OFF-SITE INTERIM REMEDIAL MEASURE CONSTRUCTION COMPLETION REPORT

FORMER IMPERIAL CLEANERS SITE 218 LAKEVILLE ROAD LAKE SUCCESS, NEW YORK 11020 NYSDEC BCP SITE #C130225

AUGUST 2024

PREPARED FOR:

MR. JOSEPH JONES PROJECT MANAGER NYS DEPARTMENT OF ENVIRONMENTAL CONSERVATION REMEDIAL BUREAU A, 11TH FLOOR 625 BROADWAY ALBANY, NEW YORK 12233

WALDEN ENVIRONMENTAL ENGINEERING, PLLC

Industry Leader in Environmental Engineering Consulting

PROACTIVE SOLUTIONS SINCE 1995

Professional Engineer Certification

I, Nora M. Brew, certify that I am currently a professional engineer licensed to practice in New York State in accordance with New York State Education Law, Article 145, Section 7200 et seq. I have completed accredited university courses and degrees in engineering and have sufficient training and experience in remediation, groundwater hydrology, and related fields that enable me to make sound professional judgments with regards to engineering design.

I further certify that this submittal, *Construction Completion Report*, dated August 29, 2024, was prepared under my direction. I had primary direct responsibility for the implementation of the subject construction program, and I certify that the *Generic Interim Remedial Measure Work Plan*, dated March 4, 2022 was implemented and that all construction activities were completed in substantial conformance with the DER-approved *Generic Interim Remedial Measure Work Plan*.

Nora M. Brew, P.E. Walden Environmental Engineering, PE

Date

TABLE OF CONTENTS

PROFESSIONAL ENGINEER CERTIFICATION

1	Inti	oduction	. 1
	1.1	Site Ownership and Brownfield Cleanup Program Status	. 2
	1.2	Report Organization	. 2
2	SSI	D System Specifications and Installation	. 3
	2.1	2 University Place	.4
		6 University Place	
3		D System Start Up and Testing	
	3.1	2 University Place	. 6
	3.2	6 University Place	. 7
4		oor Air Sampling	
	4.1	2 University Place	. 9
	4.2	6 University Place	10
5	SSI	D System Inspections	11
6		-site IRM Cost Breakdown	

FIGURES

1 Site Location Map

ATTACHMENTS

ATTACHMENT A	2 University Place SSD System As-built Drawings
ATTACHMENT B	2 University Place SSD System Photographs
ATTACHMENT C	6 University Place SSD System As-built Drawings
ATTACHMENT D	6 University Place SSD System Photographs
ATTACHMENT E	2 University Place Indoor Air Sampling Data
ATTACHMENT F	6 University Place Indoor Air Sampling Data

1 INTRODUCTION

Walden Environmental Engineering, PLLC ("Walden") has prepared this *Construction Completion Report* ("CCR") on behalf of 218 Lakeville Aquisition LLC, the Owner of the Former Imperial Cleaners Site located at 218 Lakeville Road, Lake Success, New York (the "Site" or "Subject Property"). The CCR summarizes the construction, startup and monitoring activities completed for the off-site vapor intrusion mitigation systems in the properties located adjacent to the Subject Property at 2 University Place and 6 University Place. These systems were installed as an Interim Remedial Measure (IRM) in accordance with the *Generic Interim Remedial Measure Work Plan* ("IRM Work Plan," Walden, March 4, 2022) approved on March 11, 2022 by the New York State Department of Environmental Conservation ("NYSDEC") and the New York State Department of Health ("NYSDOH"), collectively referred to as "the Departments".

The objective of the IRM is to address off-site residual VOC contamination identified during soil vapor intrusion ("SVI") investigations performed at the adjacent sites. The VOC contamination as well as the Site history and investigation details are as summarized in the *Soil Vapor Intrusion Investigation Summary Report* (Walden, May 4, 2017), *Soil Vapor Intrusion Investigation Summary Report (revised)* (Walden, September 2021), and *Supplemental Off-site Soil Vapor Intrusion Intrusion Summary Report* (Walden, July 18, 2022).

The owners of 2 University Place and 6 University Place granted permission for sub-slab depressurization (SSD) systems to be installed and operated as described herein to achieve the following off-site IRM objectives:

- mitigate SVI impacts;
- prevent VOC vapor migration into the buildings; and
- ensure acceptable indoor air quality.

The off-site IRM systems were designed, installed and tested in accordance with the guidelines set forth in NYSDEC *DER-13: Strategy for Evaluating Soil Vapor Intrusion at Remedial Sites in New York* (dated October 18, 2006), *Guidance for Evaluating Soil Vapor Intrusion in the State of New York* (dated October 2006, with updates, referred to herein as "SVI Guidance"), and NYSDEC *DER-10: Technical Guidance for Site Investigation and Remediation.* SSD system operation, maintenance, and monitoring, and termination of mitigation system operations will conform with the SVI Guidance, as amended.

1.1 Site Ownership and Brownfield Cleanup Program Status

The Subject Property's previous owner, 218 Lakeville Associates L.P., entered into Voluntary Cleanup Agreement ("VCA") #D1-30001-01-03 with the NYSDEC, effective April 18, 2001, to address VOC contamination associated with the Former Imperial Cleaners Site. At that time, the Subject Property was assigned Voluntary Cleanup Program ("VCP") Site No. V-00244-1.

When 218 Lakeville Aquisition LLC purchased the Site on July 28, 2015, the VCA was amended to reflect the change in property ownership. In April 2017, the NYSDEC notified 218 Lakeville Aquisition LLC that the VCP was being terminated as of March 31, 2018. Therefore, the Owner submitted a Brownfield Cleanup Program ("BCP") application and supporting documentation to NYSDEC in order to complete the required remediation, site closure and post-closure management as a Volunteer participant in the BCP. NYSDEC approved the BCP application and the Former Imperial Cleaners Site was accepted into the Brownfield program and assigned Site #C130225. The Brownfield Cleanup Agreement ("BCA", Index No. C130225-01-18) was fully executed by 218 Lakeville Aquisition LLC (hereinafter "Volunteer") and the NYSDEC on February 12, 2018.

1.2 Report Organization

The off-site SSD system specifications and installation activities are presented in Section 2. Section 3 describes the SSD system startup and testing. Section 4 summarizes the results of the indoor air sampling performed to verify acceptable indoor air quality under normal SSD system operating conditions. Section 5 details the SSD system operation and monitoring procedures. Section 6 provides a breakdown of estimated costs associated with the off-site IRM.

2 SSD SYSTEM SPECIFICATIONS AND INSTALLATION

The 2 University Place and 6 University Place properties are located adjacent to the Subject Property as shown on **Figure 1**. Both properties are two-story residential buildings with finished basements. Sub-slab vapor, indoor air, and outdoor air sampling was performed at both properties during the February 2016 SVI investigation (see May 2017 *Soil Vapor Intrusion Investigation Summary Report*). Based on a comparison of the target compound concentrations reported for the sub-slab and indoor air samples to the concentration ranges compared in the NYSDOH SVI Guidance decision matrices, mitigation was recommended for 2 University Place and 4 University Place (now known as 6 University Place) to address potential soil vapor intrusion impacts and prevent exposure to VOCs in indoor air. SVI sampling performed in 2 University Place in February 2022 as requested by the homeowner yielded the same recommendation for mitigation (July 2022 *Supplemental Off-site Soil Vapor Intrusion Sampling Summary Report*).

The owners of 2 University Place and 6 University Place granted permission for access to install SVI mitigation systems in accordance with the off-site IRM. SSD systems are engineering controls which utilize fans and piping to draw vapors from beneath basement slabs to create adequate vacuum to prevent sub-slab vapors from entering buildings and to avoid indoor air quality impacts. Walden inspected both homes and met with the property owners to evaluate appropriate layouts for the SSD mitigation system equipment and develop site-specific layouts for each system. The SSD systems were designed and installed to minimize construction and operating impacts to the extent possible.

The SSD system construction details (i.e., location of vacuum extraction point and pressure monitoring points, screen zone depths and vacuum flow rates) were established based on an evaluation of vacuum extraction well performance observed during pilot testing to support the final design specifications. Piezometers were installed at appropriate locations in the building slab to monitor subsurface pressures and confirm effective depressurization of the slab during SSD system operation.

Details on the SSD systems installed in 2 University Place and 6 University Place are presented below. The vacuum extraction wells, piezometers, piping, radon fans, pressure gauges, and alarms were installed by Lakewood Environmental Services. Walden provided field oversight of the SSD system installations, directed pilot testing and performed startup testing to optimize system performance. The startup testing results are presented in Section 3.

2.1 2 University Place

The SSD system for 2 University Place was installed on March 28 - 29, 2023. The as-built engineering design drawings for this mitigation system, stamped by a New York State licensed Professional Engineer, are presented in **Attachment A**. Photographs of the SSD system installation and testing are provided in **Attachment B**.

The basement level of the home includes an attached garage and finished space. One (1) vapor extraction well point (SSD-1) was installed in the garage in the central southern portion of the building along the interior wall separating it from the finished basement space. The extraction point was installed by coring through the garage floor slab (approximately one inch thick) and removing subsurface material to create a suction pit. SSD-1 consists of a four (4) inch diameter slotted PVC pipe that extends approximately twenty-eight (28) inches below the bottom of the existing concrete slab. SSD-1 was backfilled with coarse No. 2 sand and sealed at the surface with bentonite and cement. The bottom of the 26-inch screened interval was capped with a solid PVC J-plug. The top of the sub-slab slotted interval was connected to a solid 4-inch PVC riser. The PVC riser is connected to aboveground 4-inch PVC pipe that runs along the interior wall about two feet above the floor and then penetrates through the eastern exterior wall of the house. The pipe was mounted onto the side of the house, run up to the in-line SSD system fan (Radon Away model GP501c), and then vented above the roofline.

The SSD fan is plugged into an outdoor electrical outlet. The fan draws vapors from beneath the building and exhausts them through a vent pipe that terminates approximately three (3) feet above the roof. A differential pressure gauge (Dwyer Magnehelic) and a radon monitoring system low-pressure alarm (Home Aire Checkpoint IIa) were installed on the leg of the PVC pipe inside the garage to monitor system operations.

Two (2) permanent vapor pin monitoring points were installed to monitor sub-slab pressures to confirm that the building slab is depressurized. MP-01 was installed inside the garage and MP-02 was installed in the boiler room. Each monitoring point consists of a stainless-steel pin recessed into the concrete slab and a silicon sleeve that seals the penetration as the pin is inserted. Each point is covered with a stainless-steel screw on cap that sits flush with the floor.

The layouts of the vapor extraction well, monitoring points, and piping are presented in the asbuilt drawings in **Attachment A**. The as-built drawings also supply a schematic of the system components, construction details of the extraction well point and monitoring points, and the exterior piping and exhaust fan configuration.

2.2 6 University Place

The SSD system for 6 University Place was installed on July 27 - 28, 2023. The as-built engineering design drawings for this mitigation system, stamped by a New York State licensed Professional Engineer, are presented in **Attachment C**. Photographs of the SSD system installation and testing are provided in **Attachment D**.

The basement level of the home includes finished and unfinished space. One (1) vapor extraction well point (SSD-1) was installed in the unfinished laundry room in the southeast portion of the building. The extraction point was installed by coring through the concrete floor slab (approximately six inches thick) and removing subsurface material to create a suction pit. SSD-1 consists of a four (4) inch diameter slotted PVC pipe that extends approximately twenty-four (24) inches below the bottom of the existing concrete slab. SSD-1 was backfilled with coarse No. 2 sand and sealed at the surface with bentonite and cement. The bottom of the 24-inch screened interval was capped with a solid PVC J-plug. The top of the sub-slab slotted interval was connected to a solid 4-inch PVC riser. The PVC riser is connected to aboveground 4-inch PVC pipe that runs up towards the ceiling and then turns to penetrate through the eastern exterior wall of the house into the basement window well, the PVC piping was run along the ground and then mounted onto the side of the house, then up to the in-line SSD system fan (Radon Away model GP501c). The system vents above the roofline.

The SSD fan is plugged into an outdoor electrical outlet. The fan draws vapors from beneath the building and exhausts them through a vent pipe that terminates approximately three (3) feet above the roof. A differential pressure gauge (Dwyer Magnehelic) and a radon monitoring system low-pressure alarm (Home Aire Checkpoint IIa) were installed on the leg of the PVC pipe inside the laundry room to monitor system operations.

Four (4) permanent vapor pin monitoring points were installed to monitor sub-slab pressures to confirm that the building slab is depressurized. MP-01, MP-03, and MP-04 were installed within the laundry room. MP-02 was installed in the closet next to the stairs at the northeast corner of the house. Each monitoring point consists of a stainless-steel pin recessed into the floor concrete slab and a silicon sleeve that seals the penetration as the pin is inserted. Each point is covered with a stainless-steel screw on cap that sits flush with the floor.

The layouts of the vapor extraction well, monitoring points, and piping are presented in the asbuilt drawings in **Attachment C**. The as-built drawings also supply a schematic of the system components, construction details of the extraction well point and monitoring points, and the exterior piping and exhaust fan configuration.

3 SSD SYSTEM START UP AND TESTING

After the SSD system equipment was installed, the SSD fan in each off-site property was tested at different applied pressure settings and the corresponding vacuum measurements were recorded at the monitoring points using an Infiltec DM1 Micro-Manometer. The results were evaluated to determine the optimal fan operating setting to achieve effective depressurization of the respective building slabs. Based on industry standards, achieving a pressure differential of at least -0.004 inches of water column (WC) across a slab is considered sufficient to prevent soil vapor intrusion.

3.1 2 University Place

The SSD system installed at 2 University Place was tested on March 29, 2023 to determine the final system operating settings for this engineering control. The SSD fan was run at applied pressures ranging from zero to 3.6 inches of water column. The vacuum measurements recorded at the monitoring points during the system start-up testing are presented below.

SSD Fan	Vacuum Measurement		
Applied Pressure	MP-01	MP-02	
0.0" WC	0.004	0	
0.5" WC	-0.031	0	
0.8" WC	-0.091	-0.009	
3.0" WC	-0.153	-0.010	
3.6" WC	-0.250	-0.015	

Table 1. 2	University	Place	SSD System	n Start Up Test
	Chiverbicy	I Iuce		i built op iobt

Note that the pressure applied by the fan was adjusted to evaluate the subsurface pressure response in order to optimize the final system settings. Based on the start-up testing, the SSD fan was set to operate at an applied pressure of 2.0 inches of water column, which maintained differential pressures well above the targeted -0.004 inches of WC at the monitoring points, effectively depressuring the slab and achieving the off-site IRM objectives of mitigating SVI impacts and preventing VOC vapor migration into this building.

Table 2. 2 University Place Final SSD S	System Operating Settings – March 29, 2023
	ystem operating settings maren 29, 2020

SSD Fan	Vacuum Measurement		
Applied Pressure	MP-01	MP-02	
2.0" WC	-0.092	-0.007	

The SSD system alarm and pressure gauge were also tested during startup to confirm that these components were functioning properly.

Walden inspected the SSD system on March 21, 2024, confirmed that the system pressure gauge and alarm are functioning, and recorded the readings summarized below.

Table 3. 2 Universit	v Place SSD	System Ins	nection Results	- March 21, 2024
	y I face bbb	bystem ms	pection results	- March 21, 2024

SSD Fan	Vacuum Measuremen			
Applied Pressure	MP-01	MP-02		
1.3" WC	-0.085	-0.005		

This data confirms that the 2 University Place SSD system continues to effectively depressurize the slab.

3.2 6 University Place

The SSD system installed at 6 University Place was tested on July 28, 2023 to determine the final system operating settings for this engineering control. The SSD fan was run at applied pressures ranging from zero to 4.2 inches of water column. The vacuum measurements recorded at the monitoring points during the system start-up testing are presented below.

SSD Fan	Vacuum Measurement			
Applied Pressure	MP-01	MP-02	MP-03	MP-04
0.0" WC	-0.005	-0.001	-	-
1.0" WC	-0.008	0.0	-	-
1.4" WC	-0.011	0.0	-	-
1.6" WC	-	-	-	-0.016
2.75" WC	-0.026	-0.002	-0.079	-0.008
4.2" WC	-0.036	-0.001	-0.256	-0.030

 Table 4. 6 University Place SSD System Start Up Test

Note that the pressure applied by the fan was adjusted to evaluate the subsurface pressure response in order to optimize the final system settings. Based on the start-up testing, the SSD fan was set to operate at an applied pressure of 2.0 inches of water column, which maintained differential pressures well above the targeted -0.004 inches of WC at three (3) of the four (4) monitoring points. Although the pressure recorded at MP-02 was below the -0.004" WC target, negative pressure was also achieved at this location. These results indicate that the SSD system

was effectively depressurizing the slab and achieving the off-site IRM objectives of mitigating SVI impacts and preventing VOC vapor migration into this building.

SSD Fan		Vacuum Me	easurement	
Applied Pressure	MP-01	MP-02	MP-03	MP-04
2.0" WC	-0.080	-0.001	-0.193	-0.020

 Table 5. 6 University Place Final SSD System Operating Settings – July 28, 2023

The SSD system alarm and pressure gauge were also tested to confirm that these components were functioning properly.

Walden inspected the SSD system on March 20, 2024, confirmed that the system pressure gauge and alarm are functioning, and recorded the readings summarized below.

Table 6. 6 University Place SSD System Inspection Results – March 20, 2024

SSD Fan		Vacuum Me	easurement	
Applied Pressure	MP-01	MP-02	MP-03	MP-04
2.3" WC	-0.134	-0.002	-0.012	-0.023

This data confirms that the 6 University Place SSD system continues to effectively depressurize the slab.

4 INDOOR AIR SAMPLING

Indoor air sampling was conducted at 2 University Place and 6 University Place in March 2024, during the first heating season following startup of the off-site SSD systems. Sampling was conducted in accordance with the procedures outlined in the IRM Work Plan. Pre-sampling interior inspections were performed to identify conditions or materials stored and/or used that may affect or interfere with the sampling or interpretation of the indoor air sampling results. The indoor air quality questionnaire and building inventory sheet provided in the NYSDOH SVI Guidance were completed prior to sampling at each property.

One (1) indoor air sample was collected in each basement at a height of approximately four to five (4-5) feet above the floor to represent typical breathing zones. The indoor air samples were collected over a 24-hour period in laboratory-provided and individually certified clean 6-liter Summa[®] canisters with regulators. Flow rates below 0.2 liters per minute were maintained during the 24-hour sampling period as specified by the SVI Guidance.

The Summa[®] canisters were submitted to a York Laboratories, a NYSDOH ELAP certified laboratory, for analysis of VOCs in accordance with U.S. Environmental Protection Agency (EPA) Method TO-15 with the analytical detection limits set forth in the SVI Guidance.

The indoor air sample results were reviewed in accordance with the SVI Guidance. This guidance document lists the air guideline values (AGVs) that NYSDOH has established for methylene chloride, trichloroethylene (TCE), and tetrachloroethylene (PCE). For analytes that do not have AGVs and are not considered in the SVI Guidance decision matrices, the SVI Guidance Appendix C (*Volatile Organic Chemicals in Air – Summary of Background Databases*) was referenced for typical background concentrations of these compounds published in USEPA's 2001 Building Assessment and Survey Evaluation (BASE) database.

Additional discussion of the indoor air sampling completed as part of the off-site IRM is presented in the following sections.

4.1 2 University Place

An indoor air sample was collected in the basement boiler room on March 21-22, 2024. The SSD system was operating normally during the sampling. Chemicals including cleaning products, paints, and weed killer were noted in the basement during the building inventory. The indoor air sampling data summary table, laboratory report, and indoor air quality questionnaire and building inventory for 2 University Place are presented in **Attachment E**.

None of the primary constituents of concern associated with the Former Imperial Cleaners Site (PCE and its degradation by-products TCE and cis-1,2-dichloroethylene) were detected in the indoor air sample. None of the indoor air concentrations exceeded the respective Air Guideline Values (AGVs). Low concentrations of several VOCs were detected in the indoor air sample collected at 2 University Place. All reported indoor air concentrations were at the low end of the typical ranges of these compounds listed in the BASE database.

The laboratory analytical data confirms that indoor air quality is acceptable at 2 University Place.

4.2 6 University Place

An indoor air sample was collected in the basement laundry room on March 20-21, 2024. The SSD system was operating normally during the sampling. Chemicals including cleaning products and air freshener were noted in the basement during the building inventory. The indoor air sampling data summary table, laboratory report, and indoor air quality questionnaire and building inventory for 6 University Place are presented in **Attachment F**.

None of the indoor air concentrations exceeded the respective AGVs. Low concentrations of several VOCs were detected in the indoor air sample collected at 6 University Place. All reported indoor air concentrations were at the low end of the typical ranges of these compounds listed in the BASE database.

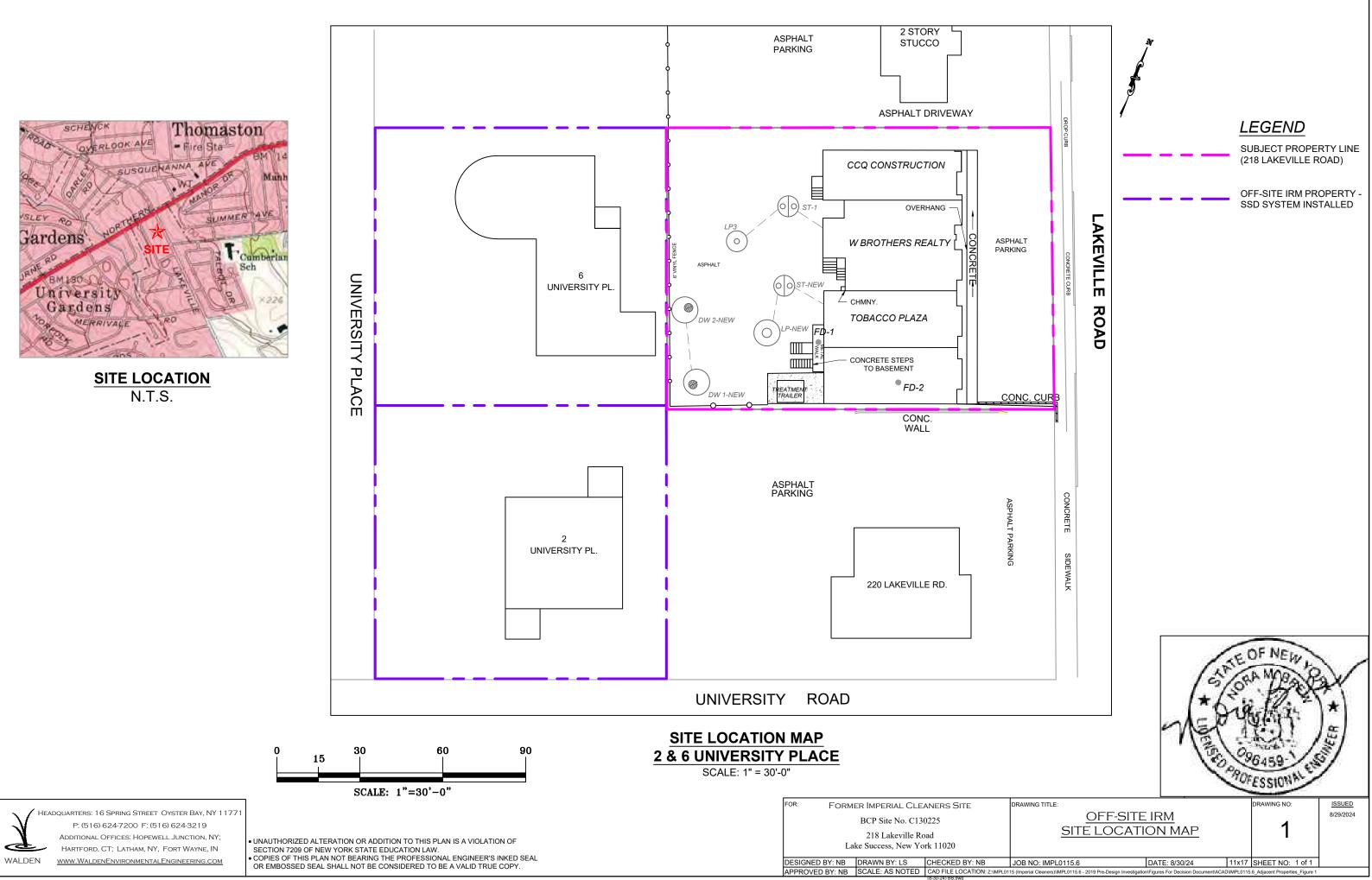
The laboratory analytical data confirms that indoor air quality is acceptable at 6 University Place.

5 SSD SYSTEM INSPECTIONS

The off-site SSD systems in 2 University Place and 6 University Place will be inspected annually to verify that the engineering controls at each property continue to function properly and effectively mitigate potential SVI impacts.

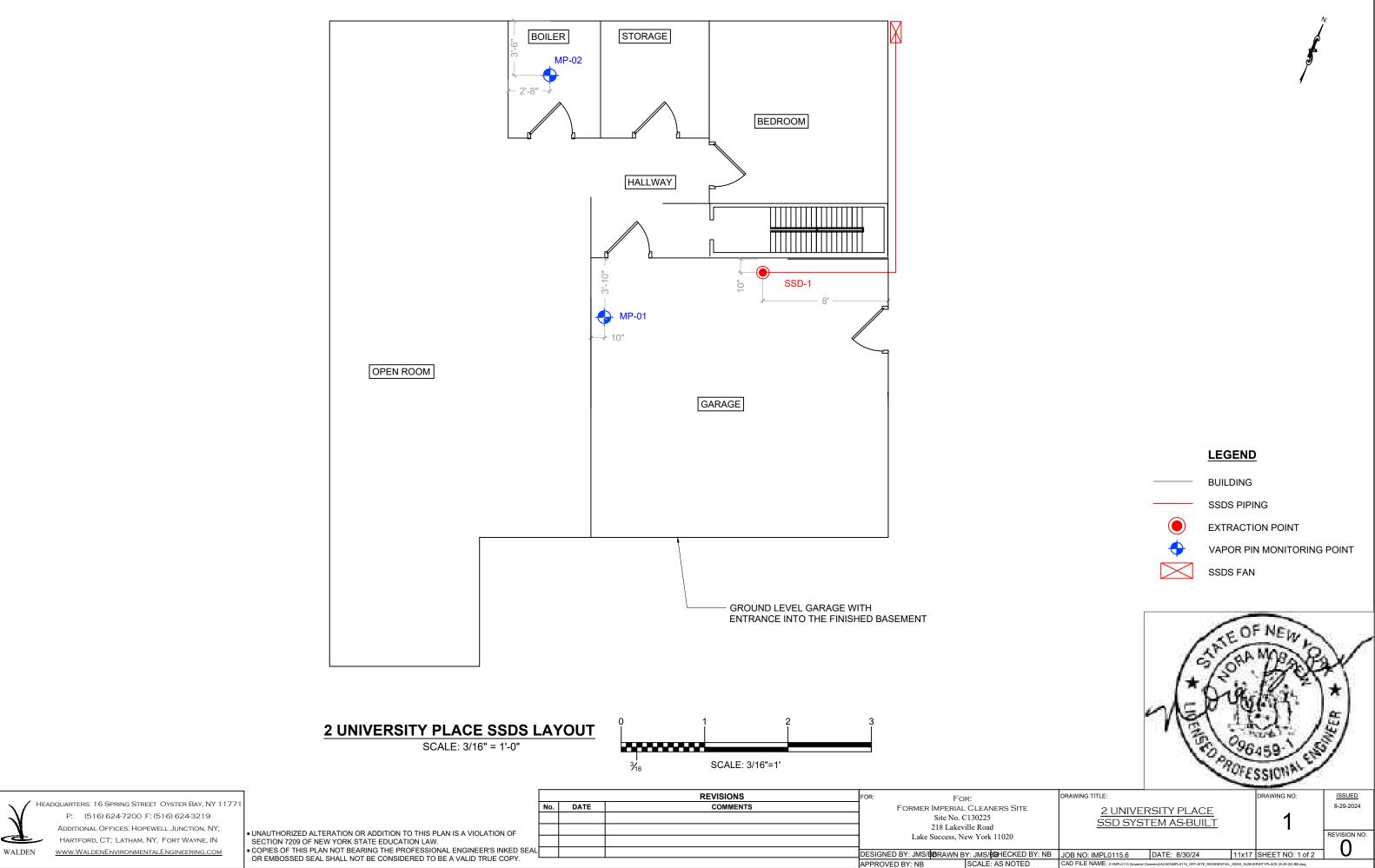
Vacuum measurements will be collected at the monitoring points using a digital micromanometer and recorded. If needed, the SSD fan's applied pressure will be adjusted to ensure that negative pressure is maintained beneath the building slabs.

During the annual inspections, all SSD system equipment will be visually inspected to ensure that it is in proper working order. If any damage or defects are detected, the Departments will be notified and components will be repaired or replaced as appropriate.

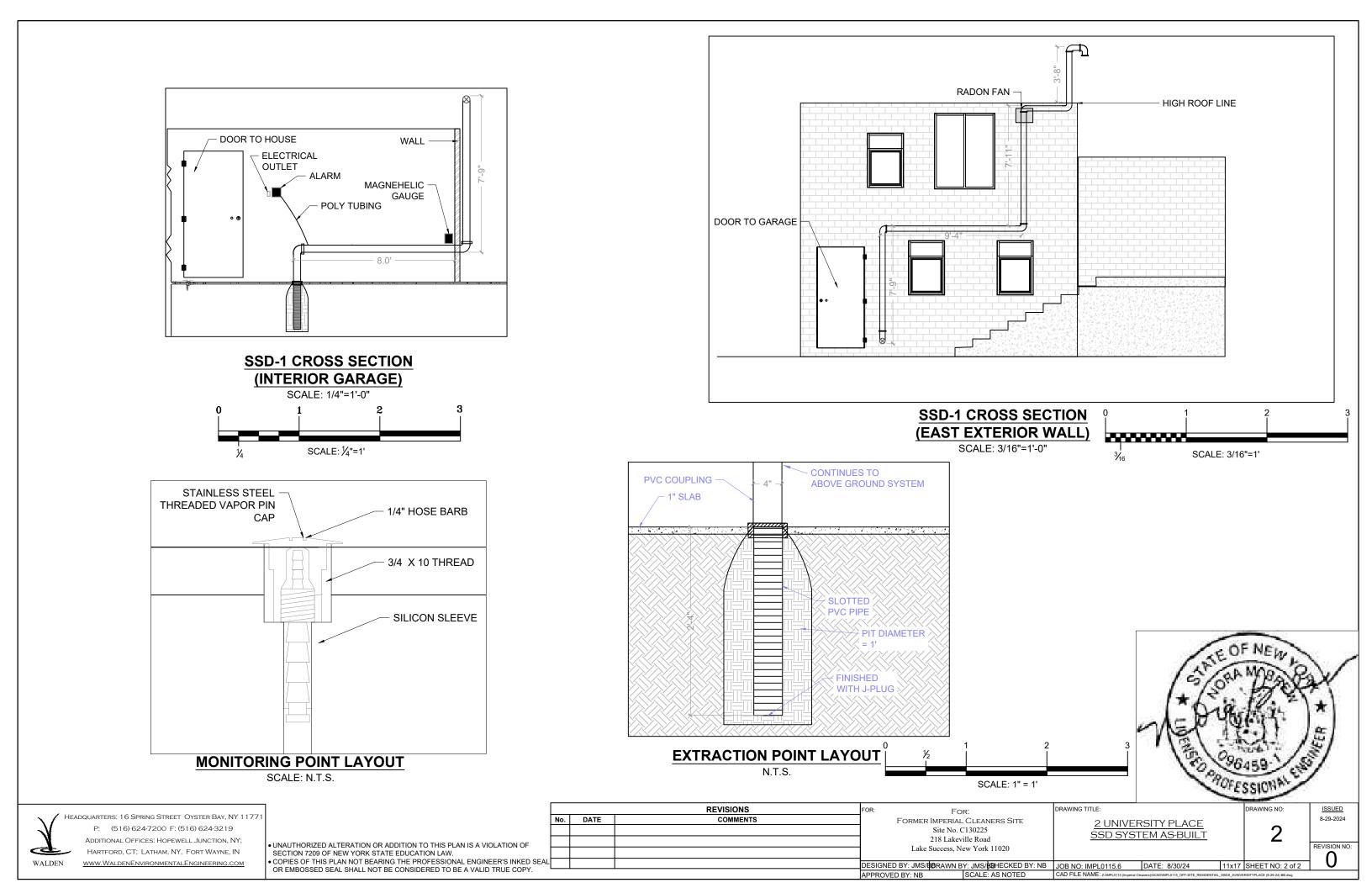

6 OFF-SITE IRM COST BREAKDOWN

The estimated costs associated with engineering design, installation, testing, and monitoring of the off-site SSD systems are as follows:

Off-site IRM Task	Estimated Off-site SSD System Cost		
	2 University Place	6 University Place	
Design	\$6,000	\$6,000	
Equipment & Supplies	\$3,500	\$4,000	
Installation & Testing	\$9,000	\$9,000	
Inspections & Monitoring	\$4,000	\$4,000	
Subtotal	\$22,500	\$23,000	
TOTAL ESTIMATED	\$45,500		


FIGURE 1

Site Location Map


ATTACHMENT A

2 University Place SSD System As-built Drawings

ATTACHMENT B

2 University Place SSD System Photographs

2 University Place Sub Slab Depressurization System Startup March 29, 2023

Interior SSD-1 system configuration in garage.

View of the PVC pipe penetration exiting the east wall of the house and the pressure gauge.

SSD-1 Pressure gauge (Dwyer Magnehelic)

Inside configuration of exhaust fan Radon Away model GP501c.

Photograph #5

System configuration along the exterior wall.

Photograph #7

System Radon Alarm

Photograph #6

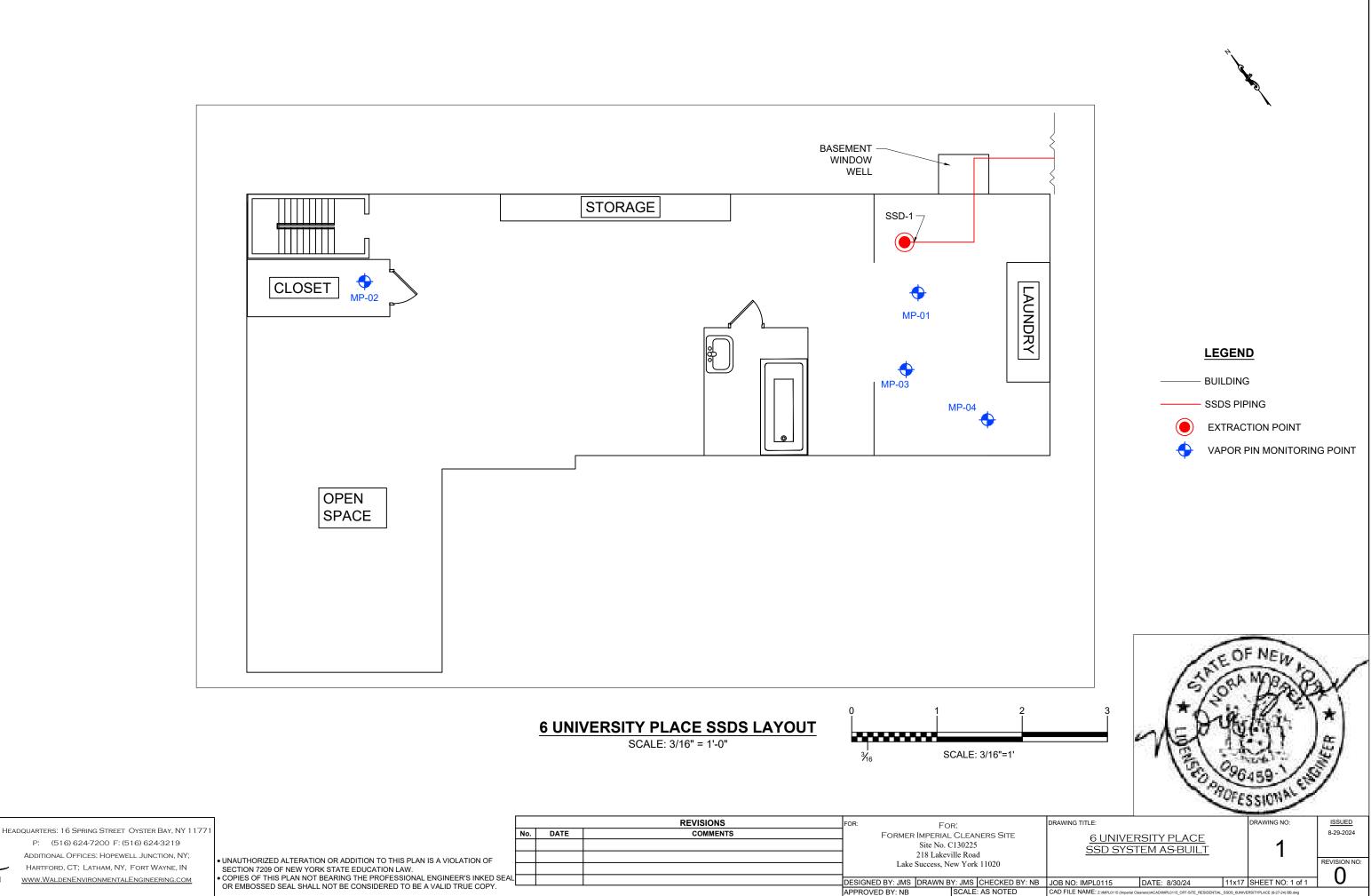
View of SSD-1, exhaust fan, including vent pipe above the roof.

MP-01 reading under final operating setting (-0.092 in WC)

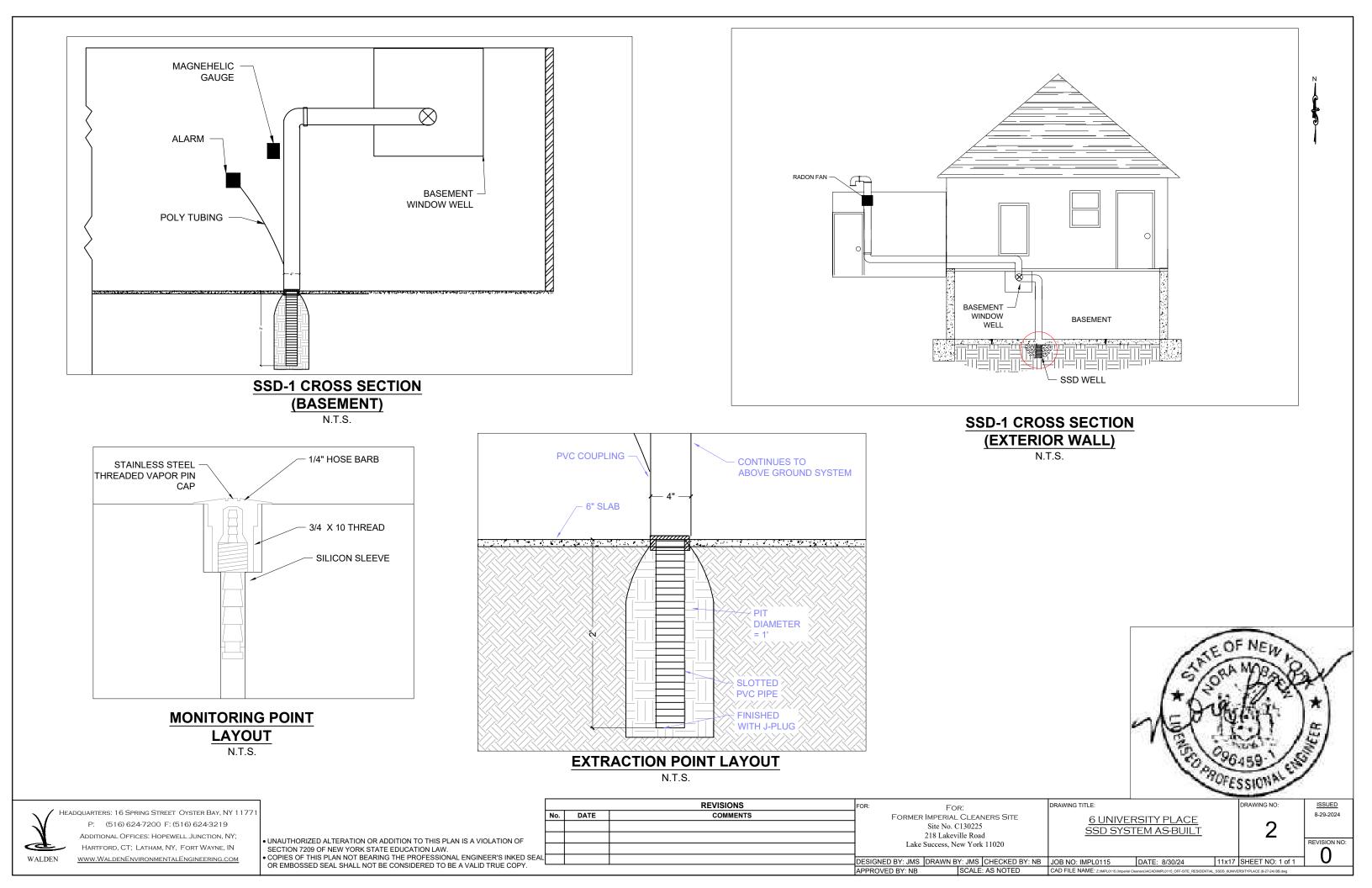
MP-02 reading under final operating settings (-0.007 in WC)

2 University Place Sub Slab Depressurization System Inspection March 21, 2024

SSD-1 Pressure gauge (Dwyer Magnehelic)


MP-01 reading under final operating settings (-0.085 in WC)

MP-02 reading under final operating settings (-0.005 in WC)


ATTACHMENT C

6 University Place SSD System As-built Drawings

æ

WALDEN

ATTACHMENT D

6 University Place SSD System Photographs

6 University Place Sub Slab Depressurization System Startup March 29, 2023

Interior SSD system configuration and penetration through wall.

MP-01 stainless-steel vapor pin.

SSD-1 Pressure gauge

Inside configuration of exhaust fan Radon Away model GP501c.

Photograph #5

System Radon Alarm

Photograph #7

System configuration along the exterior wall.

System configuration from the basement window pit

System configuration along the exterior wall.

View of SSD-1 vent pipe above the roof

6 University Place Sub Slab Depressurization System Inspection March 21, 2024

MP-01 reading under final operating settings (-0.134 in WC)

MP-03 reading under final operating settings (-0.012 in WC)

MP-04 reading under final operating settings (-0.023 in WC)

ATTACHMENT E

2 University Place Indoor Air Sampling Data

2 University Place Lake Success, NY 11020

Indoor Air Sampling Results - March 2024

Chemical Compound	CAS No.	NYSDOH Air Guideline Values (AGVs)	USEPA BASE Indoor Air 90th Percentile Conc (µg/m3)	2 University Place Indoor Air Sample 3/21 to 3/22/2024		
	(20.20.6	μg/m3	μg/m3		μg/m3	Q
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	630-20-6 71-55-6	~	~ 20.6	<	0.58	
1,1,1-1 richloroethane	71-55-6	~	20.6	<	0.46	╉──┦
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	79-34-3	~	3.5	<	0.58	
1,1,2-Trichloroethane	79-00-5	~	1.5	<	0.46	
1,1-Dichloroethane	75-34-3	~	0.7	<	0.34	
1,1-Dichloroethylene	75-35-4	~	1.4	<	0.08	
1,2,4-Trichlorobenzene	120-82-1	~	6.8	<	0.62	
1,2,4-Trimethylbenzene	95-63-6	~	9.5	<	0.41	
1,2-Dibromoethane	106-93-4	~	1.5	<	0.65	
1,2-Dichlorobenzene	95-50-1	~	1.2	<	0.51	
1,2-Dichloroethane	107-06-2	~	0.9	<	0.34	
1,2-Dichloropropane	78-87-5	~	1.6	<	0.39	
1,2-Dichlorotetrafluoroethane 1,3,5-Trimethylbenzene	76-14-2 108-67-8	~	6.8 3.7	<	0.59	
1,3,5-11ineurybenzene 1,3-Butadiene	106-99-0	~	3.7	<	0.41	
1,3-Dichlorobenzene	541-73-1	~ ~	2.4	<	0.50	╉──┤
1,3-Dichloropropane	142-28-9	~	~	<	0.39	╉──┦
1,4-Dichlorobenzene	106-46-7	~	5.5	<	0.51	
1,4-Dioxane	123-91-1	~	~	<	0.61	
2-Butanone	78-93-3	~	12		0.87	
2-Hexanone	591-78-6	~	~		0.76	J
3-Chloropropene	107-05-1	~	~	<	1.3	
4-Methyl-2-pentanone	108-10-1	~	6	<	0.34	
Acetone	67-64-1	~	98.9	\vdash	4.8	
Acrylonitrile Benzene	107-13-1 71-43-2	~	~ 9.4	\vdash	3.3 0.81	╉──┦
Benzyl chloride	100-44-7	~	6.8	<	0.81	
Bromodichloromethane	75-27-4	~	~	<	0.56	
Bromoform	75-25-2	~	~	<	0.87	
Bromomethane	74-83-9	~	1.7	<	0.33	
Carbon disulfide	75-15-0	~	4.2	<	0.26	
Carbon tetrachloride	56-23-5	~	1.3		0.48	J
Chlorobenzene	108-90-7	~	0.9	<	0.39	
Chloroethane	75-00-3	~	1.1	<	0.22	
Chloroform	67-66-3	~	1.1 3.7	<	0.41	
Chloromethane cis-1,2-Dichloroethylene	74-87-3 156-59-2	~	1.9		1.0 0.08	╉──┤
cis-1,3-Dichloropropylene	10061-01-5	~	2.3	<	0.08	
Cyclohexane	110-82-7	~	~		0.58	
Dibromochloromethane	124-48-1	~	~	<	0.72	
Dichlorodifluoromethane	75-71-8	~	16.5		2.4	
Ethyl acetate	141-78-6	~	5.4	<	0.61	
Ethyl Benzene	100-41-4	~	5.7		0.37	
Hexachlorobutadiene	87-68-3	~	6.8	<	0.90	
Isopropanol	67-63-0	~	250	\vdash	0.83	\parallel
Methyl Methacrylate	80-62-6	~	~	<	0.34	
Methyl tert-butyl ether (MTBE)	1634-04-4	~	11.5	<	0.30	╉──┤
Methylene chloride Naphthalene	75-09-2 91-20-3	60	10	<	0.58	╉──┤
n-Heptane	91-20-3 142-82-5	~	~	<	0.88	╉──┤
n-Hexane	142-82-3	~ ~	10.2	\vdash	1.8	╉──┤
o-Xylene	95-47-6	~	7.9	\vdash	0.44	1
p- & m- Xylenes	179601-23-1	~	~		1.2	1
p-Ethyltoluene	622-96-8	~	3.6	<	0.41	
Propylene	115-07-1	~	~		0.32	
Styrene	100-42-5	~	1.9	<	0.36	
Tetrachloroethylene	127-18-4	30	15.9	<	0.57	\square
Tetrahydrofuran	109-99-9	~	~	<	0.50	
Toluene	108-88-3	~	43	┝┤╴	1.9	╉──┤
trans-1,2-Dichloroethylene trans-1,3-Dichloropropylene	156-60-5 10061-02-6	~	~ 1.3	<	0.33	╉──┤
Trichloroethylene	79-01-6	~ 2	4.2	~	0.38	╉──┤
Trichlorofluoromethane (Freon 11)	79-01-0	~	4.2 ~	\vdash	1.2	╉──┤
Vinyl acetate	108-05-4	~	~	<	0.30	╉──┤
Vinyl bromide	593-60-2	~	~	<	0.37	+
Vinyl Chloride	75-01-4	~	1.9	<	0.11	

NOTES:

Q = Laboratory data qualifier J = Estimated value reported

Technical Report

prepared for:

Walden Associates **16 Spring Street** Oyster Bay NY, 11771 **Attention: Nora Brew**

Report Date: 04/04/2024 **Client Project ID: IMPL 0115.6 Imperial Cleaners** York Project (SDG) No.: 24C1627

Revision No. 1.0

Richmond Hill, NY Laboratory IDs: NY:12058, NJ: NY037, CT: PH-0721, NH: 2097, EPA: NY01600

Stratford, CT Laboratory IDs: NY:10854, NJ: CT005, PA: 68-0440, CT: PH-0723

www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418 ClientServices@yorklab.com

Page 1 of 10

Report Date: 04/04/2024 Client Project ID: IMPL 0115.6 Imperial Cleaners York Project (SDG) No.: 24C1627

> Walden Associates 16 Spring Street Oyster Bay NY, 11771 Attention: Nora Brew

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on March 25, 2024 and listed below. The project was identified as your project: **IMPL 0115.6 Imperial Cleaners**.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	<u>Client Sample ID</u>	Matrix	Date Collected	Date Received
24C1627-01	2 University Place	Indoor Ambient Air	03/22/2024	03/25/2024

General Notes for York Project (SDG) No.: 24C1627

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854, NJ Cert No. CT005, PA Cert No. 68-04440, CT Cert No. PH-0723; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058, NJ Cert No. NY037, CT Cert No. PH-0721, NH Cert No. 2097, EPA Cert No. NY01600.

Approved By:

John I most

Cassie L. Mosher Laboratory Manager

Date: 04/04/2024

				-							
<u>Client Sa</u>	mple ID: 2 University Place								York Sample	<u>ID:</u> 240	C 1627-0 1
York Proj	ect (SDG) No.	Client	Project II	<u>)</u>		M	<u>atrix</u>	Collecti	ion Date/Time	Date	Received
	24C1627	IMPL 0115.6	Imperial	Cleaners		Indoor A	mbient Air	March 22,	2024 10:01 ar	n O	3/25/2024
VOA, TO	015 Isooctane (2,2,4-TMP) Add	On			<u>Log-in Notes:</u>		<u>Samp</u>	le Notes:	<u>.</u>		
Sample Prepa	red by Method: EPA TO15 PREP								Data/Time	D-4-/T:	
CAS N	lo. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference M	lethod	Date/Time Prepared	Date/Time Analyzed	Analyst
540-84-1	* 2,2,4-Trimethylpentane	1.06		ug/m³	0.197	0.842	EPA TO-15 Certifications:		04/03/2024 12:00	04/04/2024 01:01	YR
<u>Volatile (</u>	Organics, EPA TO15 Full List				Log-in Notes:		Samp	le Notes:			
Sample Prepa	red by Method: EPA TO15 PREP										
CAS N	lo. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference M	lethod	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND		ug/m³	0.58	0.842	EPA TO-15 Certifications:		04/03/2024 12:00	04/04/2024 01:01	YR
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	0.46	0.842	EPA TO-15 Certifications:		04/03/2024 12:00 2058,NJDEP-NY037	04/04/2024 01:01	YR
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	0.58	0.842	EPA TO-15 Certifications:		04/03/2024 12:00 2058,NJDEP-NY037	04/04/2024 01:01	YR
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/m³	0.65	0.842	EPA TO-15 Certifications:		04/03/2024 12:00 2058,NJDEP-NY037	04/04/2024 01:01	YR
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	0.46	0.842	EPA TO-15 Certifications:		04/03/2024 12:00 2058,NJDEP-NY037	04/04/2024 01:01	YR
75-34-3	1,1-Dichloroethane	ND		ug/m³	0.34	0.842	EPA TO-15 Certifications: 1		04/03/2024 12:00 2058,NJDEP-NY037	04/04/2024 01:01	YR
75-35-4	1,1-Dichloroethylene	ND		ug/m³	0.083	0.842	EPA TO-15 Certifications:		04/03/2024 12:00 2058,NJDEP-NY037	04/04/2024 01:01	YR
120-82-1	1,2,4-Trichlorobenzene	ND		ug/m³	0.62	0.842	EPA TO-15 Certifications: 1		04/03/2024 12:00 2058,NJDEP-NY037	04/04/2024 01:01	YR
95-63-6	1,2,4-Trimethylbenzene	ND		ug/m³	0.41	0.842	EPA TO-15 Certifications:		04/03/2024 12:00 2058,NJDEP-NY037	04/04/2024 01:01	YR
106-93-4	1,2-Dibromoethane	ND		ug/m³	0.65	0.842	EPA TO-15 Certifications: 1		04/03/2024 12:00 2058,NJDEP-NY037	04/04/2024 01:01	YR
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	0.51	0.842	EPA TO-15 Certifications: 1		04/03/2024 12:00 2058,NJDEP-NY037	04/04/2024 01:01	YR
107-06-2	1,2-Dichloroethane	ND		ug/m³	0.34	0.842	EPA TO-15 Certifications:		04/03/2024 12:00 2058,NJDEP-NY037	04/04/2024 01:01	YR
78-87-5	1,2-Dichloropropane	ND		ug/m³	0.39	0.842	EPA TO-15 Certifications:		04/03/2024 12:00 2058,NJDEP-NY037	04/04/2024 01:01	YR
76-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	0.59	0.842	EPA TO-15 Certifications:		04/03/2024 12:00 2058,NJDEP-NY037	04/04/2024 01:01	YR
108-67-8	1,3,5-Trimethylbenzene	ND		ug/m³	0.41	0.842	EPA TO-15 Certifications:	NELAC-NY12	04/03/2024 12:00	04/04/2024 01:01	YR

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418 ClientServices@ Page 3 of 10

<u>Client Sample ID:</u> 2 Univer	sity Place		York Sample ID:	24C1627-01
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
24C1627	IMPL 0115.6 Imperial Cleaners	Indoor Ambient Air	March 22, 2024 10:01 am	03/25/2024

<u>Volatile O</u>	rganics, EPA TO15 Full List				<u>Log-in Notes:</u>						
Sample Prepare	d by Method: EPA TO15 PREP										
CAS No). Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
106-99-0	1,3-Butadiene	ND		ug/m³	0.56	0.842	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 12058,NJDEP-NY037	04/04/2024 01:01	YR
541-73-1	1,3-Dichlorobenzene	ND		ug/m³	0.51	0.842	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 12058,NJDEP-NY037	04/04/2024 01:01	YR
142-28-9	* 1,3-Dichloropropane	ND		ug/m³	0.39	0.842	EPA TO-15 Certifications:		04/03/2024 12:00	04/04/2024 01:01	YR
106-46-7	1,4-Dichlorobenzene	ND		ug/m³	0.51	0.842	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 12058,NJDEP-NY037	04/04/2024 01:01	YR
123-91-1	1,4-Dioxane	ND		ug/m³	0.61	0.842	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 12058,NJDEP-NY037	04/04/2024 01:01	YR
78-93-3	2-Butanone	0.87		ug/m³	0.25	0.842	EPA TO-15 Certifications:	NELAC-N	04/03/2024 12:00 Y12058,NJDEP-NY03	04/04/2024 01:01 7	YR
591-78-6	* 2-Hexanone	0.76	TO-CC V	ug/m³	0.69	0.842	EPA TO-15 Certifications:		04/03/2024 12:00	04/04/2024 01:01	YR
107-05-1	3-Chloropropene	ND		ug/m³	1.3	0.842	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 12058,NJDEP-NY037	04/04/2024 01:01	YR
108-10-1	4-Methyl-2-pentanone	ND	TO-CC V	ug/m³	0.34	0.842	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 12058,NJDEP-NY037	04/04/2024 01:01	YR
67-64-1	Acetone	4.8		ug/m³	0.40	0.842	EPA TO-15 Certifications:	NELAC-N	04/03/2024 12:00 Y12058,NJDEP-NY03	04/04/2024 01:01 7	YR
107-13-1	Acrylonitrile	3.3		ug/m³	0.18	0.842	EPA TO-15 Certifications:	NELAC-N	04/03/2024 12:00 ¥12058,NJDEP-NY03	04/04/2024 01:01 7	YR
71-43-2	Benzene	0.81		ug/m³	0.27	0.842	EPA TO-15 Certifications:	NELAC-N	04/03/2024 12:00 Y12058,NJDEP-NY03	04/04/2024 01:01 7	YR
100-44-7	Benzyl chloride	ND		ug/m³	0.44	0.842	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 12058,NJDEP-NY037	04/04/2024 01:01	YR
75-27-4	Bromodichloromethane	ND		ug/m³	0.56	0.842	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 12058,NJDEP-NY037	04/04/2024 01:01	YR
75-25-2	Bromoform	ND		ug/m³	0.87	0.842	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 12058,NJDEP-NY037	04/04/2024 01:01	YR
74-83-9	Bromomethane	ND		ug/m³	0.33	0.842	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 12058,NJDEP-NY037	04/04/2024 01:01	YR
75-15-0	Carbon disulfide	ND		ug/m³	0.26	0.842	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 12058,NJDEP-NY037	04/04/2024 01:01	YR
56-23-5	Carbon tetrachloride	0.48	TO-CC V	ug/m³	0.13	0.842	EPA TO-15 Certifications:	NELAC-N	04/03/2024 12:00 Y12058,NJDEP-NY031	04/04/2024 01:01 7	YR
108-90-7	Chlorobenzene	ND		ug/m³	0.39	0.842	EPA TO-15 Certifications:		04/03/2024 12:00 12058,NJDEP-NY037	04/04/2024 01:01	YR

120 RESEARCH DRIVE www.YORKLAB.com STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418 ClientServices@ Page 4 of 10

Cli

Client Sample ID: 2	University Place		York Sample ID:	24C1627-01
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
24C1627	IMPL 0115.6 Imperial Cleaners	Indoor Ambient Air	March 22, 2024 10:01 am	03/25/2024

	rganics, EPA TO15 Full List d by Method: EPA TO15 PREP	<u>t</u>		<u>Log-in Notes:</u>		<u>Sam</u>				
CAS No	·	Result F	lag Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-00-3	Chloroethane	ND	ug/m³	0.22	0.842	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 12058,NJDEP-NY037	04/04/2024 01:01	YR
67-66-3	Chloroform	ND	ug/m ³	0.41	0.842	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 12058,NJDEP-NY037	04/04/2024 01:01	YR
74-87-3	Chloromethane	1.0	ug/m³	0.17	0.842	EPA TO-15 Certifications:	NELAC-N	04/03/2024 12:00 (12058,NJDEP-NY03)	04/04/2024 01:01 7	YR
156-59-2	cis-1,2-Dichloroethylene	ND	ug/m³	0.083	0.842	EPA TO-15 Certifications:		04/03/2024 12:00 12058,NJDEP-NY037	04/04/2024 01:01	YR
10061-01-5	cis-1,3-Dichloropropylene	ND	ug/m³	0.38	0.842	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 12058,NJDEP-NY037	04/04/2024 01:01	YR
10-82-7	Cyclohexane	0.58	ug/m ³	0.29	0.842	EPA TO-15 Certifications:	NEL AC-NY	04/03/2024 12:00 (12058,NJDEP-NY03)	04/04/2024 01:01	YR
124-48-1	Dibromochloromethane	ND	ug/m³	0.72	0.842	EPA TO-15 Certifications:		04/03/2024 12:00 12058,NJDEP-NY037	04/04/2024 01:01	YR
75-71-8	Dichlorodifluoromethane	2.4	ug/m³	0.42	0.842	EPA TO-15 Certifications:	NELAC-N	04/03/2024 12:00 (12058.NJDEP-NY03)	04/04/2024 01:01	YR
141-78-6	* Ethyl acetate	ND	ug/m³	0.61	0.842	EPA TO-15 Certifications:		04/03/2024 12:00	04/04/2024 01:01	YR
00-41-4	Ethyl Benzene	0.37	ug/m³	0.37	0.842	EPA TO-15 Certifications:	NELAC-N	04/03/2024 12:00 (12058,NJDEP-NY03)	04/04/2024 01:01	YR
87-68-3	Hexachlorobutadiene	ND	ug/m³	0.90	0.842	EPA TO-15 Certifications:		04/03/2024 12:00 12058,NJDEP-NY037	04/04/2024 01:01	YR
57-63-0	Isopropanol	0.83	ug/m³	0.41	0.842	EPA TO-15 Certifications:	NEL AC-NY	04/03/2024 12:00 (12058,NJDEP-NY03)	04/04/2024 01:01	YR
80-62-6	Methyl Methacrylate	ND	ug/m³	0.34	0.842	EPA TO-15 Certifications:		04/03/2024 12:00 12058,NJDEP-NY037	04/04/2024 01:01	YR
1634-04-4	Methyl tert-butyl ether (MTBE)	ND	ug/m³	0.30	0.842	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 12058,NJDEP-NY037	04/04/2024 01:01	YR
75-09-2	Methylene chloride	ND	ug/m³	0.58	0.842	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 12058,NJDEP-NY037	04/04/2024 01:01	YR
91-20-3	* Naphthalene	ND	ug/m³	0.88	0.842	EPA TO-15 Certifications:	NJDEP-NY(04/04/2024 01:01	YR
42-82-5	n-Heptane	0.79	ug/m³	0.35	0.842	EPA TO-15 Certifications:		04/03/2024 12:00	04/04/2024 01:01	YR
10-54-3	n-Hexane	1.8	ug/m³	0.30	0.842	EPA TO-15		(12058,NJDEP-NY03) 04/03/2024 12:00	04/04/2024 01:01	YR
95-47-6	o-Xylene	0.44	ug/m³	0.37	0.842	Certifications: EPA TO-15 Certifications:		X12058,NJDEP-NY037 04/03/2024 12:00 X12058,NJDEP-NY037	04/04/2024 01:01	YR
79601-23-1	p- & m- Xylenes	1.2	ug/m³	0.73	0.842	EPA TO-15 Certifications:		04/03/2024 12:00	04/04/2024 01:01	YR
120 RES	EARCH DRIVE	STRATFORD, CT 06	615	■ 132	-02 89th A	VENUE				
	RKLAB.com	(203) 325-1371 FAX (203) 357-0166						lientServices@	Page 5	of 10

<u>Client Sample ID:</u> 2 Universit	y Place		York Sample ID:	24C1627-01
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
24C1627	IMPL 0115.6 Imperial Cleaners	Indoor Ambient Air	March 22, 2024 10:01 am	03/25/2024

	Drganics, EPA TO15 Full List		Log-in Notes: <u>Sample Notes:</u>							
Sample Prepar CAS N	red by Method: EPA TO15 PREP	Result	Flag	Units	Reported to LOQ	Dilution	Reference Me	Date/Time thod Prepared	Date/Time Analyzed	Analyst
622-96-8	* p-Ethyltoluene	ND		ug/m³	0.41	0.842	EPA TO-15 Certifications:	04/03/2024 12:00	04/04/2024 01:01	YR
115-07-1	* Propylene	0.32		ug/m³	0.14	0.842	EPA TO-15 Certifications:	04/03/2024 12:00	04/04/2024 01:01	YR
100-42-5	Styrene	ND		ug/m³	0.36	0.842	EPA TO-15 Certifications: NEI	04/03/2024 12:00 LAC-NY12058,NJDEP-NY03	04/04/2024 01:01 7	YR
127-18-4	Tetrachloroethylene	ND		ug/m³	0.57	0.842	EPA TO-15 Certifications: NEI	04/03/2024 12:00 LAC-NY12058,NJDEP-NY03	04/04/2024 01:01 7	YR
109-99-9	* Tetrahydrofuran	ND		ug/m³	0.50	0.842	EPA TO-15 Certifications:	04/03/2024 12:00	04/04/2024 01:01	YR
108-88-3	Toluene	1.9		ug/m³	0.32	0.842	EPA TO-15 Certifications: NE	04/03/2024 12:00 ELAC-NY12058,NJDEP-NY03	04/04/2024 01:01	YR
156-60-5	trans-1,2-Dichloroethylene	ND		ug/m³	0.33	0.842	EPA TO-15 Certifications: NEI	04/03/2024 12:00 LAC-NY12058,NJDEP-NY03	04/04/2024 01:01 7	YR
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/m³	0.38	0.842	EPA TO-15 Certifications: NEI	04/03/2024 12:00 LAC-NY12058,NJDEP-NY03	04/04/2024 01:01 7	YR
79-01-6	Trichloroethylene	ND		ug/m³	0.11	0.842	EPA TO-15 Certifications: NEI	04/03/2024 12:00 LAC-NY12058,NJDEP-NY03	04/04/2024 01:01 7	YR
75-69-4	Trichlorofluoromethane (Freon 11)	1.2		ug/m³	0.47	0.842	EPA TO-15 Certifications: NE	04/03/2024 12:00 ELAC-NY12058,NJDEP-NY03	04/04/2024 01:01	YR
108-05-4	Vinyl acetate	ND		ug/m³	0.30	0.842	EPA TO-15 Certifications: NEI	04/03/2024 12:00 LAC-NY12058,NJDEP-NY03	04/04/2024 01:01 7	YR
593-60-2	Vinyl bromide	ND		ug/m³	0.37	0.842	EPA TO-15 Certifications: NEI	04/03/2024 12:00 LAC-NY12058,NJDEP-NY03	04/04/2024 01:01 7	YR
75-01-4	Vinyl Chloride	ND		ug/m³	0.11	0.842	EPA TO-15 Certifications: NEI	04/03/2024 12:00 LAC-NY12058,NJDEP-NY03	04/04/2024 01:01 7	YR

Sample and Data Qualifiers Relating to This Work Order

TO-CCV	The value reported is ESTIMATED for this compound due to its behavior during continuing calibration verification (>30% Difference from initial calibration).
	Definitions and Other Explanations
*	Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.
ND	NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)
RL	REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.
LOQ	LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon current NELAC/TNI Standards and applies to all analyses.
LOD	LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.
MDL	METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.
Reported to	This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.
NR	Not reported
RPD	Relative Percent Difference
Wet	The data has been reported on an as-received (wet weight) basis
Low Bias	Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
High Bias	High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
Non-Dir.	Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.
and cannot be	46 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet e separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as ne.
	s are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and re non-target aroclors for some regulatory lists.
2-chloroethyl should take n	lvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user tote.
Certification	for pH is no longer offered by NYDOH ELAP.
Semi-Volatile	e and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.
-	by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

Revision Description: This report has been revised to report in ppbv.

120 RESEARCH DRIVE www.YORKLAB.com STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418 ClientServices@ Page 8 of 10

YORK Project No.	Pageof	Turn-Around Time	RUSH - Next Day	RUSH - Iwo Day RIISH - Three Day	RUSH - Four Dav	Standard (5-7 Day)		YORK Reg. Comp.	Compared to the following Regulation(s): (please fill in)	ppbv ppmv	Analvsis Requested				Sampling Media	6 Liter Canister X Tedlar Bag	Date/Time 5/22/24	Date/Time Date/Time	Knu 1227
d - AIR	ent. Your	YOUR Project Number	mp1 allet	YOUR Project Name		C/eared)		elections)	Standard Excel EDD EQuIS (Standard) NYSDEC EQuIS NJDEP SRP HazSite	Reporting Units: ug/m ³ _a	Analysis	U -0+		•	Required	NYSDEC V1 Limits	l y Company	comparty B DA	
Recor	ack side of this docum equested below. Conditions.	YOUR	ک ۲۰	YOUR	t	- Imperial	YOUR PO#:	Report / EDD Type (circle selections)	CT RCP CT RCP DQA/DUE NJDEP Reduced Dellv. NJDKQP		Flow Cont. ID	172291			Detection Limits Required	urvey	Samples Relinquished by Compan	Samples Received by / C Samples Received in LA	A.K
stody	ons are listed on the bied with the analyses re of with the analyses re of Standard Terms & (1			Report / ED	ort CT RCP CT RCP kage NJDEP R kage NJDKQP	ED Field Data	Canister ID	42326	-			≤ 1 ug/m Routine Survey	12:06	gIJAn	
-of-Cu	dard Terms & Condition on for YORK to procee are binds you to YORK	Invoice To:			1				Summary Report QA Report NY ASP A Package NY ASP B Package	Iowing REQUIR	Canister Vacuum	(Rum) Rundunge care	,				Date/Time 3/121/23	Date/Time 3/25/174 Date/Time	
Field Chain-of-Custody Record - AIR	NOTE: YORK's Star your written authorizatio signatu		Company: Address:	1	Phone.:	ontect:	E-mail:	Samples From	New York New Jersey Connecticut Pennsylvania	Please enter the following REQUIRED Field Data	Canister Vacuum Before Sampling (in Ho) After Sampling (in Ho)	China Bundungo conco					Port	Å.	
Field	NOTE: YORK's Standard Terms & Conditions are listed on the back side of this document. This document serves as your written authorization for YORK to proceed with the analyses requested below. signature binds you to YORK's Standard Terms & Conditions.						<u>عنا</u>	Air Matrix Codes	Al - Indoor Ambient Air AO - Outdoor Amb. Air AE - Vapor Extraction Welv Process Gastertituent AS - Soil Vanor Science	Ā	Air Matrix						Samples Received by I Company	samples Relinquished by / Company KBCull Yert Samples Received by / Company	
132-02 89th Ave Queens, NY 11418	@yorklab.com klab.com	Report To:	Company: Aduess:	0	Phone.:	Contact:	E-mail:	oe complete. Samples will ot begin until any	e and sign below)	Individual	Date/Time Sampled	HEVERY-HEVIER					BatelTime	12427 445 12427 445m	
York Analytical Laboratories, Inc. 120 Research Drive 132-02 89th Ave Quee Stratford, CT 06615 NY 11418	clientservices@yorklab.com www.yorklab.com	YOUR Information	Environment Enjoy	Intervent	H-12(Y) PI	32	alder associates.	r and legibly. All information must be complete. Samples will of the turn-around-time clock will not begin until any	v vork are resolved. cqueline Bell Samples Collected by: (wint your name above and sign below)	Certified Canisters: Batch	Sample Identification						13:0		
	YORK	YOUR II	Vallen Envilo		Phone 5 6 - 6 1	T NORD I	E-mail: NDRCC	Please print clearly and legibly. A not be logged in and the turn-aro	inestions by YORK are resolv Dury we live Samples Collect	Certified Ca	Sample Id	AUNIVERSITY			Comments:		Samples Relinquished by / Company	best reperved by / Company Load yark best Relinquished by / Company	0 c

١

NEW YORK STATE DEPART INDOOR AIR QUALITY QUESTIONNAIR CENTER FOR ENVIRONM	E AND BUILDING INVENTORY
This form must be completed for each resid	dence involved in indoor air testing.
Preparer's Name <u>Jacqueline Bell</u> Preparer's Affiliation <u>Malden Environmental Environ</u>	_ Date/Time Prepared <u>3/2/24</u> _ Phone No. <u>5/6-624-7208</u>
Purpose of Investigation	
1. OCCUPANT: Interviewed: Y	
Last Name: First Name:	
Address:	
County:	
Home Phone: Office Phone:	
Number of Occupants/persons at this location Ag	e of Occupants
2. OWNER OR LANDLORD: (Check if same as occupant	
Interviewed: Y / N	
Last Name:First Name:	**************************************
Address:	
County:	
Home Phone: Office Phone:	
3. BUILDING CHARACTERISTICS	
Type of Building: (Circle appropriate response)	
Residential School Commercial Industrial Church Other:	/Multi-use

Church

Other:

If the property is residential, type? (Circle appropriate response)									
Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment House Log Home								
If multiple units, how many?	~/Å								
If the property is commercial	, type?								
Business Type(s)	NA								
Does it include residences	(i.e., multi-use)? Y/	N If yes, how many?							
Other characteristics:									
Number of floors <u>24 /8</u> g	seven 7 Build	ding age <u>~ / 92</u> 9							

4. AIRFLOW

.

Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe:

How air tight? Tight / Average / Not Tight

Airflow between floors Doors / win dows

Airflow near source Garnie voor - Slig ut traff

Is the building insulated? Y / N

Outdoor air infiltration side through jarge door fromant

Infiltration into air ducts

5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

a. Above grade construction:	wood frame	concrete	stone	brick
b. Basement type:	full	crawlspace	slab	other
c. Basement floor:	concrete	dirt	stone	other
d. Basement floor:	uncovered	covered	covered with	Vinyl
e. Concrete floor:	unsealed	sealed	sealed with 4	
f. Foundation walls:	poured	block	stone	other
g. Foundation walls:	unsealed	sealed	sealed with _	
h. The basement is:	wet	damp	try	moldy
i. The basement is:	finished	unfinished	partially finis	shed
j. Sump present?	$Q_{/N}$			
k. Water in sump? Y /]	N / not applicable			
		(0)		

Basement/Lowest level depth below grade: _____(feet)

Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)

Garage sealed + not opered during sampling _____

6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)

Type of heating system(s) used in this building: (circle all that apply – note primary)

Hot air circulation Space Heaters Electric baseboard	Heat p Stream Wood	radiation	Hot water baseboard Radiant floor Outdoor wood boiler	Other
The primary type of fuel use	ed is:			
Natural Gas Fuel Oi Electric Propane Wood Coal			Kerosene Solar	
Domestic hot water tank fue	eled by:			
Boiler/furnace located in:	Basement	Outdoors	Main Floor	Other
Air conditioning:	Central Air	Window units	Open Windows	None

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

Y// N

7. OCCUPANCY

Is basement/lo	west level occupied?	Full-time	Occasionally	Seldon	n Almost Never
Level	General Use of Each	Floor (e.g., fa	<u>milyroom, bedro</u>	<u>om, lau</u>	ndrv, workshop, storage)
Basement	finished baser	urt/go	mjl.		
1 st Floor	not inspected		V		
2 nd Floor	not inspecte	<u>ich</u>		<u> </u>	
3 rd Floor		*********			
4 th Floor			· · · ·		
	THAT MAY INFLUE	NCE INDOOF	AIR QUALITY	Y	
b. Does the g	garage have a separate	heating unit?		Y/N	NA
	leum-powered machine the garage (e.g., lawnmo			WN/ Please	NA specify <u>cereatort cas</u> can
d. Has the b	uilding ever had a fire?	•		YN	When?
e. Is a kerose	ene or unvented gas spa	ace heater pres	sent?	YN	Where?
f. Is there a	workshop or hobby/cra	aft area?	YN	Where	& Type?
g. Is there sr	noking in the building	?	Y N	How fi	equently?
h. Have clea	ning products been use	ed recently?	YN	When a	& Type?
i. Have cosm	etic products been use	d recently?	YN	When a	& Type?

j. Has painting/sta	ning been done in	the last 6 mo	onths? Y/	N	Where & Wh	en?	
k. Is there new car	pet, drapes or oth	er textiles?	Υ/	N	Where & Wh	en?	
l. Have air freshen	ers been used rece	ntly?	ΥÅ	\mathbf{R}	When & Typ	e?	
m. Is there a kitche	en exhaust fan?		Y /	N	If yes, where	vented?	
n. Is there a bathr	oom exhaust fan?		Υ/	N	If yes, where	vented?	
o. Is there a clothes	dryer?		Y /	N	If yes, is it ve	nted outside? Y / N	
p. Has there been a	e pesticide applica	tion?	Y /	N	When & Typ	e?	
Are there odors in If yes, please descr	the building? ribe:		ΥĹ	R)			
Do any of the buildin (e.g., chemical manufa boiler mechanic, pestio	cturing or laborato	ry, auto mecha		Nody	shop, painting	, fuel oil delivery,	
If yes, what types of	f solvents are used?						
If yes, are their cloth	nes washed at work	?	Y /	N			
Do any of the buildin response)	g occupants regul	arly use or wo	ork at a dry-	clear	ning service?	(Circle appropriate	
Yes, use dry-c	leaning regularly (leaning infrequentl dry-cleaning servi	y (monthly or	less)		No Unknown		
Is there a radon mitig Is the system active o	-	he building/s Active/Passive		/ N	Date of Instal	lation:	_
9. WATER AND SEV	WAGE						
Water Supply:	Rublic Water I	Drilled Well	Driven Wel	1	Dug Well	Other:	
Sewage Disposal:	Public Sewer S	Septic Tank	Leach Field	l	Dry Well	Other:	
10. RELOCATION I	NFORMATION (for oil spill re	sidential em	erge	ncy)		
a. Provide reason	s why relocation is	s recommend	ed:/	$\sqrt{2}$	Ά		
b. Residents choo	se to: remain in ho	me reloca	te to friends/f	famil	ly reloca	ate to hotel/motel	
c. Responsibility	for costs associated	l with reimbu	ırsement exp	lain	ed? Y/N		
d. Relocation pac	kage provided and	l explained to	residents?		Y / N		

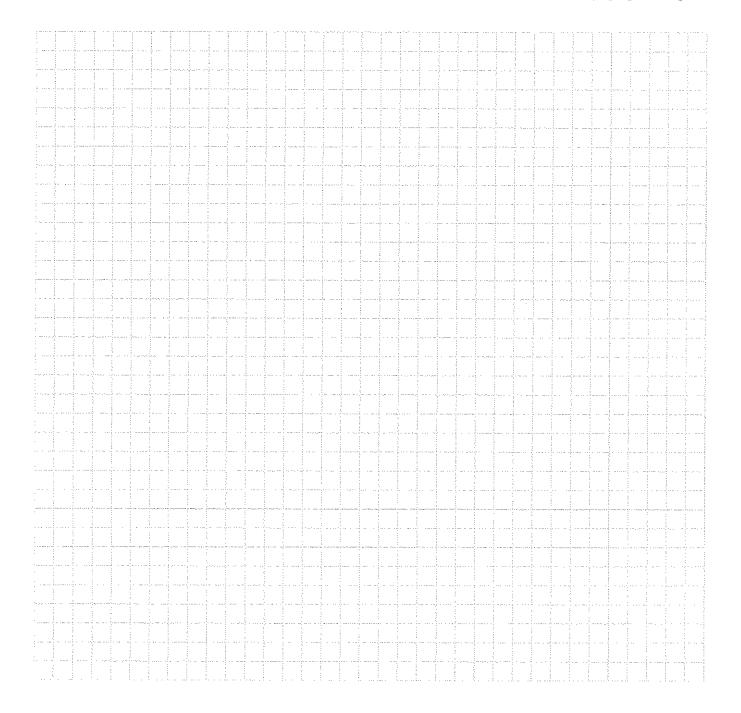
•

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

2


First Floor:

12. OUTDOOR PLOT

æ

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

ч£.

Make & Model of field instrument used:

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition [*]	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y / N</u>
	Lotts Ont lour Cleaner	16-1				
	milti Purpore Kitchen touth siliene					
	heavy duty cleaning withes Valathane woodstin	-				
	Varathane Loudstin	237~2 x2 3.672				
		3.671				
AMaron	Varathave polymething	3.782				
*******	BEHRUHLa Scuff Defen ic Rustolenn Charl hed	881-1		ан на н		
		887.L				
	Konjamin ree Celcy Samples Rain-X All Season Preen Gardin reed preventer Fertilizy	7.0702 X3		······································		
	Rain-X All seyson	16al				
	Preen Gardin weed preventer	adlhs			faction and the second s	
	fertilizy	5015				
A	gascunister					

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

ATTACHMENT F

6 University Place Indoor Air Sampling Data

6 University Place Lake Success, NY 11020

Indoor Air Sampling Results - March 2024

Chemical Compound	CAS No.	NYSDOH Air Guideline Values (AGVs)	USEPA BASE Indoor Air 90th Percentile Conc (µg/m3)	In	University Pl door Air San /20 to 3/21/20	nple
		μg/m3	μg/m3		μg/m3	Q
1,1,1,2-Tetrachloroethane	630-20-6	μg/iii.5 ~	μ <u>g</u> /m5 ~	<	0.56	×
1,1,1-Trichloroethane	71-55-6	~	20.6	<	0.30	
1,1,2,2-Tetrachloroethane	79-34-5	~	~	<	0.56	
1,1,2,2-Trichloro-1,2,2-trifluoroethane (Freon	76-13-1	~	3.5	<	0.62	
1,1,2-Trichloroethane	79-00-5	~	1.5	<	0.44	
1,1-Dichloroethane	75-34-3	~	0.7	<	0.33	
1,1-Dichloroethylene	75-35-4	~	1.4	<	0.08	
1,2,4-Trichlorobenzene	120-82-1	~	6.8	<	0.60	
1,2,4-Trimethylbenzene	95-63-6	~	9.5	<	0.40	
1,2-Dibromoethane	106-93-4	~	1.5	<	0.63	
1,2-Dichlorobenzene	95-50-1	~	1.2	<	0.49	
1,2-Dichloroethane	107-06-2	~	0.9	<	0.33	
1,2-Dichloropropane	78-87-5	~	1.6	<	0.38	
1,2-Dichlorotetrafluoroethane	76-14-2	~	6.8	<	0.57	
1,3,5-Trimethylbenzene	108-67-8	~	3.7	<	0.40	
1,3-Butadiene	106-99-0	~	3	<	0.54	
1,3-Dichlorobenzene	541-73-1	~	2.4	<	0.49	
1,3-Dichloropropane	142-28-9	~	~	<	0.38	
1,4-Dichlorobenzene	106-46-7	~	5.5	<	0.49	
1,4-Dioxane	123-91-1	~	~	<	0.59	
2-Butanone	78-93-3	~	12	\square	0.94	
2-Hexanone	591-78-6	~	~		0.80	J
3-Chloropropene	107-05-1	~	~	<	1.30	
4-Methyl-2-pentanone	108-10-1	~	6	<	0.33	
Acetone	67-64-1	~	98.9		6.00	
Acrylonitrile	107-13-1	~	~	<	0.18	
Benzene	71-43-2	~	9.4		0.44	
Benzyl chloride	100-44-7	~	6.8	<	0.42	
Bromodichloromethane	75-27-4	~	~	<	0.55	
Bromoform	75-25-2	~	~	<	0.84	
Bromomethane	74-83-9	~	1.7	<	0.32	
Carbon disulfide	75-15-0	~	4.2	<	0.25	т
Carbon tetrachloride Chlorobenzene	56-23-5 108-90-7	~	1.3 0.9		0.46	J
Chloroethane	75-00-3	~	1.1	<	0.37	
Chloroform	67-66-3	~	1.1	<	0.21	
Chloromethane	74-87-3	~	3.7	<	0.40	
cis-1,2-Dichloroethylene	156-59-2	~	1.9	<	0.97	
cis-1,3-Dichloropropylene	10061-01-5	~	2.3	<	0.37	
Cyclohexane	110-82-7	~	~	<	0.28	
Dibromochloromethane	124-48-1	~	~	<	0.69	
Dichlorodifluoromethane	75-71-8	~	16.5	Ì	2.50	
Ethyl acetate	141-78-6	~	5.4	<	0.59	
Ethyl Benzene	100-41-4	~	5.7	<	0.35	
Hexachlorobutadiene	87-68-3	~	6.8	<	0.87	┢──╢
Isopropanol	67-63-0	~	250	H	0.98	
Methyl Methacrylate	80-62-6	~	~	<	0.33	
Methyl tert-butyl ether (MTBE)	1634-04-4	~	11.5	<	0.29	
Methylene chloride	75-09-2	60	10	<	0.57	
Naphthalene	91-20-3	~	~	<	0.85	
n-Heptane	142-82-5	~	~	<	0.33	
n-Hexane	110-54-3	~	10.2	<	0.29	
o-Xylene	95-47-6	~	7.9	<	0.35	
p- & m- Xylenes	179601-23-1	~	~	<	0.71	
p-Ethyltoluene	622-96-8	~	3.6	<	0.40	
Propylene	115-07-1	~	~	<	0.14	
Styrene	100-42-5	~	1.9	<	0.35	
Tetrachloroethylene	127-18-4	30	15.9	Ш	0.72	
Tetrahydrofuran	109-99-9	~	~	<	0.48	
Toluene	108-88-3	~	43	Щ	0.58	
trans-1,2-Dichloroethylene	156-60-5	~	~	<	0.32	\square
trans-1,3-Dichloropropylene	10061-02-6	~	1.3	<	0.37	$\left - \right $
Trichloroethylene	79-01-6	2	4.2	<	0.11	$\left - \right $
Trichlorofluoromethane (Freon 11)	75-69-4	~	~	\square	1.30	
Vinyl acetate	108-05-4	~	~	<	0.29	┝──╢
Vinyl bromide	593-60-2	~	~	<	0.36	┞──┨
Vinyl Chloride	75-01-4	~	1.9	<	0.10	

NOTES:

Q = Laboratory data qualifierJ = Estimated value reported

Technical Report

prepared for:

Walden Associates 16 Spring Street Oyster Bay NY, 11771 Attention: Nora Brew

Report Date: 04/04/2024 Client Project ID: IMPL 0115.6 Imperial Cleaners York Project (SDG) No.: 24C1629

Revision No. 1.0

Richmond Hill, NY Laboratory IDs: NY:12058, NJ: NY037, CT: PH-0721, NH: 2097, EPA: NY01600

Stratford, CT Laboratory IDs: NY:10854, NJ: CT005, PA: 68-0440, CT: PH-0723

120 RESEARCH DRIVE

www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418 ClientServices@yorklab.com

Page 1 of 10

Report Date: 04/04/2024 Client Project ID: IMPL 0115.6 Imperial Cleaners York Project (SDG) No.: 24C1629

> Walden Associates 16 Spring Street Oyster Bay NY, 11771 Attention: Nora Brew

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on March 25, 2024 and listed below. The project was identified as your project: **IMPL 0115.6 Imperial Cleaners**.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	<u>Client Sample ID</u>	Matrix	Date Collected	Date Received
24C1629-01	University Place 6	Indoor Ambient Air	03/21/2024	03/25/2024

General Notes for York Project (SDG) No.: 24C1629

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854, NJ Cert No. CT005, PA Cert No. 68-04440, CT Cert No. PH-0723; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058, NJ Cert No. NY037, CT Cert No. PH-0721, NH Cert No. 2097, EPA Cert No. NY01600.

Approved By:

John I most

Cassie L. Mosher Laboratory Manager

Date: 04/04/2024

	eet (SDG) No. 24C1629	Client IMPL 0115.6	Project II Imperial	_				Collection Date/Time arch 21, 2024 12:00 J		Received
	P15 Isooctane (2,2,4-TMP) Add ed by Method: EPA TO 15 PREP	<u>On</u>			<u>Log-in Notes:</u>		<u>Sample</u>	Notes:		
CAS N		Result	Flag	Units	Reported to LOQ	Dilution	Reference Me	Date/Time thod Prepared	Date/Time Analyzed	Analyst
540-84-1	* 2,2,4-Trimethylpentane	ND	-	ug/m³	0.190	0.814	EPA TO-15 Certifications:	04/03/2024 12:00	04/04/2024 01:46	YR
	Organics, EPA TO15 Full List				<u>Log-in Notes:</u>		Sample	Notes:		
	ed by Method: EPA TO15 PREP				Reported to			Date/Time	Date/Time	
CAS N		Result	Flag	Units	LOQ	Dilution	Reference Me	*	Analyzed	Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND		ug/m³	0.56	0.814	EPA TO-15 Certifications:	04/03/2024 12:00	04/04/2024 01:46	YR
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	0.44	0.814	EPA TO-15 Certifications: NE	04/03/2024 12:00 LAC-NY12058,NJDEP-NY03	04/04/2024 01:46 7	YR
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	0.56	0.814	EPA TO-15 Certifications: NE	04/03/2024 12:00 LAC-NY12058,NJDEP-NY03	04/04/2024 01:46 7	YR
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/m³	0.62	0.814	EPA TO-15 Certifications: NE	04/03/2024 12:00 LAC-NY12058,NJDEP-NY03	04/04/2024 01:46 7	YR
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	0.44	0.814	EPA TO-15 Certifications: NE	04/03/2024 12:00 LAC-NY12058,NJDEP-NY03	04/04/2024 01:46 7	YR
75-34-3	1,1-Dichloroethane	ND		ug/m³	0.33	0.814	EPA TO-15 Certifications: NE	04/03/2024 12:00 LAC-NY12058,NJDEP-NY03	04/04/2024 01:46 7	YR
75-35-4	1,1-Dichloroethylene	ND		ug/m³	0.081	0.814	EPA TO-15 Certifications: NE	04/03/2024 12:00 LAC-NY12058,NJDEP-NY03	04/04/2024 01:46 7	YR
120-82-1	1,2,4-Trichlorobenzene	ND		ug/m³	0.60	0.814	EPA TO-15 Certifications: NE	04/03/2024 12:00 LAC-NY12058,NJDEP-NY03	04/04/2024 01:46 7	YR
95-63-6	1,2,4-Trimethylbenzene	ND		ug/m³	0.40	0.814	EPA TO-15 Certifications: NE	04/03/2024 12:00 LAC-NY12058,NJDEP-NY03	04/04/2024 01:46 7	YR
106-93-4	1,2-Dibromoethane	ND		ug/m³	0.63	0.814		04/03/2024 12:00 LAC-NY12058,NJDEP-NY03		YR
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	0.49	0.814		04/03/2024 12:00 ELAC-NY12058,NJDEP-NY03		YR
107-06-2	1,2-Dichloroethane	ND		ug/m³	0.33	0.814		04/03/2024 12:00 ELAC-NY12058,NJDEP-NY03		YR
78-87-5	1,2-Dichloropropane	ND		ug/m ³	0.38	0.814		04/03/2024 12:00 LAC-NY12058,NJDEP-NY03		YR
76-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	0.57	0.814		04/03/2024 12:00 ELAC-NY12058,NJDEP-NY03		YR
108-67-8	1,3,5-Trimethylbenzene	ND		ug/m³	0.40	0.814	EPA TO-15 Certifications: NE	04/03/2024 12:00 LAC-NY12058,NJDEP-NY03	04/04/2024 01:46 7	YR

FAX (203) 357-0166

RICHMOND HILL, NY 11418 ClientServices@ Page 3

Page 3 of 10

<u>Client Sample ID:</u> University I	Place 6		York Sample ID:	24C1629-01
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
24C1629	IMPL 0115.6 Imperial Cleaners	Indoor Ambient Air	March 21, 2024 12:00 pm	03/25/2024

	Drganics, EPA TO15 Full List				<u>Log-in Notes:</u>		<u>Sam</u>	ple Notes	<u>s:</u>		
Sample Prepar CAS N	red by Method: EPA TO15 PREP	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
106-99-0	1,3-Butadiene	ND		ug/m³	0.54	0.814	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 12058,NJDEP-NY037	04/04/2024 01:46	YR
541-73-1	1,3-Dichlorobenzene	ND		ug/m³	0.49	0.814	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 12058,NJDEP-NY037	04/04/2024 01:46	YR
142-28-9	* 1,3-Dichloropropane	ND		ug/m³	0.38	0.814	EPA TO-15 Certifications:		04/03/2024 12:00	04/04/2024 01:46	YR
106-46-7	1,4-Dichlorobenzene	ND		ug/m³	0.49	0.814	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 12058,NJDEP-NY037	04/04/2024 01:46	YR
123-91-1	1,4-Dioxane	ND		ug/m³	0.59	0.814	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 12058,NJDEP-NY037	04/04/2024 01:46	YR
78-93-3	2-Butanone	0.94		ug/m³	0.24	0.814	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 /12058,NJDEP-NY03	04/04/2024 01:46	YR
591-78-6	* 2-Hexanone	0.80	TO-CC V	ug/m³	0.67	0.814	EPA TO-15 Certifications:		04/03/2024 12:00	04/04/2024 01:46	YR
107-05-1	3-Chloropropene	ND		ug/m³	1.3	0.814	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 12058,NJDEP-NY037	04/04/2024 01:46	YR
108-10-1	4-Methyl-2-pentanone	ND	TO-CC V	ug/m³	0.33	0.814	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 12058,NJDEP-NY037	04/04/2024 01:46	YR
57-64-1	Acetone	6.0		ug/m³	0.39	0.814	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 (12058,NJDEP-NY03)	04/04/2024 01:46	YR
107-13-1	Acrylonitrile	ND		ug/m³	0.18	0.814	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 12058,NJDEP-NY037	04/04/2024 01:46	YR
71-43-2	Benzene	0.44		ug/m³	0.26	0.814	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 (12058,NJDEP-NY03)	04/04/2024 01:46	YR
100-44-7	Benzyl chloride	ND		ug/m³	0.42	0.814	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 12058,NJDEP-NY037	04/04/2024 01:46	YR
75-27-4	Bromodichloromethane	ND		ug/m³	0.55	0.814	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 12058,NJDEP-NY037	04/04/2024 01:46	YR
75-25-2	Bromoform	ND		ug/m³	0.84	0.814	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 12058,NJDEP-NY037	04/04/2024 01:46	YR
74-83-9	Bromomethane	ND		ug/m³	0.32	0.814	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 12058,NJDEP-NY037	04/04/2024 01:46	YR
75-15-0	Carbon disulfide	ND		ug/m³	0.25	0.814	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 12058,NJDEP-NY037	04/04/2024 01:46	YR
56-23-5	Carbon tetrachloride	0.46	TO-CC V	ug/m³	0.13	0.814	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 (12058,NJDEP-NY03)	04/04/2024 01:46	YR
108-90-7	Chlorobenzene	ND		ug/m³	0.37	0.814	EPA TO-15 Certifications:		04/03/2024 12:00 12058,NJDEP-NY037	04/04/2024 01:46	YR

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418 ClientServices@ Page 4 of 10

<u>Client Sample ID:</u> University Pl	ace 6		York Sample ID:	24C1629-01
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
24C1629	IMPL 0115.6 Imperial Cleaners	Indoor Ambient Air	March 21, 2024 12:00 pm	03/25/2024

	Organics, EPA TO15 Full List red by Method: EPA TO15 PREP	-	Log-in Notes: Sample Notes:									
CAS N		Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analys	
75-00-3	Chloroethane	ND		ug/m³	0.21	0.814	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 ¥12058,NJDEP-NY037	04/04/2024 01:46	YR	
67-66-3	Chloroform	ND		ug/m³	0.40	0.814	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 ¥12058,NJDEP-NY037	04/04/2024 01:46	YR	
74-87-3	Chloromethane	0.97		ug/m³	0.17	0.814	EPA TO-15 Certifications:	NELAC-N	04/03/2024 12:00 Y12058,NJDEP-NY037	04/04/2024 01:46	YR	
156-59-2	cis-1,2-Dichloroethylene	ND		ug/m³	0.081	0.814	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 Y12058,NJDEP-NY037	04/04/2024 01:46	YR	
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/m³	0.37	0.814	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 Y12058,NJDEP-NY037	04/04/2024 01:46	YR	
110-82-7	Cyclohexane	ND		ug/m³	0.28	0.814	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 Y12058,NJDEP-NY037	04/04/2024 01:46	YR	
124-48-1	Dibromochloromethane	ND		ug/m³	0.69	0.814	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 Y12058,NJDEP-NY037	04/04/2024 01:46	YR	
75-71-8	Dichlorodifluoromethane	2.5		ug/m³	0.40	0.814	EPA TO-15 Certifications:	NELAC-N	04/03/2024 12:00 Y12058,NJDEP-NY037	04/04/2024 01:46	YR	
141-78-6	* Ethyl acetate	ND		ug/m³	0.59	0.814	EPA TO-15 Certifications:		04/03/2024 12:00	04/04/2024 01:46	YR	
100-41-4	Ethyl Benzene	ND		ug/m³	0.35	0.814	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 Y12058,NJDEP-NY037	04/04/2024 01:46	YR	
87-68-3	Hexachlorobutadiene	ND		ug/m³	0.87	0.814	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 Y12058,NJDEP-NY037	04/04/2024 01:46	YR	
67-63-0	Isopropanol	0.98		ug/m³	0.40	0.814	EPA TO-15 Certifications:	NELAC-N	04/03/2024 12:00 Y12058,NJDEP-NY037	04/04/2024 01:46	YR	
80-62-6	Methyl Methacrylate	ND		ug/m³	0.33	0.814	EPA TO-15 Certifications:		04/03/2024 12:00 Y12058,NJDEP-NY037	04/04/2024 01:46	YR	
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.29	0.814	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 Y12058,NJDEP-NY037	04/04/2024 01:46	YR	
75-09-2	Methylene chloride	ND		ug/m³	0.57	0.814	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 Y12058,NJDEP-NY037	04/04/2024 01:46	YR	
91-20-3	* Naphthalene	ND		ug/m³	0.85	0.814	EPA TO-15 Certifications:	NJDEP-NY		04/04/2024 01:46	YR	
142-82-5	n-Heptane	ND		ug/m³	0.33	0.814	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 ¥12058,NJDEP-NY037	04/04/2024 01:46	YR	
110-54-3	n-Hexane	ND		ug/m³	0.29	0.814	EPA TO-15 Certifications:	NELAC-NY	04/03/2024 12:00 ¥12058,NJDEP-NY037	04/04/2024 01:46	YR	
95-47-6	o-Xylene	ND		ug/m³	0.35	0.814	EPA TO-15 Certifications:		04/03/2024 12:00 Y12058,NJDEP-NY037	04/04/2024 01:46	YR	
		STRATEORD C				2-02 89th 4						

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418 ClientServices@ Page {

Page 5 of 10

<u>Client Sample ID:</u> University	Place 6		York Sample ID:	24C1629-01
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
24C1629	IMPL 0115.6 Imperial Cleaners	Indoor Ambient Air	March 21, 2024 12:00 pm	03/25/2024

	Drganics, EPA TO15 Full List ed by Method: EPA TO15 PREP				<u>Log-in Notes:</u>		<u>San</u>	ple Notes:		
CAS No	•	Result	Flag	Units	Reported to LOQ	Dilution	Referenc		Date/Time Analyzed	Analyst
179601-23-1	p- & m- Xylenes	ND		ug/m³	0.71	0.814	EPA TO-15 Certifications:	04/03/2024 12:00 04/ NELAC-NY12058,NJDEP-NY037	/04/2024 01:46	YR
622-96-8	* p-Ethyltoluene	ND		ug/m³	0.40	0.814	EPA TO-15 Certifications:	04/03/2024 12:00 04/	/04/2024 01:46	YR
115-07-1	* Propylene	ND		ug/m³	0.14	0.814	EPA TO-15 Certifications:	04/03/2024 12:00 04/	/04/2024 01:46	YR
100-42-5	Styrene	ND		ug/m³	0.35	0.814	EPA TO-15 Certifications:	04/03/2024 12:00 04/ NELAC-NY12058,NJDEP-NY037	/04/2024 01:46	YR
127-18-4	Tetrachloroethylene	0.72		ug/m³	0.55	0.814	EPA TO-15	04/03/2024 12:00 04/	/04/2024 01:46	YR
							Certifications:	NELAC-NY12058,NJDEP-NY037		
109-99-9	* Tetrahydrofuran	ND		ug/m³	0.48	0.814	EPA TO-15 Certifications:	04/03/2024 12:00 04/	/04/2024 01:46	YR
108-88-3	Toluene	0.58		ug/m ³	0.31	0.814	EPA TO-15	04/03/2024 12:00 04/	/04/2024 01:46	YR
							Certifications:	NELAC-NY12058,NJDEP-NY037		
156-60-5	trans-1,2-Dichloroethylene	ND		ug/m³	0.32	0.814	EPA TO-15 Certifications:	04/03/2024 12:00 04/ NELAC-NY12058,NJDEP-NY037	/04/2024 01:46	YR
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/m³	0.37	0.814	EPA TO-15 Certifications:	04/03/2024 12:00 04/ NELAC-NY12058,NJDEP-NY037	/04/2024 01:46	YR
79-01-6	Trichloroethylene	ND		ug/m³	0.11	0.814	EPA TO-15 Certifications:	04/03/2024 12:00 04/ NELAC-NY12058,NJDEP-NY037	/04/2024 01:46	YR
75-69-4	Trichlorofluoromethane (Freon 11)	1.3		ug/m³	0.46	0.814	EPA TO-15	04/03/2024 12:00 04/	/04/2024 01:46	YR
				-			Certifications:	NELAC-NY12058,NJDEP-NY037		
108-05-4	Vinyl acetate	ND		ug/m³	0.29	0.814	EPA TO-15 Certifications:	04/03/2024 12:00 04/ NELAC-NY12058,NJDEP-NY037	/04/2024 01:46	YR
593-60-2	Vinyl bromide	ND		ug/m³	0.36	0.814	EPA TO-15 Certifications:	04/03/2024 12:00 04/ NELAC-NY12058,NJDEP-NY037	/04/2024 01:46	YR
75-01-4	Vinyl Chloride	ND		ug/m³	0.10	0.814	EPA TO-15 Certifications:	04/03/2024 12:00 04/ NELAC-NY12058,NJDEP-NY037	/04/2024 01:46	YR

Sample and Data Qualifiers Relating to This Work Order

TO-CCV	The value reported is ESTIMATED for this compound due to its behavior during continuing calibration verification (>30% Difference from initial calibration).
	Definitions and Other Explanations
*	Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.
ND	NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)
RL	REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.
LOQ	LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon current NELAC/TNI Standards and applies to all analyses.
LOD	LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.
MDL	METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.
Reported to	This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.
NR	Not reported
RPD	Relative Percent Difference
Wet	The data has been reported on an as-received (wet weight) basis
Low Bias	Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
High Bias	High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
Non-Dir.	Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.
and cannot be	46 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet e separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as ne.
	s are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and re non-target aroclors for some regulatory lists.
2-chloroethyl should take n	lvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user tote.
Certification	for pH is no longer offered by NYDOH ELAP.
Semi-Volatile	e and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.
-	by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

Revision Description: This report has been revised to report in ppbv.

120 RESEARCH DRIVE www.YORKLAB.com STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418 ClientServices@ Page 8 of 10

YORK Project No.	Pageof	Turn-Around Time	RUSH - Next Day	RUSH - Two Day	RUSH - Three Day	RUSH - Four Day	Standard (5-7 Day)		YORK Reg. Comp.	Compared to the following Regulation(s): (please fill in)		ppbv _ ppmv _	Analysis Requested					4	Sampling Media	6 Liter Canister X	Tedlar Bag	3/22/24	Date/Time	Date/Time		
4 - AIR	nt Your	YOUR Project Number	2015.6		YOUR Project Name		uperial u rearers		ections)	Standard Excel EDD EQuIS (Standard)	NYSDEC EQuIS NJDEP SRP HazSite	Reporting Units: ug/m ³	Analysis	no finin i	51-0F		•		Required	NYSDEC V1 Limits	Other	, company	ompany	by	180 martin	
Record	ack side of this docume quested below. Conditions.	YOUR	1 dirt) - 1	YOUR	T t	Tuperia	YOUR PO#:	Report / EDD Type (circle selections)	CT RCP CT RCP DQA/DUE	NJDEP Reduced Deliv. NJDKQP		Flow Cont. ID	10 5	1085				Detection Limits Required	1	Definentiation	La reministration of	Samples Received by / C	Samples Received in LAB by	A	.). ".
stody	ons are listed on the ba ed with the analyses re K's Standard Terms & C								Report / ED	5		ED Field Data	Canister ID		36860					≤ 1 ug/m	Routine Survey	2021		325/24 -915An		
n-of-Cu	indard Terms & Conditi tion for YORK to proceed ture binds you to YORI	Invoice To:		cur-	-		51		L	Summary Report QA Report	NY ASP A Package NY ASP B Package Other:	ollowing REQUIR	Canister Vacuum After Sampling (in Hg)	(Birth) Rundumo isnu	1	(allowed					Data/Tima	4122/24	Date/Time	325/24		
eld Chain-of-Custody Record - AIR	NOTE: YORK's Sta s your written authoriza signa		Company:	Address:		Phone :	Contact:	E-mail:	Samples From) New York New Jersey	Connecticut Pennsylvania Other	Please enter the following REQUIRED Field Data	Canister Vacuum Before Sampling (in Hg)	/for un franchisco succos	-30							2/bil	any	R.		
Field	NOTE: YORK's Standard Terms & Conditions are listed on the back side of this document. This document serves as your written authorization for YORK to proceed with the analyses requested below. signature binds you to YORK's Standard Terms & Conditions.	t To:				a P	July		Air Matrix Codes	Al - Indoor Ambient Air AO - Outdoor Amb. Air	AE - Vapor Extraction Well/ Process Gas/Effluent AS - Soil Vapor/Sub-Slab		Air Matrix	1	EV						Samilae Deceived hu / Company	Hunt	Samples Relinquished by / Comp	KB all the Samples Received by I Company		
York Analytical Laboratories, Inc. 20 Research Drive 132-02 89th Ave Queens, stratford, CT 06615 NY 11418	clientservices@yorklab.com www.yorklab.com	Report To:	Company:	Address:		Phone.:	Contact:	E-mail; S, (@M)	Please print clearly and legibly. All information must be complete. Samples will not be logged in and the turn-around-time clock will not begin until any		bove and sign below)	Individual	Date/Time Sampled	1.121.5	410 - 12004						Data Cinno	and y to	Date/Time	3 22 2 1 Yr Jn		
York Analytical 120 Research Drive Stratford, CT 06615	clientservice www.yc	ormation	k Eniren	1 0	12211 X	jaco	Le l	den associate	gibly. All information mus urn-around-time clock will	Rel)	Samples Collected by: (print your name above and sign below)	listers: Batch	ntification	2 IV.	place 6							12: 80: 61		k		
	YORK	YOUR Information	Vallen Enviorne	16 Sacon A	children ~	[-, /e)-) / S.:	Contact: Norce By	E-mail	Please print clearly and le not be logged in and the t	They will all the	Jun Mun	Certified Canisters: Batch	Sample Identification		University				Comments:		Samples Dollarenished hu / Comnan	Blue aland	ples Received by / Company	Babe Hould by Company	_	10

OSR-3

Ş

6 University Place (formelly 4)

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY **CENTER FOR ENVIRONMENTAL HEALTH**

This form must be completed for each residence involved in indoor air testing.

Preparer's Name	Jacquelike Kell	Date/Time Prepared _	3120124
Preparer's Affiliati	on Walden Environmental F	Date/Time Prepared _	4-7200
		р (<u>ј</u>	
1. OCCUPANT:			
Interviewed: Y	N		
Last Name:	First N	ame:	
Address:			
County:			
Home Phone:	Office Phon	e:	
Number of Occupa	nts/persons at this location	Age of Occupants	
2. OWNER OR L	ANDLORD: (Check if same as	occupant <u>i</u>)	
Interviewed: Y/	N		
Last Name:	First Na	me:	
Address:			
County:			
Home Phone:	Office Pho	ne:	
3. BUILDING CH	ARACTERISTICS		
Type of Building:	(Circle appropriate response)		
(Residentia) Industrial		mmercial/Multi-use her:	

Other:

If the property is residential, type? (Circle appropriate response)

4

¥

at the property is residentia	i, type: (Choic ap	propriate respon	sc)
Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment Hou Log Home	Ise Townh	
If multiple units, how many	?//A		
If the property is commerci	al, type? ///		
Business Type(s)			
Does it include residence	s (i.e., multi-use)?	Y / N	If yes, how many?
Other characteristics:			
Number of floors <u> d ナ ハ</u>		Building age	-1929
Is the building insulated?	Y / N	How air tight?	Tight / Average / Not Tight
4. AIRFLOW			
Use air current tubes or tra	cer smoke to eval	uate airflow pat	tterns and qualitatively describe:
Airflow between floors			
Airflow near source			
Outdoor air infiltration			
	·····		
Infiltration into air ducts			

5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

a. Above grade constructio	n: wood frame	concrete	stone	brick
b. Basement type:	full	crawlspace	slab	other
c. Basement floor:	concrete	dirt	stone	other
d. Basement floor:	uncovered	covered	covered with	
e. Concrete floor:	unsealed	sealed	est launch sealed with _	rdenn
f. Foundation walls:	poured	block	stone	other
g. Foundation walls:	unsealed	sealed	sealed with	paint
h. The basement is:	wet	damp	dry '	moldy
i. The basement is:	finished	unfinished	partially finis	hed
j. Sump present?	(Y)N	rcept lanni	in som	
k. Water in sump?	Y / N / not applicable		,	

Basement/Lowest level depth below grade: _____(feet)

Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)

6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)

Type of heating system(s) used in this building: (circle all that apply – note primary)

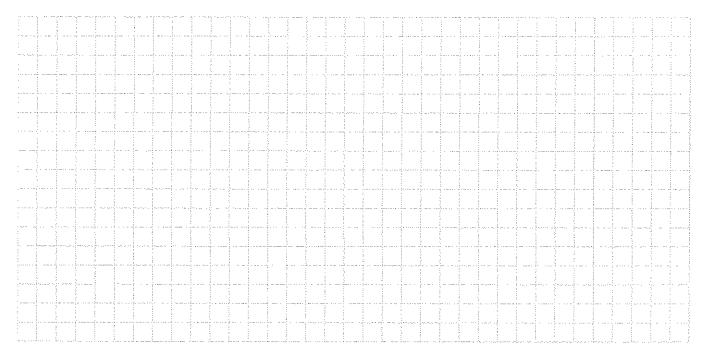
Hot air circulation Space Heaters Electric baseboard	Heat p Stream Wood	radiation	Hot water baseboard Radiant floor Outdoor wood boiler	Other
The primary type of fuel use	d is:			
Natural Gas Electric Wood	Fuel O Propan Coal		Kerosene Solar	
Domestic hot water tank fue	led by: <u>ngt</u>	valgar		
Boiler/furnace located in:	Basement	Outdoors	Main Floor	Other
Air conditioning:	Central Air	Window units	Open Windows	None

Are there air distribution ducts present? Y / N

,

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

7. OCCUPA	ANCY		
Is basement/l	owest level occupied? Full-time Occ	asionally) Seldom	Almost Never
Level	General Use of Each Floor (e.g., familyro	om, bedroom, laundry	, workshop, storage)
Basement	laindo storaile		
1 st Floor	kitcher, play room, living	aver	
2 nd Floor	bed rooms		
3 rd Floor			
4 th Floor			
8. FACTORS	S THAT MAY INFLUENCE INDOOR AIR	QUALITY	
a. Is there a	an attached garage?	(Y)/ N	
b. Does the	garage have a separate heating unit?	Y (N) NA	
	oleum-powered machines or vehicles the garage (e.g., lawnmower, atv, car)	Y / N / NA Please spec	ify
d. Has the	building ever had a fire?	Y/N Wh	en?
e. Is a kero	sene or unvented gas space heater present?	Y /N Wh	ere?
f. Is there a	workshop or hobby/craft area?	Y / N Where & Ty	ype?
g. Is there s	smoking in the building?	Y N How freque	ntly?
h. Have cle	aning products been used recently?	(\mathbf{y}) N When & Ty	ре?
i. Have cos	metic products been used recently?	$(\mathbf{\hat{Y}})$ N When & Ty	pe?


j. Has painting/st	aining been done	nths? Y / N	Y / N Where & When?				
k. Is there new ca	rpet, drapes or ot	her textiles?	Y / N	Where & Whe	n?		
l. Have air freshe	ners been used re	cently?	Y / N	When & Type	?		
m. Is there a kitcl	hen exhaust fan?		(\mathbf{y}_{N})	If yes, where v	ented?		
n. Is there a bath	room exhaust fan	?	(Y)/ N	If yes, where v	ented?		
o. Is there a cloth	es dryer?		Ý) N	If yes, is it ven	ted outside? N		
p. Has there been	a pesticide applic	cation?	Y / N	When & Type	?		
Are there odors in If yes, please des	n the building? cribe:		YN				
Do any of the buildi (e.g., chemical manu boiler mechanic, pest	facturing or labora ticide application, o	tory, auto mecha cosmetologist	anic or auto body				
If yes, what types							
If yes, are their clo	othes washed at wo	rk?	Y / N				
Do any of the build response)	ing occupants reg	ularly use or w	ork at a dry-clea	ning service? (Circle appropriate		
Yes, use dry Yes, work at	-cleaning regularly -cleaning infrequer a dry-cleaning ser	ntly (monthly or vice		No Unknown			
Is there a radon mit Is the system active		r the building/s Active/Passive	tructure: (Y) N	Date of Installa	ation:		
9. WATER AND SI	EWAGE						
Water Supply:	Public Water	Drilled Well	Driven Well	Dug Well	Other:		
Sewage Disposal:	Public Sewer	Septic Tank	Leach Field	Dry Well	Other:		
10. RELOCATION	INFORMATION	l (for oil spill re	esidential emerge	ency)			
a. Provide reaso	ons why relocation	is recommend	led:/A				
b. Residents cho	oose to: remain in l	nome reloca	ate to friends/fami	ly relocat	te to hotel/motel		
c. Responsibility	y for costs associa	ted with reimb	ursement explair	ed? Y/N			
d. Relocation pa	ackage provided a	nd explained to	o residents?	Y / N			

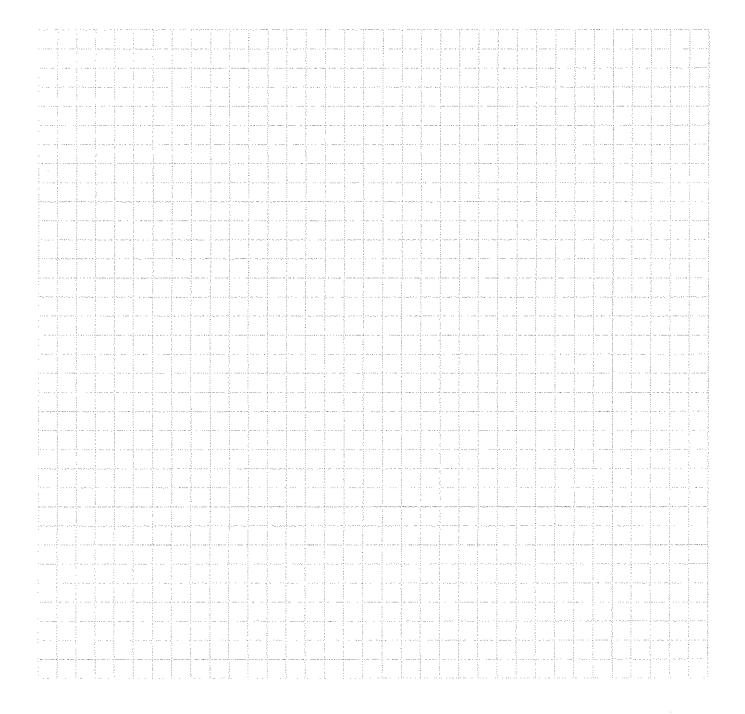
11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

٠

First Floor:


		· · · · · · · · · · · · · · · · · · ·		:	2000	2000 C	2000.00	: ·		1		1000					o				· · · · ·	2.5.55			91111 C.			,			e nor i n			
1						i.		i.	1																		1				1			1 - K
						í.		-		1																			8		: · · ·			4 - E
		5		;·	d e er i	fa ser ser	2 · · · · · · · ·	ç	de areas V)	er r					5 m i i i							e sur se é		er er s	1990 - H.	· · · ·		1 - H I		t end			19 - S. S.
					-			÷																	÷ .				-					÷
:	<u>}</u>				ł.			i.		i.																		÷						: E
			····			1	÷	an ann an t		÷				···· ··									: ··· · · · · · · · · · · · · · · · · ·				÷							i server de
	1	<pre>c</pre>				t			£	i												1	2											
					:			1	÷	i.													1		i :				ł					- i
					5 m		1799 A.C. A.	1997 - 1997 -) i e e cons	1979 A.	((:					e eredi
					1	1		:	÷	1															() (1		. 7			e : :
					1				:					-													: · ·)					. :	e (†
100 million (1997)		· · · · · · · · · · · ·			:					for ore																	P. 1. 24.	in an ar	:		p ar é			ann a b
						1		1	1	1																					2	: · ·		1
						:	÷																				: ·	5			1 1			
									1	:																	(200		1			
							ł.							6																	1 1			
					-				-	÷																								÷
200000000							2	([:	•••••			(· · · · · ·	;				e rome	
						1	÷		1	÷ .																								
								÷.,											an a												÷			a 1.
										: :																			:					- T T
																															: 1			
								Comencia da se	1. 					:																				I.
						÷		: · · ·																										
										-				i i													: ;							i (
																																	2	- 1
						: 1															- 3													
																																		: 1
						1	i																											i
									1										-															
								÷													3						1.1.1				- 1			. 1
							:										î														:			A.
			:						e (1							1									
	a ser esta d		<i>i</i>			نىرى مىلىدىن	:)	l	ha a sa sal				S									الم تتنبية		J									
							: {	() ()	÷									3																1
						{			i (. 3	-					-	1			3										e			
									()																									
								:																							1			
· · · · · · · · ·					£				e se									· · · · · ·					~							· · · · · ·			···	
					1										i.																			
																						1												
5					è		jere e e j	(i en esta de la compañía de la comp										an d		5 a 13	i en d											
																								-										
						: .	1		:							1																		
- ; ; ;;;;;-;-;-;-;-;-;-;-;-;-;-;-;								· · · ·	· · ···				· · · · · · ·]						·	· · · · .										e e de
					(e - 1											i									1							
																																		:
					S. 1. 1.	6 - B.		1 A.	i	1 A A																	1 A A							1

12. OUTDOOR PLOT

÷

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

1

AR.

Make & Model of field instrument used:

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition [*]	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y / N</u>
	Tide Laundry Detenand Fabric Softner	1458		Basement Laundry Room		
	tab ril softner	dets		Basement Landy Room		
	oderless threenough	3202		Basement Kathroom		
	Fast Open 32	1902		Basement Bathroom		
*****	glale ordersdations	Blez	**	Kasement Kathroom		
	flate order solutions Epson Salt	4165		Basement Ks athroom		
				· · · · · · · · · · · · · · · · · · ·		

* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)** ** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.