6	Iron	4600		* 1	
7439-92-1	Lead	32		*** \(\)	
7439-95-4	Magnesium	3900		シ イ	
7439-96-5	Manganese	34			
7439-97-6	Mercury		T		
7439-98-7	Molybdenum				
7440-02-0	Nickel	2.2		15	
7440-09-7	Potassium	140	Ŭ		
7782-49-2	Selenium	1.1	U		
7440-22-4	Silver	0.56	บ		
7440-23-5	Sodium	110	U		
7440-24-6	Strontium				
7440-28-0	Thallium	1.1	U	W UJ	
7440-62-2	Vanadium	8.3		y 5	
7440-66-6	Zinc	34	,	*M J	
7440-31-5	Tin				
7440-42-8	Boron				
57-12-5	Cyanide				
END					

KBW 12/09/08

Comments:

CLIENT SAMPLE NO.

PWG-DW-2008-100

Lab Name: Alpha Analy	ical	(7-7.5')
Lab Code: AAL	-	SDG No.: L0813344
Matrix (soil/water):	SOIL Lab Sample ID: L08	13344-19

Date Received: 09/09/08

% Solids: 83

Concentration Units: mg/kg CAS No. Analyte Concentration C 7429-90-5 Aluminum 7440-36-0 Antimony 7440-38-2 Arsenic Barium 7440-39-3 7440-41-7 Beryllium 7440-43-9 Cadmium 7440-70-2 Calcium 7440-47-3 Chromium 7440-48-4 Cobalt 7440-50-8 Copper 7439-89-6 Iron 7439-92-1 Lead 7439-95-4 Magnesium Manganese 7439-96-5 7439-97-6 Mercury 0.09 7439-98-7 Molybdenum 7440-02-0 Nickel 7440-09-7 Potassium 7782-49-2 Selenium 7440-22-4 Silver 7440-23-5 Sodium 7440-24-6 Strontium 7440-28-0 Thallium 7440-62-2 Vanadium 7440-66-6 Zinc 7440-31-5 Tin 7440-42-8 Boron 57-12-5 Cyanide *END*

Comments:	

1B WET CHEMISTRY DATA SHEET

CLIENT SAMPLE NO.

PWG-DW-2008-15 (7-7,5')

Lab Name: Alpha Analytical Labs

SDG No.: L0813344

Matrix: (soil/water) SOIL Lab Sample ID: L0813344-18

Sample wt/vol: (g/mL) Lab File ID: 10-SEP-08

Date Received: 09/09/08

% Solids: 84 Date Extracted:

Date Analyzed: 09/10/08

Dilution Factor: 1

CONCENTRATION UNITS:
(ug/L or ug/Kg) %

NONE-----Solids, Total______84

FORM I WETCHEM

1B WET CHEMISTRY DATA SHEET

CLIENT SAMPLE NO.

PWG-DW-2008-100 (7-7.5')

Lab Name: Alpha Analytical Labs

SDG No.: L0813344

Matrix: (soil/water) SOIL Lab Sample ID: L0813344-19

Sample wt/vol:

(g/mL)

Lab File ID: 10-SEP-08

Date Received: 09/09/08

% Solids: 83

Date Extracted:

Date Analyzed: 09/10/08

Dilution Factor: 1

CONCENTRATION UNITS:

CAS NO. COMPOUND

(ug/L or ug/Kg) %

NONE-----Solids, Total______83

FORM I WETCHEM

CLIENT SAMPLE NO.

PWG-DW-2008-34(5.5-6')

Lab Name: Alpha Analytical Labs

SDG No.: L0813447

Matrix: (soil/water) SOIL Lab Sample ID: L0813447-08

Sample wt/vol: 2 (g/mL) g Lab File ID: 0915A11

Level: (low/med) LOW Date Received: 09/11/08

%Solids: 66 Date Analyzed: 09/15/08

Dilution Factor: 1

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND	CONCENTRATI (ug/L or u		(g Q
75-34-3 67-66-3 56-23-5 78-87-5 124-48-1 127-18-4 108-90-7 107-06-2 71-55-6 75-27-4 10061-02-6 10061-01-5 563-58-6 75-25-2 10-43-2 10-41-4 74-87-3 10-41-4 75-00-3 75-01-4 75-01-4 75-01-4 75-01-4 75-01-4 75-01-4 75-01-4 75-01-4 75-01-4 75-01-4 75-01-4 75-01-4 75-01-4 75-01-4 75-01-4 75-01-4 75-01-4 156-60-5 156-60-5 156-46-7 106-46-7 106-46-7 106-46-7	Carbon tetrachlor1,2-DichloropropaDibromochlorometh1,1,2-TrichloroetTetrachloroetheneChlorobenzeneTrichloroethan1,1,1-TrichloroetheneI,1,1-TrichlorometheneI,1,1-TrichlorometheneI,1,3-DichloropeI,1-DichloropropeBromoform1,1,2,2-TetrachloBenzeneTolueneEthylbenzeneChloromethaneVinyl chlorideChloroethene1,1-Dichloroethene1,1-Dichloroethene1,1-Dichloroethene1,1-Dichloroethene1,1-Dichlorobenze1,3-Dichlorobenze1,4-Dichlorobenze1,4-DichlorobenzeMethyl tert butyl 3-p/m-Xylene	e ide ne ane hane e hane opropene ropene ne coethene ne e ne e ne e ne e ne e e ther	38 5.7 5.8 13 3.8 5.7 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8	מממממממממממממממממממממממממממממממממממממממ
156-59-2	cis-1,2-Dichloroe	thene	3.8	U

FORM I VOA-1

CLIENT SAMPLE NO.

PWG-DW-2008-34 (5.5-6')

Lab Name: Alpha Analytical Labs

SDG No.: L0813447

Matrix: (soil/water) SOIL Lab Sample ID: L0813447-08

Sample wt/vol: 2 (g/mL) g Lab File ID: 0915A11

Level: (low/med) LOW Date Received: 09/11/08

%Solids: 66 Date Analyzed: 09/15/08

Dilution Factor: 1

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CAS NO. COMPOUND CONCENTRATION UNITS:

(ug/L or ug/Kg) ug/Kg Q

104-51-8n-Butylbenzene 135-98-8sec-Butylbenzene 98-06-6tert-Butylbenzene 95-49-8o-Chlorotoluene 106-43-4p-Chlorotoluene 96-12-8Hexachlorobutadiene 98-82-8Hexachlorobutadiene 98-82-8Isopropylbenzene 99-87-6	38 19 19 15 19 3.8 19 19 19 19 19 3.8 19 3.8 19 19 19 19 19 19 3.8	נטטטטטטטטטטטטטטטטטטטטטט
120-82-11,2,4-Trichlorobenzene	19	
108-67-81,3,5-Trimethylbenzene	19	ט

FORM I VOA-1

Kon istrolog

CLIENT SAMPLE NO.

PWG-DW-2008-34 (5.5-6')

Lab Name: Alpha Analytical Labs

SDG No.: L0813447

Matrix: (soil/water) SOIL Lab Sample ID: L0813447-08

Sample wt/vol: 15 (g/mL) g Lab File ID: 13447-08

Level: (low/med) LOW Date Received: 09/11/08

% Solids: 66 Date Extracted:16-SEP-08

Concentrated Extract Volume: 15000 (uL) Date Analyzed: 09/18/08

Injection Volume: 1 (uL) Dilution Factor: 15

GPC Cleanup: (Y/N) N

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/kg) ug/kg

83-32-9Acenaphthene	7600	ט
120-82-11,2,4-Trichlorobenzene	7600	ט
118-74-1Hexachlorobenzene	7600	U
111-44-4Bis(2-chloroethyl)ether	7600	ט
91-58-72-Chloronaphthalene	9100	U
95-50-11,2-Dichlorobenzene	7600	ן ט
541-73-11,3-Dichlorobenzene	7600	U
106-46-71,4-Dichlorobenzene	7600	U
91-94-13,3'-Dichlorobenzidine	15000	U
121-14-22,4-Dinitrotoluene	7600	U
606-20-22,6-Dinitrotoluene	7600	U
206-44-0Fluoranthene	7600	U
7005-72-34-Chlorophenyl phenyl ether	7600	U
101-55-34-Bromophenyl phenyl ether	7600	U
108-60-1Bis(2-chloroisopropyl)ether	7600	U
111-91-1Bis(2-chloroethoxy)methane	7600	U
87-68-3Hexachlorobutadiene	15000	U
77-47-4Hexachlorocyclopentadiene	15000	U 🕽
67-72-1Hexachloroethane	7600	U
78-59-1Isophorone	7600	ប្រី
91-20-3Naphthalene	7600	ן ט
98-95-3Nitrobenzene	7600	U
86-30-6NitrosoDiPhenylAmine(NDPA)/DP	23000	U
621-64-7n-Nitrosodi-n-propylamine	7600	U
117-81-7Bis(2-Ethylhexyl)phthalate	15000	บ
85-68-7Butyl benzyl phthalate	7600	ប
84-74-2Di-n-butylphthalate	7600	ן ט
117-84-0Di-n-octylphthalate	7600	บ
84-66-2Diethyl phthalate	7600	ן ט
131-11-3Dimethyl phthalate	7600	ט
56-55-3Benzo(a)anthracene	7600	ט
50-32-8Benzo (a) pyrene	7600	ט
205-99-2Benzo(b) fluoranthene	7600	บ
207-08-9Benzo(k) fluoranthene	7600	ן ט

FORM I SV-1

CLIENT SAMPLE NO.

PWG-DW-2008-34(5.5-6')

Lab Name: Alpha Analytical Labs

SDG No.: L0813447

Matrix: (soil/water) SOIL Lab Sample ID: L0813447-08

Sample wt/vol: 15 (g/mL) g Lab File ID: 13447-08

Level: (low/med) LOW Date Received: 09/11/08

% Solids: 66 Date Extracted:16-SEP-08

Concentrated Extract Volume: 15000 (uL) Date Analyzed: 09/18/08

Injection Volume: 1 (uL) Dilution Factor: 15

GPC Cleanup: (Y/N) N

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

218-01-9	7600 7600 7600 7600 7600 7600 7600 7600		_
----------	--	--	---

FORM I SV-2

Kbey 15/0/00

CLIENT SAMPLE NO.

PWG-DW-2008-34(5.5-61)

Lab Name: Alpha Analytical Labs

SDG No.: L0813447

Matrix: (soil/water) SOIL

Lab Sample ID: L0813447-08

Sample wt/vol:

15 (g/mL) g Lab File ID: 13447-08

Level: (low/med) LOW

Date Received: 09/11/08

% Solids: 66

Date Extracted: 16-SEP-08

Concentrated Extract Volume: 15000 (uL)

Date Analyzed: 09/18/08

Injection Volume: 1

(uL)

COMPOUND

Dilution Factor: 15

GPC Cleanup: (Y/N) N

CAS NO.

CONCENTRATION UNITS:

(ug/L or ug/Kg) ug/Kg

86-74-8-----Carbazole

7600

U

FORM I SV-1

CLIENT SAMPLE NO.

PWG-DW-2008-34 (5.5-6')

Lab Name: Alpha Analytical Labs

SDG No.: L0813447

Matrix: (soil/water) SOIL Lab Sample ID: L0813447-08

Sample wt/vol: 15 (g/mL) g Lab File ID: 13447-08

Level: (low/med) LOW Date Received: 09/11/08

% Solids: 66 Date Extracted:12-SEP-08

Concentrated Extract Volume: 2000 (uL) Date Analyzed: 09/16/08

Injection Volume: 1 (uL) Dilution Factor: 100

GPC Cleanup: (Y/N) N

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

83-32-9Acenaphthene	2000	ט
91-58-72-Chloronaphthalene	2000	U
206-44-0Fluoranthene	2000	υ
87-68-3Hexachlorobutadiene	 5000	ן ט
91-20-3Naphthalene	 2000	ן ט
56-55-3Benzo(a)anthracene	 2000	ן ט
50-32-8Benzo(a)pyrene	2000	υ
205-99-2Benzo(b)fluoranthene	2000	ן ט
207-08-9Benzo(k)fluoranthene	2000	ט
218-01-9Chrysene	2000	ן ט
208-96-8Acenaphthylene	2000	ן ט
120-12-7Anthracene	2000	Ų
191-24-2Benzo(ghi)perylene	2000	Ų
86-73-7Fluorene	2000	U
85-01-8Phenanthrene	2000	
53-70-3Dibenzo(a,h)anthracene	2000	Ų
193-39-5Indeno(1,2,3-cd)Pyrene	2000	ט
129-00-0Pyrene	2000	ט
91-57-62-Methylnaphthalene	11000	
87-86-5Pentachlorophenol	8100	ן ט
118-74-1Hexachlorobenzene	8100	ט
67-72-1Hexachloroethane	8100	υ
]

FORM I SV-1

1E GC ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

PWG-DW-2008-34(5.5-6')

Lab Name: Alpha Analytical Labs

SDG No.: L0813447

Matrix: (soil/water) SOIL

Sample wt/vol: 15 (g/mL) g

(uL)

COMPOUND

% Solids: 66

Extraction: (Type)

Concentrated Extract Volume: 10000(uL)

Injection Volume: 1

CAS NO.

GPC Cleanup: (Y/N) N

GC Column:

Lab Sample ID: L0813447-08

Lab File ID: DATA027

Date Received: 09/11/08

Date Extracted: 16-SEP-08

Date Analyzed: 09/18/08

Dilution Factor:

Sulfur Cleanup: (Y/N) N

CONCENTRATION UNITS:

(ug/L or ug/Kg) ug/Kg

Kg Q

FORM I TPHDROD-S

CLIENT SAMPLE NO.

PWG-DW-2008-	
34 (5.5~6!)	

SDG No.: L0813447

 Lab Code:
 AAL

 Matrix (soil/water):
 SOIL
 Lab Sample ID: L0813447-08

 Date Received:
 09/11/08

 % Solids:
 66

Lab Name: Alpha Analytical

[·····	1		T		
CAS No.	Analyte	Concentration	С		
7429-90-5	Aluminum	4200	,	1	
7440-36-0	Antimony	3.7	U 🕽	X	
7440-38-2	Arsenic			•	
7440-39-3	Barium	41			
7440-41-7	Beryllium	0.37	U		
7440-43-9	Cadmium	1,8			
7440-70-2	Calcium	14000			
7440-47-3	Chromium	39		X/	
7440-48-4	Cobalt	3.0			
7440-50-8	Copper	35		M 1	
7439-89-6	Iron	7900			
7439-92-1	Lead	300		JV /	
7439-95-4	Magnesium	8300	Ť		
7439-96-5	Manganese				
7439-97-6	Mercury		1		
7439-98-7	Molybdenum				
7440-02-0	Nickel	14			
7440-09-7	Potassium	300			
7782-49-2	Selenium				
7440-22-4	Silver	4.4			
7440-23-5	Sodium	150	U		
7440-24-6	Strontium				
7440-28-0	Thallium	1.5	Ŭ		
7440-62-2	Vanadium	26	1		
7440-66-6	Zinc	270			
7440-31-5	Tin				
7440-42-8	Boron				
57-12-5	Cyanide				
END					

Comments:	14/10/00
-----------	----------

CLIENT SAMPLE NO.

PWG-DW-2008-34(5.5-6')

SDG No.: L0813447

Lab Name: Alpha Analytical

Lab Code: AAL

Matrix (soil/water): SOIL

Lab Sample ID: L0813447-08

Date Received: 09/11/08

% Solids:

66

		Concentratio	n Units:	mg/kg
CAS No.	Analyte	Concentration	С	
7429-90-5	Aluminum			
7440-36-0	Antimony			
7440-38-2	Arsenic	1.3		
7440-39-3	Barium			
7440-41-7	Beryllium			
7440-43-9	Cadmium			
7440-70-2	Calcium			
7440-47-3	Chromium	**************************************		
7440-48-4	Cobalt			
7440-50-8	Copper			
7439-89-6	Iron			
7439-92-1	Lead	***************************************		
7439-95-4	Magnesium			. /
7439-96-5	Manganese	54		
7439-97-6	Mercury			
7439-98-7	Molybdenum			
7440-02-0	Nickel			
7440-09-7	Potassium			
7782-49-2	Selenium	1.5	U	
7440-22-4	Silver			
7440-23-5	Sodium			
7440-24-6	Strontium			
7440-28-0	Thallium			
7440-62-2	Vanadium			
7440-66-6	Zinc			
7440-31-5	Tin			
7440-42-8	Boron			
57-12-5	Cyanide			
END				
	1			· · · · · · · · · · · · · · · · · · ·
	. •		•	

12/10/04

Co	mm	ıΩ	n	ŧ-	C	

CLIENT SAMPLE NO.

PWG-DW-2008-	
34 (5.5-61)	

3447

Lab Name: Alpha Analy	ytical		34 (5.5-6')
Lab Code: AAL			SDG No.: L081
Matrix (soil/water):	SOIL	Lab Sample ID: L0813447-08	_
		Date Received: 09/11/08	
% Solids:	66		

Concentration Units: mg/kg CAS No. Analyte Concentration С Aluminum 7429-90-5 7440-36-0 Antimony 7440-38-2 Arsenic 7440-39-3 Barium 7440-41-7 Beryllium 7440-43-9 Cadmium 7440-70-2 Calcium Chromium 7440-47-3 7440-48-4 Cobalt Copper 7440-50-8 7439-89-6 Iron 7439-92-1 Lead Magnesium 7439-95-4 7439-96-5 Manganese 4,1 7439-97-6 Mercury Molybdenum 7439-98-7 Nickel 7440-02-0 7440-09-7 Potassium 7782-49-2 Selenium 7440-22-4 Silver Sodium 7440-23-5 7440-24-6 Strontium 7440-28-0 Thallium 7440-62-2 Vanadium 7440-66-6 Zinc 7440-31-5 Tin 7440-42-8 Boron 57-12-5 Cyanide *END*

Comments:		

1B WET CHEMISTRY DATA SHEET

CLIENT SAMPLE NO.

PWG-DW-2008-34 (5.5-61)

Lab Name: Alpha Analytical Labs

SDG No.: L0813447

Matrix: (soil/water) SOIL Lab Sample ID: L0813447-08

Sample wt/vol: (g/mL) Lab File ID: 13-SEP-08

Date Received: 09/11/08

% Solids: 66 Date Extracted:

COMPOUND

Date Analyzed: 09/13/08

Dilution Factor: 1

CAS NO.

CONCENTRATION UNITS: (ug/L or ug/Kg) %

NONE-----Solids, Total______66

FORM I WETCHEM

CLIENT SAMPLE NO.

PWG-SG-2008-08

Lab Name: Alpha Analytical Labs

SDG No.: L0813541

Matrix: (soil/water) AIR Lab Sample ID: L0813541-08

Sample wt/vol: 250. (g/mL) ml Lab File ID: R74606

Level: (low/med) LOW Date Received: 09/11/08

%Solids: Date Analyzed: 09/17/08

Dilution Factor: 1

Soil Extract Volume: 250000 (uL) Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND	CONCENTRATIO		Q
71-55-6	1,1,1-Trichlor	oethane	0.200	ט
79-34-5	1,1,2,2-Tetrac	hloroethane	0.200	ט
79-00-5	1,1,2-Trichlor	oethane	0.200	ן ט
75-34-3	1,1-Dichloroet	hane	0.200	U
75-35-4	1.1-Dichloroet	hene	0.200	ט
120-82-1	1,2,4-Trichlor	obenzene	0.200	ט
95-63-6	1,2,4-Trimethy	lbenzene	0.789	
106-93-4	1,2-Dibromoeth	ane	0.200	ט
95-50-1	1,2-Dichlorobe	nzene	0,200	U
107-06-2	1,2-Dichloroet	hane	0.200	ט
78-87-5	1,2-Dichloropr	opane	0.200	U
108-67-8	1,3,5-Trimethy	benzene	0.377	
106-99-0	1,3-Butadiene	-	0.200	ប
	1,3-Dichlorob $\overline{\mathrm{e}}$	nzene	0.200	U
106-46-7	1,4-Dichlorobe	nzene	4.05	
123-91-1	1,4-Dioxane		0.200	U
540-84-1	2,2,4-Trimethy	lpentane	0.200	U U
	2-Butanone		4.21	
591-78-6	2-Hexanone		0.940	
107-05-1	3-Chloropropen	е	0.200	ן ט
622-96-8	4-Ethyltoluene		0.200	U
67-64-1			15.2	
71-43-2	Benzene		0.200	U
100-44-7	Benzyl chlorid	е	0.200	U
	Bromodichlorom		0.200	ן ט
	Bromoform		0.200	U
74-83-9	Bromomethane		0.200	U
75-15-0	Carbon disulfi	de	0.200	ן ט
	Carbon tetrach		0.200	ט
	Chlorobenzene		0.200	ט
	Chloroethane		0.200	ט
	Chloroform		0.200	U
	Chloromethane		0.200	U
	cis-1,2-Dichlo	roethene	0.200	ט
	cis-1,3-Dichlo		0.200	ט
	•			

FORM I VOA-1

CLIENT SAMPLE NO.

PWG-SG-2008-08

Lab Name: Alpha Analytical Labs

SDG No.: L0813541

Matrix: (soil/water) AIR Lab Sample ID: L0813541-08

Sample wt/vol: 250. (g/mL) ml Lab File ID: R74606

Level: (low/med) LOW Date Received: 09/11/08

%Solids: Date Analyzed: 09/17/08

Dilution Factor: 1

Soil Extract Volume: 250000 (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ppbV 0 0.284 110-82-7-----Cyclohexane 124-48-1-----Dibromochloromethane 0.200 U 75-71-8-----Dichlorodifluoromethane 0.598 4.37 64-17-5-----Ethanol 141-78-6-----Ethyl Acetate 0.500 U 100-41-4----Ethylbenzene 0.733 76-13-1-----Freon-113 U 0.200 76-14-2----Freon-114 U 0,200 87-68-3-----Hexachlorobutadiene U 0.200 67-63-0-----Isopropanol 0.521 75-09-2-----Methylene chloride 0.888 108-10-1----4-Methyl-2-pentanone U 0,200 1634-04-4-----Methyl tert butyl ether 0,200 IJ 106-42-3/108-38-p/m-Xylene 2.32 95-47-6-----o-Xylene 0.947 142-82-5-----Heptane 0.200 U 110-54-3----n-Hexane 0,289 115-07-1-----Propylene 0.957 100-42-5-----Styrene 0.710 127-18-4-----Tetrachloroethene 0,603 109-99-9-----Tetrahydrofuran 0,200 U 108-88-3-----Toluene 156-60-5----trans-1,2-Dichloroethene 1.88 0.200 IJ 10061-02-6----trans-1,3-Dichloropropene 0.200 U 79-01-6-----Trichloroethene 0.254 75-69-4-----Trichlorofluoromethane 0.335 108-05-4-----Vinyl acetate 593-60-2-----Vinyl bromide 0.200 IJ U 0.200 75-01-4-----Vinyl chloride 0.200 U

FORM I VOA-1

CLIENT SAMPLE NO.

DIFFW-01

Lab Name: Alpha Analytical Labs

SDG No.: L0814755

Matrix: (soil/water) WATER Lab Sample ID: L0814755-07

Sample wt/vol: 10.0 (g/mL) ml Lab File ID: 1009N11

Level: (low/med) LOW Date Received: 10/06/08

%Solids: N/A Date Analyzed: 10/09/08

Dilution Factor: 1

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND	CONCENTRAT (ug/L or	ION UNITS: ug/Kg) ug/L	Q
75-34-3 67-66-3 78-87-5 78-87-5 124-48-1 127-18-4 108-90-7 107-06-2 75-27-4 10061-02-6 10061-01-5 563-58-6 75-25-2 79-34-5 71-43-2 108-88-3 74-87-3 75-01-4 75-01-4 75-01-4 75-01-4 75-01-4 75-01-4 75-01-4 75-01-4 75-01-4 75-01-4 75-01-4 75-01-6 75-01-6 75-01-3 75-01-4	Carbon tetrach1,2-DichloroprDibromochlorom1,1,2-TrichlorTetrachloroethChlorobenzene1,1,1-Trichlor1,1,1-Trichlor1,1,1-Trichlortrans-1,3-Dichloropr1,1,1-DichloroprBromoform1,1,2,2-TetrachBenzeneTolueneEthylbenzeneChloromethaneVinyl chlorideChloroethaneTrichloroethene1,1-Dichloroethene1,1-Dichloroethene1,2-Dichlorobe1,3-Dichlorobe1,4-Dichlorobe1,4-DichlorobeMethyl tert bu 88-p/m-Xylene	chane copane coethane	5.0 0.75 0.75 0.75 0.50 1.8 0.50 0.55 0.50 0.550	סמ מממ ממממממממממממממממ ממממממ ארא

FORM I VOA-1

CLIENT SAMPLE NO.

DIFFW-01

Lab Name: Alpha Analytical Labs

SDG No.: L0814755

Matrix: (soil/water) WATER Lab Sample ID: L0814755-07

Sample wt/vol: 10.0 (q/mL) ml Lab File ID: 1009N11

Level: (low/med) LOW Date Received: 10/06/08

%Solids: N/A Date Analyzed: 10/09/08

Dilution Factor: 1

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L 0 74-95-3------Dibromomethane 5.0 U 96-18-4----1,2,3-Trichloropropane 5.0 Ũ 107-13-1-----Acrylonitrile 5.0 U 100-42-5-----Styrene 1.0 IJ 1 75-71-8-----Dichlorodifluoromethane 5.0 U 67-64-1-----Acetone 5.0 U 75-15-0-----Carbon disulfide 5.0 U 78-93-3----2-Butanone 5.0 U 108-05-4-----Vinyl acetate 5.0 U 108-10-1-----4-Methyl-2-pentanone 5.0 U 591-78-6----2-Hexanone 5.0 U 74-97-5-----Bromochloromethane 2.5 U 594-20-7-----2,2-Dichloropropane 2.5 U 106-93-4-----1, 2-Dibromoethane 2.0 U 142-28-9-----1,3-Dichloropropane 2.5 U 630-20-6-----1,1,1,2-Tetrachloroethane 0.50 U 108-86-1-----Bromobenzene 2.5 Ũ 104-51-8----n-Butylbenzene 0.50 U 135-98-8-----sec-Butylbenzene 0.50 U 98-06-6-----tert-Butylbenzene 2.5 U 95-49-8-----o-Chlorotoluene 2.5 U 106-43-4-----p-Chlorotoluene 96-12-8-----1,2-Dibromo-3-chloropropane 2,5 U 2.5 IJ 87-68-3-----Hexachlorobutadiene 0,60 U ΰ 🏅 98-82-8-----Isopropylbenzene 0.50 99-87-6----p-Isopropyltoluene 91-20-3-----Naphthalene 0.50 U 2,5 U 103-65-1----n-Propylbenzene 0.50 U 87-61-6-----1,2,3-Trichlorobenzene 2.5 U 120-82-1-----1,2,4-Trichlorobenzene 108-67-8-----1,3,5-Trimethylbenzene 95-63-6-----1,2,4-Trimethylbenzene 2.5 U 2.5 U 2.5 U 105-05-5----1,4-Diethylbenzene 2.0 U 622-96-8-----4-Ethyltoluene U 2.0 95-93-2----1,2,4,5-Tetramethylbenzene 2.0 U

FORM I VOA-1

CLIENT SAMPLE NO.

DIFFW-01

Lab Name: Alpha Analytical Labs

SDG No.: L0814755

Matrix: (soil/water) WATER Lab Sample ID: L0814755-07

Sample wt/vol: 945 (g/mL) ml Lab File ID: 14755-07

Level: (low/med) LOW Date Received: 10/06/08

% Solids: N/A Date Extracted:08-OCT-08

Concentrated Extract Volume: 900 (uL) Date Analyzed: 10/10/08

Injection Volume: 1 (uL) Dilution Factor: 1

GPC Cleanup: (Y/N) N

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

	1	
83-32-9Acenaphthene	4.8	ט
120-82-11,2,4-Trichlorobenzene	4.8	ت ا
118-74-1Hexachlorobenzene	4.8	U
111-44-4Bis(2-chloroethyl)ether	4.8	U
91-58-72-Chloronaphthalene	5.7	U
95-50-11,2-Dichlorobenzene	4.8	U
541-73-11,3-Dichlorobenzene	4.8	lυ
106-46-71,4-Dichlorobenzene	4.8	ט ו
91-94-13,3'-Dichlorobenzidine	48	ט
121-14-22,4-Dinitrotoluene	5.7	ט ו
606-20-22,6-Dinitrotoluene	4.8	ט ו
206-44-0Fluoranthene	4.8	ן ט
7005-72-34-Chlorophenyl phenyl ether	4.8	ן די
101-55-34-Bromophenyl phenyl ether	4.8	U
108-60-1Bis(2-chloroisopropyl) ether	4.8	Jυ
111-91-1Bis(2-chloroethoxy) methane	4.8	υ
87-68-3Hexachlorobutadiene	9.5	ע דו
77-47-4Hexachlorocyclopentadiene	28	U 🔼
67-72-1Hexachloroethane	4.8	U
78-59-1Isophorone	4.8	ן ט
91-20-3Naphthalene	4.8	ן ט
98-95-3Nitrobenzene	4.8	ט
86-30-6NitrosoDiPhenylAmine(NDPA)/DP	14	ט
621-64-7n-Nitrosodi-n-propylamine	4.8	ט
117-81-7Bis(2-Ethylhexyl)phthalate	4.8	ט
85-68-7Butyl benzyl phthalate	4.8	ן ט
84-74-2Di-n-butylphthalate	4.8	ן די
117-84-0Di-n-octylphthalate	4.8	U
84-66-2Diethyl phthalate	4.8	U
131-11-3Dimethyl phthalate	4.8	ΙU
56-55-3Benzo(a) anthracene	4.8	ן ט
50-32-8Benzo(a)pyrene	4.8	ן ט
205-99-2Benzo(b) fluoranthene	4.8	ט
207-08-9Benzo(k)fluoranthene	4.8	ט

FORM I SV-1

CLIENT SAMPLE NO.

DIFFW-01

Lab Name: Alpha Analytical Labs

SDG No.: L0814755

Matrix: (soil/water) WATER Lab Sample ID: L0814755-07

Sample wt/vol: 945 (g/mL) ml Lab File ID: 14755-07

Level: (low/med) LOW Date Received: 10/06/08

% Solids: N/A Date Extracted:08-OCT-08

Concentrated Extract Volume: 900 (uL) Date Analyzed: 10/10/08

Injection Volume: 1 (uL) Dilution Factor: 1

GPC Cleanup: (Y/N) N

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

218-01-9	Chrysene	4.8	U
208-96-8	Acenaphthylene	4.8	U
120-12-7	Anthracene	4.8	ΙŪ
	Benzo(ghi)perylene	4.8	ΙŪ
86-73-7	Fluorene	4.8	١Ū
	Phenanthrene	4.8	تَ ا
	Dibenzo(a,h)anthracene	4.8	Ιΰ
193-39-5	Indeno(1,2,3-cd)Pyrene	6.7	۱ũ
129-00-0	Pvrene	4.8	Ū
92-52-4	Biphenvl	4.8	ΙŪ
106-47-8	4-Chloroaniline	4.8	ŀŪ
88-74-4	2-Nitroaniline	4.8	Ū
99-09-2	3-Nitroaniline	4.8	ÜΪ
100-01-6	4-Nitroaniline	6.7	ΙŪ
	Dibenzofuran	4.8	ΙŪ
	2-Methylnaphthalene	4.8	اَتَ
	1,2,4,5-Tetrachlorobenzene	19	ΙŪ
	Acetophenone	19	שׁ
	2,4,6-Trichlorophenol	4.8	υ
59-50-7	P-Chloro-M-Cresol	4.8	υ
95-57-8	2-Chlorophenol	5.7	ט
	2,4-Dichlorophenol	9.5	ט
105-67-9	2,4-Dimethylphenol	9.5	U
88-75-5	2-Nitrophenol	19	U
	4-Nitrophenol	9.5	Ü
	2,4-Dinitrophenol	28	ΙŪ
534-52-1	4,6-Dinitro-o-cresol	19	lΰ
87-86-5	Pentachlorophenol	9.5	ا ت
108-95-2		6.7	ت ا
95-48-7	2-Methylphenol	5.7	Ιΰ
	3-Methylphenol/4-Methylphenol	5.7	ن ا
	2,4,5-Trichlorophenol	4.8	م آآ
	Benzoic Acid	48	ប៉ូ 🗂
	Benzyl Alcohol	9.5	۱ũ

FORM I SV-2

CLIENT SAMPLE NO.

DIFFW-01

Lab Name: Alpha Analytical Labs

SDG No.: L0814755

Matrix: (soil/water) WATER Lab Sample ID: L0814755-07

Sample wt/vol: 945 (g/mL) ml Lab File ID: 14755-07

Level: (low/med) LOW Date Received: 10/06/08

% Solids: N/A Date Extracted:08-OCT-08

Concentrated Extract Volume: 900 (uL) Date Analyzed: 10/10/08

Injection Volume: 1 (uL) Dilution Factor: 1

GPC Cleanup: (Y/N) N

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

86-74-8-----Carbazole______ 4.8 U

FORM I SV-1

CLIENT SAMPLE NO.

DIFFW-01

Lab Name: Alpha Analytical Labs

SDG No.: L0814755

Matrix: (soil/water) WATER

Lab Sample ID: L0814755-07

Sample wt/vol:

945

(g/mL) ml

Lab File ID: 14755-07

Level: (low/med)

LOW

Date Received: 10/06/08

% Solids: N/A

Date Extracted: 08-OCT-08

Concentrated Extract Volume: 900 (uL)

Date Analyzed: 10/11/08

Injection Volume: 1 (uL)

Dilution Factor: 1

GPC Cleanup: (Y/N) N

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NO. COMPOUND

83-32-9Acenaphthene	0.19	U
91-58-72-Chloronaphthalene	_ 0.19	U
206-44-0Fluoranthene	0.19	U
87-68-3Hexachlorobutadiene	0.48	ן ט
91-20-3Naphthalene	0.19	ן ט
56-55-3Benzo(a)anthracene	0.19	U
50-32-8Benzo(a)pyrene	0.19	ן ט
205-99-2Benzo(b)fluoranthene	0.19	ן ט
207-08-9Benzo(k)fluoranthene	0.19	U
218-01-9Chrysene	0.19	ΰ
208-96-8Acenaphthylene	0.19	U
120-12-7Anthracene	0.19	U
191-24-2Benzo(ghi)perylene	0.19	ן ט
86-73-7Fluorene	0,19	U
85-01-8Phenanthrene	0.19	U
53-70-3Dibenzo(a,h)anthracene	0.19	U
193-39-5Indeno(1,2,3-cd)Pyrene	0.19	U
129-00-0Pyrene	0.19	Ü
91-57-62-Methylnaphthalene	0.19	[U
87-86-5Pentachlorophenol	0.76	U
118-74-1Hexachlorobenzene	0,76	U
67-72-1Hexachloroethane	0.76	U

FORM I SV-1

1E PCB ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

DIFFW-01

Lab Name: Alpha Analytical Labs

SDG No.: L0814755

GC Column:

Matrix: (soil/water) WATER

Lab Sample ID: L0814755-07

Sample wt/vol: 1000 (g/mL) ml

Lab File ID: 1009ca017

% Solids: N/A

Date Received: 10/06/08

Extraction: (Type) Date Extracted: 08-OCT-08

Concentrated Extract Volume: 1000 (uL)

Date Analyzed: 10/09/08

Injection Volume: 1

CAS NO.

(uL)

Dilution Factor:

GPC Cleanup: (Y/N) N

Sulfur Cleanup: (Y/N) N

CONCENTRATION UNITS:

COMPOUND (ug/L or ug/Kg) ug/L

12674-11-2Aroclor 1016 11104-28-2Aroclor 1221 11141-16-5Aroclor 1232 53469-21-9Aroclor 1242 12672-29-6Aroclor 1248 11097-69-1Aroclor 1254 11096-82-5Aroclor 1260	0.100 0.100 0.100 0.100 0.100 0.100	U U U U U
11096-82-5Aroclor 1260	0.100	U

FORM I PCB

PESTICIDE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

DIFFW-01

Lab Name: Alpha Analytical Labs

SDG No.: L0814755

GC Column:

Matrix: (soil/water) WATER Lab Sample ID: L0814755-07

Sample wt/vol: 940 (g/mL) ml Lab File ID: 10090023

% Solids: N/A Date Received: 10/06/08

Extraction: (Type) Date Extracted: 08-OCT-08

Concentrated Extract Volume: 10000(uL) Date Analyzed: 10/09/08

Injection Volume: 1 (uL) Dilution Factor: 1

GPC Cleanup: (Y/N) N Sulfur Cleanup: (Y/N) N

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L		Q
319-86-8 58-89-9			0,021 0.021	U U

57-74-9Chlordane 0,213 0	319-86-8	0.021 0.021 0.021 0.021 0.021 0.021 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.021 0.043 0.021	טטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטט
--------------------------	----------	---	---

FORM I PEST

CI.TENIT	SAMPLE	MO

DIFFW-01

Lab	Name:	Alpha Analy	tical	to the manner of the souther through the speak over manner or	
Lab	Code:	AAL			SDG No.: L081475
Mati	rix (so	il/water):	WATER	Lab Sample ID: L0814755-07	

Date Received: 10/06/08

% Solids: N/A

CAS No.	Analyte	Concentration	С		
7429-90-5	Aluminum	2.1			
7440-36-0	Antimony	0.050	U		
7440-38-2	Arsenic				
7440-39-3	Barium	0.062			
7440-41-7	Beryllium	0.005	U		
7440-43-9	Cadmium	0.009			
7440-70-2	Calcium	20			
7440-47-3	Chromium	0.04			
7440-48-4	Cobalt	0.034			
7440-50-8	Copper	0.726		·	
7439-89-6	Iron				
7439-92-1	Lead	0.012			
7439-95-4	Magnesium	15			
7439-96-5	Manganese	4.74			
7439-97-6	Mercury				
7439-98-7	Molybdenum				
7440-02-0	Nickel	0.025	Ω		
7440-09-7	Potassium	4.2			
7782-49-2	Selenium	0.010	υ		
7440-22-4	Silver	0.007	Ū		
7440-23-5	Sodium	25			
7440-24-6	Strontium				
7440-28-0	Thallium	0.020	U		
7440-62-2	Vanadium	0,010	U		
7440-66-6	Zinc	0.670			
7440-31-5	Tin				
7440-42-8	Boron				
57-12-5	Cyanide				
END					

Comments:			

CLIENT SAMPLE NO.

DIFFW-01	
DIELM-OT	

Lab Name: Alpha Analy	tical		DIFIN OI
Lab Code: AAL	_		SDG No.: L0814755
Matrix (soil/water):	WATER	Lab Sample ID: <u>L0814755-07</u>	
		Date Received: 10/06/08	
% Solids:	N/A		

CAS No.	Analyte	Concentration	С	
CAB NO.	Anaryce	concentracion		
7429-90-5	Aluminum			
7440-36-0	Antimony			
7440-38-2	Arsenic			
7440-39-3	Barium			
7440-41-7	Beryllium			
7440-43-9	Cadmium			
7440-70-2	Calcium			
7440-47-3	Chromium			
7440-48-4	Cobalt			
7440-50-8	Copper			
7439-89-6	Iron	340		
7439-92-1	Lead			
7439-95-4	Magnesium			
7439-96-5	Manganese			
7439-97-6	Mercury			
7439-98-7	Molybdenum			
7440-02-0	Nickel			
7440-09-7	Potassium			
7782-49-2	Selenium			
7440-22-4	Silver			
7440-23-5	Sodium			
7440-24-6	Strontium			
7440-28-0	Thallium			
7440-62-2	Vanadium			
7440-66-6	Zinc	***************************************		
7440-31-5	Tin			
7440-42-8	Boron			
57-12-5	Cyanide			
END				

Comments:	

CLIENT SAMPLE NO.

DIFFW-01

Lab Name: Alpha Analyt	ical		
Lab Code: AAL	-		SDG No.: L0814755
Matrix (soil/water):	WATER	Lab Sample ID: <u>L0814755-07</u>	
		Date Received: 10/06/08	
% Solids:	N/A		

CAS No.	Analyte	Concentration	С		
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic	0.100	Ū		1
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron			ĺ	
7439-92-1	Lead				
7439-95-4	Magnesium				
7439-96-5	Manganese			,	
7439-97-6	Mercury				
7439-98-7	Molybdenum				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-24-6	Strontium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc	·	·		
7440-31-5	Tin				
7440-42-8	Boron				
57-12-5	Cyanide				
END					

Comments:				
	 	 	 	

CLIENT SAMPLE NO.

DIFFW-01	

Lab Name: Alpha Analy	tical		
Lab Code: AAL			SDG No.: L0814755
Matrix (soil/water):	WATER	Lab Sample ID: L0814755-07	
		Date Received: 10/06/08	
% Solids:	N/A		

CAS No.	Analyte	Concentration	С	
7429-90-5	Aluminum			
7440-36-0	Antimony			 Г
7440-38-2	Arsenic			
7440-39-3	Barium			
7440-41-7	Beryllium			
7440-43-9	Cadmium			
7440-70-2	Calcium			
7440-47-3	Chromium			
7440-48-4	Cobalt			
7440-50-8	Copper			
7439-89-6	Iron			
7439-92-1	Lead			
7439-95-4	Magnesium			
7439-96-5	Manganese			
7439-97-6	Mercury	0.0002		
7439-98-7	Molybdenum			
7440-02-0	Nickel			
7440-09-7	Potassium			
7782-49-2	Selenium			
7440-22-4	Silver			
7440-23-5	Sodium			
7440-24-6	Strontium			
7440-28-0	Thallium			
7440-62-2	Vanadium			
7440-66-6	Zinc			
7440-31-5	Tin			
7440-42-8	Boron			
57-12-5	Cyanide			
END				
				г

Comments:	

CLIENT SAMPLE NO.

DIFFW-04

Lab Name: Alpha Analytical Labs

SDG No.: L0814991

Matrix: (soil/water) WATER Lab Sample ID: L0814991-05

Sample wt/vol: 0.200 (g/mL) ml Lab File ID: 1014N08

Level: (low/med) LOW Date Received: 10/09/08

%Solids: N/A Date Analyzed: 10/14/08

Dilution Factor: 50

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug	J/L or ug/Kg) ug/L	Q
75-34-3	Methylene chloride	250 38	ŭ
	Chloroform	38	U
	Carbon tetrachloride_	25	U
	1,2-Dichloropropane		U
124-48-1	Dibromochloromethane	25	U U
19-00-5	1,1,2-Trichloroethane	38	0
	Tetrachloroethene	1400	7.7
	Chlorobenzene	25	Ü
75-69-4	Trichlorofluoromethane		Ü
107-06-2	1,2-Dichloroethane	25	Ü
	1,1,1-Trichloroethane	25	U
	Bromodichloromethane_	25	Ŭ
10061-02-6	trans-1,3-Dichloropror	pene 25	Ŭ
10061-01-5	cis-1,3-Dichloroproper	ne 25	Ŭ
	1,1-Dichloropropene		U
75-25-2	Bromoform_	100	Ü
79-34-5	1,1,2,2-Tetrachloroeth	nane 25	U
71-43-2		25	U
108-88-3		38	U
100-41-4	Ethylbenzene	25	U
74-87-3	Chloromethane		U.J
	Bromomethane	50	U
75-01-4	Vinyl chloride	50	ប
75-00-3	Chloroethane	50	บ
	1,1-Dichloroethene	25	U
	trans-1,2-Dichloroethe	ene 38	U
	Trichloroethene	300	
95-50-1	1,2-Dichlorobenzene	120	U
541-73-1	1,3-Dichlorobenzene	120	บ
106-46-7	1,4-Dichlorobenzene	120	U
1634-04-4	Methyl tert butyl ethe	er 50	ט
	-38-p/m-Xylene		υ
	o-Xylene	50	U
	cis-1,2-Dichloroethene	1800	

FORM I VOA-1

KBy 3/1/08

CLIENT SAMPLE NO.

DIFFW-04

Lab Name: Alpha Analytical Labs

SDG No.: L0814991

Matrix: (soil/water) WATER

Lab Sample ID: L0814991-05

Sample wt/vol: 0.200 (g/mL) ml

LOW

Lab File ID: 1014N08

Level: (low/med)

Date Received: 10/09/08

%Solids: N/A

Date Analyzed: 10/14/08

Dilution Factor: 50

Soil Extract Volume:

(uL) Soi

Soil Aliquot Volume:

(uL)

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

95-93-21,2,4,5-Tetramethylbenzene 100 U

FORM I VOA-1

18m/11/04