ADDENDA D

Phase II Remediation Report – January 2007

Town of Southampton

Phase II Environmental Site Assessment Report

Former Animal Shelter

Damascus Road, East Quogue, New York

Prepared For

The Town of Southampton

Southampton, New York

January 2007

CONSULTING ENGINEERS

PHASE II ENVIRONMENTAL SITE ASSESSMENT REPORT

FORMER ANIMAL SHELTER DAMASCUS ROAD EAST QUOGUE, NEW YORK

PREPARED FOR

TOWN OF SOUTHAMPTON

BY

DVIRKA AND BARTILUCCI CONSULTING ENGINEERS WOODBURY, NEW YORK

JANUARY 2007

PHASE II ENVIRONMENTAL SITE ASSESSMENT REPORT FORMER ANIMAL SHELTER DAMASCUS ROAD EAST QUOGUE, NEW YORK

TABLE OF CONTENTS

Section	<u>on</u>	Title	Page
1.0	INTROL	DUCTION	. 1-1
	1.1	Project Background	1-1
	1.2	Project Objective and Scope	
	1.3	Report Organization	
2.0	FIELD I	NVESTIGATION	.2-1
	2.1	Sampling Procedures	.2-1
		2.1.1 Geophysical Survey	.2-1
		2.1.2 Surface Soil Sampling	
		2.1.3 Subsurface Soil Sampling	.2-3
	2.2	Analytical Methods and Data Validation	.2-4
3.0	FINDING	GS	.3-1
	3.1	Geology	. 3-1
	3.2	Identification of Standards, Criteria and Guidelines	.3-1
	3.3	Results	.3-1
		3.3.1 Geophysical Survey	
		3.3.2 Surface Soil	
		3.3.3 Subsurface Soil	.3-6
	3.4	Data Usability Summary Report	
4.0	CONCL	USIONS AND RECOMMENDATIONS	.4-1
	4.1	Conclusions	.4-1
	4.2	Recommendations	
List o	f Appendi	ces	
	G	eologic Logs	A
	La	aboratory Data Sheets	B
	D	ata Validation Forms	C

TABLE OF CONTENTS (continued)

List of Figures	
1-1	Site Location Map1-2
2-1	Site Layout and Sample Locations2-2
List of Tables	
3-1	Surface Soil Sample Results3-2
3-2	Subsurface Soil Sample Results3-7

1.0 INTRODUCTION

1.1 Project Background

The Town of Southampton retained Dvirka and Bartilucci Consulting Engineers (D&B) to conduct a Phase II Environmental Site Assessment (ESA) at the property located at the end of Damascus Road in East Quogue, New York. The site location is shown on Figure 1-1. This work was conducted as a result of the Town's interest in possible redevelopment of the site for athletic fields and associated facilities.

Based upon D&B's review of available maps and information, the Damascus Road site involves three adjacent areas of Town-owned properties that have a total area of approximately 12 acres. Reported prior use of portions of the site have included open burning, filling of solid waste (including cars), fire training, use as an animal shelter and, most recently, vacant land since the animal shelter was removed in 2004.

A Phase I ESA of the site completed in May 1999, contained the following recommendations:

- Conduct a subsurface investigation to determine whether releases of fuel had occurred from the 1,000-gallon underground storage fuel oil tank (UST) reportedly located on the east side of the animal shelter building;
- Collect and analyze soil samples (for petroleum, chemical and heavy metals) in the northwest area of the site that were previously used for septage/sewage leaching;
- Collect and analyze soil samples in the southern and western portions of the site to determine the presence of petroleum, chemicals or heavy metals; and
- Investigate the central portion of the site for evidence of buried drums.

No previous environmental sampling at the property has been identified.

F:\2597\2597-USGS.dwg, FIG 1, 12/08/06 12:16:28 PM, LGlubiak

2.0 FIELD INVESTIGATION

This section presents a summary of the activities performed as part of the Damascus Road site Phase II ESA. The field investigation program included a geophysical survey, surface soil sampling and subsurface soil sampling. This section also includes the rationale used for choosing the sample locations, and the analytical parameters and methods.

2.1 Field Procedures, Sample Locations and Analytical Parameters

2.1.1 Geophysical Survey

While the 1999 Phase I ESA report noted the potential presence of buried drums in pits in the southwest portion of the site, the study recommended that the investigation for buried drums be performed in the center of the property. In order to assess whether shallow buried metallic objects, including drums, were present anywhere on the site, D&B's field investigation included a geophysical survey over all accessible portions of the site, using a Model GA-52CX magnetometer. The magnetometer survey was conducted using a grid with a spacing of approximately 10 feet.

2.1.2 Surface Soil Sampling

Surface soil samples were collected in October 2006 at six locations throughout the site to evaluate the potential for exposure to contaminants during possible future site redevelopment or site use activities. Three samples were collected at potential areas of environmental concern (AECs) that were identified during the 1999 Phase I ESA. These areas include the black soil area associated with a fire training area (black surface soil is no longer visible), the soil piles in the southern portion of the site and the berm along the western boundary of the site. Three additional samples were collected at unbiased locations throughout the property. Sample locations are shown on Figure 2-1.

1.2 Project Objective and Scope

The objective of the Phase II ESA was to evaluate environmental conditions at the Damascus Road site. This objective was attained by performing a geophysical survey and collecting surface soil and subsurface soil samples for laboratory analysis.

1.3 Report Organization

The remainder of this report consists of three sections. Section 2.0 (Field Investigation) describes the scope of work for the Phase II ESA, including the sample locations, sampling procedures, analytical methods and data validation procedures. The site hydrogeology and the results of the geophysical survey and soil analyses, including data validation results, are described in Section 3.0 (Findings). The conclusions of the Phase II ESA and recommendations regarding additional investigation and remediation, if warranted, are presented in Section 4.0 (Conclusions and Recommendations).

Samples were collected using a dedicated disposable scoop from 0 to 6 inches below grade or the pile/berm surface. Each sample was analyzed for Target Compound List (TCL) volatile organic compounds with a library search (VOCs+10), TCL semivolatile organic compounds with a library search (SVOCs+20), TCL pesticides, TCL PCBs, Target Analyte List (TAL) metals and cyanide.

2.1.3 Subsurface Soil Sampling

Based on the AECs identified during the 1999 Phase I ESA and after review of available aerial photographs and historic site information, subsurface soil samples were collected in October 2006 at five locations. The AECs that were sampled include the former sanitary leaching area in the northwest portion of the site, the UST adjacent to the former animal shelter building and the apparent waste disposal pits in the southwest and central portions of the site.

Samples were collected using the direct push sampling method by Zebra Environmental Corporation. Sampling was conducted continuously from grade to a depth of 12 feet (below the presumed depth of the UST and the depth of penetration for the magnetometer survey). Each sample was screened for VOCs using a photoionization detector (PID) and geologically logged, including indications of potential contamination such as staining or odors.

The "worst-case" 2-foot interval from each boring, based on PID readings and field observations, was submitted to the laboratory for analysis of TCL VOCs+10, TCL SVOCs+20, TCL pesticides, TCL PCBs, TAL metals and cyanide. Where no "worst-case" interval was identified (samples FAS-1, FAS-2, and FAS-3), the sample from 2 to 4 feet below grade was submitted for analysis, as this is the maximum depth likely to be disturbed during the planned future park construction.

2.2 Analytical Methods and Data Validation

Chemical laboratory analyses of soil samples collected by D&B were performed by Mitkem Corporation. Mitkem is certified under the New York State Department of Health Environmental Laboratory Accreditation Program (ELAP) for the analyses performed.

All analyses were performed using New York State Department of Environmental Conservation (NYSDEC) 6/00 Analytical Services Protocols (ASP) methods using standard, 28-day turnaround time. A Category B data package was provided, using batch quality assurance/quality control (QA/QC) samples.

The data packages were reviewed in accordance with NYSDEC QA/QC requirements. All QA sample (calibrations, blanks, spikes, etc.) results have been reviewed for transcription errors and contract compliance. The results of the data validation process are presented as a Data Usability Summary Report (DUSR) in Section 3.4.

Table 3-1
SURFACE SOIL SAMPLE RESULTS
FORMER ANIMAL SHELTER, SOUTHAMPTON, NEW YORK

SAMPLE ID	FAS-1	FAS-2	FAS-3	FAS-4	FAS-5	FAS-6	Castant	CNNCOO	a kerone
SAMPLE DEPTH (FT)	0 0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	Contract	6 NYCRR Part 375	6 NYCRR
SAMPLE TYPE	Surface	Surface	Surface	Surface	Surface	Surface	Required	Unrestricted	Part 375
PERCENT SOLIDS DILUTION FACTOR	90	89	95 1	78	97	95 1	Detection Limit	Use	Residential Use
DATE OF COLLECTION	10/12/2006	10/12/2006	10/12/2006	10/12/2006	10/12/2006	10/12/2006	Lillin	Criteria	Criteria
UNITS	(ug/kg)	(ug/kg)	(ug/kg)						
Volatile Organics	/og-ng/	(09.19)	(og/ig/	(ogreg)	(og.vg)	109191	Tog rigi	(ug/kg)	(og/kg)
Dichlorodifluoromethane	U	U	U	U	U	U	10		
Chloromethane	ŭ	ŭ	ŭ	ŭ	ŭ	ŭ	10		
Vinyl chloride	ŭ	ŭ	ŭ	ŭ	ŭ	ŭ	10	20	210
Bromomethane	ŭ	ŭ	ū	ŭ	ŭ	ŭ	10	_	
Chloroethane	ŭ	Ü	ŭ	ŭ	ŭ	ŭ	10		_
Frichlorofluoromethane	ŭ	ŭ	ŭ	ŭ	Ü	ŭ	10		-
1.1-Dichloroethene	Ü	Ü	U	U	U	U	10	330	100,000
Acetone	U	Ū	Ü	U	U	Ū	10	50	100,000
odomethane	U	U	U	U	υ	U	10	-	-
Carbon disulfide	U	U	U	U	U	U	10		-
Methylene chloride	4 J	3 J	U	U	4 J	U	10	50	51,000
rans-1,2-Dichloroethene	U	U	U	U	U	U	10	190	100,000
Methyl tert-butyl ether	U	U	U	U	U	U	10	930	62,000
1,1-Dichloroethane	υ	U	U	U	U	U	10	330	19,000
/inyl acetate	U	U	U	u	u	U	10	-	
2-Butanone	U	U	U	U	U	U	10	120	100,000
cis-1,2-Dichloroethene	U	U	U	U	U	U	10	250	59,000
2,2-Dichloropropane Bromochloromethane	U	u	U	U	U	U	10 10	-	-
Chloroform	U	U	Ü	Ü	U	U	10	370	10,000
1,1,1-Trichloroethane	Ü	Ü	Ü	Ü	Ü	Ü	10	680	100,000
1,1-Dichloropropene	Ü	Ü	Ü	ŭ	ŭ	Ü	10	-	100,000
Carbon tetrachloride	ŭ	Ü	ŭ	ŭ	Ü	ŭ	10	760	1,400
1.2-Dichloroethane	ŭ	ŭ	ŭ	ŭ	Ü	Ü	10	20	2,300
Benzene	U	U	U	U	U	U	10	60	2,900
Trichloroethene	U	U	U	U	U	U	10	470	10,000
1,2-Dichloropropane	U	U	U	U	U	U	10		-
Dibromethane	U	U	υ	U	U	U	10		.77
Bromodichloromethane	U	U	U	U	U	U	10	-	-
cis-1,3-Dichloropropene	U	U	U	u	Ü	U	10	-	
4-Methyl-2-pentanone	U	u	U	U	U	U	10	700	-
Toluene	U	U	U	U	U	U	10	700	100,000
trans-1,3-Dichloropropene	U	U	U U	U	U	U	10 10		-
1,1,2-Trichloroethane	U	Ü	U	. 0	U	Ü	10	_	-
1,3-Dichloropropane Tetrachloroethene	U	Ü	ŭ	Ü	U	Ü	10	1,300	5,500
2-Hexanone	Ü	ŭ	Ŭ	ŭ	Ü	Ü	10	1,500	5,550
Dibromochloromethane	ŭ	ŭ	ŭ	ŭ	ŭ	ŭ	10	-	_
1,2- Dibromethane	u	Ü	Ū	Ū	Ū	Ū	10	_	-
Chlorobenzene	U	· U	U	U	U	U	10	1,100	100,000
1,1,1,2-Tetrachloroethane	U	U	U	U	U	U	10	-	-
Ethylbenzene	U	U	U	U	U	U	10	1,000	30,000
Xylene (total)	U	U	U	U	U	U	10	260	100,000
Styrene	U	U	U	U	U	U	10	-	-
Bromoform	U	U	U	U	U	U	10		-
sopropylbenzene	U	U	U	U	U	U	10		-
1,1,2,2-Tetrachloroethane	U	U	U	U	U	U U	10 10	-	-
Bromobenzene 1,2,3-Trichloropropane	U	U	Ü	Ü	U	U	10	-	-
n-Propylbenzene	ŭ	Ü	ŭ	Ιŭ	Ü	Ü	10	3,900	100,000
2-Chlorotoluene	U	Ü	Ü	Ü	Ü	Ü	10	3,900	100,000
1,3,5-Trimethylbenzene	ŭ	Ü	ا ن	ľ	Ü	lü	10	8,400	47,000
4-Chlorotoluene	u	Ü	Ιŭ	Ιŭ	U	Ü	10	0,400	- 000
ert-Butylbenzene	ŭ	ŭ	ŭ	Ŭ	Ü	Ü	10	5,900	100,000
1,2,4-Trimethylbenzene	ŭ	ŭ	ŭ	ŭ	ű	ŭ	10	3,600	47,000
sec-Butylbenze	U	U	U	U	U	U	10	11,000	100,000
1-Isopropyltoluene	U	U	U	U	U	U	10	-	-
,3-Dichlorobenzene	U	U	U	U	· U	U	10	2,400	17,000
1,4-Dichlorobenzene	U	Ü	U	U	U	U	10	1,800	9,800
n-Butylbenzene	U	U	U	U	U	U	10	12,000	100,000
1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane	U	U	U	U	U	U	10 10	1,100	100,000
1,2-Uibromo-3-chioropropane 1,2,4-Trichlorobenzene	U	U	u u	Ü	U	Ü	10	-	-
	Ü	ŭ	Ü	l ü	U	U	10	_	
Hexachiombutadiene i							10		-
Hexachlorobutadiene Naphthalene	U	U	2 J	U	U	l u	10	12.000	100.000
	U U	U	2 J U	U	U	U U	10 10	12,000	100,000

QUALIFIERS
U: Compound analyzed for but not detected.
J: Compound detected at a concentration below CRDL, value estimated.

Table 3-1 SURFACE SOIL SAMPLE RESULTS FORMER ANIMAL SHELTER, SOUTHAMPTON, NEW YORK

SAMPLE ID	FAS-1	FAS-2	FAS-3	FAS-4	FAS-5	FAS-6			T
SAMPLE DEPTH (FT)	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	Contract	6 NYCRR	6 NYCRR
SAMPLE TYPE	Surface	Surface	Surface	Surface	Surface	Surface	Required	Part 375	Part 375
PERCENT SOLIDS	90	89	95	78	97	95	Detection	Unrestricted	Residential
DILUTION FACTOR	1	1	1	1	1	1	Limit	Use	Use
DATE OF COLLECTION	10/12/2006	10/12/2006	10/12/2006	10/12/2006	10/12/2006	10/12/2006		Criteria	Criteria
UNITS	(ug/kg)	(ug/kg)							
Semi-volatile Organics						70.0			
Phenol	u	U	U	U	U	U	330	330	100,000
bis (2-Chloroethyl) ether	U	U	U	U	U	υ	330		
2-Chlorophenol	U	U	U	U	U	U	330		
1,3-Dichlorobenzene	U	U	υ	U	U	U	330	2,400	17,000
1,4-Dichlorobenzene	U	U	U	U	U	U	330	1,800	9,800
1,2-Dichlorobenzene	U	U	U	U	U	U	330	1,100	100,000
2-Methylphenol	u	U	u	U	u	U	330	330	100,000
2,2'-oxybis (1-Chloropropane)	U	U	U	U	U	U	330	-	
4-Methylphenol	U	U	U	U	U	U	330	330	34,000
N-Nitroso-di-n-propylamine	U	U	U	U	U	Ü	330	-	
Hexachloroethane	U	U	U	U	U	U	330		
Nitrobenzene	U	U	U	U	U	U	330		-
Isophorone	U	U	U	U	U	U	330	-	-
2-Nitrophenol	U	U	U	U	U	U	330	-	-
2,4-Dimethylphenol	U	U	U	U	U	U	330		
2.4-Dichlorophenol	U	- U	U	U	U	U	330		
1,2,4-Trichlorobenzene	U	U	U	U	U	U	330		
Naphthalene	U	U	U	U	U	U	330	12,000	100,000
4-Chloroaniline	U	U	U	U	U	U	330		
bis (2-Chloroethoxy)methane		U	U	U	υ	U	330		
Hexachlorobutadiene	U	U	U	U	U	U	330		
4-Chloro-3-methylphenol		1,000	U	U	U	U	330	-	-
2-Methylnaphthalene	U	U	U	-U	U	U	330		
Hexachlorocyclopentadiene 2,4,6-Trichlorophenol	U	Ü	U	U	U	U	330		**
2,4,5-Trichlorophenol	Ü	Ü	U	Ü	Ü	U	330	-	-
2-Chloronaphthalene	Ü	Ü	Ü	Ü	Ü	U	825 330		-
2-Nitroaniline	ŭ	Ü	Ü	Ü	Ü	Ü	825	. 261	-
Dimethylphthalate	ŭ	ŭ	ŭ	Ü	Ü	Ü	330	- "	-
Acenaphthylene	ŭ	ŭ	Ü	Ü	Ü	Ü	330	100,000	100,000
2,6-Dinitrotoluene	ŭ	Ü	Ü	Ü	Ü	U	330	100,000	100000000000000000000000000000000000000
3-Nitroaniline	ŭ	ŭ	Ü	Ü	Ü	Ü	825		_
Acenaphthene	ŭ	ŭ	ŭ	Ü	Ü	ŭ	330	20,000	100,000
2,4-Dinitrophenol	ŭ	ŭ	ŭ	Ü	Ü	Ü	825	20,000	100,000
4-Nitrophenol	Ŭ	ŭ	ŭ	Ŭ	Ü	Ü	825	-	-
Dibenzofuran	ŭ	ŭ	ŭ	ŭ	ŭ	ŭ	330	7,000	14,000
2,4-Dinitrotoluene	Ü	ŭ	ŭ	ŭ	Ü	Ü	330	7,000	14,000
Diethylphthalate	U	Ū	ŭ	Ü	Ü	ŭ	330		
4-Chlorophenyl-phenylether	U	U	U	U	U	Ü	330		_
Fluorene	U	U	U	U	U	u	330	30,000	100,000
4-Nitroaniline	U	·U	U	U	U	ŭ	825	-	
4,6-Dinitro-2-methylphenol	U	U	U	U	U	U	330		
N-Nitrosodiphenylamine	U	U	U	U	U	ū	330		
4-Bromophenyl-phenylether	U	U	U	U	U.	U	330	5700	-
Hexachlorobenzene	U	U	U	U	U	U	330		
Pentachlorophenol	U	U	U	U	U	U	825	800	2,400
Phenanthrene	U	U	U	u	U	U	330	100,000	100,000
Anthracene	U	U	U	U	U	U	330	100,000	100,000
Carbazole	U	U	U	U	U	U	330	-	
Di-n-butylphthalate	48 J	46 J	47 J	70 J	41 J	U	330	-	-
Fluoranthene	U	U	U	U	U	U	330	100,000	100,000
Pyrene Butylbenzylphthalate	U	U	U	. U	U	U	330	100,000	100,000
	U	U	U	U	U	U	330	- 1	-
3,3'-Dichlorobenzidine	U	U	U	U	U	U	330		-
Benzo(a)anthracene	U	U	U	U	U	U	330	1,000	1,000
Chrysene	U	U	U	U	U	U	330	1,000	1,000
bis (2-Ethylhexyl) phthalate	U*	u.	U*	U*	U•	U*	330	-	-
Di-n-octylphthalate	Ü	U	U	U	U	U	330	-	<u> </u>
Benzo(b)fluoranthene	U	U	U	U	U	U	330	1,000	1,000
Benzo(k)fluoranthene	U	U	U	U	U	U	330	800	1,000
Benzo(a)pyrene	U	U	U	U	U	U	330	1,000	1,000
Indeno (1.2,3-cd)pyrene	U	U	U	U	Ü	U	330	500	500
Dibenzo(a,h)anthracene	U	U	U	U	U	U	330	330	330
Benzo (g.h.i)perylene	U	· U	U	U	U	U	330	100,000	100,000
Total SVOCs	48	46	47	70	41	0		-	
Total SVOC TICs	4,690	U	190	500	230	150		-	-

- QUALIFIERS:
 U: Compound analyzed for but not detected.
 J: Compound detected at a concentration below CRDL, value estimated.
 U*: Result qualified as non-detect, based on data validation criteria.

Table 3-1 SURFACE SOIL SAMPLE RESULTS FORMER ANIMAL SHELTER, SOUTHAMPTON, NEW YORK

SAMPLE ID	FAS-1	FAS-2	FAS-3	FAS-4	FAS-5	FAS-6			
SAMPLE DEPTH (FT)	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	Contract	6 NYCRR	6 NYCRR
SAMPLE TYPE	Surface	Surface	Surface	Surface	Surface	Surface	Required	Part 375	Part 375
PERCENT SOLIDS	90	89	95	78	97	95	Detection	Unrestricted	Residential
DILUTION FACTOR	1	1	1	1	1	1	Limit	Use	Use
DATE OF COLLECTION	10/12/2006	10/12/2006	10/12/2006	10/12/2006	10/12/2006	10/12/2006		Criteria	Criteria
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Pesticides									20000
alpha-BHC	U	U	U	U	U	U	1.7	20	97
beta-BHC	U	U	υ	U	U	U	1.7	36	72
delta-BHC	U	U	U	U	U	U	1.7	40	100
gamma-BHC	U	U	U	U	U	U	1.7	-	280
Heptachlor	U	u	U	U	U	U	1.7	42	420
Aldrin	U	U	U	U	U	U	1.7	5	19
Heptachlor epoxide	U	U	U	U	U	U	1.7	-	-
Endosulfan I	U	U	U	U	U	U	1.7	2,400	420
Dieldrin	U	U	U	U	U	u	3.3	5	4,800
4.4'-DDE	6.0	U	U	U	U	U	3.3	3.3	1,800
Endrin	U	U	U	U	U	U	3 3	14	2,200
Endosulfan II	U	U	U	U	U	U	3.3	2,400	4,800
4.4'-DDD	U	U	υ	U	U	U	3.3	3.3	2,600
Endosulfan sulfate	U	U	U	U	U	U	3.3	2,400	4,800
4.4'-DDT	18	U	U	Ü	U	U	3.3	3.3	1,700
Methoxychlor	U	U	U	u	U	U	17	-	
Endrin ketone	U	U	U	U	U	U	3.3	-	
Endrin aldehyde	U	U	U	- U	U	U	3.3		
alpha-Chlordane	4.8 P	U	U	U	U	3.5 P	1.7	94	910
gamma-Chlordane	4.5	U	U	U	U	3.1	1.7	94	910
Toxaphene	U	U	U	U	U	U	170	-	-
PCBs					1				
Aroclor-1016	U	u	U	U	U	U	33	100	1,000
Aroclor-1221	U	U	U	U	U	U	67	100	1,000
Aroclor-1232	U	U	U	U	U	U	33	100	1,000
Aroclor-1242	U	U	U	υ	U	U	33	100	1,000
Aroclor-1248	U	U	U	U	υ	U	33	100	1,000
Aroclor-1254	63 P	U	U	U	U	U	33	100	1,000
Aroclor-1260	U	U	U	U	U	U	33	100	1,000

QUALIFIERS:
U: Compound analyzed for but not detected.
P: Greater than 25% difference between primary and confirmation columns; lower value reported.

Table 3-1 SURFACE SOIL SAMPLE RESULTS FORMER ANIMAL SHELTER, SOUTHAMPTON, NEW YORK

SAMPLE ID	FAS-1	FAS-2	FAS-3	FAS-4	FAS-5	FAS-6			
SAMPLE DEPTH (FT)	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5		6 NYCRR	6 NYCRR
SAMPLE TYPE	Surface	Surface	Surface	Surface	Surface	Surface	Instrument	Part 375	Part 375
PERCENT SOLIDS	90	89	95	78	97	95	Detection	Unrestricted	Residential
DILUTION FACTOR	1	1	1	1	1	1	Limit	Use	Use
DATE OF COLLECTION	10/12/2006	10/12/2006	10/12/2006	10/12/2006	10/12/2006	10/12/2006		Criteria	Criteria
UNITS	(mg/kg)	(mg/kg)							
Metals			1 4 4	1.0.0/	1-31-31			1.0.0/	1331
Aluminum	1,500	33,800	649	628	925	1,200	9		
Antimony	0.42 B	U	0.099 B	0.087 B	0.20 B	0.12 B	3		
Arsenic	0.70	3.3	0.39 B	0.60 B	0.86	0.56 B	3	13	16
Barium	12.8	245	1.2 B	1.4 B	4.1 B	5.6 B	10	350	350
Beryllium	0.058 B	4.5	0.028 B	0.043 B	0.047 B	0.046 B	0.3	7.2	14
Codmium	0.22	U	U	U	0.39	U	0.3	2.5	2.5
Calcium	308	169,000	29.6	9.2 B	39.8	277	317	-	_
Chromium	2.1	11.6	1.2	2.9	2.2	1.6	2	30	36
Cobalt	0.89 B	0.39 B	0.44 B	0.52 B	0.95 B	0.47 B	3	-	-
Copper	4.6	4.6	1.0	1.6	6.0	2.0	2	50	270
Iron	2,160	2,770	963	1,650	2,490	1,470	2	-	
Lead	18 0	5.6	1.8	3.5	15.3	6.8	2	63	400
Magnesium	190	66,400	73.4	101	152	230	3		-
Manganese	35.6	1,730	11.9	12.3	29.7	15	4	1,600	2,000
Mercury	0.018 B	U	U	U	0.0091 B	U	0.1	0.18	0.81
Nickel	1.3 B	0.59 B	0.50 B	0.51 B	1.1 B	0.83 B	3	30	140
Potassium	60.1	2,340	34.0	46.6	48.1	70.7	320		
Selenium	0.52 B	U	0.18 B	0.23 B	0.54 B	0.36 B	5	3.9	36
Silver	u	U	U	U	U	U	8	2	36
Sodium	11.3 B	839	7.0 B	8.5 B	8.4 B	10.6 B	155		
Thallium	0.13 B	U	0.057 B	U	U	0.055 B	5		
Vanadium	3.5	4.4	2.0	4.4	3.0	3.4	3		_
Zinc	121	8.7	2.7	1.8	22.4	6.3	- 2	109	2,200
Cyanide	U	1 u	u	U	U	U	2	27	27

QUALIFIERS:
U. Constituent analyzed for but not detected.
B: Concentration is between instrument detection limit and contract required detection limit.
NOTES:

Concentration exceeds unrestricted use criterion.

There were no detected concentrations above New York's RPSCOs for unrestricted site use in any of the surface soil samples for VOCs, SVOCs or pesticides/PCBs.

Sample FAS-1 contained zinc at a concentration of 121 milligrams per kilogram (mg/kg), slightly above the unrestricted use criterion of 109 mg/kg. The detected concentration was well below the zinc criterion for protection of public health for residential site use of 2,200 mg/kg. According to the NYSDEC regulations (6 NYCRR Part 375-1.8(g)), residential use allows a property to be used for any use other than raising livestock or producing animal products for human consumption. None of the other surface soil samples contained any metals or cyanide at concentrations that exceeded the unrestricted use criteria.

3.3.3 Subsurface Soil

Analytical results for subsurface soil for all compounds are summarized in Table 3-2. Laboratory data sheets are included in Appendix C.

None of the subsurface soil samples contained VOCs, SVOCs, pesticides, PCBs, metals or cyanide at concentrations exceeding unrestricted use criteria.

3.4 Data Usability Summary Report

Six surface and five subsurface soil samples were collected on October 12, 2006 and October 13, 2006 at the Former Animal Shelter site in Southampton, New York. The samples were analyzed for TCL VOCs, TCL SVOCs, TCL pesticides, TCL PCBs, TAL metals and cyanide.

Sample analysis was performed by Mitkem Corporation Inc., a subcontractor to Dvirka and Bartilucci Consulting Engineers. The samples were analyzed in accordance with New York State Department of Environmental Conservation (NYSDEC) 6/00 Analytical Services Protocol (ASP) methods.

Table 3-2 SUBSURFACE SOIL SAMPLE RESULTS FORMER ANIMAL SHELTER, SOUTHAMPTON, NEW YORK

SAMPLE ID SAMPLE DEPTH (FT)	SB-1 2-4	SB-2 2-4	SB-3	SB-4	0	0.101000	0.1110000
SAMPLE TYPE	Subsurface	Subsurface	2-4	9-11	Contract	6 NYCRR	6 NYCRR
PERCENT SOLIDS	96	95	Subsurface	Subsurface	Required	Part 375	Part 375
DILUTION FACTOR	1	1	91	- 89	Detection	Unrestricted	Residentia
DATE OF COLLECTION	10/13/2006	10/13/2006	1	1	Limit	Use	Use
UNITS			10/13/2006	10/13/2006		Criteria	Criteria
Volatile Organics	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Dichlorodifluoromethane		11			40	1	
	U	υ	U	U	10		
Chloromethane	U	U	U	U	10		
Vinyl chloride	U	U	U	U	10	20	210
Bromomethane	U	U	U	. U	10		
Chloroethane	U	U	U	U	10		
Trichlorofluoromethane	U	U	Ü	ü	10		1001
1,1-Dichloroethene	U	U	Ü	ŭ	10	330	100,000
Acetone	Ü	ŭ	ŭ	ŭ	10	1	100,000
odomethane	Ŭ	Ü	Ü	Ü		50	100,000
Carbon disulfide	Ü				10		
Methylene chloride	Ü	U	U	U	10		35 Tol.
rans-1,2-Dichloroethene	Ü	U	U	U	10	50	51,000
		U	U	U	10	190	100,000
Methyl tert-Butyl Ether	U	U	U	U	10	930	62,000
1,1-Dichloroethane	U	U	U	U	10	330	19,000
Vinyl Acetate	U	u	U	U	10	- ^	- 1
2-Butanone	U	U	U	U	10	120	100,000
cis-1,2-Dichloroethene	U	U	U	U	10	250	59,000
2,2-Dichloropropane	U	U	U	u	10	-	-
Bromochloromethane	U	U	U	Ū	10	_	-
Chloroform	U	Ü	Ü	ŭ	10	370	10,000
1,1,1-Trichloroethane	ŭ	ŭ	Ŭ	Ü	10	680	100.000
1,1-Dichloropropene	ŭ	Ü	ŭ	Ü			
Carbon tetrachloride	Ü			0.0000	10		-
		U	U	U	10	760	1,400
1.2-Dichloroethane	U	U	U	U	10	20	2,300
Benzene	U	U	U	U	10	60	2,900
Trichloroethene	U	u	U	U	10	470	10,000
1,2-Dichloropropane	U	U	U	U	10		
Dibromethane	U	U	U	U	10	-	(***
Bromodichloromethane	U	U	U	U	10	-	
cis-1,3-Dichloropropene	U	u	ul	U	10		
4-Methyl-2-pentanone	U	U	Ū	Ü	10		_
Foluene	U	Ü	U	Ü	10	700	100,000
rans-1,3-Dichloropropene	Ū	Ü	ŭ	ŭ	10	700	100,000
1,1,2-Trichloroethane	U	U	ŭ	ŭ	10		
1,3-Dichloropropane	Ü	ŭ	ŭ	Ü	10		
Tetrachloroethene	انا	Ü	.000				
2-Hexanone	0		U I	U	10	1,300	5,500
		U	U	U	10		
Dibromochloromethane	U	U	u	U	10		
,2- Dibromethane	U	U	U	U	10	-	-
Chlorobenzene	U	υ	U	U	10	1,100	100,000
1,1,1,2-Tetrachloroethane	U	υ	U	U	10	-	
thylbenzene	U	U	U	U	10	1,000	30,000
(ylene (total)	U	U	U	U	10	260	100,000
Styrene	U	U	Ü	Ü	10	-	-
Bromoform	U	U	U	U	10	-	-
sopropylbenzene	U	Ū	Ü	ŭ	10	-	
,1,2,2-Tetrachloroethane	U	ŭ	ŭ	ŭ	10	-	
Bromobenzene	l ŭ	ŭ	ŭ	ü	10	1	.77
,2,3-Trichloropropane	Ü	Ü		-	51.7	-	
-Propylbenzene	U	ŭ	U	U	10	2.000	***
-Chlorotoluene	Ü		U	U	10	3,900	100,000
-Chlorololuene ,3,5-Trimethylbenzene		U	U	U	10		-
	U	U	U	U	10	8,400	47,000
-Chlorotoluene	U	U	U	U	10		
art-Butylbenzene	U	U	U	U	10	5,900	100,000
,2,4-Trimethylbenzene	U	U	U	U	10	3,600	47,000
ec-Butylbenze	U	U	U	U	10	11,000	100,000
-Isopropyltoluene	U	U	U	U	10	(3/24.2.7/F)	,
3-Dichlorobenzene	Ü	ŭ	ŭ	ŭ	10	2,400	17,000
4-Dichlorobenzene	Ū	Ü	ŭ	ŭ	10	1,800	9,800
Butylbenzene	ŭ	ŭ	ŭ	ŭ	10	12,000	100,000
2-Dichlorobenzene	Ŭ	ŭ	ŭ	ŭ	10	1,100	
2-Dibromo-3-chloropropane	Ü	ŭ	ŭ	ŭ	10	1,100	100,000
2.4-Trichlorobenzene	0	ü	ü	ŭ	10	_	-
exachlorobutadiene	Ü	ŭ	ŭ	ŭ		-	***
aphthalene	l ül	Ü	Ü		10	12.000	400.000
2,3-Trichlorobenzene	1 "	Ü	U	U	10	12,000	100,000
otal VOCs	1 01			U	10		
otal VOC TICs	1 0	U	U	U			-

QUALIFIERS:
U: Compound analyzed for but not detected

Table 3-2 SUBSURFACE SOIL SAMPLE RESULTS FORMER ANIMAL SHELTER, SOUTHAMPTON, NEW YORK

SAMPLE ID	SB-1	SB-2	\$B-3	SB-4	Contract	6 NYCRR	6 NYCRR
SAMPLE DEPTH (FT) SAMPLE TYPE	2-4 Subsurface	2-4 Subsurface	2-4 Subsurface	9-11 Subsurface	Required	Part 375	Part 375
PERCENT SOLIDS	96	95	91	89	Detection	Unrestricted	Residential
DILUTION FACTOR	1	1	1	1	Limit	Use	Use
DATE OF COLLECTION	10/13/2006	10/13/2006	10/13/2006	10/13/2006		Criteria	Criteria
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Semi-volatile Organics							
Phenol	U	U	U	U	330	330	100,000
bis (2-Chloroethyl) ether	U	U	U	U	330	-	
2-Chlorophenal	U	U	U	U	330		
1,3-Dichlorobenzene	U	U	U	U	330	2,400	17,000
1,4-Dichlorobenzene	U	U	U	U	330	1,800	9,800
1,2-Dichlorobenzene	U	υ	u	U	330	1,100	100,000
2-Methylphenol	U	U	U	U	330	330	100,000
2,2'-oxybis (1-Chloropropane)	U	U	U	· u	330	-	**
4-Methylphenol	U	U	U	U	330	330	34,000
N-Nitroso-di-n-propylamine	U	U	U	U	330		
Hexachloroethane	U	U	U	U	330		-
Nitrobenzene	U	U	U	u	330	-	
Isophorone	U	U	U	U	330 330	-	_
2-Nitrophenol	U	U	Ü	U	330	_	-
2,4-Dimethylphenol	U	U	U	U	330	_	_
2.4-Dichlorophenol	Ü	l u	Ü	U	330	-	-
1,2,4-Trichlorobenzene Nachthalene	Ü	U	11	Ü	330	12,000	100,000
	Ü	Ü	. 0	Ü	330	12,000	100,000
4-Chloroaniline	U	υ	Ü	ŭ	330	-	
bis (2-Chloroethoxy)methane Hexachlorobutadiene	U	l ü	Ü	Ü	330		-
4-Chloro-3-methylphenol	Ü	l ŭ	ŭ	ŭ	330		_
2-Methylnaphthalene	ŭ	Ü	Ŭ	Ŭ	330		
Hexachlorocyclopentadiene	Ü	Ü	Ü	U	330	-	
2,4,6-Trichlorophenol	U	U	U	U	330	-	**
2,4,5-Trichlorophenol	U	Ū	U	U	825		
2-Chloronaphthalene	U	U	U	U	330	-	-
2-Nitroaniline	U	U	U	U	825	-	-
Dimethylphthalate	U	U	U	U	330		
Acenaphthylene	U	U	U	U	330	100,000	100,000
2,6-Dinitrotoluene	U	U	U	U	330	-	
3-Nitroaniline	U	U	U	U	825	-	-
Acenaphthene	U	U	U	u	330	20,000	100,000
2,4-Dinitrophenol	u	U	U	U	825	-	
4-Nitrophenol	U	U	u	U	825		
Dibenzofuran	U	U	U	U	330	7,000	14,000
2,4-Dinitrotoluene	Ü	U	U	U	330 330	-	-
Diethylphthalate	U	U	U	U	330		-
4-Chlorophenyl-phenylether	Ü	U	U	Ü	330	30,000	100,000
Fluorene 4-Nitroaniline	Ü	U	Ü	Ü	825	30,000	100,000
4,6-Dinitro-2-methylphenol	U	U	U	Ü	330	_	-
N-Nitrosodiphenylamine	Ü	U	U	Ü	330		_
4-Bromophenyl-phenylether	1 0	Ŭ	U	Ü	330	-	-
Hexachlorobenzene	ŭ	ľű	ŭ	ŭ	330		
Pentachlorophenol	ŭ	Ŭ	ũ	Ü	825	800	2,400
Phenanthrene	U	Ü	Ü	U	330	100,000	100,000
Anthracene	Ü	Ü	Ū	U	330	100,000	100,000
Carbazole	ŭ	ŭ	ũ	Ü	330		-
Di-n-butylphthalate	ŭ	38 J	47 J	42 J	330		_
Fluoranthene	U	U	U	U	330	100,000	100,000
Pyrene	U	U	U	U	330	100,000	100,000
Butylbenzylphthalate	U	U	U	U	330		
3,3'-Dichlorobenzidine	U	U	U	U	330		
Benzo(a)anthracene	U	U	U	U	330	1,000	1,000
Chrysene	U	U	U	U	330	1,000	1,000
bis (2-Ethylhexyl) phthalate	n.	n.	u.	n.	330		
Di-n-octylphthalate	U	U	U	U	330		-
Benzo(b)fluoranthene	U	U	U	U	330	1,000	1,000
Benzo(k)fluoranthene	U	U	U	U	330	800	1,000
Benzo(a)pyrene	U	U	U	U	330	1,000	1,000
Indeno (1,2,3-cd)pyrene	U	U	U	U	330	500	500
Dibenzo(a,h)anthracene	U	U	U	U	330	330	330
Benzo (g.h.i)perylene	U	U	U	U	330	100,000	100,000
Total SVOCs	0	38	47	42		_	-
Total SVOC TICs	360	U	1,680	U			-

- NOTES:
 U: Compound analyzed for but not detected
 J: Compound detected at a concentration below CRDL, value estimated
 U*: Result qualified as non-detect, based on data validation criteria.

Table 3-2 SUBSURFACE SOIL SAMPLE RESULTS FORMER ANIMAL SHELTER, SOUTHAMPTON, NEW YORK

SAMPLE ID	SB-1	SB-2	SB-3	SB-4			
SAMPLE DEPTH (FT)	2-4	2-4	2-4	9-11	Contract	6 NYCRR	6 NYCRR
SAMPLE TYPE	Subsurface	Subsurface	Subsurface	Subsurface	Required	Part 375	Part 375
PERCENT SOLIDS	96	95	91	89	Detection	Unrestricted	Residential
DILUTION FACTOR	1 1	1	1	1	Limit	Use	Use
DATE OF COLLECTION	10/13/2006	10/13/2006	10/13/2006	10/13/2006		Criteria	Criteria
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Pesticides		7200-4					
alpha-BHC	U	U	U	U	1.7	20	97
beta-BHC	U	υ	U	U	1.7	36	72
delta-BHC	U	U	Ú	u	1.7	40	100
gamma-BHC	U	U	U	U	1.7		280
Heptachlor	U	U	U	U	1.7	42	420
Aldrin	U	Ü	u	U	1.7	5	19
Heptachlor epoxide	U	U	U	U	1.7	-	
Endosulfan I	U	U	υ	u	1.7	2,400	420
Dieldrin	U	U	υ	u	3.3	5	4,800
4.4'-DDE	U	U	Ü	U	3.3	3.3	1,800
Endrin	U	U	U	U	3.3	14	2,200
Endosulfan II	U	U	U	U	3.3	2,400	4,800
4,4'-DDD	U	U	U	U	3.3	3.3	2,600
Endosulfan sulfate	U	U	Ü	U	3.3	2,400	4,800
4,4'-DDT	U	U	U	U	3.3	3.3	1,700
Methoxychlor	U	u	U	U	17		
Endrin ketone	Ü	U	U	U	3.3		
Endrin aldehyde	U	u	U	U	3.3		
alpha-Chlordane	U	u	U	U	1.7	94	910
gamma-Chlordane	U	U	U	U	1.7	94	910
Toxaphene	U	U	U	U	170	-	-
PCBs						1	
Aroclor-1016	U	U	U	U	33	100	1,000
Aroclor-1221	U	U	U	U	67	100	1,000
Aroclor-1232	U	U	U	U	33	100	1,000
Aroclor-1242	U	U	U	U	33	100	1,000
Aroclor-1248	u	U	U	U	33	100	1,000
Aroclor-1254	U	U	U	U	33	100	1,000
Aroclor-1260	U	U	U	U	33	100	1,000

QUALIFIERS:
U: Compound analyzed for but not detected.

Table 3-2 SUBSURFACE SOIL SAMPLE RESULTS FORMER ANIMAL SHELTER, SOUTHAMPTON, NEW YORK

SAMPLE ID	SB-1	SB-2	SB-3		SB-4				
SAMPLE DEPTH (FT)	2-4	2-4	2-4		9-11			6 NYCRR	6 NYCRR
SAMPLE TYPE	Subsurface	Subsurface	Subsurfa	ce	Subsurfac	æ	Instrument	Part 375	Part 375
PERCENT SOLIDS	96	95	91		89		Detection	Unrestricted	Residential
DILUTION FACTOR	1	1	1		1		Limit	Use	Use
DATE OF COLLECTION	10/13/2006	10/13/2006	10/13/20	06	10/13/200)6		Criteria	Criteria
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)		(mg/kg)	(mg/kg)	(mg/kg)
Metals		and the same of th		3					
Aluminum	805	867	6,640		1,280		9	-	× -
Antimony	0 10 B	0.15 E	0.11	В	0.12	В	3		-
Arsenic	0.98	0.67	1.8		0.69		3	13	16
Barium	21 B	2.1	10.4		3.1	В	10	350	350
Beryllium	0.049 B	0.043 E	0.20		0.056	8	0.3	7.2	14
Cadmium	U	l	J	U		U	0.3	2.5	2.5
Calcium	8.9 8	50.5		U	98.3		317	••	
Chromium	7.6	2.2	7		8.2		2	30	36
Cobalt	0.72	0.72	1.6		0.70	В	3		••
Copper	1.9	1.1	1.6	1	2.2		2 2 2 3	50	270
Iron	1,700	1,180	5,870		2,170	1	2		
Lead	0.84	0.74	2.9		4.9	1	2	63	400
Magnesium	127	108	618		172	- 1		-	
Manganese	8.8	12.3	27.0		20.1	- 1	4	1,600	2,000
Mercury	U	ı	0.016	В		U	0.1	0.18	0.81
Nickel	0.80 B	0.86	3.0		1.4	В	3	30	140
Potassium	426	37 7	163		83.7		320		
Selenium	0.40 B	0.31	3 1.1		0.38	В	5	3.9	36
Silver	U	1	J	U		U	8	2	36
Sodium	6.4 B	11.3	3 11.1	B	13.4	В	155		-
Thallium	0.065 B		0.13	В		U	5		
Vanadium	3.4	2.3	10.9		3.9		3		-
Zinc	22	1.7	7.7		5.1	1	2 2	109	2,200
Cyanide	U	- 1	0.49	В		U	2	27	27

QUALIFIERS:
U. Constituent analyzed for but not detected.
B: Concentration is between instrument detection limit and contract required detection limit.

The data packages submitted by Mitkern have been reviewed to determine if the sample analyses were performed in accordance with the specified methods and Quality Assurance/Quality Control (QA/QC) requirements. The findings of the review process are summarized below.

All samples were analyzed within the method specified holding times and all QA/QC requirements (i.e., tunes, calibrations, surrogate recoveries, blanks, etc.) were met.

The volatile fraction of sample FAS-1 had two internal standard area counts outside QC limits. However, since all surrogate recoveries were within QC limits, no qualification of the data was required.

Bis(2-ethylhexyl)phthalate was detected in both method blanks associated with the surface and subsurface soil samples. The bis(2-ethylhexyl)phthalate results for the samples have been qualified as non-detect and are flagged "U*" on the data summary tables.

No other problems were found with the data and all results are deemed usable for environmental assessment purposes as qualified above.

4.0 CONCLUSIONS AND RECOMMENDATIONS

4.1 Conclusions

Based on the sample results and observations made during the Phase II Environmental Site Assessment field program conducted in October 2006, the following conclusions have been made:

- The geophysical survey results suggest that the underground fuel oil tank near the former on-site building is no longer present.
- VOCs, SVOCs, pesticides and PCBs were not detected at concentrations exceeding NYSDEC unrestricted use criteria in any of the six surface soil samples collected during this investigation.
- Zinc was detected at a concentration slightly exceeding its unrestricted use criterion
 in surface soil sample FAS-1. The detected zinc concentration was well below the
 NYSDEC criterion for residential site use.
- None of the subsurface soil samples contained VOCs, SVOC, pesticides, PCBs, metals or cyanide at concentrations exceeding NYSDEC unrestricted use criteria.
- Significant amounts of metallic debris, waste tires and junk vehicles were present in berms along the western and southern property boundaries, and in the southwestern area of the site.

4.2 Recommendations

Based on the conclusions presented in Section 4.1 above, the following recommendations are made for the Former Animal Shelter site:

- If the site is considered for development associated with active recreational uses, it is recommended that the metallic debris, waste tires and junked vehicles be removed from the site. This could be conducted as part of the site redevelopment activities.
- Since the only concentration of any parameter detected in the soil samples that
 exceeded the State's unrestricted use criteria (zinc in surface soil samples FAS-1) did
 not exceed the residential use criterion, this detection will not impact the planned
 future site use for active recreation. As a result, soil remediation is not
 recommended.