

PHASE II ENVIRONMENTAL SITE INVESTIGATION REPORT
FORMER METRO NORTH PROPERTY
3001 CONCOURSE VILLAGE EAST
BRONX, NEW YORK 10451

CONFIDENTIAL AND PRIVILEGED

PHASE II ENVIRONMENTAL SITE INVESTIGATION
REPORT
OF

FORMER METRO NORTH PROPERTY
3001 CONCOURSE VILLAGE EAST
BRONX, NEW YORK 10451

SCA LLW NO.: 27566
SCA CONTRACT NO.: 0018612
SCHOOL DISTRICT: 78
SCA JOB NO.: 14244

CONSULTANT PROJECT NO.: 47-01E04046.00 00018

DATE: August 24, 2001

NEW YORK CITY SCHOOL CONSTRUCTION AUTHORITY

Prepared by:

URS

URS Corporation
201 Willowbrook Boulevard
Wayne, New Jersey 07470
Phone: (973) 785-0700
Fax: (973) 785-0023
K.D. Seborowski

Prepared for:

NYC SCA
30-30 Thomson Avenue
Long Island City, NY 11101-3045
Phone: (718) 472-8620
Fax: (718) 472-8500
Attn: Srinivas Kanaparthi

PHASE II ENVIRONMENTAL SITE INVESTIGATION REPORT
FORMER METRO NORTH PROPERTY
3001 CONCOURSE VILLAGE EAST
BRONX, NEW YORK 10451

TABLE OF CONTENTS

Section	Page
EXECUTIVE SUMMARY	1
1.0 INTRODUCTION	3
1.1 PURPOSE	3
1.2 ON-SITE RECOGNIZED ENVIRONMENTAL CONDITIONS	3
1.2.1 Block 2443, Lot Number 78 (Former Metro North Property)	3
1.3 ADJACENT OR NEARBY PROPERTIES OF ENVIRONMENTAL CONCERN	3
1.3.1 Block 2458, Lot 13 (West Filling Station)	4
1.3.2 Block 2458, Lot 16 (Morgan Steam Laundry)	4
1.3.3 Block 2443, Lot 71 (Former Manufactured Gas Plant)	4
2.0 SITE SETTING	5
2.1 CURRENT FACILITY DESCRIPTION	5
2.1.1 Block 2443, Lot Number 78 (Former Metro North Property)	5
2.2 SITE PHYSICAL CHARACTERISTICS	6
3.0 DESCRIPTION OF PHASE II FIELD ACTIVITIES	7
3.1 GEOPHYSICAL SURVEY	7
3.2 SOIL GAS SURVEY	8
3.3 TEST PIT EXCAVATIONS AND SOIL SAMPLING	8
3.4 SURFICIAL AND SUBSURFACE SOILS INVESTIGATION	9
3.4.1 Surficial Soil Sampling	9
3.4.2 Subsurface Soil Sampling	9
3.5 GROUNDWATER INVESTIGATION	13
3.5.1 Groundwater Sampling Program	13
3.5.2 Piezometer Installation and Construction	14
3.5.3 Piezometer Sampling	14
3.5.5 Groundwater Flow Direction	14
3.6 SURFACE WATER AND SEDIMENT SAMPLING	14
3.7 ASBESTOS CONTAINING MATERIALS (ACM) SURVEY	15
3.8 LEAD-BASED PAINT SURVEY	15
3.9 INVESTIGATION DERIVED WASTE (IDW) CHARACTERIZATION AND DISPOSAL	15
3.10 AIR SAMPLING	15
3.11 SITE SURVEY	15
3.12 ADDITIONAL SAMPLING	15

TABLE OF CONTENTS (CONTINUED)

Section	Page
4.0 DISCUSSION OF PHASE II FINDINGS	16
4.1 APPLICABLE REGULATORY STANDARDS AND GUIDELINES.....	16
4.1.1 Soil Guidance Values (SGVs).....	16
4.1.2 Ambient Groundwater Quality Standards and Guidance Values.....	16
4.2 SOIL GAS SAMPLING FINDINGS	16
4.3 TEST PIT SOIL SAMPLING FINDINGS.....	16
4.4 SURFICIAL AND SUBSURFACE SOILS SAMPLING FINDINGS	19
4.4.1 Results of Surficial Soil Sampling Findings	19
4.4.2 Results of Subsurface Soil Sampling Findings	20
4.5 GROUNDWATER SAMPLING FINDINGS.....	22
4.6 SURFACE WATER AND SEDIMENT SAMPLING FINDINGS	23
4.7 CONTAINERIZED CHEMICALS.....	23
4.8 ASBESTOS RESULTS.....	23
4.9 LEAD-BASED PAINT ANALYTICAL RESULTS	23
4.10 AIR SAMPLING FINDINGS	23
4.11 ADDITIONAL SAMPLING FINDINGS	24
4.12 OVERALL FINDINGS TABLE.....	24
5.0 RECOMMENDED REMEDIATION AND COST ESTIMATES.....	25
5.1 PETROLEUM CONTAMINATED SOIL REMOVAL, DISPOSAL AND RESTORATION COST	25
5.2 C&D MATERIAL REMOVAL AND DISPOSAL COST	26
5.3 GROUNDWATER REMEDIATION COST	27
5.4 INSTALLATION OF IMPERMEABLE BARRIER SYSTEM COST	27
5.5 SOIL COVER PLACEMENT AND COST	28
5.6 TOTAL REMEDIATION COST	28
6.0 SIGNATURES OF ENVIRONMENTAL PROFESSIONALS.....	30

LIST OF TABLES

Table	Page
Table 1 Soil Sample Analytical Plan.....	12
Table 2 Groundwater Sample Analytical Plan	14
Table 3 Environmental Due Diligence Results Check List.....	24
Table 4 Petroleum Contaminated Soil Removal, Disposal and Restoration Cost.....	26
Table 5 C&D Material Removal and Disposal Cost	26
Table 6 Groundwater Remediation Cost	27
Table 7 Installation of Impermeable Barrier System Cost	28
Table 8 Soil Cover Placement Cost.....	28
Table 9 Total Remediation Cost.....	29

LIST OF FIGURES

Figure

Figure 1 Site Location Map

Figure 2 Site Features Map

Figure 3 Geophysical Survey Location Map

Figure 4 Phase II Sampling Location Plan

Figure 5 Test Pit Analytical Results Total VOCs and SVOCs

Figure 6 Surficial Soil Analytical Results Total SVOCs

Figure 7 Soil Boring Analytical Results Total VOCs and SVOCs

Figure 8 Groundwater Analytical Results Total VOCs

Figure 9 Areas of Proposed Remediation

PHASE II ENVIRONMENTAL SITE INVESTIGATION REPORT
FORMER METRO NORTH PROPERTY
3001 CONCOURSE VILLAGE EAST
BRONX, NEW YORK 10451

Appendix

- APPENDIX A** **FIELD LOGS (TEST PITS, SOIL BORINGS)**
- APPENDIX B** **ENVIRONMENTAL SAMPLES SUMMARY OF DETECTED COMPOUNDS TABLES (EXCEL SPREADSHEETS)**
- APPENDIX C-1** **ENVIRONMENTAL SAMPLES - LABORATORY ANALYTICAL DATA REPORTS**
- APPENDIX C-2** **ENVIRONMENTAL SAMPLES - LABORATORY ANALYTICAL DATA REPORTS**
- APPENDIX C-3** **ENVIRONMENTAL SAMPLES - LABORATORY ANALYTICAL DATA REPORTS**
- APPENDIX D** **PERSONNEL RESUMES**

EXECUTIVE SUMMARY

The New York City School Construction Authority (NYCSCA) requested that URS Corporation (URS) conduct a Phase II Environmental Site Investigation (ESI) associated with the proposed new school site located at 3001 Concourse Village East, Bronx, New York (hereafter referred to as the "Site"). One lot comprises the Site and is identified as Block 2443, Lot 78 on the Bronx tax assessor's map. This property was a former rail yard. The Site is currently vacant. There are no existing buildings on the property to be demolished for construction of a New York City Public School.

The Phase II ESI was completed to assess Recognized Environmental Conditions (RECs) identified during the Phase I Environmental Site Assessment (ESA), completed by URS and dated July 20, 2001. The Site was a rail yard from approximately 1891 until 1977. The Site also contained a machine shop, carpenter shop, paint area, offices, shops and storage areas. Subsequent to 1977, historical records depict the absence of the buildings or tracks comprising the rail yard at the Site. The past use of the Site is considered a REC. Pipe insulation was found at the Site during the Phase I ESA inspection and should be considered asbestos containing material (ACM).

The surrounding properties have been used for commercial and residential purposes. One filling station is located approximately a quarter mile to the west of the Site. This site is considered a potential REC because the filling station has been at this location since 1935. The former Morgan Steam Laundry located to the west of the Site is considered a REC because it has been depicted in the historical records since 1935 and the cleaning products that may have been used there could have impacted the environment. A former manufactured gas plant (MGP) was located northwest of the Site from approximately 1891 to about 1954. The MGP is a REC because the handling, storage, and use of petroleum feedstock and manufacturing byproducts could have impacted the environment.

URS performed a geophysical survey to determine the location of a suspected underground storage tank (UST) and underground utilities at selected subsurface sampling locations, and the presence or absence of track rails beneath the surface materials covering the Site. Surface soil samples were collected from 0 to 6 inches below ground surface (bgs) at 11 locations. Ten test pits were excavated to characterize the contents of two large debris mounds, the subsurface soils, and to investigate for the presence of the suspected UST. The test pits were also used to determine if the track rails had been removed or left in place and covered with fill.

Borings were advanced at 10 locations to depths ranging from 2 feet to 15.7 feet bgs using a direct push Geoprobe® to evaluate subsurface soil conditions. Eleven soil samples were collected at seven of the ten locations utilizing this method. In areas where borehole drilling was terminated at a shallow depth due to refusal, test pits were excavated.

Groundwater quality screening was performed at the perimeter and in the center of the Site by collecting groundwater samples at five locations. Three temporary piezometers were installed in a triangular arrangement at the eastern, northwestern and southwestern boundaries of the Site to determine the apparent direction of groundwater flow. A location survey of the piezometers was performed and referenced to an arbitrary datum established at the Site.

The findings of the Phase II ESI are as follows:

PHASE II ENVIRONMENTAL SITE INVESTIGATION REPORT
FORMER METRO NORTH PROPERTY
3001 CONCOURSE VILLAGE EAST
BRONX, NEW YORK 10451

- Surface soil across the Site contains semi-volatile organic compounds (SVOCs) primarily the polynuclear aromatic hydrocarbon (PAH) fraction, at concentrations that are 5 to 10 times the New York State Department of Environmental Conservation (NYSDEC) Recommended Soil Cleanup Objectives (RSCOs). The surficial soils also contain metals such as arsenic, cadmium, mercury and zinc at concentrations 3 to 5 times the Eastern USA Background Levels.
- Subsurface soils, primarily in the northwest portion of the Site contain volatile organic compounds (VOCs) and SVOCs at concentrations that are in some cases an order of magnitude greater than the RSCOs. Rail road ties have also been buried at the Site.
- Groundwater contamination by VOCs occurs primarily in the northwest section of the Site in association with the organic contamination reported for the subsurface soils.

For the Site to be suitable for construction of a New York City public school facility, the following conceptual site remediation scope is recommended.

- The removal of approximately 30,000 cubic yards of construction and demolition (C&D) type debris present in three mounds stockpiled at the Site.
- The excavation and disposal of approximately 28,700 cubic yards of petroleum contaminated regulated waste containing VOCs, SVOCs and metals. The material is present in the northwest section of the Site in an area measuring approximately 250 feet by 300 feet to an estimated depth of 10 feet, and at the southern boundary of the Site in an area measuring approximately 75 feet by 50 feet to an estimated depth of 5 feet.
- The installation of a clean soil cap, a minimum of 12 inches thick, over approximately 6 acres of the Site not otherwise covered by Site structures.
- The remediation of groundwater contaminated by VOCs by the removal of source material from the Site and the removal of visibly contaminated groundwater and free product.
- As an added safeguard, the installation of an impermeable barrier system beneath the foundation of Site structures to eliminate the potential accumulation or interior migration of residual organic vapors from the groundwater.
- A contingency to install a vertical sheet pile wall in the northwest area of the Site if an off-site source is confirmed during remedial activities that could potentially recontaminate the Site.

1.0 INTRODUCTION

1.1 Purpose

The New York City School Construction Authority (NYCSCA) requested that URS conduct a Phase II Environmental Site Investigation (ESI) associated with the proposed new school site located at 3001 Concourse Village East, Bronx, New York (hereafter referred to as the "Site"). One lot comprises the Site and is identified as Block 2443, Lot 78, on the Bronx tax assessor's map. The Site is currently vacant. There are no existing buildings on the property to be demolished for construction of a New York City Public School.

The RECs associated with the Site were identified by URS in the Phase I ESA Report, dated July 20, 2001. The Phase I site reconnaissance was performed on July 11, 2001. The Site is the only property visited, and was completely accessible for inspection.

1.2 On-Site Recognized Environmental Conditions

The Phase I ESA Report identified RECs and provided recommendations for further environmental site assessment to better define areas of potential environmental liability associated with the Site. There were no site access limitations during the Phase I site inspection.

1.2.1 *Block 2443, Lot 78 (Former Metro North Property)*

- According to the fire insurance maps, the Site was a rail yard prior to 1891 and contained a machine shop, carpenter shop, paint area, offices, shops and storage areas until approximately 1977. Subsequent to 1977, no buildings or railroad tracks are depicted in the historical records of the Site.
- Pipe insulation was observed at the Site during the site reconnaissance and should be considered suspected ACM.
- Currently the Site is vacant and contains two large and one small debris mounds which indicate historical dumping.
- During the Site inspection, an area was observed which suggested the subsurface presence of an UST.

1.3 Adjacent or Nearby Properties of Environmental Concern

During the Phase I ESA, off-site properties of potential environmental concern were identified during a review of the regulatory databases. The information contained in the databases indicated conditions at these properties which could have resulted in releases of petroleum products to the environment. The determination of whether or not releases from these properties could migrate to, and potentially impact the Site, was based on the location of these properties relative to the Site and the anticipated direction of groundwater flow. The direction of groundwater flow during the preparation of the Phase I ESA was inferred from the topography of the area.

PHASE II ENVIRONMENTAL SITE INVESTIGATION REPORT
FORMER METRO NORTH PROPERTY
3001 CONCOURSE VILLAGE EAST
BRONX, NEW YORK 10451

During the Phase II ESI, the apparent direction of groundwater flow to the southeast was determined by groundwater measurements recorded from three piezometers installed at the Site. Based on the direction of groundwater flow beneath the Site, two off-site properties identified as RECs in the Phase I ESA have been determined to be hydraulically crossgradient relative to the Site and one property has been determined to be hydraulically downgradient of the Site. These properties were identified in the Leaking Underground Storage Tank (LUST) database. The crossgradient properties are located northeast of the Site at 364 East 155th Street and 304 East 156th Street, Bronx, New York. The downgradient property is located east of the Site at the intersection of Morris Avenue and Park Avenue, Bronx, New York. Because it has been determined that these properties are located hydraulically crossgradient or downgradient of the Site, they are not considered to be RECs and are not discussed in this report.

The Phase I ESA findings indicated three off-site RECs (identified below) that could potentially impact the Site.

1.3.1 *Block 2458, Lot 13 (West Filling Station)*

- This filling station is identified in the historical fire insurance maps since 1935. This site is located one-quarter mile west of the Site at 702 Grand Concourse. Releases of petroleum product from this property may have impacted the Site.

1.3.2 *Block 2458, Lot 16 (Morgan Steam Laundry)*

- The former Morgan Steam Laundry is located west of the Site at 700 Grand Concourse, and has been identified in the historical fire insurance maps since 1935. The type of cleaning products used at this facility may have impacted the Site.

1.3.3 *Block 2443, Lot 71 (Former Manufactured Gas Plant)*

- A former MGP is located northwest of the Site. The MGP is depicted on historical fire insurance maps from approximately 1891 to about 1954. The handling, storage and use of petroleum feedstock and manufacturing byproducts may have impacted the Site.

2.0 SITE SETTING

Previous investigations at the Site by URS included a Phase I site reconnaissance completed on July 11, 2001. There were no structures present at the Site for URS to inspect the interior of, or perform ACM and paint chip sample collection. All of the lot was accessible for inspection.

2.1 Current Facility Description

One lot comprises the Site. The Site is located in the southern portion of the Bronx, New York. The Site is located in a topographic depression. The properties to the west and east are approximately 30 feet higher in elevation than the Site. The New York and Harlem Railroad right-of-way is located along the eastern boundary of the Site at the same elevation as the Site. The properties immediately to the north are public schools, constructed on a concrete deck approximately 20 feet above grade. The properties to the south are at approximately the same elevation as the Site. Land uses in the area are primarily residential and commercial.

A Site Location Map for the property is presented in Figure 1, and a Site Features Map is presented in Figure 2. The apparent groundwater flow direction is to the southeast.

There are no structures currently on the Site. Metro North is currently using the southern portion of the Site for storage. Historically, the Site was used for rail yard operations and dumping.

2.1.1 *Block 2443, Lot Number 78 (Former Metro North Property)*

The Site is located at 3001 Concourse Village East on Block 2443, Lot 78, the Bronx, New York. The Site is currently a vacant lot located in a topographic depression.

At the time of the site inspection, Metro North was using the southern portion of the Site for storage of small sections of rail track, plastic used to wrap electrical conduit, gravel and other miscellaneous new material. Workers at the Site stated that the stored materials were being removed. The area used by Metro North is relatively flat and the soil was brown to black sand with one-inch diameter gravel. This area is clear of brush and weeds.

Two large and one small debris mounds were observed at the Site. The mounds ranged in height from approximately 4 to 12 feet above ground surface. These debris mounds have been present at the Site for many years as evidenced by 30-foot tall trees protruding from the mounds in some areas. Recent placement of debris was evident in areas of the Site and consisted of roadway millings, concrete, railroad ties, and metal. Other miscellaneous debris and trash was observed throughout the Site.

An arrangement of pipe with an attached valve resembling a pressure valve assembly was observed extending above the ground surface in the center of the property. Although no apparent use was determined, it appeared to resemble a pressure valve assembly for water or steam. The base pipe associated with the valve was insulated. This insulation may be ACM. The estimated linear feet of the insulating material is three feet around an eight-inch pipe. Laying upon the ground near the pressure valve was two-inch diameter, pliable, black plastic tubing labeled Metro North. The beginning or end of this tubing was not observed. Debris of this type of tubing was noted on the surface throughout the Site.

PHASE II ENVIRONMENTAL SITE INVESTIGATION REPORT
FORMER METRO NORTH PROPERTY
3001 CONCOURSE VILLAGE EAST
BRONX, NEW YORK 10451

To the west of the Site, attached to the perimeter wall, are two pipelines. The usage of these pipelines could not be ascertained. Also attached to this wall are several electrical conduits and meters. These utilities appeared to be derelict and inoperable.

In the approximate center of the Site, a twelve-foot by twelve-foot concrete pad was observed. The concrete pad was deteriorating and in poor condition. To the west of this pad, concrete debris and a storage tank were observed. The estimated size of the storage tank is 3,000-gallons. The storage tank had been cut open, probably as a result of the original removal activities. No evidence of product was observed in the storage tank or in the general area. The source of the storage tank could not be ascertained.

Polyvinyl chloride (PVC) piping was observed at several locations attached to the concrete decking at the north side of the Site. The PVC piping was covered with heated insulating wrap. At the time of the Phase II ESI, a strong sewage odor was noted in this area.

A break in the fencing along the northern property boundary was observed. The area of the break was overgrown with vegetation up to 12 feet high.

A section of railroad track embedded in concrete was observed in the west central section of the Site. The embedded track was approximately 40 feet in length trending north to south.

2.2 Site Physical Characteristics

The Site is a vacant lot located in a topographic depression. According to the United States Geological Survey (USGS) 7.5-Minute Quadrangle Map, Central Park, New York-New Jersey, dated 1965, (photorevised 1979), the elevation of the Site is approximately 20 feet above mean sea level. The properties to the west and east are approximately 30 feet higher in elevation than the Site. The properties immediately to the north are constructed on a concrete deck. The properties to the south are at approximately the same elevation as the Site.

The area of the Site used by Metro North is relatively flat and the soil was brown to black sand with one-inch diameter gravel. This area is clear of brush and weeds. Subsurface soils from the borings advanced at the Site were mostly brown silty sand and gravel, with typical construction and demolition (C & D) type materials, such as brick, concrete and wood.

Two large and one small debris mounds exist at the Site. The debris mounds ranged in height from approximately 4 to 12 feet above ground surface. These mounds have been present at the Site for many years as evidenced by 30-foot tall trees protruding from the mounds. Soils from the test pits excavated within the debris mounds were mostly brown silty sand and gravel, with typical C & D type materials, such as brick, concrete and wood.

According to the USGS topographic contour maps (Central Park, 1979), shallow groundwater flow from the adjacent area is expected to be toward the Site from the east and west. Groundwater was encountered at depths ranging from 6 feet to 11.5 feet bgs. Groundwater elevation measurements were recorded in the piezometers installed at the Site. The apparent groundwater flow direction is to the southeast. The first waterbearing unit below the Site is the fill material overlying the Site.

Typical soil for this area is urban fill.

3.0 DESCRIPTION OF PHASE II FIELD ACTIVITIES

To address the identified RECs associated with the Site, URS completed a focused subsurface investigation on August 1, 2, 3 and 6, 2001, which included the following efforts:

- **Surficial Soil Sampling** - Eleven locations, designated SF-1 through SF-11, were sampled and analyzed for semi-volatile organic compounds (SVOCs), pesticides, polychlorinated biphenyls (PCBs), herbicides, and Target Analyte List (TAL) metals.
- **Test Pit Sampling** - Seven locations, designated TP-1 through TP-7, were originally planned for test pit excavation. Three additional test pits were excavated: two test pits, designated SB-11 and SB-17, were excavated where Geoprobe® drilling of soil borings encountered refusal at shallow depth; and, one additional test pit, designated TP-9, was excavated to better define subsurface conditions in the center of the Site. One or two soil samples were collected from each test pit and analyzed for volatile organic compounds (VOCs), SVOCs, pesticides, PCBs, herbicides, and TAL metals.
- **Subsurface Borings** - Ten borings were advanced using direct push methods with the Geoprobe®. PZ-1, PZ-2, PZ-3 Three of these borings (PZ-1, PZ-2, and PZ-3) were completed as temporary piezometer installations. SB-4, (5,6),
Three borings (SB-1, SB-2, and SB-7) encountered refusal during Geoprobe® drilling and these locations were subsequently investigated by test pit excavation. Due to the close proximity of borings SB-2 and SB-7, one test pit was excavated to evaluate subsurface conditions in the area of the two borings. Soil samples were collected and analyzed for VOCs, SVOCs, and TAL metals at the seven completed borings.
SB-3
4 bonus
1 P for
2 & 7
4 borings
TP + 3 wells
- **Groundwater samples** were collected at the locations of the three temporary piezometers, at soil boring location SB-3 and test pit location SB-17. Groundwater samples were analyzed for VOCs.

The scope and methods used for the various field activities are documented below, and in the supporting information included in Appendix A.

3.1 Geophysical Survey

A geophysical survey was performed at the Site by NAEVA Geophysics, Inc. (NAEVA), of Tappan, New York. A URS environmental scientist was present and coordinated the work performed by NAEVA. The objectives of the geophysical survey were to: verify the absence of underground utilities and railroad tracks at the locations of the soil boring/temporary piezometer locations; verify the presence or absence of subsurface anomalies at the Site; and, determine the presence or absence of a suspected UST. This was accomplished using a complement of surface geophysical methods, including a magnetometer, an electromagnetic conductivity survey, utility locating instruments, and ground penetrating radar. The geophysical survey areas are shown on Figure 3. The survey results were also used to establish soil and groundwater sampling locations. Anomalies and/or utilities were marked out on the ground with spray paint and field stakes.

The geophysical survey did not identify the footprint of the former buildings previously existing at the Site. The geophysical survey did not indicate the presence of the UST. Other geophysical findings included: the location of piping from the pressure valve to the south, where it terminated under the southern debris mound; underground piping near the southern property boundary; and, the location of a sewer line on the eastern side of the property trending in a northwest/southeast direction with two

manholes. The diameter of the sewer line could not be determined from the geophysical survey. The locations of these features are depicted on Figure 3.

3.2 Soil Gas Survey

A soil gas survey was not performed.

3.3 Test Pit Excavations and Soil Sampling

Seven locations were originally planned for test pit excavation and soil sampling. Two additional test pits were excavated where Geoprobe® drilling of soil borings encountered refusal at relatively shallow depth. One additional test pit was also excavated approximately 50 feet southeast of boring SB-2 where refusal had been encountered at a relatively shallow depth. Test pit soil samples were analyzed for VOCs, SVOCs, pesticides, PCBs, herbicides, and TAL metals.

The backhoe and operator for this task were provided by the drilling subcontractor, Aquifer Drilling and Testing, Inc. (ADT) of New Hyde Park, New York. The excavation process consisted of the backhoe removing layers of soil in approximately 1-2 foot lifts. Periodic PID readings for the presence of volatile organic vapors and measurement for the presence of methane were taken on the soil in the bucket which was then added to a stockpile next to the excavation. The material was inspected and the description recorded on a test pit log. Ten test pits, to an average depth of seven feet, were excavated and one or two soil samples were collected from each test pit for a total of 10 samples. Samples for laboratory analysis were collected from the area of greatest visual/instrumental observation of contamination or, if no contamination was evident, from approximately one foot below the surface of the Site.

The two debris mounds were investigated by the excavation of test pits TP-1, TP-2, TP-3, TP-5, TP-6, and TP-7. Encountered materials consisted of dry, fine to coarse sand, gravel, and cobbles, with C&D type fill material consisting of concrete, brick, cinders, ash, slag, glass, wood and other debris, such as tires, plastic, piping and other metal, and railroad ties. Test pit TP-3 also contained metal plates, rebar, and steel piping. Test pit TP-6 contained some silty sand just below natural grade that exhibited gray/black staining and emitted a petroleum odor. However, no evidence of organic vapors were detected. A measurement of 16 parts per million (ppm) methane was recorded at TP-5.

Test pit TP-4 was excavated in the area of the suspected UST. The geophysical survey did not suggest the subsurface presence of a UST, and its absence was confirmed during excavation. Excavated materials consisted of coarse to fine sand with gravel, cobbles and some boulders. A zone of black stained silty sand was encountered at a depth of 3 feet bgs. The material exhibited a faint odor but no PID readings were measured. Bedrock (schist) was encountered at 5.5 feet bgs.

Test pits designated as SB-11 and SB-17 were excavated at the original boring locations of SB-1 and SB-7, respectively, where Geoprobe® drilling encountered refusal (2 feet to 4 feet bgs). Test pit SB-11 encountered C&D type fill material as well as buried railroad ties. Bedrock was encountered at approximately 4 feet bgs.

Test pit SB-17 was excavated to a depth of 8 feet bgs. Buried railroad ties and a strong odor of creosote were detected at this location. Groundwater was encountered at approximately 7 feet bgs. There was a slight sheen on the water. A groundwater sample was collected and analyzed for VOCs.

PHASE II ENVIRONMENTAL SITE INVESTIGATION REPORT
FORMER METRO NORTH PROPERTY
3001 CONCOURSE VILLAGE EAST
BRONX, NEW YORK 10451

Test pit TP-9 was excavated approximately 50 feet southeast of boring SB-2. The test pit excavation was terminated at approximately 4 feet bgs when bedrock was encountered.

Figure 4, Phase II Sampling Location Plan, depicts the locations of the test pit sampling locations.

3.4 Surficial and Subsurface Soils Investigation

A surficial and subsurface soil sampling program was conducted as part of this Phase II ESI. Soil samples were collected to assess and delineate RECs identified during the Phase I ESA.

3.4.1 *Surficial Soil Sampling*

As part of this Phase II ESI, a surficial soil sampling program was conducted across the Site. Eleven locations were sampled from 0 to 6 inches bgs and the samples submitted for laboratory analysis of SVOCs, pesticides, PCBs, herbicides, and TAL metals. In general, the field locations did not indicate evidence of visual contamination or provide PID readings of volatile organic vapors. Exceptions included surficial soil sample locations SF-5 and SF-6 where PID readings of 0.9 ppm and 1.4 ppm, respectively, were recorded.

Surficial materials were generally comprised of dry, silty sand with gravel and C&D type fill material consisting of cinders, ash, slag, brick, glass and wood.

Sample SF-2 was collected in an area where evidence of a spill of oil or anti-freeze (empty container nearby) may have occurred. Surficial soil sampling locations are depicted in Figure 4, Phase II Sampling Location Plan.

Soil samples were collected using dedicated stainless steel sampling trowels or tablespoons, and were homogenized in place, prior to filling of pre-cleaned, laboratory supplied, glass sample containers.

3.4.2 *Subsurface Soil Sampling*

As part of this Phase II ESI, a subsurface soil sampling program was completed on August 2 and 3, 2001. ADT of New Hyde Park, New York was the drilling subcontractor. A Geoprobe® utilizing a 4 foot long macro core with disposable inner sleeve was used to collect the soil samples. Figure 4, Phase II Sampling Location Plan, depicts soil boring locations.

A description of the soils retained in each Geoprobe® core sampler was logged by an environmental scientist, and the soils monitored in the field for the presence of volatile organic compounds with a PID. The soils were also screened with a methane monitor for the presence of methane gas. The noted responses are shown on Table 1.

Ten soil borings were drilled. Three of these (PZ-1, PZ-2, and PZ-3) were completed as temporary piezometer installations. Three borings (SB-1, SB-2, and SB-7) encountered refusal during drilling and were subsequently investigated by test pit excavation as described in Section 3.3. Soil samples were collected and analyzed for VOCs, SVOCs, and TAL metals at the seven completed borings; groundwater samples were collected at the three temporary piezometer installations and at boring SB-3. The groundwater samples were analyzed for VOCs only.

PHASE II ENVIRONMENTAL SITE INVESTIGATION REPORT
FORMER METRO NORTH PROPERTY
3001 CONCOURSE VILLAGE EAST
BRONX, NEW YORK 10451

The following provides a description of the findings at each soil boring location investigated as part of the Phase II ESI.

PZ-1

Boring PZ-1 was advanced to a depth of 15.7 feet bgs. Groundwater was encountered at approximately 11 feet bgs. Soil consisted of silty sand and fill, including black ash and cinders to a depth of approximately 14 feet bgs where native soil consisting of gray clay and sandy silt was encountered. Soil samples were collected from 2.5 feet to 3.5 feet bgs, and 12.5 feet to 13.5 feet bgs. A groundwater sample was collected at this location. There was no visual or instrumental evidence of contamination associated with the soil or groundwater at this location.

PZ-2

Boring PZ-2 was advanced to a depth of 12 feet bgs. Groundwater was encountered at approximately 6 feet bgs. Soil consisted of silty sand and fill, including bricks, concrete, black ash and cinders to a depth of approximately 10 feet bgs. Native soil consisting of brown silty sand was encountered beneath the fill. There was a detectable petroleum odor associated with the recovered soils throughout the length of the boring; PID readings ranged from 7 ppm to 110 ppm. Soil samples were collected from 3 feet to 4 feet bgs and 10 feet to 11 feet bgs. A groundwater sample was collected at this location. Evidence of hydrocarbon contamination included staining, odor, and a sheen on the soil just below the water table.

PZ-3

Boring PZ-3 was advanced to a depth of 12 feet bgs. Groundwater was encountered at approximately 7 feet bgs. Soil consisted of silty sand and fill, including bricks, concrete, black ash and cinders to a depth of approximately 7.5 feet bgs. Native soil consisting of orange-brown silty sand was encountered beneath the fill. Soil samples were collected from 4 feet to 5 feet bgs and 11 feet to 12 feet bgs. A groundwater sample was collected at this location. There was no visual evidence of contamination. However, PID readings ranging from less than 1 ppm to 14 ppm were recorded.

SB-1

Boring SB-1 was advanced to a depth of 4 feet bgs where bedrock refusal was encountered. The SB-1 location was subsequently investigated by test pit SB-11.

SB-2

Boring SB-2 was advanced to a depth of 4 feet bgs where bedrock refusal was encountered. The SB-2 location was subsequently investigated by test pit TP-4.

SB-3

Boring SB-3 was advanced to a depth of 12 feet bgs. Groundwater was encountered at approximately 7 feet bgs. Soil consisted of silty sand and fill, including bricks, concrete, black ash and cinders to a depth of approximately 3 feet bgs. Native soil consisting of gray sandy silt and clay was encountered beneath the fill. Soil samples were collected from 1.5 feet to 2.5 feet bgs, and 6 feet to 7 feet bgs. A groundwater sample was collected at this location. There was no visual or instrumental evidence of contamination.

PHASE II ENVIRONMENTAL SITE INVESTIGATION REPORT
FORMER METRO NORTH PROPERTY
3001 CONCOURSE VILLAGE EAST
BRONX, NEW YORK 10451

SB-4

Boring SB-4 was advanced to a depth of 12 feet bgs. Groundwater was encountered at approximately 7 feet bgs. Soil consisted of silty sand and fill, including bricks, concrete, black ash and cinders to a depth of approximately 7 feet bgs. Native soil consisting of sand, sandy silt, and clay was encountered beneath the fill. A soil sample was collected from 6 feet to 7 feet bgs. There was a strong petroleum odor and hydrocarbon staining from approximately 6 feet bgs to the bottom of the boring.

SB-5

Boring SB-5 was advanced to a depth of 8 feet bgs. Groundwater was encountered at approximately 7 feet bgs. Soil consisted of silty sand and fill, including bricks, concrete, black ash, cinders and wood to a depth of approximately 4 feet bgs. Native soil consisting of sandy silt and clay was encountered beneath the fill. A soil sample was collected from 4 feet to 5 feet bgs with the exception of a creosote odor from buried railroad ties that were encountered at a depth of approximately 1 foot bgs, no other evidence of contamination was detected.

SB-6

Boring SB-6 was advanced to a depth of 8 feet bgs. Groundwater was encountered at approximately 6 feet bgs. Soil consisted of silty sand and fill, including bricks, concrete, black ash and cinders and wood to a depth of approximately 6.5 feet bgs. Native soil consisting of clay was encountered beneath the fill. A soil sample was collected from 5 feet to 6 feet bgs. There was a strong petroleum odor and staining from approximately 6 feet bgs to the bottom of the boring.

SB-7

Boring SB-7 was advanced to a depth of 2 feet bgs where bedrock refusal was encountered. The SB-7 location was subsequently investigated by the excavation of test pit SB-17.

The soil sampling analytical program is summarized in Table 1.

Soil samples were selected for analysis based on the following rationale:

- If no apparent impacted soils were identified, one sample was to be collected from about 1 to 2 feet bgs;
- If impacted soils were identified, one sample was to be collected from the most impacted zone (based on field screening techniques), and a second sample was to be collected from a depth of ten feet below the initial sample depth, or from the first apparent clean soils encountered, whichever depth was greater; or
- If no apparent clean soils were encountered, one sample was to be collected from the most impacted zone (based on field screening techniques), and a second sample was to be collected from the soils directly above the water table within the capillary fringe.
- If there was evidence of fill material, an additional soil sample was to be collected from the fill layer.

PHASE II ENVIRONMENTAL SITE INVESTIGATION REPORT
FORMER METRO NORTH PROPERTY
3001 CONCOURSE VILLAGE EAST
BRONX, NEW YORK 10451

Three field duplicate samples were collected, and three rinsate blanks were collected for a total of six field QC samples.

Geoprobe® equipment was decontaminated by scrubbing with a nonphosphate detergent (i.e., Alconox) and rinsing with fresh water prior to use at each soil boring to minimize the possibility of cross-contamination between drilling locations.

Upon completion of drilling, each boring not used for piezometer installation was backfilled to near grade with the drill cuttings.

Table 1 Soil Sample Analytical Plan

Sample Identification	Sample Interval Depth (ft bgs)	Boring Depth (ft bgs)	OV/M/PID Levels (ppm)	TCL VOCs	TCL SVOCs	Pesticide	PFCs	Herbicide	RCRA Metals
TP-1	8 ft	9 ft	BG	X	X	X	X	X	X
TP-2	8 ft	10 ft	BG	X	X	X	X	X	X
TP-3	12-13 ft	12 ft	BG	X	X	X	X	X	X
TP-4	3-4 ft	5.5 ft	BG	X	X	X	X	X	X
TP-5	9-10 ft	11 ft	BG	X	X	X	X	X	X
TP-6	5.5-6.5 ft	8 ft	BG	X	X	X	X	X	X
TP-7	7-8 ft	12 ft	BG	X	X	X	X	X	X
TP-8	3-4 ft	5.5 ft	BG	X	X	X	X	X	X
PZ1-1	2.5-3.5	15.7 ft	1.9	X	X	NC	NC	NC	X
PZ1-2	12.5-13.5	15.7 ft	.6	X	X	NC	NC	NC	X
PZ2-1	3-4	12 ft	48	X	X	NC	NC	NC	X
PZ2-2	10-11	12 ft	7.0	X	X	NC	NC	NC	X
PZ3-1	4-5	12 ft	2.6	X	X	NC	NC	NC	X
PZ3-2	11-12	12 ft	BG	X	X	NC	NC	NC	X
SB3-1	1.5-2.5 ft	12 ft	BG	X	X	NC	NC	NC	X
SB3-2	6-7 ft	12 ft	BG	X	X	NC	NC	NC	X
SB4-1	6-7	12 ft	BG	X	X	NC	NC	NC	X
SB5-1	4-5	8 ft	BG	X	X	NC	NC	NC	X
SB6-1	5-6	8 ft	BG	X	X	NC	NC	NC	X
(TP) SB17-1	2-3	8 ft	BG	X	X	X	X	X	X
(TP) SB17-2	6-7	8 ft	BG	X	X	X	X	X	X
(TP) SB11-1	2-3	4 ft	BG	X	X	X	X	X	X
SB8-1	5-6	8 ft	BG	X	X	NC	NC	NC	X
Surficial-1	0-0.5	0.5 ft	BG	NC	X	X	X	X	X

PHASE II ENVIRONMENTAL SITE INVESTIGATION REPORT
 FORMER METRO NORTH PROPERTY
 3001 CONCOURSE VILLAGE EAST
 BRONX, NEW YORK 10451

Sample Identification	Surface Depth (ft)	Boring Depth (ft)	OXV/PID Level (ppm)	TCL VOC	TCL SVOC	Pesticides	PCBs	Herbicides	ICRA Metals
Surficial-2	0-0.5	0.5 ft	BG	NC	X	X	X	X	X
Surficial-3	0-0.5	0.5 ft	BG	NC	X	X	X	X	X
Surficial-4	0-0.5	0.5 ft	BG	NC	X	X	X	X	X
Surficial-5	0-0.5	0.5 ft	.9	NC	X	X	X	X	X
Surficial-6	0-0.5	0.5 ft	1.4	NC	X	X	X	X	X
Surficial-7	0-0.5	0.5 ft	BG	NC	X	X	X	X	X
Surficial-8	0-0.5	0.5 ft	BG	NC	X	X	X	X	X
Surficial-9	0-0.5	0.5 ft	BG	NC	X	X	X	X	X
Surficial-10	0-0.5	0.5 ft	BG	NC	X	X	X	X	X
Surficial-11	0-0.5	0.5 ft	BG	NC	X	X	X	X	X
Surficial-12	0-0.5	0.5 ft	1.4	NC	X	X	X	X	X
FB-Surficial	NA	NA	NA	NC	X	X	X	X	X
FB-2	NA	NA	NA	X	X	X	X	X	X
FB-3	NA	NA	NA	X	X	NC	NC	NC	X

Note: BG = Background; NC = Not Collected; NA = Not Applicable

3.5 Groundwater Investigation

3.5.1 Groundwater Sampling Program

As part of this Phase II ESI, a groundwater screening investigation was completed to assess groundwater quality at the Site on August 2, 3, and 6, 2001. Figure 4, Phase II Sampling Location Plan, presents groundwater sampling locations.

Five groundwater samples were collected; four groundwater samples (PZ-1, PZ-2, PZ-3, and SB-3) were collected by installing temporary piezometers, then purging a minimum of three well volumes using dedicated polyethylene tubing and a peristaltic pump; a fifth location, test pit SB-17, was sampled by lowering a dedicated bailer down into the test pit to collect the water, which was then poured directly into the sample container. These groundwater samples were submitted for laboratory analysis for VOCs only, because they represent the contaminants of greatest concern. Two trip blanks for VOC analysis were also collected for QC purposes.

The groundwater samples were collected at depths ranging from 6 feet to 12 feet bgs. The groundwater sampling analytical program is summarized in Table 2.

PHASE II ENVIRONMENTAL SITE INVESTIGATION REPORT
 FORMER METRO NORTH PROPERTY
 3001 CONCOURSE VILLAGE EAST
 BRONX, NEW YORK 10451

Table 2 Groundwater Sample Analytical Plan

Sample Identification	Sample Interval Depth (ft bgs)	Boring Depth (ft pgs)	WGs VOGs
PZ-1	9 ft	15.7 ft	X
PZ-2	6 ft	12 ft	X
PZ-3	12 ft	12 ft	X
SB-3	8 ft	12 ft	X
SB-17	7 ft	8 ft	X
TB-1	N/A	N/A	X
TB-2	N/A	N/A	X

Note: N/A = Not Applicable

3.5.2 Piezometer Installation and Construction

Borings used for piezometer installation were advanced with a Geoprobe®, using two-inch inside diameter probe rods. Piezometer construction consisted of two-inch diameter, threaded PVC casing with 10 feet of schedule 40 PVC pipe and 0.010 slot PVC screen. Screens were set straddling the water table, generally seven feet in and three feet out.

Prior to the start of drilling, downhole equipment and well materials were decontaminated through the use of manual scrubbing with a non-phosphate detergent (i.e., Alconox). All equipment and materials were visually inspected prior to the start of work.

Piezometer development was conducted using dedicated polyethylene tubing and a peristaltic pump. Piezometer development and purging was conducted until the pumped water was visibly free of suspended materials.

3.5.3 Piezometer Sampling

Each piezometer was sampled utilizing the following practices:

The groundwater sample was collected using a peristaltic pump with clean, dedicated polyethylene tubing advanced within the piezometer. A minimum of three (3) well volumes of water were purged from the piezometer prior to sampling. The samples were collected from the tubing and dispensed directly into the appropriate sample bottle.

3.5.4 Groundwater Flow Direction

The piezometers were also utilized to determine the direction of groundwater flow. The apparent groundwater flow direction is depicted on Figure 4.

3.6 Surface Water and Sediment Sampling

As part of this Phase II ESI, no surface water and sediment samples were collected.

PHASE II ENVIRONMENTAL SITE INVESTIGATION REPORT
FORMER METRO NORTH PROPERTY
3001 CONCOURSE VILLAGE EAST
BRONX, NEW YORK 10451

3.7 Asbestos Containing Materials (ACM) Survey

As part of this Phase II ESI, URS did not conduct an ACM survey since this item is specifically excluded from URS' contract with the NYCSCA.

3.8 Lead-Based Paint Survey (LBP)

As part of this Phase II ESI, URS did not conduct a survey to assess the potential presence of LBP at the Site.

3.9 Investigation Derived Waste (IDW) Characterization and Disposal

There was no IDW generated during the intrusive sampling operations conducted at the Site.

3.10 Air Sampling

As part of this Phase II ESI, URS did not collect any air samples.

3.11 Site Survey

As part of this Phase II ESI, a site survey was conducted to establish a vertical data relative to the position of the piezometers. The relative vertical position of the piezometers were referenced to an arbitrary datum established at the Site.

3.12 Additional Sampling

Methane sampling was conducted during soil sampling activities.

4.0 DISCUSSION OF PHASE II FINDINGS

This section discusses the Phase II analytical data and findings. Tabulated detected compounds in the various environmental media sampled are presented in Appendix B. The complete analytical data reports are included in Appendix C for environmental samples.

4.1 Applicable Regulatory Standards and Guidelines

This subsection discusses the NYSDEC regulatory standards and guidelines used to interpret the soil and groundwater analytical results. New York State has not promulgated soil standards, but soil guidance values (SGVs) have been established under various NYSDEC regulatory programs. The particular standards and guidelines used to evaluate the data are described individually below.

4.1.1 *Soil Guidance Values (SGVs)*

Soils analytical results were compared to the Recommended Soil Cleanup Objectives (RSCOs), published in the NYSDEC Technical and Administrative Guidance Memorandum (TAGM) HWR-94-4046, "Determination of Soil Cleanup Objectives and Cleanup Levels," January 1994. The RSCOs were used for assessment of soils potentially impacted by former activities on the Site other than storage of virgin petroleum products and analyzed for the Target Compound List (TCL) VOCs, SVOCs, pesticides, PCBs, herbicides, and TAL metals. Eastern USA Background Concentrations of metals (from TAGM HWR-94-4046) were used to assess the metals concentrations in soils.

4.1.2 *Ambient Groundwater Quality Standards and Guidance Values*

Groundwater data were compared to New York State Ambient Water Quality Standards and Guidance Values, as set forth in the NYSDEC Division of Water Technical Operational Guidance Series (TOGS) number 1.1.1, "Ambient Water Quality Standards and Guidance Values," June 1998. Ambient water quality standards are enforceable standards as set forth in the regulations. Where ambient water quality standards do not exist, ambient water quality guidance values were used for comparison to the groundwater results.

4.2 Soil Gas Sampling Findings

There were no soil gas sampling activities.

4.3 Test Pit Soil Sampling Findings

Ten test pits were excavated and soil samples collected for laboratory analysis to evaluate the environmental condition of: the two large debris mounds located in the southern (TP-1, TP-2, and TP-3) and northern (TP-5, TP-6, and TP-7) sections of the Site; the central section of the Site where a UST was suspected to exist (TP-4); where soil borings encountered refusal at relatively shallow depth (SB-11 and SB-17); and southeast of boring SB-2 (TP-9) to determine the environmental condition in this area of the

PHASE II ENVIRONMENTAL SITE INVESTIGATION REPORT
FORMER METRO NORTH PROPERTY
3001 CONCOURSE VILLAGE EAST
BRONX, NEW YORK 10451

Site. Sampling locations are depicted on Figure 4. Soil samples collected from test pit excavations for laboratory analysis were analyzed for VOCs, SVOCs, TAL metals, herbicides, pesticides and PCBs. Analytical data summary tables are provided in Appendix B. Complete laboratory reports are provided in Appendix C. Figure 5 depicts total VOC and SVOC concentrations by test pit sample location. Note: Test pit soil sample designated TP-8 is a duplicate of the soil sample collected from TP-4. There was no test pit designated TP-8 at the Site.

Southern Debris Mound

No evidence of contamination was observed during excavation and field inspection of the materials comprising the debris mound from test pits TP-1, TP-2, and TP-3. Therefore, soil samples for laboratory analysis were collected from the materials underlying the debris mound.

The analytical results of the three soil samples collected from the materials beneath the southern debris mound indicated the absence of any VOCs at concentrations that exceeded the RSCOs. Trace concentrations of acetone and methylene chloride were reported for these samples. However, these compounds were also detected in the associated Quality Assurance/Quality Control (QA/QC) samples and are common artifacts resulting from the collection, storage and laboratory analyses of samples. The presence of these compounds in the soil sample analytical results is considered to be a laboratory artifact and is not representative of Site conditions.

The analytical results for each of the three soil samples reported the presence of a number of SVOCs. Most of the SVOCs were reported at concentrations below the RSCOs. However, certain SVOCs, primarily the polynuclear aromatic hydrocarbon (PAH) fraction, were reported at concentrations that exceeded the RSCOs. These compounds and the range in reported concentrations for the three soil samples analyzed include: benzo(a)pyrene from 950 micrograms per kilogram ($\mu\text{g}/\text{kg}$) to 4,800 $\mu\text{g}/\text{kg}$; chrysene from 1,100 $\mu\text{g}/\text{kg}$ to 5,100 $\mu\text{g}/\text{kg}$; benzo(k)fluoranthene from 1,700 $\mu\text{g}/\text{kg}$ to 3,100 $\mu\text{g}/\text{kg}$; benzo(a)pyrene from 1,000 $\mu\text{g}/\text{kg}$ to 4,500 $\mu\text{g}/\text{kg}$; and dibenzo(a,h)anthracene from 46 $\mu\text{g}/\text{kg}$ to 260 $\mu\text{g}/\text{kg}$. Benzo(b)fluoranthene was detected in one soil sample at a concentration of 4,100 $\mu\text{g}/\text{kg}$.

Each of the three soil samples was analyzed for herbicides, pesticides and PCBs. These compounds were not reported in any of the samples at concentrations that exceeded the RSCOs.

Each of the three soil samples was analyzed for TAL metals. The analytical results were compared to the Eastern USA Background Levels. The metals Cadmium (Cd), Copper (Cu), Mercury (Hg) and Zinc (Zn) were reported at concentrations that exceeded the criteria in all three soil samples. Lead (Pb) and Magnesium (Mg) exceeded the criteria in two of the three soil samples; and, Barium (Ba) and Calcium (Ca) exceeded the criteria in one sample only. The exceedances were approximately 2 times the concentration of the applicable criteria.

Northern Debris Mound

No evidence of contamination was observed during excavation and field inspection of the materials comprising the debris mound from test pits TP-5, TP-6, and TP-7. Therefore, soil samples for laboratory analysis were collected from the materials underlying the debris mound.

The analytical results of the three soil samples collected from the materials beneath the northern debris mound indicated the absence of any VOCs at concentrations that exceeded the RSCOs. Trace concentrations of acetone and methylene chloride were reported for these samples. However, as

PHASE II ENVIRONMENTAL SITE INVESTIGATION REPORT
FORMER METRO NORTH PROPERTY
3001 CONCOURSE VILLAGE EAST
BRONX, NEW YORK 10451

previously discussed, these compounds are laboratory artifacts and are not representative of Site conditions.

The analytical results for each of the three soil samples reported the presence of a number of SVOCs, most of which were reported at concentrations below the RSCOs. Only benzo(a)pyrene, at a concentration of 120 $\mu\text{g}/\text{kg}$ in the soil samples collected from TP-6 and TP-7, exceeded the RSCO.

Each of the three soil samples was analyzed for herbicides, pesticides and PCBs. These compounds were not reported in any of the samples at concentrations that exceeded the RSCOs.

Each of the three soil samples was analyzed for TAL metals. Only Hg at TP-6, Mg at TP-5 and TP-7 and Zn at TP-5, TP-6 and TP-7 were reported at concentrations that exceeded the Eastern USA Background Levels. The exceedances were approximately 2 to 3 times the applicable criteria.

Central Section of the Site

Three test pits were excavated in the central section of the Site. TP-4 was excavated to investigate the area of a suspected UST. Two other test pits, SB-17 and TP-9, were excavated to the northwest and southeast, respectively of the TP-4 location due to borehole refusal at the SB-17 location and to define subsurface conditions at the TP-9 location. Soil samples for laboratory analysis were collected at the TP-4 and SB-17 locations only. Bedrock was encountered 4 feet bgs at TP-9, precluding sample collection.

With the exception of the laboratory artifacts (acetone and methylene chloride), no VOCs were reported at concentrations that exceeded the RSCOs.

Although several SVOCs were detected in the soil samples, only compounds comprising the PAH fraction were reported at concentrations that exceeded the RSCOs. For the soil sample collected at TP-4 these compounds included benzo(a)anthracene at 1,400 $\mu\text{g}/\text{kg}$, chrysene at 1,600 $\mu\text{g}/\text{kg}$, benzo(b)fluoranthene at 1,100 $\mu\text{g}/\text{kg}$, benzo(k)fluoranthene at 1,800 $\mu\text{g}/\text{kg}$, benzo(a)pyrene at 1,500 $\mu\text{g}/\text{kg}$ and dibenzo(a,h)anthracene at 68 $\mu\text{g}/\text{kg}$. At the SB-17 location, where excavation revealed the presence of buried railroad ties which exhibited a strong creosote odor and a sheen on the groundwater in the bottom of the excavation, the maximum reported exceedances of the criteria included benzo(a)anthracene at 2,500 $\mu\text{g}/\text{kg}$, chrysene at 3,300 $\mu\text{g}/\text{kg}$, benzo(b)fluoranthene at 2,900 $\mu\text{g}/\text{kg}$, benzo(k)fluoranthene at 4,000 $\mu\text{g}/\text{kg}$, benzo(a)pyrene at 2,500 $\mu\text{g}/\text{kg}$, and dibenzo(a,h)anthracene at 110 $\mu\text{g}/\text{kg}$.

Each of the soil samples was analyzed for herbicides, pesticides and PCBs. These compounds were not reported in any of the samples at concentrations that exceeded the RSCOs.

Each of the soil samples was analyzed for TAL metals. The soil sample collected from TP-4 reported the presence of Cu, Mg, Hg and Zn at concentrations that exceeded the Eastern USA Background Levels. Of the two soil samples collected at test pit SB-17 the shallow sample was the more contaminated. The soil sample collected from the 2 feet to 3 feet bgs interval reported the presence of Arsenic (As), Cd, Cu, Pb, Mg, Hg and Zn at concentrations that exceeded the Eastern USA Background Levels whereas only Zn exceeded the criteria for the soil sample collected from the 6 feet to 7 feet bgs interval. The exceedances were approximately 2 times the applicable criteria.

Southern Boundary of the Site

Test pit SB-11 was excavated along the southern boundary of the Site where soil boring SB-1 encountered refusal at a relatively shallow depth precluding investigation of subsurface conditions. As described in Section 3.3, the test pit excavated at this location encountered buried railroad ties.

The analytical results of the soil sample collected at SB-11 indicated the presence of the VOCs toluene and xylenes at trace concentrations substantially below the RSCOs.

Although several SVOCs were detected in the soil sample, only the PAHs benzo(a)anthracene at 800 $\mu\text{g}/\text{kg}$, chrysene at 890 $\mu\text{g}/\text{kg}$, benzo(a)pyrene at 760 $\mu\text{g}/\text{kg}$ and dibenzo(a,h)anthracene at 55 $\mu\text{g}/\text{kg}$ exceeded the RSCOs.

Analysis of the soil sample for herbicides, pesticides and PCBs indicated the absence of these compounds at concentrations that exceeded the RSCOs.

Analysis of the soil sample for TAL metals reported the presence of eight metals at concentrations that exceeded the Eastern USA Background Levels. These metals were As, Cd, Cu, Pb, Mg, Hg, Nickel (Ni) and Zn. The exceedances ranged from approximately 2 to 5 times the applicable criteria.

4.4 Surficial and Subsurface Soils Sampling Findings

As part of the Phase II ESI, surficial and subsurface soils were investigated to determine the environmental condition. Surficial soil samples were collected at 11 locations and analyzed for SVOCs, herbicides, pesticides, PCBs and TAL metals. Subsurface soil samples from the soil borings were analyzed for VOCs, SVOCs and TAL metals. Analytical data summary tables are provided in Appendix B. Complete laboratory reports are provided in Appendix C. Sample locations are depicted on Figure 4. Figure 6 and Figure 7 depict the total SVOC concentrations and the total VOC and SVOC concentrations by surficial and subsurface sample location, respectively.

4.4.1 Results of Surficial Soil Sampling

Eleven soil sampling locations were distributed across the Site to evaluate the environmental condition of the surficial soils.

The results of the surficial soil samples indicated the presence of SVOCs throughout the Site. Most of the SVOCs detected were reported at concentrations below the RSCOs. However, all of the surficial soil sampling locations contained PAHs at concentrations that exceeded the RSCOs. The compounds and range in concentrations reported in the surficial soils are: benzo(a)anthracene 570 $\mu\text{g}/\text{kg}$ to 15,000 $\mu\text{g}/\text{kg}$; chrysene 700 $\mu\text{g}/\text{kg}$ to 17,000 $\mu\text{g}/\text{kg}$; benzo(b)fluoranthene 1,100 $\mu\text{g}/\text{kg}$ to 13,000 $\mu\text{g}/\text{kg}$; benzo(k)fluoranthene 1,200 $\mu\text{g}/\text{kg}$ to 13,000 $\mu\text{g}/\text{kg}$; benzo(a)pyrene 680 $\mu\text{g}/\text{kg}$ to 15,000 $\mu\text{g}/\text{kg}$; and, dibenzo(a,h)anthracene 44 $\mu\text{g}/\text{kg}$ to 400 $\mu\text{g}/\text{kg}$. The surficial soil sampling locations exhibiting the highest concentrations of PAH compounds are SF-10 and SF-11. These sampling locations are situated in the southern section of the Site between the southern property boundary and southern debris mound.

The surficial soil samples were analyzed for pesticides, herbicides and PCBs. The analytical results of these soil samples reported the presence of trace concentrations of the pesticides 4,4 DDD and 4,4 DDT

PHASE II ENVIRONMENTAL SITE INVESTIGATION REPORT
FORMER METRO NORTH PROPERTY
3001 CONCOURSE VILLAGE EAST
BRONX, NEW YORK 10451

as well as the PCB Aroclor 1260. However, the concentrations of these compounds were substantially below the RSCOs and no compounds were reported at concentrations that exceeded the RSCOs.

All surficial soil sampling locations reported concentrations of metals at concentrations that exceeded the Eastern USA Background Levels at concentrations ranging from 2 to 3 times the applicable criteria. The surficial soil sampling locations and reported exceedances are as follows.

SF-1	Ca, Hg and Zn
SF-2	Ba, Cd, Cu, Mg, Hg, Ni and Zn
SF-3	Ba, Ca, Cd, Mg, Hg and Zn
SF-4	As, Cd, Cu, Pb, Mg, Hg, Ni and Zn
SF-5	As, Cu, Mg, Hg and Zn
SF-6	As, Cu, Mg, Hg and Zn
SF-7	As, Cd, Cu, Mg, Hg and Zn
SF-8	Ca, Cu, Mg, Hg and Zn
SF-9	Mg and Zn
SF-10	As, Cd, Cu, Pb, Mg, Hg and Zn
SF-11	As, Cd, Cu, Pb, Hg and Zn

4.4.2 Subsurface Soils Sampling Findings

Ten soil borings were drilled to evaluate subsurface environmental conditions beneath the Site. Five borings (PZ-1, PZ-2, PZ-3, SB-3, and SB-1) were positioned along the boundaries of the Site to evaluate both soil and groundwater quality at the Site perimeter. Three borings (SB-4, SB-5, and SB-6) were positioned in the northwest section of the Site where buildings formerly associated with rail yard operations were located. Boring SB-2 was located in the central section of the Site where a UST was suspected to exist and to better define the extent of subsurface contamination in this area of the Site.

Perimeter Soil Boring Samples

Borings PZ-1, PZ-2, PZ-3, SB-1, and SB-3 were positioned along the boundaries of the Site. No soil samples for laboratory analysis were collected at boring location SB-1 due to refusal during drilling. This location was subsequently investigated by test pit excavation (see Section 4.3).

With the exception of boring PZ-2, the results of the analytical testing of the perimeter soil boring samples did not indicate the presence of VOCs at concentrations exceeding the RSCOs. However, both visual and instrumental evidence of soil contamination was observed at boring location PZ-2. The presence of this contamination is substantiated by the analytical results reported for the soil sample collected from 3 feet to 4 feet bgs. These results report the presence of benzene at 6,000 µg/kg, toluene at 110,000 µg/kg, ethylbenzene at 170,000 µg/kg and total xylenes at 1,500,000 µg/kg. These concentrations are substantially above the RSCOs. The soil sample collected at this location from 10 feet to 11 feet bgs was in compliance with the RSCOs indicating the vertical extent of VOC contamination had been delineated.

PHASE II ENVIRONMENTAL SITE INVESTIGATION REPORT
FORMER METRO NORTH PROPERTY
3001 CONCOURSE VILLAGE EAST
BRONX, NEW YORK 10451

Samples collected from the perimeter soil borings were analyzed for SVOCs. All samples analyzed reported the presence of low levels of SVOCs. The most significant levels of SVOCs reported at concentrations that exceeded the RSCOs were associated with the subsurface soils at boring PZ-2. The analytical results for the soil sample collected from 3 feet to 4 feet bgs indicated the presence of naphthalene at 72,000 µg/kg, 2-methylnaphthalene at 57,000 µg/kg, benzo(a) anthracene at 4,300 µg/kg, chrysene at 4,600 µg/kg, benzo(b)fluoranthene at 2,700 µg/kg, benzo(k)fluoranthene at 2,400 µg/kg, and benzo(a)pyrene at 4,300 µg/kg. These concentrations are substantially above the RSCOs. However, the results of the soil sample collected at this location from 10 feet to 11 feet bgs were in compliance with the RSCOs indicating the vertical extent of SVOC contamination had been delineated.

Soil samples collected from perimeter borings PZ-1, PZ-3, and SB-3 also contained certain PAH compounds at concentrations that exceeded the RSCOs. The analytical results of the soil sample collected from a depth of 2.5 feet to 3.5 feet bgs at boring PZ-1 reported the presence of benzo(a)anthracene, chrysene and benzo(a)pyrene at concentrations slightly in excess of the RSCOs. However, the analytical results of the soil sample collected at this location from 12.5 feet to 13.5 feet bgs were in compliance with the RSCOs indicating the vertical extent of SVOC contamination had been delineated.

The analytical results of the soil samples collected from a depth of 4 feet to 5 feet bgs at boring PZ-3 reported the presence of benzo(a)anthracene, chrysene, benzo(k)fluoranthene, benzo(a)pyrene and dibenzo(a,h)anthracene at concentrations slightly in excess of the RSCOs. However, the analytical results of the soil sample collected at this location from 11 feet to 12 feet bgs were in compliance with the RSCOs indicating the vertical extent of SVOC contamination had been delineated.

Two soil samples were collected for laboratory analysis at boring SB-3: one sample from 1.5 feet to 2.5 feet bgs; and, one sample from 6 feet to 7 feet bgs. The analytical results of these samples reported the presence of low concentrations of SVOCs in both soil samples. In general, the SVOC concentrations were greater in the deeper soil sample indicating an increase in contamination concentration with depth at this location. With the exception of benzo(a)pyrene, which was reported at a concentration in excess of the RSCO for the soil sample collected from 6 feet to 7 feet bgs, the SVOC analysis of these samples indicated compliance with the RSCOs.

The analytical results of the perimeter boring soil samples reported the presence of certain TAL metals in the subsurface soils at concentrations that exceeded the Eastern USA Background Levels. The analytical results also indicated that the metals exceedances occur at a higher frequency and concentration in the near surface soils rather than with soil samples occurring at depth. At location PZ-1, two soil samples one from 2.5 feet to 3.5 feet bgs and one from 12.5 feet to 13.5 feet bgs were collected. The metals Cu, Hg, and Zn were reported in the shallow sample at concentrations that exceeded the criteria whereas only Mg and Zn exceeded the criteria in the soil sample collected at depth. At location PZ-2 two soil samples one from 3 feet to 4 feet bgs and one from 10 feet to 11 feet bgs were collected. The metals Cd, Cu, Pb, Mg, Hg and Zn were reported in the shallow sample at concentrations that exceeded the criteria whereas only Zn exceeded the criteria in the soil sample collected at depth. At location PZ-3, two soil samples one from 4 feet to 5 feet bgs and one from 11 feet to 12 feet bgs were collected. The metals As, Cu, Mg, Hg and Zn were reported in the shallow sample at concentrations that exceeded the criteria whereas only Mg exceeded the criteria in the soil sample collected at depth. At boring SB-3, two soil samples one from 1.5 feet to 2.5 feet bgs and one from 6 feet to 7 feet bgs were collected. The metals Cu, Pb, Mg, Hg and Zn were reported in the shallow sample at concentrations that exceeded the criteria whereas only Cu, Hg, and Zn exceeded the criteria in the soil sample collected at depth. The exceedances ranged from 2 to 5 times the applicable criteria.

Former Buildings Soil Borings Samples

Three soil borings SB-4, SB-5, and SB-6 were drilled in the northwest section of the Site where buildings formerly associated with rail yard operations were located. As previously discussed in Section 3.4.2, evidence of suspected contamination detected during drilling included petroleum odors and soil staining at borings SB-4 and SB-6 and a creosote odor and the presence of buried railroad ties at boring SB-5.

One soil sample for laboratory analysis was collected at each boring location. The analytical results of the soil boring samples did not indicate the presence of VOCs at concentrations that exceeded the RSCOs.

The analytical results reported the presence of SVOCs in the four soil samples collected from this area of the Site. However, only the soil sample and the duplicate soil sample collected at boring SB-6 reported the presence of SVOCs at concentrations that exceeded the RSCOs. At boring SB-6, the soil sample and duplicate soil sample were collected at a depth of 5 feet to 6 feet bgs. The analytical results of the soil sample indicated the presence of benzo(a)anthracene at 2,800 $\mu\text{g}/\text{kg}$, chrysene at 3,300 $\mu\text{g}/\text{kg}$, benzo(b)fluoranthene at 4,000 $\mu\text{g}/\text{kg}$, benzo(k)fluoranthene at 3,500 $\mu\text{g}/\text{kg}$, benzo(a)pyrene at 3,500 $\mu\text{g}/\text{kg}$ and dibenzo(a,h)anthracene at 170 $\mu\text{g}/\text{kg}$. These concentrations exceeded the RSCOs. The results of the duplicate soil sample were very similar indicating the same compound exceedances at approximately the same reported concentrations.

The analytical results for the metals analysis of these soil samples indicated the presence of certain TAL metals at concentrations that exceeded the Eastern USA Background Levels. The sample from boring SB-4 reported Ca, Mg and Zn; the sample from boring SB-5 reported Mg; the sample from boring SB-6 reported As, Chromium (Cr), Cu, Pb, Hg and Zn; and, the duplicate sample collected from boring SB-6 reported As, Cd, Cu, Pb, Hg, Ni and Zn.

4.5 Groundwater Sampling Findings

Five groundwater samples were collected to evaluate groundwater quality at the Site. The samples were collected from piezometers PZ-1, PZ-2, and PZ-3 positioned along the eastern property boundary, in the northwest corner of the Site and along the southern Site boundary, respectively, from SB-3 positioned located along the northern Site and from test pit SB-17 where buried rail road ties exhibiting a strong creosote odor and a sheen on the groundwater were observed. The groundwater samples were analyzed for VOCs. Sampling locations are depicted on Figure 4. Analytical data summary tables are provided in Appendix B. Complete laboratory reports are provided in Appendix C. The total VOC concentrations by sample location are depicted on Figure 8.

The apparent direction of groundwater flow beneath the Site, based on an evaluation of groundwater measurements recorded in piezometers PZ-1, PZ-2, and PZ-3 is toward the southeast. Therefore, groundwater quality data from sampling locations PZ-2, PZ-3, and SB-3 provide an indication of groundwater quality migrating onto the Site, that from sampling location PZ-1 provides an indication of groundwater quality migrating from the Site and that from sampling location SB-17 provides an indication of on-site groundwater quality data.

The highest concentrations of VOC contamination are reported in the northwest corner of the Site at piezometer location PZ-2. The analytical results of the groundwater sample collected at this location report high concentrations of benzene at 17,000 micrograms per liter ($\mu\text{g}/\text{l}$), toluene at 180 $\mu\text{g}/\text{l}$, ethylbenzene at 370 $\mu\text{g}/\text{l}$ and total xylenes at 1,580 $\mu\text{g}/\text{l}$. In addition, the chlorinated VOC 1,1,2-trichlorethane was reported at 12 $\mu\text{g}/\text{l}$. The high concentrations of these compounds in the groundwater at

this location are attributable to the soil contamination in this area of the Site. During drilling at this sample location, the soils exhibited a petroleum odor as well as PID measurements of volatile organic vapors that ranged from 7 ppm to 110 ppm. However, although there appears to be a direct correlation between the soil contamination and underlying groundwater contamination at this on-site location, PZ-2 is at an upgradient location. Therefore the possibility of off-site contamination contributing to the contamination on-site cannot be ruled out.

The analysis of the groundwater sample collected at PZ-3 reported a low concentration (5.5 $\mu\text{g/l}$) of benzene. Although no visual evidence of soil contamination was observed during drilling at this location, PID measurements of volatile organic vapors ranging from 1 ppm to 14 ppm were recorded. Because PZ-3 is positioned near the western property boundary, at a location upgradient to groundwater flow beneath the Site, it cannot be determined if the benzene reported in the groundwater is due to an on-site source or the migration of contaminated groundwater onto the Site. PZ-1 is positioned along the eastern boundary of the Site and provides an assessment of groundwater quality migrating from the Site. The analytical results report the presence of three chlorinated VOCs in the groundwater at this location. Only two of these compounds, vinyl chloride (7.7 $\mu\text{g/l}$) and cis1,2-dichloroethene (25 $\mu\text{g/l}$) exceeded the groundwater criteria. The analysis of the groundwater sample collected along the northern property boundary (SB-3) and at test pit SB-17 where buried railroad ties exhibiting a creosote odor and a sheen on the water table indicated the absence of VOCs at concentrations that exceeded the groundwater criteria.

4.6 Surface Water and Sediment Sampling Findings

There were no surface water or sediment sampling activities.

4.7 Containerized Chemicals

There were no containerized chemicals found at the Site.

4.8 Asbestos Results

The investigation of ACM is specifically excluded from URS' contract with the NYCSCA. Therefore, no sampling of ACM was performed as part of the Phase II ESI. However, URS observed insulation wrapping on a three foot long section of 8-inch diameter pipe associated with a pressure valve assembly located in the center of the Site. This insulation is presumed to be ACM.

4.9 Lead-Based Paint Analytical Results

No structures are currently located at the Site for which an assessment of lead-based paint would have been required. Therefore, no sampling of lead-based paint was conducted.

4.10 Air Sampling Findings

There were no air sampling activities.

PHASE II ENVIRONMENTAL SITE INVESTIGATION REPORT
FORMER METRO NORTH PROPERTY
3001 CONCOURSE VILLAGE EAST
BRONX, NEW YORK 10451

4.11 Additional Sampling Findings

Methane monitoring was conducted during soil sampling activities with the exception of one methane reading of 16 ppm recorded during the excavation of material at TP-5, no measurements of methane were detected.

4.12 Overall Findings Table

Table 3 Environmental Due Diligence Results Check List

Environmental Due Diligence Results Check List Former Metro North Property			
Did the investigation identify contamination:	Yes	No	Unknown
On the site that would be subject to regulatory oversight or potential responsible party liability?	X		
On the site or off-site that would represent an impact to a future school facility?	X		
On the site or off-site that would represent an impact to future site development (construction) activities?	X		
On the site that has impacted groundwater beneath the site?	X		
Additional questions:			
Will regulatory agencies require groundwater remediation at the site?		X	
Will ongoing environmental monitoring be necessary at the site?		X	

5.0 RECOMMENDED REMEDIATION AND COST ESTIMATES

Based on a review of the analytical results from the Phase II ESI completed by URS, the following recommendations for Site remediation and estimated costs are presented.

5.1 Petroleum Contaminated Soil Removal, Disposal and Restoration Cost

Two areas of subsurface contamination were identified at the Site. One area is located in the northwest section of the Site and the other is located along the southern property boundary. Each area is discussed individually.

The field observations and analytical results of soil and groundwater samples indicate the presence of an area of subsurface contamination encompassing the northwest portion of the Site (see Figure 9). This area measures approximately 250 feet by 300 feet and extends to an estimated depth of approximately 10 feet. This assessment is based on the presence of contamination observed during the drilling of borings PZ-2, SB-4, SB-5, and SB-6, the excavation of test pit SB-17 and the analytical data reported for the soil samples collected at these locations. Field observations made during the investigation of this area identified the presence of buried railroad ties which exhibited the characteristic creosote-like odor, petroleum contaminated soils which exhibited odors, measurement of volatile organic vapors at concentrations of 110 ppm and sheens on the encountered groundwater. The analytical results of soil samples collected in the area indicated high concentrations of VOCs, SVOCs and TAL metals. The highest concentrations of VOCs in the soil are located in the northwest corner of the Site at boring location PZ-2. Based on the absence of these high VOC concentrations at borings SB-4 and SB-5 and test pit TP-5, it is estimated that these benzene contaminated soils occupy an area measuring approximately 75 feet by 75 feet by 10 feet in depth or approximately 2,100 cubic yards. In addition, very high levels of VOCs were reported for the groundwater collected at PZ-2. The benzene contaminated soils at this location are providing a source for the high levels of groundwater contamination in this area of Site. The levels of VOCs also provide a source of organic vapors. These factors provide a risk to both the environment and human health and impact redevelopment of this area of the Site unless the materials are removed.

The historical data reviewed for the vicinity of the Site identified the location of a filling station upgradient of the Site and a former MGP facility located adjacent to the northwest section of the Site. Although the soil contamination identified in the northwest section of the Site correlates with the concentrations of groundwater contamination observed in this area, it is possible that this portion of the Site is being impacted from off-site sources of contamination associated with the aforementioned facilities. This evaluation is based on the high concentrations of benzene, toluene, ethylbenzene and xylenes (BTEX) reported for the Site soils which could result from an off-site gasoline spill that has reached the groundwater and migrated to the Site. BTEX compounds are also present at high concentrations in MGP residuals and byproducts as are SVOCs, specifically naphthalene and 2-methylnaphthalene. Consequently, there is a possibility that the contamination identified in this area of the Site may result from contamination that has migrated to or continues to migrate to the Site from one or both of these off-site sources. The total volume of material requiring removal from the northwest portion of the Site is estimated to be approximately 28,000 cubic yards.

The field observations and analytical results of soil samples indicate the presence of an area of subsurface contamination along the southern property boundary of the Site (see Figure 9). This area is estimated to

PHASE II ENVIRONMENTAL SITE INVESTIGATION REPORT
FORMER METRO NORTH PROPERTY
3001 CONCOURSE VILLAGE EAST
BRONX, NEW YORK 10451

measure approximately 50 feet by 75 feet and extends to an estimated depth of approximately 5 feet. Field observations during investigation of this area identified the presence of buried railroad ties. The analytical results of the soil samples collected indicated the presence of SVOCs and TAL Metals. Bedrock was encountered at approximately 4 feet below grade in this area. Therefore, it is anticipated that redevelopment of this area would encounter these materials due to the shallow depth of burial. Consequently, it is recommended that these materials be removed prior to redevelopment. The volume of this material is estimated to be approximately 700 cubic yards.

The cost for remediation of 28,700 cubic yards of petroleum contaminated soil from these two areas of the Site is estimated to be \$2,696,000. This cost is comprised of the components identified in Table 4. The remediation cost includes costs for the disposal of potentially hazardous soil, if subsequent testing prior to excavation determines the material to be hazardous.

Table 4 Petroleum Contaminated Soil Removal, Disposal and Restoration Cost

Former Metro North Property				
Item	Unit	Quantity	Unit Rate	Total
Mobilization	LS	1	\$25,000	\$25,000
Health and Safety	LS	1	\$25,000	\$25,000
Excavation	CY	28,700	\$20.00	\$574,000
Transportation and Disposal	CY	28,700	\$60.00	\$1,722,000
Backfill	CY	28,700	\$10.00	\$287,000
Hazardous Material Disposal	CY	2,100	\$30.00	\$63,000
Petroleum Contaminated Soil Removal, Disposal and Restoration Subtotal				\$2,696,000

5.2 C&D Material Removal and Disposal Cost

There are two large debris mounds located in the northern and southern sections of the Site and a smaller debris mound situated north of the southern debris mound (see Figure 9) comprised of fine to coarse sand, gravel and cobbles with C&D type fill material consisting of concrete, brick, cinders ash, slag, glass, wood, trees, plastic, pipe, rebar and metal plates. This material is unsuitable for reuse at the Site and will require removal from the Site prior to redevelopment. The volume of this material is estimated to be approximately 30,000 cubic yards. The cost for this task is estimated to be \$1,375,000. This cost is comprised of the components identified in Table 5.

Table 5 C&D Material Removal and Disposal Cost

Former Metro North Property				
Item	Unit	Quantity	Unit Rate	Total
Mobilization	LS	1	\$15,000	\$15,000
Health and Safety	LS	1	\$10,000	\$10,000
Material Loading	CY	30,000	\$5.00	\$150,000
Transportation and Disposal	CY	30,000	\$40.00	\$1,200,000
C&D Material Removal and Disposal Subtotal				\$1,375,000

5.3 Groundwater Remediation Cost

Based on the Phase II findings, URS does not propose active remediation of the groundwater contamination. Groundwater contamination occurs primarily in the northwest section of the Site associated with the presence of significant levels of VOC and SVOC soil contamination. Removal of these soils removes the source of the groundwater contamination. Therefore, rather than implement groundwater remediation, URS proposes contaminated soil removal, as described in Section 5.1, and contaminated groundwater extraction during construction to remove visibly contaminated groundwater and free product. URS proposes a contingency to install a vertical sheet pile wall in the northwest section of the Site if an off-site source is confirmed during remedial activities that could potentially recontaminate the Site. URS proposes the collection of groundwater samples using Hydropunch® collection techniques subsequent to remediation to demonstrate the improvement of groundwater quality and the effectiveness of the on-site source removal program. The cost for this task is estimated to be \$600,625. This cost is comprised of the components identified in Table 6.

Table 6 Groundwater Remediation Cost

Former Metro North Property				
Item	Unit	Quantity	Rate	Total
Mobilization	LS	1	\$15,000	\$15,000
Health and Safety	LS	1	\$10,000	\$10,000
Sheet Pile Barrier Wall	LS	13,625	\$25.00	\$340,625
Groundwater Extraction/Disposal	Gal	200,000	\$1.00	\$200,000
Groundwater Sampling and Analysis	LS	1	\$35,000	\$35,000
Groundwater Remediation Subtotal				\$600,625

5.4 Installation of Impermeable Barrier System Cost

Based on the Phase II findings, the following recommendations are made with respect to installing an impermeable barrier on the Site.

The findings of the Phase II ESI indicate soil and groundwater contamination by organic compounds. This area of contamination impacts the northwest portion of the Site. The excavation and removal of these contaminated materials resolves the on-site sources of this contamination. However, there is a potential for the migration of off-site organic contamination to impact the property. Therefore, a contingency safeguard is recommended that includes the installation of an impermeable vapor barrier system beneath the footprint of the new building. The vapor barrier system would consist of a 52,000 square foot geomembrane with a geocomposite drainage layer, barrier protection layer and associated piping. The cost for the installation of the impermeable barrier system is estimated to be \$181,720. The cost is comprised of the components identified in Table 7.

PHASE II ENVIRONMENTAL SITE INVESTIGATION REPORT
FORMER METRO NORTH PROPERTY
3001 CONCOURSE VILLAGE EAST
BRONX, NEW YORK 10451

Table 7 Installation of Impermeable Barrier System Cost

Former Metro North Property				
Item	Unit	Quantity	Rate	Total
Mobilization	LS	1	\$10,000	\$10,000
Health and Safety	LS	1	\$10,000	\$10,000
40 mil LLDPE Geomembrane	SF	52,000	\$0.50	\$26,000
Geocomposite Drainage Layer	SF	52,000	\$0.40	\$20,800
Barrier Protection Layer	CY	1,925	\$16.00	\$30,800
6-inch Gas Collection Piping	LF	520	\$51.00	\$26,520
8-inch Gas Collection Header	LS	520	\$60.00	\$31,200
6-inch Gas Valves and Vaults	Each	4	\$3,000	\$12,000
8-inch Gas Valves and Vaults	Each	4	\$3,600	\$14,400
Installation of Impermeable Barrier System Subtotal				\$181,720

5.5 Soil Cover Placement and Cost

Based on the Phase II findings, the analytical results of the surficial soil samples collected across the Site indicate the presence of PAHs and TAL metals at levels that would require remediation during development as a new school complex either by removal or capping. URS recommends that those areas of the Site not covered by the structures constructed or other areas capped by the placement of impervious materials such as concrete sidewalks or macadam roads and parking areas be covered with a minimum 12-inch thick layer of clean fill. Based on the conceptual design of the anticipated school, it is estimated that approximately 6 acres of the Site will require a soil cover. The cost for this task is estimated to be \$170,800. This cost is comprised of the components identified in Table 8.

Table 8 Soil Cover Placement Cost

Former Metro North Property				
Item	Unit	Quantity	Rate	Total
Mobilization	LS	1	\$10,000	\$10,000
Health and Safety	LS	1	\$10,000	\$10,000
Site Clearing	Acre	6	\$4,000	\$24,000
Site Grading	Acre	6	\$5,000	\$30,000
Soil Cover Placement	CY	9,680	\$10.00	\$96,800
Soil Cover Placement Subtotal				\$170,800

5.6 Total Remediation Cost

The total cost estimate for the recommended remediation tasks identified above is presented in Table 9.

**PHASE II ENVIRONMENTAL SITE INVESTIGATION REPORT
FORMER METRO NORTH PROPERTY
3001 CONCOURSE VILLAGE EAST
BRONX, NEW YORK 10451**

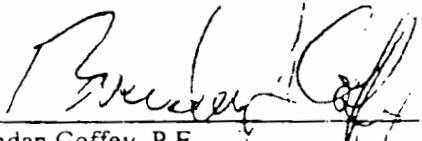
Table 9 Total Remediation Cost

Section	Activity	Total
5.1	Petroleum Contaminated Soil Removal, Disposal and Restoration Cost	\$2,696,000
5.2	C&D Material Removal and Disposal Cost	\$1,375,000
5.3	Groundwater Remediation Cost	\$600,625
5.4	Installation of Impermeable Barrier System Cost	\$181,720
5.5	Soil Cover Placement Cost	\$170,800
Recommended Remediation Subtotal		\$5,024,145
Engineering Design, Specs, Drawings, Data Evaluation, and Reporting Labor Expenses (20% of Remediation Subtotal)		\$1,004,829
Subtotal Projected Costs		\$6,028,974
25% Contingency on all costs		\$1,507,245
Estimated Remediation Total		\$7,536,219

PHASE II ENVIRONMENTAL SITE INVESTIGATION REPORT
FORMER METRO NORTH PROPERTY
3001 CONCOURSE VILLAGE EAST
BRONX, NEW YORK 10451

6.0 SIGNATURES OF ENVIRONMENTAL PROFESSIONALS

URS has performed a Phase II Environmental Site Investigation of the Former Metro North Property (the "Site"), located at 3001 Concourse Village East in Bronx, New York. The scope of the Phase II ESI was consistent with the ASTM Standard Practice E 1527-97 and of the NYCSCA.


URS

K.D. Seborowski
Project Manager

Edith Hollister
Environmental Scientist

Brendan Coffey, P.E.
Principal Environmental Engineer

Figures

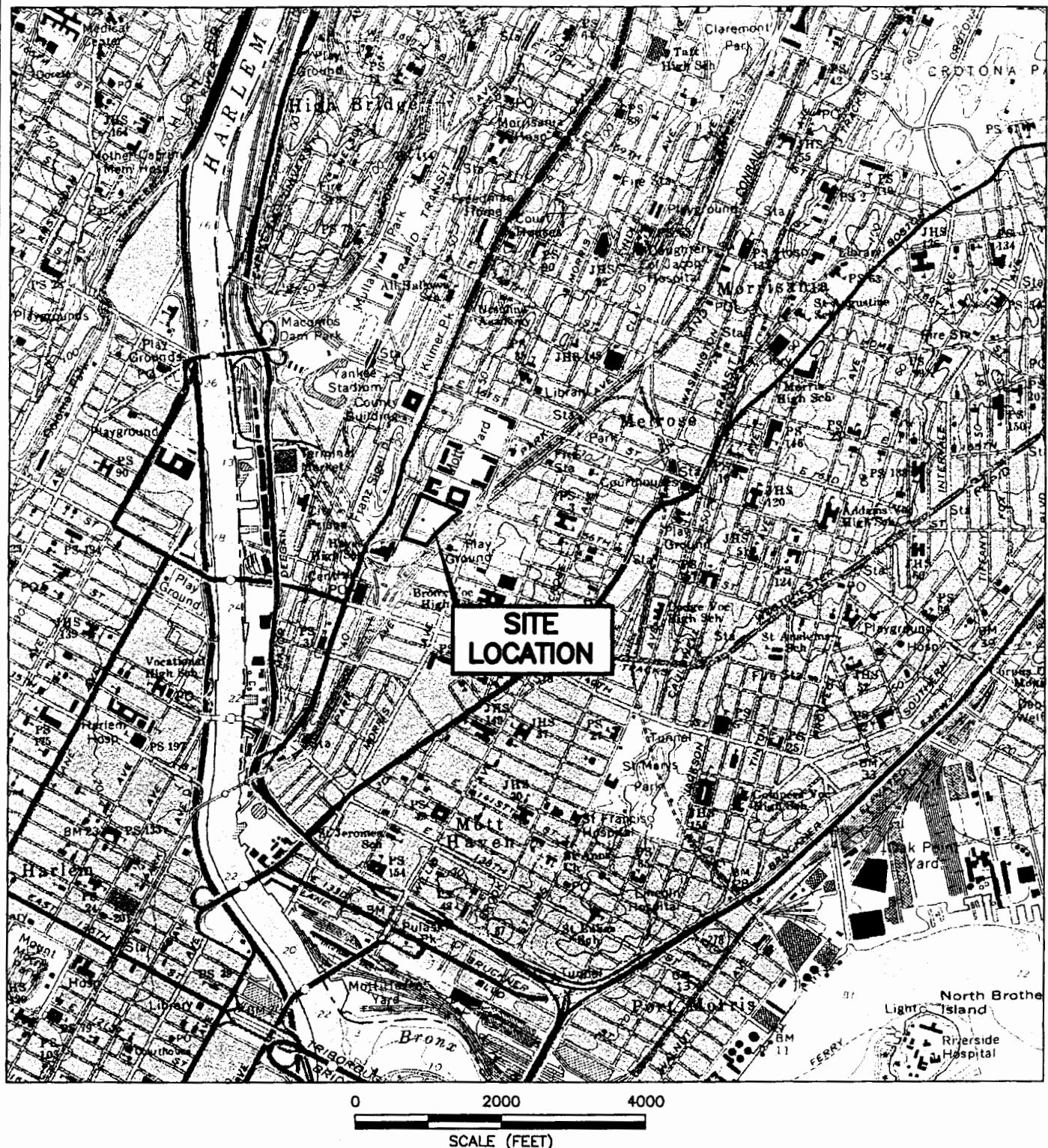
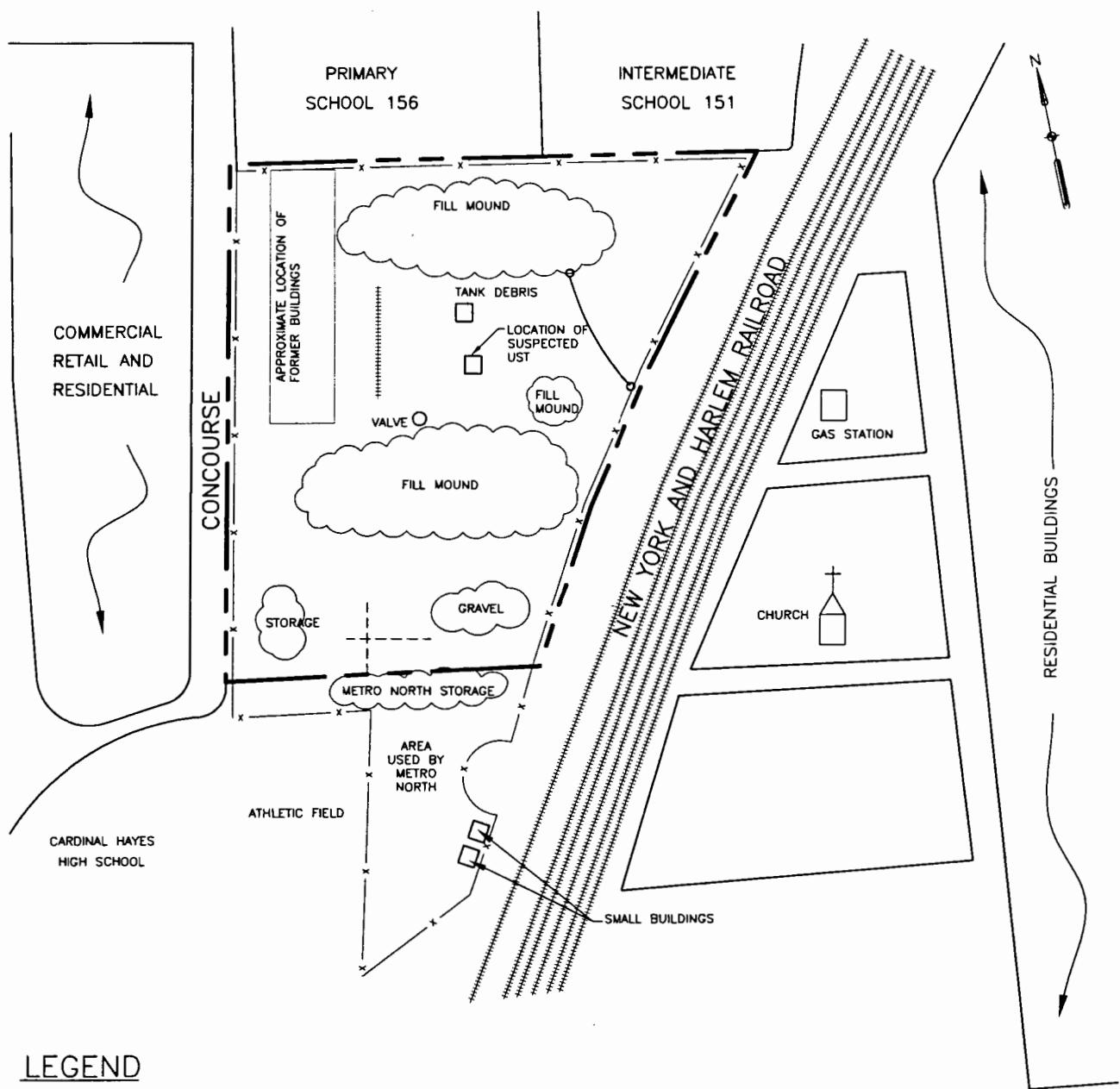


FIGURE 1 - SITE LOCATION MAP

URS

WAYNE, NEW JERSEY

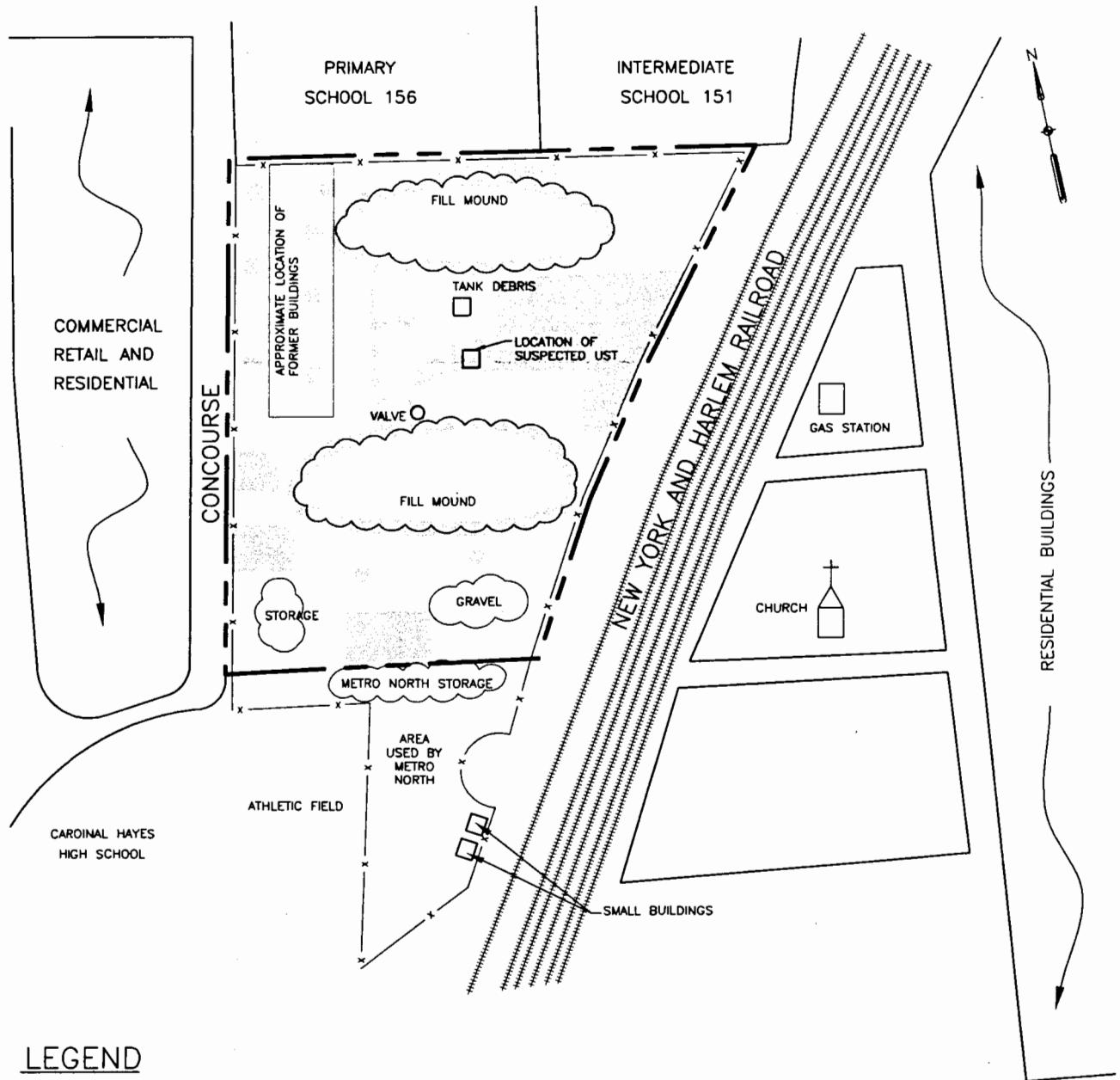


SITE: FORMER METRO NORTH
3001 CONCOURSE VILLAGE EAST
BRONX, NY 10451

CLIENT: SCHOOL CONSTRUCTION AUTHORITY

PROJECT #: 47-01E04046.00/00018

SCALE: AS SHOWN


LEGEND

- PROPERTY LINE
- UNDERGROUND SEWER LINE WITH MANHOLES
- - - SUSPECTED LOCATION OF UNDERGROUND UTILITIES INFERRED FROM GEOPHYSICAL SURVEY
- ==== SECTION OF RAILROAD TRACK EMBEDDED IN CONCRETE

SITE FEATURES MAP

0 100 200 400
SCALE (FEET)

CLIENT: SCHOOL CONSTRUCTION AUTHORITY		
SITE: FORMER METRO NORTH PROPERTY BLOCK 2443 LOT 78 BRONX, NY 10451	 WAYNE, NEW JERSEY	
PROJECT #: 47-01E04046.00/00018	SCALE: AS SHOWN DRAWN BY: J.L.	FIGURE 2

LEGEND

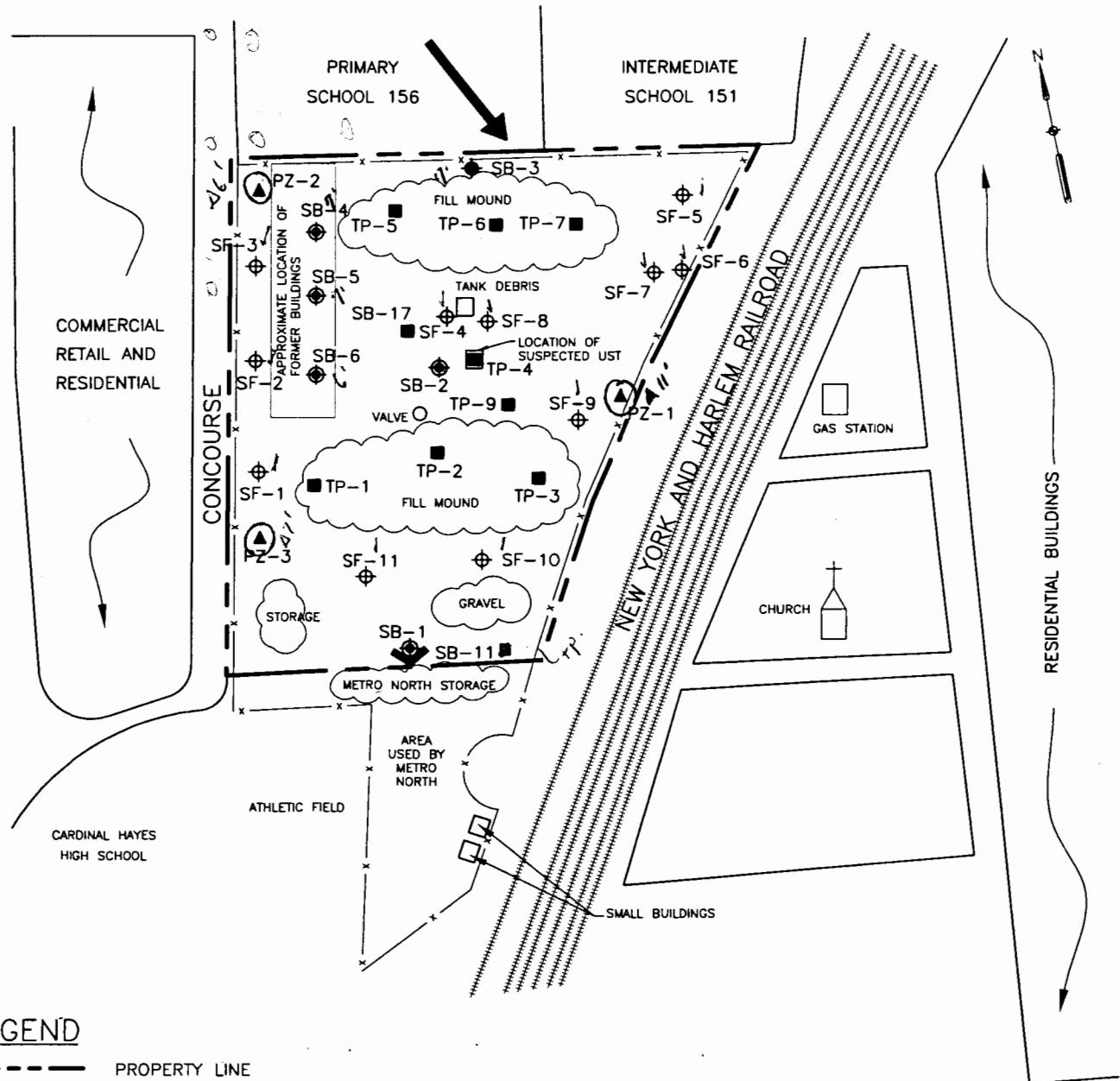
— PROPERTY LINE

ZONE OF GEOPHYSICAL INVESTIGATION

GEOPHYSICAL SURVEY LOCATION MAP

0 100 200 400
SCALE (FEET)

CLIENT: SCHOOL CONSTRUCTION AUTHORITY


SITE: FORMER METRO NORTH PROPERTY
BLOCK 2443 LOT 78
BRONX, NY 10451

PROJECT #: 47-01E04046.00/00018

URS
WAYNE, NEW JERSEY

SCALE: AS SHOWN
DRAWN BY: J.L.

FIGURE
3

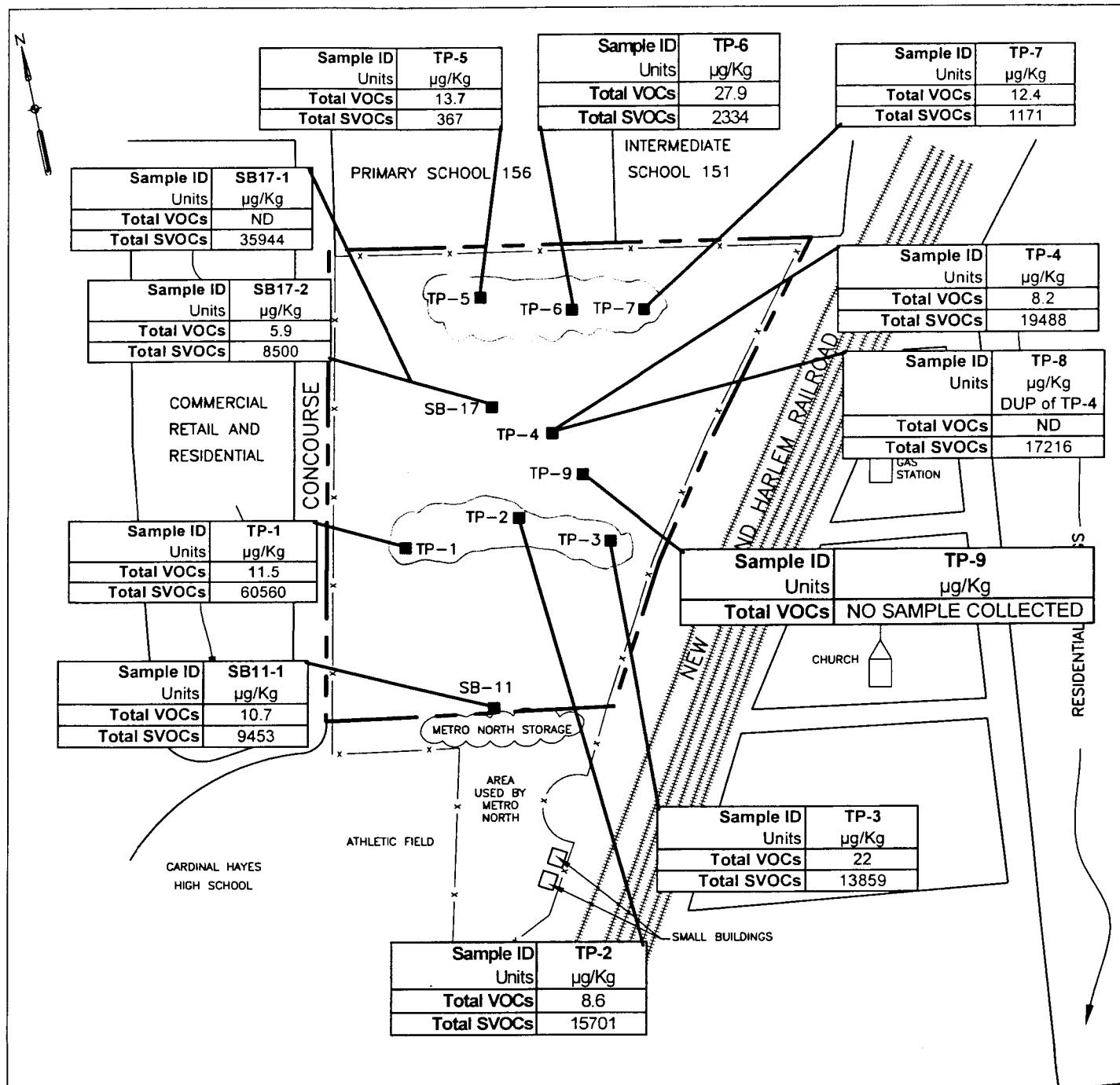
LEGEND

- PROPERTY LINE
- SOIL AND GROUNDWATER SAMPLE LOCATION
- SURFACE SOIL SAMPLE LOCATION
- SUBSURFACE SOIL SAMPLE LOCATION
- TEMPORARY PIEZOMETER LOCATION
- TEST PIT LOCATION
- DIRECTION OF GROUNDWATER FLOW

PHASE II SAMPLING LOCATION PLAN

0 100 200 400
SCALE (FEET)

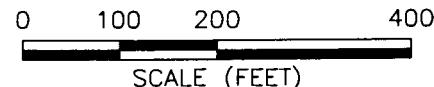
CLIENT: SCHOOL CONSTRUCTION AUTHORITY


SITE: FORMER METRO NORTH PROPERTY
BLOCK 2443 LOT 78
BRONX, NY 10451

PROJECT #: 47-01E04046.00/00018

URS
WAYNE, NEW JERSEY

SCALE: AS SHOWN
DRAWN BY: J.L.

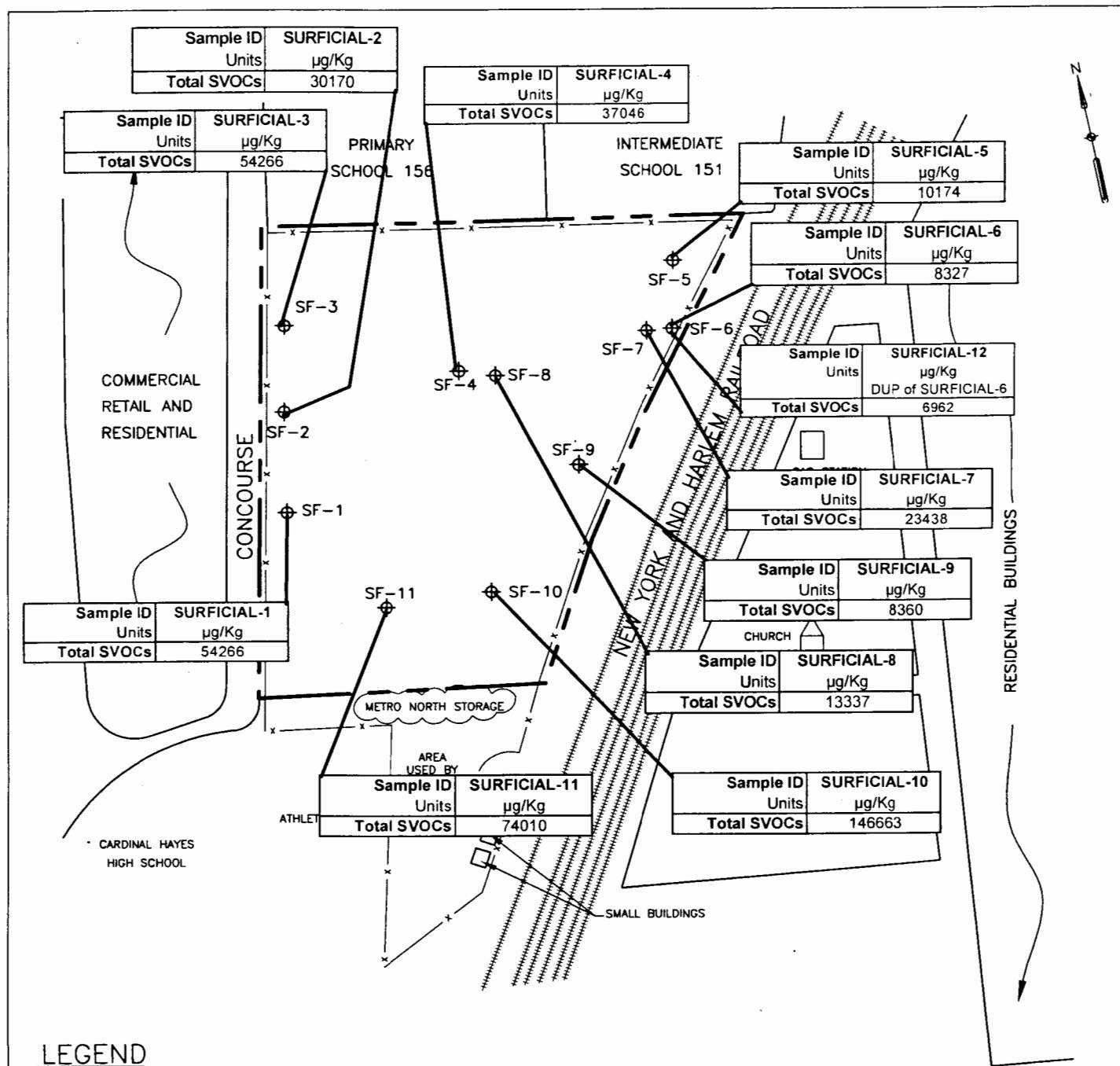

FIGURE
4

LEGEND

- — — PROPERTY LINE
- x — FENCE LINE
- TP-1 TEST PIT LOCATION
- ND NOT DETECTED

TEST PIT ANALYTICAL RESULTS TOTAL VOCs AND SVOCs

CLIENT: SCHOOL CONSTRUCTION AUTHORITY


SITE: FORMER METRO NORTH PROPERTY
BLOCK 2443 LOT 78
BRONX, NY 10451

URS
WAYNE, NEW JERSEY

PROJECT #: 47-01E04046.00/00018

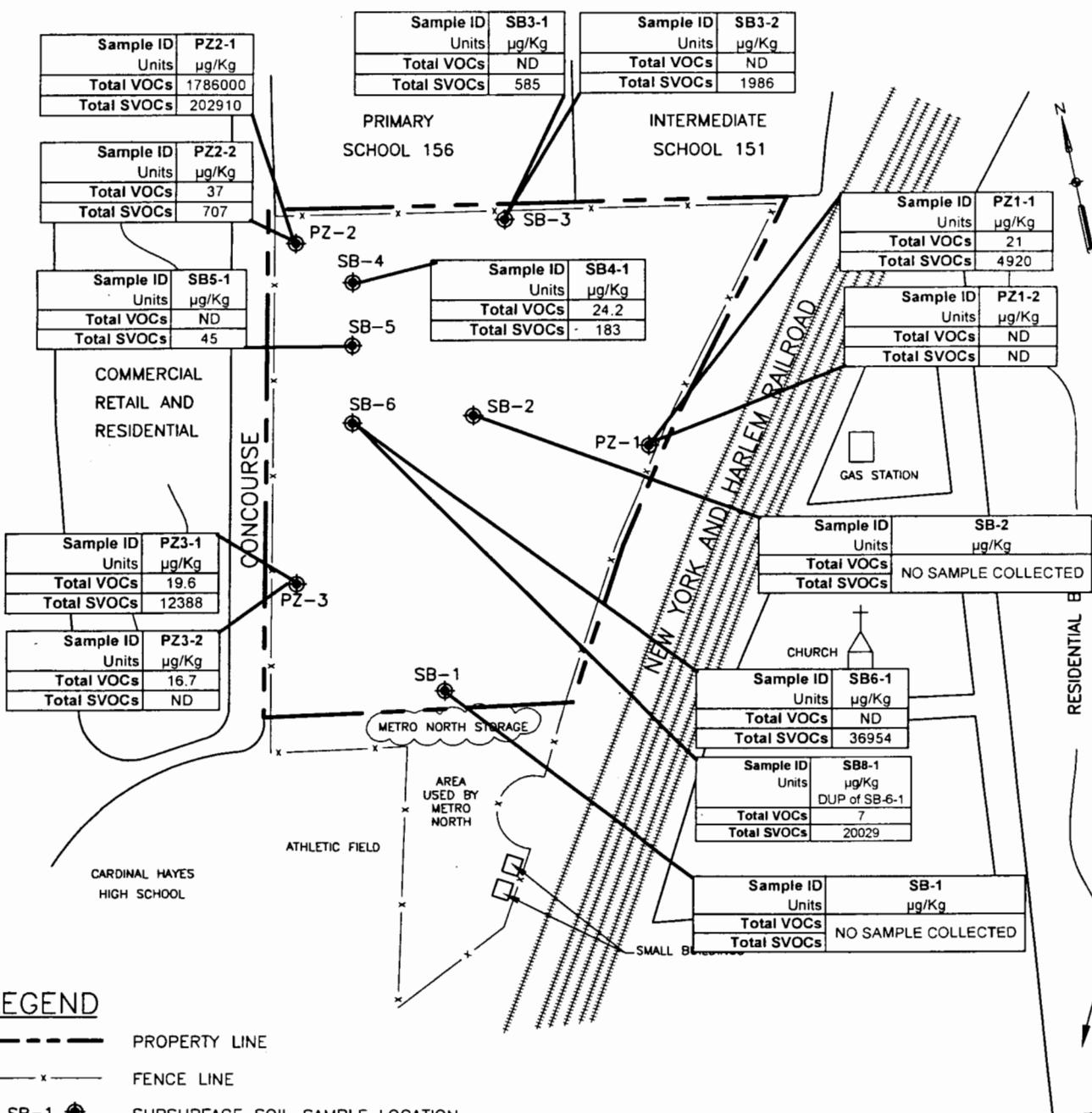
SCALE: AS SHOWN
DRAWN BY: J.L.

FIGURE
5

SURFICIAL SOIL ANALYTICAL RESULTS TOTAL SVOCs

0 100 200 400
SCALE (FEET)

CLIENT: SCHOOL CONSTRUCTION AUTHORITY


SITE: FORMER METRO NORTH PROPERTY
BLOCK 2443 LOT 78
BRONX, NY 10451

URS
WAYNE, NEW JERSEY

PROJECT #: 47-01E04046.00/00018

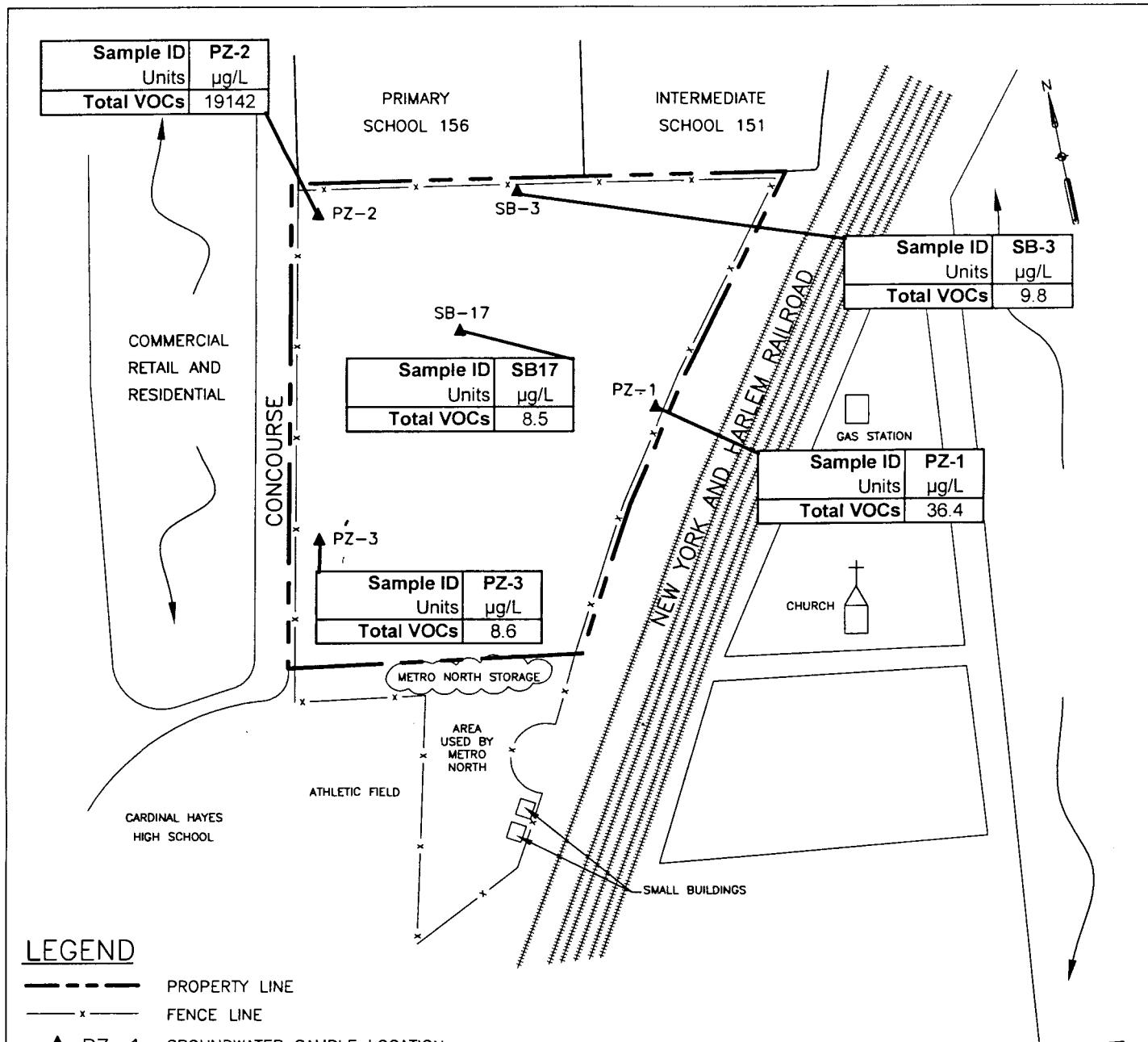
SCALE: AS SHOWN
DRAWN BY: J.L.

FIGURE
6

SOIL BORING ANALYTICAL RESULTS TOTAL VOCs AND SVOCs

0 100 200 400
SCALE (FEET)

CLIENT: SCHOOL CONSTRUCTION AUTHORITY


SITE: FORMER METRO NORTH PROPERTY
BLOCK 2443 LOT 78
BRONX, NY 10451

URS
WAYNE, NEW JERSEY

PROJECT #: 47-01E04046.00/00018

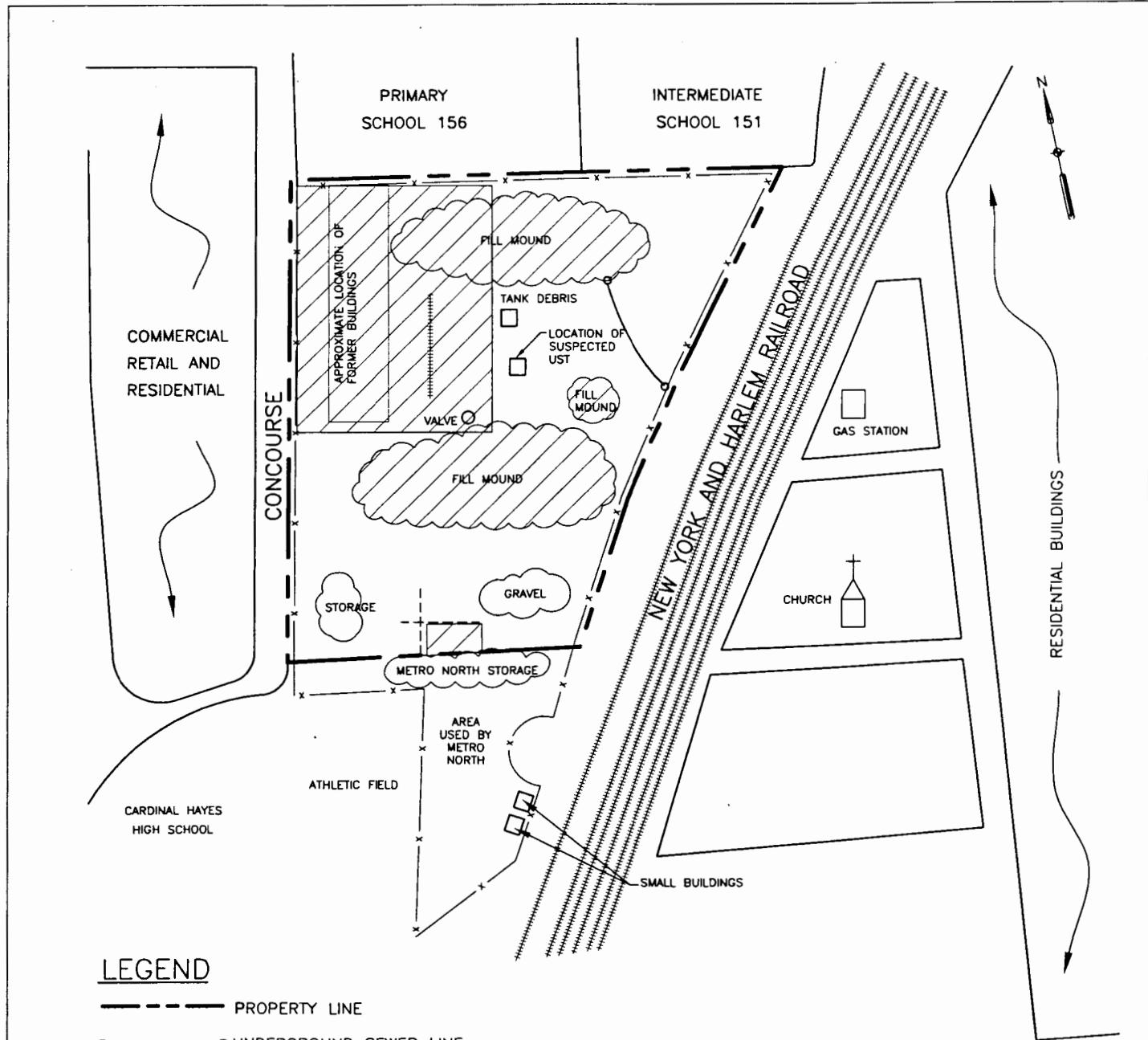
SCALE: AS SHOWN
DRAWN BY: J.L.

FIGURE
7

GROUNDWATER ANALYTICAL RESULTS TOTAL VOCs

0 100 200 400
SCALE (FEET)

CLIENT: SCHOOL CONSTRUCTION AUTHORITY


SITE: FORMER METRO NORTH PROPERTY
BLOCK 2443 LOT 78
BRONX, NY 10451

URS
WAYNE, NEW JERSEY

PROJECT #: 47-01E04046.00/00018

SCALE: AS SHOWN
DRAWN BY: J.L.

FIGURE
8

LEGEND

- PROPERTY LINE
- UNDERGROUND SEWER LINE WITH MANHOLES
- SUSPECTED LOCATION OF UNDERGROUND UTILITIES INFERRED FROM GEOPHYSICAL SURVEY
- ==== SECTION OF RAILROAD TRACK EMBEDDED IN CONCRETE
- AREA OF REMEDIATION

AREAS OF PROPOSED REMEDIATION

0 100 200 400
SCALE (FEET)

CLIENT: SCHOOL CONSTRUCTION AUTHORITY	 URS WAYNE, NEW JERSEY
SITE: FORMER METRO NORTH PROPERTY BLOCK 2443 LOT 78 BRONX, NY 10451	
PROJECT #: 47-01E04046.00/00018	SCALE: AS SHOWN DRAWN BY: J.L. FIGURE 9

PHASE II ENVIRONMENTAL SITE INVESTIGATION REPORT
FORMER METRO NORTH PROPERTY
3001 CONCOURSE VILLAGE EAST
BRONX, NEW YORK 10451

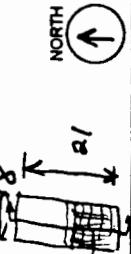
APPENDIX A
FIELD LOGS (TEST PITS, SOIL BORINGS)

**TEST PIT/TRENCH LOG
LOG OF TEST PIT TB /
URS**

SITE NAME		DATE STARTED		DATE COMPLETED		PROJECT NUMBER							
Metro North		8/2/01		8/2/01		47-01E04046-00							
LOCATION		GROUNDS		COMPLETION DEPTH (FT)		PLAN SKETCH WITH SHAPE, LxW (FT)							
EXCAVATION CONTRACTOR		Mark Larabic		9' 6" 3" (46.7')		DIMENSIONS, AND PROFILE ORIENTATION							
ADT		WATER LEVEL (FT)		INSPECTOR		NORTH							
EXCAVATION EQUIPMENT		not encountered		Alireza Ayoubian		↑							
EXCAVATION LOCATION		APPROX. DIMENSIONS (FT) LxWxD		3 x 8 x 9									
<p style="text-align: center;">HORIZONTAL SCALE: 1 inch = 1' VIEW LOOKING: N</p> <p style="text-align: center;">PROFILE DESCRIPTION</p>													
<p>0 Brown, silty c-f. sand, some f. gravel, dry (top covered with vegetation)</p> <p>1 Same as above, includes bricks, c-f gravel, cobbles</p> <p>2 include pieces of wood, garbage (plastic, etc.), more bricks</p> <p>3 same as above</p> <p>4 "</p> <p>5 "</p> <p>6 "</p> <p>7 same as above, becomes moist to dry, some cinders (black)</p> <p>8 same as above</p> <p>9 End of test pit at 9' bgs.</p> <p>10 "</p> <p>11 "</p> <p>12 "</p> <p>13 "</p> <p>14 "</p> <p>15 "</p>													
SAMPLE NUMBER		WEIGHT (OZ)		SAMPLE INTERVAL		PDI/LEZ/FIB (ppm)							

* Below natural ground

URS


TEST PIT/TRENCH LOG
LOG OF TEST PIT TP-2

SHEET 1 OF 1			
SITE NAME	DATE STARTED	DATE COMPLETED	PROJECT NUMBER
Metra North	8/2/01	8/2/01	47-0104046.00
LOCATION Bronx, NYC	GROUND ELEVATION (FT)	COMPLETION DEPTH (FT)	PLAN (SKETCH WITH SHAPE, L x W (FT), DIMENSIONS, AND PROFILE ORIENTATION)
EXCAVATION CONTRACTOR	Mark Lambie	10' bgs (4' long)*	
ADT	WATER LEVEL (FT)	INSPECTOR	
EXCAVATION EQUIPMENT	not encountered	Alireza Ayoubian	
CASE 590 Super L Backhoe	APPROX. DIMENSIONS (FT) LxWxD	"	
EXCAVATION LOCATION	11 x 7 x 10		
TP-2 (As Marked)			
HORIZONTAL SCALE: 1 Inch = 1 ft			
VIEW LOOKING: PROFILE DESCRIPTION			
0 Brown, silty c.f. sand, some c.f. gravel, a big piece of reinforced concrete 4-5' long (at depth 1' bgs), cobbles and boulder, dry, pieces of bricks 1 same as above, includes garbage, tires, etc. 2 same as above, more boulders (average diameter ~ 2-3 ft) 3 same as above, pieces of reinforced Concrete (or 2 to 3' - long) 4 same as above, fewer boulders and pieces of concrete 5 same as above, fewer boulders and pieces of concrete 6 same as above, fewer boulders and pieces of concrete 7 same as above, fewer boulders and pieces of concrete 8 same as above 9 same as above 10 End of test pit at 10' bgs.			
0/0 TR-2 - 0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15			
Sample Interval	Water Table	Depth (ft)	PLD/ELD (ppm)
			Sample Number

* below natural ground

URS

TEST PIT/TRENCH LOG
LOG OF TEST PIT TP. 3

SHEET 1 OF 1			
SITE NAME	DATE STARTED	DATE COMPLETED	PROJECT NUMBER
Metro North Bronx, NYC	8/3/01	8/3/01	47-01E04046-00
LOCATION	GROUND ELEVATION (FT)	COMPLETION DEPTH (FT)	PLAN (SKETCH WITH SHAPE, LxW (FT) DIMENSIONS, AND PROFILE ORIENTATION)
EXCAVATION CONTRACTOR	Mark Larabie N/R	12' bgs (7' bgs)*	
EXCAVATION EQUIPMENT	WATER LEVEL (FT)	INSPECTOR	
CASE 590 Super L Backhoe	Wet spots at 12' bgs.	Alireza Aghaibian	
EXCAVATION LOCATION	APPROX DIMENSIONS (FT) LxWxD		
TP-3 (As Marked)	21' X 8' X 12'		
PROFILE DESCRIPTION			
HORIZONTAL SCALE: 1 Inch = 1 ft	VIEW LOOKING:	PIID #15	Sample Number
		Depth (ft)	
-0	Brown, silty c-f SAND, some c-f. gravel, pieces of brick, garbage	-0	
-1	(metal plates, wood, rebar, steel pipe, etc.) , -cobbles and boulders, dry	-1	
-2		-2	
-3	Same as above	-3	
-4	Same as above	-4	
-5	Same as above, includes refuse (such as steel rods, pieces of steel beams, etc.)	-5	
-6	soil becomes moist to dry	-6	
-7	Same as above, more bricks	-7	
-8	Same as above, boulders (~3 ft in diameter), pieces of wood (2-3' long)	-8	
-9	encountered a big block of concrete at depth of about 9.5' (Covered 1/3 to 2/3 of the area of test pit in plan), appeared like part of a foundation footing.	-9	
-10	Same as above	-10	
-11		-11	
-12	some gray clayey SILT, bottom of test pit appeared wet at depth 12' bgs. End of TP-3 at 12' bgs.	-12	0/0 TP-3
-13		-13	
-14		-14	
-15		-15	

* below natural ground

URS
TEST PIT/TRENCH LOG
LOG OF TEST PIT TP. 4

LOG OF TEST PIT TP-4											
SHEET 1 OF 1											
SITE NAME		METRO NORTH		DATE STARTED		DATE COMPLETED		PROJECT NUMBER			
LOCATION		BRONX, NYC		8/3/01		8/3/01		47-0104046.00			
EXCAVATION CONTRACTOR		FOREMAN	Mark Larabie	GROUND ELEVATION (FT)	NR	COMPLETION DEPTH (FT)	5.5' bgs	PLAN (SKETCH WITH SHAPE, LxW (FT) DIMENSIONS, AND PROFILE ORIENTATION)			
ADT	EXCAVATION EQUIPMENT	CASE 590 Super L Backhoe		WATER LEVEL (FT)	~ 5.5' (?)	INSPECTOR	Alireza Ayoubi	NORTH			
EXCAVATION LOCATION	TP-4 (As Marked)			APPROX DIMENSIONS (FT) LxWxD	12 x 4 x 5.5			↑			
PROFILE DESCRIPTION											
HORIZONTAL SCALE: 1 inch = <u>1</u> ft		VIEW LOOKING:									
1		1									
2		2									
3		3									
4		4									
5		5									
6		6									
7		7									
8		8									
SAMPLE INTERVAL		WEIGHT TESTED		SAMPLE NUMBER		PDI/LEFT		SAMPLE NUMBER			
1		1		1		1		1			
2		2		2		2		2			
3		3		3		3		TP-4			
4		4		4		4		duplicat (TP-8)			
5		5		5		5		at depth			
6		6		6		6		3' bgs			
7		7		7		7		3' bgs			
8		8		8		8		3' bgs			
9		9		9		9		3' bgs			
10		10		10		10		3' bgs			
11		11		11		11		3' bgs			
12		12		12		12		3' bgs			
13		13		13		13		3' bgs			
14		14		14		14		3' bgs			
15		15		15		15		3' bgs			

URS

TEST PIT/TRENCH LOG
LOG OF TEST PIT TP-5

SHEET 1 OF 1					
SITE NAME	LOCATION	DATE STARTED	DATE COMPLETED	PROJECT NUMBER	
Metro North	Bronx, NYC	8/3/01	8/3/01	47-01E04046.00	
EXCAVATION CONTRACTOR	FOREMAN	GROUND ELEVATION (FT)	COMPLETION DEPTH (FT)	PLAN (SKETCH WITH SHAPE, L x W (FT) DIMENSIONS, AND PROFILE ORIENTATION)	
ADT	Mark Larabie	NR	11' bgs (~ 5' [#] ng)		
EXCAVATION EQUIPMENT	CASE 590 Super L Backhoe	WATER LEVEL (FT)	INSPECTOR		
EXCAVATION LOCATION	TP-5 (As Marked)	APPROX. DIMENSIONS (FT) L x W x D	Alireza Ayoubian		
PROFILE DESCRIPTION					
HORIZONTAL SCALE: 1 Inch = <u>1</u> ft VIEW LOOKING:					
-0	Brown, silty C-f SAND, some c-f. gravel, includes cobbles, boulders, bricks,	Sample Interval	Water Table	Sample Number	
-1	refuse (wood, metal, plastic, etc.), dry				
-2	same as above				
-3	same as above				
-4	same as above				
-5	become moist to dry at about 6' bgs, some yellowish brown silty clay sand				
-6	same as above				
-7	same as above, some grey silty SAND, some black cinders				
-8	same as above				
-9	same as above				
-10	more grey silty clay sand, becomes moist to wet				
-11	some black pieces of wood, some black soil, some cinders				
-12	End of test pit @ 11' bgs				
-13					
-14					
-15					

below natural ground

URS

TEST PIT/TRENCH LOG
LOG OF TEST PIT TP-6

SITE NAME		DATE STARTED		DATE COMPLETED		PROJECT NUMBER		SHEET 1 OF /	
LOCATION		8/6/61		8/6/61		470150404640 00018			
EXCAVATION CONTRACTOR		FOREMAN		GROUND ELEVATION (FT)		COMPLETION DEPTH (FT)		PLAN (SKETCH WITH SHAPE, LxW (FT), DIMENSIONS, AND PROFILE ORIENTATION)	
EXCAVATION EQUIPMENT		T-T ditch Contractor		Martin		8' 5" S (~4' b/s)			
EXCAVATION LOCATION		Backhoe		WATER LEVEL (FT)		INSPECTOR			
		Not excavated		E Hollister					
		APPROX DIMENSIONS (FT) LxWxD		11' X 4' X 8'					
HORIZONTAL SCALE: 1 inch = 8'		PROFILE DESCRIPTION							
VIEW LOOKING:									
-0 Vegetation, debris - trees, piping, black rubber pipe insulation		DRY							
-1 brown silty fine sand w/ gravel, debris - carpet, C&D (brick, concrete), plastic, a cross cam, gravel		DRY							
-2 SAB									
-3 SAB									
-4 SAB									
-5 Orange / tan / silty sand and gray silt clay		DAMP		Natives		- 4			
-6 SAB w/ dark gray silty clay - petro odor		DAMP				- 5			
-7 SAB									
-8 SAB									

URS

TEST PIT/TRENCH LOG
LOG OF TEST PIT TP-7

SITE NAME		LOCATION Melro North		DATE STARTED	DATE COMPLETED	PROJECT NUMBER	SHEET / OF /		
EXCAVATION CONTRACTOR		FOREMAN M. A. L.		GROUND ELEVATION (FT)	COMPLETION DEPTH (FT)	470/ED4046.00 0-0-18			
TJ Hatch Contractors		WATER LEVEL (FT)		12' bgs (3.5 bng)	PLAN (SKETCH WITH SHAPE, L x W (FT) DIMENSIONS, AND PROFILE ORIENTATION)				
EXCAVATION EQUIPMENT		INSPECTOR E. Hollister							
EXCAVATION LOCATION		APPROX. DIMENSIONS (FT) L x W x D		12 x 4 x 12					
Location: End of North mound									
HORIZONTAL SCALE: 1 inch = 1' VIEW LOOKING: N				PROFILE DESCRIPTION					
				Dry					

URS
TEST PIT/TRENCH LOG

LOG OF TEST PIT TP- 58-17

URS

TEST.PIT/TRENCH LOG

LOG OF TEST PIT TP-58-11

LOG OF TEST PIT IP-3B-11						
SITE NAME		LOCATION		DATE STARTED		DATE COMPLETED
Meho North		Hitch Contrr		8/6/01	8/6/01	8/6/01
EXCAVATION CONTRACTOR		FOREMAN		Ground Elevation (ft)	Completion Depth (ft)	Project Number
J J Hitch Contrr		Martin		NR	4	4701C04046.00 00018
EXCAVATION EQUIPMENT		Backhoe		Water Level (ft)	Inspector	PLAN (SKETCH WITH SHAPE, L x W (FT) DIMENSIONS, AND PROFILE ORIENTATION)
EXCAVATION LOCATION		Center of Southern property		APPROX. DIMENSIONS (FT) L x W x D	E Hollister	
PROFILE DESCRIPTION						
HORIZONTAL SCALE: 1 Inch = 1 ft		VIEW LOOKING:		Sample Interval	Water Table	Sample Number
				Sample Interval	Water Table	Sample Number
				Depth (ft)	PID/ FID (ppm)	
				- 0	0	
				- 1		
				- 2	SB11-1	
				- 3	©	
				- 4	1435	
				- 5		
				- 6		
				- 7		
				- 8		
				- 9		
				- 10		
				- 11		
				- 12		
				- 13		
				- 14		
				- 15		

LOG OF BORING SB-1

SHEET 1 of 1

PROJECT NAME/NUMBER	NYCSCA 47-01E04046.00 TASK 00018				DATE STARTED	8/3/01		DATE COMPLETED	8/3/01				
LOCATION	Former Metro North Property - Bronx, NY				GROUND ELEVATION (FT. MSL)	N/A		WATER DEPTH (FT BGS)	N/E				
DRILLING CONTRACTOR	ADT	FOREMAN	Andrea			COMPLETION DEPTH (FT BGS)		ROCK DEPTH (FT BGS)					
DRILLING EQUIPMENT	Geoprobe				N/A		4 ft?						
TYPE BIT	2-inch Macro Corer		SIZE AND TYPE CORE BARREL			COMPLETION METHOD <i>backfill with cuttings</i>							
CASING	N/A					N/A		SOIL SAMPLES: DIST. 1 UNDIST. 0 CORE N/A					
CASING HAMMER	N/A	WEIGHT	N/A	DROP	N/A	ENV. SAMPLES: None							
SAMPLER	2-inch Macro Corer				N/A		BORING LOCATION Southern Property Line						
SAMPLER HAMMER:	WEIGHT	DROP	N/A	N/A	N/A		INSPECTOR E. Hollister						
DESCRIPTION	Sample Interval	Depth (FT BGS)	Water Table	Samples			PID (HNU)/ FID READINGS (PPM)					REMARKS	
				Number	Recov. (ft)	Penetr. Resist. BL/6in	Time	Sample	Ambient Air	Time	Head Space		Date
0 to 2 ft	- 0 -	-	-	1	3	1350							
silty c-f sand, some f gravel wood fragments	- 1 -	-	-										
	- 2 -	-	-										
	- 3 -	-	-										
	- 4 -	-	-										Refusal E.O.B
	- 5 -	-	-										
	- 6 -	-	-										
	- 7 -	-	-										
	- 8 -	-	-										
	- 9 -	-	-										
	- 10 -	-	-										

LOG OF BORING SB-2

SHEET 1 of

PROJECT NAME/NUMBER	NYCSCA 47-01E04046.00 TASK 00018			DATE STARTED	8/02/01		DATE COMPLETED	8/02/01				
LOCATION	Former Metro North Property - Bronx, NY											
DRILLING CONTRACTOR	ADT	FOREMAN	Andrea	GROUND ELEVATION (FT. MSL)	N/D		WATER DEPTH (FT BGS)	N/E				
DRILLING EQUIPMENT	Geoprobe			COMPLETION DEPTH (FT BGS)	4 ft		ROCK DEPTH (FT BGS)	4 ft				
TYPE BIT	2-inch Macro Corer		SIZE AND TYPE CORE BARREL		COMPLETION METHOD		back fill with cuttings					
CASING	N/A				SOIL SAMPLES: DIST.		1	UNDIST.	0	CORE	0	
CASING HAMMER	N/A	WEIGHT	N/A	DROP	N/A	ENV. SAMPLES	0					
SAMPLER	2-inch Macro Corer			BORING LOCATION		Approximate center of site						
SAMPLER HAMMER:	WEIGHT	N/A	DROP	N/A	INSPECTOR	E. Hollister						
DESCRIPTION	Sample Interval	Depth (FT BGS)	Water Table	Samples			PID (HNU) / FID READINGS (PPM)				REMARKS	
				Number	Recov. (ft)	Penetr. Resist. BL/6in	Time	Sample	Ambient Air	Time		Head Space
top gravelly SILT with gravel	- 0 -	-	-									
	-	-	-									
	- 1 -	-	-									
	-	-	-									
	- 2 -	1	4									
	-	-	-									
	- 3 -	-	-									
	-	-	-									
	- 4 -	-	-									
	-	-	-									
brown silty SAND with gravel and fragments of schist.	- 5 -	-	-									
	-	-	-									
	- 6 -	-	-									
	-	-	-									
	- 7 -	-	-									
	-	-	-									
	- 8 -	-	-									
	-	-	-									
	- 9 -	-	-									
	-	-	-									
	- 10 -	-	-									

LOG OF BORING SB-3

SHEET 1 of 2

PROJECT NAME/NUMBER	NYCSCA 47-01E04046.00 TASK 00018			DATE STARTED	8/03/01		DATE COMPLETED	8/03/01			
LOCATION	Former Metro North Property - Bronx, NY										
DRILLING CONTRACTOR	ADT		FOREMAN	Andrea		GROUND ELEVATION (FT. MSL)	N/D		WATER DEPTH (FT BGS)		
DRILLING EQUIPMENT	Geoprobe						COMPLETION DEPTH (FT BGS)	12			
TYPE BIT	2-inch Macro Corer		SIZE AND TYPE CORE BARREL			COMPLETION METHOD	Backfill with cuttings				
CASING	N/A					SOIL SAMPLES: DIST.	3	UNDIST.	0		
CASING HAMMER	N/A	WEIGHT	N/A	DROP	N/A	ENV. SAMPLES:	2				
SAMPLER	2-inch Macro Corer				BORING LOCATION		northern property boundary				
SAMPLER HAMMER:	WEIGHT	N/A	DROP	N/A	INSPECTOR	E. Hollister					
DESCRIPTION	Sample Interval	Depth (FT BGS)	Water Table	Samples			PID (HNU)/ FID READINGS (PPM)				REMARKS
				Number	Recov. (ft)	Penetr. Resist. BL/6in	Time	Sample	Ambient Air	Time	
Brown silty SAND and gravel grading to f-m SAND with black cinders, slag, glass Brick to 3.5 ft	- 0 -	- -									
	- 1 -	- -		1	3.5						
	- 2 -	- -									
	- 3 -	- -									
	- 4 -	- -									
	- 5 -	- -									
	- 6 -	- -		2	3						
	- 7 -	- -									
	- 8 -	- -									
	- 9 -	- -		3	2.5						
	- 10 -	- -									

 Orange clayey
SAND

LOG OF BORING SB-3

SHEET 2 of 2

LOG OF BORING SB-4

SHEET 1 of 2

PROJECT NAME/NUMBER	NYCSCA 47-01E04046.00 TASK 00018				DATE STARTED	8/03/01			DATE COMPLETED	8/03/01		
LOCATION	Former Metro North Property - Bronx, NY											
DRILLING CONTRACTOR	ADT		FOREMAN	Andrea		GROUND ELEVATION (FT. MSL)			WATER DEPTH (FT BGS)			7
DRILLING EQUIPMENT	Geoprobe					COMPLETION DEPTH (FT BGS)			ROCK DEPTH (FT BGS)			N
TYPE BIT	2-inch Macro Corer		SIZE AND TYPE CORE BARREL			COMPLETION METHOD			Backfill with cuttings			
CASING	N/A					SOIL SAMPLES: DIST. 3 UNDIST. 0 CORE 0						
CASING HAMMER	N/A	WEIGHT	N/A	DROP	N/A	ENV. SAMPLES:	1					
SAMPLER	2-inch Macro Corer					BORING LOCATION	Northwest corner of site					
SAMPLER HAMMER	WEIGHT	N/A	DROP	N/A		INSPECTOR	E. Hollister					
DESCRIPTION	Sample Interval (FT BGS)	Water Table	Samples				PID (HNU) / FID READINGS (PPM)					REMARKS
			Number	Recov. (ft)	Penetr. BL/in	Time	Sample	Ambient Air	Time	Head Space	Date Time	
brown fine silty sand trace gravel	- 0 -											
	- 1 -											
	- 2 -		1 3.5		0910							
	- 3 -											
	- 4 -											
	- 5 -											
	- 6 -											
	- 7 -		2 2		1000							
	- 8 -											
	- 9 -		3 2		1015							
	- 10 -											

Dark brown
sandy silt and
clay grading to

dark gray
f. SAND

strong petroleum
odor at 5' bgs

strong petroleum
odor at W.T

brown fine silty sand
trace gravel

black silty sand
with gravel containing
brick, ash, cinders

LOG OF BORING SB-4

SHEET 2 of 2

SHEET 3 of

DESCRIPTION	Depth	Interval	Samples			HNU / PID READINGS (PPM)					REMARKS
			Number	Recov.	Penetr.	Time	Sample	Ambient	Time	Head	

LOG OF BORING SB - 5

SHEET 1 of 1

LOG OF BORING SB-6

SHEET 1 of

PROJECT NAME/NUMBER	NYCSCA 47-01E04046.00 TASK 00018				DATE STARTED	DATE COMPLETED					
LOCATION	Former Metro North Property - Bronx, NY				8/03/01	8/03/01					
DRILLING CONTRACTOR	ADT	FOREMAN		GROUND ELEVATION (FT. MSL)		WATER DEPTH (FT BGS)					
		Andrea		N/D		6					
DRILLING EQUIPMENT	Geoprobe				COMPLETION DEPTH (FT BGS)	ROCK DEPTH (FT BGS)					
					8	N/L					
TYPE BIT	2-inch Macro Corer		SIZE AND TYPE CORE BARREL		COMPLETION METHOD <i>buck fill with cuttings</i>						
CASING	N/A		N/A		SOIL SAMPLES: DIST. 2 UNDIST. 0 CORE 0						
CASING HAMMER	N/A	WEIGHT	N/A	DROP	N/A	ENV. SAMPLES	1				
SAMPLER	2-inch Macro Corer				BORING LOCATION <i>northwest section of site</i>						
SAMPLER HAMMER	WEIGHT	N/A	DROP	N/A	INSPECTOR	E. Hollister					
DESCRIPTION	Sample Interval (FT BGS)	Depth (FT BGS)	Water Table	Samples			PID (HNU)/ FID READINGS (PPM)				REMARKS
				Number	Recov. (ft)	Penetr. Resist. BL/in	Time	Sample	Ambient Air	Time	
Brown silty SAND with gravel containing brick, ash, cinders, coal, wood (possible railroad ties)	- 0 -	-	-								
	- 1 -	-	-								
	- 2 -	-	1	2		1120					
	- 3 -	-	-	-							
	- 4 -	-	-	-							
	- 5 -	-	-	-							
	- 6 -	-	2	3		1130					
Gray brown CLAY with silt, sand and gravel	- 7 -	-	-	-							
	- 8 -	-	-	-							
	- 9 -	-	-	-							
	- 10 -	-	-	-							

LOG OF BORING SA-7

SHEET 1 of 1

LOG OF BORING PZ-1

SHEET 1 of 1

PROJECT NAME/NUMBER		NYCSCA 47-01E04046.00 TASK 00018				DATE STARTED		DATE COMPLETED			
LOCATION		Former Metro North Property - Bronx, NY				8/02/01		8/02/01			
DRILLING CONTRACTOR		FOREMAN		GROUND ELEVATION (FT. MSL)				WATER DEPTH (FT BGS)			
ADT		Andrea		N/A				11			
DRILLING EQUIPMENT		Geoprobe				COMPLETION DEPTH (FT BGS)		ROCK DEPTH (FT BGS)			
						15.7		N/E			
TYPE BIT		2-inch Macro Corer		SIZE AND TYPE CORE BARREL				COMPLETION METHOD			
CASING		N/A						2-inch 0.125 PVC Picture tube			
CASING HAMMER		N/A		SOIL SAMPLES. DIST.		UNDIST.	CORE				
SAMPLER		N/A		DROP		N/A	0				
SAMPLER HAMMER		N/A		ENV. SAMPLES		3					
				BORING LOCATION		Eastern Property Boundary					
				INSPECTOR		E. Hollister					
DESCRIPTION	Sample Interval (FT BGS)	Depth (FT BGS)	Water Table	Samples			PID (HNU)/ FID READINGS (PPM)				REMARKS
				Number	Recov. (ft)	Penetr. Resist. BL/6in	Time	Sample	Ambient Air	Time	
Brown silty sand	- 0 -	-	-					0	0		
Brown - black f sand with ash, cinders brick	- 1 -	-	-	1	4	0800		0	.9		
	- 2 -	-	-					0	2		
	- 3 -	-	-					0	1		
Brown f sandy silt, trace clay	- 4 -	-	-	-	-	-	-	-	-		
	- 5 -	-	-					0	.5		
Brown silty f sand, fr gravel and clay (ash & cinders)	- 6 -	-	-	2	4	0805		0	1		
	- 7 -	-	-					0	1		
	- 8 -	-	-					0	1.4		
orange f sandy silt with ash, cinders	- 9 -	-	-	3	3.6	910		0	1		
	- 10 -	-	-					0	1		

LOG OF BORING P 2-1

SHEET 2 of 2

LOG OF BORING P2-2

SHEET 1 of 1

PROJECT NAME/NUMBER	NYCSCA 47-01E04046.00 TASK 00018			DATE STARTED	8/02/01		DATE COMPLETED	8/02/01			
LOCATION	Former Metro North Property - Bronx, NY										
DRILLING CONTRACTOR	ADT		FOREMAN	Andrea			GROUND ELEVATION (FT. MSL)	N/D			
DRILLING EQUIPMENT	Geoprobe			COMPLETION DEPTH (FT BGS)			WATER DEPTH (FT BGS)	6			
TYPE BIT	2-inch Macro Corer		SIZE AND TYPE CORE BARREL			COMPLETION METHOD	2-inch 60 PUL Picnometer				
CASING	N/A		N/A			SOIL SAMPLES: DIST.	3	UNDIST.	CORE		
CASING HAMMER	N/A	WEIGHT	N/A	DROP	N/A	ENV. SAMPLES:	2				
SAMPLER	2-inch Macro Corer			BORING LOCATION			Northwestern corner of Site				
SAMPLER HAMMER:	WEIGHT	N/A	DROP	N/A	INSPECTOR	E. Hollister					
DESCRIPTION	Sample Interval (FT BGS)	Depth (FT BGS)	Water Table	Samples		PID (HNU) / FID READINGS (PPM)					REMARKS
				Number	Recov. (ft)	Penetr. Resist. BL/6in	Time	Sample	Ambient Air	Time	
Brown silty SAND with gravel	- 0 -	-	-								
Brick, concrete rubble	- 1 -	-	1 3.5	1040			0	30			
	- 2 -	-									
	- 3 -	-									
Brown silty SAND	- 4 -	-									
with brick ash, cinders concrete	- 5 -	-					0	110			
	- 6 -	2	4	1047			0	60			
	- 7 -	-					0	28			
	- 8 -	-									
	- 9 -	3	4	1100			0	47			
	- 10 -	-									

LOG OF BORING P2-2

SHEET 2 of 2

LOG OF BORING P2-3

SHEET 1 of 2

PROJECT NAME/NUMBER LOCATION	NYCSCA 47-01E04046.00 TASK 00018 Former Metro North Property - Bronx, NY				DATE STARTED 8/02/01	DATE COMPLETED 8/02/01				
DRILLING CONTRACTOR DRILLING EQUIPMENT	ADT Geoprobe				GROUND ELEVATION (FT. MSL) N/D	WATER DEPTH (FT BGS) 7				
TYPE BIT CASING	2-inch Macro Corer N/A				COMPLETION DEPTH (FT BGS) 12	ROCK DEPTH (FT BGS) N/E				
CASING HAMMER SAMPLER	N/A 2-inch Macro Corer				ENV. SAMPLES: 2					
SAMPLER HAMMER:	WEIGHT N/A	DROP N/A	BORING LOCATION Southwest corner of 5, 4c							
				INSPECTOR E. Hollister						
DESCRIPTION	Sample Interval Depth (FT BGS)	Water Table	Samples			PID (HNU) / FID READINGS (PPM)				REMARKS
			Number	Recov. (ft)	Penetr. Resist. BL/in	Time	Sample	Ambient Air	Time	
(F.11)	- 0 -									
Brown silty sand gravel, brick fragments	- 1 -		1	1		1300		0	14	limited recovery brick fragment in tip
	- 2 -									
	- 3 -									
	- 4 -									
Black silty sand with gravel	- 5 -							0	4	
Brick, ash, cinders slag	- 6 -		2	3		1305		0	2	
	- 7 -									
Orange-brown silty fine sand trace gravel	- 8 -							0	2	
	- 9 -		3	4		1310		0	1	
	- 10 -							0	2	

LOG OF BORING P2-2

SHEET 2 of 2

PHASE II ENVIRONMENTAL SITE INVESTIGATION REPORT
FORMER METRO NORTH PROPERTY
3001 CONCOURSE VILLAGE EAST
BRONX, NEW YORK 10451

APPENDIX B

**ENVIRONMENTAL SAMPLES – SUMMARY OF DETECTED
COMPOUNDS TABLES (EXCEL SPREADSHEETS)**

Table B-1
Test Pit Soil Sampling Analytical Data
Phase II ESI
Former Metro North Property
Bronx, New York

Client Sample ID Lab Sample ID	NYSDEC TAGM	TP-1	TP-2	TP-3	TP-4			
						Sample Collection Date	08/02/2001	08/03/2001
Sample Receipt Date	Recommended Soil Cleanup Objectives	08/02/2001	08/03/2001	08/03/2001	08/03/2001	12 - 13 ft	3 - 4 ft	3 - 4 ft
Sample Depth (bgs)	Sample Matrix	SOIL µg/kg	SOIL µg/Kg	SOIL µg/Kg	SOIL µg/Kg	SOIL µg/kg	SOIL µg/Kg	SOIL µg/Kg
Sample Units		MDL	CONC	Q	MDL	CONC	Q	MDL
ORGANIC COMPOUNDS								
Volatile Organic Compounds								
Chloromethane	NC	3.5	ND	3.1	ND	3.3	ND	3.3
Vinyl Chloride	200	2.3	ND	2	ND	2.2	ND	2.1
Bromomethane	NC	2.4	ND	2.1	ND	2.3	ND	2.2
Chloroethane	1900	2.8	ND	2.5	ND	2.7	ND	2.6
1,1-Dichloroethene	400	2	ND	1.8	ND	1.9	ND	1.9
Acetone	200	7.1	8.3	B	6.4	8.6	B	6.7
Carbon Disulfide	2700	1.2	ND	1.1	ND	1.2	ND	1.2
Methylene Chloride	100	1.1	3.2	1.3	ND	1.1	8	B
trans-1,2-Dichloroethene	300	2.1	ND	1.9	ND	2	ND	2
1,1-Dichloroethane	200	1.2	ND	1.1	ND	1.2	ND	1.2
2-Butanone	300	6.9	ND	6.2	ND	6.6	ND	6.5
cis-1,2-Dichloroethene	NC	2.2	ND	2	ND	2.1	ND	2.1
Chloroform	300	1.2	ND	1.1	ND	1.2	ND	1.2
1,1,1-Trichloroethane	800	1.8	ND	1.6	ND	1.7	ND	1.7
Carbon Tetrachloride	600	1.3	ND	1.1	ND	1.2	ND	1.2
Benzene	60	1.2	ND	1.1	ND	1.2	ND	1.2
1,2-Dichloroethane	100	3	ND	2.7	ND	2.9	ND	2.8
Trichloroethene	700	3.4	ND	3.1	ND	3.3	ND	3.2
1,2-Dichloropropane	NC	4.4	ND	4	ND	4.2	ND	4.2
Bromodichloromethane	NC	1.2	ND	1.1	ND	1.2	ND	1.2
4-Methyl-2-Pentanone	1000	3.7	ND	3.3	ND	3.6	ND	3.5
Toluene	1500	1.5	ND	1.4	ND	1.5	ND	1.4
t-1,3-Dichloropropene	NC	2	ND	1.8	ND	1.9	ND	1.9
cis-1,3-Dichloropropene	NC	1.2	ND	1.1	ND	1.2	ND	1.2
1,1,2-Trichloroethane	NC	1.3	ND	1.2	ND	1.3	ND	1.2
2-Hexanone	NC	15	ND	13	ND	14	ND	14
Dibromochloromethane	NC	1.2	ND	1.1	ND	1.2	ND	1.2
Tetrachloroethene	1400	2	ND	1.8	ND	1.9	ND	1.9
Chlorobenzene	1700	1.2	ND	1.1	ND	1.2	ND	1.2
Ethyl Benzene	5500	1.8	ND	1.6	ND	1.7	ND	1.7
m/p-Xylenes	1200	1.9	ND	1.7	ND	1.8	ND	1.8
o-Xylene	1200	2	ND	1.8	ND	1.9	ND	1.9
Styrene	NC	1.2	ND	1.1	ND	1.2	ND	1.2
Bromoform	NC	1.2	ND	1.1	ND	1.2	ND	1.2
1,1,2,2-Tetrachloroethane	600	2.7	ND	2.5	ND	2.6	ND	2.6
Semi-Volatile Organic Compounds								
Phenol	30 or MDL	41	ND	37	ND	39	ND	39
bis(2-Chloroethyl)ether	NC	49	ND	44	ND	47	ND	47
2-Chlorophenol	800	45	ND	40	ND	43	ND	43
1,2-Dichlorobenzene	NC	41	ND	37	ND	39	ND	39
1,3-Dichlorobenzene	NC	49	ND	44	ND	47	ND	47
1,4-Dichlorobenzene	NC	41	ND	37	ND	39	ND	39
2-Methylphenol	100 or MDL	41	ND	37	ND	39	ND	39
2,2'-oxybis(1-Chloropropane)	NC	41	ND	37	ND	39	ND	39
3+4-Methylphenols	NC	74	ND	66	ND	70	ND	70
n-Nitroso-di-n-propylamine	NC	41	ND	37	ND	39	ND	39
Hexachloroethane	NC	45	ND	40	ND	43	ND	43
Nitrobenzene	200 or MDL	41	ND	37	ND	39	ND	39
Isophorone	4400	41	ND	37	ND	39	ND	39
2-Nitrophenol	330 or MDL	45	ND	40	ND	43	ND	43
2,4-Dimethylphenol	NC	95	ND	84	ND	89	ND	89
bis(2-Chloroethoxy)methane	NC	41	ND	37	ND	39	ND	39
2,4-Dichlorophenol	400	53	ND	48	ND	50	ND	50
1,2,4-Trichlorobenzene	NC	49	ND	44	ND	47	ND	47
Naphthalene	13000	45	490	44	160	47	97	47
4-Chloroaniline	220 or MDL	49	ND	44	ND	47	ND	47

Table B-1
Test Pit Soil Sampling Analytical Data
Phase II ESI
Former Metro North Property
Bronx, New York

Client Sample ID Lab Sample ID	NYSDEC TAGM	TP-1	TP-2	TP-3	TP-4		
						08/02/2001	08/03/2001
Sample Collection Date	Recommended Soil Cleanup Objectives	8 ft	8 ft	12 - 13 ft	3 - 4 ft		
Sample Receipt Date	SOIL µg/kg	SOIL µg/Kg	SOIL µg/Kg	SOIL µg/Kg	SOIL µg/Kg		
Sample Depth (bgs)	Units	MDL	CONC	Q	MDL	CONC	Q
Hexachlorobutadiene	NC	62	ND	55	ND	58	ND
4-Chloro-3-methylphenol	240 or MDL	45	ND	40	ND	43	ND
2-Methylnaphthalene	36400	45	200	44	75	47	43
Hexachlorocyclopentadiene	NC	160	ND	140	ND	150	ND
2,4,6-Trichlorophenol	NC	41	ND	37	ND	39	ND
2,4,5-Trichlorophenol	1000	41	ND	37	ND	39	ND
2-Chloronaphthalene	NC	49	ND	44	ND	47	ND
2-Nitroaniline	430 or MDL	41	ND	37	ND	39	ND
Dimethylphthalate	2000	41	ND	37	ND	39	ND
Acenaphthylene	41000	45	1200	44	260	47	400
2,6-Dinitrotoluene	1000	41	ND	37	ND	39	ND
3-Nitroaniline	500 or MDL	49	ND	44	ND	47	ND
Acenaphthene	50,000***	45	470	44	180	47	55
2,4-Dinitrophenol	200 or MDL	82	ND	73	ND	78	ND
4-Nitrophenol	100 or MDL	45	ND	40	ND	43	ND
Dibenzofuran	6200	37	500	36	160	39	100
2,4-Dinitrotoluene	NC	45	ND	40	ND	43	ND
Diethylphthalate	7100	41	ND	37	ND	39	ND
4-Chlorophenyl-phenylether	NC	49	ND	44	ND	47	ND
Fluorene	50,000***	41	860	40	220	44	110
4-Nitroaniline	NC	99	ND	88	ND	93	ND
4,6-Dinitro-2-methylphenol	NC	49	ND	44	ND	47	ND
n-Nitrosodiphenylamine	NC	82	ND	73	ND	78	ND
4-Bromophenyl-phenylether	NC	53	ND	48	ND	50	ND
Hexachlorobenzene	410	45	ND	40	ND	43	ND
Pentachlorophenol	1,000 or MDL	78	ND	70	ND	74	ND
Phenanthrene	50,000***	185	7400	D	36	1600	38
Anthracene	50,000***	48	1800		48	540	50
Carbazole	NC	37	700		36	230	38
Di-n-butylphthalate	8100	49	ND	44	ND	46	58
Fluoranthene	50,000***	185	9400	D	36	2300	38
Pyrene	50,000***	185	11000	D	36	2700	38
Butylbenzylphthalate	50,000***	41	ND	37	ND	38	ND
3,3'-Dichlorobenzidine	NC	41	ND	37	ND	39	ND
Benzo(a)anthracene	224 or MDL	185	4800	D	38	1200	38
Chrysene	400	295	5100	D	38	1400	38
Bis(2-Ethylhexyl)phthalate	50,000**	37	2000		60	180	62
Di-n-octyl phthalate	50,000**	62	ND	55	ND	58	ND
Benzo(b)fluoranthene	1100	185	4100	D	36	810	38
Benzo(k)fluoranthene	1100	98	3100		100	1900	101
Benzo(a)pyrene	61 or MDL	280	4500	D	56	1200	58
Indeno(1,2,3-cd)pyrene	3200	60	880		60	160	62
Dibenzo(a,h)anthracene	14 or MDL	56	260		56	56	46
Benzo(g,h,i)perylene	50,000***	48	1800		48	370	50
Polychlorinated Biphenyls (PCBs)							
AROCLO 1016	1,000/10,000	21	ND	18	ND	19	ND
AROCLO 1221	1,000/10,000	21	ND	18	ND	19	ND
AROCLO 1232	1,000/10,000	21	ND	18	ND	19	ND
AROCLO 1242	1,000/10,000	21	ND	18	ND	19	ND
AROCLO 1248	1,000/10,000	21	ND	18	ND	19	ND
AROCLO 1254	1,000/10,000	21	ND	18	ND	19	ND
AROCLO 1260	1,000/10,000	21	J	18	19	19	58
Total PCBs						19	9

Table B-1
Test Pit Soil Sampling Analytical Data
Phase II ESI
Former Metro North Property
Bronx, New York

Client Sample ID Lab Sample ID	NYSDEC TAGM	TP-1	TP-2	TP-3	TP-4							
Sample Collection Date	N5416-24DL	N5435-12	N5435-01	N5435-03DL								
Sample Receipt Date	08/02/2001	08/03/2001	08/03/2001	08/03/2001								
Sample Depth (bgs)	8 ft	8 ft	12 - 13 ft	3 - 4 ft								
Sample Matrix	SOIL	SOIL	SOIL	SOIL								
Units	µg/kg	µg/Kg	µg/Kg	µg/Kg								
	MDL	CONC	Q	MDL	CONC	Q	MDL	CONC	Q	MDL	CONC	Q
Pesticides and Herbicides												
alpha-BHC	110	2.1	ND	1.8	ND	1.9	ND	1.9	ND			
gamma-BHC (Lindane)	60	2.1	ND	1.8	ND	1.9	ND	1.9	ND			
Heptachlor	100	2.1	ND	1.8	ND	1.9	ND	1.9	ND			
Aldrin	41	2.1	ND	1.8	ND	1.9	ND	1.9	ND			
beta-BHC	200	2.1	ND	1.8	ND	1.9	ND	1.9	ND			
delta-BHC	300	2.1	ND	1.8	ND	1.9	ND	1.9	ND			
Heptachlor epoxide	20	2.1	ND	1.8	ND	1.9	ND	1.9	ND			
Endosulfan I	900	2.1	ND	1.8	ND	1.9	ND	1.9	ND			
gamma-Chlordane	540	2.1	ND	1.8	ND	1.9	ND	1.9	ND			
alpha-Chlordane	NC	2.1	ND	1.8	ND	1.9	ND	1.9	ND			
4,4'-DDE	2100	2.1	ND	1.8	ND	1.9	ND	1.9	ND			
Dieldrin	44	2.1	ND	1.8	ND	1.9	ND	1.9	ND			
Endrin	100	2.1	ND	1.8	ND	1.9	ND	1.9	ND			
Endosulfan II	900	2.1	ND	1.8	ND	1.9	ND	1.9	ND			
4,4'-DDD	2900	13	ND	1.8	ND	1.9	ND	1.9	ND			
4,4'-DDT	2100	13	ND	1.8	2.7	1.9	27	1.9	ND			
Endrin aldehyde	NC	2.1	ND	1.8	ND	1.9	ND	1.9	ND			
Endosulfan Sulfate	1000	2.1	ND	1.8	ND	1.9	ND	1.9	ND			
Methoxychlor	***	2.1	ND	1.8	ND	1.9	ND	1.9	ND			
Endrin ketone	NC	2.1	ND	1.8	ND	1.9	ND	1.9	ND			
Toxaphene	NC	21	ND	18	ND	19	ND	19	ND			
2,4-D	500	4.1	ND	3.7	ND	3.9	ND	3.8	ND			
2,4,5-TP(Silvex)	700	4.1	ND	3.7	ND	3.9	ND	3.8	ND			
2,45-T	1,900	4.1	ND	3.7	ND	3.9	ND	3.8	ND			

NOTES:

bold Analyte exceedance of RSCO value

MDL Method Detection Limit

CONC Concentration

Q Qualifier

NA Not Analyzed

ND Not Detected

J Estimated value

B Analyte found in blank as well as the sample

NC No Criteria

D Sample diluted for analysis

*** As per TAGM #4046, Total VOCs < 10 ppm., Total Semi-VOCs < 500 ppm. Individual Semi-VOCs < 50 ppm. Total pesticides < 10 ppm.

**** Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4-61 ppm. Average background levels in metropolitan or suburban areas or near highways are much higher and typically range from 200-500 ppm.

Table B-1
Test Pit Soil Sampling Analytical Data
Phase II ESI
Former Metro North Property
Bronx, New York

Client Sample ID Lab Sample ID	NYSDEC TAGM	TP-8	TP-5	TP-6	TP-7		
						Sample Collection Date	08/03/2001
Sample Receipt Date	Recommended Soil Cleanup	Objectives	Objectives	Objectives	Objectives	08/03/2001	08/06/2001
Sample Depth (bgs)	SOIL	3 - 4 ft	9 - 10 ft	5.5 - 6.5 ft	7 - 8 ft		
Sample Matrix Units	µg/kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg		
		DUP of TP-4					
		MDL	CONC	Q	MDL	CONC	Q
ORGANIC COMPOUNDS							
Volatile Organic Compounds							
Chloromethane	NC	3.3	ND	3.7	ND	3	ND
Vinyl Chloride	200	2.1	ND	2.4	ND	2	ND
Bromomethane	NC	2.2	ND	2.5	ND	2.1	ND
Chloroethane	1900	2.6	ND	2.9	ND	2.4	ND
1,1-Dichloroethene	400	1.9	ND	2.1	ND	1.7	ND
Acetone	200	6.7	ND	7.5	6.3	JB	5.8
Carbon Disulfide	2700	1.2	ND	1.3	ND	1.1	ND
Methylene Chloride	100	1.3	ND	1.1	7.4	B	1.1
trans-1,2-Dichloroethene	300	2	ND	2.2	ND	1.8	ND
1,1-Dichloroethane	200	1.2	ND	1.3	ND	1.1	ND
2-Butanone	300	6.5	ND	7.3	ND	6	ND
cis-1,2-Dichloroethene	NC	2.1	ND	2.4	ND	2	ND
Chloroform	300	1.2	ND	1.3	ND	1.1	ND
1,1,1-Trichloroethane	800	1.7	ND	1.9	ND	1.6	ND
Carbon Tetrachloride	600	1.2	ND	1.3	ND	1.1	ND
Benzene	60	1.2	ND	1.3	ND	1.1	ND
1,2-Dichloroethane	100	2.8	ND	3.2	ND	2.6	ND
Trichloroethene	700	3.2	ND	3.6	ND	3	ND
1,2-Dichloropropane	NC	4.2	ND	4.7	ND	3.9	ND
Bromodichloromethane	NC	1.2	ND	1.3	ND	1.1	ND
4-Methyl-2-Pentanone	1000	3.5	ND	3.9	ND	3.3	ND
Toluene	1500	1.4	ND	1.6	ND	1.3	ND
t-1,3-Dichloropropene	NC	1.9	ND	2.2	ND	1.8	ND
cis-1,3-Dichloropropene	NC	1.2	ND	1.3	ND	1.1	ND
1,1,2-Trichloroethane	NC	1.2	ND	1.4	ND	1.1	ND
2-Hexanone	NC	14	ND	16	ND	13	ND
Dibromochloromethane	NC	1.2	ND	1.3	ND	1.1	ND
Tetrachloroethene	1400	1.9	ND	2.1	ND	1.7	ND
Chlorobenzene	1700	1.2	ND	1.3	ND	1.1	ND
Ethyl Benzene	5500	1.7	ND	1.9	ND	1.6	ND
m/p-Xylenes	1200	1.8	ND	2	ND	1.6	ND
o-Xylene	1200	1.9	ND	2.1	ND	1.8	ND
Styrene	NC	1.2	ND	1.3	ND	1.1	ND
Bromoform	NC	1.2	ND	1.3	ND	1.1	ND
1,1,2,2-Tetrachloroethane	600	2.6	ND	2.9	ND	2.4	ND
Semi-Volatile Organic Compounds							
Phenol	30 or MDL	38	ND	43	ND	35	ND
bis(2-Chloroethyl)ether	NC	46	ND	52	ND	43	ND
2-Chlorophenol	800	42	ND	48	ND	39	ND
1,2-Dichlorobenzene	NC	38	ND	43	ND	35	ND
1,3-Dichlorobenzene	NC	46	ND	52	ND	43	ND
1,4-Dichlorobenzene	NC	38	ND	43	ND	35	ND
2-Methylphenol	100 or MDL	38	ND	43	ND	35	ND
2,2'-oxybis(1-Chloropropane)	NC	38	ND	43	ND	35	ND
3+4-Methylphenols	NC	69	ND	78	ND	64	ND
n-Nitroso-di-n-propylamine	NC	38	ND	43	ND	35	ND
Hexachloroethane	NC	42	ND	48	ND	39	ND
Nitrobenzene	200 or MDL	38	ND	43	ND	35	ND
Isophorone	4400	38	ND	43	ND	35	ND
2-Nitrophenol	330 or MDL	42	ND	48	ND	39	ND
2,4-Dimethylphenol	NC	88	ND	100	ND	82	ND
bis(2-Chloroethoxy)methane	NC	38	ND	43	ND	35	ND
2,4-Dichlorophenol	400	50	ND	56	ND	46	ND
1,2,4-Trichlorobenzene	NC	46	ND	52	ND	43	ND
Naphthalene	13000	46	390	52	ND	42	110
4-Chloroaniline	220 or MDL	46	ND	52	ND	43	ND

Table B-1
Test Pit Soil Sampling Analytical Data
Phase II ESI
Former Metro North Property
Bronx, New York

Client Sample ID Lab Sample ID	NYSDEC TAGM	TP-8	TP-5	TP-6	TP-7		
						Sample Collection Date	08/03/2001
Sample Receipt Date	Recommended Soil Cleanup	08/03/2001	08/03/2001	08/07/2001	08/07/2001		
Sample Depth (bgs)	Objectives	3 - 4 ft	9 - 10 ft	5.5 - 6.5 ft	7 - 8 ft		
Sample Matrix Units	SOIL µg/kg	SOIL µg/Kg	SOIL µg/Kg	SOIL µg/Kg	SOIL µg/Kg		
	DUP of TP-4	MDL	CONC	Q	MDL	CONC	Q
		MDL	CONC	Q	MDL	CONC	Q
Hexachlorobutadiene	NC	57	ND	65	ND	53	ND
4-Chloro-3-methylphenol	240 or MDL	42	ND	48	ND	39	ND
2-Methylnaphthalene	36400	46	140	52	ND	43	ND
Hexachlorocyclopentadiene	NC	150	ND	160	ND	130	ND
2,4,6-Trichlorophenol	NC	38	ND	43	ND	35	ND
2,4,5-Trichlorophenol	1000	38	ND	43	ND	35	ND
2-Chloronaphthalene	NC	46	ND	52	ND	43	ND
2-Nitroaniline	430 or MDL	38	ND	43	ND	35	ND
Dimethylphthalate	2000	38	ND	43	ND	35	ND
Acenaphthylene	41000	46	390	52	ND	43	ND
2,6-Dinitrotoluene	1000	38	ND	43	ND	35	ND
3-Nitroaniline	500 or MDL	46	ND	52	ND	43	ND
Acenaphthene	50,000***	46	250	52	ND	42	86
2,4-Dinitrophenol	200 or MDL	77	ND	87	ND	71	ND
4-Nitrophenol	100 or MDL	42	ND	48	ND	39	ND
Dibenzofuran	6200	38	220	43	ND	35	45
2,4-Dinitrotoluene	NC	42	ND	48	ND	39	ND
Diethylphthalate	7100	38	ND	43	ND	35	ND
4-Chlorophenyl-phenylether	NC	46	ND	52	ND	43	ND
Fluorene	50,000***	43	340	48	ND	39	66
4-Nitroaniline	NC	92	ND	100	ND	85	ND
4,6-Dinitro-2-methylphenol	NC	46	ND	52	ND	43	ND
n-Nitrosodiphenylamine	NC	77	ND	87	ND	71	ND
4-Bromophenyl-phenylether	NC	50	ND	56	ND	46	ND
Hexachlorobenzene	410	42	ND	48	ND	39	ND
Pentachlorophenol	1,000 or MDL	73	ND	82	ND	67	ND
Phenanthrene	50,000***	37	1600	43	54	35	400
Anthracene	50,000***	49	570	56	ND	45	100
Carbazole	NC	37	150	43	ND	35	43
Di-n-butylphthalate	8100	46	ND	52	54	43	ND
Fluoranthene	50,000***	37	2200	43	82	35	370
Pyrene	50,000***	37	2900	43	76	35	310
Butylbenzylphthalate	50,000***	38	ND	43	ND	35	ND
3,3'-Dichlorobenzidine	NC	38	ND	43	ND	35	ND
Benzo(a)anthracene	224 or MDL	37	1400	43	45	35	150
Chrysene	400	37	1400	69	56	56	190
Bis(2-Ethylhexyl)phthalate	50,000***	61	160	43	ND	35	ND
Di-n-octyl phthalate	50,000***	57	ND	65	ND	53	ND
Benzo(b)fluoranthene	1100	37	940	43	ND	35	110
Benzo(k)fluoranthene	1100	100	1800	110	ND	92	110
Benzo(a)pyrene	61 or MDL	57	1600	65	ND	53	120
Indeno(1,2,3-cd)pyrene	3200	61	260	69	ND	56	59
Dibenzo(a,h)anthracene	14 or MDL	57	66	65	ND	53	ND
Benzo(g,h,i)perylene	50,000***	49	540	56	ND	43	65
Polychlorinated Biphenyls (PCBs)							
AROCLOR 1016	1,000/10,000	19	ND	22	ND	18	ND
AROCLOR 1221	1,000/10,000	19	ND	22	ND	18	ND
AROCLOR 1232	1,000/10,000	19	ND	22	ND	18	ND
AROCLOR 1242	1,000/10,000	19	ND	22	ND	18	ND
AROCLOR 1248	1,000/10,000	19	ND	22	ND	18	ND
AROCLOR 1254	1,000/10,000	19	ND	22	ND	18	ND
AROCLOR 1260	1,000/10,000	19	11	J	22	ND	18
Total PCBs							

Table B-1
Test Pit Soil Sampling Analytical Data
Phase II ESI
Former Metro North Property
Bronx, New York

Client Sample ID Lab Sample ID	NYSDEC TAGM	TP-8 N5435-04 08/03/2001	TP-5 N5435-02 08/03/2001	TP-6 N5458-01 08/06/2001	TP-7 N5458-02 08/06/2001	DUP of TP-4											
						Sample Collection Date 08/03/2001	Sample Receipt Date 08/03/2001	Sample Depth (bgs) 3 - 4 ft	Sample Matrix SOIL µg/kg	MDL	CONC	Q	MDL	CONC	Q	MDL	CONC
Pesticides and Herbicides																	
alpha-BHC	110	1.9	ND	2.2	ND	1.8	ND	1.9	ND								
gamma-BHC (Lindane)	60	1.9	ND	2.2	ND	1.8	ND	1.9	ND								
Heptachlor	100	1.9	ND	2.2	ND	1.8	ND	1.9	ND								
Aldrin	41	1.9	ND	2.2	ND	1.8	ND	1.9	ND								
beta-BHC	200	1.9	ND	2.2	ND	1.8	ND	1.9	ND								
delta-BHC	300	1.9	ND	2.2	ND	1.8	ND	1.9	ND								
Heptachlor epoxide	20	1.9	ND	2.2	ND	1.8	ND	1.9	ND								
Endosulfan I	900	1.9	ND	2.2	ND	1.8	ND	1.9	ND								
gamma-Chlordane	540	1.9	ND	2.2	ND	1.8	ND	1.9	ND								
alpha-Chlordane	NC	1.9	ND	2.2	ND	1.8	ND	1.9	ND								
4,4'-DDE	2100	1.9	ND	2.2	ND	1.8	ND	1.9	ND								
Dieldrin	44	1.9	ND	2.2	ND	1.8	ND	1.9	ND								
Endrin	100	1.9	ND	2.2	ND	1.8	ND	1.9	ND								
Endosulfan II	900	1.9	ND	2.2	ND	1.8	ND	1.9	ND								
4,4'-DDD	2900	1.9	4.8	2.2	ND	1.8	ND	1.9	ND								
4,4'-DDT	2100	1.9	ND	2.2	ND	1.8	ND	1.9	ND								
Endrin aldehyde	NC	1.9	ND	2.2	ND	1.8	ND	1.9	ND								
Endosulfan Sulfate	1000	1.9	ND	2.2	ND	1.8	ND	1.9	ND								
Methoxychlor	***	1.9	ND	2.2	ND	1.8	ND	1.9	ND								
Endrin ketone	NC	1.9	ND	2.2	ND	1.8	ND	1.9	ND								
Toxaphene	NC	19	ND	22	ND	18	ND	19	ND								
2,4-D	500	3.8	ND	4.3	ND	3.5	ND	3.9	ND								
2,4,5-TP(Silvex)	700	3.8	ND	4.3	ND	3.5	ND	3.9	ND								
2,45-T	1,900	3.8	ND	4.3	ND	3.5	ND	3.9	ND								

NOTES:

- bold** Analyte exceedance of RSCO value
- MDL Method Detection Limit
- CONC Concentration
- Q Qualifier
- NA Not Analyzed
- ND Not Detected
- J Estimated value
- B Analyte found in blank as well as the sample
- NC No Criteria
- D Sample diluted for analysis
- *** As per TAGM #4046, Total VOCs < 10 ppm., Total Semi-VOCs < 500 ppm. Individual Semi-VOCs < 50 ppm. Total pesticides < 10 ppm.
- **** Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4-61 ppm. Average background levels in metropolitan or suburban areas or near highways are much higher and typically range from 200-500 ppm.

Table B-1
Test Pit Soil Sampling Analytical Data
Phase II ESI
Former Metro North Property
Bronx, New York

Client Sample ID Lab Sample ID Sample Collection Date Sample Receipt Date Sample Depth (bgs) Sample Matrix Units	NYSDEC TAGM Recommended Soil Cleanup Objectives SOIL µg/kg	SB11-1 N5458-06 08/06/2001 08/07/2001 2 - 3 ft	SB17-1 N5458-03 08/06/2001 08/07/2001 2 - 3 ft	SB17-2 N5458-04 08/06/2001 08/07/2001 6 - 7 ft	FB2 N5416-23 08/02/2001 08/02/2001 NA WATER µg/L								
		MDL	CONC	Q	MDL	CONC	Q	MDL	CONC	Q	MDL	CONC	Q
ORGANIC COMPOUNDS													
Volatile Organic Compounds													
Chloromethane	NC	3.4	ND	3	ND	3.3	ND	2.8	ND				
Vinyl Chloride	200	2.2	ND	1.9	ND	2.2	ND	1.8	ND				
Bromomethane	NC	2.3	ND	2	ND	2.3	ND	1.9	ND				
Chloroethane	1900	2.7	ND	2.4	ND	2.7	ND	2.3	ND				
1,1-Dichloroethene	400	1.9	ND	1.7	ND	1.9	ND	1.6	ND				
Acetone	200	6.9	ND	6.1	ND	6.8	16	B	5.8	3.7	J		
Carbon Disulfide	2700	1.2	ND	1.1	ND	1.2	ND	1	ND				
Methylene Chloride	100	1.4	ND	1.2	ND	1.1	2.6		1.1	ND			
trans-1,2-Dichloroethene	300	2.1	ND	1.8	ND	2	ND		1.7	ND			
1,1-Dichloroethane	200	1.2	ND	1.1	ND	1.2	ND		1	ND			
2-Butanone	300	6.8	ND	5.9	ND	6.7	ND		5.6	ND			
cis-1,2-Dichloroethene	NC	2.2	ND	1.9	ND	2.2	ND		1.8	ND			
Chloroform	300	1.2	ND	1.1	ND	1.2	ND		1	ND			
1,1,1-Trichloroethane	800	1.8	ND	1.5	ND	1.7	ND		1.5	ND			
Carbon Tetrachloride	600	1.2	ND	1.1	ND	1.2	ND		1	ND			
Benzene	60	1.2	ND	1.1	ND	1.2	ND		1	ND			
1,2-Dichloroethane	100	2.9	ND	2.6	ND	2.9	ND		2.5	ND			
Trichloroethene	700	3.3	ND	2.9	ND	3.3	ND		2.8	ND			
1,2-Dichloropropane	NC	4.3	ND	3.8	ND	4.3	ND		3.6	ND			
Bromodichloromethane	NC	1.2	ND	1.1	ND	1.2	ND		1	ND			
4-Methyl-2-Pentanone	1000	3.7	ND	3.2	ND	3.6	ND		3	ND			
Toluene	1500	1.2	1.6	1.3	ND	1.5	ND		1.2	ND			
t-1,3-Dichloropropene	NC	2	ND	1.7	ND	2	ND		1.7	ND			
cis-1,3-Dichloropropene	NC	1.2	ND	1.1	ND	1.2	ND		1	ND			
1,1,2-Trichloroethane	NC	1.3	ND	1.1	ND	1.3	ND		1.1	ND			
2-Hexanone	NC	15	ND	13	ND	14	ND		12	ND			
Dibromochloromethane	NC	1.2	ND	1.1	ND	1.2	ND		1	ND			
Tetrachloroethene	1400	2	ND	1.7	ND	1.9	ND		1.6	ND			
Chlorobenzene	1700	1.2	ND	1.1	ND	1.2	ND		1	ND			
Ethyl Benzene	5500	1.8	ND	1.5	ND	1.7	ND		1.5	ND			
m/p-Xylenes	1200	1.5	6.7	1.6	ND	1.8	ND		1.5	ND			
o-Xylene	1200	1.7	2.4	1.7	ND	2	ND		1.7	ND			
Styrene	NC	1.2	ND	1.1	ND	1.2	ND		1	ND			
Bromoform	NC	1.2	ND	1.1	ND	1.2	ND		1	ND			
1,1,2,2-Tetrachloroethane	600	2.7	ND	2.3	ND	2.6	ND		2.2	ND			
Semi-Volatile Organic Compounds													
Phenol	30 or MDL	40	ND	35	ND	39	ND		1	ND			
bis(2-Chloroethyl)ether	NC	48	ND	42	ND	47	ND		1.2	ND			
2-Chlorophenol	800	44	ND	39	ND	43	ND		1.1	ND			
1,2-Dichlorobenzene	NC	40	ND	35	ND	39	ND		1	ND			
1,3-Dichlorobenzene	NC	48	ND	42	ND	47	ND		1.2	ND			
1,4-Dichlorobenzene	NC	40	ND	35	ND	39	ND		1	ND			
2-Methylphenol	100 or MDL	40	ND	35	ND	39	ND		1	ND			
2,2'-oxybis(1-Chloropropane)	NC	40	ND	35	ND	39	ND		1	ND			
3+4-Methylphenols	NC	72	ND	63	ND	71	ND		1.8	ND			
n-Nitroso-di-n-propylamine	NC	40	ND	35	ND	39	ND		1	ND			
Hexachloroethane	NC	44	ND	39	ND	43	ND		1.1	ND			
Nitrobenzene	200 or MDL	40	ND	35	ND	39	ND		1	ND			
Isophorone	4400	40	ND	35	ND	39	ND		1	ND			
2-Nitrophenol	330 or MDL	44	ND	39	ND	43	ND		1.1	ND			
2,4-Dimethylphenol	NC	92	ND	81	ND	90	ND		2.3	ND			
bis(2-Chloroethoxy)methane	NC	40	ND	35	ND	39	ND		1	ND			
2,4-Dichlorophenol	400	52	ND	46	ND	51	ND		1.3	ND			
1,2,4-Trichlorobenzene	NC	48	ND	42	ND	47	ND		1.2	ND			
Naphthalene	13000	40	120	42	200	47	480		1.2	ND			
4-Chloroaniline	220 or MDL	48	ND	42	ND	47	ND		1.2	ND			

Table B-1
Test Pit Soil Sampling Analytical Data
Phase II ESI
Former Metro North Property
Bronx, New York

Client Sample ID Lab Sample ID	NYSDEC TAGM	SB11-1		SB17-1		SB17-2		FB2		
Sample Collection Date		N5458-06		N5458-03		N5458-04		N5416-23		
Sample Receipt Date		08/06/2001		08/06/2001		08/06/2001		08/02/2001		
Sample Depth (bgs)	Recommended Soil Cleanup	08/07/2001		08/07/2001		08/07/2001		08/02/2001		
Sample Matrix	Objectives	2 - 3 ft		2 - 3 ft		6 - 7 ft		NA		
Units	SOIL	SOIL		SOIL		SOIL		WATER		
	µg/kg	µg/Kg		µg/Kg		µg/Kg		µg/L		
		MDL	CONC	Q	MDL	CONC	Q	MDL		
								CONC		
							Q			
Hexachlorobutadiene	NC	60	ND	53	ND	59	ND	1.5	ND	
4-Chloro-3-methylphenol	240 or MDL	44	ND	39	ND	43	ND	1.1	ND	
2-Methylnaphthalene	36400	48	ND	42	74	40	140	1.2	ND	
Hexachlorocyclopentadiene	NC	150	ND	130	ND	150	ND	3.8	ND	
2,4,6-Trichlorophenol	NC	40	ND	35	ND	39	ND	1	ND	
2,4,5-Trichlorophenol	1000	40	ND	35	ND	39	ND	1	ND	
2-Chloronaphthalene	NC	48	ND	42	ND	47	ND	1.2	ND	
2-Nitroaniline	430 or MDL	40	ND	35	ND	39	ND	1	ND	
Dimethylphthalate	2000	40	ND	35	ND	39	ND	1	ND	
Acenaphthylene	41000	44	260	42	840	40	130	1.2	ND	
2,6-Dinitrotoluene	1000	40	ND	35	ND	39	ND	1	ND	
3-Nitroaniline	500 or MDL	48	ND	42	ND	47	ND	1.2	ND	
Acenaphthene	50,000***	40	65	42	210	47	750	1.2	ND	
2,4-Dinitrophenol	200 or MDL	80	ND	70	ND	78	ND	2	ND	
4-Nitrophenol	100 or MDL	44	ND	39	ND	43	ND	1.1	ND	
Dibenzofuran	6200	44	65	39	200	39	310	1	ND	
2,4-Dinitrotoluene	NC	44	ND	39	ND	43	ND	1.1	ND	
Diethylphthalate	7100	40	ND	35	ND	39	ND	1	ND	
4-Chlorophenyl-phenylether	NC	48	ND	42	ND	47	ND	1.2	ND	
Fluorene	50,000***	40	98	39	240	40	480	1.1	ND	
4-Nitroaniline	NC	96	ND	84	ND	94	ND	2.4	ND	
4,6-Dinitro-2-methylphenol	NC	48	ND	42	ND	47	ND	1.2	ND	
n-Nitrosodiphenylamine	NC	80	ND	70	ND	78	ND	2	ND	
4-Bromophenyl-phenylether	NC	52	ND	46	ND	51	ND	1.3	ND	
Hexachlorobenzene	410	44	ND	39	ND	43	ND	1.1	ND	
Pentachlorophenol	1,000 or MDL	76	ND	67	ND	75	ND	1.9	ND	
Phenanthrene	50,000***	40	680	39	2400	49	1200	1	ND	
Anthracene	50,000***	48	280	43	1000	47	390	1.3	ND	
Carbazole	NC	49	90	39	460	49	120	1	ND	
Di-n-butylphthalate	8100	48	ND	42	ND	50	ND	1.2	ND	
Fluoranthene	50,000***	49	1400	190	4900	D	39	1400	1	ND
Pyrene	50,000***	49	1600	190	8800	D	39	1100	1	ND
Butylbenzylphthalate	50,000***	40	ND	35	ND	39	ND	1	ND	
3,3'-Dichlorobenzidine	NC	40	ND	35	ND	39	ND	1	ND	
Benzo(a)anthracene	224 or MDL	40	800	39	2500	D	39	380	1	ND
Chrysene	400	53	890	270	3300	D	59	440	1.6	ND
Bis(2-Ethylhexyl)phthalate	50,000***	40	130	39	160	39	ND	1	ND	
Di-n-octyl phthalate	50,000***	60	ND	53	ND	59	ND	1.5	ND	
Benzo(b)fluoranthene	1100	40	880	190	2900	D	33	310	1	ND
Benzo(k)fluoranthene	1100	100	870	440	4000	D	87	340	2.6	ND
Benzo(a)pyrene	61 or MDL	53	760	50	2500	D	60	300	1.5	ND
Indeno(1,2,3-cd)pyrene	3200	56	140	53	360	53	110	1.6	ND	
Dibenzo(a,h)anthracene	14 or MDL	53	55	J	50	110	60	ND	1.5	ND
Benzo(g,h,i)perylene	50,000***	52	270	43	790	50	120	1.3	ND	
Polychlorinated Biphenyls (PCBs)										
AROCLO 1016	1,000/10,000	20	ND	18	ND	20	ND	0.5	ND	
AROCLO 1221	1,000/10,000	20	ND	18	ND	20	ND	0.5	ND	
AROCLO 1232	1,000/10,000	20	ND	18	ND	20	ND	0.5	ND	
AROCLO 1242	1,000/10,000	20	ND	18	ND	20	ND	0.5	ND	
AROCLO 1248	1,000/10,000	20	ND	18	ND	20	ND	0.5	ND	
AROCLO 1254	1,000/10,000	20	ND	18	ND	20	ND	0.5	ND	
AROCLO 1260	1,000/10,000	20	56	18	34	20	ND	0.5	ND	
Total PCBs										

Table B-1
Test Pit Soil Sampling Analytical Data
Phase II ESI
Former Metro North Property
Bronx, New York

Client Sample ID Lab Sample ID	NYSDEC TAGM	SB11-1 N5458-06	SB17-1 N5458-03	SB17-2 N5458-04	FB2 N5416-23
Sample Collection Date	Recommended Soil Cleanup	08/06/2001	08/06/2001	08/06/2001	08/02/2001
Sample Receipt Date	Objectives	08/07/2001	08/07/2001	08/07/2001	08/02/2001
Sample Depth (bgs)	SOIL µg/kg	2 - 3 ft	2 - 3 ft	6 - 7 ft	NA
Sample Matrix		SOIL	SOIL	SOIL	WATER
Units		µg/Kg	µg/Kg	µg/Kg	µg/L
		MDL	CONC Q	MDL	CONC Q
			MDL	CONC Q	MDL
Pesticides and Herbicides					
alpha-BHC	110	2.0	ND	1.8	ND
gamma-BHC (Lindane)	60	2.0	ND	1.8	ND
Heptachlor	100	2.0	ND	1.8	ND
Aldrin	41	2.0	ND	1.8	ND
beta-BHC	200	2.0	ND	1.8	ND
delta-BHC	300	2.0	ND	1.8	ND
Heptachlor epoxide	20	2.0	ND	1.8	ND
Endosulfan I	900	2.0	ND	1.8	ND
gamma-Chlordane	540	2.0	ND	1.8	ND
alpha-Chlordane	NC	2.0	ND	1.8	ND
4,4'-DDE	2100	2.0	ND	1.8	ND
Dieldrin	44	2.0	ND	1.8	ND
Endrin	100	2.0	ND	1.8	ND
Endosulfan II	900	2.0	ND	1.8	ND
4,4'-DDD	2900	2.0	23	1.8	ND
4,4'-DDT	2100	2.0	ND	1.8	ND
Endrin aldehyde	NC	2.0	ND	1.8	ND
Endosulfan Sulfate	1000	2.0	ND	1.8	ND
Methoxychlor	***	2.0	ND	1.8	ND
Endrin ketone	NC	2.0	ND	1.8	ND
Toxaphene	NC	20	ND	18	ND
2,4-D	500	4.0	ND	3.5	ND
2,4,5-TP(Silvex)	700	4.0	ND	3.5	ND
2,45-T	1,900	4.0	ND	3.5	ND

NOTES:

bold Analyte exceedance of RSCO value

MDL Method Detection Limit

CONC Concentration

Q Qualifier

NA Not Analyzed

ND Not Detected

J Estimated value

B Analyte found in blank as well as the sample

NC No Criteria

D Sample diluted for analysis

*** As per TAGM #4046, Total VOCs < 10 ppm., Total
Semi-VOCs < 500 ppm. Individual Semi-VOCs <50
ppm. Total pesticides < 10 ppm.

**** Background levels for lead vary widely. Average levels
in undeveloped, rural areas may range from 4-61 ppm.
Average background levels in metropolitan or
suburban areas or near highways are much higher and
typically range from 200-500 ppm.

Table B-1
Test Pit Soil Sampling Analytical Data
Phase II ESI
Former Metro North Property
Bronx, New York

Client Sample ID Lab Sample ID	NYSDEC TAGM Eastern USA Background	NYSDEC TAGM Recommended Soil Cleanup Objectives	TP-1 N5416-24 08/02/2001 08/02/2001 8 ft SOIL MG/KG	TP-2 N5435-12 08/03/2001 08/03/2001 8 ft SOIL MG/KG	TP-3 N5435-01 08/03/2001 08/03/2001 12 - 13 ft SOIL MG/KG									
						MDL	CONC	Q	MDL					
INORGANICS														
Metals														
Aluminum	33,000	SB	5.62	4950	5.03	7680	5.33		6730					
Antimony	NC	SB	0.46	2.4	B	0.41	6	B	0.43					
Arsenic	3-12**	7.5 or SB	0.62	9.1		0.55	8.4		0.58					
Barium	15-600	300 or SB	0.25	846		0.22	117		0.23					
Beryllium	0-1.750	16 (heast) or SB	0.12	0.32	B	0.05	0.4	B	0.05					
Cadmium	.1-1	1 or SB	0.37	2.1		0.33	1		0.35					
Calcium	130-35,000**	SB	1.32	41100	E	0.12	23700	E	0.12					
Chromium	1.5-40**	10 or SB	0.62	16.6		0.55	25.8		0.58					
Cobalt	2.5-60**	30 or SB	0.22	5.7	B	0.20	8.4		0.21					
Copper	1-50	25 or SB	0.27	57.1		0.24	121		0.26					
Iron	2,000-550,000	2,000 or SB	0.86	15900		0.77	23000	E	0.82					
Lead	200-500****	SB	0.37	839	E	0.33	668	E	0.35					
Magnesium	100-5,000	SB	9.34	3980	E	8.35	12200		8.86					
Manganese	50-5,000	SB	0.15	303		0.13	262		0.14					
Mercury	.001-2	0.1	0.04	0.32	N	0.04	0.61		0.04					
Nickel	.5-25	13 or SB	0.49	10.5		0.44	16.5		0.47					
Potassium	8,500-43,000**	SB	2.69	887	E	2.41	1900		2.56					
Selenium	1-3.9	2 or SB	0.62	ND		0.55	ND		0.58					
Silver	NC	SB	0.62	ND		0.55	ND		0.58					
Sodium	6,000-8,000	SB	60.30	442	B	53.9	78.6	B	57.20					
Thallium	NC	SB	0.70	ND		0.06	ND		0.07					
Vanadium	1-300	150 or SB	0.39	26.3		0.35	30.8		0.37					
Zinc	9-50	20 or SB	1.05	458		0.94	236	E	0.99					
									282					

NOTES:

bold: Analyte exceedance of RSCOs and Eastern USA Background Concentration

MDL Method Detection Limit

CONC Concentration

Q Qualifier

NA Not Analyzed

ND Not Detected

E Estimated value

B Estimated value

N Spiked sample recovery not within control limits

NC No Criteria

D Sample diluted for analysis

** New York State Background

*** As per TAGM #4046, Total VOCs < 10 ppm., Total Semi-VOCs < 500 ppm. Individual Semi-VOCs <50 ppm. Total pesticides < 10 ppm.

**** Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4-61 ppm. Average background levels in metropolitan or suburban areas or near highways are much higher and typically range from 200-500 ppm.

HEAST Health Effects Assessments Summary Table

SB Site Background

Table B-1
Test Pit Soil Sampling Analytical Data
Phase II ESI
Former Metro North Property
Bronx, New York

Client Sample ID Lab Sample ID	NYSDEC TAGM Eastern USA Background	NYSDEC TAGM Recommended Soil Cleanup Objectives	TP-4 N5435-03 08/03/2001 08/03/2001 3 - 4 ft SOIL MG/KG	TP-8 N5435-04 08/03/2001 08/03/2001 3 - 4 ft SOIL MG/KG	TP-5 N5435-02 08/03/2001 08/03/2001 9 - 10 ft SOIL MG/KG	DUP of TP-4	
						MDL	CONC
Sample Collection Date	SOIL mg/kg	SOIL mg/kg	MDL	CONC	Q	MDL	CONC
Sample Receipt Date							
Sample Depth (bgs)							
Sample Matrix							
Units							
INORGANICS							
Metals							
Aluminum	33,000	SB	5.28	8740	5.26	8110	5.93
Antimony	NC	SB	0.43	3.1	B	3.2	0.48
Arsenic	3-12**	7.5 or SB	0.58	5.3	0.58	4.9	0.65
Barium	15-600	300 or SB	0.23	92.3	0.23	78.4	0.26
Beryllium	0-1.750	.16 (heast) or SB	0.05	0.41	B	0.05	0.39
Cadmium	.1-1	1 or SB	0.35	0.83	0.35	0.62	0.39
Calcium	130-35,000**	SB	0.12	25300	E	0.12	26800
Chromium	1.5-40**	10 or SB	0.58	19	0.58	22.4	0.65
Cobalt	2.5-60**	30 or SB	0.21	9.4	0.21	9.5	0.23
Copper	1-50	25 or SB	0.25	81.7	0.25	81.2	0.29
Iron	2,000-550,000	2,000 or SB	0.81	23400	E	0.81	18100
Lead	200-500****	SB	0.35	313	E	0.35	296
Magnesium	100-5,000	SB	8.77	6060	8.73	8360	9.84
Manganese	50-5,000	SB	0.14	329	0.14	246	0.16
Mercury	.001-2	0.1	0.04	0.34	0.04	0.62	0.04
Nickel	.5-25	13 or SB	0.46	16.5	0.46	18	0.52
Potassium	8,500-43,000**	SB	2.53	1300	2.52	1530	2.84
Selenium	.1-3.9	2 or SB	0.58	ND	0.58	ND	0.65
Silver	NC	SB	0.58	ND	0.58	ND	0.65
Sodium	6,000-8,000	SB	56.67	61.3	B	56.41	88.8
Thallium	NC	SB	0.07	ND	0.07	ND	0.07
Vanadium	1-300	150 or SB	0.37	23.5	0.37	31	0.42
Zinc	9-50	20 or SB	0.98	166	E	0.98	169

NOTES:

bold: Analyte exceedance of RSCOs and Eastern USA Background Concentration

MDL Method Detection Limit

CONC Concentration

Q Qualifier

NA Not Analyzed

ND Not Detected

E Estimated value

B Estimated value

N Spiked sample recovery not within control limits

NC No Criteria

D Sample diluted for analysis

** New York State Background

*** As per TAGM #4046, Total VOCs < 10 ppm., Total Semi-VOCs < 500 ppm. Individual Semi-VOCs <50 ppm. Total pesticides < 10 ppm.

**** Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4-61 ppm. Average background levels in metropolitan or suburban areas or near highways are much higher and typically range from 200-500 ppm.

HEAST Health Effects Assessments Summary Table

SB Site Background

Table B-1
Test Pit Soil Sampling Analytical Data
Phase II ESI
Former Metro North Property
Bronx, New York

Client Sample ID Lab Sample ID	NYSDEC TAGM Eastern USA Background	NYSDEC TAGM Recommended Soil Cleanup Objectives	TP-6 N5458-01 08/06/2001 08/07/2001 5.5 - 6.5 ft SOIL MG/KG	TP-7 N5458-02 08/06/2001 08/07/2001 7 - 8 ft SOIL MG/KG	FB2 N5416-23 08/02/2001 08/02/2001 NA WATER µg/L					
Sample Collection Date	SOIL mg/kg	MDL	CONC	Q	MDL	CONC	Q	MDL	CONC	Q
INORGANICS										
Metals										
Aluminum	33,000	SB	4.89	8020	B	5.32	8060	45.7	ND	
Antimony	NC	SB	0.40	0.91		0.43	0.7	B	3.7	ND
Arsenic	3-12**	7.5 or SB	0.53	3		0.58	3.6	5	ND	
Barium	15-600	300 or SB	0.21	65.9		0.23	51.1	2	ND	
Beryllium	0-1.750	.16 (heast) or SB	0.01	0.37	B	0.01	0.43	B	0.1	0.32
Cadmium	.1-1	1 or SB	0.32	ND		0.35	ND	3	ND	
Calcium	130-35,000**	SB	1.14	2010		1.25	8840	10.7	ND	
Chromium	1.5-40**	10 or SB	0.53	20.8		0.58	13.1	5	ND	
Cobalt	2.5-60**	30 or SB	0.19	8.8		0.21	6.6	1.8	ND	
Copper	1-50	25 or SB	0.24	48.9		0.26	24.7	2.2	ND	
Iron	2,000-550,000	2,000 or SB	0.75	15300		0.81	14800	7	ND	
Lead	200-500****	SB	0.32	178	N	0.35	44.5	N	3	ND
Magnesium	100-5,000	SB	8.12	2810		8.84	7340	75.9	ND	
Manganese	50-5,000	SB	0.13	346		0.14	273	1.2	ND	
Mercury	.001-2	0.1	0.04	0.6		0.04	0.16	0.2	ND	
Nickel	.5-25	13 or SB	0.43	14.9		0.47	11.3	4	ND	
Potassium	8,500-43,000**	SB	2.34	1430	E	2.55	883	E	21.9	ND
Selenium	.1-3.9	2 or SB	0.53	0.66	*	0.58	ND	5	ND	
Silver	NC	SB	0.53	ND		0.58	ND	5	ND	
Sodium	6,000-8,000	SB	52.43	ND		57.07	ND	490	ND	
Thallium	NC	SB	0.61	ND		0.66	ND	5.7	ND	
Vanadium	1-300	150 or SB	0.34	21.9		0.37	16.5	3.2	ND	
Zinc	9-50	20 or SB	0.91	67.9		0.99	60.1	8.5	ND	

NOTES:

bold: Analyte exceedance of RSCOs and Eastern USA Background

Concentration

MDL Method Detection Limit

CONC Concentration

Q Qualifier

NA Not Analyzed

ND Not Detected

E Estimated value

B Estimated value

N Spiked sample recovery not within control limits

NC No Criteria

D Sample diluted for analysis

** New York State Background

*** As per TAGM #4046, Total VOCs < 10 ppm., Total Semi-VOCs < 500 ppm. Individual Semi-VOCs < 50 ppm. Total pesticides < 10 ppm.

**** Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4-61 ppm. Average background levels in metropolitan or suburban areas or near highways are much higher and typically range from 200-500 ppm.

HEAST Health Effects Assessments Summary Table

SB Site Background

Table B-2
Surficial Soil Sampling Analytical Data
Phase II ESI
Former Metro North Property
Bronx, New York

Client Sample ID Lab Sample ID	NYSDEC TAGM	SURFICIAL-1 N5416-02DL 08/01/2001	SURFICIAL-2 N5416-03 08/01/2001	SURFICIAL-3 N5416-04DL1 08/01/2001	SURFICIAL-4 N5416-05DL 08/01/2001	SURFICIAL-5 N5416-06 08/01/2001							
Sample Collection Date	Recommended	Soil Cleanup Objectives	Soil	Soil	Soil	Soil							
Sample Receipt Date	Soil	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft							
Sample Depth (bgs)	µg/kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg							
Sample Matrix Units		MDL	CONC	Q	MDL	CONC	Q	MDL	CONC	Q	MDL	CONC	Q
ORGANIC COMPOUNDS													
Semi-Volatile Organic Compounds													
Phenol	30 or MDL	35	ND	350	ND	36	ND	35	ND	34	ND		
bis(2-Chloroethyl)ether	NC	42	ND	430	ND	43	ND	42	ND	40	ND		
2-Chlorophenol	800	38	ND	390	ND	39	ND	38	ND	37	ND		
1,2-Dichlorobenzene	NC	35	ND	350	ND	36	ND	35	ND	34	ND		
1,3-Dichlorobenzene	NC	42	ND	430	ND	43	ND	42	ND	40	ND		
1,4-Dichlorobenzene	NC	35	ND	350	ND	36	ND	35	ND	34	ND		
2-Methylphenol	100 or MDL	35	ND	350	ND	36	ND	35	ND	34	ND		
2,2'-oxybis(1-Chloropropane)	NC	35	ND	350	ND	36	ND	35	ND	34	ND		
3+4-Methylphenols	NC	63	ND	640	ND	65	ND	63	ND	81	ND		
n-Nitroso-di-n-propylamine	NC	35	ND	350	ND	36	ND	35	ND	34	ND		
Hexachloroethane	NC	38	ND	390	ND	39	ND	38	ND	37	ND		
Nitrobenzene	200 or MDL	35	ND	350	ND	36	ND	35	ND	34	ND		
Isophorone	4400	35	ND	350	ND	36	ND	35	ND	34	ND		
2-Nitrophenol	330 or MDL	38	ND	390	ND	39	ND	38	ND	37	ND		
2,4-Dimethylphenol	NC	80	ND	820	ND	82	ND	80	ND	77	ND		
bis(2-Chloroethyl)ether/methane	NC	35	ND	350	ND	36	ND	35	ND	34	ND		
2,4-Dichlorophenol	400	45	ND	460	ND	47	ND	45	ND	44	ND		
1,2,4-Trichlorobenzene	NC	42	ND	430	ND	43	ND	42	ND	40	ND		
Naphthalene	13000	41	250	430	ND	42	120	41	180	40	140		
4-Chloroaniline	220 or MDL	42	ND	430	ND	43	ND	42	ND	40	ND		
Hexachlorobutadiene	NC	52	ND	530	ND	54	ND	52	ND	51	ND		
4-Chloro-3-methylphenol	240 or MDL	38	ND	390	ND	39	ND	38	ND	37	ND		
2-Methylnaphthalene	36400	41	96	430	ND	43	36	41	150	40	71		
Hexachlorocyclopentadiene	NC	130	ND	1300	ND	140	ND	130	ND	130	ND		
2,4,6-Trichlorophenol	NC	35	ND	350	ND	36	ND	35	ND	34	ND		
2,4,5-Tnchlorophenol	1000	35	ND	350	ND	36	ND	35	ND	34	ND		
2-Chloronaphthalene	NC	42	ND	430	ND	43	ND	42	ND	40	ND		
2-Nitroaniline	430 or MDL	35	ND	350	ND	36	ND	35	ND	34	ND		
Dimethylphthalate	2000	35	ND	350	ND	36	ND	35	ND	34	ND		
Acenaphthylene	41000	41	320	425	460	43	800	41	1800	40	530		
2,6-Dinitrotoluene	1000	35	ND	350	ND	36	ND	35	ND	34	ND		
3-Nitroaniline	500 or MDL	42	ND	430	ND	43	ND	42	ND	40	ND		
Acenaphthene	50,000***	41	1200	430	ND	43	190	41	53	40	ND		
2,4-Dinitrophenol	200 or MDL	69	ND	710	ND	72	ND	69	ND	67	ND		
4-Nitrophenol	100 or MDL	38	ND	390	ND	39	ND	38	ND	37	ND		
Dibenzo[<i>a</i>]anthracene	6200	34	690	350	ND	35	150	34	130	33	94		
2,4-Dinitrotoluene	NC	38	ND	390	ND	39	ND	38	ND	37	ND		
Diethylphthalate	7100	35	ND	350	ND	36	ND	35	ND	34	ND		
4-Chlorophenyl-phenylether	NC	42	ND	430	ND	43	ND	42	ND	40	ND		
Fluorene	50,000***	38	900	390	ND	40	230	38	160	37	ND		
4-Nitroaniline	NC	83	ND	850	ND	86	ND	83	ND	81	ND		
4,6-Dinitro-2-methylphenol	NC	42	ND	430	ND	43	ND	42	ND	40	ND		
n-Nitrosodiphenylamine	NC	69	ND	710	ND	72	ND	69	ND	67	ND		
4-Bromophenyl-phenylether	NC	45	ND	460	ND	47	ND	45	ND	44	ND		
Hexachlorobenzene	410	38	ND	390	ND	39	ND	38	ND	37	ND		
Pentachlorophenol	1,000 or MDL	66	ND	670	ND	68	ND	66	ND	64	ND		
Phenanthrene	50,000***	170	9000	D 350	1400	35	2400	34	1100	33	440		
Anthracene	50,000***	44	1500	D 460	440	46	720	44	1000	43	270		
Carbazole	NC	34	1100	D 350	ND	35	410	34	490	33	110		
Di-n-butylphthalate	8100	41	180	D 430	ND	43	230	41	58	40	ND		
Fluoranthene	50,000***	170	9500	D 350	2000	175	5000	D 170	4500	D 33	1200		
Pyrene	50,000***	170	9200	D 350	3000	175	6300	D 170	4600	D 33	1300		
Butylbenzylphthalate	50,000***	33	320	D 350	9100	875	21000	D 33	ND	34	ND		
3,3'-Dichlorobenzidine	NC	35	ND	350	ND	36	ND	35	ND	34	ND		
Benzo(a)anthracene	224 or MDL	170	3500	D 350	1100	35	2500	D 170	3500	D 33	830		
Chrysene	400	275	4100	D 560	2000	57	2800	275	4100	D 53	1100		
Bis(2-Ethylhexyl)phthalate	50,000***	34	740	D 350	3800	35	2000	34	35	34	ND		
Di-n-octyl phthalate	50,000***	52	ND	530	ND	58	ND	52	ND	51	ND		
Benzo(b)fluoranthene	1100	170	3800	D 350	1500	35	2700	D 170	5900	D 33	1100		
Benzo(k)fluoranthene	1100	90	2200	D 350	925	1700	93	2400	D 450	3400	D 87	1200	
Benzo(a)pyrene	61 or MDL	260	3700	D 530	1800	54	2500	260	3800	D 50	970		
Indeno(1,2,3-cd)pyrene	3200	55	560	D 560	940	57	500	55	670	53	340		
Dibenzo(a,h)anthracene	14 or MDL	52	110	D 530	ND	54	180	52	220	50	79		
Benzo(g,h,i)perylene	50,000***	45	1300	D 460	930	46	1100	45	1200	43	400		

Table B-2
Surficial Soil Sampling Analytical Data
Phase II ESI
Former Metro North Property
Bronx, New York

Client Sample ID Lab Sample ID	NYSDEC TAGM	SURFICIAL-1 N5416-02DL	SURFICIAL-2 N5416-03	SURFICIAL-3 N5416-04DL1	SURFICIAL-4 N5416-05DL	SURFICIAL-5 N5416-06					
Sample Collection Date	08/01/2001	08/01/2001	08/01/2001	08/02/2001	08/02/2001	08/02/2001					
Sample Receipt Date	08/02/2001	08/02/2001	08/02/2001	08/02/2001	08/02/2001	08/02/2001					
Sample Depth (bgs)	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft					
Sample Matrix Units	SOIL µg/kg	SOIL µg/kg	SOIL µg/kg	SOIL µg/kg	SOIL µg/kg	SOIL µg/kg					
	MDL	CONC	Q	MDL	CONC	Q					
Polychlorinated Biphenyls (PCBs)											
AROCLOR 1016	1,000/10,000	17	ND	18	ND	17	ND	17	ND		
AROCLOR 1221	1,000/10,000	17	ND	18	ND	17	ND	17	ND		
AROCLOR 1232	1,000/10,000	17	ND	18	ND	17	ND	17	ND		
AROCLOR 1242	1,000/10,000	17	ND	18	ND	17	ND	17	ND		
AROCLOR 1248	1,000/10,000	17	ND	18	ND	17	ND	17	ND		
AROCLOR 1254	1,000/10,000	17	ND	18	83	17	ND	17	ND		
AROCLOR 1260	1,000/10,000	17	ND	18	ND	17	ND	17	15		
Total PCBs									J		
Pesticides and Herbicides											
alpha-BHC	110	8.7	ND	1.8	ND	18	ND	8.7	ND	1.7	ND
gamma-BHC (Lindane)	60	8.7	ND	1.8	ND	18	ND	8.7	ND	1.7	ND
Heptachlor	100	8.7	ND	1.8	ND	18	ND	8.7	ND	1.7	ND
Aldrin	41	8.7	ND	1.8	ND	18	ND	8.7	ND	1.7	ND
beta-BHC	200	8.7	ND	1.8	ND	18	ND	8.7	ND	1.7	ND
delta-BHC	300	8.7	ND	1.8	ND	18	ND	8.7	ND	1.7	ND
Heptachlor epoxide	20	8.7	ND	1.8	ND	18	ND	8.7	ND	1.7	ND
Endosulfan I	900	8.7	ND	1.8	ND	18	ND	8.7	ND	1.7	ND
gamma-Chlordane	540	8.7	ND	1.8	ND	18	ND	8.7	ND	1.7	ND
alpha-Chlordane	NC	8.7	ND	1.8	ND	18	ND	8.7	ND	1.7	ND
4,4'-DDE	2100	8.7	ND	1.8	ND	18	ND	8.7	ND	1.7	ND
Dieldrin	44	8.7	ND	1.8	ND	18	ND	8.7	ND	1.7	ND
Endrin	100	8.7	ND	1.8	ND	18	ND	8.7	ND	1.7	ND
Endosulfan II	900	8.7	ND	1.8	ND	18	ND	8.7	ND	1.7	ND
4,4'-DDD	2900	8.7	ND	1.8	ND	18	ND	8.7	ND	1.7	ND
4,4'-DDT	2100	8.7	69	1.8	23	18	120	8.7	ND	1.7	ND
Endrin aldehyde	NC	8.7	ND	1.8	ND	18	ND	8.7	ND	1.7	ND
Endosulfan Sulfate	1000	8.7	ND	1.8	ND	18	ND	8.7	ND	1.7	ND
Methoxychlor	---	8.7	ND	1.8	ND	18	ND	8.7	ND	1.7	ND
Endrin ketone	NC	8.7	ND	1.8	ND	18	ND	8.7	ND	1.7	ND
Toxaphene	NC	87	ND	18	ND	180	ND	87	ND	17	ND
2,4-D	500	3.5	ND	3.5	ND	3.6	NO	3.6	ND	3.5	ND
2,4,5-TP(Silvex)	700	3.5	ND	3.5	ND	3.6	ND	3.5	ND	3.4	ND
2,45-T	1,900	3.5	ND	3.5	ND	3.6	ND	3.5	ND	3.4	ND

NOTES:

bold Analyte exceedance of RSCO value
MDL Method Detection Limit
CONC Concentration
Q Qualifier
NA Not Analyzed
ND Not Detected
J Estimated value
NC No Criteria
D Sample diluted for analysis
*** As per TAGM #4046, Total VOCs < 10 ppm., Total Semi-VOCs < 500 ppm. Individual Semi-VOCs <50 ppm.
Total pesticides < 10 ppm.
**** Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4-61 ppm. Average background levels in metropolitan or suburban areas or near highways are much higher and typically range from 200-500 ppm.

Table B-2
Surficial Soil Sampling Analytical Data
Phase II ESI
Former Metro North Property
Bronx, New York

Client Sample ID Lab Sample ID	NYSDEC TAGM	Recommended Soil Cleanup Objectives	SURFICIAL-6			SURFICIAL-12			SURFICIAL-7			SURFICIAL-8			SURFICIAL-9			
			SOIL µg/kg	MDL	CONC	Q	MDL	CONC	Q	MDL	CONC	Q	MDL	CONC	Q	MDL	CONC	Q
ORGANIC COMPOUNDS																		
Semi-Volatile Organic Compounds																		
Phenol	30 or MDL	35	ND	36	ND		36	ND	34	ND	34	ND	34	ND	34	ND	ND	
bis(2-Chloroethyl)ether	NC	43	ND	43	ND		43	ND	41	ND	41	ND	41	ND	41	ND	ND	
2-Chlorophenol	800	39	ND	39	ND		40	ND	38	ND	38	ND	37	ND	37	ND	ND	
1,2-Dichlorobenzene	NC	35	ND	36	ND		36	ND	34	ND	34	ND	34	ND	34	ND	ND	
1,3-Dichlorobenzene	NC	43	ND	43	ND		43	ND	41	ND	41	ND	41	ND	41	ND	ND	
1,4-Dichlorobenzene	NC	35	ND	36	ND		36	ND	34	ND	34	ND	34	ND	34	ND	ND	
2-Methylphenol	100 or MDL	35	ND	36	ND		36	ND	34	ND	34	ND	34	ND	34	ND	ND	
2,2'-oxybis(1-Chloropropane)	NC	35	ND	36	ND		36	ND	34	ND	34	ND	34	ND	34	ND	ND	
3,4-Methylenols	NC	64	ND	65	ND		65	ND	62	ND	62	ND	61	ND	61	ND	ND	
n-Nitroso-di-n-propylamine	NC	35	ND	36	ND		36	ND	34	ND	34	ND	34	ND	34	ND	ND	
Hexachloroethane	NC	39	ND	39	ND		40	ND	38	ND	38	ND	37	ND	37	ND	ND	
Nitrobenzene	200 or MDL	35	ND	36	ND		36	ND	34	ND	34	ND	34	ND	34	ND	ND	
Isophorone	4400	35	ND	36	ND		36	ND	34	ND	34	ND	34	ND	34	ND	ND	
2-Nitrophenol	330 or MDL	39	ND	39	ND		40	ND	38	ND	38	ND	37	ND	37	ND	ND	
2,4-Dimethylphenol	NC	82	ND	82	ND		83	ND	79	ND	79	ND	78	ND	78	ND	ND	
bis(2-Chloroethoxy)methane	NC	35	ND	36	ND		36	ND	34	ND	34	ND	34	ND	34	ND	ND	
2,4-Dichlorophenol	400	46	ND	47	ND		47	ND	45	ND	45	ND	44	ND	44	ND	ND	
1,2,4-Trichlorobenzene	NC	43	ND	43	ND		43	ND	41	ND	41	ND	41	ND	41	ND	ND	
Naphthalene	13000	43	61	42	ND		43	61	40	38	38	J	41	ND	41	ND	ND	
4-Chloronaniline	220 or MDL	43	ND	43	ND		43	ND	41	ND	41	ND	41	ND	41	ND	ND	
Hexachlorobutadiene	NC	53	ND	54	ND		54	ND	52	ND	52	ND	51	ND	51	ND	ND	
4-Chloro-3-methylphenol	240 or MDL	39	ND	39	ND		40	ND	38	ND	38	ND	37	ND	37	ND	ND	
2-Methylnaphthalene	36400	43	ND	43	ND		43	ND	41	ND	41	ND	41	ND	41	ND	ND	
Hexachlorocyclopentadiene	NC	130	ND	140	ND		140	ND	130	ND	130	ND	130	ND	130	ND	ND	
2,4,5-Trichlorophenol	NC	35	ND	36	ND		36	ND	34	ND	34	ND	34	ND	34	ND	ND	
2,4,5-Trichlorophenol	1000	35	ND	36	ND		36	ND	34	ND	34	ND	34	ND	34	ND	ND	
2-Chloronaphthalene	NC	43	ND	43	ND		43	ND	41	ND	41	ND	41	ND	41	ND	ND	
2-Nitroaniline	430 or MDL	35	ND	36	ND		36	ND	34	ND	34	ND	34	ND	34	ND	ND	
Dimethylphthalate	2000	35	ND	36	ND		36	ND	34	ND	34	ND	34	ND	34	ND	ND	
Acenaphthylene	41000	43	340	43	200		43	880	40	530	40	530	40	120	40	120	ND	
2,6-Dinitrotoluene	1000	35	ND	36	ND		36	ND	34	ND	34	ND	34	ND	34	ND	ND	
3-Nitroaniline	500 or MDL	43	ND	43	ND		43	ND	41	ND	41	ND	41	ND	41	ND	ND	
Acenaphthene	50,000***	43	ND	43	63		43	96	40	40	40	J	40	40	40	47	ND	
2,4-Dinitrophenol	200 or MDL	71	ND	72	ND		72	ND	69	ND	69	ND	68	ND	68	ND	ND	
4-Nitrophenol	100 or MDL	39	ND	39	ND		40	ND	38	ND	38	ND	37	ND	37	ND	ND	
Dibenzofuran	6200	35	52	35	ND		36	82	33	40	33	36	33	36	33	36	ND	
2,4-Dinitrotoluene	NC	39	ND	39	ND		40	ND	38	ND	38	ND	37	ND	37	ND	ND	
Diethylphthalate	7100	35	ND	36	ND		36	ND	34	ND	34	ND	34	ND	34	ND	ND	
4-Chlorophenyl-phenylether	NC	43	ND	43	ND		43	ND	41	ND	41	ND	41	ND	41	ND	ND	
Fluorene	50,000***	39	ND	40	56		40	150	37	62	37	62	37	55	37	55	ND	
4-Nitroaniline	NC	85	ND	86	ND		87	ND	82	ND	82	ND	82	ND	82	ND	ND	
4,6-Dinitro-2-methylphenol	NC	43	ND	43	ND		43	ND	41	ND	41	ND	41	ND	41	ND	ND	
n-Nitrosodiphenylamine	NC	71	ND	72	ND		72	ND	69	ND	69	ND	68	ND	68	ND	ND	
4-Bromophenyl-phenylether	NC	46	ND	47	ND		47	ND	45	ND	45	ND	44	ND	44	ND	ND	
Hexachlorobenzene	410	39	ND	39	ND		40	ND	38	ND	38	ND	37	ND	37	ND	ND	
Pentachlorophenol	1,000 or MDL	67	ND	68	ND		69	ND	65	ND	65	ND	65	ND	65	ND	ND	
Phenanthrene	50,000***	35	360	35	560		36	1400	33	690	33	690	33	580	33	580	ND	
Anthracene	50,000***	46	210	46	200		47	660	43	370	43	370	43	240	43	240	ND	
Carbazole	NC	35	80	35	66		36	180	33	94	33	94	33	73	33	73	ND	
Di-n-butylphthalate	8100	43	43	43	ND		43	53	41	ND	41	ND	41	ND	41	ND	ND	
Fluoranthene	50,000***	35	830	35	890		36	2700	33	1500	33	1500	33	1200	33	1200	ND	
Pyrene	50,000***	35	1300	35	980		180	4300	170	2400	170	2400	170	1800	170	1800	ND	
Butylbenzylphthalate	50,000***	35	43	35	ND		36	76	33	82	33	82	33	ND	34	ND	ND	
3,3'-Dichlorobenzidine	NC	35	ND	36	ND		36	ND	34	ND	34	ND	34	ND	34	ND	ND	
Benzo(a)anthracene	224 or MDL	35	640	35	570		36	2200	33	1200	33	1200	33	640	33	640	ND	
Chrysene	400	56	780	57	700		58	2400	53	1400	53	1400	53	860	53	860	ND	
Bis(2-Ethylhexyl)phthalate	50,000***	35	350	35	73		36	340	33	290	33	290	33	81	33	81	ND	
Di-n-octyl phthalate	50,000***	53	ND	58	ND		54	ND	52	ND	52	ND	51	ND	51	ND	ND	
Benzo(b)fluoranthene	1100	35	1000	35	480		180	3000	33	1200	33	1200	33	760	33	760	ND	
Benzo(k)fluoranthene	1100	92	840	93	830		87	1500	87	1400	87	1400	87	750	87	750	ND	
Benzo(a)pyrene	61 or MDL	53	840	54	680		54	2000	50	1200	50	1200	50	670	50	670	ND	
Indeno(1,2,3-cd)pyrene	3200	56	150	57	260		58	380	53	240	53	240	53	110	53	110	ND	
Dibenzo(a,h)anthracene	14 or MDL	53	58	54	44	J	54	180	50	81	50	81	50	48	50	48	J	
Benzo(g,h,i)perylene	50,000***	46	350	46	310		48	820	43	480	43	480	43	290	43	290	ND	

Table B-2
Surficial Soil Sampling Analytical Data
Phase II ESI
Former Metro North Property
Bronx, New York

Client Sample ID Lab Sample ID	NYSDEC TAGM	SURFICIAL-6 N5416-07 08/01/2001	SURFICIAL-12 N5416-13 08/01/2001	SURFICIAL-7 N5416-08DL 08/02/2001	SURFICIAL-8 N5416-09DL 08/02/2001	SURFICIAL-9 N5416-10 08/01/2001							
Sample Collection Date	Recommended Soil Cleanup Objectives	SOIL µg/kg	SOIL µg/kg	SOIL µg/kg	SOIL µg/kg	SOIL µg/kg							
Sample Receipt Date	Sample Depth (bgs)	MDL	CONC	Q	MDL	CONC	Q	MDL	CONC	Q	MDL	CONC	Q
Polychlorinated Biphenyls (PCBs)													
AROCLOR 1016	1,000/10,000	18	ND	18	ND	18	ND	17	ND	17	ND		
AROCLOR 1221	1,000/10,000	18	ND	18	ND	18	ND	17	ND	17	ND		
AROCLOR 1232	1,000/10,000	18	ND	18	ND	18	ND	17	ND	17	ND		
AROCLOR 1242	1,000/10,000	18	ND	18	ND	18	ND	17	ND	17	ND		
AROCLOR 1248	1,000/10,000	18	ND	18	ND	18	ND	17	ND	17	ND		
AROCLOR 1254	1,000/10,000	18	ND	18	ND	18	ND	17	ND	17	ND		
AROCLOR 1260	1,000/10,000	18	24	18	21	18	30	17	41	17	17		
Total PCBs													
Pesticides and Herbicides													
alpha-BHC	110	1.8	ND	3.6	ND	1.8	ND	1.7	ND	1.7	ND		
gamma-BHC (Lindane)	60	1.8	ND	3.6	ND	1.8	ND	1.7	ND	1.7	ND		
Heptachlor	100	1.8	ND	3.6	ND	1.8	ND	1.7	ND	1.7	ND		
Aldrin	41	1.8	ND	3.6	ND	1.8	ND	1.7	ND	1.7	ND		
bela-BHC	200	1.8	ND	3.6	ND	1.8	ND	1.7	ND	1.7	ND		
delta-BHC	300	1.8	ND	3.6	ND	1.8	ND	1.7	ND	1.7	ND		
Heptachlor epoxide	20	1.8	ND	3.6	ND	1.8	ND	1.7	ND	1.7	ND		
Endosulfan I	900	1.8	ND	3.6	ND	1.8	ND	1.7	ND	1.7	ND		
gamma-Chlordane	540	1.8	ND	3.6	ND	1.8	ND	1.7	ND	1.7	ND		
alpha-Chlordane	NC	1.8	ND	3.6	ND	1.8	ND	1.7	ND	1.7	ND		
4,4'-DDE	2100	1.8	ND	3.6	ND	1.8	ND	1.7	ND	1.7	ND		
Dieldrin	44	1.8	ND	3.6	ND	1.8	ND	1.7	ND	1.7	ND		
Endrin	100	1.8	ND	3.6	ND	1.8	ND	1.7	ND	1.7	ND		
Endosulfan II	900	1.8	ND	3.6	ND	1.8	ND	1.7	ND	1.7	ND		
4,4'-DDD	2900	1.8	ND	3.6	ND	1.8	ND	1.7	ND	1.7	ND		
4,4'-DDT	2100	1.8	ND	3.6	ND	1.6	ND	1.7	7.9	1.7	ND		
Endrin aldehyde	NC	1.8	ND	3.6	ND	1.8	ND	1.7	ND	1.7	ND		
Endosulfan Sulfate	1000	1.8	ND	3.6	ND	1.8	ND	1.7	ND	1.7	ND		
Methoxychlor	---	1.8	ND	3.6	ND	1.8	ND	1.7	ND	1.7	ND		
Endrin ketone	NC	1.8	ND	3.6	ND	1.8	ND	1.7	ND	1.7	ND		
Toxaphene	NC	18	ND	36	ND	18	ND	17	ND	17	ND		
2,4-D	500	3.5	ND	3.6	ND	3.6	ND	3.4	ND	3.4	ND		
2,4,5-TP(Silvex)	700	3.5	ND	3.6	ND	3.6	ND	3.4	ND	3.4	ND		
2,4-T	1,900	3.5	ND	3.6	ND	3.6	ND	3.4	ND	3.4	ND		

NOTES:

bold Analyte exceedance of RSCO value

MDL Method Detection Limit

CONC Concentration

Q Qualifier

NA Not Analyzed

ND Not Detected

J Estimated value

NC No Criteria

D Sample diluted for analysis

*** As per TAGM #4046, Total VOCs < 10 ppm., Total Semi-VOCs < 500 ppm. Individual Semi-VOCs < 50 ppm.

Total pesticides < 10 ppm.

**** Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4-61 ppm. Average background levels in metropolitan or suburban areas or near highways are much higher and typically range from 200-500 ppm.

Table B-2
Surficial Soil Sampling Analytical Data
Phase II ESI
Former Metro North Property
Bronx, New York

Client Sample ID Lab Sample ID	NYSDEC TAGM	SURFICIAL-10 N5416-11DL1	SURFICIAL-11 N5416-12DL	SURFICIAL					
Sample Collection Date	08/01/2001	08/01/2001	08/02/2001	08/16-01 08/01/2001					
Sample Receipt Date	08/02/2001	08/02/2001	08/02/2001	08/02/2001					
Sample Depth (tgs)	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	NA					
Sample Matrix Units	SOIL µg/kg	SOIL µg/kg	SOIL µg/kg	WATER µg/L					
	MDL	CONC	Q	MDL	CONC	Q	MDL	CONC	Q
ORGANIC COMPOUNDS									
Semi-Volatile Organic Compounds									
Phenol	30 or MDL	34	ND	35	ND	1	ND		
bis(2-Chloroethyl)ether	NC	41	ND	42	ND	1.2	ND		
2-Chlorophenol	800	37	ND	39	ND	1.1	ND		
1,2-Dichlorobenzene	NC	34	ND	35	ND	1	ND		
1,3-Dichlorobenzene	NC	41	ND	42	ND	1.2	ND		
1,4-Dichlorobenzene	NC	34	ND	35	ND	1	ND		
2-Methylphenol	100 or MDL	34	ND	35	ND	1	ND		
2,2'-oxybis(1-Chloropropane)	NC	34	ND	35	ND	1	ND		
3,4-Methylphenols	NC	61	ND	63	ND	1.8	ND		
n-Nitroso-di-n-propylamine	NC	34	ND	35	ND	1	ND		
Hexachloroethane	NC	37	ND	39	ND	1.1	ND		
Nitrobenzene	200 or MDL	34	ND	35	ND	1	ND		
Isophorone	4400	34	ND	35	ND	1	ND		
2-Nitrophenol	330 or MDL	37	ND	39	ND	1.1	ND		
2,4-Dimethylphenol	NC	78	ND	81	ND	2.3	ND		
bis(2-Chloroethoxy)methane	NC	34	ND	35	ND	1	ND		
2,4-Dichlorophenol	400	44	ND	46	ND	1.3	ND		
1,2,4-Trichlorobenzene	NC	41	ND	42	ND	1.2	ND		
Naphthalene	13000	40	96	42	220	1.2	ND		
4-Chloroaniline	220 or MDL	41	ND	42	ND	1.2	ND		
Hexachlorobutadiene	NC	51	ND	53	ND	1.5	ND		
4-Chloro-3-methylphenol	240 or MDL	37	ND	39	ND	1.1	ND		
2-Methylnaphthalene	36400	40	88	42	130	1.2	ND		
Hexachlorocyclopentadiene	NC	130	ND	130	ND	3.8	ND		
2,4,5-Trichlorophenol	NC	34	ND	35	ND	1	ND		
2,4,5-Trichlorophenol	1000	34	ND	35	ND	1	ND		
2-Chloronaphthalene	NC	41	ND	42	ND	1.2	ND		
2-Nitroaniline	430 or MDL	34	ND	35	ND	1	ND		
Dimethylphthalate	2000	34	ND	35	ND	1	ND		
Acenaphthylene	41000	40	600	42	1300	1.2	ND		
2,6-Dinitrotoluene	1000	34	ND	35	ND	1	ND		
3-Nitroaniline	500 or MDL	41	ND	42	ND	1.2	ND		
Acenaphthene	50,000***	40	380	42	520	1.2	ND		
2,4-Dinitrophenol	200 or MDL	68	ND	70	ND	2	ND		
4-Nitrophenol	100 or MDL	37	ND	39	ND	1.1	ND		
Dibenzofuran	6200	34	230	35	350	1	ND		
2,4-Dinitrotoluene	NC	37	ND	39	ND	1.1	ND		
Diethylphthalate	7100	34	ND	35	ND	1	ND		
4-Chlorophenyl-phenylether	NC	41	ND	42	ND	1.2	ND		
Fluorene	50,000***	37	330	39	630	1.1	ND		
4-Nitroaniline	NC	82	ND	84	ND	2.4	ND		
4,6-Dinitro-2-methylphenol	NC	41	ND	42	ND	1.2	ND		
n-Nitrosodiphenylamine	NC	68	ND	70	ND	2	ND		
4-Bromophenyl-phenylether	NC	44	ND	46	ND	1.3	ND		
Hexachlorobenzene	410	37	ND	39	ND	1.1	ND		
Pentachlorophenol	1,000 or MDL	65	ND	67	ND	1.9	ND		
Phenanthrene	50,000***	170	7600	D 350	6500	D 1	ND		
Anthracene	50,000***	43	1500	D 45	2000	D 1.3	ND		
Carbazole	NC	33	1100	D 35	700	D 1	ND		
Di-n-butylphthalate	8100	40	39	J 40	40	J 1.2	1.1	J	
Fluoranthene	50,000***	850	26000	D 350	12000	D 1	ND		
Pyrene	50,000***	850	24000	D 350	12000	D 1	ND		
Butylbenzylphthalate	50,000***	33	300	D 35	ND	1	ND		
3,3'-Dichlorobenzidine	NC	34	ND	35	ND	1	ND		
Benz(a)anthracene	224 or MDL	850	15000	D 350	7100	D 1	ND		
Chrysene	400	1350	17000	D 560	7900	D 1.6	ND		
Bis(2-Ethylhexyl)phthalate	50,000***	33	2600	D 35	210	D 1	ND		
Di-n-octyl phthalate	50,000***	50	1600	D 56	ND	1.5	ND		
Benz(a)fluoranthene	1100	850	13000	D 350	6700	D 1	ND		
Benz(a)fluoranthene	1100	440	13000	D 870	6000	D 2.6	ND		
Benz(a)pyrene	61 or MDL	1000	15000	D 530	8500	D 1.5	ND		
Indeno(1,2,3-cd)pyrene	3200	53	2500	D 56	1000	D 1.6	ND		
Dibenzo(a,h)anthracene	14 or MDL	50	400	D 53	310	D 1.5	ND		
Benz(a,g,h,i)perylene	50,000***	220	4300	D 45	1900	D 1.3	ND		

Table B-2
Surficial Soil Sampling Analytical Data
Phase II ESI
Former Metro North Property
Bronx, New York

Client Sample ID Lab Sample ID	NYSDEC TAGM	Recommended Soil Cleanup Objectives	SURFICIAL-10 N5416-11DL1 08/01/2001	SURFICIAL-11 N5416-12DL 08/01/2001	SURFICIAL N5416-01 08/02/2001
Sample Collection Date			08/02/2001	08/02/2001	08/02/2001
Sample Receipt Date			0 - 0.5 ft	0 - 0.5 ft	NA
Sample Depth (bgs)			SOIL µg/kg	SOIL µg/Kg	WATER µg/L
Sample Matrix Units			MDL	CONC Q	MDL CONC Q
Polychlorinated Biphenyls (PCBs)					
AROCLOL 1016	1,000/10,000	17	ND	18	0.5 ND
AROCLOL 1221	1,000/10,000	17	ND	18	0.5 ND
AROCLOL 1232	1,000/10,000	17	ND	18	0.5 ND
AROCLOL 1242	1,000/10,000	17	ND	18	0.5 ND
AROCLOL 1248	1,000/10,000	17	ND	18	0.5 ND
AROCLOL 1254	1,000/10,000	17	ND	18	0.5 ND
AROCLOL 1260	1,000/10,000	17	130	18	0.5 ND
Total PCBs					
Pesticides and Herbicides					
alpha-BHC	110	17	ND	18	0.05 ND
gamma-BHC (Lindane)	60	17	ND	18	0.05 ND
Heptachlor	100	17	ND	18	0.05 ND
Aldrin	41	17	ND	18	0.05 ND
beta-BHC	200	17	ND	18	0.05 ND
delta-BHC	300	17	ND	18	0.05 ND
Heptachlor epoxide	20	17	ND	18	0.05 ND
Endosulfan I	900	17	ND	18	0.05 ND
gamma-Chlordane	540	17	ND	18	0.05 ND
alpha-Chlordane	NC	17	ND	18	0.05 ND
4,4'-DDE	2100	17	ND	18	0.05 ND
Dieldrin	44	17	ND	18	0.05 ND
Endrin	100	17	ND	18	0.05 ND
Endosulfan II	900	17	ND	18	0.05 ND
4,4'-DDD	2900	17	ND	18	23 0.05 ND
4,4'-DDT	2100	17	ND	18	130 0.05 ND
Endrin aldehyde	NC	17	ND	18	ND 0.05 ND
Endosulfan Sulfate	1000	17	ND	18	ND 0.05 ND
Methoxychlor	***	17	ND	18	ND 0.05 ND
Endrin ketone	NC	17	ND	18	ND 0.05 ND
Toxaphene	NC	170	ND	180	ND 0.5 ND
2,4-D	500	3.4	ND	3.5	ND 0.1 ND
2,4,5-TP(Silvex)	700	3.4	ND	3.5	ND 0.1 ND
2,4-T	1,900	3.4	ND	3.5	ND 0.1 ND

NOTES:

bold Analyte exceedance of RSCO value
MDL Method Detection Limit
CONC Concentration
Q Qualifier
NA Not Analyzed
ND Not Detected
J Estimated value
NC No Criteria
D Sample diluted for analysis
*** As per TAGM #4046, Total VOCs < 10 ppm., Total Semi VOCs < 500 ppm. Individual Semi-VOCs <50 ppm.
Total pesticides < 10 ppm.
**** Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4-81 ppm. Average background levels in metropolitan or suburban areas or near highways are much higher and typically range from 200-500 ppm.

Table B-2**Surficial Soil Sampling Analytical Data****Phase II ESI****Former Metro North Property****Bronx, New York**

Client Sample ID	Lab Sample ID	NYSDEC TAGM	NYSDEC TAGM Recommended Soil Cleanup Objectives		SURFICIAL-1		SURFICIAL-2		SURFICIAL-3
Sample Collection Date	Sample Receipt Date	Eastern USA Background	SOIL mg/kg		N5416-02 08/01/2001 08/02/2001 0 - 0.5 ft		N5416-03 08/01/2001 08/02/2001 0 - 0.5 ft		N5416-04 08/01/2001 08/02/2001 0 - 0.5 ft
Sample Depth (bgs)	Sample Matrix	Units			SOIL mg/kg		SOIL mg/kg		SOIL mg/kg
INORGANICS									
Metals									
Aluminum	33,000	SB	4.75	6340	4.85	6130	4.93	5280	
Antimony	NC	SB	0.38	0.89	B	0.39	1.5	B	1.1
Arsenic	3-12**	7.5 or SB	0.52	5.6	0.53	5	0.54	3.8	
Barium	15-600	300 or SB	0.21	361	0.21	779	0.22	1140	
Beryllium	0-1.750	.16 (heast) or SB	0.10	0.29	B	0.11	0.67	0.11	0.34
Cadmium	1-1	1 or SB	0.31	0.84	0.32	1.1	0.32	2.5	
Calcium	130-35,000**	SB	1.11	42200	E	1.13	31900	E	1.15
Chromium	1.5-40**	10 or SB	0.52	16.4	0.53	30.4	0.54	17.3	
Cobalt	2.5-60**	30 or SB	0.19	5.7	0.19	10.6	0.19	8.3	
Copper	1-50	25 or SB	0.23	36.5	0.23	103	0.24	43.6	
Iron	2,000-550,000	2,000 or SB	0.73	12400	0.74	14000	0.76	12400	
Lead	200-500****	SB	0.31	307	E	0.32	436	E	0.32
Magnesium	100-5,000	SB	7.89	4310	E	8.05	7990	E	8.19
Manganese	50-5,000	SB	0.12	205	0.13	254	0.13	257	
Mercury	.001-.2	0.1	0.03	0.27	N	0.03	0.21	N	0.04
Nickel	.5-25	13 or SB	0.42	12.5	0.42	37.8	0.43	15	
Potassium	8,500-43,000**	SB	2.28	1700	E	2.32	1380	E	2.36
Selenium	.1-3.9	2 or SB	0.51	ND	0.52	ND	0.53	ND	
Silver	NC	SB	0.51	ND	0.52	ND	0.53	ND	
Sodium	6,000-8,000	SB	50.96	149	B	51.98	201	B	52.88
Thallium	NC	SB	0.59	ND	0.60	ND	0.81	ND	
Vanadium	1-300	150 or SB	0.33	27	0.34	31.6	0.35	25.7	
Zinc	9-50	20 or SB	0.88	272	0.90	727	0.92	855	

NOTES:**bold** Analyte exceedance of RSCOs and Eastern USA Background Concentration

MDL Method Detection Limit

CONC Concentration

Q Qualifier

NA Not Analyzed

ND Not Detected

J Estimated value

E Estimated value

B Estimated value

N Spiked sample recovery not within control limits

NC No Criteria

D Sample diluted for analysis

** New York State Background

*** As per TAGM #4046, Total VOCs < 10 ppm., Total Semi-VOCs < 500 ppm.

**** Individual Semi-VOCs <50 ppm. Total pesticides < 10 ppm.

***** Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4-61 ppm. Average background levels in metropolitan or suburban areas or near highways are much higher and typically range from 200-500 ppm.

HEAST Health Effects Assessments Summary Table

SB Site Background

Table B-2
Surficial Soil Sampling Analytical Data
Phase II ESI
Former Metro North Property
Bronx, New York

Client Sample ID Lab Sample ID	NYSDEC TAGM	NYSDEC TAGM	Recommended Soil Cleanup Objectives	SURFICIAL-4			SURFICIAL-5			SURFICIAL-6		
				Sample Collection Date	Sample Receipt Date	Sample Depth (bgs)	Sample Matrix Units	SOIL mg/kg	SOIL mg/kg	SOIL mg/kg	SOIL mg/kg	SOIL mg/kg
				MDL	CONC	Q	MDL	CONC	Q	MDL	CONC	Q
INORGANICS												
Metals												
Aluminum	33,000	SB	4.74	4530	4.60		2770	4.85		2710		
Antimony	NC	SB	0.38	20.4	0.37		11.2	0.39		7		
Arsenic	3-12**	7.5 or SB	0.52	22.9	0.50		16.2	0.53		12.2		
Banum	15-600	300 or SB	0.21	131	0.20		70.6	0.21		53.7		
Beryllium	0-1.750	.16 (heast) or SB	0.10	0.48	B		0.10	0.5		0.11	0.34	B
Cadmium	.1-1	1 or SB	0.31	1.2	0.30		0.91	0.32		0.66		
Calcium	130-35,000**	SB	1.11	9730	E		1.06	16600	E	1.13	32200	E
Chromium	1.5-40**	10 or SB	0.52	32.8	0.50		20.3	0.53		16.9		
Cobalt	2.5-60**	30 or SB	0.19	12.1	0.18		7.8	0.19		10.6		
Copper	1-50	25 or SB	0.23	999	0.22		168	0.23		228		
Iron	2,000-550,000	2,000 or SB	0.73	60300	0.70		41800	0.74		28000		
Lead	200-500****	SB	0.31	915	E		337	E	0.32	292	E	
Magnesium	100-5,000	SB	7.87	7130	E		7.64	8430	E	8.05	18500	E
Manganese	50-5,000	SB	0.12	563	0.12		379	0.13		300		
Mercury	.001-2	0.1	0.03	0.88	N	0.03	0.27	N	0.03	0.31	N	
Nickel	.5-25	13 or SB	0.41	36.7	0.40		21.9	0.42		18.5		
Potassium	8,500-43,000**	SB	2.27	404	BE	2.21	468	BE	2.32	672	E	
Selenium	.1-3.9	2 or SB	0.50	ND	0.50		ND	0.53		ND		
Silver	NC	SB	0.50	0.7	B	0.50	0.53	B	0.53	0.54	B	
Sodium	8,000-8,000	SB	50.85	118	B	49.37	58.1	B	51.98	1030		
Thallium	NC	SB	0.59	0.87	B	0.57	ND	0.60		ND		
Vanadium	1-300	150 or SB	0.33	49.5	0.32		25.3	0.34		16.3		
Zinc	9-50	20 or SB	0.86	364	0.86		128	0.90		180		

NOTES:

bold Analyte exceedance of RSCOs and Eastern USA Background Concen

MDL Method Detection Limit

CONC Concentration

Q Qualifier

NA Not Analyzed

ND Not Detected

J Estimated value

E Estimated value

B Estimated value

N Spiked sample recovery not within control limits

NC No Criteria

D Sample diluted for analysis

** New York State Background

*** As per TAGM #4046, Total VOCs < 10 ppm., Total Semi-VOCs < 500 ppm. Individual Semi-VOCs <50 ppm. Total pesticides < 10 ppm.

**** Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4-61 ppm. Average background levels in metropolitan or suburban areas or near highways are much higher and typically range from 200-500 ppm.

HEAST Health Effects Assessments Summary Table

SB Site Background

Table B-2
Surficial Soil Sampling Analytical Data
Phase II ESI
Former Metro North Property
Bronx, New York

Client Sample ID Lab Sample ID	NYSDEC TAGM	NYSDEC Recommended Soil Cleanup Objectives	SURFICIAL-12 NS416-13 08/01/2001	SURFICIAL-7 NS416-08 08/01/2001	SURFICIAL-8 NS416-09 08/01/2001	SURFICIAL-9 NS416-10 08/01/2001
Sample Collection Date	Eastern USA Background	SOIL mg/kg	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft
Sample Receipt Date	Soil Cleanup Objectives	SOIL mg/kg	SOIL MG/KG	SOIL MG/KG	SOIL MG/KG	SOIL MG/KG
Sample Depth (bgs)			DUP of SURFICIAL-6			
Sample Matrix Units			MDL	CONC Q	MDL	CONC Q
INORGANICS			MDL	CONC Q	MDL	CONC Q
Metals						
Aluminum	33,000	SB	4.91	3880	4.99	4900
Antimony	NC	SB	0.40	7.3	0.40	2.7
Arsenic	3-12**	7.5 or SB	0.54	13.9	0.55	20.6
Barium	15-600	300 or SB	0.21	65.5	0.22	169
Beryllium	0-1.750	.16 (heat) or SB	0.11	0.51	B	0.11
Cadmium	.1-1	1 or SB	0.32	0.81	0.33	1.1
Calcium	130-35,000***	SB	1.15	33800	E	1.17
Chromium	1.5-40**	10 or SB	0.54	21.6	0.55	31500
Cobalt	2.5-60**	30 or SB	0.19	9.3	0.20	8.9
Copper	1-50	25 or SB	0.24	181	0.24	105
Iron	2,000-550,000	2,000 or SB	0.75	35100	0.77	23800
Lead	200-500****	SB	0.32	308	E	0.33
Magnesium	100-5,000	SB	8.15	20200	E	8.30
Manganese	50-5,000	SB	0.13	430	0.13	313
Mercury	.001-2	0.1	0.04	0.25	N	0.04
Nickel	.5-25	13 or SB	0.43	19.7	0.44	16.2
Potassium	8,500-43,000**	SB	2.35	983	E	2.39
Selenium	.1-3.9	2 or SB	0.54	ND	0.55	ND
Silver	NC	SB	0.54	0.53	B	0.55
Sodium	6,000-8,000	SB	52.65	1220	53.57	999
Thallium	NC	SB	0.61	ND	0.62	ND
Vanadium	1-300	150 or SB	0.34	22.3	0.35	29.4
Zinc	9-50	20 or SB	0.91	204	0.93	264

NOTES:

bold Analyte exceedance of RSCOs and Eastern USA Background Concentration

MDL Method Detection Limit

CONC Concentration

Q Qualifier

NA Not Analyzed

ND Not Detected

J Estimated value

E Estimated value

B Estimated value

N Spiked sample recovery not within control limits

NC No Criteria

D Sample diluted for analysis

** New York State Background

*** As per TAGM #4046, Total VOCs < 10 ppm., Total Semi-VOCs < 500 ppm. Individual Semi-VOCs < 50 ppm. Total pesticides < 10 ppm.

**** Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4-61 ppm. Average background levels in metropolitan or suburban areas or near highways are much higher and typically range from 200-500 ppm.

HEAST Health Effects Assessments Summary Table

SB Site Background

Table B-2
 Surficial Soil Sampling Analytical Data
 Phase II ESI
 Former Metro North Property
 Bronx, New York

Client Sample ID Lab Sample ID	NYSDEC TAGM	NYSDEC TAGM	Recommended	SURFICIAL-10			SURFICIAL-11			SURFICIAL		
				Sample Collection Date	Sample Receipt Date	Sample Depth (bgs)	Sample Depth (bgs)	Sample Matrix	Sample Matrix	Units	Units	Units
Sample Collection Date	Eastern USA Background	SOIL mg/kg	SOIL mg/kg	MDL	CONC	Q	MDL	CONC	Q	MDL	CONC	Q
INORGANICS												
Metals												
Aluminum	33,000	SB	4.65	3930	4.79		5290	45.70		ND		
Antimony	NC	SB	0.38	4.2	B	0.39	5.4	B	3.70	ND		
Arsenic	3-12**	7.5 or SB	0.51	22.7		0.52	42.7		5.00	ND		
Barium	15-600	300 or SB	0.20	232		0.21	238		2.00	ND		
Beryllium	0-1.750	16 (heat) or SB	0.10	0.4	B	0.10	0.56		0.10	0.37	B	
Cadmium	.1-1	1 or SB	0.31	1.6		0.31	1.4		3.00	ND		
Calcium	130-35,000**	SB	1.09	33400	E	1.12	26600	E	10.70	ND		
Chromium	1.5-40**	10 or SB	0.51	22.8		0.52	31.1		5.00	ND		
Cobalt	2.5-60**	30 or SB	0.18	7.8		0.19	8.1		1.80	ND		
Copper	1-50	25 or SB	0.22	129		0.23	181		2.20	ND		
Iron	2,000-550,000	2,000 or SB	0.71	27000		0.73	39100		7.00	ND		
Lead	200-500****	SB	0.31	560	E	0.31	707	E	3.00	ND		
Magnesium	100-5,000	SB	7.72	12900	E	7.96	4110	E	75.9	ND		
Manganese	50-5,000	SB	0.12	290		0.13	390		1.20	ND		
Mercury	.001-2	0.1	0.03	0.22	N	0.03	0.45	N	0.20	ND		
Nickel	.5-25	13 or SB	0.41	22.1		0.42	23.9		4.00	ND		
Potassium	8,500-43,000**	SB	2.23	1270	E	2.30	767	E	21.9	ND		
Selenium	.1-3.9	2 or SB	0.51	ND		0.52	ND		5.00	ND		
Silver	NC	SB	0.51	ND		0.52	ND		5.00	ND		
Sodium	6,000-8,000	SB	49.87	226	B	51.38	153	B	490	ND		
Thallium	NC	SB	0.58	ND		0.60	ND		5.70	ND		
Vanadium	1-300	150 or SB	0.33	23.1		0.34	43.9		3.20	ND		
Zinc	9-50	20 or SB	0.86	423		0.89	390		8.50	ND		

NOTES:

bold Analyte exceedance of RSCOs and Eastern USA Background Concentration

MDL Method Detection Limit

CONC Concentration

Q Qualifier

NA Not Analyzed

ND Not Detected

J Estimated value

E Estimated value

B Estimated value

N Spiked sample recovery not within control limits

NC No Criteria

D Sample diluted for analysis

** New York State Background

*** As per TAGM #4046, Total VOCs < 10 ppm., Total Semi-VOCs < 500 ppm. Individual Semi-VOCs <50 ppm. Total pesticides < 10 ppm.

**** Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4-61 ppm. Average background levels in metropolitan or suburban areas or near highways are much higher and typically range from 200-500 ppm.

HEAST Health Effects Assessments Summary Table

SB Site Background

Table B-3
Subsurface Soil Sampling Analytical Data
Phase II ESI
Former Metro North Property
Bronx, New York

Client Sample ID Lab Sample ID	NYSDEC TAGM	PZ1-1			PZ1-2			PZ2-1			PZ2-2		
		Sample Collection Date 08/02/2001	Sample Receipt Date 08/02/2001	Sample Depth (bgs) 2.5 - 3.5 ft	Sample Collection Date 08/02/2001	Sample Receipt Date 08/02/2001	Sample Depth (bgs) 12.5 - 13.5 ft	Sample Collection Date 08/02/2001	Sample Receipt Date 08/02/2001	Sample Depth (bgs) 3 - 4 ft	Sample Collection Date 08/02/2001	Sample Receipt Date 08/02/2001	Sample Depth (bgs) 10 - 11 ft
Sample Matrix SOIL Units µg/kg		MDL	CONC	Q	MDL	CONC	Q	MDL	CONC	Q	MDL	CONC	Q
ORGANIC COMPOUNDS													
Volatile Organic Compounds													
Chloromethane	NC	3.2	ND		3.2	ND		34	ND		3.4	ND	
Vinyl Chloride	200	2.1	ND		2.1	ND		22	ND		2.2	ND	
Bromomethane	NC	2.2	ND		2.2	ND		23	ND		2.3	ND	
Chloroethane	1900	2.6	ND		2.6	ND		27	ND		2.7	ND	
1,1-Dichloroethene	400	1.8	ND		1.8	ND		19	ND		1.9	ND	
Acetone	200	6.5	ND		6.5	ND		70	ND		6.6	15	B
Carbon Disulfide	2700	1.1	ND		1.1	ND		12	ND		1.2	ND	
Methylene Chloride	100	1.1	21	B	1.3	ND		14	ND		1.1	22	B
trans-1,2-Dichloroethene	300	2	ND		2	ND		21	ND		2.1	ND	
1,1-Dichloroethane	200	1.1	ND		1.1	ND		12	ND		1.2	ND	
2-Butanone	300	6.4	ND		6.4	ND		68	ND		6.7	ND	
cis-1,2-Dichloroethene	NC	2.1	ND		2.1	ND		22	ND		2.2	ND	
Chloroform	300	1.1	ND		1.1	ND		12	ND		1.2	ND	
1,1,1-Trichloroethane	800	1.7	ND		1.7	ND		18	ND		1.7	ND	
Carbon Tetrachloride	600	1.2	ND		1.2	ND		12	ND		1.2	ND	
Benzene	60	1.1	ND		1.1	ND		2700	6000	D	1.2	ND	
1,2-Dichloroethane	100	2.8	ND		2.8	ND		30	ND		2.9	ND	
Trichloroethene	700	3.1	ND		3.1	ND		34	ND		3.3	ND	
1,2-Dichloropropane	NC	4.1	ND		4.1	ND		44	ND		4.3	ND	
Bromodichloromethane	NC	1.1	ND		1.1	ND		12	ND		1.2	ND	
4-Methyl-2-Pentanone	1000	3.4	ND		3.4	ND		37	ND		3.6	ND	
Toluene	1500	1.4	ND		1.4	ND		2650	110000	D	1.5	ND	
t-1,3-Dichloropropene	NC	1.9	ND		1.9	ND		20	ND		2	ND	
cis-1,3-Dichloropropene	NC	1.1	ND		1.1	ND		12	ND		1.2	ND	
1,1,2-Trichloroethane	NC	1.2	ND		1.2	ND		13	ND		1.3	ND	
2-Hexanone	NC	14	ND		14	ND		150	ND		15	ND	
Dibromochloromethane	NC	1.1	ND		1.1	ND		12	ND		1.2	ND	
Tetrachloroethene	1400	1.8	ND		1.8	ND		20	ND		1.9	ND	
Chlorobenzene	1700	1.1	ND		1.1	ND		12	ND		1.2	ND	
Ethyl Benzene	5500	1.7	ND		1.7	ND		2300	170000	D	1.8	ND	
m/p-Xylenes	1200	1.7	ND		1.7	ND		8660	1100000	D	1.8	ND	
o-Xylene	1200	1.9	ND		1.9	ND		5060	400000	D	2	ND	
Styrene	NC	1.1	ND		1.1	ND		12	ND		1.2	ND	
Bromoform	NC	1.1	ND		1.1	ND		12	ND		1.2	ND	
1,1,2,2-Tetrachloroethane	600	2.5	ND		2.5	ND		27	ND		2.7	ND	
Semi-Volatile Organic Compounds													
Phenol	30 or MDL	37	ND		40	ND		400	ND		40	ND	
bis(2-Chloroethyl)ether	NC	45	ND		48	ND		480	ND		48	ND	
2-Chlorophenol	800	41	ND		44	ND		440	ND		44	ND	
1,2-Dichlorobenzene	NC	37	ND		40	ND		400	ND		40	ND	
1,3-Dichlorobenzene	NC	45	ND		48	ND		480	ND		48	ND	
1,4-Dichlorobenzene	NC	37	ND		40	ND		400	ND		40	ND	
2-Methylphenol	100 or MDL	37	ND		40	ND		400	ND		40	ND	
2,2'-oxybis(1-Chloropropane)	NC	37	ND		40	ND		400	ND		40	ND	
3+4-Methylphenols	NC	67	ND		72	ND		720	ND		71	ND	
n-Nitroso-di-n-propylamine	NC	37	ND		40	ND		400	ND		40	ND	
Hexachloroethane	NC	41	ND		44	ND		440	ND		44	ND	
Nitrobenzene	200 or MDL	37	ND		40	ND		400	ND		40	ND	
Isophorone	4400	37	ND		40	ND		400	ND		40	ND	
2-Nitrophenol	330 or MDL	41	ND		44	ND		440	ND		44	ND	
2,4-Dimethylphenol	NC	86	ND		92	ND		920	ND		91	ND	
bis(2-Chloroethoxy)methane	NC	37	ND		40	ND		400	ND		40	ND	
2,4-Dichlorophenol	400	49	ND		52	ND		520	ND		52	ND	
1,2,4-Trichlorobenzene	NC	45	ND		48	ND		480	ND		48	ND	
Naphthalene	13000	45	ND		48	ND		2400	72000	D	48	ND	
4-Chloroaniline	220 or MDL	45	ND		48	ND		480	ND		48	ND	
Hexachlorobutadiene	NC	56	ND		60	ND		600	ND		60	ND	
4-Chloro-3-methylphenol	240 or MDL	41	ND		44	ND		440	ND		44	ND	
2-Methylnaphthalene	36400	45	ND		48	ND		2400	57000	D	48	ND	

Table B-3
Subsurface Soil Sampling Analytical Data
Phase II ESI
Former Metro North Property
Bronx, New York

Client Sample ID	NYSDDEC TAGM	PZ1-1	PZ1-2	PZ2-1	PZ2-2
Lab Sample ID	Recommended Soil Cleanup	N5416-14 08/02/2001	N5416-15 08/02/2001	N5416-017DL2 08/02/2001	N5416-18 08/02/2001
Sample Collection Date	Objectives	2.5 - 3.5 ft	12.5 - 13.5 ft	3 - 4 ft	10 - 11 ft
Sample Receipt Date	SOIL µg/Kg	SOIL µg/Kg	SOIL µg/Kg	SOIL µg/Kg	SOIL µg/Kg
Sample Depth (bgs)	Units	MDL	CONC	Q	MDL
Hexachlorocyclopentadiene	NC	140	ND	1500	ND
2,4,6-Trichlorophenol	NC	37	ND	400	ND
2,4,5-Trichlorophenol	1000	37	ND	400	ND
2-Chloronaphthalene	NC	45	ND	480	ND
2-Nitroaniline	430 or MDL	37	ND	400	ND
Dimethylphthalate	2000	37	ND	400	ND
Acanaphthylene	41000	45	160	480	2100
2,6-Dinitrotoluene	1000	37	ND	400	ND
3-Nitroaniline	500 or MDL	45	ND	480	ND
Acenaphthene	50,000***	45	ND	480	4500
2,4-Dinitrophenol	200 or MDL	75	ND	800	ND
4-Nitrophenol	100 or MDL	41	ND	440	ND
Dibenzofuran	6200	37	ND	480	510
2,4-Dinitrotoluene	NC	41	ND	440	ND
Diethylphthalate	7100	37	ND	400	ND
4-Chlorophenyl-phenylether	NC	45	ND	480	ND
Fluorene	50,000***	41	ND	440	4000
4-Nitroaniline	NC	90	ND	960	ND
4,6-Dinitro-2-methylphenol	NC	45	ND	480	ND
n-Nitrosodiphenylamine	NC	75	ND	800	ND
4-Bromophenyl-phenylether	NC	49	ND	520	ND
Hexachlorobenzene	410	41	ND	440	ND
Pentachlorophenol	1,000 or MDL	71	ND	760	ND
Phenanthrene	50,000***	37	240	400	14000
Anthracene	50,000***	48	99	520	4400
Carbazole	NC	37	51	400	ND
Di-n-butylphthalate	8100	45	40	480	ND
Fluoranthene	50,000***	37	570	40	7700
Pyrene	50,000***	37	560	40	13000
Butylbenzylphthalate	50,000***	37	ND	400	ND
3,3'-Dichlorobenzidine	NC	37	ND	400	ND
Benzo(a)anthracene	224 or MDL	37	330	40	400
Chrysene	400	60	440	64	4800
Bis(2-Ethylhexyl)phthalate	50,000***	37	930	40	ND
Di-n-octyl phthalate	50,000***	56	ND	60	ND
Benzo(b)fluoranthene	1100	35	380	40	400
Benzo(k)fluoranthene	1100	98	340	100	1000
Benzo(a)pyrene	61 or MDL	56	370	60	400
Indeno(1,2,3-cd)pyrene	3200	60	210	64	640
Dibenzo(a,h)anthracene	14 or MDL	56	ND	60	ND
Benzo(g,h,i)perylene	50,000***	48	200	52	ND
				520	3200
					51
					65

NOTES:

bold Analyte exceedance of RSCO value

MDL Method Detection Limit

CONC Concentration

Q Qualifier

NA Not Analyzed

ND Not Detected

J Estimated value

NC No Criteria

D Sample diluted for analysis

*** As per TAGM #4046, Total VOCs < 10 ppm., Total Semi-VOCs < 500 ppm. Individual Semi-VOCs < 50 ppm. Total pesticides < 10 ppm.

**** Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4-61 ppm. Average background levels in metropolitan or suburban areas or near highways are much higher and typically range from 200-500 ppm.

Table B-3
Subsurface Soil Sampling Analytical Data
Phase II ESI
Former Metro North Property
Bronx, New York

Client Sample ID Lab Sample ID	NYSDEC TAGM	PZ3-1 N5416-20 08/02/2001	PZ3-2 N5416-21 08/02/2001	SB3-1 N5435-05 08/03/2001	SB3-2 N5435-06 08/03/2001						
Sample Collection Date	Recommended Soil Cleanup Objectives	4 - 5 ft SOIL µg/Kg	11 - 12 ft SOIL µg/Kg	1.5 - 2.5 ft SOIL µg/Kg	6 - 7 ft SOIL µg/Kg						
Sample Receipt Date	Sample Depth (bgs)	Sample Matrix Units	MDL	CONC	Q	MDL	CONC	Q	MDL	CONC	Q
ORGANIC COMPOUNDS											
Volatile Organic Compounds											
Chloromethane	NC	3.3	ND	3.3	ND	3.2	ND	3.5	ND		
Vinyl Chloride	200	2.1	ND	2.2	ND	2.1	ND	2.3	ND		
Bromomethane	NC	2.3	ND	2.3	ND	2.2	ND	2.4	ND		
Chloroethane	1900	2.6	ND	2.6	ND	2.6	ND	2.8	ND		
1,1-Dichloroethene	400	1.9	ND	1.9	ND	1.8	ND	2	ND		
Acetone	200	6.5	16	B 6.5	13	B 6.5	ND	7.1	ND		
Carbon Disulfide	2700	1.2	ND	1.2	ND	1.1	ND	1.2	ND		
Methylene Chloride	100	1.1	3.6	1.1	3.7	1.3	ND	1.4	ND		
trans-1,2-Dichloroethene	300	2	ND	2	ND	1.9	ND	2.1	ND		
1,1-Dichloroethane	200	1.2	ND	1.2	ND	1.1	ND	1.2	ND		
2-Butanone	300	6.6	ND	6.6	ND	6.4	ND	7	ND		
cis-1,2-Dichloroethene	NC	2.1	ND	2.1	ND	2.1	ND	2.3	ND		
Chloroform	300	1.2	ND	1.2	ND	1.1	ND	1.2	ND		
1,1,1-Trichloroethane	800	1.7	ND	1.7	ND	1.6	ND	1.8	ND		
Carbon Tetrachloride	600	1.2	ND	1.2	ND	1.2	ND	1.3	ND		
Benzene	60	1.2	ND	1.2	ND	1.1	ND	1.2	ND		
1,2-Dichloroethane	100	2.8	ND	2.9	ND	2.8	ND	3	ND		
Trichloroethene	700	3.2	ND	3.2	ND	3.1	ND	3.4	ND		
1,2-Dichloropropane	NC	4.2	ND	4.2	ND	4.1	ND	4.5	ND		
Bromodichloromethane	NC	1.2	ND	1.2	ND	1.1	ND	1.2	ND		
4-Methyl-2-Pentanone	1000	3.5	ND	3.6	ND	3.4	ND	3.8	ND		
Toluene	1500	1.4	ND	1.5	ND	1.4	ND	1.5	ND		
t-1,3-Dichloropropene	NC	1.9	ND	1.9	ND	1.9	ND	2.1	ND		
cis-1,3-Dichloropropene	NC	1.2	ND	1.2	ND	1.1	ND	1.2	ND		
1,1,2-Trichloroethane	NC	1.2	ND	1.3	ND	1.2	ND	1.3	ND		
2-Hexanone	NC	14	ND	14	ND	14	ND	15	ND		
Dibromochloromethane	NC	1.2	ND	1.2	ND	1.1	ND	1.2	ND		
Tetrachloroethene	1400	1.9	ND	1.9	ND	1.8	ND	2	ND		
Chlorobenzene	1700	1.2	ND	1.2	ND	1.1	ND	1.2	ND		
Ethyl Benzene	5500	1.7	ND	1.7	ND	1.7	ND	1.8	ND		
m/p-Xylenes	1200	1.8	ND	1.8	ND	1.7	ND	1.9	ND		
o-Xylene	1200	1.9	ND	1.9	ND	1.9	ND	2	ND		
Styrene	NC	1.2	ND	1.2	ND	1.1	ND	1.2	ND		
Bromoform	NC	1.2	ND	1.2	ND	1.1	ND	1.2	ND		
1,1,2,2-Tetrachloroethane	600	2.6	ND	2.6	ND	2.5	ND	2.8	ND		
Semi-Volatile Organic Compounds											
Phenol	30 or MDL	39	ND	39	ND	37	ND	41	ND		
bis(2-Chloroethyl)ether	NC	47	ND	47	ND	45	ND	49	ND		
2-Chlorophenol	800	43	ND	43	ND	41	ND	45	ND		
1,2-Dichlorobenzene	NC	39	ND	39	ND	37	ND	41	ND		
1,3-Dichlorobenzene	NC	47	ND	47	ND	45	ND	49	ND		
1,4-Dichlorobenzene	NC	39	ND	39	ND	37	ND	41	ND		
2-Methylphenol	100 or MDL	39	ND	39	ND	37	ND	41	ND		
2,2'-oxybis(1-Chloropropane)	NC	39	ND	39	ND	37	ND	41	ND		
3+4-Methylphenols	NC	70	ND	70	ND	67	ND	74	ND		
n-Nitroso-di-n-propylamine	NC	39	ND	39	ND	37	ND	41	ND		
Hexachloroethane	NC	43	ND	43	ND	41	ND	45	ND		
Nitrobenzene	200 or MDL	39	ND	39	ND	37	ND	41	ND		
Isophorone	4400	39	ND	39	ND	37	ND	41	ND		
2-Nitrophenol	330 or MDL	43	ND	43	ND	41	ND	45	ND		
2,4-Dimethylphenol	NC	89	ND	89	ND	86	ND	95	ND		
bis(2-Chloroethoxy)methane	NC	39	ND	39	ND	37	ND	41	ND		
2,4-Dichlorophenol	400	50	ND	50	ND	49	ND	53	ND		
1,2,4-Trichlorobenzene	NC	47	ND	47	ND	45	ND	49	ND		
Naphthalene	13000	47	240	47	ND	45	38	J 49	120		
4-Chloroaniline	220 or MDL	47	ND	47	ND	45	ND	49	ND		
Hexachlorobutadiene	NC	58	ND	58	ND	56	ND	62	ND		
4-Chloro-3-methylphenol	240 or MDL	43	ND	43	ND	41	ND	45	ND		
2-Methylnaphthalene	36400	47	77	47	ND	45	ND	49	ND		

Table B-3
 Subsurface Soil Sampling Analytical Data
 Phase II ESI
 Former Metro North Property
 Bronx, New York

Client Sample ID Lab Sample ID	NYSDEC TAGM	PZ3-1 N5416-20 08/02/2001	PZ3-2 N5416-21 08/02/2001	SB3-1 N5435-05 08/03/2001	SB3-2 N5435-06 08/03/2001												
						Sample Collection Date	Sample Receipt Date	Sample Depth (bgs)	Sample Matrix	Units	Recommended Soil Cleanup Objectives	MDL	CONC	Q	MDL	CONC	Q
Hexachlorocyclopentadiene	NC	150	ND	150	ND	140	ND	160	ND								
2,4,6-Trichlorophenol	NC	39	ND	39	ND	37	ND	41	ND								
2,4,5-Trichlorophenol	1000	39	ND	39	ND	37	ND	41	ND								
2-Chloronaphthalene	NC	47	ND	47	ND	45	ND	49	ND								
2-Nitroaniline	430 or MDL	39	ND	39	ND	37	ND	41	ND								
Dimethylphthalate	2000	39	ND	39	ND	37	ND	41	ND								
Acenaphthene	41000	47	280	47	ND	45	ND	49	ND								
2,6-Dinitrotoluene	1000	39	ND	39	ND	37	ND	41	ND								
3-Nitroaniline	500 or MDL	47	ND	47	ND	45	ND	49	ND								
Acenaphthene	50,000***	47	92	47	ND	45	ND	49	ND								
2,4-Dinitrophenol	200 or MDL	78	ND	78	ND	75	ND	82	ND								
4-Nitrophenol	100 or MDL	43	ND	43	ND	41	ND	45	ND								
Dibenzofuran	6200	39	140	39	ND	37	ND	41	ND								
2,4-Dinitrotoluene	NC	43	ND	43	ND	41	ND	45	ND								
Diethylphthalate	7100	39	ND	39	ND	37	ND	41	ND								
4-Chlorophenyl-phenylether	NC	47	ND	47	ND	45	ND	49	ND								
Fluorene	50,000***	43	190	43	ND	41	ND	46	47								
4-Nitroaniline	NC	93	ND	93	ND	90	ND	99	ND								
4,6-Dinitro-2-methylphenol	NC	47	ND	47	ND	45	ND	49	ND								
n-Nitrosodiphenylamine	NC	78	ND	78	ND	75	ND	82	ND								
4-Bromophenyl-phenylether	NC	50	ND	50	ND	49	ND	53	ND								
Hexachlorobenzene	410	43	ND	43	ND	41	ND	45	ND								
Pentachlorophenol	1,000 or MDL	74	ND	74	ND	71	ND	78	ND								
Phenanthrene	50,000***	43	1500	43	ND	37	62	40	320								
Anthracene	50,000***	50	380	50	ND	49	ND	52	66								
Carbazole	NC	39	200	39	ND	37	ND	41	ND								
Di-n-butylphthalate	8100	47	ND	47	ND	45	ND	49	ND								
Fluoranthene	50,000***	39	1800	39	ND	36	55	40	350								
Pyrene	50,000***	39	2000	39	ND	36	72	40	290								
Butylbenzylphthalate	50,000***	39	ND	39	ND	37	ND	41	ND								
3,3'-Dichlorobenzidine	NC	39	ND	39	ND	37	ND	41	ND								
Benz(a)anthracene	224 or MDL	39	920	39	ND	36	46	40	140								
Chrysene	400	59	1000	59	ND	36	96	40	180								
Bis(2-Ethylhexyl)phthalate	50,000***	39	120	39	ND	60	82	41	ND								
Di-n-octyl phthalate	50,000***	58	ND	58	ND	56	ND	62	ND								
Benz(b)fluoranthene	1100	39	680	39	ND	36	43	40	91								
Benz(k)fluoranthene	1100	101	1300	101	ND	99	51	103	110								
Benz(a)pyrene	61 or MDL	58	900	58	ND	56	40	60	100								
Indeno(1,2,3-cd)pyrene	3200	62	200	62	ND	60	ND	64	53								
Dibenzo(a,h)anthracene	14 or MDL	58	59	58	ND	56	ND	62	ND								
Benz(g,h,i)perylene	50,000***	50	310	50	ND	49	ND	52	59								

NOTES:

bold Analyte exceedance of RSCo value
 MDL Method Detection Limit
 CONC Concentration
 Q Qualifier
 NA Not Analyzed
 ND Not Detected
 J Estimated value
 NC No Criteria
 D Sample diluted for analysis
 *** As per TAGM #4046, Total VOCs < 10 ppm., Total Semi-VOCs < 500 ppm. Individual Semi-VOCs < 50 ppm. Total pesticides < 10 ppm.
 **** Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4-61 ppm. Average background levels in metropolitan or suburban areas or near highways are much higher and typically range from 200-500 ppm.

Table B-3
Subsurface Soil Sampling Analytical Data
Phase II ESI
Former Metro North Property
Bronx, New York

Client Sample ID Lab Sample ID	NYSDEC TAGM	SB4-1 N5435-07 08/03/2001	SB5-1 N5435-08 08/03/2001	SB6-1 N5435-09 08/03/2001	SB8-1 N5435-10 08/03/2001					
Sample Collection Date	Recommended Soil Cleanup Objectives	6 - 7 ft SOIL µg/Kg	4 - 5 ft SOIL µg/Kg	5 - 6 ft SOIL µg/Kg	5 - 6 ft SOIL µg/Kg					
Sample Receipt Date	Sample Depth (bgs)	MDL	CONC	Q	MDL	CONC	Q	MDL	CONC	Q
Sample Matrix Units	SOIL µg/Kg									
ORGANIC COMPOUNDS										
Volatile Organic Compounds										
Chloromethane	NC	3.5	ND	3.5	ND	3.6	ND	3.6	ND	
Vinyl Chloride	200	2.3	ND	2.3	ND	2.4	ND	2.4	ND	
Bromomethane	NC	2.4	ND	2.4	ND	2.5	ND	2.5	ND	
Chloroethane	1900	2.8	ND	2.8	ND	2.9	ND	2.9	ND	
1,1-Dichloroethene	400	2	ND	2	ND	2.1	ND	2.1	ND	
Acetone	200	7.25	17	B	7.2	ND	7.4	ND	7.4	ND
Carbon Disulfide	2700	1.2	ND	1.2	ND	1.3	ND	1.3	ND	
Methylene Chloride	100	1.4	ND	1.4	ND	1.5	ND	1.1	7	
trans-1,2-Dichloroethene	300	2.1	ND	2.1	ND	2.2	ND	2.2	ND	
1,1-Dichloroethane	200	1.2	ND	1.2	ND	1.3	ND	1.3	ND	
2-Butanone	300	7	ND	7	ND	7.3	ND	7.3	ND	
cis-1,2-Dichloroethene	NC	2.3	ND	2.3	ND	2.4	ND	2.4	ND	
Chloroform	300	1.2	ND	1.2	ND	1.3	ND	1.3	ND	
1,1,1-Trichloroethane	800	1.8	ND	1.8	ND	1.9	ND	1.9	ND	
Carbon Tetrachloride	600	1.3	ND	1.3	ND	1.3	ND	1.3	ND	
Benzene	60	1	7.2	1.2	ND	1.3	ND	1.3	ND	
1,2-Dichloroethane	100	3	ND	3	ND	3.2	ND	3.2	ND	
Trichloroethene	700	3.5	ND	3.5	ND	3.6	ND	3.6	ND	
1,2-Dichloropropane	NC	4.5	ND	4.5	ND	4.7	ND	4.7	ND	
Bromodichloromethane	NC	1.2	ND	1.2	ND	1.3	ND	1.3	ND	
4-Methyl-2-Pentanone	1000	3.8	ND	3.8	ND	3.9	ND	3.9	ND	
Toluene	1500	1.6	ND	1.6	ND	1.6	ND	1.6	ND	
t-1,3-Dichloropropene	NC	2.1	ND	2.1	ND	2.1	ND	2.1	ND	
cis-1,3-Dichloropropene	NC	1.2	ND	1.2	ND	1.3	ND	1.3	ND	
1,1,2-Trichloroethane	NC	1.3	ND	1.3	ND	1.4	ND	1.4	ND	
2-Hexanone	NC	15	ND	15	ND	16	ND	16	ND	
Dibromochloromethane	NC	1.2	ND	1.2	ND	1.3	ND	1.3	ND	
Tetrachloroethene	1400	2	ND	2	ND	2.1	ND	2.1	ND	
Chlorobenzene	1700	1.2	ND	1.2	ND	1.3	ND	1.3	ND	
Ethyl Benzene	5500	1.8	ND	1.8	ND	1.9	ND	1.9	ND	
m/p-Xylenes	1200	1.9	ND	1.9	ND	2	ND	2	ND	
o-Xylene	1200	2.1	ND	2.1	ND	2.1	ND	2.1	ND	
Styrene	NC	1.2	ND	1.2	ND	1.3	ND	1.3	ND	
Bromoform	NC	1.2	ND	1.2	ND	1.3	ND	1.3	ND	
1,1,2,2-Tetrachloroethane	600	2.8	ND	2.8	ND	2.9	ND	2.9	ND	
Semi-Volatile Organic Compounds										
Phenol	30 or MDL	42	ND	41	ND	43	ND	43	ND	
bis(2-Chloroethyl)ether	NC	50	ND	49	ND	52	ND	52	ND	
2-Chlorophenol	800	46	ND	45	ND	48	ND	48	ND	
1,2-Dichlorobenzene	NC	42	ND	41	ND	43	ND	43	ND	
1,3-Dichlorobenzene	NC	50	ND	49	ND	52	ND	52	ND	
1,4-Dichlorobenzene	NC	42	ND	41	ND	43	ND	43	ND	
2-Methylphenol	100 or MDL	42	ND	41	ND	43	ND	43	ND	
2,2'-oxybis(1-Chloropropane)	NC	42	ND	41	ND	43	ND	43	ND	
3+4-Methylphenols	NC	75	ND	74	ND	78	ND	78	ND	
n-Nitroso-di-n-propylamine	NC	42	ND	41	ND	43	ND	43	ND	
Hexachloroethane	NC	46	ND	45	ND	48	ND	48	ND	
Nitrobenzene	200 or MDL	42	ND	41	ND	43	ND	43	ND	
Isophorone	4400	42	ND	41	ND	43	ND	43	ND	
2-Nitrophenol	330 or MDL	46	ND	45	ND	48	ND	48	ND	
2,4-Dimethylphenol	NC	96	ND	95	ND	100	ND	100	ND	
bis(2-Chloroethoxy)methane	NC	42	ND	41	ND	43	ND	43	ND	
2,4-Dichlorophenol	400	54	ND	53	ND	56	ND	56	ND	
1,2,4-Trichlorobenzene	NC	50	ND	49	ND	52	ND	52	ND	
Naphthalene	13000	50	93	49	45	J	52	270	52	110
4-Chloraniline	220 or MDL	50	ND	49	ND	52	ND	52	ND	
Hexachlorobutadiene	NC	63	ND	62	ND	65	ND	65	ND	
4-Chloro-3-methylphenol	240 or MDL	46	ND	45	ND	48	ND	48	ND	
2-Methylnaphthalene	36400	50	ND	49	ND	52	87	52	44	J

Table B-3
Subsurface Soil Sampling Analytical Data
Phase II ESI
Former Metro North Property
Bronx, New York

Client Sample ID Lab Sample ID	NYSDEC TAGM	SB4-1	SB5-1	SB6-1	SB8-1							
Sample Collection Date		N5435-07 08/03/2001	N5435-08 08/03/2001	N5435-09 08/03/2001	N5435-10 08/03/2001							
Sample Receipt Date	Recommended Soil Cleanup Objectives	08/03/2001	08/03/2001	08/03/2001	08/03/2001							
Sample Depth (bgs)	SOIL µg/Kg	6 - 7 ft	4 - 5 ft	5 - 6 ft	5 - 6 ft							
Sample Matrix Units		SOIL µg/Kg	SOIL µg/Kg	SOIL µg/Kg	SOIL µg/Kg							
	MDL	CONC	Q	MDL	CONC	Q	MDL	CONC	Q	MDL	CONC	Q
Hexachlorocyclopentadiene	NC	160	ND	160	ND	160	ND	160	ND	ND	ND	ND
2,4,6-Trichlorophenol	NC	42	ND	41	ND	43	ND	43	ND	43	ND	ND
2,4,5-Trichlorophenol	1000	42	ND	41	ND	43	ND	43	ND	43	ND	ND
2-Chloronaphthalene	NC	50	ND	49	ND	52	ND	52	ND	52	ND	ND
2-Nitroaniline	430 or MDL	42	ND	41	ND	43	ND	43	ND	43	ND	ND
Dimethylphthalate	2000	42	ND	41	ND	43	ND	43	ND	43	ND	ND
Acenaphthylene	41000	50	ND	49	ND	52	1200	52	ND	52	730	ND
2,6-Dinitrotoluene	1000	42	ND	41	ND	43	ND	43	ND	43	ND	ND
3-Nitroaniline	500 or MDL	50	ND	49	ND	52	ND	52	ND	52	ND	ND
Acenaphthene	50,000***	50	ND	49	ND	52	200	52	ND	52	80	ND
2,4-Dinitrophenol	200 or MDL	83	ND	82	ND	87	ND	87	ND	87	ND	ND
4-Nitrophenol	100 or MDL	46	ND	45	ND	48	ND	48	ND	48	ND	ND
Dibenzofuran	6200	42	ND	41	ND	43	180	43	ND	43	76	ND
2,4-Dinitrotoluene	NC	46	ND	45	ND	48	ND	48	ND	48	ND	ND
Diethylphthalate	7100	42	ND	41	ND	43	ND	43	ND	43	ND	ND
4-Chlorophenyl-phenylether	NC	50	ND	49	ND	52	ND	52	ND	52	ND	ND
Fluorene	50,000***	46	ND	46	ND	48	210	48	ND	48	160	ND
4-Nitroaniline	NC	100	ND	99	ND	100	ND	100	ND	100	ND	ND
4,6-Dinitro-2-methylphenol	NC	50	ND	49	ND	52	ND	52	ND	52	ND	ND
n-Nitrosodiphenylamine	NC	83	ND	82	ND	87	ND	87	ND	87	ND	ND
4-Bromophenyl-phenylether	NC	54	ND	53	ND	56	ND	56	ND	56	ND	ND
Hexachlorobenzene	410	46	ND	45	ND	48	ND	48	ND	48	ND	ND
Pentachlorophenol	1,000 or MDL	79	ND	78	ND	82	ND	82	ND	82	ND	ND
Phenanthrene	50,000***	42	45	40	ND	43	1300	43	ND	43	1400	ND
Anthracene	50,000***	54	ND	52	ND	56	850	56	ND	56	510	ND
Carbazole	NC	42	ND	41	ND	43	450	43	ND	43	310	ND
Di-n-butylphthalate	8100	50	ND	49	ND	52	ND	52	ND	52	ND	ND
Fluoranthene	50,000***	42	45	40	ND	220	6100	D	43	3400	ND	ND
Pyrene	50,000***	42	ND	40	ND	220	7200	D	43	3000	ND	ND
Butylbenzylphthalate	50,000***	42	ND	41	ND	43	ND	43	ND	43	ND	ND
3,3'-Dichlorobenzidine	NC	42	ND	41	ND	43	ND	43	ND	43	ND	ND
Benzo(a)anthracene	224 or MDL	42	ND	40	ND	43	2800	43	ND	43	1700	ND
Chrysene	400	67	ND	40	ND	69	3300	69	ND	69	2100	ND
Bis(2-Ethylhexyl)phthalate	50,000***	42	ND	41	ND	43	87	43	ND	43	110	ND
Di-n-octyl phthalate	50,000***	63	ND	62	ND	65	ND	65	ND	65	ND	ND
Benzo(b)fluoranthene	1100	42	ND	40	ND	220	4000	D	43	1900	ND	ND
Benzo(k)fluoranthene	1100	110	ND	103	ND	110	3500	110	ND	110	2000	ND
Benzo(a)pyrene	61 or MDL	63	ND	60	ND	65	3500	65	ND	65	1600	ND
Indeno(1,2,3-cd)pyrene	3200	67	ND	64	ND	69	550	69	ND	69	310	ND
Dibenzo(a,h)anthracene	14 or MDL	63	ND	62	ND	65	170	65	ND	65	89	ND
Benzo(g,h,i)perylene	50,000***	54	ND	52	ND	56	1000	56	ND	56	400	ND

NOTES:

bold Analyte exceedance of RSCO value

MDL Method Detection Limit

CONC Concentration

Q Qualifier

NA Not Analyzed

ND Not Detected

J Estimated value

NC No Criteria

D Sample diluted for analysis

*** As per TAGM #4046, Total VOCs < 10 ppm., Total

Semi-VOCs < 500 ppm. Individual Semi-VOCs <50

ppm. Total pesticides < 10 ppm.

**** Background levels for lead vary widely. Average levels

in undeveloped, rural areas may range from 4-61 ppm.

Average background levels in metropolitan or

suburban areas or near highways are much higher and

typically range from 200-500 ppm.

Table B-3
Subsurface Soil Sampling Analytical Data
Phase II ESI
Former Metro North Property
Bronx, New York

Client Sample ID Lab Sample ID	NYSDEC TAGM	FB3
Sample Collection Date	Recommended	N5435-11
Sample Receipt Date	Soil Cleanup	08/03/2001
Sample Depth (bgs)	Objectives	NA
Sample Matrix Units	SOIL µg/kg	WATER µg/L
	MDL	CONC Q
ORGANIC COMPOUNDS		
Volatile Organic Compounds		
Chloromethane	NC	2.8
Vinyl Chloride	200	1.8
Bromomethane	NC	1.9
Chloroethane	1900	2.3
1,1-Dichloroethene	400	1.6
Acetone	200	5.8
Carbon Disulfide	2700	1
Methylene Chloride	100	1.1
trans-1,2-Dichloroethene	300	1.7
1,1-Dichloroethane	200	1
2-Butanone	300	5.6
cis-1,2-Dichloroethene	NC	1.8
Chloroform	300	1
1,1,1-Trichloroethane	800	1.5
Carbon Tetrachloride	600	1
Benzene	60	1
1,2-Dichloroethane	100	2.5
Trichloroethene	700	2.8
1,2-Dichloropropane	NC	3.6
Bromodichloromethane	NC	1
4-Methyl-2-Pentanone	1000	3
Toluene	1500	1.2
t-1,3-Dichloropropene	NC	1.7
cis-1,3-Dichloropropene	NC	1
1,1,2-Trichloroethane	NC	1.1
2-Hexanone	NC	12
Dibromochloromethane	NC	1
Tetrachloroethene	1400	1.6
Chlorobenzene	1700	1
Ethyl Benzene	5500	1.5
m/p-Xylenes	1200	1.5
o-Xylene	1200	1.7
Styrene	NC	1
Bromoform	NC	1
1,1,2,2-Tetrachloroethane	600	2.2
Semi-Volatile Organic Compounds		
Phenol	30 or MDL	1
bis(2-Chloroethyl)ether	NC	1.2
2-Chlorophenol	800	1.1
1,2-Dichlorobenzene	NC	1
1,3-Dichlorobenzene	NC	1.2
1,4-Dichlorobenzene	NC	1
2-Methylphenol	100 or MDL	1
2,2'-oxybis(1-Chloropropane)	NC	1
3+4-Methylphenols	NC	1.8
n-Nitroso-di-n-propylamine	NC	1
Hexachloroethane	NC	1.1
Nitrobenzene	200 or MDL	1
Isophorone	4400	1
2-Nitrophenol	330 or MDL	1.1
2,4-Dimethylphenol	NC	2.3
bis(2-Chloroethoxy)methane	NC	1
2,4-Dichlorophenol	400	1.3
1,2,4-Trichlorobenzene	NC	1.2
Naphthalene	13000	1.2
4-Chloroaniline	220 or MDL	1.2
Hexachlorobutadiene	NC	1.5
4-Chloro-3-methylphenol	240 or MDL	1.1
2-Methylnaphthalene	36400	1.2

Table B-3
Subsurface Soil Sampling Analytical Data
Phase II ESI
Former Metro North Property
Bronx, New York

Client Sample ID Lab Sample ID	NYSDEC TAGM Recommended	FB3 NS435-11 08/03/2001
Sample Collection Date	Soil Cleanup Objectives	08/03/2001 NA WATER µg/L
Sample Receipt Date	SOIL Units	
		MDL CONC Q
Hexachlorocyclopentadiene	NC	3.8 ND
2,4,6-Trichlorophenol	NC	1 ND
2,4,5-Trichlorophenol	1000	1 ND
2-Chloronaphthalene	NC	1.2 ND
2-Nitroaniline	430 or MDL	1 ND
Dimethylphthalate	2000	1 ND
Acenaphthylene	41000	1.2 ND
	1000	1 ND
2,6-Dinitrotoluene	500 or MDL	1.2 ND
Acenaphthene	50,000***	1.2 ND
2,4-Dinitrophenol	200 or MDL	2 ND
4-Nitrophenol	100 or MDL	1.1 ND
Dibenzofuran	6200	1 ND
2,4-Dinitrotoluene	NC	1.1 ND
Diethylphthalate	7100	1 ND
4-Chlorophenyl-phenylether	NC	1.2 ND
Fluorene	50,000***	1.1 ND
4-Nitroaniline	NC	2.4 ND
4,6-Dinitro-2-methylphenol	NC	1.2 ND
n-Nitrosodiphenylamine	NC	2 ND
4-Bromophenyl-phenylether	NC	1.3 ND
Hexachlorobenzene	410	1.1 ND
Pentachlorophenol	1,000 or MDL	1.9 ND
Phenanthrene	50,000***	1 ND
Anthracene	50,000***	1.3 ND
Carbazole	NC	1 ND
Di-n-butylphthalate	8100	1.2 ND
Fluoranthene	50,000***	1 ND
Pyrene	50,000***	1 ND
Butylbenzylphthalate	50,000***	1 ND
3,3'-Dichlorobenzidine	NC	1 ND
Benzo(a)anthracene	224 or MDL	1 ND
Chrysene	400	1.6 ND
Bis(2-Ethylhexyl)phthalate	50,000***	1 ND
Di-n-octyl phthalate	50,000***	1.5 ND
Benzo(b)fluoranthene	1100	1 ND
Benzo(k)fluoranthene	1100	2.6 ND
Benzo(a)pyrene	61 or MDL	1.5 ND
Indeno(1,2,3-cd)pyrene	3200	1.6 ND
Dibenzo(a,h)anthracene	14 or MDL	1.5 ND
Benzo(g,h,i)perylene	50,000***	1.3 ND

NOTES:

- bold** Analyte exceedance of RSCO value
- MDL Method Detection Limit
- CONC Concentration
- Q Qualifier
- NA Not Analyzed
- ND Not Detected
- J Estimated value
- NC No Criteria
- D Sample diluted for analysis
- *** As per TAGM #4046, Total VOCs < 10 ppm., Total Semi-VOCs < 500 ppm. Individual Semi-VOCs <50 ppm. Total pesticides < 10 ppm.
- **** Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4-61 ppm. Average background levels in metropolitan or suburban areas or near highways are much higher and typically range from 200-500 ppm.

Table B-3

Subsurface Soil Sampling Analytical Data

Phase II ESI

Former Metro North Property

Bronx, New York

Client Sample ID Lab Sample ID	NYSDEC TAGM Eastern USA Background	NYSDEC TAGM Recommended Soil Cleanup Objectives	PZ1-1 N5416-14 08/02/2001	PZ1-2 N5416-15 08/02/2001	PZ2-1 N5416-17 08/02/2001	MDL		MDL		MDL					
						Sample Collection Date	Sample Receipt Date	Sample Depth (bgs)	Sample Matrix	Units	CONC	Q	CONC	Q	CONC
INORGANICS															
Metals															
Aluminum	33,000	SB	5.16	3020	B	5.48	5690	5.52	6860						
Antimony	NC	SB	0.42	4.2	B	0.44	0.79	B	0.45	7.1	B				
Arsenic	3-12**	7.5 or SB	0.56	9.4		0.60	3.2	0.60	7.1						
Barium	15-600	300 or SB	0.23	81.9		0.24	45.9	0.24	176						
Beryllium	0-1.750	16 (heat) or SB	0.11	0.46	B	0.12	0.5	B	0.12	0.36	B				
Cadmium	.1-1	1 or SB	0.34	0.84		0.36	ND	0.36	1.6						
Calcium	130-35,000**	SB	1.21	7910	E	1.28	33700	E	1.29	20400	E				
Chromium	1.5-40**	10 or SB	0.56	16.1		0.60	11.8	0.60	14						
Cobalt	2.5-60**	30 or SB	0.20	8.7		0.22	7.4	0.22	4.5	B					
Copper	1-50	25 or SB	0.25	136		0.26	20.8	0.27	734						
Iron	2,000-550,000	2,000 or SB	0.79	21500		0.84	18900	0.85	12200						
Lead	200-500****	SB	0.34	446	E	0.36	21.5	E	0.36	2600	E				
Magnesium	100-5,000	SB	8.58	3890	E	9.10	21600	E	9.17	6690	E				
Manganese	50-5,000	SB	0.14	224		0.14	152	0.14	297						
Mercury	.001-.2	0.1	0.04	0.76	N	0.04	0.05	N	0.04	2.9	N				
Nickel	.5-25	13 or SB	0.45	17.9		0.48	9.1	0.48	12.7						
Potassium	8,500-43,000**	SB	2.47	411	BE	2.63	1050	E	2.64	831	E				
Selenium	.1-3.9	2 or SB	0.56	ND		0.60	ND	0.60	ND						
Silver	NC	SB	0.56	ND		0.60	ND	0.60	0.67	B					
Sodium	6,000-8,000	SB	55.39	123	B	58.78	183	B	59.20	647					
Thallium	NC	SB	0.64	ND		0.68	ND	0.69	ND						
Vanadium	1-300	150 or SB	0.36	22.8		0.38	21.7	0.39	22.8						
Zinc	9-50	20 or SB	0.96	408		1.02	99.1	1.03	475						

NOTES:**bold** Analyte exceedance of RSCOs and Eastern USA Background Concentration

MDL Method Detection Limit

CONC Concentration

Q Qualifier

NA Not Analyzed

ND Not Detected

J Estimated value

E Estimated value

B Estimated value

N Spiked sample recovery not within control limits

NC No Criteria

D Sample diluted for analysis

** New York State Background

*** As per TAGM #4046, Total VOCs < 10 ppm., Total Semi-VOCs < 500

ppm. Individual Semi-VOCs < 50 ppm. Total pesticides < 10 ppm.

**** Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4-61 ppm. Average background levels in metropolitan or suburban areas or near highways are much higher and typically range from 200-500 ppm.

HEAST Health Effects Assessments Summary Table

SB Site Background

Table B-3
Subsurface Soil Sampling Analytical Data
Phase II ESI
Former Metro North Property
Bronx, New York

Client Sample ID Lab Sample ID	NYSDEC TAGM	NYSDEC TAGM	PZ2-2	PZ3-1	PZ3-2	SB3-1					
Sample Collection Date	Recommended Soil Cleanup Objectives	08/02/2001	N5416-18	08/02/2001	08/02/2001	N5435-05					
Sample Receipt Date	SOIL Background	08/02/2001	10 - 11 ft	08/02/2001	08/02/2001	08/03/2001					
Sample Depth (bgs)	SOIL Units	mg/kg	SOIL mg/kg	SOIL MG/KG	SOIL MG/KG	SOIL MG/KG					
			MDL	CONC	Q	MDL					
INORGANICS											
Metals											
Aluminum	33,000	SB	5.45	4800	5.30	6930	5.34	7960	5.15	4330	
Antimony	NC	SB	0.44	ND	0.43	2.3	B	0.43	0.43	0.42	4.2
Arsenic	3-12**	7.5 or SB	0.60	2.7	0.58	12.5		0.58	2.2	0.56	5.6
Barium	15-600	300 or SB	0.24	12.9	B	0.23	270		0.23	59.5	0.23
Beryllium	0-1.750	.16 (heat) or SB	0.12	0.19	B	0.12	0.41	B	0.12	0.39	0.05
Cadmium	.1-1	1 or SB	0.36	ND		0.35	0.91		0.35	ND	0.34
Calcium	130-35,000**	SB	1.28	2240	E	1.24	22500	E	1.25	1440	0.12
Chromium	1.5-40**	10 or SB	0.60	8.6	0.58	21.4		0.58	20.2	0.56	9.2
Cobalt	2.5-60**	30 or SB	0.21	4	B	0.21	8.3		0.21	11.6	0.20
Copper	1-50	25 or SB	0.26	12.1		0.26	125		0.26	14.3	0.25
Iron	2,000-550,000	2,000 or SB	0.83	8610		0.81	31100		0.82	14700	0.79
Lead	200-500****	SB	0.36	14.4	E	0.35	440	E	0.35	6.8	E
Magnesium	100-5,000	SB	9.05	2010	E	8.81	7330	E	8.87	5110	E
Manganese	50-5,000	SB	0.14	124		0.14	293		0.14	260	0.14
Mercury	.001-2	0.1	0.04	ND		0.04	0.33	N	0.04	ND	0.04
Nickel	.5-25	13 or SB	0.48	7.5		0.46	17.2		0.47	15.3	0.45
Potassium	8,500-43,000**	SB	2.61	467	BE	2.54	1550	E	2.56	2020	E
Selenium	1-3.9	2 or SB	0.60	ND		0.58	ND		0.58	ND	0.56
Silver	NC	SB	0.60	ND		0.58	ND		0.58	ND	0.56
Sodium	6,000-8,000	SB	58.43	97.5	B	56.87	125	B	57.27	ND	55.26
Thallium	NC	SB	0.68	ND		0.66	ND		0.67	ND	0.06
Vanadium	1-300	150 or SB	0.38	7.9		0.37	34		0.37	25.8	0.36
Zinc	9-50	20 or SB	1.01	117		0.99	346		0.99	39.1	0.96
											112
											E

NOTES:

bold Analyte exceedance of RSCOs and Eastern USA Background Concentration

MDL Method Detection Limit

CONC Concentration

Q Qualifier

NA Not Analyzed

ND Not Detected

J Estimated value

E Estimated value

B Estimated value

N Spiked sample recovery not within control limits

NC No Criteria

D Sample diluted for analysis

** New York State Background

*** As per TAGM #4046, Total VOCs < 10 ppm., Total Semi-VOCs < 500 ppm. Individual Semi-VOCs < 50 ppm. Total pesticides < 10 ppm.

**** Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4-61 ppm. Average background levels in metropolitan or suburban areas or near highways are much higher and typically range from 200-500 ppm.

HEAST Health Effects Assessments Summary Table

SB Site Background

Table B-3
Subsurface Soil Sampling Analytical Data
Phase II ESI
Former Metro North Property
Bronx, New York

Client Sample ID Lab Sample ID	NYSDEC TAGM	Eastern USA Background	NYSDEC Recommended Soil Cleanup Objectives	SB3-2			SB4-1			SB5-1			SB6-1		
				Sample Collection Date	Sample Receipt Date	Sample Depth (bgs)	Sample Matrix	SOIL mg/kg	SOIL mg/kg	6 - 7 ft	SOIL mg/kg	SOIL mg/kg	4 - 5 ft	SOIL mg/kg	5 - 6 ft
Sample Units	MDL	CONC	Q	MDL	CONC	Q	MDL	CONC	Q	MDL	CONC	Q	MDL	CONC	Q
INORGANICS															
Metals															
Aluminum	33,000	SB	5.64	10200	B	5.68	6300	5.57		11200	5.96		4630		
Antimony	NC	SB	0.46	0.87		0.46	ND	0.45		ND	0.48		13.9		
Arsenic	3-12**	7.5 or SB	0.62	3.5		0.62	3.2	0.61		3.4	0.65		13.7		
Barium	15-600	300 or SB	0.25	73.5		0.25	50.1	0.24		39.7	0.26		53.2		
Beryllium	0-1.750	16 (heast) or SB	0.05	0.46	B	0.05	0.34	B	0.05	0.44	B	0.05	0.32	B	
Cadmium	.1-1	1 or SB	0.37	ND		0.37	ND	0.37		ND	0.39		0.83		
Calcium	130-35,000**	SB	0.13	1730	E	0.13	66400	E	0.13	12100	E	0.14	2920	E	
Chromium	1.5-40**	10 or SB	0.62	22.3		0.62	11.3	0.61		16.4	0.65		13.7		
Cobalt	2.5-60**	30 or SB	0.22	10.4		0.22	4.2	B	0.22	8.7	0.23		11.5		
Copper	1-50	25 or SB	0.27	76.3		0.27	8.3	0.27		17.5	0.29		135		
Iron	2,000-550,000	2,000 or SB	0.86	18100	E	0.87	12300	E	0.85	20100	E	0.91	27000	E	
Lead	200-500****	SB	0.37	142	E	0.37	19.1	E	0.37	12.9	E	0.39	684	E	
Magnesium	100-5,000	SB	9.37	3430		9.44	22300			5080			9.90		2150
Manganese	50-5,000	SB	0.15	275		0.15	292	0.15		281			0.16		161
Mercury	.001-2	0.1	0.04	0.6		0.04	0.07			0.07			0.04		0.32
Nickel	.5-25	13 or SB	0.49	17.8		0.50	8.3	0.49		12.5	0.52		18		
Potassium	8,500-43,000**	SB	2.70	1860		2.72	954	2.67		1010	2.86		693		
Selenium	.1-3.9	2 or SB	0.62	ND		0.62	ND	0.61		ND	0.65		ND		
Silver	NC	SB	0.62	ND		0.62	ND	0.61		ND	0.65		ND		
Sodium	6,000-8,000	SB	60.52	ND		60.97	113	B	59.78	ND	63.91		75.2	B	
Thallium	NC	SB	0.07	ND		0.07	ND	0.07		ND	0.07		ND		
Vanadium	1-300	150 or SB	0.40	28.1		0.40	13	0.39		23.2	0.42		14.9		
Zinc	9-50	20 or SB	1.05	70.4	E	1.06	63.7	E	1.04	45.3	E	1.11	160	E	

NOTES:

bold Analyte exceedance of RSCOs and Eastern USA Background Conc

MDL Method Detection Limit

CONC Concentration

Q Qualifier

NA Not Analyzed

ND Not Detected

J Estimated value

E Estimated value

B Estimated value

N Spiked sample recovery not within control limits

NC No Criteria

D Sample diluted for analysis

** New York State Background

*** As per TAGM #4046, Total VOCs < 10 ppm., Total Semi-VOCs < 500 ppm. Individual Semi-VOCs <50 ppm. Total pesticides < 10 ppm.

**** Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4-61 ppm. Average background levels in metropolitan or suburban areas or near highways are much higher and typically range from 200-500 ppm.

HEAST Health Effects Assessments Summary Table

SB Site Background

Table B-3
Subsurface Soil Sampling Analytical Data
Phase II ESI
Former Metro North Property
Bronx, New York

Client Sample ID Lab Sample ID	NYSDEC TAGM Eastern USA Background	NYSDEC TAGM Recommended Soil Cleanup Objectives	SOIL mg/kg	SB8-1		SB11-1		SB17-1		SB17-2	
				Sample Collection Date 08/03/2001	Sample Receipt Date 08/03/2001	Sample Depth (bgs) 5 - 6 ft	Sample Matrix Units DUP of SB6-1	SOIL MG/KG	SOIL MG/KG	SOIL MG/KG	SOIL MG/KG
INORGANICS											
Metals			MDL	CONC	Q	MDL	CONC	Q	MDL	CONC	Q
Aluminum	33,000	SB	5.97	4090		5.49	6310		4.81	5990	
Antimony	NC	SB	0.48	15.9		0.44	3.6		B	0.39	
Arsenic	3-12**	7.5 or SB	0.65	22.3		0.60	20.2		0.53	17.5	
Barium	15-600	300 or SB	0.26	274		0.24	253		0.21	107	
Beryllium	0-1.750	.16 (heast) or SB	0.05	0.41	B	0.01	0.51	B	0.01	0.41	B
Cadmium	.1-1	1 or SB	0.39	2.6		0.36	1.6		0.32	1.8	
Calcium	130-35,000**	SB	0.14	7260	E	1.29	31900		1.13	11400	
Chromium	1.5-40**	10 or SB	0.65	30.2		0.60	18.9		0.53	28	
Cobalt	2.5-60**	30 or SB	0.23	8.8		0.22	11.2		0.19	10.5	
Copper	1-50	25 or SB	0.29	238		0.26	123		0.23	228	
Iron	2,000-550,000	2,000 or SB	0.91	56100	E	0.84	25400		0.74	46100	
Lead	200-500***	SB	0.39	676	E	0.36	559	N	0.32	1020	N
Magnesium	100-5,000	SB	9.91	2500		9.12	5720		7.98	7490	
Manganese	50-5,000	SB	0.16	304		0.14	359		0.13	453	
Mercury	.001-2	0.1	0.04	1.3		0.04	1.2		0.03	0.79	
Nickel	.5-25	13 or SB	0.52	28.7		0.48	30.3		0.42	22.1	
Potassium	8,500-43,000**	SB	2.86	581	B	2.63	1360	E	2.30	669	E
Selenium	.1-3.9	2 or SB	0.65	ND		0.60	ND		0.53	ND	
Silver	NC	SB	0.65	ND		0.60	ND		0.53	ND	
Sodium	6,000-8,000	SB	63.99	118	B	58.92	195	B	51.55	ND	
Thallium	NC	SB	0.07	ND		0.69	ND		0.60	ND	
Vanadium	1-300	150 or SB	0.42	67.7		0.38	43.4		0.34	31.9	
Zinc	9-50	20 or SB	1.11	638	E	1.02	443		0.89	256	
										1.00	52

NOTES:

bold Analyte exceedance of RSCOs and Eastern USA Background Concentration

MDL Method Detection Limit

CONC Concentration

Q Qualifier

NA Not Analyzed

ND Not Detected

J Estimated value

E Estimated value

B Estimated value

N Spiked sample recovery not within control limits

NC No Criteria

D Sample diluted for analysis

** New York State Background

*** As per TAGM #4046, Total VOCs < 10 ppm., Total Semi-VOCs < 500 ppm. Individual Semi-VOCs < 50 ppm. Total pesticides < 10 ppm.

**** Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4-61 ppm. Average background levels in metropolitan or suburban areas or near highways are much higher and typically range from 200-500 ppm.

HEAST Health Effects Assessments Summary Table

SB Site Background

Table B-3**Subsurface Soil Sampling Analytical Data****Phase II ESI****Former Metro North Property****Bronx, New York**

Client Sample ID Lab Sample ID	NYSDEC TAGM Eastern USA Background	NYSDEC TAGM Recommended Soil Cleanup Objectives	FB3 N5435-11 08/03/2001		
Sample Collection Date	Sample Depth (bgs)	SOIL mg/kg	08/03/2001 NA WATER µg/L		
Sample Receipt Date	Sample Matrix Units		MDL	CONC	Q
INORGANICS					
Metals					
Aluminum	33,000	SB	4.57	ND	
Antimony	NC	SB	0.37	ND	
Arsenic	3-12**	7.5 or SB	0.50	ND	
Barium	15-600	300 or SB	0.20	ND	
Beryllium	0-1.750	.16 (heast) or SB	0.04	0.64	B
Cadmium	.1-1	1 or SB	0.30	ND	
Calcium	130-35,000**	SB	0.11	62.1	B
Chromium	1.5-40**	10 or SB	0.50	ND	
Cobalt	2.5-60**	30 or SB	0.18	ND	
Copper	1-50	25 or SB	0.22	ND	
Iron	2,000-550,000	2,000 or SB	0.70	8	B
Lead	200-500****	SB	0.30	ND	
Magnesium	100-5,000	SB	7.59	ND	
Manganese	50-5,000	SB	0.12	ND	
Mercury	.001-.2	0.1	0.03	ND	
Nickel	.5-25	13 or SB	0.40	ND	
Potassium	8,500-43,000**	SB	2.19	ND	
Selenium	.1-3.9	2 or SB	0.50	ND	
Silver	NC	SB	0.50	ND	
Sodium	6,000-8,000	SB	49.02	ND	
Thallium	NC	SB	0.06	ND	
Vanadium	1-300	150 or SB	0.32	ND	
Zinc	9-50	20 or SB	0.85	ND	

NOTES:**bold** Analyte exceedance of RSCOs and Eastern USA Background Conc

MDL Method Detection Limit

CONC Concentration

Q Qualifier

NA Not Analyzed

ND Not Detected

J Estimated value

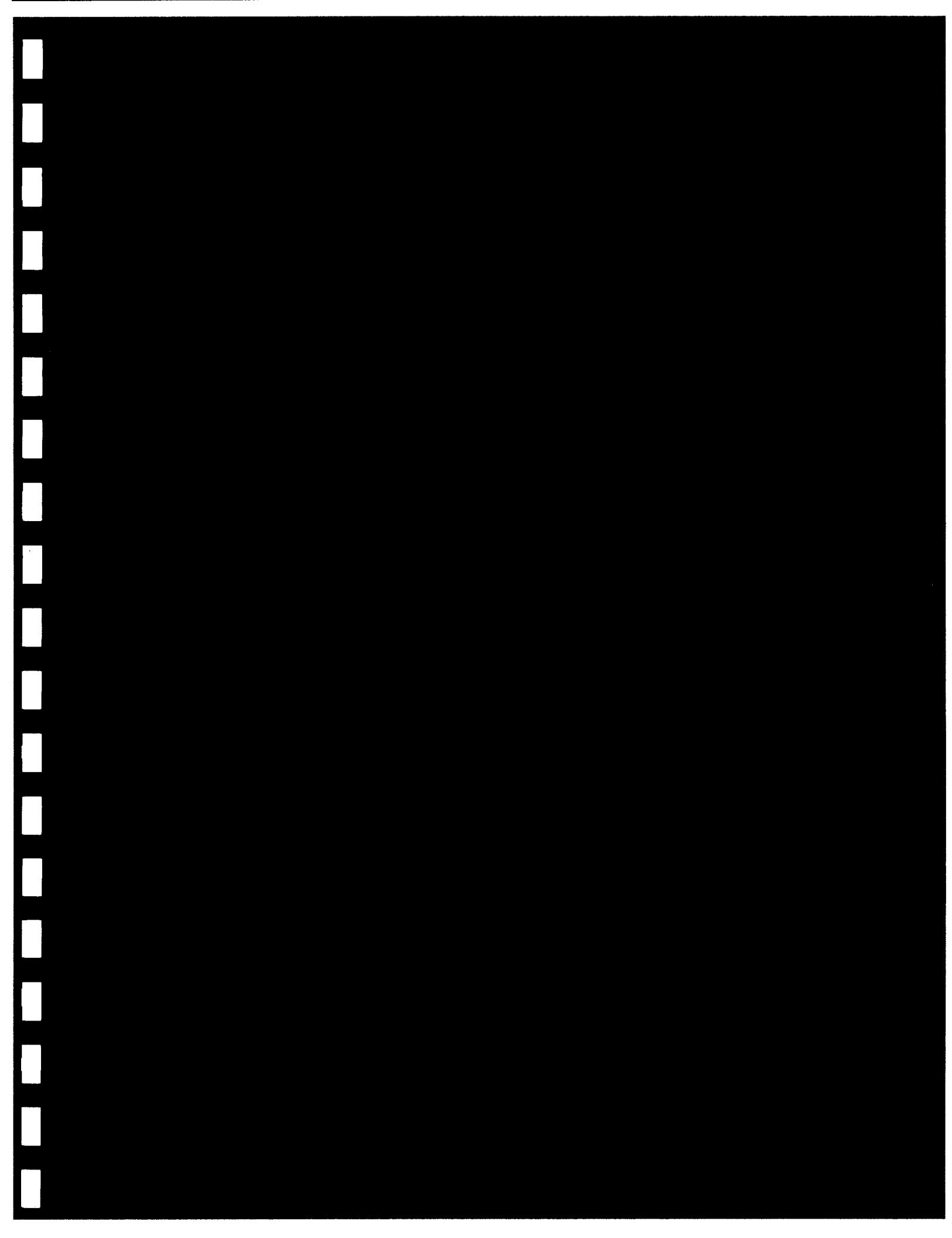
E Estimated value

B Estimated value

N Spiked sample recovery not within control limits

NC No Criteria

D Sample diluted for analysis


** New York State Background

*** As per TAGM #4046, Total VOCs < 10 ppm., Total Semi-VOCs < 500 ppm. Individual Semi-VOCs <50 ppm. Total pesticides < 10 ppm.

**** Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4-61 ppm. Average background levels in metropolitan or suburban areas or near highways are much higher and typically range from 200-500 ppm.

HEAST Health Effects Assessments Summary Table

SB Site Background

Table B-4
Groundwater Sampling Analytical Data
Phase II ESI
Former Metro North Property
Bronx, New York

Client Sample ID Lab Sample ID	New York State GA	NYSDEC TAGM Groundwater Standards	PZ-1 N5416-16 08/02/2001 08/02/2001 9 ft	PZ-2 N5416-19DL 08/02/2001 08/02/2001 6 ft	PZ-3 N5416-22 08/02/2001 08/02/2001 12 ft	WATER µg/L								
						Sample Collection Date	Sample Receipt Date	Sample Depth (bgs)	Sample Matrix Units	MDL	CONC	Q	MDL	CONC
ORGANIC COMPOUNDS														
Volatile Organic Compounds														
Chloromethane	NC	NC	2.8	ND	2.8	ND	2.8	ND	ND	2.8	ND	ND		
Vinyl Chloride	2	2	1.8	7.7	1.8	ND	1.8	ND	ND	1.8	ND	ND		
Bromomethane	5	NC	1.9	ND	1.9	ND	1.9	ND	ND	1.9	ND	ND		
Chloroethane	5	50	2.3	ND	2.3	ND	2.3	ND	ND	2.3	ND	ND		
1,1-Dichloroethene	5	5	1.6	ND	1.6	ND	1.6	ND	ND	1.6	ND	ND		
Acetone	NC	50	5.8	ND	5.8	ND	5.8	ND	ND	5.8	ND	ND		
Carbon Disulfide	NC	50	1	ND	1	ND	1	ND	ND	1	ND	ND		
Methylene Chloride	5	5	1.1	ND	1.1	ND	1.1	ND	ND	1.1	3.1	B		
trans-1,2-Dichloroethene	5	5	1.7	ND	1.7	ND	1.7	ND	ND	1.7	ND			
1,1-Dichloroethane	5	5	1	ND	1	ND	1	ND	ND	1	ND			
2-Butanone	NC	50	5.6	ND	5.6	ND	5.6	ND	ND	5.6	ND			
cis-1,2-Dichloroethene	5	NC	1.8	25	1.8	ND	1.8	ND	ND	1.8	ND			
Chloroform	7	7	1	ND	1	ND	1	ND	ND	1	ND			
1,1,1-Trichloroethane	5	5	1.5	ND	1.5	ND	1.5	ND	ND	1.5	ND			
Carbon Tetrachloride	5	5	1	ND	1	ND	1	ND	ND	1	ND			
Benzene	1	1	1	ND	100	17000	D	1	ND	1	5.5			
1,2-Dichloroethane	0.6	5	2.5	ND	2.5	ND	2.5	ND	ND	2.5	ND			
Trichloroethene	5	5	2.8	3.7	2.8	ND	2.8	ND	ND	2.8	ND			
1,2-Dichloropropane	1	NC	3.6	ND	3.6	ND	3.6	ND	ND	3.6	ND			
Bromodichloromethane	50	NC	1	ND	1	ND	1	ND	ND	1	ND			
4-Methyl-2-Pentanone	NC	50	3	ND	3	ND	3	ND	ND	3	ND			
Toluene	5	5	1.2	ND	1.2	ND	1.2	180	ND	1.2	ND			
t-1,3-Dichloropropene	0.4***	NC	1.7	ND	1.7	ND	1.7	ND	ND	1.7	ND			
cis-1,3-Dichloropropene	0.4***	NC	1	ND	1	ND	1	ND	ND	1	ND			
1,1,2-Trichloroethane	1	NC	1.1	ND	1.1	ND	1.1	12	ND	1.1	ND			
2-Hexanone	NC	NC	12	ND	12	ND	12	ND	ND	12	ND			
Dibromochloromethane	50	50	1	ND	1	ND	1	ND	ND	1	ND			
Tetrachloroethene	5	5	1.6	ND	1.6	ND	1.6	ND	ND	1.6	ND			
Chlorobenzene	5	5	1	ND	1	ND	1	ND	ND	1	ND			
Ethyl Benzene	5	5	1.5	ND	150	370	D	1.5	ND	1.5	ND			
m/p-Xylenes	NC	5*	1.5	ND	150	1400	D	1.5	ND	1.5	ND			
o-Xylene	NC	5*	1.7	ND	1.7	ND	1.7	180	ND	1.7	ND			
Styrene	5	NC	1	ND	1	ND	1	ND	ND	1	ND			
Bromoform	50	NC	1	ND	1	ND	1	ND	ND	1	ND			
1,1,2,2-Tetrachloroethane	5	5	2.2	ND	2.2	ND	2.2	ND	ND	2.2	ND			

NOTES:

bold Analyte exceedance of NYSGA Groundwater standards and NYSDEC

TAGM Groundwater standards

MDL Method Detection Limit

CONC Concentration

Q Qualifier

NA Not Analyzed

ND Not Detected

J Estimated value

B Analyte found in blank as well as the sample

NC No Criteria

D Sample diluted for analysis

* Total xylenes

Table B-4
Groundwater Sampling Analytical Data
Phase II ESI
Former Metro North Property
Bronx, New York

Client Sample ID Lab Sample ID	New York State GA	NYSDEC TAGM	SB-3	SB17	TRIPBLANK						
Sample Collection Date	Groundwater Standards	Groundwater Standards	N5435-13 08/03/2001	N5458-05 08/07/2001	N5435-14 01/19/2001						
Sample Receipt Date	WATER µg/l	WATER µg/l	8 ft	7 ft	08/03/2001						
Sample Depth (bgs)			WATER µg/L	WATER µg/L	WATER µg/L						
Sample Matrix Units			MDL	CONC	Q	MDL	CONC	Q	MDL	CONC	Q
ORGANIC COMPOUNDS											
Volatile Organic Compounds											
Chloromethane	NC	NC	2.8	ND	2.8	ND	2.8	ND			
Vinyl Chloride	2	2	1.8	ND	1.8	ND	1.8	ND			
Bromomethane	5	NC	1.9	ND	1.9	ND	1.9	ND			
Chloroethane	5	50	2.3	ND	2.3	ND	2.3	ND			
1,1-Dichloroethene	5	5	1.6	ND	1.6	2.2	1.6	ND			
Acetone	NC	50	5.8	9.8	5.8	ND	5.8	ND			
Carbon Disulfide	NC	50	1	ND	1	ND	1	ND			
Methylene Chloride	5	5	1.1	ND	1.1	ND	1.1	ND			
trans-1,2-Dichloroethene	5	5	1.7	ND	1.7	ND	1.7	ND			
1,1-Dichloroethane	5	5	1	ND	1	ND	1	ND			
2-Butanone	NC	50	5.6	ND	5.6	ND	5.6	ND			
cis-1,2-Dichloroethene	5	NC	1.8	ND	1.8	ND	1.8	ND			
Chloroform	7	7	1	ND	1	ND	1	ND			
1,1,1-Trichloroethane	5	5	1.5	ND	1.5	ND	1.5	ND			
Carbon Tetrachloride	5	5	1	ND	1	ND	1	ND			
Benzene	1	1	1	ND	1	ND	1	ND			
1,2-Dichloroethane	0.6	5	2.5	ND	2.5	ND	2.5	ND			
Trichloroethene	5	5	2.8	ND	2.8	2.2	J	2.8			
1,2-Dichloropropane	1	NC	3.6	ND	3.6	ND	3.6	ND			
Bromodichloromethane	50	NC	1	ND	1	ND	1	ND			
4-Methyl-2-Pentanone	NC	50	3	ND	3	ND	3	ND			
Toluene	5	5	1.2	ND	1.2	ND	1.2	ND			
t-1,3-Dichloropropene	0.4***	NC	1.7	ND	1.7	ND	1.7	ND			
cis-1,3-Dichloropropene	0.4***	NC	1	ND	1	ND	1	ND			
1,1,2-Trichloroethane	1	NC	1.1	ND	1.1	ND	1.1	ND			
2-Hexanone	NC	NC	12	ND	12	ND	12	ND			
Dibromochloromethane	50	50	1	ND	1	ND	1	ND			
Tetrachloroethene	5	5	1.6	ND	1.6	4.1	1.6	ND			
Chlorobenzene	5	5	1	ND	1	ND	1	ND			
Ethyl Benzene	5	5	1.5	ND	1.5	ND	1.5	ND			
m/p-Xylenes	NC	5*	1.5	ND	1.5	ND	1.5	ND			
o-Xylene	NC	5*	1.7	ND	1.7	ND	1.7	ND			
Styrene	5	NC	1	ND	1	ND	1	ND			
Bromoform	50	NC	1	ND	1	ND	1	ND			
1,1,2,2-Tetrachloroethane	5	5	2.2	ND	2.2	ND	2.2	ND			

NOTES:

bold Analyte exceedance of NYSGA Groundwater standards and NYSDEC

TAGM Groundwater standards

MDL Method Detection Limit

CONC Concentration

Q Qualifier

NA Not Analyzed

ND Not Detected

J Estimated value

B Analyte found in blank as well as the sample

NC No Criteria

D Sample diluted for analysis

* Total xylenes

PHASE II ENVIRONMENTAL SITE INVESTIGATION REPORT
FORMER METRO NORTH PROPERTY
3001 CONCOURSE VILLAGE EAST
BRONX, NEW YORK 10451

APPENDIX C

**ENVIRONMENTAL SAMPLES - LABORATORY ANALYTICAL DATA
REPORTS**

**LABORATORY ANALYTICAL DATA REPORTS
ARE PROVIDED UNDER SEPARATE COVER**

PHASE II ENVIRONMENTAL SITE ASSESSMENT TEMPLATE
FORMER METRO NORTH PROPERTY
3001 CONCOURSE VILLAGE EAST
BRONX, NEW YORK 10451

APPENDIX D
PERSONNEL RESUMES

AREAS OF EXPERTISE

- project management
- remedial investigation and site characterization
- investigation and remediation of MGP sites

EDUCATION

Rutgers University, M.S.,
Geology, 1982

Rutgers University, B.A.,
Geology, 1974

REGISTRATION

Registered Professional
Geologist: Arkansas, 1989
Indiana, 1981

**PROFESSIONAL
HISTORY**

URS, Principal Geologist,
2000 to date

URS Greiner Woodward
Clyde, Principal Geologist,
1997 – 1999

Woodward-Clyde
Consultants, Staff
Geologist to Consulting
Professional, 1978 - 1997

AFFILIATIONS

Geological Society of
America

American Geophysical
Union

Association of Engineering
Geologists

REPRESENTATIVE EXPERIENCE

Mr. Seborowski has 23 years of experience in engineering and environmental investigations. He has been responsible for the implementation of geophysical surveys for engineering evaluations and for the characterization of subsurface environmental conditions. He has been responsible for the design and implementation of remedial investigations at former manufacturing facilities, active and inactive hazardous and non-hazardous waste sites and former manufactured gas plant (MGP) facilities. For the past 12 years, his focus has been directed to the investigation and remediation of former MGP sites.

Representative project experience includes:

- Project Manager for the development and implementation of a remedial investigation at a former MGP site in northern New Jersey. Field activities included: surface soil sampling; subsurface soil sampling from test trenches and soil borings; drilling, installing, and sampling overburden and bedrock monitoring wells; and, collecting surface water/sediment samples from the adjacent river.
- Developed and implemented Interim Remedial Measures (IRMs) at a former MGP site in northern New Jersey. The IRMs included a bulkhead extension/collection system to contain site contaminants leaching into an adjacent river; source removal of contaminants from a subsurface tar pit; and, pilot product recovery systems.
- Project Manager for the evaluation of remedial alternatives to resolve environmental issues associated with a former MGP site in northern New Jersey. This evaluation included: an exposure pathways analysis, evaluations of applicable remediation technologies for soil and groundwater contamination; selection of the preferred remedial action; and, development of a conceptual (30 percent complete) design to resolve soil and groundwater contamination at the site.
- Project Manager for development of the plans and specifications for the remediation of a former MGP site in northern New Jersey. This work consisted of the design and implementation of engineering and hydrogeologic studies to establish final design parameters and subsequently to complete the final design. The planned remediation consists of the isolation of the site by the

installation of a hydraulic barrier comprised of a sheet pile wall and soil bentonite wall, regrading of the site and the installation of an asphalt cap and soil cover, the replacement of existing active underground utilities (natural gas, sanitary sewer, storm sewer, high pressure water mains), and the installation and operation of a groundwater recovery and treatment system consisting of 26 recovery wells conveying contaminated groundwater to a treatment train comprised of an equalization tank, a dissolved air floatation unit, a carbon fluidized bed reactor, a flocculating clarifier, a sand filter system and a liquid granular activated carbon unit. The treated effluent will be discharged directly to a surface water body. The complete design consisted of approximately 145 detailed design drawings and the supporting specifications.

- Project Manager for the development and implementation of a remedial investigation at a former MGP site in northeastern, New Jersey. Field activities included: surface soil sampling; subsurface soil sampling from test trenches and soil borings; drilling, installing, and, sampling overburden monitoring wells; and, sampling ambient air and soil gas emissions. Developed the remedial action implemented at the site and provided technical support and oversight during remediation.
- Project Manager for the implementation of remedial investigations at two former MGP sites in southern New Jersey.
- Assisted in the development and was the Project Manager for the implementation of Preliminary Site Screening Programs for former MGP sites to determine if any imminent health threat existed for residents on or near the sites.
- Developed and implemented an indoor air sampling program in 18 residences constructed at a former MGP site.
- Project Manager during completion of an ISRA/ECRA regulated investigation and remediation at a manufacturing site in Roseland, New Jersey. Activities included preparation of technical specifications and design drawings for a groundwater pump and treat system, preparation of construction specifications and bid packages, and, as agent to the client, arranged for the construction of the treatment system. Provided oversight

during the operation of the groundwater remediation program, ultimately completing remediation activities, decommissioning and removing the groundwater treatment system and completing the ISRA requirements for the Site.

- Investigated over 40 hazardous waste sites (active and inactive) for organic, inorganic and heavy metal contamination utilizing geophysical techniques to locate contamination sources and provide plume characterization.

AREAS OF EXPERTISE

- hydrology
- site investigations

EDUCATION

S.U.N.Y Oneonta: B.S.,
Water Resources, 1994
Minor Geology

PROFESSIONAL HISTORY

URS, Geologist, April 2000 to present
LMS Engineers, LLP, Geologist, 1997
ONSITE Environmental, Field Tech, 1996
CA RICH Consultants, Staff Scientist, 1995

AFFILIATIONS

NEGSA;
NYSGA;
Long Island Geologists
Association for Women
Geoscientists,
Hudson-Mohawk
Professional Geologists'
Association

TRAINING

Health and Safety Training
Course for Hazardous
Waste Operations, 40-
hour, 1996

Hazardous Waste
Operations Training, 8-
hour refresher, 1999

REPRESENTATIVE EXPERIENCE

Ms. Hollister is a geologist who has conducted field investigations for projects in both the public and private sectors, including work for the New York State Department of Environmental Conservation (NYSDEC), the New York City Department of Environmental Protection (NYCDEP), the New York State Department of Transportation (NYSDOT), the Dormitory Authority of the State of New York (DASNY), and private industry.

Ms. Hollister has conducted site investigations consisting of exploratory drilling and soil sampling, along with well installation, development, and sampling. As a project geologist she is responsible for such activities as completing boring logs; taking static water level (SWL) measurements; supervision of drilling and remediation contractors in the field; conducting water, soil, soil gas, and air sampling; performing slug and well pumping tests for hydraulic testing; interpreting and evaluating geological and hydrological data; and preparing reports on her activities. She is also familiar with sampling and chain-of-custody protocols.

Ms. Hollister has prepared cost estimates, work plans, site health and safety plans, and site contamination assessment reports. She has been a field team leader during drilling and field sampling activities at a number of hazardous waste and contaminated sites for sampling of groundwater, surface water, sediment, and surface soil, and monitoring air quality. She is familiar with rotary and hollow-stem auger drilling techniques as well as hydraulic probe sampling, and is accustomed to resolving difficulties encountered during the course of a drilling program. She is also experienced in interpreting field data, reviewing gamma-ray well log correlations, and performing and reviewing seismic profiling.

Representative sites include Superfund sites under the direction of the NYSDEC. Most of these sites required the delineation of a contaminant plume consisting primarily of volatile organic compounds. The sources of these materials were usually associated with the landfilling of spent solvents on the facilities.

For a number of petroleum-contaminated and underground storage tank (UST) sites Ms. Hollister has supervised the excavation of USTs and contaminated soils, conducted air monitoring with real-time instrumentation (flame ionization detector [FID], photoionization detector [PID]), supervised the installation of subsurface soil borings and monitoring

LICENSES

Accredited AHERA
inspector

NJ Reg. No. RWJ2042
NY Cert. No. AH00-21574

wells, and conducted site inspections.

Representative sites include:

- Ms. Hollister was a field team leader for a remedial investigation/feasibility study (RI/FS) for NYSDEC at the United Plating site in Schenectady, New York. Ms. Hollister was responsible for preparing and implementing the work plan, as well as installing and developing monitoring wells, logging bedrock cores, collecting soil samples from some of the new wells, and collecting water samples from all new and existing wells. She was also involved with data review and report preparation.
- Ms. Hollister was a project geologist at the Mohonk Road Industrial Plant in Ulster County for NYSDEC. Ms. Hollister collected surface and groundwater samples to determine volatile organic compound (VOC) concentrations and the extent of the groundwater contamination plume. She was involved in well pumping tests. She also supervised a subsurface investigation that included downhole geophysics involving borehole video, fluid resistivity, caliper, and dual temperature logging.
- Ms. Hollister was a project geologist for NYCDEP at Flushing Bay in Queens. While supervising drillers, she logged and visually characterized hundreds of split-spoon soil samples to determine removal requirements for hazardous, industrial, and clean soil during construction of a 30-million gallon UST.
- For a number of petroleum-contaminated and UST sites Ms. Hollister has supervised the excavation of USTs and contaminated soils, conducted air monitoring with real-time instrumentation (FID, PID), supervised the installation of subsurface soil borings and monitoring wells, and conducted site inspections.
- Ms. Hollister has worked on Phase I Environmental Assessments and has been the principal writer for site reports. She has done environmental audits/inspections of industrial, commercial and residential properties. Reports consist of historical background and regulatory searches, on-site visual inspections and limited sampling for hazardous materials and/or conditions, and recommendations for remediation of historical contamination, hazardous materials and/or conditions. These reports are used in assessing the environmental integrity and liability associated with the property.

- As part of tenant inspections for property owners, Ms. Hollister has performed independent environmental inspections of properties for owners. These inspections serve to both establish a baseline of the building conditions and to alert the property owner of potential environmental problems that may occur in the future. These inspections include, but are not limited to: review of appropriate operating permits (wastewater discharge, air discharge, chemical storage, USTs); inspection of hazardous substance storage; review of hazardous waste disposal practices; and contact with tenants, including notification of any possible items that need to be remedied.
- Sampled for asbestos at Newark International Airport.
- Randomly sampled 600 acres at BASF in Belvidere, NJ for TPH and metals. Some discrete sampling for VOCs, SVOCs, Pest/PCBs and metals.
- On a limited budget, supervised 10 geoprobe borings to sample the groundwater for delineation for a VOC contaminant plume. Samples were analyzed on site for quick turnaround time.

AREAS OF EXPERTISE

- feasibility studies
- construction management
- wastewater collection and treatment
- sanitary landfills
- hazardous waste remediation
- coastal zone management programs

EDUCATION

Northeastern University,
M.S., Environmental
Engineering, 1983

Boston University,
M.B.A., Business
Administration, 1996

University of Washington,
B.S., Fisheries Science,
1976

Tufts University, B.S.,
Civil Engineering, 1970

REGISTRATION

Professional Engineer:
New York, Connecticut,
Massachusetts, Georgia,
Rhode Island

PROFESSIONAL HISTORY

URS Corporation,
Principal Environmental
Engineer, 1997 to date

ABB Environmental
Services, Design Lead,
1993 - 1997

REPRESENTATIVE EXPERIENCE

Mr. Coffey has more than 28 years of experience in project management and has filled the roles of Principal Environmental Engineer, Design Leader, Chief Engineer and Department Manager for process and design engineering for more than ten years. He is a Civil/Environmental Engineer with an unusually comprehensive background which encompasses both the traditional, and more current, technologies for treatment and disposal of conventional, and hazardous wastes, respectively. Experience includes feasibility studies, and planning, design, construction management and construction inspection of municipal, industrial and private wastewater collection and treatment systems, water systems, sanitary landfills, hazardous waste remediation and storage facilities, and coastal zone management programs.

Mr. Coffey has a working knowledge of RCRA, CERCLA, TSCA, TURA and other regulatory requirements. He has performed sampling and analysis of wastewater treatment plants and made recommendations for operational changes; he has evaluated the effects of asbestos and other toxic and hazardous substances in the environment. His experience includes sampling and analysis of lake, stream, estuarine and marine waters, identification of aquatic life and the studies of the effects on aquatic life of chemical and thermal pollution, and radioactive inputs.

- **Sewer District No. 1, Rockland County, NY:** As Project Manager for Design/Construction Services for Rockland County, New York Sewer District No. 1, supervised a multi-disciplinary team of civil, structural, electrical, mechanical and instrumentation engineers for a \$140 million expansion of wastewater treatment facility. His responsibilities included interfacing with client and numerous contractors on a multi-prime series of contracts.
- **Confidential Client, MA:** As Project Manager, was responsible for overseeing a team of civil, electrical, instrumentation, and mechanical engineers for the study/design/construction services for oil/water separation facilities and outfall reconstruction of over ten storm drain outfalls servicing a large manufacturing facility. Complete hydraulic analysis and NPDES permitting of outfalls was part of the work. Project had a

Wehran Engineering,
Department Manager,
1988 - 1993

URS Corporation, Senior
Project Manager, 1985 –
1988

Wehran Engineering,
Senior Project Manager,
1983 - 1985

AFFILIATIONS

Water Environment
Association

New England Water
Environment Association

Instrument Society of
America

American Society of Civil
Engineers

\$6 million construction value.

- **Metropolitan District Commission, Boston, MA:** Project Engineer coordinating a team of civil, electrical, mechanical, and instrumentation engineers on the design of a comprehensive computerized flow monitoring system to wholesale water to more than a score of cities and towns on the Metropolitan District Commission's service area around Boston, MA.
- **Town of South Berwick, ME:** As Project Engineer, was in charge of hydraulic analysis and design of improvements to an existing water system . The work included field monitoring of flows, computer analysis of the existing system, and recommendations and design for improvements, as well as projected construction cost estimates.
- **Rhode Island Solid Waste Management Corporation, Central Landfill, Johnston, RI:** As Project Manager, was responsible for coordination of a team of civil, electrical, instrumentation, and mechanical engineers for design of water main distribution and metering facilities, a subsurface methane gas migration control facility, and access roadways and scale facilities at the Central Landfill in Johnston, RI. He was also Project Manager during the construction and start-up of these facilities.
- **Towns of Colchester and East Hampton, CT:** As Design Engineer, designed the entire sewerage collection system, including eleven sewage pump stations, for Colchester and East Hampton Connecticut.
- **Confidential Client, MA:** As Project Manager, was responsible for a treatability study and design of an activated carbon-activated sludge industrial wastewater treatment plant for treatment and removal of diethylhexylphthalate at a plastics manufacturing facility. The plant was designed to meet OCPSF standards.
- **Confidential Client, MA:** As Project Manager, was responsible for turnkey services (associated design, procurement and construction) for a groundwater recovery and treatment system, and for a separate phase product recovery system at an operating aerospace manufacturing facility.
- **Confidential Client, NJ:** As Principal Environmental Engineer, coordinated a team of civil and electrical

engineers and hydrogeologists for the design of a site perimeter groundwater containment and extraction facility to address a wide range of contaminants in groundwater at the former chemical manufacturing industrial site. Isolation and capping of contaminated soil was also a part of this design effort.

- **RayMark Facility Superfund Site, Stratford, CT:** As Design Lead, coordinated a multi-disciplinary team of civil, structural, mechanical, instrumentation, and electrical engineers for the design of a gas control and treatment system for a 30-acre site at a former asbestos brake manufacturing facility. Treatment of the off-gases will consist of both granular activated carbon systems, and thermal oxidation systems.
- **Confidential Client, MA:** As Project Manager, was responsible for overseeing the design of PCB decontamination, and subsequent rehabilitation of an asbestos-paneled operating manufacturing facility for heavy industrial use. The design included specifications for the injection of grout into the building foundations to inhibit further seepage of PCB contaminated groundwater into work areas in the basement area of the building. Drawings and specifications detailing the cleaning operations, and subsequent demolition and construction work were prepared and put out to bid. The design approach minimized costs while allowing continued use of the building.
- **Confidential Client, MA:** As Design Manager personally inspected and evaluated extensive reinforced concrete steam tunnel network at a heavy industrial manufacturing facility in the metropolitan Boston area. The Steam piping system within the tunnels is lined with heavy asbestos insulation which was deteriorating at some locations. The design team headed by Mr. Coffey drew up specifications to address this situation, dewater the steam tunnel network, treat groundwater collecting in the tunnels to remove petroleum and chlorinated organic contaminants and perform grout injection to exclude further seepage of contaminated groundwater into the steam tunnels.
- **Kent-Taylor, Rochester, NY:** Provided advice and review of design documents associated with the demolition of a large instrument manufacturing facility.

This former manufacturing facility consisted of a large complex of buildings totaling several hundred thousand square feet in area, containing numerous sites within the building complex which are contaminated with asbestos, elemental mercury, cyanide, lead and other toxic chemicals on an occasional basis. The design work consisted of several floor plans showing the nature of the building's construction (this was a multi-level facility), and the locations and kinds of contamination within the structures. Specifications were prepared detailing how the demolition was to address the removal and disposal of the several different types of demolition debris, taking into account the nature of the materials, and the kinds and concentrations of the contaminants. Bid review assistance is also a part of the work.

- **U.S. Coast Guard - Floyd Bennett Field, Brooklyn, NY:** As Design Lead, was responsible for coordinating a team of civil, structural, mechanical, instrumentation, and electrical engineers for the design of a large soil bioventing and off-gas treatment facility for soils contaminated with jet fuel at the Coast Guard Air Station.
- **CE Cast, Muse, PA:** As Design Lead, worked with a staff civil engineer on the design of a soil excavation and thermal desorption project for the former foundry owned by CE Cast. Documents prepared included drawings and specifications for the soil removal, treatment by thermal desorption, and site restoration using treated decontaminated soil to backfill the excavated areas. An erosion control plan prepared in conformance with PADER requirements was a part of the design effort. This project received the Grand Conceptor Award for its innovative and cost-effective solution to on-site contamination.
- **Fountain Avenue Landfill Pier, Brooklyn, New York:** As Principal Environmental Engineer, coordinated a design team of geotechnical, civil, structural, and electrical engineers in the design of marine pier facilities for the off-loading of over two million cubic yards of bulk fill materials for the closing of the Fountain Avenue Landfill in Brooklyn, New York. The pier design consists of concrete filled steel pipe piles supporting a reinforced concrete deck for crane, conveyor system, and truck operations for the off loading of sea-going barges delivering earthfill and revetment armour stone to the

landfill site.

- **Pine Street Barge Canal Site, Burlington, VT:** As Design Manager, performed a study and evaluation of alternatives to replace the EPA ROD alternative for remediation of coal tar contamination from a former manufactured gas plant at the Pine Street Barge Canal Site located on Lake Champlain. Working for the PRPs, he developed an acceptable alternative to excavation and landfilling (the ROD selected alternative). The alternative developed called for leaving the coal tars in place, isolating the contaminated area with driven sheet piles and an impermeable cap, and placing clean substrate over the cap to support growth of aqueous plants and benthic organisms.
- **Confidential Industrial Client, MA:** As Design Manager, directed a study to determine the effectiveness of heat injection into soils in improving the flowability of highly viscous oils (aromatic hydrocarbons) contaminated with halogens. The study looked at the decreased viscosity and improved flowability (extractability) of the oils brought about by raising the temperature of the oils through heat injection into the soil. Evaluation of different methods of heat injection for cost-effectiveness was included.
- **Souza's Texaco, East Falmouth, MA:** As Design Lead, coordinated the design team for the design of the groundwater sparging and soil vapor extraction system in the vicinity of the former Souza's Texaco gas station. This design work included the use of activated carbon for treatment of the off-gas. This work was performed for the Massachusetts Department of Environmental Protection.
- **Olin Chemical Company, Lancaster, PA:** As Design Lead, coordinated a design team of civil, structural, mechanical, and electrical and instrumentation engineers in the design of a 120-gpm groundwater extraction and treatment system for treatment of groundwater contaminated with chlorinated solvents at the former Hamilton Watch factory. This system utilizes air stripping and granular activated carbon for treatment of the off-gas, and includes a force main for discharge of the treated effluent to the City of Lancaster sewer system. A remote sensor is included in the design to monitor water

level in the downstream sections of the sewer system. The sensor signals for the groundwater extraction and treatment system to shut down when water levels in the sewer system exceed system capacity because of a storm event.

- **MCLB, Albany, GA:** Provided advice and review of design services for several remediation activities conducted at the Marine Corps Logistics Base. These designs include groundwater extraction and treatment systems for removal of contaminated solvents, as well as soils removal and remediation actions. All engineering actions were prepared in conformance with Naval Facilities Engineering Command requirements for preparation of engineering drawings and specifications.
- **Confidential Client, Bangor, ME:** As Design Manager, was responsible for the design of remediation plans and specifications for an area of soils contaminated with chlorinated solvents at Building 10 in the industrial park at the Bangor International Airport. This area is immediately adjacent to the Maine Air National Guard hangers. Remediation consisted of excavation of contaminated soils and landfarming on an area specially designed for the bioremediation of contaminants found in the soil. The bioremediation project was determined to have been successfully completed to the satisfaction of the MEDEP. The bioremediation platform was also designed to function as a parking area once bioremediation of the contaminated soils was completed.
- **New England Telephone Co., MA; VT; NH:** As Chief Engineer, provided technical oversight for removal and replacement of over 40 underground storage tanks for gasoline, diesel and heating fuels.
- **Confidential Client, MA:** As Project Manager, was responsible for overseeing design of a treatment/remediation facility for TCA-contaminated groundwater at a large manufacturing facility. An air stripping column followed by vapor phase carbon was utilized to remove contaminants.
- **Confidential Client, MA:** As Project Manager, was responsible for overseeing design/construction services for a large treatment/remediation facility for jet fuel contaminated groundwater at a large manufacturing facility. A tray aeration system followed by a thermal

catalytic destructor was used to remove the contaminant. The entire system was mounted in an enclosed trailer for mobility.

- **Confidential Client, MA:** As Project Manager, was responsible for technical oversight of a feasibility study for treatment and disposal of contaminated soils at a large operating industrial manufacturing facility (over 200 acres) with an operating history of over one hundred years. High temperature and low temperature thermal, and non-thermal technologies were evaluated, and recommendations were made, contingent on the kind of hazardous waste contamination involved.
- **Massachusetts Department of Environmental Protection, Middleborough, MA:** As Project Manager, was responsible for overseeing design and construction of a treatment/remediation facility for contaminated groundwater at a former gasoline service station site. The fully automated system utilizes activated carbon.
- **Humphrey Chemical Co., North Haven, CT:** As Project Manager, was responsible for design of an industrial waste neutralization facility and a hazardous waste drum storage facility.
- **Hamm's Sanitary Landfill, Lafayette, NJ:** As Construction Superintendent, was responsible for construction of one-mile bentonite slurry cutoff wall and berm for containment of landfill leachate.
- **Federal Bureau of Prisons, Otisville, NY:** As Project Manager, was responsible for design and construction management for a sewage treatment plant rehabilitation and expansion at the Federal Correctional Institution, Otisville, NY. The expanded facility is now on-line and producing a high quality effluent.
- **Town of Bristol, RI:** As Project Engineer, was in charge of design for upgrading an existing primary treatment plant to provide secondary treatment of sewage. The work included complete hydraulic analysis and aspects of mechanical and civil design for a 4-MGD wastewater plant.
- **Penobscot Bay Medical Center, Rockland, ME:** As Project Engineer, performed the design for the 10,000-gallons-per-day extended aeration wastewater treatment facility serving the Penobscot Bay Medical Center

complex.

- **Atlantic County, New Jersey, MUA-Municipal Solid Waste Transfer Station:** Served as design reviewer for a major municipal solid waste transfer station design for the Atlantic County, New Jersey Municipal Utilities Authority. Performed a thorough review of drawings and specifications produced by the design team to ensure their adequacy, compatibility, and completeness.
- **Bucks County, Pennsylvania, MUA-Municipal Solid Waste Transfer Station:** Performed layout and traffic flow design for a major solid waste transfer station in Bensalem, Pennsylvania servicing the Philadelphia metropolitan area.
- **RayMark Facility Landfill-Gas Capture and Control System Design:** As Design Lead, coordinated a multidisciplined team of civil, structural, mechanical, instrumentation, and electrical engineers for the design of a gas capture, control, and treatment system for a 30-acre landfill site located in Stratford, Connecticut.
- **Town of Scituate, Massachusetts-Quality and Quantification Study of Municipal Solid Waste:** Performed sampling and weighing of municipal solid waste delivered to the Town of Scituate's municipal sanitary landfill. Information was analyzed and used in the design of the expansion of the landfill.
- **Town of Scituate, Massachusetts-Design of Landfill Expansion:** Designed landfill expansion utilizing information collected from study of quality and quantity of municipal solid waste delivered to the landfill.
- **Holt Road Landfill, Town of North Andover, Massachusetts- Design of Gas Migration Control System:** Performed site investigations and design of a gas migration cut-off trench at the Holt Road Sanitary Landfill.
- **Al Turi Landfill, Goshen, New York-Study and Process Design of Landfill Leachate Treatment System:** Studied and evaluated several treatment alternatives and participated in pilot plant operation and design of the leachate treatment facility for leachate generated at a municipal solid waste landfill located in Goshen, New York.
- **Mountaintop Municipal Solid Waste Landfill,**

Pennsylvania-Design of Leachate Collection and Treatment Facility: Coordinated the design team for the leachate collection and treatment facility for the Mountaintop Municipal Solid Waste Landfill, Pennsylvania.

- **Milford RESCO Facility, Milford, Massachusetts-Design of Facility Access Ramp:** Designed the highway access ramp from State Route 20 to the Milford Resco Facility. Design was accomplished in conformance with State of Massachusetts Department of Transportation requirements.

PUBLICATIONS

Coffey, Brendan J., "Review of Recent Literature on the Heat Transfer and Combustion Efficiency Characteristics of the Pulse Combustion Engine, Particularly Relating to Atomization and Spray Drying, and Potential for Use in Destruction of Polychlorinated Biphenyls," Presented to Northeastern University, Department of Civil Engineering, 1983.