January 25, 2010

ACTIVE SUB SLAB VENT SYSTEM INTERIM REMEDIAL MEASURE CONSTRUCTION COMPLETION REPORT

Oceanside Plaza Oceanside, New York

Prepared for:

OCEANSIDE PLAZA ASSOCIATES, LLC Lawrence, New York

Remedial Engineering, P.C. *Environmental Engineers*

TABLE OF CONTENTS

1.0 INTRODUCTION	1
 2.0 SUMMARY OF SITE BACKGROUND	2 3
 3.0 SUMMARY OF SUB-SLAB VENT SYSTEM INSTALLATION AND MONITORING 3.1 Performance Monitoring 3.1.1 September 2009 Performance Monitoring Event 3.1.2 October 2009 Performance Monitoring Event 	35 6 7
4.0 ENGINEERS CERTIFICATION	9

TABLE

1. Comprehensive Summary of Volatile Organic Compounds in Vapor, Oceanside Plaza Site, Oceanside, New York

FIGURES

- 1. Site Location Map
- 2. Site Layout and Configuration
- 3. Active Sub Slab Vent System Layout
- 4. System Radius of Influence on September 2, 2009

APPENDICES

- A. NYSDEC Approved Active Sub Slab Vent System IRM Work Plan dated September 18, 2008
- B. Analytical Results for Vapor Samples (See Attached CD)
- C. Data Usability Summary Reports
- D. Blower and Vapor-Phase Carbon Drum Cut Sheets
- E. Photographs of Sub Slab Vent System Installation

1.0 INTRODUCTION

Remedial Engineering, P.C. (Remedial Engineering) and Roux Associates, Inc. (Roux Associates) have prepared this Interim Remedial Measure Construction Completion Report (IRM CCR) on behalf of Oceanside Plaza Associates, LLC (Oceanside Plaza Associates) to document the Active Sub Slab Vent System (SSVS) IRM activities that have occurred at the Oceanside Plaza Shopping Center, centered at the location of the Jef El dry cleaners facility, located at 3181 Long Beach Road, Oceanside, New York (Site). A Site Location Map is provided in Figure 1. A Remedial Investigation (RI) is currently being conducted at the Site under the New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP). Investigation activities are being completed in accordance with the Remedial Investigation Work Plan (RIWP) dated May 2007. This RIWP was approved by the NYSDEC in their letter dated June 20, 2007. The installation of an active SSVS (i.e., the subject of this CCR) was implemented as an IRM under the ongoing RI. Construction associated with the SSVS IRM was completed on July 27, 2009, and the SSVS has been operational since July 30, 2009.

The SSVS IRM activities were performed in accordance with the NYSDEC-approved Revised Active Sub Slab Vent System IRM Work Plan (IRM Work Plan) prepared by Remedial Engineering and Roux Associates dated September 18, 2008 (Appendix A). This Active SSVS IRM Work Plan was approved by the NYSDEC in their letter dated December 23, 2008. This IRM CCR describes the installation and monitoring of the SSVS at the Site. In addition to the Active SSVS IRM implemented by Roux Associates, Reliance Environmental, Inc. (Reliance Environmental) has implemented a soil excavation IRM behind the Site. Reliance Environmental is preparing a separate CCR to document soil excavation activities. Additionally, Reliance Environmental is also preparing a Remedial Investigation (RI) Report to document all investigation activities conducted as part of the RI.

This CCR is organized as follows:

- Section 2.0 Summary of the Site Background;
- Section 3.0 Summary of the Sub-Slab Vent System Installation and Monitoring; and
- Section 4.0 Engineers Certification.

2.0 SUMMARY OF SITE BACKGROUND

Roux Associates previously completed a soil vapor investigation at the Site as a component of the RI activities. The soil vapor investigation included work in the Jef El dry cleaner, the book store located immediately south of the Jef El dry cleaner (Chapter One Books, Inc.), and in the former vacuum repair store located immediately north of the Jef El dry cleaner (currently the Vino 100 wine store). The stores are slab-on-grade construction (i.e., no basements). In November 2007, Roux Associates installed five permanent sub slab vapor monitoring points (three within the Jef El dry cleaner facility, one in Chapter One Books, Inc., and one in what is currently the Vino 100 wine store) and the installation of one permanent sub surface soil vapor monitoring point located at the fence line behind the Jef El dry cleaner (i.e., beyond the footprint of the dry cleaner building). The locations of the permanent sub slab vapor monitoring points and the permanent sub surface soil vapor monitoring point are presented in Figure 2.

In December 2007, Roux Associates completed vapor sampling activities at the Site. This included the collection of vapor samples for laboratory analysis from all five sub slab monitoring points, the sub surface soil vapor monitoring point, as well as the collection of indoor air samples from within Chapter One Books, Inc. and what is currently the Vino 100 wine store (this store was vacant at the time of sample collection in December 2007), and an ambient outdoor air sample. Vapor samples were collected using 6-liter Summa canisters over a sampling period of 8 hours. Vapor samples were submitted for analysis for the following list of chlorinated volatile organic compounds (cVOCs): vinyl chloride, 1,1-dichloroethene, trans-1,2-dichloroethene, cis-1,2-dichloroethene (TCE), and tetrachloroethene (PCE) using United States Environmental Protection Agency (USEPA) Method TO-15. Analytical laboratory data reports are provided electronically on CD in Appendix B. A Data Usability Summary Report (DUSR) was prepared by Data Validation Services (an independent data validator) and is included in Appendix C. The validated results of these samples are provided in Table 1.

As shown in Table 1, the results of the December 2007 sampling indicated that elevated concentrations of cVOCs, primarily PCE, were present at the Site. Specifically, PCE was detected at a maximum concentration of 120,000 micrograms per cubic meter (μ g/m³) in sub slab vapor beneath the Jef El dry cleaner (located near the machine room, as show in Figure 2). In addition, PCE was detected at 8,100 μ g/m³ and 18,000 μ g/m³ in sub slab vapor beneath Chapter One

Books, Inc. and the former vacuum store (currently the Vino 100 wine store), respectively. PCE was also detected in indoor air in Chapter One Books, Inc. $(88 \,\mu g/m^3)$ and the former vacuum store (Vino 100 Wine Store) (2.6 $\mu g/m^3$). In addition to PCE, TCE was also detected in soil vapor beneath the Jef El dry cleaner and in the indoor air sample collected from Chapter One Books, Inc.; however, concentrations were significantly lower than the PCE concentrations detected.

The only compound detected in the sub surface soil vapor sample (VS-FENCE) located behind the Jef El dry cleaner was PCE at a concentration of $240 \,\mu g/m^3$. All compounds were non-detect in the ambient air sample and field blank sample collected.

2.1 Sub-Slab Venting Pilot Study

Based on the soil vapor investigation results, Roux Associates conducted a sub-slab venting pilot study on February 14, 2008 utilizing the existing sub-slab piping. A temporary blower (1.5 Hp regenerative blower) was brought to the Site and connected to the existing sub-slab piping. The existing sub-slab piping was installed in January 2006 following the excavation of soil beneath the Jef El dry cleaner. The sub-slab piping consists of polyvinyl chloride (PVC) 2 inches in diameter, and 10.5 feet in length. The screen is set horizontally within the previous excavation, at a depth of approximately 18 inches below the slab. A 2-inch diameter, solid PVC riser pipe was connected to the screen, and extends above the concrete slab along the southern wall of the Jef El dry cleaner, acting as an access port to the screen. The excavation has since been backfilled with pea-gravel and sand, and the concrete slab has been restored. The location of this sub-slab piping is shown on Figure 2.

Vacuum response readings were collected from the existing permanent sub-slab monitoring points located in the Jef El dry cleaner, the former vacuum store (current Vino 100 wine store), and the Chapter One Books, Inc. store. In addition, photoionization detector (PID) readings were taken from the sub-slab monitoring points in the Jef El dry cleaner during the pilot study.

2.1.1 Sub-Slab Venting Pilot Study Results

The extracted soil gas flow rate was approximately 100 cubic feet per minute (cfm) at a vacuum of 18 inches of water column (in. of w.c.) for a period of approximately 1.5 hours. Induced vacuum influence was detected in sub-slab monitoring points VS-DCR, VS-Vac, VS-Book, and VS-MRE

(vacuum response was not detected in V-DCF). The vacuum response measured in the closest sub-slab monitoring point (approximately 6 feet from the sub-slab piping), VS-MRE, was 0.8 in. of w.c. Vacuum influence was also detected in sub-slab monitoring points located in the former vacuum store (VS-Vac [approximately 10 feet from the sub-slab piping]) and in the Chapter One Books, Inc. store (VS-Book [approximately 11 feet from the sub-slab piping]) at 0.3 in. of w.c. and 0.08 in. of w.c, respectively.

The PID measurement prior to the start of the pilot study in VS-MRE was 120 parts per million by volume (ppmv). During the pilot study, the PID readings measured in VS-MRE were 0.0 ppmv. The effluent air from the temporary pilot study blower was also sampled. The results indicated that PCE and TCE were detected in the air stream. The PCE concentration detected was 9.37 ppmv and the TCE concentration was 0.0146 ppmv.

3.0 SUMMARY OF SUB-SLAB VENT SYSTEM INSTALLATION AND MONITORING

As part of the NYSDEC-approved SSVS IRM Work Plan, an active sub-slab vent system has been installed at the Jef El dry cleaner by converting the existing sub-slab piping to an active system. A 4.0-Hp blower was connected to the existing sub-slab piping via 4-inch diameter Schedule 40 PVC pipe as shown on Figure 3. The blower horsepower design was selected to ensure that an acceptable influence would be imparted under the entire dry cleaner store including the VS-DCF monitoring point location in the front of the store furthest from the sub-slab piping. The blower was installed on the roof of the dry cleaning facility. The blower is housed in a weather tight enclosure. A knock-out tank was also installed to prevent water from being drawn into the blower. The knock-out tank has a high level switch to shutdown the blower if the knock-out tank fills with water. The discharge from the blower and vapor-phase carbon drum and away from any roof air intakes. The blower and vapor-phase carbon drum cut sheets are provided in Appendix D. The SSVS installation was completed on July 27, 2009. Photograph of the installed SSVS are provided in Appendix E.

The SSVS was started on July 30, 2009. A vacuum of approximately 2 in. w.c. was measured at the blower inlet (dilution valve 100% open). The vacuum readings measured at the five sub-slab monitoring points during start-up are as follows:

•	VS-DCF (front of dry cleaner store)	=	0.8 in. of w.c.
٠	VS-MRE (middle of dry cleaner store)	=	1.7 in. of w.c.
٠	VS-DCR (rear of dry cleaner store)	=	0.4 in. of w.c.
•	VS-Book (inside bookstore)	=	0.5 in. of w.c.
•	VS-Vac (inside wine store)	=	1.3 in. of w.c.
•	VS-Fence (exterior soil vapor point behind dry cleaner)	=	0.4 in of w.c.

The system inspection and startup testing demonstrated that the SSVS is performing as designed and is providing adequate sub-slab vacuum. On September 2, 2009 an additional round of vacuum measurements were collected. The vacuum readings are as follows:

•	VS-DCF (front of dry cleaner store)	=	1.5 in. of w.c.
•	VS-MRE (middle of dry cleaner store)	=	4.4 in. of w.c.
•	VS-DCR (rear of dry cleaner store)	=	2.2 in. of w.c.
•	VS-Book (inside bookstore)	=	1.6 in. of w.c.
•	VS-Vac (inside wine store)	=	2.9 in. of w.c.
•	VS-Fence (exterior soil vapor point behind dry cleaner)	=	1.2 in of w.c.

Based on this data collected on September 2, 2009, the estimated SSVS radius of influence was calculated to be 54 feet. Figure 4 depicts the estimated SSVS radius of influence, as measured on September 2, 2009.

3.1 Performance Monitoring

Following startup, a technician has monitored the system on a regular basis (every other week) to ensure the SSVS was operating. This monitoring has consisted of the collection of PID measurements and vacuum response measurements at all permanent monitoring points, and any required routine maintenance of the system.

In addition to the monitoring described above, vapor samples were collected for laboratory analysis on September 2 and 4, 2009 and again on October 28, 2009 to confirm that the system is adequately attenuating the VOCs in the subsurface vapor and indoor air.

3.1.1 September 2009 Performance Monitoring Event

On September 2 and 4, 2009, a vapor sample was collected from the permanent sub-slab monitoring point (VS-MRE) located adjacent to the sub-slab piping in the Jef El dry cleaner. In addition, an indoor air sample was collected from inside Chapter One Books, Inc. and one indoor air sample was collected from inside the Vino 100 wine store. One outdoor ambient air sample was also collected. The same sampling procedures utilized during the December 2007 sampling event were followed. As mentioned above, vacuum response readings were also measured on September 2, 2009 prior to system shutdown for the collection of the one sub-slab vapor sample.

PCE was detected at a concentration of $500 \ \mu g/m^3$ in the indoor air inside the Chapter One Book Store and at a concentration of $880 \ \mu g/m^3$ in the indoor air inside the Vino 100 wine store. The outdoor ambient air sample was non-detect for cVOCs. The PCE concentration was $37 \ \mu g/m^3$ in the sub-slab monitoring point (VS-MRE). The samples were collected over the course of 8 hours.

Following the sampling event, it was determined that an exhaust fan located in the dry cleaner store was not operating on September 2, 2009 (the day the indoor air samples were collected). The purpose of this fan is to vent vapors generated in the dry cleaner store as a result of routine dry cleaner operations to the outside. Since this fan was not operating, the vapors generated during routine operation in the dry cleaner store appear to have accumulated in the Chapter One Book Store and the Vino 100 wine store. It is believed that this was the source of the elevated PCE identified in both indoor air samples collected on September 2, 2009. This exhaust fan was repaired on September 25, 2009.

3.1.2 October 2009 Performance Monitoring Event

On October 28, 2009, additional indoor air samples were collected from inside the Chapter One Book Store and Vino 100 wine store to determine if the faulty exhaust fan had contributed to the PCE detected in the indoor air samples. The PCE concentration that was detected in the Chapter One Book Store was $11 \,\mu$ g/m³ (sample IAQ-Book), and 7.5 μ g/m³ was detected in the Vino 100 wine store (sample IAQ-VAC). These concentrations are much lower than those concentrations observed in indoor air samples collected on September 2, 2009.

In addition to the indoor air samples, sub-slab vapor samples were collected from the point adjacent to the sub-slab piping (VS-MRE), the point in the front of the dry cleaner store (VS-DCF), the point in the rear of the dry cleaner (VS-DCR), and at the sub-slab monitoring points in the Chapter One Book Store (VS-BOOK) and the Vino 100 wine store (VS-VAC). The PCE concentrations in sub-slab monitoring points were as follows: VS-MRE was 2.5 μ g/m³, VS-VS-DCF was 2.2 μ g/m³, VS-DCR was 2.9 μ g/m³, VS-BOOK was 2.5 μ g/m³, and VS-VAC was 2.4 μ g/m3. Additionally, TCE was detected only in sample VS-MRE (located adjacent to the sub-slab piping) at a concentration of 15 μ g/m³.

The September and October 2009 performance monitoring results indicate that the SSVS has been effective at mitigating the soil vapor beneath the concrete slab of the dry cleaner and the two adjacent stores. As observed during the October 2009 sampling event, sub slab vapor concentrations of PCE were below that of their corresponding indoor air samples, indicating that subsurface vapor is not the source of the low levels of PCE detected in indoor air. The low level concentrations of PCE in indoor are likely attributed to the routine operations of the active dry cleaner.

4.0 ENGINEERS CERTIFICATION

Remedial Engineering and Roux Associates have prepared this Construction Completion Report for the Active Sub Slab Vent System IRM remedial activities conducted at the Jef El dry cleaning facility located at 3181 Long Beach Road, Oceanside, New York (Site).

Remedial Engineering, P.C., hereby certifies that remedial activities at the above mentioned Site have been completed in accordance with the provisions of the NYSDEC approved IRM work plan prepared by Remedial Engineering, P.C. and Roux Associates, Inc. dated September 18, 2008.

REMEDIAL ENGINEERING, P.C.

Charles J. McGuckin, P.E. Principal Engineer

Table 1.	Comprehensive	Summary of V	Volatile Organic	Compounds in	Vapor, Oceansi	de Plaza Site,	Oceanside, New	York
	1	•	8	1	1 /	,		

Parameter	Sample Designation:	IAQ-BOOK	IAQ-BOOK	IAQ-BOOK	IAQ-VAC	IAQ-VAC
	Sample Date:	12/6/2007	9/2/2009	10/28/2009	12/6/2007	9/2/2009
(Concentrations in $\mu g/m^3$)	Sample Type:	Indoor Air				
1,1-Dichloroethene		0.63 U	2 U	0.63 U	0.63 UJV	4 U
1,2-Dichloroethene (total)		0.63 U	2 U	0.63 U	0.63 UJV	4 U
cis-1,2-Dichloroethene		0.63 U	2 U	0.63 U	0.63 UJV	4 U
Tetrachloroethene		88	500	11	2.6 JV	880
trans-1,2-Dichloroethene		0.63 U	2 U	0.63 U	0.63 UJV	4 U
Trichloroethene		5.9	2.7 U	0.86 U	0.86 UJV	5.4 U
Vinyl chloride		0.41 U	1.3 U	0.41 U	0.41 UJV	2.6 U

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

 $\mu g/m^3$ - Micrograms per cubic meter

Table 1. Comprehensive Summary of Volatile Organic Compounds in Vapor, Oceanside Plaza Site, Oceanside, New York

Parameter	Sample Designation: Sample Date:	IAQ-VAC 10/28/2009	VS-BOOK	VS-BOOK	VS-DCF 12/6/2007	VS-DCF 10/28/2009	VS-DCR 12/6/2007
(Concentrations in $\mu g/m^3$)	Sample Date:	Indoor Air	Sub Slab Vapor	Sub Slab Vapor	Sub Slab Vapor	Sub Slab Vapor	Sub Slab Vapor
1,1-Dichloroethene		0.63 U	48 U	0.63 UJV	1.2 U	0.63 U	320 U
1,2-Dichloroethene (total)		0.63 U	48 U	0.63 UJV	1.2 U	0.63 U	320 U
cis-1,2-Dichloroethene		0.63 U	48 U	0.63 UJV	1.2 U	0.63 U	320 U
Tetrachloroethene		7.5	8100	2.5 JV	350	2.2	81000
trans-1,2-Dichloroethene		0.63 U	48 U	0.63 UJV	1.2 U	0.63 U	320 U
Trichloroethene		0.86 U	64 U	0.86 UJV	2.5	0.86 U	430 U
Vinyl chloride		0.41 U	31 U	0.41 UJV	0.77 U	0.41 U	200 U

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

 $\mu g/m^3$ - Micrograms per cubic meter

Table 1. Comprehensive Summary of Volatile Organic Compounds in Vapor, Oceanside Plaza Site, Oceanside, New York

Parameter	Sample Designation: Sample Date:	VS-DCR 10/28/2009	VS-FENCE 12/6/2007	VS-MRE 12/6/2007	VS-MRE DUP 12/6/2007	VS-MRE 9/4/2009	VS-MRE 10/28/2009
(Concentrations in $\mu g/m^3$)	Sample Type:	Sub Slab Vapor	Soil Vapor	Sub Slab Vapor	Sub Slab Vapor	Sub Slab Vapor	Sub Slab Vapor
1,1-Dichloroethene		0.63 U	1.2 U	280 U	710 U	3.2 U	0.63 U
1,2-Dichloroethene (total)		0.63 U	1.2 U	280 U	710 U	3.2 U	0.63 U
cis-1,2-Dichloroethene		0.63 U	1.2 U	280 U	710 U	3.2 U	0.63 U
Tetrachloroethene		2.9	240	50000 JV	120000 JV	37	2.5
trans-1,2-Dichloroethene		0.63 U	1.2 U	280 U	710 U	3.2 U	0.63 U
Trichloroethene		0.86 U	1.6 U	380	970 U	51	15
Vinyl chloride		0.41 U	0.77 U	180 U	460 U	2 U	0.41 U

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

 $\mu g/m^3$ - Micrograms per cubic meter

Table 1.	Comprehensive	Summary of	Volatile Org	anic Com	oounds in Va	apor, Oceansio	le Plaza Site,	Oceanside,	New Y	York
	1	•	0	, 1		1 /				

Parameter	Sample Designation:	VS-VAC	VS-VAC	AMB	AMB-FENCE	FB-120607
	Sample Date:	12/6/2007	10/28/2009	12/6/2007	9/2/2009	12/6/2007
(Concentrations in $\mu g/m^3$)	Sample Type:	Sub Slab Vapor	Sub Slab Vapor	Ambient Air	Ambient Air	Field Blank
1,1-Dichloroethene		120 U	0.63 UJV	0.63 UJV	0.63 U	0.63 UJV
1,2-Dichloroethene (total)		120 U	0.63 UJV	0.63 UJV	0.63 U	0.63 UJV
cis-1,2-Dichloroethene		120 U	0.63 UJV	0.63 UJV	0.63 U	0.63 UJV
Tetrachloroethene		18000	2.4 JV	1.1 UJV	1.1 U	1.1 UJV
trans-1,2-Dichloroethene		120 U	0.63 UJV	0.63 UJV	0.63 U	0.63 UJV
Trichloroethene		160 U	0.86 UJV	0.86 UJV	0.86 U	0.86 UJV
Vinyl chloride		77 U	0.41 UJV	0.41 UJV	0.41 U	0.41 UJV

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

 $\mu g/m^3$ - Micrograms per cubic meter

JECTS\BAS1802Y\BAS01Y\107\BA

CDR

	SYSTEM RA	DIUS O
ESTIMATED RADIUS OF INFLUENCE (54 FEET)	ON SEF	PTEMBE
NOTES: 1. THE ESTIMATED RADIUS OF INFLUENCE (ROI) IS BASED ON VACUUM DATA COLLECTED	O	OCEANSIDE F CEANSIDE, NE
FROM MONITORING POINTS ON SEPTEMBER 2, 2009.	Prepared For: OCEANSID	E PLAZA AS
0.1 IN OF W.C. VACUUM CAN BE OBSERVED (ESTIMATED FROM EXISTING MONITORING POINTS).		npiled by: RSK
30' 0 30'	ROUX ASSOCIATES INC Proj	pared by: RSK ject Mgr: RSK
	& Management File	No: BAS0110704.WOR

OCEANSIDE PLAZA,
OCEANSIDE, NEW YORK

DE PLAZA ASSOCIATES, LLC.

Date: 9/4/2009

Scale: SHOWN

Office: NY Project: 1802.0001Y000 FIGURE

4

APPENDIX A

NYSDEC Approved Active Sub Slab Vent System IRM Work Plan Dated September 18, 2008

REMEDIAL ENGINEERING, P.C.

ENVIRONMENTAL ENGINEERS

209 SHAFTER STREET ISLANDIA, NEW YORK 11749 TEL: 631-232-2600 FAX: 631 232-9898

September 18, 2008

Mr. Robert Stewart New York State Department of Environmental Conservation Division of Environmental Remediation Region One SUNY Building 40 Stony Brook, New York 11790-2356

Re: Revised Active Sub-Slab Vent System IRM Work Plan Oceanside Plaza, Jef-El Dry Cleaner Facility, Oceanside, New York (Site C130058)

Dear Mr. Stewart:

On behalf of Oceanside Plaza Associates, LLC (Oceanside Plaza Associates), Remedial Engineering, P.C. (Remedial Engineering) and Roux Associates, Inc. (Roux Associates) have prepared this revised letter report to describe the proposed installation of an active sub-slab venting system at the Jef-El dry cleaning facility located at 3131-3221 Long Beach Road, Oceanside, New York (Site). A Site Location Map is provided in Figure 1. This Work Plan has been revised to address the comments provided by the New York State Department of Environmental Conservation (NYSDEC) in their letter dated August 25, 2008.

Reliance Environmental, Inc. (Reliance Environmental) is in the process of completing a Remedial Investigation (RI) at the Site under the NYSDEC Brownfield Cleanup Program (BCP). Investigation activities are being completed in accordance with the Remedial Investigation Work Plan (RIWP) dated May 2007. This RIWP was approved by the NYSDEC in their letter dated June 20, 2007. The activities proposed in this Work Plan (i.e., the installation of an active sub-slab venting system) will be completed as an Interim Remedial Measure (IRM). This letter provides a brief summary of the soil vapor investigation, description of the active sub-slab venting system, and procedures for data collection and monitoring.

Summary of Soil Vapor Investigation

Roux Associates completed the soil vapor investigation component of the RIWP. The soil vapor investigation included work in the Jef-El dry cleaner, the book store located immediately south of the Jef-El dry cleaner (Chapter One Books, Inc.), and in the former

vacuum repair store located immediately north of the Jef-El dry cleaner (currently vacant). The stores are constructed with concrete slab-on-grade (i.e., no basements). In November 2007, Roux Associates installed five permanent sub slab vapor monitoring points (three within the Jef-El dry cleaner facility, one in Chapter One Books, Inc., and one in the vacant former vacuum repair store) and the installation of one permanent sub surface soil vapor monitoring point located at the fence line behind the Jef-El dry cleaner (i.e., beyond the footprint of the dry cleaner building). The locations of the permanent sub slab vapor monitoring points and the permanent sub surface soil vapor monitoring points and the permanent sub surface soil vapor monitoring points and the permanent sub surface soil vapor monitoring points and the permanent sub surface soil vapor monitoring points and the permanent sub surface soil vapor monitoring point are presented in Figure 2.

In December 2007, Roux Associates completed vapor sampling activities at the Site. This included the collection of soil vapor samples for laboratory analysis from all five sub slab monitoring points, the sub surface soil vapor monitoring point, as well as the collection of indoor air samples from within Chapter One Books, Inc. and the former vacuum store, and an ambient outdoor air sample. Vapor samples were collected using 6-liter Summa canisters over a sampling period of 8 hours. Vapor samples were submitted for analysis for the following list of chlorinated volatile organic compounds trans-1,2-dichloroethene, 1.1-dichloroethene, (cVOCs): vinvl chloride, 1,2-dichloroethene, cis-1,2-dichloroethene, trichloroethene (TCE), and tetrachloroethene (PCE) using United States Environmental Protection Agency (USEPA) Method TO-15. A Data Usability Summary Report (DUSR) was prepared by Data Validation Services (an independent data validator) and is included in Appendix A. The validated results of these samples are provided in Table 1.

As shown in Table 1, the results of this sampling indicated that elevated concentrations of cVOCs, primarily PCE, were present at the Site. Specifically, PCE was detected at a maximum concentration of 120,000 micrograms per cubic meter $(\mu g/m^3)$ in sub slab vapor beneath the Jef-El dry cleaner (located near the machine room, as shown in Figure 2). In addition, PCE was detected at 8,100 $\mu g/m^3$ and 18,000 $\mu g/m^3$ in sub slab vapor beneath Chapter One Books, Inc. and the former vacuum store, respectively. PCE was also detected in indoor air in Chapter One Books, Inc. (88 $\mu g/m^3$) and the former vacuum store (2.6 $\mu g/m^3$). In addition to PCE, TCE was also detected in soil vapor beneath the Jef-El dry cleaner and in the indoor air sample collected from Chapter One Books, Inc.; however, concentrations were significantly lower than the PCE concentrations detected.

The only compound detected in the sub surface soil vapor samples (VS-FENCE) located behind the Jef-El dry cleaner was PCE at a concentration of 240 μ g/m³. All compounds were non-detect in the ambient air sample and field blank sample collected.

Based on the elevated cVOCs detected beneath and within the Jef-El dry cleaner, Chapter One Books, Inc., and the former vacuum store, Roux Associates is preparing this IRM Work Plan for the installation of an active sub slab venting system. The scope of this Work Plan includes utilizing the existing soil vapor extraction (SVE) piping installed beneath the central portion of the Jef-El dry cleaner. Specifically, in January 2006, this

PVC screen was installed within an area previously excavated. The PVC screen is two inches in diameter and 10.5 feet in length. The screen is set horizontally within the previous excavation at a depth of approximately 18 inches below the slab. A 2-inch diameter, solid PVC riser pipe was connected to the screen and extends above the concrete slab along the southern wall of the Jef-El dry cleaner, acting as an access port to the screen. The excavation has since been backfilled with pea-gravel and sand, and the concrete slab has been restored. To date, this soil vapor extraction screen has remained inactive. The location of this SVE pipe is shown in Figure 2.

Sub-Slab Venting Pilot Study

Based on these vapor investigation results, a sub-slab venting pilot study was conducted on February 14, 2008 utilizing the existing sub-slab piping.

On February 14, 2008, a temporary blower (1.5 Hp regenerative blower) was brought to the Site and connected to the existing sub-slab piping. Vacuum response readings were collected from the existing permanent sub-slab monitoring points located in the Jef-El dry cleaner, the former vacuum store, and the Chapter One Books, Inc. store. In addition, photoionization detector (PID) readings were taken from the sub-slab monitoring points in the Jef-El dry cleaner during the pilot study.

Sub-Slab Venting Pilot Study Results

The extracted soil gas flow rate was approximately 100 cubic feet per minute (cfm) at a vacuum of 18 inches of water column (in. w.c.) for a period of approximately 1.5 hours. Induced vacuum influence was detected in sub-slab monitoring points VS-DCR, VS-Vac, VS-Book, and VS-MRE (vacuum response was not detected in V-DCF). The vacuum response measured in the closest sub-slab monitoring point (approximately 6 feet from the sub-slab piping), VS-MRE, was 0.8 in. w.c. Vacuum influence was also detected in sub-slab monitoring points located in the former vacuum store (VS-Vac [approximately 10 feet from the sub-slab piping]) and in the Chapter One Books, Inc. store (VS-Book [approximately 11 feet from the sub-slab piping]) at 0.3 in. w.c. and 0.08 in. w.c. respectively.

The PID measurement prior to the start of the pilot study in VS-MRE was 120 parts per million by volume (ppmv). During the pilot study, the PID readings measured in VS-MRE were 0.0 ppmv.

The effluent air from the temporary pilot study blower was also sampled. The results indicated that PCE and TCE were detected in the air stream. The PCE concentration detected was 9.37 ppmv and the TCE concentration was 0.0146 ppmv. A Division of Air Resources (DAR-1) (formerly Air Guide-1) analysis was performed to determine if the estimated emissions from the proposed operation of the active sub-slab venting system will exceed the permissible limits. A DAR-1 (formerly Air Guide-1) screening level worksheet (Table 2) was employed using the contaminant emission rate (pounds per hour) based on the air sample collected during the pilot study on February 14, 2008. The emission impacts were compared to the annual guidance concentration (AGC) values and

the short-term guidance concentration (SGC) values from the September 10, 2007 DAR-1 AGC/SGC Tables. Based on the DAR-1 analysis, the estimated contaminant emission rates are below the AGC and SGC values for PCE and TCE.

Proposed Active Sub-Slab Venting System

Based on the results of the sub-slab venting pilot study, the existing sub-slab piping will be converted to an active system. A 3.0-Hp blower will be connected to the existing subslab piping via 4-inch diameter Schedule 40 PVC pipe as shown on Figure 3. Note that a 3 Hp blower will be installed as part of this system as opposed to the smaller 1.5 Hp blower that was used in the pilot study. This larger sized blower will be used in an attempt to create measurable vacuum influence in the front of the dry cleaner store (VS-DCF). The blower will be installed on the roof of the dry cleaning facility. A knock-out tank will be utilized to prevent water from being drawn into the blower. The discharge from the blower will extend five feet above the roof parapet, away from any roof air intakes. Although based on the DAR-1 analysis conducted during the pilot study (described above and presented in Table 2) off-gas treatment is not required, to be conservative, effluent discharge from the blower will pass through activated carbon prior to discharge. This treatment will ensure that effluent discharge will not affect nearby stores or residences.

Performance Monitoring

Following initial startup, a technician will monitor the system to ensure it is functioning as designed. In addition, at a minimum of every 30 days following startup, the system will be monitored. This monitoring will include collection of PID measurements and vacuum response measurements at all permanent monitoring points, and any required routine maintenance of the system. This will be conducted for a period of six months. Following this six month period, the possibility of reducing the monitoring frequency will be evaluated. If a reduction in monitoring frequency is deemed appropriate, a formal written request will be submitted to the NYSDEC requesting a reduction in monitoring frequency.

In addition to the monitoring described above, vapor samples will be collected for laboratory analysis 30 days following start-up to confirm that the system is adequately attenuating the VOCs in the subsurface vapor and indoor air. Sub-slab vapor samples will be collected from the five existing permanent sub-slab monitoring points and the soil vapor monitoring point located behind the Jef-El dry cleaner. An indoor air sample will be collected from inside Chapter One Books, Inc. and one indoor air sample will be collected from inside the former vacuum store. One outdoor ambient air sample will also be collected. The same sampling procedures utilized during the December 2007 sampling event will be used. Vacuum response readings will also be measured during the collection of the sub-slab vapor samples. If vacuum influence is not measured in the vapor point located in the front of the dry cleaner store (i.e., VS-DCF), perc badges will be utilized in the front of the occupied stores on either side of the dry cleaner store. These perc badges will supplement the indoor air samples collected within these stores to

verify air quality is acceptable. Performance monitoring results will be submitted to the NYSDEC immediately following receipt from the analytical laboratory.

Preparation of Final Engineering Report (FER)

Following the completion of the Sub-Slab Vent System installation and receipt of monitoring results collected 30 days after system startup, Roux Associates will prepare a FER for submittal to the NYSDEC. This report will discuss the construction of the Sub-Slab Venting System and the results of all monitoring completed to date. The FER will contain as-built drawings that have been prepared and stamped by a New York State Licensed PE, as well as a statement certifying that the project was completed in accordance with the approved Work Plan.

Please call if you have any questions or require additional information.

Sincerely,

ROUX ASSOCIATES, INC.

Vetus

Glenn Netuschil, P.E. Senior Engineer

REMEDIAL ENGINEERING, P.C.

Charles J. McGuckin, P.E. Principal Engineer

cc: Marc Kemp, Oceanside Plaza Associates, LLC. Michael P. Raffoni, P.G., Reliance Environmental, Inc. Robert Kovacs, Roux Associates, Inc.

Docorrector	Sample Designation: Somula Data:	VS-DCF 12/6/2007	VS-DCR	VS-MRE 12/6/2007	VS-MRE DUP 12/6/2007	VS-BOOK 12/6/2007	VS-VAC 12/6/2007
r at attracts	Comple Tune	Such Slab Vanor	Sub Slah Wanor	Sub Slab Vanor	Sub Slab Vanor	Sub Slab Vapor	Sub Slab Vapor
(Concentrations III Hg/III)	Sample Type.		0400 0140 1 40 01	and and and			
1 1_Dichloroethene		1.2.11	320 U	280 U	710 U	48 U	120 U
1,1-Divitiorouthurs 1.2_Dichloroethene (total)		1.2 U	320 U	280 U	710 U	48 U	120 U
cis-1 2-Dichloroethene		1.2 U	320 U	280 U	710 U	48 U	120 U
Tetrachloroethene		350	81000	50000 JV	120000 JV	8100	18000
trans_1 2_Dichloroethene		1.2 U	320 U	280 U	710 U	48 U	120 U
Trichloroethene		2.5	430 U	380	970 U	64 U	160 U
Vinyl chloride		0.77 U	200 U	180 U	460 U	31 U	77 U
• • • •							
μg/m ² - Micrograms per cut	nc meter vr but not detected						
U - Conpound was analyzed to DUP - Duplicate	ו חתו ווחו תרוארואת						
J - Estimated value							
V - Qualifier added during o	lata validation						

Table 1. Summary of Select Volatile Organic Compounds in Vapor, Jef-El Dry Cleaner Facility, Oceanside, New York

REMEDIAL ENGINEERING, P.C.

1 of 2

BAS1801.0001Y.101/WKB

Table 1. Summary of Select Volatile Organic Compounds in Vapor, Jef-El Dry Cleaner Facility, Oceanside, New York

Parameter	Sample Designation: Sample Date:	IAQ-BOOK 12/6/2007	IAQ-VAC 12/6/2007	VS-FENCE 12/6/2007	AMB 12/6/2007	FB-120607 12/6/2007
(Concentrations in $\mu g/m^3$)	Sample Type:	Indoor Air	Indoor Air	Soil Vapor	Ambient Air	Field Blank
1, 1-Dichloroethene		0.63 U	0.63 UJV	1.2 U	0.63 UJV	0.63 UJV
1.2-Dichloroethene (total)		0.63 U	0.63 UJV	1.2 U	0.63 UJV	0.63 UJV
cis-1.2-Dichloroethene		0.63 U	0.63 UJV	1.2 U	0.63 UJV	0.63 UJV
Tetrachloroethene		88	2.6 JV	240	1.1 UJV	1.1 UJV
trans-1.2-Dichloroethene		0.63 U	0.63 UJV	1.2 U	0.63 UJV	0.63 UJV
Trichloroethene		5.9	0.86 UJV	1.6 U	0.86 UJV	0.86 UJV
Vinyl chloride		0.41 U	0.41 UJV	0.77 U	0.41 UJV	0.41 UJV
		· · · · · · · · · · · · · · · · · · ·				

 $\mu g/m^3$ - Micrograms per cubic meter U - Compound was analyzed for but not detected

.

DUP - Duplicate J - Estimated value V - Qualifier added during data validation

REMEDIAL ENGINEERING, P.C.

BAS1801.0001Y.101/WKB

2 of 2

able 2. Jef-El Dry Cleaners Air Emission Calculations

alculations based on air samples collected on 2/14/08 from the effluent of the pilot study blower.

	•		•		
etrachloroethene (PCE) c CE concentration (µg/m ³ richloroethene (TCE) cor ICE concentration (ppbv)	concentration (ppbv):): ncentration (µg/m ³):):		9,370 63,500 78.5 14.6		
ir flow rate (cubic feet pe	er minute [cfm]):		100		
<u>Alculate Emission Rate in</u> low Rate = 100 cfm mission Rate (lb/hr) = flow Note that 1.587E-07 = 1.	<u>a Pounds/Hour (lb/hr):</u> pw rate * concentration (PPMv) /24.05 * 0.0283 m ³ / 1 ft ³ * 60 n) * molecular we ninutes/hour * 1	ight * 1.581E-07 lb/4.54E-05 mg		
mission Rate for PCE (lb mission Rate for TCE (lb	/hr) = 100 cfm * 9.37 PPMv * /hr) = 100 cfm * 0.0146 PPMv	165.8 * 1.581E- * 131.4 * 1.581	07 = E-07 =	0.0246 lb/hr or 0.00003 lb/hr or	215.16 lb/yr 0.27 lb/yr
tandard Point Source Me	thod (Appendix B – Division o	f Air Resources	<u>):</u>		
Is (Height of Stack) = 25 ⁺ Is/Hb = 1.3 < 1.5 No Plu Therefore effective stack h	' Hb (Height of Building) = 20 me Rise height $H_E = Hs$, $H_E=25$ '),			
Calculate Maximum Annu	al Impact (Ca)				
$a (\mu g/m^3) =$	6* Q _a /H _E ^{2.25}				
$\lambda_a = $ Emission Rate in por	inds per year calculated above				
Ca for PCE (µg/m³) =		0.92			
Ca for TCE ($\mu g/m^3$) =		0.0011			
Calculate Maximum Poter	ntial Annual Impact (Cp)				
$Cp(\mu g/m^3) =$	52,500*Q/H _E ^{2.25}				
2 = Emission Rate in pour	nds per hour calculated above				
Cp for PCE $(\mu g/m^3) =$		0.61			
Cp for TCE ($\mu g/m^3$) =		0.0008			
Since Hs/Hb < 1.5 No S	Stack Reduction Factors Apply				
AGC for PCE = $1.0 \ \mu \text{g/m}^2$	3 Ca for PCE = 0.9 < 1.0 OI	K!			
AGC for TCE = $0.5 \mu\text{g/m}^2$	Ca for TCE = 0.0007 < 0.5	n			
Calculate Maximum Short Cst $(\mu g/m^3) = Cp * 65$	t Term Impact (Cst)				
Cst for PCE $(\mu g/m^3) =$	39	.79			
Cst for TCE $(\mu g/m^3) =$	0	0.05			
$\overline{SGC \text{ for PCE} = 1,000}$	Cst for PCE = 39.12 < 1,300 OK!				
SGC for TCE = 14,000 $\mu g/m^3$	Cst for TCE = 0.05 < 54,000 OK!				

Since Ca and Cst for PCE, TCE are less than their respective AGC and SGC values, no vapor phase carbon units are necessary.

S010101

APPENDIX B

Analytical Results for Vapor Samples (See Attached CD) TestAmerica South Burlington, VT

Extended Data Package

SDG: NY123316

Case Narrative	1
Chain of Custody	20
QC Summary TO-15 Volatile	23
Supportive Documentation TO-15 Volatile	33
Standards TO-15 Volatile	79
Raw QC Data TO-15 Volatile	131
Sample Preparation TO-15 Volatile	159
Sample Handling	168
Last Page of this Document	171

Case Narrative

THE LEADER IN ENVIRONMENTAL TESTING

December 13, 2007

Mr. Robert Kovacs Roux Associates 209 Shafter Street Islandia, NY 11749

Re: Laboratory Project No. 27000 Case: 27000; SDG: NY123316

Dear Mr. Kovacs:

Enclosed are the analytical results for the samples that were received by TestAmerica Burlington on December 7th, 2007. Laboratory identification numbers were assigned, and designated as follows:

<u>Lab ID</u>	Client Sample ID	Sample <u>Date</u>	Sample <u>Matrix</u>
	Received: 12/07/07 ETR No:	123316	
734481	VS-DCF	12/06/07	AIR
734482	VS-MRE	12/06/07	AIR
734483	DUP-120607	12/06/07	AIR
734484	VS-DCR	12/06/07	AIR
734485	IAQ-BOOK	12/06/07	AIR
734486	VS-BOOK	12/06/07	AIR
734487	IAQ-VAC	12/06/07	AIR
734488	VS-VAC	12/06/07	AIR
734489	AMB	12/06/07	AIR
734490	VS-FENCE	12/06/07	AIR
734491	FB-120607	12/06/07	AIR

Documentation of the condition of the samples at the time of their receipt and any exception to the laboratory's Sample Acceptance Policy is documented in the Sample Handling section of this submittal.

EPA Method TO-15 - Volatile Organics:

The analyses of several samples in this delivery group were accomplished a dilution in order to get the response of the analyte with the highest concentration within the initial calibration range. Only the results for the dilution analyses were provided.

December 13, 2007 Mr. Robert Kovacs Page 2 of 2

The analytical results associated with the samples presented in this test report were generated under a quality system that adheres to requirements specified in the NELAC standard. Release of the data in this test report and any associated electronic deliverables is authorized by the Laboratory Director's designee as verified by the following signature.

If there are any questions regarding this submittal, please contact me at 802 660-1990.

Sincerely,

n

Ron Pentkowski Project Manager

Enclosure

CLIENT SAMPLE NO.

VS-DCF

Lab Name: TAL Burlington

SDG Number: NY123316

Dilution Factor: 1.50

Sample Matrix: AIR

Lab Sample No.: 734481

Date Analyzed: 12/11/07

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.30	U	0.30	0.77	υ	0.77
1,1-Dichloroethene	75-35-4	0.30	U	0.30	1.2	υ	1.2
trans-1,2-Dichloroethene	156-60-5	0.30	U	0.30	1.2	U	1.2
1,2-Dichloroethene (total)	540-59-0	0.30	U	0.30	1.2	U	1.2
cis-1,2-Dichloroethene	156-59-2	0.30	U	0.30	1.2	U	1.2
Trichloroethene	79-01-6	0.46		0.30	2.5	[1.6
Tetrachloroethene	127-18-4	51		0.30	350		2.0

CLIENT SAMPLE NO.

Lab Name: TAL Burlington

SDG Number: NY123316

Dilution Factor: 348.00

Sample Matrix: AIR

VS-MRE

Lab Sample No.: 734482

Date Analyzed: 12/11/07

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	70	U	70	180	U	180
1,1-Dichloroethene	75-35-4	70	U	70	280	U	280
trans-1,2-Dichloroethene	156-60-5	70	U	70	280	U	280
1,2-Dichloroethene (total)	540-59-0	70	U	70	280	U	280
cis-1,2-Dichloroethene	156-59-2	70	U	70	280	U	280
Trichloroethene	79-01-6	71		70	380		380
Tetrachloroethene	127-18-4	7400		70	50000		470

CLIENT SAMPLE NO.

Lab Name: TAL Burlington

SDG Number: NY123316

Dilution Factor: 899.00

Sample Matrix: AIR

DUP-120607

Lab Sample No.: 734483

Date Analyzed: 12/11/07

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	180	U	180	460	U	460
1,1-Dichloroethene	75-35-4	180	U	180	710	U	710
trans-1,2-Dichloroethene	156-60-5	180	U	180	710	U	710
1,2-Dichloroethene (total)	540-59-0	180	U	180	710	U	710
cis-1,2-Dichloroethene	156-59-2	180	U	180	710	U	710
Trichloroethene	79-01-6	180	U	180	970	U	970
Tetrachloroethene	127-18-4	18000		180	120000		1200

CLIENT SAMPLE NO.

Lab Name: TAL Burlington

SDG Number: NY123316

Dilution Factor: 399.00

Sample Matrix: AIR

VS-DCR

Lab Sample No.: 734484

Date Analyzed: 12/11/07

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	80	U	80	200	U	200
1,1-Dichloroethene	75-35-4	80	U	80	320	U	320
trans-1,2-Dichloroethene	156-60-5	80	U	80	320	U	320
1,2-Dichloroethene (total)	540-59-0	80	U	80	320	U	320
cis-1,2-Dichloroethene	156-59-2	80	U	80	320	U	320
Trichloroethene	79-01-6	80	U	80	430	U	430
Tetrachloroethene	127-18-4	12000		80	81000		540

CLIENT SAMPLE NO.

Lab Name: TAL Burlington

SDG Number: NY123316

Dilution Factor: 0.80

Sample Matrix: AIR

IAQ-BOOK

Lab Sample No.: 734485

Date Analyzed: 12/11/07

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.16	U	0.16	0.41	U	0.41
1,1-Dichloroethene	75-35-4	0.16	U	0.16	0.63	U	0.63
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	U	0.63
1,2-Dichloroethene (total)	540-59-0	0.16	U	0.16	0.63	U	0.63
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	U	0.63
Trichloroethene	79-01-6	1.1		0.16	5.9		0.86
Tetrachloroethene	127-18-4	13		0.16	88		1.1

CLIENT SAMPLE NO.

Lab Name: TAL Burlington

SDG Number: NY123316

Dilution Factor: 60.40

Sample Matrix: AIR

VS-BOOK

Lab Sample No.: 734486

Date Analyzed: 12/11/07

Target Compound	CAS Number	Results in ppbv	٩	RL in ppbv	Results in ug/m3	٩	RL in ug/m3
Vinyl Chloride	75-01-4	12	U	12	31	U	31
1,1-Dichloroethene	75-35-4	12	U	12	48	U	48
trans-1,2-Dichloroethene	156-60-5	12	U	12	48	U	48
1,2-Dichloroethene (total)	540-59-0	12	U	12	48	U	48
cis-1,2-Dichloroethene	156-59-2	12	U	12	48	U	48
Trichloroethene	79-01-6	12	U	12	64	U	64
Tetrachloroethene	127-18-4	1200		12	8100		81

CLIENT SAMPLE NO.

Lab Name: TAL Burlington

SDG Number: NY123316

Dilution Factor: 0.80

Sample Matrix: AIR

IAQ-VAC

Lab Sample No.: 734487

Date Analyzed: 12/11/07

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	۵	RL in ug/m3
Vinyl Chloride	75-01-4	0.16	U	0.16	0.41	U	0.41
1,1-Dichloroethene	75-35-4	0.16	U	0.16	0.63	U	0.63
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	U	0.63
1,2-Dichloroethene (total)	540-59-0	0.16	U	0.16	0.63	U	0.63
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	U	0.63
Trichloroethene	79-01-6	0.16	U	0.16	0.86	U	0.86
Tetrachloroethene	127-18-4	0.39		0.16	2.6		1.1

CLIENT SAMPLE NO.

Lab Name: TAL Burlington

SDG Number: NY123316

Dilution Factor: 149.00

Sample Matrix: AIR

VS-VAC

Lab Sample No.: 734488

Date Analyzed: 12/12/07

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	۹	RL in ug/m3
Vinyl Chloride	75-01-4	30	U	30	77	U	77
1,1-Dichloroethene	75-35-4	30	U	30	120	U	120
trans-1,2-Dichloroethene	156-60-5	30	U	30	120	U	120
1,2-Dichloroethene (total)	540-59-0	30	U	30	120	U	120
cis-1,2-Dichloroethene	156-59 - 2	30	U	30	120	U	120
Trichloroethene	79-01-6	30	U	30	160	U	160
Tetrachloroethene	127-18-4	2700		30	18000		200

CLIENT SAMPLE NO.

Lab Name: TAL Burlington

SDG Number: NY123316

Dilution Factor: 0.80

Sample Matrix: AIR

AMB

Lab Sample No.: 734489 Date Analyzed: 12/12/07

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	۹	RL in ug/m3
Vinyl Chloride	75-01-4	0.16	U	0.16	0.41	U	0.41
1,1-Dichloroethene	75-35-4	0.16	U	0.16	0.63	U	0.63
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	U	0.63
1,2-Dichloroethene (total)	540-59-0	0.16	U	0.16	0.63	U	0.63
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	U	0.63
Trichloroethene	79-01-6	0.16	U	0.16	0.86	U	0.86
Tetrachloroethene	127-18-4	0.16	U	0.16	1.1	U	1.1

CLIENT SAMPLE NO.

Lab Name: TAL Burlington

SDG Number: NY123316

Dilution Factor: 1.50

Sample Matrix: AIR

VS-FENCE

Lab Sample No.: 734490

Date Analyzed: 12/12/07

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	٩	RL in ug/m3
Vinyl Chloride	75-01-4	0.30	U	0.30	0.77	U	0.77
1,1-Dichloroethene	75-35 - 4	0.30	U	0.30	1.2	U	1.2
trans-1,2-Dichloroethene	156-60-5	0.30	U	0.30	1.2	U	1.2
1,2-Dichloroethene (total)	540-59 - 0	0.30	U	0.30	1.2	U	1.2
cis-1,2-Dichloroethene	156-59-2	0.30	U	0.30	1.2	U	1.2
Trichloroethene	79-01-6	0.30	υ	0.30	1.6	U	1.6
Tetrachloroethene	127-18-4	35		0.30	240		2.0

CLIENT SAMPLE NO.

Lab Name: TAL Burlington

SDG Number: NY123316

Dilution Factor: 0.80

Sample Matrix: AIR

FB-120607

Lab Sample No.: 734491

Date Analyzed: 12/12/07

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.16	U	0.16	0.41	U	0.41
1,1-Dichloroethene	75-35-4	0.16	U	0.16	0.63	U	0.63
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	U	0.63
1,2-Dichloroethene (total)	540-59-0	0.16	U	0.16	0.63	U	0.63
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	U	0.63
Trichloroethene	79-01-6	0.16	U	0.16	0.86	U	0.86
Tetrachloroethene	127-18-4	0.16	U	0.16	1.1	U	1.1

CLIENT SAMPLE NO.

Lab Name: TAL Burlington

SDG Number: NY123316

Dilution Factor: 1.00

Sample Matrix: AIR

BA121107LCS

Lab Sample No.: BA121107

Date Analyzed: 12/11/07

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	11		0.20	28		0.51
1,1-Dichloroethene	75-35-4	11		0.20	44		0.79
trans-1,2-Dichloroethene	156-60-5	11		0.20	44		0.79
1,2-Dichloroethene (total)	540-59-0	21		0.20	83		0.79
cis-1,2-Dichloroethene	156-59-2	11		0.20	44		0.79
Trichloroethene	79-01 - 6	10		0.20	54		1.1
Tetrachloroethene	127-18-4	7.8		0.20	53		1.4

CLIENT SAMPLE NO.

BA121107LCSD

Lab Name: TAL Burlington

SDG Number: NY123316

Dilution Factor: 1.00

Sample Matrix: AIR

Lab Sample No.: BA121107

Date Analyzed: 12/11/07

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	12		0.20	31		0.51
1,1-Dichloroethene	75-35-4	12		0.20	48		0.79
trans-1,2-Dichloroethene	156 - 60-5	12		0.20	48		0.79
1,2-Dichloroethene (total)	540-59 - 0	23		0.20	91		0.79
cis-1,2-Dichloroethene	156-59-2	12		0.20	48		0.79
Trichloroethene	79-01-6	11		0.20	59		1.1
Tetrachloroethene	127-18-4	8.7		0.20	59		1.4

CLIENT SAMPLE NO.

Lab Name: TAL Burlington

SDG Number: NY123316

Dilution Factor: 1.00

Sample Matrix: AIR

BA121207LCS

Lab Sample No.: BA121207

Date Analyzed: 12/12/07

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	11		0.20	28		0.51
1,1-Dichloroethene	75-35-4	12		0.20	48		0.79
trans-1,2-Dichloroethene	156-60-5	11		0.20	44		0.79
1,2-Dichloroethene (total)	540-59-0	22		0.20	87		0.79
cis-1,2-Dichloroethene	156-59-2	11		0.20	44		0.79
Trichloroethene	79-01-6	10		0.20	54		1.1
Tetrachloroethene	127-18-4	8.2		0.20	56		1.4

CLIENT SAMPLE NO.

Lab Name: TAL Burlington

SDG Number: NY123316

Dilution Factor: 1.00

Sample Matrix: AIR

BA121207LCSD

Lab Sample No.: BA121207

Date Analyzed: 12/12/07

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	11		0.20	28		0.51
1,1-Dichloroethene	75-35-4	11		0.20	44		0.79
trans-1,2-Dichloroethene	156-60-5	11		0.20	44		0.79
1,2-Dichloroethene (total)	540-59-0	22		0.20	87		0.79
cis-1,2-Dichloroethene	156-59-2	11		0.20	44		0.79
Trichloroethene	79-01-6	9.8		0.20	53		1.1
Tetrachloroethene	127-18-4	8.1		0.20	55		1.4

CLIENT SAMPLE NO.

MBLK121107BA

Lab Name: TAL Burlington

SDG Number: NY123316

Dilution Factor: 0.80

Sample Matrix: AIR

Lab Sample No.: MBLK1211

Date Analyzed: 12/11/07

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.16	U	0.16	0.41	U	0.41
1,1-Dichloroethene	75 - 35-4	0.16	U	0.16	0.63	U	0.63
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	U	0.63
1,2-Dichloroethene (total)	540-59-0	0.16	U	0.16	0.63	U	0.63
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	U	0.63
Trichloroethene	79-01-6	0.16	U	0.16	0.86	U	0.86
Tetrachloroethene	127-18-4	0.16	U	0.16	1.1	U	1.1

CLIENT SAMPLE NO.

MBLK121207BA

Lab Name: TAL Burlington

SDG Number: NY123316

Dilution Factor: 0.80

Sample Matrix: AIR

Lab Sample No.: MBLK1212

Date Analyzed: 12/12/07

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.16	U	0.16	0.41	U	0.41
1,1-Dichloroethene	75-35-4	0.16	U	0.16	0.63	U	0.63
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	U	0.63
1,2-Dichloroethene (total)	540-59-0	0.16	U	0.16	0.63	U	0.63
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	U	0.63
Trichloroethene	79-01-6	0.16	U	0.16	0.86	U	0.86
Tetrachloroethene	127-18-4	0.16	υ	0.16	1.1	U	1.1

<u>Organic</u>

- U: Compound analyzed but not detected at a concentration above the reporting limit.
- J: Estimated value.
- N: Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds (TICs) where the identification of a compound is based on a mass spectral library search.
- P: SW-846: Greater than 40% difference for detected concentrations between two GC columns. Unless otherwise specified the higher of the two values is reported on the Form I.

CLP SOW: Greater than 25% difference for detected concentrations between two GC columns. Unless otherwise specified the lower of the two values is reported on the Form I.

- C: Pesticide result whose identification has been confirmed by GC/MS.
- B: Analyte is found in the sample and the associated method blank. The flag is used for tentatively identified compounds as well as positively identified compounds.
- E: Compounds whose concentrations exceed the upper limit of the calibration range of the instrument for that specific analysis.
- D: Concentrations identified from analysis of the sample at a secondary dilution.
- A: Tentatively identified compound is a suspected aldol condensation product.
- X,Y,Z: Laboratory defined flags that may be used alone or combined, as needed. If used, the description of the flag is defined in the project narrative.

Inorganic/Metals

- E: Reported value is estimated due to the presence of interference.
- N: Matrix spike sample recovery is not within control limits.
- Duplicate sample analysis is not within control limits.
- B: The result reported is less than the reporting limit but greater than the instrument detection limit.
- U: Analyte was analyzed for but not detected above the reporting limit.

Method Codes:

P	ICP-AES
---	---------

- MS ICP-MS
- CV Cold Vapor AA
- AS Semi-Automated Spectrophotometric

FQA009:04.24.06:3 TestAmerica Burlington

Chain of Custody

TestAmerica Burlington 30 Community Drive Suite 11 South Burlington, VT 05403

Canister Samples Chain of Custody Record

TestAmerica Analytical Testing Corp. assumes no liability with respect to the collection and shipment of these samples.

Other (Please specify in notes section) seð llitbneð Trin-1,2-Dich lovethere; \times Х Х Soil Gas ${}^{\times}$ \succ riA tnəidmA cocs \times Indoor Air B Deliverable 2 ədki əlqmez ď Other (Please specify in notes section) 4 Y 3461-0 MTSA Samples Collected By: That Kurte (ken) EPA 25C Plead Viry Chloride Waing Method 70-15-AsP Cakgury EPA 3C simples tex 1, 1-pichlarettene; Cis-1, 2-Dichloroethene; 0935 A41-OT 21-01 14/28 45⁴2 0014 Sample's Received by: 12/5-7 Canister ID 34187 HZ 95 H363 Flow Controller Opened by: Condition: 3852 3737 2580 3979 3723 3171 ≙ Received by: Received by Femperature (Fahrenheit) Field, 'Hg Vacuum in -41.5 Pressure (inches of Hg) Canister (Stop) 30,35 " Sten Ju 9-7, 9 1 T -30.24" rising 141 Vacuum in Field, "Hg 340 F -30 - 30 Canister -30 -30 - 30 (Start) 30% Ambient Ambient Analysis Turnaround Time ? Standard (Specify) 2 - WEEk Crd Email: rkovacs@ numine com KOB KOVACS This hlave there 55 Time Start Time Stop 010 0900 1645 1732 1 tel/m3 or less 1653 C855 1645 631-232-2600 Site Contact: *Kの各 K DU*AG STL Contact: *R* & V Rush (Specify) 0260 26/07 0533 20407 0432 Special Instructions/QC Requirements & Comments: Actual Analyse Interior Interior Project Manager: Date/Time: Date/Time: Date/Time: Sample Date(s) 1,2 - Dichloroethere (total), Tetra chloroethere All results must have a Detection Lunit of Ś Start Stop Start Stop Phone: Char (Rows) 117 44 1686014 Shipper Name: 120 phone 802-660-1990 fax 802-660-1919 Sample Identification ISLAWDORD . NY AQ-BOOK DWP-120607 ROW ASSOCIATES Phone: 631~132-2600 / FAX: 631-232-699 5 VS - BOOK US-MRE SHAFTER VS-DCF VS-DCR Site: OCEANSIDE, NY Client Contact Information Project Name: GEM (HEM Samples Relinquished by: (2-week TAT) Samples Shipped by: Relinquished by: Address: 209 Lab Use Only City/State/Zip Company: HO4

~
<u> </u>
0
<u> </u>
-
3
L
_
m
~
10
U U
<u> </u>
æ
-
5
<u> </u>
◄
5
10
(1)
ക
<u> </u>

Canister Samples Chain of Custody Record

TestAmerica Analytical Testing Corp. assumes no liability with respect to the collection and shipment of these samples.

30 Community Drive Suite 11 South Burlington, VT 05403

2-660-1919	Project Manager: ROB KOVACD Samples Collected By: No 124 (Long Control	PG / NC Phone: 631-232-2600	2 ST Email: PKOVACS D FUNXING - CUM		APA STL Contact: RUN	1 /65-60/ Analysis Turnaround Time	VY Standard (Specify) 2- week 7A7	Rush (Specify)	Please si Please si Please si Please si C Please si C Please si C C C C C C C C C C C C C C C C C C C	ample Sample Sample Field, "Hg Field, "Hg Flow Controller CONTROL CONT		\sim	1011 1501 -30 -4 3754 3081 X	NE 1027 1830 -30 -15" 3235 428 X X	1607 V 1300 X	Temperature (Fahrenheit)	Interior Ambient	Start 240F	stop 30°F	Pressure (inches of Hg)	Interior Ambient	start 30.24" n5sne	stop 30 35. sterdy	equirements & Comments: Please Analyze samples for 1,1-Dich Dethease, Cis-1,2-Dichloroethease, I-runs-1, 2-Dichloro ethease, (+) Apal) Tetrach Droven and Tillon the of 1,1,1,1,1,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2	I MY/M3 OR LPS. AND DIANG PRIMARE AND MANY AND MICHICARE LIDING MERLINDA I U-15. HEL RESULTS MUUST THAVE H	FB-120607 is a Field Block schole more more more aregoing is reliventate	O KLAP (Rov.) Date Times Samples Beceived by: 12/2/67 0935	Date/Time: Deceived by:	
phone 802-660-1990 fax 802-660-1919	Client Contact Information Project Manager:	Company: ROWY ASSOCIATES INC Phone: 631-	Address: 204 SHAFTER ST Email: 1 KOVO	City/State/ZIP / SLAWD/A /V / 11/744 Stin Contract: Unit	FAX: 631-332-9894 STL Contact: Ru	Project Name: 64 (HEM 165-601) Anal	Site: QC CANSIDE NY Standar	PO # Rush (Sample Identification Datels Time	101-VAC 101-104		AMB	VS-FENCE 10.	FB-120607 W 13.		Interio	Start	Stop	-	Interio	Start	Stop	Special Instructions/QC Requirements & Comments: Pieduse Analy 1 2- Dich brooth eve. (+3431), TP+roch D move and	DETECTION LIMIT OF 1 MI/N3 OR LPS. (MC) DIANO POL	(2-week TAT) FB-120607 is a Fireld Block Some	Samples Shipped by: LO KUR (Row) Date/Time:	Samples Reiinquished by: Date/Time:	Relinquished by: Date/Time:

QC Summary – TO-15 Volatile

FORM 3 AIR VOLATILE LAB CONTROL SAMPLE

Lab Name: TESTAMERICA BURLINGTON Contract: 27000 Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY123316 Matrix Spike - Sample No.: BA121107LCS

	SPIKE	SAMPLE	LCS	LCS	QC.
	ADDED	CONCENTRATION	CONCENTRATION	00	LIMITS
COMPOUND	(ppbv)	(ug/L)	(ppbv)	REC #	REC.
	=========	=======================================	================	======	
Vinyl Chloride	10		11	110	70-130
1,1-Dichloroethene	10		11	110	70-130
trans-1,2-Dichloroethen	10		11	110	70-130
1,2-Dichloroethene (tot	20		21	105	70-130
cis-1,2-Dichloroethene	10		11	110	70-130
Trichloroethene	10		10	100	70-130
Tetrachloroethene	10		7.8	78	70-130

	SPIKE	LCSD	LCSD			
	ADDED	CONCENTRATION	olo	00	QC L	IMITS
COMPOUND	(ppbv)	(ppbv)	REC #	RPD #	RPD	REC.
=======================================	=========		======	**====	======	=====
Vinyl Chloride	10	12	120	9	25	70-130
1,1-Dichloroethene	10	12	120	9	25	70-130
trans-1,2-Dichloroethen	10	12	120	9	25	70-130
1,2-Dichloroethene (tot	20	23	115	9	25	70-130
cis-1,2-Dichloroethene	10	12	120	9	25	70-130
Trichloroethene	10	11	110	10	25	70~130
Tetrachloroethene	10	8.7	87	11	25	70-130

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 0 out of 7 outside limits Spike Recovery: 0 out of 14 outside limits

COMMENTS:

- -

FORM III VOA

FORM 3 AIR VOLATILE LAB CONTROL SAMPLE

Lab Name: TESTAMERICA BURLINGTON Contract: 27000 Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY123316 Matrix Spike - Sample No.: BA121207LCS

COMPOUND	SPIKE ADDED (ppbv)	SAMPLE CONCENTRATION (ug/L)	LCS CONCENTRATION (ppbv)	LCS % REC #	QC. LIMITS REC.
=======================================	==========	==================	=======================================	======	======
Vinyl Chloride	10		11	110	70-130
1,1-Dichloroethene	10		12	120	70-130
trans-1,2-Dichloroethen	10		11	110	70-130
1,2-Dichloroethene (tot	20		22	110	70-130
cis-1,2-Dichloroethene	10		11	110	70-130
Trichloroethene	10		10	100	70-130
Tetrachloroethene	10		8.2	82	70-130

	SPIKE	LCSD	LCSD			
	ADDED	CONCENTRATION	010	ୖୄ	QC L:	IMITS
COMPOUND	(ppbv)	(ppbv)	REC #	RPD #	RPD	REC.
=======================================	=========		=====	======	======	======
Vinyl Chloride	10	11	110	0	25	70-130
1,1-Dichloroethene	10	11	110	9	25	70-130
trans-1,2-Dichloroethen	10	11	110	0	25	70-130
1,2-Dichloroethene (tot	20	22	110	0	25	70-130
cis-1,2-Dichloroethene	10	11	110	0	25	70-130
Trichloroethene	10	9.8	98	2	25	70-130
Tetrachloroethene	10	8.1	81	1	25	70-130

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 0 out of 7 outside limits Spike Recovery: 0 out of 14 outside limits

COMMENTS:

FORM III VOA

CLIENT SAMPLE NO.

FORM 4

VOLATILE METHOD BLANK SUMMARY Lab Name: TESTAMERICA BURLINGTON Contract: 27000 MBLK121107BA Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY123316 Lab File ID: BGIB02H Lab Sample ID: MBLK121107BA Date Analyzed: 12/11/07 Time Analyzed: 1551 GC Column: RTX-624 ID: 0.32 (mm) Heated Purge: (Y/N) N Instrument ID: B

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

			TND	
		LIAB		T TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
	============	=======================================		==========
01	BA121107LCS	BA121107LCS	BGI10HQ	1326
02	BA121107LCSD	BA121107LCSD	BGI10HQD	1414
03	VS-DCF	734481	734481D2	1904
04	VS-MRE	734482	734482D2	1952
05	DUP-120607	734483	734483D2	2041
06	VS-DCR	734484	734484D2	2129
07	IAQ-BOOK	734485	734485I2	2218
80	VS-BOOK	734486	734486D2	2307
09	IAQ-VAC	734487	734487I2	2356
10	VS-VAC	734488	734488D2	0044
11	AMB	734489	734489I2	0132
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29				
30				

COMMENTS:

page 1 of 1

FORM IV VOA

CLIENT SAMPLE NO.

FORM 4 VOLATILE METHOD BLANK SUMMARY

Lab Name: TESTAMERICA BURLINGTONContract: 27000MBLK121207BALab Code: STLVCase No.: 27000SAS No.:SDG No.: NY123316Lab File ID: BGIB02ILab Sample ID: MBLK121207BADate Analyzed: 12/12/07Time Analyzed: 1805GC Column: RTX-624ID: 0.32 (mm)Heated Purge: (Y/N) NInstrument ID: B

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

		LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
			=================	=======================================
01	BA121207LCS	BA121207LCS	BGI10IQ	1539
02	BA121207LCSD	BA121207LCSD	BGI10IQD	1628
03	VS-FENCE	734490	734490	1854
04	FB-120607	734491	734491	1942
05				
06				
07				
80				
09				
10				
11				
12				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29				
30				

COMMENTS:

page 1 of 1

FORM IV VOA

FORM 5 VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab	Name:	TESTAMERIO	CA BURLING	FON	Contract:	27000		
Lab	Code:	STLV	Case No.:	27000	SAS No.:	\$	SDG No	.: NY123316
Lab	File 1	D: BGI01PV	J		BFB	Injection	Date:	11/28/07
Inst	rument	ID: B			BFB	Injection	Time:	1032
GC (Column:	RTX-624	ID: 0.32	(mm)	Heat	ed Purge:	(Y/N)	N

		% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
=====		=======================================
50	8.0 - 40.0% of mass 95	15.3
75	30.0 - 66.0% of mass 95	43.9
95	Base Peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	7.0
173	Less than 2.0% of mass 174	0.4 (0.4)1
174	50.0 - 120.0% of mass 95	87.4
175	4.0 - 9.0% of mass 174	6.0 (6.8)1
176	93.0 ~ 101.0% of mass 174	84.0 (96.1)1
177	5.0 - 9.0% of mass 176	5.5 (6.5)2

1-Value is % mass 174 2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
		================	=============	=============	
01	ASTD010	ASTD010	BGI10V	11/28/07	1345
02	ASTD015	ASTD015	BGI15V	11/28/07	1434
03	ASTD020	ASTD020	BGI20V	11/28/07	1522
04	ASTD040	ASTD040	BGI40V	11/28/07	1611
05	ASTD0002	ASTD0002	BGI002V2	11/28/07	1924
06	ASTD0005	ASTD0005	BGI005V2	11/28/07	2012
07	ASTD005	ASTD005	BGI05V2	11/29/07	0921
80					
09					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					

page 1 of 1

FORM V VOA

FORM 5 VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: TE	ESTAMERICA	A BURLINGT	ON	Contract:	27000		
Lab Code: SI	TLV (Case No.:	27000	SAS No.:	5	SDG No.	.: NY123316
Lab File ID:	BGI09PV			BFB	Injection	Date:	12/11/07
Instrument I	ID: B			BFB	Injection	Time:	1040
GC Column: R	RTX-624	ID: 0.32	(mm)	Heat	ed Purge:	(Y/N)	N

		% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
=====		=======================================
50	8.0 - 40.0% of mass 95	16.2
75	30.0 - 66.0% of mass 95	45.1
95	Base Peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	7.2
173	Less than 2.0% of mass 174	0.4 (0.5)1
174	50.0 - 120.0% of mass 95	80.4
175	4.0 - 9.0% of mass 174	5.7 (7.1)1
176	93.0 - 101.0% of mass 174	77.0 (95.8)1
177	5.0 - 9.0% of mass 176	4.9 (6.4)2

1-Value is % mass 174 2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	=============			===========	=======
01	ASTD010	ASTD010	BGI10HV2	12/11/07	1237
02	BA121107LCS	BA121107LCS	BGI10HQ	12/11/07	1326
03	BA121107LCSD	BA121107LCSD	BGI10HQD	12/11/07	1414
04	MBLK121107BA	MBLK121107BA	BGIB02H	12/11/07	1551
05	VS-DCF	734481	734481D2	12/11/07	1904
06	VS-MRE	734482	734482D2	12/11/07	1952
07	DUP-120607	734483	734483D2	12/11/07	2041
08	VS-DCR	734484	734484D2	12/11/07	2129
09	IAQ-BOOK	734485	734485I2	12/11/07	2218
10	VS-BOOK	734486	734486D2	12/11/07	2307
11	IAQ-VAC	734487	73448712	12/11/07	2356
12	VS-VAC	734488	734488D2	12/12/07	0044
13	AMB	734489	73448912	12/12/07	0132
14					
15					
16					
17					
18					
19					
20					
21					
22					

page 1 of 1

FORM V VOA

FORM 5 VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Nam	e: TESTAMERI	CA BURLINGTON	Contract:	27000
Lab Cod	le: STLV	Case No.: 27000	SAS No.:	SDG No.: NY123316
Lab Fil	e ID: BGI10P	V	BFB	Injection Date: 12/12/07
Instrum	ent ID: B		BFB	Injection Time: 1119
GC Colu	mn: RTX-624	ID: 0.32 (mm)	Heat	ted Purge: (Y/N) N

		% RELATIVE
m/e	ION ABONDANCE CRITERIA	ABUNDANCE
=====		=================
50	8.0 - 40.0% of mass 95	15.5
75	30.0 - 66.0% of mass 95	43.7
95	Base Peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	7.1
173	Less than 2.0% of mass 174	0.4 (0.5)1
174	50.0 - 120.0% of mass 95	83.7
175	4.0 - 9.0% of mass 174	6.0(7.1)1
176	93.0 - 101.0% of mass 174	81.6 (97.5)1
177	5.0 - 9.0% of mass 176	5.4 (6.6)2

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

		ТЛР		ששעם	
	CANDID NO			DATE	
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	============			=======================================	==========
01	ASTD010	ASTD010	BGI10IV3	12/12/07	1444
02	BA121207LCS	BA121207LCS	BGI10IQ	12/12/07	1539
03	BA121207LCSD	BA121207LCSD	BGI10IQD	12/12/07	1628
04	MBLK121207BA	MBLK121207BA	BGIB02I	12/12/07	1805
05	VS-FENCE	734490	734490	12/12/07	1854
06	FB-120607	734491	734491	12/12/07	1942
07					
08					
09					
10					
11					
12					
13					
14					
15					
16					
17					
10					
10					
19					
20					
21					
22					

page 1 of 1

FORM V VOA

FORM 8 VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: TESTAMERICA BURLINGTON Contract: 27000 Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY123316 Lab File ID (Standard): BGI10HV2 Date Analyzed: 12/11/07 Instrument ID: B Time Analyzed: 1237 GC Column: RTX-624 ID: 0.32 (mm) Heated Purge: (Y/N) N

		TC1(DCM)					
			DM #		DM #		DII #
		AREA #	RT #	AREA #	RT #	AREA #	RI #
	============	=========	=======	===========		=========	======
	12 HOUR STD	257722	8.89	1226091	9.75	1285189	12.15
	UPPER LIMIT	360811	9.22	1716527	10.08	1799265	12.48
	LOWER LIMIT	154633	8.56	735655	9.42	771113	11.82
	=================	==========	=====	=========	======	==========	======
	CLIENT						
	SAMPLE NO.						
	================		=======		==,=====		=======
01	BA121107LCS	265923	8.89	1248472	9.75	1324587	12.15
02	BA121107LCSD	248150	8.89	1133581	9.75	1189944	12.15
03	MBLK121107BA	231688	8.89	1195838	9.74	882505	12.15
04	VS-DCF	224050	8.89	1144287	9.75	1066975	12.15
05	VS-MRE	241149	8.89	1260907	9.75	994876	12.15
06	DUP-120607	243802	8.89	1284883	9.75	1013393	12.15
07	VS-DCR	211830	8.89	1106618	9.75	828558	12.15
08	IAO-BOOK	228782	8.89	1124327	9.75	1066581	12.15
09	VS-BOOK	243857	8.89	1258804	9.75	1015055	12.15
10	IAO-VAC	232841	8.89	1133395	9.75	1090110	12.15
11	VS-VAC	220332	8.89	1124973	9.75	899528	12 15
12^{-1}	AMB	206069	8.89	987593	9.75	944022	12 15
13			0.01	20,020		211022	
14							
15							
16							
17							
18							
19							
20							(
21							
22							

IS1	(BCM)	= Bromochloromethane
IS2	(DFB)	= 1,4-Difluorobenzene
IS3	(CBZ)	= Chlorobenzene-d5

AREA UPPER LIMIT = + 40% of internal standard area AREA LOWER LIMIT = - 40% of internal standard area RT UPPER LIMIT = + 0.33 minutes of internal standard RT RT LOWER LIMIT = - 0.33 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.
* Values outside of QC limits.

page 1 of 1

FORM VIII VOA

• -

FORM 8 VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: TESTAMERICA BURLINGTON Contract: 27000 Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY123316 Lab File ID (Standard): BGI10IV3 Date Analyzed: 12/12/07 Instrument ID: B Time Analyzed: 1444 GC Column: RTX-624 ID: 0.32 (mm) Heated Purge: (Y/N) N

		TC1 (PCM)				TC2 (CP7)	
			DM #		р п н		<u>р</u> п 4
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	==========	==========	======	==========		========	======
	12 HOUR STD	277050	8.89	1336585	9.75	1366124	12.15
	UPPER LIMIT	387870	9.22	1871219	10.08	1912574	12.48
	LOWER LIMIT	166230	8.56	801951	9.42	819674	11.82
		=========	=======	===========	======		=======
	CLIENT						
	SAMPLE NO.						
	==================	=========	======	=========	======	==========	======
01	BA121207LCS	263392	8.89	1269450	9.75	1334568	12.15
02	BA121207LCSD	269675	8.89	1349494	9.75	1385268	12.15
03	MBLK121207BA	230487	8.89	1260424	9.74	1031209	12.15
04	VS-FENCE	247788	8.89	1271934	9.75	1178116	12.15
05	FB-120607	252839	8.89	1258312	9.75	1101025	12.15
06	12 120000	101000	0.05	1000010	2.75	1101000	10110
07							
08							
00							
10							
11							
10							
12							
11							
15							
10							
17							
10							
10							
19							
20							
21							
22							

```
IS1 (BCM) = Bromochloromethane
IS2 (DFB) = 1,4-Difluorobenzene
IS3 (CBZ) = Chlorobenzene-d5
```

AREA UPPER LIMIT = + 40% of internal standard area AREA LOWER LIMIT = - 40% of internal standard area RT UPPER LIMIT = + 0.33 minutes of internal standard RT RT LOWER LIMIT = - 0.33 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.
* Values outside of QC limits.

page 1 of 1

FORM VIII VOA

Supportive Documentation – TO-15 Volatile

FORM 1 VOLATILE ORGANICS ANALYSIS DATA SH	ROUX1 SAMPLE NO.			
Lab Name: TESTAMERICA BURLINGTON Contract:	AMB			
Lab Code: STLV Case No.: 27000 SAS No.:	SDG No.: NY123316			
Matrix: (soil/water) AIR	Lab Sample ID: 734489			
Sample wt/vol: 250.0 (g/mL) ML	Lab File ID: 73448912			
Level: (low/med) LOW Date Received: 12/07/07				
% Moisture: not dec Date Analyzed: 12/12/07				
GC Column: RTX-624 ID: 0.32 (mm)	Dilution Factor: 0.8			
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)			
CAS NO. COMPOUND CONCEN (ug/L	NTRATION UNITS: or ug/Kg) PPBV Q			
75-01-4Vinyl Chloride 75-35-41,1-Dichloroethene 156-60-5trans-1,2-Dichloroethen 540-59-01,2-Dichloroethene (tot 156-59-2cis-1,2-Dichloroethene 79-01-6Trichloroethene 127-18-4Tetrachloroethene	0.16 U 0.16 U			

FORM I VOA

Data File: /chem/B.i/Bsvr.p/bgihto15.b/734489i2.d Report Date: 13-Dec-2007 13:40

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/B.i/Bsvr.p/bgihto15.b/734489i2.d Lab Smp Id: 734489 Client Smp Inj Date : 12-DEC-2007 01:32 Operator : wrd Inst ID: F Smp Info : AMB : []12/06/07 @1801(AIR) Client Smp ID: AMB Inst ID: B.i Misc Info : 734489;121107BA;0.8;250 Comment : : /chem/B.i/Bsvr.p/bgihto15.b/rto15.m Method Meth Date : 13-Dec-2007 13:39 sv Cal Date : 29-NOV-2007 09:21 Quant Type: ISTD Cal File: bgi05v2.d Als bottle: 15 Dil Factor: 0.80000 Integrator: HP RTE Compound Sublist: ROUX1 Ocean.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	0.80000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	250.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

CONCENTRATIONS

					CONCERTIONE
			QUANT SIG		ON-COLUMN FINAL
Compounds		unds	MASS	RT EXP RT REL RT RESPONSE	(ppbv) (ppbv)
			====		
	4	Vinyl Chloride	62	Compound Not Detected.	
	11	1,1-Dichloroethene	96	Compound Not Detected.	
	19	trans-1,2-Dichloroethene	61	Compound Not Detected.	
М	22	1,2-Dichloroethene (total)	61	Compound Not Detected.	
	24	cis-1,2-Dichloroethene	96	Compound Not Detected.	
*	25	Bromochloromethane	128	8.893 8.893 (1.000) 206069	10.0000
*	35	1,4-Difluorobenzene	114	9.747 9.747 (1.000) 987593	10.0000
	36	Trichloroethene	95	Compound Not Detected.	
	46	Tetrachloroethene	166	Compound Not Detected.	
*	50	Chlorobenzene-d5	117	12.154 12.154 (1.000) 944022	10.0000
FORM 1 VOLATILE ORGANICS ANALYSIS DATA S	ROUX1 SAMPLE NO.				
---	---				
Lab Name TESTAMERICA BURLINGTON Contract	DUP-120607				
Lab Code: STLV Case No.: 27000 SAS No.	SDG No.: NY123316				
Matrix: (soil/water) AIR	Lab Sample ID: 734483				
Sample wt/vol: 49.00 (g/mL) ML	Lab File ID: 734483D2				
Level: (low/med) LOW	Date Received: 12/07/07				
% Moisture: not dec.	Date Analyzed: 12/11/07				
GC Column: RTX-624 ID: 0.32 (mm)	Dilution Factor: 899.0				
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)				
CONCE CAS NO. COMPOUND (ug/L	NTRATION UNITS: or ug/Kg) PPBV Q				
75-01-4Vinyl Chloride 75-35-41,1-Dichloroethene 156-60-5trans-1,2-Dichloroethe 540-59-01,2-Dichloroethene (to 156-59-2cis-1,2-Dichloroethene 79-01-6Trichloroethene 127-18-4Tetrachloroethene	180 U 180 U				

FORM I VOA

Data File: /chem/B.i/Bsvr.p/bgihto15.b/734483d2.d Report Date: 13-Dec-2007 14:06

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/B.i/Bsvr.p/bgihtol5.b/734483d2.d Lab Smp Id: 734483 Client Smp ID: DUP-120607 Inj Date : 11-DEC-2007 20:41 Operator : wrd Inst ID: B.i Smp Info : DUP-120607 :[]12/06/07 @1645(AIR) Misc Info : 734483;121107BA;899;49;CDF220 Comment : Method : /chem/B.i/Bsvr.p/bgihtol5.b/rtol5.m Meth Date : 13-Dec-2007 13:39 sv Quant Type: ISTD Cal Date : 29-NOV-2007 09:21 Cal File: bgi05v2.d Als bottle: 9 Dil Factor: 899.0000 Integrator: HP RTE Compound Sublist: ROUX1_Ocean.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	899.00000 √	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	49.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

CONCENTENTIONS

					CONCERTION
			QUANT SIG		ON-COLUMN FINAL
Co	mpor	inds	MASS	RT EXP RT REL RT RESPONSE	(ppbv) (ppbv)
z z	===:		====		
	4	Vinyl Chloride	62	Compound Not Detected.	
	11	1,1-Dichloroethene	96	Compound Not Detected.	
	19	trans-1,2-Dichloroethene	61	Compound Not Detected.	
М	22	1,2-Dichloroethene (total)	61	Compound Not Detected.	
	24	cis-1,2-Dichloroethene	96	Compound Not Detected.	
*	25	Bromochloromethane	128	8.887 8.893 (1.000) 243802	10.0000
*	35	1,4-Difluorobenzene	114	9.747 9.747 (1.000) 1284883	10.0000
	36	Trichloroethene	95	Compound Not Detected.	/
	46	Tetrachloroethene	166	11.460 11.465 (0.943) 895293	19.7765 🗸 18000
*	50	Chlorobenzene-d5	117	12.148 12.154 (1.000) 1013393	10.0000

Data File: /chem/B.i/Bsvr.p/bgihto15.b/734483d2.d Date : 11-DEC-2007 20:41 Client ID: DUP-120607 Instrument: B.i Sample Info: DUP-120607 :[]12/06/07 @1645(AIR) Operator: wrd Purge Volume: 49.0 Column phase: RTX-624 Column diameter: 0.32

46 Tetrachloroethene

Concentration: 18000 ppbv

ROUX1 SAMPLE NO. FORM 1 VOLATILE ORGANICS ANALYSIS DATA SHEET FB-120607 Lab Name: TESTAMERICA BURLINGTON Contract: 27000 Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY123316 Matrix: (soil/water) AIR Lab Sample ID: 734491 Sample wt/vol: 250.0 (g/mL) ML Lab File ID: 734491 Level: (low/med) LOW Date Received: 12/07/07 % Moisture: not dec. _____ Date Analyzed: 12/12/07 GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 0.8 Soil Extract Volume:_____(uL) Soil Aliquot Volume: (uL) CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) PPBV Q 75-01-4-----Vinyl Chloride 0.16 U 75-35-4-----1,1-Dichloroethene 0.16 U 156-60-5----trans-1,2-Dichloroethene 0.16 U 540-59-0-----1,2-Dichloroethene (total) 0.16 U 156-59-2----cis-1,2-Dichloroethene 0.16 U 79-01-6-----Trichloroethene 0.16 U 127-18-4----Tetrachloroethene 0.16 U

Data File: /chem/B.i/Bsvr.p/bgiito15.b/734491.d Report Date: 13-Dec-2007 13:45

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/B.i/Bsvr.p/bgiito15.b/734491.d Lab Smp Id: 734491 Client S Inj Date : 12-DEC-2007 19:42 Operator : wrd Inst ID: Smp Info : FB-120607 :[]12/06/07 @1300(AIR) Misc Info : 734491;121207BA;.8;250 Client Smp ID: FB-120607 Inst ID: B.i Comment : : /chem/B.i/Bsvr.p/bgiito15.b/rto15.m Method Meth Date : 13-Dec-2007 13:45 sv Cal Date : 29-NOV-2007 09:21 Quant Type: ISTD Cal File: bgi05v2.d Als bottle: 5 Dil Factor: 0.80000 Integrator: HP RTE Compound Sublist: ROUX1 Ocean.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	0.80000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	250.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

CONCENTRATION

				CONCENT	IGAT TONS
			QUANT SIG	ON-COLUMN	FINAL
Co	mpo	unds	MASS	RT EXP RT REL RT RESPONSE (ppbv)	(ppbv)
	4	Vinyl Chloride	62	Compound Not Detected.	
	11	1,1-Dichloroethene	96	Compound Not Detected.	
	19	trans-1,2-Dichloroethene	61	Compound Not Detected.	
Μ	22	1,2-Dichloroethene (total)	61	Compound Not Detected.	
	24	cis-1,2-Dichloroethene	96	Compound Not Detected.	
*	25	Bromochloromethane	128	8.887 8.893 (1.000) 252839 10.0000	
*	35	1,4-Difluorobenzene	114	9.747 9.747 (1.000) 1258312 10.0000	
	36	Trichloroethene	95	Compound Not Detected.	
	46	Tetrachloroethene	166	Compound Not Detected.	
*	50	Chlorobenzene-d5	117	12.148 12.154 (1.000) 1101025 10.0000	

FORM 1 VOLATILE ORGANICS ANALYSIS DATA	ROUX1 SAMPLE NO.
Lab Name: TESTAMERICA BURLINGTON Contra	IAQ-BOOK
Lab Code: STLV Case No.: 27000 SAS M	No.: SDG No.: NY123316
Matrix: (soil/water) AIR	Lab Sample ID: 734485
Sample wt/vol: 250.0 (g/mL) ML	Lab File ID: 734485I2
Level: (low/med) LOW	Date Received: 12/07/07
% Moisture: not dec.	Date Analyzed: 12/11/07
GC Column: RTX-624 ID: 0.32 (mm)	Dilution Factor: 0.8
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
COMPOUND COMPOUND (US	NCENTRATION UNITS: g/L or ug/Kg) PPBV Q
75-01-4Vinyl Chloride 75-35-4Vinyl Chloride 156-60-5trans-1,2-Dichloroet 540-59-01,2-Dichloroethene 156-59-2cis-1,2-Dichloroethene 79-01-6Trichloroethene 127-18-4Tetrachloroethene	0.16 U 0.16 U 0.16 U (total) 0.16 0.16 U 1.1 13

Data File: /chem/B.i/Bsvr.p/bgihto15.b/734485i2.d Report Date: 13-Dec-2007 13:40

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/B.i/Bsvr.p/bgihtol5.b/734485i2.d Lab Smp Id: 734485 Client Smp Client Smp ID: IAQ-BOOK Inj Date : 11-DEC-2007 22:18 Operator : wrd Inst Smp Info : IAQ-BOOK :[]12/06/07 @1728(AIR) Inst ID: B.i Misc Info : 734485;121107BA;0.8;250 Comment : Method : /chem/B.i/Bsvr.p/bgihto15.b/rto15.m Meth Date : 13-Dec-2007 13:39 sv Quant 1 Cal Date : 29-NOV-2007 09:21 Cal Fil Quant Type: ISTD Cal File: bgi05v2.d Als bottle: 11 Dil Factor: 0.80000 Integrator: HP RTE Compound Sublist: ROUX1 Ocean.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	0.80000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	250.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

							CONCENTRA	ATIONS
			QUANT SIG				ON-COLUMN	FINAL
Co	mpo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
==	===;		====	==				
	4	Vinyl Chloride	62	Comp	ound Not Detected	d.		
	11	1,1-Dichloroethene	96	Comp	ound Not Detected	d.		
	19	trans-1,2-Dichloroethene	61	Сотр	ound Not Detected	d.		
Μ	22	1,2-Dichloroethene (total)	61	Comp	ound Not Detected	d.		
	24	cis-1,2-Dichloroethene	96	Comp	ound Not Detected	d.		
*	25	Bromochloromethane	128	8.893	8.893 (1.000)	228782	10.0000	
*	35	1,4-Difluorobenzene	114	9.747	9.747 (1.000)	1124327	10.0000	
	36	Trichloroethene	95	9.987	9.987 (1.025)	49687	1.34073	1.1
	46	Tetrachloroethene	166	11.460	11.465 (0.943)	770683	16.1750	13
*	50	Chlorobenzene-d5	117	12.148	12.154 (1.000)	1066581	10.0000	

Data File: /chem/B.i/Bsvr.p/bgihto15.b/734485i2.d Date : 11-DEC-2007 22:18 Client ID: IAQ-BOOK Sample Info: IAQ-BOOK :[]12/06/07 @1728(AIR) Purge Volume: 250.0 Column phase: RTX-624

36 Trichloroethene

Operator: wrd

Instrument: B.i

Column diameter: 0.32

Data File: /chem/B.i/Bsvr.p/bgihto15.b/734485i2.d Date : 11-DEC-2007 22:18 Client ID: IAQ-BOOK Sample Info: IAQ-BOOK :[]12/06/07 @1728(AIR) Purge Volume: 250.0 Column phase: RTX-624

Instrument: B.i

Operator: wrd Column diameter: 0.32

Concentration: 13 ppbv

Page 4

46 Tetrachloroethene

FORM 1 VOLATILE ORGANICS ANALYSIS DATA	ROUX1 SAMPLE NO.
Lab Name: TESTAMERICA BURLINGTON Contrac	IAQ-VAC
Lab Code: STLV Case No.: 27000 SAS No	O.: SDG No.: NY123316
Matrix: (soil/water) AIR	Lab Sample ID: 734487
Sample wt/vol: 250.0 (g/mL) ML	Lab File ID: 734487I2
Level: (low/med) LOW	Date Received: 12/07/07
% Moisture: not dec	Date Analyzed: 12/11/07
GC Column: RTX-624 ID: 0.32 (mm)	Dilution Factor: 0.8
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL
CONC CAS NO. COMPOUND (ug/	CENTRATION UNITS: /L or ug/Kg) PPBV Q
75-01-4Vinyl Chloride 75-35-41,1-Dichloroethene 156-60-5trans-1,2-Dichloroeth 540-59-01,2-Dichloroethene (t 156-59-2cis-1,2-Dichloroethene 79-01-6Trichloroethene 127-18-4Tetrachloroethene	0.16 U 0.16 U 0.16 U total) 0.16 U ne 0.16 U 0.16 U U 0.39

FORM I VOA

Data File: /chem/B.i/Bsvr.p/bgihto15.b/734487i2.d Report Date: 13-Dec-2007 13:40

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/B.i/Bsvr.p/bgihto15.b/734487i2.d Lab Smp Id: 734487 Client Smp Inj Date : 11-DEC-2007 23:56 Client Smp ID: IAQ-VAC Operator : wrd Inst ID: B.i Smp Info : IAQ-VAC : []12/06/07 @1748(AIR) Misc Info : 734487;121107BA;0.8;250 Comment : Method : /chem/B.i/Bsvr.p/bgihto15.b/rto15.m Meth Date : 13-Dec-2007 13:39 sv Quant Type: ISTD Cal Date : 29-NOV-2007 09:21 Cal File: bgi05v2.d Als bottle: 13 Dil Factor: 0.80000 Integrator: HP RTE Compound Sublist: ROUX1 Ocean.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	0.80000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	250.00000	Sample Volume purged (mL)

Cpnd Variable

							CONCENTRA	TIONS
			QUANT SIG				ON-COLUMN	FINAL
Co	mpor	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
==	±==;			= =			=======	
	4	Vinyl Chloride	62	Comp	ound Not Detecte	d.		
	11	1,1-Dichloroethene	96	Comp	ound Not Detecte	d.		
	19	trans-1,2-Dichloroethene	61	Comp	ound Not Detecte	d.		
М	22	1,2-Dichloroethene (total)	61	Comp	ound Not Detecte	d.		
	24	cis-1,2-Dichloroethene	96	Comp	ound Not Detecte	d.		
*	25	Bromochloromethane	128	8.893	8.893 (1.000)	232841	10.0000	
*	35	1,4-Difluorobenzene	114	9.747	9.747 (1.000)	1133395	10.0000	
	36	Trichloroethene	95	Comp	ound Not Detected	1 .		
	46	Tetrachloroethene	166	11.465	11.465 (0.943)	23747	0.48764	0.39
*	50	Chlorobenzene-d5	117	12.154	12.154 (1.000)	1090110	10.0000	

Data File: /chem/B.i/Bsvr.p/bgihto15.b/734487i2.d Date : 11-DEC-2007 23:56 Client ID: IAQ-VAC Sample Info: IAQ-VAC :[]12/06/07 @1748(AIR) Purge Volume: 250.0 Column phase: RTX-624

Instrument: B.i

Operator: wrd

Column diameter: 0.32

FORM 1 VOLATILE ORGANICS ANALYSIS DATA	ROUX1 SAMPLE NO.
Lab Name: TESTAMERICA BURLINGTON Contra	VS-BOOK
Lab Code: STLV Case No.: 27000 SAS 1	No.: SDG No.: NY123316
Matrix: (soil/water) AIR	Lab Sample ID: 734486
Sample wt/vol: 50.00 (g/mL) ML	Lab File ID: 734486D2
Level: (low/med) LOW	Date Received: 12/07/07
% Moisture: not dec	Date Analyzed: 12/11/07
GC Column: RTX-624 ID: 0.32 (mm)	Dilution Factor: 60.4
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND (ug	NCENTRATION UNITS: g/L or ug/Kg) PPBV Q
75-01-4Vinyl Chloride 75-35-41,1-Dichloroethene 156-60-5trans-1,2-Dichloroet 540-59-01,2-Dichloroethene 156-59-2cis-1,2-Dichloroethene 79-01-6Trichloroethene 127-18-4Tetrachloroethene	12 U 12 U 12 U (total) 12 ene 12 12 U 12 U

Data File: /chem/B.i/Bsvr.p/bgihto15.b/734486d2.d Report Date: 13-Dec-2007 13:40

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/B.i/Bsvr.p/bgihto15.b/734486d2.d Lab Smp Id: 734486 Client Smp ID: VS-BOOK Inj Date : 11-DEC-2007 23:07 Operator : wrd Inst ID: B.i Smp Info : VS-BOOK : []12/06/07 @1732(AIR) Misc Info : 734486;121107BA;60.4;50;CDF15.1 Comment : Method : /chem/B.i/Bsvr.p/bgihto15.b/rto15.m Meth Date : 13-Dec-2007 13:39 sv Quant Type: ISTD Cal Date : 29-NOV-2007 09:21 Cal File: bgi05v2.d Als bottle: 12 Dil Factor: 60.40000 Integrator: HP RTE Compound Sublist: ROUX1_Ocean.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	60.40000 √	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	50.00000	Sample Volume purged (mL)

Cpnd Variable

				CONCENTR	ALTONS
			QUANT SIG	ON-COLUMN	FINAL
Co	ompo	unds	MASS	RT EXP RT REL RT RESPONSE (ppbv)	(ppbv)
==			****		
	4	Vinyl Chloride	62	Compound Not Detected.	
	11	1,1-Dichloroethene	96	Compound Not Detected.	
	19	trans-1,2-Dichloroethene	61	Compound Not Detected.	
М	22	1,2-Dichloroethene (total)	61	Compound Not Detected.	
	24	cis-1,2-Dichloroethene	96	Compound Not Detected.	
*	25	Bromochloromethane	128	8.893 8.893 (1.000) 243857 10.0000	
*	35	1,4-Difluorobenzene	114	9.747 9.747 (1.000) 1258804 10.0000	
	36	Trichloroethene	95	Compound Not Detected.	
	46	Tetrachloroethene	166	11.460 11.465 (0.943) 879262 19.3906	1200
*	50	Chlorobenzene-d5	117	12.154 12.154 (1.000) 1015055 10.0000	

Data File: /chem/B.i/Bsvr.p/bgihto15.b/734486d2.d Date : 11-DEC-2007 23:07 Client ID: VS-BOOK Sample Info: VS-BOOK :[]12/06/07 @1732(AIR) Purge Volume: 50.0 Column phase: RTX-624

46 Tetrachloroethene

Column diameter: 0.32

Instrument: B.i

Operator: wrd

FORM 1 VOLATILE ORGANICS ANALYSIS DATA S	ROUX1 SAMPLE NO.
Lab Name: TESTAMERICA BURLINGTON Contract	vs-dcf
Lab Code: STLV Case No.: 27000 SAS No.	: SDG No.: NY123316
Matrix: (soil/water) AIR	Lab Sample ID: 734481
Sample wt/vol: 133.0 (g/mL) ML	Lab File ID: 734481D2
Level: (low/med) LOW	Date Received: 12/07/07
% Moisture: not dec.	Date Analyzed: 12/11/07
GC Column: RTX-624 ID: 0.32 (mm)	Dilution Factor: 1.5
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CONCE CAS NO. COMPOUND (ug/L	NTRATION UNITS: or ug/Kg) PPBV Q
75-01-4Vinyl Chloride 75-35-41,1-Dichloroethene 156-60-5trans-1,2-Dichloroethe 540-59-01,2-Dichloroethene (to 156-59-2Cis-1,2-Dichloroethene 79-01-6Trichloroethene 127-18-4Tetrachloroethene	0.30 U ne 0.30 U tal) 0.30 U 0.30 U 0.30 U 0.30 U 0.46

Data File: /chem/B.i/Bsvr.p/bgihto15.b/734481d2.d Report Date: 13-Dec-2007 13:40

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/B.i/Bsvr.p/bgihto15.b/734481d2.d Lab Smp Id: 734481 Client Smr Client Smp ID: VS-DCF Inj Date : 11-DEC-2007 19:04 Operator : wrd In Smp Info : VS-DCF :[]12/06/07 @1653(AIR) Inst ID: B.i Misc Info : 734481;121107BA;1.5;133 Comment Method : /chem/B.i/Bsvr.p/bgihto15.b/rto15.m Meth Date : 13-Dec-2007 13:39 sv Quant 2 Quant Type: ISTD Cal Date : 29-NOV-2007 09:21 Cal File: bgi05v2.d Als bottle: 6 Dil Factor: 1.50000 Integrator: HP RTE Compound Sublist: ROUX1 Ocean.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.50000 /	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	133.00000	Sample Volume purged (mL)

Cpnd Variable

							CONCENTR	ATIONS
			QUANT SIG				ON-COLUMN	FINAL
Con	po	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
===	==		====	==				
	4	Vinyl Chloride	62	Comp	ound Not Detec	ted.		
	11	1,1-Dichloroethene	96	Comp	ound Not Detec	ted.		
	19	trans-1,2-Dichloroethene	61	Comp	ound Not Detec	ted.		
М	22	1,2-Dichloroethene (total)	61	Comp	ound Not Detec	ted.		
	24	cis-1,2-Dichloroethene	96	Comp	ound Not Detec	ted.		
*	25	Bromochloromethane	128	8.887	8.893 (1.000) 224050	10.0000	
*	35	1,4-Difluorobenzene	114	9.747	9.747 (1.000) 1144287	10.0000	
	36	Trichloroethene	95	9.982	9.987 (1.024) 11461	0.30386	0.46
	46	Tetrachloroethene	166	11.465	11.465 (0.943) 1621495	34.0192 🖌	51
*	50	Chlorobenzene-d5	117	12.154	12.154 (1.000) 1066975	10.0000	

Data File: /chem/B.i/Bsvr.p/bgihto15.b/734481d2.d Date : 11-DEC-2007 19:04 Client ID: VS-DCF Sample Info: VS-DCF :[]12/06/07 @1653(AIR) Purge Volume: 133.0 Column phase: RTX-624

Instrument: B.i

Operator: wrd

Column diameter: 0.32

36 Trichloroethene

Concentration: 0.46 ppbv

 Data File: /chem/B.i/Bsvr.p/bgihto15.b/734481d2.d

 Date : 11-DEC-2007 19:04

 Client ID: VS-DCF
 Instrument: B.i

 Sample Info: VS-DCF :[]12/06/07 @1653(AIR)

 Purge Volume: 133.0
 Operator: wrd

 Column phase: RTX-624
 Column diameter: 0.32

46 Tetrachloroethene

Concentration: 51 ppbv

FORM 1 VOLATILE ORGANICS ANALYSIS DATA S	ROUX1 SAMPLE NO.
Lab Name: TESTAMERICA BURLINGTON Contract	VS-DCR
Lab Code: STLV Case No.: 27000 SAS No.	SDG No.: NY123316
Matrix: (soil/water) AIR	Lab Sample ID: 734484
Sample wt/vol: 30.00 (g/mL) ML	Lab File ID: 734484D2
Level: (low/med) LOW	Date Received: 12/07/07
% Moisture: not dec	Date Analyzed: 12/11/07
GC Column: RTX-624 ID: 0.32 (mm)	Dilution Factor: 399.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND (ug/I	ENTRATION UNITS: Jorug/Kg) PPBV Q
75-01-4Vinyl Chloride 75-35-41,1-Dichloroethene 156-60-5trans-1,2-Dichloroethe 540-59-01,2-Dichloroethene (to 156-59-2cis-1,2-Dichloroethene 79-01-6Trichloroethene 127-18-4Tetrachloroethene	80 U 80 U

Data File: /chem/B.i/Bsvr.p/bgihto15.b/734484d2.d Report Date: 13-Dec-2007 13:40

Page 1

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/B.i/Bsvr.p/bgihto15.b/734484d2.d Lab Smp Id: 734484 Client Smp ID: VS-DCR Inj Date : 11-DEC-2007 21:29 Operator : wrd Inst ID: B.i Smp Info : VS-DCR : []12/06/07 @1710(AIR) Misc Info : 734484;121107BA;399;30;CDF59.8 Comment Method : /chem/B.i/Bsvr.p/bgihto15.b/rto15.m Meth Date : 13-Dec-2007 13:39 sv Quant Quant Type: ISTD Cal Date : 29-NOV-2007 09:21 Cal File: bgi05v2.d Als bottle: 10 Dil Factor: 399.00000 Integrator: HP RTE Compound Sublist: ROUX1 Ocean.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	399.00000 /	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	30.00000	Sample Volume purged (mL)

Cpnd Variable

				CONCENTRATIO	NS
			QUANT SIG	ON-COLUMN F	INAL
Co	mpo	unds	MASS	RT EXP RT REL RT RESPONSE (ppbv) ()	ppbv)
==					
	4	Vinyl Chloride	62	Compound Not Detected.	
	11	1,1-Dichloroethene	96	Compound Not Detected.	
	19	trans-1,2-Dichloroethene	61	Compound Not Detected.	
М	22	1,2-Dichloroethene (total)	61	Compound Not Detected.	
	24	cis-1,2-Dichloroethene	96	Compound Not Detected.	
*	25	Bromochloromethane	128	8.887 8.893 (1.000) 211830 10.0000	
*	35	1,4-Difluorobenzene	114	9.747 9.747 (1.000) 1106618 10.0000	
	36	Trichloroethene	95	Compound Not Detected.	
	46	Tetrachloroethene	166	11.460 11.465 (0.943) 1128662 30.4933 🗸 :	12000
*	50	Chlorobenzene-d5	117	12.148 12.154 (1.000) 828558 10.0000	

Data File: /chem/B.i/Bsvr.p/bgihto15.b/734484d2.d Date : 11-DEC-2007 21:29 Client ID: VS-DCR Sample Info: VS-DCR :[]12/06/07 @1710(AIR) Purge Volume: 30.0 Column phase: RTX-624

46 Tetrachloroethene

Column diameter: 0.32

Instrument: B.i

Operator: wrd

FORM 1 VOLATILE ORGANICS ANALYSIS DATA S	ROUX1 SAMPLE NO.
Lab Name: TESTAMERICA BURLINGTON Contract	VS-FENCE
Lab Code: STLV Case No.: 27000 SAS No.	: SDG No.: NY123316
Matrix: (soil/water) AIR	Lab Sample ID: 734490
Sample wt/vol: 133.0 (g/mL) ML	Lab File ID: 734490
Level: (low/med) LOW	Date Received: 12/07/07
% Moisture: not dec.	Date Analyzed: 12/12/07
GC Column: RTX-624 ID: 0.32 (mm)	Dilution Factor: 1.5
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND CONCE	ENTRATION UNITS: or ug/Kg) PPBV Q
75-01-4Vinyl Chloride 75-35-41,1-Dichloroethene 156-60-5trans-1,2-Dichloroethene 540-59-01,2-Dichloroethene (to 156-59-2cis-1,2-Dichloroethene 79-01-6Trichloroethene	0.30 U ene 0.30 U stal) 0.30 U 0.30 U 0.30 U 0.30 U 0.30 U 35

Data File: /chem/B.i/Bsvr.p/bgiito15.b/734490.d Report Date: 13-Dec-2007 13:57

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/B.i/Bsvr.p/bgiito15.b/734490.d Lab Smp Id: 734490 Client S Client Smp ID: VS-FENCE Inj Date : 12-DEC-2007 18:54 Operator : wrd Inst Smp Info : VS-FENCE : []12/06/07 @1830(AIR) Inst ID: B.i Misc Info : 734490;121207BA;1.5;133 Comment Method : /chem/B.i/Bsvr.p/bgiito15.b/rto15.m Meth Date : 13-Dec-2007 13:45 sv Quant Quant Type: ISTD Cal Date : 29-NOV-2007 09:21 Cal File: bgi05v2.d Als bottle: 4 Dil Factor: 1.50000 Integrator: HP RTE Compound Sublist: ROUX1_Ocean.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.50000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	133.00000	Sample Volume purged (mL)

Cpnd Variable

					CONCENTRATIONS
			QUANT SIG		ON-COLUMN FINAL
Co	mpor	unds	MASS	RT EXP RT REL RT RESPONSE	(ppbv) (ppbv)
==	===:		====		
	4	Vinyl Chloride	62	Compound Not Detected.	
	11	1,1-Dichloroethene	96	Compound Not Detected.	
	19	trans-1,2-Dichloroethene	61	Compound Not Detected.	
М	22	1,2-Dichloroethene (total)	61	Compound Not Detected.	
	24	cis-1,2-Dichloroethene	96	Compound Not Detected.	
*	25	Bromochloromethane	128	8.887 8.893 (1.000) 247788	10.0000
*	35	1,4-Difluorobenzene	114	9.747 9.747 (1.000) 1271934	10.0000
	36	Trichloroethene	95	Compound Not Detected.	/
	46	Tetrachloroethene	166	11.460 11.465 (0.943) 1219940	23.1800 🗸 35
*	50	Chlorobenzene-d5	117	12.154 12.154 (1.000) 1178116	10.0000

Data File: /chem/B.i/Bsvr.p/bgiito15.b/734490.d Date : 12-DEC-2007 18:54 Client ID: VS-FENCE Sample Info: VS-FENCE :[]12/06/07 @1830(AIR) Purge Volume: 133.0 Column phase: RTX-624

Instrument: B.i Operator: wrd

Column diameter: 0.32

Page 3

46 Tetrachloroethene

FORM 1 ROUX1 SAMPLE NO. VOLATILE ORGANICS ANALYSIS DATA SHEET VS-MRE Lab Name: TESTAMERICA BURLINGTON Contract: 27000 SDG No.: NY123316 Lab Code: STLV Case No.: 27000 SAS No.: Lab Sample ID: 734482 Matrix: (soil/water) AIR Sample wt/vol: 32.00 (g/mL) ML Lab File ID: 734482D2 Date Received: 12/07/07 Level: (low/med) LOW Date Analyzed: 12/11/07 % Moisture: not dec. GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 348.0 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV CAS NO. COMPOUND Q 70 U 75-01-4-----Vinyl Chloride 75-35-4-----1,1-Dichloroethene 70 U 156-60-5-----trans-1,2-Dichloroethene 70 U 540-59-0-----1,2-Dichloroethene (total) 70 U 156-59-2----cis-1,2-Dichloroethene 70 U 79-01-6----Trichloroethene 71 127-18-4----Tetrachloroethene 7400

Data File: /chem/B.i/Bsvr.p/bgihto15.b/734482d2.d Report Date: 13-Dec-2007 13:40

Page 1

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/B.i/Bsvr.p/bgihto15.b/734482d2.d Lab Smp Id: 734482 Client Smp ID: VS-MRE Inj Date : 11-DEC-2007 19:52 Operator : wrd Inst ID: B.i Smp Info : VS-MRE : []12/06/07 @1645(AIR) Misc Info : 734482;121107BA;348;32;CDF55.7 Comment Method : /chem/B.i/Bsvr.p/bgihto15.b/rto15.m Quant Type: ISTD Meth Date : 13-Dec-2007 13:39 sv Cal Date : 29-NOV-2007 09:21 Cal File: bgi05v2.d Als bottle: 8 Dil Factor: 348.00000 Integrator: HP RTE Compound Sublist: ROUX1 Ocean.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	348.00000 J	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	32.00000	Sample Volume purged (mL)

Cpnd Variable

						CONCENTRATIONS		
			QUANT SIG				ON-COLUMN	FINAL
Compounds			MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
			====	==				
	4	Vinyl Chloride	62	Comp	ound Not Detected	1.		
	11	1,1-Dichloroethene	96	Compound Not Detected.				
	19	trans-1,2-Dichloroethene	61	Compound Not Detected.				
М	22	1,2-Dichloroethene (total)	61	Compound Not Detected.				
	24	cis-1,2-Dichloroethene	96	Compound Not Detected.				
*	25	Bromochloromethane	128	8.893	8.893 (1.000)	241149	10.0000	
*	35	1,4-Difluorobenzene	114	9.747	9.747 (1.000)	1260907	10.0000	
	36	Trichloroethene	95	9.982	9.987 (1.024)	8470	0.20379	/ 71
	46	Tetrachloroethene	166	11.460	11.465 (0.943)	939403	21.1371	7400
*	50	Chlorobenzene-d5	117	12.154	12.154 (1.000)	994876	10.0000	
Data File: /chem/B.i/Bsvr.p/bgihto15.b/734482d2.d Date : 11-DEC-2007 19:52 Client ID: VS-MRE Sample Info: VS-MRE :[]12/06/07 @1645(AIR) Purge Volume: 32.0 Column phase: RTX-624

```
Instrument: B.i
```

Operator: wrd

Column diameter: 0.32

36 Trichloroethene

Concentration: 71 ppbv

Data File: /chem/B.i/Bsvr.p/bgihto15.b/734482d2.d Date : 11-DEC-2007 19:52 Instrument: B.i Client ID: VS-MRE Sample Info: VS-MRE :[]12/06/07 @1645(AIR) Purge Volume: 32.0 Operator: wrd Column diameter: 0.32 Column phase: RTX-624

Page 4

160

180

200

-100

40

60

80

100

120

140

0.3-

0.0--

10.8 11.2 Min

11.6 12.0

12.4

FORM 1 VOLATILE ORGANICS ANALYSIS DATA SH	ROUX1 SAMPLE NO.
Lab Name: TESTAMERICA BURLINGTON Contract:	: 27000
Lab Code: STLV Case No.: 27000 SAS No.:	: SDG No.: NY123316
Matrix: (soil/water) AIR	Lab Sample ID: 734488
Sample wt/vol: 21.00 (g/mL) ML	Lab File ID: 734488D2
Level: (low/med) LOW	Date Received: 12/07/07
% Moisture: not dec.	Date Analyzed: 12/12/07
GC Column: RTX-624 ID: 0.32 (mm)	Dilution Factor: 149.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND CONCEN (ug/L	NTRATION UNITS: or ug/Kg) PPBV Q
75-01-4Vinyl Chloride 75-35-4Vinyl Chloroethene 156-60-5trans-1,2-Dichloroethene 540-59-01,2-Dichloroethene (tot 156-59-2cis-1,2-Dichloroethene 79-01-6Trichloroethene 127-18-4Tetrachloroethene	30 U 30 U

Data File: /chem/B.i/Bsvr.p/bgihto15.b/734488d2.d Report Date: 13-Dec-2007 13:40

Page 1

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/B.i/Bsvr.p/bgihto15.b/734488d2.d Lab Smp Id: 734488 Client Smp ID: VS-VAC Inj Date : 12-DEC-2007 00:44 Operator : wrd In Smp Info : VS-VAC :[]12/06/07 @1759(AIR) Inst ID: B.i Misc Info : 734488;121107BA;149;21;CDF15.6 Comment Method : /chem/B.i/Bsvr.p/bgihto15.b/rto15.m Meth Date : 13-Dec-2007 13:39 sv Quant Type: ISTD Cal Date : 29-NOV-2007 09:21 Cal File: bgi05v2.d Als bottle: 14 Dil Factor: 149.00000 Integrator: HP RTE Compound Sublist: ROUX1 Ocean.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	149.00000 √	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	21.00000	Sample Volume purged (mL)

Cpnd Variable

							CONCENTRA	TIONS
			QUANT SIG				ON-COLUMN	FINAL
Co	mpo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
==	===			==				
	4	Vinyl Chloride	62	Comp	ound Not Detected	1.		
	11	1,1-Dichloroethene	96	Comp	ound Not Detected	1.		
	19	trans-1,2-Dichloroethene	61	Compound Not Detected.				
М	22	1,2-Dichloroethene (total)	61	Comp	ound Not Detected	1.		
	24	cis-1,2-Dichloroethene	96	Comp	ound Not Detected	1.		
*	25	Bromochloromethane	128	8.893	8.893 (1.000)	220332	10.0000	
*	35	1,4-Difluorobenzene	114	9.747	9.747 (1.000)	1124973	10.0000	
	36	Trichloroethene	95	Comp	ound Not Detected	1.		/
	46	Tetrachloroethene	166	11.465	11.465 (0.943)	722726	17.9855 ./	2700
*	50	Chlorobenzene-d5	117	12.153	12.154 (1.000)	899528	10.0000	

Data File: /chem/B.i/Bsvr.p/bgihto15.b/734488d2.d Date : 12-DEC-2007 00:44 Client ID: VS-VAC Sample Info: VS-VAC :[]12/06/07 @1759(AIR) Purge Volume: 21.0

Column phase: RTX-624

46 Tetrachloroethene

Instrument: B.i

Operator: wrd

Standards – TO-15 Volatile

6A VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON Contract: 27000 Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY123316 Instrument ID: B Calibration Date(s): 11/28/07 11/29/07 Heated Purge: (Y/N) N Calibration Time(s): 1345 0921 GC Column: RTX-624 ID: 0.32 (mm)

LAB FILE ID: RRF0.	2=BG1002	2V2	RRF0 PPF1	.5=BGI00	15V2 NV		
RRF2 = RRF5	=00105	V Z	KKI 1	U -DGII	5 V		
COMPOUND	RRF0.2	RRF0.5	RRF2	RRF5	RRF10	RRF	R
invl Chloride	1.113	1.040		1,135	1.115		
.1-Dichloroethene	1.091	1.024		1.069	1.109		
rans-1.2-Dichloroethene	1.641	1.657		1.656	1.729		
,2-Dichloroethene (total)	1.469	1.415		1.421	1.488		
is-1,2-Dichloroethene	1.298	1.173		1.186	1.247		—
richloroethene	0.359	0.332		0.309	0.351		—
etrachloroethene	0.492	0.426		0.395	0.449		
	-						
	-						—
	-						—
	-]—
	-						
	-						
	-			I			
	-						
	-						
	-1			1			
]			
	-]		
							I—
	-						
	-]						
	-						
	-						
			I				ا

All other compounds must meet a minimim RRF of 0.010.

page 1 of 2

FORM VI VOA

3/90

6A VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: TESTAMERI	CA BURLINGTON	Contract: 27000	
Lab Code: STLV	Case No.: 27000	SAS No.:	SDG No.: NY123316
Instrument ID: B	Calibrati	on Date(s): 11/28/07	11/29/07
Heated Purge: (Y/N)	N Calibrati	on Time(s): 1345	0921
GC Column: RTX-624	ID: 0.32 (mm)		

LAB FILE ID: RRF15	=BGI15	V	RRF2) =BGI20)V		
RRF40 =BGI40V							
COMPOUND	RRF15	RRF20	RRF40			RRF	RSD
	======	======	======	======		======	=====
Vinyl Chloride		0.885	0.861			1.025	11.9
1,1-Dichloroethene		0.974	0.969			1.039	5.8
trans-1,2-Dichloroethene	I	1.435	1.410			1.588	8.3
1,2-Dichloroethene (total)		1.282	1.269			1.391	6.7
cis-1,2-Dichloroethene		1.128	1.129			1.194	5.6
Trichloroethene		0.303	0.323			0.330	6.8
Tetrachloroethene		0.441	0.477			0.447	7.8
]						
	[
]						— —
	[
				———			
Compounds with required min:	imum RRI	F and ma	aximim %	RSD val	ues.		·

All other compounds must meet a minimim RRF of 0.010.

page 2 of 2

FORM VI VOA

3/90

Data File: /chem/B.i/Bsvr.p/bgito15.b/bgi002v2.d Report Date: 30-Nov-2007 12:51

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/B.i/Bsvr.p/bgitol5.b/bgi002v2.d Lab Smp Id: ASTD0002 Client Smp ID: ASTD0002 Inj Date : 28-NOV-2007 19:24 Operator : wrd Inst ID: B.i Smp Info : Misc Info : ASTD0002;112807BA;1;200 Comment : Method : /chem/B.i/Bsvr.p/bgitol5.b/rtol5.m Meth Date : 30-Nov-2007 12:51 sv Quant Type: ISTD Cal Date : 28-NOV-2007 19:24 Cal File: bgi002v2.d Als bottle: 1 Calibration Sample, Level: 1 Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: all002.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

							AMOUN	15
			QUANT SIG				CAL-AMT	ON-COL
Co	mpo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
==	===		===	==				
	2	1,2-Dichlorotetrafluoroethane	85	3.694	3.689 (0.415)	22645	0.20000	0.22
	4	Vinyl Chloride	62	4.068	4.068 (0.457)	8178	0.20000	0.22
	6	Bromomethane	94	4.869	4.863 (0.547)	9183	0.20000	0.22
	8	Bromoethene	106	5.477	5.472 (0.616)	9210	0.20000	0.21
	9	Trichlorofluoromethane	101	5.552	5.557 (0.624)	22447	0.20000	0.21
	10	Freon TF	101	6.416	6.422 (0.722)	16362	0.20000	0.21
	11	1,1-Dichloroethene	96	6.491	6.491 (0.730)	8012	0.20000	0.21
	19	trans-1,2-Dichloroethene	61	7.521	7.521 (0.846)	12054	0.20000	0.21
	21	1,1-Dichloroethane	63	8.044	8.044 (0.905)	15407	0.20000	0.22
М	22	1,2-Dichloroethene (total)	61			21589	0.40000	0.42
	24	cis-1,2-Dichloroethene	96	8.647	8.647 (0.972)	9535	0.20000	0.22
*	25	Bromochloromethane	128	8.893	8.893 (1.000)	367292	10.0000	(Q)
	27	Chloroform	83	8.925	8.930 (1.004)	18128	0.20000	0.22
	28	1,1,1-Trichloroethane	97	9.101	9.106 (0.934)	18739	0.20000	0.21
	29	Cyclohexane	84	9.117	9.122 (0.935)	13155	0.20000	0.21

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Com	pounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
		*===	==	****** ******		TETETE	*******
:	30 Carbon Tetrachloride	117	9.240	9.240 (0.948)	18856	0.20000	0.20
:	31 2,2,4-Trimethylpentane	57	9.389	9.389 (0.963)	42366	0.20000	0.22
:	32 Benzene	78	9.437	9.442 (0.968)	28370	0.20000	0.23
:	34 n-Heptane	43	9.528	9.528 (0.978)	15905	0.20000	0.22
:	33 1,2-Dichloroethane	62	9.496	9.496 (0.974)	11054	0.20000	0.22
* :	35 1,4-Difluorobenzene	114	9.747	9.747 (1.000)	1728529	10.0000	
:	36 Trichloroethene	95	9.981	9.987 (1.024)	12405	0.20000	0.22
:	38 1,2-Dichloropropane	63	10.211	10.211 (1.048)	9028	0.20000	0.22 (QM)
	40 Bromodichloromethane	83	10.414	10.414 (1.068)	17582	0.20000	0.20
	41 cis-1,3-Dichloropropene	75	10.771	10.771 (1.105)	13722	0.20000	0.22
	43 Toluene	92	11.022	11.022 (0.907)	19479	0.20000	0.25
	44 trans-1,3-Dichloropropene	75	11.209	11.209 (1.150)	13085	0.20000	0.21
	45 1,1,2-Trichloroethane	83	11.369	11.369 (0.935)	8959	0.20000	0.24
	46 Tetrachloroethene	166	11.465	11.465 (0.943)	16060	0.20000	0.22
	48 Dibromochloromethane	129	11.700	11.700 (0.963)	14767	0.20000	0.19(a)
	49 1,2-Dibromoethane	107	11.833	11.833 (0.974)	14875	0.20000	0.22
* !	50 Chlorobenzene-d5	117	12.153	12.154 (1.000)	1631803	10.0000	
	51 Chlorobenzene	112	12.175	12.180 (1.002)	26965	0.20000	Ó.24 (Q)
1	52 Ethylbenzene	91	12.196	12.196 (1.004)	39012	0.20000	0.24
м	55 Xylene (total)	106			44865	0.20000	0.71
1	53 Xylene (m,p)	106	12.282	12.282 (1.011)	30222	0.40000	0.46(a)
	54 Xylene (o)	106	12.628	12.629 (1.039)	14643	0.20000	0.23
1	56 Styrene	104	12.639	12.639 (1.040)	15948	0.20000	0.18(a)
1	57 Bromoform	173	12.879	12.879 (1.060)	11263	0.20000	0.17(a)
	58 1,1,2,2-Tetrachloroethane	83	13.194	13.194 (1.086)	21729	0.20000	0.24
	59 4-Ethyltoluene	105	13.338	13.338 (1.097)	40641	0.20000	0.23
	60 1,3,5-Trimethylbenzene	105	13.376	13.381 (1.101)	32750	0.20000	0.23
	61 2-Chlorotoluene	91	13.402	13.402 (1.103)	35842	0.20000	0.25
	62 1,2,4-Trimethylbenzene	105	13.717	13.717 (1.129)	29450	0.20000	0.22
	63 1,3-Dichlorobenzene	146	14.064	14.064 (1.157)	21622	0.20000	0.23
	64 1,4-Dichlorobenzene	146	14.139	14.144 (1.163)	21212	0.20000	0.22
	65 1,2-Dichlorobenzene	146	14.512	14.512 (1.194)	19571	0.20000	0.22
	67 Hexachlorobutadiene	225	16.306	16.306 (1.342)	5812	0.20000	0.20

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).
 Q - Qualifier signal failed the ratio test.
 M - Compound response manually integrated.

Data File: /chem/B.i/Bsvr.p/bgito15.b/bgi005v2.d Report Date: 30-Nov-2007 12:42

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/B.i/Bsvr.p/bgito15.b/bgi005v2.d Lab Smp Id: ASTD0005 Client Sr Client Smp ID: ASTD0005 Inj Date : 28-NOV-2007 20:12 Operator : wrd Inst ID: B.i Smp Info : Misc Info : ASTD0005;112807BA;1;200 Comment Method : /chem/B.i/Bsvr.p/bgito15.b/rto15.m Meth Date : 30-Nov-2007 12:42 sv Quant Quant Type: ISTD Cal Date : 28-NOV-2007 20:12 Cal File: bgi005v2.d Als bottle: 2 Calibration Sample, Level: 2 Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: all005.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Compo	ınds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
		====	==		*==*****		
1	Dichlorodifluoromethane	85	3.455	3.454 (0.388)	44165	0.50000	0.53
168	Freon 22	51	3.492	3.492 (0.393)	23379	0.50000	0.56
2	1,2-Dichlorotetrafluoroethane	85	3.689	3.689 (0.415)	51000	0.50000	0.52
3	Chloromethane	50	3.833	3.828 (0.431)	14857	0.50000	0.56
4	Vinyl Chloride	62	4.068	4.068 (0.457)	18068	0.50000	0.51
5	1,3-Butadiene	54	4.138	4.143 (0.465)	12510	0.50000	0.49(a)
6	Bromomethane	94	4.863	4.863 (0.547)	20031	0.50000	0.51
7	Chloroethane	64	5.088	5.087 (0.572)	10514	0.50000	0.51
8	Bromoethene	106	5.477	5.472 (0.616)	19861	0.50000	0.49
9	Trichlorofluoromethane	101	5.557	5.557 (0.625)	50204	0.50000	0.50
10	Freon TF	101	6.427	6.422 (0.723)	36001	0.50000	0.49
11	1,1-Dichloroethene	96	6.491	6.491 (0.730)	17783	0.50000	0.49
14	Carbon Disulfide	76	6.843	6.843 (0.770)	56547	0.50000	0.51
15	3-Chloropropene	41	7.030	7.030 (0.791)	22418	0.50000	0.51
16	Methylene Chloride	49	7.222	7.222 (0.812)	22891	0.50000	0.59

					AMOUN	ITS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
ESCREPTIONSERFECTERFCERE		==			*******	
18 Methyl tert-Butyl Ether	73	7.495	7.478 (0.843)	43313	0.50000	0.55
19 trans-1,2-Dichloroethene	61	7.521	7.521 (0.846)	28770	0.50000	0.52
20 n-Hexane	57	7.740	7.740 (0.870)	31135	0.50000	0.52
21 1,1-Dichloroethane	63	8.044	8.044 (0.905)	33917	0.50000	0.52
M 22 1,2-Dichloroethene (total)	61			49143	1.00000	1.0
23 Methyl Ethyl Ketone	72	8.653	8.637 (0.973)	7380	0.50000	0.52
24 cis-1,2-Dichloroethene	96	8.647	8.647 (0.972)	20373	0.50000	0.49
* 25 Bromochloromethane	128	8.893	8.893 (1.000)	347281	10.0000	
27 Chloroform	83	8.925	8.930 (1.004)	40313	0.50000	0.53
28 1,1,1-Trichloroethane	97	9.106	9.106 (0.934)	41709	0.50000	0.50
29 Cyclohexane	84	9.117	9.122 (0.935)	28398	0.50000	0.48
30 Carbon Tetrachloride	117	9.240	9.240 (0.948)	42129	0.50000	0.49
31 2,2,4-Trimethylpentane	57	9.389	9.389 (0.963)	94384	0.50000	0.52
32 Benzene	78	9.443	9.442 (0.969)	60370	0.50000	0.52
34 n-Heptane	43	9.528	9.528 (0.978)	35539	0.50000	0.53
33 1,2-Dichloroethane	62	9.496	9.496 (0.974)	24517	0.50000	0.53
 35 1,4-Difluorobenzene 	114	9.747	9.747 (1.000)	1612180	10.0000	
36 Trichloroethene	95	9.982	9.987 (1.024)	26745	0.50000	0.50
37 Methyl Methacrylate	69	10.200	10.195 (1.047)	12629	0.50000	0.42(aQ)
38 1,2-Dichloropropane	63	10.211	10.211 (1.048)	20483	0.50000	0.54(Q)
40 Bromodichloromethane	83	10.414	10.414 (1.068)	39095	0.50000	0.49
41 cis-1,3-Dichloropropene	75	10.771	10.771 (1.105)	30402	0.50000	0.51
42 Methyl Isobutyl Ketone	43	10.851	10.841 (1.113)	26761	0.50000	0.48(a)
43 Toluene	92	11.022	11.022 (0.907)	41431	0.50000	0.55
44 trans-1,3-Dichloropropene	75	11.209	11.209 (1.150)	29323	0.50000	0.51
45 1,1,2-Trichloroethane	83	11.369	11.369 (0.935)	19669	0.50000	0.55
46 Tetrachloroethene	166	11.465	11.465 (0.943)	33082	0.50000	0.48
47 Methyl Butyl Ketone	43	11.503	11.486 (0.946)	23450	0.50000	0.50
48 Dibromochloromethane	129	11.700	11.700 (0.963)	33887	0.50000	0.46
49 1,2-Dibromoethane	107	11.834	11.833 (0.974)	33225	0.50000	0.51
 50 Chlorobenzene-d5 	117	12.154	12.154 (1.000)	1552179	10.0000	
51 Chlorobenzene	112	12.175	12.180 (1.002)	57615	0.50000	0.53(Q)
52 Ethylbenzene	91	12.196	12.196 (1.004)	82865	0.50000	0.54
M 55 Xylene (total)	106			96927	0.50000	1.6
53 Xylene (m,p)	106	12.282	12.282 (1.011)	65538	1.00000	1.1
54 Xylene (o)	106	12.629	12.629 (1.039)	31389	0.50000	0.52
56 Styrene	104	12.639	12.639 (1.040)	36834	0.50000	0.44
57 Bromoform	173	12.880	12.879 (1.060)	25838	0.50000	0.40
58 1,1,2,2-Tetrachloroethane	83	13.194	13.194 (1.086)	47062	0.50000	0.54
59 4-Ethyltoluene	105	13.338	13.338 (1.097)	86471	0.50000	0.52
60 1,3,5-Trimethylbenzene	105	13.381	13.381 (1.101)	67004	0.50000	0.50
61 2-Chlorotoluene	91	13.403	13.402 (1.103)	74863	0.50000	0.54
62 1,2,4-Trimethylbenzene	105	13.717	13.717 (1.129)	63322	0.50000	0.50
63 1,3-Dichlorobenzene	146	14.064	14.064 (1.157)	44521	0.50000	0.49
64 1,4-Dichlorobenzene	146	14.139	14.144 (1.163)	44847	0.50000	0.50
65 1,2-Dichlorobenzene	146	14.513	14.512 (1.194)	40867	0.50000	0.49
66 1,2,4-Trichlorobenzene	180	16.220	16.215 (1.335)	13713	0.50000	0.40(a)

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
	====	==			******	
67 Hexachlorobutadiene	225	16.300	16.306 (1.341)	11839	0.50000	0.44
68 Naphthalene	128	16.578	16.578 (1.364)	29754	0.50000	0.39(a)

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).Q - Qualifier signal failed the ratio test.

Data File: /chem/B.i/Bsvr.p/bgito15.b/bgi05v2.d Report Date: 30-Nov-2007 12:42

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/B.i/Bsvr.p/bgitol5.b/bgi05v2.d Lab Smp Id: ASTD005 Client Smp ID: ASTD005 Inj Date : 29-NOV-2007 09:21 Operator : wrd Inst ID: B.i Smp Info : Misc Info : ASTD005;112807BA;1;200 Comment : Method : /chem/B.i/Bsvr.p/bgitol5.b/rtol5.m Meth Date : 30-Nov-2007 12:42 sv Quant Type: ISTD Cal Date : 29-NOV-2007 09:21 Cal File: bgi05v2.d Als bottle: 3 Calibration Sample, Level: 4 Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: all.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

						AMOUN	15
		QUANT SIG				CAL-AMT	ON-COL
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
			==			*******	
1	Dichlorodifluoromethane	85	3.455	3.454 (0.388)	478871	5.00000	5.5
168	Freon 22	51	3.492	3.492 (0.393)	241527	5.00000	5.5
2	1,2-Dichlorotetrafluoroethane	85	3.695	3.689 (0.415)	564467	5.00000	5.5
3	Chloromethane	50	3.833	3.828 (0.431)	151081	5.00000	5.5
4	Vinyl Chloride	62	4.068	4.068 (0.457)	205464	5.00000	5.5
5	1,3-Butadiene	54	4.148	4.143 (0.466)	152115	5.00000	5.7
6	Bromomethane	94	4.864	4.863 (0.547)	215968	5.00000	5.3
7	Chloroethane	64	5.093	5.087 (0.573)	114848	5.00000	5.4
8	Bromoethene	106	5.472	5.472 (0.615)	222614	5.00000	5.3
9	Trichlorofluoromethane	101	5.563	5.557 (0.626)	551268	5.00000	5.3
10	Freon TF	101	6.422	6.422 (0.722)	394365	5.00000	5.1
11	1,1-Dichloroethene	96	6.491	6.491 (0.730)	193542	5.00000	5.1
12	Acetone	43	6.630	6.619 (0.746)	135496	5.00000	3.7(a)
13	Isopropyl Alcohol	45	6.806	6.790 (0.765)	135919	5.00000	4.1(a)
14	Carbon Disulfide	76	6.849	6.843 (0.770)	612912	5.00000	5.3

91

		QUANT SIG				CAL-AMT	ON-COL
Compo	ounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
=====			==			=======	**====
15	3-Chloropropene	41	7.030	7.030 (0.791)	242218	5.00000	5.3
16	Methylene Chloride	49	7.222	7.222 (0.812)	208486	5.00000	5.2
17	tert-Butyl Alcohol	59	7.324	7.313 (0.824)	190446	5.00000	4.0(a)
18	Methyl tert-Butyl Ether	73	7.484	7.478 (0.842)	290116	5.00000	3.5
19	trans-1,2-Dichloroethene	61	7.521	7.521 (0.846)	299757	5.00000	5.2
20	n-Hexane	57	7.745	7.740 (0.871)	326434	5.00000	5.3
21	1,1-Dichloroethane	63	8.044	8.044 (0.905)	337950	5.00000	4.9
M 22	2 1,2-Dichloroethene (total)	61			514502	10.0000	10
23	Methyl Ethyl Ketone	72	8.642	8.637 (0.972)	51730	5.00000	3.5(Q)
24	cis-1,2-Dichloroethene	96	8.647	8.647 (0.972)	214745	5.00000	5.0
26	Tetrahydrofuran	42	8.920	8.914 (0.915)	112994	5.00000	3.6(a)
* 25	Bromochloromethane	128	8.893	8.893 (1.000)	362032	10.0000	
27	Chloroform	83	8.925	8.930 (1.004)	377422	5.00000	4.7
28	1,1,1-Trichloroethane	97	9.106	9.106 (0.934)	430797	5.00000	5.0
29	Cyclohexane	84	9.122	9.122 (0.936)	312498	5.00000	5.1
30	Carbon Tetrachloride	117	9.240	9.240 (0.948)	463114	5.00000	5.2
31	2,2,4-Trimethylpentane	57	9.389	9.389 (0.963)	876913	5.00000	4.7
32	Benzene	78	9.443	9.442 (0.969)	527447	5.00000	4.4
34	n-Heptane	43	9.528	9.528 (0.978)	319774	5.00000	4.6
33	1,2-Dichloroethane	62	9.496	9.496 (0.974)	213003	5.00000	4.5
* 35	1,4-Difluorobenzene	114	9.747	9.747 (1.000)	1666974	10.0000	
36	Trichloroethene	95	9.987	9.987 (1.025)	257874	5.00000	4.7
37	Methyl Methacrylate	69	10.195	10.195 (1.046)	96979	5.00000	3.1(Q)
38	1,2-Dichloropropane	63	10.211	10.211 (1.048)	153550	5.00000	3.9(Q)
39	1,4-Dioxane	88	10.296	10.291 (1.056)	53381	5.00000	3.8(a)
40	Bromodichloromethane	83	10.414	10.414 (1.068)	371605	5.00000	4.5
41	cis-1,3-Dichloropropene	75	10.771	10.771 (1.105)	237355	5.00000	3.9
42	Methyl Isobutyl Ketone	43	10.841	10.841 (1.112)	198589	5.00000	3.5
43	Toluene	92	11.022	11.022 (0.907)	294813	5.00000	3.8
44	trans-1,3-Dichloropropene	75	11.209	11.209 (1.150)	214499	5.00000	3.6
45	1,1,2-Trichloroethane	83	11.369	11.369 (0.935)	146413	5.00000	4.0
46	Tetrachloroethene	166	11.465	11.465 (0.943)	313892	5.00000	4.4
47	Methyl Butyl Ketone	43	11.492	11.486 (0.946)	168963	5.00000	3.5
48	Dibromochloromethane	129	11.700	11.700 (0.963)	334208	5.00000	4.4
49	1,2-Dibromoethane	107	11.834	11.833 (0.974)	262528	5.00000	4.0
* 50	Chlorobenzene-d5	117	12.154	12.154 (1.000)	1587359	10.0000	
51	Chlorobenzene	112	12.180	12.180 (1.002)	424738	5.00000	3.8
52	Ethylbenzene	91	12.196	12.196 (1.004)	560008	5.00000	3.5
M 55	Xylene (total)	106			643024	5.00000	10
53	Xylene (m,p)	106	12.282	12.282 (1.011)	434704	10.0000	6.8
54	Xylene (o)	106	12.629	12.629 (1.039)	208320	5,00000	3.4
56	Styrene	104	12.639	12.639 (1.040)	294230	5.00000	3.4
57	Bromoform	173	12.880	12.879 (1.060)	252705	5.00000	3.8
58	1,1,2,2-Tetrachloroethane	83	13.194	13.194 (1.086)	298925	5.00000	3.4
59	4-Ethyltoluene	105	13.339	13.338 (1.097)	530669	5.00000	3.1
60	1,3,5-Trimethylbenzene	105	13.381	13.381 (1.101)	437554	5.00000	3.2
61	2-Chlorotoluene	91	13.403	13.402 (1.103)	498597	5.00000	3.5

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
	====	==	STEERS BEITTE	========	******	
62 1,2,4-Trimethylbenzene	105	13.717	13.717 (1.129)	392158	5.00000	3.0
63 1,3-Dichlorobenzene	146	14.064	14.064 (1.157)	284068	5.00000	3.1
64 1,4-Dichlorobenzene	146	14.139	14.144 (1.163)	278227	5.00000	3.0
65 1,2-Dichlorobenzene	146	14.513	14.512 (1.194)	257881	5.00000	3.0
66 1,2,4-Trichlorobenzene	180	16.220	16.215 (1.335)	126699	5.00000	3.6
67 Hexachlorobutadiene	225	16.306	16.306 (1.342)	96715	5.00000	3.5
68 Naphthalene	128	16.578	16.578 (1.364)	293514	5.00000	3.8

- a Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).
 Q Qualifier signal failed the ratio test.

Page 1

Data File: /chem/B.i/Bsvr.p/bgito15.b/bgi10v.d Report Date: 30-Nov-2007 12:42

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/B.i/Bsvr.p/bgito15.b/bgi10v.d Lab Smp Id: ASTD010 Client Smp ID: ASTD010 Inj Date : 28-NOV-2007 13:45 Operator : wrd Inst ID: B.i Smp Info : Misc Info : ASTD010;112807BA;1;200 Comment : Method : /chem/B.i/Bsvr.p/bgito15.b/rto15.m Meth Date : 30-Nov-2007 12:42 sv Quant Type: ISTD Cal Date : 28-NOV-2007 13:45 Cal File: bgi10v.d Als bottle: 4 Calibration Sample, Level: 5 Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: all.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
*****			==				
1	Dichlorodifluoromethane	85	3.454	3.454 (0.388)	824440	10.0000	11
168	Freon 22	51	3.492	3.492 (0.393)	413212	10.0000	11
2	1,2-Dichlorotetrafluoroethane	85	3.689	3.689 (0.415)	952002	10.0000	11
3	Chloromethane	50	3.828	3.828 (0.430)	256168	10.0000	11
4	Vinyl Chloride	62	4.068	4.068 (0.457)	342990	10.0000	11
5	1,3-Butadiene	54	4.143	4.143 (0.466)	257079	10.0000	11
6	Bromomethane	94	4.863	4.863 (0.547)	369352	10.0000	11
7	Chloroethane	64	5.087	5.087 (0.572)	198564	10.0000	11
8	Bromoethene	106	5.472	5.472 (0.615)	380884	10.0000	11
9	Trichlorofluoromethane	101	5.557	5.557 (0.625)	957015	10.0000	11
10	Freon TF	101	6.422	6.422 (0.722)	699322	10.0000	11
11	1,1-Dichloroethene	96	6.491	6.491 (0.730)	341028	10.0000	11
12	Acetone	43	6.619	6.619 (0.744)	357559	10.0000	11
13	Isopropyl Alcohol	45	6.790	6.790 (0.764)	351181	10.0000	12
14	Carbon Disulfide	76	6.843	6.843 (0.770)	1075413	10.0000	11

						AMOUN	15
		QUANT SIG				CAL-AMT	ON-COL
Com	pounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
			==				======
1	15 3-Chloropropene	41	7.030	7.030 (0.791)	421339	10.0000	11
1	16 Methylene Chloride	49	7.222	7.222 (0.812)	364079	10.0000	11
1	17 tert-Butyl Alcohol	59	7.313	7.313 (0.822)	502186	10.0000	12
1	18 Methyl tert-Butyl Ether	73	7.478	7.478 (0.841)	772655	10.0000	11
1	19 trans-1,2-Dichloroethene	61	7.521	7.521 (0.846)	531559	10.0000	11
2	20 n-Hexane	57	7.740	7.740 (0.870)	574438	10.0000	11
2	21 1,1-Dichloroethane	63	8.044	8.044 (0.905)	607733	10.0000	10
м 2	22 1,2-Dichloroethene (total)	61			915098	20.0000	21
2	23 Methyl Ethyl Ketone	72	8.637	8.637 (0.971)	143199	10.0000	11
2	24 cis-1,2-Dichloroethene	96	8.647	8.647 (0.972)	383539	10.0000	10
2	26 Tetrahydrofuran	42	8.914	8.914 (0.915)	305631	10.0000	12
* 2	25 Bromochloromethane	128	8.893	8.893 (1.000)	307506	10.0000	
2	27 Chloroform	83	8.930	8.930 (1.004)	705539	10.0000	10
2	28 1,1,1-Trichloroethane	97	9.106	9.106 (0.934)	772570	10.0000	11
2	29 Cyclohexane	84	9.122	9.122 (0.936)	559330	10.0000	11
3	30 Carbon Tetrachloride	117	9.240	9.240 (0.948)	821906	10.0000	11
3	31 2,2,4-Trimethylpentane	57	9.389	9.389 (0.963)	1668936	10.0000	11
3	32 Benzene	78	9.442	9.442 (0.969)	1037682	10.0000	10
3	34 n-Heptane	43	9.528	9.528 (0.978)	616893	10.0000	11
3	33 1,2-Dichloroethane	62	9.496	9.496 (0.974)	420507	10.0000	11
* 3	35 1,4-Difluorobenzene	114	9.747	9.747 (1.000)	1374145	10.0000	
3	36 Trichloroethene	95	9.987	9.987 (1.025)	482836	10.0000	11
3	37 Methyl Methacrylate	69	10.195	10.195 (1.046)	302029	10.0000	12
3	38 1,2-Dichloropropane	63	10.211	10.211 (1.048)	342920	10.0000	11
3	39 1,4-Dioxane	88	10.291	10.291 (1.056)	147437	10.0000	13
4	10 Bromodichloromethane	83	10.414	10.414 (1.068)	764727	10.0000	11
4	11 cis-1,3-Dichloropropene	75	10.771	10.771 (1.105)	544968	10.0000	11
4	12 Methyl Isobutyl Ketone	43	10.841	10.841 (1.112)	622725	10.0000	13
4	13 Toluene	92	11.022	11.022 (0.907)	701263	10.0000	10
4	44 trans-1,3-Dichloropropene	75	11.209	11.209 (1.150)	538557	10.0000	11
4	1,1,2-Trichloroethane	83	11.369	11.369 (0.935)	346240	10.0000	10
4	16 Tetrachloroethene	166	11.465	11.465 (0.943)	644192	10.0000	10
4	17 Methyl Butyl Ketone	43	11.486	11.486 (0.945)	583434	10.0000	13
4	18 Dibromochloromethane	129	11.700	11.700 (0.963)	761156	10.0000	11
4	1,2-Dibromoethane	107	11.833	11.833 (0.974)	644400	10.0000	11
* 5	50 Chlorobenzene-d5	117	12.154	12.154 (1.000)	1435803	10.0000	
5	51 Chlorobenzene	112	12.180	12.180 (1.002)	1007827	10.0000	10
5	52 Ethylbenzene	91	12.196	12.196 (1.004)	1484519	10.0000	10
M 5	55 Xylene (total)	106			1771950	10.0000	32
5	53 Xylene (m,p)	106	12.282	12.282 (1.011)	1195745	20.0000	21
5	54 Xylene (o)	106	12.629	12.629 (1.039)	576205	10.0000	10
5	56 Styrene	104	12.639	12.639 (1.040)	902139	10.0000	12
5	57 Bromoform	173	12.879	12.879 (1.060)	680402	10.0000	11
5	58 1,1,2,2-Tetrachloroethane	83	13.194	13.194 (1.086)	849436	10.0000	11
5	59 4-Ethyltoluene	105	13.338	13.338 (1.097)	1596035	10.0000	10
6	50 1,3,5-Trimethylbenzene	105	13.381	13.381 (1.101)	1361186	10.0000	11
6	51 2-Chlorotoluene	91	13,402	13,402 (1,103)	1349950	10.0000	10

					AMOUN	ITS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
		==				
62 1,2,4-Trimethylbenzene	105	13.717	13.717 (1.129)	1278783	10.0000	11
63 1,3-Dichlorobenzene	146	14.064	14.064 (1.157)	886709	10.0000	11
64 1,4-Dichlorobenzene	146	14.144	14.144 (1.164)	875651	10.0000	10
65 1,2-Dichlorobenzene	146	14.512	14.512 (1.194)	816055	10.0000	11
66 1,2,4-Trichlorobenzene	180	16.215	16.215 (1.334)	476955	10.0000	15
67 Hexachlorobutadiene	225	16.306	16.306 (1.342)	335574	10.0000	13
68 Naphthalene	128	16.578	16.578 (1.364)	1169747	10.0000	17

Data File: /chem/B.i/Bsvr.p/bgito15.b/bgi15v.d Report Date: 30-Nov-2007 12:42

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/B.i/Bsvr.p/bgito15.b/bgi15v.d Lab Smp Id: ASTD015 Client Client Smp ID: ASTD015 Inj Date : 28-NOV-2007 14:34 Operator : wrd Smp Info : Inst ID: B.i Misc Info : ASTD015;112807BA;1;200 Comment Method : /chem/B.i/Bsvr.p/bgito15.b/rto15.m Meth Date : 30-Nov-2007 12:42 sv Quant Quant Type: ISTD Cal Date : 28-NOV-2007 14:34 Cal File: bgi15v.d Als bottle: 5 Calibration Sample, Level: 6 Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: all015.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

							AMOUN	TS .
			QUANT SIG				CAL-AMT	ON-COL
Co	mpo	unds	MASS	RT	EXP RT REL RI	r response	(ppbv)	(ppbv)
==	===			==				
	12	Acetone	43	6.625	6.619 (0.744	a) 565811	15.0000	16
	13	Isopropyl Alcohol	45	6.795	6.790 (0.764	518016	15.0000	16
	17	tert-Butyl Alcohol	59	7.319	7.313 (0.822	2) 738246	15.0000	16
	26	Tetrahydrofuran	42	8.920	8.914 (0.915	5) 479808	15.0000	15
*	25	Bromochloromethane	128	8.898	8.893 (1.000) 352868	10.0000	
*	35	1,4-Difluorobenzene	114	9.752	9.747 (1.000) 1668545	10.0000	
	39	1,4-Dioxane	88	10.291	10.291 (1.055	5) 216014	15.0000	16
*	50	Chlorobenzene-d5	117	12.154	12.154 (1.000) 1705490	10.0000	

Data File: /chem/B.i/Bsvr.p/bgito15.b/bgi20v.d Report Date: 30-Nov-2007 12:42

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/B.i/Bsvr.p/bgito15.b/bgi20v.d Lab Smp Id: ASTD020 Client Inj Date : 28-NOV-2007 15:22 Client Smp ID: ASTD020 Operator : wrd Inst ID: B.i Smp Info : Misc Info : ASTD020;112807BA;1;200 Comment : Method: /chem/B.i/Bsvr.p/bgito15.b/rto15.mMeth Date: 30-Nov-2007 12:42 svQuantCal Date: 28-NOV-2007 15:22Cal Fi Quant Type: ISTD Cal File: bgi20v.d Als bottle: 6 Dil Factor: 1.00000 Integrator: HP RTE Calibration Sample, Level: 7 Compound Sublist: all.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
			==				*******
1	Dichlorodifluoromethane	85	3.454	3.454 (0.388)	1630287	20.0000	18
168	Freon 22	51	3.492	3.492 (0.392)	797658	20.0000	17
2	1,2-Dichlorotetrafluoroethane	85	3.700	3.689 (0.416)	1914486	20.0000	17
3	Chloromethane	50	3.833	3.828 (0.431)	502751	20.0000	17
4	Vinyl Chloride	62	4.074	4.068 (0.458)	689853	20.0000	17
5	1,3-Butadiene	54	4.148	4.143 (0.466)	519153	20.0000	18
6	Bromomethane	94	4.869	4.863 (0.547)	780381	20.0000	18
7	Chloroethane	64	5.098	5.087 (0.573)	421680	20.0000	18
8	Bromoethene	106	5.477	5.472 (0.616)	835998	20.0000	18
9	Trichlorofluoromethane	101	5.563	5.557 (0.625)	2033000	20.0000	18
10	Freon TF	101	6.427	6.422 (0.722)	1543364	20.0000	19
11	1,1-Dichloroethene	96	6.497	6.491 (0.730)	758471	20.0000	19
12	Acetone	43	6.625	6.619 (0.744)	821679	20.0000	21
13	Isopropyl Alcohol	45	6.795	6.790 (0.764)	669977	20.0000	19
14	Carbon Disulfide	76	6.849	6.843 (0.770)	2315037	20.0000	19

						AMOUN	ITS
		QUANT SIG				CAL-AMT	ON-COL
Con	npounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
-			==				
	15 3-Chloropropene	41	7.036	7.030 (0.791)	920005	20.0000	19
	16 Methylene Chloride	49	7.228	7.222 (0.812)	766902	20.0000	18
	17 tert-Butyl Alcohol	59	7.318	7.313 (0.822)	954075	20.0000	19
	18 Methyl tert-Butyl Ether	73	7.484	7.478 (0.841)	1835658	20.0000	21
	19 trans-1,2-Dichloroethene	61	7.527	7.521 (0.846)	1118380	20.0000	18
	20 n-Hexane	57	7.745	7.740 (0.870)	1226943	20.0000	18
	21 1,1-Dichloroethane	63	8.050	8.044 (0.905)	1353662	20.0000	18
м	22 1,2-Dichloroethene (total)	61			1997491	40.0000	37
	23 Methyl Ethyl Ketone	72	8.642	8.637 (0.971)	331862	20.0000	21 (Q)
	24 cis-1,2-Dichloroethene	96	8.653	8.647 (0.972)	879111	20.0000	19
	26 Tetrahydrofuran	42	8.914	8.914 (0.914)	692756	20.0000	20
*	25 Bromochloromethane	128	8.898	8.893 (1.000)	389544	10.0000	
	27 Chloroform	83	8.930	8.930 (1.004)	1592451	20.0000	19
	28 1,1,1-Trichloroethane	97	9.112	9.106 (0.934)	1705071	20.0000	18
	29 Cyclohexane	84	9.122	9.122 (0.935)	1222109	20.0000	18
	30 Carbon Tetrachloride	117	9.245	9.240 (0.948)	1789130	20.0000	18
	31 2,2,4-Trimethylpentane	57	9.394	9.389 (0.963)	3688745	20.0000	18
	32 Benzene	78	9.443	9.442 (0.968)	2469767	20.0000	19
	34 n-Heptane	43	9.533	9.528 (0.978)	1337196	20.0000	18
	33 1,2-Dichloroethane	62	9.496	9.496 (0.974)	958578	20.0000	18
*	35 1,4-Difluorobenzene	114	9.752	9.747 (1.000)	1818200	10.0000	
	36 Trichloroethene	95	9.987	9.987 (1.024)	1102231	20.0000	18
	37 Methyl Methacrylate	69	10.195	10.195 (1.045)	738385	20.0000	22
	38 1,2-Dichloropropane	63	10.216	10.211 (1.048)	817023	20.0000	19
	39 1,4-Dioxane	88	10.291	10.291 (1.055)	276158	20.0000	18
	40 Bromodichloromethane	83	10.419	10.414 (1.068)	1745642	20.0000	19
	41 cis-1,3-Dichloropropene	75	10.771	10.771 (1.105)	1307511	20.0000	20
	42 Methyl Isobutyl Ketone	43	10.841	10.841 (1.112)	1192739	20.0000	19
	43 Toluene	92	11.028	11.022 (0.907)	1696529	20.0000	19
	44 trans-1,3-Dichloropropene	75	11.209	11.209 (1.149)	1292129	20.0000	20
	45 1,1,2-Trichloroethane	83	11.369	11.369 (0.935)	806181	20.0000	19
	46 Tetrachloroethene	166	11.465	11.465 (0.943)	1650338	20.0000	20
	47 Methyl Butyl Ketone	43	11.492	11.486 (0.946)	1118066	20.0000	20
	48 Dibromochloromethane	129	11.705	11.700 (0.963)	1870785	20.0000	21
	49 1,2-Dibromoethane	107	11.839	11.833 (0.974)	1547389	20.0000	20
*	50 Chlorobenzene-d5	117	12.154	12.154 (1.000)	1870290	10.0000	
	51 Chlorobenzene	112	12.180	12.180 (1.002)	2521173	20.0000	19
	52 Ethylbenzene	91	12.196	12.196 (1.004)	3640515	20.0000	20
м	55 Xylene (total)	106		(,	4535942	20.0000	63
	53 Xylene (m.p)	106	12.287	12.282 (1.011)	3065472	40.0000	41
	54 Xylene (c)	106	12.629	12.629 (1.039)	1470470	20.0000	20
	56 Styrene	104	12.639	12.639 (1.040)	2351936	20.0000	23
	57 Bromoform	173	12.885	12.879 (1.060)	1814916	20.0000	23
	58 1.1.2.2-Tetrachloroethane	83	13.194	13.194 (1.086)	2032249	20,0000	19
	59 4-Ethyltoluene	105	13.344	13.338 (1.098)	4246423	20.0000	21
	60 1.3.5-Trimethylbenzene	105	13.381	13.381(1.101)	3342207	20.0000	21
	61 2-Chlorotoluene	91	13.408	13.402 (1.103)	3225125	20.0000	19

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
			TELELE TELELE		******	******
62 1,2,4-Trimethylbenzene	105	13.723	13.717 (1.129)	3227684	20.0000	21
63 1,3-Dichlorobenzene	146	14.064	14.064 (1.157)	2316077	20.0000	21
64 1,4-Dichlorobenzene	146	14.144	14.144 (1.164)	2294383	20.0000	21
65 1,2-Dichlorobenzene	146	14.513	14.512 (1.194)	2140916	20.0000	21
66 1,2,4-Trichlorobenzene	180	16.215	16.215 (1.334)	863121	20.0000	21
67 Hexachlorobutadiene	225	16.306	16.306 (1.342)	766000	20.0000	24
68 Naphthalene	128	16.578	16.578 (1.364)	1732054	20.0000	19

Q - Qualifier signal failed the ratio test.

Data File: /chem/B.i/Bsvr.p/bgito15.b/bgi40v.d Report Date: 30-Nov-2007 12:42

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/B.i/Bsvr.p/bgito15.b/bgi40v.d Lab Smp Id: ASTD040 Client Client Smp ID: ASTD040 Inj Date : 28-NOV-2007 16:11 Operator : wrd Inst ID: B.i Smp Info : Misc Info : ASTD040;112807BA;1;200 Comment Method : /chem/B.i/Bsvr.p/bgito15.b/rto15.m Meth Date : 30-Nov-2007 12:42 sv Quant Quant Type: ISTD Cal File: bgi40v.d Cal Date : 28-NOV-2007 16:11 Als bottle: 7 Calibration Sample, Level: 8 Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: all.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
		==				
1 Dichlorodifluoromethane	85	3.460	3.454 (0.389)	3190912	40.0000	33
168 Freon 22	51	3.497	3.492 (0.393)	1588215	40.0000	33
2 1,2-Dichlorotetrafluoroethane	85	3.700	3.689 (0.416)	3692685	40.0000	32
3 Chloromethane	50	3.839	3.828 (0.431)	1004948	40.0000	33
4 Vinyl Chloride	62	4.079	4.068 (0.458)	1382237	40.0000	34
5 1,3-Butadiene	54	4.154	4.143 (0.466)	1044129	40.0000	35
6 Bromomethane	94	4.874	4.863 (0.547)	1589186	40.0000	35
7 Chloroethane	64	5.098	5.087 (0.573)	849502	40.0000	36
8 Bromoethene	106	5.482	5.472 (0.616)	1710918	40.0000	37
9 Trichlorofluoromethane	101	5.568	5.557 (0.625)	4085926	40.0000	35
10 Freon TF	101	6.432	6.422 (0.722)	3170996	40.0000	37
11 1,1-Dichloroethene	96	6.496	6.491 (0.730)	1555965	40.0000	37
12 Acetone	43	6.630	6.619 (0.745)	1736448	40.0000	42 (A)
13 Isopropyl Alcohol	45	6.806	6.790 (0.764)	1425782	40.0000	38
14 Carbon Disulfide	76	6.854	6.843 (0.770)	4687965	40.0000	36

							TS	
			QUANT SIG				CAL-AMT	ON-COL
Со	προι	inds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
==			====			*******		
	15	3-Chloropropene	41	7.041	7.030 (0.791)	1895762	40.0000	37
	16	Methylene Chloride	49	7.233	7.222 (0.812)	1528695	40.0000	34
	17	tert-Butyl Alcohol	59	7.329	7.313 (0.823)	2019772	40.0000	38
	18	Methyl tert-Butyl Ether	73	7.484	7.478 (0.841)	3960888	40.0000	43 (A)
	19	trans-1,2-Dichloroethene	61	7.532	7.521 (0.846)	2263982	40.0000	36
	20	n-Hexane	57	7.751	7.740 (0.871)	2453392	40.0000	36
	21	1,1-Dichloroethane	63	8.049	8.044 (0.904)	2733634	40.0000	36
м	22	1,2-Dichloroethene (total)	61			4077519	80.0000	73
	23	Methyl Ethyl Ketone	72	8.647	8.637 (0.971)	720092	40.0000	44 (AQ)
	24	cis-1,2-Dichloroethene	96	8.658	8.647 (0.972)	1813537	40.0000	38
	26	Tetrahydrofuran	42	8.919	8.914 (0.914)	1445065	40.0000	44 (A)
*	25	Bromochloromethane	128	8.903	8.893 (1.000)	401522	10.0000	(Q)
	27	Chloroform	83	8.935	8.930 (1.004)	3230363	40.0000	37
	28	1,1,1-Trichloroethane	97	9.117	9.106 (0.934)	3412138	40.0000	38
	29	Cyclohexane	84	9.128	9.122 (0.935)	2468960	40.0000	38
	30	Carbon Tetrachloride	117	9.250	9.240 (0.948)	3615309	40.0000	38
	31	2,2,4-Trimethylpentane	57	9.400	9.389 (0.963)	7451673	40.0000	38
	32	Benzene	78	9.448	9.442 (0.968)	4928088	40.0000	39
	34	n-Heptane	43	9.538	9.528 (0.978)	2626611	40.0000	36
	33	1,2-Dichloroethane	62	9.501	9.496 (0.974)	1903710	40.0000	38
*	35	1,4-Difluorobenzene	114	9.757	9.747 (1.000)	1747710	10.0000	
	36	Trichloroethene	95	9.992	9.987 (1.024)	2259455	40.0000	39
	37	Methyl Methacrylate	69	10.200	10.195 (1.045)	1633454	40.0000	50 (A)
	38	1.2-Dichloropropane	63	10.216	10.211 (1.047)	1670258	40.0000	41(A)
	39	1.4-Dioxane	88	10.296	10.291 (1.055)	585291	40.0000	40 (A)
	40	Bromodichloromethane	83	10.419	10.414 (1.068)	3560551	40.0000	41 (A)
	41	cis-1.3-Dichloropropene	75	10.777	10.771 (1.104)	2730267	40.0000	42 (A)
	42	Methyl Isobutyl Ketone	43	10.846	10.841 (1.112)	2590445	40.0000	43 (A)
	43	Toluene	92	11.033	11.022 (0.907)	3622673	40.0000	39
	44	trans-1.3-Dichloropropene	75	11.214	11.209 (1.149)	2752286	40.0000	44 (A)
	45	1.1.2-Trichloroethane	83	11.374	11.369 (0.935)	1705306	40.0000	38
	46	Tetrachloroethene	166	11.470	11.465 (0.943)	3686385	40.0000	43 (A)
	47	Methyl Butyl Ketone	43	11.497	11.486 (0.946)	2362032	40.0000	40 (A)
	48	Dibromochloromethane	129	11.705	11,700 (0,963)	3921929	40.0000	43 (A)
	49	1 2-Dibromoethane	107	11,839	11.833 (0.974)	3291872	40.0000	41 (A)
*	50	Chlorobenzene-d5	117	12,159	12.154(1.000)	1933610	10.0000	
	51	Chlorobenzene	112	12 186	12.180 (1.002)	5437817	40.0000	40 (A)
	52	Ethylbenzene	91	12.202	12 196 (1.004)	7713785	40.0000	40 (A)
м	55	Yvlene (total)	106	12.202	12:130 (1:001)	9758965	40.0000	130 (A)
1.1	53	Xylene (mp)	106	12 287	12 282 (1.011)	6543377	80.0000	84 (A)
	55	Xylene (m,p)	106	12.207	12.629 (1.039)	3215588	40,0000	43 (A)
	54	Styrepe	104	12.034	12.629 (1.039)	5238626	40.0000	50(A)
	50	Bromoform	172	12 885	12 879 (1 060)	4191585	40.0000	52 (A)
	57	1 1 2 2-Tetrachloroethan	273	13 200	13 194 (1 084)	4344698	40.0000	40 (A)
	20	4-Fthyltoluene	105	13 249	13 338 (1 000)	9323777	40.0000	45 (A)
	59	1 2 5-Trimethylbengene	105	13 204	13 381 (1 101)	7326201	40.0000	45 (A)
	60	2 Chlorotoluene	105	12 412	12 402 (1 102)	6926201	40.0000	

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
		==	SUSSEE SECTO			
62 1,2,4-Trimethylbenzene	105	13.728	13.717 (1.129)	7140864	40.0000	45 (A)
63 1,3-Dichlorobenzene	146	14.069	14.064 (1.157)	5325028	40.0000	47 (A)
64 1,4-Dichlorobenzene	146	14.150	14.144 (1.164)	5300951	40.0000	47 (A)
65 1,2-Dichlorobenzene	146	14.518	14.512 (1.194)	4856495	40.0000	47 (A)
66 1,2,4-Trichlorobenzene	180	16.220	16.215 (1.334)	1534684	40.0000	36
67 Hexachlorobutadiene	225	16.306	16.306 (1.341)	1174409	40.0000	35
68 Naphthalene	128	16.578	16.578 (1.363)	3239989	40.0000	34

A - Target compound detected but, quantitated amount exceeded maximum amount.Q - Qualifier signal failed the ratio test.

Data File: /chem/B.i/Bsvr.p/bgito15.b/bgi10q.d Report Date: 30-Nov-2007 12:42

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/B.i/Bsvr.p/bgito15.b/bgi10q.d Lab Smp Id: BA112807LCS Client Inj Date : 29-NOV-2007 10:15 Client Smp ID: BA112807LCS Operator : wrd Smp Info : BA112807LCS/ICV Inst ID: B.i Misc Info : icv;112807BA;1;200 Comment : : /chem/B.i/Bsvr.p/bgito15.b/rto15.m Method Meth Date : 30-Nov-2007 12:42 sv Cal Date : 29-NOV-2007 09:21 Quant Type: ISTD Cal File: bgi05v2.d Als bottle: 4 Dil Factor: 1.00000 Integrator: HP RTE QC Sample: LCS Compound Sublist: all.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

						CONCENTRA	TIONS
		QUANT SIG				ON-COLUMN	FINAL
Compo	inds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
	*************						******
1	Dichlorodifluoromethane	85	3.455	3.454 (0.388)	862908	10.6649	11
168	Freon 22	51	3.492	3.492 (0.392)	427714	10.4630	10
2	1,2-Dichlorotetrafluoroethane	85	3.695	3.689 (0.415)	1002407	10.4557	10
3	Chloromethane	50	3.833	3.828 (0.431)	267693	10.4193	10
4	Vinyl Chloride	62	4.068	4.068 (0.457)	358461	10.3289	10
5	1,3-Butadiene	54	4.148	4.143 (0.466)	279187	11.1038	11
6	Bromomethane	94	4.869	4.863 (0.547)	378265	9.87422	9.9
7	Chloroethane	64	5.093	5.087 (0.572)	207235	10.3541	10
8	Bromoethene	106	5.472	5.472 (0.615)	403532	10.2100	10
9	Trichlorofluoromethane	101	5.563	5.557 (0.625)	997783	10.2461	10
10	Freon TF	101	6.427	6.422 (0.722)	793690	11.0678	11
11	1,1-Dichloroethene	96	6.491	6.491 (0.730)	395863	11.2512	11
12	Acetone	43	6.625	6.619 (0.744)	402032	11.6052	12
13	Isopropyl Alcohol	45	6.795	6.790 (0.764)	324277	10.3676	10
14	Carbon Disulfide	76	6.849	6.843 (0.770)	1135270	10.4592	10

							CONCENTR	ATIONS
			QUANT SIG				ON-COLUMN	FINAL
Cc	mpou	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
==				==				
	15	3-Chloropropene	41	7.030	7.030 (0.790)	479158	11.1254	11
	16	Methylene Chloride	49	7.228	7.222 (0.812)	414899	10.9610	11
	17	tert-Butyl Alcohol	59	7.318	7.313 (0.822)	444354	10.0004	10
	18	Methyl tert-Butyl Ether	73	7.484	7.478 (0.841)	870033	11.2394	11
	19	trans-1,2-Dichloroethene	61	7.527	7.521 (0.846)	556377	10.3491	10
	20	n-Hexane	57	7.745	7.740 (0.870)	616595	10.6294	11
	21	1,1-Dichloroethane	63	8.044	8.044 (0.904)	687988	10.7580	11
м	22	1,2-Dichloroethene (total)	61			999891	21.3230	21
	23	Methyl Ethyl Ketone	72	8.637	8.637 (0.971)	157655	11.3533	11
	24	cis-1,2-Dichloroethene	96	8.653	8.647 (0.972)	443514	10.9739	11
	26	Tetrahydrofuran	42	8.914	8.914 (0.914)	345600	11.3711	11
*	25	Bromochloromethane	128	8.898	8.893 (1.000)	338561	10.0000	
	27	Chloroform	83	8.930	8.930 (1.004)	809346	10.8463	11
	28	1,1,1-Trichloroethane	97	9.106	9.106 (0.934)	855384	10.3310	10
	29	Cyclohexane	84	9.122	9.122 (0.935)	594334	10.0816	10
	30	Carbon Tetrachloride	117	9.245	9.240 (0.948)	878670	10.1674	10
	31	2,2,4-Trimethylpentane	57	9.395	9.389 (0.963)	1891354	10.4862	10
	32	Benzene	78	9.443	9.442 (0.968)	1214506	10.4584	10
	34	n-Heptane	43	9.533	9.528 (0.978)	697330	10.5253	11
	33	1,2-Dichloroethane	62	9.496	9.496 (0.974)	485099	10.5358	11
*	35	1.4-Difluorobenzene	114	9.752	9.747 (1.000)	1604845	10.0000	
	36	Trichloroethene	95	9,987	9,987 (1,024)	542539	10.2563	10
	37	Methyl Methacrylate	69	10,195	10,195 (1,045)	330541	11.0790	11
	38	1.2-Dichloropropage	63	10.105	10.211 (1.047)	394358	10 4371	10
	39	1 4-Diovane	88	10 291	10.291 (1.055)	126346	9 43272	94
	40	Bromodichloromethane	83	10.201	10.414 (1.058)	870294	10 8993	11
	41	cis-1 2-Dichloropropere	75	10.771	10.771 (1.105)	607354	10.0000	10
	42	Methyl Isobutyl Ketope	43	10.771	10.771 (1.103)	591943	10.2954	10
	43	Toluene	40	11 028	10.041 (1.112)	785341	9 95816	10
	45	trang_1 2-Dichloropropere	75	11 200	11.022 (0.907)	202045	10 2895	10
	45	1 1 2 Trichleresthans	,5	11.209	11.209 (1.149)	354646	10.3895	10
	45	T, T, Z-IIIChioroethane	83	11.369	11.369 (0.935)	365810	9.72207	9.7
	40	Mothyl Putyl Katopa	100	11 400	11.405 (0.943)	586039	10 0250	3.5
	* /	Dibronoblementhese	43	11.492	11.486 (0.946)	541642	10.9258	11
	48		129	11.700	11.700 (0.963)	859046	11.1412	11
	49	1,2-Dibromoetnane	107	11.833	11.833 (0.974)	/063/3	10.4232	10
•	50	Chlorobenzene-d5	117	12.154	12.154 (1.000)	1624673	10.0000	
	51	Chiorobenzene	112	12.180	12.180 (1.002)	1104543	9.75226	9.8
	52	Ethylbenzene	91	12.196	12.196 (1.004)	1653576	10.2236	10
м	55	xylene (total)	106		/>	1971798	31.3098	31
	53	Xylene (m,p)	106	12.287	12.282 (1.011)	1336466	20.4946	20
	54	Ayiene (o)	106	12.629	12.629 (1.039)	635332	10.0883	10
	56	Styrene	104	12.639	12.639 (1.040)	1003966	11.3441	11
	57	Bromoform	173	12.880	12.879 (1.060)	769731	11.3822	11
	58	1,1,2,2-Tetrachloroethane	83	13.194	13.194 (1.086)	906660	10.0086	10
	59	4-Ethyltoluene	105	13.338	13.338 (1.097)	1967679	11.2112	11
	60	1,3,5-Trimethylbenzene	105	13.381	13.381 (1.101)	1452245	10.3002	10
	61	2-Chlorotoluene	91	13.408	13.402 (1.103)	1531614	10.5189	11

					CONCENTRA	ATIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
	====	==				
62 1,2,4-Trimethylbenzene	105	13.723	13.717 (1.129)	1406734	10.6258	11
63 1,3-Dichlorobenzene	146	14.064	14.064 (1.157)	946052	9.92754	9.9
64 1,4-Dichlorobenzene	146	14.144	14.144 (1.164)	940398	9.95972	10
65 1,2-Dichlorobenzene	146	14.513	14.512 (1.194)	855647	9.81416	9.8
66 1,2,4-Trichlorobenzene	180	16.215	16.215 (1.334)	375053	10.5153	11
67 Hexachlorobutadiene	225	16.306	16.306 (1.342)	336023	11.8998	12
68 Naphthalene	128	16.578	16.578 (1.364)	863421	10.8465	11

Data File: /chem/B.i/Bsvr.p/bgito15.b/bgi10q.d Report Date: 30-Nov-2007 12:42

TestAmerica Burlington

RECOVERY REPORT

Client Name: Sample Matrix: GAS Lab Smp Id: BA112807LCS Level: LOW Data Type: MS DATA Sublist File: all.spk Method File: /chem/B.i/Bsvr.p/bgito15.b/rto15.m Misc Info: icv;112807BA;1;200 Client SDG: bgito15 Fraction: VOA Client Smp ID: BA112807LCS Operator: wrd SampleType: LCS Quant Type: ISTD

CONC CONC 8 SPIKE COMPOUND ADDED RECOVERED RECOVERED LIMITS ppbv ppbv 106.65 10 11 70-130 1 Dichlorodifluorome 168 Freon 22 10 10 104.63 70-130 2 1,2-Dichlorotetraf 10 10 104.56 70-130 3 Chloromethane 10 10 104.19 70-130 4 Vinyl Chloride 10 10 103.29 70-130 5 1,3-Butadiene 10 11 111.04 70-130 6 Bromomethane 10 9.9 98.74 70-130 7 Chloroethane 10 10 103.54 70-130 102.10 8 Bromoethene 10 10 70-130 9 Trichlorofluoromet 10 10 102.46 70-130 10 11 10 Freon TF 110.68 70-130 11 1,1-Dichloroethene 10 11 112.51 70-130 12 12 Acetone 10 116.05 70-130 14 Carbon Disulfide 10 10 104.59 70-130 10 13 Isopropyl Alcohol 10 103.68 70-130 15 3-Chloropropene 10 11 70-130 111.25 10 11 70-130 16 Methylene Chloride 109.61 17 tert-Butyl Alcohol 10 10 100.00 70-130 10 11 18 Methyl tert-Butyl 112.39 70-130 19 trans-1,2-Dichloro 10 10 103.49 70-130 20 n-Hexane 10 11 106.29 70-130 21 1,1-Dichloroethane 10 11 107.58 70-130 М 22 1,2-Dichloroethene 20 21 105.00 70-130 23 Methyl Ethyl Keton 10 11 113.53 70-130 24 cis-1,2-Dichloroet 10 11 109.74 70-130 26 Tetrahydrofuran 10 11 113.71 70-130 27 Chloroform 10 11 108.46 70-130 28 1,1,1-Trichloroeth 10 10 103.31 70-130 29 Cyclohexane 10 10 100.82 70-130 30 Carbon Tetrachlori 10 10 101.67 70-130 10 10 31 2,2,4-Trimethylpen 104.86 70-130 32 Benzene 10 10 104.58 70-130 33 1,2-Dichloroethane 10 11 105.36 70-130

Page 5

Data File: /chem/B.i/Bsvr.p/bgito15.b/bgi10q.d Report Date: 30-Nov-2007 12:42

SPIKE COMPOUND	CONC ADDED ppbv	CONC RECOVERED ppbv	% RECOVERED	LIMITS
34 n-Heptane 36 Trichloroethene 37 Methyl Methacrylat 38 1,2-Dichloropropan 39 1,4-Dioxane 40 Bromodichlorometha 41 cis-1,3-Dichloropr 42 Methyl Isobutyl Ke 43 Toluene 44 trans-1,3-Dichloro 45 1,1,2-Trichloroeth 46 Tetrachloroethene 47 Methyl Butyl Keton 48 Dibromochlorometha 49 1,2-Dibromoethane 51 Chlorobenzene 52 Ethylbenzene 53 Xylene (m,p) 54 Xylene (o) M 55 Xylene (total) 56 Styrene 57 Bromoform 58 1,1,2,2-Tetrachlor 59 4-Ethyltoluene 60 1,3,5-Trimethylben 61 2-Chlorotoluene 62 1,2,4-Trimethylben 63 1,3-Dichlorobenzen 64 1,4-Dichlorobenzen 65 1,2-Dichlorobenzen 66 1,2,4-Trichloroben 68 Naphthalene	IO 10	11 10 11 10 9.4 11 10 9.4 11 10 9.7 9.5 11 10 9.7 9.5 11 11 10 9.8 10 20 10 9.8 10 20 10 9.8 10 20 10 9.8 10 20 10 9.8 10 20 10 9.8 10 20 10 9.8 10 20 10 9.8 10 20 10 9.8 10 20 10 9.8 10 20 10 9.8 10 20 10 9.8 10 20 10 9.8 10 20 10 9.8 10 20 10 9.8 10 20 10 9.8 10 20 10 9.8 10 20 10 9.8 10 20 10 9.8 10 20 10 11 11 10 20 10 9.8 10 20 10 11 11 10 20 10 9.8 10 20 10 11 11 10 20 10 9.8 10 20 10 11 11 11 10 20 10 11 11 11 10 20 10 11 11 11 10 20 10 11 11 11 10 20 10 11 11 11 11 10 20 10 11 11 11 10 11 11 11 11 1	$\begin{array}{c} 105.25\\ 102.56\\ 110.79\\ 104.37\\ 94.33\\ 108.99\\ 102.95\\ 105.29\\ 99.58\\ 103.89\\ 97.22\\ 94.52\\ 109.26\\ 111.41\\ 104.23\\ 97.52\\ 102.24\\ 102.47\\ 100.88\\ 104.37\\ 113.44\\ 113.82\\ 100.09\\ 112.11\\ 103.00\\ 105.19\\ 106.26\\ 99.28\\ 99.60\\ 98.14\\ 105.15\\ 119.00\\ 108.46\end{array}$	$\overline{70-130}$ 70-130 7

INITIAL CALIBRATION DATA

Start Cal Date	:	28-NOV-2007 13:45
End Cal Date	:	29-NOV-2007 09:21
Quant Method	:	ISTD
Origin	:	Disabled
Target Version	:	3.50
Integrator	:	HP RTE
Method file	:	/chem/B.i/Bsvr.p/bgito15.b/rto15.m
Cal Date	:	30-Nov-2007 12:42 sv
Curve Type	:	Average
		5

Calibration File Names: Level 1: /chem/B.i/Bsvr.p/bgito15.b/bgi002v2.d Level 2: /chem/B.i/Bsvr.p/bgito15.b/bgi005v2.d Level 4: /chem/B.i/Bsvr.p/bgito15.b/bgi05v2.d Level 5: /chem/B.i/Bsvr.p/bgito15.b/bgi10v.d Level 6: /chem/B.i/Bsvr.p/bgito15.b/bgi15v.d Level 7: /chem/B.i/Bsvr.p/bgito15.b/bgi20v.d Level 8: /chem/B.i/Bsvr.p/bgito15.b/bgi40v.d

	0.20000	0.50000	5.000	10.000	15.000	20.000		
Compound	Level 1	Level 2	Level 4	Level 5	Level 6	Level 7	RRF	% RSD
							1	l I
1	40.000			ļ				l
	Level 8						l	l
		*********		*******		********		
1 Dichlorodifluoromethane	+++++	2.54347	2.64546	2.68105	+++++	2.09256		I
	1.98676						2.38986	13.633
168 Freon 22	+++++	1.34640	1.33429	1.34375	+++++	1.02384		
1	0.98887						1.20743	15.241
2 1,2-Dichlorotetrafluoroethane	3.08270	2.93710	3.11833	3.09588	+++++	2.45734	l	
	2.29918	 			1	1	2.83175	12.730
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
i s chioromethane	+++++	0.85562	0.83463	0.83305	+++++	0.64531		
	0.62571			1		 	0.75886	1 14.913
4 Vinvl Chloride	1 11228	1 04054	1 12506	1 1 11529		0 88546		
		1.04054	1 1.13500	1 1.11555	++++ 	0.00040		11 022
1	0.00002		 	 	 	 	1.02506	11.933
5 1 3-Butadiene		0 72045	0 84034	0 83601		0 66636		-
	0 65011	0.72045	0.01034	0.0001	+++++	0.00036	0 74265	12 256
				 		1		
					I			

Start Cal Date	:	28-NOV-2007 13:45
End Cal Date	:	29-NOV-2007 09:21
Quant Method	:	ISTD
Origin	:	Disabled
Target Version	:	3.50
Integrator	:	HP RTE
Method file	:	/chem/B.i/Bsvr.p/bgito15.b/rto15.m
Cal Date	:	30-Nov-2007 12:42 sv
Curve Type	:	Average

	0.20000	0.50000	5.000	10.000	15.000	20.000		
Compound	Level 1	Level 2	Level 4	Level 5	Level 6	Level 7	RRF	% RSD
1	40.000						1	· ·
	Level 8				l		1	ł I
6 Bromomethane	1.25010	1.15359	1.19309	1.20112	=======================================	====================================	======================================	=======
1	0.98948				1		1.13151	9.699
7 Chloroethane		0.60550	0.63446	0.64572	 +++++	0.54125		
	0.52893			I			0.59117	9.039
8 Bromoethene	1.25377	1.14380	1.22980	 1.23862	 +++++	1.07305		
i	1.06527			l	İ	ļ	1.16739	7.301
9 Trichlorofluoromethane	3.05574	2.89126	3.04541	3.11218		2.60946	 	
i	2.54402		ĺ	ĺ	l		2.87635	8.491
10 Freon TF	2.22738	2.07331	2.17862	 2.27417	 +++++	 1.98099	 	
1	1.97436	-		1	ĺ		2.11814	6.025
11 1,1-Dichloroethene	1.09069	1.02413	1.06920	1.10901	 +++++	0.97354	 	
	0.96879			ĺ		l	1.03923	5.761
12 Acetone	 ++++++	+++++	0.74853	1.16277	1.06898	1.05467	 	
į	1.08117						1.02322	15.558
13 Isopropyl Alcohol	++++++	 +++++	0.75087	1.14203	0.97868	0.85995		
1	0.88774						0.92385	15.864
 14 Carbon Disulfide	 +++++	3.25656	3,38595	3.49721	 +++++	2.97147		
l	2.91887			1			3.20601	7.909

Start Cal Date	:	28-NOV-2007 13:45
End Cal Date	:	29-NOV-2007 09:21
Quant Method	:	ISTD
Origin	:	Disabled
Target Version	:	3.50
Integrator	:	HP RTE
Method file	:	/chem/B.i/Bsvr.p/bgito15.b/rto15.m
Cal Date	:	30-Nov-2007 12:42 sv
Curve Type	:	Average

	0.20000	0.50000	5.000	10.000	15.000	20.000	I		۱
Compound	Level 1	Level 2	Level 4	Level 5	Level 6	Level 7	RRF	% RSD	ļ
							ļ	1	1
	40.000				ļ				I
	Level 8								
				= = = = = = = = = = = = = = = = = = =					1
15 3-Chloropropene	+++++	1.29106	1.33810	1.37018	+++++	1.18087			1
	1.18036		1	1	1		1.27212	6.929	
16 Mothulana Chlorida			1	1 1 10207		0 00426			1
i is methyrene chioride	+++++ ^ °E161	1.31830	1 1.151/5	1.18397	+++++ 	0.98436	1 1 11004	ו דפא כו I	
		! 	 	 	 -	 	1.11004	13.49/	1
17 tert-Butyl Alcohol	+++++	+++++	1.05209	1.63309	1.39475	1,22460	1		1
	1.25757						1.31242	16.523	i
, 			' 		' 				i
18 Methyl tert-Butyl Ether	+++++	2.49441	1.60271	2.51265	+++++	2.35616			1
	2.46617			ĺ			2.28642	16.926	Ì
									I
19 trans-1,2-Dichloroethene	1.64093	1.65687	1.65597	1.72861	+++++	1.43550	1		I
1	1.40963		1	I	I	I	1.58792	8.308	I
									I
20 n-Hexane	+++++	1.79307	1.80334	1.86805	+++++	1.57485	1	1	ļ
	1.52756			1			1.71337	8.856	
									1
21 1,1-Dichloroethane	2.09738	1.95329	1.86696	1.97633	+++++	1.73750			
	1.70204		1	1		 	1.88892	1 7.979	1
M 22 1 2-Dichloroethene (total)	1 46947	1 41509	1 1 42115	1 1 40704		1 1 20104			1
	1 26939	1.41500	1.42115	1 1.40/54	+++++	1.20194	1 39093	6 7 2 4	1
					1 				i
23 Methyl Ethyl Ketone	+++++	0.42502	0.28578	0.46568	+++++	0.42596		1	i
	0.44835						0.41016	17.447	i
									i
						I		I	i

Start Cal Date	:	28-NOV-2007 13:45
End Cal Date	:	29-NOV-2007 09:21
Quant Method	:	ISTD
Origin	:	Disabled
Target Version	:	3.50
Integrator	:	HP RTE
Method file	:	/chem/B.i/Bsvr.p/bgito15.b/rto15.m
Cal Date	:	30-Nov-2007 12:42 sv
Curve Type	:	Average

1	0.20000	0.50000	5.000	10.000	15.000	20.000		
Compound	Level 1	Level 2	Level 4	Level 5	Level 6	Level 7	RRF	% RSD
1								
	40.000	1	1					1
		 	 	 ===================================	 +========	/ = = = = = = = = = = =		 ===============
24 cis-1,2-Dichloroethene	1.29801	1.17329	1.18633	1.24726	, +++++	1.12838		
1	1.12916					l	1.19374	5.638
26 Tetrahydrofuran	+++++	+++++	0.13557	0.22242	0.19171	0.19051		
1	0.20671	 		 		 	0.18938	17.301
27 Chloroform	2,46779	2.32164	2.08502	2.29439	+++++	2.04399		
1	2.01132	1			Ì		2.20403	8.329
28 1,1,1-Trichloroethane	0.54205	0.51742	0.51686	0.56222	+++++	0.46889		ł
	0.48809	1]				0.51592	6.611
29 Cvclobevane	0 38053	0 35229	0 37493	1 0 40704		0 33608		
	0.35317					0.55000	0.36734	6.900
30 Carbon Tetrachloride	0.54543	0.52263	0.55563	0.59812	+++++	0.49201	1	I
	0.51715	1		1	1	ł	0.53850	6.831
	1.06592	1.17089	1.05210	1.21455	+++++ 	1.01439	1.12389	8.082
		, 		, 	' 	' 		
32 Benzene	0.82064	0.74892	0.63282	0.75515	+++++	0.67918	1	l
	0.70494	1	1		I	l	0.72361	9.087
34 n-Heptane	0.46007	0.44088 	0.38366	0.44893	+++++	0.36773 		10.037
· 			 	 				
							l	
								2.

Start Cal Date	:	28-NOV-2007 13:45
End Cal Date	:	29-NOV-2007 09:21
Quant Method	:	ISTD
Origin	:	Disabled
Target Version	:	3.50
Integrator	:	HP RTE
Method file	:	/chem/B.i/Bsvr.p/bgito15.b/rto15.m
Cal Date	:	30-Nov-2007 12:42 sv
Curve Type	:	Average

	0.20000	0.50000	5.000	10.000	15.000	20.000	l	
Compound	Level 1	Level 2	Level 4	Level 5	Level 6	Level 7	RRF	% RSD
1								
	40.000	}	1			1		
	Level 8					1		
22 1 2-Dichloroethane	========					0 26361		= = = = = = = = = = = = = = = = = = =
	0.27231	0.30413	0.25550	0.30001		0.20001	I 0.28690	I 9.195
		' 		, 	' 			
36 Trichloroethene	0.35883	0.33179	0.30939	0.35137	+++++	0.30311		I
1	0.32320				1	I	0.32962	6.762
								
37 Methyl Methacrylate	+++++	0.15667	0.11635	0.21979	 +++++	0.20305		
	0.23366	ļ		1			0.18591	26.097
	0.00115			0.04055		0.00460		
38 1,2-Dichioropropane	0.26115	0.25410	0.18423	0.24955	+++++ 	0.22468	0 23544	11 952
1		 	 	 	, 	 		
39 1,4-Dioxane	' +++++	 +++++	0.06405	0.10729	0.08631	0.07594		'
	0.08372			1	Ì	ļ	0.08346	19.036
40 Bromodichloromethane	0.50858	0.48500	0.44584	0.55651	+++++	0.48005	l	1
1	0.50932	1	I	I			0.49755	7.452
41 cis-1,3-Dichloropropene	0.39693	0.37715	0.28477	0.39659	+++++ '	0.35956	0 26750	1 11 607
ł 	0.39055	 	 	 	l 	 	0.36759	11.69/
42 Methyl Isobutyl Ketone	+++++	0.33199	0.23826	0.45317	+++++	0.32800		
	0.37055						0.34439	22.587
43 Toluene	0.59686	0.53384	0.37145	0.48841	+++++	0.45355		I
1	0.46838	l	1	I		l	0.48541	15.707
	l							

Start Cal Date	:	28-NOV-2007 13:45
End Cal Date	:	29-NOV-2007 09:21
Quant Method	:	ISTD
Origin	:	Disabled
Target Version	:	3.50
Integrator	:	HP RTE
Method file	:	/chem/B.i/Bsvr.p/bgito15.b/rto15.m
Cal Date	:	30-Nov-2007 12:42 sv
Curve Type	:	Average

I	0.20000	0.50000	5.000	10.000	15.000	20.000	l	I
Compound	Level 1	Level 2	Level 4	Level 5	Level 6	Level 7	RRF	8 RSD
								I
	40.000				l			
	Level 8							1
44 trans-1 3-Dichloropropene	====================================				= = = = = = = = = = = = = = = = = = =	0 35533	********	=========================
	0.39370	0.30377	0.25755	0.35152	+++++	0.55555	0.35676	14.296
				/ 				
45 1,1,2-Trichloroethane	0.27451	0.25344	0.18447	0.24115	+++++	0.21552		
	0.22048	l	I		l	I	0.23160	13.671
46 Tetrachloroethene	0.49209	0.42627	0.39549	0.44866	+++++	0.44120		
	0.47662						0.44672	7.774
47 Methyl Butyl Ketope	 	0 30216	0 21289	0 40635		0 29890		
	0.30539		0.21205	0.40035	+++++	0.29090	0.30514	22,468
48 Dibromochloromethane	0.45247	0.43664	0.42109	0.53013	+++++	0.50013		
1	0.50707		l	I		I	0.47459	9.225
49 1,2-Dibromoethane	0.45578	0.42811	0.33077	0.44881	+++++	0.41368		
	0.42561						0.41713	10.806
51 Chlorobenzene	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 74030	0 62616	0 20103		0 67401		
	0.70307	0.74230	0.55515	0.70193	+++++++	0.07401	0.69713	l 13.691
			, 					
52 Ethylbenzene	1.19536	1.06772	0.70558	1.03393	+++++	0.97325		
4	0.99733			I			0.99553	16.271
M 55 Xylene (total)	0.44868	0.40445	0.26247	0.40131	+++++	0.39311		
	0.41575						0.38763	16.592

Start Cal Date	:	28-NOV-2007 13:45
End Cal Date	:	29-NOV-2007 09:21
Quant Method	:	ISTD
Origin	:	Disabled
Target Version	:	3.50
Integrator	:	HP RTE
Method file	:	/chem/B.i/Bsvr.p/bgito15.b/rto15.m
Cal Date	:	30-Nov-2007 12:42 sv
Curve Type	:	Average

	0.20000	0.50000	5.000	10.000	15.000	20.000	I	I	
Compound	Level 1	Level 2	Level 4	Level 5	Level 6	Level 7	RRF	🖁 🖁 🖁 🖁	
							1	1	
1	40.000						1		
1	Level 8	1			1			1	
		========					=======		•
53 Xylene (m,p)	0.46302	0.42223 	0.27385 	0.41640 	+++++ 	0.40976 		1 16 246	
		 	 	 	 	 	0.40138	10.240	• I
54 Xylene (o)	0.44868	0.40445	0.26247	0.40131	 +++++	0.39311		1 	ì
	0.41575	I	I		İ	i	0.38763	16.592	2
									-
56 Styrene	0.48866	0.47461	0.37072	0.62832	+++++	0.62876	ł	l	I
	0.67731	l			l		0.54473	21.716	5
									• 1
57 Bromoform	0.34511	0.33293	0.31840	0.47388	+++++	0.48520			
	0.54194			1			0.41624 	22.906	; ,
58 1.1.2.2-Tetrachloroethane	0.66580	0 60640	0.37663	0 59161		0 54330			1
	0.56173	}		0.55101		0.54550	0.55758	I 17.612	ו או ג
			' 						- 1
59 4-Ethyltoluene	1.24528	1.11419	0.66862	1.11160	+++++	1.13523			i
1	1.20678	ļ	ł	I	l		1.08028	19.322	2
									-
60 1,3,5-Trimethylbenzene	1.00349	0.86335	0.55130	0.94803	+++++	0.89350			I
	0.94722		1	l	[0.86782	18.724	1
61 2-Chlorotoluene	1 00800	0 06460		0.04000					
61 2-Chiorocoruene	1.09823	0.96462	0.62821 	0.94021	+++++	0.86220	0 00600	17.000	1
			 					17.326	1
62 1,2,4-Trimethylbenzene	0.90238	0.81591	0.49410	0.89064	+++++	0.86288			
-	0.92326						0.81486	19.814	4
									ij

Start Cal Date	:	28-NOV-2007 13:45
End Cal Date	:	29-NOV-2007 09:21
Quant Method	:	ISTD
Origin	:	Disabled
Target Version	:	3.50
Integrator	:	HP RTE
Method file	:	/chem/B.i/Bsvr.p/bgito15.b/rto15.m
Cal Date	:	30-Nov-2007 12:42 sv
Curve Type	:	Average

1	0.20000	0.50000	5.000	10.000	15.000	20.000	l		
Compound	Level 1	Level 2	Level 4	Level 5	Level 6	Level 7	RRF	% RSD	1
									L
1	40.000					1			ļ.
ļ	Level 8							l	1
63 1,3-Dichlorobenzene	0.66252	0.57366	0.35791	0.61757	+++++	0.61918			1
	0.68848						0.58655	20.263	
									
64 1,4-Dichlorobenzene	0.64996	0.57786	0.35055	0.60987	+++++	0.61338			
ļ	0.68537						0.58116	20.453	
									1
65 1,2-Dichlorobenzene	0.59967	0.52658	0.32492	0.56836	+++++	0.57235		I	L
1	0.62791					l i	0.53663	20.330	
66 1,2,4-Trichlorobenzene	+++++	0.17669	0.15963	0.33219	+++++	0.23075		ļ	
1	0.19842			1		1	0.21954	31.132	<-
									1
67 Hexachlorobutadiene	0.17809	0.15255	0.12186	0.23372	+++++	0.20478	1	l	L
· · · · · · · · · · · · · · · · · · ·	0.15184	ļ				1	0.17380	23.301	
68 Naphthalene	+++++	0.38338	0.36981	0.81470	+++++	0.46304			
	0.41890						0.48997	37.774	<-
1									1

Start Cal Date	:	28-NOV-2007 13:45
End Cal Date	:	29-NOV-2007 09:21
Quant Method	:	ISTD
Origin	:	Disabled
Target Version	:	3.50
Integrator	:	HP RTE
Method file	:	/chem/B.i/Bsvr.p/bgito15.b/rto15.m
Cal Date	:	30-Nov-2007 12:42 sv
Curve Type	:	Average

Average %RSD Results.	
Calculated Average %RSD = 14.04765	
Maximun Average %RSD = 0.000e+00	
* Failed Average %RSD Test.	
	r

FORM 7 VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: TESTAMERICA BURLINGTON Contract: 27000 Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY123316 Instrument ID: B Calibration Date: 12/11/07 Time: 1237 Lab File ID: BGI10HV2 Init. Calib. Date(s): 11/28/07 11/29/07 Heated Purge: (Y/N) N Init. Calib. Times: 1345 0921 GC Column: RTX-624 ID: 0.32 (mm)

			MIN		MAX
COMPOUND	RRF	RRF10	RRF	8D	%D
=======================================	=========	=========	=======	======	====
Vinyl Chloride	1.025	1.276	0.01	24.5	30.0
1,1-Dichloroethene	1.039	1.134	0.01	9.1	30.0
trans-1,2-Dichloroethene	1.588	1.876	0.01	18.1	30.0
1,2-Dichloroethene (total)	1.391	1.597	0.01	14.8	30.0
cis-1,2-Dichloroethene	1.194	1.318	0.01	10.4	30.0
Trichloroethene	0.330	0.354	0.01	7.3	30.0
Tetrachloroethene	0.447	0.395	0.01	11.6	30.0

FORM VII VOA

Data File: /chem/B.i/Bsvr.p/bgihto15.b/bgi10hv2.d Report Date: 13-Dec-2007 13:39

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/B.i/Bsvr.p/bgihto15.b/bgi10hv2.d Lab Smp Id: ASTD010 Client Smp ID: ASTD010 Inj Date : 11-DEC-2007 12:37 Operator : wrd Inst ID: B.i : Smp Info Misc Info : ASTD010;121107BA;1;200 Comment Method : /chem/B.i/Bsvr.p/bgihto15.b/rto15.m Meth Date : 13-Dec-2007 13:39 sv Quant Quant Type: ISTD Cal Date : 29-NOV-2007 09:21 Cal File: bgi05v2.d Als bottle: 2 Continuing Calibration Sample Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: ROUX1 Ocean.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

MOINT

							ANOUN	15
			QUANT SIG				CAL-AMT	ON-COL
Co	ompo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
==			====	==				
	4	Vinyl Chloride	62	4.068	4.068 (0.457)	328857	10.0000	12
	11	1,1-Dichloroethene	96	6.491	6.491 (0.730)	292253	10.0000	11
	19	trans-1,2-Dichloroethene	61	7.521	7.521 (0.846)	483540	10.0000	12
М	22	1,2-Dichloroethene (total)	61			823268	20.0000	23
	24	cis-1,2-Dichloroethene	96	8.647	8.647 (0.972)	339728	10.0000	11
*	25	Bromochloromethane	128	8.893	8.893 (1.000)	257722	10.0000	(Q)
*	35	1,4-Difluorobenzene	114	9.747	9.747 (1.000)	1226091	10.0000	
	36	Trichloroethene	95	9.987	9.987 (1.025)	434659	10.0000	11
	46	Tetrachloroethene	166	11.465	11.465 (0.943)	507281	10.0000	8.8
*	50	Chlorobenzene-d5	117	12.154	12.154 (1.000)	1285189	10.0000	

QC Flag Legend

Q - Qualifier signal failed the ratio test.

Data File: /chem/B.i/Bsvr.p/bgihto15.b/bgi10hv2.d Report Date: 13-Dec-2007 13:39

TestAmerica Burlington

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: B.iInjection Date: 11-DEC-2007 12:37Lab File ID: bgil0hv2.dInit. Cal. Date(s): 28-NOV-2007 29-NOV-2007Analysis Type: AIRInit. Cal. Times: 13:45Lab Sample ID: ASTD010Quant Type: ISTDMethod: /chem/B.i/Bsvr.p/bgihto15.b/rto15.m

				MIN			MAX	
COMPOUND	RRF /	AMOUNT	RF10	RRF	%D / %DF	IFT %D	/ %DRIFT	CURVE TYPE
				=====		=== ===		
4 Vinyl Chloride		1.02506	1.27601	0.010	-24.48	188	30.00000	Averaged
11 1,1-Dichloroethene		1.03923	1.13399	0.010	-9.11	833	30.00000	Averaged
19 trans-1,2-Dichloroethene		1.58792	1.87621	0.010	-18.15	521	30.00000	Averaged
M 22 1,2-Dichloroethene (total)		1.39083	1.59720	0.010	-14.83	813	30.00000	Averaged
24 cis-1,2-Dichloroethene	1	1.19374	1.31820	0.010	-10.42	573	30.00000	Averaged
36 Trichloroethene		0.32962	0.35451	0.010	-7.55	189	30.00000	Averaged
46 Tetrachloroethene		0.44672	0.39471	0.010	11.64	226	30.00000	Averaged
l	I							

FORM 7 VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: TESTAMERICA BURLINGTON Contract: 27000 Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY123316 Instrument ID: B Calibration Date: 12/12/07 Time: 1444 Lab File ID: BGI10IV3 Init. Calib. Date(s): 11/28/07 11/29/07 Heated Purge: (Y/N) N Init. Calib. Times: 1345 0921 GC Column: RTX-624 ID: 0.32 (mm)

			MIN		MAX
COMPOUND	RRF	RRF10	RRF	۶D	%D
=======================================	=========	=========	========	=====	====
Vinyl Chloride	1.025	1.080	0.01	5.4	30.0
1,1-Dichloroethene	1.039	0.989	0.01	4.8	30.0
trans-1,2-Dichloroethene	1.588	1.613	0.01	1.6	30.0
1,2-Dichloroethene (total)	1.391	1.397	0.01	0.4	30.0
cis-1,2-Dichloroethene	1.194	1.180	0.01	1.2	30.0
Trichloroethene	0.330	0.312	0.01	5.4	30.0
Tetrachloroethene	0.447	0.350	0.01	21.7	30.0

FORM VII VOA

Data File: /chem/B.i/Bsvr.p/bgiito15.b/bgi10iv3.d Report Date: 13-Dec-2007 13:45

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/B.i/Bsvr.p/bgiito15.b/bgi10iv3.d Lab Smp Id: ASTD010 Client Smp ID: ASTD010 Inj Date : 12-DEC-2007 14:44 Operator : wrd Inst ID: B.i Smp Info : Misc Info : ASTD010;121207BA;1;200 Comment Method : /chem/B.i/Bsvr.p/bgiito15.b/rto15.m Meth Date : 13-Dec-2007 13:45 sv Quant 5 Quant Type: ISTD Cal Date : 29-NOV-2007 09:21 Cal File: bgi05v2.d Als bottle: 2 Continuing Calibration Sample Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: ROUX1 Ocean.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

							AMOUN	15
			QUANT SIG				CAL-AMT	ON-COL
Сс	ompo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
==				==			EXERISE	
	4	Vinyl Chloride	62	4.068	4.068 (0.457)	299309	10.0000	11
	11	1,1-Dichloroethene	96	6.491	6.491 (0.730)	273942	10.0000	9.5
	19	trans-1,2-Dichloroethene	61	7.521	7.521 (0.846)	446993	10.0000	10
М	22	1,2-Dichloroethene (total)	61			773955	20.0000	20
	24	cis-1,2-Dichloroethene	96	8.647	8.647 (0.972)	326962	10.0000	9.9
*	25	Bromochloromethane	128	8.893	8.893 (1.000)	277050	10.0000	(Q)
*	35	1,4-Difluorobenzene	114	9.747	9.747 (1.000)	1336585	10.0000	
	36	Trichloroethene	95	9.987	9.987 (1.025)	416758	10.0000	9.5
	46	Tetrachloroethene	166	11.465	11.465 (0.943)	477916	10.0000	7.8
*	50	Chlorobenzene-d5	117	12.154	12.154 (1.000)	1366124	10.0000	

QC Flag Legend

Q - Qualifier signal failed the ratio test.

Data File: /chem/B.i/Bsvr.p/bgiito15.b/bgi10iv3.d Report Date: 13-Dec-2007 13:45

TestAmerica Burlington

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: B.iInjection Date: 12-DEC-2007 14:44Lab File ID: bgil0iv3.dInit. Cal. Date(s): 28-NOV-2007 29-NOV-2007Analysis Type: AIRInit. Cal. Times: 13:45 09:21Lab Sample ID: ASTD010Quant Type: ISTDMethod: /chem/B.i/Bsvr.p/bgiito15.b/rto15.m

				MIN		MAX	
COMPOUND	RRF	/ AMOUNT	RF10	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYPE
	===:				=================		=========
4 Vinyl Chloride		1.02506	1.08034	0.010	-5.39310	30.00000	Averaged
11 1,1-Dichloroethene		1.03923	0.98878	0.010	4.85396	30.00000	Averaged
19 trans-1,2-Dichloroethene		1.58792	1.61340	0.010	-1.60487	30.00000	Averaged
M 22 1,2-Dichloroethene (total)		1.39083	1.39678	0.010	-0.42779	30.00000	Averaged
24 cis-1,2-Dichloroethene	1	1.19374	1.18016	0.010	1.13796	30.00000	Averaged
36 Trichloroethene	1	0.32962	0.31181	0.010	5.40255	30.00000	Averaged
46 Tetrachloroethene	1	0.44672	0.34983	0.010	21.68869	30.00000	Averaged
l							

Raw QC Data – TO-15 Volatile

Data File: /chem/B.i/Bsvr.p/bgito15.b/bgi01pv.d Date : 28-NOV-2007 10:32 Client ID: VBFB Sample Info: VBFB

Instrument: B.i

Column phase: RTX-624 Column diameter: 0.32

Data File: /chem/B.i/Bsvr.p/bgito15.b/bgi01pv.d Date : 28-NOV-2007 10:32 Client ID: VBFB Sample Info: VBFB

Instrument: B.i

Column phase: RTX-624

Operator: wrd

Column diameter: 0.32

L	ocation	of Maximum	n: 95.00					
	Number	r of points	5: 121					
	m/z	Y	m/z	Y	m/z	Y	m/z	Y
+-	36.00	1858	+ I 71.00	56	+ 113.00	182	+ 152.00	157
1	37.00	10817	1 72.00	1422	114.00	16	I 153₊00	289
Т	38.00	9944	1 73.00	11541	i 115.00	364	I 154.00	272
1	39.00	4080	1 74.00	46632	I 116.00	1012	I 155₊00	879
1	41.00	2	75.00	150848	1 117.00	1681	156.00	209
+-	42.00	36	1 76.00	13250	118.00	1102	+ 157.00	661
1	43.00	158	1 77.00	1778	119.00	1281	1 158.00	81
1	44.00	1038	1 78.00	1163	123.00	34	159.00	350
1	45.00	2095	1 79.00	5688	124.00	159	161.00	344
ł	46.00	130	1 80.00	2330	125,00	151	163.00	34
+-	47.00	3108	+ 81.00	5994	126.00	154	+ 164.00	49
ł	48.00	1402	1 82.00	1597	1 127.00	147	165.00	39
Т	49.00	9618	1 83.00	219	128.00	1153	172.00	140
I.	50,00	52584	1 86.00	306	129.00	512	173.00	1333
I	51,00	16616	1 87.00	13168	130.00	1233	174.00	300096
+-	52.00	625	+ I 88.00	12580	+ 131.00	468	+ 175.00	20544
1	55.00	540	91.00	611	134.00	14	176.00	288512
I.	56.00	3310	92.00	8033	135.00	484	177.00	18736
1	57.00	6855	93.00	12632	136.00	113	178.00	622
I	58.00	260	94.00	35312	137.00	499	179.00	81
+-	59,00	44	+ I 95.00	343552	+ 140.00	141	+ 191.00	156
1	60.00	2049	96.00	24120	141.00	2501	195.00	75
T	61.00	11207	97.00	830	142.00	287	1 207.00	187
1	62,00	11543	I 103.00	47	143.00	2560	1 208.00	41
I	63.00	9045	1 104.00	1122	1 144.00	152	1 209,00	76
+-	64.00	829	+ 1 105.00	429	+ 145.00	262	+ 1 210.00	33
1	65,00	82	1 106.00	1051	146.00	461	1 251,00	34
Т	67,00	691	1 107,00	313	1 147,00	416	1 260.00	30
Т	68,00	28480	1 110,00	148	148.00	751	I	
I	69,00	29000	1 111.00	146	1 149,00	242	1	
+-	70,00	2335	+	121	+ 150.00	290	+ I	

Data File: /chem/B.i/Bsvr.p/bgihto15.b/bgi09pv.d Date : 11-DEC-2007 10:40 √ Client ID: VBFB Sample Info: VBFB

Instrument: B.i

Operator: wrd Column diameter: 0.32

Column phase: RTX-624

Data File: /chem/B.i/Bsvr.p/bgihto15.b/bgi09pv.d Date : 11-DEC-2007 10:40 Client ID: VBFB Sample Info: VBFB

Instrument: B.i

Column phase: RTX-624

Operator: wrd	
Column diameter:	0.32

Loca	ation	of Maximum	n: 95.00			-		
ł	lumber	of points	\$\$ 123					
	m/z	Y	m/z	Y	m⁄z	Y	m/z	
+ I 30	5.00	1729	+ 69.00	25272	+ 112.00	81	+ 146.00	3
1 37	7.00	9044	1 70,00	2066	113.00	193	1 147.00	19
1 38	8.00	8803	1 72,00	1036	114.00	38	148.00	67
1 39	00.0	3664	1 73,00	9555	115.00	320	149.00	18
40	•••	130	1 74.00	39520	116.00	898	150,00	2:
1 41	L.00	69	+ 75₊00	125944	117.00	1476	1 152.00	12
1 42	2.00	38	1 76.00	10991	118.00	872	153,00	18
1 43	3.00	101	77.00	1500	1 119,00	998	154.00	14
1 44	4.00	806	1 78,00	923	1 120,00	46	155.00	64
1 49	5.00	1967	I 79₊00	5187	122.00	34	1 156.00	15
1 46	5.00	122	1 80.00	2077	1 124.00	190	1 157.00	42
i 47	7.00	2597	81,00	5466	125.00	34	158.00	4
1 48	3.00	1062	82,00	1492	126.00	123	159.00	30
1 49	9.00	8176	83,00	153	127,00	39	161.00	28
I 50	00.00	45232	I 86₊00	204	128.00	1063	1 163.00	7
1 5:	L.00	13955	, I 87,00	10614	1 129.00	511	172,00	15
1 52	2.00	653	1 88.00	10087	130,00	854	173.00	103
1 53	3,00	34	91.00	815	131.00	426	1 174.00	22451
1 59	5.00	464	92,00	6754	132.00	41	175.00	1602
150	5.00	2878	1 93.00	10629	133.00	11	176.00	21504
1 57	7.00	6021	, 1 94.00	29440	, 134.00	132	1 177.00	1380
1 58	8.00	219	95.00	279424	135.00	495	178.00	41
1 59	9.00	49	96.00	20216	136.00	35	191.00	3
1 60	> . 00	1787	97,00	750	137.00	453	I 193₊00	Ś
I 6:	L.00	9413	1 103.00	184	139.00	33	194.00 	
· 62	2.00	9869	104.00	950	1 140,00	142	207,00	41
1 63	3.00	8064	105.00	346	141.00	2360	208.00	11
1 64	4.00	765	106.00	956	142.00	244	1 209,00	9
1 65	5.00	41	107.00	282	143.00	2468	1 253,00	1
I 67	7.00	516	110.00	139	144.00	108	1 260.00	
1 68	3.00	25032	111.00	184	145.00	266		

Data File: /chem/B.i/Bsvr.p/bgiito15.b/bgi10pv.d Date : 12-DEC-2007 11:19 / Client ID: VBFB Sample Info: VBFB

Instrument: B.i

Operator: wrd Column diameter: 0.32

Column phase: RTX-624

Data File: /chem/B.i/Bsvr.p/bgiito15.b/bgi10pv.d Date : 12-DEC-2007 11:19 Client ID: VBFB Sample Info: VBFB

Instrument: B.i

Column phase: RTX-624

Operator: wrd

Column diameter: 0.32

Location	of Maximum	n: 95.00					
Number	of points	5: 115					
m/z	Y	m/z	Y	m/z	Y	m∕z	Y
36,00	1510	1 72.00	1052	112,00	39	145,00	215
37,00	8766	73.00	8841	113,00	151	146.00	368
38,00	7965	74,00	37576	114.00	92	147.00	197
39,00	3585	75,00	118760	115,00	176	148.00	570
40,00	118	76,00	10413	116,00	823	149.00	266
41,00	64	77,00	1381	117,00	1254	150,00	252
43,00	51	78,00	801	118.00	772	152.00	125
44.00	947	79,00	4687	119,00	1000	153.00	203
45.00	1724	80,00	1906	120,00	34	154.00	185
47,00	2536	81,00	4766	123,00	35	155,00	594
48,00	1019	82.00	1244	124.00	95	156.00	160
49,00	7946	83.00	100	125,00	141	157,00	461
50,00	42072	86.00	282	126.00	102	159,00	261
51,00	13007	I 87₊00	10378	127.00	34	161.00	293
52,00	573	88.00	9687	128,00	858	163.00	14
55,00	483	91,00	766	129,00	434	172,00	39
56,00	2659	92,00	6471	130,00	938	173,00	1089
57,00	5602	93.00	10062	131.00	321	174.00	227264
58,00	243	94.00	28560	132,00	39	175.00	16212
59,00	39 (95.00	271488	133,00	6	176,00	221632
60,00	1616	 96.00	19360	134.00	148	177.00	14722
61,00	9226	97,00	373	135,00	452	178.00	475
62,00	9471	103.00	96	136,00	76	179.00	77
63,00	7108	104.00	868	137,00	350	192.00	72
64.00	656	105.00	339	140,00	178	207,00	681
67,00	534	106.00	857	141,00	2082	208,00	85
68,00	23640	107,00	273	142,00	272	209.00	99
69,00	23304	110,00	81	143,00	2065	260,00	3
70,00	1703	111.00	192	144,00	104		

FORM 1 VOLATILE ORGANICS ANALYSIS DATA SH	CLIENT SAMPLE NO.
Lab Name: TESTAMERICA BURLINGTON Contract:	MBLK121107BA
Lab Code: STLV Case No.: 27000 SAS No.:	SDG No.: NY123316
Matrix: (soil/water) AIR	Lab Sample ID: MBLK121107BA
Sample wt/vol: 250.0 (g/mL) ML	Lab File ID: BGIB02H
Level: (low/med) LOW	Date Received:
% Moisture: not dec.	Date Analyzed: 12/11/07
GC Column: RTX-624 ID: 0.32 (mm)	Dilution Factor: 0.8
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CONCEN CAS NO. COMPOUND (ug/L	NTRATION UNITS: or ug/Kg) PPBV Q
75-01-4Vinyl Chloride 75-35-4Vinyl Chloroethene 156-60-5trans-1,2-Dichloroethene 540-59-01,2-Dichloroethene (tot 156-59-2cis-1,2-Dichloroethene 79-01-6Trichloroethene 127-18-4Tetrachloroethene	0.16 U 0.16 U

Data File: /chem/B.i/Bsvr.p/bgihto15.b/bgib02h.d Report Date: 13-Dec-2007 13:40

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/B.i/Bsvr.p/bgihto15.b/bgib02h.d Lab Smp Id: MBLK121107BA Client Smp ID: MBLK121107BA Inj Date : 11-DEC-2007 15:51 Operator : wrd Inst ID: B.i Smp Info : Misc Info : MBLK121107BA;121007BA;.8;250 Comment Method : /chem/B.i/Bsvr.p/bgihto15.b/rto15.m Meth Date : 13-Dec-2007 13:39 sv Quant Quant Type: ISTD Cal Date : 29-NOV-2007 09:21 Cal File: bgi05v2.d Als bottle: 3 QC Sample: BLANK Dil Factor: 0.80000 Integrator: HP RTE Compound Sublist: ROUX1 Ocean.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description		
DF	0.80000	Dilution Factor		
Uf	1.00000	ng unit correction factor		
Vo	250.00000	Sample Volume purged (mL)		

Cpnd Variable

Local Compound Variable

							CONCENTRATIONS	
			QUANT SIG				ON-COLUMN	FINAL
Cc	ompo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
	4	Vinyl Chloride	62	Comp	ound Not Detected	1.		
	11	1,1-Dichloroethene	96	Comp	ound Not Detected			
	19	trans-1,2-Dichloroethene	61	Comp	ound Not Detected	1.		
М	22	1,2-Dichloroethene (total)	61	Comp	ound Not Detected	1.		
	24	cis-1,2-Dichloroethene	96	Compound Not Detected.				
*	25	Bromochloromethane	128	8.888	8.893 (1.000)	231688	10.0000	
*	35	1,4-Difluorobenzene	114	9.741	9.747 (1.000)	1195838	10.0000	
	36	Trichloroethene	95	Comp	ound Not Detected	1.		
	46	Tetrachloroethene	166	Compound Not Detected.				
*	50	Chlorobenzene-d5	117	12.148	12.154 (1.000)	882505	10.0000	

CLIENT SAMPLE NO. FORM 1 VOLATILE ORGANICS ANALYSIS DATA SHEET MBLK121207BA Lab Name: TESTAMERICA BURLINGTON Contract: 27000 Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY123316 Matrix: (soil/water) AIR Lab Sample ID: MBLK121207BA Sample wt/vol: 250.0 (g/mL) ML Lab File ID: BGIB02I Level: (low/med) LOW Date Received: % Moisture: not dec. Date Analyzed: 12/12/07 GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 0.8 Soil Extract Volume: (uL) Soil Aliquot Volume: _____(uL) CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV CAS NO. COMPOUND Q 75-01-4-----Vinyl Chloride 0.16 U 75-35-4-----1,1-Dichloroethene 0.16 U 156-60-5-----trans-1,2-Dichloroethene 0.16 U 540-59-0-----1,2-Dichloroethene (total)___ 0.16 U 0.16 U 156-59-2----cis-1,2-Dichloroethene 79-01-6-----Trichloroethene 0.16 U 127-18-4----Tetrachloroethene 0.16 U

Data File: /chem/B.i/Bsvr.p/bgiito15.b/bgib02i.d Report Date: 13-Dec-2007 13:45

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/B.i/Bsvr.p/bgiito15.b/bgib02i.d Lab Smp Id: MBLK121207BA Client Smp ID: MBLK121207BA Inj Date : 12-DEC-2007 18:05 Operator : wrd Inst ID: B.i : Smp Info Misc Info : MBLK121207BA;121207BA;.8;250 Comment Method : /chem/B.i/Bsvr.p/bgiito15.b/rto15.m Meth Date : 13-Dec-2007 13:45 sv Quant Quant Type: ISTD Cal Date : 29-NOV-2007 09:21 Cal File: bgi05v2.d Als bottle: 3 QC Sample: BLANK Dil Factor: 0.80000 Integrator: HP RTE Compound Sublist: ROUX1 Ocean.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	0.80000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	250.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

							CONCENTRA	TIONS
			QUANT SIG				ON-COLUMN	FINAL
Co	mpo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
==			====	==				
	4	Vinyl Chloride	62	Comp	ound Not Detected	1.		
	11	1,1-Dichloroethene	96	Comp	ound Not Detected	1.		
	19	trans-1,2-Dichloroethene	61	Comp	ound Not Detected	1 .		
М	22	1,2-Dichloroethene (total)	61	Comp	ound Not Detected	1 .		
	24	cis-1,2-Dichloroethene	96	Comp	ound Not Detected	з.		
*	25	Bromochloromethane	128	8.887	8.893 (1.000)	230487	10.0000	
*	35	1,4-Difluorobenzene	114	9.741	9.747 (1.000)	1260424	10.0000	
	36	Trichloroethene	95	Comp	ound Not Detected	ł.		
	46	Tetrachloroethene	166	Comp	ound Not Detected	4.		
*	50	Chlorobenzene-d5	117	12.148	12.154 (1.000)	1031209	10.0000	

FORM 1 CLIENT SAMPLE NO. VOLATILE ORGANICS ANALYSIS DATA SHEET BA121107LCS Lab Name: TESTAMERICA BURLINGTON Contract: 27000 Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY123316 Matrix: (soil/water) AIR Lab Sample ID: BA121107LCS Sample wt/vol: 200.0 (g/mL) ML Lab File ID: BGI10HQ Level: (low/med) LOW Date Received: % Moisture: not dec. Date Analyzed: 12/11/07 GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0 Soil Aliquot Volume: _____(uL) Soil Extract Volume: (uL) CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) PPBV Q 75-01-4-----Vinyl Chloride 11 75-35-4-----1,1-Dichloroethene 11 156-60-5-----trans-1,2-Dichloroethene 11 540-59-0-----1,2-Dichloroethene (total) 21 156-59-2----cis-1,2-Dichloroethene 11 79-01-6----Trichloroethene_ 10

7.8

127-18-4-----Tetrachloroethene

Data File: /chem/B.i/Bsvr.p/bgihto15.b/bgi10hq.d Report Date: 13-Dec-2007 13:40

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/B.i/Bsvr.p/bgihto15.b/bgi10hq.d Lab Smp Id: BA121107LCS Client Smp ID: BA121107LCS Inj Date : 11-DEC-2007 13:26 Operator : wrd Inst ID: B.i : Smp Info Misc Info : BA121107LCS;121007BA;1;200 Comment Method : /chem/B.i/Bsvr.p/bgihto15.b/rto15.m Meth Date : 13-Dec-2007 13:39 sv Quant 2 Quant Type: ISTD Cal Date : 29-NOV-2007 09:21 Cal File: bgi05v2.d Als bottle: 2 QC Sample: LCS Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: ROUX1 Ocean.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

							CONCENTRA	ATIONS
			QUANT SIG				ON-COLUMN	FINAL
Co	mpo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
==				==			E2=23=2	
	4	Vinyl Chloride	62	4.074	4.068 (0.458)	305741	11.2163	11
	11	1,1-Dichloroethene	96	6.497	6.491 (0.731)	303914	10.9973	11
	19	trans-1,2-Dichloroethene	61	7.521	7.521 (0.846)	452305	10.7114	11
м	22	1,2-Dichloroethene (total)	61			789016	21.3184	21
	24	cis-1,2-Dichloroethene	96	8.647	8.647 (0.972)	336711	10.6070	11
*	25	Bromochloromethane	128	8.893	8.893 (1.000)	265923	10.0000	(Q)
*	35	1,4-Difluorobenzene	114	9.747	9.747 (1.000)	1248472	10.0000	
	36	Trichloroethene	95	9.987	9.987 (1.025)	411645	10.0031	10
	46	Tetrachloroethene	166	11.465	11.465 (0.943)	463773	7.83769	7.8
*	50	Chlorobenzene-d5	117	12.154	12.154 (1.000)	1324587	10.0000	

QC Flag Legend

Q - Qualifier signal failed the ratio test.

FORM 1 VOLATILE ORGANICS ANALYSIS DATA	CLIENT SAMPLE NO.
Lab Name: TESTAMERICA BURLINGTON Contra	BA121107LCSD
Lab Code: STLV Case No.: 27000 SAS 1	No.: SDG No.: NY123316
Matrix: (soil/water) AIR	Lab Sample ID: BA121107LCSD
Sample wt/vol: 200.0 (g/mL) ML	Lab File ID: BGI10HQD
Level: (low/med) LOW	Date Received:
<pre>% Moisture: not dec</pre>	Date Analyzed: 12/11/07
GC Column: RTX-624 ID: 0.32 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND (ug	NCENTRATION UNITS: g/L or ug/Kg) PPBV Q
75-01-4Vinyl Chloride 75-35-41,1-Dichloroethene 156-60-5trans-1,2-Dichloroet 540-59-01,2-Dichloroethene 156-59-2cis-1,2-Dichloroethene 79-01-6Trichloroethene 127-18-4Tetrachloroethene	12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 11 8.7

Data File: /chem/B.i/Bsvr.p/bgihto15.b/bgi10hqd.d Report Date: 13-Dec-2007 13:40

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/B.i/Bsvr.p/bgihto15.b/bgi10hqd.d Lab Smp Id: BA121107LCSD Client Smp ID: BA121107LCSD Inj Date : 11-DEC-2007 14:14 Operator : wrd Inst ID: B.i : Smp Info Misc Info : BA121107LCSD;121007BA;1;200 Comment Method : /chem/B.i/Bsvr.p/bgihto15.b/rto15.m Meth Date : 13-Dec-2007 13:39 sv Quant 1 Quant Type: ISTD Cal Date : 29-NOV-2007 09:21 Cal File: bgi05v2.d Als bottle: 2 QC Sample: LCSD Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: ROUX1 Ocean.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

							CONCENTRA	TIONS
			QUANT SIG				ON-COLUMN	FINAL
Co	mpo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
= =	===		= = = =	==			SEFEREE	
	4	Vinyl Chloride	62	4.074	4.068 (0.458)	303319	11.9244	12
	11	1,1-Dichloroethene	96	6.491	6.491 (0.730)	304694	11.8152	12
	19	trans-1,2-Dichloroethene	61	7.521	7.521 (0.846)	457754	11.6169	12
М	22	1,2-Dichloroethene (total)	61			799362	23.1489	23
	24	cis-1,2-Dichloroethene	96	8.647	8.647 (0.972)	341608	11.5320	12
*	25	Bromochloromethane	128	8.893	8.893 (1.000)	248150	10.0000	(Q)
*	35	1,4-Difluorobenzene	114	9.747	9.747 (1.000)	1133581	10.0000	
	36	Trichloroethene	95	9.987	9.987 (1.025)	415964	11.1326	11
	46	Tetrachloroethene	166	11.465	11.465 (0.943)	461170	8.67556	8.7
*	50	Chlorobenzene-d5	117	12.154	12.154 (1.000)	1189944	10.0000	

QC Flag Legend

Q - Qualifier signal failed the ratio test.

	VOLATILE	FORM 1 ORGANICS ANALYSI	S DATA SHEET	2	CLIENT	SAMPLE NO	. .
Lab Name	e: TESTAMERICA	BURLINGTON	Contract: 27	2000	BA1	21207LCS	
Lab Code	e: STLV C	Case No.: 27000	SAS No.:	S	DG No.:	NY123316	
Matrix:	(soil/water)	AIR	Lab	Sample	ID: BA12	1207LCS	
Sample w	wt/vol:	200.0 (g/mL) ML	Lab	File ID	: BGI1	QIQ	
Level:	(low/med)	LOW	Dat	e Receiv	ed:		
% Moistu	ure: not dec.		Dat	e Analyz	ed: 12/1	2/07	
GC Colum	nn: RTX-624	ID: 0.32 (mm)	Dil	ution Fa	ctor: 1.	0	
Soil Ext	cract Volume:_	(uL)	Soi	l Aliquo	t Volume	:	_(uL)
C	CAS NO.	COMPOUND	CONCENTRA (ug/L or	TION UNI ug/Kg) P	TS: PBV	Q	
7 1 5 1 1 7 1	75-01-4 75-35-4 156-60-5 540-59-0 156-59-2 79-01-6 127-18-4	Vinyl Chloride 1,1-Dichloroet trans-1,2-Dich 1,2-Dichloroet cis-1,2-Dichlo Trichloroethen Tetrachloroeth	hene loroethene hene (total) roethene ene		11 12 11 22 11 10 8.2		

Data File: /chem/B.i/Bsvr.p/bgiito15.b/bgi10iq.d Report Date: 13-Dec-2007 13:45

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/B.i/Bsvr.p/bgiitol5.b/bgi10iq.d Lab Smp Id: BA121207LCS Client Sr Client Smp ID: BA121207LCS Inj Date : 12-DEC-2007 15:39 Operator : wrd Inst ID: B.i Smp Info : Misc Info : BA121207LCS;121207BA;1;200 Comment Method : /chem/B.i/Bsvr.p/bgiito15.b/rto15.m Meth Date : 13-Dec-2007 13:45 sv Quant 2 Quant Type: ISTD Cal Date : 29-NOV-2007 09:21 Cal File: bgi05v2.d Als bottle: 2 QC Sample: LCS Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: ROUX1 Ocean.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

							CONCENTRA	TIONS
			QUANT SIG				ON-COLUMN	FINAL
Cc	mpo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
= =			====	==				
	4	Vinyl Chloride	62	4.068	4.068 (0.457)	307680	11.3959	11
	11	1,1-Dichloroethene	96	6.491	6.491 (0.730)	322018	11.7643	12
	19	trans-1,2-Dichloroethene	61	7.521	7.521 (0.846)	471577	11.2751	11
М	22	1,2-Dichloroethene (total)	61			821748	22.4121	22
	24	cis-1,2-Dichloroethene	96	8.647	8.647 (0.972)	350171	11.1370	11
*	25	Bromochloromethane	128	8.893	8.893 (1.000)	263392	10.0000	(Q)
*	35	1,4-Difluorobenzene	114	9.747	9.747 (1.000)	1269450	10.0000	
	36	Trichloroethene	95	9.987	9.987 (1.025)	426812	10.2003	10
	46	Tetrachloroethene	166	11.465	11.465 (0.943)	487510	8.17722	8.2
*	50	Chlorobenzene-d5	117	12.154	12.154 (1.000)	1334568	10.0000	

QC Flag Legend

Q - Qualifier signal failed the ratio test.

FORM 1 VOLATILE ORGANICS ANALYSI	S DATA SHEET
Lab Name: TESTAMERICA BURLINGTON	BA121207LCSD
Lab Code: STLV Case No.: 27000	SAS No.: SDG No.: NY123316
Matrix: (soil/water) AIR	Lab Sample ID: BA121207LCSD
Sample wt/vol: 200.0 (g/mL) ML	Lab File ID: BGI10IQD
Level: (low/med) LOW	Date Received:
% Moisture: not dec	Date Analyzed: 12/12/07
GC Column: RTX-624 ID: 0.32 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV Q
75-01-4Vinyl Chloride 75-35-4Vinyl Chloride 156-60-5trans-1,2-Dich 540-59-01,2-Dichloroet 156-59-2cis-1,2-Dichlo 79-01-6Trichloroethen 127-18-4Tetrachloroeth	hene 11 loroethene 11 hene (total) 22 roethene 11 e 9.8 ene 8.1

FORM I VOA

Data File: /chem/B.i/Bsvr.p/bgiito15.b/bgi10iqd.d Report Date: 13-Dec-2007 13:45

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/B.i/Bsvr.p/bgiito15.b/bgi10iqd.d Lab Smp Id: BA121207LCSD Client Smp ID: BA121207LCSD Inj Date : 12-DEC-2007 16:28 Operator : wrd Inst ID: B.i Smp Info : Misc Info : BA121207LCSD;121207BA;1;200 Comment Method : /chem/B.i/Bsvr.p/bgiito15.b/rto15.m Meth Date : 13-Dec-2007 13:45 sv Quant Quant Type: ISTD Cal Date : 29-NOV-2007 09:21 Cal File: bgi05v2.d Als bottle: 2 QC Sample: LCSD Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: ROUX1 Ocean.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

							CONCENTRA	ATTONS .
			QUANT SIG				ON-COLUMN	FINAL
Co	ompo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
=:			====	==		z======	=======	
	4	Vinyl Chloride	62	4.073	4.068 (0.458)	311756	11.2778	11
	11	1,1-Dichloroethene	96	6.496	6.491 (0.731)	322233	11.4979	11
	19	trans-1,2-Dichloroethene	61	7.521	7.521 (0.846)	474366	11.0776	11
М	22	1,2-Dichloroethene (total)	61			832900	22.2149	22
	24	cis-1,2-Dichloroethene	96	8.653	8.647 (0.973)	358534	11.1373	11
*	25	Bromochloromethane	128	8.893	8.893 (1.000)	269675	10.0000	(Q)
*	35	1,4-Difluorobenzene	114	9.747	9.747 (1.000)	1349494	10.0000	
	36	Trichloroethene	95	9.987	9.987 (1.025)	437962	9.84595	9.8
	46	Tetrachloroethene	166	11.465	11.465 (0.943)	501401	8.10241	8.1
*	50	Chlorobenzene-d5	117	12.154	12.154 (1.000)	1385268	10.0000	

QC Flag Legend

Q - Qualifier signal failed the ratio test.

Sample Preparation – TO-15 Volatile

Suite 11 South Burlington, VT 05403 phone 802-660-1990 fax 802-660-1919	TestAmerica	Analytical T	esting Corp.	assumes no	liability with	respect to the c	collection and s	hipment	of these	sample	ŝ					
Client Contact Information	Project Man	ager: R_0	B KOVI	CS		Samples Col	llected By:	iner k	waek	(kem)	° ~	7	cocs			
Company: ROWASS OCIATES, INC	Phone: {	531-232	0095-													
Address: 206 JHAFTER ST City/StataTin / U AUDTA NV UT 44	Email: rk	OVALS O 1	DHAMCIC	20							((
Phone: 631-232-2600	Site Contac	t: ROB K	PUAG								noitoe					noitos
FAX: 631-232- 9898	STL Contac	t: RON									es se	V A				es se
Project Name: 6Evt Citem 168601Y		Analysis	Turnaroui	d Time							əjo u					eton
Site: Oceawsrde, NY	S	tandard (S	pecify) 2-	week 7	47						ni vî					ui (ì
PO#	Ē	tush (Spec	ify)								ipeqi	9				iseq
	Sample			Canister Vacuum in Field, "Ho	Canister Vacuum in Field 'Ho	Flow Controller		51-	A 3C	A 25C	191 D-1946 191 D-1946	dXi əjdü	οοι Αίτ	I Gas	as∂ liitbr	s əscəlq) tər
Sample Identification	Date(s)	Time Start	Time Stop	(Start)	(Stop)	ID	Canister ID	OT	Eb	'43	0ft 87	PS	pul	mA io2	רפג	-tto
VS-DCF	12/6/07	0833	1653	-20		3979	34187				<u> </u>			$\frac{\times}{}$		
VS-MRE		2855	1645	-30	1-	3723	4295				2					
DWP-120607		00400	1645	-30	, ,	3171	H363				X					
VS-DCR	-	20407	0110	- 30	- 6	3852	45"42				·Y			\times		
19Q - 1600K		0840	STLI	- 30	-45	3737	14/28				X		×			
VS - BOOK	\rightarrow	0932	1732	-30	-9-	25:80	00117				7			\times		
				Temperatur	e (Fahrenheit											
		Interior		Ambient												
	Start			340 F												
	Stop			30°F												
				Pressure (ir	iches of Hg)											
		Interior		Ambient												
	Start			30:24" r	prici											
	Stop			30,35	" Steady											
Special Instructions/OC Requirements & Comments 1,2 - Dichloroethene (total), Tetra chlor	s: fleuze 1 veyhene	France 1	Somples	-1'1 xa	Dichlarde	Hear; Cis	-1,2-Dichli 10105 MPS	hod	Ene .	Tren.	- 172	-Dich	lavel	here		
All results must have a Detechan Lun (2-week TAT)	Ht of	Lalm3	or les	ind Pl	and pu	wide NYS	Net Ast	[a]	egure.	.90	Delii	eadle				
Samples Shipped by: I M.F. (Row)	Date/Time:				Samples	A BEARES PE	14/81	60	60	5						
Samples Relinquished by:	Date/Time:				Repeived	by:										
Relinquished by:	Date/Time:				Received	by:										
Lab.Use Only Shipper Name				Opened I	y	Condition:										

Canister Samples Chain of Custody Record

TestAmerica Burlington 30 Community Drive

.

160

TestAmerica Burlington 30 Community Drive

Suite 11

Canister Samples Chain of Custody Record

ida buc meet to the collection TestAmerica Analytical Testing Corp. assumes no liability with re-

South Burlington, VT 05403

iect Manager: <i>KOS KovAC</i> Samples Collected By: <i>Nova KuoTete</i> (Kovy 2.0 Cos	ali: r kovarst. cvm contact: Kva contact: Kva contact: Kva	Analysis Turnaround Time Standard (Specify) 2- We2k 747 Rush (Specify)	ample Canister	61070945 MHS -30 -4 4515 3464 × XX	1 0959 1759 -30 -45 4103 4342 X X	1011 1501 -30 -4 3754 3081 × X	1027 1830 -30 -15" 3235 4288 × 20 X	V 1300 4311 X	Temperature (Fahrenheit)	Interior Ambient	Start ZH ^{oo} F	Stop 3.0 ¹⁷ F	Pressure (inches of Hg)	Interior Ambient	Start 30.24" rising	stop 30 35' steady	leave Analyze samples for 1,1-pich15 rethere? Cis-1,2-pich10,000 truns -1, 2-pich10,000 there ene, Trich10,000 there out Viny1 Ch12-ide Using method TO-15. ALL REUTS MUST HAVE A Please Provide NYSDEC ASP Category B Dellicarble	Altrix surpue afTime: Samples Repetived 17/17/07 0025	ertime: Received by:	te/Time: Received by:
падег. <i>КОВ КочА</i> С 631-232-2600	KOVACS & rouxing . com et: KOB KOVAS et: KON	Analysis Turnaround Time Standard (Specify) <i>え- Wピ人 てイ</i> Rush (Specify)	Canister C: Canister C: Vacuum in Vac Field, "Hg Fid Time Start Time Stop (Start) (1 0948 17418 - 30 -	0959 1759 -30 -4	1011 1501 -30 -	1027 1830 -30 -	1300	Temperature (Fa	Interior Ambient	24°F	307	Pressure (inches	Interior Ambient	30-24" ris	30.35	Analyse scrupte for 1,1-Di Trichloroethere on Vin se Provide NYDEC ASP O	Sample		and the second s
reading 1919 mation Project Mi שלב הקרש, אלב Project Mi	HAFTER ST Email: 1 ANかみ NY 11749 Email: 1 2-2600 Site Conte 2-7894 St Conte	CHEM 165601Y DE NY	Sample Die Identification Date(s)	Q-VAC R16103	- VAC	8	- FENCE	-120607 V			Start	Stop			Start	Stop	slac Requirements & Comments: Mea.e here (total); Tetrach brochtere, 117 of 1 Mg/m3 or LPB, Ond Mea troise.e.12020315 502131	La Kit (Car) 12/6/2	ed by: Date/Time	Date/Time

Air Canister Post-Sampling Pressure Check Record

Project I	Information		्र
Client:	ROUX1		
ETR:	123316	SDG: N.Y. 123316	
Date:	12/7/7		
Analyst:	J1h		

Lab	CAN	P	ressure ("Hg)		FC	Certification	
ID	ID	Initial ¹	Final ²	NCR ³	ID	Batch	Comments
7341181	3187	-29.5	-4.5		3979	3552 WBRL	
734482	1295		- 2.2		3723		
724483	0363	-	- 3.5		3171		
734484	4502	1 are rough	- 3,8		3852		
7344185	0428		-11.2		3737		
73-1486	4100	ł	- 2.1		2530		
734487	3464	- 29.0	00.0	2	(1515	3654 BUIR	
734488	1342	-29.5	-3.0		4103	3552 GBRL	
734489	3:31	-29,5	D.O	2	3754	JSSZ GBRL	
734490	4738	- 79.6	-16.5	1	3238	4432 BGA	
734491	4311	-29.5	0.5	2		3552 6BRL	
<u>سمېنې</u> کې	COMPANY OF A DESCRIPTION OF A DESCRIPTIO	energy and an order of the second second second second second second second second second second second second	AN IN THE AVERAGE AVERAGE		Norman		
					\.	1	
· ***** .							
				λ	X -		
			•		1.		
				\sim			
	1			_			
	1						
	1						
	N.	_					

1 Reading taken during the post-canister cleaning leak test.

2 Reading taken by laboratory on receipt of the canister post-sampling.

3 The final pressure should be between -1 and -10 ("Hg), if not, initiate NCR. NCR Codes: (1) -10 to-30 ("Hg) (2) -1 to Positive ("Hg) (3) Valve Open

TestAmerica Burlington - Manual Integration Summary SDG: bgito15

Lab Sample ID	Client Sample 1	t ID	Sample Type	Inst.	Column	Analysis Date	Filename
	Peak RT		Cor	npound		Manual Inte	gration Flag
ASTD0002	ASTD0002 10.211	1,2-]	INIT. CALIB. Dichloropropar	в ne	RTX 624	28-NOV-2007 19:24 MI2 - Peak missed	BGI002V2
					Kep insolo	7	

11/30/2007 12:56

sv

Page 1

							1 202	2				
Sequence			Standard Trace	ability			Instrumen	t Informati	u		Instrument Perfo	rmance Checks
Batch ID:	BFI		CAL STD Lot #				Instrument	ID: B			D Tune STD	C RF Summary
Test Method:	tob.		ISTD Lot #:				Instrument:	: 5973			Internal Standa	Ird Response
ICAL Date:	C0/8-0/1		ICV / LCS Lot #				Column Ty	pe: RTX-62	4		C RT & Ratios Up	odated
Start Date:	(1)多さ111	Time: 1032									Room Temp	ç
End Date:	(0)5clll	Time: //032	· ``								Barometric Pressu	ure "Hg
			のないないである		- Hole Co	A STRATE				「「「「「」」		
		Sequence	e Information					Individu	al Sample	Review	Col	mments
Injection	Lab ID /	Summa	ETR	Volume	Inlet	Dilution	Operator	Internal	Result	Primary		
Time	File Name			(mL)	#	Factor		Standard	Conc.	Arialyst		
1032	BG-LODV	87-8	4			AN I	200					
1711	BGT OGNV			200								
1269	BG-DUC SV		/	200	٢							
1250	blip usu			200	2							
1345	KGP DV	Lovels		200)	4						ATHON 070	. کر د
1 434	BGET KEN	Junels		200	h						0 7	4
1522	REIZUV	Chever 2		Lev	9						AT 103 00 00	2
1611	Ber yur	denels		37	0						0	~
0021	DE-DAUI			200	2							
1748	BEDDOL			2 ce	J							
1836	K-rko2			24	ب							
429	K-DULV2	Jerel 1		200	-						ATHORODO	4
797	K-Dusv2	-level2		Lec .	2						0	1
0921	ROTOS-UZ	Sevel 3		240	m						0	<u> </u>
1015	KEDICI (4	101	//	74	0						AT 116201	1
			>	r								
									$\left \right $			
			<u>\</u>									
)						Π				
					Lege	end: C=Co	mplete - F	k=Reanaly	= • əz	High • ↓=	: Low ■ ✓=Revie	wed and Acceptable
TestAn				Pa	ge 90 o	f 100					,	
					,							

GC/MS INSTRUMENT RUN LOG

uence			Standard Trace	GC/MS	S INSTF	RUMENT	RUN L(DG t Informati	uo		Instrument Perform	ance Checks	
	21-TH		CAL STD Lot #	ATIOXO	X OK		Instrument	1D: B			E Tune STD	D RF Summary	
thod			ISTD Lot #				Instrument	5973			Internal Standard I	Response	_
te:	11/2/157		ICV / LCS Lot #	AT(103	Voto		Column Tv	pe: RTX-62	24		C RT & Ratios Upda	ited	
te:	Col 1 2	Time: 1040									Room Temp 22	°.	
e:	12/12/07	Time: 1040									Barometric Pressure	<u> </u>	
		「ないないない」				A SHORE AND				ALC: NOT A			
		Sequence	e Information					Individu	al Sample	Review	Comm	nents	
uo	Lab ID /	Summa	ETR	Volume	Inlet	Dilution	Operator	Internal	Result	Primary			
e	File Name	Can ID		(mL)	#	Factor		Standard	Conc.	Analyst			
0	BGIOGPV	BFB	NA	₹ Z	٩Z	КZ	2 Z			NISCH	0		
٢	BGILDHV		ļ	Cor	1	1	÷			j .			
Ţ.	BOIL WHUD	<u>S</u>			1			7	7		34		
و	ALS BUILION R	LUS			۲				\ \		はた		
	IXET IOHON	577			4				7				
3	BGIBOIH	MELK		1	3		_	>	>				
-	ALSI BOAH	SHEW	-)	250	٢	ť		>	>				
5	Backs	3728	23	200	¥	/	_	7	>		C		
8	134 481	St Wester	112334		J,	1		7	7		S		
g	1 OFSAIT	(Styteser)	425551 4	4	く	ļ		7	>		C		
Ч	ep er 1824 54	Hose How	1123316	133	6	5		``	7.	_	С		
r	734482 42	1/4225	-	32	\$	348		7,	7.		CC	df 55.7	
	724483 J2	V 1 4363		the	5	849		4	>		c	25 220	
A	734484 22	CH2H ME		- 0°	j ð	399		>	7		კ ს	249 59.8	
	F3448512	2044		ose	Ξ	0.8		7	7		J		
~	to street	V H00		ç	2	60.1		7	\ \		PCE 19:5 C	C28 15.1	~
ر	AT CHERRY HER	TATE		250	2	0.8		7	ر ۱		C	CHE 15.6 %	5
.	CD/SSHNEE	cheh		it	H	149	~	7	ار ا		PLE 18.1 C	2981812	
1	~13485	1908		250	λ	0,8		7	7		J	J	
	CI OBPHET	Hr.84		250	9	0.8		4	7		R Villue closed		
0	20 124485	1184 -7	1	133	-	<u>,</u> 7	7	7	->		RQ 110.8		
	734502	4069	123319	67	2	?	(AO	7	>		J		
_ح	734 503	3244		133	б	!'ک		>	<u>ا</u>		1:1 31		
	734504	3257	123320	200	2	-		>	/		J		
T	734 SOS	3524	-	202	S	1		7	\mathbf{Y}		C		
	734506	72SH		200	6	1		5	Ń		С		
	734So7	4211	_	200	7	ļ	1	\	>		ა		
0	734 506	-Ence	+	JOU	8	1	JCN	7	7	· -	J		
					Lege	end: C=Co	omplete - I	Reanal	yze = =	High ∎ 🕹	: Low ▪ ✓=Reviewe	ed and Acceptable	
00010	2.70.07.5												

Page 6 of 100

FAI002:05.29.07:5 TestAmerica Burlington

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	h ID: Mathod			Standard Tracea	bility			Instrumer	nt Informati	on		Instrument Performance Checks
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Mathod.	G1H .		CAL STD Lot #				Instrumen	t ID: B			D Tune STD D RF Summa
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	MELLING.	イローズ		ISTD Lot #:				Instrumen	t: 5973			Internal Standard Response
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- Date:	そのあれり		ICV / LCS Lot #				Column T	ype: RTX-6;	24		RT & Ratios Updated
Due (f) (f) The (b()	t Date:	1411/02	Time: (outo									Room Temp °C
Sequence information Sequence information Statement ETM Volume Individual Sample Review Connents Statement ETM Volume Individual Sample Review Connents	Date:	aluloz	Time: (o4O									Barometric Pressure
Bellon Leb D/ Sequence information Information Connects Time File Name ETR Volume Info Detrive Series Connects Time File Name Can D 250 1 0.8 NUC P NUC P Thy Virtin Can D 250 1 0.8 NUC P NUC P Thy Virtin Can D 250 1 0.8 NUC P NUC P Thy Virtin Can D 250 1 0.8 NUC P NUC P Thy Virtin Can D 250 1 0.8 NUC P NUC P Thy Virtin Can D 250 1 0.8 NUC P NUC Thy Virtin Can D 250 1 0.8 NUC P NUC Thy Virtin Can D Can D Can D P NUC P NUC Thy Virtin Can D Can D P P NUC P NUC				4.								
Let Div Summa ETR Volume Intel Patter Result Result April 400 T.3 Can10 1 0.% NTV Animal Result Payt 460 T.3 Can10 250 1 0.% NTV Animal Payt 460 T.3 Can10 250 1 0.% NTV Animal Payt 460 T.3 Can10 250 1 0.% NTV Animal Payt 460 T.3 Can10 250 1 0.% NTV Animal Payt 460 T.3 Can10 250 1 0.% NTV Animal Payt 461 T.1 D 0.% NTV MTV NTV Animal Payt 461 T.1 D 0.% NTV MTV NTV NTV Payt 461 T.1 D 0.% NTV MTV NTV Payt 461 T.1 D D 0.% NTV NTV Payt 461 T.1 D D D D NTV Payt 461 T.1 D D D D D Payt 461 T.1 D D D D D Payt 461 T.1 D D D D D </td <td>ľ</td> <td></td> <td>Sequence</td> <td>e Information</td> <td>-</td> <td>ſ</td> <td></td> <td></td> <td>Individ</td> <td>ual Sample</td> <td>Review</td> <td>Comments</td>	ľ		Sequence	e Information	-	ſ			Individ	ual Sample	Review	Comments
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ection	Lab ID /	Summa	ETR	Volume	Inlet	Dilution	Operator	Internal	Result	Primary	
Thirde TS Thirde TS	ime	File Name	Can ID		(mL)	#	Factor		Standard	Conc.	Analyst	
-UM A MAR A LANGE AND A LANGE		734490 I3			250	16	0,8	NEZ	>	¢-	N F	ROULS
	•	1エ いりりんち			340	1	D. K	NSIC	?	7	M	
								121/0				
								•				
						u.	2					
						19						
						~						
									-			
			And a second									-
			A State of the second s									
			4									
												,1

				GC/MS	INSTF	RUMENT	RUN L(g			
Sequence			Standard Tracea	bility			Instrumen	t Informatic	n		Instrument Performance Checks
Batch ID:	RGII		CAL STD Lot #	AT 11080	708		Instrument	ID: B			Drune STD DRF Summary
Test Method:	ST OF		ISTD Lot #:	ATIODIC	814		Instrument	: 5973			Internal Standard Response
ICAL Date:	1128/07		ICV / LCS Lot #	AT11020	505		Column Ty	pe: RTX-62	4		RT & Ratios Updated
Start Date:	12/12/07	Time: [1:]									Room Temp 、C
End Date:	1213/37	Time: 11. 10									Barometric Pressure 23.6 "Hg
				The state	100					1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
		Sequence	e Information					Individu	al Sample	Review	Comments
Injection	Lab ID /	Summa	ETR	Volume	Inlet	Dilution	Operator	Internal	Result	Primary	
Time	File Name	Can ID		(mL)	#	Factor		Standard	Conc.	Analyst	
11:19	120PV	BFB	x Z	ĸZ	٥	¢Z	MUM			NVC	
12:13	BG I 10 IV		ΨZ	0	Q	& Z	1/2			_	Incorrect volume R
1354	EVI01 IDS			200	_	-					7
14:44	5/11 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	CCV	_	200	_	1		7	ζ.		
15:31	BG1 107Q	LCS		200	4	1		\checkmark	$\overline{}$		34 4
16:28	BUTUTOD	(cs)		200	ħ			~	~	PAN	54
17:16	T3T TWO BOLLONI	MBK		つった	ч			7	7	+	-
1605 \$	STOUTOR RUTBOIL	CNUW	1	250	ŝ				7	NJC WED	
18:54 8	Spanson 734490	1386	123310	133	Т	S.1		>	>		J
19:43	194464 P34491	4311	1	250	ζ	0.8		\mathbf{Z}	1		C
10:31	724500 734503	2244	123319	007.	Q	t		\sim	$\mathbf{\mathbf{\nabla}}$		J
J.K	734504	tspz	068211		4	-		>	7		J
21:07	734510	2723	1	-1	8	-	H	7	7	•	C
27:50	714823	4634	123354	33	9	6.0	(HVd	>		-	C
73:44	734824	4654		202	0	1	!	>	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$		Ċ
00.37	734825	41.65		200	11			>	Υ.		C
12 10	734826	41,41	 	22	21	9		7	. 7		5
12.00	734703	4328	142 221	260	2	io		5	7		C
02.67	734704	2375		200 5	E	0		>	>		C
03.40	734705	Strc	_	200 is	15	9		2	>		, J
CH: 34	Jor 154706	4305		200 ×	ll_{o}	0		**	>		Rul
55.23	754707	2843		200 4		10		2	>		ć
06:11	734708	4185		200	2	10		>	\checkmark		0
06:59	734709	4163		200	3	10		ý	7		RUI
84.48	754710	5745	J	200	2	10	-	Ý		Ą	R 1:1
0/6:8	73470612	4305	14221	લા	ب ا (د	0	しいっ)	>	ZIN	Ĵ
)	-typotte	पाएर			ħ	<u> </u>	a dan interaction was been by a specific to the second		and a subscription of the second second second second second second second second second second second second s		
		a a filing a suit a suit a suit a filing a suit a suit a suit a suit a suit a suit a suit a suit a suit a suit	an de same an an an an an an an an an an an an an	و و من المان ا معالم المان المان المان المان المان المان المان المان المان المان المان المان المان المان المان المان المان الم						1	11111 12/12/07
			2		Lege	end: C=Co	mplete = {	Reanaly	ze = =	High ► ↓=	- Low - <=Reviewed and Acceptable

č ł CC/MS INSTRIM

Page 8 of 100

FAI002:05.29.07:5 TestAmerica Burlington

Sample Handling

		SAMP!	ST E REC	L BURLING	GIN C	HECH			
Client OCUX1			Data Pa	anived: 12	- 7	2~	Liogin	Data: 17/2/22	
Client: KULLA 1	·		Date Re	sceived:	10/0		Log in I	Jale: /d//c/	
EIR: 12331	6			eceived:	122	5	Бу.	JEG	1
SDG: //YTJ	3316		Receive	d By:	<u> </u>	·	Signatu	ire:	
Project: 270	100		# Coole	rs Received:	46	OXUS	PM Sig	nature: / for kn	upit .
Samples Delivered E	By: 🗙 Shipp	oing Service D Courie	er o Hand	Other (specify)	/)		Date:		
List Air bill Number(s) or Attach	h a photocopy of the A	Air Bilt:			_			
COOLER SCREEN					YES	NO	NA	COMMENTS	TRAME DAT
There is no evidence	e to indica	te tampering			<u>×</u>				
Custody seals are pr	esent and	intact							i
Custody seal number	rs are pres	sent					ĽX		
If yes, list custody se	al number	<u>s:</u>							
Thermal Preservation	n Type: 🗆	Wet ice D Blue ice	None	D Other (specify))				
IR Gun ID: 62	-	Correction Factor (C	= Ø	°C					
Cooler 1: Air	- °C	Cooler 6	<u></u> `°C	Cooler 11		°C	Cooler	16°C	
Cooler 2:	°C	Cooler 7	°C	Cooler 12		°C	Cooler '	17 °C	
Cooler 3:	°C	Cooler 8	°C	Cooler 13		°C	Cooler '	18 °C	
Cooler 4:	°C	Cooler 9	°C	Cooler 14		°C	Cooler '	19 °C	
Cooler 5	°C	Cooler 10	°C	Cooler 15		°C	Cooler 2	20 °C	
Unless otherwise doo	cumented	the recorded tempera	ature read	ings are adjuste	d reading	as to acc	count for	the CF of the IR Gun	
EPA Criteria: 0-6°C	excent for	air and geo samples	which sho	uld be at ambier	nt tempe	rature a	nd tissue	samples, which may be fro	760
Some clients require	thermal n	reservation criteria of	2_4°C or c	ther such criteri	a The P	M must	notify SM	A when alternate criteria is	specified
Some chemis require	Merina pi	eservation cintena or		Alter such chief	VEC	NO	NOINY CA	COMMENTE	specifieu.
SAMPLE CONDITIO	n cesseres	ad intrat	internation of the second	14 19 19 19 19 19 19 19 19 19 19 19 19 19		- 14 0	15/A. P	COMMENTO	新教育的教育的教育教育的
Sample containers w	ere receiv	ed intact			\	· · ·			
Legible sample labels	s are affixe	ed to each container	oppies, and the set story of	and the state of the second second				The dimension of the second second	Line of givening in fringer, a
CHAIN OF CUSTOD	<u>Y (COC)</u>		acta artesa		TES	NO.	NA	COMMENIS	
COC is present and i	ncludes th	e following informatio	n for each	container:					
 Sample ID / Sample 	e Descripti	on			\mathbf{X}				
 Date of Sample Col 	lection				\times				
 Time of Sample Col 	llection				\times				
 Identification of the 	Sampler				X				
 Preservation Type 							λ		
· Requested Tests M	ethod(s)								
 Necessary Signature 	es				\sum				
Internal Chain of Cus	tody (ICO	C) Required				$\boldsymbol{\times}$			
If yes to above, ICOC	Record in	nitiated for every Work	sheet			- <u>`</u>	V		
SAMPLE INTEGRITY	USABI	TY	14. (Q#2)	Necessary and a second	YES	NO	NA	COMMENTS	
The sample container	matcher	the COC	 Social Science (Spin 	na ar an an an an an an an an an an an an an	\mathbf{x}			we water the second second second second second second second second second second second second second second	147年1月-18月1日 1997年1月-18月1日 1997年1月-18月1日 1997年1月-18月1日 1997年1月-18月1日 1997年1月-18月1日 1997年1月-18月1日 1997年1月-18月1日 1997年1月-18月1日 1997年1月-1997
Appropriate comple o	ontainere	were received for the	tests room	ested					
Samples were reach	ad within h	olding time	iesis requ	esteu					
Samples were receive	su within h		l onch						
Sufficient amount of s	sample is p	provided for requested	analyses		$ \Delta $		201		
VUA viais do not have	e neadspa	ce or a pubble >6mm	(1/4" dian	neter)			\langle		
Appropriate preservat	ives were	used for the tests req	uested				\rightarrow		
pH of inorganic samp	ies checke	ed and is within metho	d specific	ation			$\langle \times $		
If no, attach Inorganic	Sample p	H Adjustment Form					\geq		
ANOMALY / NCR SU	MMARY				on gailte f			· 法法律问题 [19] · · · · · · · · · · · · · · · · · · ·	
								······	
								······	
							_		

Last Page of this Document

TestAmerica South Burlington, VT Extended Data Package

NY133422

TestAmerica Laboratories, Inc.

September 18, 2009

Mr. Rob Kovacs Roux Associates 209 Shafter Street Islandia, NY 11749

Re: Laboratory Project No. 29000 Case: 29000; SDG: NY133422

Dear Mr. Kovacs:

Enclosed are the analytical results for the samples that were received by TestAmerica Burlington on September 5th, 2009. Laboratory identification numbers were assigned, and designated as follows:

Lab ID	Client <u>Sample ID</u>	Sample <u>Date</u>	Sample <u>Matrix</u>
	Received: 09/05/09 ETR No:	133422	
805648	VS-MRE	09/04/09	AIR

Documentation of the condition of the samples at the time of their receipt and any exception to the laboratory's Sample Acceptance Policy is documented in the Sample Handling section of this submittal.

The volatile organics analysis for the sample referenced above was accomplished at dilution based on a screen analysis, which showed the presence of non-target analytes at concentrations sufficient to interfere with instrument operation at full strength.

Any reference within this report to Severn Trent Laboratories, Inc. or STL, should be understood to refer to TestAmerica Laboratories, Inc. (formerly known as Severn Trent Laboratories, Inc.) The analytical results associated with the samples presented in this test report were generated under a quality system that adheres to requirements specified in the NELAC standard. Release of the data in this test report and any associated electronic deliverables is authorized by the Laboratory Director's designee as verified by the following signature.

If there are any questions regarding this submittal, please contact me at 802 660-1990.

Sincerely,

Don Dawicki Project Manager

CLIENT SAMPLE NO.

TO-14/15 Result Summary

Lab Name: TAL Burlington

SDG Number: NY133422

Dilution Factor: 4.00

Sample Matrix: AIR

VS-MRE

Lab Sample No.: 805648

Date Analyzed: 9/10/2009

Date Received: 9/5/2009

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.80	υ	0.80	2.0	U	2.0
1,1-Dichloroethene	75-35-4	0.80	U	0.80	3.2	U	3.2
trans-1,2-Dichloroethene	156-60-5	0.80	U	0.80	3.2	U	3.2
cis-1,2-Dichloroethene	156-59-2	0.80	U	0.80	3.2	U	3.2
1,2-Dichloroethene (total)	540-59-0	0.80	U	0.80	3.2	U	3.2
Trichloroethene	79-01-6	9.4		0.80	51		4.3
Tetrachloroethene	127-18-4	5.5		0.80	37		5.4

TO-14/15 Result Summary

CLIENT SAMPLE NO.

CA091009LCS

Lab Name: TAL Burlington

SDG Number: NY133422

Dilution Factor: 1.00

Sample Matrix: AIR

Lab Sample No.: CA091009

Date Analyzed: 9/10/2009

Date Received: / /

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	11		0.20	28		0.51
1,1-Dichloroethene	75-35-4	11		0.20	44		0.79
trans-1,2-Dichloroethene	156-60-5	9.9		0.20	39		0.79
cis-1,2-Dichloroethene	156-59-2	9.7		0.20	38		0.79
1,2-Dichloroethene (total)	540-59-0	20		0.20	79		0.79
Trichloroethene	79-01-6	11		0.20	59		1.1
Tetrachloroethene	127-18-4	11		0.20	75		1.4

TO-14/15 Result Summary

CLIENT SAMPLE NO.

MBLK091009CA

Lab Name: TAL Burlington

SDG Number: NY133422

Dilution Factor: 1.00

Sample Matrix: AIR

Lab Sample No .: MBLK0910

Date Analyzed: 9/10/2009

Date Received: / /

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.20	υ	0.20	0.51	υ	0.51
1,1-Dichloroethene	75-35-4	0.20	υ	0.20	0.79	υ	0.79
trans-1,2-Dichloroethene	156-60-5	0.20	U	0.20	0.79	U	0.79
cis-1,2-Dichloroethene	156-59-2	0.20	U	0.20	0.79	υ	0.79
1,2-Dichloroethene (total)	540-59-0	0.20	υ	0.20	0.79	υ	0.79
Trichloroethene	79-01-6	0.20	U	0.20	1.1	υ	1.1
Tetrachloroethene	127-18-4	0.20	U	0.20	1.4	U	1.4

<u>Organic</u>

- U: Compound analyzed but not detected at a concentration above the reporting limit.
- J: Estimated value.
- N: Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds (TICs) where the identification of a compound is based on a mass spectral library search.
- P: SW-846: The relative percent difference for detected concentrations between two GC columns is greater than 40%. Unless otherwise specified the higher of the two values is reported on the Form I.

CLP SOW: Greater than 25% difference for detected concentrations between two GC columns. Unless otherwise specified the lower of the two values is reported on the Form I.

- C: Pesticide result whose identification has been confirmed by GC/MS.
- B: Analyte is found in the sample and the associated method blank. The flag is used for tentatively identified compounds as well as positively identified compounds.
- E: Compounds whose concentrations exceed the upper limit of the calibration range of the instrument for that specific analysis.
- D: Concentrations identified from analysis of the sample at a secondary dilution.
- A: Tentatively identified compound is a suspected aldol condensation product.
- X,Y,Z: Laboratory defined flags that may be used alone or combined, as needed. If used, the description of the flag is defined in the project narrative.

Inorganic/Metals

- E: Reported value is estimated due to the presence of interference.
- N: Matrix spike sample recovery is not within control limits.
- * Duplicate sample analysis is not within control limits.
- B: The result reported is less than the reporting limit but greater than the instrument detection limit.
- U: Analyte was analyzed for but not detected above the reporting limit.

Method Codes:

P ICP-AES

- MS ICP-MS
- CV Cold Vapor AA
- AS Semi-Automated Spectrophotometric

Chain of Custody

TestAmerica Burlington

Canister Samples Chain of Custody Record

30 Community Drive Suite 11

South Burlington, VT 05403

TestAmence Analytical Testing Corp. assumes no liability with respect to the collection and shipment of these samples.

f of COCs			ction	əs s	eaton	ni vî		8401-0 MT2A Other (Please z Sannple Type Sannplent Alr Soll Gas 280 ll Gas 280 ll Gas 280 ll Gas 280 ll Gas 280 ll Gas	×						-	A.					SYOCHHEUR, TVRINS-1,2- Chion de and browing				T	
Suille							_	EPA 25C EPA 3C				ł									Di Chi	-	010			1. 11.11
5								A\$1-OT													2 × 2 5 5					12. 4 4 10
155					_		_	10-18 0	WAR THE AVER	 			_						-		2 Sw		200			and the second se
ected Bys.								Canister II	3138												thene, ethene, 1 AG/	ל	- <u>4</u>			ALL STATE
Samples Coll								Flow Controller ID	3101						•						Dichloroe Vichloroe	TAT)	Ecciver the	by:	by:	A Low Contraction
		3						Canister Vacuum In Field, 'Hg (Stop)	-5.5				re (Fahrenheit)			ц	inches of Hg)		2 falve	1 falling		でたい	Samples	Received	Received	のないの事となって
2		inc.co	5		nd Time	Wee R		Canister Vacuum in Field, "Hg (Start)	-30				Temperatu	Amblent	1055	83,	Pressure (Ambient	30.2	30.0	h lovee	e Me				
o Koval	2-2601	Sroux	Kovac		Turnaroui	pecify) 2.	ify)	Time Stop	1557												e sam	(⊤W	630			a service day of
ager: Rov	31-72	DVACS	Rah	Ş	Analysis	andard (Sp	tush (Spec	Time Start	0804					Interior				Interior			Hotalitz Hotal)	nga	4			and a state of the
Project Mana	Phone: (Email: rk	Site Contact	TA Contact:		St	œ	Sample Date(s)	9409						Start	Stop			Start	Stop	ethere (Deliven	Date/Time:	Date/Time:	Date/Time:	Contraction of the second
prione 802-000-1990 fax 802-000-1919 Client Contact Information	Company: Rour Associates	Address: 209 Shafky Star	Phone: (21, -732 - 2600	FAX: 621-232-4898	Project Name: Basser Kaufnan Gemennen	Site: Oceánside, ny	# Oc	Sample Identification	VS-MRE				Deline	returning sources	Summus, and		2 innised Regulatory				Special Instructions/OC Requirements & Comments Dichlorde thene, 1,2 - Dichiere using werned TD-15. All ve	NYSDEC ASP Cakyon B	Samples Shipped by ADULA	Samples Relinquished by:	Relinquished by:	

QC Summary – TO-15 Volatile
FORM 3 AIR VOLATILE LAB CONTROL SAMPLE

Lab Name: TESTAMERICA BURLINGTON Contract: 29000 Lab Code: STLV Case No.: 29000 SAS No.: SDG No.: NY133422 Matrix Spike - Sample No.: CA091009LCS

	SPIKE	SAMPLE	LCS	LCS	QC.
	ADDED	CONCENTRATION	CONCENTRATION	ક	LIMITS
COMPOUND	(ppbv)	(ug/L)	(ppbv)	REC #	REC.
	=========	=================			=====
Vinyl Chloride	10		11	110	70-130
1,1-Dichloroethene	10		11	110	70-130
trans-1,2-Dichloroethen	10		9.9	99	70-130
cis-1,2-Dichloroethene	10		9.7	97	70-130
1,2-Dichloroethene (tot	20		20	100	70-130
Trichloroethene	10		11	110	70-130
Tetrachloroethene	10		11	110	70-130

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 0 out of 0 outside limits Spike Recovery: 0 out of 7 outside limits

COMMENTS:

CLIENT SAMPLE NO.

FORM 4 VOLATILE METHOD BLANK SUMMARY

MBLK091009CA Lab Name: TESTAMERICA BURLINGTON Contract: 29000 Lab Code: STLV Case No.: 29000 SAS No.: SDG No.: NY133422 Lab File ID: CILB010 Lab Sample ID: MBLK091009CA Time Analyzed: 1002 Date Analyzed: 09/10/09 GC Column: RTX-624 ID: 0.32 (mm) Heated Purge: (Y/N) N Instrument ID: C

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

		LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	CA091009LCS	CA091009LCS	CIL100Q	0914
02	VS-MRE	805648	805648D	1820
03				
04				
06				
07				
08				
10				
11				
13			·	
14				
15				
15 17				
18				
19				
20				
22				
23				
24				
26			<u> </u>	
27				
28 29				
30				

COMMENTS:

FORM 5 VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: TESTAMERICA BURLIN	IGTON Contr	act: 29000		
Lab Code: STLV Case No.	: 29000 SAS	No.:	SDG No.	: NY133422
Lab File ID: CIL01PV		BFB Injection	Date:	08/23/09
Instrument ID: C		BFB Injection	Time:	2305
GC Column: RTX-624 ID: 0.3	2 (mm)	Heated Purge:	(Y/N)	N

m/e	ION ABUNDANCE CRITERIA	% RE	LATIVE NDANCE
=====		======	
50	8.0 - 40.0% of mass 95	21.1	
75	30.0 - 66.0% of mass 95	51.9	
95	Base Peak, 100% relative abundance	100.0	
96	5.0 - 9.0% of mass 95	6.9	
173	Less than 2.0% of mass 174	0.0	(0.0)1
174	50.0 - 120.0% of mass 95	88.6	
175	4.0 - 9.0% of mass 174	6.5	(7.3)1
176	93.0 - 101.0% of mass 174	86.1	(97.1)1
177	5.0 - 9.0% of mass 176	5.7	(6.6)2

1-Value is % mass 174 2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
_				=======================================	=======================================
01	ASTD0002	ASTD0002	CIL002V	08/24/09	0234
02	ASTD0005	ASTD0005	CIL005V	08/24/09	0322
03	ASTD005	ASTD005	CIL05V	08/24/09	0410
04	ASTD010	ASTD010	CIL10V	08/24/09	0500
05	ASTD015	ASTD015	CIL15V	08/24/09	0548
06	ASTD020	ASTD020	CIL20V	08/24/09	0637
07	ASTD040	ASTD040	CIL40V	08/24/09	0725
08					
09					
10					
11					
12					
13					
14					
15					
10					
1/					
10					
73					
∠U 21					
21 22					
22					

FORM 5 VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: TESTAMERICA BURLINGTON	Contract: 29000
Lab Code: STLV Case No.: 29000	SAS No.: SDG No.: NY133422
Lab File ID: CIL17PV	BFB Injection Date: 09/10/09
Instrument ID: C	BFB Injection Time: 0739
GC Column: RTX-624 ID: 0.32 (mm)	Heated Purge: (Y/N) N

m/e	ION ABUNDANCE CRITERIA	% REI ABUN	LATIVE IDANCE
=====		=======	========
50	8.0 - 40.0% of mass 95	22.3	
75	30.0 - 66.0% of mass 95	56.2	
95	Base Peak, 100% relative abundance	100.0	
96	5.0 - 9.0% of mass 95	7.0	
173	Less than 2.0% of mass 174	0.0	(0.0)1
174	50.0 - 120.0% of mass 95	85.1	
175	4.0 - 9.0% of mass 174	6.3	(7.4)1
176	93.0 - 101.0% of mass 174	82.7 ((97.1)1
177	5.0 - 9.0% of mass 176	5.5 ((6.7)2

1-Value is % mass 174 2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	=============			================	=========
01	ASTD010	ASTD010	CIL10OV	09/10/09	0826
02	CA091009LCS	CA091009LCS	CIL100Q	09/10/09	0914
03	MBLK091009CA	MBLK091009CA	CILB010	09/10/09	1002
04	VS-MRE	805648	805648D	09/10/09	1820
05					
06					
07					
08					
109					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					

FORM 8 VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: TESTAMERICA BURLINGTONContract: 29000Lab Code: STLVCase No.: 29000SAS No.:SDG No.: NY133422Lab File ID (Standard): CIL100VDate Analyzed: 09/10/09Instrument ID: CTime Analyzed: 0826GC Column: RTX-624ID: 0.32 (mm)Heated Purge: (Y/N) N

		IS1(BCM)		IS2(DFB)		IS3 (CBZ)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	=================	==========	=======	=========	=======	=========	======
	12 HOUR STD	521626	9.93	2763401	11.36	2320581	15.46
	UPPER LIMIT	730276	10.26	3868761	11.69	3248813	15.79
	LOWER LIMIT	312976	9.60	1658041	11.03	1392349	15.13
	==============	=========	=======	==========	=======	=========	======
	CLIENT						
	SAMPLE NO.						
0.1		============	=======	2657020	=======	2220025	
01	CAUSIOUSICS	503880	9.93	205/938	11 26	2230025	15.46
02	MDLKU91009CA	404404	9.93	2730000	11 26	2436275	15.40
03	VS-MRE	407009	9.93	2010040	11.30	2070990	10.40
05							
06							
07							
08							
09							
10							
11							
12							
13							
14							
15							
16							
17					[
10							
20							
21							
22							

IS1	(BCM)	= Bromochloromethane
IS2	(DFB)	= 1,4-Difluorobenzene
IS3	(CBZ)	= Chlorobenzene-d5

AREA UPPER LIMIT = + 40% of internal standard area AREA LOWER LIMIT = - 40% of internal standard area RT UPPER LIMIT = + 0.33 minutes of internal standard RT RT LOWER LIMIT = - 0.33 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.
* Values outside of QC limits.

page 1 of 1

Supportive Documentation – TO-15 Volatile

	FOI	RM 1		
VOLATILE	ORGANICS	ANALYSIS	DATA	SHEET

ROUX1 SAMPLE NO.

Lab Name: TESTAMERICA BURLINGTON Contract	VS-MRE				
Lab Code: STLV Case No.: 29000 SAS No.	: SDG No.: NY133422				
Matrix: (soil/water) AIR	Lab Sample ID: 805648				
Sample wt/vol: 50.00 (g/mL) ML	Lab File ID: 805648D				
Level: (low/med) LOW	Date Received: 09/05/09				
% Moisture: not dec	Date Analyzed: 09/10/09				
GC Column: RTX-624 ID: 0.32 (mm)	Dilution Factor: 4.0				
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)				
CONCE CAS NO. COMPOUND (ug/L	NTRATION UNITS: or ug/Kg) PPBV Q				
75-01-4Vinyl Chloride 0.80 U 75-35-41,1-Dichloroethene 0.80 U 156-60-5trans-1,2-Dichloroethene 0.80 U 156-59-2cis-1,2-Dichloroethene 0.80 U 540-59-01,2-Dichloroethene (total) 0.80 U 79-01-6Trichloroethene 9.4 127-18-4Tetrachloroethene 5.5					

AIR TOXICS QUANTITATION REPORT Data file : /chem/C.i/Csvr.p/ciloto15.b/805648d.d Lab Smp Id: 805648 Client Sm Client Smp ID: VS-MRE Inj Date : 10-SEP-2009 18:20 Operator : njr Inst ID: C.i Smp Info : VS-MRE : []09/04/09 @1557(AIR) Misc Info : 805648;091009CA;4;50 Comment Method : /chem/C.i/Csvr.p/ciloto15.b/sto15.m Meth Date : 17-Sep-2009 09:50 klp Quant T Cal Date : 24-AUG-2009 07:25 Cal Fil Quant Type: ISTD Cal File: cil40v.d Als bottle: 13 Dil Factor: 4.00000 Integrator: HP RTE Compound Sublist: ROUX1 OCEAN.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	4.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	50.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

							CONCENTRA	ATIONS
			QUANT SIG				ON-COLUMN	FINAL
Con	npon	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
===				==		*******		*******
	6	Vinyl Chloride	62	Comp	ound Not Detecte	d.		
	18	1,1-Dichloroethene	96	Comp	ound Not Detecte	d.		
	27	trans-1,2-Dichloroethene	61	Comp	ound Not Detecte	d.		
	31	cis-1,2-Dichloroethene	96	Comp	ound Not Detecte	d.		
*	32	Bromochloromethane	128	9.927	9.948 (1.000)	467809	10.0000	(Q)
М	40	1,2-Dichloroethene (total)	61	Comp	ound Not Detecte	d.		
*	43	1,4-Difluorobenzene	114	11.357	11.379 (1.000)	2518848	10.0000	
	45	Trichloroethene	95	11.720	11.736 (1.032)	144726	2.35521	9.4
	57	Tetrachloroethene	166	14.266	14.282 (0.923)	102567	1.38652	5.5
*	61	Chlorobenzene-d5	117	15.456	15.472 (1.000)	2076990	10.0000	

QC Flag Legend

Q - Qualifier signal failed the ratio test.

Data File: /chem/C.i/Csvr.p/ciloto15.b/805648d.d

Date : 10-SEP-2009 18:20

Client ID: VS-MRE

Sample Info: VS-MRE :[]09/04/09 @1557(AIR)

Purge Volume: 50.0

Column phase: RTX-624

45 Trichloroethene

Instrument: C.i

Operator: njr

Column diameter: 0.32

Data File: /chem/C.i/Csvr.p/ciloto15.b/805648d.d

Date : 10-SEP-2009 18:20

Client ID: VS-MRE

Sample Info: VS-MRE :[]09/04/09 @1557(AIR)

Purge Volume: 50.0

Column phase: RTX-624

57 Tetrachloroethene

Operator: njr

Column diameter: 0.32

Standards – TO-15 Volatile

FORM 6

VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: TESTAMERIC	CA BURLINGTON	Contract: 2	29000	
Lab Code: STLV	Case No.: 29000	SAS No.:	SDG	No.: NY133422
Instrument ID: C	Calibratio	on Date(s):	08/24/09	08/24/09
Heated Purge: (Y/N)	N Calibratio	on Time(s):	0234	0725
GC Column: RTX-624	ID: 0.32 (mm)			

RRF2 = RRF5	=CIL002 =CIL05	2 V V	RRF0 RRF1	.5=CIL00 0 =CIL10	05V 0V		
COMPOUND	RRF0.2	RRF0.5	RRF2	RRF5	RRF10	RRF	ہ RSD
Vinyl Chloride 1,1-Dichloroethene trans-1,2-Dichloroethene cis-1,2-Dichloroethene 1,2-Dichloroethene (total) Trichloroethene Tetrachloroethene	0.888 0.964 1.466 1.115 1.290 0.231 0.330	0.877 0.772 1.441 0.963 1.202 0.224 0.305		0.973 0.892 1.570 1.067 1.319 0.255 0.380	0.953 0.887 1.568 1.066 1.317 0.251 0.360		

* Compounds with required minimum RRF and maximim %RSD values. All other compounds must meet a minimim RRF of 0.010.

page 1 of 2

FORM 6

VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: T	ESTAMERIC	A BURLI	INGTON	Contract: 2	29000	
Lab Code: S'	TLV	Case No	29000	SAS No.:	SDG	No.: NY133422
Instrument	ID: C		Calibratic	on Date(s):	08/24/09	08/24/09
Heated Purg	e: (Y/N)	N	Calibratio	on Time(s):	0234	0725
GC Column:	RTX-624	ID: 0.	32 (mm)			

LAB FILE ID: RRF15	=CIL15	V	RRF2) =CIL2(v		
RRF40 =C1L40V							
COMPOUND	RRF15	RRF20	RRF40			RRF	% RSD
	======	======		======	======	======	
		0.939	0.952			0.930	4.2
1,1-Dichloroethene		0.876	0.893			0.881	
trans-1,2-Dichloroethene	<u> </u>	1.512	1.524			1.514	3.5
cis-1,2-Dichloroethene		1.053	1.061			1.054	4.7
1,2-Dichloroethene (total)		1.282	1.293			1.284	3.3
Trichloroethene		0.248	0.255			0.244	5.4
Tetrachloroethene		0.357	0.404			0.356	9.9
		Í					
]					
]						[
		_					
	— <u> </u>						
	·	í ———					
						í <u> </u>	——
				<u>-</u>			
	·	-					
				•			·

* Compounds with required minimum RRF and maximim %RSD values. All other compounds must meet a minimim RRF of 0.010.

page 2 of 2

AIR TOXICS OUANTITATION REPORT Data file : /chem/C.i/Csvr.p/cilto15.b/cil002v.d Lab Smp Id: ASTD0002 Client S Client Smp ID: ASTD0002 Inj Date : 24-AUG-2009 02:34 Operator : njr Inst ID: C.i Smp Info : Misc Info : ASTD0002;082309CA;1;200 Comment Method : /chem/C.i/Csvr.p/cilto15.b/sto15.m Quant Type: ISTD Meth Date : 27-Aug-2009 10:25 jd1 Cal Date : 24-AUG-2009 02:34 Cal File: cil002v.d Als bottle: 1 Dil Factor: 1.00000 Integrator: HP RTE Calibration Sample, Level: 1 Compound Sublist: all002.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

							AMOUN	TS
		QUANT SIG					CAL-AMT	ON-COL
Compounds		MASS	RT	EXP RT	REL RT	RESPONSE	(ppbv)	(ppbv)
****	I I I I I I I I I I I I I I I I I I I							
:	3 1,2-Dichlorotetrafluoroethane	85	3.448	3.448	(0.347)	24982	0.20000	0.19(a)
	6 Vinyl Chloride	62	3.816	3.821	(0.384)	8967	0.20000	0.19(a)
1	9 Bromomethane	94	4.633	4.633	(0.466)	8232	0.20000	0.19(a)
1	l Isopentane	43	4.985	4.996	(0.501)	11522	0.20000	0.21(Q)
1	2 Bromoethene	106	5.311	5.310	(0.534)	8444	0.20000	0.19(a)
1	3 Trichlorofluoromethane	101	5.423	5.433	(0.545)	24758	0.20000	0.19(a)
1	5 Ethyl Ether	59	6.122	6.100	(0.615)	6000	0.20000	0.19(a)
1	7 Freon TF	101	6.506	6.511	(0.654)	17589	0.20000	0.19(a)
1	8 1,1-Dichloroethene	96	6.538	6.543	(0.657)	9733	0.20000	0.22(Q)
2	7 trans-1,2-Dichloroethene	61	7.936	7.936	(0.798)	14802	0.20000	0.19(a)
2	9 1,1-Dichloroethane	63	8.683	8.683	(0.873)	18000	0.20000	0.19(a)
M 4	0 1,2-Dichloroethene (total)	61				26058	0.40000	0.41
3	l cis-1,2-Dichloroethene	96	9.585	9.591	(0.964)	11256	0.20000	0.21
* 3	2 Bromochloromethane	128	9.948	9.948	(1.000)	504873	10.0000	
3	4 Chloroform	83	10.028	10.034	(1.008)	20629	0.20000	0.19(a)

			QUANT SIG				CAL-AMT	ON-COL
Cc	mpou	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
			x=rd	==	TTATA SEREES			
	35	1,1,1-Trichloroethane	97	10.290	10.295 (0.904)	21452	0.20000	0.19(a)
	36	Cyclohexane	84	10.311	10.311 (0.906)	14160	0.20000	0.19(a)
	37	Carbon Tetrachloride	117	10.503	10.503 (0.923)	19868	0.20000	0.18(a)
	38	2,2,4-Trimethylpentane	57	10.813	10.818 (0.950)	49552	0.20000	0.19(a)
	39	Benzene	78	10.824	10.823 (0.951)	34099	0.20000	0.20
	41	1,2-Dichloroethane	62	10.909	10.914 (0.959)	15467	0.20000	0.19(a)
	42	n-Heptane	43	11.074	11.074 (0.973)	20650	0.20000	0.20
*	43	1.4-Difluorobenzene	114	11.379	11.379 (1.000)	2904672	10.0000	
	45	Trichloroethene	95	11.736	11.736 (1.031)	13407	0.20000	0.19(a)
	47	1.2-Dichloropropane	63	12.088	12.094 (1.062)	11856	0.20000	0.20
	49	Dibromomethane	174	12.275	12.270 (1.079)	10109	0.20000	0.18(a)
	50	Bromodichloromethane	83	12.446	12.451 (1.094)	18094	0.20000	0.16(a)
	51	cis-1.3-Dichloropropene	75	13.081	13.081 (1.150)	17173	0.20000	0.19(a)
м	70	Xvlene (total)	106		,	43388	0.20000	0.52
	54	Toluene	92	13 519	13,519 (0,874)	24151	0.20000	0.20
	53	n-Octane	43	13 535	13,540 (1 189)	26090	0 20000	0.20
	55	trang_1 3-Dichloropropage	75	12 866	13 866 (1 219)	17179	0 20000	0.21
	55	1 1 2-Trichloroethane	83	14 127	14 132 (0.913)	9795	0.20000	0.19(a)
	50	Tetrachloroothopo	166	14 202	14.132 (0.913)	17493	0.20000	0.19(a)
	57	Dibromochloromethane	129	14.202	14.282 (0.923)	14124	0.20000	0.15(a)
	59	1. 2. Dibromothane	107	14.002	14.082 (0.949)	15121	0.20000	0.13(a)
•	60	Chlorobengeng_d5	117	15 472	14.885 (0.982)	2649885	10 0000	0.17(a)
-	61	Chlorobenzene-ds	112	15.4/2	15.4/2 (1.000)	2049885	10.0000	0.21
	62	Chiorobenzene	112	15.515	15.509 (1.003)	30037	0.20000	0.21
	63	Ethylbenzene	91	15.595	15.595 (1.008)	39906	0.20000	0.19(a)
	84	Nonane	57	15.648	15.648 (1.011)	22658	0.20000	0.20
	64	Xylene (m,p)	106	15.744	15.744 (1.018)	28981	0.40000	0.36(a)
	65	Xylene (o)	106	16.262	16.262 (1.051)	14407	0.20000	0.17(a)
	66	Styrene	104	16.283	16.283 (1.052)	16447	0.20000	0.15(a)
	67	Bromoform	173	16.561	16.555 (1.070)	11696	0.20000	0.16(a)
	68	Cumene	105	16.683	16.683 (1.078)	39653	0.20000	0.17(a)
	69	1,1,2,2-Tetrachloroethane	83	17.078	17.078 (1.104)	18651	0.20000	0.17(a)
	72	n-Propylbenzene	91	17.169	17.169 (1.110)	42791	0.20000	0.16(a)
	74	4-Ethyltoluene	105	17.297	17.297 (1.118)	36352	0.20000	0.17(a)
	76	2-Chlorotoluene	91	17.324	17.324 (1.120)	37243	0.20000	0.19(a)
	75	1,3,5-Trimethylbenzene	105	17.367	17.367 (1.122)	29996	0.20000	0.16(a)
	77	a-Methylstyrene	118	17.628	17.628 (1.139)	10316	0.20000	0.13(a)
	78	Tert-Butylbenzene	119	17.735	17.735 (1.146)	30405	0.20000	0.16(a)
	79	1,2,4-Trimethylbenzene	105	17.804	17.799 (1.151)	28098	0.20000	0.16(a)
	80	Sec-Butylbenzene	105	17.986	17.986 (1.162)	41673	0.20000	0.16(a)
	81	4-Isopropyltoluene	119	18.140	18.140 (1.172)	32399	0.20000	0.15(a)
	82	1,3-Dichlorobenzene	146	18.189	18.188 (1.176)	25848	0.20000	0.22
	83	1,4-Dichlorobenzene	146	18.301	18.300 (1.183)	26666	0.20000	0.23
	86	Benzyl Chloride	91	18.450	18.445 (1.192)	21927	0.20000	0.16(a)
	87	n-Butylbenzene	91	18.631	18.631 (1.204)	28823	0.20000	0.15(a)
	88	1,2-Dichlorobenzene	146	18.765	18.759 (1.213)	21382	0.20000	0.19(a)
	90	1,2,4-Trichlorobenzene	180	21.017	21.017 (1.358)	14485	0.20000	0.20(a)
	91	Hexachlorobutadiene	225	21.199	21.198 (1.370)	13335	0.20000	0.19(a)

AMOUNTS

Data File: /chem/C.i/Csvr.p/cilto15.b/cil002v.d Report Date: 27-Aug-2009 10:25

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
₩₽₽₽₽₽₽₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩		==	CERTER TELEVE		*=====	25329 <u>7</u> 5
93 1,2,3-Trichlorobenzene	180	21.908	21.914 (1.416)	12253	0.20000	0.19(a)

QC Flag Legend

- a Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).Q Qualifier signal failed the ratio test.

AIR TOXICS QUANTITATION REPORT Data file : /chem/C.i/Csvr.p/cilto15.b/cil005v.d Lab Smp Id: ASTD0005 Client S Client Smp ID: ASTD0005 Inj Date : 24-AUG-2009 03:22 Inst ID: C.i Operator : njr Smp Info : Misc Info : ASTD0005;082309CA;1;200 Comment : Method: /chem/C.i/Csvr.p/cilto15.b/sto15.mMeth Date: 27-Aug-2009 10:25 jd1QuantCal Date: 24-AUG-2009 03:22Cal FiAls bottle:2Calibr Quant Type: ISTD Cal File: cil005v.d Calibration Sample, Level: 2 Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: all005.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Compor	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
			~=		TETRESE		1 H H H H H H H
1	Dichlorodifluoromethane	85	3.203	3.202 (0.322)	64260	0.50000	0.54
2	Freon-22	51	3.245	3.240 (0.326)	36947	0.50000	0.51
3	1,2-Dichlorotetrafluoroethane	85	3.453	3.448 (0.347)	59257	0.50000	0.48
4	Chloromethane	50	3.581	3.576 (0.360)	21389	0.50000	0.55
5	n-Butane	43	3.790	3.784 (0.381)	48357	0.50000	0.65
6	Vinyl Chloride	62	3.822	3.821 (0.384)	21221	0.50000	0.47
7	1,3-Butadiene	54	3.907	3.902 (0.393)	14984	0.50000	0.45(a)
9	Bromomethane	94	4.638	4.633 (0.466)	20318	0.50000	0.48
10	Chloroethane	64	4.894	4.889 (0.492)	11868	0.50000	0.48(a)
11	Isopentane	43	4.990	4.996 (0.502)	27955	0.50000	0.52
12	Bromoethene	106	5.316	5.310 (0.534)	20018	0.50000	0.47
13	Trichlorofluoromethane	101	5.433	5.433 (0.546)	60719	0.50000	0.50
14	Pentane	43	5.583	5.583 (0.561)	48920	0.50000	0.59
15	Ethyl Ether	59	6.111	6.100 (0.614)	13838	0.50000	0.46
17	Freon TF	101	6.511	6.511 (0.655)	42005	0.50000	0.47

							AMOUN	TS
		QUANT SIG					CAL-AMT	ON-COL
Com	pounds	MASS	RT	EXP RT RE	EL RT	RESPONSE	(ppbv)	(ppbv)
P:		x x a x					****	
:	18 1,1-Dichloroethene	96	6.543	6.543 (0	0.658)	18694	0.50000	0.44
:	21 Carbon Disulfide	76	6.944	6.944 (0	D.698)	62821	0.50000	0.47(a)
:	22 3-Chloropropene	41	7.264	7.264 (0	0.730)	27920	0.50000	0.47(a)
2	24 Methylene Chloride	49	7.515	7.515 (0	0.755)	42963	0.50000	0.72
:	26 Methyl tert-Butyl Ether	73	7.952	7.936 (0	0.799)	53925	0.50000	0.42(a)
:	27 trans-1,2-Dichloroethene	61	7.936	7.936 (0	0.798)	34872	0.50000	0.48
2	28 n-Hexane	57	8.310	8.304 (0	D.835)	44507	0.50000	0.55
:	29 1,1-Dichloroethane	63	8.684	8.683 (0	D.873)	41600	0.50000	0.46
M	40 1,2-Dichloroethene (total)	61				58182	1.00000	0.93
3	31 cis-1,2-Dichloroethene	96	9.591	9.591 (0	0.964)	23310	0.50000	0.46
3	30 Methyl Ethyl Ketone	72	9.623	9.617 (0	0.967)	11520	0.50000	0.58(Q)
* 3	32 Bromochloromethane	128	9.948	9.948 (1	1.000)	484107	10.0000	
:	34 Chloroform	83	10.034	10.034 (1	1.009)	48645	0.50000	0.47
:	35 1,1,1-Trichloroethane	97	10.295	10.295 (0	0.905)	50270	0.50000	0.45
:	36 Cyclohexane	84	10.306	10.311 (0	0.906)	33951	0.50000	0.46
2	37 Carbon Tetrachloride	117	10.503	10.503 (0	0.923)	45270	0.50000	0.43
2	38 2,2,4-Trimethylpentane	57	10.818	10.818 (0	D.951)	117977	0.50000	0.46
3	39 Benzene	78	10.818	10.823 (0	0.951)	76795	0.50000	0.47
4	41 1,2-Dichloroethane	62	10.914	10.914 (0	0.959)	36542	0.50000	0.46
4	12 n-Heptane	43	11.075	11.074 (0	0.973)	50881	0.50000	0.51
* 4	1,4-Difluorobenzene	114	11.379	11.379 (1	1.000)	2814981	10.0000	
4	15 Trichloroethene	95	11.731	11.736 (1	1.031)	31561	0.50000	0.46
4	1,2-Dichloropropane	63	12.094	12.094 (1	1.063)	26003	0.50000	0.45
4	46 Methyl Methacrylate	69	12.179	12.179 (1	1.070)	14896	0.50000	0.37(a)
4	19 Dibromomethane	174	12.270	12.270 (1	1.078)	22402	0.50000	0.41
5	50 Bromodichloromethane	83	12.451	12.451 (1	1.094)	43803	0.50000	0.41
5	51 cis-1,3-Dichloropropene	75	13.087	13.081 (1	1.150)	39847	0.50000	0.46
м	70 Xylene (total)	106				106157	0.50000	1.3
5	52 Methyl Isobutyl Ketone	43	13.279	13.268 (1	1.167)	37501	0.50000	0.39(a)
5	54 Toluene	92	13.519	13.519 (0	D.874)	57831	0.50000	0.48
:	53 n-Octane	43	13.540	13.540 (1	1.190)	66128	0.50000	0.51
5	55 trans-1,3-Dichloropropene	75	13.866	13.866 (1	1.219)	40054	0.50000	0.50
5	56 1,1,2-Trichloroethane	83	14.133	14.132 (0	0.913)	22311	0.50000	0.44
5	57 Tetrachloroethene	166	14.282	14.282 (0	0.923)	39453	0.50000	0.43
5	58 Methyl Butyl Ketone	43	14.442	14.431 (0	0.933)	34202	0.50000	0.39(a)
5	59 Dibromochloromethane	129	14.682	14.682 (0	0.949)	33246	0.50000	0.37
(50 1,2-Dibromoethane	107	14.885	14.885 (0	0.962)	36324	0.50000	0.42
* (51 Chlorobenzene-d5	117	15.472	15.472 (1	L.000)	2583517	10.0000	
(52 Chlorobenzene	112	15.509	15.509 (1	1.002)	65631	0.50000	0.46
e	3 Ethylbenzene	91	15.595	15.595 (1	1.008)	96999	0.50000	0.47
8	34 Nonane	57	15.648	15.648 (1	1.011)	52329	0.50000	0.48
(54 Xylene (m,p)	106	15.744	15.744 (1	L.018)	70363	1.00000	0.89
(55 Xylene (o)	106	16.262	16.262 (1	L.051)	35794	0.50000	0.44
	56 Styrene	104	16.283	16.283 (1	1.052)	42560	0.50000	0.40
	57 Bromoform	173	16.561	16.555 (1	1.070)	26553	0.50000	0.36
(58 Cumene	105	16.684	16.683 (1	1.078)	97929	0.50000	0.43
(59 1,1,2,2-Tetrachloroethane	83	17.079	17.078 (1	L.104)	46558	0.50000	0.43

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
THEEECCCCFCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC		==	CRATRS DESSE	******		
73 1,2,3-Trichloropropane	75	17.159	17.158 (1.109)	39114	0.50000	0.44(a)
72 n-Propylbenzene	91	17.169	17.169 (1.110)	114903	0.50000	0.45
71 n-Decane	57	17.265	17.265 (1.116)	51555	0.50000	0.44(a)
74 4-Ethyltoluene	105	17.297	17.297 (1.118)	91194	0.50000	0.44
76 2-Chlorotoluene	91	17.324	17.324 (1.120)	93291	0.50000	0.48
75 1,3,5-Trimethylbenzene	105	17.367	17.367 (1.122)	75766	0.50000	0.42
77 a-Methylstyrene	118	17.634	17.628 (1.140)	27905	0.50000	0.36
78 Tert-Butylbenzene	119	17.735	17.735 (1.146)	76193	0.50000	0.42
79 1,2,4-Trimethylbenzene	105	17.804	17.799 (1.151)	73647	0.50000	0.43
80 Sec-Butylbenzene	105	17.986	17.986 (1.162)	109046	0.50000	0.43
81 4-Isopropyltoluene	119	18.141	18.140 (1.172)	91702	0.50000	0.43
82 1,3-Dichlorobenzene	146	18.189	18.188 (1.176)	58321	0.50000	0.50
83 1,4-Dichlorobenzene	146	18.301	18.300 (1.183)	56374	0.50000	0.49
86 Benzyl Chloride	91	18.450	18.445 (1.192)	61602	0.50000	0.45
87 n-Butylbenzene	91	18.632	18.631 (1.204)	79467	0.50000	0.44
88 1,2-Dichlorobenzene	146	18.760	18.759 (1.212)	52231	0.50000	0.47
90 1,2,4-Trichlorobenzene	180	21.017	21.017 (1.358)	29086	0.50000	0.41(a)
91 Hexachlorobutadiene	225	21.204	21.198 (1.370)	28103	0.50000	0.40
92 Naphthalene	128	21.471	21.471 (1.388)	56010	0.50000	0.37(a)
93 1,2,3-Trichlorobenzene	180	21.919	21.914 (1.417)	23926	0.50000	0.39

QC Flag Legend

- a Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).
 Q Qualifier signal failed the ratio test.

Data File: /chem/C.i/Csvr.p/cilto15.b/cil05v.d Report Date: 27-Aug-2009 10:25

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/C.i/Csvr.p/cilto15.b/cil05v.d Lab Smp Id: ASTD005 Client Smp ID: ASTD005 Inj Date : 24-AUG-2009 04:10 Operator : njr Inst ID: C.i Smp Info : Misc Info : ASTD005;082309CA;1;200 Comment Method : /chem/C.i/Csvr.p/cilto15.b/sto15.m Meth Date : 27-Aug-2009 10:25 jd1 Quant Quant Type: ISTD Cal Date : 24-AUG-2009 04:10 Cal File: cil05v.d Als bottle: 3 Calibration Sample, Level: 4 Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: all.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

					ANOUN	15
	QUANT SIG				CAL-AMT	ON-COL
unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
			#==356 888866	*******	*******	
Dichlorodifluoromethane	85	3.202	3.202 (0.322)	646421	5.00000	5.1
Freon-22	51	3.240	3.240 (0.326)	383539	5.00000	5.1
1,2-Dichlorotetrafluoroethane	85	3.448	3.448 (0.347)	682866	5.00000	5.2
Chloromethane	50	3.576	3.576 (0.359)	204109	5.00000	5.0
n-Butane	43	3.784	3.784 (0.380)	367960	5.00000	4.7
Vinyl Chloride	62	3.816	3.821 (0.384)	248236	5.00000	5.2
1,3-Butadiene	54	3.901	3.902 (0.392)	182594	5.00000	5.2
Bromomethane	94	4.633	4.633 (0.466)	228743	5.00000	5.2
Chloroethane	64	4.889	4.889 (0.491)	133543	5.00000	5.1
Isopentane	43	4.996	4.996 (0.502)	282589	5.00000	5.0
Bromoethene	106	5.310	5.310 (0.534)	233453	5.00000	5.2
Trichlorofluoromethane	101	5.428	5.433 (0.546)	664824	5.00000	5.2
Pentane	43	5.583	5.583 (0.561)	428240	5.00000	4.9
Ethyl Ether	59	6.106	6.100 (0.614)	161050	5.00000	5.1
Acrolein	56	6.426	6.431 (0.646)	82910	5.00000	4.9(a)
	Dichlorodifluoromethane Freon-22 1,2-Dichlorotetrafluoroethane Chloromethane n-Butane Vinyl Chloride 1,3-Butadiene Bromomethane Chloroethane Isopentane Bromoethene Trichlorofluoromethane Pentane Ethyl Ether Acrolein	QUANT SIGundsMASSDichlorodifluoromethane85Freon-22511,2-Dichlorotetrafluoroethane85Chloromethane50n-Butane43Vinyl Chloride621,3-Butadiene54Bromomethane94Chloroethane64Isopentane43Pentane101Pentane43Ethyl Ether59Acrolein56	QUANT SIGundsMASSRTDichlorodifluoromethane853.202Freon-22513.2401,2-Dichlorotetrafluoroethane853.448Chloromethane503.576n-Butane433.784Vinyl Chloride623.8161,3-Butadiene543.901Bromomethane944.633Chloroethane644.889Isopentane434.996Bromoethene1065.310Trichlorofluoromethane1015.428Pentane435.583Ethyl Ether596.106Acrolein566.426	QUANT SIG unds MASS RT EXP RT REL RT Dichlorodifluoromethane 85 3.202 3.202 (0.322) Freon-22 51 3.240 (0.326) 1,2-Dichlorotetrafluoroethane 85 3.448 (0.347) Chloromethane 50 3.576 (3.576) n-Butane 43 3.784 (0.380) Vinyl Chloride 62 3.816 3.821 (0.382) 1,3-Butadiene 54 3.901 3.902 (0.392) Bromomethane 64 4.889 4.633 (0.466) Isopentane 43 4.966 4.996 (0.502) Bromoethane 64 4.889 (0.491) Isopentane 43 4.996 4.996 (0.502) Bromoethane 101 5.428 5.433 (0.546) Pentane 43 5.983 5.583 (0.514) Pentane 43 5.983 5.583 (0.514) Pentane </td <td>QUANT SIG unds MASS RT EXP RT REL RT RESPONSE Dichlorodifluoromethane 85 3.202 3.202 (0.322) 646421 Freon-22 51 3.240 3.240 (0.326) 383539 1,2-Dichlorotetrafluoroethane 85 3.448 3.448 (0.347) 682866 Chloromethane 50 3.576 3.576 (0.359) 204109 n-Butane 43 3.784 3.784 (0.380) 367960 Vinyl Chloride 62 3.816 3.821 (0.384) 248236 1,3-Butadiene 94 4.633 4.633 (0.466) 228743 Bromomethane 94 4.633 4.633 (0.466) 228743 Isopentane 43 4.996 (0.502) 282589 Bromoethane 106 5.310 (0.534) 233453 Trichlorofluoromethane 101 5.428 (0.561) 233453 Trichlorofluoromethane 101 5.428<td>QUANT SIG CAL-AMT unds MASS RT EXP RT REL RT RESPONSE (ppbv) Image: Dichlorodifluoromethane 85 3.202 3.202 (0.322) 646421 5.00000 Freon-22 51 3.240 3.240 (0.326) 383539 5.00000 1,2-Dichlorotetrafluoroethane 85 3.448 3.448 (0.347) 682866 5.00000 n-Butane 50 3.576 3.576 (0.359) 204109 5.00000 n-Butane 43 3.784 3.784 (0.380) 367960 5.00000 1,3-Butadiene 54 3.901 3.902 (0.392) 182594 5.00000 1,3-Butadiene 54 3.901 3.902 (0.392) 182594 5.00000 Bromomethane 64 4.889 4.889 (0.491) 133543 5.00000 Isopentane 43 4.996 4.996 (0.502) 282589 5.00000 Bromoethene 106 5.310</td></td>	QUANT SIG unds MASS RT EXP RT REL RT RESPONSE Dichlorodifluoromethane 85 3.202 3.202 (0.322) 646421 Freon-22 51 3.240 3.240 (0.326) 383539 1,2-Dichlorotetrafluoroethane 85 3.448 3.448 (0.347) 682866 Chloromethane 50 3.576 3.576 (0.359) 204109 n-Butane 43 3.784 3.784 (0.380) 367960 Vinyl Chloride 62 3.816 3.821 (0.384) 248236 1,3-Butadiene 94 4.633 4.633 (0.466) 228743 Bromomethane 94 4.633 4.633 (0.466) 228743 Isopentane 43 4.996 (0.502) 282589 Bromoethane 106 5.310 (0.534) 233453 Trichlorofluoromethane 101 5.428 (0.561) 233453 Trichlorofluoromethane 101 5.428 <td>QUANT SIG CAL-AMT unds MASS RT EXP RT REL RT RESPONSE (ppbv) Image: Dichlorodifluoromethane 85 3.202 3.202 (0.322) 646421 5.00000 Freon-22 51 3.240 3.240 (0.326) 383539 5.00000 1,2-Dichlorotetrafluoroethane 85 3.448 3.448 (0.347) 682866 5.00000 n-Butane 50 3.576 3.576 (0.359) 204109 5.00000 n-Butane 43 3.784 3.784 (0.380) 367960 5.00000 1,3-Butadiene 54 3.901 3.902 (0.392) 182594 5.00000 1,3-Butadiene 54 3.901 3.902 (0.392) 182594 5.00000 Bromomethane 64 4.889 4.889 (0.491) 133543 5.00000 Isopentane 43 4.996 4.996 (0.502) 282589 5.00000 Bromoethene 106 5.310</td>	QUANT SIG CAL-AMT unds MASS RT EXP RT REL RT RESPONSE (ppbv) Image: Dichlorodifluoromethane 85 3.202 3.202 (0.322) 646421 5.00000 Freon-22 51 3.240 3.240 (0.326) 383539 5.00000 1,2-Dichlorotetrafluoroethane 85 3.448 3.448 (0.347) 682866 5.00000 n-Butane 50 3.576 3.576 (0.359) 204109 5.00000 n-Butane 43 3.784 3.784 (0.380) 367960 5.00000 1,3-Butadiene 54 3.901 3.902 (0.392) 182594 5.00000 1,3-Butadiene 54 3.901 3.902 (0.392) 182594 5.00000 Bromomethane 64 4.889 4.889 (0.491) 133543 5.00000 Isopentane 43 4.996 4.996 (0.502) 282589 5.00000 Bromoethene 106 5.310

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Comp	ounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
			==	高度医过滤器 医尿道医血炎			
1	7 Freon TF	101	6.506	6.511 (0.654)	483304	5.00000	5.2
1	8 1,1-Dichloroethene	96	6.543	6.543 (0.658)	227593	5.00000	5.1
1	9 Acetone	43	6.735	6.735 (0.677)	386574	5.00000	5.2
2	1 Carbon Disulfide	76	6.944	6.944 (0.698)	725229	5.00000	5.1
2	0 Isopropyl Alcohol	45	7.013	7.008 (0.705)	227205	5.00000	4.9(a)
2	2 3-Chloropropene	41	7.264	7.264 (0.730)	317872	5.00000	5.1
2	3 Acetonitrile	41	7.322	7.322 (0.736)	173383	5.00000	5.1
2	4 Methylene Chloride	49	7.515	7.515 (0.755)	285921	5.00000	4.5
2	5 tert-Butyl Alcohol	59	7.728	7.728 (0.777)	330318	5.00000	4.9(a)
2	6 Methyl tert-Butyl Ether	73	7.936	7.936 (0.798)	694764	5.00000	5.1
2	7 trans-1,2-Dichloroethene	61	7.936	7.936 (0.798)	400606	5.00000	5.2
2	8 n-Hexane	57	8.304	8.304 (0.835)	421987	5.00000	4.9
2	9 1,1-Dichloroethane	63	8.683	8.683 (0.873)	504708	5.00000	5.3
M 4	0 1,2-Dichloroethene (total)	61			672746	10.0000	10
3	1 cis-1,2-Dichloroethene	96	9.591	9.591 (0.964)	272140	5.00000	5.1
3	0 Methyl Ethyl Ketone	72	9.617	9.617 (0.967)	95891	5.00000	4.6(Q)
* 3	2 Bromochloromethane	128	9.948	9.948 (1.000)	510157	10.0000	
3	3 Tetrahydrofuran	42	10.007	10.007 (0.879)	236835	5.00000	4.8(a)
3	4 Chloroform	83	10.034	10.034 (1.009)	571497	5.00000	5.3
3	5 1,1,1-Trichloroethane	97	10.295	10.295 (0.905)	600623	5.00000	5.3
3	6 Cyclohexane	84	10.316	10.311 (0.907)	391265	5.00000	5.1
3	7 Carbon Tetrachloride	117	10.503	10.503 (0.923)	578032	5.00000	5.3
3	8 2,2,4-Trimethylpentane	57	10.818	10.818 (0.951)	1359317	5.00000	5.1
3	9 Benzene	78	10.823	10.823 (0.951)	866604	5.00000	5.1
4	1 1,2-Dichloroethane	62	10.914	10.914 (0.959)	427981	5.00000	5.2
4	2 n-Heptane	43	11.074	11.074 (0.973)	505354	5.00000	4.9
* 4	3 1,4-Difluorobenzene	114	11.378	11.379 (1.000)	2909183	10.0000	
4	4 1-Butanol	56	11.613	11.608 (1.021)	86438	5.00000	4.7(a)
4	5 Trichloroethene	95	11.736	11.736 (1.031)	370741	5.00000	5.2
4	7 1,2-Dichloropropane	63	12.094	12.094 (1.063)	304986	5.00000	5.1
4	6 Methyl Methacrylate	69	12.179	12.179 (1.070)	188096	5.00000	4.6
4	8 1,4-Dioxane	88	12.259	12.254 (1.077)	94297	5.00000	4.9(a)
4	9 Dibromomethane	174	12.270	12.270 (1.078)	292931	5.00000	5.2
5	0 Bromodichloromethane	83	12.451	12.451 (1.094)	604814	5.00000	5.4
5	1 cis-1,3-Dichloropropene	75	13.081	13.081 (1.150)	465060	5.00000	5.2
M 7	0 Xylene (total)	106			1153772	5.00000	15
5	2 Methyl Isobutyl Ketone	43	13.268	13.268 (1.166)	468511	5.00000	4.7
5	4 Toluene	92	13.519	13.519 (0.874)	584726	5.00000	5.0
5	3 n-Octane	43	13.540	13.540 (1.190)	683938	5.00000	5.1
5	5 trans-1,3-Dichloropropene	75	13.871	13.866 (1.219)	415136	5.00000	5.0
5	6 1,1,2-Trichloroethane	83	14.132	14.132 (0.913)	256958	5.00000	5.2
5	7 Tetrachloroethene	166	14.282	14.282 (0.923)	479040	5.00000	5.3
5	8 Methyl Butyl Ketone	43	14.437	14.431 (0.933)	401582	5.00000	4.6
5	9 Dibromochloromethane	129	14.682	14.682 (0.949)	484176	5.00000	5.5
6	0 1,2-Dibromoethane	107	14.885	14.885 (0.962)	470425	5.00000	5.6
* 6	1 Chlorobenzene-d5	117	15.472	15.472 (1.000)	2520003	10.0000	
6	2 Chlorobenzene	112	15.509	15.509 (1.002)	729847	5.00000	5.3

					AMOUNTS	
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
		==				
63 Ethylbenzene	91	15.595	15.595 (1.008)	1007550	5.00000	5.0
84 Nonane	57	15.648	15.648 (1.011)	498568	5.00000	4.7
64 Xylene (m,p)	106	15.749	15.744 (1.018)	767038	10.0000	9.9
65 Xylene (o)	106	16.262	16.262 (1.051)	386734	5.00000	4.9
66 Styrene	104	16.283	16.283 (1.052)	506348	5.00000	4.9
67 Bromoform	173	16.555	16.555 (1.070)	381438	5.00000	5.4
68 Cumene	105	16.683	16.683 (1.078)	1118573	5.00000	5.0
69 1,1,2,2-Tetrachloroeth	ane 83	17.078	17.078 (1.104)	528821	5.00000	5.0
73 1,2,3-Trichloropropane	75	17.158	17.158 (1.109)	422546	5.00000	4.9
72 n-Propylbenzene	91	17.169	17.169 (1.110)	1229787	5.00000	5.0
71 n-Decane	57	17.265	17.265 (1.116)	557760	5.00000	4.8
74 4-Ethyltoluene	105	17.297	17.297 (1.118)	1020983	5.00000	5.0
76 2-Chlorotoluene	91	17.324	17.324 (1.120)	953088	5.00000	5.0
75 1,3,5-Trimethylbenzene	105	17.366	17.367 (1.122)	890403	5.00000	5.1
77 a-Methylstyrene	118	17.633	17.628 (1.140)	370836	5.00000	4.9
78 Tert-Butylbenzene	119	17.735	17.735 (1.146)	891630	5.00000	5.1
79 1,2,4-Trimethylbenzene	105	17.804	17.799 (1.151)	865308	5.00000	5.1
80 Sec-Butylbenzene	105	17.986	17.986 (1.162)	1276726	5.00000	5.1
81 4-Isopropyltoluene	119	18.140	18.140 (1.172)	1058775	5.00000	5.1
82 1,3-Dichlorobenzene	146	18.188	18.188 (1.176)	553233	5.00000	4.9
83 1,4-Dichlorobenzene	146	18.300	18.300 (1.183)	529943	5.00000	4.7
86 Benzyl Chloride	91	18.450	18.445 (1.192)	666747	5.00000	5.0
85 n-Undecane	57	18.626	18.626 (1.204)	529399	5.00000	4.5(a)
87 n-Butylbenzene	91	18.631	18.631 (1.204)	899419	5.00000	5.1
88 1,2-Dichlorobenzene	146	18.765	18.759 (1.213)	538780	5.00000	5.0
89 n-Dodecane	57	20.035	20.030 (1.295)	369729	5.00000	4.9(a)
90 1,2,4-Trichlorobenzene	180	21.017	21.017 (1.358)	344673	5.00000	5.0
91 Hexachlorobutadiene	225	21.204	21.198 (1.370)	355784	5.00000	5.2
92 Naphthalene	128	21.471	21.471 (1.388)	781167	5.00000	5.2
93 1,2,3-Trichlorobenzene	180	21.914	21.914 (1.416)	310468	5.00000	5.1

QC Flag Legend

- a Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).
 Q Qualifier signal failed the ratio test.

AIR TOXICS QUANTITATION REPORT Data file : /chem/C.i/Csvr.p/cilto15.b/cil10v.d Lab Smp Id: ASTD010 Client Inj Date : 24-AUG-2009 05:00 Operator : njr Inst II Client Smp ID: ASTD010 Inst ID: C.i Smp Info : Misc Info : ASTD010;082309CA;1;200 Comment Method : /chem/C.i/Csvr.p/cilto15.b/sto15.m Meth Date : 27-Aug-2009 10:25 jd1 Quant Type: ISTD Cal Date : 24-AUG-2009 05:00 Cal File: cil10v.d Als bottle: 4 Calibration Sample, Level: 5 Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: all.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

						AMOUI	TS
		QUANT SIG				CAL-AMT	ON-COL
Compo	unds	MASS	RT	EXP RT REL RI	RESPONSE	(ppbv)	(ppbv)
					-		6368688
1	Dichlorodifluoromethane	85	3.202	3.202 (0.322	2) 1276010	10.0000	9.9
2	Freon-22	51	3.240	3.240 (0.326	5) 765458	10.0000	9.9
3	1,2-Dichlorotetrafluoroethane	85	3.448	3.448 (0.34)	7) 1370851	10.0000	10
4	Chloromethane	50	3.576	3.576 (0.359	403575	10.0000	9.7
5	n-Butane	43	3.784	3.784 (0.380) 729086	10.0000	9.2
6	Vinyl Chloride	62	3.821	3.821 (0.384	495714	10.0000	10
7	1,3-Butadiene	54	3.902	3.902 (0.392	2) 370296	10.0000	10
9	Bromomethane	94	4.633	4.633 (0.466	5) 465789	10.0000	10
10	Chloroethane	64	4.889	4.889 (0.49)	L) 271949	10.0000	10
11	Isopentane	43	4.996	4.996 (0.502	2) 564313	10.0000	9.8
12	Bromoethene	106	5.310	5.310 (0.534	475715	10.0000	10
13	Trichlorofluoromethane	101	5.433	5.433 (0.540	5) 1324849	10.0000	10
14	Pentane	43	5.583	5.583 (0.56)	L) 856452	10.0000	9.6
15	Ethyl Ether	59	6.100	6.100 (0.613	340858	10.0000	10
16	Acrolein	56	6.431	6.431 (0.640	5) 165558	10.0000	9.6

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
	1110-112EEEKBBERKBER	****	==	******		======	
17	Freon TF	101	6.511	6.511 (0.654)	975120	10.0000	10
18	1,1-Dichloroethene	96	6.543	6.543 (0.658)	461332	10.0000	10
19	Acetone	43	6.735	6.735 (0.677)	812227	10.0000	11
21	Carbon Disulfide	76	6.944	6.944 (0.698)	1482666	10.0000	10
20	Isopropyl Alcohol	45	7.008	7.008 (0.704)	493598	10.0000	10
22	3-Chloropropene	41	7.264	7.264 (0.730)	644638	10.0000	10
23	Acetonitrile	41	7.322	7.322 (0.736)	359252	10.0000	10
24	Methylene Chloride	49	7.515	7.515 (0.755)	574847	10.0000	9.0
25	tert-Butyl Alcohol	59	7.728	7.728 (0.777)	707036	10.0000	10
26	Methyl tert-Butyl Ether	73	7.936	7.936 (0.798)	1474226	10.0000	11
27	trans-1,2-Dichloroethene	61	7.936	7.936 (0.798)	815571	10.0000	10
28	n-Hexane	57	8.304	8.304 (0.835)	862421	10.0000	9.9
29	1,1-Dichloroethane	63	8.683	8.683 (0.873)	1017283	10.0000	10
M 40	1,2-Dichloroethene (total)	61			1370201	20.0000	20
31	cis-1,2-Dichloroethene	96	9.591	9.591 (0.964)	554630	10.0000	10
30	Methyl Ethyl Ketone	72	9.617	9.617 (0.967)	208944	10.0000	9.7
* 32	Bromochloromethane	128	9.948	9.948 (1.000)	520236	10.0000	
33	Tetrahydrofuran	42	10.007	10.007 (0.879)	500478	10.0000	10
34	Chloroform	83	10.034	10.034 (1.009)	1152110	10.0000	10
35	1,1,1-Trichloroethane	97	10.295	10.295 (0.905)	1201810	10.0000	10
36	Cyclohexane	84	10.311	10.311 (0.906)	793906	10.0000	10
37	Carbon Tetrachloride	117	10.503	10.503 (0.923)	1174321	10.0000	11
38	2,2,4-Trimethylpentane	57	10.818	10.818 (0.951)	2792066	10.0000	10
39	Benzene	78	10.823	10.823 (0.951)	1755031	10.0000	10
41	1,2-Dichloroethane	62	10.914	10.914 (0.959)	862761	10.0000	10
42	n-Heptane	43	11.074	11.074 (0.973)	1031154	10.0000	9.9
* 43	1,4-Difluorobenzene	114	11.379	11.379 (1.000)	2966374	10.0000	
44	1-Butanol	56	11.608	11.608 (1.020)	182245	10.0000	9.8
45	Trichloroethene	95	11.736	11.736 (1.031)	744982	10.0000	10
47	1,2-Dichloropropane	63	12.094	12.094 (1.063)	622599	10.0000	10
46	Methyl Methacrylate	69	12.179	12.179 (1.070)	435023	10.0000	10
48	1,4-Dioxane	88	12.254	12.254 (1.077)	201916	10.0000	10
49	Dibromomethane	174	12.270	12.270 (1.078)	605830	10.0000	11
50	Bromodichloromethane	83	12.451	12.451 (1.094)	1248415	10.0000	11
51	cis-1,3-Dichloropropene	75	13.081	13.081 (1.150)	949510	10.0000	10
M 70	Xylene (total)	106			2425621	10.0000	29
52	Methyl Isobutyl Ketone	43	13.268	13.268 (1.166)	1053294	10.0000	10
54	Toluene	92	13.519	13.519 (0.874)	1232672	10.0000	10
53	n-Octane	43	13.540	13.540 (1.190)	1375134	10.0000	10
55	trans-1,3-Dichloropropene	75	13.866	13.866 (1.219)	845649	10.0000	10
56	1,1,2-Trichloroethane	83	14.132	14.132 (0.913)	526546	10.0000	10
57	Tetrachloroethene	166	14.282	14.282 (0.923)	963116	10.0000	10
58	Methyl Butyl Ketone	43	14.431	14.431 (0.933)	905838	10.0000	9.8
59	Dibromochloromethane	129	14.682	14.682 (0.949)	1000696	10.0000	11
60	1,2-Dibromoethane	107	14.885	14.885 (0.962)	943433	10.0000	11
* 61	Chlorobenzene-d5	117	15.472	15.472 (1.000)	2675645	10.0000	
62	Chlorobenzene	112	15.509	15.509 (1.002)	1444465	10.0000	9.8

					AMOUN	ITS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
	====		EC2522 404522	*******		
63 Ethylbenzene	91	15.595	15.595 (1.008)	2102177	10.0000	9.7
84 Nonane	57	15.648	15.648 (1.011)	1039649	10.0000	9.3
64 Xylene (m,p)	106	15.744	15.744 (1.018)	1603531	20.0000	20
65 Xylene (o)	106	16.262	16.262 (1.051)	822090	10.0000	9.8
66 Styrene	104	16.283	16.283 (1.052)	1121641	10.0000	10
67 Bromoform	173	16.555	16.555 (1.070)	786021	10.0000	10
68 Cumene	105	16.683	16.683 (1.078)	2384962	10.0000	10
69 1,1,2,2-Tetrachloroethane	83	17.078	17.078 (1.104)	1130225	10.0000	10
73 1,2,3-Trichloropropane	75	17.158	17.158 (1.109)	889610	10.0000	9.7
72 n-Propylbenzene	91	17.169	17.169 (1.110)	2633982	10.0000	10
71 n-Decane	57	17.265	17.265 (1.116)	1168475	10.0000	9.6
74 4-Ethyltoluene	105	17.297	17.297 (1.118)	2187643	10.0000	10
76 2-Chlorotoluene	91	17.324	17.324 (1.120)	1948454	10.0000	9.7
75 1,3,5-Trimethylbenzene	105	17.367	17.367 (1.122)	1917318	10.0000	10
77 a-Methylstyrene	118	17.628	17.628 (1.139)	851559	10.0000	11
78 Tert-Butylbenzene	119	17.735	17.735 (1.146)	1889566	10.0000	10
79 1,2,4-Trimethylbenzene	105	17.799	17.799 (1.150)	1837188	10.0000	10
80 Sec-Butylbenzene	105	17.986	17.986 (1.162)	2725941	10.0000	10
81 4-Isopropyltoluene	119	18.140	18.140 (1.172)	2267833	10.0000	10
82 1,3-Dichlorobenzene	146	18.188	18.188 (1.176)	1112464	10.0000	9.2
83 1,4-Dichlorobenzene	146	18.300	18.300 (1.183)	1081128	10.0000	9.1
86 Benzyl Chloride	91	18.445	18.445 (1.192)	1346679	10.0000	9.5
85 n-Undecane	57	18.626	18.626 (1.204)	1184209	10.0000	9.5
87 n-Butylbenzene	91	18.631	18.631 (1.204)	1936382	10.0000	10
88 1,2-Dichlorobenzene	146	18.759	18.759 (1.212)	1099987	10.0000	9.6
89 n-Dodecane	57	20.030	20.030 (1.295)	748621	10.0000	9.3
90 1,2,4-Trichlorobenzene	180	21.017	21.017 (1.358)	729446	10.0000	10
91 Hexachlorobutadiene	225	21.198	21.198 (1.370)	744033	10.0000	10
92 Naphthalene	128	21.471	21.471 (1.388)	1693456	10.0000	11
93 1,2,3-Trichlorobenzene	180	21.914	21.914 (1.416)	674393	10.0000	11

AIR TOXICS QUANTITATION REPORT Data file : /chem/C.i/Csvr.p/cilto15.b/cil15v.d Lab Smp Id: ASTD015 Client Smp ID: ASTD015 Inj Date : 24-AUG-2009 05:48 Operator : njr Inst ID: C.i Smp Info : Misc Info : ASTD015;082309CA;1;200 Comment Method : /chem/C.i/Csvr.p/cilto15.b/sto15.m Meth Date : 27-Aug-2009 10:25 jd1 Quant Type: ISTD Cal Date : 24-AUG-2009 05:48 Cal File: cil15v. Als bottle: 5 Calibration Samp Dil Factor: 1.00000 Cal File: cil15v.d Calibration Sample, Level: 6 Integrator: HP RTE Compound Sublist: all.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

AMOUNTS

					12 10 011	10
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
			REREE SETEES			
1 Dichlorodifluorometh	ane 85	3.202	3.202 (0.322)	1949854	15.0000	15
2 Freon-22	51	3.240	3.240 (0.325)	1187871	15.0000	15
3 1,2-Dichlorotetraflu	oroethane 85	3.453	3.448 (0.347)	2085630	15.0000	15
4 Chloromethane	50	3.576	3.576 (0.359)	619752	15.0000	15
5 n-Butane	43	3.784	3.784 (0.380)	1135529	15.0000	14
6 Vinyl Chloride	62	3.822	3.821 (0.384)	769514	15.0000	16
7 1,3-Butadiene	54	3.907	3.902 (0.392)	568440	15.0000	16
9 Bromomethane	94	4.633	4.633 (0.465)	718774	15.0000	16
10 Chloroethane	64	4.889	4.889 (0.491)	424666	15.0000	16
11 Isopentane	43	4.996	4.996 (0.502)	876621	15.0000	15
12 Bromoethene	106	5.311	5.310 (0.534)	738241	15.0000	16
13 Trichlorofluorometha	ne 101	5.433	5.433 (0.546)	2031648	15.0000	15
14 Pentane	43	5.588	5.583 (0.561)	1313280	15.0000	14
15 Ethyl Ether	59	6.106	6.100 (0.613)	518529	15.0000	16
16 Acrolein	56	6.431	6.431 (0.646)	268626	15.0000	15

							AMOUNTS	
		QUANT SIG					CAL-AMT	ON-COL
Compounds		MASS	RT	EXP RT	REL RT	RESPONSE	(ppbv)	(ppbv)
		====		******		*======		
17	7 Freon TF	101	6.506	6.511	(0.654)	1515696	15.0000	16
18	3 1,1-Dichloroethene	96	6.543	6.543	(0.657)	717083	15.0000	15
19	9 Acetone	43	6.735	6.735	(0.677)	1162680	15.0000	15
23	l Carbon Disulfide	76	6.949	6.944	(0.698)	2306756	15.0000	16
20) Isopropyl Alcohol	45	7.013	7.008	(0.705)	741524	15.0000	15
22	2 3-Chloropropene	41	7.264	7.264	(0.730)	998643	15.0000	15
23	3 Acetonitrile	41	7.328	7.322	(0.736)	554133	15.0000	16
24	4 Methylene Chloride	49	7.520	7.515	(0.756)	890766	15.0000	14
25	5 tert-Butyl Alcohol	59	7.728	7.728	(0.776)	1068121	15.0000	15
26	5 Methyl tert-Butyl Ether	73	7.942	7.936	(0.798)	2237549	15.0000	16
2'	7 trans-1,2-Dichloroethene	61	7.942	7.936	(0.798)	1248957	15.0000	16
28	3 n-Hexane	57	8.310	8.304	(0.835)	1336486	15.0000	15
29	9 1,1-Dichloroethane	63	8.683	8.683	(0.872)	1567715	15.0000	16
M 40	0 1,2-Dichloroethene (total)	61				2117116	15.0000	31
3:	l cis-1,2-Dichloroethene	96	9.591	9.591	(0.964)	868159	15.0000	16
3() Methyl Ethyl Ketone	72	9.617	9.617	(0.966)	314542	15.0000	14
* 32	2 Bromochloromethane	128	9.954	9.948	(1.000)	530965	10.0000	
33	3 Tetrahydrofuran	42	10.007	10.007	(0.879)	766781	15.0000	15
34	4 Chloroform	83	10.039	10.034	(1.009)	1772287	15.0000	16
35	5 1,1,1-Trichloroethane	97	10.295	10.295	(0.905)	1851457	15.0000	16
30	5 Cyclohexane	84	10.311	10.311	(0.906)	1232435	15.0000	16
3.	7 Carbon Tetrachloride	117	10.503	10.503	(0.923)	1816582	15.0000	16
31	3 2,2,4-Trimethylpentane	57	10.818	10.818	(0.951)	4303188	15.0000	16
39	9 Benzene	78	10.824	10.823	(0.951)	2704999	15.0000	15
4	l 1,2-Dichloroethane	62	10.914	10.914	(0.959)	1319945	15.0000	16
43	2 n-Heptane	43	11.080	11.074	(0.974)	1597347	15.0000	15
* 43	3 1,4-Difluorobenzene	114	11.379	11.379	(1.000)	3004520	10.0000	
44	4 1-Butanol	56	11.608	11.608	(1.020)	293018	15.0000	16
4	5 Trichloroethene	95	11.736	11.736	(1.031)	1154100	15.0000	16
4	7 1,2-Dichloropropane	63	12.099	12.094	(1.063)	949482	15.0000	15
4	5 Methyl Methacrylate	69	12.179	12.179	(1.070)	684131	15.0000	16
4	3 1,4-Dioxane	88	12.259	12.254	(1.077)	299719	15.0000	15
4	9 Dibromomethane	174	12.270	12.270	(1.078)	940734	15.0000	16
5	0 Bromodichloromethane	83	12.451	12.451	(1.094)	1918849	15.0000	17
53	l cis-1,3-Dichloropropene	75	13.086	13.081	(1.150)	1411985	15.0000	15
M 7	O Xylene (total)	106				3715992	15.0000	47
52	2 Methyl Isobutyl Ketone	43	13.268	13.268	(1.166)	1646118	15.0000	16
54	1 Toluene	92	13.519	13.519	(0.874)	1747487	15.0000	15
53	3 n-Octane	43	13.540	13.540	(1.190)	2056393	15.0000	15
5	5 trans-1,3-Dichloropropene	75	13.871	13.866	(1.219)	1251761	15.0000	15
5	5 1,1,2-Trichloroethane	83	14.132	14.132	(0.913)	769051	15.0000	15
5'	7 Tetrachloroethene	166	14.282	14.282	(0.923)	1468292	15.0000	16
51	8 Methyl Butyl Ketone	43	14.431	14.431	(0.933)	1410138	15.0000	16
5	9 Dibromochloromethane	129	14.682	14.682	(0.949)	1494751	15.0000	17
6	0 1,2-Dibromoethane	107	14.885	14.885	(0.962)	1372049	15.0000	16
* 63	l Chlorobenzene-d5	117	15.472	15.472	(1.000)	2559719	10.0000	
63	2 Chlorobenzene	112	15.515	15.509	(1.003)	2092858	15.0000	15

Data File: /chem/C.i/Csvr.p/cilto15.b/cil15v.d Report Date: 27-Aug-2009 10:25

					AMOUNTS	
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
		ter tar		********		
63 Ethylbenzene	91	15.595	15.595 (1.008)	3161570	15.0000	15
84 Nonane	57	15.648	15.648 (1.011)	1588690	15.0000	15
64 Xylene (m,p)	106	15.749	15.744 (1.018)	2453760	30.0000	31
65 Xylene (o)	. 106	16.262	16.262 (1.051)	1262232	15.0000	16
66 Styrene	104	16.283	16.283 (1.052)	1744429	15.0000	17
67 Bromoform	173	16.555	16.555 (1.070)	1199120	15.0000	17
68 Cumene	105	16.683	16.683 (1.078)	3704601	15,0000	16
69 1,1,2,2-Tetrachloroethane	83	17.078	17.078 (1.104)	1724921	15.0000	16
73 1,2,3-Trichloropropane	75	17.158	17.158 (1.109)	1340329	15.0000	15
72 n-Propylbenzene	91	17.169	17.169 (1.110)	4020937	15.0000	16
71 n-Decane	57	17.265	17.265 (1.116)	1801560	15.0000	15
74 4-Ethyltoluene	105	17.297	17.297 (1.118)	3335906	15.0000	16
76 2-Chlorotoluene	91	17.324	17.324 (1.120)	2918176	15.0000	15
75 1,3,5-Trimethylbenzene	105	17.367	17.367 (1.122)	2927435	15.0000	16
77 a-Methylstyrene	118	17.633	17.628 (1.140)	1329538	15.0000	17
78 Tert-Butylbenzene	119	17.735	17.735 (1.146)	2913560	15.0000	16
79 1,2,4-Trimethylbenzene	105	17.804	17.799 (1.151)	2808507	15.0000	16
80 Sec-Butylbenzene	105	17.991	17.986 (1.163)	4142417	15,0000	16
81 4-Isopropyltoluene	119	18.140	18.140 (1.172)	3448092	15.0000	16
82 1,3-Dichlorobenzene	146	18.188	18.188 (1.176)	1654267	15.0000	14
83 1,4-Dichlorobenzene	146	18.301	18.300 (1.183)	1602661	15.0000	14
86 Benzyl Chloride	91	18.450	18.445 (1.192)	2221870	15.0000	16
85 n-Undecane	57	18.626	18.626 (1.204)	1820163	15.0000	15
87 n-Butylbenzene	91	18.631	18.631 (1.204)	2956994	15.0000	16
88 1,2-Dichlorobenzene	146	18.765	18.759 (1.213)	1650997	15.0000	15
89 n-Dodecane	57	20.035	20.030 (1.295)	1189255	15.0000	15
90 1,2,4-Trichlorobenzene	180	21.017	21.017 (1.358)	1132144	15.0000	16
91 Hexachlorobutadiene	225	21.198	21.198 (1.370)	1124599	15.0000	16
92 Naphthalene	128	21.471	21.471 (1.388)	2698689	15.0000	18
93 1,2,3-Trichlorobenzene	180	21.914	21.914 (1.416)	1049672	15.0000	17

AIR TOXICS QUANTITATION REPORT Data file : /chem/C.i/Csvr.p/cilto15.b/cil20v.d Lab Smp Id: ASTD020 Client Client Smp ID: ASTD020 Inj Date : 24-AUG-2009 06:37 Operator : njr Inst ID: C.i Smp Info : Misc Info : ASTD020;082309CA;1;200 Comment Method : /chem/C.i/Csvr.p/cilto15.b/sto15.m Meth Date : 27-Aug-2009 10:25 jd1 Quant Cal Date : 24-AUG-2009 06:37 Cal Fi Quant Type: ISTD Cal File: cil20v.d Als bottle: 6 Calibration Sample, Level: 7 Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: all.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description				
DF	1.00000	Dilution Factor				
Uf	1.00000	ng unit correction factor				
Vo	200.00000	Sample Volume purged (mL)				

Cpnd Variable

						AMOUNTS	
		QUANT SIG				CAL-AMT	ON-COL
Compounds		MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
		***		BRERFE COSCUR		******	*******
1	Dichlorodifluoromethane	85	3.203	3.202 (0.322)	2534115	20.0000	19
2	Freon-22	51	3.240	3.240 (0.325)	1564608	20.0000	20
3	1,2-Dichlorotetrafluoroethane	85	3.448	3.448 (0.346)	2728950	20.0000	20
4	Chloromethane	50	3.576	3.576 (0.359)	815042	20.0000	19
5	n-Butane	43	3.784	3.784 (0.380)	1489429	20.0000	18
6	Vinyl Chloride	62	3.822	3.821 (0.384)	1008163	20.0000	20
7	1,3-Butadiene	54	3.902	3.902 (0.392)	743055	20.0000	20
9	Bromomethane	94	4.633	4.633 (0.465)	940635	20.0000	20
10	Chloroethane	64	4.889	4.889 (0.491)	551478	20.0000	20
11	Isopentane	43	4.996	4.996 (0.502)	1145515	20.0000	19
12	Bromoethene	106	5.311	5.310 (0.534)	972817	20.0000	20
13	Trichlorofluoromethane	101	5.428	5.433 (0.545)	2654324	20.0000	20
14	Pentane	43	5.588	5.583 (0.561)	1701910	20.0000	19
15	Ethyl Ether	59	6.100	6.100 (0.613)	678069	20.0000	20
16	Acrolein	56	6.431	6.431 (0.646)	348461	20.0000	20
						AMOUN	TS
-------	----------------------------	-----------	--------	-----------------------------	----------	---------	---------
		QUANT SIG				CAL-AMT	ON-COL
Compo	ounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
			==			TROFFER	
17	Freon TF	101	6.511	6.511 (0.654)	1984267	20.0000	20
18	1,1-Dichloroethene	96	6.543	6.543 (0.657)	940532	20.0000	20
19	Acetone	43	6.736	6.735 (0.677)	1484012	20.0000	19
21	. Carbon Disulfide	76	6.949	6.944 (0.698)	3021238	20.0000	20
20	Isopropyl Alcohol	45	7.013	7.008 (0.705)	967769	20.0000	20
22	2 3-Chloropropene	41	7.264	7.264 (0.730)	1309226	20.0000	20
23	Acetonitrile	41	7.323	7.322 (0.736)	700756	20.0000	19
24	Methylene Chloride	49	7.520	7.515 (0.756)	1161384	20.0000	18
25	tert-Butyl Alcohol	59	7.723	7.728 (0.776)	1400705	20.0000	20
26	Methyl tert-Butyl Ether	73	7.936	7.936 (0.797)	2891399	20.0000	20
27	trans-1,2-Dichloroethene	61	7.942	7.936 (0.798)	1622561	20.0000	20
28	n-Hexane	57	8.305	8.304 (0.834)	1739643	20.0000	19
29	1,1-Dichloroethane	63	8.684	8.683 (0.872)	2053687	20.0000	20
M 40	1,2-Dichloroethene (total)	61			2752534	40.0000	40
31	. cis-1,2-Dichloroethene	96	9.591	9.591 (0.964)	1129973	20.0000	20
30	Methyl Ethyl Ketone	72	9.617	9.617 (0.966)	418178	20.0000	19
* 32	Bromochloromethane	128	9.954	9.948 (1.000)	536673	10.0000	
33	Tetrahydrofuran	42	10.007	10.007 (0.879)	996694	20.0000	19
34	Chloroform	83	10.039	10.034 (1.009)	2306062	20.0000	20
35	1,1,1-Trichloroethane	97	10.295	10.295 (0.905)	2411204	20.0000	20
36	Cyclohexane	84	10.311	10.311 (0.906)	1618664	20.0000	20
37	Carbon Tetrachloride	117	10.503	10.503 (0.923)	2382773	20.0000	21
38	2,2,4-Trimethylpentane	57	10.818	10.818 (0.951)	5608010	20.0000	20
39	Benzene	78	10.824	10.823 (0.951)	3534789	20.0000	20
41	1,2-Dichloroethane	62	10.914	10.914 (0.959)	1728231	20.0000	20
42	n-Heptane	43	11.080	11.074 (0.974)	2077160	20.0000	19
* 43	1,4-Difluorobenzene	114	11.379	11.379 (1.000) [.]	3035539	10.0000	
44	1-Butanol	56	11.603	11.608 (1.020)	387058	20.0000	20
45	Trichloroethene	95	11.736	11.736 (1.031)	1505515	20.0000	20
47	1,2-Dichloropropane	63	12.099	12.094 (1.063)	1252011	20.0000	20
46	Methyl Methacrylate	69	12.179	12.179 (1.070)	925596	20.0000	22
48	1,4-Dioxane	88	12.259	12.254 (1.077)	391401	20.0000	20
49	Dibromomethane	174	12.270	12.270 (1.078)	1240179	20.0000	21
50	Bromodichloromethane	83	12.451	12.451 (1.094)	2522424	20.0000	22
51	cis-1,3-Dichloropropene	75	13.086	13.081 (1.150)	1866419	20.0000	20
M 70	Xylene (total)	106			4948255	20.0000	59
52	Methyl Isobutyl Ketone	43	13.268	13.268 (1.166)	2175626	20.0000	21
54	Toluene	92	13.519	13.519 (0.874)	2323590	20.0000	19
53	n-Octane	43	13.540	13.540 (1.190)	2657522	20.0000	19
55	trans-1,3-Dichloropropene	75	13.871	13.866 (1.219)	1687914	20.0000	19
56	1,1,2-Trichloroethane	83	14.133	14.132 (0.913)	1013281	20.0000	19
57	Tetrachloroethene	166	14.282	14.282 (0.923)	1914295	20.0000	20
58	Methyl Butyl Ketone	43	14.431	14.431 (0.933)	1884013	20.0000	20
59	Dibromochloromethane	129	14.682	14.682 (0.949)	1990431	20.0000	21
60	1,2-Dibromoethane	107	14.885	14.885 (0.962)	1818053	20.0000	20
* 61	Chlorobenzene-d5	117	15.472	15.472 (1.000)	2680742	10.0000	
62	2 Chlorobenzene	112	15.515	15.509 (1.003)	2762177	20.0000	19

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
		==			*=====	*******
63 Ethylbenzene	91	15.595	15.595 (1.008)	4222650	20.0000	20
84 Nonane	57	15.648	15.648 (1.011)	2116419	20.0000	19
64 Xylene (m,p)	106	15.750	15.744 (1.018)	3268802	40.0000	40
65 Xylene (o)	106	16.262	16.262 (1.051)	1679453	20.0000	20
66 Styrene	104	16.283	16.283 (1.052)	2356712	20.0000	21
67 Bromoform	173	16.555	16.555 (1.070)	1624172	20.0000	21
68 Cumene	105	16.684	16.683 (1.078)	4866346	20.0000	21
69 1,1,2,2-Tetrachloroethane	83	17.078	17.078 (1.104)	2288252	20.0000	20
73 1,2,3-Trichloropropane	75	17.159	17.158 (1.109)	1790069	20.0000	19
72 n-Propylbenzene	91	17.169	17.169 (1.110)	5327566	20.0000	20
71 n-Decane	57	17.265	17.265 (1.116)	2370875	20.0000	19
74 4-Ethyltoluene	105	17.297	17.297 (1.118)	4427793	20.0000	20
76 2-Chlorotoluene	91	17.324	17.324 (1.120)	3846673	20.0000	19
75 1,3,5-Trimethylbenzene	105	17.367	17.367 (1.122)	3818942	20.0000	20
77 a-Methylstyrene	118	17.634	17.628 (1.140)	1779984	20.0000	22
78 Tert-Butylbenzene	119	17.735	17.735 (1.146)	3836170	20.0000	21
79 1,2,4-Trimethylbenzene	105	17.804	17.799 (1.151)	3652128	20.0000	20
80 Sec-Butylbenzene	105	17.986	17.986 (1.162)	5466953	20.0000	21
81 4-Isopropyltoluene	119	18.141	18.140 (1.172)	4543928	20.0000	21
82 1,3-Dichlorobenzene	146	18.189	18.188 (1.176)	2195651	20.0000	18
83 1,4-Dichlorobenzene	146	18.301	18.300 (1.183)	2119795	20.0000	18
86 Benzyl Chloride	91	18.450	18.445 (1.192)	2973157	20.0000	21
85 n-Undecane	57	18.626	18.626 (1.204)	2313534	20.0000	19
87 n-Butylbenzene	91	18.632	18.631 (1.204)	3881510	20.0000	21
88 1,2-Dichlorobenzene	146	18.765	18.759 (1.213)	2169468	20.0000	19
89 n-Dodecane	57	20.030	20.030 (1.295)	1380965	20.0000	17
90 1,2,4-Trichlorobenzene	180	21.017	21.017 (1.358)	1307847	20.0000	18
91 Hexachlorobutadiene	225	21.199	21.198 (1.370)	1452470	20.0000	20
92 Naphthalene	128	21.471	21.471 (1.388)	2510077	20.0000	16
93 1,2,3-Trichlorobenzene	180	21.914	21.914 (1.416)	1146400	20.0000	18

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/C.i/Csvr.p/cilto15.b/cil40v.d Lab Smp Id: ASTD040 Client Client Smp ID: ASTD040 Inj Date : 24-AUG-2009 07:25 Operator : njr Inst ID: C.i Smp Info : Misc Info : ASTD040;082309CA;1;200 Comment Method : /chem/C.i/Csvr.p/cilto15.b/sto15.m Meth Date : 27-Aug-2009 10:25 jd1 Quant Quant Type: ISTD Cal Date : 24-AUG-2009 07:25 Cal File: cil40v.d Als bottle: 7 Dil Factor: 1.00000 Calibration Sample, Level: 8 Integrator: HP RTE Compound Sublist: all.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

AMOUNTS

	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
ELCIERTREFERCTIONEREERE	***		IIIIE GREAVE		******	R22224
1 Dichlorodifluoromethane	85	3.203	3.202 (0.322)	5025304	40.0000	38
2 Freon-22	51	3.240	3.240 (0.325)	3140283	40.0000	39
3 1,2-Dichlorotetrafluoroethane	85	3.448	3.448 (0.346)	5448302	40.0000	40
4 Chloromethane	50	3.576	3.576 (0.359)	1677518	40.0000	39
5 n-Butane	43	3.784	3.784 (0.380)	3049024	40.0000	37
6 Vinyl Chloride	62	3.822	3.821 (0.384)	2055437	40.0000	41 (A)
7 1,3-Butadiene	54	3.902	3.902 (0.392)	1527223	40.0000	41 (A)
9 Bromomethane	94	4.633	4.633 (0.465)	1913875	40.0000	41 (A)
10 Chloroethane	64	4.889	4.889 (0.491)	1121735	40.0000	40 (A)
11 Isopentane	43	4.996	4.996 (0.502)	2324571	40.0000	39
12 Bromoethene	106	5.311	5.310 (0.534)	1997562	40.0000	42 (A)
13 Trichlorofluoromethane	101	5.433	5.433 (0.546)	5404228	40.0000	40
14 Pentane	43	5.588	5.583 (0.561)	3484097	40.0000	38
15 Ethyl Ether	59	6.106	6.100 (0.613)	1430722	40.0000	42 (A)
16 Acrolein	56	6.431	6.431 (0.646)	748299	40.0000	42 (A)

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Compo	ounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
	- 苏王王王王王王王王王王王王王王王王王王王王王王王王王王王王王王王王王王王王	362 E	25				
1'	7 Freon TF	101	6.511	6.511 (0.654)	4028877	40.0000	41 (A)
18	3 1,1-Dichloroethene	96	6.549	6.543 (0.658)	1928712	40.0000	41(A)
19	Acetone	43	6.736	6.735 (0.677)	2985434	40.0000	38
2	l Carbon Disulfide	76	6.949	6.944 (0.698)	6112082	40.0000	41(A)
2) Isopropyl Alcohol	45	7.018	7.008 (0.705)	1851929	40.0000	38
23	2 3-Chloropropene	41	7.264	7.264 (0.730)	2698428	40.0000	41 (A)
2	3 Acetonitrile	41	7.328	7.322 (0.736)	1380309	40.0000	38
24	4 Methylene Chloride	49	7.520	7.515 (0.756)	2338196	40,0000	35
2	5 tert-Butyl Alcohol	59	7.728	7.728 (0.776)	2687228	40.0000	38
2	6 Methyl tert-Butyl Ether	73	7.936	7.936 (0.797)	6028201	40.0000	42 (A)
2	7 trans-1,2-Dichloroethene	61	7.942	7.936 (0.798)	3292137	40.0000	40 (A)
2	8 n-He xa ne	57	8.310	8.304 (0.835)	3539093	40.0000	39
2	9 1,1-Dichloroethane	63	8.684	8.683 (0.872)	4147429	40.0000	41 (A)
M 4	0 1,2-Dichloroethene (total)	61			5583878	80.0000	81
3	l cis-1,2-Dichloroethene	96	9.591	9.591 (0.964)	2291741	40.0000	40 (A)
3	0 Methyl Ethyl Ketone	72	9.618	9.617 (0.966)	900863	40.0000	40 (A)
* 3	2 Bromochloromethane	128	9.954	9.948 (1.000)	539880	10.0000	
3	3 Tetrahydrofuran	42	10.007	10.007 (0.879)	2093630	40.0000	42 (A)
3	4 Chloroform	83	10.039	10.034 (1.009)	4622547	40.0000	40 (A)
3	5 1,1,1-Trichloroethane	97	10.301	10.295 (0.905)	4913137	40.0000	42 (A)
3	6 Cyclohexane	84	10.317	10.311 (0.907)	3319894	40.0000	43 (A)
3	7 Carbon Tetrachloride	117	10.503	10.503 (0.923)	4843007	40.0000	44 (A)
3	8 2,2,4-Trimethylpentane	57	10.818	10.818 (0.951)	11362076	40.0000	42 (A)
3	9 Benzene	78	10.824	10.823 (0.951)	7093549	40.0000	41 (A)
4	1 1,2-Dichloroethane	62	10.914	10.914 (0.959)	3463132	40'.0000	42 (A)
4	2 n-Heptane	43	11.080	11.074 (0.974)	4209774	40.0000	41(A)
* 4	3 1,4-Difluorobenzene	114	11.379	11.379 (1.000)	2954357	10.0000	
4	4 1-Butanol	56	11.603	11.608 (1.020)	761926	40.0000	41 (A)
4	5 Trichloroethene	95	11.736	11.736 (1.031)	3010201	40.0000	42 (A)
4	7 1,2-Dichloropropane	63	12.099	12.094 (1.063)	2513237	40.0000	42 (A)
4	6 Methyl Methacrylate	69	12.179	12.179 (1.070)	2046131	40.0000	49 (A)
4	8 1,4-Dioxane	88	12.259	12.254 (1.077)	767039	40.0000	39
4	9 Dibromomethane	174	12.275	12.270 (1.079)	2458756	40.0000	43 (A)
5	0 Bromodichloromethane	83	12.451	12.451 (1.094)	4944107	40.0000	44 (A)
5	1 cis-1,3-Dichloropropene	75	13.086	13.081 (1.150)	3612180	40.0000	40 (A)
M 7	0 Xylene (total)	106			10685953	40.0000	150 (A)
5	2 Methyl Isobutyl Ketone	43	13.268	13.268 (1.166)	4673690	40.0000	47 (A)
5	4 Toluene	92	13.524	13.519 (0.874)	4688223	40.0000	44 (A)
5	3 n-Octane	43	13.540	13.540 (1.190)	5374740	40.0000	40
5	5 trans-1,3-Dichloropropene	75	13.871	13.866 (1.219)	3355426	40.0000	40
5	6 1,1,2-Trichloroethane	83	14.133	14.132 (0.913)	2027965	40.0000	45 (A)
5	7 Tetrachloroethene	166	14.287	14.282 (0.923)	3720136	40.0000	4 5 (A)
5	8 Methyl Butyl Ketone	43	14.431	14.431 (0.933)	4100763	40.0000	52 (A)
5	9 Dibromochloromethane	129	14.682	14.682 (0.949)	3947948	40.0000	49 (A)
6	0 1,2-Dibromoethane	107	14.890	14.885 (0.962)	3415925	40.0000	44 (A)
* 6	1 Chlorobenzene-d5	117	15.472	15.472 (1.000)	2300481	10.0000	
6	2 Chlorobenzene	112	15.515	15.509 (1.003)	5394999	40.0000	43 (A)

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
o # # # # # # # # # # # # # # # # # # #	2223		HORES TRAFE		******	
63 Ethylbenzene	91	15.595	15.595 (1.008)	8904249	40.0000	48 (A)
84 Nonane	57	15.654	15.648 (1.012)	4572628	40.0000	48 (A)
64 Xylene (m,p)	106	15.750	15.744 (1.018)	7044116	80.0000	100 (A)
65 Xylene (0)	106	16.262	16.262 (1.051)	3641837	40.0000	51 (A)
66 Styrene	104	16.283	16.283 (1.052)	5118563	40.0000	54 (A)
67 Bromoform	173	16.561	16.555 (1.070)	3414777	40.0000	52 (A)
68 Cumene	105	16.689	16.683 (1.079)	10257230	40.0000	50 (A)
69 1,1,2,2-Tetrachloroethane	83	17.079	17.078 (1.104)	4918154	40.0000	51 (A)
73 1,2,3-Trichloropropane	75	17.164	17.158 (1.109)	3834270	40.0000	48 (A)
72 n-Propylbenzene	91	17.169	17.169 (1.110)	11246863	40.0000	50 (A)
71 n-Decane	57	17.265	17.265 (1.116)	5173166	40.0000	49 (A)
74 4-Ethyltoluene	105	17.297	17.297 (1.118)	9394558	40.0000	50 (A)
76 2-Chlorotoluene	91	17.324	17.324 (1.120)	8082076	40.0000	47 (A)
75 1,3,5-Trimethylbenzene	105	17.367	17.367 (1.122)	8137824	40.0000	51 (A)
77 a-Methylstyrene	118	17.634	17.628 (1.140)	3978801	40.0000	58 (A)
78 Tert-Butylbenzene	119	17.735	17.735 (1.146)	8155577	40.0000	51 (A)
79 1,2,4-Trimethylbenzene	105	17.804	17.799 (1.151)	7856944	40.0000	51 (A)
80 Sec-Butylbenzene	105	17.991	17.986 (1.163)	11512278	40.0000	51 (A)
81 4-Isopropyltoluene	119	18.141	18.140 (1.172)	9677294	40.0000	51 (A)
82 1,3-Dichlorobenzene	146	18.194	18.188 (1.176)	4689644	40.0000	45 (A)
83 1,4-Dichlorobenzene	146	18.301	18.300 (1.183)	4581623	40.0000	45 (A)
86 Benzyl Chloride	91	18.450	18.445 (1.192)	6532992	40.0000	53 (A)
85 n-Undecane	57	18.626	18.626 (1.204)	5094819	40.0000	48 (A)
87 n-Butylbenzene	91	18.632	18.631 (1.204)	8281901	40.0000	51 (A)
88 1,2-Dichlorobenzene	146	18.765	18.759 (1.213)	4665799	40.0000	48 (A)
89 n-Dodecane	57	20.035	20.030 (1.295)	3382712	40.0000	49 (A)
90 1,2,4-Trichlorobenzene	180	21.017	21.017 (1.358)	3215366	40.0000	51 (A)
91 Hexachlorobutadiene	225	21.204	21.198 (1.370)	2991272	40.0000	48 (A)
92 Naphthalene	128	21.471	21.471 (1.388)	7403986	40.0000	54 (A)
93 1,2,3-Trichlorobenzene	180	21.914	21.914 (1.416)	2840386	40.0000	52 (A)

QC Flag Legend

A - Target compound detected but, quantitated amount exceeded maximum amount.

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/C.i/Csvr.p/cilto15.b/cil10q.d Lab Smp Id: CA082209ICV Client Client Smp ID: CA082209ICV Inj Date : 24-AUG-2009 09:01 Operator : njr Inst ID: C.i Smp Info : Misc Info : CA082209LCS;082309CA;1;200 Comment : Method: /chem/C.i/Csvr.p/cilto15.b/sto15.mMeth Date: 27-Aug-2009 10:25 jd1QuantCal Date: 24-AUG-2009 07:25Cal Fi Quant Type: ISTD Cal File: cil40v.d Als bottle: 4 QC Sample: ICV Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: all.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

CONCENTRATIONS

		QUANT SIG				ON-COLUMN	FINAL
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
			==	desess suggest		FCSECEM	XEEESSE
1	Dichlorodifluoromethane	85	3.197	3.202 (0.321)	1306380	10.4958	10
2	Freon-22	51	3.234	3.240 (0.325)	792095	10.5845	11
3	1,2-Dichlorotetrafluoroethane	85	3.448	3.448 (0.347)	1395307	10.8409	11
4	Chloromethane	50	3.571	3.576 (0.359)	408730	10.1330	10
5	n-Butane	43	3.779	3.784 (0.380)	729771	9.46057	9.5
6	Vinyl Chloride	62	3.816	3.821 (0.384)	503747	10.7279	11
7	1,3-Butadiene	54	3.896	3.902 (0.392)	379535	10.9098	11
9	Bromomethane	94	4.627	4.633 (0.465)	455970	10.4048	10
10	Chloroethane	64	4.884	4.889 (0.491)	264826	10.2084	10
11	Isopentane	43	4.990	4.996 (0.502)	548612	9.83299	9.8
12	Bromoethene	106	5.305	5.310 (0.533)	461982	10.3145	10
13	Trichlorofluoromethane	101	5.428	5.433 (0.546)	1284527	10.1197	10
14	Pentane	43	5.577	5.583 (0.561)	737625	8.55096	8.6
15	Ethyl Ether	59	6.100	6.100 (0.613)	290612	9.22023	9.2
16	Acrolein	56	6.426	6.431 (0.646)	135665	8.13639	8.1

						CONCENTRA	TIONS
		QUANT SIG				ON-COLUMN	FINAL
Comp	ounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
			ㅋ프				
1	7 Freon TF	101	6.506	6.511 (0.654)	1025933	11.1266	11
1	8 1,1-Dichloroethene	96	6.538	6.543 (0.657)	482186	10.8463	11
1	9 Acetone	43	6.730	6.735 (0.676)	706582	9.58605	9.6
2	1 Carbon Disulfide	76	6.944	6.944 (0.698)	1428416	10.1553	10
2	0 Isopropyl Alcohol	45	7.002	7.008 (0.704)	449984	9.84057	9.8
2	2 3-Chloropropene	41	7.258	7.264 (0.730)	622276	10.0920	10
2	3 Acetonitrile	41	7.323	7.322 (0.736)	292189	8.61929	8.6
2	4 Methylene Chloride	49	7.515	7.515 (0.755)	586201	9.41827	9.4
2	5 tert-Butyl Alcohol	59	7.723	7.728 (0.776)	677193	10.2503	10
2	6 Methyl tert-Butyl Ether	73	7,931	7.936 (0.797)	1343112	10.0259	10
2	7 trans-1.2-Dichloroethene	61	7,936	7.936 (0.798)	764828	10.0118	10
2	8 n-Hexane	57	8,305	8.304 (0.835)	810121	9.54182	9.5
2	9 1 1-Dichloroethane	63	8.678	8.683 (0.872)	974865	10.2833	10
м 4	0 1.2-Dichloroethene (total)	61		01000 (010-2)	1310802	20.2733	20
	1 cig-1 2-Dichlorpethene	96	9 585	9.591 (0.964)	545974	10.2615	10
3	0 Methyl Ethyl Ketone	72	9.612	9,617 (0,966)	196879	9.46626	9.5(0)
* 3	2 Bromochloromethane	128	9.948	9,948 (1,000)	504744	10.0000	
3	3 Tetrahydrofuran	42	10.002	10.007 (0.879)	449557	9.27738	9.3
3	4 Chloroform	83	10.034	10.034 (1.009)	1116256	10.3692	10
3	5 1.1.1-Trichloroethane	97	10.295	10.295 (0.905)	1175149	10.4067	10
3	6 Cvclohexane	84	10.311	10.311 (0.906)	765748	10.1878	10
3	7 Carbon Tetrachloride	117	10.503	10.503 (0.923)	1156812	10.6896	11
3	8 2.2.4-Trimethylpentape	57	10.818	10.818(0.951)	2639081	10.1052	10
3	9 Benzene	78	10.824	10.823 (0.951)	1647013	9.81690	9.8
4	1 1.2-Dicbloroethane	62	10 914	10,914 (0,959)	846353	10.4632	10
4	2 n-Heptane	43	11 074	11.074 (0.973)	978925	9.68379	9.7
* 4	3 1 4-Difluorobenzene	114	11 379	11.379 (1.000)	2874064	10.0000	211
4	4 1-Butanol	56	11 603	11.608 (1.020)	190597	10.5563	11
4	5 Trichloroethene	95	11 731	11.000 (1.020) 11.736 (1.031)	707815	10.0951	10
4	7 1.2-Dichloropropage	63	12.094	12.094 (1.053)	580979	9.88256	9.9
4	6 Methyl Methacrylate	69	12 179	12.001 (1.000)	424014	10.4277	10
4	8 1 4-Diovane	88	12 259	12.175 (1.070)	169926	8,99151	9.0
4	9 Dibromomethane	174	12 270	12.231 (1.077) 12.270 (1.078)	590595	10 7108	11
5	0 Bromodichloromethane	83	12.2.0	12.270 (1.070)	1249968	11 3793	11
5	1 cis-1 3-Dichloropropene	75	13 081	12.431 (1.054)	928193	10 5793	11
M 7	0 Xvlene (total)	105	10.001	15.001 (1.150)	2358809	29.3342	29
5	2 Methyl Isobutyl Ketone	43	13 262	13 268 (1 166)	958565	9,82417	9.8
5	4 Toluene	92	13 519	13.519 (0.874)	1175936	9.88009	9.9
5	3 n-Octane	43	13 540	13.540 (1.190)	1337343	10,1699	10
5	5 trang-1 3-Dichloropropene	75	13 866	13.946 (1.190)	885486	10.7931	11
5	6 1 1 2-Trichloroethane	22	14 122	14 132 (0 913)	510327	10 1754	10
5	7 Tetrachloroethere	166	14 292	14.282 (0.913)	930409	10 1367	10
5	8 Methyl Butyl Katone	42	14 421	14 431 (0.923)	897972	10 1346	10
5	9 Dibromochloromethane	129	14 692	14 682 (0.933)	1086033	12,1421	12
5	0 1 2-Dibromosthane	107	14 995	14 885 (0.949)	937502	10,8972	11
* £	1 Chlorobenzene-d5	117	15 472	15.472 (1 000)	2577111	10.0000	
6	2 Chlorobenzene	112	15 509	15.509 (1.002)	1465346	10.3526	10
0				-3.305 (2.002)			

						CONCENTR	ATIONS
		QUANT SIG				ON-COLUMN	FINAL
Compo	Inds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
			m m		*******	******	******
63	Ethylbenzene	91	15.595	15.595 (1.008)	2106899	10.1255	10
84	Nonane	57	15.648	15.648 (1.011)	1002681	9.30593	9.3
64	Xylene (m,p)	106	15.744	15.744 (1.018)	1577068	19.9832	20
65	Xylene (o)	106	16.262	16.262 (1.051)	781741	9.72176	9.7
66	Styrene	104	16.283	16.283 (1.052)	1158632	10.9803	11
67	Bromoform	173	16.555	16.555 (1.070)	910006	12.4865	12
68	Cumene	105	16.683	16.683 (1.078)	2295492	10.0689	10
69	1,1,2,2-Tetrachloroethane	83	17.078	17.078 (1.104)	1063133	9.83883	9.8
73	1,2,3-Trichloropropane	75	17.158	17.158 (1.109)	897875	10.1210	10
72	n-Propylbenzene	91	17.169	17.169 (1.110)	2634635	10.4438	10
71	n-Decane	57	17.265	17.265 (1.116)	1127677	9.58386	9.6
74	4-Ethyltoluene	105	17.297	17.297 (1.118)	2219399	10.6177	11
76	2-Chlorotoluene	91	17.324	17.324 (1.120)	2032927	10.5054	11
75	1,3,5-Trimethylbenzene	105	17.367	17.367 (1.122)	1804948	10.0715	10
77	a-Methylstyrene	118	17.628	17.628 (1.139)	869479	11.3240	11
78	Tert-Butylbenzene	119	17.735	17.735 (1.146)	1794198	9.99531	10
79	1,2,4-Trimethylbenzene	105	17.799	17.799 (1.150)	1743049	10.1233	10
80	Sec-Butylbenzene	105	17.986	17.986 (1.162)	2626580	10.3065	10
81	4-Isopropyltoluene	119	18.140	18.140 (1.172)	2232416	10.5892	11
82	1,3-Dichlorobenzene	146	18.188	18.188 (1.176)	1186922	10.1849	10
83	1,4-Dichlorobenzene	146	18.301	18.300 (1.183)	1170232	10.2522	10
86	Benzyl Chloride	91	18.445	18.445 (1.192)	1613930	11.7880	12
85	n-Undecane	57	18.626	18.626 (1.204)	1129587	9.43840	9.4
87	n-Butylbenzene	91	18.631	18.631 (1.204)	1991694	10.9868	11
88	1,2-Dichlorobenzene	146	18.765	18.759 (1.213)	1110419	10.1058	10
89	n-Dodecane	57	20.030	20.030 (1.295)	948887	12.2070	12
90	1,2,4-Trichlorobenzene	180	21.017	21.017 (1.358)	834257	11.8604	12
91	Hexachlorobutadiene	225	21.198	21.198 (1.370)	733780	10.5093	11
92	Naphthalene	128	21.471	21.471 (1.388)	2004179	13.1398	13
93	1,2,3-Trichlorobenzene	180	21.914	21.914 (1.416)	798471	12.9333	13

QC Flag Legend

Q - Qualifier signal failed the ratio test.

TestAmerica Burlington

RECOVERY REPORT

Client Name: Fraction: VOA Sample Matrix: GAS Lab Smp Id: CA082209ICV Level: LOW Operator: njr SampleType: ICV Data Type: MS DATA SpikeList File: all.spk Quant Type: ISTD Sublist File: all.sub Method File: /chem/C.i/Csvr.p/cilto15.b/sto15.m Misc Info: CA082209LCS;082309CA;1;200

CONC CONC ∛ SPIKE COMPOUND ADDED RECOVERED RECOVERED LIMITS ppbv ppbv 70-130 1 Dichlorodifluorome 10 10 104.96 70-130 2 Freon-22 10 11 105.84 3 1,2-Dichlorotetraf 10 11 108.41 70-130 4 Chloromethane 10 10 101.33 70-130 5 n-Butane 10 9.5 94.61 70-130 107.28 6 Vinyl Chloride 10 11 70-130 7 1,3-Butadiene 10 11 109.10 70-130 9 Bromomethane 70-130 10 10 104.05 10 Chloroethane 10 70-130 10 102.08 11 Isopentane 10 9.8 98.33 70-130 12 Bromoethene 10 10 103.14 70-130 13 Trichlorofluoromet 10 10 101.20 70-130 14 Pentane 10 8.6 85.51 70-130 15 Ethyl Ether 10 70-130 9.2 92.20 16 Acrolein 70-130 10 8.1 81.36 70-130 17 Freon TF 10 11 111.27 18 1,1-Dichloroethene 10 70-130 11 108.46 19 Acetone 10 9.6 95.86 70-130 20 Isopropyl Alcohol 10 9.8 98.41 70-130 21 Carbon Disulfide 70-130 10 101.55 10 22 3-Chloropropene 10 10 100.92 70-130 23 Acetonitrile 10 86.19 70-130 8.6 70-130 24 Methylene Chloride 10 9.4 94.18 25 tert-Butyl Alcohol 10 70-130 10 102.50 26 Methyl tert-Butyl 70-130 10 10 100.26 27 trans-1,2-Dichloro 70-130 10 10 100.12 70-130 28 n-Hexane 10 9.5 95.42 29 1,1-Dichloroethane 10 102.83 70-130 10 30 Methyl Ethyl Keton 10 9.5 94.66 70-130 31 cis-1,2-Dichloroet 10 10 102.61 70-130 70-130 33 Tetrahydrofuran 10 9.3 92.77 34 Chloroform 10 10 103.69 70-130 35 1,1,1-Trichloroeth 10 10 104.07 70-130

Client SDG: cilto15 Client Smp ID: CA082209ICV

Data File: /chem/C.i/Csvr.p/cilto15.b/cil10q.d Report Date: 27-Aug-2009 10:38

		CONC	CONC	8	TTNTE
	IKE COMPOUND	ADDED	RECOVERED	RECOVERED	LIMITS
<u> </u>	36 Cyclohexane	10	10	101.88	70-130
	37 Carbon Tetrachlori	10	11	106.90	70-130
	38 2,2,4-Trimethylpen	10	10	101.05	70-130
	39 Benzene	10	9.8	98.17	70-130
M	40 1,2-Dichloroethene	20	20	100.00	70-130
	41 1,2-Dichloroethane	10	10	104.63	70-130
	42 n-Heptane	10	9.7	96.84	70-130
	44 1-Butanol			105.56	70-130
	45 Tricnloroetnene				
	46 Metnyi Methacrylat				
	47 1,2-Dichioropropan	10	9.9		70-130
	40 I,4-DIOKalle	10	9.0		70-130
	50 Bromodichlorometha	10	11		70-130
	51 cis-1.3-Dichloropr	10	11	105 79	70 - 130
	52 Methyl Isobutyl Ke	10	9.8	98.24	70 - 130
	53 n-Octane	10	10	101.70	70-130
	54 Toluene	10	9.9	98.80	70-130
	55 trans-1,3-Dichloro	10	11	107.93	70-130
	56 1,1,2-Trichloroeth	10	10	101.75	70-130
	57 Tetrachloroethene	10	10	101.37	70-130
	58 Methyl Butyl Keton	10	10	101.35	70-130
	59 Dibromochlorometha	10	12	121.42	70-130
	60 1,2-Dibromoethane	10	11	108.97	70-130
	62 Chlorobenzene	10	10	103.53	70-130
	63 Ethylbenzene	10	10	101.26	70-130
[64 Xylene (m,p)	20	20	99.92	70-130
	65 Xylene (0)		9.7	97.22	70-130
	67 Promoform				70-130
		10	10	100 69	70-130
	69 1.1.2.2-Tetrachlor	10			70-130
м	70 Xylene $(total)$	30	29	97 78	70-130
	71 n-Decane	10	9.6	95.84	70-130
	72 n-Propylbenzene	10	10	104.44	70-130
	73 1,2,3-Trichloropro	10	10	101.21	70-130
	74 4-Ethyltoluene	10	11	106.18	70-130
	75 1,3,5-Trimethylben	10	10	100.72	70-130
	76 2-Chlorotoluene	10	11	105.05	70-130
	77 a-Methylstyrene	10	11	113.24	70-130
	78 Tert-Butylbenzene	10	10	99.95	70-130
	79 1,2,4-Trimethylben	10	10	101.23	70-130
	80 Sec-Butylbenzene	10	10	103.07	70-130
	81 4-Isopropyltoluene	10	11	105.89	70-130
	82 1,3-Dichlorobenzen	10	10	101.85	70-130
	83 1,4-Dichiorobenzen	10		102.52	70-130
	84 Nonane	10	9.3	93.06	170~130
		l	I		

Data File: /chem/C.i/Csvr.p/cilto15.b/cil10q.d Report Date: 27-Aug-2009 10:38

SPIKE COMPOUND	CONC ADDED ppbv	CONC RECOVERED ppbv	* RECOVERED	LIMITS
85 n-Undecane	10	9.4	94.38	70-130
86 Benzyl Chloride	10	12	117.88	70-130
87 n-Butylbenzene	10	11	109.87	70-130
88 1,2-Dichlorobenzen	10	10	101.06	70-130
89 n-Dodecane	10	12	122.07	70-130
90 1,2,4-Trichloroben	10	12	118.60	70-130
91 Hexachlorobutadien	10	11	105.09	70-130
92 Naphthalene	10	13	131.40*	70-130
93 1,2,3-Trichloroben	10	13	129.33	70-130

FORM 7 VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: TESTAMERICA BURLIN	GTON	Contract: 290	000	
Lab Code: STLV Case No.	: 29000	SAS No.:	SDG 1	No.: NY133422
Instrument ID: C	Calibrati	on Date: 09/1	LO/09 Time	e: 0826
Lab File ID: CIL100V	Init. Cal	ib. Date(s):	08/24/09	08/24/09
Heated Purge: (Y/N) N	Init. Cal	ib. Times:	0234	0725
GC Column: RTX-624 ID: 0.3	2 (mm)			

			MIN	_	MAX
COMPOUND	RRF	RRF10	RRF	%D	8D
=======================================	=========	========	=========	======	====
Vinyl Chloride	0.930	0.965	0.01	3.8	30.0
1,1-Dichloroethene	0.881	0.844	0.01	4.2	30.0
trans-1,2-Dichloroethene	1.514	1.424	0.01	5.9	30.0
cis-1,2-Dichloroethene	1.054	0.992	0.01	5.9	30.0
1,2-Dichloroethene (total)	1.284	1.208	0.01	5.9	30.0
Trichloroethene	0.244	0.253	0.01	3.7	30.0
Tetrachloroethene	0.356	0.418	0.01	17.4	30.0

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/C.i/Csvr.p/ciloto15.b/cil10ov.d Lab Smp Id: ASTD010 Client Smp ID: ASTD010 Inj Date : 10-SEP-2009 08:26 Operator : njr Inst ID: C.i Smp Info : Misc Info : ASTD010;091009CA;1;200 Comment Method : /chem/C.i/Csvr.p/ciloto15.b/sto15.m Meth Date : 17-Sep-2009 09:50 klp Quant Type: ISTD Cal Date : 24-AUG-2009 07:25 Cal File: cil40v.d Als bottle: 1 Dil Factor: 1.00000 Continuing Calibration Sample Integrator: HP RTE Compound Sublist: ROUX1 OCEAN.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

AMOUNTS

			QUANT SIG				CAL-AMT	ON-COL
Con	ipoi	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
====				= =			SSTREE	
	6	Vinyl Chloride	62	3.811	3.821 (0.384)	503399	10.0000	10
	18	1,1-Dichloroethene	96	6.527	6.543 (0.657)	440181	10.0000	9.6
	27	trans-1,2-Dichloroethene	61	7.920	7.936 (0.797)	743047	10.0000	9.4
	31	cis-1,2-Dichloroethene	96	9.569	9.591 (0.963)	517703	10.0000	9.4
*	32	Bromochloromethane	128	9.932	9.948 (1.000)	521626	10.0000	(Q)
м	40	1,2-Dichloroethene (total)	61			1260750	20.0000	19
*	43	1,4-Difluorobenzene	114	11.357	11.379 (1.000)	2763401	10.0000	
	45	Trichloroethene	95	11.7 1 5	11.736 (1.031)	699809	10.0000	10
	57	Tetrachloroethene	166	14.266	14.282 (0.923)	971074	10.0000	12
*	61	Chlorobenzene-d5	117	15.456	15.472 (1.000)	2320581	10.0000	

QC Flag Legend

Q - Qualifier signal failed the ratio test.

Raw QC Data – TO-15 Volatile

86.05 (97.14)

н

5,68 (6,60)

1

| 176 | 93.00 - 101.00% of mass 174

| 177 | 5.00 - 9.00% of mass 176

Data File: /chem/C.i/Csvr.p/cilto15.b/cil01pv.d

Date : 23-AUG-2009 23:05

Client ID: VBFB

Sample Info: VBFB

Instrument: C.i

Column phase: RTX-624

Operator: njr

Column diameter: 0,32

L	ocation	of Maximum	1: 95.00					
	Number	of points	\$\$ 135					
	m∕z	Y	₽4∕z	Y	m/z	Y	m/z	Y
+-	36,00	6784	72,00	3888	115.00	806	153.00	428
I	37.00	35248	73.00	29840	116.00	2133	154.00	368
L	38,00	31168	74.00	113632	117.00	3036	155.00	1725
I.	39,00	11238	75,00	335488	118.00	1833	156.00	531
١	40,00	468	76.00	28968	119.00	2625	157,00	1313
+- 1	41.00	86	77.00	3321	120.00	82	158.00	276
ı	42,00	6	78,00	2387	121.00	68	159.00	765
ı	43,00	176	79,00	13302	123,00	147	161.00	889
I	44.00	3615	80,00	4746	124.00	222	163.00	5
I	45,00	5721	81.00	13704	125.00	351	164.00	124
+- 1	46,00	460		3518	126.00	345	 165.00	183
I	47.00	6458	83,00	332	127.00	234	172,00	162
I	48,00	4377	85,00	143	128.00	2148	174.00	572288
I	49.00	29328	86.00	691	129.00	1175	175.00	41736
I	50,00	136128	87.00	24640	130.00	2308	176.00	555968
+-	51,00	40888		23680	131.00	922	177.00	36664
I.	52.00	2044	90,00	71	132.00	84	178.00	1113
I	53,00	207	91,00	2110	134.00	487	179.00	77
L	54,00	68	92.00	17920	135.00	1306	191.00	248
1	55.00	1790	93.00	26608	136.00	43	193.00	140
+-	56,00	9639	94.00	75936	137.00	704	194.00	88
I	57,00	17864	95,00	646080	139,00	194	195.00	6
ł	58,00	880	96,00	44288	140.00	416	203.00	67
I	59,00	39	97,00	1637	141.00	4982	207.00	674
1	60,00	6648	103.00	609	142.00	793	208.00	109
1	61.00	32464	104.00	2208	I 143.00	5061	1 210.00	112
I	62,00	32480	105.00	697	144.00	305	221.00	145
I	63.00	24176	106.00	2232	145.00	206	223.00	152
I	64.00	2277	107.00	624	146.00	946	247.00	78
1	65,00	281	108.00	82	147.00	522	249.00	40
+- 	67.00	2002	110.00	284	148.00	1574	1 250,00	96
I.	68.00	68248	111.00	351	149.00	688	253.00	302
I	69.00	69896	112.00	343	150.00	722	260.00	296
ı	70,00	5759	113.00	311	152.00	341	I	

Data File: /chem/C.i/Csvr.p/cilto15.b/cil01pv.d

Date : 23-AUG-2009 23:05

Client ID: VBFB

Sample Info: VBFB

Instrument: C.i

Operator: njr

Data File: /chem/C.i/Csvr.p/ciloto15.b/cil17pv.d Date : 10-SEP-2009 07:39 Client ID: VBFB Instrument: C.i Sample Info: VBFB Operator: njr

Column phase: RTX-624

Column diameter: 0.32

Data File: /chem/C.i/Csvr.p/ciloto15.b/cil17pv.d

Date : 10-SEP-2009 07:39

Client ID: VBFB

Sample Info: VBFB

Column phase: RTX-624

Instrument: C.i

Operator: njr

Column diameter: 0.32

ocatio	n of Maximu	n: 95.00					
Numb	er of point:	s : 132					
m/z	Y	m/z	Y	m/z	Y	m/z	Y
+ I 36.00	7723	+ I 75₊00	389248	+ 120.00	192	+ 157.00	1446
1 37.00	42872	76.00	33560	122,00	75	158,00	169
1 38.00	34736	77.00	4147	123,00	235	159,00	992
1 39,00	13154	1 78.00	2498	124.00	436	160,00	83
I 40₊00	273	1 79.00	19376	1 125.00	194	161.00	793
+ I 43₊00	214		6560	1 126.00	486	162.00	116
1 44.00	4178	81.00	19600	127,00	169	163.00	432
1 45.00	6597	82,00	4729	1 128,00	2665	165.00	256
I 46₊00	492	I 83.00	491	129,00	1315	172,00	120
47.00	6113	I 86₊00	432	130,00	2450	174.00	589440
I 48.00	5158	 I 87₊00	23632	1 131.00	1206	175.00	43408
1 49.00	34200	88,00	23384	132,00	85	176.00	572608
1 50,00	154688	91,00	2106	133.00	103	I 177,00	38176
I 51.00	46592	92,00	21184	I 134.00	397	178.00	1317
I 52₊00	1744	I 93₊00	31696	135.00	1010	179.00	373
i 55,00	1957	94.00	89264	136.00	409	 191.00	519
I 56₊00	11648	I 95₊00	692352	137.00	1411	193₊00	112
I 57,00	20776	I 96₊00	48216	139,00	248	195,00	86
I 58.00	952	97,00	1672	140.00	745	1 205,00	78
I 59₊00	364	102,00	68	141.00	7938	1 207,00	652
I 60.00	8120		173	+ 142.00	965		406
I 61.00	37520	104.00	3160	I 143.00	8061	1 232,00	362
1 62.00	37872	105.00	1071	I 144.00	620	1 234,00	75
I 63₊00	28136	106.00	2857	145.00	996	1 235,00	67
1 64.00	2437	1 107.00	508	146.00	1172	239₊00	72
I 65₊00	173	110₊00	446	147.00	373	1 252,00	79
I 67₊00	1503	111.00	594	I 148.00	1711	I 253,00	31
I 68₊00	78760	112.00	333	I 149.00	651	1 254,00	25
69.00	78264	113,00	583	150,00	801	1 255,00	82
I 70₊00	5656	115.00	634	152,00	430	1 260.00	168
1 71.00	227	116.00	3053	1 153,00	791	 I	
1 72.00	4379	117.00	4719	I 154.00	669	I	
1 73.00	34872	118.00	2777	155.00	1828	I	
74.00	133120	119.00	3527	156.00	420	I	

Data File: /chem/C.i/Csvr.p/ciloto15.b/cil17pv.d Date : 10-SEP-2009 07:39 Client ID: VBFB Sample Info: VBFB

Instrument: C.i

Operator: njr Column diameter: 0.32

Page 1

FORM 1 VOLATILE ORGANICS ANALYSIS DATA SHEET

127-18-4----Tetrachloroethene

CLIENT SAMPLE NO.

ı——

0.20 U

Ish Name, TECTAMEDIC		Contract, 20000	MBLK091009CA	
Lab Name: IESIAMERIC	A BURLINGION	contract: 29000		_
Lab Code: STLV	Case No.: 29000	SAS No.: SDO	No.: NY133422	
Matrix: (soil/water)	AIR	Lab Sample II	: MBLK091009CA	
Sample wt/vol:	200.0 (g/mL) ML	Lab File ID:	CILB010	
Level: (low/med)	LOW	Date Received	l:	
% Moisture: not dec.		Date Analyzed	l: 09/10/09	
GC Column: RTX-624	ID: 0.32 (mm)	Dilution Fact	or: 1.0	
Soil Extract Volume:	(uL)	Soil Aliquot	Volume:	_(uL)
CAS NO.	COMPOUND	CONCENTRATION UNITS (ug/L or ug/Kg) PPE	e: VV Q	
75-01-4 75-35-4 156-60-5 156-59-2 540-59-0 79-01-6	Vinyl Chloride 1,1-Dichloroet trans-1,2-Dichlo cis-1,2-Dichlo 1,2-Dichloroet Trichloroethen	hene loroethene roethene hene (total) e	0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U	

Data File: /chem/C.i/Csvr.p/ciloto15.b/cilb010.d Report Date: 17-Sep-2009 09:50

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/C.i/Csvr.p/ciloto15.b/cilb010.d Lab Smp Id: MBLK091009CA Client Smp ID: MBLK091009CA Inj Date : 10-SEP-2009 10:02 Opérator : njr Inst ID: C.i Smp Info : Misc Info : MBLK091009CA;091009CA;1;200 Comment Method: /chem/C.i/Csvr.p/ciloto15.b/sto15.mMeth Date: 17-Sep-2009 09:50 klpQuant 5Cal Date: 24-AUG-2009 07:25Cal Fil Quant Type: ISTD Cal File: cil40v.d Als bottle: 3 QC Sample: BLANK Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: ROUX1 OCEAN.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

							CONCENTRA	ATIONS
			QUANT SIG				ON-COLUMN	FINAL
Compounds		inds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
==	===:		====					===== <u></u>
	6	Vinyl Chloride	62	Comp	ound Not Detecte	d.		
	18	1,1-Dichloroethene	96	Comp	ound Not Detecte	d.		
	27	trans-1,2-Dichloroethene	61	Comp	ound Not Detecte	d.		
	31	cis-1,2-Dichloroethene	96	Comp	ound Not Detecte	d.		
*	32	Bromochloromethane	128	9.927	9.948 (1.000)	484484	10.0000	(Q)
М	40	1,2-Dichloroethene (total)	61	Comp	ound Not Detecte	d.		
*	43	1,4-Difluorobenzene	114	11.357	11.379 (1.000)	2736086	10.0000	
	45	Trichloroethene	95	Comp	ound Not Detecte	d.		
	57	Tetrachloroethene	166	Comp	ound Not Detecte	d.		
*	61	Chlorobenzene-d5	117	15.456	15.472 (1.000)	2436275	10.0000	

QC Flag Legend

Q - Qualifier signal failed the ratio test.

FORM 1 VOLATILE ORGANICS ANALYSIS I	DATA SHEET
Lab Name: TESTAMERICA BURLINGTON Cor	CA091009LCS
Lab Code: STLV Case No.: 29000 SA	AS No.: SDG No.: NY133422
Matrix: (soil/water) AIR	Lab Sample ID: CA091009LCS
Sample wt/vol: 200.0 (g/mL) ML	Lab File ID: CIL100Q
Level: (low/med) LOW	Date Received:
% Moisture: not dec	Date Analyzed: 09/10/09
GC Column: RTX-624 ID: 0.32 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV Q
75-01-4Vinyl Chloride 75-35-4Vinyl Chloride 156-60-5trans-1,2-Dichloro 156-59-2cis-1,2-Dichloro 540-59-01,2-Dichloroether 79-01-6Trichloroethene 127-18-4Tetrachloroethene	11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

Data File: /chem/C.i/Csvr.p/ciloto15.b/cil10oq.d Report Date: 17-Sep-2009 09:50

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/C.i/Csvr.p/ciloto15.b/cil10oq.d Lab Smp Id: CA091009LCS Client Sr Client Smp ID: CA091009LCS Inj Date : 10-SEP-2009 09:14 Operator : njr Inst ID: C.i Smp Info : Misc Info : CA091009LCS;091009CA;1;200 Comment : Method: /chem/C.i/Csvr.p/ciloto15.b/sto15.mMeth Date: 17-Sep-2009 09:50 klpQuant 1Cal Date: 24-AUG-2009 07:25Cal Fil Quant Type: ISTD Cal File: cil40v.d Als bottle: 2 QC Sample: LCS Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: ROUX1 OCEAN.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

								CONCENTRA	ATIONS
			QUANT SIG					ON-COLUMN	FINAL
Cc	mpo	unds	MASS	RT	EXP RT	REL RT	RESPONSE	(ppbv)	(ppbv)
		**========================							
	6	Vinyl Chloride	62	3.816	3.821	(0.384)	496071	10.5825	11
	18	1,1-Dichloroethene	96	6.527	6.543	(0.657)	466000	10.5002	11
	27	trans-1,2-Dichloroethene	61	7.926	7.936	(0.798)	751831	9.85854	9.9
	31	cis-1,2-Dichloroethene	96	9.569	9.591	(0.963)	515356	9.70263	9.7
*	32	Bromochloromethane	128	9.932	9.948	(1.000)	503880	10.0000	
м	40	1,2-Dichloroethene (total)	61				1267187	19.5612	20
*	43	1,4-Difluorobenzene	114	11.357	11.379	(1.000)	2657938	10.0000	
	45	Trichloroethene	95	11.715	11.736	(1.031)	683365	10.5389	11
	57	Tetrachloroethene	166	14.266	14.282	(0.923)	909438	11.4503	11
*	61	Chlorobenzene-d5	117	15.456	15.472	(1.000)	2230025	10.0000	

Sample Preparation – TO-15 Volatile

TestAmerica Burlington - Manual Integration Summary SDG: cilto15 Fraction: Volatile

==== Instrument C - No Manual Integrations =====

90/5420 CJL

.

Secondary Review(2): _

Secondary Review(1):

Summary Generated: jd1 08/27/2009 10:40

TestAmerica Burlington - Manual Integration Summary SDG: NY133422 Fraction: Volatile ===== Instrument C - No Manual Integrations ===== KU 09/17/09

Secondary Review(2):

Secondary Review(1):

Summary Generated: klp 09/17/2009 09:51

٠

Post-Sampling Air Canister Pressure Check Record

ROUXS	NY133422	133422	9-5-09	1457	29.8	2	2]	G4	.T.L.
Sampling Internation	an an an an an an an an an an an an an a		al en en en en en en en en en en en en en			and the second s	and and a second		Section Constraints
(1) Is a Field Test Data	a Sheet (FTDS) o	or similar samp	ling documer	ntation present	?	~			
(2) Is the flow controlle	r ID used for eac	ch canister rec	orded?			V			
(3) Is visible sign of da	mage to caniste	r and/or flow co	ontrolier (FC)	present?			V		
If damage observed, li	st equipment IDs	s and describe	condition:						

Post-Sampling Return	n Pressure Ch						
A Laboratory	Cannorad.				FGRam	GNOR	
805648	3138	- 8.1	N	3101	Ý	2862 FDCJ	
	•						
							ت -
	-						
		· · · ·					
·							
	_						
				d.	g ·		
				-24			ند
				q'2			
			18	ŕ			
							- 4
							بر ر: •
۷							

¹ Criteria: Return Pressure should be between -1 and -10 ("Hg)

² If return pressure is not within criteria, initiate anomaly report.

in the second second

³ Record the ID of the FC used for sampling if information is provided, otherwise leave blank.

LOG
T RUN
UMEN.
INSTR
BC/MS

Sequence					Standarc	d Traceabili	ţ				Instrument Information	
Batch ID:	01	Start Date: C	1 10/12/80	Time: 2305	ISTD Lot	H H	10-20	20-2			Instrument ID: C	
Test Method:	LOK TOJ TOS	The End Date: 0	r/24/05 1	Time: 230 S	CAL STD	D Lot # 💪	le con	mut			Instrument: 5973	
ICAL Date:	08[23]04			AND THE A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DEC	ICV./LC	S Lot # A7	1-0.7.24	C1 12			Column Type: RTX-624	-
	Manager		Analyst		Analyst	oliu		Analyst		Benny Store & a Mark & " "All - The	Analyst	
Name/Initial					Willia	"Dell	Ore/ant	Paul	Daiale			
Signature					ll,	r B. h	100	Pac	212	CHA		
se ann an t-thursday	「「「「「「」」」、「「」」、「」」、「」」、「」」、「」」、「」、「」、「」、	Sequenc	e Information					Individ	ual Sample I	Review		
Injection	Lab ID /	Summa	ETR	Dilution	Inlet	Volume	Operator	Internal	Result	Primary	Comments /	
Time	File Name	Can ID		Factor	*	(mL)		Std.	Conc.	Anal.	Standard Traceability	
2305	CLUDIRV	ないと	BFB	1 42		f	NJCN	A A V	>	しかって	۱ د	
0100	C11601	4633	AA		~	200			7	qin		
9058	C(LB02	~~			-	_			7	-		
0146	C11 (N3	7	+		-				7			
0234	V-200-112	2620	Lovel 1		4				1		17-073169-63	
C322	CILOOSV	3640	Jevel 2		3				7		47-061969-02	
9410	CILOSY	3332	Jevel 3/4		ų				7		47-0022964-13	
0500	CI-10/	くてわわ	Jevel 4/5		V				7		AT-0 81209 -05	
8450	CILISY	3/47	blevel 5/L		9				7		AT-072469-UD	
0(3)	CILZA	3564	Burel617		r+-				7		-m-5xec0-14	
0225-	CILYON	3968	Jewel7/ S		8			4	$\overline{\Lambda}$		AT-07-2909- OU	
CI VD	CILBOY	4633	N#		1)	1			
0401	CILIOR	6526	ICV		Q	\$	7.)	1		4	
0948	cli bos	4632	MAK		١,	200	Gan M	1	7			
1042	C16 0026	2600	STRC'O		ょ	-		7	1		AC AT-07.3169-03	
1130	C10024	3640	OISRUES	•	ς		•	1)		14 47 061907-02	
してい	CILOSO	333	Soluce	+	1	-!		7	1		AC AT-072969-13	
1305	80353602	4853	133085	50	01	40		7	7	+	CDF 10.0 C	
1353	80354202	3691		لرکل کر	1	80		7	7	PAD	25,0 C	
142	803 5 402	2984	•	201	な	40]]		40.1 C	
130	803 54502	4844		687	/3	30	-)		7	ann	10.0	_
i643	C11/012	4428	CCV2	N/A	ら	200	WRD	NA	7	CHA		
								-				
							N A N	5/2	100/6			
								7/0	10/0			
					Lec	jend: C=C	omplete •	R=Reanaly	rze∎ = H	ligh = ↓= L	ow Second and Acceptable 	

Page 86 of 100

-

BR-FAI020:05.23.08:4 TestAmerica

				GC/M	S INST	RUMEN	T RUN L	00			
Sequence					Standard	d Traceabili	ţ				Instrument Information
Batch ID:	CILO	Start Date: (1 40/01/00	Time: 0739	ISTD Lot	H H H	27 - 011	- UJ			Instrument ID: C
Test Method:	TOIS	End Date: (- بىلىابەر	Time: 0734	CAL STD	Lot # A	170901	20-60			Instrument: 5973
ICAL Date:	08/23/09			d of the second s	ICV / LC	S Lot # A	010201	402		-	Column Type: RTX-624
	Manager	NUMBER (S. 1) IS A LAND IN THE AND AND AND AND AND AND AND AND AND AND	Analyst	see a subject to the subject of the	Analyst			Analyst			Analyst
Name/Initial											
Signature	en na ser en en se se se se se se se se se se se se se	A M. Property of the second second	and the provide statement of the provide state	n dar in ferdere die ein in eine daten al. Die Verlie einen einen einen einen einen einen einen einen einen ein		-	a to be a set of the s		6		
errow and the second of the	2011年に1月してもの時期は1月間には1月1日、1月1日になった。 ちょうゆ	Sequence	ce Information					Individ	ual Sample	Review	「「「「」」「「」」「「」」「「」」「「」」」「「」」」「「」」」「」」」「
Injection	Lab ID /	Summa	ETR	Dilution	Inlet	Volume	Operator	Internal	Result	Primary	Comments /
Time	File Name	Can ID		Factor	#	(mL)		Std.	Conc.	Anal.	Standard Traceability
0739	CHUBA	\$ Ż	BFB	I €Z		1	JES	-NA	7	21FZ	
0826	CILISON	3203	525	_	_	2=0		7	7	_	
ODIA	(11 100 B	0152	142		2	_	_	7	\		it Acris
2001	CILBOIO	4634	MBUL	6	r	-		>	7	-7	
1051	SD57292	BALS	0++221	4000	4	10		~)	NJ-	C2 C220
1139	PULL SOS	-	_	4000	Ń	10			\mathbf{k}	-	5
123	8057313			500	٩	80		~~~	>		5
1315	8057378			2000	۲.	20		N,	7	//6	C
1403	80573JS	_		70.2	9/9 32	57		$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	5	2	00020 C
1507	SUST342	7	٦	70.2	5	57	く	المسلية]	iuno B	C 2220
اجروخ	805612	4388	132415	10	N OI	or oa z	NEY	~	~	NHU	0
ولالا	805627	4292	01123416	(0		c1.	/	~	7		
1221	805628	3836	133416	01	21	50			~		
1822	805648D	3136	133422	۲ ل	13	50		7			HILTIC C
1-109	805602A	4824	133411	9,09	7	22	-)	7	4		2 K 1:6
1959	3141	Ź	٩Ž	0.7	. <i>ب</i> ر	0001	112	7	\mathbf{r}		
0507	3390	7	~	ن. ۲	٦	0001	4	7	7	ง	
047	3795	82	NA	0.7	-	(000)	Fr F	>		J-S-	
LUR	4923	42	đZ	207	,1	0001	_	7	7		
23,2	805832	6915	133422		رمرد امرد	002	_	2	>		3
5000	805 833	_	133466	- ح	5	زمر)	>		2
0053	805834		13417	9 9 9	عد ر	2010	_	7	>	4	Histor C
	605 K35				Þ	200	1				
DIAI	GDS 605 22	4824	1:224.1	900)	71	33	F.C	7	\	MSC	9
·											
											ANI LANG
						2					
V					Le <u>c</u>	gend: C=C	omplete -	R=Reanaly	ze • ↑ = H	igh = ↓= Lo	ow ■ ✓=Reviewed and Acceptable

Í

Page 4 of 100

BR-FAI020:05.23.08:4 TestAmerica

7

Sample Handling

1800.GoFedEx 1.800.463.3339

TestAmerica Burlington									
	SAMPL	E REC	EIPT & LOO	G IN C	HECI	KLIST			
Client D())X	<u></u>	Date Re	ceived DAL	661	AA	Log in	Date:	09/05/08	
		Time Re		1 7	$\varphi \perp$	By: A	<u> </u>	01/05/04	
SDC: 11/127 / 17	7	Deceive	A By: K	φ		Signat	170.	1 - Place	
Broingt: 29600	<u> </u>	# Coole	re Beceived	12	~Y	PM Sig	noture	U-Manan	
Samplas Dalhamd Dy: V Shin	ning Service - Courtier		- Other (specify)		2	Date:	natul 6	alert as	
List Air bill Number(s) At Attac	h a photocopy of the Air			_		Date.		aprocor	
List Air bill Number(s) or Attac	in a photocopy of the All	D111.							
COOLER SCREEN				VEQ	NO	NA	1	COMMENTS	
Thom is no suidenes to indice				1 5				COMMENTS	
Custody apple are prepart and	listost			l X					
Custody seals are present and				+	$\overline{\mathbf{x}}$				
Custody seal numbers are pre					ĻĀ.				
ir yes, ast custody sear numbe	IS								
The second section Trans.	What les _ Dive les X								
Inermal Preservation Type: a	VVet ICe a Blue ICe and		Uner (specity)						
Declarate Armini Contraction	Contection Factor (CF)	$\varphi = \varphi$		_			16		
		- •C	Cooler 11			Cooler	15	<u> </u>	
Cooler 2: °C	Cooler 7	°C	Cooler 12		°C	Cooler	1/	<u>"C</u>	
Cooler 3: *C	Cooler 8	°C	Cooler 13	_	•0	Cooler	18	<u>°C</u>	_
Cooler 4:C		°C	Cooler 14		<u>°C</u>	Cooler	19	°	
Cooler 5 °C	Cooler 10	°C	Cooler 15		°C	Cooler	20	°C	
Unless otherwise documented	, the recorded temperati	ure readii	ngs are adjusted	readings	s to acc	ount for t	he CF (of the IR Gun	
EPA Criteria: 0-6°C, except for	rairand geo samples w	hich shol	uld be at ambient	tempera	atur o an	d tissue s	sample	s, which may be frozen.	
Some clients require thermal p	reservation criteria of 2-	4°C or of	ther such criteria.	The PM	f must n	otify SM	when a	alternate criteria is specified.	
SAMPLE CONDITION				YES	NO	NA		COMMENTS	
Sample containers were receiv	ed intact			\times					
Legible sample labels are affix	ed to each container			\geq					
CHAIN OF CUSTODY (COC)				YES	NO	NA		COMMENTS	
COC is present and includes the	e following information	for each	container:						
 Sample ID / Sample Description 	ion	_		\searrow	1				
 Date of Sample Collection 				\geq	<u> </u>				
 Time of Sample Collection 				\times					
 Identification of the Sampler 				\geq	1				
 Preservation Type 				Ĺ		X			
 Requested Tests Method(s) 				\geq					
 Necessary Signatures 				\sim					
Internal Chain of Custody (ICO	C) Required				\sim				
If yes to above, ICOC Record i	nitiated for every Works	heet				$\left \times\right $			
SAMPLE INTEGRITY / USABI	LITY			YES	NO	NA		COMMENTS	
The sample container matches	the COC			\mathbf{X}					•
Appropriate sample containers	were received for the te	sts reque	ested	\mathbf{X}	<u>`</u>				
Samples were received within I	holding time			X					
Sufficient amount of sample is	provided for requested a	inalyses		Х					
VOA vials do not have headspa	ace or a bubble >6mm (*	1/4" diam	eter)			\times			
Appropriate preservatives were	used for the tests reque	ested				\times			
pH of inorganic samples check	ed and is within method	specifica	tion			\mathbf{X}			-
If no, attach Inorganic Sample p	oH Adjustment Form					$\perp \times$			
ANOMALY / NCR SUMMARY									
									\neg
									-
									-
									-
									-
				_					

TestAmerica South Burlington, VT Extended Data Package

NY133428

TestAmerica Laboratories, Inc.

September 17, 2009

Mr. Rob Kovacs Roux Associates 209 Shafter Street Islandia, NY 11749

Re: Laboratory Project No. 29000 Case: 29000; SDG: NY133428

Dear Mr. Kovacs:

Enclosed are the analytical results for the samples that were received by TestAmerica Burlington on September 4th, 2009. Laboratory identification numbers were assigned, and designated as follows:

Lab ID	Client	Sample	Sample
	<u>Sample ID</u>	<u>Date</u>	<u>Matrix</u>
	Received: 09/04/09 ETR No:	133420	
805636	IAQ-VAC	09/02/09	AIR
805637	AMB-FENCE	09/02/09	AIR
805638	IAQ-BOOK	09/02/09	AIR

Documentation of the condition of the samples at the time of their receipt and any exception to the laboratory's Sample Acceptance Policy is documented in the Sample Handling section of this submittal.

The volatile organics analyses for samples IAQ-VAC and IAQ-BOOK were accomplished at dilution based on screen analyses, to ensure quantitation of all target constituents within the range of calibrated instrument response.

Any reference within this report to Severn Trent Laboratories, Inc. or STL, should be understood to refer to TestAmerica Laboratories, Inc. (formerly known as Severn Trent Laboratories, Inc.) The analytical results associated with the samples presented in this test report were generated under a quality system that adheres to requirements specified in the NELAC standard. Release of the data in this test report and any associated electronic deliverables is authorized by the Laboratory Director's designee as verified by the following signature.

If there are any questions regarding this submittal, please contact me at 802 660-1990.

Sincerely,

Don Dawicki Project Manager

Chain of Custody	7
QC Summary TO-15 Volatile	9
Supportive Documentation TO-15 Volatile	15
Standards TO-15 Volatile	27
Raw QC Data TO-15 Volatile	68
Sample Preparation TO-15 Volatile	81
Sample Handling	87

CLIENT SAMPLE NO.

IAQ-VAC

Lab Name: TAL Burlington

SDG Number: NY133428

Dilution Factor: 5.00

Sample Matrix: AIR

Lab Sample No.: 805636

Date Analyzed: 9/9/2009

Date Received: 9/4/2009

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	1.0	U	1.0	2.6	U	2.6
1,1-Dichloroethene	75-35-4	1.0	U	1.0	4.0	U	4.0
trans-1,2-Dichloroethene	156-60-5	1.0	U	1.0	4.0	U	4.0
cis-1,2-Dichloroethene	156-59-2	1.0	U	1.0	4.0	U	4.0
1,2-Dichloroethene (total)	540-59-0	1.0	U	1.0	4.0	U	4.0
Trichloroethene	79-01-6	1.0	U	1.0	5.4	U	5.4
Tetrachloroethene	127-18-4	130		1.0	880		6.8

Printed: 9/17/2009 9:27:25 AM

Page 1 of 1

CLIENT SAMPLE NO.

AMB-FENCE

Lab Name: TAL Burlington

SDG Number: NY133428

Dilution Factor: 0.80

Sample Matrix: AIR

Lab Sample No.: 805637

Date Analyzed: 9/9/2009

Date Received: 9/4/2009

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.16	U	0.16	0.41	U	0.41
1,1-Dichloroethene	75-35-4	0.16	U	0.16	0.63	U	0.63
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	U	0.63
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	U	0.63
1,2-Dichloroethene (total)	540-59-0	0.16	U	0.16	0.63	U	0.63
Trichloroethene	79-01-6	0.16	U	0.16	0.86	U	0.86
Tetrachloroethene	127-18-4	0.16	U	0.16	1.1	U	1.1

Printed: 9/17/2009 9:27:26 AM

Page 1 of 1

CLIENT SAMPLE NO.

IAQ-BOOK

Lab Name: TAL Burlington

SDG Number: NY133428

Dilution Factor: 2.50

Sample Matrix: AIR

Lab Sample No.: 805638

Date Analyzed: 9/9/2009

Date Received: 9/4/2009

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.50	U	0.50	1.3	U	1.3
1,1-Dichloroethene	75-35-4	0.50	U	0.50	2.0	U	2.0
trans-1,2-Dichloroethene	156-60-5	0.50	U	0.50	2.0	U	2.0
cis-1,2-Dichloroethene	156-59-2	0.50	υ	0.50	2.0	U	2.0
1,2-Dichloroethene (total)	540-59-0	0.50	U	0.50	2.0	U	2.0
Trichloroethene	79-01-6	0.50	U	0.50	2.7	U	2.7
Tetrachloroethene	127-18-4	74		0.50	500		3.4

Printed: 9/17/2009 9:27:27 AM

Page 1 of 1

e

CLIENT SAMPLE NO.

CA090809LCS

TAL Burlington Lab Name:

SDG Number: NY133428

Dilution Factor: 1.00

Sample Matrix: AIR

Lab Sample No.: CA090809

Date Analyzed: 9/8/2009

Date Received: 11

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	10		0.20	26		0.51
1,1-Dichloroethene	75-35-4	11		0.20	44		0.79
trans-1,2-Dichloroethene	156-60-5	9.7		0.20	38		0.79
cis-1,2-Dichloroethene	156-59-2	9.8		0.20	39		0.79
1,2-Dichloroethene (total)	540-59-0	20		0.20	79		0.79
Trichloroethene	79-01-6	11		0.20	59		1.1
Tetrachloroethene	127-18-4	12		0.20	81		1.4

Printed: 9/17/2009 9:27:28 AM

Page 1 of 1

Lab Name: TAL Burlington

SDG Number: NY133428

Dilution Factor: 0.80

Sample Matrix: AIR

CLIENT SAMPLE NO.

MBLK090809CA

Lab Sample No.: MBLK0908

Date Analyzed: 9/9/2009

Date Received: / /

Target Compound	CAS Number	Results in ppbv	٩	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.16	U	0.16	0.41	U	0.41
1,1-Dichloroethene	75-35-4	0.16	U	0.16	0.63	U	0.63
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	U	0.63
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	U	0.63
1,2-Dichloroethene (total)	540-59-0	0.16	U	0.16	0.63	U	0.63
Trichloroethene	79-01-6	0.16	U	0.16	0.86	υ	0.86
Tetrachloroethene	127-18-4	0.16	U	0.16	1.1	U	1.1

Printed: 9/17/2009 9:27:29 AM

TestAmerica Burlington

TestAmerica Burlington Data Qualifier Definitions

Organic

- U: Compound analyzed but not detected at a concentration above the reporting limit.
- J: Estimated value.
- N: Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds (TICs) where the identification of a compound is based on a mass spectral library search.
- P: SW-846: The relative percent difference for detected concentrations between two GC columns is greater than 40%. Unless otherwise specified the higher of the two values is reported on the Form I.

CLP SOW: Greater than 25% difference for detected concentrations between two GC columns. Unless otherwise specified the lower of the two values is reported on the Form I.

- C: Pesticide result whose identification has been confirmed by GC/MS.
- B: Analyte is found in the sample and the associated method blank. The flag is used for tentatively identified compounds as well as positively identified compounds.
- E: Compounds whose concentrations exceed the upper limit of the calibration range of the instrument for that specific analysis.
- D: Concentrations identified from analysis of the sample at a secondary dilution.
- A: Tentatively identified compound is a suspected aldol condensation product.
- X,Y,Z: Laboratory defined flags that may be used alone or combined, as needed. If used, the description of the flag is defined in the project narrative.

Inorganic/Metals

- E: Reported value is estimated due to the presence of interference.
- N: Matrix spike sample recovery is not within control limits.
- Duplicate sample analysis is not within control limits.
- B: The result reported is less than the reporting limit but greater than the instrument detection limit.
- U: Analyte was analyzed for but not detected above the reporting limit.

Method Codes:

Р	ICP-AES
MS	ICP-MS
\sim	Cold Vana

- CV Cold Vapor AA
- AS Semi-Automated Spectrophotometric

FQA009:02.18.08:4 TestAmerica Burlington

Chain of Custody

30 Community Drive	Callisler	dillipo			custous										
Sulte 11 South Burlington, VT 05403	TestAmerica Analytical Tes	ting Corp. a	ou sewnss	liability with I	espect to the co	dection and sh	ipment o	f these :	amples.						
phone 802-660-1990 fax 802-660-1919									ł						I
Client Contact Information	Project Manager: Kol	Kovac	ŝ		Samples Coll	ected By:	SiCa	en el	15	of	0	ocs			
Company: Roux Associates	Phone: 631-232	-2600													
Address: 209 Sherfor St	Email: rkovacs	S YOUX	NC.CO	٤						· ((
Phone: 621-722 -7600	Site Contact: Ko k K	01003								(noita					uona
FAX: 631-232 - 9898	TA Contact:									es s			_		as s
Project Name: GOMCHOM	Analysis 1	lurnaroun	d Time							note					ອາດບ
Site: OCEAnsick, NY	Standard (Spe	ecify)				_				ui (ł					ui Ái
PO #	Rush (Specif	()								beck					isedi
			Canister Vacuum in	Canister Vacuum in			4¥ 2	3C	SEC	s 92694) 1	idy ^T alq	or Air IA frei	88Đ	sso IIII	s esseer) 1
Sample Identification	Sample Date(s) Time Start	Time Stop	Field, "Hg (Start)	Fleld, 'Hg (Stop)	Flow Controller ID	Canister ID	1-01 1-01	A93	A93	T2A 9rh0	Ŭ8S	opui Iuqo	lloS	רשט	ome
		11112	Ą	×					V	₽	×		1		-
	101 10121	1	Ŗ	5	1955		╉	-		(┦	4	Ĥ	7
IAG - VAC	9209 1011	1806	-30	5.5	4492	૩૩૧૯				<u>入</u>		4			
AMB-FENCE	9/2/04 1015	1804	-30	s	1262	3320				Х		4			
14G-BOOK	9209 1089	1808	20	s Š	3479	ヒットゥ				X	7	1			
					-										1
Are which the former			Temperature	(Fahrenheit)			ľ				10000				Т
	Interior		Ambient												
SUMMERS AND & UNUSED	Start		705F												_
regulators	Stop		306E										•		
			Pressure (in	ches of Hg)											
DO NOI ANALIZE	Interior		Ambient												
TVC - MRY	Start		30.14 :	steedy											
-W-1 01	Stop		30.31	falling											
Special Instructions/QC Requirements & Comments: Dictulovuetiveve, 1,2-Dicty10voe4 ucivity, us, vvoitvoed, T()-15, Du)	theve (total) To	e sam	pies A Novée	There,	ichloree Trichlore	HIENE, C	is-l, and	ζ. ζ.	v loi	hior Mor	240	TVern	()-s	-70	
NYCDEC ARE CARE	R Joingrah			л Ч П П П П		10	Ϋ́	W)	9		י מיוי	5	> >	1	_
Samples Shippen by:	Date/Time:	102		Samplit	leceived b	11-4	110	12	52						7
Samples Relinquished by:	Date/Time:			Received		3									
Relinquished by:	Date/Time:			Received	by:				_						
Lab Use Only Shidoer Name	State of the second		Donand 6		Condition	10.00									

TestAmerica Burlington

Page 8 of 89

QC Summary – TO-15 Volatile

FORM 3 AIR VOLATILE LAB CONTROL SAMPLE

Lab Name: TESTAMERICA BURLINGTON Contract: 29000 Lab Code: STLV Case No.: 29000 SAS No.: SDG No.: NY133428 Matrix Spike - Sample No.: CA090809LCS

	SPIKE	SAMPLE	LCS	LCS	QC.
	ADDED	CONCENTRATION	CONCENTRATION	00	LIMITS
COMPOUND	(ppbv)	(ug/L)	(ppbv)	REC #	REC.
=======================================	=========		=================		=====
Vinyl Chloride	10		10	100	70-130
1,1-Dichloroethene	10		11	110	70-130
trans-1,2-Dichloroethen	10		9.7	97	70-130
cis-1,2-Dichloroethene	10		9.8	98	70-130
1,2-Dichloroethene (tot	20		20	100	70-130
Trichloroethene	10		11	110	70-130
Tetrachloroethene	10		12	120	70-130

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 0 out of 0 outside limits Spike Recovery: 0 out of 7 outside limits

COMMENTS:

FORM III VOA

FORM 4 VOLATILE METHOD BLANK SUMMARY CLIENT SAMPLE NO.

Lab Name: TESTAMERICA BURLINGTONContract: 29000MBLK090809CALab Code: STLVCase No.: 29000SAS No.:SDG No.: NY133428Lab File ID: CILB02NLab Sample ID: MBLK090809CADate Analyzed: 09/09/09Time Analyzed: 0858GC Column: RTX-624ID: 0.32 (mm)Heated Purge: (Y/N) NInstrument ID: CContract: 29000

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

		LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
	==================	==================		===========
01	CA090809LCS	CA0908091.CS	CTL10N02	1435
02	AMB - FENCE	805637	80563772	0945
02		805637	00563712	1022
03	TAQ-VAC	805636	805636D	1033
04	TAQ-BOOK	805638	805638D	
05				
06				
07				
08				
09				
10				
11				
12				
13				
14				
15				
16				[
17				
10				
10				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29				
30	— — —			

COMMENTS:

page 1 of 1

FORM IV VOA

FORM 5 VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab	Name:	TESTAMERIC	CA BURLINGT	ON	Contract:	29000		
Lab	Code:	STLV	Case No.:	29000	SAS No.:	:	SDG No	.: NY133428
Lab	File 1	D: CIL01P	J		BFB	Injection	Date:	08/23/09
Inst	rument	ID: C			BFB	Injection	Time:	2305
GC (Column:	: RTX-624	ID: 0.32	(mm)	Heat	ted Purge:	(Y/N)	N

		% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
=====		==================
50	8.0 - 40.0% of mass 95	21.1
75	30.0 - 66.0% of mass 95	51.9
95	Base Peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	6.9
173	Less than 2.0% of mass 174	0.0 (0.0)1
174	50.0 - 120.0% of mass 95	88.6
175	4.0 - 9.0% of mass 174	6.5 (7.3)1
176	93.0 - 101.0% of mass 174	86.1 (97.1)1
177	5.0 - 9.0% of mass 176	5.7 (6.6)2
	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	============			===========	=========
01	ASTD0002	ASTD0002	CIL002V	08/24/09	0234
02	ASTD0005	ASTD0005	CIL005V	08/24/09	0322
03	ASTD005	ASTD005	CIL05V	08/24/09	0410
04	ASTD010	ASTD010	CIL10V	08/24/09	0500
05	ASTD015	ASTD015	CIL15V	08/24/09	0548
06	ASTD020	ASTD020	CIL20V	08/24/09	0637
07	ASTD040	ASTD040	CIL40V	08/24/09	0725
08					
09					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					

page 1 of 1

FORM V VOA

FORM 5 VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: TESTAMERICA BURLINGTON Contract: 29000 Lab Code: STLV Case No.: 29000 SAS No.: SDG No.: NY133428 Lab File ID: CIL16PV BFB Injection Date: 09/08/09 Instrument ID: C BFB Injection Time: 1120 GC Column: RTX-624 ID: 0.32 (mm) Heated Purge: (Y/N) N

		% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
=====		
50	8.0 - 40.0% of mass 95	25.4
75	30.0 - 66.0% of mass 95	62.2
95	Base Peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	7.0
173	Less than 2.0% of mass 174	0.0 (0.0)1
174	50.0 - 120.0% of mass 95	96.3
175	4.0 - 9.0% of mass 174	7.0 (7.3)
176	93.0 - 101.0% of mass 174	94.7 (98.3)
177	5.0 - 9.0% of mass 176	6.4 (6.7)2
	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	=============		=================	===========	===========
01	ASTD010	ASTD010	CIL10NV2	09/08/09	1347
02	CA090809LCS	CA090809LCS	CIL10NQ2	09/08/09	1435
03	MBLK090809CA	MBLK090809CA	CILB02N	09/09/09	0858
04	AMB-FENCE	805637	80563712	09/09/09	0945
05	IAQ-VAC	805636	805636D	09/09/09	1033
06	IAQ-BOOK	805638	805638D	09/09/09	1117
07					
08					
09					
10					
11					
12					
13					
14					
16					
17					
18					
19					
20					
21					
22					

page 1 of 1

FORM V VOA

FORM 8 VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: TESTAMERICA BURLINGTON Contract: 29000 Lab Code: STLV Case No.: 29000 SAS No.: SDG No.: NY133428 Lab File ID (Standard): CIL10NV2 Date Analyzed: 09/08/09 Instrument ID: C Time Analyzed: 1347 GC Column: RTX-624 ID: 0.32 (mm) Heated Purge: (Y/N) N

		IS1(BCM)		IS2 (DFB)		IS3(CBZ)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
				========		========	=======
	12 HOUR STD	464045	9.94	2483079	11.37	2221809	15.46
	UPPER LIMIT	649663	10.27	3476311	11.70	3110533	15.79
	LOWER LIMIT	278427	9.61	1489847	11.04	1333085	15.13
	===================	==========	======	=============	=======	==========	======
	CLIENT						
	SAMPLE NO.						
	==============	=============	======	==========		=========	
01	CA090809LCS	468667	9.93	2472723	11.36	2151733	15.46
02	MBLK090809CA	484439	9.93	2701133	11.36	2467541	15.45
03	AMB-FENCE	401336	9.93	2208174	11.36	2070024	15.46
04	IAQ-VAC	466078	9.93	2616248	11.36	2382905	15.46
05	IAQ-BOOK	469765	9.93	2579696	11.36	2340968	15.46
06							
07							
08							
09							
10							
11							
12							
13							
14 1E							
10							
17							
10							
19							
20	· · · · · · · · · · · · · · · · · · ·						
21							
22							

IS1 (BCM) = Bromochloromethane
IS2 (DFB) = 1,4-Difluorobenzene
IS3 (CBZ) = Chlorobenzene-d5

AREA UPPER LIMIT = + 40% of internal standard area AREA LOWER LIMIT = - 40% of internal standard area RT UPPER LIMIT = + 0.33 minutes of internal standard RT RT LOWER LIMIT = - 0.33 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.
* Values outside of QC limits.

page 1 of 1

FORM VIII VOA

Supportive Documentation – TO-15 Volatile

FORM 1 VOLATILE ORGANICS ANALYSIS D	ROUX1 SAMPLE NO.
Lab Name: TESTAMERICA BURLINGTON Con	AMB-FENCE
Lab Code: STLV Case No.: 29000 SA	S No.: SDG No.: NY133428
Matrix: (soil/water) AIR	Lab Sample ID: 805637
Sample wt/vol: 250.0 (g/mL) ML	Lab File ID: 805637I2
Level: (low/med) LOW	Date Received: 09/04/09
% Moisture: not dec.	Date Analyzed: 09/09/09
GC Column: RTX-624 ID: 0.32 (mm)	Dilution Factor: 0.8
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV Q
75-01-4Vinyl Chloride 75-35-4Vinyl Chloride 156-60-5trans-1,2-Dichloroe 156-59-2cis-1,2-Dichloroe 540-59-01,2-Dichloroethen 79-01-6Trichloroethene 127-18-4Tetrachloroethene	0.16 U 0.16 U 00thene 0.16 0.16 U thene 0.16 0.16 U 0.16 U

FORM I VOA

Data File: /chem/C.i/Csvr.p/cilnto15.b/805637i2.d Report Date: 15-Sep-2009 14:15

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/C.i/Csvr.p/cilnto15.b/805637i2.d Lab Smp Id: 805637 Client Smp ID: AMB-FENCE Inj Date : 09-SEP-2009 09:45 Operator : wrd Inst Smp Info : AMB-FENCE : []09/02/09 @1804(AIR) Misc Info : 805637;090809CA;.8;250 Inst ID: C.i Comment Method : /chem/C.i/Csvr.p/cilnto15.b/sto15.m Meth Date : 15-Sep-2009 14:15 klp Quant Quant Type: ISTD Cal Date : 24-AUG-2009 07:25 Cal File: cil40v.d Als bottle: 13 Dil Factor: 0.80000 Integrator: HP RTE Compound Sublist: ROUX1 OCEAN.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	0.80000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	250.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

NORMON

							CONCENTRA	ATIONS
			QUANT SIG				ON-COLUMN	FINAL
Co	mpo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
*=================				*=				
	6	Vinyl Chloride	62	Comp	ound Not Detected	i.		
	18	1,1-Dichloroethene	96	Comp	ound Not Detected	i.		
	27	trans-1,2-Dichloroethene	61	Comp	ound Not Detected	i.		
	31	cis-1,2-Dichloroethene	96	Comp	ound Not Detected	i.		
*	32	Bromochloromethane	128	9.932	9.948 (1.000)	401336	10.0000	(Q)
М	40	1,2-Dichloroethene (total)	61	Comp	ound Not Detected	đ.		
*	43	1,4-Difluorobenzene	114	11.357	11.379 (1.000)	2208174	10.0000	
	45	Trichloroethene	95	Comp	ound Not Detected	i.		
	57	Tetrachloroethene	166	Comp	ound Not Detected	đ.		
*	61	Chlorobenzene-d5	117	15.456	15.472 (1.000)	2070024	10.0000	

QC Flag Legend

Q - Qualifier signal failed the ratio test.

Page 1

FORM 1 VOLATILE ORGANICS ANALYSIS DA	ROUX1 SAMPLE NO.
Lab Name: TESTAMERICA BURLINGTON Cont	IAQ-BOOK
Lab Code: STLV Case No.: 29000 SAS	S No.: SDG No.: NY133428
Matrix: (soil/water) AIR	Lab Sample ID: 805638
Sample wt/vol: 80.00 (g/mL) ML	Lab File ID: 805638D
Level: (low/med) LOW	Date Received: 09/04/09
% Moisture: not dec.	Date Analyzed: 09/09/09
GC Column: RTX-624 ID: 0.32 (mm)	Dilution Factor: 2.5
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND (CONCENTRATION UNITS: ug/L or ug/Kg) PPBV Q
75-01-4Vinyl Chloride 75-35-41,1-Dichloroethene 156-60-5trans-1,2-Dichloroet 156-59-2cis-1,2-Dichloroet 540-59-01,2-Dichloroethene 79-01-6Trichloroethene 127-18-4Tetrachloroethene	0.50 U 0.50 U 0.50 U 0.50 U 0.50 U 0.50 U 0.50 U 0.50 U 0.50 U 0.50 U 0.50 U 74

FORM I VOA

Data File: /chem/C.i/Csvr.p/cilnto15.b/805638d.d Report Date: 15-Sep-2009 14:16

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/C.i/Csvr.p/cilnto15.b/805638d.d Lab Smp Id: 805638 Client Sm Client Smp ID: IAQ-BOOK Inj Date : 09-SEP-2009 11:17 Operator : wrd Inst Smp Info : IAQ-BOOK : []09/02/09 @1808(AIR) Inst ID: C.i Misc Info : 805638;090809CA;2.5;80 Comment : /chem/C.i/Csvr.p/cilnto15.b/sto15.m Method Meth Date : 15-Sep-2009 14:15 klp Quant Type: ISTD Cal Date : 24-AUG-2009 07:25 Cal File: cil40v.d Als bottle: 14 Dil Factor: 2.50000 Integrator: HP RTE Compound Sublist: ROUX1 OCEAN.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	2.50000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	80.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

							CONCENTRA	ATIONS
			QUANT SIG				ON-COLUMN	FINAL
Cc	mpou	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
==	***			==	atter seease			
	6	Vinyl Chloride	62	Comp	ound Not Detected	1.		
	18	1,1-Dichloroethene	96	Comp	ound Not Detected	1.		
	27	trans-1,2-Dichloroethene	61	Comp	ound Not Detected	1.		
	31	cis-1,2-Dichloroethene	96	Comp	ound Not Detected	1.		
*	32	Bromochloromethane	128	9.932	9.948 (1.000)	469765	10.0000	(Q)
м	40	1,2-Dichloroethene (total)	61	Comp	ound Not Detected	1.		
*	43	1,4-Difluorobenzene	114	11.357	11.379 (1.000)	2579696	10.0000	
	45	Trichloroethene	95	Comp	ound Not Detected	1.		
	57	Tetrachloroethene	166	14.266	14.282 (0.923)	2475823	29.6947	74
*	61	Chlorobenzene-d5	117	15.456	15.472 (1.000)	2340968	10.0000	

QC Flag Legend

Q - Qualifier signal failed the ratio test.

Page 1

Data File: /chem/C.i/Csvr.p/cilnto15.b/805638d.d Date : 09-SEP-2009 11:17 Client ID: IAQ-BOOK Sample Info: IAQ-BOOK :[]09/02/09 @1808(AIR)

Purge Volume: 80.0

Column phase: RTX-624

57 Tetrachloroethene

Operator: wrd

Instrument: C.i

Column diameter: 0.32

FORM 1 VOLATILE ORGANICS ANALYSIS D	ROUX1 SAMPLE NO.
Lab Name: TESTAMERICA BURLINGTON Con	IAQ-VAC
Lab Code: STLV Case No.: 29000 SA	S No.: SDG No.: NY133428
Matrix: (soil/water) AIR	Lab Sample ID: 805636
Sample wt/vol: 40.00 (g/mL) ML	Lab File ID: 805636D
Level: (low/med) LOW	Date Received: 09/04/09
% Moisture: not dec.	Date Analyzed: 09/09/09
GC Column: RTX-624 ID: 0.32 (mm)	Dilution Factor: 5.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV Q
75-01-4Vinyl Chloride 75-35-4Vinyl Chloride 156-60-5trans-1,2-Dichloroe 156-59-2cis-1,2-Dichloroe 540-59-01,2-Dichloroethene 79-01-6Trichloroethene 127-18-4Tetrachloroethene	e 1.0 U oethene 1.0 U thene 1.0 U e (total) 1.0 U 130 130 130

FORM I VOA

Page 24 of 89

Data File: /chem/C.i/Csvr.p/cilnto15.b/805636d.d Report Date: 15-Sep-2009 14:15

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/C.i/Csvr.p/cilnto15.b/805636d.d Lab Smp Id: 805636 Client Sm Client Smp ID: IAQ-VAC Inj Date : 09-SEP-2009 10:33 Operator : wrd Ins Smp Info : IAQ-VAC :[]09/02/09 @1806(AIR) Misc Info : 805636;090809CA;5;40 Inst ID: C.i Comment : /chem/C.i/Csvr.p/cilnto15.b/sto15.m Method Meth Date : 15-Sep-2009 14:15 klp Quant Type: ISTD Cal File: cil40v.d Cal Date : 24-AUG-2009 07:25 Als bottle: 12 Dil Factor: 5.00000 Integrator: HP RTE Compound Sublist: ROUX1_OCEAN.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	5.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	40.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

						CONCENTRA	TIONS
		QUANT SIG				ON-COLUMN	FINAL
ipoi	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
	***************************************	====	==			****===	
6	Vinyl Chloride	62	Com	pound Not Detected	1.		
18	1,1-Dichloroethene	96	Com	pound Not Detected	1.		
27	trans-1,2-Dichloroethene	61	Com	pound Not Detected	1 .		
31	cis-1,2-Dichloroethene	96	Com	pound Not Detected	1 .		
32	Bromochloromethane	128	9.927	9.948 (1.000)	466078	10.0000	(Q)
40	1,2-Dichloroethene (total)	61	Com	pound Not Detected	1 .		
43	1,4-Difluorobenzene	114	11.357	11.379 (1.000)	2616248	10.0000	
45	Trichloroethene	95	Com	pound Not Detected	1.		
57	Tetrachloroethene	166	14.266	14.282 (0.923)	2170432	25.5737	130
61	Chlorobenzene-d5	117	15.456	15.472 (1.000)	2382905	10.0000	
	18 27 31 32 40 43 45 57 61	pounds 6 Vinyl Chloride 18 1,1-Dichloroethene 27 trans-1,2-Dichloroethene 31 cis-1,2-Dichloroethene 32 Bromochloromethane 40 1,2-Dichloroethene (total) 43 1,4-Difluorobenzene 45 Trichloroethene 57 Tetrachloroethene 61 Chlorobenzene-d5	QUANT SIG mounds MASS 6 Vinyl Chloride 62 18 1,1-Dichloroethene 96 27 trans-1,2-Dichloroethene 61 31 cis-1,2-Dichloroethene 96 32 Bromochloromethane 128 40 1,2-Dichloroethene (total) 61 43 1,4-Difluorobenzene 114 45 Trichloroethene 95 57 Tetrachloroethene 166 61 Chlorobenzene-d5 117	QUANT SIGappoundsMASSRT6Vinyl Chloride62Comp181,1-Dichloroethene96Comp27trans-1,2-Dichloroethene61Comp31cis-1,2-Dichloroethene96Comp32Bromochloromethane1289.927401,2-Dichloroethene (total)61Comp431,4-Difluorobenzene11411.35745Trichloroethene95Comp57Tetrachloroethene16614.26661Chlorobenzene-d511715.456	QUANT SIGappoundsMASSRTEXP RT REL RT6Vinyl Chloride62Compound Not Detected181,1-Dichloroethene96Compound Not Detected27trans-1,2-Dichloroethene61Compound Not Detected31cis-1,2-Dichloroethene96Compound Not Detected32Bromochloromethane1289.9279.948 (1.000)401,2-Dichloroethene (total)61Compound Not Detected431,4-Difluorobenzene11411.35711.379 (1.000)45Trichloroethene95Compound Not Detected57Tetrachloroethene16614.26614.282 (0.923)61Chlorobenzene-d511715.45615.472 (1.000)	QUANT SIGppundsMASSRTEXP RT REL RTRESPONSE6Vinyl Chloride62Compound Not Detected.181,1-Dichloroethene96Compound Not Detected.27trans-1,2-Dichloroethene61Compound Not Detected.31cis-1,2-Dichloroethene96Compound Not Detected.32Bromochloromethane1289.9279.948 (1.000)466078401,2-Dichloroethene (total)61Compound Not Detected.431,4-Difluorobenzene11411.35711.379 (1.000)261624845Trichloroethene95Compound Not Detected.57Tetrachloroethene16614.26614.282 (0.923)217043261Chlorobenzene-d511715.45615.472 (1.000)2382905	QUANT SIG ON-COLUMN apounds MASS RT EXP RT REL RT RESPONSE (ppbv)

QC Flag Legend

Q - Qualifier signal failed the ratio test.

Page 1

Data File: /chem/C.i/Csvr.p/cilnto15.b/805636d.d Date : 09-SEP-2009 10:33 Client ID: IAQ-VAC Sample Info: IAQ-VAC :[]09/02/09 @1806(AIR) Purge Volume: 40.0 Column phase: RTX-624

57 Tetrachloroethene

Operator: wrd

Instrument: C.i

Column diameter: 0.32

Standards – TO-15 Volatile

FORM 6 VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON Contract: 29000 Lab Code: STLV Case No.: 29000 SAS No.: SDG No.: NY133428 Instrument ID: C Calibration Date(s): 08/24/09 08/24/09 Heated Purge: (Y/N) N Calibration Time(s): 0234 0725 GC Column: RTX-624 ID: 0.32 (mm)

LAB FILE ID:RRF0.2=CIL002VRRF0.5=CIL005VRRF2 =RRF5 =CIL05VRRF10 =CIL10V							
	<u> </u>						
COMPOUND	RRF0.2	RRF0.5	RRF2	RRF5	RRF10	RRF	RSD
Vinyl Chloride	0.888	0.877		0.973	0.953		
trans-1,2-Dichloroethene	1.466	1.441		1.570	1.568		
1,2-Dichloroethene (total)	1.115	1.202		1.319	1.317		
Trichloroethene Tetrachloroethene	0.231	0.224		0.255	0.251		
·							
			<u> </u>				
	<u> </u>						
			<u> </u>				
·····							
Compounds with respired with							

Compounds with required minimum RRF and maximim %RSD values. All other compounds must meet a minimim RRF of 0.010.

page 1 of 2

FORM VI VOA

FORM 6 VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: TESTAME	RICA BURLINGTON	Contract: 2	9000	
Lab Code: STLV	Case No.: 29000	SAS No.:	SDG N	lo.: NY133428
Instrument ID: C	Calibrati	on Date(s):	08/24/09 08	/24/09
Heated Purge: (Y/I	N) N Calibrati	on Time(s):	0234 07	25
GC Column: RTX-62	4 ID: 0.32 (mm)			

LAB FILE ID: RRF15 RRF40 =CIL40V	=CIL15	V	RRF2) =CIL2	VC		
	1					<u> </u>	o
COMPOUND	RRF15	RRF20	RRF40			RRF	RSD
	======	======	======	======	======	======	=====
Vinyl Chloride		0.939	0.952			0.930	4.2
1,1-Dichloroethene		0.876	0.893			0.881	7.0
trans-1,2-Dichloroethene]	1.512	1.524	l		1.514	3.5
cis-1,2-Dichloroethene		1.053	1.061			1.054	4.7
1,2-Dichloroethene (total)		1.282	1.293			1.284	3.3
Trichloroethene		0.248	0.255			0.244	5.4
Tetrachloroethene		0.357	0.404			0.356	9.9
			l				
					— —		
						——	·
		(
		<u> </u>					
			·				
]				
]						
* Compounds with required min	mum DD	Fandm	-	PCD V2	1100		

Compounds with required minimum RRF and maximim %RSD value All other compounds must meet a minimim RRF of 0.010.

page 2 of 2

FORM VI VOA

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/C.i/Csvr.p/cilto15.b/cil002v.d Lab Smp Id: ASTD0002 Client Smp ID: ASTD0002 Inj Date : 24-AUG-2009 02:34 Operator : njr Smp Info : Misc Info : ASTD0002;082309CA;1;200 Inst ID: C.i Comment Method : /chem/C.i/Csvr.p/cilto15.b/sto15.m Meth Date : 27-Aug-2009 10:25 jd1 Quant Quant Type: ISTD Cal File: cil002v.d Cal Date : 24-AUG-2009 02:34 Als bottle: 1 Calibration Sample, Level: 1 Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: all002.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

MOINTRE

							ALCON13	
		QUANT SIG					CAL-AMT	ON-COL
Compo	ounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ppbv)	(ppbv)
		****	==					******
:	3 1,2-Dichlorotetrafluoroethane	85	3.448	3.448	(0.347)	24982	0.20000	0.19(a)
	5 Vinyl Chloride	62	3.816	3.821	(0.384)	8967	0.20000	0.19(a)
9	Bromomethane	94	4.633	4.633	(0.466)	8232	0.20000	0.19(a)
12	Isopentane	43	4.985	4.996	(0.501)	11522	0.20000	0.21(Q)
12	2 Bromoethene	106	5.311	5.310	(0.534)	8444	0.20000	0.19(a)
13	3 Trichlorofluoromethane	101	5.423	5.433	(0.545)	24758	0.20000	0.19(a)
19	5 Ethyl Ether	59	6.122	6.100	(0.615)	6000	0.20000	0.19(a)
1	7 Freon TF	101	6.506	6.511	(0.654)	17589	0.20000	0.19(a)
18	3 1,1-Dichloroethene	96	6.538	6.543	(0.657)	9733	0.20000	0.22(Q)
2'	7 trans-1,2-Dichloroethene	61	7.936	7.936	(0.798)	14802	0.20000	0.19(a)
2	9 1,1-Dichloroethane	63	8.683	8.683	(0.873)	18000	0.20000	0.19(a)
M 4	0 1,2-Dichloroethene (total)	61				26058	0.40000	0.41
3:	l cis-1,2-Dichloroethene	96	9.585	9.591	(0.964)	11256	0.20000	0.21
* 32	2 Bromochloromethane	128	9.948	9.948	(1.000)	504873	10.0000	
34	4 Chloroform	83	10.028	10.034	(1.008)	20629	0.20000	0.19(a)

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
	正是王国王王王王王王王王王王王王王王王王王王王王王王王王王王王王王王王王王王王	****	==				
35	1,1,1-Trichloroethane	97	10.290	10.295 (0.904)	21452	0.20000	0.19(a)
36	Cyclohexane	84	10.311	10.311 (0.906)	14160	0.20000	0.19(a)
37	Carbon Tetrachloride	117	10.503	10.503 (0.923)	19868	0.20000	0.18(a)
38	2,2,4-Trimethylpentane	57	10.813	10.818 (0.950)	49552	0.20000	0.19(a)
39	Benzene	78	10.824	10.823 (0.951)	34099	0.20000	0.20
41	1,2-Dichloroethane	62	10.909	10.914 (0.959)	15467	0.20000	0.19(a)
42	n-Heptane	43	11.074	11.074 (0.973)	20650	0.20000	0.20
* 43	1,4-Difluorobenzene	114	11.379	11.379 (1.000)	2904672	10.0000	
45	Trichloroethene	95	11.736	11.736 (1.031)	13407	0.20000	0.19(a)
47	1,2-Dichloropropane	63	12.088	12.094 (1.062)	11856	0.20000	0.20
49	Dibromomethane	174	12.275	12.270 (1.079)	10109	0.20000	0.18(a)
50	Bromodichloromethane	83	12.446	12.451 (1.094)	18094	0.20000	0.16(a)
51	cis-1,3-Dichloropropene	75	13.081	13.081 (1.150)	17173	0.20000	0.19(a)
M 70	Xylene (total)	106			43388	0.20000	0.52
54	Toluene	92	13.519	13.519 (0.874)	24151	0.20000	0.20
53	n-Octane	43	13.535	13.540 (1.189)	26090	0.20000	0.20
55	trans-1,3-Dichloropropene	75	13.866	13.866 (1.219)	17179	0.20000	0.21
56	1,1,2-Trichloroethane	83	14.127	14.132 (0.913)	9796	0.20000	0.19(a)
57	Tetrachloroethene	166	14.282	14.282 (0.923)	17493	0.20000	0.19(a)
59	Dibromochloromethane	129	14.682	14.682 (0.949)	14124	0.20000	0.15(a)
60	1,2-Dibromoethane	107	14.885	14.885 (0.962)	15131	0.20000	0.17(a)
* 61	Chlorobenzene-d5	117	15.472	15.472 (1.000)	2649885	10.0000	
62	Chlorobenzene	112	15.515	15.509 (1.003)	30037	0.20000	0.21
63	Ethylbenzene	91	15.595	15.595 (1.008)	39906	0.20000	0.19(a)
84	Nonane	57	15.648	15.648 (1.011)	22658	0.20000	0.20
64	Xylene (m,p)	106	15.744	15.744 (1.018)	28981	0.40000	0.36(a)
65	Xylene (o)	106	16.262	16.262 (1.051)	14407	0.20000	0.17(a)
66	Styrene	104	16.283	16.283 (1.052)	16447	0.20000	0.15(a)
67	Bromoform	173	16.561	16.555 (1.070)	11696	0.20000	0.16(a)
68	Cumene	105	16.683	16,683 (1.078)	39653	0.20000	0.17(a)
69	1,1,2,2-Tetrachloroethane	83	17.078	17.078 (1.104)	18651	0.20000	0.17(a)
72	n-Propylbenzene	91	17.169	17.169 (1.110)	42791	0.20000	0.16(a)
74	4-Ethyltoluene	105	17.297	17.297 (1.118)	36352	0.20000	0.17(a)
76	2-Chlorotoluene	91	17.324	17.324 (1.120)	37243	0.20000	0.19(a)
75	1,3,5-Trimethylbenzene	105	17.367	17.367 (1.122)	29996	0.20000	0.16(a)
77	a-Methylstyrene	118	17.628	17.628 (1.139)	10316	0.20000	0.13(a)
78	Tert-Butylbenzene	119	17.735	17.735 (1.146)	30405	0.20000	0.16(a)
79	1,2,4-Trimethylbenzene	105	17.804	17.799 (1.151)	28098	0.20000	0.16(a)
80	Sec-Butylbenzene	105	17.986	17.986 (1.162)	41673	0.20000	0.16(a)
81	4-Isopropyltoluene	119	18.140	18.140 (1.172)	32399	0.20000	0.15(a)
82	1,3-Dichlorobenzene	146	18.189	18.188 (1.176)	25848	0.20000	0.22
83	1,4-Dichlorobenzene	146	18.301	18.300 (1.183)	26666	0.20000	0.23
86	Benzyl Chloride	91	18.450	18.445 (1.192)	21927	0.20000	0.16(a)
87	n-Butylbenzene	91	18.631	18.631 (1.204)	28823	0.20000	0.15(a)
88	1,2-Dichlorobenzene	146	18.765	18.759 (1.213)	21382	0.20000	0.19(a)
90	1,2,4-Trichlorobenzene	180	21.017	21.017 (1.358)	14485	0.20000	0.20(a)
91	Hexachlorobutadiene	225	21.199	21.198 (1.370)	13335	0.20000	0.19(a)

					AMOUNTS		
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)	
	2 2 2 2				======		
93 1,2,3-Trichlorobenzene	180	21.908	21.914 (1.416)	12253	0.20000	0.19(a)	

QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).Q - Qualifier signal failed the ratio test.

Page 34 of 89

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/C.i/Csvr.p/cilto15.b/cil005v.d Lab Smp Id: ASTD0005 Client S Inj Date : 24-AUG-2009 03:22 Operator : njr Inst ID: Smp Info : Client Smp ID: ASTD0005 Inst ID: C.i Misc Info : ASTD0005;082309CA;1;200 Comment Method : /chem/C.i/Csvr.p/cilto15.b/sto15.m Meth Date : 27-Aug-2009 10:25 jd1 Quant Type: ISTD Cal Date : 24-AUG-2009 03:22 Cal File: cil005v.d Als bottle: 2 Calibration Sample, Level: 2 Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: all005.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

					AMOUNTS	
	QUANT SIG				CAL-AMT	ON-COL
unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
		C C	GARDER GEFERE			
Dichlorodifluoromethane	85	3.203	3.202 (0.322)	64260	0.50000	0.54
Freon-22	51	3.245	3.240 (0.326)	36947	0.50000	0.51
1,2-Dichlorotetrafluoroethane	85	3.453	3.448 (0.347)	59257	0.50000	0.48
Chloromethane	50	3.581	3.576 (0.360)	21389	0.50000	0.55
n-Butane	43	3.790	3.784 (0.381)	48357	0.50000	0.65
Vinyl Chloride	62	3.822	3.821 (0.384)	21221	0.50000	0.47
1,3-Butadiene	54	3.907	3.902 (0.393)	14984	0.50000	0.45(a)
Bromomethane	94	4.638	4.633 (0.466)	20318	0.50000	0.48
Chloroethane	64	4.894	4.889 (0.492)	11868	0.50000	0.48(a)
Isopentane	43	4.990	4.996 (0.502)	27955	0.50000	0.52
Bromoethene	106	5.316	5.310 (0.534)	20018	0.50000	0.47
Trichlorofluoromethane	101	5.433	5.433 (0.546)	60719	0.50000	0.50
Pentane	43	5.583	5.583 (0.561)	48920	0.50000	0.59
Ethyl Ether	59	6.111	6.100 (0.614)	13838	0.50000	0.46
Freon TF	101	6.511	6.511 (0.655)	42005	0.50000	0.47
	unds Dichlorodifluoromethane Freon-22 1,2-Dichlorotetrafluoroethane Chloromethane n-Butane Vinyl Chloride 1,3-Butadiene Bromomethane Chloroethane Isopentane Bromoethene Trichlorofluoromethane Pentane Ethyl Ether Freon TF	QUANT SIGundsMASSDichlorodifluoromethane85Freon-22511,2-Dichlorotetrafluoroethane85Chloromethane50n-Butane43Vinyl Chloride621,3-Butadiene54Bromomethane94Chloroethane64Isopentane43Princhlorofluoromethane101Pentane43Bromoethene106Trichlorofluoromethane43Ethyl Ether59Freon TF101	QUANT SIGundsMASSRTDichlorodifluoromethane853.203Freon-22513.2451,2-Dichlorotetrafluoroethane853.453Chloromethane503.581n-Butane433.790Vinyl Chloride623.8221,3-Butadiene543.907Bromomethane944.638Chloroethane644.894Isopentane434.990Bromoethene1065.316Trichlorofluoromethane1015.433Pentane435.583Ethyl Ether596.111Freon TF1016.511	QUANT SIG unds MASS RT EXP RT REL RT Dichlorodifluoromethane 85 3.203 3.202 (0.322) Freon-22 51 3.245 3.240 (0.326) 1,2-Dichlorotetrafluoroethane 85 3.453 3.448 (0.347) Chloromethane 50 3.581 3.576 (0.360) n-Butane 43 3.790 3.784 (0.381) Vinyl Chloride 62 3.822 3.821 (0.381) 1,3-Butadiene 54 3.907 3.902 (0.393) Bromomethane 64 4.884 4.633 (0.466) Chloroethane 64 4.894 4.889 (0.492) Isopentane 43 4.990 4.996 (0.502) Bromoethene 106 5.316 5.310 (0.534) Trichlorofluoromethane 43 5.983 (0.561) Pentane 43 5.583 (0.561) Ethyl Ether 59 6.111	QUANT SIG mads MASS RT EXP RT REL RT RESPONSE Dichlorodifluoromethane 85 3.203 3.202 (0.322) 64260 Freon-22 51 3.245 3.240 (0.326) 36947 1,2-Dichlorotetrafluoroethane 85 3.453 3.448 (0.347) 59257 Chloromethane 50 3.561 3.576 (0.360) 21389 n-Butane 43 3.790 3.784 (0.381) 48357 Vinyl Chloride 62 3.822 3.821 (0.384) 21221 1,3-Butadiene 54 3.907 3.902 (0.393) 14984 Bromomethane 94 4.638 4.633 (0.466) 20318 Chloroethane 64 4.894 4.889 (0.492) 11868 Isopentane 43 4.990 4.966 (0.502) 27955 Bromoethene 106 5.316 5.310 (0.543) 20018 Trichlorof	QUANT SIG CAL-ANT unds MASS RT EXP RT REL RT RESPONSE (ppbv) Dichlorodifluoromethane 85 3.203 3.202 (0.322) 64260 0.50000 Freon-22 51 3.245 3.240 (0.326) 36947 0.50000 1,2-Dichlorotetrafluoroethane 85 3.453 3.448 (0.347) 59257 0.50000 Chloromethane 50 3.581 3.576 (0.360) 21389 0.50000 n-Butane 43 3.790 3.784 (0.381) 48357 0.50000 1,3-Butadiene 54 3.907 3.902 (0.393) 14984 0.50000 1,3-Butadiene 64 4.638 4.633 (0.466) 20318 0.50000 Bromomethane 64 4.894 4.889 (0.492) 11868 0.50000 Isopentane 43 4.990 4.996 (0.502) 27955 0.50000 Bromoethene 106 5.316 5.310 (0.534) 20018 0.50000 Bromoethene 106 5.433<

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Compo	bunds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
			= =			*******	
18	1,1-Dichloroethene	96	6.543	6.543 (0.658)	18694	0.50000	0.44
21	Carbon Disulfide	76	6.944	6.944 (0.698)	62821	0.50000	0.47(a)
22	3-Chloropropene	41	7.264	7.264 (0.730)	27920	0.50000	0.47(a)
24	Methylene Chloride	49	7.515	7.515 (0.755)	42963	0.50000	0.72
26	Methyl tert-Butyl Ether	73	7.952	7.936 (0.799)	53925	0.50000	0.42(a)
27	trans-1,2-Dichloroethene	61	7.936	7.936 (0.798)	34872	0.50000	0.48
28	n-Hexane	57	8.310	8.304 (0.835)	44507	0.50000	0.55
29	1,1-Dichloroethane	63	8.684	8.683 (0.873)	41600	0.50000	0.46
M 40	1,2-Dichloroethene (total)	61			58182	1.00000	0.93
31	cis-1,2-Dichloroethene	96	9.591	9.591 (0.964)	23310	0.50000	0.46
30	Methyl Ethyl Ketone	72	9.623	9.617 (0.967)	11520	0.50000	0.58(Q)
* 32	Bromochloromethane	128	9.948	9.948 (1.000)	484107	10.0000	
34	Chloroform	83	10.034	10.034 (1.009)	48645	0.50000	0.47
35	1,1,1-Trichloroethane	97	10.295	10.295 (0.905)	50270	0.50000	0.45
36	Cyclohexane	84	10.306	10.311 (0.906)	33951	0.50000	0.46
37	Carbon Tetrachloride	117	10.503	10.503 (0.923)	45270	0.50000	0.43
38	2,2,4-Trimethylpentane	57	10.818	10.818 (0.951)	117977	0.50000	0.46
39	Benzene	78	10.818	10.823 (0.951)	76795	0.50000	0.47
41	1,2-Dichloroethane	62	10.914	10.914 (0.959)	36542	0.50000	0.46
42	2 n-Heptane	43	11.075	11.074 (0.973)	50881	0.50000	0.51
* 43	1,4-Difluorobenzene	114	11.379	11.379 (1.000)	2814981	10.0000	
45	Trichloroethene	95	11.731	11.736 (1.031)	31561	0.50000	0.46
47	1,2-Dichloropropane	63	12.094	12.094 (1.063)	26003	0.50000	0.45
46	Methyl Methacrylate	69	12.179	12.179 (1.070)	14896	0.50000	0.37(a)
49	Dibromomethane	174	12.270	12.270 (1.078)	22402	0.50000	0.41
50	Bromodichloromethane	83	12.451	12.451 (1.094)	43803	0.50000	0.41
51	cis-1,3-Dichloropropene	75	13.087	13.081 (1.150)	39847	0.50000	0.46
M 70) Xylene (total)	106			106157	0.50000	1.3
52	Methyl Isobutyl Ketone	43	13.279	13.268 (1.167)	37501	0.50000	0.39(a)
54	Toluene	92	13.519	13.519 (0.874)	57831	0.50000	0.48
53	n-Octane	43	13.540	13.540 (1.190)	66128	0.50000	0.51
55	trans-1,3-Dichloropropene	75	13.866	13.866 (1.219)	40054	0.50000	0.50
56	1,1,2-Trichloroethane	83	14.133	14.132 (0.913)	22311	0.50000	0.44
57	7 Tetrachloroethene	166	14.282	14.282 (0.923)	39453	0.50000	0.43
58	8 Methyl Butyl Ketone	43	14.442	14.431 (0.933)	34202	0.50000	0.39(a)
59	Dibromochloromethane	129	14.682	14.682 (0.949)	33246	0.50000	0.37
60	1,2-Dibromoethane	107	14.885	14.885 (0.962)	36324	0.50000	0.42
* 61	Chlorobenzene-d5	117	15.472	15.472 (1.000)	2583517	10.0000	
62	2 Chlorobenzene	112	15.509	15.509 (1.002)	65631	0.50000	0.46
63	Ethylbenzene	91	15.595	15.595 (1.008)	96999	0.50000	0.47
84	Nonane	57	15.648	15.648 (1.011)	52329	0.50000	0.48
64	Xylene (m,p)	106	15.744	15.744 (1.018)	70363	1.00000	0.89
65	Xylene (o)	106	16.262	16.262 (1.051)	35794	0.50000	0.44
66	Styrene	104	16.283	16.283 (1.052)	42560	0.50000	0.40
67	7 Bromoform	173	16.561	16.555 (1.070)	26553	0.50000	0.36
68	3 Cumene	105	16.684	16.683 (1.078)	97929	0.50000	0.43
69	1,1,2,2-Tetrachloroethane	83	17.079	17.078 (1.104)	46558	0.50000	0.43

					AMOUN	INTS	
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)	
	====	==				722222	
73 1,2,3-Trichloropropane	75	17.159	17.158 (1.109)	39114	0.50000	0.44(a)	
72 n-Propylbenzene	91	17.169	17.169 (1.110)	114903	0.50000	0.45	
71 n-Decane	57	17.265	17.265 (1.116)	51555	0.50000	0.44(a)	
74 4-Ethyltoluene	105	17.297	17.297 (1.118)	91194	0.50000	0.44	
76 2-Chlorotoluene	91	17.324	17.324 (1.120)	93291	0.50000	0.48	
75 1,3,5-Trimethylbenzene	105	17.367	17.367 (1.122)	75766	0.50000	0.42	
77 a-Methylstyrene	118	17.634	17.628 (1.140)	27905	0.50000	0.36	
78 Tert-Butylbenzene	119	17.735	17.735 (1.146)	76193	0.50000	0.42	
79 1,2,4-Trimethylbenzene	105	17.804	17.799 (1.151)	73647	0.50000	0.43	
80 Sec-Butylbenzene	105	17.986	17.986 (1.162)	109046	0.50000	0.43	
81 4-Isopropyltoluene	119	18.141	18.140 (1.172)	91702	0.50000	0.43	
82 1,3-Dichlorobenzene	146	18.189	18.188 (1.176)	58321	0.50000	0.50	
83 1,4-Dichlorobenzene	146	18.301	18.300 (1.183)	56374	0.50000	0.49	
86 Benzyl Chloride	91	18.450	18.445 (1.192)	61602	0.50000	0.45	
87 n-Butylbenzene	91	18.632	18.631 (1.204)	79467	0.50000	0.44	
88 1,2-Dichlorobenzene	146	18.760	18.759 (1.212)	52231	0.50000	0.47	
90 1,2,4-Trichlorobenzene	180	21.017	21.017 (1.358)	29086	0.50000	0.41(a)	
91 Hexachlorobutadiene	225	21.204	21.198 (1.370)	28103	0.50000	0.40	
92 Naphthalene	128	21.471	21.471 (1.388)	56010	0.50000	0.37(a)	
93 1,2,3-Trichlorobenzene	180	21.919	21.914 (1.417)	23926	0.50000	0.39	

QC Flag Legend

- a Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).Q Qualifier signal failed the ratio test.

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/C.i/Csvr.p/cilto15.b/cil05v.d Lab Smp Id: ASTD005 Client Client Smp ID: ASTD005 Inj Date : 24-AUG-2009 04:10 Operator : njr Smp Info : Inst ID: C.i Misc Info : ASTD005;082309CA;1;200 Comment Method : /chem/C.i/Csvr.p/cilto15.b/sto15.m Meth Date : 27-Aug-2009 10:25 jd1 Cal Date : 24-AUG-2009 04:10 Quant Type: ISTD Cal File: cil05v.d Als bottle: 3 Calibration Sample, Level: 4 Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: all.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

AMOUNTR

						ANOUN	13
		QUANT SIG				CAL-AMT	ON-COL
Compounds		MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
				ECXADE ERRERS	*=======		
1	Dichlorodifluoromethane	85	3.202	3.202 (0.322)	646421	5.00000	5.1
2	Freon-22	51	3.240	3.240 (0.326)	383539	5.00000	5.1
3	1,2-Dichlorotetrafluoroethane	85	3.448	3.448 (0.347)	682866	5.00000	5.2
4	Chloromethane	50	3.576	3.576 (0.359)	204109	5.00000	5.0
5	n-Butane	43	3.784	3.784 (0.380)	367960	5.00000	4.7
6	Vinyl Chloride	62	3.816	3.821 (0.384)	248236	5.00000	5.2
7	1,3-Butadiene	54	3.901	3.902 (0.392)	182594	5.00000	5.2
9	Bromomethane	94	4.633	4.633 (0.466)	228743	5.00000	5.2
10	Chloroethane	64	4.889	4.889 (0.491)	133543	5.00000	5.1
11	Isopentane	43	4.996	4.996 (0.502)	282589	5.00000	5.0
12	Bromoethene	106	5.310	5.310 (0.534)	233453	5.00000	5.2
13	Trichlorofluoromethane	101	5.428	5.433 (0.546)	664824	5.00000	5.2
14	Pentane	43	5.583	5.583 (0.561)	428240	5.00000	4.9
15	Ethyl Ether	59	6.106	6.100 (0.614)	161050	5.00000	5.1
16	Acrolein	56	6.426	6.431 (0.646)	82910	5.00000	4.9(a)

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Compo	ounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
				EBBJED DESSE			
17	7 Freon TF	101	6.506	6.511 (0.654)	483304	5.00000	5.2
18	3 1,1-Dichloroethene	96	6.543	6.543 (0.658)	227593	5.00000	5.1
19	Acetone	43	6.735	6.735 (0.677)	386574	5.00000	5.2
21	Carbon Disulfide	76	6.944	6.944 (0.698)	725229	5,00000	5.1
20	Isopropyl Alcohol	45	7.013	7.008 (0.705)	227205	5.00000	4.9(a)
22	2 3-Chloropropene	41	7.264	7.264 (0.730)	317872	5.00000	5.1
23	Acetonitrile	41	7.322	7.322 (0.736)	173383	5.00000	5.1
24	Methylene Chloride	49	7.515	7.515 (0.755)	285921	5.00000	4.5
25	5 tert-Butyl Alcohol	59	7.728	7.728 (0.777)	330318	5.00000	4.9(a)
26	5 Methyl tert-Butyl Ether	73	7.936	7.936 (0.798)	694764	5.00000	5.1
27	/ trans-1,2-Dichloroethene	61	7.936	7.936 (0.798)	400606	5.00000	5.2
28	n-Hexane	57	8.304	8.304 (0.835)	421987	5.00000	4.9
29	1,1-Dichloroethane	63	8.683	8.683 (0.873)	504708	5.00000	5.3
M 40	1,2-Dichloroethene (total)	61			672746	10.0000	10
31	cis-1,2-Dichloroethene	96	9.591	9.591 (0.964)	272140	5.00000	5.1
30	Methyl Ethyl Ketone	72	9.617	9.617 (0.967)	95891	5.00000	4.6(Q)
* 32	2 Bromochloromethane	128	9.948	9.948 (1.000)	510157	10.0000	
33	3 Tetrahydrofuran	42	10.007	10.007 (0.879)	236835	5.00000	4.8(a)
34	1 Chloroform	83	10.034	10.034 (1.009)	571497	5.00000	5.3
35	5 1,1,1-Trichloroethane	97	10.295	10.295 (0.905)	600623	5.00000	5.3
36	5 Cyclohexane	84	10.316	10.311 (0.907)	391265	5.00000	5.1
31	7 Carbon Tetrachloride	117	10.503	10.503 (0.923)	578032	5.00000	5.3
38	3 2,2,4-Trimethylpentane	57	10.818	10.818 (0.951)	1359317	5.00000	5.1
39	Benzene	78	10.823	10.823 (0.951)	866604	5.00000	5.1
4:	1,2-Dichloroethane	62	10.914	10.914 (0.959)	427981	5.00000	5.2
42	2 n-Heptane	43	11.074	11.074 (0.973)	505354	5.00000	4.9
* 43	3 1,4-Difluorobenzene	114	11.378	11.379 (1.000)	2909183	10.0000	
44	1-Butanol	56	11.613	11.608 (1.021)	86438	5.00000	4.7(a)
45	5 Trichloroethene	95	11.736	11.736 (1.031)	370741	5.00000	5.2
4	7 1,2-Dichloropropane	63	12.094	12.094 (1.063)	304986	5.00000	5.1
46	5 Methyl Methacrylate	69	12.179	12.179 (1.070)	188096	5.00000	4.6
48	3 1,4-Dioxane	88	12.259	12.254 (1.077)	94297	5.00000	4.9(a)
4	9 Dibromomethane	174	12.270	12.270 (1.078)	292931	5.00000	5.2
50) Bromodichloromethane	83	12.451	12.451 (1.094)	604814	5.00000	5.4
53	l cis-1,3-Dichloropropene	75	13.081	13.081 (1.150)	465060	5.00000	5.2
M 7) Xylene (total)	106			1153772	5.00000	15
52	2 Methyl Isobutyl Ketone	43	13.268	13.268 (1.166)	468511	5.00000	4.7
54	4 Toluene	92	13.519	13.519 (0.874)	584726	5.00000	5.0
53	3 n-Octane	43	13.540	13.540 (1.190)	683938	5.00000	5.1
5	5 trans-1,3-Dichloropropene	75	13.871	13.866 (1.219)	415136	5.00000	5.0
50	5 1,1,2-Trichloroethane	83	14.132	14.132 (0.913)	256958	5.00000	5.2
51	7 Tetrachloroethene	166	14.282	14.282 (0.923)	479040	5.00000	5.3
58	8 Methyl Butyl Ketone	43	14.437	14.431 (0.933)	401582	5.00000	4.6
59	9 Dibromochloromethane	129	14.682	14.682 (0.949)	484176	5.00000	5.5
60	1,2-Dibromoethane	107	14.885	14.885 (0.962)	470425	5.00000	5.6
* 63	1 Chlorobenzene-d5	117	15.472	15.472 (1.000)	2520003	10.0000	
63	2 Chlorobenzene	112	15.509	15.509 (1.002)	729847	5.00000	5.3

					AMOUN	TS	
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)	
	***			*******			
63 Ethylbenzene	91	15.595	15.595 (1.008)	1007550	5.00000	5.0	
84 Nonane	57	15.648	15.648 (1.011)	498568	5.00000	4.7	
64 Xylene (m,p)	106	15.749	15.744 (1.018)	767038	10.0000	9.9	
65 Xylene (o)	106	16.262	16.262 (1.051)	386734	5.00000	4.9	
66 Styrene	104	16.283	16.283 (1.052)	506348	5.00000	4.9	
67 Bromoform	173	16.555	16.555 (1.070)	381438	5.00000	5.4	
68 Cumene	105	16.683	16.683 (1.078)	1118573	5.00000	5.0	
69 1,1,2,2-Tetrachloroethane	83	17.078	17.078 (1.104)	528821	5.00000	5.0	
73 1,2,3-Trichloropropane	75	17.158	17.158 (1.109)	422546	5.00000	4.9	
72 n-Propylbenzene	91	17.169	17.169 (1.110)	1229787	5.00000	5.0	
71 n-Decane	57	17.265	17.265 (1.116)	557760	5.00000	4.8	
74 4-Ethyltoluene	105	17.297	17.297 (1.118)	1020983	5.00000	5.0	
76 2-Chlorotoluene	91	17.324	17.324 (1.120)	953088	5.00000	5.0	
75 1,3,5-Trimethylbenzene	105	17.366	17.367 (1.122)	890403	5.00000	5.1	
77 a-Methylstyrene	118	17.633	17.628 (1.140)	370836	5.00000	4.9	
78 Tert-Butylbenzene	119	17.735	17.735 (1.146)	891630	5.00000	5.1	
79 1,2,4-Trimethylbenzene	105	17.804	17.799 (1.151)	865308	5.00000	5.1	
80 Sec-Butylbenzene	105	17.986	17.986 (1.162)	1276726	5.00000	5.1	
81 4-Isopropyltoluene	119	18.140	18.140 (1.172)	1058775	5.00000	5.1	
82 1,3-Dichlorobenzene	146	18.188	18.188 (1.176)	553233	5.00000	4.9	
83 1,4-Dichlorobenzene	146	18.300	18.300 (1.183)	529943	5.00000	4.7	
86 Benzyl Chloride	91	18.450	18.445 (1.192)	666747	5.00000	5.0	
85 n-Undecane	57	18.626	18.626 (1.204)	529399	5.00000	4.5(a)	
87 n-Butylbenzene	91	18.631	18.631 (1.204)	899419	5.00000	5.1	
88 1,2-Dichlorobenzene	146	18.765	18.759 (1.213)	538780	5.00000	5.0	
89 n-Dodecane	57	20.035	20.030 (1.295)	369729	5.00000	4.9(a)	
90 1,2,4-Trichlorobenzene	180	21.017	21.017 (1.358)	344673	5.00000	5.0	
91 Hexachlorobutadiene	225	21.204	21.198 (1.370)	355784	5.00000	5.2	
92 Naphthalene	128	21.471	21.471 (1.388)	781167	5.00000	5.2	
93 1,2,3-Trichlorobenzene	180	21.914	21.914 (1.416)	310468	5.00000	5.1	

QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).Q - Qualifier signal failed the ratio test.

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/C.i/Csvr.p/cilto15.b/cil10v.d Lab Smp Id: ASTD010 Inj Date : 24-AUG-2009 05:00 Operator : njr Smp Info : Client Smp ID: ASTD010 Inst ID: C.i Misc Info : ASTD010;082309CA;1;200 Comment : Method : /chem/C.i/Csvr.p/cilto15.b/sto15.m Meth Date : 27-Aug-2009 10:25 jd1 Quant Type: ISTD Cal Date : 24-AUG-2009 05:00 Cal File: cil10v.d Als bottle: 4 Calibration Sample, Level: 5 Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: all.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
*****		***		SESSE CSCCC			******
1	Dichlorodifluoromethane	85	3.202	3.202 (0.322)	1276010	10.0000	9.9
2	Freon-22	51	3.240	3.240 (0.326)	765458	10.0000	9.9
3	1,2-Dichlorotetrafluoroethane	85	3.448	3.448 (0.347)	1370851	10.0000	10
4	Chloromethane	50	3.576	3.576 (0.359)	403575	10.0000	9.7
5	n-Butane	43	3.784	3.784 (0.380)	729086	10.0000	9.2
6	Vinyl Chloride	62	3.821	3.821 (0.384)	495714	10.0000	10
7	1,3-Butadiene	54	3.902	3.902 (0.392)	370296	10.0000	10
9	Bromomethane	94	4.633	4.633 (0.466)	465789	10.0000	10
10	Chloroethane	64	4.889	4.889 (0.491)	271949	10.0000	10
11	Isopentane	43	4.996	4.996 (0.502)	564313	10.0000	9.8
12	Bromoethene	106	5.310	5.310 (0.534)	475715	10.0000	10
13	Trichlorofluoromethane	101	5.433	5.433 (0.546)	1324849	10.0000	10
14	Pentane	43	5.583	5.583 (0.561)	856452	10.0000	9.6
15	Ethyl Ether	59	6.100	6.100 (0.613)	340858	10.0000	10
16	Acrolein	56	6.431	6.431 (0.646)	165558	10.0000	9.6

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
****		****				*==***	
17	Freon TF	101	6.511	6.511 (0.654)	975120	10.0000	10
18	1,1-Dichloroethene	96	6.543	6.543 (0.658)	461332	10.0000	10
19	Acetone	43	6.735	6.735 (0.677)	812227	10.0000	11
21	Carbon Disulfide	76	6.944	6.944 (0.698)	1482666	10.0000	10
20	Isopropyl Alcohol	45	7.008	7.008 (0.704)	493598	10.0000	10
22	3-Chloropropene	41	7.264	7.264 (0.730)	644638	10.0000	10
23	Acetonitrile	41	7.322	7.322 (0.736)	359252	10.0000	10
24	Methylene Chloride	49	7.515	7.515 (0.755)	574847	10.0000	9.0
25	tert-Butyl Alcohol	59	7.728	7.728 (0.777)	707036	10.0000	10
26	Methyl tert-Butyl Ether	73	7.936	7.936 (0.798)	1474226	10.0000	11
27	trans-1,2-Dichloroethene	61	7.936	7.936 (0.798)	815571	10.0000	10
28	n-Hexane	57	8.304	8.304 (0.835)	862421	10.0000	9.9
29	1,1-Dichloroethane	63	8.683	8.683 (0.873)	1017283	10.0000	10
M 40	1,2-Dichloroethene (total)	61			1370201	20.0000	20
31	cis-1,2-Dichloroethene	96	9.591	9.591 (0.964)	554630	10.0000	10
30	Methyl Ethyl Ketone	72	9.617	9.617 (0.967)	208944	10.0000	9.7
* 32	Bromochloromethane	128	9.948	9.948 (1.000)	520236	10.0000	
33	Tetrahydrofuran	42	10.007	10.007 (0.879)	500478	10.0000	10
34	Chloroform	83	10.034	10.034 (1.009)	1152110	10.0000	10
35	1,1,1-Trichloroethane	97	10.295	10.295 (0.905)	1201810	10.0000	10
36	Cyclohexane	84	10.311	10.311 (0.906)	793906	10.0000	10
37	Carbon Tetrachloride	117	10.503	10.503 (0.923)	1174321	10.0000	11
38	2,2,4-Trimethylpentane	57	10.818	10.818 (0.951)	2792066	10.0000	10
39	Benzene	78	10.823	10.823 (0.951)	1755031	10.0000	10
41	1,2-Dichloroethane	62	10.914	10.914 (0.959)	862761	10.0000	10
42	n-Heptane	43	11.074	11.074 (0.973)	1031154	10.0000	9.9
* 43	1,4-Difluorobenzene	114	11.379	11.379 (1.000)	2966374	10.0000	
44	1-Butanol	56	11.608	11.608 (1.020)	182245	10.0000	9.8
45	Trichloroethene	95	11.736	11.736 (1.031)	744982	10.0000	10
47	1,2-Dichloropropane	63	12.094	12.094 (1.063)	622599	10.0000	10
46	Methyl Methacrylate	69	12.179	12.179 (1.070)	435023	10.0000	10
48	1,4-Dioxane	88	12.254	12.254 (1.077)	201916	10.0000	10
49	Dibromomethane	174	12.270	12.270 (1.078)	605830	10.0000	11
50	Bromodichloromethane	83	12.451	12.451 (1.094)	1248415	10.0000	11
51	cis-1,3-Dichloropropene	75	13.081	13.081 (1.150)	949510	10.0000	10
M 70	Xylene (total)	106			2425621	10.0000	29
52	Methyl Isobutyl Ketone	43	13.268	13.268 (1.166)	1053294	10.0000	10
54	Toluene	92	13.519	13.519 (0.874)	1232672	10.0000	10
53	n-Octane	43	13.540	13.540 (1.190)	1375134	10.0000	10
55	trans-1,3-Dichloropropene	75	13.866	13.866 (1.219)	845649	10.0000	10
56	1,1,2-Trichloroethane	83	14.132	14.132 (0.913)	526546	10.0000	10
57	Tetrachloroethene	166	14.282	14.282 (0.923)	963116	10.0000	10
58	Methyl Butyl Ketone	43	14.431	14.431 (0.933)	905838	10.0000	9.8
59	Dibromochloromethane	129	14.682	14.682 (0.949)	1000696	10.0000	11
60	1,2-Dibromoethane	107	14.885	14.885 (0.962)	943433	10.0000	11
* 61	Chlorobenzene-d5	117	15.472	15.472 (1.000)	2675645	10.0000	
62	Chlorobenzene	112	15.509	15.509 (1.002)	1444465	10.0000	9.8

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
rseencarssspicitistertu			REFERE REFERE	*******		
63 Ethylbenzene	91	15.595	15.595 (1.008)	2102177	10.0000	9.7
84 Nonane	57	15.648	15.648 (1.011)	1039649	10.0000	9.3
64 Xylene (m,p)	106	15.744	15.744 (1.018)	1603531	20.0000	20
65 Xylene (o)	106	16.262	16.262 (1.051)	822090	10.0000	9.8
66 Styrene	104	16.283	16.283 (1.052)	1121641	10.0000	10
67 Bromoform	173	16.555	16.555 (1.070)	786021	10.0000	10
68 Cumene	105	16.683	16.683 (1.078)	2384962	10.0000	10
69 1,1,2,2-Tetrachloroethane	83	17.078	17.078 (1.104)	1130225	10.0000	10
73 1,2,3-Trichloropropane	75	17.158	17.158 (1.109)	889610	10.0000	9.7
72 n-Propylbenzene	91	17.169	17.169 (1.110)	2633982	10.0000	10
71 n-Decane	57	17.265	17.265 (1.116)	1168475	10.0000	9.6
74 4-Ethyltoluene	105	17.297	17.297 (1.118)	2187643	10.0000	10
76 2-Chlorotoluene	91	17.324	17.324 (1.120)	1948454	10.0000	9.7
75 1,3,5-Trimethylbenzene	105	17.367	17.367 (1.122)	1917318	10.0000	10
77 a-Methylstyrene	118	17.628	17.628 (1.139)	851559	10.0000	11
78 Tert-Butylbenzene	119	17.735	17.735 (1.146)	1889566	10.0000	10
79 1,2,4-Trimethylbenzene	105	17.799	17.799 (1.150)	1837188	10.0000	10
80 Sec-Butylbenzene	105	17.986	17.986 (1.162)	2725941	10.0000	10
81 4-Isopropyltoluene	119	18.140	18.140 (1.172)	2267833	10.0000	10
82 1,3-Dichlorobenzene	146	18.188	18.188 (1.176)	1112464	10.0000	9.2
83 1,4-Dichlorobenzene	146	18.300	18.300 (1.183)	1081128	10.0000	9.1
86 Benzyl Chloride	91	18.445	18.445 (1.192)	1346679	10.0000	9.5
85 n-Undecane	57	18.626	18.626 (1.204)	1184209	10.0000	9.5
87 n-Butylbenzene	91	18.631	18.631 (1.204)	1936382	10.0000	10
88 1,2-Dichlorobenzene	146	18.759	18.759 (1.212)	1099987	10.0000	9.6
89 n-Dodecane	57	20.030	20.030 (1.295)	748621	10.0000	9.3
90 1,2,4-Trichlorobenzene	180	21.017	21.017 (1.358)	729446	10.0000	10
91 Hexachlorobutadiene	225	21.198	21.198 (1.370)	744033	10.0000	10
92 Naphthalene	128	21.471	21.471 (1.388)	1693456	10.0000	11
93 1,2,3-Trichlorobenzene	180	21.914	21.914 (1.416)	674393	10.0000	11

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/C.i/Csvr.p/cilto15.b/cil15v.d Lab Smp Id: ASTD015 Client Inj Date : 24-AUG-2009 05:48 Operator : njr Inst ID Smp Info : Client Smp ID: ASTD015 Inst ID: C.i Misc Info : ASTD015;082309CA;1;200 Comment Method : /chem/C.i/Csvr.p/cilto15.b/sto15.m Meth Date : 27-Aug-2009 10:25 jd1 Quant Quant Type: ISTD Cal Date : 24-AUG-2009 05:48 Cal File: cil15v.d Als bottle: 5 Calibration Sample, Level: 6 Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: all.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
			==				
1	Dichlorodifluoromethane	85	3.202	3.202 (0.322)	1949854	15.0000	15
2	Freon-22	51	3.240	3.240 (0.325)	1187871	15.0000	15
З	1,2-Dichlorotetrafluoroethane	85	3.453	3.448 (0.347)	2085630	15.0000	15
4	Chloromethane	50	3.576	3.576 (0.359)	619752	15.0000	15
5	n-Butane	43	3.784	3.784 (0.380)	1135529	15.0000	14
e	Vinyl Chloride	62	3.822	3.821 (0.384)	76951 4	15.0000	16
7	1,3-Butadiene	54	3.907	3.902 (0.392)	568440	15.0000	16
9	Bromomethane	94	4.633	4.633 (0.465)	718774	15.0000	16
10	Chloroethane	64	4.889	4.889 (0.491)	424666	15.0000	16
11	Isopentane	43	4.996	4.996 (0.502)	876621	15.0000	15
12	Bromoethene	106	5.311	5.310 (0.534)	738241	15.0000	16
13	Trichlorofluoromethane	101	5.433	5.433 (0.546)	2031648	15.0000	15
14	Pentane	43	5.588	5.583 (0.561)	1313280	15.0000	14
15	Ethyl Ether	59	6.106	6.100 (0.613)	518529	15.0000	16
16	Acrolein	56	6.431	6.431 (0.646)	268626	15.0000	15

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Comp	ounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
		====	==	HETEER SERDER		*****	
1	7 Freon TF	101	6.506	6.511 (0.654)	1515696	15.0000	16
1	8 1,1-Dichloroethene	96	6.543	6.543 (0.657)	717083	15.0000	15
1	9 Acetone	43	6.735	6.735 (0.677)	1162680	15.0000	15
2	1 Carbon Disulfide	76	6.949	6.944 (0.698)	2306756	15.0000	16
2	0 Isopropyl Alcohol	45	7.013	7.008 (0.705)	741524	15.0000	15
2	2 3-Chloropropene	41	7.264	7.264 (0.730)	998643	15.0000	15
2	3 Acetonitrile	41	7.328	7.322 (0.736)	554133	15.0000	16
2	4 Methylene Chloride	49	7.520	7.515 (0.756)	890766	15.0000	14
2	5 tert-Butyl Alcohol	59	7.728	7,728 (0,776)	1068121	15.0000	15
2	6 Methyl tert-Butyl Ether	73	7.942	7.936 (0.798)	2237549	15.0000	16
2	7 trans-1,2-Dichloroethene	61	7,942	7,936 (0,798)	1248957	15.0000	16
2	8 n-Hexane	57	8.310	8.304 (0.835)	1336486	15.0000	15
2	9 1.1-Dichloroethane	63	8,683	8,683 (0,872)	1567715	15.0000	16
м 4	0 1.2-Dichloroethene (total)	61			2117116	15.0000	31
3	1 cis-1.2-Dichloroethene	96	9,591	9.591 (0.964)	868159	15.0000	16
3	0 Methyl Ethyl Ketone	72	9.617	9.617 (0.966)	314542	15.0000	14
* 3	2 Bromochloromethane	128	9,954	9.948 (1.000)	530965	10.0000	
3	3 Tetrahydrofuran	42	10.007	10.007 (0.879)	766781	15.0000	15
3	4 Chloroform	83	10.039	10.034 (1.009)	1772287	15.0000	16
3	5 1.1.1-Trichloroethane	97	10.295	10.295 (0.905)	1851457	15.0000	16
3	6 Cvclohexane	84	10.311	10.311 (0.906)	1232435	15.0000	16
3	7 Carbon Tetrachloride	117	10.503	10,503 (0,923)	1816582	15.0000	16
3	8 2.2.4-Trimethylpentane	57	10.818	10.818 (0.951)	4303188	15.0000	
3	9 Benzene	78	10.824	10.823 (0.951)	2704999	15.0000	15
4	1.1.2-Dichloroethane	62	10.914	10.914 (0.959)	1319945	15 0000	16
4	2 n-Heptape	43	11 080	11 074 (0 974)	1597347	15 0000	15
* 4	3 1.4-Difluorobenzene	114	11 379	11 379 (1 000)	3004520	10 0000	10
-	4 1-Butanol	56	11 608	11.575 (1.000)	293018	15,0000	16
-	5 Trichloroethene	95	11 736	11.000 (1.020)	1154100	15,0000	16
4	7 1 2-Dichloropropage	63	12 099	12 094 (1 063)	949492	15,0000	15
4	6 Methyl Methacrylate	69	12.000	12.034 (1.003)	684131	15.0000	15
4	8 1.4-Dioxane	88	12 259	12.175 (1.070) 12.254 (1.077)	299719	15.0000	15
4	9 Dibromomethane	174	12 270	12.234 (1.077) 12.270 (1.078)	940734	15,0000	15
5	0 Bromodichloromethane	272	12 451	12.270 (1.078)	1918849	15.0000	10
5	1 cis-1 3-Dichloropropene	75	12.451	12.451 (1.094)	1/11005	15.0000	1,
M 7	0 Xylene (total)	106	13.000	13.081 (1.150)	2715002	15.0000	15
5	2 Methyl Trobutyl Ketone	100	12 260	12 269 (1 166)	1646110	15.0000	14/
5	4 Toluene	43	13.200	13.200 (1.100)	1747407	15.0000	16
5		92 43	13.519	13.519 (0.874)	1/4/48/	15.0000	15
5	5 trans_1 2-Dichloropropers	43	13.540	13.340 (1.190)	2056393	15.0000	15
5	6 1 1 2-Trichloroethane	21	14 122	14 122 (0 912)	769051	15.0000	15
5	7 Tetrachloroethere	144	14 202	14,292 (0.513)	1469393	15.0000	15
-	8 Methyl Butyl Katana	700	14.202	14 421 (0.223)	1410120	15.0000	10
5	9 Dibromochloromethane	43	14.431	14 602 (0.933)	1404223	15.0000	10
ت د	0 1 2-Dibromoethane	123	14.002	14 895 (0.949)	1373040	15.0000	1/
* -	1 Chlorobenzene_d5	117	16 472	14.865 (0.962)	13/2049	10.0000	т6
- D	2 Chlorobenzene-ub	112	15.4/2	15.4/2 (1.000)	2000050	10.0000	1-
6	z chitoropenzene	112	12.212	T2'20à (T'003)	2092858	12.0000	12

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
					******	*******
63 Ethylbenzene	91	15.595	15.595 (1.008)	3161570	15.0000	15
84 Nonane	57	15.648	15.648 (1.011)	1588690	15.0000	15
64 Xylene (m,p)	106	15.749	15.744 (1.018)	2453760	30.0000	31
65 Xylene (o)	106	16.262	16.262 (1.051)	1262232	15.0000	16
66 Styrene	104	16.283	16.283 (1.052)	1744429	15.0000	17
67 Bromoform	173	16.555	16.555 (1.070)	1199120	15.0000	17
68 Cumene	105	16.683	16.683 (1.078)	3704601	15.0000	16
69 1,1,2,2-Tetrachloroethane	83	17.078	17.078 (1.104)	1724921	15.0000	16
73 1,2,3-Trichloropropane	75	17.158	17.158 (1.109)	1340329	15.0000	15
72 n-Propylbenzene	91	17.169	17.169 (1.110)	4020937	15.0000	16
71 n-Decane	57	17.265	17.265 (1.116)	1801560	15.0000	15
74 4-Ethyltoluene	105	17.297	17.297 (1.118)	3335906	15.0000	16
76 2-Chlorotoluene	91	17.324	17.324 (1.120)	2918176	15.0000	15
75 1,3,5-Trimethylbenzene	105	17.367	17.367 (1.122)	2927435	15.0000	16
77 a-Methylstyrene	118	17.633	17.628 (1.140)	1329538	15.0000	17
78 Tert-Butylbenzene	119	17.735	17.735 (1.146)	2913560	15.0000	16
79 1,2,4-Trimethylbenzene	105	17.804	17.799 (1.151)	2808507	15.0000	16
80 Sec-Butylbenzene	105	17.991	17.986 (1.163)	4142417	15.0000	16
81 4-Isopropyltoluene	119	18.140	18.140 (1.172)	3448092	15.0000	16
82 1,3-Dichlorobenzene	146	18.188	18.188 (1.176)	1654267	15.0000	14
83 1,4-Dichlorobenzene	146	18.301	18.300 (1.183)	1602661	15.0000	14
86 Benzyl Chloride	91	18.450	18.445 (1.192)	2221870	15.0000	16
85 n-Undecane	57	18.626	18.626 (1.204)	1820163	15.0000	15
87 n-Butylbenzene	91	18.631	18.631 (1.204)	2956994	15.0000	16
88 1,2-Dichlorobenzene	146	18.765	18.759 (1.213)	1650997	15.0000	15
89 n-Dodecane	57	20.035	20.030 (1.295)	1189255	15.0000	15
90 1,2,4-Trichlorobenzene	180	21.017	21.017 (1.358)	1132144	15.0000	16
91 Hexachlorobutadiene	225	21.198	21.198 (1.370)	1124599	15.0000	16
92 Naphthalene	128	21.471	21.471 (1.388)	2698689	15.0000	18
93 1,2,3-Trichlorobenzene	180	21.914	21.914 (1.416)	1049672	15.0000	17

Page 49 of 89

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/C.i/Csvr.p/cilto15.b/cil20v.d Lab Smp Id: ASTD020 Client Smp ID: ASTD020 Inj Date : 24-AUG-2009 06:37 Operator : njr Smp Info : Misc Info : ASTD020;082309CA;1;200 Inst ID: C.i Comment Method : /chem/C.i/Csvr.p/cilto15.b/sto15.m Meth Date : 27-Aug-2009 10:25 jd1 Quant Quant Type: ISTD Cal Date : 24-AUG-2009 06:37 Cal File: cil20v.d Als bottle: 6 Calibration Sample, Level: 7 Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: all.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
		3038	* 	INCCIC REFLER			
.1	Dichlorodifluoromethane	85	3.203	3.202 (0.322)	2534115	20.0000	19
2	Freon-22	51	3.240	3.240 (0.325)	1564608	20.0000	20
3	1,2-Dichlorotetrafluoroethane	85	3.448	3.448 (0.346)	2728950	20.0000	20
4	Chloromethane	50	3.576	3.576 (0.359)	815042	20.0000	19
5	n-Butane	43	3.784	3.784 (0.380)	1489429	20.0000	18
6	Vinyl Chloride	62	3.822	3.821 (0.384)	1008163	20.0000	20
7	1,3-Butadiene	54	3.902	3.902 (0.392)	743055	20.0000	20
9	Bromomethane	94	4.633	4.633 (0.465)	940635	20.0000	20
10	Chloroethane	64	4.889	4.889 (0.491)	551478	20.0000	20
11	Isopentane	43	4.996	4.996 (0.502)	1145515	20.0000	19
12	Bromoethene	106	5.311	5.310 (0.534)	972817	20.0000	20
13	Trichlorofluoromethane	101	5.428	5.433 (0.545)	2654324	20.0000	20
14	Pentane	43	5.588	5.583 (0.561)	1701910	20.0000	19
15	Ethyl Ether	59	6.100	6.100 (0.613)	678069	20.0000	20
16	Acrolein	56	6.431	6.431 (0.646)	348461	20.0000	20

						AMOUN	ITS
		QUANT SIG				CAL-AMT	ON-COL
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
			==	C77C22 72EEEE			
17	Freon TF	101	6.511	6.511 (0.654)	1984267	20.0000	20
18	1,1-Dichloroethene	96	6.543	6.543 (0.657)	940532	20.0000	20
19	Acetone	43	6.736	6.735 (0.677)	1484012	20.0000	19
21	Carbon Disulfide	76	6.949	6.944 (0.698)	3021238	20.0000	20
20	Isopropyl Alcohol	45	7.013	7.008 (0.705)	967769	20.0000	20
22	3-Chloropropene	41	7.264	7.264 (0.730)	1309226	20.0000	20
23	Acetonitrile	41	7.323	7.322 (0.736)	700756	20.0000	19
24	Methylene Chloride	49	7.520	7.515 (0.756)	1161384	20.0000	18
25	tert-Butyl Alcohol	59	7.723	7.728 (0.776)	1400705	20.0000	20
26	Methyl tert-Butyl Ether	73	7.936	7.936 (0.797)	2891399	20.0000	20
27	trans-1,2-Dichloroethene	61	7.942	7.936 (0.798)	1622561	20.0000	20
28	n-Hexane	57	8.305	8.304 (0.834)	1739643	20.0000	19
29	1,1-Dichloroethane	63	8.684	8.683 (0.872)	2053687	20.0000	20
M 40	1,2-Dichloroethene (total)	61			2752534	40.0000	40
31	cis-1,2-Dichloroethene	96	9.591	9.591 (0.964)	1129973	20.0000	20
30	Methyl Ethyl Ketone	72	9.617	9.617 (0.966)	418178	20.0000	19
* 32	Bromochloromethane	128	9.954	9.948 (1.000)	536673	10.0000	
33	Tetrahydrofuran	42	10.007	10.007 (0.879)	996694	20.0000	19
34	Chloroform	83	10.039	10.034 (1.009)	2306062	20.0000	20
35	1,1,1-Trichloroethane	97	10.295	10.295 (0.905)	2411204	20.0000	20
36	Cyclohexane	84	10.311	10.311 (0.906)	1618664	20.0000	20
37	Carbon Tetrachloride	117	10.503	10.503 (0.923)	2382773	20.0000	21
38	2,2,4-Trimethylpentane	57	10.818	10.818 (0.951)	5608010	20.0000	20
39	Benzene	78	10.824	10.823 (0.951)	3534789	20.0000	20
41	1,2-Dichloroethane	62	10.914	10.914 (0.959)	1728231	20.0000	20
42	n-Heptane	43	11.080	11.074 (0.974)	2077160	20.0000	19
* 43	1,4-Difluorobenzene	114	11.379	11.379 (1.000)	3035539	10.0000	
44	1-Butanol	56	11.603	11.608 (1.020)	387058	20.0000	20
45	Trichloroethene	95	11.736	11.736 (1.031)	1505515	20.0000	20
47	1,2-Dichloropropane	63	12.099	12.094 (1.063)	1252011	20.0000	20
46	Methyl Methacrylate	69	12.179	12.179 (1.070)	925596	20.0000	22
48	1,4-Dioxane	88	12.259	12.254 (1.077)	391401	20.0000	20
49	Dibromomethane	174	12.270	12.270 (1.078)	1240179	20.0000	21
50	Bromodichloromethane	83	12.451	12.451 (1.094)	2522424	20.0000	22
51	cis-1,3-Dichloropropene	75	13.086	13.081 (1.150)	1866419	20.0000	20
M 70	Xylene (total)	106			4948255	20.0000	59
52	Methyl Isobutyl Ketone	43	13.268	13.268 (1.166)	2175626	20.0000	21
54	Toluene	92	13.519	13.519 (0.874)	2323590	20.0000	19
53	n-Octane	43	13.540	13.540 (1.190)	2657522	20.0000	19
55	trans-1,3-Dichloropropene	75	13.871	13.866 (1.219)	1687914	20.0000	19
56	1,1,2-Trichloroethane	83	14.133	14.132 (0.913)	1013281	20.0000	19
57	Tetrachloroethene	166	14.282	14.282 (0.923)	1914295	20.0000	20
58	Methyl Butyl Ketone	43	14.431	14.431 (0.933)	1884013	20.0000	20
59	Dibromochloromethane	129	14.682	14.682 (0.949)	1990431	20.0000	21
60	1,2-Dibromoethane	107	14.885	14.885 (0.962)	1818053	20.0000	20
* 61	Chlorobenzene-d5	117	15.472	15.472 (1.000)	2680742	10.0000	
62	Chlorobenzene	112	15.515	15.509 (1.003)	2762177	20.0000	19

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
	2322		STREES BCIICS	***====#		
63 Ethylbenzene	91	15.595	15.595 (1.008)	4222650	20.0000	20
84 Nonane	57	15.648	15.648 (1.011)	2116419	20.0000	19
64 Xylene (m,p)	106	15.750	15.744 (1.018)	3268802	40.0000	40
65 Xylene (o)	106	16.262	16.262 (1.051)	1679453	20.0000	20
66 Styrene	104	16.283	16.283 (1.052)	2356712	20.0000	21
67 Bromoform	173	16.555	16.555 (1.070)	1624172	20.0000	21
68 Cumene	105	16.684	16.683 (1.078)	4866346	20.0000	21
69 1,1,2,2-Tetrachloroethane	83	17.078	17.078 (1.104)	2288252	20.0000	20
73 1,2,3-Trichloropropane	75	17.159	17.158 (1.109)	1790069	20.0000	19
72 n-Propylbenzene	91	17.169	17.169 (1.110)	5327566	20.0000	20
71 n-Decane	57	17.265	17.265 (1.116)	2370875	20.0000	19
74 4-Ethyltoluene	105	17.297	17.297 (1.118)	4427793	20.0000	20
76 2-Chlorotoluene	91	17.324	17.324 (1.120)	3846673	20.0000	19
75 1,3,5-Trimethylbenzene	105	17.367	17.367 (1.122)	3818942	20.0000	20
77 a-Methylstyrene	118	17.634	17.628 (1.140)	1779984	20.0000	22
78 Tert-Butylbenzene	119	17.735	17.735 (1.146)	3836170	20.0000	21
79 1,2,4-Trimethylbenzene	105	17.804	17.799 (1.151)	3652128	20.0000	20
80 Sec-Butylbenzene	105	17.986	17.986 (1.162)	5466953	20.0000	21
81 4-Isopropyltoluene	119	18.141	18.140 (1.172)	4543928	20.0000	21
82 1,3-Dichlorobenzene	146	18.189	18.188 (1.176)	2195651	20.0000	18
83 1,4-Dichlorobenzene	146	18.301	18.300 (1.183)	2119795	20.0000	18
86 Benzyl Chloride	91	18.450	18.445 (1.192)	2973157	20.0000	21
85 n-Undecane	57	18.626	18.626 (1.204)	2313534	20.0000	19
87 n-Butylbenzene	91	18.632	18.631 (1.204)	3881510	20.0000	21
88 1,2-Dichlorobenzene	146	18.765	18.759 (1.213)	2169468	20.0000	19
89 n-Dodecane	57	20.030	20.030 (1.295)	1380965	20.0000	17
90 1,2,4-Trichlorobenzene	180	21.017	21.017 (1.358)	1307847	20.0000	18
91 Hexachlorobutadiene	225	21.199	21.198 (1.370)	1452470	20.0000	20
92 Naphthalene	128	21.471	21.471 (1.388)	2510077	20.0000	16
93 1,2,3-Trichlorobenzene	180	21.914	21.914 (1.416)	1146400	20.0000	18

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/C.i/Csvr.p/cilto15.b/cil40v.d Lab Smp Id: ASTD040 Client Client Smp ID: ASTD040 Inj Date : 24-AUG-2009 07:25 Operator : njr Smp Info : Inst ID: C.i Misc Info : ASTD040;082309CA;1;200 Comment Method : /chem/C.i/Csvr.p/cilto15.b/sto15.m Meth Date : 27-Aug-2009 10:25 jd1 Quant Type: ISTD Cal Date : 24-AUG-2009 07:25 Cal File: cil40v.d Als bottle: 7 Calibration Sample, Level: 8 Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: all.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

						141001	10
		QUANT SIG				CAL-AMT	ON-COL
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
	알보도보 D I I I I I I I I I I I I I I I I I I			RIEGIE REBER	*******	TOTALDA	
1	Dichlorodifluoromethane	85	3.203	3.202 (0.322)	5025304	40.0000	38
2	Freon-22	51	3.240	3.240 (0.325)	3140283	40.0000	39
3	1,2-Dichlorotetrafluoroethane	85	3.448	3.448 (0.346)	5448302	40.0000	40
4	Chloromethane	50	3.576	3.576 (0.359)	1677518	40.0000	39
5	n-Butane	43	3.784	3.784 (0.380)	3049024	40.0000	37
6	Vinyl Chloride	62	3.822	3.821 (0.384)	2055437	40.0000	41 (A)
7	1,3-Butadiene	54	3.902	3.902 (0.392)	1527223	40.0000	41 (A)
9	Bromomethane	94	4.633	4.633 (0.465)	1913875	40.0000	41 (A)
10	Chloroethane	64	4.889	4.889 (0.491)	1121735	40.0000	40 (A)
11	Isopentane	43	4.996	4.996 (0.502)	2324571	40.0000	39
12	Bromoethene	106	5.311	5.310 (0.534)	1997562	40.0000	42 (A)
13	Trichlorofluoromethane	101	5.433	5.433 (0.546)	5404228	40.0000	40
14	Pentane	43	5.588	5.583 (0.561)	3484097	40.0000	38
15	Ethyl Ether	59	6.106	6.100 (0.613)	1430722	40.0000	42 (A)
16	Acrolein	56	6.431	6.431 (0.646)	748299	40.0000	42 (A)

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Comp	ounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
			==		********		
1	7 Freon TF	101	6.511	6.511 (0.654)	4028877	40.0000	41 (A)
1	8 1,1-Dichloroethene	96	6.549	6.543 (0.658)	1928712	40.0000	41 (A)
1	9 Acetone	43	6.736	6.735 (0.677)	2985434	40.0000	38
2	l Carbon Disulfide	76	6.949	6.944 (0.698)	6112082	40.0000	41 (A)
2	0 Isopropyl Alcohol	45	7.018	7.008 (0.705)	1851929	40.0000	38
2	2 3-Chloropropene	41	7.264	7.264 (0.730)	2698428	40.0000	41 (A)
2	3 Acetonitrile	41	7.328	7.322 (0.736)	1380309	40.0000	38
2	4 Methylene Chloride	49	7.520	7.515 (0.756)	2338196	40.0000	35
2	5 tert-Butyl Alcohol	59	7.728	7.728 (0.776)	2687228	40.0000	38
2	6 Methyl tert-Butyl Ether	73	7.936	7.936 (0.797)	6028201	40.0000	42 (A)
2	7 trans-1,2-Dichloroethene	61	7.942	7.936 (0.798)	3292137	40.0000	40 (A)
2	8 n-Hexane	57	8.310	8.304 (0.835)	3539093	40.0000	39
2	9 1,1-Dichloroethane	63	8.684	8.683 (0.872)	4147429	40.0000	41 (A)
M 4	0 1,2-Dichloroethene (total)	61			5583878	80.0000	81
3	1 cis-1,2-Dichloroethene	96	9.591	9.591 (0.964)	2291741	40.0000	40 (A)
3	0 Methyl Ethyl Ketone	72	9.618	9.617 (0.966)	900863	40.0000	40 (A)
* 3	2 Bromochloromethane	128	9.954	9.948 (1.000)	539880	10.0000	
3	3 Tetrahydrofuran	42	10.007	10.007 (0.879)	2093630	40.0000	42 (A)
3	4 Chloroform	83	10.039	10.034 (1.009)	4622547	40.0000	40 (A)
3	5 1,1,1-Trichloroethane	97	10.301	10.295 (0.905)	4913137	40.0000	42 (A)
3	6 Cyclohexane	84	10.317	10.311 (0.907)	3319894	40.0000	43 (A)
3	7 Carbon Tetrachloride	117	10.503	10.503 (0.923)	4843007	40.0000	44 (A)
3	8 2,2,4-Trimethylpentane	57	10.818	10.818 (0.951)	11362076	40.0000	42 (A)
3	9 Benzene	78	10.824	10.823 (0.951)	7093549	40.0000	41 (A)
4	1 1,2-Dichloroethane	62	10.914	10.914 (0.959)	3463132	40.0000	42 (A)
4	2 n-Heptane	43	11.080	11.074 (0.974)	4209774	40.0000	41 (A)
* 4	3 1,4-Difluorobenzene	114	11.379	11.379 (1.000)	2954357	10.0000	
4	4 1-Butanol	56	11.603	11.608 (1.020)	761926	40.0000	41 (A)
4	5 Trichloroethene	95	11.736	11.736 (1.031)	3010201	40.0000	42 (A)
4	7 1,2-Dichloropropane	63	12.099	12.094 (1.063)	2513237	40.0000	42 (A)
4	6 Methyl Methacrylate	69	12.179	12.179 (1.070)	2046131	40.0000	49 (A)
4	8 1,4-Dioxane	88	12.259	12.254 (1.077)	767039	40.0000	39
4	9 Dibromomethane	174	12.275	12.270 (1.079)	2458756	40.0000	43 (A)
5	0 Bromodichloromethane	83	12.451	12.451 (1.094)	4944107	40.0000	44 (A)
5	l cis-1,3-Dichloropropene	75	13.086	13.081 (1.150)	3612180	40.0000	40 (A)
M 7	0 Xylene (total)	106			10685953	40.0000	150 (A)
5	2 Methyl Isobutyl Ketone	43	13.268	13.268 (1.166)	4673690	40.0000	47 (A)
5	4 Toluene	92	13.524	13.519 (0.874)	4688223	40.0000	44 (A)
5	3 n-Octane	43	13.540	13.540 (1.190)	5374740	40.0000	40
5	5 trans-1,3-Dichloropropene	75	13.871	13.866 (1.219)	3355426	40.0000	40
5	6 1,1,2-Trichloroethane	83	14.133	14.132 (0.913)	2027965	40.0000	45 (A)
5	7 Tetrachloroethene	166	14.287	14.282 (0.923)	3720136	40.0000	45 (A)
5	8 Methyl Butyl Ketone	43	14.431	14.431 (0.933)	4100763	40.0000	52 (A)
5	9 Dibromochloromethane	129	14.682	14.682 (0.949)	3947948	40,0000	49 (A)
6	0 1,2-Dibromoethane	107	14.890	14.885 (0.962)	3415925	40.0000	44 (A)
* 6	1 Chlorobenzene-d5	117	15.472	15.472 (1.000)	2300481	10.0000	(11)
6	2 Chlorobenzene	112	15.515	15.509 (1.003)	5394999	40.0000	43 (A)

					AMOU	NTS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT RE	L RT RESPONSE	(ppbv)	(ppbv)
	====					
63 Ethylbenzene	91	15.595	15.595 (1	.008) 8904249	40.0000	48 (A)
84 Nonane	57	15.654	15.648 (1	.012) 4572628	40.0000	48 (A)
64 Xylene (m,p)	106	15.750	15.744 (1	.018) 7044116	80.0000	100 (A)
65 Xylene (o)	106	16.262	16.262 (1	.051) 3641837	40.0000	51 (A)
66 Styrene	104	16.283	16.283 (1	.052) 5118563	40.0000	54 (A)
67 Bromoform	173	16.561	16.555 (1	.070) 3414777	40.0000	52 (A)
68 Cumene	105	16.689	16.683 (1	.079) 10257230	40.0000	50 (A)
69 1,1,2,2-Tetrachloroethane	83	17.079	17.078 (1	.104) 4918154	40.0000	51 (A)
73 1,2,3-Trichloropropane	75	17.164	17.158 (1	.109) 3834270	40.0000	48 (A)
72 n-Propylbenzene	91	17.169	17.169 (1	.110) 11246863	40.0000	50 (A)
71 n-Decane	57	17.265	17.265 (1	.116) 5173166	40.0000	49 (A)
74 4-Ethyltoluene	105	17.297	17.297 (1	.118) 9394558	40.0000	50 (A)
76 2-Chlorotoluene	91	17.324	17.324 (1	.120) 8082076	40.0000	47 (A)
75 1,3,5-Trimethylbenzene	105	17.367	17.367 (1	.122) 8137824	40.0000	51 (A)
77 a-Methylstyrene	118	17.634	17.628 (1	.140) 3978801	40.0000	58 (A)
78 Tert-Butylbenzene	119	17.735	17.735 (1	.146) 8155577	40.0000	51 (A)
79 1,2,4-Trimethylbenzene	105	17.804	17.799 (1	.151) 7856944	40.0000	51 (A)
80 Sec-Butylbenzene	105	17.991	17.986 (1	163) 11512278	40.0000	51 (A)
81 4-Isopropyltoluene	119	18.141	18.140 (1	172) 9677294	40.0000	51 (A)
82 1,3-Dichlorobenzene	146	18.194	18.188 (1	.176) 4689644	40.0000	45 (A)
83 1,4-Dichlorobenzene	146	18.301	18.300 (1	183) 4581623	40.0000	45 (A)
86 Benzyl Chloride	91	18.450	18.445 (1	.192) 6532992	40.0000	53 (A)
85 n-Undecane	57	18.626	18.626 (1	204) 5094819	40.0000	48 (A)
87 n-Butylbenzene	91	18.632	18.631 (1	.204) 8281901	40.0000	51 (A)
88 1,2-Dichlorobenzene	146	18.765	18.759 (1	.213) 4665799	40.0000	48 (A)
89 n-Dodecane	57	20.035	20.030 (1	.295) 3382712	40.0000	49 (A)
90 1,2,4-Trichlorobenzene	180	21.017	21.017 (1	.358) 3215366	40.0000	51 (A)
91 Hexachlorobutadiene	225	21.204	21.198 (1	.370) 2991272	40.0000	48 (A)
92 Naphthalene	128	21.471	21.471 (1	.388) 7403986	40.0000	54 (A)
93 1,2,3-Trichlorobenzene	180	21.914	21.914 (1	.416) 2840386	40.0000	52 (A)

QC Flag Legend

A - Target compound detected but, quantitated amount exceeded maximum amount.

Page 58 of 89

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/C.i/Csvr.p/cilto15.b/cil10q.d Lab Smp Id: CA082209ICV Inj Date : 24-AUG-2009 09:01 Operator : njr Smp Info : Client Smp ID: CA082209ICV Inst ID: C.i Misc Info : CA082209LCS;082309CA;1;200 Comment Method : /chem/C.i/Csvr.p/cilto15.b/sto15.m Meth Date : 27-Aug-2009 10:25 jd1 Quant Quant Type: ISTD Cal Date : 24-AUG-2009 07:25 Cal File: cil40v.d Als bottle: 4 QC Sample: ICV Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: all.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

						CONCENTRA	TIONS
		QUANT SIG				ON-COLUMN	FINAL
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
				asdell 1			*******
1	Dichlorodifluoromethane	85	3.197	3.202 (0.321)	1306380	10.4958	10
2	Freon-22	51	3.234	3.240 (0.325)	792095	10.5845	11
3	1,2-Dichlorotetrafluoroethane	85	3.448	3.448 (0.347)	1395307	10.8409	11
4	Chloromethane	50	3.571	3.576 (0.359)	408730	10.1330	10
5	n-Butane	43	3.779	3.784 (0.380)	729771	9.46057	9.5
6	Vinyl Chloride	62	3.816	3.821 (0.384)	503747	10.7279	11
7	1,3-Butadiene	54	3.896	3.902 (0.392)	379535	10.9098	11
9	Bromomethane	94	4,627	4.633 (0.465)	455970	10.4048	10
10	Chloroethane	64	4.884	4.889 (0.491)	264826	10.2084	10
11	Isopentane	43	4.990	4.996 (0.502)	548612	9.83299	9.8
12	Bromoethene	106	5.305	5.310 (0.533)	461982	10.3145	10
13	Trichlorofluoromethane	101	5.428	5.433 (0.546)	1284527	10.1197	10
14	Pentane	43	5.577	5.583 (0.561)	737625	8.55096	8.6
15	Ethyl Ether	59	6.100	6.100 (0.613)	290612	9.22023	9.2
16	Acrolein	56	6.426	6.431 (0.646)	135665	8.13639	8.1

					CONCENTRA	TIONS	
		QUANT SIG				ON-COLUMN	FINAL
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
				WETTER DESEXT			=======
17	Freon TF	101	6.506	6.511 (0.654)	1025933	11.1266	11
18	1,1-Dichloroethene	96	6.538	6.543 (0.657)	482186	10.8463	11
19	Acetone	43	6.730	6.735 (0.676)	706582	9.58605	9.6
21	Carbon Disulfide	76	6.944	6.944 (0.698)	1428416	10.1553	10
20	Isopropyl Alcohol	45	7.002	7.008 (0.704)	449984	9.84057	9.8
22	3-Chloropropene	41	7.258	7.264 (0.730)	622276	10.0920	10
23	Acetonitrile	41	7.323	7.322 (0.736)	292189	8.61929	8.6
24	Methylene Chloride	49	7.515	7.515 (0.755)	586201	9.41827	9.4
25	tert-Butyl Alcohol	59	7.723	7.728 (0.776)	677193	10.2503	10
26	Methyl tert-Butyl Ether	73	7.931	7.936 (0.797)	1343112	10.0259	10
27	trans-1,2-Dichloroethene	61	7.936	7.936 (0.798)	764828	10.0118	10
28	n-Hexane	57	8.305	8.304 (0.835)	810121	9.54182	9.5
29	1,1-Dichloroethane	63	8.678	8.683 (0.872)	974865	10.2833	10
M 40	1,2-Dichloroethene (total)	61			1310802	20.2733	20
31	cis-1,2-Dichloroethene	96	9.585	9.591 (0.964)	545974	10.2615	10
30	Methyl Ethyl Ketone	72	9.612	9.617 (0.966)	196879	9.46626	9.5(Q)
* 32	Bromochloromethane	128	9.948	9.948 (1.000)	504744	10.0000	
33	Tetrahydrofuran	42	10.002	10.007 (0.879)	449557	9.27738	9.3
34	Chloroform	83	10.034	10.034 (1.009)	1116256	10.3692	10
35	1,1,1-Trichloroethane	97	10.295	10.295 (0.905)	1175149	10.4067	10
36	Cyclohexane	84	10.311	10.311 (0.906)	765748	10.1878	10
37	Carbon Tetrachloride	117	10.503	10.503 (0.923)	1156812	10.6896	11
38	2,2,4-Trimethylpentane	57	10.818	10.818 (0.951)	2639081	10.1052	10
39	Benzene	78	10.824	10.823 (0.951)	1647013	9.81690	9.8
41	1,2-Dichloroethane	62	10.914	10.914 (0.959)	846353	10.4632	10
42	n-Heptane	43	11.074	11.074 (0.973)	978925	9.68379	9.7
* 43	1,4-Difluorobenzene	114	11.379	11.379 (1.000)	2874064	10.0000	
44	1-Butanol	56	11.603	11.608 (1.020)	190597	10.5563	11
45	Trichloroethene	95	11.731	11.736 (1.031)	707815	10.0951	10
47	1,2-Dichloropropane	63	12.094	12.094 (1.063)	580979	9.88256	9.9
46	Methyl Methacrylate	69	12.179	12.179 (1.070)	424014	10.4277	10
48	1,4-Dioxane	88	12.259	12.254 (1.077)	169926	8.99151	9.0
49	Dibromomethane	174	12.270	12.270 (1.078)	590595	10.7108	11
50	Bromodichloromethane	83	12.451	12.451 (1.094)	1249968	11.3793	11
51	cis-1,3-Dichloropropene	75	13.081	13.081 (1.150)	928193	10.5793	11
M 70	Xylene (total)	106			2358809	29.3342	29
52	Methyl Isobutyl Ketone	43	13.262	13.268 (1.166)	958565	9.82417	9.8
54	Toluene	92	13.519	13.519 (0.874)	1175936	9.88009	9.9
53	n-Octane	43	13.540	13.540 (1.190)	1337343	10.1699	10
55	trans-1,3-Dichloropropene	75	13.866	13.866 (1.219)	885486	10.7931	11
56	1,1,2-Trichloroethane	83	14.132	14.132 (0.913)	510327	10.1754	10
57	Tetrachloroethene	166	14.282	14.282 (0.923)	930409	10.1367	10
58	Methyl Butyl Ketone	43	14.431	14.431 (0.933)	897972	10.1346	10
59	Dibromochloromethane	129	14.682	14.682 (0.949)	1086032	12.1421	12
60	1,2-Dibromoethane	107	14.885	14.885 (0.962)	937502	10.8972	11
* 61	Chlorobenzene-d5	117	15.472	15.472 (1.000)	2577111	10.0000	
62	Chlorobenzene	112	15.509	15.509 (1.002)	1465346	10.3526	10

					CONCENTRA	TIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
		**			TTERTT	******
63 Ethylbenzene	91	15.595	15.595 (1.008)	2106899	10.1255	10
84 Nonane	57	15.648	15.648 (1.011)	1002681	9.30593	9.3
64 Xylene (m,p)	106	15.744	15.744 (1.018)	1577068	19.9832	20
65 Xylene (o)	106	16.262	16.262 (1.051)	781741	9.72176	9.7
66 Styrene	104	16.283	16.283 (1.052)	1158632	10.9803	11
67 Bromoform	173	16.555	16.555 (1.070)	910006	12.4865	12
68 Cumene	105	16.683	16.683 (1.078)	2295492	10.0689	10
69 1,1,2,2-Tetrachloroethane	83	17.078	17.078 (1.104)	1063133	9.83883	9.8
73 1,2,3-Trichloropropane	75	17.158	17.158 (1.109)	897875	10.1210	10
72 n-Propylbenzene	91	17.169	17.169 (1.110)	2634635	10.4438	10
71 n-Decane	57	17.265	17.265 (1.116)	1127677	9.58386	9.6
74 4-Ethyltoluene	105	17.297	17.297 (1.118)	2219399	10.6177	11
76 2-Chlorotoluene	91	17.324	17.324 (1.120)	2032927	10.5054	11
75 1,3,5-Trimethylbenzene	105	17.367	17.367 (1.122)	1804948	10.0715	10
77 a-Methylstyrene	118	17.628	17.628 (1.139)	869479	11.3240	11
78 Tert-Butylbenzene	119	17.735	17.735 (1.146)	1794198	9.99531	10
79 1,2,4-Trimethylbenzene	105	17.799	17.799 (1.150)	1743049	10.1233	10
80 Sec-Butylbenzene	105	17.986	17.986 (1.162)	2626580	10.3065	10
81 4-Isopropyltoluene	119	18.140	18.140 (1.172)	2232416	10.5892	11
82 1,3-Dichlorobenzene	146	18.188	18.188 (1.176)	1186922	10.1849	10
83 1,4-Dichlorobenzene	146	18.301	18.300 (1.183)	1170232	10.2522	10
86 Benzyl Chloride	91	18.445	18.445 (1.192)	1613930	11.7880	12
85 n-Undecane	57	18.626	18.626 (1.204)	1129587	9.43840	9.4
87 n-Butylbenzene	91	18.631	18.631 (1.204)	1991694	10.9868	11
88 1,2-Dichlorobenzene	146	18.765	18.759 (1.213)	1110419	10.1058	10
89 n-Dodecane	57	20.030	20.030 (1.295)	948887	12.2070	12
90 1,2,4-Trichlorobenzene	180	21.017	21.017 (1.358)	834257	11.8604	12
91 Hexachlorobutadiene	225	21.198	21.198 (1.370)	733780	10.5093	11
92 Naphthalene	128	21.471	21.471 (1.388)	2004179	13.1398	13
93 1,2,3-Trichlorobenzene	180	21.914	21.914 (1.416)	798471	12.9333	13

QC Flag Legend

Q - Qualifier signal failed the ratio test.

TestAmerica Burlington

RECOVERY REPORT

Client Name:Client SDG: cilto15Sample Matrix: GASFraction: VOALab Smp Id: CA082209ICVClient Smp ID: CA082209ICVLevel: LOWOperator: njrData Type: MS DATASampleType: ICVSpikeList File: all.spkQuant Type: ISTDSublist File: all.subMethod File: /chem/C.i/Csvr.p/cilto15.b/sto15.mMisc Info: CA082209LCS;082309CA;1;200Client SDG: cilto15

CONC CONC R SPIKE COMPOUND ADDED RECOVERED RECOVERED LIMITS ppbv ppbv 1 Dichlorodifluorome 10 10 104.96 70-130 2 Freon-22 10 11 105.84 70-130 3 1,2-Dichlorotetraf 10 11 108.41 70-130 4 Chloromethane 10 10 101.33 70-130 5 n-Butane 10 9.5 94.61 70-130 107.28 6 Vinyl Chloride 10 11 70-130 7 1,3-Butadiene 109.10 70-130 10 11 9 Bromomethane 10 70-130 10 104.05 10 Chloroethane 10 10 102.08 70-130 98.33 11 Isopentane 10 9.8 70-130 12 Bromoethene 10 10 103.14 70-130 13 Trichlorofluoromet 101.20 10 10 70-130 14 Pentane 10 8.6 85.51 70-130 15 Ethyl Ether 10 9.2 92.20 70-130 8.1 16 Acrolein 10 81.36 70-130 17 Freon TF 10 11 111.27 70-130 18 1,1-Dichloroethene 10 11 108.46 70-130 19 Acetone 9.6 10 95.86 70-130 10 20 Isopropyl Alcohol 9.8 98.41 70-130 21 Carbon Disulfide 10 10 101.55 70-130 22 3-Chloropropene 10 10 100.92 70-130 23 Acetonitrile 10 8.6 70-130 86.19 24 Methylene Chloride 10 9.4 94.18 70-130 25 tert-Butyl Alcohol 102.50 70-130 10 10 26 Methyl tert-Butyl 10 100.26 70-130 10 27 trans-1,2-Dichloro 10 100.12 70-130 10 28 n-Hexane 10 9.5 95.42 70-130 29 1,1-Dichloroethane 10 10 102.83 70-130 30 Methyl Ethyl Keton 9.5 10 94.66 70-130 31 cis-1,2-Dichloroet 10 10 102.61 70-130 33 Tetrahydrofuran 10 9.3 92.77 70-130 34 Chloroform 10 10 103.69 70-130 35 1,1,1-Trichloroeth 10 10 104.07 70-130

SPIKE COMPOUND ADDED ppbv RECOVERED ppbv RECOVERED ppbv RECOVERED ppbv RECOVERED ppbv RECOVERED LIMI 36 Cyclohexane 10 10 101.88 70-13 37 Carbon Tetrachlori 10 11 106.90 70-13 38 2,2,4-Trimethylpen 10 10 101.05 70-13 39 Benzene 10 9.8 98.17 70-13 40 1,2-Dichloroethene 20 20 100.00 70-13 41 1,2-Dichloroethane 10 10 104.63 70-13 42 n-Heptane 10 9.7 96.84 70-13 44 1-Butanol 10 11 105.56 70-13 45 Trichloroethene 10 10 100.95 70-13 46 Methyl Methacrylat 10 10 104.28 70-13
36 Cyclohexane 10 10 101.88 70-13 37 Carbon Tetrachlori 10 11 106.90 70-13 38 2,2,4-Trimethylpen 10 11 106.90 70-13 39 Benzene 10 9.8 98.17 70-13 40 1,2-Dichloroethene 20 20 100.00 70-13 41 1,2-Dichloroethane 10 10 104.63 70-13 42 n-Heptane 10 9.7 96.84 70-13 44 1-Butanol 10 11 105.56 70-13 45 Trichloroethene 10 10 100.95 70-13 46 Methyl Methacrylat 10 10 104.28 70-13
36 Cyclohexane 10 10 101.88 70-1 37 Carbon Tetrachlori 10 11 106.90 70-1 38 2,2,4-Trimethylpen 10 10 101.05 70-1 39 Benzene 10 9.8 98.17 70-1 40 1,2-Dichloroethene 20 20 100.00 70-1 41 1,2-Dichloroethane 10 10 104.63 70-1 42 n-Heptane 10 9.7 96.84 70-1 44 1-Butanol 10 11 105.56 70-1 45 Trichloroethene 10 10 100.95 70-1 46 Methyl Methacrylat 10 10 104.28 70-1
37 Carbon Tetrachlori 10 11 106.90 70-1 38 2,2,4-Trimethylpen 10 10 101.05 70-1 39 Benzene 10 9.8 98.17 70-1 M 40 1,2-Dichloroethene 20 20 100.00 70-1 41 1,2-Dichloroethane 10 9.7 96.84 70-1 42 n-Heptane 10 9.7 96.84 70-1 44 1-Butanol 10 11 105.56 70-1 45 Trichloroethene 10 10 100.95 70-1 46 Methyl Methacrylat 10 10 104.28 70-1
38 2,2,4-Trimethylpen 10 10 101.05 70-1 39 Benzene 10 9.8 98.17 70-1 M 40 1,2-Dichloroethene 20 20 100.00 70-1 41 1,2-Dichloroethane 10 10 104.63 70-1 42 n-Heptane 10 9.7 96.84 70-1 44 1-Butanol 10 11 105.56 70-1 45 Trichloroethene 10 10 100.95 70-1 46 Methyl Methacrylat 10 10 104.28 70-1
39 Benzene 10 9.8 98.17 70-1 M 40 1,2-Dichloroethene 20 20 100.00 70-1 41 1,2-Dichloroethane 10 10 104.63 70-1 42 n-Heptane 10 9.7 96.84 70-1 44 1-Butanol 10 11 105.56 70-1 45 Trichloroethene 10 10 100.95 70-1 46 Methyl Methacrylat 10 10 104.28 70-1
M 40 1,2-Dichloroethene 20 20 100.00 70-1 41 1,2-Dichloroethane 10 10 104.63 70-1 42 n-Heptane 10 9.7 96.84 70-1 44 1-Butanol 10 11 105.56 70-1 45 Trichloroethene 10 10 100.95 70-1 46 Methyl Methacrylat 10 10 104.28 70-1
41 1,2-Dichloroethane 10 10 104.63 70-1 42 n-Heptane 10 9.7 96.84 70-1 44 1-Butanol 10 11 105.56 70-1 45 Trichloroethene 10 10 100.95 70-1 46 Methyl Methacrylat 10 10 104.63 70-1
42 n-Heptane 10 9.7 96.84 70-1 44 1-Butanol 10 11 105.56 70-1 45 Trichloroethene 10 10 100.95 70-1 46 Methyl Methacrylat 10 10 104.28 70-1
44 1-Bittanoi 10 11 105.36 70-1 45 Trichloroethene 10 10 100.95 70-1 46 Methyl Methacrylat 10 10 104.28 70-1
45 110 10 100.55 70-1 46 Methyl Methacrylat 10 10 104.28 70-1
47 1.2-Dichloropropan 10 9.9 98.83 70-1
48 1,4-Dioxane 10 9.0 89.92 70-1
49 Dibromomethane 10 11 107.11 70-13
50 Bromodichlorometha 10 11 113.79 70-13
51 cis-1,3-Dichloropr 10 11 105.79 70-1
52 Methyl Isobutyl Ke 10 9.8 98.24 70-13
$\begin{bmatrix} 53 & n-Octane \\ F4 & Tel yere \\ \end{bmatrix} \begin{bmatrix} 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$
$\begin{bmatrix} 54 & 101 & 10 & 9.9 & 98.80 & 70-1. \\ 55 & trang-1 & 3-Dichloro & 10 & 11 & 107 & 93 & 70-1. \end{bmatrix}$
55 $1.1.2$ -Trichloroeth 10 10 10 10 101 75 70-1
57 Tetrachloroethene 10 10 10 101.37 70-1
58 Methyl Butyl Keton 10 10 101.35 70-1
59 Dibromochlorometha 10 12 121.42 70-13
60 1,2-Dibromoethane 10 11 108.97 70-13
62 Chlorobenzene 10 10 103.53 70-13
$\begin{bmatrix} 63 & \text{Ethylbenzene} \\ 64 & \text{Wilsens} & (m, m) \end{bmatrix} = \begin{bmatrix} 10 \\ 20 \end{bmatrix} \begin{bmatrix} 10 \\ 20 \end{bmatrix} \begin{bmatrix} 10 \\ 20 \end{bmatrix} \begin{bmatrix} 10 \\ 20 \end{bmatrix} \begin{bmatrix} 10 \\ 20 \end{bmatrix} \begin{bmatrix} 10 \\ 20 \end{bmatrix} \begin{bmatrix} 20 \\ 20 $
$\begin{bmatrix} 64 \text{ Ayrene (m, p)} \\ 65 \text{ Ayrene (o)} \end{bmatrix} \begin{bmatrix} 20 \\ 10 \end{bmatrix} \begin{bmatrix} 20 \\ 97 \end{bmatrix} \begin{bmatrix} 20 \\ 97 \end{bmatrix} \begin{bmatrix} 99.92 \\ 70-1 \end{bmatrix}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
67 Bromoform 10 12 124.86 70-1
68 Cumene 10 10 100.69 70-1
69 1,1,2,2-Tetrachlor 10 9.8 98.39 70-13
M 70 Xylene (total) 30 29 97.78 70-13
71 n-Decane 10 9.6 95.84 70-13
72 n-Propylbenzene 10 10 104.44 70-13 72 n-Propylbenzene 10 10 104.44 70-13
$\begin{bmatrix} 73 & 1,2,3-\text{Trichloropro} & 10 & 10 & 101.21 & 70-13 \\ 74 & 4-\text{Ethyltolyope} & 10 & 11 & 106 & 18 & 70 & 17 \\ \end{bmatrix}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
76 2-Chlorotoluene 10 10 11 105 05 70-1
77 a-Methylstyrene 10 11 113.24 70-1
78 Tert-Butylbenzene 10 10 99.95 70-1
79 1,2,4-Trimethylben 10 10 101.23 70-13
80 Sec-Butylbenzene 10 10 103.07 70-13
81 4-Isopropyltoluene 10 11 105.89 70-13
82 1,3-Dichlorobenzen 10 10 101.85 70-13
$\begin{bmatrix} 0.5 & 1.4 - DICHIOFODERIZER \\ 84 & Nonane \\ 10 & 10 & 2 \\ 10 & 2 & 0.2 & 0$

SPIKE COMPOUND	CONC ADDED ppbv	CONC RECOVERED ppbv	* RECOVERED	LIMITS
85 n-Undecane	10	9.4	94.38	70-130
86 Benzyl Chloride	10	12	117.88	70-130
87 n-Butylbenzene	10	11	109.87	70-130
88 1,2-Dichlorobenzen	. 10	10	101.06	70-130
89 n-Dodecane	10	12	122.07	70-130
90 1,2,4-Trichloroben	10	12	118.60	70-130
91 Hexachlorobutadien	10	11	105.09	70-130
92 Naphthalene	10	13	131.40*	70-130
93 1,2,3-Trichloroben	10	13	129.33	70-130

FORM 7 VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: TESTAMERICA BURLINGTON Contract: 29000 Lab Code: STLV Case No.: 29000 SAS No.: SDG No.: NY133428 Instrument ID: C Calibration Date: 09/08/09 Time: 1347 Lab File ID: CIL10NV2 Init. Calib. Date(s): 08/24/09 08/24/09 Heated Purge: (Y/N) N Init. Calib. Times: 0234 0725 GC Column: RTX-624 ID: 0.32 (mm)

			MIN		MAX
COMPOUND	RRF	RRF10	RRF	%D	%D
=======================================	========	========	=======		====
Vinyl Chloride	0.930	0.953	0.01	2.5	30.0
1,1-Dichloroethene	0.881	0.822	0.01	6.7	30.0
trans-1,2-Dichloroethene	1.514	1.451	0.01	4.2	30.0
cis-1,2-Dichloroethene	1.054	0.996	0.01	5.5	30.0
1,2-Dichloroethene (total)	1.284	1.224	0.01	4.7	30.0
Trichloroethene	0.244	0.256	0.01	4.9	30.0
Tetrachloroethene	0.356	0.411	0.01	15.4	30.0

FORM VII VOA

Page 66 of 89
Data File: /chem/C.i/Csvr.p/cilnto15.b/cil10nv2.d Report Date: 15-Sep-2009 14:15

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/C.i/Csvr.p/cilnto15.b/cil10nv2.d Lab Smp Id: ASTD010 Client Smp Client Smp ID: ASTD010 Inj Date : 08-SEP-2009 13:47 Operator : wrd Inst ID: C.i Smp Info : Misc Info : ASTD010;090809CA;1;200 Comment : : /chem/C.i/Csvr.p/cilnto15.b/sto15.m Method Meth Date : 15-Sep-2009 14:15 klp Quant Type: ISTD Cal Date : 24-AUG-2009 07:25 Cal File: cil40v.d Als bottle: 1 Continuing Calibration Sample Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: ROUX1_OCEAN.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

							AMOUN	TS	
			QUANT SIG				CAL-AMT	ON-COL	
Con	po	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)	
===			====	**	EIEEEE	c========			
	6	Vinyl Chloride	62	3.821	3.821 (0.384)	442133	10.0000	10	
	18	1,1-Dichloroethene	96	6.543	6.543 (0.658)	381545	10.0000	9.3	
	27	trans-1,2-Dichloroethene	61	7.936	7.936 (0.798)	673453	10.0000	9.6	
	31	cis-1,2-Dichloroethene	96	9.580	9.591 (0.964)	462234	10.0000	9.4	
*	32	Bromochloromethane	128	9.943	9.948 (1.000)	464045	10.0000	(Q))
м	40	1,2-Dichloroethene (total)	61			1135687	20.0000	19	
*	43	1,4-Difluorobenzene	114	11.368	11.379 (1.000)	2483079	10.0000		
	45	Trichloroethene	95	11.725	11.736 (1.031)	636977	10.0000	11	
	57	Tetrachloroethene	166	14.271	14.282 (0.923)	913842	10.0000	12	
*	61	Chlorobenzene-d5	117	15.456	15.472 (1.000)	2221809	10.0000		

QC Flag Legend

Q - Qualifier signal failed the ratio test.

Raw QC Data – TO-15 Volatile

Data File: /chem/C.i/Csvr.p/cilto15.b/cil01pv.d Date : 23-AUG-2009 23:05 Client ID: VBFB Sample Info: VBFB

Column phase: RTX-624

\$ 1 bfb

Operator: njr Column diameter: 0.32

Instrument: C.i

Data File: /chem/C.i/Csvr.p/cilto15.b/cil01pv.d Date : 23-AUG-2009 23:05 Client ID: VBFB Sample Info: VBFB

Column phase: RTX-624

Г

Instrument: C.i

Operator: njr

Column diameter: 0.32

Location	of Maximum	n: 95.00					
Numbe	r of points	: 135					
m∕z	Y	m/z	Y	m/z	Y	m/z	Y
+ I 36₊00	6784	72.00	3888	+ 115.00	 806	153,00	428
1 37.00	35248	73.00	29840	116.00	2133	154.00	368
1 38,00	31168	74.00	113632	117.00	3036	155,00	1725
39.00	11238	75,00	335488	118.00	1833	156.00	531
40.00	468	76.00	28968	119.00	2625	157.00	1313
I 41.00	86	77,00	3321	1 120.00	82	158,00	276
1 42,00	6	78,00	2387	121.00	68	159.00	765
1 43,00	176	79,00	13302	123.00	147	161.00	889
44.00	3615	80,00	4746	124.00	222	163.00	5
1 45.00	5721	81,00	13704	1 125,00	351	164.00	124
+ I 46.00	460	 1 82.00	3518	+ 126.00	345	165,00	183
1 47.00	6458	83.00	332	1 127.00	234	172.00	162
48,00	4377	85,00	143	128.00	2148	174.00	572288
1 49.00	29328	86,00	691	1 129.00	1175	175.00	41736
1 50,00	136128	87,00	24640	130.00	2308	176.00	555968
+ I 51.00	40888	88,00	23680	131.00	922	177.00	36664
1 52,00	2044	90,00	71	I 132.00	84	178.00	1113
1 53,00	207	91.00	2110	134.00	487	179.00	77
1 54.00	68	92,00	17920	135.00	1306	191.00	248
1 55.00	1790	I 93₊00	26608	1 136.00	43	193.00	140
1 56.00	9639	, 1 94.00	75936	1 137.00	704	194.00	88
1 57.00	17864	95,00	646080	139.00	194	195.00	6
I 58₊00	880	96.00	44288	140.00	416	203.00	67
I 59,00	39	97,00	1637	I 141.00	4982	207.00	674
1 60.00	6648	103.00	609	1 142.00	793	208.00	109
61.00	32464	I 104.00	2208	I 143.00	5061	210,00	112
1 62.00	32480	105.00	697	144.00	305	221,00	145
1 63.00	24176	106.00	2232	145.00	206	223,00	152
1 64,00	2277	107,00	624	146.00	946	247,00	78
I 65.00	281	108,00	82	1 147.00	522	249.00	40
1 67.00	2002	1 110.00	284	148.00	1574	1 250,00	96
I 68.00	68248	111.00	351	149.00	688	253,00	302
I 69₊00	69896	112.00	343	150.00	722	260,00	296
1 70,00	5759	113.00	311	152.00	341	1	

Data File: /chem/C.i/Csvr.p/cilnto15.b/cil16pv.d Date : 08-SEP-2009 11:20 Client ID: VBFB Sample Info: VBFB

Instrument: C.i

Operator: wrd

Column diameter: 0.32

Column phase: RTX-624

\$ 1 bfb

Data File: /chem/C.i/Csvr.p/cilnto15.b/cil16pv.d Date : 08-SEP-2009 11:20 Client ID: VBFB Sample Info: VBFB

Column phase: RTX-624

Γ

Instrument: C,i

Operator: wrd

Column diameter: 0.32

Location	n of Maximu	m: 95.00					
NUMPE	er of point	5: 131					
m/z	Y	m/z	Y	m/z	Y	m/z	Y
1 36,00	7489	+ I 74.00	104984	 116.00	2302	+ 153.00	463
1 37,00	35232	1 75.00	292480	117,00	3891	154.00	393
1 38,00	29840	I 76₊00	24984	118.00	2336	155,00	1460
1 39,00	10480	77.00	2424	119.00	2995	156.00	482
1 40.00	209	1 78.00	1455	1 120.00	67	157.00	1037
1 42,00	93	1 79,00	18000	 1 123,00	182		95
1 43.00	509	80,00	5448	124,00	389	159,00	897
1 44,00	3349	81,00	18264	125,00	396	161.00	1058
I 45.00	5298	1 82,00	4697	126.00	338	169,00	81
I 46.00	273	1 83.00	478	127,00	285	172,00	137
1 47,00	3673	I 86.00	89	128.00	2250	174.00	452992
1 48,00	4154	1 87.00	12914	129.00	1145	175,00	32952
1 49.00	28496	88.00	11761	130.00	2119	176.00	445184
1 50,00	119320	91.00	1873	131.00	848	177.00	29864
51.00	35736	92,00	18280	132,00	71	178.00	866
1 52,00	1498	93,00	24128	134.00	88	191.00	86
I 55,00	1992	94.00	67456	135,00	1279	193.00	1
1 56,00	9640	95.00	470272	136.00	385	195,00	116
1 57,00	16504	96.00	32784	137.00	1044	203.00	67
I 58₊00	607	97,00	1046	139.00	201	206,00	222
1 60,00	6533	98.00	68	140.00	326	207,00	756
I 61.00	30624	103.00	521	141.00	6908	208.00	115
1 62,00	30568	104.00	2772	142.00	774	209.00	71
I 63.00	23120	105.00	1004	143,00	6969	219,00	38
I 64.00	1972	106.00	2382	144.00	489	232,00	161
, 62,00	158	107,00	639	145.00	686	247.00	75
I 67,00	1456	108.00	68	146,00	940	250,00	149
I 68.00	60632	109,00	81	147.00	558	251,00	190
1 69,00	61160	110,00	366	148.00	1693	254,00	82
1 70,00	4464	111.00	496	149.00	208	261.00	103
1 71,00	196	112.00	482	150.00	619	262,00	289
1 72.00	3487	113,00	476	151.00	80	265.00	91
1 73,00	28096	115,00	634	152,00	375		

Data File: /chem/C.i/Csvr.p/cilnto15.b/cil16pv.d Date : 08-SEP-2009 11:20 Client ID: VBFB Sample Info: VBFB

Instrument: C.i

Operator: wrd

Column diameter: 0.32

Page 2

Page 74 of 89

FORM 1 VOLATILE ORGANICS ANALYSIS I	CLIENT SAMPLE NO.
Lab Name: TESTAMERICA BURLINGTON Cor	MBLK090809CA
Lab Code: STLV Case No.: 29000 SA	AS No.: SDG No.: NY133428
Matrix: (soil/water) AIR	Lab Sample ID: MBLK090809CA
Sample wt/vol: 250.0 (g/mL) ML	Lab File ID: CILB02N
Level: (low/med) LOW	Date Received:
% Moisture: not dec.	Date Analyzed: 09/09/09
GC Column: RTX-624 ID: 0.32 (mm)	Dilution Factor: 0.8
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV Q
75-01-4Vinyl Chloride 75-35-4Vinyl Chloride 156-60-5trans-1,2-Dichlor 156-59-2cis-1,2-Dichloroe 540-59-01,2-Dichloroether 79-01-6Trichloroethene 127-18-4Tetrachloroethene	ne 0.16 U roethene 0.16 U ethene 0.16 U ne (total) 0.16 U 0.16 U 0.16 U 0.16 U 0.16 U 0.16 U 0.16 U

FORM I VOA

Data File: /chem/C.i/Csvr.p/cilnto15.b/cilb02n.d Report Date: 15-Sep-2009 14:21

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/C.i/Csvr.p/cilnto15.b/cilb02n.d Lab Smp Id: MBLK090809CA Client Smp ID: MBLK090809CA Inj Date : 09-SEP-2009 08:58 Inst ID: C.i Operator : wrd Smp Info : Misc Info : MBLK090809CA;090809CA;.8;250 Method : /chem/C.i/Csvr.p/cilnto15.b/sto15.m Meth Date : 15-Sep-2009 14:15 klp Quant T Cal Date : 24-AUG-2009 07:25 Cal Fil Als bottle: 3 OC Same Comment Quant Type: ISTD Cal File: cil40v.d QC Sample: BLANK Dil Factor: 0.80000 Integrator: HP RTE Compound Sublist: ROUX1 OCEAN.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	0.80000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	250.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

						CONCENTRA	IIIONS
			QUANT SIG			ON-COLUMN	FINAL
Co	mpor	unds	MASS	RT EXP RT REL RT R	ESPONSE	(ppbv)	(ppbv)
**						******	******
	6	Vinyl Chloride	62	Compound Not Detected.			
	18	1,1-Dichloroethene	96	Compound Not Detected.			
	27	trans-1,2-Dichloroethene	61	Compound Not Detected.			
	31	cis-1,2-Dichloroethene	96	Compound Not Detected.			
*	32	Bromochloromethane	128	9.927 9.948 (1.000)	484439	10.0000	(Q)
М	40	1,2-Dichloroethene (total)	61	Compound Not Detected.			
*	43	1,4-Difluorobenzene	114	11.357 11.379 (1.000)	2701133	10.0000	
	45	Trichloroethene	95	Compound Not Detected.			
	57	Tetrachloroethene	166	Compound Not Detected.			
*	61	Chlorobenzene-d5	117	L5.451 15.472 (1.000)	2467541	10.0000	

QC Flag Legend

Q - Qualifier signal failed the ratio test.

FORM 1 VOLATILE ORGANICS ANALYSIS 1	CLIENT SAMPLE NO.
Lab Name: TESTAMERICA BURLINGTON Con	CA090809LCS
Lab Code: STLV Case No.: 29000 Si	AS No.: SDG No.: NY133428
Matrix: (soil/water) AIR	Lab Sample ID: CA090809LCS
Sample wt/vol: 200.0 (g/mL) ML	Lab File ID: CIL10NQ2
Level: (low/med) LOW	Date Received:
% Moisture: not dec.	Date Analyzed: 09/08/09
GC Column: RTX-624 ID: 0.32 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV Q
75-01-4Vinyl Chloride 75-35-41,1-Dichloroether 156-60-5trans-1,2-Dichlor 156-59-2cis-1,2-Dichloroe 540-59-01,2-Dichloroether 79-01-6Trichloroether 127-18-4Tetrachloroethere	10 ne 11 roethene 9.7 ethene 9.8 ne (total) 20 11 11 e 12

FORM I VOA

Page 79 of 89

Data File: /chem/C.i/Csvr.p/cilnto15.b/cil10nq2.d Report Date: 15-Sep-2009 14:15

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/C.i/Csvr.p/cilnto15.b/cil10nq2.d Lab Smp Id: CA090809LCS Client Smp Client Smp ID: CA090809LCS Inj Date : 08-SEP-2009 14:35 Operator : wrd Smp Info : Misc Info : CA090809LCS;090809CA;1;200 Inst ID: C.i Comment Method : /chem/C.i/Csvr.p/cilnto15.b/sto15.m Meth Date : 15-Sep-2009 14:15 klp Quant Quant Type: ISTD Cal File: cil40v.d Cal Date : 24-AUG-2009 07:25 Als bottle: 2 QC Sample: LCS Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: ROUX1_OCEAN.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

							CONCENTRA	ATIONS	
			QUANT SIG				ON-COLUMN	FINAL	
Co	mpor	unds	MASS	\mathbf{RT}	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)	
==	*==:								
	6	Vinyl Chloride	62	3.811	3.821 (0.384)	452590	10.3804	10	
	18	1,1-Dichloroethene	96	6.533	6.543 (0.658)	437636	10.6020	11	
	27	trans-1,2-Dichloroethene	61	7.926	7.936 (0.798)	685532	9.66457	9.7	
	31	cis-1,2-Dichloroethene	96	9.575	9.591 (0.964)	485988	9.83718	9.8	
*	32	Bromochloromethane	128	9.932	9.948 (1.000)	468667	10.0000	(g	2)
М	40	1,2-Dichloroethene (total)	61			1171520	19.5017	20	
*	43	1,4-Difluorobenzene	114	11.363	11.379 (1.000)	2472723	10.0000		
	45	Trichloroethene	95	11.720	11.736 (1.031)	639411	10.5996	11	
	57	Tetrachloroethene	166	14.266	14.282 (0.923)	897843	11.7157	12	
*	61	Chlorobenzene-d5	117	15.456	15.472 (1.000)	2151733	10.0000		

QC Flag Legend

Q - Qualifier signal failed the ratio test.

Sample Preparation – TO-15 Volatile

TestAmerica Burlington - Manual Integration Summary SDG: cilto15 Fraction: Volatile

===== Instrument C - No Manual Integrations =====

Poltzyso Cit

Secondary Review(2): Secondary Review(1): Summary Generated: jd1 08/27/2009 10:40

TestAmerica Burlington - Manual Integration Summary SDG: NY133428 Fraction: Volatile ===== Instrument C - No Manual Integrations ===== KUP 09 09

Post-Sampling A	Air Canister	Pressure Ch	eck Reco	ra				
			anderes a	Sec.			and the second s	
ROUXI	NY 133428	133420	9-5-09	1505	29.8	21	G4	TI.
			ant of a state of a st	3000				andersentigings and a second
) Is a Field Test Dat	a Sheet (FTDS)	or similar sam	oling documer	ntation present	?	~		anarana waxaa ka
) Is the flow control	er ID used for ea	ach canister rec	orded?			~		
) Is visible sign of da	amage to canist	er and/or flow c	ontroller (FC)	present?		V		
damage observed, I	ist equipment ID	os and describe	condition:					-
atrata Montena de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie Nota de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie	and a sour deviative Premise					1985 B 851	i Cert C	
			C/m	D	PAT		tch D	
805636	.3396	~ 7.0	N	4492	Y	3319	CIIO	
805637	3320	- 8.8		2931		3569	0110	
805638	4917	- 2.6		3479		3319	CIIO	
-								
	•					,		
							$- \angle$	
							\angle	
						\square		
						<u> </u>		
				<u>, 9</u>				
				2001				
				5'				
			112	·		······		
	//							
/	\mathbf{I}							
						-		
7								et •
/				ŕ				

¹ Criteria: Return Pressure should be between -1 and -10 ("Hg)

² If return pressure is not within criteria, initiate anomaly report.

³ Record the ID of the FC used for sampling if information is provided, otherwise leave blank.

Page 192 of 200

BR-FAI033:02.01.08:5 TestAmerica

 \mathbf{P}

					GC/M	S INST	RUMEN	T RUN	90				-
Sequence			.			Standard	i Traceabili	ty				Instrument Information	
Batch ID:	21	Start Date:	082210	f Tin	1e: 2305	ISTD Lot	# AT	02-01	20-2			Instrument ID: C	_
Test Method:	TOIS TOT TOT	End Date:	042/20	Tin	1e: 230 S	CAL STD)Lot# 6	201 200	much			Instrument: 5973	_
ICAL Date:	08/23/39					ICV./LCS	S Lot # A	1-0,2%	C1 121			Column Type: RTX-624	_
And and Add in the same field of the distance	Manager	THE LESS BOARD THE REAL PLAN STORE	Analyst	olders G. Conference of		Analyst	Ulto		Analyst			Analyst	
Name/Initial	-					Nill'a	"Dev	ore and	Poul	Daiale			
Signature						All 1	Rah	44.00	Pag	513	CHA		
ゆきえ になって かいのうとう	2. 日本の後に、1. 日本のないです。	Sequer	ace informat	tion		**************************************		a state of the second	Indivic	iuai Sample	Review		
Injection	Lab ID /	Summa		R	Dilution	inlet	Volume	Operator	Intemal	Result	Primary	Comments /	
Time	File Name				Factor	#	(mL)		Std.	Conc.	Anal.	Standard Traceability	
2305	CLUDIRV	ちょうち	058		1 42		3	NJC	NA	>	102		
0100	C11601	4633	<i>V</i>	-		-	200			7	qam		
9058	CILBUT	-				1				5	J		_
0146	C11 DA3	7	† "			-		-		7	1		
0234	CILOON	2640	Rovel			4				١		AT-073109-03	
6322	C11-005V	3640	Sevel.	گر ا		3		_	-	7		47-061969-02	
0170	CILDSV	3332	Jevel	3/4		ų				7		47-6072969-13	
0500	CI-10/	ふてわわ	Jevel (415		V				7		AT-0 8209 DC	
للالماتين	CILISV	3147	devel	5/1		و				7		47-072469-07	
0(3)	CILZA	3564	devel ((1)		r+-	_			7		AT-07289. W-	_
0725	CILYON	3968	devel	18		8			-1	Δ		AT-022909-04	_
(1 KD	C11-B04	4633	1V#			1			1	1			
1050	CILIDA	6526	TCU			¢	0	-7.	7	1		4	_
2480	C/1 BOJ	4637	MALA			, 1	200	Gun	7	7			_
1042	C11 007 6	2600	טאביט	103		ィ	1	-	7	1		AC AT-02.3149-03	
1130	C12024	3640	OisRu	ζ, ζ		S		-	7)		1+ ++ 061997-62	_
しょう	CILOTQ	3332	Solu	Si	4	4	-!		7	1		AC AT-072969-13	
1305	803331HDJ	4853	3055/	55	50	10	40		7	7	+	CDF 10.0 C	
1353	80354202	3691		,	ویک کر	11	80		7	7	PAD	25,0 C	_
142	803 5 402	2984			201	な	40		7]		40.1 C	
(<u>)</u> 130	803 54502	4844	7	١	683	13	30	Т	7	7	aum	20.0	
1643	CIL/012	4428	CCV;	2	N/A	5	200	WRD	N/A	7	(HA)		_
				-								free and the second second second second second second second second second second second second second second	_
													_
								DAM -	242	10010			
								111	- 10 (10/01			
													_
						Leç	jend: C=C	complete	R=Reanal	yze = H	igh ∎ ↓= L	ow 	

Page 86 of 100

BR-FAI020:05.23.08:4 TestAmerica

ļ

Ĩ

ĺ

Í

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					1					3				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Sequence	0 11 11	Ctart Date:	9 10/20	Time: M		tandard	Traceabilit		222 11			Instrument Information	
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)														
Children Nig4 (T) Control Page (TX-65) Aunger	I est Method:	70/2-	End Date:	60/5/1	Time: //	3	AL STD	Lot #	(+1 - 0)	1-040		7. 1	Instrument: 5973	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ICAL Date:	8/24 01	A STRUCTURE STRUCTURE STRUCTURE		The second second second second second second second second second second second second second second second s	C Ref. War C Rep. And	cV / LCS	Lot#	47-07	2. 20br	11	A STATEMENT OF A STATEMENT	Column Type: RTX-624	
Nonmention Sequence information Information Sequence information Theo Cluckup/L Same Eff. Dubits Part Connot in the intervention Part Connot intervention Remain Remain Remain Remain Connot intervention Part Cluckup/L Tays Distribution Same Theo Distribution Part Cluckup/L Part Connot in the intervention Part Cluckup/L Tays Distribution Same Connot intervention Part Connot intervention Part Cluckup/L Tays Distribution Connot intervention Part Connot intervention Part Cluckup/L Tays Cluckup/L Tays Cluckup/L Mart <th <="" cols<="" td=""><td></td><td>Manager</td><td></td><td>Analyst</td><td></td><td>A</td><td>nalyst</td><td></td><td></td><td>Analyst</td><td></td><td></td><td>Analyst</td></th>	<td></td> <td>Manager</td> <td></td> <td>Analyst</td> <td></td> <td>A</td> <td>nalyst</td> <td></td> <td></td> <td>Analyst</td> <td></td> <td></td> <td>Analyst</td>		Manager		Analyst		A	nalyst			Analyst			Analyst
Signature Secure information Indicate strange form Commentation There Lub U Secure information Indicate strange form Commentation There Clu Lib V Align Feator i mb) Secure information Ansit Feator i Mb) Secure information Ansit Commentation The Clu Lib V H33 V $Arr 3 and 0 arr $	Name/Initial		-											
Induction Sequence information Sequence information Inductional Simple Review Comments / Non Prob ClLLIBPV Summa ETR Outloon Inductional Simple Review Comments / Non Summa ETR Outloon Summa ETR Utr More Outloon Summa Eta Outloon Summa Eta Outloon Summa Eta Outloon Summa Eta Outloon Summ	Signature							.*						
Write Internation Lab (D) (Lot (D) (L) (L) (L) (L) (L) (L) (L) (L) (L) (L	「「「「「「「」」」」」	うち うちょう おさま たままた こうかん くうちょう しん	Sequen	ce Information		たちまで見ると思	STATES AND STATES	al and the state of the second second second second second second second second second second second second se		Indivic	lual Sample	Review	いいたいに、内山山がほう地震が、山谷県ない山谷の大学などのないないないないない。	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Injection	Lab ID /	Summa	ETR	Dilu	tion	Inlet	Volume	Operator	Internal	Result	Primary	Comments /	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Time	File Name	Can ID		Fac	ctor	#	(mL)		Std.	Conc.	Anal.	Standard Traceability	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	oril	CILIAPV		813	V	4			<i>unu</i> i			an		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	12-60	CIL 10NV	4338	4		1	l l	900	1		4	-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1239	CIL IONQ	anoe	14			ي م	j						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(Jel)	CIL NNVL	2535	172			1				1		46-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1435	C11 10162	3040	801		-	5	4		7]		4674	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	γυζί	CIL BULN	4634	ABLK	-1		3	4	1	1)			
$ \begin{bmatrix} 844 & 83560^{\circ} & 33^{\circ} 0 & 33^{\circ} 0 & 33^{\circ} 0 & 1 & 5 & 200 & 1 & 1 \\ \hline 1731 & 83560^{\circ} & 7607 & 1 & 243 & 1 & 1 & 250 & 1 & 1 & 1 & 1 \\ \hline 2100 & 855637 & 3434 & 1 & 1 & 250 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 2167 & 855637 & 3326 & 13340 & 1 & 1 & 250 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 2157 & 855637 & 3326 & 13340 & 1 & 1 & 250 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 2157 & 855637 & 3326 & 13340 & 1 & 1 & 25 & 1 & 260 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 2157 & 855637 & 371 & 0.2 & 1 & 7 & 600 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 2158 & 3737 & 0.2 & 1 & 1 & 2 & 1 & 1 & 1 & 1 & 1 & 1 & $	12561	8047210	3621	1322 80	1	2	5	25		.,	7		COF 500 <	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1844	80560	35-20	133424			tb	200]	1		2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1533	80568	400%	1			5	,]	•			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	चिर	803669	4324	-1			10			7	\setminus			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21 10	805611	2644	133 414		7	1	200		Ĵ	7			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2/50	805636	3396	074 221		~	Å	200		7	+		PCE 00	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chrz	865637	3320	-	-		ň	-			7		1-250	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2331	805634	4912		-1		14	-1]	4		KE 28	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	SUY.	3636			0	ړ	Ċ\$ _	600		Ĵ	1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C110	2681			0	ړ	4	Sac		7)			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0205	3795		•	o, O)	٣	CAX V		7	~			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0858	CILBURN	<u>4634</u>		°,	2	m	محد	RN	7	1	(a NO		
$\frac{1033}{11} \frac{2}{865} \frac{2}{451} \frac{1}{5} \frac{5}{1} \frac{2}{4} \frac{40}{30} \frac{1}{1} \frac{5}{2} \frac{1}{2} \frac{2}{20} \frac{1}{1} \frac{5}{2} \frac{1}{2} \frac{1}{20} \frac{1}{2} $	0945	80563722	3320	133420	0.5	<u>у</u>	2	مۍد	, I	/	/	, i	V	
11/1 8056380 491 22 1 517 0858380 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1033	505636D	3396	1	S	`	な	40		/	\		S	
	C111	8056380	ζ ^η ζη		2,	، ار	4	30	Γ	7	7	4	J	
	l		>											
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												Λ		
4109 1														
1 109 109 1							1							
10101 Mar 19107						H	1-10	c					14 cm	
	÷					-	14	2						
	BR-FA	020:05.23.08:4												

Page 3 of 100

DK-FAIUZU:U5.23.0 TestAmerica

Sample Handling

	Date Re	ceived: (/)~1 (<u>DHIC</u>	04	Log in D	ate: 7/05/29	
ETR: 133420	Time Re	eceived:	25		Ву: ^ \	IP I	
SDG: NY133420	Receive	id By: CK	4 0		Signatur	e: Jullion	
Project: 29000	# Coole	rs Received:	Z P	OXC	PM Sign	ature:	
Samples Delivered By: Shipping Service Court	ier 🗆 Hand 🛛	D Other (specify)	_		Date:	9/16/09	
List Air bill Number(s) or Attach a photocopy of the	Air Bill:					· · · · · · · · · · · · · · · · · · ·	
COOLER SCREEN			YES	NO	NA	COMMENTS	
There is no evidence to indicate tampering							
Custody seals are present and intact							
Custody seal numbers are present				\mathbf{X}			
If yes, list custody seal numbers:							
Thermal Preservation Type: Wet ice Blue ice	None _	Other (specify)					
IR Gun ID: 96 Correction Factor (CF) = Ø	°C					
Cooler 1: Cooler 6		Cooler 11		°C	Cooler 1	6 °C	
Cooler 2: PL °C Cooler 7	°C	Cooler 12		°C	Cooler 1	7 °C	
Cooler 3: CCooler 8	°C	Cooler 13		°C	Cooler 1	°C 8	
Cooler 4: *C Gooler 9-	°C	Cooler 14		°.C	Cooler 1	9	
Cooler 5 °C Cooler 10	°C	Cooler 15		°C	Cooler 2	3° 0	
Unless otherwise documented, the recorded tempe	rature readii	ngs are adjusted	readings	s to acco	ount for th	e CF of the IR Gun	
EPA Criteria: 0-6°C, except for air and geo sample	s which shou	ıld be at ambient	tempera	iture an	d tissue sa	amples, which may be frozen.	
Some clients require thermal preservation criteria of	f 2-4°C or of	ther such criteria.	The PM	l must n	otify SM w	when alternate criteria is specified.	
SAMPLE CONDITION			YES	NO	NA	COMMENTS	
Sample containers were received intact							
Legible sample labels are affixed to each container			\approx				
CHAIN OF CUSTODY (COC)			YES	NO	NA	COMMENTS	
COC is present and includes the following informat	on for each	container:		•			
Sample ID / Sample Description			\sim				
Date of Sample Collection			\mathbf{x}				_
Time of Sample Collection			\sim			· · · · · · · · · · · · · · · · · · ·	
Identification of the Sampler			\mathbf{X}				
Preservation Type			· _		\mathbf{X}		
Requested Tests Method(s)			\mathbf{X}				
Necessary Signatures			\sim				
Internal Chain of Custody (ICOC) Required				\times			
If yes to above, ICOC Record initiated for every Wo	rksheet						
SAMPLE INTEGRITY / USABILITY			YES	NO	NA	COMMENTS	
The sample container matches the COC			\times				
Appropriate sample containers were received for th	e tests reque	ested	\propto				
Samples were received within holding time			\mathbf{X}				
Sufficient amount of sample is provided for request	ed analyses		${\times}$				
VOA vials do not have headspace or a bubble >6m	m (1/4" diam	eter)			\mathbf{X}		
Appropriate preservatives were used for the tests re	equested				\geq		
oH of Inorganic samples checked and is within meti	nod specifica	ition			$ \ge $		
f no, attach Inorganic Sample pH Adjustment Form					\mathbf{X}		_
ANOMALY / NCR SUMMARY					· · · ·		
						· · ·	

FSR002:12.19.07:3 TestAmerica Burlington TestAmerica South Burlington, VT Extended Data Package

NY134484

TestAmerica Laboratories, Inc.

November 17, 2009

Mr. Rob Kovacs Roux Associates 209 Shafter Street Islandia, NY 11749

Re: Laboratory Project No. 29000 Case: 29000; SDG: NY134484

Dear Mr. Kovacs:

Enclosed are the analytical results for the samples that were received by TestAmerica Burlington on October 31st, 2009. Laboratory identification numbers were assigned, and designated as follows:

<u>Lab ID</u>	Client <u>Sample ID</u>	Sample <u>Date</u>	Sample <u>Matrix</u>
	Received: 10/31/09 ETR No:	134484	
812246	VS-DCF	10/28/09	AIR
812247	VS-MRE	10/28/09	AIR
812248	VS-DCR	10/28/09	AIR
812249	VS-VAC	10/28/09	AIR
812250	IAQ-VAC	10/28/09	AIR
812251	VS-BOOK	10/28/09	AIR
812252	IAQ-BOOK	10/28/09	AIR

Documentation of the condition of the samples at the time of their receipt and any exception to the laboratory's Sample Acceptance Policy is documented in the Sample Handling section of this submittal.

During the canister pressure check performed upon receipt, it was observed that samples VS-VAC and VS-BOOK were received at ambient pressure. The analysis of this sample proceeded at the client's request.

Manual integration was employed in deriving certain of the analytical results. The values that have been derived from manual integration are qualified on the quantitation reports, and extracted ion current profiles are included in the data package.

Any reference within this report to Severn Trent Laboratories, Inc. or STL, should be understood to refer to TestAmerica Laboratories, Inc. (formerly known as Severn Trent Laboratories, Inc.) The analytical results associated with the samples presented in this test report were generated under a quality system that adheres to requirements specified in the NELAC standard. Release of the data in this test report and any associated electronic deliverables is authorized by the Laboratory Director's designee as verified by the following signature.

If there are any questions regarding this submittal, please contact me at 802 660-1990.

Sincerely,

ma Gro &

Sara Goff Project Manager

Enclosure

Chain of Custody	11
QC Summary TO-15 Volatile	13
Supportive Documentation TO-15 Volatile	19
Standards TO-15 Volatile	49
Raw QC Data TO-15 Volatile	90
Sample Preparation TO-15 Volatile	105
Sample Handling	111

CLIENT SAMPLE NO.

VS-DCF

Lab Name: TAL Burlington

SDG Number: NY134484

Dilution Factor: 0.80

Sample Matrix: AIR

Lab Sample No.: 812246

Date Analyzed: 11/11/2009

Date Received: 10/31/2009

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.16	U	0.16	0.41	U	0.41
1,1-Dichloroethene	75-35-4	0.16	U	0.16	0.63	U	0.63
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	U	0.63
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	U	0.63
1,2-Dichloroethene (total)	540-59-0	0.16	U	0.16	0.63	U	0.63
Trichloroethene	79-01-6	0.16	U	0.16	0.86	U	0.86
Tetrachloroethene	127-18-4	0.33		0.16	2.2		1 .1

Printed: 11/17/2009 11:30:45 AM

CLIENT SAMPLE NO.

VS-MRE

Lab Name: TAL Burlington

SDG Number: NY134484

Dilution Factor: 0.80

Sample Matrix: AIR

Lab Sample No.: 812247

Date Analyzed: 11/11/2009

Date Received: 10/31/2009

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.16	U	0.16	0.41	U	0.41
1,1-Dichloroethene	75-35-4	0.16	U	0.16	0.63	U	0.63
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	U	0.63
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	U	0.63
1,2-Dichloroethene (total)	540-59-0	0.16	U	0.16	0.63	U	0.63
Trichloroethene	79-01-6	2.7		0.16	15		0.86
Tetrachloroethene	127-18-4	0.37		0.16	2.5		1.1

Printed: 11/17/2009 11:30:46 AM

CLIENT SAMPLE NO.

VS-DCR

Lab Name: TAL Burlington

SDG Number: NY134484

Dilution Factor: 0.80

Sample Matrix: AIR

Lab Sample No.: 812248

Date Analyzed: 11/11/2009

Date Received: 10/31/2009

Target Compound	CAS Number	Results in ppbv	Q	RL In ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.16	U	0.16	0.41	U	0.41
1,1-Dichloroethene	75-35-4	0.16	U	0.16	0.63	U	0.63
trans-1,2-Dichloroethene	156-60-5	0.16	υ	0.16	0.63	U	0.63
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	U	0.63
1,2-Dichloroethene (total)	540-59-0	0.16	υ	0.16	0.63	U	0.63
Trichloroethene	79-01-6	0.16	U	0.16	0.86	U	0.86
Tetrachloroethene	127-18-4	0.43		0.16	2.9		1.1

Printed: 11/17/2009 11:30:46 AM

CLIENT SAMPLE NO.

Lab Name: TAL Burlington

SDG Number: NY134484

Dilution Factor: 0.80

Sample Matrix: AIR

VS-VAC

Lab Sample No.: 812249

Date Analyzed: 11/11/2009

Date Received: 10/31/2009

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.16	U	0.16	0.41	U	0.41
1,1-Dichloroethene	75-35-4	0.16	U	0.16	0.63	U	0.63
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	U	0.63
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	U	0.63
1,2-Dichloroethene (total)	540-59-0	0.16	U	0.16	0.63	U	0.63
Trichloroethene	79-01-6	0.16	U	0.16	0.86	U	0.86
Tetrachloroethene	127-18-4	0.35		0.16	2.4		1.1

Printed: 11/17/2009 11:30:47 AM

CLIENT SAMPLE NO.

IAQ-VAC

Lab Name: TAL Burlington

SDG Number: NY134484

Dilution Factor: 0.80

Sample Matrix: AIR

Lab Sample No.: 812250

Date Analyzed: 11/11/2009

Date Received: 10/31/2009

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.16	U	0.16	0.41	U	0.41
1,1-Dichloroethene	75-35-4	0.16	U	0.16	0.63	U	0.63
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	U	0.63
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	U	0.63
1,2-Dichloroethene (total)	540-59-0	0.16	U	0.16	0.63	U	0.63
Trichloroethene	79-01-6	0.16	U	0.16	0.86	U	0.86
Tetrachloroethene	127-18-4	1.1		0.16	7.5		1.1

Printed: 11/17/2009 11:30:48 AM

CLIENT SAMPLE NO.

VS-BOOK

TAL Burlington Lab Name:

SDG Number: NY134484

Dilution Factor: 0.80

Sample Matrix: AIR

Lab Sample No.: 812251

Date Analyzed: 11/11/2009

Date Received: 10/31/2009

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.16	υ	0.16	0.41	υ	0.41
1,1-Dichloroethene	75-35-4	0.16	U	0.16	0.63	U	0.63
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	U	0.63
cis-1,2-Dichloroethene	156-59-2	0.16	υ	0.16	0.63	υ	0.63
1,2-Dichloroethene (total)	540-59-0	0.16	υ	0.16	0.63	U	0.63
Trichloroethene	79 - 01-6	0.16	U	0.16	0.86	U	0.86
Tetrachloroethene	127-18-4	0.37		0.16	2.5		1.1

Printed: 11/17/2009 11:30:49 AM

CLIENT SAMPLE NO.

IAQ-BOOK

Lab Name: TAL Burlington

SDG Number: NY134484

Dilution Factor: 0.80

Sample Matrix: AIR

Lab Sample No.: 812252

Date Analyzed: 11/11/2009

Date Received: 10/31/2009

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.16	υ	0.16	0.41	υ	0.41
1,1-Dichloroethene	75-35-4	0.16	U	0.16	0.63	U	0.63
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	U	0.63
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	U	0.63
1,2-Dichloroethene (total)	540-59-0	0.16	U	0.16	0.63	υ	0.63
Trichlo r oethene	79-01-6	0.16	U	0.16	0.86	υ	0.86
Tetrachloroethene	127-18-4	1.6		0.16	11		1.1

Printed: 11/17/2009 11:30:49 AM

CLIENT SAMPLE NO.

FA111109LCS

Lab Name: TAL Burlington

SDG Number: NY134484

Dilution Factor: 1.00

Sample Matrix: AIR

Lab Sample No.: FA111109

Date Analyzed: 11/11/2009

Date Received: 11

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	11		0.20	28		0.51
1,1-Dichloroethene	75-35-4	12		0.20	48		0.79
trans-1,2-Dichloroethene	156-60-5	11		0.20	44		0.79
cis-1,2-Dichloroethene	156-59-2	11		0.20	44		0.79
1,2-Dichloroethene (total)	540-59-0	22		0.20	87		0.79
Trichloroethene	79-01-6	11		0.20	59		1.1
Tetrachloroethene	127-18 -4	11		0.20	75		1.4

Printed: 11/17/2009 11:30:50 AM

CLIENT SAMPLE NO.

MBLK111109FA

TAL Burlington Lab Name:

SDG Number: NY134484

Dilution Factor: 0.80

Sample Matrix: AIR

Lab Sample No.: MBLK1111

Date Analyzed: 11/11/2009

Date Received: / /

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.16	U	0.16	0.41	U	0.41
1,1-Dichloroethene	75-35-4	0.16	U	0.16	0.63	U	0.63
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	U	0.63
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	U	0.63
1,2-Dichloroethene (total)	540-59-0	0.16	U	0.16	0.63	U	0.63
Trichloroethene	79-01-6	0.16	U	0.16	0.86	U	0.86
Tetrachloroethene	127-18-4	0.16	U	0.16	1.1	U	1.1

Printed: 11/17/2009 11:30:51 AM
TestAmerica Burlington Data Qualifier Definitions

Organic

- U: Compound analyzed but not detected at a concentration above the reporting limit.
- J: Estimated value.
- N: Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds (TICs) where the identification of a compound is based on a mass spectral library search.
- P: SW-846: The relative percent difference for detected concentrations between two GC columns is greater than 40%. Unless otherwise specified the higher of the two values is reported on the Form I.

CLP SOW: Greater than 25% difference for detected concentrations between two GC columns. Unless otherwise specified the lower of the two values is reported on the Form I.

- C: Pesticide result whose identification has been confirmed by GC/MS.
- B: Analyte is found in the sample and the associated method blank. The flag is used for tentatively identified compounds as well as positively identified compounds.
- E: Compounds whose concentrations exceed the upper limit of the calibration range of the instrument for that specific analysis.
- D: Concentrations identified from analysis of the sample at a secondary dilution.
- A: Tentatively identified compound is a suspected aldol condensation product.
- X,Y,Z: Laboratory defined flags that may be used alone or combined, as needed. If used, the description of the flag is defined in the project narrative.

Inorganic/Metals

- E: Reported value is estimated due to the presence of interference.
- N: Matrix spike sample recovery is not within control limits.
- * Duplicate sample analysis is not within control limits.
- B: The result reported is less than the reporting limit but greater than the instrument detection limit.
- U: Analyte was analyzed for but not detected above the reporting limit.

Method Codes:

Р	ICP-AES
MS	ICP-MS
CV	

CV Cold Vapor AA AS Semi-Automated Spectrophotometric

FQA009:02.18.08:4 TestAmerica Burlington

Chain of Custody

TestAmerica Burlington 30 Community Drive	Ca	nister	Samp	oles Cł	ain of	Custody	Record	_								
Suite 11 South Burlington, VT 05403 phone 802-660-1990 fax 802-660-1919	TestAmerica Ans	Ilytical Tes	ting Corp. 6	ou semuss	liability with r	espect to the co	llection and sh	ipment of	these sar	nples.						
Client Contact Information	Project Manage	er. Rob	Kovu	5		Samples Coll	ected By: J.	011	ž	1	of	ö	s			I
Company: KOUX A-SOCIONS, INC.	Phone: 631	222	0097					$\left \right $	F	╉	10 W T	, and a second	Ĺ	$\left \right $	╞	Г
Address: 209 Shatky St.	Email: r Kov	acs lo	VOUNIN	C. COM						_	(L	8			(u	
Phone: 631 232 2000	Site Contact:										ectio	98-2			ection	
FAX: 631 232 9340	IA Contact:								_		5 591				s sət	
Project Name: BUSSEN KUNMAM	•	nalysis T	urnaroun	d Time											iou u	
Sile: Jef El Cleanzes Oceanside	Stan	dard (Spe	icity)	Werk	TAT						city ir				city in	_
# O-	Rus	h (Specify									əds	-			əds	
Sample Identification	Sample Date(s) TI		Time Stop	Canister Vacuum In Field, "Hg (Start)	Canister Vacuum in Fleld, 'Hg (Stop)	Flow Controller ID	Canister ID	t-015 A+1-OT	EPA 3C	EPA 260	Ofher (Please	aumpie ואף ארססר אור	ılA tnəidmA	Soil Gas	Landfill Gas Other (Please	
VS - DCF	10/22/01	315	278	-29.5	- 41114	3251	2781	X	and a second sec			l Liter		Y		,
VS · MRC	*	015 1	(JS4	b7-	1.	All and a	2532	X						Y		
VS-DCR	-	120	FSF	-30	0	- THE	hnnh	X						7		
VS - VAC	_	030	908	-30	0	3118	4016	X			275.2			×		_
140-VAC VS-R00K	2.2	28	800	130	0.3	3113	3143	X				\star		×		
1AQ-800K	10128/04/1	035	1816	-30	1	2829	2676	X				$\mathbf{\lambda}$				
				Temperature	(Fahrenheit)											
	Iu	terior		Ambient		crisid	2									
	Start	70,5				50°P										
	Stop															
				Pressure (in	ches of Hg)											
	E	terior		Ambient		ouisid										
	Start					29.8	+									
	Stop															
Special Instructions/QC Requirements & Comments: Trans-1, 2-Dichloroethere, 1,2-D Using TO 15. All results must h	All sam	ples t hene (election	d be (total) On lin	analyz Tetro	ichloro Chloro I jugli	1,1- bich ethene hs or 1	TVICHIA TVICHI	ne, C oroet ide	5-1-51 12450 12450		which c	to the	icle icle	ory t	n ·	
Samples Shipped by:) (UUUU	Date/Time: 101241	56			Samples R	eceived by:	/01 -	21/06		-						1
Samples Relinquished by J	Date/Time:	5			Received	oy:										
Relinquished by:	Date/Time:				Received I	:Yc										
Lab Use Only Shipper Name:				Opened b		Condition:										

QC Summary – TO-15 Volatile

FORM 3 AIR VOLATILE LAB CONTROL SAMPLE

Lab Name: TESTAMERICA BURLINGTON Contract: 29000 Lab Code: STLV Case No.: 29000 SAS No.: SDG No.: NY134484 Matrix Spike - Sample No.: FA111109LCS

	SPIKE	SAMPLE	LCS	LCS	QC.
	ADDED	CONCENTRATION	CONCENTRATION	010	LIMITS
COMPOUND	(ppbv)	(ug/L)	(ppbv)	REC #	REC.
	========			======	======
Vinyl Chloride	10		11	110	70-130
1,1-Dichloroethene	10		12	120	70-130
trans-1,2-Dichloroethen	10		11	110	70-130
cis-1,2-Dichloroethene	10		11	110	70-130
1,2-Dichloroethene (tot	20		22	110	70-130
Trichloroethene	10		11	110	70-130
Tetrachloroethene	10		11	110	70-130

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 0 out of 0 outside limits Spike Recovery: 0 out of 7 outside limits

COMMENTS:

FORM III VOA

FORM 4 VOLATILE METHOD BLANK SUMMARY CLIENT SAMPLE NO.

Lab Name: TESTAMERICA BURLINGTONContract: 29000MBLK111109FALab Code: STLVCase No.: 29000SAS No.:SDG No.: NY134484Lab File ID: FDGB02BLab Sample ID: MBLK111109FADate Analyzed: 11/11/09Time Analyzed: 1352GC Column: RTX-624ID: 0.32 (mm)Heated Purge: (Y/N) NInstrument ID: F

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

		LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
			=================	
01	FA111109LCS	FA111109LCS	FDG10BQ	1209
02	VS-DCF	812246	812246	1443
03	VS-MRE	812247	812247	1533
04	VS-DCR	812248	812248	1624
05	VS-VAC	812249	812249	1714
06	IAQ-VAC	812250	812250	1805
07	VS-BOOK	812251	812251	1855
08	IAQ-BOOK	812252	812252	1946
09				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29				
30				

COMMENTS:

page 1 of 1

FORM IV VOA

FORM 5 VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: TESTAMERICA BURLINGTONContract: 29000Lab Code: STLVCase No.: 29000SAS No.:SDG No.: NY134484Lab File ID: FDG01PVBFB Injection Date: 11/09/09Instrument ID: FBFB Injection Time: 2012GC Column: RTX-624ID: 0.32 (mm)Heated Purge: (Y/N) N

		% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
=====		
50	8.0 - 40.0% of mass 95	12.9
75	30.0 - 66.0% of mass 95	43.3
95	Base Peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	6.6
173	Less than 2.0% of mass 174	0.5 (0.5)1
174	50.0 - 120.0% of mass 95	110.9
175	4.0 - 9.0% of mass 174	7.7 (6.9)1
176	93.0 - 101.0% of mass 174	107.3 (96.7)1
177	5.0 - 9.0% of mass 176	7.0 (6.5)2
·	1-Value is & mass 174 2-Value is & mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
				==========	=========
01	ASTD0002	ASTD0002	FDG002V	11/09/09	2153
02	ASTD0005	ASTD0005	FDG005V	11/09/09	2244
03	ASTD010	ASTD010	FDG10V	11/10/09	0027
04	ASTD015	ASTD015	FDG15V	11/10/09	0119
05	ASTD020	ASTD020	FDG20V	11/10/09	0210
06	ASTD040	ASTD040	FDG40V	11/10/09	0301
07	ASTD005	ASTD005	FDG05V2	11/10/09	0832
08					
09					
10					
11					
12					
13					
14					
15					
16				[
1/					
10					
19					
∠0 21					
21					
22					

page 1 of 1

FORM V VOA

FORM 5 VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: TESTAMERICA BURLINGTONContract: 29000Lab Code: STLVCase No.: 29000SAS No.:SDG No.: NY134484Lab File ID: FDG03PVBFB Injection Date: 11/11/09Instrument ID: FBFB Injection Time: 1023GC Column: RTX-624ID: 0.32 (mm)Heated Purge: (Y/N) N

% RELATIVE ABUNDANCE ION ABUNDANCE CRITERIA m/e ______ 50 12.6 42.5 75 Base Peak, 100% relative abundance 95 100.0 5.0 - 9.0% of mass 95 6.9 96 0.5(0.4)1Less than 2.0% of mass 174173 111.2 174 50.0 - 120.0% of mass 95 7.8 (7.1)1 4.0 - 9.0% of mass 174 175 93.0 - 101.0% of mass 174 108.1 (97.2)1 176 6.9 (6.4)2 5.0 - 9.0% of mass 176 177 2-Value is % mass 176 1-Value is % mass 174

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	=================			===========	
01	ASTD010	ASTD010	FDG10BV	11/11/09	1119
02	FA111109LCS	FA111109LCS	FDG10BQ	11/11/09	1209
03	MBLK111109FA	MBLK111109FA	FDGB02B	11/11/09	1352
04	VS-DCF	812246	812246	11/11/09	1443
05	VS-MRE	812247	812247	11/11/09	1533
06	VS-DCR	812248	812248	11/11/09	1624
07	VS-VAC	812249	812249	11/11/09	1714
08	IAQ-VAC	812250	812250	11/11/09	1805
09	VS-BOOK	812251	812251	11/11/09	1855
10	IAQ-BOOK	812252	812252	11/11/09	1946
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					

page 1 of 1

FORM V VOA

FORM 8 VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: TESTAMERICA BURLINGTON Contract: 29000 Lab Code: STLV Case No.: 29000 SAS No.: SDG No.: NY134484 Lab File ID (Standard): FDG10BV Date Analyzed: 11/11/09 Instrument ID: F Time Analyzed: 1119 GC Column: RTX-624 ID: 0.32 (mm) Heated Purge: (Y/N) N

		IS1(BCM)		IS2 (DFB)		IS3(CBZ)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
		==========	=======	==========	=======	=========	
	12 HOUR STD	1057237	9.69	5083280	11.08	4742483	15.18
	UPPER LIMIT	1480132	10.02	7116592	11.41	6639476	15.51
	LOWER LIMIT	634342	9.36	3049968	10.75	2845490	14.85
				=========	=======	=========	=======
	CLIENT						
	SAMPLE NO.						
	=============	==========	======	===========	=======	===========	=======
01	FA111109LCS	1108619	9.70	5301536	11.09	5015926	15.19
02	MBLK111109FA	1140977	9.69	5570394	11.08	5177932	15.18
03	VS-DCF	1107838	9.69	5388139	11.09	5153584	15.19
04	VS-MRE	1146015	9.69	5518401	11.09	5156760	15.19
05	VS-DCR	1117263	9.69	5422138	11.08	5083477	15.19
06	VS-VAC	1118873	9.70	5437016	11.09	5195241	15.19
07	IAQ-VAC	1121328	9.69	5421940	11.08	5013857	15.18
80	VS-BOOK	1099924	9.69	5341310	11.08	5135125	15.18
09	IAQ-BOOK	1059277	9.69	5127611	11.08	4696219	15.18
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							
21							
22							

IS1 (BCM) = Bromochloromethane IS2 (DFB) = 1,4-Difluorobenzene IS3 (CBZ) = Chlorobenzene-d5

AREA UPPER LIMIT = + 40% of internal standard area AREA LOWER LIMIT = - 40% of internal standard area RT UPPER LIMIT = + 0.33 minutes of internal standard RT RT LOWER LIMIT = - 0.33 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.
* Values outside of QC limits.

page 1 of 1

FORM VIII VOA

Supportive Documentation – TO-15 Volatile

VOLATILE	FORM 1 ORGANICS ANALYSIS	DATA SHEET	ROUX1 SAMPLE NO.	
Lab Name: TESTAMERICA	BURLINGTON Co	ntract: 29000	IAQ-BOOK	
Lab Code: STLV C	ase No.: 29000 S	AS No.: SDO	G No.: NY134484	
Matrix: (soil/water)	AIR	Lab Sample II): 812252	
Sample wt/vol:	250.0 (g/mL) ML	Lab File ID:	812252	
Level: (low/med)	LOW	Date Received	1: 10/31/09	
% Moisture: not dec.		Date Analyzed	1: 11/11/09	
GC Column: RTX-624	ID: 0.32 (mm)	Dilution Fact	cor: 0.8	
Soil Extract Volume:_	(uL)	Soil Aliquot	Volume:(uL)
CAS NO.	COMPOUND	CONCENTRATION UNITS (ug/L or ug/Kg) PPF	G: BV Q	
75-01-4 75-35-4 156-60-5 156-59-2 540-59-0 79-01-6 127-18-4	Vinyl Chloride 1,1-Dichloroether trans-1,2-Dichloro cis-1,2-Dichloroether Trichloroethere Tetrachloroethere	ne roethene ethene ne (total) e	0.16 U 0.16 U 0.16 U 0.16 U 0.16 U 0.16 U 0.16 U 1.6	

FORM I VOA

Page 21 of 113

Data File: /chem/F.i/Fsvr.p/fdgbto15.b/812252.d Report Date: 16-Nov-2009 07:20

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/F.i/Fsvr.p/fdgbto15.b/812252.d Lab Smp Id: 812252 Client Smp ID: IAQ-BOOK Inj Date : 11-NOV-2009 19:46 Operator : wrd Inst Smp Info : IAQ-BOOK :[]10/28/09 @1816(AIR) Inst ID: F.i Misc Info : 812252;111109FA;0.8;250 Comment : Method : /chem/F.i/Fsvr.p/fdgbto15.b/sto15.m Meth Date : 16-Nov-2009 07:19 klp Quant 7 Cal Date : 10-NOV-2009 08:32 Cal Fil Als bottle: 10 Comment Quant Type: ISTD Cal File: fdg05v2.d Dil Factor: 0.80000 Integrator: HP RTE Compound Sublist: ROUX1 Ocean.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	0.80000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	250.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

CONCENTRATIONS

			QUANT SIG	ON-COLUMN FI	NAL
Co	mpo	unds	MASS	RT EXP RT REL RT RESPONSE (ppbv) (p	pbv)
==	===:				
	6	Vinyl Chloride	62	Compound Not Detected.	
	18	1,1-Dichloroethene	96	Compound Not Detected.	
	27	trans-1,2-Dichloroethene	61	Compound Not Detected.	
	31	cis-1,2-Dichloroethene	96	Compound Not Detected.	
*	32	Bromochloromethane	128	9.694 9.699 (1.000) 1059277 10.0000	
М	40	1,2-Dichloroethene (total)	61	Compound Not Detected.	
*	43	1,4-Difluorobenzene	114	11.085 11.090 (1.000) 5127611 10.0000	
	45	Trichloroethene	95	Compound Not Detected.	
	57	Tetrachloroethene	166	13.995 14.000 (0.922) 405689 1.98305	1.6
*	61	Chlorobenzene-d5	117	15.183 15.188 (1.000) 4696 219 10.0000	

Page 1

Data File: /chem/F.i/Fsvr.p/fdgbto15.b/812252.d Date : 11-NOV-2009 19:46 Client ID: IAQ-BOOK Sample Info: IAQ-BOOK :[]10/28/09 @1816(AIR) Purge Volume: 250.0 Column phase: RTX-624

Instrument: F.i

Operator: wrd

Column diameter: 0.32

FORM 1 VOLATILE ORGANICS ANALYSIS DATA	ROUX1 SAMPLE NO.
Lab Name: TESTAMERICA BURLINGTON Contra	IAQ-VAC
Lab Code: STLV Case No.: 29000 SAS N	No.: SDG No.: NY134484
Matrix: (soil/water) AIR	Lab Sample ID: 812250
Sample wt/vol: 250.0 (g/mL) ML	Lab File ID: 812250
Level: (low/med) LOW	Date Received: 10/31/09
% Moisture: not dec.	Date Analyzed: 11/11/09
GC Column: RTX-624 ID: 0.32 (mm)	Dilution Factor: 0.8
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND (ug	ICENTRATION UNITS: J/L or ug/Kg) PPBV Q
75-01-4Vinyl Chloride 75-35-41,1-Dichloroethene 156-60-5trans-1,2-Dichloroet 156-59-2cis-1,2-Dichloroethe 540-59-01,2-Dichloroethene (79-01-6Trichloroethene 127-18-4Tetrachloroethene	0.16 U 0.16 U ene0.16 U total)0.16 U 0.16 U 0.16 U

Page 25 of 113

Data File: /chem/F.i/Fsvr.p/fdgbto15.b/812250.d Report Date: 16-Nov-2009 07:20

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/F.i/Fsvr.p/fdgbto15.b/812250.d Lab Smp Id: 812250 Client Smp ID: IAQ-VAC Inj Date : 11-NOV-2009 18:05 Operator : wrd Ins Smp Info : IAQ-VAC :[]10/28/09 @1804(AIR) Inst ID: F.i Misc Info : 812250;111109FA;0.8;250 Comment Method: /chem/F.i/Fsvr.p/fdgbto15.b/sto15.mMeth Date: 16-Nov-2009 07:19 klpQuant 7Cal Date: 10-NOV-2009 08:32Cal Fil Quant Type: ISTD Cal File: fdg05v2.d Als bottle: 8 Dil Factor: 0.80000 Integrator: HP RTE Compound Sublist: ROUX1 Ocean.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	0.80000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	250.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

CONCENTERTONS

				001.021.1101.1	01.0
			QUANT SIG	ON-COLUMN	FINAL
Co	mpoi	inds	MASS	RT EXP RT REL RT RESPONSE (ppbv) (ppbv)
==	===:				EFERNE
	6	Vinyl Chloride	62	Compound Not Detected.	
	18	1,1-Dichloroethene	96	Compound Not Detected.	
	27	trans-1,2-Dichloroethene	61	Compound Not Detected.	
	31	cis-1,2-Dichloroethene	96	Compound Not Detected.	
*	32	Bromochloromethane	128	9.694 9.699 (1.000) 1121328 10.0000	
М	40	1,2-Dichloroethene (total)	61	Compound Not Detected.	
*	43	1,4-Difluorobenzene	114	11.085 11.090 (1.000) 5421940 10.0000	
	45	Trichloroethene	95	Compound Not Detected.	
	57	Tetrachloroethene	166	13.995 14.000 (0.922) 287261 1.31521	1.1
*	61	Chlorobenzene-d5	117	15.182 15.188 (1.000) 5013857 10.0000	

Page 1

Data File: /chem/F.i/Fsvr.p/fdgbto15.b/812250.d Date : 11-NOV-2009 18:05 Client ID: IAQ-VAC Sample Info: IAQ-VAC :[]10/28/09 @1804(AIR) Purge Volume: 250.0 Column phase: RTX-624

Column diameter: 0.32

Instrument: F.i

Operator: wrd

FORM 1 VOLATILE ORGANICS ANALYSIS DATA SHI	ROUX1 SAMPLE NO.
Lab Name: TESTAMERICA BURLINGTON Contract:	VS-BOOK
Lab Code: STLV Case No.: 29000 SAS No.:	SDG No.: NY134484
Matrix: (soil/water) AIR	Lab Sample ID: 812251
Sample wt/vol: 250.0 (g/mL) ML	Lab File ID: 812251
Level: (low/med) LOW I	Date Received: 10/31/09
% Moisture: not dec.	Date Analyzed: 11/11/09
GC Column: RTX-624 ID: 0.32 (mm)	Dilution Factor: 0.8
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CONCENT CAS NO. COMPOUND (ug/L d	TRATION UNITS: or ug/Kg) PPBV Q
75-01-4Vinyl Chloride	0.16 U 0.16 U 0.16 U 0.16 U 0.16 U 0.16 U 0.16 U 0.16 U 0.16 U 0.16 U 0.16 U 0.37

FORM I VOA

Page 28 of 113

Page 29 of 113

Data File: /chem/F.i/Fsvr.p/fdgbto15.b/812251.d Report Date: 16-Nov-2009 07:20

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/F.i/Fsvr.p/fdgbto15.b/812251.d Lab Smp Id: 812251 Client S Client Smp ID: VS-BOOK Inj Date : 11-NOV-2009 18:55 Operator : wrd Ins Smp Info : VS-BOOK :[]10/28/09 @1815(AIR) Inst ID: F.i Misc Info : 812251;111109FA;0.8;250 Comment : : /chem/F.i/Fsvr.p/fdgbto15.b/sto15.m Method Meth Date : 16-Nov-2009 07:19 klp Quant Type: ISTD Cal Date : 10-NOV-2009 08:32 Cal File: fdg05v2.d Als bottle: 9 Dil Factor: 0.80000 Integrator: HP RTE Compound Sublist: ROUX1 Ocean.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	0.80000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	250.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

				CONCENTR	ATIONS
			QUANT SIG	ON - COLUMN	FINAL
Cot	npoi	inds	MASS	RT EXP RT REL RT RESPONSE (ppbv)	(ppbv)
==:	===:				
	6	Vinyl Chloride	62	Compound Not Detected.	
	18	1,1-Dichloroethene	96	Compound Not Detected.	
	27	trans-1,2-Dichloroethene	61	Compound Not Detected.	
	31	cis-1,2-Dichloroethene	96	Compound Not Detected.	
*	32	Bromochloromethane	128	9.694 9.699 (1.000) 1099924 10.0000	
м	40	1,2-Dichloroethene (total)	61	Compound Not Detected.	
*	43	1,4-Difluorobenzene	114	11.085 11.090 (1.000) 5341310 10.0000	
	4 5	Trichloroethene	95	Compound Not Detected.	
	57	Tetrachloroethene	166	13.995 14.000 (0.922) 102259 0.45713	0.37
*	61	Chlorobenzene-d5	117	15.182 15.188 (1.000) 5135125 10.0000	

Data File: /ohem/F.i/Fsvr.p/fdgbto15.b/812251.d
Date : 11-NOV-2009 18:55
Client ID: VS-BOOK
Sample Info: VS-BOOK :[]10/28/09 @1815(AIR)
Purge Volume: 250.0
Column phase: RTX-624

Instrument: F.i

Operator: wrd

Column diameter: 0.32

FORM 1 ROUX1 SAMPLE NO.				
Lab Name: TESTAMERICA BURLINGTON CO	VS-DCF			
Lab Code: STLV Case No.: 29000 S	AS No.: SDG No.: NY134484			
Matrix: (soil/water) AIR	Lab Sample ID: 812246			
Sample wt/vol: 250.0 (g/mL) ML	Lab File ID: 812246			
Level: (low/med) LOW	Date Received: 10/31/09			
% Moisture: not dec.	Date Analyzed: 11/11/09			
GC Column: RTX-624 ID: 0.32 (mm)	Dilution Factor: 0.8			
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)			
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV Q			
75-01-4Vinyl Chloride 75-35-41,1-Dichloroethe 156-60-5trans-1,2-Dichlo 156-59-2cis-1,2-Dichloro 540-59-01,2-Dichloroethe 79-01-6Trichloroethen 127-18-4Tetrachloroethen	ne 0.16 U ne 0.16 U roethene 0.16 U ethene 0.16 U ne (total) 0.16 U			

FORM I VOA

Data File: /chem/F.i/Fsvr.p/fdgbto15.b/812246.d Report Date: 16-Nov-2009 07:19

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/F.i/Fsvr.p/fdgbtol5.b/812246.d Lab Smp Id: 812246 Client Smp ID: VS-DCF Inj Date : 11-NOV-2009 14:43 Inst ID: F.i Smp Info : VS-DCF :[]10/28/09 @1802(AIR) Misc Info : 812246;111109FA;0.8;250 Comment : Method : /chem/F.i/Fsvr.p/fdgbtol5.b/stol5.m Meth Date : 16-Nov-2009 07:19 klp Quant Type: ISTD Cal Date : 10-NOV-2009 08:32 Cal File: fdg05v2.d Als bottle: 4 Dil Factor: 0.80000 Integrator: HP RTE Compound Sublist: ROUX1_Ocean.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	0.80000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	250.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

CONCENTOR

					CONCENTIONS	
			QUANT SIG		ON-COLUMN FINAL	
Con	npo	unds	MASS	RT EXP RT REL RT RESPONSE	(ppbv) (ppbv)	
===	==:		****			
	6	Vinyl Chloride	62	Compound Not Detected.		
	18	1,1-Dichloroethene	96	Compound Not Detected.		
	27	trans-1,2-Dichloroethene	61	Compound Not Detected.		
	31	cis-1,2-Dichloroethene	96	Compound Not Detected.		
*	32	Bromochloromethane	128	9.694 9.699 (1.000) 1107838	10.0000	
м	40	1,2-Dichloroethene (total)	61	Compound Not Detected.		
*	43	1,4-Difluorobenzene	114	11.090 11.090 (1.000) 5388139	10.0000	
	45	Trichloroethene	95	Compound Not Detected.		
	57	Tetrachloroethene	166	14.000 14.000 (0.922) 93874	0.41814 0.33	
*	61	Chlorobenzene-d5	117	15.188 15.188 (1.000) 5153584	10.0000	

Page 1

Page 34 of 113

Data File: /chem/F.i/Fsvr.p/fdgbto15.b/812246.d Date : 11-NOV-2009 14:43 Client ID: VS-DCF Sample Info: VS-DCF :[]10/28/09 @1802(AIR) Purge Volume: 250.0 Column phase: RTX-624

Instrument: F.i

Operator: wrd

Column diameter: 0.32

FORM 1 VOLATILE ORGANICS ANALYSIS D	ROUX1 SAMPLE NO.
Lab Name: TESTAMERICA BURLINGTON Con	VS-DCR
Lab Code: STLV Case No.: 29000 SA	S No.: SDG No.: NY134484
Matrix: (soil/water) AIR	Lab Sample ID: 812248
Sample wt/vol: 250.0 (g/mL) ML	Lab File ID: 812248
Level: (low/med) LOW	Date Received: 10/31/09
% Moisture: not dec.	Date Analyzed: 11/11/09
GC Column: RTX-624 ID: 0.32 (mm)	Dilution Factor: 0.8
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV Q
75-01-4Vinyl Chloride 75-35-41,1-Dichloroethen 156-60-5trans-1,2-Dichlor 156-59-2cis-1,2-Dichloroe	0.16 U 0.16 U 0.16 U 0.16 U 0.16 U 0.16 U

540-59-0-----1,2-Dichloroethene (total) 79-01-6-----Trichloroethene 127-18-4-----Tetrachloroethene

FORM I VOA

0.16 U 0.16 U 0.43

Page 37 of 113

Data File: /chem/F.i/Fsvr.p/fdgbto15.b/812248.d Report Date: 16-Nov-2009 07:20

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/F.i/Fsvr.p/fdgbto15.b/812248.d Lab Smp Id: 812248 Cl. Inj Date : 11-NOV-2009 16:24 In: Smp Info : VS-DCR : []10/28/09 @1757(AIR) Client Smp ID: VS-DCR Inst ID: F.i Misc Info : 812248;111109FA;0.8;250 Comment : : /chem/F.i/Fsvr.p/fdgbto15.b/sto15.m Method Meth Date : 16-Nov-2009 07:19 klp Quant Type: ISTD Cal Date : 10-NOV-2009 08:32 Cal File: fdg05v2.d Als bottle: 6 Dil Factor: 0.80000 Integrator: HP RTE Compound Sublist: ROUX1 Ocean.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	0.80000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	250.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

				CONCENTRA	TIONS
			QUANT SIG	ON-COLUMN	FINAL
Co	mpo	unds	MASS	RT EXP RT REL RT RESPONSE (ppbv)	(ppbv)
==					
	6	Vinyl Chloride	62	Compound Not Detected.	
	18	1,1-Dichloroethene	96	Compound Not Detected.	
	27	trans-1,2-Dichloroethene	61	Compound Not Detected.	
	31	cis-1,2-Dichloroethene	96	Compound Not Detected.	
*	32	Bromochloromethane	128	9.694 9.699 (1.000) 1117263 10.0000	
м	40	1,2-Dichloroethene (total)	61	Compound Not Detected.	
*	43	1,4-Difluorobenzene	114	11.085 11.090 (1.000) 5422138 10.0000	
	45	Trichloroethene	95	Compound Not Detected.	
	57	Tetrachloroethene	166	13.995 14.000 (0.921) 120253 0.54303	0.43
*	61	Chlorobenzene-d5	117	15.188 15.188 (1.000) 5083477 10.0000	

Page 1

Data File: /chem/F.i/Fsvr.p/fdgbto15.b/812248.d Date : 11-NOV-2009 16:24 Client ID: VS-DCR Sample Info: VS-DCR :[]10/28/09 @1757(AIR) Purge Volume: 250.0 Column phase: RTX-624

```
Instrument: F.i
```

Operator: wrd

57 Tetrachloroethene

Column diameter: 0.32

Page 3

FORM 1 VOLATILE ORGANICS ANALYSIS DATA S	ROUX1 SAMPLE NO.
Lab Name: TESTAMERICA BURLINGTON Contract	VS-MRE
Lab Code: STLV Case No.: 29000 SAS No.	.: SDG No.: NY134484
Matrix: (soil/water) AIR	Lab Sample ID: 812247
Sample wt/vol: 250.0 (g/mL) ML	Lab File ID: 812247
Level: (low/med) LOW	Date Received: 10/31/09
% Moisture: not dec.	Date Analyzed: 11/11/09
GC Column: RTX-624 ID: 0.32 (mm)	Dilution Factor: 0.8
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CONCE CAS NO. COMPOUND (ug/L	ENTRATION UNITS: G or ug/Kg) PPBV Q
75-01-4Vinyl Chloride 75-35-4Vinyl Chloride 156-60-5trans-1,2-Dichloroethene 156-59-2cis-1,2-Dichloroethene 540-59-01,2-Dichloroethene (to 79-01-6Trichloroethene 127-18-4Tetrachloroethene	0.16 U 0.16 U 0.16 U 0.16 U 0.16 U 0.16 U 0.16 U 0.16 U 0.16 U 0.16 U 0.16 U 0.16 U 0.16 U 0.17 0.37

FORM I VOA

Page 41 of 113

Data File: /chem/F.i/Fsvr.p/fdgbto15.b/812247.d Report Date: 16-Nov-2009 07:19

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/F.i/Fsvr.p/fdgbto15.b/812247.d Lab Smp Id: 812247 Client Smp ID: VS-MRE Inj Date : 11-NOV-2009 15:33 Operator : wrd In Smp Info : VS-MRE :[]10/28/09 @1759(AIR) Inst ID: F.i Misc Info : 812247;111109FA;0.8;250 Comment : /chem/F.i/Fsvr.p/fdgbto15.b/sto15.m Method Meth Date : 16-Nov-2009 07:19 klp Cal Date : 10-NOV-2009 08:32 Als bottle: 5 Quant Type: ISTD Cal File: fdg05v2.d Dil Factor: 0.80000 Integrator: HP RTE Compound Sublist: ROUX1 Ocean.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	0.80000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	250.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

							CONCENTRATIONS	
			QUANT SIG				ON-COLUMN	FINAL
Compounds		inds	MASS	RT I	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
			===	== =				
	6	Vinyl Chloride	62	Compor	und Not Detected			
	18	1,1-Dichloroethene	96	Compound Not Detected.				
	27	trans-1,2-Dichloroethene	61	Compound Not Detected.				
	31	cis-1,2-Dichloroethene	96	Compound Not Detected.				
*	32	Bromochloromethane	128	9.694	9.699 (1.000)	1146015	10.0000	
м	40	1,2-Dichloroethene (total)	61	Compound Not Detected.				
*	43	1,4-Difluorobenzene	114	11.090	11.090 (1.000)	5518401	10.0000	
	45	Trichloroethene	95	11.443 1	11.448 (1.032)	429354	3.37169	2.7
	57	Tetrachloroethene	166	13.995 1	14.000 (0.921)	105019	0.46750	0.37
*	61	Chlorobenzene-d5	117	15.188 1	15.188 (1.000)	5156760	10.0000	

Data File: /chem/F.i/Fsvr.p/fdgbto15.b/812247.d Date : 11-NOV-2009 15:33 Client ID: VS-MRE Sample Info: VS-MRE :[]10/28/09 @1759(AIR) Purge Volume: 250.0 Column phase: RTX-624

Instrument: F.i

Operator: wrd

Column diameter: 0.32

Page 3

Data File: /chem/F.i/Fsvr.p/fdgbto15.b/812247.d Date : 11-NOV-2009 15:33 Client ID: VS-MRE Sample Info: VS-MRE :[]10/28/09 @1759(AIR) Purge Volume: 250.0 Column phase: RTX-624

Instrument: F.i

Operator: wrd

Column diameter: 0.32

57 Tetrachloroethene

Concentration: 0.37 ppbv

FORM 1 VOLATILE ORGANICS ANALYSIS DA	ROUX1 SAMPLE NO.					
Lab Name: TESTAMERICA BURLINGTON Cont	VS-VAC					
Lab Code: STLV Case No.: 29000 SAS	No.: SDG No.: NY134484					
Matrix: (soil/water) AIR Lab Sample ID: 812249						
Sample wt/vol: 250.0 (g/mL) ML	Lab File ID: 812249					
Level: (low/med) LOW	Date Received: 10/31/09					
% Moisture: not dec.	Date Analyzed: 11/11/09					
GC Column: RTX-624 ID: 0.32 (mm)	Dilution Factor: 0.8					
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)					
CAS NO. COMPOUND (ONCENTRATION UNITS: ug/L or ug/Kg) PPBV Q					
75-01-4Vinyl Chloride 75-35-41,1-Dichloroethene 156-60-5trans-1,2-Dichloro 156-59-2cis-1,2-Dichloroet 540-59-01,2-Dichloroethene 79-01-6Trichloroethene 127-18-4Tetrachloroethene	0.16 U ethene 0.16 U hene 0.16 U (total) 0.16 U 0.16 U U					

FORM I VOA

Data File: /chem/F.i/Fsvr.p/fdgbto15.b/812249.d Report Date: 16-Nov-2009 07:20

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/F.i/Fsvr.p/fdgbto15.b/812249.d Lab Smp Id: 812249 Client Smp ID: VS-VAC Inj Date : 11-NOV-2009 17:14 Operator : wrd In Smp Info : VS-VAC :[]10/28/09 @1806(AIR) Inst ID: F.i Misc Info : 812249;111109FA;0.8;250 Comment : Method : /chem/F.i/Fsvr.p/fdgbto15.b/sto15.m 16 Nov-2009 07:19 klp Quant 7 Meth Date : 16-Nov-2009 07:19 klp Cal Date : 10-NOV-2009 08:32 Als bottle: 7 Quant Type: ISTD Cal File: fdg05v2.d Dil Factor: 0.80000 Integrator: HP RTE Compound Sublist: ROUX1 Ocean.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	0.80000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	250.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

				CONCENTRATIO	ONS			
			QUANT SIG	ON-COLUMN H	FINAL			
Cor	npoi	unds	MASS	RT EXP RT REL RT RESPONSE (ppbv) (ppbv)			
==:			====					
	6	Vinyl Chloride	62	Compound Not Detected.				
	18	1,1-Dichloroethene	96	96 Compound Not Detected.				
	27	trans-1,2-Dichloroethene	61	Compound Not Detected.				
	31	cis-1,2-Dichloroethene	96	Compound Not Detected.				
*	32	Bromochloromethane	128	9.699 9.699 (1.000) 1118873 10.0000				
М	40	1,2-Dichloroethene (total)	61	Compound Not Detected.				
*	43	1,4-Difluorobenzene	114	11.090 11.090 (1.000) 5437016 10.0000				
	45	Trichloroethene	95	Compound Not Detected.				
	57	Tetrachloroethene	166	13.995 14.000 (0.921) 99320 0.43885	0.35			
*	61	Chlorobenzene-d5	117	15.188 15.188 (1.000) 5195241 10.0000				

Data File: /chem/F.i/Fsvr.p/fdgbto15.b/812249.d Date : 11-NOV-2009 17:14 Client ID: VS-VAC Sample Info: VS-VAC :[]10/28/09 @1806(AIR) Purge Volume: 250.0 Column phase: RTX-624

Instrument: F.i

Operator: wrd

Column diameter: 0,32

m/z

Min

Standards – TO-15 Volatile

FORM 6 VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON Contract: 29000 Lab Code: STLV Case No.: 29000 SAS No.: SDG No.: NY134484 Instrument ID: F Calibration Date(s): 11/09/09 11/10/09 Heated Purge: (Y/N) N Calibration Time(s): 2153 0832 GC Column: RTX-624 ID: 0.32 (mm)

LAB FILE ID: RRF0.	Z=FDG00	2 V 1/2	RRFU DDF1	.5=FDG0	U5V 017		
RRF2 = RRF5	=FDG02	VZ	KKFI	U =FDGI	JV		
COMPOUND	RRF0.2	RRF0.5	RRF2	RRF5	RRF10	RRF	% RSD
	======	======	=====	======	======	======	=====
Vinyl Chloride	0.380	0.389		0.452	0.410		
1,1-Dichloroethene	0.786	0.678		0.732	0.703		——
trans-1,2-Dichloroethene	0.851	0.871		0.946	0.892		
cis-1,2-Dichloroethene	0.804	0.815		0.833	0.803		
1,2-Dichloroethene (total)	0.828	0.843		0.889	0.847		
Trichloroethene	0.228	0.228		0.238	0.236		
Tetrachloroethene	- 0.429	0.422		0.450	0.445		
	-						
	-						
	-						
	-						
	_						
	-						
	-						
	-						
	-						
	-						
	-			[
	- [·	
	-						
	-						
	-						

All other compounds must meet a minimim RRF of 0.010.

page 1 of 2

FORM VI VOA

FORM 6 VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTONContract: 29000Lab Code: STLVCase No.: 29000SAS No.:SDG No.: NY134484Instrument ID: FCalibration Date(s): 11/09/0911/10/09Heated Purge: (Y/N) NCalibration Time(s): 21530832GC Column: RTX-624ID: 0.32 (mm)

COMPOUND	RRF15	RRF20	RRF40			RRF	RSD
Tinvl Chloride	======	0 395	0 393	=====	======	0 403	======
1.1-Dichloroethene	-	0.705	0.555			0.405	53
trans-1.2-Dichloroethene	-	0 884	0.857			0.884	3 0
ris-1 2-Dichloroethene	-	0 789	0 745			0.798	2.2
1.2-Dichloroethene (total)	-	0.836	0 801			0.841	3.4
Trichloroethene	-	0.030	0.001			0.041	2.4
Tetrachloroethene	- <u> </u>	0.446	0.421			0.436	3.0
	-						
	<u> </u>						
	-[
	-						
	-	<u> </u>					
							[
	- [
	-						
	-]	
	-		<u> </u>				
	-					<u> </u>	
	-						
	-						

All other compounds must meet a minimim RRF of 0.010.

page 2 of 2

FORM VI VOA

Page 52 of 113

Data File: /chem/F.i/Fsvr.p/fdgto15.b/fdg002v.d Report Date: 11-Nov-2009 18:57

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/F.i/Fsvr.p/fdgto15.b/fdg002v.d Lab Smp Id: ASTD0002 Client Smp ID: ASTD0002 Inj Date : 09-NOV-2009 21:53 Operator : wrd Inst ID: F.i Smp Info : Misc Info : ASTD0002;110909FA;1;200 Comment Method: /chem/F.i/Fsvr.p/fdgto15.b/sto15.mMeth Date: 11-Nov-2009 18:57 svQuantCal Date: 09-NOV-2009 21:53Cal FiAls bottle:2Calibre Quant Type: ISTD Cal File: fdg002v.d Calibration Sample, Level: 1 Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: all002.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

							AMOUN	TS
			QUANT SIG				CAL-AMT	ON-COL
Cor	Compounds		MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
===		************		==	RETER BETTER	EXCELEE		EXCESS
	3	1,2-Dichlorotetrafluoroethane	85	3.461	3.466 (0.357)	19527	0.20000	0.19(a)
	6	Vinyl Chloride	62	3.820	3.825 (0.394)	5924	0.20000	0.19(a)
	9	Bromomethane	94	4.606	4.606 (0.475)	11250	0.20000	0.22
	11	Isopentane	43	4.895	4.900 (0.505)	8133	0.20000	0.23
	12	Bromoethene	106	5.221	5.226 (0.538)	10887	0.20000	0.20
	13	Trichlorofluoromethane	101	5.312	5.317 (0.548)	29623	0.20000	0.19(a)
	15	Ethyl Ether	59	5.922	5.917 (0.611)	6135	0.20000	0.19(a)
	17	Freon TF	101	6.302	6.312 (0.650)	21843	0.20000	0.19(a)
	18	1,1-Dichloroethene	96	6.371	6.382 (0.657)	12247	0.20000	0.22
	27	trans-1,2-Dichloroethene	61	7.709	7.714 (0.795)	13257	0.20000	0.19(a)
	29	1,1-Dichloroethane	63	8.447	8.447 (0.871)	16295	0.20000	0.19(a)
	31	cis-1,2-Dichloroethene	96	9.330	9.335 (0.962)	12538	0.20000	0.20
*	32	Bromochloromethane	128	9.699	9.699 (1.000)	779147	10.0000	
	34	Chloroform	83	9.769	9.774 (1.007)	23516	0.20000	0.19(a)
	35	1,1,1-Trichloroethane	97	10.020	10.025 (0.904)	27066	0.20000	0.19(a)

Page 53 of 113

Data File: /chem/F.i/Fsvr.p/fdgto15.b/fdg002v.d Report Date: 11-Nov-2009 18:57

							AMOUN	TS
			QUANT SIG				CAL-AMT	ON-COL
Co	ompoi	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
==		EEEEEEEEEEEEEEEEE			SECTIF REPERT		aca2222	
	36	Cyclohexane	84	10.020	10.025 (0.904)	15703	0.20000	0.20
	37	Carbon Tetrachloride	117	10.213	10.218 (0.921)	30595	0.20000	0.19(a)
	38	2,2,4-Trimethylpentane	57	10.491	10.501 (0.946)	41964	0.20000	0.20
	39	Benzene	78	10.544	10.549 (0.951)	35039	0.20000	0.21
м	40	1,2-Dichloroethene (total)	61			25795	0.40000	0.39
	41	1,2-Dichloroethane	62	10.651	10.656 (0.960)	14212	0.20000	0.19(a)
	42	n-Heptane	43	10.748	10.747 (0.969)	13740	0.20000	0.21
*	43	1,4-Difluorobenzene	114	11.090	11.090 (1.000)	3726680	10.0000	
	45	Trichloroethene	95	11.443	11.448 (1.032)	17032	0.20000	0.20
	47	1,2-Dichloropropane	63	11.828	11.828 (1.067)	10123	0.20000	0.19(a)
	49	Dibromomethane	174	12.010	12.010 (1.083)	20104	0.20000	0.20
	50	Bromodichloromethane	83	12.181	12.181 (1.098)	24551	0.20000	0.19(a)
	51	cis-1,3-Dichloropropene	75	12.807	12.812 (1.155)	18603	0.20000	0.19(a)
	53	n-Octane	43	13.214	13.214 (1.192)	19486	0.20000	0.22
	54	Toluene	92	13.235	13.240 (0.871)	28320	0.20000	0.21
	55	trans-1,3-Dichloropropene	75	13.599	13.604 (1.226)	19889	0.20000	0.19(a)
	56	1,1,2-Trichloroethane	83	13.882	13.877 (0.914)	12128	0.20000	0.19(a)
	57	Tetrachloroethene	166	13.995	14.000 (0.921)	30184	0.20000	0.20
	5 9	Dibromochloromethane	129	14.423	14.428 (0.950)	30107	0.20000	0.18(a)
	60	1,2-Dibromoethane	107	14.631	14.631 (0.963)	25987	0.20000	0.19(a)
*	61	Chlorobenzene-d5	117	15.188	15.188 (1.000)	3518709	10.0000	
	84	Nonane	57	15.311	15.311 (1.008)	22857	0.20000	0.22
	62	Chlorobenzene	112	15.225	15.225 (1.002)	41237	0.20000	0.20
	63	Ethylbenzene	91	15.295	15.295 (1.007)	60895	0.20000	0.21
	64	Xylene (m,p)	106	15.445	15.444 (1.017)	54712	0.40000	0.43(a)
	65	Xylene (o)	106	15.953	15.953 (1.050)	26802	0.20000	0.21
	66	Styrene	104	15.980	15.979 (1.052)	39161	0.20000	0.20
	67	Bromoform	173	16.268	16.268 (1.071)	31998	0.20000	0.18(a)
	68	Cumene	105	16.365	16.365 (1.077)	71426	0.20000	0.19(a)
	69	1,1,2,2-Tetrachloroethane	83	16.777	16.777 (1.105)	32735	0.20000	0.20
	72	n-Propylbenzene	91	16.841	16.846 (1.109)	83920	0.20000	0.21
	74	4-Ethyltoluene	105	16.969	16.969 (1.117)	76676	0.20000	0.20
м	70	Xylene (total)	106			81514	0.20000	0.63
	75	1,3,5-Trimethylbenzene	105	17.033	17.033 (1.122)	61682	0.20000	0.20
	76	2-Chlorotoluene	91	17.007	17.007 (1.120)	58789	0.20000	0.20
	77	a-Methylstyrene	118	17.306	17.306 (1.139)	32770	0.20000	0.19(a)
	78	Tert-Butylbenzene	119	17.408	17.408 (1.146)	63049	0.20000	0.19(a)
	79	1,2,4-Trimethylbenzene	105	17.477	17.477 (1.151)	65297	0.20000	0.20
	80	Sec-Butylbenzene	105	17.665	17.665 (1.163)	88426	0.20000	0.20
	81	4-Isopropyltoluene	119	17.820	17.820 (1.173)	79590	0.20000	0.19(a)
	82	1,3-Dichlorobenzene	146	17.895	17.889 (1.178)	52800	0.20000	0.20
	83	1,4-Dichlorobenzene	146	18.002	18,002 (1.185)	54452	0.20000	0,21
	86	Benzyl Chloride	91	18.162	18.162 (1 196)	44650	0.20000	0 17 (=)
	87	n-Butylbenzene	91	18.323	18.328 (1.206)	63579	0.20000	0.20
	88	1,2-Dichlorobenzene	146	18.489	18.488 (1.217)	51443	0.20000	0.21
	90	1,2,4-Trichlorobenzene	180	20.853	20.858 (1.373)	44870	0.20000	0,22(a)
	91	Hexachlorobutadiene	225	21.019	21.024 (1.384)	36129	0.20000	0.21

Data File: /chem/F.i/Fsvr.p/fdgto15.b/fdg002v.d Report Date: 11-Nov-2009 18:57

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
*******************		==		EITEETEE	ERECZES	*******
93 1,2,3-Trichlorobenzene	180	21.821	21.821 (1.437)	47210	0.20000	0.24

QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ). Page 3

.

Data File: /chem/F.i/Fsvr.p/fdgto15.b/fdg005v.d Report Date: 11-Nov-2009 18:57

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/F.i/Fsvr.p/fdgto15.b/fdg005v.d Lab Smp Id: ASTD0005 Client Smp ID: ASTD0005 Inj Date : 09-NOV-2009 22:44 Inst ID: F.i Operator : wrd Smp Info : Misc Info : ASTD0005;110909FA;1;200 Comment Method: /chem/F.i/Fsvr.p/fdgto15.b/sto15.mMeth Date: 11-Nov-2009 18:57 svQuantCal Date: 09-NOV-2009 22:44Cal Filler Quant Type: ISTD Cal File: fdg005v.d Als bottle: 3 Calibration Sample, Level: 2 Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: all005.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Compounds		MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
			= =			======	
1	Dichlorodifluoromethane	85	3.231	3.236 (0.333)	49433	0.50000	0.50
2	Freon-22	51	3.269	3.274 (0.337)	20290	0.50000	0.49(a)
3	1,2-Dichlorotetrafluoroethane	85	3.461	3.466 (0.357)	50946	0.50000	0.50
4	Chloromethane	50	3.600	3.600 (0.371)	11351	0.50000	0.52
5	n-Butane	43	3.782	3.787 (0.390)	19287	0.50000	0.53
6	Vinyl Chloride	62	3.830	3.825 (0.395)	15166	0.50000	0.48
7	1,3-Butadiene	54	3.900	3.900 (0.402)	10547	0.50000	0.47(a)
9	Bromomethane	94	4.601	4.606 (0.474)	25112	0.50000	0.49
10	Chloroethane	64	4.820	4.831 (0.497)	10935	0.50000	0.51
11	Isopentane	43	4.895	4.900 (0.505)	18003	0.50000	0.50
12	Bromoethene	106	5.221	5.226 (0.538)	27517	0.50000	0.50
13	Trichlorofluoromethane	101	5.318	5.317 (0.548)	77600	0.50000	0.49
14	Pentane	43	5.441	5.446 (0.561)	27356	0.50000	0.52
15	Ethyl Ether	59	5.928	5.917 (0.611)	16036	0.50000	0.49
17	Freon TF	101	6.307	6.312 (0.650)	56253	0.50000	0.49

Data File: /chem/F.i/Fsvr.p/fdgto15.b/fdg005v.d Report Date: 11-Nov-2009 18:57

								AMOUN	TS
			QUANT SIG					CAL-AMT	ON-COL
Cc	mpo	unds	MASS	RT	EXP RT	REL RT	RESPONSE	(ppbv)	(ppbv)
==				==				=======	
	18	1,1-Dichloroethene	96	6.377	6.382	(0.657)	26444	0.50000	0.47
	21	Carbon Disulfide	76	6.789	6.794	(0.700)	72219	0.50000	0.48(a)
	22	3-Chloropropene	41	7.062	7.067	(0.728)	21887	0.50000	0.50
	24	Methylene Chloride	49	7.318	7.324	(0.755)	24522	0.50000	0.56
	26	Methyl tert-Butyl Ether	73	7.672	7.666	(0.791)	76983	0.50000	0.49(a)
	27	trans-1,2-Dichloroethene	61	7.709	7.714	(0.795)	33978	0.50000	0.49
	28	n-Hexane	57	8.025	8.030	(0.827)	36374	0.50000	0.52
	29	1,1-Dichloroethane	63	8.447	8.447	(0.871)	42765	0.50000	0.50
	30	Methyl Ethyl Ketone	72	9.346	9.346	(0.964)	15715	0.50000	0.60(Q)
	31	cis-1,2-Dichloroethene	96	9.330	9.335	(0.962)	31780	0.50000	0.51
*	32	Bromochloromethane	128	9.699	9.699	(1.000)	780158	10.0000	
	34	Chloroform	83	9.769	9.774	(1.007)	59728	0.50000	0.49
	35	1,1,1-Trichloroethane	97	10.020	10.025	(0.904)	68743	0.50000	0.49
	36	Cyclohexane	84	10.025	10.025	(0.904)	39399	0.50000	0.50
	37	Carbon Tetrachloride	117	10.218	10.218	(0.921)	78108	0.50000	0.48
	38	2,2,4-Trimethylpentane	57	10.502	10.501	(0.947)	106754	0.50000	0.50
	39	Benzene	78	10.550	10.549	(0.951)	85288	0.50000	0.50
М	40	1,2-Dichloroethene (total)	61				65758	1.00000	1.0
	41	1,2-Dichloroethane	62	10.657	10.656	(0.961)	36286	0.50000	0.49
	42	n-Heptane	43	10.742	10.747	(0.969)	35250	0.50000	0.53
*	43	1,4-Difluorobenzene	114	11.090	11.090	(1.000)	3755383	10.0000	
	45	Trichloroethene	95	11.448	11.448	(1.032)	42854	0.50000	0.49
	46	Methyl Methacrylate	69	11.871	11.871	(1.070)	27760	0.50000	0.48(aO)
	47	1,2-Dichloropropane	63	11.828	11.828	(1.067)	27232	0.50000	0.51
	49	Dibromomethane	174	12.010	12.010	(1.083)	49269	0.50000	0.48
	50	Bromodichloromethane	83	12.181	12.181	(1.098)	63169	0.50000	0.48
	51	cis-1,3-Dichloropropene	75	12.807	12.812	(1.155)	47557	0.50000	0.48
	52	Methyl Isobutyl Ketone	43	12.978	12.973	(1.170)	45478	0.50000	0.51
	53	n-Octane	43	13.214	13.214	(1.192)	48154	0.50000	0.53
	54	Toluene	92	13.235	13.240	(0.871)	68947	0.50000	0.50
	55	trans-1,3-Dichloropropene	75	13.604	13.604	(1.227)	49842	0.50000	0.47
	56	1,1,2-Trichloroethane	83	13.872	13.877	(0,913)	32125	0.50000	0.51
	57	Tetrachloroethene	166	14.000	14.000	(0,922)	74818	0.50000	0.48
	58	Methyl Butyl Ketone	43	14.150	14.150	(0,932)	41927	0.50000	0.49(a)
	59	Dibromochloromethane	129	14.423	14.428	(0.950)	74577	0.50000	0.45
	60	1,2-Dibromoethane	107	14.631	14.631	(0.963)	67053	0.50000	0.49
*	61	Chlorobenzene-d5	117	15.188	15.188	(1.000)	3546630	10.0000	
	84	Nonane	57	15.311	15.311	(1.008)	54532	0.50000	0.53
	62	Chlorobenzene	112	15.225	15.225	(1,002)	104205	0.50000	0.49
	63	Ethylbenzene	91	15.295	15.295	(1.007)	152908	0.50000	0.51
	64	Xylene (m,p)	106	15.439	15.444	(1.017)	130256	1.00000	1.0
	65	Xylene (o)	106	15.953	15,953	(1.050)	64110	0.50000	0.49
	66	Styrene	104	15,980	15,979	(1.052)	96985	0.50000	0.49
	67	Bromoform	173	16.268	16.268	(1.071)	79371	0.50000	0.44
	68	Cumene	105	16.365	16.365	(1,077)	185070	0.50000	0.50
	69	1,1,2,2-Tetrachloroethane	83	16.777	16.777	(1.105)	80884	0.50000	0.50
	71	n-Decane	57	16.905	16.910	(1.113)	67266	0.50000	0.50
						/			

Data File: /chem/F.i/Fsvr.p/fdgto15.b/fdg005v.d Report Date: 11-Nov-2009 18:57

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Comp	ounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
***	EREDINGEINNAFIERNGER	====	==	EEC222 222222			
7	2 n-Propylbenzene	91	16.841	16.846 (1.109)	205367	0.50000	0.50
7	3 1,2,3-Trichloropropane	75	16.862	16.862 (1.110)	63220	0.50000	0.51
7	4 4-Ethyltoluene	105	16.969	16.969 (1.117)	188227	0.50000	0.49
M 7	0 Xylene (total)	106			194366	0.50000	1.5
7	5 1,3,5-Trimethylbenzene	105	17.034	17.033 (1.122)	157267	0.50000	0.50
7	6 2-Chlorotoluene	91	17.007	17.007 (1.120)	145067	0.50000	0.49(M)
7	7 a-Methylstyrene	118	17.306	17.306 (1.139)	80383	0.50000	0.46
7	8 Tert-Butylbenzene	119	17.408	17.408 (1.146)	161096	0.50000	0.49
7	9 1,2,4-Trimethylbenzene	105	17.478	17.477 (1.151)	157375	0.50000	0.48
8	0 Sec-Butylbenzene	105	17.665	17.665 (1.163)	223869	0.50000	0.50
8	1 4-Isopropyltoluene	119	17.820	17.820 (1.173)	200068	0.50000	0.48
8	2 1,3-Dichlorobenzene	146	17.889	17.889 (1.178)	123666	0.50000	0.47
8	3 1,4-Dichlorobenzene	146	18.002	18.002 (1.185)	121818	0.50000	0.46
8	6 Benzyl Chloride	91	18.162	18.162 (1.196)	113528	0.50000	0.43
8	7 n-Butylbenzene	91	18.323	18.328 (1.206)	155792	0.50000	0.48
8	8 1,2-Dichlorobenzene	146	18.489	18.488 (1.217)	115109	0.50000	0.46
9	0 1,2,4-Trichlorobenzene	180	20.859	20.858 (1.373)	69373	0.50000	0.34(a)
9	1 Hexachlorobutadiene	225	21.019	21.024 (1.384)	71355	0.50000	0.40
9	2 Naphthalene	128	21.345	21.351 (1.405)	145447	0.50000	0.36(a)
9	3 1,2,3-Trichlorobenzene	180	21.827	21.821 (1.437)	60032	0.50000	0.30

QC Flag Legend

- a Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).
 Q Qualifier signal failed the ratio test.
 M Compound response manually integrated.

MANUAL INTEGRATION REPORT

Area = 145067

Manual Integration Reason: MI1 - Poor automated baseline

SDG: NY134484

Page 60 of 113

20733

Area =

Data File: /chem/F.i/Fsvr.p/fdgto15.b/fdg10v.d Report Date: 11-Nov-2009 18:57

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/F.i/Fsvr.p/fdgto15.b/fdg10v.d Lab Smp Id: ASTD010 Client Client Smp ID: ASTD010 Inj Date : 10-NOV-2009 00:27 Operator : wrd Smp Info : Misc Info : ASTD010;110909FA;1;200 Inst ID: F.i Comment Method: /chem/F.i/Fsvr.p/fdgto15.b/sto15.mMeth Date: 11-Nov-2009 18:57 svQuantCal Date: 10-NOV-2009 00:27Cal F Quant Type: ISTD Cal File: fdq10v.d Als bottle: 5 Calibration Sample, Level: 5 Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: all.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

						AMOUN	15
		QUANT SIG				CAL-AMT	ON-COL
Compoun	nds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
		E323	==	202001 82822		******	
1 D	lichlorodifluoromethane	85	3.236	3.236 (0.334)	955656	10.0000	9.2
2 F	reon-22	51	3.274	3.274 (0.338)	433651	10.0000	9.8
3 1	,2-Dichlorotetrafluoroethane	85	3.466	3.466 (0.357)	1080021	10.0000	9.9
4 C	Chloromethane	50	3.600	3.600 (0.371)	221626	10.0000	9.6
5 n	-Butane	43	3.787	3.787 (0.390)	377639	10.0000	9.8
8 M	Methanol	31	Comp	ound Not Detecte	đ.		
6 V	Vinyl Chloride	62	3.825	3.825 (0.394)	339433	10.0000	10
7 1	,3-Butadiene	54	3.900	3.900 (0.402)	240112	10.0000	10
9 E	Bromomethane	94	4.606	4.606 (0.475)	525959	10.0000	9.7
10 C	Chloroethane	64	4.831	4.831 (0.498)	224247	10.0000	9.9
11 I	Isopentane	43	4.900	4.900 (0.505)	368197	10.0000	9.6
12 E	Bromoethene	106	5.226	5.226 (0.539)	592401	10.0000	10
13 T	richlorofluoromethane	101	5.317	5.317 (0.548)	1692088	10.0000	10
14 F	Pentane	43	5.446	5.446 (0.561)	550036	10.0000	9.9
15 E	Sthyl Ether	59	5.917	5.917 (0.610)	350403	10.0000	10

Data File: /chem/F.i/Fsvr.p/fdgto15.b/fdg10v.d Report Date: 11-Nov-2009 18:57

					AMOUN	ITS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
**************************************	==+=					=======
16 Acrolein	56	6.286	6.286 (0.648)	162065	10.0000	9.1
17 Freon TF	101	6.312	6.312 (0.651)	1237641	10.0000	10
18 1,1-Dichloroethene	96	6.382	6.382 (0.658)	582259	10.0000	9.8
19 Acetone	43	6.559	6.559 (0.676)	628669	10.0000	9.9
20 Isopropyl Alcohol	45	6.757	6.757 (0.697)	504068	10.0000	11
21 Carbon Disulfide	76	6.794	6.794 (0.700)	1588103	10.0000	10
22 3-Chloropropene	41	7.067	7.067 (0.729)	457792	10.0000	9.9
23 Acetonitrile	41	7.158	7.158 (0.738)	274881	10.0000	10
24 Methylene Chloride	49	7.324	7.324 (0.755)	445057	10.0000	9.6
25 tert-Butyl Alcohol	59	7.441	7.441 (0.767)	943994	10.0000	11
26 Methyl tert-Butyl Ether	73	7.666	7.666 (0.790)	1647193	10.0000	10
27 trans-1,2-Dichloroethene	61	7.714	7.714 (0.795)	738088	10.0000	10
28 n-Hexane	57	8.030	8.030 (0.828)	732177	10.0000	10
29 1,1-Dichloroethane	63	8.447	8.447 (0.871)	917090	10.0000	10
30 Methyl Ethyl Ketone	72	9.346	9.346 (0.964)	273411	10.0000	9.8
31 cis-1,2-Dichloroethene	96	9.335	9.335 (0.962)	664916	10.0000	10
* 32 Bromochloromethane	128	9.699	9.699 (1.000)	827736	10.0000	
33 Tetrahydrofuran	42	9.715	9.715 (0.876)	410534	10.0000	10
34 Chloroform	83	9.774	9.774 (1.008)	1295584	10.0000	10
35 1,1,1-Trichloroethane	97	10.025	10.025 (0.904)	1507034	10.0000	10
36 Cyclohexane	84	10.025	10.025 (0.904)	844327	10.0000	10
37 Carbon Tetrachloride	117	10.218	10.218 (0.921)	1745256	10.0000	10
38 2,2,4-Trimethylpentane	57	10.501	10.501 (0.947)	2279767	10.0000	10
39 Benzene	78	10.549	10.549 (0.951)	1765024	10.0000	9.9
M 40 1,2-Dichloroethene (total)	61			1403004	20.0000	20
41 1,2-Dichloroethane	62	10.656	10.656 (0.961)	778879	10.0000	10
42 n-Heptane	43	10.747	10.747 (0.969)	701053	10.0000	9.9
<pre>* 43 1,4-Difluorobenzene</pre>	114	11.090	11.090 (1.000)	3951024	10.0000	
44 1-Butanol	56	11.282	11.282 (1.017)	271080	10.0000	11
45 Trichloroethene	95	11.448	11.448 (1.032)	930582	10.0000	10
46 Methyl Methacrylate	69	11.871	11.871 (1.070)	623783	10 0000	10
47 1.2-Dichloropropane	63	11.828	11.828 (1.067)	564892	10.0000	10
48 1.4-Dioxane	88	11.962	11.962 (1.079)	307791	10.0000	11
49 Dibromomethane	174	12,010	12.010 (1.083)	1104456	10 0000	10
50 Bromodichloromethane	83	12,181	12.181 (1.098)	1431856	10.0000	10
51 cis-1.3-Dichloropropene	75	12 812	12 812 (1 155)	1054005	10.0000	10
52 Methyl Isobutyl Ketone	43	12 973	12.012 (1.133)	939655	10.0000	10
53 n-Octane	43	13,214	13,214 (1,192)	965331	10.0000	10
54 Toluene	92	13 240	13.214 (1.152) 13.240 (0.872)	1447689	10.0000	10
55 trans-1.3-Dichloropropene	75	13 604	13.240 (0.072) 13.604 (1.227)	1136632	10.0000	10
56 1.1.2-Trichloroethane	83	13.877	13.877 (0.914)	674316	10.0000	10
57 Tetrachloroethene	166	14 000	14.000 (0.922)	1659272	10.0000	10
58 Methyl Butyl Ketone	43	14 150	14 150 (0.922)	1037272	10.0000	10
59 Dibromochloromethane	129	14 429	14 428 (0 950)	1795204	10.0000	10
60 1.2-Dibromoethane	107	14 621	14 631 (0.950)	1473919	10.0000	10
* 61 Chlorobenzene-d5	117	15 100	15 188 (1 000)	1772570	10.0000	10
84 Nonane	57	15 212	15 211 (1 000)	3120215	10.0000	10
	57	TTC.CT	TO'OTT (T'000)	1022210	T0.0000	10

Data File: /chem/F.i/Fsvr.p/fdgto15.b/fdg10v.d Report Date: 11-Nov-2009 18:57

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
	====	==	****** ******			
62 Chlorobenzene	112	15.225	15.225 (1.002)	2247829	10.0000	10
63 Ethylbenzene	91	15.295	15.295 (1.007)	3171673	10.0000	10
64 Xylene (m,p)	106	15.444	15.444 (1.017)	2742398	20.0000	20
65 Xylene (o)	106	15.953	15.953 (1.050)	1376444	10.0000	10
66 Styrene	104	15.979	15.979 (1.052)	2158901	10.0000	10
67 Bromoform	173	16.268	16.268 (1.071)	1962220	10.0000	10
68 Cumene	105	16.365	16.365 (1.077)	3954138	10.0000	10
69 1,1,2,2-Tetrachloroethane	83	16.777	16.777 (1.105)	1717761	10.0000	10
71 n-Decane	57	16.910	16.910 (1.113)	1444969	10.0000	10
72 n-Propylbenzene	91	16.846	16.846 (1.109)	4352642	10.0000	10
73 1,2,3-Trichloropropane	75	16.862	16.862 (1.110)	1335838	10.0000	10
74 4-Ethyltoluene	105	16.969	16.969 (1.117)	4047655	10.0000	10
M 70 Xylene (total)	106			4118842	10.0000	30
75 1,3,5-Trimethylbenzene	105	17.033	17.033 (1.122)	3379531	10.0000	10
76 2-Chlorotoluene	91	17.007	17.007 (1.120)	3194784	10.0000	10
77 a-Methylstyrene	118	17.306	17.306 (1.139)	1881983	10.0000	10
78 Tert-Butylbenzene	119	17.408	17.408 (1.146)	3514522	10.0000	10
79 1,2,4-Trimethylbenzene	105	17.477	17.477 (1.151)	3418554	10.0000	10
80 Sec-Butylbenzene	105	17.665	17.665 (1.163)	4802748	10.0000	10
81 4-Isopropyltoluene	119	17.820	17.820 (1.173)	4475689	10.0000	10
82 1,3-Dichlorobenzene	146	17.889	17.889 (1.178)	2752549	10.0000	10
83 1,4-Dichlorobenzene	146	18.002	18.002 (1.185)	2744506	10.0000	10
86 Benzyl Chloride	91	18.162	18.162 (1.196)	2676406	10.0000	9.8
85 n-Undecane	57	18.285	18.285 (1.204)	1598847	10.0000	9.9
87 n-Butylbenzene	91	18.328	18.328 (1.207)	3457769	10.0000	10
88 1,2-Dichlorobenzene	146	18.488	18.488 (1.217)	2619432	10.0000	10
89 n-Dodecane	57	19.751	19.751 (1.300)	1425189	10.0000	8.8
90 1,2,4-Trichlorobenzene	180	20.858	20.858 (1.373)	2034805	10.0000	9.4
91 Hexachlorobutadiene	225	21.024	21.024 (1.384)	1835113	10.0000	9.9
92 Naphthalene	128	21.351	21.351 (1.406)	3866204	10.0000	9.0
93 1,2,3-Trichlorobenzene	180	21.821	21.821 (1.437)	1808738	10.0000	8.6

Page 3

Page 64 of 113

Data File: /chem/F.i/Fsvr.p/fdgto15.b/fdg15v.d Report Date: 11-Nov-2009 18:57

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/F.i/Fsvr.p/fdgto15.b/fdg15v.d Lab Smp Id: ASTD015 Client Smp ID: ASTD015 Inj Date : 10-NOV-2009 01:19 Inst ID: F.i Operator : wrd Smp Info : Misc Info : ASTD015;110909FA;1;200 Comment Method: /chem/F.i/Fsvr.p/fdgto15.b/sto15.mMeth Date: 11-Nov-2009 18:57 svQuantCal Date: 10-NOV-2009 01:19Cal F Quant Type: ISTD Cal File: fdg15v.d Als bottle: 6 Calibration Sample, Level: 6 Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: all.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
	====	==	EIEIIC CICECI			2230262
1 Dichlorodifluoromethane	85	3.231	3.236 (0.333)	1676114	15.0000	16
2 Freon-22	51	3.269	3.274 (0.337)	695731	15.0000	15
3 1,2-Dichlorotetrafluoroethane	85	3.461	3.466 (0.357)	1722089	15.0000	15
4 Chloromethane	50	3.595	3.600 (0.371)	355018	15.0000	15
5 n-Butane	43	3.782	3.787 (0.390)	584133	15.0000	15
8 Methanol	31	Comp	ound Not Detecte	d.		
6 Vinyl Chloride	62	3.825	3.825 (0.394)	518380	15.0000	15
7 1,3-Butadiene	54	3.894	3.900 (0.402)	369771	15.0000	15
9 Bromomethane	94	4.601	4.606 (0.474)	821862	15.0000	15
10 Chloroethane	64	4.825	4.831 (0.498)	349081	15.0000	15
11 Isopentane	43	4.906	4.900 (0.506)	565156	15.0000	14
12 Bromoethene	106	5.221	5.226 (0.538)	926458	15.0000	15
13 Trichlorofluoromethane	101	5.317	5.317 (0.548)	2639961	15.0000	15
14 Pentane	43	5.446	5.446 (0.561)	834549	15.0000	15
15 Ethyl Ether	59	5.917	5.917 (0.610)	557575	15.0000	16

Data File: /chem/F.i/Fsvr.p/fdgto15.b/fdg15v.d Report Date: 11-Nov-2009 18:57

							AMOUN	TS
			QUANT SIG				CAL-AMT	ON-COL
Co	mpoi	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
= =	****		====	==			======	HEREES
	16	Acrolein	56	6.286	6.286 (0.648)	288862	15.0000	16
	17	Freon TF	101	6.307	6.312 (0.650)	1990953	15.0000	16
	18	1,1-Dichloroethene	96	6.377	6.382 (0.657)	943205	15.0000	15
	19	Acetone	43	6.553	6.559 (0.676)	959323	15.0000	15
	20	Isopropyl Alcohol	45	6.757	6.757 (0.697)	715256	15.0000	15
	21	Carbon Disulfide	76	6.789	6.794 (0.700)	2550557	15.0000	16
	22	3-Chloropropene	41	7.067	7.067 (0.729)	733446	15.0000	15
	23	Acetonitrile	41	7.158	7.158 (0.738)	421577	15.0000	15
	24	Methylene Chloride	49	7.318	7.324 (0.755)	705345	15.0000	15
	25	tert-Butyl Alcohol	59	7.441	7.441 (0.767)	1357070	15.0000	15
	26	Methyl tert-Butyl Ether	73	7.661	7.666 (0.790)	2645139	15.0000	15
	27	trans-1,2-Dichloroethene	61	7.714	7.714 (0.795)	1180628	15.0000	16
	28	n-Hexane	57	8.030	8.030 (0.828)	1155568	15.0000	15
	29	1,1-Dichloroethane	63	8.447	8.447 (0.871)	1458690	15.0000	16
	30	Methyl Ethyl Ketone	72	9.340	9.346 (0.963)	425341	15.0000	15
	31	cis-1,2-Dichloroethene	96	9.335	9.335 (0.962)	1052886	15.0000	15
*	32	Bromochloromethane	128	9.699	9.699 (1.000)	853935	10.0000	
	33	Tetrahydrofuran	42	9.715	9.715 (0.876)	641680	15.0000	15
	34	Chloroform	83	9.774	9.774 (1.008)	2072566	15.0000	16
	35	1,1,1-Trichloroethane	97	10.025	10.025 (0.904)	2401950	15.0000	16
	36	Cyclohexane	84	10.025	10.025 (0.904)	1340223	15.0000	16
	37	Carbon Tetrachloride	117	10.218	10.218 (0.921)	2824126	15.0000	16
	38	2,2,4-Trimethylpentane	57	10.496	10.501 (0.946)	3585287	15.0000	16
	39	Benzene	78	10.550	10.549 (0.951)	2800029	15.0000	15
М	40	1,2-Dichloroethene (total)	61			2233514	15.0000	31
	41	1,2-Dichloroethane	62	10.656	10.656 (0.961)	1250546	15.0000	16
	42	n-Heptane	43	10.747	10.747 (0.969)	1099847	15.0000	15
*	43	1,4-Difluorobenzene	114	11.090	11.090 (1.000)	4077909	10,0000	
	44	1-Butanol	56	11.282	11.282 (1.017)	399690	15.0000	15
	45	Trichloroethene	95	11.448	11.448 (1.032)	1461305	15.0000	16
	46	Methyl Methacrylate	69	11.871	11.871 (1.070)	996811	15.0000	16
	47	1,2-Dichloropropane	63	11.828	11.828 (1.067)	898786	15,0000	16
	48	1,4-Dioxane	88	11.962	11.962 (1.079)	439708	15.0000	15
	49	Dibromomethane	174	12.015	12.010 (1.083)	1772680	15.0000	16
	50	Bromodichloromethane	83	12.181	12.181 (1.098)	2308674	15.0000	16
	51	cis-1,3-Dichloropropene	75	12.812	12.812 (1.155)	1700507	15.0000	16
	52	Methyl Isobutyl Ketone	43	12.973	12.973 (1.170)	1491107	15.0000	15
	53	n-Octane	43	13.214	13.214 (1.192)	1488720	15.0000	15
	54	Toluene	92	13.240	13.240 (0.872)	2296996	15,0000	16
	55	trans-1.3-Dichloropropene	75	13.604	13.604 (1.227)	1837118	15.0000	16
	56	1.1.2-Trichloroethane	83	13.877	13.877 (0.914)	1071465	15.0000	16
	57	Tetrachloroethene	166	14.000	14.000 (0.922)	2669463	15,0000	16
	58	Methyl Butyl Ketone	43	14.150	14.150 (0.932)	1463705	15,0000	16
	59	Dibromochloromethane	129	14.428	14,428 (0.950)	2932723	15,0000	16
	60	1,2-Dibromoethane	107	14.631	14.631 (0.963)	2361506	15,0000	16
*	61	Chlorobenzene-d5	117	15.188	15.188 (1.000)	3832973	10.0000	10
	84	Nonane	57	15.311	15.311 (1.008)	1684536	15.0000	15

Data File: /chem/F.i/Fsvr.p/fdgto15.b/fdg15v.d Report Date: 11-Nov-2009 18:57

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
	====	==				******
62 Chlorobenzene	112	15.230	15.225 (1.003)	3619870	15.0000	16
63 Ethylbenzene	91	15.295	15.295 (1.007)	4966807	15.0000	15
64 Xylene (m,p)	106	15.444	15.444 (1.017)	4311923	30.0000	31
65 Xylene (0)	106	15.953	15.953 (1.050)	2183653	15.0000	16
66 Styrene	104	15.979	15.979 (1.052)	3447308	15.0000	16
67 Bromoform	173	16.268	16.268 (1.071)	3265449	15.0000	17
68 Cumene	105	16.365	16.365 (1.077)	6321346	15.0000	16
69 1,1,2,2-Tetrachloroethane	83	16.777	16.777 (1.105)	2767559	15.0000	16
71 n-Decane	57	16,910	16.910 (1.113)	2253339	15.0000	16
72 n-Propylbenzene	91	16.846	16.846 (1.109)	6832327	15.0000	16
73 1,2,3-Trichloropropane	75	16.862	16.862 (1.110)	2089639	15.0000	16
74 4-Ethyltoluene	105	16.969	16.969 (1.117)	6508140	15.0000	16
M 70 Xylene (total)	106			6495576	15.0000	46
75 1,3,5-Trimethylbenzene	105	17.039	17.033 (1.122)	5415078	15.0000	16
76 2-Chlorotoluene	91	17.007	17.007 (1.120)	5077791	15.0000	16
77 a-Methylstyrene	118	17.306	17.306 (1.139)	3113391	15.0000	16
78 Tert-Butylbenzene	119	17.408	17.408 (1.146)	5642930	15.0000	16
79 1,2,4-Trimethylbenzene	105	17.477	17.477 (1.151)	5524785	15.0000	16
80 Sec-Butylbenzene	105	17.665	17.665 (1.163)	7687012	15.0000	16
81 4-Isopropyltoluene	119	17.820	17.820 (1.173)	7231171	15.0000	16
82 1,3-Dichlorobenzene	146	17.895	17.889 (1.178)	4487533	15.0000	16
83 1,4-Dichlorobenzene	146	18.007	18.002 (1.186)	4517570	15.0000	16
86 Benzyl Chloride	91	18.162	18.162 (1.196)	4855773	15.0000	17
85 n-Undecane	57	18.291	18.285 (1.204)	2589973	15.0000	16
87 n-Butylbenzene	91	18.328	18.328 (1.207)	5610342	15.0000	16
88 1,2-Dichlorobenzene	146	18.488	18.488 (1.217)	4282516	15.0000	16
89 n-Dodecane	57	19.751	19.751 (1.300)	2664309	15.0000	16
90 1,2,4-Trichlorobenzene	180	20.858	20.858 (1.373)	3977712	15.0000	18
91 Hexachlorobutadiene	225	21.024	21.024 (1.384)	3236989	15.0000	17
92 Naphthalene	128	21.351	21.351 (1.406)	7781134	15.0000	18
93 1,2,3-Trichlorobenzene	180	21.821	21.821 (1.437)	3779234	15.0000	18

Page 3

Page 68 of 113

Data File: /chem/F.i/Fsvr.p/fdgto15.b/fdg20v.d Report Date: 11-Nov-2009 18:57

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/F.i/Fsvr.p/fdgto15.b/fdg20v.d Lab Smp Id: ASTD020 Client Smp ID: ASTD020 Inj Date : 10-NOV-2009 02:10 Operator : wrd Inst ID: F.i Smp Info : Misc Info : ASTD020;110909FA;1;200 Method : /chem/F.i/Fsvr.p/fdgto15.b/sto15.m Meth Date : 11-Nov-2009 18:57 sv Quant Cal Date : 10-NOV-2009 02:10 Cal Fi Als bottle: 7 Calibr Comment Quant Type: ISTD Cal File: fdg20v.d Calibration Sample, Level: 7 Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: all.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
		==			ELECTR	
Dichlorodifluoromethane	85	3.231	3.236 (0.333)	2155198	20.0000	20
Freon-22	51	3.269	3.274 (0.337)	919418	20.0000	20
1,2-Dichlorotetrafluoroethane	85	3.461	3.466 (0.357)	2267660	20.0000	20
Chloromethane	50	3.595	3.600 (0.371)	468695	20.0000	19
n-Butane	43	3.782	3.787 (0.390)	775024	20.0000	19
Methanol	31	Comp	ound Not Detecte	d.		
Vinyl Chloride	62	3.825	3.825 (0.394)	693350	20.0000	20
1,3-Butadiene	54	3.900	3.900 (0.402)	488541	20.0000	20
Bromomethane	94	4.601	4.606 (0.474)	1096211	20.0000	19
Chloroethane	64	4.825	4.831 (0.498)	470004	20.0000	20
Isopentane	43	4.900	4.900 (0.505)	757057	20.0000	19
Bromoethene	106	5.227	5.226 (0.539)	1233420	20.0000	20
Trichlorofluoromethane	101	5.318	5.317 (0.548)	3534595	20.0000	20
Pentane	43	5.446	5.446 (0.561)	1128325	20.0000	19
Ethyl Ether	59	5.911	5.917 (0.609)	746544	20.0000	20
	Dichlorodifluoromethane Freon-22 1,2-Dichlorotetrafluoroethane Chloromethane n-Butane Methanol Vinyl Chloride 1,3-Butadiene Bromomethane Chloroethane Isopentane Bromoethene Trichlorofluoromethane Pentane Ethyl Ether	QUANT SIG MASS MASS Dichlorodifluoromethane 85 Freon-22 51 1,2-Dichlorotetrafluoroethane 85 Chloromethane 50 n-Butane 43 Methanol 31 Vinyl Chloride 62 1,3-Butadiene 54 Bromomethane 94 Chloroethane 64 Isopentane 43 Bromoethene 106 Trichlorofluoromethane 101 Pentane 43 Ethyl Ether 59	QUANT SIGundsMASSRTIndsImage: Signal Signa	QUANT SIG unds MASS RT EXP RT REL RT Dichlorodifluoromethane 85 3.231 3.236 (0.333) Freon-22 51 3.269 3.274 (0.337) 1,2-Dichlorotetrafluoroethane 85 3.461 3.466 (0.371) n-Butane 50 3.595 3.600 (0.371) n-Butane 43 3.782 3.787 (0.390) Methanol 31 Compound Not Detectee Vinyl Chloride 62 3.825 (0.344) 1,3-Butadiene 54 3.900 3.900 (0.402) Bromomethane 64 4.825 4.831 (0.498) Isopentane 43 4.900 4.900 (0.505) Bromoethene 106 5.227 5.226 (0.539) Trichlorofluoromethane 43 5.317 (0.548) Pentane 43 5.446 5.446 (0.561)	QUANT SIG MASS RT EXP RT REL RT RESPONSE Dichlorodifluoromethane 85 3.231 3.236 (0.333) 2155198 Freon-22 51 3.269 3.274 (0.337) 919418 1,2-Dichlorotetrafluoroethane 85 3.461 3.466 (0.357) 2267660 Chloromethane 50 3.595 3.600 (0.371) 468695 n-Butane 43 3.782 3.787 (0.390) 775024 Methanol 31 Computed Not Detected. 50 3.825 (0.394) 693350 1,3-Butadiene 54 3.900 3.900 (0.402) 488541 Bromomethane 64 4.825 4.831 (0.498) 470004 Isopentane 43 4.900 4.0505 757057 57057 Bromoethene 106 5.227 5.226 (0.539) 1233420 Trichlorofluoromethane 101 5.318 5.317 (0.548) 3534595	QUANT SIG CAL-ANT unds MASS RT EXP RT REL RT RESPONSE (ppbv) Dichlorodifluoromethane 85 3.231 3.236 (0.333) 2155198 20.0000 Freon-22 51 3.269 3.274 (0.337) 919418 20.0000 1,2-Dichlorotetrafluoroethane 85 3.461 3.466 (0.357) 2267660 20.0000 n-Butane 50 3.595 3.600 (0.371) 468695 20.0000 n-Butane 43 3.782 3.787 (0.390) 775024 20.0000 Methanol 31 Computer Not Detected 20.0000 20.0000 20.0000 1,3-Butadiene 54 3.900 3.900 0.402) 488541 20.0000 1,3-Butadiene 64 4.825 4.831 0.498 47004 20.0000 1,3-Butadiene 64 4.825 4.831 0.498 47004 20.0000 1,3-Dutotethane 64 4.825 4.831<

SDG: NY134484

Page 70 of 113

Data File: /chem/F.i/Fsvr.p/fdgto15.b/fdg20v.d Report Date: 11-Nov-2009 18:57

					AMOUN	ITS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
		==	ISING INCOME			*====
16 Acrolein	56	6.280	6.286 (0.648)	379921	20.0000	20
17 Freon TF	101	6.313	6.312 (0.651)	2626375	20.0000	20
18 1,1-Dichloroethene	96	6.382	6.382 (0.658)	1236847	20.0000	20
19 Acetone	43	6.553	6.559 (0.676)	1242697	20.0000	18
20 Isopropyl Alcohol	45	6.757	6.757 (0.697)	904734	20.0000	18
21 Carbon Disulfide	76	6.789	6.794 (0.700)	3365563	20.0000	20
22 3-Chloropropene	41	7.067	7.067 (0.729)	964929	20.0000	20
23 Acetonitrile	41	7.158	7.158 (0.738)	551609	20.0000	19
24 Methylene Chloride	49	7.318	7.324 (0.755)	931329	20.0000	19
25 tert-Butyl Alcohol	59	7.436	7.441 (0.767)	1740611	20.0000	19
26 Methyl tert-Butyl Ether	73	7.661	7.666 (0.790)	3493174	20.0000	20
27 trans-1,2-Dichloroethene	61	7.714	7.714 (0.795)	1549091	20.0000	20
28 n-Hexane	57	8.030	8.030 (0.828)	1517852	20.0000	19
29 1,1-Dichloroethane	63	8.447	8.447 (0.871)	1913065	20.0000	20
30 Methyl Ethyl Ketone	72	9.340	9.346 (0.963)	552127	20.0000	19
31 cis-1,2-Dichloroethene	96	9.335	9.335 (0.962)	1383524	20.0000	20
* 32 Bromochloromethane	128	9.699	9.699 (1.000)	876651	10.0000	
33 Tetrahydrofuran	42	9.715	9.715 (0.876)	847364	20.0000	20
34 Chloroform	83	9.774	9.774 (1.008)	2737194	20.0000	20
35 1,1,1-Trichloroethane	97	10.020	10.025 (0.904)	3154568	20.0000	20
36 Cyclohexane	84	10.025	10.025 (0.904)	1758076	20.0000	20
37 Carbon Tetrachloride	117	10.218	10.218 (0.921)	3750360	20.0000	21
38 2,2,4-Trimethylpentane	57	10.501	10.501 (0.947)	4718331	20.0000	20
39 Benzene	78	10.550	10.549 (0.951)	3682080	20.0000	20
M 40 1,2-Dichloroethene (total)	61			2932615	40.0000	40
41 1,2-Dichloroethane	62	10.657	10.656 (0.961)	1656028	20.0000	20
42 n-Heptane	43	10.747	10.747 (0.969)	1438153	20.0000	19
* 43 1,4-Difluorobenzene	114	11.090	11.090 (1.000)	4175651	10.0000	
44 1-Butanol	56	11.282	11.282 (1.017)	512982	20.0000	19
45 Trichloroethene	95	11.448	11.448 (1.032)	1935623	20.0000	20
46 Methyl Methacrylate	69	11.871	11.871 (1.070)	1310040	20.0000	20
47 1,2-Dichloropropane	63	11.828	11.828 (1.067)	1177164	20,0000	20
48 1,4-Dioxane	88	11.962	11.962 (1.079)	560209	20.0000	19
49 Dibromomethane	174	12.010	12.010 (1.083)	2331976	20.0000	20
50 Bromodichloromethane	83	12.181	12.181 (1.098)	3044940	20.0000	21
51 cis-1,3-Dichloropropene	75	12.812	12.812 (1.155)	2242989	20.0000	21
52 Methyl Isobutyl Ketone	43	12.973	12.973 (1.170)	1948335	20.0000	20
53 n-Octane	43	13.214	13.214 (1.192)	1910930	20.0000	19
54 Toluene	92	13.240	13.240 (0.872)	2982004	20.0000	20
55 trans-1,3-Dichloropropene	75	13.604	13.604 (1.227)	2427178	20.0000	21
56 1,1,2-Trichloroethane	83	13.877	13.877 (0.914)	1409470	20.0000	20
57 Tetrachloroethene	166	14.000	14.000 (0.922)	3507791	20.0000	21
58 Methyl Butyl Ketone	43	14.145	14.150 (0.931)	1915223	20.0000	20
59 Dibromochloromethane	129	14.428	14.428 (0.950)	3885431	20.0000	21
60 1.2-Dibromoethane	107	14.631	14.631 (0.963)	3105321	20.0000	20
* 61 Chlorobenzene-d5	117	15.188	15.188 (1.000)	3927380	10.0000	1
84 Nonane	57	15.311	15.311 (1.008)	2153337	20.0000	19

Data File: /chem/F.i/Fsvr.p/fdgto15.b/fdg20v.d Report Date: 11-Nov-2009 18:57

							AMOUN	TS
			QUANT SIG				CAL-AMT	ON-COL
Со	mpoi	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
= =		TELISTANDE CENTER		==				
	62	Chlorobenzene	112	15.225	15.225 (1.002)	4771050	20.0000	20
	63	Ethylbenzene	91	15.295	15.295 (1.007)	6416437	20.0000	19
	64	Xylene (m,p)	106	15.444	15.444 (1.017)	5575776	40.0000	39
	65	Xylene (o)	106	15.953	15.953 (1.050)	2849453	20.0000	20
	66	Styrene	104	15.979	15.979 (1.052)	4497636	20.0000	20
	67	Bromoform	173	16.268	16.268 (1.071)	4295119	20.0000	22
	68	Cumene	105	16.365	16.365 (1.077)	8274373	20.0000	20
	69	1,1,2,2-Tetrachloroethane	83	16.777	16.777 (1.105)	3594220	20.0000	20
	71	n-Decane	57	16.910	16.910 (1.113)	2900444	20.0000	20
	72	n-Propylbenzene	91	16.841	16.846 (1.109)	8808422	20.0000	20
	73	1,2,3-Trichloropropane	75	16.862	16.862 (1.110)	2698012	20.0000	20
	74	4-Ethyltoluene	105	16.969	16.969 (1.117)	8493034	20.0000	20
М	70	Xylene (total)	106			8425229	20.0000	59
	75	1,3,5-Trimethylbenzene	105	17.033	17.033 (1.122)	7048469	20.0000	20
	76	2-Chlorotoluene	91	17.007	17.007 (1.120)	6555391	20.0000	20
	77	a-Methylstyrene	118	17.306	17.306 (1.139)	4087242	20.0000	21
	78	Tert-Butylbenzene	119	17.408	17.408 (1.146)	7376639	20.0000	20
	79	1,2,4-Trimethylbenzene	105	17.477	17.477 (1.151)	7221986	20.0000	20
	80	Sec-Butylbenzene	105	17.665	17.665 (1.163)	10026128	20.0000	20
	81	4-Isopropyltoluene	119	17.820	17.820 (1.173)	9442332	20.0000	21
	82	1,3-Dichlorobenzene	146	17.889	17.889 (1.178)	5895578	20.0000	20
	83	1,4-Dichlorobenzene	146	18.002	18.002 (1.185)	5928026	20.0000	20
	86	Benzyl Chloride	91	18.162	18.162 (1.196)	6445166	20.0000	22
	85	n-Undecane	57	18.285	18.285 (1.204)	3304012	20.0000	19
	87	n-Butylbenzene	91	18.323	18.328 (1.206)	7256351	20.0000	20
	88	1,2-Dichlorobenzene	146	18.488	18.488 (1.217)	5619055	20.0000	20
	89	n-Dodecane	57	19.751	19.751 (1.300)	3370824	20.0000	20
	90	1,2,4-Trichlorobenzene	180	20.858	20.858 (1.373)	5253672	20.0000	23
	91	Hexachlorobutadiene	225	21.024	21.024 (1.384)	4155514	20.0000	21
	92	Naphthalene	128	21.351	21.351 (1.406)	10316870	20.0000	23
	93	1,2,3-Trichlorobenzene	180	21.821	21.821 (1.437)	4930450	20.0000	22

Page 3

Page 72 of 113

Page 73 of 113

Data File: /chem/F.i/Fsvr.p/fdgto15.b/fdg40v.d Report Date: 11-Nov-2009 18:57

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/F.i/Fsvr.p/fdgto15.b/fdg40v.d Lab Smp Id: ASTD040 Client Inj Date : 10-NOV-2009 03:01 Operator : wrd Inst II Smp Info : Client Smp ID: ASTD040 Inst ID: F.i Misc Info : ASTD040;110909FA;1;200 Comment Method : /chem/F.i/Fsvr.p/fdgtol5.b/stol5.m Meth Date : 11-Nov-2009 18:57 sv Quant Quant Type: ISTD Cal Date : 10-NOV-2009 03:01 Cal File: fdg40v.d Als bottle: 8 Calibration Sample, Level: 8 Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: all.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

						ANOUN	13
		QUANT SIG				CAL-AMT	ON-COL
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
			EZ			======	
l	Dichlorodifluoromethane	85	3.231	3.236 (0.333)	4430950	40.0000	39
2	Freon-22	51	3.269	3.274 (0.337)	1871464	40.0000	39
3	1,2-Dichlorotetrafluoroethane	85	3.461	3.466 (0.357)	4508837	40.0000	38
4	Chloromethane	50	3.600	3.600 (0.371)	967199	40.0000	39
5	n-Butane	43	3.782	3.787 (0.390)	1557370	40.0000	37
8	Methanol	31	Comp	ound Not Detect	ed.		
6	Vinyl Chloride	62	3.825	3.825 (0.394)	1412607	40.0000	39
7	1,3-Butadiene	54	3.900	3.900 (0.402)	987385	40.0000	38
9	Bromomethane	94	4.601	4.606 (0.474)	2203592	40.0000	37
10	Chloroethane	64	4.831	4.831 (0.498)	930940	40.0000	38
11	Isopentane	43	4.906	4.900 (0.505)	1483677	40.0000	36
12	Bromoethene	106	5.227	5.226 (0.539)	2462247	40.0000	38
13	Trichlorofluoromethane	101	5.318	5.317 (0.548)	6952499	40.0000	38
14	Pentane	43	5.451	5.446 (0.562)	2188012	40.0000	36
15	Ethyl Ether	59	5.917	5.917 (0.610)	1497298	40.0000	40

Data File: /chem/F.i/Fsvr.p/fdgto15.b/fdg40v.d Report Date: 11-Nov-2009 18:57

					AMOUNTS		
		QUANT SIG				CAL-AMT	ON-COL
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
	~~~~	5067	==	STECES STREET	=======		*******
16	Acrolein	56	6.286	6.286 (0.648)	711739	40.0000	37
17	Freon TF	· 101	6.313	6.312 (0.650)	5242806	40.0000	39
18	1,1-Dichloroethene	96	6.382	6.382 (0.658)	2503601	40.0000	39
19	Acetone	43	6.559	6.559 (0.676)	2491558	40.0000	36
20	Isopropyl Alcohol	45	6.757	6.757 (0.696)	1773515	40.0000	35
21	Carbon Disulfide	76	6.794	6.794 (0.700)	6761930	40.0000	39
22	3-Chloropropene	41	7.067	7.067 (0.728)	1940313	40.0000	39
23	Acetonitrile	41 -	7.163	7.158 (0.738)	1102452	40.0000	38
24	Methylene Chloride	49	7.324	7.324 (0.755)	1862990	40.0000	37
25	tert-Butyl Alcohol	59	7.441	7.441 (0.767)	3469536	40.0000	36
26	Methyl tert-Butyl Ether	73	7.661	7.666 (0.789)	7040286	40.0000	39
27	trans-1,2-Dichloroethene	61	7.714	7.714 (0.795)	3084374	40.0000	39
28	n-Hexane	57	8.030	8.030 (0.827)	3000758	40.0000	38
29	1,1-Dichloroethane	63	8.447	8.447 (0.870)	3778461	40.0000	38
30	Methyl Ethyl Ketone	72	9.346	9.346 (0.963)	1044334	40.0000	35
31	cis-1,2-Dichloroethene	96	9.335	9.335 (0.962)	2679006	40.0000	37
* 32	Bromochloromethane	128	9.704	9.699 (1.000)	899323	10.0000	
33	Tetrahydrofuran	42	9.715	9.715 (0.876)	1665556	40.0000	38
34	Chloroform	83	9.774	9.774 (1.007)	5482722	40.0000	39
35	1,1,1-Trichloroethane	97	10.025	10.025 (0.904)	6181717	40.0000	39
36	Cyclohexane	84	10.025	10.025 (0.904)	3394679	40.0000	38
37	Carbon Tetrachloride	117	10.223	10.218 (0.921)	7563426	40.0000	41 (A)
38	2,2,4-Trimethylpentane	57	10.502	10.501 (0.946)	9130731	40.0000	38
39	Benzene	78	10.555	10.549 (0.951)	7273339	40.0000	38
M 40	1,2-Dichloroethene (total)	61			5763380	80.0000	76
41	1,2-Dichloroethane	62	10.657	10.656 (0.960)	3356205	40.0000	40
42	n-Heptane	43	10.748	10.747 (0.969)	2755163	40.0000	36
* 43	1,4-Difluorobenzene	114	11.095	11.090 (1.000)	4270823	10.0000	
44	1-Butanol	56	11.283	11.282 (1.017)	1056799	40.0000	38
45	Trichloroethene	95	11.454	11.448 (1.032)	3809282	40.0000	39
46	Methyl Methacrylate	69	11.871	11.871 (1.070)	2582659	40.0000	39
47	1,2-Dichloropropane	, 63	11.834	11.828 (1.067)	2296803	40.0000	38
48	1,4-Dioxane	88	11.962	11.962 (1.078)	1107374	40.0000	36
49	Dibromomethane	174	12.015	12.010 (1.083)	4602297	40.0000	40
50	Bromodichloromethane	83	12.187	12.181 (1.098)	6026141	40.0000	40
51	cis-1,3-Dichloropropene	75	12.813	12.812 (1.155)	4500269	40.0000	40 (A)
52	Methyl Isobutyl Ketone	43	12.973	12.973 (1.169)	3795004	40.0000	38
53	n-Octane	43	13.214	13.214 (1.191)	3476775	40.0000	34
54	Toluene	92	13.241	13.240 (0.872)	5688232	40.0000	37
55	trans-1,3-Dichloropropene	75	13.610	13.604 (1.227)	4864997	40.0000	41 (A)
56	1,1,2-Trichloroethane	83	13.877	13.877 (0.914)	2752439	40.0000	39
57	Tetrachloroethene	166	14.000	14.000 (0.922)	6737953	40.0000	39
58	Methyl Butyl Ketone	43	14.150	14.150 (0.932)	3715517	40.0000	38
59	Dibromochloromethane	129	14.428	14.428 (0.950)	7619163	40.0000	41 (A)
60	1,2-Dibromoethane	107	14.631	14.631 (0.963)	6033176	40.0000	39
* 61	Chlorobenzene-d5	117	15.188	15.188 (1.000)	4001888	10.0000	
84	Nonane	57	15.316	15.311 (1.008)	3827755	40.0000	33

#### Data File: /chem/F.i/Fsvr.p/fdgto15.b/fdg40v.d Report Date: 11-Nov-2009 18:57

							TS	
		QUANT SIG					CAL-AMT	ON-COL
Compounds		MASS	RT	EXP RT	REL RT	RESPONSE	( ppbv)	( ppbv)
		TETT	==				======	******
62 Chlorobenzene		112	15.231	15.225	(1.003)	9333372	40.0000	39
63 Ethylbenzene		91	15.295	15.295	(1.007)	11761639	40.0000	35
64 Xylene (m,p)		106	15.445	15.444	(1,017)	10179418	80.0000	70
65 Xylene (o)		106	15.958	15.953	(1.051)	5389203	40.0000	37
66 Styrene		104	15.985	15.979	(1.052)	8526996	40.0000	38
67 Bromoform		173	16.268	16.268	(1.071)	7976336	40.0000	40
68 Cumene		105	16.365	16.365	(1.077)	15739288	40.0000	38
69 1,1,2,2-Tetrac	hloroethane	83	16.777	16.777	(1.105)	6730022	40.0000	37
71 n-Decane		57	16.910	16.910	(1.113)	5179079	40.0000	34
72 n-Propylbenzer	ie	91	16.846	16.846	(1.109)	15808790	40.0000	34
73 1,2,3-Trichlor	opropane	75	16.868	16.862	(1.111)	4936433	40.0000	35
74 4-Ethyltoluene	2	105	16.969	16.969	(1.117)	15849941	40.0000	37
M 70 Xylene (total)		106				15568621	40.0000	110
75 1,3,5-Trimethy	lbenzene	105	17.039	17.033	(1.122)	13002567	40.0000	36
76 2-Chlorotoluer	ne	91	17.007	17.007	(1.120)	12240323	40.0000	37
77 a-Methylstyrer	ne	118	17.312	17.306	(1.140)	7847647	40.0000	40
78 Tert-Butylbenz	ene	119	17.413	17.408	(1.147)	14020552	40.0000	38
79 1,2,4-Trimethy	lbenzene	105	17.483	17.477	(1.151)	13676457	40.0000	37
80 Sec-Butylbenze	ene	105	17.665	17.665	(1.163)	18538612	40.0000	36
81 4-Isopropylto)	uene	119	17.825	17.820	(1.174)	17474139	40.0000	37
82 1,3-Dichlorobe	enzene	146	17.895	17.889	(1.178)	11112723	40.0000	38
83 1,4-Dichlorobe	enzene	146	18.007	18.002	(1.186)	11163638	40.0000	38
86 Benzyl Chlorid	le	91	18.162	18.162	(1.196)	12418746	40.0000	42 (A)
85 n-Undecane		57	18.291	18.285	(1.204)	5723206	40.0000	33
87 n-Butylbenzene	2	91	18.328	18.328	(1.207)	13321745	40.0000	36
88 1,2-Dichlorobe	enzene	146	18.494	18.488	(1.218)	10688094	40.0000	38
89 n-Dodecane		57	19.756	19.751	(1.301)	5663662	40.0000	32
90 1,2,4-Trichlor	obenzene	180	20.859	20.858	(1.373)	9613333	40.0000	41 (A)
91 Hexachlorobuta	diene	225	21.024	21.024	(1.384)	7106768	40.0000	36
92 Naphthalene		128	21.351	21.351	(1.406)	18941071	40.0000	41(A)
93 1,2,3-Trichlo	robenzene	180	21.827	21.821	(1.437)	8909284	40.0000	40

#### QC Flag Legend

A - Target compound detected but, quantitated amount exceeded maximum amount.



Page 77 of 113

Data File: /chem/F.i/Fsvr.p/fdgto15.b/fdg05v2.d Report Date: 11-Nov-2009 18:57

#### TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/F.i/Fsvr.p/fdgto15.b/fdg05v2.d Lab Smp Id: ASTD005 Client Smp ID: ASTD005 Inj Date : 10-NOV-2009 08:32 Operator : wrd Inst ID: F.i Smp Info : Misc Info : ASTD005;110909FA;1;200 Comment Method : /chem/F.i/Fsvr.p/fdgto15.b/sto15.m Meth Date : 11-Nov-2009 18:57 sv Quant Quant Type: ISTD Cal File: fdg05v2.d Cal Date : 10-NOV-2009 08:32 Als bottle: 4 Calibration Sample, Level: 4 Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: all.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

AMOINTS

					A1001	10
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	( ppbv)	(ppbv)
	====	==		=======		
1 Dichlorodifluoromethane	85	3.231	3.236 (0.333)	612982	5.00000	5.6
2 Freon-22	51	3.269	3.274 (0.337)	252723	5.00000	5.4
3 1,2-Dichlorotetrafluoroethane	85	3.461	3.466 (0.357)	644520	5.00000	5.6
4 Chloromethane	50	3.600	3.600 (0.371)	128953	5.00000	5.3
5 n-Butane	43	3.782	3.787 (0.390)	224393	5.00000	5.5
8 Methanol	31	Comp	ound Not Detecte	d.		
6 Vinyl Chloride	62	3.825	3.825 (0.394)	198338	5.00000	5.6
7 1,3-Butadiene	54	3.894	3.900 (0.402)	137277	5.00000	5.5
9 Bromomethane	94	4.601	4.606 (0.474)	301293	5.00000	5.2
10 Chloroethane	64	4.825	4.831 (0.498)	129077	5.00000	5.4
11 Isopentane	43	4.895	4.900 (0.505)	217289	5.00000	5.4
12 Bromoethene	106	5.221	5.226 (0.538)	335527	5.00000	5.4
13 Trichlorofluoromethane	101	5.317	5.317 (0.548)	987308	5.00000	5.6
14 Pentane	43	5.446	5.446 (0.561)	321135	5.00000	5.5
15 Ethyl Ether	59	5.917	5.917 (0.610)	198930	5.00000	5.4

## Data File: /chem/F.i/Fsvr.p/fdgto15.b/fdg05v2.d Report Date: 11-Nov-2009 18:57

					AMOUNTS	
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	( ppbv)	(ppbv)
		= =				
16 Acrolein	56	6.286	6.286 (0.648)	103513	5.00000	5.5
17 Freon TF	101	6.307	6.312 (0.650)	690154	5.00000	5.3
18 1,1-Dichloroethene	96	6.377	6.382 (0.657)	321294	5.00000	5.1
19 Acetone	43	6.553	6.559 (0.676)	412895	5.00000	6.1
20 Isopropyl Alcohol	45	6.762	6.757 (0.697)	272541	5.00000	5.5
21 Carbon Disulfide	76	6.789	6.794 (0.700)	890281	5.00000	53
22 3-Chloropropene	41	7.067	7.067 (0.729)	261979	5.00000	5 3
23 Acetonitrile	41	7.158	7.158 (0.738)	149247	5.00000	5.2
24 Methylene Chloride	49	7.318	7.324 (0.755)	257718	5.00000	5.2
25 tert-Butyl Alcohol	59	7.441	7.441 (0.767)	498629	5.00000	5.4
26 Methyl tert-Butyl Ether	73	7 661	7.666 (0.790)	914912	5.00000	5.4
27 trans-1 2-Dichloroethene	61	7 709	7.000 (0.795)	415209	5.00000	5.2
29 p_Wayapa	51	P. 004	7.714 (0.795) 8.020 (0.027)	415208	5.00000	5.4
29 1 1-Dichloroethane	57	0.024	8.030 (0.827)	405763	5.00000	5.2
29 1,1-Dichioroethane	70	8.44/	8.447 (0.871)	509553	5.00000	5.3
30 Methyl Ethyl Recone	12	9.340	9.346 (0.963)	149762	5.00000	5.1(Q)
31 CIS-1,2-Dichloroethene	96	9.330	9.335 (0.962)	365459	5.00000	5.2
* 32 Bromochloromethane	128	9.699	9.699 (1.000)	877753	10.0000	
33 Tetrahydrofuran	42	9.715	9.715 (0.876)	230533	5.00000	5.3
34 Chloroform	83	9.768	9.774 (1.007)	717782	5.00000	5.3
35 1,1,1-Trichloroethane	97	10.020	10.025 (0.904)	838599	5.00000	5.3
36 Cyclohexane	84	10.020	10.025 (0.904)	460615	5.00000	5.2
37 Carbon Tetrachloride	117	10.218	10.218 (0.921)	958057	5.00000	5.2
38 2,2,4-Trimethylpentane	57	10.496	10.501 (0.946)	1259503	5.00000	5.2
39 Benzene	78	10.544	10.549 (0.951)	978354	5.00000	5.1
M 40 1,2-Dichloroethene (total)	61			780667	10.0000	11
41 1,2-Dichloroethane	62	10.651	10.656 (0.960)	434695	5.00000	5.2
42 n-Heptane	43	10.742	10.747 (0.969)	397836	5.00000	5.3
* 43 1,4-Difluorobenzene	114	11.090	11.090 (1.000)	4243528	10.0000	
44 l-Butanol	56	11.282	11.282 (1.017)	139830	5.00000	5.1
45 Trichloroethene	95	11.443	11.448 (1.032)	503942	5.00000	5.1
46 Methyl Methacrylate	69	11.866	11.871 (1.070)	332099	5.00000	5.1(Q)
47 1,2-Dichloropropane	63	11.828	11.828 (1.067)	311240	5.00000	5.2
48 1,4-Dioxane	88	11.962	11.962 (1.079)	157895	5.00000	5.2
49 Dibromomethane	174	12.010	12.010 (1.083)	585366	5.00000	5.1
50 Bromodichloromethane	83	12.181	12.181 (1.098)	791400	5.00000	5.3
51 cis-1,3-Dichloropropene	75	12.807	12.812 (1.155)	571313	5,00000	5.1
52 Methyl Isobutyl Ketone	43	12.973	12.973 (1.170)	523415	5.00000	5.2
53 n-Octane	43	13.214	13.214 (1.192)	547100	5.00000	5.3
54 Toluene	92	13.235	13.240 (0.871)	805909	5,00000	5.2
55 trans-1,3-Dichloropropene	75	13.599	13.604 (1.226)	617926	5.00000	5.2
56 1,1,2-Trichloroethane	83	13.877	13.877 (0.914)	369420	5.00000	5.2
57 Tetrachloroethene	166	13.995	14.000 (0.921)	897377	5,00000	5.2
58 Methyl Butyl Ketone	43	14.145	14.150 (0.931)	515003	5,00000	5.3
59 Dibromochloromethane	129	14.423	14.428 (0.950)	960458	5.00000	5.5
60 1,2-Dibromoethane	107	14.626	14.631 (0.963)	807601	5.00000	5.2
* 61 Chlorobenzene-d5	117	15 189	15.188 (1 000)	3986901	10 0000	5.2
84 Nonane	57	15 311	15 311 (1 009)	621389	5 00000	5.2
	57		~~····	051303	5.00000	5.5

## Data File: /chem/F.i/Fsvr.p/fdgto15.b/fdg05v2.d Report Date: 11-Nov-2009 18:57

							AMOUN	TS
			QUANT SIG				CAL-AMT	ON-COL
Co	mpo	unds	MASS	RT	EXP RT REL RT	RESPONSE	( ppbv)	( ppbv)
= 22	====			==		3322223		
	62	Chlorobenzene	112	15.225	15.225 (1.002)	1229540	5.00000	5.2
	63	Ethylbenzene	91	15.295	15.295 (1.007)	1788447	5.00000	5.4
	64	Xylene (m,p)	106	15.439	15.444 (1.017)	1529630	10.0000	11
	65	Xylene (o)	106	15.953	15.953 (1.050)	760373	5.00000	5.2
	66	Styrene	104	15.979	15.979 (1.052)	1179862	5.00000	5.3
	67	Bromoform	173	16.268	16.268 (1.071)	1098636	5.00000	5.5
	68	Cumene	105	16.365	16.365 (1.077)	2223381	5.00000	5.3
	69	1,1,2,2-Tetrachloroethane	83	16.777	16.777 (1.105)	988920	5.00000	5.4
	71	n-Decane	57	16.905	16.910 (1.113)	843024	5.00000	5.6
	72	n-Propylbenzene	91	16.841	16.846 (1.109)	2501140	5.00000	5.5
	73	1,2,3-Trichloropropane	75	16.862	16.862 (1.110)	761262	5.00000	5.5
	74	4-Ethyltoluene	105	16.969	16.969 (1.117)	2330035	5.00000	5.4
M	70	Xylene (total)	106			2290003	5.00000	16
	75	1,3,5-Trimethylbenzene	105	17.033	17.033 (1.122)	1934331	5.00000	5.4
	76	2-Chlorotoluene	91	17.007	17.007 (1.120)	1822991	5.00000	5.5
	77	a-Methylstyrene	118	17.306	17.306 (1.139)	1054633	5.00000	5.4
	78	Tert-Butylbenzene	119	17.408	17.408 (1.146)	1982654	5.00000	5.4
	79	1,2,4-Trimethylbenzene	105	17.477	17.477 (1.151)	1982856	5.00000	5.4
	80	Sec-Butylbenzene	105	17.665	17.665 (1.163)	2776457	5.00000	5.5
	81	4-Isopropyltoluene	119	17.820	17.820 (1.173)	2555322	5.00000	5.5
	82	1,3-Dichlorobenzene	146	17.889	17.889 (1.178)	1587142	5.00000	5.4
	83	1,4-Dichlorobenzene	146	18.002	18.002 (1.185)	1573975	5.00000	5.3
	86	Benzyl Chloride	91	18.162	18.162 (1.196)	1655039	5.00000	5.6
	85	n-Undecane	57	18.285	18.285 (1.204)	1012847	5.00000	5.9
	87	n-Butylbenzene	91	18.323	18.328 (1.206)	2055988	5.00000	5.6
	88	1,2-Dichlorobenzene	146	18.488	18.488 (1.217)	1504726	5.00000	5.4
	89	n-Dodecane	57	19.751	19.751 (1.300)	1102014	5.00000	6.3
	90	1,2,4-Trichlorobenzene	180	20.853	20.858 (1.373)	1381116	5.00000	6.0
	91	Hexachlorobutadiene	225	21.024	21.024 (1.384)	1220719	5.00000	6.1
	92	Naphthalene	128	21.345	21.351 (1.405)	2819893	5.00000	6.1
	93	1,2,3-Trichlorobenzene	180	21.821	21.821 (1.437)	1376473	5.00000	6.1

QC Flag Legend

Q - Qualifier signal failed the ratio test.



Page 81 of 113
#### TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/F.i/Fsvr.p/fdgto15.b/fdg10q2.d Lab Smp Id: FA110909LCS Client Smp ID: FA110909LCS Inj Date : 10-NOV-2009 09:22 Operator : wrd Inst ID: F.i Smp Info : Misc Info : FA110909LCS;110909FA;1;200 Comment Method : /chem/F.i/Fsvr.p/fdgto15.b/sto15.m Meth Date : 11-Nov-2009 18:57 sv Quant Cal Date : 10-NOV-2009 08:32 Cal Fi Quant Type: ISTD Cal File: fdg05v2.d Als bottle: 9 QC Sample: LCS Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: all.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

CONCENTRATIONS

						concentrate	TTTTORD.
		QUANT SIG				ON-COLUMN	FINAL
Compounds	3	MASS	RT	EXP RT REL	RT RESPONSE	(ppbv)	( ppbv)
			= =				
1 Dic	chlorodifluoromethane	85	3.237	3.236 (0.3	34) 1361330	11.8377	12
2 Fre	eon-22	51	3.274	3.274 (0.3	38) 542974	11.1272	11
3 1,2	2-Dichlorotetrafluoroethane	85	3.467	3,466 (0.3	57) 1370488	11.3972	11
4 Chl	oromethane	50	3.600	3.600 (0.3	71) 278661	10.9566	11
5 n-B	Butane	43	3.788	3.787 (0.3	90) 459369	10.7336	11
8 Met	hanol	31	Comp	ound Not Det	ected.		
6 Vin	nyl Chloride	62	3.830	3.825 (0.3	95) 424845	11.5077	12
7 1,3	-Butadiene	54	3.900	3.900 (0.4	02) 312857	11.9768	12
9 Bro	momethane	94	4.606	4.606 (0.4	75) 648934	10.8323	11
10 Chl	oroethane	64	4.831	4.831 (0.4	98) 279780	11.1333	11
11 Isc	opentane	43	4.911	4.900 (0.5	460635	10.9059	11
12 Bro	moethene	106	5.227	5.226 (0.5	39) 762498	11.6948	12
13 Tri	chlorofluoromethane	101	5.318	5.317 (0.5	48) 2157985	11.6545	12
14 Pen	itane	43	5.451	5,446 (0.5	62) 684513	11.1598	11
15 Eth	nyl Ether	59	5.917	5.917 (0.6	10) 412994	10.7242	11

						CONCENTR	ATIONS
		QUANT SIG				ON-COLUMN	FINAL
Compounds		MASS	RT	EXP RT REL R	T RESPONSE	(ppbv)	(ppbv)
	==============		==		<b>=</b> ========		EEEEEE
16 Acrol	ein	56	6.286	6.286 (0.64	8) 180744	9.20904	9.2
17 Freon	TF	101	6.313	6.312 (0.65	1) 1658733	12.2577	12
18 1,1-D	ichloroethene	96	6.382	6.382 (0.65	8) 794256	12.1011	12
19 Aceto	me	43	6.559	6.559 (0.67	6) 788505	11.1815	11
20 Isopr	opyl Alcohol	45	6.757	6.757 (0.69	7) 631903	12.3346	12
21 Carbo	n Disulfide	76	6.789	6.794 (0.70	0) 1980842	11.2695	11
22 3-Chl	огоргореле	41	7.067	7.067 (0.72	9) 566905	11.0523	11
23 Aceto	nítrile	41	7.158	7.158 (0.73	8) 337027	11.3435	11
24 Methy	lene Chloride	49	7.318	7.324 (0.75	5) 585393	11.4054	11
25 tert-	Butyl Alcohol	59	7.441	7.441 (0.76	7) 1158352	11.9493	12
26 Methy	l tert-Butyl Ether	73	7.661	7.666 (0.79	0) 2038943	11.1362	11
27 trans	-1,2-Dichloroethene	61	7.714	7.714 (0.79	5) 907653	11.2205	11
28 n-Hex	ane	57	8.030	8.030 (0.82	8) 883389	10.8606	11
29 1,1-D	ichloroethane	63	8.447	8.447 (0.87	1) 1120244	11.2025	11
30 Methy	l Ethyl Ketone	72	9.341	9.346 (0.96	3) 333453	10.8404	11
31 cis-1	,2-Dichloroethene	96	9.335	9.335 (0.96	2) 827246	11.3184	11
* 32 Bromo	chloromethane	128	9.699	9.699 (1.00	0) 915677	10.0000	
33 Tetra	hydrofuran	42	9.715	9.715 (0.87	6) 501401	11.0007	11
34 Chlor	oform	83	9.769	9.774 (1.00	7) 1586677	11.1478	11
35 1,1,1	-Trichloroethane	97	10.020	10.025 (0.90	4) 1847823	11.1884	11
36 Cyclo	hexane	84	10.025	10.025 (0.90	4) 1025108	11.0570	11
37 Carbo	n Tetrachloride	117	10.218	10.218 (0.92	1) 2125510	11.0659	11
38 2,2,4	-Trimethylpentane	57	10.496	10.501 (0.94	6) 2758879	11.0271	11
39 Benze	ne	78	10.550	10.549 (0.95	1) 2134263	10.7521	11
M 40 1,2-D	ichloroethene (total)	61			. 1734899	22.5389	23
41 1,2-D	ichloroethane	62	10.657	10.656 (0.96	1) 952410	10.9675	11
42 n-Hep	tane	43	10.748	10.747 (0.96	9) 846236	10.7479	11
* 43 1.4-D	ifluorobenzene	114	11.090	11.090 (1.00	0) 4412983	10.0000	
44 1-But	anol	56	11.283	11.282 (1.01	7) 313059	10.9767	11
45 Trich	loroethene	95	11.448	11.448 (1.03	2) 1099322	10.7954	11
46 Methy	1 Methacrylate	69 69	11.871	11.871 (1.07	0) 736195	10 8287	11
47 1.2-D	ichloropropane	63	11.828	11.828 (1.06	7) 661467	10.6317	11
48 1.4-D	vioxane	88	11.962	11.962 (1.07	9) 365808	11.6389	12
49 Dibro	momethane	174	12.010	12.010 (1.08	3) 1316244	10.9376	11
50 Bromo	dichloromethane	83	12.181	12.181 (1.09	8) 1790932	11.4936	11
51 cis-1	.3-Dichloropropene	75	12.807	12.812 (1.15	5) 1225176	10.6039	
52 Methv	l Isobutyl Ketone	43	12,973	12.973 (1.17	0) 1145954	10.9832	11
53 n-Oct	ane	43	13.214	13.214 (1.19	2) 1144937	10.7180	11
54 Tolue	ne	92	13,235	13.240 (0.87	1) 1718967	10.6871	11
55 trans	-1.3-Dichloropropene	75	13.604	13.604 (1.22	7) 1325053	10.6816	11
56 1.1.2	-Trichloroethane	83	13.877	13.877 (0.91	4) 767594	10,3316	10
57 Tetra	chloroethene	166	14.000	14.000 (0.92	2) 1949477	10.7533	10
58 Methv	'l Butvl Ketone	43	14.145	14.150 (0.93	1) 1110347	10.9508	11
59 Dibro	mochloromethane	129	14 423	14.428 (0.95	0) 2254020	11.6789	12
60 1.2-0	ibromoethane	107	14.626	14.631 (0.96	3) 1725398	10.7210	11
* 61 Chlor	obenzene-d5	117	15.188	15.188 (1 00	0) 4161651	10.0000	
84 Nonan	e	57	15.311	15.311 (1.00	8) 1307984	10.7706	11

						CONCENTRA	ATIONS
		QUANT SIG				ON-COLUMN	FINAL
Compo	ounds	MASS	RT	EXP RT REL RT	RESPONSE	( ppbv)	( ppbv)
****					=======	=======	*******
62	2 Chlorobenzene	112	15.225	15.225 (1.002)	2637781	10.6109	11
62	3 Ethylbenzene	91	15.295	15.295 (1.007)	3791761	10.8737	11
64	4 Xylene (m,p)	106	15.445	15.444 (1.017)	3232241	21.3715	21
65	5 Xylene (o)	106	15.953	15.953 (1.050)	1608774	10.5784	11
66	5 Styrene	104	15.980	15.979 (1.052)	2546836	10.8639	11
67	7 Bromoform	173	16.268	16.268 (1.071)	2544220	12.1258	12
68	8 Cumene	105	16.365	16.365 (1.077)	4813755	11.0659	11
69	9 1,1,2,2-Tetrachloroethane	83	16.777	16.777 (1.105)	2059188	10.7709	11
7	l n-Decane	57	16.905	16.910 (1.113)	1746528	11.1451	11
72	2 n-Propylbenzene	91	16.841	16.846 (1.109)	5328876	11.1632	11
73	3 1,2,3-Trichloropropane	75	16.862	16.862 (1.110)	1630008	11.1989	11
74	4 4-Ethyltoluene	105	16.969	16.969 (1.117)	5043971	11.2268	11
M 70	0 Xylene (total)	106			4841015	31.8318	32
75	5 1,3,5-Trimethylbenzene	105	17.033	17.033 (1.122)	4058834	10.9375	11
76	5 2-Chlorotoluene	91	17.007	17.007 (1.120)	3945042	11.3200	11
71	7 a-Methylstyrene	118	17.306	17.306 (1.139)	2308019	11.2280	11
78	B Tert-Butylbenzene	119	17.408	17.408 (1.146)	4310248	11.1826	11
79	9 1,2,4-Trimethylbenzene	105	17.477	17.477 (1.151)	4064289	10.6516	11
80	0 Sec-Butylbenzene	105	17.665	17.665 (1.163)	5901641	11,1441	11
8	l 4-Isopropyltoluene	119	17.820	17.820 (1.173)	5534455	11.3409	11
82	2 1,3-Dichlorobenzene	146	17.889	17.889 (1.178)	3290760	10.7164	11
83	3 1,4-Dichlorobenzene	146	18.002	18.002 (1.185)	3306305	10.7389	11
86	6 Benzyl Chloride	91	18.162	18.162 (1.196)	3351233	10.9326	11
85	5 n-Undecane	57	18.285	18.285 (1.204)	2031905	11,2719	11
81	7 n-Butylbenzene	91	18.323	18.328 (1.206)	4351777	11.4132	11
88	8 1,2-Dichlorobenzene	146	18.489	18.488 (1.217)	3084999	10.5374	11
89	9 n-Dodecane	57	19.751	19.751 (1.300)	2063214	11.3624	11
90	0 1,2,4-Trichlorobenzene	180	20.853	20.858 (1.373)	2884618	11.9530	12
93	l Hexachlorobutadiene	225	21.024	21.024 (1.384)	2459355	11.8445	12
92	2 Naphthalene	128	21.345	21.351 (1.405)	6132902	12.7724	13
93	3 1,2,3-Trichlorobenzene	180	21.821	21.821 (1.437)	2950079	12.6227	13

Page 84 of 113

#### TestAmerica Burlington

#### RECOVERY REPORT

Client Name: Sample Matrix: GAS Lab Smp Id: FA110909LCS Level: LOW Data Type: MS DATA SpikeList File: all74.spk Sublist File: all.sub Method File: /chem/F.i/Fsvr.p/fdgto15.b/sto15.m Misc Info: FA110909LCS;110909FA;1;200

		CONC	CONC	00	
SPIKE CO		ADDED	RECOVERED	RECOVERED	T.TMTT
	JAN CONE	nnby	nnby	RECOVERED .	
		pppv			
1 Di	chlorodifluorome	10	12	118 38	70-130
1 2 Er		10		111 27	70-130
	2 Digblorototraf	10			70 130
	aloromothano	10			70-130
4 01	Butana	10		107.34	70-130
5 II-	-Bulane	10			70-130
		10		115.08	70-130
	, 3-Butadiene	10		119.77	70-130
9 Br	comomethane	10		108.32	70-130
10 Ch	lloroetnane	10			70-130
12 Br	comoetnene	10	12	116.95	70-130
13 Tr	cichlorofluoromet	10	12	116.55	70-130
17 Fr	ceon TF	10	12	122.58	70-130
18 1,	1-Dichloroethene	10	12	121.01	70-130
19 Ac	cetone	10	11	111.81	70-130
20 Is	sopropyl Alcohol	10	12	123.35	70-130
21 Ca	arbon Disulfide	10	11	112.69	70-130
22 3-	-Chloropropene	10	11	110.52	70-130
24 Me	ethylene Chloride	10	11	114.05	70-130
25 te	ert-Butyl Alcohol	10	12	119.49	70-130
26 Me	ethyl tert-Butyl	10	11	111.36	70-130
27 tr	rans-1,2-Dichloro	10	11	112.20	70-130
28 n-	-Hexane	10	11	108.61	70-130
29 1,	,1-Dichloroethane	10	11	112.03	70-130
30 Me	ethyl Ethyl Keton	10	11	108.40	70-130
31 ci	is-1,2-Dichloroet	10	11	113.18	70-130
33 Te	etrahydrofuran	10	11	110.01	70-130
34 Ch	nloroform	10	11	111.48	70-130
35 1,	1,1-Trichloroeth	10	11	111.88	70-130
36 Cy	/clohexane	10	11	110.57	70-130
37 Ca	arbon Tetrachlori	10	11	110.66	70-130
38 2,	2,4-Trimethylpen	10	11	110.27	70-130
39 Be	enzene	10	11	107.52	70-130
M 40 1,	2-Dichloroethene	20	23	115.00	70-130
· · · ·					

Page 5

		CONC	CONC	0/0	
SPIKE	COMPOUND	ADDED	RECOVERED	RECOVERED	LIMITS
		ppbv	ppbv		
41	1,2-Dichloroethane	10	11	109.67	70-130
42	n-Heptane	10	11	107.48	70-130
45	Trichloroethene	10	11	107.95	70-130
46	Methyl Methacrylat	10	11	108.29	70-130
47	1,2-Dichloropropan	10	11	106.32	70-130
48	1,4-Dioxane	10	12	116.39	70-130
50	Bromodichlorometha	10	11	114.94	70-130
51	cis-1,3-Dichloropr	10	11	106.04	70-130
52	Methyl Isobutyl Ke	10	11	109.83	70-130
54	Toluene	10	11	106.87	70-130
55	trans-1,3-Dichloro	10	11	106.82	70-130
56	1,1,2-Trichloroeth	10	10	103.32	70-130
57	Tetrachloroethene	10	11	107.53	70-130
58	Methyl Butyl Keton	10	11	109.51	70-130
59	Dibromochlorometha	10	12	116.79	70-130
60	1,2-Dibromoethane	10	11	107.21	70-130
62	Chlorobenzene	10	11	106.11	70-130
63	Ethylbenzene	10	11	108.74	70-130
64	Xylene (m,p)	20	21	106.86	70-130
65	Xylene (o)	10	11	105.78	70-130
66	Styrene	10	11	108.64	70-130
67	Bromoform	10	12	121.26	70-130
68	Cumene	10	11	110.66	70-130
69	1,1,2,2-Tetrachlor	10	11	107.71	70-130
M 70	Xylene (total)	30	32	106.11	70-130
72	n-Propylbenzene	10	11	111.63	70-130
74	4-Ethyltoluene	10	11	112.27	70-130
75	1,3,5-Trimethylben	10	11	109.38	70-130
76	2-Chlorotoluene	10	11	113.20	70-130
78	Tert-Butylbenzene	10	11	111.83	70-130
79	1,2,4-Trimethylben	10	11	106.52	70-130
80	Sec-Butylbenzene	10	11	111.44	70-130
81	4-Isopropyltoluene	10	11	113.41	70-130
82	1,3-Dichlorobenzen	10	11	107.16	70-130
83	1,4-Dichlorobenzen	10	11	107.39	70-130
86	Benzyl Chloride	10	11	109.33	70-130
87	n-Butylbenzene	10	11	114.13	70-130
88	1,2-Dichlorobenzen	10	11	105.37	70-130
90	1,2,4-Trichloroben	10	12	119.53	70-130
91	Hexachlorobutadien	10	12	118.44	70-130
92	Naphthalene	10	13	127.72	70-130
					I

Page 86 of 113

#### FORM 7 VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: TESTAMERICA BURLINGTON Contract: 29000 Lab Code: STLV Case No.: 29000 SAS No.: SDG No.: NY134484 Instrument ID: F Calibration Date: 11/11/09 Time: 1119 Lab File ID: FDG10BV Init. Calib. Date(s): 11/09/09 11/10/09 Heated Purge: (Y/N) N Init. Calib. Times: 2153 0832 GC Column: RTX-624 ID: 0.32 (mm)

			MIN		MAX
COMPOUND	RRF	RRF10	RRF	%D	۶D
	========	=========	========	======	====
Vinyl Chloride	0.403	0.418	0.01	3.7	30.0
1,1-Dichloroethene	0.717	0.722	0.01	0.7	30.0
trans-1,2-Dichloroethene	0.884	0.905	0.01	2.4	30.0
cis-1,2-Dichloroethene	0.798	0.815	0.01	2.1	30.0
1,2-Dichloroethene (total)	0.841	0.860	0.01	2.2	30.0
Trichloroethene	0.231	0.236	0.01	2.2	30.0
Tetrachloroethene	0.436	0.452	0.01	3.7	30.0

FORM VII VOA



#### TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/F.i/Fsvr.p/fdgbtol5.b/fdg10bv.d Lab Smp Id: ASTD010 Client Sm Inj Date : 11-NOV-2009 11:19 Operator : wrd Inst ID: Smp Info : Client Smp ID: ASTD010 Inst ID: F.i Misc Info : ASTD010;111109FA;1;200 Comment : Method : /chem/F.i/Fsvr.p/fdgbto15.b/sto15.m Meth Date : 16-Nov-2009 07:19 klp Quant 5 Quant Type: ISTD Cal Date : 10-NOV-2009 08:32 Cal File: fdg05v2.d Als bottle: 5 Continuing Calibration Sample Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: ROUX1 Ocean.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

							AMOUN	15
			QUANT SIG				CAL-AMT	ON-COL
Cc	mpo	unds	MASS	RT	EXP RT REL RT	RESPONSE	( ppbv)	( ppbv)
= =	===		====	==	===============		=======	
	6	Vinyl Chloride	62	3.825	3.825 (0.395)	442116	10.0000	10
	18	1,1-Dichloroethene	96	6.377	6.382 (0.658)	763297	10.0000	10
	27	trans-1,2-Dichloroethene	61	7.709	7.714 (0.795)	957199	10.0000	10
	31	cis-1,2-Dichloroethene	96	9.330	9.335 (0.962)	861407	10.0000	10
*	32	Bromochloromethane	128	9.694	9.699 (1.000)	1057237	10.0000	
М	40	1,2-Dichloroethene (total)	61			1818606	20.0000	20
*	43	1,4-Difluorobenzene	114	11.085	11.090 (1.000)	5083280	10.0000	
	45	Trichloroethene	95	11.443	11.448 (1.032)	1199306	10.0000	10
	57	Tetrachloroethene	166	13.995	14.000 (0.922)	2145943	10.0000	10
*	61	Chlorobenzene-d5	117	15.182	15.188 (1.000)	4742483	10.0000	



## Raw QC Data – TO-15 Volatile

Data File: /chem/F.i/Fsvr.p/fdgto15.b/fdg01pv.d Date : 09-NOV-2009 20:12 Client ID: VBFB Sample Info: VBFB

Instrument: F.i

Operator: wrd Column diameter: 0.32



Data File: /chem/F.i/Fsvr.p/fdgto15.b/fdg01pv.d Date : 09-NOV-2009 20:12 Client ID: VBFB Sample Info: VBFB

Column phase: RTX-624

Instrument:	F.i	

Operator: wrd

Column diameter: 0,32

		Data File	: fdg01p	ov₊d				
		Spectrum	: Avg. S	Scans 299-30	1 ( 5,69	), Backgrou	und Scan 2	288
Lo	ocation	of Maximum	: 174.00	>				
	Number	∼ of points	: 139					
	m/z	Y	m/z	Y	m/z	Y	m/z	Y
+		+					+	+
1	36,00	3434 1	73,00	28432 1	117.00	3998	157,00	2032
1	37,00	20080 1	74,00	121424	118,00	2636	158,00	2/6 1
ł	38,00	18616	75,00	387008	119,00	3984	159,00	1209
	39,00	7736	76.00	33096	120,00	89	161,00	957 1
1	40,00	279	77.00	3317	122,00	279	162,00	151
 I	41.00	 89	78,00	2154	123.00	345	165.00	142
ì	42.00	7 1	79,00	13992	124.00	478	172.00	178
1	43.00	128	80,00	4224	125.00	479	173.00	4689
1	44.00	2254	81.00	15092	126.00	255	174.00	991680
T	45.00	4208	82.00	2953	127.00	124	175.00	68464
+		+					+	
1	46.00	344 I	83.00	279	128,00	3330	176.00	958976
Т	47,00	5114 I	84.00	241	129,00	1703	177,00	62472
I.	48,00	2923	86.00	720	130,00	3335	178.00	1726
ł	49,00	21256	87,00	26416	131,00	1447	190.00	83
F	50,00	115680	88,00	25248	132,00	327	191.00	99
+		++					•~~~	
1	51,00	33824 I	91.00	2124	134.00	158	194,00	89
1	52,00	1490	92,00	21552	135,00	1061	196.00	77
	53,00	81	93,00	35064	136,00	159	206,00	/1
	54,00	7	94,00	95808	137,00	1217	207,00	1375
1	55,00	1053	95,00	893888	139,00	356	208.00	52
1	56.00	7838 1	96.00	59344	140.00	610	210.00	103
i	57.00	15696 I	97.00	1714	141.00	8325	217.00	74
1	58,00	847 1	102.00	78	142.00	963	218.00	29
1	59,00	91 I	103.00	276	143.00	8034	219.00	108
ł	60.00	5057 I	104,00	2807	144.00	551	223.00	98
+		+					+	
1	61,00	26584 I	105.00	914	145,00	512	232,00	160
	62,00	28008 1	106.00	2998	146,00	1494	239,00	153
	63,00	21808	107.00	738	14/,00	482	247,00	66
	64.00	2169 I	108.00	234	148,00	2269	250,00	246
1 +	67,00	1399	110,00	507	149,00	788	251,00	7
I	68,00	73344	111.00	587	150.00	1192	252.00	67 1
I	69,00	73000 I	112,00	428	152,00	533	260.00	11
1	70.00	5247	113.00	531	153,00	946	261.00	151
i	71.00	390	115,00	582	154.00	787	265,00	236
Т	72,00	2917 I	116,00	2733	155,00	2810	1	I
							_	

lient ID: VB	FB				Instru	ment: F.i			
Sample Info:	/BFB								
					Operat	or: wrd			
Column phase:	RTX-624				Column	diameter	: 0.32		
	1	)ata File: Spectrum:	fdg01pv.d Avg. Scans	299-301	( 5.69), B	ackground	Scan 288		
	Location of	Maximum:	174.00						
	Number (	of points:	139						
	m/z	Y	m/z	Y	m/z	Y	m/z	Y	
	+	+						+	

Data File: /chem/F.i/Fsvr.p/fdgto15.b/fdg01pv.d Date : 09-NOV-2009 20:12 Client ID: VBFB Sample Info: VBFB

Instrument: F.i

Operator: wrd

Column diameter: 0.32



Data File: /chem/F.i/Fsvr.p/fdgbto15.b/fdg03pv.d Date : 11-NOV-2009 10:23 Client ID: VBFB Sample Info: VBFB

Instrument: F.i

Column diameter: 0.32

Operator: wrd

Column phase: RTX-624 1 bfb



### Data File: /chem/F.i/Fsvr.p/fdgbto15.b/fdg03pv.d Date : 11-NOV-2009 10:23 Client ID: VBFB Sample Info: VBFB

Column phase: RTX-624

Instrument: F.i

Operator: wrd

#### Column diameter: 0.32

Loca	ation	of Maximum	: 174.00					
٢	lumber	of points	: 140					
	m/z	Y	m∕z	Y	m/z	Y	m/z	
+ 1 36		4403	76.00	45016	+	376	+	 9'
I 37	2.00	27832 1	77.00	4505	1 124.00	610	163.00	242
1 38	3.00	24592	78.00	3269	125.00	556	165.00	62
1 39	00.00	10400	79.00	20192	126.00	578	1 172.00	313
1 40	•••	302	80,00	6407	1 128,00	4629	1 173,00	5943
+ I 42	2.00	+ 30 I	81,00	20536	+   129,00	2260	+   174.00	1369088
43	3.00	96 I	82,00	4369	130,00	4312	I 175.00	96648
44	+.00	3000	83.00	369	131,00	1748	1 176.00	1330176
1 45	5.00	5954 I	85,00	198	132.00	297	1 177.00	85488
1 46	5 <b>.</b> 00	356 I	86,00	708	133,00	31	1 178.00	245
+	,00	6599	87.00	 36480	+   134.00	218	+   179,00	3:
1 48	8.00	4149 I	88.00	35040	135.00	2229	I 181.00	163
1 49	00.	28928 1	91,00	2870	136.00	531	I 189₊00	290
1 50	•••	155264 I	92,00	29928	137.00	1931	1 190,00	73
51	+00	46664 I	93,00	47632	139,00	404	I 191.00	161
1 52	2.00	1808	94,00	132864	,   140₊00	751	192,00	197
I 53	8.00	67 I	95,00	1230848	141.00	10791	193,00	370
1 55	5.00	1713	96,00	84456	I 142,00	1524	I 194₊00	11
56	5 <b>.</b> 00	10645 I	97,00	2704	I 143.00	11170	195.00	354
57	·•••	21824	103.00	296	144,00	698	196.00	80
1 58	8.00	837 1	104,00	4347	145.00	1028	1 204.00	69
60	•••	6530 I	105.00	1589	146.00	1884	1 210,00	65
61	•00	36368	106.00	4028	147.00	1117	218.00	87
62	2.00	37696 l	107,00	1253	148.00	2822	219,00	52
63	3.00	29656 I	109,00	67	149,00 ⊧	1121	220,00 +	138
1 64	.00	2791	110,00	584	150,00	1452	1 232,00	29
65	5.00	352	111,00	739	151.00	77	1 233,00	29
67	,00°	2238	112,00	442	152,00	752	1 239,00	213
I 68	3.00	102728	113,00	664	153.00	1060	1 249,00	19
69 +	••••	98752	115,00	1144	154.00 	988	251.00 +	71
1 70	•••	7111	116,00	3570	155.00	3454	1 260.00	54
1 71	.00	215 I	117,00	5850	156.00	478	1 261.00	98
1 72	2.00	4147 I	118,00	3707	157,00	2744	I	
1 73	8.00	39472 I	119,00	5598	158.00	369	I	
I 74	+00	163584 I	120,00	147	159.00	1650	I	

<pre>Data File: /chem/F.i/Fsvr.p/fdgbto15.b/fdg03pv.c</pre>
Date : 11-NOV-2009 10:23
Client ID: VBFB
Sample Info: VBFB

Instrument: F.i

Operator: wrd

Column phase: RTX-624

Column	diameter:	0,32

Data File: /chem/F.i/Fsvr.p/fdgbto15.b/fdg03pv.d Date : 11-NOV-2009 10:23 Client ID: VBFB Sample Info: VBFB

Instrument: F.i

Column phase: RTX-624

Operator: wrd

Column diameter: 0.32



FORM 1 VOLATILE ORGANICS ANALYSIS DAT	CLIENT SAMPLE NO.
Lab Name: TESTAMERICA BURLINGTON Contr	MBLK111109FA
Lab Code: STLV Case No.: 29000 SAS	No.: SDG No.: NY134484
Matrix: (soil/water) AIR	Lab Sample ID: MBLK111109FA
Sample wt/vol: 250.0 (g/mL) ML	Lab File ID: FDGB02B
Level: (low/med) LOW	Date Received:
% Moisture: not dec.	Date Analyzed: 11/11/09
GC Column: RTX-624 ID: 0.32 (mm)	Dilution Factor: 0.8
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND (u	NCENTRATION UNITS: g/L or ug/Kg) PPBV Q
75-01-4Vinyl Chloride 75-35-4Vinyl Chloroethene 156-60-5trans-1,2-Dichloroeth 156-59-2cis-1,2-Dichloroeth 540-59-01,2-Dichloroethene 79-01-6Trichloroethene 127-18-4Tetrachloroethene	0.16         U           0.16         U           0.16         U           ene         0.16         U           (total)         0.16         U           0.16         U         U

FORM I VOA

TestAmerica Burlington



Page 1

#### TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/F.i/Fsvr.p/fdgbto15.b/fdgb02b.d Lab Smp Id: MBLK111109FA Inj Date : 11-NOV-2009 13:52 Operator : wrd Smp Info : Client Smp ID: MBLK111109FA Inst ID: F.i Misc Info : MBLK111109FA;111109FA;0.8;250 Comment Method : /chem/F.i/Fsvr.p/fdgbto15.b/sto15.m Meth Date : 16-Nov-2009 07:19 klp Quant Type: ISTD Cal Date : 10-NOV-2009 08:32 Cal File: fdg05v2.d Als bottle: 3 QC Sample: BLANK Dil Factor: 0.80000 Integrator: HP RTE Compound Sublist: ROUX1 Ocean.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	0.80000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	250.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

				CONCENT	RATIONS
			QUANT SIG	ON-COLUM	FINAL
Co	mpo	unds	MASS	RT EXP RT REL RT RESPONSE ( ppbv)	( ppbv)
==					
	6	Vinyl Chloride	62	Compound Not Detected.	
	18	1,1-Dichloroethene	96	Compound Not Detected.	
	27	trans-1,2-Dichloroethene	61	Compound Not Detected.	
	31	cis-1,2-Dichloroethene	96	Compound Not Detected.	
*	32	Bromochloromethane	128	9.694 9.699 (1.000) 1140977 10.0000	
М	40	1,2-Dichloroethene (total)	61	Compound Not Detected.	
*	43	1,4-Difluorobenzene	114	11.085 11.090 (1.000) 5570394 10.0000	
	45	Trichloroethene	95	Compound Not Detected.	
	57	Tetrachloroethene	166	Compound Not Detected.	
*	61	Chlorobenzene-d5	117	15.182 15.188 (1.000) 5177932 10.0000	

FORM 1 VOLATILE ORGANICS ANALYSIS DATA	CLIENT SAMPLE NO.
Lab Name: TESTAMERICA BURLINGTON Contra	FA111109LCS
Lab Code: STLV Case No.: 29000 SAS N	O.: SDG No.: NY134484
Matrix: (soil/water) AIR	Lab Sample ID: FA111109LCS
Sample wt/vol: 200.0 (g/mL) ML	Lab File ID: FDG10BQ
Level: (low/med) LOW	Date Received:
% Moisture: not dec.	Date Analyzed: 11/11/09
GC Column: RTX-624 ID: 0.32 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CON CAS NO. COMPOUND (ug	CENTRATION UNITS: /L or ug/Kg) PPBV Q
75-01-4Vinyl Chloride 75-35-41,1-Dichloroethene 156-60-5trans-1,2-Dichloroet 156-59-2cis-1,2-Dichloroethe 540-59-01,2-Dichloroethene ( 79-01-6Trichloroethene 127-18-4Tetrachloroethene	11       hene       11       ne       11       total)       11       11       11

FORM I VOA



Page 103 of 113

#### TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT Data file : /chem/F.i/Fsvr.p/fdgbto15.b/fdg10bq.d Lab Smp Id: FA111109LCS Client Smp ID: FA111109LCS Inj Date : 11-NOV-2009 12:09 Operator : wrd Smp Info : Misc Info : FAll1109LCS;111109FA;1;200 Inst ID: F.i Comment Method : /chem/F.i/Fsvr.p/fdgbto15.b/sto15.m Meth Date : 16-Nov-2009 07:19 klp Quant Quant Type: ISTD Cal Date : 10-NOV-2009 08:32 Cal File: fdg05v2.d Als bottle: 2 QC Sample: LCS Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: ROUX1 Ocean.sub Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

CONCENTRATIONS

							00110211114	11 10110
			QUANT SIG				ON-COLUMN	FINAL
Co	ompo	unds	MASS	RT	EXP RT REL RT	RESPONSE	( ppbv)	( ppbv)
==	2 22 24 =			==		=========		***
	6	Vinyl Chloride	62	3.825	3.825 (0.394)	477044	10.6727	11
	18	1,1-Dichloroethene	96	6.377	6.382 (0.657)	930149	11.7051	12
	27	trans-1,2-Dichloroethene	61	7.709	7.714 (0.795)	1057087	10.7935	11
	31	cis-1,2-Dichloroethene	96	9.330	9.335 (0.962)	987499	11.1596	11
*	32	Bromochloromethane	128	9.699	9.699 (1.000)	1108619	10.0000	
М	40	1,2-Dichloroethene (total)	61			2044586	21.9531	22
*	43	1,4-Difluorobenzene	114	11.090	11.090 (1.000)	5301536	10.0000	
	45	Trichloroethene	95	11.443	11.448 (1.032)	1309645	10.7053	11
	57	Tetrachloroethene	166	13.995	14.000 (0.921)	2352518	10.7664	11
*	61	Chlorobenzene-d5	117	15.188	15.188 (1.000)	5015926	10.0000	



## Sample Preparation – TO-15 Volatile

#### Post-Sampling Air Canister Pressure Check Record

1 1

	SDG	ETR	Date	Time (Military)	Lab BP ("Hg)	Lab Tem	p Pressure Gague ID	Analyst
Roux1	134484	134484	11/3/09	0915	29.7	22	63	丁扣
Sampling Information	and Return E	quipment Che	ck (			Yes N	o C(	omments
(1) Is a Field Test Data	Sheet (FTDS)	or similar samp	ling documer	tation present	?	Ŷ		,
(2) Is the flow controller	r ID used for ea	ch canister rec	orded?			۲		
(3) Is visible sign of dar	mage to caniste	r and/or flow co	ontroller (FC)	present?		N		
If damage observed, lis	st equipment ID	s and describe	condition:					
								-
Post-Sampling Return	n' Pressure Cha	sck						
Lab ID	Canister ID	Pressure ¹	Anomaly ²	FC	FC Return	C	an Cert	Comments
		("Hg)	(Y/N)	2 1D ⁵ 2	(Y/N)	Barris - B	atch 1D	
812246	2781	-2.7	<u>ې</u>	3251	<i>Ŷ</i>	2781	BJKF	
512247	2532	- 1.5		4511		3291	BJKE	
812248	4444	-37	l	4515				_
812249	4016	0.0	<u>ب</u>	3118	1		*	
812250	3143	- 5.9	2	3193		3143	BJKF	
812251	2587	0.0	ب (	3117	i i	3291	BJKG	
812252	2676	- 6.1	<u>~</u>	2829	<u>v</u>	3291	BJKG	
								▶
							/	1
_								
							/	
						109		
						3		
					//			
					$\Lambda \chi $			
				· ·				
					-	Þ		
-								
						-		
				-				
·								

¹ Criteria: Return Pressure should be between -1 and -10 ("Hg)

 $^{2}% \left( r\right) =\left( r\right) \left( r\right)$ 

³ Record the ID of the FC used for sampling if information is provided, otherwise leave blank.

BR-FAI033:02.01.08:5 TestAmerica

Page 8 of 200

 $\mathcal{P}_{n_{1}}$ 

		Sign-Off	ÉN 11/11/00			
		Analyst Date-Time	/ sv 11/11/09 18:53			
on Summary e	Filename	ration Flag	FDG005V ed baseline			
Manual Integrati Fraction: Volatil	Analysis Date	Manual Integ	9-NOV-2009 22:44 Il - Poor automat			
l Burlington - 1G: fågtol5 I	Column		RTX-624 0 M			
estAmeric S	Inst.	pound	ΓL,			
F	Sample Type	Com	INIT. CALIB. lorotoluene			
	Client Sample ID	Peak RT	ASTD0005 17.007 2-Ch			
	Lab Sample ID		ASTD0005			

Secondary Review(1): <u>KCP</u>|<u>11/14/07</u> Secondary Review(2): Summary Generated: sv 11/11/2009 18:59

		Ψ			e 1
		sign-Of			Pag
		je	53		
		ate-Tin	/09 18:	10/00	
		Lyst D		KUP II	
		Anal	<del>7200</del>		view(2)
λ τρι	lename	Flag	FD6 eline		lary Re
0	FĹ	ration	ed base		Second
volatil	Date	l Integ	-22:44 automat		
stion:	ılysis	Manua	1 <u>1-2009</u> - Poor		
Frac	Ané		09-NG		
Y134484	olumn		624		ew(1):
SDG: N			F RTX-		ry Revi
	Inst	punod			econdar
4	Туре	Соп	CALIB. uene		:20
	Sample		INIT.		009 21
	nt ID		2 - Ch]		11/15/2
	Clie Sample	Peak RT	5100005 17.007		d: klp
	8				merate
	Lab ample ]		<del></del>		mary Ge
	<u>"</u>		AST		mns

Page 108 of 113

sequence			.		Standard	Traceabili	ţ				Instrument Information
latch ID:	FD4	Start Date: 1/2	19189	Time:2012	ISTD Lot	#: A77	015-135	-0/			Instrument ID: F
est Method	TON TANSNOU	End Date: //	CN/01/	Time:20/2	CAL STD	Fot #	n good	met			Instrument: 5973
CAL Date:			-		ICV / LCS	Lot #	rea legn	Turn			Column Type: RTX-624
	Manager	na fandar waarde waarde waarde yn de yn de fan de gelegene waarde gelegene w	Analyst (UN)	_	Analyst	a la fina de Balancia y a de a Banderon a en 15	Contractory of the Article Barrier	Analyst			Analyst
ame/Initial			William D	serondas	Nichal	is Rogner	1/NTA-				
ignature			Man D.	Z Ś	Mas	$\checkmark$				er (1886), in maaking been in service of the service of the	and a second second second second second second second second second second second second second second second
		Sequen	ce Information		U			Individ	ual Sample	Review	理論通信を始めたれたから、我になっていたが、ためになる」というない。 かんてい マンド・マンド
Injection	Lab ID /	Summa	ETR	Dilution	Inlet	Volume	Operator	internal	Result	Primary	Comments /
Time	File Name	Can ID		Factor	#	(mL)		Std.	Conc.	Anal.	Standard Traceability
2015	FDGOIPV		55	44	14	44	UNO	$\Lambda 4$	7	(M)	
10/2	FDC-601			• -	/	200					
153	F06-0021	2961	Jewel /		ନ୍ଦ	-			]	-	ATTORCALIW - 04
ちちて	FOG-605V	2013	Sloveld		η				7	/	ATTOSCALZW -03
336	FOGOSV		đ	_	4				7		I have brekend buy con
027	FDGUN	3865	devel 4/5-		Zy				7		ATTONS CAL 4W-13
1.19	FOGAN	2843	Bevel 5/4		2				7		ATTON CALOW- US
2/0	F0620V	3 332	Sevel 6/2		~				]		ATPACAL GW- 04
301	F06-401	35-23	Slovel 1/6		۵.				7		ATTORIALAUTU-OL
35.3	FDG-BOL				^						
444	Fac- 106				-0-				(		Do Not use
5.35	POG 1603										-
636	PDG-0026				2						
70 ~	106- COSC				N			_	l		
832	A FOG ON A FOLLOND	23535	Swelst	-1	ŗ	-	,		7		ATTONSCAL2W-03
122	FOGIUQU	3639	TCV	41	5	200	Ļ,	-1	]	>	ATTON-LGS W-17
						$\setminus$					
					$\backslash$						
									-		
				1 10							
					2						
					l Leg	jend: C=C	complete •	R=Reanaly	/ze ∎ ↑ = ⊢	ligh ∎ ↓= L	ow <ul> <li> </li> </ul>
BR-F/	1027:10.29.08:2				n na ana	of 100					
<b>estA</b>	nerica					11111					

ł

Î

. .

ł

				oranuaru	Laceapilit	<u>.</u>				IDSUMMENT INTO MARION
HID: FOGR	Start Date:	11/104	Time: /023	ISTD Lot #		122	6			Instrument ID: F
Method: Tois	End Date:	11/12/09	Time: / 023	CAL STD I	Lot #	684	//			Instrument: 5973
- Date: 11 04/09				ICV / LCS	Lot #	9	18			Column Type: RTX-624
Manager	n	Analyst		Analyst			Analyst		1911 - 1925 Company	Analyst
ne/Initial										
ature										
	Sequer	tce Information				1	Indivic	iual Sample	Review	n and a second and a second second second second second second second second second second second second second
lection Lab ID /	Summa	ETR	Dilution	Inlet	Volume	Operator	Internal	Result	Primary	Comments /
Time File Name	Can ID		Factor	#	(mL)		Std.	Conc.	Anal.	Standard Traceability
23 6060391	4V AA	BHB	NA -			らて	ΨZ	7	152	
19 FOG 10BV	3865	ζ C		1	002		-1	7		দ ব
09 FOGIOGO	3637	165		Ч			]	1		AC-
21 CAL 01 CC	4663	YDOL		s	+		7	7	-1	
52 FOLANZB	4633	ANGIN	7	2	250	4	•	7	nu Muj	
9 hree 2 2m	224	134484	Q,S	50	057	210	7	]	-	V
37 RILAY 7	2522			5	-	-	7	7		
Areels KC	GUAU						7	Ĵ		0
6221/2 Ht	40/12			2			7	7	-)	
05 R12250	3/43			4			7	7	SH	( )
122 BU2251	2580			8			7	7	s <u>.</u>	C
He Blezze	2606	_ (		Q Q			7	7		2
342 3624	NA	\$2	0.2	11 1	000		7	7		
37 3504			-	12	-		7	7		
23 2900				3				7	1	
320 4318				14			2	7		
0.26 4874				5			$\sum_{i}$	``		
22 4306				16			$\sum$	7		
218 4426							7	7		
and astro	_			ત	~		7	7		
410 141 48			۲ ۲	3			ν,	>		
507 40 FG				۲			7	7		
603 3200				5			>		>	
559 4363				9			7	Ţ	(M/N)	
149 3804			0.4	2	300	1	Ú	7	1	
45 330	F	÷	ور	2	000,		]	]		
					1					



## Sample Handling

14 N N N Cash/Check Packages over 150 lbs. FedEx 3Day Freight Third bisness day." Saturday Delivery NOT eveneble. Öther * To must locatio Credit Card Auth vahe limi Packages up to 150 FedEx First Overnigh 51.9 Cargo Aircraft Only HOLD Satu at FedEx Lou No El Car Tube Tube ¹Dur Eabliety is limited to \$100 unless you declare a higher vakue. See the current FedEx Service Guide for details — Euter FadEx Acct. No. or Credit Card No. below. s in Section 3. Dry Ice Dry ice, 9, UN 1945  $\square$ 8 Residential Delivery Signature Options Il you repaired FedEx Standard Overnight Next business alternoon. Saturday Dekvery NOT available. FedEx Pak* FedEx Includes FodEx Senal Pak, BOX FedEx Large Pak, and FedEx Sturdy Pak, BOX **Jebe** FedEx Express Saver Third braciess day. Seturday Detrivery NOT availab definery NOT availabl FedEx 2Day Freight Second business day.^{**} Thurn stremans will be delivered of unless SATURDAY Delivery is num charoe: One-pound rate HOLD Wee at FedFv 1 A ULS A SBS Ves Shipper's Deck aa 1021.5 Total Weight 4a, Express Package Service Recipient 4b Express Freight Service per attached 7 Payment Bill to: SATURDAY Deliver Not available for FedEx Standard Overnight, FedEx Fixel Overnight, FedE Sever, or FedEx 3Day Freig FedEx Priority Over Next business moring. Fr stripments will be derivered interest SATURDAY Defensed 6 Special Handl Yes Aspect may be left FedEx 1Day Fre 5 Packaging FedEx 2Day Second business du stipments will be de No Signature Required Pacture Does this shi FedEx Envelope* Sender Acct No. In S Total Packs 調整 N N Dangerous go 8693 1896 4191 Jept/Flood/Suite/Room 1100 Dept./Hoor/Suite/Hoor 869318964191 ZIP 집 Phone Phone State State FedEx Tracking Number FedEx Tracking Number B693 1896 4191 be removed for Recipient's records print FedEx address -Ĵ Fedex. US Airbill fic FadEx loci 2 Your Internal Billing Reference deliver to P.O. boxes or P.D. ZIP code age be held at a sp Express 1 From Wise Company Address To request a Recipier Address We cannot o Name Date £ £ P весівіемт: Реес зизн 58 96666.694.008.1 x3b9700.008.1 m00.x9b91

Page 112 of 113

		Test	America	Burl	ingto			
	SAMPLE	E REC	EIPT &	LOG	IN C	HECK	<u>(LIST</u>	
Client ROUXI		Date Re	eceived:	0/3	31/0	>1 	Log In D	Date: 11/62.166
ETR: 134484		Time Re	eceived:	Ó	930	>	By:	
SDG: NYIZYYSY		Receive	ed By:	LIL	)		Signatur	re:
Project: 2-9 W (A (A		# Coole	rs Received	: A	600	ics	PM Sign	nature: Stra
Samples Delivered By: Shipp	ning Service 🗆 Courier :	- Hand	D Other (spe	ecify)			Date:	11 Sloer
List Air hill Number(s) or Attach	a photocopy of the Air	Bill		<i>(</i> , , , , , , , , , , , , , , , , , , ,		_	Duc.	
	a protocopy or all 7 ar	211.						
COOLER SCREEN	· · · · · · · · · · · · · · · · · · ·				YES	NO	NA	COMMENTS
There is no evidence to indicat	te tampering				<u>×</u>			
Custody seals are present and	intact							
Custody seal numbers are pres	sent							
If yes, list custody seal number	5:							
Thermal Preservation Type:	Wetice D Blue ice VN	lone n	Other (sner	rifv)				
IP Gun ID: 9/	Correction Eactor (CE)	= 0	°C	ury)	_			
Cooler 1: Air °C Cooler 6 °C Cooler 11 °C							Coolor 1	e •c
Cooler 2: Pair °C Cooler 7 °C Cooler 12							Cogler 1	
Cooler 2:         A         C         Cooler 7         C         Cooler 12           Cooler 3:         °C         Cooler 8         °C         Cooler 13					_	-0	Cooler 1	
Cooler 3: °C Cooler 8 °C Cooler 13					_		Cooler 1	
Cooler 4: °C Cooler 9 °C Cooler 14						<u>°C</u>	Cooler 1	<u>9</u> <u>°C</u>
Cooler 5 °C Cooler 10 °C Cooler 15 °C Cooler 20								<u>°C</u>
Unless otherwise documented,	the recorded temperatu	ire readi	ngs are adju	isted re	adings	to acco	unt for th	e CF of the IR Gun
EPA Criteria: 0-6°C, except for	air and geo samples wh	nich shou	uld be at am	bient te	mpera	ture and	tissue s	amples, which may be frozen.
Some clients require thermal preservation criteria of 2-4°C or other such criteria. The PM must notify SM when alternate criteria is specified.								
					YES	NO	NA	COMMENTS
Sample containers were received intact					X			
Legible sample labels are affixed to each container					$\mathbf{X}$			
CHAIN OF CUSTODY (COC)						NO	NA	COMMENTS
COC is present and includes th	e following information f	for each	container:					
<ul> <li>Sample ID / Sample Descripti</li> </ul>	on				×			
Date of Sample Collection					X			
- Time of Sample Collection					>			
<ul> <li>Identification of the Sampler</li> </ul>				7	X			
<ul> <li>Preservation Type</li> </ul>							$\mathbf{x}$	
Requested Tests Method(s)					$\overline{\mathbf{X}}$	_		
Necessary Signatures					X			
Internal Chain of Custody (ICOC) Required					$\sim$	X		
If yes to above. ICOC Record initiated for every Worksheet							$\overline{\mathbf{v}}$	
SAMPLE INTEGRITY / USABILITY					VEC	NO		COMMENTS
SAMPLE INTEGRITY / USABILITY The sample container matches the COC					123			
The sample container matches the COC Appropriate sample containers were received for the tests requested								
Appropriate sample containers were received for the tests requested Samples were received within holding time					×.			
Samples were received within holding time					÷-			
Sufficient amount of sample is provided for requested analyses								
VOA vials do not have headspace or a bubble >6mm (1/4" diameter)							X	
Appropriate preservatives were	used for the tests reque	sied					A	
pH of inorganic samples checked and is within method specification							<u> </u>	
If no, attach Inorganic Sample pH Adjustment Form								
ANUMALY / NCR SUMMARY								
Dauple lalele	douart lis	454	ru-+ + ?	ves				
·								
						_		
			_					
1								
		_					_	

FSR002:12.19.07:3 TestAmerica Burlington

## **APPENDIX C**

Data Usability Summary Reports

## **Data Validation Services**

120 Cobble Creek Road P.O. Box 208 North Creek, NY 12853

> Phone 518-251-4429 Facsimile 518-251-4428

April 30, 2008

Robert Kovacs Roux Associates 209 Shafter St. Islandia, NY 11749

RE: Data Usability Summary Report for the Oceanside Plaza site TestAmerica-VT SDG No. NY123316 Soil Vapor and Air Samples

Dear Mr. Kovacs:

Review has been completed for the data package generated by TestAmerica that pertains to air samples collected 12/06/07 at the Oceanside Plaza site. Nine 6-L summa canisters, a field duplicate, and a field blank were analyzed for volatile analytes by USEPA TO-15.

The data packages submitted contained full deliverables for validation. This usability report is generated from full review of sample raw data, review of all QC summary forms, and limited review of associated QC raw data. The data and results of QC evaluations have been reviewed for application of validation qualifiers with consideration of the analytical method and the USEPA Region 2 validation SOP HW-18, as affects the usability of the sample data. The following items were reviewed:

- * Laboratory Narrative Discussion
- * Custody Documentation
- * Holding Times
- * Internal Standard Recoveries
- * Field Duplicate Correlation
- * Preparation/Calibration Blanks
- * Control Spike/Laboratory Control Samples
- * Instrumental Tunes
- * Calibration Standards
- * Instrument IDLs

Those items listed above which show deficiencies are discussed within the text of this narrative. All of the other items were determined to be acceptable.

In summary, sample processing was compliant with protocol requirements. Results for three samples are qualified as estimated in value, with a possible low bias, due to the fact that they were at ambient pressure at laboratory receipt. Many of the samples were processed at dilution due to high concentrations of target analytes. That results in elevated reporting limits for analytes not detected in those samples.

A copy of the laboratory case narrative, including sample IDs covered in this report, is attached to this text, and should be reviewed in conjunction with this narrative. Also included in this submission are sample results forms with recommended qualifiers and edits applied in red ink.

### Volatile Analyses by EPA TO-15

Samples FB-120607, AMB, and IAQ-VAC were received with no vacuum remaining in the canister. This may indicate a low bias to those reported results when considered on a timeframe basis. Those samples' results have been qualified as estimated in value.

Holding times, instrument tunes, and sample internal standard responses were acceptable. Blanks show no contamination. Initial and continuing calibration standards meet protocol requirements.

Blind field duplicate evaluation was performed on sample VS-MRE. The detected value for tetrachloroethene in the duplicate was higher than that of the parent sample (at 83%RPD-more than a factor of two). Results for that compound in the parent and the duplicate have been qualified as estimated in value. Trichloroethene was detected in the parent sample, but the duplicate was diluted (due to the tetrachloroethene constituency) to where it was not detected therein.

Some of the samples were analyzed only at dilution based on screening results, in order to bring target analyte responses into calibration range. This results in elevated reporting limits for analytes not detected in those samples.

Please do not hesitate to contact me if questions or comments arise during your review of this report.

Very truly yours, Judy Harry

# VALIDATION QUALIFIER DEFINITIONS

.
### DATA QUALIFIER DEFINITIONS

The following definitions provide brief explanations of the national qualifiers assigned to results in the data review process. If the Regions choose to use additional qualifiers, a complete explanation of those qualifiers should accompany the data review.

U	-	The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
J	-	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
N	•••	The analysis indicates the present of an analyte for which there is presumptive evidence to make a "tentative identification".
ŊJ	••	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
UJ	-	The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
R	-	The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

÷.

## LABORATORY SAMPLE IDs AND CASE NARRATIVE

.



THE LEADER IN ENVIRONMENTAL TESTING

December 13, 2007

Mr. Robert Kovacs Roux Associates 209 Shafter Street Islandia, NY 11749

Re: Laboratory Project No. 27000 Case: 27000; SDG: NY123316

Dear Mr. Kovacs:

Enclosed are the analytical results for the samples that were received by TestAmerica Burlington on December 7th, 2007. Laboratory identification numbers were assigned, and designated as follows:

Lab ID	Client Sample ID	Sample <u>Date</u>	Sample <u>Matrix</u>
	Received: 12/07/07 ETR No:	123316	
734481	VS-DCF	12/06/07	AIR
734482	VS-MRE	12/06/07	AIR
734483	DUP-120607	12/06/07	AIR
734484	VS-DCR	12/06/07	AIR
734485	IAQ-BOOK	12/06/07	AIR
734486	VS-BOOK	12/06/07	AIR
734487	IAQ-VAC	12/06/07	AIR
734488	VS-VAC	12/06/07	AIR
734489	AMB	12/06/07	AIR
734490	VS-FENCE	12/06/07	AIR
734491	FB-120607	12/06/07	AIR

Documentation of the condition of the samples at the time of their receipt and any exception to the laboratory's Sample Acceptance Policy is documented in the Sample Handling section of this submittal.

### EPA Method TO-15 - Volatile Organics:

The analyses of several samples in this delivery group were accomplished a dilution in order to get the response of the analyte with the highest concentration within the initial calibration range. Only the results for the dilution analyses were provided.



December 13, 2007 Mr. Robert Kovacs Page 2 of 2

The analytical results associated with the samples presented in this test report were generated under a quality system that adheres to requirements specified in the NELAC standard. Release of the data in this test report and any associated electronic deliverables is authorized by the Laboratory Director's designee as verified by the following signature.

If there are any questions regarding this submittal, please contact me at 802 660-1990.

Sincerely,

Ron Pentkowski Project Manager

Enclosure

## **QUALIFIED REPORT FORMS**

CLIENT SAMPLE NO.

VS-DCF

Lab Name: TAL Burlington

SDG Number: NY123316

Dilution Factor: 1.50

Sample Matrix: AIR

Lab Sample No.: 734481

Date Analyzed: 12/11/07

Date Received: 12/07/07

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0,30	U.	0.30	0.77	U	0.77
1,1-Dichloraethene	75-35-4	0.30	U	0.30	1.2	U	1.2
trans-1,2-Dichloroethene	156-60-5	0.30	U	0,30	1,2	υ	1.2
1,2-Dichloroethene (total)	540-59-0	0.30	U	0.30	1.2	υ	1.2
cis-1,2-Dichloroethene	156-59-2	0.30	υ	0.30	1.2	υ	1.2
Trichloroethene	79-01-6	0.46		0.30	2.5		1.6
Tetrachloroethene	127-18-4	51		0,30	350		2.0

.

CLIENT SAMPLE NO.

Lab Name: TAL Burlington

SDG Number: NY123316

Dilution Factor: 348.00

Sample Matrix: AIR

VS-MRE

Lab Sample No.: 734482

Date Analyzed: 12/11/07

Date Received: 12/07/07

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	70	U	70	180	U	180
1,1-Dichloroethene	75-35-4	70	υ	70	280	U	280
trans-1,2-Dichloroethene	156-60-5	70	U	70	280	υ	280
1,2-Dichloroethene (total)	540-59-0	70	U	70	280	υ	280
cis-1,2-Dichloroethene	156-59-2	70	U	70	280	U	280
Trichloroethene	79-01-6	71		70	380		380
Tetrachloroethene	127-18-4	7400	ゴ	70	50000	J	470

.

CLIENT SAMPLE NO.

DUP-120607

Lab Name: TAL Burlington

SDG Number: NY123316

Dilution Factor: 899.00

Sample Matrix: AIR

_____

Lab Sample No.: 734483

Date Analyzed: 12/11/07

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	180	υ	180	460	U	460
1,1-Dichloroethene	75-35-4	180	U	180	710	U	710
trans-1,2-Dichloroethene	156-60-5	180	U	180	710	υ	710
1,2-Dichloroethene (total)	540-59-0	180	U	180	710	υ	710
cis-1,2-Dichloroethene	156-59-2	180	U	180	710	U	710
Trichloroethene	79-01-6	180	υ	180	970	U	970
Tetrachloroethene	127-18-4	18000	エ	180	120000	」 フ	1200

CLIENT SAMPLE NO.

VS-DCR

Lab Name: TAL Burlington

SDG Number: NY123316

Dilution Factor: 399.00

Sample Matrix: AIR

.

Lab Sample No.: 734484

Date Analyzed: 12/11/07

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	80	U	80	200	ບ	200
1,1-Dichloroethene	75-35-4	80	U	80	320	U	320
trans-1,2-Dichloroethene	156-60-5	80	U	80	320	U	320
1,2-Dichloroethene (total)	540-59-0	80	υ	80	320	U	320
cis-1,2-Dichloroethene	156-59-2	80	U	80	320	υ	320
Trichloroethene	79-01-6	80	U	80	430	U	430
Tetrachloroethene	127-18-4	12000		80	81000		540

CLIENT SAMPLE NO.

IAQ-BOOK

TAL Burlington Lab Name:

SDG Number: NY123316

Dilution Factor: 0.80

Sample Matrix: AIR

Lab Sample No.: 734485

Date Analyzed: 12/11/07

Target Compound	CAS Number	Results ín ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0,16	U	0.16	0.41	υ	0.41
1,1-Dichloroethene	75-35-4	0.16	U	0.16	0,63	U	0,63
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	U	0.63
1,2-Dichloroethene (total)	540-59-0	0.16	U	0.16	0,63	U	0.63
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0,63	U	0.63
Trichloroethene	79-01-6	1.1		0.16	5.9		0.86
Tetrachloroethene	127-18-4	13		0.16	88		1.1

۰.

CLIENT SAMPLE NO.

Lab Name: TAL Burlington

SDG Number: NY123316

Dilution Factor: 60.40

Sample Matrix: AIR

VS-BOOK

### Lab Sample No.: 734486

Date Analyzed: 12/11/07

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	12	U	12	31	U	31
1,1-Dichloroethene	75-35-4	12	υ	12	48	U	48
trans-1,2-Dichloroethene	156-60-5	12	U	12	48	U	48
1,2-Dichloroethene (total)	540-59-0	12	U	12	48	U	48
cis-1,2-Dichloroethene	156-59-2	12	U	12	48	U	48
Trichloroethene	79-01-6	12	υ	12	64	U	64
Tetrachloroethene	127-18-4	1200		12	8100		81

CLIENT SAMPLE NO.

IAQ-VAC

Lab Name: TAL Burlington

SDG Number: NY123316

Dilution Factor: 0.80

....

.

Sample Matrix: AIR

Lab Sample No.: 734487

Date Analyzed: 12/11/07

Date Received: 12/07/07

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0,16	υų	0.16	0.41	υų,	J 0.41
1,1-Dichloroethene	75-35-4	0,16	υ	0,16	0.63	U	0,63
trans-1,2-Dichloroethene	156-60-5	0,16	U	0.16	0.63	U	0,63
1,2-Dichloroethene (total)	540-59-0	0.16	U	0.16	0.63	U	0.63
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	υ	0.63
Trichloroelhene	79-01-6	0.16	U√	0.16	0,86	Uv	0.86
Tetrachloroethene	127-18-4	0.39	ゴ	0.16	2.6	J	1.1

.

CLIENT SAMPLE NO.

VS-VAC

Lab Name: TAL Burlington

- SDG Number: NY123316
- Dilution Factor: 149.00
- Sample Matrix: AIR

Lab Sample No.: 734488

Date Analyzed: 12/12/07

Date Received: 12/07/07

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	30	U	30	77	U	77
1,1-Dichloroethene	75-35-4	30	υ	30	120	U	120
trans-1,2-Dichloroethene	156-60-5	30	U	30	120	U	120
1,2-Dichloroethene (total)	540-59-0	30	υ	30	120	U	120
cis-1,2-Dichloroethene	156-59-2	30	U	30	120	U	120
Trichloroethene	79-01-6	30	U	30	160	U	160
Tetrachloroethene	127-18-4	2700		30	18000		200

۱

CLIENT SAMPLE NO.

Lab Name: TAL Burlington

SDG Number: NY123316

Dilution Factor: 0.80

Sample Matrix: AIR

AMB

Lab Sample No.: 734489

Date Analyzed: 12/12/07

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.16	υų	<u>) 0.16</u>	0.41	UU.	T 0.41
1,1-Dichloroethene	75-35-4	0.16	υ	0.16	0.63	U	0.63
trans-1,2-Dichloroethene	156-60-5	0,16	υ	0.16	0,63	U	0.63
1,2-Dichloroethene (total)	540-59-0	0.16	U	0,16	0.63	U	0.63
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	U	0.63
Trichloroethene	79-01-6	0.16	υ	0,16	0.86	U	0.86
Tetrachloroethene	127-18-4	0.16	υŴ	0.16	1.1	υV	1.1

CLIENT SAMPLE NO.

**VS-FENCE** 

Lab Name: TAL Burlington

SDG Number: NY123316

Dilution Factor: 1.50

Sample Matrix: AIR

Lab Sample No.: 734490

Date Analyzed: 12/12/07

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.30	υ	0.30	0.77	U	0.77
1,1-Dichloroethene	75-35-4	0.30	U	0.30	1.2	υ	1.2
trans-1,2-Dichloroethene	156-60-5	0.30	U	0,30	1.2	υ	1.2
1,2-Dichloroethene (lotal)	540-59-0	0.30	U	0.30	1.2	U	1.2
cis-1,2-Dichloroethene	156-59-2	0.30	U	0,30	1.2	U	1.2
Trichloroethene	79-01-6	0.30	υ	0.30	1.6	υ	1.6
Tetrachioroethene	127-18-4	35		0.30	240		2.0

CLIENT SAMPLE NO.

Lab Name: TAL Burlington

SDG Number: NY123316

Dilution Factor: 0.80

Sample Matrix: AIR

FB-120607

Lab Sample No.: 734491

Date Analyzed: 12/12/07

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Result <del>s</del> in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.16	UU	j 0.16	0.41	υų.	T 0.41
1,1-Dichloroethene	75-35-4	0.16	U	0.16	0.63	U	0.63
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	U	0.63
1,2-Dichloroethene (total)	540-59-0	0.16	U	0,16	0.63	U	0.63
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	U	0.63
Trichloroethene	79-01-6	0.16	U	0.16	0.86	U	0.86
Tetrachloroethene	127-18-4	0.16	u₩	0.16	1.1	υV	1.1

·

## **Data Validation Services**

120 Cobble Creek Road P.O. Box 208 North Creek, NY 12853

> Phone 518-251-4429 Facsimile 518-251-4428

November 18, 2009

Rob Kovacs Roux Associates 209 Shafter St. Islandia, NY 11747

RE: Data Usability Summary Report (DUSR) of Oceanside site data packages –air samples TAL–VT NY133422 and NY133428

Dear Mr. Kovacs:

Review has been completed for the data packages generated by TestAmerica Laboratories that pertain to analysis of 6-L summa canister air samples collected 09/02/09 and 09/04/09 at the Oceanside site. Four 6-L summa canister air samples were analyzed for seven site-specific volatile analytes by USEPA GC/MS method TO-15.

The data packages submitted by the laboratory contain full deliverables for validation, but this usability report is generated from review of the QC summary form information, with full review of sample raw data and limited review of associated QC raw data. Full validation has not been performed. However, the reported QC summary forms and sample raw data have been reviewed for application of validation qualifiers, with guidance from the 2006 USEPA Region II validation SOP HW-31, and in consideration of the specific requirements of the analytical methodology. The following items were reviewed:

- * Data Completeness
- * Case Narrative
- * Custody Documentation
- * Holding Times
- * Internal Standard Recoveries
- * Method Blanks
- * Laboratory Control Samples (LCSs)
- * Instrumental Tunes
- * Initial and Continuing Calibration Standards
- * Method Compliance
- * Sample Result Verification

Those items listed above which show deficiencies are discussed within the text of this narrative. All of the other items were determined to be acceptable for the DUSR level of review. **In summary**, sample processing was conducted primarily in compliance with the analysis protocol. All sample reported results are usable as reported. However three of the four samples were processed at dilution, resulting in elevated reporting limits above the requested level of 1 ug/M3 for undetected analytes.

Copies of the laboratory case narratives and client/laboratory sample identifications are attached to this text. Also attached are sample report forms.

### Volatile Analyses by EPA TO-15

Holding times were met, internal standard responses are acceptable, and instrument tunes meet fragmentation requirements.

No project specific accuracy or precision data are available. Spiked controls show acceptable recoveries.

IAQ-VAC and IAQ-BOOK were diluted prior to analysis (based on screen results) due to the high concentration of tetrachloroethene in those samples. The dilutions were performed at factors that brought the responses for that compound into the established instrument linear range. VS-MRE was diluted four-fold due to non-target component concentrations, in order to avoid overloading the instrumentation. Reporting limits for the undetected analytes are elevated accordingly.

Initial and continuing calibration standard (ICV and CCV) linearity and calibration verification responses were compliant.

### **Data Package Completeness**

Clean canister certification documentation was not available in the data package, but can be requested of the laboratory if full validation is required.

Please do not hesitate to contact me if questions or comments arise during your review of this report.

Very truly yours,

Judy Harry

### CLIENT and LABORATORY SAMPLE IDs and CASE NARRATIVES



TestAmerica Laboratories, Inc.

September 18, 2009

Mr. Rob Kovacs Roux Associates 209 Shafter Street Islandia, NY 11749

Re: Laboratory Project No. 29000 Case: 29000; SDG: NY133422

Dear Mr. Kovacs:

Enclosed are the analytical results for the samples that were received by TestAmerica Burlington on September 5th, 2009. Laboratory identification numbers were assigned, and designated as follows:

Lab ID	Client Sample ID	Sample <u>Date</u>	Sample <u>Matrix</u>
	Received: 09/05/09 ETR No:	133422	
805648	VS-MRE	09/04/09	AIR

Documentation of the condition of the samples at the time of their receipt and any exception to the laboratory's Sample Acceptance Policy is documented in the Sample Handling section of this submittal.

The volatile organics analysis for the sample referenced above was accomplished at dilution based on a screen analysis, which showed the presence of non-target analytes at concentrations sufficient to interfere with instrument operation at full strength.

Any reference within this report to Severn Trent Laboratories, Inc. or STL, should be understood to refer to TestAmerica Laboratories, Inc. (formerly known as Severn Trent Laboratories, Inc.) The analytical results associated with the samples presented in this test report were generated under a quality system that adheres to requirements specified in the NELAC standard. Release of the data in this test report and any associated electronic deliverables is authorized by the Laboratory Director's designee as verified by the following signature.

If there are any questions regarding this submittal, please contact me at 802 660-1990.

Sincerely,

Don Dawicki Project Manager



TestAmerica Laboratories, Inc.

September 17, 2009

Mr. Rob Kovacs Roux Associates 209 Shafter Street Islandia, NY 11749

Re: Laboratory Project No. 29000 Case: 29000; SDG: NY133428

Dear Mr. Kovacs:

Enclosed are the analytical results for the samples that were received by TestAmerica Burlington on September 4th, 2009. Laboratory identification numbers were assigned, and designated as follows:

Lab ID	Client	Sample	Sample
	<u>Sample ID</u>	<u>Date</u>	<u>Matrix</u>
	Received: 09/04/09 ETR No:	133420	
805636	IAQ-VAC	09/02/09	AIR
805637	AMB-FENCE	09/02/09	AIR
805638	IAQ-BOOK	09/02/09	AIR

Documentation of the condition of the samples at the time of their receipt and any exception to the laboratory's Sample Acceptance Policy is documented in the Sample Handling section of this submittal.

The volatile organics analyses for samples IAQ-VAC and IAQ-BOOK were accomplished at dilution based on screen analyses, to ensure quantitation of all target constituents within the range of calibrated instrument response.

Any reference within this report to Severn Trent Laboratories, Inc. or STL, should be understood to refer to TestAmerica Laboratories, Inc. (formerly known as Severn Trent Laboratories, Inc.) The analytical results associated with the samples presented in this test report were generated under a quality system that adheres to requirements specified in the NELAC standard. Release of the data in this test report and any associated electronic deliverables is authorized by the Laboratory Director's designee as verified by the following signature.



If there are any questions regarding this submittal, please contact me at 802 660-1990.

Sincerely,

Don Dawicki Project Manager

### SAMPLE RESULTS FORMS

.

CLIENT SAMPLE NO.

### **VS-MRE**

Lab Name: TAL Burlington

SDG Number: NY133422

Dilution Factor: 4.00

Sample Matrix: AIR

Lab Sample No.: 805648

Date Analyzed: 9/10/2009

Date Received: 9/5/2009

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.80	υ	0.80	2.0	υ	2.0
1.1-Dichloroethene	75-35-4	0.80	U	0.80	3.2	U	3.2
trans-1.2-Dichloroethene	156-60-5	0.80	U	0.80	3.2	U	3.2
cis-1.2-Dichloroethene	156-59-2	0.80	U	0.80	3.2	U	3.2
1 2-Dichloroethene (total)	540-59-0	0.80	U	0.80	3.2	υ	3.2
Trichloroethene	79-01-6	9,4		0.80	51		4.3
Tetrachloroethene	127-18-4	5.5		0.80	37		5.4

Lab Name: TAL Burlington

SDG Number: NY133428

Dilution Factor: 5.00

Sample Matrix: AIR

Lab Sample No.: 805636

Date Analyzed: 9/9/2009

CLIENT SAMPLE NO.

IAQ-VAC

Date Received: 9/4/2009

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	. RL in ug/m3
Vinyl Chloride	75-01-4	1.0	U	1.0	2.6	U	2.6
1,1-Dichloroethene	75-35-4	1.0	U	1.0	4.0	U	4.0
trans-1,2-Dichloroethene	156-60-5	1.0	U	1.0	4.0	U	4.0
cis-1,2-Dichloroethene	156-59-2	1.0	U	1.0	4.0	Ų	4.0
1,2-Dichloroethene (total)	540-59-0	1.0	U	1.0	4.0	U	4.0
Trichloroethene	79-01-6	1.0	U	1.0	5.4	U	5,4
Tetrachloroethene	127-18-4	130		1.0	880		6.B

Page 1 of 1

CLIENT SAMPLE NO.

AMB-FENCE

Lab Name: TAL Burlington

SDG Number: NY133428

Dilution Factor: 0.80

Sample Matrix: AIR

Lab Sample No.: 805637

-

Date Analyzed: 9/9/2009

Date Received: 9/4/2009

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0,16	U	0.16	0.41	U	0.41
1,1-Dichloroethene	75-35-4	0.16	U	0.16	0.63	IJ	0,63
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	U	0.63
cis-1,2-Dichloroethene	156-59-2	0.16	U	0,16	0.63	U	0,63
1,2-Dichlorosthene (total)	540-59-0	0,16	U	0.16	0.63	U	0,63
Trichloroethene	79-01-6	0,16	U	0.16	0.86	U	0,86
Tetrachloroethene	127-18-4	0,16	U	0.16	1,1	U	1.1

Printed: 9/17/2009 9:27:26 AM

Page 1 of 1

سيستقدم الاهتيان محرد الساد

----

.

CLIENT SAMPLE NO.

Lab Name: TAL Burlington

SDG Number: NY133428

Dilution Factor: 2.50

Sample Matrix: AIR

IAQ-BOOK Lab Sample No.: 805638

Date Analyzed: 9/9/2009

Date Received: 9/4/2009

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.50	U	0.50	1.3	U	1.3
1,1-Dichloroethene	75-35-4	0.50	υ	0.50	2.0	υ	2.0
trans-1,2-Dichloroethene	156-60-5	0.50	υ	0.50	2.0	U	2,0
cis-1,2-Dichloroethene	156-59-2	0.50	U	0,50	2.0	U	2.0
1,2-Dichloroethene (total)	540-59-0	0,50	U	0,50	2.0	U	2.0
Trichloroethene	79-01-6	0,50	U	0.50	2.7	U	2.7
Tetrachloroethene	127-18-4	74		0.50	500	L	3.4

Page 1 of 1

# **Data Validation Services**

120 Cobble Creek Road P.O. Box 208 North Creek, NY 12853

> Phone 518-251-4429 Facsimile 518-251-4428

November 27, 2009

Robert Kovacs Roux Associates 209 Shafter St. Islandia, NY 11747

RE: Data Usability Summary Report (DUSR) of Oceanside site data packages –air samples TAL–VT SDG No. NY134484

Dear Mr. Kovacs:

Review has been completed for the data package generated by TestAmerica Laboratories that pertains to analysis of 6-L summa canister air samples collected 10/28/09 at the Oceanside site. Seven 6-L summa canister air samples were analyzed for seven site-specific volatile analytes by USEPA GC/MS method TO-15.

The data packages submitted by the laboratory contain full deliverables for validation, but this usability report is generated from review of the QC summary form information, with full review of sample raw data and limited review of associated QC raw data. Full validation has not been performed. However, the reported QC summary forms and sample raw data have been reviewed for application of validation qualifiers, with guidance from the 2006 USEPA Region II validation SOP HW-31, and in consideration of the specific requirements of the analytical methodology. The following items were reviewed:

- * Data Completeness
- * Case Narrative
- * Custody Documentation
- * Holding Times
- * Internal Standard Recoveries
- * Method Blanks
- * Laboratory Control Samples (LCSs)
- * Instrumental Tunes
- * Initial and Continuing Calibration Standards
- * Method Compliance
- * Sample Result Verification

Those items listed above which show deficiencies are discussed within the text of this narrative. All of the other items were determined to be acceptable for the DUSR level of review. **In summary**, sample processing was conducted in compliance with the analysis protocol. All sample reported results are usable, although results for two of the samples are qualified as estimated due to the lack of residual vacuum at sample receipt.

Copies of the laboratory case narrative and client/laboratory sample identifications are attached to this text. Also attached are sample report forms.

### Volatile Analyses by EPA TO-15

Holding times were met, internal standard responses are acceptable, and instrument tunes meet fragmentation requirements.

Control spikes show acceptable recoveries. No precision data are available.

VS-VAC and VS-BOOK were received with no vacuum remaining in the canisters. Therefore, the reported results for those two samples are qualified as estimated in value, with a possible low bias.

Initial and continuing calibration standard (ICV and CCV) linearity and calibration verification responses were compliant.

### **Data Package Completeness**

Clean canister certification documentation was not available in the data package, but can be requested of the laboratory if full validation is required.

Please do not hesitate to contact me if questions or comments arise during your review of this report.

Very truly yours,

Judy Harry

### VALIDATION DATA QUALIFIER DEFINITIONS

U	The analyte was analyzed for, but was not detected above the level of the associated reported quantitation limit.
Ĵ	The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte in the sample.
UJ	The analyte was not detected. The associated reported quantitation limit is an estimate and may be inaccurate or imprecise.
NJ	The detection is tentative in identification and estimated in value. Although there is presumptive evidence of the analyte, the result should be used with caution as a potential false positive and/or elevated quantitative value.
R -	The data are unusable. The analyte may or may not be present.
EMPC	The results do not meet all criteria for a confirmed identification. The quantitative value represents the Estimated Maximum Possible Concentration of the analyte in the sample.

### CLIENT and LABORATORY SAMPLE IDs and CASE NARRATIVE



TestAmerica Laboratories, Inc.

November 17, 2009

Mr. Rob Kovacs Roux Associates 209 Shafter Street Islandia, NY 11749

Re: Laboratory Project No. 29000 Case: 29000; SDG: NY134484

Dear Mr. Kovacs:

Enclosed are the analytical results for the samples that were received by TestAmerica Burlington on October 31st, 2009. Laboratory identification numbers were assigned, and designated as follows:

Lab ID	Client <u>Sample ID</u>	Sample <u>Date</u>	Sample <u>Matrix</u>
	Received: 10/31/09 ETR No:	134484	
8122/6	VS-DCF	10/28/09	AIR
812240	VS-MRF	10/28/09	AIR
812247	VS-DCR	10/28/09	AIR
812240	VS-VAC	10/28/09	AIR
812250		10/28/09	AIR
812251	VS-BOOK	10/28/09	AIR
812252	IAQ-BOOK	10/28/09	AIR
812251 812252	VS-BOOK IAQ-BOOK	10/28/09 10/28/09	AIR AIR

Documentation of the condition of the samples at the time of their receipt and any exception to the laboratory's Sample Acceptance Policy is documented in the Sample Handling section of this submittal.

During the canister pressure check performed upon receipt, it was observed that samples VS-VAC and VS-BOOK were received at ambient pressure. The analysis of this sample proceeded at the client's request.

Manual integration was employed in deriving certain of the analytical results. The values that have been derived from manual integration are qualified on the quantitation reports, and extracted ion current profiles are included in the data package.



Any reference within this report to Severn Trent Laboratories, Inc. or STL, should be understood to refer to TestAmerica Laboratories, Inc. (formerly known as Severn Trent Laboratories, Inc.) The analytical results associated with the samples presented in this test report were generated under a quality system that adheres to requirements specified in the NELAC standard. Release of the data in this test report and any associated electronic deliverables is authorized by the Laboratory Director's designee as verified by the following signature.

If there are any questions regarding this submittal, please contact me at 802 660-1990.

Sincerely,

a Con 8

Sara Goff Project Manager

Enclosure

## QUALIFIED SAMPLE RESULTS FORMS
CLIENT SAMPLE NO.

VS-DCF

Lab Name: TAL Burlington

. .

SDG Number: NY134484

Dilution Factor: 0.80

Sample Matrix: AIR

Lab Sample No.: 812246

Date Analyzed: 11/11/2009

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.16	U	0,16	0.41	U	0.41
1,1-Dichloroethene	75-35-4	0.16	ប	0.16	0,63 .	U	0.63
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	U	0.63
cis-1.2-Dichloroethene	156-59-2	0.16	U	0.16	0,63	U	0,63
1.2-Dichlorgethene (total)	540-59-0	0.16	U	0,16	0.63	U	0,63
Trichloroethene	79-01-6	0.16	U	0,16	0,86	U	0.86
Tetrachloroethene	127-18-4	0.33		0.16	2,2	<u> </u>	1.1

CLIENT SAMPLE NO.

VS-MRE

Lab Name: TAL Burlington

SDG Number: NY134484

Dilution Factor: 0.80

Sample Matrix: AIR

Lab Sample No.: 812247

Date Analyzed: 11/11/2009

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.16	U	0.16	0.41	U	0.41
1,1-Dichloroethene	75-35-4	0.16	U	0.16	0.63	U	0.63
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0,63	U	0,63
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	υ	0.63
1,2-Dichloroethene (total)	540-59-0	0.16	U	0.16	0.63	U	0.63
Trichloroethene	79-01-6	2,7		0.16	15		0.86
Tetrachloroethene	127-18-4	0.37		0.16	2.5		1.1

CLIENT SAMPLE NO.

VS-DCR

Lab Name: TAL Burlington

SDG Number: NY134484

Dilution Factor: 0.80

Sample Matrix: AIR

Lab Sample No.: 812248

Date Analyzed: 11/11/2009

Target Compound	CAS Number	Results in ppbv	Q	RL İn ppbv	Results in ug/m3	Q	RL. in ug/m3
Vinyl Chloride	75-01-4	0,16	U	0.16	0.41	U	0.41
1,1-Dichloroethene	75-35-4	0.16	U	0.16	0.63	U	0,63
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	U	0.63
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	U	0.63
1,2-Dichloroethene (total)	540-59-0	0.16	U	0,16	0.63	U	0.63
Trichloroethene	79-01-6	0,16	U	0.16	0.86	υ	0.86
Tetrachloroethene	127-18-4	0.43		0.16	2.9		1.1

CLIENT SAMPLE NO.

VS-VAC

Lab Name: TAL Burlington

SDG Number: NY134484

Dilution Factor: 0.80

Sample Matrix: AIR

Lab Sample No.: 812249

Date Analyzed: 11/11/2009

Target Compound	CAS Number	Results In ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0,16	υu	5 0.16	0.41	υų	J 0.41
1,1-Dichloroethene	75-35-4	0.16	U	0,16	0.63	U	0.63
trans-1,2-Dichloroethene	156-60-5	0,16	υ	0.16	0.63	υ	0.63
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	υ	0.63
1,2-Dichloroethene (total)	540-59-0	0.16	U	0.16	0.63	U	0.63
Trichloroethene	79-01-6	0,16	U	0.16	0.86	υ 🖌	0.86
Tetrachloroethene	127-18-4	0.35	5	0.16	2,4	ゴ	1.1

CLIENT SAMPLE NO.

IAQ-VAC

Lab Name: TAL Burlington

SDG Number: NY134484

Dilution Factor: 0.80

Sample Matrix: AIR

Lab Sample No.: 812250

Date Analyzed: 11/11/2009

Date Received: 10/31/2009

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results In ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.16	U	0.16	0.41	U	0.41
1,1-Dichloroethene	75-35-4	0.16	U	0.16	0.63	U	0.63
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	U	0.63
cis-1,2-Dichloroethene	156-59-2	0.16	ປ	0.16	0.63	U	0.63
1,2-Dichloroethene (total)	540-59-0	0.16	U	0.16	0.63	U	0.63
Trichloroethene	79-01-6	0.16	U	0.16	0.86	U ·	0.86
Tetrachioroethene	127-18-4	1.1		0.16	7.5		1.1

,

CLIENT SAMPLE NO.

VS-BOOK

Lab Name: TAL Burlington

SDG Number: NY134484

Dilution Factor: 0.80

Sample Matrix: AIR

Lab Sample No.: 812251

• • • • • • •

Date Analyzed: 11/11/2009

Date Received: 10/31/2009

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results In ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.16	υN	J 0,16	0.41	υlt	5 0.41
1,1-Dichloroethene	75-35-4	0.16	υ	0,16	0.63	υ	0.63
trans-1,2-Dichloroethene	156-60-5	0.16	υ	D.16	0.63	U	0.63
cls-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	υ	0.63
1,2-Dichloroethene (total)	540-59-0	0.16	U	0.16	0.63	U	0.63
Trichloroethene	79-01-6	0.16	UV	0.16	0.86	Vu	0.86
Tetrachioroethene	127-18-4	0.37	3	0.16	2.5	J	1.1

ł

CLIENT SAMPLE NO.

IAQ-BOOK

TAL Burlington Lab Name:

SDG Number: NY134484

Dilution Factor: 0.80

Sample Matrix: AIR

Lab Sample No.: 812252

11/11/2009 Date Analyzed:

Date Received: 10/31/2009

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
	75-01-4 ²	0.16	υ	0.16	0.41	L	0.41
Vinyi Chlonge	75-35-4	0.16	υ	0,16	0.63	U	0.63
1,1-Dichloroethene		0 16	11	0.16	0.63	υ	0,63
trans-1,2-Dichloroethene	100-00-0	0,10		n 16	0.63	U	0.63
cis-1,2-Dichloroethene	156-59-2	0.10	U	0.10	0.62	11	0.63
1.2. Dichloroethene (Iotal)	540-59-0	0.16	U	0.16	0,03		
	79-01-6	0,16	U	0.16	0.86	L. U.	U.88
Trichloroethene	127-18-4	1.6		0.16	11	<u> </u>	1.1

Page 1 of 1

# **APPENDIX D**

Blower and Vapor-Phase Carbon Drum Cut Sheets Return to Contents

# **ROTRON** Regenerative Blowers

# DR 656 & CP 656 **Regenerative Blower**

### **FEATURES**

- Manufactured in the USA
- CE compliant Declaration of Conformity on file
   Maximum flow: 210 SCFM

- Maximum pressure: 106 IWG
  Maximum vacuum: 6.39" Hg (87 IWG)
  Standard motor: 4.0 HP, TEFC
- Cast aluminum blower housing, impeller & cover; cast iron muffler extension & flanges (threaded)
- UL & CSA approved motor with permanently sealed ball bearings
- Inlet & outlet internal muffling
- Quiet operation within OSHA standards

#### MOTOR OPTIONS

- International voltage & frequency (Hz)
  Chemical duty, high efficiency, inverter duty or industry-specific designs
- Various horsepowers for application-specific needs

### **BLOWER OPTIONS**

- Corrosion resistant-surface treatments & sealing options
- Remote drive (motoriess) models
- Slip-on or face flanges for application-specific needs Cast iron cover for additional noise resonance
- .
- ACCESSORIES (See Catalog Accessory Section)
- Flowmeters reading in SCFM ÷
- Filters & moisture separators
- Pressure gauges, vacuum gauges & relief valves
- Switches air flow, pressure, vacuum or temperature External mufflers for additional silencing
- ÷
- Air knives (used on blow-off applications)



# BLOWER PERFORMANCE AT STANDARD CONDITIONS









AMETEK Technical and Industrial Products, Kent, OH 44240 • e mail: rotronindustrial@ametek.com • internet: www.ametekImd.com

# **ROTRON** Regenerative Blowers

. I .

Return to Contents

# DR 656 & CP 656 Regenerative Blower



## **SPECIFICATIONS**

	v						
MODEL	DB656CK72X	DR656CK86X	DR656K72X	DR656K58X	DR656D72X	DR656D86X	CP656CR72XLR
Port No.	01000010 270	080583	080602	080603	080585	080604	080065
Motor Enclosure – Shaft Material	TEFC-CS	TEFC - CS	TEFC - CS	TEFC – CS	TEFC – CS	TEFC – CS	Chern TEFC - SS
Horsepower	4	4	3	3	5	5	4
Voltage 1	230/460	575	230/460	115/230	230/460	575	Same as
Phase - Frequency 1	Three-60 Hz	Three-50/60 Hz	Three-60 Hz	Single-60 Hz	Three-60 Hz	Three-60 Hz	DR656CK72X
Insulation Class 2	F	F	F	F	न	F	080582
NEMA Bated Motor Amos	10/5	4	7,4/3,7	31/15.5	12.8/6.4	4.8	except add
Senilee Factor	1.15	1.0	1,15	1.0	1.0	1.15	Chemical
Locked Botor Amps	94/47	80	54/27	200/100	160/80	60	Processing
May Blower Amps 3	11.4/5.7	4.56	8.8/4.4	27.8/13.9	13/6.5	5,2	(GP)
Recommended NEMA Starter Size	1/0	0	0/0	1.5/1	1/1	1	from
Shipping Weight Ib	110 lb (49.9 kg)	110 lb (49.9 kg)	114 lb (51.8 kg)	112 lb (50.8 kg)	112 lb (50.8 kg)	114 lb (51.8 kg)	page iii

1 Rotron motors are designed to handle a broad range of world voltages and power supply variations. Our dual voltage 3 phase motors are factory tested and certified to operate on both: 208-230/415-460 VAC-3 ph-60 Hz and 200-220/380-415 VAC-3 ph-50 Hz. Our dual voltage 1 phase motors are factory tested and certified to operate on both: 104-115/208-230 VAC-1 ph-60 Hz and 100-110/200-220 VAC-1 ph-50 Hz. All voltages above can handle a ±10% voltage fluctuation. Special wound motors can be ordered for voltages outside our certified range.

2 Maximum operating temperature: Motor winding temperature (winding rise plus ambient) should not exceed 140°C for Class F rated motors or 120°C for Class B rated motors. Blower outlet air temperature should not exceed 140°C (air temperature rise plus inlet temperature). Performance curve maximum pressure and suction points are based on a 40°C inlet and ambient temperature. Consult factory for inlet or ambient temperatures above 40°C.

Maximum blower amps corresponds to the performance point at which the motor or blower temperature rise with a 40°C inlet and/or ambient temperature reaches the maximum operating temperature.

Specifications subject to change without notice. Please consult your Local Field Sales Engineer for specification updates.

AMETEK Technical and Industrial Products, Kent, OH 44240 • e mail: rotronindustrial@ametek.com • internet: www.ametektmd.com

Rev. 6/08

# Vent-Scrub® Vapor Phase Adsorbers

#### Applications

The Vent-Scrub[®] adsorbers have been proven to be the simplest and most cost effective way to treat malodorous and VOC emission problems. Sturdy steel construction and specially formulated corrosion resistant internal coating ensures long service life and low maintenance. Applications for Vent-Scrub[®] adsorbers include:

- API separator vents
- VOC control from soil vapor extraction (SVE) systems and airstrippers
- Wastewater and product storage tank vents
- Process vents
- Refinery and chemical plant wastewater sewer vents
- Laboratory hood exhausts

#### Installation, Startup and Operation

Siemens can provide a total service package that includes utilizing OSHA trained personnel providing on-site carbon changeouts, packaging and transportation of spent carbon for recycling at our reactivation facilities, where the contaminants are thermally destroyed.



We provide instructions on sampling the spent carbon and completion of our spent carbon profile form. Spent carbon acceptance testing can be performed at our certified laboratory.

When requested, a certificate of reactivation will be issued.

### Benefits and Design Features

- Durable, carbon steel construction.
- Abrasion and corrosion resistant baked epoxy lining; urethane exterior finish (Vent-Scrub® 1000, 2000, 3000, 8000 adsorbers).
- Ready-to-use systems, simple installation and operation.
- Applications to 3750 SCPM.
- The Vent-Scrub® 1000, 2000, 3600 and 8000 adsorbers have forklift channels for easy handling.
- The Vent-Scrub® 200, 400, 1000 and 2000 adsorbers are UN/DOT approved
- transportation containers for RCRA hazardous spent carbon.
- Hose kit and pipe manifold options are available to simplify installation and operation

#### Piping Manifold (Optional)

- 2"/3" sch 80 PVC piping and valves (optional carbon steel and stainless steel piping).
- Series or parallel operation
- Sampling ports and pressure gauges.
- Flexible hoses with Kamlock fittings allow easy installation and removal during service exchange operations (Vent-Scrub® 200, 400, 1000 and 2000 adsorbers).

#### Water Technologies

# SIEMENS

		Speading	tion		
Vent-Scrub® Adsorber Model No.	200	400	1000/2000	3000	8000
Dimensions, diameter x overall height	22" x 34"	32" x 43"	48" x 59"/48" x 95"	60" x 112"	96″ x 131″
Inlet Connection	2" FNPT	4" FNPT	4" FNPT	10" Flange	16" Flange
Outlet Connection	2" MPT	4" FNPT	4" FNPT	10" Flange	16" Flange
Manway	Тор	Тор	18″ Top	16" Top	20" Top/Side
Internal Distribution(1)	PVC	PVC	PVC	FRP/PPL	FRP/PPL
Interior Coating	Ероху	Ероху	Ероху	Ероху	Ероху
Exterior Coating	Enamel	Enamel	Epoxy/Urethane	Epoxy/Urethane	Epoxy/Urethane
Carbon Fill Volume (Cu.ft.)	6.8	14	34/68	107	273
Cross Sectional Area (sq.ft.)	2.8	4.9	12.3	19.6	50.2
Approx. Carbon Weight (lbs)	200	400	1000/2000	3000	8000
Empty Vessel Weight (Ibs)	50	80	890/1190	2500	5500
Flow, CFM (max.)	100	300	500	1500	3750
Pressure, psig (max.)	З	3	14.9	5	5
Temperature, deg. F (max) ⁽⁴⁾	140	140	140	140	140
Vacuum, in. Hg (max.)	N/A	N/A	12/12(2)	6 ⁽³⁾	12(3)

1Carbon steel and stainless steel internals are also available.

²For vacuum greater than 12 in. Hg on Vent-Scrub® 2000 Adsorber, contact your Siemens representative.

³For vacuum service on Vent-Scrub[®] 3000 and 8000 Adsorber, contact your Siemens representative.

4For higher temperatures, stainless and carbon steel internals are available.

For detailed dimensional information or drawings, contact your local Siemens sales representative.

Warning

The adsorption of organic compounds onto activated carbon generates heat. In rare instances, adsorbed compounds may also react on the carbon surface to generate additional heat. If these heat sources are not properly dissipated, the carbon bed temperature may rise to the point where the carbon can ignite, leading to a fire or other hazardous condition. A description of industryaccepted engineering practices to assure the dissipation of heat and safe operation of the carbon bed can be provided upon request. In certain applications where the risk of ignition is significant, activated carbon may not be a recommended treatment technology. Please contact your Technical Sales Representative for more details.

Wet activated carbon readily adsorbs atmospheric oxygen. Dangerously low oxygen levels may exist in closed vessels or poorly ventilated storage areas. Workers should follow all applicable state and federal safety guidelines for entering oxygen depleted areas.

All information presented herein is believed reliable and in accordance with accepted engineering practices. Siemens makes no warranties as to the completeness of this information. Users are responsible for evaluating individual product suitability for specific applications. Siemens assumes no liability whatsoever for any special, indirect or consequential damages arising from the sale, resale or misuse of its products.



Siemens Water Technologies 2430 Rose Place Roseville, MN 55113 800.525.0658 phone

© 2009 Siemens Water Technologies Corp. WS-VSCdr-DS-0509 Subject to change without prior notice. Vent-Scrub is a trademark of Siemens, its subsidiaries or affiliates

The information provided in this literature contains merely general descriptions or characteristics of performance which in actual case of use do not always apply as described or which may change as a result of further development of the products. An obligation to provide the respective characteristics shall only exist if expressly agreed in the terms of the contract.

# APPENDIX E

Photographs of Sub Slab Vent System Installation



Photograph 1: Crane that was used to hoist equipment onto the roof.



Photograph 2: SVE Blower Package being hoisted onto the roof.



Photograph 3: Vapor-Phase Carbon Drum being hoisted onto the roof.



Photograph 4: SVE Blower Package in place on roof, prior to piping being installed.



Photograph 5: SVE Blower Package after installation with fiberglass enclosure in place.



Photograph 6: Electric panel for SVE Blower.



Photograph 7: SVE System after installation.



Photograph 8: SVE System after installation.



Photograph 9: SVE influent and effluent piping.



Photograph 10: SVE System after installation



Photograph 11. SVE piping.

ROUX ASSOCIATES, INC.



Photograph 12: Vapor-phase carbon-drum on skid.