

Phase II Environmental Site Assessment Report

For:

Block 160, Lots 7, 18, 20, 205, 208, 210, 213, 219, and 220 and Block 184, Lots 7 and 818
300, 303, 320, 321, and 330 Prospect Street Inwood, New York 11096

Prepared For:

Prospect Five LLC 321 Prospect Street Inwood, New York 11096

Prepared By:

SESI CONSULTING ENGINEERS

12A Maple Avenue Pine Brook, New Jersey 07058

DATE:

NOVEMBER 2021

Table of Contents

1.0 IN	TRODU	CTION	1
1.1	SITE	SETTINGS	1
1.2	SITE	HISTORY	2
2.0	SUBSU	JRFACE INVESTIGATION	5
2.1	SITE	GEOLOGY	5
2.2	SAM	PLE COLLECTION SUMMARY	5
2.3	SOIL	BORINGS	6
2.4	GRO	UNDWATER INVESTIGATION	7
2.5	SUB-	-SLAB SOIL GAS INVESTIGATION	7
3.0	ANALY	TICAL RESULTS	8
3.1	SOIL	. INVESTIGATION RESULTS	8
3.2	GRO	UNDWATER INVESTIGATION RESULTS	10
3.3	SUB-	-SLAB SOIL GAS RESULTS	12
4.0	CONCI	LUSIONS AND RECOMMENDATIONS	14
<u>TABL</u>	<u>ES</u>		
TABL	Ξ 1.1	SITE SETTING	
TABL	Ξ 2.1	SAMPLE SUMMARY TABLE	
TABL	∃ 3.1	SOIL SAMPLE ANALYTICAL TABLE	
TABL	∃ 3.2	SOIL SAMPLE EXCEEDANCES	
TABL	∃ 3.3	GROUNDWATER ANALYTICAL TABLE	
TABL	∃ 3.4	GROUNDWATER SAMPLE EXCEEDANCES	
TABL	∃ 3.5	SUB-SLAB SOIL GAS AND AMBIENT AIR ANALYTICAL TABLE	
TABL	∃ 3.6	SUB-SLAB SOIL GAS AND AMBIENT AIR EXCEEDANCES	
FIGUE	RES		
FIGUE	 RE 1.1	SITE LOCATION MAP	
FIGUE	RE 1.2	TAX MAP	
FIGUE	RE 1.3	REC LOCATION PLAN	
FIGUE	RE 1.4	AOC LOCATION MAP	
FIGUE	RE 2.1	SAMPLE LOCATION PLAN	
FIGUE	RE 3.1	SOIL SAMPLE LOCATIONS AND RESULTS MAP	

FIGURE 3.2 GROUNDWATER SAMPLING LOCATIONS AND RESULTS MAP

FIGURE 3.3 SUB-SLAB SOIL GAS AND AMBIENT AIR SAMPLING LOCATION AND RESULTS MAP

APPENDICES

APPENDIX A: PREVIOUS ENVIRONMENTAL REPORTS

APPENDIX B: GEOPHYSICAL REPORT

APPENDIX C: BORING LOGS

APPENDIX D: LABORATORY DELIVERABLE REPORTS

1.0 INTRODUCTION

SESI Consulting Engineers (SESI) has conducted this Phase II Environmental Site Assessment (Phase II ESA) report on behalf of Prospect Five LLC for the properties located at 300, 303, 320, 321, and 330 Prospect Street, Inwood, New York ("Site"). The Site is identified on local tax maps as Block 160, Lots 7, 18, 20, 205, 208, 210, 213, 219, 220 and Block 184, Lots 7 and 818. The Site comprises nine (9) parcels, located on north side of Prospect Street and two (2) contiguous parcels on the south side of Prospect Street, totaling approximately 3.27 acres. The Site contains five (5) buildings utilized as offices, warehouses, and a clothing store. Three (3) of the buildings (located at 300, 303 and 330 Prospect Street) are single-story, and two (2) of the buildings (located at 320 and 321 Prospect Street), consist of two (2)-stories. The Site is bound to the north by residences, to the east by Mary's Manor Senior Citizen Complex and Doughty Boulevard, to the south by residences, and to the west by residences. **Figure 1.1** presents a Site Location Map and **Figure 1.2** presents the Tax Map.

This Phase II ESA report summarizes the data of soil, groundwater, soil vapor, and ambient air samples collected by SESI to further investigate the Site. This report complies with the 2015 American Society for Testing and Materials standard (ASTM E1903).

1.1 SITE SETTINGS

The Site consists of 11 parcels, located on either side of Prospect Street, totaling approximately 3.27 acres, as depicted in **Table 1.1** below. The Site contains five (5) buildings utilized as offices, warehouses, and a clothing store. The buildings are surrounded mainly by asphalt-paved parking areas. The nearest surface water body is the Motts Basin, which discharges into the Jamacia Bay, located approximately 0.45 miles west of the Site. A Site Plan is shown on **Figure 1.3**.

Building Lot **Building** Block (square **Current Usage Current Tenant** Lot(s) Acreage feet) Closeout Connection Inc. 205, 219, Offices and 300 160 0.4886 9,700 220 warehouse (Ari Weiss) Clothing store 7 303 184 0.2626 6,700 Shirtstop LLC (Avi Lang) and warehouse 7, 210, Premier Whiteglove and 320 160 0.5719 14,400 Warehouse 213 Freight (Mike Paul) Offices and Sage Camera NY LLC 184 26,000 321 818 1.12 (Nathan Parnes) warehouse 18. 20. Polar Trading NY LLC 330 160 0.8313 22.000 Warehouse (Nathan Parnes) 208

Table 1.1 – Site Setting

1.2 SITE HISTORY

SESI conducted a Phase I ESA in October 2021. According to the 2021 Phase I ESA, the Site was historically utilized for several commercial, industrial, and residential purposes over the span of many years. The following Recognized Environmental Concerns (RECs) were identified for the Site, as determined in the SESI 2021 Phase I ESA report, as depicted on **Figure 1.3**:

- REC-1 Historic Fill: GCI Environmental Advisory (GCI) indicated in an Environmental Guarantee Letter, dated April 2008, that low levels of heavy metals are present in Site soils, reportedly related to "urban fill". GCI concluded that there does not appear to be environmental hazard associated with the interior of the buildings and that the exterior areas should be paved and covered so as not to create an environmental situation to the occupants. However, if the ground covering is disturbed to create a playground space, GCI recommended that the soils be removed to a depth of at least three (3) feet, the removed soils properly disposed of, a barrier installed, and certified clean fill installed over the barrier. If future development of the Site requires the excavation and off-Site disposal of soil, soil testing and special handling of soil will be required.
- **REC-2 Former Laboratory Operations**: The Site historically operated as a pharmaceutical laboratory. According to the 2006 Environmental Consultants Corporation (ESPL) Phase I ESA, hazardous materials and chemicals were received, utilized, generated, stored, and shipped as part of their laboratory operations. Some of the areas of environmental concern identified in the 2006 Phase I ESA (e.g., stormwater drywells, wastewater holding tanks, hazardous waste storage, and dust collectors) were investigated as part of the 2007 ESPL Phase II ESA; however, the investigation into the areas of concern identified was limited to cleaning and disposal of the hazardous materials. No subsurface soil, groundwater, or soil gas samples were collected as part of their investigation. Based on the New York Department of Environmental Conservation (NYSDEC) 2008 letter, there appears to have been soil and groundwater sampling conducted at the Site; however, details and analytical results pertaining to that investigation were not provided to SESI. Therefore, SESI recommends subsurface investigation be conducted at the Site to address the data gaps associated with the areas of environmental concern identified in association with the former laboratory operations at the Site.

- REC-3 Former and Potential Underground Storage Tanks (USTs) and/or Aboveground Storage Tanks (ASTs): According to the ESPL 2006 Phase I ESA, information requests to local regulatory agencies revealed that the 303 Prospect Street facility maintained a 1,000-gallon No. 2 fuel oil heating UST. The tank was reportedly removed in December of 1988 when Forest Laboratories (a previous operator at the property) switched from oil to natural gas at their facility. However, tank removal and disposal documentation was not provided. Furthermore, as stated in ESPL's 2006 Phase I ESA report, an information request response from the Nassau County Fire Department indicated that four (4) USTs were removed from the 303 Prospect Street property. No additional details pertaining to the tanks were provided. Additionally, there is a potential for additional former heating oil tanks to be present at the Site, as well as potential discharges from these systems, in association with the other Site buildings. A subsurface geophysical evaluation should be considered to identify potential tanks associated with the former buildings, as well as to investigate the previously removed UST for environmental impacts to the Site.
- Prospect Street) on June 25, 2003 when an estimated 10 gallons of transformer oil was released from a pad-mounted transformer. According to the NYSDEC, non-PCB transformer oil was spilled, the spill was contained in a containment pit, and no drains were impacted. A clean-up was reportedly performed by Tradewinds Environmental Restoration, Inc. (Tradewinds). According to the NYSDEC Spill Incidents Database, the case was closed on February 5, 2004. Although the spill number was closed, documentation (i.e., remedial activities performed by Tradewinds) was not provided to show that the spill was indeed remediated. Therefore, additional investigation is required to determine whether there are still impacts related to this spill present at the Site.
- REC-5 Former Commercial/ Industrial Operations: The Site was historically utilized for several purposes including, but not limited to: residences, automobile garages, "Old and Vac", lumber staging, a henhouse, sheds, a machine shop, a restaurant, Barrow Chemical Co. Inc, factory building, miscellaneous storage, a Mission, "Plastic Packaging", Grand Eastern Printing, Forest Laboratories Inc, Inwood Laboratories Inc, "Unitone", "Hua Tan", PCA Prospect Industrial LLC, and other unidentified operations. The operations occurred

over many years. Prior to the connection of the Site to the sanitary sewer system (in 1975), cesspools were utilized at the Site. (The size and location of the cesspools is not known.). In addition, several drywells are present at the Site. It is possible that the cesspools and drywells were used for the discharge of manufacturing/process wastes. There is the potential for impacts to the subgrade from these historical operations. Therefore, **further soil and groundwater investigation should be conducted to evaluate Site conditions in connection with the historical commercial/industrial operations.**

In August 2021, SESI conducted a Phase II ESA at the Site to investigate the RECs identified above. The areas of concern (AOCs) investigated as part of this Phase II ESA are depicted on **Figure 1.4**, and the investigation is summarized in the sections below.

2.0 SUBSURFACE INVESTIGATION

2.1 SITE GEOLOGY

Based on soil borings conducted during this investigation, native gravelly sand was encountered in borings across the Site from grade surface to approximately ten (10) feet below grade surface (ft-bgs). The material generally consisted of dark-brown fine to coarse gravelly sand from grade surface to approximately five (5) ft-bgs and light-brown to brown fine to coarse gravelly sand from approximately five (5) to ten (10) ft-bgs.

2.2 SAMPLE COLLECTION SUMMARY

In total, 19 soil samples were collected from 19 soil borings, five (5) groundwater samples were collected from five (5) temporary well monitoring points, five (5) sub-slab soil gas samples were collected from five (5) gas points, and one (1) ambient air sample was collected. The sampling occurred between August 10 and August 12, 2021.

Table 2.1 below presents a list of AOCs investigated, the samples collected, the dates of sampling, installation method, depth, location, sample depth rationale, sample media, sample type, and analysis completed. **Figure 2.1** presents the soil boring locations, groundwater sample locations, sub-slab soil gas sample locations, and ambient air sample locations.

The samples were delivered under chain-of-custody and analyzed at SGS Laboratories, a New York certified laboratory (NY Certification #10983). As noted in the table below, the soil samples were analyzed for Target Compound List +30 TICs/Target Analyte List (TCL+30/TAL), which includes total VOCs, base neutral acid extractables (BNAs), TAL metals (23 metals + cyanide), pesticides, and polychlorinated biphenyls (PCBs). The groundwater samples were analyzed for TCL+30/TAL as well as emerging contaminants perfluoroalkyl and polyfluoroalkyl substances (PFAS) and 1,4-dioxane. The soil gas samples were analyzed VOCs by EPA TO-15 method.

Sample collection methods are described in the following section.

Table 2.1 - Sample Summary Table

Boring Location Name	Sample Name	Sample Date	Installation Method	Boring Depth (ft)	Sample Depth (ft)	Sample Media	Anlayses	Purpose / Area of Concern
					300 Pr	rospect Street		
SB-1 / SSG-1	SB-1 (2.5-3.0)	8/11/2021	Direct Push (Geoprobe®)	10	2.5-3.0	Soil	TCL+30/TAL	Former Hazardous Material Storage Area (AOC-1)
SB-2	SB-2 (4.5-5.0)	8/10/2021	Direct Push (Geoprobe®)	10	4.5-5.0	Soil	TCL+30/TAL	Former Dust Collector (AOC-2)
SB-3 / TW-1	SB-3 (4.5-5.0)	8/10/2021	Direct Push (Geoprobe®)	15	4.5-5.0	Soil	TCL+30/TAL	Former Waste Water Holding Tank (AOC-3)
SB-3 / TW-1	TW-1	8/10/2021	Direct Push (Geoprobe®)	15	5-15	Groundwater	TCL+30/TAL, PFAS, 1,4-Dioxane	Groundwater Investigation
SB-1 / SSG-1	SSG-1	8/12/2021	Hammer Drill	5	5	Sub-Slab Soil Vapor	TO-15	Building 300 Sub-Slab Soil Vapor Investigation
					303 Pr	rospect Street		
SB-5 / SSG-2	SB-5 (4.5-5.0)	8/11/2021	Direct Push (Geoprobe®)	10	4.5-5.0	Soil	TCL+30/TAL	Former Solutions Room (AOC-4)
SB-6 / TW-2	SB-6 (4.5-5.0)	8/11/2021	Direct Push (Geoprobe®)	15	4.5-5.0	Soil	TCL+30/TAL	Potential Tank Excavation Area (AOC-5)
SB-19	SB-19 (4.5-5.0)	8/11/2021	Direct Push (Geoprobe®)	10	4.5-5.0	Soil	TCL+30/TAL	Potential Tank Excavation Area (AOC-6)
SB-6 / TW-2	TW-2	8/11/2021	Direct Push (Geoprobe®)	15	5-15	Groundwater	TCL+30/TAL, PFAS, 1,4-Dioxane	Groundwater Investigation
SB-5 / SSG-2	SSG-2	8/12/2021	Hammer Drill	5	5	Sub-Slab Soil Vapor	TO-15	Building 303 Sub-Slab Soil Vapor Investigation
					320 Pr	rospect Street		
SB-4	SB-4 (1.0-1.5)	8/11/2021	Direct Push (Geoprobe®)	10	1.0-1.5	Soil	TCL+30/TAL	Loading Dock (AOC-7)
SB-7 / SSG-3	SB-7 (5.0-5.5)	8/10/2021	Direct Push (Geoprobe®)	10	5.0-5.5	Soil	TCL+30/TAL	Former Hot Regulated Waste Storage Area (AOC-8)
SB-8	SB-8 (4.5-5.0)	8/12/2021	Hand Auger	10	4.5-5.0	Soil	TCL+30/TAL	Transformer (AOC-9)
SB-9 / TW-3	SB-9 (1.0-1.5)	8/11/2021	Direct Push (Geoprobe®)	15	1.0-1.5	Soil	TCL+30/TAL	Former Waste Water Holding Tank (AOC-10)
SB-9 / TW-3	TW-3	8/11/2021	Direct Push (Geoprobe®)	15	5-15	Groundwater	TCL+30/TAL , PFAS, 1,4-Dioxane	Groundwater Investigation
SB-7 / SSG-3	SSG-3	8/12/2021	Hammer Drill	5	5	Sub-Slab Soil Vapor	TO-15	Building 320 Sub-Slab Soil Vapor Investigation
					321 Pr	rospect Street		
SB-10 / SSG-4	SB-10 (4.5-5.0)	8/10/2021	Direct Push (Geoprobe®)	10	4.5-5.0	Soil	TCL+30/TAL	Former Raw Material Storage Area (AOC-11)
SB-11	SB-11 (4.5-5.0)	8/10/2021	Direct Push (Geoprobe®)	10	4.5-5.0	Soil	TCL+30/TAL	Loading Dock (AOC-12)
SB-12 / TW-4	SB-12 (4.5-5.0)	8/10/2021	Direct Push (Geoprobe®)	15	4.5-5.0	Soil	TCL+30/TAL	Downgradient to Operations
SB-12 / TW-4	TW-4	8/10/2021	Direct Push (Geoprobe®)	15	5-15	Groundwater	TCL+30/TAL, PFAS, 1,4-Dioxane	Groundwater Investigation
SB-10 / SSG-4	SSG-4	8/12/2021	Hammer Drill	5	5	Sub-Slab Soil Vapor	TO-15	Building 321 Sub-Slab Soil Vapor Investigation
					330 Pr	rospect Street		
SB-13	SB-13 (4.5-5.0)	8/11/2021	Direct Push (Geoprobe®)	10	4.5-5.0	Soil	TCL+30/TAL	Loading Dock (AOC-14)
SB-14	SB-14 (4.5-5.0)	8/10/2021	Direct Push (Geoprobe®)	10	4.5-5.0	Soil	TCL+30/TAL	Loading Dock (AOC-15)
SB-15	SB-15 (4.5-5.0)	8/11/2021	Direct Push (Geoprobe®)	10	4.5-5.0	Soil	TCL+30/TAL	Transformer (AOC-16)
SB-16	SB-16 (5.0-5.5)	8/10/2021	Direct Push (Geoprobe®)	10	5.0-5.5	Soil	TCL+30/TAL	Former Dust Collector (AOC-17)
SB-17 / SSG-5	SB-17 (4.5-5.0)	8/10/2021	Direct Push (Geoprobe®)	10	4.5-5.0	Soil	TCL+30/TAL	Sub-Slab Soil Investigation
SB-18 / TW-5	SB-18 (4.5-5.0)	8/11/2021	Direct Push (Geoprobe®)	15	4.5-5.0	Soil	TCL+30/TAL	Downgradient to Operations
SB-18 / TW-5	TW-5	8/11/2021	Direct Push (Geoprobe®)	15	5-15	Groundwater	TCL+30/TAL , PFAS, 1,4-Dioxane	Groundwater Evaluation
SB-17 / SSG-5	SSG-5	8/12/2021	Hammer Drill	5	5	Sub-Slab Soil Vapor	TO-15	Building 330 Sub-Slab Soil Vapor Investigation
					(CENTRAL		
NA	AMB-1	8/12/2021	NA	NA	NA	Ambient Air	TO-15	Outdoor Ambient Air Investigation

Ft = Feet below grade surface.

2.3 SOIL BORINGS

Prior to conducting subsurface drilling, SESI's drilling contractor contacted New York's utility mark-out system. In addition, SESI retained East Coast Geophysics, Inc. (ECG), a private utility locator, to locate underground utilities not included in the one-call and to conduct a geophysical survey using ground penetrating radar (GPR) and electromagnetic (EM) detection. The GPR/EM surveying was performed on August 10, 2021 to clear soil boring locations, as well as to search for potential underground storage tanks (USTs). Three (3) anomalies, consistent with potential UST excavation areas, were identified at the 300 Prospect Street property. GPR Anomaly No. 1 transects partially on the concrete and asphalt on the southern side of Building 303 and the dimensions measured nine (9) by six (6) feet. GPR Anomaly No. 2 transects adjacent to the east side of Building 303 and the dimensions measured 27 feet by ten (10) feet. GPR Anomaly No. 3

transects adjacent to the northeast side of Building 303 and the dimensions measured 14 feet by 11 feet. ECG's report is provided as **Appendix B**.

Nineteen soil borings were advanced using a combination of direct-push and hand-auger methods. The borings were advanced to depths ranging from approximately ten (10) feet to 15 ft-bgs using a track-mounted drill rig. One (1) to two (2) soil borings were advanced inside each of the five (5) buildings, through the concrete slab. The remaining soil borings were advanced outside through concrete or asphalt, in the areas surrounding the buildings. All borings and observations were logged to identify the presence of staining, fill materials, volatile organic vapor concentrations using a Photo Ionization Detector (PID), and groundwater depth. Soil samples were collected based on field screening (i.e., PID, visual, and olfactory observations). The soil samples were collected as a discrete grab samples and were not composited. Soil boring logs are presented in **Appendix C** and soil boring locations are depicted on **Figure 2.1**.

2.4 GROUNDWATER INVESTIGATION

Five (5) of the soil borings, one (1) per each building property, were advanced into the groundwater table and converted into one (1)-inch temporary monitoring well points (identified as TW-1 through TW-5) for groundwater sampling purposes. Groundwater was encountered at approximately five (5) ft-bgs across the Site and the temporary well points were placed to depths ranging from 14 to 15 ft-bgs, accordingly. All five (5) temporary well points were sampled using a disposable bailer. The temporary monitoring well locations are depicted on **Figure 2.1.**

2.5 SUB-SLAB SOIL GAS INVESTIGATION

Five (5) sub-slab soil gas points (SSG-1 through SSG-5), one (1) per each building, were installed using a hammer drill and placed beneath the concrete slab of the buildings. In addition, one (1) ambient air sample (AMB-1) was collected from a central outdoor location at the Site. The sub-slab soil gas samples and ambient air sample were collected in 6-L Summa canisters with flow controllers set to collect the sample at a flow rate of 200 ml/min. Sub-slab soil gas and ambient air sample point locations are depicted on **Figure 2.1**.

3.0 ANALYTICAL RESULTS

3.1 SOIL INVESTIGATION RESULTS

A summary table of the analytical results compared to NYSDEC Unrestricted Use Soil Cleanup Objectives (USCOs), Residential Soil Cleanup Objectives (RSCOs), and Restricted Residential Cleanup Objectives (RRSCOs), is presented on **Table 3.1**, and on **Figure 3.1**. The soil laboratory deliverables are provided as **Appendix D. Table 3.2** below includes a summary of the soil exceedances of the USCOs, RSCOs, and RRSCOs.

USCOs

No VOCs were detected at concentrations above any of the Soil Cleanup Objectives, with the exception of acetone, which was detected above USCO in three (3) samples. However, acetone is considered a common laboratory contaminant and there is no evidence of an acetone source at the Site.

The pesticides 4,4'-DDD, 4,4'-DDE, and/or 4,4'-DDT were detected at concentrations above their respective USCO in four (4) samples. Additionally, lead, mercury, silver, and and/or zinc were detected above their respective USCO in eight (8) samples.

RSCOs

Iron was detected above the RSCO in all samples, except for SB-16 (5.0-5.5). The insecticide heptachlor was detected above RSCO in one (1) sample.

RRSCOs

The insecticide alpha-BHC in sample SB-9 (1.0-1.5) and the metal lead in sample SB-12 (4.5-5.0) were the only compounds detected above their respective RRSCO.

Table 3.2 - Soil Sample Exceedances

Client Sample	ID:				SB-1 (2.5-3.0)	SB-2 (4.5-5.0)	SB-3 (4.5-5.0)	SB-4 (1.0-1.5)	SB-5 (4.5-5.0)	SB-6 (4.5-5.0)	SB-7 (5.0-5.5)	SB-8 (4.5-5.0)	SB-9 (1.0-1.5)
Lab Sample II) :	usco	RSCO	RRSCO	JD29816-6	JD29763-4	JD29763-5	JD29816-5	JD29816-8	JD29816-7	JD29763-6	JD29885-1	JD29816-1
Date Sampled	i:				8/11/2021	8/10/2021	8/10/2021	8/11/2021	8/11/2021	8/11/2021	8/10/2021	8/12/2021	8/11/2021
Matrix:					Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
MS Volatiles ((SW846 82	60D)											
Acetone	mg/kg	0.05	100	100	ND (0.0047)	ND (0.0051)	ND (0.0044)	ND (0.0041)	0.0159	ND (0.0064)	0.0060 J	ND (0.0055)	0.0724
00" 0 Cami u			004D)		,,	,,	,,	,,		,,		,,	
GC/LC Semi-v	olatiles (S	W846 8	081B)										
alpha-BHC	mg/kg	0.02	0.097	0.48	ND (0.00054)	ND (0.00072)	ND (0.00061)	ND (0.00055)	ND (0.00061)	ND (0.00060)	ND (0.00066)	ND (0.00059)	3.84 ^e
4,4'-DDD	mg/kg	0.003	2.6	13	ND (0.00061)	ND (0.00081)	0.0047	0.0048	ND (0.00069)	ND (0.00068)	ND (0.00075)	ND (0.00066)	0.0063
4,4'-DDE	mg/kg	0.003	1.8	8.9	ND (0.00058)	ND (0.00077)	0.0011 ^e	0.0085	ND (0.00066)	ND (0.00065)	ND (0.00072)	ND (0.00063)	0.0016
4,4'-DDT	mg/kg	0.003	1.7	7.9	ND (0.00059)	ND (0.00078)	0.00098	0.0181	ND (0.00066)	ND (0.00066)	ND (0.00072)	ND (0.00064)	0.0045
Heptachlor	mg/kg	0.042	0.42	2.1	ND (0.00057)	ND (0.00076)	ND (0.00065)	ND (0.00058)	ND (0.00065)	ND (0.00064)	ND (0.00070)	ND (0.00062)	0.729 °
Metals Analys	sis												
Iron	mg/kg	_	2000	_	9120	12800	6060	7850	9630	2210	5470 ^f	8300	6110
Lead	mg/kg	63	400	400	106	324	162	110	5.4	<2.4	3.2 1	12.2	122
Mercury	mg/kg	0.18	0.81	0.81	0.1	< 0.041	0.28	0.048	< 0.035	< 0.031	<0.026	0.7	0.068
Silver	mg/kg	2	36	180	<0.54	6.1	<0.56	<0.56	<0.58	<0.59	<0.39 ^f	0.64	<0.41
Zinc	mg/kg	109	2200	10000	117	552	175	82.7	12.2	8.8	8.4 f	38.8	81.7

Client Sample	ID:				SB-10 (4.5-5.0)	SB-11 (4.5-5.0)	SB-12 (4.5-5.0)	SB-13 (4.5-5.0)	SB-14 (4.5-5.0)	SB-15 (4.5-5.0)	SB-16 (5.0-5.5)	SB-17 (4.5-5.0)	SB-18 (4.5-5.0)	SB-19 (4.5-5.0)
Lab Sample ID:		usco	RSCO	RRSCO	JD29763-9	JD29763-2	JD29763-1	JD29816-2	JD29763-3	JD29816-3	JD29763-7	JD29763-8	JD29816-4	JD29816-9
Date Sampled:					8/10/2021	8/10/2021	8/10/2021	8/11/2021	8/10/2021	8/11/2021	8/10/2021	8/10/2021	8/11/2021	8/11/2021
Matrix:					Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
M\$ Volatiles (SW846 8260D)														
							MS Vol	atiles (SW846 8	260D)					
Acetone	mg/kg	0.05	100	100	ND (0.0042)	0.0203	0.0577	0.0295	ND (0.0041)	ND (0.0042)	ND (0.0042)	ND (0.0046)	0.0742	0.0278
	100	-							, ,	,	,	,		
GC/LC Semi-vo	latiles (S	W846 8	081B)											
alpha-BHC	mg/kg	0.02	0.097	0.48	ND (0.00056)	ND (0.00057)	ND (0.00059)	ND (0.00062)	ND (0.00062)	ND (0.00065)	ND (0.00059)	ND (0.00066)	ND (0.00062)	ND (0.00062)
4,4'-DDD	mg/kg	0.003	2.6	13	ND (0.00063)	ND (0.00064)	ND (0.00066)	0.0017	ND (0.00070)	ND (0.00073)	ND (0.00067)	ND (0.00074)	0.244	ND (0.00069)
4,4'-DDE	mg/kg	0.003	1.8	8.9	ND (0.00061)	ND (0.00061)	ND (0.00063)	ND (0.00066)	ND (0.00066)	ND (0.00070)	ND (0.00064)	ND (0.00071)	0.0513	ND (0.00066)
4,4'-DDT	mg/kg	0.003	1.7	7.9	ND (0.00061)	ND (0.00062)	0.00070 J ^e	ND (0.00067)	ND (0.00067)	ND (0.00070)	ND (0.00065)	ND (0.00071)	0.0019	ND (0.00067)
Heptachlor	mg/kg	0.042	0.42	2.1	ND (0.00059)	ND (0.00060)	ND (0.00062)	ND (0.00065)	ND (0.00065)	ND (0.00069)	ND (0.00063)	ND (0.00069)	ND (0.00066)	ND (0.00065)
Metals Analysi:	s													
Iron	mg/kg	-	2000	-	10700	7940	9500	8170	3330 ^f	11300	1140	6230 ^f	6770	3350
Lead	mg/kg	63	400	400	19.6	3.5	858	81.4	<1.6 ^f	2.8	<2.2	<1.6 ^f	18.5	<2.5
Mercury	mg/kg	0.18	0.81	0.81	0.039	<0.031	0.36	0.29	<0.031	<0.033	0.039	0.058	0.12	<0.038
Silver	mg/kg	2	36	180	<0.54	<0.52	<0.56	<0.56	<0.41 ^f	<0.62	<0.55	<0.40 ^f	<0.43	< 0.63
Zinc	mg/kg	109	2200	10000	30.8	8	812	74.8	<4.1 ^f	10	8.3	5.9 ^f	63	<6.3

Table Notes:

- 1. mg/kg = milligrams per kilogram.
- 2. ND = analyte was not detected.
- 3. USCO = NY Unrestricted Use Soil Cleanup Objectives (6 NYCRR 375-6 12/06).
- 4. RSCO = NY Residential Use Soil Cleanup Objectives (10/10) (6 NYCRR 375-6 12/06).
- 5. RRSCO = NY Restricted Residential Use Soil Cleanup Objectives w/CP-51 (10/10) (6 NYCRR 375-6 12/06).
- 6. = No soil cleanup standard established.
- 7. e = Associated CCV outside of control limits low. Low-level verification was analyzed to demonstrate system suitability to detect affected analytes. Estimated value, due to corresponding failure in the batch associated CCV.
- 8. f = More than 40 % RPD for detected concentrations between the two GC columns.

November 2021 SESI Project No. 11457 Page 10 of 14

3.2 GROUNDWATER INVESTIGATION RESULTS

In total, five (5) groundwater samples were collected from five (5) temporary well points. Groundwater analytical results summary tables are included in **Tables 3.3**, and on **Figure 3.2**. The groundwater laboratory deliverable reports are included in **Appendix D**. **Table 3.4** below presents a summary of the groundwater exceedances of the AWQS.

VOCs were not detected at concentrations above the NYSDEC Ambient Water Quality Standards (AWQS). The SVOC phenol was detected at a concentration above AWQS in one (1) sample (TW-2).

Several polycyclic aromatic hydrocarbons (PAHs), including benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, and/or indeno(1,2,3-cd)pyrene, were detected above AWQS in the groundwater samples.

Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) were detected in four (4) of the groundwater samples (TW-1 through TW-4) above the screening level of 10 nanograms per liter (ng/L) established under NYSDEC's January 2021 *Sampling, Analysis, and Assessment of PFAS* document.

The insecticides alpha-BHC and heptachlor were detected at concentrations above their respective AWQS in one (1) sample (TW-3).

As shown on **Table 3.4** below, several metals including arsenic, barium, chromium, copper, iron, lead, magnesium, manganese, mercury, nickel, selenium, sodium, and zinc were detected at concentrations exceeding the AWQS in the groundwater samples. The presence of these contaminants is potentially attributable to sample turbidity from temporary wells. Additionally, iron, magnesium, manganese, and sodium are secondary concern metals, and the standards are not health based.

Table 3.4 – Groundwater Sample Exceedances

· ·			TW-1	TW-2	TW-3	TW-4	TW-5
Lab Sample ID:	Units	AWQS	JD29763-10	JD29816-10	JD29816-12	JD29763-11	JD29816-11
Date Sampled:			8/10/2021	8/11/2021	8/11/2021	8/10/2021	8/11/2021
Matrix:	1		Ground Water	Ground Water	Ground Water	Ground Water	Ground Water
MS Semi-volatiles (EPA 537N	1 BY ID)						
Perfluorooctanoic acid	ng/l	10	13.7	12.2	13.8	10.5	2.5
Perfluorooctanesulfonic acid	ng/l	10	48.9	33.4	22.5	80.2	9.1
MS Semi-volatiles (SW846 82	270F1						
m3 3cmi-volucies (344040 0)	בוטבן						
Phenol	ug/l	1	ND (0.40)	1.1 J	0.35 J	ND (0.87)	0.52 J
Benzo(a)anthracene	ug/l	0.002	1	2.1	ND (0.49)	4.1	ND (0.49)
Benzo(a)pyrene	ug/l	0.002	1.3	2.4	ND (0.60)	5	ND (0.60) e
Benzo(b)fluoranthene	ug/l	0.002	2.1	4.1	0.56 J	7.3	ND (0.55) °
Benzo(k)fluoranthene	ug/l	0.002	0.89 J	1.5	ND (0.46)	2.9	ND (0.46) e
Chrysene	ug/l	0.002	1.4	3.2	0.57 J	5.9	0.68 J
Indeno(1,2,3-cd)pyrene	ug/l	0.002	1.2	2.6	ND (0.62)	4.2	ND (0.62)
GC/LC Semi-volatiles (SW846		()	<u>'</u>				
GC/LC Semi-volatiles (SW846							
GC/LC Semi-volatiles (SW846)	8081B	0.01	ND (0.0058)	ND (0.0025)	0.29 [†]	ND (0.0050)	ND (0.0025)
GC/LC Semi-volatiles (SW846	8081B		ND (0.0058) ND (0.0050)	ND (0.0025) ND (0.0022)	0.29 ^f 0.061	ND (0.0050) ND (0.0043)	ND (0.0025) ND (0.0022)
GC/LC Semi-volatiles (SW846) alpha-BHC Heptachlor	8081B	0.01	<u> </u>			· · ·	
GC/LC Semi-volatiles (SW846)	8081B	0.01	<u> </u>			· · ·	• •
GC/LC Semi-volatiles (SW846) alpha-BHC Heptachlor	8081B	0.01	ND (0.0050)			ND (0.0043)	• •
GC/LC Semi-volatiles (SW846) alpha-BHC Heptachlor Metals Analysis	9 8081B	0.01	ND (0.0050)	ND (0.0022)	0.061	ND (0.0043)	ND (0.0022)
GC/LC Semi-volatiles (SW846) alpha-BHC Heptachlor Metals Analysis Arsenic	ug/l ug/l ug/l ug/l	0.01 0.04	ND (0.0050)	ND (0.0022)	74.1	ND (0.0043)	ND (0.0022)
GC/LC Semi-volatiles (SW846) alpha-BHC Heptachlor Metals Analysis Arsenic Barium	ug/l ug/l ug/l	0.01 0.04 0.04 25 1000	ND (0.0050) 211 ^h 1450 ^h	ND (0.0022) 32.1 311	74.1 284	ND (0.0043) 385 h 5350 h	ND (0.0022) 23.6 292
GC/LC Semi-volatiles (SW846) alpha-BHC Heptachlor Metals Analysis Arsenic Barium Chromium	ug/l ug/l ug/l ug/l ug/l	0.01 0.04 25 1000 50	211 h 1450 h 2110 h	32.1 311 353	74.1 284 429	385 ^h 5350 ^h 2440 ^h	23.6 292 607
GC/LC Semi-volatiles (SW846) alpha-BHC Heptachlor Metals Analysis Arsenic Barium Chromium Copper	ug/l ug/l ug/l ug/l ug/l ug/l	0.01 0.04 25 1000 50 200	211 h 1450 h 2110 h 607 h	32.1 311 353 224	74.1 284 429 170	385 ^h 5350 ^h 2440 ^h 934 ^h	23.6 292 607 99.5
GC/LC Semi-volatiles (SW846) alpha-BHC Heptachlor Metals Analysis Arsenic Barium Chromium Copper Iron	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.01 0.04 25 1000 50 200 300	211 h 1450 h 2110 h 607 h 503000 h	32.1 311 353 224 94200	74.1 284 429 170 125000	385 h 5350 h 2440 h 934 h 1130000 h	23.6 292 607 99.5 112000
GC/LC Semi-volatiles (SW846) alpha-BHC Heptachlor Metals Analysis Arsenic Barium Chromium Copper Iron Lead	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	25 1000 50 200 300 25	211 h 1450 h 2110 h 607 h 503000 h 1100 h	32.1 311 353 224 94200 124	74.1 284 429 170 125000	385 h 5350 h 2440 h 934 h 1130000 h 8730 h	23.6 292 607 99.5 112000
GC/LC Semi-volatiles (SW846) alpha-BHC Heptachlor Metals Analysis Arsenic Barium Chromium Copper Iron Lead Magnesium	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	25 1000 50 200 300 25 35000	211 h 1450 h 2110 h 607 h 503000 h 16900 h	32.1 311 353 224 94200 124 35000	74.1 284 429 170 125000 134 9870	385 h 5350 h 2440 h 934 h 1130000 h 8730 h 165000 h	23.6 292 607 99.5 112000 148 20900
GC/LC Semi-volatiles (SW846) alpha-BHC Heptachlor Metals Analysis Arsenic Barium Chromium Copper Iron Lead Magnesium Manganese	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	25 1000 50 200 300 25 35000 300	211 h 1450 h 2110 h 607 h 503000 h 1100 h 56900 h 3930 h	32.1 311 353 224 94200 124 35000 767	74.1 284 429 170 125000 134 9870 734	385 h 5350 h 2440 h 934 h 1130000 h 8730 h 165000 h 5610 h	23.6 292 607 99.5 112000 148 20900 1090
GC/LC Semi-volatiles (SW846 alpha-BHC Heptachlor Metals Analysis Arsenic Barium Chromium Copper Iron Lead Magnesium Manganese Mercury	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	25 1000 50 200 300 25 35000 300 0.7	211 h 1450 h 2110 h 607 h 503000 h 1100 h 56900 h 3930 h 1.9	32.1 311 353 224 94200 124 35000 767 <0.20	74.1 284 429 170 125000 134 9870 734 <0.20	385 h 5350 h 2440 h 934 h 1130000 h 8730 h 165000 h 5610 h 5.3	23.6 292 607 99.5 112000 148 20900 1090 <0.20
GC/LC Semi-volatiles (SW846 alpha-BHC Heptachlor Metals Analysis Arsenic Barium Chromium Copper Iron Lead Magnesium Manganese Mercury Nickel	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	25 1000 50 200 300 25 35000 300 0.7	211 h 1450 h 2110 h 607 h 503000 h 1100 h 56900 h 3930 h 1.9 527 h	32.1 311 353 224 94200 124 35000 767 <0.20 72.1	74.1 284 429 170 125000 134 9870 734 <0.20	385 h 5350 h 2440 h 934 h 1130000 h 8730 h 165000 h 5610 h 5,3 639 h	23.6 292 607 99.5 112000 148 20900 1090 <0.20

Notes:

= Compound was detected
= Concentration of compound exceeds the AWQS

- 1. AWQS = NYSDEC Ambient Water Quality Standards.
- 2. ND = Compound not detected.
- 3. ug/l = Micrograms per liter.
- 4. ng/l = nanograms per liter.
- 5. = No AWQS established.
- 6. J = Estimated value.
- 7. e = Associated CCV outside of control limits high, sample was ND.
- 8. f = More than 40 % RPD for detected concentrations between the two GC columns.
- 8. ^g = Reported from the 2nd signal. The %D of the CCV on the 1st signal exceeds the method criteria of 20%, so it being used for confirmation only. More than 40% RPD for detected concentrations between the two GC columns.
- 10. h = Elevated sample detection limit due to difficult sample matrix.

3.3 SUB-SLAB SOIL GAS RESULTS

Five (5) sub-slab soil gas samples and one (1) outdoor ambient air sample were collected and analyzed for volatile vapors by U.S. EPA Method TO-15. **Table 3.5** presents a summary of sub-slab soil gas and ambient air analytical data. The sub-slab soil gas and ambient air analytical laboratory deliverable report is included in **Appendix D**. A sub-slab soil gas and ambient air sample location plan and summary of the results is presented in **Figure 3.3**.

New York State does not have standards for soil vapor. However, for discussion purposes SESI has used the New York State Department of Health (NYSDOH) Matrices lower threshold levels to evaluate the Matrix A, B, and C listed compounds. **Table 3.6** below presents a summary of the sub-slab soil gas detections and exceedances of the NYSDOH Matrix A Sub-Slab Vapor Concentrations Criteria (NY-SSC-A) and NYSDOH Matrix B Sub-Slab Vapor Concentrations Criteria (NY-SSC-B) lower threshold levels.

Methylene chloride was detected in one (1) sample (SSG-3) at a concentration above the NY-SSC-B lower threshold, tetrachloroethene (PCE) was detected in one (1) sample (SSG-2) above the NY-SSC-B lower threshold, and trichloroethene (TCE) was detected in one (1) sample (SSG-5) above the NY-SSC-A lower threshold. No additional exceedances were detected. Additionally, chlorinated VOCs (CVOCs) including carbon tetrachloride, cis-1,2-Dichloroethylene, and 1,1,1-trichloroethane (1,1-TCA) were detected in the sub-slab soil gas samples, but at concentrations below the NY-SSC-A and NY-SSC-B lower threshold levels. Additional compounds were detected (as depicted in the **Table 3.6** below); however, there are no NYSDOH Matrices for these compounds. The presence of chlorinated-, solvent-, and petroleum hydrocarbon-related VOCs suggests that an on-Site or nearby source(s) of these compounds is/are present.

Table 3.6 - Sub-Slab Soil Gags and Ambient Air Sample Summary

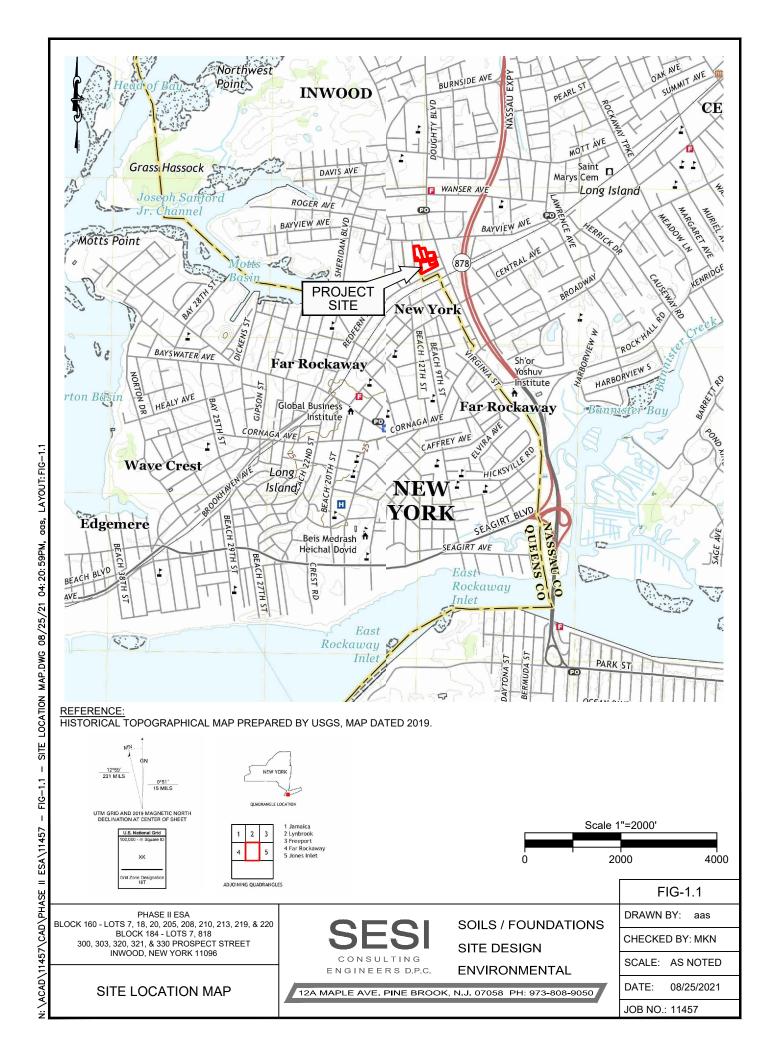
Client Sample ID:				SSG-01	SSG-02	SSG-03	\$\$G-04	\$\$G-05	AA-1
Lab Sample ID:	NYSDOH	NYSDOH	NYSDOH	JD29894-1	JD29894-2	JD29894-3	JD29894-4	JD29894-5	JD29894-6
Date Sampled:	Matrix A	Matrix B	Matrix C	8/12/2021	8/12/2021	8/12/2021	8/12/2021	8/12/2021	8/12/2021
Matrix:	-			Soil Vapor	Ambient Air				
Matrix.				3011 Vapor	3011 Vapor	Son vapor	3011 ναροί	3011 ναροί	Allibielit All
MS Volatiles (TO-15) - ug/m	13								
mo rolatilos (10 15) agin	10								
Acetone (2-Propanone)				150	5150	37.8	24.9	330	13
1.3-Butadiene				ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	4.4	ND (0.10)
Benzene				1.6	1.9	1.4	1.1	14	0.51 J
Bromodichloromethane				0.46 J	ND (0.18)				
Carbon disulfide				1.2	0.97	13	0.53 J	1.8	ND (0.075)
Chlorobenzene				ND (0.12)	ND (0.12)	ND (0.12)	ND (0.12)	6	ND (0.12)
Chloroform				278	27	5.4	0.78 J	2	ND (0.098)
Chloromethane				0.6	ND (0.031)	0.25 J	0.33 J	1.6	1.1
Carbon tetrachloride	6			ND (0.15)	ND (0.15)	0.4	1.1	0.38	0.43
Cyclohexane				ND (0.076)	0.69	0.55 J	0.52 J	ND (0.076)	ND (0.076)
1,2-Dichloroethane				4.9	ND (0.085)				
1,4-Dioxane				ND (0.19)	1	ND (0.19)	ND (0.19)	ND (0.19)	ND (0.19)
Dichlorodifluoromethane				1.7	2.1	2	3.1	1.9	1.8
cis-1,2-Dichloroethylene	6			ND (0.048)	ND (0.048)	ND (0.048)	ND (0.048)	0.71	ND (0.048)
p-Dichlorobenzene				ND (0.11)	ND (0.11)	1.1	ND (0.11)	2.5	ND (0.11)
Ethanol				131	2360	11	18	222	8.3
Ethylbenzene				6.5	89.5	9.1	4.8	53	ND (0.065)
Ethyl Acetate				47.5	30	24	60.1	24	5.4
4-Ethyltoluene				7.9	37	5.9	4.5	11	ND (0.15)
Freon 113				ND (0.13)	ND (0.13)	ND (0.13)	0.57 J	ND (0.13)	ND (0.13)
Heptane				1.1	1.3	1.6	0.66 J	6.1	ND (0.074)
Hexane				2.9	3.3	13	1.8	6.7	0.92
Isopropyl Alcohol				8.4	4520	2	4.7	19	1.7
Methylene chloride		100		12	ND (0.052)	191	84.1	34	1.3
Methyl ethyl ketone				16	36.3	7.4	5.3	82	1.3
Methyl Isobutyl Ketone				2.7	17	ND (0.15)	1.6	7.4	ND (0.15)
Methyl Tert Butyl Ether				ND (0.069)	ND (0.069)	ND (0.069)	0.79	ND (0.069)	ND (0.069)
Methylmethacrylate				19	ND (0.14)	ND (0.14)	ND (0.14)	3.6	ND (0.14)
Propylene				ND (0.027)	2.9	ND (0.027)	0.70 J	ND (0.027)	ND (0.027)
Styrene				2.8	3.4	2.8	1.2	26	ND (0.081)
1,1,1-Trichloroethane		100		ND (0.18)	ND (0.18)	ND (0.18)	1.1	0.37 J	ND (0.18)
1,2,4-Trimethylbenzene				8.8	87.5	7.9	6.4	15	0.54 J
1,3,5-Trimethylbenzene				3.1	19	1.8	1.4	6.4	ND (0.17)
2,2,4-Trimethylpentane				ND (0.10)	ND (0.10)	ND (0.10)	1.1	1.2	0.65 J
Tertiary Butyl Alcohol				1.9	6.7	1.3	2.5	114	ND (0.042)
Tetrachloroethylene		100		13	117	91.5	16	4.9	0.66
Tetrahydrofuran				12	ND (0.15)	2.9	1.2	5	ND (0.15)
Toluene				31	57.3	22	20	60.3	1.8
Trichloroethylene	6			0.64	1.2	2.3	5.9	55.4	ND (0.10)
Trichlorofluoromethane				2.1	2	24	9.6	596	1.2
m,p-Xylene				25	325	40	19	220	1.1
o-Xylene				8.7	320	17	6.1	162	ND (0.074)
Xylenes (total)				34	799	57.3	25	383	1.1

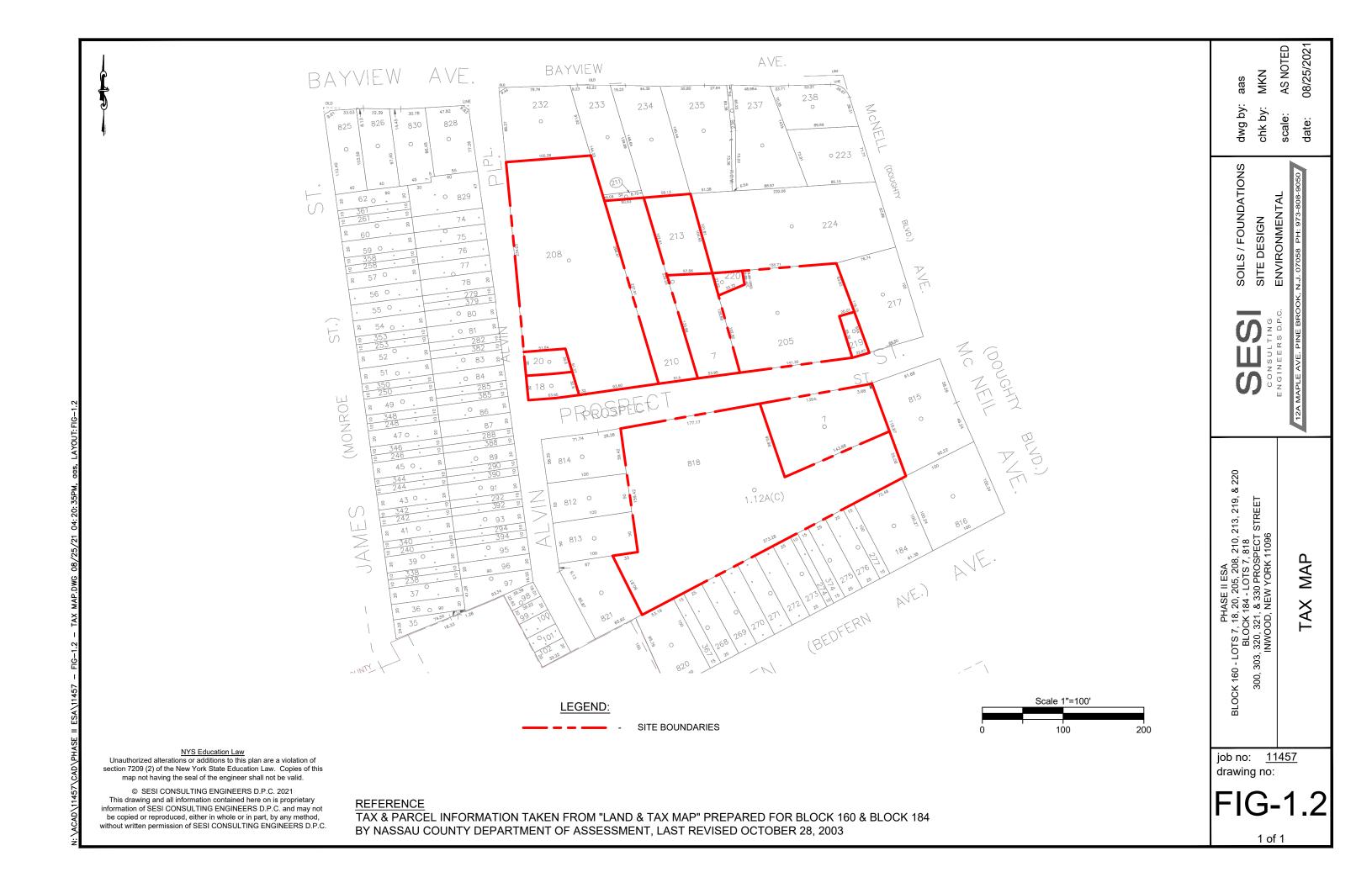
Notes:

- 1. NY-SSC-A NYSDOH Matrix A Sub-slab Vapor Concentration Criteria Lower Threshold
- 2. NY-SSC-B NYSDOH Matrix B Sub-slab Vapor Concentration Criteria Lower Threshold
- 3. NY-SSC-C NYSDOH Matrix C Sub-slab Vapor Concentration Criteria Lower Threshold
- 4. Yellow Highlight concentration exceeds the NYSDOH Matrix A or B Sub-Slab Vapor Concentrations Criteria
- 5. ND Compound Not Detected
- 6. J Estimated value
- 7. ug/m³ micrograms per cubic meter

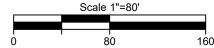
4.0 CONCLUSIONS AND RECOMMENDATIONS

Soil, groundwater and sub-slab soil gas detections and exceedances that resulted during the investigations may be a result of the Site history. The field investigation identified the presence of native gravelly sand across the Site that extends from grade surface to a depth of at least approximately ten (10) ft-bgs. Groundwater was encountered consistently around five (5) ft-bgs across the Site.


The insecticide alpha-BHC and the metal lead were each detected in soil above their respective RRSCO. Iron was detected above the RSCO in nearly all soil samples collected across the Site. The insecticide heptachlor was detected in soil above RSCO and the pesticides 4,4'-DDD, 4,4'-DDE, and/or 4,4'-DDT were detected in soil above their respective USCO. Additionally, lead, mercury, silver, and and/or zinc were detected above their respective USCO in Site soil.


The SVOC phenol, several PAHs, insecticides alpha-BHC and heptachlor, and several metals including arsenic, barium, chromium, copper, iron, lead, magnesium, manganese, mercury, nickel, selenium, sodium, and zinc were detected above the AQWS in groundwater. Additionally, PFOA and PFOS were detected groundwater samples above the screening level of 10 ng/L established under NYSDEC's January 2021 *Sampling, Analysis, and Assessment of PFAS* document.

VOCs were not detected in soil samples above any of the soil cleanup objectives nor detected in groundwater above the AQWS. However, several chlorinated, solvent, and petroleum VOCs were detected in the sub-slab soil gas samples. Additionally, methylene chloride was detected in one above the NY-SSC-B lower threshold, PCE was detected above the NY-SSC-B lower threshold, and TCE was detected above the NY-SSC-A lower threshold in sub-slab soil gas. The chlorinated, solvent and petroleum VOCs in sub-slab soil gas may be attributed to former operations as a pharmaceutical manufacturer as well as to current and/or former USTs present on-Site.


Additional investigation is required to fully characterize the soil exceedances and the source of groundwater and soil gas detections and exceedances. Remediation of the soil, groundwater, and soil vapor will be needed prior to Site development.

LEGEND:

PROPERTY LINE

APPROX. REC LOCATION

RECOGNIZED ENVIRONMENTAL CONDITIONS (REC) LEGEND:

REC-1: HISTORIC FILL (SITE-WIDE)
REC-2: FORMER LABORATORY OPERATION (SITE-WIDE)
REC-3: FORMER AND POTENTIAL USTS AND/OR ASTS (SITE-WIDE)

REC-4: HISTORICAL SPILL (SPILL #0303189)

REC-5: FORMER COMMERCIAL/INDUSTRIAL OPERATIONS (NOT DEPICTED ON MAP)

<u>NYS Education Law</u>
Unauthorized alterations or additions to this plan are a violation of section 7209 (2) of the New York State Education Law. Copies of this map not having the seal of the engineer shall not be valid.

© SESI CONSULTING ENGINEERS D.P.C. 2021 This drawing and all information contained here on is proprietary information of SESI CONSULTING ENGINEERS D.P.C. and may not be copied or reproduced, either in whole or in part, by any method, without written permission of SESI CONSULTING ENGINEERS D.P.C.

REFERENCE

AERIAL IMAGE TAKEN FROM "GOOGLE EARTH", IMAGE DATED 2020.

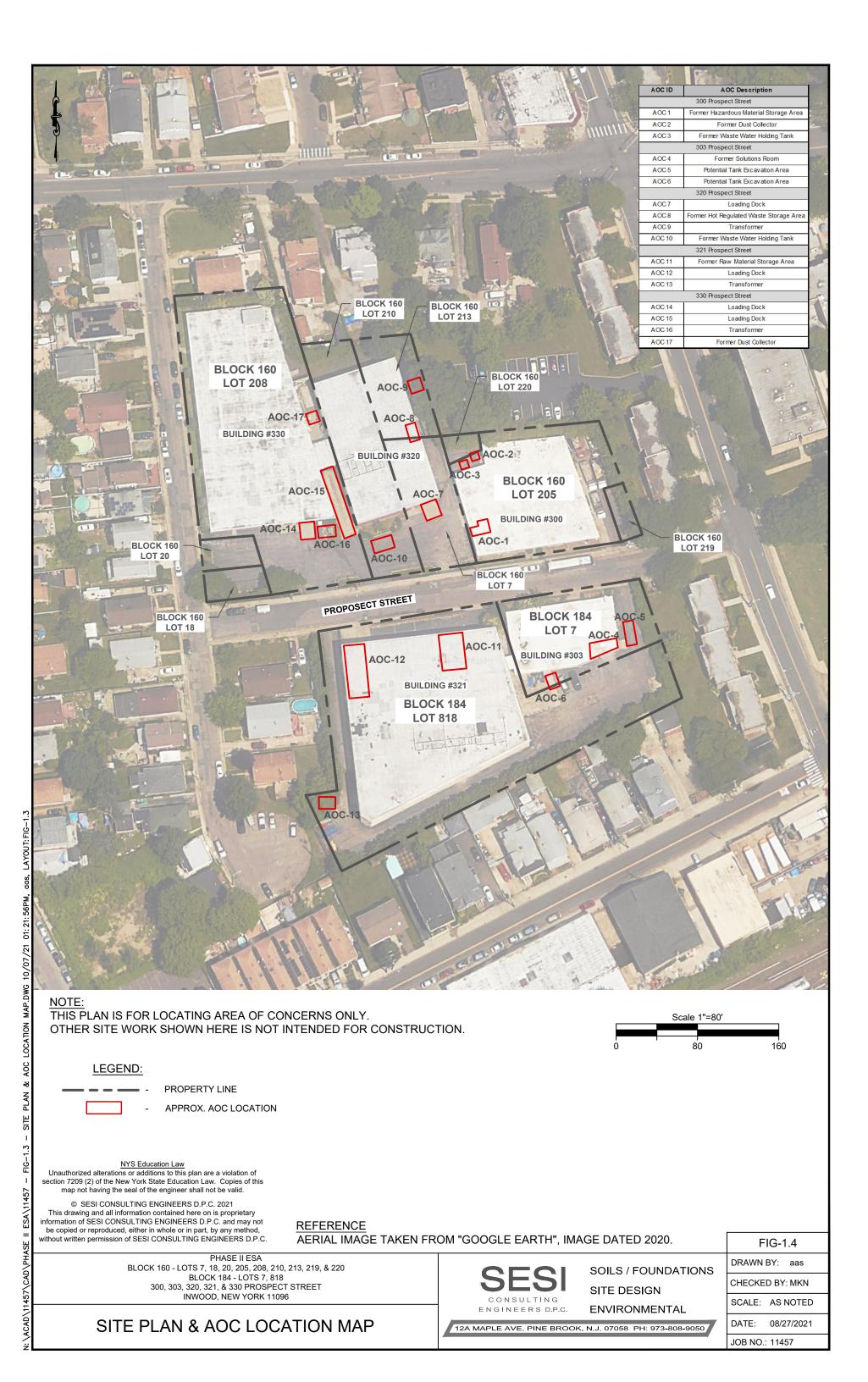
PHASE II ESA BLOCK 160 - LOTS 7, 18, 20, 205, 208, 210, 213, 219, & 220 BLOCK 184 - LOTS 7 & 818 300, 303, 320, 321, & 330 PROSPECT STREET INWOOD, NEW YORK 11096

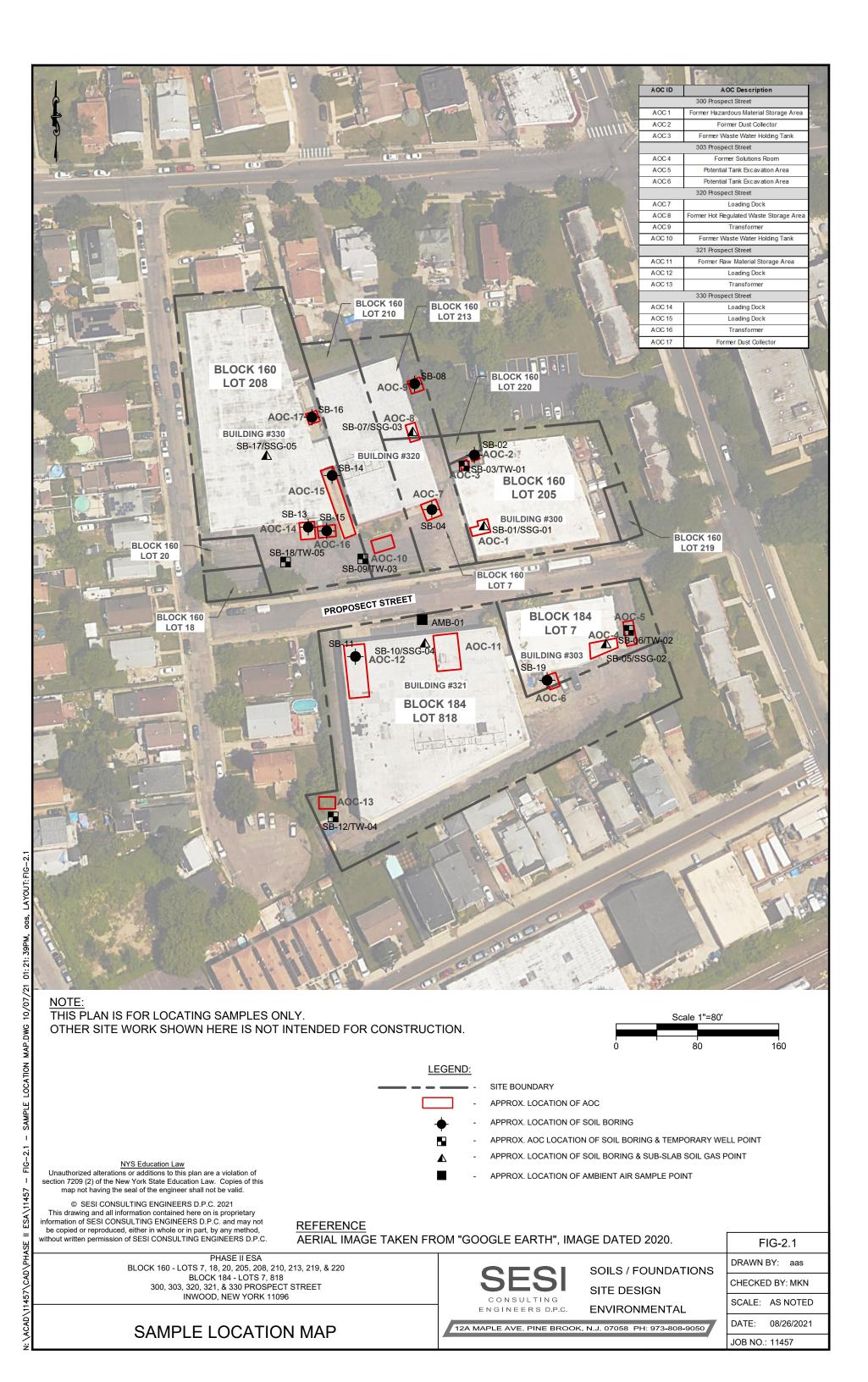
REC LOCATION PLAN

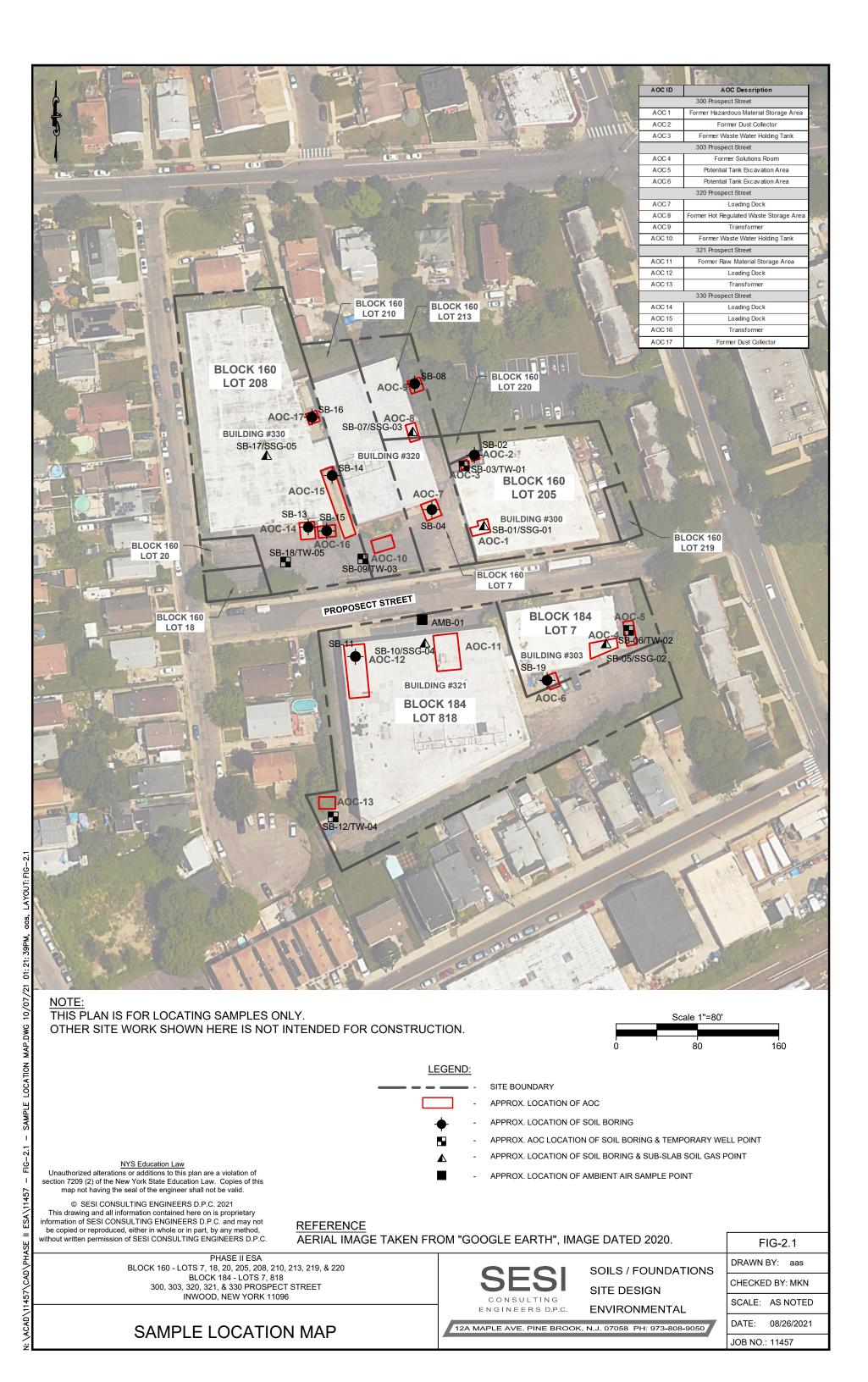
ENGINEERS D.P.C.

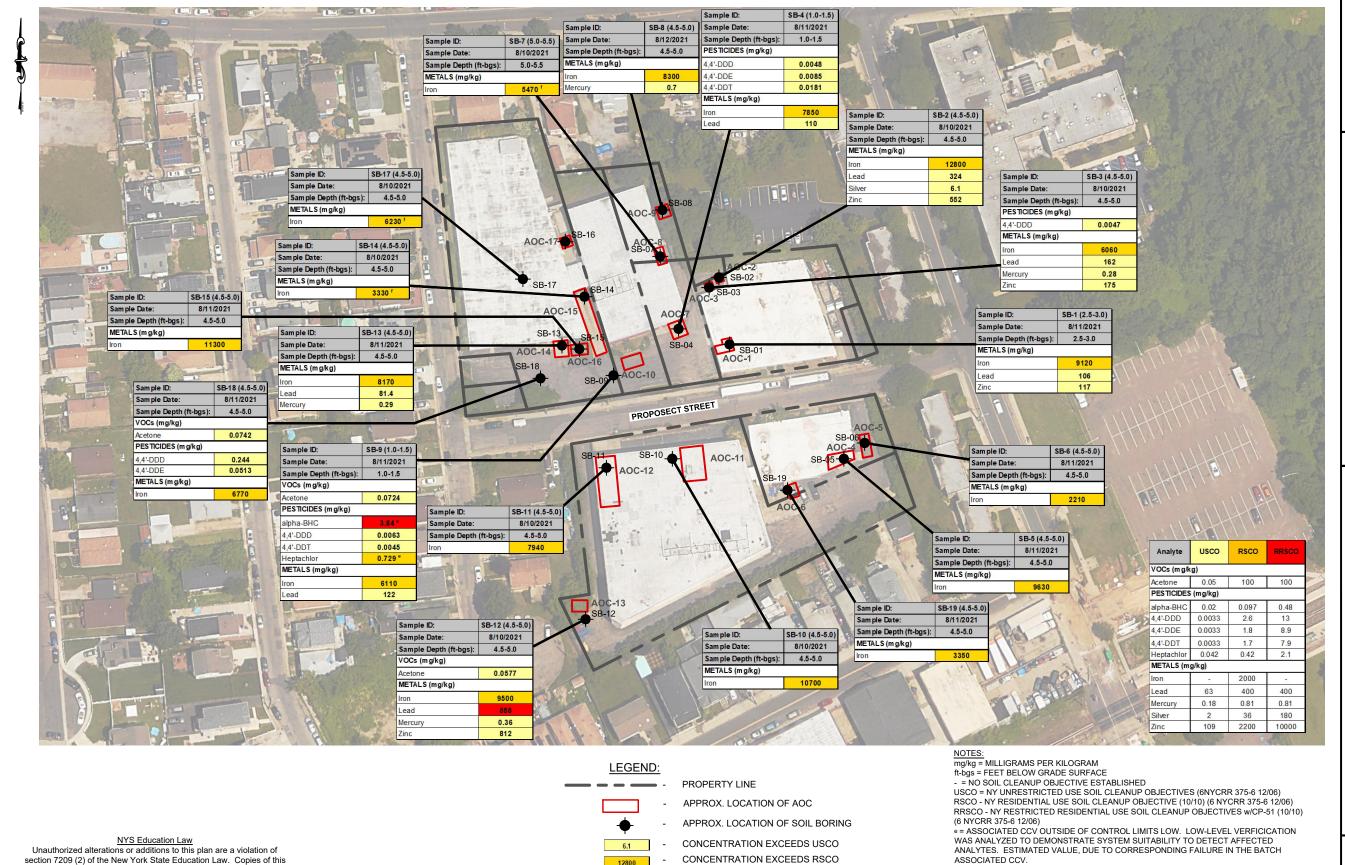
SOILS / FOUNDATIONS SITE DESIGN ENVIRONMENTAL

12A MAPLE AVE. PINE BROOK, N.J. 07058 PH: 973-808-9050


FIG-1.3 DRAWN BY: aas


CHECKED BY: MKN


SCALE: AS NOTED


DATE: 10/20/2021

JOB NO.: 11457

CONCENTRATION EXCEEDS RRSCO

map not having the seal of the engineer shall not be valid.

© SESI CONSULTING ENGINEERS D.P.C. 2021 This drawing and all information contained here on is proprietary

information of SESI CONSULTING ENGINEERS D.P.C. and may not

be copied or reproduced, either in whole or in part, by any method, without written permission of SESI CONSULTING ENGINEERS D.P.C. REFERENCE

AERIAL IMAGE TAKEN FROM "GOOGLE EARTH", IMAGE DATED 2020.

LOCATION , 210, 2 , 818 PECT (MAP PHASE II ESA 18, 20, 205, 208, 2 2K 184 - LOTS 7, 8 321, & 330 PROSPE 3D, NEW YORK 11 ഗ SULT Ш SAMPLI LOCK 160 - LOTS 7, 18, BLOCK 16 300, 303, 320, 321, 8 INWOOD, N

Ś

∞ర

AS NOTED

M K N

chk by:

ENVIRONMENTAL

SITE DESIGN

dwg by:

SOILS / FOUNDATIONS

213, 219, STREET

- ASSOCIATED CCV.
- $\mathsf{f} = \mathsf{MORE} \; \mathsf{THAN} \; \mathsf{40\%} \; \mathsf{RPD} \; \mathsf{FOR} \; \mathsf{DETECTED} \; \mathsf{CONCENTRATIONS} \; \mathsf{BETWEEN} \; \mathsf{THE} \; \mathsf{TWO} \; \mathsf{GC}$ COLUMNS

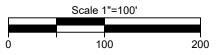
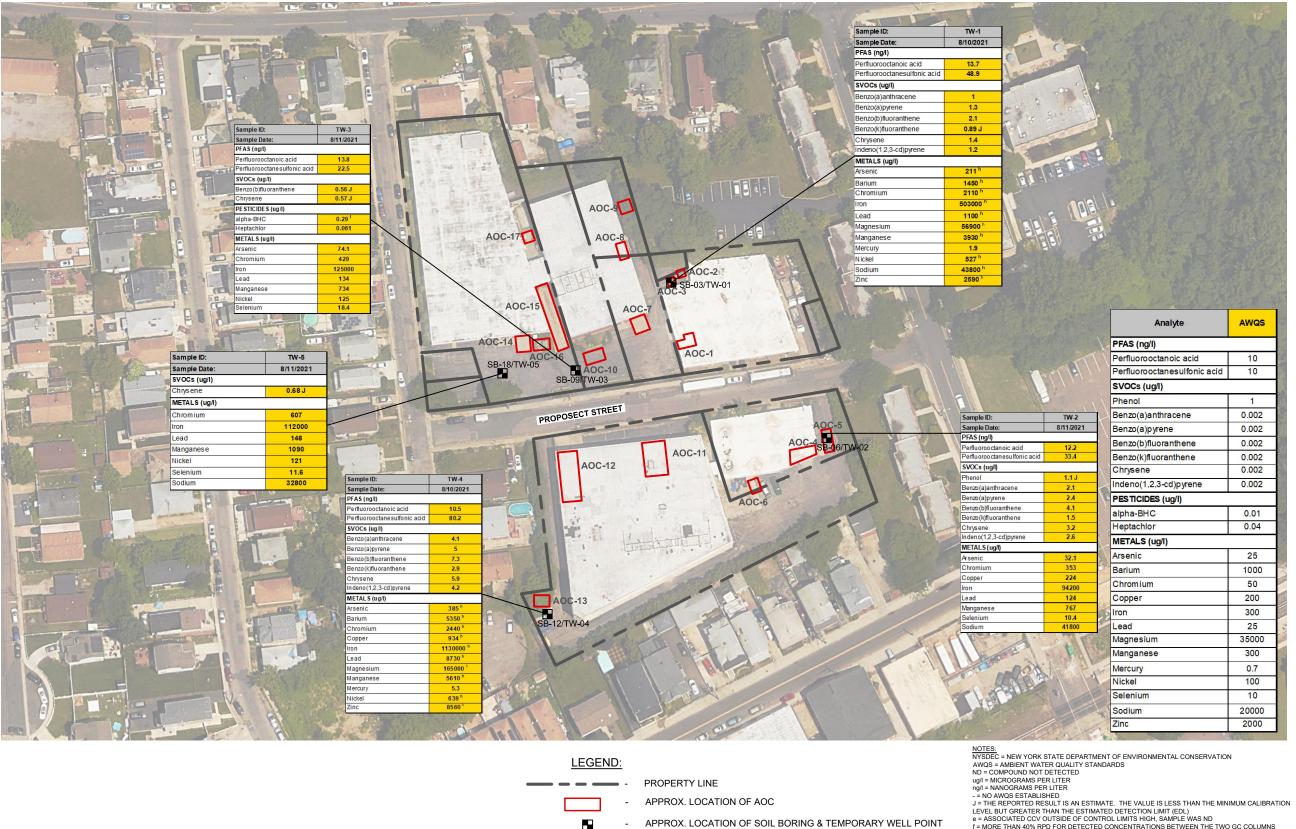



FIG-3.

job no: <u>11457</u>

drawing no:

1 of 1

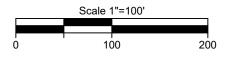
NYS Education Law

Unauthorized alterations or additions to this plan are a violation of section 7209 (2) of the New York State Education Law. Copies of this map not having the seal of the engineer shall not be valid.

© SESI CONSULTING ENGINEERS D.P.C. 2021

This drawing and all information contained here on is proprietary information of SESI CONSULTING ENGINEERS D.P.C. and may not be copied or reproduced, either in whole or in part, by any method, without written permission of SESI CONSULTING ENGINEERS D.P.C. APPROX. LOCATION OF AOC

APPROX. LOCATION OF SOIL BORING & TEMPORARY WELL POINT


CONCENTRATION OF COMPOUND EXCEEDS THE AWQS 503000 h

COMPOUND WAS DETECTED

REFERENCE

AERIAL IMAGE TAKEN FROM "GOOGLE EARTH", IMAGE DATED 2020.

6 = MORE THAN 40% RPD FOR DETECTED CONCENTRATIONS BETWEEN THE TWO GC COLUMNS g = REPORTED FROM THE 2ND SIGNAL. THE %D OF THE CCV ON THE 1ST SIGNAL EXCEEDS THE METHOD CRITERIA OF 20%, SO IT BEING USED FOR CONFIRMATION ONLY. MORE THAN 40% RPD FOR DETECTED CONCENTRATIONS BETWEEN THE TWO GC COLUMNS. h = ELEVATED SAMPLE DETECTION LIMIT DUE TO DIFFICULT SAMPLE MATRIX

SOILS / FOUNDATIONS SITE DESIGN

AS NOTED

date:

M K N

by:

dwg by:

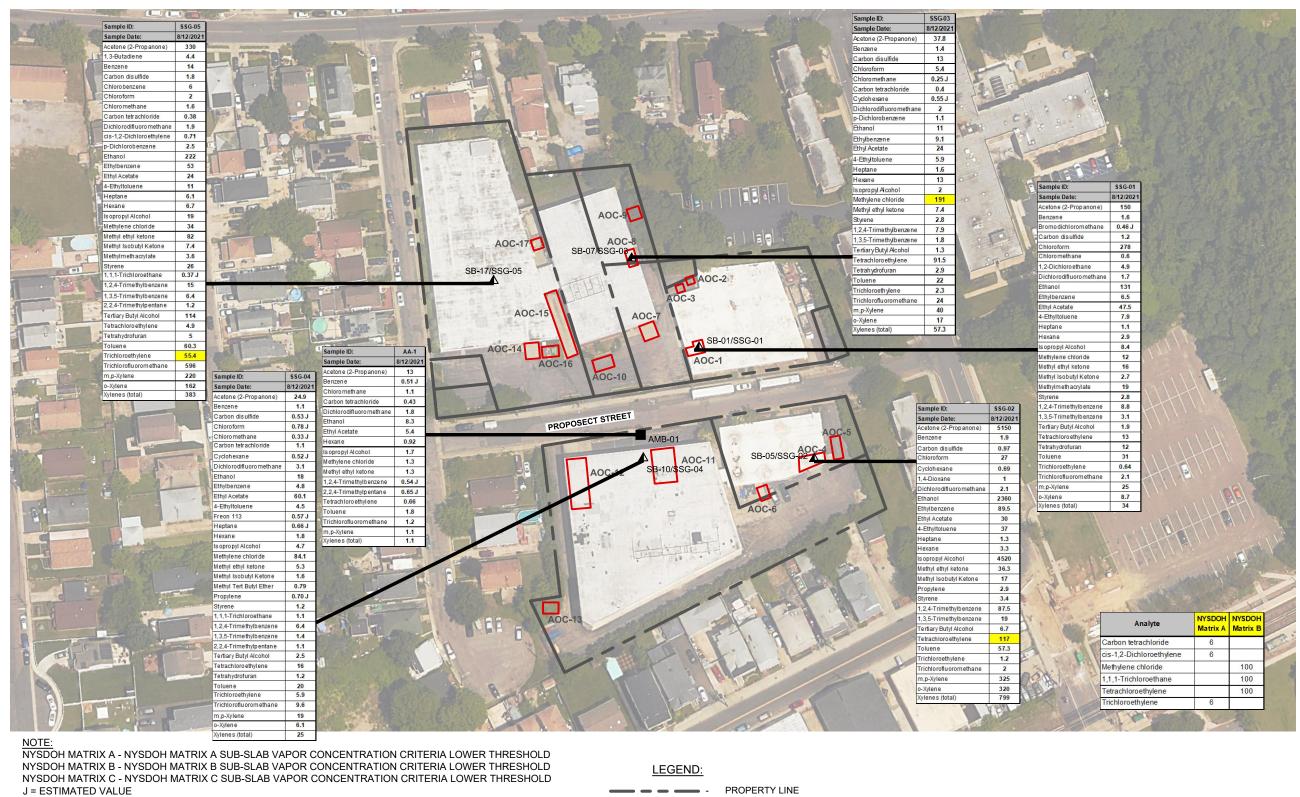
ENVIRONMENTAL

213, 219, STREET

, 210, 2 , 818 PECT (

PHASE II ESA K 160 - LOTS 7, 18, 20, 205, 208, 21 BLOCK 184 - LOTS 7, 81 300, 303, 320, 321, & 330 PROSPE INWOOD, NEW YORK 110

MAP 靣 SAM S ER \overline{S} GROUNDWAT ~ ∞୪ CATION


Ŏ

job no: <u>11457</u> drawing no:

300,

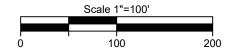
FIG-3.2

1 of 1

ug/m3 = MICROGRAMS PER CUBIC METER **Bold = COMPOUND WAS DETECTED**

NYS Education Law

Unauthorized alterations or additions to this plan are a violation of section 7209 (2) of the New York State Education Law. Copies of this map not having the seal of the engineer shall not be valid.


© SESI CONSULTING ENGINEERS D.P.C. 2021 This drawing and all information contained here on is proprietary information of SESI CONSULTING ENGINEERS D.P.C. and may not be copied or reproduced, either in whole or in part, by any method, without written permission of SESI CONSULTING ENGINEERS D.P.C. APPROX. LOCATION OF AOC

117

APPROX. LOCATION OF SOIL BORING & SUB-SLAB SOIL GAS POINT lack

APPROX. LOCATION OF AMBIENT AIR SAMPLE POINT

CONCENTRATION OF COMPOUND EXCEEDS THE NYSDOH MATRIX A SUB-SLAB VAPOR CONCENTRATIONS CRITERIA

job no: <u>11457</u> drawing no:

|FIG-3.3|

AS NOTED

ENVIRONMENTAL

₹

S AND AMBIENT ARESULTS MAP

S H

GAS S &

SOIL

SUB-

LOCA. Δ SLA

SITE DESIGN

date:

M K N

by:

dwg by:

SOILS / FOUNDATIONS

213, 219, STREET

, 210, 2 , 818 ;PECT 11096

PHASE II ESA BLOCK 160 - LOTS 7, 18, 20, 205, 208, 21 BLOCK 184 - LOTS 7, 81, 300, 303, 320, 321, & 330 PROSPE(INWOOD, NEW YORK 110

1 of 1

REFERENCE

AERIAL IMAGE TAKEN FROM "GOOGLE EARTH", IMAGE DATED 2020.

						3L31 C	onsulting Engi	110013					
Client Sample ID:		USCO	BSCO	BBSCO.	SB-1 (2.5-3.0)	SB-2 (4.5-5.0)	SB-3 (4.5-5.0)	SB-4 (1.0-1.5)	SB-5 (4.5-5.0)	SB-6 (4.5-5.0)	SB-7 (5.0-5.5)	SB-8 (4.5-5.0)	SB-9 (1.0-1.5)
Lab Sample ID:		0500	RSCO	RRSCO	JD29816-6	JD29763-4	JD29763-5	JD29816-5	JD29816-8	JD29816-7	JD29763-6	JD29885-1	JD29816-1
Date Sampled:					8/11/2021	8/10/2021	8/10/2021	8/11/2021	8/11/2021	8/11/2021	8/10/2021	8/12/2021	8/11/2021
Matrix:	Units				Soil	Soil							
						•					•		
MS Volatiles (SW846 8260D)													
Acetone	mg/kg	0.05	100	100	ND (0.0047)	ND (0.0051)	ND (0.0044)	ND (0.0041)	0.0159	ND (0.0064)	0.0060 J	ND (0.0055)	0.0724
Benzene	mg/kg	0.06	2.9	4.8	ND (0.00051)	ND (0.00056)	ND (0.00049)	ND (0.00045)	ND (0.00054)	ND (0.00070)	ND (0.00058)	ND (0.00060)	ND (0.00063)
Bromochloromethane	mg/kg	-	-	-	ND (0.00063)	ND (0.00069)	ND (0.00060)	ND (0.00055)	ND (0.00066)	ND (0.00086)	ND (0.00071)	ND (0.00074)	ND (0.00078)
Bromodichloromethane	mg/kg	-	-	-	ND (0.00048)	ND (0.00053)	ND (0.00046)	ND (0.00042)	ND (0.00051)	ND (0.00066)	ND (0.00054)	ND (0.00057)	ND (0.00060)
Bromoform	mg/kg	-	-	-	ND (0.0015)	ND (0.0017)	ND (0.0015)	ND (0.0013)	ND (0.0016)	ND (0.0021)	ND (0.0017)	ND (0.0018)	ND (0.0019)
Bromomethane	mg/kg	-	-	-	ND (0.00086)	ND (0.00095)	ND (0.00081)	ND (0.00075)	ND (0.00090)	ND (0.0012)	ND (0.00097)	ND (0.0010) ^a	ND (0.0011)
2-Butanone (MEK)	mg/kg	0.12	100	100	ND (0.0027)	ND (0.0030)	ND (0.0026)	ND (0.0024)	ND (0.0029)	ND (0.0037)	ND (0.0031)	ND (0.0032)	0.0124 J
Carbon disulfide	mg/kg	-	100	-	ND (0.00060)	ND (0.00066)	ND (0.00057)	ND (0.00053)	ND (0.00063)	ND (0.00082)	0.0013 J	ND (0.00071)	ND (0.00074)
Carbon tetrachloride	mg/kg	0.76	1.4	2.4	ND (0.00070)	ND (0.00077)	ND (0.00066)	ND (0.00061)	ND (0.00073)	ND (0.00095)	ND (0.00078)	ND (0.00082)	ND (0.00086)
Chlorobenzene	mg/kg	1.1	100	100	ND (0.00052)	ND (0.00057)	ND (0.00049)	ND (0.00045)	ND (0.00054)	ND (0.00071)	ND (0.00058)	ND (0.00061)	ND (0.00064)
Chloroethane	mg/kg	-	-	-	ND (0.00067)	ND (0.00073)	ND (0.00063)	ND (0.00058)	ND (0.00070)	ND (0.00091)	ND (0.00075)	ND (0.00078)	ND (0.00082)
Chloroform	mg/kg	0.37	10	49	ND (0.00059)	ND (0.00064)	ND (0.00055)	ND (0.00051)	ND (0.00061)	ND (0.00080)	ND (0.00066)	ND (0.00069)	ND (0.00072)
Chloromethane	mg/kg	-	-	-	ND (0.0022) b	ND (0.0024)	ND (0.0021)	ND (0.0019) b	ND (0.0023) b	ND (0.0030) b	ND (0.0025)	ND (0.0026)	ND (0.0027) b
Cyclohexane	mg/kg	-	-	-	ND (0.00074)	ND (0.00081)	ND (0.00070)	ND (0.00065)	ND (0.00078)	ND (0.0010)	ND (0.00083)	ND (0.00087)	ND (0.00091)
1,2-Dibromo-3-chloropropane	mg/kg	-	-	-	ND (0.00078)	ND (0.00086)	ND (0.00074)	ND (0.00068)	ND (0.00082)	ND (0.0011)	ND (0.00088)	ND (0.00092)	ND (0.00096)
Dibromochloromethane	mg/kg	-		-	ND (0.00063)	ND (0.00069)	ND (0.00060)	ND (0.00055)	ND (0.00066)	ND (0.00086)	ND (0.00071)	ND (0.00074)	ND (0.00078)
1,2-Dibromoethane	mg/kg	-	-	-	ND (0.00048)	ND (0.00052)	ND (0.00045)	ND (0.00041)	ND (0.00050)	ND (0.00065)	ND (0.00053)	ND (0.00056)	ND (0.00059)
1,2-Dichlorobenzene	mg/kg	1.1	100	100	ND (0.00062)	ND (0.00068)	ND (0.00058)	ND (0.00054)	ND (0.00064)	ND (0.00084)	ND (0.00069)	ND (0.00072)	ND (0.00076)
1,3-Dichlorobenzene	mg/kg	2.4	17	49	ND (0.00056)	ND (0.00061)	ND (0.00053)	ND (0.00049)	ND (0.00059)	ND (0.00076)	ND (0.00063)	ND (0.00066)	ND (0.00069)
1,4-Dichlorobenzene	mg/kg	1.8	9.8	13	ND (0.00056)	ND (0.00061)	ND (0.00053)	ND (0.00049)	ND (0.00058)	ND (0.00076)	ND (0.00063)	ND (0.00065)	ND (0.00069)
Dichlorodifluoromethane	mg/kg	-	-	-	ND (0.00082)	ND (0.00090)	ND (0.00078)	ND (0.00072)	ND (0.00086)	ND (0.0011)	ND (0.00092)	ND (0.00096) a	ND (0.0010)
1,1-Dichloroethane	mg/kg	0.27	19	26	ND (0.00056) b	ND (0.00061)	ND (0.00053)	ND (0.00049) b	ND (0.00058) b	ND (0.00076) b	ND (0.00063)	ND (0.00066)	ND (0.00069) b
1,2-Dichloroethane	mg/kg	0.02	2.3	3.1	ND (0.00053)	ND (0.00058)	ND (0.00050)	ND (0.00046)	ND (0.00056)	ND (0.00072)	ND (0.00060)	ND (0.00062)	ND (0.00065)
1,1-Dichloroethene	mg/kg	0.33	100	100	ND (0.00074)	ND (0.00081)	ND (0.00070)	ND (0.00065)	ND (0.00077)	ND (0.0010)	ND (0.00083)	ND (0.00087)	ND (0.00091)
cis-1,2-Dichloroethene	mg/kg	0.25	59	100	ND (0.00095)	ND (0.0010)	ND (0.00090)	ND (0.00083)	ND (0.00099)	ND (0.0013)	ND (0.0011)	ND (0.0011)	ND (0.0012)
trans-1,2-Dichloroethene	mg/kg	0.19	100	100	ND (0.00069)	ND (0.00076)	ND (0.00065)	ND (0.00060)	ND (0.00072)	ND (0.00094)	ND (0.00077)	ND (0.00081)	ND (0.00085)
1,2-Dichloropropane	mg/kg	-	-	-	ND (0.00053)	ND (0.00059)	ND (0.00050)	ND (0.00047)	ND (0.00056)	ND (0.00073)	ND (0.00060)	ND (0.00063)	ND (0.00066)
cis-1,3-Dichloropropene	mg/kg	-	_	_	ND (0.00054)	ND (0.00059)	ND (0.00051)	ND (0.00047)	ND (0.00056)	ND (0.00073)	ND (0.00060)	ND (0.00063)	ND (0.00066)
trans-1,3-Dichloropropene	mg/kg	-	-	-	ND (0.00052)	ND (0.00057)	ND (0.00049)	ND (0.00045)	ND (0.00054)	ND (0.00070)	ND (0.00058)	ND (0.00061)	ND (0.00064)
Ethylbenzene	mg/kg	1	30	41	ND (0.00051)	ND (0.00056)	` ′	ND (0.00045)	ND (0.00054)	ND (0.00070)	ND (0.00057)	ND (0.00060)	ND (0.00063)
Freon 113	mg/kg	-	100	-	ND (0.0030)	ND (0.0033)	ND (0.0028)	ND (0.0026)	ND (0.0032)	ND (0.0041)	ND (0.0034)	ND (0.0035)	ND (0.0037)
2-Hexanone	mg/kg	_	_	_	ND (0.0024) c	ND (0.0026)	ND (0.0023)	ND (0.0021) °	ND (0.0025) °	ND (0.0033) °	ND (0.0027)	ND (0.0028)	ND (0.0029) °
Isopropylbenzene	mg/kg	-	100	_	ND (0.0016)	ND (0.0018)	ND (0.0015)	ND (0.0014)	ND (0.0017)	ND (0.0022)	ND (0.0018)	ND (0.0019)	ND (0.0020)
Methyl Acetate	mg/kg	-	-	_	ND (0.0016)	ND (0.0017)	ND (0.0015)	ND (0.0014)	ND (0.0016)	ND (0.0021)	ND (0.0018)	ND (0.0018)	ND (0.0019)
Methylcyclohexane	mg/kg	-	-	_	ND (0.00099)	ND (0.0011)	ND (0.00093)	ND (0.00086)	ND (0.0010)	ND (0.0013)	ND (0.0011)	ND (0.0012)	ND (0.0012)
Methyl Tert Butyl Ether	mg/kg	0.93	62	100	ND (0.00053)	ND (0.00058)	ND (0.00050)	ND (0.00046)	ND (0.00055)	ND (0.00072)	ND (0.00059)	ND (0.00062)	ND (0.00065)
4-Methyl-2-pentanone(MIBK)	mg/kg	-	-	-	ND (0.0026)	ND (0.0028)	ND (0.0024)	ND (0.0022)	ND (0.0027)	ND (0.0035)	ND (0.0029)	ND (0.0030)	ND (0.0032)
Methylene chloride	mg/kg	0.05	51	100	ND (0.0029)	ND (0.0032)	ND (0.0028)	ND (0.0026)	ND (0.0031)	ND (0.0040)	ND (0.0033)	ND (0.0035)	ND (0.0036)
Styrene	mg/kg	-	-	-	ND (0.00045)	ND (0.00050)	ND (0.00043)	ND (0.00040)	ND (0.00047)	ND (0.00062)	ND (0.00051)	ND (0.00053)	ND (0.00056)
1,1,2,2-Tetrachloroethane	mg/kg	-	35	_	ND (0.00068)	ND (0.00074)	ND (0.00064)	ND (0.00059)	ND (0.00071)	ND (0.00092)	ND (0.00076)	ND (0.00079)	ND (0.00083)
Tetrachloroethene	mg/kg	1.3	5.5	19	ND (0.00066)	ND (0.00072)	ND (0.00062)	ND (0.00057)	ND (0.00069)	ND (0.00089)	ND (0.00073)	ND (0.00077)	ND (0.00081)
Toluene	mg/kg	0.7	100	100	ND (0.00059)	ND (0.00065)	ND (0.00056)	ND (0.00052)	ND (0.00062)	ND (0.00081)	0.0010 J	ND (0.00070)	ND (0.00073)
1,2,3-Trichlorobenzene	mg/kg	-	-	-	ND (0.0028)	ND (0.0031)	ND (0.0027)	ND (0.0025)	ND (0.0030)	ND (0.0038)	ND (0.0032)	ND (0.0033)	ND (0.0035)
1,2,4-Trichlorobenzene	mg/kg	-	-	-	ND (0.0028)	ND (0.0031)	ND (0.0027)	ND (0.0025)	ND (0.0030)	ND (0.0038)	ND (0.0032)	ND (0.0033)	ND (0.0035)

							msulting Lingi						
Client Sample ID:					SB-1 (2.5-3.0)	SB-2 (4.5-5.0)	SB-3 (4.5-5.0)	SB-4 (1.0-1.5)	SB-5 (4.5-5.0)	SB-6 (4.5-5.0)	SB-7 (5.0-5.5)	SB-8 (4.5-5.0)	SB-9 (1.0-1.5)
Lab Sample ID:		USCO	RSCO	RRSCO	JD29816-6	JD29763-4	JD29763-5	JD29816-5	JD29816-8	JD29816-7	JD29763-6	JD29885-1	JD29816-1
Date Sampled:					8/11/2021	8/10/2021	8/10/2021	8/11/2021	8/11/2021	8/11/2021	8/10/2021	8/12/2021	8/11/2021
Matrix:	Units				Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
	5				3 0	30	30	3 0		00	30	3 0	5 0
1,1,1-Trichloroethane	mg/kg	0.68	100	100	ND (0.00055)	ND (0.00060)	ND (0.00052)	ND (0.00048)	ND (0.00057)	ND (0.00074)	ND (0.00061)	ND (0.00064)	ND (0.00067)
1,1,2-Trichloroethane	mg/kg	-	-	-	ND (0.00063)	ND (0.00069)	ND (0.00059)	ND (0.00055)	ND (0.00065)	ND (0.00085)	ND (0.00070)	ND (0.00073)	ND (0.00077)
Trichloroethene	mg/kg	0.47	10	21	ND (0.00086)	ND (0.00094)	ND (0.00081)	ND (0.00075)	ND (0.00090)	ND (0.0012)	ND (0.00096)	ND (0.0010)	ND (0.0011)
Trichlorofluoromethane	mg/kg	-	-	-	ND (0.00077)	ND (0.00085)	ND (0.00073)	ND (0.00067)	ND (0.00081)	ND (0.0011)	ND (0.00087)	ND (0.00091)	ND (0.00095)
Vinyl chloride	mg/kg	0.02	0.21	0.9	ND (0.00054) b	ND (0.00060)	ND (0.00051)	ND (0.00047) b	ND (0.00057) b	ND (0.00074) b	ND (0.00061)	ND (0.00064)	ND (0.00067) b
m,p-Xylene	mg/kg	0.26	100	100	ND (0.0010)	ND (0.0011)	ND (0.00096)	ND (0.00088)	ND (0.0011)	ND (0.0014)	ND (0.0011)	ND (0.0012)	ND (0.0012)
o-Xylene	mg/kg	0.26	100	100	ND (0.00052)	ND (0.00057)	ND (0.00049)	ND (0.00045)	ND (0.00054)	ND (0.00070)	ND (0.00058)	ND (0.00061)	ND (0.00064)
Xylene (total)	mg/kg	0.26	100	100	ND (0.00052)	ND (0.00057)	ND (0.00049)	ND (0.00045)	ND (0.00054)	ND (0.00070)	ND (0.00058)	ND (0.00061)	ND (0.00064)
ryiene (tetall)	9/9	0.20			(0.00002)	(0.0000.)	(0.000.0)	(0.000.0)	(0.0000.)	112 (0.000.0)	(0.0000)	(0.0000.)	(0.0000.)
MS Volatile TIC													
Total TIC, Volatile	mg/kg	_	_	_	0	0	0	0	I 0	0	0	0	0
	9/9								<u> </u>			•	
MS Semi-volatiles (SW846													
2-Chlorophenol	mg/kg	_	100	_	ND (0.017)	ND (0.022)	ND (0.037)	ND (0.017)	ND (0.019)	ND (0.018)	ND (0.020)	ND (0.018)	ND (0.020)
4-Chloro-3-methyl phenol	mg/kg	_	-	_	ND (0.021)	ND (0.027)	ND (0.046)	ND (0.022)	ND (0.024)	ND (0.023)	ND (0.025)	ND (0.022)	ND (0.025)
2,4-Dichlorophenol	mg/kg	_	100	_	ND (0.029)	ND (0.037)	ND (0.063)	ND (0.030)	ND (0.034)	ND (0.032)	ND (0.035)	ND (0.031)	ND (0.035)
2,4-Dimethylphenol	mg/kg	_	-	_	ND (0.061)	ND (0.078)	ND (0.13)	ND (0.063)	ND (0.070)	ND (0.066)	ND (0.072)	ND (0.064)	ND (0.073)
2,4-Dinitrophenol	mg/kg	_	100	_	ND (0.13) ^d	ND (0.16) b	ND (0.28) b	ND (0.13) ^d	ND (0.15) ^d	ND (0.14) ^d	ND (0.15) b	ND (0.13)	ND (0.16) ^d
4,6-Dinitro-o-cresol	mg/kg	_	100	_	ND (0.036) ^d	ND (0.047)	ND (0.080)	ND (0.038) ^d	ND (0.042) ^d	ND (0.040) ^d	ND (0.043)	ND (0.038)	ND (0.044) ^d
2-Methylphenol		0.33	100	100	ND (0.030)	ND (0.028)	ND (0.047)	ND (0.038)	ND (0.042)	ND (0.040)	ND (0.026)	ND (0.033)	ND (0.026)
	mg/kg	0.55	100	100		` ,	` ′		<u> </u>		<u> </u>		
3&4-Methylphenol	mg/kg	-	-	-	ND (0.028)	ND (0.036)	ND (0.061)	ND (0.029)	ND (0.032)	ND (0.030)	ND (0.033)	ND (0.029) b	ND (0.034)
2-Nitrophenol	mg/kg	-	-	-	ND (0.023)	ND (0.029)	ND (0.049)	ND (0.023)	ND (0.026)	ND (0.024)	ND (0.027)	ND (0.024)	ND (0.027)
4-Nitrophenol	mg/kg	-	-	- 0.7	ND (0.091)	ND (0.12)	ND (0.20)	ND (0.094)	ND (0.11)	ND (0.099)	ND (0.11)	ND (0.096)	ND (0.11)
Pentachlorophenol	mg/kg	0.8	2.4	6.7	ND (0.032)	ND (0.041)	ND (0.070)	ND (0.033)	ND (0.037)	ND (0.035)	ND (0.038)	ND (0.034)	ND (0.039)
Phenol	mg/kg	0.33	100	100	ND (0.018) ^d	ND (0.023)	ND (0.039)	ND (0.018) ^d	ND (0.021) ^d	ND (0.019) ^d	ND (0.021)	ND (0.019)	ND (0.022) ^d
2,3,4,6-Tetrachlorophenol	mg/kg	-	-	-	ND (0.023)	ND (0.029)	ND (0.049)	ND (0.023)	ND (0.026)	ND (0.024)	ND (0.027)	ND (0.024)	ND (0.027)
2,4,5-Trichlorophenol	mg/kg	-	100	-	ND (0.026)	ND (0.033)	ND (0.056)	ND (0.026)	ND (0.029)	ND (0.028)	ND (0.030)	ND (0.027)	ND (0.031)
2,4,6-Trichlorophenol	mg/kg	-	-	-	ND (0.020)	ND (0.026)	ND (0.044)	ND (0.021)	ND (0.023)	ND (0.022)	ND (0.024)	ND (0.021)	ND (0.025)
Acenaphthene	mg/kg	20	100	100	ND (0.012)	ND (0.015)	ND (0.026)	0.0135 J	ND (0.014)	ND (0.013)	ND (0.014)	ND (0.012)	0.0148 J
Acenaphthylene	mg/kg	100	100	100	0.0205 J	0.0301 J	0.0524 J	0.0297 J	ND (0.020)	ND (0.019)	ND (0.021)	ND (0.018)	ND (0.021)
Acetophenone	mg/kg	-	-	-	ND (0.0073)	ND (0.0094)	ND (0.016)	ND (0.0076)	ND (0.0085)	ND (0.0079)	ND (0.0087)	ND (0.0077)	ND (0.0089)
Anthracene	mg/kg	100	100	100	ND (0.021)	0.0504	ND (0.046)	0.0454	ND (0.024)	ND (0.023)	ND (0.025)	ND (0.022)	ND (0.025)
Atrazine	mg/kg	-	-	-	ND (0.015)	ND (0.019)	ND (0.032)	ND (0.015)	ND (0.017)	ND (0.016)	ND (0.017)	ND (0.015)	ND (0.018)
Benzo(a)anthracene	mg/kg	1	1	1	0.101	0.329	0.12	0.173	ND (0.011)	ND (0.010)	ND (0.011)	0.0106 J	0.0775
Benzo(a)pyrene	mg/kg	1	1	1	0.102	0.324	0.125	0.168	ND (0.018)	ND (0.017)	ND (0.018)	ND (0.016)	0.0806
Benzo(b)fluoranthene	mg/kg	1	1	1	0.122	0.43	0.181	0.21	ND (0.017)	ND (0.016)	ND (0.018)	ND (0.016)	0.105
Benzo(g,h,i)perylene	mg/kg	100	100	100	0.0744	0.22	0.136	0.111	ND (0.020)	ND (0.018)	ND (0.020)	ND (0.018)	0.054
Benzo(k)fluoranthene	mg/kg	0.8	1	3.9	0.0461	0.163	0.0591 J	0.0694	ND (0.018)	ND (0.017)	ND (0.019)	ND (0.017)	0.0330 J
4-Bromophenyl phenyl ether	mg/kg	-	-	-	ND (0.013)	ND (0.017)	ND (0.029)	ND (0.014)	ND (0.015)	ND (0.014)	ND (0.016)	ND (0.014)	ND (0.016)
Butyl benzyl phthalate	mg/kg	-	100	-	ND (0.0083)	ND (0.011)	ND (0.018)	ND (0.0086)	ND (0.0096)	ND (0.0090)	ND (0.0099)	ND (0.0088)	ND (0.010)
1,1'-Biphenyl	mg/kg	-	-	-	ND (0.0047)	ND (0.0060)	0.0308 J	0.0086 J	ND (0.0054)	ND (0.0051)	ND (0.0056)	ND (0.0049)	ND (0.0057)
Benzaldehyde	mg/kg	-	-	-	ND (0.0085)	ND (0.011)	ND (0.018)	ND (0.0087)	ND (0.0098)	ND (0.0092)	ND (0.010)	ND (0.0089)	ND (0.010)
2-Chloronaphthalene	mg/kg	-	-	-	ND (0.0081)	ND (0.010)	ND (0.018)	ND (0.0084)	ND (0.0094)	ND (0.0088)	ND (0.0096)	ND (0.0085)	0.0421 J
4-Chloroaniline	mg/kg	-	100	-	ND (0.012) ^d	ND (0.016)	ND (0.027)	ND (0.013) ^d	ND (0.014) ^d	ND (0.013) ^d	ND (0.015)	ND (0.013)	ND (0.015) ^d

Leb Sample ID:										1				
Lab Sample Dr. 1987	Client Sample ID:					SB-1 (2.5-3.0)	SB-2 (4.5-5.0)	SB-3 (4.5-5.0)	SB-4 (1.0-1.5)	SB-5 (4.5-5.0)	SB-6 (4.5-5.0)	SB-7 (5.0-5.5)	SB-8 (4.5-5.0)	SB-9 (1.0-1.5)
Best Company Best Company Best B	Lab Sample ID:		USCO	RSCO	RRSCO	JD29816-6	JD29763-4	JD29763-5	JD29816-5	JD29816-8	JD29816-7	JD29763-6	JD29885-1	JD29816-1
Solit Soli	Date Sampled:													
Company Comp	Matrix:	Units	1											
Caprolacted							•			•				
Dispetition	Carbazole	mg/kg	-	-	-	0.0069 J	0.0370 J	0.0139 J	0.0196 J	ND (0.0057)	ND (0.0054)	ND (0.0059)	ND (0.0052)	ND (0.0060)
Control Cont	Caprolactam	mg/kg	-	-	-	ND (0.013) ^d	ND (0.017) ^d	ND (0.029) d	ND (0.014) ^d	ND (0.016) d	ND (0.015) d	ND (0.016) d	ND (0.014)	ND (0.016) ^d
side/Z-Cinoreshroxymethane mg/kg ND (0.0073) ND (0.0093) ND (0.0093) ND (0.0079) ND	Chrysene		1	1	3.9	0.109		0.127		ND (0.012)	ND (0.012)	ND (0.013)	ND (0.011)	0.0819
222-Cocycles (-shienproponen)	bis(2-Chloroethoxy)methane		-	-	-	ND (0.0073)	ND (0.0093)	ND (0.016)	ND (0.0075)	ND (0.0084)	ND (0.0079)	ND (0.0087)	ND (0.0077)	ND (0.0088)
## Chinerpotherry phenry ethers	bis(2-Chloroethyl)ether	mg/kg	-	-	-	ND (0.015)	ND (0.019)	ND (0.032)	ND (0.015)	ND (0.017)	ND (0.016)	ND (0.017)	ND (0.015)	ND (0.018)
2.4-Dintrotoluene mg/kg ND (0.011) ND (0.014) ND (0.023) ND (0.015) ND (0.012) ND (0.011) ND (0.013) ND (0.014) ND (0.015) ND (0.017) ND (0.015) ND (0.014) ND (0.015) ND (0.015) ND (0.014) N	2,2'-Oxybis(1-chloropropane)	mg/kg	-	-	-	ND (0.012)	ND (0.016)	ND (0.027)	ND (0.013)	ND (0.014)	ND (0.013)	ND (0.015)	ND (0.013)	ND (0.015)
2.6-Districtofusines mg/kg - 103 - ND (0.017) ND (0.022) ND (0.038) ND (0.033) ND (0.033) ND (0.034) ND (0.034) ND (0.033) ND (0.033) ND (0.033) ND (0.033) ND (0.033) ND (0.034) ND (0.034) ND (0.033) ND (0.033) ND (0.033) ND (0.033) ND (0.034) ND (0.034	4-Chlorophenyl phenyl ether	mg/kg	-	-	-	ND (0.011)	ND (0.014)	ND (0.024)	ND (0.011)	ND (0.013)	ND (0.012)	ND (0.013)	ND (0.012)	ND (0.013)
2.6-Districtofusines mg/kg - 103 - ND (0.017) ND (0.022) ND (0.038) ND (0.033) ND (0.033) ND (0.034) ND (0.034) ND (0.033) ND (0.033) ND (0.033) ND (0.033) ND (0.033) ND (0.034) ND (0.034) ND (0.033) ND (0.033) ND (0.033) ND (0.033) ND (0.034) ND (0.034	2.4-Dinitrotoluene	ma/ka	-	-	-	ND (0.011)	ND (0.014)	ND (0.023)	ND (0.011)	ND (0.012)	ND (0.011)	ND (0.013)	ND (0.011) b	ND (0.013)
3.3-Dichriorbenzidine	2,6-Dinitrotoluene		-	1.03	-	,	. ,	, ,	, ,	. ,	` ,	` ,		` ,
1.4-Dioxane			_	_	_	` '		` ′		<u> </u>	` ′	· · · · · ·	` ,	<u> </u>
Diberzoculan Dibe	-			9.8				, ,	. ,		. ,	. ,	. ,	
Dibenctorian	-					, ,				\ /		. ,		\ /
Den-buty phthalate			7					. ,			. ,		. ,	` '
Democry phtholate			_								, ,	. ,		` '
Delthy Inhibate						, ,	` ′	, ,	, ,		,	` ,	, ,	` ′
Dimetry phthalate			-		-	, ,		, ,				,	. ,	
Design D			-		-									
Fluoranthene			-					,			,			
Fluorene						` ,				, ,	` ,	, ,	. ,	
Hexachlorobenzene										` '	. , ,	. ,	. ,	
Hexachlorobutadiene								. ,		. ,			. ,	
Hexachlorocyclopentadiene			0.55	0.41	1.2			. ,	, ,				. ,	
Hexachtoroethane			_	_	_								` '	`
Indenot(1,2,3-cd)pyrene mg/kg 0.5 0.5 0.5 0.0823 0.239 0.145 0.138 ND (0.018) ND (0.017) ND (0.017) ND (0.017) ND (0.0088)		_	-	-	-			, ,		` ,		. ,	,	, ,
Sephorone mg/kg - 100 - ND (0.0073) ND (0.0093) ND (0.016) ND (0.0075) ND (0.0084) ND (0.0079) ND (0.0087) ND (0.0087) ND (0.0087) ND (0.0087) ND (0.0088)			- 0.5	- 0 E	- 0 E							. ,	, ,	
2-Methylnaphthalene			0.5		0.5						, ,	, ,	. ,	
2-Nitroaniline	•		-		-	, ,				` ,	, ,			
3-Nitroaniline			_	0.41	-	, ,	, ,	,		` ,	, ,		,	,
4-Nitroaniline			-	-	-	, ,			. ,	, ,	, ,	, ,	. ,	` /
Naphthalene			-	-	-		<u> </u>					<u> </u>		<u> </u>
Nitrobenzene			12	100	100	` /		` ′	` ,	<u> </u>		<u> </u>	. ,	` ′
N-Nitroso-di-n-propylamine mg/kg ND (0.0098) ND (0.013) ND (0.021) ND (0.010) ND (0.011) ND (0.011) ND (0.011) ND (0.010) ND (0.012) ND (0.012) ND (0.012) ND (0.012) ND (0.013) ND (0.013) ND (0.014) ND (0.014) ND (0.014) ND (0.015) ND (0.013) ND (0.015) ND (0.0065) ND (0.0065) ND (0.0065) ND (0.0065) ND (0.0066)			12			115 /2 2 / 2 /				11- 1- 1-1	11- 12-11		11= (2 2 4 4)	112 (2 2 (2)
N-Nitrosodiphenylamine mg/kg ND (0.012) ND (0.016) ND (0.027) ND (0.013) ND (0.014) ND (0.014) ND (0.015) ND (0.013) ND (0.015) ND (0.015			-	3.1		` '	<u> </u>	` ′	, ,	 	` ′			`
Phenanthrene mg/kg 100 100 100 0.0638 0.226 0.0774 0.257 ND (0.013) ND (0.012) ND (0.014) ND (0.012) 0.0764 Pyrene mg/kg 100 100 100 0.19 0.645 0.199 0.377 ND (0.013) ND (0.012) ND (0.013) 0.0133 J 0.162 1,2,4,5-Tetrachlorobenzene mg/kg ND (0.0087) ND (0.011) ND (0.019) ND (0.0089) ND (0.010) ND (0.0094) ND (0.010) ND (0.0091) ND (0.010) MS Semi-volatile TIC Total TIC, Semi-Volatile mg/kg 0.15 J 5.62 J 77.43 J 0.68 J 0 0 0 0.28 J 0.57 J 43.16 J GC/LC Semi-volatiles (SW846			-	-	-	, ,		, ,	,	. ,	` ,	, ,		` '
Pyrene mg/kg 100 100 100 0.19 0.645 0.199 0.377 ND (0.013) ND (0.012) ND (0.013) 0.0133 J 0.162 (0.014) ND (0.014) ND (0.015) ND (0.015) ND (0.016) ND (0.0065) ND (0.0065) ND (0.0065) ND (0.0066) ND (0.00			- 400	-	-								, ,	
ND (0.0087) ND (0.011) ND (0.019) ND (0.010) ND (0.0094) ND (0.010) ND (0.010) ND (0.0091) ND (0.010)														
MS Semi-volatile TIC Total TIC, Semi-Volatile mg/kg 0.15 J 5.62 J 77.43 J 0.68 J 0 0 0.28 J 0.57 J 43.16 J GC/LC Semi-volatiles (SW846 Aldrin mg/kg 0.005 0.019 0.097 ND (0.00055) ND (0.00062) ND (0.00066) ND (0.00061) ND (0.00067) ND (0.00060) ND (0.00065)			100	100	100									
Total TIC, Semi-Volatile mg/kg 0.15 J 5.62 J 77.43 J 0.68 J 0 0 0.28 J 0.57 J 43.16 J GC/LC Semi-volatiles (SW846 Aldrin mg/kg 0.005 0.019 0.097 ND (0.00055) ND (0.00072) ND (0.00062) ND (0.00065) ND (0.00061) ND (0.00067) ND (0.00060) ND (0.00065)	1,2,4,5-1 etrachioropenzene	mg/kg	-	-	-	ND (0.0087)	ND (0.011)	ND (0.019)	ND (0.0089)	ND (0.010)	ND (0.0094)	ND (0.010)	ND (0.0091)	ND (0.010)
GC/LC Semi-volatiles (SW846 Aldrin mg/kg 0.005 0.019 0.097 ND (0.00055) ND (0.00072) ND (0.00062) ND (0.00056) ND (0.00062) ND (0.00061) ND (0.00067) ND (0.00060) ND (0.00065)	MS Semi-volatile TIC													
GC/LC Semi-volatiles (SW846 Aldrin mg/kg 0.005 0.019 0.097 ND (0.00055) ND (0.00072) ND (0.00062) ND (0.00056) ND (0.00062) ND (0.00061) ND (0.00067) ND (0.00060) ND (0.00065)	Total TIC Semi-Volatile	l ma/ka	l <u>-</u>	_	_	0.15	5.62 1	77 <u>4</u> 3 I	0.68.1	0	Ι ο	0.28 1	0 57 T	43 16 I
Aldrin mg/kg 0.005 0.019 0.097 ND (0.00055) ND (0.00072) ND (0.00062) ND (0.00056) ND (0.00062) ND (0.00061) ND (0.00067) ND (0.00060) ND (0.00065)		19/1.9	<u> </u>			0.100	0.32 0	77.100	0.000	ı	ı	0.20	0.01	10.100
alpha-BHC mg/kg 0.02 0.097 0.48 ND (0.00054) ND (0.00072) ND (0.00061) ND (0.00055) ND (0.00061) ND (0.00060) ND (0.00066) ND (0.00069) 3.84°	Aldrin	mg/kg	0.005	0.019	0.097	ND (0.00055)	ND (0.00072)	ND (0.00062)	ND (0.00056)	ND (0.00062)	ND (0.00061)	ND (0.00067)	ND (0.00060)	ND (0.00065)
	alpha-BHC	mg/kg	0.02	0.097	0.48	ND (0.00054)	ND (0.00072)	ND (0.00061)	ND (0.00055)	ND (0.00061)	ND (0.00060)	ND (0.00066)	ND (0.00059)	3.84 ^e

Client Sample ID:					SB-1 (2.5-3.0)	SB-2 (4.5-5.0)	SB-3 (4.5-5.0)	SB-4 (1.0-1.5)	SB-5 (4.5-5.0)	SB-6 (4.5-5.0)	SB-7 (5.0-5.5)	SB-8 (4.5-5.0)	SB-9 (1.0-1.5)
Lab Sample ID:		usco	RSCO	RRSCO	JD29816-6	JD29763-4	JD29763-5	JD29816-5	JD29816-8	JD29816-7	JD29763-6	JD29885-1	JD29816-1
Date Sampled:					8/11/2021	8/10/2021	8/10/2021	8/11/2021	8/11/2021	8/11/2021	8/10/2021	8/12/2021	8/11/2021
Matrix:	Units	1			Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
beta-BHC	mg/kg	0.036	0.072	0.36	ND (0.00060)	ND (0.00080)	ND (0.00068)	ND (0.00061)	ND (0.00068)	ND (0.00067)	ND (0.00074)	ND (0.00065)	ND (0.00071)
delta-BHC	mg/kg	0.04	100	100	ND (0.00064)	ND (0.00084)	ND (0.00072)	ND (0.00065)	ND (0.00072)	ND (0.00071)	ND (0.00078)	ND (0.00069)	ND (0.00075)
gamma-BHC (Lindane)	mg/kg	0.1	0.28	1.3	ND (0.00049)	ND (0.00065)	ND (0.00055)	ND (0.00050)	ND (0.00055)	ND (0.00055)	ND (0.00060)	ND (0.00053)	ND (0.00058)
alpha-Chlordane	mg/kg	0.094	0.91	4.2	ND (0.00053)	ND (0.00071)	0.0013 ^e	0.0068 ^e	ND (0.00060)	ND (0.00060)	ND (0.00066)	0.0071 ^e	ND (0.00063)
gamma-Chlordane	mg/kg	-	0.54	-	ND (0.00030)	ND (0.00040)	0.00088	0.004	ND (0.00034)	ND (0.00034)	ND (0.00037)	0.0055	0.0048
Dieldrin	mg/kg	0.005	0.039	0.2	ND (0.00045)	ND (0.00060)	ND (0.00052)	ND (0.00047)	ND (0.00051)	ND (0.00051)	ND (0.00056)	ND (0.00050)	ND (0.00054)
4,4'-DDD	mg/kg	0.0033	2.6	13	ND (0.00061)	ND (0.00081)	0.0047	0.0048	ND (0.00069)	ND (0.00068)	ND (0.00075)	ND (0.00066)	0.0063
4,4'-DDE	mg/kg	0.0033	1.8	8.9	ND (0.00058)	ND (0.00077)	0.0011 ^e	0.0085	ND (0.00066)	ND (0.00065)	ND (0.00072)	ND (0.00063)	0.0016
4,4'-DDT	mg/kg	0.0033	1.7	7.9	ND (0.00059)	ND (0.00078)	0.00098	0.0181	ND (0.00066)	ND (0.00066)	ND (0.00072)	ND (0.00064)	0.0045
Endrin	mg/kg	0.014	2.2	11	ND (0.00051)	0.0010 ^e	ND (0.00059)	ND (0.00053)	ND (0.00058)	ND (0.00058)	ND (0.00063)	ND (0.00056)	ND (0.00061)
Endosulfan sulfate	mg/kg	2.4	4.8	24	ND (0.00052)	ND (0.00069)	ND (0.00059)	ND (0.00053)	ND (0.00058)	ND (0.00058)	ND (0.00064)	ND (0.00056)	ND (0.00061)
Endrin aldehyde	mg/kg	-	-	-	ND (0.00038)	ND (0.00050)	ND (0.00043)	ND (0.00038)	ND (0.00042)	ND (0.00042)	ND (0.00046)	ND (0.00041)	ND (0.00044)
Endosulfan-I	mg/kg	2.4	4.8	24	ND (0.00038)	ND (0.00051)	ND (0.00043)	ND (0.00039)	ND (0.00043)	ND (0.00043)	ND (0.00047)	ND (0.00042)	ND (0.00045)
Endosulfan-II	mg/kg	2.4	4.8	24	ND (0.00041)	ND (0.00055)	ND (0.00047)	ND (0.00042)	ND (0.00047)	ND (0.00046)	ND (0.00051)	ND (0.00045)	ND (0.00049)
Heptachlor	mg/kg	0.042	0.42	2.1	ND (0.00057)	ND (0.00076)	ND (0.00065)	ND (0.00058)	ND (0.00065)	ND (0.00064)	ND (0.00070)	ND (0.00062)	0.729 ^e
Heptachlor epoxide	mg/kg	-	0.077	-	ND (0.00046)	ND (0.00062)	ND (0.00053)	ND (0.00047)	ND (0.00052)	ND (0.00052)	ND (0.00057)	ND (0.00051)	ND (0.00055)
Methoxychlor	mg/kg	-	100	-	ND (0.00053)	ND (0.00070)	ND (0.00060)	ND (0.00054)	ND (0.00059)	ND (0.00059)	ND (0.00065)	ND (0.00057)	ND (0.00062)
Endrin ketone	mg/kg	-	-	-	ND (0.00048)	ND (0.00064)	ND (0.00054)	ND (0.00049)	ND (0.00054)	ND (0.00054)	ND (0.00059)	ND (0.00052)	ND (0.00057)
Toxaphene	mg/kg	-	-	-	ND (0.015)	ND (0.020)	ND (0.018)	ND (0.016)	ND (0.017)	ND (0.017)	ND (0.019)	ND (0.017)	ND (0.018)
CC/I C Sami valetiles (SW)	•												
GC/LC Semi-volatiles (SW84	·O												
Aroclor 1016	mg/kg	0.1	1	1	ND (0.015) b	ND (0.020)	ND (0.018)	ND (0.016)	ND (0.017) b	ND (0.017) b	ND (0.019)	ND (0.017)	ND (0.018)
Aroclor 1221	mg/kg	0.1	1	1	ND (0.021)	ND (0.027)	ND (0.023)	ND (0.021)	ND (0.023)	ND (0.023)	ND (0.025)	ND (0.022)	ND (0.024)
Aroclor 1232	mg/kg	0.1	1	1	ND (0.021)	ND (0.028)	ND (0.024)	ND (0.022)	ND (0.024)	ND (0.024)	ND (0.026)	ND (0.023)	ND (0.025)
Aroclor 1242	mg/kg	0.1	1	1	ND (0.014)	ND (0.018)	ND (0.016)	ND (0.014)	ND (0.015)	ND (0.015)	ND (0.017)	ND (0.015)	ND (0.016)
Aroclor 1248	mg/kg	0.1	1	1	ND (0.030)	ND (0.039)	ND (0.034)	ND (0.030)	ND (0.033)	ND (0.033)	ND (0.036)	ND (0.032)	ND (0.035)
Aroclor 1254	mg/kg	0.1	1	1	ND (0.018)	ND (0.024)	ND (0.020)	ND (0.018)	ND (0.020)	ND (0.020)	ND (0.022)	ND (0.019)	ND (0.021)
Aroclor 1260	mg/kg	0.1	1	1	ND (0.014)	ND (0.019)	ND (0.016)	ND (0.014)	ND (0.016)	ND (0.016)	ND (0.017)	ND (0.015)	ND (0.017)
Aroclor 1268	mg/kg	0.1	1	1	ND (0.014)	ND (0.019)	ND (0.016)	ND (0.014)	ND (0.016)	ND (0.016)	ND (0.017)	ND (0.015)	ND (0.017)
Aroclor 1262	mg/kg	0.1	1	1	ND (0.022)	ND (0.029)	ND (0.025)	ND (0.022)	ND (0.024)	ND (0.024)	ND (0.027)	ND (0.024)	ND (0.026)
Metals Analysis													
Metals Alialysis													
Aluminum	mg/kg	l -	-	-	5070	8100	6300	5590	12000	531	1790	8610	6310
Antimony	mg/kg	_	-	-	<2.1	<2.6	<2.3	<2.2	<2.3	<2.4	<1.6 ^f	<2.2	<1.6
Arsenic	mg/kg	13	16	16	2.7	4.9	2.8	3.6	3.5	<2.4	<1.6 ^f	2.5	3.5
										<24	<16 ^f		
Barium	mg/kg	350	350	400	56.9	81.3	57.8	63	25.4			25.2	81.2
Beryllium	mg/kg	7.2	14	72	<0.21	0.39	0.28	<0.22	0.28	<0.24	<0.16 ^f	0.28	0.23
Cadmium	mg/kg	2.5	2.5	4.3	<0.54	0.83	<0.56	<0.56	<0.58	<0.59	<0.39 ^f	<0.54	<0.41
Calcium	mg/kg	-	-	-	4800	1880	1570	964	646	<590	3630 ^f	4790	30600
Chromium	mg/kg	-	-	-	9.7	12.5	9.5	10	19	4.2	20.1 ^f	14	8.6
Cobalt	mg/kg	-	30	-	<5.4	<6.5	<5.6	<5.6	<5.8	<5.9	<3.9 ^f	<5.4	<4.1
Copper	mg/kg	50	270	270	25.7	16.1	14.6	12	3.6	<3.0	11.3 ^f	6.2	13.3
Iron	mg/kg	_	2000	-	9120	12800	6060	7850	9630	2210	5470 ^f	8300	6110
L	19,119		_555		0120	,2000	5005	7000	0000	22.10	3410	0000	J. 10

Table 3.1 - Soil Analytical Table August 10 - August 12, 2021

$300,\,303,\,320,\,321,\,and\,330$ Prospect Street, Inwood, NY

Project No. 11457 SESI Consulting Engineers

Client Sample ID:		11000	Booc	DD000	SB-1 (2.5-3.0)	SB-2 (4.5-5.0)	SB-3 (4.5-5.0)	SB-4 (1.0-1.5)	SB-5 (4.5-5.0)	SB-6 (4.5-5.0)	SB-7 (5.0-5.5)	SB-8 (4.5-5.0)	SB-9 (1.0-1.5)
Lab Sample ID:		USCO	RSCO	RRSCO	JD29816-6	JD29763-4	JD29763-5	JD29816-5	JD29816-8	JD29816-7	JD29763-6	JD29885-1	JD29816-1
Date Sampled:					8/11/2021	8/10/2021	8/10/2021	8/11/2021	8/11/2021	8/11/2021	8/10/2021	8/12/2021	8/11/2021
Matrix:	Units				Soil	Soil	Soil						
 Lead	mg/kg	63	400	400	106	324	162	110	5.4	<2.4	3.2 ^f	12.2	122
Magnesium	mg/kg	-	400	-	2350	1040	666	564	1030	<590	627 ^f	3220	1900
Manganese	mg/kg	1600	2000	2000	70.8	119	48.8	146	32.7	3.1	49.9 ^f	82.6	122
Mercury	mg/kg	0.18	0.81	0.81	0.1	<0.041	0.28	0.048	<0.035	<0.031	<0.026	0.7	0.068
Nickel	mg/kg	30	140	310	6.7	7.7	6.1	5	5.9	<4.7	<3.1 ^f	6.7	5.8
Potassium	mg/kg	-	-	-	<1100	<1300	<1100	<1100	<1200	<1200	<780 ^f	<1100	<820
Selenium	mg/kg	3.9	36	180	<2.1	<2.6	<2.3	<2.2	<2.3	<2.4	<1.6 ^f	<2.2	<1.6
Silver	mg/kg	2	36	180	<0.54	6.1	<0.56	<0.56	<0.58	<0.59	<0.39 ^f	0.64	<0.41
Sodium	mg/kg	-	-	-	<1100	<1300	<1100	<1100	<1200	<1200	<780 ^f	<1100	<820
Thallium	mg/kg	-	-	-	<1.1	<1.3	<1.1	<1.1	<1.2	<1.2	<0.78 ^f	<1.1	<0.82
Vanadium	mg/kg	-	100	-	13.1	16.1	12.9	13.2	26.5	<5.9	8.6 ^f	16.3	11.2
Zinc	mg/kg	109	2200	10000	117	552	175	82.7	12.2	8.8	8.4 ^f	38.8	81.7
General Chemistry													
Cyanide	mg/kg	27	27	27	<0.31	<0.28	<0.25	<0.21	<0.30	<0.26	<0.28	<0.27	<0.30
Solids, Percent	%	-	-	-	96.2	74.8	86.8	94	83	87.9	80.6	89.9	78.2

Footnotes:

Associated CCV outside of control limits low.

Associated CCV outside of control limits high, sample was ND.

^c This compound in blank spike is outside in house QC limits bias high.

Associated CCV outside of control limits low. Low-level verification was analyzed to demonstrate system suitability to detect affected analytes. Sample was ND.

More than 40 % RPD for detected concentrations between the two GC columns.

Elevated sample detection limit due to difficult sample matrix.

Regulatory limits listed in this document have been obtained from the latest version of the regulations cited and are used for advisory purposes only. SGS assumes no responsibility for errors in regulatory documents or changes to criteria detailed in later versions of the referenced regulation. It is the responsibility of the user to verify these limits before using or reporting any data.

47 results exceeded regulatory criteria.

Additional Notes:

mg/kg = Miligrams per kilogram

ND = Not Detected

- = No soil cleanup objective established
- J = The reported result is an estimate. The value is less than the minimum calibration level but greater than the estimated detection limit (EDL)

USCO = NY Unrestricted Use Soil Cleanup Objectives (6 NYCRR 375-6 12/06)

RSCO = NY Residential Use Soil Cleanup Objectives (10/10) (6 NYCRR 375-6 12/06)

RRSCO = NY Restricted Residential Use Soil Cleanup Objectives w/CP-51 (10/10) (6 NYCRR 375-6 12/06)

= Compound was detected

Concentration exceeds USCOs

= Concentration exceeds RSCOs

Concentration exceeds RRSCOs

Client Sample ID:	USCO	B&C C	RRSCO	SB-10 (4.5-5.0)	SB-11 (4.5-5.0)	SB-12 (4.5-5.0)	SB-13 (4.5-5.0)	SB-14 (4.5-5.0)	SB-15 (4.5-5.0)	SB-16 (5.0-5.5)	SB-17 (4.5-5.0)	SB-18 (4.5-5.0)	SB-19 (4.5-5.0)
Lab Sample ID:	0300	KSCO	KK3CO	JD29763-9	JD29763-2	JD29763-1	JD29816-2	JD29763-3	JD29816-3	JD29763-7	JD29763-8	JD29816-4	JD29816-9
Date Sampled:				8/10/2021	8/10/2021	8/10/2021	8/11/2021	8/10/2021	8/11/2021	8/10/2021	8/10/2021	8/11/2021	8/11/2021
Matrix: Units				Soil									

·			DOGG	DD000	` '	, ,			, ,	` '	, ,	` '	, ,	, ,
Lab Sample ID:		usco	RSCO	RRSCO	JD29763-9	JD29763-2	JD29763-1	JD29816-2	JD29763-3	JD29816-3	JD29763-7	JD29763-8	JD29816-4	JD29816-9
Date Sampled:					8/10/2021	8/10/2021	8/10/2021	8/11/2021	8/10/2021	8/11/2021	8/10/2021	8/10/2021	8/11/2021	8/11/2021
Matrix:	Units				Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
						•	•	•						•
MS Volatiles (SW846 8260D)														
Acetone	mg/kg	0.05	100	100	ND (0.0042)	0.0203	0.0577	0.0295	ND (0.0041)	ND (0.0042)	ND (0.0042)	ND (0.0046)	0.0742	0.0278
Benzene	mg/kg	0.06	2.9	4.8	ND (0.00046)	ND (0.00038)	ND (0.00062)	ND (0.00050)	ND (0.00045)	ND (0.00046)	ND (0.00046)	ND (0.00051)	ND (0.00046)	ND (0.00047)
Bromochloromethane	mg/kg	-	-	-	ND (0.00056)	ND (0.00046)	ND (0.00076)	ND (0.00061)	ND (0.00055)	ND (0.00056)	ND (0.00057)	ND (0.00062)	ND (0.00056)	ND (0.00058)
Bromodichloromethane	mg/kg	-	-	-	ND (0.00043)	ND (0.00035)	ND (0.00058)	ND (0.00047)	ND (0.00042)	ND (0.00043)	ND (0.00044)	ND (0.00048)	ND (0.00043)	ND (0.00045)
Bromoform	mg/kg	-	-	-	ND (0.0014)	ND (0.0011)	ND (0.0018)	ND (0.0015)	ND (0.0013)	ND (0.0014)	ND (0.0014)	ND (0.0015)	ND (0.0014)	ND (0.0014)
Bromomethane	mg/kg	-	-	-	ND (0.00077)	ND (0.00063)	ND (0.0010)	ND (0.00084)	ND (0.00075)	ND (0.00077)	ND (0.00078)	ND (0.00085)	ND (0.00077)	ND (0.00079)
2-Butanone (MEK)	mg/kg	0.12	100	100	ND (0.0024)	ND (0.0020)	0.0112 J	0.0060 J	ND (0.0024)	ND (0.0024)	ND (0.0025)	ND (0.0027)	0.0174	0.0063 J
Carbon disulfide	mg/kg	-	100	-	ND (0.00054)	ND (0.00044)	0.00076 J	ND (0.00058)	ND (0.00053)	ND (0.00054)	ND (0.00054)	ND (0.00060)	ND (0.00054)	0.0020 J
Carbon tetrachloride	mg/kg	0.76	1.4	2.4	ND (0.00062)	ND (0.00051)	ND (0.00084)	ND (0.00068)	ND (0.00061)	ND (0.00062)	ND (0.00063)	ND (0.00069)	ND (0.00062)	ND (0.00064)
Chlorobenzene	mg/kg	1.1	100	100	ND (0.00046)	ND (0.00038)	ND (0.00062)	ND (0.00050)	ND (0.00045)	ND (0.00046)	ND (0.00047)	ND (0.00051)	ND (0.00046)	ND (0.00048)
Chloroethane	mg/kg	-	-	-	ND (0.00059)	ND (0.00049)	ND (0.00080)	ND (0.00065)	ND (0.00058)	ND (0.00060)	ND (0.00060)	ND (0.00066)	ND (0.00060)	ND (0.00061)
Chloroform	mg/kg	0.37	10	49	ND (0.00052)	ND (0.00043)	ND (0.00070)	ND (0.00057)	ND (0.00051)	ND (0.00052)	ND (0.00053)	ND (0.00058)	ND (0.00052)	ND (0.00054)
Chloromethane	mg/kg	_	_	_	ND (0.0020)	ND (0.0016)	ND (0.0027)	ND (0.0021) b	ND (0.0019)	ND (0.0020) b	ND (0.0020)	ND (0.0022)	ND (0.0020) b	ND (0.0020) b
Cyclohexane	mg/kg	_	 -	_	ND (0.00066)	ND (0.00054)	ND (0.00089)	ND (0.00072)	ND (0.00065)	ND (0.00066)	ND (0.00067)	ND (0.00073)	ND (0.00066)	ND (0.00068)
1,2-Dibromo-3-chloropropane	mg/kg	_	 -	_	ND (0.00070)	ND (0.00057)	ND (0.00094)	ND (0.00076)	ND (0.00068)	ND (0.00070)	ND (0.00070)	ND (0.00077)	ND (0.00070)	ND (0.00072)
Dibromochloromethane	mg/kg	_		_	ND (0.00056)	ND (0.00046)	ND (0.00076)	ND (0.00061)	ND (0.00055)	ND (0.00056)	ND (0.00057)	ND (0.00062)	ND (0.00056)	ND (0.00058)
1,2-Dibromoethane	mg/kg	_	 -	_	ND (0.00042)	ND (0.00035)	ND (0.00057)	ND (0.00046)	ND (0.00041)	ND (0.00042)	ND (0.00043)	ND (0.00047)	ND (0.00042)	ND (0.00044)
1,2-Dichlorobenzene	mg/kg	1.1	100	100	ND (0.00055)	ND (0.00045)	ND (0.00074)	ND (0.00060)	ND (0.00054)	ND (0.00055)	ND (0.00055)	ND (0.00061)	ND (0.00055)	ND (0.00057)
1,3-Dichlorobenzene	mg/kg	2.4	17	49	ND (0.00050)	ND (0.00041)	ND (0.00067)	ND (0.00054)	ND (0.00049)	ND (0.00050)	ND (0.00050)	ND (0.00055)	ND (0.00050)	ND (0.00051)
1,4-Dichlorobenzene	mg/kg	1.8	9.8	13	ND (0.00050)	ND (0.00041)	ND (0.00067)	ND (0.00054)	ND (0.00049)	ND (0.00050)	ND (0.00050)	ND (0.00055)	ND (0.00050)	ND (0.00051)
Dichlorodifluoromethane	mg/kg	_			ND (0.00073)	ND (0.00060)	ND (0.00098)	ND (0.00079)	ND (0.00072)	ND (0.00073)	ND (0.00074)	ND (0.00081)	ND (0.00073)	ND (0.00075)
1,1-Dichloroethane		0.27	19	26	ND (0.00073)	ND (0.00041)	ND (0.00037)	ND (0.00079) b	ND (0.00072)	ND (0.00073)	ND (0.00074)	ND (0.00055)	ND (0.00073) b	ND (0.00073)
1,2-Dichloroethane	mg/kg	0.27	2.3	3.1	ND (0.00030)	ND (0.00041)	ND (0.00067)	ND (0.00054)	ND (0.00049)	ND (0.00030)	ND (0.00030)	ND (0.00052)	ND (0.00030)	ND (0.00031)
1,1-Dichloroethene	mg/kg	0.02	100	100	ND (0.00047)	ND (0.00039)	ND (0.00089)	ND (0.00031)	ND (0.00046)	ND (0.00047)	ND (0.00048)	ND (0.00032)	ND (0.00047)	ND (0.00049)
	mg/kg	0.33	59	100	, ,	,	, ,	, ,	, ,		` ,	` '	, ,	,
cis-1,2-Dichloroethene	mg/kg				ND (0.00084)	ND (0.00069)	ND (0.0011)	ND (0.00092)	ND (0.00083)	ND (0.00085)	ND (0.00085)	ND (0.00094)	ND (0.00085)	ND (0.00087)
trans-1,2-Dichloroethene	mg/kg	0.19	100	100	ND (0.00061)	ND (0.00051)	ND (0.00083)	ND (0.00067)	ND (0.00060)	ND (0.00062)	ND (0.00062)	ND (0.00068)	ND (0.00062)	ND (0.00063)
1,2-Dichloropropane	mg/kg	-	 -	-	ND (0.00047)	ND (0.00039)	ND (0.00064)	ND (0.00052)	ND (0.00047)	ND (0.00048)	ND (0.00048)	ND (0.00053)	ND (0.00048)	ND (0.00049)
cis-1,3-Dichloropropene	mg/kg	-	 -	-	ND (0.00048)	ND (0.00039)	ND (0.00064)	ND (0.00052)	ND (0.00047)	ND (0.00048)	ND (0.00048)	ND (0.00053)	ND (0.00048)	ND (0.00049)
trans-1,3-Dichloropropene	mg/kg	-	- 20	- 11	ND (0.00046)	ND (0.00038)	ND (0.00062)	ND (0.00050)	ND (0.00045)	ND (0.00046)	ND (0.00046)	ND (0.00051)	ND (0.00046)	ND (0.00047)
Ethylbenzene	mg/kg	1	30	41	ND (0.00045)	ND (0.00037)	0.00070 J	ND (0.00050)	ND (0.00045)	ND (0.00046)	ND (0.00046)	ND (0.00050)	ND (0.00046)	ND (0.00047)
Freon 113	mg/kg	-	100	-	ND (0.0027)	ND (0.0022)	ND (0.0036)	ND (0.0029)	ND (0.0026)	ND (0.0027)	ND (0.0027)	ND (0.0030)	ND (0.0027)	ND (0.0028)
2-Hexanone	mg/kg	-	-	-	ND (0.0021)	ND (0.0018)	ND (0.0029)	ND (0.0023) °	ND (0.0021)	ND (0.0021) °	ND (0.0022)	ND (0.0024)	ND (0.0021) °	ND (0.0022) ^c
Isopropylbenzene	mg/kg	-	100	-	ND (0.0014)	ND (0.0012)	0.0139	ND (0.0016)	ND (0.0014)	ND (0.0014)	ND (0.0014)	ND (0.0016)	ND (0.0014)	ND (0.0015)
Methyl Acetate	mg/kg	-	-	-	ND (0.0014)	ND (0.0011)	ND (0.0019)	ND (0.0015)	ND (0.0014)	ND (0.0014)	ND (0.0014)	ND (0.0015)	ND (0.0014)	ND (0.0014)
Methylcyclohexane	mg/kg	-	-	-	ND (0.00088)	ND (0.00072)	ND (0.0012)	ND (0.00096)	ND (0.00086)	ND (0.00088)	ND (0.00089)	ND (0.00097)	ND (0.00088)	ND (0.00091)
Methyl Tert Butyl Ether	mg/kg	0.93	62	100	ND (0.00047)	ND (0.00039)	ND (0.00064)	ND (0.00051)	ND (0.00046)	ND (0.00047)	ND (0.00048)	ND (0.00052)	ND (0.00047)	ND (0.00049)
4-Methyl-2-pentanone(MIBK)	mg/kg	-	<u> </u>	-	ND (0.0023)	ND (0.0019)	ND (0.0031)	ND (0.0025)	ND (0.0022)	ND (0.0023)	ND (0.0023)	ND (0.0025)	ND (0.0023)	ND (0.0024)
Methylene chloride	mg/kg	0.05	51	100	ND (0.0026)	ND (0.0022)	ND (0.0035)	ND (0.0029)	ND (0.0026)	ND (0.0026)	ND (0.0027)	ND (0.0029)	ND (0.0026)	ND (0.0027)
Styrene	mg/kg	-	<u> </u>	-	ND (0.00040)	ND (0.00033)	ND (0.00054)	ND (0.00044)	ND (0.00040)	ND (0.00041)	ND (0.00041)	ND (0.00045)	ND (0.00040)	ND (0.00042)
1,1,2,2-Tetrachloroethane	mg/kg	-	35	-	ND (0.00060)	ND (0.00050)	ND (0.00081)	ND (0.00065)	ND (0.00059)	ND (0.00060)	ND (0.00061)	ND (0.00067)	ND (0.00060)	ND (0.00062)
Tetrachloroethene	mg/kg	1.3	5.5	19	ND (0.00058)	ND (0.00048)	ND (0.00079)	ND (0.00063)	ND (0.00057)	ND (0.00058)	ND (0.00059)	ND (0.00065)	ND (0.00058)	ND (0.00060)
Toluene	mg/kg	0.7	100	100	ND (0.00053)	ND (0.00043)	ND (0.00071)	ND (0.00057)	0.00067 J	ND (0.00053)	ND (0.00053)	0.0010 J	ND (0.00053)	ND (0.00054)
1,2,3-Trichlorobenzene	mg/kg	-	<u> </u>	-	ND (0.0025)	ND (0.0021)	ND (0.0034)	ND (0.0027)	ND (0.0025)	ND (0.0025)	ND (0.0025)	ND (0.0028)	ND (0.0025)	ND (0.0026)
1,2,4-Trichlorobenzene	mg/kg	-		-	ND (0.0025)	ND (0.0021)	ND (0.0034)	ND (0.0027)	ND (0.0025)	ND (0.0025)	ND (0.0025)	ND (0.0028)	ND (0.0025)	ND (0.0026)

							3L3i Collsuiti							
Client Sample ID:					SB-10 (4.5-5.0)	SB-11 (4.5-5.0)	SB-12 (4.5-5.0)	SB-13 (4.5-5.0)	SB-14 (4.5-5.0)	SB-15 (4.5-5.0)	SB-16 (5.0-5.5)	SB-17 (4.5-5.0)	SB-18 (4.5-5.0)	SB-19 (4.5-5.0)
Lab Sample ID:		USCO	RSCO	RRSCO	JD29763-9	JD29763-2	JD29763-1	JD29816-2	JD29763-3	JD29816-3	JD29763-7	JD29763-8	JD29816-4	JD29816-9
Date Sampled:					8/10/2021	8/10/2021	8/10/2021	8/11/2021	8/10/2021	8/11/2021	8/10/2021	8/10/2021	8/11/2021	8/11/2021
Matrix:	Units				Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Matrix	_ Cinto				Con	Con	30 11	Con	0011	0011	Con	Con	0011	0011
1,1,1-Trichloroethane	mg/kg	0.68	100	100	ND (0.00048)	ND (0.00040)	ND (0.00065)	ND (0.00053)	ND (0.00048)	ND (0.00049)	ND (0.00049)	ND (0.00054)	ND (0.00049)	ND (0.00050)
1,1,2-Trichloroethane	mg/kg	-	-	-	ND (0.00056)	ND (0.00046)	ND (0.00075)	ND (0.00061)	ND (0.00055)	ND (0.00056)	ND (0.00056)	ND (0.00062)	ND (0.00056)	ND (0.00057)
Trichloroethene	mg/kg	0.47	10	21	ND (0.00076)	ND (0.00063)	ND (0.0010)	ND (0.00083)	ND (0.00075)	ND (0.00077)	ND (0.00077)	ND (0.00085)	ND (0.00077)	ND (0.00079)
Trichlorofluoromethane	mg/kg	-	-		ND (0.00069)	ND (0.00057)	ND (0.00093)	ND (0.00075)	ND (0.00067)	ND (0.00069)	ND (0.00069)	ND (0.00076)	ND (0.00069)	ND (0.00071)
Vinyl chloride	mg/kg	0.02	0.21	0.9	ND (0.00048)	ND (0.00040)	ND (0.00065)	ND (0.00053) ^b	ND (0.00047)	ND (0.00048) ^b	ND (0.00049)	ND (0.00054)	ND (0.00048) ^b	ND (0.00050) b
m,p-Xylene	mg/kg	0.02	100	100	ND (0.00090)	ND (0.00040)	ND (0.0003)	ND (0.00098)	ND (0.00047)	ND (0.00090)	ND (0.00043)	ND (0.00034)	ND (0.00090)	ND (0.00030)
o-Xylene	mg/kg	0.26	100	100	ND (0.00046)	ND (0.00074)	0.0012 J	ND (0.00050)	ND (0.00045)	ND (0.00046)	ND (0.00047)	ND (0.00051)	ND (0.00046)	ND (0.00048)
Xylene (total)		0.26	100	100	ND (0.00046)	ND (0.00038)	0.0012 J	ND (0.00050)	ND (0.00045)	ND (0.00046)	ND (0.00047)	ND (0.00051)	ND (0.00046)	ND (0.00048)
Aylerie (total)	mg/kg	0.20	100	100	ND (0.00040)	ND (0.00036)	0.00123	ND (0.00030)	ND (0.00043)	ND (0.00040)	ND (0.00047)	ND (0.00031)	ND (0.00040)	ND (0.00046)
MS Volatile TIC														
INIS VOIALIIE TIC														
Total TIC, Volatile	mg/kg	_	I	1	0	0.0042 J	7.5 J	0	0	0	0	0	0	0
Total TIC, Volatile	i iig/kg				0	0.0042 3	7.50	0		U	0	0	U	0
MS Semi-volatiles (SW846														
INO CENTI-VOIGINES (CVVC+C														
2-Chlorophenol	mg/kg	_	100		ND (0.017)	ND (0.017)	ND (0.035)	ND (0.019)	ND (0.019)	ND (0.019)	ND (0.017)	ND (0.020)	ND (0.020)	ND (0.019)
4-Chloro-3-methyl phenol	mg/kg		-	_	ND (0.021)	ND (0.021)	ND (0.044)	ND (0.023)	ND (0.024)	ND (0.024)	ND (0.022)	ND (0.024)	ND (0.024)	ND (0.024)
2,4-Dichlorophenol	mg/kg		100	_	ND (0.021)	ND (0.021)	ND (0.044)	ND (0.023)	ND (0.024)	ND (0.024)	ND (0.022)	ND (0.024)	ND (0.024)	ND (0.024)
2,4-Dimethylphenol	mg/kg		100		ND (0.029)	ND (0.029)	ND (0.001)	ND (0.068)	ND (0.069)	ND (0.069)	ND (0.063)	ND (0.034)	ND (0.034)	ND (0.033)
			400										· .	
2,4-Dinitrophenol	mg/kg	-	100	-	ND (0.13) ^b	ND (0.13) ^b	ND (0.27) b	ND (0.14) ^d	ND (0.15) b	ND (0.15) ^d	ND (0.13) ^b	ND (0.15) ^b	ND (0.15) ^d	ND (0.15) ^d
4,6-Dinitro-o-cresol	mg/kg	-	-	-	ND (0.037)	ND (0.037)	ND (0.076)	ND (0.041) ^d	ND (0.042)	ND (0.042) ^d	ND (0.038)	ND (0.042)	ND (0.042) ^d	ND (0.042) ^d
2-Methylphenol	mg/kg	0.33	100	100	ND (0.022)	ND (0.022)	ND (0.045)	ND (0.024)	ND (0.025)	ND (0.025)	ND (0.023)	ND (0.025)	ND (0.025)	ND (0.025)
3&4-Methylphenol	mg/kg	-	-	-	ND (0.028)	ND (0.028)	ND (0.058)	ND (0.031)	ND (0.032)	ND (0.032)	ND (0.029)	ND (0.033)	ND (0.033)	ND (0.032)
2-Nitrophenol	mg/kg	-	-	-	ND (0.023)	ND (0.023)	ND (0.047)	ND (0.025)	ND (0.026)	ND (0.026)	ND (0.023)	ND (0.026)	ND (0.026)	ND (0.026)
4-Nitrophenol	mg/kg	-	-	-	ND (0.092)	ND (0.092)	ND (0.19)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.094)	ND (0.11)	ND (0.11)	ND (0.10)
Pentachlorophenol	mg/kg	8.0	2.4	6.7	ND (0.032)	ND (0.032)	ND (0.067)	ND (0.036)	ND (0.037)	ND (0.037)	ND (0.033)	ND (0.037)	ND (0.037)	ND (0.037)
Phenol	mg/kg	0.33	100	100	ND (0.018)	ND (0.018)	ND (0.037)	ND (0.020) ^d	ND (0.020)	ND (0.020) ^d	ND (0.018)	ND (0.021)	ND (0.021) ^d	ND (0.020) ^d
2,3,4,6-Tetrachlorophenol	mg/kg	-	-	-	ND (0.023)	ND (0.023)	ND (0.047)	ND (0.025)	ND (0.026)	ND (0.026)	ND (0.023)	ND (0.026)	ND (0.026)	ND (0.026)
2,4,5-Trichlorophenol	mg/kg	-	100	-	ND (0.026)	ND (0.026)	ND (0.053)	ND (0.029)	ND (0.029)	ND (0.029)	ND (0.026)	ND (0.030)	ND (0.030)	ND (0.029)
2,4,6-Trichlorophenol	mg/kg	-	-	-	ND (0.020)	ND (0.021)	ND (0.042)	ND (0.023)	ND (0.023)	ND (0.023)	ND (0.021)	ND (0.024)	ND (0.024)	ND (0.023)
Acenaphthene	mg/kg	20	100	100	ND (0.012)	ND (0.012)	0.217	ND (0.013)	ND (0.013)	ND (0.013)	ND (0.012)	ND (0.014)	ND (0.014)	ND (0.014)
Acenaphthylene	mg/kg	100	100	100	ND (0.017)	ND (0.018)	0.194	ND (0.019)	ND (0.020)	ND (0.020)	ND (0.018)	ND (0.020)	ND (0.020)	ND (0.020)
Acetophenone	mg/kg	-	-	-	ND (0.0074)	ND (0.0074)	ND (0.015)	ND (0.0082)	ND (0.0084)	ND (0.0084)	ND (0.0076)	ND (0.0085)	ND (0.0085)	ND (0.0084)
Anthracene	mg/kg	100	100	100	ND (0.021)	ND (0.021)	0.238	ND (0.023)	ND (0.024)	ND (0.024)	ND (0.022)	ND (0.024)	ND (0.024)	ND (0.024)
Atrazine	mg/kg	-	-	-	ND (0.015)	ND (0.015)	ND (0.030)	ND (0.016)	ND (0.017)	ND (0.017)	ND (0.015)	ND (0.017)	ND (0.017)	ND (0.017)
Benzo(a)anthracene	mg/kg	1	1	1	0.0592	ND (0.0098)	0.334	0.0298 J	ND (0.011)	0.0130 J	ND (0.010)	ND (0.011)	0.0227 J	ND (0.011)
Benzo(a)pyrene	mg/kg	1	1	1	0.0576	ND (0.016)	0.32	0.0265 J	ND (0.018)	ND (0.018)	ND (0.016)	ND (0.018)	0.0214 J	ND (0.018)
Benzo(b)fluoranthene	mg/kg	1	1	1	0.0785	ND (0.015)	0.431	0.0289 J	ND (0.017)	ND (0.017)	ND (0.016)	ND (0.018)	0.0299 J	ND (0.017)
Benzo(g,h,i)perylene	mg/kg	100	100	100	0.0445	ND (0.017)	0.266	ND (0.019)	ND (0.020)	ND (0.020)	ND (0.018)	ND (0.020)	ND (0.020)	ND (0.020)
Benzo(k)fluoranthene	mg/kg	0.8	1	3.9	0.0292 J	ND (0.016)	0.142	ND (0.018)	ND (0.018)	ND (0.018)	ND (0.016)	ND (0.019)	ND (0.019)	ND (0.018)
4-Bromophenyl phenyl ether	mg/kg	-	<u> </u>	-	ND (0.013)	ND (0.013)	ND (0.027)	ND (0.015)	ND (0.015)	ND (0.015)	ND (0.014)	ND (0.015)	ND (0.015)	ND (0.015)
Butyl benzyl phthalate	mg/kg	-	100	-	ND (0.0084)	ND (0.0084)	ND (0.017)	ND (0.0093)	ND (0.0095)	ND (0.0095)	ND (0.0086)	ND (0.0097)	ND (0.0097)	ND (0.0096)
1,1'-Biphenyl	mg/kg	-	-	-	0.0050 J	ND (0.0047)	0.0609 J	ND (0.0052)	ND (0.0053)	ND (0.0053)	ND (0.0048)	ND (0.0054)	ND (0.0054)	ND (0.0054)
Benzaldehyde	mg/kg	-	-	_	ND (0.0085)	ND (0.0086)	ND (0.018)	ND (0.0094)	ND (0.0097)	ND (0.0097)	ND (0.0087)	ND (0.0098)	0.0108 J	ND (0.0097)
2-Chloronaphthalene	mg/kg	-	-	_	ND (0.0082)	ND (0.0082)	ND (0.017)	ND (0.0091)	ND (0.0093)	ND (0.0093)	ND (0.0084)	ND (0.0094)	ND (0.0094)	ND (0.0093)
4-Chloroaniline	mg/kg	_	100		ND (0.012)	ND (0.012)	ND (0.026)	ND (0.014) ^d	ND (0.014)	ND (0.014) ^d	ND (0.013)	ND (0.014)	ND (0.014) ^d	ND (0.014) ^d
T-OHOIOAIIIIIIE	ilig/kg	_	100	_	140 (0.012)	140 (0.012)	ואט (ט.טבט)	14) (U.U14)	ND (0.014)	ND (0.014)	(פוט.ט) שאו	ND (0.014)	ND (0.014)	110 (0.014)

Table 3.1 - Soil Analytical Table August 10 - August 12, 2021 300, 303, 320, 321, and 330 Prospect Street, Inwood, NY Project No. 11457

SESI Consulting Engineers

Client Sample ID:					SB-10 (4.5-5.0)	SB-11 (4.5-5.0)	SB-12 (4.5-5.0)	SB-13 (4.5-5.0)	SB-14 (4.5-5.0)	SB-15 (4.5-5.0)	SB-16 (5.0-5.5)	SB-17 (4.5-5.0)	SB-18 (4.5-5.0)	SB-19 (4.5-5.0)
Lab Sample ID:		USCO	RSCO	RRSCO	JD29763-9	JD29763-2	JD29763-1	JD29816-2	JD29763-3	JD29816-3	JD29763-7	JD29763-8	JD29816-4	JD29816-9
Date Sampled:					8/10/2021	8/10/2021	8/10/2021	8/11/2021	8/10/2021	8/11/2021	8/10/2021	8/10/2021	8/11/2021	8/11/2021
Matrix:	Units				Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
			•						•					,
Carbazole	mg/kg	-	-	-	0.0051 J	ND (0.0050)	0.0639 J	ND (0.0055)	ND (0.0057)	ND (0.0057)	ND (0.0051)	ND (0.0058)	ND (0.0057)	ND (0.0057)
Caprolactam	mg/kg	-	-	-	ND (0.014) ^d	ND (0.014) ^d	ND (0.028) ^d	ND (0.015) ^d	ND (0.015) ^d	ND (0.015) ^d	ND (0.014) ^d	ND (0.016) ^d	ND (0.016) ^d	ND (0.015) ^d
Chrysene	mg/kg	1	1	3.9	0.0594	ND (0.011)	0.37	0.0278 J	ND (0.012)	ND (0.012)	ND (0.011)	ND (0.012)	0.0210 J	ND (0.012)
bis(2-Chloroethoxy)methane	mg/kg	-	-	-	ND (0.0074)	ND (0.0074)	ND (0.015)	ND (0.0082)	ND (0.0083)	ND (0.0083)	ND (0.0075)	ND (0.0085)	ND (0.0085)	ND (0.0084)
bis(2-Chloroethyl)ether	mg/kg	-	-	-	ND (0.015)	ND (0.015)	ND (0.031)	ND (0.016)	ND (0.017)	ND (0.017)	ND (0.015)	ND (0.017)	ND (0.017)	ND (0.017)
2,2'-Oxybis(1-chloropropane)	mg/kg	-	-	-	ND (0.012)	ND (0.012)	ND (0.026)	ND (0.014)	ND (0.014)	ND (0.014)	ND (0.013)	ND (0.014)	ND (0.014)	ND (0.014)
4-Chlorophenyl phenyl ether	mg/kg	-	-	-	ND (0.011)	ND (0.011)	ND (0.023)	ND (0.012)	ND (0.013)	ND (0.013)	ND (0.011)	ND (0.013)	ND (0.013)	ND (0.013)
2,4-Dinitrotoluene	mg/kg	-	-	-	ND (0.011)	ND (0.011)	ND (0.022)	ND (0.012)	ND (0.012)	ND (0.012)	ND (0.011)	ND (0.012)	ND (0.012)	ND (0.012)
2,6-Dinitrotoluene	mg/kg	-	1.03	-	ND (0.017)	ND (0.017)	ND (0.036)	ND (0.019)	ND (0.020)	ND (0.020)	ND (0.018)	ND (0.020)	ND (0.020)	ND (0.020)
3,3'-Dichlorobenzidine	mg/kg	-	_	-	ND (0.029)	ND (0.029)	ND (0.059) b	ND (0.032)	ND (0.033)	ND (0.033)	ND (0.029)	ND (0.033)	ND (0.033)	ND (0.033)
1,4-Dioxane	mg/kg	0.1	9.8	13	ND (0.023)	ND (0.023)	ND (0.047)	ND (0.025)	ND (0.026)	ND (0.026)	ND (0.023)	ND (0.026)	ND (0.026)	ND (0.026)
Dibenzo(a,h)anthracene	mg/kg	0.33	0.33	0.33	ND (0.015)	ND (0.015)	0.0572 J	ND (0.017)	ND (0.017)	ND (0.017)	ND (0.016)	ND (0.018)	ND (0.018)	ND (0.017)
Dibenzofuran	mg/kg	7	14	59	ND (0.014)	ND (0.014)	0.18	ND (0.016)	ND (0.016)	ND (0.016)	ND (0.014)	ND (0.016)	ND (0.016)	ND (0.016)
Di-n-butyl phthalate	mg/kg	-	100	-	ND (0.0056)	ND (0.0056)	ND (0.012)	ND (0.0062)	ND (0.0064)	ND (0.0064)	ND (0.0057)	ND (0.0065)	ND (0.0065)	ND (0.0064)
Di-n-octyl phthalate	mg/kg	_	100	_	ND (0.0086)	ND (0.0086)	ND (0.018)	ND (0.0095)	ND (0.0097)	ND (0.0097)	ND (0.0088)	ND (0.0099)	ND (0.0099)	ND (0.0098)
Diethyl phthalate	mg/kg	-	100	_	ND (0.0073)	ND (0.0074)	ND (0.015)	ND (0.0033)	ND (0.0083)	ND (0.0083)	ND (0.0075)	ND (0.0084)	ND (0.0084)	ND (0.0083)
Dimethyl phthalate	mg/kg	_	100	_	ND (0.0061)	ND (0.0061)	ND (0.013)	ND (0.0068)	ND (0.0069)	ND (0.0069)	ND (0.0063)	ND (0.0004)	ND (0.0071)	ND (0.0000)
bis(2-Ethylhexyl)phthalate	mg/kg	-	50	_	ND (0.0080)	ND (0.0081)	ND (0.017)	ND (0.0000)	ND (0.0091)	ND (0.0091)	ND (0.0082)	ND (0.0093)	ND (0.0093)	ND (0.0070)
Fluoranthene	mg/kg	100	100	100	0.0972	ND (0.015)	0.777	0.0379 J	ND (0.0031)	0.0189 J	ND (0.0062)	ND (0.0030)	0.0383 J	ND (0.0032)
Fluorene	mg/kg	30	100	100	ND (0.016)	ND (0.016)	0.38	ND (0.017)	ND (0.017)	ND (0.018)	ND (0.016)	ND (0.018)	ND (0.018)	ND (0.017)
Hexachlorobenzene	mg/kg	0.33	0.41	1.2	ND (0.0087)	ND (0.0087)	ND (0.018)	ND (0.0096)	ND (0.0099)	ND (0.0099)	ND (0.0089)	ND (0.010)	ND (0.010)	ND (0.0099)
Hexachlorobutadiene	mg/kg	-	-	-	ND (0.014)	ND (0.014)	ND (0.029)	ND (0.015)	ND (0.016)	ND (0.016)	ND (0.014)	ND (0.016)	ND (0.016)	ND (0.016)
Hexachlorocyclopentadiene		_			ND (0.014)	ND (0.014)	ND (0.028)	ND (0.015) ^d	ND (0.016)	ND (0.016) ^d	ND (0.014)	ND (0.016)	ND (0.016) ^d	ND (0.016) ^d
Hexachloroethane	mg/kg mg/kg	<u> </u>	-	-	ND (0.014)	ND (0.014)	ND (0.028)	ND (0.013)	ND (0.019)	ND (0.010)	ND (0.014)	ND (0.010)	ND (0.010)	ND (0.019)
Indeno(1,2,3-cd)pyrene		0.5	0.5	0.5	0.0447	ND (0.017)	0.304	ND (0.019)	ND (0.018)	ND (0.018)	ND (0.017)	ND (0.020)	ND (0.020)	ND (0.018)
Isophorone	mg/kg	-	100	0.5	ND (0.0074)	ND (0.0074)	ND (0.015)	ND (0.018)	ND (0.0083)	ND (0.018)	ND (0.017)	ND (0.019)	ND (0.019)	ND (0.0084)
2-Methylnaphthalene	mg/kg mg/kg	<u> </u>	0.41	_	ND (0.0074)	ND (0.0074)	0.338	ND (0.0082)	ND (0.0088)	ND (0.0088)	ND (0.0073)	ND (0.0090)	ND (0.0083)	ND (0.0089)
2-Nitroaniline	mg/kg	<u> </u>	0.41		ND (0.0076)	ND (0.0076)	ND (0.017)	ND (0.0090)	ND (0.0088)	ND (0.0088)	ND (0.0083)	ND (0.0090)	ND (0.0094)	ND (0.0093)
3-Nitroaniline	mg/kg	<u> </u>	 		ND (0.0086)	ND (0.0086)	ND (0.017)	ND (0.0090)	ND (0.0092)	ND (0.0092)	ND (0.0088)	ND (0.0094)	ND (0.0094)	ND (0.0098)
4-Nitroaniline	mg/kg	<u> </u>	<u> </u>		ND (0.0089)	ND (0.0089)	ND (0.018)	ND (0.0099)	ND (0.0090)	ND (0.0090)	ND (0.0091)	ND (0.0033)	ND (0.0099)	ND (0.010)
Naphthalene	mg/kg	12	100	100	ND (0.00097)	ND (0.0097)	0.177	ND (0.0033)	ND (0.010)	ND (0.010)	ND (0.0091)	ND (0.010)	ND (0.010)	ND (0.010)
Nitrobenzene	mg/kg	-	3.7	15	ND (0.013)	ND (0.013)	ND (0.027)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.0033)	ND (0.011)	ND (0.011)	ND (0.011)
			0.7	10	` ,	, , , , , , , , , , , , , , , , , , , ,	ND (0.021)	`	· · · · · ·	ND (0.011)	· · ·	· · · · · ·	` ′	ND (0.011)
N-Nitroso-di-n-propylamine N-Nitrosodiphenylamine	mg/kg	-	-	-	ND (0.0099) ND (0.013)	ND (0.010) ND (0.013)	ND (0.021)	ND (0.011) ND (0.014)	ND (0.011) ND (0.014)	ND (0.011) ND (0.014)	ND (0.010) ND (0.013)	ND (0.011) ND (0.015)	ND (0.011) ND (0.015)	ND (0.011) ND (0.014)
· · · · · · · · · · · · · · · · · · ·	mg/kg	100	100	100	0.0459	ND (0.013)	1.08	ND (0.014)	ND (0.014)	ND (0.014)	ND (0.013)	ND (0.013)	0.0188 J	ND (0.014)
Phenanthrene	mg/kg	100	100	100	0.0459	ND (0.012) ND (0.011)	0.736	0.0681	ND (0.013) ND (0.012)	0.0191 J	ND (0.012) ND (0.011)	ND (0.013)	0.0186 J 0.0381 J	ND (0.013)
Pyrene 1,2,4,5-Tetrachlorobenzene	mg/kg	100	100	100	ND (0.0087)	ND (0.0088)	ND (0.018)	ND (0.0097)	ND (0.0099)	ND (0.0099)	ND (0.0090)	ND (0.013)	ND (0.010)	ND (0.013)
1,2,4,5-1 etracilloroberizerie	mg/kg			_	ND (0.0007)	ND (0.0000)	ND (0.010)	ND (0.0097)	ND (0.0099)	ND (0.0099)	ND (0.0090)	ND (0.010)	ND (0.010)	ND (0.010)
MS Semi-volatile TIC														
Total TIC, Semi-Volatile	mg/kg	-	-	-	1.3 J	0	39.91 J	0.33 J	0	0.24 J	0.22 J	0	0.18 J	0
GC/LC Semi-volatiles (SW846														
Aldrin	mg/kg	0.005	0.019	0.097	ND (0.00057)	ND (0.00058)	ND (0.00060)	ND (0.00062)	ND (0.00062)	ND (0.00066)	ND (0.00060)	ND (0.00066)	ND (0.00063)	ND (0.00062)
alpha-BHC	mg/kg	0.02	0.097	0.48	ND (0.00056)	ND (0.00057)	ND (0.00059)	ND (0.00062)	ND (0.00062)	ND (0.00065)	ND (0.00059)	ND (0.00066)	ND (0.00062)	ND (0.00062)
Carpina Di 10	ıg/Ng	0.02	0.007	0.40	.15 (0.00000)	.45 (0.00001)	.45 (0.00000)	112 (0.00002)	112 (0.00002)	112 (0.00000)	.15 (0.00000)	112 (0.0000)	115 (0.00002)	.15 (0.0002)

Client Sample ID:					SB-10 (4.5-5.0)	SB-11 (4.5-5.0)	SB-12 (4.5-5.0)	SB-13 (4.5-5.0)	SB-14 (4.5-5.0)	SB-15 (4.5-5.0)	SB-16 (5.0-5.5)	SB-17 (4.5-5.0)	SB-18 (4.5-5.0)	SB-19 (4.5-5.0)
Lab Sample ID:		USCO	RSCO	RRSCO	JD29763-9	JD29763-2	JD29763-1	JD29816-2	JD29763-3	JD29816-3	JD29763-7	JD29763-8	JD29816-4	JD29816-9
Date Sampled:					8/10/2021	8/10/2021	8/10/2021	8/11/2021	8/10/2021	8/11/2021	8/10/2021	8/10/2021	8/11/2021	8/11/2021
Matrix:	Units				Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
beta-BHC	mg/kg	0.036	0.072	0.36	ND (0.00062)	ND (0.00063)	ND (0.00065)	ND (0.00068)	ND (0.00068)	ND (0.00072)	ND (0.00066)	ND (0.00073)	ND (0.00069)	ND (0.00068)
delta-BHC	mg/kg	0.030	100	100	ND (0.0006)	ND (0.00067)	ND (0.00069)	ND (0.0008)	ND (0.0008)	ND (0.00072)	ND (0.00070)	ND (0.00073)	ND (0.0003)	ND (0.00073)
gamma-BHC (Lindane)	mg/kg	0.04	0.28	1.3	ND (0.00051)	ND (0.00052)	ND (0.00053)	ND (0.00073)	ND (0.00073)	ND (0.00070)	ND (0.00076)	ND (0.00077)	ND (0.00073)	ND (0.00073)
alpha-Chlordane	mg/kg	0.094	0.91	4.2	ND (0.00056)	ND (0.00056)	ND (0.00058)	ND (0.00061)	ND (0.00061)	ND (0.00064)	ND (0.00059)	ND (0.00065)	ND (0.00062)	ND (0.00061)
gamma-Chlordane	mg/kg	0.034	0.54	- 4.2	ND (0.00030)	ND (0.00030)	0.00067 J ^e	ND (0.00034)	ND (0.00034)	ND (0.00036)	ND (0.00033)	ND (0.00037)	ND (0.00035)	ND (0.00034)
Dieldrin	mg/kg	0.005	0.039	0.2	ND (0.00031)	ND (0.00032)	ND (0.00050)	ND (0.00054)	ND (0.00052)	ND (0.00055)	ND (0.00050)	ND (0.00057)	ND (0.00052)	ND (0.00052)
4,4'-DDD	mg/kg	0.0033	2.6	13	ND (0.00063)	ND (0.00064)	ND (0.00066)	0.0017	ND (0.00070)	ND (0.00073)	ND (0.00067)	ND (0.00074)	0.244	ND (0.00069)
4,4'-DDE	mg/kg	0.0033	1.8	8.9	ND (0.00061)	ND (0.00061)	ND (0.00063)	ND (0.00066)	ND (0.00066)	ND (0.00070)	ND (0.00064)	ND (0.00071)	0.0513	ND (0.00066)
4,4'-DDT	mg/kg	0.0033	1.7	7.9	ND (0.00061)	ND (0.00062)	0.00070 J ^e	ND (0.00067)	ND (0.00067)	ND (0.00070)	ND (0.00065)	ND (0.00071)	0.0019	ND (0.00067)
Endrin	mg/kg	0.014	2.2	11	ND (0.00054)	ND (0.00054)	ND (0.00056)	ND (0.00059)	ND (0.00059)	ND (0.00062)	ND (0.00057)	ND (0.00063)	ND (0.00059)	ND (0.00059)
Endosulfan sulfate	mg/kg	2.4	4.8	24	ND (0.00054)	ND (0.00055)	ND (0.00056)	ND (0.00059)	ND (0.00059)	ND (0.00062)	ND (0.00057)	ND (0.00063)	ND (0.00060)	ND (0.00059)
Endrin aldehyde	mg/kg	-	-	-	ND (0.00039)	ND (0.00040)	ND (0.00041)	ND (0.00043)	ND (0.00043)	ND (0.00045)	ND (0.00041)	ND (0.00046)	ND (0.00043)	ND (0.00043)
Endosulfan-l	mg/kg	2.4	4.8	24	ND (0.00040)	ND (0.00040)	ND (0.00042)	ND (0.00044)	ND (0.00044)	ND (0.00046)	ND (0.00042)	ND (0.00046)	ND (0.00044)	ND (0.00044)
Endosulfan-II	mg/kg	2.4	4.8	24	ND (0.00043)	ND (0.00044)	ND (0.00045)	ND (0.00047)	ND (0.00047)	ND (0.00050)	ND (0.00046)	ND (0.00050)	ND (0.00048)	ND (0.00047)
Heptachlor	mg/kg	0.042	0.42	2.1	ND (0.00059)	ND (0.00060)	ND (0.00062)	ND (0.00065)	ND (0.00065)	ND (0.00069)	ND (0.00063)	ND (0.00069)	ND (0.00066)	ND (0.00065)
Heptachlor epoxide	mg/kg	-	0.077	-	ND (0.00048)	ND (0.00049)	ND (0.00051)	ND (0.00053)	ND (0.00053)	ND (0.00056)	ND (0.00051)	ND (0.00057)	ND (0.00053)	ND (0.00053)
Methoxychlor	mg/kg	-	100	-	ND (0.00055)	ND (0.00056)	ND (0.00057)	ND (0.00060)	ND (0.00060)	ND (0.00063)	ND (0.00058)	ND (0.00064)	ND (0.00061)	ND (0.00060)
Endrin ketone	mg/kg	-	-	-	ND (0.00050)	ND (0.00051)	ND (0.00052)	ND (0.00055)	ND (0.00055)	ND (0.00058)	ND (0.00053)	ND (0.00058)	ND (0.00055)	ND (0.00055)
Toxaphene	mg/kg	-	-	-	ND (0.016)	ND (0.016)	ND (0.017)	ND (0.018)	ND (0.018)	ND (0.019)	ND (0.017)	ND (0.019)	ND (0.018)	ND (0.018)
GC/LC Semi-volatiles (SW8														
Aroclor 1016	mg/kg	0.1	1	1	ND (0.016)	ND (0.016)	ND (0.017)	ND (0.018)	ND (0.018)	ND (0.019)	ND (0.017)	ND (0.019)	ND (0.018)	ND (0.018) ^b
`		0.1	1 1	1 1	ND (0.016) ND (0.021)	ND (0.016) ND (0.022)	ND (0.017) ND (0.022)	ND (0.018) ND (0.023)	ND (0.018) ND (0.023)	ND (0.019) ND (0.025)	ND (0.017) ND (0.023)	ND (0.019) ND (0.025)	ND (0.018) ND (0.024)	ND (0.018) ^b ND (0.023)
Aroclor 1016	mg/kg		1 1 1	1 1 1	. , ,			. ,						
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242	mg/kg mg/kg	0.1	1 1 1 1	1 1 1 1	ND (0.021)	ND (0.022)	ND (0.022)	ND (0.023)	ND (0.023)	ND (0.025)	ND (0.023)	ND (0.025)	ND (0.024)	ND (0.023)
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248	mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1	1 1 1 1 1	1 1 1 1 1	ND (0.021) ND (0.022) ND (0.014) ND (0.031)	ND (0.022) ND (0.022) ND (0.014) ND (0.031)	ND (0.022) ND (0.023) ND (0.015) ND (0.032)	ND (0.023) ND (0.024)	ND (0.023) ND (0.024) ND (0.016) ND (0.034)	ND (0.025) ND (0.025) ND (0.016) ND (0.035)	ND (0.023) ND (0.023) ND (0.015) ND (0.033)	ND (0.025) ND (0.026) ND (0.017) ND (0.036)	ND (0.024) ND (0.024)	ND (0.023) ND (0.024) ND (0.016) ND (0.034)
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254	mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1	1 1 1 1 1	1 1 1 1 1 1	ND (0.021) ND (0.022) ND (0.014) ND (0.031) ND (0.019)	ND (0.022) ND (0.022) ND (0.014) ND (0.031) ND (0.019)	ND (0.022) ND (0.023) ND (0.015) ND (0.032) ND (0.019)	ND (0.023) ND (0.024) ND (0.016) ND (0.034) ND (0.020)	ND (0.023) ND (0.024) ND (0.016) ND (0.034) ND (0.020)	ND (0.025) ND (0.025) ND (0.016) ND (0.035) ND (0.021)	ND (0.023) ND (0.023) ND (0.015) ND (0.033) ND (0.020)	ND (0.025) ND (0.026) ND (0.017) ND (0.036) ND (0.022)	ND (0.024) ND (0.024) ND (0.016) ND (0.034) ND (0.021)	ND (0.023) ND (0.024) ND (0.016) ND (0.034) ND (0.020)
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1	1 1 1 1 1 1 1	1 1 1 1 1 1	ND (0.021) ND (0.022) ND (0.014) ND (0.031) ND (0.019) ND (0.015)	ND (0.022) ND (0.022) ND (0.014) ND (0.031) ND (0.019) ND (0.015)	ND (0.022) ND (0.023) ND (0.015) ND (0.032) ND (0.019) ND (0.015)	ND (0.023) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016)	ND (0.023) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016)	ND (0.025) ND (0.025) ND (0.016) ND (0.035) ND (0.021) ND (0.017)	ND (0.023) ND (0.023) ND (0.015) ND (0.033) ND (0.020) ND (0.016)	ND (0.025) ND (0.026) ND (0.017) ND (0.036) ND (0.022) ND (0.017)	ND (0.024) ND (0.024) ND (0.016) ND (0.034) ND (0.021) ND (0.016)	ND (0.023) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016)
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1268	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1	1 1 1 1 1 1 1 1		ND (0.021) ND (0.022) ND (0.014) ND (0.031) ND (0.019) ND (0.015) ND (0.015)	ND (0.022) ND (0.022) ND (0.014) ND (0.031) ND (0.019) ND (0.015) ND (0.015)	ND (0.022) ND (0.023) ND (0.015) ND (0.032) ND (0.019) ND (0.015) ND (0.015)	ND (0.023) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016) ND (0.016)	ND (0.023) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016) ND (0.016)	ND (0.025) ND (0.025) ND (0.016) ND (0.035) ND (0.021) ND (0.017) ND (0.017)	ND (0.023) ND (0.023) ND (0.015) ND (0.033) ND (0.020) ND (0.016) ND (0.015)	ND (0.025) ND (0.026) ND (0.017) ND (0.036) ND (0.022) ND (0.017) ND (0.017)	ND (0.024) ND (0.024) ND (0.016) ND (0.034) ND (0.021) ND (0.016) ND (0.016)	ND (0.023) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016) ND (0.016)
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1	1 1 1 1 1 1 1 1 1		ND (0.021) ND (0.022) ND (0.014) ND (0.031) ND (0.019) ND (0.015)	ND (0.022) ND (0.022) ND (0.014) ND (0.031) ND (0.019) ND (0.015)	ND (0.022) ND (0.023) ND (0.015) ND (0.032) ND (0.019) ND (0.015)	ND (0.023) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016)	ND (0.023) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016)	ND (0.025) ND (0.025) ND (0.016) ND (0.035) ND (0.021) ND (0.017)	ND (0.023) ND (0.023) ND (0.015) ND (0.033) ND (0.020) ND (0.016)	ND (0.025) ND (0.026) ND (0.017) ND (0.036) ND (0.022) ND (0.017)	ND (0.024) ND (0.024) ND (0.016) ND (0.034) ND (0.021) ND (0.016)	ND (0.023) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016)
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1268	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1	1 1 1 1 1 1 1 1 1		ND (0.021) ND (0.022) ND (0.014) ND (0.031) ND (0.019) ND (0.015) ND (0.015)	ND (0.022) ND (0.022) ND (0.014) ND (0.031) ND (0.019) ND (0.015) ND (0.015)	ND (0.022) ND (0.023) ND (0.015) ND (0.032) ND (0.019) ND (0.015) ND (0.015)	ND (0.023) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016) ND (0.016)	ND (0.023) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016) ND (0.016)	ND (0.025) ND (0.025) ND (0.016) ND (0.035) ND (0.021) ND (0.017) ND (0.017)	ND (0.023) ND (0.023) ND (0.015) ND (0.033) ND (0.020) ND (0.016) ND (0.015)	ND (0.025) ND (0.026) ND (0.017) ND (0.036) ND (0.022) ND (0.017) ND (0.017)	ND (0.024) ND (0.024) ND (0.016) ND (0.034) ND (0.021) ND (0.016) ND (0.016)	ND (0.023) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016) ND (0.016)
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1268 Aroclor 1262	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1	1 1 1 1 1 1 1 1 1		ND (0.021) ND (0.022) ND (0.014) ND (0.031) ND (0.019) ND (0.015) ND (0.015)	ND (0.022) ND (0.022) ND (0.014) ND (0.031) ND (0.019) ND (0.015) ND (0.015)	ND (0.022) ND (0.023) ND (0.015) ND (0.032) ND (0.019) ND (0.015) ND (0.015)	ND (0.023) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016) ND (0.016)	ND (0.023) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016) ND (0.016)	ND (0.025) ND (0.025) ND (0.016) ND (0.035) ND (0.021) ND (0.017) ND (0.017)	ND (0.023) ND (0.023) ND (0.015) ND (0.033) ND (0.020) ND (0.016) ND (0.015)	ND (0.025) ND (0.026) ND (0.017) ND (0.036) ND (0.022) ND (0.017) ND (0.017)	ND (0.024) ND (0.024) ND (0.016) ND (0.034) ND (0.021) ND (0.016) ND (0.016)	ND (0.023) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016) ND (0.016)
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1268 Aroclor 1262 Metals Analysis	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ND (0.021) ND (0.022) ND (0.014) ND (0.031) ND (0.019) ND (0.015) ND (0.015) ND (0.023)	ND (0.022) ND (0.022) ND (0.014) ND (0.031) ND (0.019) ND (0.015) ND (0.015) ND (0.023)	ND (0.022) ND (0.023) ND (0.015) ND (0.032) ND (0.019) ND (0.015) ND (0.015) ND (0.015) ND (0.024)	ND (0.023) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016) ND (0.016) ND (0.025)	ND (0.023) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016) ND (0.016) ND (0.025)	ND (0.025) ND (0.025) ND (0.016) ND (0.035) ND (0.021) ND (0.017) ND (0.017) ND (0.026)	ND (0.023) ND (0.023) ND (0.015) ND (0.033) ND (0.020) ND (0.016) ND (0.015) ND (0.015)	ND (0.025) ND (0.026) ND (0.017) ND (0.036) ND (0.022) ND (0.017) ND (0.017) ND (0.017)	ND (0.024) ND (0.024) ND (0.016) ND (0.034) ND (0.021) ND (0.016) ND (0.016) ND (0.025)	ND (0.023) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016) ND (0.016) ND (0.016) ND (0.025)
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1268 Aroclor 1262 Metals Analysis Aluminum	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1 1 1 1 1 1 1 1 1		ND (0.021) ND (0.022) ND (0.014) ND (0.031) ND (0.015) ND (0.015) ND (0.023)	ND (0.022) ND (0.022) ND (0.014) ND (0.031) ND (0.019) ND (0.015) ND (0.015) ND (0.023)	ND (0.022) ND (0.023) ND (0.015) ND (0.032) ND (0.019) ND (0.015) ND (0.015) ND (0.024)	ND (0.023) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016) ND (0.016) ND (0.025)	ND (0.023) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016) ND (0.016) ND (0.016) ND (0.025)	ND (0.025) ND (0.025) ND (0.016) ND (0.035) ND (0.021) ND (0.017) ND (0.017) ND (0.026)	ND (0.023) ND (0.023) ND (0.015) ND (0.033) ND (0.020) ND (0.016) ND (0.015) ND (0.024)	ND (0.025) ND (0.026) ND (0.017) ND (0.036) ND (0.022) ND (0.017) ND (0.017) ND (0.017) ND (0.026)	ND (0.024) ND (0.024) ND (0.016) ND (0.034) ND (0.021) ND (0.016) ND (0.016) ND (0.025)	ND (0.023) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016) ND (0.016) ND (0.025)
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1268 Aroclor 1262 Metals Analysis Aluminum Antimony	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 16	ND (0.021) ND (0.022) ND (0.014) ND (0.031) ND (0.019) ND (0.015) ND (0.015) ND (0.023) 4490 <2.1 2.4	ND (0.022) ND (0.022) ND (0.014) ND (0.031) ND (0.019) ND (0.015) ND (0.015) ND (0.023) 7240 <2.1 2.6	ND (0.022) ND (0.023) ND (0.015) ND (0.032) ND (0.019) ND (0.015) ND (0.015) ND (0.024) 4710 <2.3 4.2	ND (0.023) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016) ND (0.016) ND (0.025) 6070 <2.2 5.2	ND (0.023) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016) ND (0.016) ND (0.025) 1090 <1.6 f 1.7 f	ND (0.025) ND (0.025) ND (0.016) ND (0.035) ND (0.021) ND (0.017) ND (0.017) ND (0.026) 3250 <2.5 4.3	ND (0.023) ND (0.023) ND (0.023) ND (0.015) ND (0.033) ND (0.020) ND (0.016) ND (0.015) ND (0.024) 651 <2.2 <2.2	ND (0.025) ND (0.026) ND (0.036) ND (0.036) ND (0.022) ND (0.017) ND (0.017) ND (0.026) 721 <1.6 f 3.1 f	ND (0.024) ND (0.024) ND (0.024) ND (0.016) ND (0.034) ND (0.021) ND (0.016) ND (0.016) ND (0.025) 6840 <1.7 3.6	ND (0.023) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016) ND (0.016) ND (0.016) ND (0.025) 1220 <2.5 <2.5
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1268 Aroclor 1262 Metals Analysis Aluminum Antimony Arsenic Barium	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1 1 1 1 1 1 1 1	1 1 1 1 - - 16 400	ND (0.021) ND (0.022) ND (0.014) ND (0.031) ND (0.019) ND (0.015) ND (0.015) ND (0.023) 4490 <2.1 2.4 26.2	ND (0.022) ND (0.022) ND (0.014) ND (0.031) ND (0.019) ND (0.015) ND (0.015) ND (0.023) 7240 <2.1 2.6 <21	ND (0.022) ND (0.023) ND (0.015) ND (0.032) ND (0.019) ND (0.015) ND (0.015) ND (0.024) 4710 <2.3 4.2 291	ND (0.023) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016) ND (0.016) ND (0.025) 6070 <2.2 5.2 46.9	ND (0.023) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016) ND (0.016) ND (0.025) 1090 <1.6 f 1.7 f <16 f	ND (0.025) ND (0.025) ND (0.025) ND (0.016) ND (0.035) ND (0.021) ND (0.017) ND (0.017) ND (0.026) 3250 <2.5 4.3 <25	ND (0.023) ND (0.023) ND (0.023) ND (0.015) ND (0.033) ND (0.020) ND (0.016) ND (0.015) ND (0.024) 651 <2.2 <2.2 <22	ND (0.025) ND (0.026) ND (0.017) ND (0.036) ND (0.022) ND (0.017) ND (0.017) ND (0.026) 721 <1.6 f 3.1 f <16 f	ND (0.024) ND (0.024) ND (0.024) ND (0.016) ND (0.034) ND (0.021) ND (0.016) ND (0.016) ND (0.025) 6840 <1.7 3.6 44.9	ND (0.023) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016) ND (0.016) ND (0.025) 1220 <2.5 <2.5 <25
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1268 Aroclor 1262 Metals Analysis Aluminum Antimony Arsenic Barium Beryllium	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1 1 1 1 1 1 1 1 1 - - 16 350 14	- 16 400 72	ND (0.021) ND (0.022) ND (0.014) ND (0.031) ND (0.015) ND (0.015) ND (0.015) ND (0.023) 4490 <2.1 2.4 26.2 0.32	ND (0.022) ND (0.022) ND (0.014) ND (0.031) ND (0.019) ND (0.015) ND (0.015) ND (0.023) 7240 <2.1 2.6 <21 0.31	ND (0.022) ND (0.023) ND (0.015) ND (0.032) ND (0.019) ND (0.015) ND (0.015) ND (0.024) 4710 <2.3 4.2 291 0.28	ND (0.023) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016) ND (0.016) ND (0.025) 6070 <2.2 5.2 46.9 0.22	ND (0.023) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016) ND (0.016) ND (0.025) 1090 <1.6 f 1.7 f <16 f <0.16 f	ND (0.025) ND (0.025) ND (0.016) ND (0.035) ND (0.021) ND (0.017) ND (0.017) ND (0.026) 3250 <2.5 4.3 <25 0.26	ND (0.023) ND (0.023) ND (0.023) ND (0.015) ND (0.033) ND (0.020) ND (0.016) ND (0.015) ND (0.024) 651 <	ND (0.025) ND (0.026) ND (0.017) ND (0.036) ND (0.022) ND (0.017) ND (0.017) ND (0.026) 721 <1.6 f 3.1 f <16 f <0.16 f	ND (0.024) ND (0.024) ND (0.024) ND (0.016) ND (0.034) ND (0.021) ND (0.016) ND (0.016) ND (0.025) 6840 <1.7 3.6 44.9 0.22	ND (0.023) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016) ND (0.016) ND (0.016) ND (0.025) 1220 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1268 Aroclor 1262 Metals Analysis Aluminum Antimony Arsenic Barium Beryllium Cadmium	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1 1 1 1 1 1 1 1	1 1 1 1 - - 16 400	ND (0.021) ND (0.022) ND (0.014) ND (0.031) ND (0.019) ND (0.015) ND (0.015) ND (0.023) 4490 <2.1 2.4 26.2 0.32 <0.54	ND (0.022) ND (0.022) ND (0.014) ND (0.031) ND (0.019) ND (0.015) ND (0.015) ND (0.023) 7240 <2.1 2.6 <21 0.31 <0.52	ND (0.022) ND (0.023) ND (0.015) ND (0.032) ND (0.019) ND (0.015) ND (0.015) ND (0.024) 4710 <2.3 4.2 291 0.28 1.3	ND (0.023) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016) ND (0.016) ND (0.025) 6070 <2.2 5.2 46.9 0.22 <0.56	ND (0.023) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016) ND (0.016) ND (0.025) 1090 <1.6 f 1.7 f <0.16 f <0.41 f	ND (0.025) ND (0.025) ND (0.025) ND (0.016) ND (0.035) ND (0.021) ND (0.017) ND (0.017) ND (0.026) 3250 <2.5 4.3 <25 0.26 <0.62	ND (0.023) ND (0.023) ND (0.023) ND (0.015) ND (0.033) ND (0.020) ND (0.016) ND (0.015) ND (0.024) 651 <2.2 <2.2 <2.2 <2.2 <0.22 <0.55	ND (0.025) ND (0.026) ND (0.026) ND (0.036) ND (0.036) ND (0.022) ND (0.017) ND (0.017) ND (0.026) 721 <1.6 f 3.1 f <0.16 f <0.40 f	ND (0.024) ND (0.024) ND (0.024) ND (0.016) ND (0.034) ND (0.021) ND (0.016) ND (0.016) ND (0.025) 6840 <1.7 3.6 44.9 0.22 <0.43	ND (0.023) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016) ND (0.016) ND (0.016) ND (0.025) 1220 <2.5 <2.5 <2.5 <2.5 <2.5 <0.25 <0.63
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1268 Aroclor 1262 Metals Analysis Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1 1 1 1 1 1 1 1 1 1 1 1 350 14 2.5	1 1 1 1 1 - - 16 400 72 4.3	ND (0.021) ND (0.022) ND (0.014) ND (0.031) ND (0.019) ND (0.015) ND (0.015) ND (0.023) 4490 <2.1 2.4 26.2 0.32 <0.54 1090	ND (0.022) ND (0.022) ND (0.014) ND (0.031) ND (0.019) ND (0.015) ND (0.015) ND (0.023) 7240 <2.1 2.6 <21 0.31 <0.52 <520	ND (0.022) ND (0.023) ND (0.015) ND (0.032) ND (0.019) ND (0.015) ND (0.015) ND (0.024) 4710 <2.3 4.2 291 0.28 1.3 4000	ND (0.023) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016) ND (0.016) ND (0.025) 6070 <2.2 5.2 46.9 0.22 <0.56 2630	ND (0.023) ND (0.024) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016) ND (0.016) ND (0.025) 1090 <1.6 f 1.7 f <16 f <0.16 f <0.41 f <410 f	ND (0.025) ND (0.025) ND (0.025) ND (0.016) ND (0.035) ND (0.021) ND (0.017) ND (0.017) ND (0.026) 3250 <2.5 4.3 <25 0.26 <0.62 <620	ND (0.023) ND (0.023) ND (0.023) ND (0.015) ND (0.033) ND (0.020) ND (0.016) ND (0.015) ND (0.024) 651 <2.2 <2.2 <2.2 <0.22 <0.55 <550	ND (0.025) ND (0.026) ND (0.026) ND (0.036) ND (0.022) ND (0.017) ND (0.017) ND (0.017) ND (0.026) 721 <1.6 f 3.1 f <0.16 f <0.40 f <400 f	ND (0.024) ND (0.024) ND (0.024) ND (0.016) ND (0.034) ND (0.021) ND (0.016) ND (0.016) ND (0.025) 6840 <1.7 3.6 44.9 0.22 <0.43 1010	ND (0.023) ND (0.024) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016) ND (0.016) ND (0.025) 1220 <2.5 <2.5 <2.5 <2.5 <0.25 <0.63 <630
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1268 Aroclor 1262 Metals Analysis Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1 1 1 1 1 1 1 1 1 1 1 1 350 14 2.5	- 16 400 72	ND (0.021) ND (0.022) ND (0.014) ND (0.031) ND (0.019) ND (0.015) ND (0.015) ND (0.023) 4490 <2.1 2.4 26.2 0.32 <0.54 1090 9.1	ND (0.022) ND (0.022) ND (0.014) ND (0.031) ND (0.019) ND (0.015) ND (0.015) ND (0.023) 7240 <2.1 2.6 <21 0.31 <0.52 <520 15.5	ND (0.022) ND (0.023) ND (0.015) ND (0.032) ND (0.019) ND (0.015) ND (0.015) ND (0.024) 4710 <2.3 4.2 291 0.28 1.3 4000 11	ND (0.023) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016) ND (0.016) ND (0.025) 6070 <2.2 5.2 46.9 0.22 <0.56 2630 10.4	ND (0.023) ND (0.024) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016) ND (0.016) ND (0.025) 1090 <1.6 f 1.7 f <16 f <0.16 f <0.41 f <410 f 5.7 f	ND (0.025) ND (0.025) ND (0.025) ND (0.016) ND (0.035) ND (0.021) ND (0.017) ND (0.017) ND (0.026) 3250 <2.5 4.3 <25 0.26 <0.62 <620 10.1	ND (0.023) ND (0.023) ND (0.023) ND (0.015) ND (0.033) ND (0.020) ND (0.016) ND (0.015) ND (0.024) 651 <2.2 <2.2 <2.2 <0.22 <0.55 <550 3	ND (0.025) ND (0.026) ND (0.026) ND (0.036) ND (0.022) ND (0.017) ND (0.017) ND (0.017) ND (0.026) 721 <1.6 f 3.1 f <0.16 f <0.40 f <400 f 7.5 f	ND (0.024) ND (0.024) ND (0.024) ND (0.016) ND (0.034) ND (0.021) ND (0.016) ND (0.016) ND (0.025) 6840 <1.7 3.6 44.9 0.22 <0.43 1010 9.4	ND (0.023) ND (0.024) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016) ND (0.016) ND (0.025) 1220 <2.5 <2.5 <2.5 <0.25 <0.63 <630 6.9
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1268 Aroclor 1262 Metals Analysis Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 16 400 72 4.3 -	ND (0.021) ND (0.022) ND (0.014) ND (0.031) ND (0.019) ND (0.015) ND (0.015) ND (0.023) 4490 <2.1 2.4 26.2 0.32 <0.54 1090 9.1 <5.4	ND (0.022) ND (0.022) ND (0.022) ND (0.014) ND (0.031) ND (0.019) ND (0.015) ND (0.015) ND (0.023) 7240 <2.1 2.6 <21 0.31 <0.52 <520 15.5 <5.2	ND (0.022) ND (0.023) ND (0.023) ND (0.015) ND (0.019) ND (0.015) ND (0.015) ND (0.024) 4710 <2.3 4.2 291 0.28 1.3 4000 11 <5.6	ND (0.023) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016) ND (0.016) ND (0.025) 6070 <2.2 5.2 46.9 0.22 <0.56 2630 10.4 <5.6	ND (0.023) ND (0.024) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016) ND (0.016) ND (0.025) 1090 <1.6 f 1.7 f <16 f <0.16 f <0.41 f <410 f <5.7 f <41.1 f	ND (0.025) ND (0.025) ND (0.025) ND (0.016) ND (0.035) ND (0.021) ND (0.017) ND (0.017) ND (0.026) 3250 <2.5 4.3 <25 0.26 <0.62 <620 10.1 <6.2	ND (0.023) ND (0.023) ND (0.023) ND (0.015) ND (0.033) ND (0.020) ND (0.016) ND (0.015) ND (0.024) 651 <2.2 <2.2 <2.2 <2.2 <0.22 <0.55 <550 3 <5.5	ND (0.025) ND (0.026) ND (0.026) ND (0.036) ND (0.022) ND (0.017) ND (0.017) ND (0.017) ND (0.026) 721 <1.6 f 3.1 f <16 f <0.16 f <0.40 f <400 f 7.5 f <4.0 f	ND (0.024) ND (0.024) ND (0.024) ND (0.016) ND (0.034) ND (0.021) ND (0.016) ND (0.016) ND (0.025) 6840 <1.7 3.6 44.9 0.22 <0.43 1010 9.4 <4.3	ND (0.023) ND (0.024) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016) ND (0.016) ND (0.025) 1220 <2.5 <2.5 <2.5 <25 <0.25 <0.63 <630 6.9 <6.3
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1268 Aroclor 1262 Metals Analysis Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1 1 1 1 1 1 1 1 1 1 1 1 350 14 2.5	1 1 1 1 1 - - 16 400 72 4.3	ND (0.021) ND (0.022) ND (0.014) ND (0.031) ND (0.019) ND (0.015) ND (0.015) ND (0.023) 4490 <2.1 2.4 26.2 0.32 <0.54 1090 9.1	ND (0.022) ND (0.022) ND (0.014) ND (0.031) ND (0.019) ND (0.015) ND (0.015) ND (0.023) 7240 <2.1 2.6 <21 0.31 <0.52 <520 15.5	ND (0.022) ND (0.023) ND (0.015) ND (0.032) ND (0.019) ND (0.015) ND (0.015) ND (0.024) 4710 <2.3 4.2 291 0.28 1.3 4000 11	ND (0.023) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016) ND (0.016) ND (0.025) 6070 <2.2 5.2 46.9 0.22 <0.56 2630 10.4	ND (0.023) ND (0.024) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016) ND (0.016) ND (0.025) 1090 <1.6 f 1.7 f <16 f <0.16 f <0.41 f <410 f 5.7 f	ND (0.025) ND (0.025) ND (0.025) ND (0.016) ND (0.035) ND (0.021) ND (0.017) ND (0.017) ND (0.026) 3250 <2.5 4.3 <25 0.26 <0.62 <620 10.1	ND (0.023) ND (0.023) ND (0.023) ND (0.015) ND (0.033) ND (0.020) ND (0.016) ND (0.015) ND (0.024) 651 <2.2 <2.2 <2.2 <0.22 <0.55 <550 3	ND (0.025) ND (0.026) ND (0.026) ND (0.036) ND (0.022) ND (0.017) ND (0.017) ND (0.017) ND (0.026) 721 <1.6 f 3.1 f <0.16 f <0.40 f <400 f 7.5 f	ND (0.024) ND (0.024) ND (0.024) ND (0.016) ND (0.034) ND (0.021) ND (0.016) ND (0.016) ND (0.025) 6840 <1.7 3.6 44.9 0.22 <0.43 1010 9.4	ND (0.023) ND (0.024) ND (0.024) ND (0.016) ND (0.034) ND (0.020) ND (0.016) ND (0.016) ND (0.025) 1220 <2.5 <2.5 <2.5 <0.25 <0.63 <630 6.9

Table 3.1 - Soil Analytical Table August 10 - August 12, 2021

300, 303, 320, 321, and 330 Prospect Street, Inwood, NY Project No. 11457 SESI Consulting Engineers

Client Sample ID:		HECC	Deco	DDCCC		SB-11 (4.5-5.0)	SB-12 (4.5-5.0)	SB-13 (4.5-5.0)	SB-14 (4.5-5.0)	SB-15 (4.5-5.0)	SB-16 (5.0-5.5)	SB-17 (4.5-5.0)	SB-18 (4.5-5.0)	SB-19 (4.5-5.0)
Lab Sample ID:		usco	RSCO	RRSCO	JD29763-9	JD29763-2	JD29763-1	JD29816-2	JD29763-3	JD29816-3	JD29763-7	JD29763-8	JD29816-4	JD29816-9
Date Sampled:					8/10/2021	8/10/2021	8/10/2021	8/11/2021	8/10/2021	8/11/2021	8/10/2021	8/10/2021	8/11/2021	8/11/2021
Matrix:	Units				Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
					•	-	•	-	•	-	-	-	-	
Lead	mg/kg	63	400	400	19.6	3.5	858	81.4	<1.6 ^f	2.8	<2.2	<1.6 ^f	18.5	<2.5
Magnesium	mg/kg	-	-	-	1390	576	1400	786	<410 ^f	<620	<550	<400 ^f	660	<630
Manganese	mg/kg	1600	2000	2000	191	25.9	101	54.5	4.8 ^f	22.9	5.5	6.1 ^f	93	11.2
Mercury	mg/kg	0.18	0.81	0.81	0.039	<0.031	0.36	0.29	<0.031	<0.033	0.039	0.058	0.12	<0.038
Nickel	mg/kg	30	140	310	8.8	4.5	8	6.4	<3.3 ^f	<5.0	<4.4	<3.2 ^f	5.4	<5.0
Potassium	mg/kg	-	-	-	<1100	<1000	<1100	<1100	<820 ^f	<1200	<1100	<810 ^f	<870	<1300
Selenium	mg/kg	3.9	36	180	<2.1	<2.1	<2.3	<2.2	<1.6 ^f	<2.5	<2.2	<1.6 ^f	<1.7	<2.5
Silver	mg/kg	2	36	180	<0.54	<0.52	<0.56	<0.56	<0.41 ^f	<0.62	<0.55	<0.40 ^f	<0.43	< 0.63
Sodium	mg/kg	-	-	-	<1100	<1000	<1100	<1100	<820 ^f	<1200	<1100	<810 ^f	<870	<1300
Thallium	mg/kg	-	-	-	<1.1	<1.0	<1.1	<1.1	<0.82 ^f	<1.2	<1.1	<0.81 ^f	<0.87	<1.3
Vanadium	mg/kg	-	100	-	13.1	20.1	12.8	15.1	5.1 ^f	15.9	<5.5	9.4 ^f	13.1	13.9
	mg/kg	109	2200	10000	30.8	8	812	74.8	<4.1 ^f	10	8.3	5.9 ^f	63	<6.3

< 0.24

84.7

<0.36

82.7

<0.28

84.6

<0.25

81.6

< 0.26

89.5

<0.26

81.4

<0.29

83.1

<0.25

92.3

<0.22

91.6

Footnotes:

Solids, Percent

Cyanide

Associated CCV outside of control limits low.

Associated CCV outside of control limits high, sample was ND.

This compound in blank spike is outside in house QC limits bias high.

Associated CCV outside of control limits low. Low-level verification was a

mg/kg

%

27

27

27

<0.25

94.1

^e More than 40 % RPD for detected concentrations between the two GC cc

Elevated sample detection limit due to difficult sample matrix.

Regulatory limits listed in this document have been obtained from the regulatory documents or changes to criteria detailed in later versions

47 results exceeded regulatory criteria.

Additional Notes:

mg/kg = Miligrams per kilogram

ND = Not Detected

- = No soil cleanup objective established

J = The reported result is an estimate. The val

USCO = NY Unrestricted Use Soil Cleanup Objectiv

RSCO = NY Residential Use Soil Cleanup Objectivo

RRSCO = NY Restricted Residential Use Soil Cleanu

Compound was detected

= Concentration exceeds USCOs

= Concentration exceeds RSCOs

Concentration exceeds RRSCOs

Client Sample ID:			TW-1	TW-2	TW-3	TW-4	TW-5
Lab Sample ID:		AWQS	JD29763-10 & JD29763-10A	JD29816-10 & JD29816-10A	JD29816-12 & JD29816-12A	JD29763-11 & JD29763-11A	JD29816-11 & JD29816-11A
Date Sampled:			8/10/2021	8/11/2021	8/11/2021	8/10/2021	8/11/2021
Matrix:	Units		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
MS Volatiles (SW846 8260D)							
Acetone	ug/l	50	6.4 J	4.4 J	ND (3.1)	7.0 J	ND (3.1)
Benzene	ug/l	1	ND (0.43)				
Bromochloromethane	ug/l	5	ND (0.48)				
Bromodichloromethane	ug/l	50	ND (0.45)				
Bromoform	ug/l	50	ND (0.63)				
Bromomethane	ug/l	5	ND (1.6)				
2-Butanone (MEK)	ug/l	50	ND (6.9)				
Carbon disulfide	ug/l	60	ND (0.46)	0.52 J	2.2	0.70 J	4
Carbon tetrachloride	ug/l	5	ND (0.55)				
Chlorobenzene	ug/l	5	ND (0.56)				
Chloroethane	ug/l	5	ND (0.73)				
Chloroform	ug/l	7	ND (0.50)				
Chloromethane	ug/l	5	ND (0.76)				
Cyclohexane	ug/l	-	ND (0.78) a	ND (0.78)	ND (0.78) ^a	ND (0.78) ^a	ND (0.78)
1,2-Dibromo-3-chloropropane	ug/l	0.04	ND (0.53)	ND (0.53) ^a	ND (0.53)	ND (0.53)	ND (0.53) ^a
Dibromochloromethane	ug/l	50	ND (0.56)				
1,2-Dibromoethane	ug/l	0.0006	ND (0.48)				
1,2-Dichlorobenzene	ug/l	3	ND (0.53)				
1,3-Dichlorobenzene	ug/l	3	ND (0.54)				
1,4-Dichlorobenzene	ug/l	3	ND (0.51)				
Dichlorodifluoromethane	ug/l	5	ND (0.56) ^a	ND (0.56)	ND (0.56) ^a	ND (0.56) ^a	ND (0.56)
1,1-Dichloroethane	ug/l	5	ND (0.57)				
1,2-Dichloroethane	ug/l	0.6	ND (0.60)				
1,1-Dichloroethene	ug/l	5	ND (0.59)				
cis-1,2-Dichloroethene	ug/l	5	ND (0.51)				
trans-1,2-Dichloroethene	ug/l	5	ND (0.54)				
1,2-Dichloropropane	ug/l	1	ND (0.51)				
cis-1,3-Dichloropropene	ug/l	0.4	ND (0.47)				
trans-1,3-Dichloropropene	ug/l	0.4	ND (0.43)				
Ethylbenzene	ug/l	5	ND (0.60)				
Freon 113	ug/l	5	ND (0.58)				
2-Hexanone	ug/l	50	ND (2.0)				
Isopropylbenzene	ug/l	5	ND (0.65)				
Methyl Acetate	ug/l	-	ND (0.80)				
Methylcyclohexane Methyl Tert Butyl Ether	ug/l	- 10	ND (0.60)				
4-Methyl-2-pentanone(MIBK)	ug/l	10	ND (0.51)	ND (0.51) ND (1.9)	ND (0.51) ND (1.9)	ND (0.51)	ND (0.51)
Methylene chloride	ug/l ug/l	5	ND (1.9) ND (1.0)	ND (1.9)	ND (1.9)	ND (1.9) ND (1.0)	ND (1.9) ND (1.0)
Styrene	ug/l	5	ND (0.49)				
1,1,2,2-Tetrachloroethane	ug/l	5	ND (0.65)	ND (0.45)	ND (0.45)	ND (0.45)	ND (0.45)
Tetrachloroethene	ug/l	5	ND (0.90)				
Toluene	ug/l	5	ND (0.53)				
1,2,3-Trichlorobenzene	ug/l	5	ND (0.50)				
1,2,4-Trichlorobenzene	ug/l	5	ND (0.50)				
1,1,1-Trichloroethane	ug/l	5	ND (0.54)				
1,1,2-Trichloroethane	ug/l	1	ND (0.53)				
Trichloroethene	ug/l	5	ND (0.53)				
Trichlorofluoromethane	ug/l	5	ND (0.40) ^a	ND (0.40)	ND (0.40) ^a	ND (0.40) ^a	ND (0.40)
Vinyl chloride	ug/l	2	ND (0.79)				
m,p-Xylene	ug/l	-	ND (0.78)				
o-Xylene	ug/l	5	ND (0.59)				
Xylene (total)	ug/l	5	ND (0.59)				
·	3.		(/	\/	\/	\/	\/

Client Sample ID:			TW-1	TW-2	TW-3	TW-4	TW-5
Lab Sample ID:		AWQS	JD29763-10 & JD29763-10A	JD29816-10 & JD29816-10A	JD29816-12 & JD29816-12A	JD29763-11 & JD29763-11A	JD29816-11 & JD29816-11A
Date Sampled:			8/10/2021	8/11/2021	8/11/2021	8/10/2021	8/11/2021
Matrix:	Units		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
			0.00	0.00	0.00		0.00
MS Volatile TIC							
Total TIC, Volatile	ug/l	-	17.3 J	0	11 J	83.1 J	5.2 J
MS Semi-volatiles (EPA 537M E	BY ID)						
Darfluarabutanaja asid	l na/l		6.0	11.0	6.5	4.8	ND (2.2)
Perfluorobutanoic acid	ng/l	-	6.9 4.2	11.9 18.7	3.9		ND (2.3)
Perfluoropentanoic acid Perfluorohexanoic acid	ng/l ng/l	-	10.5	5.3	3.9 4.5	5.8 9.4	2.0 J
Perfluoronexanoic acid	ng/l	-	4.4	5.3	4.5	9.4 4.1	2.0 J
Perfluorooctanoic acid	ng/l	10	13.7	12.2	13.8	10.5	2.5
Perfluorononanoic acid	ng/l	-	2.6 J	2.7	13.8	2.9	ND (1.1)
Perfluorodecanoic acid	ng/l	-	2.6 J	0.96 J	ND (0.89)	2.9	ND (1.1) ND (1.1)
Perfluoroundecanoic acid	ng/l	-	ND (1.5)	ND (0.89)	ND (0.89)	ND (1.1)	ND (1.1)
			ND (1.5) b	\ /	` ′	` '	· · ·
Perfluorododecanoic acid	ng/l	-		ND (0.89)	ND (0.89)	ND (1.1)	ND (1.1)
Perfluorotridecanoic acid	ng/l	-	ND (1.5) °	ND (0.89)	ND (0.89)	ND (1.1)	ND (1.1)
Perfluorotetradecanoic acid	ng/l	-	ND (1.5)	ND (0.89)	ND (0.89)	ND (5.4)	ND (1.1)
Perfluorobutanesulfonic acid	ng/l	-	1.5 J	2.4	ND (0.89)	1.6 J	ND (1.1)
Perfluorohexanesulfonic acid	ng/l	-	2.0 J	16.7	2.6	5.4	ND (1.1)
Perfluoroheptanesulfonic acid	ng/l	-	ND (1.5)	1.0 J	1.3 J	ND (1.1)	ND (1.1)
Perfluorooctanesulfonic acid	ng/l	10	48.9	33.4	22.5	80.2	9.1
Perfluorodecanesulfonic acid	ng/l	-	ND (1.5)	ND (0.89)	ND (0.89)	ND (1.1)	ND (1.1)
PFOSA	ng/l	-	ND (2.9) ^c	ND (1.8)	ND (1.8)	ND (11)	ND (2.3)
MeFOSAA	ng/l	-	ND (2.9)	ND (1.8)	ND (18)	ND (2.2)	ND (2.3)
EtFOSAA	ng/l	-	ND (2.9)	ND (18)	ND (18)	ND (2.2)	ND (2.3)
6:2 Fluorotelomer sulfonate	ng/l	-	56.5	ND (1.8)	3.9 J	50.9	5.2 J
8:2 Fluorotelomer sulfonate	ng/l	-	ND (2.9)	ND (1.8)	ND (1.8)	ND (2.2)	ND (2.3)
Total PFAS	ng/l	-	145.1	108.4	60.4	176.6	11.6
MS Semi-volatiles (SW846 8270	E)						
2-Chlorophenol	ug/l	-	ND (0.84)	ND (0.37)	ND (0.35)	ND (1.8)	ND (0.35)
4-Chloro-3-methyl phenol	ug/l		ND (0.91)	ND (0.53)	ND (0.51)	ND (2.0)	ND (0.51)
2,4-Dichlorophenol	ug/l	1	ND (0.91)	ND (0.52)	ND (0.51)	ND (2.8)	ND (0.51)
2,4-Dimethylphenol	ug/l	1	ND (2.5)	ND (0.67)	ND (0.65)	ND (5.4)	ND (0.65)
2,4-Dinitrophenol	ug/l	1	ND (1.6)	ND (0.69)	ND (0.67)	ND (3.4)	ND (0.67)
4,6-Dinitro-o-cresol	ug/l	-	ND (1.3)	ND (0.54)	ND (0.52)	ND (2.9)	ND (0.52)
2-Methylphenol	ug/l	_	ND (0.91)	ND (0.47)	ND (0.45)	ND (2.0)	ND (0.45)
3&4-Methylphenol	ug/l	_	ND (0.90)	ND (0.36)	ND (0.34)	ND (2.0)	ND (0.34)
2-Nitrophenol	ug/l	-	ND (0.98)	ND (0.40)	ND (0.38)	ND (2.1)	ND (0.38)
4-Nitrophenol	ug/l		ND (1.2)	ND (0.45) ^d	ND (0.43) ^d	ND (2.6)	ND (0.43)
Pentachlorophenol	ug/l	1	ND (1.4)	ND (0.43)	ND (0.43)	ND (3.1)	ND (0.43)
Phenol	ug/l	1	ND (0.40)	1.1 J	0.35 J	ND (0.87)	0.52 J
2,3,4,6-Tetrachlorophenol	ug/l	-	ND (0.40)	ND (0.64)	ND (0.61)	ND (3.2)	ND (0.61)
2,4,5-Trichlorophenol	ug/l	-	ND (1.4)	ND (0.49)	ND (0.47)	ND (3.0)	ND (0.47)
2,4,6-Trichlorophenol	ug/l	-	ND (0.94)	ND (0.49)	ND (0.47)	ND (3.0)	ND (0.47)
Acenaphthene	ug/l	20	ND (0.94)	ND (0.61)	ND (0.57)	ND (0.42)	ND (0.57)
Acenaphthylene	ug/l	-	0.18 J	ND (0.42)	ND (0.41)	0.79 J	ND (0.41)
Acetophenone	ug/l	-	0.10 J	ND (0.42)	ND (0.41)	2.0 J	0.86 J
Anthracene	ug/l	50	0.32 J	ND (0.52)	ND (0.53)	1.1 J	ND (0.53)
		7.5	ND (0.46)	ND (0.30)	ND (0.69)	ND (0.99)	ND (0.69)
'Afrazine							
Atrazine Benzaldehyde	ug/l ug/l	-	ND (0.40)	ND (0.44)	ND (0.42)	ND (0.64)	ND (0.42)

Client Sample ID:			TW-1	TW-2	TW-3	TW-4	TW-5
Lab Sample ID:		AWQS	JD29763-10 & JD29763-10A	JD29816-10 & JD29816-10A	JD29816-12 & JD29816-12A	JD29763-11 & JD29763-11A	JD29816-11 & JD29816-11A
Date Sampled:			8/10/2021	8/11/2021	8/11/2021	8/10/2021	8/11/2021
Matrix:	Units		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Benzo(a)pyrene	ug/l	0.002	1.3	2.4	ND (0.60)	5	ND (0.60) ^e
Benzo(b)fluoranthene	ug/l	0.002	2.1	4.1	0.56 J	7.3	ND (0.55) ^e
Benzo(g,h,i)perylene	ug/l	-	1.1	2.2	ND (0.62)	3.6	ND (0.62)
Benzo(k)fluoranthene	ug/l	0.002	0.89 J	1.5	ND (0.46)	2.9	ND (0.46) e
4-Bromophenyl phenyl ether	ug/l	-	ND (0.41)	ND (0.55)	ND (0.53)	ND (0.90)	ND (0.53)
Butyl benzyl phthalate	ug/l	50	ND (0.47)	ND (0.86)	ND (0.83)	ND (1.0)	ND (0.83)
1,1'-Biphenyl	ug/l	5	ND (0.22)	ND (0.59)	ND (0.57)	0.52 J	ND (0.57)
2-Chloronaphthalene	ug/l	10	ND (0.24)	ND (0.43)	ND (0.42)	ND (0.52)	ND (0.42)
4-Chloroaniline	ug/l	5	ND (0.35)	ND (0.53)	ND (0.51)	ND (0.76)	ND (0.51)
Carbazole	ug/l	-	0.38 J	0.90 J	ND (0.55)	0.88 J	ND (0.55)
Caprolactam	ug/l	-	ND (0.66)	40.1	ND (0.33)	2.2 J	ND (0.33)
Chrysene	ug/l	0.002	1.4	3.2	0.57 J	5.9	0.68 J
bis(2-Chloroethoxy)methane	ug/l	5	ND (0.28)	ND (0.46)	ND (0.44)	ND (0.62)	ND (0.44)
bis(2-Chloroethyl)ether	ug/l	1	ND (0.25)	ND (0.43)	ND (0.41)	ND (0.55)	ND (0.41)
2,2'-Oxybis(1-chloropropane)	ug/l	5	ND (0.41)	ND (0.50) ^e	ND (0.48) ^e	ND (0.90)	ND (0.48)
4-Chlorophenyl phenyl ether	ug/l	-	ND (0.37)	ND (0.60)	ND (0.57)	ND (0.81)	ND (0.57)
2,4-Dinitrotoluene	ug/l	5	ND (0.56)	ND (0.55)	ND (0.53)	ND (1.2)	ND (0.53)
2,6-Dinitrotoluene	ug/l	5	ND (0.49)	ND (0.56)	ND (0.54)	ND (1.1)	ND (0.54)
3,3'-Dichlorobenzidine	ug/l	5	ND (0.52)	ND (1.1)	ND (1.1)	ND (1.1)	ND (1.1)
1,4-Dioxane	ug/l	-	ND (0.67)	ND (0.18)	ND (0.18)	ND (1.5)	8.9
Dibenzo(a,h)anthracene Dibenzofuran	ug/l	-	ND (0.34) ND (0.22)	ND (0.50) ND (0.73)	ND (0.48) ND (0.70)	0.75 J ND (0.49)	ND (0.48) ND (0.70)
Di-n-butyl phthalate	ug/l ug/l	50	ND (0.22) ND (0.51)	ND (0.73)	ND (0.70)	ND (0.49)	ND (0.70) ND (0.51)
Di-n-octyl phthalate	ug/l	50	ND (0.24)	ND (1.6)	ND (1.6)	ND (1.1) ND (0.52)	ND (0.51)
Diethyl phthalate	ug/l	50	ND (0.27)	ND (0.58)	ND (0.56)	ND (0.58)	ND (0.56)
Dimethyl phthalate	ug/l	50	ND (0.22)	ND (0.55)	ND (0.53)	ND (0.48)	ND (0.53)
bis(2-Ethylhexyl)phthalate	ug/l	5	2.4	ND (1.3)	ND (1.3)	ND (3.7)	ND (1.3)
Fluoranthene	ug/l	50	3.4	6.9	1.2	14	1
Fluorene	ug/l	50	ND (0.17)	ND (0.59)	ND (0.57)	0.64 J	ND (0.57)
Hexachlorobenzene	ug/l	0.04	ND (0.33)	ND (0.54)	ND (0.52)	ND (0.72)	ND (0.52)
Hexachlorobutadiene	ug/l	0.5	ND (0.50)	ND (0.35)	ND (0.33)	ND (1.1)	ND (0.33)
Hexachlorocyclopentadiene	ug/l	5	ND (2.8)	ND (0.98)	ND (0.94)	ND (6.2)	ND (0.94)
Hexachloroethane	ug/l	5	ND (0.40)	ND (0.55)	ND (0.53)	ND (0.87)	ND (0.53)
Indeno(1,2,3-cd)pyrene	ug/l	0.002	1.2	2.6	ND (0.62)	4.2	ND (0.62)
Isophorone	ug/l	50	ND (0.28)	ND (0.39)	ND (0.38)	ND (0.62)	ND (0.38)
2-Methylnaphthalene	ug/l	50	ND (0.21)	ND (0.64)	ND (0.62)	ND (0.47)	ND (0.62)
2-Nitroaniline	ug/l	5	ND (0.28)	ND (0.62)	ND (0.59)	ND (0.62)	ND (0.59)
3-Nitroaniline	ug/l	5	ND (0.39)	ND (0.64)	ND (0.61)	ND (0.86)	ND (0.61)
4-Nitroaniline	ug/l	5	ND (0.45)	ND (0.75)	ND (0.72)	ND (0.98)	ND (0.72)
Naphthalene	ug/l	10	ND (0.24)	ND (0.44)	ND (0.42)	ND (0.52)	0.88 J
Nitrobenzene	ug/l	0.4	ND (0.66)	ND (0.42)	ND (0.40)	ND (1.4)	ND (0.40)
N-Nitroso-di-n-propylamine	ug/l	-	ND (0.49)	ND (0.65)	ND (0.62)	ND (1.1)	ND (0.62)
N-Nitrosodiphenylamine Phenanthrene	ug/l	- 50	ND (0.23) 1.8	ND (0.42) 4.4	ND (0.41) 0.86 J	ND (0.49) 8	ND (0.41) 1.4
Pyrene	ug/l	50	2.6	4.4 6.1	1.2	10	1.4 0.70 J
1,2,4,5-Tetrachlorobenzene	ug/l ug/l	50	ND (0.38)	ND (0.48)	ND (0.47)	ND (0.82)	ND (0.47)
MS Semi-volatiles (SW846 8270E			140 (0.30)	140 (0.40)	(0.47)	140 (0.02)	140 (0.41)
1,4-Dioxane	ug/l	-	ND (0.051)	ND (0.20)	ND (0.19)	ND (0.11)	1.58 B
,	_ ~g/1		115 (0.001)	115 (0.20)	115 (0.10)	112 (0.11)	1.00 D
MS Semi-volatile TIC							
Total TIC, Semi-Volatile	ug/l	-	148.9 J	75 J	78.4 J	126 J	108.5 J

Client Sample ID:			TW-1	TW-2	TW-3	TW-4	TW-5
Lab Sample ID:		AWQS	JD29763-10 & JD29763-10A	JD29816-10 & JD29816-10A	JD29816-12 & JD29816-12A	JD29763-11 & JD29763-11A	JD29816-11 & JD29816-11A
Date Sampled:			8/10/2021	8/11/2021	8/11/2021	8/10/2021	8/11/2021
Matrix: U	Inits		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
GC/LC Semi-volatiles (SW846 8081	B)						
Aldrin	ug/l	ND	ND (0.0057)	ND (0.0025)	ND (0.0025)	ND (0.0049)	ND (0.0025)
alpha-BHC ι	ug/l	0.01	ND (0.0058)	ND (0.0025)	0.29 ^f	ND (0.0050)	ND (0.0025)
	ug/l	0.04	ND (0.0089)	ND (0.0039)	ND (0.0039)	ND (0.0076)	ND (0.0039)
	ug/l	0.04	ND (0.0073)	ND (0.0032)	ND (0.0032)	ND (0.0063)	ND (0.0032)
gamma-BHC (Lindane) ι	ug/l	0.05	ND (0.0067)	ND (0.0029)	0.015	ND (0.0057)	ND (0.0029)
alpha-Chlordane ι	ug/l	-	0.0098 J ^f	ND (0.0024)	ND (0.0024)	ND (0.0047)	ND (0.0024)
gamma-Chlordane ι	ug/l	-	ND (0.0047)	0.0074 ^f	ND (0.0021)	ND (0.0041)	ND (0.0021)
Dieldrin u	ug/l	0.004	ND (0.0085)	ND (0.0037)	ND (0.0037)	ND (0.0073)	ND (0.0037)
4,4'-DDD t	ug/l	0.3	0.021	0.0072 ^f	ND (0.0028)	ND (0.0055)	0.15
4,4'-DDE	ug/l	0.2	ND (0.0056)	ND (0.0025)	ND (0.0025)	ND (0.0048)	0.041 ^g
4,4'-DDT ι	ug/l	0.2	ND (0.0076)	ND (0.0033)	ND (0.0033)	ND (0.0065)	ND (0.0033)
	ug/l	ND	ND (0.0067)	ND (0.0029)	ND (0.0029)	ND (0.0058)	ND (0.0029)
Endosulfan sulfate ι	ug/l	-	ND (0.0061)	ND (0.0026)	ND (0.0026)	ND (0.0052)	ND (0.0026)
-	ug/l	5	ND (0.0074)	ND (0.0033)	ND (0.0033)	ND (0.0064)	ND (0.0033)
	ug/l	5	ND (0.0069)	ND (0.0030)	ND (0.0030)	ND (0.0059)	ND (0.0030)
	ug/l	-	ND (0.0059)	ND (0.0026)	ND (0.0026)	ND (0.0050)	ND (0.0026)
	ug/l	- 0.04	ND (0.0054)	ND (0.0024)	ND (0.0024)	ND (0.0046)	ND (0.0024)
	ug/l	0.04	ND (0.0050)	ND (0.0022)	0.061 ND (0.0029)	ND (0.0043)	ND (0.0022)
·	ug/l	35	ND (0.0067) ND (0.0074)	ND (0.0029) ND (0.0033)	ND (0.0029)	ND (0.0057) ND (0.0064)	ND (0.0029) ND (0.0033)
·	ug/l ug/l	0.06	ND (0.0074)	ND (0.0033)	ND (0.0033)	ND (0.004)	ND (0.0033)
Голарноно	ug/1	0.00	112 (0.10)	112 (0.010)	112 (0.010)	112 (0.10)	112 (0.070)
GC/LC Semi-volatiles (SW846 8082	2A)						
Aroclor 1016	ug/l	0.09	ND (0.22)	ND (0.095)	ND (0.095)	ND (0.19)	ND (0.095)
	ug/l	0.09	ND (0.47)	ND (0.20)	ND (0.20)	ND (0.40)	ND (0.20)
	ug/l	0.09	ND (0.29)	ND (0.13)	ND (0.13)	ND (0.25)	ND (0.13)
Aroclor 1242	ug/l	0.09	ND (0.25)	ND (0.11)	ND (0.11)	ND (0.22)	ND (0.11)
Aroclor 1248 ι	ug/l	0.09	ND (0.14)	ND (0.061)	ND (0.061)	ND (0.12)	ND (0.061)
	ug/l	0.09	ND (0.46)	ND (0.20)	ND (0.20)	ND (0.39)	ND (0.20)
L	ug/l	0.09	ND (0.17)	ND (0.074)	ND (0.074)	ND (0.14)	ND (0.074)
	ug/l	0.09	ND (0.19)	ND (0.084)	ND (0.084)	ND (0.16)	ND (0.084)
Aroclor 1262	ug/l	0.09	ND (0.21)	ND (0.094)	ND (0.094)	ND (0.18)	ND (0.094)
Metals Analysis							
Aluminum u	ug/l	-	338000 ^h	33900	63700	423000 ^h	34400
	ug/l	3	<60 ^h	<6.0	<6.0	<60 ^h	<6.0
·	ug/l	25	211 ^h	32.1	74.1	385 ^h	23.6
	ug/l	1000	1450 ^h	311	284	5350 ^h	292
	ug/l	3	15.6 ^h	4	3.3	24.8 ^h	2.7
·	ug/l	5	<30 ^h	<3.0	<3.0	<30 ^h	<3.0
	ug/l		153000 ^h	103000	36300	312000 ^h	91800
	-	50	2110 h			2440 h	
	ug/l		2110 ^h	353	429	2440 h	607
	ug/l	-		<50	<50		<50
— · · ·	ug/l	200	607 h	224	170	934 ^h	99.5
	ug/l	300	503000 h	94200	125000	1130000 ^h	112000
	ug/l	25	1100 h	124	134	8730 ^h	148
Magnesium ι	ug/l	35000	56900 ^h	35000	9870	165000 ^h	20900

Table 3.3 - Groundwater Analytical Table August 10 - August 11, 2021

300, 303, 320, 321, and 330 Prospect Street, Inwood, NY Project No. 11457

SESI Consulting Engineers

Client Sample ID:			TW-1	TW-2	TW-3	TW-4	TW-5
Lab Sample ID:		AWQS	JD29763-10 & JD29763-10A	JD29816-10 & JD29816-10A	JD29816-12 & JD29816-12A	JD29763-11 & JD29763-11A	JD29816-11 & JD29816-11A
Date Sampled:			8/10/2021	8/11/2021	8/11/2021	8/10/2021	8/11/2021
Matrix:	Units		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
	1 "	000	occo h		704	Forto h	4000
Manganese	ug/l	300	3930 ^h	767	734	5610 ^h	1090
Mercury	ug/l	0.7	1.9	<0.20	<0.20	5.3	<0.20
Nickel	ug/l	100	527 ^h	72.1	125	639 ^h	121
Potassium	ug/l	-	27400 ^h	<10000	<10000	27100 ^h	<10000
Selenium	ug/l	10	<100 ^h	10.4	18.4	<100 ^h	11.6
Silver	ug/l	50	<100 ^h	<10	<10	<100 ^h	<10
Sodium	ug/l	20000	43800 ^h	41800	13300	<20000 h	32800
Thallium	ug/l	-	<100 ^h	<10	<50	<100 ^h	<50
Vanadium	ug/l	-	836 ^h	231	298	2120 ^h	197
Zinc	ug/l	2000	2590 ^h	598	280	8560 ^h	126
General Chemistry							
Cyanide	ug/l	200	<10	<10	<10	10	<10

Footnotes:

- ^a Associated CCV outside of control limits low.
- ^b Associated ID Standard outside control limits due to matrix interference.
- ^c Associated ID Standard outside control limits, Confirmed by batch QC.
- d Associated CCV outside of control limits low. Low-level verification was analyzed to demonstrate system suitability to detect affected
- ^e Associated CCV outside of control limits high, sample was ND.
- More than 40 % RPD for detected concentrations between the two GC columns.
- g Reported from the 2nd signal. The %D of the CCV on the 1st signal exceeds the method criteria of 20%, so it being used for confirmation between the two GC columns.
- ^h Elevated sample detection limit due to difficult sample matrix.

Regulatory limits listed in this document have been obtained from the latest version of the regulations cited and are used for regulatory documents or changes to criteria detailed in later versions of the referenced regulation. It is the responsibility of the 68 results exceeded regulatory criteria.

¹ NOTE: The above contain the following criteria that must be evaluated manually by the user:

Sum of Aldicarb and Methomyl at 0.35 ug/l.

Sum of Iron and Manganese at 500 ug/l.

Sum of Parathion and Methyl parathion at 1.5 ug/l.

Sum of Phenolic compounds (total phenols) at 1 ug/l.

Sum of Phenols, total chlorinated at 1 ug/l.

Sum of Phenols, total unchlorinated at 1 ug/l.

Principal organic contaminant at 5 ug/l defined as "any and every individual substance, whether listed in this Table or not, that is section 700.1 of this Title" unless listed elsewhere in this table.

Additional Notes:

NYSDEC = New York State Department of Environmental Conservation

AWQS = Ambient Water Quality Standards

ND = Compound not detected

- = No AWQS established

ug/l = Micrograms per liter

ng/l - Nanograms per liter

= Compound was detected

= Concentration of compound exceeds the AWQS

Table 3.5 - Sub-Slab Soil Gas and Ambient Air Analytical Table August 12, 2021

300, 303, 320, 321, and 330 Prospect Street, Inwood, NY Project No. 11457 SESI Consulting Engineers

Client Sample ID:				SSG-01	SSG-02	SSG-03	SSG-04	SSG-05	AA-1
Lab Sample ID:	NYSDOH	NYSDOH	NYSDOH	JD29894-1	JD29894-2	JD29894-3	JD29894-4	JD29894-5	JD29894-6
Date Sampled:	Matrix A	Matrix B	Matrix C	8/12/2021	8/12/2021	8/12/2021	8/12/2021	8/12/2021	8/12/2021
Matrix:				Soil Vapor	Soil Vapor	Soil Vapor	Soil Vapor	Soil Vapor	Ambient Air
				•		•	•	,	
MS Volatiles (TO-15) - ug/m3									
Acetone (2-Propanone)				150	5150	37.8	24.9	330	13
1,3-Butadiene				ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	4.4	ND (0.10)
Benzene				1.6	1.9	1.4	1.1	14	0.51 J
Bromodichloromethane				0.46 J	ND (0.18)	ND (0.18)	ND (0.18)	ND (0.18)	ND (0.18)
Bromoform				ND (0.38)	ND (0.38)	ND (0.38)	ND (0.38)	ND (0.38)	ND (0.38)
Bromomethane				ND (0.085)	ND (0.085)	ND (0.085)	ND (0.085)	ND (0.085)	ND (0.085)
Bromoethene				ND (0.096)	ND (0.096)	ND (0.096)	ND (0.096)	ND (0.096)	ND (0.096)
Benzyl Chloride				ND (0.29)	ND (0.29)	ND (0.29)	ND (0.29)	ND (0.29)	ND (0.29)
Carbon disulfide				1.2	0.97	13	0.53 J	1.8	ND (0.075)
Chlorobenzene				ND (0.12)	ND (0.12)	ND (0.12)	ND (0.12)	6	ND (0.12)
Chloroethane				ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)
Chloroform				278	27	5.4	0.78 J	2	ND (0.098)
Chloromethane				0.6	ND (0.031)	0.25 J	0.33 J	1.6	1.1
3-Chloropropene				ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)
2-Chlorotoluene				ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)
Carbon tetrachloride	6			ND (0.15)	ND (0.15)	0.4	1.1	0.38	0.43
Cyclohexane				ND (0.076)	0.69	0.55 J	0.52 J	ND (0.076)	ND (0.076)
1,1-Dichloroethane	6			ND (0.049)	ND (0.049)	ND (0.049)	ND (0.049)	ND (0.049)	ND (0.049)
1,1-Dichloroethylene				ND (0.067)	ND (0.067)	ND (0.067)	ND (0.067)	ND (0.067)	ND (0.067)
1,2-Dibromoethane (EDB)				ND (0.14)	ND (0.14)	ND (0.14)	ND (0.14)	ND (0.14)	ND (0.14)
1,2-Dichloroethane				4.9	ND (0.085)	ND (0.085)	ND (0.085)	ND (0.085)	ND (0.085)
1,2-Dichloropropane				ND (0.088)	ND (0.088)	ND (0.088)	ND (0.088)	ND (0.088)	ND (0.088)
1,4-Dioxane				ND (0.19)	1	ND (0.19)	ND (0.19)	ND (0.19)	ND (0.19)
Dichlorodifluoromethane				1.7	2.1	2	3.1	1.9	1.8
Dibromochloromethane				ND (0.28)	ND (0.28)	ND (0.28)	ND (0.28)	ND (0.28)	ND (0.28)
trans-1,2-Dichloroethylene				ND (0.029)	ND (0.029)	ND (0.029)	ND (0.029)	ND (0.029)	ND (0.029)
cis-1,2-Dichloroethylene	6			ND (0.048)	ND (0.048)	ND (0.048)	ND (0.048)	0.71	ND (0.048)
cis-1,3-Dichloropropene				ND (0.091)	ND (0.091)	ND (0.091)	ND (0.091)	ND (0.091)	ND (0.091)
m-Dichlorobenzene				ND (0.11)	ND (0.11)	ND (0.11)	ND (0.11)	ND (0.11)	ND (0.11)
o-Dichlorobenzene				ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)
p-Dichlorobenzene				ND (0.11)	ND (0.11)	1.1	ND (0.11)	2.5	ND (0.11)
trans-1,3-Dichloropropene				ND (0.091)	ND (0.091)	ND (0.091)	ND (0.091)	ND (0.091)	ND (0.091)
Ethanol				131	2360	11	18	222	8.3
Ethylbenzene				6.5	89.5	9.1	4.8	53	ND (0.065)
Ethyl Acetate				47.5	30	24	60.1	24	5.4
4-Ethyltoluene				7.9	37	5.9	4.5	11	ND (0.15)
Freon 113				ND (0.13)	ND (0.13)	ND (0.13)	0.57 J	ND (0.13)	ND (0.13)
Freon 114				ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)
Heptane				1.1	1.3	1.6	0.66 J	6.1	ND (0.074)
Hexachlorobutadiene				ND (0.49)	ND (0.49)	ND (0.49)	ND (0.49)	ND (0.49)	ND (0.49)
Hexane				2.9	3.3	13	1.8	6.7	0.92
2-Hexanone				ND (0.15)	ND (0.15)	ND (0.15)	ND (0.15)	ND (0.15)	ND (0.15)
Isopropyl Alcohol		400		8.4	4520	2	4.7	19	1.7
Methylene chloride		100		12	ND (0.052)	191	84.1	34	1.3
Methyl ethyl ketone				16	36.3	7.4	5.3	82	1.3
Methyl Isobutyl Ketone				2.7	17	ND (0.15)	1.6	7.4	ND (0.15)
Methyl Tert Butyl Ether				ND (0.069)	ND (0.069)	ND (0.069)	0.79	ND (0.069)	ND (0.069)
Methylmethacrylate				19 ND (0.027)	ND (0.14)	ND (0.14)	ND (0.14)	3.6	ND (0.14)
Propylene				ND (0.027)	2.9	ND (0.027)	0.70 J	ND (0.027)	ND (0.027)
Styrene		400		2.8 ND (0.49)	3.4	2.8	1.2	26	ND (0.081)
1,1,1-Trichloroethane		100		ND (0.18)	ND (0.18)	ND (0.18)	1.1 ND (0.10)	0.37 J	ND (0.18)
1,1,2,2-Tetrachloroethane				ND (0.19)	ND (0.19)	ND (0.19)	ND (0.19)	ND (0.19)	ND (0.19)
1,1,2-Trichloroethane				ND (0.16)	ND (0.16)	ND (0.16)	ND (0.16)	ND (0.16)	ND (0.16)
1,2,4-Trichlorobenzene	ļ			ND (0.66)	ND (0.66)	ND (0.66)	ND (0.66)	ND (0.66)	ND (0.66)
1,2,4-Trimethylbenzene				8.8	87.5	7.9	6.4	15	0.54 J
1,3,5-Trimethylbenzene				3.1 ND (0.40)	19 ND (0.10)	1.8	1.4	6.4	ND (0.17)
2,2,4-Trimethylpentane				ND (0.10)	ND (0.10)	ND (0.10)	1.1	1.2	0.65 J
Tertiary Butyl Alcohol		400		1.9	6.7	1.3	2.5	114	ND (0.042)
Tetrachloroethylene		100		13	117 ND (0.45)	91.5	16	4.9	0.66
Tetrahydrofuran				12	ND (0.15)	2.9	1.2	5	ND (0.15)
Toluene				31	57.3	22	20	60.3	1.8
Trichloroethylene	6			0.64	1.2	2.3	5.9	55.4	ND (0.10)
Trichlorofluoromethane				2.1	2	24 ND (0.056)	9.6	596	1.2
Vinyl Apetate			6	ND (0.056)	ND (0.056)	ND (0.056)	ND (0.056)	ND (0.056)	ND (0.056)
Vinyl Acetate				ND (0.12)	ND (0.12)	ND (0.12)	ND (0.12)	ND (0.12)	ND (0.12)
m,p-Xylene				25	325	40	19	220	1.1
o-Xylene				8.7	320	17	6.1	162	ND (0.074)
Xylenes (total)	<u> </u>			34	799	57.3	25	383	1.1

Notes:

NYSDOH Matrix A - NYSDOH Matrix A Sub-slab Vapor Concentration Criteria Lower Threshold NYSDOH Matrix B - NYSDOH Matrix B Sub-slab Vapor Concentration Criteria Lower Threshold NYSDOH Matrix C - NYSDOH Matrix C Sub-slab Vapor Concentration Criteria Lower Threshold

J - Estimate value

ND - Compound not detected ug/m3 - Micrograms per cubic meter

Compound was detected

Concentration of compound exceeds the NYSDOH Matrix A Sub-Slab Vapor Concentrations Criteria