

130 E. Chestnut Street, Lancaster, PA 17602 (717) 735-9508 Lancaster, PA – Sarasota, FL

February 22, 2013

Mr. Jamie Ascher NYSDEC – Region 1 SUNY at Stony Brook 50 Circle Road Stony Brook, NY 11790-3409

RE: Remedial Investigation Report Addendum – Data Update

Oceanside Plaza Site ID No. C130158

3131-3221 Long Beach Road, Oceanside, NY 11572

Nassau County

Dear Mr. Ascher:

The following provides a summary of post-remediation ground water monitoring well sampling and indoor air quality/sub-slab vapor sampling conducted at the above referenced location since the submittal of the Remedial Investigation Report (December 2010, Revised August 2012). The activities are associated with tetrachloroethene contaminated soils identified in the direct vicinity of the former Jef-El Dry Cleaner facility located within the Oceanside Plaza.

POST-REMEDIATION GROUND WATER SAMPLING

October 18, 2012 Sampling Event

On October 18, 2012, Reliance Environmental, Inc. (REI) performed the final planned ground water sampling event. REI sampled ground water monitoring wells MW-4 (source area well) and MW-5 (downgradient well) (Figure 1). These wells have been sampled on a quarterly basis since July 2009. All ground water monitoring well sampling protocol followed the approved procedures presented in the Quality Assurance Project Plan (Appendix C of the Remedial Investigation Workplan, May 2007). Groundwater samples were submitted for Priority Pollutant List Volatile Organic Compounds + Xylene (total) using EPA Method SW-846 8260.

Laboratory analysis reported all analyzed parameters as non-detect in ground water monitoring well MW-4 and duplicate sample BKO-DUP (collected from well MW-4). As such all concentrations were reported below the NYSDEC Water Quality Standards Surface Waters and Ground Water (Table 1, 6NYCRR Part 703.5).

Laboratory analysis reported the presence of tetrachloroethene (10 μ g/l) and cis-1, 2-dichloroethene (11 μ g/l) in ground water monitoring well MW-5. Both contaminant concentrations were reported in exceedance of the NYSDEC Water Quality Standards Surface Waters and Ground Water (Table 1, 6NYCRR Part 703.5). All remaining analyzed parameters were reported as non-detect in these two samples.

Laboratory analytical results for all ground water sampling events are summarized in Table 2 and displayed in Figures A-1 through A-2, Appendix A. All laboratory analytical data sheets (electronic copies) are provided in Appendix B.

Ground Water Gradient

During each ground water monitoring event, depth to ground water readings were collected from the site wells for determining ground water flow direction. Ground water has been calculated to flow in a south/southeastern direction beneath the subject property at an average gradient of approximately 0.00080 ft/ft (Figure 2). All ground water gradient data is summarized in Table 3.

Data Usability

Following receipt of data for the ground water sampling event, a Data Usability Summary Report (DUSR) was prepared by Data Validation Services (an independent data validator). A copy of the DUSR is provided in Appendix C.

GROUND WATER CONTAMINANT ANALYSIS TRENDS

MW-4 - Tetrachloroethene

A review of the laboratory data indicates decreasing tetrachloroethene concentrations in well MW-4 prior to the exterior contaminated soil excavation activities (July 2009) - from a high of 360 μ g/l in November 2005 to 77 μ g/l in July 2009. Concentrations continued to decrease immediately following the excavation activities, to non-detectable levels (January, April and October 2010). Tetrachloroethene concentrations rebounded slightly, from January 2011 and through April 2012; however, laboratory analysis has reported tetrachloroethene as non-detect in the well during the July 2012 and October 2012 sampling events.

MW-5 - Tetrachloroethene

A review of the laboratory data indicates decreasing tetrachloroethene concentrations in well MW-5, from July 2009 through July 2010. Laboratory analysis reported tetrachloroethene as non-detect during the January 2011 and July 2011 sampling events, with concentrations rebounding slightly in October 2011. Concentrations have since remained relatively constant in the well since October 2011, ranging from 8 $\mu g/l$ to 14 $\mu g/l$.

Trend analysis indicates a decreasing environment (Figure 3), with concentrations leveling out in 2011 and slightly increasing thereafter. This increase mirrors those seen in MW-4 during the same timeframe, and have subsequently declined to non-detect levels.

MW-5 - cis-1,2-Dichloroethene

Cis-1,2-Dichloroethene has only ever been reported in well MW-5, with a high concentration of 80 μ g/l being reported in January 2012. Contaminant concentrations have since decreased, with concentrations ranging from 9 μ g/l to 11 μ g/l in the April 2012, July 2012 and October 2012 sampling events.

Trend analysis indicates a relatively steady-state environment (Figure 4). However, based on the fact that the compound was most likely the result of tetrachloroethene degradation and that the compound readily degrades at a rate faster than tetrachloroethene, the decreasing trend is anticipated to continue.

Ambient

Protass Luggage Store (rear)

Sitewide

The 7 years (3 years – MW-5) of ground water monitoring data clearly indicate:

- A 99% reduction of tetrachloroethene concentrations in MW-4 (source area well).
 - Tetrachloroethene concentrations have been reported as non-detect (<5.0 μ g/I) during the previous two sampling events.
 - No other parameters have ever been reported in the well.
- > A 94% reduction of tetrachloroethene concentrations in MW-5 (downgradient well).
 - Tetrachloroethene appears to have obtained asymptotic levels/trends, as concentrations have remained consistent (between 8 µg/l and 14 µg/l) for the previous five consecutive quarters.
 - Cis-1,2-dichloroethene and vinyl chloride, tetrachloroethene degradation products, are the other
 parameters to have been reported in the well at concentrations exceeding the NYSDEC Water
 Quality Standards.
 - Cis-1,2-dichloroethene appears to have obtained asymptotic levels/trends, as concentrations have remained consistent (between 9 μ g/l and 11 μ g/l) for the previous three consecutive quarters.
 - Vinyl chloride concentrations have been reported as non-detect (<5.0 μg/l) during the previous three sampling events.

No further action/monitoring is recommended for the identified ground water contamination beyond the October 2012 sampling event. Additionally, upon approval of this Report, the five on-site ground water monitoring wells will thereafter be abandoned in accordance with NYSDEC regulations. It is anticipated that a groundwater use restriction may be utilized, however, this will be assessed and detailed in the FER.

INDOOR AIR QUALITY AND SUB-SLAB VAPOR SAMPLING

On January 13, 2012, March 1, 2012 and December 18, 2012, Roux Associates, Inc. collected indoor air quality samples, sub-slab vapor samples and an outdoor (ambient) air sample from the following locations (Figure 5):

Indoor Air Quality
Chapter One Books, Inc. (IAQ-Book)
Vino 100 (IAQ-Vac)

Sub-Slab Vapor
Chapter One Books, Inc. (VS-Book)
Vino 100 (VS-Vac)
Jef-El Dry Cleaners (DCF)
Jef-El Dry Cleaners (DCR)

Jef-El Dry Cleaners (MRE) Jef-El Dry Cleaners (Fence)

Sample Collection Procedures

As an initial step to collecting sub-slab vapor samples, three volumes of air were purged from the Teflon™ sampling tube using a low flow air pump at a rate of 100 ml/m. During purging activities a tracer gas (i.e., helium) was used to verify that the ambient air from inside the retail spaces would not dilute the sub-slab or soil vapor sample that will be collected. An enclosure (i.e., clean empty five-gallon bucket) was inverted over the sub-slab sampling point. Ultra-high purity (laboratory grade) helium was then

introduced into the bucket, creating a helium-enriched environment immediately over the borehole. A tedlar sampling bag was attached to the low-flow air pump and filled with the purge vapor as the helium was added to the enclosure over the top of the borehole. The purge volume in the tedlar bag was then screened for the tracer gas (helium) using a direct read field meter. The atmosphere in the enclosure was also screened for helium using a direct read field meter. The helium concentration in the tedlar bag was compared to the concentration in the enclosure. If the helium concentration in the tedlar bag was greater than 20 percent of the helium concentration in the enclosure, the seals of the sampling equipment would have been verified and the tubing would have been purged again until the helium concentration in the tedlar bag is less than 20 percent of the concentration in the enclosure. Note that at both sampling locations, the seals passed the helium tracer test on the first attempt, assuring that a true, representative sub-slab vapor sample that has not been influenced by ambient air was collected.

Following purging activities, a laboratory cleaned and evacuated six-liter SUMMA canister was then attached to the top of the Teflon™ tubing above land surface. The SUMMA canister was equipped with a laboratory provided flow regulator that was pre-calibrated to collect samples over a continuous 8-hour time period. The valve on the SUMMA canister was opened, allowing for the collection of a sub-slab vapor sample.

Following sample collection (but prior to sealing the temporary monitoring points), the soil vapor extraction (SVE) system was restarted and allowed to operate for a period of 30 minutes to allow conditions to equilibrate. Following this 30 minute period, vacuum response measurements were collected at each temporary point. There was no vacuum response detected at either sub-slab vapor point, indicating that these locations are outside the Radius of Influence (ROI) of the SVE system. Following the collection of vacuum response measurements, the tubing and screens were removed, and the temporary boreholes were sealed with cement. The SVE system was left on following the completion of this sampling event.

Indoor air quality and outdoor (ambient) air samples were collected concurrently with the sub-slab vapor samples described above. The samples were collected using a 6-liter SUMMA canister equipped with a pre-calibrated flow regulator set to collect the sample over an 8-hour period.

Indoor air quality, sub-slab vapor and ambient air samples were submitted to TestAmerica Laboratories, Inc. of Burlington, Vermont under chain-of-custody procedures for analysis. All samples were submitted for analysis for select VOCs (vinyl chloride, 1,1-dichloroethene, trans-1,2-dichloroethene, cis-1,2-dichloroethene, and tetrachloroethene using United States Environmental Protection Agency Method TO-15. Laboratory analytical results are summarized in Table 4.

Sample Results - Indoor Air Quality

Laboratory analysis reported the presence of tetrachloroethene in the indoor air quality samples collected from the Chapter One Books, Inc. and Vino 100 stores during all three sample events. Concentrations in the Chapter One Books, Inc. store ranged from 2.3 μ g/m³ (January 13, 2012) to 32 μ g/m³ (March 1, 2012). Concentrations in the Vino 100 store ranged from 5.2 μ g/m³ (January 13, 2012) to 28 μ g/m³ (March 1, 2012). All concentrations were reported below the Air Guideline Value of 100 μ g/m³ for tetrachloroethene, as set forth in the New York State Department of Health "Guidance for Evaluating Soil Vapor Intrusion in the State of New York", dated October 2006.

Trichloroethene was also detected in the Chapter One Books, Inc. store on December 18, 2012, at a concentration of $0.33~\mu g/m^3$. All concentrations were reported below the Air Guideline Value of $5~\mu g/m^3$ for trichloroethene, as set forth in the New York State Department of Health "Guidance for Evaluating Soil Vapor Intrusion in the State of New York", dated October 2006.

Sample Results - Sub-Slab Vapor

Tetrachloroethene - Laboratory analysis reported the presence of tetrachloroethene at each sub-slab vapor sample location. Concentrations ranged from a low of non-detect at location VS-Fence (December 18, 2012) to a high of 21,100 μg/m³ (March 1, 2012) at sample location VS-Vac.

Trichloroethene - Laboratory analysis reported the presence of trichloroethene at each sub-slab vapor sample location. Concentrations ranged from a low of non-detect at multiple locations to a high of 97.8 µg/m³ (March 1, 2012) at sample location VS-Vac.

A review of the laboratory analytical data indicates a steady reduction of both tetrachloroethene and trichloroethene concentrations beneath Chapter One Books, Inc. and the center/rear of the Jef-El Dry Cleaners (DRC and MRE) during the three sampling events. Conversely, parameter concentrations beneath Vino 100 and front/exterior of the Jef-El Dry Cleaners (DCF and Fence) showed and initial increase in concentrations (between January and March 2012) followed by a decrease in concentrations (between March and December 2012). It should be noted that the State of New York does not have any standards, criteria or guidance values for concentrations of volatile chemicals in subsurface vapors (either soil vapor or sub-slab vapor).

Sample Results – Ambient

Laboratory analysis reported the presence of tetrachloroethene in the ambient samples collected in all events since 2010. Concentrations ranged from a low of 0.57 μ g/m³ (March 1, 2012) to a high of 1.2 μ g/m³ (December 18, 2012).

Data Usability

Following receipt of data for the ground water sampling event, a Data Usability Summary Report (DUSR) was prepared by Data Validation Services (an independent data validator). A copy of the DUSR and laboratory analytical data sheets are provided in Appendix D.

INDOOR AIR QUALITY AND SUB-SLAB VAPOR CONTAMINANT ANALYSIS TRENDS

Contaminant Analysis

A review of the data indicates that tetrachloroethene concentrations at a majority of the indoor air quality and sub-slab vapor sample locations showed a spike during the March 2012 sampling event, followed by a significant decrease in the December 2012 sampling event. A review of remedial operations indicated that the SVE system was deactivated by the new proprietor of the Jef-El Dry Cleaners between the January 2012 and March 2012 sampling events. As such, the system was subsequently modified to eliminate the possibility of tenants deactivating SVE operation.

Even with the system being deactivated, neither tetrachloroethene nor trichloroethene were reported above the air guideline values (100 μ g/m3 – tetrachloroethene and 5 μ g/m3 – trichloroethene), as presented in the New York State Department of Health Final Guidance for Evaluating Soil Vapor in the State of New York (October 2006). Essentially, the findings of the indoor air quality and sub-slab vapor sampling indicate that the existing system is protective of the IAQ.

If you have any questions and/or comments regarding this submission, please feel free to contact me at (717) 735-9508.

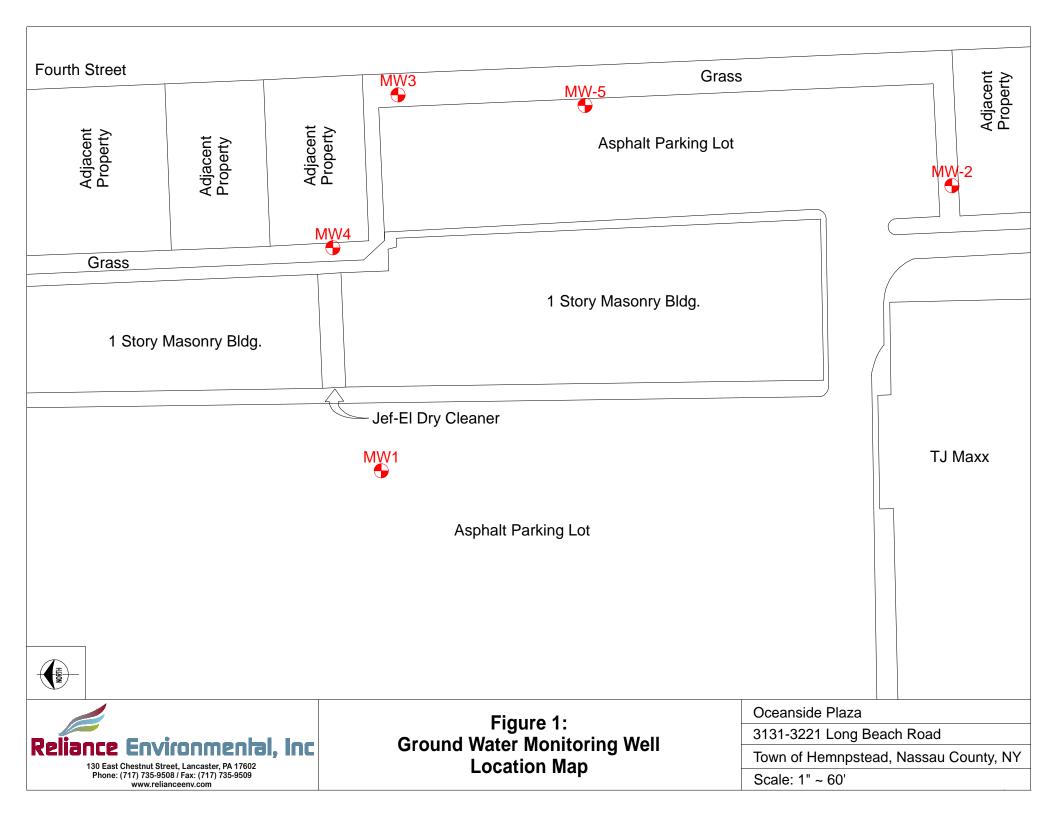
MICHAEL P. RAFFON

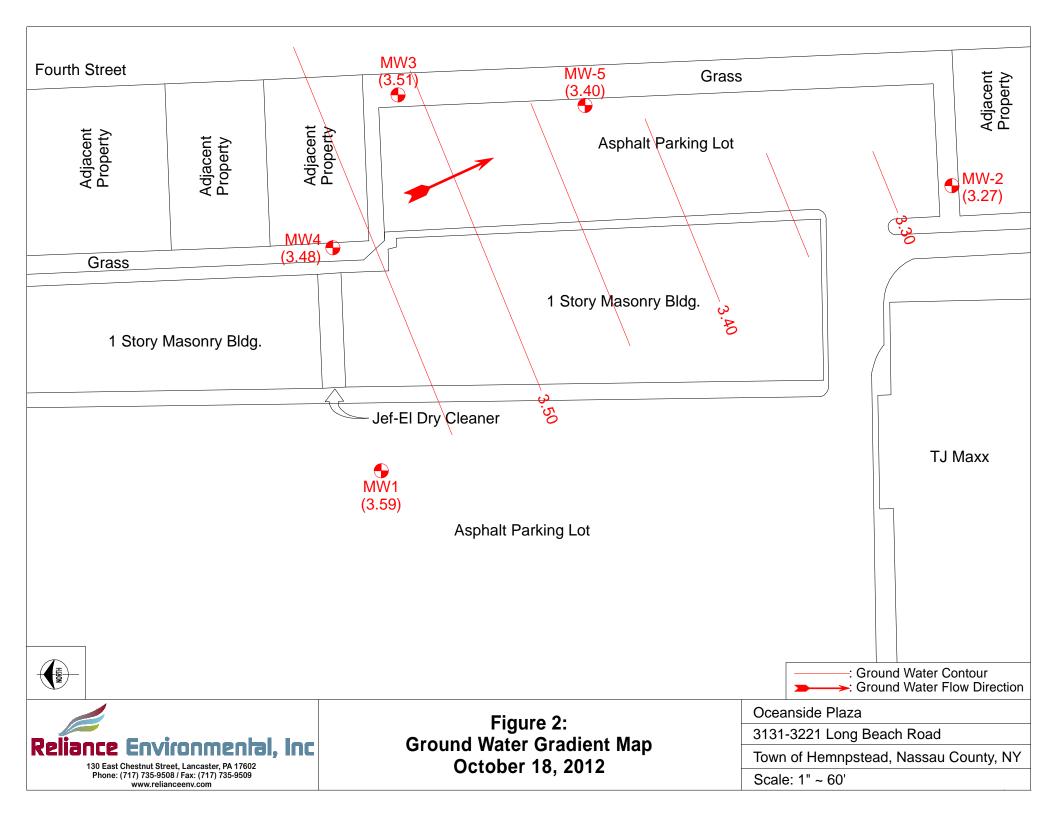
Sincerely,

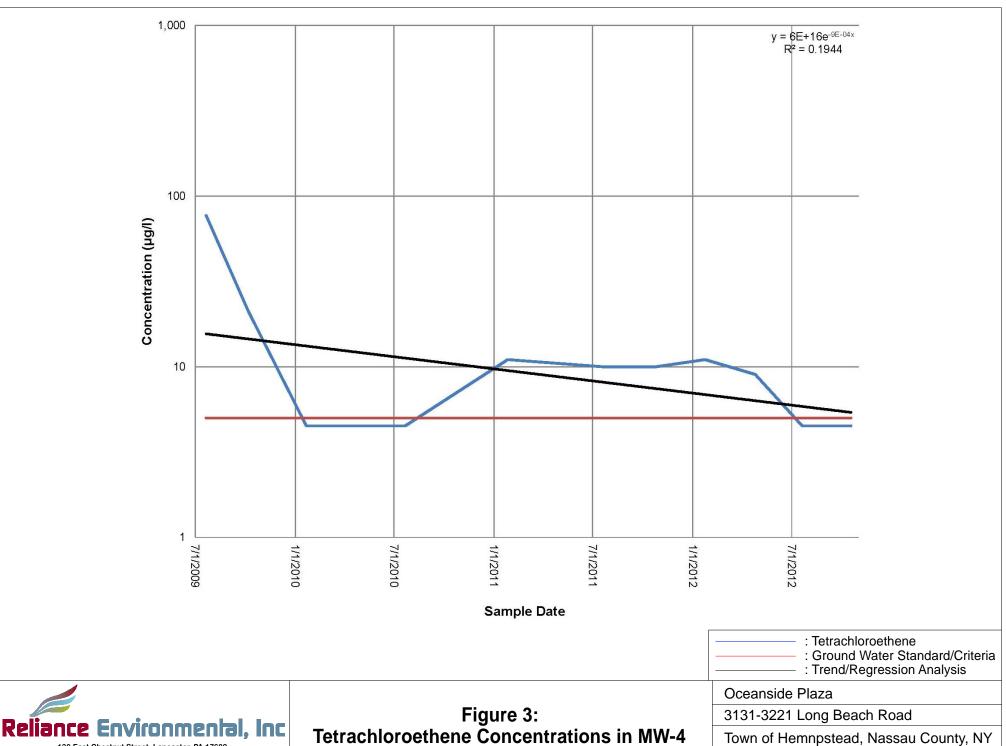
RELIANCE ENVIRONMENTAL, INC.

Mark E. Zunich

Senior Project Manager mez@relianceenv.com

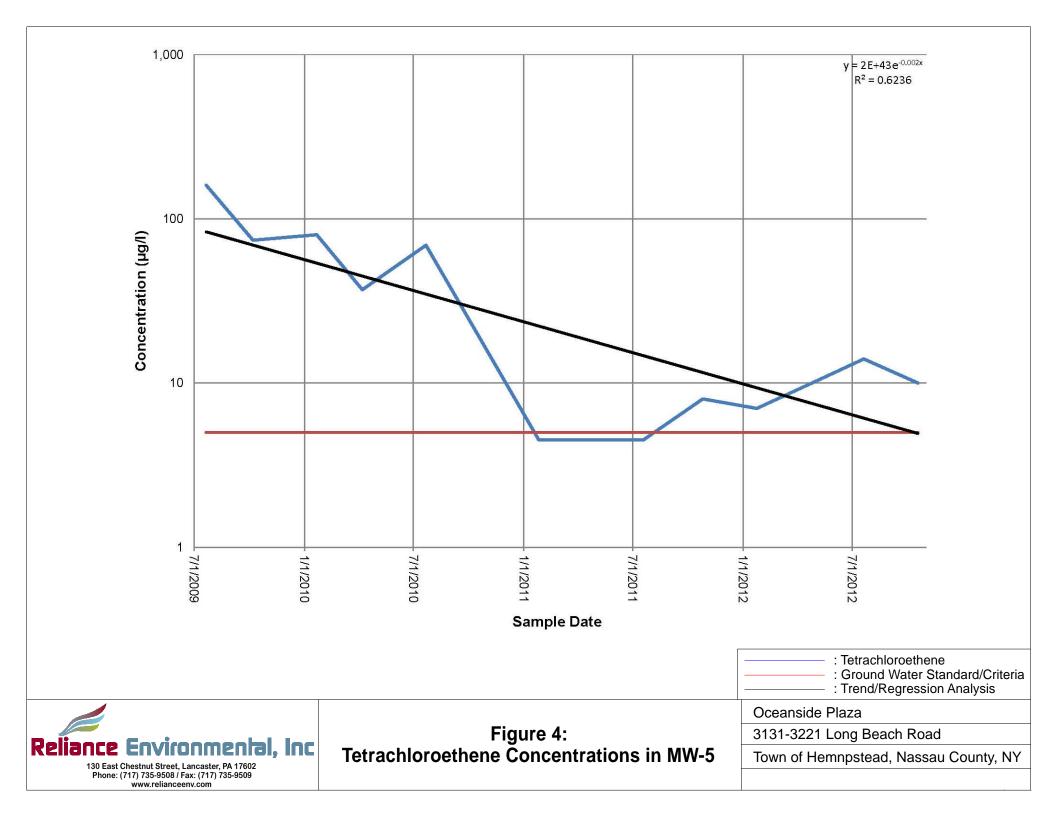

Michael P. Raffoni, P.G. Principal Geologist

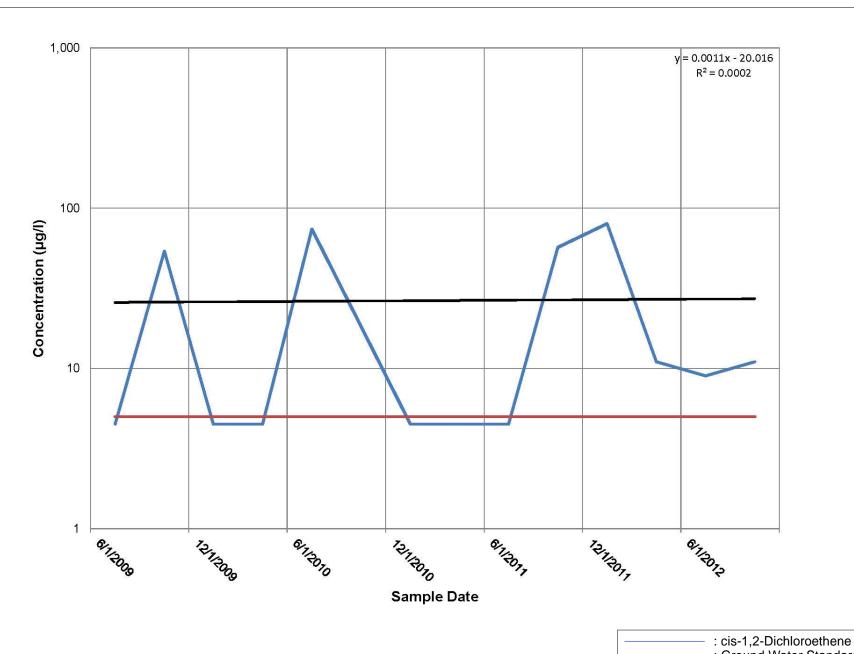

mpr@relianceenv.com


CC:

M. Kemp J. Brooks, Esq.

FIGURES



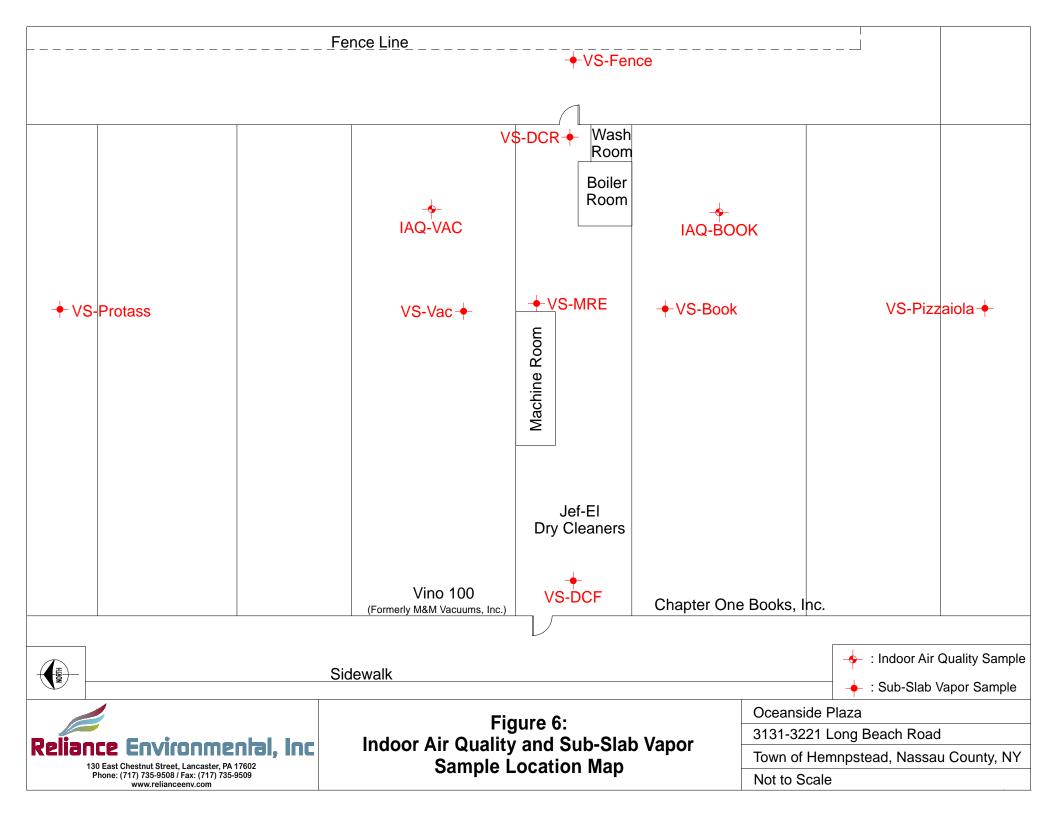


130 East Chestnut Street, Lancaster, PA 17602 Phone: (717) 735-9508 / Fax: (717) 735-9509

www.relianceenv.com

Town of Hemnpstead, Nassau County, NY

www.relianceenv.com


Figure 5: cis-1,2-Dichloroethene Concentrations in MW-5

: Ground Water Standard/Criteria : Trend/Regression Analysis

Oceanside Plaza

3131-3221 Long Beach Road

Town of Hemnpstead, Nassau County, NY

TABLES

TABLE 1 Ground Water Monitoring Well Sampling - Field Parameters (October 18, 2012) Oceanside Plaza, 3131-3221 Long Beach Road, Town of Hempstead, Nassau County, New York

				1		_	
Monitoring	Purge Time	Purge Rate	рН	Specific Conductivity	Dissolved Oxygen	Temperature	ORP
Well	(minutes)	(gal./min.)	(S.U.)	(mS/cm)	(mg/l)	(Celsius)	(mV)
	0		6.28	0.191	3.89	18.0	78
MW-4	5	0.30	6.13	0.189	2.45	18.4	94
10100-4	10	0.30	6.11	0.190	2.14	18.5	100
	15		6.09	0.189	2.03	18.5	105
	0		6.58	0.422	0.46	21.6	28
MW-5	5	0.30	6.38	0.483	0.28	21.9	44
10100-5	10	0.30	6.42	0.492	0.14	21.8	32
	15		6.52	0.490	0.04	21.8	1

Complete setion	Carralla Data	Depth-to	1,1-	cis-1,2-	Tetrachloroethene		Trichloroethene	Vinyl Chloride	MTBE
Sample Location	Sample Date	Water (feet)	Dichloroethene (µg/l)	Dichloroethene (µg/l)	(µg/l)	Dichloroethene (µg/l)	(µg/l)	(µg/l)	(µg/l)
Ground Water Standards/Criteria*	na	na	5.0	5.0	5.0	5.0	5.0	2.0	10**
	11/16/2005	5.54	<2.0	<2.0	<1.0	<2.0	<1.0	<2.0	<2.0
MW-1	2/22/2006	5.77	<2.0	<2.0	<1.0	<2.0	<1.0	<2.0	<2.0
10100 - 1	5/17/2006	5.79	<2.0	<2.0	<1.0	<2.0	<1.0	<2.0	<2.0
	10/1/2007	6.51	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA
	11/16/2005	6.06	<2.0	<2.0	<1.0	<2.0	<1.0	<2.0	12
MW-2	2/22/2006	6.28	<2.0	<2.0	<1.0	<2.0	<1.0	<2.0	<2.0
10100-2	5/17/2006	6.23	<2.0	<2.0	<1.0	<2.0	<1.0	<2.0	13
	10/1/2007	6.99	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA
	11/16/2005	6.53	<2.0	<2.0	<1.0	<2.0	<1.0	<2.0	<2.0
MW-3	2/22/2006	6.74	<2.0	<2.0	<1.0	<2.0	<1.0	<2.0	<2.0
10100-3	5/17/2006	6.78	<2.0	<2.0	<1.0	<2.0	<1.0	<2.0	<2.0
	10/1/2007	7.48	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA

Sample Location	Sample Date	Depth-to Water	1,1- Dichloroethene	cis-1,2- Dichloroethene	Tetrachloroethene	trans-1,2- Dichloroethene	Trichloroethene	Vinyl Chloride	MTBE
		(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
Ground Water Standards/Criteria*	na	na	5.0	5.0	5.0	5.0	5.0	2.0	10**
	11/16/2005	6.60	<2.0	<2.0	360	<2.0	<1.0	<2.0	<2.0
	2/22/2006	6.82	<2.0	<2.0	230	<2.0	<1.0	<2.0	<2.0
	5/17/2006	6.84	<2.0	<2.0	100	<2.0	<1.0	<2.0	<2.0
	10/1/2007	7.57	<5.0	<5.0	110	<5.0	<5.0	<5.0	NA
	7/21/2009	6.90	<0.8	<0.8	77	<0.8	<1.0	<1.0	NA
	10/7/2009	7.33	<5.0	<5.0	21	<5.0	<5.0	<5.0	NA
	1/21/2010	7.09	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA
MW-4	4/7/2010	5.95	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA
10100-4	7/22/2010	7.53	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA
	1/26/2011	7.05	<5.0	<5.0	11	<5.0	<5.0	<5.0	NA
	7/19/2011	7.49	<5.0	<5.0	10	<5.0	<5.0	<5.0	NA
	10/26/2011	7.00	<5.0	<5.0	10	<5.0	<5.0	<5.0	NA
	1/24/2012	7.13	<5.0	<5.0	11	<5.0	<5.0	<5.0	NA
	4/25/2012	7.23	<5.0	<5.0	9	<5.0	<5.0	<5.0	NA
	7/20/2012	7.21	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA
	10/18/2012	7.46	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA

Sample Location	Sample Date	Depth-to Water	1,1- Dichloroethene	cis-1,2- Dichloroethene	Tetrachloroethene	trans-1,2- Dichloroethene	Trichloroethene	Vinyl Chloride	MTBE
·	·	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
Ground Water Standards/Criteria*	na	na	5.0	5.0	5.0	5.0	5.0	2.0	10**
	7/21/2009	6.44	<0.8	<0.8	160	<0.8	1.00	<1.0	NA
	10/7/2009	6.88	<5.0	54	74	<5.0	<5.0	17	NA
	1/21/2010	6.64	<5.0	<5.0	80	<5.0	<5.0	<5.0	NA
	4/7/2010	5.49	<5.0	<5.0	37	<5.0	<5.0	<5.0	NA
	7/22/2010	7.06	<5.0	74	69	<5.0	<5.0	<5.0	NA
MW-5	1/26/2011	6.56	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA
10100-5	7/19/2011	7.03	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA
	10/26/2011	6.55	<5.0	57	8	<5.0	<5.0	13	NA
	1/24/2012	6.67	<5.0	80	7	<5.0	<5.0	10	NA
	4/25/2012	6.76	<5.0	11	10	<5.0	<5.0	<5.0	NA
	7/20/2012	6.75	<5.0	9	14	<5.0	<5.0	<5.0	NA
	10/18/2012	6.99	<5.0	11	10	<5.0	<5.0	<5.0	NA

Sample Location	Sample Date	Depth-to Water	1,1- Dichloroethene	cis-1,2- Dichloroethene	Tetrachloroethene	trans-1,2- Dichloroethene	Trichloroethene	Vinyl Chloride	MTBE
		(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
Ground Water Standards/Criteria*	na	na	5.0	5.0	5.0	5.0	5.0	2.0	10**
	10/1/2007***	na	<5.0	<5.0	160	<5.0	<5.0	<5.0	NA
	7/21/2009***	na	<0.8	<0.8	75	<0.8	<1.0	<1.0	NA
	10/7/2009***	na	<5.0	<5.0	20	<5.0	<5.0	<5.0	NA
	1/21/2010***	na	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA
	4/7/2010***	na	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA
5 " (7/22/2010***	na	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA
Duplicate (MW-4)	1/26/2011***	na	<5.0	<5.0	13	<5.0	<5.0	<5.0	NA
(,	7/19/2011***	na	<5.0	<5.0	10	<5.0	<5.0	<5.0	NA
	10/26/2011***	na	<5.0	<5.0	10	<5.0	<5.0	<5.0	NA
	1/24/2012***	na	<5.0	<5.0	12	<5.0	<5.0	<5.0	NA
	4/25/2012***	na	<5.0	<5.0	9	<5.0	<5.0	<5.0	NA
	7/20/2012***	na	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA
	10/18/2012***	na	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA

Sample Location	Sample Date	Depth-to Water	1,1- Dichloroethene	cis-1,2- Dichloroethene	Tetrachloroethene	trans-1,2- Dichloroethene	Trichloroethene	Vinyl Chloride	MTBE
		(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
Ground Water Standards/Criteria*	na	na	5.0	5.0	5.0	5.0	5.0	2.0	10**
	11/16/2005	na	<2.0	<2.0	<1.0	<2.0	<1.0	<2.0	<2.0
	2/22/2006	na	<2.0	<2.0	<1.0	<2.0	<1.0	<2.0	<2.0
	5/17/2006	na	<2.0	<2.0	<1.0	<2.0	<1.0	<2.0	<2.0
	10/1/2007	na	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA
	7/21/2009	na	<0.8	<0.8	<0.8	<0.8	<1.0	<1.0	NA
	10/7/2009	na	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA
	1/21/2010	na	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA
Field Blank	4/7/2010	na	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA
r leid blank	7/22/2010	na	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA
	1/26/2011	na	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA
	7/19/2011	na	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA
	10/26/2011	na	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA
	1/24/2012	na	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA
	4/25/2012	na	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA
	7/20/2012	na	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA
	10/18/2012	na	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA

		Depth-to	1,1-	cis-1,2-	Tetrachloroethene	trans-1,2-	Trichloroethene	Vinyl Chloride	MTBE
Sample Location	Sample Date	Water	Dichloroethene	Dichloroethene	rendomoroemene	Dichloroethene	THOMOTOGUICHE	Viriyi Omondo	WIDE
		(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
Ground Water Standards/Criteria*	na	na	5.0	5.0	5.0	5.0	5.0	2.0	10**
	11/16/2005	na	<2.0	<2.0	<1.0	<2.0	<1.0	<2.0	<2.0
	2/22/2006	na	<2.0	<2.0	<1.0	<2.0	<1.0	<2.0	<2.0
	5/17/2006	na	<2.0	<2.0	<1.0	<2.0	<1.0	<2.0	<2.0
	10/1/2007	na	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA
	7/21/2009	na	<0.8	<0.8	<0.8	<0.8	<1.0	<1.0	NA
	10/7/2009	na	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA
	1/21/2020	na	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA
Trip Blank	4/7/2010	na	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA
ттр ыапк	7/22/2010	na	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA
	1/26/2011	na	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA
	7/19/2011	na	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA
	10/26/2011	na	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA
	1/24/2012	na	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA
	4/25/2012	na	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA
	7/20/2012	na	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA
	10/18/2012	na	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA

BOLD = Exceeds the TAGM regulated levels.

na = Not applicable.

NA = Not Analyzed.

^{* =} Levels referenced in TAGM 4046.

^{** =} STARS Memo #1: Petroleum Contaminated Soil Guidance Policy (Ground Water Standards/Criteria).

^{*** =} Duplicate of ground water monitoring well MW-4.

TABLE 3 Ground Water Gradient Data Oceanside Plaza, 3131-3221 Long Beach Road, Town of Hempstead, Nassau County

Monitoring	Sample	Top-of-Casing Elevation	Depth-to-Water	Ground Water Elevation
Well	Date	(feet)	(feet)	(feet)
	11/16/2005		5.54	4.44
	2/22/2006		5.77	4.21
	5/17/2006		5.79	4.19
	10/1/2007		6.51	3.47
	7/21/2009		5.82	4.16
	1/21/2010		6.00	3.98
	4/7/2010		4.89	5.09
MW-1	7/22/2010	9.98	6.46	3.52
	1/26/2011		5.96	4.02
	7/19/2011		6.41	3.57
	10/26/2011		5.89	4.09
	1/24/2012		6.04	3.94
	10/26/2011 1/24/2012 4/25/2012 7/20/2012 10/18/2013 11/16/2005	6.17	3.81	
	7/20/2012		6.13	3.85
	10/18/2013		6.39	3.59
	11/16/2005		6.06	4.08
	2/22/2006		6.28	3.86
	5/17/2006		6.23	3.91
	10/1/2007		6.99	3.15
	7/21/2009		6.34	3.80
	10/7/2009		6.75	3.39
	1/21/2010		6.52	3.62
MW-2	4/7/2010	10.14	5.40	4.74
	7/22/2010		6.95	3.19
	7/19/2011		6.93	3.21
	10/26/2011		6.44	3.70
	1/24/2012		6.61	3.53
	4/25/2012		6.60	3.54
	7/20/2012		6.65	3.49
	10/18/2013		6.87	3.27

TABLE 3 Ground Water Gradient Data Oceanside Plaza, 3131-3221 Long Beach Road, Town of Hempstead, Nassau County

Ocea	IIISIUE FIAZA, 3131-32Z	I Long Beach Road, To	DWII OI HEIIIPSIEAU, NA	•
Monitoring	Sample	Top-of-Casing Elevation	Depth-to-Water	Ground Water Elevation
Well	Date	(feet)	(feet)	(feet)
	11/16/2005		6.53	4.30
	2/22/2006		6.74	4.09
	5/17/2006		6.78	4.05
	10/1/2007		7.48	3.35
	7/21/2009		6.82	4.01
	10/7/2009		7.26	3.57
	1/21/2010		6.99	3.84
MW-3	4/7/2010	10.83	5.87	4.96
	7/22/2010		7.44	3.39
	7/19/2011		7.39	3.44
	10/26/2011		6.90	3.93
	1/24/2012		7.10	3.73
	4/25/2012		7.13	3.70
	4/25/2012 7/20/2012 10/18/2013 11/16/2005		7.11	3.72
	10/18/2013		7.11 7.32 6.60	3.51
	11/16/2005		6.60	4.34
	2/22/2006		6.82	4.12
	5/17/2006		6.84	4.10
	10/1/2007		7.57	3.37
	7/21/2009		6.90	4.04
	10/7/2009		7.33	3.61
	1/21/2010		7.09	3.85
MW-4	4/7/2010	10.94	5.95	4.99
	7/22/2010	10.01	7.53	3.41
	1/26/2011		7.05	3.89
	7/19/2011		7.49	3.45
	10/26/2011		7.00	3.94
	1/24/2012		7.13	3.81
	4/25/2012		7.23	3.71
	7/20/2012		7.21	3.73
	10/18/2013		7.46	3.48

TABLE 3 **Ground Water Gradient Data** Oceanside Plaza, 3131-3221 Long Beach Road, Town of Hempstead, Nassau County Top-of-Casing Elevation Monitoring Depth-to-Water **Ground Water Elevation** Sample Well Date (feet) (feet) (feet) 7/21/2009 6.44 3.95 10/7/2009 6.88 3.51 1/21/2010 6.64 3.75 4/7/2010 5.49 4.90 7/22/2010 7.06 3.33 1/26/2011 3.83 6.56 MW-5 10.39 7/19/2011 7.03 3.36 10/26/2011 6.55 3.84 1/24/2012 6.67 3.72 4/25/2012 6.76 3.63 7/20/2012 6.75 3.64

6.99

10/18/2013

3.40

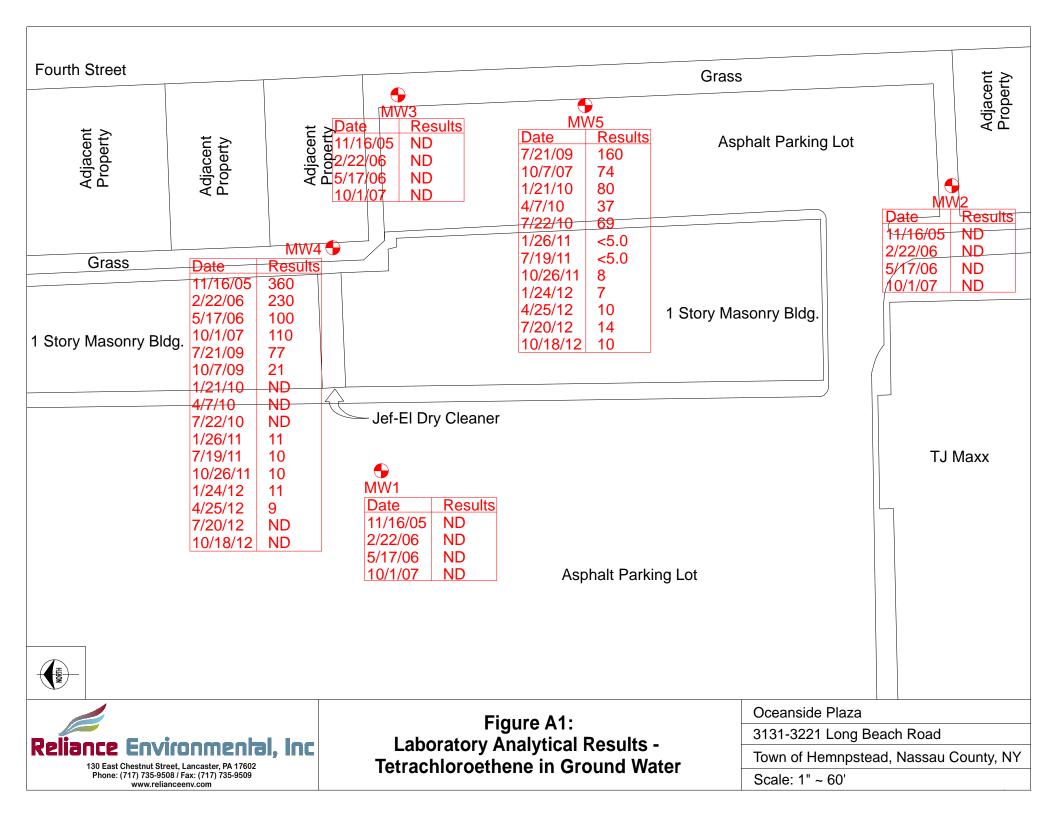
Oceanside Plaza, 3131-3221Long Beach Road, 10wh of Hempstead, Nassau County										
Sample Location	Sample Date	1,1- Dichloroethene	1,2- Dichloroethene	cis-1,2- Dichloroethene	Tetrachloroethene	trans-1,2- Dichloroethene	Trichloroethene	Vinyl Chloride		
		(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)		
				Indoor Air Quality						
Air G	udeline Value*	DNE	DNE	DNE	100	DNE	5	DNE		
	12/6/2007	0.63U	0.63U	0.63U	88	0.63U	5.9	0.41U		
	9/2/2009	2U	2U	2U	500	2U	2.7U	1.3U		
Chapter One	10/28/2009	0.63U	0.63U	0.63U	11	0.63U	0.86U	0.41U		
Books, Inc.	1/13/2012	0.79U	0.79U	0.79U	2.3	0.79U	0.21U	0.51U		
	3/1/2012	0.79U	0.79U	0.79U	32	0.79U	0.21U	0.51U		
	12/18/2012	0.79U	0.79U	0.79U	8.1	0.79U	0.33	0.51U		
	12/6/2007	0.63U	0.63U	0.63U	2.6	0.63U	0.86U	0.41U		
	9/2/2009	4U	4U	4U	880	4U	5.4U	2.6U		
Vino 100	10/28/2009	0.63U	0.63U	0.63U	7.5	0.63U	0.86U	0.41U		
VIIIO 100	1/13/2012	0.79U	0.79U	0.79U	5.2	0.79U	0.21U	0.51U		
	3/1/2012	0.79U	0.79U	0.79U	28	0.79U	0.21U	0.51U		
	12/18/2012	0.79U	0.79U	0.79U	13	0.79U	0.21U	0.51U		
				Sub-Slab Vapor						
	12/6/2007	48U	48U	48U	8,100	48U	64U	31U		
	10/28/2009	0.63U	0.63U	0.63U	2.5	0.63U	0.86U	0.41U		
Chapter One Books, Inc.	1/13/2012	0.79U	0.79U	0.79U	467	0.79U	7	0.51U		
2001.0, 1110.	3/1/2012	3.2U	3.1U	3.2U	232	3.2U	1.2	2U		
	12/18/2012	3.2U	3.1U	3.2U	131	3.2U	0.86U	2U		

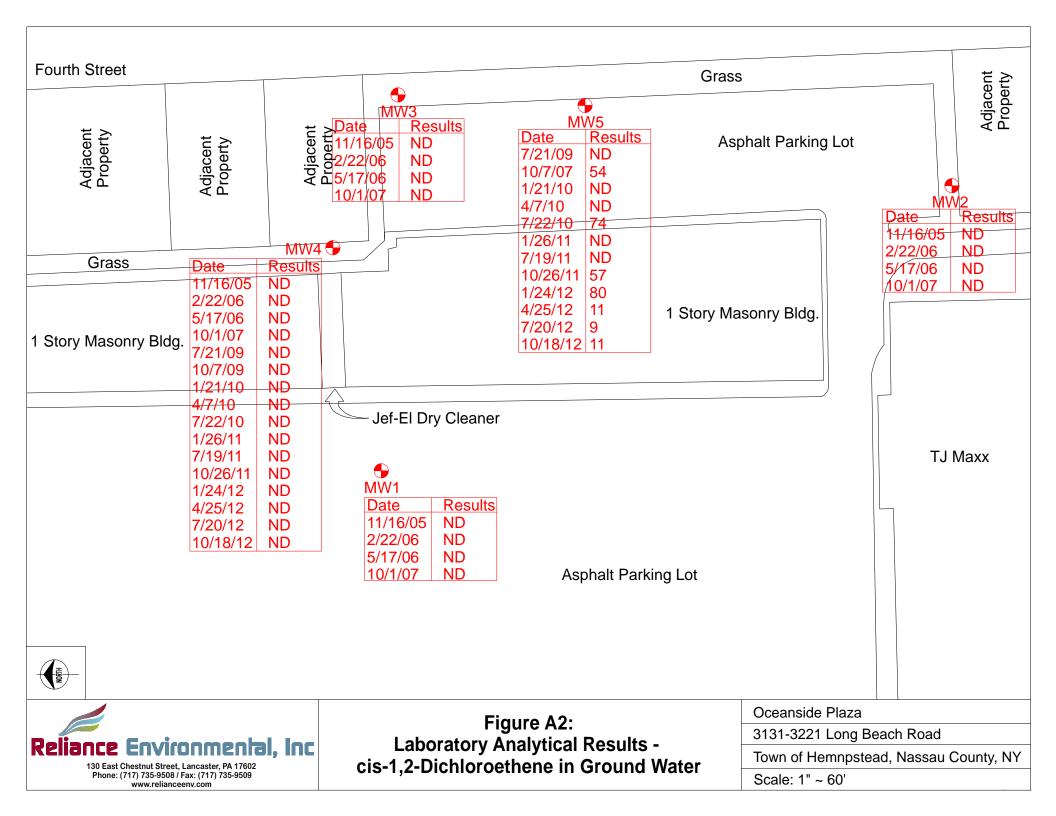
Sample Location	Sample Date	1,1- Dichloroethene	1,2- Dichloroethene	cis-1,2- Dichloroethene	Tetrachloroethene	trans-1,2- Dichloroethene	Trichloroethene	Vinyl Chloride
-		(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)
				Sub-Slab Vapor				
	12/6/2007	120U	120U	120U	18,000	120U	160U	77U
	10/28/2009	0.63U	0.63U	0.63U	2.4	0.63U	0.86U	0.41U
Vino 100	1/13/2012	0.79U	0.79U	0.79U	4,180	0.79U	78.5	0.51U
	3/1/2012	44U	43U	44U	21,100	44U	97.8	28U
	12/18/2012	13U	13U	13U	9,830	13U	36U	8.2U
	12/6/2007	1.2U	1.2U	1.2U	350	1.2U	2.5	0.77U
	10/28/2009	0.63U	0.63U	0.63U	2.2	0.63U	0.86U	0.41U
Jef-El Dry Cleaners (DCF)	1/13/2012	0.79U	0.79U	0.79U	150	0.79U	2.6	0.51U
0.00(20.7)	3/1/2012	3.2U	3.1U	3.2U	766	3.2U	3.7	2U
	12/18/2012	3.2U	3.1U	3.2U	11	3.2U	0.86U	2U
	12/6/2007	320U	320U	320U	81,000	320U	430U	200U
	10/28/2009	0.63U	0.63U	0.63U	2.9	0.63U	0.86U	0.41U
	1/13/2012	0.79U	0.79U	0.79U	3,480	0.79U	21	0.51U
	3/1/2012	3.2U	3.1U	3.2U	1,990	3.2U	2.2	2U
Jef-El Dry Cleaners (DCR)	12/18/2012	3.2U	3.1U	3.2U	164	3.2U	0.86U	2U

		1,1-	1,2-	cis-1,2-	Tetrachlereethene	trans-1,2-	Trichloroothono	Vinul Chlorida		
Sample Location	Sample Date	Dichloroethene	Dichloroethene	Dichloroethene	Tetrachloroethene	Dichloroethene	Trichloroethene	Vinyl Chloride		
		(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)		
	Sub-Slab Vapor									
	12/6/2007	280U	280U	280U	50,000	280U	380	180U		
	9/4/2009	3.2U	3.2U	3.2U	37	3.2U	51	2U		
Jef-El Dry	10/28/2009	0.63U	0.63U	0.63U	2.5	0.63U	15	0.41U		
Cleaners (MRE)	1/13/2012	0.79U	0.79U	0.79U	1,080	0.79U	56.4	0.51U		
	3/1/2012	3.2U	3.1U	3.2U	902	3.2U	3.5	2U		
	12/18/2012	3.2U	3.1U	3.2U	205	3.2U	0.86U	2U		
	12/6/2007	1.2U	1.2U	1.2U	240	1.2U	1.6U	0.77U		
Jef-El Dry	1/13/2012	0.79U	0.79U	0.79U	46	0.79U	0.39	0.51U		
Cleaners (Fence)	3/1/2012	3.2U	3.1U	3.2U	224	3.2U	0.86U	2U		
	12/18/2012	3.2U	3.1U	3.2U	1.1U	3.2U	0.86U	2U		
Pizzaiola	6/14/2010	0.63U	0.63U	0.63U	5	0.63U	0.86U	0.41U		
Protass	6/14/2010	0.63U	0.63U	0.63U	17	0.63U	0.86U	0.41U		

Sample Location	Sample Date	1,1- Dichloroethene	1,2- Dichloroethene	cis-1,2- Dichloroethene	Tetrachloroethene	trans-1,2- Dichloroethene	Trichloroethene	Vinyl Chloride
		(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)
				Ambient				
	12/6/2007	0.63U	0.63U	0.63U	1.1U	0.63U	0.86U	0.41U
	9/2/2009	0.63U	0.63U	0.63U	1.1U	0.63U	0.86U	0.41U
AMB**	6/14/2010	0.63U	0.63U	0.63U	13	0.63U	1.40	0.41U
AIVID	1/13/2012	0.79U	0.79U	0.79U	0.6	0.79U	0.21U	0.51U
	3/1/2012	0.79U	0.79U	0.79U	0.57	0.79U	0.21U	0.51U
	12/18/2012	0.79U	0.79U	0.79U	1.2	0.79U	0.21U	0.51U

^{* =} NYSDOH "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" (Indoor Air Quality Only).


BOLD = Exceeds the Air Guideline Value.


DNE = Does Not Exist.

^{** =} Ambient air quality sample.

APPENDIX A GROUND WATER MONITORING WELL SAMPLING LABORATORY ANALYTICAL RESULTS FIGURES

APPENDIX B OCTOBER 18, 2012 GROUND WATER MONITORING WELL SAMPLING LABORATORY ANALYTICAL DATA SHEETS

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

NYSDEC ASP Category B Data Package

Prepared for:

Reliance Environmental, Inc.

130 East Chestnut Street Lancaster PA 17602

Project: Oceanside Plaza Water Samples Collected on 10/18/12

SDG# OSP14

GROUP SAMPLE NUMBERS 1343222 6828481-6828485

PA Cert. # 36-00037 NY Cert. # 10670 NJ Cert. # PA011 NC Cert. # 521

TX Cert. # T104704194-08A-TX

Through our technical processes and second person review of data, we have established that our data/deliverables are in compliance with the methods and project requirements unless otherwise noted or previously resolved with the client.

Date: 10/30/2012

Authorized by:

Dana M. Kauffman

Long on Xayfonson

Manager

Any questions or concerns you might have regarding this data package should be directed to Environmental Client Services at (717) 656-2300.

Table of Contents for SDG# OSP14

1.	Sample Reference List
2.	Analysis Request, Field Chain-of-Custody Record
3.	Preservation Data
4.	Methodology Summary/Reference 5
5.	Analysis Reports6
6.	Volatiles by GC/MS Data13
	a. Case Narrative/Conformance Summary14
	b. Quality Control and Calibration Summary Forms18
	c. Sample Data43
	d. Standards Data87
	e. Raw OC Data

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Reference List for SDG Number OSP14 with a Data Package Type of NYSDEC B

12577 - Reliance Environmental, Inc.

Project: Oceanside Plaza

Lab	Lab	
Sample	Sample	
Number	Code	Client Sample Description
6828481	M4	BKO-MW4 Grab Water Sample
6828482	-5	BKO-MW5 Grab Water Sample
6828483	FD4	BKO-DUP Grab Water Sample
6828484	FBOC-	BKO-FB Grab Water Sample
6828485	TBOC-	BKO-TB Water Sample

onmental Analysis Request/Chain of Custody	
2	ŀ
2	
S	
7	ļ
O	
)	i
7	
J	ı
U	ı
7	ŀ
76	
7	
X	l
1	l
9	Î
9	ľ
2	
Ó	1
3	
T	l
S	
7	
S	
	1
B	
U	
A	
	ı
O	ŀ
Ħ	
7	i
\mathbf{e}	
n	
O	ľ
1	
5	
	ı
	ı
	I
	I
	_

	💸 eurofins	Acct. # 12577	For Eu Group #	For Eurofins Lancaster Laboratories use grly らいらいの # / 3 y 32 2 【Sample # しじらいりの / 3 y 32 2 【Sample # しいこう	aster abo	oratories nple #	Aligo esu	878	1-05		۲	# JO	COC # 315090	060
	Laboratories		Instructio	ns on reverse s		Maith greet	ad numbers.					F)) H))
Ċ	1) Client Information	ation		4 Matrix	ž	٢	5	Ana	lysis I	Analysis Requested		For Lab Use Only	se Only	
////	Client:	Acct. #:		E		<u></u>		Pre	servat	Preservation Codes		FSC:	- /0	
10	Kelitace (no) Twee	# CISMd		1 1] ə		1	╁	╀	†	1	Dree	Proceeding Codes	9000
<u> </u>	Judget I variety.			unc	nac	_	C		<u>.</u>			E HCI	T=Th	T=Thiosulfate
Įū,	Project Manager:	P.O. #:		i me i onĐ	inS	s.)°7E	-				N=HNO ₃		OH 13
ιø	Mark Carricks	Quote #:		De8		ıəui	35/					5=R ₂ 5U ₄ 6) Rema	Remarks	D.
	Whark & Zunich				S∃	etno	, ,	<u> </u>				J		
<u></u>	Name of state where samples were collected: $igwedge igwedge igwed igwedge igwedge igwed igwedge igwedge igwedge igwedge igwedge igwedge igwed$	/	ejte	sto9	NPD	oo to	517						•	
	2) Sample Identification	Collected	odw		Jet:	# le) Q							
		Date Time	579 100	io2 _B W		юŢ	1	\dashv	_					
	BKO-WW4	10/13/12 0-535	×	λ -		3	Х							
	7 Ko- 4400 5	1 0.300)	7			. ,							
	1	-1.600					,							
-	١,	0573				1	X							
	13 KO - TEX	<u> </u>	ી વ	7		۲	7							
					+		1	\dashv	_					
					+	1		-	+					
				-	+	1			+					
			Dolling Photograph		$\ $		ateC	E	.	Received by			Date	Time (a)
	7) Turnaround Time (TAT) Requested (please circle)	d (please circle) Rush	veille de la constant				7. Je.,	7	ر م مدر ع					
	(Rush TAT is subject to Lancaster Laboratories approval and surcharge.)	iroval and surcharge.)	Relinquished	1			Date	1	Time	Received by			Date	Time
				7		1	10/10/	7	12.15		$\left. \right $		1	Time
	Date results are needed:		Relingdished	∵ ;	<u></u>		Date	<u> </u>	0	Kecelved by		,		P
	E-mail address:		Relinquished by) }			Date	Time	92	Received by			Date	Time
	8 Data Package Options (circle if required)	red)		i	[']	/	#	\dashv		1			1	
	Type I (Validation/non-CLP) Typ	Type VI (Raw Data Only)	Relinquished by	ру			Oate	e ui i	eu	Kecenya Bu	Affen Sher	de	10-12-12	5171
	Type III (Reduced non-CLP) TX	TX TRRP-13		EDD F If yes, format:	EDD Required? format:		Yes No			Relinquishe UPS	Relinquished by Commercial Carrier: UPS FedEx Other	rcial Carrie Other	er:	1
/	Type IV (CLP SOW) MA	MA MCP CT RCP	Sit (If yes	Site-Specific QC (MS/MSD/Dup)? Yes No (If yes, indicate QC sample and submit triplicate sample volume.)	QC (MS/ sample an	/MSD/Di	up)? Y	Yes No ample volume) (-)	Теп	Temperature upon receipt 7.9 - 10.7	n receipt	701-62	ຸຸ
<u></u>	NYKS P Cid got 7 The white cop	Eurofins Lancaster Laboratories, Inc. • 2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 The white copy should accompany samples to Eurofins Lancaster Laboratories. The yellow copy should be retained by the client.	ss, Inc. • 24 to Eurofins	is, inc. • 2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 to Eurofins Lancaster Laboratories. The yellow copy should be retained	land Pike, aboratori	Lancast es. The y	er, PA 176 ellow copy	101 • 717 should	7-656-23 be retail	00 led by the clie	nt.	nssj	Issued by Dept. 40 Managemen 7044.02	Managemen 7044.02

G-1343222 Environmental Sample Administration Receipt Documentation Log

			•				
Client	Project: _	?eliace	Env. Trac	Shippin	g Containe	er Sealed: YE	s No
Date o	f Receipt: _	10/18/13	<u> </u>	Custody	Seal Pres	sent*: YE	s (NO)
Time o	f Receipt: _	1215		* Custody	seal was inta	ct unless otherwis	. —
Source	code:	70		o Package	iscrepancy se	ection Chille	d Not Chilled
				ı ackayı	···	Q TIME	110t Offinio
			Temperature of	Shipping Contai	ners		
Cooler #	Thermometer ID	Temperature (°C)	Temp Bottle (TB) or Surface Temp (ST)	Wet Ice (WI) or Dry Ice (DI) or Ice Packs (IP)	Ice Present? Y/N	Loose (L) Bagged Ice (B) or NA	Comments
1	2737	210	ST TB	WI	У	B	10.7 10.5 9.6 79 8.3
2					÷		
3							
4					:		
5							
6							
			OT listed on chain	of custody:		Ø	
•	-	•	ing Problems:	o - o cot			
	ollected	<u> </u>	ate of n	ece.pr.	:		
		·····					
					:		
Unpac	ker Signature	e/Emp#: <u>/</u>	at Gal 34	72	_ Date/Ti	me: <u> 1/8/1</u> 3	1220

Issued by Dept. 6042 Management

Sample pH Log

💸 eurofins | Lancaster | Laboratories

SDG: OSP14

		CS Lot #	Ϋ́	Ϋ́	Ϋ́	Ϋ́	Ϋ́
	Corrective	Substance	Υ V	Y Y	A A	A A	Ϋ́
	Res. Cl.	Present?	ΑA	Y Y	ΑN	Ν Α	Υ Y
		CS Lot #	Ϋ́	Ϋ́	Ϋ́	Ϋ́	∀ Z
	Corrective	Substance	Y Y	Ϋ́	Ϋ́	ď	Ϋ́
		ш,				Ą	
日	Supplied	Bottle?	>	>	>	>	>
	Preservative	Fot #	Ϋ́	Ϋ́	Ϋ́	Ą V	A A
	Preservative	Added	¥ V	Ϋ́	Ϋ́	Ϋ́	Ϋ́
	Adjusted	Time	Ϋ́	Ϋ́	Š	Š	Ϋ́
	Adjusted	<u>Date</u>	¥	Ą	Ä	Ä	Ϋ́
	Adi	핍	¥	₹	Ϋ́	¥	¥
						Ą	
	Exp.	핌	\$	\$	7	%	~
	Actual	핌	ç	%	%	<2 <2	7
	Bottle	Code	038A	038A	038A	038A	038A
	LLI Sample	Number	6828481	6828482	6828483	6828484	6828485

anny anno anno and

Check Code Key

PK = Original container checked - pH is within the correct range. (No preservative was added) PA = Original container checked - pH adjusted to correct range. (Preservative was added)

PV = Volatile container checked

PC = pH checked (unpreserved container)

SPK = Subsampled from an original container. Original container checked - pH is within correct range SPA = Subsampled from an original container. Subsample container checked - pH adjusted to correct range. SPC = Subsampled from an original container. pH checked (unpreserved container).

SUP = Subsampled from original container. Unable to be preserved due to the matrix of the sample.

UP = Unable to preserve due to matrix of the sample.

NA = Not applicable

Method Summary/Reference for SDG# OSP14 NYSDEC B

Page 1 of 1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 · 717-656-2300 Fax: 717-656-2681 · www.lancasterlabs.com

01163 GC/MS VOA Water Prep

An undiluted aliquot of the water sample or a dilution of the sample is purged with an inert gas and the volatiles are collected on an adsorbent trap that is subsequently desorbed onto a gas chromatographic column.

Reference: Test Methods for Evaluating Solid Wastes, SW-846 Method 5030B, December 1996.

10903 8260 Std. Water Master

The water sample is purged and the volatile compounds are collected on a sorbent trap that is subsequently desorbed onto the GC/MS system for chromatographic and mass spectral analysis.

Reference: Test Methods for Evaluating Solid Wastes, SW-846 Method 8260B, December 1996

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425 Reliance Environmental, Inc. 130 East Chestnut Street Lancaster PA 17602

October 24, 2012

Project: Oceanside Plaza

Submittal Date: 10/18/2012 Group Number: 1343222 SDG: OSP14 PO Number: BK-001-02 State of Sample Origin: NY

Client Sample Description	Lancaster Labs (LLI) #
BKO-MW4 Grab Water Sample	6828481
BKO-MW5 Grab Water Sample	6828482
BKO-DUP Grab Water Sample	6828483
BKO-FB Grab Water Sample	6828484
BKO-TB Water Sample	6828485

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC

Reliance Environmental, Inc.

Attn: Mark Zunich

COPY TO

1 COPY TO

Data Package Group

Respectfully Submitted,

Mg(lw M) Miller
Angela M. Miller

Specialist

(717) 556-7260

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL	Reporting Limit	BMQL	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
С	degrees Celsius	ř	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
µg	microgram(s)	mg	milligram(s)
mL	milliliter(s)	Ĺ	liter(s)
m3	cubic meter(s)	μL	microliter(s)
		pg/L	picogram/liter

- less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- J estimated value The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion

Dry weight
basis
Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

U.S. EPA CLP Data Qualifiers:

	Organic Qualifiers		Inorganic Qualifiers
Α	TIC is a possible aldol-condensation product	В	Value is <crdl, but="" th="" ≥idl<=""></crdl,>
В	Analyte was also detected in the blank	Ε	Estimated due to interference
С	Pesticide result confirmed by GC/MS	M	Duplicate injection precision not met
.D	Compound quantitated on a diluted sample	N	Spike sample not within control limits
E	Concentration exceeds the calibration range of the instrument	S	Method of standard additions (MSA) used for calculation
N	Presumptive evidence of a compound (TICs only)	U	Compound was not detected
Р	Concentration difference between primary and	W	Post digestion spike out of control limits
•	confirmation columns >25%	*	Duplicate analysis not within control limits
Ū	Compound was not detected	+	Correlation coefficient for MSA < 0.995
X,Y,Z	Defined in case narrative		·

Analytical test results meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions, and Lancaster hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

Sample Description: BKO-MW4 Grab Water Sample

Oceanside Plaza

LLI Sample # WW 6828481 LLI Group # 1343222 Account # 12577

Project Name: Oceanside Plaza

Collected: 10/18/2012 08:35

by MEZ

Reliance Environmental, Inc.

130 East Chestnut Street

Lancaster PA 17602

Submitted: 10/18/2012 12:15

Reported: 10/24/2012 17:20

M4--- SDG#: OSP14-01

No.	Analysis Name	CAS Number	As Received Result	Limit of Quantitation	Dilution Factor	
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l		
10903	Acrolein	107-02-8	< 100	100	1	
10903	Acrylonitrile	107-13-1	< 20	20	1	
10903	Benzene	71-43-2	< 5	5	1	
10903	Bromodichloromethane	75-27-4	< 5	5	1	
10903	Bromoform	75-25-2	< 5	5	1	
10903	Bromomethane	74-83-9	< 5	5	1	
10903	Carbon Tetrachloride	56-23-5	< 5	5	1	
10903	Chlorobenzene	108-90-7	< 5	5	1	
10903	Chloroethane	75-00-3	< 5	5	1	
10903	2-Chloroethyl Vinyl Ether	110-75-8	< 10	10	1	
	2-Chloroethyl vinyl ether mapreserve this sample.	•				
10903	Chloroform	67-66-3	< 5	5	1	
10903	Chloromethane	74-87-3	< 5	5	1	
10903	Dibromochloromethane	124-48-1	< 5	5	1	
	1,1-Dichloroethane	75-34-3	< 5	5	1	
10903	1,2-Dichloroethane	107-06-2	< 5	5	1	
10903	1,1-Dichloroethene	75-35-4	< 5	5	1	
10903	cis-1,2-Dichloroethene	156-59-2	< 5	5	1	
10903	trans-1,2-Dichloroethene	156-60-5	< 5	5	1	
10903	1,2-Dichloropropane	78-87-5	< 5	5	1	
10903	cis-1,3-Dichloropropene	10061-01-5	< 5	5	1	
10903	trans-1,3-Dichloropropene	10061-02-6	< 5	5	1	
10903	Ethylbenzene	100-41-4	< 5	5	1	
10903	Methylene Chloride	75-09-2	< 5	5	1	
10903	1,1,2,2-Tetrachloroethane	79-34-5	< 5	5	1	
10903	Tetrachloroethene	127-18-4	< 5	5	1	
10903	Toluene	108-88-3	< 5	5	1	
10903	1,1,1-Trichloroethane	71-55 - 6	< 5	5	1	
10903	1,1,2-Trichloroethane	79-00-5	< 5	5	1	
10903	Trichloroethene	79-01-6	< 5	5	1	
10903	Trichlorofluoromethane	75-69-4	< 5	5	1	
10903	Vinyl Chloride	75-01-4	< 5	5	1	
10903	Xylene (Total)	1330-20-7	< 5	5	1	

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory	Sample	Analysis	Record
------------	--------	----------	--------

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
10903	8260 Std. Water Master	SW-846 8260B	1	Y122951AA	10/21/2012 09:26	Stephanie A Selis	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Y122951AA	10/21/2012 09:26	Stephanie A Selis	1

Sample Description: BKO-MW5 Grab Water Sample

Oceanside Plaza

LLI Sample # WW 6828482 LLI Group # 1343222 # 12577 Account

Project Name: Oceanside Plaza

Collected: 10/18/2012 08:00

by MEZ

Reliance Environmental, Inc.

130 East Chestnut Street

Lancaster PA 17602

Submitted: 10/18/2012 12:15

Reported: 10/24/2012 17:20

SDG#: OSP14-02

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846 8	260B	ug/l	ug/l	
10903	Acrolein	107-02-8	< 100	100	1
10903	Acrylonitrile	107-13-1	< 20	20	1
10903	Benzene	71-43-2	< 5	5	1
10903	Bromodichloromethane	75-27-4	< 5	5	1
10903	Bromoform	75 - 25-2	< 5	5 ·	1
10903	Bromomethane	74 - 83 - 9	< 5	5	1
10903	Carbon Tetrachloride	56-23-5	< 5	5 .	1
10903	Chlorobenzene	108-90-7	< 5	5	1
10903	Chloroethane	75-00-3	< 5	5	1
10903	2-Chloroethyl Vinyl Ether	110-75-8	< 10	10	1
	2-Chloroethyl vinyl ether may preserve this sample.	not be recovered	if acid was used to		
10903	Chloroform	67-66-3	< 5	5	1
10903	Chloromethane .	74-87-3	< 5	5	1
10903	Dibromochloromethane	124-48-1	< 5	5	1
10903	1,1-Dichloroethane	75-34-3	< 5	5	1
10903	1,2-Dichloroethane	107-06-2	< 5	5	1
10903	1,1-Dichloroethene	75-35-4	< 5	5	1
10903	cis-1,2-Dichloroethene	156-59-2	11	5	1
10903	trans-1,2-Dichloroethene	156-60-5	< 5	5	1
10903	1,2-Dichloropropane	78-87-5	< 5	5	1
10903	cis-1,3-Dichloropropene	10061-01-5	< 5	5	1
10903	trans-1,3-Dichloropropene	10061-02-6	< 5	5	1 .
10903	Ethylbenzene	100-41-4	< 5	5	1
10903	Methylene Chloride	75-09-2	< 5	5	1
10903	1,1,2,2-Tetrachloroethane	79-34-5	< 5	5	1
10903	Tetrachloroethene	127-18-4	10	5	1
10903	Toluene	108-88-3	< 5	5	1
10903	1,1,1-Trichloroethane	71-55-6	< 5	5	1
10903	1,1,2-Trichloroethane	79-00-5	< 5	5	1
10903	Trichloroethene	79-01-6	< 5	5	1
10903	Trichlorofluoromethane	75-69-4	< 5	5	1
10903	Vinyl Chloride	75-01-4	< 5	5	1
10903	Xylene (Total)	1330-20-7	< 5	5	1
				•	

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory	Sample	Analysis	Record
------------	--------	----------	--------

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tim	ne	Analyst	Dilution Factor
10903 01163	8260 Std. Water Master GC/MS VOA Water Prep	SW-846 8260B SW-846 5030B	1 1	Y122951AA Y122951AA	10/21/2012 10/21/2012		Stephanie A Selis Stephanie A Selis	

Sample Description: BKO-DUP Grab Water Sample

Oceanside Plaza

LLI Sample # WW 6828483 LLI Group # 1343222 Account # 12577

Project Name: Oceanside Plaza

Collected: 10/18/2012 08:35

by MEZ

Reliance Environmental, Inc.

130 East Chestnut Street

Lancaster PA 17602

Submitted: 10/18/2012 12:15

FD4 - -

Reported: 10/24/2012 17:20

SDG#: OSP14-03FD

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-84	6 8260B	ug/l	ug/l	
10903	Acrolein	107-02-8	< 100	100	1
10903	Acrylonitrile	107-13-1	< 20	20	1
10903	Benzene	71-43-2	< 5	5	1
10903	Bromodichloromethane	75-27-4	< 5	5	1
10903	Bromoform	75-25-2	< 5	5	1
10903	Bromomethane	74-83-9	< 5	5	1
10903	Carbon Tetrachloride	56-23-5	< 5	5	1
10903	Chlorobenzene	108-90-7	< 5	5	1
10903	Chloroethane	75-00-3	< 5	5	1
10903	2-Chloroethyl Vinyl Ether	110-75-8	< 10	10	1
	2-Chloroethyl vinyl ether makes preserve this sample.	may not be recovered	d if acid was used to		
10903	Chloroform	67-66-3	< 5	5	1
10903	Chloromethane	74-87-3	< 5	5	1
10903	Dibromochloromethane	124-48-1	< 5	5	1
10903	1,1-Dichloroethane	75-34-3	< 5	5	1
10903	1,1-Dichloroethane	107-06-2	< 5	5	1
10903	1,1-Dichloroethene	75-35-4	< 5	5	1
10903	cis-1,2-Dichloroethene	156-59-2	< 5	5	. 1
	trans-1,2-Dichloroethene	156-60-5	< 5	5	1
10903	1,2-Dichloropropane	78-87-5	< 5	5	1
10903	cis-1,3-Dichloropropene	10061-01-5	< 5	5	1
10903	trans-1,3-Dichloropropene	10061-01-5	< 5	5	1
10903	Ethylbenzene	100-41-4	< 5	5	1
10903	Methylene Chloride	75-09-2	< 5	5	1
10903	1,1,2,2-Tetrachloroethane	79-34-5	< 5	5	1
10903	Tetrachloroethene	127-18-4	< 5	5	1
10903	Toluene	108-88-3	< 5	5	1
		71-55-6	< 5	5	1
10903	1,1,1-Trichloroethane 1,1,2-Trichloroethane	79-00-5	< 5 < 5	5	1
	Trichloroethene	79-00-5	< 5 < 5	5	1
10903	Trichloroethene Trichlorotluoromethane	79-01-6 75-69-4	< 5 < 5	5	1
		75-69-4 75-01-4	< 5	5	1
10903	Vinyl Chloride Xylene (Total)	1330-20-7	< 5	5	1

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory	Sample	Analysis	Record
------------	--------	----------	--------

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
10903	8260 Std. Water Master	SW-846 8260B	1	Y122951AA	10/21/2012 10:07	Stephanie A Selis	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Y122951AA	10/21/2012 10:07	Stephanie A Selis	1

Sample Description: BKO-FB Grab Water Sample

Oceanside Plaza

LLI Sample # WW 6828484 LLI Group # 1343222 Account # 12577

Project Name: Oceanside Plaza

Collected: 10/18/2012 07:30

by MEZ

Reliance Environmental, Inc.

130 East Chestnut Street

Lancaster PA 17602

Submitted: 10/18/2012 12:15 Reported: 10/24/2012 17:20

FBOC-

SDG#: OSP14-04FB

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10903	Acrolein	107-02-8	< 100	100	1
10903	Acrylonitrile	107-13-1	< 20	20	1
10903	Benzene	71-43-2	< 5	5	1
10903	Bromodichloromethane	75-27-4	< 5	5	1
10903	Bromoform	75-25-2	< 5	5	1
10903	Bromomethane	74-83-9	< 5	5	1
10903	Carbon Tetrachloride	56-23-5	< 5	5 .	1
10903	Chlorobenzene	108-90-7	< 5	5	1
10903	Chloroethane	75-00-3	< 5	5	1
10903	2-Chloroethyl Vinyl Ether	110-75-8	< 10	10	1
	2-Chloroethyl vinyl ether m preserve this sample.	ay not be recovered	d if acid was used to		
10903	Chloroform	67-66-3	< 5	5	1
10903	Chloromethane	74-87-3	< 5	5	1
10903	Dibromochloromethane	124-48-1	< 5	5	1 ,
10903	1,1-Dichloroethane	75-34-3	< 5	5 ·	1
10903	1,2-Dichloroethane	107-06-2	< 5	5	1
10903	1,1-Dichloroethene	75-35-4	< 5 .	5	1
10903	cis-1,2-Dichloroethene	156-59-2	< .5	5	1
10903	trans-1,2-Dichloroethene	156-60-5	< 5	5	1
10903	1,2-Dichloropropane	78-87-5	< 5	5	1
10903	cis-1,3-Dichloropropene	10061-01-5	< 5	5	1
10903	trans-1,3-Dichloropropene	10061-02-6	< 5	5	1 ,
10903	Ethylbenzene	100-41-4	< 5	5	1
10903	Methylene Chloride	75-09-2	< 5	5	1
10903	1,1,2,2-Tetrachloroethane	79-34-5	< 5	5	1
10903	Tetrachloroethene ·	127-18-4	< 5	5	1
10903	Toluene	108-88-3	< 5	5	1
10903	1,1,1-Trichloroethane	71-55-6	< 5	5	1
10903	1,1,2-Trichloroethane	79-00-5	< 5	5	1
10903	Trichloroethene	79-01-6	< 5	5	1
10903	Trichlorotluoromethane	75-69-4	< 5	5	1
10903	Vinyl Chloride	75-01-4	< 5	5	1
10903	Xylene (Total)	1330-20-7	< 5	5	1

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory	Sample	Analysis	Record
------------	--------	----------	--------

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10903	8260 Std. Water Master GC/MS VOA Water Prep	SW-846 8260B SW-846 5030B	1 1	Y122951AA Y122951AA	,,	•	

Sample Description: BKO-TB Water Sample

Oceanside Plaza

LLI Sample # WW 6828485 LLI Group # 1343222 Account # 12577

Project Name: Oceanside Plaza

Collected: 10/18/2012

Reliance Environmental, Inc.

130 East Chestnut Street

Lancaster PA 17602

Submitted: 10/18/2012 12:15

Reported: 10/24/2012 17:20

TBOC- SDG#: OSP14-05TB*

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-84	6 8260B	ug/l	ug/l	
10903	Acrolein	107-02-8	< 100	100	1
10903	Acrylonitrile	107-13-1	< 20	20	1
10903	Benzene	71-43-2	< 5	5	1
10903	Bromodichloromethane	75-27-4	< 5	5	1
10903	Bromoform	75-25-2	< 5	5	1
10903	Bromomethane	74-83-9	< 5	5	1
10903	Carbon Tetrachloride	56-23-5	< 5	5	1
10903	Chlorobenzene	108-90-7	< 5	5	1
10903	Chloroethane	75-00-3	< 5	5	1
10903	2-Chloroethyl Vinyl Ether	110-75-8	< 10	10	1
	2-Chloroethyl vinyl ether many preserve this sample.	•			
10903	Chloroform	67-66-3	< 5	5	1
10903	Chloromethane	74-87-3	< 5	5	1
10903	Dibromochloromethane	124-48-1	< 5	5	1
10903	1,1-Dichloroethane	75-34-3	< 5	5	1
10903	1,2-Dichloroethane	107-06-2	< 5	5	1
10903	1,1-Dichloroethene	75-35-4	< 5	5	1
10903	cis-1,2-Dichloroethene	156-59-2	< 5	5	1
10903	trans-1,2-Dichloroethene	156-60-5	< 5	5	1
10903	1,2-Dichloropropane	78-87-5	< 5	5	1
10903	cis-1,3-Dichloropropene	10061-01-5	< 5	5	1
10903	trans-1,3-Dichloropropene	10061-02-6	< 5	5	1
10903	Ethylbenzene	100-41-4	< 5	5	1
10903	Methylene Chloride	75-09-2	< 5	5	1
10903	1,1,2,2-Tetrachloroethane	79-34-5	< 5	5	1
10903	Tetrachloroethene	127-18-4	< 5	5	1
10903	Toluene	108-88-3	< 5	5	1
10903	1,1,1-Trichloroethane	71-55-6	< 5	5	1
10903	1,1,2-Trichloroethane	79-00-5	< 5	5	1
10903	Trichloroethene	79-01-6	< 5	5	1
10903	Trichlorofluoromethane	75-69-4	< 5	5	1
10903	Vinyl Chloride	75-01-4	< 5	5	1
10903	Xylene (Total)	1330-20-7	< 5	5	1

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

	Laboratory Sample Analysis Record							
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor	
10903 01163	8260 Std. Water Master GC/MS VOA Water Prep	SW-846 8260B SW-846 5030B	1 1	Y122951AA Y122951AA	10/21/2012 10:49 10/21/2012 10:49	Stephanie A Selis Stephanie A Selis		

Volatiles by GC/MS Data

Case Narrative/Conformance Summary

Case Narrative/Conformance Summary

CLIENT: Reliance Environmental, Inc. SDG: OSP14

GC/MS Volatiles

Fraction: Volatiles by GC/MS

Matrix

Sample #	Client ID	Liquid	Solid	DF	Comments
6828481	BKO-MW4	X		1	
6828482	BKO-MW5	X		1	
6828483	BKO-DUP	X		1	Field Duplicate Sample
6828484	BKO-FB	X		1	Field Blank
6828485	BKO-TB	X		1	Trip Blank

See QC Reference List for Associated Batch QC Samples

SAMPLE RECEIPT:

Samples were received in good condition and within temperature requirements.

HOLDING TIME:

All holding times were met.

PREPARATION/EXTRACTION/DIGESTION:

No problems were encountered.

CALIBRATION/STANDARDIZATION:

All criteria were met.

QUALITY CONTROL AND NONCONFORMANCE SUMMARY:

MS/MSD

(Sample number(s): 6828481-6828485: Analysis: 10903)
2-Chloroethyl vinyl ether may not be recovered if acid was used to preserve this sample.

Matrix QC may not be included if site-specific QC were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, laboratory spike data (LCS) are provided.

Case Narrative/Conformance Summary

CLIENT: Reliance Environmental, Inc. SDG: OSP14

GC/MS Volatiles

Fraction: Volatiles by GC/MS

SAMPLE ANALYSIS:

No problems were encountered with the analysis of the samples.

Abbreviation Key

UNSPK = Unspiked (for MS/MSD)	LOQ = Limit of Quantitation	
MS = Matrix Spike	MDL = Method Detection Limit	
MSD = Matrix Spike Duplicate	ND = Not Detected	
BKG = Background (for Duplicate)	J = Estimated Value	
D = Duplicate (DUP)	E= out of calibration range	
LCS = Lab Control Sample	RE = Repreparation/Reanalysis	
LCSD = Lab Control Sample Duplicate	* = Out of Specification	

Narrative Reviewed and Approved 18412 by Carty His

GC/MS VOLATILES CALCULATIONS:

1. Relative response factor (RRF)

Where:

Ax = Area of the characteristic ion for the compound to be measured.

Ais = Area of the characteristic ion for the specific internal standard to be measured.

Cis = Concentration of the internal standard.

Cx = Concentration of the compound to be measured.

2. % Relative Standard Deviation (%RSD)

3. % Difference (%D)

Where:

RRFc=Relative response factor from continuing calibration standard.

RRFi = Mean relative response factor from the initial calibration.

4. Concentration

Where:

Ax, Ais, RRF are as given in 1. above.

Is = Concentration of internal standard added in parts per billion (ug/l)

Df = Dilution factor

5. % Recovery (%Rec)

Where:

SSR = Spiked sample result

SR = Sample result

SA = Spike added

6. Relative Percent Difference (RPD)

Where:

MSR = Matrix spike recovery

MSDR = Matrix spike duplicate recovery

Quality Control and Calibration Summary Forms

Quality Control Reference List GC/MS Volatiles

CLIENT: Reliance Environmental, Inc.

SDG: OSP14

Analysis	Batch Number	Sample Number	Analysis Date
8260 Std. Water Master	Y122951AA	VBLKY78	10/21/2012 02:05:00
		LCSY78	10/21/2012 03:10:00
		6828481	10/21/2012 09:26:00
		6828482	10/21/2012 09:46:00
		6828483	10/21/2012 10:07:00
		6828484	10/21/2012 10:28:00
		6828485	10/21/2012 10:49:00

Quality Control Summary Method Blank GC/MS Volatiles SDG: OSP14 Matrix: LIQUID

Y122951AA / VBLKY78				T]
Analyte	Analysis Date	Blank Results	Units	MDL	LOQ
Chloromethane	10/21/12	N.D.	ug/l	1	5
Vinyl Chloride	10/21/12	N.D.	ug/l	1	5
Bromomethane	10/21/12	N.D.	ug/l	1	5 .
Chloroethane	10/21/12	N.D.	ug/l	1	5
Trichlorofluoromethane	10/21/12	N.D.	ug/l	2	5
Acrolein	10/21/12	N.D.	ug/l	40	100
1,1-Dichloroethene	10/21/12	N.D.	ug/l	0.8	5
Methylene Chloride	10/21/12	N.D.	ug/l	2	5
Acrylonitrile	10/21/12	N.D.	ug/l	4	20
trans-1,2-Dichloroethene	10/21/12	N.D.	ug/l	0.8	5
1,1-Dichloroethane	10/21/12	N.D.	ug/l	1	5
cis-1,2-Dichloroethene	. 10/21/12	N.D.	ug/l	0.8	5
Chloroform	10/21/12	N.D.	ug/l	0.8	5
1,1,1-Trichloroethane	10/21/12	N.D.	ug/l	0.8	5
Carbon Tetrachloride	10/21/12	N.D.	ug/l	1	5
Benzene	10/21/12	N.D.	ug/l	0.5	5
1,2-Dichloroethane	10/21/12	N.D.	ug/l	1	5
Trichloroethene	10/21/12	N.D.	ug/l	1	5
1,2-Dichloropropane	10/21/12	N.D.	ug/l	1	5
Bromodichloromethane	10/21/12	N.D.	ug/l	1	5
2-Chloroethyl Vinyl Ether	10/21/12	N.D.	ug/l	2	10
cis-1,3-Dichloropropene	10/21/12	N.D.	ug/l	1	5
Toluene	10/21/12	N.D.	ug/l	0.7	5
trans-1,3-Dichloropropene	10/21/12	N.D.	ug/l	1	5
1,1,2-Trichloroethane	10/21/12	N.D.	ug/l	0.8	5
Tetrachloroethene	10/21/12	N.D.	ug/l	0.8	5
Dibromochloromethane	10/21/12	N.D.	ug/l	1	5
Chlorobenzene	10/21/12	N.D.	ug/l	0.8	5
Ethylbenzene	10/21/12	N.D.	ug/l	0.8	5
Xylene (Total)	10/21/12	N.D.	ug/l	0.8	5
Bromoform	10/21/12	N.D.	ug/l	1	5
1,1,2,2-Tetrachloroethane	10/21/12	N.D.	ug/l	1	5

Quality Control Summary Surrogates GC/MS Volatiles SDG: OSP14

Matrix: LIQUID

Y122951AA	Dibromoflu	oromethane	1,2-Dichloroethane-d4		Toluene-d8		4-Bromofluorobenzene	
	Spike		Spike		Spike		Spike	
	Added	50 ug/l	Added	50 ug/l	Added	50 ug/l	Added	50 ug/l
	%		%_		%		%	
Sample	Recovery	Limits	Recovery	Limits	Recovery	-Limits	Recovery	Limits
VBLKY78	96	80 - 116	96	77 - 11-3	101	80 - 113	101	78 - 113
LCSY78	97	80 - 116	100	77 - 113	101	80 - 113	101	78 - 113
6828481	96	80 - 116	95	77 - 113	102	80 - 113	101	78 - 113
6828482	95	80 - 116	97	77 - 113 [.]	102	.80 - 113	101	78 - 113
6828483	96	80 - 116	96	77 - 113	102	80 - 113	101	78 - 113
6828484	96	80 - 116	97	77 - 113	101	80 - 113	101	78 - 113
6828485	97	80 - 116	98	77 - 113	101	80 - 113	99	78 - 113

Quality Control Summary
Laboratory Control Standard (LCS)
Laboratory Control Standard Duplicate(LCSD)

SDG: OSP14 Matrix: LIQUID

GC/MS Volatiles

LCS: LCSY78	Batch: Y12295	51AA (Sample n	umber(s): 6828	3481-68284	85)			
	Spike	LCS	LCSD					
	Added	Conc	Conc	LCS	LCSD	%Rec		%RPD
Analyte	ug/l	ug/l	ug/i	%Rec	%Rec	Limits	%RPD	Limits
Chloromethane	20	17.88		89		60-129		
Vinyl Chloride	20	16.35		82		56-123		
Bromomethane	20	13.35		67		44-120		
Chloroethane	20	14.96		75		49-129		
Trichlorofluoromethane	20	18.87		94		65-130		
Acrolein	150	107.01		71		30-171		
1,1-Dichloroethene	20	22.68		113		76-124		
Methylene Chloride	20	21.59		108		84-118		
Acrylonitrile	100	101.99		102		61-130	-	
trans-1,2-Dichloroethene	20	22.12		111		80-120		
1,1-Dichloroethane	20	22.43		112		79-120		
cis-1,2-Dichloroethene	20	22.14		111		80-120		
Chloroform	20	20.82		104		77-122		
1,1,1-Trichloroethane	20	19.82		99		66-126		
Carbon Tetrachloride	20	21.06		105		67-122		
Benzene	20	21.98		110		77-121		
1,2-Dichloroethane	20	22.06		110		64-130		
Trichloroethene	20	21.61		108		80-120	-	
1,2-Dichloropropane	20	22.22		111		80-120		
Bromodichloromethane	20	20.59	·	103		73-120		
2-Chloroethyl Vinyl Ether	20	19.55		98		29-151		
cis-1,3-Dichloropropene	20	22.03		110		78-120		
Toluene	20	21.81	-	109		79-120		
trans-1,3-Dichloropropene	20	20.05		100		73-120		
1,1,2-Trichloroethane	20	21.1		105		80-120		
Tetrachloroethene	20	20.54		103		79-120		
Dibromochloromethane	20	20.41		102		72-120		
Chlorobenzene	20	21.31		107		80-120		
Ethylbenzene	20	21.73		109		79-120		
Xylene (Total)	60	63.61		106		77-120		
Bromoform	20	16.88		84		61-120		
1,1,2,2-Tetrachloroethane	20	21.25		106		75-123		

5A VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: Lancaster Laboratories Contract:

Lab Code: LANCAS Case No.: SAS No.: SDG No.: OSP14

Lab File ID: yc15t01.d

BFB Injection Date: 10/15/12

Instrument ID: HP09355

BFB Injection Time: 13:13

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
=====		=======
50	15.0 - 40.0% of mass 95	15.56
75	30.0 - 60.0% of mass 95	44.73
95	Base peak, 100% relative abundance	100.00
96	5.0 - 9.0% of mass 95	7.02
173	Less than 2.0% of mass 174	0.00 (0.00)1
174	Greater than 50.0% of mass 95	87.39
175	5.0 - 9.0% of mass 174	6.05 (6.92)1
176	Greater than 95.0%, but less than 101.0% of mass 174	85.29 (97.59)1
177	5.0 - 9.0% of mass 176	5.48 (6.42)2

1-Value is % mass 174 2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	LAB	LAB	DATE	TIME
	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	_======================================	=======================================	========	=======
01	VSTD300	yc15i01.d	10/15/12	13:52
02	VSTD100	yc15i02.d	10/15/12	14:13
03	VSTD50	yc15i03.d	10/15/12	14:33
04	VSTD20	yc15i04.d	10/15/12	14:54
05	VSTD10	yc15i05.d	10/15/12	15:15
06	VSTD4	yc15i06.d	10/15/12	15:35
07	VSTD1	yc15i07.d	10/15/12	15:56
08	MDL0.5 - MDL0.5	yc15m01.d	10/15/12	16:17
09	YLGICV	yc15v02.d	10/15/12	18:26
			-	

page 1 of 1

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: Lancaster Laboratories Contract:

Lab Code: LANCAS Case No.: SAS No.: SDG No.: OSP14

Lab File ID: yc21t01.d

BFB Injection Date: I0/21/12

Instrument ID: HP09355

BFB Injection Time: 00:41

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

	m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
1	50	15.0 - 40.0% of mass 95	====== 17.91
	75	30.0 - 60.0% of mass 95	47.19
i	95	Base peak, 100% relative abundance	100.00
j	96	5.0 - 9.0% of mass 95	6.74
j	173	Less than 2.0% of mass 174	0.00 (0.00)1
	174	Greater than 50.0% of mass 95	81.14
١	175	5.0 - 9.0% of mass 174	5.74 (7.08)1
-	176	Greater than 95.0%, but less than 101.0% of mass 174	77.94 (96.07)1
ļ	177	5.0 - 9.0% of mass 176	5.06 (6.49)2
			1

1-Value is % mass 174 2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	LAB	LAB	DATE	TIME
. [SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	=======================================	=======================================	=======	=======
01	VSTD50	yc21c01.d	10/21/12	01:24
02	VBLKY78	yc21b01.d	10/21/12	02:05
03	LCSY78	yc21102.d	10/21/12	03:10
04	6829250	yc21s01.d	10/21/12	03:59
05	6829251	yc21s02.d	10/21/12	04:20
06	6828401	yc21s03.d	10/21/12	04:40
07	6828402	yc21s04.d	10/21/12	05:01
08	6828403	yc21s05.d	10/21/12	05:21
09	6828404	yc21s06.d	10/21/12	05:42
10	6828405	yc21s07.d	10/21/12	06:02
11	6828406	yc21s08.d	10/21/12	06:23
12	6828407	yc21s09.d	10/21/12	06:43
13	6828408	yc21s10.d	10/21/12	07:03
14	6828409MS	yc21s11.d	10/21/12	07:24
15	6828410MSD	yc21s12.d	10/21/12	07:44
16	6828412	yc21s13.d	10/21/12	08:05 İ
17	6828413	yc21s14.d	10/21/12	08:25
18	6828414	yc21s15.d	10/21/12	08:45
19	6828415	yc21s16.d	10/21/12	09:05
20	6828481	yc21s17.d	10/21/12	09:26
21	6828482	yc21s18.d	10/21/12	09:46
22	6828483	yc21s19.d	10/21/12	10:07
j	İ	-	i	į
	·	·	•	

page 1 of 2

5A VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: Lancaster Laboratories Contract:

Lab Code: LANCAS Case No.: SAS No.: SDG No.: OSP14

Lab File ID: yc21t01.d BFB Injection Date: 10/21/12

Instrument ID: HP09355

BFB Injection Time: 00:41

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

		% RELATIVE	
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE	
=====		==========	
50	15.0 - 40.0% of mass 95	17.91	
75	30.0 - 60.0% of mass 95	47.19	
95	Base peak, 100% relative abundance	100.00	
96	5.0 - 9.0% of mass 95	6.74	
173	Less than 2.0% of mass 174	0.00 (0.00)1	
174.	Greater than 50.0% of mass 95	81.14	
175	5.0 - 9.0% of mass 174	5.74 (7.08)1	
176	Greater than 95.0%, but less than 101.0% of mass 174	77.94 (96.07)1	
177	5.0 - 9.0% of mass 176	5.06 (6.49)2	
		1	

1-Value is % mass 174 2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	LAB SAMPLE	ID	LAE FILE	DATE ANALYZED	TIME ANALYZED
23 24	6828484 6828485	=======================================	yc21s20.d yc21s21.d	 10/21/12 10/21/12 10/21/12	10:28 10:49

page 2 of 2

6A VOLATILE ORGANICS INITIAL CALIBRATION DATA

.ao	name:	Lancaster	Laboratories	Contract:	
				•	

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Instrument 1D: HP09355 Calibration Date(s): 10/15/12 10/15/12

Heated Purge: (Y/N) Y Calibration Times: 13:52 15:56

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .18

		,		·		γ	<u>, </u>			
COMPOUND	RRF 1	RRF 4	RRF 10	RRF 20	RRF 50	1	1	RRF	% RSD	CAL. METHOD
Dichlorodifluoromethane	I .	1		0.3828					12	AVG
Chloromethane	#0.3589	0.3946	0.3970	0.3692	0.3280	0.3385	0.3260	0.3589	8	AVG
Vinyl Chloride	*0.3602	0.3916	0.3982	0.3702	0.3260	0.3313	0.2834	0.3516	12	AVG
1,3-Butadiene	0.1476	0.1794	0.1351	0.1550	0.1518	0.1588	0.1295	0.1510	11	AVG
Bromomethane				0.2434					15	AVG
Chloroethane	0.1881	0.2062	0.2193	0.1978	0.1684	0.1633		0.1905	11	AVG
Dichlorofluoromethane				0.4487			0.3372		11	AVG
Trichlorofluoromethane				0.4169					12	AVG
n-Pentane				D.3982					14	AVG
Freon 123a				0.2925					13	AVG
Acrolein				1.7154					9	AVG
1,1-Dichloroethene	* 0.2025	0.2219	0.2120	0.2156	01961	0.1940	0.1804	0.2032	7	AVG
Freon 113	1	0.2184	0.2159	0.2248	0.1999	0.2041	0.1893	0.2087	6	AVG
Acetone				0.0558					13	AVG
Methyl Iodide	0.3660			0.4149					5	AVG
2-Propanol	10.3000			0.7289					9	AVG
Carbon Disulfide				0.6652					5	AVG
Allyl Chloride	1			0.3878					10	AVG
Methyl Acetate				0.3406					8	AVG
Methylene Chloride	n 2796			0.2595					8	AVG
-Butyl Alcohol				1.3066					13	
Acrylonitrile	1.2403			0.2241						AVG
	0 2777			0.2594					11	AVG
rrans-1,2-Dichloroethene Methyl Tertiary Butyl Ether	0.2373	0.2344	0.2302	0.2394	0.2404	0.2390	0.2222	0.2433	5	AVG
n-Hexane	10.7915			0.3943						AVG
	0 2/74								8	AVG
1,2-Dichloroethene (total) 1,1-Dichloroethane	0.2431 #0.4068	0.2037	0.2033	0.2740	0.2301	0.2303	0.2420	0.2577	5	AVG
•									5	AVG
di-Isopropyl Ether	0.8131	0.7004	0.9313	0.9409	0.0000	0.0023	0.7923	0.0034	7	AVG
2-Chloro-1,3-Butadiene	2000	0.3888	0.3866	0.3992	0.3602	0.3660	0.3484	0.3749	5	AVG
thyl t-Butyl Ether	0.7900	0.8579	0.9240	0.9175	0.8480	0.8401	0.7830	0.8526	6	AVG
cis-1,2-Dichloroethene	0.2490			0.2898					5	AVG
2-Butanone	247/	0.3287	0.3298	0.3025	0.3103	0.3061	0.2704	0.3080	7	AVG
2,2-Dichloropropane	0.3174			0.3512					4	AVG
Propionitrile	1			1.6040					7	AVG
Methacrylonitrile				0.2206					7	AVG
Bromochloromethane				0.1581					5	AVG
etrahydrofuran	10 (77)			1.4390					2	AVG
Chloroform	*0.4736	0.4592	0.45/0	0.4582	0.4224	0.4301	0.4080	0.4441	5	AVG
,1,1-Trichloroethane	0.3648								6	AVG
yclohexane				0.4733					6	AVG
Cyclohexane(mz 84)				0.3876					5	AVG
yclohexane(mz 69)		0.7455	0.1411	0.1436	0.12/1	0.1357	0.1291	0.1366	5	AVG
,1-Dichloropropene				0.3521					6	AVG
arbon Tetrachloride				0.2999					7	AVG
sobutyl Alcohol		0.4146	0.5156	0.4501	0.3989	0.3943	0.3892	0.4271	11	AVG
enzene	0.9950	1.0779	1.0913	1.1066	1.0279	1.0455	0.9919	1.0480	4	AVG
,2-Dichloroethane				0.3621					_4	AVG
,2-Dichloroethane(mz 98)				0.0357					24	2NDDEG
-Amyl Methyl Ether	0.7802			0.8880					6	AVG
-Heptane				0.4636					14	AVG
n-Butanol	1			0.4220					12	AVG
Trichloroethene	0.2436	02660	0.2715	0.2760	0.2538	0.26021	0 2535	0 2607	4	AVG

Minimum RRF for SPCC(#) = 0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Maximum %RSD for CCC(*) = 30%

page 1 of 3

6A VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: Lancaster Laboratories Contract:_

Case No.:_____ SAS No.:____ SDG No.:___ Lab Code: LANCAS

Instrument ID: HP09355

Calibration Date(s): 10/15/12

10/15/12

Heated Purge: (Y/N) Y Calibration Times: 13:52

15:56

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .18

LAB	FILE ID:	RRF $1 = yc15i07.d$	RRF $4 = yc15i06.d$	RRF 10= yc15i05.d
RRF	20= yc15i04.d	RRF 50= yc15i03.d	RRF100= yc15i02.d	RRF300= yc15i01.d

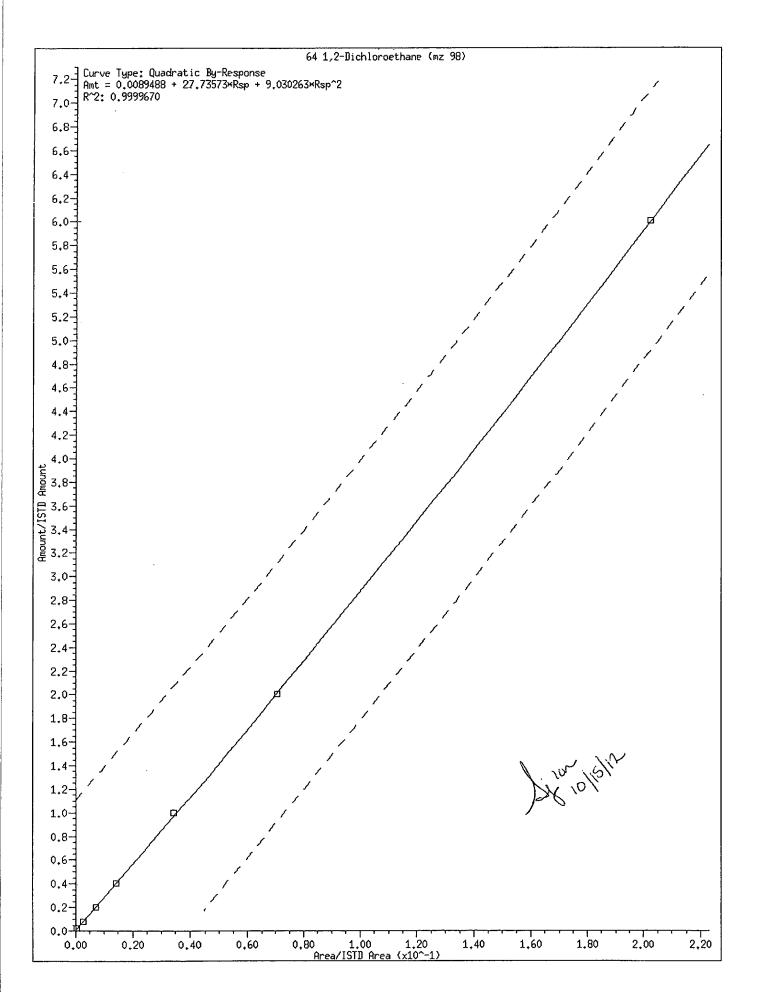
	1	r		1		1			- %	CAL.
COMPOUND	RRF 1	RRF 4	RRF 10	RRF 20	RRF 50	RRF100	RR F300	RRF	RSD	METHOD
=======================================	======	=====	ı	=====	======		=====	======	=====	=======
	*0.2481		1	1					6	AVG
Methylcyclohexane(mz98)]				0.2016				7	AVG
Methylcyclohexane					0.4559				7	AVG
Methyl Methacrylate					0.3195				8	AVG
Dibromomethane	0.1595				0.1829				7	AVG
1,4-Dioxane					0.1070				12	AVG
Bromodichloromethane	0.2525				0.3160				9	AVG
2-Nitropropane		0.1242	0.1252	0.1225	0.1327	0.1364	0.1249	0.1276	4	AVG
2-Chloroethyl Vinyl Ether					0.2417				10	AVG
cis-1,3-Dichloropropene	0.3194	0.3620	0.4246	0.4277	0.4055	0.4155	0.4080	0.3947	10	AVG
4-Methyl-2-Pentanone		0.5711	0.6541	0.5890	0.5837	0.5842	0.5125	0.5824	8	AVG
Toluene	÷0.8786	0.9552	0.9754	0.9972	0.9043	0.9245	0.8802	0.9308	5	AVG
trans-1,3-Dichloropropene	0.4074				0.5502				12	AVG
Ethyl Methacrylate		0.6441	0.7975	0.7493	0.6916	0.6884	0.6550	0.7043	8	AVG
1,1,2-Trichloroethane	0.3373				0.3712				9	AVG
Tetrachloroethene	0.3637	0.4090	0.4198	0.4333	0.3870	0.4019	0.3957	0.4015	6	AVG
1,3-Dichloropropane	0.5697	0.6035	0.7050	0.6797	0.6250	0.6286	0.6026	0.6306	7	AVG
2-Hexanone		0.6456	0.7654	0.6694	0.6459	0.6518	0.5524	0.6551	10	AVG
Dibromochloromethane	0.2619	0.2952	0.3734	0.3744	0.3623	0.3774	0.3788	0.3462	14	AVG
1,2-Dibromoethane	0.3406	0.3797	0.4610	0.4438	0.4115	0.4159	0.4046	0.4082	10	AVG
Chlorobenzene	#0.9455	1.0524	1.1233	1.1157	1.0062	1.0297	0.9814	1.0363	6	AVG
1,1,1,2-Tetrachloroethane	0.2605	0.3163	0.3646	0.3678	0.3445	0.3566	0.3537	0.3377	11	AVG
Ethylbenzene	÷	1.8241	1.9309	1.9311	1.7277	1.7919	1.6422	1.8080	6	AVG
m+p-Xylene	1	0.7050	0.7611	0.7674	0.6844	0.7121	0.6487	0.7131	6	AVG
Xylene (Total)		0.7033	0.7665		0.6864				6	AVG
o-Xylene		0.7000	0.7771	0.7664	0.6904	0.7167	0.6709	0.7202	6	AVG
Styrene		1.1438	1.2817		1.1753				6	AVG
Bromoform	; #	0.2220	0.2955	0.2989	0.2990	0.3169	0.3311	0.2939	13	AVG
Isopropylbenzene		1.8193	1.9464	1.9654	1.7168	1.8106	1.5848	1.8072	8	AVG
Cyclohexanone					0.4975				7	AVG
1,1,2,2-Tetrachloroethane	#1.0428	1.1475	1.3983	1.2839	1.1581	1.1348	1.0956	1.1801	10	AVG
trans-1,4-Dichloro-2-Butene		0.3137	0.3960	0.3691	0.3396	0.3332	0.3159	0.3446	9	AVG
Bromobenzene					0.7961				6	AVG
1,2,3-Trichloropropane		0.3458	0.4216	0.3894	0.3580	0.3479	0.3393	0.3670	9	AVG
n-Propylbenzene					3.4761				11	AVG
2-Chlorotoluene	ŀ	0.7804	0.8185	0.8316	0.7217	0.7505	0.7325	0.7725	6	AVG
1,3,5-Trimethylbenzene					2.5828				9	AVG
4-Chlorotoluene	1	0.7835	0.8634	0.8573	0.7590	0.7842	0.7454	0.7988	6	AVG
tert-Butylbenzene					0.5697				7	AVG
Pentachloroethane		0.4740	0.4788	0.5355	0.4917	0.5257	0.5011	0.5011	5	AVG
1,2,4-Trimethylbenzene					2.6788				8	AVG
sec-Butyl benzene					3.1400				11	AVG
p-Isopropyltoluene					2.7959				11	AVG
1,3-Dichlorobenzene					1.4910				6	AVG
1,4-Dichlorobenzene	1				1.5864				8	AVG
1,2,3-Trimethylbenzene					2.8920				11	AVG
Benzyl Chloride					2.3183				9	AVG
1,3-Diethylbenzene					1.7995				8	AVG
1,4-Diethylbenzene					1.8684				10	AVG
n-Butylbenzene					1.3707				9	AVG
1,2-Dichlorobenzene			1.7681		1.5296 1.5188			1.5854	9	AVG
1,2-Diethylbenzene									11	AVG

Minimum RRF for SPCC(#) = 0.10(0.30 for Chlorobenzene; 1,1,2,2-Tetrachloroethane)
Maximum %RSD for CCC(*) = 30%

6A VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: Lancaster Laboratories Contract:

Heated Purge: (Y/N) Y Calibration Times: 13:52 15:56


Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 1D: .18

LAB FILE ID:	RRF $1 = yc15i07.d$	RRF $4 = yc15i06.d$	RRF $10 = yc15i05.d$
RRF 20= yc15i04.d	RRF 50= yc15i03.d	RRF:100= yc15i02.d	RRF300= yc15i01.d

COMPOUND	RRF 1	RRF 4	RRF 10	RRF 20	RRF 50	RRF100	RRF300	RRF	% RSD	CAL. METHOD
:======================================	=====	=====	=====	=====	=====	=====	=====	=====	=====	=======
1,2-Dibromo-3-Chloropropane		0.2586	0.3389	0.3138	0.3030	0.2996	0.2868	0.3001	9	AVG
1,3,5-Trichlorobenzene		1.2088	1.3171	1.3110	1.1311	1.1932	1.0571	1.2031	8	AVG
1,2,4-Trichlorobenzene		1.1250	1.2552	1.2485	1.0716	1.1156	0.9687	1.1308	10	AVG
Hexachlorobutadiene		0.5451	0.5655	0.5929	0.4845	0.5214	0.4372	0.5244	11	AVG
Naphthalene		4.2845	4.9056	4.5899	4.0881	4.0529		4.3842	8	AVG
1,2,3-Trichlorobenzene		1.1465	1.2494	1.2247	1.0512	1.0754	0.9085	1.1093	11	AVG
2-Methylnaphthalene		2.5675	2.5014	2.6440	2.2220	2.2580		2.4386	8	AVG
:======================================	=====	=====	=====	=====	=====	=====	=====	======	=====	=======
Dibromofluoromethane	0.2210	0.2210	0.2242	0.2202	0.2229	0.2222	0.2232	0.2221	1	AVG
Dibromofluoromethane(mz111)	0.2266	0.2259	0.2269	0.2280	0.2275	0.2268	0.2285	0.2271	0	AVG
1,2-Dichloroethane-d4	0.0586	0.0591	0.0592	0.0603	0.0626	0.0588	0.0591	0.0597	2	AVG
1,2-Dichloroethane-d4(mz104	0.0375	0.0372	0.0371	0.0373	0.0375	0.0377	0.0381	0.0375	1	AVG
1,2-Dichloroethane-d4(mz65)	0.2702	0.2717	0.2738	0.2779	0.2866	0.2713	0.2613	0.2732	3	AVG
Toluene-d8(mz100)	0.8582	0.8684	0.8596	0.8652	0.8701	0.8778	0.9091	0.8726	2	AVG
4-Bromofluorobenzene(mz174)	0.4298	0.4317	0.4290	0.4243	0.4270	0.4264	0.4333	0.4288	1	AVG
Toluene-d8	1.3403	1.3417	1.3368	1.3347	1.3336	1.3315	1.3211	1.3342	1	AVG
4-Bromofluorobenzene	0.5008	0.5039	0.4995	0.5016	0.5034	0.5040	0.5078	0.5030	1	AVG
		l	l	l						l

Average %RSD

Minimum RRF for SPCC(#) = 0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Maximum %RSD for CCC(*) = 30%

Internal Standard Area and Retention Time Summary

Initial Calibration Standards:

```
/chem2/HP09355.i/12oct15a.b/yc15i01.d VSTD300
/chem2/HP09355.i/12oct15a.b/yc15i02.d VSTD100
/chem2/HP09355.i/12oct15a.b/yc15i03.d VSTD050
/chem2/HP09355.i/12oct15a.b/yc15i04.d VSTD020
/chem2/HP09355.i/12oct15a.b/yc15i05.d VSTD010
/chem2/HP09355.i/12oct15a.b/yc15i06.d VSTD004
/chem2/HP09355.i/12oct15a.b/yc15i07.d VSTD001
```

Area Summary .

File ID:

Internal Standard Name	yc15i01.d	yc15i02.d	yc15i03.d	yc15i04.d	yc15i05.d	yc15i06.d	yc15i07.d	Avg. Area	%RS
							=========		====
t-Butyl Alcohol-d10	406726	403352	412834	401859	440407	421996,	433320	417213	4
Fluorobenzene	1437215	1360921	1383029	1333428	1392369	1394885	1388390	1384320	2
Chlorobenzene-d5	1046648	978073	994041	954756	995614	984797	977849	990254	3
1,4-Dichlorobenzene-d4	607964	571243	572625	541980	567514	566053	561154	569790	3

%RSD of internal standard area is flagged out of spec if greater than 30.

RT Summary

File ID:

=======

Internal Standard Name	ycl5i01.d	yc15i02.d	yc15i03.d	yc15i04.d	yc15i05.d	yc15i06.d	yc15i07.đ	Avg. RT
*********			60500535055	=======================================	~=======		==========	=======
t-Butyl Alcohol-d10	2.060	2.054	2.054	2.042	2.048	2.048	2.042	2.050
Fluorobenzene	4.153	4.147	4.147	4.147	4.141	4.141	4.141	4.145
Chlorobenzene-d5	7.328	7.328	7.323	7.323	7.322	7.316	7.322	7.323
1,4-Dichlorobenzene-d4	9.354	9.348	9.348	9.348	9.348	9.348	9.348	9.349

Report generated on 10/15/2012 at 16:41.

^{*} indicates the retention time is greater than 30 seconds from the average RT.

Lab Name: Lancaster Laboratories Contract:____

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Lab File ID: yc15v02.d Init. Calib. Date(s): 10/15/12 10/15/12

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .18

			ACTUAL	TRUE	왕
COMPOUND	RRF	RRF	CONC.	CONC.	DRIFT
	=====	=====	======	======	======
Dichlorodifluoromethane	0.3384	0.3240	19.15	20	-4
# Chloromethane	0.3589	0.3552	19.79	20	-1
* Vinyl Chloride	0.3516	0.3269	18.60	20	-7
1,3-Butadiene	0.1510	0.1643	21.75	20	9
Bromomethane	0.2298	0.1631	14.19	20	-29
Chloroethane	0.1905	0.1193	12.52	20	-37
Dichlorofluoromethane	0.4183	0.4337	20.74	20	4
Trichlorofluoromethane	0.3781	0.3649	19.30	20	-4
n-Pentane	0.3445	0.2819	16.37	20	-18
Freon 123a	0.2674	0.2812	21.03	20	5
Acrolein	1.6675	1.2915	116.18	150	-23
* 1,1-Dichloroethene	0.2032	0.2290	22.53	20	13
Freon 113	0.2087	0.2392	22.92	20	15
Acetone	0.0568	0.0494	130.43	150	-13
Methyl Iodide	0.3867	0.4182	21.63	20	8
2-Propanol	0.7011	0.5562	119.00	150	-21
Carbon Disulfide	0.6262	0.6737	21.52	20	8
Allyl Chloride	0.3749	0.3553	18.95	20	-5
Methyl Acetate	0.3094	0.3140	20.29	20	1
Methylene Chloride	0.2528	0.2701	21.37	20	7
t-Butyl Alcohol	1.2399	1.0274	165.72	200	-17
Acrylonitrile	0.2130	0.2082	97.73	100	-2
trans-1,2-Dichloroethene	0.2433	0.2788	22.92	20	15
Methyl Tertiary Butyl Ether	0.8414	0.9084	21.59	20	8
n-Hexane	0.3642	0.4613	25.33	20	27
1,2-Dichloroethene (total)	0.2577	0.2957	45.89	40	15
# 1,1-Dichloroethane	0.4416	0.5008	22.68	20	13
di-Isopropyl Ether	0.8854	0.9477	21.41	20	7
2-Chloro-1,3-Butadiene	0.3749	0.4443	23.70	20	19
Ethyl t-Butyl Ether	0.8526	0.9271	21.75	20	9
cis-1,2-Dichloroethene	0.2722	0.3126	22.97	20	15
2-Butanone	0.3080	0.3169	154.37	150	3
2,2-Dichloropropane	0.3318	0.3766	22.70	20	14
Propionitrile	1.5452	1.5441	149.89	150	0
Methacrylonitrile	0.2108	0.2197	156.31	150	4
Bromochloromethane	0.1477	0.1516	20.54	20	3
	İ	l	l		

Minimum RRF for SPCC(#)=0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Maximum %Drift for CCC(*)=20%

page 1 of 4

sage (in the contract of the

Lab Name: Lancaster Laboratories Contract:

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:____

Lab File ID: yc15v02.d Init. Calib. Date(s): 10/15/12 10/15/12

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .18

1	.			ACTUAL	TRUE	왐
1	COMPOUND	RRF	l RRF	CONC.	CONC.	DRIFT
1						
1	Tetrahydrofuran		1.4202			
! *	Chloroform		0.4667			
ī	1,1,1-Trichloroethane		0.4345			_
!						
!	Cyclohexane 1,1-Dichloropropene		0.5358			!
!	Carbon Tetrachloride					
1	Isobutyl Alcohol		0.3264			
ŀ	-		0.3871			
1	Benzene		1.1894			
ļ	1,2-Dichloroethane		0.3761			
-	t-Amyl Methyl Ether		0.8874			
-	n-Heptane		0.5336			
ļ	n-Butanol		0.3647			
	Trichloroethene		0.2982			!
*	1,2-Dichloropropane		0.3059			
ļ	Methylcyclohexane		0.5607			
	Methyl Methacrylate		0.3296			
ļ	Dibromomethane		0.1955			
1	1,4-Dioxane		0.1073			
	Bromodichloromethane		0.3333			
	2-Nitropropane		0.1116		20	
1	- -	0.2461				!
1	cis-1,3-Dichloropropene		0.4654		20	18
	4-Methyl-2-Pentanone	0.5824	0.5904	101.37	100	1
*	Toluene	0.9308	1.0404	22.36	20	12
-	trans-1,3-Dichloropropene	0.5322	0.5648	21.22	20	6
	Ethyl Methacrylate	0.7043	0.7238	20.55		
1	1,1,2-Trichloroethane	0.3761	0.3999	21.26	20	6
1	Tetrachloroethene	0.4015	0.4586	22.85	20	14
1	1,3-Dichloropropane	0.6306	0.6672	21.16	20	6
1	2-Hexanone	0.6551	0.6585	100.52	100	1
İ	Dibromochloromethane	0.3462	0.3725	21.52	20	8
ĺ	1,2-Dibromoethane	0.4082	0.4334	21.24	20	6
#	Chlorobenzene		1.1307		20	9 :
1	1,1,1,2-Tetrachloroethane		0.3622		20	7
*	Ethylbenzene		1.9897		20	10
ı	m+p-Xylene	0.7131	0.7931	44.48	40	11
İ						

Minimum RRF for SPCC(#)=0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Maximum %Drift for CCC(*)=20%

page 2 of 4

Lab Name: Lancaster Laboratories Contract:
--

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:____

Lab File ID: yc15v02.d Init. Calib. Date(s): 10/15/12 10/15/12

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .18

		l	1	ACTUAL	TRUE	ક	
	COMPOUND	RRF	RRF	CONC.	CONC.	DRIFT	
1	=======================================	=====	=====	=====	=======	=====	=
	Xylene (Total)	0.7155	0.5683	66.27	60	10	
	o-Xylene	0.7202	0.7846	21.79	20	9	
	Styrene	1.2026	1.3150	21.87	20	9	
#	Bromoform	0.2939	0.2795	19.02	20	-5	
	Isopropylbenzene	1.8072	2.0462	22.65	20	13	
	Cyclohexanone	0.4878	0.5318	545.15	500	9	
#	1,1,2,2-Tetrachloroethane	1.1801	1.2013	20.36	20	2	
	trans-1,4-Dichloro-2-Butene	0.3446	0.3779	109.68	100	10	
Ì	Bromobenzene	0.8307	0.8761	21.09	20	5	
1	1,2,3-Trichloropropane	0.3670	0.3666	19.98	20	0	
	n-Propylbenzene	3.6372	4.1231	22.67	20	13	
	2-Chlorotoluene	0.7725	0.8317	21.53	20	8	
1	1,3,5-Trimethylbenzene	2.7088	3.0451	22.48	20	12	
	4-Chlorotoluene	0.7988	0.8579	21.48	20	7	
1	tert-Butylbenzene	0.6083	0.6799	22.35	20	12	
ĺ	Pentachloroethane	0.5011	0.4887	19.50	20	-2	
1	1,2,4-Trimethylbenzene	2.7947	3.0832	22.06	20	10	
1	sec-Butylbenzene	3.3308	3.9044	23.44	· 20	17	
1	p-Isopropyltoluene	2.9418	3.4140	23.21	20	16	
	1,3-Dichlorobenzene	1.5682	1.6978	21.65	20	8	
	1,4-Dichlorobenzene	1.6738	1.7868	21.35	20	7	
ĺ	1,2,3-Trimethylbenzene	3.0045	3.1754	21.14	20	6	
1	Benzyl Chloride	2.2586	2.1396	18.95	20	-5	
	1,3-Diethylbenzene	1.8547	2.0069	21.64	20	8	
1	1,4-Diethylbenzene	1.9054	2.1123	22.17	20	11	
	n-Butylbenzene	1.4578	1.7019	23.35	20	17	
1	1,2-Dichlorobenzene	1.5854	1.7078	21.54	20	8	
	1,2-Diethylbenzene	1.5947	1.7151	21.51	20	8	
	1,2-Dibromo-3-Chloropropane	0.3001	0.2909	19.38	20	-3	
	1,3,5-Trichlorobenzene	1.2031	1.3545	22.52	20	13	
	1,2,4-Trichlorobenzene	1.1308	1.2818	22.67	20	13	
	Hexachlorobutadiene	0.5244	0.5882	22.43	20	12	
	Naphthalene	4.3842	4.3601	19.89	20	-1	
	1,2,3-Trichlorobenzene	1.1093	1.1935	21.52	20	8	
	2-Methylnaphthalene	2.4386	2.2662	18.59	20	-7	
1_							_

Minimum RRF for SPCC(#)=0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane)
Maximum %Drift for CCC(*)=20%

page 3 of 4

Lab Name: Lancaster Laboratories Contract:_____

Lab File ID: yc15v02.d Init. Calib. Date(s): 10/15/12 10/15/12

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .18

			ACTUAL	TRUE	8
COMPOUND	RRF	RRF	CONC.	CONC.	DRIFT
=======================================	=====	======	======	======	======
	1				

Average %Drift 10

Minimum RRF for SPCC(#)=0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Maximum %Drift for CCC(*)=20%

page 4 of 4

VOLATILE CONTINUING CALIBRATION CHECK

Lab	Name:	Lancaster	Laboratories	Contract:	
Lab	Code:	LANCAS	Case No.:	SAS No.:	SDG No.:

Instrument ID: HP09355 Calibration Date: 10/21/12 Time: 01:24

Lab File ID: yc21c01.d Init. Calib. Date(s): 10/15/12 10/15/12

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .18

			ACTUAL	TRUE	%
СОМРОИИД	RRF	RRF50	CONC.	CONC.	DRIFT
=======================================	=====	=====	======	======	======
Dichlorodifluoromethane	0.3384	0.3070	45,36	50	-9
# Chloromethane	0.3589	0.3862	53.80	50	8 #
* Vinyl Chloride	0.3516	0.3330	47.36	50	-5 *
Bromomethane	0.2298	0.2138	46.53	50	-7
Chloroethane	0.1905	0.1789	46.96	50	-6
Dichlorofluoromethane	0.4183	0.4402	52.61	50	5
Trichlorofluoromethane	0.3781	0.3648	48.24	50	-4
Freon 123a	0.2674	0.2796	52.29	50	5
Acrolein	1.6675	1.3338	399.95	500	-20
* 1,1-Dichloroethene	0.2032	0.2176	53.53	50	7 *
Freon 113	0.2087	0.2160	51.74	50	3
Acetone	0.0568	0.0641	112.84	100	13
Methyl Iodide	0.3867	0.4114	53.19	50	6
2-Propanol	0.7011	0.7479	266.72	250	7
Carbon Disulfide	0.6262	0.6704	53.53	50	7
Allyl Chloride	0.3749	0.3310	44.14	50	-12
Methyl Acetate	0.3094	0.3803	61.44	50	23
Methylene Chloride	0.2528	0.2547	50.37	50	1
t-Butyl Alcohol	1.2399	1.4170	285.70	250	14
Acrylonitrile	0.2130	0.2331	54.70	50	9
trans-1,2-Dichloroethene	0.2433	0.2470	50.76	50	2
Methyl Tertiary Butyl Ether	0.8414	0.8300	49.32	50	-1
n-Hexane	0.3642	0.3419	46.93	50	-6
1,2-Dichloroethene (total)	0.2577	0.2592	100.63	100	1
# 1,1-Dichloroethane	0.4416	0.4613	52.23	50	4 #
di-Isopropyl Ether	0.8854	0.9025	50.97	50	2
2-Chloro-1,3-Butadiene	0.3749	0.4038	53.86	50	8
Ethyl t-Butyl Ether	0.8526	0.8343	48.93	50	-2
cis-1,2-Dichloroethene	0.2722	0.2715	49.87	50	0
2-Butanone	0.3080	0.3741	121.48	100	21
2,2-Dichloropropane	0.3318	0.3250	48.98	50	-2
Propionitrile	1.5452	1.3312	215.37	250	-14
Methacrylonitrile	0.2108	0.2054	121.77	125	-3
Bromochloromethane	0.1477	0.1304	44.17	50	-12
Tetrahydrofuran	1.4466	1.2324	85.19	100	-15
* Chloroform	0.4441	0.4347	48.94	50	-2 *

Minimum RRF for SPCC(#)=0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Maximum %Drift for CCC(*)=20%

page 1 of 4

7A VOLATILE CONTINUING CALIBRATION CHECK

Lab	Name:	Lancaster	Laboratories	Contract:

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Instrument ID: HP09355 Calibration Date: 10/21/12 Time: 01:24

Lab File ID: yc2lc01.d Init. Calib. Date(s): 10/15/12 10/15/12

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .18

1	<u> </u>	}	ACTUAL	TRUE	울
COMPOUND	RRF	RRF50	CONC.	CONC.	DRIFT
	!	!	======		
1,1,1-Trichloroethane	!	0.3554			-6
Cyclohexane	:	0.4419			. 0
Cyclohexane(mz 84)		0.3477			-5
Cyclohexane (mz 69)	•	0.1312			-4
1,1-Dichloropropene	:	0.3426			4
Carbon Tetrachloride	•	0.2840			1
Isobutyl Alcohol	!	0.4377		625	2
Benzene	:	1.0656		50	2
1,2-Dichloroethane	,	0.3506		50	1
1,2-Dichloroethane(mz 98)	0.0318			50	-7
t-Amyl Methyl Ether	•	0.7807		50	-7
n-Heptane		0.3553		50	-16
n-Butanol	1		1152.31	1250	-8
Trichloroethene	•	0.2620			1
* 1,2-Dichloropropane	0.2752	0.2825	51.33	50	3
Methylcyclohexane(mz98)	0.2077	0.1712	41.22	50	-18
Methylcyclohexane	0.4723	0.3946	41.77	50	-16
Methyl Methacrylate	0.3254	0.3040	46.71	50	-7
Dibromomethane	0.1823	0.1755	48.14	50	-4
1,4-Dioxane	0.1102	0.0866	491.52	625	-21
Bromodichloromethane	0.3084	0.3038	49.25	50	-2
2-Nitropropane	0.1276	0.1553	121.70	100	22
2-Chloroethyl Vinyl Ether	0.2461	0.2322	47.19	50	-6
cis-1,3-Dichloropropene	0.3947	0.3799	48.12	50	~4
4-Methyl-2-Pentanone	0.5824	0.7552	129.66	100	30
* Toluene	0.9308	0.9422	50.61	50	1
trans-1,3-Dichloropropene	0.5322	0.5197	48.83	50	-2
Ethyl Methacrylate	0.7043	0.6753	47.94	50	-4
1,1,2-Trichloroethane	0.3761	0.3661	48.66	50	-3
Tetrachloroethene	0.4015	0.3823	47.62	50	- 5
1,3-Dichloropropane	0.6306	0.6280	49.80	50	0
2-Hexanone	0.6551	0.8920	136.17	100	36
Dibromochloromethane	0.3462	0.3357	48.49	50	-3
1,2-Dibromoethane	0.4082	0.4005	49.06	50	-2
# Chlorobenzene	1.0363	1.0180	49.12	50	-2
1,1,1,2-Tetrachloroethane	0.3377	0.3314	49.07	50	-2

Minimum RRF for SPCC(#)=0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Maximum %Drift for CCC(#)=20%

page 2 of 4

7A VOLATILE CONTINUING CALIBRATION CHECK

minimum merce beneather the common account and the selection of the select

Lab Name: Lancaster Laboratories Contract:	
--	--

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Instrument ID: HP09355 Calibration Date: 10/21/12 Time: 01:24

Lab File ID: yc21c01.d Init. Calib. Date(s): 10/15/12 10/15/12

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .18

			ACTUAL	TRUE	ે ક
COMPOUND	RRF	RRF50	CONC.	CONC.	DRIFT
	======	=====	=====	======	======
* Ethylbenzene	1.8080	1.8125	50.12	50	0
m+p-Xylene	0.7131	0.7048	98.83	100	-1
Xylene (Total)	0.7155	0.7044	147.68	150	-2
o-Xylene	0.7202	0.7037	48.85	50	-2
Styrene	1.2026	1.1798	49.05	50	-2
# Bromoform	0.2939	0.2585	43.98	50	-12
Isopropylbenzene	1.8072	1.8013	49.84	50	0
Cyclohexanone	0.4878	0.3151	403.68	625	~35
# 1,1,2,2-Tetrachloroethane	1.1801	1.1728	49.69	50	-1
trans-1,4-Dichloro-2-Butene	0.3446	0.2664	96.62	125	-23
Bromobenzene	0.8307	0.7665	46.13	50	-8
1,2,3-Trichloropropane	0.3670	0.3525	48.03	50	-4
n-Propylbenzene	3.6372	3.6563	50.26	50	1
2-Chlorotoluene	0.7725	0.7317	47.35	50	-5
1,3,5-Trimethylbenzene	2.7088	2.6589	49.08	50	-2
4-Chlorotoluene	0.7988	0.7655	47.91	50	-4
tert-Butylbenzene	0.6083	0.5862	48.18	50	-4
Pentachloroethane	0.5011	0.4718	47.08	50	-6
1,2,4-Trimethylbenzene	2.7947	2.7323	48.88	50	-2
sec-Butylbenzene	3.3308	3.2821	49.27	50	-1
p-Isopropyltoluene	2.9418	2.8925	49.16	50	-2
1,3-Dichlorobenzene	1.5682	1.4653	46.72	50	-7
1,4-Dichlorobenzene	1.6738	1.5718	46.95	50	-6
1,2,3-Trimethylbenzene	3.0045	2.8719	47.79	50	-4
Benzyl Chloride	2.2586	2.0314	44.97	50	-10
1,3-Diethylbenzene	1.8547	1.7315	46.68	50	-7
1,4-Diethylbenzene	1.9054	1.8125	47.56	50	-5
n-Butylbenzene	1.4578	1.4344	49.20	50	-2
1,2-Dichlorobenzene	1.5854	1.5200	47.94	50	-4
1,2-Diethylbenzene	1.5947	1.4695	46.07	50	-8
1,2-Dibromo-3-Chloropropane	0.3001	0.3068	51.11	50	2
1,3,5-Trichlorobenzene	1.2031	1.0756	44.70	50	-11
1,2,4-Trichlorobenzene	1.1308	0.9895	43.75	50	-12
Hexachlorobutadiene	0.5244	0.4364	41.61	50	-17
Naphthalene	4.3842	3.8355	43.74	50	-13
1,2,3-Trichlorobenzene	1.1093	0.9340	42.10	50	-16

Minimum RRF for SPCC(#)=0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Maximum %Drift for CCC(#)=20%

page 3 of 4

7A VOLATILE CONTINUING CALIBRATION CHECK

db	Name:	Lancaster	Laboratories	Contract:	
					

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Instrument ID: HP09355 Calibration Date: 10/21/12 Time: 01:24

Lab File ID: yc21c01.d Init. Calib. Date(s): 10/15/12 10/15/12

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID; .18

			ACTUAL	TRUE	몽
COMPOUND	RRF	RRF50	CONC.	CONC.	DRIFT
=======================================	=====	=====	======	======	======
2-Methylnaphthalene	2.4386	1.9620	40.23	50	-20
=======================================		=====	======	======	*=====
Dibromofluoromethane	0.2221	0.2181	49.10	50	-2
Dibromofluoromethane(mz111)	0.2271	0.2246	49.44	50	-1
1,2-Dichloroethane-d4	0.0597	0.0610	51.10	50	2
1,2-Dichloroethane-d4(mz104)	0.0375	0.0362	48.29	50	-3
Toluene-d8(mz100)	0.8726	0.8859	50.76	50	2
1,2-Dichloroethane-d4(mz65)	0.2732	0.2973	54.40	50	9
4-Bromofluorobenzene(mz174)	0.4288	0.4162	48.53	50	-3
Toluene-d8	1.3342	1.3685	51.28	50	3
4-Bromofluorobenzene	0.5030	0.5098	50.67	50	1
			l		

Average %Drift 7

Minimum RRF for SPCC(#)=0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Maximum %Drift for CCC(*)=20%

page 4 of 4

Lancaster Laboratories Continuing Calibration Internal Standard Check

Initial Calibration Standards:

```
/chem2/HP09355.i/12oct15a.b/yc15i07.d
/chem2/HP09355.i/12oct15a.b/yc15i06.d
/chem2/HP09355.i/12oct15a.b/yc15i05.d
/chem2/HP09355.i/12oct15a.b/yc15i04.d
/chem2/HP09355.i/12oct15a.b/yc15i03.d
/chem2/HP09355.i/12oct15a.b/yc15i02.d
/chem2/HP09355.i/12oct15a.b/yc15i01.d
```

File /chem2/HP09355.i/12oct15a.b/yc15i03.d is Mid Level Calibration Standard used for comparison.

Current Continuing Calibration Standard:

/chem2/HP09355.i/12oct21a.b/yc21c01.d

RT Summary

File ID:

Internal Standard Name	yc21c01.d	ICAL RT	In Spec
=======================================	==========	========	=======
t-Butyl Alcohol-d10	2.048	2.054	Yes
Fluorobenzene	4.141	4.147	Yes
Chlorobenzene-d5	7.323	7.323	Yes
1,4-Dichlorobenzene-d4	9.348	9.348	Yes

A "No" indicates the retention time is greater than 30 seconds from the referenced ICAL standard.

Area Summary

File ID:

Internal Standard Name	yc21c01.d	ICAL Area	Low Limit	High Limit	In Spec
=======================================	=========	========	========	==========	=======
t-Butyl Alcohol-d10	467310	412834	206417	825668	Yes
Fluorobenzene	1251569	1383029	691514	2766058	Yes
Chlorobenzene-d5	870330	994041	497020	1988082	Yes
1,4-Dichlorobenzene-d4	503266	572625	286312	1145250	Yes

A "No" indicates the internal standard area is outside acceptable QC limits.

,	\neg	$\overline{}$	m	m	_	~	+	~	
		()	ш	1711	-	11	. 1		٠

report generated on 10/21/2012 at 02:14

8A VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: Lancaster Laboratories Contract:

Lab Code: LANCAS Case No.: SAS No.: SDG No.: OSP14

Lab File ID (Standard): yc21c01.d Date Analyzed: 10/21/12

Instrument ID: HP09355 Time Analyzed: 01:24

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

	1	IS1(FBZ)	l	IS2(CBZ)	1	I IS3(DCB)	1	IS4 (TBA)	l 1
	<u> </u>	AREA #	RT#	132 (CB2) AREA #	l RT#	AREA #	RT #	AREA #	RT #
	 	AREA #		AKEA #	KI #	AREA #	KI #	AREA #	KI #
	12 HOUR STD	1251569	4.141	870330	7.322	503266	9.348	467310	2.048
	12 HOOR SID			:	·				
		2503138	4.641	1740660	7.822	!	9.848	934620	2.548
	LOWER LIMIT	625784	3.641	435165	6.822	251633	8.848	233655	1.548
	LAB SAMPLE	=======	======	=======	======	======	======	======	======
					<u> </u>		ļ		
	ID				!		!		
0.1	======== 	1010403	======		======	466000	======		=====
01	VBLKY78	1219483	4.128	846223	7.316	466979	9.342	441161	2.036
02	LCSY78	1275024	4.134	894322	7.316	508588	9.348	463237	2.054
03	6829250	1268396	4.135	883686	7.322	484637	9.348		
04	6829251	1181490	4.141	817102	7.322	447762	9.348		
05	6828401	1157354	4.135	802261	7.322	437161	9.348	557463	2.036
06	6828402	1200495	4.141	838996	7.322	463741	9.348	444487	2.048
07	6828403	1193342	4.134	829440	7.316	450209	9.348	397165	2.042
80	6828404	1231990	4.135	849150	7.316	465129	9.348	427355	2.042
09	6828405	1212829	4.135	834367	7.316	461698	9.348	423802	2.048
10	6828406	1204346	4.134	826674	7.316	458601	9.348	407537	2.048
11	6828407	1215340	4.128	839314	7.316	458781	9.342	413357	2.042
12	6828408	1181403	4.135	813131	7.316	449195	9.348	413973	2.048
13	6828409MS	1223501	4.135	846928	7.316	481978	9.342	433061	2.048
14	6828410MSD	1082460	4.134	747311	7.316	428197	9.342	368435	2.036
15	6828412	1194299	4.128	827633	7.316	448351	9.342	423766	2.036
16	6828413	1176128	4.135	810884	7.316	443398	9.342	399069	2.048
17	6828414	1067267	4.129	736328	7.316	400473	9.342	359842	2.042
18	6828415	1195724	4.135	828099	7.316	450377	9.342	421628	2.048
19	6828481	1194989	4.135	822595	7.316	453996	9.348	425268	2.042
20	6828482	1223160	4.129	844041	7.316	464917	9.342	436836	2.036
21	6828483	1250459	4.135	862220	7.316	474698	9.348	447185	2.042
22	6828484	1165615	4.135	813631	7.316	441115	9.342	427118	2.048
		i				İ		1	

IS1 (FBZ)=Fluorobenzene UPPER LIMIT = + 100%

IS2 (CBZ)=Chlorobenzene-d5 of internal standard area.

IS3 (DCB)=1,4-Dichlorobenzene-d4 LOWER LIMIT = - 50%

IS4 (TBA)=t-Butyl Alcohol-d10 of internal standard area.

page 1 of 2

FORM VIII VOA

[#] Column used to flag values outside QC limits with an asterisk

^{*} Values outside of QC limits.

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: Lancaster Laboratories Contract:

Lab Code: LANCAS

Case No.: SAS No.:

SDG No.: OSP14

Lab File ID (Standard): yc21c01.d

Date Analyzed: 10/21/12

Instrument ID: HP09355

Time Analyzed: 01:24

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

		IS1(FBZ) AREA #	RT #	IS2(CBZ) AREA #	RT #	IS3 (DCB) AREA #	RT #	IS4(TBA) AREA #	RT #
	12 HOUR STD UPPER LIMIT LOWER LIMIT	2503138	4.141 4.641 3.641	======== 870330 1740660 435165	7.322 7.822 6.822		9.348 9.848 8.848	934620	2.048 2.548 1.548
	LAB SAMPLE ID	=======	======	=======	=====	=======	======	=======	======
23	6828485	1200728	4.135	833665	7.316	462045	9.348	421956	2.048

IS1 (FBZ)=Fluorobenzene

IS2 (CBZ)=Chlorobenzene-d5

IS3 (DCB)=1,4-Dichlorobenzene-d4

IS3 (DCB)=1,4-Dichlorobenzene-d4

LOWER LIMIT = - 50%

of internal standard area.

page 2 of 2

FORM VIII VOA

[#] Column used to flag values outside QC limits with an asterisk

^{*} Values outside of QC limits.

Sample Data

Lancaster Laboratories

LOQ/MDL Summary GC/MS Volatiles

SDG: OSP14

Fraction: Volatiles by GC/MS

10903: 8260 Std. Water Master	Default	Default	
Analyte Name	MDL	LOQ	Units
Chloromethane	1	5	ug/l
Vinyl Chloride	1	5	ug/l
Bromomethane	1	5	ug/l
Chloroethane	1	5	ug/l
Trichlorofluoromethane	2	5	ug/l
Acrolein	40	100	ug/l
1,1-Dichloroethene	0.8	5	ug/l
Methylene Chloride	2	5	ug/l
Acrylonitrile	4	20	ug/l
trans-1,2-Dichloroethene	0.8	5	ug/l
1,1-Dichloroethane	1	5	ug/l
cis-1,2-Dichloroethene	0.8	5	ug/l
Chloroform	0.8	5	ug/l
1,1,1-Trichloroethane	0.8	5	ug/l
Carbon Tetrachloride	1	5	ug/l
Benzene	0.5	5	ug/l
1,2-Dichloroethane	1	5	ug/l
Trichloroethene	1	5	ug/l
1,2-Dichloropropane	1	5	ug/l
Bromodichloromethane	1	5	ug/l
2-Chloroethyl Vinyl Ether	2	10	ug/l
cis-1,3-Dichloropropene	1	5	ug/l
Toluene	0.7	5	ug/l
trans-1,3-Dichloropropene	1	5	ug/l
1,1,2-Trichloroethane	0.8	5	ug/l
Tetrachloroethene	0.8	5	ug/l
Dibromochloromethane	1	5	ug/l
Chlorobenzene	0.8	5	ug/l
Ethylbenzene	0.8	5	ug/l
Xylene (Total)	0.8	5	ug/l
Bromoform	1	5	ug/l
1,1,2,2-Tetrachloroethane	1	5	ug/l

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: Lancaster Laboratories Contract:

Matrix: (soil/water) WATER

Lab Sample ID: 6828481

 $Sample \ \ wt/vol: \ 5.00 \ \ (g/mL) \ \ mL \\ Lab \ \ File \ ID: \ HP09355.i/l2oct2la.b/yc2ls17.d$

Level: (low/med) LOW

Date Received: 10/18/12

Moisture: not dec. ____ Date Analyzed: 10/21/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L Q

CAD NO. COMPOSID (4372 OF 437A)	.5/ 45/2	*
74-87-3Chloromethane	5	σ
75-01-4Vinyl Chloride	5	ט
74-83-9Bromomethane	5	ט
75-00-3Chloroethane	5	ן ט
75-69-4Trichlorofluoromethane	5	ט
107-02-8Acrolein	100	ן ט
75-35-41,1-Dichloroethene	5	Ū
75-09-2Methylene Chloride	5	ן ש
107-13-1Acrylonitrile	20	"ט
156-60-5trans-1,2-Dichloroethene	5	U
75-34-31,1-Dichloroethane	5	ן ט
156-59-2cis-1,2-Dichloroethene	5	ן ט
67-66-3Chloroform	5	ט (
71-55-61,1,1-Trichloroethane	· 5	ט
56-23-5Carbon Tetrachloride	5	ט
71-43-2Benzene	1	J
107-06-21,2-Dichloroethane	5	ט
79-01-6Trichloroethene	5	ן ט
78-87-51,2-Dichloropropane	5	σ
75-27-4Bromodichloromethane	5	ט
110-75-82-Chloroethyl Vinyl Ether	10	ט
10061-01-5cis-1,3-Dichloropropene	5	ט
108-88-3Toluene	5	υ
10061-02-6trans-1,3-Dichloropropene	5	ע
79-00-51,1,2-Trichloroethane	5	ט
127-18-4Tetrachloroethene	2	J
124-48-1Dibromochloromethane	. 5	ן ט
108-90-7Chlorobenzene	5	ט
100-41-4Ethylbenzene	5	ט
1330-20-7Xylene (Total)	5	ט
		l

page 1 of 2

FORM I VOA

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

ı		
	M4	
1		

Lab Name: Lancaster Laboratories

Contract:

Lab Code: LANCAS Case No.:_____ SAS No.:____

SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: 6828481

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09355.i/12oct2la.b/yc2ls17.d

Level: (low/med) LOW

Date Received: 10/18/12

Moisture: not dec.

Date Analyzed: 10/21/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND

(ug/L or ug/Kg) ug/L

75-25-2Bromoform	5	ע
79-34-51,1,2,2-Tetrachloroethane	5	ן ט
	<u> </u>	

Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6828481 M4 - - -

Data file: /chem2/HP09355.i/12oct21a.b/yc21s17.d Injection Data file Sample Info. Line: M4---;6828481;1;0;;0SP14;;;yc21b01; InstDate, time and analyst ID of latest file update: 22-Oct-2012 10:T0 lct01518 Injection date and time: 21-OCT-2012 09:26
Instrument ID: HP09355.i Batch: Y122951AA

Blank Data file reference: /chem2/HP09355.i/12oct21a.b/yc21b01.d

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 82

Calibration date and time (Last Method Edit): 21-OCT-2012 03:56
Mid Level Daily Calibration Standard Reference: /chem2/HP09355.i/12oct21a.b/yc21c01.d

Bottle Code: 038A

Matrix: WATER

Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

Analysis Comments:

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Change)	Conc. (on-column)	QC Flag
28) t-Butyl Alcohol-d10	2.042(0.006)	199	65	425268 (-9)	250.00	
71) Fluorobenzene	4.135(0.006)	543	96	1194989 (-5)	50.00	
106) Chlorobenzene-d5	7.316(0.006)	1066	117	822595 (-5)	50.00	
136) 1,4-Dichlorobenzene-d4	9.348(0.000)	1400	152	453996 (-10)	50.00	

Surrogate Standards	I.S. Ref.	RT (+/-RRT)	QIon	Area	Conc. (on-column)	%Rec.	QC flags ======	QC Limits
52) Dibromofluoromethane	(1)	3.496(-0.001)	113	254527	47.951	96%		80 - 116
62) 1,2-Dichloroethane-d4	(1)	3.800(0.000)	102	67966	47.654	95%		77 - 113
93) Toluene-d8	(2)	5.753(0.000)	98	1115997	50.841	102%		80 - 113
119) 4-Bromofluorobenzene	(2)	8.430(-0.001)	95	419562	50.700	101%		78 - 113

	get Compounds	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.		
	Chloromethane	(1)			. 222025	Not Detected				******	1	 5
5)	Vinyl Chloride	(1)				Not Detected					1	5
7)	Bromomethane	(1)				Not Detected					1	5
8)	Chloroethane	(1)				Not Detected					1	5
10)	Trichlorofluoromethane	(1)				Not Detected					2	5
15)	Acrolein	(4)				Not Detected					40	100
16)	1,1-Dichloroethene	(1)				Not Detected					0.8	5
26)	Methylene Chloride	(1)				Not Detected					2	5
30)	Acrylonitrile	(1)				Not Detected					4	20
31)	trans-1,2-Dichloroethene	(1)				Not Detected					0.8	5
34)	1,1-Dichloroethane	(1)				Not Detected					1	5
40)	cis-1,2-Dichloroethene	(1)				Not Detected					0.8	5
50)	Chloroform	(1)				Not Detected					0.8	5
53}	1,1,1-Trichloroethane	(1)				Not Detected					0.8	5
58)	Carbon Tetrachloride	(1)				Not Detected					1	5
63)	Benzene	(1)	3.86	7(-0.001)	78	37178	1.484	1.48		J	0.5	5
65)	1,2-Dichloroethane	(1)				Not Detected					1	5
74)	Trichloroethene	(1)				Not Detected					1	5
77)	1,2-Dichloropropane	(1)				Not Detected					1	5
83)	Bromodichloromethane	(1)				Not Detected					1	5
86)	2-Chloroethyl Vinyl Ether	(1)				Not Detected					2	10
87)	cis-1,3-Dichloropropene	(1)				Not Detected					1	5
	Toluene	(2)				Not Detected					0.7	5
95)	trans-1,3-Dichloropropene	(2)				Not Detected					1	5
97)	1,1,2-Trichloroethane	(2)				Not Detected		•			0.8	5
98)	Tetrachloroethene	(2)	6.41	0(0.000)	166	10938	1.656	1.66		J	0.8	5
102)	Dibromochloromethane	(2)				Not Detected					1	5
107)	Chlorobenzene	(2)				Not Detected					0.8	5
109)	Ethylbenzene	(2)				Not Detected					0.8	5
	m+p-Xylene	(2)				Not Detected					0.8	5
	Xylene (Total)	(2)				Not Detected					0.8	5

Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6828481 M4 - - -

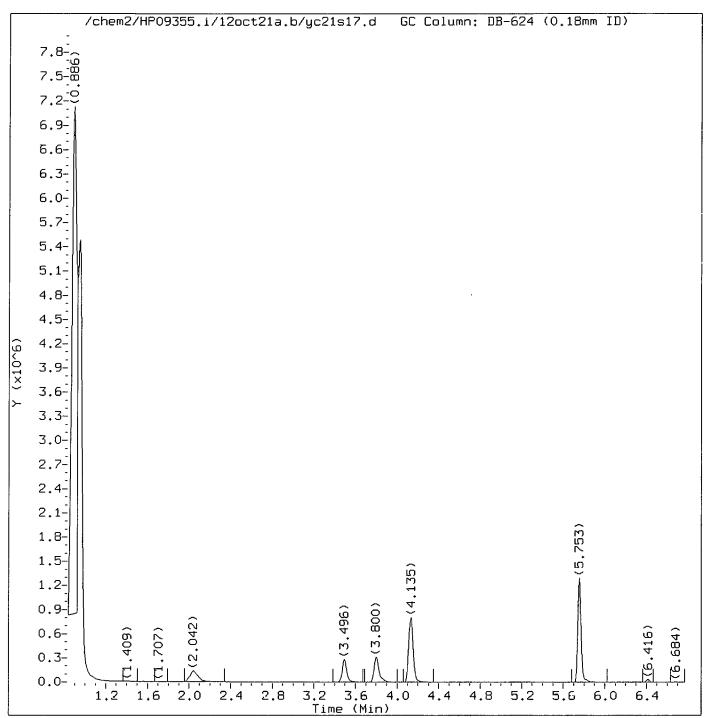
Injection date and time: 21-OCT-2012 09:26 Data file: /chem2/HP09355.i/l2oct2la.b/yc2ls17.d Inje
Data file Sample Info. Line: M4---;6828481;1;0;;0SP14;;;yc2lb01; Inst
Date, time and analyst ID of latest file update: 22-Oct-2012 10:10 lct01518 Instrument ID: HP09355.i Batch: Y122951AA

Blank Data file reference: /chem2/HP09355.i/12oct21a.b/yc21b01.d

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 82

Calibration date and time (Last Method Edit): 21-OCT-2012 03:56
Mid Level Daily Calibration Standard Reference: /chem2/HP09355.i/12oct21a.b/yc21c01.d

Bottle Code: 038A-Matrix: WATER Level: Low


On-Column Amount units: ng In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo) VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml Sample Volume (Vo): 5 ml

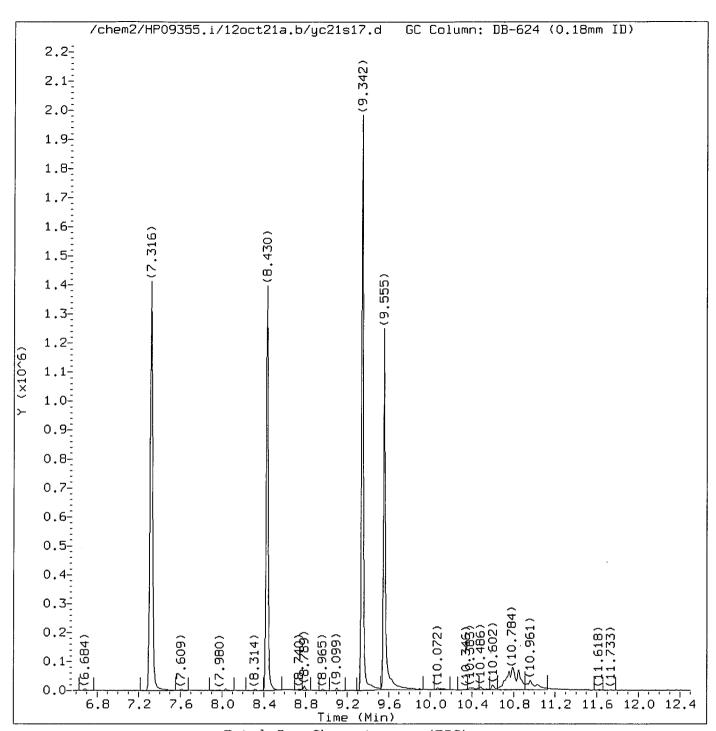
Target Compounds	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.	Reportin Limit (in sa	LOQ
		*====							======		
113) o-Xylene	(2)				Not Detected	d				0.8	5
115) Bromoform	(2)				Not Detected	d				1	5
122) 1,1,2,2-Tetrachloroethane	(3)				Not Detected	d				1	5

Total number of targets = 34

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct21a.b/yc21s17.d Injection date and time: 21-OCT-2012 09:26


Instrument ID: HP09355.i Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 82

Calibration date and time: 21-OCT-2012 03:56

Date, time and analyst ID of latest file update: 22-Oct-2012 10:10 lct01518

Sample Name: M4--- Lab Sample ID: 6828481

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct21a.b/yc21s17.d Injection date and time: 21-OCT-2012 09:26

Instrument ID: HP09355.i Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 82

Calibration date and time: 21-OCT-2012 03:56

Date, time and analyst ID of latest file update: 22-Oct-2012 10:10 lct01518

Sample Name: M4---Lab Sample ID: 6828481

Digitally signed by Lauren C. Temple on 10/22/2012 at 10:15.

Target 3.5 esignature user ID: lct01518

Quant Report

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct21a.b/yc21s17.d

Instrument ID: HP09355.i

Injection date and time: 21-OCT-2012 09:26

Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m

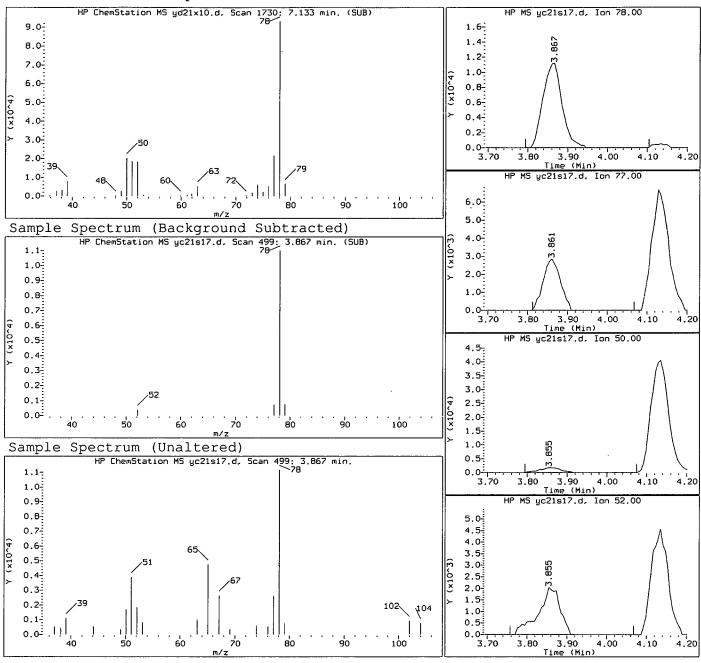
Sublist used: 82

Calibration date and time: 21-OCT-2012 03:56

Date, time and analyst ID of latest file update: 22-Oct-2012 10:10 lct01518

Sample Name: M4---

Lab Sample ID: 6828481


Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
28) *t-Butyl Alcohol-d10	(4)	2.042	65	425268	250.000
52) \$Dibromofluoromethane	(1)	3.496	113	254527	47.951
62) \$1,2-Dichloroethane-d4	(1)	3.800	102	67966	47.654
63) Benzene	(1)	3.867	78	37178	1.484
71)*Fluorobenzene	(1)	4.135	96	1194989	50.000
93)\$Toluene-d8	(2)	5.753	98	1115997	50.841
98) Tetrachloroethene	(2)	6.410	166	10938	1.656
106) *Chlorobenzene-d5	(2)	7.316	117	822595	50.000
119)\$4-Bromofluorobenzene	(2)	8.430	95	419562	50.700
136) *1,4-Dichlorobenzene-d4	(3)	9.348	152	453996	50.000

^{* =} Compound is an internal standard.

page 1 of 1

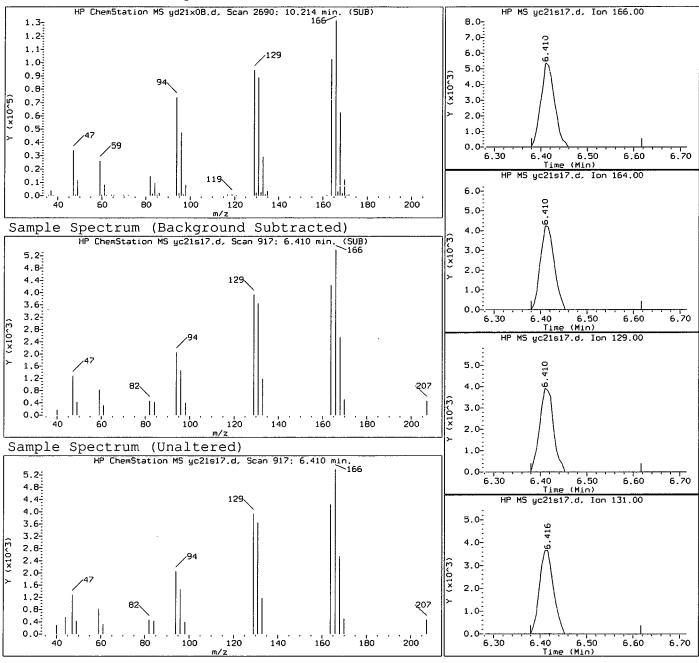
^{\$ =} Compound is a surrogate standard.

Reference Standard Spectrum for Benzene

Data File: /chem2/HP09355.i/12oct21a.b/yc21s17.d Injection date and time: 21-OCT-2012 09:26

Instrument ID: HP09355.i
Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 82


Calibration date and time: 21-OCT-2012 03:56

Date, time and analyst ID of latest file update: 22-Oct-2012 10:10 lct01518

Sample Name: M4--- Lab Sample ID: 6828481

Compound Number : 63
Compound Name : Benzene
Scan Number : 499
Retention Time (minutes): 3.867
Relative Retention Time :-0.00138
Quant Ion : 78.00
Area (flag) : 37178
On-Column Amount (ng) : 1.4843

Reference Standard Spectrum for Tetrachloroethene

Data File: /chem2/HP09355.i/12oct21a.b/yc21s17.d Injection date and time: 21-OCT-2012 09:26

Instrument ID: HP09355.i Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 82

Calibration date and time: 21-OCT-2012 03:56

Date, time and analyst ID of latest file update: 22-Oct-2012 10:10 lct01518

Sample Name: M4--- Lab Sample ID: 6828481

Compound Number : 98

Compound Name : Tetrachloroethene

Scan Number : 917

Retention Time (minutes): 6.410
Relative Retention Time: 0.00010
Quant Ion: 166.00
Area (flag): 10938
On-Column Amount (ng): 1.6560

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: Lancaster Laboratories Contract:____

THE PERSON AND ADDRESS OF THE PROPERTY OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:___

Matrix: (soil/water) WATER

Lab Sample ID: 6828482

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09355.i/l2oct2la.b/yc2ls18.d

Level: (low/med) LOW

Date Received: 10/18/12

Moisture: not dec. ____ Date Analyzed: 10/21/12

Column: (pack/cap) CAP Dilution Factor: 1.0

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

. J	3 ,	~
74-87-3Chloromethane	5	Ū
75-01-4Vinyl Chloride	4	J
74-83-9Bromomethane	5	Ü
75-00-3Chloroethane	5	ט (
75-69-4Trichlorofluoromethane	5	U
107-02-8Acrolein	100	U
75-35-41,1-Dichloroethene	5	U
75-09-2Methylene Chloride	5	U
107-13-1Acrylonitrile	20	ט
156-60-5trans-1,2-Dichloroethene	5	ט
75-34-31,1-Dichloroethane	5	ן ט
156-59-2cis-1,2-Dichloroethene	11	ĺ
67-66-3Chloroform	5	ט
71-55-61,1,1-Trichloroethane	5	ט
56-23-5Carbon Tetrachloride	5	ט
71-43-2Benzene	5	ט
107-06-21,2-Dichloroethane	5	υ
79-01-6Trichloroethene	5	U
78-87-51,2-Dichloropropane	5	ט
75-27-4Bromodichloromethane	5	ט
110-75-82-Chloroethyl Vinyl Ether	10	ט
10061-01-5cis-1,3-Dichloropropene	5	U
108-88-3Toluene	5	ט
10061-02-6trans-1,3-Dichloropropene	5	ט
79-00-51,1,2-Trichloroethane	5	ן ד
127-18-4Tetrachloroethene	10	
124-48-1Dibromochloromethane	5	וֹ טוֹ
108-90-7Chlorobenzene	5	ט
100-41-4Ethylbenzene	5	ֹ ט
1330-20-7Xylene (Total)	5	ט
-	İ	İ

page 1 of 2

FORM I VOA

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA	SAMPLE	NC-

_
-5
•

Lab Name: Lancaster Laboratories Contract:

Lab Code: LANCAS Case No.:____ SAS No.:___ SDG No.:____

Matrix: (soil/water) WATER

Lab Sample ID: 6828482

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09355.i/12oct2la.b/yc21s18.d

Level: (low/med) LOW

Date Received: 10/18/12

Moisture: not dec. Date Analyzed: 10/21/12

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) ug/L

75-25-2Bromoform	l 5	ע ו
79-34-51,1,2,2-Tetrachloroethane_	5	ט

Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6828482

Data file: /chem2/HP09355.i/12oct21a.b/yc21s18.d Injection Data file Sample Info. Line: -5---;6828482;1;0;;0SP14;;;yc21b01; Inst Date, time and analyst ID of latest file update: 22-Oct-2012 10:10 lct01518 Injection date and time: 21-OCT-2012 09:46
Instrument ID: HP09355.i Batch: Y122951AA

Blank Data file reference: /chem2/HP09355.i/12oct21a.b/yc21b01.d

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 82

Calibration date and time (Last Method Edit): 21-0CT-2012 03:56

Mid Level Daily Calibration Standard Reference: /chem2/HP09355.i/12oct21a.b/yc21c01.d

Bottle Code: 038A

Matrix: WATER

Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

Analysis Comments:

Internal Standards	RT (+/-RT)	· Scan	QIon	Area(+/- %Change)	Conc. (on-column)	QC Flag
28) t-Butyl Alcohol-d10	2.036(0.012)	198	65	436836 (-7)	250.00	
71) Fluorobenzene	4.129(0.012)	542	96	1223160 (-2)	50.00	
106) Chlorobenzene-d5	7.316(0.006)	1066	117	844041 (-3)	50.00	
136) 1,4-Dichlorobenzene-d4	9.342(0.006)	1399	152	464917 (-8)	50.00	

	rrogate Standards	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc: (on-column)	%Rec.	QC flags	QC Limits
52)	Dibromofluoromethane	(1)	3.49	90(-0.001)	113	259135	47.695	95%		80 - 116
62)	1,2-Dichloroethane-d4	(1)	3.80	00(-0.001)	102	70443	48.254	97%		77 - 113
93)	Toluene-d8	(2)	5.75	3(0.000)	98	1146178	50.889	102%		80 - 113
119)	4-Bromofluorobenzene	(2)	8.43	30(-0.001)	95	427219	50.314	101%		78 - 113

Target Compounds	I.S. Ref.		(+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.		LOQ ample)
3) Chloromethane	(1)			=====	Not Detected				*=====	1	·======= 5
Vinyl Chloride	(1)	1.105	(0.005)	62	38334	4.457	4.46		J	1	5
Bromomethane	(1)				Not Detected					1	5
8) Chloroethane	(1)				Not Detected					1	5
10) Trichlorofluoromethane	(1)				Not Detected					2	5
15) Acrolein	(4)				Not Detected					40	100
16) 1,1-Dichloroethene	(1)				Not Detected					0.8	5
26) Methylene Chloride	(1)				Not Detected					2	5
30) Acrylonitrile	(1)				Not Detected					4	20
31) trans-1,2-Dichloroethen	e (1)				Not Detected					0.8	5
34) 1,1-Dichloroethane	(1)				Not Detected					1	5
40) cis-1,2-Dichloroethene	(1)	3.052	(-0.000)	96	72616	10.905	10.90			0.8	5
50) Chloroform	(1)				Not Detected					0.8	5
53) 1,1,1-Trichloroethane	(1)				Not Detected					0.8	5
58) Carbon Tetrachloride	(1)				Not Detected					1	5
63) Benzene	(1)				Not Detected					0.5	5
65) 1,2-Dichloroethane	(1)				Not Detected					1	5
74) Trichloroethene	(1)				Not Detected					1	5
77) 1,2-Dichloropropane	(1)				Not Detected					1	5
83) Bromodichloromethane	(1)				Not Detected					1	5
86) 2-Chloroethyl Vinyl Ethe	er (1)				Not Detected					2	10
87) cis-1,3-Dichloropropene	(1)				Not Detected					1	5
94) Toluene	(2)				Not Detected					0.7	5
95) trans-1,3-Dichloroproper	ne (2)				Not Detected					1	5
97) 1,1,2-Trichloroethane	(2)				Not Detected					0.8	5
98) Tetrachloroethene	(2)	6.410	(0.000)	166	69468	10.250	10.25			0.8	5
102) Dibromochloromethane	(2)				Not Detected					1	5
107) Chlorobenzene	(2)				Not Detected					0.8	5
109) Ethylbenzene	(2)				Not Detected					0.8	5
110) m+p-Xylene	(2)				Not Detected					0.8	5
112) Xylene (Total)	(2)				Not Detected					0.8	5

Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6828482

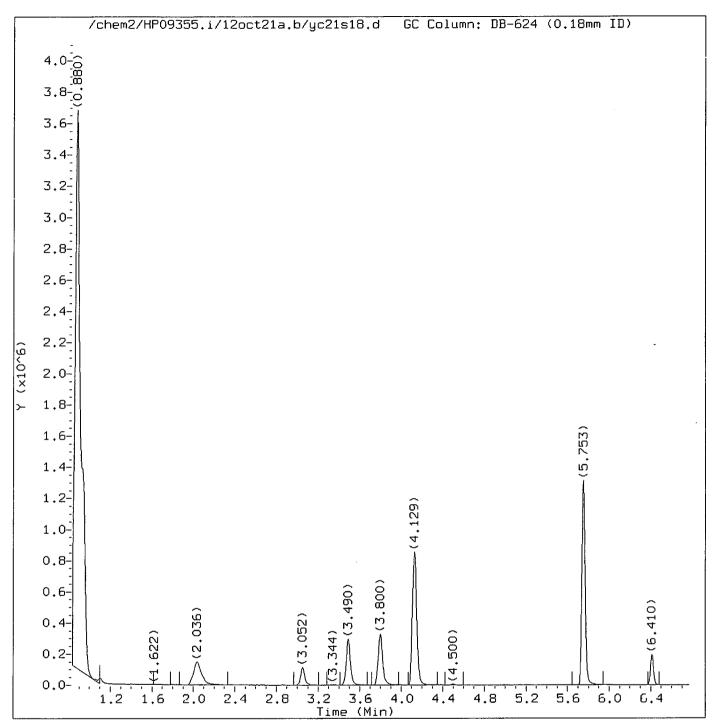
Injection date and time: 21-OCT-2012 09:46
Instrument ID: HP09355.i Batch: Y122951AA Data file: /chem2/HP09355.i/12oct21a.b/yc21s18.d Data file Sample Info. Line: -5---;6828482;1;0;;0SF14;;;yc2lb01; Ins: Date, time and analyst ID of latest file update: 22-Oct-2012 10:10 lct01518

Blank Data file reference: /chem2/HP09355.i/12oct21a.b/yc21b01.d

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 82

Calibration date and time (Last Method Edit): 21-OCT-2012 03:56
Mid Level Daily Calibration Standard Reference: /chem2/HP09355.i/12oct21a.b/yc21c01.d

Bottle Code: 038A Matrix: WATER Level: Low


In Sample Concentration units: ug/L On-Column Amount units: ng

Sample Concentration Formula: On-Column Amount * (Vt/Vo) VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml Sample Volume (Vo): 5 ml

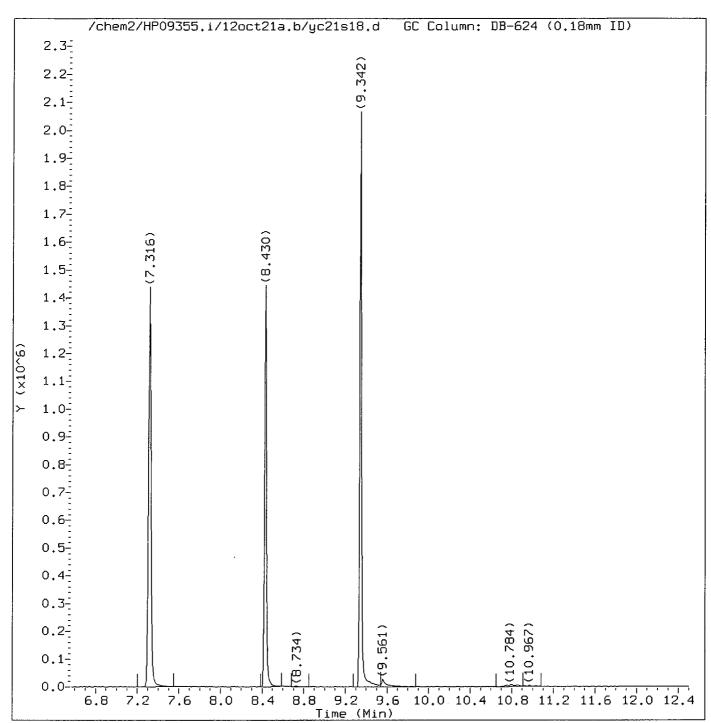
Target Compounds	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc.	Conc. (in sample)	Blank Conc.	Qual.	Reportin Limit (in sa	LOQ
	=====			=====		==========	**********	=======	======		=====
113) o-Xylene	(2)				Not Detected	i				0.8	5
115) Bromoform	(2)				Not Detected	i				1	5
122) 1,1,2,2-Tetrachloroethane	(3)				Not Detected	ı				1	5

Total number of targets = 34

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct21a.b/yc21s18.d Injection date and time: 21-OCT-2012 09:46


Instrument ID: HP09355.i
Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Su Calibration date and time: 21-OCT-2012 03:56

Sublist used: 82

Date, time and analyst ID of latest file update: 22-Oct-2012 10:10 lct01518

Sample Name: -5--- Lab Sample ID: 6828482

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct21a.b/yc21s18.d Injection date and time: 21-OCT-2012 09:46

Instrument ID: HP09355.i
Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 82

Calibration date and time: 21-OCT-2012 03:56

Date, time and analyst ID of latest file update: 22-Oct-2012 10:10 lct01518

Sample Name: -5--- Lab Sample ID: 6828482

Quant Report

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct21a.b/yc21s18.d Injection date and time: 21-OCT-2012 09:46

Instrument ID: HP09355.i

Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m

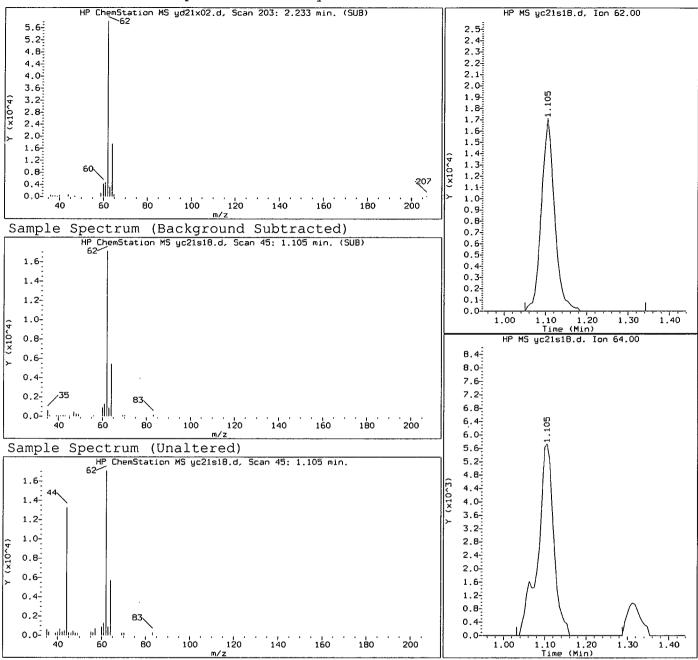
Sublist used: 82

Calibration date and time: 21-OCT-2012 03:56

Date, time and analyst ID of latest file update: 22-Oct-2012 10:10 lct01518

Sample Name: -5---

Lab Sample ID: 6828482


Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
	======	=====	=====	=========	
5) Vinyl Chloride	(1)	1.105	62	38334	4.457
28)*t-Butyl Alcohol-d10	(4)	2.036	65	436836	250.000
40) cis-1,2-Dichloroethene	(1)	3.052	96	72616	10.905
52) \$Dibromofluoromethane	(1)	3.490	113	259135	47.695
62) \$1,2-Dichloroethane-d4	(1)	3.800	102	70443	48.254
71)*Fluorobenzene	(1)	4.129	96	1223160	50.000
93)\$Toluene-d8	(2)	5.753	98	1146178	50.889
98) Tetrachloroethene	(2)	6.410	166	69468	10.250
106) *Chlorobenzene-d5	(2)	7.316	117	844041	50.000
119)\$4-Bromofluorobenzene	(2)	8.430	95	427219	50.314
136) *1,4-Dichlorobenzene-d4	(3)	9.342	152	464917	50.000

^{* =} Compound is an internal standard.

page 1 of 1

^{\$ =} Compound is a surrogate standard.

Reference Standard Spectrum for Vinyl Chloride

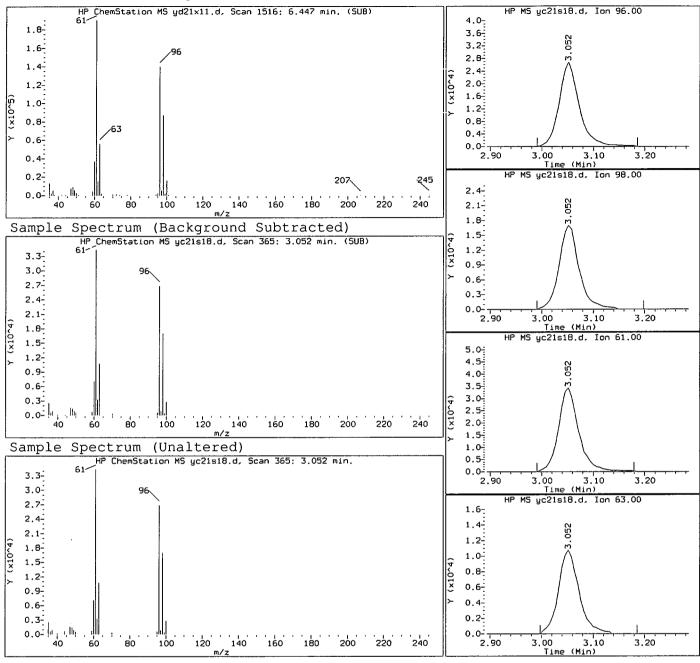
Data File: /chem2/HP09355.i/12oct21a.b/yc21s18.d Injection date and time: 21-OCT-2012 09:46

Instrument ID: HP09355.i Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 82

Calibration date and time: 21-OCT-2012 03:56

Date, time and analyst ID of latest file update: 22-Oct-2012 10:10 lct01518


Sample Name: -5--- Lab Sample ID: 6828482

Compound Number : 5

Compound Name : Vinyl Chloride

Scan Number : 45

Retention Time (minutes): 1.105
Relative Retention Time: 0.00510
Quant Ion: 62.00
Area (flag): 38334
On-Column Amount (ng): 4.4573

Data File: /chem2/HP09355.i/12oct21a.b/yc21s18.d Injection date and time: 21-OCT-2012 09:46

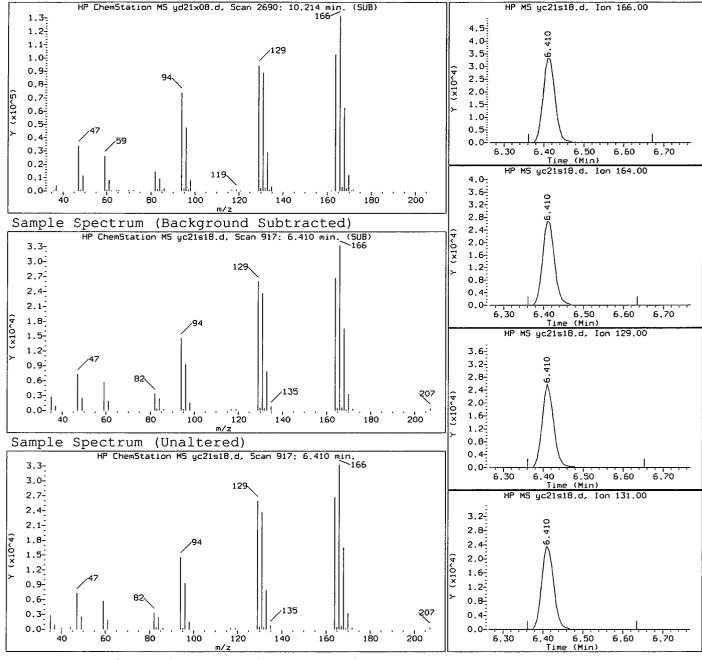
Instrument ID: HP09355.i
Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 82

Calibration date and time: 21-OCT-2012 03:56

Date, time and analyst ID of latest file update: 22-Oct-2012 10:10 lct01518

Sample Name: -5--- Lab Sample ID: 6828482


Compound Number : 40

Compound Name : cis-1,2-Dichloroethene

Scan Number : 365
Retention Time (minutes): 3.052
Relative Retention Time :-0.00070
Quant Ion : 96.00
Area (flag) : 72616

On-Column Amount (ng) : 10.9049

Reference Standard Spectrum for Tetrachloroethene

Data File: /chem2/HP09355.i/12oct21a.b/yc21s18.d Injection date and time: 21-OCT-2012 09:46

Instrument ID: HP09355.i Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 82

Calibration date and time: 21-OCT-2012 03:56 Date, time and analyst ID of latest file update: 22-Oct-2012 10:10 lct01518

Sample Name: -5---Lab Sample ID: 6828482

Compound Number : 98

Compound Name : Tetrachloroethene

Scan Number : 917

Retention Time (minutes): 6.410 Relative Retention Time : 0.00010 Quant Ion : 166.00 Area (flag) : 69468 On-Column Amount (ng) : 10.2504

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: Lancaster Laboratories Contract:____

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:_

Matrix: (soil/water) WATER

Lab Sample ID: 6828493

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09355.i/12oct21a.b/yc21s19.d

Level: (low/med) LOW

Date Received: 10/18/12

Moisture: not dec. ____ Date Analyzed: 10/21/12

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L

74-87-3Chloromethane	5	U
75-01-4Vinyl Chloride	5	ן ש
74-83-9Bromomethane	5	ט
75-00-3Chloroethane	5	U
75-69-4Trichlorofluoromethane	5	ן ט
107-02-8Acrolein	100	ן ט
75-35-41,1-Dichloroethene	5	ט
75-09-2Methylene Chloride	5	ט
107-13-1Acrylonitrile	20	ט
156-60-5trans-1,2-Dichloroethene	5	ט
75-34-31,1-Dichloroethane	5	ן ט
156-59-2cis-1,2-Dichloroethene	5	ט
67-66-3Chloroform	5	ט
71-55-61,1,1-Trichloroethane	5	ט
56-23-5Carbon Tetrachloride	5	υ
71-43-2Benzene	1	J
107-06-21,2-Dichloroethane	5	U
79-01-6Trichloroethene	5	U.
78-87-51,2-Dichloropropane	5	σ
75-27-4Bromodichloromethane	5	U
110-75-82-Chloroethyl Vinyl Ether	10	ט
10061-01-5cis-1,3-Dichloropropene	5	Ŭ
108-88-3Toluene	5	ט
10061-02-6trans-1,3-Dichloropropene	5	ט
79-00-51,1,2-Trichloroethane	5	ט
127-18-4Tetrachloroethene	2	J
124-48-1Dibromochloromethane	5	σ
108-90-7Chlorobenzene	5	ט
100-41-4Ethylbenzene	5	ן ד
1330-20-7Xylene (Total)	5	ט
		l

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

FD4	
FD4	

Lab Name: Lancaster Laboratories

Contract:

Matrix: (soil/water) WATER

Lab Sample ID: 6828483

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09355.i/12oct21a.b/yc21s19.d

Level: (low/med) LOW

Date Received: 10/18/12

Moisture: not dec. ____

Date Analyzed: 10/21/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND

(ug/L or ug/Kg) ug/L

75-25-2Bromoform	5	ָ ט
79-34-51,1,2,2-Tetrachloroethane	5	ט

FD4--

Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6828483

Data file: /chem2/HP09355.i/l2oct2la.b/yc21s19.d Injection date and time: 21-OCT-2012 10:07
Data file Sample Info. Line: FD4--;6828483;1;0;;OSP14;;;yc21b01; Instrument ID: HP09355.i Batch: Y122951AA
Date, time and analyst ID of latest file update: 22-Oct-2012 10:11 1ct01518

Blank Data file reference: /chem2/HP09355.i/12oct21a.b/yc21b01.d

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 82

Calibration date and time (Last Method Edit): 21-OCT-2012 03:56

Mid Level Daily Calibration Standard Reference: /chem2/HP09355.i/l2oct21a.b/yc21c01.d

Bottle Code: 038A

Matrix: WATER

Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

Analysis Comments:

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Change)	Conc. (on-column)	QC Flag
28) t-Butyl Alcohol-d10	2.042(0.006)	199	65	447185 (-4)	250.00	
71) Fluorobenzene	4.135(0.006)	543	96	1250459 (0)	50.00	
106) Chlorobenzene-d5	7.316(0.006)	1066	117	862220 (-1)	50.00	
136) 1,4-Dichlorobenzene-d4	9.348(0.000)	1400	152	474698 (-6)	50.00	

	rrogate Standards	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on-column)	%Rec.	QC flags	QC Limits
52)	Dibromofluoromethane	(1)	3.49	96(-0.001)	113	267945	48.240	96%		80 - 116
62)	1,2-Dichloroethane-d4	(1)	3.80	06(-0.001)	102	71969	48.223	96%		77 - 113
93)	Toluene-d8	(2)	5.75	33(0.000)	98	1172277	50.950	102%		80 - 113
119)	4-Bromofluorobenzene	(2)	8.43	30(-0.001)	95	437008	50.382	101%		78 - 113

	get Compounds	I.S. Ref.	RT (+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.	Reporti Limit (in s	LOQ sample)
	Chloromethane	(1)			Not Detected					1	5
5)	Vinyl Chloride	(1)			Not Detected					1	5
7)	Bromomethane	(1)			Not Detected					1	5
8)	Chloroethane	(1)			Not Detected					1	5
10)	Trichlorofluoromethane	(1)			Not Detected					2	5
15)	Acrolein	(4)			Not Detected					40	100
16)	1,1-Dichloroethene	(1)			Not Detected					0.8	5
26)	Methylene Chloride	(1)			Not Detected					2	5
30)	Acrylonitrile	(1)			Not Detected					4	20
31)	trans-1,2-Dichloroethene	(1)			Not Detected					0.8	5
34)	1,1-Dichloroethane	(1)			Not Detected					1	5
40)	cis-1,2-Dichloroethene	(1)			Not Detected					0.8	5
50)	Chloroform	(1)			Not Detected					0.8	5
53)	1,1,1-Trichloroethane	(1)			Not Detected					0.8	5
58)	Carbon Tetrachloride	(1)			Not Detected					1	5
63)	Benzene	(1)	3.867 (-0.001)	78	33921	1.294	1.29		J	0.5	5
65)	1,2-Dichloroethane	(1)			Not Detected					1	5
74)	Trichloroethene	(1)			Not Detected					1	5
77)	1,2-Dichloropropane	(1)			Not Detected					1	5
83)	Bromodichloromethane	(1)			Not Detected					1	5
86)	2-Chloroethyl Vinyl Ether	(1)			Not Detected					2	10
87)	cis-1,3-Dichloropropene	(1)			Not Detected					1	5
94)	Toluene	(2)			Not Detected					0.7	5
95)	trans-1,3-Dichloropropene	(2)			Not Detected					1	5
	1,1,2-Trichloroethane	(2)			Not Detected					0.8	5
98)	Tetrachloroethene	(2)	6.416(-0.000)	166	11395	1.646	1.65		J	0.8	5
102)	Dibromochloromethane	(2)			Not Detected					1	5
107)	Chlorobenzene	(2)			Not Detected					0.8	5
109)	Ethylbenzene	(2)			Not Detected					0.8	5
110)	m+p-Xylene	(2)			Not Detected					0.8	5
	Xylene (Total)	(2)			Not Detected					0.8	5

Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6828483 FD4--

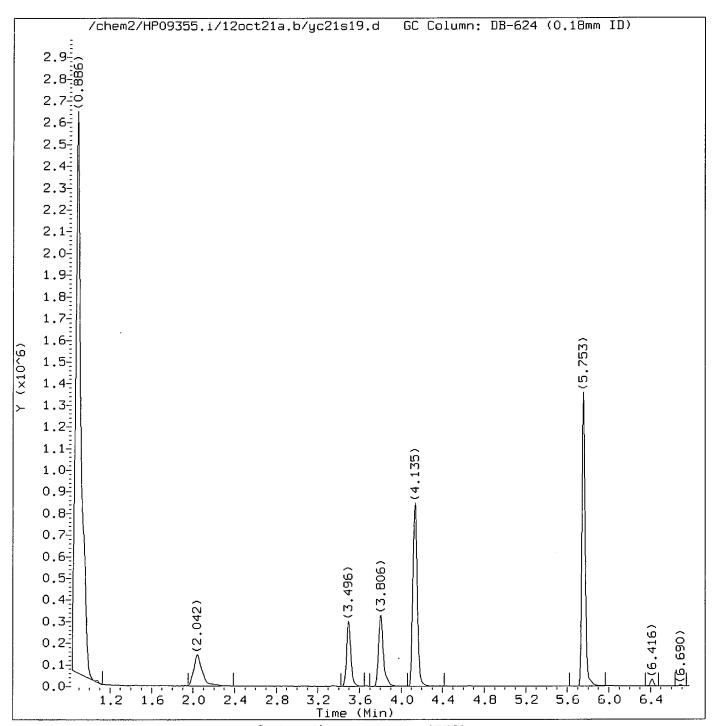
Data file: /chem2/HP09355.i/l2oct2la.b/yc21s19.d Inje
Data file Sample Info. Line: FD4--;6828483;1;0;;0SP14;;;yc21b01; Inst
Date, time and analyst ID of latest file update: 22-Oct-2012 10:11 lct01518 Injection date and time: 21-OCT-2012 10:07 Instrument ID: HP09355.i Batch: Y122951AA

Blank Data file reference: /chem2/HP09355.i/12oct21a.b/yc21b01.d

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 82 Calibration date and time (Last Method Edit): 21-OCT-2012 03:56

Mid Level Daily Calibration Standard Reference: /chem2/HP09355.i/12oct21a.b/yc21c01.d

Bottle Code: 038A Matrix: WATER Level: Low


On-Column Amount units: ng In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo) VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml Sample Volume (Vo): 5 ml

	I.S.					Conc.	Conc.	Blank		Reportin Limit	LOQ
Target Compounds	Ref.	RT	(+/-RRT)	QIon	Area	(on-column)	(in sample)	Conc.	Qual.	(in sa	ımple)
	****	=====				*========			======		
113) o-Xylene	(2)				Not Detected	d				0.8	5
115) Bromoform	(2)				Not Detected	d				1	5
122) 1,1,2,2-Tetrachloroethane	(3)				Not Detected	d				1	5

Total number of targets = 34

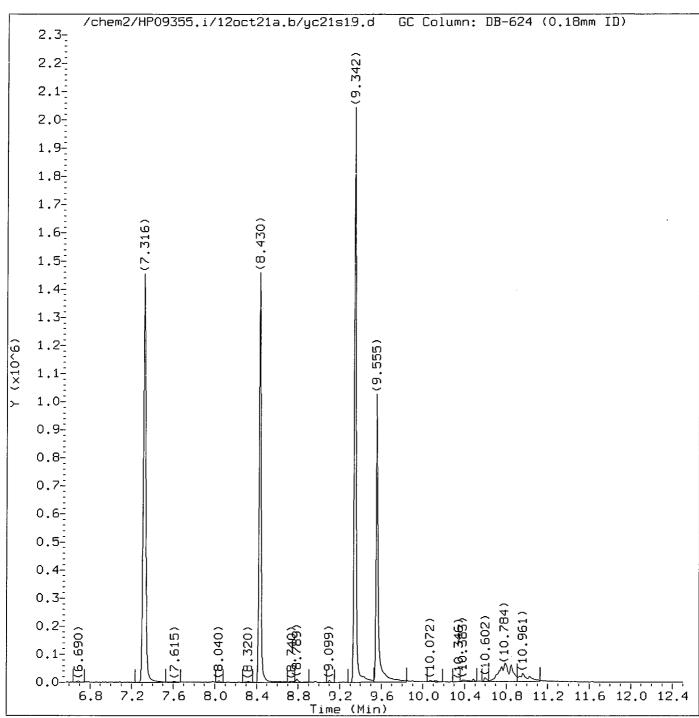
Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct21a.b/yc21s19.d Injection date and time: 21-OCT-2012 10:07

Instrument ID: HP09355.i Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 82


Calibration date and time: 21-OCT-2012 03:56

Date, time and analyst ID of latest file update: 22-Oct-2012 10:11 lct01518

Sample Name: FD4--Lab Sample ID: 6828483

Digitally signed by Lauren C. Temple on 10/22/2012 at 10:16.

Target 3.5 esignature user ID: lct01518

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct21a.b/yc21s19.d Instrument ID: HP09355.i Injection date and time: 21-OCT-2012 10:07 Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 82

Calibration date and time: 21-OCT-2012 03:56

Date, time and analyst ID of latest file update: 22-Oct-2012 10:11 lct01518

Sample Name: FD4-- Lab Sample ID: 6828483

Digitally signed by Lauren C. Temple on 10/22/2012 at 10:16.

Target 3.5 esignature user ID: lct01518

Quant Report

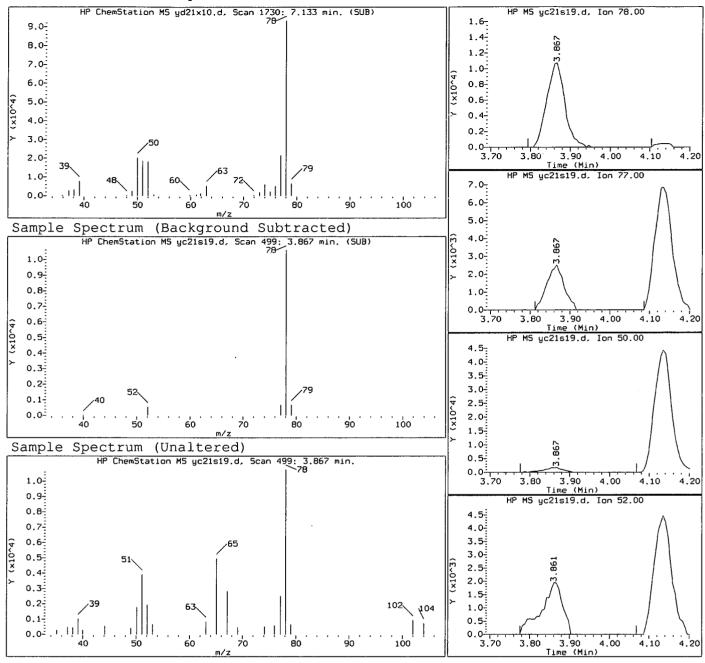
Target Revision 3.5

Data File: /chem2/HP09355.i/12oct21a.b/yc21s19.d Instrument ID: HP09355.i Injection date and time: 21-OCT-2012 10:07 Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 82

Calibration date and time: 21-OCT-2012 03:56

Date, time and analyst ID of latest file update: 22-Oct-2012 10:11 lct01518


Sample Name: FD4-- Lab Sample ID: 6828483

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
28) *t-Butyl Alcohol-d10	(4)	2.042	65	447185	250.000
52) \$Dibromofluoromethane	(1)	3.496	113	267945	48.240
62) \$1,2-Dichloroethane-d4	(1)	3.806	102	71969	48.223
63) Benzene	(1)	3.867	78	33921	1.294
71) *Fluorobenzene	(1)	4.135	96	1250459	50.000
93)\$Toluene-d8	(2)	5.753	98	1172277	50.950
98) Tetrachloroethene	(2)	6.416	166	11395	1.646
106) *Chlorobenzene-d5	(2)	7.316	117	862220	50.000
119)\$4-Bromofluorobenzene	(2)	8.430	95	437008	50.382
136) *1,4-Dichlorobenzene-d4	(3)	9.348	152	474698	50.000

^{* =} Compound is an internal standard.

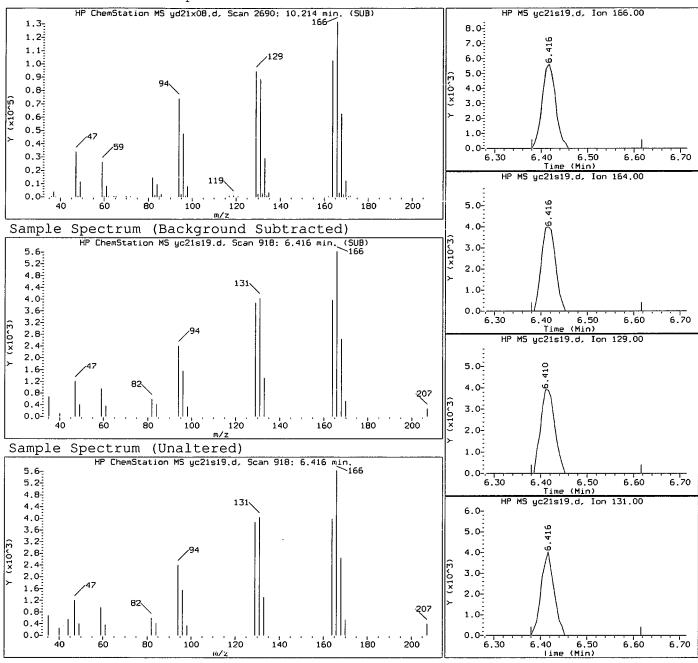
page 1 of 1

^{\$ =} Compound is a surrogate standard.

Data File: /chem2/HP09355.i/12oct21a.b/yc21s19.d Injection date and time: 21-OCT-2012 10:07

Instrument ID: HP09355.i
Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 82


Calibration date and time: 21-OCT-2012 03:56

Date, time and analyst ID of latest file update: 22-Oct-2012 10:11 lct01518

Sample Name: FD4-- Lab Sample ID: 6828483

Compound Number : 63
Compound Name : Benzene
Scan Number : 499
Retention Time (minutes): 3.867
Relative Retention Time :-0.00137
Quant Ion : 78.00
Area (flag) : 33921
On-Column Amount (ng) : 1.2942

Reference Standard Spectrum for Tetrachloroethene

Data File: /chem2/HP09355.i/12oct21a.b/yc21s19.d Injection date and time: 21-OCT-2012 10:07

Instrument ID: HP09355.i Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 82 Calibration date and time: 21-OCT-2012 03:56

Date, time and analyst ID of latest file update: 22-Oct-2012 10:11 lct01518

Sample Name: FD4-- Lab Sample ID: 6828483

Compound Number : 98

Compound Name : Tetrachloroethene

Scan Number : 918
Retention Time (minutes): 6.416
Relative Retention Time :-0.00073
Quant Ion : 166.00
Area (flag) : 11395
On-Column Amount (ng) : 1.6459

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA	SAMPLE	NO
-----	--------	----

Dan Name. Dancaster Danoratories	Lab	Name:	Lancaster	Laboratories
----------------------------------	-----	-------	-----------	--------------

Contract:____

Lab Code: LANCAS

Case No.: ____ SAS No.: ___ SDG No.: __

Matrix: (soil/water) WATER

-Lab Sample ID: 6828484

Sample wt/vol: 5.00 (g/mL) mL

Lab File ID: HP09355.i/12oct21a.b/yc21s20.d

Level: (low/med) LOW

Date Received: 10/18/12

Moisture: not dec.

Date Analyzed: 10/21/12

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L

74-87-3Chloromethane	5	טן
75-01-4Vinyl Chloride	5	ט
74-83-9Bromomethane	5	ט
75-00-3Chloroethane	5	ט
75-69-4Trichlorofluoromethane	5	U.
107-02-8Acrolein	100	ט
75-35-41,1-Dichloroethene	5	ט
75-09-2Methylene Chloride	5	υ
107-13-1Acrylonitrile	20	ט
156-60-5trans-1,2-Dichloroethene	5	ט
75-34-31,1-Dichloroethane	5	U
156-59-2cis-1,2-Dichloroethene	5	Ŭ.
67-66-3Chloroform	5	ָט ן
71-55-61,1,1-Trichloroethane	5	ט [
56-23-5Carbon Tetrachloride	j 5	ט
71-43-2Benzene	5	ט
107-06-21,2-Dichloroethane	5	ט
79-01-6Trichloroethene	j 5	ט
78-87-51,2-Dichloropropane	5	ָט (
75-27-4Bromodichloromethane	j 5	ט
110-75-82-Chloroethyl Vinyl Ether	10	ט
10061-01-5cis-1,3-Dichloropropene	j 5	ט
108-88-3Toluene	5	יט j
10061-02-6trans-1,3-Dichloropropene	j 5	ט [
79-00-51,1,2-Trichloroethane	j 5	ט
127-18-4Tetrachloroethene	j 5	įυ
124-48-1Dibromochloromethane	5	ĺυ
108-90-7Chlorobenzene	5	ט
100-41-4Ethylbenzene	5	ับ
1330-20-7Xylene (Total)	5	ע
		i

page 1 of 2

FORM I VOA

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

ED O	7
T DO	_

Lab Name: Lancaster Laboratories

Contract:

Matrix: (soil/water) WATER

Lab Sample ID: 6828484

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09355.i/12oct21a.b/yc21s20.d

Level: (low/med) LOW

Date Received: 10/18/12

Moisture: not dec.

Date Analyzed: 10/21/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND

(ug/L or ug/Kg) ug/L

75-25-2Bromoform	5	ע
79-34-51,1,2,2-Tetrachloroethane	5	ט
		l <u></u> .

FBOC-

Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6828484

Injection date and time: 21-OCT-2012 10:28
Instrument ID: HP09355.i Batch: Y122951AA Data file: /chem2/HP09355.i/l2oct2la.b/yc21s20.d Inje
Data file Sample Info. Line: FBOC-;6828484;1;0;;OSP14;;;yc21b01; Inst
Date, time and analyst ID of latest file update: 22-Oct-2012 10:11 lct01518

Blank Data file reference: /chem2/HP09355.i/12oct21a.b/yc21b01.d

Method used: /chem2/HP09355.i/12oct21a.b/Y6260W.m Sublist used: 82

Calibration date and time (Last Method Edit): 21-OCT-2012 03:56
Mid Level Daily Calibration Standard Reference: /chem2/HP09355.i/12oct21a.b/yc21c01.d

Bottle Code: 038A

Matrix: WATER

Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

Analysis Comments:

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Change)	Conc. (on-column)	QC Flag
28) t-Butyl Alcohol-d10	2.048(0.000)	200	65	427118 (-9)	250.00	
71) Fluorobenzene	4.135(0.006)	543	96	1165615 (-7)	50.00	
106) Chlorobenzene-d5	7.316(0.006)	1066	117	813631 (-7)	50.00	
136) 1,4-Dichlorobenzene-d4	9.342(0.006)	1399	152	441115 (-12)	50.00	

Surrogate Standar		I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on-column)	%Rec.	QC flags	QC Limits
52) Dibromofluorom	nethane	(1)	3.49	6(-0.001)	113	249275	48.145	96%		80 - 116
62) 1,2-Dichloroet	:hane-d4	(1)	3.80	6(-0.001)	102	67779	48.721	97%		77 - 113
93) Toluene-d8		(2)	5.75	3(0.000)	98	1100514	50.688	101%		80 - 113
119) 4-Bromofluorob	enzene	(2)	8.43	30(-0.001)	95	411866	50.319	101%		78 - 113

Tar	get Compounds	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.	Reporti Limit (in s	
3)	Chloromethane	(1)		*=====		Not Detected	****				1	5
5)	Vinyl Chloride	(1)				Not Detected					1	5
7)	Bromomethane	(1)				Not Detected					1	5
8)	Chloroethane	(1)				Not Detected					1	5
10)	Trichlorofluoromethane	(1)				Not Detected					2	5
15)	Acrolein	(4)				Not Detected					40	100
16)	1,1-Dichloroethene	(1)				Not Detected					0.8	5
26)	Methylene Chloride	(1)				Not Detected					2	5
30)	Acrylonitrile	(1)				Not Detected					4	20
31)	trans-1,2-Dichloroethene	(1)				Not Detected					0.8	5
34)	1,1-Dichloroethane	(1)				Not Detected					1	5
40)	cis-1,2-Dichloroethene	(1)				Not Detected					0.8	5
50)	Chloroform	(1)				Not Detected					0.8	5
53)	1,1,1-Trichloroethane	(1)				Not Detected					0.8	5
58)	Carbon Tetrachloride	(1)				Not Detected					1	5
63)	Benzene	(1)				Not Detected					0.5	5
65)	1,2-Dichloroethane	(1)				Not Detected					1	5
74)	Trichloroethene	(1)				Not Detected					1	5
77)	1,2-Dichloropropane	(1)				Not Detected					1	5
	Bromodichloromethane	(1)				Not Detected					1	5
86)	2-Chloroethyl Vinyl Ether	(1)				Not Detected					2	10
	cis-1,3-Dichloropropene	(1)				Not Detected					1	5
	Toluene	(2)				Not Detected					0.7	5
95)	trans-1,3-Dichloropropene	(2)				Not Detected					1	5
97)	1,1,2-Trichloroethane	(2)				Not Detected					0.8	5
	Tetrachloroethene	(2)				Not Detected					0.8	5
102)	Dibromochloromethane	(2)				Not Detected					1	5
107)	Chlorobenzene	(2)				Not Detected					0.8	5
	Ethylbenzene	(2)				Not Detected					0.8	5
	m+p-Xylene	(2)				Not Detected					0.8	5
	Xylene (Total)	(2)				Not Detected					0.8	5

Digitally signed by Lauren C. Temple on 10/22/2012 at 10:16. Target 3.5 esignature user ID: lct01518

FBOC-

Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6828484

Injection date and time: 21-OCT-2012 10:28
Instrument ID: HP09355.i Batch: Y122951AA Data file: /chem2/HP09355.i/12oct21a.b/yc21s20.d Data file Sample Info. Line: FBOC-;6828484;1;0;;OSP14;;;yc21b01; Inso Date, time and analyst ID of latest file update: 22-Oct-2012 10:11 lct01518

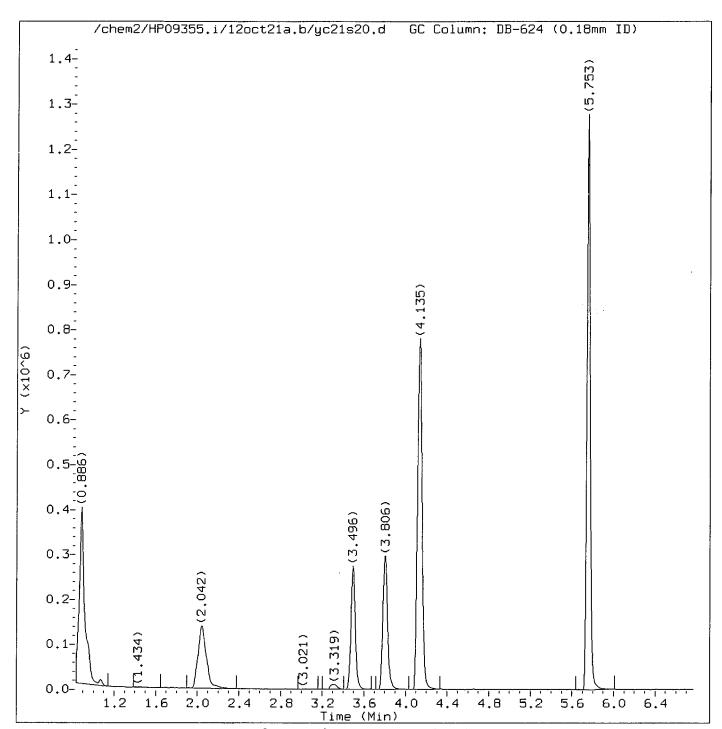
Blank Data file reference: /chem2/HP09355.i/12oct21a.b/yc21b01.d

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 82

Calibration date and time (Last Method Edit): 21-OCT-2012 03:56
Mid Level Daily Calibration Standard Reference: /chem2/HP09355.i/12oct21a.b/yc21c01.d

Bottle Code: 038A Matrix: WATER Level: Low

In Sample Concentration units: ug/L On-Column Amount units: no


Sample Concentration Formula: On-Column Amount * (Vt/Vo) VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml Sample Volume (Vo): 5 ml

Target Compounds	I.S. Ref.	RT	(+/-RRT)	QIon	Area _.	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.	Reportir Limit (in sa	roo
***********	=====	=====				==========					
113) o-Xylene	(2)				Not Detected	j				0.8	5
115) Bromoform	(2)				Not Detected	ž.				1	5
122) 1,1,2,2-Tetrachloroethane	(3)				Not Detected	i				1	5

Total number of targets = 34

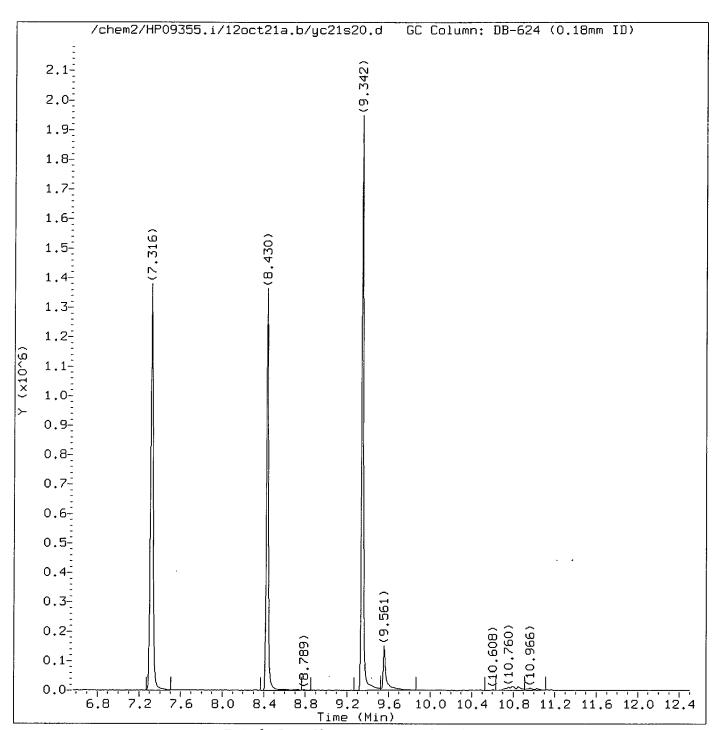
Digitally signed by Lauren C. Temple on 10/22/2012 at 10:16. Target 3.5 esignature user ID: lct01518

Total Ion Chromatogram (TIC)

Date, time and analyst ID of latest file update: 22-Oct-2012 10:11 lct01518

Data File: /chem2/HP09355.i/12oct21a.b/yc21s20.d Injection date and time: 21-OCT-2012 10:28

Instrument ID: HP09355.i Analyst ID: SAS00403


Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 82

Calibration date and time: 21-OCT-2012 03:56

Sample Name: FBOC- Lab Sample ID: 6828484

Digitally signed by Lauren C. Temple on 10/22/2012 at 10:16.
Target 3.5 esignature user ID: lct01518

page 1 of 2

Total Ion Chromatogram (TIC)

Data File: /chem2/HP09355.i/12oct21a.b/yc21s20.d Injection date and time: 21-OCT-2012 10:28

Instrument ID: HP09355.i Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 82

Calibration date and time: 21-OCT-2012 03:56

Date, time and analyst ID of latest file update: 22-Oct-2012 10:11 lct01518

Sample Name: FBOC- Lab Sample ID: 6828484

Digitally signed by Lauren C. Temple on 10/22/2012 at 10:16.

Target 3.5 esignature user ID: lct01518

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct21a.b/yc21s20.d Injection date and time: 21-OCT-2012 10:28

Instrument ID: HP09355.i

Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m

Sublist used: 82

Calibration date and time: 21-OCT-2012 03:56

Date, time and analyst ID of latest file update: 22-Oct-2012 10:11 lct01518

Sample Name: FBOC-

Lab Sample ID: 6828484

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
28) *t-Butyl Alcohol-d10	(4)	2.048	65	427118	250.000
52) \$Dibromofluoromethane	(1)	3.496	113	249275	48.145
62) \$1,2-Dichloroethane-d4	(1)	3.806	102	67779	48.721
71)*Fluorobenzene	(1)	4.135	96	1165615	50.000
93)\$Toluene-d8	(2)	5.753	98	1100514	50.688
106) *Chlorobenzene-d5	(2)	7.316	117	813631	50.000
119)\$4-Bromofluorobenzene	(2)	8.430	95	411866	50.319
136) *1,4-Dichlorobenzene-d4	(3)	9.342	152	441115	50.000

^{* =} Compound is an internal standard.

page 1 of 1

Digitally signed by Lauren C. Temple on 10/22/2012 at 10:16. Target 3.5 esignature user ID: lct01518

^{\$ =} Compound is a surrogate standard.

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: Lancaster Laboratories Contract:

The state of the s

Matrix: (soil/water) WATER

Lab Sample ID: 5828485

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09355.i/12oct21a.b/yc21s21.d

Level: (low/med) LOW

Date Received: 10/18/12

Moisture: not dec. ____ Date Analyzed: 10/21/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	ug/L Q

74-87-3Chloromethane	5	ט
75-01-4Vinyl Chloride	5 .	ט
74-83-9Bromomethane	5	U
75-00-3Chloroethane	5	ָ ט
75-69-4Trichlorofluoromethane	5	ט
107-02-8Acrolein	100	ש
75-35-41,1-Dichloroethene	5.	ט
75-09-2Methylene Chloride	5	ט
107-13-1Acrylonitrile	20	Ŭ
156-60-5trans-1,2-Dichloroethene	5	ט
75-34-31,1-Dichloroethane	5	ן ט
156-59-2cis-1,2-Dichloroethene	5	ט
67-66-3Chloroform	5	σ
71-55-61,1,1-Trichloroethane	j 5	Ū
56-23-5Carbon Tetrachloride	5	ט
71-43-2Benzene	5	U
107-06-21,2-Dichloroethane	5	Ü
79-01-6Trichloroethene	5	. ט
78-87-51,2-Dichloropropane	5	ט
75-27-4Bromodichloromethane	5	U
110-75-82-Chloroethyl Vinyl Ether	10	υ
10061-01-5cis-1,3-Dichloropropene	5	υ
108-88-3Toluene	5	ט
10061-02-6trans-1,3-Dichloropropene	j 5	υ
79-00-51,1,2-Trichloroethane	5	ט
127-18-4Tetrachloroethene	5	ט
124-48-1Dibromochloromethane	j 5	σ
108-90-7Chlorobenzene	j 5	ע
100-41-4Ethylbenzene	5	υ
1330-20-7Xylene (Total)	j 5	υ
	İ	İ

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

TBOC-

Lab Name: Lancaster Laboratories

Contract:

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: 6828485

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09355.i/12oct21a.b/yc21s21.d

Level: (low/med) LOW

Date Received: 10/18/12

Moisture: not dec. ____ Date Analyzed: 10/21/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND

(ug/L or ug/Kg) ug/L

75-25-2Bromoform	5	ט
79-34-51,1,2,2-Tetrachloroethane	5	ا. ت
,		

TBOC-

Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6828485

Injection date and time: 21-OCT-2012 10:49
Instrument ID: HP09355.i Batch: Y122951AA Data file: /chem2/HP09355.i/12oct21a.b/yc21s21.d Data file Sample Info. Line: TBOC-;6828485;1;0;;OSP14;;;yc21b01; Instate, time and analyst ID of latest file update: 22-Oct-2012 10:11 lct01518

Blank Data file reference: /chem2/HP09355.i/12oct21a.b/yc21b01.d

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 82

Calibration date and time (Last Method Edit): 21-OCT-2012 03:56
Mid Level Daily Calibration Standard Reference: /chem2/HP09355.i/12oct21a.b/yc21c01.d

Bottle Code: 038A

Matrix: WATER

Level: Low

On-Column Amount units: nq

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

Analysis Comments:

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Change)	Conc. (on-column)	QC Flag
28) t-Butyl Alcohol-d10	2.048(0.000)	200	65	421956 (-10)	250.00	
71) Fluorobenzene	4.135(0.006)	543	96	1200728 (-4)	50.00	
106) Chlorobenzene-d5	7.316(0.006)	1066	117	833665 (-4)	50.00	
136) 1,4-Dichlorobenzene-d4	9.348(0.000)	1400	152	462045 (-8)	50.00	

Surrogate Standards	I.S. Ref.	RT (+/-RRT)	QIon	Area	Conc. (on-column)	%Rec.	QC flags	QC Limits
52) Dibromofluoromethane	(1)	3.496(-0.001)	113	257359	48.253	97%		80 - 116
62) 1,2-Dichloroethane-d4	(1)	3.806(-0.001)	102	70079	48.901	98%		77 - 113
93) Toluene-d8	(2)	5.753(0.000)	98	1128868	50.744	101%		80 - 113
119) 4-Bromofluorobenzene	(2)	8.430(-0.001)	95	415947	49.596	99%		78 - 113

	get Compounds	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.	Reporting Limit	
31	Chloromethane	(1)				Not Detected					1	5
5)	Vinyl Chloride	(1)				Not Detected					1	5
	Bromomethane	(1)				Not Detected					1	5
	Chloroethane	(1)				Not Detected					1	5
10)	Trichlorofluoromethane	(1)				Not Detected					2	5
15)	Acrolein	(4)				Not Detected					40	100
16)	1,1-Dichloroethene	(1)				Not Detected					0.8	5
26)	Methylene Chloride	(1)				Not Detected					2	5
30)	Acrylonitrile	(1)				Not Detected					4	20
31)	trans-1,2-Dichloroethene	(1)				Not Detected					0.8	5
34)	1,1-Dichloroethane	(1)				Not Detected					1	5
40)	cis-1,2-Dichloroethene	(1)				Not Detected					0.8	5
50)	Chloroform	(1)				Not Detected					0.8	5
53)	1,1,1-Trichloroethane	(1)				Not Detected					0.8	5
58)	Carbon Tetrachloride	(1)				Not Detected					1	5
63)	Benzene	(1)				Not Detected					0.5	5
65)	1,2-Dichloroethane	(1)				Not Detected					1	5
74)	Trichloroethene	(1)				Not Detected					1	5
77)	1,2-Dichloropropane	(1)				Not Detected					1	5
83)	Bromodichloromethane	(1)				Not Detected					1	5
86)	2-Chloroethyl Vinyl Ether	(1)				Not Detected					2	10
87)	cis-1,3-Dichloropropene	(1)				Not Detected					1	5
94)	Toluene	(2)				Not Detected					0.7	5
95)	trans-1,3-Dichloropropene	(2)				Not Detected					1	5
97)	1,1,2-Trichloroethane	(2)				Not Detected					0.8	5
98)	Tetrachloroethene	(2)				Not Detected					0.8	5
102)	Dibromochloromethane	(2)				Not Detected					1	5
107)	Chlorobenzene	(2)				Not Detected					0.8	5
109)	Ethylbenzene	(2)				Not Detected					0.8	5
110)	m+p-Xylene	(2)				Not Detected					0.8	5
112)	Xylene (Total)	(2)				Not Detected					0.8	5

Digitally signed by Lauren C. Temple on 10/22/2012 at 10:16. Target 3.5 esignature user ID: lct01518

TBOC-

Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6828485

Injection date and time: 21-OCT-2012 10:49
Instrument ID: HP09355.i Batch: Y122951AA Data file: /chem2/HP09355.i/12oct21a.b/yc21s21.d Data file Sample Info. Line: TBOC-;6828485;1;0;;OSP14;;;yc21b01; Inst Date, time and analyst ID of latest file update: 22-Oct-2012 10:11 lct01518

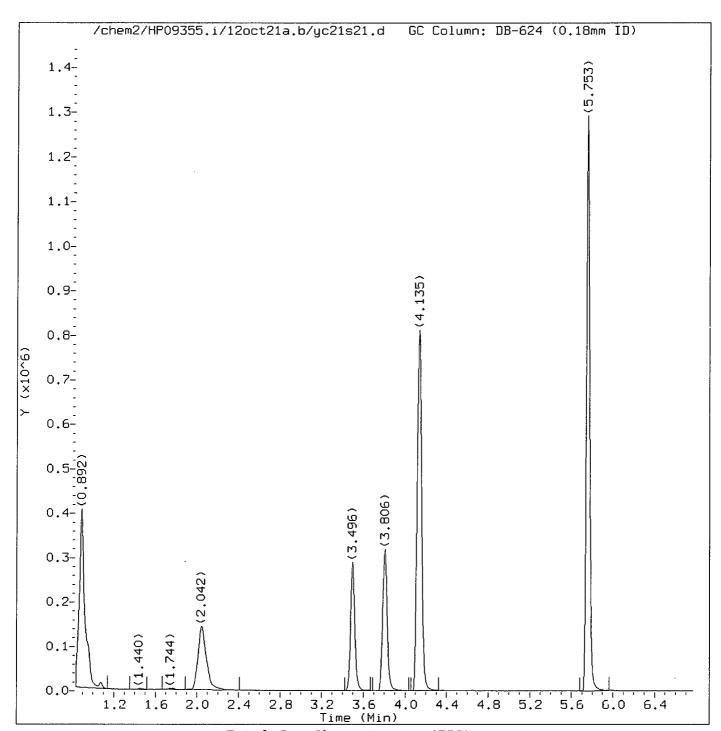
Blank Data file reference: /chem2/HP09355.i/12oct21a.b/yc21b01.d

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 82

Calibration date and time (Last Method Edit): 21-OCT-2012 03:56
Mid Level Daily Calibration Standard Reference: /chem2/HP09355.i/12oct21a.b/yc21c01.d

Bottle Code: 038A Matrix: WATER Level: Low

In Sample Concentration units: ug/L On-Column Amount units: ng


Sample Concentration Formula: On-Column Amount * (Vt/Vo) VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml Sample Volume (Vo): 5 ml

Target Compounds	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.	Reportin Limit (in sa	LOQ mple)
113) o-Xylene	(2)				Not Detected	Ė				0.8	5
115) Bromoform	(2)				Not Detected	3				1	5
122) 1,1,2,2-Tetrachloroethane	(3)				Not Detected	i				1	5

Total number of targets = 34

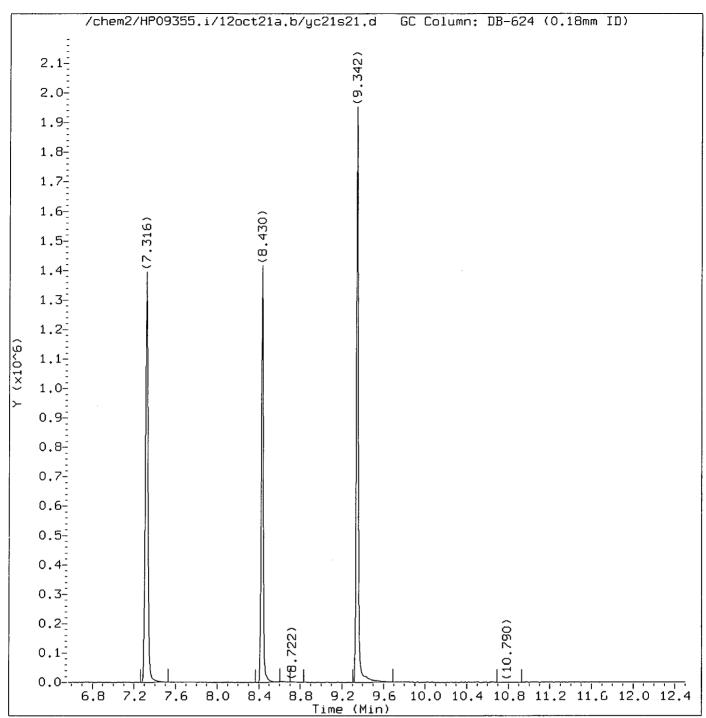
Digitally signed by Lauren C. Temple on 10/22/2012 at 10:16. Target 3.5 esignature user ID: lct01518

Total Ion Chromatogram (TIC)

Data File: /chem2/HP09355.i/12oct21a.b/yc21s21.d Injection date and time: 21-OCT-2012 10:49

Instrument ID: HP09355.i Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 82


Calibration date and time: 21-OCT-2012 03:56

Date, time and analyst ID of latest file update: 22-Oct-2012 10:11 lct01518

Sample Name: TBOC- Lab Sample ID: 6828485

Digitally signed by Lauren C. Temple on 10/22/2012 at 10:16.
Target 3.5 esignature user ID: lct01518

page 1 of 2

Total Ion Chromatogram (TIC)

Data File: /chem2/HP09355.i/12oct21a.b/yc21s21.d Injection date and time: 21-OCT-2012 10:49

Instrument ID: HP09355.i Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 82

Calibration date and time: 21-OCT-2012 03:56

Date, time and analyst ID of latest file update: 22-Oct-2012 10:11 lct01518

Sample Name: TBOC- Lab Sample ID: 6828485

Digitally signed by Lauren C. Temple on 10/22/2012 at 10:16.
Target 3.5 esignature user ID: lct01518

page 2 of 2

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct21a.b/yc21s21.d Injection date and time: 21-OCT-2012 10:49

Instrument ID: HP09355.i

Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m

Sublist used: 82

Calibration date and time: 21-OCT-2012 03:56

Date, time and analyst ID of latest file update: 22-Oct-2012 10:11 lct01518

Sample Name: TBOC-

Lab Sample ID: 6828485

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
28)*t-Butyl Alcohol-d10	(4)	2.048	65	421956	250.000
52) \$Dibromofluoromethane	(1)	3.496	113	257359	48.253
62) \$1,2-Dichloroethane-d4	(1)	3.806	102	70079	48.901
71) *Fluorobenzene	(1)	4.135	96	1200728	50.000
93) \$Toluene-d8	(2)	5.753	98	1128868	50.744
106) *Chlorobenzene-d5	(2)	7.316	117	833665	50.000
119) \$4-Bromofluorobenzene	(2)	8.430	95	415947	49.596
136) *1,4-Dichlorobenzene-d4	(3)	9.348	152	462045	50.000

page 1 of 1

Digitally signed by Lauren C. Temple on 10/22/2012 at 10:16. Target 3.5 esignature user ID: lct01518

^{* =} Compound is an internal standard.
\$ = Compound is a surrogate standard.

Standards Data

Lancaster Laboratories Runlog for Hewelet Packard GC/MS System HP09355 **HP #20**

**	Shift #1 Analys	t:_	_AD	S** Shift #2 Analyst:_	_SEJ		** Shift #3 Analyst:	*
	Comment Code:	R	=	Reinjection necessary	Х	= ;	Sample sent to be reextracted	
		s	=	Surrogate problem	I	= :	Internal Standard problem	
		NU	=	Not used	F	=]	Further dilution required	
	•	MR	=	Meets requirements	IUO	= :	Internal use only	
		Cz	=	Confirms z , $(z = S, I \text{ or } X)$	T	= :	Injected outside valid tune period	
	Other problems	or	CO	mments are as follows:				
*	82601	3 W	ATE	RS				*
*	5. W			•			<u> </u>	*
*								*
k-								*

Data Directory Path is - C:\msdchem\1\12OCT15A\

FILE	SAMPLE	LLI#	DATE	TIME	BATCH	D.F.	NOTES
YC15T01.D	50NG BFB	SEP25-12	15 Oct 2	012 13:1	3		MR
YC15X01.D	CLBLK	CLBLK	15 Oct 2	012 13:3	2		NU
YC15I01.D	VSTD300	VSTD300	15 Oct 2	012 13:5	2		MR
YC15I02.D	VSTD100	VSTD100	15 Oct 2	012 14:1	3		MR
YC15I03.D	VSTD050	VSTD050	15 Oct 2	012 14:3	3		MR
YC15I04:D	VSTD020	VSTD020	15 Oct 2	012 14:5	4		MR
YC15I05.D	VSTD010	VSTD010	15 Oct 2	012 15:1	5		MR
YC15I06.D	VSTD004	VSTD004	15 Oct 2	012 15:3	5		MR
YC15I07.D	VSTD001	VSTD001	15 Oct 2	012 15:5	6		MR
YC15M01.D	MDL0.5	MDL0.5	15 Oct 2	012 16:1	7		MR
YC15V01.D	YLGICV	YLGICV	15 Oct 2	012 16:3	8		NU
YC15V02.D	YLGICV	YLGICV	15 Oct 2	012 18:2	6		MR

Lancaster Laboratories Runlog for Hewelet Packard GC/MS System HP09355 **HP #20**

**	Shift #1 Analys	t:_	·	** Shift #2 Analyst:_		** Shift #3 Analyst:
	Comment Code:	R	=	Reinjection necessary	X	= Sample sent to be reextracted
		s	=	Surrogate problem	I	= Internal Standard problem
		NU	=	Not used	F	= Further dilution required
	·	MR	=	Meets requirements	IUO	= Internal use only
		Cz	=	Confirms z, $(z = S, I \text{ or } X)$	T	= Injected outside valid tune period
	Other problems	or	CO	mments are as follows:		
*						
*						
*						

Data Directory Path is - C:\msdchem\1\120CT21A\

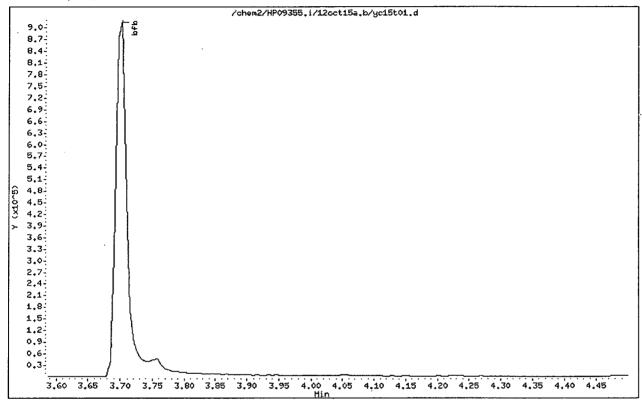
FILE	SAMPLE	LLI#	DATE	TIME	BATCH	D.F.	NOTES
YC21T01.D	50NG BFB S	EP25-12	21 Oct 201	2 00:41			MR
YC21X01.D	VBLKY78	VBLKY78	21 Oct 201	2 01:03	Y122951AA		NU
YC21C01.D	VSTD050	VSTD050	21 Oct 201	2 01:24	Y122951AA		MR
YC21C02.D	VSTD050	VSTD050	21 Oct 201	2 01:45	Y122951AA		MR
YC21B01.D	VBLKY78	VBLKY78	21 Oct 201	2 02:05	Y122951AA		MR JUS
YC21L01.D	LCSY78	LCSY78	21 Oct 201	2 02:25	Y122951AA		MKNM
YC21L02.D	LCSY78	LCSY78	21 Oct 201	2 03:10	Y122951AA		MR
YC21S01.D	2708T	6829250	21 Oct 201	2 03:59	Y122951AA		MR
YC21S02.D	2708F	6829251	21 Oct 201	2 04:20	Y122951AA		MR
YC21S03.D	BCTB3	6828401	21 Oct 201	2 04:40	Y122951AA		MR
YC21S04.D	BC012	6828402	21 Oct 201	2 05:01	Y122951AA		MR
YC21S05.D	BCEB3	6828403	21 Oct 201	2 05:21	Y122951AA		MR
YC21S06.D	B-119	6828404	21 Oct 201	2 05:42	Y122951AA		MR
YC21S07.D	BC109	6828405	21 Oct 201.	2 06:02	Y122951AA		MR
YC21S08.D	BC122	6828406	21 Oct 201	2 06:23	Y122951AA		MR
YC21S09.D	B1122	6828407	21 Oct 201	2 06:43	Y122951AA		MR
YC21S10.D	BC110	6828408	21 Oct 201:	2 07:03	Y122951AA		MR
YC21S11.D	BC110MS	6828409MS	21 Oct 201	2 07:24	Y122951AA		MR
YC21S12.D	BC110MSD	6828410MSD	21 Oct 201	2 07:44	Y122951AA		MR
YC21S13:D	BC113	6828412	21 Oct 201:	2 08:05	Y122951AA		MR
YC21S14.D	BCIT2	6828413	21 Oct 201	2 08:25	Y122951AA		MR
YC21S15.D	BC117	6828414	21 Oct 201	2 08:45	Y122951AA		MR
YC21S16.D	BC114	6828415	21 Oct 201	2 09:05	Y122951AA		F
YC21S17.D	M4	6828481	21 Oct 201	09:26	Y122951AA		MR .
YC21S18.D	-5	6828482	21 Oct 2013	2 09:46	Y122951AA		MR
YC21S19.D	FD4	6828483	21 Oct 2013	2 10:07	Y122951AA		MR
YC21S20.D	FBOC-	6828484	21 Oct 201	2 10:28	Y122951AA		MR
YC21S21.D	TBOC-	6828485	21 Oct 2013	2 10:49	Y122951AA		MR
						1	

Data File: /chem2/HP09355.i/12oct15a.b/yc15t01.d

Date : 15-0CT-2012 13:13

Client ID: 50NG BFB SEP25-12

Instrument: HP09355.i


Page 1

Sample Info; 50NG BFB SEP25-12

Operator: ADS01731

Column phase: DB-624

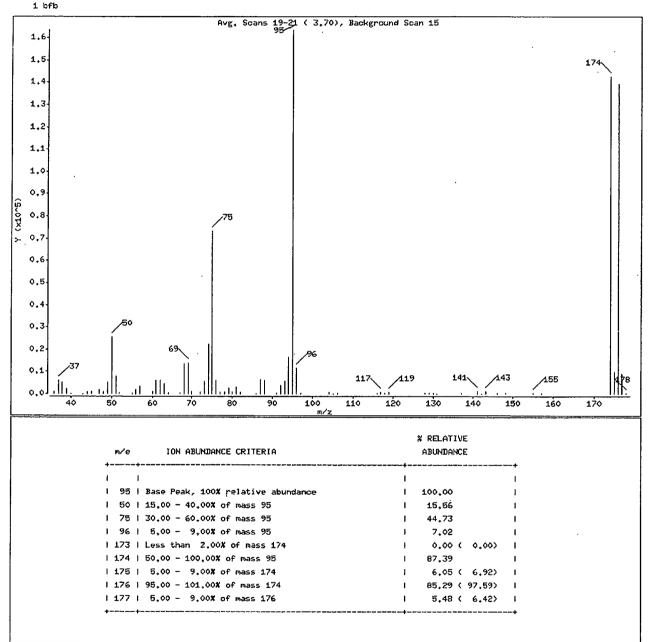
Column diameter: 0.18

Data File: /chem2/HP09355,i/12oot15a,b/yc15t01.d

Date : 15-00T-2012 13:13

Client ID: 50NC BFB SEP25-12

Instrument: HP09355.i


Page 2

Sample Info: 50NG BFB SEP25-12

Operator: ABS01731

Column phase: DB-624

Column diameter: 0.18

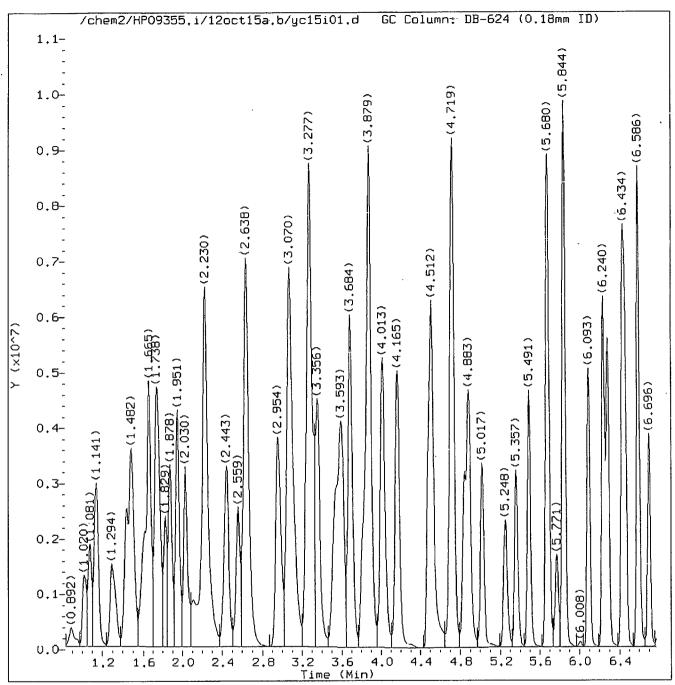
- Consider a contraction of the contraction of the Contraction of the

Date : 15-0CT-2012 13:13

Client ID: 50NC BFB SEP25-12

Instrument: HP09355,i

Sample Info: 50NG BFB SEP25-12


Operator: ADS01731

Column diameter: 0.18

Column phase: DB-624

Data File: yo15t01.d Spectrum: Avg. Scans 19-21 (3,70), Background Scan 15 Location of Maximum: 95.00 Number of points: 71

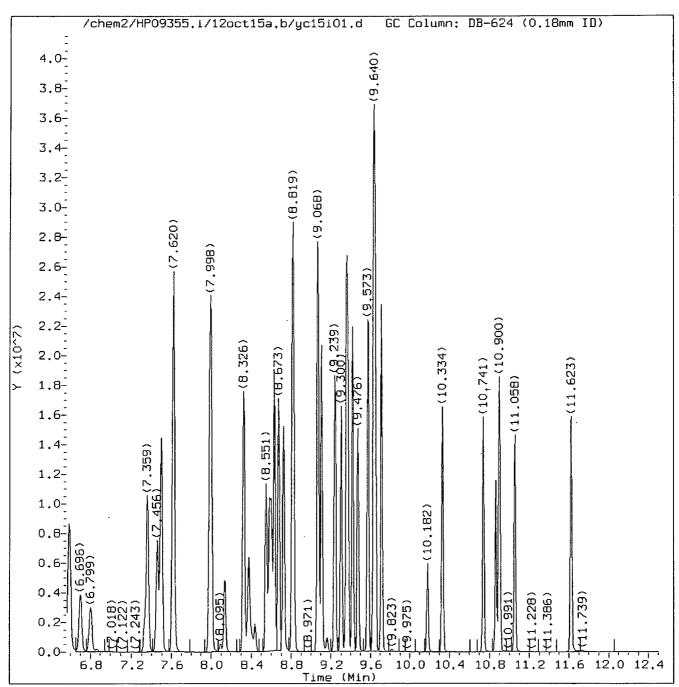
	Y	m/z	Y	n/z		Y	m/z		Y	ロノエ	
-+ I	478	128,00	575 I	82,00	- + -	5994	61,00	- + -	1163	36,00	1
į	198	129.00	176	86,00	ı	6048	62.00	ı	5908	37.00	ŀ
ł	532	130,00	6330 I	87,00	ı	4374	63,00	1	5322	38.00	ı
ı	85	131.00	6190 I	88,00	1	470	64.00	J	2345	39.00	ı
ł	208	137,00	478 I	91.00	1	322	67,00	i	16	40,00	I
-+ 1	1209	141,00	3730 I	92,00	1	13365	68,00	- 	 . 7	43,00	1
ı	94	142,00	5743 1	93,00	ı	13748	69.00	1	567	44.00	I
ı	1224	143,00	16560	94,00	ı	1203	70,00	1	1233	45.00	I
t	205	146,00	163392	95,00	ı	702	72,00	1	1982	47,00	ı
I	395	148,00	11466 I	96.00	1	5748	73,00	ı	823	48,00	1
+	 387	155,00	320 I	97,00	-#- I	22296	74.00		5250	49,00	+- !
	219		579 1	104,00		73088	75.00	ı	25432	50,00	ı
	142784	174,00	88 I	105,00		5900	76.00	ı	7938	51.00	ı
į	9883	175.00	531 I	106.00	ı	928	77.00	1	335	52,∞	ı
ı	139328	176.00	450 I	116,00	i	602	78,00	1	500	55.≪	1
+	895¢	177.00	747 1	117,00	1	2648	79.00	- 	1797	56,00	+
1	225	178.00		118.00	ı	824	80.00	ı	3363	57,00	1
ı		•	745 1	119.00	ı	2972	81,00	i	1041	60,00	ì

Total Ion Chromatogram (TIC)

Data File: /chem2/HP09355.i/12oct15a.b/yc15i01.d Injection date and time: 15-OCT-2012 13:52

Instrument ID: HP09355.i
Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI-EE


Calibration date and time: 15-OCT-2012 17:43

Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

Sample Name: VSTD300 Lab Sample ID: VSTD300

Digitally signed by Sara E. Johnson on 10/15/2012 at 17:44.
Target 3.5 esignature user ID: sej02002

page 1 of 2

Total Ion Chromatogram (TIC)

Data File: /chem2/HP09355.i/12oct15a.b/yc15i01.d Instrument ID: HP09355.i Injection date and time: 15-OCT-2012 13:52 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:43

Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

Sample Name: VSTD300 Lab Sample ID: VSTD300

Digitally signed by Sara E. Johnson on 10/15/2012 at 17:44.
Target 3.5 esignature user ID: sej02002

page 2 of 2

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15i01.d Instrument ID: HP09355.i Injection date and time: 15-OCT-2012 13:52 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:43

Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

Sample Name: VSTD300 Lab Sample ID: VSTD300

	~ .				On-Column
Compounda	I.S. Ref.	RT	0100	Area	Amount
Compounds	Rel.		QIon		(ng)
2) Dichlorodifluoromethane	(1)	1.020	85	2582738	265.500
3) Chloromethane	(1)	1.081	50	2811597M	272.547
4) 1,3-Butadiene	(1)	1.129	39	1116965	257.302
5) Vinyl Chloride	$(\tilde{1})$	1.148	62	2443799	241.832
7) Bromomethane	(1)	1.294	94	1446895	219.065
8) Chloroethane	(1)	1.330	64	1105389	201.849
9) Dichlorofluoromethane	(1)	1.433	67	2907766	241.820
11) n-Pentane	(1)	1.482	43	2361460	238.498
10) Trichlorofluoromethane	(1)	1.494	101	2775972	255.408
14) Freon 123a	(1)	1.604	67	1894412	246.498
15) Acrolein	(4)	1.665	56	6887499	2538.846
16) 1,1-Dichloroethene	(1)	1.732	96	1555211	266.233
17) Acetone	(1)	1.750	58	787811	482.792
18) Freon 113	(1)	1.756	101	1632194	272.037
20) Methyl Iodide	(1)	1.829	142	3101473	279.005
21) 2-Propanol	(4)	1.835	45	1538345	1348.759
22) Carbon Disulfide	(1)	1.878	76	4992428	277.378
24) Allyl Chloride	(1)	1.951	41	2786602	258.591
25) Methyl Acetate	(1)	1.957	43	2329967M	261.949
26) Methylene Chloride	(1)	2.030	84	.1926216	265.072
28)*t-Butyl Alcohol-d10	(4)	2.060	65	406726	250.000
29) t-Butyl Alcohol	(4)	2.115	59	2504801M	1241.709
30) Acrylonitrile	(1)	2.194	53	1525209M	249.085
31) trans-1,2-Dichloroethene	(1)	2.230	96	1916316	274.042
32) Methyl Tertiary Butyl Eth		2.237	73	6555197	271.042
33) n-Hexane	(1)	2.443	57	2934041	280.248
34) 1,1-Dichloroethane	(1)	2.559	63	3631609	286.073
36) di-Isopropyl Ether	(1)	2.638	4 5	6831825	268.450
37) 2-Chloro-1,3-Butadiene	(1)	2.644	53	3004100	278.809
39) Ethyl t-Butyl Ether	(1)	2.954	59 96	6752137	275.529 289.830
40) cis-1,2-Dichloroethene	(1) (1)	3.070 3.076	43	2267743 4663113	526.779
<pre>41) 2-Butanone 42) 2,2-Dichloropropane</pre>	(1)	3.082	77	2745114	287.867
43) Propionitrile	(4)	3.125	5 4	3610541	1436.217
46) Methacrylonitrile	(1)	3.271	67	4191083	691.641
47) Bromochloromethane	(1)	3.283	128	1200254	282.794
48) Tetrahydrofuran	(4)	3.325	71	1356598	576.413
50) Chloroform	(1)	3.362	83	3518489	275.643
JU, CHICLGICAN	(-/	5.502		2020103	= . 3 . 0 . 0

M = Compound was manually integrated.

page 1 of 4

^{* =} Compound is an internal standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15i01.d Instrument ID: HP09355.i Injection date and time: 15-OCT-2012 13:52 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:43

Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

Sample Name: VSTD300 Lab Sample ID: VSTD300

Compounds	I.S.	יחים	OTon	Area	On-Column Amount
•			~ .		
52) \$Dibromofluoromethane 51) \$Dibromofluoromethane(mz111) 53) 1,1,1-Trichloroethane 56) Cyclohexane 55) Cyclohexane (mz 69) 54) Cyclohexane (mz 84) 45) 1,2-Dichloroethene (total) 57) 1,1-Dichloropropene 58) Carbon Tetrachloride 62) \$1,2-Dichloroethane-d4 61) \$1,2-Dichloroethane-d4 (mz65) 60) \$1,2-Dichloroethane-d4 (mz104 59) Isobutyl Alcohol 63) Benzene 64) 1,2-Dichloroethane (mz 98) 65) 1,2-Dichloroethane 69) t-Amyl Methyl Ether 71) *Fluorobenzene 72) n-Heptane 73) n-Butanol 74) Trichloroethene 75) Methylcyclohexane (mz98) 76) Methylcyclohexane 77) 1,2-Dichloropropane 78) Dibromomethane 79) 1,4-Dioxane 80) Methyl Methacrylate 83) Bromodichloromethane	Ref. ===== (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	RT ==== 3.508 3.5598 3.5599 3.6918 3.818 3.8879 13.8879 13.818 3.8879 13.818 4.1711 4.4812 4.7713 4.8869 4.8869 5.248	QION ======= 111	Area ====================================	Amount (ng) ====================================
85) 2-Nitropropane 86) 2-Chloroethyl Vinyl Ether 87) cis-1,3-Dichloropropene 89) 4-Methyl-2-Pentanone 92)\$Toluene-d8(mz100) 93)\$Toluene-d8 94) Toluene	(1) (1) (1) (1) (2) (2) (2)	5.357 5.491 5.680 5.771 5.771 5.844	63 75 43 100 98 92	2154595 1967113 3518181 8838201 951523 1382770 5527753	587.268 278.118 310.126 527.946 52.091 49.509 283.708
95) trans-1,3-Dichloropropene 96) Ethyl Methacrylate 97) 1,1,2-Trichloroethane	(2) (2) (2)	6.093 6.240 6.282	75 69 97	3475188 4113577 2240377	311.936 279.010 284.565

^{* =} Compound is an internal standard.

page 2 of 4

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15i01.d Instrument ID: HP09355.i Injection date and time: 15-OCT-2012 13:52 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:43

Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

Sample Name: VSTD300 Lab Sample ID: VSTD300

	I.S.				On-Column Amount
Compounds	Ref.	RT =====	QIon	Area ========	(ng) :====================================
98) Tetrachloroethene	(2)	6.428	166	2484892	295.682
99) 1,3-Dichloropropane	(2)	6.459	76	3784419	286.698
101) 2-Hexanone	(2)	. 6.586	43	6937419	505.916
102) Dibromochloromethane	(2)	6.696	129	2378723	328.241
104) 1,2-Dibromoethane	(2)	6.799	107	2540735	297.358
106) *Chlorobenzene-d5	(2)	7.328	117	1046648	50.000
107) Chlorobenzene	(2)	7.359	112	6163211	284.110
108) 1,1,1,2-Tetrachloroethane	(2)	7.456	131	2220968	314.178
109) Ethylbenzene	(2)	7.499	91	10312771	272.492
110) m+p-Xylene	(2)	7.620	106	8147770	545.809
113) o-Xylene	(2)	7.992	106	4213250	279.453
114) Styrene	(2)	8.004	104	705227 9	280.139
115) Bromoform	(2)	8.144	173	2079214	337.962
112) Xylene (Total)	(2)		106	12361020	825.261
116) Isopropylbenzene	(2)	8.326	105	9952361	263.081
118) Cyclohexanone	(4)	8.375	55	3062188	3858.700
119)\$4-Bromofluorobenzene	(2)	8.436	95	531496	50.478
120) \$4-Bromofluorobenzene (mz174)		8.442	174	453507	50.525
121) Bromobenzene	(3)	8.551	156	2905257	287.611
122) 1,1,2,2-Tetrachloroethane	(3)	8.582	83	3996466	278.509
123) 1,2,3-Trichloropropane	(3)	8.600	110	1237752,	.277.379
124) trans-1,4-Dichloro-2-Butene		8.630	53	2881107	687.624
125) n-Propylbenzene	(3)	8.673	91	10683765	241.576
126) 2-Chlorotoluene	(3)	8.728	126	2672115	284.468
128) 4-Chlorotoluene	(3)	8.813	126	2719212	279.961
127) 1,3,5-Trimethylbenzene	(3)	8.825	105	8525865	258.855
131) Pentachloroethane	(3)	9.068	167	1827957	299.992
130) tert-Butylbenzene	(3)	9.074	134	2028777	274.277
132) 1,2,4-Trimethylbenzene	(3)	9.111	105	8848767	260.396
133) sec-Butylbenzene	(3)	9.239	105	9824040	242.566
134) 1,3-Dichlorobenzene	(3)	9.300	146	5367334	281.475
135) p-Isopropyltoluene	(3)	9.354	119	8816092	246.462
136) *1, 4-Dichlorobenzene-d4	(3)	9.354	152	607964	50.000
138) 1,4-Dichlorobenzene	(3)	9.373	146	5463553	268.447
139) 1,2,3-Trimethylbenzene	(3)	9.421	105	8934476	244.566
141) Benzyl Chloride	(3)	9.476	91	7989345	290.911
142) 1,3-Diethylbenzene	(3)	9.579	119	5940458	263.413
143) 1,4-Diethylbenzene	(3)	9.634	119	5833148	251.768

^{* =} Compound is an internal standard.

page 3 of 4

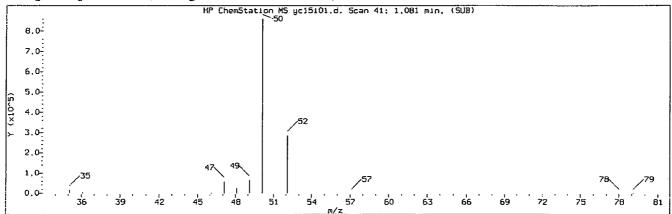
^{\$ =} Compound is a surrogate standard.

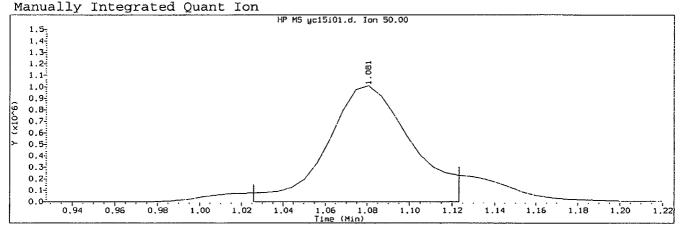
Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15i01.d Instrument ID: HP09355.i Injection date and time: 15-OCT-2012 13:52 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:43


Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002


Sample Name: VSTD300 Lab Sample ID: VSTD300

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
144) 1.2-Dichlorobenzene	(3)	9.640	. 146	4950314	256.795
145) n-Butylbenzene	(3)	9.652	92	4637316	261.605
146) 1,2-Diethylbenzene	(3)	9.713	119	4973858	256.514
148) 1,2-Dibromo-3-Chloropropane	(3)	10.182	75	1046265	286.717
149) 1,3,5-Trichlorobenzene	(3)	10.334	180	3856029	263.600
150) 1,2,4-Trichlorobenzene	(3)	10.741	180	3533576	256.999
151) Hexachlorobutadiene	(3)	10.863	225	1594853	250.105
152) Naphthalene	(3)	10.900	128	10331050	193.797
153) 1,2,3-Trichlorobenzene	(3)	11.058	180	3313959	245.697
154) 2-Methylnaphthalene	(3)	11.623	142	6001872	202.414

page 4 of 4

Sample Spectrum (Background Subtracted)

Data File: /chem2/HP09355.i/12oct15a.b/yc15i01.d Injection date and time: 15-OCT-2012 13:52

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Calibration date and time: 15-OCT-2012 17:43

Sublist used: 8260WI-EE

Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

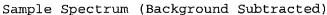
Sample Name: VSTD300 Lab Sample ID: VSTD300

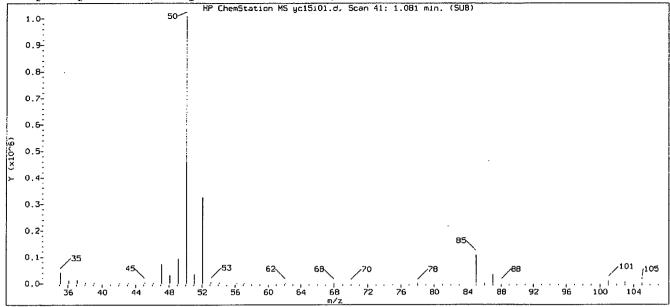
Compound Number : 3

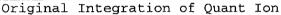
Compound Name : Chloromethane

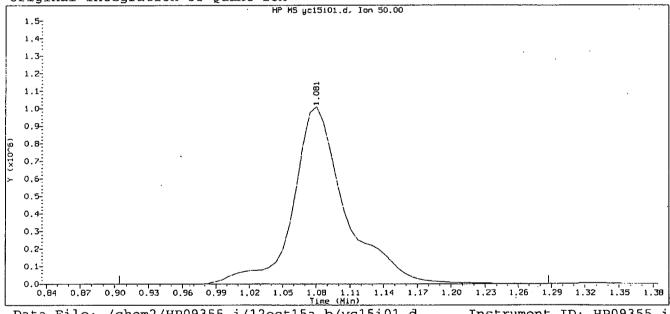
Scan Number : 41
Retention Time (minutes): 1.081
Quant Ion : 50.00
Area (flag) : 2811597M
On-Column Amount (ng) : 272.5468

Integration start scan : 31 Integration stop scan: 47 Y at integration start : 0 Y at integration end: 0


Reason for manual integration: improper integration


Digitally signed by Sara E. Johnson


Analyst responsible for change: on 10/15/2012 at 17:44.


Target 3.5 esignature user ID: sej02002

GC/MS audit/management approval:

Data File: /chem2/HP09355.i/12oct15a.b/yc15i01.d Injection date and time: 15-OCT-2012 13:52

Instrument ID: HP09355.i Analyst ID: ADS01731

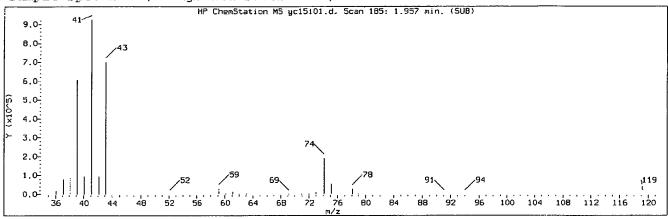
Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 15-OCT-2012 14:07

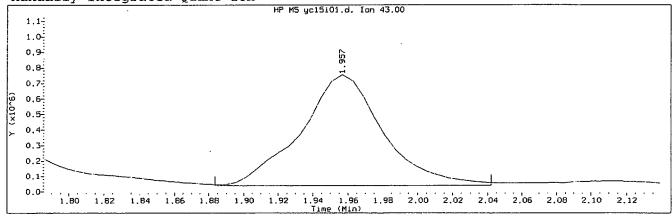
Date, time and analyst ID of latest file update: 15-Oct-2012 14:08 Automation

Sample Name: VSTD300 Lab Sample ID: VSTD300

Compound Number : 3


Compound Name : Chloromethane

Scan Number : 41


Retention Time (minutes): 1.081
Quant Ion : 50.00
Area : 3293849
On-column Amount (ng) : 305.4692

Integration start scan : 11 Integration stop scan: 74 Y at integration start : 0 Y at integration end: 0

Sample Spectrum (Background Subtracted)

Manually Integrated Quant Ion

Data File: /chem2/HP09355.i/12oct15a.b/yc15i01.d Injection date and time: 15-OCT-2012 13:52

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:43

Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

Sample Name: VSTD300 Lab Sample ID: VSTD300

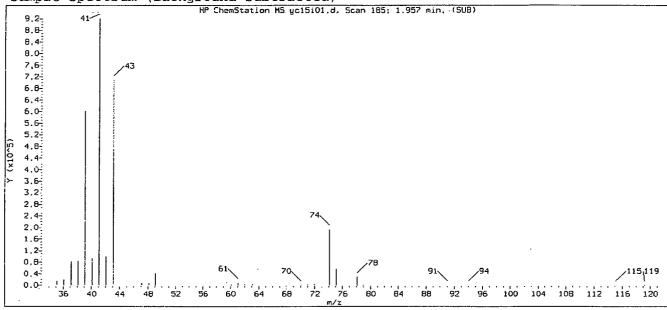
Compound Number : 25

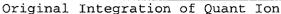
Compound Name : Methyl Acetate

Scan Number : 185
Retention Time (minutes): 1.957
Quant Ion : 43.00
Area (flag) : 2329967M
On-Column Amount (ng) : 261.9493

Integration start scan : 172 Integration stop scan: 198
Y at integration start : 41407 Y at integration end: 41407

Reason for manual integration: improper integration


Digitally signed by Sara E. Johnson


Analyst responsible for change: on 10/15/2012 at 17:44.


Target 3.5 esignature user ID: sej02002

GC/MS audit/management approval:

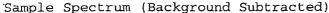
Data File: /chem2/HP09355.i/12oct15a.b/yc15i01.d Injection date and time: 15-OCT-2012 13:52

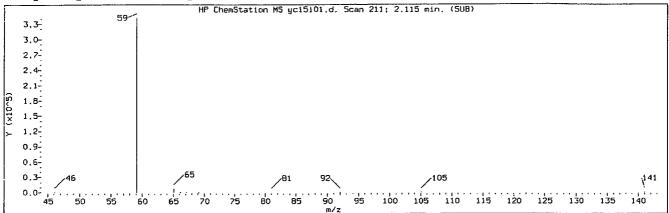
Instrument ID: HP09355.i
Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 15-OCT-2012 14:07

Date, time and analyst ID of latest file update: 15-Oct-2012 14:08 Automation


Sample Name: VSTD300 Lab Sample ID: VSTD300


Compound Number : 25

Compound Name : Methyl Acetate

Scan Number : 185
Retention Time (minutes): 1.957
Quant Ion : 43.00
Area : 3067275
On-column Amount (ng) : 232.8283

Integration start scan : 172 Integration stop scan: 218 Y at integration start : 4883 Y at integration end: 4883

Manually Integrated Quant Ion HP MS yc15i01.d. Ion 59.00 6,0 5.6 5.2-4.8-4.4 4.0 3.6 3.2 2.8 2.4 2.0 1,6 1.2 0.8 0.4 1.94 1.96 1.98 2.00 2.02 2.04 2.06 2.08 2.10 2.12 2.14 2.16 2.18 2.20 2.22 2.24 2.26 2.28 2.30

Data File: /chem2/HP09355.i/12oct15a.b/yc15i01.d Injection date and time: 15-OCT-2012 13:52

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:43

Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

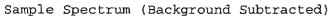
Sample Name: VSTD300 Lab Sample ID: VSTD300

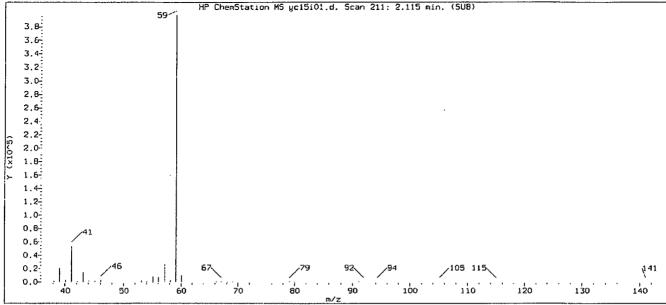
Compound Number : 29

Compound Name : t-Butyl Alcohol

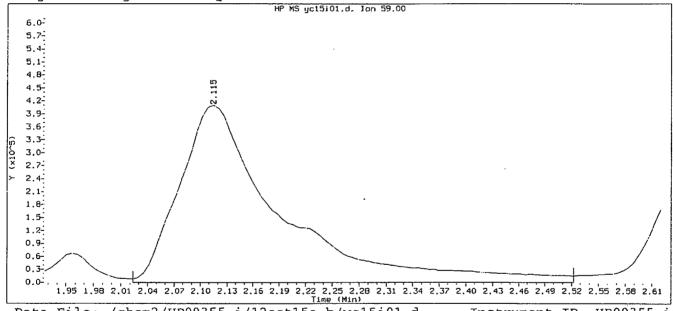
Scan Number : 211
Retention Time (minutes): 2.115
Quant Ion : 59.00
Area (flag) : 2504801M
On-Column Amount (ng) : 1241.7089

Integration start scan : 195 Integration stop scan: 226 Y at integration start : 0 Y at integration end: 0


Reason for manual integration: improper integration


Digitally signed by Sara E. Johnson

Analyst responsible for change: on 10/15/2012 at 17:44.


Target 3.5 esignature user ID: sej02002

GC/MS audit/management approval:

Original Integration of Quant Ion

Data File: /chem2/HP09355.i/12oct15a.b/yc15i01.d Injection date and time: 15-OCT-2012 13:52

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI

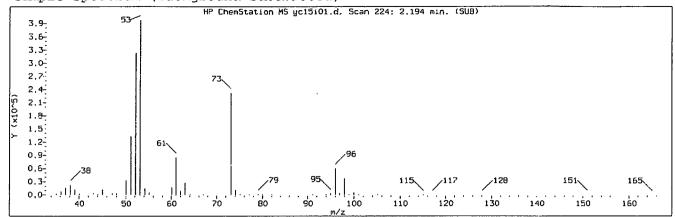
Calibration date and time: 15-OCT-2012 14:07

Lab Sample ID: VSTD300

Date, time and analyst ID of latest file update: 15-Oct-2012 14:08 Automation

Sample Name: VSTD300

Compound Number Compound Name


: t-Butyl Alcohol Scan Number : 211

Retention Time (minutes): 2.115 Quant Ion : 59.00

Area : 3252020 On-column Amount (ng) : 1600.8535

Integration stop scan: Integration start scan 195 Y at integration start Y at integration end:

Sample Spectrum (Background Subtracted)

Manually Integrated Quant Ion HP MS yc15i01.d. Ion 53.00 6.0-5,6 5.2-4.8-4.4 4.0 3.6 3.2 2.B 2.4-2.0 1.5 1.2-0.8 2.02 2.04 2.06 2.08 2.10 2.12 2.14 2.16 2.18 2.20 2.22 2.24 2.26 2.28 2.30 2.32 2.34 2.36 2.38 2.40 2.42 2.44 2.46 2.48 Time (Min)

Data File: /chem2/HP09355.i/12oct15a.b/yc15i01.d Injection date and time: 15-OCT-2012 13:52

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:43

Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

Sample Name: VSTD300 Lab Sample ID: VSTD300

Compound Number : 30

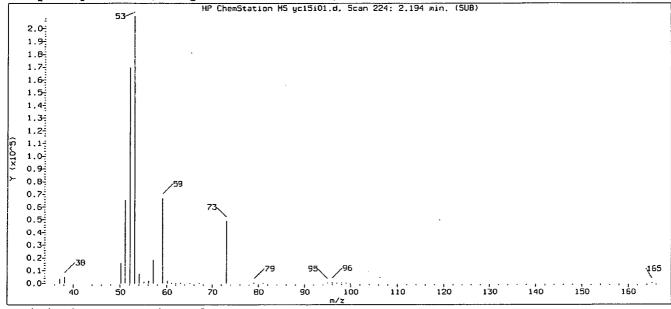
Compound Name : Acrylonitrile

Scan Number : 224
Retention Time (minutes): 2.194
Quant Ion : 53.00
Area (flag) : 1525209M
On-Column Amount (ng) : 249.0849

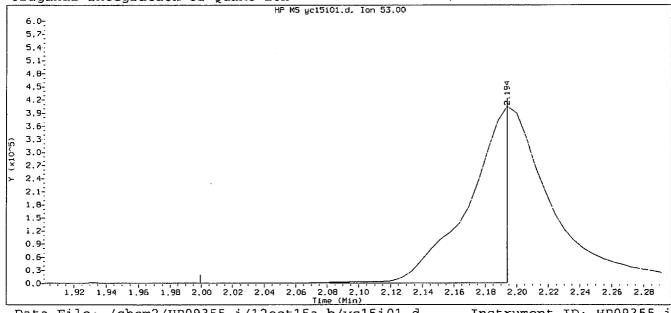
Integration start scan : 210 Integration stop scan: 255 Y at integration start : 1078 Y at integration end: 1078

Reason for manual integration: improper integration

Digitally signed by Sara E. Johnson


Analyst responsible for change: on 10/15/2012 at 17:44.

Target 3.5 esignature user ID: sej02002


10/16/12

GC/MS audit/management approval:

Sample Spectrum (Background Subtracted)

Original Integration of Quant Ion

Data File: /chem2/HP09355.i/12oct15a.b/yc15i01.d Injection date and time: 15-OCT-2012 13:52

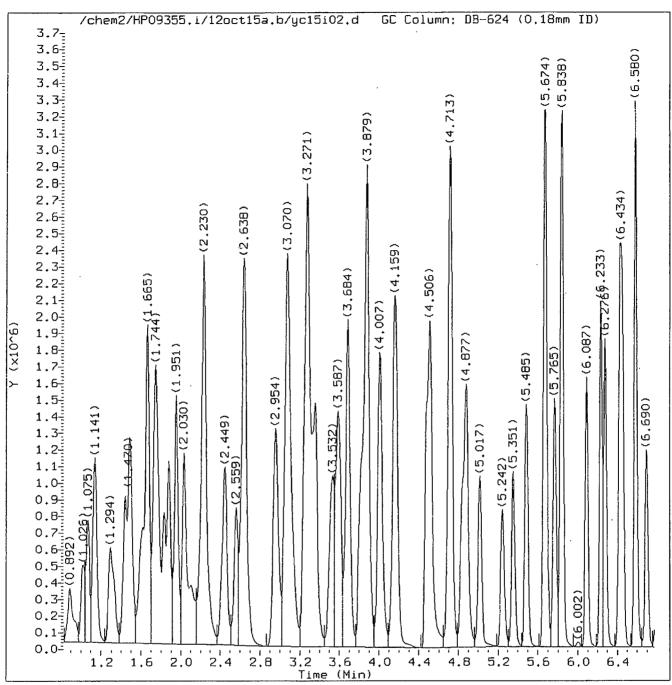
Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 15-OCT-2012 14:07

Date, time and analyst ID of latest file update: 15-Oct-2012 14:08 Automation

Sample Name: VSTD300 Lab Sample ID: VSTD300


Compound Number : 30

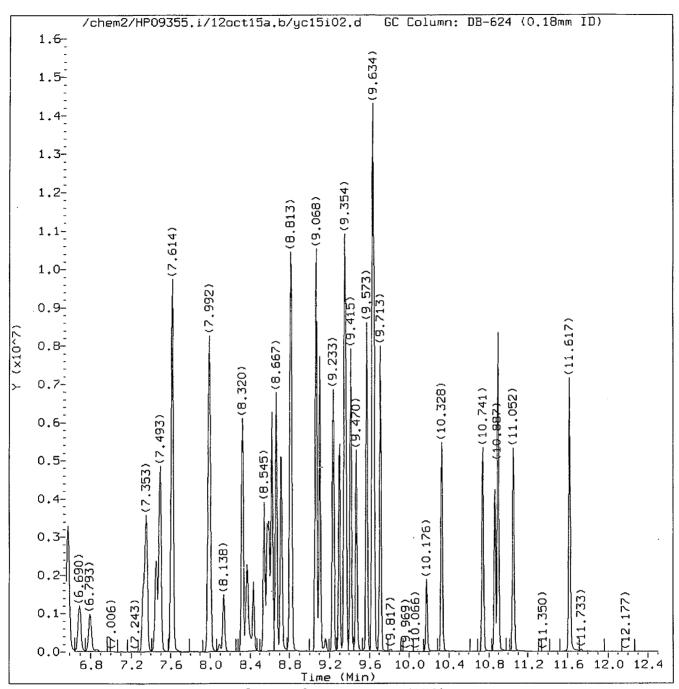
Compound Name : Acrylonitrile

Scan Number : 224

Retention Time (minutes): 2.194
Quant Ion : 53.00
Area : 670056

On-column Amount (ng) : 106.0078 Integration start scan : 191 Integration stop scan: 223 Y at integration start : 1062 Y at integration end: 1062

Total Ion Chromatogram (TIC)


Data File: /chem2/HP09355.i/12oct15a.b/yc15i02.d Instrument ID: HP09355.i Injection date and time: 15-OCT-2012 14:13 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:43

Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

Sample Name: VSTD100 Lab Sample ID: VSTD100

Total Ion Chromatogram (TIC)

Data File: /chem2/HP09355.i/12oct15a.b/yc15i02.d Instrument ID: HP09355.i Injection date and time: 15-OCT-2012 14:13 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:43

Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

Sample Name: VSTD100 Lab Sample ID: VSTD100

Digitally signed by Sara E. Johnson on 10/15/2012 at 17:44.
Target 3.5 esignature user ID: sej02002

page 2 of 2

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15i02.d Instrument ID: HP09355.i Injection date and time: 15-OCT-2012 14:13 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI-EE,

Calibration date and time: 15-OCT-2012 17:43

Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

Sample Name: VSTD100 Lab Sample ID: VSTD100

						On-Column
		I.S.				Amount
	Compounds	Ref.	RT	QIon	Area	(ng)
	=======================================	=====				=========
	Dichlorodifluoromethane	(1)	1.020	85	901386	97.855
- •	Chloromethane	(1)	1.075	50	921384M	94.323
4)	•	(1)	1.135	39	432112	105.121
5)	Vinyl Chloride	(1)	1.148	62	901843	94.247
7)	Bromomethane	(1)	1.294	94	565352	90.395
8)	Chloroethane	(1)	1.330	64	444432	85.705
9)	Dichlorofluoromethane	(1)	1.440	67	1011524	88.838
11)	n-Pentane	(1)	1.482	43	817558	87.199
10)	Trichlorofluoromethane	(1)	1.500	101	972224M	94.466
14)	Freon 123a	(1)	1.610	67	636862	87.513
	Acrolein	(4)	1.665	56	2563229	952.752
	1,1-Dichloroethene	(1)	1.738	96	528172	95.485
	Acetone	(1)	1.750	58	288181	186.506
18)		(1)	1.756	101	555570	97.788
	Methyl Iodide	(1)	1.835	142	1037905	98.603
	2-Propanol	(4)	1.835	45	570466	504.345
	Carbon Disulfide	(1)	1.878	76	1687343	99.004
	Allyl Chloride	(1)	1.951	41	967490	94.814
	Methyl Acetate	(1)	1.957	43	824566M	97.900
	Methylene Chloride	(1)	2.030	84	651792	94.723
	*t-Butyl Alcohol-d10		2.054	65	403352	250.000
	t-Butyl Alcohol	(4)	2.109	59 .		454.415
	Acrylonitrile	(1)	2.194	53	532652	91.865
	trans-1,2-Dichloroethene	(1)	2.230	96	650621	98.258
	Methyl Tertiary Butyl Ether		2.237	73	2272679	99.238
	n-Hexane	(1)	2.449	, 5 57	994986	100.365
34)	1,1-Dichloroethane	(1)	2.559	63	1196865	99.566
	di-Isopropyl Ether	(1)	2.632	45	2319889	96.268
	2-Chloro-1,3-Butadiene	(1)	2.644	53	996305	97.650
	Ethyl t-Butyl Ether	(1)	2.954	59	2286688	98.542
		(1)	3.070	96	745535	100.625
	cis-1,2-Dichloroethene			43		
	2-Butanone	(1)	3.076	43 77	1666142	198.771 99.231
42)	2,2-Dichloropropane	(1)	3.076		896042	
	Propionitrile	(4)	3.125	54	1188000	476.521
	Methacrylonitrile	(1)	3.265	67	1382515	240.942
47)	Bromochloromethane	(1)	3.277	128	391264	97.354
48)		(4)	3.325	71	469454	201.138
50)	Chloroform	(1)	3.362	83	1170741	96.859

M = Compound was manually integrated.

page 1 of 4

^{* =} Compound is an internal standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15i02.d Instrument ID: HP09355.i Injection date and time: 15-OCT-2012 14:13 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:43

Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

Sample Name: VSTD100 Lab Sample ID: VSTD100

	= 0				On-Column
Compounda	I.S.	ma	OTon	7207	Amount
Compounds	Ref.	RT =====	QIon	Area	(ng)
52) \$Dibromofluoromethane	(1)	3.508	113	302389	50.022
51) \$Dibromofluoromethane (mz111)		3.508	111	308698	49.928
53) 1,1,1-Trichloroethane	(1)	3.532	97	999798	97.042
54) Cyclohexane (mz 84)	(1)	3.587	84	985385	99.103
55) Cyclohexane (mz 69)	(1)	3.587	69	369481	99.343
56) Cyclohexane (M2 09)	(1)	3.593	56	1191919	98.638
45) 1,2-Dichloroethene (total)	(1)	3.333	96	1396156	198.883
57) 1,1-Dichloropropene	(1)	3.684	75	894003	99.937
58) Carbon Tetrachloride	(1)	3.691	117	792242	103.473
61) \$1, 2-Dichloroethane-d4 (mz65)	(1)	3.812	65	369282	49.652
60)\$1,2-Dichloroethane-d4(mz104)		3.818	104	51250	50.236
62) \$1, 2-Dichloroethane-d4	(1)	3.818	102	80057	49.288
59) Isobutyl Alcohol	(4)	3.824	41	795130	1153.866
63) Benzene	(1)	3.873	78	2845591	99.757
64) 1,2-Dichloroethane (mz 98)	(1)	3.885	98	96104	100.630
65) 1,2-Dichloroethane	(1)	3.885	62	934149	99.150
69) t-Amyl Methyl Ether	(1)	4.007	73	2268951	99.484
71) *Fluorobenzene	(1)	4.147	96	1360921	50.000
72) n-Heptane	(1)	4.171	43	1126520	97.991
73) n-Butanol	(4)	4.475	56	1489241	2330.282
74) Trichloroethene	(1)	4.512	95	708300	99.837
75) Methylcyclohexane (mz98)	(1)	4.706	98	560575	99.182
76) Methylcyclohexane	(1)	4.706	83	1270852	98.851
77) 1,2-Dichloropropane	(1)	4.725	63	758537	101.282
78) Dibromomethane	(1)	4.840	93	498895	100.529
79) 1,4-Dioxane	(4)	4.865	88	227365	1279.120
80) Methyl Methacrylate	(1)	4.883	69	860099	97.109
83) Bromodichloromethane	(1)	5.017	83	887720	105.746
85) 2 Nitropropane	(1)	5.242	41	742404	213.698
86) 2-Chloroethyl Vinyl Ether	(1)	5.351	63	646986	96.601
87) cis-1,3-Dichloropropene	(1)	5.485	75	1130832	105.270
89) 4-Methyl-2-Pentanone	(1)	5.668	43	3179941	200.601
92) \$Toluene-d8 (mz100)	(2)	5.765	100	858570	50.298
93)\$Toluene-d8	(2)	5.765	98	1302287	49.896
94) Toluene	(2)	5.838	92	1808515	99.329
95) trans-1,3-Dichloropropene	(2)	6.087	75	1112216	106.833
96) Ethyl Methacrylate	(2)	6.233	69	1346592	97.738
97) 1,1,2-Trichloroethane	(2)	6.276	97	725533	98.616

^{* =} Compound is an internal standard.

page 2 of 4

Digitally signed by Sara E. Johnson on 10/15/2012 at 17:44;

Target 3.5 esignature user ID: sej02002

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15i02.d Instrument ID: HP09355.i Injection date and time: 15-OCT-2012 14:13 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:43

Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

Sample Name: VSTD100 Lab Sample ID: VSTD100

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
98) Tetrachloroethene	(2)	6.422	166	786193	100.110
99) 1,3-Dichloropropane	(2)	6.452		1229573	99.680
101) 2-Hexanone	(2)	6.580	43	2549945	198.994
102) Dibromochloromethane	(2)	6.690	129	738217	109.009
104) 1,2-Dibromoethane	(2)	6.793	107	813587	101.895
106) *Chlorobenzene-d5	(2)	7.328	117	978073	50.000
107) Chlorobenzene	(2)	7.353	112	2014254	99.363
108) 1,1,1,2-Tetrachloroethane	(2)	7.456	131	697550	105.594
109) Ethylbenzene	(2)	7.493	91	3505154	99.109
110) m+p-Xylene	(2)	7.614	106	2785917	199.710
113) o-Xylene	(2)	7.986	106	1401873	99.501
114) Styrene	(2)	7.998	104	2354751	100.096
115) Bromoform	(2)	8.138	173	619834	107.814
112) Xylene (Total)	(2)		106	4187790	299.211
116) Isopropylbenzene	(2)	8.320	105	3541823	100.189
118) Cyclohexanone	(4)	8.369	55	1090211	1385.279
120) \$4-Bromofluorobenzene (mz174)	(2)	8.436	174	417090	49.726
119)\$4-Bromofluorobenzene	(2)	8.436	95	492917	50.096
121) Bromobenzene	(3.)	8.545	156	919900	96.921
122) 1,1,2,2-Tetrachloroethane	(3)	8.576	83	1296487	96.159
123) 1,2,3-Trichloropropane	(3)	8.600	110	397415	94.785
124) trans-1,4-Dichloro-2-Butene		8.624	53	951746	241.752
125) n-Propylbenzene	(3)	8.667	91	4101494	98.702
126) 2-Chlorotoluene	(3)	8.722	126	857392	97.144
128) 4-Chlorotoluene	(3)	8.807	126	895956	98.174
127) 1,3,5-Trimethylbenzene	(3)	8.819	105	3097304	100.083
130) tert-Butylbenzene	(3)	9.068	134	697486	100.357
131) Pentachloroethane	(3)	9.068	167	600550	104.894
132) 1,2,4-Trimethylbenzene	(3)	9.105	105	3179190	99.569
133) sec-Butylbenzene	(3)	9.239	105	3853434	101.262
134) 1,3-Dichlorobenzene	(3)	9.300	146	1766050	98.569
135) p-Isopropyltoluene	(3)	9.348	119	3403904	101.276
136) *1,4-Dichlorobenzene-d4	(3)	9.348	152	571243	50.000
138) 1,4-Dichlorobenzene	(3)	9.366	146	1866675	97.613
139) 1,2,3-Trimethylbenzene	(3)	9.415	105	3336248	97.195
141) Benzyl Chloride	(3)	9.470	91	2697090	104.521
142) 1,3-Diethylbenzene	(3)	9.573	119	2053421	96.906
144) 1,2-Dichlorobenzene	(3)	9.634	146	1777548	98.137

^{* =} Compound is an internal standard.

page 3 of 4

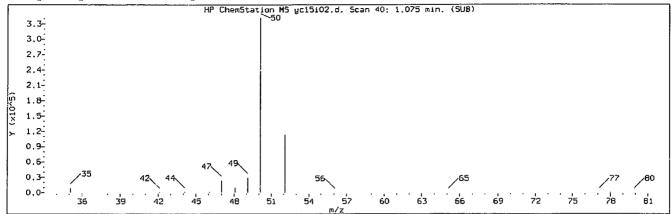
^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

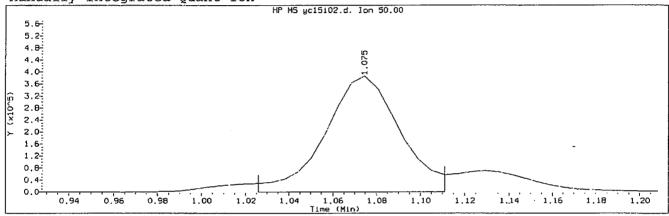
Data File: /chem2/HP09355.i/12oct15a.b/yc15i02.d Instrument ID: HP09355.i

Injection date and time: 15-OCT-2012 14:13 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI-EE


Calibration date and time: 15-OCT-2012 17:43

Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002


Sample Name: VSTD100 Lab Sample ID: VSTD100

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
		======	======		==========
143) 1,4-Diethylbenzene	(3)	9.634	119	2110504	96.948
145) n-Butylbenzene	(3)	9.646	92	1674120	100.513
146) 1,2-Diethylbenzene	(3)	9.713	119	1719668	94.389
148) 1,2-Dibromo-3-Chloropropane	(3)	10.176	75	342234	99.814
149) 1,3,5-Trichlorobenzene	(3)	10.334	180	1363215	99.181
150) 1,2,4-Trichlorobenzene	(3)	10.741	180	1274591	98.661
151) Hexachlorobutadiene	(3)	10.863	225	595648	99.414
152) Naphthalene	(3)	10.893	128	4630407	92.444
153) 1,2,3-Trichlorobenzene	(3)	11.052	180	1228673	96.950
154) 2-Methylnaphthalene	(3)	11.617	142	2579782	92.596

page 4 of 4

Manually Integrated Quant Ion

Data File: /chem2/HP09355.i/12oct15a.b/yc15i02.d Injection date and time: 15-OCT-2012 14:13

Instrument ID: HP09355.i
Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:43

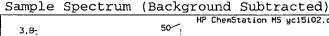
Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

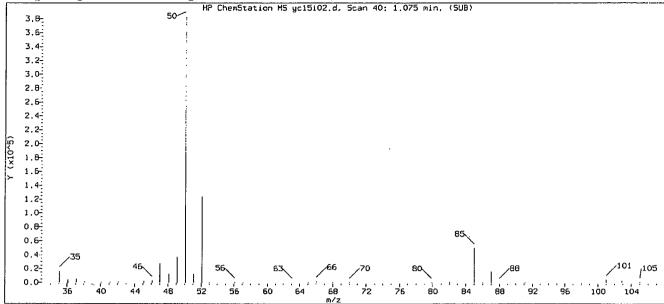
Sample Name: VSTD100 Lab Sample ID: VSTD100

Compound Number : 3

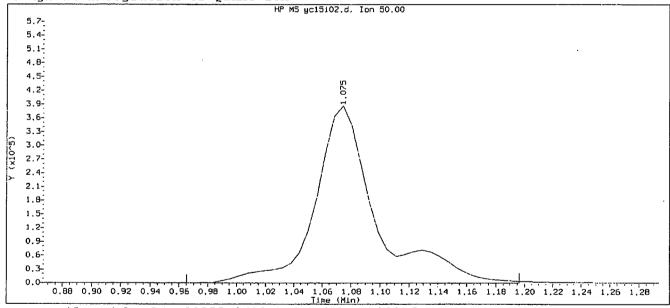
Compound Name : Chloromethane

Scan Number : 40
Retention Time (minutes): 1.075
Quant Ion : 50.00
Area (flag) : 921384M
On-Column Amount (ng) : 94.3230


Integration start scan : 31 Integration stop scan: 45 Y at integration start : 0 Y at integration end: 0


Reason for manual integration: improper integration

Digitally signed by Sara E. Johnson


Analyst responsible for change: on 10/15/2012 at 17:44.

Target 3.5 esignature user ID: sej02002

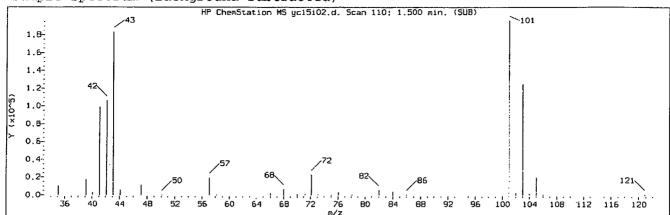
Data File: /chem2/HP09355.i/12oct15a.b/yc15i02.d Instrument ID: HP09355.i Injection date and time: 15-OCT-2012 14:13

Analyst ID: ADS01731

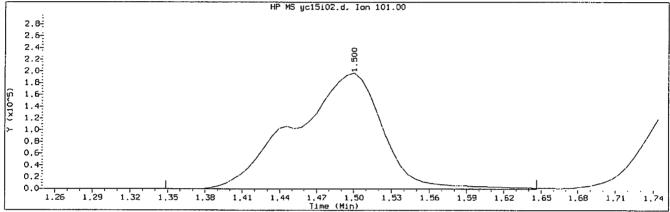
Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 15-OCT-2012 14:28

Date, time and analyst ID of latest file update: 15-Oct-2012 14:28 Automation


Sample Name: VSTD100 Lab Sample ID: VSTD100

Compound Number 3


Compound Name : Chloromethane

Scan Number 40 Retention Time (minutes): 1.075 Quant Ion 50.00 Area 1129451 On-column Amount (ng) 104.1393

59 21 Integration start scan Integration stop scan: Y at integration start n Y at integration end:

Manually Integrated Quant Ion

Data File: /chem2/HP09355.i/12oct15a.b/yc15i02.d Injection date and time: 15-OCT-2012 14:13

Instrument ID: HP09355.i
Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:43

Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

Sample Name: VSTD100 Lab Sample ID: VSTD100

Compound Number : 10

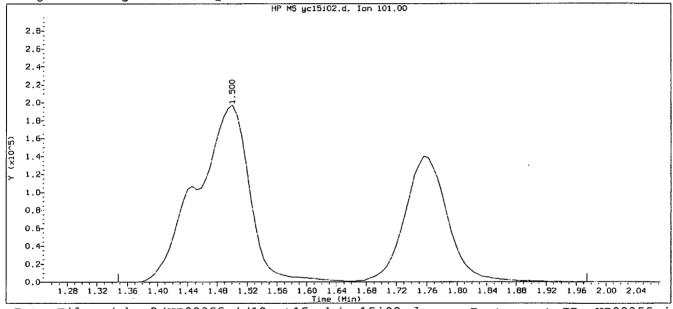
Compound Name : Trichlorofluoromethane

Scan Number : 110
Retention Time (minutes): 1.500
Quant Ion : 101.00
Area (flag) : 972224M
On-Column Amount (ng) : 94.4657

Integration start scan : 84 Integration stop scan: 133 Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration

Digitally signed by Sara E. Johnson


Analyst responsible for change: on 10/15/2012 at 17:44.

Target 3.5 esignature user ID: sej02002

Data File: /chem2/HP09355.i/12oct15a.b/yc15i02.d Injection date and time: 15-OCT-2012 14:13

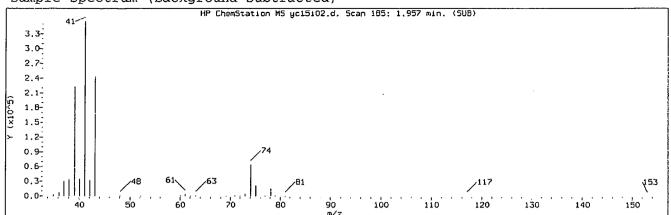
Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 15-OCT-2012 14:28

Date, time and analyst ID of latest file update: 15-Oct-2012 14:28 Automation

Sample Name: VSTD100 Lab Sample ID: VSTD100


Compound Number : 10

Compound Name : Trichlorofluoromethane

Scan Number : 110
Retention Time (minutes): 1.500

Quant Ion : 101.00
Area : 1526423
On-column Amount (ng) : 127.0629

Integration start scan : 84 Integration stop scan: 187
Y at integration start : 0 Y at integration end: 0

Manually Integrated Quant Ion HP MS yc15i02.d. Ion 43.00 3.6-3.3-3.0-2.4-2.1-1.8 1.5-1,2-0.9 0.6 0.3 1.90 1.92 1.94 1.96 1.98 2.00 2.02 2.04 1,80 1,82 1,84 1,86 1,88 2.06 2.08 2.10 2.12 2.14

Data File: /chem2/HP09355.i/12oct15a.b/yc15i02.d Injection date and time: 15-OCT-2012 14:13

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:43

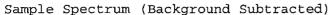
Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

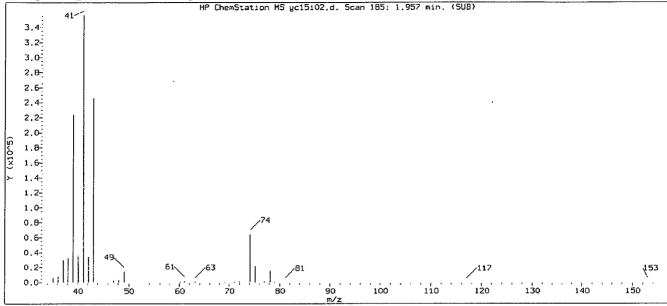
Sample Name: VSTD100 Lab Sample ID: VSTD100

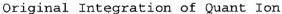
Compound Number : 25

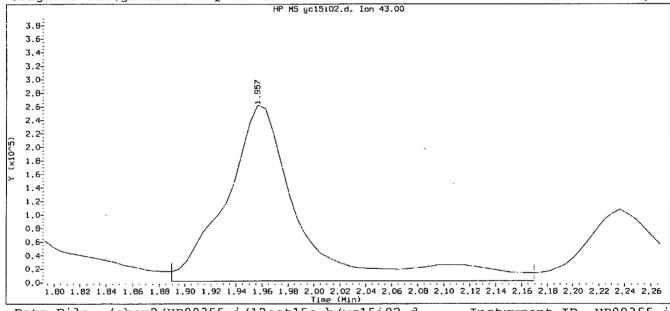
Compound Name : Methyl Acetate

Scan Number : 185
Retention Time (minutes): 1.957
Quant Ion : 43.00
Area (flag) : 824566M
On-Column Amount (ng) : 97.8998


Integration start scan : 173 Integration stop scan: 201 Y at integration start : 12359 Y at integration end: 12359


Reason for manual integration: improper integration


Digitally signed by Sara E. Johnson


Analyst responsible for change: on 10/15/2012 at 17:44.

Target 3.5 esignature user ID: sej02002

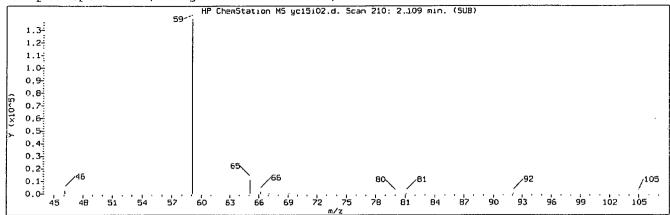
Data File: /chem2/HP09355.i/12oct15a.b/yc15i02.d Injection date and time: 15-OCT-2012 14:13

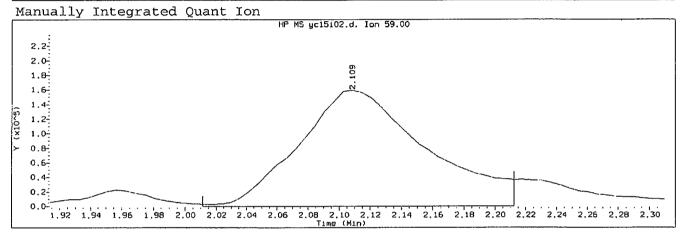
Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 15-OCT-2012 14:28

Date, time and analyst ID of latest file update: 15-Oct-2012 14:28 Automation


Sample Name: VSTD100 Lab Sample ID: VSTD100


Compound Number : 25

Compound Name : Methyl Acetate

Scan Number : 185
Retention Time (minutes): 1.957

Retention Time (minutes): 1.957
Quant Ion : 43.00
Area : 1045807
On-column Amount (ng) : 117.4250

Data File: /chem2/HP09355.i/12oct15a.b/yc15i02.d Injection date and time: 15-OCT-2012 14:13

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

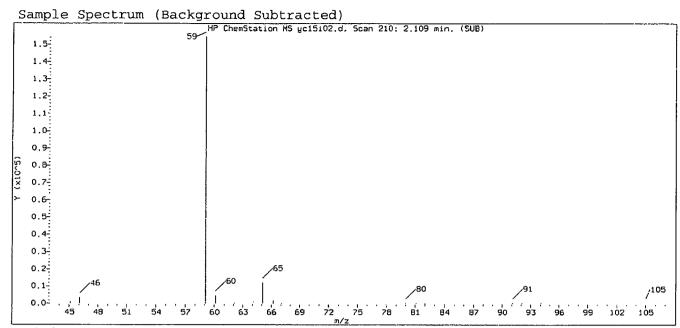
Calibration date and time: 15-OCT-2012 17:43

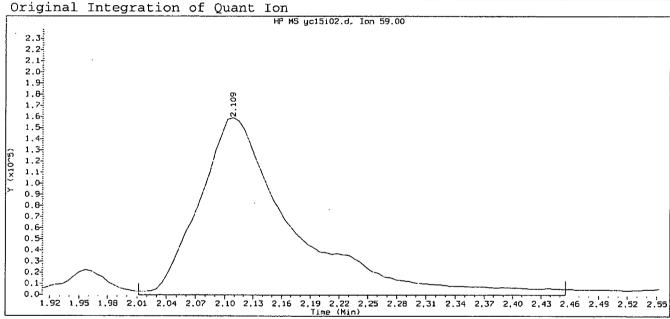
Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

Sample Name: VSTD100 Lab Sample ID: VSTD100

Compound Number : 29

Compound Name : t-Butyl Alcohol


Scan Number : 210
Retention Time (minutes): 2.109
Quant Ion : 59.00
Area (flag) : 909052M
On-Column Amount (ng) : 454.4154


Reason for manual integration: improper integration

Digitally signed by Sara E. Johnson

Analyst responsible for change: on 10/15/2012 at 17:44.

Target 3.5 esignature user ID: sej02002

Data File: /chem2/HP09355.i/12oct15a.b/yc15i02.d Instrument ID: HP09355.i Injection date and time: 15-OCT-2012 14:13 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 15-OCT-2012 14:28

Date, time and analyst ID of latest file update: 15-Oct-2012 14:28 Automation

Sample Name: VSTD100 Lab Sample ID: VSTD100

Compound Number : 29

Compound Name : t-Butyl Alcohol

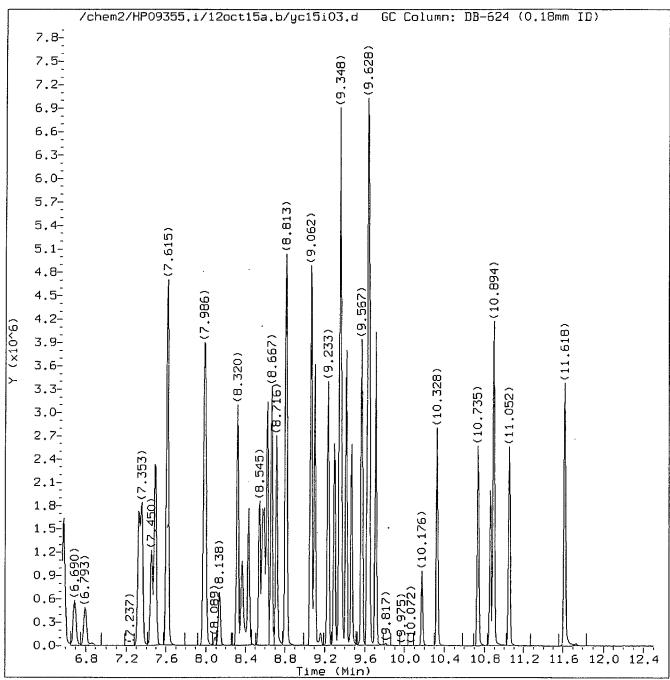
Scan Number : 210
Retention Time (minutes): 2.109
Quant Ion : 59.00
Area : 1089768
On-column Amount (ng) : 503.4072

Integration start scan : 193 Integration stop scan: 266 Y at integration start : 0 Y at integration end: 0

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15i03.d Injection date and time: 15-OCT-2012 14:33


Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:43

Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

Sample Name: VSTD050 Lab Sample ID: VSTD050

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15i03.d Injection date and time: 15-OCT-2012 14:33

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI-EE Calibration date and time: 15-OCT-2012 17:43

Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

Sample Name: VSTD050 Lab Sample ID: VSTD050

many children and the second second and the second

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15i03.d Instrument ID: HP09355.i Injection date and time: 15-OCT-2012 14:33 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:43

Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

Sample Name: VSTD050 Lab Sample ID: VSTD050

	Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
	========== Dichlorodifluoromethane	(1)	1.020	85	434781	46.446
•	Chloromethane	(1)	1.069	50	453655M	45.699
	1,3-Butadiene	(1)	1.129	39	209981	50.266
	Vinyl Chloride	(1)	1.136	62	450837	46.362
	Bromomethane	(1)	1.288	94	292630	46.041
•	Chloroethane	(1)	1.324	$6\overline{4}$	232844	44.184
	Dichlorofluoromethane	(1)	1.434	67	589798	50.971
	n-Pentane	(1)	1.482	43	500208	52.498
	Trichlorofluoromethane	(1)	1.494	101	490490	46.896
	Freon 123a	(1)	1.604	67	374942	50.698
	Acrolein	(4)	1.665	56	1409793	511.984
16)	1,1-Dichloroethene	(1)	1.738	96	271185	48.242
17)	Acetone	(1)	1.750	58	154660	98.493
18)	Freon 113	(1)	1.756	101	276442	47.880
20)	Methyl Iodide	(1)	1.829	142	523180	48.909
	2-Propanol	(4)	1.829	45	273580M	236.315
	Carbon Disulfide	(1)	1.878	76	852746	49.235
	Allyl Chloride	(1)	1.951	41	504546	48.655
	Methyl Acetate	(1)	1.957	43	418766M	48.925
	Methylene Chloride	(1)	2.030	84	332136	47.497
	t-Butyl Alcohol-d10	(4)	2.054	65	412834	250.000
	t-Butyl Alcohol	(4)	2.109	59	475775M	232.367
	Acrylonitrile	(1)	2.194	53	291480	49.467
	trans-1,2-Dichloroethene	(1)	2.231	96	332530	49.416
32)			2.231	73	1189401	51.106
	n-Hexane	(1)	2.450	57	444052	44.076
	1,1-Dichloroethane	(1)	2.559	63	602992	49.361
	di-Isopropyl Ether	(1)	2.632	45 53	1187284	48.481
37)		(1)	2.644	53 59	498231	48.052
	Ethyl t-Butyl Ether 2-Butanone	(1)	2.955 3.052	43	1172789 858271	49.732 100.755
	cis-1,2-Dichloroethene	(1) (1)	3.052	96	375826	49.915
42)		(1)	3.004	77	450072	49.046
43)	Propionitrile	(4)	3.119	54	625915	245.295
	Methacrylonitrile	(1)	3.259	67	720792	123.610
	Bromochloromethane	(1)	3.277	128	199435	48.830
48)	Tetrahydrofuran	(4)	3.320	71	241366	101.038
50)	Chloroform	(1)	3.356	83	584209	47.561
/		, - ,	J			

M = Compound was manually integrated.

page 1 of 4

^{* =} Compound is an internal standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15i03.d Instrument ID: HP09355.i Injection date and time: 15-OCT-2012 14:33 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:43

Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

Sample Name: VSTD050 Lab Sample ID: VSTD050

	I.S.				On-Column Amount
Compounds	Ref.	RT	QIon	Area	(ng)
	===== (1)	3.502	113	308274	50.180
52) \$Dibromofluoromethane				314592	50.068
51) \$Dibromofluoromethane (mz111)	(1)	3.508	97	497389	47.506
53) 1,1,1-Trichloroethane	(1)	3.532			
54) Cyclohexane (mz 84)	(1)	3.587	84	474198	46.929 46.501
55) Cyclohexane (mz 69)	(1)	3.587	69 5.6	175759	46.470
56) Cyclohexane	(1)	3.587	56	570651	99.331
45) 1,2-Dichloroethene (total)	(1)	2 (05	96 25	708356	
57) 1,1-Dichloropropene	(1)	3.685	75	444104	48.851
58) Carbon Tetrachloride	(1)	3.691	117	386885	49.723
61) \$1, 2-Dichloroethane-d4 (mz65)	(1)	3.812	65 103	396323	52.436
62) \$1,2-Dichloroethane-d4	(1)	3.812	102	86614	52.472
59) Isobutyl Alcohol	(4)	3.818	41	411693	583.713
60) \$1, 2-Dichloroethane-d4 (mz104		3.818	104	51931	50.090
63) Benzene	(1)	3.873	78	1421590	49.040
65) 1,2-Dichloroethane	(1)	3.885	62	476480	49.765
64) 1,2-Dichloroethane (mz 98)	(1)	3.885	98	47618	48.730
69) t-Amyl Methyl Ether	(1)	4.007	73	1143974	49.356
71) *Fluorobenzene	(1)	4.147	96	1383029	50.000
72) n-Heptane	(1)	4.165	43	481761	41.236
73) n-Butanol	(4)	4.469	56	774854	1184.601
74) Trichloroethene	(1)	4.506	95	351018	48.686
75) Methylcyclohexane (mz98)	(1)	4.707	98	278880	48.553
76) Methylcyclohexane	(1)	4.707	83	630570	48.264
77) 1,2-Dichloropropane	(1)	4.719	63	380661	50.014
78) Dibromomethane	(1)	4.834	93	252948	50.155
79) 1,4-Dioxane	(4)	4.865	88	110432	607.004
80) Methyl Methacrylate	(1)	4.877	69	441937	49.099
83) Bromodichloromethane	(1)	5.011	83	437059	51.231
85) 2-Nitropropane	(1)	5.242	41	366923	103.929
86) 2-Chloroethyl Vinyl Ether	(1)	5.345	63 75	334343	49.123 51.370
87) cis-1,3-Dichloropropene	(1)	5.485		560789	
89) 4-Methyl-2-Pentanone	(1)	5.668	43	1614577	100.225
92) \$Toluene-d8 (mz100)	(2)	5.765	100	864929	49.856
93) \$Toluene-d8	(2)	5.765	98	1325653	49.976
94) Toluene	(2)	5.832	92	898938	48.579
95) trans-1,3-Dichloropropene	(2)	6.081	75 60	546965	51.694
96) Ethyl Methacrylate	. (2)	6.227	69 97	687513	49.099
97) 1,1,2-Trichloroethane	(2)	6.270	91	369001	49.350

^{* =} Compound is an internal standard.

page 2 of 4

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15i03.d Instrument ID: HP09355.i Injection date and time: 15-OCT-2012 14:33 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:43

Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

Sample Name: VSTD050 Lab Sample ID: VSTD050

	I.S.				On-Column Amount
Compounds	Ref.	RT	QIon	Area	(ng)
98) Tetrachloroethene	(2)	6.422	166	384675	48.196
99) 1,3-Dichloropropane	(2)	6.446	76	621234	49.554
101) 2-Hexanone	(2)	6.580	43	1284152	98.604
102) Dibromochloromethane	$(\overline{2})$	6.690	129	360153	52.328
104) 1,2-Dibromoethane	(2)	6.793	107	409087	50.412
106) *Chlorobenzene-d5	(2)	7.323	$\frac{1}{117}$	994041	50.000
107) Chlorobenzene	(2)	7.353	112	1000219	48.548
108) 1,1,1,2-Tetrachloroethane	(2)	7.450	131	342491	51.013
109) Ethylbenzene	(2)	7.487	91	1717429	47.781
110) m+p-Xylene	(2)	7.615	106	1360654	95.972
113) o-Xylene	(2)	7.980	106	686306	47.930
114) Styrene	(2)	7.998	104	1168306	48.865
115) Bromoform	(2)	8.138	173	297225	50.869
112) Xylene (Total)	(2)		106	2046960	143.902
116) Isopropylbenzene	(2)	8.320	105	1706529	47.498
118) Cyclohexanone	(4)	8.369	55	513442	637.422
120) \$4-Bromofluorobenzene (mz174)	(2)	8.436	174	424464	49.792
119)\$4-Bromofluorobenzene	(2)	8.436	95	500394	50.039
121) Bromobenzene	(3)	8.545	156	455838	47.911
122) 1,1,2,2-Tetrachloroethane	(3)	8.576	83	663156	49.067
123) 1,2,3-Trichloropropane	(3)	8.594	110	204995	48.774
124) trans-1,4-Dichloro-2-Butene	(3)	8.624	53	486098M	123.175
125) n-Propylbenzene	(3)	8.667	91	1990497	47.786
126) 2-Chlorotoluene	(3)	8.716	126	413242	46.708
128) 4-Chlorotoluene	(3)	8.807	126	434611	47.508
127) 1,3,5-Trimethylbenzene	(3)	8.819	105	1478992	47.675
131) Pentachloroethane	(3)	9.062	167	281551	49.058
130) tert-Butylbenzene	(3)	9.069	134	326211	46.823
132) 1,2,4-Trimcthylbenzene	(3)	9.105	105	1533970	47.927
133) sec-Butylbenzene	(3)	9.233	105	1798071	47.136
134) 1,3-Dichlorobenzene	(3)	9.294	146	853770	47.537
135) p-Isopropyltoluene	(3)	9.348	119	1601010	47.520
136) *1,4-Dichlorobenzene-d4	(3)	9.348	152	572625	50.000
138) 1,4-Dichlorobenzene	(3)	9.367	146	908391	47.387
139) 1,2,3-Trimethylbenzene	(3)	9.415	105	1656058	48.129
141) Benzyl Chloride	(3)	9.470	91	1327510	51.321
142) 1,3-Diethylbenzene	(3)	9.567	119	1030454	48.512
144) 1,2-Dichlorobenzene	(3)	9.628	146	875901	48.241

M = Compound was manually integrated.

Digitally signed by Sara E. Johnson on 10/15/2012 at 17:44.
Target 3.5 esignature user ID: sej02002

page 3 of 4

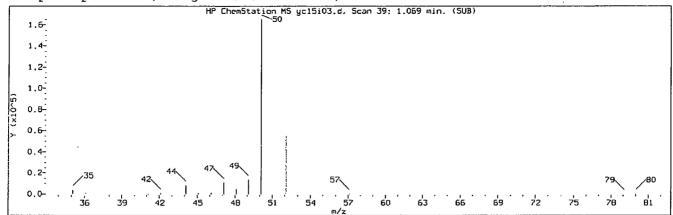
^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

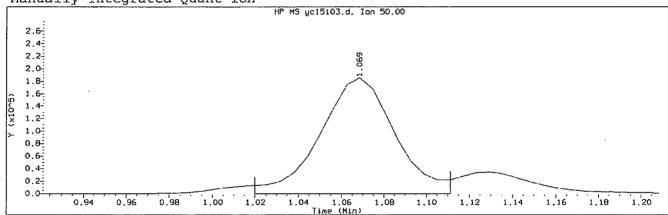
Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15i03.d Instrument ID: HP09355.i Injection date and time: 15-OCT-2012 14:33 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI-EE


Calibration date and time: 15-OCT-2012 17:43

Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002


Sample Name: VSTD050 Lab Sample ID: VSTD050

	pounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
	-Diethylbenzene	(3)	9.628	119	1069905	49.029
145) n-B	utylbenzene	(3)	9.646	92	784926	47.013
146) 1,2	-Diethylbenzene	(3)	9.707	119	869723	47.622
148) 1,2	-Dibromo-3-Chloropropane	(3)	10.176	75	173494	50.478
149) 1,3	,5-Trichlorobenzene	(3)	10.328	180	647712	47.010
150) 1,2	,4-Trichlorobenzene	(3)	10.735	180	613633	47.384
151) Hex	achlorobutadiene	(3)	10.857	225	277445	46.194
152) Nap	hthalene	(3)	10.894	128	2340962	46.623
153) 1,2	,3-Trichlorobenzene	(3)	11.052	180	601926	47.381
154) 2-M	ethylnaphthalene	(3)	11.618	142	1272375	45.559

page 4 of 4

Manually Integrated Quant Ion

Data File: /chem2/HP09355.i/12oct15a.b/yc15i03.d Injection date and time: 15-OCT-2012 14:33

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:43 Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

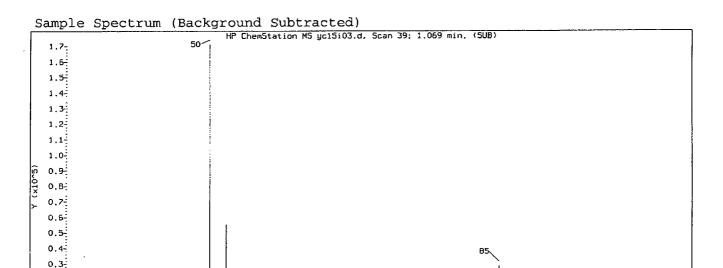
Sample Name: VSTD050

Lab Sample ID: VSTD050

Compound Number 3

Compound Name : Chloromethane

Scan Number : 39 Retention Time (minutes): 1.069 Quant Ion : 50.00 Area (flag) : 453655M On-Column Amount (ng) : 45.6987

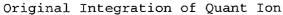

30 Integration start scan Integration stop scan: 45 Y at integration start 0 Y at integration end:

Reason for manual integration: improper integration

Digitally signed by Sara E. Johnson

Analyst responsible for change: on 10/15/2012 at 17:44.

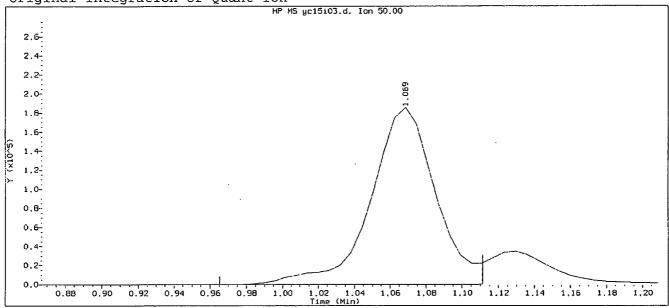
Target 3.5 esignature user ID: sej02002



76

RO

84


88

52

0.2

0.0

Data File: /chcm2/HP09355.i/12oct15a.b/yc15i03.d Injection date and time: 15-OCT-2012 14:33

Instrument ID: HP09355.i Analyst ID: ADS01731

105

104

100

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

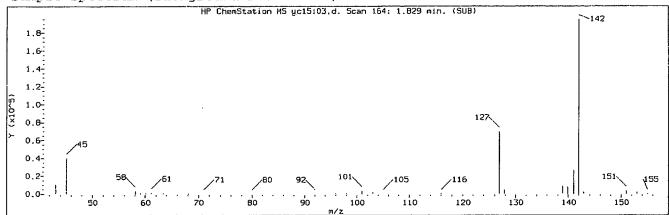
Sublist used: 8260WI

Calibration date and time: 15-OCT-2012 14:48

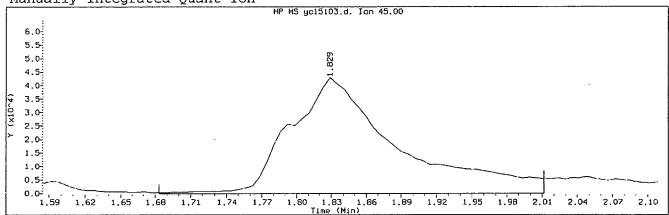
Subitst used: 6200Wi

Date, time and analyst ID of latest file update: 15-Oct-2012 14:48 Automation

Sample Name: VSTD050 Lab Sample ID: VSTD050


Compound Number : 3

Compound Name : Chloromethane


Scan Number : 39

Retention Time (minutes): 1.069
Quant Ion : 50.00
Area : 462772
On-column Amount (ng) : 46.9698

Integration start scan : 21 Integration stop scan: 45 Y at integration start : 0 Y at integration end: 0

Manually Integrated Quant Ion

Data File: /chem2/HP09355.i/12oct15a.b/yc15i03.d Injection date and time: 15-OCT-2012 14:33

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Calibration date and time: 15-OCT-2012 17:43

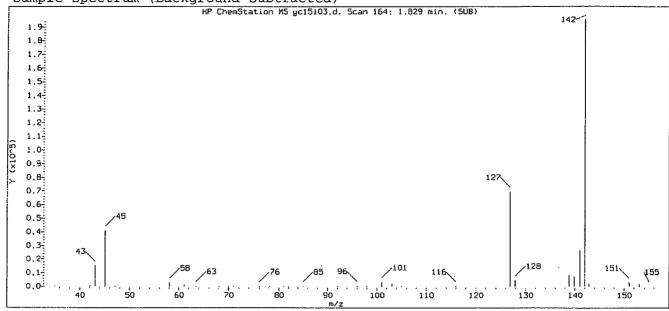
Sublist used: 8260WI-EE

Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

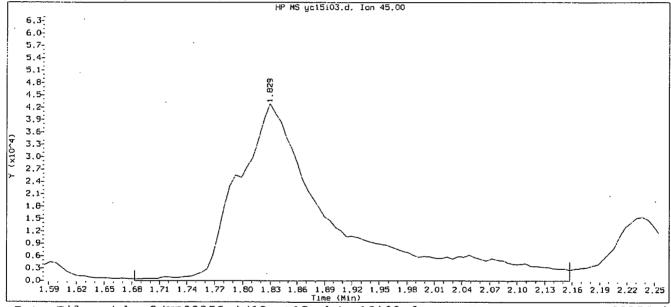
Sample Name: VSTD050 Lab Sample ID: VSTD050

Compound Number 21

Compound Name 2-Propanol


164 Scan Number Retention Time (minutes): 1.829 Ouant Ion 45.00 Area (flag) : 273580M On-Column Amount (ng) : 236.3150


193 Integration start scan 139 Integration stop scan: Y at integration end: Y at integration start


Reason for manual integration: improper integration

Digitally signed by Sara E. Johnson Analyst responsible for change: on 10/15/2012 at 17:44.

Target 3.5 esignature user ID: sej02002

Data File: /chem2/IIP09355.i/12oct15a.b/yc15i03.d Injection date and time: 15-OCT-2012 14:33

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI

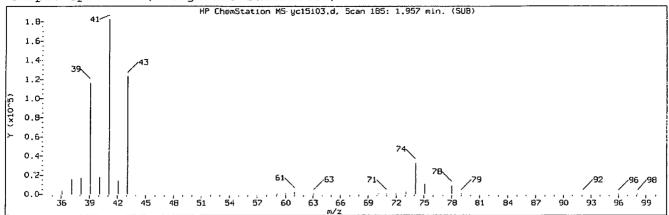
Calibration date and time: 15-OCT-2012 14:48

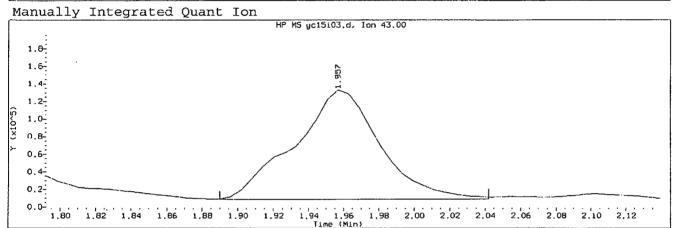
Date, time and analyst ID of latest file update: 15-Oct-2012 14:48 Automation

Sample Name: VSTD050 Lab Sample ID: VSTD050

Compound Number : 21

Compound Name : 2-Propanol


Scan Number : 164


Retention Time (minutes): 1.829 Quant Ion : 45.00 Area : 312055

Area
On-column Amount (ng)

Integration start scan : 139
Y at integration start : 0

Integration stop scan: 217 Y at integration end: 0

Data File: /chem2/HP09355.i/12oct15a.b/yc15i03.d Injection date and time: 15-OCT-2012 14:33

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:43

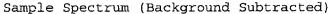
Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

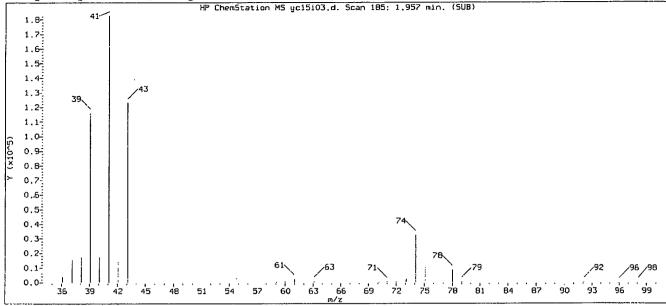
Sample Name: VSTD050 Lab Sample ID: VSTD050

Compound Number : 25

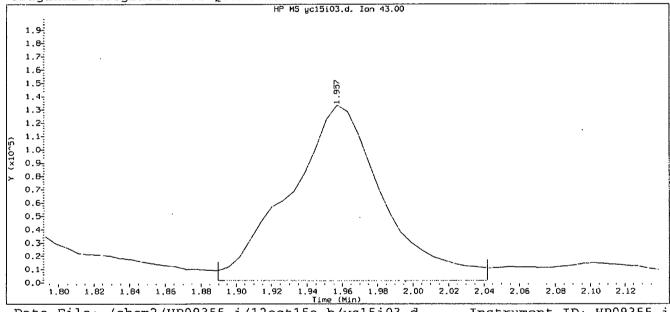
Compound Name : Methyl Acetate

Scan Number : 185
Retention Time (minutes): 1.957
Quant Ion : 43.00
Area (flag) : 418766M
On-Column Amount (ng) : 48.9248


Integration start scan : 173 Integration stop scan: 198
Y at integration start : 8798 Y at integration end: 8798


Reason for manual integration: improper integration

Digitally signed by Sara E. Johnson


Analyst responsible for change: on 10/15/2012 at 17:44.

Target 3.5 esignature user ID: sej02002

Data File: /chem2/HP09355.i/12oct15a.b/yc15i03.d Injection date and time: 15-OCT-2012 14:33

Instrument ID: HP09355.i Analyst ID: ADS01731

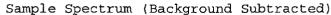
Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI

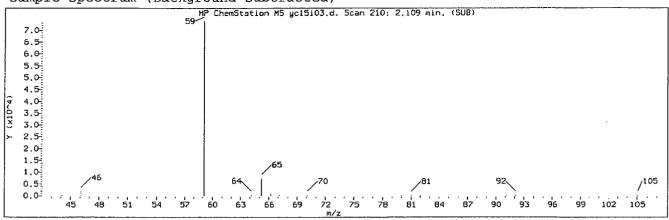
Calibration date and time: 15-OCT-2012 14:48

Date, time and analyst ID of latest file update: 15-Oct-2012 14:48 Automation

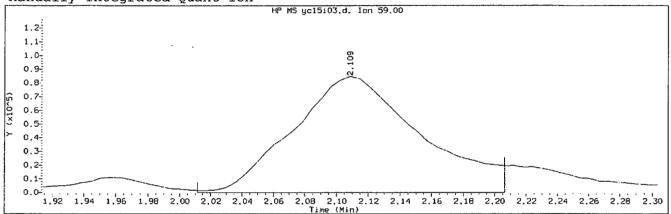
Sample Name: VSTD050

Lab Sample ID: VSTD050


Compound Number


Compound Name : Methyl Acetate

Scan Number Retention Time (minutes): 1.957 : 43.00 Quant Ion


Area : 483316 On-column Amount (ng) : 56.8169

173 Integration start scan : Integration stop scan: : 1670 Y at integration end: Y at integration start

Manually Integrated Quant Ion

Data File: /chem2/HP09355.i/12oct15a.b/yc15i03.d Injection date and time: 15-OCT-2012 14:33

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

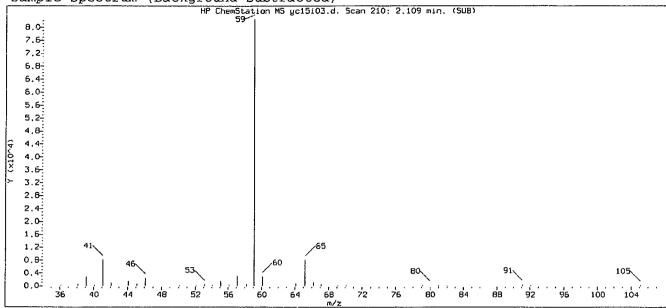
Calibration date and time: 15-OCT-2012 17:43

Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

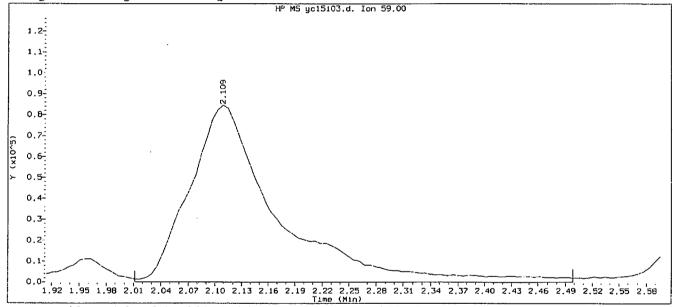
Sample Name: VSTD050 Lab Sample ID: VSTD050

Compound Number : 29

Compound Name : t-Butyl Alcohol


Scan Number : 210
Retention Time (minutes): 2.109
Quant Ion : 59.00
Area (flag) : 475775M
On-Column Amount (ng) : 232.3671

Reason for manual integration: improper integration


Digitally signed by Sara E. Johnson

Analyst responsible for change: on 10/15/2012 at 17:44.

Target 3.5 esignature user ID: sej02002

Original Integration of Quant Ion

Data File: /chem2/HP09355.i/12oct15a.b/yc15i03.d Injection date and time: 15-OCT-2012 14:33

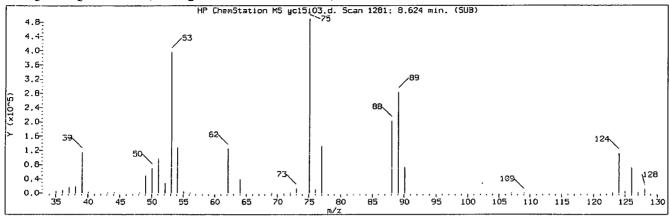
Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 15-OCT-2012 14:48

Date, time and analyst ID of latest file update: 15-Oct-2012 14:48 Automation

Sample Name: VSTD050 Lab Sample ID: VSTD050


Compound Number : 29

Compound Name : t-Butyl Alcohol

Scan Number : 210
Retention Time (minutes): 2.109
Ouant Ton : 59.00

Quant Ion : 59.00 Area : 579270 On-column Amount (ng) : 257.5134

Integration start scan : 193 Integration stop scan: 273 Y at integration start : 0 Y at integration end: 0

Manually Integrated Quant Ion HP MS uc15i03.d. Ion 53.00 60-5.6 5.2-4.8 624 4.4-4.0 3,6-3.2 2.0 2.4 2.0 1.6 1.2-0.8 0.4 0.0 8.50 8.52 8.54 8.5B 8,60 8,62 8.66 8,72 8,74

Data File: /chem2/HP09355.i/12oct15a.b/yc15i03.d Injection date and time: 15-OCT-2012 14:33

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:43

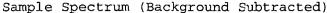
Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

Sample Name: VSTD050 Lab Sample ID: VSTD050

Compound Number : 124

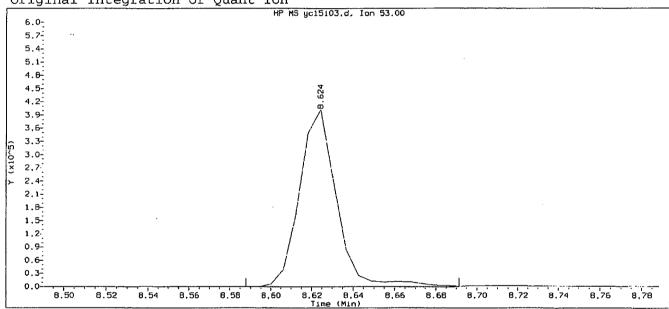
Compound Name : trans-1,4-Dichloro-2-Butene

Scan Number : 1281
Retention Time (minutes): 8.624
Quant Ion : 53.00
Area (flag) : 486098M
On-Column Amount (ng) : 123.1752


Integration start scan : 1274 Integration stop scan: 1285 Y at integration start : 0 Y at integration end: 0


Reason for manual integration: improper integration

Digitally signed by Sara E. Johnson


Analyst responsible for change: on 10/15/2012 at 17:44.

Target 3.5 esignature user ID: sej02002

Original Integration of Quant Ion

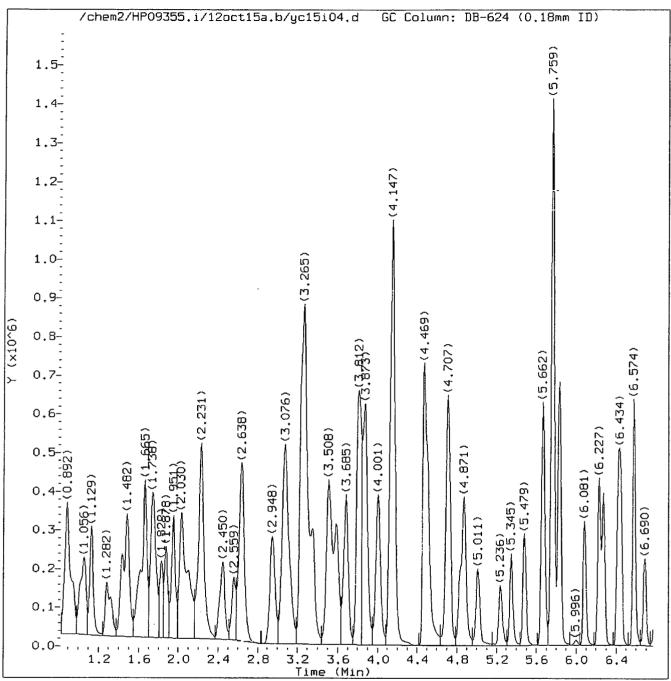
Data File: /chem2/HP09355.i/12oct15a.b/yc15i03.d Injection date and time: 15-OCT-2012 14:33

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 15-OCT-2012 14:48

Date, time and analyst ID of latest file update: 15-Oct-2012 14:48 Automation


Sample Name: VSTD050 Lab Sample ID: VSTD050

Compound Number : 124

Compound Name : trans-1,4-Dichloro-2-Butene

Scan Number : 1281
Retention Time (minutes): 8.624
Quant Ion : 53.00
Area : 500079
On-column Amount (ng) : 131.1969

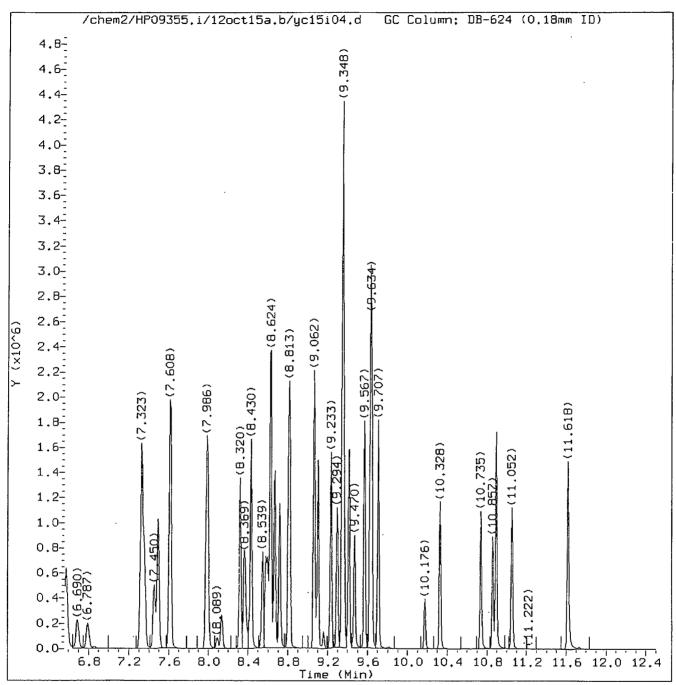
Integration start scan : 1274 Integration stop scan: 1291 Y at integration start : 0 Y at integration end: 0

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15i04.d Instrument ID: HP09355.i Injection date and time: 15-OCT-2012 14:54 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI-EE


Calibration date and time: 15-OCT-2012 17:43

Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

Sample Name: VSTD020 Lab Sample ID: VSTD020

Digitally signed by Sara E. Johnson on 10/15/2012 at 17:45.
Target 3.5 esignature user ID: sej02002

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15i04.d Instrument ID: HP09355.i Injection date and time: 15-OCT-2012 14:54 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:43

Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

Sample Name: VSTD020 Lab Sample ID: VSTD020

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15i04.d Instrument ID: HP09355.i Injection date and time: 15-OCT-2012 14:54 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:43

Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

Sample Name: VSTD020 Lab Sample ID: VSTD020

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
2) Dichlorodifluoromethane	(1)	1.020	===== 85	204176	22.623
3) Chloromethane	(1)	1.063	50	196895M	20.572
4) 1,3-Butadiene	(1)	1.123	39	82.653	20.522
5) Vinyl Chloride	(1)	1.129	62	197463	21.061
7) Bromomethane	(1)	1.288	94	129803	21.182
8) Chloroethane	(1)	1.324	64	105521	20.768
9) Dichlorofluoromethane	(1)	1.434	67	239304	21.450
11) n-Pentane	(1)	1.482	43	212413	23.123
Trichlorofluoromethane	(1)	1.488	101	222357	22.051
14) Freon 123a	(1)	1.604	67	156022	21.881
15) Acrolein	(4)	1.665	56	551474	205.744
16) 1,1-Dichloroethene	(1)	1.732	96	115014	21.221
18) Freon 113	(1)	1.756	101	119920	21.543
17) Acetone	(1)	1.756	58	59495	39.298
20) Methyl Iodide	(1)	1.829	142	221289	21.456
21) 2-Propanol	(4)	1.829	45	234326м	207.936
22) Carbon Disulfide	(1)	1.878	76	354820	21.248
24) Allyl Chloride	(1)	1.951	41	206816	20.686
25) Methyl Acetate	(1)	1.957	43	181649M	22.012
26) Methylene Chloride 28)*t-Butyl Alcohol-d10	(1) (4)	2.030 2.042	84 65	138392 401859	20.527
29) t-Butyl Alcohol	(4)	2.103	59	401839 420066M	250.000 210.762
30) Acrylonitrile	(1)	2.103	53	119544M	21.043
31) trans-1,2-Dichloroethene	(1)	2.231	96	138379	21.329
32) Methyl Tertiary Butyl Ether		2.231	73	484728	21.602
33) n-Hexane	(1)	2.450	57	210328	21.653
34) 1,1-Dichloroethane	(1)	2.559	63	251632	21.365
36) di-Isopropyl Ether	(1)	2.632	45	501845	21.254
37) 2-Chloro-1,3-Butadiene	(1)	2.638	53	212925	21.300
39) Ethyl t-Butyl Ether	(1)	2.948	59	489391	21.525
41) 2-Butanone	(1)	3.046	43	322736	39.296
40) cis-1,2-Dichloroethene	(1)	3.064	96	154568	21.292
42) 2,2-Dichloropropane	(1)	3.076	77	187326	21.173
43) Propionitrile	(4)	3.119	54	515650	207.602
46) Methacrylonitrile	(1)	3.259	67	588210	104.626
47) Bromochloromethane	(1)	3.277	128	84312	21.411
48) Tetrahydrofuran	(4)	3.326	71	92522	39.788
50) Chloroform	(1)	3.356	83	244394	20.636

M = Compound was manually integrated.

page 1 of 4

^{* =} Compound is an internal standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15i04.d Instrument ID: HP09355.i Injection date and time: 15-OCT-2012 14:54 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:43

Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

Sample Name: VSTD020 Lab Sample ID: VSTD020

	I.S.				On-Column Amount
Compounds	Ref.	RT	QIon	Area =======	(ng)
52)\$Dibromofluoromethane	(1)	3.502	113	293608	49.571
51) \$Dibromofluoromethane (mz111)		3.502	111	303959	50.175
53) 1,1,1-Trichloroethane	(1)	3.526	97	214001	21.200
54) Cyclohexane (mz 84)	(1)	3.587	84	206756	21.223
		3.587	69	76590	21.017
55) Cyclohexane (mz 69)	(1)	3.587	56		21.323
56) Cyclohexane	(1)	3.367	96	252462 292947	42.621
45) 1,2-Dichloroethene (total)	(1)	2 670	75		
57) 1,1-Dichloropropene	(1)	3.678		187791	21.425
58) Carbon Tetrachloride	(1)	3.685	117	159976 361755	21.325
59) Isobutyl Alcohol	(4)	3.800	41		526.917
61) \$1, 2-Dichloroethane-d4 (mz65)		3.812	65	370509	50.844
60) \$1, 2-Dichloroethane-d4 (mz104		3.812	104	49732	49.753
62) \$1, 2-Dichloroethane-d4	(1)	3.812	102	80463	50.559
63) Benzene	(1)	3.873	78	590210	21.117
65) 1,2-Dichloroethane	(1)	3.885	62	193153	20.924
64) 1,2-Dichloroethane (mz 98)	(1)	3.885	98	19043	20.345
69) t-Amyl Methyl Ether	(1)	4.001	73	473652	21.196
71) *Fluorobenzene	(1)	4.147	96	1333428	50.000
72) n-Heptane	(1)	4.159	43	247251	21.951
73) n-Butanol	(4)	4.469	56	678410	1065.482
74) Trichloroethene	(1)	4.506	95	147217	21.179
75) Methylcyclohexane (mz98)	(1)	4.707	98	113206	20.442
76) Methylcyclohexane	(1)	4.707	83	259711	20.618
77) 1,2-Dichloropropane	(1)	4.719	63	156305	21.301
78) Dibromomethane	(1)	4.834	93	103620	21.310
79) 1,4-Dioxane	(4)	4.859	88	86450	488.161
80) Methyl Methacrylate	(1)	4.871	69	182789	21.063
83) Bromodichloromethane	(1)	5.011	83	176987	21.518
85) 2-Nitropropane	(1)	5.236	41	130676	38.390
86) 2-Chloroethyl Vinyl Ether	(1)	5.345	63	133418M	20.331
87) cis-1,3-Dichloropropene	(1)	5.479	75	228131	21.675
89) 4-Methyl-2-Pentanone	(1)	5.662	43	628263	40.450
92) \$Toluene-d8 (mz100)	(2)	5.759	100	826028	49.573
93) \$Toluene-d8	(2)	5.759	98	1274356	50.019
94) Toluene	(2)	5.832	92	380818	21.426
95) trans-1,3-Dichloropropene	(2)	6.081	75 60	222324	21.877
96) Ethyl Methacrylate	(2)	6.227	69	286152	21.277
97) 1,1,2-Trichloroethane	(2)	6.270	97	155367	21.634

M = Compound was manually integrated.

Digitally signed by Sara E. Johnson on 10/15/2012 at 17:45.

Target 3.5 esignature user ID: sej02002

page 2 of 4

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15i04.d Injection date and time: 15-OCT-2012 14:54

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:43

Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

Lab Sample ID: VSTD020 Sample Name: VSTD020

Çompounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
00\	(2)	6.422	166	165475	21.585
98) Tetrachloroethene 99) 1,3-Dichloropropane	(2)	6.447	76	259595	21.559
101) 2-Hexanone	(2)	6.574	43	511300	40.876
101) 2-nexamone 102) Dibromochloromethane	(2)	6.690	129	142986	21.630
102) Dibromochiolomechane	(2)	6.787	107	169496	21.746
106) *Chlorobenzene-d5	(2)	7.323	117	954756	50.000
107) Chlorobenzene	(2)	7.353	112	426085	21.532
108) 1,1,1,2-Tetrachloroethane	(2)	7.450	131	140460	21.782
109) Ethylbenzene	(2)	7.487	91	737490	21.362
110) m+p-Xylene	(2)	7.608	106	586122	43.043
113) o-Xylene	$(\overline{2})$	7.980	106	292678	21.281
114) Styrene	(2)	7.992	104	491940	21.422
115) Bromoform	(2)	8.132	173	114153	20.341
112) Xylene (Total)	(2)		106	878800	64.323
116) Isopropylbenzene	(2)	8.320	105	750572	21.750
118) Cyclohexanone	(4)	8.363	55	382187	487.431
119)\$4-Bromofluorobenzene	(2)	8.430	95	478917	49.862
120) \$4-Bromofluorobenzene (mz174)		8.436	174	405120	49.479
121) Bromobenzene	(3)	8.545	156	192401	21.366
122) 1,1,2,2-Tetrachloroethane	(3)	8.576	83	278337	21.758
123) 1,2,3-Trichloropropane	(3)	8.594	110	84419	21.221
124) trans-1,4-Dichloro-2-Butene		8.618	53	400124M	107.123
125) n-Propylbenzene	(3)	8.667	91	884905	22.445
126) 2-Chlorotoluene	(3)	8.716	126	180285	21.529
128) 4-Chlorotoluene	(3)	8.807	126	185855	21.465
127) 1,3,5-Trimethylbenzene	(3)	8.813	105	647267	22.044
130) tert-Butylbenzene	(3)	9.062	134	144400	21.899
131) Pentachloroethane	(3)	9.062	167	116103	21.374
132) 1,2,4 Trimethylbenzene	(3)	9.099 9.233	105 105	661901 809140	21.849 22.411
133) sec-Butylbenzene 134) 1,3-Dichlorobenzene	(3) (3)	9.294	146	364281	21.430
134) 1,3-Dichlorobenzene 135) p-Isopropyltoluene	(3)	9.348	119	712945	22.358
136) *1,4-Dichlorobenzene-d4	(3)	9.348	152	541980	50.000
138) 1,4-Dichlorobenzene	(3)	9.361	146	389955	21.493
139) 1,2,3-Trimethylbenzene	(3)	9.415	105	720206	22.115
141) Benzyl Chloride	(3)	9.470	91	520885	21.276
142) 1,3-Diethylbenzene	(3)	9.567	119	443318	22.051
144) 1,2-Dichlorobenzene	(3)	9.628	146	374175	21.773
•					

M = Compound was manually integrated.

Digitally signed by Sara E. Johnson on 10/15/2012 at 17:45. Target 3.5 esignature user ID: sej02002 page 3 of 4

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15i04.d

Instrument ID: HP09355.i

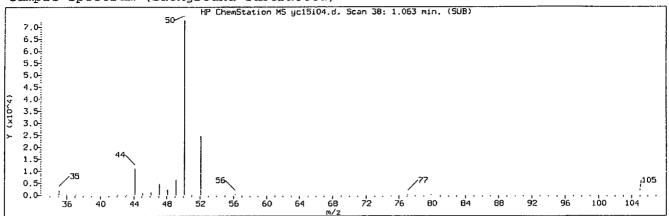
Injection date and time: 15-OCT-2012 14:54

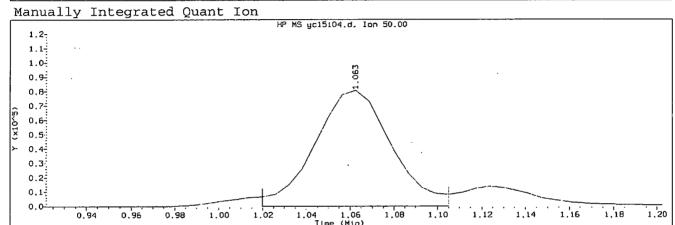
Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:43


Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002


Sample Name: VSTD020

Lab Sample ID: VSTD020

I.S.	mæ	OTon	Aron	On-Column Amount
Ker.	K.T.	QTOIL	Area	(ng)
=====	======	=====	========	
(3)	9.628	119	461000	22.320
(3)	9.646	92	349214	22.099
(3)	9.707	119	381014	22.042
(3)	10.176	75	68036	20.914
(3)	10.328	180	284220	21.795
(3)	10.735	180	270667	22.082
(3)	10.857	225	128536	22.611
(3)	10.894	128	995053	20.938
(3)	11.052	180	265498	22.080
(3)	11.618	142	573203	21.685
	Ref. ====== (3) (3) (3) (3) (3) (3) (3) (3) (3)	Ref. RT ====== =============================	Ref. RT QION ====== ==============================	Ref. RT QIon Area ====== =============================

page 4 of 4

Data File: /chem2/HP09355.i/12oct15a.b/yc15i04.d Injection date and time: 15-OCT-2012 14:54

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:43

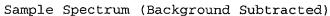
Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

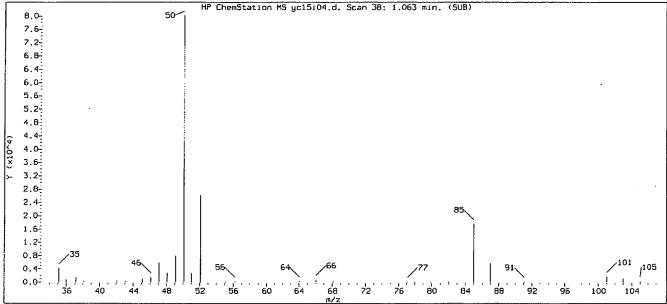
Sample Name: VSTD020 Lab Sample ID: VSTD020

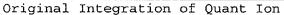
Compound Number : 3

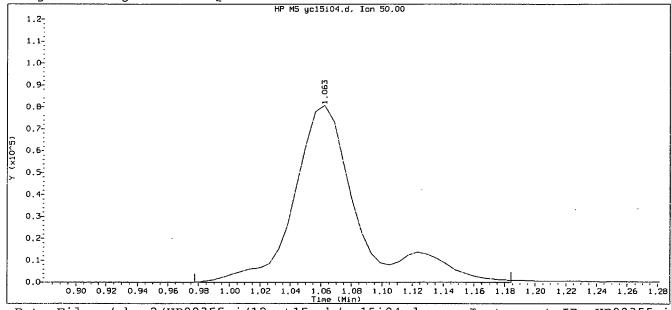
Compound Name : Chloromethane

Scan Number : 38
Retention Time (minutes): 1.063
Quant Ion : 50.00
Area (flag) : 196895M
On-Column Amount (ng) : 20.5719


Integration start scan : 30 Integration stop scan: 44 Y at integration start : 0 Y at integration end: 0


Reason for manual integration: improper integration


Digitally signed by Sara E. Johnson


Analyst responsible for change: on 10/15/2012 at 17:45.

Target 3.5 esignature user ID: sej02002

Data File: /chem2/HP09355.i/12oct15a.b/yc15i04.d Injection date and time: 15-OCT-2012 14:54

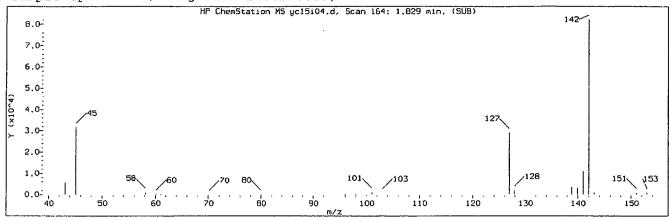
Instrument ID: HP09355.i Analyst ID: ADS01731

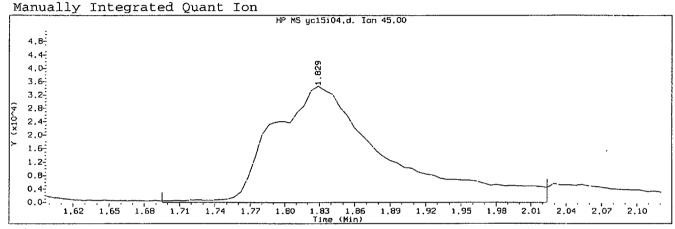
Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 15-OCT-2012 15:09

Date, time and analyst ID of latest file update: 15-Oct-2012 15:09 Automation

Sample Name: VSTD020 Lab Sample ID: VSTD020


Compound Number : 3


Compound Name : Chloromethane

Scan Number : 38

Retention Time (minutes): 1.063
Quant Ion : 50.00
Area : 235208
On-column Amount (ng) : 23.3701

Integration start scan : 23 Integration stop scan: 57
Y at integration start : 0 Y at integration end: 0

Data File: /chem2/HP09355.i/12oct15a.b/yc15i04.d Injection date and time: 15-OCT-2012 14:54

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:43

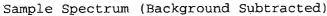
Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

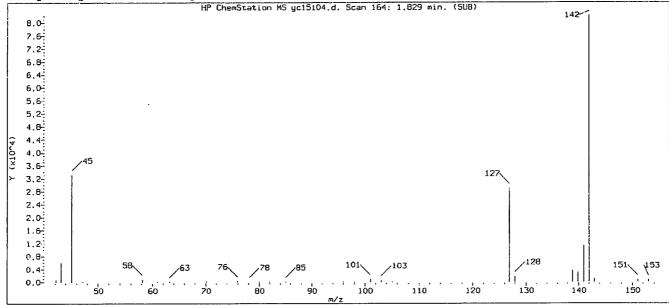
Sample Name: VSTD020 Lab Sample ID: VSTD020

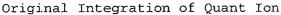
Compound Number : 21

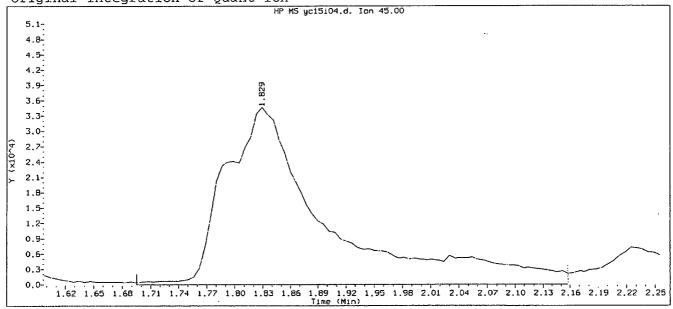
Compound Name : 2-Propanol

Scan Number : 164
Retention Time (minutes): 1.829
Quant Ion : 45.00
Area (flag) : 234326M
On-Column Amount (ng) : 207.9358


Integration start scan : 141 Integration stop scan: 195 Y at integration start : 0 Y at integration end: 0


Reason for manual integration: improper integration


Digitally signed by Sara E. Johnson


Analyst responsible for change: on 10/15/2012 at 17:45.

Target 3.5 esignature user ID: sej02002

Data File: /chem2/HP09355.i/12oct15a.b/yc15i04.d Injection date and time: 15-OCT-2012 14:54

Instrument ID: HP09355.i Analyst ID: ADS01731

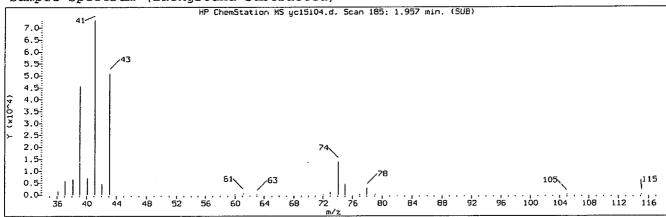
Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Su

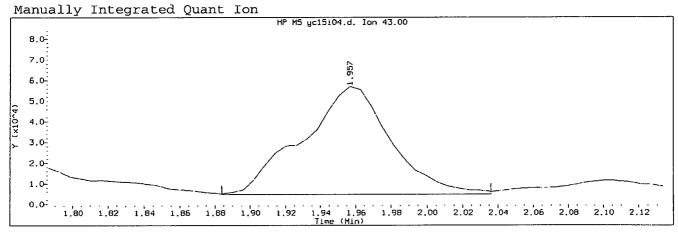
Sublist used: 8260WI

Calibration date and time: 15-OCT-2012 15:09

Date, time and analyst ID of latest file update: 15-Oct-2012 15:09 Automation

Sample Name: VSTD020 Lab Sample ID: VSTD020


Compound Number : 21


Compound Name : 2-Propanol

Scan Number : 164

Retention Time (minutes): 1.829 Quant Ion : 45.00 Area : 264963

On-column Amount (ng) : 225.9884
Integration start scan : 141 Integration stop scan: 217
Y at integration start : 0 Y at integration end: 0

Data File: /chem2/HP09355.i/12oct15a.b/yc15i04.d Injection date and time: 15-OCT-2012 14:54

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:43

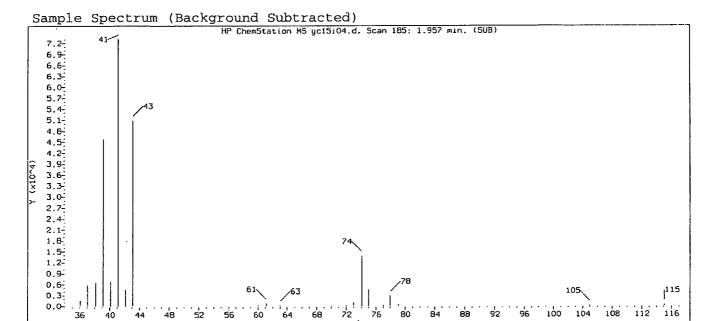
Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

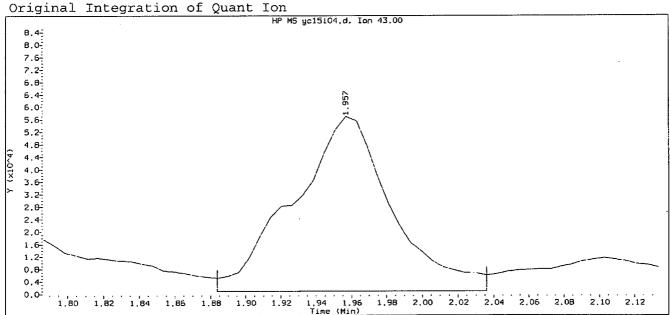
Sample Name: VSTD020 Lab Sample ID: VSTD020

Compound Number : 25

Compound Name : Methyl Acetate

Scan Number : 185
Retention Time (minutes): 1.957
Quant Ion : 43.00
Area (flag) : 181649M
On-Column Amount (ng) : 22.0117


Integration start scan : 172 Integration stop scan: 197
Y at integration start : 4784 Y at integration end: 4784


Reason for manual integration: improper integration

Digitally signed by Sara E. Johnson

Analyst responsible for change: on 10/15/2012 at 17:45.

Target 3.5 esignature user ID: sej02002

Data File: /chem2/HP09355.i/12oct15a.b/yc15i04.d Injection date and time: 15-OCT-2012 14:54

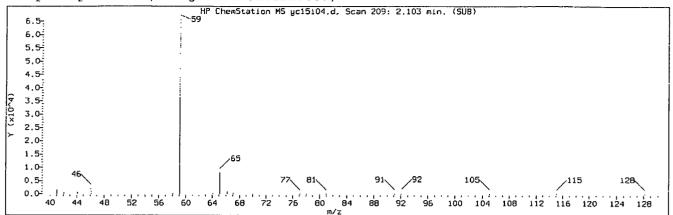
Instrument ID: HP09355.i Analyst ID: ADS01731

Sublist used: 8260WI Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

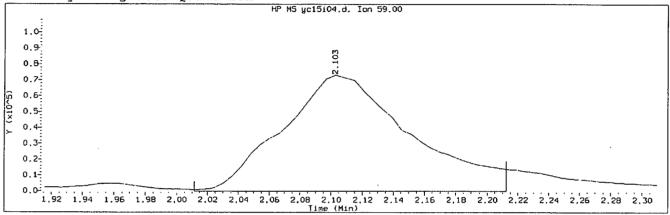
Calibration date and time: 15-OCT-2012 15:09

Date, time and analyst ID of latest file update: 15-Oct-2012 15:09 Automation

Lab Sample ID: VSTD020 Sample Name: VSTD020


Compound Number

Compound Name : Methyl Acetate


Scan Number : 185 Retention Time (minutes): 1.957 Quant Ion : 43.00 Area : 215747

On-column Amount (ng) : 24.3839 : 172 Integration stop scan: Integration start scan

197 : 1014 Y at integration end: Y at integration start

Manually Integrated Quant Ion

Data File: /chem2/HP09355.i/12oct15a.b/yc15i04.d Injection date and time: 15-OCT-2012 14:54

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:43

Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

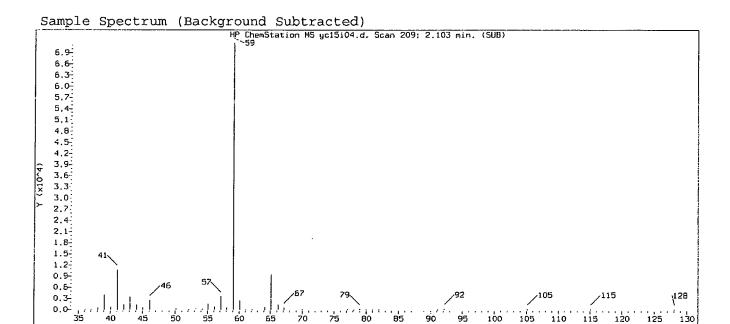
Sample Name: VSTD020

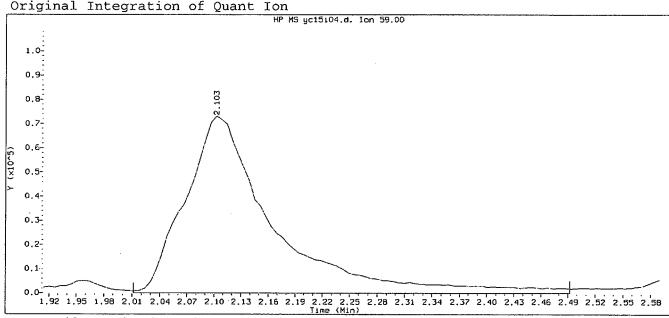
Lab Sample ID: VSTD020

Compound Number : 29

Compound Name : t-Butyl Alcohol

Scan Number : 209
Retention Time (minutes): 2.103
Quant Ion : 59.00
Area (flag) : 420066M
On-Column Amount (ng) : 210.7620


Integration start scan : 193 Integration stop scan: 226 Y at integration start : 0 Y at integration end: 0


Reason for manual integration: improper integration

Digitally signed by Sara E. Johnson

Analyst responsible for change: on 10/15/2012 at 17:45.

Target 3.5 esignature user ID: sej02002

Data File: /chem2/HP09355.i/12oct15a.b/yc15i04.d Injection date and time: 15-OCT-2012 14:54

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI

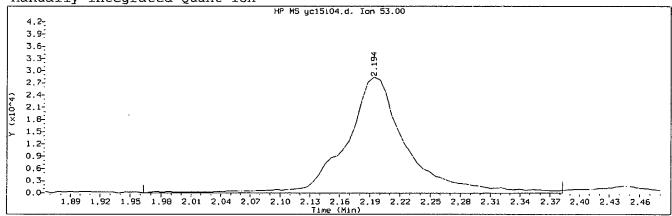
Calibration date and time: 15-OCT-2012 15:09

Date, time and analyst ID of latest file update: 15-Oct-2012 15:09 Automation

Sample Name: VSTD020 Lab Sample ID: VSTD020

Compound Number : 29

Compound Name : t-Butyl Alcohol


Scan Number : 209.
Retention Time (minutes): 2.103

Retention Time (minutes): 2.103
Quant Ion : 59.00
Area : 495785
On-column Amount (ng) : 219.1813

Integration start scan : 193 Integration stop scan: 272 Y at integration start : 0 Y at integration end: 0

Manually Integrated Quant Ion

Data File: /chem2/HP09355.i/12oct15a.b/yc15i04.d Injection date and time: 15-OCT-2012 14:54

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:43

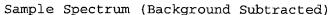
Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

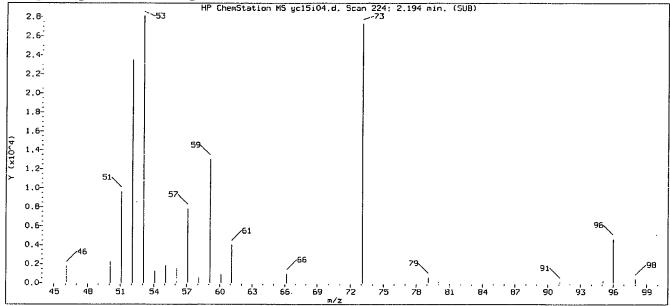
Sample Name: VSTD020 Lab Sample ID: VSTD020

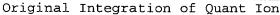
Compound Number : 30

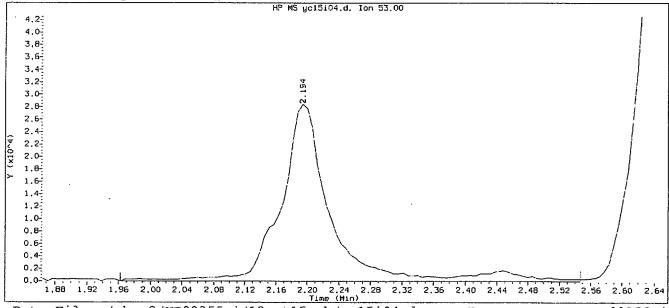
Compound Name : Acrylonitrile

Scan Number 224 Retention Time (minutes): 2.194 : 53.00 Quant Ion Area (flag) : 119544M On-Column Amount (ng) : 21.0425


Integration start scan 185 Integration stop scan: Y at integration start n Y at integration end:


Reason for manual integration: improper integration


Digitally signed by Sara E. Johnson


Analyst responsible for change: on 10/15/2012 at 17:45.

Target 3.5 esignature user ID: sej02002

Data File: /chem2/HP09355.i/12oct15a.b/yc15i04.d Injection date and time: 15-OCT-2012 14:54

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 15-OCT-2012 15:09

Date, time and analyst ID of latest file update: 15-Oct-2012 15:09 Automation

Sample Name: VSTD020 Lab Sample ID: VSTD020

Compound Number : 30

Compound Name : Acrylonitrile

Scan Number : 224

Retention Time (minutes): 2.194
Quant Ion : 53.00
Area : 127956
On-column Amount (ng) : 23.3134

Integration start scan : 185 Integration stop scan: 281 Y at integration start : 0 Y at integration end: 0

Data File: /chem2/HP09355.i/12oct15a.b/yc15i04.d Injection date and time: 15-OCT-2012 14:54

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:43

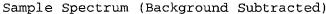
Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

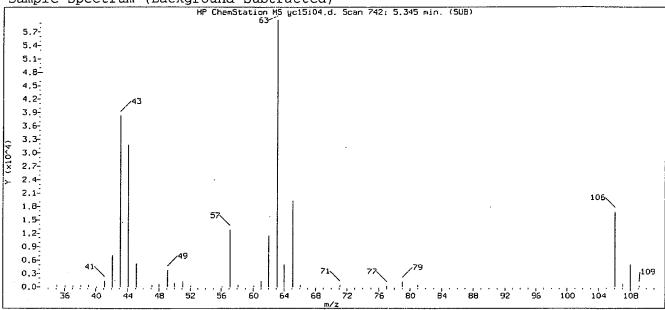
Sample Name: VSTD020 Lab Sample ID: VSTD020

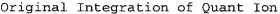
Compound Number : 86

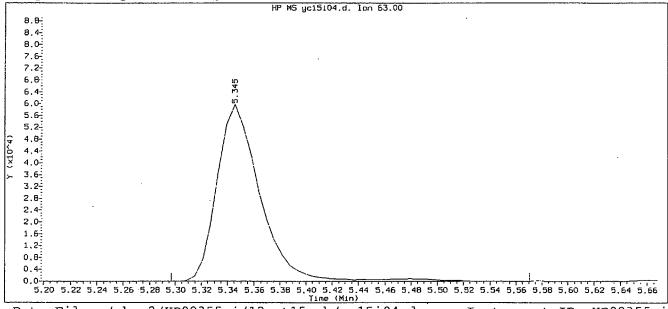
Compound Name : 2-Chloroethyl Vinyl Ether

Scan Number : 742
Retention Time (minutes): 5.345
Quant Ion : 63.00
Area (flag) : 133418M
On-Column Amount (ng) : 20.3313


Integration start scan : 733 Integration stop scan: 756 Y at integration start : 0 Y at integration end: 0


Reason for manual integration: improper integration


Digitally signed by Sara E. Johnson


Analyst responsible for change: on 10/15/2012 at 17:45.

Target 3.5 esignature user ID: sej02002

Data File: /chem2/HP09355.i/12oct15a.b/yc15i04.d Injection date and time: 15-OCT-2012 14:54

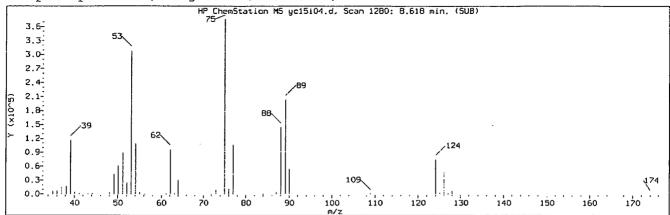
Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI

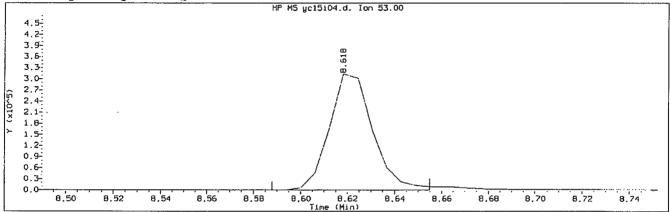
Calibration date and time: 15-OCT-2012 15:09

Date, time and analyst ID of latest file update: 15-Oct-2012 15:09 Automation

Sample Name: VSTD020 Lab Sample ID: VSTD020


Compound Number : 86

Compound Name : 2-Chloroethyl Vinyl Ether


Scan Number : 742

Retention Time (minutes): 5.345 Quant Ion : 63.00 Area : 136383 On-column Amount (ng) : 21.2362

Integration start scan : 733 Integration stop scan: 778
Y at integration start : 0 Y at integration end:

Manually Integrated Quant Ion

Data File: /chem2/HP09355.i/12oct15a.b/yc15i04.d Injection date and time: 15-OCT-2012 14:54

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:43

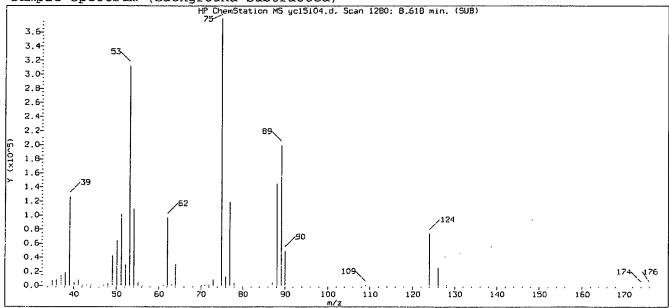
Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

Sample Name: VSTD020 Lab Sample ID: VSTD020

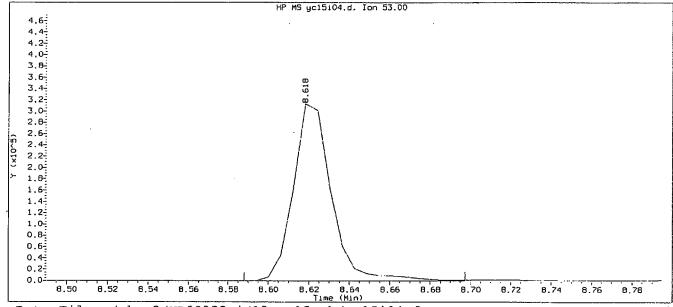
Compound Number : 124

Compound Name : trans-1,4-Dichloro-2-Butene

Scan Number : 1280
Retention Time (minutes): 8.618
Quant Ion : 53.00
Area (flag) : 400124M
On-Column Amount (ng) : 107.1226


Integration start scan : 1274 Integration stop scan: 1285 Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration


Digitally signed by Sara E. Johnson

Analyst responsible for change: on 10/15/2012 at 17:45.

Target 3.5 esignature user ID: sej02002

Original Integration of Quant Ion

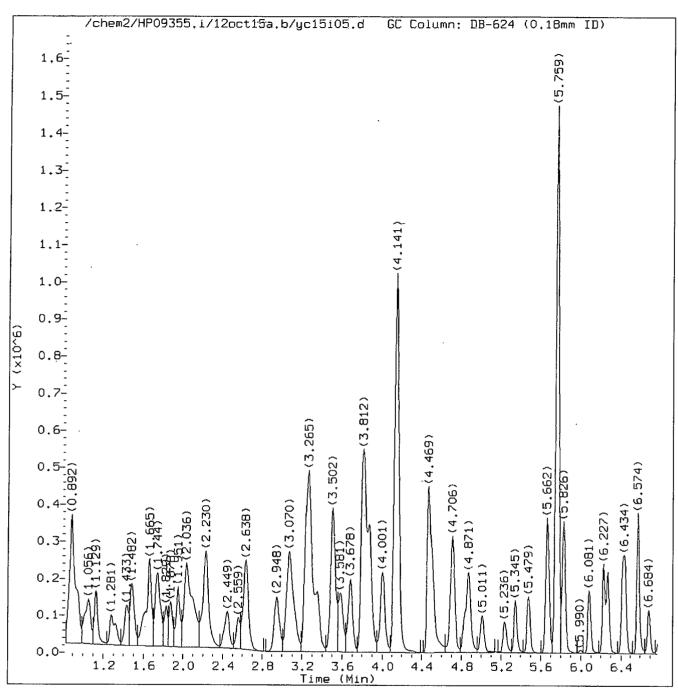
Data File: /chem2/HP09355.i/12oct15a.b/yc15i04.d Injection date and time: 15-OCT-2012 14:54

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 15-OCT-2012 15:09

Date, time and analyst ID of latest file update: 15-Oct-2012 15:09 Automation


Sample Name: VSTD020 Lab Sample ID: VSTD020

Compound Number : 124

Compound Name : trans-1, 4-Dichloro-2-Butene

Scan Number : 1280
Retention Time (minutes): 8.618
Quant Ion : 53.00
Area : 410660

On-column Amount (ng) : 110.0256 Integration start scan : 1274 Integration stop scan: 1292 Y at integration start : 0 Y at integration end: 0

Total Ion Chromatogram (TIC)

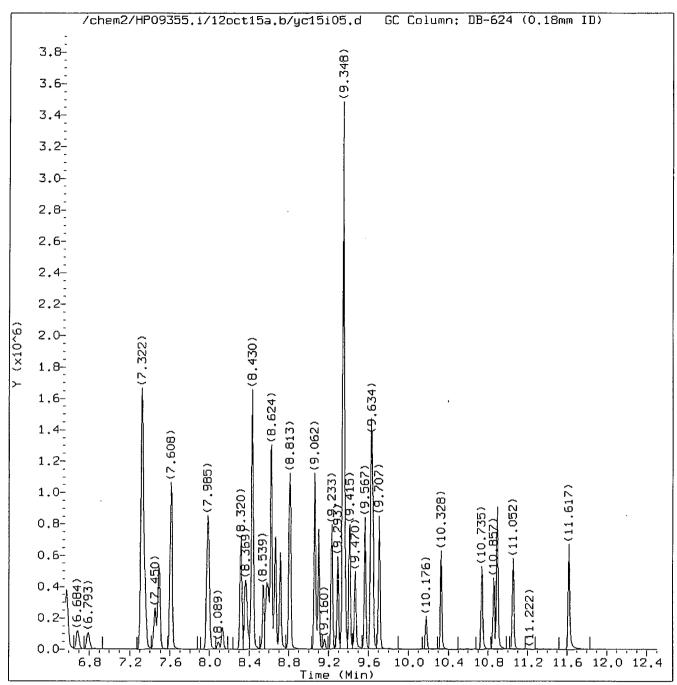
Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15i05.d Injection date and time: 15-OCT-2012 15:15

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE


Calibration date and time: 15-OCT-2012 17:43

Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

Sample Name: VSTD010 Lab Sample ID: VSTD010

Digitally signed by Sara E. Johnson on 10/15/2012 at 17:45. Target 3.5 esignature user ID: sej02002

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15i05.d Instrument ID: HP09355.i Injection date and time: 15-OCT-2012 15:15 Analyst ID: ADS01731

Sublist used: 8260WI-EE

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Calibration date and time: 15-OCT-2012 17:43

Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

Sample Name: VSTD010 Lab Sample ID: VSTD010

Digitally signed by Sara E. Johnson on 10/15/2012 at 17:45. Target 3.5 esignature user ID: sej02002

page 2 of 2

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15i05.d Injection date and time: 15-OCT-2012 15:15

Instrument ID: HP09355.i

Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:43

Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

Sample Name: VSTD010 Lab Sample ID: VSTD010

		I.S.				On-Column Amount
	Compounds	Ref.	RT	QIon	Area	(ng)
2)	Dichlorodifluoromethane Chloromethane	(1) (1)	1.020	85 50	103529 110543M	10.985 11.061
	1,3-Butadiene	(1)	1.123	39	37617	8.944
	Vinyl Chloride	(1)	1.129	62	110898	11.328
	Bromomethane	(1)	1.281	94	74828	11.694
	Chloroethane	(1)	1.324	64	61076	11.512
	Dichlorofluoromethane	(1)	1.433	67	121342	10.416
11)		(1)	1.482	43	103221M	10.761
10)	Trichlorofluoromethane	(1)	1.488	101	119539М	11.353
14)	Freon 123a	(1)	1.604	67	78947	10.603
15)	Acrolein	(4)	1.665	5.6	312584	106.412
16)	1,1-Dichloroethene	(1)	1.732	96	59029	10.431
17)	Acetone	(1)	1.750	58	34961	22.115
	Freon 113	(1)	1.756	101	60121	10.343
	Methyl Iodide	(1)	1.829	142	111961	10.396
21)	2-Propanol	(4)	1.829	45	142231	115.166
	Carbon Disulfide	(1)	1.878	76	176244	10.107
	Allyl Chloride	(1)	1.951	41	105544	10.110
	Methyl Acetate	(1)	1.957	43	90864M	10.545
	Methylene Chloride	(1)	2.030	84	72382	10.281
	*t-Butyl Alcohol-d10	(4)	2.048	65	440407	250.000
	t-Butyl Alcohol	(4)	2.097	59	266972M	122.225
	Acrylonitrile	(1)	2.194	53	63180M	10.650
31)	trans-1,2-Dichloroethene	(1)	2.230	96	69662	10.283
32)	Methyl Tertiary Butyl Ether		2.230	73	252720	10.786
	n-Hexane	(1)	2.443	57	104765	10.329
	1,1-Dichloroethane	(1)	2.559	63	127586	10.374
36)	di-Isopropyl Ether	(1)	2.632	45	264955	10.746
	2-Chloro-1,3-Butadiene	(1)	2.638	53	107664	10.314
39)	Ethyl t-Butyl Ether	(1)	2.948	59	257482	10.845
	2-Butanone	(1)	3.046	43	183671	21.417
40)	cis-1,2-Dichloroethene	(1)	3.064	96	78231	10.320
42)	2,2-Dichloropropane	(1)	3.070	77	95027	10.286
	Propionitrile	(4)	3.125	54	305049	112.064
46) 47)	Methacrylonitrile Bromochloromethane	(1)	3.259	67	328789	56.007
48)		(1)	3.277	128	40854	9.936
50)	Tetrahydrofuran Chloroform	(4)	3.319	71	51160	20.075
20)	CHIOLOLOLIN	(1)	3.356	83	127266	10.291

M = Compound was manually integrated.

page 1 of 4

^{* =} Compound is an internal standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15i05.d Instrument ID: HP09355.i Injection date and time: 15-OCT-2012 15:15 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:43

Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

Sample Name: VSTD010 Lab Sample ID: VSTD010

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
52) \$Dibromofluoromethane	(1)	3.502	113	312171	50.474
51) \$Dibromofluoromethane(mz111)	(1)	3.502	111	315869	49.934
53) 1,1,1-Trichloroethane	(1)	3.526	97	108897	10.331
56) Cyclohexane	$(\tilde{1})$	3.581	56	126867	10.262
55) Cyclohexane (mz 69)	(1)	3.587	69	39281	10.323
54) Cyclohexane (mz 84)	(1)	3.587	84	103726	10.196
45) 1,2-Dichloroethene (total)	(1)		96	147893	20.603
57) 1,1-Dichloropropene	(1)	3.678	75	94724	10.350
58) Carbon Tetrachloride	(1)	3.684	117	80157	10.233
59) Isobutyl Alcohol	(4)	3.806	41	227067	301.788
61) \$1, 2-Dichloroethane-d4 (mz65)	(1)	3.812	65	381229	50.101
60) \$1, 2-Dichloroethane-d4 (mz104) (1)	3.812	104	51640	49.475
62)\$1,2-Dichloroethane-d4	(1)	3.812	102	82371	49.567
63) Benzene	(1)	3.867	78	303903	10.413
65) 1,2-Dichloroethane	(1)	3.879	62	102135	10.596
64) 1,2-Dichloroethane (mz 98)	(1)	3.879	98	9935	10.366
69) t-Amyl Methyl Ether	(1)	4.001	73	255835	10.964
71) *Fluorobenzene	(1)	4.141	96	1392369	50.000
72) n-Heptane	(1)	4.159	43	122167	10.387
73) n-Butanol	(4)	4.463	56	425513	609.798
74) Trichloroethene	(1)	4.506	95	75599	10.415
75) Methylcyclohexane (mz98)	(1)	4.700	98	53284	9.215
76) Methylcyclohexane	(1)	4.700	83	121566	9.242
77) 1,2-Dichloropropane	(1)	4.719	63	81168	10.593
78) Dibromomethane	(1)	4.834	93	54945	10.822
79) 1,4-Dioxane	(4)	4.859	88	59162	304.832
80) Methyl Methacrylate	(1)	4.871	69	102633	11.326
83) Bromodichloromethane	(1)	5.011	83	90846	10.577
85) 2-Nitropropane	(1)	5.236	41	69720	19.615
86) 2-Chloroethyl Vinyl Ether	(1)	5.345	63	81221	11.853
87) cis-1,3-Dichloropropene	(1)	5.479	75	118253	10.760
89) 4-Methyl-2-Pentanone	(1)	5.662	43	364289M	22.462
92) \$Toluene-d8 (mz100)	(2)	5.759	100	855815	49.253
93)\$Toluene-d8	(2)	5.759	98	1330941	50.096
94) Toluene 95) trans-1,3-Dichloropropene	(2)	5.826	92 75	194229	10.480
95) trans-1,3-Dichloropropene 96) Ethyl Methacrylate	(2)	6.081 6.227		115241	10.874
97) 1,1,2-Trichloroethane	(2) (2)	6.227	69 97	158794 85797	11.323
Jij I, I, 2-IIIIOI Oethane	(4)	0.2/0	<i>31</i>	03131	11.456

M = Compound was manually integrated.

Digitally signed by Sara E. Johnson on 10/15/2012 at 17:45.
Target 3.5 esignature user ID: sej02002

page 2 of 4

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15i05.d Instrument ID: HP09355.i Injection date and time: 15-0CT-2012 15:15 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:43

Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

Sample Name: VSTD010 Lab Sample ID: VSTD010

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
98) Tetrachloroethene	(2)	6.416	166	83584	10.456
99) 1,3-Dichloropropane	(2)	6.446	. 76	140380	11.180
101) 2-Hexanone	(2)	6.574	43	304801	23.367
102) Dibromochloromethane	(2)	6.690	129	74345	10.785
104) 1,2-Dibromoethane	(2)	6.793	107	91802	11.295
106)*Chlorobenzene-d5	(2)	7.322	117	995614	50.000
107) Chlorobenzene	(2)	7.347	112	223665	10.839
108) 1,1,1,2-Tetrachloroethane	(2)	7.450	131	72599	10.796
109) Ethylbenzene	(2)	7.487	91	384481	10.680
110) m+p-Xylene	(2)	7.608	106	303122	21.347
113) o-Xylene	(2)	7.979	106	154748	10.790
114) Styrene	(2)	7.992	104	255209	10.657
115) Bromoform	(2)	8.131	173	58840	10.054
112) Xylene (Total)	(2)		106	457870	32.137
116) Isopropylbenzene	(2)	8.320	105	387572	10.770
118) Cyclohexanone	(4)	8.363	55	222692	259.156
119)\$4-Bromofluorobenzene	(2)	8.430	95	497328	49.654
120) \$4-Bromofluorobenzene (mz174)	(2)	8.436	174	427071	50.019
121) Bromobenzene	(3)	8.545	156	102292	10.848
122) 1,1,2,2-Tetrachloroethane	(3)	8.576	83	158711	11.849
123) 1,2,3-Trichloropropane	(3)	8.594	110	47848	11.487
124) trans-1,4-Dichloro-2-Butene		8.618	53	224715M	57.455
125) n-Propylbenzene	(3)	8.667	91	453851	10.994
126) 2-Chlorotoluene	(3)	8.715	126	92900	10.595
128) 4-Chlorotoluene	(3)	8.807	126	97999	10.809
127) 1,3,5-Trimethylbenzene	(3)	8.813	105	334245	10.871
130) tert-Butylbenzene	(3)	9.062	134	73248	10.608
131) Pentachloroethane	(3)	9.062	167	54346	9.555
132) 1,2,4-Trimethylbenzene	(3)	9.105	105	345797	10.901
133) sec-Butylbenzene	(3)	9.233	105	412081	10.900
134) 1,3-Dichlorobenzene	(3)	9.293	146	191735	. 10.772
135) p-Isopropyltoluene	(3)	9.348	119	363479	10.886
136) *1, 4-Dichlorobenzene-d4	(3)	9.348	152	567514	50.000
138) 1,4-Dichlorobenzene	(3)	9.366	146	209061	11.004
139) 1,2,3-Trimethylbenzene	(3)	9.415	105	351339	10.303
141) Benzyl Chloride	(3)	9.470	91	272299	10.622
142) 1,3-Diethylbenzene	(3)	9.567	119	210244	9.987
144) 1,2-Dichlorobenzene	(3)	9.628	146	200681	11.152

M = Compound was manually integrated.

Digitally signed by Sara E. Johnson on 10/15/2012 at 17:45.
Target 3.5 esignature user ID: sej02002

page 3 of 4

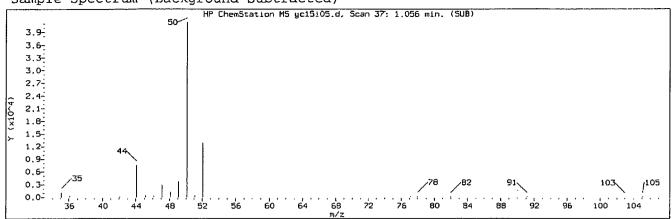
^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

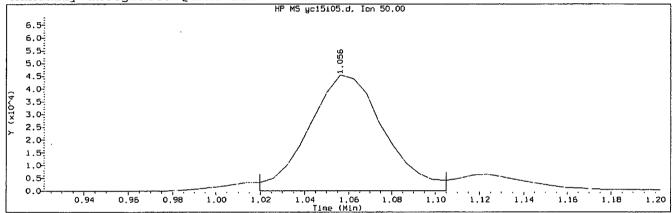
Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15i05.d Instrument ID: HP09355.i Injection date and time: 15-OCT-2012 15:15 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI-EE


Calibration date and time: 15-OCT-2012 17:43

Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002


Sample Name: VSTD010 Lab Sample ID: VSTD010

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
		=====	======		=======================================
143) 1,4-Diethylbenzene	(3)	9.628	119	216776	10.023
145) n-Butylbenzene	(3)	9.646	92	177306	10.715
146) 1,2-Diethylbenzene	(3)	9.707	119	182281	10.071
148) 1,2-Dibromo-3-Chloropropane	(3)	10.176	75	38467	11.293
149) 1,3,5-Trichlorobenzene	(3)	10.328	180	149495	10.948
150) 1,2,4-Trichlorobenzene	(3)	10.735	180	142467	11.100
151) Hexachlorobutadiene	(3)	10.857	225	64183	10.783
152) Naphthalene	(3)	10.893	128	556794	11.189
153) 1,2,3-Trichlorobenzene	(3)	11.052	180	141813	11.263
154) 2-Methylnaphthalene	(3)	11.617	142	283911	10.257

page 4 of 4

Manually Integrated Quant Ion

Data File: /chem2/HP09355.i/12oct15a.b/yc15i05.d Injection date and time: 15-OCT-2012 15:15

Instrument ID: HP09355.i Analyst ID: ADS01731

Sublist used: 8260WI-EE

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Calibration date and time: 15-OCT-2012 17:43

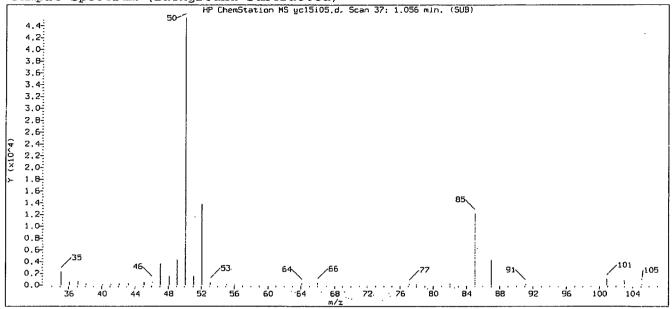
Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

Sample Name: VSTD010 Lab Sample ID: VSTD010

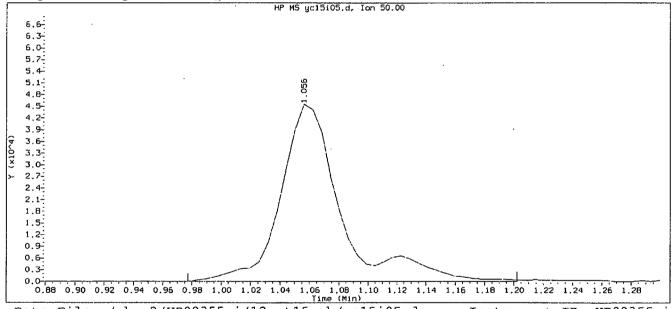
Compound Number : 3

Compound Name : Chloromethane

Scan Number : 37
Retention Time (minutes): 1.056
Quant Ion : 50.00
Area (flag) : 110543M
On-Column Amount (ng) : 11.0608


Integration start scan : 30 Integration stop scan: 44 Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration


Digitally signed by Sara E. Johnson

Analyst responsible for change: on 10/15/2012 at 17:45.

Target 3.5 esignature user ID: sej02002

Original Integration of Quant Ion

Data File: /chem2/HP09355.i/12oct15a.b/yc15i05.d Injection date and time: 15-OCT-2012 15:15

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 15-OCT-2012 15:30

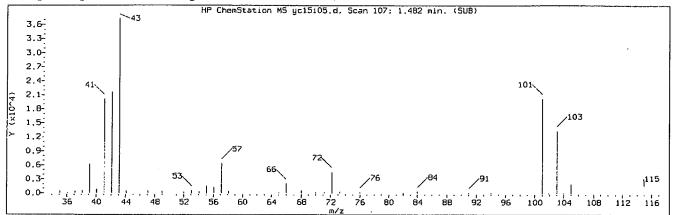
Date, time and analyst ID of latest file update: 15-Oct-2012 15:30 Automation

Sample Name: VSTD010 Lab Sample ID: VSTD010

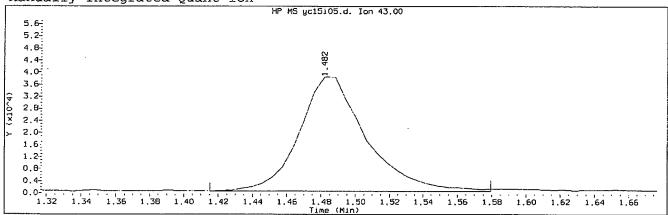
Compound Number : 3

Compound Name : Chloromethane

Scan Number : 37
Retention Time (minutes): 1.056


Retention Time (minutes): 1.056
Quant Ion : 50.00
Area : 129730

On-column Amount (ng): 11.7914


Integration start scan: 23 Integration stop scan: 60

Yeat integration start: 0 Yeat integration end: 0

Y at integration start : 0 Y at integration end: 0

Manually Integrated Quant Ion

Data File: /chem2/HP09355.i/12oct15a.b/yc15i05.d Injection date and time: 15-OCT-2012 15:15

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:43

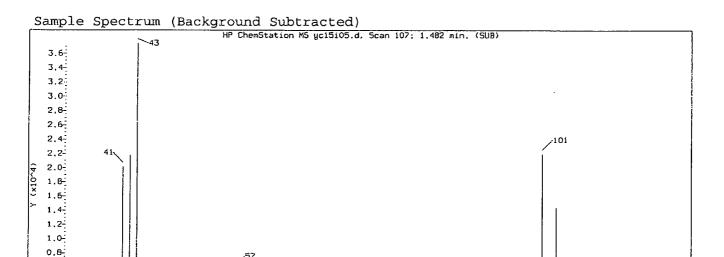
Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

Sample Name: VSTD010 Lab Sample ID: VSTD010

Compound Number : 11

Compound Name : n-Pentane

Scan Number : 107
Retention Time (minutes): 1.482
Quant Ion : 43.00
Area (flag) : 103221M
On-Column Amount (ng) : 10.7607


Integration start scan : 95 Integration stop scan: 122 Y at integration start : 654 Y at integration end: 654

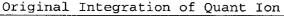
Reason for manual integration: improper integration

Digitally signed by Sara E. Johnson

Analyst responsible for change: on 10/15/2012 at 17:45.

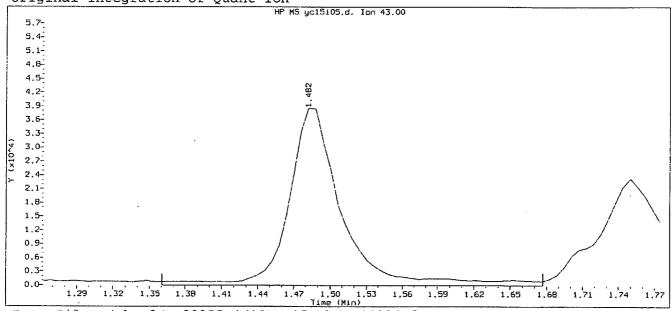
Target 3.5 esignature user ID: sej02002

80


84

88

92


96

100 104

0,6 0.4 0.2

0.0-

Data File: /chem2/HP09355.i/12oct15a.b/yc15i05.d Injection date and time: 15-OCT-2012 15:15

Instrument ID: HP09355.i Analyst ID: ADS01731

/115/119

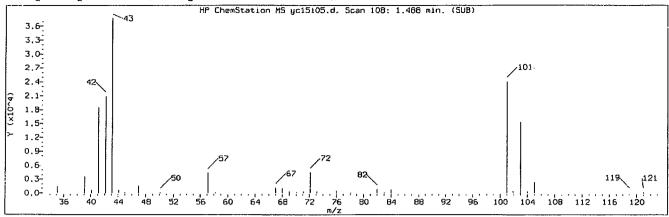
108 112

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI

60

Calibration date and time: 15-OCT-2012 15:30

Date, time and analyst ID of latest file update: 15-Oct-2012 15:30 Automation


Sample Name: VSTD010 Lab Sample ID: VSTD010

Compound Number : 11

Compound Name : n-Pentane

Scan Number : 107 Retention Time (minutes): 1.482 Quant Ion 43.00 Area 118749 On-column Amount (ng) 12.1106

86 Integration start scan Integration stop scan: 138 0 Y at integration start Y at integration end:

Manually Integrated Quant Ion HP MS yc15i05.d. Ion 101.00 3.6 3.3-3.0-2.7-2.4 2.1-1.8 1.5 1.2-0.9 0.5 0.3 1.26 1.32 1,35 1.29 1.38 1.59 1.62 1.68

Data File: /chem2/HP09355.i/12oct15a.b/yc15i05.d Injection date and time: 15-OCT-2012 15:15

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:43

Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

Sample Name: VSTD010

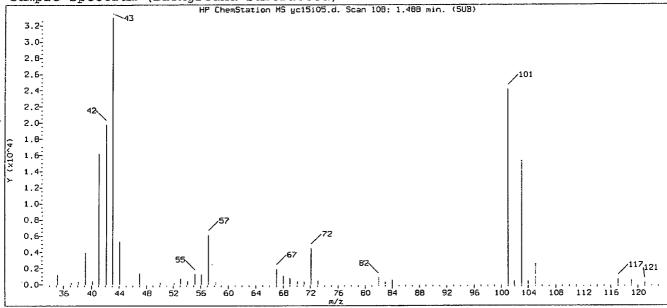
Lab Sample ID: VSTD010

Compound Number : 10

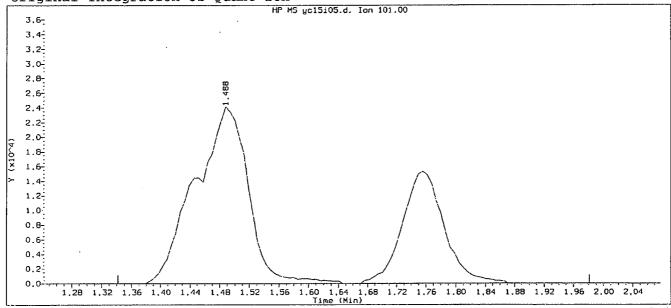
Compound Name : Trichlorofluoromethane

Scan Number : 108
Retention Time (minutes): 1.488
Quant Ion : 101.00
Area (flag) : 119539M
On-Column Amount (ng) : 11.3526

Integration start scan : 83 Integration stop scan: 136 Y at integration start : 0 Y at integration end: 0


Reason for manual integration: improper integration

Digitally signed by Sara E. Johnson


Analyst responsible for change: on 10/15/2012 at 17:45.

Target 3.5 esignature user ID: sej02002

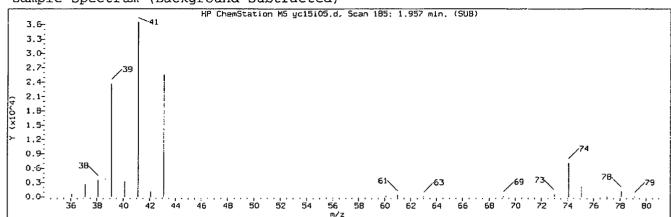
Data File: /chem2/HP09355.i/12oct15a.b/yc15i05.d Injection date and time: 15-OCT-2012 15:15

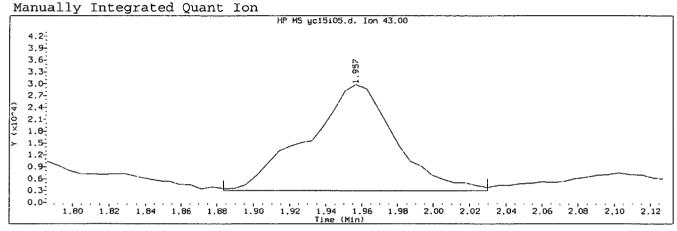
Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 15-OCT-2012 15:30

Date, time and analyst ID of latest file update: 15-Oct-2012 15:30 Automation


Sample Name: VSTD010 Lab Sample ID: VSTD010


Compound Number : 10

Compound Name : Trichlorofluoromethane

Scan Number : 108
Retention Time (minutes): 1.488
Quant Ion : 101.00
Area : 179656
On-column Amount (ng) : 15.3915

Integration start scan : 83 Integration stop scan: 188 Y at integration start : 0 Y at integration end: 0

Data File: /chem2/HP09355.i/12oct15a.b/yc15i05.d Injection date and time: 15-OCT-2012 15:15

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:43

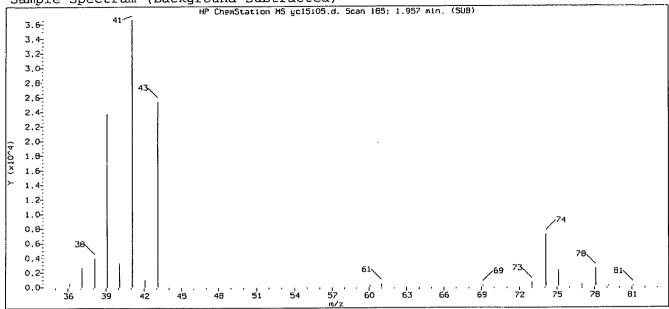
Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

Sample Name: VSTD010 Lab Sample ID: VSTD010

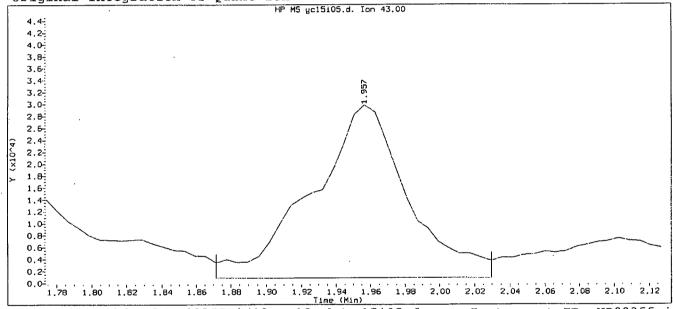
Compound Number : 25

Compound Name : Methyl Acetate

Scan Number : 185
Retention Time (minutes): 1.957
Quant Ion : 43.00
Area (flag) : 90864M
On-Column Amount (ng) : 10.5445


Integration start scan : 172 Integration stop scan: 196 Y at integration start : 2996 Y at integration end: 2996

Reason for manual integration: improper integration


Digitally signed by Sara E. Johnson

Analyst responsible for change: on 10/15/2012 at 17:45.

Target 3.5 esignature user ID: sej02002

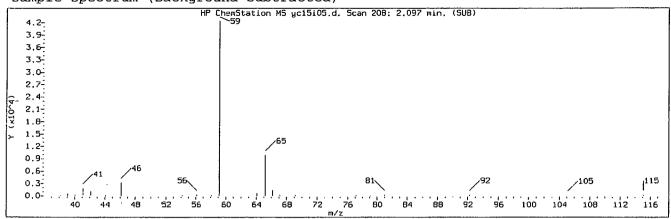
Data File: /chem2/HP09355.i/12oct15a.b/yc15i05.d Injection date and time: 15-OCT-2012 15:15

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 15-OCT-2012 15:30

Date, time and analyst ID of latest file update: 15-Oct-2012 15:30 Automation


Sample Name: VSTD010 Lab Sample ID: VSTD010

Compound Number : 25

Compound Name : Methyl Acetate

Scan Number : 185
Retention Time (minutes): 1.957
Quant Ion : 43.00
Area : 111203

On-column Amount (ng) : 11.5653 Integration start scan : 170 Integration stop scan: 196 Y at integration start : 883 Y at integration end: 883

Manually Integrated Quant Ion HP MS yc15i05.d, Ion 59.00 6.5 6.0 5.5 5,0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 1,92 1,94 1,96 1.98 2.00 2.02 2.04 2.06 2.08 2.10 2.12 2.14 2.16 2.18 2.20 2.22 2.24 2.26 2.28 2.30 Time (Min)

Data File: /chem2/HP09355.i/12oct15a.b/yc15i05.d Injection date and time: 15-OCT-2012 15:15

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:43

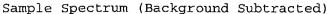
Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

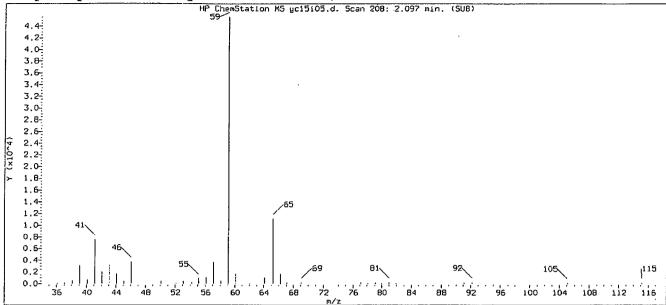
Sample Name: VSTD010 Lab Sample ID: VSTD010

Compound Number : 29

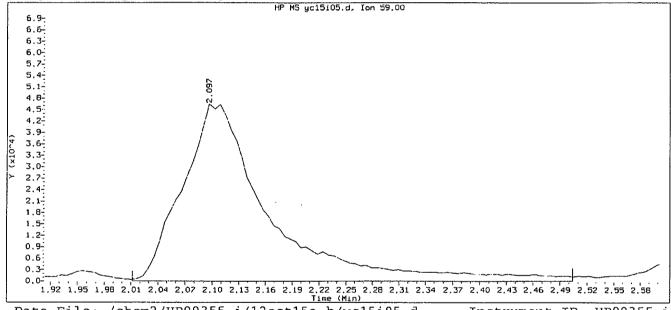
Compound Name : t-Butyl Alcohol

Scan Number : 208
Retention Time (minutes): 2.097
Quant Ion : 59.00
Area (flag) : 266972M
On-Column Amount (ng) : 122.2250


Integration start scan : 193 Integration stop scan: 227 Y at integration start : 0 Y at integration end: 0


Reason for manual integration: improper integration

Digitally signed by Sara E. Johnson


Analyst responsible for change: on 10/15/2012 at 17:45.

Target 3.5 esignature user ID: sej02002

Original Integration of Ouant Ion

Data File: /chem2/HP09355.i/12oct15a.b/yc15i05.d Injection date and time: 15-OCT-2012 15:15

Instrument ID: HP09355.i Analyst ID: ADS01731

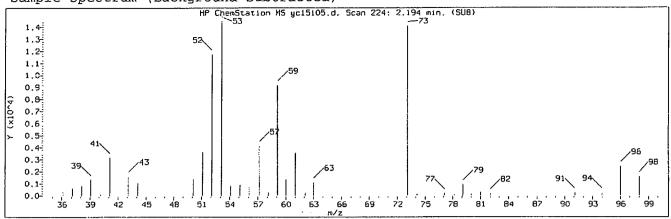
Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI

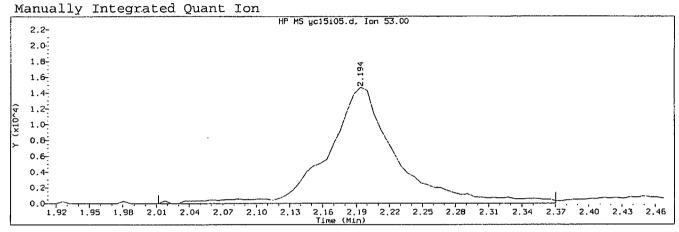
Calibration date and time: 15-OCT-2012 15:30

Date, time and analyst ID of latest file update: 15-Oct-2012 15:30 Automation

Sample Name: VSTD010 Lab Sample ID: VSTD010

Compound Number


Compound Name : t-Butyl Alcohol


Scan Number : 208

Retention Time (minutes): 2.097 Quant Ion : 59.00 Area : 314300

On-column Amount (ng)

: 120.3399 Integration stop scan: Integration start scan : 193 Y at integration start 0 Y at integration end:

Data File: /chem2/HP09355.i/12oct15a.b/yc15i05.d Injection date and time: 15-OCT-2012 15:15

Instrument ID: HP09355.i Analyst ID: ADS01731

Sublist used: 8260WI-EE

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Calibration date and time: 15-OCT-2012 17:43

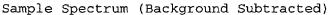
Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

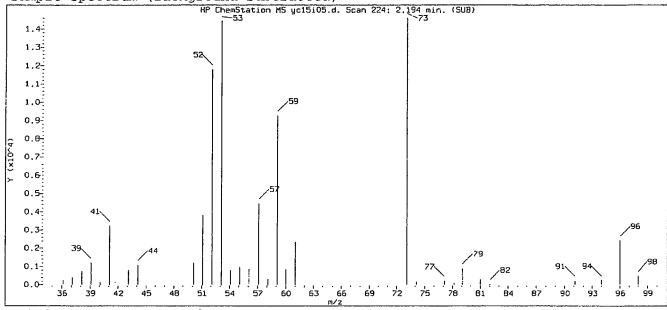
Sample Name: VSTD010 Lab Sample ID: VSTD010

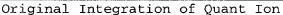
Compound Number : 30

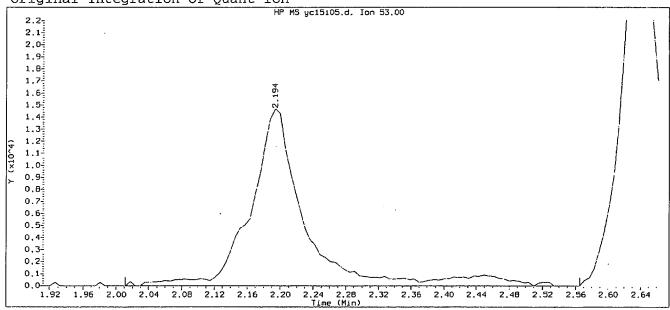
Compound Name : Acrylonitrile

Scan Number : 224
Retention Time (minutes): 2.194
Quant Ion : 53.00
Area (flag) : 63180M
On-Column Amount (ng) : 10.6504


Integration start scan : 193 Integration stop scan: 252 Y at integration start : 0 Y at integration end: 0


Reason for manual integration: improper integration


Digitally signed by Sara E. Johnson


Analyst responsible for change: on 10/15/2012 at 17:45.

Target 3.5 esignature user ID: sej02002

Data File: /chem2/HP09355.i/12oct15a.b/yc15i05.d Injection date and time: 15-OCT-2012 15:15

Instrument ID: HP09355.i Analyst ID: ADS01731

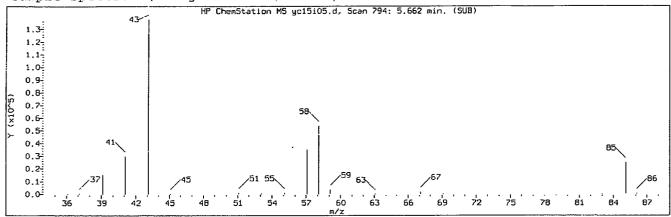
Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI

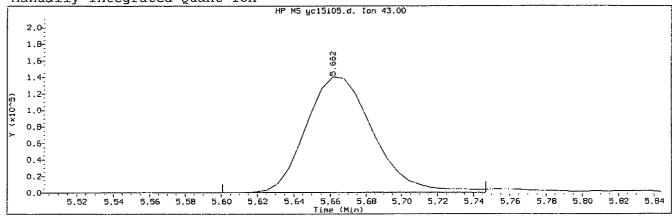
Calibration date and time: 15-OCT-2012 15:30

Date, time and analyst ID of latest file update: 15-Oct-2012 15:30 Automation


Sample Name: VSTD010 Lab Sample ID: VSTD010


Compound Number : 30

Compound Name : Acrylonitrile


Scan Number : 224

Retention Time (minutes): 2.194
Quant Ion : 53.00
Area : 68166

Manually Integrated Quant Ion

Data File: /chem2/HP09355.i/12oct15a.b/yc15i05.d Injection date and time: 15-OCT-2012 15:15

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:43

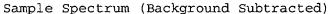
Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

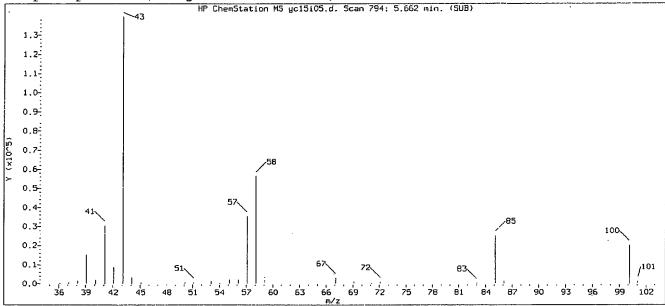
Sample Name: VSTD010 Lab Sample ID: VSTD010

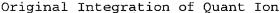
Compound Number : 89

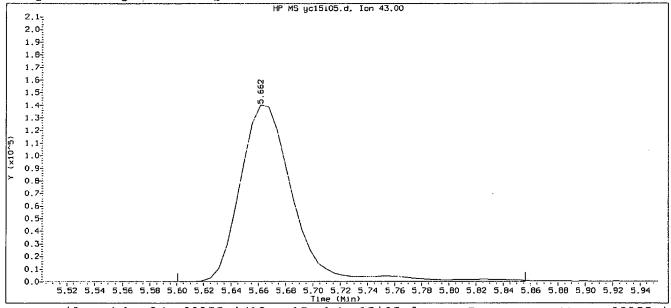
Compound Name : 4-Methyl-2-Pentanone

Scan Number : 794
Retention Time (minutes): 5.662
Quant Ion : 43.00
Area (flag) : 364289M
On-Column Amount (ng) : 22.4615


Integration start scan : 783 Integration stop scan: 807 Y at integration start : 268 Y at integration end: 268


Reason for manual integration: improper integration


Digitally signed by Sara E. Johnson


Analyst responsible for change: on 10/15/2012 at 17:45.

Target 3.5 esignature user ID: sej02002

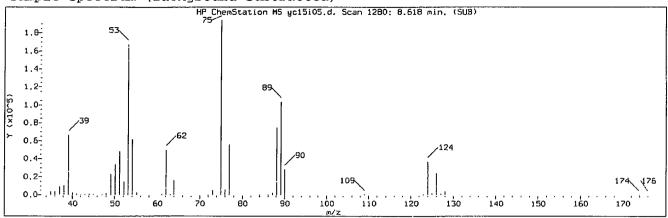
Data File: /chem2/HP09355.i/12oct15a.b/yc15i05.d Injection date and time: 15-OCT-2012 15:15

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 15-OCT-2012 15:30

Date, time and analyst ID of latest file update: 15-Oct-2012 15:30 Automation


Sample Name: VSTD010 Lab Sample ID: VSTD010

Compound Number : 89

Compound Name : 4-Methyl-2-Pentanone

Scan Number : 794

Retention Time (minutes): 5.662 Quant Ion : 43.00 Area : 378053 On-column Amount (ng) : 23.0250

Manually Integrated Quant Ion HP MS yc15i05.d. Ion 53.00 2.2 2.0-1 R-1.6 1.4-1.2-1.0 0.8 0.6 0.4 0.2

8,60. 8.62 Time (Min)

Data File: /chem2/HP09355.i/12oct15a.b/yc15i05.d Injection date and time: 15-OCT-2012 15:15

Instrument ID: HP09355.i Analyst ID: ADS01731

8.72

B,70

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:43

Date, time and analyst ID of latest file update: 15-Oct-2012 17:43 sej02002

8,68

Sample Name: VSTD010 Lab Sample ID: VSTD010

8,58

Compound Number : 124

8.50

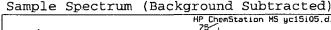
8,52

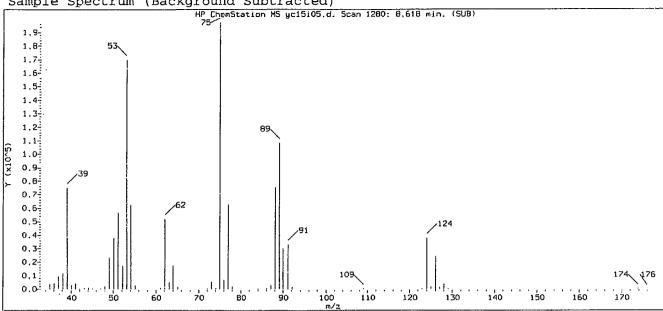
8,54

Compound Name trans-1,4-Dichloro-2-Butene

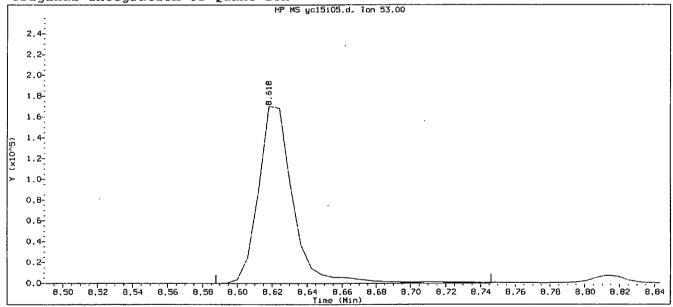
Scan Number 1280 Retention Time (minutes): 8.618 Quant Ion : 53.00 Area (flag) : 224715M On-Column Amount (ng) : 57.4546

Integration start scan : 1274 Integration stop scan: 1285 Y at integration start Y at integration end:


Reason for manual integration: improper integration


Digitally signed by Sara E. Johnson Analyst responsible for change: on 10/15/2012 at 17:45.

Target 3.5 esignature user ID: sej02002


8.66

8.64

Original Integration of Quant Ion

Data File: /chem2/HP09355.i/12oct15a.b/yc15i05.d Injection date and time: 15-OCT-2012 15:15

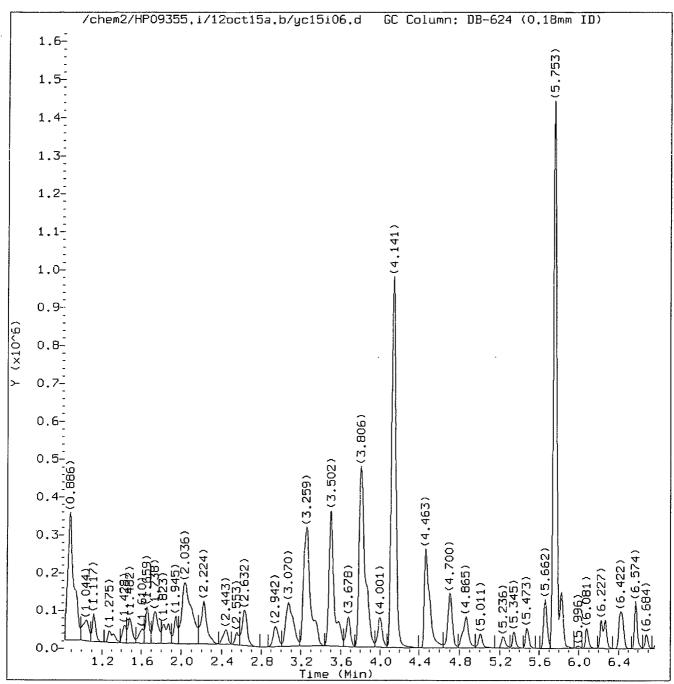
Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 15-OCT-2012 15:30

Date, time and analyst ID of latest file update: 15-Oct-2012 15:30 Automation

Sample Name: VSTD010 Lab Sample ID: VSTD010


Compound Number : 124

: trans-1,4-Dichloro-2-Butene Compound Name

Scan Number : 1280 Retention Time (minutes): 8.618 Quant Ion 53.00 Area 234900

On-column Amount (ng) 57.7689 :

Integration stop scan: 1300 Integration start scan : 1274 Y at integration end: Y at integration start

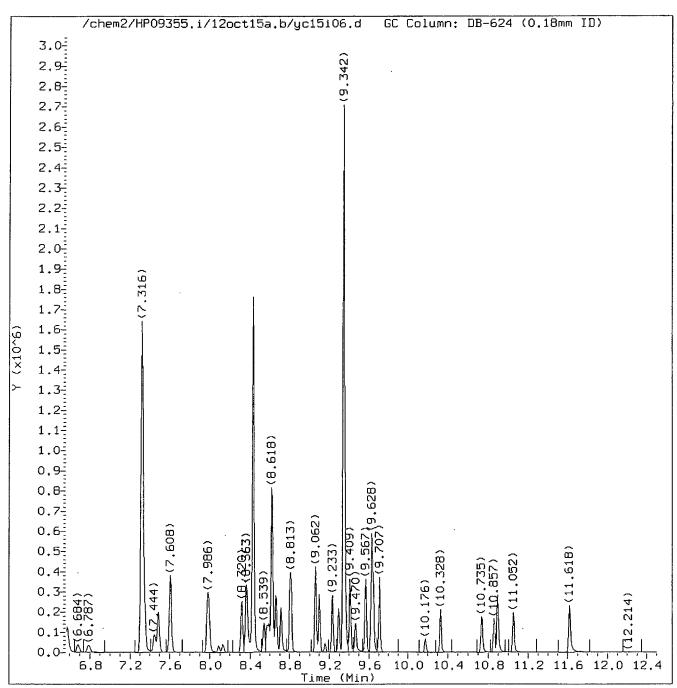
Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15i06.d Injection date and time: 15-OCT-2012 15:35

Instrument ID: HP09355.i
Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist Calibration date and time: 15-OCT-2012 17:44


Sublist used: 8260WI-EE

Date, time and analyst ID of latest file update: 15-Oct-2012 17:44 sej02002

Sample Name: VSTD004 Lab Sample ID: VSTD004

Digitally signed by Sara E. Johnson on 10/15/2012 at 17:45.
Target 3.5 esignature user ID: sej02002

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15i06.d Injection date and time: 15-OCT-2012 15:35

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:44

Date, time and analyst ID of latest file update: 15-Oct-2012 17:44 sej02002

Sample Name: VSTD004 Lab Sample ID: VSTD004

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15i06.d Instrument ID: HP09355.i Injection date and time: 15-OCT-2012 15:35 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:44

Date, time and analyst ID of latest file update: 15-Oct-2012 17:44 sej02002

Sample Name: VSTD004 Lab Sample ID: VSTD004

	Compounds	I.S. Ref.	RT	QLon	Area	On-Column Amount (ng)
=====	-	======			=========	=========
2)	Dichlorodifluoromethane	(1)	1.014	85	42288	4.479
3)	Chloromethane	(1)	1.050	50	44033M	4.398
	1,3-Butadiene	(1)	1.117	39		4.752
5)	Vinyl Chloride	(1)	1.123	62	43695M	4.455
	Bromomethane	(1)	1.275	94	28566	4.456
	Chloroethane	(1)	1.324	64	23007	4.329
9)	Dichlorofluoromethane	(1)	1.428	67	50587	4.335
	n-Pentane	(1)	1.482	43	40394	4.203
	Trichlorofluoromethane	(1)	1.488	101	47432M	4.496
•	Freon 123a	(1)	1.604	67	33859	4.539
	Acrolein	(4)	1.659	56	122063	43.366
	1,1-Dichloroethene	(1)	1.732	96	24767	4.368
•	Freon 113	(1)	1.750	101	24371	4.185
	Acetone	(1)	1.750	58	15073	9.517
	Methyl Iodide	(1)	1.829	142	45185	4.188
	2-Propanol	(4)	1.829	45	90462	76.443
,	Carbon Disulfide	(1)	1.872	76	71798	4.110
	Allyl Chloride	(1)	1.945	41	49010	4.686
	Methyl Acetate	(1)	1.951	43	35025M	4.057
	Methylene Chloride	(1)	2.030	84	29869	4.235
	t-Butyl Alcohol-d10	(4)	2.048	65	421996	250.000
	t-Butyl Alcohol	(4)	2.097	59	175984M	84.084
	Acrylonitrile	(1)	2.194	53	27208M	4.578
	trans-1,2-Dichloroethene	(1)	2.224	96	28386	4.183
	Methyl Tertiary Butyl Ether		2.224	73	92260	3.930
	n-Hexane	(1)	2.443	57	43290	4.260
	1,1-Dichloroethane	(1)	2.553	63	51097	4.147
	di-Isopropyl Ether	(1)	2.626	45	103607	4.195
	2-Chloro-1,3-Butadiene	(1)	2.638	53	43365	4.147
	Ethyl t-Butyl Ether	(1)	2.942	59	95739	4.025
	2-Butanone	(1)	3.046	43	73361	8.539
	cis-1,2-Dichloroethene	(1)	3.058	96	30918	4.071
	2,2-Dichloropropane	(1)	3.064	77	37879	4.093
	Propionitrile	(4)	3.119	54	198159	75.972
	Methacrylonitrile	(1)	3.253	67	225546	38.351
•	Bromochloromethane	(1)	3.277	128	17187	4.172
	Tetrahydrofuran Chloroform	(4)	3.320	71	20019 51241M	8.198
50)	CHIOLOLOLM	(1)	3.350	83	51241M	4.136

M = Compound was manually integrated.

page 1 of 4

^{* =} Compound is an internal standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15i06.d Instrument ID: HP09355.i Injection date and time: 15-OCT-2012 15:35 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:44

Date, time and analyst ID of latest file update: 15-Oct-2012 17:44 sej02002

Sample Name: VSTD004 Lab Sample ID: VSTD004

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
		=====		========	
52) \$Dibromofluoromethane	(1)	3.496	113	308326	49.762
51) \$Dibromofluoromethane (mz111)	(1)	3.496	111	315055	49.715
53) 1,1,1-Trichloroethane	(1)	3.526	97	46048	4.361
55) Cyclohexane (mz 69)	(1)	3.581	69	15989	4.194
54) Cyclohexane (mz 84)	(1)	3.581	84	42791	4.199
56) Cyclohexane	(1)	3.581	56	52532	4.241
45) 1,2-Dichloroethene (total)	(1)	2 (70	96 75	59304	8.254
57) 1,1-Dichloropropene	(1)	3.678 3.678	117	38461M	4.195
58) Carbon Tetrachloride	(1)	3.806	41	31699 139956м	4.039 194.126
59) Isobutyl Alcohol	(4)		65	378950M	49.711
61)\$1,2-Dichloroethane-d4(mz65)	(1)	3.806 3.806	102	82495	
62) \$1,2-Dichloroethane-d4 (mz104 60) \$1,2-Dichloroethane-d4 (mz104	(1)) (1)	3.812	102	51874	49.552 49.609
63) Benzene	(1)	3.867	78	120286	4.114
64) 1,2-Dichloroethane (mz 98)	(1)	3.879	78 98	3679	4.114
65) 1,2-Dichloroethane	(1)	3.879	62	38414	3.978
69) t-Amyl Methyl Ether	(1)	4.001	73	91725	3.924
71) *Fluorobenzene	(1)	4.141	96	1394885	50.000
72) n-Heptane	(1)	4.153	43	56496	4.795
73) n-Butanol	(4)	4.463	56	253620	379.318
74) Trichloroethene	(1)	4.506	95	29687	4.083
75) Methylcyclohexane (mz98)	(1)	4.700	98	26005	4.489
76) Methylcyclohexane	$(\tilde{1})$	4.700	83	59537	4.518
77) 1,2-Dichloropropane	(1)	4.707	63	30423	3.963
78) Dibromomethane	(1)	4.828	93	20100	3.952
79) 1,4-Dioxane	(4)	4.859	88	35256	189.582
80) Methyl Methacrylate	(1)	4.871	69	33314	3.670
83) Bromodichloromethane	(1)	5.005	83	31892	3.707
85) 2-Nitropropane	(1)	5.230	41	27715	7.783
86) 2-Chloroethyl Vinyl Ether	(1)	5.345	63	25333	3.690
87) cis-1,3-Dichloropropene	(1)	5.479	75	40392	3.669
89) 4-Methyl-2-Pentanone	(1)	5.662	43	127448	7.844
92)\$Toluene-d8(mz100)	(2)	5.753	100	855170	49.756
93)\$Toluene-d8	(2)	5.759	98	1321275	50.278
94) Toluene	(2)	5.826	92	75252	4.105
95) trans-1,3-Dichloropropene	(2)	6.081	75	38210	3.645
96) Ethyl Methacrylate	(2)	6.227	69	50745	3.658
97) 1,1,2-Trichloroethane	(2)	6.270	97	28271	3.816

M = Compound was manually integrated.

Digitally signed by Sara E. Johnson on 10/15/2012 at 17:45.
Target 3.5 esignature user ID: sej02002

page 2 of 4

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15i06.d Instrument ID: HP09355.i Injection date and time: 15-OCT-2012 15:35 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:44

Date, time and analyst ID of latest file update: 15-Oct-2012 17:44 sej02002

Sample Name: VSTD004 Lab Sample ID: VSTD004

	I.S.				On-Column Amount
Compounds	Ref.	RT	QIon	Area	(ng)
98) Tetrachloroethene	(2)	6.416	166	32222	4.075
99) 1,3-Dichloropropane	(2)	6.440	76	47549	3.828
101) 2-Hexanone	(2)	6.574	43	101726	7.884
102) Dibromochloromethane	(2)	6.684	129	23258	3.411
104) 1,2-Dibromoethane	(2)	6.787	107	29915	3.721
106) *Chlorobenzene-d5	(2)	7.316	117	984797	50.000
107) Chlorobenzene	(2)	7.347	112	82911	4.062
108) 1,1,1,2-Tetrachloroethane	(2)	7.450	131	24917	3.746
109) Ethylbenzene	(2)	7.487	91	143706	4.036
110) m+p-Xylene	(2)	7.608	106	111091	7.909
113) o-Xylene	(2)	7.980	106	55145	3.887
114) Styrene	(2)	7.992	104	90113	3.804
115) Bromoform	(2)	8.132	173	17493	3.022
112) Xylene (Total)	(2)		106	166236	11.797
116) Isopropylbenzene	(2)	8.320	105	143329	4.027
118) Cyclohexanone	(4)	8.363	55	151899	184.484
120) \$4-Bromofluorobenzene (mz174)		8.430	174	425138	50.339
119)\$4-Bromofluorobenzene	(2)	8.430	95	496220	50.087
121) Bromobenzene	(3)	8.545	156	36142	3.843
122) 1,1,2,2-Tetrachloroethane	(3)	8.570	83	51962	3.889
123) 1,2,3-Trichloropropane	(3)	8.594	110	15660	3.769
124) trans-1,4-Dichloro-2-Butene		8.618	53	142069M	36.418
125) n-Propylbenzene	(3)	8.661	91	169712	4.122
126) 2-Chlorotoluene	(3)	8.716	126	35341	4.041
128) 4-Chlorotoluene	(3)	8.807	126	35478	3.923
127) 1,3,5-Trimethylbenzene	(3)	8.813	105	121863	3.974
130) tert-Butylbenzene	(3)	9.062	134	27270	3.960 3.783
131) Pentachloroethane	(3)	9.062 9.099	167 105	21463 125950	3.783
132) 1,2,4-Trimethylbenzene	(3) (3)	9.033	105	154691	4.102
133) sec-Butylbenzene 134) 1,3-Dichlorobenzene	(3)	9.294	146	69360	3.907
135) p-Isopropyltoluene	(3)	9.348	119	134399	4.035
136) *1,4-Dichlorobenzene-d4	(3)	9.348	152	566053	50.000
138) 1,4-Dichlorobenzene	(3)	9.361	146	76271	4.025
139) 1,2,3-Trimethylbenzene	(3)	9.409	105	151598	4.457
141) Benzyl Chloride	(3)	9.470	91	85169	3.331
141) 1,3-Diethylbenzene	(3)	9.567	119	90824	4.326
144) 1,2-Dichlorobenzene	(3)	9.628	146	71358	3.976
TITI TID DECITED TO	()	2.020			3.5.0

M = Compound was manually integrated.

Digitally signed by Sara E. Johnson on 10/15/2012 at 17:45.
Target 3.5 esignature user ID: sej02002

page 3 of 4

^{* =} Compound is an internal standard.

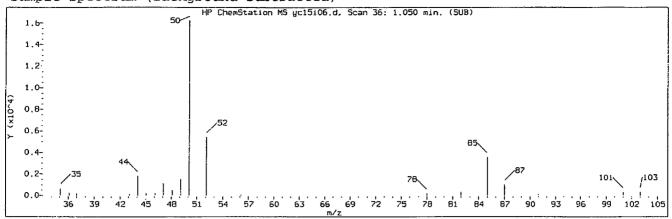
^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15i06.d Instrument ID: HP09355.i Injection date and time: 15-OCT-2012 15:35 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:44


Date, time and analyst ID of latest file update: 15-Oct-2012 17:44 sej02002

Sample Name: VSTD004 Lab Sample ID: VSTD004

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
143) 1,4-Diethylbenzene	(3)	9.628	119	94258	4.370
145) n-Butylbenzene	(3)	9.646	92	66422	4.025
146) 1,2-Diethylbenzene	(3)	9.707	. 119	82284	4.558
148) 1,2-Dibromo-3-Chloropropane	(3)	10.176	75	11709	3.446
149) 1,3,5-Trichlorobenzene	(3)	10.328	180	54740	4.019
150) 1,2,4-Trichlorobenzene	(3)	10.742	180	50945	3.980
151) Hexachlorobutadiene	(3)	10.857	225	24686	4.158
152) Naphthalene	(3)	10.894	128	194019	3.909
153) 1,2,3-Trichlorobenzene	(3)	11.052	180	51917	4.134
154) 2-Methylnaphthalene	(3).	11.618	142	116267	4.211

page 4 of 4

Manually Integrated Quant Ion HP MS yc15106.d, Ion 50.00 2.4-2.2-2.0 1.8-1.6 1.4 1.2-1 0 0.8 0.6 0.4-0.2 0.0 0.94 0.92 0.98 1,14 1.16 1.1B 0.90 0.96 1.00 1,02 1.04 1.08

Data File: /chem2/HP09355.i/12oct15a.b/yc15i06.d Injection date and time: 15-OCT-2012 15:35

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:44

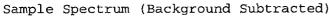
Date, time and analyst ID of latest file update: 15-Oct-2012 17:44 sej02002

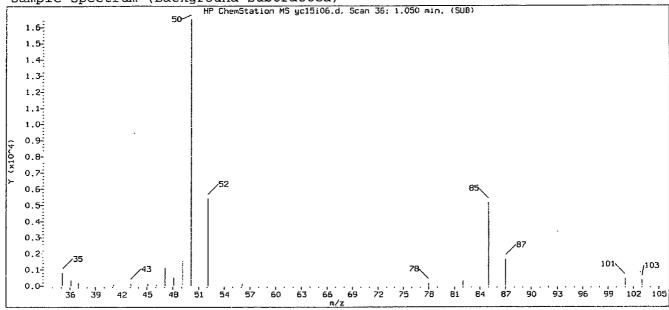
Sample Name: VSTD004 Lab Sample ID: VSTD004

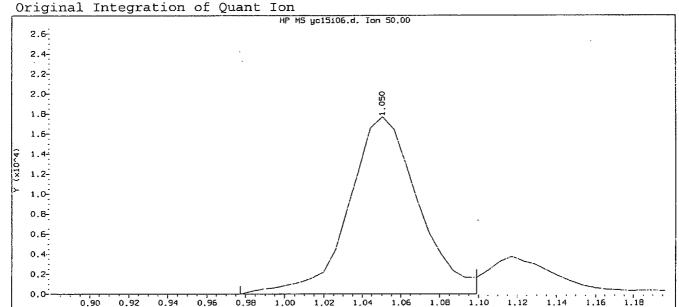
Compound Number 3

Chloromethane Compound Name

36 Scan Number Retention Time (minutes): 1.050 Quant Ion 50.00 Area (flag) 44033M : 4.3979 On-Column Amount (ng)


Integration start scan 26 43 : Integration stop scan: 0 Y at integration start Y at integration end:


Reason for manual integration: improper integration


Digitally signed by Sara E. Johnson

Analyst responsible for change: on 10/15/2012 at 17:45.

Target 3.5 esignature user ID: sej02002

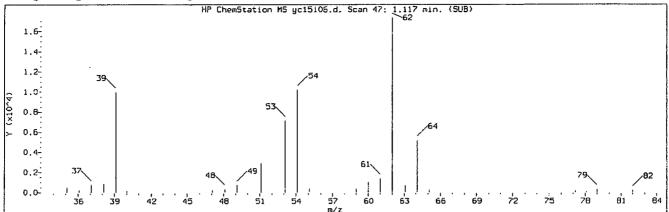
Data File: /chem2/HP09355.i/12oct15a.b/yc15i06.d Injection date and time: 15-OCT-2012 15:35

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 15-OCT-2012 15:50

Date, time and analyst ID of latest file update: 15-Oct-2012 15:50 Automation


Sample Name: VSTD004 Lab Sample ID: VSTD004

Compound Number : 3

Compound Name : Chloromethane

Scan Number : 36
Retention Time (minutes): 1.050
Quant Ion : 50.00
Area : 44021
On-column Amount (ng) : 3.9950

Integration start scan : 23 Integration stop scan: 43 Y at integration start : 0 Y at integration end: 0

Manually Integrated Quant Ion HP MS yc15i06.d. Ion 39.00 1.5 1.4 1,3 1.2 1.1 1.0-0.9 0.8-0.7-0.6 0.5 0.3 0.2 0.1 1,12 1,18 1.20 1.24 1.14 1.16 1.22 1,00 1.02 1,06 1.08 1,10

Data File: /chem2/HP09355.i/12oct15a.b/yc15i06.d Injection date and time: 15-OCT-2012 15:35

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:44

Date, time and analyst ID of latest file update: 15-Oct-2012 17:44 sej02002

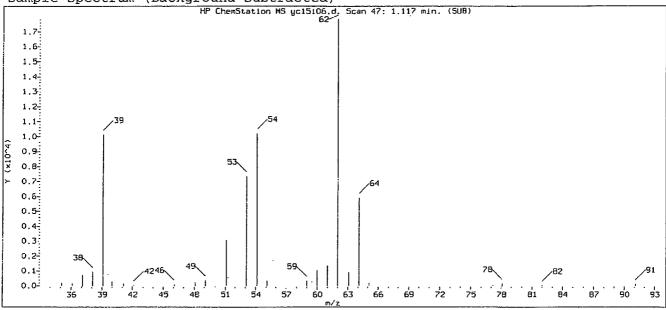
Sample Name: VSTD004 Lab Sample ID: VSTD004

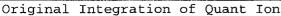
Compound Number : 4

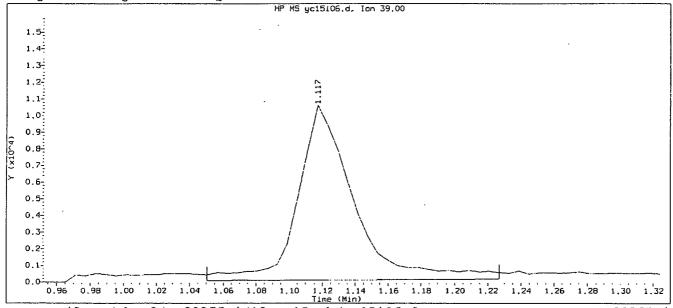
Compound Name : 1,3-Butadiene

Scan Number : 47
Retention Time (minutes): 1.117
Quant Ion : 39.00
Area (flag) : 20022M
On-Column Amount (ng) : 4.7522


Integration start scan : 39 Integration stop scan: 56 Y at integration start : 557 Y at integration end: 557


Reason for manual integration: improper integration


Digitally signed by Sara E. Johnson


Analyst responsible for change: on 10/15/2012 at 17:45.

Target 3.5 esignature user ID: sej02002

Data File: /chem2/HP09355.i/12oct15a.b/yc15i06.d Injection date and time: 15-OCT-2012 15:35

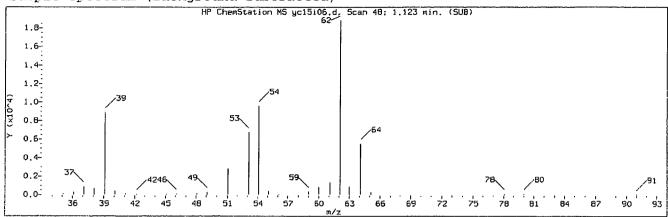
Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI Calibration date and time: 15-OCT-2012 15:50

Date, time and analyst ID of latest file update: 15-Oct-2012 15:50 Automation

Sample Name: VSTD004 Lab Sample ID: VSTD004

Compound Number


Compound Name 1,3-Butadiene

: 47 Scan Number

Retention Time (minutes): 1.117 Quant Ion : 39.00 Area : 24817

On-column Amount (ng) : 5.6034 35

64 Integration start scan Integration stop scan: 81 Y at integration end: Y at integration start

Data File: /chem2/HP09355.i/12oct15a.b/yc15i06.d Instrument ID: HP09355.i Injection date and time: 15-OCT-2012 15:35 Analyst ID: ADS01731

1,08 1.10 1.12 1.14 1,16 1,18 1,20

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:44

1.02 1.04 1.06

Date, time and analyst ID of latest file update: 15-Oct-2012 17:44 sej02002

Sample Name: VSTD004 Lab Sample ID: VSTD004

Compound Number : 5

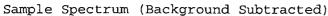
0.6-0.4-0.2-

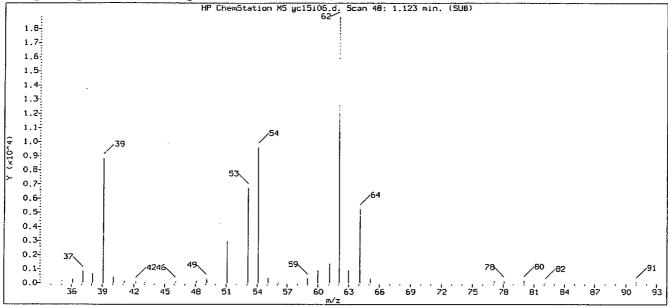
Compound Name : Vinyl Chloride

Scan Number : 48
Retention Time (minutes): 1.123
Quant Ion : 62.00
Area (flag) : 43695M
On-Column Amount (ng) : 4.4552

Integration start scan : 35 Integration stop scan: 66 Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration


Digitally signed by Sara E. Johnson


Analyst responsible for change: on 10/15/2012 at 17:45.

Target 3.5 esignature user ID: sej02002


1.22

1,24

Original Integration of Quant Ion

Data File: /chem2/HP09355.i/12oct15a.b/yc15i06.d Injection date and time: 15-OCT-2012 15:35

Instrument ID: HP09355.i
Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI Calibration date and time: 15-OCT-2012 15:50

Date, time and analyst ID of latest file update: 15-Oct-2012 15:50 Automation

Sample Name: VSTD004 Lab Sample ID: VSTD004

Compound Number : 5

Compound Name : Vinyl Chloride

Scan Number : 48

Retention Time (minutes): 1.123
Quant Ion : 62.00
Area : 44281
On-column Amount (ng) : 4.5222

Integration start scan : 35 Integration stop scan: 89 Y at integration start : 0 Y at integration end: 0

Manually Integrated Quant Ion HP MS yc15106.d, Ion 101.00 1,3 1.2 1.1-1,0 0 9 0,B-0.7-0,6 0.5 0,4 0.3 0.2 0.1-0.0 1.26 1.28 1.30 1.32 1.34 1.36 1.38 1.40 1.42 1.44 1.46 1.48 1.50 1.52 1.54 1.56 1.58 1.60 1.62 1.64 1.66 1.68 1.70

Data File: /chem2/HP09355.i/12oct15a.b/yc15i06.d Injection date and time: 15-OCT-2012 15:35

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:44

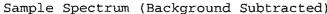
Date, time and analyst ID of latest file update: 15-Oct-2012 17:44 sej02002

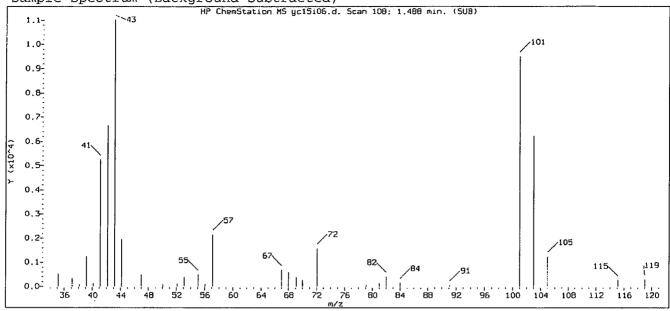
Sample Name: VSTD004 Lab Sample ID: VSTD004

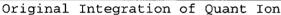
Compound Number : 10

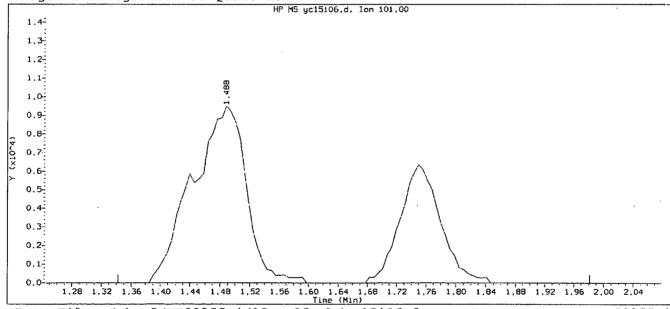
Compound Name : Trichlorofluoromethane

Scan Number : 108
Retention Time (minutes): 1.488
Quant Ion : 101.00
Area (flag) : 47432M
On-Column Amount (ng) : 4.4965


Integration start scan : 83 Integration stop scan: 129
Y at integration start : 0 Y at integration end: 0


Reason for manual integration: improper integration


Digitally signed by Sara E. Johnson


Analyst responsible for change: on 10/15/2012 at 17:45.

Target 3.5 esignature user ID: sej02002

Data File: /chem2/HP09355.i/12oct15a.b/yc15i06.d Injection date and time: 15-OCT-2012 15:35

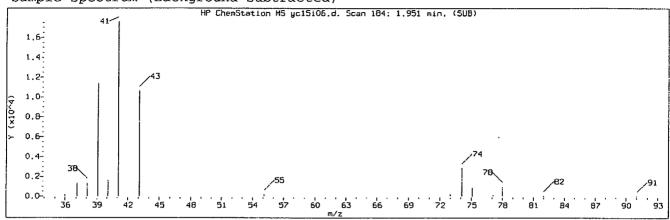
Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 15-OCT-2012 15:50

Date, time and analyst ID of latest file update: 15-Oct-2012 15:50 Automation

Sample Name: VSTD004 Lab Sample ID: VSTD004


Compound Number : 10

Compound Name : Trichlorofluoromethane

Scan Number : 108
Retention Time (minutes): 1.488
Quant Ion : 101.00
Area : 71803

On-column Amount (ng) : 5.6377

Integration start scan : 83 Integration stop scan: 188
Y at integration start : 0 Y at integration end: 0

Manually Integrated Quant Ion

HP MS yc15106.d. Ion 43.00

1.81.61.41.21.00.40.20.01.80 1.82 1.84 1.86 1.88 1.90 1.92 1.94 1.96 1.98 2.00 2.02 2.04 2.06 2.08 2.10

Data File: /chem2/HP09355.i/12oct15a.b/yc15i06.d Injection date and time: 15-OCT-2012 15:35

Instrument ID: HP09355.i
Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:44

Date, time and analyst ID of latest file update: 15-Oct-2012 17:44 sej02002

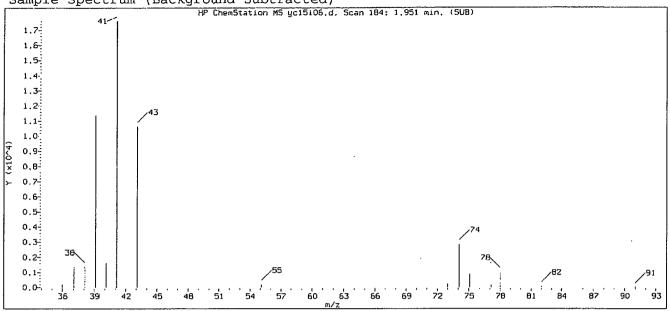
Sample Name: VSTD004 Lab Sample ID: VSTD004

Compound Number : 25

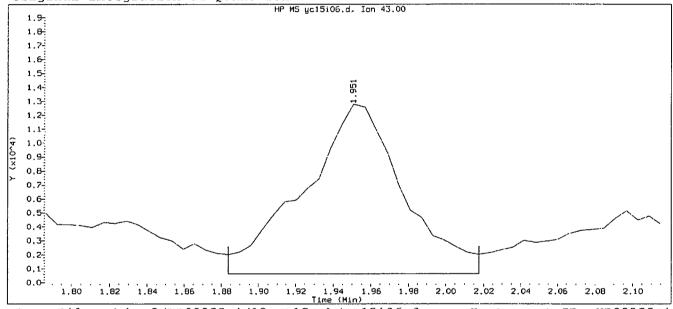
Compound Name : Methyl Acetate

Scan Number : 184
Retention Time (minutes): 1.951
Quant Ion : 43.00
Area (flag) : 35025M
On-Column Amount (ng) : 4.0572

Integration start scan : 172 Integration stop scan: 194 Y at integration start : 1841 Y at integration end: 1841


Reason for manual integration: improper integration

Digitally signed by Sara E. Johnson


Analyst responsible for change: on 10/15/2012 at 17:45.

Target 3.5 esignature user ID: sej02002

Original Integration of Quant Ion

Data File: /chem2/HP09355.i/12oct15a.b/yc15i06.d Injection date and time: 15-OCT-2012 15:35

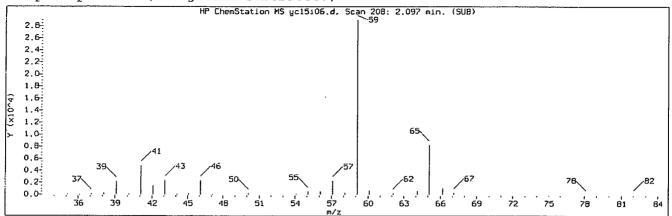
Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 15-OCT-2012 15:50

Date, time and analyst ID of latest file update: 15-Oct-2012 15:50 Automation

Sample Name: VSTD004 Lab Sample ID: VSTD004


Compound Number : 25

Compound Name : Methyl Acetate

Scan Number : 184
Retention Time (minutes): 1.951
Quant Ion : 43.00
Area : 44641

On-column Amount (ng) : 4.5151

Integration start scan : 172 Integration stop scan: 194 Y at integration start : 635 Y at integration end: 635

Manually Integrated Quant Ion HP MS yc15i06.d. Ion 59.00 4,5-4.2-3.9-3.6 9 3.3 3.0-2.7-2.1-1.8 1.5 1.2-0.9 0.6 0.3 1.92 1.94 1.96 1.98 2.00 2.02 2.04 2.06 2.08 2.10 2.12 2.14 2.16 2.18 2.20 2.22 2.24 2.26 2.28 2.30 2.32 2.34 2.36

Data File: /chem2/HP09355.i/12oct15a.b/yc15i06.d Injection date and time: 15-OCT-2012 15:35

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:44

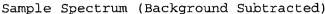
Date, time and analyst ID of latest file update: 15-Oct-2012 17:44 sej02002

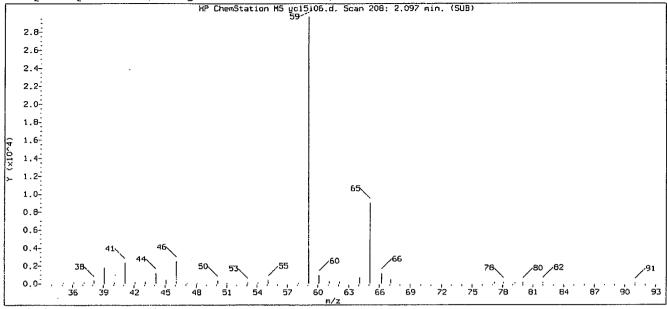
Sample Name: VSTD004 Lab Sample ID: VSTD004

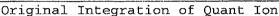
Compound Number : 29

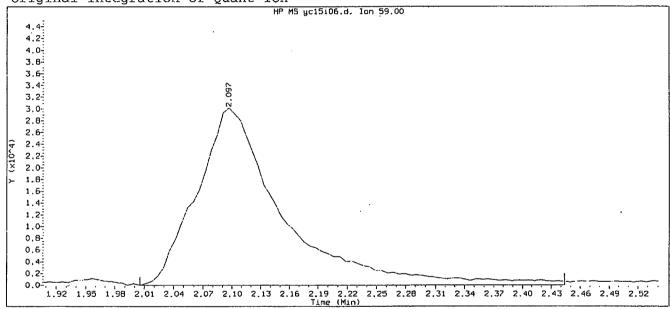
Compound Name : t-Butyl Alcohol

Scan Number : 208
Retention Time (minutes): 2.097
Quant Ion : 59.00
Area (flag) : 175984M
On-Column Amount (ng) : 84.0840


Integration start scan : 192 Integration stop scan: 235 Y at integration start : 0 Y at integration end: 0


Reason for manual integration: improper integration


Digitally signed by Sara E. Johnson


Analyst responsible for change: on 10/15/2012 at 17:45.

Target 3.5 esignature user ID: sej02002

Data File: /chem2/HP09355.i/12oct15a.b/yc15i06.d Injection date and time: 15-OCT-2012 15:35

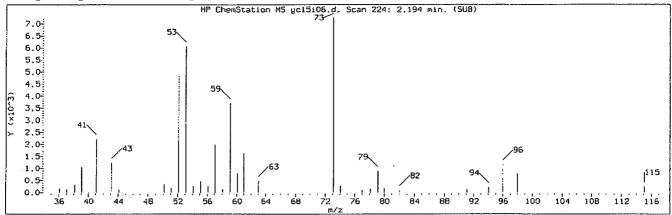
Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI

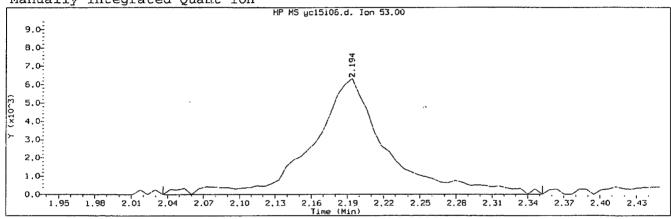
Calibration date and time: 15-OCT-2012 15:50

Date, time and analyst ID of latest file update: 15-Oct-2012 15:50 Automation

Sample Name: VSTD004 Lab Sample ID: VSTD004


Compound Number : 29

Compound Name : t-Butyl Alcohol


Scan Number : 208
Retention Time (minutes): 2.097
Quant Ion : 59.00
Area : 187492

On-column Amount (ng) : 75.7209

Integration start scan : 192 Integration stop scan: 264 Y at integration start : 0 Y at integration end: 0

Manually Integrated Quant Ion

Data File: /chem2/HP09355.i/12oct15a.b/yc15i06.d Injection date and time: 15-OCT-2012 15:35

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:44

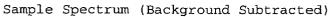
Date, time and analyst ID of latest file update: 15-Oct-2012 17:44 sej02002

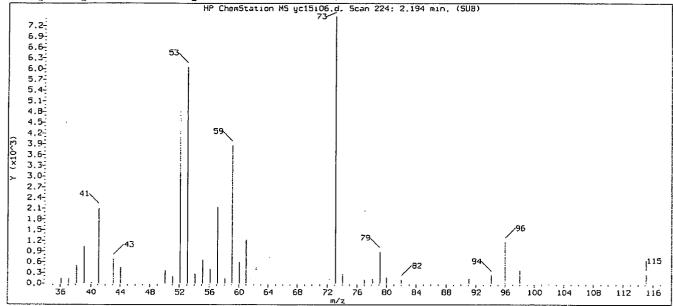
Sample Name: VSTD004 Lab Sample ID: VSTD004

Compound Number : 30

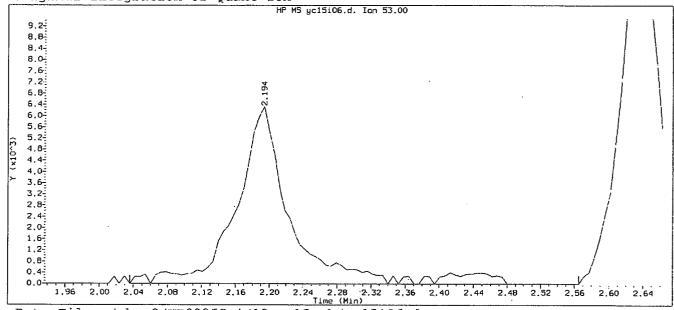
Compound Name : Acrylonitrile

Scan Number : 224
Retention Time (minutes): 2.194
Quant Ion : 53.00
Area (flag) : 27208M
On-Column Amount (ng) : 4.5782


Integration start scan : 197 Integration stop scan: 249
Y at integration start : 0 Y at integration end:


Reason for manual integration: improper integration

Digitally signed by Sara E. Johnson


Analyst responsible for change: on 10/15/2012 at 17:45.

Target 3.5 esignature user ID: sej02002

Original Integration of Quant Ion

Data File: /chcm2/HP09355.i/12oct15a.b/yc15i06.d Injection date and time: 15-OCT-2012 15:35

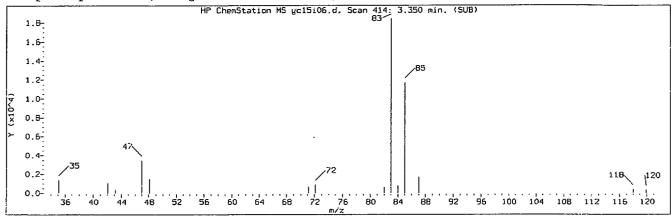
Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 15-OCT-2012 15:50

Date, time and analyst ID of latest file update: 15-Oct-2012 15:50 Automation

Sample Name: VSTD004 Lab Sample ID: VSTD004


Compound Number : 30

Compound Name : Acrylonitrile

Scan Number : 224
Retention Time (minutes): 2.194
Quant Ion : 53.00

Area : 29135 On-column Amount (ng) : 4.7147

Integration start scan : 197 Integration stop scan: 284 Y at integration start : 0 Y at integration end: 0

Manually Integrated Quant Ion HP MS yc15i06.d, Ion 83.00 2.6-2.4 2.2 2.0-1.8 1.6 1.4-1.2-1.0 0.8 0.6 0.4-0.2

3.38

3.40

3,42

3.44

3,46

3.34 3.36 Time (Min) Data File: /chem2/HP09355.i/12oct15a.b/yc15i06.d Injection date and time: 15-OCT-2012 15:35

3.28

Instrument ID: HP09355.i Analyst ID: ADS01731

3.50

3.48

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

3,30

Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:44 Date, time and analyst ID of latest file update: 15-Oct-2012 17:44 sej02002

Lab Sample ID: VSTD004 Sample Name: VSTD004

3,32

Compound Number : 50

3.24

3.22

3.26

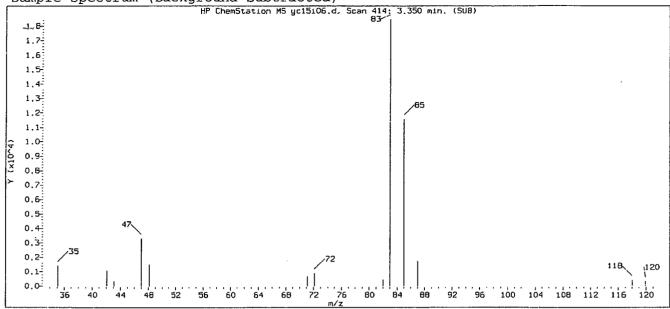
0.0

3,20

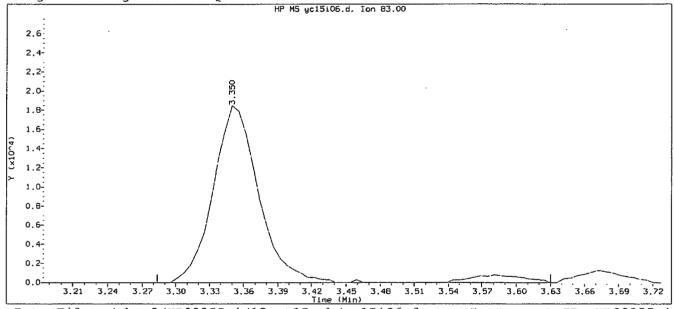
Compound Name : Chloroform

Scan Number 414 Retention Time (minutes): 3.350 : 83.00 Quant Ion Area (flag) 51241M On-Column Amount (ng) : 4.1361

Integration start scan 402 Integration stop scan: 429 Y at integration start 0 Y at integration end:


Reason for manual integration: improper integration

Digitally signed by Sara E. Johnson


Analyst responsible for change: on 10/15/2012 at 17:45.

Target 3.5 esignature user ID: sej02002

Original Integration of Quant Ion

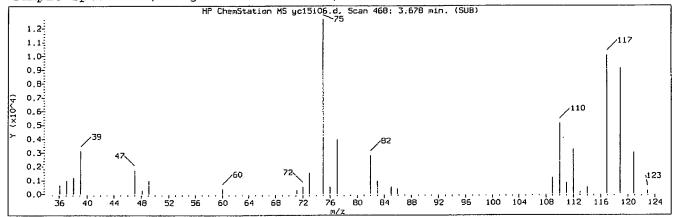
Data File: /chem2/HP09355.i/12oct15a.b/yc15i06.d Injection date and time: 15-OCT-2012 15:35

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI Calibration date and time: 15-OCT-2012 15:50

Date, time and analyst ID of latest file update: 15-Oct-2012 15:50 Automation

Sample Name: VSTD004 Lab Sample ID: VSTD004


Compound Number : 50

Compound Name : Chloroform

Scan Number : 414
Retention Time (minutes): 3.350
Ouant Ion : 83.00

Area : 53990

On-column Amount (ng) : 4.3660
Integration start scan : 402 Integration stop scan: 459
Y at integration start : 0 Y at integration end: 0

Manually Integrated Quant Ion HP MS yc15106.d. Ion 75.00 1.8-1.6 1.4-1,2-1.0-0.B 0,6 0.4 0.2 0.0 3,80 3.84 3.74 3,76 3.78 3.54 3.56 3.58 3,60 3,62 3,64 3.70

Data File: /chem2/HP09355.i/12oct15a.b/yc15i06.d Injection date and time: 15-OCT-2012 15:35

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:44

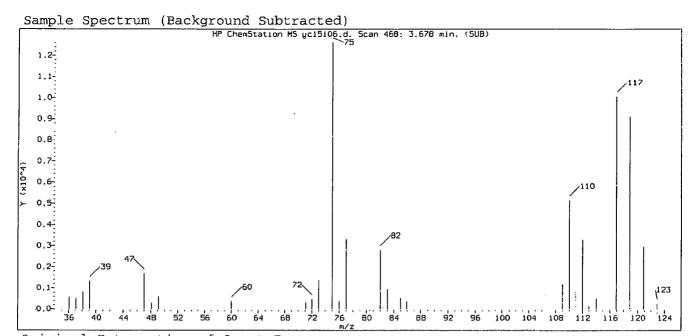
Date, time and analyst ID of latest file update: 15-Oct-2012 17:44 sej02002

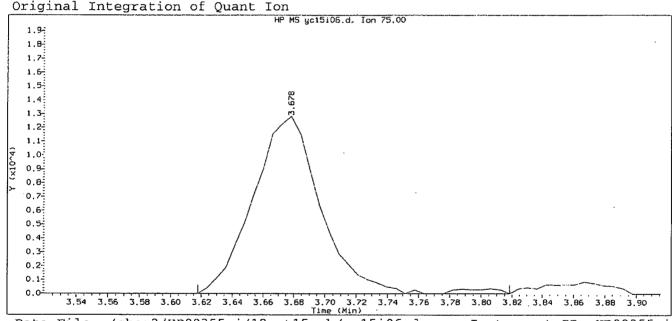
Sample Name: VSTD004 Lab Sample ID: VSTD004

Compound Number : 57

Compound Name : 1,1-Dichloropropene

Scan Number : 468
Retention Time (minutes): 3.678
Quant Ion : 75.00
Area (flag) : 38461M
On-Column Amount (ng) : 4.1947


Integration start scan : 457 Integration stop scan: 483 Y at integration start : 0 Y at integration end: 0


Reason for manual integration: improper integration

Digitally signed by Sara E. Johnson

Analyst responsible for change: on 10/15/2012 at 17:45.

Target 3.5 esignature user ID: sej02002

Data File: /chem2/HP09355.i/12oct15a.b/yc15i06.d Injection date and time: 15-OCT-2012 15:35

Instrument ID: HP09355.i Analyst ID: ADS01731

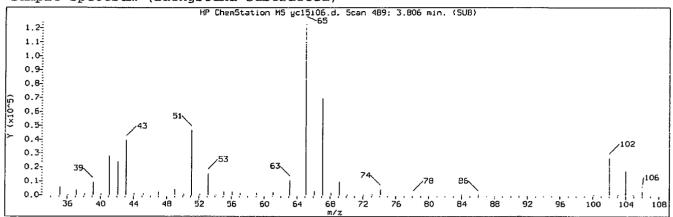
Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 15-OCT-2012 15:50

Date, time and analyst ID of latest file update: 15-Oct-2012 15:50 Automation

Sample Name: VSTD004 Lab Sample ID: VSTD004

Compound Number


Compound Name : 1,1-Dichloropropene

Scan Number : 468 Retention Time (minutes): 3.678

: 75.00

Quant Ion : 39103 Area : 4.1819

On-column Amount (ng) Integration stop scan: Integration start scan 457 : Y at integration start 0 Y at integration end:

Manually Integrated Quant Ion HP MS yc15i06.d. Ion 41.00 4,2-3,92 3.6-806 3.3-3.0 2.7 2.4-2,1-1.8 1.5 1.2-0.9 0,6 0.3 3.64 3.66 3.68 3.70 3.72 3.74 3.76 3.78 3.80 3.82 3.84 3.86 3.88 3.90 3.92 3.94 3.96 3.98 4.00 4.02 4.04 Time (Min)

Data File: /chem2/HP09355.i/12oct15a.b/yc15i06.d Injection date and time: 15-OCT-2012 15:35

Instrument ID: HP09355.i
Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Calibration date and time: 15-OCT-2012 17:44

Sublist used: 8260WI-EE

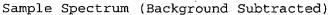
Date, time and analyst ID of latest file update: 15-Oct-2012 17:44 sej02002

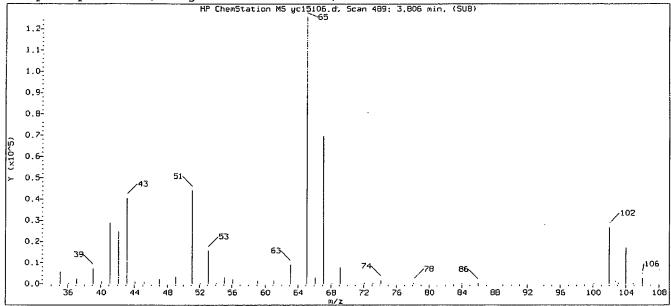
Sample Name: VSTD004 Lab Sample ID: VSTD004

Compound Number : 59

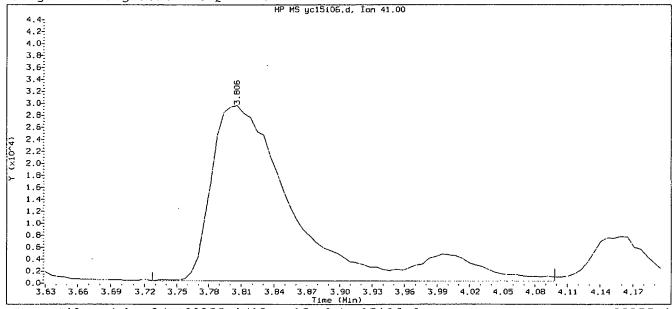
Compound Name : Isobutyl Alcohol

Scan Number : 489
Retention Time (minutes): 3.806
Quant Ion : 41.00
Area (flag) : 139956M
On-Column Amount (ng) : 194.1264


Integration start scan : 475 Integration stop scan: 511 Y at integration start : 375 Y at integration end: 375


Reason for manual integration: improper integration

Digitally signed by Sara E. Johnson


Analyst responsible for change: on 10/15/2012 at 17:45.

Target 3.5 esignature user ID: sej02002

Original Integration of Quant Ion

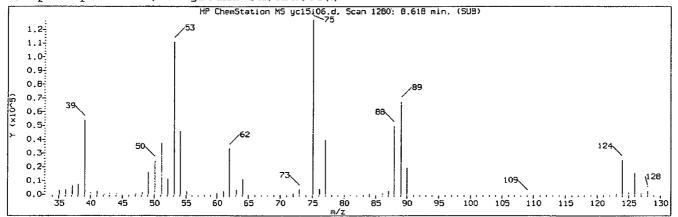
Data File: /chem2/HP09355.i/12oct15a.b/yc15i06.d Injection date and time: 15-OCT-2012 15:35

Instrument ID: HP09355.i
Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 15-OCT-2012 15:50

Date, time and analyst ID of latest file update: 15-Oct-2012 15:50 Automation


Sample Name: VSTD004 Lab Sample ID: VSTD004

Compound Number : 59

Compound Name : Isobutyl Alcohol

Scan Number : 489
Retention Time (minutes): 3.806
Quant Ion : 41.00
Area : 160099
On-column Amount (ng) : 217.0138

Integration start scan : 475 Integration stop scan: 536 Y at integration start : 375 Y at integration end: 375

Manually Integrated Quant Ion HP MS yc15i06.d, Ion 53.00 1.5-1.4-1,2-1.0-0.8 0.6 0.4 0.2 8.76 8,50 8.52 8.62 ne (Min) 8,70 8.58 8,60 8,66 8.68 8.72 8.74

Data File: /chem2/HP09355.i/12oct15a.b/yc15i06.d Injection date and time: 15-OCT-2012 15:35

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:44

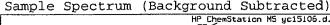
Date, time and analyst ID of latest file update: 15-Oct-2012 17:44 sej02002

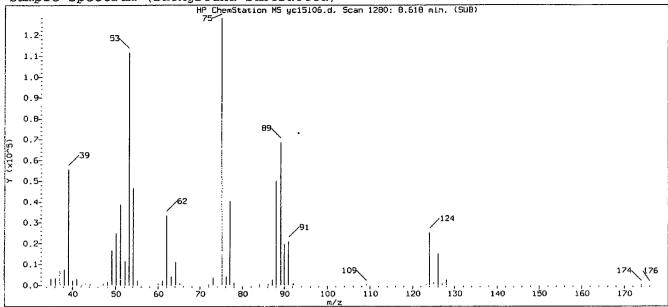
Sample Name: VSTD004 Lab Sample ID: VSTD004

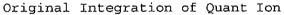
Compound Number : 124

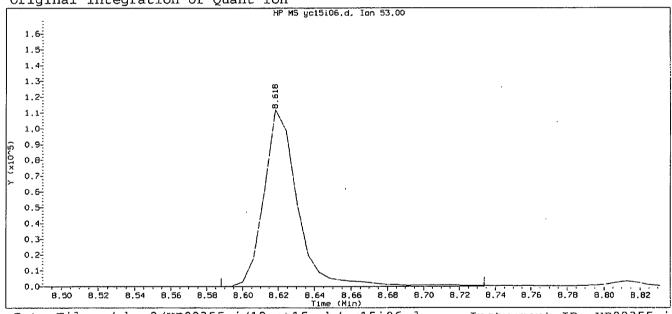
Compound Name : trans-1,4-Dichloro-2-Butene

Scan Number : 1280
Retention Time (minutes): 8.618
Quant Ion : 53.00
Area (flag) : 142069M
On-Column Amount (ng) : 36.4176


Integration start scan : 1274 Integration stop scan: 1287 Y at integration start : 0 Y at integration end: 0


Reason for manual integration: improper integration


Digitally signed by Sara E. Johnson


Analyst responsible for change: on 10/15/2012 at 17:45.

Target 3.5 esignature user ID: sej02002

Data File: /chem2/HP09355.i/12oct15a.b/yc15i06.d Injection date and time: 15-OCT-2012 15:35

Instrument ID: HP09355.i Analyst ID: ADS01731

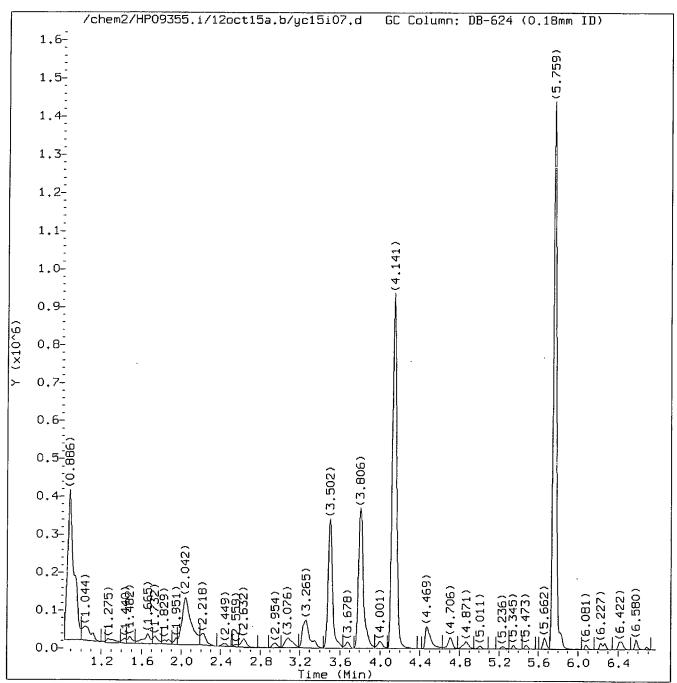
Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 15-OCT-2012 15:50

Date, time and analyst ID of latest file update: 15-Oct-2012 15:50 Automation

Lab Sample ID: VSTD004 Sample Name: VSTD004

Compound Number


Compound Name : trans-1,4-Dichloro-2-Butene

Scan Number : 1280

Retention Time (minutes): 8.618 : 53.00 Quant Ion 146137 Area

On-column Amount (ng) 36.6380 :

Integration start scan 1274 Integration stop scan: 1298 : Y at integration start Y at integration end:

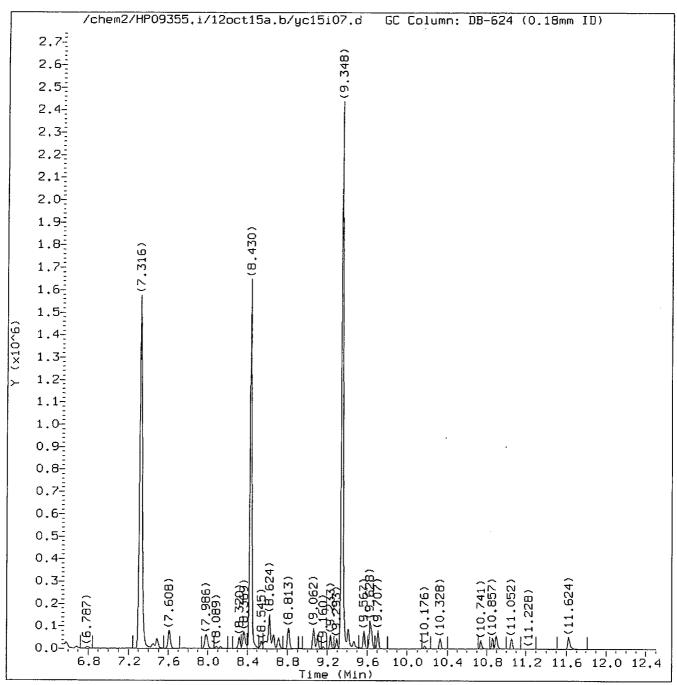
Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15i07.d Injection date and time: 15-OCT-2012 15:56

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Calibration date and time: 15-OCT-2012 17:44


Sublist used: 8260WI-EE

Date, time and analyst ID of latest file update: 15-0ct-2012 17:44 sej02002

Sample Name: VSTD001 Lab Sample ID: VSTD001

Digitally signed by Sara E. Johnson on 10/15/2012 at 17:46.
Target 3.5 esignature user ID: sej02002

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15i07.d Instrument ID: HP09355.i Injection date and time: 15-OCT-2012 15:56 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:44

Date, time and analyst ID of latest file update: 15-Oct-2012 17:44 sej02002

Sample Name: VSTD001 Lab Sample ID: VSTD001

Digitally signed by Sara E. Johnson on 10/15/2012 at 17:46.
Target 3.5 esignature user ID: sej02002

page 2 of 2

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15i07.d Instrument ID: HP09355.i Injection date and time: 15-OCT-2012 15:56 Analyst ID: ADS01731

Sublist used: 8260WI-EE

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI-Calibration date and time: 15-OCT-2012 17:44 Date, time and analyst ID of latest file update: 15-Oct-2012 17:44 sej02002

Sample Name: VSTD001 Lab Sample ID: VSTD001

	I.S.				On-Column Amount
Compounds	Ref.	RT	QIon	Area	(ng)
=======================================	======	=====		========	===========
Dichlorodifluoromethane	(1)	1.020	85	8064	0.858
Chloromethane	(1)	1.050	50	9967M	1.000
5) Vinyl Chloride	(1)	1.123	· 62	10002M	1.025
4) 1,3-Butadiene	(1)	1.123	39	4098M	0.977
7) Bromomethane	(1)	1.281	94	7034	1.102
8) Chloroethane	(1)	1.324	64	5224	0.987
Dichlorofluoromethane	(1)	1.427	67	12642	1.088
10) Trichlorofluoromethane	(1)	1.482	101	9493	0.904
11) n-Pentane	(1)	1.482	43	8382M	0.876
14) Freon 123a	(1)	1.598	67	8967	1.208
15) Acrolein	(4)	1.665	56	30349	10.501
<pre>16) 1,1-Dichloroethene</pre>	(1)	1.738	9.6	5624M	0.997
18) Freon 113	(1)	1.750	101	4633M	0.799
17) Acetone	(1)	1.750	58	3623	2.298
20) Methyl Iodide	(1)	1.829	142	10162	0.946
21) 2-Propanol	(4)	1.835	45	23828	19.609
22) Carbon Disulfide	(1)	1.872	76	16901M	0.972
24) Allyl Chloride	(1)	1.945	41	13263	1.274
25) Methyl Acetate	(1)	1.963	43	9849M	1.146
26) Methylene Chloride	(1)	2.030		7764	1.106
28) *t-Butyl Alcohol-d10	(4)	2.042	65	433320	250.000
29) t-Butyl Alcohol	(4)	2.103	59	43274	20.136
30) Acrylonitrile	(1)	2.194	53	6755	1.142
31) trans-1,2-Dichloroethene	(1)	2.230	96	6588	0.975
32) Methyl Tertiary Butyl Ether		2.230	73	21978	0.941
33) n-Hexane	(1)	2.449	57	8337	0.824
34) 1,1-Dichloroethane	(1)	2.559	63	11296	0.921
36) di-Isopropyl Ether	(1)	2.632	45	24261	0.987
37) 2-Chloro-1,3-Butadiene	(1)	2.638	53	9881	0.949
39) Ethyl t-Butyl Ether	(1)	2.942	59	22121	0.934
41) 2-Butanone	(1)	3.052	43	19985	2.337
40) cis-1,2-Dichloroethene	(1)	3.058	96	6915	0.915
42) 2,2-Dichloropropane	(1)	3.070	77	8814	0.957
43) Propionitrile	(4)	3.119	54	48491	18.105
46) Methacrylonitrile 47) Bromochloromethane	(1) (1)	3.259 3.277	67 128	53412	9.124
48) Tetrahydrofuran	(1) (4)	3.277	71	3668 4833	0.895
50) Chloroform	, ,		83		1.927
20) CHIOLOICIM	(1)	3.350	0.3	13150	1.066

M = Compound was manually integrated.

page 1 of 4

^{* =} Compound is an internal standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15i07.d Instrument ID: HP09355.i Injection date and time: 15-OCT-2012 15:56 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:44

Date, time and analyst ID of latest file update: 15-Oct-2012 17:44 sej02002

Sample Name: VSTD001 Lab Sample ID: VSTD001

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
52)\$Dibromofluoromethane	(1)	3.502	113	306804	49.748
51) \$Dibromofluoromethane(mz111)		3.502	111	314663	49.886
53) 1,1,1-Trichloroethane	(1)	3.526	97	10131	0.964
55) Cyclohexane (mz 69)	(1)	3.581	69	3090	. 0.814
54) Cyclohexane (mz 84)	(1)	3.581	84	8229	0.811
56) Cyclohexane	(1)	3.581	56	11072	0.898
45) 1,2-Dichloroethene (total)	(1)		96	13503	1.890
57) 1,1-Dichloropropene	(1)	3.684	75	8200	0.899
58) Carbon Tetrachloride	(1)	3.684	117	6580	0.842
61) \$1,2-Dichloroethane-d4(mz65)	(1)	3.806	65	375095	49.436
59) Isobutyl Alcohol	(4)	3.806	41	36364	49.121
62)\$1,2-Dichloroethane-d4	(1)	3.812	102	81300	49.063
60) \$1, 2-Dichloroethane-d4 (mz104		3.812	104	52039	50.000
63) Benzene	(1)	3.867	78	27629	0.949
65) 1,2-Dichloroethane	(1)	3.885	62	9276	0.965
64) 1,2-Dichloroethane (mz 98)	(1)	3.885	98	417	0.864
69) t-Amyl Methyl Ether	(1)	4.001	73	21664	0.931
71) *Fluorobenzene	(1)	4.141	96	1388390	50.000
72) n-Heptane	(1)	4.165	43	13494	1.151
73) n-Butanol	(4)	4.469	56	59741	87.014
74) Trichloroethene	(1)	4.506	95	6763	0.934
75) Methylcyclohexane (mz98)	(1)	4.700	98	4859	0.843
76) Methylcyclohexane	(1)	4.706	83	11171	0.852
77) 1,2-Dichloropropane	(1)	4.713	63	6888	0.902
78) Dibromomethane	(1)	4.834	93	4428	0.875
79) 1,4-Dioxane	(4)	4.865	88	8034	42.072
80) Methyl Methacrylate	(1)	4.871 5.011	69 83	7604 7010	0.842
83) Bromodichloromethane	(1)	5.230	41	7732	0.819 2.182
85) 2-Nitropropane 86) 2-Chloroethyl Vinyl Ether	(1) (1)	5.345	63	5449	0.797
87) cis-1,3-Dichloropropene	(1)	5.479	75	8869	0.797
89) 4-Methyl-2-Pentanone	(1)	5.662	43	30354M	1.877
92) \$Toluene-d8 (mz100)	(2)	5.759	100	839183	49.173
93) \$Toluene-d8	(2)	5.759	98	1310604	50.227
94) Toluene	(2)	5.826	92	17183	0.944
95) trans-1,3-Dichloropropene	(2)	6.081	75	7967	0.765
96) Ethyl Methacrylate	(2)	6.227	69	11470	0.833
97) 1,1,2-Trichloroethane	(2)	6.270	97	6597	0.897
- · / - / - /	,-,				

M = Compound was manually integrated.

Digitally signed by Sara E. Johnson on 10/15/2012 at 17:46.
Target 3.5 esignature user ID: sej02002

page 2 of 4

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15i07.d Instrument ID: HP09355.i Injection date and time: 15-OCT-2012 15:56 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:44

Date, time and analyst ID of latest file update: 15-Oct-2012 17:44 sej02002

Sample Name: VSTD001 Lab Sample ID: VSTD001

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
		=====		========	
98) Tetrachloroethene	(2)	6.416	166	7112	0.906
99) 1,3-Dichloropropane	(2)	6.440	76	11141	0.903
101) 2-Hexanone	(2)	6.580	43	24876	1.942
102) Dibromochloromethane	(2)	6.684	129	5122	0.757
104) 1,2-Dibromoethane	(2)	6.787	107	6662	0.835
106) *Chlorobenzene-d5	(2)	7.322	117 112	9778 4 9 18491	50.000 0.912
107) Chlorobenzene	(2)	7.347	131	5094	0.912
108) 1,1,1,2-Tetrachloroethane	(2)	7.450 7.487	91	32535	0.771
109) Ethylbenzene	(2) (2)	7.614	106	24287	1.741
110) m+p-Xylene	(2)	7.014	106	12124	0.861
113) o-Xylene 114) Styrene	(2)	7.992	104	19092	0.812
114) Stylene 115) Bromoform	(2)	8.138	173	3957	0.688
112) Xylene (Total)	(2)	0.130	106	36411	2.602
116) Isopropylbenzene	(2)	8.320	105	31016	0.878
118) Cyclohexanone	(4)	8.363	55	38427M	45.451
119) \$4-Bromofluorobenzene	(2)	8.430	95	489743	49.785
120) \$4-Bromofluorobenzene (mz174)		8.436	174	420292	50.119
121) Bromobenzene	(3)	8.545	156	7661	0.822
122) 1,1,2,2-Tetrachloroethane	(3)	8.570	83	11703	0.884
123) 1,2,3-Trichloropropane	(3)	8.594	110	3662	0.889
124) trans-1,4-Dichloro-2-Butene		8.624	53	29660M	7.669
125) n-Propylbenzene	(3)	8.667	91	37054	0.908
126) 2-Chlorotoluene	(3)	8.716	126	7609	0.878
128) 4-Chlorotoluene	(3)	8.807	126	7798	0.870
127) 1,3,5-Trimethylbenzene	(3)	8.813	105	26794	0.881
130) tert-Butylbenzene	(3)	9.062	134	6491	0.951
131) Pentachloroethane	(3)	9.062	167	4091	0.727
132) 1,2,4-Trimethylbenzene	(3)	9.099	105	28303	0.902
133) sec-Butylbenzene	(3)	9.233	105	33709	0.902
134) 1,3-Dichlorobenzene	(3)	9.293	146	15884	0.902
135) p-Isopropyltoluene	(3)	9.348	119	29531	0.894
136)*1,4-Dichlorobenzene-d4	(3)	9.348	152	561154	50.000
138) 1,4-Dichlorobenzene	(3)	9.360	146	17081	0.909
139) 1,2,3-Trimethylbenzene	(3)	9.415	105	33365	0.989
141) Benzyl Chloride	(3)	9.470	91	16977	0.670
142) 1,3-Diethylbenzene	(3)	9.567	119	20009	0.961
144) 1,2-Dichlorobenzene	(3)	9.628	146	16317	0.917

M = Compound was manually integrated.

Digitally signed by Sara E. Johnson on 10/15/2012 at 17:46.
Target 3.5 esignature user ID: sej02002

page 3 of 4

^{* =} Compound is an internal standard.

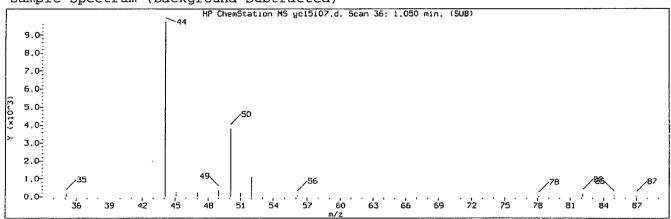
^{\$ =} Compound is a surrogate standard.

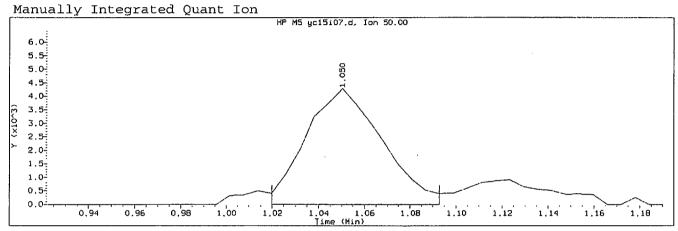
Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15i07.d Instrument ID: HP09355.i Injection date and time: 15-OCT-2012 15:56 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:44


Date, time and analyst ID of latest file update: 15-Oct-2012 17:44 sej02002


Sample Name: VSTD001 Lab Sample ID: VSTD001

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
143) 1,4-Diethylbenzene	(3)	9.628	119	20519	0.960
145) n-Butylbenzene	(3)	9.646	92	14223	0.869
146) 1,2-Diethylbenzene	(3)	9.707	119	17980M	1.005
148) 1,2-Dibromo-3-Chloropropane	(3)	10.176	75	2510	0.745
149) 1,3,5-Trichlorobenzene	(3)	10.328	180	13310	0.986
150) 1,2,4-Trichlorobenzene	(3)	10.741	180	13506	1.064
151) Hexachlorobutadiene	(3)	10.857	225	7521	1.278
152) Naphthalene	(3)	10.893	128	48774	0.991
153) 1,2,3-Trichlorobenzene	(3)	11.052	180	14466	1.162
154) 2-Methylnaphthalene	(3)	11.624	142	36169	1.322

M = Compound was manually integrated.

page 4 of 4

Data File: /chem2/HP09355.i/12oct15a.b/yc15i07.d Injection date and time: 15-OCT-2012 15:56

Instrument ID: HP09355.i
Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:44

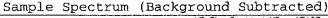
Date, time and analyst ID of latest file update: 15-Oct-2012 17:44 sej02002

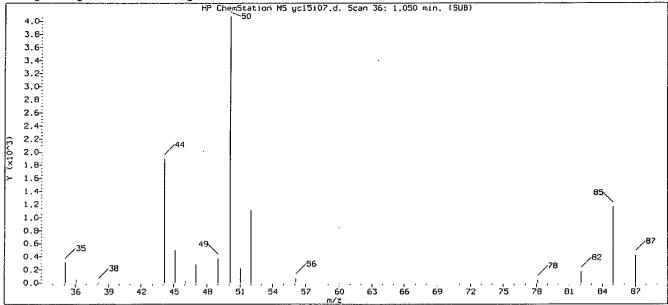
Sample Name: VSTD001 Lab Sample ID: VSTD001

Compound Number : 3

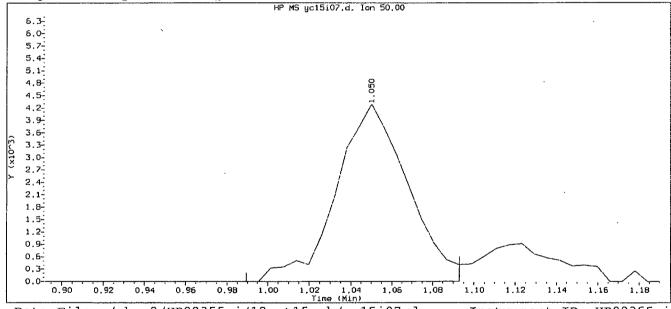
Compound Name : Chloromethane

Scan Number : 36
Retention Time (minutes): 1.050
Quant Ion : 50.00
Area (flag) : 9967M
On-Column Amount (ng) : 1.0001


Integration start scan : 30 Integration stop scan: 42 Y at integration start : 0 Y at integration end: 0


Reason for manual integration: improper integration

Digitally signed by Sara E. Johnson


Analyst responsible for change: on 10/15/2012 at 17:46.

Target 3.5 esignature user ID: sej02002

Original Integration of Quant Ion

Data File: /chem2/HP09355.i/12oct15a.b/yc15i07.d Injection date and time: 15-OCT-2012 15:56

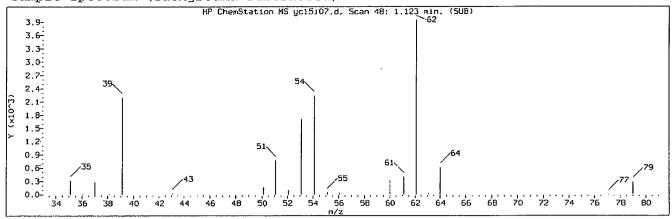
Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI

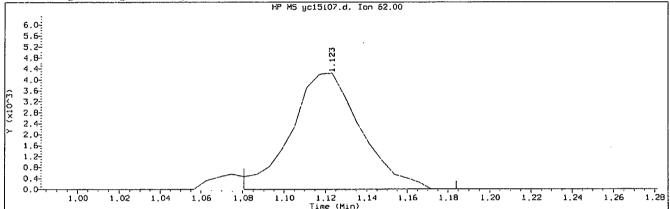
Calibration date and time: 15-OCT-2012 16:11

Date, time and analyst ID of latest file update: 15-Oct-2012 16:11 Automation

Sample Name: VSTD001 Lab Sample ID: VSTD001


Compound Number : 3

Compound Name : Chloromethane


Scan Number : 36

Retention Time (minutes): 1.050
Quant Ion : 50.00
Area : 10327
On-column Amount (ng) : 1.0310

Integration start scan : 25 Integration stop scan: 42 Y at integration start : 0 Y at integration end: 0

Manually Integrated Quant Ion

Data File: /chem2/HP09355.i/12oct15a.b/yc15i07.d Injection date and time: 15-OCT-2012 15:56

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:44

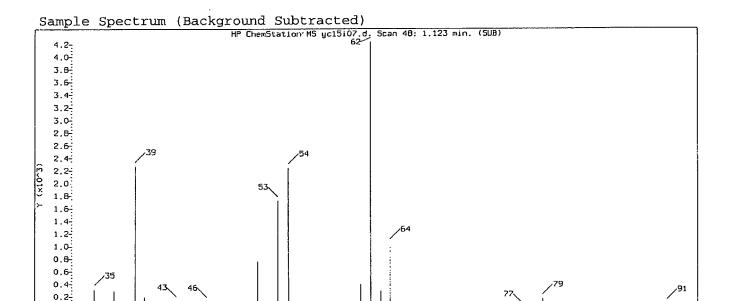
Date, time and analyst ID of latest file update: 15-Oct-2012 17:44 sej02002

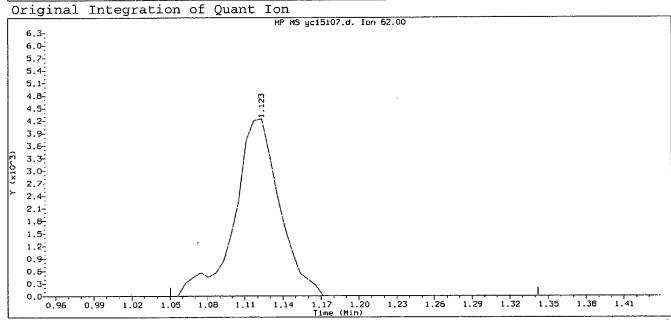
Lab Sample ID: VSTD001 Sample Name: VSTD001

Compound Number 5

Vinyl Chloride Compound Name

Scan Number : 48 Retention Time (minutes): 1.123 Quant Ion 62.00 Area (flag) : 10002M On-Column Amount (ng) : 1.0246


57 40 Integration stop scan: Integration start scan 0 Y at integration end: Y at integration start


Reason for manual integration: improper integration

Digitally signed by Sara E. Johnson

Analyst responsible for change: on 10/15/2012 at 17:46.

Target 3.5 esignature user ID: sej02002

57

60

63

72

Data File: /chem2/HP09355.i/12oct15a.b/yc15i07.d Injection date and time: 15-OCT-2012 15:56

Instrument ID: HP09355.i Analyst ID: ADS01731

84

81

87

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 15-OCT-2012 16:11

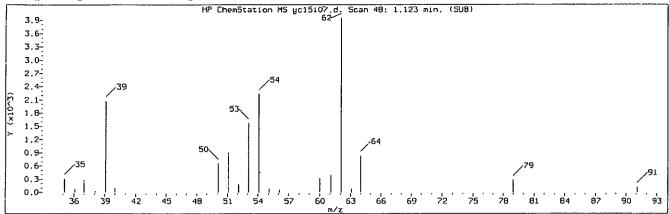
48

Date, time and analyst ID of latest file update: 15-Oct-2012 16:11 Automation

Sample Name: VSTD001 Lab Sample ID: VSTD001

Compound Number : 5

Compound Name : Vinyl Chloride


Scan Number : 48

Retention Time (minutes): 1.123 Quant Ion : 62.00 Area : 10482

On-column Amount (ng) : 1.0663

Integration start scan : 35 Integration stop scan: 83 Y at integration start : 0 Y at integration end: 0

Manually Integrated Quant Ion HP MS yc15i07.d, Ion 39.00 3.6-3.3 3 0-2.7 2.1 1.8 1.5 1.2-0.9-0.6 0.3 0.0 1,10 1,12 1,14 1,08 1.18 Time (Min)

Data File: /chem2/HP09355.i/12oct15a.b/yc15i07.d Injection date and time: 15-OCT-2012 15:56

Instrument ID: HP09355.i
Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:44

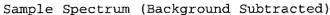
Date, time and analyst ID of latest file update: 15-Oct-2012 17:44 sej02002

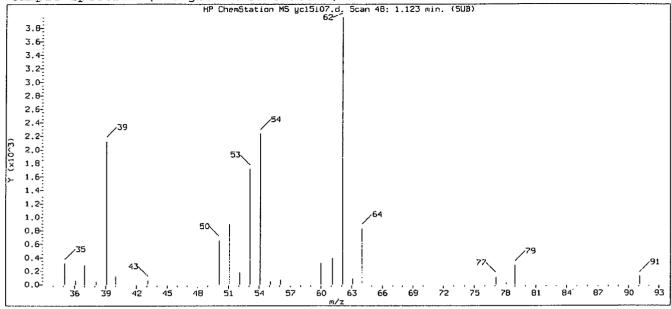
Sample Name: VSTD001 Lab Sample ID: VSTD001

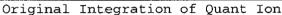
Compound Number : 4

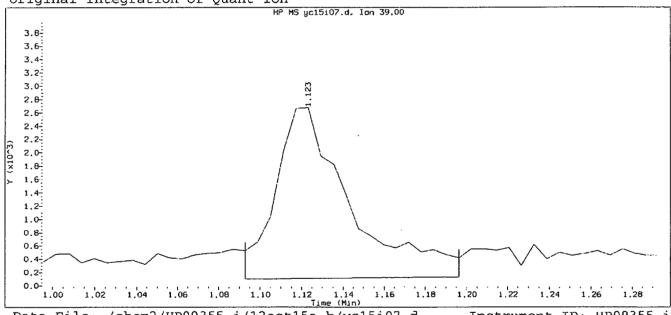
Compound Name : 1,3-Butadiene

Scan Number : 48
Retention Time (minutes): 1.123
Quant Ion : 39.00
Area (flag) : 4098M
On-Column Amount (ng) : 0.9772


Integration start scan : 42 Integration stop scan: 54 Y at integration start : 485 Y at integration end: 485


Reason for manual integration: improper integration


Digitally signed by Sara E. Johnson


Analyst responsible for change: on 10/15/2012 at 17:46.

Target 3.5 esignature user ID: sej02002

Data File: /chem2/HP09355.i/12oct15a.b/yc15i07.d Injection date and time: 15-OCT-2012 15:56

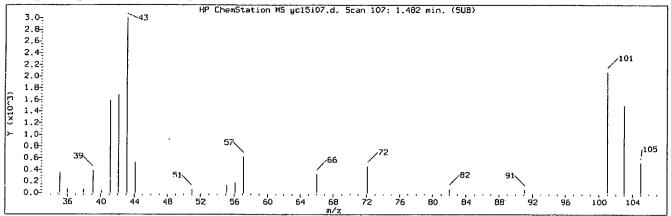
Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 15-OCT-2012 16:11

Date, time and analyst ID of latest file update: 15-Oct-2012 16:11 Automation

Sample Name: VSTD001 Lab Sample ID: VSTD001


Compound Number : 4

Compound Name : 1,3-Butadiene

Scan Number : 48

Retention Time (minutes): 1.123
Quant Ion : 39.00
Area : 6428
On-column Amount (ng) : 1.3686

Integration start scan : 42 Integration stop scan: 59 Y at integration start : 106 Y at integration end: 134

Manually Integrated Quant Ion HP MS yc15i07.d. Ion 43.00 5.2-4,8-4.4-4.0-3.6-3.2 2.8 2.4-2.0 1.6 1.2 0.8 0.4 0.0 1.32 1.34 1.36 1.38 1.40 1.42 1.44 1.46 1.48 1.50 1.52 1,54 1.56 1.58 1.60 1.62

Data File: /chem2/HP09355.i/12oct15a.b/yc15i07.d Injection date and time: 15-OCT-2012 15:56

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:44

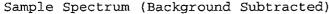
Date, time and analyst ID of latest file update: 15-Oct-2012 17:44 sej02002

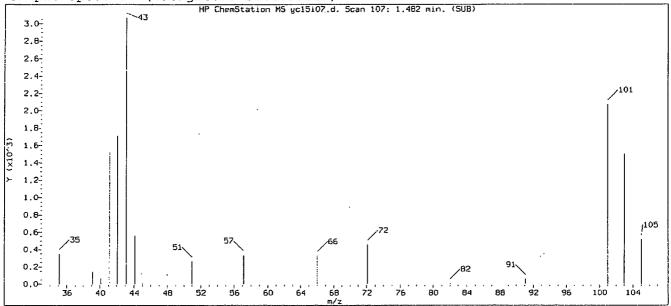
Sample Name: VSTD001 Lab Sample ID: VSTD001

Compound Number : 11

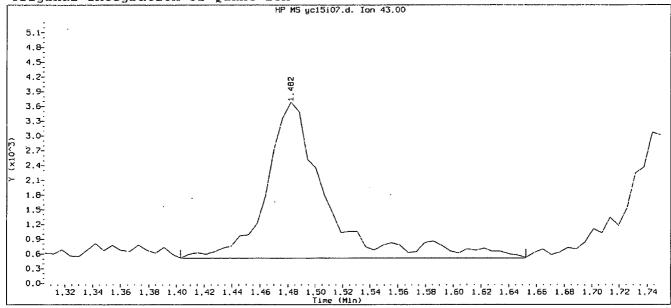
Compound Name : n-Pentane

Scan Number : 107
Retention Time (minutes): 1.482
Quant Ion : 43.00
Area (flag) : 8382M
On-Column Amount (ng) : 0.8763


Integration start scan : 93 Integration stop scan: 116 Y at integration start : 515 Y at integration end: 515


Reason for manual integration: improper integration

Digitally signed by Sara E. Johnson


Analyst responsible for change: on 10/15/2012 at 17:46.

Target 3.5 esignature user ID: sej02002

Original Integration of Quant Ion

Data File: /chem2/HP09355.i/12oct15a.b/yc15i07.d Injection date and time: 15-OCT-2012 15:56

Instrument ID: HP09355.i Analyst ID: ADS01731

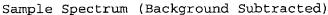
Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI

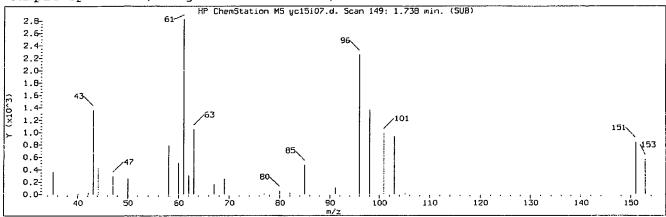
Calibration date and time: 15-OCT-2012 16:11

Date, time and analyst ID of latest file update: 15-Oct-2012 16:11 Automation

Sample Name: VSTD001 Lab Sample ID: VSTD001

Compound Number : 11


Compound Name : n-Pentane


Scan Number : 107
Retention Time (minutes): 1.482
Quant Ion : 43.00
Area : 9544

On-column Amount (ng) : 0.9717

Integration start scan : 93 Integration stop scan: 134 Y at integration start : 515 Y at integration end: 515

Digitally signed by Sara E. Johnson on 10/15/2012 at 17:46. Target 3.5 esignature user ID: sej02002

Manually Integrated Quant Ion HP MS yc15i07.d. Ion 96.00 3.3-3.0-2.7-2.4-2.1-1.8 1.5 1.2-0.9 0.6-0.3 0.0-1.72 1.74 Time (Min) 1.80 1.58 1.60 1.62 1.70 1.78 1.84 1.64 1.68 1,66

Data File: /chem2/HP09355.i/12oct15a.b/yc15i07.d Injection date and time: 15-OCT-2012 15:56

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

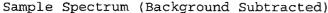
Calibration date and time: 15-OCT-2012 17:44

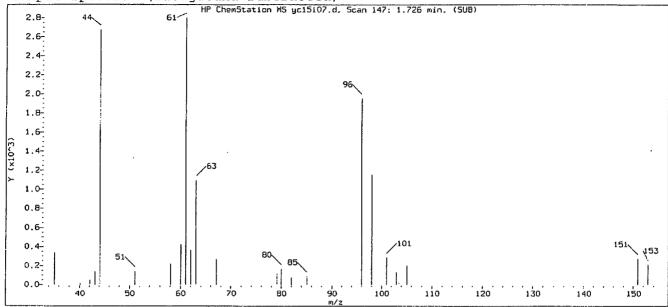
Date, time and analyst ID of latest file update: 15-Oct-2012 17:44 sej02002

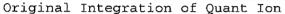
Lab Sample ID: VSTD001 Sample Name: VSTD001

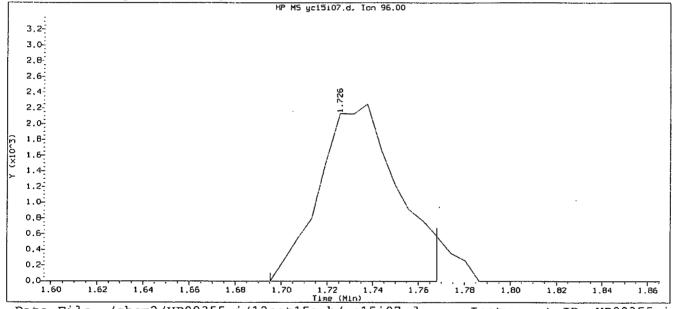
Compound Number : 16

Compound Name : 1,1-Dichloroethene


Scan Number : 149 1.738 Retention Time (minutes): 96.00 Quant Ion Area (flag) 5624M 0.9966 On-Column Amount (ng)


138 Integration stop scan: 160 Integration start scan : Y at integration start 0 Y at integration end:


improper integration Reason for manual integration:


Digitally signed by Sara E. Johnson Analyst responsible for change: on 10/15/2012 at 17:46.

Target 3.5 esignature user ID: sej02002

Data File: /chem2/HP09355.i/12oct15a.b/yc15i07.d Injection date and time: 15-OCT-2012 15:56

Instrument ID: HP09355.i Analyst ID: ADS01731

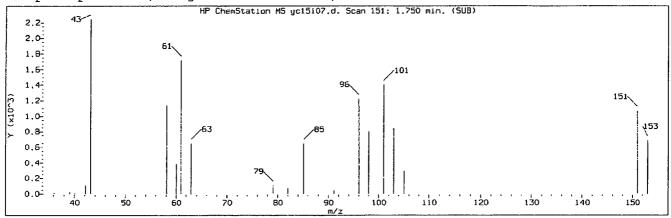
Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI

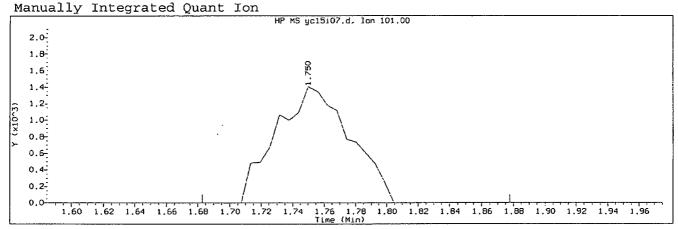
Calibration date and time: 15-OCT-2012 16:11

Date, time and analyst ID of latest file update: 15-Oct-2012 16:11 Automation

Sample Name: VSTD001 Lab Sample ID: VSTD001

Compound Number : 16


Compound Name : 1,1-Dichloroethene


Scan Number : 147
Retention Time (minutes): 1.726
Quant Ion : 96.00

Quant Ion : 96.00 Area : 5295 On-column Amount (ng) : 0.9463

Integration start scan : 141 Integration stop scan: 153
Y at integration start : 0 Y at integration end: 0

Digitally signed by Sara E. Johnson on 10/15/2012 at 17:46. Target 3.5 esignature user ID: sej02002

Data File: /chem2/HP09355.i/12oct15a.b/yc15i07.d Injection date and time: 15-OCT-2012 15:56

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:44

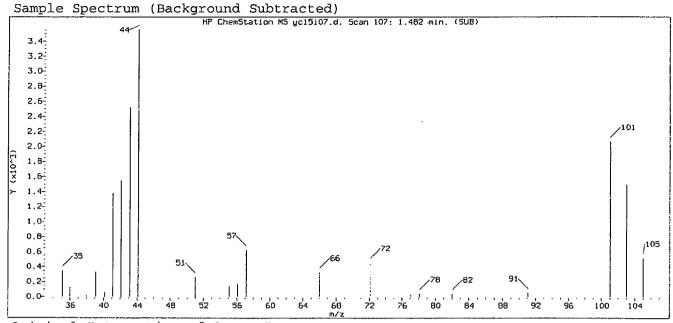
Date, time and analyst ID of latest file update: 15-Oct-2012 17:44 sej02002

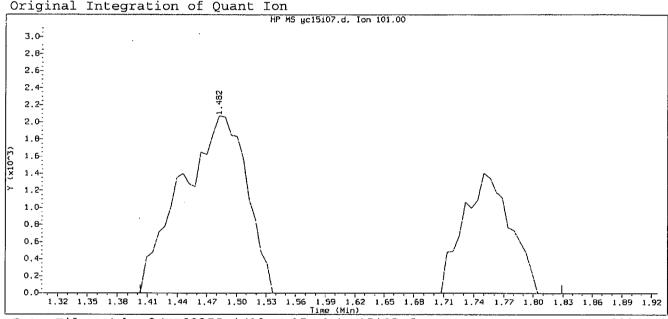
Sample Name: VSTD001 Lab Sample ID: VSTD001

Compound Number : 18

Compound Name : Freon 113

Scan Number : 151
Retention Time (minutes): 1.750
Quant Ion : 101.00
Area (flag) : 4633M
On-Column Amount (ng) : 0.7993


Integration start scan : 139 Integration stop scan: 171 Y at integration start : 0 Y at integration end: 0


Reason for manual integration: improper integration

Digitally signed by Sara E. Johnson

Analyst responsible for change: on 10/15/2012 at 17:46.

Target 3.5 esignature user ID: sej02002

Data File: /chem2/HP09355.i/12oct15a.b/yc15i07.d Injection date and time: 15-OCT-2012 15:56

Instrument ID: HP09355.i Analyst ID: ADS01731

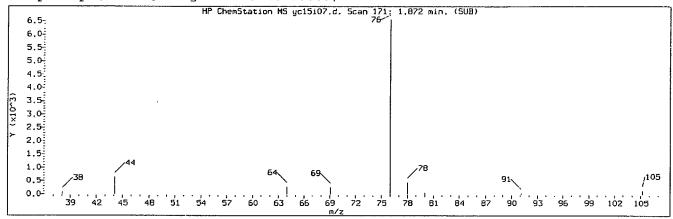
Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI Calibration date and time: 15-OCT-2012 16:11

Date, time and analyst ID of latest file update: 15-Oct-2012 16:11 Automation

Sample Name: VSTD001 Lab Sample ID: VSTD001

Compound Number : 18

Compound Name : Freon 113


: 107 Scan Number Retention Time (minutes): 1.482 Quant Ion : 101.00

Area : 14126

On-column Amount (ng) : 2.4373

Integration start scan 93 Integration stop scan: Y at integration start 0 Y at integration end:

Digitally signed by Sara E. Johnson on 10/15/2012 at 17:46. Target 3.5 esignature user ID: sej02002

Manually Integrated Quant Ion HP MS yc15i07.d, Ion 76.00 1.0-0.9 0.8 0.7-0.6 0.5 0.4 0.3-0,2 0.1-1,74 1.76 1.78 1.88 (Min) 1.80 1,82 1,B4 1.92 1,96 2,00 2.02

Data File: /chem2/HP09355.i/12oct15a.b/yc15i07.d Injection date and time: 15-OCT-2012 15:56

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:44

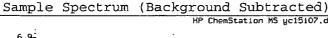
Date, time and analyst ID of latest file update: 15-Oct-2012 17:44 sej02002

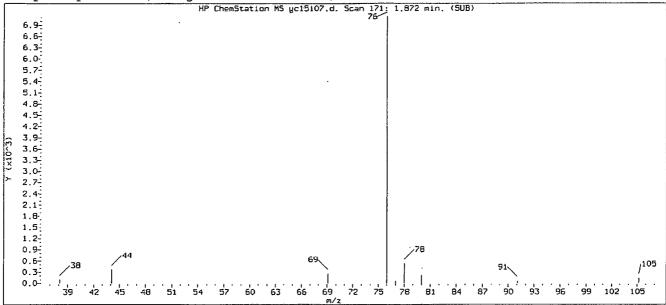
Sample Name: VSTD001 Lab Sample ID: VSTD001

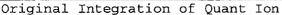
Compound Number : 22

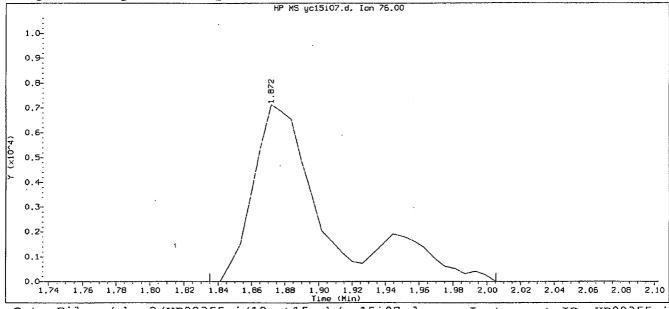
Compound Name : Carbon Disulfide

Scan Number : 171
Retention Time (minutes): 1.872
Quant Ion : 76.00
Area (flag) : 16901M
On-Column Amount (ng) : 0.9720


Integration start scan : 164 Integration stop scan: 179 Y at integration start : 0 Y at integration end: 0


Reason for manual integration: improper integration


Digitally signed by Sara E. Johnson


Analyst responsible for change: on 10/15/2012 at 17:46.

Target 3.5 esignature user ID: sej02002

Data File: /chem2/HP09355.i/12oct15a.b/yc15i07.d Injection date and time: 15-OCT-2012 15:56

Instrument ID: HP09355.i Analyst ID: ADS01731

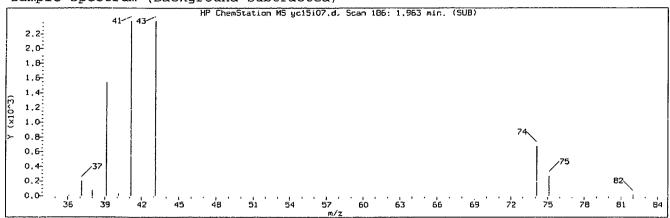
Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 15-OCT-2012 16:11

Date, time and analyst ID of latest file update: 15-Oct-2012 16:11 Automation

Sample Name: VSTD001 Lab Sample ID: VSTD001

Compound Number


Compound Name : Carbon Disulfide

Scan Number : 171 Retention Time (minutes): 1.872

: 76.00 Quant Ion : 21455 Area

On-column Amount (ng) : 1.2340 Integration start scan 164 Integration stop scan: : Y at integration start Y at integration end:

Digitally signed by Sara E. Johnson on 10/15/2012 at 17:46. Target 3.5 esignature user ID: sej02002

Manually Integrated Quant Ion HP MS uc15i07.d, Ion 43.00 4.8-4.4 4.0 3.6 3.2-2,8 2.4-2.0 1.6 1.2 0,8 0.4 0.0 1.80 1.82 1.84 1.85 1.88 1.90 1.92 1.94 1.96 1.98 2.00 2.02 2.04 2.06 2.08 2.10 2.12 Time (Min)

Data File: /chem2/HP09355.i/12oct15a.b/yc15i07.d Injection date and time: 15-OCT-2012 15:56

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:44

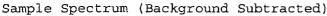
Date, time and analyst ID of latest file update: 15-Oct-2012 17:44 sej02002

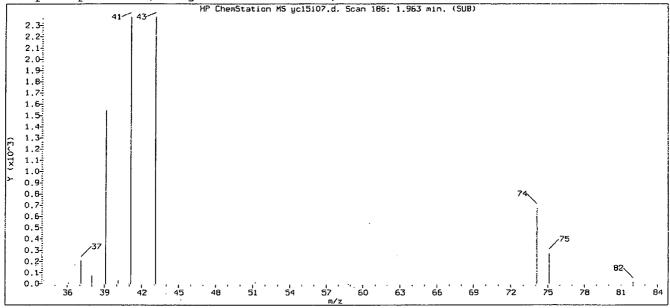
Sample Name: VSTD001 Lab Sample ID: VSTD001

Compound Number : 25

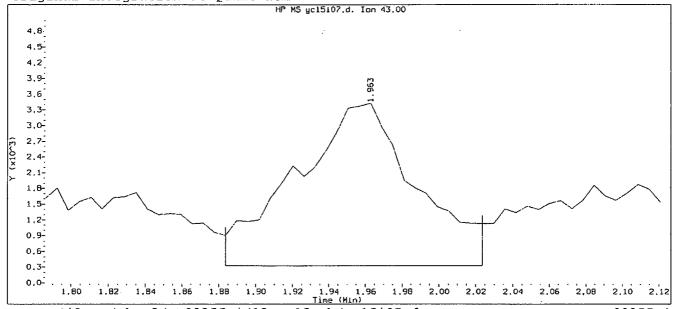
Compound Name : Methyl Acetate

Scan Number : 186
Retention Time (minutes): 1.963
Quant Ion : 43.00
Area (flag) : 9849M
On-Column Amount (ng) : 1.1462


Integration start scan : 172 Integration stop scan: 195 Y at integration start : 848 Y at integration end: 848


Reason for manual integration: improper integration

Digitally signed by Sara E. Johnson


Analyst responsible for change: on 10/15/2012 at 17:46.

Target 3.5 esignature user ID: sej02002

Data File: /chem2/HP09355.i/12oct15a.b/yc15i07.d Injection date and time: 15-OCT-2012 15:56

Instrument ID: HP09355.i
Analyst ID: ADS01731

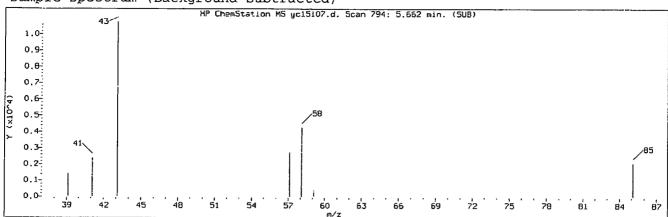
Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 15-OCT-2012 16:11

Date, time and analyst ID of latest file update: 15-Oct-2012 16:11 Automation

Sample Name: VSTD001 Lab Sample ID: VSTD001

Compound Number : 25


Compound Name : Methyl Acetate

Scan Number : 186
Retention Time (minutes): 1.963
Quant Ion : 43.00
Area : 14169

On-column Amount (ng) : 1.4398

Integration start scan : 172 Integration stop scan: 195 Y at integration end: 326 Y at integration end: 326

Digitally signed by Sara E. Johnson on 10/15/2012 at 17:46. Target 3.5 esignature user ID: sej02002

Manually Integrated Quant Ion HP MS yc15i07.d. Ion 43.00 1.6 1.4 1.2 1.0 0.8-0.6 0.4 5,52 5.54 5.56 5.58 5.72 5.60 5.66 5.70 5.74

Data File: /chem2/HP09355.i/12oct15a.b/yc15i07.d Injection date and time: 15-OCT-2012 15:56

Instrument ID: HP09355.i
Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260WI-EE

Calibration date and time: 15-OCT-2012 17:44

Date, time and analyst ID of latest file update: 15-Oct-2012 17:44 sej02002

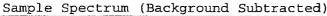
Sample Name: VSTD001 La

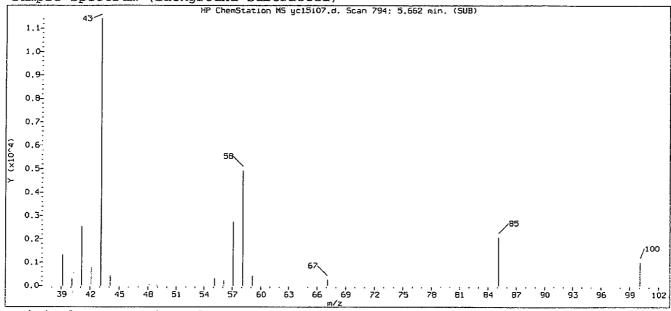
Lab Sample ID: VSTD001

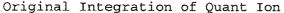
Compound Number : 89

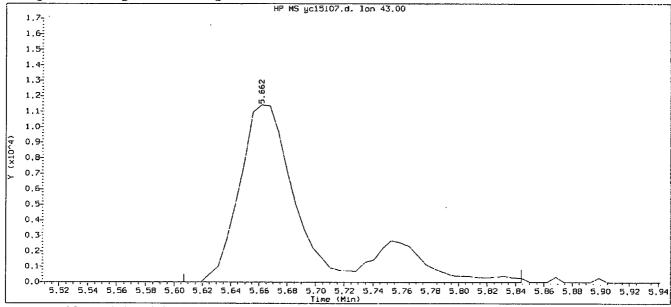
Compound Name : 4-Methyl-2-Pentanone

Scan Number : 794
Retention Time (minutes): 5.662
Quant Ion : 43.00
Area (flag) : 30354M
On-Column Amount (ng) : 1.8769


Integration start scan : 784 Integration stop scan: 804 Y at integration start : 0 Y at integration end: 0


Reason for manual integration: improper integration


Digitally signed by Sara E. Johnson


Analyst responsible for change: on 10/15/2012 at 17:46.

Target 3.5 esignature user ID: sej02002

Data File: /chem2/HP09355.i/12oct15a.b/yc15i07.d Injection date and time: 15-OCT-2012 15:56

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI

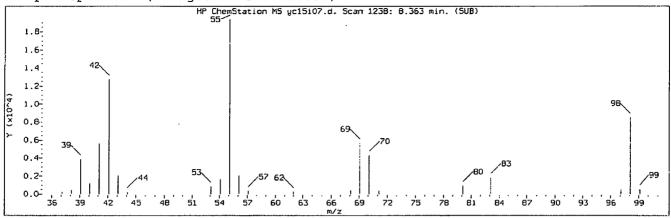
Calibration date and time: 15-OCT-2012 16:11

Date, time and analyst ID of latest file update: 15-Oct-2012 16:11 Automation

Sample Name: VSTD001 Lab Sample ID: VSTD001

Compound Number : 89

Compound Name : 4-Methyl-2-Pentanone


Scan Number : 794
Retention Time (minutes): 5.662

Retention Time (minutes): 5.662 Quant Ion : 43.00 Area : 37559

On-column Amount (ng) : 2.3225

Integration start scan : 784 Integration stop scan: 823 Y at integration start : 0 Y at integration end: 0

Digitally signed by Sara E. Johnson on 10/15/2012 at 17:46. Target 3.5 esignature user ID: sej02002

Manually Integrated Quant Ion HP MS gc15i07.d. Ion 55.00 2.B 2.6 2.4 2.2 2.0-1.8 1,6 1.4 1.2 1.0-0.8 0.6 0.4 0.2 0.0 8.24 8.26 8.28 8.30 8.32 8.34 8.36 8.38 8.40 8.42 8.44 8.45 8.48 8.50 B. 52 8.54 8.56 8.58 8.60

Data File: /chem2/HP09355.i/12oct15a.b/yc15i07.d Injection date and time: 15-OCT-2012 15:56

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Calibration date and time: 15-OCT-2012 17:44

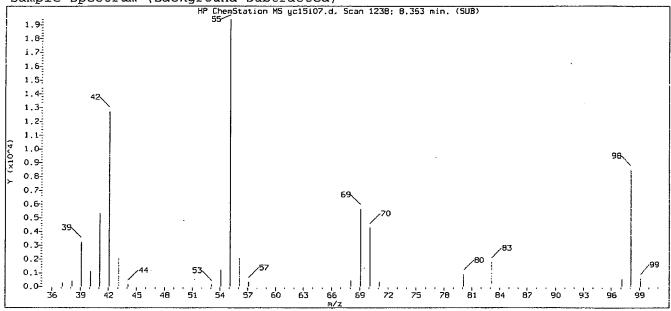
Sublist used: 8260WI-EE

Date, time and analyst ID of latest file update: 15-Oct-2012 17:44 sej02002

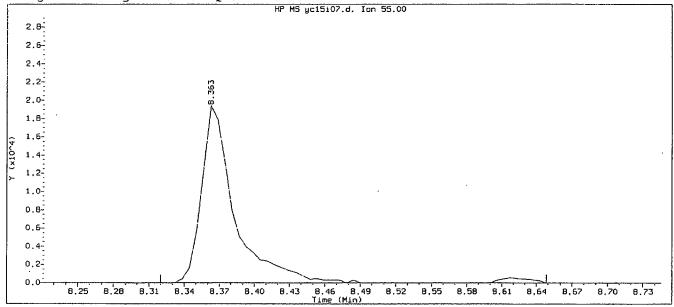
Sample Name: VSTD001 Lab Sample ID: VSTD001

: 118 Compound Number

: Cyclohexanone Compound Name


Scan Number 1238 Retention Time (minutes): 8.363 Quant Ion 55.00 Area (flag) : 38427M On-Column Amount (ng) : 45.4505

Integration start scan : 1230 Integration stop scan: 1263 Y at integration start Y at integration end:


Reason for manual integration: improper integration

Digitally signed by Sara E. Johnson Analyst responsible for change: on 10/15/2012 at 17:46.

Target 3.5 esignature user ID: sej02002

Original Integration of Quant Ion

Data File: /chem2/HP09355.i/12oct15a.b/yc15i07.d Injection date and time: 15-OCT-2012 15:56

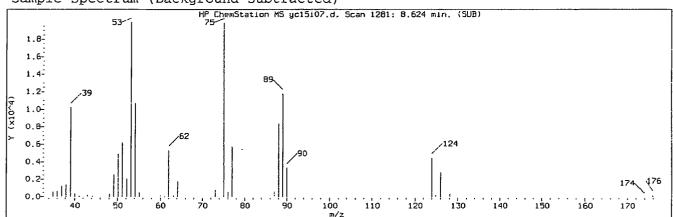
Instrument ID: HP09355.i Analyst ID: ADS01731

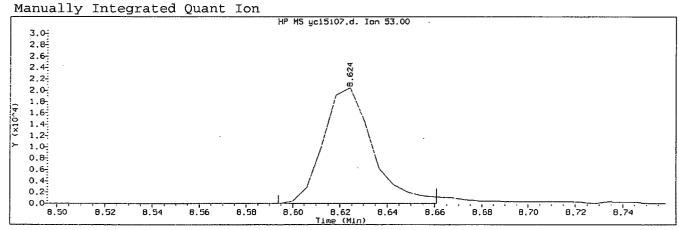
Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 15-OCT-2012 16:11

Date, time and analyst ID of latest file update: 15-Oct-2012 16:11 Automation

Sample Name: VSTD001 Lab Sample ID: VSTD001


Compound Number : 118


Compound Name : Cyclohexanone

Scan Number : 1238
Retention Time (minutes): 8.363
Quant Ion : 55.00
Area : 39432
On-column Amount (ng) : 46.4815

Integration start scan : 1230 Integration stop scan: 1284 Y at integration start : 0 Y at integration end: 0

Digitally signed by Sara E. Johnson on 10/15/2012 at 17:46. Target 3.5 esignature user ID: sej02002

Data File: /chem2/HP09355.i/12oct15a.b/yc15i07.d Injection date and time: 15-QCT-2012 15:56

Instrument ID: HP09355.i Analyst ID: ADS01731

Sublist used: 8260WI-EE

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

•

Calibration date and time: 15-OCT-2012 17:44

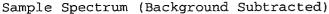
Date, time and analyst ID of latest file update: 15-Oct-2012 17:44 sej02002

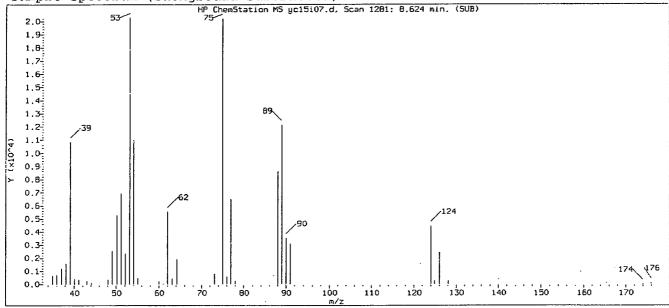
Compound Number : 124

Sample Name: VSTD001

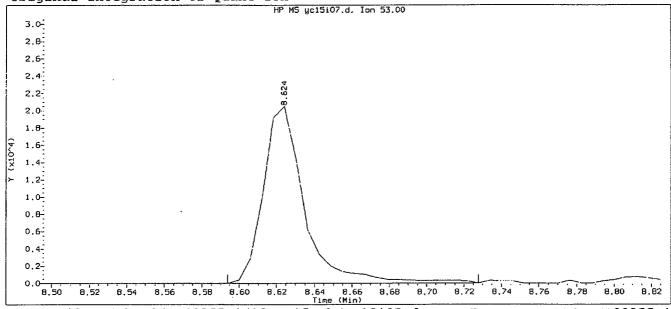
Compound Name : trans-1,4-Dichloro-2-Butene

Scan Number : 1281
Retention Time (minutes): 8.624
Quant Ion : 53.00
Area (flag) : 29660M
On-Column Amount (ng) : 7.6694


Reason for manual integration: improper integration


Digitally signed by Sara E. Johnson

Analyst responsible for change: on 10/15/2012 at 17:46.


Target 3.5 esignature user ID: sej02002

Lab Sample ID: VSTD001

Original Integration of Quant Ion

Data File: /chem2/HP09355.i/12oct15a.b/yc15i07.d Injection date and time: 15-OCT-2012 15:56

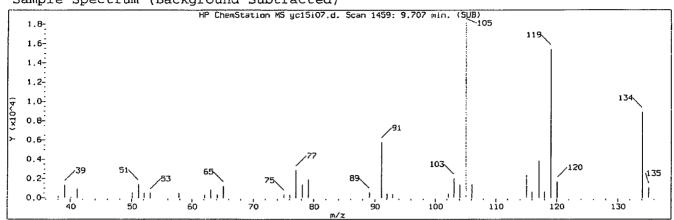
Instrument ID: HP09355.i
Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 15-OCT-2012 16:11

Date, time and analyst ID of latest file update: 15-Oct-2012 16:11 Automation

Sample Name: VSTD001 Lab Sample ID: VSTD001


Compound Number : 124

Compound Name : trans-1, 4-Dichloro-2-Butene

Scan Number : 1281
Retention Time (minutes): 8.624
Quant Ion : 53.00
Area : 31295

On-column Amount (ng) : 8.0923 Integration start scan : 1275 Integration stop scan: 1297 Y at integration start : 0 Y at integration end: 0

Digitally signed by Sara E. Johnson on 10/15/2012 at 17:46. Target 3.5 esignature user ID: sej02002

Manually Integrated Quant Ion HP MS yc15i07.d, Ion 119.00 2.2 2.0 1.8 1,4-1,2 1.0 0.8-0.6 0.4 0.2 0.0-9.60 9,66 9.76 9.78 9.80 9.62 9,64 9,68 9,70 9.72 9 74 9.82 9.84

Data File: /chem2/HP09355.i/12oct15a.b/yc15i07.d Injection date and time: 15-OCT-2012 15:56

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Calibration date and time: 15-OCT-2012 17:44

Sublist used: 8260WI-EE

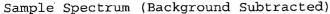
Date, time and analyst ID of latest file update: 15-Oct-2012 17:44 sej02002

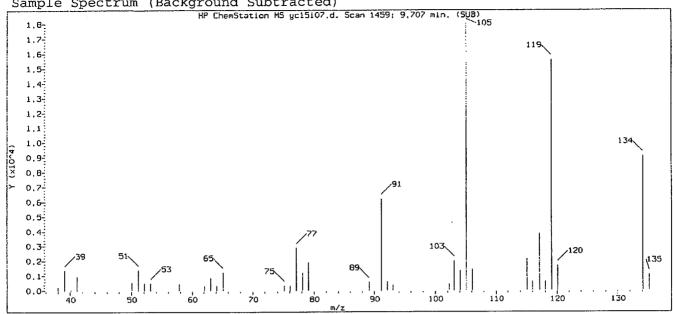
Sample Name: VSTD001 Lab Sample ID: VSTD001

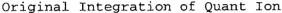
Compound Number : 146

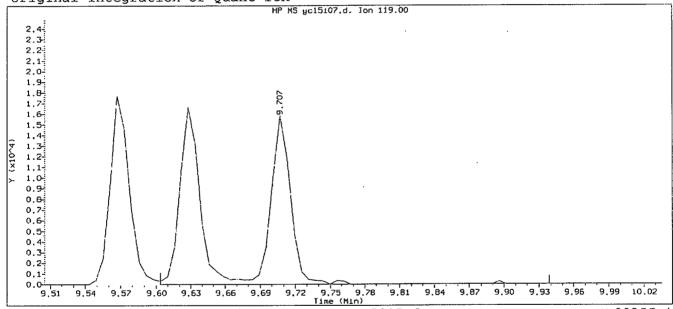
Compound Name : 1,2-Diethylbenzene

Scan Number : 1459
Retention Time (minutes): 9.707
Quant Ion : 119.00
Area (flag) : 17980M
On-Column Amount (ng) : 1.0046


Integration start scan : 1454 Integration stop scan: 1465 Y at integration start : 0 Y at integration end: 0


Reason for manual integration: improper integration


Digitally signed by Sara E. Johnson


Analyst responsible for change: on 10/15/2012 at 17:46.

Target 3.5 esignature user ID: sej02002

Data File: /chem2/HP09355.i/12oct15a.b/yc15i07.d Injection date and time: 15-OCT-2012 15:56

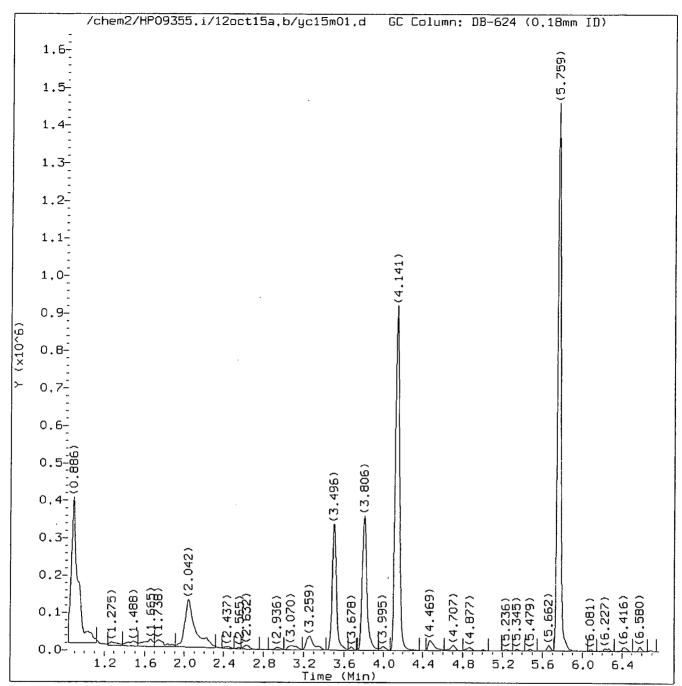
Instrument ID: HP09355.i Analyst ID: ADS01731

Sublist used: 8260WI Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Calibration date and time: 15-OCT-2012 16:11

Date, time and analyst ID of latest file update: 15-Oct-2012 16:11 Automation

Lab Sample ID: VSTD001 Sample Name: VSTD001


Compound Number : 146

: 1,2-Diethylbenzene Compound Name

: 1459 Scan Number Retention Time (minutes): 9.707 : 119.00 Quant Ion Area 38736 : 2.1644

On-column Amount (ng) Integration stop scan: 1496 Integration start scan : 1441 Y at integration end: Y at integration start

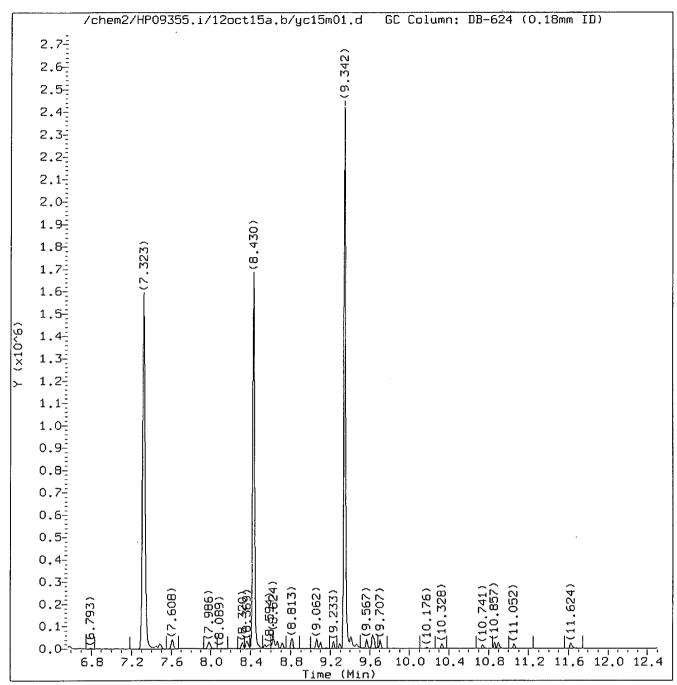
Digitally signed by Sara E. Johnson on 10/15/2012 at 17:46. Target 3.5 esignature user ID: sej02002

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15m01.d Injection date and time: 15-OCT-2012 16:17

Instrument ID: HP09355.i Analyst ID: ADS01731


Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260W-EE Calibration date and time: 15-OCT-2012 17:44

Date, time and analyst ID of latest file update: 15-Oct-2012 17:52 sej02002

Sample Name: MDL0.5 Lab Sample ID: MDL0.5

Digitally signed by Sara E. Johnson on 10/15/2012 at 17:53.
Target 3.5 esignature user ID: sej02002

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15m01.d Instrument ID: HP09355.i Injection date and time: 15-OCT-2012 16:17 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260W-EE

Calibration date and time: 15-OCT-2012 17:44

Date, time and analyst ID of latest file update: 15-Oct-2012 17:52 sej02002

Sample Name: MDL0.5 Lab Sample ID: MDL0.5

Digitally signed by Sara E. Johnson on 10/15/2012 at 17:53.
Target 3.5 esignature user ID: sej02002

page 2 of 2

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15m01.d Instrument ID: HP09355.i Injection date and time: 15-OCT-2012 16:17 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260W-EE

Calibration date and time: 15-OCT-2012 17:44

Date, time and analyst ID of latest file update: 15-Oct-2012 17:52 sej02002

Sample Name: MDL0.5 Lab Sample ID: MDL0.5

	T C				On-Column
Compounds	I.S. Ref.	RT	OIon	Area	Amount (ng)
			~		-=========
2) Dichlorodifluoromethane	(1)	1.026	85	3771	0.400
3) Chloromethane	(1)	1.050	50	5204	0.521
4) 1,3-Butadiene	(1)	1.117	39	2400M	0.571
5) Vinyl Chloride	(1)	1.123	62	5487	0.561
7) Bromomethane	(1)	1.269	94	3462	0.541
8) Chloroethane	(1)	1.324	64	2760	0.521
9) Dichlorofluoromethane	(1)	1.421	67	7108	0.611
10) Trichlorofluoromethane	(1)	1.476	101	4707M	0.447
11) n-Pentane	(1)	1.482	43	4190M	0.437
14) Freon 123a	(1)	1.604	67	4872	0.655
15) Acrolein	(4)	1.665	56	21285	7.008
<pre>16) 1,1-Dichloroethene</pre>	(1)	1.738	96	2578	0.456
18) Freon 113	(1)	1.750	101	2036M	0.351
17) Acetone	(1)	1.750	58	1958	1.239
20) Methyl Iodide	(1)	1.823	142	5059	0.470
21) 2-Propanol	(4)	1.823	45	14330	11.222
22) Carbon Disulfide	(1)	1.872	76	8160M	0.468
24) Allyl Chloride	(1)	1.945	41	8650	0.829
25) Methyl Acetate	(1)	1.957	43	4791M	0.556
26) Methylene Chloride	(1)	2.024	84	4466	0.635
28)*t-Butyl Alcohol-d10	(4)	2.042	65	455382	250.000
29) t-Butyl Alcohol	(4)	2.103	59	23479	10.396
30) Acrylonitrile	(1)	2.194	53	3647	0.615
31) trans-1,2-Dichloroethene	(1)	2.224	96	3377	0.499
32) Methyl Tertiary Butyl Ether	(1)	2.231	73	10998	0.470
33) n-Hexane	(1)	2.443	57	4655	0.459
34) 1,1-Dichloroethane	(1)	2.553	63	5572	0.453
36) di-Isopropyl Ether	(1)	2.620	45	12355	0.501
37) 2-Chloro-1,3-Butadiene	(1)	2.644	53	4908	0.471
39) Ethyl t-Butyl Ether	(1)	2.936	59	10842	0.457
41) 2-Butanone	(1)	3.052 3.058	43 96	11738 3283	1.370
40) cis-1,2-Dichloroethene	(1)		96 77		0.433
42) 2,2-Dichloropropane	(1) (4)	3.064	54	4410 23571	0.478
43) Propionitrile 46) Methacrylonitrile	(1)	3.119 3.253	54 67	26332	8.374 4.489
47) Bromochloromethane	(1)	3.265	128	1609	0.392
47) Bromochforomethane 48) Tetrahydrofuran	(4)	3.320	71	2544	0.392
50) Chloroform	(1)	3.350	83	7816	0.963
20) CHIOLOLOLIM	(+ /	0.000	0.5	,010	0.002

M = Compound was manually integrated.

page 1 of 4

Digitally signed by Sara E. Johnson on 10/15/2012 at 17:53.
Target 3.5 esignature user ID: sej02002

^{* =} Compound is an internal standard.

Target Revision 3.5

Data File: /chem2/HP093.55.i/12oct15a.b/yc15m01.d Injection date and time: 15-OCT-2012 16:17

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Calibration date and time: 15-OCT-2012 17:44

Sublist used: 8260W-EE

Date, time and analyst ID of latest file update: 15-Oct-2012 17:52 sej02002

Sample Name: MDL0.5 Lab Sample ID: MDL0.5

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
52)\$Dibromofluoromethane	(1)	3.496	113	306640	49.614
53) 1,1,1-Trichloroethane	(1)	3.526	97	4882	0.463
56) Cyclohexane	(1)	3.575	56	5562	0.450
45) 1,2-Dichloroethene (total)	(1)		96	6660	0.932
57) 1,1-Dichloropropene	(1)	3.678	75	4099	0.448
58) Carbon Tetrachloride	(1)	3.685	117	3140	0.401
59) Isobutyl Alcohol	(4)	3.806	41	20358	26.167
62)\$1,2-Dichloroethane-d4	(1)	3.812	102	80327	48.371
63) Benzene	(1)	3.867	78	13974	0.479
65) 1,2-Dichloroethane	(1)	3.879	62	4256	0.442
69) t-Amyl Methyl Ether	(1)	3.995	73	10448	0.448
71)*Fluorobenzene	(1)	4.141	96	1391395	50.000
72) n-Heptane	(1)	4.153	43	8670	0.738
73) n-Butanol	(4)	4.469	56	29207M	40.480
74) Trichloroethene	(1)	4.494	95	3003	0.414
77) 1,2-Dichloropropane	(1)	4.707	63	3380	0.441
76) Methylcyclohexane	(1)	4.707	83	5977	0.455
78) Dibromomethane	(1)	4.834	93	1971	0.388
79) 1,4-Dioxane	(4)	4.859	88	2456	12.238
80) Methyl Methacrylate	(1)	4.877	69	3668	0.405
83) Bromodichloromethane	(1)	5.011	83	3273	0.381
85) 2-Nitropropane	(1)	5.236	41	4439	1.250
86) 2-Chloroethyl Vinyl Ether	(1)	5.345	63	2651	0.387
87) cis-1,3-Dichloropropene	(1)	5.485	75	3965	0.361
89) 4-Methyl-2-Pentanone	(1)	5.662	43	15257	0.941
93) \$Toluene-d8	(2)	5.759	98	1316918	50.020
94) Toluene	(2)	5.826	92	8506	0.463
95) trans-1,3-Dichloropropene	(2)	6.088	75	3526	0.336
96) Ethyl Methacrylate	(2)	6.234	69	5540	0.399
97) 1,1,2-Trichloroethane	(2)	6.264	97	3090	0.416
98) Tetrachloroethene	(2)	6.416	166	3486	0.440
99) 1,3-Dichloropropane	(2)	6.446	76	5357	0.431
101) 2-Hexanone	(2)	6.580	43	12984	1.004
102) Dibromochloromethane	(2)	6.684	129	2329	0.341
104) 1,2-Dibromoethane	(2)	6.793	107	2997	0.372
106) *Chlorobenzene-d5	(2)	7.323	117	986609	50.000
107) Chlorobenzene	(2)	7.347	112	9118	0.446
108) 1,1,1,2-Tetrachloroethane	(2)	7.444	131	2427	0.364

M = Compound was manually integrated.

Digitally signed by Sara E. Johnson on 10/15/2012 at 17:53.

Target 3.5 esignature user ID: sej02002

page 2 of 4

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15m01.d Instrument ID: HP09355.i Injection date and time: 15-OCT-2012 16:17 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260W-EE

Calibration date and time: 15-OCT-2012 17:44

Date, time and analyst ID of latest file update: 15-Oct-2012 17:52 sej02002

Sample Name: MDL0.5 Lab Sample ID: MDL0.5

Compounds	I.S. Ref.	RT	OIon	Area	On-Column · Amount (ng)
			~	========	=======================================
109) Ethylbenzene	(2)	7.487	91	16515	0.463
110) m+p-Xylene	(2)	7.608	106	12282	0.873
113) o-Xylene	(2)	7.980	106	6172	0.434
114) Styrene	(2)	7.992	104	8787	0.370
115) Bromoform	(2)	8.138	173	1761	0.304
112) Xylene (Total)	(2)		106	18454	1.307
116) Isopropylbenzene	(2)	8.320	105	15914	0.446
118) Cyclohexanone	(4)	8.363	55	19001	21.385
119)\$4-Bromofluorobenzene	(2)	8.430	95	493717	49.743
121) Bromobenzene	(3)	8.545	156	3857	0.416
122) 1,1,2,2-Tetrachloroethane	(3)	8.570	83	5570	0.423
123) 1,2,3-Trichloropropane	(3)	8.594	110	1776	0.433
124) trans-1,4-Dichloro-2-Butene		8.624	53	14698	3.820
125) n-Propylbenzene	(3)	8.667	91	19785	0.487
126) 2-Chlorotoluene	(3)	8.716	126	4007	0.465
128) 4-Chlorotoluene	(3)	8.807	126	3745	0.420
127) 1,3,5-Trimethylbenzene	(3)	8.813	105	13925	0.460
130) tert-Butylbenzene	(3)	9.062	134	3073	0.452
131) Pentachloroethane	(3)	9.069	167	1887	0.337
132) 1,2,4-Trimethylbenzene	(3)	9.099.	105	14410	0.462
133) sec-Butylbenzene	(3)	9.233	105	18248	0.491
134) 1,3-Dichlorobenzene	(3)	9.294	146	7851	0.448
136) *1,4-Dichlorobenzene-d4	(3) (3)	9.348 9.348	152 119	558311 15726	50.000 0.479
135) p-Isopropyltoluene 138) 1,4-Dichlorobenzene	(3)	9.340	146	7996	0.428
139) 1,2,3-Trimethylbenzene	(3)	9.409	105	16356	0.428
141) Benzyl Chloride	(3)	9.470	91	8312	0.330
142) 1,3-Diethylbenzene	(3)	9.567	119	9614	0.464
142) 1,4-Diethylbenzene	(3)	9.628	119	10227	0.481
144) 1,2-Dichlorobenzene	(3)	9.628	146	8132	0.459
145) n-Butylbenzene	(3)	9.646	92	7708M	0.171
146) 1,2-Diethylbenzene	(3)	9.707	119	9130M	0.513
148) 1,2-Dibromo-3-Chloropropane		10.176	75	1219	0.364
149) 1,3,5-Trichlorobenzene	(3)	10.328	180	6999	0.521
150) 1,2,4-Trichlorobenzene	(3)	10.741	180	6687	0.530
151) Hexachlorobutadiene	(3)	10.857	225	4401	0.752
152) Naphthalene	(3)	10.900	128	24703	0.505
153) 1,2,3-Trichlorobenzene	(3)	11.052	180	7293	0.589

M = Compound was manually integrated.

Digitally signed by Sara E. Johnson on 10/15/2012 at 17:53.
Target 3.5 esignature user ID: sej02002

page 3 of 4

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15m01.d

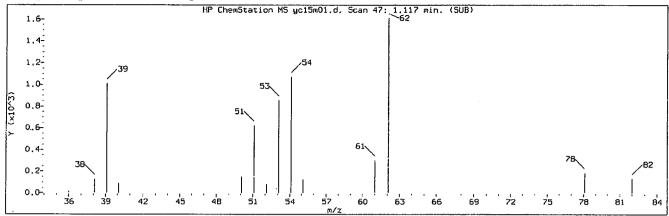
Instrument ID: HP09355.i

Injection date and time: 15-OCT-2012 16:17

Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260W-E2012 Date, time and analyst ID of latest file update: 15-Oct-2012 17:52 sej02002

Sublist used: 8260W-EE


Sample Name: MDL0.5

Lab Sample ID: MDL0.5

					On-Column
	I.S.				Amount
Compounds	Ref.	RT	QIon	Area	(ng)
=======================================	=====	======	=====	========	=======================================
154) 2-Methylnaphthalene	(3)	11.624	142	17620	0.647

page 4 of 4

Digitally signed by Sara E. Johnson on 10/15/2012 at 17:53.
Target 3.5 esignature user ID: sej02002

Manually Integrated Quant Ion HP MS uc15m01.d. Ion 39.00 2,2-2.0-1.8-1.5 1.4-1.2-1.0 0.8-0.6 0.4 0.0-1,12 1,06 1.0B 1.10 1,14 1,16 1.18 1,20 1.22 1.24

Data File: /chem2/HP09355.i/12oct15a.b/yc15m01.d Injection date and time: 15-OCT-2012 16:17

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260W-EE

Calibration date and time: 15-OCT-2012 17:44

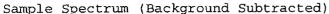
Date, time and analyst ID of latest file update: 15-Oct-2012 17:52 sej02002

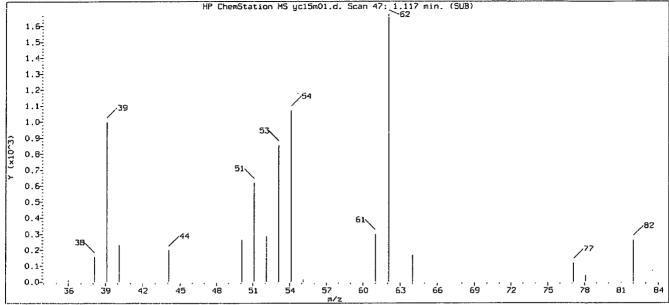
Sample Name: MDL0.5 Lab Sample ID: MDL0.5

Compound Number

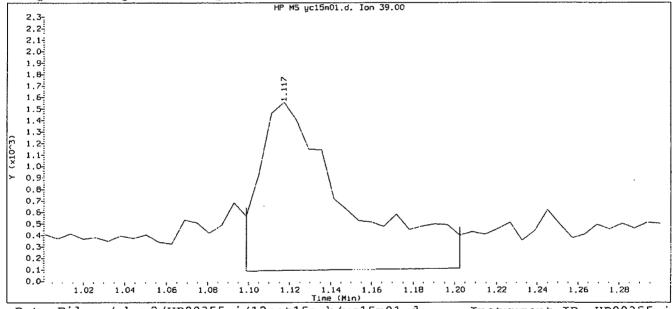
Compound Name 1,3-Butadiene

Scan Number 47 Retention Time (minutes): 1.117 Ouant Ion 39.00 Area (flag) : 2400M : 0.5711 On-Column Amount (ng)


40 54 Integration start scan Integration stop scan: Y at integration start 406 Y at integration end: 406


Reason for manual integration: improper integration

Digitally signed by Sara E. Johnson


Analyst responsible for change: on 10/15/2012 at 17:53.

Target 3.5 esignature user ID: sej02002

Original Integration of Quant Ion

Data File: /chem2/HP09355.i/12oct15a.b/yc15m01.d Injection date and time: 15-OCT-2012 16:17

Instrument ID: HP09355.i
Analyst ID: ADS01731

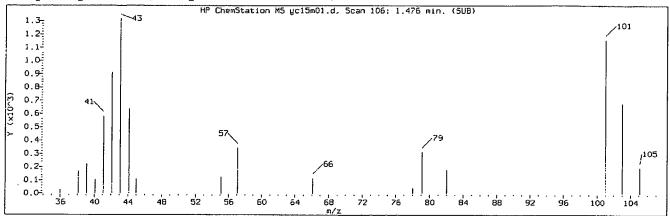
Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260W

Calibration date and time: 15-OCT-2012 16:26

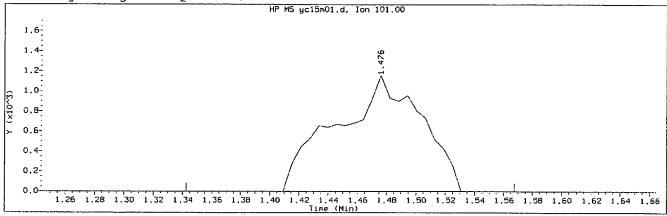
Date, time and analyst ID of latest file update: 15-Oct-2012 16:32 Automation

Sample Name: MDL0.5 Lab Sample ID: MDL0.5

Compound Number : 4


Compound Name : 1,3-Butadiene

Scan Number : 47
Retention Time (minutes): 1.11


Retention Time (minutes): 1.117
Quant Ion : 39.00
Area : 4305
On-column Amount (ng) : 1.0245

Integration start scan : 43 Integration stop scan: 60 Y at integration start : 89 Y at integration end: 111

Digitally signed by Sara E. Johnson on 10/15/2012 at 17:53. Target 3.5 esignature user ID: sej02002

Manually Integrated Quant Ion

Data File: /chem2/HP09355.i/12oct15a.b/yc15m01.d Injection date and time: 15-OCT-2012 16:17

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260W-EE

Calibration date and time: 15-OCT-2012 17:44

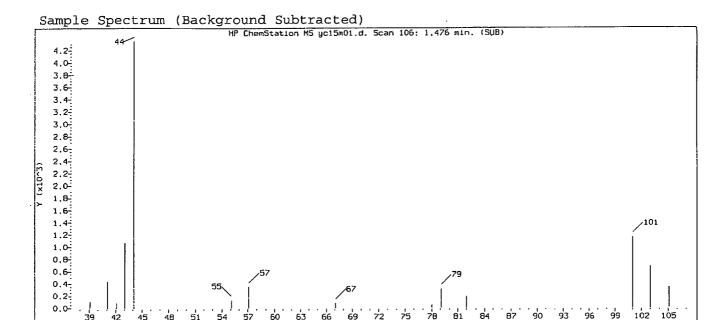
Date, time and analyst ID of latest file update: 15-Oct-2012 17:52 sej02002

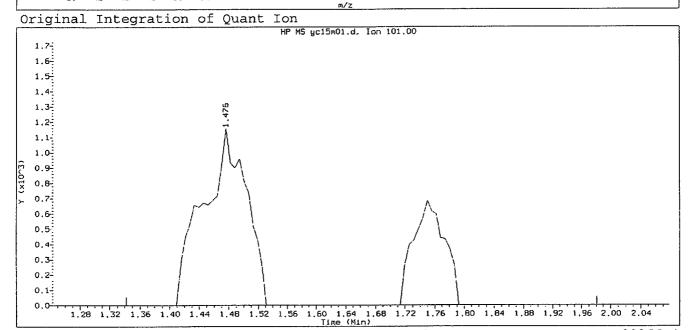
Sample Name: MDL0.5 Lab Sample ID: MDL0.5

Compound Number : 10

Compound Name : Trichlorofluoromethane

Scan Number : 106
Retention Time (minutes): 1.476
Quant Ion : 101.00
Area (flag) : 4707M
On-Column Amount (ng) : 0.4473


Integration start scan : 83 Integration stop scan: 120 Y at integration start : 0 Y at integration end: 0


Reason for manual integration: improper integration

Digitally signed by Sara E. Johnson

Analyst responsible for change: on 10/15/2012 at 17:53.

Target 3.5 esignature user ID: sej02002

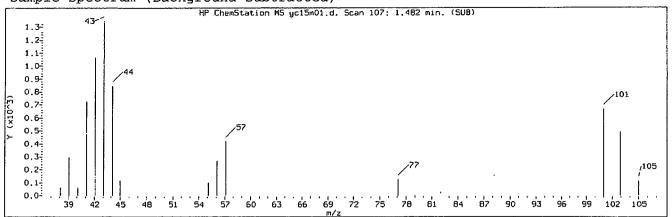
Data File: /chem2/HP09355.i/12oct15a.b/yc15m01.d Injection date and time: 15-OCT-2012 16:17

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260W Calibration date and time: 15-OCT-2012 16:26

Date, time and analyst ID of latest file update: 15-Oct-2012 16:32 Automation

Sample Name: MDL0.5 Lab Sample ID: MDL0.5


Compound Number : 10

Compound Name : Trichlorofluoromethane

Scan Number : 106
Retention Time (minutes): 1.476
Quant Ion : 101.00
Area : 6743
On-column Amount (ng) : 0.6409

Integration start scan : 83 Integration stop scan: 188 Y at integration start : 0 Y at integration end: 0

Digitally signed by Sara E. Johnson on 10/15/2012 at 17:53. Target 3.5 esignature user ID: sej02002

Manually Integrated Quant Ion HP MS yc15m01.d, Ion 43.00 2.8 2.6 2.4-2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6-0.4 0.2 0.0 1,42 1,44 1,45 1,48 Time (Min) 1.48 1.50 1.52 1.54 1.56

Data File: /chem2/HP09355.i/12oct15a.b/yc15m01.d Injection date and time: 15-OCT-2012 16:17

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260W-EE

Calibration date and time: 15-OCT-2012 17:44

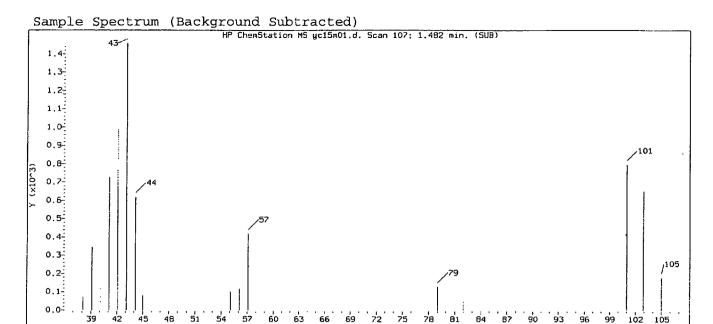
Date, time and analyst ID of latest file update: 15-Oct-2012 17:52 sej02002

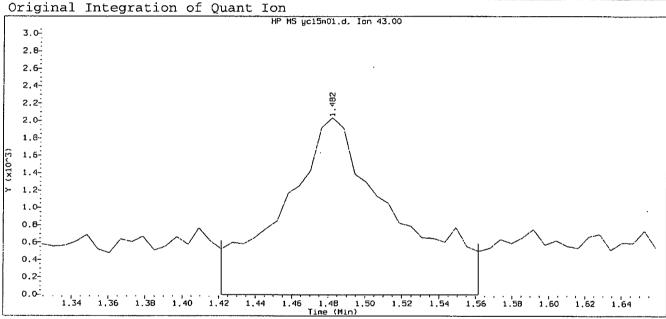
Sample Name: MDL0.5 Lab Sample ID: MDL0.5

Compound Number : 11

Compound Name : n-Pentane

Scan Number : 107
Retention Time (minutes): 1.482
Quant Ion : 43.00
Area (flag) : 4190M
On-Column Amount (ng) : 0.4371


Integration start scan : 98 Integration stop scan: 116 Y at integration start : 498 Y at integration end: 498


Reason for manual integration: improper integration

Digitally signed by Sara E. Johnson

Analyst responsible for change: on 10/15/2012 at 17:53.

Target 3.5 esignature user ID: sej02002

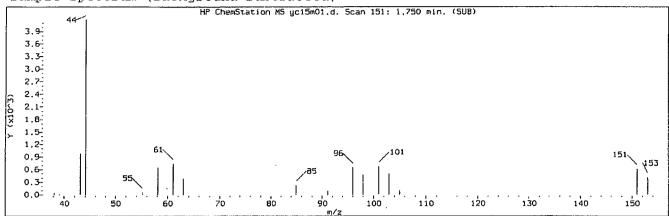
Data File: /chem2/HP09355.i/12oct15a.b/yc15m01.d Injection date and time: 15-OCT-2012 16:17

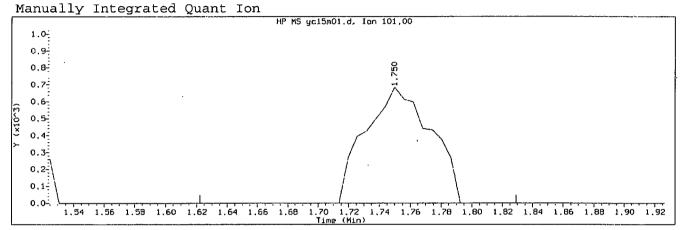
Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260W Calibration date and time: 15-OCT-2012 16:26

Date, time and analyst ID of latest file update: 15-Oct-2012 16:32 Automation

Sample Name: MDL0.5 Lab Sample ID: MDL0.5


Compound Number : 11
Compound Name : n-1


Compound Name : n-Pentane Scan Number : 107

Retention Time (minutes): 1.482
Quant Ion : 43.00
Area : 8535
On-column Amount (ng) : 0.8904

Integration start scan : 96 Integration stop scan: 119 Y at integration start : 0 Y at integration end: 0

Digitally signed by Sara E. Johnson on 10/15/2012 at 17:53. Target 3.5 esignature user ID: sej02002

Data File: /chem2/HP09355.i/12oct15a.b/yc15m01.d Injection date and time: 15-OCT-2012 16:17

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260W-EE

Calibration date and time: 15-OCT-2012 17:44

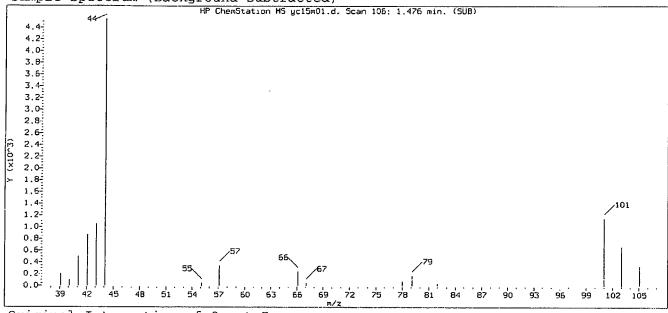
Date, time and analyst ID of latest file update: 15-Oct-2012 17:52 sej02002

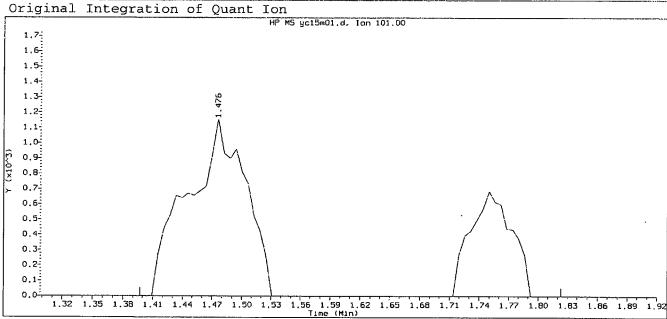
Sample Name: MDL0.5 Lab Sample ID: MDL0.5

Compound Number : 18

Compound Name : Freon 113

Scan Number : 151
Retention Time (minutes): 1.750
Quant Ion : 101.00
Area (flag) : 2036M
On-Column Amount (ng) : 0.3505


Integration start scan : 129 Integration stop scan: 163
Y at integration start : 0 Y at integration end: 0


Reason for manual integration: improper integration

Digitally signed by Sara E. Johnson

Analyst responsible for change: on 10/15/2012 at 17:53.

Target 3.5 esignature user ID: sej02002

Data File: /chem2/HP09355.i/12oct15a.b/yc15m01.d Injection date and time: 15-OCT-2012 16:17

Instrument ID: HP09355.i Analyst ID: ADS01731

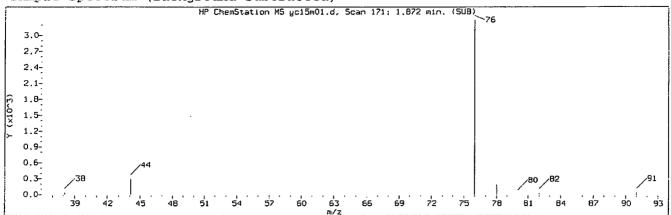
Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260W

Calibration date and time: 15-OCT-2012 16:26

Date, time and analyst ID of latest file update: 15-Oct-2012 16:32 Automation

Sample Name: MDL0.5 Lab Sample ID: MDL0.5

Compound Number : 18


Compound Name : Freon 113

Scan Number : 106
Retention Time (minutes): 1.476

Quant Ion : 101.00 Area : 6743 On-column Amount (ng) : 1.1610

Integration start scan : 92 Integration stop scan: 162
Y at integration start : 0 Y at integration end: (

Digitally signed by Sara E. Johnson on 10/15/2012 at 17:53. Target 3.5 esignature user ID: sej02002

Data File: /chem2/HP09355.i/12oct15a.b/yc15m01.d Injection date and time: 15-OCT-2012 16:17

1.82

Instrument ID: HP09355.i Analyst ID: ADS01731

1,98

2.00

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260W-EE

Calibration date and time: 15-OCT-2012 17:44

1,80

Date, time and analyst ID of latest file update: 15-Oct-2012 17:52 sej02002

1,86

1.88

Sample Name: MDL0.5 Lab Sample ID: MDL0.5

1.84

Compound Number : 22

1.78

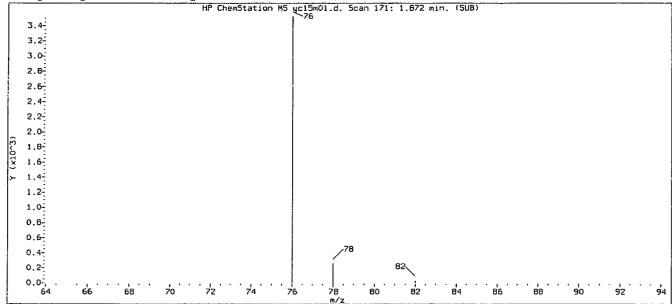
0.8

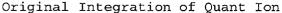
1.76

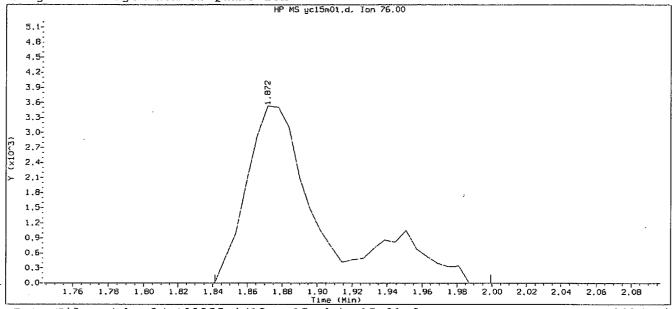
Compound Name : Carbon Disulfide

Scan Number : 171
Retention Time (minutes): 1.872
Quant Ion : 76.00
Area (flag) : 8160M
On-Column Amount (ng) : 0.4683

Integration start scan : 165 Integration stop scan: 177 Y at integration start : 0 Y at integration end: 0


Reason for manual integration: improper integration


Digitally signed by Sara E. Johnson


Analyst responsible for change: on 10/15/2012 at 17:53.

Target 3.5 esignature user ID: sej02002

1.92

Data File: /chem2/HP09355.i/12oct15a.b/yc15m01.d Injection date and time: 15-OCT-2012 16:17

Instrument ID: HP09355.i Analyst ID: ADS01731

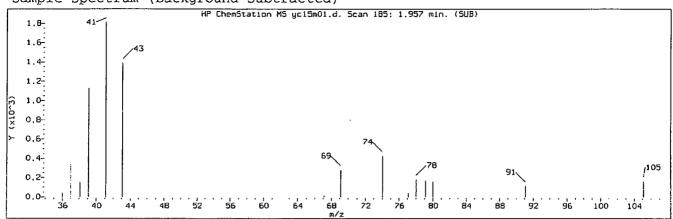
Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260W

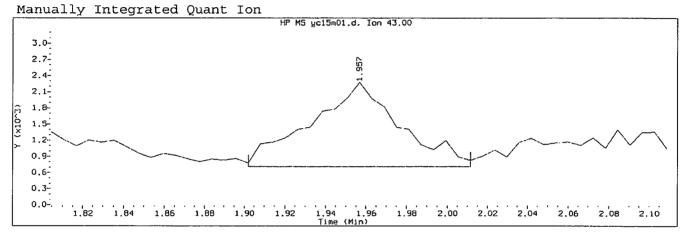
Calibration date and time: 15-OCT-2012 16:26

Date, time and analyst ID of latest file update: 15-Oct-2012 16:32 Automation

Sample Name: MDL0.5 Lab Sample ID: MDL0.5

Compound Number : 22


Compound Name : Carbon Disulfide


Scan Number : 171
Retention Time (minutes): 1.872
Quant Ion : 76.00
Area : 10588

On-column Amount (ng) : 0.6077

Integration start scan : 165 Integration stop scan: 191 Y at integration end: 0

Digitally signed by Sara E. Johnson on 10/15/2012 at 17:53. Target 3.5 esignature user ID: sej02002

Data File: /chem2/HP09355.i/12oct15a.b/yc15m01.d Injection date and time: 15-OCT-2012 16:17

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260W-EE

Calibration date and time: 15-OCT-2012 17:44

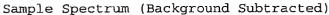
Date, time and analyst ID of latest file update: 15-Oct-2012 17:52 sej02002

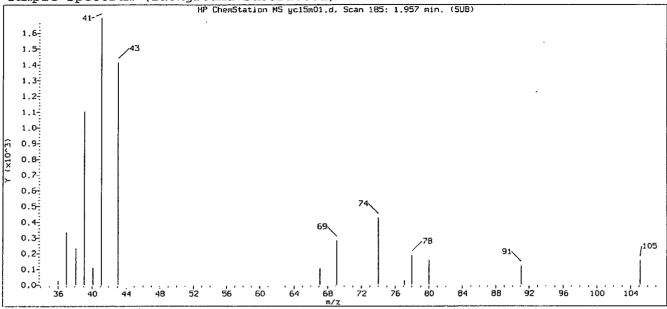
Sample Name: MDL0.5 Lab Sample ID: MDL0.5

: 25 Compound Number

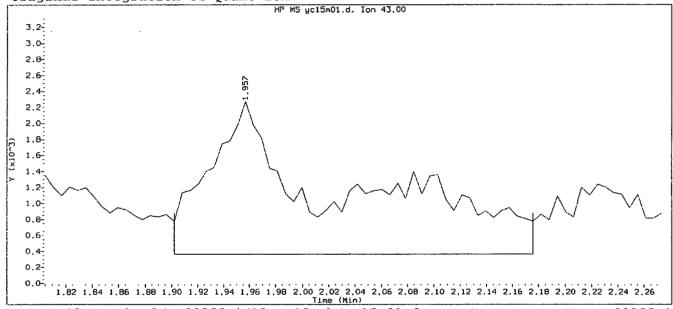
Compound Name : Methyl Acetate

Scan Number 185 Retention Time (minutes): 1.957 Quant Ion 43.00 Area (flag) 4791M 0.5564 On-Column Amount (ng)


175 Integration start scan Integration stop scan: 710 Y at integration start Y at integration end:


Reason for manual integration: improper integration

Digitally signed by Sara E. Johnson


Analyst responsible for change: on 10/15/2012 at 17:53.

Target 3.5 esignature user ID: sej02002

Original Integration of Quant Ion

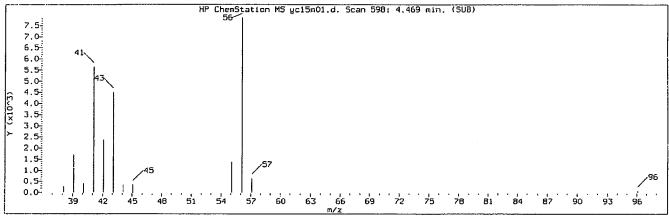
Data File: /chem2/HP09355.i/12oct15a.b/yc15m01.d Injection date and time: 15-OCT-2012 16:17

Instrument ID: HP09355.i Analyst ID: ADS01731

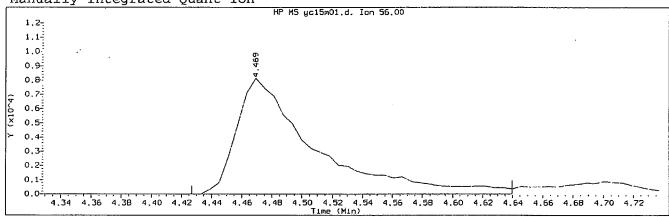
Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260W Calibration date and time: 15-OCT-2012 16:26

Date, time and analyst ID of latest file update: 15-Oct-2012 16:32 Automation

Sample Name: MDL0.5 Lab Sample ID: MDL0.5


Compound Number : 25

Compound Name : Methyl Acetate


Scan Number : 185
Retention Time (minutes): 1.957
Quant Ion : 43.00
Area : 13722
On-column Amount (ng) : 1.4677

Integration start scan : 175 Integration stop scan: 220 Y at integration start : 366 Y at integration end: 366

Digitally signed by Sara E. Johnson on 10/15/2012 at 17:53. Target 3.5 esignature user ID: sej02002

Manually Integrated Quant Ion

Data File: /chem2/HP09355.i/12oct15a.b/yc15m01.d Injection date and time: 15-OCT-2012 16:17

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260W-EE

Calibration date and time: 15-OCT-2012 17:44

Date, time and analyst ID of latest file update: 15-Oct-2012 17:52 sej02002

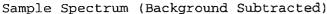
Sample Name: MDL0.5 Lab Sample ID: MDL0.5

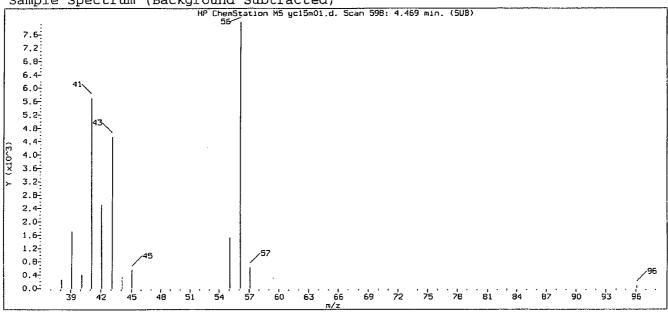
Compound Number : 73

Compound Name : n-Butanol

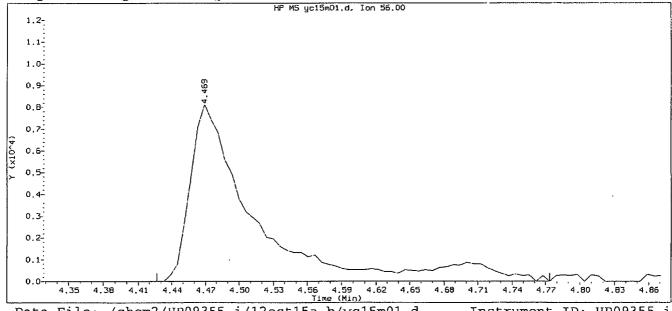
Scan Number : 598 Retention Time (minutes): 4.469 Quant Ion : 56.00 Area (flag) : 29207M On-Column Amount (ng) : 40.4798

Integration start scan 590 Integration stop scan: Y at integration start 0 Y at integration end:


Reason for manual integration: improper integration


Digitally signed by Sara E. Johnson

Analyst responsible for change: on 10/15/2012 at 17:53.


Target 3.5 esignature user ID: sej02002

GC/MS audit/management approval:

Original Integration of Quant Ion

Data File: /chem2/HP09355.i/12oct15a.b/yc15m01.d Injection date and time: 15-OCT-2012 16:17

Instrument ID: HP09355.i Analyst ID: ADS01731

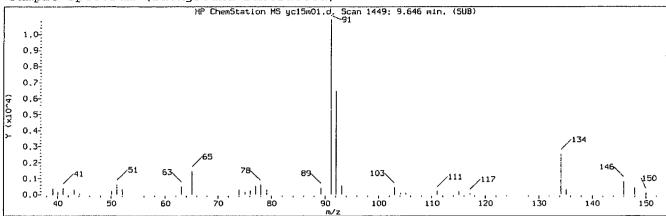
Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260W

Calibration date and time: 15-OCT-2012 16:26

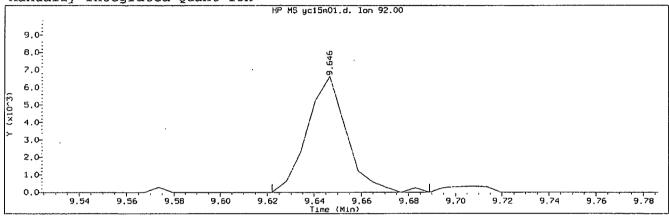
Date, time and analyst ID of latest file update: 15-Oct-2012 16:32 Automation

Sample Name: MDL0.5 Lab Sample ID: MDL0.5

Compound Number : 73


Compound Name : n-Butanol

Scan Number : 598
Retention Time (minutes): 4.469
Quant Ion : 56.00


Area : 33065 On-column Amount (ng) : 45.8276

Integration start scan : 590 Integration stop scan: 647
Y at integration start : 0 Y at integration end: 0

Digitally signed by Sara E. Johnson on 10/15/2012 at 17:53. Target 3.5 esignature user ID: sej02002

Manually Integrated Quant Ion

Data File: /chem2/HP09355.i/12oct15a.b/yc15m01.d Injection date and time: 15-OCT-2012 16:17

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260W-EE

Calibration date and time: 15-OCT-2012 17:44

Date, time and analyst ID of latest file update: 15-Oct-2012 17:52 sej02002

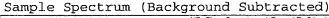
Sample Name: MDL0.5 Lab Sample ID: MDL0.5

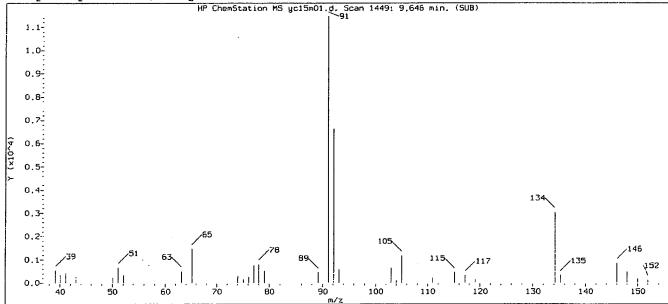
Compound Number : 145

Compound Name : n-Butylbenzene

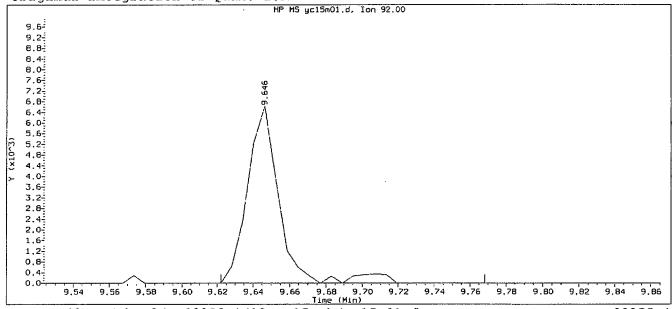
Scan Number : 1449
Retention Time (minutes): 9.646
Quant Ion : 92.00
Area (flag) : 7708M
On-Column Amount (ng) : 0.4735

Integration start scan : 1444 Integration stop scan: 1455 Y at integration start : 0 Y at integration end: 0


Reason for manual integration: improper integration


Digitally signed by Sara E. Johnson

Analyst responsible for change: on 10/15/2012 at 17:53.


Target 3.5 esignature user ID: sej02002

GC/MS audit/management approval:

Original Integration of Quant Ion

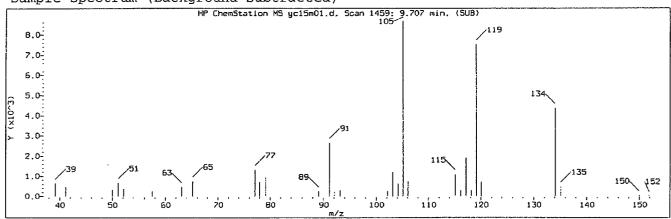
Data File: /chem2/HP09355.i/12oct15a.b/yc15m01.d Injection date and time: 15-OCT-2012 16:17

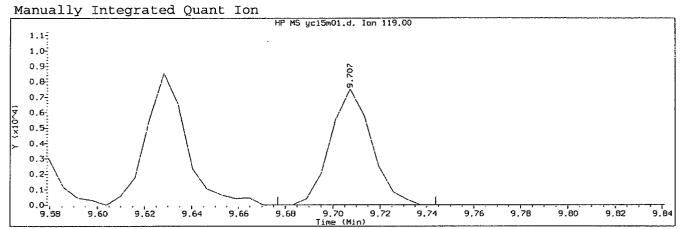
Instrument ID: HP09355.i
Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260W

Calibration date and time: 15-OCT-2012 16:26

Date, time and analyst ID of latest file update: 15-Oct-2012 16:32 Automation


Sample Name: MDL0.5 Lab Sample ID: MDL0.5


Compound Number : 145

Compound Name : n-Butylbenzene

Scan Number : 1449
Retention Time (minutes): 9.646
Quant Ion : 92.00
Area : 8165
On-column Amount (ng) : 0.5016

Digitally signed by Sara E. Johnson on 10/15/2012 at 17:53. Target 3.5 esignature user ID: sej02002

Data File: /chem2/HP09355.i/12oct15a.b/yc15m01.d Injection date and time: 15-OCT-2012 16:17

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260W-EE

Calibration date and time: 15-OCT-2012 17:44

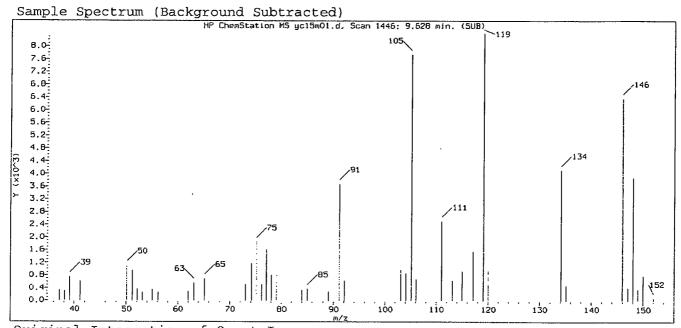
Date, time and analyst ID of latest file update: 15-Oct-2012 17:52 sej02002

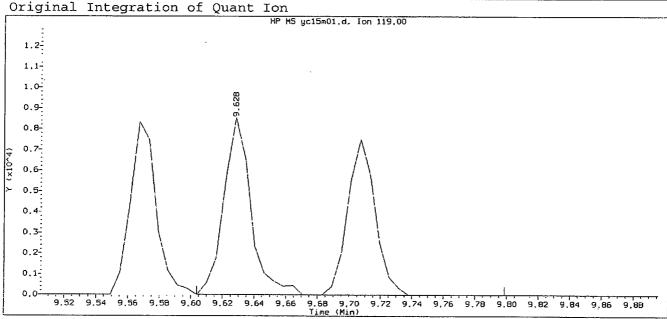
Sample Name: MDL0.5 Lab Sample ID: MDL0.5

Compound Number : 146

Compound Name : 1,2-Diethylbenzene

Scan Number : 1459
Retention Time (minutes): 9.707
Quant Ion : 119.00
Area (flag) : 9130M
On-Column Amount (ng) : 0.5127


Reason for manual integration: improper integration


Digitally signed by Sara E. Johnson

Analyst responsible for change: on 10/15/2012 at 17:53.

Target 3.5 esignature user ID: sej02002

GC/MS audit/management approval:__

Data File: /chem2/HP09355.i/12oct15a.b/yc15m01.d Injection date and time: 15-OCT-2012 16:17

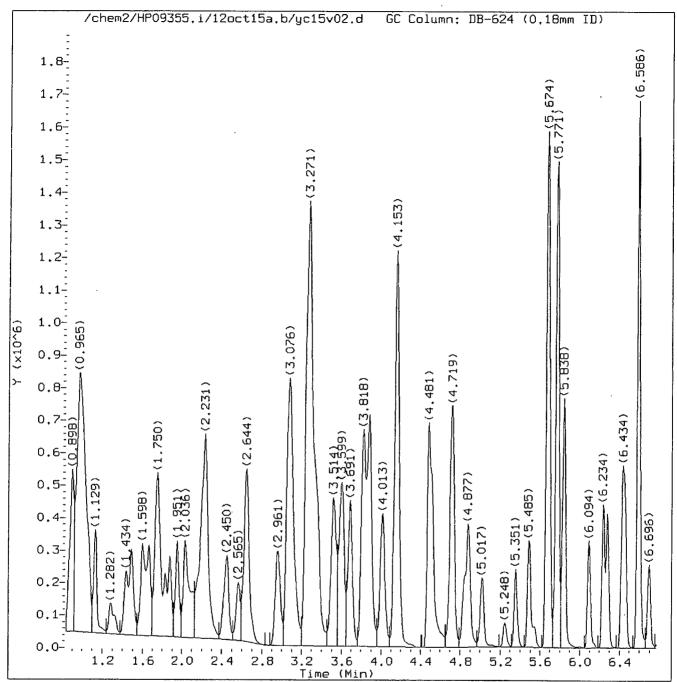
Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260W

Calibration date and time: 15-OCT-2012 16:26

Date, time and analyst ID of latest file update: 15-Oct-2012 16:32 Automation

Sample Name: MDL0.5 Lab Sample ID: MDL0.5


Compound Number : 146

Compound Name : 1,2-Diethylbenzene

Scan Number : 1446
Retention Time (minutes): 9.628
Quant Ion : 119.00
Area : 19357
On-column Amount (ng) : 1.0871

Integration start scan : 1441 Integration stop scan: 1473 Y at integration start : 0 Y at integration end: 0

Digitally signed by Sara E. Johnson on 10/15/2012 at 17:53. Target 3.5 esignature user ID: sej02002

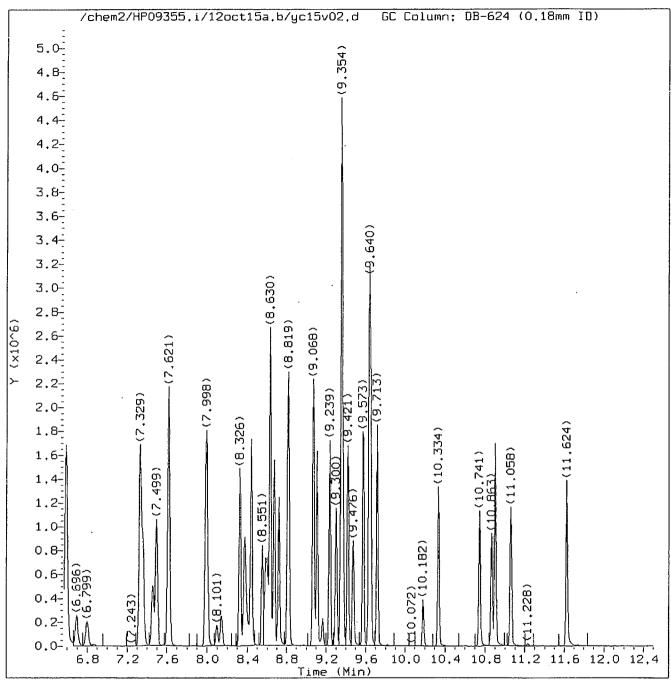
Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15v02.d Injection date and time: 15-OCT-2012 18:26

Instrument ID: HP09355.i
Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260W-EE


Calibration date and time: 15-OCT-2012 17:44

2010 10 14 :00000

Date, time and analyst ID of latest file update: 15-Oct-2012 19:14 sej02002

Sample Name: YLGICV Lab Sample ID: YLGICV

Digitally signed by Sara E. Johnson on 10/15/2012 at 19:14.
Target 3.5 esignature user ID: sej02002

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15v02.d Injection date and time: 15-OCT-2012 18:26

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260W-EE Calibration date and time: 15-OCT-2012 17:44

Date, time and analyst ID of latest file update: 15-0ct-2012 19:14 sej02002

Sample Name: YLGICV Lab Sample ID: YLGICV

Digitally signed by Sara E. Johnson on 10/15/2012 at 19:14.
Target 3.5 esignature user ID: sej02002

page 2 of 2

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15v02.d Instrument ID: HP09355.i Injection date and time: 15-OCT-2012 18:26 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260W-EE

Calibration date and time: 15-OCT-2012 17:44

Date, time and analyst ID of latest file update: 15-Oct-2012 19:14 sej02002

Sample Name: YLGICV Lab Sample ID: YLGICV

		T 0				On-Column
	Compounds	I.S. Ref.	RT	QIon	Area	Amount (ng)
			====== V1			(119 /
	Dichlorodifluoromethane	(1)	1.026	85	178322	19.146
	Chloromethane	(1)	1.062	50	195491	19.792
	Vinyl Chloride	(1)	1.129	62	179924	18.596
4)		(1)	1.129	39	90412	21.753
		(1)	1.282	94	89760	14.194
	Chloroethane	(1)	1.324	64	65639	12.519
9)	Dichlorofluoromethane	(1)	1.434	67	238735	20.736
11)	n-Pentane	(1)	1.482	43	155189	16.370
10)	Trichlorofluoromethane	(1)	1.488	101	200839M	19.300
14)	Freon 123a	(1)	1.604	67	154770	21.033
15)	Acrolein	(4)	1.665	56	339062	116.181
16)	1,1-Dichloroethene	(1)	1.738	96	126032.	22.534
	Freon 113	(1)	1.756	101	131663	22.920
17)		(1)	1.756	58	203770	130.426
	Methyl Iodide	(1)	1.829	142	230193	21.628
21)	2-Propanol	(4)	1.841	45	146011	119.000
		(1)	1.878	76	370804	21.517
	Allyl Chloride	(1)	1.951	41	195538	18.952
	Methyl Acetate	(1)	1.963	43	172835M	20.295
	Methylene Chloride	(1)	2.030	84	148656	21.366
	*t-Butyl Alcohol-d10	(4)	2.060	65	437543	250.000
	t-Butyl Alcohol	(4)	2.115	59	359628M	165.723
	Acrylonitrile	(1)	2.200	53	572973	97.732
	trans-1,2-Dichloroethene	(1)	2.231	96	153456	22.920
	Methyl Tertiary Butyl Ether		2.243	73	499987	21.592
	n-Hexane	(1)	2.450	57	253929	25.332
34)	·	(1)	2.559	63	275642	22.678
	di-Isopropyl Ether	(1)	2.638	45	521654	21.409
37)	•	(1)	2.644	53	244544	23.705
	Ethyl t-Butyl Ether	(1)	2.961	59	510295	21.749
	2-Butanone	(1)	3.058	43	1308342	154.369
	cis-1,2-Dichloroethene	(1)	3.070	∘ 96 77	172080	22.970
42)		(1)	3.082	7 / 54	207270	22.701
43)		(4)	3.125 3.271	67	405358	149.888
	Methacrylonitrile Bromochloromethane	(1) (1)	3.271	128	906857 83455	156.307 20.537
48)		(1)	3.263	71	248561M	20.537 98.174
	Chloroform	(4) (1)	3.362	83	256892	21.020
201	CHIOLOLOLULIII	(1)	5.502	00	230032	21.020

M = Compound was manually integrated.

page 1 of 4

Digitally signed by Sara E. Johnson on 10/15/2012 at 19:14.

Target 3.5 esignature user ID: sej02002

^{* =} Compound is an internal standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15v02.d Instrument ID: HP09355.i Injection date and time: 15-OCT-2012 18:26 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260W-EE

Calibration date and time: 15-OCT-2012 17:44

Date, time and analyst ID of latest file update: 15-Oct-2012 19:14 sej02002

Sample Name: YLGICV Lab Sample ID: YLGICV

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
======================================				202044	
	(1)	3.508	113 97	302844	49.546
53) 1,1,1-Trichloroethane		3.538		239146	22.957
56) Cyclohexane	(1)	3.593	56	294898	24.136
45) 1,2-Dichloroethene (total)	(1)	2 605	96	325536	45.891
57) 1,1-Dichloropropene	(1)	3.685	75	204415	22.599
58) Carbon Tetrachloride	(1)	3.697	117	179657	23.207
59) Isobutyl Alcohol	(4)	3.818	41	338772	453.198
62)\$1,2-Dichloroethane-d4	(1)	3.818	102	82857	50.451
63) Benzene	(1)	3.879	78	654667	22.698
65) 1,2-Dichloroethane	(1)	3.891	62	207019	21.731
69) t-Amyl Methyl Ether	(1)	4.013	73	488431	21.180
71) *Fluorobenzene	(1)	4.153	96	1376056	50.000
72) n-Heptane	(1)	4.171	43	293681	25.265
73) n-Butanol	(4)	4.481	56	638335	920.779
74) Trichloroethene	(1)	4.512	95	164110	22.877
76) Methylcyclohexane	(1)	4.713	83	308633	23.743
77) 1,2-Dichloropropane	(1)	4.725	63	168379	22.235
78) Dibromomethane	(1)	4.840	93	107595	21.442
79) 1,4-Dioxane	(4)	4.865	88	93888	486.924
80) Methyl Methacrylate	(1)	4.883	69	181418	20.258
83) Bromodichloromethane	(1)	5.017	83	183477	21.616
85) 2-Nitropropane	(1)	5.248	41	61444	17.492
86) 2-Chloroethyl Vinyl Ether	(1)	5.351	63	137155	20.253
87) cis-1,3-Dichloropropene	(1)	5.485	75	256145M	23.583
89) 4-Methyl-2-Pentanone	(1)	5.674	43	1624729	101.366
93) \$Toluene-d8	(2)	5.771	98	1321126	50.025
94) Toluene	(2)	5.838	92	411866	22.356
95) trans-1,3-Dichloropropene	(2)	6.094	75	223572	21.223
96) Ethyl Methacrylate	(2)	6.234	69	286523	20.553
97) 1,1,2-Trichloroethane	(2)	6.276	97	158303	21.265
98) Tetrachloroethene	(2)	6.428	1.66	181565	22.849
99) 1,3-Dichloropropane	(2)	6.453	76	264123	21.161
101) 2-Hexanone	(2)	6.586	43	1303405	100.524
102) Dibromochloromethane	(2)	6.696	129	147446	21.518
104) 1,2-Dibromoethane	(2)	6.799	107	171564	21.235
106)*Chlorobenzene-d5	(2)	7.329	117	989671	50.000
107) Chlorobenzene	(2)	7.359	112	447619	21.822
108) 1,1,1,2-Tetrachloroethane	(2)	7.462	131	143365	21.448

M = Compound was manually integrated.

Digitally signed by Sara E. Johnson on 10/15/2012 at 19:14.
Target 3.5 esignature user ID: sej02002

page 2 of 4

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15v02.d Injection date and time: 15-OCT-2012 18:26

Instrument ID: HP09355.i Analyst ID: ADS01731

On Column

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260W-EE

Calibration date and time: 15-OCT-2012 17:44

Date, time and analyst ID of latest file update: 15-Oct-2012 19:14 sej02002

Sample Name: YLGICV Lab Sample ID: YLGICV

	T (3				On-Column
Compounds	I.S. Ref.	RT	QIon	Area	Amount (ng)
=======================================	=====			========	
109) Ethylbenzene	(2)	7.499	91	787672	22.011
110) m+p-Xylene	(2)	7.621	106	627902	44.484
113) o-Xylene	(2)	7.986	106	310582	21.786
114) Styrene	(2)	8.004	104	520548	21.868
115) Bromoform	(2)	8.144	173	110634	19.018
112) Xylene (Total)	(2)		106	938484	66.270
116) Isopropylbenzene	(2)	8.326	105	810032	22.645
118) Cyclohexanone	(4)	8.375	55	465397	545.147
119)\$4-Bromofluorobenzene	(2)	8.442	95	495988	49.817
121) Bromobenzene	(3)	8.551	156	202312	21.091
122) 1,1,2,2-Tetrachloroethane	(3)	8.582	83	277426	20.359
123) 1,2,3-Trichloropropane	(3)	8.600	110	84655	19.978
124) trans-1,4-Dichloro-2-Butene	(3)	8.630	53	436399	109.681
125) n-Propylbenzene	(3)	8.673	91	952154	22.672
126) 2-Chlorotoluene	(3)	8.722	126	192073	21.533
128) 4-Chlorotoluene	(3)	8.813	126	198108	21.479
127) 1,3,5-Trimethylbenzene	(3)	8.825	105	703203	22.483
131) Pentachloroethane	(3)	9.075	167	112853	19.504
130) tert-Butylbenzene	(3)	9.075	134	157005	22.352
132) 1,2,4-Trimethylbenzene	(3)	9.111	105	712009	22.064
133) sec-Butylbenzene	(3)	9.239	105	901641	23.444
134) 1,3-Dichlorobenzene	(3)	9.306	146	392069	21.652
136) *1,4-Dichlorobenzene-d4	(3)	9.354	152	577326	50.000
135) p-Isopropyltoluene	(3)	9.354	119	788395	23.210
138) 1,4-Dichlorobenzene	(3)	9.373	146	412626	21.350
139) 1,2,3-Trimethylbenzene	(3)	9.421	105	733296	21.138
141) Benzyl Chloride	(3)	9.476	91	494093	18.946
142) 1,3-Diethylbenzene	(3)	9.579	119	463449	21.641
143) 1,4-Diethylbenzene	(3)	9.634	119	487797	22.171
144) 1,2-Dichlorobenzene	(3)	9.640	146	394384	21.544
145) n-Butylbenzene	(3)	9.652	92	393012	23.348
146) 1,2-Diethylbenzene	(3)	9.713	119	396064	21.510
148) 1,2-Dibromo-3-Chloropropane	(3)	10.182	75	67173	19.385
149) 1,3,5-Trichlorobenzene	(3)	10.334	180	312793	22.517
150) 1,2,4-Trichlorobenzene	(3)	10.748	180	296001	22.671
151) Hexachlorobutadiene	(3)	10.869	225	135842	22.433
152) Naphthalene	(3)	10.900	128	1006891	19.890
153) 1,2,3-Trichlorobenzene	(3)	11.058	180	275620	21.519

^{* =} Compound is an internal standard.

page 3 of 4

Digitally signed by Sara E. Johnson on 10/15/2012 at 19:14.
Target 3.5 esignature user ID: sej02002

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct15a.b/yc15v02.d Injection date and time: 15-OCT-2012 18:26

Instrument ID: HP09355.i

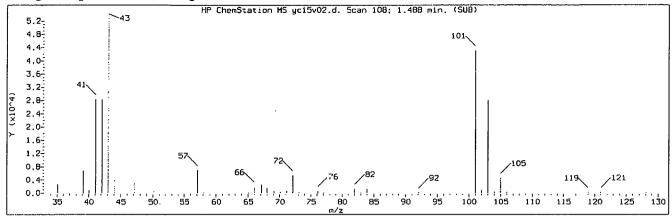
Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260W-EE

Calibration date and time: 15-OCT-2012 17:44

Date, time and analyst ID of latest file update: 15-Oct-2012 19:14 sej02002


Sample Name: YLGICV

Lab Sample ID: YLGICV

	_				On-Column
	I.S.				Amount
Compounds	Ref.	RT	QIon	Area	(ng)
	=====	=====	=====	=========	=======================================
154) 2-Methylnaphthalene	(3)	11.624	142	523334	18.586

page 4 of 4

Digitally signed by Sara E. Johnson on 10/15/2012 at 19:14. Target 3.5 esignature user ID: sej02002

HP MS yc15v02.d. Ion 101.00

6.0:
5.5:
5.0:
4.5:
4.0:
7 3.5:

2.5 2.0 1.5 1.0 0.5 0.0 1.26 1.29 1.32 1.35 1.38 1.41 1.44 1.47 1.50 1.53 1.56 1.59 1.62 1.65 1.68 1.71 1.74

Data File: /chem2/HP09355.i/12oct15a.b/yc15v02.d Injection date and time: 15-OCT-2012 18:26

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260W-EE

Calibration date and time: 15-OCT-2012 17:44

Date, time and analyst ID of latest file update: 15-Oct-2012 19:14 sej02002

Sample Name: YLGICV Lab Sample ID: YLGICV

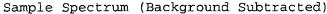
Compound Number : 10

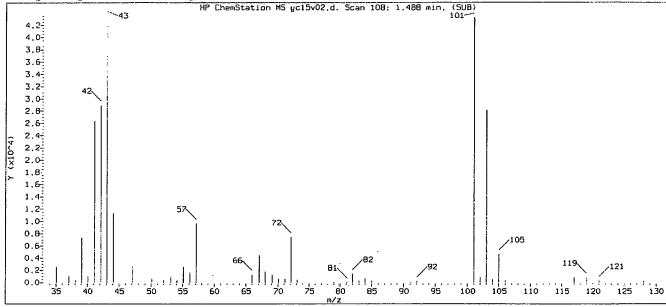
Manually Integrated Quant Ion

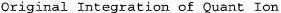
Compound Name : Trichlorofluoromethane

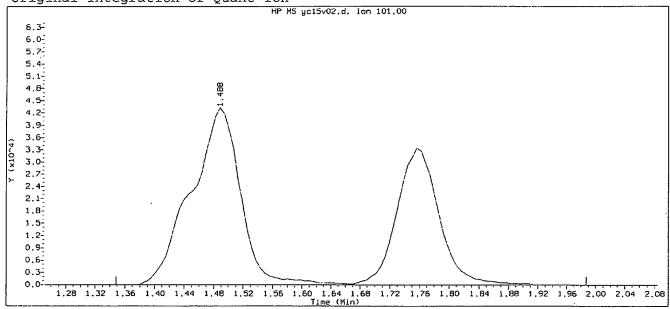
Scan Number : 108
Retention Time (minutes): 1.488
Quant Ion : 101.00
Area (flag) : 200839M
On-Column Amount (ng) : 19.2999

Integration start scan : 84 Integration stop scan: 136 Y at integration start : 0 Y at integration end: 0


Reason for manual integration: improper integration


Digitally signed by Sara E. Johnson


Analyst responsible for change: on 10/15/2012 at 19:14.


Target 3.5 esignature user ID: sej02002

GC/MS audit/management approval:

Data File: /chem2/HP09355.i/12oct15a.b/yc15v02.d Injection date and time: 15-OCT-2012 18:26

Instrument ID: HP09355.i Analyst ID: ADS01731

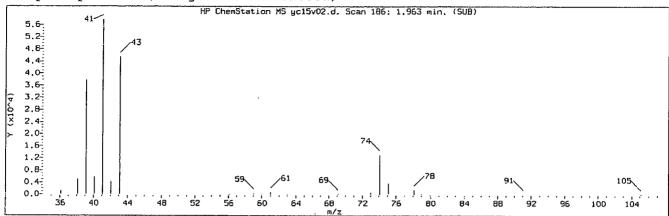
Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260W-EE

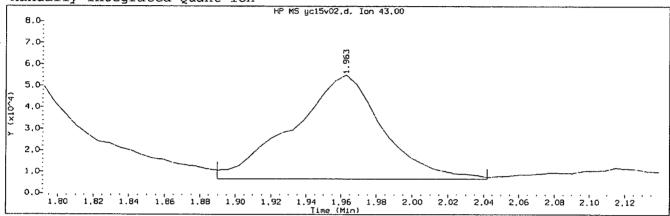
Calibration date and time: 15-CCT-2012 17:44

Date, time and analyst ID of latest file update: 15-Oct-2012 18:42 Automation

Sample Name: YLGICV Lab Sample ID: YLGICV


Compound Number

Compound Name : Trichlorofluoromethane


Scan Number : 108 Retention Time (minutes): 1.488 Quant Ion : 101.00 Area 332552

On-column Amount (ng) 31.9569 : Integration start scan 84 Integration stop scan: 0 Y at integration start Y at integration end:

Digitally signed by Sara E. Johnson on 10/15/2012 at 19:14. Target 3.5 esignature user ID: sej02002

Manually Integrated Quant Ion

Data File: /chem2/HP09355.i/12oct15a.b/yc15v02.d Injection date and time: 15-OCT-2012 18:26

Instrument ID: HP09355.i
Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260W-EE

Calibration date and time: 15-OCT-2012 17:44

Date, time and analyst ID of latest file update: 15-Oct-2012 19:14 sej02002

Sample Name: YLGICV Lab Sample ID: YLGICV

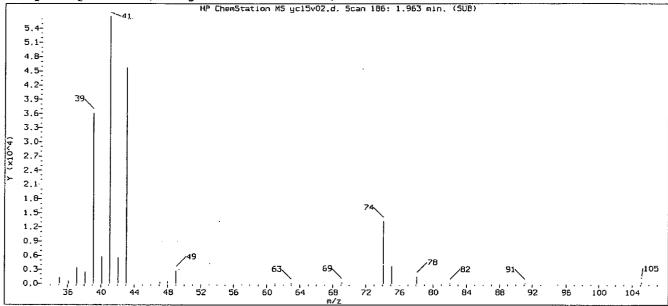
Compound Number : 25

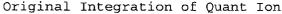
Compound Name : Methyl Acetate

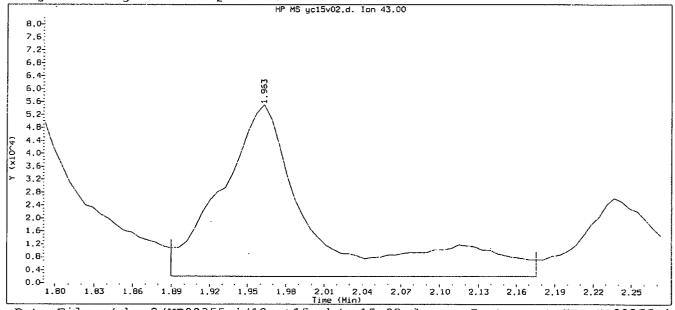
Scan Number : 186
Retention Time (minutes): 1.963
Quant Ion : 43.00
Area (flag) : 172835M
On-Column Amount (ng) : 20.2949

Integration start scan : 173 Integration stop scan: 198 Y at integration end: 6581 Y at integration end: 6581

Reason for manual integration: improper integration


Digitally signed by Sara E. Johnson


Analyst responsible for change: on 10/15/2012 at 19:14.


Target 3.5 esignature user ID: sej02002

GC/MS audit/management approval:

Data File: /chem2/HP09355.i/12oct15a.b/yc15v02.d Injection date and time: 15-OCT-2012 18:26

Instrument ID: HP09355.i
Analyst ID: ADS01731

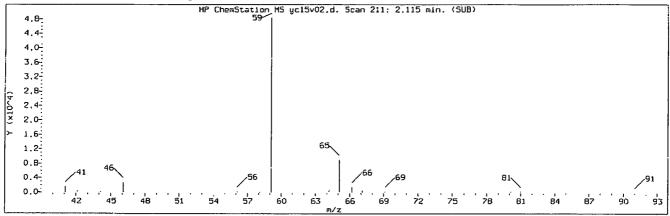
Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260W-EE

Calibration date and time: 15-OCT-2012 17:44

Date, time and analyst ID of latest file update: 15-Oct-2012 18:42 Automation

Sample Name: YLGICV Lab Sample ID: YLGICV


Compound Number : 25

Compound Name : Methyl Acetate

Scan Number : 186
Retention Time (minutes): 1.963
Ouant Ton : 43 00

Quant Ion : 43.00 Area : 271990

Digitally signed by Sara E. Johnson on 10/15/2012 at 19:14. Target 3.5 esignature user ID: sej02002

Manually Integrated Quant Ion

HP MS yc15v02.d. Ion 59.00

6.0

7.0

6.0

7.0

2.0

1.94 1.95 1.98 2.00 2.02 2.04 2.06 2.08 2.10 2.12 2.14 2.16 2.18 2.20 2.22 2.24 2.26 2.28 2.30

Data File: /chem2/HP09355.i/12oct15a.b/yc15v02.d Injection date and time: 15-OCT-2012 18:26

Instrument ID: HP09355.i
Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260W-EE

Calibration date and time: 15-OCT-2012 17:44

Date, time and analyst ID of latest file update: 15-Oct-2012 19:14 sej02002

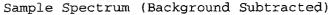
Sample Name: YLGICV Lab Sample ID: YLGICV

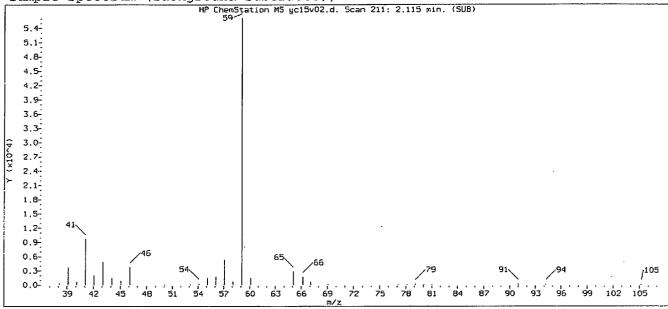
Compound Number : 29

Compound Name : t-Butyl Alcohol

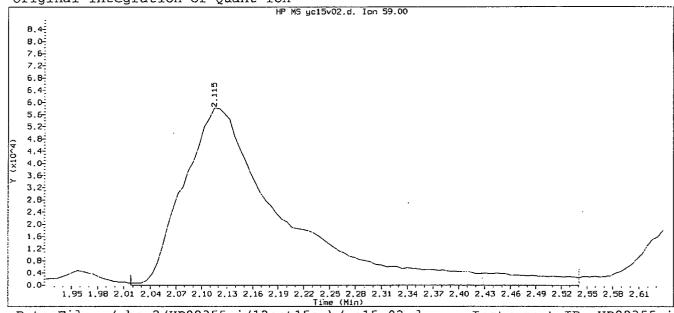
Scan Number : 211
Retention Time (minutes): 2.115
Quant Ion : 59.00
Area (flag) : 359628M
On-Column Amount (ng) : 165.7227

Integration start scan : 194 Integration stop scan: 226 Y at integration start : 0 Y at integration end: 0


Reason for manual integration: improper integration


Digitally signed by Sara E. Johnson

Analyst responsible for change: on 10/15/2012 at 19:14.


Target 3.5 esignature user ID: sej02002

GC/MS audit/management approval:_

Original Integration of Quant Ion

Data File: /chem2/HP09355.i/12oct15a.b/yc15v02.d Injection date and time: 15-OCT-2012 18:26

Instrument ID: HP09355.i Analyst ID: ADS01731

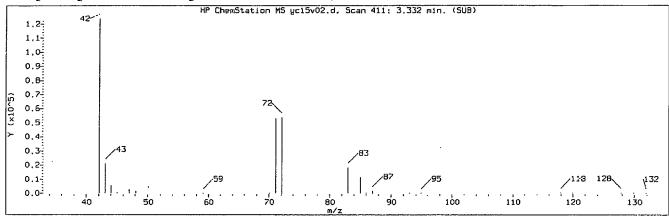
Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

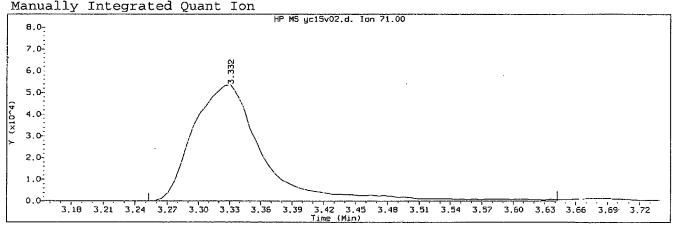
Sublist used: 8260W-EE

Calibration date and time: 15-OCT-2012 17:44

Date, time and analyst ID of latest file update: 15-Oct-2012 18:42 Automation

Sample Name: YLGICV Lab Sample ID: YLGICV


Compound Number : 29


Compound Name : t-Butyl Alcohol

Scan Number : 211
Retention Time (minutes): 2.115
Quant Ion : 59.00
Area : 485713
On-column Amount (ng) : 223.8244

On-column Amount (ng) : 223.8244 Integration start scan : 194 Integration stop scan: 280 Y at integration start : 0 Y at integration end: 0

Digitally signed by Sara E. Johnson on 10/15/2012 at 19:14. Target 3.5 esignature user ID: sej02002

Data File: /chem2/HP09355.i/12oct15a.b/yc15v02.d Injection date and time: 15-OCT-2012 18:26

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m

Sublist used: 8260W-EE

Calibration date and time: 15-OCT-2012 17:44

Date, time and analyst ID of latest file update: 15-Oct-2012 19:14 sej02002

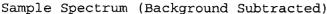
Sample Name: YLGICV Lab Sample ID: YLGICV

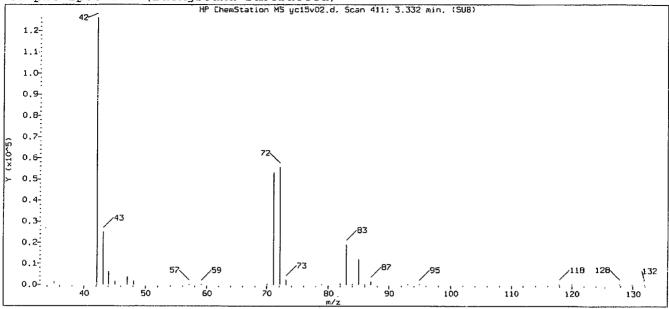
Compound Number : 48

Compound Name : Tetrahydrofuran

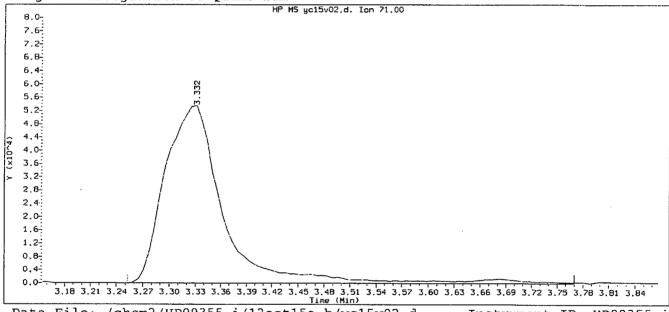
Scan Number : 411
Retention Time (minutes): 3.332
Quant Ion : 71.00
Area (flag) : 248561M
On-Column Amount (ng) : 98.1742

Integration start scan : 397 Integration stop scan: 461 Y at integration start : 0 Y at integration end: 0


Reason for manual integration: improper integration


Digitally signed by Sara E. Johnson

Analyst responsible for change: on 10/15/2012 at 19:14.


Target 3.5 esignature user ID: sej02002

GC/MS audit/management approval:

Data File: /chem2/HP09355.i/12oct15a.b/yc15v02.d Injection date and time: 15-OCT-2012 18:26

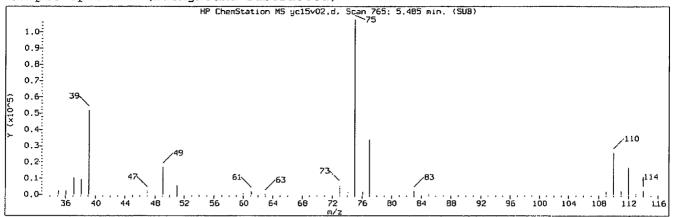
Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Calibration date and time: 15-OCT-2012 17:44

Sublist used: 8260W-EE

Date, time and analyst ID of latest file update: 15-Oct-2012 18:42 Automation

Sample Name: YLGICV Lab Sample ID: YLGICV


Compound Number : 48

Compound Name : Tetrahydrofuran

Scan Number : 411
Retention Time (minutes): 3.332
Quant Ion : 71.00
Area : 254031
On-column Amount (ng) : 100.3348

On-column Amount (ng) : 100.3348 Integration start scan : 397 Integration stop scan: 482 Y at integration start : 0 Y at integration end: 0

Digitally signed by Sara E. Johnson on 10/15/2012 at 19:14. Target 3.5 esignature user ID: sej02002

Manually Integrated Quant Ion HP M5 yc15v02.d. Ion 75.00 1.6-1.4-1.2-1,0 0.8 0.6 0.2 5,37 5.40 5.43 5,49 5.50 5.64 5.67 5.70 5.73 5.75 5,79

Data File: /chem2/HP09355.i/12oct15a.b/yc15v02.d Injection date and time: 15-OCT-2012 18:26

Instrument ID: HP09355.i
Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Calibration date and time: 15-OCT-2012 17:44

Sublist used: 8260W-EE

Date, time and analyst ID of latest file update: 15-Oct-2012 19:14 sej02002

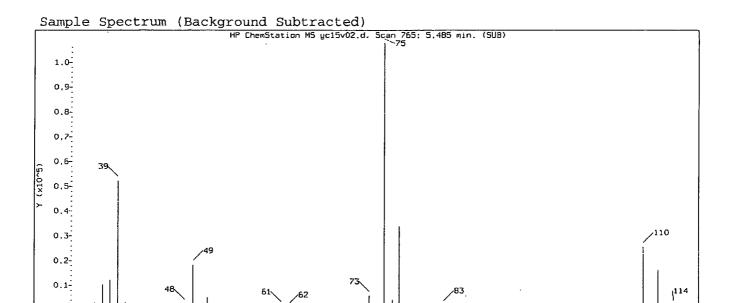
Sample Name: YLGICV Lab Sample ID: YLGICV

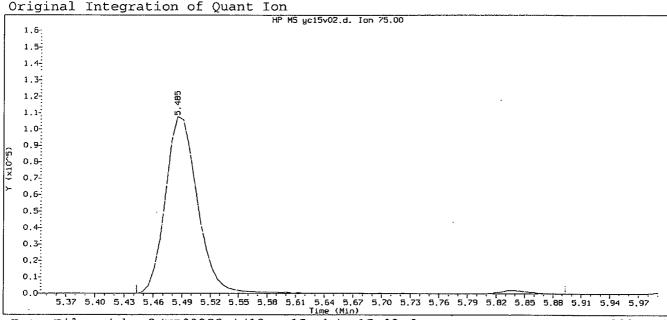
Compound Number : 87

Compound Name : cis-1, 3-Dichloropropene

Scan Number : 765
Retention Time (minutes): 5.485
Quant Ion : 75.00
Area (flag) : 256145M
On-Column Amount (ng) : 23.5826

Integration start scan : 757 Integration stop scan: 808 Y at integration start : 0 Y at integration end: 0


Reason for manual integration: improper integration


Digitally signed by Sara E. Johnson

Analyst responsible for change: on 10/15/2012 at 19:14.

Target 3.5 esignature user ID: sej02002

GC/MS audit/management approval:

Data File: /chem2/HP09355.i/12oct15a.b/yc15v02.d Injection date and time: 15-OCT-2012 18:26

Instrument ID: HP09355.i Analyst ID: ADS01731

92

8B

80

a'e

100 104

108

112

Method used: /chem2/HP09355.i/12oct15a.b/Y8260W.m Sublist used: 8260W-EE

Calibration date and time: 15-OCT-2012 17:44

Date, time and analyst ID of latest file update: 15-Oct-2012 18:42 Automation

Sample Name: YLGICV Lab Sample ID: YLGICV

Compound Number : 87

0,0

Compound Name : cis-1,3-Dichloropropene

Scan Number : 765
Retention Time (minutes): 5.489

Retention Time (minutes): 5.485
Quant Ion : 75.00
Area : 260433
On-column Amount (ng) : 23.9773

48

60

68

On-column Amount (ng) : 23.9773 Integration start scan : 757 Integration stop scan: 831 Y at integration start : 0 Y at integration end: 0

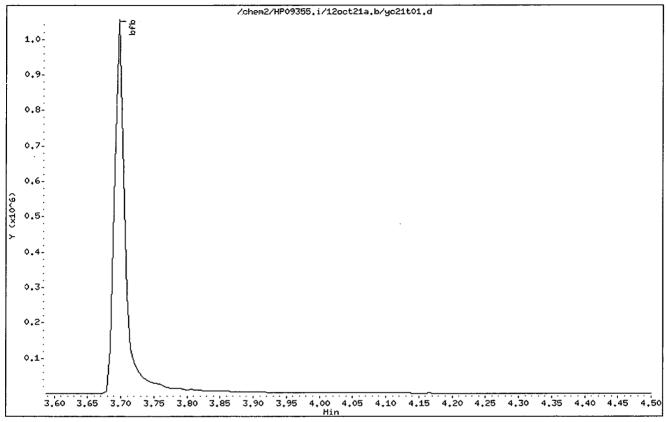
Digitally signed by Sara E. Johnson on 10/15/2012 at 19:14. Target 3.5 esignature user ID: sej02002

Data File: /chem2/HP09355.i/12oct21a.b/yc21t01.d

Date : 21-0CT-2012 00:41

Client ID: 50NG BFB SEP25-12

Instrument: HP09355.i


Page 1

Sample Info: 50NG BFB SEP25-12

Operator: SAS00403

Column phase: DB-624

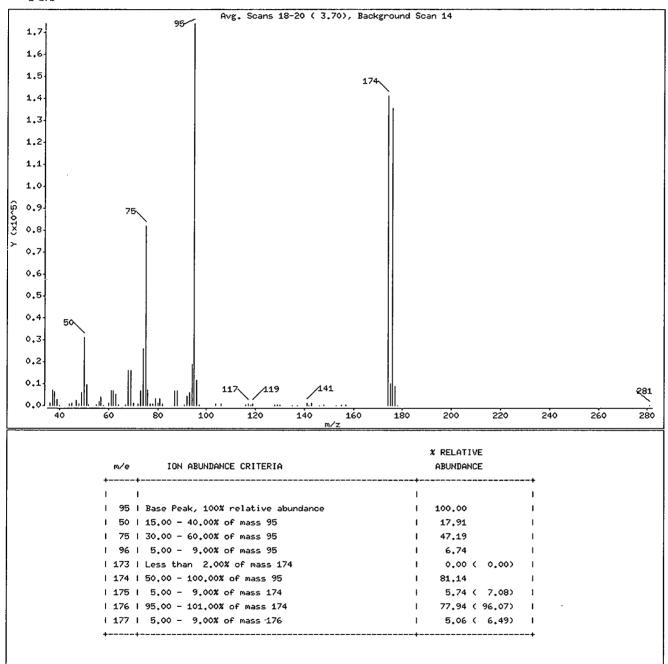
Column diameter: 0.18

Data File: /chem2/HP09355.i/12oct21a.b/yc21t01.d

Date : 21-0CT-2012 00:41

Client ID: 50NG BFB SEP25-12

Instrument: HP09355.i


Page 2

Sample Info: 50NG BFB SEP25-12

Operator: SASO0403

Column diameter: 0.18

Column phase: DB-624 1 bfb

Data File: /chem2/HP09355.i/12oct21a.b/yc21t01.d

_

Page 3

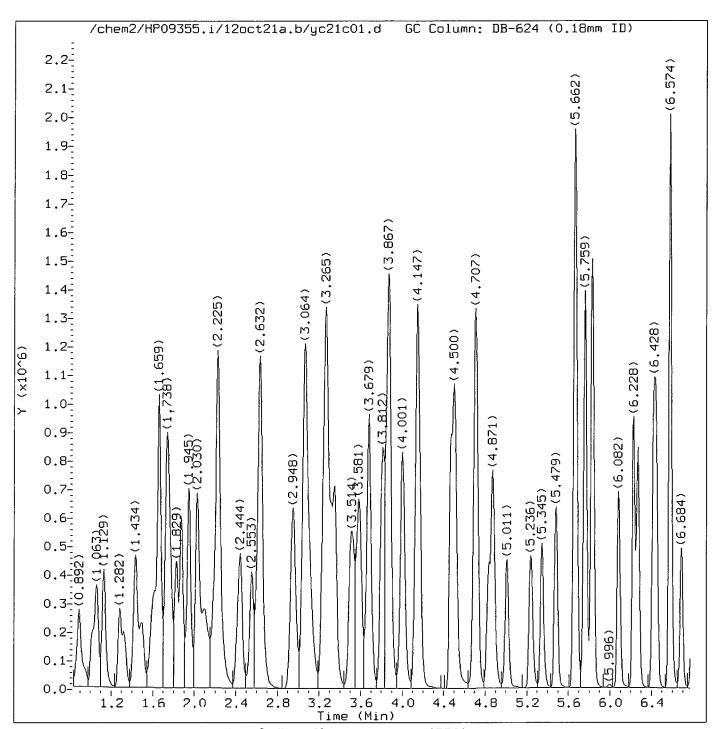
Date : 21-OCT-2012 00:41 Client ID: 50NG BFB SEP25-12

Instrument: HP09355.i

Sample Info: 50NG BFB SEP25-12

Operator: SAS00403

Column phase: DB-624


Column diameter: 0.18

Data File: yc21t01.d

Spectrum: Avg. Scans 18-20 (3.70), Background Scan 14

Location of Maximum: 95.00 Number of points: 71

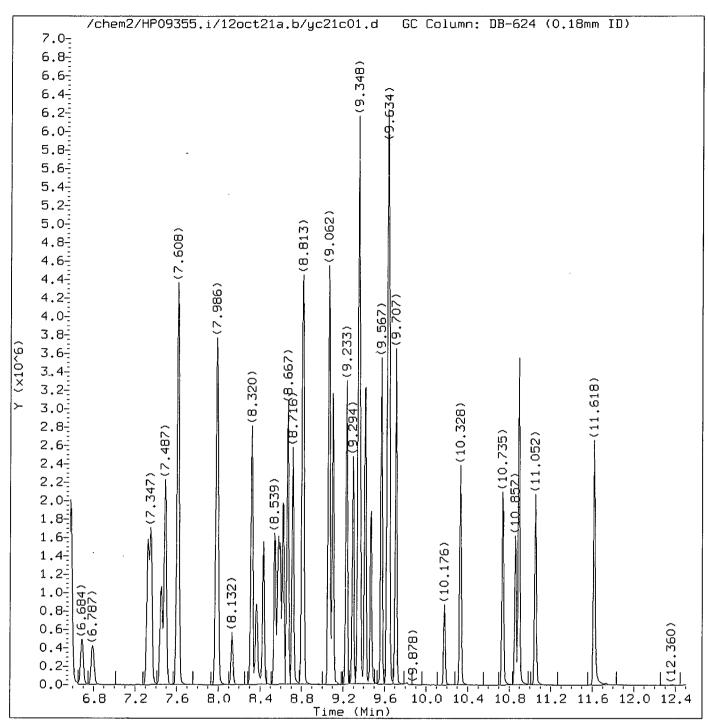
Y	m/z	Y .	m/z	Υ.	m/z		Y	m/z	
531	130.00	648	82.00	6982 I	61.00	1	1304	36.00	,
122	135.00	6918 I	87,00	6973 I	62,00	1	7222	37,00	I
182	137,00	6954 I	88,00	5159 I	63,00	1	6555	38,00	ı
1379	141.00	486 I	91.00	520 I	64.00	ı	2747	39,00	
96	142.00	4422 I	92.00	401 I	67,00	ļ	100	40,00	
		+		+-		+-			-
1326	143,00	6181 I	93,00	15994 I	68.00	1	779	44.00	
93	146.00	18800 I	94.00	16086 I	69.00	1	1346	45.00	
400	148,00	173888 I	95.00	1264 I	70.00	ı	2276	47,00	
92	153,00	11721 I	96,00	880 1	72,00	ı	933	48,00	
300	155.00	369 I	97.00	6930 I	73.00	ı	6191	49.00	
240	157.00	629 1	404.00	+- 25920 I	74.00	+-	31144	 50.00	_
141056	174.00			82048 I	75.00		9563	51.00	
9986	175.00		116.00		76.00		468	52.00	
135488	176.00		117.00				404	•	
	-		•		77,00			55.00	
8796 	177.00	1 800	118,00	1 ded -+	78.00	! +	2045	56.00	_
97	178.00	729 I	119.00	3114 I	79.00	ı	3936	57,00	
92	281.00	575 1	128.00	1035 I	80.00	ı	113	58.00	
		250	129,00	3234 I	81.00	ı	1365	60.00	

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct21a.b/yc21c01.d Instrument ID: HP09355.i Injection date and time: 21-OCT-2012 01:24 Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 8260WI-EEBN


Calibration date and time: 21-OCT-2012 01:53

Date, time and analyst ID of latest file update: 21-Oct-2012 01:54 sas00403

Sample Name: VSTD050 Lab Sample ID: VSTD050

Digitally signed by Stephanie A. Selis on 10/21/2012 at 02:14.
Target 3.5 esignature user ID: sas00403

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct21a.b/yc21c01.d Instrument ID: HP09355.i Injection date and time: 21-OCT-2012 01:24 Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 8260WI-EEBN

Calibration date and time: 21-OCT-2012 01:53

Date, time and analyst ID of latest file update: 21-Oct-2012 01:54 sas00403

Sample Name: VSTD050 Lab Sample ID: VSTD050

Target Revision 3.5

Data File: /chem2/HP09355_i/12oct21a.b/yc21c01.d Instrument ID: HP09355.i Injection date and time: 21-OCT-2012 01:24 Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 8260WI-EEBN

Calibration date and time: 21-OCT-2012 01:53

Date, time and analyst ID of latest file update: 21-Oct-2012 01:54 sas00403

Sample Name: VSTD050 Lab Sample ID: VSTD050

Compounds	I.S. Ref.	RT ======	QIon	Area 	On-Column Amount (ng)
2) Dichlorodifluoromethane	(1)	1.020	85	384291	45.364
3) Chloromethane	(1)	1.063	50	483300	53.799
5) Vinyl Chloride	(1)	1.129	62	416809	47.364
7) Bromomethane	(1)	1.282	94	267647	46.533
8) Chloroethane	(1)	1.324	64	223940	46.958
9) Dichlorofluoromethane	(1)	1.434	67	550943A	52.615
10) Trichlorofluoromethane	(1)	1.494	101	456578	48.239
14) Freon 123a	(1)	1.598	67	349943	52.288
15) Acrolein	(4)	1.659	56	1246631	399.954
16) 1,1-Dichloroethene	(1)	1.732	96	272314	53.531
17) Acetone	(1)	1.744	58	160349	112.842
18) Freon 113	(1)	1.756	101	270352	51.743
20) Methyl Iodide	(1)	1.829	142	514936	53.194
21) 2-Propanol	(4)	1.829	45	349521	266.717
22) Carbon Disulfide	(1)	1.878	76	839087	53.534
24) Allyl Chloride	(1)	1.945	41	414229	44.141
25) Methyl Acetate	(1)	1.951	43	475920	61.442
26) Methylene Chloride	(1)	2.024	84	318752	50.371
28) *t-Butyl Alcohol-d10	(4)	2.048	65	467310	250.000
29) t-Butyl Alcohol	(4)	2.103	59	662160	285.697
30) Acrylonitrile	(1)	2.188	53	291701	54.704
31) trans-1,2-Dichloroethene	(1)	2.225	96	309099	50.759
32) Methyl Tertiary Butyl Ether	(1)	2.231	73	1038838	49.325
33) n-Hexane	(1)	2.444	57	427907	46.935
34) 1,1-Dichloroethane	(1)	2.553	63	577402	52.230
36) di-Isopropyl Ether	(1)	2.626	45	1129600	50.970
37) 2-Chloro-1,3-Butadiene	(1)	2.638	53	505388	53.862
39) Ethyl t-Butyl Ether	(1)	2.948	59	1044246	48.932
40) cis-1,2-Dichloroethene	(1)	3.058	96	339818	49.873
41) 2-Butanone	(1)	3.064	43	936440	121.479
42) 2,2-Dichloropropane	(1)	3.070	77	406775	48.984
43) Propionitrile	(4)	3.119	54	622078	215.372
46) Methacrylonitrile	(1)	3.259	67	642589	121.774
47) Bromochloromethane	(1)	3.271	128	163261	44.172
48) Tetrahydrofuran	(4)	3.313	71	230368	85.192
50) Chloroform	(1)	3.350	83	544030	48.942
52) \$Dibromofluoromethane	(1)	3.496	113	272984	49.103
51) \$Dibromofluoromethane (mz111)	(1)	3.496	111	281130	49.442

A = User selected an alternate hit.

Digitally signed by Stephanie A. Selis on 10/21/2012 at 02:14.
Target 3.5 esignature user ID: sas00403

page 1 of 4

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct21a.b/yc21c01.d Instrument ID: HP09355.i Injection date and time: 21-OCT-2012 01:24 Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 8260WI-EEBN

Calibration date and time: 21-OCT-2012 01:53

Date, time and analyst ID of latest file update: 21-Oct-2012 01:54 sas00403

Sample Name: VSTD050 Lab Sample ID: VSTD050

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
				========	_
53) 1,1,1-Trichloroethane	(1)	3.526	97	444770	46.942
56) Cyclohexane	(1)	3.581	56	553045	49.767
55) Cyclohexane (mz 69)	(1)	3.587	69	164235	48.016
54) Cyclohexane (mz 84)	(1)	3.587	84	435206	47.594
45) 1,2-Dichloroethene (total)	(1)		96	648917	100.632
57) 1,1-Dichloropropene	(1)	3.679	75	428755	52.117
58) Carbon Tetrachloride	(1)	3.685	117	355452	50.481
62) \$1,2-Dichloroethane-d4	(1)	3.806	102	76332	51.101
60) \$1,2-Dichloroethane-d4 (mz104) (1)	3.806	104	45309	48.293
61) \$1, 2-Dichloroethane-d4 (mz65)	(1)	3.806	65	372061	54.397
59) Isobutyl Alcohol	(4)	3.818	41	511327	640.465
63) Benzene	(1)	3.867	78	1333617	50.837
64) 1,2-Dichloroethane (mz 98)	(1)	3.879	98	40964	46.321
65) 1,2-Dichloroethane	(1)	3.879	62	438793	50.642
69) t-Amyl Methyl Ether	(1)	4.001	73	977130	46.586
71) *Fluorobenzene	(1)	4.141	96	1251569	50.000
72) n-Heptane	(1)	4.159	43	444716	42.064
73) n-Butanol	(4)	4.469	56	853194	1152.313
74) Trichloroethene	(1)	4.506	95	327920	50.260
75) Methylcyclohexane (mz98)	(1)	4.701	98	214230	41.215
76) Methylcyclohexane	(1)	4.701	83	493862	41.771
77) 1,2-Dichloropropane	(1)	4.719	63	353562	51.333
78) Dibromomethane	(1)	4.834	93	219701	48.138
79) 1,4-Dioxane	(4)	4.859	88	101221	491.516
80) Methyl Methacrylate	(1)	4.871	69	380431	46.705
83) Bromodichloromethane	(1)	5.011	83	380222	49.250
85) 2-Nitropropane	(1)	5.236	41	388808	121.695
86) 2-Chloroethyl Vinyl Ether	(1)	5.345	63	290635	47.186
87) cis-1,3-Dichloropropene	(1)	5.479	75	475411	48.123
89) 4-Methyl-2-Pentanone	(1)	5.662	43	1890287	129.664
92) \$Toluene-d8 (mz100)	(2)	5.759	100	770987	50.758
93)\$Toluene-d8	(2)	5.759	98	1191006	51.282
94) Toluene	(2)	5.832	92	820024	50.613
95) trans-1,3-Dichloropropene	(2)	6.082	75	452348	48.829
96) Ethyl Methacrylate	(2)	6.228	69	587693	47.937
97) 1,1,2-Trichloroethane	(2)	6.270	97	318593	48.665
98) Tetrachloroethene	(2)	6.416	166	332762	47.618
99) 1,3-Dichloropropane	(2)	6.440	76	546592	49.797

^{* =} Compound is an internal standard.

page 2 of 4

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct21a_b/yc21c01.d Instrument ID: HP09355.i Injection date and time: 21-OCT-2012 01:24 Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 8260WI-EEBN

Calibration date and time: 21-OCT-2012 01:53

Date, time and analyst ID of latest file update: 21-Oct-2012 01:54 sas00403

Sample Name: VSTD050 Lab Sample ID: VSTD050

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
101) 0 0	=====			1550710	
101) 2-Hexanone	(2)	6.574	43	1552718	136.173
102) Dibromochloromethane	(2)	6.690	129	292180	48.486
104) 1,2-Dibromoethane	(2)	6.787	107	348581	49.061
106) *Chlorobenzene-d5	(2)	7.323	117 112	870330	50.000 49.116
107) Chlorobenzene	(2) (2)	7.347 7.450	131	885993 288420	49.116
108) 1,1,1,2-Tetrachloroethane	(2)	7.430	91	1577435	50.124
109) Ethylbenzene		7.407	106	1226849	98.835
110) m+p-Xylene	(2) (2)	7.808	106	612432	48.850
113) o-Xylene 114) Styrene	(2)	7.992	104	1026779	49.050
114) Stylene 115) Bromoform	(2)	8.132	173	225003	43.982
113) Bromoroim 112) Xylene (Total)	(2)	0.132	106	1839281	147.685
112) Aylene (10tal) 116) Isopropylbenzene	(2)	8.320	105	1567693	49.836
118) Cyclohexanone	(4)	8.363	55	368070	403.679
119) \$4-Bromofluorobenzene	(2)	8.430	95	443663	50.672
120) \$4-Bromofluorobenzene (mz174)	(2)	8.436	174	362236	48.533
121) Bromobenzene	(3)	8.545	156	385755	46.133
122) 1,1,2,2-Tetrachloroethane	(3)	8.576	83	590210	49.688
123) 1,2,3-Trichloropropane	(3)	8.594	110	177405	48.027
124) trans-1,4-Dichloro-2-Butene		8.618	53	335126	96.623
125) n-Propylbenzene	(3)	8.667	91	1840076	50.263
126) 2-Chlorotoluene	(3)	8.716	126	368218	47.355
128) 4-Chlorotoluene	(3)	8.807	126	385237	47.914
127) 1,3,5-Trimethylbenzene	(3)	8.813	105	1338124	49.079
130) tert-Butylbenzene	(3)	9.062	134	295015	48.181
131) Pentachloroethane	(3)	9.062	167	237448	47.075
132) 1,2,4-Trimethylbenzene	(3)	9.099	105	1375095	48.884
133) sec-Butylbenzene	(3)	9.233	105	1651765	49.268
134) 1,3-Dichlorobenzene	(3)	9.294	146	737453	46.719
135) p-Isopropyltoluene	(3)	9.348	119	1455700	49.162
136) *1,4-Dichlorobenzene-d4	(3)	9.348	152	503266	50.000
138) 1,4-Dichlorobenzene	(3)	9.361	146	791047	46.953
139) 1,2,3-Trimethylbenzene	(3)	9.415	105	1445351	47.795
141) Benzyl Chloride	(3)	9.470	91	1022358	44.971
142) 1,3-Diethylbenzene	(3)	9.567	119	871397	46.678
143) 1,4-Diethylbenzene	(3)	9.628	119	912181	47.562
144) 1,2-Dichlorobenzene	(3)	9.634	146	764976	47.938
145) n-Butylbenzene	(3)	9.646	92	721905	49.197

^{* =} Compound is an internal standard.

page 3 of 4

Digitally signed by Stephanie A. Selis on 10/21/2012 at 02:14.

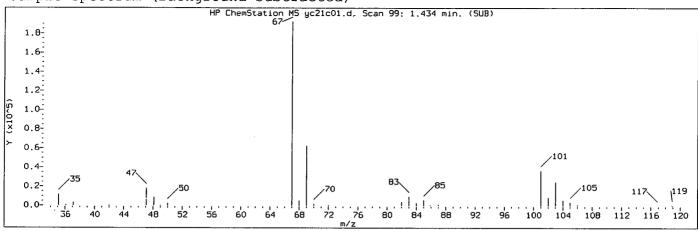
Target 3.5 esignature user ID: sas00403

^{\$ =} Compound is a surrogate standard.

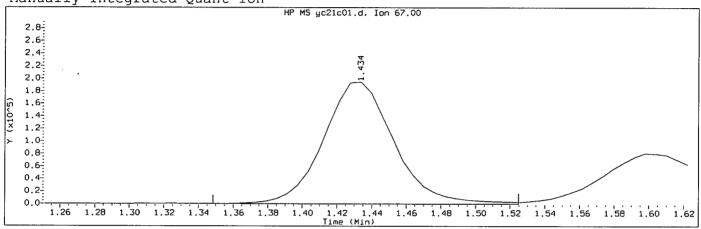
Target Revision 3.5

Data File: /chem2/HP09355.i/12oct21a.b/yc21c01.d Instrument ID: HP09355.i Injection date and time: 21-OCT-2012 01:24 Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 8260WI-EEBN


Calibration date and time: 21-OCT-2012 01:53

Date, time and analyst ID of latest file update: 21-Oct-2012 01:54 sas00403


Sample Name: VSTD050 Lab Sample ID: VSTD050

(Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
146)	1,2-Diethylbenzene	(3)	9.707	119	739532	46.074
148)	1,2-Dibromo-3-Chloropropane	(3)	10.176	75	154395	51.112
149)	1,3,5-Trichlorobenzene	(3)	10.328	180	541327	44.704
150)	1,2,4-Trichlorobenzene	(3)	10.735	180	497990	43.754
151) I	Hexachlorobutadiene	(3)	10.863	225	219632	41.608
152) 1	Naphthalene	(3)	10.894	128	1930296	43.743
153)	1,2,3-Trichlorobenzene	(3)	11.052	180	470049	42.099
154) 2	2-Methylnaphthalene	(3)	11.618	142	987383	40.227

page 4 of 4

Manually Integrated Quant Ion

Data File: /chem2/HP09355.i/12oct21a.b/yc21c01.d Injection date and time: 21-OCT-2012 01:24

Instrument ID: HP09355.i Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m

Sublist used: 8260WI-EEBN

Calibration date and time: 21-OCT-2012 01:53

Date, time and analyst ID of latest file update: 21-Oct-2012 01:54 sas00403

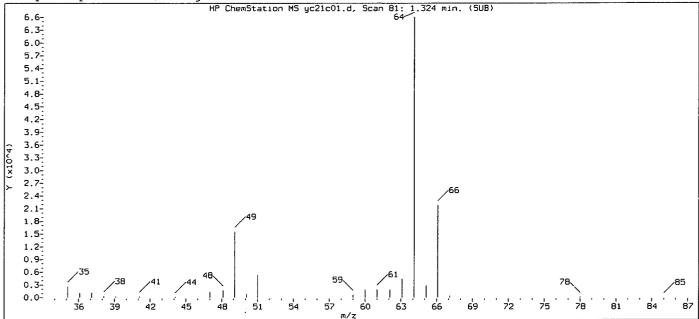
Sample Name: VSTD050 Lab Sample ID: VSTD050

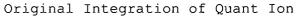
Compound Number : 9

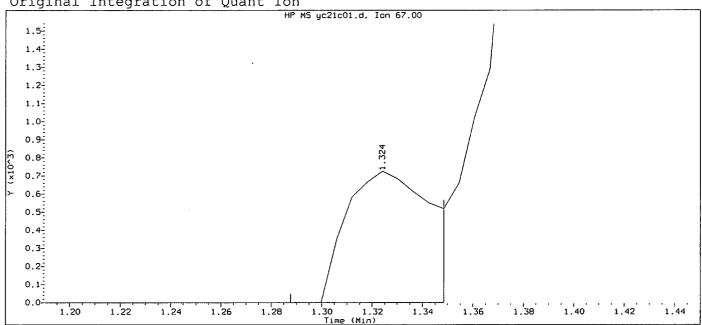
Compound Name : Dichlorofluoromethane

Scan Number : 99
Retention Time (minutes): 1.434
Quant Ion : 67.00
Area (flag) : 550943A
On-Column Amount (ng) : 52.6146


Reason for manual integration: improper integration


Digitally signed by Stephanie A. Selis


Analyst responsible for change: on 10/21/2012 at 02:14.


Target 3.5 esignature user ID: sas00403

Secondary review performed and digitally signed by Christine M. Dulaney on 10/24/2012 at 15:38. Parallax ID: cmd00448

Data File: /chem2/HP09355.i/12oct21a.b/yc21c01.d Injection date and time: 21-OCT-2012 01:24

Instrument ID: HP09355.i Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 8260WI-EEBN

Calibration date and time: 21-OCT-2012 01:53

Date, time and analyst ID of latest file update: 21-Oct-2012 01:53 sas00403

Sample Name: VSTD050 Lab Sample ID: VSTD050

Compound Number

Compound Name Dichlorofluoromethane

Scan Number 81 Retention Time (minutes): 67.00 Quant Ion Area 1618 0.1545 On-column Amount (ng)

Integration start scan 74 Integration stop scan: 0 Y at integration start Y at integration end:

Raw QC Data

VBLKY78

Lancaster Laboratories Analysis Summary for GC/MS Volatiles VBLKY78

Injection date and time: 21-OCT-2012 02:05
Instrument ID: HP09355.i Batch: Y122951AA Data file: /chem2/HP09355.i/12oct21a.b/yc21b01.d Data file Sample Info. Line: VBLKY78;VBLKY78;1;3;;;;; Instate, time and analyst ID of latest file update: 21-Oct-2012 03:56 sas00403

Blank Data file reference: /chem2/HP09355.i/12oct21a.b/yc21b01.d

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 8260W-EEBN Calibration date and time (Last Method Edit): 21-OCT-2012 02:47 Mid Level Daily Calibration Standard Reference: /chem2/HP09355.i/12oct21a.b/yc21c01.d

Bottle Code:

Matrix: WATER

Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

Analysis Comments:

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Change)	Conc. (on-column)	QC Flag
28) t-Butyl Alcohol-d10	2.036(0.012)	198	65	441161 (-6)	250.00	
71) Fluorobenzene	4.129(0.012)	542	96	1219483 (-3)	50.00	
106) Chlorobenzene-d5	7.316(0.006)	1066	117	846223 (-3)	50.00	
136) 1,4-Dichlorobenzene-d4	9.342(0.006)	1399	152	466979 (-7)	50.00	

	rrogate Standards	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on-column)	%Rec.	QC flags	QC Limits
52)	Dibromofluoromethane	(1)	3.49	90 (-0.001)	113	260608	48.111	96%		80 - 116
62)	1,2-Dichloroethane-d4	(1)	3.80	00(-0.001)	102	69697	47.886	96%		77 - 113
93)	Toluene-d8	(2)	5.75	53(0.000)	98	1144952	50.703	101%		80 - 113
119)	4-Bromofluorobenzene	(2)	8.43	30(-0.001)	95	429269	50.425	101%		78 - 113

	get Compounds	I.S. Ref.	(+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.		LOQ ample)
	Dichlorodifluoromethane	(1)	 		Not Detected			·		2	5
	Chloromethane	(1)			Not Detected					1	5
	Vinvl Chloride	(1)			Not Detected					1	5
	Bromomethane	(1)			Not Detected					1	5
-	Chloroethane	(1)			Not Detected					1	5
	Dichlorofluoromethane	(1)			Not Detected					2	5
	Trichlorofluoromethane	(1)			Not Detected					2	5
	Freon 123a	(1)			Not Detected					2	5
	Acrolein	(4)			Not Detected					40	100
	1.1-Dichloroethene	(1)			Not Detected					0.8	5
	Freon 113	(1)			Not Detected					2	10
17)	Acetone	(1)			Not Detected					6	20
20)	Methyl Iodide	(1)			Not Detected					1	5
	2-Propanol	(4)			Not Detected					50	100
	Carbon Disulfide	(1)			Not Detected					1	5
24)	Allyl Chloride	(1)			Not Detected					1	5
	Methyl Acetate	(1)			Not Detected					1	5
26)	Methylene Chloride	(1)			Not Detected					2	5
29)	t-Butyl Alcohol	(4)			Not Detected					10	80
30)	Acrylonitrile	(1)			Not Detected					4	20
31)	trans-1,2-Dichloroethene	(1)			Not Detected					0.8	5
32)	Methyl Tertiary Butyl Ether	(1)			Not Detected					0.5	5
33)	n-Hexane	(1)			Not Detected					2	5
45)	1,2-Dichloroethene (total)	(1)			Not Detected					0.8	5
34)	1,1-Dichloroethane	(1)			Not Detected					1	5
36)	di-Isopropyl Ether	(1)			Not Detected					0.8	5
37)	2-Chloro-1, 3-Butadiene	(1)			Not Detected					1	5
39)	Ethyl t-Butyl Ether	(1)			Not Detected					0.8	5
40)	cis-1,2-Dichloroethene	(1)			Not Detected					0.8	5
41)	2-Butanone	(1)			Not Detected					3	10
42)	2,2-Dichloropropane	(1)			Not Detected					1	5

VBLKY78

Lancaster Laboratories Analysis Summary for GC/MS Volatiles VBLKY78

Data file: /chem2/HP09355.i/12oct21a.b/yc21b01.d Injection date and time: 21-OCT-2012 02:05
Data file Sample Info. Line: VBLKY78;VBLKY78;1;3;;;; Instrument ID: HP09355.i Batch: Y122951AA
Date, time and analyst ID of latest file update: 21-Oct-2012 03:56 sas00403

Blank Data file reference: /chem2/HP09355.i/12oct21a.b/yc21b01.d

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 8260W-EEBN

Calibration date and time (Last Method Edit): 21-OCT-2012 02:47

Mid Level Daily Calibration Standard Reference: /chem2/HP09355.i/12oct21a.b/yc2lc01.d

Bottle Code:

Matrix: WATER

Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

Target Compounds		I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.	•	
	Provincia di la									======	30	100
	Propionitrile Methacrylonitrile	(4) (1)				Not Detected Not Detected					10	50
	Bromochloromethane	(1)				Not Detected					1	5
	Tetrahydrofuran	(4)				Not Detected					4	10
	Chloroform	(1)				Not Detected					0.8	5
	1,1,1-Trichloroethane	(1)				Not Detected					0.8	5
	Cyclohexane	(1)				Not Detected					2	5
	1,1-Dichloropropene	(1)				Not Detected					1	5
	Carbon Tetrachloride	(1)				Not Detected					1	5
	Isobutyl Alcohol	(4)				Not Detected					100	250
	Benzene	(1)				Not Detected					0.5	5
	1,2-Dichloroethane	(1)				Not Detected					1	5
	t-Amyl Methyl Ether	(1)				Not Detected					0.8	5
	n-Heptane	(1)				Not Detected					2	5
	n-Butanol	(4)				Not Detected					100	250
	Trichloroethene	(1)				Not Detected					1	5
	1,2-Dichloropropane	(1)				Not Detected					1	5
	Methylcyclohexane	(1)				Not Detected					1	5
	Methyl Methacrylate	(1)				Not Detected					1	5
	Dibromomethane	(1)				Not Detected					1	5
	1,4-Dioxane	(4)				Not Detected					70	250
	Bromodichloromethane	(1)				Not Detected					1	5 .
	2-Nitropropane	(1)				Not Detected					2	10
	2-Chloroethyl Vinyl Ether	(1)				Not Detected					2	10
	cis-1,3-Dichloropropene	(1)				Not Detected					1	5
	4-Methyl-2-Pentanone	(1)				Not Detected					3	10
	Toluene	(2)				Not Detected					0.7	5
	trans-1,3-Dichloropropene	(2)				Not Detected					1	5
	Ethyl Methacrylate	(2)				Not Detected					1	5
	1,1,2-Trichloroethane	(2)				Not Detected					0.8	5
	Tetrachloroethene	(2)				Not Detected					0.8	5
	1,3-Dichloropropane	(2)				Not Detected					1	5
	2-Hexanone	(2)				Not Detected					3	10
	Dibromochloromethane	(2)				Not Detected					1	5
	1,2-Dibromoethane	(2)				Not Detected					1	5
	Chlorobenzene	(2)				Not Detected					0.8	5
	1,1,1,2-Tetrachloroethane	(2)				Not Detected					1	5
	Ethylbenzene	(2)				Not Detected					0.8	5
	m+p-Xylene	(2)				Not Detected					0.8	5
	Xylene (Total)	(2)				Not Detected					0.8	5
	o-Xylene	(2)				Not Detected					0.8	5
	Styrene	(2)				Not Detected					1	5
	Bromoform	(2)				Not Detected					1	5
	Isopropylbenzene	(2)				Not Detected					1	5
	Cyclohexanone	(4)				Not Detected					55	250
	1,1,2,2-Tetrachloroethane	(3)				Not Detected					1	5
	trans-1.4-Dichloro-2-Butene	(3)				Not Detected					15	50
	Bromobenzene	(3)				Not Detected					1	5
	1,2,3-Trichloropropane	(3)				Not Detected					1	5
	n-Propylbenzene	(3)				Not Detected					1	5
	2-Chlorotoluene	(3)				Not Detected					î	5
	1,3,5-Trimethylbenzene	(3)				Not Detected					1	5
	4-Chlorotoluene	(3)				Not Detected					1	5
•	tert-Butylbenzene	(3)				Not Detected					1	5
200,		,									-	-

VBLKY78

Lancaster Laboratories Analysis Summary for GC/MS Volatiles VBLKY78

Data file: /chem2/HP09355.i/12oct21a.b/yc21b01.d Injection date and time: 21-OCT-2012 02:05 Data file Sample Info. Line: VBLKY78;VBLKY78;1;3;;;; Instruction Instruction Date, time and analyst ID of latest file update: 21-Oct-2012 03:56 sas00403 Instrument ID: HP09355.i Batch: Y122951AA

Blank Data file reference: /chem2/HP09355.i/12oct2la.b/yc21b01.d

 ${\tt Method\ used:\ /chem2/HP09355.i/12oct21a.b/Y8260W.m}$ Sublist used: 8260W-EEBN

Calibration date and time (Last Method Edit): 21-OCT-2012 02:47
Mid Level Daily Calibration Standard Reference: /chem2/HP09355.i/12oct21a.b/yc21c01.d

Bottle Code:

Matrix: WATER

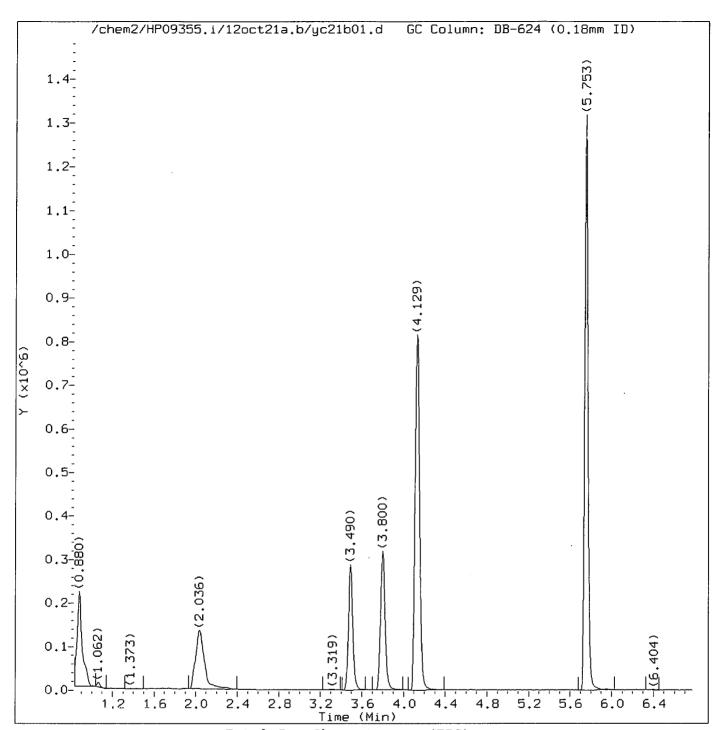
Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00


Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

						_				Reporti	-
manage Comment de	I.S.				_	Conc.	Conc.	Blank		Limit	_
Target Compounds	Ref.	RT	(+/-RRT)	QIon	Area	(on-column)	(in sample)	Conc.	Qual.	(in sa	ample)
121) Parkarkland				*====					======		
131) Pentachloroethane	(3)				Not Detected					1	5
132) 1,2,4-Trimethylbenzene	(3)				Not Detected					1	5
133) sec-Butylbenzene	(3)				Not Detected	İ.				1	5
135) p-Isopropyltoluene	(3)				Not Detected	!				1	5
134) 1,3-Dichlorobenzene	(3)				Not Detected	l				1	5
138) 1,4-Dichlorobenzene	(3)				Not Detected	l				1	5
139) 1,2,3-Trimethylbenzene	(3)				Not Detected	1				1	5
141) Benzyl Chloride	(3)				Not Detected					1	5
142) 1,3-Diethylbenzene	(3)				Not Detected	!				1	5
143) 1,4-Diethylbenzene	(3)				Not Detected					1	5
145) n-Butylbenzene	(3)				Not Detected					1	5
144) 1,2-Dichlorobenzene	(3)				Not Detected					1	5
146) 1,2-Diethylbenzene	(3)				Not Detected					1	5
148) 1,2-Dibromo-3-Chloropropane	(3)				Not Detected					2	5
149) 1,3,5-Trichlorobenzene	(3)				Not Detected					1	5
150) 1,2,4-Trichlorobenzene	(3)				Not Detected					1	5
151) Hexachlorobutadiene	(3)				Not Detected					2	5
152) Naphthalene	(3)				Not Detected					1	5
153) 1,2,3-Trichlorobenzene	(3)				Not Detected					1	5
154) 2-Methylnaphthalene	(3)				Not Detected					2	5

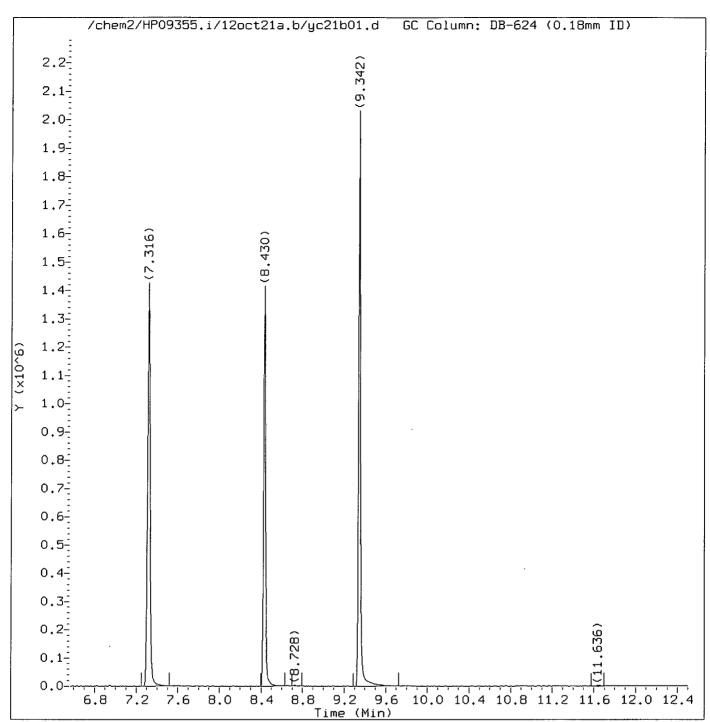
Total number of targets = 105

Digitally signed by Stephanie A. Selis on 10/21/2012 at 03:57. Target 3.5 esignature user ID: sas00403

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct21a.b/yc21b01.d Instrument ID: HP09355.i Injection date and time: 21-OCT-2012 02:05 Analyst ID: SAS00403


Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 8260W-EEBN

Calibration date and time: 21-OCT-2012 02:47

Date, time and analyst ID of latest file update: 21-Oct-2012 03:56 sas00403

Sample Name: VBLKY78 Lab Sample ID: VBLKY78

Digitally signed by Stephanie A. Selis on 10/21/2012 at 03:57.
Target 3.5 esignature user ID: sas00403

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct21a.b/yc21b01.d Injection date and time: 21-OCT-2012 02:05

Instrument ID: HP09355.i Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 8260W-EEBN Calibration date and time: 21-OCT-2012 02:47

Date, time and analyst ID of latest file update: 21-Oct-2012 03:56 sas00403

Sample Name: VBLKY78 Lab Sample ID: VBLKY78

Digitally signed by Stephanie A. Selis on 10/21/2012 at 03:57.
Target 3.5 esignature user ID: sas00403

page 2 of 2

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct21a.b/yc21b01.d Instrument ID: HP09355.i Injection date and time: 21-OCT-2012 02:05 Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 8260W-EEBN

Calibration date and time: 21-OCT-2012 02:47

Date, time and analyst ID of latest file update: 21-Oct-2012 03:56 sas00403

Sample Name: VBLKY78 Lab Sample ID: VBLKY78

Compounds.	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
28)*t-Butyl Alcohol-d10	(4)	2.036	65	441161	250.000
52) \$Dibromofluoromethane	(1)	3.490	.113	260608	48.111
62) \$1,2-Dichloroethane-d4	(1)	3.800	102	69697	47.886
71)*Fluorobenzene	(1)	4.129	96	1219483	50.000
93)\$Toluene-d8	(2)	5.753	98	1144952	50.703
106) *Chlorobenzene-d5	(2)	7.316	117	846223	50.000
119)\$4-Bromofluorobenzene	(2)	8.430	95	429269	50.425
136) *1,4-Dichlorobenzene-d4	(3)	9.342	152	466979	50.000

^{* =} Compound is an internal standard.

page 1 of 1

Digitally signed by Stephanie A. Selis on 10/21/2012 at 03:57.
Target 3.5 esignature user ID: sas00403

^{\$ =} Compound is a surrogate standard.

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

LCSY78

Lab Name: Lancaster Laboratories

Contract:

Lab Code: LANCAS

Case No.: _____ SAS No.:____

COMPOUND

SDG No.:___

Matrix: (soil/water) WATER

Lab Sample ID: LCSY78

Sample wt/vol: 5.00 (g/mL) mL

Lab File ID: HP09355.i/l2oct21a.b/yc21l02.d

and recommendation and the observer concernations and the concernation of the concerna

Level: (low/med) LOW

Date Received:

Moisture: not dec. ____

Date Analyzed: 10/21/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. (ug/L or ug/Kg) ug/L 75-71-8-----Dichlorodifluoromethane 13 74-87-3-----Chloromethane 18 75-01-4-----Vinyl Chloride 16 74-83-9-----Bromomethane 13 75-00-3-----Chloroethane 15 75-43-4-----Dichlorofluoromethane 25 75-69-4-----Trichlorofluoromethane 19 354-23-4-----Freon 123a 24 107-02-8-----Acrolein 110 75-35-4-----1,1-Dichloroethene 23 67-64-1-----Acetone 180 76-13-1-----Freon 113 22 74-88-4-----Methyl Iodide 21 67-63-0----2-Propanol 150 75-15-0-----Carbon Disulfide 21 107-05-1-----Allyl Chloride 21 79-20-9-----Methyl Acetate 28 75-09-2-----Methylene Chloride 22 75-65-0----t-Butyl Alcohol 220 107-13-1-----Acrylonitrile 100 156-60-5-----trans-1,2-Dichloroethene 22 1634-04-4-----Methyl Tertiary Butyl Ether 21 110-54-3----n-Hexane 21 | 75-34-3-----1,1-Dichloroethane 22 | 108-20-3-----di-Isopropyl Ether 22 126-99-8----2-Chloro-1,3-Butadiene 23 637-92-3-----Ethyl t-Butyl Ether 21 156-59-2----cis-1,2-Dichloroethene 22 78-93-3----2-Butanone 170 594-20-7----2, 2-Dichloropropane 21

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA	SAMPLE	NO
-----	--------	----

LCSY78

Lab Name: Lancaster Laboratories Contract:

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:___

Matrix: (soil/water) WATER

Lab Sample ID: LCSY78

CAS NO. COMPOUND

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09355.i/12oct2la.b/yc21l02.d

Level: (low/med) LOW

Date Received:

Moisture: not dec. ____ Date Analyzed: 10/21/12

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

,,,	-5, -3, -	*
107-12-0Propionitrile	140	
540-59-01,2-Dichloroethene (total)	44	İ
126-98-7Methacrylonitrile	160	İ
74-97-5Bromochloromethane	19	Ì
109-99-9Tetrahydrofuran	85	İ
67-66-3Chloroform	21	ĺ
71-55-61,1,1-Trichloroethane	20	İ
110-82-7Cyclohexane	22	İ
563-58-61,1-Dichloropropene	22	ĺ
56-23-5Carbon Tetrachloride	21	j
78-83-1Isobutyl Alcohol	490	ĺ
71-43-2Benzene	22	İ
107-06-21,2-Dichloroethane	22	į ,
994-05-8t-Amyl Methyl Ether	20	Ì
142-82-5- -n-Heptane	20	İ
71~36-3n-Butanol	860	İ
79-01-6Trichloroethene	22	Ì
108-87-2Methylcyclohexane	20	İ
78-87-51,2-Dichloropropane	22	İ
74-95-3Dibromomethane	21	ĺ
123-91-11,4-Dioxane	400	İ
80 62 6Methyl Methacrylate	20	Ì
75-27-4Bromodichloromethane	21	Ì
79-46-92-Nitropropane	17	
110-75-82-Chloroethyl Vinyl Ether	20	ĺ
10061-01-5cis-1,3-Dichloropropene	22	1
108-10-14-Methyl-2-Pentanone	110	İ
108-88-3Toluene	22	1
10061-02-6trans-1,3-Dichloropropene	20	
97-63-2Ethyl Methacrylate	20	
		l

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO	١.
---------------	----

LCSY78

Lab Name: Lancaster Laboratories Contract:

Lab Code: LANCAS Case No.:____ SAS No.:___ SDG No.:___

Matrix: (soil/water) WATER

Lab Sample ID: LCSY78

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09355.i/12oct21a.b/yc21102.d

Level: (low/med) LOW

Date Received:

Moisture: not dec. ____ Date Analyzed: 10/21/12

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

	,	CINCELLATION	ONTID.	
CAS NO.	COMPOUND (ug	J/L or ug/Kg)	ug/L	Q
	1,1,2-Trichloroeth	ane	21	
	Tetrachloroethene		21	1
142-28-9	1,3-Dichloropropan	ie	22	į
591-78-6	2-Hexanone	İ	110	1
	Dibromochlorometha	ne	20	1
106-93-4	1,2-Dibromoethane		21	
108-90-7	Chlorobenzene		21	ĺ
630-20-6	1,1,1,2-Tetrachlor	oethane	20	Ì
100-41-4	Ethylbenzene		22	ĺ
179601-23-1-	m+p-Xylene		43	İ
1330-20-7	Xylene (Total)	ĺ	64	İ
95-47-6	o-Xylene	ĺ	21	Ì
100-42-5	Styrene	ĺ	21	Ì
75-25-2	Bromoform	ĺ	17	İ
98-82-8	Isopropylbenzene	j	22	İ
108-94-1	Cyclohexanone	Ì	330	j
108-86-1	Bromobenzene	j	20	j
79-34-5	1,1,2,2-Tetrachlor	oethane	21	i
	1,2,3-Trichloropro		20	i
110-57-6	trans-1,4-Dichloro	-2-Butene	110	i
103-65-1	n-Propylbenzene	j	22	ì
95-49-8	2-Chlorotoluene	j	21	İ
108-67-8	1,3,5-Trimethylben	zene	22	İ
	4-Chlorotoluene	j	21	ĺ
98-06-6	tert-Butylbenzene	į	21	ĺ
	Pentachloroethane	i	19	į
95-63-6	1,2,4-Trimethylben	zene	21	İ
135-98-8	sec-Butylbenzene	j	22	İ
	1,3-Dichlorobenzen	e İ	20	İ
	p-Isopropyltoluene	•	22	j
		j		İ

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE	NO
------------	----

LCSY78

Lab Name: Lancaster Laboratories

Contract:_

Lab Code: LANCAS

Case No.:_____ SAS No.:____

SDG No.:_

Matrix: (soil/water) WATER

Lab Sample ID: LCSY78

Sample wt/vol: 5.00 (g/mL) mL

Lab File ID: HP09355.i/12oct21a.b/yc21102.d

Level: (low/med) LOW

Date Received:

Moisture: not dec.

Date Analyzed: 10/21/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L 106-46-7-----1,4-Dichlorobenzene 20 526-73-8-----1,2,3-Trimethylbenzene 21 100-44-7-----Benzyl Chloride 16 141-93-5----1,3-Diethylbenzene 20 105-05-5-----1,4-Diethylbenzene 21 95-50-1------1, 2-Dichlorobenzene 21 104-51-8----n-Butylbenzene 22 135-01-3-----1,2-Diethylbenzene 20 96-12-8----1, 2-Dibromo-3-Chloropropane 108-70-3-----1,3,5-Trichlorobenzene 20 120-82-1-----1,2,4-Trichlorobenzene 20 87-68-3-----Hexachlorobutadiene 19 91-20-3-----Naphthalene 19 87-61-6----1,2,3-Trichlorobenzene 19 91-57-6----2-Methylnaphthalene 16 25340-17-4-----Diethylbenzene (total) 61

LCSY78

Lancaster Laboratories Analysis Summary for GC/MS Volatiles LCSY78

Data file: /chem2/HP09355.i/12oct21a.b/yc21102.d Injection date and time: 21-OCT-2012 03:10
Data file Sample Info. Line: LCSY78;LCSY78;1;3;LCS;;DRAPER;;yc21b01; Instrument ID: HP09355.i Batch: Y122951AA
Date, time and analyst ID of latest file update: 21-Oct-2012 03:33 sas00403

Blank Data file reference: /chem2/HP09355.i/12oct21a.b/yc21b01.d

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 8260W-EEBN

Calibration date and time (Last Method Edit): 21-OCT-2012 02:47

Mid Level Daily Calibration Standard Reference: /chem2/HP09355.i/l2oct2la.b/yc2lc01.d

Bottle Code:

Matrix: WATER

Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

Analysis Comments:

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Change)	Conc. (on-column)	QC Flag
28) t-Butyl Alcohol-d10	2.054 (-0.006)	201	65	463237 (-1)	250.00	
71) Fluorobenzene	4.135(0.006)	543	96	1275024 (2)	50.00	
106) Chlorobenzene-d5	7.316(0.006)	1066	117	894322 (3)	50.00	
136) 1,4-Dichlorobenzene-d4	9.348(0.000)	1400	152	508588 (1)	50.00	

Surrogate Standards	I.S. Ref.	RT (+/-RRT)	QIon	Area	Conc. (on-column)	%Rec.	QC flags	QC Limits
52) Dibromofluoromethane	(1)	3.496(-0.001)	113	275149	48.582	97%		80 - 116
62) 1,2-Dichloroethane-d4	(1)	3.800(0.000)	102	76122	50.023	100%		77 - 113
93) Toluene-d8	(2)	5.759(-0.001)	98	1210519	50.724	101%		80 - 113
119) 4-Bromofluorobenzene	(2)	8.430(-0.001)	95	456157	50.701	101%		78 - 113

						_	_			Reporti	_
_		I.S.				Conc.	Conc.	Blank	01		LOQ
	get Compounds	Ref.	RT (+/-RRT)	QIon	Area	(on-column)	(in sample)	Conc.	Qual.	(1n S	ample)
			1.020(-0.000)	85	115578	13.393	13.39	=======		2	5
	Dichlorodifluoromethane	(1)		50	163670	17.884	17.88			1	5
	Chloromethane	(1)	1.050(0.002)	62	146604	16.353	16.35			1	5
	Vinyl Chloride	(1)	1.117(0.002) 1.275(0.001)	94	78222	13.350	13.35			1	5
7)	Bromomethane	(1)		94 64	72672	13.350	14.96			1	5
	Chloroethane	(1)	1.324(-0.000)	67	269035	25.220	25.22			2	5
9)	Dichlorofluoromethane	(1)	1.427 (0.000)	-	269035 181944	25.220 18.869	18.87			2	5
,	Trichlorofluoromethane	(1)	1.482(0.002)	101 67	162087	23.773	23.77			2	5
	Freon 123a	(1)	1.592(0.000)							40	100
	Acrolein	(4)	1.658(0.002)	56	330635	107.010	107.01 22.68			0.8	5
	1,1-Dichloroethene	(1)	1.725 (0.000)	96	117533	22.680					10
,	Freon 113	(1)	1.750 (0.000)	101	116752	21.934	21.93			2	
	Acetone	(1)	1.744(-0.000)	58	253615	175.193	175.19			6	20
	Methyl Iodide	(1)	1.823(0.000)	142	209941	21.288	21.29			1	5
-	2 Propanol	(4)	1.829(0.002)	45	196162	151.006	151.01			50	100
,	Carbon Disulfide	(1)	1.871 (0.000)	76	332595	20.829	20.83			1	5
	Allyl Chloride	(1)	1.938(0.000)	41	201907	21.120	21.12			1	5
25)	Methyl Acetate	(1)	1.950(-0.000)	43	217994	27.626	27.63			1	5
26)	Methylene Chloride	(1)	2.024(-0.000)	84	139205	21.593	21.59			2	5
29)	t-Butyl Alcohol	(4)	2.109(0.000)	59	512720	223.165	223.16			10	80
30)	Acrylonitrile	(1)	2.188(-0.000)	53	554035	101.990	101.99			4	20
31)	trans-1,2-Dichloroethene	(1)	2.218(0.000)	96	137229	22.121	22.12			0.8	5
32)	Methyl Tertiary Butyl Ether	(1)	2.224(0.000)	73	456316	21.268	21.27			0.5	5
33)	n-Hexane	(1)	2.431 (0.002)	57	197042	21.215	21.21			2	5
45)	1,2-Dichloroethene (total)	(1)		96	290903	44.260	44.26			0.8	5
34)	1,1-Dichloroethane	(1)	2.547(0.000)	63	252563	22.426	22.43			1	5
36)	di-Isopropyl Ether	(1)	2.626(-0.000)	45	503822	22.315	22.32			0.8	5
37)	2-Chloro-1,3-Butadiene	(1)	2.632(0.000)	53	219228	22.935	22.93			1	5
39)	Ethyl t-Butyl Ether	(1)	2.942(0.000)	59	463760	21.332	21.33			0.8	5
40)	cis-1,2-Dichloroethene	(1)	3.058(-0.001)	96	153674	22.139	22.14			0.8	5
41)	2-Butanone	(1)	3.064(-0.001)	43	1357978	172.921	172.92			3	10
	2,2-Dichloropropane	(1)	3.070(-0.001)	77	174727	20.654	20.65			1	5

Digitally signed by Stephanie A. Selis on 10/21/2012 at 03:57. Target 3.5 esignature user ID: sas00403

page 1 of 3

LCSY78

Lancaster Laboratories
Analysis Summary for GC/MS Volatiles LCSY78

Data file: /chem2/HP09355.i/12oct21a.b/yc21102.d Injection date and time: 21-OCT-2012 03:10
Data file Sample Info. Line: LCSY78;LCSY78;1;3;LCS;;DRAPER;;yc21b01; Instrument ID: HP09355.i Batch: Y122951AA
Date, time and analyst ID of latest file update: 21-Oct-2012 03:33 sas00403

Blank Data file reference: /chem2/HP09355.i/12oct21a.b/yc21b01.d

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 8260W-EEBN

Calibration date and time (Last Method Edit): 21-OCT-2012 02:47

Mid Level Daily Calibration Standard Reference: /chem2/HP09355.i/12oct21a.b/yc21c01.d

Bottle Code:

Matrix: WATER Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

	get Compounds	I.S. Ref.	RT (+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.	Reporti Limit (in s	
	Propionitrile	(4)	3.112(0.007)	54	398289	139.106	139.11			30	100
46)	Methacrylonitrile	(1)	3.252(0.000)	67	850094	158.134	158.13			10	50
47)	Bromochloromethane	(1)	3.265(0.000)	128	73033	19.396	19.40			1	5
48)	Tetrahydrofuran	(4)	3.313(0.004)	71	226531	84.510	84.51			4	10
50)	Chloroform	(1)	3.350(-0.001)	83	235752	20.818	20.82			0.8	5
	1,1,1-Trichloroethane	(1)	3.520(0.000)	97	191343	19.823	19.82			0.8	5
	Cyclohexane	(1)	3.581(-0.001)	56	246325	21.758	21.76			2	5
	1,1-Dichloropropene	(1)	3.672(0.000)	75	183904	21.943	21.94			1	5
	Carbon Tetrachloride	(1)	3.678(0.000)	117	151046	21.057	21.06			1	5
	Isobutyl Alcohol	(4)	3.812(0.008)	41	387914M	490.156	490.16			100	250
	Benzene	(1)	3.861 (0.000)	78	587548	21.985	21.99			0.5	5
	1,2-Dichloroethane	(1)	3.873(0.000)	62	194754	22.064	22.06			1 0.8	5 5
	t-Amyl Methyl Ether n-Heptane	(1) (1)	4.001(-0.001) 4.159(-0.001)	73 43	431172 213986	20.179 19.868	20.18 19.87			2	5 5
	n-Butanol	(4)	4.463(0.009)	56	628589	856.429	856.43			100	250
	Trichloroethene	(1)	4.500 (-0.000)	95	143656	21.613	21.61			1	5
	1,2-Dichloropropane	(1)	4.712(-0.000)	63	155912	22.220	22.22			1	5
	Methylcyclohexane	(1)	4.700(-0.001)	83	242113	20.101	20.10			1	5
	Methyl Methacrylate	(1)	4.871(-0.001)	69	163682	19.725	19.73			1	5
	Dibromomethane	(1)	4.828(-0.000)	93	97670	21.007	21.01			1	5
	1,4-Dioxane	(4)	4.852(0.009)	88	82629	404.763	404.76			70	250
83)	Bromodichloromethane	(1)	5.004 (-0.000)	83	161950	20.591	20.59			1	5
85)	2-Nitropropane	(1)	5.236(-0.001)	41	54788	16.833	16.83			2	10
86)	2-Chloroethyl Vinyl Ether	(1)	5.339(-0.000)	63	122669	19.550	19.55			2	10
87)	cis-1,3-Dichloropropene	(1)	5.473 (-0.000)	75	221697	22.028	22.03			1	5
89)	4-Methyl-2-Pentanone	(1)	5.662(-0.002)	43	1593816	107.317	107.32			3	10
	Toluene	(2)	5.826(0.000)	92	363083	21.809	21.81			0.7	5
95)	trans-1,3-Dichloropropene	(2)	6.081 (-0.000)	75	190834	20.047	20.05			1	5
96)	Ethyl Methacrylate	(2)	6.221 (0.000)	69	254527	20.204	20.20			1	5
	1,1,2-Trichloroethane	(2)	6.264 (0.000)	97	141909	21.095	21.09			0.8	5
98)	Tetrachloroethene	(2)	6.416(-0.000)	166	147509	20.542	20.54			0.8	5
	1,3-Dichloropropane	(2)	6.440(-0.000)	76	243401	21.580	21.58			1	5
	2-Hexanone	(2)	6.574(-0.000)	43	1254897	107.101	107.10			3	10 5
	Dibromochloromethane 1,2-Dibromoethane	(2) (2)	6.684(0.000)	129 107	126408 150128	20.414 20.563	20.41 20.56			1	5
	Chlorobenzene	(2)	6.767 (-0.000) 7.347 (-0.000)	112	395080	20.363	20.36			0.8	5
	1,1,1,2-Tetrachloroethane	(2)	7.450(-0.000)	131	123270	20.408	20.41			1	5
	Ethylbenzene	(2)	7.487(-0.000)	91	702812	21.733	21.73			0.8	5
	m+p-Xylene	(2)	7.608(-0.000)	106	544906	42.720	42.72			0.8	5
	Xylene (Total)	(2)		106	813992	63.607	63.61			0.8	5
	o-Xylene	(2)	7.979(-0.000)	106	269086	20.888	20.89			0.8	5
	Styrene	(2)	7.992(-0.000)	104	448432	20.847	20.85			1	5
115)	Bromoform	(2)	8.131(-0.000)	173	88721	16.877	16.88			1	5
116)	Isopropylbenzene	(2)	8.320(-0.000)	105	696223	21.539	21.54			1	5
118)	Cyclohexanone	(4)	8.363(0.011)	55	301398	333.463	333.46			55	250
122)	1,1,2,2-Tetrachloroethane	(3)	8.576(0.000)	83	255103	21.252	21.25			1	5
124)	trans-1,4-Dichloro-2-Butene	(3)	8.618(-0.000)	53	386110	110.158	110.16			15	50
	Bromobenzene	(3)	8.545(0.000)	156	169474	20.056	20.06			1	5
	1,2,3-Trichloropropane	(3)	8.594(0.000)	110	76436	20.476	20.48			1	5
	n-Propylbenzene	(3)	8.667 (0.000)	91	831403	22.473	22.47			1	5
	2-Chlorotoluene	(3)	8.716(0.000)	126	163396	20.794	20.79			1	5
	1,3,5-Trimethylbenzene	(3)	8.813(0.000)	105	600621	21.799	21.80			1	5
	4-Chlorotoluene	(3)	8.807 (0.000)	126	169856	20.905	20.90			1	5
130)	tert-Butylbenzene	(3)	9.062(0.000)	134	128474	20.763	20.76			1	5

M = Compound was manually integrated.

LCSY78

Lancaster Laboratories Analysis Summary for GC/MS Volatiles LCSY78

Data file: /chem2/HP09355.i/12oct21a.b/yc21102.d Injection date and time: 21-OCT-2012 03:10
Data file Sample Info. Line: LCSY78;LCSY78;1;3;LCS;;DRAPER;;yc21b01; Instrument ID: HP09355.i Batch: Y122951AA
Date, time and analyst ID of latest file update: 21-Oct-2012 03:33 sas00403

Blank Data file reference: /chem2/HP09355.i/12oct21a.b/yc21b01.d

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 8260W-EEBN

Calibration date and time (Last Method Edit): 21-OCT-2012 02:47

Mid Level Daily Calibration Standard Reference: /chem2/HP09355.i/12oct21a.b/yc21c01.d

Bottle Code:

Matrix: WATER

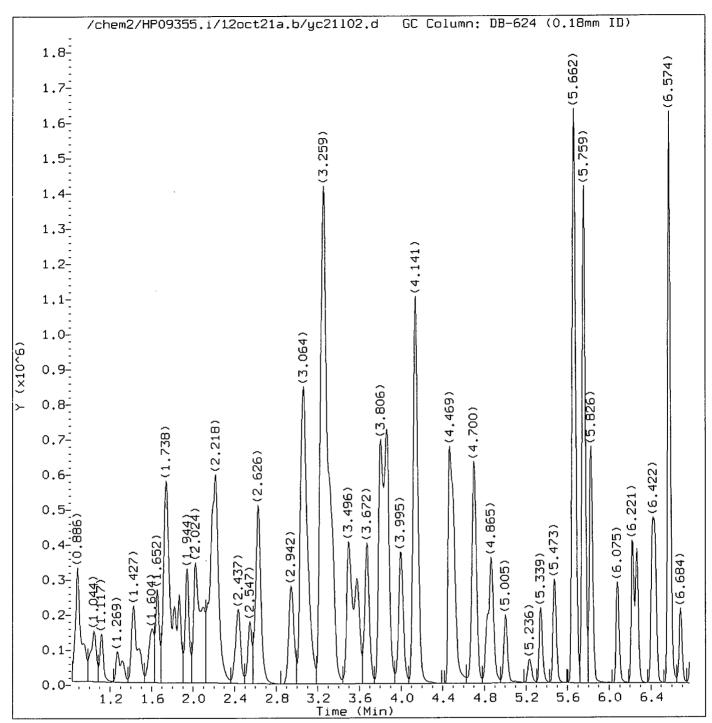
Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00


Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

	I.S.				Conc.	Conc.	Blank		Reporti Limit	-
Target Compounds	Ref.	RT (+/-RRT)	QIon	Area	(on-column)	(in sample)	Conc.	Qual.	(in s	ample)
*******			=====		***********	=======================================		======		
131) Pentachloroethane	(3)	9.062(0.000)	167	94570	18.553	18.55			1	5
132) 1,2,4-Trimethylbenzene	(3)	9.099(0.000)	105	607411	21.367	21.37			1	5
133) sec-Butylbenzene	(3)	9.233(0.000)	105	743806	21.954	21.95			1	5
135) p-Isopropyltoluene	(3)	9.348(0.000)	119	654060	21.858	21.86			1	5
134) 1,3-Dichlorobenzene	(3)	9.293(0.000)	146	326398	20.462	20.46			1	5
138) 1,4-Dichlorobenzene	(3)	9.366(-0.000)	146	348647	20.478	20.48			1	5
139) 1,2,3-Trimethylbenzene	(3)	9.415(-0.000)	105	635979	20.810	20.81			1	5
141) Benzyl Chloride	(3)	9.470(-0.000)	91	378462	16.473	16.47			1	5
142) 1,3-Diethylbenzene	(3)	9.567 (-0.000)	119	380668	20.178	20.18			1	5
143) 1,4-Diethylbenzene	(3)	9.628(-0.000)	119	404518	20.871	20.87			1	5
145) n-Butylbenzene	(3)	9.646(-0.000)	92	324514	21.884	21.88			1	5
144) 1,2-Dichlorobenzene	(3)	9.628(0.000)	146	334630	20.751	20.75			1	5
146) 1,2-Diethylbenzene	(3)	9.707(-0.000)	119	331220	20.420	20.42			1	5
148) 1,2-Dibromo-3-Chloropropane	(3)	10.176(-0.000)	75	60553	19.836	19.84			2	5
149) 1,3,5-Trichlorobenzene	(3)	10.328(-0.000)	180	244874	20.011	20.01			1	5
150) 1,2,4-Trichlorobenzene	(3)	10.741 (-0.000)	180	227057	19.741	19.74			1	5
151) Hexachlorobutadiene	(3)	10.863(-0.000)	225	99512	18.655	18.65			2	5
152) Naphthalene	(3)	10.893(-0.000)	128	838007	18.792	18.79			1	5
153) 1,2,3-Trichlorobenzene	(3)	11.052 (-0.000)	180	214691	19.027	19.03			1	5
154) 2-Methylnaphthalene	(3)	11.617(-0.000)	142	404667	16.314	16.31			2	5

Total number of targets = 105

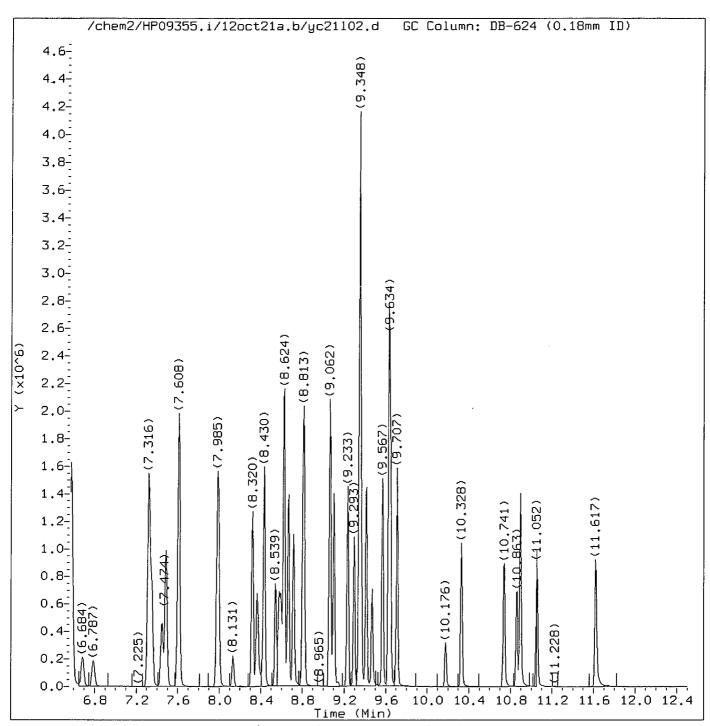
Digitally signed by Stephanie A. Selis on 10/21/2012 at 03:57. Target 3.5 esignature user ID: sas00403

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct21a.b/yc21102.d Instrument ID: HP09355.i Injection date and time: 21-OCT-2012 03:10 Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 8260W-EEBN


Calibration date and time: 21-OCT-2012 02:47

Date, time and analyst ID of latest file update: 21-Oct-2012 03:33 sas00403

Sample Name: LCSY78 Lab Sample ID: LCSY78

Digitally signed by Stephanie A. Selis on 10/21/2012 at 03:57.
Target 3.5 esignature user ID: sas00403

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct21a.b/yc21102.d Instrument ID: HP09355.i Injection date and time: 21-OCT-2012 03:10 Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 8260W-EEBN

Calibration date and time: 21-OCT-2012 02:47

Date, time and analyst ID of latest file update: 21-Oct-2012 03:33 sas00403

Sample Name: LCSY78 Lab Sample ID: LCSY78

Digitally signed by Stephanie A. Selis on 10/21/2012 at 03:57. Target 3.5 esignature user ID: sas00403

page 2 of 2

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct21a.b/yc21102.d Instrument ID: HP09355.i Injection date and time: 21-OCT-2012 03:10 Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 8260W-EEBN

Calibration date and time: 21-OCT-2012 02:47

Date, time and analyst ID of latest file update: 21-Oct-2012 03:33 sas00403

Sample Name: LCSY78 Lab Sample ID: LCSY78

	I.S.				On-Column Amount
Compounds	Ref.	RT	QIon	Area	(ng)
					12 202
2) Dichlorodifluoromethane	(1)	1.02.0	85	115578	13.393
3) Chloromethane	(1)	1.050	50	163670	17.884
5) Vinyl Chloride	(1)	1.117	62	146604	16.353
7) Bromomethane	(1)	1.275	94	78222	13.350
8) Chloroethane	(1)	1.324	64	72672	14.958
Dichlorofluoromethane	(1)	1.427	67	269035	25.220
10) Trichlorofluoromethane	(1)	1.482	101	181944	18.869
14) Freon 123a	(1)	1.592	67	162087	23.773
15) Acrolein	(4)	1.659	56	330635	107.010
<pre>16) 1,1-Dichloroethene</pre>	(1)	1.725	96	117533	22.680
17) Acetone	(1)	1.744	58	253615	175.193
18) Freon 113	(1)	1.750	101	116752	21.934
20) Methyl Iodide	(1)	1.823	142	209941	21.288
21) 2-Propanol	(4)	1.829	45	196162	151.006
22) Carbon Disulfide	(1)	1.871	76	332595	20.829
24) Allyl Chloride	(1)	1.938	41	201907	21.120
25) Methyl Acetate	(1)	1.951	43	217994	27.626
26) Methylene Chloride	(1)	2.024	84	139205	21.593
28) *t-Butyl Alcohol-d10	(4)	2.054	65	463237	250.000
29) t-Butyl Alcohol	(4)	2.109	59	512720	223.165
30) Acrylonitrile	(1)	2.188	53	554035	101.990
31) trans-1,2-Dichloroethene	(1)	2.218	96	137229	22.121
32) Methyl Tertiary Butyl Ether		2.224	73	456316	21.268
33) n-Hexane	(1)	2.431	57	197042	21.215
34) 1,1-Dichloroethane	(1)	2.547	63	252563	22.426
36) di-Isopropyl Ether	(1)	2.626	45	503822	22.315
37) 2-Chloro-1,3-Butadiene	(1)	2.632	53	219228	22.935
39) Ethyl t-Butyl Ether	(1)	2.942	59	463760	21.332
40) cis-1,2-Dichloroethene	(1)	3.058	96	153674	22.139
41) 2-Butanone	(1)	3.064	43	1357978	172.921
42) 2,2-Dichloropropane	(1)	3.070	77	174727	20.654
43) Propionitrile	(4)	3.113	54	398289	139.106
46) Methacrylonitrile	(1)	3.252	67	850094	158.134
	(1)	3.265	128	73033	19.396
47) Bromochloromethane	(4)	3.203	71	226531	84.510
48) Tetrahydrofuran	(1)	3.350	83	235752	20.818
50) Chloroform		3.496	113	275149	48.582
52) \$Dibromofluoromethane	(1)		97	191343	19.823
53) 1,1,1-Trichloroethane	(1)	3.520	91	131343	19.023

^{* =} Compound is an internal standard.

page 1 of 3

Digitally signed by Stephanie A. Selis on 10/21/2012 at 03:57.
Target 3.5 esignature user ID: sas00403

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct21a.b/yc21102.d Instrument ID: HP09355.i Injection date and time: 21-OCT-2012 03:10 Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 8260W-EEBN

Calibration date and time: 21-OCT-2012 02:47

Date, time and analyst ID of latest file update: 21-Oct-2012 03:33 sas00403

Sample Name: LCSY78 Lab Sample ID: LCSY78

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
56) Cyclohexane	(1)	3.581	56	246325	21.758
45) 1,2-Dichloroethene (total)	(1)		96	290903	44.260
57) 1,1-Dichloropropene	(1)	3.672	75	183904	21.943
58) Carbon Tetrachloride	(1)	3.678	117	151046	21.057
62)\$1,2-Dichloroethane-d4	(1)	3.800	102	76122	50.023
59) Isobutyl Alcohol	(4)	3.812	41	387914M	490.156
63) Benzene	(1)	3.861	78	587548	21.985
65) 1,2-Dichloroethane	(1)	3.873	62	194754	22.064
69) t-Amyl Methyl Ether	(1)	4.001	73	431172	20.179
71) *Fluorobenzene	(1)	4.135	96	1275024	50.000
72) n-Heptane	(1)	4.159	43	213986	19.868
73) n-Butanol	(4)	4.463	56	628589	856.429
74) Trichloroethene	(1)	4.500	95	143656	21.613
76) Methylcyclohexane	(1)	4.700	83	242113	20.101
77) 1,2-Dichloropropane	(1)	4.713	63	155912	22.220
78) Dibromomethane	(1)	4.828	93	97670	21.007
79) 1,4-Dioxane	(4)	4.852	88	82629	404.763
80) Methyl Methacrylate	(1)	4.871	69	163682	19.725
83) Bromodichloromethane	(1)	5.005	83	161950	20.591
85) 2-Nitropropane	(1)	5.236	41	54788	16.833
86) 2-Chloroethyl Vinyl Ether	(1)	5.339	63	122669	19.550
87) cis-1,3-Dichloropropene	(1)	5.473	75	221697	22.028
89) 4-Methyl-2-Pentanone	(1)	5.662	43	1593816	107.317
93)\$Toluene-d8	(2)	5.759	98	1210519	50.724
94) Toluene	(2)	5.826	92	363083	21.809
95) trans-1,3-Dichloropropene	(2)	6.081	75	190834	20.047
96) Ethyl Methacrylate	(2)	6.221	69	254527	20.204
97) 1,1,2-Trichloroethane	(2)	6.264	97	141909	21.095
98) Tetrachloroethene	(2)	6.416	166	147509	20.542
99) 1,3-Dichloropropane	(2)	6.440	76	243401	21.580
101) 2-Hexanone	(2)	6.574	43	1254897	107.101
102) Dibromochloromethane	(2)	6.684	129	126408	20.414
104) 1,2-Dibromoethane	(2)	6.787	107	150128	20.563
106) *Chlorobenzene-d5	(2)	7.316	117	894322	50.000
107) Chlorobenzene	(2)	7.347	112	395080	21.314
108) 1,1,1,2-Tetrachloroethane	(2)	7.450	131	123270	20.408
109) Ethylbenzene	(2)	7.487	91	702812	21.733
110) m+p-Xylene	(2)	7.608	106	544906	42.720

M = Compound was manually integrated.

Digitally signed by Stephanie A. Selis on 10/21/2012 at 03:57.
Target 3.5 esignature user ID: sas00403

page 2 of 3

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12oct21a.b/yc21102.d Instrument ID: HP09355.i Injection date and time: 21-OCT-2012 03:10 Analyst ID: SAS00403

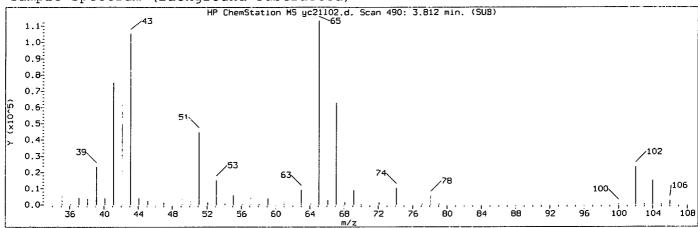
Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 8260W-EEBN

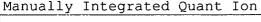
Calibration date and time: 21-OCT-2012 02:47

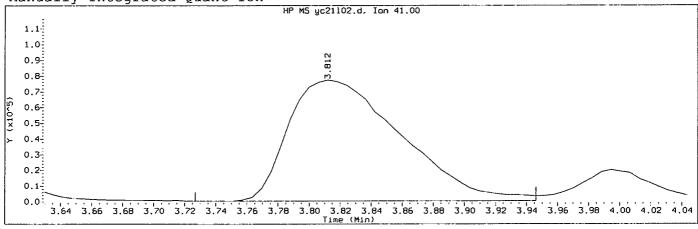
Date, time and analyst ID of latest file update: 21-Oct-2012 03:33 sas00403

Sample Name: LCSY78 Lab Sample ID: LCSY78

	I.S.				On-Column Amount
Compounds	Ref.	RT	QIon	Area	(ng)
======================================	===== (2)	7.979	106	269086	20.888
114) Styrene	(2)	7.992	104	448432	20.847
115) Bromoform	(2)	8.131	173	88721	16.877
112) Xylene (Total)	(2)	. 0.101	106	813992	63.607
116) Isopropylbenzene	(2)	8.320	105	696223	21.539
118) Cyclohexanone	(4)	8.363	55	301398	333.463
119) \$4-Bromofluorobenzene	(2)	8.430	95	456157	50.701
121) Bromobenzene	(3)	8.545	156	169474	20.056
122) 1,1,2,2-Tetrachloroethane	(3)	8.576	83	255103	21.252
123) 1,2,3-Trichloropropane	(3)	8.594	110	76436	20.476
124) trans-1,4-Dichloro-2-Butene	(3)	8.618	53	386110	110.158
125) n-Propylbenzene	(3)	8.667	91	831403	22.473
126) 2-Chlorotoluene	(3)	8.716	126	163396	20.794
128) 4-Chlorotoluene	(3)	8.807	126	169856	20.905
127) 1,3,5-Trimethylbenzene	(3)	8.813	105	600621	21.799
130) tert-Butylbenzene	(3)	9.062	134	128474	20.763
131) Pentachloroethane	(3)	9.062	167	94570	18.553
132) 1,2,4-Trimethylbenzene	(3)	9.099	105	607411	21.367
133) sec-Butylbenzene	(3)	9.233	105	743806	21.954
134) 1,3-Dichlorobenzene	(3)	9.293	146	326398	20.462
136) *1,4-Dichlorobenzene-d4	(3)	9.348	152	508588	50.000
135) p-Isopropyltoluene	(3)	9.348	119	654060	21.858
138) 1,4-Dichlorobenzene	(3)	9.366	146	348647	20.478
139) 1,2,3-Trimethylbenzene	(3)	9.415	105	635979	20.810
141) Benzyl Chloride	(3)	9.470	91	378462	16.473
142) 1,3-Diethylbenzene	(3)	9.567	119	380668	20.178
144) 1,2-Dichlorobenzene	(3)	9.628	146	334630	20.751
143) 1,4-Diethylbenzene	(3)	9.628	119	404518	20.871
145) n-Butylbenzene	(3)	9.646	92	324514	21.884
146) 1,2-Diethylbenzene	(3)	9.707	119	331220	20.420
148) 1,2-Dibromo-3-Chloropropane	(3)	10.176	75	60553	19.836
149) 1,3,5-Trichlorobenzene	(3)	10.328	180	244874	20.011
150) 1,2,4-Trichlorobenzene	(3)	10.741	180	227057	19.741
151) Hexachlorobutadiene 152) Naphthalene	(3)	10.863	225	99512	18.655
	(3)	10.893	128 180	838007	18.792
	(3)	11.052		214691	19.027
154) 2-Methylnaphthalene	(3)	11.617	142	404667	16.314


^{* =} Compound is an internal standard.


page 3 of 3


Digitally signed by Stephanie A. Selis on 10/21/2012 at 03:57. Target 3.5 esignature user ID: sas00403

^{\$ =} Compound is a surrogate standard.

Sample Spectrum (Background Subtracted)

Data File: /chem2/HP09355.i/12oct21a.b/yc21102.d Injection date and time: 21-OCT-2012 03:10

Instrument ID: HP09355.i Analyst ID: SAS00403

Sublist used: 8260W-EEBN

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m

Calibration date and time: 21-OCT-2012 02:47

Date, time and analyst ID of latest file update: 21-Oct-2012 03:33 sas00403

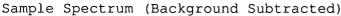
Sample Name: LCSY78 Lab Sample ID: LCSY78

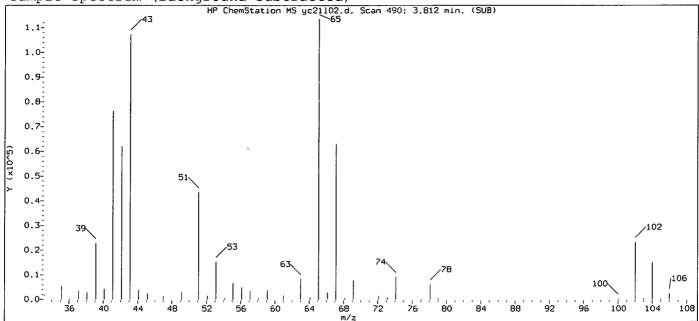
Compound Number : 59

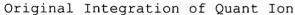
Compound Name Isobutyl Alcohol

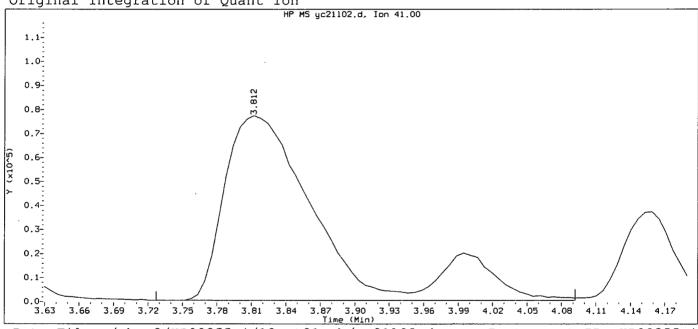
Scan Number : 490 Retention Time (minutes): 3.812 Quant Ion : 41.00 Area (flag) : 387914M : 490.1560 On-Column Amount (ng)

475 511 Integration start scan : Integration stop scan: Y at integration start 573 Y at integration end:


Reason for manual integration: improper integration


Digitally signed by Stephanie A. Selis


Analyst responsible for change: on 10/21/2012 at 03:57.


Target 3.5 esignature user ID: sas00403

Secondary review performed and digitally signed by Christine M. Dulaney on 10/24/2012 at 15:38. Parallax ID: cmd00448

Data File: /chem2/HP09355.i/12oct21a.b/yc21102.d Injection date and time: 21-OCT-2012 03:10

Instrument ID: HP09355.i Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12oct21a.b/Y8260W.m Sublist used: 8260W-EEBN

Calibration date and time: 21-OCT-2012 02:47

Date, time and analyst ID of latest file update: 21-Oct-2012 03:31 sas00403

Sample Name: LCSY78 Lab Sample ID: LCSY78

Compound Number : 59

Compound Name : Isobutyl Alcohol

Scan Number : 490
Retention Time (minutes): 3.812
Quant Ion : 41.00
Area : 455326
On-column Amount (ng) : 575.3354

Integration start scan : 475 Integration stop scan: 535 Y at integration start : 573 Y at integration end: 573

Digitally signed by Stephanie A. Selis on 10/21/2012 at 03:57. Target 3.5 esignature user ID: sas00403

APPENDIX C GROUND WATER MONITORING WELL SAMPLING DATA USABILITY SUMMARY REPORT

Data Validation Services

120 Cobble Creek Road P.O. Box 208 North Creek, NY 12853

Phone 518-251-4429 harry@frontiernet.net

February 8, 2013

Mark Zunich Reliance Environmental, Inc. 130 E. Chestnut Street Lancaster, PA 17602

RE: Data Usability Summary Report for the BK Oceanside Plaza Site

Lancaster SDG No. OSP14

Dear Mr. Zunich:

Review has been completed for the analytical data packages generated by Lancaster Laboratories that pertain to samples collected at the BK Oceanside site. Two aqueous samples and an aqueous field duplicate were processed for Priority Pollutant volatiles and xylenes by USEPA SW846 method EPA8260B. Field and trip blanks were also processed.

The data packages that were submitted contain full deliverables for validation, but this usability report is generated from review of the summary form information, with review of sample raw data, and limited review of associated QC raw data. Full validation has not been performed. However, the reported summary forms have been reviewed for application of validation qualifiers, using guidance from the USEPA Region 2 validation SOPs, the USEPA National Functional Guidelines for Data Review, the specific laboratory methodologies, and professional judgment, as affects the usability of the data. The following items were reviewed:

- * Laboratory Narrative Discussion
- * Custody Documentation
- * Holding Times
- * Surrogate and Internal Standard Recoveries
- * Matrix Spike Recoveries/Duplicate Correlations
- * Field Duplicate Correlation
- * Preparation/Calibration Blanks
- * Laboratory Control Samples
- * Instrumental Tunes
- * Calibration Standards
- * Instrument IDLs
- * Sample Result Verification

Those items listed above which show deficiencies are discussed within the text of this narrative. All of the other items were determined to be acceptable for the DUSR level review.

In summary, most sample analyte values/reporting limits are usable as reported. The results for one analyte in the samples are not usable due to lack of stability of that compound in the preserved medium.

A copy of the laboratory case narrative is attached to this text, and should be reviewed in conjunction with this report.

The following text discusses quality issues of concern.

Chain-of-Custody

The preservation code was not entered onto the custody form. The laboratory pH log indicates proper preservation of the aqueous samples.

Although some of the cooler temperature readings in April are elevated (up to 11°C). The associated samples were collected less than 5 hours before laboratory receipt, were iced, and in the process of cooling down. No qualification is indicated.

Volatiles by EPA 8260B

The results for 2-chloroethyl vinyl ether (CEVE) in the aqueous samples, field blank, and trip blank are not usable, as this compound is not stable in the acid-preserved medium.

Holding time requirements were met, and the surrogate and internal standard recoveries are within the required limits. The calibration standards show acceptable responses.

Field, trip, and method blanks show no contamination.

No sample matrix spikes were performed. Historically, accuracy and precision of the matrix were good. The LCS shows compliant recoveries.

The field duplicate evaluation was performed on BKO-MW-4, and shows good correlations.

Please do not hesitate to contact me if you have comments or questions regarding this report.

Very truly yours,

Judy Harry

VALIDATION DATA QUALIFIER DEFINITIONS

- U The analyte was analyzed for, but was not detected above the level of the associated reported quantitation limit.
- J The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte in the sample.
- UJ The analyte was not detected. The associated reported quantitation limit is an estimate and may be inaccurate or imprecise.
- NJ The detection is tentative in identification and estimated in value. Although there is presumptive evidence of the analyte, the result should be used with caution as a potential false positive and/or elevated quantitative value.
- **R** The data are unusable. The analyte may or may not be present.
- EMPC The results do not meet all criteria for a confirmed identification.

 The quantitative value represents the Estimated Maximum Possible Concentration of the analyte in the sample.

CLIENT and LABORATORY SAMPLE IDs and LABORATORY CASE NARRATIVES

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Reference List for SDG Number OSP14 with a Data Package Type of NYSDEC B

12577 - Reliance Environmental, Inc.

Project: Oceanside Plaza

Lab	Lab	
Sample Number	Sample Code	Client Sample Description
6828481	M4	BKO-MW4 Grab Water Sample
6828482	-5	BKO-MW5 Grab Water Sample
6828483	FD4	BKO-DUP Grab Water Sample
6828484	FBOC-	BKO-FB Grab Water Sample
6828485	TBOC-	BKO-TB Water Sample

Lancaster Laboratories

Case Narrative/Conformance Summary

CLIENT: Reliance Environmental, Inc. SDG: OSP14

GC/MS Volatiles

Fraction: Volatiles by GC/MS

Matrix

Sample #	Client ID	Liquid	Solid	DF	Comments
6828481	BKO-MW4	X		1	
6828482	BKO-MW5	X		1	
6828483	BKO-DUP	X		1	Field Duplicate Sample
6828484	BKO-FB	X		1	Field Blank
6828485	BKO-TB	X		1	Trip Blank

See QC Reference List for Associated Batch QC Samples

SAMPLE RECEIPT:

Samples were received in good condition and within temperature requirements.

HOLDING TIME:

All holding times were met.

PREPARATION/EXTRACTION/DIGESTION:

No problems were encountered.

CALIBRATION/STANDARDIZATION:

All criteria were met.

QUALITY CONTROL AND NONCONFORMANCE SUMMARY:

MS/MSD

(Sample number(s): 6828481-6828485: Analysis: 10903)
2-Chloroethyl vinyl ether may not be recovered if acid was used to preserve this sample.

Matrix QC may not be included if site-specific QC were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, laboratory spike data (LCS) are provided.

10/30/2012 9:14:51 AM Page 1 of 2

Lancaster Laboratories

Case Narrative/Conformance Summary

CLIENT: Reliance Environmental, Inc. SDG: OSP14

GC/MS Volatiles

Fraction: Volatiles by GC/MS

SAMPLE ANALYSIS:

No problems were encountered with the analysis of the samples.

Abbreviation Key

UNSPK = Unspiked (for MS/MSD)	LOQ = Limit of Quantitation	
MS = Matrix Spike	MDL = Method Detection Limit	
MSD = Matrix Spike Duplicate	ND = Not Detected	
BKG = Background (for Duplicate)	J = Estimated Value	
D = Duplicate (DUP)	E= out of calibration range	
LCS = Lab Control Sample	RE = Repreparation/Reanalysis	
LCSD = Lab Control Sample Duplicate	* = Out of Specification	

Narrative Reviewed and Approved

(Date)

SAMPLE RESULTS FORMS

Sample Description: BKO-MW4 Grab Water Sample

Oceanside Plaza

LLI Sample # WW 6828481 LLI Group # 1343222 Account # 12577

.

Project Name: Oceanside Plaza

by MEZ

Reliance Environmental, Inc.

130 East Chestnut Street

Lancaster PA 17602

Submitted: 10/18/2012 12:15

Collected: 10/18/2012 08:35

Reported: 10/24/2012 17:20

M4--- SDG#: OSP14-01

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10903	Acrolein	107-02-8	< 100	100	1
10903	Acrylonitrile	107-13-1	< 20	20	1
10903	Benzene	71-43-2	< 5	5	1
10903	Bromodichloromethane	75-27-4	< 5	5	1
10903	Bromoform	75-25-2	< 5	5	1
10903	Bromomethane	74-83-9	< 5	5	1
10903	Carbon Tetrachloride	56-23-5	< 5	5	1
10903	Chlorobenzene	108-90-7	< 5	5	1
10903	Chloroethane	75-00-3	< 5	5	1
10903	2-Chloroethyl Vinyl Ether	110-75-8	~ 10 K	10	1 .
	2-Chloroethyl vinyl ether may preserve this sample.	not be recovered	if acid was used to		
10903	Chloroform	67-66-3	< 5	5	1
10903	Chloromethane	74-87-3	< 5	5	1
10903	Dibromochloromethane	124-48-1	< 5	5	1
10903	1,1-Dichloroethane	75-34-3	< 5	5	1
10903	1,2-Dichloroethane	107-06-2	< 5	5	1
10903	1,1-Dichloroethene	75-35-4	< 5	5	1
10903	cis-1,2-Dichloroethene	156-59-2	< 5	5	1
10903	trans-1,2-Dichloroethene	156-60-5	< 5	5	1
10903	1,2-Dichloropropane	78-87-5	< 5	5	1
10903	cis-1,3-Dichloropropene	10061-01-5	< 5	5	1
10903	trans-1,3-Dichloropropene	10061-02-6	< 5	5	1
10903	Ethylbenzene	100-41-4	< 5	5	1
10903	Methylene Chloride	75-09-2	< 5	5	1
10903	1,1,2,2-Tetrachloroethane	79-34-5	< 5	5	1
10903	Tetrachloroethene	127-18-4	< 5	5	1
10903	Toluene	108-88-3	< 5	5	1
10903	1,1,1-Trichloroethane	71-55-6	< 5	5	1
10903	1,1,2-Trichloroethane	79-00-5	< 5	5	1
10903	Trichloroethene	79-01-6	< 5	5	1
10903	Trichlorofluoromethane	75-69-4	< 5	5	1
10903	Vinyl Chloride	75-01-4	< 5 ·	5	1
10903	Xylene (Total)	1330-20-7	< 5	5	1
					<u>-</u>

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor			
10903 01163	8260 Std. Water Master GC/MS VOA Water Prep	SW-846 8260B SW-846 5030B	1 1	Y122951AA Y122951AA	10/21/2012 09:26 10/21/2012 09:26	Stephanie A Selis Stephanie A Selis				

Sample Description: BKO-MW5 Grab Water Sample

Oceanside Plaza

LLI Sample # WW 6828482 LLI Group # 1343222

Account

12577

Project Name: Oceanside Plaza

Collected: 10/18/2012 08:00

by MEZ

Reliance Environmental, Inc.

130 East Chestnut Street

Lancaster PA 17602

Submitted: 10/18/2012 12:15

Reported: 10/24/2012 17:20

SDG#: OSP14-02

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10903	Acrolein	107-02-8	< 100	100	1
10903	Acrylonitrile	107-13-1	< 20	20	1
10903	Benzene	71-43-2	< 5	5	1
10903	Bromodichloromethane	75-27-4	< 5	5	1
10903	Bromoform	75-25-2	< 5	5 .	1
10903	Bromomethane	74-83-9	< 5	5	1
10903	Carbon Tetrachloride	56-23-5	< 5	5 .	1
10903	Chlorobenzene	108-90-7	< 5	5	1
10903	Chloroethane	75-00-3	< 5	5	1
10903	2-Chloroethyl Vinyl Ether	110-75-8	10 R	10	1
	2-Chloroethyl vinyl ether ma	ay not be recovered	if acid was used to		
	preserve this sample.	-			
10903	Chloroform	67-66-3	< 5	5	1
10903	Chloromethane .	74-87-3	< 5	5	1
10903	Dibromochloromethane	124-48-1	< 5	5	1
10903	1,1-Dichloroethane	75-34-3	< 5	5	1
10903	1,2-Dichloroethane	107-06-2	< 5	5	1
10903	1,1-Dichloroethene	75-35-4	< 5	5	1
10903	cis-1,2-Dichloroethene	156-59-2	11	5	1
10903	trans-1,2-Dichloroethene	156-60-5	< 5	5	1
· 10903	1,2-Dichloropropane	78-87-5	< 5	5	1
10903	cis-1,3-Dichloropropene	10061-01-5	< 5	5	1
10903	trans-1,3-Dichloropropene	10061-02-6	< 5	5	1
10903	Ethylbenzene	100-41-4	< 5	5	1
10903	Methylene Chloride	75-09-2	< 5	5	1
10903	1,1,2,2-Tetrachloroethane	79-34-5	< 5	5	1
10903	Tetrachloroethene	127-18-4	10	5	1
10903	Toluene	108-88-3	< 5	5	1
10903	1,1,1-Trichloroethane	71-55-6	< 5	5	1
10903	1,1,2-Trichloroethane	79-00-5	< 5	5	1
10903	Trichloroethene	79-01-6	< 5	5	1
10903	Trichlorotluoromethane	75-69-4	< 5	5	1
10903	Vinyl Chloride	75-01-4	< 5	5	1
10903	Xylene (Total)	1330-20-7	< 5	5	1
				·	

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record									
Method		Trial#	Batch#	Analysis		Analyst	Dilution		
				Date and Ti	me		Factor		
SW-846	8260B	1	Y122951AA	10/21/2012	09:46	Stephanie A Selis	1		
SW-846	5030B	1	Y122951AA	10/21/2012	09:46	Stephanie A Selis	1		

Analysis Name

10903 8260 Std. Water Master 01163 GC/MS VOA Water Prep

CAT

No.

Sample Description: BKO-DUP Grab Water Sample

Oceanside Plaza

LLI Sample # WW 6828483 LLI Group # 1343222 Account # 12577

Project Name: Oceanside Plaza

Collected: 10/18/2012 08:35

by MEZ

Reliance Environmental, Inc.

130 East Chestnut Street

Lancaster PA 17602

Submitted: 10/18/2012 12:15 Reported: 10/24/2012 17:20

FD4-- SDG#: OSP14-03FD

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10903	Acrolein	107-02-8	< 100	100	1
10903	Acrylonitrile	107-13-1	< 20	20	1
10903	Benzene	71-43-2	< 5	5	1
10903	Bromodichloromethane	75-27-4	< 5	5	1
10903	Bromoform	75-25-2	< 5	5	1
10903	Bromomethane	74-83-9	< 5	5	1
10903	Carbon Tetrachloride	56-23-5	< 5	5	1
10903	Chlorobenzene	108-90-7	< 5	5	1
10903	Chloroethane	75-00-3	< 5	5	1
10903	2-Chloroethyl Vinyl Ether	110-75-8	«-10- R	10	1
	2-Chloroethyl vinyl ether m	ay not be recovered	if acid was used to	•	
	preserve this sample.	•			
10903	Chloroform	67-66-3	< 5	5	1
10903	Chloromethane	74-87-3	< 5	5	1
10903	Dibromochloromethane	124-48-1	< 5	5	1
10903	1,1-Dichloroethane	75-34-3	< 5	5	1
10903	1,2-Dichloroethane	107-06-2	< 5	5	1
10903	1,1-Dichloroethene	75-35-4	< 5	5	1 .
10903	cis-1,2-Dichloroethene	156-59-2	< 5	5	· 1
10903	trans-1,2-Dichloroethene	156-60-5	< 5	5	1
10903	1,2-Dichloropropane	78-87-5	< 5	5	1
10903	cis-1,3-Dichloropropene	10061-01-5	< 5	5	1
10903	trans-1,3-Dichloropropene	10061-02-6	< 5	5	1
10903	Ethylbenzene	100-41-4	< 5	5	1
10903	Methylene Chloride	75-09-2	< 5	5	1
10903	1,1,2,2-Tetrachloroethane	79-34-5	< 5	5	1
10903	Tetrachloroethene	127-18-4	< 5	5	1
10903	Toluene	108-88-3	< 5	5	1
10903	1,1,1-Trichloroethane	71-55-6	< 5	5	1
10903	1,1,2-Trichloroethane	79-00-5	< 5	5	1
10903	Trichloroethene	79-01-6	< 5	5	1
10903	Trichlorotiuoromethane	75-69-4	< 5	5	1
10903	Vinyl Chloride	75-01-4	< 5	5	1
10903	Xylene (Total)	1330-20-7	< 5 .	5	1

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

	Laboratory Sample Analysis Record										
CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution				
No.					Date and Time		Pactor				
10903	8260 Std. Water Master	SW-846 8260B	1	Y122951AA	10/21/2012 10:07	Stephanie A Selis	1				
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Y122951AA	10/21/2012 10:07	Stephanie A Selis	1				

Sample Description: BKO-FB Grab Water Sample

Oceanside Plaza

LLI Sample # WW 6828484 LLI Group # 1343222 Account # 12577

Project Name: Oceanside Plaza

Collected: 10/18/2012 07:30

by MEZ

Reliance Environmental, Inc.

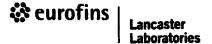
130 East Chestnut Street

Lancaster PA 17602

Submitted: 10/18/2012 12:15 Reported: 10/24/2012 17:20

FBOC-SDG#: OSP14-04FB

eurofins


CAT No.	Analysis Name	CAS Number	As Received Result	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846 8	260B	ug/l	ug/l	
10903	Acrolein	107-02-8	< 100	100	1
10903	Acrylonitrile	107-13-1	< 20	20	1
10903	Benzene	71-43-2	< 5	5	1
10903	Bromodichloromethane	75-27-4	< 5	5	1
10903	Bromoform	75-25-2	< 5	5	1
10903	Bromomethane	74-83-9	< 5	5	1
10903	Carbon Tetrachloride	56-23-5	< 5	5 .	1
10903	Chlorobenzene	108-90-7	< 5	5	1
10903	Chloroethane	75-00-3	< 5	5	1
10903	2-Chloroethyl Vinyl Ether	110-75-8	~ 10 R	10	1
	2-Chloroethyl vinyl ether may preserve this sample.	not be recovered			
10903	Chloroform	67-66-3	< 5	5	1
10903	Chloromethane	74-87-3	< 5	5	1
10903	Dibromochloromethane	124-48-1	< 5	5	1
10903	1,1-Dichloroethane	75-34-3	< 5	5 ·	1
10903	1,2-Dichloroethane	107-06-2	< 5	5	1
10903	1,1-Dichloroethene	75-35-4	< 5 .	5	1
10903	cis-1,2-Dichloroethene	156-59-2	< .5 ·	5	1
10903	trans-1,2-Dichloroethene	156-60-5	< 5	5	1
10903	1,2-Dichloropropane	78-87-5	< 5	5	1
10903		10061-01-5	< 5	5	1
10903		10061-02-6	< 5	5	1
10903	Ethylbenzene	100-41-4	< 5	5	1
10903	Methylene Chloride	75-09-2	< 5	5	1
10903	1,1,2,2-Tetrachloroethane	79-34-5	< 5	5	1
10903	Tetrachloroethene	127-18-4	< 5	5	1
10903	Toluene	108-88-3	< 5	5	1
10903	1,1,1-Trichloroethane	71-55-6	< 5	5	1
10903	1,1,2-Trichloroethane	79-00-5	< 5	5	1
10903	Trichloroethene	79-01-6	< 5	5	1
10903	Trichlorotluoromethane	75-69-4	< 5	5	1
10903	Vinyl Chloride	75-01-4	< 5	5	1
10903	Xylene (Total)	1330-20-7	< 5	5	1
	- -				

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

	Laboratory Sample Analysis Record						
CAT	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
No. 10903	8260 Std. Water Master	SW-846 8260B	1	Y122951AA	10/21/2012 10:28	Stephanie A Selis	
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Y122951AA	10/21/2012 10:28	Stephanie A Selis	1

Sample Description: BKO-TB Water Sample

Oceanside Plaza

LLI Sample # WW 6828485 LLI Group # 1343222 Account # 12577

Project Name: Oceanside Plaza

Collected: 10/18/2012

Reliance Environmental, Inc.

130 East Chestnut Street

Lancaster PA 17602

Submitted: 10/18/2012 12:15

Reported: 10/24/2012 17:20

TBOC- SDG#: OSP14-05TB*

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Limit of Ouantitation	Dilution Factor
CC/MS	Volatiles SW-846	8260B	ug/l	ug/1	
10903	Acrolein	107-02-8	< 100	100	1
10903	Acrylonitrile	107-13-1	< 20	20	- 1
10903	•	71-43-2	< 5	5	ī
10903	Bromodichloromethane	75-27-4	< 5	5	ī
10903	Bromoform	75-25-2	< 5	5	ī
		73-23-2	< 5	5	i
10903	Bromomethane Carbon Tetrachloride	56-23-5	< 5	5	i
10903			< 5	5	1
10903	Chlorobenzene	108-90-7	< 5	5	i
10903		75-00-3	~ 10 R .	10	i
10903		110-75-8		10	•
	2-Chloroethyl vinyl ether ma	y not be recovered	1 ir acid was used to		
	preserve this sample.	60 66 3		F	1
10903	Chloroform	67-66-3	< 5	5 5	1
10903	Chloromethane	74-87-3	< 5	5	1
10903	Dibromochloromethane	124-48-1	< 5	5	1
10903	•	75-34-3	< 5	5	1
10903	1,2-Dichloroethane	107-06-2	< 5	-	1
10903	1,1-Dichloroethene	75-35-4	< 5	5	1
10903	cis-1,2-Dichloroethene	156-59-2	< 5	5	1
10903	trans-1,2-Dichloroethene	156-60-5	< 5	5	1
10903		78-87-5	< 5	5	1
10903		10061-01-5	< 5 _.	5	1
10903	trans-1,3-Dichloropropene	10061-02-6	< 5 [°]	5	1
10903	Ethylbenzene	100-41-4	< 5	5	1
10903	Methylene Chloride	75-09-2	< 5	5	1
10903	1,1,2,2-Tetrachloroethane	79-34-5	< 5	5	1
10903	Tetrachloroethene	127-18-4	< 5	5	1
10903	Toluene	108-88-3	< 5	5	1
10903	1,1,1-Trichloroethane	71-55-6	< 5	5	1
10903	1,1,2-Trichloroethane	79-00-5	< 5	5	1
10903	Trichloroethene	79-01-6	< 5	5	1
10903	Trichlorotluoromethane	75-69-4	< 5	5	1
10903	Vinyl Chloride	75-01-4	< 5	5	1
10903	Xylene (Total)	1330-20-7	< 5	5	1
	-				

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory	Sample	Analysis	Kecora
------------	--------	----------	--------

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10903	8260 Std. Water Master	SW-846 8260B	1	Y122951AA	10/21/2012 10:49	=	
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Y122951AA	10/21/2012 10:49	Stephanie A Selis	1

APPENDIX D INDOOR AIR QUALITY/SUB-SLAB SOIL VAPOR SAMPLING DATA USABILITY SUMMARY REPORT AND LABORATORY ANALYTICAL DATA SHEETS

12 Gill Street, Suite 4700 Woburn, Massachusetts 01801 TEL 781-569-4000 FAX 781-569-4001

February 21, 2013

Mr. Robert Kovacs Senior Engineer Roux Associates, Inc. 209 Shafter Street Islandia, New York 11749-5074

Re: Data Usability Summary Report for Oceanside Site, NY

Accutest Job Number JB24660

Dear Mr. Kovacs:

Data review was performed for the data package (Accutest Job Number JB24660) generated by Accutest Laboratories. This Data Usability Summary Report (DUSR) has been prepared following the guidelines provided in New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation *DER-10*, Technical Guidance for Site Investigation and Remediation, Appendix 2B – Guidance for Data Deliverables and Development of Data Usability Summary Reports, May 2010.

Analytical data for nine (9) summa canister air samples collected by Roux Associates on December 18, 2012 are discussed in this DUSR. USEPA GC/MS method TO-15 was used for the sample analysis of seven site-specific volatile compounds. The data packages provided by the lab contained full deliverables for validation, but this DUSR is generated from review of the QC summary form information, with review of raw data for samples, and limited review of associated raw data for QC samples. Full validation has not been performed. The data review was performed on the sample results in accordance with the guidelines presented in USEPA Region II validation SOP HW-31, and in consideration of the specific requirements of USEPA method TO-15.

The data review included the following items:

- Data deliverable completeness,
- Laboratory case narratives,
- Chain of custody documentation,
- Holding times,
- Method blank results,
- Surrogate recoveries,
- Internal standard recoveries,
- Laboratory control samples,

Mr. Robert Kovacs February 21, 2013 Page 2

- Laboratory duplicate results,
- Summa canister cleaning certifications,
- Instrument tunes.
- Initial calibration, initial calibration verification, and continuing calibration results,
- Method compliance, and
- Sample result verification.

Copies of the validated sample results are presented in **Appendix A**. Copies of the chain-of-custodies and lab case narratives are presented in **Appendix B**.

Data Deliverable Completeness

A full deliverable data package (i.e., NYSDEC Category B or equivalent) was provided by the laboratory, which included reporting forms and raw data necessary to validate the reported analytical results. Summa canister cleaning certifications were included in the data package.

Sample Receipt/Holding times

All samples were received by the laboratory intact, properly preserved, and under proper COCs. All samples were analyzed within the required holding times.

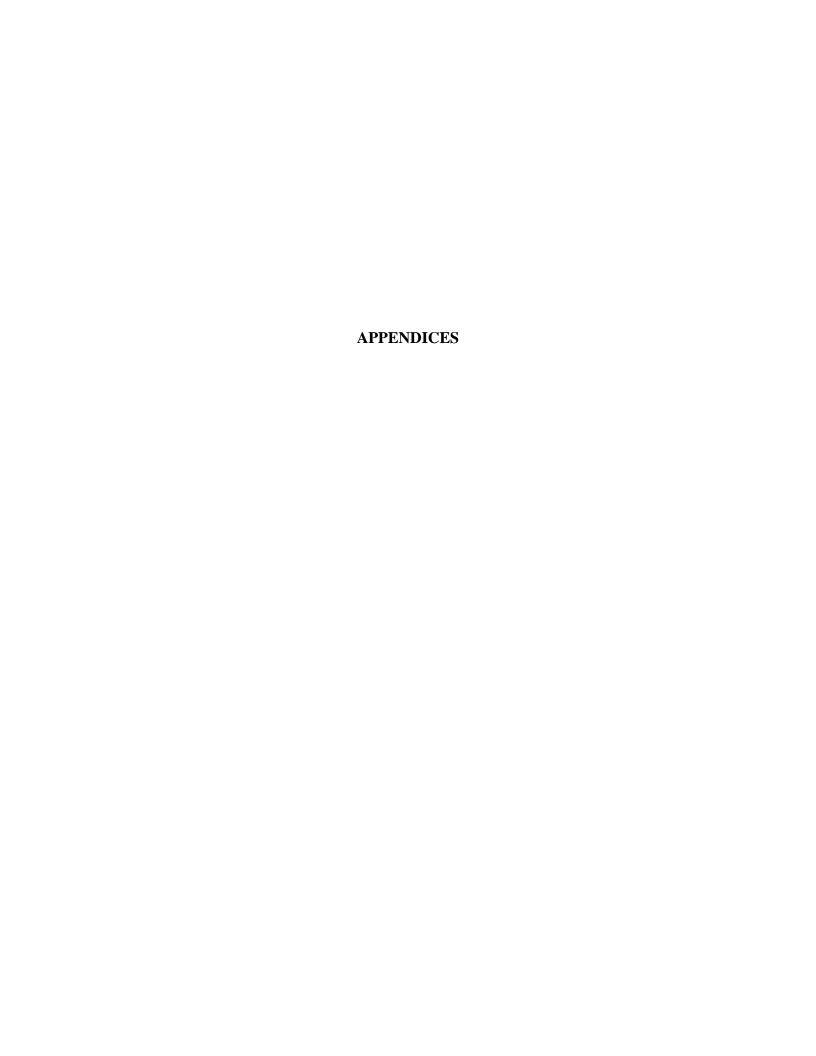
Volatile Analyses by USEPA Method TO-15

Method blank results, surrogate recoveries, internal standard recoveries, laboratory control samples results, and laboratory duplicate results were within laboratory control limits; results of instrument tunes, initial calibration, initial calibration verification, and continuing calibration were in compliance with the method requirements.

Summary

Sample analyses were in compliance with the method requirements. All sample data are usable as reported.

Please do not hesitate to contact me if you have any comments or questions regarding this report.


Sincerely

ROUX ASSOCIATES, INC.

Yixian Zhang, PhD Senior Scientist

Definitions of Validation Data Qualifiers

Qualifier	Definition
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

Appendix A Validated Sample Results

Page 1 of 1

Client Sample ID: VS-(DCF) FRONT OF CLEANERS

1

Lab Sample ID:

JB24660-1

AIR - Soil Vapor Comp. Summa ID: A815

Date Sampled: 12/18/12

Matrix:

Date Received: 12/21/12

Method:

TO-15

Percent Solids: n/a

Project:

Basser Oceanside SVE Pilot Test, 3131-3221 Long Beach Road, Oceanside, NY

By

YMH

Run #1

DF File ID 2W37264.D

Analyzed 12/28/12

Prep Date n/a

Prep Batch n/a

Analytical Batch V2W1560

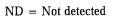
Run #2

Initial Volume

100 ml Run #1

Run #2

VOA Special List


CAS No.	MW	Compound	Result	RL	MDL	Units	Q	Result	RL	MDL	Units
75-35-4	96.94	1,1-Dichloroethylene	ND	0.80	0.090	ppbv		ND	3.2	0.36	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.80	0.11	ppbv		ND	3.2	0.44	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	NĎ	0.80	0.10	ppbv		ND	3.2	0.40	ug/m3
540-59-0	96	1,2-Dichloroethene (total)	ND	0.80	0.10	ppbv		ND	3.1	0.39	ug/m3
127-18-4	165.8	Tetrachloroethylene	1.6	0.16	0.097	ppbv		11	1.1	0.66	ug/m3
79-01-6	131.4	Trichloroethylene	ND ·	0.16	0.14	ppbv		ND	0.86	0.75	ug/m3
75-01-4	62.5	Vinyl chloride	ND	0.80	0.087	ppbv		ND	2.0	0.22	ug/m3

CAS No. Surrogate Recoveries Run#1 Run#2

Limits

460-00-4 4-Bromofluorobenzene 97%

65-128%

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Accutest LabLink@713348 11:02 14-Feb-2013

Report of Analysis

Page 1 of 1

VS-MRE MIDDLE OF CLEANERS Client Sample ID:

Lab Sample ID:

JB24660-2

AIR - Soil Vapor Comp. Summa ID: A255

Date Sampled: 12/18/12

Matrix: Method:

Date Received: 12/21/12

TO-15

Percent Solids: n/a

Project:

Basser Oceanside SVE Pilot Test, 3131-3221 Long Beach Road, Oceanside, NY

Analytical Batch File ID DF Analyzed By Prep Date Prep Batch YMH V2W1560 Run #1 2W37266.D 1 12/28/12 n/a n/a

Run #2

Initial Volume

100 ml Run #1

Run #2

VOA Special List

RLMDL Units RLMDL Units Q Result CAS No. MWCompound Result 0.80 0.090ppbv ND 3.2 0.36 ug/m3 75-35-4 96.94 1,1-Dichloroethylene ND trans-1,2-Dichloroethylene 0.80 0.11 ppbv ND 3.2 0.44ug/m3 156-60-5 96.94 ND 3.2 0.40ND ug/m3 156-59-2 96.94 cis-1,2-Dichloroethylene ND 0.800.10 ppbv 3.1 0.39540-59-0 96 1,2-Dichloroethene (total) ND 0.80 0.10 ppbv ND ug/m3 0.097 205 1.1 0.66ug/m3 127-18-4 165.8 Tetrachloroethylene 30.3 0.16 ppbv ppbv ND 0.86 0.75 ug/m3 79-01-6 131.4 Trichloroethylene ND 0.16 0.14 ND 2.0 0.22 75-01-4 62.5 Vinyl chloride ND 0.800.087ppbv ug/m3

Surrogate Recoveries CAS No.

Run#2

Limits

460-00-4 4-Bromofluorobenzene 94%

Run#1

65-128%

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: VS-DCR BACK OF CLEANERS

Lab Sample ID:

JB24660-3

TO-15

AIR - Soil Vapor Comp. Summa ID: A368

Date Sampled: 12/18/12

Date Received: 12/21/12

Percent Solids: n/a

Method: Project:

Matrix:

Basser Oceanside SVE Pilot Test, 3131-3221 Long Beach Road, Oceanside, NY

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	2W37267.D	1	12/28/12	YMH	n/a	n/a	V2W1560
ות מו							

Run #2

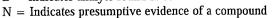
Initial Volume 100 ml Run #1 Run #2

VOA Special List

CAS No.	MW	Compound	Result	RL	MDL	Units (Result	RL	MDL	Units
			5000 0.000 MIGURAY (1880 0.7	æ		_	3004-14-14-14-14-14-14-14-14-14-14-14-14-14			, ,
75-35-4	96.94	1,1-Dichloroethylene	ND	0.80	0.090	ppbv	ND	3.2	0.36	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.80	0.11	ppbv	ND	3.2	0.44	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.80	0.10	ppbv	ND	3.2	0.40	ug/m3
540-59-0	96	1,2-Dichloroethene (total)	ND	0.80	0.10	ppbv	ND	3.1	0.39	ug/m3
127-18-4	165.8	Tetrachloroethylene	24.2	0.16	0.097	ppbv	164	1.1	0.66	ug/m3
79-01-6	131.4	Trichloroethylene	ND	0.16	0.14	ppbv	ND	0.86	0.75	ug/m3
75-01-4	62.5	Vinyl chloride	ND	0.80	0.087	ppbv	ND .	2.0	0.22	ug/m3

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
460-00-4	4-Bromofluorobenzene	89%		65-128%

ND = Not detected


MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Accutest LabLink@713348 11:02 14-Feb-2013

Report of Analysis

Page 1 of 1

Analytical Batch

V2W1560

Client Sample ID: VS-BOOK YOGURT SHOP

Lab Sample ID:

IB24660-4

AIR - Soil Vapor Comp. Summa ID: A1029

Date Sampled: 12/18/12 Date Received: 12/21/12

Matrix: Method:

TO-15

Percent Solids: n/a

Project:

Basser Oceanside SVE Pilot Test, 3131-3221 Long Beach Road, Oceanside, NY

Prep Batch File ID DF Analyzed By Prep Date 12/28/12 n/a Run #1 2W37268.D 1 YMH n/a

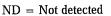
Run #2

Initial Volume

100 ml Run #1

Run #2

VOA Special List

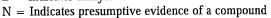

CAS No.	MW	Compound	Result	RL	MDL	Units	Q	Result	RL	MDL	Units
75-35-4	96.94	1,1-Dichloroethylene	ND	0.80	0.090	ppbv		ND -	3.2	0.36	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.80	0.11	ppbv		ND	3.2	0.44	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.80	0.10	ppbv		ND	3.2	0.40	ug/m3
540-59-0	96	1,2-Dichloroethene (total)	ND	0.80	0.10	ppbv		ND	3.1	0.39	ug/m3
127-18-4	165.8	Tetrachloroethylene	19.3	0.16	0.097	ppbv		131	1.1	0.66	ug/m3
79-01-6	131.4	Trichloroethylene	ND	0.16	0.14	ppbv		ND.	0.86	0.75	ug/m3
75-01-4	62.5	Vinyl chloride	ND	0.80	0.087	ppbv		ND	2.0	0.22	ug/m3

Run#1 Run#2 Limits CAS No. Surrogate Recoveries

460-00-4 4-Bromofluorobenzene

98%

65-128%


MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID:

BOOK-IAQ YOGURT SHOP IAQ

Lab Sample ID:

JB24660-5

Date Sampled: 12/18/12

Matrix: Method:

TO-15

AIR - Indoor Air Comp. Summa ID: A999

Date Received: 12/21/12

Percent Solids: n/a

Project:

Basser Oceanside SVE Pilot Test, 3131-3221 Long Beach Road, Oceanside, NY

Run #1

File ID DF 2W37269.D 1

Analyzed 12/28/12

Ву YMH Prep Date n/a

Prep Batch n/a

Analytical Batch V2W1560

Run #2

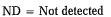
Initial Volume

Run #1 400 ml

Run #2

VOA Special List

CAS No.	MW	Compound	Result	RL	MDL	Units	Q	Result	RL	MDL	Units
75-35-4	96.94	1,1-Dichloroethylene	ND	0.20	0.023	ppbv		ND	0.79	0.091	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	0.027	ppbv		ND	0.79	0.11	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.20	0.025	ppbv		ND	0.79	0.099	ug/m3
540-59-0	96	1,2-Dichloroethene (total)	ND	0.20	0.025	ppbv		ND	0.79	0.098	ug/m3
127-18-4	165.8	Tetrachloroethylene	1.2	0.040	0.024	ppbv		8.1	0.27	0.16	ug/m3
79-01-6	131.4	Trichloroethylene	0.061	0.040	0.036	ppbv		0.33	0.21	0.19	ug/m3
75-01-4	62.5	Vinyl chloride	ND	0.20	0.022	ppbv		ND	0.51	0.056	ug/m3


CAS No. Surrogate Recoveries Run#1 Run# 2 Limits

460-00-4

4-Bromofluorobenzene

102%

65-128%

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: VS-VAC WINE STORE

Lab Sample ID: Matrix:

JB24660-6

TO-15

AIR - Soil Vapor Comp. Summa ID: A286, A544

Date Sampled: 12/18/12 Date Received: 12/21/12

Percent Solids: n/a

Method: Project:

Basser Oceanside SVE Pilot Test, 3131-3221 Long Beach Road, Oceanside, NY

Run #1	File ID 2W37270.D	DF 1	Analyzed 12/28/12	By YMH	Prep Date	Prep Batch n/a	Analytical Batch V2W1560
Run #2	2W37286.D	53.2	12/31/12	YMH	n/a	n/a	V2W1561

	Initial Volume	
Run #1	25.0 ml	
Run #2	150 ml	

VOA Special List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	MDL	Units
75-35-4 156-60-5 156-59-2	96.94 96.94 96.94	1,1-Dichloroethylene trans-1,2-Dichloroethylene cis-1,2-Dichloroethylene	ND ND	3.2 3.2 3.2	0.36 0.44 0.40	ppbv ppbv ppbv	ND ND ND	13 13 13	1.4 1.7 1.6	ug/m3 ug/m3 ug/m3
540-59-0 127-18-4 79-01-6	96 165.8 131.4	1,2-Dichloroethene (total) Tetrachloroethylene Trichloroethylene	ND 1450 ^a 6.7	3.2 5.7 0.64	0.40 3.4 0.58	ppbv ppbv ppbv	ND 9830 ^a 36	13 39 3.4	1.6 23 3.1	ug/m3 ug/m3 ug/m3
75-01-4	62.5	Vinyl chloride	ND	3.2	0.35	ppbv	ND	8.2	0.89	ug/m3

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
460-00-4	4-Bromofluorobenzene	89%	93%	65-128%

(a) Result is from Run# 2

J = Indicates an estimated value B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

Page 1 of 1

Client Sample ID: WINE-IAQ WINE STORE IAQ

Lab Sample ID:

JB24660-7

TO-15

Matrix:

AIR - Indoor Air Comp. Summa ID: A900

Date Sampled: 12/18/12 Date Received: 12/21/12

Percent Solids: n/a

Method: Project:

Basser Oceanside SVE Pilot Test, 3131-3221 Long Beach Road, Oceanside, NY

File ID 2W37271.D Run #1

DF 1

Analyzed By 12/29/12 YMH Prep Date n/a

Prep Batch n/a

Analytical Batch V2W1560

Run #2

Initial Volume

Run #1 400 ml

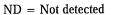
Run #2

VOA Special List

CAS No.	MW	Compound	Result	RL	MDL	Units	Q	Result	RL	MDL	Units
								-	****		
75-35-4	96.94	1,1-Dichloroethylene	ND	0.20	0.023	ppbv		ND	0.79	0.091	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	0.027	ppbv		ND	0.79	0.11	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.20	0.025	ppbv		ND	0.79	0.099	ug/m3
540-59-0	96	1,2-Dichloroethene (total)	ND	0.20	0.025	ppbv		ND	0.79	0.098	ug/m3
127-18-4	165.8	Tetrachloroethylene	1.9	0.040	0.024	ppbv		13	0.27	0.16	ug/m3
79-01-6	131.4	Trichloroethylene	ND ·	0.040	0.036	ppbv		ND	0.21	0.19	ug/m3
75-01-4	62.5	Vinyl chloride	ND	0.20	0.022	ppbv		ND	0.51	0.056	ug/m3

CAS No. Surrogate Recoveries

Run#2 Run#1

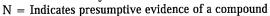

Limits

460-00-4

4-Bromofluorobenzene

104%

65-128%


MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Accutest LabLink@713348 11:02 14-Feb-2013

Report of Analysis

Page 1 of 1

Client Sample ID: FENCE AMBIENT

Lab Sample ID:

JB24660-8

AIR - Ambient Air Comp. Summa ID: A306

Date Sampled: 12/18/12 Date Received: 12/21/12

Percent Solids: n/a

Method: Project:

Matrix:

Basser Oceanside SVE Pilot Test, 3131-3221 Long Beach Road, Oceanside, NY

Prep Batch Analytical Batch File ID DF Analyzed By Prep Date V2W1560 2W37272.D 12/29/12 YMH n/a Run #1 1 n/a

Run #2

Initial Volume

Run #1 400 ml

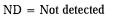
Run #2

460-00-4

VOA Special List

CAS No.	MW	Compound	Result	RL	MDL	Units	Q	Result	RL	MDL	Units
75-35-4	96.94	1,1-Dichloroethylene	ND	0.20	0.023	ppbv		ND	0.79	0.091	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	0.027	ppbv		ND	0.79	0.11	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.20	0.025	ppbv		ND	0.79	0.099	ug/m3
540-59-0	96	1,2-Dichloroethene (total)	ND	0.20	0.025	ppbv		ND	0.79	0.098	ug/m3
127-18-4	165.8	Tetrachloroethylene	0.18	0.040	0.024	ppbv		1.2	0.27	0.16	ug/m3
79-01-6	131.4	Trichloroethylene	ND	0.040	0.036	ppbv		ND	0.21	0.19	ug/m3
75-01-4	62.5	Vinyl chloride	ND	0.20	0.022	ppbv		ND	0.51	0.056	ug/m3

Run#1 CAS No. Surrogate Recoveries


4-Bromofluorobenzene

Run#2

99%

65-128%

Limits

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: VS-FENCE SOIL VAPOR

Lab Sample ID:

JB24660-9

DF

1

AIR - Soil Vapor Comp. Summa ID: A857

Date Sampled: 12/18/12 Date Received: 12/21/12

Matrix: Method:

TO-15

n/a

Project:

Basser Oceanside SVE Pilot Test, 3131-3221 Long Beach Road, Oceanside, NY

Analyzed

12/29/12

Percent Solids: n/a

2W37273.D

File ID

By

YMH

Prep Batch

Analytical Batch V2W1560

Run #1 Run #2

Initial Volume

Run #1 100 ml

Run #2

VOA Special List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	MDL	Units
75-35-4	96.94	1,1-Dichloroethylene	ND	0.80	0.090	ppbv	ND	3.2	0.36	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.80	0.11	ppbv	ND	3.2	0.44	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.80	0.10	ppbv	ND	3.2	0.40	ug/m3
540-59-0	96	1,2-Dichloroethene (total)	ND	0.80	0.10	ppbv	ND	3.1	0.39	ug/m3
127-18-4	165.8	Tetrachloroethylene	ND	0.16	0.097	ppbv	ND .	1.1	0.66	ug/m3
79-01-6	131.4	Trichloroethylene	ND	0.16	0.14	ppbv	ND	0.86	0.75	ug/m3
75-01-4	62.5	Vinyl chloride	ND	0.80	0.087	ppbv	ND	2.0	0.22	ug/m3

CAS No. Surrogate Recoveries

Run#2 Run#1

Limits

Prep Date


n/a

460-00-4

4-Bromofluorobenzene

94%

65-128%

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Appendix B

Laboratory Case Narratives and Chain of Custodies (COCs)

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: Roux Associates

Job No

JB24660

Site:

Basser Oceanside SVE Pilot Test, 3131-3221 Long Beach Road, Oc

Report Date

2/14/2013 9:50:38 AM

On 12/21/2012, 9 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at Accutest Laboratories. Samples were intact and chemically preserved, unless noted below. An Accutest Job Number of JB24660 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section. ** Deliverables upgraded per MV, 2/1.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Volatiles by GCMS By Method TO-15

Matrix: AIR

Batch ID: V2W1560

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB24660-1DUP were used as the QC samples indicated.

Matrix: AIR

Batch ID: V2W1561

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB25102-16DUP were used as the QC samples indicated.

Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting Accutest's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

Accutest Laboratories is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by Accutest Laboratories indicated via signature on the report cover

CHAIN OF CUSTODY	FED-EX Tracking #	Bolle Dizies Control M	, ,
ACCUTEST. Air Sampling Field Data Sheet	Leb Quoto#	Bolle Order Control 2 / 14/2012 - 13 F	AGE / OF /
Company-Name Company-Name Company-Name		T524660 Weather Parameters	
Address 2-40 State	Project Name: OCPAYSIDE PIAZA	Temperature (Fahrenheit) Start: CRP Maximum:	Compa
2001 SHAFTER ST	Street (WO) BROWN RIVACI	Stop UKOF Minimum:	8
(SUTIND) 17 100 TI 7 1100	City OCCANSIGO NY State	Atmoshpheric Pressure (Inches of Hg)	
POO KOVACS EMAIL REVOCES TOWN ON	Project# 1600 OCAN 1 4000	Start: 29 U Maximum:	
Phone # - 232 - 2600 Fax #	Client Purchase Order#	Stop: Minimum:	Reporting List
Sample(s) Name(s) WAYCIA DLAKOS		Other weather comment:	Repo
Air Type Sampling Equip	ment Info Start Sampling Information	Stop Sampling Informat	ion 9-01
Indoor(I) Canister Size	Flow Time Canister Interior		nterior P
Lab Sample # Field ID / Point of Collection Ambient(A) Serial # 6L or 1L			nterior English Sampler up (F) Init. 70
-/ VSTORF) FIRST GRANCE SV 7697 6L	1627 17-612 -30	12-18-12 - 7	X 4815
-2 VS-TVKE Middle of Charge SV 4849	996 -30	-6	X A255
3 S-De Bocker Cleaner SV 57100 1	4816 7 -31	-6	X A368
- y VS-rack voaret stop SV 11029	4811 -31	-6	Y41029
-3 MX-112 YOUT 10 10 1 1091 V	4895 -32	-8	Y A 999
-6 15 VAC MINE SV 4912 4	4885	<u> </u>	X A286
-7 WINE TAR TWESTOLD I SOLY!	M887 -29	-4	X 4900
-8 FAVE HADRIT A SIGN	ari -31	1-7	X 4366
-9 Notorice Solvapor fine SV 7768 V	1978	V -6	X A A ST
Turnaround Time (Business days)	Data Deliverable Information	Comments / Ro	
Standard - 15 Days 10 Day Approved By:	All NJDEP TO-15 is mandatory Full T1	Detection unit:	1-49/m3 or 1055
5 Day 3 Day	Gomm B	analyze for: 1.1-Dichlor	rethene
2 Day Date:	Full T1	Trans-1,2-Dightorogramm	E Trichlorofinane
Other	other: NSCC ASP CO COYY (Commented below each time samples change possession, including	BELECTUM LIMIT: Maly & Ar. 1.1-Dichlore Cis1.2-Dichlorocthe 16 Trans-1.2-Dichlorocther 16 1.2-Dichloroc	im) every chloride
Relinguished by Latograph Date Tipe: 1/2 // Received By: 1/2/1/2 // Aug L// aux out	124 1412 Section of the Samples Change possession, including	Data Time: Received By:	
Relipadishey Ty: 125 Receive By	Rollinguished By:	Date Time: 1740 Received By:	///
Relinquisted by: Onte Time: Received By:	Custody Seal #	12/21/12 4 2	1
5 5			

JB24660: Chain of Custody Page 1 of 4