NEW YORK STATE BROWNFIELDS CLEANUP PROGRAM BCP ID No. C203039

FINAL ENGINEERING REPORT

EBC Project No: ARK0602

FORMER DICO G AUTO & TRUCK REPAIR Block 4545, Lots 1001 & 1002 3001 - 3035 White Plains Road Bronx, NY

DECEMBER 2008

Program Volunteer:

Bedford Park Associates, LLC Adee & Lester, L.P. 3035 White Plains Retail, LLC 15 Verbena Avenue Suite #100 Floral Park, NY 11001-2711

FORMER DICO G TRUCK AND AUTO REPAIR BRONX, NEW YORK

FINAL ENGINEERING REPORT

NYSDEC BCP NUMBER: C203039

Prepared For:

Bedford Park Associates, LLC Adee & Lester, L.P. 3035 White Plains Retail, LLC 930 Broadway Woodmere, NY 11598

December 2008

TABLE OF CONTENTS FINAL ENGINEERING REPORT FORMER DICO G AUTO AND TRUCK REPAIR SITE

1.0	BAC	CKGROUND	1
	1.1	Site Location and Description	1
	1.2	Contemplated Redevelopment Plan	1
	1.3	Description of Surrounding Property	2
2.0	DEC	CSCRIPTION OF REMEDIAL INVESTGATION FINDINGS	4
	2.1	Summary of the Remedial Investigations Performed	4
		2.1.1 Borings and Wells	4
		2.1.2 Samples Collected	6
		2.1.1.1 Soil Samples	6
		2.1.1.2 Groundwater Samples	6
		2.1.1.3 Soil Gas Samples	7
		2.1.3 Chemical Analytical Work Performed	7
		2.1.4 Geophysical Work and Test Pits	8
		2.1.5 Documentation	8
		2.1.6 Summary of RI Findings	9
	2.2	Significant Threat	10
	2.3	Site History	10
		2.3.1 Past Uses and Ownership	10
		2.3.2 Phase I and Phase II Reports	11
		2.3.3 Sanborn Maps	14
	2.4	Geological Conditions	15
	2.5	Contamination Conditions	16
		2.5.1 Conceptual Model of Site Contamination	16
		2.5.2 Description of Areas of Concern	17
		2.5.3 Identification of Standards, Criteria and Guidance	17
		2.5.4 Soil/Fill Contamination	
		2.5.4.1 Description of Soil / Fill Contamination	19
		2.5.4.2 Comparison of Soil / Fill with SCGs	19
		2.5.5 On-Site and Off-Site Groundwater Contamination	19
		2.5.5.1 Description of Groundwater Contamination	19
		2.5.5.2 Comparison of Groundwater with SCGs	20
		2.5.6 On-Site and Off-Site Soil Vapor Contamination	20
		2.5.6.1 Description of On-Site and Off-Site Soil Vapor Contamination	20
		2.5.6.2 Comparison of On-Site and Off-Site Soil Vapor with SCGs	21
	2.6	Environmental And Public Health Assessments	21
		2.6.1 Qualitative Human Health Exposure Assessment	21
		2.6.2 Fish & Wildlife Remedial Impact Analysis	23
	2.7	Interim Remedial Action	23
		2.7.1 Chemical Inventory and Hydraulic Lift Removal	25
		2.7.2 Removal of Drainage Structures, Surface Drains and Related Piping	25
		2.7.3 Excavation of Overburden Soil	
		2.7.3.1 Test Pits and Waste Characterization Sampling	27

TABLE OF CONTENTS continued FINAL ENGINEERING REPORT FORMER DICO G AUTO AND TRUCK REPAIR SITE

		2.7.4 Excavation and Disposal of Bedrock	27
		2.7.4.1 Bedrock Sampling and Analysis	
		2.7.4.2 Excavation Dewatering	
		2.7.5 Final Excavation Dimensions	29
		2.7.6 Import of Backfill	29
		2.7.7 Chemical Oxidant Treatment Program	29
		2.7.7.1 Performance Monitoring Program	
		2.7.8 Health and Safety Plan	
	2.8	Remedial Action Objectives	
		2.8.1 Groundwater RAOs	
		2.8.2 Soil RAOs	
3.0	DEC	CSCRIPTION OF APPROVED REMEDIAL ACTION PLAN	
	3.1	Summary of Proposed Remedial Action	
40	DF	SCRIPTION OF REMEDIAL ACTIONS PERFORMED	37
T. U	4.1	Governing Documents	
		4.1.1 Health and Safety Plan (HASP)	
		4.1.2 Quality Assurance Project Plan (OAPP)	
		4.1.3 Construction Quality Assurance Plan (COAP)	
		4.1.4 Soil/Materials Management Plan (SoMP)	
		4.1.5 Storm-Water Pollution Prevention Plan (SWPPP)	
		4.1.6 Community Air Monitoring Plan (CAMP)	
		4.1.7 Contractors Site Operations Plan (SOP)	
		4.1.8 Community Participation Plan (CPP)	
	4.2	Remedial Action Elements	40
		4.2.1 Involved Parties	40
		4.2.2 Site Preparation	40
		4.2.3 General Site Controls	41
		4.2.4 Nuisance Controls	41
		4.2.5 CAMP Results	42
		4.2.6 Reporting	42
	4.3	Contaminated Materials Removal	42
		4.3.1 Excavation and Disposal of Overburden Soil	42
		4.3.1.1 Disposal Details	43
		4.3.2 Excavation and Disposal of Excavated Bedrock	44
		4.3.2.1 Disposal Details	45
		4.3.3 Excavation Dewatering	45
		4.3.3.1Disposal Details	45
	4.4	LPH Recovery Program	45
	4.5	Chemical Oxidant Treatment Program	46
	4.6	Remedial Performance Sample Results	47
	4.7	Backfill	49
	4.8	Residual Contamination Remaining On-Site	49

TABLE OF CONTENTS Continued FINAL ENGINEERING REPORT FORMER DICO G AUTO AND TRUCK REPAIR SITE

4.9 Engi	neering Control Systems	50
4.9.1	Sub-Slab Depressurization System (SSDS)	50
4.9.2	LPH Recovery	51
4.9.3	Chemical Oxidant Treatment of Groundwater	
4.10 Insti	tutional Controls	53
4.11 Devi	ations from the Remedial Action Work Plan	54
4.12 Site	Management Plan	55

TABLES

Table 1A-D	RI Summary of Soil Results
Table 2A-D	RI Summary of Groundwater Results
Table 3	RI Summary of Soil Gas Results
Table 4	Parameters Detected Above Track 1 Soil Cleanup Objectives Prior to Remediation
Table 5	Parameters Detected Above Ambient Water Quality Standards Prior to Remediation
Table 6	Volatile Organic Compounds IRM Performance Wells - May 2008
Table 7	Volatile Organic Compounds IRM Performance Wells - August 2008
Table 8	Volatile Organic Compounds IRM Performance Wells - October 2008
Table 9	Volatile Organic Compounds IRM Performance Wells - Summary of Results from All
	Sampling Rounds
Table 10	Quantities of Materials Removed From the Site

FIGURES

Figure 1	Site Location Map
Figure 2	Surrounding Land Use
Figure 3	Soil Boring Locations and New Building Layout
Figure 4	Monitoring Well Locations and New Building Layout
Figure 5	Soil Gas Sampling Locations and New Building Layout
Figure 6	Geologic Cross Section
Figure 7	Groundwater Elevation Map – 12/5/07
Figure 8	Parameters Above Track 1 Objectives
Figure 9	Exceedances in Groundwater Standards
Figure 10	Soil Gas Results
Figure 11	Site Plan Showing Source Areas
Figure 12	Test Pit Locations
Figure 13	Bedrock Sampling Locations
Figure 14	Map Showing Excavation Volume
Figure 15	Map Showing Fill Volume
Figure 16	Injection and Monitoring Well Locations
Figure 17	IRM Baseline Sampling Results – 5/27/08 Round 1
Figure 18	IRM Performance Sampling Results – 8/8/08 Round 2
Figure 19	IRM Performance Sampling Results – 10/3/08 Round 3
Figure 20	IRM Performance Sampling Results – All Rounds
Figure 21	SSD System Layout
Figure 22	Soil Vapor Sampling Locations

TABLE OF CONTENTS Continued FINAL ENGINEERING REPORT FORMER DICO G AUTO AND TRUCK REPAIR SITE

APPENDICES

- Appendix A Digital Copy of FER, RAWP and SMP
- Appendix B BCP Boundary Map
- Appendix C Metes and Bounds Description
- Appendix D Significant Threat Determination Notice
- Appendix E Sanborn Maps
- Appendix F Storage Tank Scrap Tickets and Liquid Disposal
- Appendix G Disposal Facility Acceptance Letters
- Appendix H Non-Hazardous Waste Disposal Manifests for Overburden Soil Digital Copy
- Appendix I Waste Characterization Profile Form and Analytical results
- Appendix J Bedrock Transportation Tickets Digital Copy
- Appendix K Correspondence Request to Ship Bedrock to Tilcon Facility
- Appendix L NYCDEP Sewer Discharge Permit
- Appendix M Well Logs Performance Monitoring Wells & Oxidant Injection Wells (typical)
- Appendix N Laboratory Analytical Reports Performance Sampling Rounds 1 through 3
- Appendix O Resumes of Key Personnel
- Appendix P Citizen Participation Plan
- Appendix Q Permits and Agency Approvals
- Appendix R Air Monitoring Reports
- Appendix S Daily and Monthly Status Reports
- Appendix T Digital Photo Log
- Appendix U Sub-Slab Depressurization System Details
- Appendix V Chemical Oxidant Documentation
- Appendix W Environmental Easement

SITE MANAGE MENT PLAN FORMER DICO G AUTO AND TRUCK REPAIR

LIST OF ACRONYMS

Acronym	Definition
AMC	AMC Engineering
AWQS Ambient Water Quality Standards	
BCA	Brownfield Cleanup Agreement
BCP	Brownfield Cleanup Program
BTEX	Benzene, Toluene, Ethylbenzene and Xylene
CQMP	Construction Quality Management Plan
DUSR	Data Usability Statement Report
EBC	Environmental Business Consultants
FER	Final Engineering Report
HDPE	High Density Polyethylene
IRM	Interim Remedial Measure
LPH	Liquid Phase Hydrocarbons
NYC	New York City
NYCDEP	New York City Department of Environmental Protection
NYSDEC	New York State Department of Environmental Conservation
NYSDOH	New York State Department of Health
PS	Public School
PVC	Polyvinyl Chloride
RAO	Remedial Action Objectives
RAWP	Remedial Action Work Plan
RI	Remedial Investigation
RSCOs	Recommended Site Cleanup Objectives
SCG	Standards, Criteria, and Guidelines
SMMP	Soil/Materials Management Plan
SSDS	Sub-slab Depressurization System
SWPPP	Stormwater Pollution Prevention Plan
SVOCs	Semi-Volatile Organic Compounds
USEPA	United States Environmental Protection Agency
UST	Underground Storage Tank
VEFR	Vacuum Enhanced Fluid Recovery
VOCs	Volatile Organic Compounds

CERTIFICATIONS

I, <u>Ariel Czemerinski</u>, am currently a registered professional engineer licensed by the State of New York. I had primary direct responsibility for implementation of the remedial program for the Former Dico G Auto and Truck Repair Site (NYSDEC BCA Index No. W2-1108-07-07 Site No. C203039

I certify that the Site description presented in this FER is identical to the Site descriptions presented in the Environmental Easement, the Site Management Plan, and the Brownfield Cleanup Agreement for the Former Dico G Auto and Truck Repair Site and related amendments.

I certify that the Remedial Action Work Plan dated December 22, 2008 and approved by the NYSDEC was implemented and that all requirements in those documents have been substantively complied with.

I certify that the remedial activities were observed by qualified environmental professionals under my supervision and that the remediation requirements set forth in the Remedial Action Work Plan and any other relevant provisions of ECL 27-1419 have been achieved.

I certify that all use restrictions, Institutional Controls, Engineering Controls, and all operation and maintenance requirements applicable to the Site are contained in an Environmental Easement created and recorded pursuant ECL 71-3605 and that all affected local governments, as defined in ECL 71-3603, have been notified that such Easement has been recorded. A Site Management Plan has been submitted by the Applicant for the continual and proper operation, maintenance, and monitoring of all Engineering Controls employed at the Site, including the proper maintenance of all remaining monitoring wells, and that such plan has been approved by NYSDEC.

I certify that all export of contaminated soil, fill, water or other material from the property was performed in accordance with the Remedial Action Work Plan, and were taken to facilities licensed to accept this material in full compliance with all Federal, State and local laws.

I certify that all import of soils from off-Site, including source approval and sampling, has been performed in a manner that is consistent with the methodology defined in the Remedial Action Work Plan. I certify that all invasive work during the remediation and all invasive development work were conducted in accordance with dust and odor suppression methodology and soil screening methodology defined in the Remedial Action Work Plan. I certify that all information and statements in this certification are true. I understand that a false statement made herein is punishable as Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

076508

12/22/08

NYS Professional Engineer #

Date

It is a violation of Article 130 of New York State Education Law for any person to alter this document in any way without the express written verification of adoption by any New York State licensed engineer in accordance with Section 7209(2), Article 130, New York State Education Law.

1.0 BACKGROUND

Bedford Park Associates, LLC, Adee & Lester, LP and 3035 White Plains Retail, LLC entered into a Brownfield Cleanup Agreement (BCA) with the New York State Department of Environmental Conservation (NYSDEC) in July, 2007, to investigate and remediate a 0.39-acre property located in the Bronx, New York. A mixed commercial/residential use is proposed for the property. When completed, the Site will contain a 74-unit multifamily building with approximately 11,000 square feet of ground floor commercial space. Refer to the Brownfield Cleanup Program (BCP) application for additional details.

A digital copy of this FER with all project documents approved under the BCP is included in **Appendix A**.

1.1 SITE LOCATION AND DESCRIPTION

The Site is located in the County of the Bronx, New York and is identified as Block 4545 and Lots 1001 and 1002 (formerly Lot 14) on the Bronx Borough Tax Map. A United States Geological Survey (USGS) topographical quadrangle map (**Figure 1**) shows the Site location. The Site is situated on an approximately 0.39-acre area bounded by commercial properties to the north, Adee Avenue to the south, White Plains Road to the east, and residential homes to the west (see **Figure 2**). The boundary map included in the BCA as required by Environmental Conservation Law (ECL) Title 14 Section 27-1419 is included in **Appendix B**. The 0.39-acre property is fully described in **Appendix C** – Metes and Bounds. A global positioning system coordinate for the starting point is included.

1.2 CONTEMPLATED REDEVELOPMENT PLAN

The remedial action performed under the approved IRM Work Plan and the approved Remedial Action Work Plan (RAWP) has made the site protective of human health and the environment consistent with the contemplated end use. The proposed redevelopment plan and end use is mixed commercial / residential.

The construction project, known as the Bronx Park Apartments, includes a multifamily building with approximately 11,000 s/f of ground floor commercial space. The partnership (Volunteer) will enter into a 30-year regulatory agreement with the New York City Housing Development Corporation (NYC

HDC) that will provide for all units at the Project to be set-aside for households earning no more than 55% of the area median income (AMI). The building includes 30 basement level attended parking spaces for the residential component of the project and 25 basement level attended parking spaces for the commercial component of the project. The seven-story building will total approximately 84,047 gross square feet.

1.3 DESCRIPTION OF SURROUNDING PROPERTY

The surrounding land use (**Figure 2**) includes a commercial property to the north, single unit residential homes to the west, commercial retail stores to the east, and a large multi-building residential housing project to the south. The surrounding area is characterized by commercial businesses (mostly retail) along White Plains Road. Residential areas are located behind (east-west) this commercial corridor. An elevated section of the Metro-North Railway passes in front of the property, directly over White Plains Road.

The property is zoned residential R6 with a commercial a C2 overlay and a G2 (gas station) occupancy code. R6 districts are generally for medium density housing, usually between three and five stories. C2 districts are intended to serve both the immediate area around the property and a wider area within the neighborhood. Commercial uses within the classification are limited to the first one or two floors of the building. C2districts are mapped as an overlay to the residential district. A commercial overlay is a small section of a residential district, usually the first and second floors of buildings fronting major avenues, which is zoned for retail and service stores.

The proposed project is compatible with the surrounding land use, and will be in compliance with the current zoning.

There are two schools located within a one-half mile radius of the site: P.S. 41 Gun Hill Road School which is a kindergarten to 5th grade elementary school located at 3352 Olinville Ave and H.S. 425 Evander Childs High School, located at 800 East Gun Hill Road.

The nearest body of water is the Bronx River, which is located approximately 1,575 feet west (topographically upgradient) of the site. The nearest body of water topographically downgradient of the site is Eastchester Bay which is approximately 12,500 feet to the east.

2.0 DESCRIPTION OF REMEDIAL INVESTIGATION FINDINGS

The Site was investigated in accordance with the scope of work presented in the NYSDEC-approved Remedial Investigation (RI) Work Plan dated September, 2007 and a Stipulation Letter (EBC) dated September 27, 2007. The investigation was conducted between October 2 and November 2, 2007. The RI Report was submitted to NYSDEC on October 3, 2008 and approved by NYSDEC in December 2008. The Site was determined by NYSDEC and New York State Department of Health (NYSDOH) not to pose a significant threat to human health or the environment. Below is a summary of Remedial Investigation findings.

2.1 SUMMARY REMEDIAL INVESTIGATIONS PERFORMED

2.1.1. Borings and Wells

Eighteen soil borings were advanced to evaluate the extent and degree of impact in the identified and suspect source areas and to obtain general soil quality information across the site. At each soil boring location, soil samples were collected continuously in 4-foot intervals using a GeoprobeTM (model 54DT) sampling system. The GeoprobeTM uses a direct push hydraulic percussion system to drive and retrieve core samplers.

Soil samples were retrieved using a 2-inch diameter, 4-foot long macro-core sampler with disposable acetate liners. At each soil boring location, sampling was conducted to the bedrock surface. The depth to bedrock at the site varied, with the deepest (approximately 12 feet below grade) encountered in the southern portion of the property and the shallowest (3-4 feet below grade) encountered in the northern portion of the property.

Each soil sample recovered from the soil borings was characterized by an experienced geologist and field screened for the presence of VOCs using a photo-ionization detector (PID). One composite sample was retained from each 4-foot interval, from each of the 18 soil boring locations (total of 27 soil samples). Retained soil samples were submitted for laboratory analysis of VOCs by EPA Method 8260, SVOCs by EPA Method 8270, Target Analyte List (TAL) metals + hexavalent chromium, and Pesticides/PCBs by Method 8081/8082.

In accordance with the RI Work Plan, a total of 12 groundwater monitoring wells (MW1-MW12) were installed from 10/23/07 to 10/29/07 to establish general groundwater quality at the site, define the extent of VOCs in groundwater and to determine the magnitude and direction of a potential contaminant plume migrating from the site. To achieve this, monitoring wells were located to provide coverage of both the interior area of the site and along the site boundary to assess off-site contamination and plume migration. The monitoring wells were installed through overburden and bedrock materials to an overall depth of approximately 25 feet below the surface, (approximately 10 feet below the water table) using a rotary drill rig equipped with an air hammer.

The monitoring wells were constructed of 2-inch diameter PVC casing and ten feet of 0.010 inch slotted PVC well screen. A No.00 morie filter sand was placed in the borehole to within 2 feet above the top of the screen. A 1-foot hydrated bentonite seal was then placed on top of the filter sand and the remainder of the borehole was backfilled to grade. Following installation, each of the wells was surveyed to determine relative casing elevation to the nearest 0.01 ft and horizontal position to the nearest 0.1 ft.

Prior to sampling, a synoptic round of depth-to-groundwater (DTW) measurements was obtained from the wells on 11/2/07 to determine the water table elevation and to calculate the volume of standing water in the well. Approximately 9.5 inches of weathered gasoline was present in well MW8 on this date. The gasoline was removed by hand bailing which was repeated on a weekly basis through 1/10/08 when the wells were lost due to excavation activity. Removed gasoline was stored on-site in a 55 gallon drum. Following the initial removal, only minor amounts approximately 1/8 inch of free phase gasoline were reported in MW8.

In an attempt to delineate the free-phase gasoline found in MW8, four additional monitoring wells (MW13-MW16) were installed around MW8 on 11/9/07. These wells were also checked on a weekly basis through 1/10/08 with no free phase gasoline reported.

2.1.2 Samples Collected

2.1.2.1 Soil Samples

A total of 27 composite soil samples were collected from the 18 soil borings performed at the site. One composite soil sample was formed from each 4-foot boring interval. Collected soil samples were as follows:

- Soil boring SB-1 was performed to a depth of 12 feet below grade resulting in the following soil samples: SB1 (0-4ft), SB1 (4-8ft) and SB1 (8-12feet).
- Soil boring SB-2 was performed to a depth of 8 feet below grade resulting in soil samples SB2 (0-4ft), SB2 (4-8ft).
- Soil borings SB-4 and SB-5 were performed to a total depth of 10 feet below grade, resulting in soil samples SB4 (0-4ft), SB5 (0-4ft), SB4 (4-8ft), SB5 (4-8ft), SB4 (8-10ft) and SB5 (8-10ft).
- Soil borings SB3, SB7, SB11 and SB13 were all performed to a final depth of 4 feet below grade, resulting in soil samples SB2 (0-4ft), SB7 (0-4ft), SB11 (0-4ft), and SB13 (0-4ft).
- Soil borings, SB6, SB8, SB9, SB10 and SB12 were all performed to a final depth of 2 feet below grade, resulting in soil samples SB6 (0-2ft), SB8 (0-2ft), SB9 (0-2ft), SB10 (0-2ft) and SB12 (0-2ft).

2.1.2.2 Groundwater Samples

Groundwater samples were obtained from wells MW1 through MW7 and MW9 through MW12 on 11/2/07 and from MW13-MW16 on 12/7/07. Samples were not collected from MW8 due to the presence of free phase gasoline in the well. Prior to sampling one to three volumes of standing water was purged from each well using a submersible pump at a flow rate of approximately 200 ml/minute to minimize the suspension of particulates in the well.

Upon completion of purging, a groundwater sample was obtained using a disposable, dedicated polyethylene bailer and string. Samples were collected in pre-cleaned laboratory supplied glassware, stored in a cooler with ice and submitted to Chemtech Laboratories, Inc. (Chemtech) of Mountainside, NJ, a New York State ELAP certified environmental laboratory (ELAP Certification No. 11376).

Groundwater samples collected from 15 of the 16 wells (all except MW8) were analyzed for VOCs by EPA method 8260. Samples from 11 of the wells (MW1-12, except MW8) were also analyzed for SVOCs by EPA method 8270. Groundwater samples from 5 of the wells (MW1, MW5, MW6, MW10, MW12) were analyzed for target analyte list metals (total/dissolved), hexavalent chromium, and pesticides/PCBs by Method 8081/8082.

2.1.2.3 Soil Gas Samples

To assess the presence of VOCs in soil gas beneath the site, soil vapor samples were collected from 12 vapor implants (SG1-SG12) located throughout the site. Soil vapor samples were collected in accordance with the Draft Guidance for Evaluating Soil Vapor Intrusion in the State of New York (NYSDOH 2/05). The vapor implants were installed at the site on 10/2/07 by LVS under the supervision of an EBC environmental geologist. Soil gas samples were collected 10/5/07.

2.1.3 Chemical Analytical Work Performed

Each soil and groundwater sample was placed in pre-cleaned laboratory supplied glassware, and placed in a cooler packed with ice for transport to the laboratory. Sample analysis was provided by Chemtech Laboratories, Inc. of Mountainside, NJ, a New York State ELAP certified environmental laboratory. Soil samples were analyzed for volatile organic compounds (VOCs) by EPA Method 8260, semi-volatile organic compounds (SVOCs) by EPA Method 8270, Target Analyte List (TAL) metals, and pesticides/PCBs by Method 8081/8082. Groundwater samples were analyzed for one or more of the following depending on location: VOCs by EPA Method 8260, SVOCs by EPA Method 8270, TAL metals, and pesticides/PCBs by Method 8081/8082. Ten soil gas samples were collected for analysis for VOCs by EPA method TO-15 from the twelve soil vapor sampling points.

2.1.4 Geophysical Work and Test Pits

A geophysical survey was not conducted for the site because redevelopment plans called for the completion excavation of the site to bedrock.

In addition to the soil boring, monitoring well and soil gas sampling program, 14 test pits were performed under the IRM to verify the depth to the bedrock surface and to collect waste characterization samples as necessary to obtain final approval at the identified disposal facility for the transport of the overburden soils.

2.1.5 Documentation

Maps showing the locations of the soil borings, monitoring wells and soil gas sample collection points are provided in **Figures 3** through **5**. The results of soil, groundwater and soil gas samples collected during the RI are summarized in **Tables 1** through **3**. Below is a summary of RI findings.

The results of sampling performed during the RI, identified residual VOCs in overburden soil at two locations which correspond to the two former dispenser islands near the east side of the former gas station property. VOC concentrations in groundwater and/or free phase gasoline were found in close proximity to the former dispensers, identifying both as source areas of gasoline contamination. The greater VOC concentrations reported in both soil and groundwater in the vicinity of the north dispenser; identified it as the more significant of the two. The conceptual release scenario in both cases included a slow release at a dispenser fitting which saturates the surrounding overburden soil to the bedrock surface approximately 2-3 feet below grade. Free-phase gasoline would then migrate along the bedrock surface following joints and cracks in the bedrock until it encounters groundwater at a depth of approximately 15 feet below the surface. Upon contacting the groundwater, a dissolved VOC plume is generated which then migrates from the south dispenser area to the south and east, and from the north dispenser area to the north and east. The direction of groundwater flow is influenced by the potentiometric surface and the orientation of joints and fractures in the bedrock.

During implementation of the IRM, all overburden soil was removed to the bedrock surface. In addition, a large area of bedrock was excavated to a depth of approximately 14 feet for construction of a basement level parking garage within the new building. This effectively removed the source of

gasoline VOCs in soil and the historic fill which contained several SVOC compounds and metals above the Track 1 cleanup criteria. A small accumulation (<0.15 ft) of liquid phase hydrocarbons (LPH), in the form of weathered gasoline, was reported in one of nine post excavation IRM monitoring wells (IRM-W7) installed during the chemical oxidant treatment program performed under the IRM. Removal of this LPH and further treatment of groundwater is warranted, to reduce VOC concentrations in on-site groundwater and to limit off-site migration of a VOC plume.

Although elevated VOC concentrations were detected in soil-gas samples collected during the RI there did not appear to be any correlation to identified source areas. In addition, the distribution of gasoline related VOCs, and the site-wide detections of chlorinated compounds, which were not associated with the site, provides evidence that some of the VOCs detected in soil gas were not related to on-site contamination.

2.1.6 Summary of Remedial Investigation Findings

The Site was investigated in accordance with the scope of work presented in the NYSDEC-approved Remedial Investigation (RI) Work Plan dated September, 2007 and a Stipulation Letter (EBC) dated September 27, 2007. The investigation was conducted between October 2 and November 2, 2007. The RI Report was submitted to NYSDEC on October 3, 2008.

The primary areas of concern are the two former dispenser islands located on the southern half of the property along White Plains Road. Based on the degree of soil and groundwater contamination, the former north dispenser island has been identified as a primary source area with the former south dispenser island contributing to a lesser extent. Overburden soil consisted primarily of historic/urban fill material with slightly elevated levels of metals, SVOCs and pesticides.

It must be noted that soil and bedrock excavation performed by the Volunteer under an approved IRM Work Plan was successful in removing all petroleum contaminated soil, and in meeting the unrestricted soil cleanup objectives, as established in Draft 6NYCRR 375-6. There are no known source areas (USTs, contaminated soil, etc.) remaining on the site, however, small accumulations of free-phase gasoline have been reported in one of the on-site monitoring wells following implementation of the IRM.

Contaminated media documented at the site during the RI includes soil, groundwater and soil gas which were found to be contaminated with VOCs related to gasoline released during past use of the site as a service station.

2.2 SIGNIFICANT THREAT

The NYSDEC and NYSDOH have determined that this Site does not pose a significant threat to human health and the environment. Notice of that determination has been provided for public review. The notice is included in **Appendix D**.

2.3 SITE HISTORY

2.3.1 Past Uses and Ownership

Previous owners and operators of the property at 3035 White Plains Road are shown below. A deed chain title search was performed from 1957 to the present, showing that the Tremarco Corporation owned the property from 1957 to 1973 when Gulf Oil Company became successor in title, as the result of a merger with Tremarco. Gulf transferred the title to 3035 White Plains Realty Corp in 1984. The title was then transferred from 3035 White Plains Realty Corp to G.S Dixon Realty Corp. in 2006, as a zero consideration transaction. A one-story building was constructed on the property in 1960. The building was used as a service/gasoline retail station from 1960 to approximately 1999, and then as an automotive repair shop and storage yard from 1999 to the present. Based on a business directory search of the address, the earliest business directory listing for the property was in 1961, for "Safeway Service Station" and "Salzano Service Station". The Sanborn map from 1976 identifies the property as "A filling station".

Dates	Name	Comments	Contact Info
prior to 3/29/57	Harry Jacobs	Owner from at least 1957	
3/29/57 to 8/73	Tremarco Corporation	Owner from 3/29/57 until merger with Gulf Oil Corp	
8/73 to 8/11/84	Gulf Oil Corp.	Acquired through merger with Tremarco Corp.	
8/11/84	3035 White	Purchase from Gulf Oil Corp.	3035 White Plains

Previous Owners

to 5/18/06	Plains Realty		Road Bronx
5/18/06 to present	G.S. Dixon Realty Corp.	Transfer of title as a zero consideration transaction and to wind up corporate affairs of grantor.	3035 White Plains Road Bronx

Previous Operators

Date of Listing	Name	Address
2005	Dico G Associates, Inc.	3035 White Plains Road, Bronx
2000	Dico G Associates, Inc.	3035 White Plains Road, Bronx
1993	Dico G Associates, Inc.	3035 White Plains Road, Bronx
1983	Pudix Service Center	3035 White Plains Road, Bronx
1976	L & A Gulf Service Station	3035 White Plains Road, Bronx
1971	G & A Service Station	3035 White Plains Road, Bronx
1965	Safeway Service Station Salzano Service Station	3035 White Plains Road, Bronx
1961	Safeway Service Station Salzano Service Station	3035 White Plains Road, Bronx

2.3.2 Phase I and Phase II Reports

Summary of Phase I Report

A Phase I Environmental Site Assessment (ESA), in accordance with ASTM E 1527, was completed by Environmental Business Consultants (EBC) and documented in a report dated February, 2007. The Phase I ESA revealed that the property was historically used as an automotive service station from at least 1960 to 1999. Since 1999 the site has been used mainly as a truck and automotive repair shop and scrap yard. The records search identified two NYSDEC petroleum spill files, one of which remains open. The site inspection identified numerous environmental concerns including the improper storage of fuel oil, waste oil and automotive fluids. The Phase I revealed the following recognized environmental conditions:

- The site has an open spill file No. 99-00851 related to soil contamination discovered during the removal of twelve 550 gallon USTs in 1999. No documentation regarding endpoint sampling, impacts to groundwater or other media was available.
- The improper storage of hazardous and non-hazardous materials including gasoline, fuel oil, automotive fluids and solvents.

- The outdoor storage of derelict vehicles, auto parts, scrap metals and trash.
- The presence of a surface drain with obvious staining around the structure.
- The historic use of the property as a gas station from 1960 to 1999, and as an automotive repair facility from 1960 to the present.

The Phase I concluded that the site has been impacted by petroleum products associated with underground leaking storage tanks, and that the potential exists for impacts to other areas of the site from the former dispenser system and associated piping, from the improper storage and use of petroleum products, solvents and automotive chemicals, and from the outdoor storage of derelict vehicles, auto parts and scrap metals.

The shallow groundwater and bedrock surface conditions at the site, combined with the documented historic use of the property, increases the potential liability for off-site impact to businesses and residences through the vapor intrusion pathway.

Summary of Preliminary Sampling

On December 29, 2006, gasoline contamination was encountered by a geotechnical drilling company advancing soil borings on the property to determine the foundation requirements of a potential new building for the site. On January 3, 2007, EBC visited the site and directed the geotechnical company to collect new samples from the area in which the contamination was discovered. This area corresponded to the general location of a former dispenser island, according to the property owner. Based on discussions with the property owner, two more borings were installed at locations which corresponded roughly to the location of a second dispenser island and the former UST area. Due to difficulties in accessing these areas from derelict vehicles stored on the property, optimal locations could not be achieved. Strong gasoline odors were noted from the samples collected from the borings near both of the former dispenser islands.

The geotechnical contractor was not equipped to collect groundwater samples, therefore, EBC returned to the site on January 10, 2007 to obtain a groundwater sample near the south property line, in an area where the contractor had previously encountered groundwater. The groundwater sample was collected from a depth of approximately 9 feet using a track-mounted probing machine.

Elevated VOCs above TAGM guidance levels were reported in the samples collected from the approximate location of the two former dispenser islands. Total VOCs in these areas exceeded 200,000 ug/kg. VOCs, indicative of gasoline contamination, were reported in all 3 borings. Elevated SVOCs also were reported in all 3 borings.

Fourteen VOC compounds associated with gasoline were found in exceedance of water quality standards. Total VOCs in the sample exceeded 27,000 ug/l. One SVOC parameter, naphthalene at a concentration of 820 ug/l, was also detected in exceedance of its water quality standard (10 ug/L).

Based on the results of soil and groundwater samples collected and the historic use of the site, the preliminary investigation concluded that the site had been impacted by its use as a service station and repair shop over the past 45 years. The report noted that the borings installed were located based on general guidance from the property owner and that they were unlikely to represent worst case conditions. Although the boring near the former UST area had no VOC exceedances, it was not optimally located within the assumed UST location because derelict vehicles were blocking access. Contamination was previously discovered in this area during removal of the USTs and a spill was reported to the DEC (No. 99-00851). There is no documentation that endpoint samples were collected from the excavation and no investigation performed to determine the extent of affected media; accordingly the preliminary report concluded that it is highly likely that significant contamination remains in this area of the property.

Groundwater from a single boring location was found to contain gasoline-related VOCs at levels significantly above water quality standards. As the boring was located close to the south property line, the report concluded that it was highly likely that contaminated groundwater was migrating off of the property. The report noted that the sample was not believed to be hydraulically downgradient of the impacted soil areas, and, therefore, VOC concentrations may be considerably higher in other areas of the site or at off-site locations.

The report noted that other areas of the property may be affected with VOCs, SVOCs and metals due to materials stored at the site and recommended that a comprehensive investigation be performed encompassing all potentially affected media (soil, soil gas, groundwater). The report noted that because

shallow soil and groundwater were affected, remedial action, and / or mitigation and control measures may be needed to prevent vapor intrusion, if the property is developed as intended.

2.3.3 Sanborn Maps

All Sanborn Maps available for this Site were reviewed prior to preparation of the RAWP. Sanborn fire insurance maps for the subject property and surrounding area were reviewed for the years 1887, 1908, 1918, 1935, 1950, 1976, 1978, 1981, 1983, 1986, 1989, 1991, 1992, 1993, 1995 and 1996. The review is summarized below. Copies of Sanborn maps are included as **Appendix E**.

Date	Description
1887	The lot has different dimensions then it does at present since it predates the widening and straightening of White Plains road. A dwelling is shown on the eastern half of the lot where White Plains Road is today.
1908	The lot is shown in its present dimensions. White Plans Road has been widened and now covers the eastern half of the previous lot. The lot is vacant. Lester Street is shown as a paper road at the north end of the lot. Olinville Avenue is shown as a paper road separating the subject lot from residential properties to the east.
1918	Elliot Ave is shown as a narrower paper road in place of Olinville Avenue.
1935	3 small automobile garages "A" are shown along the east side of Elliot Avenue.
1950	The garage structures are no longer shown.
1976	A building of the present size and dimensions is shown as "filling station"
1978	Unchanged
1979	Unchanged
1981	Unchanged
1983	Unchanged
1986	Unchanged
1989	Unchanged
1991	Unchanged
1992	Unchanged
1993	Unchanged
1995	Unchanged

Subject Property Historical Usage

Information contained in the Sanborn maps indicates that the subject property has been used as a service station since at least 1961. All Sanborn maps available for the Site were reviewed prior to preparation of the RAWP.

2.4 GEOLOGICAL CONDITIONS

The bedrock below the site, known as the Manhattan Schist, is overlain by deposits of poorly permeable glacial till. This glacial till consists primarily of sandy silt with weathered bedrock fragments. Based upon observations made in the basement excavation which extended 8-10 feet into the bedrock, fractures and joints in the bedrock generally strike north-south and dip to the northeast at an angle of 12-18 degrees. However, joints and cleavage plains were also observed which dipped to the south, particularly in the south eastern area of the site.

Soils at the site are classified as Urban Land (Ug), as defined by the United States Department of Agriculture. Urban Land is described as areas where at least 85 percent of the land surface is covered with asphalt, concrete, or other impervious building material. These areas are mostly parking lots, shopping centers, industrial parks, or institutional sites. Most areas are nearly level to gently sloping and range in size from three acres to several hundred acres.

The soil borings performed at the site describe the subsurface material as silty sand and clayey silt with rock fragments and micaceous soil composed almost entirely of severely weathered bedrock. The depth to competent bedrock, as determined by refusal during drilling, ranged from 2-3 feet below surface in the north and eastern part of the site and 10-12 feet in the southern portion of the site.

Ground water at the site exists at approximately 12-15 feet below land surface placing the water table within the bedrock at most of the locations. A geologic section is shown in **Figure** 6. A groundwater flow map is shown in **Figure** 7.

As shown in the figure, groundwater flow is generally from the central portion of the site (vicinity of the former station building) in a radial pattern to the north, south and east.

The flow patterns and direction may be influenced locally by leaking drainage structures and the orientation of joints and fractures in the bedrock.

2.5 CONTAMINATION CONDITIONS

2.5.1 Conceptual Model of Site Contamination

Although the date(s) and circumstances surrounding the release of gasoline at the site are not known, it can be assumed that it occurred sometime prior to the removal of the tanks and dispensers in 1999. Since the spill number assigned to the site was related to excavation of the tank area, it is assumed that at least some release of gasoline occurred in this area. Gasoline released from the tanks would be expected to contaminate soil within the tank bed, which was likely excavated into the bedrock surface to a depth of 8 feet. Based on the results of the RI, affected soil was removed at the time of the tank removal. The tank area itself does not appear to be a significant source of the gasoline contamination at the site.

There is evidence of a release at both the north and south dispensers as well. It is anticipated that a spill at these locations would migrate along the contours of the shallow bedrock surface (approximately 2-3 ft below grade) entering fractures in the bedrock until it encounters groundwater at a depth of approximately 15 feet below grade. The release appears to have been much more significant at the north dispenser where VOC concentrations in soil and groundwater were much greater and where free phase gasoline is still present. The volume of free phase gasoline may have been insufficient to reach the water table near the south dispenser and groundwater impacts in this area may be the result of transport water migrating through affected overburden soil.

Upon contacting the groundwater, dissolved VOC components would form a plume which would migrate in the direction of groundwater flow. In the vicinity of the south dispenser the flow would be generally to the southeast and east. In the vicinity of the north dispenser flow would generally be to the northeast and east. Volatile organic compounds (VOCs) would be expected to off-gas to some degree from affected groundwater where it would migrate toward low pressure areas such as utility conduits or basements. Volatilization would be limited by the occurrence of groundwater only within bedrock fractures.

2.5.2 Description of Areas of Concern

The primary areas of concern are the two former dispenser islands located on the southern half of the property along White Plains Road. Based on the degree of soil and groundwater contamination, the former north dispenser island has been identified as a primary source area with the former south dispenser island contributing to a lesser extent. Overburden soil consisted primarily of historic/urban fill material with slightly elevated levels of metals, SVOCs and pesticides.

It must be noted that soil and bedrock excavation performed by the Volunteer under an approved IRM Work Plan was successful in removing all petroleum contaminated soil, and in meeting the unrestricted soil cleanup objectives, as established in Draft 6NYCRR 375-6. There are no known source areas remaining on the site.

Contaminated media documented at the site includes soil, groundwater and soil gas which was found to be contaminated with VOCs during the RI.

2.5.3 Identification of Standards, Criteria and Guidance

Applicable SCG's for Remedial Actions include the following:

- 29 CFR Part 1910.120 Hazardous Waste Operations and Emergency Response
- 40 CFR Part 144 Underground Injection Control Program
- 10 NYCRR Part 67 Lead
- 12 NYCRR Part 56 Industrial Code Rule 56 (Asbestos)
- 6 NYCRR Part 175 Special Licenses and Permits--Definitions and Uniform Procedures
- 6 NYCRR Part 371 Identification and Listing of Hazardous Wastes (November 1998)
- 6 NYCRR Part 372 Hazardous Waste Manifest System and Related Standards for Generators, Transporters and Facilities (November 1998)
- 6 NYCRR Subpart 373-4 Facility Standards for the Collection of Household Hazardous Waste and Hazardous Waste from Conditionally Exempt Small Quantity Generators (November 1998)
- 6 NYCRR Subpart 374-1 Standards for the Management of Specific Hazardous Wastes and Specific Types of Hazardous Waste Management Facilities (November 1998)

- 6 NYCRR Subpart 374-3 Standards for Universal Waste (November 1998)
- 6 NYCRR Part 375 Environmental Remediation Programs (December 2006)
- 6 NYCRR Part 376 Land Disposal Restrictions
- 6 NYCRR Part 608 Use and Protection of Waters
- 6 NYCRR Parts 700-706 Water Quality Standards (June 1998)
- 6 NYCRR Part 750 through 758 Implementation of NPDES Program in NYS ("SPDES Regulations")
- Technical Guidance for Screening Contaminated Sediments (January 1999)
- TAGM 4013 Emergency Hazardous Waste Drum Removal / Surficial Cleanup Procedures (March 1996)
- TAGM 4046 Determination of Soil Cleanup Objectives and Cleanup Levels (January 1994)
- TAGM 4059 Making Changes To Selected Remedies (May 1998)
- STARS #1 Petroleum-Contaminated Soil Guidance Policy
- TAGM 3028 "Contained In" Criteria for Environmental Media: Soil Action Levels (August 1997)
- Citizen Participation in New York's Hazardous Waste Site Remediation Program: A Guidebook (June 1998)
- TOGS 1.1.1 Ambient Water Quality Standards & Guidance Values and Groundwater Effluent Limitations
- TOGS 2.1.2 Underground Injection/Recirculation (UIR) at Groundwater Remediation Sites
- Air Guide 1 Guidelines for the Control of Toxic Ambient Air Contaminants
- OSWER Directive 9200.4-17 Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites (November 1997)

2.5.4 Soil/Fill Contamination

A total of 27 soil samples from 18 soil borings (SB1-SB18) were collected during the RI to evaluate the extent and degree of impact in the identified and suspect source areas and to obtain general soil quality information in overburden soils at the site.

The soil boring program identified three adjacent locations with gasoline contamination in overburden soil. All three locations correlated to the former dispenser pads near the eastern edge of the property. The depth to bedrock in this area was 2 to 4 feet below surface. Gasoline contamination was highest near the north dispenser pad. No gasoline contamination was reported in samples collected from borings within, and adjacent to, the former UST area. Overburden soils were comprised of urban fill which contained elevated levels of metals, SVOCs and/or pesticides.

2.5.4.1 Description of Soil/Fill Contamination

Soil sample results from the RI are summarized in **Table 1A-D**. Further information on soil sample collection, handling and analysis can be found in the RI Report (EBC 9/08).

2.5.4.2 Comparison of Soil/Fill with SCGs

Table 4 shows exceedances from Track 1 Unrestricted SCOs for all overburden soil at the Site. Figure8 is a spider map that shows the location and summarizes exceedances from Track 1 UnrestrictedSCOs for all overburden soil.

2.5.5 On-Site and Off-Site Groundwater Contamination

2.5.5.1 Description of Groundwater Contamination

Groundwater impacts consist of both liquid phase hydrocarbons (LPH) and dissolved VOC components associated with gasoline. Impacted groundwater was primarily encountered in the vicinity of and downgradient of the two former dispenser locations. In the case of the south dispenser location, impacted groundwater continued to migrate from this general area to the south property line. Total VOC concentrations in the vicinity of the former dispenser were reported as 6,616 ug/L (MW3). Total VOC concentrations at the south property line ranged from 1,886 to 4,661 ug/L (MW2, MW1 respectively). Based on the southerly groundwater flow direction in this area of the site, it is probable that a VOC plume of this magnitude is migrating south towards the southern property line.

Groundwater in the vicinity of the former north dispenser pad indicated a greater degree of impact with concentrations as high as 13,722 ug/L in well MW15 and free-phase gasoline at well MW8 (located northwest of the former dispenser) and IRM-W7 (located at the former north dispenser). High VOC

concentrations were also present in MW5 along the east property line. Impacted groundwater from this general area is expected to be migrating northeast in response to the potentiometric surface, however, the actual direction of plume migration will likely be influenced by the orientation of fractures within the bedrock. The VOC concentration in groundwater from well MW5 (12,045 ug/L) and IRM-W7, indicates that a VOC plume of this magnitude is migrating off-site across the central portion of the east property line.

The results of groundwater samples collected during the RI are summarized in **Table 2A-D**. Further information on groundwater sample collection, handling and analysis can be found in the RI Report (EBC 9/08).

2.5.5.2 Comparison of Groundwater with SCGs

A table that indicates exceedances from GA groundwater standards in monitor wells prior to the remedy is shown in **Table 5**. A spider map that indicates the location(s) of and summarizes exceedances from GA groundwater standards prior to the remedy is shown in **Figure 9**.

2.5.6 On-Site and Off-Site Soil Vapor Contamination

2.5.6.1 Description of On-Site and Off-Site Soil Vapor Contamination

Total VOC concentrations detected in soil vapor samples collected during the RI were highest (>2,000 ug/m3) in SG10, SG12 and SG4 respectively. Soil vapor concentrations at the remainder of the locations were fairly consistent at less than 1,000 ug/m3. The highest total VOC concentration which was reported at location SG10 was largely made up of methylene chloride and other non-petroleum VOCs. When looking at gasoline related compounds, the highest concentrations were limited to SG4 and SG12, with concentrations at SG12 significantly higher. Although SG4 is located near the identified secondary source area (south dispenser pad), SG12 is located in the far northwest corner the furthest away from the affected area at the site. The distribution of gasoline related VOCs, and the site-wide detections of chlorinated compounds, which were not detected in any of the on-site soil or groundwater samples indicates that at least some of the VOCs detected were not related to on-site contamination.

2.5.6.2 Comparison of Soil Vapor with SCGs

A table of soil vapor data collected prior to the remedy is shown in **Table 3**. A spider map that indicates the location(s) of and summarizes soil vapor data prior to the remedy is shown in Figure 10. Further information on soil gas sample collection, handling and analysis can be found in the RI Report (EBC 9/08).

2.6 ENVIRONMENTAL AND PUBLIC HEALTH ASSESSMENTS

2.6.1 Qualitative Human Health Exposure Assessment

The objective of the qualitative exposure assessment under the BCP is to identify potential receptors to the contaminants of concern (COC) that are present at, or migrating from, the site. The identification of exposure pathways describes the route that the COC takes to travel from the source to the receptor. An identified pathway indicates that the potential for exposure exists; it does not imply that exposures actually occur. An exposure pathway has five elements; a contaminant source, release and transport mechanisms, point of exposure, route of exposure and a receptor population.

The potential exposure pathways identified below, represent both current and future exposure scenarios.

Contaminant Source

The source of the VOCs detected in soil and groundwater at the site are generally related to the historic use of the property as a gasoline service station and automobile/truck repair shop. Two source areas have been identified which are related to releases at the former two dispenser islands. Based on the degree of soil and groundwater contamination, the former north dispenser island has been identified as a primary source area with the former south dispenser island contributing to a lesser extent. These two locations serve as the identified source areas for the purpose of evaluating on and off-site exposure.

It must be noted that soil and bedrock excavation performed by the Volunteer under an approved IRM Work Plan was successful in removing all petroleum contaminated soil, and in meeting the unrestricted soil cleanup objectives, as established in 6NYCRR 375-6. There are no known source areas (USTs,

contaminated soil, etc.) remaining on the site, however, small accumulations of free-phase gasoline have been reported in one of the on-site monitoring wells following implementation of the IRM.

Contaminant Release and Transport Mechanism

Since an IRM was successfully completed which removed all overburden soil from the site to the bedrock surface, impacted soil is no longer contributing contaminant mass to groundwater or transferring VOCs to the vapor phase through volatilization.

However, VOCs present in LPH and in on-site groundwater may volatilize to air resulting in elevated VOC concentrations in soil vapor both on-site and off-site. In addition, impacted groundwater is currently migrating off-site which could result in VOC volatilization closer to potential off-site receptors.

Chemical oxidant treatment performed under the IRM was successful in is reducing VOC mass and dissolved VOCs in groundwater at the site. This program will continue under a Site Management Plan to significantly reduce dissolved VOCs in on-site groundwater and eliminate future off-site migration.

Point of Exposure, Route of Exposure and Potentially Exposed Populations

<u>Potential On-Site Exposures:</u> Remediation workers and construction workers engaged in the excavation of impacted and non-impacted soil at the site may be exposed to VOCs through several routes. Workers excavating impacted soil may be exposed to VOCs through inhalation, ingestion and dermal contact. Workers excavating non-impacted soil may be exposed to VOCs in soil gas through inhalation. A site specific Health and Safety Plan has been developed to identify and minimize the potential hazards to on-site workers.

Under a future scenario, commercial workers and residents within the proposed building may be exposed to vapor intrusion if remediation of the groundwater is not completed, or if preventive measures are not incorporated into the new building design. This potential route of exposure will be reduced as VOC concentrations in groundwater decrease in response to the chemical oxidant injection program.

<u>Potential Off-Site Exposures:</u> The entire area is serviced by the New York City Water System which distributes water from the Croton Reservoir system. Since there are no public or private potable supply wells in the area, exposure from contact with tap water is not a concern. Off-site exposure is therefore limited to vapor intrusion from VOCs off-gassing from impacted groundwater leaving the site. The potentially exposed population would include residents in adjacent buildings and commercial workers in retail businesses.

Off-site exposure from VOCs in groundwater to indoor air assumes that VOCs present in groundwater at the site are migrating off-site with minimal attenuation, transferring to the vapor phase and entering commercial or residential buildings through pores and cracks in the foundation to the breathing zoning. Utility workers excavating conduits and service lines beneath the sidewalk and streets could also be potentially exposed to vapor migrating along the backfill trenches associated with the installation of these lines. This potential route of exposure will be reduced as VOC concentrations in groundwater decrease in response to the chemical oxidant injection program.

2.6.2 Fish & Wildlife Remedial Impact Analysis

Potential Off-Site Environmental Impacts: Since VOCs in shallow groundwater may be leaving the site in both a southerly and easterly direction, the groundwater to surface water discharge pathway was evaluated. Based on topographic maps of the area, there are no surface water bodies within 1 mile downgradient of the site. The nearest body of water downgradient of the site is Eastchester Bay which is approximately 12,500 feet to the east. The nearest body of water is the Bronx River, which is located approximately 1,575 feet west (upgradient) of the site. There are no expected impacts to surface water environments since there are no surface water bodies within 1 mile downgradient of the site.

2.7 INTERIM REMEDIAL ACTION

The IRM approved and implemented for the site included the removal and proper disposal of all overburden soil to the bedrock surface followed by injections of a chemical oxidant solution to address dissolved VOCs in groundwater. The excavation of overburden soil began on December 6, 2007 and was largely completed by April 8, 2008. Oxidant injections were performed on two occasions (July 20, 2008 and September 14, 2008). Although significant improvements have been achieved in

groundwater quality in response to the oxidant treatment, further treatment is warranted and will be performed under a Site Management Plan.

The IRM consisted of the following remedial elements:

- Chemical Inventory and Hydraulic Lift Removal. Prior to the demolition of the building, an interior inspection was performed to determine the status of chemical inventory and hydraulic lifting equipment. Following the inspection the hydraulic system reservoir tank was emptied and the system dismantled and removed from the site. Petroleum products, and automotive chemicals were removed from the site by American Environmental Assessment, inc., a licensed Hazardous Waste contractor, and properly disposed of (or recycled) as non-hazardous or hazardous materials;
- 2. Investigation and removal of drainage structures, surface drains and related piping which included removal of subsurface piping related to the underground storage tank system;
- 3. Excavation of all overburden soil to the bedrock surface to the property line. All excavated soil was transported and disposed of in accordance with all local, State and Federal laws and requirements.
- Excavation of bedrock for construction of a basement level parking garage. Non-contaminated bedrock material was sent to a recycling facility in full compliance with all Federal, State and local laws;
- 5. Screening for indications of contamination (by visual means, odor, and monitoring with PID) of all excavated soil and bedrock during intrusive Site work;
- 6. Appropriate off-Site disposal of all material removed from the Site in accordance with all Federal, State and local rules and regulations for handling, transport, and disposal;
- 7. Importation of materials used for backfill in compliance with a) Part 375-6.7 and b) all federal, state and local rules and regulations for handling and transport of materials;
- 8. The injection of a chemical oxidant solution to remediate the contaminated groundwater beneath the site. Chemical oxidants were injected throughout the site via pvc injection points installed into the bedrock in the basement level parking garage. Two oxidant injections have been performed to date.

2.7.1 Chemical Inventory and Hydraulic Lift Removal

On September 14, 2007, American Environmental Assessment (AEA) of Wyandanch, NY was on-site to remove the remaining components of the hydraulic lift system within the former service area of the building, empty and remove an aboveground 275 gallon fuel oil tank and remove any petroleum or automotive chemicals which remained on the site.

Prior to AEA's mobilization to the site, the former owner/operator of the auto repair shop removed most of the automotive chemicals which were noted in the building during the Phase I inspection. These chemicals were generally stored in small (>1 gallon) containers and included items such as: brake fluid, starting fluid, carburetor cleaner, transmission fluid, motor oil and other common automotive products.

Remaining chemical inventory included the following:

- 2 55 gallon drums of used motor oil
- 10 5 gallon pails of used motor oil
- 75 gallons of fuel oil in 275 gallon aboveground tank

AEA removed the liquid from the containers using a vacuum truck. Liquids were transported to the Clean Water of New York Waste Oil Reprocessing and Disposal Facility of Staten Island, NY. AEA also cleaned the 275 gallon fuel oil tank and disposed of it at Arrow Scrap Corp in Wheatley Height, NY, along with the empty 55 gallon waste oil drums and the empty hydraulic lift reservoir tank. The reservoir tank was the only component of the hydraulic lift system present at the site. The remaining parts of the system were removed at some time in the past. Copies of the waste manifest and metal scrap tickets are provided in **Appendix F**.

2.7.2 Removal of Drainage Structures, Surface Drains and Related Piping

The on-site drainage structures and piping were investigated during removal of the overburden material which took place in December of 2007. Piping was limited to a sanitary line from the former service station building and a surface drain located in the northeastern area of the site (see **Figure 11**). Both lines were traced to the combined sewer system located beneath White Plains Road. No significant leakage was observed along these lines and they were not considered to be a source of

contamination at the site. With the exception of the 11 vertical vent lines along the south side of the former service station building, no piping related to the former underground storage tanks (USTs) or former dispensers was encountered during the excavation of overburden soil.

2.7.3 Excavation and Disposal of Overburden Soil

All overburden soil was removed from the Site in accordance with the procedures outlined under the approved IRM Work Plan (EBC 10/07). The excavation of overburden soil began on December 6, 2007 and continued through December 12, 2007 within the south and southeastern areas of the property. Excavation was then suspended until January 2, 2008, to allow shoring along the western property line to progress. The majority of the soil excavation was completed during the month of January though small (1 or 2 day) shipment events continued each month through June 5, 2008. Overburden soil varied in thickness from 2-4 feet in the northern half of the site and along the east central area of the site, to 8-12 feet in the southern half of the site. Soil excavation was performed with two track mounted bucket excavators and loaded directly on to 10-wheel dump trucks provided by the disposal facility. In accordance with the approved IRM Work Plan, a gravel road was constructed and maintained, as needed, to the edge of the excavation / load-out area to minimize dust generation and the off-site tracking of site soil. Two laborers inspected and brushed off the wheels and undercarriage of each truck before it exited the site and periodically swept the street and the site ingress / egress.

All excavated soil was disposed of as non-hazardous waste at permitted disposal facilities operated by Clean Earth incorporated. The majority of soil was taken to the Clean Earth of Carteret facility (CEC) located in Carteret, NJ. The CEC facility (ID# 13231) is a Class B Recycling Center operating under permit No. CBG060003 (expiration date 3/7/12) issued by the New Jersey Department of Environmental Protection (NJDEP). Approximately 25 loads were shipped to the Clean Earth of Southeastern Pennsylvania facility (CESP) located in Morristown, PA. The CESP facility is solid waste processing facility operating under permit No. 301254 (expiration date 1/19/17) issued by the Pennsylvania Department of Environmental Protection (PADEP).

A total of 10,537.98 tons of non-hazardous overburden soil was shipped to the Clean Earth facilities for disposal. A copy of the facility acceptance letter is provided in **Appendix G**. Non-hazardous disposal manifests are provided in as a digital file in **Appendix H**.

2.7.3.1 Test Pits and Waste Characterization Sampling

Fifteen test pits, as shown on **Figure 12**, were advanced at the site on October 5, 2007 to confirm the depth to the bedrock surface, as indicated from the soil boring program, and to collect waste characterization samples as necessary to obtain final approval at the identified disposal facility for the acceptance of all overburden soils.

Waste characterization sampling consisted of the collection of grab and composite samples from the test pit soil piles at the frequency required by the selected disposal facility's waste acceptance criteria (WAC). Collected soil samples for characterization were placed in pre-cleaned laboratory supplied glassware, and placed in a cooler packed with ice for transport to the laboratory. Analysis of the waste characterization samples was provided by American Analytical Laboratories, of Farmingdale, New York, a New York State certified environmental laboratory (NYSDOH ID #11418). As required by the selected disposal facility (Clean Earth of Carteret), waste characterization sample analysis for overburden soil consisted of the following:

Analysis	Method	Frequency
Total Petroleum Hydrocarbons (TPH)	EPA Method 8015	1 every 100 cubic yards
Volatile Organic Compounds (VOCs)	EPA Method 8260	1 every 800 cubic yards
Polynuclear Aromatic Hydrocarbons (PAHs)	EPA Method 8270	1 every 800 cubic yards
Total Metals	EPA Method 1311 / 6010	1 every 800 cubic yards
TCLP Metals	EPA Method 6010	1 per site
Paint Filter	EPA Method 9095	1 per site
PCBs	EPA Method 8082	1 per site

The waste characterization profile form and analytical reports are provided in Appendix I.

2.7.4 Excavation and Disposal of Bedrock

Following the removal of overburden soils in the southern half of the property, work began on excavation of bedrock for construction of the basement level garage area. This work began on January 10, 2008 by chipping through the bedrock surface with a hydraulic demolition hammer attached to the track excavator.
Excavated bedrock was shipped from the site to the Tilcon NY, Inc. Quarry in Millington, NJ. The facility recycles the material for use in a variety of products such as railroad ballast, aggregate for concrete, etc. A field technician observed the excavation process and screened the work area visual or olfactory indications of petroleum contamination. Contaminated zones were identified along several fracture plains within central area of the site in the vicinity of the former north dispenser pad. Petroleum contaminated bedrock, as determined through screening, was stockpiled separately and shipped to the Clean Earth facility along with the remainder of overburden soil. A total of 6,875 cubic yards of uncontaminated bedrock was shipped to the Tilcon facility from January 30, 2008 through May 12, 2008. Copies of the transport tickets are provided in **Appendix J**.

2.7.4.1 Bedrock Sampling and Analysis

In concurrence with the DEC PM, samples of the bedrock were collected at three locations across the site (**Figure 13**) and submitted to Chemtech Laboratories for analysis of VOCs, SVOCs, Pest/PCBs and TAL metals. The results when compared to the Part 375-6.3 unrestricted use standards identified exceedances for three metals in 2 of the samples as follows:

Zinc - Bnorth sample 229 mg/kg Nickel - Bcentral sample 46.5 mg/kg Chromium Bcentral sample 43.1 mg/kg

Based on the historic use of the site and the nature of the samples, which represented fresh samples of pulverized rock, EBC concluded that the elevated metals were representative of the uncontaminated bedrock chemistry. EBC forwarded the analytical results to the DEC on January 24, 2008 and requested approval to ship uncontaminated bedrock material to the Tilcon facility (see **Appendix K**). EBC received verbal approval from the DEC PM on January 25, 2008. The locations of the bedrock samples

2.7.4.2 Excavation Dewatering

In general, the final depth of the excavation did not extend to the groundwater surface at approximately 15 feet below grade, though groundwater was encountered in several over-excavated areas in the southern end of the property. In addition, heavy rains, snowfall and run-off resulted in the

accumulation of 6 inches to 2 feet of standing water within the partially excavated basement area requiring dewatering.

A sewer discharge permit was filed with the New York City Department of Environmental Protection (NYCDEP) on January 27, 2008 to allow the discharge of up to 9,900 gallons per day into the combined sewer manhole located within the fenced area of the site along White Plains Road. The permit was approved by the NYCDEP on March 12, 2008. Dewatering operations consisted of pumping water out of the excavation with a small centrifugal pump located at the surface, through two 200 pound activated carbon drums connected in parallel, and into the open sewer manhole within the fenced area of the property. It took approximately 1 week to remove the accumulated water from the excavation. Dewatering of the excavation continued on an as-needed basis from late March through the end of April. A copy of the sewer discharge permit, permit application package and treatment system design specifications is provided in **Appendix L**.

2.7.5 Final Excavation Dimensions

On May 5, 2008, a survey team from Carman-Dunne, PC re-surveyed the site. The results of the survey were used to prepare a 1 foot contour interval map of the site and an excavation volume report. Based on comparison to the January 4, 2007 survey, Carman-Dunne calculated the cut volume as 7,824.68 cubic yards. The final contour map survey and excavation volume report prepared by Carman Dunne is presented as **Figure 14**.

2.7.6 Import of Backfill

Approximately 868 cubic yards (1,302 tons) of virgin mined stone dust and ³/₄ inch gravel material was imported to the Site for backfill and underlayment. This material was obtained from Tilcon Inc. Mt. Hope Quarry located at 625 Mt Hope Road in Morris County New Jersey and was defined as virgin-mined gneiss. The final fill survey and volume report prepared by Carman Dunne is presented as **Figure 15**.

2.7.7 Chemical Oxidant Treatment Program

Twelve oxidant injection points were initially installed throughout the basement level parking garage area on June 21, 22, 28 and 29, 2008 to target affected groundwater as defined by the results of the

Remedial Investigation. The injection points were constructed of 1 inch pvc with a 5 foot 0.020 screened section installed within a 2-inch borehole cored into the bedrock, approximately five-feet below the water table. A No. 2 morie gravel pack was placed around the screen to a depth of approximately 1 foot above the screen followed by a 1 foot hydrated bentonite pellet seal. The injection wells were initially protected with a 4 inch pvc sleeve to protect the well during construction activity within the basement.

Oxidant injections were performed on two occasions; initially on July 20, 2008 and again on September 14, 2008. Based on the results of performance monitoring following the initial injection, three additional injection wells were installed at the site on September 13, 2008, just prior to the second injection. The three new injection wells were located in the vicinity of the former north dispenser pad, adjacent to the elevator shaft in the new building. The purpose of these additional injection points was to target a high concentration area of VOC affected groundwater in the vicinity of monitoring well IRM-7. **Figure 16** shows the location of oxidant injection wells and IRM performance monitoring wells

The oxidant injections consisted of a sodium persulfate a chelated iron activator. Both components were delivered to the site as a dry powder and mixed then with water on-site to create a 15 to 20 percent solution. The activator was added at a ratio of 9 lbs of FeEDTA powder to each 55 lb bag of sodium persulfate. The injections consisted of approximately 100 gallons of solution per injection point. The initial injection consisted of a single application of 100 gallons of solution in each of the twelve injection points. The second injection included the single injections in each of the original twelve injection points plus the three new points installed near the elevator shaft. Well completion reports for IRM performance monitoring wells and chemical injection wells (typical) are provided in **Appendix M**.

2.7.7.1 Performance Monitoring Program

Six IRM performance monitoring wells (IRM1-IRM6) were installed in the basement area of the excavation on May 24, 25 and 26, 2008 to monitor and direct the oxidant injection program. The monitoring wells were installed by coring a 2-inch borehole into the bedrock, approximately five-feet below the water table. The wells were constructed of 1 inch pvc with a 7-foot 0.010 screened section

able with a No. 00 morie gravel pack placed around the screen to a depth of approximately 1 foot above the screen followed by a 1 foot hydrated bentonite pellet seal. The monitoring wells were initially protected with a 4 inch pvc sleeve to protect the well during construction activity within the basement.

In addition to the six basement wells, two monitoring wells (IWM8, IRM9) were installed within the retail area of the new building on June 11, 2008. Due to the required drilling depth through bedrock (20 ft) these wells were installed within a 6 inch borehole advanced using the air rotary drilling method. The wells were constructed of 2 inch pvc casing with a 10 foot 0.10 screened section set approximately 5 feet below the water table. The wells were completed with a No. 00 morie gravel pack paced to a depth of approximately 5 feet above the screen followed by a hydrated bentonite seal. The wells were protected with an 8-inch bolt down manhole cover. A third well (IRM-7) was installed on August 2, 2008 using the rock coring method. Consequently, well IRM-7 was constructed in the same manner and using the same materials as those of the basement wells IRM-1 through IRM-6. The locations of the performance monitoring wells are shown in **Figure 16**.

Groundwater samples were obtained from wells IRM-1 through IRM-6 on May 27, 2008. Wells IRM-8 and IRM-9 were sampled on July 17, 2008 following installation. This initial round of sampling was performed to establish baseline conditions prior to initiating the oxidant injection program. A second round of sampling was performed on August 8, 2008 following the installation of IRM-7 and after the initial oxidant injection on July 10, 2008. Samples from both rounds were collected in pre-cleaned laboratory supplied glassware, stored in a cooler with ice and submitted to Chemtech Laboratories, Inc. (Chemtech) of Mountainside, NJ, a New York State ELAP certified environmental laboratory (ELAP Certification No. 11376).

The results of the base line sampling on May 27, as summarized in **Table 6** and **Figure 17**, indicated that moderate concentrations (2,000 to 6,000 ug/L) of VOCs were present in wells IRM-3 and IRM-5 in the vicinity of the former south and north dispenser pads and in well IRM-1 near the south property line. The second round of sampling on August 8, 2008, which was after the initial oxidant application, showed a significant reduction in VOC concentrations in wells IRM-1, IRM-3 and IRM-5. IRM-7, which was sampled for the first time, had high concentrations of total VOCs (14,310 ug/L). Results

from the second IRM performance sampling round are summarized in **Table 7** and posted on **Figure 18**. Based on these results, three additional injection wells were installed to address the southern portion of the retail area and a second oxidant injection was performed on September 14, 2008.

A third performance sampling round was performed on October 3, 2008. The results from this round are summarized in **Table 8** and posted on **Figure 19**.

A summary table of all three sampling rounds is provided in **Table 9**. A composite figure showing th posted results from all performance sampling rounds is provided as **Figure 20**. Laboratory reports for the three performance sampling rounds are provided in **Appendix N**.

2.7.8 Health and Safety Plan

Interim Remedial Measures at the site were performed under a Health and Safety Plan (HASP) prepared to identify and account for hazards specific to the site so that remediation workers could avoid and, if necessary, protect against, health and/or safety hazards. The HASP prepared for the remedial actions at this site was prepared as a stand-alone document and submitted to DEC in August 2007.

The HASP included on-site health and safety monitoring to protect remedial workers and others entering the site and to also monitor for potential vapor impacts to the surrounding community. Health and safety monitoring included periodic air monitoring for the presence of volatile organic compounds (VOCs), visual assessment of airborne dust and dust particulate readings when appropriate.

In accordance with the HASP, monitoring for VOCs in the breathing zone and at the site perimeter was conducted with a photo-ionization detector a minimum of once per hour during excavation and / or loading of affected soil.

No exceedances in VOC detections were reported during the excavation work, however, nuisance odors were noted frequently during excavation and loading of contaminated soil. No complaints were reported by area residents or businesses during implementation of the IRM.

2.8 REMEDIAL ACTION OBJECTIVES

Based on the results of the Remedial Investigation, the following Remedial Action Objectives (RAOs) have been identified for this Site.

2.8.1 Groundwater RAOs

RAOs for Public Health Protection

- Prevent ingestion of groundwater containing contaminant levels exceeding drinking water standards.
- Prevent contact with, or inhalation of, volatiles emanating from contaminated groundwater.

RAOs for Environmental Protection

- Restore ground water aquifer, to the extent practicable, to pre-disposal/pre-release conditions.
- Prevent the discharge of contaminants to surface water.
- Remove the source of ground or surface water contamination.

2.8.2 Soil RAOs

RAOs for Public Health Protection

- Prevent ingestion/direct contact with contaminated soil.
- Prevent inhalation of, or exposure to, contaminants volatilizing from contaminated soil.
- RAOs for Environmental Protection
- Prevent migration of contaminants that would result in groundwater or surface water contamination.
- Prevent impacts to biota due to ingestion/direct contact with contaminated soil that would cause toxicity or bioaccumulation through the terrestrial food chain.

3.0 DESCRIPTION OF APPROVED REMEDIAL ACTION PLAN

The Site was remediated in accordance with the scope of work presented in the NYSDEC-approved Remedial Action Work Plan dated December 2008 and IRM Work Plan dated November 2007. The factors considered during the analysis of remedial alternatives included:

• Protection of human health and the environment;

- Compliance with standards, criteria, and guidelines (SCGs);
- Short-term effectiveness and impacts;
- Long-term effectiveness and permanence;
- Reduction of toxicity, mobility, or volume of contaminated material;
- Implementability;
- Cost effectiveness;
- Community Acceptance; and
- Land use.

A criterion for remedy selection is evaluation for conformance with SCGs that are applicable, relevant and appropriate. Principal SCGs that are applicable, relevant and appropriate for evaluating the alternatives for remediation of this BCP site include the following:

- 6 NYCRR Part 375-6 Soil Cleanup Objectives
- New York State Groundwater Quality Standards 6 NYCRR Part 703;
- NYSDEC Ambient Water Quality Standards and Guidance Values TOGS 1.1.1;
- NYSDEC Draft DER-10 Technical Guidance for Site Investigation and Remediation -December 2002 (or later version if available);
- NYSDEC Draft Brownfield Cleanup Program Guide May 2004;
- New York State Department of Health (NYSDOH) Generic Community Air Monitoring Plan
- NYS Waste Transporter Permits 6 NYCRR Part 364;
- NYS Solid Waste Management Requirements 6 NYCRR Part 360 and Part 364.

Conformance with the appropriate standards for remediation of contaminated soil is an important criterion in evaluating the remedial alternatives for the BCP site. Presently, in New York State 6 NYCRR Part 375 establishes the primary SCGs associated with remediation of contaminated soil at sites which are in the BCP. If proposing remediation pursuant to a Track other than Track 1 (Unrestricted Use), 6 NYCRR Part 375 requires evaluation of at least one remedial alternative pursuant to Track I (Unrestricted Use) and one other alternative developed by the applicant for the proposed use of the BCP site.

3.1 SUMMARY OF PROPOSED REMEDIAL ACTION

Below is a description of the proposed Remedial Actions required by the NYSDEC-approved Remedial Action Work Plan. The Remedial Actions completed at the site included the following elements:

- Chemical Inventory and Hydraulic Lift Removal. Prior to the demolition of the building, an interior inspection will be performed to determine the status of chemical inventory and hydraulic lifting equipment. If present, the hydraulic system reservoir tank will be emptied and the system will be dismantled and removed from the site. Petroleum products, and automotive chemicals, if present, will be removed from the site by a licensed Hazardous Waste Transport contractor and properly disposed of (or recycled) as non-hazardous or hazardous materials;
- 2. Investigation and removal of drainage structures, surface drains and related piping which included removal of subsurface piping related to the underground storage tank system;
- 3. Excavation of all overburden soil to the bedrock surface to the property line. All excavated soil will be transported and disposed of in accordance with all local, State and Federal laws and requirements. All exported material will be taken to facilities licensed to accept this material in full compliance with all Federal, State and local laws;
- 4. Screening for indications of contamination (by visual means, odor, and monitoring with PID) of all excavated soil during intrusive Site work;
- 5. Excavation of bedrock for construction of a basement level parking garage. Non-contaminated bedrock material was sent to a recycling facility in full compliance with all Federal, State and local laws;
- 6. Appropriate off-Site disposal of all material removed from the Site in accordance with all Federal, State and local rules and regulations for handling, transport, and disposal;
- 7. Collection and analysis of end-point samples to evaluate the performance of the remedy with respect to attainment of Track 1 SCOs;
- 8. Importation of materials used for backfill in compliance in compliance with a) Part 375-6.7 andb) all federal, state and local rules and regulations for handling and transport of materials;
- 9. The removal of LPH from monitoring wells using VEFR recovery. This program will continue under the SMP;

- 10. The injection of a chemical oxidant solution to remediate the contaminated groundwater beneath the site. Chemical oxidants were injected throughout the site through pvc injection points installed into the bedrock. This program will continue under the SMP;
- 11. The BCP site will be covered by a building which includes an unoccupied area (subgrade parking garage) and an occupied area (at grade retail). The occupied area has been constructed with a vapor barrier and sub-slab depressurization system beneath the slab. The unoccupied garage area will be ventilated with a mechanical system to meet the requirements of the NYC Building Code. Activation of the SSDS will be initiated prior to building occupation. The specifications for SSDS start-up testing are detailed in this SMP;
- 12. All responsibilities associated with the remedy, including permitting requirements and pretreatment requirements, were addressed in accordance with all applicable Federal, State and local rules and regulations.
- 13. Remedial activities were performed at the Site in accordance with the NYSDEC-approved RAWP, IRM WP, Health and Safety Plan and Community Air Monitoring Plan.
- 14. If Track 1 is not achieved by the remedy, the recording of an Environmental Easement including institutional controls to prevent future exposure to any remaining residual contamination: and
- 15. Publication of a Site Management Plan for long term management of residual contamination as required by the Environmental Easement.

Items 1-7 were previously completed under an IRM. Items 8 and 9 were initiated under the IRM and/or RAWP and will continue under the Site Management Plan (SMP). The continuation of remedial activities will be performed at the Site in accordance with the NYSDEC-approved Site Management Plan (SMP). All deviations from the SMP will be promptly reported to NYSDEC for approval and fully explained in the Final Site Management Report.

4.0 DESCRIPTION OF REMEDIAL ACTIONS PERFORMED

Remedial activities completed at the Site were conducted in accordance with the NYSDEC-approved RAWP for the Former Dico G Auto and Truck Repair Site (December, 2008) and the NYSDEC Approved IRMWP (November, 2007). The approved RAWP is included in **Appendix A**. All deviations from the RAWP are noted below.

4.1 GOVERNING DOCUMENTS

Governing documents and procedures included in the Remedial Work Plan include a Site-specific Health and Safety Plan (HASP), a Community Air Monitoring Plan (CAMP), a Citizen Participation Plan, a Soil Management Plan (SoMP) analytical quality assurance/quality control (QA/QC), fluid management procedures, a Storm Water Pollution Prevention Plan SWPPP, and contractors' site operations and quality control procedures. Highlights of these documents and procedures are provided in the following sections.

4.1.1 Site Specific Health & Safety Plan (HASP)

All remedial work performed under this Remedial Action was in full compliance with governmental requirements, including Site and worker safety requirements mandated by Federal OSHA. The Health and Safety Plan (HASP) was complied with for all remedial and invasive work performed at the Site. The Site Safety Coordinator was Kevin Brussee. A resume is included in **Appendix O**

4.1.2 Quality Assurance Project Plan (QAPP)

This document governed sampling and analytical methods for end-point sampling.

4.1.3 Construction Quality Assurance Plan (CQAP)

All construction work related to the remedy (i.e. soil excavation) was previously completed under an IRM. Monitoring during soil excavation was performed to protect the health of site workers and the surrounding community. A Health and Safety Plan (HASP) and Community Air Monitoring Plan (CAMP) were previously developed for this project. These plans specify the monitoring procedures, action levels, and contingency measures that are required to protect public health. Generally, air monitoring during excavation consisted of real-time measurement of volatile emissions and dust levels.

All intrusive and soil disturbance activities were monitored by an EBC representative who recorded observations in the site field book and kept a photographic log of the daily activities. The installation of chemical oxidant injection wells and oxidant injections was performed under the supervision of EBC personnel under the direction of the Remediation Engineer. Additional oxidant objections will be performed under the same level of oversight. EBC's field representative provided daily updates to the Project Manager and Remediation Engineer who both made periodic visits to the site as needed to assure construction quality.

4.1.4 Soil/Materials Management Plan (SoMP)

A soil materials management plan was previously developed under the IRM for excavation, handling, storage, transport and disposal of all soils/materials that were disturbed at the Site. This document provided detailed plans for managing all soils/materials that were disturbed at the Site, including excavation, handling, storage, transport and disposal. It also included all of the controls that were applied to these efforts to assure effective, nuisance free performance in compliance with all applicable Federal, State and local laws and regulations.

4.1.5 Storm-Water Pollution Prevention Plan (SWPPP)

This document addressed requirements of New York State Storm-Water Management Regulations including physical methods to control and/or divert surface water flows and to limit the potential for erosion and migration of Site soils, via wind or water.

The erosion and sediment controls for all remedial construction were performed in conformance with requirements presented in the New York State Guidelines for Urban Erosion and Sediment Control. Typical measures that were utilized at various stages of the project to limit the potential for erosion and migration of soil included the use of temporary stabilized construction entrances/exits and dust control measures.

4.1.6 Community Air Monitoring Plan (CAMP)

The Community Air Monitoring Plan (CAMP) provides measures for protection for on-site workers and the downwind community (i.e., off-site receptors including residences, businesses, and on-site workers not directly involved in the remedial work) from potential airborne contaminant releases resulting from remedial activities.

The action levels specified require increased monitoring, corrective actions to abate emissions, and/or work shutdown. Additionally, the CAMP helps to confirm that the remedial work did not spread contamination off-site through the air. The primary concerns for this site are vapors, nuisance odors and dust particulates

4.1.7 Contractors Site Operations Plan (SOP)

The Remediation Engineer reviewed all plans and submittals for this remedial project (i.e. those listed above plus contractor and sub-contractor document submittals) and confirmed that they were in compliance with the RAWP. The Remediation Engineer ensured that all documents submitted for this remedial project after the RAWP were approved, including contractor and sub-contractor document submittals, were in compliance with the RAWP. All remedial documents were submitted to NYSDEC and NYSDOH in a timely manner and prior to the start of work.

4.1.8 Community Participation Plan

A certification of mailing will be sent by Bedford Park Associates, LLC, Adee & Lester, LP and 3035 White Plains Retail, LLC to the NYSDEC project manager following the distribution of all remaining Fact Sheets and notices that includes: (1) certification that the Fact Sheets were mailed; (2) the date they were mailed; (3) a copy of the Fact Sheet; (4) a list of recipients (contact list); and (5) a statement that the repository was inspected on (date) and that it contained all of applicable project documents.

No changes were made to approved Fact Sheets authorized for release by NYSDEC without written consent of the NYSDEC. The approved Community Participation Plan for this project is attached in **Appendix P**.

Document repositories have been established at the following locations for the duration of the project and contain all applicable project documents: New York Public Library Allerton Branch 2740 Barnes Avenue Bronx, NY 10467 (718) 881-4240

Hours:

Mon. 10 am to 6 pm Tues. 12 pm to 7 pm Weds. 10 am to 6 pm Fri. 1 pm to 6 pm Sat. 10 am to 6 pm

4.2 REMEDIAL PROGRAM ELEMENTS

4.2.1 Involved Parties

Excavation of the site was performed by MAXX Construction under contract to Coastal Builders Corporation, the construction division of the developer. Environmental Business Consultants is the Environmental Consultant for the project. The Remedial Engineer for the project is Mr. Ariel Czemerinski, P.E.

4.2.2 Site Preparation

Site preparation began in September 2007 with the removal of derelict cars, trucks and other equipment from the site. This was followed by the removal of the remaining automotive chemical inventory, 275 gallon fuel oil tank and hydraulic lift system on September 14, 2007, by American Environmental Assessment (AEA) of Wyandanch, NY. Asbestos roofing materials were removed from the station building in October, 2007 followed by building demolition and removal of the asphalt cap at the site. Mobilization of excavating equipment to the site took place in the final week of November, 2007.

Mobilization for the chemical oxidant groundwater treatment program consisted of the delivery of chemical oxidants to the site in 54 lb bags. This material was stored on site on a wooden pallet and securely covered with a protective tarp. Mixing and pumping equipment was mobilized for each day of oxidant injection and removed from the site at the end of the day.

A pre-construction meeting was held with NYSDEC and all contractors on November 26, 2007. A complete list of agency approvals required by the RAWP is included in **Appendix Q**. This list includes a citation of the law, statute or code to be complied with, the originating agency, and a contact name and phone number in that agency. This will be updated in the Final Remediation Report. All SEQRA requirements and all substantive compliance requirements for attainment of applicable natural resource or other permits were achieved during this Remedial Action. A NYSDEC project sign was erected at the project entrance and in place during all phases of the Remedial Action.

4.2.3 General Site Controls

The site was completely surrounded by a chain link fence during implementation or remedial activity to restrict access by the public. The fence was properly secured at the end of the day.

A single construction entrance was used during the excavation of contaminated and overburden soils. The construction entrance and loading area were stabilized with crushed stone, as necessary, to provide a safe egress and ingress to the Site. Trucks and equipment leaving the site were "dry" decontaminated using a broom and/or brushes by two dedicated construction laborers. The street in front of the construction entrance was periodically inspected and swept during the removal of overburden soils.

Erosion control inspections were performed regularly to assure that surface rub-off was not leaving the site. The method of excavation directed all run-off into the excavation where it was pumped into the NYC combined sewer system under a NYCDEP sewer discharge permit.

4.2.4 Nuisance controls

During loading and off-site transport of overburden soil, trucks were staged along the White Plains Road commercial corridor to avoid disturbing residents on side streets. Dust was minimal due to the time of year in which the majority of the excavation work was performed. Visible dust was observed and recorded by the site safety officer and checked with a personal dust monitor when appropriate to assure compliance with the action levels established in the Health and Safety Plan. No complaints by residents or business owners were reported for nuisance odors, dust or noise.

4.2.5 CAMP results

No exceedances in VOC detections were reported during the excavation work, however, nuisance odors were noted frequently during excavation and loading of contaminated soil. No complaints were reported by area residents or businesses during implementation of the IRM. Copies of the air monitoring reports are provided in **Appendix R**.

4.2.6 Reporting

All daily and monthly reports are included in **Appendix S**. The digital photo log required by the RAWP is included in **Appendix T**.

4.3 CONTAMINATED MATERIALS REMOVAL

The IRM approved and implemented for the site included the removal and proper disposal of all overburden soil to the bedrock surface followed by injections of a chemical oxidant solution at specified locations throughout the site as may be needed to remediate groundwater. The excavation of overburden soil began on December 6, 2007 and was largely completed by April 8, 2008. Oxidant injections were performed on two occasions July 20, 2008 and on September 14, 2008. Although significant improvements have been achieved in groundwater quality in response to the oxidant treatment, further treatment is warranted.

A list of the Track 1SCOs for this project is shown in **Table 1**. A map of the location of original sources is shown in **Figure 11**. Contour maps of estimated cut and fill thicknesses for remedial activities at the Site is included as **Figures 14 and 15**.

4.3.1 Excavation and Disposal of Overburden Soil

All overburden soil was removed from the Site in accordance with the procedures outlined under the approved IRM Work Plan (EBC 10/07). The excavation of overburden soil began on December 6, 2007 and continued through December 12, 2007 within the south and southeastern areas of the property. Excavation was then suspended until January 2, 2008, to allow shoring along the western property line to progress. The majority of the soil excavation was completed during the month of January though small (1 or 2 day) shipment events continued each month through June 5, 2008. Overburden soil varied in thickness from 2-4 feet in the northern half of the site and along the east

central area of the site, to 8-12 feet in the southern half of the site. Soil excavation was performed with two track-mounted bucket excavators and loaded directly on to 10-wheel dump trucks provided by the disposal facility. In accordance with the approved IRM Work Plan, a gravel road was constructed and maintained, as needed, to the edge of the excavation / load-out area to minimize dust generation and the off-site tracking of site soil. Two laborers inspected and brushed off the wheels and undercarriage of each truck before it exited the site and periodically swept the street and the site ingress / egress.

All excavated soil was disposed of as non-hazardous waste at permitted disposal facilities operated by Clean Earth incorporated. The majority of soil was taken to the Clean Earth of Carteret facility (CEC) located in Carteret, NJ. The CEC facility (ID# 13231) is a Class B Recycling Center operating under permit No. CBG060003 (expiration date 3/7/12) issued by the New Jersey Department of Environmental Protection (NJDEP). Approximately 25 loads were shipped to the Clean Earth of Southeastern Pennsylvania facility (CESP) located in Morristown, PA. The CESP facility is solid waste processing facility operating under permit No. 301254 (expiration date 1/19/17) issued by the Pennsylvania Department of Environmental Protection (PADEP).

A total of 10,537.98 tons of non-hazardous overburden soil was shipped to the Clean Earth facilities for disposal. The Soil Cleanup Objectives for this Site are listed in **Table 1**. A contour map showing the thickness of all cuts is included in **Figure 14**.

Approximately 868 cubic yards (1,302 tons) of virgin mined stone dust and ³/₄ inch gravel material was imported to the Site for backfill and underlayment. This material was obtained from Tilcon Inc. Mt. Hope Quarry located at 625 Mt Hope Road in Morris County New Jersey and was defined as virgin-mined gneiss. The final fill survey and volume report prepared by Carman Dunne is presented as **Figure 15**.

4.3.1.1 Disposal Details

All excavated soil was disposed of as non-hazardous waste at permitted disposal facilities operated by Clean Earth incorporated. The majority of soil was taken to the Clean Earth of Carteret facility (CEC) located in Carteret, NJ. The CEC facility (ID# 13231) is a Class B Recycling Center operating under permit No. CBG060003 (expiration date 3/7/12) issued by the New Jersey Department of

Environmental Protection (NJDEP). Approximately 25 loads were shipped to the Clean Earth of Southeastern Pennsylvania facility (CESP) located in Morristown, PA. The CESP facility is solid waste processing facility operating under permit No. 301254 (expiration date 1/19/17) issued by the Pennsylvania Department of Environmental Protection (PADEP).

A total of 10,537.98 tons of non-hazardous overburden soil was shipped to the Clean Earth facilities for disposal. Copies of the non-hazardous disposal manifests are provided in **Appendix H**. Letters from Applicants to disposal facility owners and acceptance letters from disposal facility owners are attached in **Appendix G**. **Table 10** shows the total quantities of each class of material removed from the Site and the disposal locations.

4.3.2 Excavation and Disposal of Bedrock

Following the removal of overburden soils in the southern half of the property, work began on excavation of bedrock for construction of the basement level garage area. This work began on January 10, 2008 by chipping through the bedrock surface with a hydraulic demolition hammer attached to the track excavator.

Excavated bedrock was shipped from the site to the Tilcon NY, Inc. Quarry in Millington, NJ. The facility recycles the material for use in a variety of products such as railroad ballast, aggregate for concrete, etc. A field technician observed the excavation process and screened the work area visual or olfactory indications of petroleum contamination. Contaminated zones were identified along several fracture plains within central area of the site in the vicinity of the former north dispenser pad. Petroleum contaminated bedrock, as determined through screening, was stockpiled separately and shipped to the Clean Earth facility along with the remainder of overburden soil.

In concurrence with the DEC PM, samples of the uncontaminated bedrock were collected at three locations across the site (**Figure 13**) and submitted to Chemtech Laboratories for analysis of VOCs, SVOCs, Pest/PCBs and TAL metals. The results when compared to the Part 375-6.3 unrestricted use standards identified minor exceedances for three metals which were considered representative of the uncontaminated bedrock chemistry. EBC forwarded the analytical results to the DEC on January 24,

2008 and requested approval to ship uncontaminated bedrock material to the Tilcon facility (see **Appendix K**). EBC received verbal approval from the DEC PM on January 25, 2008.

4.3.2.1 Disposal Details

A total of 6,875 cubic yards of uncontaminated bedrock was shipped to the Tilcon facility from January 30, 2008 through May 12, 2008. Copies of the transport tickets are provided in **Appendix J**.

4.3.3 Excavation Dewatering

In general, the final depth of the excavation did not extend to the groundwater surface at approximately 15 feet below grade, though groundwater was encountered in several over-excavated areas in the southern end of the property. In addition, heavy rains, snowfall and run-off resulted in the accumulation of 6 inches to 2 feet of standing water within the partially excavated basement area requiring dewatering.

4.3.3.1 Disposal Details

A sewer discharge permit was filed with the New York City Department of Environmental Protection (NYCDEP) on January 27, 2008 to allow the discharge of up to 9,900 gallons per day into the combined sewer manhole located within the fenced area of the site along White Plains Road. The permit was approved by the NYCDEP on March 12, 2008. Dewatering operations consisted of pumping water out of the excavation with a small centrifugal pump located at the surface, through two 200 pound activated carbon drums connected in parallel, and into the open sewer manhole within the fenced area of the property. It took approximately 1 week to remove the accumulated water from the excavation. Dewatering of the excavation continued on an as-needed basis from late March through the end of April. A copy of the sewer discharge permit, permit application package and treatment system design specifications is provided in **Appendix L**.

4.4 LPH RECOVERY PROGRAM

LPH recovery was initiated in MW8 by daily hand bailing during the Remedial Investigation. Approximately 9.5 inches of weathered gasoline was present in well MW8 on 11/2/07. The gasoline was removed by hand bailing which was repeated on a weekly basis through 1/10/08 when the wells were lost due to excavation activity. Removed gasoline was stored on-site in a 55 gallon drum.

Following the initial removal, only minor amounts (<0.1 ft) of free phase gasoline were reported in MW8. In an attempt to delineate the free-phase gasoline found in MW8, four additional monitoring wells (MW13-MW16) were installed around MW8 on 11/9/07. These wells were also checked on a weekly basis through 1/10/08 with no free phase gasoline reported.

LPH was also discovered following the completion of excavation activity, in well IRM-W7 which was installed with eight other wells to monitor the chemical oxidant treatment program. On 10/3/08, 0.15 feet of LPH was measured in well IRM-W7. LPH removal was initiated in IRM-W7 on 12/16/08 using vacuum enhanced fluid recovery (VEFR). The 6-hour VEFR event was accomplished using a vacuum tanker truck equipped with a 3 foot section of clear, 2- inch diameter, pvc pipe. The 2-inch pvc section was connected to a 1 inch diameter pvc "stinger" pipe using a 2 inch by 1 inch "fernco" reducer. The stinger was initially set 2 feet below the water table. When fluid recovery ceased after the first 5 hours, the stinger was reset approximately 1 foot lower for the final hour of recovery. Approximately 900 gallons of VOC contaminated water were recovered from the well during the event. LPH was not present in the well during follow-up gauging both immediately after the event and the following day.

VEFR events will continue as needed, under the SMP, to remove any remaining LPH. Hand bailing may be used to supplement VEFR recovery between recovery events. The decision to perform VEFR events will be based on monitoring results and will be made in concurrence with the NYSDEC project manager. Details regarding future VEFR events are provided in section 2.2.1.2 of the SMP.

4.5 CHEMICAL OXIDANT TREATMENT PROGRAM

Twelve oxidant injection points were installed throughout the basement level parking garage area on June 21, 22, 28 and 29, 2008, to target affected groundwater as defined by the results of the Remedial Investigation. The injection points were constructed of 1 inch pvc with a 5 foot 0.020 screened section installed within a 2-inch borehole cored into the bedrock, approximately five-feet below the water table. A No. 2 morie gravel pack was placed around the screen to a depth of approximately 1 foot above the screen followed by a 1 foot hydrated bentonite pellet seal. The injection wells were initially protected with a 4 inch pvc sleeve to protect the well during construction activity within the basement. Oxidant injections were performed on two occasions; initially on July 20, 2008 and again on September 14, 2008. Based on the results of performance monitoring following the initial injection,

three additional injection wells were installed at the site on September 13, 2008, just prior to the second injection. The three new injection wells were located in the vicinity of the former north dispenser pad, adjacent to the elevator shaft in the new building. The purpose of these additional injection points was to target a high concentration area of VOC affected groundwater in the vicinity of monitoring well IRM-7. See **Figure 16** for locations of the injection points.

The oxidant injections consisted of a sodium persulfate a chelated iron activator. Both components were delivered to the site as a dry powder and mixed then with water on-site to create a 15 to 20 percent solution. The activator was added at a ratio of 9 lbs of FeEDTA powder to each 55 lb bag of sodium persulfate. The injections consisted of approximately 100 gallons of solution per injection point. The initial injection consisted of a single application of 100 gallons of solution in each of the twelve injection points. The second injection included the single injections in each of the original twelve injection points plus the three new points installed near the elevator shaft. Well completion reports for IRM performance monitoring wells and chemical injection wells (typical) are provided in **Appendix M**.

Chemical oxidants were also injected in wells IRM-W7, IRM-W10, IRM-W12 and IRM-W13 following VEFR events in December 2008.

4.6 **REMEDIAL PERFORMANCE SAMPLE RESULTS**

Six IRM performance monitoring wells (IRM1-IRM6) were installed in the basement area of the excavation on May 24, 25 and 26, 2008 to monitor and direct the oxidant injection program. The monitoring wells were installed by coring a 2-inch borehole into the bedrock, approximately five-feet below the water table. The wells were constructed of 1 inch pvc with a 7-foot 0.010 screened section able with a No. 00 morie gravel pack placed around the screen to a depth of approximately 1 foot above the screen followed by a 1 foot hydrated bentonite pellet seal. The monitoring wells were initially protected with a 4 inch pvc sleeve to protect the well during construction activity within the basement.

In addition to the six basement wells, two monitoring wells (IWM8, IRM9) were installed within the retail area of the new building on June 11, 2008. Due to the required drilling depth through bedrock

(20 ft) these wells were installed within a 6 inch borehole advanced using the air rotary drilling method. The wells were constructed of 2 inch pvc casing with a 10 foot 0.10 screened section set approximately 5 feet below the water table. The wells were completed with a No. 00 morie gravel pack paced to a depth of approximately 5 feet above the screen followed by a hydrated bentonite seal. The wells were protected with an 8-inch bolt down manhole cover. A third well (IRM-7) was installed on August 2, 2008 using the rock coring method. Consequently, well IRM-7 was constructed in the same manner and using the same materials as those of the basement wells IRM-1 through IRM-6. On October 3, 2008, 0.15 feet of liquid phase hydrocarbons (LPH) were reported in IRM-W7. In an effort to delineate the LPH, three additional wells (IRM-W10, 11 and 12) were installed at the site on December 20, 21, and 23, 2008. IRM-W13 was also installed at this time to replace MW-8 and assess the presence of LPH. The locations of the performance monitoring wells are shown in **Figure 16**. This figure includes the proposed location of two replacement wells for IRM-W8 and IRM-W9 should these wells become inaccessible in the event that this space is leased after construction is completed in March, 2009.

Groundwater samples were obtained from wells IRM-1 through IRM-6 on May 27, 2008. Wells IRM-8 and IRM-9 were sampled on July 17, 2008 following installation. This initial round of sampling was performed to establish baseline conditions prior to initiating the oxidant injection program. A second round of sampling was performed on August 8, 2008 following the installation of IRM-7 and after the initial oxidant injection on July 10, 2008. Samples from both rounds were collected in pre-cleaned laboratory supplied glassware, stored in a cooler with ice and submitted to Chemtech Laboratories, Inc. (Chemtech) of Mountainside, NJ, a New York State ELAP certified environmental laboratory (ELAP Certification No. 11376).

The results of the base line sampling on May 27, 2008, as summarized in **Table 6** and **Figure 17**, indicated that moderate concentrations (2,000 to 6,000 ug/L) of VOCs were present in wells IRM-3 and IRM-5 in the vicinity of the former south and north dispenser pads and in well IRM-1 near the south property line. The second round of sampling on August 8, 2008, which was after the initial oxidant application, showed a significant reduction in VOC concentrations in wells IRM-1, IRM-3 and IRM-5. IRM-7, which was sampled for the first time, had high concentrations of total VOCs (14,310 ug/L). Results from the second IRM performance sampling round are summarized in **Table 7** and

posted on **Figure 18**. Based on these results, three additional injection wells were installed to address the southern portion of the retail area and a second oxidant injection was performed on September 14, 2008.

A third performance sampling round was performed on October 3, 2008. The results from this round are summarized in **Table 8** and posted on **Figure 19**.

A tabular and map summary of all performance sampling is included in Table 9 and Figure 20, respectively, all exceedances of SCOs are highlighted. Laboratory reports for the three performance sampling rounds are provided in **Appendix N**.

The Data Usability Summary Report (DUSR) provides a thorough evaluation of analytical data without third party data validation. The primary objective of a DUSR is to determine whether or not the data, as presented, meets the site/project specific criteria for data quality and data use. Final post-remedial groundwater samples collected under the approved SMP will be reviewed and evaluated in accordance with the Guidance for the Development of Data Usability Summary Reports as presented in Appendix 2B of DER-10. The completed DUSR for Final post-remedial samples collected during implementation of this RAWP will be included in the Final Remediation Report.

4.7 MATERIAL IMPORTED FOR BACKFILL

Approximately 868 cubic yards (1,302 tons) of virgin mined stone dust and ³/₄ inch gravel material was imported to the Site for backfill and underlayment. This material was obtained from the Tilcon Inc. Mt. Hope Quarry located at 625 Mt Hope Road in Morris County New Jersey and was defined as virgin-mined gneiss.

4.8 **RESIDUAL CONTAMINATION REMAINING ON-SITE**

No residually contaminated soil remains at the site following the implementation of the IRM. Under the IRM all overburden soil at the site was removed to the bedrock surface. Bedrock was also removed within the parking garage area in accordance with the site development plan. Since residual contaminated groundwater/soil vapor will remain beneath the Site after the remedy is complete, short-term (i.e., less than 5 years duration) Engineering and Institutional Controls (ECs and ICs) are required to protect human health and the environment. These ECs and ICs are described hereafter. Long-term management of EC/ICs and of residual contamination will be executed under a Site specific Site Management Plan (SMP) that has been developed and is included in this FER (**Appendix A**).

ECs will be implemented to protect public health and the environment by appropriately managing residual contamination. The Controlled Property (the Site) will have 3 short-term (<5ys) EC systems:

- A sub-slab depressurization system and vapor barrier beneath the occupied area of the new building;
- LPH recovery; and
- Chemical oxidant treatment.

4.9 ENGINEERING CONTROL SYSTEMS

4.9.1 Sub-slab Depressurization System (SSDS)

An active SSD system will be required beneath the completed retail section of the building to mitigate potential vapor intrusion, since improvement in groundwater quality is expected to occur at the site over time. An SSD system will not be required beneath the parking garage since this area will be ventilated to remove vehicle fumes in accordance with the NYC Building Code.

The SSD system and vapor barrier were designed and incorporated into the new building plans as a preventive measure for the retail space in the new building. Design details of the SSD system beneath the 11,000 square foot commercial area on the ground floor will consist of three separate zones. Each zone will provide coverage of up to 3,666 sf of slab area. This is consistent with USEPA sub-slab depressurization design specifications which recommend a separate vent loop for every 4,000 sf of slab area.

The horizontal vent line is constructed of a continuous loop of perforated 4-inch HDPE smooth interior pipe. In each zone the horizontal pipe will extend to an adjacent utility chase-way where it will be piped individually to the roof via a 6-inch schedule 40 pvc line. Fill material around the horizontal vent piping is virgin-mined, ¹/₂ inch to ³/₄ inch gravel. Each vertical vent line will be connected to a fan/blower located on the roof of the building. The layout of the sub-slab portions of the SSDS is illustrated in **Figure 21**. Detailed specifications of the SSD system are provided in **Appendix U**.

The SSD system will be operated and tested prior to placing the new building in service. The specifications for SSDS start-up testing are detailed in Section 3 of the SMP.

Procedures for operating and maintaining the SSD system and for performing LPH recovery and chemical oxidant injections are documented in the Operation and Maintenance Plan (Section 4 of the SMP). Procedures for monitoring the SSD system and the performance of LPH recovery and chemical oxidant treatments are included in the Monitoring Plan (Section 3 of the SMP). The Monitoring Plan also addresses severe condition inspections in the event that a severe condition occurs which may affect controls at the Site .

Operation of the SSD system will not be discontinued without written approval by NYSDEC and NYSDOH. A proposal to discontinue the active SSD system may be submitted by the property owner based on confirmatory data that justifies such request. Systems will remain in place and operational until permission to discontinue use is granted in writing by NYSDEC and NYSDOH.

4.9.2 LPH Recovery Program

LPH removal initiated under the RAWP, will continue on a monthly basis, as necessary, using vacuum enhanced fluid recovery (VEFR) events. VEFR events will be performed on a monthly basis on all monitoring wells which contain 0.5 inches (0.04 feet) or more of LPH. Each event will last from 4 to 6 hours and will be performed using a vacuum tanker truck equipped with a 1 inch diameter pvc "stinger" downpipe. The downpipe will be connected to the 2 inch well casing using a 2 inch by 1 inch "fernco" reducer. The stinger will initially be set no more than 2 feet below the water table. If fluid recovery ceases altogether, the downpipe will be re-set deeper in the well, as needed, to continue recovery.

Depth to water (DTW) and depth to product (DTP) readings will be recorded in a log book both before and after the VEFR event.

Procedures for operating and maintaining the LPH Recovery Program are documented in the Operation and Maintenance Plan in Section 4 of the Site Management Plan (SMP). The procedures for monitoring the program are included in Section 3, "Monitoring Plan" of the SMP.

VEFR events will continue as needed to remove any remaining LPH. Hand bailing may be used to supplement VEFR recovery between recovery events. The decision to perform VEFR events will be based on monitoring results and will be made in concurrence with the NYSDEC Project Manager. The LPH recovery program will not be discontinued without written approval from NYSDEC and NYSDOH.

4.9.3 Chemical Oxidant Treatment of Groundwater

Following excavation of soil down to the bedrock throughout the site and the excavation of bedrock to the final level in the parking garage area, a chemical oxidant injection program was initiated under the IRM to reduce VOC concentrations in groundwater. This program was supplemented under the RAWP and will continue as needed until remedial goals have been met.

This program consists of the injection of a chemical oxidant solution within the planned garage area and retail area as needed to address affected groundwater as identified during the Remedial Investigation. Chemical oxidant injection is intended to significantly reduce the VOCs in the high concentration areas, and thereby accelerate the improvements in groundwater quality.

Volume and density application rates have been based on the manufacturer's recommendations and the conditions of the site. Documentation for the chemical oxidation treatment program is presented in **Appendix V**.

Procedures for operating and maintaining the Chemical Oxidant Treatment Program are documented in the Operation and Maintenance Plan in Section 4 of the Site Management Plan (SMP). The procedures for monitoring the program are included in Section 3, "Monitoring Plan" of the SMP. The Monitoring

Plan also addresses inspection procedures that must occur after any severe weather condition has taken place that may affect on-Site ECs.

Chemical oxidant treatment will continue until a) VOC concentrations in groundwater are within ambient water quality standards or b) VOC concentrations in groundwater have become asymptotic over an extended period of time as mandated by NYSDEC and NYSDOH.

The chemical oxidant treatment program will not be discontinued without written approval from NYSDEC and NYSDOH.

4.10 INSTITUTIONAL CONTROLS

A series of Institutional Controls are required under the RAWP to: (1) implement, maintain and monitor Engineering Control systems; (2) prevent future exposure to residual contamination by controlling disturbances of the subsurface contamination; and, (3) potentially restrict the use of the Site to residential / commercial uses only. Adherence to these Institutional Controls on the Site (Controlled Property) is required under the Environmental Easement and will be implemented under this Site Management Plan. These Institutional Controls are:

- Compliance with the Environmental Easement by the Grantor and the Grantor's successors and assigns with all elements of the SMP;
- All Engineering Controls must be operated and maintained as specified in the SMP;
- A composite cover system consisting of asphalt covered roads, concrete covered sidewalks, and concrete building slabs must be inspected, certified and maintained as required in the SMP;
- A soil vapor mitigation system consisting of a sub-slab depressurization system under the retail area of the building must be inspected, certified, operated and maintained as required in the SMP;
- All Engineering Controls on the Controlled Property must be inspected and certified at a frequency and in a manner defied in the SMP.
- Groundwater, soil vapor, and other environmental or public health monitoring must be performed as defined in the SMP;

- Data and information pertinent to Site Management for the Controlled Property must be reported at the frequency and in a manner defined in the SMP;
- On-Site environmental monitoring devices, including but not limited to, groundwater monitor wells and soil vapor probes, must be protected and replaced as necessary to ensure the devices function in the manner specified in this SMP.
- Engineering Controls may not be discontinued without an amendment or the extinguishment of this Environmental Easement.

The Site Controlled Property has a series of Institutional Controls in the form of Site restrictions. Adherence to these Institutional Controls is required by the Environmental Easement. Site restrictions that apply to the Controlled Property are:

- The use of the groundwater underlying the Controlled Property is prohibited without treatment rendering it safe for intended purpose;
- The Controlled Property may only be used for residential / commercial provided that the long-term Engineering and Institutional Controls included in the SMP are employed.
- The Controlled Property may not be used for a higher level of use, such as unrestricted residential use without an amendment or the extinguishment of this Environmental Easement.
- Grantor agrees to submit to NYSDEC a written statement that certifies, under penalty of perjury, that: (1) controls employed at the Controlled Property are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, (2) nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP. NYSDEC retains the right to access such Controlled Property at any time in order to evaluate the continued maintenance of any and all controls. This certification shall be submitted annually, or an alternate period of time that NYSDEC finds acceptable.

4.11 DEVIATIONS FROM THE REMEDIAL ACTION WORK PLAN

There were no deviations from the Remedial Action Work Plan.

4.12 SITE MANAGEMENT PLAN

A Site Management Plan (SMP) has been prepared to detail recommended operation and maintenance and sampling activities to be conducted at the site to ensure that engineering and institutional controls remain in place and continue to operate as intended. The NYSDEC approved SMP is provided in **Appendix A** of this FER and is summarized in the following sections.

Engineering Controls, Institutional Controls Plan

Since residual contamination of groundwater and soil gas exists beneath the Site, Engineering Controls, Institutional Controls (EC/ICs) and an Environmental Easement are required to protect human health and the environment. The EC/IC Plan, contained in the SMP, describes the procedures for the implementation and management of all EC/ICs at the Site including:

- A description of EC/ICs on the Site;
- The basic operation and intended role of each implemented EC/IC;
- A description of the features that should be evaluated during each semi-annual inspection and compliance certification period; and
- A description of plans and procedures to be followed for implementation of EC/ICs.

A series of Institutional Controls required under a RAWP are to: (1) implement, maintain and monitor Engineering Control systems; (2) prevent future exposure to residual contamination by controlling disturbances of the subsurface contamination; and, (3) restrict the use of the Site to current uses. Adherence to these Institutional Controls on the Site is required under the Environmental Easement and will be implemented under the SMP. The Environmental Easement for the Site is included as **Appendix W.**

Monitoring Plan

The Monitoring Plan describes the measures for evaluating the performance and effectiveness of the implemented ECs in reducing or mitigating groundwater contamination at the Site. ECs at the Site include a sub-slab depressurization system. This Monitoring Plan is subject to revision by NYSDEC. Performance monitoring will be conducted to verify the effectiveness of the SSD system.

This effort will consist of liquid level gauging on a weekly basis initially to evaluate the effectiveness of the LPH recovery, quarterly performance groundwater monitoring to evaluate the effectiveness of the chemical oxidant treatment program, bi-annual sub-slab soil vapor testing to evaluate the continued presence of vapors beneath the slab in the retail area of the building and a bi-annual inspection of the SSD System to confirm that the system, it's controls and alarms continue to function properly.

Should the SSD system require maintenance, a follow up inspection will be conducted to confirm that the work was completed and the system is operating properly. A Site-wide inspection will be performed on a regular schedule at a minimum of twice a year for a period of up to five (5) years unless otherwise directed by the NYSDEC. The Site-wide inspection will be performed during the biannual sampling event.

Forms and any other information generated during regular monitoring events and inspections will be kept on file. Forms, and other relevant reporting formats used during the monitoring/inspection events, will be (1) subject to approval by NYSDEC and (2) submitted at the time of the semi-annual Site Management Report, as specified in the Reporting Plan of the SMP. Monitoring results will be reported to NYSDEC on a quarterly basis in status reports and on an annual basis in the Site Management Report. Data will be reported in hard copy or digital format as determined by NYSDEC.

Sub-Slab Depressurization System and Sub-Slab Vapor Sampling

It is anticipated that the sub-slab depressurization system will continue to be operated as a preventive measure for a period of five (5) years since significant reduction in VOCs in groundwater have been achieved and the residual source areas have been removed. The active SSD system will not be discontinued without written approval by NYSDEC and NYSDOH. A proposal to discontinue the active SSD system may be submitted by the property owner based on confirmatory data that justifies such request.

Systems will remain in place and operational until permission to discontinue use is granted in writing by NYSDEC and NYSDOH. Sub-slab soil gas samples will be collected from four sub-slab sample ports (SS1 through SS4) on a bi-annual basis. Sampling will be conducted in accordance with NYSDOH protocol for sub-slab vapor sampling. Samples will be analyzed for VOCs by method EPA TO15. Sub-slab soil gas samples will continue to be collected on a bi-annual basis during the operation of the SSD system unless otherwise decided upon with the NYSDEC and the NYSDOH. Following receipt of the sample results, a letter report documenting the field activities and sample results will be prepared and submitted to the NYSDEC and NYSDOH.

Groundwater Sampling

Groundwater samples will be collected from the existing on-Site monitoring well network, on a quarterly basis. Sampling will be conducted in accordance with Section 3 of the Site Management Plan Groundwater samples will be analyzed for VOCs (by EPA method 8260), persulfate and Fe^{2+} . Following receipt of the groundwater sample results, a letter report documenting the field activities and sample results will be prepared and submitted to the NYSDEC.

Existing on-site and offsite wells will be sampled on a quarterly basis. The sampling frequency may be modified by NYSDEC. The SMP will be modified to reflect changes in sampling plans approved by NYSDEC.

Operation and Maintenance Plan

The SSD systems at the site will operate 24/7 with no maintenance requirements. Periodic bi-annual inspections will be performed to assure that the system is continuing to operate properly. Each fan will be fitted with a pressure switch which will activate a visual and audible alarm if the fan stops operating.

The start-up test procedure will first consist of a visual inspection to make sure all of the system components are installed properly. Following this, each system will be started individually and checked for leaks and adequate pressure at the discharge stack. Power to each blower will then be cut in sequence to verify that each warning alarm is functioning properly. Negative pressure readings will be taken at each soil vapor implant (SG1-SG4, shown on **Figure 22**) with a digital manometer. The system testing described above will be conducted if, in the course of the SSD system lifetime, significant changes are made to the system, and the system restarted.

The SSD systems are maintenance free. The fans should only stop operating in the event of a power outage or a severe blockage. The visual / audible alarm is triggered when negative pressure is not maintained in the vertical vent system piping. In the event that one of the system alarms trips, the owner, owner's representative or Environmental Business Consultants should be contacted for repairs.

LPH removal will continue on a monthly basis, as necessary, using vacuum enhanced fluid recovery (VEFR) events. VEFR events will be performed on a monthly basis on all monitoring wells which contain 0.5 inches (0.04 feet) or more of LPH. Each event will last from 4 to 6 hours.

LPH recovery will be performed using a vacuum tanker truck equipped with a 1 inch diameter pvc "stinger" downpipe. The downpipe will be connected to the 2 inch well casing using a 2 inch by 1 inch "fernco" reducer. The stinger will initially be set no more than 2 feet below the water table. If fluid recovery ceases altogether, the downpipe will be re-set deeper in the well, as needed, to continue recovery. Depth to water (DTW) and depth to product (DTP) readings will be recorded in a log book both before and after the VEFR event.

VEFR events will continue as needed to remove any remaining LPH. Hand bailing may be used to supplement VEFR recovery between recovery events. LPH recovered through hand bailing will be initially placed in a 5 gallon plastic bucket which will be emptied into a DOT-approved 55 gallon drum stored on-Site. The contents of the drum will be removed using the vacuum tanker truck during the regularly scheduled VEFR event.

The chemical oxidant treatment program consists of the injection of a chemical oxidant solution within the occupied (retail) and unoccupied (garage area) areas as needed to address contaminated groundwater as identified during the Remedial Investigation. Chemical oxidant injection is intended to significantly reduce the VOCs in the high concentration areas, and thereby accelerate the improvements in groundwater quality.

The oxidant injections will consist of a solution of sodium persulfate and chelated iron activator. Both components will be delivered to the site as a dry powder and mixed then with water on-site to create a 10 to 30 percent solution. The activator will initially be added at a ratio of 9 lbs of FeEDTA powder to

each 55 lb bag of sodium persulfate. The injections will consist of approximately 100 gallons of solution per injection point.

The volume of solution and the number and location of injections will be based on the results of performance sampling and modified to concentrate on remaining areas with VOC concentrations above cleanup goals. The ratio of FeEDTA to sodium persulfate will be modified in response to the results of the performance sampling. If laboratory analysis shows persulfate concentrations above 250 mg/L and Fe²⁺ concentrations below 100 mg/L, the FeEDTA will be increased to 15 pounds per 55 pounds of sodium persulfate.

Chemical oxidant treatment will continue as needed to achieve further significant reduction of VOCs in groundwater at the site. The decision to perform subsequent oxidant applications will be based on performance sampling results and will be made in concurrence with the NYSDEC project manager.

If biofouling or silt accumulation has occurred in the on-Site monitoring wells, the wells will be physically agitated/surged and redeveloped. Additionally, monitoring wells will be properly decommissioned and replaced (as per the Monitoring Plan), if an event renders the wells unusable. It is anticipated that monitoring wells (IRM-W7, W8 and W9) inside of the occupied space of the new building will be lost as early as March 2009 when construction of this space is completed. When this occurs, interior wells IRM-W8 and IRM-W9 will be replaced with two new wells, PIRM-W14 and PIRM-W15 located outside of the building as shown in **Figure 16**. IRM-W11, installed as an LPH delineation well, will be used as a replacement well for IRM-W7 if this well is no longer accessible. The locations of three replacement wells have been specified and approved by NYSDEC, should these wells require decommissioning due to reduced access.

Monitoring well caps and bolt-down manhole covers will be replaced and repaired as needed. Maintenance reports and any other information generated during regular operations at the Site will be kept at the Site. All reports, forms, and other relevant information generated will be available upon request to the NYSDEC and submitted as part of the semi-annual Site Management Report, as specified in the Section 5 of the SMP.

Site Management Report

An annual Site Management Report will be submitted to NYSDEC following the 2009 reporting period, by March 1, 2010. The Site Management Report will be prepared in accordance with NYSDEC Draft DER-10 Technical Guidance for Site Investigation and Remediation requirements. This Site Management Reporting Plan and its requirements are subject to revision by NYSDEC.

The Site Management Report will be submitted annually and will be submitted by March 1 of the calendar year following the reporting period. Other activities such as groundwater and soil vapor monitoring reports will be submitted quarterly (groundwater) and bi-annually (soil vapor) for the first year, and as determined by NYSDEC thereafter, with those results also incorporated into the Annual Site Management Report.

The Site Management Report will be submitted, in hard-copy format, to the Region 2 NYSDEC offices, located at 41-40 21st Street, Long Island City, New York, and the NYSDOH, located at 547 River Street, Troy, NY 12180. Electronic formats will also be submitted to NYSDEC and NYSDOH

TABLES

TABLE 1A RI Summary of Soil Results 3035 White Plains Road, Bronx, NY Volatile Organic Compounds

COMPOUND	Track 1 Unrestricted Cleanup Objectives	SB1 (0-4FT)	SB1 (4-8FT)	SB1 (8-12FT)	SB2 (0-4FT)	SB2 (4-8FT)	SB3 (0-4FT)	SB4 (0-4FT)	SB4 (4-8FT)	SB4 (8-10FT)	SB5 (0-4FT)	SB5 (4-8FT)	SB5 (8-10FT)	SB6 (0-2FT)	SB7 (0-4FT)
Sample Results in µg/kg	ug/kg	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007
1,1,1-Trichloroethane	680	2.7 U	2.3 U	2.3 U	2.4 U	2.4 U	2.3 U	2.3 U	2.4 U	2.2 U	2.3 U	2.1 U	2.3 U	2.4 U	2.3 U
1,1,2,2-Tetrachloroethane		2.0 U	1.7 U	1.7 U	1.8 U	1.8 U	1.7 U	1.7 U	1.8 U	1.7 U	1.7 U	1.6 U	1.7 U	1.7 U	1.7 U
1,1,2-Trichloroethane		1.9 U	1.6 U	1.6 U	1.7 U	1.7 U	1.6 U	1.6 U	1.7 U	1.6 U	1.6 U	1.5 U	1.6 U	1.7 U	1.6 U
1,1,2-Trichlorotrifluoroethane		4.3 U	3.7 U	3.7 U	3.8 U	3.7 U	3.7 U	3.7 U	3.8 U	3.5 U	3.7 U	3.4 U	3.6 U	3.7 U	3.7 U
1,1-Dichloroethane	270	1.7 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.6 U	1.4 U	1.5 U	1.4 U	1.5 U	1.5 U	1.5 U
1,1-Dichloroethene	330	3.7 U	3.2 U	3.2 U	3.3 U	3.2 U	3.2 U	3.2 U	3.3 U	3.1 U	3.2 U	2.9 U	3.1 U	3.2 U	3.2 U
1,2,4-Trichlorobenzene		4.4 U	3.8 U	3.8 U	3.9 U	3.8 U	3.8 U	3.8 U	3.9 U	3.6 U	3.8 U	3.5 U	3.7 U	3.8 U	3.8 U
1,2-Dibromo-3-Chloropropane		6.1 U	5.2 U	5.2 U	5.4 U	5.3 U	5.2 U	5.2 U	5.4 U	5.0 U	5.2 U	4.8 U	5.1 U	5.3 U	5.3 U
1,2-Dibromoethane		2.6 U	2.2 U	2.2 U	2.3 U	2.3 U	2.2 U	2.2 U	2.3 U	2.1 U	2.2 U	2.1 U	2.2 U	2.3 U	2.2 U
1,2-Dichlorobenzene	1,100	2.5 U	2.2 U	2.1 U	2.2 U	2.2 U	2.1 U	2.1 U	2.2 U	2.1 U	2.1 U	2.0 U	2.1 U	2.2 U	2.2 U
1,2-Dichloroethane	20	2.0 U	1.7 U	1.7 U	1.8 U	1.7 U	1.7 U	1.7 U	1.8 U	1.6 U	1.7 U	1.6 U	1.7 U	1.7 U	1.7 U
1,2-Dichloropropane		2.6 U	2.2 U	2.2 U	2.3 U	2.2 U	2.2 U	2.2 U	2.3 U	2.1 U	2.2 U	2.0 U	2.2 U	2.2 U	2.2 U
1,3-Dichlorobenzene	2,400	3.6 U	3.1 U	3.1 U	3.2 U	3.1 U	3.1 U	3.1 U	3.2 U	3.0 U	3.1 U	2.9 U	3.0 U	3.1 U	3.1 U
1,4-Dichlorobenzene	1,800	3.5 U	3.0 U	3.0 U	3.1 U	3.1 U	3.0 U	3.0 U	3.1 U	2.9 U	3.0 U	2.8 U	3.0 U	3.1 U	3.0 U
2-Butanone		18 U	16 U	16 U	16 U	16 U	16 U	16 U	16 U	15 U	16 U	14 U	15 U	16 U	33 J
2-Hexanone		23 U	20 U	20 U	21 U	20 U	20 U	20 U	21 U	19 U	20 U	18 U	20 U	20 U	20 U
4-Methyl-2-Pentanone		13 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	10 U	11 U	11 U	11 U
Acetone	50	22 U	19 U	19 U	19 U	19 U	140	19 U	19 U	130 J	19 U	17 U	18 U	19 U	210
Benzene	60	2.6 U	2.2 U	2.2 U	2.3 U	2.2 U	2.2 U	2.2 U	2.3 U	2.1 U	2.2 U	2.0 U	2.2 U	290	2.2 U
Bromodichloromethane		2.2 U	1.9 U	1.8 U	1.9 U	1.9 U	1.8 U	1.8 U	1.9 U	1.8 U	1.8 U	1.7 U	1.8 U	1.9 U	1.9 U
Bromoform		2.0 U	1.7 U	1.7 U	1.8 U	1.7 U	1.7 U	1.7 U	1.8 U	1.7 U	1.7 U	1.6 U	1.7 U	1.7 U	1.7 U
Bromomethane		13 U	11 U	11 U	12 U	11 U	11 U	11 U	12 U	11 U	11 U	10 U	11 U	11 U	11 U
Carbon Disulfide		2.4 U	2.0 U	2.0 U	2.1 U	2.1 U	2.0 U	2.0 U	2.1 U	2.0 U	2.0 U	1.9 U	2.0 U	2.1 U	2.1 U
Carbon Tetrachloride	760	2.9 U	2.5 U	2.4 U	2.5 U	2.5 U	2.4 U	2.4 U	2.6 U	2.4 U	2.4 U	2.3 U	2.4 U	2.5 U	2.5 U
Chlorobenzene	1,100	2.3 U	2.0 U	2.0 U	2.1 U	2.0 U	2.0 U	2.0 U	2.1 U	1.9 U	2.0 U	1.8 U	2.0 U	2.0 U	2.0 U
Chloroethane	070	14 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	11 U	12 U	11 U	12 U	12 U	12 U
Chloroform	370	2.3 U	1.9 U	1.9 U	2.0 U	2.0 U	1.9 U	1.9 U	2.0 U	1.9 U	1.9 U	1.8 U	1.9 U	2.0 U	1.9 U
Chloromethane	050	5.5 U	4.8 U	4.7 U	4.9 U	4.8 U	4.7 U	4.70	4.9 U	4.5 U	4.7 U	4.4 U	4.6 U	4.8 U	4.8 U
cis-1,2-Dichloroethene	250	2.1 U	1.8 U	1.8 U	1.9 U	1.8 U	1.8 U	1.8 U	1.9 U	1.7 U	1.8 U	1.7 U	1.8 U	1.8 U	1.8 U
cis-1,3-Dichloropropene		2.1 U	1.8 U	1.8 U	1.9 U	1.9 U	1.8 U	1.8 U	1.9 U	1.8 U	1.8 U	1.7 U	1.8 U	1.9 U	1.8 U
Dibromochloromothono		2.1 U	1.0 U	1.0 U	1.9 U	1.0 U	1211	1.6 U	1.9 U	1.7 U	1.6 U	1.7 0	1.0 U	1.0 U	1.0 U
Dishlorodifluoromothano		5.5 U	1.3 0	1.3 0	1.3 0	1.3 0	471	1.30	1.3 0	1.2 0	1.3 0	1.2 0	1.3 0	1.3 0	1.3 0
Ethyl Benzene	1.000	231	4.8 0	4.7 0	2.011	4.8 0	4.7 0	4.7 0	4.90	4.0 0	4.7 0	4.4 0	4.70	58000 D	4.0 0
Isopropylbenzene	1,000	2.3 0	2.00	2311	2.0 0	2.0 0	2311	2.00	2.0 0	150	2.0 0	2111	2311	11000 ID	2311
m/n-Xylenes	260	5611	4811	4811	4911	4911	7900 D	4811	5011	4611	4811	4411	4711	480000 D	62
Methyl Acetate	200	56U	4.8 U	4.8 U	491	491	60	481	500	461	4.8 []	4.4 U	4.7 U	4911	4811
Methyl tert-butyl Ether	930	2411	2011	2011	2111	211	2011	2011	2111	2011	2011	1911	2011	2111	2111
Methylcyclohexane		2.7 U	2.3 U	2.3 U	2.4 U	2.4 U	100	2.3 U	2.4 U	2.2 U	2.3 U	2.1 U	2.3 U	11000 JD	2.3 U
Methylene Chloride	50	36	10 U	25 J	10 U	28 J	29	10 U	11 U	9.7 U	10 U	16 J	26 J	10 U	10 U
o-Xylene	260	2.5 U	2.1 U	2.1 U	2.2 U	2.2 U	5000 D	2.1 U	2.2 U	2.0 U	2.1 U	2.0 U	2.1 U	230000 D	24 J
Styrene		3.0 U	2.6 U	2.5 U	2.6 U	2.6 U	2.5 U	2.5 U	2.7 U	2.5 U	2.5 U	2.4 U	2.5 U	2.6 U	2.6 U
t-1,3-Dichloropropene		2.3 U	2.0 U	2.0 U	2.1 U	2.0 U	2.0 U	2.0 U	2.1 U	1.9 U	2.0 U	1.9 U	2.0 U	2.0 U	2.0 U
Tetrachloroethene	1,300	4.7 U	4.1 U	4.0 U	4.2 U	4.1 U	4.0 U	4.0 U	4.2 U	3.9 U	4.0 U	3.7 U	4.0 U	4.1 U	4.1 U
Toluene	700	2.6 U	2.3 U	2.2 U	2.3 U	2.3 U	34	2.2 U	2.3 U	2.2 U	2.2 U	2.1 U	2.2 U	75000 D	36
trans-1,2-Dichloroethene	190	4.1 U	3.6 U	3.5 U	3.6 U	3.6 U	3.5 U	3.5 U	3.7 U	3.4 U	3.5 U	3.3 U	3.5 U	3.6 U	3.6 U
Trichloroethene	470	2.0 U	1.7 U	1.7 U	1.8 U	1.7 U	1.7 U	1.7 U	1.8 U	1.6 U	1.7 U	1.6 U	1.7 U	1.7 U	1.7 U
Trichlorofluoromethane		8.1 U	6.9 U	6.9 U	<u>7.1</u> U	7.0 U	6.9 U	6.9 U	7.2 U	6.6 U	6.9 U	6.4 U	<u>6.8 U</u>	7.0 U	7.0 U
Vinyl Chloride	20	5.3 U	4.6 U	4.5 U	4.7 U	4.6 U	4.5 U	4.5 U	4.7 U	4.4 U	4.5 U	4.2 U	4.5 U	4.6 U	4.6 U
Total Confident Conc. VOC		36	0	25	0	28	13,433	0	0	316	0	16	26	865,290	376

Qualifiers

U - The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concentration given is an approximate value.

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

D - A sample dilution was reuired to obtain the value.

NR - Not analyzed

Bold/highlighted- Indicated exceedance of the NYSDEC Track 1 Objective

TABLE 1A Continued RI Summary of Soil Results 3035 White Plains Road, Bronx, NY Volatile Organic Compounds

COMPOUND	Track 1 Unrestricted Cleanup Objectives	SB8 (0-2FT)	SB9 (0-2FT)	SB10 (0-2FT)	SB11 (0-4FT)	SB12 (0-2FT)	SB13 (0-4FT)	SB14 (0-2FT)	SB15 (0-3FT)	SB16 (0-3FT)	SB17 (0-4FT)	SB17 (4-6FT)	SB18 (0-4FT)	SB18 (4-6FT)
Sample Results in µg/kg	ug/kg	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007
1,1,1-Trichloroethane	680	2.2 U	2.3 U	2.4 U	2.2 U	2.2 U	2.3 U	2.2 U	2.4 U	2.5 U	2.2 U	2.2 U	2.4 U	2.2 U
1,1,2,2-Tetrachloroethane		1.7 U	1.7 U	1.8 U	1.6 U	1.7 U	1.7 U	1.6 U	1.8 U	1.8 U	1.7 U	1.6 U	1.8 U	1.6 U
1,1,2-Trichloroethane		1.6 U	1.6 U	1.7 U	1.5 U	1.6 U	1.6 U	1.5 U	1.7 U	1.7 U	1.6 U	1.5 U	1.7 U	1.5 U
1,1,2-Trichlorotrifluoroethane		3.6 U	3.6 U	3.9 U	3.5 U	3.6 U	3.7 U	3.5 U	3.9 U	3.9 U	3.6 U	3.5 U	3.8 U	3.4 U
1,1-Dichloroethane	270	1.4 U	1.5 U	1.6 U	1.4 U	1.4 U	1.5 U	1.4 U	1.6 U	1.6 U	1.4 U	1.4 U	1.5 U	1.4 U
1,1-Dichloroethene	330	3.1 U	3.1 U	3.3 U	3.0 U	3.1 U	3.2 U	3.0 U	3.3 U	3.4 U	3.1 U	3.0 U	3.3 U	3.0 U
1,2,4-Trichlorobenzene		3.7 U	3.7 U	4.0 U	3.6 U	3.7 U	3.8 U	3.6 U	4.0 U	4.0 U	3.7 U	3.6 U	3.9 U	3.5 U
1,2-Dibromo-3-Chloropropane		5.1 U	5.1 U	5.5 U	4.9 U	5.1 U	5.2 U	4.9 U	5.5 U	5.5 U	5.1 U	5.0 U	5.3 U	4.9 U
1,2-Dibromoethane		2.2 U	2.2 U	2.3 U	2.1 U	2.2 U	2.2 U	2.1 U	2.3 U	2.4 U	2.2 U	2.1 U	2.3 U	2.1 U
1,2-Dichlorobenzene	1,100	2.1 U	2.1 U	2.2 U	2.0 U	2.1 U	2.1 U	2.0 U	2.2 U	2.3 U	2.1 U	2.0 U	2.2 U	2.0 U
1,2-Dichloroethane	20	1.7 U	1.7 U	1.8 U	1.6 U	1.7 U	1.7 U	1.6 U	1.8 U	1.8 U	1.7 U	1.6 U	1.7 U	1.6 U
1,2-Dichloropropane		2.1 U	2.1 U	2.3 U	2.1 U	2.1 U	2.2 U	2.1 U	2.3 U	2.3 U	2.1 U	2.1 U	2.3 U	2.0 U
1,3-Dichlorobenzene	2,400	3.0 U	3.0 U	3.2 U	2.9 U	3.0 U	3.1 U	2.9 U	3.2 U	3.3 U	3.0 U	2.9 U	3.2 U	2.9 U
1,4-Dichlorobenzene	1,800	2.9 U	2.9 U	3.2 U	2.8 U	2.9 U	3.0 U	2.8 U	3.2 U	3.2 U	2.9 U	2.9 U	3.1 U	2.8 U
2-Butanone		15 U	86 J	16 U	15 U	15 U	16 U	15 U	16 U	17 U	15 U	15 U	16 U	15 U
2-Hexanone		19 U	19 U	21 U	19 U	19 U	20 U	19 U	21 U	21 U	19 U	19 U	20 U	19 U
4-Methyl-2-Pentanone		11 U	11 U	11 U	10 U	11 U	11 U	10 U	11 U	12 U	11 U	10 U	11 U	10 U
Acetone	50	18 U	290	20 U	18 U	18 U	19 U	18 U	94 J	20 U	18 U	18 U	19 U	17 U
Benzene	60	2.1 U	2.2 U	2.3 U	2.1 U	2.1 U	2.2 U	2.1 U	2.3 U	2.3 U	2.1 U	2.1 U	2.3 U	2.1 U
Bromodichloromethane		1.8 U	1.8 U	2.0 U	1.7 U	1.8 U	1.9 U	1.7 U	1.9 U	2.0 U	1.8 U	1.8 U	1.9 U	1.7 U
Bromoform		1.7 U	1.7 U	1.8 U	1.6 U	1.7 U	1.7 U	1.6 U	1.8 U	1.8 U	1.7 U	1.6 U	1.8 U	1.6 U
Bromomethane		11 U	11 U	12 U	11 U	11 U	11 U	11 U	12 U	12 U	11 U	11 U	12 U	10 U
Carbon Disulfide	700	2.0 U	2.0 U	2.1 U	1.9 U	2.0 U	2.0 U	1.9 U	2.1 U	2.2 U	2.0 U	1.9 U	2.1 U	1.9 U
Carbon Tetrachioride	760	2.4 U	2.4 U	2.6 U	2.3 U	2.4 0	2.5 U	2.3 U	2.6 U	2.6 U	2.4 U	2.3 U	2.5 U	2.3 U
Chlorobenzene	1,100	1.9 U	2.0 U	2.1 U	1.9 U	1.9 U	2.0 U	1.9 U	2.1 U	2.1 U	1.9 U	1.9 U	2.1 U	1.9 U
Chloroetnane	070	11 U	12 U	12 0	11 U	11 U	12 U	110	12 0	13 U	11 0	11 U	12 0	110
Chloromothono	370	1.9 U	1.9 U	2.0 0	1.8 U	1.9 U	1.9 U	1.8 U	2.0 0	2.0 0	1.9 U	1.8 U	2.0 0	1.8 U
choromethane	250	4.0 0	4.0 0	1.0 U	4.5 0	4.0 0	4.7 0	4.5 0	1011	1.0 U	4.00	4.5 0	4.0 0	4.4 0
cis-1,2-Dichloropropene	230	1.7 0	1.8 U	1.9 0	1.7 0	1.7 0	1.8 U	1.7 0	1.9 0	1.9 U	1.7 0	1.7 U	1.8 0	1.7 0
Cycloberane		1.0 0	23 1	1.9 U	1.7 0	1.0 0	1.0 0	1.7 0	1.3 0	1.9 U	1.0 0	1.7 0	1.5 0	1.7 0
Dibromochloromethane		1.7 0	1211	1.3 U	12 U	12 U	1.0 0	1.7 0	1.3 U	1.5 0	12 U	12 U	1.0 0	1.7 0
Dichlorodifluoromethane		46 U	46 U	50 U	45 U	46 U	48 U	45 U	50 U	50 U	46 U	45 U	491	44 U
Ethyl Benzene	1.000	1.9 U	1300 D	2.1 U	1.8 U	1.9 U	2.0 U	1.8 U	2.1 U	2.1 U	1.9 U	1.9 U	2.0 U	1.8 U
Isopropylbenzene	.,	2.2 U	460 JD	2.4 U	2.2 U	2.2 U	2.3 U	2.2 U	15 J	2.4 U	2.2 U	2.2 U	2.4 U	2.1 U
m/p-Xylenes	260	4.7 U	760 JD	5.0 U	4.5 U	4.7 U	4.8 U	4.5 U	16 J	5.1 U	4.7 U	4.6 U	4.9 U	4.5 U
Methyl Acetate		4.7 U	4.7 U	5.0 U	4.5 U	4.7 U	4.8 U	4.5 U	5.0 U	5.1 U	4.7 U	4.6 U	4.9 U	4.5 U
Methyl tert-butyl Ether	930	2.0 U	2.0 U	2.1 U	1.9 U	2.0 U	2.0 U	1.9 U	2.1 U	2.2 U	2.0 U	1.9 U	2.1 U	1.9 U
Methylcyclohexane		2.3 U	83	2.4 U	2.2 U	2.3 U	2.3 U	2.2 U	2.4 U	2.5 U	2.3 U	2.2 U	2.4 U	2.2 U
Methylene Chloride	50	9.8 U	9.8 U	11 U	23 J	17 J	10 U	9.5 U	11 U	11 U	9.8 U	9.6 U	10 U	9.4 U
o-Xylene	260	2.1 U	36	2.2 U	2.0 U	2.1 U	2.1 U	2.0 U	2.2 U	2.3 U	2.1 U	2.0 U	2.2 U	2.0 U
Styrene		2.5 U	2.5 U	2.7 U	2.4 U	2.5 U	2.6 U	2.4 U	2.7 U	2.7 U	2.5 U	2.4 U	2.6 U	2.4 U
t-1,3-Dichloropropene		2.0 U	2.0 U	2.1 U	1.9 U	2.0 U	2.0 U	1.9 U	2.1 U	2.1 U	2.0 U	1.9 U	2.1 U	1.9 U
Tetrachloroethene	1,300	3.9 U	3.9 U	4.3 U	3.8 U	3.9 U	4.1 U	3.8 U	4.2 U	4.3 U	3.9 U	3.8 U	4.1 U	3.8 U
Toluene	700	2.2 U	41	2.4 U	2.1 U	2.2 U	2.2 U	2.1 U	2.4 U	2.4 U	2.2 U	2.1 U	2.3 U	2.1 U
trans-1,2-Dichloroethene	190	3.4 U	3.4 U	3.7 U	3.3 U	3.4 U	3.6 U	3.3 U	3.7 U	3.8 U	3.4 U	3.4 U	3.6 U	3.3 U
Trichloroethene	470	1.7 U	1.7 U	1.8 U	1.6 U	1.7 U	1.7 U	1.6 U	1.8 U	1.8 U	1.7 U	1.6 U	1.7 U	1.6 U
Trichlorofluoromethane		6.7 U	6.7 U	7.3 U	6.5 U	6.7 U	6.9 U	6.5 U	7.2 U	7.3 U	6.7 U	6.6 U	7.1 U	6.4 U
Vinyl Chloride	20	4.4 U	4.4 U	4.8 U	4.3 U	4.4 U	4.6 U	4.3 U	4.8 U	4.8 U	4.4 U	4.3 U	4.7 U	4.2 U
Total Confident Conc. VOC		0	2,970	0	23	17	0	0	125	0	0	0	0	0

Qualifiers

U - The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.

The concentration given is an approximate value.

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

D - A sample dilution was reuired to obtain the value.

NR - Not analyzed

Bold/highlighted- Indicated exceedance of the NYSDEC Track 1 Objective
TABLE 1B RI Summary of Soil Results 3035 White Plains Road, Bronx, NY Semi-Volatile Organic Compounds

COMPOUND	Track 1 Unrestricted Cleanup Objectives	SB1 (0-4FT)	SB1 (4-8FT)	SB1 (8-12FT)	SB2 (0-4FT)	SB2 (4-8FT)	SB3 (0-4FT)	SB4 (0-4FT)	SB4 (4-8FT)	SB4 (8-10FT)	SB5 (0-4FT)	SB5 (4-8FT)	SB5 (8-10FT)	SB6 (0-2FT)	SB7 (0-4FT)
Sample Results in µg/kg	ug/kg	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007
1,1-Biphenyl		73 U	62 U	310 U	64 U	63 U	60 U	310 U	64 U	87 J	62 U	57 U	300 U	960 J	65 J
2,2-oxybis(1-Chloropropane)		71 U	60 U	300 U	62 U	61 U	59 U	300 U	63 U	58 U	60 U	56 U	290 U	600 U	61 U
2,4-Dinitrotoluene		65 U	55 U	270 U	57 U	56 U	54 U	280 U	57 U	53 U	55 U	51 U	270 U	550 U	56 U
2,6-Dinitrotoluene		62 U	53 U	260 U	55 U	54 U	52 U	270 U	55 U	51 U	53 U	49 U	260 U	530 U	54 U
2-Chloronaphthalene		73 U	62 U	310 U	64 U	63 U	61 U	310 U	64 U	60 U	62 U	58 U	300 U	620 U	63 U
2-Methylnaphthalene		74 U	63 U	310 U	65 U	63 U	260 J	310 U	65 U	60 U	63 U	58 U	300 U	69000 D	250 J
2-Nitroaniline		56 U	48 U	240 U	49 U	48 U	47 U	240 U	49 U	46 U	48 U	44 U	230 U	470 U	48 U
3,3-Dichlorobenzidine		75 U	64 U	320 U	66 U	65 U	63 U	320 U	66 U	61 U	64 U	59 U	310 U	640 U	65 U
3-Nitroaniline		57 U	49 U	240 U	50 U	49 U	48 U	240 U	51 U	47 U	49 U	45 U	240 U	490 U	49 U
4-Bromophenyl-phenylether		66 U	56 U	280 U	58 U	57 U	55 U	280 U	58 U	54 U	56 U	52 U	270 U	560 U	57 U
4-Chloroaniline		52 U	45 U	220 U	46 U	45 U	44 U	220 U	46 U	43 U	45 U	41 U	220 U	440 U	45 U
4-Chlorophenyl-phenylether		70 U	59 U	290 U	61 U	60 U	58 U	300 U	61 U	57 U	59 U	55 U	290 U	590 U	60 U
4-Nitroaniline		75 U	64 U	320 U	66 U	65 U	63 U	320 U	66 U	61 U	64 U	59 U	310 U	640 U	65 U
Acenaphthene	20,000	78 U	67 U	330 U	69 U	68 U	65 U	330 U	69 U	64 U	67 U	62 U	320 U	660 U	190 J
Acenaphthylene	100,000	210 J	61 U	300 U	63 U	62 U	59 U	300 U	63 U	58 U	61 U	56 U	290 U	610 U	99 J
Acetophenone	100,000	64 U	55 U	270 U	57 U	56 U	54 U	270 U	57 U	52 U	55 U	51 U	260 U	550 U	55 U
Anthracene		330 J	56 U	280 U	58 U	57 U	55 U	280 U	59 U	54 U	56 U	52 U	270 U	560 U	400
Atrazine		67 U	57 U	280 U	59 U	58 U	56 U	290 U	60 U	55 U	57 U	53 U	280 U	570 U	58 U
Benzaldehyde		90 U	77 U	380 U	80 U	78 U	75 U	380 U	80 U	74 U	77 U	71 U	370 U	770 U	78 U
Benzo(a)anthracene	1,000	1100	52 U	260 U	82 J	53 U	51 U	260 U	54 U	50 U	120 J	49 U	250 U	520 U	730
Benzo(a)pyrene	1,000	1100	60 U	300 U	92 J	61 U	59 U	300 U	62 U	57 U	140 J	56 U	290 U	600 U	900
Benzo(b)fluoranthene	1,000	1400	41 U	200 U	120 J	42 U	40 U	210 U	49 J	39 U	180 J	38 U	200 U	410 U	1100
Benzo(g,h,i)perylene	100,000	700	62 U	310 U	64 U	63 U	61 U	310 U	64 U	59 U	110 J	57 U	300 U	620 U	680
Benzo(k)fluoranthene	800	540	82 U	410 U	85 U	84 U	81 U	410 U	85 U	79 U	82 U	76 U	400 U	820 U	340 J
bis(2-Chloroethoxy)methane		72 U	62 U	310 U	64 U	62 U	60 U	310 U	64 U	59 U	62 U	57 U	300 U	610 U	62 U
bis(2-Chloroethyl)ether		70 U	59 U	290 U	61 U	60 U	58 U	300 U	61 U	57 U	59 U	55 U	290 U	590 U	60 U
bis(2-Ethylhexyl)phthalate		84 U	72 U	360 U	74 U	73 U	70 U	360 U	75 U	71 J	72 U	67 U	350 U	720 U	73 U
Butylbenzylphthalate		71 U	61 U	300 U	63 U	61 U	59 U	300 U	63 U	58 U	61 U	56 U	290 U	600 U	61 U
Caprolactam		710	60 U	300 U	62 U	61 U	59 U	300 U	62 U	58 U	60 U	56 U	290 U	600 U	61 U
Carbazole	4 000	110 J	57 U	280 U	59 U	58 U	56 U	290 U	59 U	55 U	57 U	53 U	280 U	570 U	320 J
Chrysene	1,000	1100	67 U	330 U	100 J	68 U	66 U	340 U	70 U	64 U	130 J	62 U	320 U	670 U	750
Dibenz(a,n)anthracene	330	66 J	47 0	230 0	49 U	48 U	46 U	240 U	49 0	45 U	47 0	44 0	230 U	470 0	56 J
Dibenzofuran Dista da kita lata		73 U	62 U	310 0	64 U	63 U	61 U	310 0	64 U	59 U	62 U	57 U	300 U	620 0	370 J
Dietnyiphthalate		76 U	65 U	320 0	67 U	66 U	63 U	320 U	67 U	62 U	65 U	60 U	310 U	640 U	65 U
Dimethylphthalate		6711	57 11	300 0	62 U	610	59 0	200 U	62 U	56 U	57 1	50 0	290 0	570 U	610
Di-n-butylphthalate		75 11	64 11	280 0	59 0	56 U	50 0	290 0	59 0	61 11	57.0	53 0	200 0	620 11	56 U
Eluoranthene	100.000	2500	56 U	280 11	200 1	63 1	54 11	280 11	58 11	53 11	200 1	52 11	270 11	550 U	1700
Fluorance	30,000	120 1	63 11	200 0	200 J	64 11	6211	280 0	56 U	75 1	200 J	59.11	310 U	630 U	610
Heyachlorobenzene	30,000	70 11	60 11	310.0	62 11	61 11	59.11	320 0	62 11	57 11	60 11	56 11	290 11	600 U	61 11
Hexachlorobutadiene		68 11	58 U	290 11	60 U	58 11	56 11	290 11	60 11	55 U	58 11	53 11	280 11	570 U	58 11
Hexachlorocyclopentadiene		70 11	60 11	300 U	62 11	61 11	58 11	300 U	62 11	57 U	0.00	55 U	200 0	600 LI	60 11
Hexachloroethane		76.0	64 11	320 11	66 U	64 11	62 11	320 11	66 11	61 U	64 11	59.0	310 11	630 U	64 11
Indeno(1.2.3-cd)pyrene	500	700	48 11	240 11	50 1	48 11	47 11	240 11	49.11	4611	100 1	44 11	230 11	470 11	670
Isophorone	000	66 11	56 11	280 11	58 11	57 11	55 11	280 11	58 11	54 11	56 11	52 11	270 11	560 U	57 11
Naphthalene	12 000	75 11	64 11	320 11	66 11	65 11	140 1	320 11	66 11	70 1	64 11	59.11	310 U	59000	220 1
Nitrobenzene	12,000	96 11	82 11	400 11	85 11	83 11	80 11	410 U	85 11	78 11	82 11	76 11	390 U	810 U	83 11
N-Nitroso-di-n-propylamine		73 11	62 11	310 U	64 11	63 11	61 U	310 U	64 11	59 11	62 11	58 U	300 U	620 11	63 11
N-Nitrosodiphenylamine		73 11	62 11	310 U	64 11	63 11	60 U	310 U	64 11	59 11	62 11	57 11	300 U	610 U	62 11
Phenanthrene	100.000	1200	60 11	300 U	94.1	60 11	58 U	300 U	62 11	95.1	63.1	55 U	290 11	690.1	1700
Pyrene	100,000	2000	66 11	330 11	170 .1	67 11	65 U	330 U	69 11	63 1	210.1	61 []	320 U	660 U	1400
	100,000	2000	55 0	0000		5, 0	55 0	0000	55 0	000	2.50	510	0200	0000	

Qualifiers

U - The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concentration given is an approximate value.

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

D - A sample dilution was reuired to obtain the value.

NR - Not analyzed

TABLE 1B Continued RI Summaruy of Soil Results 3035 White Plains Road, Bronx, NY Semi-Volatile Organic Compounds

	Treak	1			1			Î				Î		
COMPOUND	Unrestricted Cleanup Objectives	SB8 (0-2FT)	SB9 (0-2FT)	SB10 (0-2FT)	SB11 (0-4FT)	SB12 (0-2FT)	SB13 (0-4FT)	SB14 (0-2FT)	SB15 (0-3FT)	SB16 (0-3FT)	SB17 (0-4FT)	SB17 (4-6FT)	SB18 (0-4FT)	SB18 (4-6FT)
Sample Results in µg/kg	ug/kg	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007
1.1-Biphenyl		58 U	60 U	64 U	58 U	59 U	60 U	58 U	250 J	63 U	58 U	59 U	61 U	57 U
2.2-oxybis(1-Chloropropane)		57 U	59 U	62 U	57 U	57 U	59 U	57 U	61 U	62 U	57 U	57 U	60 U	56 U
2.4-Dinitrotoluene		52 U	54 U	57 U	52 U	52 U	54 U	52 U	56 U	56 U	52 U	52 U	55 U	51 U
2,6-Dinitrotoluene		50 U	52 U	55 U	50 U	50 U	52 U	50 U	54 U	54 U	50 U	50 U	53 U	49 U
2-Chloronaphthalene		59 U	61 U	64 U	59 U	59 U	61 U	59 U	63 U	64 U	59 U	59 U	62 U	57 U
2-Methylnaphthalene		59 U	930	65 U	59 U	60 U	61 U	59 U	1000	64 U	59 U	59 U	62 U	58 U
2-Nitroaniline		45 U	47 U	49 U	45 U	45 U	46 U	45 U	48 U	49 U	45 U	45 U	47 U	44 U
3,3-Dichlorobenzidine		61 U	63 U	66 U	60 U	61 U	63 U	61 U	65 U	66 U	60 U	61 U	64 U	59 U
3-Nitroaniline		46 U	48 U	50 U	46 U	46 U	48 U	46 U	50 U	50 U	46 U	46 U	48 U	45 U
4-Bromophenyl-phenylether		53 U	55 U	58 U	53 U	53 U	55 U	53 U	57 U	57 U	53 U	53 U	55 U	52 U
4-Chloroaniline		42 U	44 U	46 U	42 U	43 U	44 U	42 U	45 U	46 U	42 U	42 U	44 U	41 U
4-Chlorophenyl-phenylether		56 U	58 U	61 U	56 U	56 U	58 U	56 U	60 U	61 U	56 U	56 U	59 U	55 U
4-Nitroaniline		61 U	63 U	66 U	60 U	61 U	62 U	60 U	65 U	66 U	60 U	61 U	63 U	59 U
Acenaphthene	20,000	63 U	65 U	69 U	63 U	64 U	65 U	63 U	260 J	160 J	63 U	63 U	66 U	62 U
Acenaphthylene	100,000	58 U	140 J	160 J	57 U	94 J	59 U	57 U	91 J	84 J	57 U	58 U	60 U	56 U
Acetophenone	100,000	52 U	54 U	57 U	52 U	52 U	53 U	52 U	56 U	56 U	52 U	52 U	54 U	51 U
Anthracene		54 U	130 J	240 J	75 J	120 J	55 U	53 U	550	440	53 U	54 U	56 U	52 U
Atrazine		54 U	56 U	59 U	54 U	55 U	56 U	54 U	58 U	59 U	54 U	54 U	57 U	53 U
Benzaldehyde		73 U	75 U	79 U	73 U	73 U	75 U	73 U	78 U	79 U	73 U	73 U	76 U	71 U
Benzo(a)anthracene	1,000	150 J	510	870	240 J	450	130 J	50 U	1200	1900	49 U	50 U	52 U	48 U
Benzo(a)pyrene	1,000	140 J	610	950	250 J	500	140 J	57 U	1200	1800	57 U	57 U	59 U	55 U
Benzo(b)fluoranthene	1,000	180 J	860	1200	340 J	660	160 J	39 U	2200	2100 D	39 U	39 U	41 U	38 U
Benzo(g,h,i)perylene	100,000	100 J	460	600	170 J	410	98 J	59 U	360 J	640	58 U	59 U	61 U	57 U
Benzo(k)fluoranthene	800	80 J	250 J	430	140 J	250 J	80 U	78 U	650	860	78 U	78 U	82 U	76 U
bis(2-Chloroethoxy)methane		58 U	60 U	64 U	58 U	59 U	60 U	58 U	63 U	63 U	58 U	58 U	61 U	57 U
bis(2-Chloroethyl)ether		56 U	58 U	61 U	56 U	56 U	58 U	56 U	60 U	61 U	56 U	56 U	59 U	55 U
bis(2-Ethylhexyl)phthalate		68 U	200 J	74 U	68 U	68 U	210 J	68 U	160 J	74 U	68 U	68 U	71 U	66 U
Butylbenzylphthalate		57 U	59 U	63 U	57 U	58 U	59 U	57 U	62 U	62 U	57 U	57 U	60 U	56 U
Caprolactam		57 U	59 U	62 U	57 U	57 U	59 U	57 U	61 U	62 U	57 U	57 U	60 U	56 U
Carbazole	4 000	54 U	56 U	86 J	54 U	54 0	56 U	54 U	150 J	170 J	54 U	54 U	57 U	53 U
Chrysene	1,000	150 J	570	910	290 J	490	130 J	64 U	1400	2100	63 U	64 U	67 U	62 U
Dibenz(a,h)anthracene	330	45 U	46 U	56 J	44 U	45 U	46 U	44 U	51 J	67 J	44 U	45 U	47 U	43 U
Dibenzofuran		59 U	61 U	64 U	58 U	59 U	60 U	59 U	110 J	110 J	58 U	59 U	61 U	57 U
Dietnyiphthalate		61 U	63 U	67 U	57 U	62 U	63 U	61 U	66 U	66 U	61 U	61 U	64 U	60 U
Dimetryphthalate Din butylphthalate		57 0	59 0	50 U	57 0	54 11	59 0	57 U	59 11	50 LL	54 11	57 0	57 11	50 0
Di-n-butyiphinalate		54 U	50 U	66 11	54 U	54 U	50 0	54 0	56 U	59 0	54 0	54 0	57 U	50 11
Eluoranthono	100.000	210 1	1100	2000	720	010	100 1	52 11	2200	4000 D	52 11	52 11	55 U	59 0
Fluorance	20,000	510 J	62 11	2000	60.11	930	62 11	53 U	2300	4000 D	53 U	53 U	62 11	59 11
Heyachlorobenzene	30,000	57 11	59.11	62 11	57 11	57 11	58 11	57 11	61 11	210 J 61 U	57 11	57 11	59 11	55 11
Hexachlorobutadiene		57 U	56 U	59 11	54 11	55 11	56 U	54 11	59.11	59 []	54 11	55 11	57 11	53 U
Hexachlorocyclopentadiene		57 11	59 11	62 11	56 []	57 11	58 11	56 11	61 11	61 11	56 11	57 11	59 11	55 11
Hexachloroethane		60 U	62 11	66 11	60 11	61 U	62 11	0.00	65 11	65 11	0 00 60 U	60 11	63 11	59 11
Indeno(1,2,3-cd)pyrene	500	85.1	470	610	160 .1	380	98.1	45 U	180 .1	620	45 U	45 11	47 11	44 11
Isophorone		53 U	55 U	58 11	53 U	54 11	55 U	53 11	57 11	58 U	53 11	53 11	56 U	52 11
Naphthalene	12.000	61 U	1600	66 11	60 U	61 []	62 11	60 11	320 .1	66 11	60 11	61 U	63 U	59 11
Nitrobenzene	.2,000	77 U	80 U	84 U	77 U	78 U	80 U	77 U	83 U	84 U	77 U	78 U	81 U	75 U
N-Nitroso-di-n-propylamine		59 U	61 U	64 U	59 U	59 U	61 U	59 U	63 U	64 U	59 U	59 U	62 U	57 U
N-Nitrosodiphenylamine		58 U	60 U	64 U	58 U	59 U	60 U	58 U	63 U	63 U	58 U	59 U	61 U	57 U
Phenanthrene	100.000	150 J	420	830	450	300 J	65 J	56 U	1900	2400 D	56 U	57 U	59 U	55 U
Pyrene	100.000	290 J	960	1600	600	810	200 J	63 U	2600 D	3600 D	63 U	63 U	66 U	61 U

Qualifiers

U - The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concentration given is an approximate value.

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

D - A sample dilution was reuired to obtain the value.

NR - Not analyzed

TABLE 1C RI Summary of Soil Results 3035 White Plains Road, Bronx, NY Pesticides and PCBs

COMPOUND	Track 1 Unrestricted Cleanup Objectives	SB1 (0-4FT)	SB1 (4-8FT)	SB1 (8-12FT)	SB2 (0-4FT)	SB2 (4-8FT)	SB3 (0-4FT)	SB4 (0-4FT)	SB4 (4-8FT)	SB4 (8-10FT)	SB5 (0-4FT)	SB5 (4-8FT)	SB5 (8-10FT)	SB6 (0-2FT)	SB7 (0-4FT)
Sample Results in µg/kg	ug/kg	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007
4,4-DDD	3.3	0.93 U	0.79 U	0.78 U	0.82 U	0.81 U	0.78 U	0.79 U	0.82 U	0.76 U	240 D	0.74 U	0.77 U	2.6 P	11 P
4,4-DDE	3.3	2.8	0.89 U	0.88 U	0.92 U	0.90 U	0.87 U	0.89 U	0.92 U	0.85 U	2.0	0.83 U	0.86 U	0.89 U	0.90 U
4,4-DDT	3.3	3.4	0.81 U	0.80 U	2.4 P	0.83 U	0.80 U	0.81 U	0.84 U	5.1	0.81 U	0.76 U	2.4 P	0.82 U	0.82 U
Aldrin	5.0	1.6 U	1.4 U	2.6	1.4 U	1.3 U	1.4 U	1.3 U	1.3 U	1.4 U	1.4 U				
alpha-BHC	20	0.85 U	0.72 U	0.71 U	0.75 U	0.73 U	0.71 U	0.72 U	0.75 U	0.69 U	0.72 U	0.67 U	0.70 U	0.72 U	0.73 U
alpha-Chlordane	94	1.1 U	0.94 U	0.93 U	0.98 U	0.96 U	0.93 U	0.94 U	0.98 U	0.90 U	0.94 U	0.88 U	0.92 U	0.95 U	0.95 U
beta-BHC	36	1.2 U	0.99 U	0.98 U	1.0 U	1.0 U	0.97 U	0.99 U	1.0 U	0.95 U	0.98 U	0.92 U	0.96 U	0.99 U	1.0 U
delta-BHC	40	2.2 U	1.8 U	1.8 U	1.9 U	1.9 U	1.8 U	1.8 U	1.9 U	1.8 U	1.8 U	1.7 U	1.8 U	1.8 U	1.9 U
Dieldrin	5	1.1 U	0.93 U	0.92 U	0.97 U	0.95 U	0.91 U	0.93 U	0.97 U	0.89 U	0.93 U	0.87 U	0.91 U	0.93 U	0.94 U
Endosulfan I	2,400	1.2 U	0.99 U	0.98 U	1.0 U	1.0 U	0.97 U	0.99 U	1.0 U	0.95 U	0.99 U	0.93 U	0.97 U	1.0 U	1.0 U
Endosulfan II	2,400	1.3 U	1.1 U	1.1 U	1.1 U	1.1 U	1.0 U	1.1 U	1.1 U	1.0 U	1.1 U	0.99 U	1.0 U	1.1 U	1.1 U
Endosulfan Sulfate	2,400	1.4 U	1.2 U	1.2 U	1.3 U	1.2 U	1.2 U	1.2 U	1.3 U	1.2 U	1.2 U	1.1 U	1.2 U	1.2 U	1.2 U
Endrin	14	1.1 U	0.96 U	0.95 U	1.0 U	0.98 U	0.94 U	0.96 U	1.0 U	0.92 U	0.96 U	0.90 U	0.93 U	0.96 U	0.97 U
Endrin aldehyde		1.3 U	1.1 U	1.1 U	1.2 U	1.2 U	1.1 U	1.1 U	1.2 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U
Endrin ketone		1.1 U	0.93 U	0.92 U	0.96 U	0.95 U	0.91 U	0.93 U	0.96 U	0.89 U	0.93 U	0.87 U	0.90 U	0.93 U	0.94 U
gamma-BHC		2.1 J	0.81 U	0.80 U	0.84 U	0.83 U	0.80 U	0.81 U	0.84 U	0.78 U	0.81 U	0.76 U	0.79 U	0.81 U	0.82 U
gamma-Chlordane		1.2 U	0.98 U	0.97 U	1.0 U	1.0 U	0.97 U	0.99 U	1.0 U	0.94 U	0.98 U	0.92 U	0.96 U	0.99 U	1.0 U
Heptachlor	42	1.2 U	1.0 U	1.0 U	1.1 U	1.1 U	1.0 U	1.0 U	1.1 U	1.0 U	1.0 U	0.98 U	1.0 U	1.1 U	1.1 U
Heptachlor epoxide		1.4 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.1 U	1.2 U	1.1 U	1.2 U	1.2 U	1.2 U
Methoxychlor		1.1 U	0.97 U	0.96 U	1.0 U	0.99 U	0.95 U	0.97 U	1.0 U	0.93 U	0.97 U	0.91 U	0.94 U	0.97 U	0.98 U
Toxaphene		4.7 U	4.0 U	4.0 U	4.2 U	4.1 U	4.0 U	4.0 U	4.2 U	3.9 U	4.0 U	3.8 U	3.9 U	4.1 U	4.1 U
Aroclor-1016	100	3.4 U	2.9 U	2.8 U	3.0 U	2.9 U	2.8 U	2.9 U	3.0 U	2.7 U	2.9 U	2.6 U	2.8 U	2.9 U	2.9 U
Aroclor-1221	100	5.2 U	4.5 U	4.4 U	4.6 U	4.5 U	4.3 U	4.5 U	4.6 U	4.3 U	4.5 U	4.1 U	4.3 U	4.5 U	4.5 U
Aroclor-1232	100	7.8 U	6.7 U	6.6 U	6.9 U	6.7 U	6.5 U	6.7 U	6.9 U	6.4 U	6.7 U	6.1 U	6.4 U	6.7 U	6.7 U
Aroclor-1242	100	6.9 U	5.9 U	5.9 U	6.1 U	6.0 U	5.8 U	5.9 U	6.1 U	5.7 U	5.9 U	5.5 U	5.7 U	5.9 U	6.0 U
Aroclor-1248	100	3.4 U	2.9 U	2.8 U	3.0 U	2.9 U	2.8 U	2.9 U	3.0 U	2.7 U	2.9 U	2.7 U	2.8 U	2.9 U	2.9 U
Aroclor-1254	100	2.2 U	1.9 U	1.9 U	1.9 U	1.9 U	1.8 U	1.9 U	1.9 U	1.8 U	1.9 U	1.7 U	1.8 U	1.9 U	1.9 U
Aroclor-1260	100	5.6 U	4.8 U	4.7 U	4.9 U	4.8 U	4.6 U	4.8 U	4.9 U	4.5 U	4.8 U	4.4 U	4.6 U	4.8 U	4.8 U

Qualifiers

U - The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concentration given is an approximate value.

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

D - A sample dilution was reuired to obtain the value.

NR - Not analyzed

TABLE 1C Continued RI Summary of Soil Results 3035 White Plains Road, Bronx, NY Pesticides and PCBs

COMPOUND	Track 1 Unrestricted Cleanup Objectives	SB8 (0-2FT)	SB9 (0-2FT)	SB10 (0-2FT)	SB11 (0-4FT)	SB12 (0-2FT)	SB13 (0-4FT)	SB14 (0-2FT)	SB15 (0-3FT)	SB16 (0-3FT)	SB17 (0-4FT)	SB17 (4-6FT)	SB18 (0-4FT)	SB18 (4-6FT)
Sample Results in µg/kg	ug/kg	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007
4,4-DDD	3.3	0.75 U	5.8	0.82 U	0.75 U	15	6.0	0.68 U	0.74 U	0.74 U	0.69 U	0.68 U	0.71 U	0.67 U
4,4-DDE	3.3	0.84 U	0.87 U	0.92 U	0.84 U	0.85 U	5.0	0.94 U	1.0 U	1.0 U	0.94 U	0.94 U	0.98 U	0.92 U
4,4-DDT	3.3	0.77 U	0.80 U	0.84 U	0.77 U	1.8 J	10	1.7 U	1.9 U	1.9 U	1.7 U	1.7 U	1.8 U	1.7 U
Aldrin	5.0	1.3 U	1.4 U	1.4 U	1.3 U	1.3 U	1.4 U	0.77 U	0.83 U	0.83 U	0.77 U	0.77 U	0.80 U	0.75 U
alpha-BHC	20	0.69 U	0.71 U	0.75 U	0.68 U	0.69 U	0.71 U	1.0 U	1.1 U	1.1 U	1.0 U	0.99 U	1.0 U	0.97 U
alpha-Chlordane	94	0.90 U	0.93 U	0.98 U	0.89 U	0.91 U	0.92 U	1.3 U	1.4 U	1.4 U	1.3 U	1.3 U	1.4 U	1.3 U
beta-BHC	36	0.94 U	0.97 U	1.0 U	0.93 U	0.95 U	0.97 U	1.1 U	1.2 U	1.2 U	1.1 U	1.1 U	1.2 U	1.1 U
delta-BHC	40	1.7 U	1.8 U	1.9 U	1.7 U	1.8 U	1.8 U	0.94 U	1.0 U	1.0 U	0.94 U	0.94 U	0.98 U	0.92 U
Dieldrin	5	0.89 U	0.91 U	0.96 U	0.88 U	0.89 U	0.91 U	0.88 U	0.95 U	0.95 U	0.89 U	0.88 U	0.92 U	0.86 U
Endosulfan I	2,400	0.94 U	0.97 U	1.0 U	0.94 U	0.95 U	0.97 U	0.84 U	0.91 U	0.91 U	0.84 U	0.84 U	0.88 U	0.82 U
Endosulfan II	2,400	1.0 U	1.0 U	1.1 U	1.0 U	1.0 U	1.0 U	0.91 U	0.98 U	0.98 U	0.91 U	0.91 U	0.95 U	0.89 U
Endosulfan Sulfate	2,400	1.2 U	1.2 U	1.3 U	1.1 U	1.2 U	1.2 U	1.0 U	1.1 U	1.1 U	1.0 U	1.0 U	1.1 U	0.99 U
Endrin	14	0.91 U	0.94 U	1.0 U	0.91 U	0.92 U	0.94 U	0.75 U	31	0.81 U	0.75 U	0.75 U	0.78 U	0.73 U
Endrin aldehyde		1.1 U	1.1 U	1.2 U	1.1 U	1.1 U	1.1 U	1.2 U	1.1 U					
Endrin ketone		0.88 U	0.91 U	0.96 U	0.88 U	0.89 U	0.91 U	0.77 U	0.83 U	11	17	0.77 U	0.80 U	0.75 U
gamma-BHC		0.77 U	0.79 U	0.84 U	0.76 U	0.78 U	0.79 U	0.92 U	0.99 U	1.0 U	0.92 U	0.92 U	0.96 U	0.90 U
gamma-Chlordane		0.94 U	0.96 U	1.0 U	0.93 U	0.95 U	0.96 U	0.88 U	0.95 U	0.95 U	0.88 U	0.88 U	0.92 U	0.86 U
Heptachlor	42	1.0 U	1.0 U	1.1 U	0.99 U	1.0 U	1.0 U	1.1 U	1.2 U	1.2 U	1.1 U	1.1 U	1.1 U	1.1 U
Heptachlor epoxide		1.1 U	1.2 U	1.2 U	1.1 U	1.2 U	1.2 U	0.90 U	0.96 U	0.97 U	0.90 U	0.90 U	0.93 U	0.88 U
Methoxychlor		0.92 U	0.95 U	1.0 U	0.91 U	0.93 U	0.95 U	0.93 U	1.0 U	1.0 U	0.94 U	0.93 U	0.97 U	0.91 U
Toxaphene		3.8 U	4.0 U	4.2 U	3.8 U	3.9 U	4.0 U	3.8 U	4.1 U	4.1 U	3.8 U	3.8 U	4.0 U	3.7 U
Aroclor-1016	100	2.7 U	2.8 U	3.0 U	2.7 U	2.7 U	2.8 U	2.7 U	2.9 U	2.9 U	2.7 U	2.7 U	2.8 U	2.7 U
Aroclor-1221	100	4.2 U	4.4 U	4.6 U	4.2 U	4.3 U	4.4 U	4.2 U	4.5 U	4.6 U	4.2 U	4.2 U	4.4 U	4.1 U
Aroclor-1232	100	6.3 U	6.5 U	6.9 U	6.3 U	6.4 U	6.5 U	6.3 U	6.8 U	6.8 U	6.3 U	6.3 U	6.6 U	6.2 U
Aroclor-1242	100	5.6 U	5.8 U	6.1 U	5.6 U	5.7 U	5.8 U	5.6 U	6.0 U	6.1 U	5.6 U	5.6 U	5.8 U	5.5 U
Aroclor-1248	100	2.7 U	2.8 U	3.0 U	2.7 U	2.8 U	2.8 U	2.7 U	2.9 U	2.9 U	2.7 U	2.7 U	2.8 U	2.7 U
Aroclor-1254	100	1.8 U	1.8 U	1.9 U	1.8 U	1.8 U	1.8 U	1.8 U	1.9 U	1.9 U	1.8 U	1.8 U	1.9 U	1.7 U
Aroclor-1260	100	4.5 U	4.7 U	4.9 U	4.5 U	4.6 U	4.7 U	4.5 U	4.9 U	4.9 U	4.5 U	4.5 U	4.7 U	4.4 U

Qualifiers

U - The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concentration given is an approximate value.

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

D - A sample dilution was reuired to obtain the value.

NR - Not analyzed

TABLE 1D RI Summary of Soil Results 3035 White Plains Road, Bronx, NY Metals

COMPOUND	Track 1 Unrestricted Cleanup Objectives	SB1 (0-4FT)	SB1 (4-8FT)	SB1 (8-12FT)	SB2 (0-4FT)	SB2 (4-8FT)	SB3 (0-4FT)	SB4 (0-4FT)	SB4 (4-8FT)	SB4 (8-10FT)	SB5 (0-4FT)	SB5 (4-8FT)	SB5 (8-10FT)	SB6 (0-2FT)	SB7 (0-4FT)
Sample Results in µg/kg	ug/kg	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007
Aluminum		17100	9740	11100	13700	11100	7330	8290	10300	8250	11300	5550	5340	6880	12200
Antimony		0.301 U	0.258 U	0.255 U	0.267 U	0.258 U	0.253 U	0.258 U	0.266 U	0.247 U	0.254 U	0.236 U	0.250 U	0.256 U	0.260 U
Arsenic	13	9.850	0.423 J	3.820	2.500	1.590	1.120	2.780	1.790	0.146 U	1.870	0.139 U	0.147 U	3.130	3.770
Barium	350	235	44.7	103	121	66.7	107	109	116	59.4	120	32.8	45.4	240	307
Beryllium	7	0.806	0.346	0.501	0.683	0.376	0.410	0.340	0.376	0.555	0.363	0.196 J	0.185 J	0.339	0.477
Cadmium	2.5 c	3.100	1.140	1.550	1.470	0.968	1.520	1.510	1.520	1.650	1.060	0.392 J	0.685 J	1.890	1.990
Calcium		2630	576	5320	1400	832	2090	10200	9100	2980	1060	566	3930	4040	4540
Chromium	30 c	29.5	22.3	34.5	19.6	19.2	19.6	19.9	26.2	15.4	18.4	9.900	16.3	18.9	38.6
Cobalt		11.6	6.230	6.810	5.760	4.660	6.810	6.860	6.220	9.240	6.970	5.160	4.910	8.240	8.240
Copper	50	85.9	19.4	32.4	21.2	14.2	73.2	31.1	24.8	29.9	29.4	21.5	20.7	62.8	40.2
Iron		23900	15300	15200	14100	12900	10900	14300	16700	20100	13300	6800	8450	17200	19100
Lead	63 c	346	10.6	98.9	59.8	18.7	92.2	115	89.9	6.480	37.2	1.760	19.7	335	364
Magnesium		3580	2740	2590	2220	2140	2360	3160	3260	3280	2510	1840	2160	2410	2750
Manganese	1600 c	551	161	329	531	173	154	270	262	440	177	124	115	235	187
Mercury	0.18 c	0.393	0.017	0.056	0.078	0.030	0.081	0.106	0.099	0.006 J	0.097	0.009 J	0.018	0.180	0.156
Nickel	30	22.8	13.5	14.5	12.3	9.410	13.9	13.9	12.9	17.2	12.2	11.9	12.4	16.6	18.1
Potassium		1740	1190	1130	695	731	1390	1480	1480	2560	985	958	1170	1780	1290
Selenium	3.9c	0.347 J	0.137 U	0.135 U	0.142 U	0.137 U	0.195 J	0.136 U	0.141 U	0.131 U	0.134 U	0.125 U	0.132 U	0.136 U	0.138 U
Silver	2	0.239 J	0.137 U	0.135 U	0.142 U	0.137 U	0.134 U	0.136 U	0.141 U	0.131 U	0.134 U	0.125 U	0.132 U	0.136 U	0.138 U
Sodium		234	73.8 J	133	150	76.8	124	145	110	92.4	63.1 J	79.1	122	193	324
Thallium		1.670 U	1.430 U	1.420 U	1.490 U	1.430 U	1.400 U	1.430 U	1.480 U	1.380 U	1.410 U	1.310 U	1.390 U	1.430 U	1.450 U
Vanadium		50.2	27.3	31.2	30.4	26.9	20.5	24.5	30.2	25.0	27.7	14.2	15.5	35.0	35.5
Zinc	109 c	478	47.8	148	146	51.6	180	159	96.3	43.0	59.3	19.7	55.2	258	231
Hexavalent Chromium		0.530 U	0.455 U	0.450 U	0.472 U	0.458 U	0.446 U	0.455 U	0.469 U	0.437 U	0.454 U	0.419 U	0.442 U	0.452 U	0.459 U

U - The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concentration given is an approximate value.

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

D - A sample dilution was reuired to obtain the value.

NR - Not analyzed

TABLE 1D Continued RI Summary of Soil Results 3035 White Plains Road, Bronx, NY Metals

COMPOUND	Track 1 Unrestricted Cleanup Objectives	SB8 (0-2FT)	SB9 (0-2FT)	SB10 (0-2FT)	SB11 (0-4FT)	SB12 (0-2FT)	SB13 (0-4FT)	SB14 (0-2FT)	SB15 (0-3FT)	SB16 (0-3FT)	SB17 (0-4FT)	SB17 (4-6FT)	SB18 (0-4FT)	SB18 (4-6FT)
Sample Results in µg/kg	ug/kg	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007
Aluminum		13800	12600	11100	7280	11400	9440	6660	9510	11500	6140	8800	10200	13700
Antimony		0.243 U	0.251 U	0.265 U	0.244 U	0.246 U	0.251 U	0.245 U	0.261 U	0.262 U	0.244 U	0.245 U	0.254 U	0.238 U
Arsenic	13	1.530	3.810	2.130	0.884	2.920	2.130	0.700 J	4.410	1.990	0.410 J	0.144 U	1.210	0.256 J
Barium	350	114	361	247	87.4	173	130	63.1	147	90.5	67.5	76.8	51.6	88.5
Beryllium	7	0.498	0.395	0.433	0.285	0.380	0.348	0.284	0.364	0.453	0.196 J	0.325	0.491	0.310
Cadmium	2.5 c	1.980	2.650	1.680	0.908	2.100	1.340	1.060	2.670	1.340	0.772	1.270	1.230	1.510
Calcium		3060	3830	2770	1160	2300	2750	1200	14300	979	993	7890	1210	1180
Chromium	30 c	24.2	25.0	40.8	16.1	22.0	18.6	28.2	21.5	20.3	28.0	15.9	19.9	47.2
Cobalt		18.2	14.0	9.260	6.610	12.7	7.860	11.5	9.060	7.820	5.940	8.260	9.200	10.1
Copper	50	19.0	48.3	31.5	25.1	61.5	33.9	32.2	103	21.0	26.4	23.5	27.8	39.6
Iron		21400	26100	17800	11000	20900	14100	12900	21200	15500	10200	13500	16200	17700
Lead	63 c	98.7	166	238	96.0	188	144	52.4	676	51.8	139	26.0	8.780	3.440
Magnesium		5840	5000	2850	2460	4220	2760	3600	10200	2550	2340	7810	2760	6330
Manganese	1600 c	399	317	235	229	254	194	238	256	298	171	205	207	417
Mercury	0.18 c	0.048	0.182	0.063	0.091	0.224	0.194	0.041	0.202	0.077	0.028	0.036	0.023	0.01 J
Nickel	30	25.9	19.6	18.4	13.7	18.5	14.0	25.7	20.9	13.9	12.7	12.6	19.5	23.5
Potassium		6560	7180	1070	1140	5370	1790	862	3070	1030	1110	3970	1000	3140
Selenium	3.9c	0.129 U	0.133 U	0.141 U	0.129 U	0.130 U	0.133 U	0.130 U	0.138 U	0.138 U	0.129 U	0.130 U	0.135 U	0.126 U
Silver	2	0.129 U	0.133 U	0.141 U	0.129 U	0.130 U	0.133 U	0.130 U	0.138 U	0.138 U	0.129 U	0.130 U	0.135 U	0.126 U
Sodium		328	139	240	97.7	123	113	107	181	95.6	77.2	107	80.9	59.1 J
Thallium		1.350 U	1.400 U	1.480 U	1.350 U	1.370 U	1.400 U	1.360 U	1.450 U	1.450 U	1.360 U	1.360 U	1.410 U	1.320 U
Vanadium		36.6	34.5	40.8	22.9	32.2	27.4	25.1	34.5	29.3	19.4	23.8	29.0	35.4
Zinc	109 c	83.1	313	188	124	170	132	54.1	237	77.2	38.7	67.2	51.4	54.3
Hexavalent Chromium		0.43 U	0.446 U	0.468 U	0.43 U	0.434 U	0.443 U	0.432 U	0.467 U	0.465 U	0.431 U	0.432 U	0.452 U	0.420 U

U - The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concentration given is an approximate value.

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

D - A sample dilution was reuired to obtain the value.

NR - Not analyzed

TABLE 2A RI Summary of Groundwater Results 3035 White Plains Road, Bronx, NY Volatile Organic Compounds

COMPOUND	NYSDEC Ambient Water Quality Standards	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-9	MW-10	MW-11	MW-12	MW-13	MW-14	MW-15	MW-16
(µg/L)	(µg/L)	11/2/2007	11/2/2007	11/2/2007	11/2/2007	11/2/2007	11/2/2007	11/2/2007	11/2/2007	11/2/2007	11/2/2007	11/2/2007	12/7/2007	12/7/2007	12/7/2007	12/7/2007
1,1,1-Trichloroethane	1	0.17 U														
1,1,2,2-Tetrachloroethane	5	0.35 U														
1,1,2-Trichloroethane	1	0.36 U														
1,1,2-Trichlorotrifluoroethane	5	2.1 U														
1,1-Dichloroethane	4	0.28 U														
1,1-Dichloroethene	5	0.33 U														
1,2,4-Trichlorobenzene	5	5.0 U														
1,2-Dibromo-3-Chloropropane	0.4	5.0 U														
1,2-Dibromoethane		0.25 U														
1,2-Dichlorobenzene	3	0.67 U														
1,2-Dichloroethane	0.6	0.28 U														
1,2-Dichloropropane	5	0.27 U														
1,3-Dichlorobenzene	3	0.65 U														
1,4-Dichlorobenzene	3	0.79 U														
2-Butanone		1.6 U	16 J	1.6 U	1.6 U	1.6 U										
2-Hexanone		1.3 U														
4-Methyl-2-Pentanone	-	1.7 U														
Acetone	5	6.8 U	40	6.8 U	60	6.8 U										
Benzene	1	47	15	83	0.35 U	490 D	0.35 U	71	0.35 U	0.35 U	0.35 U	0.35 U	150	0.35 U	12	160
Bromodicnioromethane	50*	0.30 U														
Bromotorm	50"	0.22 U														
Bromometnane	5	1.3 U	1.3 0	1.3 U												
Carbon Disunde	5	0.36 U	0.5	4.0 J	0.36 U											
Carbon Tetrachioride	5	0.34 U	0.34 U	0.34 0	0.34 U	0.34 0										
Chloroothane	5	0.47 0	0.47 0	0.47 0	0.47 0	0.47 0	1 1 11	0.47 0	0.47 0	0.47 0	1 1 11	0.47 0	0.47 0	0.47 0	0.47 0	0.47 0
Chloroform	7	0.18 U	0.18 U	0.18.11	0.18 U	0.18 U	0.18.11	0.18 U	0.18 U	0.18 U	0.18.11	0.18 U	0.18.11	0.18 U	0.18 U	0.18.11
Chloromethane	5	0.10 0	0.16 U	0.16 0	0.15 U	0.16 U	0.16 0	0.10 0	0.10 0	0.16 0	0.16 0	0.16 0	0.15 U	0.10 0	0.16 U	0.15 U
cis-1 2-Dichloroethene	5	0.45 0	0.43 0	0.45 0	0.43 0	0.45 0	0.45 0	0.45 0	0.45 0	0.45 0	0.43 0	0.45 0	0.45 0	0.45 0	0.45 0	0.43 0
cis-1,2-Dichloropropene	0.4	0.26 U	0.26 U	0.20 0	0.26 U	0.26 U	0.20 0	0.20 0	0.26 U	0.26 U	0.20 0	0.26 U				
Cyclobexane	0.4	42	50	57	23	110	50 U	58	50 U	50 U	50 U	50 U	14	50 U	110	50 U
Dibromochloromethane		0.22 11	0.22 11	0.22 11	0.22 11	0.22 11	0.22 U	0.22 11	0.22 []	0.22 []	0.22 11	0.22 11	0.22.11	0.22 11	0.22 11	0.22 []
Dichlorodifluoromethane	5	0.70 U	0.70 11													
Ethyl Benzene	5	690 D	590 D	1000 D	160	1400 D	0.50 U	91	0.50 U	3.1 J	0.50 U	0.50 U	88	0.50 U	200	5.5
Isopropylbenzene	NS	86	48	92	38	63	5.0 U	70	5.0 U							
m/p-Xylenes	5	1700 D	730 D	3100 D	250	5600 D	1.1 U	350	1.1 U	17	1.1 U	1.1 U	510 D	1.1 U	8200 D	200
Methyl Acetate		5.0 U														
Methyl Cyclohexane		36	29	54	31	69	5.0 U	35	5.0 U	130	5.0 U					
Methyl tert-butyl Ether	10	120	90	430 D	22	53	4.4 J	0.23 U	9.6	78	0.23 U	0.23 U	37	0.23 U	0.23 U	6.1
Methylene Chloride	10	0.98 U														
o-Xylene	5	500 D	130	940 D	35	2200 D	0.47 U	100	0.47 U	5.7	0.47 U	0.47 U	250 D	0.47 U	3300 D	120
Styrene	5	0.45 U	0.45 U	0.45 U	0.45 U	160	0.45 U									
t-1,3-Dichloropropene	0.4	0.29 U														
Tetrachloroethene	5	0.74 U														
Toluene	5	110	24	270 D	5.4	1900 D	0.38 U	120	0.38 U	4.3 J	0.38 U	0.38 U	840 D	0.38 U	1700 D	170
trans-1,2-Dichloroethene	0.4	0.40 U														
Trichloroethene	0.4	0.59 U														
Trichlorofluoromethane	5	0.58 U														
Vinyl Chloride	NS	0.62 U														
Total Confident Conc. VOC		3331	1706	6026	564.4	12045	4.4	865	9.6	174.6	4	0	1905	0	13722	661.6
Total TICs		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Qualifiers

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concentration given is an approximate value.

D - A sample dilution was reuired to obtain the value.

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

* - For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

NR - Not analyzed

U - The compound was not detected at the indicated concentration.

TABLE 2B RI Summary of Groundwater Results 3035 White Plains Road, Bronx, NY Semi-Volatile Organic Compounds

COMPOUND	NYSDEC Ambient Water Quality Standards	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-9	MW-10	MW-11	MW-12
(µg/L)	(µg/L)	11/2/2007	11/2/2007	11/2/2007	11/2/2007	11/2/2007	11/2/2007	11/2/2007	11/2/2007	11/2/2007	11/3/2007	11/4/2007
1,1-Biphenyl		2.2 J	0.670 J	1.6 J	0.24 U	0.910 J	0.24 U					
2,2-oxybis(1-Chloropropane)		0.25 U	0.26 U	0.25 U	0.25 U	0.25 U	0.25 U					
2,4-Dinitrotoluene	5	0.30 U										
2,6-Dinitrotoluene	5	0.24 U	0.25 U	0.24 U	0.24 U	0.24 U	0.24 U					
2-Chloronaphthalene	10	0.22 U	0.23 U	0.22 U	0.22 U	0.22 U	0.22 U					
2-Methylnaphthalene	NS	130 D	18	110 D	0.30 U	100 D	0.30 U					
2-Nitroaniline	5	0.24 U										
3,3-Dichlorobenzidine	5	0.74 U	0.75 U	0.74 U	0.74 U	0.74 U	0.74 U					
3-Nitroaniline	5	0.20 U	0.21 U	0.20 U	0.20 U	0.20 U	0.20 U					
4-Bromophenyl-phenylethe	NS	0.16 U										
4-Chloroaniline	5	0.17 U										
4-Chlorophenyl-phenylether	NS	0.23 U	0.24 U	0.23 U	0.23 U	0.23 U	0.23 U					
Acenaphthene	20	0.550 J	0.22 U	0.440 J	0.22 U	0.22 U	0.22 U	0.23 U	0.22 U	0.22 U	0.22 U	0.22 U
Acenaphthylene	20	0.22 U										
Acetophenone		0.26 U	0.27 U	0.26 U	0.26 U	0.26 U	0.26 U					
Anthracene	50*	0.360 J	0.24 U									
Atrazine		0.36 U	0.37 U	0.36 U	0.36 U	0.36 U	0.36 U					
Benzaldehyde	0.000	0.25 U	0.26 U	0.25 U	0.25 U	0.25 U	0.25 U					
Benzo(a)anthracene	0.002	0.400 J	0.28 U									
Benzo(a)pyrene	ND 0.000	0.25 U	0.25 0	0.25 0	0.25 0	0.25 U	0.25 U	0.25 U	0.25 0	0.25 U	0.25 U	0.25 0
Benzo(b)fluorantnene	0.002	0.17 0	0.17 U	0.17 0	0.17 0	0.17 0	0.17 0	0.17 0	0.17 0	0.17 U	0.17 0	0.17 U
Benzo(g,n,i)perviene	0.002	0.23 0	0.23 0	0.23 U	0.23 U	0.23 0	0.23 U					
bis/2 Chloreethevy/methans	0.002	0.36 U	0.39 U	0.36 U	0.36 U	0.36 U	0.36 U					
bis(2-Chloroothyl)othor	1	0.25 0	0.25 0	0.25 0	0.20 U	0.25 0	0.25 0	0.25 0	0.25 0	0.20 U	0.25 0	0.25 0
bis(2-Ethylboxyl)phthalato	5	0.29 0	0.29 U	0.29 0	0.29 0	0.29 0	0.29 U	0.29 0	0.29 0	0.29 U	0.29 U	0.29 O
Butylbenzylphthalate	5	0.26 11	0.26 U	0.330 3D	0.400 50	0.26 11	0.26 U	0.330 JD	0.020 3D	0.26 U	0.26 U	0.26 U
Caprolactam		0.20 0	0.20 0	0.20 0	0.20 0	0.20 0	0.500 J	0.29.11	0.20 0	0.20 0	0.20 0	0.20 0
Carbazole		0.27 U	0.20 U	0.27 U								
Chrysene	0.002	0.31 U	0.32 U	0.31 U	0.31 U	0.31 U	0.31 U					
Dibenz(a,h)anthracene	50	0.16 U	0.17 U	0.16 U	0.16 U	0.16 U	0.16 U					
Dibenzofuran	NS	0.23 U	0.24 U	0.23 U	0.23 U	0.23 U	0.23 U					
Diethylphthalate	50	0.19 U	0.360 J	0.550 J	0.19 U	1.3 J	0.19 U	0.20 U	0.19 U	0.250 J	0.19 U	0.19 U
Dimethylphthalate	50	0.23 U										
Di-n-butylphthalate	50	0.25 U	0.25 U	0.25 U	0.25 U	0.290 J	0.25 U	0.670 J	0.25 U	0.310 J	0.25 U	0.25 U
Di-n-octyl phthalate	50*	0.27 U										
Fluoranthene	50	0.590 J	0.22 U									
Fluorene	50	1.1 J	0.24 U	0.640 J	0.24 U	0.450 J	0.24 U	0.25 U	0.24 U	0.24 U	0.24 U	0.24 U
Hexachlorobutadiene	0.5	0.26 U										
Hexachlorocyclopentadiene	5	0.20 U										
Hexachloroethane	5	0.28 U	0.29 U	0.28 U	0.28 U	0.28 U	0.28 U					
Indeno(1,2,3-cd)pyrene	0.002	0.21 U										
Isophorone	50	0.44 U	0.45 U	0.44 U	0.44 U	0.44 U	0.44 U					
Naphthalene	10	200 D	90 D	250 D	0.28 U	170 D	0.860 J	0.29 U	0.28 U	0.28 U	0.28 U	0.28 U
Nitrobenzene	0.04	0.24 U										
n-Nitrosodimethylamine		0.46 U	0.47 U	0.46 U	0.46 U	0.46 U	0.46 U					
N-Nitroso-di-n-propylamine	NS	0.27 U	0.28 U	0.27 U	0.27 U	0.27 U	0.27 U					
N-Nitrosodiphenylamine	50	0.22 U										
Phenanthrene	50	1.5 J	0.24 U	0.440 J	0.24 U	0.730 J	0.24 U	0.25 U	0.24 U	0.500 J	0.24 U	0.24 U
Pyrene	50	0.770 J	0.24 U									

Qualifiers

U - The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.

The concentration given is an approximate value.

D - A sample dilution was reuired to obtain the value.

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

TABLE 2C

RI Summary of Groundwater Results

3035 White Plains Road, Bronx, NY

Pesticides and PCBs

COMPOUND	NYSDEC AMBIENT WATER QUALITY STANDARDS	MW-1	MW-5	MW-6	MW-10	MW-12
Pesticides and PCBs	(µg/L)	11/2/2007	11/2/2007	11/2/2007	11/2/2007	11/2/2007
4,4-DDD	0.3	0.001 U	0.001 U	0.001 U	0.001 U	0.002 U
4,4-DDE	0.2	0.001 U				
4,4-DDT	0.2	0.001 U	0.001 U	0.001 U	0.002 U	0.002 U
Aldrin	ND	0.002 U	0.002 U	0.002 U	0.003 U	0.004 U
alpha-BHC	0.01	0.001 U				
alpha-Chlordane	0.05	0.001 U	0.001 U	0.001 U	0.0022 U	0.002 U
beta-BHC	0.04	0.001 U	0.001 U	0.001 U	0.002 U	0.002 U
delta-BHC	0.04	0.0018 U	0.0018 U	0.0018 U	0.001 U	0.0035 U
Dieldrin	0.004	0.001 U	0.001 U	0.001 U	0.001 U	0.002 U
Endosulfan I	NS	0.001 U	0.001 U	0.001 U	0.001 U	0.002 U
Endosulfan II	NS	0.001 U	0.001 U	0.001 U	0.001 U	0.002 U
Endosulfan Sulfate	NS	0.001 U	0.001 U	0.001 U	0.001 U	0.002 U
Endrin	ND	0.001 U	0.001 U	0.001 U	0.001 U	0.002 U
Endrin aldehyde	5	0.001 U	0.001 U	0.001 U	0.001 U	0.002 U
Endrin ketone	5	0.001 U	0.001 U	0.001 U	0.001 U	0.002 U
gamma-BHC		0.001 U				
gamma-Chlordane	0.05	0.001 U	0.001 U	0.001 U	0.001 U	0.002 U
Heptachlor	0.04	0.001 U	0.001 U	0.001 U	0.001 U	0.003 U
Heptachlor epoxide	0.03	0.002 U	0.002 U	0.002 U	0.004 U	0.003 U
Methoxychlor	35	0.003 U	0.003 U	0.003 U	0.001 U	0.006 U
Toxaphene	0.06	0.007 U	0.007 U	0.007 U	0.009 U	0.014 U
Aroclor-1016	.09*	0.015 U	0.015 U	0.015 U	0.03 U	0.03 U
Aroclor-1221	.09*	0.014 U	0.013 U	0.013 U	0.027 U	0.027 U
Aroclor-1232	.09*	0.014 U	0.014 U	0.014 U	0.028 U	0.028 U
Aroclor-1242	.09*	0.0052 U	0.0051 U	0.0051 U	0.01 U	0.01 U
Aroclor-1248	.09*	0.0045 U	0.0044 U	0.0044 U	0.0088 U	0.0088 U
Aroclor-1254	.09*	0.0036 U	0.0035 U	0.0035 U	0.007 U	0.007 U
Aroclor-1260	.09*	0.012 U	0.012 U	0.012 U	0.024 U	0.024 U

Qualifiers

U - The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concentration given is an approximate value.

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the sample.

Notes:

** - NYSDEC Ambient Water Quality Standards and Guidance Values 6/1998

ND - Non-detect

* - Guidance Value

NS - No Standard

TABLE 2D RI Summary of Groundwater Results 3035 White Plains Road, Bronx, NY Metals

COMPOUND	NYSDEC AMBIENT WATER QUALITY STANDARDS	MW-1 TOTAL	MW-1 DISSOLVED	MW-5 TOTAL	MW-5 DISSOLVED	MW-6 TOTAL	MW-6 DISSOLVED	MW-10 TOTAL	MW-10 DISSOLVED	MW-12 TOTAL	MW-12 DISSOLVED
Priority Pollutant Metals	(mg/L)	11/2/2007	11/2/2007	11/2/2007	11/2/2007	11/2/2007	11/2/2007	11/2/2007	11/2/2007	11/2/2007	11/2/2007
Aluminum	NS	56800	61.0	7500	170	51000	60.1	4790	98.7	21900	205
Antimony	3	8.1 U	8.1 U	8.1 U	8.1 U	8.1 U	8.1 U	8.1 U	8.1 U	8.1 U	8.1 U
Arsenic	25	2.8 U	2.8 U	2.8 U	2.8 U	2.8 U	2.8 U	2.8 U	2.8 U	2.8 U	2.8 U
Barium	100	758	135	117	54.6	581	49.6 J	62.3	18.4 J	273	41.9 J
Beryllium	3	3.8	0.91 J	1.3 J	0.93 J	2.2 J	0.86 J	1.2 J	0.93 J	1.4 J	0.87 J
Cadmium	5	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
Calcium	NS	115000	113000	63500	64100	63700	58500	60300	62800	57800	58100
Chromium	50	110	1.1 U	17.3	1.1 U	88.6	1.1 U	11.7	1.1 U	45.1	1.3 J
Cobalt	NS	89.0	2.0 U	12.5 J	2.6 J	64.3	4.5 J	15.0	10.2 J	22.2	2.0 U
Copper	200	279	3.4 U	29.7	3.4 J	108	3.4 U	11.6	3.4 U	40.9	4.1 J
Iron	300	111000	3580	17000	2410	82500	499	9500	1840	34700	316
Lead	25	66.2	2.3 J	11.5	2.6 J	19.7	2.2 U	9.7 J	2.7 J	10.0	2.9 J
Magnesium	3500	45900	27100	19400	17700	27600	9530	19800	19200	16000	8740
Manganese	300	6210	5200	1010	980	3900	3630	1030	1030	283	118
Mercury	0.7	0.0800 U	0.0800 U	0.0800 U	0.0800 U	0.0800 U	0.0800 J	0.0800 U	0.0800 U	0.0800 U	0.0800 U
Nickel	100	169	6.2 J	31.1	7.6 J	93.6	5.6 J	24.0	17.7 J	35.5	6.0 J
Potassium	NS	45900	17100	18600	15900	38300	11900	16700	14100	25800	12200
Selenium	10	3.6 U	3.6 U	3.6 U	3.6 U	3.6 U	3.6 U	3.6 U	3.6 U	3.6 U	3.6 U
Silver	50	2.2 U	2.2 U	2.2 U	2.2 U	2.2 U	2.2 U	2.2 U	2.2 U	2.2 U	2.2 U
Sodium	2000	53800	54300	59400	61900	27600	25500	39200	39800	59900	57700
Thallium	0.5	8.1 U	8.1 U	8.1 U	8.1 U	8.1 U	8.1 U	8.1 U	8.1 U	8.1 U	8.1 U
Vanadium	NS	116	2.3 U	11.5 J	2.3 U	107	2.3 U	9.1 J	2.3 U	45.9	2.3 U
Zinc	2000	330	54.9	112	41.0	246	58.3	97.6	89.1	180	61.0
Hexavalent Chromimum	50	0.01 U		0.01 U		0.01 U		0.01 U		0.01 U	

Qualifiers

U - The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concentration given is an approximate value.

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample. Notes:

** - NYSDEC Ambient Water Quality Standards and Guidance Values 6/1998

ND - Non-detect

* - Guidance Value

NS - No Standard

TABLE 3 RI Summary of Soil Gas Results 3035 White Plains Road, Bronx, NY VOCs TO15

COMPOUND	NYSDOH* 2003 Background Study	USEPA** 2002 Target Shallow	SG1	SG2	SG3	SG4	SG5	SG6	SG7	SG8	SG9	SG10	SG11	SG12
	Outdoor Air - Upper Fence	Soil Gas Conc. R=10 ⁻⁶												
Sample Results in mg/m 3			10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007
1,1,1-Trichloroethane	0.6	22000	2.39	0.48 U	2.61	1.2 U	0.24 U	3.05	0.48 U	3.05	2.83	2.39 U	3.7	3.05
1,1,2,2-Tetrachloroethane	0.4	0.42	1.79 U	1.79 U	1.79 U	4.47 U	0.89 U	1.79 U	1.79 U	1.79 U	1.79 U	8.93 U	1.79 U	1.79 U
1,1,2-Trichloroethane	0.3	1.5	1.2 U	1.2 U	1.2 U	2.94 U	0.6 U	1.2 U	1.2 U	1.2 U	1.2 U	5.98 U	1.2 U	1.2 U
1,1,2-I richlorotrifiuoroethane	2.5 NC	5000	0.76 U	0.76 U	0.76 U	1.91 U	0.38 U	0.76 U	0.76 U	0.76 U	0.76 U	3.82 U	0.76 U	0.76 U
1.1-Dichloroethene	0.4	2000	0.48 U	0.48 U	0.48 U	1.23 U	0.25 U	0.48 U	0.48 U	0.48 U	0.48 U	2.46 U	0.48 U	0.48 U
1,2,4-Trichlorobenzene	0.4	2000	1.41 U	1.41 U	1.41 U	3.48 U	0.7 U	1.41 U	1.41 U	1.41 U	1.41 U	6.96 U	1.41 U	1.41 U
1,2,4-Trimethylbenzene	1.9	60	78.3	53.6	82.7	110	7.46	64	35.5	66.6	53	26.5	58.3	92.5
1,2-Dibromoethane	0.4	0.11	1.08 U	1.08 U	1.08 U	2.61 U	0.52 U	1.08 U	1.08 U	1.08 U	1.08 U	5.23 U	1.08 U	1.08 U
1,2-Dichlorobenzene	0.4	2000	1.02 U	1.02 U	1.02 U	2.53 U	0.51 U	1.02 U	1.02 U	1.02 U	1.02 U	5.05 U	1.02 U	1.02 U
1,2-Dichloroethane	0.4	0.94	0.49 U	0.49 U	0.49 U	1.21 U	0.24 U	0.49 U	0.49 U	0.49 U	0.49 U	2.43 U	0.49 U	0.49 U
1,2-Dichloropropane	0.4	40	0.92 U	0.92 U	0.92 U	2.26 U	0.45 U	0.92 U	0.92 U	0.92 U	0.92 U	4.53 U	0.92 U	0.92 U
1,3,5-Trimethylbenzene	0.7	0.087	16.7	16.3	19.6	23.6	0.18.11	11.4	8.05	12.8	12.4	2.36 U	14.1	16.5
1 3-Dichlorobenzene	0.4	1100	0.53 U	0.53 U	0.53 U	1 32 11	0.18 U	0.53 U	0.53 U	0.53 U	0.53 U	2.65 U	0.53 U	0.53 U
1,4-Dichlorobenzene	0.5	8000	0.84 U	0.84 U	3.37	2.04 U	245	3.61	4.81	3.61	4.33	4.09 U	2.89	8.66
1,4-Dioxane	NA	NA	0.79 U	0.79 U	0.79 U	1.94 U	0.4 U	0.79 U	0.79 U	0.79 U	0.79 U	3.96 U	0.79 U	0.79 U
2,2,4-Trimethylpentane	NA	NA	8.58	8.02	12.5	111	2.33	2.98	16.2	8.21	13.4	16.8	13.4	8.77
2-Butanone	NA	NA	26.7	14.8	31	59.8	4.42	11	13.1	23.6	34	114	29.8	27.1
2-Hexanone	NA	NA	9	0.36 U	8.34	0.9 U	2.29	3.6	0.36 U	10.5	16.4	1.8 U	8.02	0.36 U
4-Ethyltoluene	NA	NA	13.9	5.69	14.7	21.6	1.47	9.62	7.46	11.6	10.2	1.47 U	10	15.1
4-Methyl-2-Pentanone	NA 30	NA 2500	11.6	5.4	8.34	31.1	2.21	3.76	3.11 J	18	16.2	38.4	9.82	20.1
Acetone	30	3 1	138	131	232	280	19.3	74.6	158	94.3	185	22.2	211	113
Benzel Chloride	4.0 NA	0.5	0.58 11	0.58 11	0.58 11	1.44.11	0.29.11	0.58 11	9.57	0.58 11	0.58 11	2 88 11	0.58 11	0.58 11
Bromodichloromethane	NA	1.4	1.07 U	1.07 U	1.07 U	2.68 U	0.54 U	1.07 U	1.07 U	1.07 U	1.07 U	5.37 U	1.07 U	1.07 U
Bromoethene	NA	NA	0.44 U	0.44 U	0.44 U	1.14 U	0.23 U	0.44 U	0.44 U	0.44 U	0.44 U	2.28 U	0.44 U	0.44 U
Bromoform	NA	22	0.99 U	0.99 U	0.99 U	2.48 U	0.5 U	0.99 U	0.99 U	0.99 U	0.99 U	4.97 U	0.99 U	0.99 U
Bromomethane	0.5	NA	0.54 U	0.54 U	0.54 U	1.32 U	0.26 U	0.54 U	0.54 U	0.54 U	0.54 U	2.64 U	0.54 U	0.54 U
Carbon Disulfide	NA	7000	0.3 U	0.3 U	0.3 U	0.75 U	0.15 U	2.74	2.74	0.3 U	6.09	1.49 U	20.8	0.3 U
Carbon Tetrachloride	1.2	1.6	0.76 U	0.76 U	0.76 U	1.89 U	0.38 U	0.76 U	0.76 U	0.76 U	0.76 U	3.78 U	0.76 U	0.76 U
Chlorobenzene	NC 0.4	100000	1.2 U	1.2 U	1.2 U	3.05 U	0.6 U	1.2 U	1.2 U	1.2 U	1.2 U	6.01 U	1.2 U	1.2 U
Chloroform	0.4	1 1	0.4 0	0.4 U	0.4 U	1.01 U	0.2 0	0.4 U	0.4 U	0.4 U	0.4 U	2.02 U	0.4 U	0.4 0
Chloromethane	4.3	NA	0.29 U	0.47 0	0.47 0	0.74 U	1.02	0.29 U	1.39	0.47 0	0.47 U	1.47 U	0.47 U	0.29 U
cis-1,2-Dichloroethene	0.4	350	0.56 U	0.56 U	0.56 U	1.35 U	0.27 U	0.56 U	0.56 U	0.56 U	0.56 U	2.7 U	0.56 U	0.56 U
cis-1,3-Dichloropropene	0.4	NA	0.54 U	0.54 U	0.54 U	1.41 U	0.28 U	0.54 U	0.54 U	0.54 U	0.54 U	2.81 U	0.54 U	0.54 U
Cyclohexane	0.4	NA	2.82	3.49	3.35	7.38	0.21 U	0.4 U	2.68 J	3.62	3.89	16.1	4.02	3.62
Dibromochloromethane	NA	NA	1.28 U	1.28 U	1.28 U	3.23 U	0.65 U	1.28 U	1.28 U	1.28 U	1.28 U	6.47 U	1.28 U	1.28 U
Dichlorodifluoromethane	NA	2000	2.77	51.5	3.17	1.78 U	2.97	3.96	16.4	4.75	25.1	199	223	4.75
Dichlorotetrafluoroethane	10.0	NA	0.84 U	0.84 U	0.84 U	2.17 U	0.43 U	0.84 U	0.84 U	0.84 U	0.84 U	4.34 U	0.84 U	0.84 U
Ethyl Acetate	NA 1.0	32000	0.32 U	0.32 U	0.32 U	0.79 U	0.16 U	0.32 U	0.32 U	0.32 U	0.32 U	1.58 U	0.32 U	0.32 U
Ethyl Benzene Hentane	NA NA	NA	28.6	16.9	20.5	58.9	3.76	9.54	8.15 11.8	26.2	21.9	20.8	21.9	41.3
Hexachloro-1.3-Butadiene	0.5	1.1	1.81 U	1.81 U	1.81 U	4.48 U	0.9 U	1.81 U	1.81 U	1.81 U	1.81 U	8.97 U	1.81 U	1.81 U
Hexane	NA	2000	12.7	9.29	19.1	23.6	2.6	17.4	20.4	12.9	16.5	57	17.2	11.8
Isopropyl Alcohol	NA	NA	0.12 U	0.12 U	0.12 U	0.29 U	0.06 U	0.12 U	0.12 U	0.12 U	0.12 U	0.59 U	0.12 U	0.12 U
m/p-Xylene	1.0	70000	59.3	21	67.6	86.3	6.16	35	27.6	47	37.3	46	40.6	98.5
Methyl tert-Butyl Ether	NA	30000	0.35 U	0.35 U	7.92	0.86 U	0.17 U	72.7	3.17	0.35 U	6.19	1.73 U	13.8	0.35 U
Methylene Chloride	1.6	52	11.7	9.73	13.3	279	1.67	35.5	90.4	24.2	32.4	4718 D	26.6	19.7
o-Xylene	1.5	70000	22.2	10.6	24.6	32.1	2.6	13.2	10.9	17.5	15.6	16.5	15.4	31
Propene	0.5	10000	0.34 U 2.55	0.34 0	2.89	0.88 U	0.17 0	0.34 U	0.34 U	0.34 U	0.34 U 2 21	1.72 U 9.36	0.34 U	0.34 U 3.06
t-1.3-Dichloropropene	NC	NA	0.45	0.45 []	0.45	1.13	0.23 []	0.45 11	0.45 []	0.45 []	0.45 U	2.27 11	0.45 11	0.45 11
Tetrachloroethene	0.7	8.1	14.1	15.5	14.1	35.3	8.01	301	9.78	12.5	9.78	517	10	16.3
Tetrahydrofuran	0.4	NA	0.71 U	0.71 U	0.71 U	1.74 U	0.35 U	0.71 U	0.71 U	0.71 U	0.71 U	3.53 U	0.71 U	0.71 U
Toluene	5.1	4000	284	122	317	1096	23	86.1	137	259	180	477	189	2166 D
trans-1,2-Dichloroethene	NA	700	0.56 U	0.56 U	0.56 U	1.35 U	0.27 U	0.56 U	0.56 U	0.56 U	0.56 U	2.7 U	0.56 U	0.56 U
Trichloroethene	0.4	0.22	0.75 U	0.75 U	0.75 U	1.93 U	0.39 U	18.9	0.75 U	0.75 U	0.75 U	3.86 U	0.75 U	0.75 U
Trichlorofluoromethane	5.1	7000	0.62 U	2.47	0.62 U	1.57 U	1.46	0.62 U	0.62 U	0.62 U	0.62 U	3.14 U	4.48	0.62 U
Vinyl Acetate	NA 0.4	2000	0.56 U	0.56 U	0.56 U	1.41 U	0.28 U	0.56 U	0.56 U	0.56 U	0.56 U	2.81 U	0.56 U	0.56 U
Vinyi Chloride	0.4	2.8	0.31 U	0.31 U	0.31 U	0.77 U	0.15 U	0.31 U	0.31 U	0.31 U	0.31 U	1.53 U	0.31 U	0.31 U
Total BTEX			392.01	165.06	441.2	1,259.90	35.29	146.52	193.22	345.35	251.97	582.60	265.71	2,345.60
Total Confident Conc. VOC			932.42	511.93	949.59	2,301.18	346.48	957.39	595.10	681.79	723.79	7,120.36	968.54	2,785.81

 Qualifiers

 U - The compound was not detected at the indicated concentration.

 J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concentration given is an approximate value.

 B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

 NA - No value available

 NR - Not analyzed

TABLE 4
3035 White Plains Road, Bronx, NY
Parameters Detected Above Track 1 Soil Cleanup Objectives

COMPOUND	Track 1 Unrestricted Cleanup Objectives	Range in Exceedances	SB1 (0-4FT)	SB1 (8-12FT)	SB2 (0-4FT)	SB3 (0-4FT)	SB4 (0-4FT)	SB4 (4-8FT)	SB4 (8-10FT)	SB5 (0-4FT)	SB6 (0-2FT)	SB7 (0-4FT)
Sample Results in µg/kg	ug/kg											
Acetone	50	94-290				140			130 J			210
Benzene	60	290									290	
m/p-Xylenes	260	7,60-480,000				7900 D					480000 D	
Methylcyclohexane		11,000									11000 JD	
o-Xylene	260	5,000-230,000				5000 D					230000 D	
Toluene	700	75,000									75000 D	
Benzo(a)anthracene	1,000	1100-1,900	1100									
Benzo(a)pyrene	1,000	1100-1,800	1100									
Benzo(b)fluoranthene	1,000	1,100-1,400	1400									1100
Benzo(k)fluoranthene	800	1,200-2,200										
Chrysene	1,000	620-1,100	1100									
Indeno(1,2,3-cd)pyrene	500	620-700	700									
Naphthalene	12,000	59,000									59000 D	
4,4-DDD	3.3	5.8-240								240 D		11 P
4,4-DDE	3.3	5.0										
4,4-DDT	3.3	5.1-10							5.1			
Endrin	14	31										
Sample Results in mg/kg	mg/kg											
Cadmium	2.5 c	2.67-3.10	3.1									
Chromium	30 c	34.5-47.2		34.5								38.6
Copper	50	62.8-103	85.9			73.2			r f		62.8	
Lead	63 c	92.2-676	346	98.9		92.2	115	89.9			335	364
Mercury	0.18 c	0.182-0.393	0.393						1			
Zinc	109 c	124-478	478	148	146	180	159				258	231

COMPOUND	Track 1 Unrestricted Cleanup Objectives	Range in Exceedances	SB8 (0-2FT)	SB9 (0-2FT)	SB10 (0-2FT)	SB11 (0-4FT)	SB12 (0-2FT)	SB13 (0-4FT)	SB15 (0-3FT)	SB16 (0-3FT)	SB17 (0-4FT)	SB18 (4-6FT)
Sample Results in µg/kg	ug/kg											
Acetone	50	94-290		290					94 J			
Benzene	60	290										
m/p-Xylenes	260	7,60-480,000		760 JD								
Methylcyclohexane		11,000										
o-Xylene	260	5,000-230,000										
Toluene	700	75,000										
Benzo(a)anthracene	1,000	1100-1,900							1200	1900		
Benzo(a)pyrene	1,000	1100-1,800							1200	1800		
Benzo(b)fluoranthene	1,000	1,100-1,400			1200				2200	2100 D		
Benzo(k)fluoranthene	800	1,200-2,200								860		
Chrysene	1,000	620-1,100							1400	2100		
Indeno(1,2,3-cd)pyrene	500	620-700								620		
Naphthalene	12,000	59,000										
4,4-DDD	3.3	5.8-240		5.8			15	6.0				
4,4-DDE	3.3	5.0						5.0				
4,4-DDT	3.3	5.1-10						10				
Endrin	14	31							31			
Sample Results in mg/kg	mg/kg											
Cadmium	2.5 c	2.67-3.10							2.670			
Chromium	30 c	34.5-47.2			40.8							47.2
Copper	50	62.8-103					61.5		103			
Lead	63 c	92.2-676	98.7	166	238			144	676		139	
Mercury	0.18 c	0.182-0.393		0.182			0.224	0.194	0.202			
Zinc	109 c	124-478		313	188	124	170	132	237			

TABLE 5 3035 White Plains Road, Bronx, NY Parameters Detected Above Ambient Water Quality Standards

COMPOUND	NYSDEC Ambient Water Quality Standards	Range in Exceedance	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-10	MW-12	MW-13	MW-15	MW-16
Sample Results in (µg/L)	(µg/L)													
Acetone	5	40-60							40	60				
Benzene	1	12-490	47	15	83		490 D		71			150	12	160
Ethyl Benzene	5	5.5-1,400	690 D	590 D	1000 D	160	1400 D		91			88	200	5.5
m/p-Xylenes	5	17-8,200	1700 D	730 D	3100 D	250	5600 D		350	17		510 D	8200 D	200
Methyl tert-butyl Ether	10	37-430	120	90	430 D	22	53			78		37		
o-Xylene	5	5.7-3,300	500 D	130	940 D	35	2200 D		100	5.7		250 D	3300 D	120
Styrene	5	160					160							
Toluene	5	24-1,900	110	24	270 D	5.4	1900 D		120			840 D	1700 D	170
Benzo(a)anthracene	0.002	0.4	0.4 J											
bis(2-Ethylhexyl)phthalate	5	7.4-9.1	9.1 B					7.4 B						
Naphthalene	10	90-250	200 D	90 D	250 D			170 D						
Sample Results in (mg/L)	(mg/L)													
Barium	100	135	135											
Iron	300	316-3,580	3580				2410	499		1840	316			
Magnesium	3500	8,740-27,100	27100				17700	9530		19200	8740			
Manganese	300	980-5,200	5200				980	3630		1030				
Sodium	2000	25,500-61,900	54300				61900	25500		39800	57700			

TABLE 6 3035 White Plains Road, Bronx, NY Volatile Organic Compounds IRM Performance Wells - May 2008

COMPOUND	NYSDEC Ambient Water Quality Standards	IRM-1	IRM-2	IRM-3	IRM-4	IRM-5	IRM-6	IRM-7	IRM-8	IRM-9
(µg/L)	(µg/L)	5/272008	5/272008	5/272008	5/272008	5/272008	5/272008	Not Sampled	5/272008	5/272008
1,1,1-Trichloroethane	1	ND U		ND U	ND U					
1,1,2,2-Tetrachloroethane	5	ND U		ND U	ND U					
1,1,2-Trichloroethane	1	ND U		ND U	ND U					
1,1,2-Trichlorotrifluoroethane	5	ND U		ND U	ND U					
1,1-Dichloroethane	4	ND U		ND U	ND U					
1,1-Dichloroethene	5	ND U		ND U	ND U					
1,2,4-Trichlorobenzene	5	ND U		ND U	ND U					
1,2-Dibromo-3-Chloropropane	0.4	ND U		ND U	ND U					
1,2-Dibromoethane		ND U		ND U	ND U					
1,2-Dichlorobenzene	3	ND U		ND U	ND U					
1,2-Dichloroethane	0.6	ND U		ND U	ND U					
1,2-Dichloropropane	5	ND U		ND U	ND U					
1,3-Dichlorobenzene	3	ND U		ND U	ND U					
1,4-Dichlorobenzene	3	ND U		ND U	ND U					
2-Butanone		64	4.2	160	28	92	ND U		ND U	ND U
2-Hexanone		ND U		ND U	ND U					
4-Methyl-2-Pentanone		ND U		ND U	ND U					
Acetone	5	ND U	12	ND U	110	170	ND U		ND U	ND U
Benzene	1	100	ND	ND U	ND U	44	ND U		ND U	ND U
Bromodichloromethane	50*	ND U		ND U	ND U					
Bromoform	50*	ND U		ND U	ND U					
Bromomethane	5	ND U		ND U	ND U					
Carbon Disulfide		ND U		ND U	ND U					
Carbon Tetrachloride	5	ND U		ND U	ND U					
Chlorobenzene	5	ND U		ND U	ND U					
Chloroethane	5	ND U		ND U	ND U					
Chloroform	7	ND U	10	ND U	ND U	ND U	ND U		ND U	ND U
Chloromethane	5	ND U		ND U	ND U					
cis-1,2-Dichloroethene	5	ND U		ND U	ND U					
cis-1,3-Dichloropropene	0.4	ND U		ND U	ND U					
Cyclohexane		200	ND U	350	ND U	92	ND U		ND U	ND U
Dibromochloromethane		ND U		ND U	ND U					
Dichlorodifluoromethane	5	ND U		ND U	ND U					
Ethyl Benzene	5	400	ND U	940	ND U	350	ND U		ND U	ND U
Isopropylbenzene	NS	64	ND U	210	ND U	35	ND U		ND U	ND U
m/p-Xylenes	5	1000	2.7	3000	ND U	1500	ND U		ND U	ND U
Methyl Acetate		ND U		ND U	ND U					
Methyl Cyclohexane		140	ND U	220	ND U	92	ND U		ND U	ND U
Methyl tert-butyl Ether	10	210	1.6	ND D	ND U	ND U	ND U		ND U	ND U
Methylene Chloride	10	ND U		ND U	ND U					
o-Xylene	5	260	ND U	690	ND U	490	ND U		ND U	ND U
Styrene	5	ND U		ND U	ND U					
t-1,3-Uicnioropropene	0.4	ND U	ND U	NDU	NDU	ND U	ND U		ND U	ND U
l etrachioroethene	5	U UN	U UN	U UN	NDU	U UM	U UN		ND U	NDU
l oluene	5	300	0.51	34	ND U	560	ND U		ND U	ND U
trans-1,2-Dichloroethene	0.4	ND U	ND U	NDU	ND U	ND U	ND U		ND U	ND U
	0.4	ND U	ND U	NDU	ND U	ND U	ND U		ND U	ND U
I richioroniuoromethane	5		ND U		ND U	ND U				
vinyi Chioride	N5	U UN	U UN	ND U	U UM	U UM	U UM		U UN	ND U
Total Confident Conc. VOC		2738	31.01	5604	138	3425	0		0	0

Qualifiers

U - The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concentration given is an approximate value.

D - A sample dilution was reuired to obtain the value.

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

* - For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

NR - Not analyzed

Notes:

** - NYSDEC Ambient Water Quality Standards and Guidance Values 6/1998

ND - Non-detect

* - Guidance Value

NS - No Standard

TABLE 7 3035 White Plains Road, Bronx, NY Volatile Organic Compounds IRM Performance Wells - August 2008

COMPOUND	NYSDEC Ambient Water Quality Standards	IRM-1	IRM-2	IRM-3	IRM-4	IRM-5	IRM-6	IRM-7	IRM-8	IRM-9
(µg/L)	(µg/L)	8/15/2008	Not Sampled	8/7/2008	8/15/2008	8/15/2008	8/15/2008	8/15/2008	8/15/2008	8/15/2008
1,1,1-Trichloroethane	1	ND U		ND U	ND U	ND U	ND U	ND U	ND U	ND U
1,1,2,2-Tetrachloroethane	5	ND U		ND U	ND U	ND U	ND U	ND U	ND U	ND U
1,1,2-Trichloroethane	1	ND U		ND U	ND U	ND U	ND U	ND U	ND U	ND U
1,1,2-Trichlorotrifluoroethane	5	ND U		ND U	ND U	ND U	ND U	ND U	ND U	ND U
1,1-Dichloroethane	4	ND U		ND U	ND U	ND U	ND U	ND U	ND U	ND U
1,1-Dichloroethene	5	ND U		ND U	ND U	ND U	ND U	ND U	ND U	ND U
1,2,4-Trichlorobenzene	5	ND U		ND U	ND U	ND U	ND U	ND U	ND U	ND U
1,2-Dibromo-3-Chloropropane	0.4	ND U		ND U	ND U	ND U	ND U	ND U	ND U	ND U
1,2-Dibromoethane		ND U		ND U	ND U	ND U	ND U	ND U	ND U	ND U
1,2-Dichlorobenzene	3	ND U		ND U	ND U	ND U	ND U	ND U	ND U	ND U
1,2-Dichloroethane	0.6	ND U		ND U	ND U	ND U	ND U	ND U	ND U	ND U
1,2-Dichloropropane	5	ND U		ND U	ND U	ND U	ND U	ND U	ND U	ND U
1,3-Dichlorobenzene	3	ND U		ND U	ND U	ND U	ND U	ND U	ND U	ND U
1,4-Dichlorobenzene	3	ND U		ND U	ND U	ND U	ND U	ND U	ND U	ND U
2-Butanone		ND U		ND U	1.9	150	ND U	ND U	ND U	ND U
2-Hexanone		ND U		ND U	ND U	15 J	ND U	ND U	ND U	ND U
4-Methyl-2-Pentanone		ND U		ND U	ND U	ND U	ND U	ND U	ND U	ND U
Acetone	5	ND U		ND U	27	320	ND U	ND U	ND U	ND U
Benzene	1	47		5.8	9.2	97	ND U	650 D	11	ND U
Bromodichloromethane	50*	ND U		ND U	ND U	ND U	ND U	ND U	ND U	ND U
Bromoform	50*	ND U		ND U	ND U	ND U	ND U	ND U	ND U	ND U
Bromomethane	5	ND U		ND U	6	ND U				
Carbon Disulfide	,	3.9		ND U	8.2	21	ND U	ND U	ND U	ND U
Carbon Tetrachloride	5	ND U		ND U	ND U	ND U	ND U	ND U	ND U	ND U
Chlorobenzene	5	ND U		ND U	ND U	ND U	ND U	ND U	ND U	ND U
Chloroethane	5	ND U		ND U	ND U	ND U	ND U	ND U	ND U	ND U
Chloroform	7	ND U			ND U					
Chloromethane	5	ND U		ND U	ND U	ND U	ND U	ND U	ND U	ND U
cis-1,2-Dichloroethene	5	ND U		ND U	ND U	ND U	ND U	ND U	ND U	ND U
cis-1,3-Dichloropropene	0.4	ND U		ND U	ND U	ND U	ND U	ND U	ND U	ND U
Cyclohexane		130 D		33	ND U	39	ND U	180 D	4.6 J	ND U
Dibromochloromethane		ND U		ND U	ND U	ND U	ND U	ND U	ND U	ND U
Dichlorodifluoromethane	5	ND U		ND U	ND U	ND U	ND U	ND U	ND U	ND U
Ethyl Benzene	5	430 D		45	ND U	ND U	ND U	1700 D	8	ND U
Isopropylbenzene	NS	45		10	ND U	ND U	ND U	120 D	ND U	ND U
m/p-Xylenes	5	460 D		170	ND U	ND U	ND U	8800 D	160	3.3
Methyl Acetate		ND U		ND U	ND U	ND U	ND U	ND U	ND U	ND U
Methyl Cyclohexane		110 D		22	ND U	20	ND U	130 D	ND U	ND U
Methyl tert-butyl Ether	10	170 D		ND U	ND U	4.8 J	ND U	170 D	ND U	ND U
Methylene Chloride	10	ND U		ND U	11	ND U				
o-Xylene	5	96 D		36	ND U	ND U	ND U	1800 D	77	ND U
Styrene	5	ND U		ND U	ND U	ND U	ND U	ND U	ND U	ND U
t-1,3-Dichloropropene	0.4	ND U		ND U	ND U	ND U	ND U	ND U	ND U	ND U
Tetrachloroethene	5	ND U		ND U	ND U	ND U	ND U	ND U	ND U	ND U
Toluene	5	6		3	ND U	ND U	ND U	760 D	89	ND U
trans-1,2-Dichloroethene	0.4	ND U		ND U	ND U	ND U	ND U	ND U	ND U	ND U
Trichloroethene	0.4	ND U		ND U	ND U	ND U	ND U	ND U	ND U	ND U
Trichlorofluoromethane	5	ND U		ND U	ND U	ND U	ND U	ND U	ND U	ND U
Vinyl Chloride	NS	ND U		ND U	ND U	ND U	ND U	ND U	ND U	ND U
Total Confident Conc. VOC		1497.9		324.8	63.3	666.8	0	14190	349.6	3.3

Qualifiers

U - The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concentration given is an approximate value.

D - A sample dilution was reuired to obtain the value.

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

* - For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

NR - Not analyzed

Notes:

** - NYSDEC Ambient Water Quality Standards and Guidance Values 6/1998

ND - Non-detect

* - Guidance Value

NS - No Standard

TABLE 8 3035 White Plains Road, Bronx, NY Volatile Organic Compounds IRM Performance Wells - August 2008

COMPOUND	NYSDEC Ambient Water Quality Standards	IRM-1	IRM-2	IRM-3	IRM-4	IRM-5	IRM-6	IRM-7	IRM-8	IRM-9
(µg/L)	(µg/L)	10/3/2008	10/7/2008	10/3/2008	10/3/2008	10/3/2008	10/7/2008	Not Sampled	10/3/2008	10/3/2008
1,1,1-Trichloroethane	1	4.6 J	0.88 U	0.88 U	0.88 U	2.4 J	0.88 U		0.88 U	0.88 U
1,1,2,2-Tetrachloroethane	5	0.37 U	0.37 U	0.37 U	0.37 U	7.6	0.37 U		0.37 U	0.37 U
1,1,2-Trichloroethane	1	0.3 U		0.3 U	0.3 U					
1,1,2-Trichlorotrifluoroethane	5	1.4 U	1.4 U	1.4 U	1.4 U	2 J	1.4 U		1.4 U	1.4 U
1,1-Dichloroethane	4	0.8 U	0.8 U	0.8 U	0.8 U	1.8 J	0.8 U		0.8 U	0.8 U
1,1-Dichloroethene	5	0.53 U		0.53 U	0.53 U					
1,2,4-Trichlorobenzene	5	0.61 U		0.61 U	0.61 U					
1,2-Dibromo-3-Chloropropane	0.4	0.67 U		0.67 U	0.67 U					
1,2-Dibromoethane		24 J	21 J	19 J	6.4 J	170	2.2 U		70	2.2 U
1,2-Dichlorobenzene	3	1.2 J	0.2 U	0.2 U	0.2 U	19	0.2 U		3.4 J	0.2 U
1,2-Dichloroethane	0.6	82	17	45	0.23 U	3.8 J	3.8 J		0.23 U	0.23 U
1,2-Dichloropropane	5	10	0.45 U	0.45 U	0.45 U	18	0.45 U		0.45 U	0.45 U
1,3-Dichlorobenzene	3	0.38 U	0.38 U	0.38 U	0.38 U	10	0.38 U		0.38 U	0.38 U
1,4-Dichlorobenzene	3	0.44 U		0.44 U	0.44 U					
2-Butanone		0.67 U	0.67 U	0.67 U	0.67 U	1.1 J	0.67 U		0.67 U	0.67 U
2-Hexanone		42	0.57 U	0.57 U	0.57 U	36	0.57 U		48	0.57 U
4-Methyl-2-Pentanone		22 J	1.9 U	18 J	1.9 U	78	1.9 U		31	1.9 U
Acetone	5	0.27 U		0.27 U	0.27 U					
Benzene	1	0.72 U		0.72 U	0.72 U					
Bromodichloromethane	50*	0.45 U		0.45 U	0.45 U					
Bromoform	50*	0.39 U		0.39 U	0.39 U					
Bromomethane	5	91	0.47 U	43	0.47 U	24	0.47 U		28	0.47 U
Carbon Disulfide		13	0.35 U	23	0.35 U	44	25		98	0.35 U
Carbon Tetrachloride	5	0.41 U		0.41 U	0.41 U					
Chlorobenzene	5	0.34 U		0.34 U	0.34 U					
Chloroethane	5	0.46 U		0.46 U	0.46 U					
Chloroform	7	0.23 U		0.23 U	0.23 U					
Chloromethane	5	6.4 J	1.8 U	1.8 U	1.8 U	5.2 J	1.8 U		1.8 U	1.8 U
cis-1,2-Dichloroethene	5	4 J	0.16 U	4.5 J	0.16 U	390 D	33		1400 D	0.16 U
cis-1,3-Dichloropropene	0.4	0.31 U		0.31 U	0.31 U					
Cyclohexane		0.29 U		0.29 U	0.29 U					
Dibromochloromethane		0.32 U		0.32 U	0.32 U					
Dichlorodifluoromethane	5	2.7 J	1.8 U	2.4 J	1.8 U	11 J	1.8 U		2.1 J	1.8 U
Ethyl Benzene	5	0.23 U		0.23 U	0.23 U					
Isopropylbenzene	NS	0.26 U		0.26 U	0.26 U					
m/p-Xylenes	5	0.97 U		0.97 U	0.97 U					
Methyl Acetate		0.28 U		0.28 U	0.28 U					
Methyl Cyclohexane		240 D	3.7 J	120 D	1.3 J	280 D	24		880 D	0.05 U
Methyl tert-butyl Ether	10	120	5.5 J	160 D	2.8 J	1200 D	51		3000 D	0.47 U
Methylene Chloride	10	27	0.16 U	49	1.2 J	500 D	18		1200 D	0.16 U
o-Xylene	5	0.19 U		2.3 J	0.19 U					
Styrene	5	0.44 U		0.44 U	0.44 U					
t-1,3-Dichloropropene	0.4	37	0.37 U	37	0.37 U	23	0.37 U		41	0.37 U
Tetrachloroethene	5	0.37 U		0.37 U	0.37 U					
Toluene	5	0.28 U		0.28 U	0.28 U					
trans-1,2-Dichloroethene	0.4	0.22 U		0.22 U	0.22 U					
Trichloroethene	0.4	0.4 U		0.4 U	0.4 U					
Trichlorofluoromethane	5	0.58 U		0.58 U	0.58 U					
Vinyl Chloride	NS	0.39 U		0.39 U	0.39 U					
Total Confident Conc. VOC		726.9	47.2	520.9	11.7	2826.9	154.8		6803.8	0

Total Confident Conc. VOC

Qualifiers

U - The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concentration given is an approximate value.

D - A sample dilution was reuired to obtain the value.

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

* - For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

NR - Not analyzed

Notes:

** - NYSDEC Ambient Water Quality Standards and Guidance Values 6/1998

ND - Non-detect

* - Guidance Value

NS - No Standard

TABLE 9
3035 White Plains Road, Bronx, NY
Volatile Organic Compounds
IRM Performance Wells Summary of Results from All Sampling Rounds

(µg/L) 1,1,1-Trichloroethane	<u>(µg/L)</u> 1	5/272008 ND U	8/15/2008	10/0/0000									
1,1,1-Trichloroethane	1	ND U		10/3/2008	5/27/2008	8/15/2008	10/7/2008	5/27/2008	8/7/2008	10/3/2008	5/27/2008	8/15/2008	10/3/2008
4.0 Dibas massibas a			ND U	4.6 J	ND U		0.88 U	ND U	ND U	0.88 U	ND U	ND U	0.88 U
1,2-Dibromoetnane		ND U	ND U	24 J	ND U		21 J	ND U	ND U	19 J	ND U	ND U	6.4 J
1,2-Dichlorobenzene	3	ND U	ND U	1.2 J	ND U		0.2 U	ND U	ND U	0.2 U	ND U	ND U	0.2 U
1,2-Dichloroethane	0.6	ND U	ND U	82	ND U		17	ND U	ND U	45	ND U	ND U	0.23 U
1,2-Dichloropropane	5	ND U	ND U	10	ND U		0.45 U	ND U	ND U	0.45 U	ND U	ND U	0.45 U
2-Butanone		64	ND U	0.67 U	4.2		0.67 U	160	ND U	0.67 U	28	1.9	0.67 U
2-Hexanone		ND U	ND U	42	ND U		0.57 U	ND U	ND U	0.57 U	ND U	ND U	0.57 U
4-Methyl-2-Pentanone		ND U	ND U	22 J	ND U		1.9 U	ND U	ND U	18 J	ND U	ND U	1.9 U
Acetone	5	ND U	ND U	0.27 U	12		0.27 U	ND U	ND U	0.27 U	110	27	0.27 U
Benzene	1	100	47	0.72 U	ND		0.72 U	ND U	5.8	0.72 U	ND U	9.2	0.72 U
Bromomethane	5	ND U	ND U	91	ND U		0.47 U	ND U	ND U	43	ND U	6	0.47 U
Carbon Disulfide		ND U	3.9	13	ND U		0.35 U	ND U	ND U	23	ND U	8.2	0.35 U
Chloroform	7	ND U	ND U	0.23 U	10		0.23 U	ND U		0.23 U	ND U	ND U	0.23 U
Chloromethane	5	ND U	ND U	6.4 J	ND U		1.8 U	ND U	ND U	1.8 U	ND U	ND U	1.8 U
cis-1,2-Dichloroethene	5	ND U	ND U	4 J	ND U		0.16 U	ND U	ND U	4.5 J	ND U	ND U	0.16 U
Cyclohexane		200	130 D	0.29 U	ND U		0.29 U	350	33	0.29 U	ND U	ND U	0.29 U
Dichlorodifluoromethane	5	ND U	ND U	2.7 J	ND U		1.8 U	ND U	ND U	2.4 J	ND U	ND U	1.8 U
Ethyl Benzene	5	400	430 D	0.23 U	ND U		0.23 U	940	45	0.23 U	ND U	ND U	0.23 U
Isopropylbenzene	NS	64	45	0.26 U	ND U		0.26 U	210	10	0.26 U	ND U	ND U	0.26 U
m/p-Xylenes	5	1000	460 D	0.97 U	2.7		0.97 U	3000	170	0.97 U	ND U	ND U	0.97 U
Methyl Cyclohexane		140	110 D	240 D	ND U		3.7 J	220	22	120 D	ND U	ND U	1.3 J
Methyl tert-butyl Ether	10	210	170 D	120	1.6		5.5 J	ND D	ND U	160 D	ND U	ND U	2.8 J
Methylene Chloride	10	ND U	ND U	27	ND U		0.16 U	ND U	ND U	49	ND U	11	1.2 J
o-Xylene	5	260	96 D	0.19 U	ND U		0.19 U	690	36	0.19 U	ND U	ND U	0.19 U
t-1,3-Dichloropropene	0.4	ND U	ND U	37	ND U		0.37 U	ND U	ND U	37	ND U	ND U	0.44 U
Tetrachloroethene	5	ND U	ND U	0.37 U	ND U		0.37 U	ND U	ND U	0.37 U	ND U	ND U	0.37 U
Toluene	5	300	6	0.28 U	0.51		0.28 U	34	3	0.28 U	ND U	ND U	0.28 U

Total Confident Conc. VOC	2738	1497.9	726.9	31.01	47.2	5604	324.8	520.9	138	63.3	11.7

COMPOUND	NYSDEC Ambient Water Quality Standards	IRM-5	IRM-5	IRM-5	IRM-6	IRM-6	IRM-6	IRM-7	IRM-8	IRM-8	IRM-8	IRM-9	IRM-9	IRM-9
(µg/L)	(µg/L)	5/27/2008	8/15/2008	10/3/2008	5/27/2008	8/15/2008	10/7/2008	8/15/2008	5/27/2008	8/15/2008	10/3/2008	5/27/2008	8/15/2008	10/3/2008
1,1,1-Trichloroethane	1	ND U	ND U	2.4 J	ND U	ND U	0.88 U	ND U	ND U	ND U	0.88 U	ND U	ND U	0.88 U
1,1,2,2-Tetrachloroethane	5	ND U	ND U	7.6	ND U	ND U	0.37 U	ND U	ND U	ND U	0.37 U	ND U	ND U	0.37 U
1,1,2-Trichlorotrifluoroethane	5	ND U	ND U	2 J	ND U	ND U	1.4 U	ND U	ND U	ND U	1.4 U	ND U	ND U	1.4 U
1,1-Dichloroethane	4	ND U	ND U	1.8 J	ND U	ND U	0.8 U	ND U	ND U	ND U	0.8 U	ND U	ND U	0.8 U
1,2-Dibromoethane		ND U	ND U	170	ND U	ND U	2.2 U	ND U	ND U	ND U	70	ND U	ND U	2.2 U
1,2-Dichlorobenzene	3	ND U	ND U	19	ND U	ND U	0.2 U	ND U	ND U	ND U	3.4 J	ND U	ND U	0.2 U
1,2-Dichloroethane	0.6	ND U	ND U	3.8 J	ND U	ND U	3.8 J	ND U	ND U	ND U	0.23 U	ND U	ND U	0.23 U
1,2-Dichloropropane	5	ND U	ND U	18	ND U	ND U	0.45 U	ND U	ND U	ND U	0.45 U	ND U	ND U	0.45 U
1,3-Dichlorobenzene	3	ND U	ND U	10	ND U	ND U	0.38 U	ND U	ND U	ND U	0.38 U	ND U	ND U	0.38 U
2-Butanone		92	150	1.1 J	ND U	ND U	0.67 U	ND U	ND U	ND U	0.67 U	ND U	ND U	0.67 U
2-Hexanone		ND U	15 J	36	ND U	ND U	0.57 U	ND U	ND U	ND U	48	ND U	ND U	0.57 U
4-Methyl-2-Pentanone		ND U	ND U	78	ND U	ND U	1.9 U	ND U	ND U	ND U	31	ND U	ND U	1.9 U
Acetone	5	170	320	0.27 U	ND U	ND U	0.27 U	ND U	ND U	ND U	0.27 U	ND U	ND U	0.27 U
Benzene	1	44	97	0.72 U	ND U	ND U	0.72 U	650 D	ND U	11	0.72 U	ND U	ND U	0.72 U
Bromomethane	5	ND U	ND U	24	ND U	ND U	0.47 U	ND U	ND U	ND U	28	ND U	ND U	0.47 U
Carbon Disulfide		ND U	21	44	ND U	ND U	25	ND U	ND U	ND U	98	ND U	ND U	0.35 U
Chloromethane	5	ND U	ND U	5.2 J	ND U	ND U	1.8 U	ND U	ND U	ND U	1.8 U	ND U	ND U	1.8 U
cis-1,2-Dichloroethene	5	ND U	ND U	390 D	ND U	ND U	33	ND U	ND U	ND U	1400 D	ND U	ND U	0.16 U
Cyclohexane		92	39	0.29 U	ND U	ND U	0.29 U	180 D	ND U	4.6 J	0.29 U	ND U	ND U	0.29 U
Dichlorodifluoromethane	5	ND U	ND U	11 J	ND U	ND U	1.8 U	ND U	ND U	ND U	2.1 J	ND U	ND U	1.8 U
Ethyl Benzene	5	350	ND U	0.23 U	ND U	ND U	0.23 U	1700 D	ND U	8	0.23 U	ND U	ND U	0.23 U
Isopropylbenzene	NS	35	ND U	0.26 U	ND U	ND U	0.26 U	120 D	ND U	ND U	0.26 U	ND U	ND U	0.26 U
m/p-Xylenes	5	1500	ND U	0.97 U	ND U	ND U	0.97 U	8800 D	ND U	160	0.97 U	ND U	3.3	0.97 U
Methyl Cyclohexane		92	20	280 D	ND U	ND U	24	130 D	ND U	ND U	880 D	ND U	ND U	0.05 U
Methyl tert-butyl Ether	10	ND U	4.8 J	1200 D	ND U	ND U	51	170 D	ND U	ND U	3000 D	ND U	ND U	0.47 U
Methylene Chloride	10	ND U	ND U	500 D	ND U	ND U	18	ND U	ND U	ND U	1200 D	ND U	ND U	0.16 U
o-Xylene	5	490	ND U	0.19 U	ND U	ND U	0.19 U	1800 D	ND U	77	2.3 J	ND U	ND U	0.19 U
t-1,3-Dichloropropene	0.4	ND U	ND U	23	ND U	ND U	0.37 U	ND U	ND U	ND U	41	ND U	ND U	0.37 U
Toluene	5	560	ND U	0.28 U	ND U	ND U	0.28 U	760 D	ND U	89	0.28 U	ND U	ND U	0.28 U
Total Confident Conc. VOC		3425	666.8	2826.9	0	0	154.8	14190	0	349.6	6803.8	0	3.3	0

3425 666.8

TABLE 103035 White Plains Road, Bronx, NYQuantities of Materials Removed From the Site

Volume of Historic Fill Removed	Weight of Historic Fill Removed	Volume of Bedrock Removed	Weight of Bedrock Removed
(Cubic Yards- Est.)	(Tons)	(Cubic Yards)	(Tons - Est.)
7,527.13	10,537.98	6,875.00	10,766.50
Total Volume of Materia Total Weight of Materia	al Removed I Removed	14,402.13 21,304.48	Cubic Yards Tons

FIGURES

1808 Middle Country Road Ridge, NY 11961

SURROUNDING PROPERTY MAP FORMER DICO-G AUTO & TRUCK REPAIR 3035 WHITE PLAINS ROAD, BRONX, NY

Phone Fax 631.504.6000 631. 924 .2870

FIGURE 2

Date	Revisions	"Unauthorized alteration or addition to a survey map bearing a licensed Land Surveyor's seal is a violation of Article 134, Section 7209, Subdivision 2, of the New York State Education Law." "Copies from the original of this survey map not marked with an original of the Land Surveyor's inked seal or his embossed seal shall not be considered a valid true copy." "Certification indicated hereon signify that this survey was prepared in accordance with the existing Code of Practice for Land Surveys adopted by the New York State Association of Professional Land Surveyors. Said Certifications shall run only to the person for whom the survey is prepared and on his behalf to the title company, governmental agency, and lending institution. Certifications are not transferable to additional institutions or subsequent owners." "The offsets (or dimensions) shown hereon from the structures to the property lines are for a specific purpose and use and therefore are not intended to guide the erection of fences, retaining walls, pools, patios,
		purpose and use and therefore are not intended to guide the erection of fences, retaining walls, pools, patios, planting areas, additions to buildings or any other construction." "Easements in existence or of record, if any, not shown."

FIGURE 14

-84.71,—64.17 TO 267.79,150.33 Y: 143 : 1.50								
ES E	CUT AREA 23,328.6 S.F.	FILL AREA 0.0 S.F.	AVG CUT DEPTH 9.1 FEET	AVG FILL DEPTH 0.0 FEET				
IES E	S CUT AREA 1,030.9 S.F	FILL AREA 28,069.8 S.F	AVG CUT DEPTH 2.2 FEET	AVG FILL DEPTH 2.9 FEET				
E Y.								

"Unauthorized alteration or addition to a survey map bearing a licensed land Surveyor's seal is a violation of	Date	Revisions					
Article 134, Section 7209, Subdivision 2, of the New York							
"Copies from the original of this survey map not marked			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
with an original of the Land Surveyor's inked seal or his embossed seal shall not be considered a valid true copy."							
"Certification indicated hereon signify that this survey was prepared in accordance with the existing Code of Practice							
for Land Surveys adopted by the New York State Association of Professional Land Surveyors. Said							
Certifications shall run only to the person for whom the survey is prepared and on his behalf to the title							
company, governmental agency, and lending institution. Certifications are not transferable to additional institutions							
or subsequent owners." "The offsets (or dimensions) shown hereon from the							
structures to the property lines are for a specific purpose and use and therefore are not intended to guide							
the erection of fences, retaining walls, pools, patios, planting areas, additions to buildings or any other	· · · · · · · · · · · · · · · · · · ·						
construction." "Easements in existence or of record if any not shown"				· · · · · · · · · · · · · · · · · · ·			
STATE OF NEW JOPP	MAP SHOWING EARTHWORK VOLUMES OF PROPERTY IN THE BRONX, NEW YORK SHOWN AS BLOCK 4545, LOT 14 AND THE SOUTHERLY HALF OF FORMER LESTER STREET ON THE CITY OF NEW YORK TAX ASSESSMENT MAP						
0.181-LEV AND SURVEY	CARMAN-DUNNE, P.C. CONSULTING ENGINEERS & SURVEYORS 2 Lakeview Avenue, Lynbrook, New York 11563 TEL. (516) 599-5563 FAX (516) 593-4873						
	Date: File:\2006\2006372\2006372_Fill_Calc.dwg DEC. 20, 2008 Palette: LegacyCDunne		06372_Fill_Calc.dwg				
John J. Toscano P.L.S. 049872	Plate No.: 187	Project No.: 2006372.00	Scale: 1 *=20'	Sheet 1 of 1			
FIGURE 15							

<u>APPENDIX - A</u>

Digital Copy of Final Engineering Report, Remedial Action Work Plan and Site Management Plan

<u>APPENDIX – B</u> BCP Boundary Map

NUTE:	IIILE I	REPORT EXCEP
- PARCEL & ENVIRONMENTAL EASEMENT AREA: 26,833 SF OR 0.6160 ACRES MORE OR LESS	5(a) –	COVENANTS AND
 THE SUBJECT PROPERTY IS LOCATED WITHIN ZONE C (AREAS OF <u>MINIMAL</u> FLOODING) AS SHOWN ON FLOOD INSURANCE RATE MAP (FIRM) COMMUNITY PANEL NUMBER 360497 0012B EFFECTIVE DATE: NOVEMBER 16, 1983 		FOUNDRY, NAIL GLUE, VARNISH, OR PREPARING
 STREET AND SURROUNDING FEATURES ARE SHOWN BASED UPON A FIELD SURVEY PERFORMED ON JUNE 14, 2007 		CHARACTER OR
— THE UTILITIES HEREON ARE BASED UPON A "BEST FIT" CORRELATION OF RECORD PLANS, MAPS AND SURFACE EVIDENCE. OTHER UTILITIES MAY EXIST ON THE SITE AND NOT BE SHOWN. NO CERTIFICATION OR WARRANTY IS EITHER EXPRESSED OR IMPLIED AS TO THE ACCURACY OR	5(b) –	PUBLIC AND PRI ROAD). NONE AF ARE NOT PLOTAI
- ALL CURB IS METAL FACED	5(c) –	DECLARATION OF ESTABLISHING A (NOW TAX LOTS
- THERE ARE NO VISIBLE WATER COURSES RUNNING WITHIN SUBJECT PROPERTY.		
 THE PREPARATION OF THIS SURVEY INCLUDED A REVIEW OF THE LIBERTY TITLE AGENCY REPORT COMMITMENT NO. LTNY-6433-B-08 WITH AN EFFECTIVE DATE OF 11/17/2008 INCLUDING THE LISTING SCHEDULE B – EXCEPTION RELATED ITEMS. 		

- NEW YORK STATE - DEPARTMENT OF ENVIRONMENTAL CONSERVATION.

		DESCRIP (GR(YTION OF PARCEL AND ENVIRONMENT OUND WATER CONTROL AREA - ENT	TAL EASEMENT TIRE SITE)		
	All that certain piece or parcel of land, situate, lying and being in the County of Bronx, City and State of New York, shown as Block 4545 Lots 1001 and 1002 and the southerly half of Lester Street as					
	shown on the New York City Tax Map, and being more particularly described as follows: BEGINNING at a point formed by the intersection of the centerline of Lester Street (a private road) and the westerly side of White Plains Road forming an interior angle of 88 degrees 17 minutes 40 seconds, said point having New York State Plane (Lona Island Zone) coordinates of N 256.490 and F 1.020.936					
	THENCE so northerly	outherly along the w side of Adee Avenue	westerly side of White Plains Road as widened;	a distance of 286.59 feet to the		
	THENCE w minutes C laid out c	resterly along the no)0 seconds a distant on the Map of The I	ortherly side of Adee Avenue formin ce of 41.87 feet to it's intersection Estate of Peter Lorillard known as	ng an interior angle of 106 degrees 45 on with the easterly line Elliot Avenue as Map Number 448, filed April 20, 1871:		
	THENCE n seconds c road);	ortherly along said a a distance of 311.50	line of Elliot Avenue forming an int 0 feet to it's intersection with the	terior angle of 92 degrees 18 minutes 10 centerline of Lester Street (a private		
	THENCE en degrees 3	asterly along the ce 39 minutes 10 secor	enterline of Lester Street (a private nds a distance of 141.84 feet to t	road) forming an interior angle of 72 the point of BEGINNING.		
	Deniy,	DESCRIPTION OF	F OCCUPIED AREA AFFECTED BY ENC	GINEERING CONTROLS		
	All that	د عاند) certain piece or par certain piece or par	AB DEPRESSURIZATION AND VARON I rcel of land, situate, lying and bein restricularly described as follows:	BARRIER) ng in the County of Bronx, City and State		
	COMMEN and the seconds,	York, and bonny CING at a point forr westerly side of Wh said point having I	re particularly described to remain med by the intersection of the cen nite Plains Road forming an interior New York State Plane (Long Island	nterline of Lester Street (a private road) r angle of 88 degrees 17 minutes 40 Zone) coordinates of N 256,490 and E		
	1,020,93 THENCE	6 southerly along the	westerly side of White Plains Road	I a distance of 30.54 feet to the POINT		
	THENCE THENCE	NNING; southerly along the westerly forming an	westerly side of White Plains Road interior angle of 90 degrees 00 n	I a distance of 162.05 feet to a point; minutes 00 seconds a distance of 24.14		
'E MATERIALS 'AGE IN THIS AREA	THENCE westerly forming an interior angle of 90 degrees 00 minutes 00 seconds a distance of 24.14 feet to a point; THENCE northerly forming an interior angle of 90 degrees 00 minutes 00 seconds a distance of 44.55 feet to a point; THENCE westerly forming an interior angle of 270 degrees 00 minutes 00 seconds a distance of 11.20 feet to a point; THENCE northerly forming an interior angle of 90 degrees 00 minutes 00 seconds a distance of 14.63 feet to a point; THENCE westerly forming an interior angle of 270 degrees 00 minutes 00 seconds a distance of 6.70 feet to a point; THENCE northerly forming an interior angle of 90 degrees 00 minutes 00 seconds a distance of 39.72 feet to a point; THENCE westerly forming an interior angle of 270 degrees 00 minutes 00 seconds a distance of 44.93 feet to a point; THENCE northerly forming an interior angle of 90 degrees 00 minutes 00 seconds a distance of 32.53 feet to a point; THENCE westerly forming an interior angle 00 minutes 00 seconds a distance of 9.29 feet to a point; THENCE southerly forming an interior angle of 270 degrees 00 minutes 00 seconds a distance of 19.93 feet to a point; THENCE northerly forming an interior angle of 18 degrees 39 minutes 13 seconds a distance of 50.12 feet to a point on the southerly line of Lester Street; Thence easterly along the southerly line of Lester Street a distance of 112.09 feet to the POINT OF BEGINNING forming an interior angle of 90 degrees 00 minutes 00					
		DESCRIPTION OF U	INOCCUPIED AREA NOT AFFECTED BY	Y ENGINEERING CONTROLS		
	All that of New	certain piece or par York, and being mor	rcel of land, situate, lying and bein re particularly described as follows:	ng in the County of Bronx, City and State		
	BEGINNING at a point formed by the intersection of the centerline of Lester Street (a private road) and the westerly side of White Plains Road forming an interior angle of 88 degrees 17 minutes 40 seconds, said point having New York State Plane (Long Island Zone) coordinates of N 256,490 and E 1,020,936					
G COORDINATES LAND ZONE) 56,490 020,936	THENCE southerly along the westerly side of White Plains Road a distance of 30.54 feet to a point; THENCE westerly forming an interior angle of 90 degrees 00 minutes 00 seconds a distance of 112.09 feet to a point; THENCE southerly forming an interior angle of 107 degrees 26 minutes 29 seconds a distance of 50.12 feet to a point; THENCE northerly forming an interior angle of 161 degrees 20 minutes 47 seconds a distance of 19.93 feet to a point; THENCE easterly forming an interior angle of 90 degrees 00 minutes 00 seconds a distance of 9.29 feet to a point; THENCE southerly forming an interior angle of 90 degrees 00 minutes 00 seconds a distance of 32.53 feet to a point; THENCE easterly forming an interior angle of 270 degrees 00 minutes 00 seconds a distance of 39.72 feet to a point; THENCE easterly forming an interior angle of 270 degrees 00 minutes 00 seconds a distance of 6.70 feet to a point; THENCE southerly forming an interior angle of 90 degrees 00 minutes 00 seconds a distance of 11.20 feet to a point; THENCE southerly forming an interior angle of 90 degrees 00 minutes 00 seconds a distance of 44.55 feet to a point; THENCE easterly forming an interior angle of 270 degrees 00 minutes 00 seconds a distance of 270 degrees 00 minutes 00 seconds a distance of 11.20 feet to a point; THENCE southerly forming an interior angle of 90 degrees 00 minutes 00 seconds a distance of 24.14 feet to a point on the the westerly side of White Plains Road; HENCE southerly dong the westerly side of White Plains Road a distance of 41.87 feet to it's intersection with the easterly line Elliot Avenue as laid out on the Map of The Estate of Peter Lorillard known as Map Number 448, filed April 20, 1871; THENCE wortherly along stail line of Elliot Avenue forming an interior angle of 92 degrees 18 minutes 10 seconds a distance of 311.50 feet to it's intersection with the centerline of Lester Street (a private road); THENCE easterly along the centerline of Lester Street (a private road) forming an interior angle of 72 degrees 39 min					
	Date	Revisions		"Unauthorized alteration or addition to a survey map bearing a licensed Land Surveyor's seal is a violation of Article 134, Section 7209, Subdivision 2, of the New York		
				 State Education Law. "Copies from the original of this survey map not marked with an original of the Land Surveyor's inked seal or his embossed seal shall not be considered a valid true 		
				Copy. "Certification indicated hereon signify that this survey was prepared in accordance with the existing Code of Practice for Land Surveys adopted by the New York State Association of Professional Land Surveyors.		
				"The offsets (or dimensions) shown nereon from are structures to the property lines are for a specific purpose and use and therefore are not intended to guide the erection of fences, retaining walls, pools, patios, planting areas, additions to buildings or any other		
DEC.	18, 2008	SHOW CONTROL A	REAS AND METES & BOUNDS			
	* STATE OF	NEW YORT	ALIA/ACSM LA DEPICTING ENVIRO PROPERTY LOCATE SHOWN AS BLK. 4545 LOTS 1 FORMER LESTER ST. ON THE	ND AND TITLE SURVET DINMENTAL EASEMENT AREA D IN THE BRONX, NEW YORK 1001, 1002 & THE SOUTHERLY HALF OF NEW YORK CITY TAX ASSESSMENT MAP		
	Central da	AB TH LES	CARMAN- CONSULTING EN 2 Lakeview Avenue, TEL. (516) 599-5563	-DUNNE, P.C. GINEERS & SURVEYORS Lynbrook, New York 11563 FAX (516) 593-4873		

Date:

Plate No.:

187

John J. Toscano P.L.S. 049872

NOV. 21, 2008

File: K:\Projects\2006\2006372\2006372_SVY.dwg

Sheet 1 of 1

Scale:

1"=20'

Palette: LegacyCDunne

Project No .:

2006372

<u>APPENDIX – C</u> Metes and Bounds Description of Property

METES AND BOUNDS DESCRIPTION OF PROPERTY

ALL THAT CERTAIN PLAT OR PARCEL OF LAND, SITUATE LYING AND BEING IN THE BOROUGH AND COUNTY OF BRONX, CITY AND STATE OF NEW YORK AND BEING BOUNDED AND DESCRIBED AS FOLLOWS:

BEGINNING AT THE CORNER FORMED BY THE INTERSECTION OF THE WESTERLY SIDE OF WHITE PLAINS ROAD AND THE SOUTHERLY SIDE OF LESTER STREET (FORMERLY WILSON PLACE);

THENCE SOUTHERLY ALONG THE WESTERLY Slope OF WHITE PLAINS ROAD TWO HUNDRED AND SIXTY-FOUR AND NINETY-NINE ONE-HUNDREDTHS FEET TO THE NORTHERLY SIDE OF ADEE AVENUE;

THENCE WESTERLY ALONG THE NORTHERLY SIDE OF ADEE AVENUE TO A POINT WHERE SAID NORTHERLY SIDE OF ADEE AVENUE IS INTERSECTED BY THE EASTERLY LINE OF ELLIOTT AVENUE AS SAID ELIOTT AVENUE IS LAID DOWN UPON A MAP OF PROPERTY BELONGING TO THE ESTATES OF PETER LORILLARD KNOWN AS MAP NUMBER 448, FILED APRIL 20, 1871;

THENCE NORTHWESTERLY ALONG SAID EASTERLY LINE OF ELLIOTT AVENUE ABOUT TWO HUNDRED AND EIGHTY FEET TO THE POINT OF INTERSECTION OF SAID EASTERLY UNE OF ELLIOTT AVENUE WITH THE SOUTHERLY LINE OF LESTER STREET;

THENCE EASTERLY ALONG THE SAID SOUTHERLY SIDE OF LESTER STREET ONE HUNDRED AND THIRTY-ONE AND FORTY-SIX ONE-HUNDREDTHS FEET, MORE OR LESS, TO THE WESTERLY SIDE OF WHITE PLAINS ROAD TO THE POINT OR PLACE OF BEGINNING.

EXCEPTINGTHERE FROM SO MUCH THEREOF AS HAS BEEN TAKEN BY THE CITY OF NEW YORK FOR THE WIDENING OF ADEE AVENUE AT A POINT WHERE IT INTERSECTS THE WESTERLY SIDE OF WHITE PLAINS ROAD.

<u>APPENDIX – D</u> Significant Threat Determination

NEW YORK STATE DEPARTMENT OF

ENVIRONMENTAL CONSERVATION

Public Comment Period October 29 – December 15, 2008

Document Repositories

New York Public Library Allerton Public Library 2740 Barnes Avenue Bronx, NY 10467 (718) 881-4240

NYSDEC Region 2 Office 47-40 21st Street Long Island City, NY 11101 Call in advance – (718)482-4909 Hours: Mon. to Fri. 9 a.m. to 4 p.m.

Project Contacts Mr. Shaminder Singh NYSDEC 47-40 21st. Street Long Island City, NY 11101 <u>spsingh@gw.dec.state.ny.us</u> (718) 482-4909

For Public Health Related Questions:

Mr. Christopher M. Doroski NYSDOH

547 River Street Troy, NY 12180-2216 (800) 458-1158 ext. 27880 cmd16@health.state.ny.us

For more information about NY State's Brownfield Cleanup Program, visit:

www.dec.state.ny.us/website/der/bcp

FACT SHEET #4

October 2008

BROWNFIELD CLEANUP PROGRAM Former Dico G Auto & Truck Repair Site No: C203039 Bronx, New York

DOCUMENTS AVAILABLE FOR REVIEW AND COMMENT

The New York State Department of Environmental Conservation (NYSDEC) is working cooperatively with the New York State Department of Health (NYSDOH) in providing the public with the opportunity to review the Remedial Investigation (RI) Report and provide comments on the Remedial Action Work Plan (RAWP) for the Former Dico G Auto &Truck Repair Site located at 3035 White Plains Road in the Bronx, NY (see map on page 2 for location of Site). The RIR and RAWP were submitted by the site developer under New York's Brownfield Cleanup Program (BCP). NYSDEC previously accepted an application submitted by the site developer to participate in the BCP as a Volunteer.

PUBLIC COMMENTS ON THE DREAFT REMEDIAL INVESTIGATION REPORT AND THE REMEDIAL ACTION WORK PLAN

NYSDEC and NYSDOH are accepting comments on the RAWP from October 29 to December 15, 2008. The RI Report and RAWP are available for review at the document repositories identified on the left side of this page. Your comments are important and strongly encouraged. Written comments should be directed to NYSDEC project manager (see contact information at left).

INTERIM REMEDIAL MEASURES

As a result of the site investigation, an interim remedial measure (IRM) was recommended to reduce risks to the environment. The purpose of the IRM is to immediately remove the contaminated soil and other urban fill and begin treatment of groundwater. The IRM was approved by the NYSDEC and the NYSDOH and completed in the spring of 2008.

A site-specific health and safety plan (HASP) and a Community Air Monitroing Plan (CAMP) have been implemented during remediation activities. These protocols also included required air monitoring as well as dust and odor suppression measures.

HIGHLIGHTS OF THE PROPOSED REMEDIAL ACTION

To achieve the remedial action objectives, the following activities will be performed:

- treatment of contaminated groundwater through injection of chemical oxidants;
- a long term groundwater monitoring program to gauge the success of treatment;
- a vapor barrier and a sub-slab venting system underneath the building slab;
- a Site Management Plan for long term management of any residual contamination; and
- if Track 1 is not achieved, recording of Environmental Easements including institutional controls to prevent future exposure to any remaining residual contamination.

SITE DESCRIPTION

The site consists of an approximately 16,880 square foot parcel, which is improved with a single-story 1,653 square foot masonry building with 3 service bays. The building was constructed in 1960 as a service station and is currently used as an auto repair shop. The property is surrounded by a 6-foot high chain link fence which also bisects the site just north of the service station building. The surrounding area is characterized by commercial businesses (mostly retail) along White Plains Road. Residential areas are located behind (east-west) this commercial corridor. An elevated section of the Metro-North Railway passes in front of the property, directly over White Plains Road.

ENVIRONMENTAL INVESTIGATIONS HIGHLIGHTS

A Phase I Environmental Site Assessment and a preliminary subsurface investigation were conducted in February 2007. The Phase I collected information about the Site history and uses of concern for environmental impacts. Samples of soil and groundwater at the site were collected in February 2007, when contamination was discovered while installing soil borings to determine the structural capacity of the ground for a new building.

The results of sampling performed during the RI identified volatile organic compounds (VOCs), which are gasoline related contaminants in soils in the vicinity of the two former dispenser islands. The gasoline contaminants made their way through the shallow surface soils (<5 feet thick) and cracks in the bedrock until they came into contact with groundwater approximately 15 feet below the surface. Contaminants in groundwater in these two locations are generally migrating to the south towards Adee Road and east toward White Plains Road.

SIGNIFICANT THREAT DETERMINATION

As part of every BCP project NYSDEC, in conjunction with NYSDOH, is required to make a determination whether the conditions at the Site pose a significant threat to human health or the environment, as defined in the NYSDEC's regulations 6 NYCRR Part 375. Based on the types and levels of contaminants on the Site, and the current and planned land uses in the area, NYSDEC and NYSDOH have determined that the Site does not present a significant threat to public health and to the environment. This decision is based on the nature of the existing contaminants identified at the Site; the potential for off-site migration of contaminants in the groundwater; and the potential for human exposure to site-related contaminants via soil vapors.

NEXT STEPS

NYSDEC and NYSDOH are currently reviewing the draft RI Report and Remedial Action Work Plan and are seeking comments from the public. Written and oral comments on the RIR and RAWP will be accepted until December 15, 2008. The Work Plan can be viewed at the NYSDEC Region 2 Office or in the Allerton Branch of the New York City Public Library. Written and oral comment expressing objection or opposition to the Work Plan must explain the basis of the opposition and identify the specific grounds which could lead the department to impose significant changes to the Work Plan. Based upon these comments, the NYSDEC may require the Volunteer to make revisions to the Work Plan. No formal response will be made to the comments received by the NYSDEC.

Please submit written comments to:

Mr. Shaminder Singh NYSDEC 47-40 21st. Street Long Island City, NY 11101 spsingh@gw.dec.state.ny.us

BROWNFIELD CLEANUP PROGRAM (BCP) OVERVIEW

New York established its BCP to address the environmental, legal, and financial barriers that often hinder the redevelopment and reuse of contaminated properties and to enhance private sector cleanups. New York's BCP is a cooperative approach among the NYSDEC, the NYSDOH, and Volunteers to investigate and/or remediate contaminated Sites. Under the BCP, a Volunteer enters into a Brownfield Cleanup Agreement with the NYSDEC and thereafter submits one or more work plans to investigate and, if necessary, remediate a site. The goal under the BCP is to remediate sites to a level that is protective to public health and the environment consistent with the proposed uses of the site. When a Volunteer completes work, a release from liability from the NYSDEC is provided with standard reservations, and a Certificate of Completion is issued. Upon achieving a Certficate of completion the Volunteer would:

1. have no liability to the State for contamination at or coming from the site, subject to certain conditions; and

2. be eligible for tax credits to offset the costs of remedial activities and for redevelopment of the site.

A Certificate of Completion may be modified or revoked if, for example, the Volunteer does not comply with the terms of its Brownfield Cleanup Agreement with NYSDEC, or if the applicant commits fraud regarding its application or its certification that it has met cleanup levels.

For information regarding New York State's Brownfield Cleanup Program, please visit our web Site at:

http://www.dec.stateny.us/webSite/der/bcp

Figure 1: Site Map

<u>APPENDIX – E</u> Sanborn Fire Insurance Maps

"Linking Technology with Tradition"®

Sanborn® Map Report

Ship To:	Charles Sosik		Order Date:	12/29/2	2006 Completion Date:	1/2/2007
	Env. Busine	ess Consultants	Inquiry #:	182609	90.3S	
	25 Central Avenue Hauppauge, NY 11788		P.O. #:	NA		
			Site Name: 3035 White Plains Road			
			Add	ress:	3035 White Plains Road	
Customer Project: ARK0602		City	State:	Bronx, NY 10467		
9013314M	IL	631-234-4280	Cros	ss Stree	ets:	

Based on client-supplied information, fire insurance maps for the following years were identified

1897 - 1 Map	1983 - 1 Map
1908 - 1 Map	1986 - 1 Map
1918 - 1 Map	1989 - 1 Map
1935 - 1 Map	1991 - 1 Map
1950 - 1 Map	1992 - 1 Map
1976 - 1 Map	1993 - 1 Map
1978 - 1 Map	1995 - 1 Map
1981 - 1 Map	1996 - 1 Map

Limited Permission to Photocopy

Total Maps: 16

Env. Business Consultants (the client) is permitted to make up to THREE photocopies of this Sanborn Map transmittal and each fire insurance map accompanying this report solely for the limited use of its customer. No one other than the client is authorized to make copies. Upon request made directly to an EDR Account Executive, the client may be permitted to make a limited number of additional photocopies. This permission is conditioned upon compliance by the client, its customer and their agents with EDR's copyright policy; a copy of which is available upon request.

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report AS IS. Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information provided in this Report is not to be construed as legal advice.

Copyright 2007 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission. EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

USER'S GUIDE

This User's Guide provides guidelines for accessing Sanborn Map® images and for transferring them to your Word Processor.

Reading Sanborn Maps

Sanborn Maps document historical property use by displaying property information through words, abbreviations, and map symbols. The Sanborn Map Key provides information to help interpret the symbols and abbreviations used on Sanborn Maps. The Key is available from EDR's Web Site at: http://www.edrnet.com/reports/samples/key.pdf

Organization of Electronic Sanborn Image File

- Sanborn Map Report, listing years of coverage
- User's Guide
- Oldest Sanborn Map Image
- Most recent Sanborn Map Image

Navigating the Electronic Sanborn Image File

- 1. Open file on screen.
- 2. Identify TP (Target Property) on the most recent map.
- Find TP on older printed images. 3.
- Using Acrobat® Reader®, zoom to 250% in order to view more 4 clearly. (200-250% is the approximate equivalent scale of hardcopy Sanborn Maps.)
 - A. On the menu bar, click "View" and then "Zoom to..."
 - B. Or, use the magnifying tool and drag a box around the TP

Printing a Sanborn Map From the Electonic File

- EDR recommends printing images at 300 dpi (300 dpi prints faster than 600 dpi)
- To print only the TP area, cut and paste from Acrobat to your word processor application.

Acrobat Versions 6 and 7

- 1. Go to the menu bar
- 2. Click the "Select Tool"
- 3. Draw a box around the area selected
- 4. "Right click" on your mouse
- 5. Select "Copy Image to Clipboard"
- 6. Go to Word Processor such as Microsoft Word, paste and print.

Acrobat Version 5

- 1. Go to the menu bar
- 2. Click the "Graphics Select Tool"
- 3. Draw a box around the area selected
- 4. Go to "Menu"
- 5. Highlight "Edit"
- 6. Highlight "Copy"
- 7. Go to Word Processor such as Microsoft Word, paste and print.

Important Information about Email Delivery of Electronic Sanborn Map Images

- Images are grouped intro one file, up to 2MB.
- In cases where in excess of 6-7 map years are available, the file size typically exceeds 2MB. In these cases,
- you will receive multiple files, labeled as "1 of 3", "2 of 3", etc. including all available map years. Due to file size limitations, certain ISPs, including AOL, may occasionally delay or decline to deliver files. Please contact your ISP to identify their specific file size limitations.

Reproduction in whole or in part of any map of The Sanborn Library, LLC may be prohibited without prior emission from The Sanborn Library, LLC.

<u>APPENDIX – F</u> Liquid Waste Manifest and Hydraulic Tank Scrap Ticket

1.19.7	ika		÷,	}		
	PAYM	ENT	RECE	ΞΙΡΤ		
Arrow 1627 Whea 631-4	Scrap Cor Straight Pa tley Height 91-3061	p. ath t, NY 117	98	3035 B	ichit Ra Ron	ie ins D. D. WY
Receipt: 12 Customer: 17 american e RAYMOND	26335 791 nviornment RIVERA	al	Date: 0 Time: 1	9/14/2007 3:12	1-275 1-076	TANK LIVET LUNET
Ticket: 1	27082	We	igh In: O	9/14/2007	13:08	
Operator: 9		Weig	h Out: 0	9/14/2007	13:12	
Descrip	tion: AMER	RICAN				
All weig	ghts in pour	nds. M indi	cates ma	inual weigh	it	
Commodity	Gross	Tare	Net	Price	тот	AL \$
IN / STEEL				distantia i		

 Ticket Total
 \$84.00

 # of Tickets:
 1

 Paid by ATM
 Total Paid
 \$84.00

Rounded to nearest \$1.00

09/24/2007 16:14 FAX 631 586 9605

AMERICAN ENVIRONMENTAL

set.				
	2			
1	NON-HAZARDOUS WASTE MANIFEST	No. Manifest Doc. No.	2. Page 1 of /	600418
	3. Generator's Name and Mailing Address AD Alista	N. PO		
	3035 White F	laina Noon		
	4. Generator's Phone () Grove NY	IIC EDA ID Number	A Transportede Ph	
	American Environmental Assessment Corp. N.Y.	R. 0. 0. 0. 0. 4. 4. 4. 1. 2	631-586-20	00
	7. Transporter 2 Company Name 8.	US EPA ID Number	B. Transporter's Pl	hone
	9 Dissignated Facility Name and Site Address 10.	US EPA ID Number	C. Facility's Phone	
	3249 Richmond Terrace		C	1.1
	Statin Island, NY IN	0000968545	(718)9	81-4600
	11. Waste Shipping Name and Description	а	No.	Total Unit Type Quantity Wt/Vot
	a			6
	NON-HAZ Oil & Water		00.1	TT 324 6
GE	G b.			
ER	R			
A T O	A c. T O			
я 	R	· · ·		
	D. Additional Descriptions for Materials Listed Above		E. Handling Codes	for Wastes Listed Above
			4.10	1d
			NO	//0
	"AMERICAN ENVIRONMENTAL ASSESSMENT CO	DRP."		
		-		
	16. GENERATOR'S CERTIFICATION: 1 certify the materials described above on the Printed/Typed Name	is manifest are not aubject to federal regula Signature	tions for reporting prop	er disposel of Hezardous Waste. Month Dey Year
ł	X HARON Jom 5	Octon)	Strang	19114127
RA	T 17. Transporter 1 Acknowledgement of Receipt of Materials	Signature	2	Month Day Year
NSP	Sobby Olasley	Othy Benk	ery	07 14 07
ORT	Printed/Typed Name	Signature		Month Day Year
Ā	19. Discrepency Indication Space			
E	Barrise Cit			
A C	Coscial As Star			
LIT	L 20. Facility Owner or Operator: Certification of receipt of waste materials covered	d by this manifestexcapt as noted in Ite	em 19.	
Ŷ	Printod/Typed Name	Signative A	be h	Month Day Year
1	Hard Brits Hard Starte 1975	- U		12-5-5-5-5- 1246
11		TIPH TO ACHERITOR		Contrast de surdien de sur d'ante d'ante autonient

<u>APPENDIX – G</u> Disposal Facility Acceptance Letters

24 Middlesex Avenue Carteret, NJ 07008 T 732-541-8909 F 732-541-8105 www.cleanearthinc.com

28 November 2007

Sol Acker 930 Broadway Woodmere, NY 11598

c/o Jen Schrof

RE: Letter of Acceptance for Soil Represented by CHEMTECH Samples 0710093-01A-12A, 0710094-0710094-01A thru 12A, 0710095-01A thru 12A, 0710096-01A thru 07A, Y4778-02, Y4778-2 thru 11.

Dear Sirs;

Clean Earth of Carteret (CEC) is prepared to accept RCRA non-hazardous soil being excavated for the material analyses represent on condition that 1) the analytical parameters are sufficient to identify contaminants and their concentrations for the unknown existing and/or previous site land use; 2) the soil's source and contaminant type meet CEC's permit restrictions; and 3) for the duration of the project the material must continue to be in compliance with our acceptance criteria and permit requirements.

The analytical reports provided through CHEMTECH. are sufficient to cover up to 6,000 tons of material from this site. Additional Total Petroleum Hydrocarbon (TPH) analysis will be required for up to each 100 cubic yards (150 tons) over being sent to CEC.

If you should have any questions or require any additional information, please call me at (732) 541-8909.

Sincerely: Chelma

John Ushelman Operations Manager
Clean Earth of Carte 24 Middlesex Avenu Approval Number:	rret, Inc. Le, Carteret, NJ	ANEARTH THE ART AND A STATE	Phone: 732-541-8909 Fax: 732-541-8105
	Contami	nated Soil Profile S	heet
Generator Informa	tion:	1	
Name: <u>Bec</u> fo	C MAUE ASSOCI	ates	
Address: <u>930</u>	Browdway		
City: Woodma,	2State:/	<u>VY</u> Zi	p Code: _//598
Agent or Contact Po	int: Charles Sos,	Telephon	e: <u>GS1 924-087</u> 0
Company Name:	EBC		
Billing Information	i:		
Name: <u>Sol A</u>	ekz	Phone:	516-374/-3336
Address: <u>930</u>	Brosdway		
City: _ Wood m	Sta	nte: <u>N9</u>	Zip Code: //598
Site Description:			
Address: <u>303</u>	5 White Plain	s Road	
City: <u>Banx</u>	State:	NG Zij	p Code:
County of Origin if i	n New Jersey		
Existing Site Land U	ise: UACANT CANC	How Many	Years: _/
Is This Site a State of	r Federal Superfund Site?	Yes_	No_
Soil Description:			
Source of Contamina	ation (UST or Other):	IST	
Estimated Volume of	f Soil: <u>4,000 C</u>	4	
Type of Contaminati	on (Gas, Kero, #2, #4, #6	Oil, Etc.):	line, Uneban Fill
If Contamination is (Other Than Above Please S	Specify:	
Is a Soil Analysis At	tached to this Form:	485	

Certification

I hereby certify that the above information is a true and accurate description to the best of my knowledge of the material we intend to ship to the Clean Earth of Carteret Facility:

Signed:	Chalu Socih	1
Print Name:	Charles Sosik	

Date: 11/107 Title: Principal - EBC

Approval Number: _____

NON-HAZARDOUS WASTE CERTIFICATION SHEET

PCB Certification

I, the undersigned, under penalty of law, do hereby certify that the material to be submitted to the Clean Earth of Carteret facility does not contain polychlorinated biphenols (PCBs) at concentration greater than 50 ppm as defined in 40 CFR 761.

Herbicide/Pesticides Certification

I, the undersigned, under penalty of law, do hereby certify that the material to be submitted to the Clean Earth of Carteret facility does not contain Herbicides or Pesticides at concentrations that would render it as hazardous waste defined in 40 CFR 261.

Non-Hazardous Waste Certification

I, the undersigned, under penalty of law, do certify that the material submitted to the Clean Earth of Carteret facility is not a listed hazardous waste, nor does it contain a listed hazardous waste, nor does it exhibit any of the characteristics of a hazardous waste as defined in 40 CFR 261.

The undersigned also acknowledges they have used due diligence in determining the Non-Hazardous status, of the said material, as defined in 40 CFR. Should at any time after delivery, the material accepted by Clean Earth of Carteret be found non-conforming to the above, it becomes the responsibility of the Generator/Agent t remove the waste from Clean Earth of Carteret property within (5) days of notification (notification is to be verbal followed by written notification, over night receipted). It is the Generator/Agent's responsibility to abide by all Federal, State, and Local regulations associated with the removal of their waste. If the waste is not removed within the specified time period said disposal shall be arranged by a Clean Earth of Carteret representative and billed to the Generator/Agent at cost plus basis. Furthermore the Generator/Agent will be responsible for any and all costs for decontamination required at Clean Earth of Carteret facility, that is related to the Generator/Agent's material and all liability for such nonconforming waste shall revert to the Generator/Agent.

I CERTIFY THAT I AM AUTHORIZED TO EXECUTE THIS ON BEHALF OF:

Generator's Name

Vista Developers Corp.

Sol Arker	President
Print Nam	Title Anes. 11-5-07
Authorized Signature	Date:

Non Hazardous Profile Sheet

Profile # _____

Check each site you wou	uld like to utilize for this waste	approval		
Clean Earth of Carteret 24 Middlesex Avenue Carteret, NJ 07008 Ph: 732-541-8909	Clean Earth of Maryland 1469 Oak Ridge Place Hagerstown, MD 21740 Ph: 301-791-6220	Clean Earth of New Castle 94 Pyles Lane New Castle, DE 19720 Ph: 302-427-6633	Clean Earth 7 Steel Roa Morrisville, Ph: 215-426	of Southeast Pennsylvania Id East PA 19067 3-1700
Clean Earth of Philadelphia 3201 South 61st Street Philadelphia, PA 19153 Ph: 215-724-5520	Clean Earth of West Virginia 3815 South State Route 2 Friendly, WV 26146 Ph: 304-652-8580	Clean Earth of North Jersey 115 Jacobus Avenue South Kearny, NJ 07032 Ph: 973-344-4004	_Other	
A. Waste Generator Infor	mation			
1. Generator Name:	9 der + Cestry CLP			
2. Site Address:	035 White Plains E	2 8. Mailing Address:	930 Bro	Actual
3. City, State, Zip:	BRONX, NY	9. City, State, Zip:	Woodmar	NY 11598
4. Phone:	516 374 - 3336	10. County of Origin:	BONX	
6. Contact:	Dan Maritz			
7. Email:	Pmarite a) Arka compan	in. com		
Billing Information				
11. Customer Name:	ARKS, Companies	12. Contact:	Dan mait	L
13. Address:	930 Boaring Wat	14. City, State, Zip:	Wood min	2, NY 11598
15. Phone:	\$ 516 374-3336	16. Fax:	516-374-	3326
17. Email:	Pmarit, DA.K. com	paris . Com		
B. Waste Stream Informat	tion			
4. Estimated Quantity of W	Vaste: 5, a>v Stons □Cu	ibic Yards	m of Project: 🔲	Recurring One Time
C. Waste Composition/Ch	aracteristics			
1. Source of Contamination	n (ie. UST, AST, leak, spill, urban المتحدث	fill, etc.): 2. Type of Contar heating oil, MG	nination (ie. dies P, etc.):	el, gasoline, waste oil,
3. Contaminants of Concern	n (ie. Metals, TPH, PAH, etc.):	GASOTINZ		
4. Provide a site history det contaminants of concern Auto & fruct	tailing past and present land uses (attach a separate sheet if neces Communication of the separate sheet of neces (Communication of the second	s, on site storage/process inform ssary): <u>Site is A For</u> 145 Brown Gretols St	nation and any ad <u>may GAS S</u> Ste.	ctivities related to
5. Composition of Waste (c chemical, constituents, c equal 100%):	lay, rock, sand, moisture, contaminants, etc.; should — —	85 Soil % 10 2 gant %	<u> 3 Cobble</u>	>%
6. Is this site a State or Feo	leral Superfund Site?			□Yes ₽No
 Is laboratory report being 7a. If yes, you will need ties to the data. Please quidance 	g supplied with this profile? to attach a sampling plan descrip refer to the "Site Sampling Diagra	tion and diagram of sampling lo am" form in your approval packa	cations that ige for	∰¥es ÈNo
 8. Is the waste represented 191.12 or other applicab 	l in this waste profile classified as le regulatory provisions?	a radioactive material under US	SEPA 40CFR	□Yes D No
 Does the waste represer 9a. If yes, list the level: 	nted contain any levels of polychlo	orinated biphenyls (PCBs)?		
9b. If yes, is the waste m	naterial TSCA regulated or define	d as a PCB remediation waste u	under TSCA?	
 Does the waste represe concentrations that woul or federal regulations? 	nted contain herbicides, pesticide d render it hazardous as defined	es, asbestos, insecticides or res by 40 CFR 261 or subject to ad	ditional state	

8

Non Hazardous Profile Sheet

Profile #

C. Waste Composition/Characteristics (continued)	
11. To the best of my knowledge, the waste represented in this profile is generated as a result of the corrective response taken under the Federal Underground Storage Tank Regulation 40 CFR 280	e ØYes □No D.
12. Is the waste a dioxin bearing waste?	Yes Sto
13. Is this waste a treatment residue from a previously listed or characteristic hazardous waste?	Yes XNo
14.Is there a nuisance level of odor associated with this waste?	maybr
5. Are there any special handling instructions for management of this waste?	
# 14 A Small procurtage of the soil will have gooding + this maybe odors associated with this matrices	e Conformation
). Generator Certification	
I certify that the waste represented by this profile is not a listed hazardous waste, nor does it con listed hazardous waste, nor does it exhibit any characteristics of a hazardous waste as defined b CFR 261.	by 40 See See See See See See See See See Se
 I certify that this waste profile and all attachments contain true and accurate descriptions of the w material. 	waste
b. I certify that all relevant information in possession of the Generator pertaining to known or suspen hazards with regard to the waste has been disclosed to Clean Earth.	cted Syles No
I certify that all changes that occur in the characteristics of the waste will be identified by the Gen and disclosed to Clean Earth prior to providing the waste to Clean Earth.	nerator GYes No
b. I certify that the analytical data attached hereto are derived from testing representative sample(s referenced in 40 CFR 261, 20© or an equivalent state regulatory provision.	as the state of th
For sites that contain "clean fill," the undersigned certifies that a site investigation was conducted that the soil was characterized according to the proposed Clean Earth facility(s) acceptance crite soil classification as "clean fill."	d and ☐Yes ☐No eria for
7. The undersigned acknowledges they have used due diligence in determining the Non-Hazardous of the said waste as defined in 40 CFR. Should, at any time after delivery, the material accepted Clean Earth be found to be non-conforming to the information certified in this profile and representation.	s status ∑Yes ⊡No d by ented by

*If someone other than the Generator is signing this profile or intends to sign any paperwork (which includes, but is not limited to, additional certifications, manifests, etc.) pertaining to this waste profile, authorization from the Generator, on the Generator's letterhead, must be supplied to Clean Earth prior to acceptance of waste material.

Date:

Company:

12.6.07

documentation attached hereto, it becomes the responsibility of the Generator/Agent to remove the waste from the designated Clean Earth facility within five (5) days of notification. Notification is to be verbal followed by written notification, overnight receipted. It is the Generator's/ Agent's responsibility to abide by all Federal, State and Local regulations associated with the removal of their waste. If the waste is not removed within the specified time period, said disposal shall be arranged by a Clean Earth representative and billed to the Benerator/Agent at cost plus basis. Furthermore, the Generator/Agent will be responsible for any and all cost for decontamination required by the Clean Earth facility that is related to the Generator advent's material and all ligibility for such nonconforming waste shall revert to

ARKER

501

E. Clean Earth Waste Approval Decision

Generator/Agent.

Name (Type or Print):

*Certification

Signature:

1. Treatment Option(s)		
2. Proposed Treatment Facility(s)		
3. Supplemental Information (special handling, hours	of acceptance,etc):	
4. Approval Decision:		Approved Denied
4a.If denied, please indicate reason in the space provi	ded:	
5. Approval Signature:	Date:	
6. Facility Manager's Signature:	Date:	

Revised 7/24/07

PLEASE PRINT IN INK OR TYPE

Page 2 of 2

<u>APPENDIX - H</u>

Non-Hazardous Waste Disposal Manifests Under Separate Cover - See FER Volume II

<u>APPENDIX - I</u> Waste Characterization Profile and Analytical Results

Approval Number: _____

NON-HAZARDOUS WASTE CERTIFICATION SHEET

PCB Certification

I, the undersigned, under penalty of law, do hereby certify that the material to be submitted to the Clean Earth of Carteret facility does not contain polychlorinated biphenols (PCBs) at concentration greater than 50 ppm as defined in 40 CFR 761.

Herbicide/Pesticides Certification

I, the undersigned, under penalty of law, do hereby certify that the material to be submitted to the Clean Earth of Carteret facility does not contain Herbicides or Pesticides at concentrations that would render it as hazardous waste defined in 40 CFR 261.

Non-Hazardous Waste Certification

I, the undersigned, under penalty of law, do certify that the material submitted to the Clean Earth of Carteret facility is not a listed hazardous waste, nor does it contain a listed hazardous waste, nor does it exhibit any of the characteristics of a hazardous waste as defined in 40 CFR 261.

The undersigned also acknowledges they have used due diligence in determining the Non-Hazardous status, of the said material, as defined in 40 CFR. Should at any time after delivery, the material accepted by Clean Earth of Carteret be found non-conforming to the above, it becomes the responsibility of the Generator/Agent t remove the waste from Clean Earth of Carteret property within (5) days of notification (notification is to be verbal followed by written notification, over night receipted). It is the Generator/Agent's responsibility to abide by all Federal, State, and Local regulations associated with the removal of their waste. If the waste is not removed within the specified time period said disposal shall be arranged by a Clean Earth of Carteret representative and billed to the Generator/Agent at cost plus basis. Furthermore the Generator/Agent will be responsible for any and all costs for decontamination required at Clean Earth of Carteret facility, that is related to the Generator/Agent's material and all liability for such nonconforming waste shall revert to the Generator/Agent.

I CERTIFY THAT I AM AUTHORIZED TO EXECUTE THIS ON BEHALF OF:

Generator's Name

Vista Developers Corp.

Sol Arker	President
Print Nam	Title Anes. 11-5-07
Authorized Signature	Date:

Clean Earth of Carte 24 Middlesex Avenu Approval Number:	rret, Inc. Le, Carteret, NJ	ANEARTH THE ART AND A STATE	Phone: 732-541-8909 Fax: 732-541-8105
	Contami	nated Soil Profile S	heet
Generator Informa	tion:	1	
Name: <u>Bec</u> fo	C MAUE ASSOCI	ates	
Address: <u>930</u>	Browdway		
City: Woodma,	2State:/	<u>VY</u> Zi	p Code: _//598
Agent or Contact Po	int: Charles Sos,	Telephon	e: <u>GS1 924-087</u> 0
Company Name:	EBC		
Billing Information	i:		
Name: <u>Sol A</u>	ekz	Phone:	516-374/-3336
Address: <u>930</u>	Brosdway		
City: _ Wood m	Sta	nte: <u>N9</u>	Zip Code: //598
Site Description:			
Address: <u>303</u>	5 White Plain	s Road	
City: <u>Banx</u>	State:	NG Zij	p Code:
County of Origin if i	n New Jersey		
Existing Site Land U	ise: UACANT CANC	How Many	Years: _/
Is This Site a State of	r Federal Superfund Site?	Yes_	No_
Soil Description:			
Source of Contamina	ation (UST or Other):	IST	
Estimated Volume of	f Soil: <u>4,000 C</u>	4	
Type of Contaminati	on (Gas, Kero, #2, #4, #6	Oil, Etc.):	line, Uneban Fill
If Contamination is (Other Than Above Please S	Specify:	
Is a Soil Analysis At	tached to this Form:	485	

Certification

I hereby certify that the above information is a true and accurate description to the best of my knowledge of the material we intend to ship to the Clean Earth of Carteret Facility:

Signed:	Chalu Socih	1
Print Name:	Charles Sosik	

Date: 11/107 Title: Principal - EBC

Non Hazardous Profile Sheet

Profile # _____

Check each site you wou	uld like to utilize for this waste	approval		
Clean Earth of Carteret 24 Middlesex Avenue Carteret, NJ 07008 Ph: 732-541-8909	Clean Earth of Maryland 1469 Oak Ridge Place Hagerstown, MD 21740 Ph: 301-791-6220	Clean Earth of New Castle 94 Pyles Lane New Castle, DE 19720 Ph: 302-427-6633	Clean Earth 7 Steel Roa Morrisville, Ph: 215-426	of Southeast Pennsylvania Id East PA 19067 3-1700
Clean Earth of Philadelphia 3201 South 61st Street Philadelphia, PA 19153 Ph: 215-724-5520	Clean Earth of West Virginia 3815 South State Route 2 Friendly, WV 26146 Ph: 304-652-8580	Clean Earth of North Jersey 115 Jacobus Avenue South Kearny, NJ 07032 Ph: 973-344-4004	_Other	
A. Waste Generator Infor	mation			
1. Generator Name:	9 der + Cestry CLP			
2. Site Address:	035 White Plains E	2 8. Mailing Address:	930 Bro	Actual
3. City, State, Zip:	BRONX, NY	9. City, State, Zip:	Woodmar	NY 11598
4. Phone:	516 374 - 3336	10. County of Origin:	BONX	
6. Contact:	Dan Maritz			
7. Email:	Pmarite a) Arka compan	in. com		
Billing Information				
11. Customer Name:	ARKS, Companies	12. Contact:	Don mait	L
13. Address:	930 Boaring Wat	14. City, State, Zip:	Wood min	2, NY 11598
15. Phone:	\$ 516 374-3336	16. Fax:	516-374-	3326
17. Email:	Pmarit, DA.K. com	paris. com		
B. Waste Stream Informat	tion			
4. Estimated Quantity of W	Vaste: 5, a>v Stons □Cu	ibic Yards	m of Project: 🔲	Recurring One Time
C. Waste Composition/Ch	aracteristics			
1. Source of Contamination	n (ie. UST, AST, leak, spill, urban المتحدث	fill, etc.): 2. Type of Contar heating oil, MG	nination (ie. dies P, etc.):	el, gasoline, waste oil,
3. Contaminants of Concern	n (ie. Metals, TPH, PAH, etc.):	GASOTINZ		
4. Provide a site history det contaminants of concern Auto & fruct	tailing past and present land uses (attach a separate sheet if neces Communication of the separate sheet of neces (Communication of the second	s, on site storage/process inform ssary): <u>Site is A For</u> 145 Brown Gretols St	nation and any ad <u>may GAS S</u> Ste.	ctivities related to
5. Composition of Waste (c chemical, constituents, c equal 100%):	lay, rock, sand, moisture, contaminants, etc.; should — —	85 Soil % 10 2 gant %	<u> 3 Cobble</u>	>%
6. Is this site a State or Feo	leral Superfund Site?			□Yes ₽No
 Is laboratory report being 7a. If yes, you will need ties to the data. Please quidance 	g supplied with this profile? to attach a sampling plan descrip refer to the "Site Sampling Diagra	tion and diagram of sampling lo am" form in your approval packa	cations that ige for	∰¥es ÈNo
 8. Is the waste represented 191.12 or other applicab 	l in this waste profile classified as le regulatory provisions?	a radioactive material under US	SEPA 40CFR	□Yes D No
 Does the waste represer 9a. If yes, list the level: 	nted contain any levels of polychlo	orinated biphenyls (PCBs)?		
9b. If yes, is the waste m	naterial TSCA regulated or define	d as a PCB remediation waste u	under TSCA?	
 Does the waste represe concentrations that woul or federal regulations? 	nted contain herbicides, pesticide d render it hazardous as defined	es, asbestos, insecticides or res by 40 CFR 261 or subject to ad	ditional state	

8

Non Hazardous Profile Sheet

Profile #

C. Waste Composition/Characteristics (continued)	
11. To the best of my knowledge, the waste represented in this profile is generated as a result of the corrective response taken under the Federal Underground Storage Tank Regulation 40 CFR 280	e ØYes □No D.
12. Is the waste a dioxin bearing waste?	Yes Sto
13. Is this waste a treatment residue from a previously listed or characteristic hazardous waste?	Yes XNo
14.Is there a nuisance level of odor associated with this waste?	maybr
5. Are there any special handling instructions for management of this waste?	
# 14 A Small procurtage of the soil will have gooding + this maybe odors associated with this matrices	e Conformation
). Generator Certification	
I certify that the waste represented by this profile is not a listed hazardous waste, nor does it con listed hazardous waste, nor does it exhibit any characteristics of a hazardous waste as defined b CFR 261.	by 40
 I certify that this waste profile and all attachments contain true and accurate descriptions of the w material. 	waste
b. I certify that all relevant information in possession of the Generator pertaining to known or suspen hazards with regard to the waste has been disclosed to Clean Earth.	cted Syles No
I certify that all changes that occur in the characteristics of the waste will be identified by the Gen and disclosed to Clean Earth prior to providing the waste to Clean Earth.	nerator Dyres INo
b. I certify that the analytical data attached hereto are derived from testing representative sample(s referenced in 40 CFR 261, 20© or an equivalent state regulatory provision.	as the state of th
For sites that contain "clean fill," the undersigned certifies that a site investigation was conducted that the soil was characterized according to the proposed Clean Earth facility(s) acceptance crite soil classification as "clean fill."	d and ☐Yes ☐No eria for
7. The undersigned acknowledges they have used due diligence in determining the Non-Hazardous of the said waste as defined in 40 CFR. Should, at any time after delivery, the material accepted Clean Earth be found to be non-conforming to the information certified in this profile and representation.	s status ∑Yes ⊡No d by ented by

*If someone other than the Generator is signing this profile or intends to sign any paperwork (which includes, but is not limited to, additional certifications, manifests, etc.) pertaining to this waste profile, authorization from the Generator, on the Generator's letterhead, must be supplied to Clean Earth prior to acceptance of waste material.

Date:

Company:

12.6.07

documentation attached hereto, it becomes the responsibility of the Generator/Agent to remove the waste from the designated Clean Earth facility within five (5) days of notification. Notification is to be verbal followed by written notification, overnight receipted. It is the Generator's/ Agent's responsibility to abide by all Federal, State and Local regulations associated with the removal of their waste. If the waste is not removed within the specified time period, said disposal shall be arranged by a Clean Earth representative and billed to the Benerator/Agent at cost plus basis. Furthermore, the Generator/Agent will be responsible for any and all cost for decontamination required by the Clean Earth facility that is related to the Generator advent's material and all ligibility for such nonconforming waste shall revert to

ARKER

501

E. Clean Earth Waste Approval Decision

Generator/Agent.

Name (Type or Print):

*Certification

Signature:

1. Treatment Option(s)		
2. Proposed Treatment Facility(s)		
3. Supplemental Information (special handling, hours	of acceptance,etc):	
4. Approval Decision:		Approved Denied
4a.If denied, please indicate reason in the space provi	ded:	
5. Approval Signature:	Date:	
6. Facility Manager's Signature:	Date:	

Revised 7/24/07

PLEASE PRINT IN INK OR TYPE

Page 2 of 2

 NYSDOH
 11418

 NJDEP
 NY050

 CTDOH
 PH-0205

 PADEP
 68-00573

Friday, October 12, 2007

Charles Sosik Environmental Business Consultants 9 Peconic Road Ridge, NY 11961

TEL: (631) 924-0870 FAX (631) 924-0870

RE: 3035 White Plains Rd

Order No.: 0710095

Dear Charles Sosik:

American Analytical Laboratories, LLC. received 12 sample(s) on 10/8/2007 for the analyses presented in the following report.

Samples were analyzed in accordance with the test procedures documented on the chain of custody and detailed throughout the text of this report.

The limits provided in the data package are analytical reporting limits and not Federal or Local mandated values to which the sample results should be compared.

There were no problems with the analyses and all data for associated QC met laboratory specifications. If there are any exceptions a Case Narrative is provided in the report.

If you have any questions regarding these tests results, please do not hesitate to call (631) 454-6100 or email me directly at lbeyer@american-analytical.com.

Sincerely,

Lori B Lab Director

CLIENT:	Environmental Business Consultants	
Project: Lab Order:	3035 White Plains Rd 0710095	Work Order Sample Summary

Lab Sample ID	Client Sample ID	Tag Number	Date Collected	Date Received
0710095-01A	TP11B		10/5/2007 3:00:00 PM	10/8/2007
0710095-02A	TP12A		10/5/2007 3:00:00 PM	10/8/2007
0710095-03A	TP12B		10/5/2007 3:00:00 PM	10/8/2007
0710095-04A	TP12C		10/5/2007 3:00:00 PM	10/8/2007
0710095-05A	TP12D		10/5/2007 3:00:00 PM	10/8/2007
0710095-06A	TP13A		10/5/2007 3:00:00 PM	10/8/2007
0710095-07A	TP13B		10/5/2007 3:00:00 PM	10/8/2007
0710095-08A	TP13C		10/5/2007 3:00:00 PM	10/8/2007
0710095-09A	TP13D		10/5/2007 3:00:00 PM	10/8/2007
0710095-10A	TP14A		10/5/2007 3:00:00 PM	10/8/2007
0710095-11A	TP14B		10/5/2007 3:00:00 PM	10/8/2007
0710095-12A	TP15A		10/5/2007 3:00:00 PM	10/8/2007

AMERICAN ANALYTICAL ELABORATORIES (631) 45	EDO STREET • FAI 4-6100 • FAX (631	RMINGDALE, NEW YO) 454-8027	RK 11735 TAG # / C	00	NYSDOH 11418 CTDOH PH-020 NJDEP NY050 PADEP 68-573
CHAIN	OF CUSTC	DDY / REQUI	EST FOR ANALYS	IS DOCUME	NT
ERC N.	CONTA	charles Sosil	SAMPLERTSIGNATURE	SA	
ccaric, Ridyer	1		DAMPLER NAME (PRINK)	88 7 88	
TLOCATION: 3-35 WL	7e Plairs	Lord	10h 0355		For
RATORY MATRIX # CON- D #	SAMPLING DATE/ TIME	SAMPLE # - LOCATIC	N RY		METHANOL PRESERVE SAMPLES [VOLATILE VIAL #]
15-01A S	10 5 300m	TPILB			
- AGO-		TP12A			
-03,4		TP128			
Ano.		TP 12C			
450-		TP120			
P.00-		TP13 A			
-07A		TP13B			
-054		TPBC			
- 09.4		TP130			,
-10,4		TPIHA		.)	
-1,4		TP J4 R			
-iad V V	~	TPISA			
	-			COOLER TEMPER.	ATURE:
s=solt; L=Liquid; sL=sludge; A	-AIR; W=WIPE; P=PAINT	CHIPS; B=BULK MATERIAL	TURNAROUND REQUIRED:	COMMENTS / INST	TRUCTIONS
G=GRAB: C=COMROSITE, SS=	SPLIT SPOON		NORMAL CD STAT CD BY /	/	
INHED BY (SIGNATURE)	DATE PRINTE	ED NAME	RECEIVED BY LAB (SIGNATURE)	DATE V 10 PRINTE	ED NAME
- to	TIME Dam	ion lawyer	Keened all	TIMEL 15 12	/cery
ISHED BY (SIGNATURE)	DATE PRINTE	ED NAME	RECEIVED BY LAB (SIGNATURE)	DATE	ED NAME
-	TIME			TIME	

WHITE-OFFICE / CANARY-LAB / PINK-SAMPLE CUSTODIAN / GOLDENROD-CLIENT

AMERICAN ANALYTICAL LABORATORIES, LLC 56 TOLEDO STREET FARMINGDALE, NEW YORK 11735 TELEPHONE: (631) 454-6100 FAX: (631) 454-8027

DATA REPORTING QUALIFIERS

For reporting results, the following "Results Qualifiers" are used:

Value	If the result is greater than or equal to the detection limit, report the value
U	Indicates the compound was analyzed for but was not detected. Report the minimum detection limit for the sample with the U, i.e. "10U". This is not necessarily the instrument detection limit attainable for this particular sample based on any concentration or dilution that may have been required.
J	 Indicates an estimated value. The flag is used: (1) When estimating a concentration for a tentatively identified compound (library search hits, where a 1:1 response is assumed.) (2) When the mass spectral data indicated the identification, however the result was less than the specified detection limit greater than zero. If the detection limit was 10ug/L and a concentration of 3ug/L was calculated report as 3J. This flag is used when similar situations arise on any organic parameter i.e. Pesticide, PCBs and others.
В	Indicates the analyte was found in the blank as well as the sample report "10B".
E	Indicates the analytes concentration exceeds the calibrated range of the instrument for that specific analysis.
D	This flag identifies all compounds identified in an analysis at a secondary dilution factor.
Ρ	This flag is used for Pesticide / PCB target analyte when there is >25% difference for detected concentrations between the two GC Columns. The higher of the two values is reported on Form I and flagged with a "P".
N	This flag indicates presumptive evidence of a compound. This is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It applies to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the flag is not used.
Н	Indicates sample was received and/or analyzed outside of The method allowable holding time

Date: 12-Oct-07

CLIENT: Lab Order: Project: Lab ID:	Environmental Business 0710095 3035 White Plains Rd 0710095-01A	s Consultants	(Client Sample ID: Tag Number: Collection Date: Matrix:	TP111 10/5/2 SOIL	B 2007 3:00:00 PM
Analyses		Result	Limit Qual	Units	DF	Date Analyzed
TPH 8015 DIES Total DRO TPH	SEL RANGE ORGANICS	U	SW8015 65	NA mg/Kg-dry	1	Analyst: PT 10/11/2007 6:18:00 PM
PERCENT MOI Percent Moistu	renyi ISTURE	9.30	42-134 D2216 0	%REC	1	10/11/2007 6:18:00 PM Analyst: GE 10/9/2007

Qualifiers:

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

U Indicates the compound was analyzed for but not detecte

- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits
- X Value exceeds Maximum Contaminant Level

CLIENT: Lab Order: Project: Lab ID:	Environmental Business 0710095 3035 White Plains Rd 0710095-02A	s Consultants	(Client Sample ID: Tag Number: Collection Date: Matrix:	TP12. 10/5/2 SOIL	A 2007 3:00:00 PM
Analyses		Result	Limit Qual	Units	DF	Date Analyzed
TPH 8015 DIES Total DRO TPH Surr: o-Terph	SEL RANGE ORGANICS	310 118	SW8015 60 42-134	NA mg/Kg-dry %REC	1	Analyst: PT 10/11/2007 6:45:00 PM 10/11/2007 6:45:00 PM
PERCENT MOI	STURE	12.3	D2216 0	wt%	1	Analyst: GE 10/9/2007

Oualifiers :	В	Analyte detected in the associated Method Blank	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits
	ND	Not Detected at the Reporting Limit	S	Spike Recovery outside accepted recovery limits
	U	Indicates the compound was analyzed for but not detecte	х	Value exceeds Maximum Contaminant Level
				Page 2 of 12

CLIENT: Lab Order: Project: Lab ID:	Environmental Business 0710095 3035 White Plains Rd 0710095-03A	s Consultants	Client Sample ID: Tag Number: Collection Date: Matrix:			TP12B 10/5/2007 3:00:00 PM SOIL		
Analyses		Result	Limit Q	ual Units		DF	Date Analyzed	
TPH 8015 DIES Total DRO TPH Surr: o-Terpl	SEL RANGE ORGANICS	1200 114	SW80 87 42-134	15 NA mg/Kg-dry %REC		1	Analyst: PT 10/11/2007 7:13:00 PM 10/11/2007 7:13:00 PM	
PERCENT MO	STURE	11.4	D221 0	6 wt%		1	Analyst: GE 10/9/2007	

Oualifiers :	в	Analyte detected in the associated Method Blank	Е	Value above quantitation range
	ŀI	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits
	ND	Not Detected at the Reporting Limit	S	Spike Recovery outside accepted recovery limits
	U	Indicates the compound was analyzed for but not detecte	x	Value exceeds Maximum Contaminant Level

CLIENT: Lab Order: Project: Lab ID:	Environmental Business 0710095 3035 White Plains Rd 0710095-04A	s Consultants	(Client Sample ID: Tag Number: Collection Date: Matrix:	TP120 10/5/2 SOIL	C 2007 3:00:00 PM
Analyses		Result	Limit Qual	Units	DF	Date Analyzed
TPH 8015 DIES	SEL RANGE ORGANICS	430	SW8015 84	NA mg/Kg-dry	1	Analyst: PT 10/11/2007 7:41:00 PM
Surr: o-Terpi	henyl	114	42-134	%REC	1	10/11/2007 7:41:00 PM
PERCENT MO	STURE		D2216			Analyst: GE
Percent Moistu	re	14,9	0	wt%	1	10/9/2007

Ouanners:	þ	Analyte detected in the associated Method Blank	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits
	ND	Not Detected at the Reporting Limit	S	Spike Recovery outside accepted recovery limits
	U	Indicates the compound was analyzed for but not detecte	х	Value exceeds Maximum Contaminant Level

Date: 12-Oct-07

CLIENT: Lab Order: Project: Lab ID:	Environmental Business 0710095 3035 White Plains Rd 0710095-05A	s Consultants	Client Sample ID: Tag Number: Collection Date: Matrix:		TP12 10/5/2 SOIL	D 2007 3:00:00 PM
Analyses		Result	Limit Qual	Units	DF	Date Analyzed
TPH 8015 DIES Total DRO TPH Surr: o-Terph	SEL RANGE ORGANICS	U 114	SW8015 88 42-134	NA mg/Kg-dry %REC	1	Analyst: PT 10/11/2007 8:09:00 PM 10/11/2007 8:09:00 PM
PERCENT MOI Percent Moistur	STURE	12.4	D2216	wt%	1	Analyst: GE

Qualifiers:

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

U Indicates the compound was analyzed for but not detecte

Value above quantitation range

Е

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Date: 12-Oct-07

CLIENT:	Environmental Business	s Consultants		C	'lient Sample ID	: TP13.	A
Lab Order:	0710095				Tag Number	:	
Project:	3035 White Plains Rd				Collection Date	: 10/5/2	2007 3:00:00 PM
Lab ID:	0710095-06A				Matrix	SOIL	
Analyses		Result	Limit (Qual	Units	DF	Date Analyzed
TPH 8015 DIES	EL RANGE ORGANICS		SW80	15	NA		Analyst: PT
Total DRO TPH	I	U	90		mg/Kg-dry	1	10/11/2007 8:37:00 PM
Surr: o-Terph	nenyl	117	42-134		%REC	1	10/11/2007 8:37:00 PM
PERCENT MOI	STURE		D221	6			Analyst: GE
Percent Moistur	e	7.48	0		wt%	1	10/9/2007

Qualifiers:	В	An

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

U Indicates the compound was analyzed for but not detecte

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

CLIENT:

Project:

Lab ID:

Analyses

Lab Order:

Environmental Business ConsultantsClient Sample ID:TP13B0710095Tag Number:3035 White Plains RdCollection Date:10/5/2007 3:00:00 PM0710095-07AMatrix:SOILResultLimit Qual UnitsDFDate Analyzed

		_			÷
TPH 8015 DIESEL RANGE ORGANICS		SW8015	NA		Analyst: PT
Total DRO TPH	U	67	mg/Kg-dry	1	10/11/2007 9:05:00 PM
Surr: o-Terphenyl	112	42-134	%REC	1	10/11/2007 9:05:00 PM
PERCENT MOISTURE		D2216			Analyst: GE
Percent Moisture	6.44	0	wt%	1	10/9/2007

Qualifiers:

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

U Indicates the compound was analyzed for but not detecte

Value above quantitation range

Е

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

X Value exceeds Maximum Contaminant Level

Page 7 of 12

CLIENT: Lab Order: Project: Lab ID:	Environmental Business 0710095 3035 White Plains Rd 0710095-08A	s Consultants	C	Client Sample ID: Tag Number: Collection Date: Matrix:	TP13 10/5/2 SOIL	C 2007 3:00:00 PM
Analyses		Result	Limit Qual	Units	DF	Date Analyzed
TPH 8015 DIES Total DRO TPH Surr: o-Terph	EL RANGE ORGANICS	U 118	SW8015 82 42-134	NA mg/Kg-dry %REC	1	Analyst: PT 10/11/2007 11:23:00 PM 10/11/2007 11:23:00 PM
PERCENT MOI Percent Moistur	STURE e	6.74	D2216 0	wt%	1	Analyst: GE 10/9/2007

Date: 12-Oct-07

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

U Indicates the compound was analyzed for but not detecte

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

CLIENT: Lab Order: Project: Lab ID:	Environmental Business 0710095 3035 White Plains Rd 0710095-09A	s Consultants	(Client Sample ID: Tag Number: Collection Date: Matrix:	TP13 10/5/2 SOIL	D 2007 3:00:00 PM
Analyses		Result	Limit Qual	Units	DF	Date Analyzed
TPH 8015 DIES Total DRO TPH Surr: o-Terph	EL RANGE ORGANICS	U 110	SW8015 62 42-134	NA mg/Kg-dry %REC	1	Analyst: PT 10/12/2007 12:46:00 AM 10/12/2007 12:46:00 AM
PERCENT MOI Percent Moistur	STURE ^{re}	11.0	D2216 0	wt%	1	Analyst: GE 10/9/2007

Qualifiers:

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

U Indicates the compound was analyzed for but not detecte

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Date: 12-Oct-07

CLIENT: Lab Order:	Environmental Business 0710095	Consultants		C	lient Sample II Tag Numbe	D: TP14	A
Project:	3035 White Plains Rd				Collection Dat	e: 10/5/2	2007 3:00:00 PM
Lab ID:	0710095-10A				Matri	x: SOIL	
Analyses		Result	Limit (Qual	Units	DF	Date Analyzed
TPH 8015 DIES Total DRO TPH	SEL RANGE ORGANICS	U	SW80 64	015	NA mg/Kg-dry	1	Analyst: PT 10/12/2007 1:14:00 AM
Surr: o-Terpr	тепуі	105	42-134		%REC	1	10/12/2007 1:14:00 AM
PERCENT MOI	STURE		D22	16			Analyst: GE
Percent Moistur	re	8.63	0		wt%	1	10/9/2007

Qualifiers:

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

U Indicates the compound was analyzed for but not detecte

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Date: 12-Oct-07

Date: 12-Oct-07

CLIENT:	Environmental Business	Consultants		C	lient Sample ID:	TP 14	В
Lab Order:	0710095				Tag Number:		
Project:	3035 White Plains Rd				Collection Date:	10/5/2	2007 3:00:00 PM
Lab ID:	0710095-11A				Matrix:	SOIL	
Analyses		Result	Limit	Qual	Units	DF	Date Analyzed
TPH 8015 DIESE	EL RANGE ORGANICS		SW	B015	NA		Analyst: PT
Total DRO TPH		44	63	J	mg/Kg-dry	1	10/12/2007 1:42:00 AM
Surr: o-Terphe	nyl	111	42-134		%REC	1	10/12/2007 1:42:00 AM
PERCENT MOIS	TURE		D2:	216			Analyst: GE
Percent Moisture		11.4	0		wt%	1	10/9/2007

Qualifiers:

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

U Indicates the compound was analyzed for but not detecte

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

CLIENT: Lab Order: Project: Lab ID:	Environmental Business 0710095 3035 White Plains Rd 0710095-12A	s Consultants	(Client Sample ID: Tag Number: Collection Date: Matrix:	TP15 10/5/2 SOIL	A 2007 3:00:00 PM
Analyses		Result	Limit Qual	Units	DF	Date Analyzed
T PH 8015 DIES Total DRO TPH Surr: o-Terph	EL RANGE ORGANICS	U 109	SW8015 66 42-134	NA mg/Kg-dry %REC	1	Analyst: PT 10/12/2007 2:10:00 AM 10/12/2007 2:10:00 AM
PERCENT MOI Percent Moistur	STURE ^{re}	15.3	D2216 0	wt%	1	Analyst: GE 10/9/2007

Qualifiers:

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

U Indicates the compound was analyzed for but not detecte

- Value above quantitation range Е
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits
- х Value exceeds Maximum Contaminant Level

Date: 12-Oct-07

10/9/2007

NYSDOH	11418
NJDEP	NY050
CTDOH	PH-0205
PADEP	68-00573

Friday, October 12, 2007

Charles Sosik **Environmental Business Consultants** 9 Peconic Road Ridge, NY 11961

TEL: (631) 924-0870 FAX (631) 924-0870

RE: 3035 White Plains Rd

Dear Charles Sosik:

Order No.: 0710094

American Analytical Laboratories, LLC. received 12 sample(s) on 10/8/2007 for the analyses presented in the following report.

Samples were analyzed in accordance with the test procedures documented on the chain of custody and detailed throughout the text of this report.

The limits provided in the data package are analytical reporting limits and not Federal or Local mandated values to which the sample results should be compared.

There were no problems with the analyses and all data for associated QC met laboratory specifications. If there are any exceptions a Case Narrative is provided in the report.

If you have any questions regarding these tests results, please do not hesitate to call (631) 454-6100 or email me directly at lbeyer@american-analytical.com.

Sincerely,

Slife Lori Beyer

Lab Director

......

0710094-11A

0710094-12A

TP10C

TP11A

Date: 12-Oct-07

10/8/2007

10/8/2007

CLIENT: Project: Lab Order:	Environmental Business C 3035 White Plains Rd 0710094	onsultants	Work Order	Sample Summary
Lab Sample ID	Client Sample ID	Tag Number	Date Collected	Date Received
0710094-01A	TP7B		10/5/2007 2:00:00 PM	10/8/2007
0710094-02A	TP8A		10/5/2007 2:00:00 PM	10/8/2007
0710094-03A	TP8B		10/5/2007 2:00:00 PM	10/8/2007
0710094-04A	TP8C		10/5/2007 2:00:00 PM	10/8/2007
0710094-05A	TP8.5A		10/5/2007 2:00:00 PM	10/8/2007
0710094-06A	TP9A		10/5/2007 2:00:00 PM	10/8/2007
0710094-07A	TP9B		10/5/2007 2:00:00 PM	10/8/2007
0710094-08A	TP9C		10/5/2007 2:00:00 PM	10/8/2007
0710094-09A	TP10A		10/5/2007 2:00:00 PM	10/8/2007
0710094-10A	TP10B		10/5/2007 3:00:00 PM	10/8/2007

10/5/2007 3:00:00 PM

10/5/2007 3:00:00 PM

AMERICAN ANALYTICAL ELABORATORI	56 56 (63	TOLED 1) 454-(O STREET • FA 6100 • FAX (631	RMINGDALE, NEW YOR) 454-8027	tk 11735 TAG # / COC	NYSDOH 11418 CTDOH PH-0205 NJDEP NY050 PADEP 68-573
	CHA		F CUST	<u>DV / REQUE</u>	ST FOR ANALYSIS DOCU	JMENT)
CLIENT NAME/ADDRES CLANTICS 5.	د. در لا		CONT	Cherles Josik	SAMPLER (SIGNATURE)	SAMPLE(S) (YES/) NO
9 Reconic	la. K	ントン	۲N ۲		SAMPLER NAME (PRINT)	
PROJECT LOCATION:						End
LABORATORY ID #	AATRIX #	CON-	SAMPLING DATE/ TIME	SAMPLE # - LOCATION		METHANOL PRESERVED SAMPLES I VOLATILE VIAL #]
6710054-019	S	1	10/5 2°m	TP78		
A 60 -				TPSA		
480 -				TPSB		
- OHA -				TP8 c		
-054				TP8.5A		
K.00 -				TPGA		
VEO.				TP9B		
- 0SA		_		TP9c		
NPO-			\$	TPIDA		
-104			3 63	TPIOR		
-n.A				TPIOC		
Ver-		~		TPU A		
	ı					¥ / /
					COOLER	remperature:
MATRIX S=SOIL; L=LIQL	110; SL=SLU	DGE; A-AI	IR; W=WIPE; P=PAINT	CHIPS; B=BULK MATERIAL	URNAROUND REQUIRED: COMMEN	S / INSTRUCTIONS
TYPE G=GRAB/C=C	COMPOSITI	E, SS=SP	LIT SPOON	N .		
REUNQUISHED BY (SIG	NATURE)	2		ED NAME	RECEIVED BY LAB (SIGNATURE) DAT	PRINTED NAME
	/	F	ME	wor lawer	Karley Leen TIME	IC Ner in
RELINQUISHED BY (\$1G	NATURÈ)	10	ATE PRINTI	ED NAME	RÉCEIVED BY LAB (SIGNATURE)	PRINTED NAME
7		Ē	ME		TIME	
		HM	ITE-OFFICE / CA	NARY-LAB / PINK-SAMPLE	CUSTODIAN / GOLDENROD-CLIENT	

AMERICAN ANALYTICAL LABORATORIES, LLC 56 TOLEDO STREET FARMINGDALE, NEW YORK 11735 TELEPHONE: (631) 454-6100 FAX: (631) 454-8027

DATA REPORTING QUALIFIERS

For reporting results, the following "Results Qualifiers" are used:

Value	If the result is greater than or equal to the detection limit, report the value
U	Indicates the compound was analyzed for but was not detected. Report the minimum detection limit for the sample with the U, i.e. "10U". This is not necessarily the instrument detection limit attainable for this particular sample based on any concentration or dilution that may have been required.
J	 Indicates an estimated value. The flag is used: (1) When estimating a concentration for a tentatively identified compound (library search hits, where a 1:1 response is assumed.) (2) When the mass spectral data indicated the identification, however the result was less than the specified detection limit greater than zero. If the detection limit was 10ug/L and a concentration of 3ug/L was calculated report as 3J. This flag is used when similar situations arise on any organic parameter i.e. Pesticide, PCBs and others.
В	Indicates the analyte was found in the blank as well as the sample report "10B".
E	Indicates the analytes concentration exceeds the calibrated range of the instrument for that specific analysis.
D	This flag identifies all compounds identified in an analysis at a secondary dilution factor.
Ρ	This flag is used for Pesticide / PCB target analyte when there is >25% difference for detected concentrations between the two GC Columns. The higher of the two values is reported on Form I and flagged with a "P".
N	This flag indicates presumptive evidence of a compound. This is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It applies to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the flag is not used.
Н	Indicates sample was received and/or analyzed outside of The method allowable holding time

CLIENT:	Environmental Business Cons	ultants		С	lient Sample ID:	TP7B	
Lab Order:	0710094				Tag Number:		
Project:	3035 White Plains Rd				Collection Date:	10/5/2	007 2:00:00 PM
Lab ID:	0710094-01A				Matrix:	SOIL	
Analyses	Res	ult I	Limit	Qual	Units	DF	Date Analyzed

					-
TPH 8015 DIESEL RANGE ORGANICS		SW8015	NA		Analyst: PT
Total DRO TPH	U	84	mg/Kg-dry	1	10/11/2007 11:47:00 AM
Surr: o-Terphenyl	101	42-134	%REC	1	10/11/2007 11:47:00 AM
PERCENT MOISTURE		D2216			Analyst: GE
Percent Moisture	8.01	0	wt%	1	10/9/2007

Oualifiers:	в	Analyte detected in the associated Method Blank	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits
	ND	Not Detected at the Reporting Limit	S	Spike Recovery outside accepted recovery limits
	U	Indicates the compound was analyzed for but not detecte	х	Value exceeds Maximum Contaminant Level
		, .		Dage 1 a

Page 1 of 12

CLIENT:	Environmental Business Consultants
Lab Order:	0710094
Project:	3035 White Plains Rd
Lab ID:	0710094-02A

Date: 12-Oct-07

Client Sample ID: TP8A Tag Number: Collection Date: 10/5/2007 2:00:00 PM Matrix: SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TPH 8015 DIESEL RANGE ORGANICS		SW8015	NA		Analyst: PT
	U	70	mg/Kg-dry	1	10/11/2007 1:11:00 PM
Surr: o-Terphenyl	112	42-134	%REC	1	10/11/2007 1:11:00 PM
PERCENT MOISTURE		D2216			Analyst: GE
Percent Moisture	10.9	0	wt%	1	10/9/2007

Qua	lifiers:
-----	----------

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

U Indicates the compound was analyzed for but not detecte

- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits
- X Value exceeds Maximum Contaminant Level

CLIENT: Environmental Business Consultants Lab Order: 0710094 **Project:** 3035 White Plains Rd Lab ID: 0710094-03A

Date: 12-Oct-07

Client Sample ID: TP8B Tag Number: Collection Date: 10/5/2007 2:00:00 PM Matrix: SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TPH 8015 DIESEL RANGE ORGANICS		SW8015	NA ma/Ka dar		Analyst: PT
Surr: o-Terphenyl	110	42-134	%REC	1	10/11/2007 1:38:00 PM 10/11/2007 1:38:00 PM
PERCENT MOISTURE		D2216			Analyst: GE
Percent Moisture	12.4	0	wt%	1	10/9/2007

Qualifiers:	В	Analyte detected in the associated Method Blank	E	Value above quantitation range
-	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantita
	ND	Not Detected at the Reporting Limit	S	Spike Recovery outside accepte

U Indicates the compound was analyzed for but not detecte

- quantitation limits
- accepted recovery limits
- х Value exceeds Maximum Contaminant Level

CLIENT:Environmental Business ConsultantsLab Order:0710094Project:3035 White Plains RdLab ID:0710094-04A

Date: 12-Oct-07

Client Sample ID: TP8C Tag Number: Collection Date: 10/5/2007 2:00:00 PM Matrix: SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TPH 8015 DIESEL RANGE ORGANICS		SW8015	NA		Analyst: PT
	U	66	mg/Kg-dry	1	10/11/2007 2:06:00 PM
Surr: o-Terphenyl	104	42-134	%REC	1	10/11/2007 2:06:00 PM
PERCENT MOISTURE		D2216			Analyst: GE
Percent Moisture	11.0	0	wt%	1	10/9/2007

Qual	ifiers:
------	---------

B Analyte detected in the associated Method Bla						Contraction of the second second
	В	Analyte detected	l in the	associated	Method	Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

U Indicates the compound was analyzed for but not detecte

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

CLIENT:Environmental Business ConsultantsLab Order:0710094Project:3035 White Plains RdLab ID:0710094-05A

Date: 12-Oct-07

Client Sample ID: TP8.5A Tag Number: Collection Date: 10/5/2007 2:00:00 PM Matrix: SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TPH 8015 DIESEL RANGE ORGANICS		SW8015	NA		Analyst: PT
Total DRO TPH	U	67	mg/Kg-dry	1	10/11/2007 2:34:00 PM
Surr: o-Terphenyl	106	42-134	%REC	1	10/11/2007 2:34:00 PM
PERCENT MOISTURE		D2216			Analyst: GE
Percent Moisture	17.4	0	wt%	1	10/9/2007

Qualifiers:	В	Analyte detected in the associated Method Blank	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	I.	Analyte detected below quantitation limits
	ND	Not Detected at the Reporting Limit	S	Spike Recovery outside accepted recovery limits
	U	Indicates the compound was analyzed for but not detecte	х	Value exceeds Maximum Contaminant Level

Page 5 of 12

CLIENT:Environmental BusinessLab Order:0710094Project:3035 White Plains RdLab ID:0710094-06A		Consultants		Client Sample ID: Tag Number: Collection Date: Matrix:	TP9A 10/5/2007 2:00:00 PM SOIL	
Analyses		Result	Limit Qua	l Units	DF	Date Analyzed
TPH 8015 DIES Total DRO TPH Surr: o-Terph	EL RANGE ORGANICS	510 111	SW8015 110 42-134	NA mg/Kg-dry %REC	1	Analyst: PT 10/11/2007 3:02:00 PM 10/11/2007 3:02:00 PM
PERCENT MOI Percent Moistur	STURE ^e	9.28	D2216 0	wt%	1	Analyst: GE 10/9/2007

Qualifiers:	В	Analyte detected in the associated Method Blank	E	Value above quantitation rat
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quar
	ND	Not Detected at the Reporting Limit	S	Spike Recovery outside acce

U Indicates the compound was analyzed for but not detecte

- nge
- ntitation limits
- epted recovery limits
- X Value exceeds Maximum Contaminant Level
| CLIENT:
Lab Order: | Environmental Business
0710094 | s Consultants | | C | lient Sample ID | : TP9B | |
|-----------------------|-------------------------------------|---------------|-------|------|---------------------------|---------------------|----------------|
| Project:
Lab ID: | 3035 White Plains Rd
0710094-07A | | | | Collection Date
Matrix | : 10/5/20
: SOIL | 007 2:00:00 PM |
| Analyses | | Result | Limit | Qual | Units | DF | Date Analyzed |

Anaryses	Result	Limit Qual	Units	DF	Date Analyzed
TPH 8015 DIESEL RANGE ORGANICS Total DRO TPH Surr: o-Terphenyl	230 110	SW8015 71 42-134	NA mg/Kg-dry %REC	1	Analyst: PT 10/11/2007 3:30:00 PM 10/11/2007 3:30:00 PM
PERCENT MOISTURE Percent Moisture	11.6	D2216 0	wt%	1	Analyst: GE 10/9/2007

Qualifiers:	В	Analyte detected in the associated Method Blank	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	t	Analyte detected below quantitation limits
	ND	Not Detected at the Reporting Limit	S	Spike Recovery outside accepted recovery

U Indicates the compound was analyzed for but not detecte

S Spike Recovery outside accepted recovery limits
 X Value exceeds Maximum Contaminant Level

Date: 12-Oct-07

CLIENT:	Environmental Business Consultants	C
Lab Order:	0710094	-
Project:	3035 White Plains Rd	
Lab ID:	0710094-08A	

Date: 12-Oct-07

Client Sample ID: TP9C Tag Number: Collection Date: 10/5/2007 2:00:00 PM Matrix: SOIL

Analyses	Result Limit Qual Units		Units	DF	Date Analyzed
TPH 8015 DIESEL RANGE ORGANICS Total DRO TPH Surr: o-Terphenyl	U 112	SW8015 62 42-134	NA mg/Kg-dry %REC	1	Analyst: PT 10/11/2007 3:58:00 PM 10/11/2007 2:59:00 PM
PERCENT MOISTURE Percent Moisture	10.7	D2216 0	wt%	1	Analyst: GE 10/9/2007

Qualifiers:	В	Analyte detected in the associated Method Blank	 E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits
	ND	Not Detected at the Reporting Limit	S	Spike Recovery outside accepted recovery limits
	U	Indicates the compound was analyzed for but not detecte	х	Value exceeds Maximum Contaminant Level

CLIENT:	Environmental Business Consultants
Lab Order:	0710094
Project:	3035 White Plains Rd
Lab ID:	0710094-09A

Date: 12-Oct-07

.....

Client Sample ID: TP10A Tag Number: Collection Date: 10/5/2007 2:00:00 PM Matrix: SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TPH 8015 DIESEL RANGE ORGANICS Total DRO TPH Surr: o-Terphenyl	1500 111	SW8015 75 42-134	NA mg/Kg-dry %REC	1 1	Analyst: PT 10/11/2007 4:26:00 PM 10/11/2007 4:26:00 PM
PERCENT MOISTURE Percent Moisture	11.5	D2216 0	wt%	1	Analyst: GE 10/9/2007

Qualifiers:	в	Analyte detected in the associated Method Blank	E	Value above quantitation range
	H	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits
	ND	Not Detected at the Reporting Limit	S	Spike Recovery outside accepted recovery limits
	U	Indicates the compound was analyzed for but not detecte	х	Value exceeds Maximum Contaminant Level
				Page 9 of 12

CLIENT:	Environmental Business Consultants
Lab Order:	0710094
Project:	3035 White Plains Rd
Lab ID:	0710094-10A

.

Date: 12-Oct-07

Client Sample ID: TP10B Tag Number: Collection Date: 10/5/2007 3:00:00 PM Matrix: SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TPH 8015 DIESEL RANGE ORGANICS Total DRO TPH Surr: o-Terphenyl	9500 110	SW8015 73 42-134	NA mg/Kg-dry %REC	1	Analyst: PT 10/11/2007 4:54:00 PM 10/11/2007 4:54:00 PM
PERCENT MOISTURE Percent Moisture	13.8	D2216 0	wt%	1	Analyst: GE 10/9/2007

Qualifiers:	В	Analyte detected in the associated Method Blank	E	Value above quantitation range
	H	Holding times for preparation or analysis exceeded	ľ	Analyte detected below quantitation limits
	ND	Not Detected at the Reporting Limit	S	Spike Recovery outside accepted recovery limits
	U	Indicates the compound was analyzed for but not detecte	x	Value exceeds Maximum Contaminant Level

CLIENT:Environmental Business ConsultantsLab Order:0710094Project:3035 White Plains RdLab ID:0710094-11A

Date: 12-Oct-07

Client Sample ID: TP10C Tag Number: Collection Date: 10/5/2007 3:00:00 PM Matrix: SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TPH 8015 DIESEL RANGE ORGANICS Total DRO TPH Surr: o-Terphenyl	360 112	SW8015 77 42-134	NA mg/Kg-dry %REC	1	Analyst: PT 10/11/2007 5:22:00 PM 10/11/2007 5:22:00 PM
PERCENT MOISTURE Percent Moisture	7,77	D2216 0	wt%	1	Analyst: GE

Qualifiers:

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

U Indicates the compound was analyzed for but not detecte

- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits
- X Value exceeds Maximum Contaminant Level

CLIENT:	Environmental Business Consultants
Lab Order:	0710094
Project:	3035 White Plains Rd
Lab ID:	0710094-12A

Date: 12-Oct-07

Client Sample ID: TP11A Tag Number: Collection Date: 10/5/2007 3:00:00 PM Matrix: SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TPH 8015 DIESEL RANGE ORGANICS Total DRO TPH Surr: o-Terphenyl	U 112	SW8015 85 42-134	NA mg/Kg-dry %REC	1	Analyst: PT 10/11/2007 5:50:00 PM 10/11/2007 5:50:00 PM
PERCENT MOISTURE Percent Moisture	9.42	D2216 0	wt%	1	Analyst: GE 10/9/2007

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

U Indicates the compound was analyzed for but not detecte

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

X Value exceeds Maximum Contaminant Level

 NYSDOH
 11418

 NJDEP
 NY050

 CTDOH
 PH-0205

 PADEP
 68-00573

Thursday, October 11, 2007

Charles Sosik Environmental Business Consultants 9 Peconic Road Ridge, NY 11961 TEL: (631) 924-0870 FAX (631) 924-0870

RE: 3035 White Plains Rd

Dear Charles Sosik:

Order No.: 0710093

American Analytical Laboratories, LLC. received 12 sample(s) on 10/8/2007 for the analyses presented in the following report.

Samples were analyzed in accordance with the test procedures documented on the chain of custody and detailed throughout the text of this report.

The limits provided in the data package are analytical reporting limits and not Federal or Local mandated values to which the sample results should be compared.

There were no problems with the analyses and all data for associated QC met laboratory specifications. If there are any exceptions a Case Narrative is provided in the report.

If you have any questions regarding these tests results, please do not hesitate to call (631) 454-6100 or email me directly at lbeyer@american-analytical.com.

Sincerely,

Lori Bey Lab Director

Date: 11-Oct-07

CLIENT: Project: Lab Order:	Environmental Business Co 3035 White Plains Rd 0710093	onsultants	Work Order Sample Summary					
Lab Sample ID	Client Sample ID	Tag Number	Date Collected	Date Received				
0710093-01A	TP1A		10/5/2007 12:00:00 PM	10/8/2007				
0710093-02A	TP1B		10/5/2007 12:00:00 PM	10/8/2007				
0710093-03A	TP2A		10/5/2007 12:00:00 PM	10/8/2007				
0710093-04A	TP2B		10/5/2007 12:00:00 PM	10/8/2007				
0710093-05A	TP2C		10/5/2007 12:00:00 PM	10/8/2007				
0710093-06A	TP3A		10/5/2007 12:00:00 PM	10/8/2007				
0710093-07A	TP4A		10/5/2007 1:00:00 PM	10/8/2007				
0710093-08A	TP5A		10/5/2007 1:00:00 PM	10/8/2007				
0710093-09A	TP6A		10/5/2007 1:00:00 PM	10/8/2007				
0710093-10A	TP6B		10/5/2007 1:00:00 PM	10/8/2007				
0710093-11A	TP6C		10/5/2007 1:00:00 PM	10/8/2007				
0710093-12A	TP7A		10/5/2007 1:00:00 PM	10/8/2007				

l 11418 PH-0205 NY050 68-573		YES NO	YES / NO		NOL PRESERVED SAMPLES LATILE VIAL #]																	7			· · · · · · · · · · · · · · · · · · ·
NYSDOH CTDOH NJDEP PADEP	MENT	SAMPLE(S) SEALED	CORRECT CONTAINER(S)		I vc													MPERATURE:	/ INSTRUCTIONS		RINTED NAME	l Rera	RINTED NAME		
200	SIS DOCU		<i>, ,</i>															COOLER TE	COMMENTS	/	DATE/P/ UN F	TIMEL	DATE	TIME	ENT
TAG # /	R ANALYS	R (SIGNATURE)	R NAME (PRIVIT	2 40 5															aured:	ТАТ О _В ү /	AB (SIGNATURE)	Lell		_	/ GOLDENROD-CLII
YORK 11735	UEST FO	sik same		SISA NOT	ATION				****								\land		L TURNAROUND RE		RECEIVED BY I	r Kale	RECEIVED BY L		MPLE CUSTODIAN
RMINGDALE, NEW 1454-8027	DY / REQ	or charler so	-	Road	SAMPLE # - LOC	TP/A	TPI B	TP2.	TP2s	TP2C	TP3 A	TPHA	TPSA	TPGA	TP6B	TPLC	TP7A		CHIPS; B≃BULK MATERIA		D NAME	ion (suga	D NAME		IARY-LAB / PINK-SAI
REET • FAF • FAX (631)	CUSTC	CONTA	ુવા	Plains	MPLING Date/ Time	1200					\rightarrow	م م	•				→		IPE; P=PAINT (NOO		- D d M	PRINTE		FFICE / CAN
0LEDO STI 454-6100	N OF C		איז יונ	24:40	DN- SAI	10/5	•										>		E; A-AIR; W=W	SS=SPLIT SP(DATE	т М 2 -	DATE	I I ME	WHITE-OI
56 TC <u>S</u> (631)	CHAIN	; >.k	Ridge,	1 5203	ATRIX # CC	-													D' SF=SLUDGI	OMPOSITE, S	ATURE)	\backslash	ATURE)	\setminus	
AMERICAN ANALYTICAL ELABORATORIE)	CLIENT NAME/ADDRESS Cherles Se	9 Pressie	PROJECT LOCATION: 3	LABORATORY M	0710093-01A	4co-	, 03. 4	Who-	-05A	-06,9	450.	-08A	W60-	-10 <i>A</i>	611-	- WE1-		MATRIX S=SOIL; L=LIQUII	TYPE G=GRAB; C=CC	RELINGUISHED BY SIGN		RELINQUISHED BY (SIGN		

AMERICAN ANALYTICAL LABORATORIES, LLC 56 TOLEDO STREET FARMINGDALE, NEW YORK 11735 TELEPHONE: (631) 454-6100 FAX: (631) 454-8027

DATA REPORTING QUALIFIERS

For reporting results, the following "Results Qualifiers" are used:

Value	If the result is greater than or equal to the detection limit, report the value						
U	Indicates the compound was analyzed for but was not detected. Report the minimum detection limit for the sample with the U, i.e. "10U". This is not necessarily the instrument detection limit attainable for this particular sample based on any concentration or dilution that may have been required.						
J	 Indicates an estimated value. The flag is used: (1) When estimating a concentration for a tentatively identified compound (library search hits, where a 1:1 response is assumed.) (2) When the mass spectral data indicated the identification, however the result was less than the specified detection limit greater than zero. If the detection limit was 10ug/L and a concentration of 3ug/L was calculated report as 3J. This flag is used when similar situations arise on any organic parameter i.e. Pesticide, PCBs and others. 						
В	Indicates the analyte was found in the blank as well as the sample report "10B".						
E	Indicates the analytes concentration exceeds the calibrated range of the instrument for that specific analysis.						
D	This flag identifies all compounds identified in an analysis at a secondary dilution factor.						
Ρ	This flag is used for Pesticide / PCB target analyte when there is >25% difference for detected concentrations between the two GC Columns. The higher of the two values is reported on Form I and flagged with a "P".						
Ν	This flag indicates presumptive evidence of a compound. This is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It applies to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the flag is not used.						
н	Indicates sample was received and/or analyzed outside of The method allowable holding time						

CLIENT:	Environmental Business Consul	ants CI	ient Sample ID:	TPIA	
Lab Order:	0710093		Tag Number:		
Project:	3035 White Plains Rd	(Collection Date:	10/5/20	007 12:00:00 PM
Lab ID:	0710093-01A		Matrix:	SOIL	
Analyses	Resul	t Limit Qual	Units	DF	Date Analyzed
TPH 8015 DIES	SEL RANGE ORGANICS	SW8015	NA		Analyst: PT

IT IT OT O DECEE ITARICE OR CARGO		0110010	1.17		i alonyoti r t
Total DRO TPH	U	80	mg/Kg-dry	1	10/10/2007 7:36:00 PM
Surr: o-Terphenyl	102	42-134	%REC	1	10/10/2007 7:36:00 PM
PERCENT MOISTURE		D2216			Analyst: GE
Percent Moisture	10.6	0	wt%	1	10/9/2007

Qualifiers:

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

U Indicates the compound was analyzed for but not detecte

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

X Value exceeds Maximum Contaminant Level

Date: 11-Oct-07

CLIENT: Lab Order:	Environmental Business 0710093	s Consultants Client Sample ID: Tag Number: Collection Date:			TP1B		
Project:	3035 White Plains Rd			Collection Date: Matrix:	10/5/. SOIL	2007 12:00:00 PM	
Analyses	071009J-02A	Result	Limit Qual	Units	DF	Date Analyzed	
TPH 8015 DIES	EL RANGE ORGANICS		SW8015	NA		Analyst: PT	
Surr: o-Terph	ı nenyl	106	84 42-134	Mg/Kg-dry %REC	1	10/10/2007 8:04:00 PM 10/10/2007 8:04:00 PM	
PERCENT MOI	STURE		D2216			Analyst: GE	

0

wt%

14.8

Qualifiers:

Percent Moisture

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

U Indicates the compound was analyzed for but not detecte

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

X Value exceeds Maximum Contaminant Level

Date: 11-Oct-07

1

10/9/2007

PERCENT MOISTURE

Percent Moisture

Date: 11-Oct-07

1

Analyst: GE

10/9/2007

CLIENT: Lab Order:	Environmental Business 0710093	Consultants		Client Sample ID: Tag Number:	TP2A	
Project:	3035 White Plains Rd			Collection Date:	10/5/2	007 12:00:00 PM
Lab ID:	0710093-03A			Matrix:	SOIL	
Analyses		Result	Limit Qua	l Units	DF	Date Analyzed
TPH 8015 DIES Total DRO TPH	EL RANGE ORGANICS	U	SW8015 83	NA mg/Kg-dry	1	Analyst: PT 10/10/2007 8:32:00 PM
Surr: o-Terph	nenyl	105	42-134	%REC	1	10/10/2007 8:32:00 PM

7.47

D2216

0

wt%

Q	ua	lifie	rs:
_			

	В	Analyte detected	l in the	associated	Method	Blank
--	---	------------------	----------	------------	--------	-------

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

U Indicates the compound was analyzed for but not detecte

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

X Value exceeds Maximum Contaminant Level

CLIENT: Environmental Busine Lab Order: 0710093 Project: 3035 White Plains Rd		Consultants	(Client Sample ID: Tag Number: Collection Date:	TP2B	TP2B 10/5/2007 12:00:00 PM	
Lab ID:	0710093-04A			Matrix:	SOIL		
Analyses		Result	Limit Qua	Units	DF	Date Analyzed	
TPH 8015 DIES Total DRO TPF Surr: o-Terpf	SEL RANGE ORGANICS	U 107	SW8015 110 42-134	NA mg/Kg-dry %REC	1	Analyst: PT 10/10/2007 8:59:00 PM 10/10/2007 8:59:00 PM	
PERCENT MOI	STURE		D2216			Analyst: GE	

0

wt%

6.30

Qualifiers:

Percent Moisture

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

U Indicates the compound was analyzed for but not detecte

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

X Value exceeds Maximum Contaminant Level

Date: 11-Oct-07

1

10/9/2007

Date: 11-Oct-07

CLIENT:	Environmental Business	Consultants	C	lient Sample ID:	TP2C	
Lab Order:	0710093			Tag Number:		
Project:	3035 White Plains Rd			Collection Date:	10/5/20	07 12:00:00 PM
Lab ID:	0710093-05A			Matrix:	SOIL	
Analyses		Result	Limit Qual	Units	DF	Date Analyzed
TPH 8015 DIES	SEL RANGE ORGANICS		SW8015	NA		Analyst: PT
Total DRO TPH	4	U	110	mg/Kg-dry	1	10/10/2007 9:27:00 PM

Surr: o-Terphenyl	101	42-134	%REC	1	10/10/2007 9:27:00 PM
PERCENT MOISTURE		D2216			Analyst: GE
Percent Moisture	8.78	0	wt%	1	10/9/2007

n		1.		
v	ua		cis:	

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

U Indicates the compound was analyzed for but not detecte

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

X Value exceeds Maximum Contaminant Level

PERCENT MOISTURE

Percent Moisture

				, , ,	······································		
CLIENT:	Environmental Business	Consultants		С	lient Sample ID	: TP3A	
Lab Order:	0710093				Tag Number		
Project:	3035 White Plains Rd				Collection Date	: 10/5/2	2007 12:00:00 PM
Lab ID:	0710093-06A				Matrix	: SOIL	
Analyses		Result	Limit	Qual	Units	DF	Date Analyzed
TPH 8015 DIES	SEL RANGE ORGANICS		SW8	015	NA		Analyst: PT
Total DRO TPF	1	U	110		mg/Kg-dry	1	10/10/2007 9:55:00 PM
Surr: o-Terph	ıenyl	105	42-134		%REC	1	10/10/2007 9:55:00 PM

8.78

D2216

wt%

0

Date: 11-Oct-07

1

Analyst: GE

10/9/2007

Oualifiers:	В	Analyte detected in the associated Method Blank	Е	Value above quantitation range
•	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits
	ND	Not Detected at the Reporting Limit	S	Spike Recovery outside accepted recovery limits
	υ	Indicates the compound was analyzed for but not detecte	х	Value exceeds Maximum Contaminant Level
				Page 6 of

CLIENT:	Environmental Business (Consultants	C	Client Sample ID:	TP4A	
Lab Order:	0710093			Tag Number:		
Project:	3035 White Plains Rd			Collection Date:	10/5/2007	1:00:00 PM
Lab ID:	0710093-07A			Matrix:	SOIL	
Analyses		Result	Limit Qual	Units	DF	Date Analyzed

Date: 11-Oct-07

					-
TPH 8015 DIESEL RANGE ORGANICS		SW801	5 NA		Analyst: PT
Total DRO TPH	560	64	mg/Kg-dry	1	10/10/2007 10:23:00 PM
Surr: o-Terphenyl	113	42-134	%REC	1	10/10/2007 10:23:00 PM
PERCENT MOISTURE		D2216	i		Analyst: GE
Percent Moisture	13.3	0	wt%	1	10/9/2007

Oualifiers:	В	Analyte detected in the associated Method Blank	E	Value above quantitation range
•	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits
	ND	Not Detected at the Reporting Limit	S	Spike Recovery outside accepted recovery limits
	U	Indicates the compound was analyzed for but not detecte	х	Value exceeds Maximum Contaminant Level
				$D_{2} = 7 - 612$

Date: 11-Oct-07

CLIENT: Lab Order: Project: Lab ID:	Environmental Business 0710093 3035 White Plains Rd 0710093-08A	Consultants	C	Client Sample ID: Tag Number: Collection Date: Matrix:	TP5A 10/5/2 SOIL	2007 1:00:00 PM
Analyses		Result	Limit Qual	Units	DF	Date Analyzed
TPH 8015 DIES	SEL RANGE ORGANICS		SW8015	NA		Analyst: PT
Total DRO TPH	<u>ş</u>	U	77	mg/Kg-dry	1	10/10/2007 10:50:00 PM
Surr: o-Terph	nenyl	113	42-134	%REC	1	10/10/2007 10:50:00 PM
PERCENT MOI	STURE		D2216			Analyst: GE
Percent Moistu	re	7.08	0	wt%	1	10/9/2007

Oualifiers:	В	Analyte detected in the associated Method Blank	E	Value above quantitation range
2	Н	Holding times for preparation or analysis exceeded	Į.	Analyte detected below quantitation limits
	ND	Not Detected at the Reporting Limit	S	Spike Recovery outside accepted recovery limits
	U	Indicates the compound was analyzed for but not detecte	х	Value exceeds Maximum Contaminant Level
				Page 8

PERCENT MOISTURE

Percent Moisture

CLIENT:	Environmental Business	Consultants	c	lient Sample ID:	TP6A			
Lab Order: 0710093				Tag Number:				
Project: 3035 White Plains Rd			Collection Date: 10/5/2007 1:00:00 PM					
Lab ID:	0710093-09A			Matrix:	SOIL			
Analyses		Result	Limit Qual	Units	DF	Date Analyzed		
TPH 8015 DIES	EL RANGE ORGANICS		SW8015	NA		Analyst: PT		
Total DRO TPH	1	U	92	mg/Kg-dry	1	10/10/2007 11:18:00 PM		
Surr: o-Terph	nenyl	105	42-134	%REC	1	10/10/2007 11:18:00 PM		

9.44

D2216

wt%

0

Qualifiers:	В	Analyte detected in the associated Method Blank	E	Value above quantit
•	ŀI	Holding times for preparation or analysis exceeded	J	Analyte detected bel
				D ⁽¹⁾ D

Not Detected at the Reporting Limit ND U Indicates the compound was analyzed for but not detecte

Spike Recovery outside accepted recovery limits S

Date: 11-Oct-07

1

Analyst: GE

10/9/2007

Value exceeds Maximum Contaminant Level Х

tation range

low quantitation limits

				······					
CLIENT:	Environmental Business	Consultants	(TP6B					
Lab Order:	0710093			Tag Number:	:				
Project:	3035 White Plains Rd			2007 1:00:00 PM					
Lab ID:	0710093-10A			Matrix:	SOIL				
Analyses		Result	Limit Qual	Units	DF	Date Analyzed			
TPH 8015 DIES	SEL RANGE ORGANICS		SW8015	NA		Analyst: PT			
Total DRO TPH	1	U	110	mg/Kg-dry	1	10/10/2007 11:46:00 PM			
Surr: o-Terphenyl		113	42-134	%REC	1	10/10/2007 11:46:00 PM			
PERCENT MOISTURE			D2216		Analyst: GE				

0

wt%

8.43

Qualifiers:

Percent Moisture

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

U Indicates the compound was analyzed for but not detecte

Value above quantitation range

Е

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

X Value exceeds Maximum Contaminant Level

Date: 11-Oct-07

1

10/9/2007

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed			
Lab ID:	0710093-11A			Matrix	SOIL				
Project:		Collection Date: 10/5/2007 1:00:00 PM							
Lab Order:	0710093			Tag Number:	:				
CLIENT:	Environmental Business Consult	ants	С	lient Sample ID:	TP6C				

TPH 8015 DIESEL RANGE ORGANICS		SW8015	NA		Analyst: PT
Total DRO TPH	U	110	mg/Kg-dry	1	10/11/2007 12:13:00 AM
Surr: o-Terphenyl	111	42-134	%REC	1	10/11/2007 12:13:00 AM
PERCENT MOISTURE		D2216			Analyst: GE
Percent Moisture	10.3	0	wt%	1	10/9/2007

Oualifiers:	В	Analyte detected in the associated Method Blank	E	Value above quantitation rang
2	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quanti
	ND	Not Detected at the Reporting Limit	S	Spike Recovery outside accept

U Indicates the compound was analyzed for but not detecte ;e

itation limits

Date: 11-Oct-07

ted recovery limits

х Value exceeds Maximum Contaminant Level

.

PERCENT MOISTURE

Percent Moisture

CLIENT:	Environmental Business	Consultants	C	Client Sample ID:	TP7A	
Lab Order:	0710093			Tag Number:		
Project:	3035 White Plains Rd			2007 1:00:00 PM		
Lab ID:	0710093-12A			Matrix:	SOIL	
Analyses		Result	Limit Qual	Units	DF	Date Analyzed
TPH 8015 DIES	EL RANGE ORGANICS		SW8015	NA		Analyst: PT
Total DRO TPH		U	110	mg/Kg-dry	1	10/11/2007 12:41:00 AM
Surr: o-Terph	ienyl	107	42-134	%REC	1	10/11/2007 12:41:00 AM

D2216

wt%

0

8.15

В	Analyte detected in the associated Method Blank	Ę	Value above quantitation range
Н	Holding times for preparation or analysis exceeded	L	Analyte detected below quantitation limits
ND	Not Detected at the Reporting Limit	S	Spike Recovery outside accepted recovery limits
U	Indicates the compound was analyzed for but not detecte	х	Value exceeds Maximum Contaminant Level
	B H ND U	 B Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit U Indicates the compound was analyzed for but not detecte 	B Analyte detected in the associated Method Blank E H Holding times for preparation or analysis exceeded J ND Not Detected at the Reporting Limit S U Indicates the compound was analyzed for but not detecte X

Page 12 of 12

Date: 11-Oct-07

1

Analyst: GE

10/9/2007

 NYSDOH
 11418

 NJDEP
 NY050

 CTDOH
 PH-0205

 PADEP
 68-00573

Tuesday, October 16, 2007

Charles Sosik Environmental Business Consultants 9 Peconic Road Ridge, NY 11961

TEL: (631) 924-0870 FAX (631) 924-0870

RE: 3035 White Plains Rd

Order No.: 0710096

Dear Charles Sosik:

American Analytical Laboratories, LLC. received 7 sample(s) on 10/8/2007 for the analyses presented in the following report.

Samples were analyzed in accordance with the test procedures documented on the chain of custody and detailed throughout the text of this report.

The limits provided in the data package are analytical reporting limits and not Federal or Local mandated values to which the sample results should be compared.

There were no problems with the analyses and all data for associated QC met laboratory specifications. If there are any exceptions a Case Narrative is provided in the report.

If you have any questions regarding these tests results, please do not hesitate to call (631) 454-6100 or email me directly at lbeyer@american-analytical.com.

Sincerely,

Lori Beyer Lab Director

Date: 16-Oct-07

CLIENT: Project: Lab Order:	Environmental Business (3035 White Plains Rd 0710096	Consultants	Work Order Sample Summary					
Lab Sample ID	Client Sample ID	Tag Number	Date Collected	Date Received				
0710096-01A	TP15B		10/5/2007 4:00:00 PM	10/8/2007				
0710096-02A	TP15C		10/5/2007 4:00:00 PM	10/8/2007				
0710096-03A	TP1-9		10/5/2007 4:00:00 PM	10/8/2007				
0710096-04A	TP10-15		10/5/2007 4:00:00 PM	10/8/2007				
0710096-05A	TP1-5		10/5/2007 4:00:00 PM	10/8/2007				
0710096-06A	TP6-9		10/5/2007 4:00:00 PM	10/8/2007				
0710096-07A	TP10-15		10/5/2007 4:00:00 PM	10/8/2007				

NYSDOH 11418 CTDOH PH-0205 NJDEP NY050 PADEP 68-573	AENT)	SAMPLE(S) XES NO	CONTAINER(S) YES NO		METHANOL PRESERVED SAMPLES I VOLATILE VIAL #]									: 		IPERATURE:	INSTRUCTIONS		RINTED NAME	K.Keur			
1 COC	AIS DOCUN		1. 2. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1		\$ \$									 	COOLER TEM	COMMENTS /		H CA/JAINO	TIME "	DATE	TIME	CLIENT
735 TAG #	FORANALY	SAMPLER (SIGNATURE)	SAMPLER TAME (PRINT)	A A A A A A A A A A A A A A A A A A A	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					>	>	>					ROUND REQUIRED:		IVED BY LAB (SIGNATURE)	are Velly	IVED BY LAB (SIGNATURE)	-	STODIAN / GOLDENROD-C
MINGDALE, NEW YORK 11 454-8027	DY / REQUEST	Cherles Sosik			SAMPLE # - LOCATION	TPIS B	TPIS C	TPI-9	1710-15	5-102	TP6-9	10-15					HIPS; B=BULK MATERIAL	NORMA	D NAME	vor Lawyer K	D NAME RECEI		ARY-LAB / PINK-SAMPLE CUS
-EDO STREET • FAR 154-6100 • FAX (631)	OF CUSTO	CONTAC		lains Road	4- SAMPLING A- DATE/ SS TIME	10 5 4.00		-							· · · ·		; A-AIR; W=WIPE; P=PAINT C	S=SPLIT SPOON		TIME DO 4	DATE PRINTEI	TIME	WHITE-OFFICE / CAN
I 56 TOI <u>■</u> 56 TOI <u>RIES</u> (631) 4	CHAIN	SS	red.	Nhite P	MATRIX # CON	5 1					Ž						auid; sl=sludgE	=COMPOSITE, S	LENATURE)	/	IGNATURE)		
AMERICAN		CLIENT NAME/ADDRI	9 Peceric	PROJECT LOCATION: 3 - 5 5 - 1	LABORATORY ID #	c710096-01A	veo.	- 034	4-04A	- 05A	6-00-	N70-					MATRIX S=SOIL; L=LI	TYPE G=GRAB; C	RECINAUISHED BY (S	AP	RELINQUISHED BY (S.		

AMERICAN ANALYTICAL LABORATORIES, LLC 56 TOLEDO STREET FARMINGDALE, NEW YORK 11735 TELEPHONE: (631) 454-6100 FAX: (631) 454-8027

DATA REPORTING QUALIFIERS

For reporting results, the following "Results Qualifiers" are used:

Value	If the result is greater than or equal to the detection limit, report the value
U	Indicates the compound was analyzed for but was not detected. Report the minimum detection limit for the sample with the U, i.e. "10U". This is not necessarily the instrument detection limit attainable for this particular sample based on any concentration or dilution that may have been required.
J	 Indicates an estimated value. The flag is used: (1) When estimating a concentration for a tentatively identified compound (library search hits, where a 1:1 response is assumed.) (2) When the mass spectral data indicated the identification, however the result was less than the specified detection limit greater than zero. If the detection limit was 10ug/L and a concentration of 3ug/L was calculated report as 3J. This flag is used when similar situations arise on any organic parameter i.e. Pesticide, PCBs and others.
В	Indicates the analyte was found in the blank as well as the sample report "10B".
E	Indicates the analytes concentration exceeds the calibrated range of the instrument for that specific analysis.
D	This flag identifies all compounds identified in an analysis at a secondary dilution factor.
Ρ	This flag is used for Pesticide / PCB target analyte when there is >25% difference for detected concentrations between the two GC Columns. The higher of the two values is reported on Form I and flagged with a "P".
Ν	This flag indicates presumptive evidence of a compound. This is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It applies to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the flag is not used.
н	Indicates sample was received and/or analyzed outside of The method allowable holding time

Date: 16-Oct-07

CLIENT: Lab Order: Project: Lab ID:	Environmental Business 0710096 3035 White Plains Rd 0710096-014	Consultants	Client Sample ID: Tag Number: Collection Date: Matrix:			TP151 10/5/2 SOIL	TP15B 10/5/2007 4:00:00 PM SOIL		
Analyses		Result	Limit (Qual	Units	DF	Date Analyzed		
TPH 8015 DIES Total DRO TPH Surr: o-Terph		U 112	SW80 120 42-134	015	NA mg/Kg-dry %REC	1	Analyst: PT 10/11/2007 1:09:00 AM 10/11/2007 1:09:00 AM		
PERCENT MOIS	STURE	15.9	D22*	16	wt%	1	Analyst: GE 10/9/2007		

O wa	ı	1	fï	~		c	•
Qu4		ŧ		ų,	ŧ.	э	Þ

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

U Indicates the compound was analyzed for but not detecte

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

X Value exceeds Maximum Contaminant Level

Date: 16-Oct-07

CLIENT:	Environmental Business	Consultants	C	lient Sample ID:	TP15	P15C		
Lab Order:	0710096			Tag Number:				
Project:	3035 White Plains Rd			Collection Date:	10/5/2	2007 4:00:00 PM		
Lab ID:	0710096-02A			Matrix:	SOIL			
Analyses		Result	Limit Qual	Units	DF	Date Analyzed		
TPH 8015 DIES	SEL RANGE ORGANICS		SW8015	NA		Analyst: PT		
Total DRO TPH	1	U	99	mg/Kg-dry	1	10/11/2007 1:37:00 AM		
Surr: o-Terph	nenyl	112	42-134	%REC	1	10/11/2007 1:37:00 AM		
PERCENT MO	ISTURE		D2216			Analyst: GE		
Percent Moistu	re	15.8	0	wt%	1	10/9/2007		

Qualifiers:

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

U Indicates the compound was analyzed for but not detecte

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

X Value exceeds Maximum Contaminant Level

Date: 16-Oct-07

.

CLIENT:	Environmental Business (Consultants	C	lient Sample ID:	TP1-9	
Lab Order:	0710096			Tag Number:		
Project:	3035 White Plains Rd			Collection Date:	10/5/20	007 4:00:00 PM
Lab ID:	0710096-03A			Matrix:	SOIL	
Analyses		Result	Limit Qual	Units	DF	Date Analyzed
TCLP MERCUR	RΥ		SW1311/7471	B SW7471B		Analyst: AH
Mercury		U	0.0200	mg/L	1	10/12/2007 1:02:17 PM
PERCENT MOI	STURE		D2216			Analyst: GE
Percent Moistur	e	10.2	0	wt%	1	10/9/2007
TCLP METALS			SW1311/6010	B SW1311		Analyst: JP
Arsenic		U	0.0500	mg/L	1	10/11/2007 3:33:06 PM
Barium		1.84	0.0500	mg/L	1	10/11/2007 3:33:06 PM
Cadmium		U	0.0500	mg/L	1	10/11/2007 3:33:06 PM
Chromium		U	0.0500	mg/L	1	10/11/2007 3:33:06 PM
Lead		0.889	0.0500	mg/L	1	10/11/2007 3:33:06 PM
Selenium		U	0.0500	mg/L	1	10/11/2007 3:33:06 PM
Silver		U	0.0500	mg/L	1	10/11/2007 3:33:06 PM
IGNITABILITY/	FLASHPOINT SW-846 1010		SW1010			Analyst: PB
Ignitability		>	140	°F	1	10/11/2007
PAINT FILTER			SW9095A			Analyst: SAP
Free Liquids		ND	0	Negative	1	10/9/2007
CORROSIVITY			SW9045C			Analyst: SAP
pН		7.20	0	pH Units	1	10/9/2007
REACTIVE CYA	ANIDE		SW7.3.3.2			Analyst: SAP
Reactive Cyanic	de	U	0.111	mg/Kg-dry	1	10/11/2007
REACTIVE SUL	FIDE		SW7.3.4.2			Analyst: SAP
Reactive Sulfide	9	U	2.23	mg/Kg-dry	1	10/11/2007

Analyte detected in the associated Method Blank Е Value above quantitation range В Qualifiers: Н Holding times for preparation or analysis exceeded J Analyte detected below quantitation limits ND Not Detected at the Reporting Limit S Spike Recovery outside accepted recovery limits U Indicates the compound was analyzed for but not detecte х Value exceeds Maximum Contaminant Level

Date: 16-Oct-07

CLIENT: Lab Order:	Environmental Business 0710096	Consultants	C	Client Sample ID: Tag Number:	TP10-	15
Project:	3035 White Plains Rd			Collection Date:	10/5/2	007 4:00:00 PM
Lab ID:	0710096-04A			Matrix:	SOIL	
Analyses		Result	Limit Qual	Units	DF	Date Analyzed
TCLP MERCUR	Y		SW1311/7471	B SW7471B		Analyst: AH
Mercury		U	0.0200	mg/L	1	10/12/2007 1:04:24 PM
PERCENT MOIS	STURF		D2216			Analyst: GE
Percent Moisture	3	9.50	0	wt%	1	10/9/2007
TCLP METALS			SW1311/6010	B SW1311		Analyst: JP
Arsenic		U	0.0500	mg/L	1	10/11/2007 3:35:10 PM
Barium		1.42	0.0500	mg/L	1	10/11/2007 3:35:10 PM
Cadmium		U	0.0500	mg/L	1	10/11/2007 3:35:10 PM
Chromium		U	0.0500	mg/L	1	10/11/2007 3:35:10 PM
Lead		0.357	0.0500	mg/L	1	10/11/2007 3:35:10 PM
Selenium		U	0.0500	mg/L	1	10/11/2007 3:35:10 PM
Silver		U	0.0500	mg/L	1	10/11/2007 3:35:10 PM
IGNITABILITY/F	LASHPOINT SW-846 1010		SW1010			Analyst: PB
Ignitability		>	140	°F	1	10/11/2007
PAINT FILTER			SW9095A			Analyst: SAP
Free Liquids		ND	0	Negative	1	10/9/2007
CORROSIVITY			SW9045C			Analyst: SAP
pН		7.00	0	pH Units	1	10/9/2007
REACTIVE CYA	NIDE		SW7.3.3.2			Analyst: SAP
Reactive Cyanide	e	U	0.110	mg/Kg-dry	1	10/11/2007
REACTIVE SUL	FIDE		SW7.3.4.2			Analyst: SAP
Reactive Sulfide		U	2.21	ma/Ka-drv	1	10/11/2007

Oualifiers:	В	Analyte detected in the associated Method Blank	Е	Value above quantitation range	
-	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits	
	ND	Not Detected at the Reporting Limit	S	Spike Recovery outside accepted recovery limits	
	U	Indicates the compound was analyzed for but not detecte	х	Value exceeds Maximum Contaminant Level	
				P. 1	4

Date: 16-Oct-07

CLIENT: Lab Order:	Environmental Business	Consultants		Cl	ient Ta	Sample ID:	TP1-5	
Project:	3035 White Plains Pd			(- Tolle	ction Date:	10/5/2	007 4·00·00 PM
Lab ID:	0710096-05A			,	20110	Matrix:	SOIL	
	0710090-057							
Analyses		Result	Limit	Qual	Unit	s	DF	Date Analyzed
TCLP MERCURY			SW131	1/74718	1	SW7471B		Analyst: AH
Mercury		U	0.0200	I	mg/L		1	10/12/2007 1:06:31 PM
PERCENT MOIST	TURE		D2:	216				Analyst: GE
Percent Moisture		10.1	0	,	wt%		1	10/9/2007
TCLP METALS			SW131 ⁻	1/6010B	}	SW1311		Analyst: JP
Arsenic		U	0.0500	I	mg/L		1	10/11/2007 3:37:14 PM
Barium		1.49	0.0500	1	mg/L		1	10/11/2007 3:37:14 PM
Cadmium		U	0.0500	1	mg/L		1	10/11/2007 3:37:14 PM
Chromium		U	0.0500	I	mg/L		1	10/11/2007 3:37:14 PM
Lead		0.493	0.0500	1	mg/L		1	10/11/2007 3:37:14 PM
Selenium		U	0.0500	I	mg/L		1	10/11/2007 3:37:14 PM
Silver		U	0.0500	I	mg/L		1	10/11/2007 3:37:14 PM
IGNITABILITY/FL	ASHPOINT SW-846 101	0	SW	1010				Analyst: PB
Ignitability		>	140		۴		1	10/9/2007
CORROSIVITY			SW9	045C				Analyst: SAP
рH		6.80	0		pH U	nits	1	10/9/2007
REACTIVE CYAN	IIDE		SW7	.3.3.2				Analyst: SAP
Reactive Cyanide		U	0.111	I	mg/K	g-dry	1	10/11/2007
REACTIVE SULF	IDE		SW7	.3.4.2				Analyst: SAP
Reactive Sulfide		U	2.23	1	ma/K	q-dry	1	10/11/2007

Oualifiers:	В	Analyte detected in the associated Method Blank	Е	Value above quantitation range
L	Н	Holding times for preparation or analysis exceeded	1	Analyte detected below quantitation limits
	ND	Not Detected at the Reporting Limit	S	Spike Recovery outside accepted recovery limits
	U	Indicates the compound was analyzed for but not detecte	х	Value exceeds Maximum Contaminant Level

Date: 16-Oct-07

CLIENT:	Environmental Business	Consultants		C	Client Sample ID:	TP6-9)
Lab Order:	0710096				Tag Number:		
Project:	3035 White Plains Rd				Collection Date:	10/5/2	2007 4:00:00 PM
Lab ID:	0710096-06A				Matrix:	SOIL	
Analyses		Result	Limit	Qual	Units	DF	Date Analyzed
TCLP MERCUR	(SW131	1/7471	B SW7471B		Analyst: AH
Mercury		U	0.0200		mg/L	1	10/12/2007 3:29:00 PM
PERCENT MOIS	TURE		D2	216			Analyst: GE
Percent Moisture		10.4	0		wt%	1	10/9/2007
TCLP METALS			SW131	1/6010	B SW1311		Analyst: JP
Arsenic		U	0.0500		mg/L	1	10/11/2007 3:39:18 PM
Barium		1.64	0.0500		mg/L	1	10/11/2007 3:39:18 PM
Cadmium		U	0.0500		mg/L	1	10/11/2007 3:39:18 PM
Chromium		0.0200	0.0500	J	mg/L	1	10/11/2007 3:39:18 PM
Lead		0.432	0.0500		mg/L	1	10/11/2007 3:39:18 PM
Selenium		U	0.0500		mg/L	1	10/11/2007 3:39:18 PM
Silver		U	0.0500		mg/L	1	10/11/2007 3:39:18 PM
IGNITABILITY/FI	ASHPOINT SW-846 1010		SW	1010			Analyst: PB
Ignitability		>	140		°F	1	10/9/2007
CORROSIVITY			SW9	045C			Analyst: SAP
рH		7.40	0		pH Units	1	10/9/2007
REACTIVE CYA	NIDE		SW7	.3.3.2			Analyst: SAP
Reactive Cyanide	1	U	0.112		mg/Kg-dry	1	10/15/2007
REACTIVE SULF	IDE		SW7	.3.4.2			Analyst: SAP
Reactive Sulfide		U	2.23		mg/Kg-dry	1	10/15/2007

В

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

U Indicates the compound was analyzed for but not detecte

E Value above quantitation range

J Analyte detected below quantitation limits

- S Spike Recovery outside accepted recovery limits
- X Value exceeds Maximum Contaminant Level

Date: 16-Oct-07

CLIENT: Lab Order: Project: Lab ID:	Environmental Business 0710096 3035 White Plains Rd 0710096-07A	Consultants	(Client Sample ID: Tag Number: Collection Date: Matrix:	TP10-15 10/5/2007 4:00:00 PM SOIL		
Analyses		Result	Limit Qual	Units	DF	Date Analyzed	
TCLP MERCUR	Y	U	SW1311/7471 0.0200	B SW7471B mg/L	1	Analyst: AH 10/12/2007 3:31:13 PM	
PERCENT MOIS Percent Moisture	TURE	9.69	D2216 0	wt%	1	Analyst: GE 10/9/2007	
TCLP METALS			SW1311/6010	B SW1311		Analyst: JP	
Arsenic		U	0.0500	mg/L	1	10/11/2007 3:41:22 PM	
Barium		1.51	0.0500	mg/L	1	10/11/2007 3:41:22 PM	
Cadmium		U	0.0500	mg/L	1	10/11/2007 3:41:22 PM	
Chromium		U	0.0500	mg/L	1	10/11/2007 3:41:22 PM	
Lead		0.625	0.0500	mg/L	1	10/11/2007 3:41:22 PM	
Selenium		U	0.0500	mg/L	1	10/11/2007 3:41:22 PM	
Silver		U	0.0500	mg/L	1	10/11/2007 3:41:22 PM	
IGNITABILITY/F	LASHPOINT SW-846 1010)	SW1010			Analyst: PB	
Ignitability		>	140	°F	1	10/9/2007	
pH		7.60	SW9045C 0	pH Units	1	Analyst: SAP 10/9/2007	
REACTIVE CYA Reactive Cyanide	NIDE	U	SW7.3.3.2 0.111	mg/Kg-dry	1	Analyst: SAP 10/15/2007	

SW7.3.4.2

mg/Kg-dry

2.21

Ų

REACTIVE SULFIDE Reactive Sulfide

Qualifiers:	В	Analyte detected in the associated Method Blank
、	Н	Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

U Indicates the compound was analyzed for but not detecte

- E Value above quantitation range
- J Analyte detected below quantitation limits

1

- S Spike Recovery outside accepted recovery limits
- X Value exceeds Maximum Contaminant Level

Analyst: SAP

10/15/2007

<u>APPENDIX - J</u> Bedrock Transportation Tickets

<u>APPENDIX - K</u> Bedrock Disposal Request Letter

January 23, 2007

Mr. Shaminder Singh New York State Department of Environmental Conservation 47-40 21st Street Long Island City, NY 11101

> Re: Site No. C203039 Former Dico G Auto & Truck Repair 3035 White Plains Road, Bronx, NY Bedrock Disposal - Identification of Selected Facility

Dear Mr. Singh:

In accordance with the approved Interim Remedial Measure Work Plan (EBC 11/07) for the project, we are seeking approval of the final destination of uncontaminated bedrock material excavated from the site. The facility selected for the final destination of this material is as follows:

Tilcon NY, Inc. Millington Quarry Stonehouse Road, P.O.Box 407 Millington, NJ 07946

This facility mines and provides stone products for a variety of uses including: railroad ballast, concrete and asphalt aggregate, sub-base material and erosion control.

Samples of uncontaminated bedrock material were obtained from the site on January 10th and 11th 2008 and submitted to the analytical laboratory (Chemtech Laboratories) for analysis of VOCs, SVOCs, Pest/PCBs and TAL metals. The results when compared to the Part 375-6.3 unrestricted use standards identified exceedances for three metals in 2 of the samples as follows:

- Zinc (Bnorth sample @ 229 mg/kg), Unrestricted use standard = 109 mg/kg
- Nickel (Bcentral sample @ 46.5), Unrestricted use standard = 30 mg/kg
- Chromium (Bcentral sample @ 43.1), Unrestricted use standard = 30 mg/kg

Based on the historic use of the site and the nature of the samples, which represented fresh samples of pulverized rock, the elevated levels of these metals do not represent an anthropogenic source and are instead representative of the uncontaminated bedrock chemistry. Petroleum contaminated bedrock as determined by screening will be stockpiled separately and shipped to the Clean Earth facility along with the remainder of overburden soil.

Please contact me if you have any questions regarding this request for final destination approval of uncontaminated bedrock materials.

Very truly yours,

Charles B. Sosik, P.G. Principal

1808 Middle Country Road Ridge, NY 11961 Phone Fax E-mail 631.924.0870 631.924.2870 csosik2@optonline.net
GHEIT	TECH	284 S 1	heffield Street	, Mou Fav	intai • 700	inside 81 701	, NJ 01	7092	Che	mteo	h Pr	ojec	t Nur	nbe	r			ZI	118
CHAIN OF CU	STODY RECORD	1	i ianana m	n xx.n Franciski	. yanur texanda	ng yua min∓	3-0322		CÓC	C Nu	mbe	r							
<u>na ang sang sang sang sang sang sang san</u>	CLIENT INFORMATION	a the second	PRO		NEOI	- 1951. 286 A TH	ÓN -						EST A	interest IN 17	S INT		64 6 7		
	Report to be part to	<u> </u>		04K									BILI	-111	9 IN	FUR	IVIA	ION	
COMPANY EL	ridbor to be service		PROJECT NAME: >	035	_WF	<u> </u>			BILL	ro:							PO#		
ADDRESS 9	Perguice & d		PROJECT MANAGER	<u> </u>	. et	LOCATIC			ADDF	RESS					****	······	·····		
CITY K	due STATE: N/Y ZIP I	1961	E-MAIL:	CNO	// (*	<u>) 3</u>	US · K			NITION	·····		*****				STAT	E	ZIP
ATTENTION	there is a		PHONE		······································	FAX			PHON	IE.	1.					·			
PHONE	FAX:								1.110	41 <u>2</u>			dada ta		NA	VS	15		
DATA	TURNAROUND INFORMATIO	N	DA	ta de Infof	LIVE RMAT	RABLI 10N				/	/	1	S)/			7	7		
AX	72 12 DAYS*		C RESEULTS ONLY		U U	SEPA CLI	2		/	/ . /	$\langle \zeta \rangle$	$\langle \rangle$	スみ	7			/ /		
HARD COPY:	DAYS* DAYS*		C New Jersev REDUCE	ED	D Net	ew York S W York St	tate ASP "B	,u	/_	.%s	\mathbb{N}	sX	ý⁄					/	
TO BE APPROVED	BY CHEMTECH		→ New Jersey CLP	-0		ther			Y _		(m)	YÌ	ľ.	(10.					
STANDARD TURNÁI	ROUND TIME IS 10 BUSINESS DAYS		CI EDD FORMAT							PR	ESE	RVA	TIV	<u>s</u>			<u> </u>	CC	MMENTS
CHEMTEON	DDO IDOT			SAM	PLE	SA OOU	MPLE	/0										< Spe	cify Preservativ
SAMPLE	SAMPLE IDENTIFICATIO	N		11	- 829-	, COLL	EGHON	ottje		·	┝╺╤╾	┣──						A-HCI	8-
ID I				dWQ	RAB	DATE	TIME	H of	1	2	3	4	5	6	7	8	9	C-H2SO13 E-ICE	D- F-C
1	Bidrocle	Nº AL	rock			1/11	12	1	$\overline{1}$	1	1	1							
2	bedrock S.	orth	L L		~	111	12					T,				 			
3.												1				<u> </u>			
4	***************************************	****		1						· <u>+</u>	<u> </u>						 	·	
6	<u>,</u>			<u> </u>			1	<u> </u>		·				_		ļ	 		
<u>.</u>				<u> </u>			- :	<u> </u>		<u> </u>	L.,								
6.						1		[ľ									
7.	······									1									
8.	· · · · · · · · · · · · · · · · · · ·			1						·	1	+	1			<u> </u>			
0			··· ·· ·· ····························							·	<u> </u>			·	 		 		· · · · · · · · · · · · · · · · · · ·
40					<u> </u>			ļ		. <u> </u>	<u> </u>	<u> </u>							
10.							L					i							
SA	MPLE CUSTODY MUST BE D	OCUMEN	TED BELOW EAG	CH TIN	AE SA	AMPLE	S CHAN		ROS	SESS	SION			NNC	3 66	NIR	IFR		RΥ
RELINQUISHED BY SAMPLE	R DATE/TIME RECEIVE	ED BY		Conditio	ons of b	ottles or o	ollers at rec	ceipt:	+ COM	PLIANT	Г Э -і	NON C	OMPL	IANT	÷0	OOL	RTEN	P	
1 Janio	No S VII Temp			MeOH Comm	extrac	tion requ	ires an ad	ditional	40z. J	ar for I	perce	nt so	lid						2C
RELINQUISHED BY	DATE/TIME RECEIVE	ED BY			101113.	•												No	100
2	2					ал 1	D	*	1-	\mathcal{A} .	61	12	2	~					
RELINQUISHED BY	DATE/TIMEVO S						RE	<u>cer</u>	CLIEN	<u>K /</u>	NO			<u> </u>				,	
نظر <u>ی</u> س	A REGEIVE	CUPOR LAB BY	- 1 /	1			2 -	1	S LICH	H.	ア	riand	nenver	ea	1	サ			
Y Y Y Y	17 17 1 1 1 m - 0% - m	7/ 7/	- land					Qvernigi	y									Shipr	nent Complet

на на на продел и само на продел судекова се на продел

CHEIT	TTECH	284 S	heffield Street	, Mo	Intai	inside,	NJ 07	092	Che	mtec	h Pr	ojeci	t Nu	mbe	ſ			211	18	
AIN OF CH		1	ansi 18a-sann	l ay	. (an	8) 789	-8922		COC	2 Nu	mbe	r								
			www.	chem	tech	.net														
	CLIENTINFORMATION		PRO	JECI	NFO.	RMATIC	DN				· ·		BIL	LINC	g ini	FOF	RMA	TION		
	Report to be sent to		PROJECT NAME:	<u>035</u>	W	PR			BILL 1	io:	E	sC.					PO#			
APANY EB	<u>.C</u>		PROJECT #:			LOCATIO	1 3035 W	shi te	ADDR	ESS										
RESS: 9	Peconic Road		PROJECT MANAGER:	Ch .	rely	Sost		fond	CITY								STAT	TE.	ZiP	
ENTION P	dee STATE NY	^{ZIP:} /196/	E-MAIL CSOSS	<u>K2</u>	<u>209</u>	tonlin	e.net		ATTE	NTION										
NE CAL	CHARLY SOSIL	21 1070	PHONE.			FAX:			PHON	IE:										
DATA	TURNAROUND INFORM	ATION	DA	TA DE	LIVE RMAT	RABLE ION				/	/			/	ANAI	_	77	///		
	DAYS*		C RESEULTS ONLY		ເລັບ	SEPA CLP				4	15	$\langle 0 \rangle$	ŊŊ	۶.				//		
D COPY	DAYS	*	RESULTS * QC	en		ew York Sta	te ASP "B"		/.	5/3	°∕∕	\mathcal{N}	Y.		/	/	'/			
BE APPROVED	DAYS' BY CHEMTECH		→ New Jersey CLP	CV		w fork star ther	18 ASP "A"		Y Ž	19	í De	7_ 1	ľ.	(6	_				
NDARD TURNAR	OUND TIME IS 10 BUSINESS DAY	3	CI EDD FORMAT							ΡR	ESE	RVA	Τίν	ËS			0	CC	MMEN	TS
				SAN	IPLE	SAN	PLE		1									< Sp	ecify Preser	vatives
SAMPLE			SAMPLE	TY	PE	COLLE	CTION	ottles		<u> </u>	ļ	 		ļ		┣━━		A-HCI		B-HI
ID		ATION		No.	RAB	DATE	TIME	ă	4	2	3	4	5	6	7	Q		C-H2SO13		D-N
	Bed rock	North	er Shedned			119	10 Am	#	1		1						5		T	1-011
	Bedrack	(entral	1	1			<u></u>		$\dagger \dagger$	┼╌╂╸	$\left \right $					<u> </u>	┼╌			
	Bedroch	Co. H_		1	~	t la				╞╌┟╴		\mathbf{t}				┣──	<u> </u>	<u> </u>	-	·······
			<u> </u>						 								 	<u> </u>		
					<u> </u>				ļ	ļ				ļ	<u> </u>	<u> </u>	ļ	<u> </u>		
	······································	······································	·····	<u> </u>					<u> </u>											
······									1											
								······	Ι					1						
				1				ii	1	<u> </u>		1					+	<u> </u>		
	······			+	<u> </u>					<u> </u>		╉───					_			
									 	ļ	ļ	 		<u> </u>		ļ	ļ	<u> </u>		
			·																	
SAN	MPLE CUSTODY MUST I	BE DOCUMEN	TED BELOW EA	CH TIN	∕IĖ S/	MPLE	CHAN	GE 🗄	ROS	SESS	SION	INC	LUC	DINC	s cc	DUR	IER	DELIVE	RY	
NOUISHED BY SAMPLE	B DATEITIME	RECEIVED BY		Conditi	ons of b	ottles or co	liers at rece	ipt: 🦻	+ COM	PLIANT	\checkmark	NON C	OMPL	IANT	¦ → C	OOLE	R TEN	WP		·:
1021	1/10	1		Comm	extrac	tion requi	res an addi	tional	40z. Ja	ar for (perce	nt sol	id -∙					6°(
NQUISHED BY	DATE/TIME	RECEIVED BY		1		(See	e	2- 1	(V L	à	1								
		2.				·					•									
NQUISHED BY	DATE/TIME			+			r	·····	CUEN	T		Hord	Dolive					T		<u></u>
Fed	7 1 1 0	ACCEIVED FUELAB BY	7		-	۱	1 de	Svernigt		ſ	7	nsiad F	-eila6i	90	,	7		, Ship	ment Com	plete
· JY-ES	C V-11-08	3	ren	Pa	ge	of	<u> </u>	and the second se	CHEM	TECH:	*	Picke	d Up			≁		A YE	S	→ N

etrado EX 278 Witchet a plan a travellar a survey in practical survey of a survey of a survey of a survey of a

Client:	Environmenta	al Business	Consultant	ts	Da Co	ate ollected:	01/09/08
Project ID:	Former Dico-	G auto & tr	uck repair		Da	ate Received:	01/11/08
Customer Sample No.:	BEDROCK NO	RTH			La I C	ab Sample):	Z1118-01
Test:	Mercury				SI	DG ID:	Z1118
Analytical Method:	EPA SW-846	7471 - HG			%	Moisture:	2.80
Result Type:	Final				Da	atafile:	011508B1
CAS Number	Parameter	Results	Qualifier	Units	DL	RT/RL	DF DIL/RE
7439-97-6	Mercury	N	U	mg/Kg	0.003	0.010	1

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client:		Enviror	nmental Bus	iness C	Consultants		Date Collected:	01/0	9/08
Project	ID:	Former	Dico-G auto	o & tru	ck repair		Date Received:	01/1	1/08
Custome Sample	er No.:	BEDRO	CK NORTH				Lab Sample ID:	Z111	8-01
Test:		Metals	ICP-TAL				SDG ID:	Z111	8
Analytic Method:	al	EPA SV	/-846 6010	- ICP1			% Moisture:	2.80	
Result T	ype:	Final					Datafile:	P101	1608
CAS Number	Paramo	eter	Results	Qualifi	erUnits	DL	RT/RL		DF DIL/RE
7429- 90-5	Alum	inum	17000		mg/Kg	0.606	3.4	410	1
7440- 36-0	Antim	nony	ND	U	mg/Kg	0.232	1.1	700	1
7440- 38-2	Arsen	nic	0.235	J	mg/Kg	0.136	0.0	681	1
7440- 39-3	Bariu	m	221		mg/Kg	0.102	3.4	410	1
7440- 41-7	Beryl	lium	0.375		mg/Kg	0.007	0.:	204	1
7440- 43-9	Cadm	ium	ND	U	mg/Kg	0.041	0.0	681	1
7440- 70-2	Calciu	um	1490		mg/Kg	1.170	6	8.1	1
7440- 47-3	Chror	nium	28.8		mg/Kg	0.075	0.3	341	1
7440- 48-4	Cobal	lt	18.5		mg/Kg	0.095	1.0	020	1
7440- 50-8	Сорре	er	35.6		mg/Kg	0.089	0.0	681	1
7439- 89-6	Iron		27300		mg/Kg	1.820	3.4	410	1
7439- 92-1	Lead		7.680		mg/Kg	0.095	0.0	681	1
7439- 95-4	Magn	esium	6370		mg/Kg	1.180	6	8.1	1
7439- 96-5	Mang	anese	156		mg/Kg	0.041	0.0	681	1
7440- 02-0	Nicke	el.	24.9		mg/Kg	0.082	1.3	360	1

7440- 09-7	Potassium	13477.48	OR	mg/Kg	14.9619827271	136.2657928467	1
7782- 49-2	Selenium	ND	U	mg/Kg	0.123	0.681	1
7440- 22-4	Silver	ND	U	mg/Kg	0.123	0.341	1
7440- 23-5	Sodium	ND	U	mg/Kg	19.7	68.1	1
7440- 28-0	Thallium	ND	U	mg/Kg	1.290	1.360	1
7440- 62-2	Vanadium	41.0		mg/Kg	0.102	1.360	1
7440- 66-6	Zinc	229		mg/Kg	0.729	1.360	1

Client:	Environmental Business		Date Collecte	ed:	01/09/08			
Project ID:	Former Dico-G auto & tr	uck repair			Date Re	eceived:	01/11	/08
Customer Sample No.:	BEDROCK NORTH				Lab Sar ID:	nple	Z1118	8-01
Test:	РСВ				SDG I D	:	Z1118	8
Analytical Method:	EPA SW-846 8082				% Mois	ture:	3.00	
Result Type:	Final				Datafile	: :	P6012	2329
CAS Number	Parameter	Results	Qualifier	Units	DL	RT/RL	DF	DIL/RE
12674-11-2	Aroclor-1016	N	U C	ug/Kg	2.6	17	1	
11104-28-2	Aroclor-1221	N	U C	ug/Kg	4.1	17	1	
11141-16-5	Aroclor-1232	N	U C	ug/Kg	6.1	17	1	
53469-21-9	Aroclor-1242	N	U C	ug/Kg	5.4	17	1	
12672-29-6	Aroclor-1248	N	U C	ug/Kg	2.6	17	1	
11097-69-1	Aroclor-1254	N	U C	ug/Kg	1.7	17	1	
11096-82-5	Aroclor-1260	N	U C	ug/Kg	4.3	17	1	

Client:	Environmental Business Con	sultants			Date Collected	:	01/09/08	3
Project ID:	Former Dico-G auto & truck	repair			Date Rece	eived:	01/11/08	3
Customer Sample No.:	BEDROCK NORTH				Lab Samp ID:	ble	Z1118-01	
Test:	Pesticide-TCL				SDG ID:		Z1118	
Analytical Method:	EPA SW-846 8081				% Moistu	ire:	3.00	
Result Type:	Final				Datafile:		P7019232	2
CAS Number	Parameter	Results (Qualifier	Units	DL	RT/RL	DF DI	L/RE
319-84-6	alpha-BHC	ND	U	ug/Kg	0.66	1.7	71	
319-85-7	beta-BHC	ND	U	ug/Kg	0.90	1.7	71	
319-86-8	delta-BHC	ND	U	ug/Kg	1.7	1.7	71	
58-89-9	gamma-BHC	ND	U	ug/Kg	0.74	1.7	71	
76-44-8	Heptachlor	ND	U	ug/Kg	0.96	1.7	71	
309-00-2	Aldrin	ND	U	ug/Kg	1.3	1.7	7 1	
1024-57-3	Heptachlor epoxide	ND	U	ug/Kg	1.1	1.7	7 1	
959-98-8	Endosulfan I	ND	U	ug/Kg	0.91	1.7	7 1	
60-57-1	Dieldrin	ND	U	ug/Kg	0.85	1.7	71	
72-55-9	4,4-DDE	ND	U	ug/Kg	0.81	1.7	7 1	
72-20-8	Endrin	ND	U	ug/Kg	0.88	1.7	7 1	
33213-65-9	Endosulfan II	ND	U	ug/Kg	0.97	1.7	7 1	
72-54-8	4,4-DDD	ND	U	ug/Kg	0.72	1.7	71	
1031-07-8	Endosulfan Sulfate	ND	U	ug/Kg	1.1	1.7	71	
50-29-3	4,4-DDT	1.7	J	ug/Kg	0.74	1.7	7 1	
72-43-5	Methoxychlor	ND	U	ug/Kg	0.89	1.7	71	
53494-70-5	Endrin ketone	ND	U	ug/Kg	0.85	1.7	71	
7421-93-4	Endrin aldehyde	ND	U	ug/Kg	1.0	1.7	71	
5103-71-9	alpha-Chlordane	ND	U	ug/Kg	0.86	1.7	71	
5103-74-2	gamma-Chlordane	ND	U	ug/Kg	0.90	1.7	71	
8001-35-2	Toxaphene	ND	U	ug/Kg	3.7	17	71	

Client:	Environmental Business Consultant	S		C C	Date Collected:	C	1/09/	/08
Project ID:	Former Dico-G auto & truck repair			C	ate Rece	ived: C	1/11/	/08
Customer Sample No.:	BEDROCK NORTH			L	ab Sampl D:	e Z	:1118-	01
Test:	SVOCMS Group1			s	DG ID:	Z	1118	
Analytical Method:	EPA SW-846 8270			9	∕∂ Moistur	re: 3	.00	
Result Type:	Final			C	Datafile:	E	B041	521
CAS Number	Parameter	Results Q	ualifie	r Units	DL	RT/RI	. DF	DIL/RE
100-52-7	Benzaldehyde	ND	U	ug/K	g 11	34	0 1	I
111-44-4	bis(2-Chloroethyl)ether	ND	U	ug/K	g 4.5	34	0 1	I
108-60-1	2,2-oxybis(1-Chloropropane)	ND	U	ug/K	g 14	34	0 1	l
98-86-2	Acetophenone	ND	U	ug/K	g 10	34	0 1	I
621-64-7	N-Nitroso-di-n-propylamine	ND	U	ug/K	g 12	34	0 1	I
67-72-1	Hexachloroethane	ND	U	ug/K	g 11	34	0 1	I
98-95-3	Nitrobenzene	ND	U	ug/K	g 8.0	34	0 1	I
78-59-1	Isophorone	ND	U	ug/K	g 11	34	0 1	I
111-91-1	bis(2-Chloroethoxy)methane	ND	U	ug/K	g 7.8	34	0 1	I
91-20-3	Naphthalene	ND	U	ug/K	g 8.2	34	0 1	I
106-47-8	4-Chloroaniline	ND	U	ug/K	g 22	34	0 1	I
87-68-3	Hexachlorobutadiene	ND	U	ug/K	g 14	34	0 1	I
105-60-2	Caprolactam	ND	U	ug/K	g 41	34	0 1	I
91-57-6	2-Methylnaphthalene	ND	U	ug/K	g 9.6	34	0 1	I
77-47-4	Hexachlorocyclopentadiene	ND	U	ug/K	g 17	34	0 1	I
92-52-4	1,1-Biphenyl	ND	U	ug/K	g 10	34	0 1	I
91-58-7	2-Chloronaphthalene	ND	U	ug/K	g 8.3	34	0 1	I
88-74-4	2-Nitroaniline	ND	U	ug/K	g 16	86	0 1	I
131-11-3	Dimethylphthalate	ND	U	ug/K	g 9.9	34	0 1	I
208-96-8	Acenaphthylene	ND	U	ug/K	g 5.0	34	0 1	I
606-20-2	2,6-Dinitrotoluene	ND	U	ug/K	g 12	34	0 1	I
99-09-2	3-Nitroaniline	ND	U	ug/K	g 23	86	0 1	I
83-32-9	Acenaphthene	ND	U	ug/K	g 7.4	34	0 1	I
132-64-9	Dibenzofuran	ND	U	ug/K	g 11	34	0 1	I
121-14-2	2,4-Dinitrotoluene	ND	U	ug/K	g 11	34	0 1	I
84-66-2	Diethylphthalate	ND	U	ug/K	g 12	34	0 1	I
7005-72-3	4-Chlorophenyl-phenylether	ND	U	ug/K	g 13	34	0 1	I
86-73-7	Fluorene	ND	U	ug/K	g 9.2	34	0 1	l

Client:	Environmental Business Consultant	S			Date Collected:	01	/09/08
Project ID:	Former Dico-G auto & truck repair				Date Rece	ived: 01	/11/08
Customer Sample No.:	BEDROCK NORTH				Lab Samp ID:	le Z1	118-01
Test:	SVOCMS Group1				SDG ID:	Z 1	118
Analytical Method:	EPA SW-846 8270				% Moistu	re: 3.	00
Result Type:	Final				DataFile:	BE	3041521
CAS Number	Parameter	Results C	Qualifier	Units	DL	RT/RL	DF DIL/RE
100-01-6	4-Nitroaniline	ND	U	ug/K	g 27	860	1
86-30-6	N-Nitrosodiphenylamine	ND	U	ug/K	g 26	340	1
101-55-3	4-Bromophenyl-phenylether	ND	U	ug/K	g 16	340	1
118-74-1	Hexachlorobenzene	ND	U	ug/K	g 10	340	1
1912-24-9	Atrazine	ND	U	ug/K	g 24	340	1
85-01-8	Phenanthrene	ND	U	ug/K	g 11	340	1
120-12-7	Anthracene	ND	U	ug/K	g 11	340	1
86-74-8	Carbazole	ND	U	ug/K	g 26	340	1
84-74-2	Di-n-butylphthalate	ND	U	ug/K	g 16	340	1
206-44-0	Fluoranthene	ND	U	ug/K	g 8.3	340	1
129-00-0	Pyrene	ND	U	ug/K	g 7.4	340	1
85-68-7	Butylbenzylphthalate	ND	U	ug/K	g 22	340	1
91-94-1	3,3-Dichlorobenzidine	ND	U	ug/K	g 26	340	1
56-55-3	Benzo(a)anthracene	ND	U	ug/K	g 8.2	340	1
218-01-9	Chrysene	ND	U	ug/K	g 6.3	340	1
117-81-7	bis(2-Ethylhexyl)phthalate	34	J	ug/K	g 13	340	1
117-84-0	Di-n-octyl phthalate	ND	U	ug/K	g 12	340	1
205-99-2	Benzo(b)fluoranthene	ND	U	ug/K	g 25	340	1
207-08-9	Benzo(k)fluoranthene	ND	U	ug/K	g 16	340	1
50-32-8	Benzo(a)pyrene	ND	U	ug/K	g 10	340	1
193-39-5	Indeno(1,2,3-cd)pyrene	ND	U	ug/K	g 8.6	340	1
53-70-3	Dibenz(a,h)anthracene	ND	U	ug/K	g 25	340	1
191-24-2	Benzo(g,h,i)perylene	ND	U	ug/K	g 25	340	1

Client:	Environmental Business Consultants	5		[(Date Collected:	01	/09/08	
Project ID:	Former Dico-G auto & truck repair			I	Date Rece	ived: 01	/11/08	
Customer Sample No.:	BEDROCK NORTH			l	Lab Samp ID:	le Z1	118-01	
Test:	VOCMS Group1			9	SDG ID:	Z 1	118	
Analytical Method:	EPA SW846 8260			¢	% Moistu	re: 3.	00	
Result Type:	Final			ſ	Datafile:	Vł	(022563	3
CAS Number	Parameter	Results (Qualifie	er Units	DL	RT/RL	DF DI	L/RE
75-71-8	Dichlorodifluoromethane	ND	U	ug/K	(g 9.9	26	1	
74-87-3	Chloromethane	ND	U	ug/K	(g 6.9	26	1	
75-01-4	Vinyl Chloride	ND	U	ug/k	(g 7.1	26) 1	
74-83-9	Bromomethane	ND	U	ug/K	(g 10) 26) 1	
75-00-3	Chloroethane	ND	U	ug/k	(g 9.5	5 26	1	
75-69-4	Trichlorofluoromethane	ND	U	ug/k	(g 6.1	26	1	
76-13-1	1,1,2-Trichlorotrifluoroethane	ND	U	ug/K	(g 8.7	26) 1	
75-35-4	1,1-Dichloroethene	ND	U	ug/K	(g 5.2	2 26	1	
67-64-1	Acetone	ND	U	ug/k	(g 88	3 130) 1	
75-15-0	Carbon Disulfide	ND	U	ug/K	(g 5.6	26	1	
1634-04-4	Methyl tert-butyl Ether	ND	U	ug/k	(g 4.6	26	1	
79-20-9	Methyl Acetate	ND	U	ug/K	(g 8.7	26	1	
75-09-2	Methylene Chloride	15	J	ug/K	(g 13	3 26	1	
156-60-5	trans-1,2-Dichloroethene	ND	U	ug/k	(g 6.3	3 26	1	
75-34-3	1,1-Dichloroethane	ND	U	ug/K	(g 5.8	3 26	1	
110-82-7	Cyclohexane	ND	U	ug/k	(g 5.3	3 26	1	
78-93-3	2-Butanone	ND	U	ug/K	(g 26	5 130) 1	
56-23-5	Carbon Tetrachloride	ND	U	ug/k	(g 3.0) 26	1	
156-59-2	cis-1,2-Dichloroethene	ND	U	ug/K	(g 6.6	26) 1	
67-66-3	Chloroform	ND	U	ug/k	(g 4.6	26	1	
71-55-6	1,1,1-Trichloroethane	ND	U	ug/K	(g 4.9	26) 1	
108-87-2	Methylcyclohexane	ND	U	ug/k	(g 4.3	3 26	1	
71-43-2	Benzene	ND	U	ug/K	(g 3.7	26) 1	
107-06-2	1,2-Dichloroethane	ND	U	ug/K	(g 4.2	2 26) 1	
79-01-6	Trichloroethene	ND	U	ug/K	(g 3.8	3 26) 1	
78-87-5	1,2-Dichloropropane	ND	U	ug/K	(g 4.8	8 26	1	
75-27-4	Bromodichloromethane	ND	U	ug/K	(g 3.6	26) 1	
108-10-1	4-Methyl-2-Pentanone	ND	U	ug/K	(g 20) 130) 1	

Client:	Environmental Business Consultants			Date Colle	ected:	01/	′09/08	
Project ID:	Former Dico-G auto & truck repair			Date	Receiv	/ed: 01/	11/08	
Customer Sample No.:	BEDROCK NORTH			Lab S ID:	Sample	e Z11	18-01	
Test:	VOCMS Group1			SDG	ID:	Z11	18	
Analytical Method:	EPA SW846 8260			% M	oisture	e: 3.0	0	
Result Type:	Final			Data	File:	VKC	022563	
CAS Number	Parameter	Results	Qualifie	er Units	DL	RT/RL	DF DI	L/RE
108-88-3	Toluene	ND	U	ug/Kg	4.5	26	1	
10061-02-6	t-1,3-Dichloropropene	ND	U	ug/Kg	4.3	26	1	
10061-01-5	cis-1,3-Dichloropropene	ND	U	ug/Kg	3.5	26	1	
79-00-5	1,1,2-Trichloroethane	ND	U	ug/Kg	3.1	26	1	
591-78-6	2-Hexanone	ND	U	ug/Kg	23	130	1	
124-48-1	Dibromochloromethane	ND	U	ug/Kg	3.4	26	1	
106-93-4	1,2-Dibromoethane	ND	U	ug/Kg	4.2	26	1	
127-18-4	Tetrachloroethene	ND	U	ug/Kg	6.4	26	1	
108-90-7	Chlorobenzene	ND	U	ug/Kg	3.9	26	1	
100-41-4	Ethyl Benzene	ND	U	ug/Kg	4.1	26	1	
126777-61-2	m/p-Xylenes	ND	U	ug/Kg	9.6	52	1	
95-47-6	o-Xylene	ND	U	ug/Kg	3.9	26	1	
100-42-5	Styrene	ND	U	ug/Kg	3.2	26	1	
75-25-2	Bromoform	ND	U	ug/Kg	4.2	26	1	
98-82-8	Isopropylbenzene	ND	U	ug/Kg	4.2	26	1	
79-34-5	1,1,2,2-Tetrachloroethane	ND	U	ug/Kg	4.6	26	1	
541-73-1	1,3-Dichlorobenzene	ND	U	ug/Kg	3.5	26	1	
106-46-7	1,4-Dichlorobenzene	ND	U	ug/Kg	4.0	26	1	
95-50-1	1,2-Dichlorobenzene	ND	U	ug/Kg	4.4	26	1	
96-12-8	1,2-Dibromo-3-Chloropropane	ND	U	ug/Kg	5.3	26	1	
120-82-1	1,2,4-Trichlorobenzene	ND	U	ug/Kg	3.4	26	1	

Client:	Environmental E	Business Cons	sultants	Date Colle	cted:	01/09/08		
Project ID:	Former Dico-G a	uto & truck r	epair		Date	Received:	01/11/	/08
Customer Sample No.:	BEDROCK NORT	HDL			Lab S ID:	ample	Z1118-	01DL
Test:	Metals ICP-TAL				SDG	ID:	Z1118	
Analytical Method:	EPA SW-846 60	10 - ICP1			% Mc	oisture:	2.80	
Result Type:	Final				Dataf	ïle:	P10116	608
CAS Number	Parameter	Results (Qualifier	Units	DL	RT/RL	DF [DIL/RE
7429-90-5	Aluminum	17900	D	mg/Kg	3.030	17.0	5	DIL
7440-36-0	Antimony	ND	UD	mg/Kg	1.160	8.520	5	DIL
7440-38-2	Arsenic	ND	UD	mg/Kg	0.681	3.410	5	DIL
7440-39-3	Barium	233	D	mg/Kg	0.511	17.0	5	DIL
7440-41-7	Beryllium	0.422	JD	mg/Kg	0.034	1.020	5	DIL
7440-43-9	Cadmium	ND	UD	mg/Kg	0.204	3.410	5	DIL
7440-70-2	Calcium	1610	D	mg/Kg	5.830	341	5	DIL
7440-47-3	Chromium	31.1	D	mg/Kg	0.375	1.700	5	DIL
7440-48-4	Cobalt	19.7	D	mg/Kg	0.477	5.110	5	DIL
7440-50-8	Copper	36.7	D	mg/Kg	0.443	3.410	5	DIL
7439-89-6	Iron	29700	D	mg/Kg	9.100	17.0	5	DIL
7439-92-1	Lead	7.960	D	mg/Kg	0.477	3.410	5	DIL
7439-95-4	Magnesium	6850	D	mg/Kg	5.890	341	5	DIL
7439-96-5	Manganese	168	D	mg/Kg	0.204	3.410	5	DIL
7440-02-0	Nickel	26.5	D	mg/Kg	0.409	6.810	5	DIL
7440-09-7	Potassium	12400	D	mg/Kg	74.8	681	5	DIL
7782-49-2	Selenium	ND	UD	mg/Kg	0.613	3.410	5	DIL
7440-22-4	Silver	ND	UD	mg/Kg	0.613	1.700	5	DIL
7440-23-5	Sodium	ND	UD	mg/Kg	98.4	341	5	DIL
7440-28-0	Thallium	ND	UD	mg/Kg	6.440	6.810	5	DIL
7440-62-2	Vanadium	43.8	D	mg/Kg	0.511	6.810	5	DIL
7440-66-6	Zinc	249	D	mg/Kg	3.650	6.810	5	DIL

Client:	Environment	al Business	Consultan	Da Co	ate ollected:	01/09/08	
Project ID:	Former Dico-	G auto & tr	uck repair		Da	ate Received:	01/11/08
Customer Sample No.:	BEDROCK CE	NTRAL	La I C	ab Sample):	Z1118-02		
Test:	Mercury		SI	DG ID:	Z1118		
Analytical Method:	EPA SW-846	7471 - HG			%	Moisture:	2.70
Result Type:	Final				Da	atafile:	011408A
CAS Number	Parameter	Results	Qualifier	Units	DL	RT/RL	DF DIL/RE
7439-97-6	Mercury	NI	D U	mg/Kg	0.003	0.010) 1

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client:		Environmental Business Consultants						Date Collected:	01/0	9/08
Project I	D:	Forme	⁻ Dico-G a	uto 8	& truc	k repair:		Date Received:	01/1	1/08
Custome Sample N	r No.:	BEDRO	CK CENTR	RAL				Lab Sample ID:	Z111	8-02
Test:		Metals	ICP-TAL					SDG ID:	Z111	8
Analytica Method:	al	EPA SV	V-846 601	IO - I	CP1			% Moisture:	2.70	
Result Ty	/pe:	Final						Datafile:	P101	1508
CAS Number	Param	neter	Results	C	ualifi	erUnits	DL	RT/RL	ł	DF DIL/RE
7429- 90-5	Alum	inum	236	00		mg/Kg	0.606	3.	400	1
7440- 36-0	Antir	nony		ND	U	mg/Kg	0.231	1.	700	1
7440- 38-2	Arse	nic		ND	U	mg/Kg	0.136	0.	681	1
7440- 39-3	Bariu	ım	1	65		mg/Kg	0.102	3.	400	1
7440- 41-7	Bery	llium	0.6	43		mg/Kg	0.007	0.	204	1
7440- 43-9	Cadn	nium		ND	U	mg/Kg	0.041	0.	681	1
7440- 70-2	Calci	um	11	60		mg/Kg	1.160	é	8.1	1
7440- 47-3	Chro	mium	43	3.1		mg/Kg	0.075	0.	340	1
7440- 48-4	Coba	It	31	1.7		mg/Kg	0.095	1.	020	1
7440- 50-8	Сорр	er	21	1.3		mg/Kg	0.088	0.	681	1
7439- 89-6	Iron		380	00		mg/Kg	1.820	3.	400	1
7439- 92-1	Lead		3.5	70		mg/Kg	0.095	0.	681	1
7439- 95-4	Magr	nesium	n 122	00		mg/Kg	1.180	e	8.1	1
7439- 96-5	Mang	ganese	e 8	45		mg/Kg	0.041	0.	681	1
7440- 02-0	Nicke	el	46	5.5		mg/Kg	0.082	1.	360	1

7440- 09-7	Potassium	15773.41	OR	mg/Kg	14.946603775	136.1257324219	1
7782- 49-2	Selenium	ND	U	mg/Kg	0.123	0.681	1
7440- 22-4	Silver	ND	U	mg/Kg	0.123	0.340	1
7440- 23-5	Sodium	261		mg/Kg	19.7	68.1	1
7440- 28-0	Thallium	ND	U	mg/Kg	1.290	1.360	1
7440- 62-2	Vanadium	58.9		mg/Kg	0.102	1.360	1
7440- 66-6	Zinc	64.4		mg/Kg	0.728	1.360	1

Client:	Environmental Business	Consultar		Date Collecte	01/09	/08		
Project ID:	Former Dico-G auto & tr	uck repair			Date Re	eceived:	01/11	/08
Customer Sample No.:	BEDROCK CENTRAL				Lab Sar ID:	nple	Z1118	8-02
Test:	РСВ				SDG ID	:	Z1118	
Analytical Method:	EPA SW-846 8082	% Mois	ture:	3.00				
Result Type:	Final				Datafile	: :	P6012	2330
CAS Number	Parameter	Results	Qualifier	Units	DL	RT/RL	DF	DIL/RE
12674-11-2	Aroclor-1016	N	U C	ug/Kg	2.6	17	1	
11104-28-2	Aroclor-1221	N	U C	ug/Kg	4.0	17	1	
11141-16-5	Aroclor-1232	N	U (ug/Kg	6.0	17	1	
53469-21-9	Aroclor-1242	NI	U C	ug/Kg	5.4	17	1	
12672-29-6	Aroclor-1248	NI	U C	ug/Kg	2.6	17	1	
11097-69-1	Aroclor-1254	NI	U C	ug/Kg	1.7	17	1	
11096-82-5	Aroclor-1260	NI	U C	ug/Kg	4.3	17	1	

Client:	Environmental Business Con	sultants		Date Collected:		01/09/08		
Project ID:	Former Dico-G auto & truck	repair			Date Reco	eived:	01/11/08	
Customer Sample No.:	BEDROCK CENTRAL				Lab Sample Z1118-0 ID:			2
Test:	Pesticide-TCL				SDG ID:		Z1118	
Analytical Method:	EPA SW-846 8081	EPA SW-846 8081						
Result Type:	Final				Datafile:	I	P401071	0
CAS Number	Parameter	Results	Qualifier	Units	DL	RT/RL	DF D	IL/RE
319-84-6	alpha-BHC	ND	U	ug/Kg	0.66	1.7	′ 1	
319-85-7	beta-BHC	ND	U	ug/Kg	0.90	1.7	′ 1	
319-86-8	delta-BHC	ND	U	ug/Kg	1.7	1.7	′ 1	
58-89-9	gamma-BHC	ND	U	ug/Kg	0.74	1.7	′ 1	
76-44-8	Heptachlor	ND	U	ug/Kg	0.96	1.7	′ 1	
309-00-2	Aldrin	ND	U	ug/Kg	1.3	1.7	' 1	
1024-57-3	Heptachlor epoxide	ND	U	ug/Kg	1.1	1.7	' 1	
959-98-8	Endosulfan I	ND	U	ug/Kg	0.90	1.7	' 1	
60-57-1	Dieldrin	ND	U	ug/Kg	0.85	1.7	' 1	
72-55-9	4,4-DDE	ND	U	ug/Kg	0.81	1.7	′ 1	
72-20-8	Endrin	ND	U	ug/Kg	0.88	1.7	' 1	
33213-65-9	Endosulfan II	ND	U	ug/Kg	0.97	1.7	' 1	
72-54-8	4,4-DDD	ND	U	ug/Kg	0.72	1.7	' 1	
1031-07-8	Endosulfan Sulfate	ND	U	ug/Kg	1.1	1.7	' 1	
50-29-3	4,4-DDT	ND	U	ug/Kg	0.74	1.7	′ 1	
72-43-5	Methoxychlor	ND	U	ug/Kg	0.88	1.7	' 1	
53494-70-5	Endrin ketone	ND	U	ug/Kg	0.85	1.7	' 1	
7421-93-4	Endrin aldehyde	ND	U	ug/Kg	1.0	1.7	' 1	
5103-71-9	alpha-Chlordane	ND	U	ug/Kg	0.86	1.7	′ 1	
5103-74-2	gamma-Chlordane	ND	U	ug/Kg	0.90	1.7	' 1	
8001-35-2	Toxaphene	ND	U	ug/Kg	3.7	17	′ 1	

Client:	Environmental Business Consultant	D C	ate ollected:	C	01/09/08			
Project ID:	Former Dico-G auto & truck repair			D	ate Rece	ived: C	1/11	/08
Customer Sample No.:	BEDROCK CENTRAL			L	ab Sampl D:	e Z	1118	-02
Test:	SVOCMS Group1			s	DG ID:	Z	1118	
Analytical Method:	EPA SW-846 8270			9	6 Moistur	e: 3	.00	
Result Type:	Final			D	atafile:	E	F017	292
CAS Number	Parameter	Results Q	ualifier	r Units	DL	RT/RI	. DF	DIL/RE
100-52-7	Benzaldehyde	ND	U	ug/K	g 11	34	0 [.]	1
111-44-4	bis(2-Chloroethyl)ether	ND	U	ug/K	g 4.4	34	0 [.]	1
108-60-1	2,2-oxybis(1-Chloropropane)	ND	U	ug/K	g 14	34	0 [.]	1
98-86-2	Acetophenone	ND	U	ug/K	g 10	34	0 [.]	1
621-64-7	N-Nitroso-di-n-propylamine	ND	U	ug/K	g 12	34	0 [.]	1
67-72-1	Hexachloroethane	ND	U	ug/K	g 11	34	0 [.]	1
98-95-3	Nitrobenzene	ND	U	ug/K	g 8.0	34	o [.]	1
78-59-1	Isophorone	ND	U	ug/K	g 11	34	0 [.]	1
111-91-1	bis(2-Chloroethoxy)methane	ND	U	ug/K	g 7.8	34	0 [.]	1
91-20-3	Naphthalene	ND	U	ug/K	g 8.2	34	0 [.]	1
106-47-8	4-Chloroaniline	ND	U	ug/K	g 22	34	0 [.]	1
87-68-3	Hexachlorobutadiene	ND	U	ug/K	g 14	34	0 [.]	1
105-60-2	Caprolactam	ND	U	ug/K	g 41	34	0 [.]	1
91-57-6	2-Methylnaphthalene	ND	U	ug/K	g 9.6	34	o [.]	1
77-47-4	Hexachlorocyclopentadiene	ND	U	ug/K	g 17	34	0 [.]	1
92-52-4	1,1-Biphenyl	ND	U	ug/K	g 10	34	o [.]	1
91-58-7	2-Chloronaphthalene	ND	U	ug/K	g 8.3	34	0 '	1
88-74-4	2-Nitroaniline	ND	U	ug/K	g 16	85	o [.]	1
131-11-3	Dimethylphthalate	ND	U	ug/K	g 9.9	34	0 '	1
208-96-8	Acenaphthylene	ND	U	ug/K	g 5.0	34	0 [.]	1
606-20-2	2,6-Dinitrotoluene	ND	U	ug/K	g 12	34	0 '	1
99-09-2	3-Nitroaniline	ND	U	ug/K	g 23	85	0 [.]	1
83-32-9	Acenaphthene	ND	U	ug/K	g 7.4	34	o [.]	1
132-64-9	Dibenzofuran	ND	U	ug/K	g 11	34	0 '	1
121-14-2	2,4-Dinitrotoluene	ND	U	ug/K	g 11	34	o [,]	1
84-66-2	Diethylphthalate	ND	U	ug/K	g 12	34	0 '	1
7005-72-3	4-Chlorophenyl-phenylether	ND	U	ug/K	g 13	34	o [,]	1
86-73-7	Fluorene	ND	U	ug/K	g 9.2	34	0 [.]	1

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client:	Environmental Business Consultant		Date 01/09/ Collected:			/09/08		
Project ID:	Former Dico-G auto & truck repair				Date Received: 0			/11/08
Customer Sample No.:	BEDROCK CENTRAL				Lab Sample ID:			118-02
Test:	SVOCMS Group1				SDG I D):	Z1	118
Analytical Method:	EPA SW-846 8270				% Mois	sture:	3.0	00
Result Type:	Final				DataFil	e:	BF	017292
CAS Number	Parameter	Results (Qualifier	Units	DI	_ R	T/RL	DF DIL/RE
100-01-6	4-Nitroaniline	ND	U	ug/k	٢g	27	850	1
86-30-6	N-Nitrosodiphenylamine	ND	U	ug/k	(g	26	340	1
101-55-3	4-Bromophenyl-phenylether	ND	U	ug/k	(g	16	340	1
118-74-1	Hexachlorobenzene	ND	U	ug/k	(g	10	340	1
1912-24-9	Atrazine	ND	U	ug/k	(g	24	340	1
85-01-8	Phenanthrene	ND	U	ug/k	(g	11	340	1
120-12-7	Anthracene	ND	U	ug/k	(g	11	340	1
86-74-8	Carbazole	ND	U	ug/k	(g	26	340	1
84-74-2	Di-n-butylphthalate	ND	U	ug/k	(g	16	340	1
206-44-0	Fluoranthene	ND	U	ug/k	(g 8	3.3	340	1
129-00-0	Pyrene	ND	U	ug/k	(g 7	7.4	340	1
85-68-7	Butylbenzylphthalate	ND	U	ug/k	(g	22	340	1
91-94-1	3,3-Dichlorobenzidine	ND	U	ug/k	(g	26	340	1
56-55-3	Benzo(a)anthracene	ND	U	ug/k	(g 8	3.2	340	1
218-01-9	Chrysene	ND	U	ug/k	(g é	5.3	340	1
117-81-7	bis(2-Ethylhexyl)phthalate	ND	U	ug/k	(g	13	340	1
117-84-0	Di-n-octyl phthalate	ND	U	ug/k	(g	12	340	1
205-99-2	Benzo(b)fluoranthene	ND	U	ug/k	٢g	25	340	1
207-08-9	Benzo(k)fluoranthene	ND	U	ug/k	(g	16	340	1
50-32-8	Benzo(a)pyrene	ND	U	ug/k	(g	10	340	1
193-39-5	Indeno(1,2,3-cd)pyrene	ND	U	ug/k	ي (ق 8	3.6	340	1
53-70-3	Dibenz(a,h)anthracene	ND	U	ug/k	٢g	25	340	1
191-24-2	Benzo(g,h,i)perylene	ND	U	ug/k	٢g	25	340	1

Client:	Environmental Business Consultants		Date Collected	:	01/09/08			
Project ID:	Former Dico-G auto & truck repair				Date Rece	eived: ()1/1	1/08
Customer Sample No.:	BEDROCK CENTRAL				Lab Samp ID:	le 2	2111	8-02
Test:	VOCMS Group1			:	SDG ID:	2	2111	8
Analytical Method:	EPA SW846 8260				% Moistu	re: 3	3.00	
Result Type:	Final			I	Datafile:	v	/КО2	2564
CAS Number	Parameter	Results (Qualifie	er Units	DL	RT/R	L D	OF DIL/RE
75-71-8	Dichlorodifluoromethane	ND	U	ug/ł	(g 9.8	32	6	1
74-87-3	Chloromethane	ND	U	ug/ł	(g 6.8	32	6	1
75-01-4	Vinyl Chloride	ND	U	ug/ł	(g 7.0	D 2	6	1
74-83-9	Bromomethane	ND	U	ug/ł	ر (g	D 2	6	1
75-00-3	Chloroethane	ND	U	ug/ł	ر <mark>ع 9</mark> .4	4 2	6	1
75-69-4	Trichlorofluoromethane	ND	U	ug/ł	(g 6.'	12	6	1
76-13-1	1,1,2-Trichlorotrifluoroethane	ND	U	ug/ł	(g 8.0	52	6	1
75-35-4	1,1-Dichloroethene	ND	U	ug/ł	(g 5 .)	12	6	1
67-64-1	Acetone	ND	U	ug/ł	ر S	7 13	0	1
75-15-0	Carbon Disulfide	ND	U	ug/ł	(g 5.!	52	6	1
1634-04-4	Methyl tert-butyl Ether	ND	U	ug/ł	د <mark>م</mark> 4.	52	:6	1
79-20-9	Methyl Acetate	ND	U	ug/ł	(g 8.	52	6	1
75-09-2	Methylene Chloride	13	J	ug/ł	دً <mark>ي 1</mark>	2 2	:6	1
156-60-5	trans-1,2-Dichloroethene	ND	U	ug/ł	(ج 6 .	32	6	1
75-34-3	1,1-Dichloroethane	ND	U	ug/ł	(g 5 .)	72	:6	1
110-82-7	Cyclohexane	ND	U	ug/ł	(g 5 .)	2 2	6	1
78-93-3	2-Butanone	ND	U	ug/ł	(g 2)	5 13	0	1
56-23-5	Carbon Tetrachloride	ND	U	ug/ł	(g 3 .)	D 2	6	1
156-59-2	cis-1,2-Dichloroethene	ND	U	ug/ł	(g 6.	52	6	1
67-66-3	Chloroform	ND	U	ug/ł	(g 4 .!	52	6	1
71-55-6	1,1,1-Trichloroethane	ND	U	ug/ł	د <mark>ع 4</mark> .8	32	6	1
108-87-2	Methylcyclohexane	ND	U	ug/ł	د <mark>ي 4</mark> .2	2 2	6	1
71-43-2	Benzene	ND	U	ug/ł	ر <mark>م</mark> 3.	72	:6	1
107-06-2	1,2-Dichloroethane	ND	U	ug/ł	(ج 4 .2	2 2	6	1
79-01-6	Trichloroethene	ND	U	ug/ł	ر <mark>ي 3</mark> .	72	:6	1
78-87-5	1,2-Dichloropropane	ND	U	ug/ł	(ر) 4	32	.6	1
75-27-4	Bromodichloromethane	ND	U	ug/ł	(g 3 .)	52	.6	1
108-10-1	4-Methyl-2-Pentanone	ND	U	ug∕ŀ	۲ <mark>و کا</mark>	913	0	1

Client:	Environmental Business Consultants	Date Colle	ected:	01/	01/09/08			
Project ID:	Former Dico-G auto & truck repair			Date	Receiv	/ed: 01/	01/11/08	
Customer Sample No.:	BEDROCK CENTRAL	BEDROCK CENTRAL						
Test:	VOCMS Group1			SDG	ID:	Z11	18	
Analytical Method:	EPA SW846 8260			% N	loisture	: 3.0	0	
Result Type:	Final			Data	File:	VKC	022564	
CAS Number	Parameter	Results	Qualifie	er Units	DL	RT/RL	DF DI	L/RE
108-88-3	Toluene	ND	U	ug/Kg	4.5	26	1	
10061-02-6	t-1,3-Dichloropropene	ND	U	ug/Kg	4.3	26	1	
10061-01-5	cis-1,3-Dichloropropene	ND	U	ug/Kg	3.4	26	1	
79-00-5	1,1,2-Trichloroethane	ND	U	ug/Kg	3.1	26	1	
591-78-6	2-Hexanone	ND	U	ug/Kg	22	130	1	
124-48-1	Dibromochloromethane	ND	U	ug/Kg	3.4	26	1	
106-93-4	1,2-Dibromoethane	ND	U	ug/Kg	4.2	26	1	
127-18-4	Tetrachloroethene	ND	U	ug/Kg	6.3	26	1	
108-90-7	Chlorobenzene	ND	U	ug/Kg	3.9	26	1	
100-41-4	Ethyl Benzene	ND	U	ug/Kg	4.1	26	1	
126777-61-2	m/p-Xylenes	ND	U	ug/Kg	9.5	51	1	
95-47-6	o-Xylene	ND	U	ug/Kg	3.9	26	1	
100-42-5	Styrene	ND	U	ug/Kg	3.2	26	1	
75-25-2	Bromoform	ND	U	ug/Kg	4.1	26	1	
98-82-8	Isopropylbenzene	ND	U	ug/Kg	4.2	26	1	
79-34-5	1,1,2,2-Tetrachloroethane	ND	U	ug/Kg	4.5	26	1	
541-73-1	1,3-Dichlorobenzene	ND	U	ug/Kg	3.4	26	1	
106-46-7	1,4-Dichlorobenzene	ND	U	ug/Kg	3.9	26	1	
95-50-1	1,2-Dichlorobenzene	ND	U	ug/Kg	4.4	26	1	
96-12-8	1,2-Dibromo-3-Chloropropane	ND	U	ug/Kg	5.2	26	1	
120-82-1	1,2,4-Trichlorobenzene	ND	U	ug/Kg	3.4	26	1	

Client:	Environmental E	Business Con	Date Colle	cted:	01/09/08			
Project ID:	Former Dico-G a	auto & truck i	repair		Date	Received:	01/11/	′08
Customer Sample No.:	BEDROCK CENTI	RALDL			Lab S ID:	ample	Z1118-	02DL
Test:	Metals ICP-TAL				SDG	SDG ID: Z1118		
Analytical Method:	EPA SW-846 60	10 - ICP1			% Mo	oisture:	2.70	
Result Type:	Final				Data	file:	P10115	508
CAS Number	Parameter	Results	Qualifier	Units	DL	RT/RL	DF D	DIL/RE
7429-90-5	Aluminum	26200	D	mg/Kg	3.030	17.0	5	DIL
7440-36-0	Antimony	ND	UD	mg/Kg	1.160	8.510	5	DIL
7440-38-2	Arsenic	15.0	D	mg/Kg	0.681	3.400	5	DIL
7440-39-3	Barium	173	D	mg/Kg	0.510	17.0	5	DIL
7440-41-7	Beryllium	0.667	JD	mg/Kg	0.034	1.020	5	DIL
7440-43-9	Cadmium	ND	UD	mg/Kg	0.204	3.400	5	DIL
7440-70-2	Calcium	1310	D	mg/Kg	5.820	340	5	DIL
7440-47-3	Chromium	49.6	D	mg/Kg	0.374	1.700	5	DIL
7440-48-4	Cobalt	36.2	D	mg/Kg	0.476	5.100	5	DIL
7440-50-8	Copper	23.8	D	mg/Kg	0.442	3.400	5	DIL
7439-89-6	Iron	48500	D	mg/Kg	9.090	17.0	5	DIL
7439-92-1	Lead	2.940	JD	mg/Kg	0.476	3.400	5	DIL
7439-95-4	Magnesium	13500	D	mg/Kg	5.890	340	5	DIL
7439-96-5	Manganese	1010	D	mg/Kg	0.204	3.400	5	DIL
7440-02-0	Nickel	54.4	D	mg/Kg	0.408	6.810	5	DIL
7440-09-7	Potassium	14700	D	mg/Kg	74.7	681	5	DIL
7782-49-2	Selenium	ND	UD	mg/Kg	0.613	3.400	5	DIL
7440-22-4	Silver	ND	UD	mg/Kg	0.613	1.700	5	DIL
7440-23-5	Sodium	260	JD	mg/Kg	98.3	340	5	DIL
7440-28-0	Thallium	ND	UD	mg/Kg	6.430	6.810	5	DIL
7440-62-2	Vanadium	69.3	D	mg/Kg	0.510	6.810	5	DIL
7440-66-6	Zinc	75.0	D	mg/Kg	3.640	6.810	5	DIL

Client:	Environmenta	al Business	Consultant	Da Co	ate ollected:	01/09/08	
Project ID:	Former Dico-	G auto & tr	uck repair		Da	ate Received:	01/11/08
Customer Sample No.:	BEDROCK SO	UTH	La I C	ab Sample):	Z1118-03		
Test:	Mercury		SI	DG ID:	Z1118		
Analytical Method:	EPA SW-846	7471 - HG			%	Moisture:	1.00
Result Type:	Final				Da	atafile:	011508B1
CAS Number	Parameter	Results	Qualifier	Units	DL	RT/RL	DF DIL/RE
7439-97-6	Mercury	N) U	mg/Kg	0.003	0.010	1

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client:		Enviror	nmental Bus	iness (Consultants		Date Collected:	01/0	9/08
Project	ID:	Former	Dico-G auto	o & tru	ck repair		Date Received:	01/1	1/08
Custome Sample	er No.:	BEDRO	ск ѕоитн				Lab Sample ID:	Z111	8-03
Test:		Metals	ICP-TAL				SDG ID:	Z111	8
Analytic Method:	al	EPA SV	V-846 6010	- ICP1			% Moisture:	1.00	
Result T	ype:	Final					Datafile:	P101	1608
CAS Number	Param	eter	Results	Qualifi	ier Units	DL	RT/RL	I	DF DIL/RE
7429- 90-5	Alum	inum	11000)	mg/Kg	0.599	3.:	370	1
7440- 36-0	Antin	nony	ND	U	mg/Kg	0.229	1.0	680	1
7440- 38-2	Arser	nic	0.204	J	mg/Kg	0.135	0.0	673	1
7440- 39-3	Bariu	m	139)	mg/Kg	0.101	3.3	370	1
7440- 41-7	Beryl	lium	0.168	J	mg/Kg	0.007	0.2	202	1
7440- 43-9	Cadm	nium	ND	U	mg/Kg	0.040	0.0	673	1
7440- 70-2	Calciu	um	769	1	mg/Kg	1.150	6	7.3	1
7440- 47-3	Chror	nium	15.7		mg/Kg	0.074	0.3	337	1
7440- 48-4	Coba	lt	16.5		mg/Kg	0.094	1.0	010	1
7440- 50-8	Сорр	er	29.9		mg/Kg	0.088	0.0	673	1
7439- 89-6	Iron		20200)	mg/Kg	1.800	3.3	370	1
7439- 92-1	Lead		2.790)	mg/Kg	0.094	0.0	673	1
7439- 95-4	Magn	esium	5330)	mg/Kg	1.160	6	7.3	1
7439- 96-5	Mang	anese	57.5		mg/Kg	0.040	0.0	673	1
7440- 02-0	Nicke	el	20.9		mg/Kg	0.081	1.:	350	1

7440- 09-7	Potassium	9335.057	OR	mg/Kg	14.7878770828	134.6801452637	1
7782- 49-2	Selenium	ND	U	mg/Kg	0.121	0.673	1
7440- 22-4	Silver	ND	U	mg/Kg	0.121	0.337	1
7440- 23-5	Sodium	75.9		mg/Kg	19.5	67.3	1
7440- 28-0	Thallium	ND	U	mg/Kg	1.270	1.350	1
7440- 62-2	Vanadium	21.5		mg/Kg	0.101	1.350	1
7440- 66-6	Zinc	64.4		mg/Kg	0.721	1.350	1

Client:	Environmental Business Consultants					ed:	01/09/08	
Project ID:	Former Dico-G auto & tr	uck repair			Date Re	ceived:	01/11/08	
Customer Sample No.:	BEDROCK SOUTH					nple	Z1118-03	
Test:	РСВ	SDG ID	:	Z1118				
Analytical Method:	EPA SW-846 8082					ture:	1.00	
Result Type:	Final				Datafile	:	P6012	2331
CAS Number	Parameter	Results	Qualifier	Units	DL	RT/RL	DF	DIL/RE
12674-11-2	Aroclor-1016	N	U C	ug/Kg	2.6	17	1	
11104-28-2	Aroclor-1221	N	U C	ug/Kg	4.0	17	1	
11141-16-5	Aroclor-1232	N	U (ug/Kg	5.9	17	1	
53469-21-9	Aroclor-1242	N	U C	ug/Kg	5.3	17	1	
12672-29-6	Aroclor-1248	N	U C	ug/Kg	2.6	17	1	
11097-69-1	Aroclor-1254	N	U (ug/Kg	1.7	17	1	
11096-82-5	Aroclor-1260	N	U C	ug/Kg	4.3	17	1	

Client:	Environmental Business Consultants					Date Collected:		01/09/08	
Project ID:	Former Dico-G auto & truck	repair			Date Rece	eived:	01/11/08		
Customer Sample No.:	BEDROCK SOUTH				Lab Samp ID:	le	Z1118-0	3	
Test:	Pesticide-TCL				SDG ID:		Z1118		
Analytical Method:	EPA SW-846 8081				% Moistu	re:	1.00		
Result Type:	Final				Datafile:		P701920	05	
CAS Number	Parameter	Results C	Qualifier	Units	DL	RT/RL	DF D	IL/RE	
319-84-6	alpha-BHC	ND	U	ug/Kg	0.65	1.	71		
319-85-7	beta-BHC	ND	U	ug/Kg	0.88	1.	71		
319-86-8	delta-BHC	ND	U	ug/Kg	1.6	1.	71		
58-89-9	gamma-BHC	ND	U	ug/Kg	0.73	1.	71		
76-44-8	Heptachlor	ND	U	ug/Kg	0.94	1.	71		
309-00-2	Aldrin	ND	U	ug/Kg	1.2	1.	71		
1024-57-3	Heptachlor epoxide	ND	U	ug/Kg	1.1	1.	71		
959-98-8	Endosulfan I	ND	U	ug/Kg	0.89	1.	71		
60-57-1	Dieldrin	ND	U	ug/Kg	0.83	1.	71		
72-55-9	4,4-DDE	ND	U	ug/Kg	0.79	1.	71		
72-20-8	Endrin	ND	U	ug/Kg	0.86	1.	71		
33213-65-9	Endosulfan II	ND	U	ug/Kg	0.95	1.	71		
72-54-8	4,4-DDD	ND	U	ug/Kg	0.71	1.	71		
1031-07-8	Endosulfan Sulfate	ND	U	ug/Kg	1.1	1.	71		
50-29-3	4,4-DDT	ND	U	ug/Kg	0.73	1.	71		
72-43-5	Methoxychlor	ND	U	ug/Kg	0.87	1.	71		
53494-70-5	Endrin ketone	ND	U	ug/Kg	0.83	1.	71		
7421-93-4	Endrin aldehyde	ND	U	ug/Kg	1.0	1.	71		
5103-71-9	alpha-Chlordane	ND	U	ug/Kg	0.84	1.	71		
5103-74-2	gamma-Chlordane	ND	U	ug/Kg	0.88	1.	71		
8001-35-2	Toxaphene	ND	U	ug/Kg	3.6	1	71		

Client:	Environmental Business Consultants			D C	ate ollected:	C	01/09/08	
Project ID:	Former Dico-G auto & truck repair			D	ate Rece	ived: C	1/11	/08
Customer Sample No.:	BEDROCK SOUTH			L	ab Sampl D:	e Z	1118	-03
Test:	SVOCMS Group1			s	DG ID:	Z	1118	
Analytical Method:	EPA SW-846 8270			9	6 Moistur	re: 1	.00	
Result Type:	Final			D	atafile:	E	B041	520
CAS Number	Parameter	Results Q	ualifier	r Units	DL	RT/RI	. DF	DIL/RE
100-52-7	Benzaldehyde	ND	U	ug/K	g 11	33	0	1
111-44-4	bis(2-Chloroethyl)ether	ND	U	ug/K	g 4.4	33	0	1
108-60-1	2,2-oxybis(1-Chloropropane)	ND	U	ug/K	g 14	33	0	1
98-86-2	Acetophenone	ND	U	ug/K	g 9.9	33	0	1
621-64-7	N-Nitroso-di-n-propylamine	ND	U	ug/K	g 12	33	0	1
67-72-1	Hexachloroethane	ND	U	ug/K	g 11	33	0	1
98-95-3	Nitrobenzene	ND	U	ug/K	g 7.8	33	0	1
78-59-1	Isophorone	ND	U	ug/K	g 11	33	0	1
111-91-1	bis(2-Chloroethoxy)methane	ND	U	ug/K	g 7.7	33	0	1
91-20-3	Naphthalene	ND	U	ug/K	g 8.0	33	0	1
106-47-8	4-Chloroaniline	ND	U	ug/K	g 22	33	0	1
87-68-3	Hexachlorobutadiene	ND	U	ug/K	g 13	33	0	1
105-60-2	Caprolactam	ND	U	ug/K	g 40	33	0	1
91-57-6	2-Methylnaphthalene	ND	U	ug/K	g 9.4	33	0	1
77-47-4	Hexachlorocyclopentadiene	ND	U	ug/K	g 17	33	0	1
92-52-4	1,1-Biphenyl	ND	U	ug/K	g 9.9	33	0	1
91-58-7	2-Chloronaphthalene	ND	U	ug/K	g 8.1	33	0	1
88-74-4	2-Nitroaniline	ND	U	ug/K	g 16	84	0	1
131-11-3	Dimethylphthalate	ND	U	ug/K	g 9.7	33	0	1
208-96-8	Acenaphthylene	ND	U	ug/K	g 4.9	33	0	1
606-20-2	2,6-Dinitrotoluene	ND	U	ug/K	g 12	33	0	1
99-09-2	3-Nitroaniline	ND	U	ug/K	g 22	84	0	1
83-32-9	Acenaphthene	ND	U	ug/K	g 7.2	33	0	1
132-64-9	Dibenzofuran	ND	U	ug/K	g 10	33	0	1
121-14-2	2,4-Dinitrotoluene	ND	U	ug/K	g 11	33	0	1
84-66-2	Diethylphthalate	ND	U	ug/K	g 11	33	0	1
7005-72-3	4-Chlorophenyl-phenylether	ND	U	ug/K	g 13	33	0	1
86-73-7	Fluorene	ND	U	ug/K	g 9.0	33	0	1

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client:	Environmental Business Consultants				Date Collected:		01/09/08	
Project ID:	Former Dico-G auto & truck repair				Date Rece	ived: 01	/11/08	
Customer Sample No.:	BEDROCK SOUTH				Lab Samp ID:	le Z1	118-03	
Test:	SVOCMS Group1			:	SDG ID:	Z1	118	
Analytical Method:	EPA SW-846 8270				% Moistui	e: 1.0	00	
Result Type:	Final				DataFile:	BE	8041520	
CAS Number	Parameter	Results C	Qualifier	Units	DL	RT/RL	DF DIL/RE	
100-01-6	4-Nitroaniline	ND	U	ug/K	g 26	840	1	
86-30-6	N-Nitrosodiphenylamine	ND	U	ug/K	g 25	330	1	
101-55-3	4-Bromophenyl-phenylether	ND	U	ug/K	g 15	330	1	
118-74-1	Hexachlorobenzene	ND	U	ug/K	g 10	330	1	
1912-24-9	Atrazine	ND	U	ug/K	g 24	330	1	
85-01-8	Phenanthrene	ND	U	ug/K	g 10	330	1	
120-12-7	Anthracene	ND	U	ug/K	g 11	330	1	
86-74-8	Carbazole	ND	U	ug/K	g 25	330	1	
84-74-2	Di-n-butylphthalate	ND	U	ug/K	g 16	330	1	
206-44-0	Fluoranthene	ND	U	ug/K	g 8.1	330	1	
129-00-0	Pyrene	ND	U	ug/K	g 7.3	330	1	
85-68-7	Butylbenzylphthalate	ND	U	ug/K	g 21	330	1	
91-94-1	3,3-Dichlorobenzidine	ND	U	ug/K	g 25	330	1	
56-55-3	Benzo(a)anthracene	ND	U	ug/K	g 8.0	330	1	
218-01-9	Chrysene	ND	U	ug/K	g 6.2	330	1	
117-81-7	bis(2-Ethylhexyl)phthalate	39	J	ug/K	g 13	330	1	
117-84-0	Di-n-octyl phthalate	ND	U	ug/K	g 12	330	1	
205-99-2	Benzo(b)fluoranthene	ND	U	ug/K	g 24	330	1	
207-08-9	Benzo(k)fluoranthene	ND	U	ug/K	g 15	330	1	
50-32-8	Benzo(a)pyrene	ND	U	ug/K	g 9.8	330	1	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	U	ug/K	g 8.4	330	1	
53-70-3	Dibenz(a,h)anthracene	ND	U	ug/K	g 24	330	1	
191-24-2	Benzo(g,h,i)perylene	ND	U	ug/K	g 24	330	1	

Client:	Environmental Business Consultants				Date Collected:		01/09/08	
Project ID:	Former Dico-G auto & truck repair					ived: 0	01/11/08	
Customer Sample No.:	BEDROCK SOUTH			l	Lab Samp ID:	le Z'	118-03	
Test:	VOCMS Group1			:	SDG ID:	Z	118	
Analytical Method:	EPA SW846 8260			G	% Moistu	re: 1.	00	
Result Type:	Final			I	Datafile:	V	(022565	5
CAS Number	Parameter	Results (Qualifie	er Units	DL	RT/RL	DF DI	L/RE
75-71-8	Dichlorodifluoromethane	ND	U	ug∕k	(g 9.5	5 25	i 1	
74-87-3	Chloromethane	ND	U	ug∕k	(g 6.6	5 25	i 1	
75-01-4	Vinyl Chloride	ND	U	ug/k	(g 6.8	3 25	i 1	
74-83-9	Bromomethane	ND	U	ug∕k	(g 10) 25	i 1	
75-00-3	Chloroethane	ND	U	ug/k	(g 9.2	2 25	i 1	
75-69-4	Trichlorofluoromethane	ND	U	ug∕k	(g 5.9	25	i 1	
76-13-1	1,1,2-Trichlorotrifluoroethane	ND	U	ug∕k	(g 8.3	8 25	i 1	
75-35-4	1,1-Dichloroethene	ND	U	ug/k	(g 5.0) 25	i 1	
67-64-1	Acetone	ND	U	ug/k	(g 84	120) 1	
75-15-0	Carbon Disulfide	ND	U	ug/k	(g 5.3	3 25	i 1	
1634-04-4	Methyl tert-butyl Ether	ND	U	ug/k	(g 4.4	25	i 1	
79-20-9	Methyl Acetate	ND	U	ug/k	(g 8.4	25	i 1	
75-09-2	Methylene Chloride	ND	U	ug/k	(g 12	2 25	i 1	
156-60-5	trans-1,2-Dichloroethene	ND	U	ug/k	(g 6.1	25	i 1	
75-34-3	1,1-Dichloroethane	ND	U	ug/k	(g 5.5	5 25	i 1	
110-82-7	Cyclohexane	ND	U	ug/k	(g 5.1	25	i 1	
78-93-3	2-Butanone	ND	U	ug/k	(g 25	5 120) 1	
56-23-5	Carbon Tetrachloride	ND	U	ug/k	(g 2.9	25	i 1	
156-59-2	cis-1,2-Dichloroethene	ND	U	ug/k	(g 6.4	25	i 1	
67-66-3	Chloroform	ND	U	ug/k	(g 4.4	25	i 1	
71-55-6	1,1,1-Trichloroethane	ND	U	ug/k	(g 4.7	25	i 1	
108-87-2	Methylcyclohexane	ND	U	ug/k	(g 4 .1	25	i 1	
71-43-2	Benzene	ND	U	ug/k	(g 3.6	5 25	i 1	
107-06-2	1,2-Dichloroethane	ND	U	ug/k	(g 4 .1	25	i 1	
79-01-6	Trichloroethene	ND	U	ug/k	(g 3.6	5 25	i 1	
78-87-5	1,2-Dichloropropane	ND	U	ug/k	(g 4.7	25	i 1	
75-27-4	Bromodichloromethane	ND	U	ug∕k	(g 3.5	5 25	i 1	
108-10-1	4-Methyl-2-Pentanone	ND	U	ug∕k	(g 19	9 120) 1	

Client:	Environmental Business Consultants					01/	01/09/08	
Project ID:	Former Dico-G auto & truck repair			Date	Receiv	/ed: 01/	11/08	
Customer Sample No.:	BEDROCK SOUTH			Lab S ID:	Sample	e Z11	18-03	
Test:	VOCMS Group1			SDG	ID:	Z11	18	
Analytical Method:	EPA SW846 8260			% M	oisture	e: 1.0	0	
Result Type:	Final			Data	File:	VKC	022565	
CAS Number	Parameter	Results	Qualifie	r Units	DL	RT/RL	DF DI	L/RE
108-88-3	Toluene	ND	U	ug/Kg	4.4	25	1	
10061-02-6	t-1,3-Dichloropropene	ND	U	ug/Kg	4.2	25	1	
10061-01-5	cis-1,3-Dichloropropene	ND	U	ug/Kg	3.3	25	1	
79-00-5	1,1,2-Trichloroethane	ND	U	ug/Kg	3.0	25	1	
591-78-6	2-Hexanone	ND	U	ug/Kg	22	120	1	
124-48-1	Dibromochloromethane	ND	U	ug/Kg	3.3	25	1	
106-93-4	1,2-Dibromoethane	ND	U	ug/Kg	4.1	25	1	
127-18-4	Tetrachloroethene	ND	U	ug/Kg	6.1	25	1	
108-90-7	Chlorobenzene	ND	U	ug/Kg	3.8	25	1	
100-41-4	Ethyl Benzene	ND	U	ug/Kg	4.0	25	1	
126777-61-2	m/p-Xylenes	ND	U	ug/Kg	9.2	50	1	
95-47-6	o-Xylene	ND	U	ug/Kg	3.8	25	1	
100-42-5	Styrene	ND	U	ug/Kg	3.1	25	1	
75-25-2	Bromoform	ND	U	ug/Kg	4.0	25	1	
98-82-8	Isopropylbenzene	ND	U	ug/Kg	4.1	25	1	
79-34-5	1,1,2,2-Tetrachloroethane	ND	U	ug/Kg	4.4	25	1	
541-73-1	1,3-Dichlorobenzene	ND	U	ug/Kg	3.3	25	1	
106-46-7	1,4-Dichlorobenzene	ND	U	ug/Kg	3.8	25	1	
95-50-1	1,2-Dichlorobenzene	ND	U	ug/Kg	4.3	25	1	
96-12-8	1,2-Dibromo-3-Chloropropane	ND	U	ug/Kg	5.1	25	1	
120-82-1	1,2,4-Trichlorobenzene	ND	U	ug/Kg	3.3	25	1	

Client:	Environmental Business Consultants					cted:	01/09/08		
Project ID:	Former Dico-G a	uto & truck ı	epair		Date	Received:	01/11/08		
Customer Sample No.:	BEDROCK SOUT	HDL			Lab S ID:	Sample	Z1118-	03DL	
Test:	Metals ICP-TAL				SDG	ID:	Z1118		
Analytical Method:	EPA SW-846 60 ⁻	10 - ICP1			% M	oisture:	1.00		
Result Type:	Final				Data	file:	P10116	608	
CAS Number	Parameter	Results	Qualifier	Units	DL	RT/RL	DF [DIL/RE	
7429-90-5	Aluminum	11800	D	mg/Kg	3.000	16.8	5	DIL	
7440-36-0	Antimony	ND	UD	mg/Kg	1.140	8.420	5	DIL	
7440-38-2	Arsenic	1.210	JD	mg/Kg	0.673	3.370	5	DIL	
7440-39-3	Barium	148	D	mg/Kg	0.505	16.8	5	DIL	
7440-41-7	Beryllium	0.199	JD	mg/Kg	0.034	1.010	5	DIL	
7440-43-9	Cadmium	ND	UD	mg/Kg	0.202	3.370	5	DIL	
7440-70-2	Calcium	842	D	mg/Kg	5.760	337	5	DIL	
7440-47-3	Chromium	17.5	D	mg/Kg	0.370	1.680	5	DIL	
7440-48-4	Cobalt	17.7	D	mg/Kg	0.471	5.050	5	DIL	
7440-50-8	Copper	31.6	D	mg/Kg	0.438	3.370	5	DIL	
7439-89-6	Iron	22400	D	mg/Kg	8.990	16.8	5	DIL	
7439-92-1	Lead	3.100	JD	mg/Kg	0.471	3.370	5	DIL	
7439-95-4	Magnesium	5820	D	mg/Kg	5.820	337	5	DIL	
7439-96-5	Manganese	62.9	D	mg/Kg	0.202	3.370	5	DIL	
7440-02-0	Nickel	22.6	D	mg/Kg	0.404	6.730	5	DIL	
7440-09-7	Potassium	8470	D	mg/Kg	73.9	673	5	DIL	
7782-49-2	Selenium	ND	UD	mg/Kg	0.606	3.370	5	DIL	
7440-22-4	Silver	ND	UD	mg/Kg	0.606	1.680	5	DIL	
7440-23-5	Sodium	ND	UD	mg/Kg	97.3	337	5	DIL	
7440-28-0	Thallium	ND	UD	mg/Kg	6.360	6.730	5	DIL	
7440-62-2	Vanadium	22.9	D	mg/Kg	0.505	6.730	5	DIL	
7440-66-6	Zinc	71.1	D	mg/Kg	3.600	6.730	5	DIL	

U = Not DetectedRL = Reporting LimitMDL = Method Detection LimitE = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Project #: Z1118 1/16/2008 3:22:26 PM End of Report

<u>APPENDIX - L</u> NYCDEP Sewer Discharge Permit

DEPARTMENT OF ENVIRONMENTAL PROTECTION

59-17 Junction Boulevard Flushing, New York 11373

Emily Lloyd Commissioner

Douglas S. Greeley, P.E. Deputy Commissioner

Bureau of Wastewater Treatment

Tel. (718) 595-6389 Fax (718) 595-6950 dgreeley@dep.nyc.gov March 12, 2008

AMC Engineering PLLC 176 Central Avenue Farmingdale, NY 10375 Attn: Ariel Czemerinski, P.E.

Re: Groundwater Discharge Former Dico G Auto & Truck Repair File Case # C-4335

Dear Mr. Czemerinski:

This is in response to your January 28th and March 12, 2008 submissions, requesting for the permission to discharge up to **9,900 gallons per day** (gpd) of groundwater generated during dewatering operations in accordance with New York State Department of Environmental Conservation (NYSDEC), Brownfield Cleanup Program No. C203039 at 3001-3035 White Plains Road, Bronx, NY 10467. The groundwater discharge will be treated through a system consisting of a 400 lbs. carbon vessel, per provided schematic and information, before discharging into an off-site manhole that leads to an existing 24" combined sewer located at White Plains Road between Adee Avenue and Lester Street in Bronx, NY.

Based upon the information, schematic and analytical data submitted, you are hereby conditionally authorized, to discharge up to 9,900 gpd of groundwater, treated through the above system, as specified in your submissions, <u>for a period of five months</u>, to the combined sewer at the above mentioned location. This Letter of Approval shall expire at midnight on March 11, 2009.

This conditional approval, however, is subject to your obtaining a groundwater discharge Approval, specifying allowable flow rates, from the Division of Connections and Permitting, Bureau of Water and Sewer Operations, if discharges exceed 10,000 gpd. You are also required to follow manufacturer specifications for the operation and maintenance of the selected equipments. This Letter of Approval is contingent upon permittee's compliance with any other Federal, State or Local laws applicable to the permitted activity.

Payment shall be made to the Bureau of Customer Service for groundwater discharge into the New York City Wastewater System in accordance with the Water and Wastewater Rate Schedule established by the New York City Water Board.

You are required to hold the groundwater to the maximum extent practicable during heavy wet weather events. In addition, you must notify this section in writing prior to the commencement of discharge. Refer to the File Case C-4335 in any correspondence to this office.

The permittee must collect samples of the groundwater after the pre-treatment system on a quarterly basis. The samples must be analyzed for the parameters listed in the attached list by a New York State Department of Health certified laboratory. The results must be submitted to this office within 14 days after each sampling date. If any of the sampling results exceed DEP limit, the discharge must be ceased and the Bureau of Wastewater Treatment must be notified immediately by phone and Fax (718) 595-4771.

This Letter of Approval is an order of the Commissioner of the Department of Environmental Protection. Please be advised that failure to comply with this Letter of Approval may result in the issuance of Notices of Violation (returnable to the New York City Environmental Control Board). Notices of Violation carry penalties of up to \$10,000 a day, per violation and/or revocation of the Letter of Approval.

If you have any questions concerning this matter, please telephone Mr. Alex Castro, Assistant Chemical Engineer, at (718) 595-4715.

Sincerely,

Frances Leung, P.E., Chief,

IPP Inspection & permit Section

Enc: Sampling requirements list
Parameter ¹	Daily	Units	Sample Type	Monthly
	Limit		Sumpre Type	Limit
Non-polar material ²	50	mg/l	Instantaneous	
рН	5-11	SU's	Instantaneous	
Temperature	< 150	Degree F	Instantaneous	
Flash Point	>140	Degree F	Instantaneous	
Cadmium	2	mg/l	Instantaneous	
	0.69	mg/l	Composite	
Chromium (VI)	5	mg/l	Instantaneous	
Copper	5	mg/l	Instantaneous	
Lead	2	mg/l	Instantaneous	
Mercury	0.05	mg/l	Instantaneous	
Nickel	3	mg/l	Instantaneous	
Zinc	5	mg/l	Instantaneous	
Benzene	134	ppb	Instantaneous	57
Carbontetrachloride			Composite	
Chloroform			Composite	
1,4 Dichlorobenzene			Composite	
Ethylbenzene	380	ppb	Instantaneous	142
MTBE (Methyl-Tert-	50	ppb	Instantaneous	
Butyl-Ether)				
Naphthalene	47	ppb	Composite	19
Phenol			Composite	
Tetrachloroethylene	20	ppb	Instantaneous	
(Perc)				
Toluene	74	ppb	Instantaneous	28
1,2,4			Composite	
Trichlorobenzene			1	
1,1,1 Trichloroethane			Composite	
Xylenes (Total)	74	ppb	Instantaneous	28
PCB's $(Total)^3$	1	ppb	Composite	
Total Suspended	350^4	mg/l	Instantaneous	
Solids (TSS)				
CBOD ³			Composite	
Chloride			Instantaneous	
Total Nitrogen ⁵			Composite	
Total Solids ⁵			Instantaneous	
Other				

Sampling requirements for C-4335

All handling and preservation of collected samples and laboratory analyses of samples shall be performed in accordance with 40 C.F.R. pt. 136. If 40 C.F.R. pt. 136 does not cover the pollutant in question, the handling, preservation, and analysis must be performed in accordance with the latest edition of "Standard Methods for the Examination of Water and Wastewater." All analyses shall be performed using a detection level less than the lowest applicable regulatory discharge limit. If a parameter does not have a limit, then the detection level is defined as the least of the Practical Quantitation Limits identified in NYSDEC's

1

<u>Analytical Detectability and Quantitation Guidelines for Selected Environmental</u> <u>Parameters</u>, December 1988

2 Analysis for *non-polar materials* must be done by EPA method 1664 Rev. A. Non-Polar Material shall mean that portion of the oil and grease that is not eliminated from a solution containing N–Hexane, or any other extraction solvent the EPA shall prescribe, by silica gel absorption.

Analysis for PCB's is required if *both* conditions listed below are met:
1) if proposed discharge ≥ 10,000 gpd;
2) if duration of a discharge > 10 days.
Analysis for PCB's must be done by EPA method 608 with MDL=<65 ppt.
PCB's (total) is the sum of PCB-1242 (Arochlor 1242), PCB-1254 (Arochlor 1242).

3

5

- 1254), PCB-1221 (Arochlor 1221), PCB-1232 (Arochlor 1232), PCB-1248 (Arochlor 1248), PCB-1260 (Arochlor 1260) and PCB-1016 (Arochlor 1016).
- 4 For discharge \geq 10,000 gpd, the TSS limit is 350 mg/l. For discharge < 10,000gpd, the limit is determined on a case by case basis.

Analysis for Carbonaceous Biochemical Oxygen Demand (CBOD), Chloride, Total Solids and Total Nitrogen are required if proposed discharge ≥ 10,000 gpd. AMC Engineering

P.O. Box 43 Albertson, NY 11507-0043 516.987.1662 Fax 516 706-3214

January 27, 2008

Mr. Alex Castro, PE NEW YORK CITY DEP BUREAU OF WASTEWTER TREATMENT IPP INSPECTION & PERMIT SECTION

Ref.:3035 White Plains Road, Bronx, NY: APPLICATION FOR LETTER OF APPROVAL FOR RAINWATER DISCHARGE TO COMBINED SEWER

Dear Mr. Castro:

Please, find attached the application form and other supporting information to obtain approval to temporarily discharge rainwater into New York City storm drain.

During remedial and construction activities at the subject property rainwater accumulates on-site. Because of the nature of the job, which involves carving into bedrock, which progresses at times very slowly, rainwater accumulates in the carved basin and must be removed.

A sample of the water has been taken and analyzed for the parameters as required by NYC DEP, and noted that there is a slight exceedance of combined xylenes (0-xylene is 22 ppb and m/p-xylene is 71 ppb. Total xylenes (93 ppb) exceed the maximum 74 ppb. All other parameters fell below NYCDEP effluent limitations.

It is proposed to treat the rainwater with activated carbon to remove the xylene and discharge to a combined storm drain, located within the fenced area of the project. The treatment system consists of a pump (centrifugal, self priming, 1.5HP, set to pump a maximum of 50 gpm), which will pump accumulated rainwater. A suction strainer is installed to prevent debris from prematurely clogging up the carbon filter. The system will be operated during working hours, and will be off when the basin is dry and outside working hours. The Water Pollution Control Plan for the Area is Hunts Point. The size of the main is assumed to be 8" (dimension to be verified with NYCDEP), running as indicated in the site plan, alongside White Plains Road.

The subject property address is 3035 White Plains Road. It is located on the west side of White Plains Road between Adee Avenue and Burke Avenue in the Bronx, New York. The site is designated as Block 4545, Lot 14 by the New York City Department of Assessment. The subject property consists of a 16,880 ft2 parcel. The surrounding area is characterized by commercial businesses (mostly

retail) along White Plains Road. Residential areas are located behind (east-west) this commercial corridor. An elevated section of the Metro-North Railway passes in front of the property, directly over White Plains Road.

The construction project is part of the redevelopment of a former Auto Repair Shop to a residential apartment building with a first floor for retail space. The project has been accepted into the New York State Brownfield Cleanup Program (C203039) and is being performed under the oversight of NYSDEC. The NYSDEC Region 2 contact fro the project is

Shaminder Singh 47-40 21st Street LIC, NY 11101, (718) 482-4909

Attached, and for your reference, please find:

- 1. Filled out Wastewater Quality Control Application form
- 2. Site Plan and Proposed Process Flow Diagram
- 3. Analytical results of water to be discharged
- 4. Technical information of proposed carbon treatment system
- 5. MSDS of mixed Xylene (o-, p-, and m-)

Please, let me know if you require any additional information.

Yours truly,

Ariel Czemerinski, PE AMC Engineering, PLLC

Cc: Shaminder Singh, NYSDEC Reg. 2 C. Sosik, Environmental Business Consultants

Wastewater Quality Control Application

PLEASE PRINT OR TYPE. APPLICANT MUST COMPLETE BOTH PAGES OF THIS FORM. INCORRECT OR INCOMPLETE APPLICATIONS WILL NOT BE ACCEPTED AND WILL BE RETURNED. WRITE N/A IF NOT APPLICABLE. PLEASE RETURN COMPLETED FORM TO:

New York City Department of Environmental Protection Division of Pollution Control and Monitoring IPP Inspection and Permit Section 96-05 Horace Harding Expressway, 1st Floor Corona, NY 11368

1. LOCATION	TAX BLOCK # 4545		LOT#: 14
PROJECT NAME: FORM	ER DICO G AUTO & TRUCK RE	PAIR	BOROUGH: BRONX
HOUSE#: 3001-3035	STREET NAME: WHITE PLAIN	NS ROAD	ZIP:
IS THIS A DEP PROJECT	? []YES [X]NO	IS THIS PROJECT DEP FUNDED? [] YES [X]NO

2. APPLICANT					
LAST NAME: Czemerinski	FIRST N	AME: Ariel		Ν	V.I.:
LEGAL BUSINESS NAME: AMC Engineering PL	LC			TELEPHO	ONE:(516) 987-1662
ADDRESS: 176 Central Avenue		CITY: Farmingdale	STATE	: NY	ZIP: 10375
CONTACT PERSON: Ariel Czemerinski			TELEP	HONE: (51	16) 987-1662

3. OWNER					
TYPE OF OWNERSHIP: [] INDIVIDUAL [X]CORPOR	ATION []PARTNE	RSHIP []GC	OVERNMENT
]]OTHER:				
LAST NAME:		FIRST N	AME:		M.I.:
LEGAL BUSINESS NAME/AGENCY: Bedford Park Associates LLC TELEPHONE: ()					
ADDRESS: 930 Broadway			CITY:Woodmere	STATE: NY	ZIP: 11598

4. PROJECT USE					
[]RESIDENTIAL	NUMBER OF DWELLING UNITS:	M.I.:			
[]COMMERCIAL TYPE:	GROSS FLOOR AREA:	SQ. FT.			
[]INDUSTRIAL TYPE:	GROSS FLOOR AREA:	SQ. FT.			
[X]OTHER, EXPLAIN: NEW YORK STATE BROWNFIELD CLEANUP PROGRAM					

5. LOCATION								
OBTAIN FROM BOROUG	OBTAIN FROM BOROUGH OFFICE AND INDICATE THE CORRECT STREET LINES FROM THE CITY PLAN; THE							
PLOT TO BE BUILT UPO	N IN RELATION TO THE STREET LINE	S AND THE PORTION OF THE LOT TO BE						
OCCUPIED BY THE BUIL	DING; THE HOUSE NUMBERS AND TH	HE BLOCK AND LOT NUMBERS.						
BLOCK: 4545	LOT(S): 14	HOUSE NO(S): 3035						
DIAGRAM (SHOW ARRO	W INDICATING NORTH)							
		E E						
	FENCE							
	EE AVE							
	PE V							
	0 15 30							

GALLONS/DAY	PROPOSED AVERAGE: 9,900 GALLONS/DAY
1,200 GAL	LONS/HR.
E THE METHOD OF D	ISPOSAL OF WASTEWATER & SEWAGE:
D SIDEWALK (WHICH	IS ENCLOSED IN CONSTRUCTION SITE, AND
MITTED). PROPOSEI	D DISCHARGE MANHOLE IS 80 FT NORTH FROM THE
RSECTION OF WHITE	PLAINS ROAD AND ADEE AVENUE.
	GALLONS/DAY 1,200 GALI E THE METHOD OF D D SIDEWALK (WHICH MITTED). PROPOSEI RSECTION OF WHITE

7. INDUSTRIAL/COMMERCIAL/MANUFACTURING ONLY		
TYPE OF ESTABLISHMENT:	FLOOR AREA:	SQ. FT.
WORK AREA: SQ. FT.	STORAGE AREA:	SQ. FT.
[] NEW SEWER CONNECTION AT:		
[] EXISTING SEWER CONNECTION AT:		
CONNECTION TO: [] SANITARY [] COMBINED [] STO	DRM []OTHER:	
LIST ALL CHEMICALS OR HAZARDOUS WASTES, IF ANY:		
MSDS ATTACHED? [] YES [] NO		

8. DEWATERING/SPECIAL DI	SCHARGES					
[] GROUNDWATER						
DISCHARGE FLOW RATE:	9,900	GPD	DURATION:	5 MONTHS	D/M/Y	
[] GRAVITY	[X]PU	ИР		PUMP CAPACITY:	20	GPM
DISCHARGE TO (NAME OF W	ASTEWATER	SEWER	TREATMENT P	LANT):		
DISCHARGE SEWER SIZE:	IN.	[]SA	NITARY	[x] COMBINED	[]STORM	
MSDS OF CHEMICALS USED	ATTACHED:	[X]	YES []NO			
NYS LABORATORY ANALYTIC	CAL RESULTS	: [X]	ATTACHED	[] NOT AVAILABLE		
NYSDEC PERMIT:		[]A	TTACHED	[X]NOT AVAILABLE		

9. PRETREATMENT EQUIPMENT					
[] GREASE INTERCEPTOR	NO. OF UNIT:	SIZE/RAT	E:		
[] OIL/WATER SEPARATOR	NO. OF UNIT:	SIZE/RAT	E:		
[X] CARBON UNIT	NO. OF UNIT: 1	SIZE/RAT	E:20 GPM		
[] AIR STRIPPER	NO. OF UNIT:	SIZE/RAT	E:		
[] SETTING TANK/BASIN	NO. OF UNIT:	SIZE/RAT	SIZE/RATE:		
[] pH NEUTRALIZATION	NO. OF UNIT:	SIZE/RAT	SIZE/RATE:		
[] WIRE BASKET	NO. OF UNIT:	SIZE/RAT	E:		
[] PLASTER TRAP	NO. OF UNIT:	SIZE/RAT	E:		
[] AMALGAM SEPARATOR	NO. OF UNIT:	SIZE/RAT	E:		
[] OTHER, EXPLAIN:					
MANUFACTURER: CAMERON CARBON	SERIAL NUMBER: LC 110-400				
MEA/BSA NUMBER:		REAGENT(S):			
		GROSS FLOOF	RAREA:	SQ FT.	

 10. PROJECT DESCRIPTION/HISTORY:

 THE SITE WAS A SERVICE STATION. IT IS BEING REMEDIATED UNDER A BROWNFIELD CLEAN UP PROGRAM

 (BCP) #C203039. NYSDEC IS THE LEAD AGENCY OVERSEEING THE PROJECT. MOST OF THE HYDROCARBON

 IMPACTED MATERIAL HAS BEEN REMOVED. THERE IS CARVING INTO BEDROCK FOR PROPARATION FOR

 CONSTRUCTION. RAINWATER COLLECTS AT THE BOTTOM OF THE EXCAVATED SITE AND NEEDS TO BE

 PUMPED OUT TO CONTINUE WITH EXCAVATION ACTIVITIES.

11. STATEMENTS AND SIGNATURES:		
OWNER'S NAME:	OWNER'S SIGNATURE:	DATE:
Bedford Park Associates, LLC		
APPLICANT'S NAME:	APPLICANT'S SIGNATURE:	DATE:
Ariel Czemerinski		
NAME OF NYS PROFESSIONAL ENGINEER	OR REGISTERED ARCHITECT:	
SEAL & SIGNATURE (NYS P.E. OR R.A.)	I HAVE PREPARED OR SUPERVISED T	THE PREPARATION
	OF THE PLANS, SPECIFICATION	IS AND OTHER
	DOCUMENTS HEREWITH SUBMITTE	D AND, TO THE
	BEST OF MY KNOWLEDGE AND BE	LIEF, THE PLANS
	AND WORK SHOWN THEREIN CO	MPLY WITH THE
	PROVISIONS OF ALL NEW YORK	CITY AND STATE
	CODES AND OTHER APPLICAB	LE LAWS AND
	REGULATIONS. I AM AWARE TH	HAT THERE ARE
	SIGNIFICANT PENALTIES FOR SU	BMITTING FALSE
SIGNATURE OF NYS P.E. OR R.A.:	INFORMATION, INCLUDING THE PO	OSSIBLITILITY OF
DATE:	FINE AND/OR IMPRISONMENT.	

TABLE A

LIMITATIONS FOR EFFLUENT TO SANITARY OR COMBINED SEWERS

Parameter ¹	Daily Limit		Units	Sample Type	Monthly
Non-polar material ²	50	76	ma/l	Instantaneous	
nH	5-11	6.1	SLI's	Instantaneous	
Temperature	< 150	0.1	Degree F	Instantaneous	
Flash Point	< 1 <u>30</u>	>150	Degree F	Instantaneous	
Cadmium	2	0.0017	mg/l	Instantaneous	
Cadmian	0.69	0.0017	ma/l	Composite	
Chromium (VI)	5	0.03	mg/l	Instantaneous	
Copper	5	0.0113	mg/l	Instantaneous	
Lead	2	0.0128	mg/l	Instantaneous	
Mercury	0.05	<0.00008	mg/l	Instantaneous	
Nickel	3	0.0185	mg/l	Instantaneous	
Zinc	5	0.0573	mg/l	Instantaneous	
Benzene	134	<0.29	ppb	Instantaneous	57
Carbontetrachloride		<0.27	ppb	Composite	
Chloroform		<0.38	ppb	Composite	
1,4 Dichlorobenzene		<0.24	Ppb	Composite	
Ethylbenzene	380	18	ppb	Instantaneous	142
MTBE (Methyl-Tert- Butyl-Ether)	50	6.4	ppb	Instantaneous	
Naphthalene	47		ppb	Composite	19
Phenol				Composite	
Tetrachloroethylene (Perc)	20	<0.53	ppb	Instantaneous	
Toluene	74	1.1	ppb	Instantaneous	28
1,2,4 Trichlorobenzene		<0.45		Composite	
1,1,1 Trichloroethane		<0.39		Composite	
Xylenes (Total)	74	93	ppb	Instantaneous	28
PCB's (Total) ³	1		ppb	Composite	
Total Suspended Solids (TSS)	350 ⁴	12	mg/l	Instantaneous	
				Composite	
Chloride ⁵				Instantaneous	
Total Nitrogen ⁵				Composite	
Total Solids ⁵				Instantaneous	
Other					

- 1 All handling and preservation of collected samples and laboratory analyses of samples shall be performed in accordance with 40 C.F.R. pt. 136. If 40 C.F.R. pt. 136 does not cover the pollutant in question, the handling, preservation, and analysis must be performed in accordance with the latest edition of "Standard Methods for the Examination of Water and Wastewater." All analyses shall be performed using a detection level less than the lowest applicable regulatory discharge limit. If a parameter does not have a limit, then the detection level is defined as the least of the Practical Quantitation Limits identified in NYSDEC's <u>Analytical Detectability and Quantitation Guidelines for Selected Environmental Parameters</u>, December 1988
- 2 Analysis for *non-polar materials* must be done by EPA method 1664 Rev. A. Non-Polar Material shall mean that portion of the oil and grease that is not eliminated from a solution containing N–Hexane, or any other extraction solvent the EPA shall prescribe, by silica gel absorption.
- Analysis for PCB=s is required if *both* conditions listed below are met:

 if proposed discharge ≥ 10,000 gpd;
 if duration of a discharge > 10 days.

 Analysis for PCB=s must be done by EPA method 608 with MDL=<65 ppt. PCB's (total) is the sum of PCB-1242 (Arochlor 1242), PCB-1254 (Arochlor 1254), PCB-1221 (Arochlor 1221), PCB-1232 (Arochlor 1232), PCB-1248 (Arochlor 1248), PCB-1260 (Arochlor 1260) and PCB-1016 (Arochlor 1016).
- 4 For discharge ≥ 10,000 gpd, the TSS limit is 350 mg/l. For discharge < 10,000gpd, the limit is determined on a case by case basis.
- 5 Analysis for Carbonaceous Biochemical Oxygen Demand (CBOD), Chloride, Total Solids and Total Nitrogen are required if proposed discharge ≥ 10,000 gpd.

LC30-100 LC55-200 LC85-300 LC110-400

Cameron canister units are filled with high quality granular activated carbon and designed for effective purification of liquid waste or process streams. Our canister units have a proven ability to remove organic contaminants to non-detectable levels.

Units are constructed of heavy-duty mild steel and lined with doubled-layered epoxy coatings. (Forklift channels are provided on the LC110-400 model only). Internal fitments consist of a PVC underdrain, designed for even flow distribution and complete carbon bed use. Downflow operation is standard.

When the units become exhausted they can be conveniently serviced on site by removing the vessel top head. Spent carbon is then easily removed from the units either by hand or vacuum. Alternatively, the exhausted unit can be shipped off site for reactivation service or disposal.

	Model LC	30-100	55-200	85-300	110-400		+
	H - height in	30	36	40	46		
	D - diameter in	19	24	26	32		
	L - length in	na	nα	na	42		((
	h - height in	4.3	6	5	8		
	Design Flow gpm*	5	10	- 15	20	↓	L.,
4	Pressure Drop at Design Flow (psi)	0.8	1.0	1.2	1.3	INLE 2" 1	r Nptf
	Max Pressure psig	8	8	8	8		٢
	Max Temp F	125	125	125	125		
	Carbon Capacity Weight Ib	100	200	300	400		ł
	Volume ft ³	3.9	7.1	10.0	16.1		Į
	Shipping Weight Ib	150	270	380	640		

*Based on 5 minutes contact time, system design may be dictated by chemistry and residence time required

This information has been gathered from standard reference materials and/or test procedures and is believed to be true and accurate. It is offered solely for your consideration and verification. None of the information presented shall be construed as constituting a warranty or representation, expressed, written, or implied, for which we assume legal responsibility or that the information or goods described is fulf for any particular use either alone or in combination with other goods or processes, or that its used does not conflict with existing patent rights. No license is granted to infringe on any patent rights or practice any patent information.

MATERIAL SAFETY DATA SHEET

Xylene, Mixed

MSDS No. 1812

1. CHEMICAL PRODUCT and COMPANY INFORMATION (rev. Jan-99)

HOVENSA L.L.C.

1 Estate Hope Christiansted, VI 00820-5652

EMERGENCY TELEPHONE NUMBER (24 hrs):CHEMTREC (800) 424-9300COMPANY CONTACT (business hours):Safety Department (340) 692-3000

SYNONYMS: Dimethyl benzene; Mixed xylenes; M (meta) – xylene; O (ortho) – xylene; P (para) – xylene; Xylol

See Section 16 for abbreviations and acronyms.

2. COMPOSITION and INFOR	COMPOSITION and INFORMATION ON INGREDIENTS			
INGREDIENT NAME	EXPOSUR	E LIMITS	CONCENTRATION PERCENT BY WEIGHT	
Xylene, Mixed Isomers CAS NUMBER: 1330-20-7	OSHA PEL-TWA: ACGIH TLV-TWA/STEL:	100 ppm 100/150 ppm, A4	100	

3. HAZARDS IDENTIFICATION (rev. Apr-98; Tox-98)

EMERGENCY OVERVIEW DANGER!

FLAMMABLE - IRRITANT - ABSORBED THROUGH THE SKIN - CENTRAL NERVOUS SYSTEM -HARMFUL OR FATAL IF SWALLOWED - ASPIRATION HAZARD

High fire hazard. Keep away from heat, spark, open flame, and other ignition sources.

If ingested, do NOT induce vomiting, as this may cause chemical pneumonia (fluid in the lungs). Contact may cause eye, skin and mucous membrane irritation. Harmful if absorbed through the skin. Avoid prolonged breathing of vapors or mists. Inhalation may cause irritation, anesthetic effects (dizziness, nausea, headache, intoxication), and respiratory system effects. Excessive exposure may affect the liver and kidneys.

<u>EYES</u>

Moderate to severe irritant. Contact with liquid or vapor may cause irritation.

<u>SKIN</u>

Moderate to severe irritant. May cause skin irritation with prolonged or repeated contact. Practically nontoxic if absorbed following acute (single) exposure. Liquid may be absorbed through the skin in toxic amounts if large areas of skin are exposed repeatedly.

INGESTION

The major health threat of ingestion occurs from the danger of aspiration (breathing) of liquid drops into the lungs, particularly from vomiting. Aspiration may result in chemical pneumonia (fluid in the lungs), severe lung damage, respiratory failure and even death.

Ingestion may cause gastrointestinal disturbances, including irritation, nausea, vomiting and diarrhea, and central nervous system (brain) effects similar to alcohol intoxication. In severe cases, tremors, convulsions, loss of consciousness, coma, respiratory arrest, and death may occur.

INHALATION

Excessive exposure may cause irritation to the nose, throat, lungs and respiratory tract. Central nervous system (brain) effects may include headache, dizziness, loss of balance and coordination, unconsciousness, coma, respiratory failure, and death.

Xylene, Mixed

MSDS No. 1812

Effects to the liver, kidneys, blood, central nervous system and developing fetus have been reported from large, acute (short) and/or repeated or prolonged exposures.

MEDICAL CONDITIONS AGGRAVATED BY EXPOSURE

Irritation from skin exposure may aggravate existing open wounds, skin disorders, and dermatitis (rash). Pre-existing chronic respiratory disease, liver or kidney dysfunction, or central nervous system disorders may be aggravated by exposure.

4. FIRST AID MEASURES (rev. Apr-98; 10x-98)	AID MEASURES (rev. Apr-98; Tox-98)
---	------------------------------------

EYES

In case of contact with eyes, immediately flush with clean, low-pressure water for at least 15 min. Hold eyelids open to ensure adequate flushing. Seek medical attention.

SKIN

Remove contaminated clothing. Wash contaminated areas thoroughly with soap and water or waterless hand cleanser. Obtain medical attention if irritation or redness develops.

INGESTION

DO NOT INDUCE VOMITING. Do not give liquids. Obtain immediate medical attention. If spontaneous vomiting occurs, lean victim forward to reduce the risk of aspiration. Small amounts of material which enter the mouth should be rinsed out until the taste is dissipated.

INHALATION

Remove person to fresh air. If person is not breathing, ensure an open airway and provide artificial respiration. If necessary, provide additional oxygen once breathing is restored if trained to do so. Seek medical attention immediately.

5. FIRE FIGHTING MEASURES (rev. Jan-99)

FLAMMABLE PROPERTIES:

FLASH POINT: AUTOIGNITION TEMPERATURE: OSHA/NFPA FLAMMABILITY CLASS: LOWER EXPLOSIVE LIMIT (%): UPPER EXPLOSIVE LIMIT (%): 81 °F (27°C) 867 °F (463 °C) 1C (flammable liquid) 0.9% 7.0%

FIRE AND EXPLOSION HAZARDS

Vapors may be ignited rapidly when exposed to heat, spark, open flame or other source of ignition. Flowing product may be ignited by self-generated static electricity. When mixed with air and exposed to an ignition source, flammable vapors can burn in the open or explode in confined spaces. Being heavier than air, vapors may travel long distances to an ignition source and flash back. Runoff to sewer may cause fire or explosion hazard.

EXTINGUISHING MEDIA

SMALL FIRES: Any extinguisher suitable for Class B fires, dry chemical, CO2, water spray, fire fighting foam, or Halon.

LARGE FIRES: Water spray, fog or fire fighting foam. Water may be ineffective for fighting the fire, but may be used to cool fire-exposed containers.

FIRE FIGHTING INSTRUCTIONS

Small fires in the incipient (beginning) stage may typically be extinguished using handheld portable fire extinguishers and other fire fighting equipment.

Firefighting activities that may result in potential exposure to high heat, smoke or toxic by-products of combustion should require NIOSH/MSHA- approved pressure-demand self-contained breathing apparatus with full facepiece and full protective clothing.

MATERIAL SAFETY DATA SHEET

Xylene, Mixed

Isolate area around container involved in fire. Cool tanks, shells, and containers exposed to fire and excessive heat with water. For massive fires the use of unmanned hose holders or monitor nozzles may be advantageous to further minimize personnel exposure. Major fires may require withdrawal, allowing the tank to burn. Large storage tank fires typically require specially trained personnel and equipment to extinguish the fire, often including the need for properly applied fire fighting foam.

See Section 16 for the NFPA 704 Hazard Rating.

6.	ACCIDENTAL RELEASE MEASURES	(rev. Apr-98)

ACTIVATE FACILITY SPILL CONTINGENCY or EMERGENCY PLAN.

Evacuate nonessential personnel and remove or secure all ignition sources. Consider wind direction; stay upwind and uphill, if possible. Evaluate the direction of product travel, diking, sewers, etc. to confirm spill areas. Spills may infiltrate subsurface soil and groundwater; professional assistance may be necessary to determine the extent of subsurface impact.

Carefully contain and stop the source of the spill, if safe to do so. Protect bodies of water by diking, absorbents, or absorbent boom, if possible. Do not flush down sewer or drainage systems, unless system is designed and permitted to handle such material. The use of fire fighting foam may be useful in certain situations to reduce vapors. The proper use of water spray may effectively disperse product vapors or the liquid itself, preventing contact with ignition sources or areas/equipment that require protection.

Take up with sand or other oil absorbing materials. Carefully shovel, scoop or sweep up into a waste container for reclamation or disposal - caution, flammable vapors may accumulate in closed containers. Response and clean-up crews must be properly trained and must utilize proper protective equipment (see Section 8).

7. HANDLING and STORAGE (rev. Apr-98)

HANDLING PRECAUTIONS

Handle as a flammable liquid. Keep away from heat, sparks, and open flame! Electrical equipment should be approved for classified area. Bond and ground containers during product transfer to reduce the possibility of static-initiated fire or explosion.

Special slow load procedures for "switch loading" must be followed to avoid the static ignition hazard that can exist when higher flash point material (such as fuel oil) is loaded into tanks previously containing low flash point products (such as this product) - see API Publication 2003, "Protection Against Ignitions Arising Out Of Static, Lightning and Stray Currents.

STORAGE PRECAUTIONS

Keep away from flame, sparks, excessive temperatures and open flame. Use approved vented containers. Keep containers closed and clearly labeled. Empty product containers or vessels may contain explosive vapors. Do not pressurize, cut, heat, weld or expose such containers to sources of ignition.

Store in a well-ventilated area. This storage area should comply with NFPA 30 "Flammable and Combustible Liquid Code". Avoid storage near incompatible materials. The cleaning of tanks previously containing this product should follow API Recommended Practice (RP) 2013 "Cleaning Mobile Tanks In Flammable and Combustible Liquid Service" and API RP 2015 "Cleaning Petroleum Storage Tanks".

WORK/HYGIENIC PRACTICES

Emergency eye wash capability should be available in the near proximity to operations presenting a potential splash exposure. Use good personal hygiene practices. Avoid repeated and/or prolonged skin exposure. Wash hands before eating, drinking, smoking, or using toilet facilities. Do not use as a cleaning solvent on the skin. Do not use solvents or harsh abrasive skin cleaners for washing this product from exposed skin areas. Waterless hand cleaners are effective. Promptly remove contaminated clothing and launder before reuse. Use care when laundering to prevent the formation of flammable vapors which could ignite via washer or dryer. Consider the need to discard contaminated leather shoes and gloves.

Xylene, Mixed

MSDS No. 1812

8. EXPOSURE CONTROLS and PERSONAL PROTECTION (rev. Apr-98)

ENGINEERING CONTROLS

Use adequate ventilation to keep vapor concentrations of this product below occupational exposure and flammability limits, particularly in confined spaces.

EYE/FACE PROTECTION

Safety glasses or goggles are recommended where there is a possibility of splashing or spraying.

SKIN PROTECTION

Gloves constructed of Viton are recommended for heavy exposure; Viton, neoprene, nitrile, or PVC recommended for intermittent exposure. Chemical protective clothing such as of E.I. DuPont TyChem ®, Barricade ® or equivalent recommended based on degree of exposure.

Note: The resistance of specific material may vary from product to product as well as with degree of exposure. Consult manufacturer specifications for further information.

RESPIRATORY PROTECTION

A NIOSH/MSHA-approved air-purifying respirator with organic vapor cartridges or canister may be permissible under certain circumstances where airborne concentrations are or may be expected to exceed exposure limits or for odor or irritation. Protection provided by air-purifying respirators is limited. Refer to OSHA 29 CFR 1910.134, ANSI Z88.2-1992, NIOSH Respirator Decision Logic, and the manufacturer for additional guidance on respiratory protection selection and limitations.

Use a positive pressure, air-supplied respirator if there is a potential for uncontrolled release, exposure levels are not known, in oxygen-deficient atmospheres, or any other circumstance where an air-purifying respirator may not provide adequate protection.

9. PHYSICAL and CHEM	CAL PROPERTIES (rev. Mar-95)				
APPEARANCE A clear, water-like liquid	APPEARANCE				
ODOR					
A sweet, aromatic odor.					
ODOR THRESHOLD 0.2 - 5 ppm					
BASIC PHYSICAL PROPERTIE	<u>ES</u>				
BOILING RANGE:	AP 279 °F (137 °C)				
VAPOR PRESSURE:	6.7 mm Hg @ 70 °F (21 °C)				
VAPOR DENSITY (air = 1):	AP 3.6				
SPECIFIC GRAVITY ($H_2O = 1$):	0.86				
EVAPORATION RATE:	High				
PERCENT VOLATILES:	100 %				
SOLUBILITY (H ₂ O):	Insoluble to slightly soluble				

10. STABILITY and REACTIVITY (rev. Mar-95)

STABILITY: Stable. Hazardous polymerization will not occur.

CONDITIONS TO AVOID and INCOMPATIBLE MATERIALS

Avoid high temperatures, open flames, sparks, welding, smoking and other ignition sources. Keep away from strong oxidizers.

HAZARDOUS DECOMPOSITION PRODUCTS

Carbon monoxide, carbon dioxide and non-combusted hydrocarbons (smoke). Contact with nitric and sulfuric acids will form nitrocresols that can decompose violently.

MATERIAL SAFETY DATA SHEET

Xylene, Mixed

MSDS No. 1812

TOXICOLOGICAL PROPERTIES 11. (rev. Apr-98; Tox-98)

ACUTE TOXICITY

Acute Oral LD50 (rats): 3.5 to 8.6 g/kg Acute inhalation LC50: 6.700 ppm (rat: 4 hours) Eye irritation (human): 200 ppm Acute dermal LD50 (rabbits): > 5 ml/kg

In humans, the inhalation of xylene for short periods of time may cause decreased respiratory rate, altered liver and kidney function, hearing loss, and central nervous system depression. Animals exposed to high concentrations of xylene exhibited impaired eye function.

CARCINOGENICITY

Carcinogenicity: OSHA: NO IARC: (3) NTP: NO ACGIH: A4

Mutagenicity: negative

12. **ECOLOGICAL INFORMATION** (rev. Apr-98)

Keep out of sewers, drainage areas and waterways. Report spills and releases, as applicable, under Federal and State regulations.

13. DISPOSAL CONSIDERATIONS(rev. Apr-98)	
--	--

Consult federal, state and local waste regulations to determine appropriate disposal options.

14. TRANSPORTATION INFORMATION	(rev. Apr-98)
DOT PROPER SHIPPING NAME:	Xylenes
DOT HAZARD CLASS & PACKING GROUP:	3, PG II
DOT IDENTIFICATION NUMBER:	UN 1307
DOT SHIPPING LABEL:	FLAMMABLE LIQUID

15. **REGULATORY INFORMATION** (rev. Apr-98)

U.S. FEDERAL, STATE, and LOCAL REGULATORY INFORMATION

This product and its constituents listed herein are on the EPA TSCA Inventory. Any spill or uncontrolled release of this product, including any substantial threat of release, may be subject to federal, state and/or local reporting requirements. This product and/or its constituents may also be subject to other federal, state, or local regulations; consult those regulations applicable to your facility/operation.

CLEAN WATER ACT (OIL SPILLS)

Any spill or release of this product to "navigable waters" (essentially any surface water, including certain wetlands) or adjoining shorelines sufficient to cause a visible sheen or deposit of a sludge or emulsion must be reported immediately to the National Response Center (1-800-424-8802) or, if not practical, the U.S. Coast Guard with follow-up to the National Response Center, as required by U.S. Federal Law. Also contact appropriate state and local regulatory agencies as required.

CERCLA SECTION 103 and SARA SECTION 304 (RELEASE TO THE ENVIRONMENT)

FIRE

Х

Mixed Xylene is a CERCLA Section 103 "hazardous substance" subject to CERCLA and SARA Section 304 reporting requirements.

Reportable Quantity: 1000 pounds

SARA SECTION 311/312 - HAZARD CLASSES

ACUTE HEALTH Х

CHRONIC HEALTH Х

SUDDEN RELEASE OF PRESSURE

100

REACTIVE

<u>SARA SECTION 313 - SUPPLIER NOTIFICATION</u> This product contains the following toxic chemicals subject to the reporting requirements of section 313 of the Emergency Planning and Community Right-To-Know Act (EPCRA) of 1986 and of 40 CFR 372:

INGREDIENT NAME (CAS NUMBER) CONCENTRATION WT. PERCENT

Xylene, Mixed Isomers (1330-20-7)

Revision Date: 01/15/99

Page 5 of 7

Xylene, Mixed

CANADIAN REGULATORY INFORMATION (WHMIS) Class B, Division 2 (Flammable Liquid)

Class D, Division 2B (Toxic by other means)

16. OTHER INFORMATI	ON (rev. Ja	an-99)	
NFPA® HAZARD RATING	HEALTH: FIRE:	2 3	Moderate Serious
	REACTIVITY:	0	Minimal
HMIS® HAZARD RATING	HEALTH: FIRE: REACTIVITY:	3* 3 0	Serious Serious Minimal * Chronic

SUPERSEDES MSDS DATED: 04/23/98

ABBREVIATIONS:

AP = Approximately	< = Less than	> = Greater than
N/A = Not Applicable	N/D = Not Determined	ppm = parts per million

ACRONYMS

ACINONI	NO.		
ACGIH	American Conference of Governmental	NTP	National Toxicology Program
	Industrial Hygienists	OPA	Oil Pollution Act of 1990
AIHA	American Industrial Hygiene Association	OSHA	U.S. Occupational Safety & Health
ANSI	American National Standards Institute		Administration
	(212) 642-4900	PEL	Permissible Exposure Limit (OSHA)
API	American Petroleum Institute	RCRA	Resource Conservation and Recovery Act
	(202) 682-8000	REL	Recommended Exposure Limit (NIOSH)
CERCLA	Comprehensive Emergency Response,	SARA	Superfund Amendments and
	Compensation, and Liability Act		Reauthorization Act of 1986 Title III
DOT	U.S. Department of Transportation	SCBA	Self-Contained Breathing Apparatus
	[General Info: (800) 467-4922]	SPCC	Spill Prevention, Control, and
EPA	U.S. Environmental Protection Agency		Countermeasures
HMIS	Hazardous Materials Information System	STEL	Short-Term Exposure Limit (generally 15
IARC	International Agency For Research On		minutes)
	Cancer	TLV	Threshold Limit Value (ACGIH)
MSHA	Mine Safety and Health Administration	TSCA	Toxic Substances Control Act
NFPA	National Fire Protection Association (617)	TWA	Time Weighted Average (8 hr.)
	770-3000	WEEL	Workplace Environmental Exposure
NIOSH	National Institute of Occupational Safety		Level (AIHA)
	and Health	WHMIS	Workplace Hazardous Materials
NOIC	Notice of Intended Change (proposed change to ACGIH TLV)		Information System (Canada)

Xylene, Mixed

MSDS No. 1812

DISCLAIMER OF EXPRESSED AND IMPLIED WARRANTIES

Information presented herein has been compiled from sources considered to be dependable, and is accurate and reliable to the best of our knowledge and belief, but is not guaranteed to be so. Since conditions of use are beyond our control, we make no warranties, expressed or implied, except those that may be contained in our written contract of sale or acknowledgment.

Vendor assumes no responsibility for injury to vendee or third persons proximately caused by the material if reasonable safety procedures are not adhered to as stipulated in the data sheet. Additionally, vendor assumes no responsibility for injury to vendee or third persons proximately caused by abnormal use of the material, even if reasonable safety procedures are followed. Furthermore, vendee assumes the risk in their use of the material.

<u>APPENDIX - M</u> Well Completion Logs

	Protective Casing Flush Mount X Pop-up Measauring Point Concrete Pad Land Surface Backfill ft	Well No. Oxidant Injection Wells 1-14 NYSDEC Permit No. Project 3035 White Plains Road, Bronx Surveyor Land Surface Elevation Measuring Point Elevation Borehole Diameter: 2 inches
	Well Casing Material Sch. 40 PVC Inch Diam. 1 inch Grout	Installation Date 6/21, 22, 28 & 29/08 & 9/13/08 Drilling Contractor LVS Inc. Drilling Method Rock coring Drilling Fluid None Development Technique (s) and Date (s)
	ft Sand Seal Grain Size ft ft 7 ft <u>Well Screen</u> Material Sch. 40 PVC	Fluid Loss During Drilling Gallons Water Removed During Development Static Depth to Water Pumping Depth to Water
	Inch Diam. <u>1 Inch</u> Slot <u>0.02 inch</u> Gravel Pack Grain Size <u>2 Morie</u>	Pumping Duration Yield GPM Specific Capacity GPM/Ft Well Purpose Oxidant Injection Well
Note: Drawing is not to scale. Depths are given in feet below	_π ⊥∠ _ft _ft _Sump land surface.	Hydrogeologist D <u>amion Lawyer</u> Company Name E <u>nvironmental Business Cons.</u> Notes

	Protective Casing Flush Mount X Pop-up Measauring Point Concrete Pad Land Surface Backfill ft <u>Well Casing</u> Material Sch. 40 PVC	Well NoIRM-W1 NYSDEC Permit No Project3035 White Plains Road, Bronx Surveyor Land Surface Elevation Measuring Point Elevation Borehole Diameter: 2 inches		
	Inch Diam. <u>1 inch</u>	Installation Date 5/24/08		
	Grout	Drilling Contractor LVS Inc.		
		Drilling Method Rock coring		
	ft	Drilling Fluid None		
	Bentonite Bentonite X Pellets ft Sand Seal Grain Size	Development Technique (s) and Date (s)		
	ft ft 5.1 ft <u>Well Screen</u> Material Sch. 40 PVC Inch Diam. Slot 0.01 inch Gravel Pack Grain Size 00 Moire ft 12.1	Fluid Loss During Drilling Gallons Water Removed During Development		
	ft	Hydrogeologist Damion Lawyer		
	Sump	Company Name Environmental Business Cons.		
Note: Drawing is not to scale. Depths are given in feet below land surface.		Notes		

[Protective C Flush Mount Measauring Concrete Pa Land Surfac Backfill ft Well Casing Material	asing T X Pop-up Point e Sch. 40 PVC		Well No. IRI NYSDEC Permit Project 303 Surveyor Land Surface Elect Measuring Point B Borehole	M-W2 No. 35 W1 evation Elevatio Dia	nite Plains	Road, B	ronx
					Inch Diam.	1 inch		Installation Date	5	/24/08		
					Grout			Drilling Contractor	or L	VS Inc.		
								Drilling Method	F	Rock coring		
		3			_ft	<u></u>		Drilling Fluid	N	lone		
					Bentonite ft <u>Sand Sea</u> l Grain Size	Slurry X Pellets		Development Tec	chnique	(s) and Date (s)		
					_ft 5.4 f	Ēt	1. 	Fluid Loss During Water Removed I	g Drilling During D	Development		Gallons
Ξ.					Well Screen			Static Depth to W	/ater			
					Material S	Sch. 40 PVC		Pumping Depth to	o Water			
					Inch Diam.			Pumping Duration	n			
					Slot	0.01 inch		Yield		GPM	DATE	
					0	14		Specific Capacity	·		GPM/F	t
					Gravel Pack	00 Moire		Well Purpose				
					Grain Size			monitorin	ng we	ell		
					# 12.4	а 1						
					ft							
	·				ft			Hydrogeologist	Dan	mion Lawyer		
					Sump			Company Name	Env	vironmental	Busines	s Cons.
Note:	Drawin Depths	ig is no s are giv	t to sca ven in 1	ale. feet below	land surface.			Notes				

				Protective Casing Flush Mount X Pop-up Measauring Point Concrete Pad Land Surface Backfill ft <u>Well Casing</u> Material Sch. 40 PVC		Well No. 1 NYSDEC Peri Project 3 Surveyor Land Surface Measuring Po Borehol	IRM- rmit No 3035 Eleva oint Ele le I	-W3 o. 5 White Plains ation evation Diameter: 2 in	Road, Bro	onx
				Inch Diam. <u>1 inch</u>		Installation Da	ate	5/25/08	-	
				Grout		Drilling Contra	actor	LVS Inc.		
						Drilling Metho	bd	Rock coring		
				_ft		Drilling Fluid		None		
5				Bentonite		Development	Techr	nique (s) and Date (s)		
				ft <u>Sand Sea</u> l Grain Size ft		Fluid Loss Du	uring D	Villing		Callana
				_ft 5.5 ft		Water Remov	ved Du	uring Development		Gallons
1				Well Screen		Static Depth to	to Wate	er	-	
	-			Material Sch. 40 PVC		Pumping Dept	oth to V	Vater		
	, i			Inch Diam		Pumping Dura	ation			
						Yield		GPM	DATE	,
				Gravel Pack		Specific Capa	acity		GPM/Ft	
				Grain Size 00 Moire		Well Purpose	•			
					-	monitor	cing	g well		
				_{ft} 12.5	-					
				ft	с <u>-</u>					
				ft		Hydrogeologis	st	Damion Lawyer		
				Sump		Company Nan	me	Environmental	Business	Cons.
Note:	Drawin Depths	g is not are giv	t to scale. ven in feet below	land surface.	_	Notes				

	Protective Casing Flush Mount X Pop-up Measauring Point Concrete Pad Land Surface Backfill ft Well Casing Material Sch. 40 PVC Inch Diam. 1 inch	Well No. IRM-W4 NYSDEC Permit No.
	Grout	Drilling Contractor LVS Inc.
		Drilling Method Rock coring
	ft	Drilling Fluid None
	Bentonite Bentonite X Pellets ft Sand Seal Grain Size	Development Technique (s) and Date (s)
	ft 5.2 ft Well Screen	Fluid Loss During Drilling Gallons
	Material Sch. 40 PVC	Pumping Depth to Water
		Pumping Duration
	Slot 0.01 inch	Yield GPM DATE
		Specific Capacity GPM/Ft
	Gravel Pack	Well Purpose
	Grain Size	monitoring well
	# 12.2	
	ff	
	ft	Hydrogeologist Damion Lawyer
	Sump	Company Name Environmental Business Cons.
Note: Drawir Depths	ng is not to scale. s are given in feet below land surface.	Notes

							-					
[Protective C Flush Mount Measauring Concrete Pa Land Surfac Backfill ft <u>Well Casing</u> Material S Inch Diam.	asing t XPop-up Point ad e S <u>ch. 40 PVC</u> 1 inch		Well No. IRM NYSDEC Permit I Project 303 Surveyor Land Surface Elect Measuring Point E Borehole	M-W5 No. 5 Whit vation Elevation Diame 5/2	te Plains ter: 2 in 6/08	s Road, 1	Bronx
					Grout			Drilling Contractor	r LVS	Inc.	,	
		2						Drilling Method	Roc	ck coring		
		3	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		_ft			Drilling Fluid	Non	le		
5					ft <u>Sand Seal</u> Grain Size	Slurry		Development Tec	hnique (s) a	and Date (s)		
					_ft 5.2 f	Ēt	С., у. 	Fluid Loss During Water Removed D	Drilling Durina Deve	lopment		Gallons
					Well Screen			Static Depth to Wa	ater			
					Material S	Sch. 40 PVC		Pumping Depth to	Water			
					Inch Diam.			Pumping Duration	1			
					Slot	0.01 inch		Yield	-	GPM	DATE	
								Specific Capacity			GPM/	Ft
					Gravel Pack			Well Purpose				
					Grain Size	00 Moire		monitorin	ng well	1		
					10.0	й •	2					•
		=			ft 12.2					-		*
					ft			Hydrogeologist	Damio	on Lawyer		
					Sump			Company Name	Envir	ronmental	Busines	ss Cons.
								Notes				
Note:	Drawin Depths	ig is no are giv	t to sca ven in f	ale. feet below	land surface.							

	Protective Casing Flush Mount X Pop-up Measauring Point Concrete Pad Land Surface Backfill ft Well Casing Material Sch. 40 PVC	Well No. IRM-W6 NYSDEC Permit No. Project 3035 White Plains Road, Bronx Surveyor Land Surface Elevation Measuring Point Elevation Borehole Diameter: 2 inches
	Inch Diam. <u>1 inch</u>	Installation Date 5/26/08
	Grout	Drilling Contractor LVS Inc.
		Drilling Method Rock coring
	ft	Drilling Fluid None
	Bentonite Slurry Bentonite ft Sand Seal Grain Size	Development Technique (s) and Date (s)
	ft ft 5.1 ft Well Screen Material Sch. 40 PVC Inch Diam. Slot 0.01 inch Gravel Pack Grain Size 00 Moire ft 12.1	Fluid Loss During Drilling Gallons Water Removed During Development
	ft	
. L	ft	Hydrogeologist Damion Lawyer
	Sump	Company Name Environmental Business Cons.
Note: Draw Dept	ing is not to scale. ns are given in feet below land surface.	Notes

Protective Casing Protective Casing Pop-up Measauring Point Concrete Pad Land Surface Backfill ft <u>Well Casing</u> Material Sch. 40 PVC Inch Diam. 2 inch Grout ft Sand Seal Grain Size ft ft Sand Seal Grain Size ft Mell Screen Material Sch. 40 PVC	Well No. IRM-W7 NYSDEC Permit No. Project 3035 White Plains Road, Bronx Surveyor Land Surface Elevation Measuring Point Elevation Borehole Diameter: 2 inches Installation Date 8/2/08 Drilling Contractor LVS Inc. Drilling Method Rock coring Drilling Fluid None Development Technique (s) and Date (s)
Well Screen Material Sch. 40 PVC Inch Diam. 2 inch Slot 0.01 inch Gravel Pack Grain Size ft 1.1 ft ft Sump Sump	Static Depth to Water Pumping Depth to Water Pumping Duration Yield GPM DATE Specific Capacity GPM/Ft Well Purpose monitoring well Hydrogeologist Damion Lawyer Company Name Environmental Business Cons. Notes

	Protective Casing X Flush Mount Pop-up Measauring Point Concrete Pad Land Surface Backfill ft <u>Well Casing</u> Material Sch. 40 PVC	Well No. IRM-W8 NYSDEC Permit No. Project 3035 White Plains Road, Bronx Surveyor Land Surface Elevation Measuring Point Elevation Borehole Diameter: 6 inches
	Inch Diam. <u>2 inch</u>	Installation Date 6/11/08
	Grout	Drilling Contractor ADT Inc.
		Drilling Method Air Rotary
	ft	Drilling Fluid None
	Bentonite Bentonite X Pellets ft Sand Seal Grain Size	Development Technique (s) and Date (s)
	ft ft 13.5 ft <u>Well Screen</u> Material Sch. 40 PVC Inch Diam. 2 inch	Fluid Loss During Drilling Gallons Water Removed During Development Static Depth to Water Pumping Depth to Water Pumping Duration
		Yield GPM DATE
	Gravel Pack	Specific Capacity GPM/Ft
	Grain Size 00 Moire	Well Purpose
		monitoring well
	_{ft} 23.5	
	ft	
	ft	Hydrogeologist Damion Lawyer
	Sump	Company Name Environmental Business Cons.
Note: Drawii Depth	ng is not to scale. s are given in feet below land surface.	Notes

			-			and the feature and the	States No. of States and States and States and States							
[[X	Protective C Flush Mount Measauring Concrete Pa Land Surfac Backfill ft <u>Well Casing</u> Material	Casing t Pop-up Point ad se Sch. 40 PVC	Well No. NYSDEC Per Project Surveyor Land Surface Measuring Per Boreho	IRM rmit N 303 Elev oint E	I-W9 No 5 White Pla Mation Clevation Diameter:	ains 6 iı	s Road	l, Br	onx
						Inch Diam.	2 inch	Installation D	ate	6/11/08			-	
						Grout		Drilling Contra	actor	ADT Inc.				
		2						Drilling Metho	bd	Air Rota	ıry			
		3				ft		Drilling Fluid		None				
- -						Bentonite ft <u>Sand Seal</u> Grain Size	Slurry X Pellets	Development	t Tech	nnique (s) and Date (s	;)	-		
						ft 14.3	ft	Fluid Loss Du Water Remov	uring I ved D	Drilling				Gallons
						Material S	Sch. 40 PVC	Static Depth t	to Wa	ater				
						Inch Diam.	2 inch	Pumping Dep	oth to	vvater		•		
						Slot	0.01 inch		auon	CPM				7
								Specific Capa	acity	GFM				
			-	-		Gravel Pack		Well Purpose						
			- 19			Grain Size	00 Moire	monitor	rin	g well				
												under sold, so date in the design of the sol		
		_		_		ft 24.3					-			
			L			ft ft		Hydrogeologi	st	Damion Lav	vyer			
						Sump		Company Na	me	Environmer	ıtal	Busi	ness	Cons.
Note:	Drawir Depths	ig is no s are gi	t to s ven i	cale. n fee	t below	and surface.		Notes						

			Protective Casing Flush Mount Pop-up Measauring Point Concrete Pad Land Surface Backfill ft <u>Well Casing</u> Material S <u>ch. 40 PVC</u>	Well No. IRM- NYSDEC Permit No Project <u>3035</u> Surveyor Land Surface Elevat Measuring Point Ele Borehole D	-W10 White Plains tion evation Diameter: 2 inc	Road, Bronx
			Inch Diam. 2 inch	Installation Date	12/20/08	
			Grout	Drilling Contractor	LVS Inc.	
				Drilling Method	Rock coring	
		2	_ft	Drilling Fluid	None	
			Eentonite ft Sand Seal Grain Size	Development Techni	ique (s) and Date (s)	
			ft	Fluid Loss During Dr Water Removed Dur	rilling	Gallons
			Well Screen	Static Depth to Wate	er	
			Material NONE	Pumping Depth to W	Vater	
			Slot	Pumping Duration		
				Yield	GPM	DATE
			Gravel Pack	Specific Capacity		GPM/Ft
			Grain Size	Well Purpose		
				monitoring	well	
			_ft 20.1			
			_ft		V Pruggoo	
· -			Sump		Fnvironmental	Buginess Cons
	L		P	Notes		
Note: Dra Dep	wing is no ths are gi	t to scale. ven in feet below	land surface.			

	Protective Casing Flush Mount Pop-up Measauring Point Concrete Pad Land Surface Backfill ft <u>Well Casing</u> Material Sch. 40 PVC	Well No. IRM- NYSDEC Permit No. Project 3035 Surveyor Land Surface Elevat Measuring Point Elev Borehole D	W11 White Plains Roa ion vation iameter: 2 inches	ad, Bronx
	Inch Diam. 2 inch	Installation Date	12/20/08	
	Grout	Drilling Contractor	LVS Inc.	
		Drilling Method	Rock coring	
2	ft	Drilling Fluid	None	
	X Slurry Bentonite Pellets ft Sand Seal Grain Size	Development Techni	que (s) and Date (s)	
	ft	Fluid Loss During Dr	illing	Gallons
	<u>Well Screen</u> Material None	Static Depth to Wate	r	
	Inch Diam.	Pumping Depth to W	/ater	
	Slot	Pumping Duration		
		Yield Specific Capacity	GPM	DATE GPM/Ft
	Gravel Pack	Well Purpose		
	Grain Size	monitoring	well	
	ft 20.5			
	ft		* 	
	ft	Hydrogeologist I	K. Brussee	
	Sump	Company Name I	Environmental Bus	iness Cons.
Note: Drawing is not to scale. Depths are given in feet below la	and surface.	Notes		

Protective Casing Flush Mount Pop-up Measauring Point Concrete Pad Land Surface Backfill ft Well Casing Material Sch. 40 PVC Inch Diam. 2 inch Grout 2 ft ft Sand Seal Grain Size ft ft Material None Inch Diam. Slurry Bentonite Pellets ft Gravel Pack Grain Size ft 1 20.2 ft ft 1 20.2 ft	Well No. IRM-W12 NYSDEC Permit No.
Sump	Company Name Environmental Rusiness Cons
Sump	Notes
Note: Drawing is not to scale. Depths are given in feet below land surface.	

<u>APPENDIX - N</u> Laboratory Analytical Reports Performance Sampling Rounds 1-3

CHEIT	11ECH 284	Sheffield Street (908) 789-8900	, Mo Fax	unta x (90	inside 8) 78	e, NJ 0 9-8922	7092	Che	emteo	h Pro	oject	Num	ber				23	3614	
CHAIN OF CUS	STODY RECORD		:hem	tech	.net					muei									
	CLIENT INFORMATION	PRØ.	JECT	INFO	RMATI	ON	nan Decembria					BILL	ING	INF	OR	MAT	ION		
	Report to be sent to	PROJECT NAME: 3035 WHITE PLAINS RD, BRONK							BILL TO: EBC PO#										
COMPANY: ENVIR	ONMENTAL BUSINESS CONSULTANTS	-S PROJECT #: ARKOGO 2 LOCATION: 3035 White Plan A						ADDRESS: 1808 MIDDLE COUNTRY RD											
ADDRESS: 1808	MIDIXY COUNTRY RD	PROJECT MANAGER:	CHAR	LES	Sosil	د		CITY:	CITY: RIAGE STATE: NY ZIP: 1961										
CITY: RIDGE	STATE: NY ZIP: 11961	E-MAIL: COOSIKZ	00	DTON	UNE.	VET		ATTENTION: CHARLES SOSIK											
PHONE: 621-500	RLE JOSK 1-1000 FAX: 621-624-2870	PHUNE: 631-504-	- 6000	~	FAX:63	51-204-6	,000	PHO	ve: G	31	<u>s 64</u>	~ 6C		> NAI	YSI	s			
DATA		DA	ta di Infoi	ELIVE RMAT	RABL ION	-			/a	3409	/		/	/			//		
FAX: HARD COPY: EDD • TO BE APPROVED STANDARD TURNAR	DAYS DAYS DAYS DAYS BY CHEMTECH ROUND TIME IS 10 BUSINESS DAYS	RESEULTS ONLY RESULTS ONLY RESULTS CC New Jersey REDUCE New Jersey CLP EDD FORMAT	ED	DAK N DAK N D Ne D O	SEPA CLI ew York S w York St ther	P State ASP "E ate ASP "A"	3" '				₹ NVA		\ و ک	~	8	൭	CO	MMEN	IS g
CHEMTECH		SAMDLE	SAN TY	IPLE PF	SA COU	MPLE FOTION	un D	E									< Spe	cify Presen	vatives R-HNO4
SAMPLE	SAMPLE IDENTIFICATION	MATRIX	GMP	GRAB	DATE	TIME	# of Battle	1	2	3	4	5 6	;	7	8	9	C-H2SO13 E-ICE		D-NaOH F-OTHER
1.	Bmw-1	HZO		×	5/27		2	1											
2.	Bmw-Z			7				1											
3.	Bmw-3			X															
4.	BMW-4			×															
5.	Rmw-5			7											T			1	
6.	Bmw-6			7	·		$ \downarrow$	\mathbf{V}	1		-							-	
7.																			
8.			Ι	1				1						Ì					
9.	***************************************													T	1				
10.	***************************************		1	1			1								1				
SAN	APLE CUSTODY MUST BE DOCUME	NTED BELOW FA	СН ТІ	MES		S CHA	NGE F	ROS	SES	SION	UNC		ING			FR		RY	
RELINOUISHED BY SAMPLE	DATE/TIME RECEIVED BY 28/08 / 30 DATE/TIME RECEIVED BY 1. DATE/TIME RECEIVED BY		Condit MeOH Comn	ens ort l extrac nents:	donnes of klion requ	uires an ad	ceipt. Iditional	≁ cow 4oz. J	ar for	≁ N percer	ion co nt solid	JIVIPEIA J	IV I	ΨC	DUCER		-400	•	
2.	2.																		
RELINQUISHED BY 3. (-CD EX	DATE/TIME 9:28 RECEIVED FOR LAB BY 5/29/08 3. () Of (6	Pa	ige	ot	1	Overnig	CLIEN ht CHEM): TECH:	+н +	and D Picked	elivered I Up	j	+	- ·}			ient Com	<u>plete</u> → NO
10/18/2004	WHITE - CHEMTECH	COPYFOR RETURN 1	O CLIE	ENT	YELL	OW - CHE	MTECH	COP	Y F	PINK -	SAM	PLER	COI	Þγ			#		

Client:	Environmental Business Consultants			[(Date Collected:		05/27/08	
Project ID:	Former Dico-G auto & truck repair	Dico-G auto & truck repair			Date Rec	eived:	05/29/08	
Customer Sample No.:	BMW-1				Lab Sample ID:		Z3014-01	
Test:	VOCMS Group1			5	DG ID:		Z3014	
Analytical Method:	EPA SW846 8260			% Moisture:			100.00	
Result Type:	Final	D			Datafile:		VF011829	
CAS Number	Parameter	Results C	Qualifie	r Units	DL	RT/RL	DF	DIL/RE
75-71-8	Dichlorodifluoromethane	ND	U	ug/L	8.8	50) 10)
74-87-3	Chloromethane	ND	U	ug/L	3.7	50) 10)
75-01-4	Vinyl Chloride	ND	U	ug/L	3.0	50	J 10)
74-83-9	Bromomethane	ND	U	ug/L	. 14	50	J 10)
75-00-3	Chloroethane	ND	U	ug/L	8.0	50	J 10)
75-69-4	Trichlorofluoromethane	ND	U	ug/L	5.3	50	J 10)
76-13-1	1,1,2-Trichlorotrifluoroethane	ND	U	ug/L	6.1	50	J 10)
75-35-4	1,1-Dichloroethene	ND	U	ug/L	6.7	50	J 10)
67-64-1	Acetone	ND	U	ug/L	22	250	J 10)
75-15-0	Carbon Disulfide	ND	U	ug/L	2.0	50	J 10)
1634-04-4	Methyl tert-butyl Ether	210		ug/L	2.3	50	J 10)
79-20-9	Methyl Acetate	ND	U	ug/L	4.5	50	J 10)
75-09-2	Methylene Chloride	ND	U	ug/L	3.8	50	J 10)
156-60-5	trans-1,2-Dichloroethene	ND	U	ug/L	4.4	50	J 10)
75-34-3	1,1-Dichloroethane	ND	U	ug/L	6.7	50	J 10)
110-82-7	Cyclohexane	200		ug/L	5.7	50	J 10)
78-93-3	2-Butanone	64	J	ug/L	. 19	250	J 10)
56-23-5	Carbon Tetrachloride	ND	U	ug/L	2.7	50	J 10)
156-59-2	cis-1,2-Dichloroethene	ND	U	ug/L	7.2	50	J 10)
67-66-3	Chloroform	ND	U	ug/L	4.5	50	J 10)
71-55-6	1,1,1-Trichloroethane	ND	U	ug/L	3.9	50	J 10)
108-87-2	Methylcyclohexane	140		ug/L	4.7	50	J 10)
71-43-2	Benzene	100		ug/L	3.5	50	J 10)
107-06-2	1,2-Dichloroethane	ND	U	ug/L	4.1	50	J 10)
79-01-6	Trichloroethene	ND	U	ug/L	3.4	50	J 10)
78-87-5	1,2-Dichloropropane	ND	U	ug/L	4.6	50	J 10)
75-27-4	Bromodichloromethane	ND	U	ug/L	2.3	50	J 10)
108-10-1	4-Methyl-2-Pentanone	ND	U	ug/L	. 18	250) 10)

Client:	Environmental Business Consultants	ss Consultants			Date Collected:		05/27/08	
Project ID:	Former Dico-G auto & truck repair				Date Received:		05/29/08	
Customer Sample No.:	BMW-1				Lab Sample ID:		Z3014-01	
Test:	VOCMS Group1	SDG			SDG ID:		Z3014	
Analytical Method:	EPA SW846 8260	% Moisture:			re: 10	100.00		
Result Type:	Final				DataFile:		VF011829	
CAS Number	Parameter	Results Q	ualifie	er Units	DL	RT/RL	DF D	IL/RE
108-88-3	Toluene	300		ug/L	1.6	50	10	
10061-02-6	t-1,3-Dichloropropene	ND	U	ug/L	3.1	50	10	
10061-01-5	cis-1,3-Dichloropropene	ND	U	ug/L	2.9	50	10	
79-00-5	1,1,2-Trichloroethane	ND	U	ug/L	3.2	50	10	
591-78-6	2-Hexanone	ND	U	ug/L	18	250	10	
124-48-1	Dibromochloromethane	ND	U	ug/L	2.3	50	10	
106-93-4	1,2-Dibromoethane	ND	U	ug/L	2.6	50	10	
127-18-4	Tetrachloroethene	ND	U	ug/L	9.7	50	10	
108-90-7	Chlorobenzene	ND	U	ug/L	2.8	50	10	
100-41-4	Ethyl Benzene	400		ug/L	0.50	50	10	
126777-61-2	m/p-Xylenes	1000		ug/L	4.7	100	10	
95-47-6	o-Xylene	260		ug/L	1.6	50	10	
100-42-5	Styrene	ND	U	ug/L	1.9	50	10	
75-25-2	Bromoform	ND	U	ug/L	4.4	50	10	
98-82-8	Isopropylbenzene	64		ug/L	3.7	50	10	
79-34-5	1,1,2,2-Tetrachloroethane	ND	U	ug/L	3.7	50	10	
541-73-1	1,3-Dichlorobenzene	ND	U	ug/L	2.8	50	10	
106-46-7	1,4-Dichlorobenzene	ND	U	ug/L	2.2	50	10	
95-50-1	1,2-Dichlorobenzene	ND	U	ug/L	4.0	50	10	
96-12-8	1,2-Dibromo-3-Chloropropane	ND	U	ug/L	5.8	50	10	
120-82-1	1,2,4-Trichlorobenzene	ND	U	ug/L	3.9	50	10	

Client:	Environmental Business Consultants			[(Date Collected:	05	6/27/08	
Project ID:	Former Dico-G auto & truck repair			ſ	Date Receiv	/ed: 05	/29/08	
Customer Sample No.:	BMW-2				Lab Sample ID:		Z3014-02	
Test:	VOCMS Group1			5	SDG ID:	Z3	014	
Analytical Method:	EPA SW846 8260				% Moisture:		100.00	
Result Type:	Final			[Datafile:	VF	011863	
CAS Number	Parameter	Results Q	ualifier	Units	DL	RT/RL	DF DIL/RE	
75-71-8	Dichlorodifluoromethane	ND	U	ug/l	L 0.88	5.0	1	
74-87-3	Chloromethane	ND	U	ug/l	L 0.37	5.0	1	
75-01-4	Vinyl Chloride	ND	U	ug/l	L 0.30	5.0	1	
74-83-9	Bromomethane	ND	U	ug/l	L 1.4	5.0	1	
75-00-3	Chloroethane	ND	U	ug/l	L 0.80	5.0	1	
75-69-4	Trichlorofluoromethane	ND	U	ug/l	L 0.53	5.0	1	
76-13-1	1,1,2-Trichlorotrifluoroethane	ND	U	ug/l	L 0.61	5.0	1	
75-35-4	1,1-Dichloroethene	ND	U	ug/l	L 0.67	5.0	1	
67-64-1	Acetone	12	J	ug/l	L 2.2	25	1	
75-15-0	Carbon Disulfide	ND	U	ug/l	L 0.20	5.0	1	
1634-04-4	Methyl tert-butyl Ether	1.6	J	ug/l	L 0.23	5.0	1	
79-20-9	Methyl Acetate	ND	U	ug/l	L 0.45	5.0	1	
75-09-2	Methylene Chloride	ND	U	ug/l	L 0.38	5.0	1	
156-60-5	trans-1,2-Dichloroethene	ND	U	ug/l	L 0.44	5.0	1	
75-34-3	1,1-Dichloroethane	ND	U	ug/l	L 0.67	5.0	1	
110-82-7	Cyclohexane	ND	U	ug/l	L 0.57	5.0	1	
78-93-3	2-Butanone	4.2	J	ug/l	L 1.9	25	1	
56-23-5	Carbon Tetrachloride	ND	U	ug/l	L 0.27	5.0	1	
156-59-2	cis-1,2-Dichloroethene	ND	U	ug/l	L 0.72	5.0	1	
67-66-3	Chloroform	10		ug/l	L 0.45	5.0	1	
71-55-6	1,1,1-Trichloroethane	ND	U	ug/l	L 0.39	5.0	1	
108-87-2	Methylcyclohexane	ND	U	ug/l	L 0.47	5.0	1	
71-43-2	Benzene	ND	U	ug/l	L 0.35	5.0	1	
107-06-2	1,2-Dichloroethane	ND	U	ug/l	L 0.41	5.0	1	
79-01-6	Trichloroethene	ND	U	ug/l	L 0.34	5.0	1	
78-87-5	1,2-Dichloropropane	ND	U	ug/l	L 0.46	5.0	1	
75-27-4	Bromodichloromethane	ND	U	ug/l	L 0.23	5.0	1	
108-10-1	4-Methyl-2-Pentanone	ND	U	ug/l	L 1.8	25	1	

Client:	Environmental Business Consultants			Dat Coll	Date Collected:		05/27/08	
Project ID:	Former Dico-G auto & truck repair		Dat	Date Received:		05/29/08		
Customer Sample No.:	BMW-2		Lab ID:	Sample	Z30	Z3014-02		
Test:	VOCMS Group1				GID:	Z30	Z3014	
Analytical Method:	EPA SW846 8260	% N			5 Moisture:		100.00	
Result Type:	Final	Da			DataFile:		VF011863	
CAS Number	Parameter	Results Q	ualifie	r Units	DL	RT/RL	DF DIL/RE	
108-88-3	Toluene	0.51	J	ug/L	0.16	5.0	1	
10061-02-6	t-1,3-Dichloropropene	ND	U	ug/L	0.31	5.0	1	
10061-01-5	cis-1,3-Dichloropropene	ND	U	ug/L	0.29	5.0	1	
79-00-5	1,1,2-Trichloroethane	ND	U	ug/L	0.32	5.0	1	
591-78-6	2-Hexanone	ND	U	ug/L	1.8	25	1	
124-48-1	Dibromochloromethane	ND	U	ug/L	0.23	5.0	1	
106-93-4	1,2-Dibromoethane	ND	U	ug/L	0.26	5.0	1	
127-18-4	Tetrachloroethene	ND	U	ug/L	0.97	5.0	1	
108-90-7	Chlorobenzene	ND	U	ug/L	0.28	5.0	1	
100-41-4	Ethyl Benzene	ND	U	ug/L	0.05	5.0	1	
126777-61-2	m/p-Xylenes	2.7	J	ug/L	0.47	10	1	
95-47-6	o-Xylene	ND	U	ug/L	0.16	5.0	1	
100-42-5	Styrene	ND	U	ug/L	0.19	5.0	1	
75-25-2	Bromoform	ND	U	ug/L	0.44	5.0	1	
98-82-8	Isopropylbenzene	ND	U	ug/L	0.37	5.0	1	
79-34-5	1,1,2,2-Tetrachloroethane	ND	U	ug/L	0.37	5.0	1	
541-73-1	1,3-Dichlorobenzene	ND	U	ug/L	0.28	5.0	1	
106-46-7	1,4-Dichlorobenzene	ND	U	ug/L	0.22	5.0	1	
95-50-1	1,2-Dichlorobenzene	ND	U	ug/L	0.40	5.0	1	
96-12-8	1,2-Dibromo-3-Chloropropane	ND	U	ug/L	0.58	5.0	1	
120-82-1	1,2,4-Trichlorobenzene	ND	U	ug/L	0.39	5.0	1	

Client:	Environmental Business Consultants			C C	Date Collected	:	05/27/0	08
Project ID:	Former Dico-G auto & truck repair			0	Date Rec	eived:	05/29/	08
Customer Sample No.:	BMW-3			L	.ab Samı D:	ble	Z3014-0	03
Test:	VOCMS Group1			S	DG ID:		Z3014	
Analytical Method:	EPA SW846 8260			9	% Moistu	ire:	100.00	
Result Type:	Final			0	Datafile:		VF0118	31
CAS Number	Parameter	Results C	Qualifier	· Units	DL	RT/RL	DF	DIL/RE
75-71-8	Dichlorodifluoromethane	ND	U	ug/L	8.8	50) 10	
74-87-3	Chloromethane	ND	U	ug/L	3.7	50) 10	
75-01-4	Vinyl Chloride	ND	U	ug/L	3.0	50) 10	
74-83-9	Bromomethane	ND	U	ug/L	14	50) 10	
75-00-3	Chloroethane	ND	U	ug/L	8.0	50) 10	
75-69-4	Trichlorofluoromethane	ND	U	ug/L	5.3	50) 10	
76-13-1	1,1,2-Trichlorotrifluoroethane	ND	U	ug/L	6.1	50) 10	
75-35-4	1,1-Dichloroethene	ND	U	ug/L	6.7	50) 10	
67-64-1	Acetone	ND	U	ug/L	22	250) 10	
75-15-0	Carbon Disulfide	ND	U	ug/L	2.0	50) 10	
1634-04-4	Methyl tert-butyl Ether	ND	U	ug/L	2.3	50) 10	
79-20-9	Methyl Acetate	ND	U	ug/L	4.5	50) 10	
75-09-2	Methylene Chloride	ND	U	ug/L	3.8	50) 10	
156-60-5	trans-1,2-Dichloroethene	ND	U	ug/L	4.4	50) 10	
75-34-3	1,1-Dichloroethane	ND	U	ug/L	6.7	50) 10	
110-82-7	Cyclohexane	350		ug/L	5.7	50) 10	
78-93-3	2-Butanone	160	J	ug/L	19	250) 10	
56-23-5	Carbon Tetrachloride	ND	U	ug/L	2.7	50) 10	
156-59-2	cis-1,2-Dichloroethene	ND	U	ug/L	7.2	50) 10	
67-66-3	Chloroform	ND	U	ug/L	4.5	50) 10	
71-55-6	1,1,1-Trichloroethane	ND	U	ug/L	3.9	50) 10	
108-87-2	Methylcyclohexane	220		ug/L	4.7	50) 10	
71-43-2	Benzene	ND	U	ug/L	3.5	50) 10	
107-06-2	1,2-Dichloroethane	ND	U	ug/L	4.1	50) 10	
79-01-6	Trichloroethene	ND	U	ug/L	3.4	50) 10	
78-87-5	1,2-Dichloropropane	ND	U	ug/L	4.6	50) 10	
75-27-4	Bromodichloromethane	ND	U	ug/L	2.3	50) 10	
108-10-1	4-Methyl-2-Pentanone	ND	U	ug/L	18	250) 10	

Client:	Environmental Business Consultants			D C	ate ollected:	05	6/27/08	В	
Project ID:	Former Dico-G auto & truck repair			D	ate Rece	ived: 05	05/29/08		
Customer Sample No.:	BMW-3	3						3	
Test:	VOCMS Group1			S	DG ID:	Z3	014		
Analytical Method:	EPA SW846 8260			9	6 Moistur	re: 10	00.00		
Result Type:	Final			D	ataFile:	VF	01183	1	
CAS Number	Parameter	Results C	Qualifie	er Units	DL	RT/RL	DF D	DIL/RE	
108-88-3	Toluene	34	J	ug/L	1.6	50	10		
10061-02-6	t-1,3-Dichloropropene	ND	U	ug/L	3.1	50	10		
10061-01-5	cis-1,3-Dichloropropene	ND	U	ug/L	2.9	50	10		
79-00-5	1,1,2-Trichloroethane	ND	U	ug/L	3.2	50	10		
591-78-6	2-Hexanone	ND	U	ug/L	18	250	10		
124-48-1	Dibromochloromethane	ND	U	ug/L	2.3	50	10		
106-93-4	1,2-Dibromoethane	ND	U	ug/L	2.6	50	10		
127-18-4	Tetrachloroethene	ND	U	ug/L	9.7	50	10		
108-90-7	Chlorobenzene	ND	U	ug/L	2.8	50	10		
100-41-4	Ethyl Benzene	940		ug/L	0.50	50	10		
126777-61-2	m/p-Xylenes	3000		ug/L	4.7	100	10		
95-47-6	o-Xylene	690		ug/L	1.6	50	10		
100-42-5	Styrene	ND	U	ug/L	1.9	50	10		
75-25-2	Bromoform	ND	U	ug/L	4.4	50	10		
98-82-8	Isopropylbenzene	210		ug/L	3.7	50	10		
79-34-5	1,1,2,2-Tetrachloroethane	ND	U	ug/L	3.7	50	10		
541-73-1	1,3-Dichlorobenzene	ND	U	ug/L	2.8	50	10		
106-46-7	1,4-Dichlorobenzene	ND	U	ug/L	2.2	50	10		
95-50-1	1,2-Dichlorobenzene	ND	U	ug/L	4.0	50	10		
96-12-8	1,2-Dibromo-3-Chloropropane	ND	U	ug/L	5.8	50	10		
120-82-1	1,2,4-Trichlorobenzene	ND	U	ug/L	3.9	50	10		

Client:	Environmental Business Consultants			C C	ate collected:	05	/27/08
Project ID:	Former Dico-G auto & truck repair			C	ate Receiv	ved: 05	/29/08
Customer Sample No.:	BMW-4			L	ab Sample D:	Z3	014-04
Test:	VOCMS Group1			S	DG ID:	Z3	014
Analytical Method:	EPA SW846 8260			9	6 Moisture	: 10	0.00
Result Type:	Final			C	atafile:	VF	011902
CAS Number	Parameter	Results Q	ualifier	Units	DL	RT/RL	DF DIL/R
75-71-8	Dichlorodifluoromethane	ND	U	ug/L	0.88	5.0	1
74-87-3	Chloromethane	ND	U	ug/L	0.37	5.0	1
75-01-4	Vinyl Chloride	ND	U	ug/L	0.30	5.0	1
74-83-9	Bromomethane	ND	U	ug/L	. 1.4	5.0	1
75-00-3	Chloroethane	ND	U	ug/L	0.80	5.0	1
75-69-4	Trichlorofluoromethane	ND	U	ug/L	0.53	5.0	1
76-13-1	1,1,2-Trichlorotrifluoroethane	ND	U	ug/L	. 0.61	5.0	1
75-35-4	1,1-Dichloroethene	ND	U	ug/L	0.67	5.0	1
67-64-1	Acetone	110		ug/L	. 2.2	25	1
75-15-0	Carbon Disulfide	ND	U	ug/L	0.20	5.0	1
1634-04-4	Methyl tert-butyl Ether	ND	U	ug/L	0.23	5.0	1
79-20-9	Methyl Acetate	ND	U	ug/L	0.45	5.0	1
75-09-2	Methylene Chloride	ND	U	ug/L	. 0.38	5.0	1
156-60-5	trans-1,2-Dichloroethene	ND	U	ug/L	. 0.44	5.0	1
75-34-3	1,1-Dichloroethane	ND	U	ug/L	0.67	5.0	1
110-82-7	Cyclohexane	ND	U	ug/L	. 0.57	5.0	1
78-93-3	2-Butanone	28		ug/L	. 1.9	25	1
56-23-5	Carbon Tetrachloride	ND	U	ug/L	. 0.27	5.0	1
156-59-2	cis-1,2-Dichloroethene	ND	U	ug/L	. 0.72	5.0	1
67-66-3	Chloroform	ND	U	ug/L	. 0.45	5.0	1
71-55-6	1,1,1-Trichloroethane	ND	U	ug/L	. 0.39	5.0	1
108-87-2	Methylcyclohexane	ND	U	ug/L	. 0.47	5.0	1
71-43-2	Benzene	ND	U	ug/L	. 0.35	5.0	1
107-06-2	1,2-Dichloroethane	ND	U	ug/L	. 0.41	5.0	1
79-01-6	Trichloroethene	ND	U	ug/L	0.34	5.0	1
78-87-5	1,2-Dichloropropane	ND	U	ug/L	. 0.46	5.0	1
75-27-4	Bromodichloromethane	ND	U	ug/L	. 0.23	5.0	1
108-10-1	4-Methyl-2-Pentanone	ND	U	ug/L	. 1.8	25	1

Client:	Environmental Business Consultants			Date Coll	e ected:	05/	/27/08
Project ID:	Former Dico-G auto & truck repair			Date	e Receiv	ed: 05/	/29/08
Customer Sample No.:	BMW-4			Lab ID:	Sample	Z30	014-04
Test:	VOCMS Group1			SDG	ID:	Z30	014
Analytical Method:	EPA SW846 8260			% N	loisture:	100	0.00
Result Type:	Final			Data	aFile:	VFC	011902
CAS Number	Parameter	Results Q	ualifie	r Units	DL	RT/RL	DF DIL/RE
108-88-3	Toluene	ND	U	ug/L	0.16	5.0	1
10061-02-6	t-1,3-Dichloropropene	ND	U	ug/L	0.31	5.0	1
10061-01-5	cis-1,3-Dichloropropene	ND	U	ug/L	0.29	5.0	1
79-00-5	1,1,2-Trichloroethane	ND	U	ug/L	0.32	5.0	1
591-78-6	2-Hexanone	ND	U	ug/L	1.8	25	1
124-48-1	Dibromochloromethane	ND	U	ug/L	0.23	5.0	1
106-93-4	1,2-Dibromoethane	ND	U	ug/L	0.26	5.0	1
127-18-4	Tetrachloroethene	ND	U	ug/L	0.97	5.0	1
108-90-7	Chlorobenzene	ND	U	ug/L	0.28	5.0	1
100-41-4	Ethyl Benzene	ND	U	ug/L	0.05	5.0	1
126777-61-2	m/p-Xylenes	ND	U	ug/L	0.47	10	1
95-47-6	o-Xylene	ND	U	ug/L	0.16	5.0	1
100-42-5	Styrene	ND	U	ug/L	0.19	5.0	1
75-25-2	Bromoform	ND	U	ug/L	0.44	5.0	1
98-82-8	Isopropylbenzene	ND	U	ug/L	0.37	5.0	1
79-34-5	1,1,2,2-Tetrachloroethane	ND	U	ug/L	0.37	5.0	1
541-73-1	1,3-Dichlorobenzene	ND	U	ug/L	0.28	5.0	1
106-46-7	1,4-Dichlorobenzene	ND	U	ug/L	0.22	5.0	1
95-50-1	1,2-Dichlorobenzene	ND	U	ug/L	0.40	5.0	1
96-12-8	1,2-Dibromo-3-Chloropropane	ND	U	ug/L	0.58	5.0	1
120-82-1	1,2,4-Trichlorobenzene	ND	U	ug/L	0.39	5.0	1

Client:	Environmental Business Consultants			Da Co	te llected:	0!	5/27/0	08
Project ID:	Former Dico-G auto & truck repair			Da	te Recei	ved: 0	5/29/0	08
Customer Sample No.:	BMW-5			Lal I Da	o Sampl	e Z	3014-0	95
Test:	VOCMS Group1			SD	G ID:	Z	3014	
Analytical Method:	EPA SW846 8260			%	Moistur	e: 10	00.00	
Result Type:	Final			Da	tafile:	V	701183	33
CAS Number	Parameter	Results Q	ualifier	Units	DL	RT/RL	DF [DIL/RE
75-71-8	Dichlorodifluoromethane	ND	U	ug/L	4.4	25	5	
74-87-3	Chloromethane	ND	U	ug/L	1.8	25	5	
75-01-4	Vinyl Chloride	ND	U	ug/L	1.5	25	5	
74-83-9	Bromomethane	ND	U	ug/L	6.8	25	5	
75-00-3	Chloroethane	ND	U	ug/L	4.0	25	5	
75-69-4	Trichlorofluoromethane	ND	U	ug/L	2.6	25	5	
76-13-1	1,1,2-Trichlorotrifluoroethane	ND	U	ug/L	3.0	25	5	
75-35-4	1,1-Dichloroethene	ND	U	ug/L	3.4	25	5	
67-64-1	Acetone	170		ug/L	11	120) 5	
75-15-0	Carbon Disulfide	ND	U	ug/L	1.0	25	5	
1634-04-4	Methyl tert-butyl Ether	ND	U	ug/L	1.2	25	5	
79-20-9	Methyl Acetate	ND	U	ug/L	2.2	25	5	
75-09-2	Methylene Chloride	ND	U	ug/L	1.9	25	5	
156-60-5	trans-1,2-Dichloroethene	ND	U	ug/L	2.2	25	5	
75-34-3	1,1-Dichloroethane	ND	U	ug/L	3.4	25	5	
110-82-7	Cyclohexane	92		ug/L	2.8	25	5	
78-93-3	2-Butanone	92	J	ug/L	9.7	120) 5	
56-23-5	Carbon Tetrachloride	ND	U	ug/L	1.4	25	5	
156-59-2	cis-1,2-Dichloroethene	ND	U	ug/L	3.6	25	; 5	
67-66-3	Chloroform	ND	U	ug/L	2.2	25	5	
71-55-6	1,1,1-Trichloroethane	ND	U	ug/L	2.0	25	5	
108-87-2	Methylcyclohexane	52		ug/L	2.4	25	5	
71-43-2	Benzene	44		ug/L	1.8	25	5	
107-06-2	1,2-Dichloroethane	ND	U	ug/L	2.0	25	5	
79-01-6	Trichloroethene	ND	U	ug/L	1.7	25	5	
78-87-5	1,2-Dichloropropane	ND	U	ug/L	2.3	25	5	
75-27-4	Bromodichloromethane	ND	U	ug/L	1.2	25	5	
108-10-1	4-Methyl-2-Pentanone	ND	U	ug/L	8.8	120) 5	

Client:	Environmental Business Consultants			Dat Col	e lected:	05/	′27/08
Project ID:	Former Dico-G auto & truck repair			Dat	e Receiv	/ed: 05	′29/08
Customer Sample No.:	BMW-5			Lab ID:	Sample	Z30	014-05
Test:	VOCMS Group1			SDO	GID:	Z30)14
Analytical Method:	EPA SW846 8260			%	Moisture	: 100	0.00
Result Type:	Final			Dat	aFile:	VFC	011833
CAS Number	Parameter	Results C	Qualifie	er Units	DL	RT/RL	DF DIL/RE
108-88-3	Toluene	560		ug/L	0.80	25	5
10061-02-6	t-1,3-Dichloropropene	ND	U	ug/L	1.6	25	5
10061-01-5	cis-1,3-Dichloropropene	ND	U	ug/L	1.4	25	5
79-00-5	1,1,2-Trichloroethane	ND	U	ug/L	1.6	25	5
591-78-6	2-Hexanone	ND	U	ug/L	8.8	120	5
124-48-1	Dibromochloromethane	ND	U	ug/L	1.2	25	5
106-93-4	1,2-Dibromoethane	ND	U	ug/L	1.3	25	5
127-18-4	Tetrachloroethene	ND	U	ug/L	4.8	25	5
108-90-7	Chlorobenzene	ND	U	ug/L	1.4	25	5
100-41-4	Ethyl Benzene	350		ug/L	0.25	25	5
126777-61-2	m/p-Xylenes	1500		ug/L	2.4	50	5
95-47-6	o-Xylene	490		ug/L	0.80	25	5
100-42-5	Styrene	ND	U	ug/L	0.95	25	5
75-25-2	Bromoform	ND	U	ug/L	2.2	25	5
98-82-8	Isopropylbenzene	35		ug/L	1.8	25	5
79-34-5	1,1,2,2-Tetrachloroethane	ND	U	ug/L	1.8	25	5
541-73-1	1,3-Dichlorobenzene	ND	U	ug/L	1.4	25	5
106-46-7	1,4-Dichlorobenzene	ND	U	ug/L	1.1	25	5
95-50-1	1,2-Dichlorobenzene	ND	U	ug/L	2.0	25	5
96-12-8	1,2-Dibromo-3-Chloropropane	ND	U	ug/L	2.9	25	5
120-82-1	1,2,4-Trichlorobenzene	ND	U	ug/L	2.0	25	5

Client:	Environmental Business Consultants			[(Date Collected:	05	5/27/08
Project ID:	Former Dico-G auto & truck repair			Γ	Date Recei	ved: 05	5/29/08
Customer Sample No.:	BMW-6			L I	Lab Sample ID:	e Z3	8014-06
Test:	VOCMS Group1			5	SDG ID:	Z3	8014
Analytical Method:	EPA SW846 8260			ç	% Moisture	e: 10	00.00
Result Type:	Final			ſ	Datafile:	VF	011868
CAS Number	Parameter	Results Q	ualifier	Units	DL	RT/RL	DF DIL/R
75-71-8	Dichlorodifluoromethane	ND	U	ug/l	L 0.88	5.0) 1
74-87-3	Chloromethane	ND	U	ug/l	L 0.37	5.0) 1
75-01-4	Vinyl Chloride	ND	U	ug/l	L 0.30	5.0) 1
74-83-9	Bromomethane	ND	U	ug/l	L 1.4	5.0) 1
75-00-3	Chloroethane	ND	U	ug/l	L 0.80	5.0) 1
75-69-4	Trichlorofluoromethane	ND	U	ug/l	L 0.53	5.0	1
76-13-1	1,1,2-Trichlorotrifluoroethane	ND	U	ug/l	L 0.61	5.0	1
75-35-4	1,1-Dichloroethene	ND	U	ug/l	L 0.67	5.0	1
67-64-1	Acetone	ND	U	ug/l	L 2.2	25	1
75-15-0	Carbon Disulfide	ND	U	ug/l	L 0.20	5.0) 1
1634-04-4	Methyl tert-butyl Ether	ND	U	ug/l	L 0.23	5.0	1
79-20-9	Methyl Acetate	ND	U	ug/l	L 0.45	5.0	1
75-09-2	Methylene Chloride	ND	U	ug/l	L 0.38	5.0	1
156-60-5	trans-1,2-Dichloroethene	ND	U	ug/l	L 0.44	5.0	1
75-34-3	1,1-Dichloroethane	ND	U	ug/l	L 0.67	5.0	1
110-82-7	Cyclohexane	ND	U	ug/l	L 0.57	5.0) 1
78-93-3	2-Butanone	ND	U	ug/l	L 1.9	25	1
56-23-5	Carbon Tetrachloride	ND	U	ug/l	L 0.27	5.0) 1
156-59-2	cis-1,2-Dichloroethene	ND	U	ug/l	L 0.72	5.0) 1
67-66-3	Chloroform	ND	U	ug/l	L 0.45	5.0) 1
71-55-6	1,1,1-Trichloroethane	ND	U	ug/l	L 0.39	5.0) 1
108-87-2	Methylcyclohexane	ND	U	ug/l	L 0.47	5.0) 1
71-43-2	Benzene	ND	U	ug/l	L 0.35	5.0) 1
107-06-2	1,2-Dichloroethane	ND	U	ug/l	L 0.41	5.0) 1
79-01-6	Trichloroethene	ND	U	ug/l	L 0.34	5.0) 1
78-87-5	1,2-Dichloropropane	ND	U	ug/l	L 0.46	5.0	1
75-27-4	Bromodichloromethane	ND	U	ug/l	L 0.23	5.0	1
108-10-1	4-Methyl-2-Pentanone	ND	U	ug/l	L 1.8	25	1

Client:	Environmental Business Consultants			Date Coll	e ected:	05/	27/08
Project ID:	Former Dico-G auto & truck repair			Date	e Receiv	ed: 05/	′29/08
Customer Sample No.:	BMW-6			Lab ID:	Sample	Z30	014-06
Test:	VOCMS Group1			SDG	ID:	Z30)14
Analytical Method:	EPA SW846 8260			% N	<i>loisture</i> :	100	0.00
Result Type:	Final			Data	aFile:	VFC	011868
CAS Number	Parameter	Results C	ualifie	r Units	DL	RT/RL	DF DIL/RE
108-88-3	Toluene	ND	U	ug/L	0.16	5.0	1
10061-02-6	t-1,3-Dichloropropene	ND	U	ug/L	0.31	5.0	1
10061-01-5	cis-1,3-Dichloropropene	ND	U	ug/L	0.29	5.0	1
79-00-5	1,1,2-Trichloroethane	ND	U	ug/L	0.32	5.0	1
591-78-6	2-Hexanone	ND	U	ug/L	1.8	25	1
124-48-1	Dibromochloromethane	ND	U	ug/L	0.23	5.0	1
106-93-4	1,2-Dibromoethane	ND	U	ug/L	0.26	5.0	1
127-18-4	Tetrachloroethene	ND	U	ug/L	0.97	5.0	1
108-90-7	Chlorobenzene	ND	U	ug/L	0.28	5.0	1
100-41-4	Ethyl Benzene	ND	U	ug/L	0.05	5.0	1
126777-61-2	m/p-Xylenes	ND	U	ug/L	0.47	10	1
95-47-6	o-Xylene	ND	U	ug/L	0.16	5.0	1
100-42-5	Styrene	ND	U	ug/L	0.19	5.0	1
75-25-2	Bromoform	ND	U	ug/L	0.44	5.0	1
98-82-8	Isopropylbenzene	ND	U	ug/L	0.37	5.0	1
79-34-5	1,1,2,2-Tetrachloroethane	ND	U	ug/L	0.37	5.0	1
541-73-1	1,3-Dichlorobenzene	ND	U	ug/L	0.28	5.0	1
106-46-7	1,4-Dichlorobenzene	ND	U	ug/L	0.22	5.0	1
95-50-1	1,2-Dichlorobenzene	ND	U	ug/L	0.40	5.0	1
96-12-8	1,2-Dibromo-3-Chloropropane	ND	U	ug/L	0.58	5.0	1
120-82-1	1,2,4-Trichlorobenzene	ND	U	ug/L	0.39	5.0	1

U = Not Detected
RL = Reporting Limit
MDL = Method Detection Limit
E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Project #: Z3014 6/2/2008 2:38:32 PM End of Report

CHEIT	TEC-		284 \$	Sheffield Street (908) 789-8900	, Mo Fai	unta c (90	inside 8) 78	, NJ 0 9-8922	7092	Che		h Pr	ojec	t Nui	mbe					376	:4
HAIN OF CUS	TODY RECO	RD			:hem	tech	net		•		u INUI ب	nnei									
	CLIENT INFO	RMATIO	N	PRO.	JECT	NFO	RMAT	ON			······		s ^{ee} 1	BIL	LINC	S INI	FOR	MA	TION		
anan dire kering	Penort to be sent to	al de la complete		PROJECT NAME: 3035	While Pl	ains Ro:	ad. Bronx	NY	And and a	BILL	TO: EB	С	. S. S. S.					PO#	t i kiniti i	···· 18	
OMPANY: Environm	ental Business Con	sultants		PROJECT #: ARK0602			LOCATIO	DN:		ADDF	RESS: 1	- 1808 M	liddle	Count	ry Roa	d					
DDRESS: 1808 Mide	le Country Road			PROJECT MANAGER: (Charles S	iosik				CITY:	Ridge							STAT	E: NY	ZIP: 11961	
ITY: Ridge	STA	TE: NY	ZIP: 11961	E-MAIL: Csosik2@opton	line.net					ΑΤΤΕ	NTION	: Charl	les So	sik							
TTENTION: Charles	Sosik			PHONE: 631.504.6000	V		FAX: 631	.924.2870		PHO	NE: 631	.504.6	000								
HONE: 631.504.600	FA)	: 631.924.28	70	DA			RABL	Ξ.							2 E	AN/AV		15			
DATA 1	URNAROUN	D INFOR	MATION		INFO	RMAT	TION	a starter and		12	/5	£199	/	/	/ /	/	/ /	/ /	///		
Δ Y-			YS*	RESEULTS ONLY			SEPA CL	en restare P	and the state		ر کہ /	9,		/ ,	/ .		/ ,	/ ,	/ /	an a	
ARD COPY:		D	AYS'		-0		ew York S	itate ASP "E	3"		\$7						/			1970 - 114 1970 - 114	
		D/	NYS*	→ New Jersey CLP	20		ther			ľ-		໌ຕ່	4	Luo I	6	ín I	ĺ∞	6			
TANDARD TURNAF	OUND TIME IS 10	BUSINESS (DAYS	EDD FORMAT					_	je na se	PK	ESE	KV/	VIIV	ES			4	C	OMMENTS	6
oursersou				CANDIE		IPLE PF	SA COU	MPLE FCTION	50										< Sp A-HCI	ecify Preserva	lives B-HN
SAMPLE	SAMP		FICATION	MATRIX		<u> </u>			Battle				<u> </u>	†	<u> </u>				C-H2SO13		D-Na
ID					COMP	GRAB	DATE	TIME	jo #	1	2	3	4	5	6	7	8	9	E-ICE	F	7-OTH
4	mw-	I (NEW)	,∧ (IRM9)	GROUNDWATER		×	7/17	900	2	X									E/A		
)	niw-2	NEW)	۲ (IRM8)	GROUNDWATER		×	7/17	910	2	\times									ÉA		
}.																					
j.														1							
					1										1						
,				1	1	1				1	-	 			1			<u> </u>			
<u>·</u>			·····			1		L	1	1					1		 	1			
). 			······································					·		-					1						<u></u>
<u>).</u>	<u> </u>	-			<u> </u>		<u> </u>						<u> </u>								
IU.			ter an																		
SAN	IPLE CUSTO	DY MUS	T BE DOCUME	NTED BELOW EA	CHT	MES	AMPL	ES CHA	NGE	PROS	SES	SION	V IN	CLU	DIN	G C(OUF	RIER	DELIV	ERY	
ELINQUISHED BY SAMPLE		ENTIME 2	RECEIVED BY		MeOh	l extrac nents:	ction req	uires an a	dditional	402.	lar for	perce	nt so	lid	_1(7,171)	70	.00		<u> </u>	\sim	
	DAT	E/TIME	RECEIVED BY		-																
			2.																		
 IELINQUISHED BY	DAT		P RECEIVED FOR AB BY							CLIEN	IT:	+	Hand	Delive	red		}				
FEDERA	1 12-	18-03	1 OKZ	\rightarrow	P:	aae	of	1	Overnig	iht CHF∿	песн∙	+	- Pick	ed Up			÷			S	<u>.ete</u> ⊁ N(
	1 1			•••			· · · · · · · · · · · · · · · · · · ·										-		1 · · · · ·		

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Client:	Environmental Business Consultants			D C	ate ollected:	07	/17/08	
Project ID:	3035 White Plains Road			D	ate Receiv	ved: 07	07/18/08	
Customer Sample No.:	MW-1(NEW)N			La II	ab Sample D:	e Z3	Z3764-01	
Test:	VOC-TCL			s	DG ID:	Z3	764	
Analytical Method:	EPA SW846 8260			%	6 Moisture	e: 10	0.00	
Result Type:	Final			D	atafile:	VF	013141	
CAS Number	Parameter	Results Q	ualifier	Units	DL	RT/RL	DF DIL	./RE
75-71-8	Dichlorodifluoromethane	ND	U	ug/L	0.88	5.0	1	
74-87-3	Chloromethane	ND	U	ug/L	0.37	5.0	1	
75-01-4	Vinyl Chloride	ND	U	ug/L	0.30	5.0	1	
74-83-9	Bromomethane	ND	U	ug/L	. 1.4	5.0	1	
75-00-3	Chloroethane	ND	U	ug/L	0.80	5.0	1	
75-69-4	Trichlorofluoromethane	ND	U	ug/L	0.53	5.0	1	
76-13-1	1,1,2-Trichlorotrifluoroethane	ND	U	ug/L	0.61	5.0	1	
75-35-4	1,1-Dichloroethene	ND	U	ug/L	0.67	5.0	1	
67-64-1	Acetone	ND	U	ug/L	. 2.2	25	1	
75-15-0	Carbon Disulfide	ND	U	ug/L	0.20	5.0	1	
1634-04-4	Methyl tert-butyl Ether	ND	U	ug/L	0.23	5.0	1	
79-20-9	Methyl Acetate	ND	U	ug/L	0.45	5.0	1	
75-09-2	Methylene Chloride	ND	U	ug/L	0.38	5.0	1	
156-60-5	trans-1,2-Dichloroethene	ND	U	ug/L	0.44	5.0	1	
75-34-3	1,1-Dichloroethane	ND	U	ug/L	0.67	5.0	1	
110-82-7	Cyclohexane	ND	U	ug/L	0.57	5.0	1	
78-93-3	2-Butanone	ND	U	ug/L	. 1.9	25	1	
56-23-5	Carbon Tetrachloride	ND	U	ug/L	0.27	5.0	1	
156-59-2	cis-1,2-Dichloroethene	ND	U	ug/L	0.72	5.0	1	
67-66-3	Chloroform	ND	U	ug/L	0.45	5.0	1	
71-55-6	1,1,1-Trichloroethane	ND	U	ug/L	0.39	5.0	1	
108-87-2	Methylcyclohexane	ND	U	ug/L	0.47	5.0	1	
71-43-2	Benzene	ND	U	ug/L	0.35	5.0	1	
107-06-2	1,2-Dichloroethane	ND	U	ug/L	0.41	5.0	1	
79-01-6	Trichloroethene	ND	U	ug/L	0.34	5.0	1	
78-87-5	1,2-Dichloropropane	ND	U	ug/L	0.46	5.0	1	
75-27-4	Bromodichloromethane	ND	U	ug/L	0.23	5.0	1	
108-10-1	4-Methyl-2-Pentanone	ND	U	ug/L	. 1.8	25	1	

CHEMIECH 284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Environmental Business Consultants			Date Coll	e ected:	07/	07/17/08		
3035 White Plains Road			Date	e Receiv	ed: 07/	07/18/08		
MW-1(NEW)N			Lab ID:	Sample	Z37	Z3764-01		
VOC-TCL			SDG	D:	Z37	64		
EPA SW846 8260			% N	100	0.00			
Final			Data	aFile:	VFC	VF013141		
Parameter	Results Q	ualifie	r Units	DL	RT/RL	DF DI	L/RE	
Toluene	ND	U	ug/L	0.16	5.0	1		
t-1,3-Dichloropropene	ND	U	ug/L	0.31	5.0	1		
cis-1,3-Dichloropropene	ND	U	ug/L	0.29	5.0	1		
1,1,2-Trichloroethane	ND	U	ug/L	0.32	5.0	1		
2-Hexanone	ND	U	ug/L	1.8	25	1		
Dibromochloromethane	ND	U	ug/L	0.23	5.0	1		
1,2-Dibromoethane	ND	U	ug/L	0.26	5.0	1		
Tetrachloroethene	ND	U	ug/L	0.97	5.0	1		
Chlorobenzene	ND	U	ug/L	0.28	5.0	1		
Ethyl Benzene	ND	U	ug/L	0.05	5.0	1		
m/p-Xylenes	ND	U	ug/L	0.47	10	1		
o-Xylene	ND	U	ug/L	0.16	5.0	1		
Styrene	ND	U	ug/L	0.19	5.0	1		
Bromoform	ND	U	ug/L	0.44	5.0	1		
Isopropylbenzene	ND	U	ug/L	0.37	5.0	1		
1,1,2,2-Tetrachloroethane	ND	U	ug/L	0.37	5.0	1		
1,3-Dichlorobenzene	ND	U	ug/L	0.28	5.0	1		
1,4-Dichlorobenzene	ND	U	ug/L	0.22	5.0	1		
1,2-Dichlorobenzene	ND	U	ug/L	0.40	5.0	1		
1,2-Dibromo-3-Chloropropane	ND	U	ug/L	0.58	5.0	1		
1,2,4-Trichlorobenzene	ND	U	ug/L	0.39	5.0	1		
	Environmental Business Consultants 3035 White Plains Road MW-1(NEW)N VOC-TCL EPA SW846 8260 Final Parameter Toluene t-1,3-Dichloropropene cis-1,3-Dichloropropene 1,1,2-Trichloroethane 2-Hexanone Dibromochloromethane 1,2-Dibromoethane Tetrachloroethene Chlorobenzene Ethyl Benzene m/p-Xylenes o-Xylene Styrene Bromoform Isopropylbenzene 1,1,2,2-Tetrachloroethane 1,3-Dichlorobenzene 1,1,2,2-Tetrachloroethane 1,3-Dichlorobenzene 1,2-Dibromo-3-Chloropropane 1,2,4-Trichlorobenzene	Environmental Business Consultants 3035 White Plains Road MW-1 (NEW)N VOC-TCL EPA SW846 8260 Final Parameter Results Q Toluene ND t-1,3-Dichloropropene ND cis-1,3-Dichloropropene ND 1,1,2-Trichloroethane ND 2-Hexanone ND Dibromochloromethane ND 1,2-Dibromoethane ND tetrachloroethene ND Chlorobenzene ND Ethyl Benzene ND Ethyl Benzene ND styrene ND Styrene ND Styrene ND 1,2,2-Tetrachloroethane ND 1,2,2-Tetrachloroethane ND 1,3-Dichlorobenzene ND 1,1,2,2-Tetrachloroethane ND 1,2,2-Dichlorobenzene ND 1,2-Dibromo-3-Chloropropane ND 1,2,4-Trichlorobenzene ND	Environmental Business Consultants 3035 White Plains Road MW-1 (NEW)N VOC-TCL EPA SW846 8260 Final Parameter Results Qualifie Toluene ND U t-1,3-Dichloropropene ND U t,1,2-Trichloroethane ND U 2-Hexanone ND U 1,2-Dibromoethane ND U 1,2-Dibromoethane ND U tetrachloroethene ND U Chlorobenzene ND U Ethyl Benzene ND U m/p-Xylenes ND U styrene ND U Styrene ND U styrene ND U 1,1,2,2-Tetrachloroethane ND U 1,1,2,2-Tetrachloroethane ND U 1,2,2-Tetrachloroethane ND U 1,1,2,2-Tetrachloroethane ND U 1,1,2,2-Tetrachloroethane ND U 1,3-Dichlorobenzene ND U 1,2-Dibromo-3-Chloropropane ND U 1,2,4-Trichlorobenzene ND U 1,2,4-Trichlorobenzene ND U	Environmental Business ConsultantsDat. Coll3035 White Plains RoadDataMW-1(NEW)NLab ID:VOC-TCLSDGEPA SW846 8260% NFinalDataParameterResults Qualifier UnitsTolueneNDUt-1,3-DichloropropeneNDU1,1,2-TrichloroethaneNDU2-HexanoneNDUUj2L2-HexanoneNDUUg/L1,2-DibromoethaneNDUUUg/LChlorobenzeneNDUUUUULStyreneNDUUU <td>Environmental Business ConsultantsDate Collected: Collected:3035 White Plains RoadDate Receiv.MW-1(NEW)NLab Sample ID:VOC-TCLSDG ID:EPA SW846 8260% Moisture:FinalDataFile:ParameterResults Qualifier UnitsDLTolueneNDUug/L0.16t-1,3-DichloropropeneNDUug/L0.23cis-1,3-DichloropropeneNDUug/L0.232-HexanoneNDUug/L0.231,2-DibromochloromethaneNDUug/L0.28Ethyl BenzeneNDUug/L0.28Ethyl BenzeneNDUug/L0.47o-XyleneNDUug/L0.47o-XyleneNDUug/L0.47o-XyleneNDUug/L0.47j.1,2,2-TetrachloroethaneNDUug/L0.47o-XyleneNDUug/L0.47o-XyleneNDUug/L0.47j.3-DichlorobenzeneNDUug/L0.47j.1,2,2-TetrachloroethaneNDUug/L0.47j.3-DichlorobenzeneNDUug/L0.47j.3-DichlorobenzeneNDUug/L0.47j.3-DichlorobenzeneNDUug/L0.47j.3-DichlorobenzeneNDUug/L0.40j.2,2-TetrachloroethaneNDUug/L0.40</td> <td>Environmental Business ConsultantsDate Collected:07/ Collected:3035 White Plains RoadDate Received:07/MW-1(NEW)NLab Sample ID:Z37VOC-TCLSDG ID:Z37EPA SW846 8260% Moisture:100FinalDataFile:VFOParameterResults Qualifier Units IS-1,3-DichloropropeneDLRT/RLTolueneNDUug/L0.165.0t-1,3-DichloropropeneNDUug/L0.295.01,1,2-TrichloroethaneNDUug/L0.225.02-HexanoneNDUug/L0.285.0DibromochloromethaneNDUug/L0.285.0ChlorobenzeneNDUug/L0.055.0m/p-XylenesNDUug/L0.165.0StyreneNDUug/L0.165.0styreneNDUug/L0.165.0fil BenzeneNDUug/L0.055.0m/p-XylenesNDUug/L0.165.0StyreneNDUug/L0.375.01,1,2,2-TetrachloroethaneNDUug/L0.375.01,4-DichlorobenzeneNDUug/L0.285.01,2,2-TetrachloroethaneNDUug/L0.375.01,2,2-TetrachloroethaneNDUug/L0.375.01,2,2-Tetrachloroethane</td> <td>Environmental Business Consultants Date Collected: 07/17/08 Collected: 3035 White Plains Road Date Received: 07/18/08 MW-1 (NEW)N Lab Sample ID: Z3764-01 ID: Z3764 VOC-TCL SDG ID: Z3764 EPA SW846 8260 % Moisture: 100.00 Final DataFile: VF013141 Parameter Results Qualifier Units DL RT/RL DF Toluene ND U ug/L 0.31 5.0 1 t-1,3-Dichloropropene ND U ug/L 0.32 5.0 1 1,1,2-Trichloroethane ND U ug/L 0.23 5.0 1 1,2-Dibromochloromethane ND U ug/L 0.28 5.0 1 1,2-Dibromochlonee ND U ug/L 0.28 5.0 1 1,2-Dibromochloromethane ND U ug/L 0.28 5.0 1 1,2-Dibromochloromethane ND U ug/L 0.47</td>	Environmental Business ConsultantsDate Collected: Collected:3035 White Plains RoadDate Receiv.MW-1(NEW)NLab Sample ID:VOC-TCLSDG ID:EPA SW846 8260% Moisture:FinalDataFile:ParameterResults Qualifier UnitsDLTolueneNDUug/L0.16t-1,3-DichloropropeneNDUug/L0.23cis-1,3-DichloropropeneNDUug/L0.232-HexanoneNDUug/L0.231,2-DibromochloromethaneNDUug/L0.28Ethyl BenzeneNDUug/L0.28Ethyl BenzeneNDUug/L0.47o-XyleneNDUug/L0.47o-XyleneNDUug/L0.47o-XyleneNDUug/L0.47j.1,2,2-TetrachloroethaneNDUug/L0.47o-XyleneNDUug/L0.47o-XyleneNDUug/L0.47j.3-DichlorobenzeneNDUug/L0.47j.1,2,2-TetrachloroethaneNDUug/L0.47j.3-DichlorobenzeneNDUug/L0.47j.3-DichlorobenzeneNDUug/L0.47j.3-DichlorobenzeneNDUug/L0.47j.3-DichlorobenzeneNDUug/L0.40j.2,2-TetrachloroethaneNDUug/L0.40	Environmental Business ConsultantsDate Collected:07/ Collected:3035 White Plains RoadDate Received:07/MW-1(NEW)NLab Sample ID:Z37VOC-TCLSDG ID:Z37EPA SW846 8260% Moisture:100FinalDataFile:VFOParameterResults Qualifier Units IS-1,3-DichloropropeneDLRT/RLTolueneNDUug/L0.165.0t-1,3-DichloropropeneNDUug/L0.295.01,1,2-TrichloroethaneNDUug/L0.225.02-HexanoneNDUug/L0.285.0DibromochloromethaneNDUug/L0.285.0ChlorobenzeneNDUug/L0.055.0m/p-XylenesNDUug/L0.165.0StyreneNDUug/L0.165.0styreneNDUug/L0.165.0fil BenzeneNDUug/L0.055.0m/p-XylenesNDUug/L0.165.0StyreneNDUug/L0.375.01,1,2,2-TetrachloroethaneNDUug/L0.375.01,4-DichlorobenzeneNDUug/L0.285.01,2,2-TetrachloroethaneNDUug/L0.375.01,2,2-TetrachloroethaneNDUug/L0.375.01,2,2-Tetrachloroethane	Environmental Business Consultants Date Collected: 07/17/08 Collected: 3035 White Plains Road Date Received: 07/18/08 MW-1 (NEW)N Lab Sample ID: Z3764-01 ID: Z3764 VOC-TCL SDG ID: Z3764 EPA SW846 8260 % Moisture: 100.00 Final DataFile: VF013141 Parameter Results Qualifier Units DL RT/RL DF Toluene ND U ug/L 0.31 5.0 1 t-1,3-Dichloropropene ND U ug/L 0.32 5.0 1 1,1,2-Trichloroethane ND U ug/L 0.23 5.0 1 1,2-Dibromochloromethane ND U ug/L 0.28 5.0 1 1,2-Dibromochlonee ND U ug/L 0.28 5.0 1 1,2-Dibromochloromethane ND U ug/L 0.28 5.0 1 1,2-Dibromochloromethane ND U ug/L 0.47	

CHEMTECH 284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Client:	Environmental Business Consultants			Da Co	ate ollected:	07	07/17/08		
Project ID:	3035 White Plains Road			Da	ate Receiv	ved: 07	07/18/08		
Customer Sample No.:	MW-2(NEW)S			La I D	ib Sample):	e Z3	Z3764-02		
Test:	VOC-TCL			SE	DG ID:	Z3	764		
Analytical Method:	EPA SW846 8260			%	Moisture	e: 10	0.00		
Result Type:	Final			Da	atafile:	VF	01313	3	
CAS Number	Parameter	Results C	Qualifier	Units	DL	RT/RL	DF D	DIL/RE	
75-71-8	Dichlorodifluoromethane	ND	U	ug/L	0.88	5.0	1		
74-87-3	Chloromethane	ND	U	ug/L	0.37	5.0	1		
75-01-4	Vinyl Chloride	ND	U	ug/L	0.30	5.0	1		
74-83-9	Bromomethane	ND	U	ug/L	1.4	5.0	1		
75-00-3	Chloroethane	ND	U	ug/L	0.80	5.0	1		
75-69-4	Trichlorofluoromethane	ND	U	ug/L	0.53	5.0	1		
76-13-1	1,1,2-Trichlorotrifluoroethane	ND	U	ug/L	0.61	5.0	1		
75-35-4	1,1-Dichloroethene	ND	U	ug/L	0.67	5.0	1		
67-64-1	Acetone	ND	U	ug/L	2.2	25	1		
75-15-0	Carbon Disulfide	ND	U	ug/L	0.20	5.0	1		
1634-04-4	Methyl tert-butyl Ether	ND	U	ug/L	0.23	5.0	1		
79-20-9	Methyl Acetate	ND	U	ug/L	0.45	5.0	1		
75-09-2	Methylene Chloride	ND	U	ug/L	0.38	5.0	1		
156-60-5	trans-1,2-Dichloroethene	ND	U	ug/L	0.44	5.0	1		
75-34-3	1,1-Dichloroethane	ND	U	ug/L	0.67	5.0	1		
110-82-7	Cyclohexane	ND	U	ug/L	0.57	5.0	1		
78-93-3	2-Butanone	ND	U	ug/L	1.9	25	1		
56-23-5	Carbon Tetrachloride	ND	U	ug/L	0.27	5.0	1		
156-59-2	cis-1,2-Dichloroethene	ND	U	ug/L	0.72	5.0	1		
67-66-3	Chloroform	ND	U	ug/L	0.45	5.0	1		
71-55-6	1,1,1-Trichloroethane	ND	U	ug/L	0.39	5.0	1		
108-87-2	Methylcyclohexane	ND	U	ug/L	0.47	5.0	1		
71-43-2	Benzene	ND	U	ug/L	0.35	5.0	1		
107-06-2	1,2-Dichloroethane	ND	U	ug/L	0.41	5.0	1		
79-01-6	Trichloroethene	ND	U	ug/L	0.34	5.0	1		
78-87-5	1,2-Dichloropropane	ND	U	ug/L	0.46	5.0	1		
75-27-4	Bromodichloromethane	ND	U	ug/L	0.23	5.0	1		
108-10-1	4-Methyl-2-Pentanone	ND	U	ug/L	1.8	25	1		

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Client:	Environmental Business Consultants			Date Colle	ected:	07/	17/08	
Project ID:	3035 White Plains Road			Date	Receiv	ed: 07/	18/08	
Customer Sample No.:	MW-2(NEW)S			Lab ID:	Sample	Z37	64-02	
Test:	VOC-TCL			SDG	ID:	Z37	64	
Analytical Method:	EPA SW846 8260			% N	loisture:	100	0.00	
Result Type:	Final			Data	File:	VFC	13133	
CAS Number	Parameter	Results Q	ualifie	r Units	DL	RT/RL	DF DI	L/RE
108-88-3	Toluene	ND	U	ug/L	0.16	5.0	1	
10061-02-6	t-1,3-Dichloropropene	ND	U	ug/L	0.31	5.0	1	
10061-01-5	cis-1,3-Dichloropropene	ND	U	ug/L	0.29	5.0	1	
79-00-5	1,1,2-Trichloroethane	ND	U	ug/L	0.32	5.0	1	
591-78-6	2-Hexanone	ND	U	ug/L	1.8	25	1	
124-48-1	Dibromochloromethane	ND	U	ug/L	0.23	5.0	1	
106-93-4	1,2-Dibromoethane	ND	U	ug/L	0.26	5.0	1	
127-18-4	Tetrachloroethene	ND	U	ug/L	0.97	5.0	1	
108-90-7	Chlorobenzene	ND	U	ug/L	0.28	5.0	1	
100-41-4	Ethyl Benzene	ND	U	ug/L	0.05	5.0	1	
126777-61-2	m/p-Xylenes	ND	U	ug/L	0.47	10	1	
95-47-6	o-Xylene	ND	U	ug/L	0.16	5.0	1	
100-42-5	Styrene	ND	U	ug/L	0.19	5.0	1	
75-25-2	Bromoform	ND	U	ug/L	0.44	5.0	1	
98-82-8	Isopropylbenzene	ND	U	ug/L	0.37	5.0	1	
79-34-5	1,1,2,2-Tetrachloroethane	ND	U	ug/L	0.37	5.0	1	
541-73-1	1,3-Dichlorobenzene	ND	U	ug/L	0.28	5.0	1	
106-46-7	1,4-Dichlorobenzene	ND	U	ug/L	0.22	5.0	1	
95-50-1	1,2-Dichlorobenzene	ND	U	ug/L	0.40	5.0	1	
96-12-8	1,2-Dibromo-3-Chloropropane	ND	U	ug/L	0.58	5.0	1	
120-82-1	1,2,4-Trichlorobenzene	ND	U	ug/L	0.39	5.0	1	

U = Not Detected
RL = Reporting Limit
MDL = Method Detection Limit
E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Project #: Z3764 7/24/2008 2:36:35 PM End of Report

Cover Page

Order ID : Z4158

Project ID: 3035 White Plains Road

Customer Name : Environmental Business Consultants

Lab Sample Number	Customer Sample Number
Z4158-01	MW-3
Z4158-02	MW-1
Z4158-03	MW4
Z4158-04	MW5
Z4158-05	MW6
Z4158-06	MW7
Z4158-07	MW8
Z4158-08	MW9

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Signature : _____

	284 S	Sheffield Street,	Mountainside, NJ 07092	Chemtech Project Number Z4158
		(908) 789-8900	Fax (908) 789-8922	COC Number
CHAIN OF CUSTOL	DY RECORD	WWW.C	hemtech.net	
	NT INFORMATION	PROJI	ECT INFORMATION	BILLING INFORMATION)
Report t	o be sent to	PROJECT NAME: 3035 M	Vhite Plains Road, Bronx, NY	BILL TO: Environmental Business Consultants PO#
COMPANY: Environmental Bi	usiness Consultants	PROJECT #:	LOCATION:	ADDRESS: 1808 Middle Country Road
ADDRESS: 1808 Middle Cour	ntry Road	PROJECT MANAGER: CI	hartes Sosik	CITY: Ridge STATE: NY ZIP: 11961
CITY: Ridge	STATE: NY ZIP: 11961	E-MAIL: csosik2@optonlin	lanai	ATTENTION: Chartes Sosik
ATTENTION: Charles Sosik		PHONE: 631.504.6000	FAX: 631.924.2870	PHONE: 631.504.6000
PHONE: 631,504.600D	FAX: 631.924.287D		ev oei weevel E	ANALYSIS
DATA TURN	AROUND NEORWATION		N BEEIVERABEE N FORMATION	
		D RESULTS ONLY		
HARD COPY: STAT	DAYS.	D RESULTS • OC	O New York State ASP "8" New York State ASP "A"	
TO BE APPROVED BY CH	EMTECH DAYS'	+ New Jersey CLP	D Other	
STANDARD TURNAROUND	TIME IS 10 BUSINESS DAYS	D EDD FORMAT		
CHEMTECH	PROJECT	SAMPLE	SAMPLE SAMPLE TYPE COLLECTION	g VOCS 8260 A.HCI B-HNO4
SAMPLE	SAMPLE IDENTIFICATION	MATRIX	DATE TIME	8 6 7 8 6 7 8 9 6 F.OTHER
	MW-3	Water	X 8/7/2008 1300	2 X E
2.				
3.				
4.				
5.				
6,				
7.				
8.				
9.				
10.				
SAMPLE	: CUSTODY MUST BE DOGUMEI	NTED BELOW EAC	CH TIME SAMPLES CHANGE	PROSSESSION INCLUDING COURIER DELIVERY
RELINOVICAED BY SAMPLER	DATETIME RECEIVED BY		сопапоиз от аатиеs от соцыт ат тесенит. МеОН extraction requires an addition. Comments: Т Н Г З Т Л	al 402. Jar ler percent solid
RELIFICUIS-LED BY	DATE/TIME RECEIVED BY		Revuse Co	oc loceiver from client
2.	2.			See erred
RELIFICULISHED BY	K. (2-UV BECENED FOR LAB BY	- MEGNA	Page 1 of 1	Dvemight CHEMTECH: + Picked Up + CYES + NO
1011012004	WHITE - CHEMTECH	I COPYFOR RETURN T	O CLIENT YELLOW - CHEMTEC	H COPY PINK - SAMPLER COPY #

CILE CILE
--

LABORATORY CERTIFICATION

STATE	License No.		
New Jersey	20012		
New York	11376		
Florida	E87935		
Maryland	296		
Massachusetts	M-NJ503		
Oklahoma	9705		
Rhode Island	LAO00259		
Connecticut	PH-0649		
Maine	NJ0503		
Pennsylvania	68-548		

CHEMTECH

DATA REPORTING QUALIFIERS- ORGANIC

For reporting results, the following " Results Qualifiers" are used:

Value	If the result is a value greater than or equal to the detection limit, report the value
U	Indicates the compound was analyzed for but was not detected. Report the minimum detection limit for the sample with the U, i.e. "10 U". This is not necessarily the instrument detection limit attainable for this particular sample based on any concentration or dilution that may have been required.
J	 Indicates an estimated value. This flag is used: (1) When estimating a concentration for a tentatively identified compound (library search hits, where a 1:1 response is assumed.) (2) When the mass spectral data indicated the identification, however the result was less than the specified detection limit greater than zero. If the detection limit was 10ug/L and a concentration of 3 ug/L was calculated report as 3 J. This is flag is used when similar situation arise on any organic parameter i.e. Pest, PCB and others.
В	Indicates the analyte was found in the blank as well as the sample report as "12 B".
Ε	Indicates the analyte 's concentration exceeds the calibrated range of the instrument for that specific analysis.
D	This flag identifies all compounds identified in an analysis at a secondary dilution factor.
Р	This flag is used for Pesticide/PCB target analyte when there is >25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on Form 1 and flagged with a "P".
N	This flag indicates presumptive evidence of a compound. This is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It applies to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the flag is not used.
Α	This flag indicates that a Tentatively Identified Compound is a suspected aldol-condensation product.

QA Control Code: A2040102

Revision Date: July 7, 2006 Effective Date: July 17, 2006 Page 31 of 35

APPENDIX A

QA REVIEW GENERAL DOCUMENTATION

Project #:Z4158	
	Completed
For thorough review, the report must have the following:	
GENERAL: Are all original paperwork present (chain of custody, record of communication, airbill, sample management lab chronicle, login page) Check chain-of-custody for proper relinquish/return of samples Is the chain of custody signed and complete Check internal chain-of-custody for proper relinquish/return of samples /sample extracts	
Collect information for each project id from server. Were all requirements followed	√
COVER PAGE: Do numbers of samples correspond to the number of samples in the Chain of Custody and on login page Do lab numbers and client Ids on cover page agree with the Chain of Custody	✓ ✓
CHAIN OF CUSTODY:	
Do requested analyses on Chain of Custody agree with form I results Do requested analyses on Chain of Custody agree with the log-in page Were the correct method log-in for analysis according to the Analytical Request and Chain of Custody Were the samples received within hold time Were any problems found with the samples at arrival recorded in the Sample Management Laboratory Chronicle	
ANALYTICAL: Was method requirement followed? Was client requirement followed? Does the case narrative summarize all QC failure? All runlogs reviewed for manual integration requirements	✓ ✓ ✓

1st Level QA Review Signature:

2nd Level QA Review Signature:_____

Client:	Environmental Business Consultants	Date Collected:	8/7/2008
Project:	3035 White Plains Road	Date Received:	8/12/2008
Client Sample ID:	MW-3	SDG No.:	Z4158
Lab Sample ID:	Z4158-01	Matrix:	WATER
Analytical Method:	8260	% Moisture:	100
Sample Wt/Wol:	5.0 Units: mL	Soil Extract Vol:	uL
Soil Aliquot Vol:	uL		

File ID: VF013739.D	Dilution:	Date Analyzed 8/19/2008	4	Analytical H VF081508	Batch ID	,
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.88	U	5.0	0.88	ug/L
74-87-3	Chloromethane	0.37	U	5.0	0.37	ug/L
75-01-4	Vinyl chloride	0.30	U	5.0	0.30	ug/L
74-83-9	Bromomethane	1.4	U	5.0	1.4	ug/L
75-00-3	Chloroethane	0.80	U	5.0	0.80	ug/L
75-69-4	Trichlorofluoromethane	0.53	U	5.0	0.53	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.61	U	5.0	0.61	ug/L
75-35-4	1,1-Dichloroethene	0.67	U	5.0	0.67	ug/L
67-64-1	Acetone	2.2	U	25	2.2	ug/L
75-15-0	Carbon disulfide	0.20	U	5.0	0.20	ug/L
1634-04-4	Methyl tert-butyl Ether	0.23	U	5.0	0.23	ug/L
79-20-9	Methyl Acetate	0.45	U	5.0	0.45	ug/L
75-09-2	Methylene Chloride	0.38	U	5.0	0.38	ug/L
156-60-5	trans-1,2-Dichloroethene	0.44	U	5.0	0.44	ug/L
75-34-3	1,1-Dichloroethane	0.67	U	5.0	0.67	ug/L
110-82-7	Cyclohexane	33		5.0	0.57	ug/L
78-93-3	2-Butanone	1.9	U	25	1.9	ug/L
56-23-5	Carbon Tetrachloride	0.27	U	5.0	0.27	ug/L
156-59-2	cis-1,2-Dichloroethene	0.72	U	5.0	0.72	ug/L
67-66-3	Chloroform	0.45	U	5.0	0.45	ug/L
71-55-6	1,1,1-Trichloroethane	0.39	U	5.0	0.39	ug/L
108-87-2	Methylcyclohexane	22		5.0	0.47	ug/L
71-43-2	Benzene	5.8		5.0	0.35	ug/L
107-06-2	1,2-Dichloroethane	0.41	U	5.0	0.41	ug/L
79-01-6	Trichloroethene	0.34	U	5.0	0.34	ug/L
78-87-5	1,2-Dichloropropane	0.46	U	5.0	0.46	ug/L
75-27-4	Bromodichloromethane	0.23	U	5.0	0.23	ug/L
108-10-1	4-Methyl-2-Pentanone	1.8	U	25	1.8	ug/L
108-88-3	Toluene	3.0	J	5.0	0.16	ug/L
10061-02-6	t-1,3-Dichloropropene	0.31	U	5.0	0.31	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.29	U	5.0	0.29	ug/L
79-00-5	1,1,2-Trichloroethane	0.32	U	5.0	0.32	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Client:	Environmental Business Consultants	Date Collected:	8/7/2008
Project:	3035 White Plains Road	Date Received:	8/12/2008
Client Sample ID:	MW-3	SDG No.:	Z4158
Lab Sample ID:	Z4158-01	Matrix:	WATER
Analytical Method:	8260	% Moisture:	100
Sample Wt/Wol:	5.0 Units: mL	Soil Extract Vol:	uL
Soil Aliquot Vol:	uL		

File ID: VF013739.D	Dilution:	Date Analyzed 8/19/2008	Ē	Analytical F VF081508	Batch ID)
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.8	U	25	1.8	ug/L
124-48-1	Dibromochloromethane	0.23	U	5.0	0.23	ug/L
106-93-4	1,2-Dibromoethane	0.26	U	5.0	0.26	ug/L
127-18-4	Tetrachloroethene	0.97	U	5.0	0.97	ug/L
108-90-7	Chlorobenzene	0.28	U	5.0	0.28	ug/L
100-41-4	Ethyl Benzene	45		5.0	0.05	ug/L
126777-61-2	m/p-Xylenes	170		10	0.47	ug/L
95-47-6	o-Xylene	36		5.0	0.16	ug/L
100-42-5	Styrene	0.19	U	5.0	0.19	ug/L
75-25-2	Bromoform	0.44	U	5.0	0.44	ug/L
98-82-8	Isopropylbenzene	10		5.0	0.37	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.37	U	5.0	0.37	ug/L
541-73-1	1,3-Dichlorobenzene	0.28	U	5.0	0.28	ug/L
106-46-7	1,4-Dichlorobenzene	0.22	U	5.0	0.22	ug/L
95-50-1	1,2-Dichlorobenzene	0.40	U	5.0	0.40	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.58	U	5.0	0.58	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.39	U	5.0	0.39	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	55.6	111 %	75 - 124		SPK: 50
1868-53-7	Dibromofluoromethane	48.09	96 %	84 - 122		SPK: 50
2037-26-5	Toluene-d8	54.3	109 %	83 - 117		SPK: 50
460-00-4	4-Bromofluorobenzene	60.44	121 %	74 - 123		SPK: 50
INTERNAL STA	NDARDS					
363-72-4	Pentafluorobenzene	672406	9.68			
540-36-3	1.4-Difluorobenzene	1347177	10.30			
3114-55-4	Chlorobenzene-d5	1529237	13.38			
3855-82-1	1.4-Dichlorobenzene-d4	868263	15.80			

J = Estimated Value

B = Analyte Found in Associated Method Blank

Client:	Environmental Business Consultants	Date Collected:	8/15/2008
Project:	3035 White Plains Road	Date Received:	8/19/2008
Client Sample ID:	MW-1	SDG No.:	Z4158
Lab Sample ID:	Z4158-02	Matrix:	WATER
Analytical Method:	8260	% Moisture:	100
Sample Wt/Wol:	5.0 Units: mL	Soil Extract Vol:	uL
Soil Aliquot Vol:	uL		

File ID: VF013792.	Dilution:	Date Analyzed 8/22/2008	ŀ	Analytical l VF082208	Batch ID	
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.88	U	5.0	0.88	ug/L
74-87-3	Chloromethane	0.37	U	5.0	0.37	ug/L
75-01-4	Vinyl chloride	0.30	U	5.0	0.30	ug/L
74-83-9	Bromomethane	1.4	U	5.0	1.4	ug/L
75-00-3	Chloroethane	0.80	U	5.0	0.80	ug/L
75-69-4	Trichlorofluoromethane	0.53	U	5.0	0.53	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.61	U	5.0	0.61	ug/L
75-35-4	1,1-Dichloroethene	0.67	U	5.0	0.67	ug/L
67-64-1	Acetone	2.2	U	25	2.2	ug/L
75-15-0	Carbon disulfide	3.9	J	5.0	0.20	ug/L
1634-04-4	Methyl tert-butyl Ether	150	Е	5.0	0.23	ug/L
79-20-9	Methyl Acetate	0.45	U	5.0	0.45	ug/L
75-09-2	Methylene Chloride	0.38	U	5.0	0.38	ug/L
156-60-5	trans-1,2-Dichloroethene	0.44	U	5.0	0.44	ug/L
75-34-3	1,1-Dichloroethane	0.67	U	5.0	0.67	ug/L
110-82-7	Cyclohexane	110	Е	5.0	0.57	ug/L
78-93-3	2-Butanone	1.9	U	25	1.9	ug/L
56-23-5	Carbon Tetrachloride	0.27	U	5.0	0.27	ug/L
156-59-2	cis-1,2-Dichloroethene	0.72	U	5.0	0.72	ug/L
67-66-3	Chloroform	0.45	U	5.0	0.45	ug/L
71-55-6	1,1,1-Trichloroethane	0.39	U	5.0	0.39	ug/L
108-87-2	Methylcyclohexane	85		5.0	0.47	ug/L
71-43-2	Benzene	47		5.0	0.35	ug/L
107-06-2	1,2-Dichloroethane	0.41	U	5.0	0.41	ug/L
79-01-6	Trichloroethene	0.34	U	5.0	0.34	ug/L
78-87-5	1,2-Dichloropropane	0.46	U	5.0	0.46	ug/L
75-27-4	Bromodichloromethane	0.23	U	5.0	0.23	ug/L
108-10-1	4-Methyl-2-Pentanone	1.8	U	25	1.8	ug/L
108-88-3	Toluene	6.0		5.0	0.16	ug/L
10061-02-6	t-1,3-Dichloropropene	0.31	U	5.0	0.31	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.29	U	5.0	0.29	ug/L
79-00-5	1,1,2-Trichloroethane	0.32	U	5.0	0.32	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Client:	Environmental Business Consultants	Date Collected:	8/15/2008
Project:	3035 White Plains Road	Date Received:	8/19/2008
Client Sample ID:	MW-1	SDG No.:	Z4158
Lab Sample ID:	Z4158-02	Matrix:	WATER
Analytical Method:	8260	% Moisture:	100
Sample Wt/Wol:	5.0 Units: mL	Soil Extract Vol:	uL
Soil Aliquot Vol:	uL		

File ID:	Dilution:	Date Analyzed	Analytical Batch ID			
VF015/92.D	1	8/22/2008		VFU82208		
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.8	U	25	1.8	ug/L
124-48-1	Dibromochloromethane	0.23	U	5.0	0.23	ug/L
106-93-4	1,2-Dibromoethane	0.26	U	5.0	0.26	ug/L
127-18-4	Tetrachloroethene	0.97	U	5.0	0.97	ug/L
108-90-7	Chlorobenzene	0.28	U	5.0	0.28	ug/L
100-41-4	Ethyl Benzene	940	Е	5.0	0.05	ug/L
126777-61-2	m/p-Xylenes	940	Е	10	0.47	ug/L
95-47-6	o-Xylene	420	Е	5.0	0.16	ug/L
100-42-5	Styrene	0.19	U	5.0	0.19	ug/L
75-25-2	Bromoform	0.44	U	5.0	0.44	ug/L
98-82-8	Isopropylbenzene	45		5.0	0.37	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.37	U	5.0	0.37	ug/L
541-73-1	1,3-Dichlorobenzene	0.28	U	5.0	0.28	ug/L
106-46-7	1,4-Dichlorobenzene	0.22	U	5.0	0.22	ug/L
95-50-1	1,2-Dichlorobenzene	0.40	U	5.0	0.40	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.58	U	5.0	0.58	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.39	U	5.0	0.39	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	46.99	94 %	75 - 124		SPK: 50
1868-53-7	Dibromofluoromethane	50.25	101 %	84 - 122		SPK: 50
2037-26-5	Toluene-d8	49.47	99 %	83 - 117		SPK: 50
460-00-4	4-Bromofluorobenzene	49.02	98 %	74 - 123		SPK: 50
INTERNAL STA	NDARDS					
363-72-4	Pentafluorobenzene	2252368	9.66			
540-36-3	1,4-Difluorobenzene	3706145	10.28			
3114-55-4	Chlorobenzene-d5	740057	13.33			
3855-82-1	1.4-Dichlorobenzene-d4	1677422	15.78			

B = Analyte Found in Associated Method Blank

Client:	Environmental Business Consultants	Date Collected:	8/15/2008
Project:	3035 White Plains Road	Date Received:	8/19/2008
Client Sample ID:	MW-1DL	SDG No.:	Z4158
Lab Sample ID:	Z4158-02DL	Matrix:	WATER
Analytical Method:	8260	% Moisture:	100
Sample Wt/Wol:	5.0 Units: mL	Soil Extract Vol:	uL
Soil Aliquot Vol:	uL		

File ID: VF0138401	Dilution:	Date Analyzed 8/26/2008	nalyzed Analytical B			
CAS Number	Parameter	Conc	Qualifier	RI.	MDL	Units
	i arameter	conc.	Quanner	KL	MDL	emts
TARGETS						
75-71-8	Dichlorodifluoromethane	18	U	100	18	ug/L
74-87-3	Chloromethane	7.4	U	100	7.4	ug/L
75-01-4	Vinyl chloride	6.0	U	100	6.0	ug/L
74-83-9	Bromomethane	27	U	100	27	ug/L
75-00-3	Chloroethane	16	U	100	16	ug/L
75-69-4	Trichlorofluoromethane	11	U	100	11	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	12	U	100	12	ug/L
75-35-4	1,1-Dichloroethene	13	U	100	13	ug/L
67-64-1	Acetone	43	U	500	43	ug/L
75-15-0	Carbon disulfide	4.0	U	100	4.0	ug/L
1634-04-4	Methyl tert-butyl Ether	170	D	100	4.6	ug/L
79-20-9	Methyl Acetate	9.0	U	100	9.0	ug/L
75-09-2	Methylene Chloride	7.6	U	100	7.6	ug/L
156-60-5	trans-1,2-Dichloroethene	8.8	U	100	8.8	ug/L
75-34-3	1,1-Dichloroethane	13	U	100	13	ug/L
110-82-7	Cyclohexane	130	D	100	11	ug/L
78-93-3	2-Butanone	39	U	500	39	ug/L
56-23-5	Carbon Tetrachloride	5.4	U	100	5.4	ug/L
156-59-2	cis-1,2-Dichloroethene	14	U	100	14	ug/L
67-66-3	Chloroform	9.0	U	100	9.0	ug/L
71-55-6	1,1,1-Trichloroethane	7.8	U	100	7.8	ug/L
108-87-2	Methylcyclohexane	110	D	100	9.4	ug/L
71-43-2	Benzene	7.0	U	100	7.0	ug/L
107-06-2	1,2-Dichloroethane	8.2	U	100	8.2	ug/L
79-01-6	Trichloroethene	6.8	U	100	6.8	ug/L
78-87-5	1,2-Dichloropropane	9.2	U	100	9.2	ug/L
75-27-4	Bromodichloromethane	4.6	U	100	4.6	ug/L
108-10-1	4-Methyl-2-Pentanone	35	U	500	35	ug/L
108-88-3	Toluene	3.2	U	100	3.2	ug/L
10061-02-6	t-1,3-Dichloropropene	6.2	U	100	6.2	ug/L
10061-01-5	cis-1,3-Dichloropropene	5.8	U	100	5.8	ug/L
79-00-5	1,1,2-Trichloroethane	6.4	U	100	6.4	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Client:	Environmental Business Consultants	Date Collected:	8/15/2008
Project:	3035 White Plains Road	Date Received:	8/19/2008
Client Sample ID:	MW-1DL	SDG No.:	Z4158
Lab Sample ID:	Z4158-02DL	Matrix:	WATER
Analytical Method:	8260	% Moisture:	100
Sample Wt/Wol:	5.0 Units: mL	Soil Extract Vol:	uL
Soil Aliquot Vol:	uL		

File ID: Dilution: Date Analyzed An		Analytical H	Batch ID			
VF013840.D	20	8/26/2008	VF082208			
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	35	U	500	35	ug/L
124-48-1	Dibromochloromethane	4.6	U	100	4.6	ug/L
106-93-4	1,2-Dibromoethane	5.2	U	100	5.2	ug/L
127-18-4	Tetrachloroethene	19	U	100	19	ug/L
108-90-7	Chlorobenzene	5.6	U	100	5.6	ug/L
100-41-4	Ethyl Benzene	430	D	100	1.0	ug/L
126777-61-2	m/p-Xylenes	460	D	200	9.4	ug/L
95-47-6	o-Xylene	96	JD	100	3.2	ug/L
100-42-5	Styrene	3.8	U	100	3.8	ug/L
75-25-2	Bromoform	8.8	U	100	8.8	ug/L
98-82-8	Isopropylbenzene	7.4	U	100	7.4	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	7.4	U	100	7.4	ug/L
541-73-1	1,3-Dichlorobenzene	5.6	U	100	5.6	ug/L
106-46-7	1,4-Dichlorobenzene	4.4	U	100	4.4	ug/L
95-50-1	1,2-Dichlorobenzene	8.0	U	100	8.0	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	12	U	100	12	ug/L
120-82-1	1,2,4-Trichlorobenzene	7.8	U	100	7.8	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	58.73	117 %	75 - 124		SPK: 50
1868-53-7	Dibromofluoromethane	51.61	103 %	84 - 122		SPK: 50
2037-26-5	Toluene-d8	49.62	99 %	83 - 117		SPK: 50
460-00-4	4-Bromofluorobenzene	52.06	104 %	74 - 123		SPK: 50
INTERNAL STA	NDARDS					
363-72-4	Pentafluorobenzene	1712964	9.68			
540-36-3	1,4-Difluorobenzene	2836481	10.30			
3114-55-4	Chlorobenzene-d5	2735990	13.39			
3855-82-1	1.4-Dichlorobenzene-d4	1376214	15.79			

B = Analyte Found in Associated Method Blank

Client:	Environmental Business Consultants	Date Collected:	8/15/2008
Project:	3035 White Plains Road	Date Received:	8/19/2008
Client Sample ID:	MW4	SDG No.:	Z4158
Lab Sample ID:	Z4158-03	Matrix:	WATER
Analytical Method:	8260	% Moisture:	100
Sample Wt/Wol:	5.0 Units: mL	Soil Extract Vol:	uL
Soil Aliquot Vol:	uL		

File ID: VF013793.D	Dilution: 1	Date Analyzed 8/22/2008	Analytical Batch ID VF082208				
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units	
TARGETS							
75-71-8	Dichlorodifluoromethane	0.88	U	5.0	0.88	ug/L	
74-87-3	Chloromethane	120	Е	5.0	0.37	ug/L	
75-01-4	Vinyl chloride	0.30	U	5.0	0.30	ug/L	
74-83-9	Bromomethane	6.0		5.0	1.4	ug/L	
75-00-3	Chloroethane	0.80	U	5.0	0.80	ug/L	
75-69-4	Trichlorofluoromethane	0.53	U	5.0	0.53	ug/L	
76-13-1	1,1,2-Trichlorotrifluoroethane	0.61	U	5.0	0.61	ug/L	
75-35-4	1,1-Dichloroethene	0.67	U	5.0	0.67	ug/L	
67-64-1	Acetone	27		25	2.2	ug/L	
75-15-0	Carbon disulfide	8.2		5.0	0.20	ug/L	
1634-04-4	Methyl tert-butyl Ether	0.23	U	5.0	0.23	ug/L	
79-20-9	Methyl Acetate	0.45	U	5.0	0.45	ug/L	
75-09-2	Methylene Chloride	11		5.0	0.38	ug/L	
156-60-5	trans-1,2-Dichloroethene	0.44	U	5.0	0.44	ug/L	
75-34-3	1,1-Dichloroethane	0.67	U	5.0	0.67	ug/L	
110-82-7	Cyclohexane	0.57	U	5.0	0.57	ug/L	
78-93-3	2-Butanone	1.9	U	25	1.9	ug/L	
56-23-5	Carbon Tetrachloride	0.27	U	5.0	0.27	ug/L	
156-59-2	cis-1,2-Dichloroethene	0.72	U	5.0	0.72	ug/L	
67-66-3	Chloroform	0.45	U	5.0	0.45	ug/L	
71-55-6	1,1,1-Trichloroethane	0.39	U	5.0	0.39	ug/L	
108-87-2	Methylcyclohexane	0.47	U	5.0	0.47	ug/L	
71-43-2	Benzene	9.2		5.0	0.35	ug/L	
107-06-2	1,2-Dichloroethane	0.41	U	5.0	0.41	ug/L	
79-01-6	Trichloroethene	0.34	U	5.0	0.34	ug/L	
78-87-5	1,2-Dichloropropane	0.46	U	5.0	0.46	ug/L	
75-27-4	Bromodichloromethane	0.23	U	5.0	0.23	ug/L	
108-10-1	4-Methyl-2-Pentanone	1.8	U	25	1.8	ug/L	
108-88-3	Toluene	0.16	U	5.0	0.16	ug/L	
10061-02-6	t-1,3-Dichloropropene	0.31	U	5.0	0.31	ug/L	
10061-01-5	cis-1,3-Dichloropropene	0.29	U	5.0	0.29	ug/L	
79-00-5	1,1,2-Trichloroethane	0.32	U	5.0	0.32	ug/L	

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Client:	Environmental Business Consultants	Date Collected:	8/15/2008
Project:	3035 White Plains Road	Date Received:	8/19/2008
Client Sample ID:	MW4	SDG No.:	Z4158
Lab Sample ID:	Z4158-03	Matrix:	WATER
Analytical Method:	8260	% Moisture:	100
Sample Wt/Wol:	5.0 Units: mL	Soil Extract Vol:	uL
Soil Aliquot Vol:	uL		

File ID:	Dilution:	Date Analyzed	Analytical Batch ID			
VF013793.D	1	8/22/2008		vF082208		
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.8	U	25	1.8	ug/L
124-48-1	Dibromochloromethane	0.23	U	5.0	0.23	ug/L
106-93-4	1,2-Dibromoethane	0.26	U	5.0	0.26	ug/L
127-18-4	Tetrachloroethene	0.97	U	5.0	0.97	ug/L
108-90-7	Chlorobenzene	0.28	U	5.0	0.28	ug/L
100-41-4	Ethyl Benzene	0.05	U	5.0	0.05	ug/L
126777-61-2	m/p-Xylenes	0.47	U	10	0.47	ug/L
95-47-6	o-Xylene	0.16	U	5.0	0.16	ug/L
100-42-5	Styrene	0.19	U	5.0	0.19	ug/L
75-25-2	Bromoform	0.44	U	5.0	0.44	ug/L
98-82-8	Isopropylbenzene	0.37	U	5.0	0.37	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.37	U	5.0	0.37	ug/L
541-73-1	1,3-Dichlorobenzene	0.28	U	5.0	0.28	ug/L
106-46-7	1,4-Dichlorobenzene	0.22	U	5.0	0.22	ug/L
95-50-1	1,2-Dichlorobenzene	0.40	U	5.0	0.40	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.58	U	5.0	0.58	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.39	U	5.0	0.39	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	46.25	93 %	75 - 124		SPK: 50
1868-53-7	Dibromofluoromethane	50.95	102 %	84 - 122		SPK: 50
2037-26-5	Toluene-d8	41.82	84 %	83 - 117		SPK: 50
460-00-4	4-Bromofluorobenzene	49.03	98 %	74 - 123		SPK: 50
INTERNAL STA	NDARDS					
363-72-4	Pentafluorobenzene	2339342	9.66			
540-36-3	1,4-Difluorobenzene	3719945	10.28			
3114-55-4	Chlorobenzene-d5	3690173	13.36			
3855-82-1	1.4-Dichlorobenzene-d4	1831305	15.77			

B = Analyte Found in Associated Method Blank

Client:	Environmental Business Consultants	Date Collected:	8/15/2008
Project:	3035 White Plains Road	Date Received:	8/19/2008
Client Sample ID:	MW4DL	SDG No.:	Z4158
Lab Sample ID:	Z4158-03DL	Matrix:	WATER
Analytical Method:	8260	% Moisture:	100
Sample Wt/Wol:	5.0 Units: mL	Soil Extract Vol:	uL
Soil Aliquot Vol:	uL		

File ID: VF013839.I	Dilution: D 5	Date Analyzed 8/26/2008	ŀ	Analytical H VF082208	Batch ID	
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	4.4	U	25	4.4	ug/L
74-87-3	Chloromethane	170	D	25	1.8	ug/L
75-01-4	Vinyl chloride	1.5	U	25	1.5	ug/L
74-83-9	Bromomethane	6.8	U	25	6.8	ug/L
75-00-3	Chloroethane	4.0	U	25	4.0	ug/L
75-69-4	Trichlorofluoromethane	2.6	U	25	2.6	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	3.0	U	25	3.0	ug/L
75-35-4	1,1-Dichloroethene	3.4	U	25	3.4	ug/L
67-64-1	Acetone	11	U	120	11	ug/L
75-15-0	Carbon disulfide	1.0	U	25	1.0	ug/L
1634-04-4	Methyl tert-butyl Ether	1.2	U	25	1.2	ug/L
79-20-9	Methyl Acetate	2.2	U	25	2.2	ug/L
75-09-2	Methylene Chloride	1.9	U	25	1.9	ug/L
156-60-5	trans-1,2-Dichloroethene	2.2	U	25	2.2	ug/L
75-34-3	1,1-Dichloroethane	3.4	U	25	3.4	ug/L
110-82-7	Cyclohexane	2.8	U	25	2.8	ug/L
78-93-3	2-Butanone	9.7	U	120	9.7	ug/L
56-23-5	Carbon Tetrachloride	1.4	U	25	1.4	ug/L
156-59-2	cis-1,2-Dichloroethene	3.6	U	25	3.6	ug/L
67-66-3	Chloroform	2.2	U	25	2.2	ug/L
71-55-6	1,1,1-Trichloroethane	2.0	U	25	2.0	ug/L
108-87-2	Methylcyclohexane	2.4	U	25	2.4	ug/L
71-43-2	Benzene	1.8	U	25	1.8	ug/L
107-06-2	1,2-Dichloroethane	2.0	U	25	2.0	ug/L
79-01-6	Trichloroethene	1.7	U	25	1.7	ug/L
78-87-5	1,2-Dichloropropane	2.3	U	25	2.3	ug/L
75-27-4	Bromodichloromethane	1.2	U	25	1.2	ug/L
108-10-1	4-Methyl-2-Pentanone	8.8	U	120	8.8	ug/L
108-88-3	Toluene	0.80	U	25	0.80	ug/L
10061-02-6	t-1,3-Dichloropropene	1.6	U	25	1.6	ug/L
10061-01-5	cis-1,3-Dichloropropene	1.4	U	25	1.4	ug/L
79-00-5	1,1,2-Trichloroethane	1.6	U	25	1.6	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Client:	Environmental Business Consultants	Date Collected:	8/15/2008
Project:	3035 White Plains Road	Date Received:	8/19/2008
Client Sample ID:	MW4DL	SDG No.:	Z4158
Lab Sample ID:	Z4158-03DL	Matrix:	WATER
Analytical Method:	8260	% Moisture:	100
Sample Wt/Wol:	5.0 Units: mL	Soil Extract Vol:	uL
Soil Aliquot Vol:	uL		

File ID:	Dilution:	Date Analyzed	I	Analytical H	ical Batch ID		
VF013839.D	5	8/26/2008		VF082208			
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units	
591-78-6	2-Hexanone	8.8	U	120	8.8	ug/L	
124-48-1	Dibromochloromethane	1.2	U	25	1.2	ug/L	
106-93-4	1,2-Dibromoethane	1.3	U	25	1.3	ug/L	
127-18-4	Tetrachloroethene	4.8	U	25	4.8	ug/L	
108-90-7	Chlorobenzene	1.4	U	25	1.4	ug/L	
100-41-4	Ethyl Benzene	0.25	U	25	0.25	ug/L	
126777-61-2	m/p-Xylenes	2.4	U	50	2.4	ug/L	
95-47-6	o-Xylene	0.80	U	25	0.80	ug/L	
100-42-5	Styrene	0.95	U	25	0.95	ug/L	
75-25-2	Bromoform	2.2	U	25	2.2	ug/L	
98-82-8	Isopropylbenzene	1.8	U	25	1.8	ug/L	
79-34-5	1,1,2,2-Tetrachloroethane	1.8	U	25	1.8	ug/L	
541-73-1	1,3-Dichlorobenzene	1.4	U	25	1.4	ug/L	
106-46-7	1,4-Dichlorobenzene	1.1	U	25	1.1	ug/L	
95-50-1	1,2-Dichlorobenzene	2.0	U	25	2.0	ug/L	
96-12-8	1,2-Dibromo-3-Chloropropane	2.9	U	25	2.9	ug/L	
120-82-1	1,2,4-Trichlorobenzene	2.0	U	25	2.0	ug/L	
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	57.14	114 %	75 - 124		SPK: 50	
1868-53-7	Dibromofluoromethane	51.59	103 %	84 - 122		SPK: 50	
2037-26-5	Toluene-d8	49.26	99 %	83 - 117		SPK: 50	
460-00-4	4-Bromofluorobenzene	51.18	102 %	74 - 123		SPK: 50	
INTERNAL STA	NDARDS						
363-72-4	Pentafluorobenzene	1796336	9.68				
540-36-3	1,4-Difluorobenzene	2904096	10.30				
3114-55-4	Chlorobenzene-d5	2799232	13.38				
3855-82-1	1,4-Dichlorobenzene-d4	1405701	15.80				

J = Estimated Value

B = Analyte Found in Associated Method Blank

Client:	Environmental Business Consultants	Date Collected:	8/15/2008
Project:	3035 White Plains Road	Date Received:	8/19/2008
Client Sample ID:	MW5	SDG No.:	Z4158
Lab Sample ID:	Z4158-04	Matrix:	WATER
Analytical Method:	8260	% Moisture:	100
Sample Wt/Wol:	5.0 Units: mL	Soil Extract Vol:	uL
Soil Aliquot Vol:	uL		

File ID: VF013794.D	Dilution: 1	Date Analyzed 8/22/2008	I	Analytical E VF082208	Batch ID	
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.88	U	5.0	0.88	ug/L
74-87-3	Chloromethane	8.9		5.0	0.37	ug/L
75-01-4	Vinyl chloride	0.30	U	5.0	0.30	ug/L
74-83-9	Bromomethane	1.4	U	5.0	1.4	ug/L
75-00-3	Chloroethane	0.80	U	5.0	0.80	ug/L
75-69-4	Trichlorofluoromethane	0.53	U	5.0	0.53	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.61	U	5.0	0.61	ug/L
75-35-4	1,1-Dichloroethene	0.67	U	5.0	0.67	ug/L
67-64-1	Acetone	320		25	2.2	ug/L
75-15-0	Carbon disulfide	21		5.0	0.20	ug/L
1634-04-4	Methyl tert-butyl Ether	4.8	J	5.0	0.23	ug/L
79-20-9	Methyl Acetate	0.45	U	5.0	0.45	ug/L
75-09-2	Methylene Chloride	0.38	U	5.0	0.38	ug/L
156-60-5	trans-1.2-Dichloroethene	0.44	U	5.0	0.44	ug/L
75-34-3	1,1-Dichloroethane	0.67	U	5.0	0.67	ug/L
110-82-7	Cyclohexane	39		5.0	0.57	ug/L
78-93-3	2-Butanone	150		25	1.9	ug/L
56-23-5	Carbon Tetrachloride	0.27	U	5.0	0.27	ug/L
156-59-2	cis-1,2-Dichloroethene	0.72	U	5.0	0.72	ug/L
67-66-3	Chloroform	0.45	U	5.0	0.45	ug/L
71-55-6	1,1,1-Trichloroethane	0.39	U	5.0	0.39	ug/L
108-87-2	Methylcyclohexane	20		5.0	0.47	ug/L
71-43-2	Benzene	97		5.0	0.35	ug/L
107-06-2	1,2-Dichloroethane	0.41	U	5.0	0.41	ug/L
79-01-6	Trichloroethene	0.34	U	5.0	0.34	ug/L
78-87-5	1,2-Dichloropropane	0.46	U	5.0	0.46	ug/L
75-27-4	Bromodichloromethane	0.23	U	5.0	0.23	ug/L
108-10-1	4-Methyl-2-Pentanone	1.8	U	25	1.8	ug/L
108-88-3	Toluene	0.16	U	5.0	0.16	ug/L
10061-02-6	t-1,3-Dichloropropene	0.31	U	5.0	0.31	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.29	U	5.0	0.29	ug/L
79-00-5	1.1.2-Trichloroethane	0.32	Ū	5.0	0.32	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

-			
Client:	Environmental Business Consultants	Date Collected:	8/15/2008
Project:	3035 White Plains Road	Date Received:	8/19/2008
Client Sample ID:	MW5	SDG No.:	Z4158
Lab Sample ID:	Z4158-04	Matrix:	WATER
Analytical Method:	8260	% Moisture:	100
Sample Wt/Wol:	5.0 Units: mL	Soil Extract Vol:	uL
Soil Aliquot Vol:	uL		

File ID:	Dilution:	Date Analyzed	alyzed Analytical Batch			
VF013794.D	1	8/22/2008	VF082208			
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	15	J	25	1.8	ug/L
124-48-1	Dibromochloromethane	0.23	U	5.0	0.23	ug/L
106-93-4	1,2-Dibromoethane	0.26	U	5.0	0.26	ug/L
127-18-4	Tetrachloroethene	0.97	U	5.0	0.97	ug/L
108-90-7	Chlorobenzene	0.28	U	5.0	0.28	ug/L
100-41-4	Ethyl Benzene	0.05	U	5.0	0.05	ug/L
126777-61-2	m/p-Xylenes	0.47	U	10	0.47	ug/L
95-47-6	o-Xylene	0.16	U	5.0	0.16	ug/L
100-42-5	Styrene	0.19	U	5.0	0.19	ug/L
75-25-2	Bromoform	0.44	U	5.0	0.44	ug/L
98-82-8	Isopropylbenzene	0.37	U	5.0	0.37	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.37	U	5.0	0.37	ug/L
541-73-1	1,3-Dichlorobenzene	0.28	U	5.0	0.28	ug/L
106-46-7	1,4-Dichlorobenzene	0.22	U	5.0	0.22	ug/L
95-50-1	1,2-Dichlorobenzene	0.40	U	5.0	0.40	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.58	U	5.0	0.58	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.39	U	5.0	0.39	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	46	92 %	75 - 124		SPK: 50
1868-53-7	Dibromofluoromethane	49.71	99 %	84 - 122		SPK: 50
2037-26-5	Toluene-d8	44.58	89 %	83 - 117		SPK: 50
460-00-4	4-Bromofluorobenzene	49.32	99 %	74 - 123		SPK: 50
INTERNAL STA	NDARDS					
363-72-4	Pentafluorobenzene	2306062	9.66			
540-36-3	1.4-Difluorobenzene	3764749	10.28			
3114-55-4	Chlorobenzene-d5	3656703	13.36			
3855-82-1	1.4-Dichlorobenzene-d4	1845329	15.77			

J = Estimated Value

B = Analyte Found in Associated Method Blank

Client:	Environmental Business Consultants	Date Collected:	8/15/2008
Project:	3035 White Plains Road	Date Received:	8/19/2008
Client Sample ID:	MW6	SDG No.:	Z4158
Lab Sample ID:	Z4158-05	Matrix:	WATER
Analytical Method:	8260	% Moisture:	100
Sample Wt/Wol:	5.0 Units: mL	Soil Extract Vol:	uL
Soil Aliquot Vol:	uL		

File ID: VF013835.I	Dilution: D 1	Date Analyzed 8/26/2008	P	Analytical I VF082208	Batch ID	
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.88	U	5.0	0.88	ug/L
74-87-3	Chloromethane	0.37	U	5.0	0.37	ug/L
75-01-4	Vinyl chloride	0.30	U	5.0	0.30	ug/L
74-83-9	Bromomethane	1.4	U	5.0	1.4	ug/L
75-00-3	Chloroethane	0.80	U	5.0	0.80	ug/L
75-69-4	Trichlorofluoromethane	0.53	U	5.0	0.53	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.61	U	5.0	0.61	ug/L
75-35-4	1,1-Dichloroethene	0.67	U	5.0	0.67	ug/L
67-64-1	Acetone	2.2	U	25	2.2	ug/L
75-15-0	Carbon disulfide	0.20	U	5.0	0.20	ug/L
1634-04-4	Methyl tert-butyl Ether	0.23	U	5.0	0.23	ug/L
79-20-9	Methyl Acetate	0.45	U	5.0	0.45	ug/L
75-09-2	Methylene Chloride	0.38	U	5.0	0.38	ug/L
156-60-5	trans-1,2-Dichloroethene	0.44	U	5.0	0.44	ug/L
75-34-3	1,1-Dichloroethane	0.67	U	5.0	0.67	ug/L
110-82-7	Cyclohexane	0.57	U	5.0	0.57	ug/L
78-93-3	2-Butanone	1.9	U	25	1.9	ug/L
56-23-5	Carbon Tetrachloride	0.27	U	5.0	0.27	ug/L
156-59-2	cis-1,2-Dichloroethene	0.72	U	5.0	0.72	ug/L
67-66-3	Chloroform	0.45	U	5.0	0.45	ug/L
71-55-6	1,1,1-Trichloroethane	0.39	U	5.0	0.39	ug/L
108-87-2	Methylcyclohexane	0.47	U	5.0	0.47	ug/L
71-43-2	Benzene	0.35	U	5.0	0.35	ug/L
107-06-2	1,2-Dichloroethane	0.41	U	5.0	0.41	ug/L
79-01-6	Trichloroethene	0.34	U	5.0	0.34	ug/L
78-87-5	1,2-Dichloropropane	0.46	U	5.0	0.46	ug/L
75-27-4	Bromodichloromethane	0.23	U	5.0	0.23	ug/L
108-10-1	4-Methyl-2-Pentanone	1.8	U	25	1.8	ug/L
108-88-3	Toluene	0.16	U	5.0	0.16	ug/L
10061-02-6	t-1,3-Dichloropropene	0.31	U	5.0	0.31	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.29	U	5.0	0.29	ug/L
79-00-5	1,1,2-Trichloroethane	0.32	U	5.0	0.32	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Client:	Environmental Business Consultants	Date Collected:	8/15/2008
Project:	3035 White Plains Road	Date Received:	8/19/2008
Client Sample ID:	MW6	SDG No.:	Z4158
Lab Sample ID:	Z4158-05	Matrix:	WATER
Analytical Method:	8260	% Moisture:	100
Sample Wt/Wol:	5.0 Units: mL	Soil Extract Vol:	uL
Soil Aliquot Vol:	uL		

File ID: VF013835 D	Dilution:	Date Analyzed 8/26/2008	halyzed Analytical I			
CAS Number	Parameter	Conc	Oualifier	RL	MDI	Units
		1.0	Quaimer	<u>NE</u>		- Cinto
591-78-6	2-Hexanone	1.8	U	25	1.8	ug/L
124-48-1	Dibromochloromethane	0.23	U	5.0	0.23	ug/L
106-93-4	1,2-Dibromoethane	0.26	U	5.0	0.26	ug/L
127-18-4	Tetrachloroethene	0.97	U	5.0	0.97	ug/L
108-90-7	Chlorobenzene	0.28	U	5.0	0.28	ug/L
100-41-4	Ethyl Benzene	0.05	U	5.0	0.05	ug/L
126777-61-2	m/p-Xylenes	0.47	U	10	0.47	ug/L
95-47-6	o-Xylene	0.16	U	5.0	0.16	ug/L
100-42-5	Styrene	0.19	U	5.0	0.19	ug/L
75-25-2	Bromoform	0.44	U	5.0	0.44	ug/L
98-82-8	Isopropylbenzene	0.37	U	5.0	0.37	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.37	U	5.0	0.37	ug/L
541-73-1	1,3-Dichlorobenzene	0.28	U	5.0	0.28	ug/L
106-46-7	1,4-Dichlorobenzene	0.22	U	5.0	0.22	ug/L
95-50-1	1,2-Dichlorobenzene	0.40	U	5.0	0.40	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.58	U	5.0	0.58	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.39	U	5.0	0.39	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	54.62	109 %	75 - 124		SPK: 50
1868-53-7	Dibromofluoromethane	51.61	103 %	84 - 122		SPK: 50
2037-26-5	Toluene-d8	50.2	100 %	83 - 117		SPK: 50
460-00-4	4-Bromofluorobenzene	50.86	102 %	74 - 123		SPK: 50
INTERNAL STA	NDARDS					
363-72-4	Pentafluorobenzene	1674859	9.68			
540-36-3	1.4-Difluorobenzene	2737009	10.30			
3114-55-4	Chlorobenzene-d5	2620687	13.38			
3855-82-1	1.4-Dichlorobenzene-d4	1207220	15.81			

B = Analyte Found in Associated Method Blank

Client:	Environmental Business Consultants	Date Collected:	8/15/2008
Project:	3035 White Plains Road	Date Received:	8/19/2008
Client Sample ID:	MW7	SDG No.:	Z4158
Lab Sample ID:	Z4158-06	Matrix:	WATER
Analytical Method:	8260	% Moisture:	100
Sample Wt/Wol:	5.0 Units: mL	Soil Extract Vol:	uL
Soil Aliquot Vol:	uL		

File ID: VF013836.D	Dilution: 1	Date Analyzed 8/26/2008	Ē	Analytical F VF082208	Batch ID	
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.88	U	5.0	0.88	ug/L
74-87-3	Chloromethane	0.37	U	5.0	0.37	ug/L
75-01-4	Vinyl chloride	0.30	U	5.0	0.30	ug/L
74-83-9	Bromomethane	1.4	U	5.0	1.4	ug/L
75-00-3	Chloroethane	0.80	U	5.0	0.80	ug/L
75-69-4	Trichlorofluoromethane	0.53	U	5.0	0.53	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.61	U	5.0	0.61	ug/L
75-35-4	1,1-Dichloroethene	0.67	U	5.0	0.67	ug/L
67-64-1	Acetone	2.2	U	25	2.2	ug/L
75-15-0	Carbon disulfide	0.20	U	5.0	0.20	ug/L
1634-04-4	Methyl tert-butyl Ether	170	Е	5.0	0.23	ug/L
79-20-9	Methyl Acetate	0.45	U	5.0	0.45	ug/L
75-09-2	Methylene Chloride	0.38	U	5.0	0.38	ug/L
156-60-5	trans-1,2-Dichloroethene	0.44	U	5.0	0.44	ug/L
75-34-3	1,1-Dichloroethane	0.67	U	5.0	0.67	ug/L
110-82-7	Cyclohexane	190	Е	5.0	0.57	ug/L
78-93-3	2-Butanone	1.9	U	25	1.9	ug/L
56-23-5	Carbon Tetrachloride	0.27	U	5.0	0.27	ug/L
156-59-2	cis-1,2-Dichloroethene	0.72	U	5.0	0.72	ug/L
67-66-3	Chloroform	0.45	U	5.0	0.45	ug/L
71-55-6	1,1,1-Trichloroethane	0.39	U	5.0	0.39	ug/L
108-87-2	Methylcyclohexane	130	Е	5.0	0.47	ug/L
71-43-2	Benzene	440	Е	5.0	0.35	ug/L
107-06-2	1,2-Dichloroethane	0.41	U	5.0	0.41	ug/L
79-01-6	Trichloroethene	0.34	U	5.0	0.34	ug/L
78-87-5	1,2-Dichloropropane	0.46	U	5.0	0.46	ug/L
75-27-4	Bromodichloromethane	0.23	U	5.0	0.23	ug/L
108-10-1	4-Methyl-2-Pentanone	1.8	U	25	1.8	ug/L
108-88-3	Toluene	620	Е	5.0	0.16	ug/L
10061-02-6	t-1,3-Dichloropropene	0.31	U	5.0	0.31	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.29	U	5.0	0.29	ug/L
79-00-5	1.1.2-Trichloroethane	0.32	U	5.0	0.32	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Client:	Environmental Business Consultants	Date Collected:	8/15/2008
Project:	3035 White Plains Road	Date Received:	8/19/2008
Client Sample ID:	MW7	SDG No.:	Z4158
Lab Sample ID:	Z4158-06	Matrix:	WATER
Analytical Method:	8260	% Moisture:	100
Sample Wt/Wol:	5.0 Units: mL	Soil Extract Vol:	uL
Soil Aliquot Vol:	uL		

File ID: VE013836 D	Dilution:	Date Analyzed	A	Analytical H	Batch ID)
VF013830.D	1	8/20/2008		VFU82208		
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.8	U	25	1.8	ug/L
124-48-1	Dibromochloromethane	0.23	U	5.0	0.23	ug/L
106-93-4	1,2-Dibromoethane	0.26	U	5.0	0.26	ug/L
127-18-4	Tetrachloroethene	0.97	U	5.0	0.97	ug/L
108-90-7	Chlorobenzene	0.28	U	5.0	0.28	ug/L
100-41-4	Ethyl Benzene	12000	Е	5.0	0.05	ug/L
126777-61-2	m/p-Xylenes	1300	E	10	0.47	ug/L
95-47-6	o-Xylene	7300	Е	5.0	0.16	ug/L
100-42-5	Styrene	0.19	U	5.0	0.19	ug/L
75-25-2	Bromoform	0.44	U	5.0	0.44	ug/L
98-82-8	Isopropylbenzene	5800	E	5.0	0.37	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.37	U	5.0	0.37	ug/L
541-73-1	1,3-Dichlorobenzene	0.28	U	5.0	0.28	ug/L
106-46-7	1,4-Dichlorobenzene	0.22	U	5.0	0.22	ug/L
95-50-1	1,2-Dichlorobenzene	0.40	U	5.0	0.40	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.58	U	5.0	0.58	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.39	U	5.0	0.39	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	58.47	117 %	75 - 124		SPK: 50
1868-53-7	Dibromofluoromethane	52.94	106 %	84 - 122		SPK: 50
2037-26-5	Toluene-d8	48.28	97 %	83 - 117		SPK: 50
460-00-4	4-Bromofluorobenzene	49.08	98 %	74 - 123		SPK: 50
INTERNAL STA	NDARDS					
363-72-4	Pentafluorobenzene	1649647	9.68			
540-36-3	1,4-Difluorobenzene	2654938	10.30			
3114-55-4	Chlorobenzene-d5	210371	13.34			
3855-82-1	1.4-Dichlorobenzene-d4	25921	15.75			

B = Analyte Found in Associated Method Blank

Client:	Environmental Business Consultants	Date Collected:	8/15/2008
Project:	3035 White Plains Road	Date Received:	8/19/2008
Client Sample ID:	MW7DL	SDG No.:	Z4158
Lab Sample ID:	Z4158-06DL	Matrix:	WATER
Analytical Method:	8260	% Moisture:	100
Sample Wt/Wol:	5.0 Units: mL	Soil Extract Vol:	uL
Soil Aliquot Vol:	uL		

File ID: VF013842.1	Dilution: D 10	Date Analyzed 8/26/2008	Analyzed Analytical Batch II 26/2008 VF082208			
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	8.8	U	50	8.8	ug/L
74-87-3	Chloromethane	3.7	U	50	3.7	ug/L
75-01-4	Vinyl chloride	3.0	U	50	3.0	ug/L
74-83-9	Bromomethane	14	U	50	14	ug/L
75-00-3	Chloroethane	8.0	U	50	8.0	ug/L
75-69-4	Trichlorofluoromethane	5.3	U	50	5.3	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	6.1	U	50	6.1	ug/L
75-35-4	1,1-Dichloroethene	6.7	U	50	6.7	ug/L
67-64-1	Acetone	22	U	250	22	ug/L
75-15-0	Carbon disulfide	2.0	U	50	2.0	ug/L
1634-04-4	Methyl tert-butyl Ether	170	D	50	2.3	ug/L
79-20-9	Methyl Acetate	4.5	U	50	4.5	ug/L
75-09-2	Methylene Chloride	3.8	U	50	3.8	ug/L
156-60-5	trans-1,2-Dichloroethene	4.4	U	50	4.4	ug/L
75-34-3	1,1-Dichloroethane	6.7	U	50	6.7	ug/L
110-82-7	Cyclohexane	180	D	50	5.7	ug/L
78-93-3	2-Butanone	19	U	250	19	ug/L
56-23-5	Carbon Tetrachloride	2.7	U	50	2.7	ug/L
156-59-2	cis-1,2-Dichloroethene	7.2	U	50	7.2	ug/L
67-66-3	Chloroform	4.5	U	50	4.5	ug/L
71-55-6	1,1,1-Trichloroethane	3.9	U	50	3.9	ug/L
108-87-2	Methylcyclohexane	130	D	50	4.7	ug/L
71-43-2	Benzene	650	D	50	3.5	ug/L
107-06-2	1,2-Dichloroethane	4.1	U	50	4.1	ug/L
79-01-6	Trichloroethene	3.4	U	50	3.4	ug/L
78-87-5	1,2-Dichloropropane	4.6	U	50	4.6	ug/L
75-27-4	Bromodichloromethane	2.3	U	50	2.3	ug/L
108-10-1	4-Methyl-2-Pentanone	18	U	250	18	ug/L
108-88-3	Toluene	760	D	50	1.6	ug/L
10061-02-6	t-1,3-Dichloropropene	3.1	U	50	3.1	ug/L
10061-01-5	cis-1,3-Dichloropropene	2.9	U	50	2.9	ug/L
79-00-5	1,1,2-Trichloroethane	3.2	U	50	3.2	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Client:	Environmental Business Consultants	Date Collected:	8/15/2008
Project:	3035 White Plains Road	Date Received:	8/19/2008
Client Sample ID:	MW7DL	SDG No.:	Z4158
Lab Sample ID:	Z4158-06DL	Matrix:	WATER
Analytical Method:	8260	% Moisture:	100
Sample Wt/Wol:	5.0 Units: mL	Soil Extract Vol:	uL
Soil Aliquot Vol:	uL		

File ID:	Dilution:	Date Analyzed	l	Analytical H	Batch ID		
VF013842.D	10	8/26/2008		VF082208			
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units	
591-78-6	2-Hexanone	18	U	250	18	ug/L	
124-48-1	Dibromochloromethane	2.3	U	50	2.3	ug/L	
106-93-4	1,2-Dibromoethane	2.6	U	50	2.6	ug/L	
127-18-4	Tetrachloroethene	9.7	U	50	9.7	ug/L	
108-90-7	Chlorobenzene	2.8	U	50	2.8	ug/L	
100-41-4	Ethyl Benzene	1500	ED	50	0.50	ug/L	
126777-61-2	m/p-Xylenes	7200	ED	100	4.7	ug/L	
95-47-6	o-Xylene	1600	ED	50	1.6	ug/L	
100-42-5	Styrene	1.9	U	50	1.9	ug/L	
75-25-2	Bromoform	4.4	U	50	4.4	ug/L	
98-82-8	Isopropylbenzene	120	D	50	3.7	ug/L	
79-34-5	1,1,2,2-Tetrachloroethane	3.7	U	50	3.7	ug/L	
541-73-1	1,3-Dichlorobenzene	2.8	U	50	2.8	ug/L	
106-46-7	1,4-Dichlorobenzene	2.2	U	50	2.2	ug/L	
95-50-1	1,2-Dichlorobenzene	4.0	U	50	4.0	ug/L	
96-12-8	1,2-Dibromo-3-Chloropropane	5.8	U	50	5.8	ug/L	
120-82-1	1,2,4-Trichlorobenzene	3.9	U	50	3.9	ug/L	
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	58.01	116 %	75 - 124		SPK: 50	
1868-53-7	Dibromofluoromethane	51.53	103 %	84 - 122		SPK: 50	
2037-26-5	Toluene-d8	49.87	100 %	83 - 117		SPK: 50	
460-00-4	4-Bromofluorobenzene	51.72	103 %	74 - 123		SPK: 50	
INTERNAL STA	NDARDS						
363-72-4	Pentafluorobenzene	1798545	9.68				
540-36-3	1,4-Difluorobenzene	2968994	10.30				
3114-55-4	Chlorobenzene-d5	2758307	13.38				
3855-82-1	1,4-Dichlorobenzene-d4	1440577	15.80				

B = Analyte Found in Associated Method Blank

Client:	Environmental Business Consultants	Date Collected:	8/15/2008
Project:	3035 White Plains Road	Date Received:	8/19/2008
Client Sample ID:	MW7DL2	SDG No.:	Z4158
Lab Sample ID:	Z4158-06DL2	Matrix:	WATER
Analytical Method:	8260	% Moisture:	100
Sample Wt/Wol:	5.0 Units: mL	Soil Extract Vol:	uL
Soil Aliquot Vol:	uL		

File ID: VF013843.I	Dilution: D 100	Dilution:Date Analyzed1008/27/2008		Analytical Batch ID VF082208		
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	88	U	500	88	ug/L
74-87-3	Chloromethane	37	U	500	37	ug/L
75-01-4	Vinyl chloride	30	U	500	30	ug/L
74-83-9	Bromomethane	140	U	500	140	ug/L
75-00-3	Chloroethane	80	U	500	80	ug/L
75-69-4	Trichlorofluoromethane	53	U	500	53	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	61	U	500	61	ug/L
75-35-4	1,1-Dichloroethene	67	U	500	67	ug/L
67-64-1	Acetone	220	U	2500	220	ug/L
75-15-0	Carbon disulfide	20	U	500	20	ug/L
1634-04-4	Methyl tert-butyl Ether	23	U	500	23	ug/L
79-20-9	Methyl Acetate	45	U	500	45	ug/L
75-09-2	Methylene Chloride	38	U	500	38	ug/L
156-60-5	trans-1,2-Dichloroethene	44	U	500	44	ug/L
75-34-3	1,1-Dichloroethane	67	U	500	67	ug/L
110-82-7	Cyclohexane	57	U	500	57	ug/L
78-93-3	2-Butanone	190	U	2500	190	ug/L
56-23-5	Carbon Tetrachloride	27	U	500	27	ug/L
156-59-2	cis-1,2-Dichloroethene	72	U	500	72	ug/L
67-66-3	Chloroform	45	U	500	45	ug/L
71-55-6	1,1,1-Trichloroethane	39	U	500	39	ug/L
108-87-2	Methylcyclohexane	47	U	500	47	ug/L
71-43-2	Benzene	680	D	500	35	ug/L
107-06-2	1,2-Dichloroethane	41	U	500	41	ug/L
79-01-6	Trichloroethene	34	U	500	34	ug/L
78-87-5	1,2-Dichloropropane	46	U	500	46	ug/L
75-27-4	Bromodichloromethane	23	U	500	23	ug/L
108-10-1	4-Methyl-2-Pentanone	180	U	2500	180	ug/L
108-88-3	Toluene	800	D	500	16	ug/L
10061-02-6	t-1,3-Dichloropropene	31	U	500	31	ug/L
10061-01-5	cis-1,3-Dichloropropene	29	U	500	29	ug/L
79-00-5	1,1,2-Trichloroethane	32	U	500	32	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Client:	Environmental Business Consultants	Date Collected:	8/15/2008
Project:	3035 White Plains Road	Date Received:	8/19/2008
Client Sample ID:	MW7DL2	SDG No.:	Z4158
Lab Sample ID:	Z4158-06DL2	Matrix:	WATER
Analytical Method:	8260	% Moisture:	100
Sample Wt/Wol:	5.0 Units: mL	Soil Extract Vol:	uL
Soil Aliquot Vol:	uL		

File ID:	Dilution:	Date Analyzed	l	Analytical F	Batch ID	
VF013843.D	100	8/27/2008	VF082208			
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	180	U	2500	180	ug/L
124-48-1	Dibromochloromethane	23	U	500	23	ug/L
106-93-4	1,2-Dibromoethane	26	U	500	26	ug/L
127-18-4	Tetrachloroethene	97	U	500	97	ug/L
108-90-7	Chlorobenzene	28	U	500	28	ug/L
100-41-4	Ethyl Benzene	1700	D	500	5.0	ug/L
126777-61-2	m/p-Xylenes	8800	D	1000	47	ug/L
95-47-6	o-Xylene	1800	D	500	16	ug/L
100-42-5	Styrene	19	U	500	19	ug/L
75-25-2	Bromoform	44	U	500	44	ug/L
98-82-8	Isopropylbenzene	37	U	500	37	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	37	U	500	37	ug/L
541-73-1	1,3-Dichlorobenzene	28	U	500	28	ug/L
106-46-7	1,4-Dichlorobenzene	22	U	500	22	ug/L
95-50-1	1,2-Dichlorobenzene	40	U	500	40	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	58	U	500	58	ug/L
120-82-1	1,2,4-Trichlorobenzene	39	U	500	39	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	56.2	112 %	75 - 124		SPK: 50
1868-53-7	Dibromofluoromethane	52.53	105 %	84 - 122		SPK: 50
2037-26-5	Toluene-d8	49.6	99 %	83 - 117		SPK: 50
460-00-4	4-Bromofluorobenzene	52.13	104 %	74 - 123		SPK: 50
INTERNAL STA	NDARDS					
363-72-4	Pentafluorobenzene	1899066	9.68			
540-36-3	1.4-Difluorobenzene	3022938	10.31			
3114-55-4	Chlorobenzene-d5	2894698	13.38			
3855-82-1	1,4-Dichlorobenzene-d4	1480225	15.80			

B = Analyte Found in Associated Method Blank

Client:	Environmental Business Consultants	Date Collected:	8/15/2008
Project:	3035 White Plains Road	Date Received:	8/19/2008
Client Sample ID:	MW8	SDG No.:	Z4158
Lab Sample ID:	Z4158-07	Matrix:	WATER
Analytical Method:	8260	% Moisture:	100
Sample Wt/Wol:	5.0 Units: mL	Soil Extract Vol:	uL
Soil Aliquot Vol:	uL		

File ID: VF013837.D	Dilution: 1	Date Analyzed 8/26/2008	Ĩ	Analytical B VF082208	Batch ID	
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.88	U	5.0	0.88	ug/L
74-87-3	Chloromethane	0.37	U	5.0	0.37	ug/L
75-01-4	Vinyl chloride	0.30	U	5.0	0.30	ug/L
74-83-9	Bromomethane	1.4	U	5.0	1.4	ug/L
75-00-3	Chloroethane	0.80	U	5.0	0.80	ug/L
75-69-4	Trichlorofluoromethane	0.53	U	5.0	0.53	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.61	U	5.0	0.61	ug/L
75-35-4	1,1-Dichloroethene	0.67	U	5.0	0.67	ug/L
67-64-1	Acetone	2.2	U	25	2.2	ug/L
75-15-0	Carbon disulfide	0.20	U	5.0	0.20	ug/L
1634-04-4	Methyl tert-butyl Ether	0.23	U	5.0	0.23	ug/L
79-20-9	Methyl Acetate	0.45	U	5.0	0.45	ug/L
75-09-2	Methylene Chloride	0.38	U	5.0	0.38	ug/L
156-60-5	trans-1,2-Dichloroethene	0.44	U	5.0	0.44	ug/L
75-34-3	1,1-Dichloroethane	0.67	U	5.0	0.67	ug/L
110-82-7	Cyclohexane	4.6	J	5.0	0.57	ug/L
78-93-3	2-Butanone	1.9	U	25	1.9	ug/L
56-23-5	Carbon Tetrachloride	0.27	U	5.0	0.27	ug/L
156-59-2	cis-1,2-Dichloroethene	0.72	U	5.0	0.72	ug/L
67-66-3	Chloroform	0.45	U	5.0	0.45	ug/L
71-55-6	1,1,1-Trichloroethane	0.39	U	5.0	0.39	ug/L
108-87-2	Methylcyclohexane	0.47	U	5.0	0.47	ug/L
71-43-2	Benzene	11		5.0	0.35	ug/L
107-06-2	1,2-Dichloroethane	0.41	U	5.0	0.41	ug/L
79-01-6	Trichloroethene	0.34	U	5.0	0.34	ug/L
78-87-5	1,2-Dichloropropane	0.46	U	5.0	0.46	ug/L
75-27-4	Bromodichloromethane	0.23	U	5.0	0.23	ug/L
108-10-1	4-Methyl-2-Pentanone	1.8	U	25	1.8	ug/L
108-88-3	Toluene	89		5.0	0.16	ug/L
10061-02-6	t-1,3-Dichloropropene	0.31	U	5.0	0.31	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.29	U	5.0	0.29	ug/L
79-00-5	1.1.2-Trichloroethane	0.32	U	5.0	0.32	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

-			
Client:	Environmental Business Consultants	Date Collected:	8/15/2008
Project:	3035 White Plains Road	Date Received:	8/19/2008
Client Sample ID:	MW8	SDG No.:	Z4158
Lab Sample ID:	Z4158-07	Matrix:	WATER
Analytical Method:	8260	% Moisture:	100
Sample Wt/Wol:	5.0 Units: mL	Soil Extract Vol:	uL
Soil Aliquot Vol:	uL		

File ID: Dilution: VF013837.D 1		Date Analyzed	ŀ	Analytical F	Batch ID	
VF013837.D 1		0/20/2000		v F Uð 22Uð		
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.8	U	25	1.8	ug/L
124-48-1	Dibromochloromethane	0.23	U	5.0	0.23	ug/L
106-93-4	1,2-Dibromoethane	0.26	U	5.0	0.26	ug/L
127-18-4	Tetrachloroethene	0.97	U	5.0	0.97	ug/L
108-90-7	Chlorobenzene	0.28	U	5.0	0.28	ug/L
100-41-4	Ethyl Benzene	8.0		5.0	0.05	ug/L
126777-61-2	m/p-Xylenes	160		10	0.47	ug/L
95-47-6	o-Xylene	77		5.0	0.16	ug/L
100-42-5	Styrene	0.19	U	5.0	0.19	ug/L
75-25-2	Bromoform	0.44	U	5.0	0.44	ug/L
98-82-8	Isopropylbenzene	0.37	U	5.0	0.37	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.37	U	5.0	0.37	ug/L
541-73-1	1,3-Dichlorobenzene	0.28	U	5.0	0.28	ug/L
106-46-7	1,4-Dichlorobenzene	0.22	U	5.0	0.22	ug/L
95-50-1	1,2-Dichlorobenzene	0.40	U	5.0	0.40	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.58	U	5.0	0.58	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.39	U	5.0	0.39	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	54.81	110 %	75 - 124		SPK: 50
1868-53-7	Dibromofluoromethane	51.93	104 %	84 - 122		SPK: 50
2037-26-5	Toluene-d8	48.89	98 %	83 - 117		SPK: 50
460-00-4	4-Bromofluorobenzene	50.85	102 %	74 - 123		SPK: 50
INTERNAL STA	NDARDS					
363-72-4	Pentafluorobenzene	1909973	9.68			
540-36-3	1,4-Difluorobenzene	2967910	10.30			
3114-55-4	Chlorobenzene-d5	2875925	13.38			
3855-82-1	1.4-Dichlorobenzene-d4	1490938	15.80			

J = Estimated Value

B = Analyte Found in Associated Method Blank

Client:	Environmental Business Consultants	Date Collected:	8/15/2008
Project:	3035 White Plains Road	Date Received:	8/19/2008
Client Sample ID:	MW9	SDG No.:	Z4158
Lab Sample ID:	Z4158-08	Matrix:	WATER
Analytical Method:	8260	% Moisture:	100
Sample Wt/Wol:	5.0 Units: mL	Soil Extract Vol:	uL
Soil Aliquot Vol:	uL		

File ID:Dilution:VF013838.D1		File ID:Dilution:Date AnalyzedVF013838.D18/26/2008			Analytical Batch ID VF082208			
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units		
TARGETS								
75-71-8	Dichlorodifluoromethane	0.88	U	5.0	0.88	ug/L		
74-87-3	Chloromethane	0.37	U	5.0	0.37	ug/L		
75-01-4	Vinyl chloride	0.30	U	5.0	0.30	ug/L		
74-83-9	Bromomethane	1.4	U	5.0	1.4	ug/L		
75-00-3	Chloroethane	0.80	U	5.0	0.80	ug/L		
75-69-4	Trichlorofluoromethane	0.53	U	5.0	0.53	ug/L		
76-13-1	1,1,2-Trichlorotrifluoroethane	0.61	U	5.0	0.61	ug/L		
75-35-4	1,1-Dichloroethene	0.67	U	5.0	0.67	ug/L		
67-64-1	Acetone	2.2	U	25	2.2	ug/L		
75-15-0	Carbon disulfide	0.20	U	5.0	0.20	ug/L		
1634-04-4	Methyl tert-butyl Ether	0.23	U	5.0	0.23	ug/L		
79-20-9	Methyl Acetate	0.45	U	5.0	0.45	ug/L		
75-09-2	Methylene Chloride	0.38	U	5.0	0.38	ug/L		
156-60-5	trans-1,2-Dichloroethene	0.44	U	5.0	0.44	ug/L		
75-34-3	1,1-Dichloroethane	0.67	U	5.0	0.67	ug/L		
110-82-7	Cyclohexane	0.57	U	5.0	0.57	ug/L		
78-93-3	2-Butanone	1.9	U	25	1.9	ug/L		
56-23-5	Carbon Tetrachloride	0.27	U	5.0	0.27	ug/L		
156-59-2	cis-1,2-Dichloroethene	0.72	U	5.0	0.72	ug/L		
67-66-3	Chloroform	0.45	U	5.0	0.45	ug/L		
71-55-6	1,1,1-Trichloroethane	0.39	U	5.0	0.39	ug/L		
108-87-2	Methylcyclohexane	0.47	U	5.0	0.47	ug/L		
71-43-2	Benzene	0.35	U	5.0	0.35	ug/L		
107-06-2	1,2-Dichloroethane	0.41	U	5.0	0.41	ug/L		
79-01-6	Trichloroethene	0.34	U	5.0	0.34	ug/L		
78-87-5	1,2-Dichloropropane	0.46	U	5.0	0.46	ug/L		
75-27-4	Bromodichloromethane	0.23	U	5.0	0.23	ug/L		
108-10-1	4-Methyl-2-Pentanone	1.8	U	25	1.8	ug/L		
108-88-3	Toluene	0.16	U	5.0	0.16	ug/L		
10061-02-6	t-1,3-Dichloropropene	0.31	U	5.0	0.31	ug/L		
10061-01-5	cis-1,3-Dichloropropene	0.29	U	5.0	0.29	ug/L		
79-00-5	1,1,2-Trichloroethane	0.32	U	5.0	0.32	ug/L		

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Client:	Environmental Business Consultants	Date Collected:	8/15/2008
Project:	3035 White Plains Road	Date Received:	8/19/2008
Client Sample ID:	MW9	SDG No.:	Z4158
Lab Sample ID:	Z4158-08	Matrix:	WATER
Analytical Method:	8260	% Moisture:	100
Sample Wt/Wol:	5.0 Units: mL	Soil Extract Vol:	uL
Soil Aliquot Vol:	uL		

File ID:Dilution:VF013838.D1		Date Analyzed 8/26/2008	l	Analytical H VF082208	Batch ID)
VF013838.D 1 CAS Number Parameter		Conc.	Qualifier	RL	MDL	Units
501 78 6	2 Havanona	1.8	U	25	1.8	цα/Ι
12/1-/18-1	Dibromochloromethane	0.23	U	23 5.0	0.23	ug/L 110/I
106-93-4	1.2-Dibromoethane	0.25	U	5.0	0.25	110/L
127-18-4	Tetrachloroethene	0.20	U	5.0	0.20	110/L
108-90-7	Chlorobenzene	0.28	U	5.0	0.27	ug/L
100-41-4	Ethyl Benzene	0.05	U	5.0	0.05	ug/L
126777-61-2	m/p-Xylenes	3 3	I	10	0.03	ug/L
95-47-6	o-Xvlene	0.16	Ŭ	5.0	0.16	ug/L
100-42-5	Styrene	0.19	U	5.0	0.19	ug/L
75-25-2	Bromoform	0.44	Ŭ	5.0	0.44	ug/L
98-82-8	Isopropylbenzene	0.37	Ū	5.0	0.37	ug/L
79-34-5	1.1.2.2-Tetrachloroethane	0.37	Ū	5.0	0.37	ug/L
541-73-1	1.3-Dichlorobenzene	0.28	Ū	5.0	0.28	ug/L
106-46-7	1.4-Dichlorobenzene	0.22	U	5.0	0.22	ug/L
95-50-1	1.2-Dichlorobenzene	0.40	U	5.0	0.40	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.58	U	5.0	0.58	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.39	U	5.0	0.39	ug/L
SURROGATES	, ,					C
17060-07-0	1.2-Dichloroethane-d4	54.96	110 %	75 - 124		SPK: 50
1868-53-7	Dibromofluoromethane	52.81	106 %	84 - 122		SPK: 50
2037-26-5	Toluene-d8	49.31	99 %	83 - 117		SPK: 50
460-00-4	4-Bromofluorobenzene	50.84	102 %	74 - 123		SPK: 50
INTERNAL STA	NDARDS					
363-72-4	Pentafluorobenzene	1884091	9.68			
540-36-3	1.4-Difluorobenzene	2929589	10.30			
3114-55-4	Chlorobenzene-d5	2864050	13.38			
3855-82-1	1.4-Dichlorobenzene-d4	1444941	15.80			

B = Analyte Found in Associated Method Blank

Order ID: SDG No.: Z4158 Z4158 Project ID: ENVI49 Client: **Environmental Business Consultants** Sample ID Client ID Matrix Parameter Concentration С RDL MDL Units **Client ID: MW-1** Z4158-02 MW-1 WATER Carbon disulfide 3.9 J 5.0 0.20 ug/L E MW-1 Methyl tert-butyl Ether 150 5.0 Z4158-02 WATER 0.23 ug/L Z4158-02 MW-1 WATER Cyclohexane 110 Е 5.0 0.57 ug/L MW-1 WATER Methylcyclohexane Z4158-02 85 5.00.47 ug/L Z4158-02 MW-1 WATER Benzene 47 5.0 0.35 ug/L Z4158-02 MW-1 WATER Toluene 6.0 5.0 0.16 ug/L Z4158-02 MW-1 WATER Ethyl Benzene 940 E 5.0 0.05 ug/L WATER 940 Е 10 Z4158-02 MW-1 m/p-Xylenes 0.47 ug/L Z4158-02 MW-1 WATER 420 Е 5.0 0.16 o-Xylene ug/L MW-1 45 5.0 0.37 Z4158-02 WATER Isopropylbenzene ug/L Total VOC's: 2746.90 Total TIC's: 0.00 Total VOC's and TIC's: 2746.90 **Client ID:** MW-1DL Z4158-02DL MW-1DL WATER Methyl tert-butyl Ether 170 D 100 4.6 ug/L Z4158-02DL MW-1DL WATER 130 D 100 11 Cyclohexane ug/L 9.4 Z4158-02DL MW-1DL WATER Methylcyclohexane 110 D 100 ug/L Z4158-02DL MW-1DL WATER Ethyl Benzene 430 D 100 1.0 ug/L m/p-Xylenes MW-1DL WATER 460 D 200 9.4 Z4158-02DL ug/L Z4158-02DL MW-1DL WATER o-Xylene 96 JD 100 3.2 ug/L Total VOC's: 1396.00 Total TIC's: 0.00 Total VOC's and TIC's: 1396.00 **Client ID: MW-3** Z4158-01 MW-3 WATER Cyclohexane 33 5.0 0.57 ug/L MW-3 22 Z4158-01 WATER Methylcyclohexane 5.0 0.47 ug/L WATER Benzene 5.8 Z4158-01 MW-3 5.0 0.35 ug/L Z4158-01 MW-3 WATER Toluene 3.0 J 5.0 0.16 ug/L 45 5.0 Z4158-01 MW-3 WATER Ethyl Benzene 0.05 ug/L Z4158-01 MW-3 WATER m/p-Xylenes 170 10 0.47 ug/L MW-3 WATER 5.0 Z4158-01 o-Xylene 36 0.16 ug/L Z4158-01 MW-3 WATER Isopropylbenzene 10 5.0 0.37 ug/L Total VOC's: 324.80 Total TIC's: 0.00 Total VOC's and TIC's: 324.80

Summary Sheet SW-846

Order ID: SDG No.: Z4158 Z4158 Project ID: ENVI49 Client: **Environmental Business Consultants** Sample ID **Client ID** Matrix Parameter Concentration С RDL MDL Units **Client ID:** MW4 Z4158-03 MW4 WATER Chloromethane 120 Е 5.0 0.37 ug/L MW4 WATER Bromomethane Z4158-03 6.0 5.0 1.4 ug/L WATER Z4158-03 MW4 Acetone 27 25 2.2 ug/L Z4158-03 MW4 WATER Carbon disulfide 8.2 0.20 5.0 ug/L MW4 WATER Z4158-03 Methylene Chloride 11 5.0 0.38 ug/L 9.2 Z4158-03 MW4 WATER Benzene 5.0 0.35 ug/L Total VOC's: 181.40 Total TIC's: 0.00 Total VOC's and TIC's: 181.40 **Client ID:** MW4DL Z4158-03DL MW4DL WATER Chloromethane 170 D 25 1.8 ug/L Total VOC's: 170.00 Total TIC's: 0.00 Total VOC's and TIC's: 170.00 **Client ID:** MW5 Z4158-04 MW5 WATER Chloromethane 8.9 5.0 0.37 ug/L Z4158-04 MW5 WATER Acetone 320 25 2.2 ug/L WATER 5.0 Z4158-04 MW5 Carbon disulfide 21 0.20 ug/L Z4158-04 MW5 WATER Methyl tert-butyl Ether 4.8 J 5.0 0.23 ug/L Z4158-04 MW5 WATER Cyclohexane 39 5.0 0.57 ug/L Z4158-04 MW5 WATER 2-Butanone 150 25 1.9 ug/L Z4158-04 MW5 WATER Methylcyclohexane 20 5.0 0.47 ug/L 97 Z4158-04 MW5 WATER Benzene 5.0 0.35 ug/L Z4158-04 MW5 WATER 2-Hexanone 15 J 25 1.8 ug/L Total VOC's: 675.70 Total TIC's: 0.00 Total VOC's and TIC's: 675.70

Summary Sheet SW-846

Order ID: SDG No.: Z4158 Z4158 Project ID: ENVI49 Client: **Environmental Business Consultants** Sample ID Client ID Matrix Parameter Concentration С RDL MDL Units **Client ID:** MW7 Z4158-06 MW7 WATER Methyl tert-butyl Ether 170 Е 5.0 0.23 ug/L E 190 5.0 Z4158-06 MW7 WATER Cyclohexane 0.57 ug/L Z4158-06 MW7 WATER Methylcyclohexane 130 Ε 5.0 0.47 ug/L E MW7 WATER Benzene Z4158-06 440 5.00.35 ug/L Toluene Е Z4158-06 MW7 WATER 620 5.0 0.16 ug/L Z4158-06 E MW7 WATER Ethyl Benzene 12000 5.0 0.05 ug/L Z4158-06 MW7 WATER m/p-Xylenes 1300 Е 10 0.47 ug/L MW7 WATER 7300 Е 5.0 Z4158-06 o-Xylene 0.16 ug/L Z4158-06 MW7 WATER Isopropylbenzene 5800 Е 5.0 0.37 ug/L Total VOC's: 27950.00 Total TIC's: 0.00 Total VOC's and TIC's: 27950.00 **Client ID:** MW7DL Z4158-06DL MW7DL WATER Methyl tert-butyl Ether 170 D 50 2.3 ug/L Z4158-06DL MW7DL WATER Cyclohexane 180 D 50 5.7 ug/L MW7DL WATER Methylcyclohexane 130 D 50 4.7 Z4158-06DL ug/L Z4158-06DL MW7DL WATER Benzene 650 D 50 3.5 ug/L Z4158-06DL MW7DL WATER Toluene 760 D 50 1.6 ug/L MW7DL WATER Ethyl Benzene ED 50 0.50 Z4158-06DL 1500 ug/L Z4158-06DL MW7DL WATER m/p-Xylenes 7200 ED 100 4.7 ug/L Z4158-06DL MW7DL WATER o-Xylene 1600 ED 50 1.6 ug/L MW7DL WATER 50 Z4158-06DL Isopropylbenzene 120 D 3.7 ug/L Total VOC's: 12310.00 Total TIC's: 0.00 Total VOC's and TIC's: 12310.00 **Client ID:** MW7DL2 D 500 Z4158-06DL2 MW7DL2 WATER Benzene 680 35 ug/L Z4158-06DL2 MW7DL2 WATER Toluene 800 D 500 16 ug/L D Z4158-06DL2 MW7DL2 WATER Ethyl Benzene 1700 500 5.0 ug/L Z4158-06DL2 MW7DL2 WATER m/p-Xylenes 8800 D 1000 47 ug/L MW7DL2 WATER 1800 D 500 Z4158-06DL2 o-Xylene 16 ug/L Total VOC's: 13780.00 Total TIC's: 0.00 Total VOC's and TIC's: 13780.00

SDG No.:	Z4158			Order ID: Z41	58			
Client:	Environmental	Business Consulta	nts	Project ID: ENV	[49			
Sample ID Client ID:	Client ID MW8	Matrix	Parameter	Concentration	С	RDL	MDL	Units
Z4158-07	MW8	WATER	Cyclohexane	4.6	J	5.0	0.57	ug/L
Z4158-07	MW8	WATER	Benzene	11		5.0	0.35	ug/L
Z4158-07	MW8	WATER	Toluene	89		5.0	0.16	ug/L
Z4158-07	MW8	WATER	Ethyl Benzene	8.0		5.0	0.05	ug/L
Z4158-07	MW8	WATER	m/p-Xylenes	160		10	0.47	ug/L
Z4158-07	MW8	WATER	o-Xylene	77		5.0	0.16	ug/L
		T T T	otal VOC's: otal TIC's: otal VOC's and TIC's	349.60 0.00 349.60				
Client ID:	MW9							
Z4158-08	MW9	WATER	m/p-Xylenes	3.3	J	10	0.47	ug/L
		T. T.	otal VOC's: otal TIC's:	3.30 0.00 3.30				

Summary Sheet SW-846

LAB CHRONICLE

Order ID: Z Client: E Contact: C	24158 Environmental Business Consultants Charles B.Sosik P.G.		Order Date: Project: Location :	8/19/2008 3035 White Plains Road VOA Ref. #3 Water				
Lab ID	Client ID	Matrix Test		Method	Sample Date	PrepDate	AnalDate	Received
Z4158-01	MW-3	WATER VOC-TCL		8260	08/07/08		08/19/08	08/12/08
Z4158-02	MW-1	WATER VOC-TCL		8260	08/15/08		08/22/08	08/19/08
Z4158-02DL	MW-1DL	WATER VOC-TCL		8260	08/15/08		08/26/08	08/19/08
Z4158-03	MW4	WATER VOC-TCL		8260	08/15/08		08/22/08	08/19/08
Z4158-03DL	MW4DL	WATER VOC-TCL		8260	08/15/08		08/26/08	08/19/08
Z4158-04	MWS	WATER VOC-TCL		8260	08/15/08		08/22/08	08/19/08
Z4158-05	MW6	WATER VOC-TCL		8260	08/15/08		08/26/08	08/19/08
Z4158-06	MW7	WATER VOC-TCL		8260	08/15/08		08/26/08	08/19/08
Z4158-06DL	MW7DL	WATER VOC-TCL		8260	08/15/08		08/26/08	08/19/08
Z4158-06DL2	: MW7DL2	WATER VOC-TCL		8260	08/15/08		08/27/08	08/19/08
Z4158-07	MW8	WATER			08/15/08			08/19/08

LAB CHRONICLE

	08/19/08
08/26/08	08/26/08
	08/15/08
8260	8260
VOC-TCL	WATER VOC-TCL
	6MM
	Z4158-08

284 Sheffield Street, Mountainside NJ 07092 Tel: 908-789-8900 Fax 908-789-8922

COVER PAGE

		ProjectID:	3035 White Plains Road
OrderID:	Z4854	CustomerName:	Environmental Business Consultants

LAB SAMPLE NO.	CLIENT SAMPLE NO
Z4854-01	IRMW-1
Z4854-03	IRMW-3
Z4854-04	IRMW-4
Z4854-05	IRMW-5
Z4854-07	IRMW-8
Z4854-08	IRMW-9

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Signature:	_Name:
Date:	Title:

	284 S	heffield Street,	Mountain	nside, NJ O	7092	רופווופרו	ו רו טןסעו					<u></u>
		0068-682 (806	Fax (908	() 789-8922	<u> </u>	COC Num	ber					
SHAIN OF CUS	STODY RECORD	WWW.C	hemtech.	net					6	5	0	
	CLIENT INFORMATION	PROJ	ECT INFOR	MATION				BILLINC	INFOR	MATIO	N	
	Report to be sent to	PROJECT NAME: 303	5 Winte Pla	ins Rd. Br	anx	BILL TO: E	JUICON	ment	a /	PO#		
COMPANY: L.	Manual Reservore Consultants	PROJECT #:		OCATION:		ADDRESS: /	BOB N	riddle	Coun	they Re		
ADDRESS: 1 P/A	m. Wils Critic ter Rd	PROJECT MANAGER:	charles	Sosik	ľ	city: R	ردادر			sfate:	<u>A</u> ZIP:	11961
SITY: A MA	STATE: NV ZIP: (196/	E-MAIL: C.SOSIK 2	Popton	line net	~~	ATTENTION:	CYALE	Š S	X		-	
ATTENTION: 0.	nules Sosix	PHONE: 631 500	4 6000 F	FX:631924	2870	PHONE: 60	31 5	24	(CO)			
PHONE: 621 S	04 6000 FAX 681 924 2870								NAL YS	0		
- ^ T ^ T	ELIENAPOLIND INFORMATION		NFORMATI	ION								
			SN D	EPA CLP								
FAX: HARD COPY: 201	DAYS* DAYS*		2 D	w York State ASP "	å.	A.A.Y.						
EDD STA	T DAYS 10/2 W CB	□ New Jersey REDUCE		v York State ASP "/ her		2	₹ 3	9 9 9	8	6		÷
* TO BE APPROVED STANDARD TURNAK	Development of the second s	D EDD FORMAT				١×١٢		IIVES			CUMIN	ENIS
		C ANDI E	SAMPLE	SAMPLE COLLECTION	sə		-			- H-V	< Specify P ICI	reservatives B-HNO4
CHEMIECH SAMPLE	SAMPLE IDENTIFICATION	MATRIX	9MOC BASE	DATE TIME	H of Bott	1	3 4	5 6	7 8	6	28013	D-NaOH F-OTHER
	12 0000	C. ROUND WATER	*	10/3 900	2	7			•	E	A	
A C	X IR MAN 7			31 915						12/RC	b ken	Vials
i e	IR MAN 3			1930								
4	ia vnu 4			1945								
	I RIMIN S			1000								
	A 12 MM/6			1/10/5					2	(//	Broken	Vial
2	IRIMW R			1 1030						<u>, , , , , , , , , , , , , , , , , , , </u>		
8.	1R 12W 9		7	V 1045	- 1	Ţ						
9.												
10.												
SA	MPLE CUSTODY MUST BE DOCUME	NTED BELOW EA	CH TIME S	AMPLES CH	ANGE P	ROSSES	SION IN	cludin	G COU	RIER DI	ELIVERY	
RELINQUISTED BY SAMPL			MeOH extrac	otties or coners at	receipt: additional	4 oz. Jar for	percent so	lid	1000			
1. Jun M.	Mr 10/0/00 10 1. COVEX 1	COLER	Comments:									
RÉLINQUISHER BY	DATE/TIME RECEIVED BY	•						-				
RELINQUISHED BY	The For DATERTIME of RECEIVED FOR LAB BY	1	·		Overnigh	CLIENT: tt	∔ Hand	Delivered	Ŧ		Shipment	Complete
3. FC	ULX 1 9: 30 3 a V.	Media	Page	of		CHEMTECH:	¥ Pick	ed Up	Ŧ		L YES	4 NO
L007/01/01	WHITE - CHEMTECH	4 COPYFOR RETURN	TO CLIENT	YELLOW - CH	HEMTECH	сору	PINK - SAI	MPLER C	γqc	ŧ		

2

fedex.com 1800 GoFedEx 1800 463 3339 . N -**Your Internal Billing Reference** From 5 h Recipient's Name Aueduor P Address Name Sonder's Date Company Coll EXX . US Airbill HALL HEAL parsage to held at a specific FedEs location. Express . 1 ••••• • (* • • • 2 = 1 -. 'n ____, ب. مغربي 10.5 8640 7265 1157 ~ 5 Sender's FedEx Account Number 5 ÷., ----وملعم . . 365443000 State State S. + 0 4 9 8 2 T. Phone Phone ZIP 4-₽P 5 · . -Л С С С 1 ۰. مىس 9:30 LП -0 Ċ · •• · ••• Dept/Roor/Suite/Room Dept/Floce/Suite/Room 115. C of 5 M.C • • • مىمغىر. م 1 6 FedEx Envelope* ເມ [] ¹Our batelay is limited to \$300 unders you ω [] 7 FedEx 1Day Freight* Head buckness day** finlay shymatic walks before the on Manday unless SATURDAY Delivery is subjected. 8 Residential Delivery Signature Options 1 FedEx Priority Overnight fear hersons moning: Fiday scipments will be define the forday nears SNUBBAY Definery is selected \square Rav. Data 1645-Part #152251-201934-2000 FadEa+PROATED IN U.S.A. SRY No. 4 Yes Support Instrument Support Instrument Northwest Instr G cn 4b Express Freight Service Lation Economotion: 4a FedEx 2Day Sectoral business tay. Thursday independent with the defendent of the there unders SAUMDAY Defendent weather beef a foredige only get weather No Signature Direct Signature Bequired 10 dataset arecepters Sector and a statuse of the sector of t SATURDAY Delivery Iteraceastate for Futfa Sandard Overright Futfa Sandard Overright Indéta fest Overright Redéta Envezs Sover, or Futfa 30ay Height safterer inno Payment Bill to: **Special Handling** Packaging Express Package Service Does this shipment contain dangerous goods? iw. 0200 Enter Feitz Acet. Va. or Cardii Card Na. belaw.
 Cardii Card
 Sono Cardii Cardii Card
 Sono Cardii Cardii
 Sono Cardiii Cardii
 Sono Cardii
 Sono Cardii
 20 FedEx Express Saver Third trainers day." N Saturday Devrey HOT available. **8** 5 FodEx Standard Overnight Nerrburness alternoon⁴ Saturday Definery NDT svelable. Souman clason Dro-pound rate. HOD Weektlay 31 10 Ho at FedEx Location 31 10 HO Heamaltal. RedSxFertOverneyn 6.00 FedEx 2Day Freight Second business day." Thursday stopments will be delivered on Monalay unless SATURUAN Delivery is selected Farm 10 No. AC DIDEA 34 Indirect Signature Incore is watches recipient's address, someon et a neighboring editors me sign for defrany. Fee applies 6 Dry Ice FedEx Box If you require a signature, check friend or indirect. FedEx Retrieval Copy 31 HOLD Saturday at FedEx Location Availabe OiltY for Futer Patenty Description and FedEx 20xy to solicit locations ື ສ 4 FedEx 6 [] Cargo Aircraft Only FadEx First Overnight Earborn extudious memory debrey to select localizes Sounday Nebrary Hill available FadEx 3Day Freiglu Third business bay ** Salunday Deferry 1037 available Packages up to 150 lbs Packages over 150 lbs Decisional value final \$500 520 Crotifs Card Austr ** To most facation To most location Tedex com 1800.6oFed5x 1.800 463.3339

1

 $h_{58}h_{7}$

3

MARIA LUISA CRUZ

From: Sent: To: Subject: Kevin Brussee [kevinbrussee@hotmail.com] October 08, 2008 09:37 Charles Sosik; MARIA LUISA CRUZ RE: Broken vials (Project Name : 3035 White Plains Road, Bronx) 7 485

4

Please analyze all wells for the listed compounds except for IRM-W2 and IRM-W6. These two samples can be discarded. I have resampled these two monitoring wells and the samples have been overnighted via FedEx to your facility (you should receive them tomorrow [Oct 9]).

Kevin Brussee Project Manager

EBC

Environmental Business Consultants Ph: 631.504.6000 Fax: 631.924.2870 Cell: 631.357.4927 csosik2@optonline.net

From: MARIA LUISA CRUZ [mailto:L.CRUZ@chemtech.net]
Sent: Tuesday, October 07, 2008 10:07 AM
To: csosik2@optonline.net
Cc: Christopher Greb
Subject: Broken vials (Project Name : 3035 White Plains Road, Bronx)

Charles,

Per our phone conversation, samples received via Fedex today, (2) vials are broken on Field ID IRMW2 and (1) vial on IRMW6. Please let me know as soon as possible so we can process your samples.

Thanks,

Luisa Cruz

Chemtech 284 Sheffield Street Mountainside, NJ 07092 Phone: (908) 789 8900 ext. 107 Fax: (908) 789 8514 www.chemtech.net

Confidentiality Notice: The information contained in this message is intended only for the use of the addressee, and may be confidential and/or privileged. If the reader of this message is not the intended recipient, or the employee or agent responsible to deliver it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please notify the sender immediately.

Get more out of the Web. Learn 10 hidden secrets of Windows Live. Learn Now

MARIA LUISA CRUZ

From: Sent: To: Subject: Charles Sosik [csosik2@optonline.net] October 07, 2008 13:22 MARIA LUISA CRUZ RE: Broken vials (Project Name : 3035 White Plains Road, Bronx) 24854

5

Luisa,

We will be sending replacement vials for the broken samples tomorrow. Please proceed with the analysis of the others.

Charles B. Sosik, P.G. Principal *EBC* Environmental Business Consultants Ph: 631.504.6000 Fax: 631.924.2870 Cell: 631.357.4927 csosik2@optonline.net

From: MARIA LUISA CRUZ [mailto:L.CRUZ@chemtech.net]
Sent: Tuesday, October 07, 2008 10:07 AM
To: csosik2@optonline.net
Cc: Christopher Greb
Subject: Broken vials (Project Name : 3035 White Plains Road, Bronx)

Charles,

Per our phone conversation, samples received via Fedex today, (2) vials are broken on Field ID IRMW2 and (1) vial on IRMW6. Please let me know as soon as possible so we can process your samples.

and a state of the state of the state of the

Thanks,

Luisa Cruz

Chemtech 284 Sheffield Street Mountainside, NJ 07092 Phone: (908) 789 8900 ext. 107 Fax: (908) 789 8514 www.chemtech.net

Confidentiality Notice: The information contained in this message is intended only for the use of the addressee, and may be confidential and/or privileged. If the reader of this message is not the intended recipient, or the employee or agent responsible to deliver it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please notify the sender immediately.

Laboratory Certification

State	License No.
New Jersey	20012
New York	11376
Connecticut	PH-0649
Maryland	296
Massachusetts	M-NJ503
Maine	NJ0503
Oklahoma	9705
Pennsylvania	68-548
Rhode Island	LAO00259

QA Control Code: A2070148

CHEMTECH

DATA REPORTING QUALIFIERS- ORGANIC

For reporting results, the following " Results Qualifiers" are used:

Value	If the result is a value greater than or equal to the detection limit, report the value
U	Indicates the compound was analyzed for but was not detected. Report the minimum detection limit for the sample with the U, i.e. "10 U". This is not necessarily the instrument detection limit attainable for this particular sample based on any concentration or dilution that may have been required.
J	 Indicates an estimated value. This flag is used: (1) When estimating a concentration for a tentatively identified compound (library search hits, where a 1:1 response is assumed.) (2) When the mass spectral data indicated the identification, however the result was less than the specified detection limit greater than zero. If the detection limit was 10ug/L and a concentration of 3 ug/L was calculated report as 3 J. This is flag is used when similar situation arise on any organic parameter i.e. Pest, PCB and others.
В	Indicates the analyte was found in the blank as well as the sample report as "12 B".
Ε	Indicates the analyte 's concentration exceeds the calibrated range of the instrument for that specific analysis.
D	This flag identifies all compounds identified in an analysis at a secondary dilution factor.
Р	This flag is used for Pesticide/PCB target analyte when there is >25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on Form 1 and flagged with a "P".
N	This flag indicates presumptive evidence of a compound. This is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It applies to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the flag is not used.
Α	This flag indicates that a Tentatively Identified Compound is a suspected aldol-condensation product.

QA Control Code: A2040102

Revision Date: July 7, 2006 Effective Date: July 17, 2006 Page 31 of 35

APPENDIX A

QA REVIEW GENERAL DOCUMENTATION

•	
	Completed
For thorough review, the report must have the following:	
GENERAL:	
Are all original paperwork present (chain of custody, record of communication,	,
airbill, sample management lab chronicle, login page)	√
Check chain-of-custody for proper relinquish/return of samples	/
Is the chain of custody signed and complete	√
Check internal chain-of-custody for proper relinquish/return of samples	
/sample extracts	√
Collect information for each project id from server. Were all requirements followed	√
COVER PAGE:	
Do numbers of samples correspond to the number of samples in the Chain of	
Custody and on login page	√
Do lab numbers and client Ids on cover page agree with the Chain of Custody	✓
CHAIN OF CUSTODY:	
Do requested analyses on Chain of Custody agree with form I results	√
Do requested analyses on Chain of Custody agree with the log-in page	√
Were the correct method log-in for analysis according to the Analytical Request	,
and Chain of Custody	√
Were the samples received within hold time	√
Were any problems found with the samples at arrival recorded in the Sample	
Management Laboratory Chronicle	v
ANALYTICAL:	
Was method requirement followed?	√
Was client requirement followed?	√
Does the case narrative summarize all QC failure?	√
All runlogs reviewed for manual integration requirements	
1 st Level QA Review Signature:VANI MEHTA	

Client: Project: Client Sample Lab Sample II Analytical Met Sample Wt/Wo Soil Aliquot Vo	Environmental Business 3035 White Plains Road ID: IRMW-1 D: Z4854-01 thod: 8260 bl: 5.0 Units: mL bl: uL	Consultants	Date Colle Date Recei SDG No.: Matrix: % Moistu Soil Extract	cted: ved: re: Vol:	10/3/2008 10/7/2008 Z4854 WATER 100	uL
File ID: VG015245	Dilution:	Date Analyzed	I	Analytic VC093	cal Batch ID	
V G013243.		10/0/2000		10075	000	
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	4.6	J	5.0	0.88	ug/L
74-87-3	Chloromethane	0.37	U	5.0	0.37	ug/L
75-01-4	Vinyl chloride	0.30	U	5.0	0.30	ug/L
74-83-9	Bromomethane	1.4	U	5.0	1.4	ug/L
75-00-3	Chloroethane	0.80	U	5.0	0.80	ug/L
75-69-4	Trichlorofluoromethane	0.53	U	5.0	0.53	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.61	U	5.0	0.61	ug/L
75-35-4	1,1-Dichloroethene	0.67	U	5.0	0.67	ug/L
67-64-1	Acetone	24	J	25	2.2	ug/L
75-15-0	Carbon disulfide	1.2	J	5.0	0.20	ug/L
1634-04-4	Methyl tert-butyl Ether	82		5.0	0.23	ug/L
79-20-9	Methyl Acetate	10		5.0	0.45	ug/L
75-09-2	Methylene Chloride	0.38	U	5.0	0.38	ug/L
156-60-5	trans-1,2-Dichloroethene	0.44	U	5.0	0.44	ug/L
75-34-3	1,1-Dichloroethane	0.67	U	5.0	0.67	ug/L
110-82-7	Cyclohexane	42		5.0	0.57	ug/L
78-93-3	2-Butanone	22	J	25	1.9	ug/L
56-23-5	Carbon Tetrachloride	0.27	U	5.0	0.27	ug/L
156-59-2	cis-1,2-Dichloroethene	0.72	U	5.0	0.72	ug/L
67-66-3	Chloroform	0.45	U	5.0	0.45	ug/L
71-55-6	1,1,1-Trichloroethane	0.39	U	5.0	0.39	ug/L
108-87-2	Methylcyclohexane	91		5.0	0.47	ug/L
71-43-2	Benzene	13		5.0	0.35	ug/L
107-06-2	1,2-Dichloroethane	0.41	U	5.0	0.41	ug/L
79-01-6	Trichloroethene	0.34	U	5.0	0.34	ug/L
78-87-5	1,2-Dichloropropane	0.46	U	5.0	0.46	ug/L
75-27-4	Bromodichloromethane	0.23	U	5.0	0.23	ug/L
108-10-1	4-Methyl-2-Pentanone	6.4	J	25	1.8	ug/L
108-88-3	Toluene	4.0	J	5.0	0.16	ug/L
10061-02-6	t-1,3-Dichloropropene	0.31	U	5.0	0.31	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.29	U	5.0	0.29	ug/L
79-00-5	1,1,2-Trichloroethane	0.32	U	5.0	0.32	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Client:	Environmental Business Consultants	Date Collected:	10/3/2008
Project:	3035 White Plains Road	Date Received:	10/7/2008
Client Sample ID:	IRMW-1	SDG No.:	Z4854
Lab Sample ID:	Z4854-01	Matrix:	WATER
Analytical Method:	8260	% Moisture:	100
Sample Wt/Wol:	5.0 Units: mL	Soil Extract Vol:	uL
Soil Aliquot Vol:	uL		

File ID: VG015245.I	Dilution:	Date Analyzed 10/8/2008	ł	Analytical H VG093008	Batch ID	
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	2.7	J	25	1.8	ug/L
124-48-1	Dibromochloromethane	0.23	U	5.0	0.23	ug/L
106-93-4	1,2-Dibromoethane	0.26	U	5.0	0.26	ug/L
127-18-4	Tetrachloroethene	0.97	U	5.0	0.97	ug/L
108-90-7	Chlorobenzene	0.28	U	5.0	0.28	ug/L
100-41-4	Ethyl Benzene	220	Е	5.0	0.05	ug/L
126777-61-2	m/p-Xylenes	120		10	0.47	ug/L
95-47-6	o-Xylene	27		5.0	0.16	ug/L
100-42-5	Styrene	0.19	U	5.0	0.19	ug/L
75-25-2	Bromoform	0.44	U	5.0	0.44	ug/L
98-82-8	Isopropylbenzene	37		5.0	0.37	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.37	U	5.0	0.37	ug/L
541-73-1	1,3-Dichlorobenzene	0.28	U	5.0	0.28	ug/L
106-46-7	1,4-Dichlorobenzene	0.22	U	5.0	0.22	ug/L
95-50-1	1,2-Dichlorobenzene	0.40	U	5.0	0.40	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.58	U	5.0	0.58	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.39	U	5.0	0.39	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	52.33	105 %	75 - 124		SPK: 50
1868-53-7	Dibromofluoromethane	53.96	108 %	84 - 122		SPK: 50
2037-26-5	Toluene-d8	48.81	98 %	83 - 117		SPK: 50
460-00-4	4-Bromofluorobenzene	54.49	109 %	74 - 123		SPK: 50
INTERNAL STA	NDARDS					
363-72-4	Pentafluorobenzene	362068	3.71			
540-36-3	1.4-Difluorobenzene	395109	4.48			
3114-55-4	Chlorobenzene-d5	339967	9.46			
3855-82-1	1,4-Dichlorobenzene-d4	194259	13.19			

J = Estimated Value

B = Analyte Found in Associated Method Blank

Client: Project: Client Sample Lab Sample I Analytical Me Sample Wt/W Soil Aliquot V	Environmental Business 3035 White Plains Road E ID: IRMW-1DL D: Z4854-01DL ethod: 8260 fol: 5.0 Units: mL fol: uL	Consultants	Date Colle Date Recei SDG No.: Matrix: % Moistu Soil Extract	cted: ved: re: Vol:	10/3/2008 10/7/2008 Z4854 WATER 100	uL
File ID:	Dilution:	Date Analyzed	I	Analytic	al Batch ID	'
VG015288	.D 20	10/9/2008		VG093()08	
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	18	U	100	18	ug/L
74-87-3	Chloromethane	7.4	U	100	7.4	ug/L
75-01-4	Vinyl chloride	6.0	U	100	6.0	ug/L
74-83-9	Bromomethane	27	U	100	27	ug/L
75-00-3	Chloroethane	16	U	100	16	ug/L
75-69-4	Trichlorofluoromethane	11	U	100	11	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	12	U	100	12	ug/L
75-35-4	1,1-Dichloroethene	13	U	100	13	ug/L
67-64-1	Acetone	43	U	500	43	ug/L
75-15-0	Carbon disulfide	4.0	U	100	4.0	ug/L
1634-04-4	Methyl tert-butyl Ether	80	JD	100	4.6	ug/L
79-20-9	Methyl Acetate	100	D	100	9.0	ug/L
75-09-2	Methylene Chloride	7.6	U	100	7.6	ug/L
156-60-5	trans-1.2-Dichloroethene	8.8	Ū	100	8.8	ug/L
75-34-3	1 1-Dichloroethane	13	U	100	13	ug/L
110-82-7	Cyclohexane	74	ID	100	11	ug/L
78-93-3	2-Butanone	39	U U	500	39	ug/L
56-23-5	Carbon Tetrachloride	54	U	100	54	ug/L
156-59-2	cis-1 2-Dichloroethene	14	U	100	14	ug/L
67-66-3	Chloroform	9.0	U	100	90	ug/L
71-55-6	1 1 1-Trichloroethane	7.8	U	100	7.8	ug/I
108-87-2	Methylcyclohexane	190	D	100	9.4	ug/I
71_/3_2	Benzene	7.0		100	7.4 7.0	ug/L 110/I
107_06_2	1.2-Dichloroethane	2 C	U U	100	7.0 & 7	ч <i>ы</i> Г 110/I
79-01-6	Trichloroethene	6.8	U U	100	6.2	
78-87-5	1.2-Dichloropropage	Q 2	U U	100	Q 2	ч <i>ы</i> Г.
75-27-4	Bromodichloromethane	2.2 4.6	U U	100	9.2 4.6	110/I
108-10-1	4-Methyl_2-Pentanone	т.0 25	U U	500	U 35	ч <i>ы</i> Г 110/I
108-88-3	Toluene	30	U U	100	35	ч _б /L 110/I
10061 02 6	t-1 3-Dichloropropena	5.2	U U	100	5.2	и <u>е</u> /L 110/I
10061 01 5	cis 1.3 Dichloropropone	50		100	50.2	ug/L ug/I
70.00.5	1 1 2 Trichlorosthans	J.0 <i>C</i> A	U	100	J.0 6 1	ug/L
19-00-3	1,1,2-1110110000alle	0.4	U	100	0.4	սբյլ

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Client:	Environmental Business Consultants	Date Collected:	10/3/2008
Project:	3035 White Plains Road	Date Received:	10/7/2008
Client Sample ID:	IRMW-1DL	SDG No.:	Z4854
Lab Sample ID:	Z4854-01DL	Matrix:	WATER
Analytical Method:	8260	% Moisture:	100
Sample Wt/Wol:	5.0 Units: mL	Soil Extract Vol:	uL
Soil Aliquot Vol:	uL		

File ID:	Dilution:	Date Analyzed	I	Analytical I	Batch ID)
VG015288.D	20	10/9/2008		VG093008		
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	35	U	500	35	ug/L
124-48-1	Dibromochloromethane	4.6	U	100	4.6	ug/L
106-93-4	1,2-Dibromoethane	5.2	U	100	5.2	ug/L
127-18-4	Tetrachloroethene	19	U	100	19	ug/L
108-90-7	Chlorobenzene	5.6	U	100	5.6	ug/L
100-41-4	Ethyl Benzene	240	D	100	1.0	ug/L
126777-61-2	m/p-Xylenes	110	JD	200	9.4	ug/L
95-47-6	o-Xylene	31	JD	100	3.2	ug/L
100-42-5	Styrene	3.8	U	100	3.8	ug/L
75-25-2	Bromoform	8.8	U	100	8.8	ug/L
98-82-8	Isopropylbenzene	43	JD	100	7.4	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	7.4	U	100	7.4	ug/L
541-73-1	1,3-Dichlorobenzene	5.6	U	100	5.6	ug/L
106-46-7	1,4-Dichlorobenzene	4.4	U	100	4.4	ug/L
95-50-1	1,2-Dichlorobenzene	8.0	U	100	8.0	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	12	U	100	12	ug/L
120-82-1	1,2,4-Trichlorobenzene	7.8	U	100	7.8	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	48.6	97 %	75 - 124		SPK: 50
1868-53-7	Dibromofluoromethane	51.6	103 %	84 - 122		SPK: 50
2037-26-5	Toluene-d8	47.13	94 %	83 - 117		SPK: 50
460-00-4	4-Bromofluorobenzene	51.66	103 %	74 - 123		SPK: 50
INTERNAL STA	NDARDS					
363-72-4	Pentafluorobenzene	500230	3.73			
540-36-3	1,4-Difluorobenzene	623798	4.49			
3114-55-4	Chlorobenzene-d5	549490	9.47			
3855-82-1	1,4-Dichlorobenzene-d4	305611	13.20			

J = Estimated Value

B = Analyte Found in Associated Method Blank

Client: Project:	Environmental Busin 3035 White Plains Ro	ess Consultants ad	Date Colle Date Recei	cted:	10/3/2008 10/7/2008	;
Client Semula			SDC No.		74954	
			SDG No.:		Z4854	
Lab Sample IL): Z4854-03		Matrix:		WATER	
Analytical Met	hod: 8260		% Moistu	re:	100	
Sample Wt/Wo	l: 5.0 Units: mL		Soil Extract	Vol:		uL
Soil Aliquot Vo	d: uL					
File ID:	Dilution:	Date Analyzed	l	Analytic	cal Batch ID	
VG015246.I	D 1	10/8/2008		VG093	008	
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.88	U	5.0	0.88	ug/L
74-87-3	Chloromethane	0.37	U	5.0	0.37	ug/L
75-01-4	Vinyl chloride	0.30	U	5.0	0.30	ug/L
74-83-9	Bromomethane	1.4	U	5.0	1.4	ug/L
75-00-3	Chloroethane	0.80	U	5.0	0.80	ug/L
75-69-4	Trichlorofluoromethane	0.53	U	5.0	0.53	ug/L
76-13-1	1.1.2-Trichlorotrifluoroethane	0.61	U	5.0	0.61	ug/L
75-35-4	1.1-Dichloroethene	0.67	U	5.0	0.67	ug/L
67-64-1	Acetone	19	J	25	2.2	ug/L
75-15-0	Carbon disulfide	0.20	U	5.0	0.20	ug/L
1634-04-4	Methyl tert-butyl Ether	45		5.0	0.23	ug/L
79-20-9	Methyl Acetate	0.45	U	5.0	0.45	ug/L
75-09-2	Methylene Chloride	0.38	U	5.0	0.38	ug/L
156-60-5	trans-1.2-Dichloroethene	0.44	U	5.0	0.44	ug/L
75-34-3	1.1-Dichloroethane	0.67	U	5.0	0.67	ug/L
110-82-7	Cvclohexane	0.57	U	5.0	0.57	ug/L
78-93-3	2-Butanone	18	J	25	1.9	ug/L
56-23-5	Carbon Tetrachloride	0.27	Ū	5.0	0.27	ug/L
156-59-2	cis-1.2-Dichloroethene	0.72	U	5.0	0.72	ug/L
67-66-3	Chloroform	0.45	U	5.0	0.45	ug/L
71-55-6	1,1,1-Trichloroethane	0.39	U	5.0	0.39	ug/L
108-87-2	Methylcyclohexane	43	-	5.0	0.47	ug/L
71-43-2	Benzene	23		5.0	0.35	ug/L
107-06-2	1.2-Dichloroethane	0.41	U	5.0	0.41	ug/L
79-01-6	Trichloroethene	0.34	Ū	5.0	0.34	ug/L
78-87-5	1.2-Dichloropropane	0.46	Ū	5.0	0.46	ug/L
75-27-4	Bromodichloromethane	0.23	Ū	5.0	0.23	ug/L
108-10-1	4-Methyl-2-Pentanone	1.8	Ū	25	1.8	ug/L
108-88-3	Toluene	4.5	J	5.0	0.16	ug/L
10061-02-6	t-1.3-Dichloropropene	0.31	Ŭ	5.0	0.31	ug/L
10061-01-5	cis-1.3-Dichloropropene	0.29	Ŭ	5.0	0.29	ug/L
79-00-5	1.1.2-Trichloroethane	0.32	Ŭ	5.0	0.32	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Client:	Environmental Business Consultants	Date Collected:	10/3/2008
Project:	3035 White Plains Road	Date Received:	10/7/2008
Client Sample ID:	IRMW-3	SDG No.:	Z4854
Lab Sample ID:	Z4854-03	Matrix:	WATER
Analytical Method:	8260	% Moisture:	100
Sample Wt/Wol:	5.0 Units: mL	Soil Extract Vol:	uL
Soil Aliquot Vol:	uL		

File ID:	Dilution:	Date Analyzed	Analytical Batch ID			,
VG015246.D	1	10/8/2008		VG093008		
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	2.4	J	25	1.8	ug/L
124-48-1	Dibromochloromethane	0.23	U	5.0	0.23	ug/L
106-93-4	1,2-Dibromoethane	0.26	U	5.0	0.26	ug/L
127-18-4	Tetrachloroethene	0.97	U	5.0	0.97	ug/L
108-90-7	Chlorobenzene	0.28	U	5.0	0.28	ug/L
100-41-4	Ethyl Benzene	140	E	5.0	0.05	ug/L
126777-61-2	m/p-Xylenes	210	E	10	0.47	ug/L
95-47-6	o-Xylene	49		5.0	0.16	ug/L
100-42-5	Styrene	0.19	U	5.0	0.19	ug/L
75-25-2	Bromoform	0.44	U	5.0	0.44	ug/L
98-82-8	Isopropylbenzene	37		5.0	0.37	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.37	U	5.0	0.37	ug/L
541-73-1	1,3-Dichlorobenzene	0.28	U	5.0	0.28	ug/L
106-46-7	1,4-Dichlorobenzene	0.22	U	5.0	0.22	ug/L
95-50-1	1,2-Dichlorobenzene	0.40	U	5.0	0.40	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.58	U	5.0	0.58	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.39	U	5.0	0.39	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	51.08	102 %	75 - 124		SPK: 50
1868-53-7	Dibromofluoromethane	50.99	102 %	84 - 122		SPK: 50
2037-26-5	Toluene-d8	49.25	99 %	83 - 117		SPK: 50
460-00-4	4-Bromofluorobenzene	49.47	99 %	74 - 123		SPK: 50
INTERNAL STA	NDARDS					
363-72-4	Pentafluorobenzene	450911	3.72			
540-36-3	1,4-Difluorobenzene	535051	4.48			
3114-55-4	Chlorobenzene-d5	469047	9.46			
3855-82-1	1,4-Dichlorobenzene-d4	236734	13.20			

J = Estimated Value

B = Analyte Found in Associated Method Blank

Client: Project: Client Sample Lab Sample I Analytical Me Sample Wt/W Soil Aliquot V	Environmental Business 3035 White Plains Road ID: IRMW-3DL D: Z4854-03DL ethod: 8260 fol: 5.0 Units: mL fol: uL	Environmental Business Consultants 3035 White Plains Road IRMW-3DL Z4854-03DL 8260 5.0 Units: mL uL		cted: ved: re: Vol:	10/3/2008 10/7/2008 Z4854 WATER 100	s s uL
File ID:	Dilution:	Date Analyzed	I	Analytic	al Batch ID	
VG015266	.D 20	10/8/2008		VG093()08	
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	18	U	100	18	ug/L
74-87-3	Chloromethane	7.4	U	100	7.4	ug/L
75-01-4	Vinyl chloride	6.0	U	100	6.0	ug/L
74-83-9	Bromomethane	27	U	100	27	ug/L
75-00-3	Chloroethane	16	U	100	16	ug/L
75-69-4	Trichlorofluoromethane	11	U	100	11	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	12	U	100	12	ug/L
75-35-4	1,1-Dichloroethene	13	U	100	13	ug/L
67-64-1	Acetone	43	U	500	43	ug/L
75-15-0	Carbon disulfide	4.0	U	100	4.0	ug/L
1634-04-4	Methyl tert-butyl Ether	40	JD	100	4.6	ug/L
79-20-9	Methyl Acetate	9.0	U	100	9.0	ug/L
75-09-2	Methylene Chloride	7.6	U	100	7.6	ug/L
156-60-5	trans-1.2-Dichloroethene	8.8	Ū	100	8.8	ug/L
75-34-3	1 1-Dichloroethane	13	U	100	13	ug/L
110-82-7	Cyclohexane	11	Ŭ	100	11	ug/L
78-93-3	2-Butanone	39	U	500	39	ug/L
56-23-5	Carbon Tetrachloride	54	U	100	54	ug/L
156-59-2	cis-1 2-Dichloroethene	14	U	100	14	ug/L
67-66-3	Chloroform	9.0	U	100	90	ug/L
71-55-6	1 1 1-Trichloroethane	7.8	U	100	7.8	ug/L
108-87-2	Methylcyclobexane	30	ID	100	9.4	ug/I
71-43-2	Benzene	20	JD	100	7.0	ug/L
107-06-2	1.2-Dichloroethane	20 & 2	JD IT	100	7.0 8.2	110/L
79-01-6	Trichloroethene	6.2		100	6.2	110/L
78-87-5	1.2-Dichloropropage	Q 2		100	0.0 Q 2	110/L
75_27_4	Bromodichloromethane	9.2 A 6		100	9.2 1.6	110/L
108-10-1	4-Methyl_2-Pentanone	0	U U	500	0	110/I
108-88-3	Toluene	30	U U	100	35	ч _б /Г 110/I
10061 02 6	t 1.3 Dichloropropona	5.2	U II	100	5.2	и <u>е</u> /L 110/I
10061 01 5	cis 1.3 Dichloropropono	5.2	U II	100	5.2	и <u>е</u> /L 110/I
70.00.5	1 1 2 Trichloroothana	J.0 6 A	U II	100	5.0 6.1	ug/L ug/I
19-00-3	1,1,2-111011010emaile	0.4	U	100	0.4	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Client:	Environmental Business Consultants	Date Collected:	10/3/2008
Project:	3035 White Plains Road	Date Received:	10/7/2008
Client Sample ID:	IRMW-3DL	SDG No.:	Z4854
Lab Sample ID:	Z4854-03DL	Matrix:	WATER
Analytical Method:	8260	% Moisture:	100
Sample Wt/Wol:	5.0 Units: mL	Soil Extract Vol:	uL
Soil Aliquot Vol:	uL		

File ID:	Dilution:	Date Analyzed	Analytical Batch ID			,
VG015266.D	20	10/8/2008		VG093008		
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	35	U	500	35	ug/L
124-48-1	Dibromochloromethane	4.6	U	100	4.6	ug/L
106-93-4	1,2-Dibromoethane	5.2	U	100	5.2	ug/L
127-18-4	Tetrachloroethene	19	U	100	19	ug/L
108-90-7	Chlorobenzene	5.6	U	100	5.6	ug/L
100-41-4	Ethyl Benzene	120	D	100	1.0	ug/L
126777-61-2	m/p-Xylenes	160	JD	200	9.4	ug/L
95-47-6	o-Xylene	40	JD	100	3.2	ug/L
100-42-5	Styrene	3.8	U	100	3.8	ug/L
75-25-2	Bromoform	8.8	U	100	8.8	ug/L
98-82-8	Isopropylbenzene	27	JD	100	7.4	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	7.4	U	100	7.4	ug/L
541-73-1	1,3-Dichlorobenzene	5.6	U	100	5.6	ug/L
106-46-7	1,4-Dichlorobenzene	4.4	U	100	4.4	ug/L
95-50-1	1,2-Dichlorobenzene	8.0	U	100	8.0	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	12	U	100	12	ug/L
120-82-1	1,2,4-Trichlorobenzene	7.8	U	100	7.8	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	48.83	98 %	75 - 124		SPK: 50
1868-53-7	Dibromofluoromethane	52.12	104 %	84 - 122		SPK: 50
2037-26-5	Toluene-d8	48.85	98 %	83 - 117		SPK: 50
460-00-4	4-Bromofluorobenzene	53.19	106 %	74 - 123		SPK: 50
INTERNAL STA	NDARDS					
363-72-4	Pentafluorobenzene	500936	3.72			
540-36-3	1,4-Difluorobenzene	607306	4.48			
3114-55-4	Chlorobenzene-d5	561789	9.46			
3855-82-1	1,4-Dichlorobenzene-d4	314349	13.19			

J = Estimated Value

B = Analyte Found in Associated Method Blank

Client: Project: Client Sample Lab Sample II Analytical Me Sample Wt/W Soil Aliquot V File ID:	Environmental Business 3035 White Plains Road ID: IRMW-4 D: Z4854-04 thod: 8260 ol: 5.0 Units: mL ol: uL Dilution:	Environmental Business Consultants 3035 White Plains Road IRMW-4 Z4854-04 8260 5.0 Units: mL uL Dilution: Date Analyzed		Date Collected: Date Received: SDG No.: Matrix: % Moisture: Soil Extract Vol:		uL
VG015247.	D 1	10/8/2008		VG093(008	
CAS Number	Daramatar	Conc	Qualifiar	DI	MDI	Unite
		Conc.	Quanner	KL	MIDL	Onits
TARGETS						_
75-71-8	Dichlorodifluoromethane	0.88	U	5.0	0.88	ug/L
74-87-3	Chloromethane	0.37	U	5.0	0.37	ug/L
75-01-4	Vinyl chloride	0.30	U	5.0	0.30	ug/L
74-83-9	Bromomethane	1.4	U	5.0	1.4	ug/L
75-00-3	Chloroethane	0.80	U	5.0	0.80	ug/L
75-69-4	Trichlorofluoromethane	0.53	U	5.0	0.53	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.61	U	5.0	0.61	ug/L
75-35-4	1,1-Dichloroethene	0.67	U	5.0	0.67	ug/L
67-64-1	Acetone	6.4	J	25	2.2	ug/L
75-15-0	Carbon disulfide	0.20	U	5.0	0.20	ug/L
1634-04-4	Methyl tert-butyl Ether	0.23	U	5.0	0.23	ug/L
79-20-9	Methyl Acetate	0.45	U	5.0	0.45	ug/L
75-09-2	Methylene Chloride	0.38	U	5.0	0.38	ug/L
156-60-5	trans-1,2-Dichloroethene	0.44	U	5.0	0.44	ug/L
75-34-3	1,1-Dichloroethane	0.67	U	5.0	0.67	ug/L
110-82-7	Cyclohexane	0.57	U	5.0	0.57	ug/L
78-93-3	2-Butanone	1.9	U	25	1.9	ug/L
56-23-5	Carbon Tetrachloride	0.27	U	5.0	0.27	ug/L
156-59-2	cis-1,2-Dichloroethene	0.72	U	5.0	0.72	ug/L
67-66-3	Chloroform	0.45	U	5.0	0.45	ug/L
71-55-6	1,1,1-Trichloroethane	0.39	U	5.0	0.39	ug/L
108-87-2	Methylcyclohexane	0.47	U	5.0	0.47	ug/L
71-43-2	Benzene	0.35	U	5.0	0.35	ug/L
107-06-2	1,2-Dichloroethane	0.41	U	5.0	0.41	ug/L
79-01-6	Trichloroethene	0.34	U	5.0	0.34	ug/L
78-87-5	1,2-Dichloropropane	0.46	U	5.0	0.46	ug/L
75-27-4	Bromodichloromethane	0.23	U	5.0	0.23	ug/L
108-10-1	4-Methyl-2-Pentanone	1.8	U	25	1.8	ug/L
108-88-3	Toluene	0.16	U	5.0	0.16	ug/L
10061-02-6	t-1,3-Dichloropropene	0.31	U	5.0	0.31	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.29	U	5.0	0.29	ug/L
79-00-5	1,1,2-Trichloroethane	0.32	U	5.0	0.32	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Client:	Environmental Business Consultants	Date Collected:	10/3/2008
Project:	3035 White Plains Road	Date Received:	10/7/2008
Client Sample ID:	IRMW-4	SDG No.:	Z4854
Lab Sample ID:	Z4854-04	Matrix:	WATER
Analytical Method:	8260	% Moisture:	100
Sample Wt/Wol:	5.0 Units: mL	Soil Extract Vol:	uL
Soil Aliquot Vol:	uL		

File ID:	Dilution:	Date Analyzed	Analytical Batch ID			,
VG015247.I	D 1	10/8/2008		VG093008		
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.8	U	25	1.8	ug/L
124-48-1	Dibromochloromethane	0.23	U	5.0	0.23	ug/L
106-93-4	1,2-Dibromoethane	0.26	U	5.0	0.26	ug/L
127-18-4	Tetrachloroethene	0.97	U	5.0	0.97	ug/L
108-90-7	Chlorobenzene	0.28	U	5.0	0.28	ug/L
100-41-4	Ethyl Benzene	1.3	J	5.0	0.05	ug/L
126777-61-2	m/p-Xylenes	2.8	J	10	0.47	ug/L
95-47-6	o-Xylene	1.2	J	5.0	0.16	ug/L
100-42-5	Styrene	0.19	U	5.0	0.19	ug/L
75-25-2	Bromoform	0.44	U	5.0	0.44	ug/L
98-82-8	Isopropylbenzene	0.37	U	5.0	0.37	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.37	U	5.0	0.37	ug/L
541-73-1	1,3-Dichlorobenzene	0.28	U	5.0	0.28	ug/L
106-46-7	1,4-Dichlorobenzene	0.22	U	5.0	0.22	ug/L
95-50-1	1,2-Dichlorobenzene	0.40	U	5.0	0.40	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.58	U	5.0	0.58	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.39	U	5.0	0.39	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	50.25	101 %	75 - 124		SPK: 50
1868-53-7	Dibromofluoromethane	50.22	100 %	84 - 122		SPK: 50
2037-26-5	Toluene-d8	50.12	100 %	83 - 117		SPK: 50
460-00-4	4-Bromofluorobenzene	48.71	97 %	74 - 123		SPK: 50
INTERNAL STA	ANDARDS					
363-72-4	Pentafluorobenzene	491237	3.71			
540-36-3	1,4-Difluorobenzene	606082	4.48			
3114-55-4	Chlorobenzene-d5	545143	9.46			
3855-82-1	1,4-Dichlorobenzene-d4	280747	13.20			

J = Estimated Value

B = Analyte Found in Associated Method Blank

	-	Acport of Analysis	3			
Client: Project: Client Sample Lab Sample II Analytical Me Sample Wt/W Soil Aliquot V	Environmental Busines 3035 White Plains Road ID: IRMW-5 D: Z4854-05 thod: 8260 ol: 5.0 Units: mL fol: uL	ss Consultants d	Date Colle Date Recei SDG No.: Matrix: % Moistu Soil Extract	cted: ved: re: Vol:	10/3/2008 10/7/2008 Z4854 WATER 100	ıL
File ID:	Dilution:	Date Analyzed	I	Analytic	cal Batch ID	
VG015248.	.D 1	10/8/2008		VG093	008	
CAS Number	er Parameter Conc. Qualifier F		Conc. Qualifier RL		MDL U	Jnits
TARGETS						
75-71-8	Dichlorodifluoromethane	2.4	J	5.0	0.88 ug/	/L
74-87-3	Chloromethane	7.6		5.0	0.37 ug/	/L
75-01-4	Vinyl chloride	0.30	U	5.0	0.30 ug/	/L
74-83-9	Bromomethane	2.0	J	5.0	1.4 ug/	/L
75-00-3	Chloroethane	1.8	J	5.0	0.80 ug/	/L
75-69-4	Trichlorofluoromethane	0.53	U	5.0	0.53 ug/	/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.61	U	5.0	0.61 ug/	/L
75-35-4	1,1-Dichloroethene	0.67	U	5.0	0.67 ug/	/L
57-64-1	Acetone	170		25	2.2 ug/	/L
75-15-0	Carbon disulfide	19		5.0	0.20 ug/	/L
1634-04-4	Methyl tert-butyl Ether	3.8	J	5.0	0.23 ug/	/L
79-20-9	Methyl Acetate	18		5.0	0.45 ug/	/L
75-09-2	Methylene Chloride	10		5.0	0.38 ug/	/L
156-60-5	trans-1,2-Dichloroethene	0.44	U	5.0	0.44 ug	/L
75-34-3	1,1-Dichloroethane	1.1	J	5.0	0.67 ug/	/L
110-82-7	Cyclohexane	36		5.0	0.57 ug/	/L
78-93-3	2-Butanone	78		25	1.9 ug/	/L
56-23-5	Carbon Tetrachloride	0.27	U	5.0	0.27 ug/	/L
156-59-2	cis-1,2-Dichloroethene	0.72	U	5.0	0.72 ug/	/L
67-66-3	Chloroform	0.45	U	5.0	0.45 ug/	/L
71-55-6	1,1,1-Trichloroethane	0.39	U	5.0	0.39 ug	/L
108-87-2	Methylcyclohexane	24		5.0	0.47 ug/	/L
71-43-2	Benzene	44		5.0	0.35 ug/	/L
107-06-2	1,2-Dichloroethane	0.41	U	5.0	0.41 ug/	/L
79-01-6	Trichloroethene	0.34	U	5.0	0.34 ug/	/L
78-87-5	1,2-Dichloropropane	0.46	U	5.0	0.46 ug/	/L
75-27-4	Bromodichloromethane	0.23	U	5.0	0.23 ug/	/L
108-10-1	4-Methyl-2-Pentanone	5.2	J	25	1.8 ug/	/L

U = Not Detected

108-88-3

10061-02-6

10061-01-5

79-00-5

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

Toluene

t-1,3-Dichloropropene

1,1,2-Trichloroethane

cis-1,3-Dichloropropene

J = Estimated Value

330

0.31

0.29

0.32

B = Analyte Found in Associated Method Blank

Е

U

U

U

5.0

5.0

5.0

5.0

0.16

0.31

0.29

0.32

ug/L

ug/L

ug/L

ug/L

Client:	Environmental Business Consultants	Date Collected:	10/3/2008
Project:	3035 White Plains Road	Date Received:	10/7/2008
Client Sample ID:	IRMW-5	SDG No.:	Z4854
Lab Sample ID:	Z4854-05	Matrix:	WATER
Analytical Method:	8260	% Moisture:	100
Sample Wt/Wol:	5.0 Units: mL	Soil Extract Vol:	uL
Soil Aliquot Vol:	uL		

File ID: VG015248.D	Dilution:	Date Analyzed 10/8/2008	Analytical Batch ID VG093008			
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	11	J	25	1.8	ug/L
124-48-1	Dibromochloromethane	0.23	U	5.0	0.23	ug/L
106-93-4	1,2-Dibromoethane	0.26	U	5.0	0.26	ug/L
127-18-4	Tetrachloroethene	0.97	U	5.0	0.97	ug/L
108-90-7	Chlorobenzene	0.28	U	5.0	0.28	ug/L
100-41-4	Ethyl Benzene	230	Е	5.0	0.05	ug/L
126777-61-2	m/p-Xylenes	950	Е	10	0.47	ug/L
95-47-6	o-Xylene	390	Е	5.0	0.16	ug/L
100-42-5	Styrene	0.19	U	5.0	0.19	ug/L
75-25-2	Bromoform	0.44	U	5.0	0.44	ug/L
98-82-8	Isopropylbenzene	23		5.0	0.37	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.37	U	5.0	0.37	ug/L
541-73-1	1,3-Dichlorobenzene	0.28	U	5.0	0.28	ug/L
106-46-7	1,4-Dichlorobenzene	0.22	U	5.0	0.22	ug/L
95-50-1	1,2-Dichlorobenzene	0.40	U	5.0	0.40	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.58	U	5.0	0.58	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.39	U	5.0	0.39	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	53.04	106 %	75 - 124		SPK: 50
1868-53-7	Dibromofluoromethane	49.92	100 %	84 - 122		SPK: 50
2037-26-5	Toluene-d8	49.96	100 %	83 - 117		SPK: 50
460-00-4	4-Bromofluorobenzene	45.25	91 %	74 - 123		SPK: 50
INTERNAL STA	NDARDS					
363-72-4	Pentafluorobenzene	473511	3.72			
540-36-3	1,4-Difluorobenzene	600232	4.48			
3114-55-4	Chlorobenzene-d5	519290	9.47			
3855-82-1	1,4-Dichlorobenzene-d4	254867	13.19			

J = Estimated Value

B = Analyte Found in Associated Method Blank

Client: Project: Client Sample Lab Sample I Analytical Me Sample Wt/W Soil Aliquot V	Environmental Business 3035 White Plains Road ID: IRMW-5DL D: Z4854-05DL ethod: 8260 fol: 5.0 Units: mL fol: uL	Environmental Business Consultants 3035 White Plains Road IRMW-5DL Z4854-05DL 8260 5.0 Units: mL uL		cted: ved: re: Vol:	10/3/2008 10/7/2008 Z4854 WATER 100	uL
File ID:	Dilution:	Date Analyzed	P	Analytic	al Batch ID	'
VG015264	.D 20	10/8/2008		VG093()08	
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	18	U	100	18	ug/L
74-87-3	Chloromethane	7.4	U	100	7.4	ug/L
75-01-4	Vinyl chloride	6.0	U	100	6.0	ug/L
74-83-9	Bromomethane	27	U	100	27	ug/L
75-00-3	Chloroethane	16	U	100	16	ug/L
75-69-4	Trichlorofluoromethane	11	U	100	11	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	12	U	100	12	ug/L
75-35-4	1,1-Dichloroethene	13	U	100	13	ug/L
67-64-1	Acetone	170	JD	500	43	ug/L
75-15-0	Carbon disulfide	4.0	U	100	4.0	ug/L
1634-04-4	Methyl tert-butyl Ether	4.6	U	100	4.6	ug/L
79-20-9	Methyl Acetate	9.0	U	100	9.0	ug/L
75-09-2	Methylene Chloride	7.6	Ū	100	7.6	ug/L
156-60-5	trans-1.2-Dichloroethene	8.8	Ū	100	8.8	ug/L
75-34-3	1 1-Dichloroethane	13	U	100	13	ug/L
110-82-7	Cyclohexane	49	ID	100	11	ug/L
78-93-3	2-Butanone	79	ID	500	39	ug/L
56-23-5	Carbon Tetrachloride	54	JD U	100	54	ug/L
156-59-2	cis-1 2-Dichloroethene	14	U	100	14	ug/L
67-66-3	Chloroform	9.0	U	100	90	ug/L
71-55-6	1 1 1-Trichloroethane	7.8	U	100	7.8	ug/L
108-87-2	Methylcyclohexane	35	UD UD	100	9.4	ug/L ug/I
71_43_9	Benzene	55 A7	JD JD	100	7.4	ч _б /Г 110/I
107_06_2	1.2-Dichloroethane	+/ & 2	JD TI	100	7.0 & 2	ч <i>ы</i> Г 110/I
79_01_6	Trichloroethene	0.2 6 8	U U	100	6.2	ч _б /Г 110/I
78-87-5	1.2-Dichloropropage	0.0	U II	100	0.0 Q 2	ч _б /L 110/I
75_27_A	Bromodichloromethane	9.2 1.6	U U	100	9.2 1.6	ч _б /Г 110/I
108_10_1	A-Methyl-2-Pentanone	+.0	U II	500	+.U 25	ч _б /L 110/I
108-88-3	Toluene	300		100	20	ug/L ug/I
10061 02 6	t 1.3 Dichloropropaga	570		100	5.2	ug/L ug/I
10061 01 5	cis 1.3 Dichloropropene	0.2 5 0	U	100	0.2 5 0	ug/L
70.00 5	1 1 2 Trichloroothers	J.0	U	100	J.0 6 A	ug/L
/9-00-3	1,1,2-1ricmoroetnane	0.4	U	100	0.4	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Client:	Environmental Business Consultants	Date Collected:	10/3/2008
Project:	3035 White Plains Road	Date Received:	10/7/2008
Client Sample ID:	IRMW-5DL	SDG No.:	Z4854
Lab Sample ID:	Z4854-05DL	Matrix:	WATER
Analytical Method:	8260	% Moisture:	100
Sample Wt/Wol:	5.0 Units: mL	Soil Extract Vol:	uL
Soil Aliquot Vol:	uL		

File ID:	Dilution:	Date Analyzed	Analytical Batch ID			
VG015264.D	20	10/8/2008		VG093008		
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	35	U	500	35	ug/L
124-48-1	Dibromochloromethane	4.6	U	100	4.6	ug/L
106-93-4	1,2-Dibromoethane	5.2	U	100	5.2	ug/L
127-18-4	Tetrachloroethene	19	U	100	19	ug/L
108-90-7	Chlorobenzene	5.6	U	100	5.6	ug/L
100-41-4	Ethyl Benzene	280	D	100	1.0	ug/L
126777-61-2	m/p-Xylenes	1200	D	200	9.4	ug/L
95-47-6	o-Xylene	500	D	100	3.2	ug/L
100-42-5	Styrene	3.8	U	100	3.8	ug/L
75-25-2	Bromoform	8.8	U	100	8.8	ug/L
98-82-8	Isopropylbenzene	22	JD	100	7.4	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	7.4	U	100	7.4	ug/L
541-73-1	1,3-Dichlorobenzene	5.6	U	100	5.6	ug/L
106-46-7	1,4-Dichlorobenzene	4.4	U	100	4.4	ug/L
95-50-1	1,2-Dichlorobenzene	8.0	U	100	8.0	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	12	U	100	12	ug/L
120-82-1	1,2,4-Trichlorobenzene	7.8	U	100	7.8	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	48.57	97 %	75 - 124		SPK: 50
1868-53-7	Dibromofluoromethane	53.08	106 %	84 - 122		SPK: 50
2037-26-5	Toluene-d8	48.11	96 %	83 - 117		SPK: 50
460-00-4	4-Bromofluorobenzene	54.11	108 %	74 - 123		SPK: 50
INTERNAL STA	NDARDS					
363-72-4	Pentafluorobenzene	404708	3.72			
540-36-3	1,4-Difluorobenzene	495451	4.48			
3114-55-4	Chlorobenzene-d5	450564	9.46			
3855-82-1	1,4-Dichlorobenzene-d4	249919	13.20			

J = Estimated Value

B = Analyte Found in Associated Method Blank

Client: Project: Client Sample Lab Sample II Analytical Me Sample Wt/W Soil Aliquot V File ID:	Environmental Busine 3035 White Plains Roa ID: IRMW-8 D: Z4854-07 thod: 8260 ol: 5.0 Units: mL fol: uL Dilution:	ss Consultants Id Date Analyzed	Date Collected: Date Received: SDG No.: Matrix: % Moisture: Soil Extract Vol: nalyzed Analytic		Consultants Date Collected: 10/3/20 Date Received: 10/7/20 SDG No.: Z4854 Matrix: WATE % Moisture: 100 Soil Extract Vol: Soil Extract Vol:		10/3/2008 10/7/2008 Z4854 WATER 100	uL
VG015249.	D 1	10/8/2008		VG093	008			
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units		
TARGETS								
75-71-8	Dichlorodifluoromethane	0.88	U	5.0	0.88	ug/L		
74-87-3	Chloromethane	0.37	Ū	5.0	0.37	ug/L		
75-01-4	Vinvl chloride	0.30	Ū	5.0	0.30	ug/L		
74-83-9	Bromomethane	14	U	5.0	14	ug/L		
75-00-3	Chloroethane	0.80	U	5.0	0.80			
75-69-4	Trichlorofluoromethane	0.53	U	5.0	0.53	ug/L		
76-13-1	1 1 2-Trichlorotrifluoroethane	0.55	U	5.0	0.55			
75-35-4	1 1-Dichloroethene	0.67	U	5.0	0.67	ug/L		
67-64-1	Acetone	70	U	25	0.07			
75-15-0	Carbon disulfide	34	Т	5.0	0.20	ug/L		
1634-04-4	Methyl tert-butyl Ether	0.23	J IJ	5.0	0.20	ug/I		
79_20_9	Methyl Acetate	0.25	U	5.0	0.25	ug/L ug/I		
75.09.2	Methylene Chloride	0.45	U	5.0	0.45	ug/L		
156 60 5	trans 1.2 Dichloroethene	0.30	U	5.0	0.38	ug/L ug/I		
75 34 3	1 1 Dichloroothano	0.44	U	5.0	0.44	ug/L		
110 82 7	Cyclobeyana	0.07	U	5.0	0.07	ug/L ug/I		
78 02 2	2 Butenone	40		25	1.0	ug/L		
70-93-3 56 92 5	Carbon Tetrachlorida	0.27	II	23 5.0	1.9	ug/L		
156 50 2	carbon Tetracinonde	0.27	U	5.0	0.27	ug/L		
67 66 2	Chloroform	0.72	U	5.0	0.72	ug/L		
71 55 6	1 1 1 Trichloreathene	0.43	U	5.0	0.43	ug/L		
108 87 2	1,1,1-Inchoroethalle	0.37	U	5.0	0.39	ug/L		
71 42 2	Banzana	20		5.0	0.47	ug/L		
107.06.2	1 2 Dichloroathana	98	ŢŢ	5.0	0.55	ug/L		
107-00-2 70.01 <i>4</i>	1,2-Dicinoroethana	0.41	U	5.0 5.0	0.41	ug/L		
17-01-0 70 07 5	1 2 Dichloroproper -	0.54	U	5.0	0.34	ug/L		
10-01-2	1,2-Dicinoropropane	0.40	U	5.0 5.0	0.40	ug/L		
102 10 1	4 Mothyl 2 Dontonono	0.25	U	5.0 25	0.23	ug/L		
108-10-1	4-ivieinyi-2-rentanone	1.8	U	23 5 0	1.8	ug/L		
100-00-3	t 1 2 Dichlore and a second	1100	E	5.0	0.10	ug/L		
10001-02-0	cia 1.2 Dichlerorgene	0.31	U	5.0	0.31	ug/L		
70.00 5	1.1.2 Trichlers (have	0.29	U	5.0	0.29	ug/L		
/9-00-5	1,1,2-Irichloroethane	0.32	U	5.0	0.32	ug/L		

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Client:	Environmental Business Consultants	Date Collected:	10/3/2008
Project:	3035 White Plains Road	Date Received:	10/7/2008
Client Sample ID:	IRMW-8	SDG No.:	Z4854
Lab Sample ID:	Z4854-07	Matrix:	WATER
Analytical Method:	8260	% Moisture:	100
Sample Wt/Wol:	5.0 Units: mL	Soil Extract Vol:	uL
Soil Aliquot Vol:	uL		

File ID: VG015249.I	Dilution:	Date Analyzed 10/8/2008	l	Analytical I VG093008	Batch ID	
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	2.1	J	25	1.8	ug/L
124-48-1	Dibromochloromethane	0.23	U	5.0	0.23	ug/L
106-93-4	1,2-Dibromoethane	0.26	U	5.0	0.26	ug/L
127-18-4	Tetrachloroethene	0.97	U	5.0	0.97	ug/L
108-90-7	Chlorobenzene	0.28	U	5.0	0.28	ug/L
100-41-4	Ethyl Benzene	600	Е	5.0	0.05	ug/L
126777-61-2	m/p-Xylenes	2200	Е	10	0.47	ug/L
95-47-6	o-Xylene	900	Е	5.0	0.16	ug/L
100-42-5	Styrene	2.3	J	5.0	0.19	ug/L
75-25-2	Bromoform	0.44	U	5.0	0.44	ug/L
98-82-8	Isopropylbenzene	41		5.0	0.37	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.37	U	5.0	0.37	ug/L
541-73-1	1,3-Dichlorobenzene	0.28	U	5.0	0.28	ug/L
106-46-7	1,4-Dichlorobenzene	0.22	U	5.0	0.22	ug/L
95-50-1	1,2-Dichlorobenzene	0.40	U	5.0	0.40	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.58	U	5.0	0.58	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.39	U	5.0	0.39	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	51.53	103 %	75 - 124		SPK: 50
1868-53-7	Dibromofluoromethane	48.39	97 %	84 - 122		SPK: 50
2037-26-5	Toluene-d8	48.26	97 %	83 - 117		SPK: 50
460-00-4	4-Bromofluorobenzene	42.54	85 %	74 - 123		SPK: 50
INTERNAL STA	NDARDS					
363-72-4	Pentafluorobenzene	493447	3.72			
540-36-3	1,4-Difluorobenzene	636663	4.48			
3114-55-4	Chlorobenzene-d5	540693	9.47			
3855-82-1	1.4-Dichlorobenzene-d4	251478	13.20			

B = Analyte Found in Associated Method Blank

Client: Project: Client Sample Lab Sample II Analytical Met Sample Wt/Wo Soil Aliquot Vo	Environmental Business (3035 White Plains Road ID: IRMW-8DL D: Z4854-07DL thod: 8260 DI: 5.0 Units: mL ol: uL	Consultants	Date Colle Date Recei SDG No.: Matrix: % Moistu Soil Extract	cted: ved: re: Vol:	10/3/2008 10/7/2008 Z4854 WATER 100	uL
File ID:	Dilution:	Date Analyzed	I	Analytica VD1015	al Batch ID	
VD020052.	D 50	10/20/2008		VD1015	08	
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	44	U	250	44	ug/L
74-87-3	Chloromethane	18	U	250	18	ug/L
75-01-4	Vinyl chloride	15	U	250	15	ug/L
74-83-9	Bromomethane	68	U	250	68	ug/L
75-00-3	Chloroethane	40	U	250	40	ug/L
75-69-4	Trichlorofluoromethane	26	U	250	26	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	30	U	250	30	ug/L
75-35-4	1,1-Dichloroethene	34	U	250	34	ug/L
67-64-1	Acetone	110	U	1200	110	ug/L
75-15-0	Carbon disulfide	10	U	250	10	ug/L
1634-04-4	Methyl tert-butyl Ether	12	U	250	12	ug/L
79-20-9	Methyl Acetate	22	U	250	22	ug/L
75-09-2	Methylene Chloride	19	U	250	19	ug/L
156-60-5	trans-1,2-Dichloroethene	22	U	250	22	ug/L
75-34-3	1,1-Dichloroethane	34	U	250	34	ug/L
110-82-7	Cyclohexane	28	U	250	28	ug/L
78-93-3	2-Butanone	97	U	1200	97	ug/L
56-23-5	Carbon Tetrachloride	14	U	250	14	ug/L
156-59-2	cis-1,2-Dichloroethene	36	U	250	36	ug/L
67-66-3	Chloroform	22	U	250	22	ug/L
71-55-6	1,1,1-Trichloroethane	20	U	250	20	ug/L
108-87-2	Methylcyclohexane	24	U	250	24	ug/L
71-43-2	Benzene	94	JD	250	18	ug/L
107-06-2	1,2-Dichloroethane	20	U	250	20	ug/L
79-01-6	Trichloroethene	17	U	250	17	ug/L
78-87-5	1,2-Dichloropropane	23	U	250	23	ug/L
75-27-4	Bromodichloromethane	12	U	250	12	ug/L
108-10-1	4-Methyl-2-Pentanone	88	U	1200	88	ug/L
108-88-3	Toluene	1400	D	250	8.0	ug/L
10061-02-6	t-1,3-Dichloropropene	16	U	250	16	ug/L
10061-01-5	c1s-1,3-Dichloropropene	14	U	250	14	ug/L
79-00-5	1,1,2-Trichloroethane	16	U	250	16	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Client:	Environmental Business Consultants	Date Collected:	10/3/2008
-		Dure concercar	10/0/2000
Project:	3035 White Plains Road	Date Received:	10/7/2008
Client Sample ID:	IRMW-8DL	SDG No.:	Z4854
Lab Sample ID:	Z4854-07DL	Matrix:	WATER
Analytical Method:	8260	% Moisture:	100
Sample Wt/Wol:	5.0 Units: mL	Soil Extract Vol:	uL
Soil Aliquot Vol:	nL		

File ID: VD020052.D	Dilution: Date Analy 50 10/20/2008		Analytical Batch ID VD101508				
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units	
591-78-6	2-Hexanone	88	U	1200	88	ug/L	
124-48-1	Dibromochloromethane	12	U	250	12	ug/L	
106-93-4	1,2-Dibromoethane	13	U	250	13	ug/L	
127-18-4	Tetrachloroethene	48	U	250	48	ug/L	
108-90-7	Chlorobenzene	14	U	250	14	ug/L	
100-41-4	Ethyl Benzene	880	D	250	2.5	ug/L	
126777-61-2	m/p-Xylenes	3000	D	500	24	ug/L	
95-47-6	o-Xylene	1200	D	250	8.0	ug/L	
100-42-5	Styrene	9.5	U	250	9.5	ug/L	
75-25-2	Bromoform	22	U	250	22	ug/L	
98-82-8	Isopropylbenzene	36	JD	250	18	ug/L	
79-34-5	1,1,2,2-Tetrachloroethane	18	U	250	18	ug/L	
541-73-1	1,3-Dichlorobenzene	14	U	250	14	ug/L	
106-46-7	1,4-Dichlorobenzene	11	U	250	11	ug/L	
95-50-1	1,2-Dichlorobenzene	20	U	250	20	ug/L	
96-12-8	1,2-Dibromo-3-Chloropropane	29	U	250	29	ug/L	
120-82-1	1,2,4-Trichlorobenzene	20	U	250	20	ug/L	
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	45.29	91 %	75 - 124		SPK: 50	
1868-53-7	Dibromofluoromethane	43.5	87 %	84 - 122		SPK: 50	
2037-26-5	Toluene-d8	50.34	101 %	83 - 117		SPK: 50	
460-00-4	4-Bromofluorobenzene	49.32	99 %	74 - 123		SPK: 50	
INTERNAL STA	NDARDS						
363-72-4	Pentafluorobenzene	300792	4.61				
540-36-3	1.4-Difluorobenzene	585538	5.35				
3114-55-4	Chlorobenzene-d5	667616	10.30				
3855-82-1	1.4-Dichlorobenzene-d4	323954	12.80				

J = Estimated Value

B = Analyte Found in Associated Method Blank

Client: Project: Client Sample Lab Sample II Analytical Met Sample Wt/Wo Soil Aliquot Vo File ID:	Environmental Business 3035 White Plains Road ID: IRMW-9 D: Z4854-08 hod: 8260 h: 5.0 Units: mL bl: uL Dilution:	Consultants Date Analyzed	Date Collected: Date Received: SDG No.: Matrix: % Moisture: Soil Extract Vol: Analyti		10/3/2008 10/7/2008 Z4854 WATER 100	uL
VG015250.	D 1	10/8/2008		VG093	008	
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.88	U	5.0	0.88	ug/L
74-87-3	Chloromethane	0.37	U	5.0	0.37	ug/L
75-01-4	Vinyl chloride	0.30	U	5.0	0.30	ug/L
74-83-9 75-00-3	Bromomethane Chloroethane	1.4 0.80	U U U	5.0 5.0	1.4 0.80	ug/L ug/L
75-69-4 76-13-1 75-35-4	1,1,2-Trichlorottifluoroethane 1,1.Dichloroethene	0.53 0.61 0.67	U U U	5.0 5.0 5.0	0.53 0.61 0.67	ug/L ug/L ug/L
67-64-1	Acetone	2.2	U	25	2.2	ug/L
75-15-0	Carbon disulfide	0.20	U	5.0	0.20	ug/L
1634-04-4	Methyl tert-butyl Ether	0.23	U	5.0	0.23	ug/L
79-20-9 75-09-2	Methyl Acetate Methylene Chloride	0.45 0.38	U U U	5.0 5.0	0.45 0.38	ug/L ug/L
156-60-5	trans-1,2-Dichloroethene	0.44	U	5.0	0.44	ug/L
75-34-3	1,1-Dichloroethane	0.67	U	5.0	0.67	ug/L
110-82-7	Cyclohexane	0.57	U	5.0	0.57	ug/L
78-93-3	2-Butanone	1.9	U	25	1.9	ug/L
56-23-5	Carbon Tetrachloride	0.27	U	5.0	0.27	ug/L
156-59-2	cis-1 2-Dichloroethene	0.72	U	5.0	0.72	ug/L
67-66-3	Chloroform	0.45	U	5.0	0.45	ug/L
71-55-6	1,1,1-Trichloroethane	0.39	U	5.0	0.39	ug/L
108-87-2	Methylcyclohexane	0.47	U	5.0	0.47	ug/L
71-43-2	Benzene	0.35	U	5.0	0.35	ug/L
107-06-2	1.2-Dichloroethane	0.41	II	5.0	0.41	ug/L
79-01-6 78-87-5	Trichloroethene 1,2-Dichloropropane	0.41 0.34 0.46	U U U	5.0 5.0 5.0	0.41 0.34 0.46	ug/L ug/L ug/L
75-27-4	Bromodichloromethane	0.23	U	5.0	0.23	ug/L
108-10-1	4-Methyl-2-Pentanone	1.8	U	25	1.8	ug/L
108-88-3	Toluene	0.16	U	5.0	0.16	ug/L
10061-02-6	t-1,3-Dichloropropene	0.31	U	5.0	0.31	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.29	U	5.0	0.29	ug/L
79-00-5	1,1,2-Trichloroethane	0.32	U	5.0	0.32	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Client:	Environmental Business Consultants	Date Collected:	10/3/2008
Project:	3035 White Plains Road	Date Received:	10/7/2008
Client Sample ID:	IRMW-9	SDG No.:	Z4854
Lab Sample ID:	Z4854-08	Matrix:	WATER
Analytical Method:	8260	% Moisture:	100
Sample Wt/Wol:	5.0 Units: mL	Soil Extract Vol:	uL
Soil Aliquot Vol:	uL		

File ID: VG015250.D	Dilution:	Date Analyzed 10/8/2008	Analytical Batch ID VG093008			
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.8	U	25	1.8	ug/L
124-48-1	Dibromochloromethane	0.23	U	5.0	0.23	ug/L
106-93-4	1,2-Dibromoethane	0.26	U	5.0	0.26	ug/L
127-18-4	Tetrachloroethene	0.97	U	5.0	0.97	ug/L
108-90-7	Chlorobenzene	0.28	U	5.0	0.28	ug/L
100-41-4	Ethyl Benzene	0.05	U	5.0	0.05	ug/L
126777-61-2	m/p-Xylenes	0.47	U	10	0.47	ug/L
95-47-6	o-Xylene	0.16	U	5.0	0.16	ug/L
100-42-5	Styrene	0.19	U	5.0	0.19	ug/L
75-25-2	Bromoform	0.44	U	5.0	0.44	ug/L
98-82-8	Isopropylbenzene	0.37	U	5.0	0.37	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.37	U	5.0	0.37	ug/L
541-73-1	1,3-Dichlorobenzene	0.28	U	5.0	0.28	ug/L
106-46-7	1,4-Dichlorobenzene	0.22	U	5.0	0.22	ug/L
95-50-1	1,2-Dichlorobenzene	0.40	U	5.0	0.40	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.58	U	5.0	0.58	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.39	U	5.0	0.39	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	51.85	104 %	75 - 124		SPK: 50
1868-53-7	Dibromofluoromethane	49.27	99 %	84 - 122		SPK: 50
2037-26-5	Toluene-d8	44.88	90 %	83 - 117		SPK: 50
460-00-4	4-Bromofluorobenzene	47.24	94 % 74 - 123 SPK		SPK: 50	
INTERNAL STA	NDARDS					
363-72-4	Pentafluorobenzene	513052	3.72			
540-36-3	1,4-Difluorobenzene	650191	4.48			
3114-55-4	Chlorobenzene-d5	563113	9.47			
3855-82-1	1,4-Dichlorobenzene-d4	292787	13.20			

J = Estimated Value

B = Analyte Found in Associated Method Blank

Order ID: SDG No.: Z4854 Z4854 Project ID: ENVI49 Client: **Environmental Business Consultants** Sample ID **Client ID** Matrix Parameter Concentration С RDL MDL Units **Client ID: IRMW-1** Z4854-01 **IRMW-1** WATER Dichlorodifluoromethane 4.6 J 5.0 0.88 ug/L Acetone 24 J 25 2.2 Z4854-01 IRMW-1 WATER ug/L Z4854-01 **IRMW-1** WATER Carbon disulfide 1.2 J 5.0 0.20 ug/L WATER Methyl tert-butyl Ether 82 5.0 0.23 Z4854-01 IRMW-1 ug/L 10 Z4854-01 **IRMW-1** WATER Methyl Acetate 5.0 0.45 ug/L 42 Z4854-01 **IRMW-1** WATER Cyclohexane 5.0 0.57 ug/L Z4854-01 **IRMW-1** WATER 2-Butanone 22 J 25 1.9 ug/L WATER 91 5.0 0.47 Z4854-01 IRMW-1 Methylcyclohexane ug/L Z4854-01 **IRMW-1** WATER Benzene 13 5.00.35 ug/L J 25 Z4854-01 IRMW-1 WATER 4-Methyl-2-Pentanone 6.4 1.8 ug/L Z4854-01 **IRMW-1** WATER Toluene 4.0J 5.0 0.16 ug/L Z4854-01 **IRMW-1** WATER 2-Hexanone 2.7 J 25 1.8 ug/L Z4854-01 IRMW-1 WATER Ethyl Benzene 220 E 5.0 0.05 ug/L Z4854-01 **IRMW-1** WATER m/p-Xylenes 120 10 0.47 ug/L o-Xylene 27 5.0 IRMW-1 WATER 0.16 ug/L Z4854-01 Z4854-01 **IRMW-1** WATER Isopropylbenzene 37 5.0 0.37 ug/L Total VOC's: 706.90 Total TIC's: 0.00 Total VOC's and TIC's: 706.90 **Client ID: IRMW-1DL** Z4854-01DL **IRMW-1DL** WATER Methyl tert-butyl Ether 80 JD 100 ug/L 4.6 100 9.0 Z4854-01DL **IRMW-1DL** WATER Methyl Acetate D 100 ug/L **IRMW-1DL** WATER Cyclohexane 74 JD Z4854-01DL 100 11 ug/L Z4854-01DL **IRMW-1DL** WATER Methylcyclohexane 190 D 100 9.4 ug/L 240 D Z4854-01DL **IRMW-1DL** WATER Ethyl Benzene 100 1.0 ug/L Z4854-01DL **IRMW-1DL** WATER m/p-Xylenes 110 JD 200 9.4 ug/L Z4854-01DL **IRMW-1DL** WATER o-Xylene 31 JD 100 3.2 ug/L Z4854-01DL **IRMW-1DL** WATER Isopropylbenzene 43 JD 100 7.4 ug/L Total VOC's: 868.00 Total TIC's: 0.00 Total VOC's and TIC's: 868.00

Summary Sheet SW-846

Order ID: SDG No.: Z4854 Z4854 Project ID: ENVI49 Client: **Environmental Business Consultants** Sample ID **Client ID** Matrix Parameter Concentration С RDL MDL Units **Client ID: IRMW-3** Z4854-03 **IRMW-3** WATER Acetone 19 J 25 2.2 ug/L 45 5.0 0.23 Z4854-03 IRMW-3 WATER Methyl tert-butyl Ether ug/L IRMW-3 Z4854-03 WATER 2-Butanone 18 J 25 1.9 ug/L IRMW-3 WATER Methylcyclohexane 43 5.0 0.47 Z4854-03 ug/L 23 Z4854-03 IRMW-3 WATER Benzene 5.0 0.35 ug/L Z4854-03 4.5 **IRMW-3** WATER Toluene J 5.0 0.16 ug/L Z4854-03 **IRMW-3** WATER 2-Hexanone 2.4 J 25 1.8 ug/L WATER 140 E 5.0 0.05 Z4854-03 IRMW-3 Ethyl Benzene ug/L Z4854-03 **IRMW-3** WATER m/p-Xylenes 210 Е 10 0.47 ug/L 49 5.0 Z4854-03 IRMW-3 WATER o-Xylene 0.16 ug/L Z4854-03 **IRMW-3** WATER Isopropylbenzene 37 5.0 0.37 ug/L Total VOC's: 590.90 Total TIC's: 0.00 Total VOC's and TIC's: 590.90 **Client ID: IRMW-3DL** Z4854-03DL **IRMW-3DL** WATER 40 JD 100 Methyl tert-butyl Ether 4.6 ug/L 30 9.4 Z4854-03DL **IRMW-3DL** WATER Methylcyclohexane JD 100 ug/L Z4854-03DL **IRMW-3DL** WATER Benzene 20 JD 100 7.0ug/L WATER Ethyl Benzene 120 100 1.0 Z4854-03DL **IRMW-3DL** D ug/L Z4854-03DL **IRMW-3DL** WATER m/p-Xylenes 160 JD 200 9.4 ug/L Z4854-03DL **IRMW-3DL** WATER o-Xylene 40 JD 100 3.2 ug/L **IRMW-3DL** WATER 27 Z4854-03DL Isopropylbenzene JD 100 7.4 ug/L Total VOC's: 437.00 Total TIC's: 0.00 Total VOC's and TIC's: 437.00 **Client ID: IRMW-4** Z4854-04 WATER J 2.2 **IRMW-4** Acetone 6.4 25 ug/L Z4854-04 **IRMW-4** WATER Ethyl Benzene 1.3 J 5.0 0.05 ug/L Z4854-04 **IRMW-4** WATER m/p-Xylenes 2.8 J 10 0.47 ug/L Z4854-04 **IRMW-4** WATER o-Xylene 1.2 J 5.0 0.16 ug/L Total VOC's: 11.70 Total TIC's: 0.00 Total VOC's and TIC's: 11.70

Summary Sheet SW-846

SW-846 Order ID: SDG No.: Z4854 Z4854 Project ID: ENVI49 Client: **Environmental Business Consultants** Sample ID **Client ID** Matrix Parameter Concentration С RDL MDL Units **Client ID: IRMW-5** Z4854-05 **IRMW-5** WATER Dichlorodifluoromethane 2.4 J 5.0 0.88 ug/L Chloromethane 7.6 5.0 0.37 Z4854-05 **IRMW-5** WATER ug/L Z4854-05 **IRMW-5** WATER Bromomethane 2.0J 5.0 1.4 ug/L J **IRMW-5** WATER Chloroethane 1.8 5.00.80 Z4854-05 ug/L 170 Z4854-05 **IRMW-5** WATER Acetone 25 2.2 ug/L 19 Z4854-05 **IRMW-5** WATER Carbon disulfide 5.0 0.20 ug/L Z4854-05 **IRMW-5** WATER Methyl tert-butyl Ether 3.8 J 5.0 0.23 ug/L WATER Z4854-05 **IRMW-5** Methyl Acetate 18 5.0 0.45 ug/L Z4854-05 **IRMW-5** WATER 10 5.00.38 Methylene Chloride ug/L J 5.0 Z4854-05 **IRMW-5** WATER 1,1-Dichloroethane 1.1 0.67 ug/L Z4854-05 **IRMW-5** WATER Cyclohexane 36 5.0 0.57 ug/L Z4854-05 **IRMW-5** WATER 2-Butanone 78 25 1.9 ug/L Z4854-05 **IRMW-5** WATER Methylcyclohexane 24 5.0 0.47 ug/L Z4854-05 **IRMW-5** WATER Benzene 44 5.00.35 ug/L J **IRMW-5** WATER 4-Methyl-2-Pentanone 5.2 25 1.8 Z4854-05 ug/L Z4854-05 **IRMW-5** WATER Toluene 330 E 5.0 0.16 ug/L J Z4854-05 **IRMW-5** WATER 2-Hexanone 11 25 1.8 ug/L E Z4854-05 **IRMW-5** WATER Ethyl Benzene 230 5.00.05 ug/L WATER m/p-Xylenes 950 Е 10 0.47 Z4854-05 **IRMW-5** ug/L Z4854-05 **IRMW-5** WATER o-Xylene 390 Е 5.0 0.16 ug/L 5.0 Z4854-05 IRMW-5 WATER 23 0.37 Isopropylbenzene ug/L Total VOC's: 2356.90 Total TIC's: 0.00 Total VOC's and TIC's: 2356.90 **Client ID: IRMW-5DL** Z4854-05DL **IRMW-5DL** WATER Acetone 170 JD 500 43 ug/L Z4854-05DL **IRMW-5DL** WATER Cyclohexane 49 JD 100 ug/L 11 Z4854-05DL **IRMW-5DL** WATER 2-Butanone 79 JD 500 39 ug/L Z4854-05DL **IRMW-5DL** WATER Methylcyclohexane 35 JD 100 9.4 ug/L Benzene 7.0 Z4854-05DL **IRMW-5DL** WATER 47 JD 100 ug/L Toluene Z4854-05DL **IRMW-5DL** WATER 390 D 100 3.2 ug/L **IRMW-5DL** WATER Ethyl Benzene 280 D 100 1.0 ug/L Z4854-05DL Z4854-05DL **IRMW-5DL** WATER m/p-Xylenes 1200 D 200 9.4 ug/L Z4854-05DL **IRMW-5DL** WATER o-Xylene 500 D 100 3.2 ug/L Z4854-05DL **IRMW-5DL** WATER 22 JD 100 7.4 Isopropylbenzene ug/L

Total VOC's:

Total TIC's:

Total VOC's and TIC's:

2772.00

2772.00

0.00

Summary Sheet

SDG No.:	Z4854			Order ID:	Z4854	Ł			
Client:	Environmental Bu	usiness Consultar	nts	Project ID:	ENVI4	-9			
Sample ID Client ID:	Client ID IRMW-8	Matrix	Parameter	Concentra	ation	С	RDL	MDL	Units
Z4854-07	IRMW-8	WATER	Acetone	70			25	2.2	ug/L
Z4854-07	IRMW-8	WATER	Carbon disulfide	3.4		J	5.0	0.20	ug/L
Z4854-07	IRMW-8	WATER	Cyclohexane	48			5.0	0.57	ug/L
Z4854-07	IRMW-8	WATER	2-Butanone	31			25	1.9	ug/L
Z4854-07	IRMW-8	WATER	Methylcyclohexane	28			5.0	0.47	ug/L
Z4854-07	IRMW-8	WATER	Benzene	98			5.0	0.35	ug/L
Z4854-07	IRMW-8	WATER	Toluene	1100		Е	5.0	0.16	ug/L
Z4854-07	IRMW-8	WATER	2-Hexanone	2.1		J	25	1.8	ug/L
Z4854-07	IRMW-8	WATER	Ethyl Benzene	600		Е	5.0	0.05	ug/L
Z4854-07	IRMW-8	WATER	m/p-Xylenes	2200		Е	10	0.47	ug/L
Z4854-07	IRMW-8	WATER	o-Xylene	900		Е	5.0	0.16	ug/L
Z4854-07	IRMW-8	WATER	Styrene	2.3		J	5.0	0.19	ug/L
Z4854-07	IRMW-8	WATER	Isopropylbenzene	41			5.0	0.37	ug/L
		To To To	otal VOC's: otal TIC's: otal VOC's and TIC's	512 : 512	23.80 0.00 23.80				
Client ID:	IRMW-8DL								
Z4854-07DL	IRMW-8DL	WATER	Benzene	94		JD	250	18	ug/L
Z4854-07DL	IRMW-8DL	WATER	Toluene	1400		D	250	8.0	ug/L
Z4854-07DL	IRMW-8DL	WATER	Ethyl Benzene	880		D	250	2.5	ug/L
Z4854-07DL	IRMW-8DL	WATER	m/p-Xylenes	3000		D	500	24	ug/L
Z4854-07DL	IRMW-8DL	WATER	o-Xylene	1200		D	250	8.0	ug/L
Z4854-07DL	IRMW-8DL	WATER	Isopropylbenzene	36		JD	250	18	ug/L
		To To	otal VOC's: otal TIC's: otal VOC's and TIC's	661 : 661	0.00				

Summary Sheet SW-846

LAB CHRONICLE

Order ID: Client : Contact :	Z4854 Environmental Business Consultants Charles B.Sosik P.G.		Order Date: Project: Location :	10/7/2008 3035 White Plains Road VOA Ref. #3 Water			
Lab ID	Client ID	Matrix Test		Method	Sample Date PrepDate	e AnalDate	Received
Z4854-01	IRMW-1	WATER VOC-TCL		8260	10/03/08	10/08/08	10/07/08
Z4854-01D	L IRMW-1DL	WATER VOC-TCL		8260	10/03/08	10/09/08	10/07/08
Z4854-03	IRMW-3	WATER VOC-TCL		8260	10/03/08	10/08/08	10/07/08
Z4854-03D	L IRMW-3DL	WATER VOC-TCL		8260	10/03/08	10/08/08	10/07/08
Z4854-04	IRMW-4	WATER VOC-TCL		8260	10/03/08	10/08/08	10/07/08
Z4854-05	IRMW-5	WATER VOC-TCL		8260	10/03/08	10/08/08	10/07/08
Z4854-05D	L IRMW-5DL	WATER VOC-TCL		8260	10/03/08	10/08/08	10/07/08
Z4854-07	IRMW-8	WATER VOC-TCL		8260	10/03/08	10/08/08	10/07/08
Z4854-07D	L IRMW-8DL	WATER VOC-TCL		8260	10/03/08	10/20/08	10/07/08
Z4854-08	IRMW-9	WATER VOC-TCL		8260	10/03/08	10/08/08	10/07/08

284 Sheffield Street, Mountainside NJ 07092 Tel: 908-789-8900 Fax 908-789-8922

COVER PAGE

 ProjectID:
 3035 White Plains Road

 CustomerName:
 Environmental Business Consultants

LAB SAMPLE NO. Z4908-01 Z4908-02

OrderID: Z4908

CLIENT SAMPLE NO IRM-W2 IRM-W6

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Signature:	_Name:
Date:	Title:

		Sheffield Street,	, Mounta	inside,	6070 LN	2 Che	mtech P	roject N	umber	2 4 6	108	
		(908) 789-8900	Fax (90	-81 789-	8922	ğ	Numbe					
CHAIN OF CUST	ODY RECORD	WWW.C	:hemtech	ı.net								
ือ	LIENT INFORMATION	PROJ	ECT INFO	RMATIO	N				TING IN	IFORM	ATION	
Rep	out to be sent to	PROJECT NAME: 3035 V	White Plains Ro	ad, Bronx, NV			O: Environ	nental Busir	ess Consul	ants PO	**	
COMPANY: Environments	al Business Consultants	PROJECT #:		LOCATION:		ADDF	ESS: 1808	Middle Coul	try Road			
ADDRESS: 1808 Middle (Country Road	PROJECT MANAGER: C	harles Sosik			спу:	Ridge			ST	ATE: NY Z	IP: 11961
CITY: Ridge	STATE: NY ZIP: 11961	E-MAIL: csosik2@optonli	ne.net			ATTE	NTION: Che	rtes Sosik				
ATTENTION: Charles So:	sik	PHONE: 631.504.6000		FAX: 631.92	4.2870	РНОР	IE: 631.504.	6000				
PHONE:631.504.6000	FAX: 631.924.2870								AN/	AL YSIS		
DATA TU	RNAROUND INFORMATION		INFORMAT				9					
FΔX		D RESEULTS ONLY	л О	SEPA CLP								
HARD COPY: 57	TA NDAKD DAYS			ew York State	e ASP "B"	<u> </u>	\ 5				2	
EDD • TO BE APPROVED BY	_S TA <i>い</i> 0A P DAYS・ CHEMTECH	LI New Jersey KEUUCE		tw York State	ASP AS	/? L	s S	4 2 2	<u>ل</u> 9	6 8		
STANDARD TURNAROU	JND TIME IS 10 BUSINESS DAYS						FRESI	HVAII	/ES		SUM	MENIS
CHEMTECH	PROJECT	SAMPLE	SAMPLE TYPE	SAMP							< Specify A-HCI	Preservatives B-HNO4
SAMPLE ID	SAMPLE IDENTIFICATION	MATRIX	9MOC 8AAE	DATE		~	2 3	4 5	6 7	8	C-H2SO13 E-ICE	D-NaOH F-OTHER
1. IR	:M-W2	Groundwater		7-Oct	1230	зX					AE	
IRI	M-W6	Groundwater		7-Oct	1245	3 X					A/E	
Э												
4.												
5.												
6.												
7.						 						
8.												
9.												
10.												
SAMP	LE CUSTODY MUST BE DOCUM	ENTED BELOW EA(CH TIME S	AMPLES	CHANGE	PROS	SESSIO	N INCL	JDING	OURIE	3 DELIVER	۲
RELINOUISMED BY SAMPLER	DATE/TIME RECEIVED BY		MeOH extract	oomes or con ction require	ers ar recerpt: ss an addition	1402. J	PLININ PERC	ent solid	CIMINT 1	רטטרבוע זו	20h	
1. 1. And the A Contract of th	DATE/TIME RECEIVED BY 2.	(coten	Comments:									
K J LE GHSINONISHED BX	T / DATE/TIME - 07 RECEIVED FOR LAB BY				- Contraction of the second se	CLIEN	* 	Hand Deliv	ered	Ŧ	Shipmer	nt Complete
3. FED	X 1 9:30 3. U.	Inserts	Page	ot	ال بلو ا	CHEM	TECH:	Picked U ₁	-	÷	UL YES	ON ≁
+007/01/01	WHITE - CHEMTEO	COPYFOR RETURN T	O CLIENT	VELLOV	V - CHEMTE	CH COP	PINK	- SAMPL	ER COPY		#	

900.0001 x3b9300.0001 moo.xab91

Laboratory Certification

State	License No.
New Jersey	20012
New York	11376
Connecticut	PH-0649
Maryland	296
Massachusetts	M-NJ503
Maine	NJ0503
Oklahoma	9705
Pennsylvania	68-548
Rhode Island	LAO00259

QA Control Code: A2070148

CHEMTECH

DATA REPORTING QUALIFIERS- ORGANIC

For reporting results, the following " Results Qualifiers" are used:

Value	If the result is a value greater than or equal to the detection limit, report the value
U	Indicates the compound was analyzed for but was not detected. Report the minimum detection limit for the sample with the U, i.e. "10 U". This is not necessarily the instrument detection limit attainable for this particular sample based on any concentration or dilution that may have been required.
J	 Indicates an estimated value. This flag is used: (1) When estimating a concentration for a tentatively identified compound (library search hits, where a 1:1 response is assumed.) (2) When the mass spectral data indicated the identification, however the result was less than the specified detection limit greater than zero. If the detection limit was 10ug/L and a concentration of 3 ug/L was calculated report as 3 J. This is flag is used when similar situation arise on any organic parameter i.e. Pest, PCB and others.
В	Indicates the analyte was found in the blank as well as the sample report as "12 B".
Ε	Indicates the analyte 's concentration exceeds the calibrated range of the instrument for that specific analysis.
D	This flag identifies all compounds identified in an analysis at a secondary dilution factor.
Р	This flag is used for Pesticide/PCB target analyte when there is >25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on Form 1 and flagged with a "P".
N	This flag indicates presumptive evidence of a compound. This is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It applies to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the flag is not used.
Α	This flag indicates that a Tentatively Identified Compound is a suspected aldol-condensation product.

QA Control Code: A2040102

APPENDIX A

QA REVIEW GENERAL DOCUMENTATION

Project #: Z4908	
	Completed
For thorough review, the report must have the following:	
GENERAL: Are all original paperwork present (chain of custody, record of communication, airbill, sample management lab chronicle, login page) Check chain-of-custody for proper relinquish/return of samples Is the chain of custody signed and complete Check internal chain-of-custody for proper relinquish/return of samples /sample extracts Collect information for each project id from server. Were all requirements followed	
COVER PAGE: Do numbers of samples correspond to the number of samples in the Chain of Custody and on login page Do lab numbers and client Ids on cover page agree with the Chain of Custody	√ √
CHAIN OF CUSTODY: Do requested analyses on Chain of Custody agree with form I results Do requested analyses on Chain of Custody agree with the log-in page Were the correct method log-in for analysis according to the Analytical Request and Chain of Custody Were the samples received within hold time Were any problems found with the samples at arrival recorded in the Sample Management Laboratory Chronicle	<pre></pre>
ANALYTICAL: Was method requirement followed? Was client requirement followed? Does the case narrative summarize all QC failure? All runlogs reviewed for manual integration requirements	✓ ✓ ✓
1 st Level QA Review Signature:Divya Fadadu Date:	_10/20/2008

2nd Level QA Review Signature:_____ Date:_____

Client:	Environmental Business Consultants	Date Collected:	10/7/2008
Project:	3035 White Plains Road	Date Received:	10/9/2008
Client Sample ID:	IRM-W2	SDG No.:	Z4908
Lab Sample ID:	Z4908-01	Matrix:	WATER
Analytical Method:	8260	% Moisture:	100
Sample Wt/Wol:	5.0 Units: mL	Soil Extract Vol:	uL
Soil Aliquot Vol:	uL		

File ID: VE010388.	Dilution: D 1	Date Analyzed 10/10/2008	l	Analytical l VE101008	Batch ID	,
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.88	U	5.0	0.88	ug/L
74-87-3	Chloromethane	0.37	U	5.0	0.37	ug/L
75-01-4	Vinyl chloride	0.30	U	5.0	0.30	ug/L
74-83-9	Bromomethane	1.4	U	5.0	1.4	ug/L
75-00-3	Chloroethane	0.80	U	5.0	0.80	ug/L
75-69-4	Trichlorofluoromethane	0.53	U	5.0	0.53	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.61	U	5.0	0.61	ug/L
75-35-4	1,1-Dichloroethene	0.67	U	5.0	0.67	ug/L
67-64-1	Acetone	21	J	25	2.2	ug/L
75-15-0	Carbon disulfide	0.20	U	5.0	0.20	ug/L
1634-04-4	Methyl tert-butyl Ether	17		5.0	0.23	ug/L
79-20-9	Methyl Acetate	0.45	U	5.0	0.45	ug/L
75-09-2	Methylene Chloride	0.38	U	5.0	0.38	ug/L
156-60-5	trans-1,2-Dichloroethene	0.44	U	5.0	0.44	ug/L
75-34-3	1,1-Dichloroethane	0.67	U	5.0	0.67	ug/L
110-82-7	Cyclohexane	0.57	U	5.0	0.57	ug/L
78-93-3	2-Butanone	1.9	U	25	1.9	ug/L
56-23-5	Carbon Tetrachloride	0.27	U	5.0	0.27	ug/L
156-59-2	cis-1,2-Dichloroethene	0.72	U	5.0	0.72	ug/L
67-66-3	Chloroform	0.45	U	5.0	0.45	ug/L
71-55-6	1,1,1-Trichloroethane	0.39	U	5.0	0.39	ug/L
108-87-2	Methylcyclohexane	0.47	U	5.0	0.47	ug/L
71-43-2	Benzene	0.35	U	5.0	0.35	ug/L
107-06-2	1,2-Dichloroethane	0.41	U	5.0	0.41	ug/L
79-01-6	Trichloroethene	0.34	U	5.0	0.34	ug/L
78-87-5	1,2-Dichloropropane	0.46	U	5.0	0.46	ug/L
75-27-4	Bromodichloromethane	0.23	U	5.0	0.23	ug/L
108-10-1	4-Methyl-2-Pentanone	1.8	U	25	1.8	ug/L
108-88-3	Toluene	0.16	U	5.0	0.16	ug/L
10061-02-6	t-1,3-Dichloropropene	0.31	U	5.0	0.31	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.29	U	5.0	0.29	ug/L
79-00-5	1.1.2-Trichloroethane	0.32	U	5.0	0.32	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

-				
	Client:	Environmental Business Consultants	Date Collected:	10/7/2008
	Project:	3035 White Plains Road	Date Received:	10/9/2008
	Client Sample ID:	IRM-W2	SDG No.:	Z4908
	Lab Sample ID:	Z4908-01	Matrix:	WATER
	Analytical Method:	8260	% Moisture:	100
	Sample Wt/Wol:	5.0 Units: mL	Soil Extract Vol:	uL
	Soil Aliquot Vol:	uL		

File ID:	Dilution:	Date Analyzed	ł	Analytical H	Batch ID	
VE010388.D	1	10/10/2008		VE101008		
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.8	U	25	1.8	ug/L
124-48-1	Dibromochloromethane	0.23	U	5.0	0.23	ug/L
106-93-4	1,2-Dibromoethane	0.26	U	5.0	0.26	ug/L
127-18-4	Tetrachloroethene	0.97	U	5.0	0.97	ug/L
108-90-7	Chlorobenzene	0.28	U	5.0	0.28	ug/L
100-41-4	Ethyl Benzene	3.7	J	5.0	0.05	ug/L
126777-61-2	m/p-Xylenes	5.5	J	10	0.47	ug/L
95-47-6	o-Xylene	0.16	U	5.0	0.16	ug/L
100-42-5	Styrene	0.19	U	5.0	0.19	ug/L
75-25-2	Bromoform	0.44	U	5.0	0.44	ug/L
98-82-8	Isopropylbenzene	0.37	U	5.0	0.37	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.37	U	5.0	0.37	ug/L
541-73-1	1,3-Dichlorobenzene	0.28	U	5.0	0.28	ug/L
106-46-7	1,4-Dichlorobenzene	0.22	U	5.0	0.22	ug/L
95-50-1	1,2-Dichlorobenzene	0.40	U	5.0	0.40	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.58	U	5.0	0.58	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.39	U	5.0	0.39	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	58.07	116 %	75 - 124		SPK: 50
1868-53-7	Dibromofluoromethane	52.51	105 %	84 - 122		SPK: 50
2037-26-5	Toluene-d8	50.01	100 %	83 - 117		SPK: 50
460-00-4	4-Bromofluorobenzene	54.03	108 %	74 - 123		SPK: 50
INTERNAL STA	NDARDS					
363-72-4	Pentafluorobenzene	495038	9.37			
540-36-3	1,4-Difluorobenzene	837168	10.47			
3114-55-4	Chlorobenzene-d5	929677	14.87			
3855-82-1	1.4-Dichlorobenzene-d4	562843	18.68			

B = Analyte Found in Associated Method Blank

Client:	Environmental Business Consultants	Date Collected:	10/7/2008
Project:	3035 White Plains Road	Date Received:	10/9/2008
Client Sample ID:	IRM-W6	SDG No.:	Z4908
Lab Sample ID:	Z4908-02	Matrix:	WATER
Analytical Method:	8260	% Moisture:	100
Sample Wt/Wol:	5.0 Units: mL	Soil Extract Vol:	uL
Soil Aliquot Vol:	uL		

File ID: VE010389.D	Dilution: 1	Date Analyzed 10/10/2008	Ĩ	Analytical B VE101008	Batch ID	
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.88	U	5.0	0.88	ug/L
74-87-3	Chloromethane	0.37	U	5.0	0.37	ug/L
75-01-4	Vinyl chloride	0.30	U	5.0	0.30	ug/L
74-83-9	Bromomethane	1.4	U	5.0	1.4	ug/L
75-00-3	Chloroethane	0.80	U	5.0	0.80	ug/L
75-69-4	Trichlorofluoromethane	0.53	U	5.0	0.53	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.61	U	5.0	0.61	ug/L
75-35-4	1,1-Dichloroethene	0.67	U	5.0	0.67	ug/L
67-64-1	Acetone	2.2	U	25	2.2	ug/L
75-15-0	Carbon disulfide	0.20	U	5.0	0.20	ug/L
1634-04-4	Methyl tert-butyl Ether	3.8	J	5.0	0.23	ug/L
79-20-9	Methyl Acetate	0.45	U	5.0	0.45	ug/L
75-09-2	Methylene Chloride	0.38	U	5.0	0.38	ug/L
156-60-5	trans-1,2-Dichloroethene	0.44	U	5.0	0.44	ug/L
75-34-3	1,1-Dichloroethane	0.67	U	5.0	0.67	ug/L
110-82-7	Cyclohexane	0.57	U	5.0	0.57	ug/L
78-93-3	2-Butanone	1.9	U	25	1.9	ug/L
56-23-5	Carbon Tetrachloride	0.27	U	5.0	0.27	ug/L
156-59-2	cis-1,2-Dichloroethene	0.72	U	5.0	0.72	ug/L
67-66-3	Chloroform	0.45	U	5.0	0.45	ug/L
71-55-6	1,1,1-Trichloroethane	0.39	U	5.0	0.39	ug/L
108-87-2	Methylcyclohexane	0.47	U	5.0	0.47	ug/L
71-43-2	Benzene	25		5.0	0.35	ug/L
107-06-2	1.2-Dichloroethane	0.41	U	5.0	0.41	ug/L
79-01-6	Trichloroethene	0.34	U	5.0	0.34	ug/L
78-87-5	1,2-Dichloropropane	0.46	U	5.0	0.46	ug/L
75-27-4	Bromodichloromethane	0.23	U	5.0	0.23	ug/L
108-10-1	4-Methyl-2-Pentanone	1.8	U	25	1.8	ug/L
108-88-3	Toluene	33	-	5.0	0.16	ug/L
10061-02-6	t-1,3-Dichloropropene	0.31	U	5.0	0.31	ug/L
10061-01-5	cis-1.3-Dichloropropene	0.29	Ū	5.0	0.29	ug/L
79-00-5	1.1.2-Trichloroethane	0.32	Ū	5.0	0.32	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

· ·				
	Client:	Environmental Business Consultants	Date Collected:	10/7/2008
	Project:	3035 White Plains Road	Date Received:	10/9/2008
	Client Sample ID:	IRM-W6	SDG No.:	Z4908
	Lab Sample ID:	Z4908-02	Matrix:	WATER
	Analytical Method:	8260	% Moisture:	100
	Sample Wt/Wol:	5.0 Units: mL	Soil Extract Vol:	uL
	Soil Aliquot Vol:	uL		

File ID:	Dilution:	Date Analyzed	l	Analytical H	Batch ID	
VE010389.D	1	10/10/2008		VE101008		
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.8	U	25	1.8	ug/L
124-48-1	Dibromochloromethane	0.23	U	5.0	0.23	ug/L
106-93-4	1,2-Dibromoethane	0.26	U	5.0	0.26	ug/L
127-18-4	Tetrachloroethene	0.97	U	5.0	0.97	ug/L
108-90-7	Chlorobenzene	0.28	U	5.0	0.28	ug/L
100-41-4	Ethyl Benzene	24		5.0	0.05	ug/L
126777-61-2	m/p-Xylenes	51		10	0.47	ug/L
95-47-6	o-Xylene	18		5.0	0.16	ug/L
100-42-5	Styrene	0.19	U	5.0	0.19	ug/L
75-25-2	Bromoform	0.44	U	5.0	0.44	ug/L
98-82-8	Isopropylbenzene	0.37	U	5.0	0.37	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.37	U	5.0	0.37	ug/L
541-73-1	1,3-Dichlorobenzene	0.28	U	5.0	0.28	ug/L
106-46-7	1,4-Dichlorobenzene	0.22	U	5.0	0.22	ug/L
95-50-1	1,2-Dichlorobenzene	0.40	U	5.0	0.40	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.58	U	5.0	0.58	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.39	U	5.0	0.39	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	55.23	110 %	75 - 124		SPK: 50
1868-53-7	Dibromofluoromethane	53.31	107 %	84 - 122		SPK: 50
2037-26-5	Toluene-d8	50.71	101 %	83 - 117		SPK: 50
460-00-4	4-Bromofluorobenzene	53.57	107 %	74 - 123		SPK: 50
INTERNAL STA	NDARDS					
363-72-4	Pentafluorobenzene	566358	9.36			
540-36-3	1,4-Difluorobenzene	958961	10.46			
3114-55-4	Chlorobenzene-d5	1056464	14.87			
3855-82-1	1.4-Dichlorobenzene-d4	635506	18.68			

B = Analyte Found in Associated Method Blank

SDG No.: Client:	Z4908 Environmental	Rusingss Consultar	nte	Order ID: Z4	1908 IVT 4 9			
Somula ID	Client ID	Motain	Donomoton	Concentration	<u> </u>	DDI	MDI	I.m.ta
Sample ID Client ID:	IRM-W2	Matrix	rarameter	Concentration	C	KDL	MDL	Units
Z4908-01	IRM-W2	WATER	Acetone	21	J	25	2.2	ug/L
Z4908-01	IRM-W2	WATER	Methyl tert-butyl Ether	17		5.0	0.23	ug/L
Z4908-01	IRM-W2	WATER	Ethyl Benzene	3.7	J	5.0	0.05	ug/L
Z4908-01	IRM-W2	WATER	m/p-Xylenes	5.5	J	10	0.47	ug/L
		Тс	otal VOC's:	47.2	20			
		Тс	otal TIC's:	0.0	0			
		Тс	otal VOC's and TIC's	: 47.2	20			
Client ID:	IRM-W6							
Z4908-02	IRM-W6	WATER	Methyl tert-butyl Ether	3.8	J	5.0	0.23	ug/L
Z4908-02	IRM-W6	WATER	Benzene	25		5.0	0.35	ug/L
Z4908-02	IRM-W6	WATER	Toluene	33		5.0	0.16	ug/L
Z4908-02	IRM-W6	WATER	Ethyl Benzene	24		5.0	0.05	ug/L
Z4908-02	IRM-W6	WATER	m/p-Xylenes	51		10	0.47	ug/L
Z4908-02	IRM-W6	WATER	o-Xylene	18		5.0	0.16	ug/L
		т	otal VOC's:	154.8	30			
		Тс	otal TIC's:	0.0	0			
		Тс	otal VOC's and TIC's	: 154.8	30			

Summary Sheet SW-846

LAB CHRONICLE

Order ID: Client : Contact :	Z4908 Environmental Business Consultants Charles B.Sosik P.G.			Order Date: Project: Location :	10/9/2008 3035 White Plains Road				
Lab ID	Client ID	Matrix	Test		Method	Sample Date	PrepDate	AnalDate	Received
Z4908-01	IRM-W2	WATER VOC-	TCL		8260	10/07/08		10/10/08	10/09/08
Z4908-02	IRM-W6	WATER VOC-	TCL		8260	10/07/08		10/10/08	10/09/08

<u>APPENDIX - O</u> Resumes of Key Personnel

Charles B. Sosik, PG, PHG, Principal

Professional Experience	Professional Certification
20 years	Professional Geologist, NH
Education MS, Hydrogeology, Adelphi University, NY BS, Geology, Northern Arizona University, AZ	 Professional Hydrogeologist, WA Licensed Site Professional (LSP), MA (in progress) OSHA 40-hr HAZMAT OSHA 8-hr. Supervisor
Areas of Expertise	Professional Affiliation / Committees
 Brownfields Hazardous Waste Site Investigations Pre-purchase Site Evaluations and Support Regulatory Negotiations Strategic Planning Real Estate Transactions NYC "E" Designations 	 NYS Council of Professional Geologists (NYSCPG) Association of Groundwater Scientists & Engineers (AGSE) NYS RBCA Advisory Committee Massachusetts LSP Association New Hampshire Association of Professional Geologists Interstate Technology Regulatory Council/MTBE Team Environmental Business Association, Brownfields Task Force Part 375 Working Group

PROFILE

Mr. Sosik has 20 years of experience in contaminant release management. He specializes in advising clients on managing environmental compliance with federal, state, and municipal agencies and has successfully directed numerous investigation and remediation projects involving petroleum, pesticides, chlorinated solvents, heavy metals and radiologically activated media. His work included extensive three-dimensional investigations on MTBE, which have been used effectively to help shape public policy. He also has experience in applying models to groundwater related problems and has completed several large-scale projects to determine fate and transport of contaminants, establish spill scenarios, and closure criteria. His experience and expertise in the area of contaminant hydrogeology has resulted in requests from environmental attorneys, property owners and New York State to serve as an expert witness and technical advisor on a variety of legal disputes.

Recently Mr. Sosik has been engaged in providing environmental consulting to developers responding to the extensive re-zoning of former industrial and commercial properties, which is currently taking place throughout New York City. These services include everything from pre-purchase evaluations and contract negotiations to gaining acceptance in and moving projects through the NYS Brownfields Program. Mr. Sosik has taken a pro-active role in the continued development of the NYS Brownfields Program and related policy, by attending numerous working seminars, active participation in work groups and task forces and by providing commentary to draft versions of new guidance documents. Throughout his professional career, Mr. Sosik has remained committed to developing innovative cost- efficient solutions to environmental issues, specifically tailored to the needs of his clients.

SELECTED PROJECTS

Scavenger Waste Treatment Facility (SWTF), Suffolk County, NY

Water Treatment Plant EIS - Focused EIS - In response to requests from the Suffolk County Council on Environmental Quality and the Brookhaven Conservation Advisory Council, Mr. Sosik prepared a focused EIS to evaluate the potential impacts to an important surface water resource from the proposed facility including cumulative and synergistic effects with established contaminant plumes in the area.

Advanced Residential Communities, Rockville Centre, NY

Brownfield Project – As the senior project manager on this large scale, high profile redevelopment project, Mr. Sosik was asked to develop a plan to accelerate the regulatory process in the face of general community opposition. Through numerous discussions with the BCP management team, He was able to condense the schedule and review period, through the submission of supporting documents (Investigation Report, Remedial Work Plan) with the BCP application package. Community opposition, which focused on the environmental condition of the site as a means to block the project, was used to advantage in expediting approval of the aggressive interim remedial

plan. This will allow the developer to begin remedial work approximately 5 months ahead of schedule.

Former Temco Uniform site, West Haverstraw, NY

Brownfield Project – Mr. Sosik took over management of this project from another consultant following transition of this VCP site to the BCP. Mr. Sosik used the opportunity to renegotiate and revise the scope of work to allow a more cost effective and focused investigation plan without re-writing or resubmitting the RIWP. During the NYSDEC's review of the transition package, he met with and coordinated changes with the NYSDEC Project Manager to gain approval. The result saved the client a significant amount of money, but perhaps more importantly in this case, did so without loss of time.

Grovick Properties, Jackson Heights, NY

Brownfield Project – This Brownfield property is somewhat unique in that it had been investigated and partially remediated by the NYSDEC through the petroleum spill fund. The client was interested in purchasing the property and redeveloping it as office and retail space.

ENVIRONMENTAL BUSINESSS CONSULTANTS

Charles B. Sosik, PG, PHG, Principal

Mr. Sosik reviewed the NYSDEC investigation and developed a supplemental plan to meet the requirements of an RI under the BCP program. By performing this limited amount of field work "up-front" he was able to complete an RI Report and Remedial Plan and submit both with the BCP application package. The NYSDEC and NYSDOH approved the RI Report and the Remedial Plan with minor changes. This cut 120 days from the review process and allowed the client to arrange financing and move his project forward knowing what the clean-up costs would be at the outset.

Metro Management, Bronx, NY

Brownfield Project – The site of a former gas station, the developer had planned to construct a 12-story affordable housing apartment complex with first floor retail space. Since the site was located in an Environmental zone, potential tax credits of 22% for site development, remediation and tangible property could be realized under the BCP. In a pre-application meeting with the NYSDEC, Mr. Sosik realized that the department did not believe the site was eligible for the BCP, since it had been previously investigated and closed under the spills program.

Mr. Sosik assisted the developer in securing financing, and due to the demands of an aggressive construction schedule developed an Interim Remedial Measure (IRM), based on chemical oxidation treatment. Working closely with the clients environmental counsel, Mr. Sosik was able to get the IRM approved without a public comment period. Implementation of the IRM is currently underway.

Brandt Airflex, NY

Technical Consulting Services - Mr. Sosik provided senior level technical advice and strategic planning in developing an off-site RI/FS for the site, in negotiating a tax reduction for the property due to the environmental condition and in preparing a cost to cure estimate for settlement between business partners. After achieving a favorable tax consideration and settlement agreement for his client

Allied Aviation Services, Dallas, Fort Worth, Airport, Dallas, TX

Jet Fuel Investigation - Mr. Sosik developed and managed an investigative plan to quickly identify the extent and source of jet fuel which was discharging from the Airport's storm drain system to a creek a mile away. Through the use of a refined conceptual model, accelerated investigative techniques and a flexible work plan, he was able to identify the source of the fuel and the migration route within a single week. He then identified remedial options and successfully negotiated a risk based plan with the Texas regulatory agency that had issued a notice of enforcement action against the facility.

KeySpan – Former LILCO Facilities, Various NY Locations

Pesticide Impact Evaluation - Developed, negotiated and implemented a site screening procedure to evaluate impact to public health and the environment as the result of past herbicide use at 211 utility sites. Using an unsaturated zone leaching model (PRZM) on a small subset of the sites, he was able to establish mass loading schedules for the remaining sites. This was combined with public well data in a GIS environment to perform queries with respect to mass loading, time transport and proximity to vunerable public supply wells. Using this approach Mr. Sosik was able to show that there were no

concerns for future impact. This effort satisfied the public health and resource concerns of the state environmental agency and county health department in a reasonable amount of time and at a fraction of the cost of a full scale investigation.

Former Computer Circuits (Superfund) Site, Hauppauge, NY

CERCLA RI/FS - As Senior Project Manager for the site, he played a major role in regaining control of the investigation activites for the PRP. This action prevented the USEPA from initiating an extensive investigation at the site using a RAC II contractor allowing the client to perform a more efficient investigation. He was involved in all negotiations with EPA and was the project lead in developing a revised site characterization plan (work plan, field sampling plan, quality assurance plan, etc.). By carefully managing all phases of the investigation and continued interaction with each of the three regulatory agencies involved, Mr. Sosik was able to keep the project focused and incrementally reinforce the clients position. The estimated cost of the revised investigation is expected to save the client 1.5 to 2 million dollars.

Sun Oil, Seaford, NY

Remediation Consuliting Services & Project Management - Under an atmosphere of regulatory distrust, political pressure and mounting public hostility toward the client, Mr. Sosik conducted an off-site 3-D investigation to define the extent of contamination and the potential impact on public health. By designing and implementing an aggressive source area remediation program and personal interaction with the public and regulatory agencies, he was able to successfully negotiate a limited off-site remediation favorable to the client. Source area remediation was completed within 6 months and the project successfully closed without damage to the client's public image or working relationship with the regulatory agencies.

Con Edison, Various Locations, NY

Hydrogeologic Consulting Services - Under a general consulting contract, Mr. Sosik conducted detailed subsurface hydrogeologic investigations at five locations to assist in the development of groundwater contingency planning. He also developed and implemented work plans to investigate and remediate existing petroleum, cable fluid, and PCB releases at many of the generating facilities and substations. An important aspect of his role was in assisting the client in strategic planning and negotiations with the regulatory agency.

Keyspan - Tuthill Substation, Aqueboque, NY

Accelerated Site Characterization - Using accelerated site characterization techniques, Mr. Sosik presented the project as a case study in establishing the transport of an herbacide and its metobolites aplied at utility sites in the 1980's The results were then used to establish a screening method for evaluating 211 similar sites controlled by the client in a reasonable and eficient manner.

NYSDEC Spill, East Moriches, NY

Spill Release Analysis - With recognized expertise in the area of gasoline plume development on Long Island, Mr. Sosik was asked by the State to establish the release date (and principal responsible party) of an extensive petroleum spill, which impacted a residential

ENVIRONMENTAL BUSINESSS CONSULTANTS

Charles B. Sosik, PG, PHG, Principal

neighborhood. He used multiple lines of evidence, and a new EPA model (HSSM), which he has helped to refine, to reconstruct the release scenario and spill date, in support of the State Attorney General's cost recovery effort from the PRP.

Minmilt Realty, Farmingdale, NY

Fate & Transport Modeling - He completed an RI/FS at this location for a PCE plume that had been in transit for over 30 years. Mr. Sosik applied a conservative model to evaluate time/concentration impacts under a variety of transport scenarios to a municipal wellfield located 13,000 feet away. Through the use of the model and careful interpretation of an extensive data set compiled from several sources, Mr. Sosik was able to propose a plan which was both acceptable to the regulator and favorable to the client.

Sebonack Golf Course Project, Town of Southampton, NY

IPM Pesticide Study - Provided professional hydrogeologic services in support of the EIS prepared for the development of the site. The proposed development included an 18-hole golf course, clubhouse, dormitory facility, cottages, associated structures, and a 6,000 square foot research station for Southampton College. Mr. Sosik performed an extensive evaluation (using a pesticide-leaching model) on the effects of pesticide and nitrogen loading to groundwater as part of the projects commitment to an Integrated Pest Management (IPM) approach.

NYSDEC, Spills Division, Regions 1 - 4

Petroleum Spills Investigation & Remediation - As a prime contractor/consultant for the NYSDEC in Regions 1-4, Mr. Sosik has managed the investigation and remediation of numerous petroleum spills throughout the State. Many of these projects required the development of innovative investigation and remediation techniques to achieve project goals. He was also involved in many pilot projects and research studies to evaluate innovative investigation techniques such as accelerated site characterization, and alternative approaches to remediation such as monitored natural attenuation and risk based corrective action.

Sun Oil, E. Meadow, NY

Exposure Assessment - Performed to seek closure of the spill file, despite the presence of contaminants above standards, Mr. Sosik determined after the extended assessment that the level of remaining contamination would not pose a future threat to human health or the environment. He used multiple lines of evidence, and a fate and transport model to show that degradation processes would achieve standards within a reasonable time.

Sand & Gravel Mine, NY

Property Development - As part of the development of a sand and gravel mine, Mr. Sosik provided environmental consulting services to assist in obtaining a mining permit, which would result in the construction of a 150-acre lake. Specifically, Mr. Sosik investigated if the proposed lake would reduce groundwater quantity to domestic and public well fields, and/or accelerate the migration of potential surface contaminants to the lower part of the aquifer. After assuming the lead role in negotiations with the regulatory agency, Mr. Sosik was able to obtain a permit for the client by adequately addressing water quality and quantity issues, and by preparing a monitoring plan and spill response plan, acceptable to all parties.

NYSDEC, Mamaroneck, NY

Site Characterization / Source Identification - In a complex hydrogeologic setting consisting of contaminant transport through fractured metomorphic bedrock and variable overburden materials, Mr. Sosik was able to develop and implement a sub-surface investigation to differentiate and separate the impact associated with each of two sources. The results of this investigation were successful in encouraging the spiller to accept responsibility for the release.

Riverhead Municipal Water District, NY

Site Characterization / Remedial Planning - Using accelerated characterization techniques, he implemented a 3-D site investigation to identify two service stations 4,000 ft. away as the source of contamination impacting a municipal wellfield. In accordance with the strict time table imposed by the need to return the wellfield to production by early spring, he designed and implemented a multi-point (9 RW, 6 IW) recovery and injection well system using a 3-d numerical flow model, and completed the project on time. Using a contaminant transport model, Mr. Sosik developed clean-up goals which were achieved in 9 months of operation, well below the projected 3 to 5 year project duration.

Montauk Fire Department, NY

Site Assessment - Mr. Sosik performed a limited investigation and used a 2-D flow model to demonstrate that the property could not have been the source of contamination which had impacted an adjacent wellfield as per the results of a previous investigation. This small focused effort successfully reversed a \$500,000, and rising, claim against the department by the water district and the NYSDEC.

PREVIOUS EXPERIENCE

P.W. Grosser Consulting, Bohemia, NY Senior Project Manager, 1999-2006 Environmental Assessment & Remediation, Patchogue, NY Senior Project Manager, 1994-1999 Miller Environmental Group, Calverton, NY Project Manager, 1989-1994 DuPont Biosystems, Aston, PA Hydrogeologist, 1988-1989

Charles B. Sosik, PG, PHG, Principal

EXPERT WITNESS TESTIMONY AND DEPOSITIONS

Fact Witness -Testimony on relative age of petroleum spill based on nature and extent of residual and dissolved components at the Delta Service Station in Uniondale, NY Fall/1999

Expert Witness / Expert Report for defendant in cost recovery case by NYS Attorney General regarding a Class II Inactive Hazardous Waste (State Superfund) project by the NYSDEC (October 2004 – present, Report: March 2005, Deposition: April 2005)

Expert Witness / Fact Witness for plaintiff seeking compensation for partial expenses incurred during the investigation and remediation of a USEPA CERCLA site due to the release and migration of contaminants from an "upgradient" industrial property. (Deposition May 2005).

Expert Witness / Fact Witness for NYS Attorney General with respect to cost recovery for a NYSDEC petroleum spill site in Holtzville, NY (Deposition April 2005).

Expert Witness – Statement of opinion and expert testimony at trial for plaintiff seeking damages from a major oil corporation for contamination under a prior leasing agreement in Rego Park, NY. Case decided in favor of plaintiff. Trial date July/2007

Expert Report - for Attorney General on modeling performed to determine the spill release scenario at a NYSDEC petroleum spill site in East Moriches, NY. June/2000

Expert Witness / Fact Witness for defendant with respect to cost recovery and third party responsibility for a NYSDEC petroleum spill site. (Expert Statement of Fact – October 2005).

Expert Witness for plaintiff seeking damages related to a petroleum spill from the previous owner/operator of a gas station in College Point, NY. Currently under investigation and data collection.

Expert Witness for plaintiff (water supply purveyor) seeking damages from major oil companies and manufacturer of MTBE at various locations in Suffolk County, NY. Expert reports July 2007, August 2007 and October 2007, trial date September 2008.

Expert Witness - Deposition for NYS Attorney General regarding NYSDEC cost recovery for a petroleum spill site at Sag Harbor, NY. August/2002

Expert Witness - for NYS Attorney General regarding NYSDEC cost recovery for a petroleum spill site at Riverhead, NY. Currently underway.

MODELING EXPERIENCE (PARTIAL LISTING)

PROJECT	MODEL	APPLICATION
Riverhead Water District, Riverhead, NY	MODFLOW, MODPATH	Remediation system design to intercept MTBE plume and prevent continued impact to municipal well field.
NYSDEC - Region 1, Holbrook, NY	MODFLOW, MODPATH	Simulate transport of MTBE plume to predict future impact.
NYSDEC - Region 1, East Moriches, NY	HSSM	Evaluate release scenario and start date of petroleum spill in support of cost recovery by NYS AG office.
AMOCO, Deer Park, NY	HSSM	Estimate release amount, start date and spill scenario to evaluate the potential for mass unaccounted for
Keyspan Energy, Nassau/Suffolk Counties Substations	PRZM	Estimate mass load of simazine used at 211 electric substations and screen sites according to potential for human health and ecological impacts.
Saboneck Golf Club, Southampton NY	PRZM	Estimate mass load of proposed pesticides on new golf course to evaluate acceptability under an IPM program.
Suffolk County Department of Public Works (SCDPW) Scavenger Waste Treatment Plant, Yaphank, NY	DYNFLOW, DYNTRAC	Evaluate time-transport and nitrogen impact on local river system.
SCDPW SUNY Waste Water Treatment Plant, Stony Brook, NY	DYNFLOW, DYNTRAC	Determine outfall location and time-transport of nitrogen from proposed upgrades to an existing wastewater treatment plant
Water Authority of Great Neck North Great Neck, NY	MODFLOW, MODPATH, MT3D	Review of modeling study performed by EPA to evaluate potential future impact to Well field from PCE plume. Identified serious flaws in model construction and implementation, which invalidated conclusions

PUBLICATIONS

Smart Pump & Treat Strategy for MTBE Impacting a Public Water Supply (14th Annual Conference on Contaminated Soils Proceedings, 1998) Transport & Transformation of BTEX & MTBE in a Sand Aquifer (Groundwater Monitoring & Remediation 05/1998) Characteristics of Gasoline Releases in the Water Table Aquifer of Long Island (Petroleum Hydrocarbons Conference Proceedings, 1999) Field Applications of the Hydrocarbon Spill Screening Model (HSSM) (USEPA Interactive Modeling Web Course www.epa.gov/athens/software/training/webcourse Authored module on model application and applied use of calculators, 02/2000) Comparative Evaluation of MTBE Sites on Long Island, US EPA Workshop on MTBE Bioremediation (Cincinnati, 02/2000) Comparison of Four MTBE Plumes in the Upper Glacial Aquifer of Long Island (American Geophysical Union, San Francisco, 12/1996) Analysis and Simulation of the Gasoline Spill at East Patchogue, New York (American Geophysical Union, San Francisco, 12/1998)

Kevin R. Brussee, Project Manager

Professional Experience EBC: January 2008 Prior: 5 years

Education

MS, Environmental Studies, University of Massachusetts, Lowell BS, Environmental Science, Plattsburgh State University, NY

Areas of Expertise

• Site Investigations

- Gasoline/Fuel Oil Tank Removals
- NYC "E" Designations

Professional Certification

• OSHA 40-hr HAZMAT

• NYSDEC Spill Closure

PROFILE

Mr. Brussee has 5 years experience as an environmental consultant/contractor and has worked on and managed a wide range of environmental projects. Mr. Brussee has conducted Phase I, II and III Environmental Site Assessments for commercial, industrial, and residential properties in New York, Maryland and Delaware.

Mr. Brussee's field experience includes tank removal and installations, spill management and closure, soil and groundwater sampling, and both the oversight and operation of soil boring and well installation equipment. In addition, Mr. Brussee has performed project research, data reduction and evaluation, and has prepared reports for both regulatory and client use.

PREVIOUS EXPERIENCE

Eastern Environmental Solutions, Inc., Manorville, NY

Project Manager, 2006-2008

EA Engineering, Science & Technology Hydrogeologist, 2005-2006

P.W. Grosser Consulting, Bohemia, NY

Field Hydrogeologist, 2002-2003

PUBLICATIONS

Chemical Stress Induced by Copper, Examination of a Biofilm System; (Water Science Technology, 2006; 54(9): 191-199.)

RESUME

EMPLOYMENT

1/99-Present	<u>ROBERT W SCARPA JR ARCHITECT</u> New York, New York
	Principle
	Since starting this firm I have been able to participate in a variety of projects ranging from corporate interiors, new multi-family and single family housing, renovations, additions, and new buildings. I have been the principle designer of many of these projects and have participated in them as the architect of record as well as a consultant to other design firms who did not have the expertise to complete the work. In addition I have been retained as a consultant by owners who required assistance in reviewing and supplementing the work of their design professionals who were not fully capable of developing their projects.
	Projects have ranged in scale from \$50,000 to \$45,000,000.
6/95-12/98	SALSANO ASSOCIATES ARCHITECTS New York, New York
	Director of Design
	Principal designer as well as director of professional staff in the preparation of design and construction documents and director of construction administration. Cultivated potential clients and obtained commissions for the firm. Hired staff and consultants.
	Projects included new commercial and multi-family residential buildings, large scale corporate interiors, medical offices, showrooms, executive offices and facade renovation.
9/92-3/95	PLATT BYARD DOVELL ARCHITECTS New York, New York
	Project Manager
	Senior staff position requiring management and training of junior staff, organizing project development and construction documents, coordinating multiple consultants, NYC building and zoning code analyses, as well as reporting to the firm's partners on office organization and quality control procedures.
	Projects included core, office interiors, and showrooms for the Chanel building, 15 E. 57th Street, NYC (\$35 million), a medical laboratory/ office building (\$25 million), that was an adaptive reuse of a Tribeca perfume warehouse, several corporate interiors projects including trading rooms for a major Wall Street bank.

ARCHITECT

Resume, Page 2

2/92-8-92	CONSULTANT IN PRIVATE PRACTICE
	Prepared specifications for a 26 story Manhattan residential high-rise and completed a window replacement program for The Manhattan School of Music.
5/85-2/92	ULRICH FRANZEN & ASSOCIATES New York, New York
	Associate
	Responsible for managing the firm's work as well as hiring, training and assigning staff. Duties included substantial client contact and construction administration. Experienced in the following: hiring and coordinating multiple consultants, acoustical design, lighting design, specification writing, and working with associated architectural and interior design firms. Directed all phases of projects from programming and schematic design through design development, construction documents, construction administration, and project close-out. Co-designer on projects with the firm's principal.
	Projects managed ranged in scale from \$1-15 million and included commercial buildings and office interiors, educational facilities including a dormitory, recital hall, music practice rooms and a library, restoration/ renovation both commercial and residential as well as single-family residential buildings including steel frame,

wood frame and NYC apartments.

PROFESSIONAL REGISTRATION

New York State New Jersey NCARB Certificate

EDUCATION

<u>Columbia University Graduate School of Architecture and Planning</u> Master of Science in Architecture, 1985

<u>New York Institute of Technology, Old Westbury, New York</u> Bachelor of Architecture, Magna Cum Laude, 1984 Gold Medal for Architectural Design Excellence

TEACHING EXPERIENCE

Adjunct Assistant Professor of Architecture New York Institute of Technology, Old Westbury, New York Second Year Studio Critic, 1988-1990

<u>Guest Critic</u> Parsons School of Design, 1998-2002 New York School of Interior Design, 1990-1997 ARIEL CZEMERINSKI, P.E. P.O. Box 43 Albertson, NY 11507-0043 mobile (516) 987-1662 fax (516) 706-3214 Email: ariel@amc-engineering.com

SUMMARY:

New York State Professional Engineer. Results-oriented Chemical and Environmental Engineer, with 15 years of experience in the chemical and environmental areas. Areas of expertise include process control and automation, process optimization, productivity improvement, quality systems, environmental compliance, process and plant safety, and management of a production facility. A team player with excellent technical problem solving ability and strong communications skills. Registered PE in NY, IN, IL, and MI.

PROFESSIONAL EXPERIENCE:

1997-present AMC Engineering, PLLC. Roslyn Heights, NY (Organized in 2000). <u>Principal</u>. Clients range from small car wash and Laundromat operators to multimillion-dollar chemical process companies.

- Engineering Consulting Services.
- Environmental Compliance, Permitting. Clean Water Act, Clean Air Act. Hazardous Materials.
- Chemical Process Design and Optimization. Process scale up.
- Wastewater Treatment systems.
- Design of cleaning compounds for the Transportation industry.
- Zoning regulations. Expediting Services. NYFD, NYC Buildings, NYSDEC, Suffolk County
- Safety and environmental training.
- Quality (ISO 9000) Management Systems: System auditing and implementation.
- Expert witness and testimony.

1994-2001 Axel Plastics Research Laboratories, Woodside, NY

Plant Manager

As the Plant Manager, I was responsible for all day-to-day operations. During my tenure at Axel I have accomplished the following:

- Designed and installed a powders blending facility, including materials handling, dust collection systems, mixers, and other processing equipment.
- Process scaled by a factor of 25.
- Identified major process improvement.
- Implemented a safety program, based on OSHA standards.
- Implemented a Company-wide Quality Management system (ISO 9000).
- Successfully addressed all environmental-related issues with local authorities.
- Trained all plant personnel in the use of new equipment, software, controllers and systems, and processes.
- Wrote all operating procedures and instructions. Designed and implemented an Intranet system with all information pertaining to day-to-day operations, for Company wide use.
- Planned production for the two plants and more than 140 lines of products.
- Maintained materials inventory.
- Managed all shipping/receiving operations.
- Managed all equipment and process maintenance.

1992-1994 Millennium Chemicals (SCM, Colors & Silica), Baltimore, MD. <u>Process Engineer and Project Manager.</u>

- Process engineering, design, manufacturing and environmental control for the Silica Gel plant.
- Responsible for ISO 9000 certification. Wrote all procedures and instructions for the plant and maintenance.
- Conducted capital asset planning.
- During my stay At SCM Chemicals I introduced an SPC program. Its implementation enabled production to narrow down broad product specification and identify the variables that rendered the process out of control.
- The installation of an inline particle size analyzer helped the Company save \$750,000 in waste product per year.

1990-1992 CROMPTON (WITCO) CORPORATION, POLYMER ADDITIVES, Taft, LA. <u>Process Development Engineer.</u>

- Routine responsibilities were to develop new processes and optimize existing ones.
- Successfully designed and installed a distributed control system to remotely control an organic peroxides facility (Marshall, TX).
- Designed, erected and operated a Pilot Plant. It successfully brought to the market a pesticide, patented by Dupont and commercialized by Witco (Seenox).
- Conducted process simulation to identify process and product optimization.
- Designed process equipment (reactors, heat exchangers, pumps)

Summer 1989 CON EDISON - POWER GENERATION PLANT, Queens, NY. <u>Chemical Engineer. Summer internship.</u>

Developed a comprehensive manual of operations of a boiler control system. Trained the station chemists on the use of the Chemical Information System, on which the manual was based.

1987-1988 VINISA S.A.I.C. - PVC COMPOUNDING, Buenos Aires, Argentina. <u>Production and Project Manager.</u>

Coordinated production in VINISA's 3 compounding plants. Routine responsibilities included: Technical assistance to PVC compounders, Production organization, planning and control, production management.

EDUCATION:

1988-1990 COLUMBIA UNIVERSITY, New York, NY M.S. Chemical Engineering, Feb. 1990. Awarded Fellowship as a Teaching Assistant. Thesis: Optimal Periodic Control.

1981-1987 UNIVERSITY OF BUENOS AIRES, Buenos Aires, Argentina.

Chemical Engineer (six year program).

Graduated in top 3% of class.

Teaching Assistant of Inorganic Chemistry.

Thesis: Feasibility study for the production of pectin. Fats and Oils refinery plant.

RICHARD J. POWERS

3096 Decatur Avenue, Bronx, New York 10467 Home (718) 547-7159 Cell (516) 250-5343 email: rjp3096@yahoo.com

My career goal is to obtain a position as a Director Of Design and Construction for a mid-sized construction company in the New York City metropolitan area.

MANAGEMENT

* Construction **Operations** * Facilities *Value Engineering *Analysis

I am a professional with a proven successful track record in developing and managing operational systems, enhancing performance and quality of services rendered, and directing projects through completion, resulting in cost effective operations and profitability.

I am skilled in recognizing patterns and opportunities, identifying problems and initiating corrective action for resolution. I am systematic in defining objectives and coordinating available and potential resources. I am adept in presenting ideas and concepts to instruct, motivate, train, and empower staff and clients. I achieve results through analysis, attention to detail, follow through, and hands on participation.

B.P.S. Construction Management, The Pratt Institute 2003

EXPERIENCE

Coastal Builders Corp. / The Arker Companies., Woodmere, New York 2003 – Present

Senior Project Manager. Last two projects successfully completed: \$60 M renovation project of 816 apartments in three sites in Coney Island, N.Y. / Mixed use building, Bronx, N. Y. comprising 100 apartments and a 20,000 SF Staples store on a Brownfield site.

L & M Builders, Larchmont, New York

Senior Superintendent / Project Manager. Successfully completed the gut renovation of 216 apartments in thirteen buildings on West 148th Street in Harlem. Project entailed combining all of the buildings into a single apartment building.

1998 - 2001Kessler Assisted Living Centers, Bloomfield, New Jersey Director of Design and Construction. Oversaw the design and construction of assisted living and Alzheimer residences in New Jersey, Florida and Colorado. Oversaw the design and construction of the first LEEDS "green" assisted living facility in Chatham, New Jersey.

Wagman Construction Company, New York **Project Manager**

The National Equity Fund, New York, New York

Director of Vocational Training - Bronx Job Corps Center

Facilities Manager - Responsible for construction management supervision and capital planning for national portfolio of eight thousand apartments. Trained asset managers and general partners in capital planning, construction and maintenance procedures.

Powers Contracting, Inc., Bronx, New York	1987 – 1995
President – Operated all phases of a general contracting and development business.	
The Bodak Organization, Bronx, New York Director of Maintenance and Construction	1983 – 1986
The National Association of Home Builders, Bronx, New York	1980 - 1983

2001 - 2003

1997 - 1998

1995-1997

Continuing Education Courses attended: (partial list)

- Building Inspections Course
- Environmental Regulation
- Design of Chemical Reactors
- Process Hazard Analysis
- Hazardous Materials Regulations
- Forklift Safety
- CPR Training
- Supervisors Training
- OSHA regulations
- ISO 9000
- Lead auditor training
- Wastewater Treatment System

ADDITIONAL INFORMATION

Past Chairman of the New York Section, AIChE (American Institute of Chemical Engineers). Computer Literate: Process simulators, AutoCAD, Microsoft Office, Internet Excellent communications skills. Fluent in Spanish.
<u>APPENDIX - P</u> Citizens Participation Plan

New York State Department of Environmental Conservation

Brownfield Cleanup Program

Citizen Participation Plan ^{for} Former Dico G Auto & Truck Repair

3035 White Plains Road Bronx, New York

August 2007

Contents

Section 201	<u>Pa</u>	<u>ige Number</u>
1.	What is New York's Brownfield Cleanup Program?	1
2.	Citizen Participation Plan Overview	1
3.	Site Information	3
4.	Remedial Process	6
5.	Citizen Participation Activities	8
6.	Major Issues of Public Concern	8
Apper	ndix A – Site Location Map	10
Apper	ndix B – Project Contacts and Document Repositories	11
Appen	ndix C – Brownfield Site Contact List	12
Appen	ndix D – Identification of Citizen Participation Activities	13
Appen	ndix E – Brownfield Cleanup Program Process	14
	* * * * *	

Note: The information presented in this Citizen Participation Plan was current as of the date of its approval by the New York State Department of Environmental Conservation. Portions of this Citizen Participation Plan may be revised during the brownfield site's remedial process.

Applicant: Bedford Park Associates, LLC, Adee & Lester, LLP, 3035 White Plains Road Retail, LLC Site Name: Former Dico G Auto & Truck Repair Site Address: 3035 White Plains Road Site County: Bronx Site Number: C203039

1. What is New York's Brownfield Cleanup Program?

New York's Brownfield Cleanup Program (BCP) is designed to encourage the private sector to investigate, remediate (clean up) and redevelop brownfields. A brownfield is any real property where redevelopment or reuse may be complicated by the presence or potential presence of a contaminant. A brownfield typically is a former industrial or commercial property where operations may have resulted in environmental contamination. A brownfield can pose environmental, legal and financial burdens on a community. If the brownfield is not addressed, it can reduce property values in the area and affect economic development of nearby properties.

The BCP is administered by the New York State Department of Environmental Conservation (NYSDEC) which oversees Applicants that conduct brownfield site remedial activities.¹ An Applicant is a person whose request to participate in the BCP has been accepted by NYSDEC. The BCP contains investigation and remediation (cleanup) requirements, ensuring that cleanups protect public health and the environment. When NYSDEC certifies that these requirements have been met, the property can be reused or redeveloped for the intended use.

For more information about the BCP, go online at: www.dec.state.ny.us/website/der/bcp .

2. Citizen Participation Plan Overview

This Citizen Participation (CP) Plan provides members of the affected and interested public with information about how NYSDEC will inform and involve them during the investigation and remediation of the site identified above. The public information and involvement program will be carried out with assistance, as appropriate, from the Applicant.

Appendix A contains a map identifying the location of the site.

Project Contacts

Appendix B identifies NYSDEC project contact(s) to whom the public should address questions or request information about the site's remedial program. The public's suggestions about this CP

¹ "Remedial activities", "remedial action", and "remediation" are defined as all activities or actions undertaken to eliminate, remove, treat, abate, control, manage, or monitor contaminants at or coming from a brownfield site.

Plan and the CP program for the site are always welcome. Interested people are encouraged to share their ideas and suggestions with the project contacts at any time.

Document Repositories

The locations of the site's document repositories also are identified in Appendix B. The document repositories provide convenient access to important project documents for public review and comment.

Site Contact List

Appendix C contains the brownfield site contact list. This list has been developed to keep the community informed about, and involved in, the site's investigation and remediation process. The brownfield site contact list will be used periodically to distribute fact sheets that provide updates about the status of the project. These will include notifications of upcoming remedial activities at the site (such as fieldwork), as well as availability of project documents and announcements about public comment periods.

The brownfield site contact list includes, at a minimum:

- chief executive officer and official(s) principally involved with relevant zoning and planning matters of each county, city, town and village in which the site is located;
- residents, owners, and occupants of the site and properties adjacent to the site;
- the public water supplier which services the area in which the site is located;
- any person who has requested to be placed on the site contact list;
- the administrator of any school or day care facility located on or near the site for purposes of posting and/or dissemination of information at the facility;
- document repositories.

Where the site or adjacent real property contains multiple dwelling units, the Applicant will work with NYSDEC to develop an alternative method for providing such notice in lieu of mailing to each individual. For example, the owner of such a property that contains multiple dwellings may be requested to prominently display fact sheets and notices required to be developed during the site's remedial process. This procedure would substitute for the mailing of such notices and fact sheets, especially at locations where renters, tenants and other residents may number in the hundreds or thousands, making the mailing of such notices impractical.

The brownfield site contact list will be reviewed periodically and updated as appropriate. Individuals and organizations will be added to the site contact list upon request. Such requests should be submitted to the NYSDEC project contact(s) identified in Appendix B. Other additions to the brownfield site contact list may be made on a site-specific basis at the discretion of the NYSDEC project manager, in consultation with other NYSDEC staff as appropriate.

CP Activities

Appendix D identifies the CP activities, at a minimum, that have been and will be conducted during the site's remedial program. The flowchart in Appendix E shows how these CP activities

integrate with the site remedial process. The public is informed about these CP activities through fact sheets and notices developed at significant points in the site's remedial process.

- Notices and fact sheets help the interested and affected public to understand contamination issues related to a brownfield site, and the nature and progress of efforts to investigate and remediate a brownfield site.
- **Public forums, comment periods and contact with project managers** provide opportunities for the public to contribute information, opinions and perspectives that have potential to influence decisions about a brownfield site's investigation and remediation.

The public is encouraged to contact project staff at any time during the site's remedial process with questions, comments, or requests for information about the remedial program.

This CP Plan may be revised due to changes in major issues of public concern identified in Section 6. or in the nature and scope of remedial activities. Modifications may include additions to the brownfield site contact list and changes in planned citizen participation activities.

3. Site Information

The property known as the Former Dico G Auto & Truck Repair, located at 3001- 3035 White Plains Road, Bronx, NY, was accepted into the New York State Brownfield Cleanup Program (BCP) on July 30, 2007.

Site Description

The subject property address is 3035 White Plains Road. It is located on the west side of White Plains Road between Adee Avenue and Burke Avenue in the Bronx, New York. The site is designated as Section 4545, Lot 14 by the New York City Department of Assessment.

The subject property consists of a 16,880 ft² parcel, which is improved with a single-story 1,653 ft^2 masonry building with 3 service bays. The building was constructed in 1960 as a service station and is currently used as an auto repair shop. The property is surrounded by a 6-foot high chain link fence which also bisects the site just north of the service station building. The surrounding area is characterized by commercial businesses (mostly retail) along White Plains Road. Residential areas are located behind (east-west) this commercial corridor. An elevated section of the Metro-North Railway passes in front of the property, directly over White plains Road.

Site History

The property has been in continual service as a gasoline service station and / or auto repair shop since the building was constructed in 1960.

The site has an open spill file No. 99-00851 related to soil contamination discovered during the removal of twelve 550 gallon USTs in 1999. On December 29, 2007, gasoline contamination was encountered by a geotechnical drilling company advancing soil borings on the property to

determine the foundation requirements of a potential new building for the site. Based on these observations, a preliminary investigation was performed in which significant levels of volatile organic compounds (VOC) in soil and /or groundwater were identified at several locations on the property. These areas were associated with the location of known and suspected UST or dispenser areas.

Environmental History

A Phase I Environmental Site Assessment (ESA), in accordance with ASTM E 1527, was completed by Environmental Business Consultants (EBC) and documented in a report dated February, 2007. The Phase I ESA revealed that the property was historically used as an automotive service station from at least 1960 to 1999. Since 1999 the site has been used mainly as a truck and automotive repair shop and scrap yard. The records search identified two NYSDEC petroleum spill files, one of which remains open. The site inspection identified numerous environmental concerns including the improper storage of fuel oil, waste oil and automotive fluids.

The Phase I revealed the following recognized environmental conditions:

- The site has an open spill file No. 99-00851 related to soil contamination discovered during the removal of twelve 550 gallon USTs in 1999. No documentation regarding endpoint sampling, impacts to groundwater or other media was available.
- The improper storage of hazardous and non-hazardous materials including gasoline, fuel oil, automotive fluids and solvents.
- The outdoor storage of derelict vehicles, auto parts, scrap metals and trash.
- The presence of a surface drain with obvious staining around the structure.
- The historic use of the property as a gas station from 1960 to 1999, and as an automotive repair facility from 1960 to the present.

The Phase I concluded that the site has been impacted by petroleum products associated with underground leaking storage tanks, and that the potential exists for impacts to other areas of the site from the former dispenser system and associated piping, from the improper storage and use of petroleum products, solvents and automotive chemicals, and from the outdoor storage of derelict vehicles, auto parts and scrap metals.

The site is listed on the PBS database under the name Otis Petroleum (PBS No. 2-601449). The database lists the subject site as a PBS facility with 10 USTs closed on September 1, 1999.

The site is also listed on the NYSPILLS database. The database indicates that there are two spills associated with the site. The first spill (No. 98-07962) was reported to the DEC on September 29, 1998 due to complaints from customers about sand in gasoline purchased from the station.

According to the file, this spill was closed on March 3, 2003, in response to an internal directive to close out spills with no recent history.

The second spill (No. 99-00851) which is related to contamination found during removal of the underground storage tanks in April 1999, was reported to the DEC on April 22, 1999. According to the DEC records, the spill was not investigated and remains open.

On December 29, 2007, gasoline contamination was encountered by a geotechnical drilling company advancing soil borings on the property to determine the foundation requirements of a potential new building for the site. On January 3, 2007, EBC visited the site and directed the geotechnical company to collect new samples from the area in which the contamination was discovered. This area corresponded to the general location of a former dispenser island, according to the property owner. Based on discussions with the property owner, two more borings were installed at locations which corresponded roughly to the location of a second dispenser island and the former UST area.

Since the geotechnical contractor was not equipped to collect groundwater samples, EBC returned to the site on January 10, 2007 to obtain a groundwater sample near the south property line, in an area where the contractor had previously encountered groundwater. The groundwater sample was collected from a depth of approximately 9 feet using a track-mounted probing machine.

Elevated volatile organic compounds (VOCs) related to gasoline, were reported in the soil samples collected from the approximate location of the two former dispenser islands. In addition VOC compounds, associated with gasoline, were found in the groundwater sample in exceedance of the water quality standards.

Based on the results of soil and groundwater samples collected and the historic use of the site, the preliminary investigation concluded that the site had been impacted by its use as a service station and repair shop over the past 45 years. The report noted that the borings installed were located based on general guidance from the property owner and that they were unlikely to represent worst case conditions.

Groundwater from a single boring location was found to contain gasoline-related VOCs at levels significantly above water quality standards. Since the boring was located close to the south property line, the report concluded that it was highly likely that contaminated groundwater was migrating off of the property. The report noted that the sample was not believed to be hydraulically downgradient of the impacted soil areas, and, therefore, VOC concentrations may be considerably higher in other areas of the site or at off-site locations.

The report noted that other areas of the property may be affected with VOCs, SVOCs and metals due to materials stored at the site and recommended that a comprehensive investigation be performed encompassing all potentially affected media (soil, soil gas, groundwater). The report noted that because shallow soil and groundwater were affected, remedial action, and / or mitigation and control measures may be needed to prevent vapor intrusion, if the property is developed as intended.

4. Remedial Process

Note: See Appendix E for a flowchart of the brownfield site remedial process.

Application

The Applicant has applied for and been accepted into New York's Brownfield Cleanup Program as a Volunteer. This means that the Applicant was not responsible for the disposal or discharge of the contaminants or whose ownership or operation of the site took place after the discharge or disposal of contaminants. The Volunteer must fully characterize the nature and extent of contamination onsite, and must conduct a "qualitative exposure assessment," a process that characterizes the actual or potential exposures of people, fish and wildlife to contaminants on the site and to contamination that has migrated from the site.

The Applicant in its Application proposes that the site will be used for unrestricted purposes.

To achieve this goal, the Applicant will conduct remedial activities at the site with oversight provided by NYSDEC. The Brownfield Cleanup Agreement executed by NYSDEC and the Applicant sets forth the responsibilities of each party in conducting a remedial program at the site.

Investigation

If the Applicant conducts a remedial investigation (RI) of the site, it will be performed with NYSDEC oversight. The Applicant must develop a remedial investigation workplan, which is subject to public comment as noted in Appendix D. The goals of the investigation are as follows:

1) Define the nature and extent of contamination in soil, surface water, groundwater and any other impacted media;

2) Identify the source(s) of the contamination;

3) Assess the impact of the contamination on public health and/or the environment; and

4) Provide information to support the development of a Remedial Work Plan to address the contamination, or to support a conclusion that the contamination does not need to be addressed.

The Applicant will prepare an RI Report after it completes the RI. This report will summarize the results of the RI and will include the Applicant's recommendation of whether remediation is needed to address site-related contamination. The RI Report is subject to review and approval by NYSDEC. Before the RI Report is approved, a fact sheet that describes the RI Report will be sent to the site's contact list.

NYSDEC will determine if the site poses a significant threat to public health and/or the environment. If NYSDEC determines that the site is a "significant threat," a qualifying community group may apply for a Technical Assistance Grant (TAG). The purpose of a TAG is

to provide funds to the qualifying community group to obtain independent technical assistance. This assistance helps the TAG recipient to interpret and understand existing environmental information about the nature and extent of contamination related to the site and the development/implementation of a remedy.

An eligible community group must certify that its membership represents the interests of the community affected by the site, and that its members' health, economic well-being or enjoyment of the environment may be affected by a release or threatened release of contamination at the eligible site.

For more information about the TAG Program and the availability of TAGs, go online at: www.dec.state.ny.us/website/der/guidance/tag/.

Remedy Selection

After NYSDEC approves the RI Report, the Applicant will be able to develop a Remedial Work Plan if remediation is required. The Remedial Work Plan describes how the Applicant would address the contamination related to the site.

The public will have the opportunity to review and comment on the draft Remedial Work Plan. The site contact list will be sent a fact sheet that describes the draft Remedial Work Plan and announces a 45-day public comment period. NYSDEC will factor this input into its decision to approve, reject or modify the draft Remedial Work Plan.

A public meeting may be held by NYSDEC about the proposed Remedial Work Plan if requested by the affected community and if significant substantive issues are raised about the draft Remedial Work Plan. Please note that, in order to request a public meeting, the health, economic well-being or enjoyment of the environment of those requesting the public meeting must be threatened or potentially threatened by the site. In addition, the request for the public meeting should be made within the first 30 days of the 45-day public comment period for the draft Remedial Work Plan. A public meeting also may be held at the discretion of the NYSDEC project manager in consultation with other NYSDEC staff as appropriate.

Construction

Approval of the Remedial Work Plan by NYSDEC will allow the Applicant to design and construct the alternative selected to remediate the site. The site contact list will receive notification before the start of site remediation. When the Applicant completes remedial activities, it will prepare a final engineering report that certifies that remediation requirements have been achieved or will be achieved within a specific time frame. NYSDEC will review the report to be certain that the remediation is protective of public health and the environment for the intended use of the site. The site contact list will receive a fact sheet that announces the completion of remedial activities and the review of the final engineering report.

Certificate of Completion and Site Management

Once NYSDEC approves the final engineering report, it will issue the Applicant a Certificate of Completion. This Certificate states that remediation goals have been achieved, and relieves the Applicant from future remedial liability, subject to statutory conditions. The Certificate also includes a description of any institutional and engineering controls or monitoring required by the approved remedial work plan. If the Applicant uses institutional controls or engineering controls to achieve remedial objectives, the site contact list will receive a fact sheet that discusses such controls.

An institutional control is a non-physical restriction on use of the brownfield site, such as a deed restriction that would prevent or restrict certain uses of the remediated property. An institutional control may be used when the remedial action leaves some contamination that makes the site suitable for some, but not all uses.

An engineering control is a physical barrier or method to manage contamination, such as a cap or vapor barrier.

Site management will be conducted by the Applicant as required. NYSDEC will provide appropriate oversight. Site management involves the institutional and engineering controls required for the brownfield site. Examples include: operation of a water treatment plant, maintenance of a cap or cover, and monitoring of groundwater quality.

5. Citizen Participation Activities

CP activities that have already occurred and are planned during the investigation and remediation of the site under the BCP are identified in Appendix D: Identification of Citizen Participation Activities. These activities also are identified in the flowchart of the BCP process in Appendix E. NYSDEC will ensure that these CP activities are conducted, with appropriate assistance from the Applicant.

All CP activities are conducted to provide the public with significant information about site findings and planned remedial activities, and some activities announce comment periods and request public input about important draft documents such as the Remedial Work Plan.

All written materials developed for the public will be reviewed and approved by NYSDEC for clarity and accuracy before they are distributed. Notices and fact sheets can be combined at the discretion, and with the approval of, NYSDEC.

6. Major Issues of Public Concern

This section of the CP Plan identifies major issues of public concern, if any, that relate to the site. Additional major issues of public concern may be identified during the site's remedial process.

Based on the presence of volatile organic compounds (from gasoline) in soil and groundwater at the site, gasoline vapors may be present in the ground above the contaminated soil and groundwater. If these vapors were to migrate off of the property, they could enter nearby basements in commercial buildings or residences.

Appendix A – Site Location Map

Appendix B – Project Contacts and Document Repositories

Project Contacts

For information about the site's remedial program, the public may contact any of the following project staff:

New York State Department of Environmental Conservation (NYSDEC):

Shaminder Singh Project Manager NYSDEC Region 2 Division of Environmental Remediation 47-40 21st Street Long Island City, NY 11101 (718) 482-4909

New York State Department of Health (NYSDOH):

Gary Litwin Project Manager NYSDOH Flanigan Square 547 River Street Troy, NY 12180-2216

Document Repositories

The document repositories identified below have been established to provide the public with convenient access to important project documents:

New York Public Library - Allerton Branch 2740 Barnes Avenue Bronx, NY10467

Phone: (718) 881-4240 Hours:

Mon	Tue	Wed	Thu	Fri	Sat	Sun
10-6	12-7	10-6	1-6	1-6	10-5	—

NYSDEC Region 2 Division of Environmental Remediation 47-40 21st Street Long Island City, NY 11101 Shaminder Singh Hours: M-F, 8am to 4:30pm (call for appointment)

Appendix C – Brownfield Site Contact List

Local Government Contacts - Chief Executive Officer and Zoning Board Chairman

<u>Bronx County</u> Chief Executive Officer (Borough President): Aldofo Carrion, Jr. Address: 851 Grand Concourse, NY 10451 Phone: (718) 590-3500

Zoning Board Chairman: Planning and zoning for the County, which is a Borough of New York City, is under the responsibility of the NYC Department of City Planning (see below).

<u>City of New York</u> Chief Executive Officer: Mayor Michael R. Bloomberg Address: City Hall, New York, NY 10007 Phone: 311 (or 212-NEW-YORK outside NYC)

NYC Department of City Planning Chairman: Amanda M. Burden Address: 22 Reade Street, New York, NY 10007-1216 Phone: (212) 720-3300 Bronx Borough Office Phone: (718) 220-8500

Local News Media

Bronx Press/Riverdale Review 6050 Riverdale Avenue Bronx, NY 10471 Phone: (718) 543-5200 Fax: (718) 543-4206

Public Water Supplier

The New York City Department of Environmental Protection Bureau of Water Supply 59-17 Junction Blvd. Flushing, NY 11373

Schools and Daycare Facilities

P.S. 41 Gun Hill Road School - K to 5 3352 Olinville Ave Bronx, New York 10467 Phone: (718) 652-3461 Principal: Erika Tobia

H.S. 425 Evander Childs High School 800 East Gun Hill Road Bronx, NY 10467 Phone: (718) 519-7700 Principal: Monica Ortiz-Urena

Document Repository

New York Public Library - Allerton Branch 2740 Barnes Avenue Bronx, NY10467 (718) 881-4240

Appendix D – Identification of Citizen Participation Activities

Required Citizen Participation (CP) Activities	CP Activities) Occur at this Point
Application Process:	
• Prepare brownfield site contact list (BSCL)	At time of preparation of application to participate in BCP.
 Establish document repositories Publish notice in Environmental Notice Bulletin (ENB) announcing receipt of application and 30-day comment period 	When NYSDEC determines that BCP application is complete. The 30-day comment period begins on date of publication of notice in ENB. End date of comment period is as stated in ENB notice. Therefore, ENB notice, newspaper notice and notice to the BSCL should be provided to the public at the same time.
After Execution of Brownfield Site Cleanup Agreemen	t:
• Prepare citizen participation (CP) plan	Draft CP Plan must be submitted within 20 days of entering Brownfield Site Cleanup Agreement. CP Plan must be approved by NYSDEC before distribution.
After Remedial Investigation (RI) Work Plan Received	l:
• Mail fact sheet to BSCL about proposed RI activities and announcing 30-day public comment period on draft RI Work Plan	Before NYSDEC approves RI Work Plan. If RI Work Plan is submitted with application, comment periods will be combined and public notice will include fact sheet. 30-day comment period begins/ends as per dates identified in fact sheet.
After RI Completion:	
• Mail fact sheet to BSCL describing results of RI	Before NYSDEC approves RI Report.
After Remedial Work Plan (RWP) Received:	
 Mail fact sheet to BSCL about proposed RWP and announcing 45-day comment period Public meeting by NYSDEC about proposed RWP (if requested by affected community or at discretion of 	Before NYSDEC approves RWP. 45-day comment period begins/ends as per dates identified in fact sheet. Public meeting would be held within the 45-day comment period.
NYSDEC project manager in consultation with other NYSDEC staff as appropriate)	
After Approval of RWP:	
• Mail fact sheet to BSCL summarizing upcoming remedial construction	Before the start of remedial construction.
After Remedial Action Completed:	
• Mail fact sheet to BSCL announcing that remedial construction has been completed	At the time NYSDEC approves Final Engineering Report. These two fact sheets should be combined when possible if there is not a delay in issuance of the COC.
• Mail fact sheet to BSCL announcing issuance of Certificate of Completion (COC)	

Appendix E – Brownfield Cleanup Program Process

<u>APPENDIX - Q</u> Permits and Agency Approvals

TABLE 6Project Permit ListingTo Be Updated as Project Progresses

Permit	Permit Number	Originating Agency	Pursuant to	Issued	Expires	Contact Phone
Demo (Off Site Fill)	201136519-01-DM	NYC Dept of Buildings	Title 27 / Subchapter 19 [1905.0] Article 6 1039	10/17/2007	5/10/2008	
Demo (Construction Equip Fence)	201136519-01-EQ-FN	NYC Dept of Buildings	Title 27 / Subchapter 19 [1905.0] Article 6 1039	10/17/2007	12/31/2007	
New Building (On-Site Fill)	201130560-01-NB	NYC Dept of Buildings	Title 27 / Subchapter 1 §[C26-109.1] 27-147	11/16/2007	12/21/2007	
New Building (Construction Equip Fence)	201130560-01-EQ-FN	NYC Dept of Buildings	Title 27 / Subchapter 1 §[C26-110.1] 27-156	11/16/2007	12/31/2007	
Hydrant	483096	NYC Fire Dept	Title 27, Subchapter 19	11/5/2007	1/31/2008	
Hydrant	483097	NYC Fire Dept	Title 27, Subchapter 19	11/5/2007	1/31/2008	
Hydrant	483093	NYC Fire Dept	Title 27, Subchapter 19	11/5/2007	1/31/2008	
Hydrant	483094	NYC Fire Dept	Title 27, Subchapter 19	11/5/2007	1/31/2008	
Sewer Discharge	C-4335	NYCDEP		3/12/2008	3/12/2009	

<u>APPENDIX - R</u> Air Monitoring Reports

. -

.

Daily Air Monitoring Record Form
Site safety officer: Danion Langer Date/time: 730 an 10/23/07
Instrument make & model Phocheck / Ion Science
Calibration date
Task of day/Locations Monitored Enstallation of wells 3035 white plains Road
Remarks:
Weather condition- Wind direction: South South east Sky cover:
Air monitoring locations
Time North East South West Center Other Other
Pre-start 7 0.0 0.0 0.0 0.0 0.0
Hour 1 9 0 0.3 0.0 0.0 0.0
Hour 2
Hour 3 10 ** 8.0 0.5 0.3 0.0
Hour 4
Hour 5 12°° 0.0 1.1 8.2 0.0 0.0
Hour 6 12 0.2 0.1 0.0 0.3
Hour 7 2° 0.5 0.0 0.0 0.5 0.0
Hour 8 3 **
Hour 9
Hour 10

Dust suppressant necessary: Yes or No

Dust Suppression technique used:

Monitoring results and comments:

in the second

. •

···· (90*-74-

à

	D	aily Ai	r Mor	nitoring	Record Fo	orm			
Site safety offic	er:	Jamio	ala	wyer	Date/time:	10 [24/2	>7	
Instrument mak	e & mod	el	Ton	Sci	nce P	hocher	c L T		
Calibration date	Э	-							
Task of day/Lo	cations N	Nonitored	L	~ hit	e Plai	rs K	Load		
	Monit	tor: Y	~ ~ e	115	Ir. II. S				
Remarks	ning	OVe	(as	+					
Weather condi Wind direction Sky cover:	ition- : .	Ra	in i	n a	m, ove	er cast	•		
	1		E	Air	Monitoring loc	Center	Other	Other]
	Time	North	East	South	D'S	0.0			
Pre-start	0.00	4 · D	0.1	0.0	4.5	4.2			
Hour 1	1000	0.1	1.0	0.4	0.5				over reads
Hour 2	10 45	6.0	0.2	6.0	0.4	0.1	monitoring	0.411	-1133ppm
Hour 4	11	0.							-
Hour 5									-
Hour 6									
Hour 7									-
Hour 8									-
Hour 9									1
Hour 10									
Dust suppres Dust Suppres	sant nece	essary: nnique us	Yes ed:	or	No				_
									_
Monitoring re	sults and	commer	nts:				*1		2

ä.,

La it

. .

	D	aily Ai	r Mor	hitoring	Record H	-orm			
Site safety officents of the safety of the s	cer: 〔	Damio	a La Ion	Scie	Date/time:	10/25 ochrik	107		
Calibration dat	e	_							
Task of day/Lo <u>3035</u> Fort	wPR	Monitored ه ن ا ساحا	mo ls.	nitori	J dur:	Y drii	1.7	for	
Remarks:	aimt +	L:-d	s Du	+ .+	south wr.	st, the	shifin	Y	
for	- 10	North	~ E 95	t west				J	
Weather cond Wind direction Sky cover:	lition- 1:			Air	monitoring la	ocations			-
	Time	North	East	South	West	Center	Other	Other	the wet to
Dra atort	-1 0.0	at a	J.A.	N.A.	N. A				leadin/s
Pre-start	000	No . 0	0.0	a, 5	0.0	0.3			1
Hour 2	Gue	0.0	0.0	0.0	6.0	0.0			-
Hour 2	1015		0.0	0.0	0.0	0.2			-
Hour 3	10 45	0.0	0.0	0.0	0.0	0.0			-
Hour 5	1 2 50	0.0	6.0	0.0	0.0	0.0			_
Hour 6	1 1 3 3	0.0	0.0	0.0	0.0	0.0			_
Hour 7	150	0.0							-
Hour 9	3								
Hour 9									-
Hour 10									i
Dust suppre	ssant nec	cessary: hnique us	Yes	or	No				

.

Monitoring results and comments:

C. P. Bernette

3035 WPR

Daily Air Monitoring Record Form

Site safety offi	cer:	0.50	sik		Date/time:	1/2/	08	
Instrument ma	ake & mo	del	Tio	v Sci	msz /c	000		
Calibration da	te							
Task of day/Lo Excan	mte	Monitored in A	Total	PID 3	them 1/2	of p	opak	,
Remarks: S/i-j	ht p	refra o	der C	(gaz)	Noted ut	nor los	ding	
Weather cond Wind direction Sky cover:	ition- 1:	N a Ottan	Cold W - 1. - Ch	3/ 3/11/9 21/9 21/9 Air	monitoring lo	cations	Pit	
	Time	North	East	South	West	Center	Other	Other
Pre-start	SAM	0.0	O.D	0.0	0-0		0.0	
Hour 1	9	0.0	0.0	0.0	0.0		0.1	
Hour 2	10	0.0	0.0	0.0	0.0		0.0	
Hour 3	11	0.0	0.0	0.0	0-0		0.1	
Hour 4	12	0.0	0.0	0.0	0-0		0.3	
Hour 5	(0.0	0.0	0.0	0.0		0.1	
Hour 6								
Hour 7								
Hour 8								
Hour 9								
Hour 10								

Dust suppressant necessary:

or

Yes

No

Dust Suppression technique used:

Monitoring results and comments:

No Cust, soil Camp

Daily Air Monitoring Record Form

Site safety offi	cer:	C.S	osile		Date/time:	1/3.	108	
Instrument ma	ike & mo	del	TION	Scize	VEL 1000	>		
Calibration dat	te							
Task of day/Lo <u>Agen Ama</u> <u>Monita</u> <u>Dust m</u> Remarks:	Per- Per- Per- Per-	Monitored aus for mata mata	1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pitfor 2 A f	An 1/2 Vols Nobles Cre	of p	vopurt vsthe	Grd.
Weather cond Wind direction Sky cover:	ition- ::	Vary From Chi	1 Colo NU	[→14)	° to 21°			
				Air	monitoring loo	cations	Pit	0.1
	Time	North	East	South	West	Center	Other	Other
Pre-start	7:15	0.0	0.0	0.0	00		0.0	
Hour 1	8:00	0.0	0.0	0.0	0.0		0.0	
Hour 2	9:00	0.0	0.0	0.0	0.0		0.0	
Hour 3	10:00	0.0	0.0	0.0	0.0		0.0	
Hour 4	11:00	0.0	0.1	0.3	0.0		2.4	

	Time	North	East	South	West	Center	Other	Other
Pre-start	7:15	0.0	0.0	0.0	00		0.0	
Hour 1	8:00	0.0	0.0	0.0	0.0		0.0	
Hour 2	6:00	0.0	0.0	0.0	0.0		0.0	
Hour 3	10:00	0.0	0.0	6.0	6.0		0.0	
Hour 4	11:00	0.0	0.1	0.3	0.0		2.4	
Hour 5								
Hour 6								
Hour 7								
Hour 8								
Hour 9								
Hour 10								
					0			

Dust suppressant necessary:

or

Yes

No

Dust Suppression technique used:

Monitoring results and comments: Slight growtine ocar plany southern Fence line + IN Pit NEAN Soil Pitz.

3035 WPR

Daily Air Monitoring Record Form

Site safety off	icer:	C, S	sile		Date/time:	1/4/0	38	
Instrument ma	ake & mo	del	Tou	SCIENCE	1000			
Calibration da	te							
Task of day/L	ocations but the		d EKC4	unte c	Southman	1/2 0	fst	L
			4					
Remarks:								
Weather cond Wind direction	lition- n:	Col Bar	11 1- 1-	Lion N	Ŵ			
chy coron	1						× D.L	high
			Y	Air n	nonitoring lo	ocations	P. 1	01
	Time	North	East	South	West	Center	Other	Other
Pre-start	1:50	0.0	0.0	0.0	0.0		DAD	-11
Hour 1	8:30	0.0	06	0:0	0.0		H	111
Hour 2	9.30	0.0	0.0	0.0	0.0		0.0	3.21
Hour 3	10:30	0.0	00/15	04/42	0,0		0.1	3.0
Hour 4	11.30	0.0	00/2.7	041.1	0.0		0.1	20
Hour 5	12.50	0.0	0.0/6.0	011.4	0.0		01	6.8
Hour 6	1:50	0.0	0.0	0.1/1.2	0.0		01	7.7
Hour 7	2:30	0.0	0.0	0.10.5	0.0		0.1	0.1
Hour 8								
Hour 9								
Hour 10								
Dust suppres	sant nece	essary: nique us	Yes ed:	or	No			

Monitoring results and comments: <u>A High Cange Ceprisent</u> Spike while Conding, Not A Sustained <u>REDCING Gasting Odor Noted in Pit Nixt to Spit Pile, Slight odor</u> <u>Alenie East & Son the Fance Cine while loading</u>.

Daily Air Monitoring Record Form

Site safety o	fficer:				Date/time:	JAN 21	lace	700
Instrument m	nake & mo	del	Ini	Selenic	- Pibe	HOLK IN	20+	
Calibration d	ate							
Task of day/	Locations	Monitored	305	5 WHITE	PLAINES PS			
Remarks: No subce Macthole	K Du.	to H	Coch	Setur C.	- Downto	9 30 9 Aug		
Weather con Wind direction Sky cover:	dition- on:	Konto CLOTHE						
			-	Air	monitoring lo	ocations	Other	Other
Dec. start	Time	North	East	South	vvest	Center	Other	Other
Pre-start	1.00	U	0	0	e			
Hour 2								
Hour 3								
Hour 4								
Hour 5								
Hour 6					11			
Hour 7					100			
Hour 8								
Hour 9								
Hour 10								
Dust suppre Dust Suppre	ssant nece ssion tech	essary: nique use	Yes ed:	or				

Daily Air Monitoring Record Form

Site safety off	icer:				Date/time:	Jan 24	1,2008	Jan	
Instrument ma	ake & mo	del	Icol .	Seion	· PHOC	HOCK 12	0+		
Calibration da	ite	с.							
Task of day/Li How means OF FICC	ocations All Barth	Monitore Sches Hourd	303 OF	E WW.	BARG BA	as Bring	fue -	Silos	
Remarks: Becare MG Rec'e Fisi	heck	FILL	france	HE Reck	645 Rc	KOTS TA	CARD 464	apars	
Weather cond Wind directior Sky cover:	lition- 1:	28 AM	ND AND	Lee Clovin Air	(Cre) monitoring lo	ocations		GUL	1-
	Time	North	East	South	West	Center	Other	Other	
Pre-start	7.00	0	12	10	0				
Hour 1	500	1	0	0	0	0			
Hour 2	900	10	0	0	0	0		0	
Hour 3	1010	0	0	0.	0	0		1.6	
Hour 4	11.50	2.1	1.8	2.4	2.1	A- FUELL		2.1	
Hour 5200	Map	28	19	1.8	1-8	4.6		232	141205
Hour 62, cx	300	0	0	0	Ö	0		ONC	cside-S
Hour 7	1400	1.0	5	0	0			1.45	HESIDS M
Hour 8	1500	-5	0	-5	0	O		/	
Hour 9						9			
Hour 10		1							
Dust suppres Dust Suppres	sant nece sion tech	essary: nique us	Yes ed:	or	No				
100									
Monitorina re	sults and	commen	ts:				23	0	
in a start of the									
Sou Sellan	- SHIZI	(Row)	NG A	SEG	O.HT I	For 4.8	OFIL	16,100	

~

1100 Romowers AT RECEBORING BROKEN USS Q-6 => 2.1 1300 AT MITTINE REEAK 22 DRIPHTE TO C

Daily Air Monitoring Record Form

Site safety offi	icer:				Date/time:	JAN RT	port	6.50	DAN
Instrument ma	ake & moo	del	Jari S	enerci-	Pito Citiz	K Inton	-		
Calibration da	te	2							
Task of day/Lo Morenze / Marinze A	acations I ALL SJ KL Fee	Monitored	303 F FI	C P.L. Breekort	FRAME RD	BLOOK COADOD RE SID-	at S OF	EXCAUN	i)en/
Remarks: MACHINE BI 28 LOADS	Contra	MINAT	R 20 F	UL J P	eze Romo	Arr			
Weather cond Wind direction Sky cover:	lition- 1:	Norto	34 to 0	NT OF	Acet				
				Air	monitoring lo	cations		FILLR	6
-	Time	North	East	South	West	Center	Other	Other	
Pre-start	200	0	Ð	Ø	0	0		Ø	
Hour 1	800	0	0	0	0			0	
Hour 2	900	.5	1.0	.3	-1	.7		1.0	
Hour 3	inco	-5	0	0	0	0		0	THIS ROANNIG
Hour 4	11:00	24	3	3.4	3			3.2	AT FICE.
Hour 5	12:10	31	3	4.8	24			3.8	AT FILL VILLE
Hour 6	1300	0	0	0	0	0		0	
Hour 7	1400	0	0	0	0	0		0	
Hour 8	1500	0	0	0	0	0		D	
Hour 9									
Hour 10]
Dust suppress	sant nece	essary:	Yes	or	(No				
No Des	T CL		50.						
Monitoring res FILL Flur Bastors fact	sults and Su) Cerro O 11-20	commen 10 for for for for	ts: +D-n6' -0-	1-2.5	LATTER FOST	merits \$	Combine	535-	2.4@ 1 hm

POLET ROMDING AT FILL PLE @ RIOD 183 -728

filo

Daily Air Monitoring Record Form

H 28,200 Date/time: Site safety officer: 301 SCIONET PUDCHECK 1000+ Instrument make & model Calibration date Task of day/Locations Monitored 3055 WHITE PLANKS PD BRONK Remarks: STOCK PILOS CONTRAMINATE BIRT ON TOP OF CLORA FOCK 4184 Weather condition-WINDOW WIND FEON SOTHED SLIGHT to NUME Wind direction: Sky cover: CLORE SUNAY AND HUETHSIDE OF Acon Air monitoring locations West Center Other Other South Time North East O O 7:00 0 0 0 Pre-start 4:00 O 0 Hour 1 0 0 100 1.2 3.4 0 0 Hour 2 3.420 Hour 3 O 0 0 0 0.00 ACTIVIN Hour 4 No 11:00 0 Hour 5 0 O 12:00 D 0 0 CHIP ARDA 0 0 0 Hour 6 1300 0 0 0 0 15.830 0 0 Hour 7 1400 Otle AROA 5870 430 1530 Hour 8 1500 0 2430 Hour 9 Hour 10 (No) or Dust suppressant necessary: Yes ····················· TOTALS TOCHANGE BEEKET to HAMMER ON CARGO HACHANO 10 30 1130 LARGE MARITIME DONA TILL 1200 Monitoring results and comments: 1400 NOOT SIDE OF CHAR PROM POCKET 15.8 7 0

Daily Air Monitoring Record Form

Site safety offi	cer:				Date/time:	JAN 2	9, loa	8 7.	4m	
Instrument ma	ake & mo	del	Ict-	Scion	CE PHOC	Hack	1000-	-	2	
Calibration da	te									
Task of day/Lo Man por A Men 1 Taz	Fill P	Nonitored	Hole Hole	5 HAAT	E PLAINS T E Rock () AIRT of Bac	E BENG	BANG Sopa	DONO		
Remarks: fut lacture Golfacarms	- Herman Peeb	Fein	dertte	Macifin Hal W AS	20 FILL	- CHapped	63	Ton t	Geal)
Weather cond Wind direction Sky cover:	ition-	33 mm	40	en Se	HATCETO S	Howes				
				Air	monitoring lo	cations	CHPE	C & Por	Por	Treny
	Time	North	East	South	West	Center	Other	Other		1
Pre-start	76002	O	0	0	0	Ø				
Hour 1	800	0	0	0	0	0				
Hour 2	900	Ø	0	0	1	1.4-0	0	1-0		t
Hour 3	IDOD	0	.5	10	0	8570	0	470	1	1
Hour 4	1100	10	0	0	0	85	0	B	3.5	1.W.
Hour 5	Mip	P	0	-5	1.5	D	0	0	0	N.W.
Hour 6	1300	0	0	0	0	0	0	0	0	
Hour 7	14-0	0	-8	.6	/	D			0	
Hour 8	1500	-5	-1	D	0	/			0	
Hour 9	1000									
Hour 10										
Dust suppress	sant nece	ssary:	Yes	or	No					
Dust Suppres	sion tech	nique use	ed:							
									-	
Monitoring res Sourcac At 10.00	sults and Sfikes d 110	commen S CF S Sisi	ts: S - 7 PATES	8.5 m	1 doeth o	lost Sid	5 OF	WALC	-	

Daily Air Monitoring Record Form

Site safety off	ficer:				Date/time:	JAN J	6,200	8 630
Instrument ma	ake & mo	del	Tor	(Sero	NCE PH	ocutat	- 1033	+
Calibration da	ate							
Task of day/L	ocations l	Monitored Careford No Fic	1 303 15 of	- Wals	BRING BRING	is Brow Cilippo	K D	
Remarks:								
LOADING C	NT Pac	++5	PAR	FDAG	Roat PRise	Fill		
CHIPPING	DUT /	NW.C	OPNOT	ROF	RACONONTRA			
14 Lonos	Ret	PIOM	1050	>				
		100	~		10-			
Weather cond	lition-	4219	1 247	NUCESA	4 Brig			
Weather cond Wind direction	n:	Nonto 3	1 241 to 001	OF DA	- NOTINA	D WIND O	UTOFI	WETH WES
Weather cond Wind direction Sky cover:	n:	Norte :	to all	OF DA	- NOTINA	Wind a	UTOFI	WETH WOS
Weather cond Wind direction Sky cover:	n:	AUNE : World	Le avi her and	JUNN	- NORTXA	Wink a	UTOFI	KETT WUS
Weather cond Wind direction Sky cover:	n:	NUME	to and	Air	Hanitoring lo	cations	NOF 1	HUZTH KLOS
Weather cond Wind direction Sky cover:	Time	North	East	Air	monitoring lo	cations Center	Nor OF I	UZTH KLOS
Weather cond Wind direction Sky cover: Pre-start	Time	North	East	Air South	monitoring lo	cations Center	Nort OF I	WETH WOST
Weather cond Wind direction Sky cover: Pre-start Hour 1	Time	North	East	Air South	monitoring lo	Center	No PT	UZTH KOST Other
Weather cond Wind direction Sky cover: Pre-start Hour 1 Hour 2	Time	North	East		monitoring lo	Center	Noer Other	Other
Weather cond Wind direction Sky cover: Pre-start Hour 1 Hour 2 Hour 3		North O O O O O O O O O O O O O		Air South	monitoring lo	Center	Nor of I Nort	UZTHULS
Weather cond Wind direction Sky cover: Pre-start Hour 1 Hour 2 Hour 3 Hour 4		North O O O O O O O O O O O O O	East C C C C	Air South O O O	monitoring lo	Center	Noen Other	UZTH VLOS Other O O
Weather cond Wind direction Sky cover: Pre-start Hour 1 Hour 2 Hour 3 Hour 4 Hour 5 Hour 6		North O O O O O O O O O O O O O				Center	Aller Other O O O O O	UZTHENS
Weather cond Wind direction Sky cover: Pre-start Hour 1 Hour 2 Hour 3 Hour 3 Hour 4 Hour 5 Hour 6 Hour 7	Time Time Top Soc Soc Soc Soc Soc Soc Soc No do HOO NO HOO HOO HOO HOO HOO HOO HOO HOO HOO HO	North O O O O O O O O O O O O O				Center	Aller Other	Vizit Visit
Weather cond Wind direction Sky cover: Pre-start Hour 1 Hour 2 Hour 3 Hour 4 Hour 5 Hour 6 Hour 7 Hour 8	Time Time Lov Sov Lov Lov Lov Lov	North O O O O O O O O O O O O O				Center	Aller Other O O O O O	UZTH VLOS Other O O O O O O O
Weather cond Wind direction Sky cover: Pre-start Hour 1 Hour 2 Hour 3 Hour 4 Hour 5 Hour 5 Hour 6 Hour 7 Hour 8 Hour 9	Time Time 1000 1000 1000 1000 1000 1200 13000 14000 15000 15000	North O O O O O O O O O O O O O				Center	Other Other O O O O O	

Dust Suppression technique used:

Monitoring results and comments: No objects Dorretron of funct of BE Horac

Daily Air Monitoring Record Form

Site safety office	er:				Date/time:	JAN SI	2aE	630
Instrument make	e & moo	lel	Port	Science	- Phoe	Hock Lo	1-35	
Calibration date								
Task of day/Loc Montree A	ations N ARCA	Nonitored Alexandress	303 10 F 50	TINH. ILC PI	LE BOING	20 Bin REMON	D	
Remarks: 29 Contos 2 Contos C	Cont	Rad	E Ro	ACU DI	ayad			
Weather condition Wind direction: Sky cover:	on-	Clarke	Server	Air r	monitorina la	ocations		
	Timo	North	Fast	South	West	Center	Other	Other
Pro start	7,90	Rorun	D	O	0		0	0
Hour 1	ka	4	1-	1	F		0	0
Hour 2	Gao	0	-5	1-	1		0	0
Hour 3	0100	0	0	0	0		0	0
Hour 4	1100	0	-	T	0		0	0
Hour 5	200	0	1	-5	0		0	0
Hour 6	1300	0	1	1-5	/		0	0
Hour 7	1400	0	· 5	1	0		0	0
Hour 8	1500							
Hour 9								
Hour 10		-						
Dust suppressa	nt noon	0007/	Ves	or	No			

Monitoring results and comments:

Daily Air Monitoring Record Form

Site safety officer:		Date/time:	For 1, 2008	630
Instrument make & mo	Dow Spie	ake Pher	24-2K 1000+	
Calibration date				
Task of day/Locations Montore feel Montore	Monitored 30.35 Wth E ALO BOING Stort ALOD F STORT ACT POMO ETAN Pack POMO HIPPOTS Pack FR ON FOR SUD C	Lon Hozo Lon Hozo Word Word Word Word Word Word Word Wor	20 BRONK	
Weather condition-	3. Fan Rawl	PEACE CI	1.2.2.4.5	
Wind direction:	NORTH BAST			
Sky cover:	OVBRCAST			

				Air n	nonitoring lo	cations		
	Time	North	East	South	West	Center	Other	Other
Pre-start	200	0	0	0	0			
Hour 1	800	Ø	0	0	0			
Hour 2	900	0.5	0	0	0			
Hour 3	1000	0	0	0	0			
Hour 4	1100	0	0	0	0			
Hour 5	in	0	0	0	O			
Hour 6	1300	0	D	0	0			
Hour 7	1400	D	O	0	0			
Hour 8	1500	0	0	0	0			
Hour 9								
Hour 10								

Dust suppressant necessary:

No

or

Yes

Dust Suppression technique used:

Monitoring results and comments:

Daily Air Monitoring Record Form

Site safety of	ficer:				Date/time:	FOB 4,2	2008	6:30
Instrument m	iake & mo	del	Tax	Seion	ice Pito	Ctack	1000+	
Calibration da	ate							
Task of day/L MONITOR	ocations Reet P Boten	Monitored	303 026 26	CARP.	DO UNT.	2D BRO	NX	
Remarks: 14 Lor North	DB CL	OF	Lock T	Zomn	Marin.			
Weather con Wind directio Sky cover:	dition-	38° 3 No 4 ovces	HOUS IND INST	Hewers	(A4) 38pm	rto Speci	0	
				Air	monitoring lo	cations		Packfier-
	Time	North	East	South	West	Center	Other	Other
Pre-start	200	P	Ø	0	0			0
Hour 1	820	0	0	0	0			0
Hour 2	900	45	0	0	0			
Hour 3	1000	5.1	0	0	0			
Hour 4	1100	1	0	0	0			0
Hour 5	1200	-5	1	0	0			O
Hour 6	1300	0	0	0	0			
Hour 7	1400	2.1	4.9	0	0			0
Hour 8	1500	1.5	3.0	0	0			0
Hour 9								
Hour 10								
Dust suppres	ssant nece ssion tech	ssary: nique use	Yes ed:	or	No			
Monitoring ro	eulte and	common	e.					
gio A C	Suits and	aller	P. T	063	Dua Zolla	a unan	(21.1	and then u
100 4.0 1	ORDA CI	MARE	IMPI	ON DO	DOING DOING	Cherpol	DIN	okno veki-w

Daily Air Monitoring Record Form

Site safety officer:		Date/time:	FB 5, 2008	630
Instrument make &	model Der	Science Pr	ACHER 1000	7
Calibration date				
Task of day/Location	Bond G Land OUT Bond G Land OUT Bond G Celebra	EHITE RAMES R FOR LONGA	D Bready K	
Remarks: (ACSO EXCHONTOR IG CONTON Cotor Botton Stock Pile Pack Weather condition- Wind direction: Sky cover:	WHAMMER DOWN IN MITTALIANDON FIL 200 SUBSEADE FROM HULE ON AST SLIGHTS NOWINDED NO OUTREAST	CHAP NORTH W TOP WIND (1)	7:30-10:30 ALL to SUB GEA SILOUSES (M)	0-
		Air monitoring lo	cations	fullo

		Air monitoring locations									
	Time	North	East	South	West	Center	Other	Other			
Pre-start	700	0	0	0	O			0			
Hour 1	800	0	0	0	0			- 5			
Hour 2	200	0	0	0	0			0			
Hour 3	1000	0	0	0	0			0			
Hour 4	1100	0	0	0	0			.2			
Hour 5	1200	0	0	0	0			0			
Hour 6	1200	0	0	0	0			0			
Hour 7	1400	0	0	0	0			Ø			
Hour 8	ISW	Ø	0	0	0						
Hour 9											
Hour 10											

Dust suppressant necessary:

(NO)

ог

Dust Suppression technique used:

Monitoring results and comments:

Yes
BC ENVIRONMENTAL BUBINEBSE CONSULTANTS

Daily Air Monitoring Record Form

Site safety of	ficer:				Date/time:	FOB 6.	las	Loi	30)
Instrument m	ake & mo	del	For	Seia	ICE PH	oCttoele	1022-	Ł	-
Calibration da	ate								
Task of day/L Martiter Moreno b	locations l factor	Monitored Pico Sor 3	303. Bar	+15 Ler	PRAINS 21 ADD CONT	RAMIP	San	04 (3)	Inclas
Remarks:					0				
EXCANATOR	Firlon	ANBI	Joda	the Tom	- BANG	-	/	- 7	DRL
CHOP OUT	CL	Por P	WEST	Ronals	, CITY B	1211 .4	Long of	UT FAR	IT WER
CHIP So	TBACK	5 111	LORIN	+ WACL	-				
Weather cond	dition-	48".	SHOW	READ	60° Sea	TOKEN S	towers	C	-
Wind directio	n:	No WIN	ID.					-	-
Sky cover:		OUCRE	CAST		14				-
				Air	monitoring l	ocation	H-WALL	RAND	
	Time	North	East	South	West	Center	Other	Other]
Pre-start	200	0	0	0	0			0	
Hour 1	800	0	0	0	0			0	
Hour 2	910	0	.5	1.5	0	0		Ð	
Hour 3	1000	1	.0	1.5	2.0	0	0	0	
Hour 4	1100	0	0	0	0		0	0	
Hour 5	1200	0	0	0	0		0	0	

0

0

0

0

0

0

0

Hour 5 1200 O 0 C 0 1500 Ø 0 0 0 Hour 6 0 0 0 0 Hour 7 1500 0 0 0 0 Hour 8 Hour 9

Yes

Dust suppressant necessary:

Hour 10

or

No

Dust Suppression technique used:

Monitoring results and comments:

Site sefety	officer	0.0	Bal		Dete/fime:	2-29-	08	
Site safety (officer:	400	-om	Jan	Date/time:	2-28-	00	
Instrument	make & mo	del	Im S	cience	the chee	k+1000		-
Calibration	data							
Calibration	uale							
Task of day	/Locations	Monitore	ed					
Trucks	~							
H20 Sam	eles -							
Remarks:								
					-			
Trucks	IOWHER	Ler.	- R	ock only	. 2	LOAPS		
				(, ,	(
Weather co	ndition-		20° F					
Sky cover:	01.	C	GER					
ony coron								
				Air	monitoring l	ocations		
	Time	North	East	South	West	Center	Other	Other
Pre-start	GisoAM							
Hour 2	11	0	B	- 0				
Hour 3	9	62	0	0	8			
Hour 4	15	0	0	0	0			
Hour 5	11	D	D	0	0			
Hour 6	12	0	0	0	0			
Hour 7	1	8	8	0				
Hour 9	3	0	1	0	6			
Hour 10								
Dust suppre Dust Suppre	ssant nece	ssary: nique use	Yes ed:	or	NO			
1								
Monitoring re	esults and o	commen	ts: PH	11.3	PPM 187	8°C	No Va	Read
		10.1					+0 04	

ار الدار العطو	~ 2					Site :	Bre	mx -	
	l waad						3035 h	Interplay	ins !
ENVIRONM	ENTAL BI	JSINES	SS CO	NSULTAI	NTS				
	Ī	Daily	Air Mo	onitori	ng Record	Form			
Site safety of	officer:	& Ba	mba	NA	Date/time:	2-29-	08		
Instrument r	nake & mo	del _	for	Science	to the c	heek +	10000		
Calibration of	late								
Task of day, Monitor Thicks	Locations I	Monitore	d Cav.						
Remarks:	No	Truc	les -	_					
Weather cor Wind direction Sky cover:	ndition- on:	D N C	25°F J. LEAR	Smpth	monitoring	ocations			
	Timo	North	East	All	Mont West	Cantons	Other	Other	
Dro stort	Time las	NORT	East	South	vvest	Center	Otner	Other	
Hour 1	17'	Ð	0	25					
Hour 2	8	0	0	0					
Hour 2	Gr	-	0	D	0				
Hour 4	INS	0	10	-	0				
Hour F	115	8	0	0					
Hour 6	12	D	10	0	0				
Hour 7	1	-k-	0	0	0				
Hour 8	2	0	8	0	2				
Hour 9	3	0	D	0	2				
Hour 10	/	V	V		0				
Dust suppres	ssant neces	ssary: nique use	Yes ed:	or A	No				
Monitoring re P.E. Qr.	esults and c	commen → No	ts: She	υ,					
H20 300	rele t	s Am	quear	- analy	tical lab.				

SITE: 3035 White Plains Rd. Brown

	<u>[</u>	Daily A	ir Mo	nitorin	g Record	Form		
Site safety off	icer:	ch Bo	mbar	d.	Date/time:	3/3/08		
Instrument ma	ake & moo	iel	Ion	Science	e thoc	reck +	000	
Calibration da	ite	1						
Task of day/L Monitor	NSEN.	Monitored A)R~w/	PID,	VISU	AL, Truc	to info.		
Remarks:								
Weather cond Wind direction Sky cover:	dition- n:	Ċ	39° F S/E (tean	Smph				
				Airı	monitoring la	cations		
	Time	North	East	South	West	Center	Other	Other
Pre-start	6:30AN	1						
Hour 1	7:	0	0	0	0	0		
Hour 2	8	0	0	0	ð	0		
Hour 3	9	0	0	0	٥	0		
Hour 4	10	O	0	0	0	0		
Hour 5	(1	O	0	D	Ð	0		
Hour 6	12	0	0	D	ð	0		
Hour 7	1	O	0	0	0	0		
Hour 8	2	0	0	0	0	0		
Hour 9	3			/				
Hour 10								
Dust suppres	sant nece ssion tech	essary: nique use	Yes ed:	or	NO			
1 m,								
	مريافه مسا		te:					
	l_{oc}	EA D m	(S.	No TI	nucks -	-	\	
* Waite	ma	5~ 0	EWG	ter	Fermit	- (hill Po	wers)	
H20 Resu	It's due	: from	LAG.	- america	in analytes	-		

and and I to

Daily Air Monitoring Record Form el Sombar 3 Date/time: 08 Site safety officer: +1000 Selence och Instrument make & model Calibration date Task of day/Locations Monitored APID, Visual Track Monitor NSEW, Remarks: No Trucks 43°f Weather conditioncalm Wind direction: clear Sky cover: Air monitoring locations Time North East South West Center Other Other 6 SO AM Pre-start

Site" Brony Plain la

Hour 1	11	0	0	0	0	0	
Hour 2	8	0	D	0	D	0	
Hour 3	19	0	0	0	0	0	
Hour 4	10	0	à	0	0	O	
Hour 5	10	O	0	0	0	0	
Hour 6	12	0	0	0	0	0	
Hour 7		0	0	0	0	0	
Hour 8	2	0	Ò	0	2	0	
Hour 9							
Hour 10							

or

Yes

Dust suppressant necessary:

NO

Dust Suppression technique used:

Monitoring results and comments: KRA 201 00

Sitz: 3035 White Name R. Bronze

FEIT

Daily Air Monitoring Record Form fol Jonbard Date/time: 3-5-08 Site safety officer: Instrument make & model Calibration date Task of day/Locations Monitored Moniton NSEW W/PID, Visual, Trucking Photons Remarks: 40° F - 48° F SE SMPH Rain /PM: Partly cloudy Weather condition-Wind direction: Sky cover: AM LT Air monitoring locations Time North East South West Center Other Other 12th AM Pre-start 7: Hour 1 0 0 0 D 0 Hour 2 8 O 0 D 0 0 Hour 3 0 0 0 0 0 0 Hour 4 6 0 0 0 0 11 0 Hour 5 0 D 0 0 12 Hour 6 0 0 0 0 0 0 Hour 7 D O 0 0 2 Hour 8 Hour 9 Hour 10 Dust suppressant necessary: Yes No OF Dust Suppression technique used: Monitoring results and comments: B (H20) UNDETECTED (=1645 m) <u>AEVIAD</u> - TO adviso Permit Status for DENETER Permit NO VOC READINGO-fick P > FM: AM Trucks - make arrangements Qts TRA L> for clean Earth, N.S.

Site: 3035 White Places Rd. Bronx

FFIT

Daily Air Monitoring Record Form & Sombard Date/time: time: 3-6-08 Prochect + 1000 Site safety officer In Science Instrument make & model Calibration date Monitor NSEW W/PID, VISUA, Trucki Remarks: * NEED Manifests REQ. Trucks for Fri 76h-18 LOADS. 37° F Weather condition-Smph. Wind direction: NW partly cloude Sky cover: Air monitoring locations Time North East South West Center Other Other 63014 Pre-start -0 Hour 1 7! 0 0 0 0 8 Hour 2 O 0 0 0 0 Hour 3 0.2 0 0 0 0 Hour 4 10 0.1 0 0 0 0 Hour 5 11 B D 0 0.1 0 Hour 6 12 0.2 0 0 O 0 Hour 7 1 0 0 D 0 0 2 Hour 8 0 0 6 0 3 Hour 9 Hour 10 Dust suppressant necessary: Yes (NO) Or Dust Suppression technique used: Monitoring results and comments: No Voc FEADURES No Trucks OUT

Site: 3035 White Plains

Site safety	officer:	odel	to	and Scien	Date/time:	3-7. check	08	6
Calibration	date							
Task of da	y/Locations	Monitore	PIP	, Visen	P, Trac	2 upo -	sigh	Manufa
Remarks:								
				201				
Weather co	ondition-		5	2 t				
Wind direct	tion:		C	ALM				
Sky cover:			Re	nty	Cloude)		
						4		
				Airr	nonitoring le	ocations	1	
	Time	M.C. OL		5 m i - 8 m	Mont	Conton	Othor	
Pro stort	Time	North	East	South	vvest	Center	Other	Other
Pre-start	Time (330 AN	North	East	South	West	Center	Other	Other
Pre-start Hour 1	Time Caso Au 71	North	East O	o	Ø	Ø	Other	Other
Pre-start Hour 1 Hour 2	Time (23-2) AN 77:	North	East O	0 O	0 O	0 O	Other	Other
Pre-start Hour 1 Hour 2 Hour 3	Time Case Au 7: 8	North	C C C	0 0 0	0 0	Center 0 0	Uner	Other
Pre-start Hour 1 Hour 2 Hour 3 Hour 4	Time (230 AN 77 8 7 10	North	East 0 0			Center 0 0		Other
Pre-start Hour 1 Hour 2 Hour 3 Hour 4 Hour 5	Time (23-2) AN 77: 8 9 10 11 11	North	East O O O					Other
Pre-start Hour 1 Hour 2 Hour 3 Hour 4 Hour 5 Hour 6 Hour 7	Time (230 AN 7: 8 10 11 12	North 0 0 0 0 0 0 0	East 0 0 0 0					Other
Pre-start Hour 1 Hour 2 Hour 3 Hour 4 Hour 5 Hour 6 Hour 7 Hour 8	Time (230) AN 77: 8 77: 8 7 7: 8 7 7: 10 11 12 1 12 1	North	East 0 0 0 0 0			Center 0 0 0 0 0 0 0		Other
Pre-start Hour 1 Hour 2 Hour 3 Hour 4 Hour 5 Hour 6 Hour 7 Hour 8 Hour 9	Time (330) AN 71: 8 9 10 11 12 1 12 1 2/ 3	North D D O D D D O D D D D D D D D D D D D D	East 0 0 0 0 0 0					Other
Pre-start Hour 1 Hour 2 Hour 3 Hour 4 Hour 5 Hour 5 Hour 6 Hour 7 Hour 8 Hour 9	Time (230) AN 7: 8 9 10 11 12 1 12 1 2/ 3	North D D O O O O O O O O O O O O O	East 0 0 0 0 0 0 0 0 0 0 0 0 0					Other
Pre-start Hour 1 Hour 2 Hour 3 Hour 4 Hour 5 Hour 6 Hour 7 Hour 8 Hour 9 Hour 10	Time (230) AN 7: 8 9 10 11 12 1 12 1 2/ 3	North D D O O O O O O O O O O O O O	East 0 0 0 0 0 0 0 0 0 0 0 0 0			Center 0 0 0 0 0 0 0 0 0 0 0 0		Other

FEIC

Monitoring results and comments: - No Voc Readings - DEWSta Permit Still Pending (airel & advise) - Trucks - Soil contaminates & CleanEarth 18 LOADS anter of NY. - TMICK Rockonly- 2 LOADS

Site: 3035 White Plains Rd. Brong

FESTS

	Ī	Daily A	Air Mo	onitorir	ng Record I	Form		
Site safety o	fficer:	Bar	Lar	L ,	Date/time:	3-16)-08	
Instrument n	nake & mo	del ,7	ton	Scien	ica tho	check	10004	
Calibration d	ate							
Task of day/	Locations I NSEeJ	Wonitored WRIP	, Vis	ucl,	trucks			
Remarks: Tuucks	- loc	It 5	nly	(5) To	Tallorg	sont	15	Tileon
Weather con Wind direction Sky cover:	dition-	٨	31°F IW Clea	10 mg	eL.			
				Air	monitorina loo	cations		
	Time	North	East	South	West	Center	Other	Other
Pre-start	LO: 4SAM							
Hour 1	73	0	0	0	0	0		
Hour 2	8	0	0	0	6	0		
Hour 3	9	0	0	0	0	6		
Hour 4	10	0	0	Ø	0	0		
Hour 5	11	0	0	D	D	0		
Hour 6	n	O	0	0	0	0		
Hour 7	1	D	0	0	0	0		
Hour 8	2	0	0	Ö	\mathcal{O}	0		

Dust suppressant necessary:

Hour 9 Hour 10

No

Dust Suppression technique used:

Yes

or

Monitoring results and comments: No Voc LEadings

?- airel Permit

ENVIRONMENTAL BUSINESSS CONSULTANTS

FEST

Site: 3035 White Plain R

		Daily	Air M	onitori	ng Record	Form		
Site safety o	officer:	2 Br	mba	nd.	Date/time:	3-11-0	8	
motumenti	nake of nit	Juei ,	10-	JUE	nee 10	ocheer	_ 10	00
Calibration of	date							
Task of day	Locations	Monitore きい し	d Piz	> , V	isual, T	rudu	è	
Remarks:								
Weather cor Wind direction Sky cover:	ndition- on:	C	35° U/W	f Sm Air	el . monitorina lo	cations		
	Time	North	East	South	West	Center	Other	Other
Pre-start	(BOKW	-				Conter	outer	Outor
Hour 1	71	0	0	0	6	0		
Hour 2	8	0	0	0	0	A		
Hour 3	9	0	0	0	0	0		
Hour 4	10	0	0	0	0	D		
Hour 5	1/	0	0	D	D	Ő		
Hour 6	in	0	0	0	0	D		
Hour 7	1	0	0	0	0	0		
Hour 8	2	0	0	0	0	0		
Hour 9		-v			· · · · ·			

Dust suppressant necessary:

Dust Suppression technique used:

Hour 10

NO

T

Monitoring results and comments:

Trucks Rock only - 15 LOADS

Yes

N

or

Site: 3035 White Plain R. Bromx

- - 1 I -

		Daily	Air M	onitori	ng Record	Form		
Site safety of	fficer:	Jeh Be	mpo	nd	Date/time:	3-12-0	8	- 3
Instrument m	iake & mo	del	T	ion S	rience	Phoe	reck	+1000
Calibration da	ate							
Task of day/L	ocations	Monitore	d ت	W/PI	D, Vis	ucl -	1 mice	infor
Remarks: Rock ha	immer	₩ <u></u> ,	N	i c				
Weather cond Wind direction Sky cover:	dition- n:		41 N. OVE	°F Smpt ncas	-			
				Air	, monitorina la	cations		
	Time	North	East	South	West	Center	Other	Other
Pre-start	6:45An						- Curror	C. I. I.
Hour 1	73	0	0	0	0	0		
Hour 2	8	©	0	0	0	O		
Hour 3	9	0	Ð	Ø	0	0		
Hour 4	10	76	0	0	G	0		
Hour 5	11	Ø	0	ð	Ð	0		
Hour 6	12	0	0	0	0	0		
Hour 7	(0	0	0	0	0		
Hour 8	2	0	2	0	0	0		
Hour 9		-			~			
Hour 10								

Dust suppressant necessary:

No

Yes

Mas

or

Dust Suppression technique used:

Monitoring results and comments:

frad

OC

NO TRUCKS

0

		Daily (Air Mc	nitorin	a Record	Form	B	onx.	
		Dany P			gitteeoru	1 Offici			
Site safety	officer: 🟒	field	Impo	ud	Date/time:	3-13	3-08	12	
Instrument	make & mo	del	Ior	- Sei	ence	Pho d	hee	= 100	20
Calibration	date								
Task of day	Locations	Monitored NSとい	d L L	s/Pis	, Visu	al, -	Truck	info	Antos
Remarks:									
Weather co	ndition-		4	2°,f					
Wind direct	ion:		~	itw .	SMPH				
Sky cover:			C	lear					-
				Airr	nonitoring lo	cations			RB C 1
	Time	North	East	South	West	Center	Other	Other	office Rilgs
Pre-start	12:30								
Hour 1	12:00	0	0	0	0	0			
Hour 2	1:	0	0	0	0	6			
Hour 3	2:	0	D	0	P	0			
Hour 4	31	0	0	0	0	0			
Hour 5									
Hour 6									
Hour 7									4
Hour 8									-
Hour 8 Hour 9									
Hour 8 Hour 9 Hour 10									
Hour 8 Hour 9 Hour 10 Dust suppre	essant nece	essary:	Yes	or	No				
Hour 8 Hour 9 Hour 10 Dust suppre	essant nece	issary: nique use	Yes ed: A	or	No				
Hour 8 Hour 9 Hour 10 Dust suppre	essant nece	essary: nique use Al	Yes ed: A	or	No				
Hour 8 Hour 9 Hour 10 Dust suppre	essant nece	nique use	Yes A	or	Rio				
Hour 8 Hour 9 Hour 10 Dust suppre	essant nece	nique use	Yes ed:	or	RÍO				
Hour 8 Hour 9 Dust suppre Dust Suppre	essant nece	essary: nique use Al	Yes ed: A	or	Río				
Hour 8 Hour 9 Hour 10 Dust suppre Dust Suppre Monitoring r	ession tech	essary: nique use Al comment	Yes	or	Rio				
Hour 8 Hour 9 Hour 10 Dust suppre Dust Suppre Monitoring r	ession tech results and results and	comment	Yes	or	Rio)				

Site: 3035 White Plaineld, ENVIRONMENTAL BUSINESSS CONSULTANTS Daily Air Monitoring Record Form Sch Bombard Date/time: 3-14-08 Site safety officer: the check + 1000 - Science Instrument make & model Calibration date Monton NISEW W/PID, Visual Remarks: DEP - Junction Blud. TO Weather condition-5m Adi Wind direction: Partly cloudy . Sky cover: Air monitoring locations Time North South West Center East Other Other 630 AM Pre-start 7: O 0 O Hour 1 0 0 8; 6 Hour 2 0 6 0 0 9: 0 Hour 3 O D D 0 Hour 4 101 0 0 0 0 Q Õ D 11: 0 Hour 5 0 Ð O 12: 0 0 0 Hour 6 ()Hour 7 Hour 8 Hour 9 Hour 10 (No)-Dust suppressant necessary: Yes 00 Dust Suppression technique used: Monitoring results and comments: Dewataring continues - through carbon to sewer (into weekend No TMCKS \$ to DEP 401,25

Sitz: 3035 White Plans fil Broux

fficer:	Daily A	Air Mo	onitorin vers	g Record	Form 3/17/0	8	
nake & mo	del	102	- Scier	nce Pl	rochec	2+10	000
ate							
						\	
nton	Monitore	L W	/PID,	Visied	, photo	te Th	ectup
terine	j th	rong	L can	bon ba	vicles	conti	rues
dition-		310	F				
n:		NI	DMPA				
		Parl	ly de	sudy			
			0	1			
			Airn	nonitoring lo	cations		
Time	North	East	South	West	Center	Other	Other
GISOA	u						
1;	0	0	0	0	0		
8:	6	0	0	0	0		
91	0	0	0	0	G		
101	0	0	0	0	0		
115:	0	0	0	0	0		
1C.	0	0	0	0	0		
1:	0	D	0	0	0		
121	0	0	0	D	0		
sant nece	ssary: nique use N	Yes A	or	No			
	fficer: 2 hake & mo late Locations min dition- n: Time 4?3oA 7: 8: 9: 10: 11: 12: 2: sant nece ssion technological sults and officers	Daily fficer: $\int \int $	Daily Air Mo fficer: $\int \int \int$	Daily Air Monitorin fficer: file file hake & model 10 Jeck hake & model 31° F Jeck hake & model 10 Jeck hake & model 10 0 libit 0 0 libit 0 0 libit<	Daily Air Monitoring Record file: Add And And And And And And And And And	Daily Air Monitoring Record Form flicer: $find find find find find find find find $	Daily Air Monitoring Record Form ficer: $\int_{A} \int_{A} \int_{A}$

MO VOC Fraci

FEST

Site: 3035 White Plains Id. Bronx

Daily Air Monitoring Record Form

Site safety o	fficer:	the for	mbard	_	Date/time:	3-18-0	8	
Instrument m) nake & moo	del	Ion	Science	Phocheck	+1000		
Calibration d	ate							
Task of day/	Locations I NSEW	Monitored W/F	1.P.	Visual	, Truel is	up, the	tas	
Remarks:								
			0.0	c				
Weather con	dition-		29 1	+	1			
Wind direction	on: .		New	Smp	nh.			
Sky cover:			cla	udy				
				U		antinan		
			-	AILI	monitoring lo	cations	011	011
	Time	North	East	South	West	Center	Other	Other
Pre-start	(ISD AH					-		
Hour 1	1:	0	0	0	0	0		
Hour 2	0	0	0	D	0	0		
Hour 3	1	0	0 N	0	0	8		
Hour 4	10	0	0	0	0	~		
Hour 5	11	0	0	0	0	0		
Hour 6	10	0	0	0				
Hour /	1	N	0	N	<u>0</u>	0		
Hour 8	U	0	0	0	0	0		
Hour 9								
Dust suppres	ssant nece	ssary: nique use	Yes ad:	or	No			
Monitoring re DEWATEN No Voc	through READS	Carbon	Si Rock d bank	nly 6 contin	rues,			

FAILURG						2		
ENVIRON	MENTAL BI	JSINES	ss cor	SULTAN	5			
· · · · · · · · · · · · · · · · · · ·	ļ	Daily /	Air Mo	onitorin	g Record	Form		
	0	0	1					
Site safety	officer:	Il for	park		Date/time:	3-2	0-08	
Instrument	make & mo	del	Tom	- Scie	nce f	hocheck	+ 1000	2
Calibration	date							
Task of da	y/Locations SEW W(P	Monitore	d wind	, Truchi	upe, Photos	Monitor d	ewater,	٥
Remarks								
rtemarts.								
Weather co	ondition-		52	°F				
Wind direc	tion:		XIL) 10.	20 MP	н		
Sky cover:			Cla	ndy				
				9				
				Air r	nonitoring le	ocations		
	Time	North	East	South	West	Center	Other	Other
Pre-start	Time	North	East	South	West	Center	Other	Other
Pre-start Hour 1	Time 7:15 AM	North	East O	South O	West	Center	Other	Other
Pre-start Hour 1 Hour 2	Time 7:5 AM	North 0	East 0 0	South 0	West O O	Center 6 0	Other	Other
Pre-start Hour 1 Hour 2 Hour 3	Time 7:15 AM 8 9	North 0 0	East 0 0	South O O O	West	Center 6 0	Other	Other
Pre-start Hour 1 Hour 2 Hour 3 Hour 4	Time 7:05 AM 8 9 10	North 0 0 0 0	East 0 0 0	South 0 0 0 0	West	Center 6 0 0	Other	Other
Pre-start Hour 1 Hour 2 Hour 3 Hour 4 Hour 5	Time 7:15 AM 8 9 10 11	North 0 0 0 0 0 0	East 0 0 0 0	South 0 0 0 0 0 0	West	Center 0 0 0 0 0	Other	Other
Pre-start Hour 1 Hour 2 Hour 3 Hour 4 Hour 5 Hour 6	Time 7:15 AIM 8 9 10 11 11	North 0 0 0 0 0 0 0	East 0 0 0 0 0 0	South 0 0 0 0 0 0 0 0	West 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Center 6 0 0 0 0 0 0	Other	Other
Pre-start Hour 1 Hour 2 Hour 3 Hour 4 Hour 5 Hour 6 Hour 7	Time 7:15 AM 8 9 10 11 11 11 11	North 0 0 0 0 0 0 0	East 0 0 0 0 0 0 0	South 0 0 0 0 0 0 0 0 0	West 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Center 6 0 0 0 0 0 0 0	Other	Other
Pre-start Hour 1 Hour 2 Hour 3 Hour 4 Hour 5 Hour 6 Hour 7 Hour 8	Time 7:15 AM 8 9 10 11 11 1 2	North 0 0 0 0 0 0 0 0 0 0 0	East 0 0 0 0 0 0 0 0	South 0 0 0 0 0 0 0 0	West 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Center 6 0 0 0 0 0 0 0	Other	Other
Pre-start Hour 1 Hour 2 Hour 3 Hour 4 Hour 5 Hour 6 Hour 7 Hour 8 Hour 9	Time 7:5 AM 8 9 10 11 11 12	North 0 0 0 0 0 0 0 0 0 0 0	East 0 0 0 0 0 0 0	South 0 0 0 0 0 0 0 0	West 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Center 6 0 0 0 0 0 0 0 0	Other	Other
Pre-start Hour 1 Hour 2 Hour 3 Hour 4 Hour 5 Hour 6 Hour 7 Hour 8 Hour 9 Hour 10	Time 7:15 AM 8 9 10 11 11 12	North 0 0 0 0 0 0 0 0 0 0 0	East 0 0 0 0 0 0 0	South 0 0 0 0 0 0 0 0	West 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Center 6 0 0 0 0 0 0 0	Other	Other

Sito; 3035 White Plains Re Brown 11 Y 27 9 ENVIRONMENTAL BUSINESSS CONSULTANTS Daily Air Monitoring Record Form Sombarb R Site safety officer: 3-21.08 Date/time: Ion Science E &+ 1000 Instrument make & model Calibration date Task of day/Locations Monitored monitor NSEW w(Pib, Visual tweet up, deweter monitor Remarks: 30 1 Weather condition-Wind direction: mph Sky cover: CI due horge/ deweterin Air monitoring locations Time North East South West Center Other Other Pre-start SEWER Hour 1 71 0 0 0 0 -0 Hour 2 Ø: D 0 D 0 0 2.0 Hour 3 0 α : 0 0 2.0 0 0 Hour 4 IC 0 0 0 0 0 2.0 Hour 5 10 0 0 2.0 0 0 O Hour 6 12 0 0 2.0 0 O 0 Hour 7 0 0 2.0 0 0 D Hour 8 2 6 ()D D 0 Hour 9 3: Hour 10 Dust suppressant necessary: Yes (NO) or Dust Suppression technique used:

(Emailed) ~ CANSORD C35 Monitoring results and comments: -LINES dewater stopped 2) Berrel Manu. TIGG. 55 drums NOZEM Water remaining No Truck Qu Frad 20 only in SEWER Kio Voc

11 (1 × 31 ×

Daily Air Monitoring Record Form
Site safety officer: fill Bombard Date/time: 3-24-08
Instrument make & model Ion Science. Phocheck + 1000
Calibration date
Task of day/Locations Monitored w/PID, Visual Truck info, dewater monitor
Remarks:
Weather condition- Wind direction: Sky cover: Aliman in the second
All monitoring locations

Site: 3035 White Plains Ro Brong

					monitoring id	ocations		
Pre-start	USS AM	North	East	South	West	Center	Other	Other
Hour 1	7:	0	0	Ó	0	- 13	SEWER	
Hour 2	X	0	0	0	0	0	1.5	
Hour 3	9	0	Ð	0	0	0	2.0	
Hour 4	10	0	0	0		0	1.5	
Hour 5	1/	0	0	0	0		1.0	
Hour 6	12	0	0	0	G	0	1.0	
Hour 7	/	0	0	0	0	0	1.0	
Hour 8	2:	0	0)	0		10	1.0	
Hour 9			-0		0	0	0	
Hour 10								

or

Dust suppressant necessary: Yes

No

Dust Suppression technique used:

Monitoring results and comments:

No Trucks out

ENVIRONME	NTAL BL	ISINES							
				SULTANT	5				
		Daily	Air Ma	nitorin	Record	Form			
	1	Jany	ALL INIT	Jintoning	4 Necolu	15			
Site safety off	icer fi	L Bo	nba	is	Date/time:	3.25	08		
Instrument ma	ake & mo	del 🗦	Ton	Science	er the	elect	_+100	0	
Calibration da	ite								
Task of day/L	ocations I	Vionitore	d 10.	0	D				
monitor	T Ness	ew u	s/P1	D, Vid	ua				
Domestica									
Remarks:									
				0					
Weather cond	lition-		35	e f	1				
Wind direction	11		56	J Su	iph				
01		And a second							
Sky cover:			CLE	ear					
Sky cover:			CLE	Airm	nonitorina la	cations			
Sky cover:	Time	North	C (E	Air m	nonitoring lo West	cations Center	Other	Other	
Sky cover:	Time	North	C (E East	Air m	nonitoring lo West	cations Center	Other SEVEN	Other	
Pre-start Hour 1	Time	North	C (E East	Air m South	Nonitoring lo West	Center	Other SEWEN	Other	
Pre-start Hour 1 Hour 2	Time 7; Am	North	C (E East	Air m South	Nonitoring lo West	Cations Center	Other SEWEA LS	Other	
Pre-start Hour 1 Hour 2 Hour 3	Time 7: Am 8:	North O O	C (E East O O	Air m South	Nonitoring lo West	Cations Center	0ther 56060 1.5 1.0 1.0	Other	
Pre-start Hour 1 Hour 2 Hour 3 Hour 4	Time 7; Am 8: 9 10	North O O O	C (E East O O O	Air m South	Nonitoring lo West	Center	0ther 5£04A 1.5 1.0 1.0 1.0	Other	
Pre-start Hour 1 Hour 2 Hour 3 Hour 4 Hour 5	Time 7: Am 8: 9 10 11	North O O Ø	C (E East O O O Ø	Air m South O O O O	West	Cations Center O O O	0ther 5202A 1.5 1.0 1.0 1.0 2.0	Other	
Pre-start Hour 1 Hour 2 Hour 3 Hour 4 Hour 5 Hour 6	Time 7; Am 8: 9 10 11 12	North O O Ø Ø	C (E East O O O O	Air m South O O O O O O O O O O O O O O O O O O O	West	Cations Center O O O O O O	0ther 5604A 1.5 1.0 1.0 1.0 2.0 1.5	Other	
Pre-start Hour 1 Hour 2 Hour 3 Hour 4 Hour 5 Hour 6 Hour 7	Time 7: Am 8: 9 10 11 12 1	North O O O O O O O	C (a East O O O O O	Air m South O O O O S , S , 2 , 0	Nonitoring lo West	Cations Center O O O O O O O O	Other 52041 1.5 1.0 1.0 1.0 2.0 1.5 3.0	Other	
Pre-start Hour 1 Hour 2 Hour 3 Hour 4 Hour 5 Hour 6 Hour 7 Hour 8	Time 7; Am 8: 9 10 11 12 1 2	North O O O O O O O O		Air m South O O O O O O O O O O O O O O O O O O O	West	Cations Center O O O O O O O O O O	Other 5EWGA 1.5 1.0 1.0 1.0 1.0 1.0 1.5 3.0 2.0	Other	
Pre-start Hour 1 Hour 2 Hour 3 Hour 4 Hour 5 Hour 6 Hour 7 Hour 8 Hour 9	Time 7: Am 8: 9 10 11 12 1 2	North O O O O O O O	East O O O O O O	Air m South 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	West	Cations Center O O O O O O O	Other 52020 1.5 1.0 1.0 1.0 1.0 2.0 1.5 3.0 2.0	Other	

- (pending have } groundwater stepage) Monitoring results and comments: DEWILLING Complete No Trucks Out

Task of day/Location Monthead Stress Remarks: Weather condition- Wind direction: Sky cover: Tim Pre-start Hour 1 7: Hour 2 8 Hour 3 9 Hour 4 10	e North	d , w 42° 5. Cles East	G S Air n South	nonitoring la West	Deations Center	Lable Other PJB	ARER Other
Remarks: Weather condition- Wind direction: Sky cover: Sky cover: Tim Pre-start Hour 1 7: Hour 2 8 Hour 3 9 Hour 4	e North	AZ S. CLea East	G Air n South	nonitoring la West	ocations Center	Labba Other PJ-181	,Other
Weather condition- Wind direction: Sky cover: Sky cover: Tim Pre-start Hour 1 7: Hour 2 8 Hour 3 9 Hour 4 10	e North AW D	A2°S. CLea East	G Air n South	nonitoring la West	ocations Center	Labba Other PJPS	Other
Weather condition- Wind direction: Sky cover: Tim Pre-start Hour 1 7: Hour 2 8 Hour 3 9 Hour 4	e North AW D	A2° S. CLea East	G Air n South	nonitoring la West	ocations Center	Labba Other PJPS	Other
Wind direction: Sky cover: Tim Pre-start Hour 1 7: Hour 2 8 Hour 3 9 Hour 4	e North AM D O	S. East	Air n South	nonitoring lo West	Center	Ladda Other PF/SI	Other
Sky cover: Tim Pre-start Hour 1 7: Hour 2 8 Hour 3 9 Hour 4 10	e North	East	Air n South	Nonitoring la West	Center	Ladda Other PF/SI	Other
Tim Pre-start Hour 1 7: Hour 2 8 Hour 3 9 Hour 4 10	e North	East	Air n South	West	Center	Ladda Other PF/SI	Other
Tim Pre-start Hour 1 7: Hour 2 8 Hour 3 9 Hour 4 10	e North	East	South	West	Center	Other PF/St	Other
Pre-start Hour 1 7: Hour 2 8 Hour 3 9 Hour 4 10	AM O	0	0	0		PJAS	R)
Hour 1 7: Hour 2 8 Hour 3 9 Hour 4 10	AM O	0	0	03			<u> </u>
Hour 2 8 Hour 3 9	0	- 1-	and the second se		0	20	-
Hour 3 9		0	0	0	0	5.0	
Hour A IN	0	0	0	0	0	1	
Hour 4 10	0	6	0	.0.	0	25	
Hour 5 1	0	25.	25,	1.0	25	55,6	
Hour 6 IV	0	18	20	1.0	20.	200	
Hour 7 (0	20.	20,	1.0	15.	20,0	
Hour 8	0	12.	200	L.O	200	480	
Hour 9)	0	10,	33.	1.0	601	10,0	
MOULIO			1				
Dust suppressant ne	cessary:	Yes	or	NO			
	1						
Dust Suppression te	chnique us	ed:	/				
			NA				
			/				
A developed and an other	d acresses	101			~		
Monitoring results a		RAR.	CORRA	x Zm al	3 597	TLED	in SE a-
Shound Var	1 July	-ye	+ ×	1 Porto	l'aca II	sisterior	m TEP
gas sma	te to	N WI	Uter 1	to reinal	1 gas g	Daying	and at .

Sitz 13035 Whitz Plants Rd. FFIT ENVIRONMENTAL BUSINESSS CONSULTANTS Daily Air Monitoring Record Form el Bombark 3-27-08 Site safety officer: Date/time: Ion SciEMCK the check + 1000 Instrument make & model Calibration date Task of day/Locations Monitored monitor NSEW, W/PID, Visuel, dewater process Monitor, pl monitor NSEW Remarks: Weather condition-SMPH Wind direction: Sky cover: Air monitoring locations Time North South West Center Other Other SE.P. P.J Bladend So Pre-start Hour 1 Ð 5.0 [NEW Excor 0 . . 0 7.0 Hour 2 ð 0 1 , 1 Hour 3 O 2.0 0 0 10 Hour 4 0 0 5 10.0 0 .0 11 6 Hour 5 . [0 .0 12 Hour 6 0 0 280. 100 0 O Hour 7 275 0 3.0 2 Hour 8 V 0 6 2.0 Hour 9 Hour 10 (NO) Dust suppressant necessary: Yes or Dust Suppression technique used: Monitoring results and comments: · No macks out -= Excavation continues SE cower-gas dor water seaping in from Sw conner & 1 monitor weil, (Extended Monital Well pipe 2"pvc) Coppurate of S+ 3 d. hr. - RP-FEQ. - 15-Loads for Mon . - Clean Earth _ advised Damio

- Dania to RB P/U @ American bab - (Lauri)

Daily Air Monitoring Record Form

Instrument Calibration	make & m date	odel	Io	- Jeie	nce th	ocheck	1000	+	
monitor	NSEN		1D	Visua	1, tucki	mp, d	ewster	<u></u>	2
Remarks:									
Weather co	ndition-		40'	Ê					
Wind directi	on:	/	JE	Smp	H				
Sky cover:		1	clou	dy					
				\$					
				Air	monitoring lo	ocations			
Dro start	Time	North	East	South	West	Center	Other	Other	lapp.
Hour 1	and						SE Pit	Blechan	nd fail (20 yo
Hour 2	0	D	0	0	0	0	.5	200, -	
Hour 3	G G	0	P	- 0	0	0	.2		
Hour 4	lis	0	0	0	0	0	.1		
Hour 5	10	6	0	0	0	0	.0		
Hour 6	12	D	1	0	0	0	0		
Hour 7	1	V	0	2	0	0	0	Y	
Hour 8	2 10	Gook	ym -	Long					
Hour 9		,	Jam						
Hour 10									
Dust suppres	ssant nece	ssary: nique use	Yes d:) or Swee	No	8			
Monitoring re	sults and c	comments	5:						
to Thuck	es a		0	117		+			
phonelly	DELL	med	· For	red b	5 Jourda	lans			7 7
oncreti	Deli	med	for	ned to	5 Jourda	lions			7 7

Site safety officer: field Songard Date/time: 3-31-0 Instrument make & model Ion Science Phocheck Ion Calibration date Task of day/Locations Monitored Monitor ASEW, W(PID, Visual, dewater monitor, true Remarks:	08 oot climfo-	
Instrument make & model Ion Science Phocheck 100 Calibration date Task of day/Locations Monitored monitor NSEW, W(PID, Visical, dewatermonitor, true Remarks:	cemps.	
Calibration date Task of day/Locations Monitored monitor NSEW, w(PID, Viscial, dewatermonitor, true Remarks:	cento-	
Task of day/Locations Monitored monitor USEW, W(PID, Viseuel, dewatermonitor, true Remarks:	cempo-	
Remarks:	0	
Remarks:		
Weather appdition (1)°E		
Wind direction: SE X mph		
Sky cover: Cloudy ArRain "Am		
8		
Air monitoring locations		
Time North East South West Center	Other Othe	er
House 7	EPIT	
Houri 1 0 0 0 0 0	(r)	
Hour 2 8 0 0 0 0 0	0	
Hours 9 0 0 0 0 0	0	
Hour 4 10 0 0 0 0 0	0	
	0	
	0	
	0	
Hour 8 C		To Day
Hour 9		- +20 to
		UED to
Dust suppresent necessary (Vas)		5
Duot suppressant necessary. Tes or -199		
Dust Suppression technique used		
	EEP	
hose down I Su		
hose down I Su		
rose down I Su		
rose down I Su		

	Ē	aily A	ir Mo	nitorin	g Record I	orm		
Site safety off Instrument ma	icer:	iel S	To	Scie	Date/time:	april 1 Lochec	08	0+
Calibration da	ite							
Task of day/L Monto X Cav Remarks:	ocations N		Ploto	Vise	al Tru dew ATE	A Mo	hito	<
			40	oF				
Weather cond	dition-	AI S	14	SMI	OH			
Wind direction	n.	140	- Pa	in				
Sky cover:	6 1 - 4	6	pro	Air	monitoring lo	cations		
	Time	North	East	South	West	Center	Other	Other
Pre-start							SEPS	
Hour 1	7: AU	0	0	0	0	0	0	
Hour 2	8	0	0	Q	0	0	-2	
Hour 3	9	0	0	0		0		
Hour 4	10	02	0	0	0	0	2	
Hour 5	12	- Va-	- 2					
Hour 6	10	0		- 8-	0	10	A	
Hour 7	7	K	18	0	0	0	0	
Hour 9	3		LV	· · · · ·	V			
Hour 10	-							
Dust suppres Dust Suppres	sant nece	ssary: nique use	Yes ed:	or	No			
Monitoring re Sewaten Excavi Twek No PD	sults and Co AS ALC ALC	comment and A DS	Na Na	s clea	bafore portion n East	123	121	Loads

Site: 3035 White Plans Bronz

small Daily Report

	14	0				-		
Site safety	officer:	XB	mpas	Ł	Date/time:	april	2,	08
Instrument	make & mo	idel	10-	Selene	6 thee	heer	+ lae	-0
Calibration	date							
Task of day	V/Locations	Monitore NOSZ	d	W/P	D VI	sual info	True Phot	Lufe
Remarks:								
Weather co	ondition-			36	F a			
Wind direct	tion			N	Ismph	1		
Sky cover	cion.			Parti	/ 1			
Sky cover:	uori.			Parte	y cla	ndy		
Sky cover:				Air n	honitoring lo	cations		
Sky cover:	Time	North	East	Air n South	nonitoring lo West	cations Center	Other	Other
Pre-start	Time	North	East	Air n South	nonitoring lo West	cations Center	Other S. G. P.	Other H
Pre-start Hour 1	Time "(1 Am	North	East	Air n South	west	Center	Other S. G. R.	Other A
Pre-start Hour 1 Hour 2	Time Time	North O	East O O	Air n South	West	Center	Other S. C. R.	Other F
Pre-start Hour 1 Hour 3	Time Time Ti Au S	North O O	East O O	Air n South	West	Center	Other S & fr O O	Other
Pre-start Hour 1 Hour 2 Hour 3 Hour 4	Тіте 17 диц 10 10	North O O O	East O O O	Air n South O O O	West	Center		Other
Pre-start Hour 1 Hour 2 Hour 3 Hour 4 Hour 5	Time 71 Am 8 9 10 11	North O O O	East O O O O	Air n South O O O	West	Center		Other
Pre-start Hour 1 Hour 2 Hour 3 Hour 4 Hour 5 Hour 6	Time 71 Aug 8 9 10 11 11	North O O O O	East 0 0 0 0 0	Air n South O O O	West	Center		Other
Pre-start Hour 1 Hour 2 Hour 3 Hour 4 Hour 5 Hour 6 Hour 7	Time 71 Am 8 9 10 11 12 1 12	North O O O O O	East 0 0 0 0 0	Air n South O O O O	West O O O O O O O O O	Center		Other
Pre-start Hour 1 Hour 2 Hour 3 Hour 4 Hour 5 Hour 6 Hour 7 Hour 8 Hour 2	Time 71 Am 8 9 10 11 11 12 1 1 2	North 0 0 0 0 0 0 0	East 0 0 0 0 0 0 0	Air n South C O O O O O	Cla nonitoring lo West			Other

Set C: 3035 White Plans

ExCAV N. Section No Truchs in pt No PID Reddings 9

Site: 3035 White Aand Re Bron X

	Daily /	Air M	onitorii	ng Record	Form		
Site safety officer:) ed	form!	sard	Date/time:	apri	13,	08
Instrument make & mo	odel	Im	Secene	a Thort	rede 1	0000 +	
Calibration date							
Task of day/Locations	Monitore	d	Exco	w, truck	s, infor	9- Ucs	ual
Remarks:							÷
Weather condition- Wind direction: Sky cover:		N	36° f E 5 Lear Air	m ρμ	cations		
Time	North	East	South	West	Center	Other	Other

	Time	North	East	South	West	Center	Other	Other
Pre-start							SEPT	
Hour 1	7: ARY	0	0	0	0	0	0	
Hour 2	81	0	62	0	0	0	0	
Hour 3	9:	Ô	0	0	8	Ó	0	
Hour 4	101	0	0	Ø	0	Ó	0	
Hour 5	11	Q	0	0	0	0	0	
Hour 6	12	0	0	0	0	0	0	
Hour 7	1	0	0	0	8	6	Ó	
Hour 8	Z	0	0	0	0	A.	D	
Hour 9	5					0		
Hour 10								

or

Dust suppressant necessary:

- - 1 T - 1

ENVIRONMENTAL BUSINESSS CONSULTANTS

No

Dust Suppression technique used:

Monitoring results and comments: Excave nº 1 center No trucks Dewnstired am - -

Yes

Email monto infor

Sitz ; Boss White Plains fel. ENVIRONMENTAL BUSINESSS CONSULTANTS Daily Air Monitoring Record Form Date/time: 08 Site safety officer? Such + loon Instrument make & model 10 Calibration date Task of day/Locations Monitored Visual 10 Excar luce noton - W Remarks: 40 Weather condition-Wind direction: Sky cover: Air monitoring locations Time North East South West Center Other Other Pre-start 7: 15 AH Hour 1 0 0 \bigcirc 0 0 0 Hour 2 Hour 3 Hour 4 Hour 5 Hour 6 Hour 7 Hour 8 Hour 9 Hour 10 Dust suppressant necessary: Yes No or Dust Suppression technique used: Monitoring results and comments: day thewiss HERVY@ Times. E mart - Dark Status _

Task of day!		Monitore	d					
mon	ton	SVOC		DEWE	ter exc	av 1	ruch	
Remarks:								
				(- d -				
Weather con	dition-			43 F	- 0			
Wind direction	n:			NW	10 mpt	<u> </u>		
Sky cover:				clou	Lag-			
				Air	monitoring la	antiona		
	Time	North	East	All	Most	Center	Other	Other
Pre-start	Time	NORTH	Last	South	West	Center	SERI	Other
Hour 1	ZAM	0	0	0	0	0	0	
Hour 2	8	0	D	0	6	0	0	
Hour 3	9	0	0	0	O	0	0	
Hour 4	w	0	0	0	0	0	0	
Hour 5	n	0	0	0	0	0	- 10	
Hour 6	n	0	0	0	0	0	Ó	
Hour 7	1	0	0	0	Ū	D	9	
Hour 8	2	0	0	0	0	0	D	
Hour 9	5	0	0					
Hour 10								
Ductoupproc	cont acco	00000	Va	05	No			
Dust suppres	santhece	sadi y.	0	UI	110			
Dust Suppres	ssion techr	nique use	ed:		1			
			S	weep	/ hore			
	1				(
Just Suppres	ssion techi	lique use	50. S-	weef	(hore	_		

Site safety	officer: 🖌	July:	Somp	one ,	Date/time:	4/8	108		
Instrument	make & mo	odel	10	Scier	nees th	oellecr	1 + 10	20	
Calibration	date								
Task of day	//Locations	Monitore	pip>	, deula	ter proc	ess, bu	eta, ?	(xcal)	
Remarks:									
				0					
Weather co	ndition-		43	+					
Wind direct	ion:		W	10m	oh				
Sky cover:			Clar	id ci	over				
					100000 000 kg (1000 k				
	Timo	North	East	Airi	monitoring lo	ocations	Others	Other	
Pre-start	r. Roau	1	Last	South	west	Center	SEP.T	Uner	
Hour 1	7:	0	0	0	0	0	1		
Hour 2	8	0	0	Õ	8	0	0		
Hour 3	9	0	D	0	0	Ö	0		
Hour 4	ID	0	5	0	0	D	Õ		
the second second second	ĨĨ	0	0	0	0	0	D		
Hour 5	10	0	0	0	0	0	0		
Hour 5 Hour 6	12	and the second s	-	0	0	0	0		
Hour 5 Hour 6 Hour 7	12	0	0	0	-				
Hour 5 Hour 6 Hour 7 Hour 8		0	0	0	0	0	0		
Hour 5 Hour 6 Hour 7 Hour 8 Hour 9	1	0	0	0	ð	0	0		

- Email - Daily Status

Site safety	officer: A	and a	ontra	Borene	Date/time:	4/9 ack+10	108	
instrument		del 1	10.0	ocu -		14	0	
Calibration	date					1		
Task of day	/Locations	Monitore	d /			-		
mo	neto	_ ai	r w	PIDIVO	cs, dewa	In fra	CAS	
truck	-unto,	Exc	av.					
Romarke	V							
Nehidiks.								
Weather co	ndition-		44	10 1				
Wind direct	ion:		E,	< m PH	·			
Sky cover:			CL	n. b.				
				C				
				Airr	monitoring lo	ocations		
	Time	North	East	South	West	Center	Other	Other
Pre-start	1				~			
Hour 1	7:	0	0	0	0	0		
Hour 2	8	0	0	0	0	0		
Hour 3	- 4	0	0	U A	0	0		
Hour 4	10	0	0	0	0	0		
Hour 5	11	0	0	0	0	0		
Hour 6	14	0	18	0	0	0		
Hour /	0	0	10	2	0	0		
Hour 8	2		V	0	0	0		
Hour 9								
HOUFIU		1				1		
Dust suppre	essant nece	essary:	fes) or	No			
Dust Suppre	ession tech	nique use	ed:	so/se	JESA			
Duor ouppre			1.6	9				
Duor ouppre				(

Monitoring results and comments:	
Excar fact only	
Dewater minunal Rea.	
No Voc Readings -	
Trucks out - 0	Pour & Lumber -

Site: 3035 White Plain Pd Brong

FESS

	Daily /	Air	Mon	itoring	Record	Form
--	---------	-----	-----	---------	--------	------

	ulant (an /w	1810.0	ervois)	dewate	process	truck	to.
		C			,	+ /		6)
Remarks:								
Weather co	ndition-			49°F	~	65° F		
Wind direct	ion:			NE	e 3 mp	h		
Sky cover:				Hazy	- Sun	my		
				< 0		-7		
				Air m	nonitoring la	ocations		
	Time	North	East	South	West	Center	Other	Other
Pre-start								
Hour 1	75 AVH	0	0	0	0	0		
Hour 2	8:	0	0	0	0	0		
Hour 3	9	0	0	0	0	0		
Hour 4	10	0	0	0	0	0		
Hour 5	11	0	0	0	0	0		
Hour 6	12	0	0	0	6	6		
Hour 7	1	0	0	0	0	0		
Hour 8	2	0	0	0.	0	0		
Hour 9								

Email: Deily Status * DEC-CC:

Sitz: 3035 White Plainsed デニュアナ ENVIRONMENTAL BUSINESSE CONSULTANTS Daily Air Monitoring Record Form vet Bombard Date/time: 4/11/08 Site safety officer Instrument make & model Ion Science Phodeck + 1000 Calibration date Task of day/Locations Monitored and (W/Pip), dewater, ExCAV., Trucks monitor Remarks: 50°F SW 3 mph Cloudy Weather condition-Wind direction: Sky cover: Air monitoring locations Time North East South West Center Other Other SEPA Pre-start 71 AM Hour 1 0 0 0 0 O 0 Hour 2 0 0 0 0 0 D 81 0 0 Hour 3 9 0 0 0 0 17 D Hour 4 10 0 0 R 6 Hour 5 D 0 12 b n Hour 6 0 D 0 0 To Brocklyn Nor # 29% ZRB Merken Av T Hour 7 17 - Andre -U Hour 8 Hour 9 Hour 10 (Yes) Dust suppressant necessary: or No Dust Suppression technique used: 5 WEEP HOSE Monitoring results and comments CXCAV Fort 600 DEWATER Min LEG - center 2AUL Trucks -

E: Mail daily Status

site: 3035 White Philos Rd. Bronx

Site safety offices July John Mark Date/time: $4/14/08$ Instrument make & model Ion Science Model Ion Science Model Calibration date Task of day/Locations Monitored Accav, Jewrth, Tucks, Task of day/Locations Monitored Accor f Weather condition- 40° f Wind direction: A/W 3 mP H Sky cover: Clear Summy Air monitoring locations Pre-start $100 0 0 0 0$ Hour 1 7: AW 0 0 Hour 2 8 0 0 0 Hour 3 9 0 0 0 0 Hour 6 0 0 0 0 0 0 Hour 8 0 0 0 0 0 0 0 Dust suppressant necessary: Yes or Main Main Main Main Main Monitoring results and comments: Main Main Main Main Main Main			Daily	Air M	onitorin	ng Record	Form			
Instrument make & model Ion Science Abcheck + Iono Calibration date Task of day/Locations Monitored Monitoring Calibrations Weather condition- Weather condition- Weather condition- Weather condition- Weather condition- Weather condition- Weather condition- Weather condition- Wind direction: MW 3 mP H Sky cover: Clearn Summy Air monitoring locations $\overline{Pre-start}$ \overline{Time} North East South West Center Other Other Hour 1 7:AW 0 0 0 0 0 0 0 Hour 2 8 0 0 0 0 0 0 Hour 5 0 0 0 0 0 0 Hour 6 12 0 0 0 0 0 Hour 7 1 Hour 8 0 Hour 8 0 Hour 8 0 Hour 9 0 Dust suppressant necessary: Yest or Monitoring results and comments:	Site safety c	officer	2 Bo	mþa	rd	Date/time:	4/14	08		
Calibration date Task of day/Locations Monitored Task of day/Locations Monitored Task of day/Locations Task of day/Locations Task of day/Locations Remarks: Weather condition- Wind direction: Weather condition- Wind direction: Weather condition- Wind direction: A 0 ° f Www 3 mP k Sky cover: CLEAR Summy Air monitoring locations Air monitoring locations Air monitoring locations Time North East South West Center Other Other Hour 1 7:44 0 0 0 0 0 0 0 Hour 3 9 0 0 0 0 0 Hour 6 12 0 0 0 0 Hour 6 12 0 0 0 Dust suppressant necessary: Yes or Monitoring results and comments:	Instrument r	nake & mo	odel	Io	- Scier	ice floc	heck	+ 1000	5	
Task of day/Locations Monitored $Arcav, dewrth, Tucks,$ Remarks:	Calibration c	late								
Monitoring results and comments: Vest Monitoring results and comments:	Task of day/	Locations	Monitore	d						-
Remarks: Weather condition- Wind direction: A/0° f N/W 3 m° H Sky cover: Air monitoring locations Mair monitoring locations Image: Source of the state of the sta	non	ito	air	, EXC	av., de	ewater,	hucks	e		
Remarks: Weather condition- Wind direction: 40° f X/W 3 mº k Sky cover: Clear Summy Air monitoring locations Pre-start 11me Hour 1 71,440 0 0 Hour 2 8 0 0 0 Hour 3 9 0 0 0 0 Hour 3 9 0 0 0 0 0 Hour 3 9 0 0 0 0 0 0 Hour 3 9 0 0 0 0 0 0 0 Hour 4 0 0 0 0 0 0 0 0 0 Hour 7 0 0 0 0 0 0 0 0 Dust suppressant necessary: Yes or Monitoring results and comments: Monitoring results and comments: Monitoring results and comments:										
Weather condition- Wind direction: A/W 3 mP k Sky cover: Clean Summy Air monitoring locations Pre-start Vest Hour 1 7:AW 0 0 Hour 2 0 40 0 Hour 3 0 1 0 Hour 4 0 0 0 Hour 5 0 10 0 Hour 7 0 Hour 9 0 Hour 9 0 Hour 10 0 Dust suppressant necessary: Yes Monitoring results and comments:	Remarks:									
Weather condition- Wind direction: Sky cover: A/W 3 mP H Alver Summy Air monitoring locations Pre-start North Hour 1 7:AW 0 0 Hour 2 8 0 0 0 Hour 3 9 0 0 0 0 Hour 4 0 0 0 0 0 Hour 5 1 0 0 0 0 0 Hour 6 1 0 0 0 0 0 0 Dust suppressant necessary: Yes or Monitoring results and comments: Monitoring results and comments: Monitoring results and comments:										-
How of f How of f Sky cover: N/W 3 mP H Sky cover: Clear Summy Air monitoring locations Pre-start Image: South west center other other Hour 1 7: AW 0 0 0 Hour 2 8 0 0 0 Hour 3 9 0 0 0 Hour 5 0 0 0 0 Hour 6 12 0 0 0 0 Hour 8 0 0 0 0 0 Hour 9 0 0 0 0 0 0 Dust suppressant necessary: Yes or Monitoring results and comments: Monitoring results and comments:							-			
Wind direction: χ/ψ 3 MP H Sky cover: Clear Summy Air monitoring locations Pre-start Time North East South West Center Other Other Hour 1 7: Att o o o o o o o o Hour 2 8 O	Weather con	idition-		4	to, f					
Sky cover: Air monitoring locations Pre-start North East South West Center Other Other Hour 1 7!/AW 0 0 0 0 0 0 Hour 2 8 0 0 0 0 0 0 Hour 3 9 0 0 0 0 0 0 Hour 4 10 0 0 0 0 0 0 0 Hour 5 1 0 0 0 0 0 0 0 Hour 6 12 0<	Wind directio	on:			NW	3 mpk				
Air monitoring locations Pre-start Time North East South West Center Other Hour 1 7: AW 0 0 0 0 0 0 Hour 2 8 0 0 0 0 0 0 Hour 3 9 0 0 0 0 0 0 Hour 4 0 0 0 0 0 0 0 0 Hour 5 1 0 0 0 0 0 0 0 Hour 6 12 0 0 0 0 0 0 0 Hour 7 0 0 0 0 0 0 0 0 Hour 9 0 0 0 0 0 0 0 0 0 0 Dust Suppression technique used: No No No No No No No No Monitoring results and comments: No No No No No No	Sky cover:				Clean	- Sunny	2			
Time North East South West Center Other Other Hour 1 7:AW 0 0 0 0 0 0 0 Hour 2 8 0 0 0 0 0 0 0 Hour 2 8 0 0 0 0 0 0 0 Hour 3 9 0 0 0 0 0 0 0 Hour 4 10 0 0 0 0 0 0 0 Hour 4 10 0 0 0 0 0 0 0 Hour 5 11 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 1 0 0 1 1 0 0 1					Air	monitorina k	ocations			
Pre-start Image: Construction of the start of the		Time	North	East	South	West	Center	Other	Other	
Hour 1 7: AW 0 0 0 0 0 0 0 Hour 2 8 0	Pre-start				-					
Hour 2 8 0 <td>Hour 1</td> <td>7: AM</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td></td> <td></td>	Hour 1	7: AM	0	0	0	0	0			
Hour 3 9 0 <td>Hour 2</td> <td>8</td> <td>D</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td></td> <td></td>	Hour 2	8	D	0	0	0	0			
Hour 4 IO O </td <td>Hour 3</td> <td>4</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>D</td> <td></td> <td></td> <td></td>	Hour 3	4	0	0	0	0	D			
Hour 5 I/2 O O O O O Hour 6 I/2 O O O O O Hour 7 Image: Construction of the second	Hour 5	10	0	0	0	0	0			-
Hour 7 Image: Construction of the co	Hour 5	12	0	0	0	6	0			
Hour 8 To 20 Hour 9 Hour 10 Dust suppressant necessary: Yes or Mo Dust Suppression technique used: Monitoring results and comments:	Hour 7	1	O	0	0	0	0			R/3
Hour 9 Hour 10 Dust suppressant necessary: Yes or Dust Suppression technique used: Monitoring results and comments:	Hour 8	2		~	n					To 25 trong
Hour 10 Dust suppressant necessary: Yes or Dust Suppression technique used: NA Monitoring results and comments:	Hour 9							1		Prv ,
Dust suppressant necessary: Yes or Dust Suppression technique used:	Hour 10								Z	Prostay
Monitoring results and comments:	Dust suppres Dust Suppres	sant nece	ssary: nique use	Yes ed:	or K	No				
Monitoring results and comments:										
Monitoring results and comments:										
No and he	Monitoring res	sults and o	comment	S:						
Excar long some sail -	Excall	har	1 50	Some.	Sail -	-				
Deurcten min, iam	Dewit	in M	un.	iam						
			6		/					
Email Daily - 1	mai	D	all	7 -						

Site safety		the	mba	rd	Date/time:	4115.	08	
Instrument	t make & mo	del	Io	- Scie	nex f	ho che	Se +	100
Calibration	i date							
Task of da	y/Locations	Monitore	der	reter	, Exca	V., Tru	et in	fo,
Remarks:				Υ.				
Weather co Wind direct Sky cover:	ondition- tion:			40°F Sw Sun	5 MPH	lear		
[Time	North	East	Air r	nonitoring I	ocations	Other	01
Pre-start	1 mile	NOTUI	Last	South	VVESI	Center	Other	Other
Hour 1	7:10AV	0	0	0	Ö	0		
Hour 2	81	Ð	0	0	0	02		
Hour 3	93	0	0	0	6	D		
Hour 4	10:	0	g.	Q	O.	Q		
Hour 5	(1)	1						
Hour 6	IV.							
Hour 7	1-		6	-				
Hour 8	Vi	¥.	Y	Y	Y	Y		
Hour 9 Hour 10								
Dust suppre Dust Suppre	essant neces	ique use	res ed:	or Hese/	No Sweep			

			Daily	Air M	onitorin	g Record	Form	/		BB 160h
	Site safety	officer:				Date/time:	4/1	7/08		- (FLOR
	Instrument	make & mo	odel	Te	m Si	nene	5 A	pche	h	
	Calibration	date		_						
	Task of day	/Locations	Monitore	d d	suil	en, &	cav.	True	ls-	
	Remarks:									
	Weather co	ndition-		5	5 °					-
	Wind directi	001		5	Smpl					-
	Sky cover:			3	Sunny	clean	/			-
						2				
					Airr	nonitoring lo	cations			
		Time	North	East	South	West	Center	Other	Other	
	Pre-start	6	-		-					
	Hour 1	TIAM	0	0	0	0	0			MIA
	Hour 2	ě:	0	0	0	0	0			P
	Hour 4	11.	0	0	0	0	0			- /
	Hour 5	1/05	0	6	0	0	0			/
	Hours	In.	6	124	6		2		F	-
	Hour 7	-		0	10	0	0			
	Hour 8									
	Hour 9									
	Hour 10					/				/
	Dust suppre Dust Suppre	ssant nece	ssary: nique use	Yes ed:	or	No				Former
STATUS	Monitoring re Deusch No T.	sults and o	comment A B	s: 2Q -		sur to				

Site: 3035 White Plainsfil Bronz

Calibration date Task of day/Locations Monitored Monitor NSEW W/PID, Visu frocess monitor Remarks:	ial, Truce	N P		
Task of day/Locations Monitored / Pib, Visu Monton NSEW W/Pib, Visu frocess monton Remarks:	eal, Truck	N P		
Remarks:	ial, Truce		2.11	1
Remarks:		unpar, 1.	hetes	dewa
Remarks:		/		
1240				
Weather condition- 42 F				
Wind direction: NE Smeh				
Sky cover: Rain				
Airm	nonitoring lo	cations		
Time North East South	West	Center	Other	Othe
Pre-start		1		
	the second se	-		
Hour 1 7: AM 0 0 0	0	O		
Hour 1 7! AM 0 0 0 Hour 2 8 0 0 0	0	0		
Hour 1 7: AM 0 0 0 Hour 2 8 0 0 0 Hour 3 9 0 0 0	0	0		
Hour 1 7: AM 0 0 0 Hour 2 8 0 0 0 Hour 3 9 0 0 0 Hour 4 10	0 0 0	0		
Hour 1 7! AM 0 0 0 Hour 2 8 0 0 0 Hour 3 9 0 0 0 Hour 4 10 0 0 Hour 5 1/ 0 0	0 0 0	0		
Hour 1 7: AM 0 0 0 Hour 2 8 0 0 0 Hour 3 9 0 0 Hour 4 10 Hour 5 1/ Hour 6 12	0 0 0 0	0		
Hour 1 7! A M 0 0 0 Hour 2 8 0 0 0 Hour 3 9 0 0 0 Hour 4 10 0 0 Hour 5 1/ 0 0 Hour 6 12 0 0	0 0 0	0		
Hour 1 7! A M 0 0 0 Hour 2 8 0 0 0 Hour 3 9 0 0 0 Hour 4 10 0 0 Hour 5 1/ 0 0 Hour 6 12 0 0 Hour 7 1 0 0	0 0 0	0		
Hour 1 7! A M 0 0 0 Hour 2 8 0 0 0 Hour 3 9 0 0 0 Hour 4 10 0 0 0 Hour 5 1/ 0 0 0 Hour 6 12 0 0 0 Hour 7 1 0 0 0 Hour 9 0 0 0 0	0 0 0	0		
<u>APPENDIX - S</u> Daily and Monthly Status Reports

October 9, 2007

Mr. Shaminder Singh New York State Department of Environmental Conservation 47-40 21st Street Long Island City, NY 11101

Re: Remedial Investigation Work Plan Addendum Former Dico G Auto & Truck Repair 3035 White Plains Road, Bronx, NY Site No. C203039

Dear Mr. Singh:

In accordance with the Brownfield Cleanup Agreement, Environmental Business Consultants (EBC) has prepared this progress report for the month of September 2007. Subsequent reports will be submitted on a monthly basis until the project is complete.

Tasks initiated or completed during the period were as follows:

- Participate in a technical meeting with DEC Regional staff to discuss finalization of the RIWP and IRM Work Plan. .
- Completed a Stipulation letter for the RIWP and submit Final RIWP version to NYSDEC.
- Removed all waste oil and automotive chemical inventory.
- Completed asbestos survey.
- Removed all derelict cars, trucks, scrap metal and trash from site
- Removed asphalt cover from entire site

EBC anticipates that the following work will take place during the next month:

- Initiate soil boring and sampling program.
- Perform soil gas sampling
- Complete asbestos abatement program for floor tiles and roofing materials.
- Obtain building demolition permits from NYCDOB, demolish and remove building.
- Complete test pit sampling for waste characterization
- Install monitoring wells

If you have any questions or require any additional information please do not hesitate to contact me.

Very truly yours,

South

Charles B. Sosik, P.G. Principal

Cc: C. Doroski, NYSDOH D. Walsh, NYSDEC J. Brooks, Phillips-Nizer S. Arker, Bedford Park Assoc.

9 Peconic Road Ridge, NY 11961 Phone Fax E-mail 631.924.0870 631.924.2870 csosik2@optonline.net November 10, 2007

Mr. Shaminder Singh New York State Department of Environmental Conservation 47-40 21st Street Long Island City, NY 11101

Re: Remedial Investigation Work Plan Addendum Former Dico G Auto & Truck Repair 3035 White Plains Road, Bronx, NY Site No. C203039

Dear Mr. Singh:

In accordance with the Brownfield Cleanup Agreement, Environmental Business Consultants (EBC) has prepared this progress report for the month of October 2007. Subsequent reports will be submitted on a monthly basis until the project is complete.

Tasks initiated or completed during the period were as follows:

- Received NYSDEC approval for the RIWP
- Completed the Asbestos abatement program for floor tiles and roofing materials in the garage building.
- Obtained building demolition permits from NYCDOB, demolished and removed building.
- Completed soil boring and sampling program in accordance with approved RIWP.
- Completed test pit sampling for bedrock depth verification and waste characterization sampling
- Performed soil gas sampling in accordance with approved RIWP.
- Completed the installation of monitoring wells in accordance with approved RIWP.

EBC anticipates that the following work will take place during the next month:

- Collect groundwater samples from all monitoring wells in accordance with approved RIWP.
- Revise IRM Work Plan to Region 2 RIWP format as requested by the NYSDEC.
- Obtain NYSDEC approval to implement IRM.
- Hold pre-construction meeting with contractors and NYSDEC staff.
- Begin excavation and disposal of overburden materials as per the IRMWP.

If you have any questions or require any additional information please do not hesitate to contact me.

Very truly yours,

South

Charles B. Sosik, P.G. Principal

Cc: C. Doroski, NYSDOH D. Walsh, NYSDEC J. Brooks, Phillips-Nizer S. Arker, Bedford Park Assoc.

9 Peconic Road Ridge, NY 11961 Phone Fax E-mail 631.924.0870 631.924.2870 csosik2@optonline.net December 10, 2007

Mr. Shaminder Singh New York State Department of Environmental Conservation 47-40 21st Street Long Island City, NY 11101

Re: Remedial Investigation Work Plan Addendum Former Dico G Auto & Truck Repair 3035 White Plains Road, Bronx, NY Site No. C203039

Dear Mr. Singh:

In accordance with the Brownfield Cleanup Agreement, Environmental Business Consultants (EBC) has prepared this progress report for the month of November 2007. Subsequent reports will be submitted on a monthly basis until the project is complete.

Tasks initiated or completed during the period were as follows:

- Collect groundwater samples from all monitoring wells in accordance with approved RIWP.
- Revised IRM Work Plan to Region 2 RIWP format as requested by the NYSDEC.
- Hold pre-construction meeting with contractors and NYSDEC staff.
- Send out Fact Sheet to site contact list notifying public of start of IRM.
- Install 4 additional monitoring wells to map free phase gasoline discovered in MW8

EBC anticipates that the following work will take place during the next month:

- Obtain NYSDEC approval to implement IRM.
- Conduct on site meeting with site safety officer, construction supervisor, excavation contractor and remediation engineer.
- Begin excavation and disposal of overburden materials as per the IRMWP.

If you have any questions or require any additional information please do not hesitate to contact me.

Very truly yours,

Charles B. Sosik, P.G. Principal

Cc: C. Doroski, NYSDOH D. Walsh, NYSDEC J. Brooks, Phillips-Nizer S. Arker, Bedford Park Assoc.

March 10, 2008

Mr. Shaminder Singh New York State Department of Environmental Conservation 47-40 21st Street Long Island City, NY 11101

Re: Remedial Investigation Work Plan Addendum Former Dico G Auto & Truck Repair 3035 White Plains Road, Bronx, NY Site No. C203039

Dear Mr. Singh:

In accordance with the Brownfield Cleanup Agreement, Environmental Business Consultants (EBC) has prepared this progress report for the month February 2008. Subsequent reports will be submitted on a monthly basis until the project is complete.

Tasks initiated or completed during the period were as follows:

- Continued excavation of bedrock material and off-site shipment of bedrock and overburden soil.
- Continued the process of obtaining a sewer discharge permit from the NYCDEP.
- Began preparation of the Remedial Investigation Report.

EBC anticipates that the following work will take place during the next month:

- Complete the excavation of bedrock material and off-site shipment of bedrock and overburden material.
- Obtain approval from the NYCDEP to discharge excavation water to the NYC combined sewer through the access manhole located within the fenced area of the project.
- Begin installation of footings and related foundation construction.
- Perform testing as required and obtain DEC approval for the importation of fill and other base materials needed for construction.

If you have any questions or require any additional information please do not hesitate to contact me.

Very truly yours,

Charles B. Sosik, P.G. Principal

Cc: C. Doroski, NYSDOH D. Walsh, NYSDEC J. Brooks, Phillips-Nizer S. Arker, Bedford Park Assoc.

1808 Middle Country Road Ridge, NY 11961

February 10, 2007

Mr. Shaminder Singh New York State Department of Environmental Conservation 47-40 21st Street Long Island City, NY 11101

Re: Remedial Investigation Work Plan Addendum Former Dico G Auto & Truck Repair 3035 White Plains Road, Bronx, NY Site No. C203039

Dear Mr. Singh:

In accordance with the Brownfield Cleanup Agreement, Environmental Business Consultants (EBC) has prepared this progress report for the months of December 2007 and January 2008. Subsequent reports will be submitted on a monthly basis until the project is complete.

Tasks initiated or completed during the period were as follows:

- Received DEC approval of the IRM Work Plan
- Conducted on-site meeting with site safety officer, construction supervisor, excavation contractor and remediation engineer.
- Began excavation and off-site disposal of overburden materials in accordance with the approved IRMWP.
- Collected samples of bedrock material for analysis and obtained DEC approval to ship clean bedrock material to Tilcon-NY, Inc's Millington, NJ facility.
- Began excavation of bedrock material and off-site shipment to Tilcon's Millington, NJ facility.
- Completed NYCDEP sewer discharge application package and submitted to DEP for approval to discharge up to 10,000 gpd of surface run-off which has accumulated in the excavation.

EBC anticipates that the following work will take place during the next month:

- Complete the excavation of bedrock material and off-site shipment of bedrock and overburden material.
- Obtain approval from the NYCDEP to discharge excavation water to the NYC combined sewer through the access manhole located within the fenced area of the project.
- Begin installation of footings and related foundation construction.
- Perform testing as required and obtain DEC approval for the importation of fill and other base materials needed for construction.

If you have any questions or require any additional information please do not hesitate to contact me.

Very truly yours,

South

Charles B. Sosik, P.G. Principal

Cc: C. Doroski, NYSDOH D. Walsh, NYSDEC J. Brooks, Phillips-Nizer S. Arker, Bedford Park Assoc.

ENVIRONMENTAL BUSINESS CONSULTANTS

1808 Middle Country Road Ridge, NY 11961

April 10, 2008

Mr. Shaminder Singh New York State Department of Environmental Conservation 47-40 21st Street Long Island City, NY 11101

Re: Remedial Investigation Work Plan Addendum Former Dico G Auto & Truck Repair 3035 White Plains Road, Bronx, NY Site No. C203039

Dear Mr. Singh:

In accordance with the Brownfield Cleanup Agreement, Environmental Business Consultants (EBC) has prepared this progress report for the month March 2008. Subsequent reports will be submitted on a monthly basis until the project is complete.

Tasks initiated or completed during the period were as follows:

- Continued excavation of bedrock material and off-site shipment of bedrock and overburden soil.
- Secured sewer discharge permit from the NYCDEP and began dewatering (accumulated run-off) excavation.
- Obtained approval of the DEC case manager to import virgin crushed stone material to the site for use in grading and as an underlayment for the building slab.
- Continued preparation of the Remedial Investigation Report.

EBC anticipates that the following work will take place during the next month:

- Complete the excavation of bedrock material and off-site shipment of bedrock and overburden material.
- Begin installation of footings and related foundation construction.

If you have any questions or require any additional information please do not hesitate to contact me.

Very truly yours,

Charles B. Sosik, P.G. Principal

Cc: C. Doroski, NYSDOH D. Walsh, NYSDEC J. Brooks, Phillips-Nizer S. Arker, Bedford Park Assoc.

May 30, 2008

Mr. Shaminder Singh New York State Department of Environmental Conservation 47-40 21st Street Long Island City, NY 11101

Re: Remedial Investigation Work Plan Addendum Former Dico G Auto & Truck Repair 3035 White Plains Road, Bronx, NY Site No. C203039

Dear Mr. Singh:

In accordance with the Brownfield Cleanup Agreement, Environmental Business Consultants (EBC) has prepared this progress report for the months of April and May 2008. Subsequent reports will be submitted on a monthly basis until the project is complete.

Tasks initiated or completed during the period were as follows:

- Completed excavation of bedrock material and off-site shipment of bedrock and overburden soil.
- Terminated dewatering operations of the excavation.
- Initiated and completed forming and poring of the building footings, piers and basement walls.
- Received virgin crushed stone material at the site and completed initial grading of this material an underlayment for the building slab.
- Installed and sampled six new monitoring wells in the basement area for assessment of post excavation groundwater quality.
- Collected samples of groundwater from the sump pit and elevator shaft excavation for assessment of groundwater quality.
- Continued preparation of the Remedial Investigation Report.

EBC anticipates that the following work will take place during the next month:

- Begin installation of the building's steel structural components.
- Install 3 monitoring wells and collect groundwater samples in the retail area of the building for assessment of groundwater quality in this area.
- Design chemical injection point layout based on groundwater results from the post excavation monitoring wells.
- Begin chemical oxidant injections.

If you have any questions or require any additional information please do not hesitate to contact me.

Very truly yours,

Charles B. Sosik, P.G Principal

Cc: C. Doroski, NYSDOH D. Walsh, NYSDEC J. Brooks, Phillips-Nizer S. Arker, Bedford Park Assoc.

1808 Middle Country Road Ridge, NY 11961

July 10, 2008

Mr. Shaminder Singh New York State Department of Environmental Conservation 47-40 21st Street Long Island City, NY 11101

Re: Remedial Investigation Work Plan Addendum Former Dico G Auto & Truck Repair 3035 White Plains Road, Bronx, NY Site No. C203039

Dear Mr. Singh:

In accordance with the Brownfield Cleanup Agreement, Environmental Business Consultants (EBC) has prepared this progress report for the months of June 2008. Subsequent reports will be submitted on a monthly basis until the project is complete.

Tasks initiated or completed during the period were as follows:

- Installed 12 chemical oxidant injection points in the basement area.
- The steel structure of the building is currently being erected. The first deck of the building has been installed.
- Installed 2 groundwater monitoring wells within the retail space of the building.
- Continued preparation of the Remedial Investigation Report.

EBC anticipates that the following work will take place during the next month:

- Install remaining monitoring well in the retail area and collect groundwater samples in the retail area of the building for assessment of groundwater quality in this area.
- Design chemical injection point layout in retail area based on groundwater results from retail area monitoring wells.
- Begin chemical oxidant injections.

If you have any questions or require any additional information please do not hesitate to contact me.

Very truly yours,

Charles B. Sosik, P.G. Principal

Cc: C. Doroski, NYSDOH M. Yau, NYSDEC J. Brooks, Phillips-Nizer S. Arker, Bedford Park Assoc.

1808 Middle Country Road Ridge, NY 11961

August 10, 2008

Mr. Shaminder Singh New York State Department of Environmental Conservation 47-40 21st Street Long Island City, NY 11101

Re: Remedial Investigation Work Plan Addendum Former Dico G Auto & Truck Repair 3035 White Plains Road, Bronx, NY Site No. C203039

Dear Mr. Singh:

In accordance with the Brownfield Cleanup Agreement, Environmental Business Consultants (EBC) has prepared this progress report for the month of July 2008. Subsequent reports will be submitted on a monthly basis until the project is complete.

Tasks initiated or completed during the period were as follows:

- Collected pre-application (oxidant) groundwater samples from two monitoring wells in the retail area. Results were non-detect for VOCs. Based on these results, no direct oxidant injection is planned for the retail area.
- Performed a chemical oxidant application in the 12 injection wells previously installed in the basement area.
- Concrete slab was installed in the basement area. Access retained for all monitoring wells and injection wells. Six additional access points provided in new slab to allow for expansion of injection well system, if needed.
- Continued preparation of the Remedial Investigation Report.

EBC anticipates that the following work will take place during the next month:

- Install remaining monitoring well in the retail area and collect groundwater full round of groundwater samples in basement and retail area for post oxidant application performance evaluation.
- Continue oxidant application as needed to achieve significant reductions in VOC concentrations.

If you have any questions or require any additional information please do not hesitate to contact me. Very truly yours,

Charles B. Sosik, P.G. Principal

Cc: C. Doroski, NYSDOH M. Yau, NYSDEC J. Brooks, Phillips-Nizer S. Arker, Bedford Park Assoc. K. Brussee, EBC

1808 Middle Country Road Ridge, NY 11961

September 9, 2008

Mr. Shaminder Singh New York State Department of Environmental Conservation 47-40 21st Street Long Island City, NY 11101

Re: Remedial Investigation Work Plan Addendum Former Dico G Auto & Truck Repair 3035 White Plains Road, Bronx, NY Site No. C203039

Dear Mr. Singh:

In accordance with the Brownfield Cleanup Agreement, Environmental Business Consultants (EBC) has prepared this progress report for the month of August 2008. Subsequent reports will be submitted on a monthly basis until the project is complete.

Tasks initiated or completed during the period were as follows:

- Installed remaining monitoring well within the retail area of the new building (MW7).
- Completed a full sampling round of the 9 performance monitoring wells.
- Continued preparation of the Remedial Investigation Report.

EBC anticipates that the following work will take place during the next month:

• Continue oxidant application as needed to achieve significant reductions in VOC concentrations.

If you have any questions or require any additional information please do not hesitate to contact me. Very truly yours,

Charles B. Sosik, P.G. Principal

Cc: C. Doroski, NYSDOH M. Yau, NYSDEC J. Brooks, Phillips-Nizer S. Arker, Bedford Park Assoc. K. Brussee, EBC

October 10, 2008

Mr. Shaminder Singh New York State Department of Environmental Conservation 47-40 21st Street Long Island City, NY 11101

Re: Remedial Investigation Work Plan Addendum Former Dico G Auto & Truck Repair 3035 White Plains Road, Bronx, NY Site No. C203039

Dear Mr. Singh:

In accordance with the Brownfield Cleanup Agreement, Environmental Business Consultants (EBC) has prepared this progress report for the month of September 2008. Subsequent reports will be submitted on a monthly basis until the project is complete.

Tasks initiated or completed during the period were as follows:

- Performed an oxidant injection on September 14, 2008.
- Continued preparation of the Remedial Investigation Report.
- Began preparation of the Remedial Action Work Plan.
- Attended work session meeting with the NYSDEC regarding the timeline for the submission of BCP project documents.

EBC anticipates that the following work will take place during the next month:

- Complete the Draft Remedial Investigation Report (RIR) and submit to the Department for review.
- Complete the Remedial Action Work Plan and submit to the Department for review.
- Prepare and submit an Interim Remedial Measure Completion Report to the Department for review.
- Prepare a draft fact-sheet regarding issuance of the RIR and RAWP
- Place copies of the RIR and RAWP in the assigned document repository.
- Mail copies of the RIR/RAWP fact-sheet to the site contact list upon DEC's authorization.
- Collect performance samples from monitoring well network to determine effectiveness of September oxidant application.

If you have any questions or require any additional information please do not hesitate to contact me. Very truly yours,

Charles B. Sosik, P.G. Principal

Cc: C. Doroski, NYSDOH M. Yau, NYSDEC J. Brooks, Phillips-Nizer S. Arker, Bedford Park Assoc. K. Brussee, EBC

ENVIRONMENTAL BUSINESS CONSULTANTS

1808 Middle Country Road Ridge, NY 11961

November 10, 2008

Mr. Shaminder Singh New York State Department of Environmental Conservation 47-40 21st Street Long Island City, NY 11101

Re: Remedial Investigation Work Plan Addendum Former Dico G Auto & Truck Repair 3035 White Plains Road, Bronx, NY Site No. C203039

Dear Mr. Singh:

In accordance with the Brownfield Cleanup Agreement, Environmental Business Consultants (EBC) has prepared this progress report for the month of October 2008. Subsequent reports will be submitted on a monthly basis until the project is complete.

Tasks initiated or completed during the period were as follows:

- Completed a Draft version or the Remedial Investigation Report and submitted to the DEC on October 3, 2008.
- Completed a Draft version of the Remedial Work Plan and submitted to Dec on October 9, 2008.
- Completed a Draft version of the IRM Completion Report and submitted to DEC on October 23, 2008..
- Mailed copy of Factsheet No. 4 to site contact list on October 29, 2008.
- Placed copies of the Draft RIR, RWP and IRM Completion Report in the document repository.

EBC anticipates that the following work will take place during the next month:

- Finalize the RIR, RWP and IRM Completion Report and submit final copies to DEC and NYSDOH.
- Place final copies of the RIR, RWP and IRM Completion Report in the document repository.
- Complete a Draft Final Engineering Report and Site Management Plan and submit to DEC for review.
- Complete the recording of an environmental easement on the property for groundwater use and a sub-slab venting system
- Place copies of the FER and SMP in the assigned document repository.
- Prepare and submit Fact Sheet on FER and SMP.

If you have any questions or require any additional information please do not hesitate to contact me. Very truly yours,

Charles B. Sosik, P.G. Principal

Cc: C. Doroski, NYSDOH M. Yau, NYSDEC J. Brooks, Phillips-Nizer S. Arker, Bedford Park Assoc. K. Brussee, EBC

1808 Middle Country Road Ridge, NY 11961

From:	Charles Sosik [csosik2@optonline.net]
Sent:	Thursday, July 24, 2008 11:15 AM
То:	'Man-tsz Yau'
Cc:	'spsingh@gw.dec.state.ny.us'; 'Kevin Brussee'
Subject:	Former Dico G - 3035 WPR Update
Attachments	: Oxidant Inj well locations.pdf

Mandy,

Oxidant injections were performed last Sunday. We will sample the monitoring wells next week and make a determination on another injection. The contractor is ready to pour the slab in the basement so as a contingency we are placing eight 6-inch diameter access holes in the slab in the event that we need to install additional injection points. The slab will be poured next week. The sub-slab venting system is also scheduled to be installed sometime within the next 2 weeks. I'll let you know as soon as I have a firm date. Call with questions or comments.

Charles B. Sosik, P.G.

Principal **BC**

Environmental Business Consultants Ph: 631.504.6000 Fax: 631.924.2870 Cell: 631.357.4927 csosik2@optonline.net

From:	Charles Sosik [csosik2@optonline.net]		
Sent:	Monday, June 30, 2008 6:57 PM		
То:	'Man-tsz Yau'		
Cc:	'spsingh@gw.dec.state.ny.us'		
Subject:	Former Dico G - 3035 WPR Update		
Attachments: IRM Monitoring Well Results.pdf; GW Elevation 6-3-08.pdf; Oxidant Inj well locations.pdf			

Mandy,

We completed the installation of the 12 oxidant injection wells yesterday. Attached please find an oxidant well location map, monitoring well location map with recent sampling results and a groundwater flow map. As shown VOC concentrations are under 5,000 ug/L and groundwater flow is to the east toward White Plains Road and Adee Street. We plan to begin oxidant injections next week.

Construction of the building is proceeding according to schedule. The first floor deck has been installed and they are erecting steel girders for the additional floors. They have not installed the concrete slab in the basement garage, allowing us full access for groundwater treatment. Please call with questions or if you need additional information. Thanks.

Charles B. Sosik, P.G.

Principal **BC** Environmental Business Consultants Ph: 631.504.6000 Fax: 631.924.2870 Cell: 631.357.4927 csosik2@optonline.net

From: Charles Sosik [csosik2@optonline.net]

Sent: Thursday, May 29, 2008 8:59 AM

To: 'spsingh@gw.dec.state.ny.us'; 'mwyau@gw.dec.state.ny.us'; 'ariel@amc-engineering.com: ScarpaArch@msn.com' Subject: Daily Status Report - SITE: 3035 White Plains Rd., Bronx

DAILY STATUS REPORT

DATE May 30, 2008

SITE: 3035 White Plains Rd., Bronx

EXCAVATION: Completed

DE-WATER: Completed

TRUCKS OUT: none

TRUCKS IN: Import of virgin crushed stone complete in basement area

OTHER: Installation of concrete walls, footings and piers complete.

Investigative Activities: Survey of excavation completed for volume calculation. 6 new post-excavation monitoring wells installed within the basement area. Wells sampled on 5/27/08

Planned: Install 3 new post-excavation monitoring wells in retail area for groundwater assessment. Design oxidant injection program and install injection wells.

Charles B. Sosik, P.G. Principal BC Environmental Business Consultants Ph: 631.504.6000 Fax: 631.924.2870 Cell: 631.357.4927 csosik2@optonline.net

From: Charles Sosik [csosik2@optonline.net]

Sent: Wednesday, April 02, 2008 4:51 PM

To: 'spsingh@gw.dec.state.ny.us'; 'mwyau@gw.dec.state.ny.us'; 'Ariel Czemerinski, PE'; 'Robert Scarpa'; 'Richard Powers' Subject: FW: Daily status report - 3035 White Plains Rd.,Brooklyn 3/31/08

DAILY STATUS REPORT

DATE March 31 (Mon.), 08

EXCAVATION: not today

DEWATER: Yes, started up de-water process again, through activated carbon drums as before.

TRUCKS OUT: 10 loads out (10 wheeler trucks) soil disposal to Clean Earth, Carteret ,NJ

TRUCKS IN: none

OTHER: n/a

NOTES: Tomorrow Tues. 4/1 , excavation to resume, de-water may be required pending rain & sepage. 12 more loads scheduled for tomorrow re: disposal of soil @ Clean Earth , Carteret ,NJ

Richard Bombard /site monitor **EBC** cell (631) 831-1677

From: Charles Sosik [csosik2@optonline.net]

Sent: Wednesday, April 02, 2008 4:52 PM

To: 'spsingh@gw.dec.state.ny.us'; 'mwyau@gw.dec.state.ny.us'; 'Ariel Czemerinski, PE'; 'Robert Scarpa'; 'Richard Powers' Subject: FW: Daily status report - 3035 White Plains Rd.,Brooklyn 4/1/08

DAILY STATUS REPORT

DATE April 1 (Tues.), 08

EXCAVATION: Mix of soil & rock excavation @ Northern portion of site.

DEWATER: Only necessary in early :am through carbon activated drums as prior.

TRUCKS OUT: 12 loads (10 wheeler trucks) contaminated soil for disposal @ Clean Earth, Carteret, NJ facility.

TRUCKS IN: Concrete truck (1) re: foundation pour.

OTHER: n/a

NOTES: Tomorrow 4/2/08 - no trucks scheduled for outbound, inbound gravel possible TBA, excavation yes & dewater likely.

Richard Bombard (site monitor) **EBC** cell (631) 831-1677

Create a Home Theater Like the Pros. Watch the video on AOL Home.

From: Charles Sosik [csosik2@optonline.net]

Sent: Wednesday, April 02, 2008 4:54 PM

To: 'spsingh@gw.dec.state.ny.us'; 'mwyau@gw.dec.state.ny.us'; 'Ariel Czemerinski, PE'; 'Robert Scarpa'; 'Richard Powers' Subject: FW: Daily status report - 3035 White Plains Rd.,Brooklyn 4/2/08

DAILY STATUS REPORT DATE April 2 (Weds.), 08

- **EXCAVATION:** Mix of rock & soil Northern portion of site.
- **DE-WATER:** De-water through activated carbon drums as before (early :am only req.)

TRUCKS OUT: None

TRUCKS IN: None

OTHER: n/a

NOTES: Tomorrow Thurs.4/3/08 TBA. Fri. 4th Trucks scheduled (gravel) virgin stone delivery from Tilcon-Mt.Hope quarry.

Richard Bombard /site monitor **EBC** cell (631) 831-1677

From: Charles Sosik [csosik2@optonline.net]

Sent: Wednesday, April 09, 2008 5:24 PM

To: 'spsingh@gw.dec.state.ny.us'; 'mwyau@gw.dec.state.ny.us'; 'Ariel Czemerinski, PE'; 'Robert Scarpa'; 'Richard Powers' Subject: FW: Daily status report - 3035 White Plains Rd.,Bronx 4/4/08

DAILY STATUS REPORT

DATE April 4 (Fri.), 08

3035 White Plains Rd., Bronx

EXCAVATION: none

DE-WATER: De-water through activated carbon drums.

TRUCKS OUT: none

TRUCKS IN: none

OTHER: n/a

NOTES: Trucks due from Tilcon have been postponed until next week.

Richard Bombard /site monitor **EBC** cell (631) 831-1677

From: Charles Sosik [csosik2@optonline.net]

Sent: Wednesday, April 09, 2008 5:23 PM

To: 'spsingh@gw.dec.state.ny.us'; 'mwyau@gw.dec.state.ny.us'; 'Ariel Czemerinski, PE'; 'Robert Scarpa'; 'Richard Powers' Subject: FW: Daily status report - 3035 White Plains Rd., Bronx

Subject: Daily status report - 3035 White Plains Rd., Bronx

DAILY STATUS REPORT

DATE April 8 (Tues), 08

SITE: 3035 White Plains Rd., Bronx

EXCAVATION: none (re: loading trucks)

DE-WATER: minimal de-water required.

TRUCKS OUT: 12 loads (10 wheelers) contaminated soil disposal @ Clean Earth, Carteret, NJ

TRUCKS IN: none

OTHER: n/a

NOTES: tomorrow expecting concrete pour, no trucks scheduled out.

Richard Bombard /site monitor **EBC** cell (631) 831-1677

Planning your summer road trip? Check out AOL Travel Guides.

From: Charles Sosik [csosik2@optonline.net]

Sent: Wednesday, April 09, 2008 5:23 PM

To: 'spsingh@gw.dec.state.ny.us'; 'mwyau@gw.dec.state.ny.us'; 'Ariel Czemerinski, PE'; 'Robert Scarpa'; 'Richard Powers' Subject: FW: Daily status report- 3035 white Plains Rd., Bronx

DAILY STATUS REPORT

DATE April 9 (Weds), 08

SITE: 3035 White Plains Rd., Bronx

- EXCAVATION: Rock only
- **DE-WATER:** minimal de-watering required.

TRUCKS OUT: none

- TRUCKS IN: Concrete pour, lumber delivery
- OTHER: n/a
- NOTES: Tilcon- virgin stone (gravel) delivery from Mt Hope quarry, expect tomorrow or Fri.

Richard Bombard /site monitor **EBC** cell (631) 831-1677

From: Charles Sosik [csosik2@optonline.net]

Sent: Wednesday, April 09, 2008 5:24 PM

To: 'spsingh@gw.dec.state.ny.us'; 'mwyau@gw.dec.state.ny.us'; 'Ariel Czemerinski, PE'; 'Robert Scarpa'; 'Richard Powers' Subject: FW: Daily status report - 3035 White Plains Rd.,Bronx 4/7/08

DAILY STATUS REPORT

DATE April 7 (Mon.) 08

3035 White Plains Rd., Bronx

- **EXCAVATION:** Center portion of site
- **DE-WATER:** De-water through activated carbon drums as before (early :am only req.)

TRUCKS OUT: 8 loads *rock only to Millington, NJ

TRUCKS IN: none

- OTHER: n/a
- **NOTES:** Tomorrow have scheduled trucks 12 loads re: contaminated soil disposal @ Carteret, NJ Clean Earth

Richard Bombard /site monitor **EBC** cell (631) 831-1677

From: Charles Sosik [csosik2@optonline.net]

Sent: Sunday, February 10, 2008 2:07 PM

- To: 'spsingh@gw.dec.state.ny.us'; 'mwyau@gw.dec.state.ny.us'
- Cc: 'Damion Lawyer'; 'Ariel Czemerinski, PE'; 'Robert Scarpa'; 'Richard Powers'; 'kbrussee@optonline.net'

Subject: Daily Report BCP ID No. C203039 1/26 - 2/1

28 loads of overburden soil and contaminated bedrock were shipped from the site to Clean earth on 1/19, 14 loads on 1/30 and 7 loads on 1/31.

13 loads of clean bedrock material were shipped to Tilcon on 2/1 and 12 loads on 2/4. Bedrock chipping and excavation continued on 2/5 and 2/6. No loads were shipped on 2/7 due to a mechanical problem with the hydraulic hammer on the excavator. 19 loads of clean bedrock material were shipped on 2/8. Excavation of bedrock material is expected to continue through next week.

A sewer discharge application package was submitted to DEP on 1/31. No response has been received on this as of this time. Following DEP approval of the discharge request, the excavation will be dewatered to allow installation of the concrete piers and footings for the garage area. Excavation work is expected to be completed next week.

Charles B. Sosik, P.G. Principal

BC Environmental Business Consultants Ph: 631.504.6000 Fax: 631.924.2870 Cell: 631.357.4927 <u>csosik2@optonline.net</u>

From: Damion Lawyer [damionlawyer@gmail.com]

Sent: Monday, December 17, 2007 8:00 PM

To: spsingh@gw.dec.state.ny.us; mwyau@gw.dec.state.ny.us; Robert Scarpa; Richard Powers; Ariel Czemerinski, PE; Charles Sosik

Subject: 3035 White Plains Road

Re: BCP ID No. C203039

Shoring materials staged today at 3035 White Plains Road. Excavation before the first of the year is unlikely.

Best, Damion Lawyer

- From: Damion Lawyer [damionlawyer@gmail.com]
- Sent: Friday, December 21, 2007 10:02 PM
- To: spsingh@gw.dec.state.ny.us; mwyau@gw.dec.state.ny.us; Robert Scarpa; rpowers@arkorcompanies.com; Ariel Czemerinski, PE; Charles Sosik

Subject: 3035 WPR

Re: BCP ID No. C203039

Shoring on the south and west walls at 3035 White Plains Road continued northward this week after a weather delay. No excavation is expected until the 1rst of the year.

An accident occurred last Wednesday morning Dec 12th. As a bundle of 12" by 12' timbers were being unbound a timber near the top of the pile was loosed which pinned Mr. Powers foot, breaking three bones. An accident report has been filed with the state.

From:	Damion Law	ver Id	amionlaw	ver@ama	il.com1
	Bannon Ean	,	annorman	, ei e ginia	

Sent: Thursday, December 27, 2007 9:40 PM

To: spsingh@gw.dec.state.ny.us; mwyau@gw.dec.state.ny.us; Robert Scarpa; Richard Powers; Ariel Czemerinski, PE; Charles Sosik

Subject: 3035 WPR 12/27

Re: BCP ID No. C203039

Shoring along the west property line continued today and should be completed by the first of the year. Excavation of 30 truckloads is scheduled for Wednesday Jan. 2nd.

Best, Damion Lawyer

From:	Damion Lawyer [damionlawyer@gmail.com]
Sent:	Tuesday, January 08, 2008 10:52 AM
To:	Charles Sosik; spsingh@gw.dec.state.ny.us; mwyau@gw.dec.state.ny.us; Robert Scarpa; Richard Powers; Ariel Czemerinski, PE

Subject: BCP ID No. C203039 Former Dico G 3035 WPR

Project Status Update - 1/7/08

Excavation continued Monday in Grid C1-3 with 24 truckloads shipping to the Clean Earth Facility in Carteret. Noticeable gasoline odor was slight and limited to the western fence line in Grids B and C. Petroleum impacted soil was encountered in Grid C1 at a depth of approx. 8.5 feet in a thin 2-3 inch layer along the bedrock surface. No accumulation of groundwater in this area was noted.

No complaints regarding noise or odor were received.

Damion Lawyer 917 679 9789

From	Damion Lawy	er l	Idamionlaw	ver@amail.c	ന്നി
TTOIL.	Dannon Lawy	ן וס	uannonnaw	yei eginali.c	onij

Sent: Wednesday, January 09, 2008 7:11 PM

To: Charles Sosik; spsingh@gw.dec.state.ny.us; mwyau@gw.dec.state.ny.us; Robert Scarpa; Richard Powers; Ariel Czemerinski, PE

Subject: BCP ID No. C203039 Former Dico G 3035 WPR

Project Status Update - 1/9/08

A puddle of aged gasoline product was uncovered this morning at 3035 White Plains Road. It was encountered at a depth of approximately 14 feet in Grid A2 and 18 feet east of the western fence line. The hole is 7 feet by 6 feet wide. A vacuum truck will be on site tomorrow to remove the gasoline.

Odor was noticeable downwind on Adee St. and PID readings peaked at 6.7ppm on the rim of the pit. No complaints were lodged.

Damion Lawyer 917 679 9789

From:	Damion Law	/er	[damionlaw	ver@gmail.com	1
	Dannon Law		[aannonnan	yor eginamooni	ь

Sent: Thursday, January 10, 2008 7:59 PM

To: Charles Sosik; spsingh@gw.dec.state.ny.us; mwyau@gw.dec.state.ny.us; Robert Scarpa; Richard Powers; Ariel Czemerinski, PE

Subject: BCP ID No. C203039 Former Dico G 3035 WPR

Project Status Update - 1/10/08

A vacuum truck was on site today at 3035 White Plains Road to remove gasoline impacted water uncovered yesterday in Grid A and other pools of accumulated water in the pit. Two 55-gallon storage drums for waste water were emptied and the total amount removed from the site was 960 gallons. A small amount of aged gasoline was uncovered as rock breaking proceeded 7-9 feet north of where the product was encountered on Wednesday. This product was also vacuumed. Although odor was noticeable on the downwind edges of the pit, PID readings peaked at 5.7ppm.

A total of 17 truckloads were removed from Grids D and E and none of the material showed visual or olfactory signs of petroleum impact. 30 trucks are scheduled for pickup for tomorrow Friday Jan. 11th. No complaints were lodged.

Damion Lawyer 917 679 9789

From	Damion Law	/or	[damionlaw	ver@amail.c	om]
FIOIII.	Damion Lawy	/er	luannonnaw	yer@gmail.c	uni

Sent: Tuesday, January 15, 2008 7:53 PM

To: Charles Sosik; spsingh@gw.dec.state.ny.us; mwyau@gw.dec.state.ny.us; Robert Scarpa; Richard Powers; Ariel Czemerinski, PE

Subject: BCP ID No. C203039 Former Dico G 3035 WPR

Project Status Update - 1/15/08

After a delay in bedrock removal due to a broken piston, excavation of bedrock continued today at 3035 White Plains Road. A 1 inch layer of bedrock in Grid C3 showed evidence of petroleum exposure at a depth of approximately 10 feet near the end of the work day. PID readings in the pit peaked at 9.7ppm in close proximity to the impacted rock in C3. Odor was noticeable at times but readings above the pit were not significant.

A vacuum truck removed a total of 8,876 gallons of petroleum impacted water.

An inspector from the NY DOB requested that a noise mitigation plan be posted, but no complaints were lodged. A noise mitigation plan will be posted tomorrow morning.

Damion Lawyer 917 679 9789

From	Damion Law	/or	[damionlaw	ver@amail.c	om]
FIOIII.	Damion Lawy	/er	luannonnaw	yer@gmail.c	uni

Sent: Friday, January 18, 2008 9:30 PM

To: Charles Sosik; spsingh@gw.dec.state.ny.us; mwyau@gw.dec.state.ny.us; Robert Scarpa; Richard Powers; Ariel Czemerinski, PE

Subject: BCP ID No. C203039 Former Dico G 3035 WPR

Project Status Update - 1/18/08

Rock removal continued Wednesday 1/16 at 3035 White Plains Road in Grid C2-3. A small amount of impacted material was encountered 15 inches into bedrock along what appeared to be a plane of minimum cohesion approx. .5-1" thick. PID readings in the breathing zone peaked at 7.2ppm for brief intervals. An official from DOB requested a noise mitigation plan be posted.

On 1/17 the noise mitigation plan documents were posted and samples were taken from standing water in Grid A for analysis. A small amount of rock removal revealed no impacted material. While PID readings were not significant, an odor of gasoline was noticeable at times.

Rock removal continued on 1/18 and occasional pockets of odorous impacted material were noted and PID readings in the breathing zone as these were uncovered peaked at 3.2ppm within approx. 15 feet of noticeably stained rock.

No complaints were noted.

Damion Lawyer 917 679 9789

- From: Damion Lawyer [damionlawyer@gmail.com]
- Sent: Monday, January 28, 2008 4:39 PM
- To: Charles Sosik; spsingh@gw.dec.state.ny.us; mwyau@gw.dec.state.ny.us; Robert Scarpa; Richard Powers; Ariel Czemerinski, PE

Subject: Daily Report BCP ID No. C203039 1/24-1/25

BCP ID No. C203039 Former Dico G Truck & Auto 3035 White Plains Road

After a break in removal due to weather and machinery failure, excavation commenced again last Thursday at 3035 White Plains Road in the Bronx. Small amounts of impacted grit along cleavage planes were encountered during excavation Thursday afternoon. On Friday 28 truckloads of remaining overburden and impacted rock were carted to Clean Earth in Cartaret, NJ. No complaints were lodged.

Damion Lawyer 917 679 9789

- From: Damion Lawyer [damionlawyer@gmail.com]
- Sent: Monday, February 25, 2008 7:23 PM
- To: Charles Sosik; spsingh@gw.dec.state.ny.us; mwyau@gw.dec.state.ny.us; Robert Scarpa; Richard Powers; Ariel Czemerinski, PE

Subject: Daily Report 3035 White Plains Road 2/25/08

37 Loads of clean rock went to Tilcon last week. Rock breaking and excavation continued today in Grids C4 and D3.

From:	Damion Lawyer [damionlawyer@gmail.com]
Sent:	Wednesday, February 27, 2008 9:26 PM
То:	Charles Sosik; spsingh@gw.dec.state.ny.us; mwyau@gw.dec.state.ny.us; Robert Scarpa;
	Richard Powers
Subject:	Daily Report 3035 White Plains Road 2/27/08

8 Loads of clean rock were trucked to Tilcon today.

Damion Lawyer

From: Sent:	Damion Lawyer [damionlawyer@gmail.com] Thursday, February 28, 2008 8:33 PM
To:	Charles Sosik; spsingh@gw.dec.state.ny.us; mwyau@gw.dec.state.ny.us; Robert Scarpa;
Subject:	Daily Report 3035 White Plains Road 2/28/08

Carbon units were tested today- pit water outflow from the carbon units was sampled and delivered for analysis. Two loads of clean rock were trucked to Tilcon.

Damion Lawyer
- From: Damion Lawyer [damionlawyer@gmail.com]
- Sent: Wednesday, March 12, 2008 9:14 PM
- To: Charles Sosik; spsingh@gw.dec.state.ny.us; mwyau@gw.dec.state.ny.us; Richard Powers; Ariel Czemerinski, PE; Robert Scarpa

Subject: Daily Report 3035 White Plains Road

Last week, 4 truck loads of clean rock were trucked to Tilcon. Eighteen truckloads of contaminated soil were sent to Clean Earth Carteret, NJ. This week, 30 truckloads of clean rock have been sent to Tilcon.

Damion Lawyer 917 679 9789

- From: Bombards@aol.com
- Sent: Tuesday, April 15, 2008 3:27 PM
- To: csosik2@optonline.net
- Cc: spsingh@gw.dec.state.ny.us; mwyau@gw.dec.state.ny.us; ariel@amc-engineering.com: ScarpaArch@msn.com; rpowers@archercompanies.com

Subject: Daily status report - SITE: 3035 White Plains Rd., Bronx 4/14/08

DAILY STATUS REPORT

DATE April 14 (Mon.), 08

SITE: 3035 White Plains Rd., Bronx

- **EXCAVATION:** rock center/east portion of site
- **DE-WATER:** minimal de-watering required in the :am.
- TRUCKS OUT: none
- TRUCKS IN: none
- OTHER: n/a
- **NOTES:** Trucks scheduled for excavated rock transport out & fill transport in.

Richard Bombard /site monitoring

EBC Environmental Business Consultants cell (631) 831-1677 office (631) 504-6003 fax (631) 924-2870

It's Tax Time! Get tips, forms and advice on AOL Money & Finance.

- From: Bombards@aol.com
- Sent: Wednesday, April 16, 2008 6:37 PM
- To: csosik2@optonline.net
- Cc: spsingh@gw.dec.state.ny.us; mwyau@gw.dec.state.ny.us; ariel@amc-engineering.com: ScarpaArch@msn.com; rpowers@archercompanies.com

Subject: Daily status report - SITE: 3035 White Plains Rd., Bronx 4/15/08

DAILY STATUS REPORT

DATE April 15 (Tues.), 08

SITE: 3035 White Plains Rd., Bronx

EXCAVATION: Primarily rock, some soil @ center of site

DE-WATER: no de-watering required.

- TRUCKS OUT: 7 loads (10 wheelers) rock only to Tilcon,NJ
- TRUCKS IN: 3 loads fill from Tilcon
- OTHER: n/a

NOTES:

Richard Bombard /site monitoring

EBC Environmental Business Consultants cell (631) 831-1677 office (631) 504-6003 fax (631) 924-2870

Need a new ride? Check out the largest site for U.S. used car listings at <u>AOL Autos</u>.

From: Bombards@aol.com

- Sent: Sunday, April 20, 2008 3:49 PM
- To: csosik2@optonline.net
- Cc: rpowers@archercompanies.com

Subject: Daily Status Report 3035 White Plains Rd., Bronx 4/16/08

DAILY STATUS REPORT

DATE April 16 (Weds.) 08

SITE: 3035 White Plains Rd., Bronx

EXCAVATION: rock @ center of site

DE-WATER: no de-watering required.

TRUCKS OUT: none

TRUCKS IN: none

OTHER: n/a

NOTES:

Richard Bombard /site monitoring

EBC Environmental Business Consultants cell (631) 831-1677 office (631) 504-6003 fax (631) 924-2870

Need a new ride? Check out the largest site for U.S. used car listings at AOL Autos.

From: Bombards@aol.com

Sent: Sunday, April 20, 2008 3:51 PM

To: csosik2@optonline.net

Cc: rpowers@archercompanies.com

Subject: Daily Status Report 3035 White Plains Rd., Bronx 4/17/08

DAILY STATUS REPORT

DATE April 17 (Thurs.) 08

SITE: 3035 White Plains Rd., Bronx

EXCAVATION: rock @ center of site

DE-WATER: Minimal de-watering required in :am

TRUCKS OUT: none

TRUCKS IN: none

OTHER: n/a

NOTES:

Richard Bombard /site monitoring

EBC Environmental Business Consultants cell (631) 831-1677 office (631) 504-6003 fax (631) 924-2870

Need a new ride? Check out the largest site for U.S. used car listings at <u>AOL Autos</u>.

From: Bombards@aol.com

- Sent: Sunday, April 20, 2008 3:51 PM
- To: csosik2@optonline.net
- Cc: rpowers@archercompanies.com

Subject: Daily Status Report 3035 White Plains Rd., Bronx 4/18/08

DAILY STATUS REPORT

DATE April 18 (Fri.) 08

SITE: 3035 White Plains Rd., Bronx

EXCAVATION: rock @ center of site

DE-WATER: no de-watering required

TRUCKS OUT: none

TRUCKS IN: none

OTHER: n/a

NOTES:

Richard Bombard /site monitoring

EBC Environmental Business Consultants cell (631) 831-1677 office (631) 504-6003 fax (631) 924-2870

Need a new ride? Check out the largest site for U.S. used car listings at <u>AOL Autos</u>.

From: Bombards@aol.com

Sent: Friday, April 25, 2008 4:53 PM

To: csosik2@optonline.net

Cc: rpowers@archercompanies.com

Subject: Daily Status report 3035 White plains Rd., Bronx 4/21/08 - 4/25/08

DAILY STATUS REPORT

SITE: 3035 White Plains Rd., Bronx

	Mon 4/21/08	Tues 4/22/08	Weds. 4/23/08	Thurs. Fri 3 4/24/08	4/25/08
EXCAVATION:	rock	rock	rock	rock	rock
DE-WATER:	No	No	No	Min.	No
TRUCKS OUT:	none	none	none	none	none
TRUCKS IN:	none	6 loads -fi Tilcon	ll none	none	none

OTHER: Fri.25th took H2O samples (1) future elevator shaft (2) South West corner, sent to Chemtech Lab re:analysis 8260 (VOC's))

NOTES:

Richard Bombard /site monitoring

EBC Environmental Business Consultants cell (631) 831-1677 office (631) 504-6003 fax (631) 924-2870

Need a new ride? Check out the largest site for U.S. used car listings at <u>AOL Autos</u>.

Need a new ride? Check out the largest site for U.S. used car listings at $\underline{AOL \ Autos}$.

From:	Bombards@aol.com
Sent:	Monday, May 05, 2008 9:31 AM
То:	csosik2@optonline.net
Cc:	rpowers@archercompanies.com
Subject:	Week staus report 3035 White plains Rd., Bronx

DAILY STATUS REPORT

SITE: 3035 White Plains Rd., Bronx

	Mon 4/28/08	Tues V 4/29/08	Veds. Th 4/30/08	nurs. Fri 5/1/08	5/2/08
EXCAVATION:	rain	none	rock	rock	soil/ rock
DE-WATER:	No	yes	No	No	No
TRUCKS OUT:	none	none	none	none	none
TRUCKS IN:	none	none	none	concrete	none

OTHER:

NOTES: Week 5/2/08 Will require final soil disposal (approx. 4 loads) to Clean Earth. Well installation starting @ South.

Richard Bombard /site monitoring

EBC Environmental Business Consultants cell (631) 831-1677 office (631) 504-6003 fax (631) 924-2870

Wondering what's for Dinner Tonight? Get new twists on family favorites at AOL Food.

From:	Charles Sosik [csosik2@optonline.net]
Sent:	Thursday, September 18, 2008 12:51 PM
То:	'Man-tsz Yau'
Cc:	'spsingh@gw.dec.state.ny.us'
Subject:	Former Dico G 3035 WPR, Bronx
Attachments:	IRM Monitoring Well Results 8-08.pdf; Oxidant Inj well locations.pdf

Project Update

2 new oxidant injection wells were installed on Saturday 9-13-08 in response to high VOC levels identified in MW7 during the performance sampling round in August. A full oxidant injection round was carried out at the site on Sunday 9-14-07.

We anticipate performing another oxidant sampling round at the site in approximately 2 weeks. Installation of the sub-slab vent piping was postponed this week but is expected to take place next week.

Charles B. Sosik, P.G. Principal BC Environmental Business Consultants Ph: 631.504.6000 Fax: 631.924.2870 Cell: 631.357.4927 csosik2@optonline.net

<u>APPENDIX - U</u> Sub-Slab Depressurization System Details

<u>APPENDIX - V</u> Chemical Oxidant Documentation

Klozur[™] Activation Chemistries

✓

Selection Guide:

- recommended, lab or field data demonstrating success
- recommended, no available lab or field data
- Ø not recommended

Activator	Fe Chelate	Alkaline	Hydrogen	Heat
Contaminant			Peroxide	
Tetrachioroethene (PCE)	•	•	•	•
Dishlarasthana (sis and trans DCE)	•	•	•	•
Tripheroothone (TCA)	<u> </u>	•	•	•
Dichloroethane (TCA)	<u>Ø</u>	•	-	•
Dichloroethane (DCA)	<u>Ø</u>	•		•
Carbon tetrachionide	<u>Ø</u>	-	-	•
Chloroform	<u>ø</u>			
Chloromothano	<u> </u>	-	-	· · ·
Chlorotoluono		•	•	· · ·
Mothylono oblorido	Ø			· · ·
Vinyl oblorido	<u> </u>	· ·	· ·	
Dichloropropage	Ø	-	-	· ·
Dichloropropene	<u> </u>			· •
Heyachlorobutadiene	<u> </u>	-	-	· ·
Tetrachloroothane	<u> </u>	-		-
Trichloropropape	<u> </u>		-	
BTEY	0			•
Benzene	✓	✓	✓	✓
Toluene	 ✓	· · ·		· · ·
Ethylbenzene	 ✓	· · ·	· ·	· · · · · · · · · · · · · · · · · · ·
Xylenes	✓	✓	✓ √	✓ √
PAHs			·	
Acenaphthene	✓	✓		✓
Acenaphthylene	✓	✓	-	✓
Anthracene		✓		
Benzo(a)anthracene	-	✓		
Benzo(a)pyrene	-	✓		
Benzo(b)fluoranthene		✓		
Benzo(ghi)pervlene		✓		
Bis(2-ethyhexyl)phthalate		√		
n-butylbenzene	√			√
Chrysene		√		
Dibenzo(ah)anthracene		√		
Fluorene	√	√		✓
Naphthalene	√	✓		✓
Nitrobenzene	Ø	Ø	√	✓
Phenathrene	√	✓	✓	✓
Propylbenzene	√	✓	✓	✓
4-iso-propyltoluene	✓	✓	✓	✓
Pyrene		✓		
Styrene	✓	✓	✓	✓
Trimethylbenzene	√	✓	✓	✓
Oxygenates		•	•	•
Methyl tert-butyl ether (MTBE)	√	✓	✓	✓
Tert-butyl alcohol (TBA)	√	✓	✓	√

✓

recommended, lab or field data demonstrating success

recommended, no available lab or field data

Ø not recommended

Activator	Fe Chelate	Alkaline	Hydrogen	Heat
Petroleum Hydrocarbons			TCTORIGE	
GBO (octane)	Ø	1	1	
DBO (dodecane)	ø	· · · · · · · · · · · · · · · · · · ·	· ·	
OBO (C20 alkane)	ø	✓	✓ √	
Creosote (coal tar)	~ ✓	✓		
Chlorobenzenes				
Chlorobenzene	✓	✓		✓
Dichlorobenzene	√	√		√
Trichlorobenzene	Ø	√		√
Phenols			I	
Phenol				√
4-chloro-3-methyl phenol				√
2-chlorophenol				√
2,4-dichlorophenol				√
2,4-dinitrophenol				√
4-nitrophenol				√
Pentachlorophenol				√
Haloalkanes				
Dichlorodifluoromethane (Freon 12)	Ø	✓		✓
Trichlorofluouromethane (Freon 11)	Ø	✓		✓
Trichlorotrifluoroethane (Freon 113)	Ø	√		✓
Pesticides				
α-Chlordane	Ø	√		√
DDD	Ø	✓		✓
DDE	Ø	✓		✓
DDT	Ø	√		<i>√</i>
Heptachlor Epoxide	Ø	√		✓
Lindane (hexachlorocyclohexane)	✓	✓	✓	✓
Miscellaneous				
Acetone		✓	√	<u> </u>
4-methyl-2-pentanone (MIBK)	√	•	√	<u>∕</u>
1,4-dioxane	✓ ~	✓	*	√
BCEE	Ø	✓	√	<u> </u>
BCEM	Ø	√	✓ ~	<u>√</u>
Perchlorate	Ø	Ø	Ø	Ø
Polychlorinated biphenyls (PCBs)	Ø	√		√

The Klozur[™] Activator Selection Guide is for guidance only. It is recommended that a suitable treatability study be performed to verify applicability to you specific contaminant and site conditions.

Although the above information accurately reflects current knowledge, FMC makes no warranty or representation, expressed or inferred, and nothing herein should be construed as to guaranteeing actual results in field use, or permission or recommendation to infringe any patent. No agent, representative or employee of FMC is authorized to vary any terms of this notice. FMC is the owner or licensee under various patents and patent applications relating to the use of these activator chemistries.

FMC and Klozur are trademarks of the FMC Corporation. Copyright © 2006. All rights reserved. Document 03-01-EIT-DF.

Technical data

Klozur™

Environmental grade persulfate CAS No. 7775-27-1

Typical formula by weight percent	$Na_2S_2O_8$	99% MW 238.1 g/mol	
Active oxygen content		6.7%	
pH of solution strength	wt%	pH	
	Note: pH of solution wi	Il decrease over time.	
Typical properties			
Odor	none		
Appearance	white crystals		
Melting point	decomposes		
Solubility @ 25°C	73 grms/100 grms H ₂ O		
Loose bulk density, lb/ft ³	69.9		
Crystal density, g/cc	2.59		
Typical metallic impurity concentrations (ppm)			
Iron	2		
Copper	<0.2		
Chromium	<0.15		
Lead	<0.2		

Uses

Chemical oxidation of organic contaminants in conjunction with FMC Activation Chemistries

Shipment/container information:

DOT Classification: 5.1 (Oxidizer), yellow Oxidizer label. 55 lb (25 kg) polyethylene bag; 225 lb (102.3 kg) fiber drum with polyethylene liner; 2,200 lb (1,000 kg) woven polypropylene sack with polyethylene liner

HMIS classification:

Health	1
Flammability	0
Physical hazard	1
Personal protection	J

The information contained herein is, to our knowledge, true and accurate. Because conditions of use are beyond our control, we make no warranty or representation, expressed or implied, except that the products discussed herein conform to the chemical descriptions shown on their labels. Nothing contained herein should be construed as permission or recommendation to infringe any patent. No agent, representative, or employee of this company is authorized to vary any of the terms of this notice.

FMC logo and Klozur are trademarks of FMC Corporation. © 2006 FMC Corporation. All rights reserved. Document No. 01-01-EIT-DF. 01/03/06.RS

MATERIAL SAFETY DATA SHEET

Klozürtm

MSDS Ref. No.: 7775-27-1-12 Date Approved: 02/22/2005 Revision No.: 1

This document has been prepared to meet the requirements of the U.S. OSHA Hazard Communication Standard, 29 CFR 1910.1200; the Canada's Workplace Hazardous Materials Information System (WHMIS) and, the EC Directive, 2001/58/EC.

1. PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME:

SYNONYMS:

GENERAL USE:

Klozürtm

Sodium Persulfate, Sodium Peroxydisulfate; Disodium Peroxydisulfate

In situ and ex situ chemical oxidation of contaminants and compounds of concern for environmental remediation applications.

MANUFACTURER

FMC CORPORATION Active Oxidants Division 1735 Market Street Philadelphia, PA 19103 (215) 299-6000 (General Information)

EMERGENCY TELEPHONE NUMBERS

(800) 424-9300 (CHEMTREC - U.S.) (303) 595-9048 (Medical - Call Collect)

2. HAZARDS IDENTIFICATION

EMERGENCY OVERVIEW:

- White, odorless, crystals
- Oxidizer.
- Decomposes in storage under conditions of moisture (water/water vapor) and/or excessive heat causing release of oxides of sulfur and oxygen that supports combustion. Decomposition could form a high temperature melt. See Section 10 ("Stability and Reactivity").

POTENTIAL HEALTH EFFECTS: Airborne persulfate dust may be irritating to eyes, nose, lungs, throat and skin upon contact. Exposure to high levels of persulfate dust may cause difficulty in breathing in sensitive persons.

3. COMPOSITION / INFORMATION ON INGREDIENTS

Chemical Name	CAS#	Wt.%	EC No.	EC Class
Sodium Persulfate	7775-27-1	>99	231-892-1	Not classified as hazardous

4. FIRST AID MEASURES

EYES: Flush with plenty of water. Get medical attention if irritation occurs and persists.

SKIN: Wash with plenty of soap and water. Get medical attention if irritation occurs and persists.

INGESTION: Rinse mouth with water. Dilute by giving 1 or 2 glasses of water. Do not induce vomiting. Never give anything by mouth to an unconscious person. See a medical doctor immediately.

INHALATION: Remove to fresh air. If breathing difficulty or discomfort occurs and persists, contact a medical doctor.

NOTES TO MEDICAL DOCTOR: This product has low oral toxicity and is not irritating to the eyes and skin. Flooding of exposed areas with water is suggested, but gastric lavage or emesis induction for ingestions must consider possible aggravation of esophageal injury and the expected absence of system effects. Treatment is controlled removal of exposure followed by symptomatic and supportive care.

5. FIRE FIGHTING MEASURES

EXTINGUISHING MEDIA: Deluge with water.

FIRE / EXPLOSION HAZARDS: Product is non-combustible. On decomposition releases oxygen which may intensify fire. Presence of water accelerates decomposition.

FIRE FIGHTING PROCEDURES: Do not use carbon dioxide or other gas filled fire extinguishers; they will have no effect on decomposing persulfates. Wear full protective clothing and self-contained breathing apparatus.

FLAMMABLE LIMITS: Non-combustible

SENSITIVITY TO IMPACT: No data available

SENSITIVITY TO STATIC DISCHARGE: Not available

6. ACCIDENTAL RELEASE MEASURES

RELEASE NOTES: Spilled material should be collected and put in approved DOT container and isolated for disposal. Isolated material should be monitored for signs of decomposition (fuming/smoking). If spilled material is wet, dissolve with large quantity of water and dispose as a hazardous waste. All disposals should be carried out according to regulatory agencies procedures.

7. HANDLING AND STORAGE

HANDLING: Use adequate ventilation when transferring product from bags or drums. Wear respiratory protection if ventilation is inadequate or not available. Use eye and skin protection. Use clean plastic or stainless steel scoops only.

STORAGE: Store (unopened) in a cool, clean, dry place away from point sources of heat, e.g. radiant heaters or steam pipes. Use first in, first out storage system. Avoid contamination of opened product. In case of fire or decomposition (fuming/smoking) deluge with plenty of water to control decomposition. For storage, refer to NFPA Bulletin 430 on storage of liquid and solid oxidizing materials.

COMMENTS: VENTILATION: Provide mechanical general and/or local exhaust ventilation to prevent release of dust into work environment. Spills should be collected into suitable containers to prevent dispersion into the air.

8. EXPOSURE CONTROLS / PERSONAL PROTECTION EXPOSURE LIMITS

Chemical Name	ACGIH	OSHA	Supplier
Sodium Persulfate	0.1 mg/m ³ (TWA)		

ENGINEERING CONTROLS: Provide mechanical local general room ventilation to prevent release of dust into the work environment. Remove contaminated clothing immediately and wash before reuse.

PERSONAL PROTECTIVE EQUIPMENT

EYES AND FACE: Use cup type chemical goggles. Full face shield may be used.

RESPIRATORY: Use approved dust respirator when airborne dust is expected.

PROTECTIVE CLOTHING: Normal work clothes. Rubber or neoprene footwear.

GLOVES: Rubber or neoprene gloves. Thoroughly wash the outside of gloves with soap and water prior to removal. Inspect regularly for leaks.

9. PHYSICAL AND CHEMICAL PROPERTIES

ODOR:	None
APPEARANCE:	White crystals
AUTOIGNITION TEMPERATURE:	Not applicable. No evidence of combustion up to 800°C. Decomposition will occur upon heating.
BOILING POINT:	Not applicable
COEFFICIENT OF OIL / WATER:	Not applicable
DENSITY / WEIGHT PER VOLUME:	Not available
EVAPORATION RATE:	Not applicable (Butyl Acetate = 1)
FLASH POINT:	Non-combustible
MELTING POINT:	Decomposes
ODOR THRESHOLD:	Not applicable
OXIDIZING PROPERTIES:	Oxidizer
PERCENT VOLATILE:	Not applicable
pH:	typically 5.0 - 7.0 @ 25 °C (1% solution)
SOLUBILITY IN WATER:	73 % @ 25 °C (by wt.)
SPECIFIC GRAVITY:	2.6 (H ₂ O=1)
VAPOR DENSITY:	Not applicable (Air = 1)
VAPOR PRESSURE:	Not applicable

10. STABILITY AND REACTIVITY

CONDITIONS TO AVOID:Heat, moisture and contamination.STABILITY:Stable (becomes unstable in presence of heat,
moisture and/or contamination).POLYMERIZATION:Will not occurINCOMPATIBLE MATERIALS:Acids, alkalis, halides (fluorides, chlorides,
bromides and iodides), combustible materials, most
metals and heavy metals, oxidizable materials,
other oxidizers, reducing agents, cleaners, and

organic or carbon containing compounds. Contact

Page 4 of 9

with incompatible materials can result in a material decomposition or other uncontrolled reactions.

HAZARDOUS DECOMPOSITION PRODUCTS:

Oxygen that supports combustion and oxides of sulfur.

COMMENTS: PRECAUTIONARY STATEMENT: Pumping and transport of Klozür persulfate requires appropriate precautions and design considerations for pressure and thermal relief.

Decomposing persulfates will evolve large volumes of gas and/or vapor, can accelerate exponentially with heat generation, and create significant and hazardous pressures if contained and not properly controlled or mitigated.

Use with alcohols in the presence of water has been demonstrated to generate conditions that require rigorous adherence to process safety methods and standards to prevent escalation to an uncontrolled reaction.

11. TOXICOLOGICAL INFORMATION

EYE EFFECTS: Non-irritating (rabbit) [FMC Study Number: ICG/T-79.029]

SKIN EFFECTS: Non-irritating (rabbit) [FMC Study Number: ICG/T-79.029]

DERMAL LD₅₀: > 10 g/kg [FMC Study Number: ICG/T-79.029]

ORAL LD₅₀: 895 mg/kg (rat) [FMC Study Number: ICG/T-79.029]

INHALATION LC₅₀: 5.1 mg/l (rat) [FMC I95-2017]

SENSITIZATION: May be sensitizing to allergic persons. [FMC Study Number: ICG/T-79.029]

TARGET ORGANS: Eyes, skin, respiratory passages

ACUTE EFFECTS FROM OVEREXPOSURE: Dust may be harmful and irritating. May be harmful if swallowed.

CHRONIC EFFECTS FROM OVEREXPOSURE: Sensitive persons may develop dermatitis and asthma [Respiration 38:144, 1979]. Groups of male and female rats were fed 0, 300 or 3000 ppm sodium persulfate in the diet for 13 weeks, followed by 5000 ppm for 5 weeks. Microscopic examination of tissues revealed some injury to the gastrointestinal tract at the high dose (3000 ppm) only. This effect is not unexpected for an oxidizer at high concentrations. [Ref. FMC I90-1151, Toxicologist 1:149, 1981].

CARCINOGENICITY:

NTP:	Not listed
IARC:	Not listed
OSHA:	Not listed
OTHER:	ACGIH: Not listed

12. ECOLOGICAL INFORMATION ECOTOXICOLOGICAL INFORMATION:

Bluegill sunfish, 96-hour $LC_{50} = 771 \text{ mg/L}$ [FMC Study I92-1250] Rainbow trout, 96-hour $LC_{50} = 163 \text{ mg/L}$ [FMC Study I92-1251] Daphnia, 48-hour $LC_{50} = 133 \text{ mg/L}$ [FMC Study I92-1252] Grass shrimp, 96-hour $LC_{50} = 519 \text{ mg/L}$ [FMC Study I92-1253]

CHEMICAL FATE INFORMATION: Biodegradability does not apply to inorganic substances.

13. DISPOSAL CONSIDERATIONS

DISPOSAL METHOD: Dispose as a hazardous waste in accordance with local, state and federal regulatory agencies.

14. TRANSPORT INFORMATION

U.S. DEPARTMENT OF TRANSPORTATION (DOT)

PROPER SHIPPING NAME:	Sodium Persulfate
PRIMARY HAZARD CLASS / DIVISION:	5.1 (Oxidizer)
UN/NA NUMBER:	UN 1505
PACKING GROUP:	III
LABEL(S):	5.1 (Oxidizer)
PLACARD(S):	5.1 (Oxidizer)
MARKING(S):	Sodium Persulfate, UN 1505
ADDITIONAL INFORMATION:	Hazardous Substance/RQ: Not applicable

49 STCC Number: 4918733

This material is shipped in 225 lb. fiber drums, 55 lb. poly bags and 1000 - 2200 lb. IBC's (supersacks).

INTERNATIONAL MARITIME DANGEROUS GOODS (IMDG)

PROPER SHIPPING NAME:

Sodium Persulfate

INTERNATIONAL CIVIL AVIATION ORGANIZATION (ICAO) / INTERNATIONAL AIR TRANSPORT ASSOCIATION (IATA)

PROPER SHIPPING NAME:

Sodium Persulfate

OTHER INFORMATION:

Protect from physical damage. Do not store near acids, moisture or heat.

15. REGULATORY INFORMATION

UNITED STATES

SARA TITLE III (SUPERFUND AMENDMENTS AND REAUTHORIZATION ACT)

SECTION 302 EXTREMELY HAZARDOUS SUBSTANCES (40 CFR 355, APPENDIX A): Not applicable

SECTION 311 HAZARD CATEGORIES (40 CFR 370):

Fire Hazard, Immediate (Acute) Health Hazard

SECTION 312 THRESHOLD PLANNING QUANTITY (40 CFR 370):

The Threshold Planning Quantity (TPQ) for this product, if treated as a mixture, is 10,000 lbs; however, this product contains the following ingredients with a TPQ of less than 10,000 lbs.: None

SECTION 313 REPORTABLE INGREDIENTS (40 CFR 372): Not listed

CERCLA (COMPREHENSIVE ENVIRONMENTAL RESPONSE COMPENSATION AND LIABILITY ACT)

CERCLA DESIGNATION & REPORTABLE QUANTITIES (RQ) (40 CFR 302.4): Unlisted, RQ = 100 lbs., Ignitability

TSCA (TOXIC SUBSTANCE CONTROL ACT) TSCA INVENTORY STATUS (40 CFR 710):

Listed

RESOURCE CONSERVATION AND RECOVERY ACT (RCRA) RCRA IDENTIFICATION OF HAZARDOUS WASTE (40 CFR 261): Waste Number: D001

CANADA

WHMIS (WORKPLACE HAZARDOUS MATERIALS INFORMATION SYSTEM):

Product Identification Number:1505Hazard Classification / Division:Class C (Oxidizer), Class D, Div. 2, Subdiv. B. (Toxic)Ingredient Disclosure List:Listed

INTERNATIONAL LISTINGS

Sodium persulfate: Australia (AICS): Listed China: Listed Japan (ENCS): (1)-1131 Korea: KE-12369 Philippines (PICCS): Listed

HAZARD, RISK AND SAFETY PHRASE DESCRIPTIONS:

EC Symbols:	(Not classified as hazardous)
EC Risk Phrases:	(Not classified as hazardous)
EC Safety Phrases:	(Not classified as hazardous)

16. OTHER INFORMATION

<u>HMIS</u>

Health	1
Flammability	0
Physical Hazard	1
Personal Protection (PPE)	J

Protection = J (Safety goggles, gloves, apron & combination dust & vapor respirator)

HMIS = Hazardous Materials Identification System

Degree of Hazard Code: 4 = Severe

- 3 =Serious
- 2 = Moderate
- 1 =Slight
- 0 = Minimal

<u>NFPA</u>

Health	1
Flammability	0
Reactivity	1
Special	OX
SPECIAL = OX (Oxidizer)	

NFPA = National Fire Protection Association

Degree of Hazard Code: 4 = Extreme 3 = High 2 = Moderate 1 = Slight 0 = Insignificant

REVISION SUMMARY:

New MSDS

Klozür and FMC Logo - FMC Trademarks

© 2005 FMC Corporation. All Rights Reserved.

FMC Corporation believes that the information and recommendations contained herein (including data and statements) are accurate as of the date hereof. NO WARRANTY OF FITNESS FOR ANY PARTICULAR PURPOSE, WARRANTY OF MERCHANTABILITY, OR ANY OTHER WARRANTY, EXPRESSED OR IMPLIED, IS MADE CONCERNING THE INFORMATION PROVIDED HEREIN. The information provided herein relates only to the specific product designated and may not be applicable where such product is used in combination with any other materials or in any process. It is a violation of Federal law to use this product in a manner inconsistent with its labeling. Further, since the conditions and methods of use are beyond the control of FMC Corporation, FMC Corporation expressly disclaims any and all liability as to any results obtained or arising from any use of the product or reliance on such information.

MATERIAL SAFETY DATA SHEET

Dissolvine® E-FE-13

MSDS Ref. No.: 15708-41-5 Date Approved: 01/17/2006 Revision No.: 1

This document has been prepared to meet the requirements of the U.S. OSHA Hazard Communication Standard, 29 CFR 1910.1200; the Canada's Workplace Hazardous Materials Information System (WHMIS) and, the EC Directive, 2001/58/EC.

1. PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME:	Dissolvine® E-FE-13
MOLECULAR FORMULA:	$C_{10}H_{12}FeN_2O_8Na\ .\ 3H_2O$
SYNONYMS:	Ferric sodium EDTA; CHEMICAL NAME: Ethylenediaminetetraacetic acid, ferric sodium complex
GENERAL USE:	Chelating agent / Plant nutrient

NOTE: This product is not defined and regulated as a hazardous substance. Handle in accordance with good industrial hygiene practices.

MANUFACTURER

Akzo Nobel Functional Chemicals LLC 525 West Van Buren Street Chicago, IL 60607-3823

Product & Technical Information: (800) 906-7979 (U.S.A.) (312) 544-7000 (outside of U.S.A.)

EMERGENCY TELEPHONE NUMBERS

(914) 693-6946 (Akzo Nobel - U.S.A.)

For leak, fire, spill, or accident emergencies, call: (800) 424-9300 (CHEMTREC - U.S.A.) (703) 527-3887 (CHEMTREC - All Other Countries) (613) 996-6666 (CANUTEC - Canada)

2. HAZARDS IDENTIFICATION

EMERGENCY OVERVIEW:

- Yellow-green odorless powder.
- CAUTION: Contact with dust may cause discomfort and/or mild irritation.

POTENTIAL HEALTH EFFECTS: Effects from overexposure may occur from inhaling, or coming into contact with skin or eyes. Acute exposure to excessive concentrations of dust may cause respiratory tract discomfort and/or mild irritation. Eye contact with dust may cause mild physical irritation.

MEDICAL CONDITIONS AGGRAVATED: No data available.

3. COMPOSITION / INFORMATION ON INGREDIENTS

Chemical Name	CAS#	Wt.%	EC No.	EC Class
EDTA, ferric sodium complex	15708-41-5	87 - 89	239-802-2	Not classified
Water	7732-18-5	11 - 13	231-791-2	Not classified

4. FIRST AID MEASURES

EYES: Flush with large quantities of water for at least 15 minutes, lifting the upper and lower eyelids intermittently. If wearing contact lenses, remove after the first five minutes and continue flushing with water. If irritation occurs and persists, get medical attention.

SKIN: Immediately flush with plenty of water while removing contaminated clothing and/or shoes, and thoroughly wash with soap and water. If irritation occurs and persists, obtain medical attention.

INGESTION: Give several glasses of water if able to swallow. DO NOT induce vomiting. If vomiting occurs, keep head below hips to reduce the risk of aspiration. Never give anything by mouth to an unconscious or convulsing person. Get medical attention if health effects occur.

INHALATION: Remove to fresh air. If breathing difficulty or discomfort occurs and persists, see a medical doctor. If breathing has stopped, give artificial respiration and see a medical doctor immediately.

NOTES TO MEDICAL DOCTOR: This product has a low order of toxicity and is considered to be practially harmless by ingestion. Treatment is symptomatic and supportive.

5. FIRE FIGHTING MEASURES

EXTINGUISHING MEDIA: Foam, CO_2 or dry chemical. Soft stream water fog only if necessary. Contain all runoff.

FIRE / EXPLOSION HAZARDS: This product is not defined as flammable or combustible. When involved in a fire, it does not contribute any unusual hazards.

FIRE FIGHTING PROCEDURES: As in any fire, prevent human exposure to fire, smoke, fumes or products of combustion. Evacuate all non-essential personnel from the fire area. Fire-fighters should wear full-face, self-contained breathing apparatus and impervious protective clothing.

FLAMMABLE LIMITS: Upper / Lower (% by volume): Not determined

SENSITIVITY TO IMPACT: It is not self-reactive and is not sensitive to impact under typical conditions of use, storage or transport.

COMMENTS: CONDITIONS OF FLAMMABILITY: Not flammable or combustible.

6. ACCIDENTAL RELEASE MEASURES

RELEASE NOTES: Keep material out of streams and sewers. Large spills should be covered to prevent dispersal. For dry material, use a wet sweeping compound or water to prevent the formation of dust. If water is used, prevent runoff or dispersion of excess liquid by diking and absorbing with a non-combustible absorbent such as clay, sand or soil. Vacuum, shovel or pump waste into a drum and label contents for disposal.

Restrict non-essential personnel from area. All personnel involved in spill cleanup should follow good industrial hygiene practices and avoid skin and eye contact by wearing appropriate personal protective equipment, as indicated in Section 8 (Exposure Controls / Personal Protection) below.

7. HANDLING AND STORAGE

HANDLING: Containers should not be opened until ready for use. Avoid inhalation and prolonged and/or repeated skin and eye contact. Minimize generation of dust.

STORAGE: Store in a cool, dry place at an ambient temperature (below 25°C / 77°F). This material is suitable for any general chemical storage area; however, store in PVC, PE, stainless steel or bituminized tanks. Isolate from strong oxidizing agents and avoid contact with aluminum, copper, copper allows and nickel.

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

ENGINEERING CONTROLS: Under normal use conditions, special ventilation is usually not required; however, ensure that existing ventilation is sufficient to prevent the circulation and/or accumulation of dust in the air.

PERSONAL PROTECTIVE EQUIPMENT

EYES AND FACE: Wear dust-tight goggles when handling this product.

RESPIRATORY: For dust exposures, wear a NIOSH-approved half-mask, air-purifying respirator with dust, mist and fume filters to reduce the potential for inhalation exposure. When using respirator cartridges or canisters, they must be changed frequently (following each use or at the end of the work shift) to assure breakthrough exposure does not occur.

PROTECTIVE CLOTHING: Wear suitable protective clothing and footwear in accordance with use and exposure potential.

GLOVES: Wear gloves that are in accordance with use and exposure potential. Wash the outside of gloves with soap and water prior to removal. Inspect regularly for leaks.

WORK HYGIENIC PRACTICES: Clean water should be available for washing in case of eye or skin contamination. All food and smoking materials should be kept in a separate area away from the storage / use location. Eating, drinking and smoking should be prohibited in areas where there is a potential for significant exposure to this material. Wash skin prior to eating, drinking or using tobacco. Shower at the end of the workday.

COMMENTS:

EXPOSURE LIMITS:

Particulates Not Otherwise Classified (PNOC): ACGIH / TWA: 10 mg/m³ (inhalable particulate); 3 mg/m³ (respirable particulate) OSHA (PEL / TWA): 15 mg/m³ (total dust); 5 mg/m³ (resp fraction)

9. PHYSICAL AND CHEMICAL PROPERTIES

ODOR:	Odorless
APPEARANCE:	Yellow-green powder
AUTOIGNITION TEMPERATURE:	Not applicable
BOILING POINT:	Not applicable
COEFFICIENT OF OIL / WATER:	Not determined.
DENSITY / WEIGHT PER VOLUME:	(Bulk) ~ 650 kg/m ³
EVAPORATION RATE:	(Butyl Acetate = 1) Not determined
FLASH POINT:	Not applicable
MELTING POINT:	80°C (176°F) / crystal water loss
ODOR THRESHOLD:	Not determined.
PERCENT VOLATILE:	(% by weight) Not determined

рН:	~ 4.0 - 5.5 (1% solution)
SOLUBILITY IN WATER:	90 g/L (at 20°C / 68°F); 300 g/L (at 80°C / 176°F)
SPECIFIC GRAVITY:	(H ₂ O=1) Not determined
VAPOR DENSITY:	(Air = 1) Not determined
VAPOR PRESSURE:	Not applicable
VISCOSITY:	Not determined.

10. STABILITY AND REACTIVITY

STABILITY:	Stable at ambient temperatures and atmospheric pressures.
POLYMERIZATION:	Not expected under normal temperatures and pressure.
INCOMPATIBLE MATERIALS:	Aqueous solution in contact with aluminum evolves hydrogen. This product is incompatible with strong oxidizers. Avoid contact with aluminum, copper, copper alloys and nickel. Avoid prolonged storage at elevated temperatures.
HAZARDOUS DECOMPOSITION PRODUCTS:	Under fire conditions this product may support combustion and decomposes to give off carbon mon/dioxide fumes (CO, CO2) and nitrogen oxides. Decomposition Temperature: $180 \pm 20^{\circ}$ C (356 ± 36°F)

COMMENTS: HAZARDOUS COMBUSTION PRODUCTS: Thermal decomposition products may release toxic and/or hazardous fumes and gases, including nitrogen oxides and carbon oxides.

11. TOXICOLOGICAL INFORMATION

EYE EFFECTS: Expected to be minimally irritating.

SKIN EFFECTS: Expected to be slightly irritating.

DERMAL LD₅₀: No data available.

ORAL LD₅₀: Similar product: > 2,000 mg/kg (rat)

INHALATION LC₅₀: No data available.

SENSITIZATION: No data available.

TARGET ORGANS: Eyes, skin

ACUTE EFFECTS FROM OVEREXPOSURE: This product has a low order of toxicity and is considered to be practially harmless by ingestion. Ferric sodium EDTA has shown slight transient conjunctivitis and corneal opacity in rabbits. No additional acute toxicological information is known.

CHRONIC EFFECTS FROM OVEREXPOSURE: Ingestion of up to 86.15 mg/kg/day of ferric sodium EDTA for 31 to 61 days by rats resulted in an accumulation of iron in the liver, spleen and kidneys. There were no abnormal necropsy or histopathology findings.

Ferric sodium EDTA, when tested as a pure substance, gave a negative response in the Ames Assay and the E. Coli bacterial reverse assay, but a positive response in the Mouse Lymphoma Assay (in vitro) with and without metabolic activation at concentrations which were cytotoxic The positive response was attributed to a possible sensitivity of the cells to abnormal iron concentrations.

EDTA and its sodium salts have been reported, in some studies, to cause developmental toxicity in laboratory animals only at exaggerated doses that were toxic to the mother. These effects are likely associated with zinc deficiency due to chelation. Exposures having no effect on the zinc level of the mother, should have no effect on the fetus.

CARCINOGENICITY:

NTP:	Not listed
IARC:	Not listed
OSHA:	Not listed
OTHER:	Not Listed (ACGIH)

12. ECOLOGICAL INFORMATION

ENVIRONMENTAL DATA: Ferric sodium EDTA was biodegradable when evaluated using a mixed population of aerated bacteria. Ferric sodium EDTA component is not likely to bioaccumulate due to its high water solubility and a Log Pow equal to -10.6 (based on EPIWIN model).

ECOTOXICOLOGICAL INFORMATION: Ferric sodium EDTA showed low toxicity to fish (96-hour $LC_{50} = 8100 \text{ mg/L}$ for a 32% solution and 2592 mg/L for a 100% active), and moderate toxicity to algae (72-hour $LC_{50} = 76.7 \text{ mg/L}$).

13. DISPOSAL CONSIDERATIONS

DISPOSAL METHOD: In its unused condition, this product is not considered to be a RCRAdefined hazardous waste by characteristics or listings. It is the responsibility of the waste generator to evaluate whether the waste is hazardous by characteristic or listing. Dispose as a hazardous waste in accordance with local, state and federal regulatory agencies. NOTE: State and local regulations may be more stringent than federal regulations.

EMPTY CONTAINER: Containers which held this material should be triple-rinsed prior to disposal or return. Empty containers should be disposed of, or shipped, in accordance with all applicable laws and regulations.

14. TRANSPORT INFORMATION

U.S. DEPARTMENT OF TRANSPORTATION (DOT)

ADDITIONAL INFORMATION:

This material is not a hazardous material as defined by US Department of Transportation at 49 CFR Parts 100 through 185.

INTERNATIONAL MARITIME DANGEROUS GOODS (IMDG)

ADDITIONAL INFORMATION:

This material is not a dangerous good as defined by the International Maritime Dangerous Goods Code.

ADR - EUROPEAN AGREEMENT CONCERNING THE INTERNATIONAL CARRIAGE OF DANGEROUS GOODS BY ROAD

ADDITIONAL INFORMATION:

This material is not a dangerous good as defined by ADR.

INTERNATIONAL CIVIL AVIATION ORGANIZATION (ICAO) / INTERNATIONAL AIR TRANSPORT ASSOCIATION (IATA)

ADDITIONAL INFORMATION:

This material is not a dangerous good as defined in ICAO and the International Air Transport Association Dangerous Goods Regulations.

OTHER INFORMATION:

REQUIRED LABELS: No transport label required.

ENVIRONMENTALLY HAZARDOUS SUBSTANCES (49 CFR 172.101, Appendix A): None

15. REGULATORY INFORMATION

UNITED STATES

SARA TITLE III (SUPERFUND AMENDMENTS AND REAUTHORIZATION ACT)

SECTION 302 EXTREMELY HAZARDOUS SUBSTANCES (40 CFR 355, APPENDIX A): Not regulated

SECTION 312 THRESHOLD PLANNING QUANTITY (40 CFR 370):

The Threshold Planning Quantity (TPQ) for this product, if treated as a mixture, is 10,000 lbs; however, this product contains the following ingredients with a TPQ of less than 10,000 lbs.: Not regulated

SECTION 313 REPORTABLE INGREDIENTS (40 CFR 372): Not regulated

CERCLA (COMPREHENSIVE ENVIRONMENTAL RESPONSE COMPENSATION AND LIABILITY ACT)

CERCLA DESIGNATION & REPORTABLE QUANTITIES (RQ) (40 CFR 302.4): Not regulated

TSCA (TOXIC SUBSTANCE CONTROL ACT)

TSCA INVENTORY STATUS (40 CFR 710): Listed (components)

U.S. STATES

California Prop 65: Not regulated U.S. State Regulation: Not regulated

CANADA

WHMIS (WORKPLACE HAZARDOUS MATERIALS INFORMATION SYSTEM):

Not a controlled product under the Canadian Workplace Hazardous Materials Information System (WHMIS).

Domestic Substance List: Listed (components)

INTERNATIONAL LISTINGS

EDTA, ferric sodium Australia (AICS): Listed China: Listed Japan (ENCS): (2)-1266 Korea: KE-31512 Philippines (PICCS): Listed

Water Australia (AICS): Listed China: Listed Korea: KE-35400 Philippines (PICCS): Listed

16. OTHER INFORMATION

<u>HMIS</u>

Health	1
Flammability	1
Physical Hazard	0
Personal Protection (PPE)	None
NT 11 1	

No special requirements

HMIS = Hazardous Materials Identification System

Degree of Hazard Code:

- 4 =Severe
- 3 =Serious
- 2 = Moderate
- 1 =Slight
- 0 = Minimal

<u>NFPA</u>

Health	1
Flammability	0
Reactivity	0
Special	None

No special requirements

NFPA = National Fire Protection Association

Degree of Hazard Code:

- 4 = Extreme
- 3 = High
- 2 = Moderate
- 1 = Slight
- 0 = Insignificant

REVISION SUMMARY: New MSDS. FMC Logo - FMC Corporation Trademark Dissolvine - Akzo Nobel Chemicals, Inc. Trademark

© 2006 FMC Corporation. All Rights Reserved.

FMC Corporation believes that the information and recommendations contained herein (including data and statements) are accurate as of the date hereof. NO WARRANTY OF FITNESS FOR ANY PARTICULAR PURPOSE, WARRANTY OF MERCHANTABILITY, OR ANY OTHER WARRANTY, EXPRESSED OR IMPLIED, IS MADE CONCERNING THE INFORMATION PROVIDED HEREIN. The information provided herein relates only to the specific product designated and may not be applicable where such product is used in combination with any other materials or in any process. It is a violation of Federal law to use this product in a manner inconsistent with its labeling. Further, since the conditions and methods of use are beyond the control of FMC Corporation, FMC Corporation expressly disclaims any and all liability as to any results obtained or arising from any use of the product or reliance on such information.
<u>APPENDIX - W</u> Environmental Easement

ENVIRONMENTAL EASEMENT GRANTED PURSUANT TO ARTICLE 71, TITLE 36 OF THE NEW YORK STATE ENVIRONMENTAL CONSERVATION LAW

THIS INDENTURE made this ______day of December, 2008, between Owners 3035 White Plains Housing Development Fund Corp. as nominee for 3035 White Plains Retail, LLC, and 3035 White Plains Housing Development Fund Corp. as nominee for Adee & Lester Limited Partnership, having an office c/o The Arker Companies located at 15 Verbena Avenue, Suite 100, Floral Park, New York 11001 (the "Grantor"), and The People of the State of New York (the "Grantee."), acting through their Commissioner of the Department of Environmental Conservation (the "Commissioner" or "NYSDEC" or "Department" as the context requires) with its headquarters located at 625 Broadway, Albany, New York 12233,

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to encourage the remediation of abandoned and likely contaminated properties ("sites") that threaten the health and vitality of the communities they burden while at the same time ensuring the protection of public health and the environment; and

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to establish within the Department a statutory environmental remediation program that includes the use of Environmental Easements as an enforceable means of ensuring the performance of operation, maintenance, and/or monitoring requirements and of ensuring the potential restriction of future uses of the land, when an environmental remediation project leaves residual contamination at levels that have been determined to be safe for a specific use, but not all uses, or which includes engineered structures that must be maintained or protected against damage to perform properly and be effective, or which requires groundwater use or soil management restrictions; and

WHEREAS, the Legislature of the State of New York has declared that Environmental Easement shall mean an interest in real property, created under and subject to the provisions of Article 71, Title 36 of the New York State Environmental Conservation Law ("ECL") which contains a use restriction and/or a prohibition on the use of land in a manner inconsistent with engineering controls which are intended to ensure the long term effectiveness of a site remedial program or eliminate potential exposure pathways to hazardous waste or petroleum; and;

WHEREAS, Grantor is the owner of real property located at the address of 3035 White Plains Road, in the City of New York, Bronx County, New York known and designated on the tax map of the Borough of the Bronx as tax map parcel numbers Block 4545, Lots 1001 and 1002, being the same as to Lot 1001 as that property conveyed to Grantor 3035 White Plains Housing Development Fund Corp. as nominee for 3035 White Plains Retail LLC by deed on July 31, 2007, and recorded in the Land Records of the City Register for Bronx County on October 24, 2007 at computerized system tracking/ identification number 2007000536870 and that declaration of interest and nominee agreement by and between 3035 White Plains Housing Development Fund Corp., and 3035 White Plains Retail LLC dated as of July 31, 2007 and recorded in the office of the City Register for Bronx County at computerized system tracking/ identification number 2007000536878; and being the same as to Lot 1002 as that property conveyed to Grantor 3035 White Plains Housing Development Fund Corp. as nominee for Adee and Lester Limited Partnership by deed on July 31, 2007, and recorded in the Land Records of the City Register for Bronx County on August 15, 2007 at computerized system tracking/ identification number 2007000422860 and that declaration of interest and nominee agreement by and between 3035 White Plains Housing Development Fund Corp., and Adee and Lester Limited Partnership dated as of July 31, 2007 and recorded in the office of the City Register for Bronx County at computerized system tracking/ identification number 2007000536871, comprised of approximately 0.39 acres, and hereinafter more fully described in <u>Schedule A</u> (Description of Property) and <u>Schedule B</u> (Map of Property) attached hereto and made a part hereof (the "Controlled Property"); and,

WHEREAS, the Commissioner does hereby acknowledge that the Department accepts this Environmental Easement in order to ensure the protection of human health and the environment and to achieve the requirements for remediation established at this Controlled Property until such time as this Environmental Easement is extinguished pursuant to ECL Article 71, Title 36;and

NOW THEREFORE, in consideration of the covenants and mutual promises contained herein and the terms and conditions of Brownfield Cleanup Agreement Number W2-1108-07-07, Grantor grants, conveys and releases to Grantee a permanent Environmental Easement pursuant to Article 71, Title 36 of the ECL in, on, over, under, and upon the Controlled Property as more fully described herein ("Environmental Easement").

1. <u>Purposes</u>. Grantor and Grantee acknowledge that the Purposes of this Environmental Easement are: to convey to Grantee real property rights and interests that will run with the land in perpetuity in order to provide an effective and enforceable means of encouraging the reuse and redevelopment of this Controlled Property at a level that has been determined to be safe for a specific use while ensuring the performance of operation, maintenance, and/or monitoring requirements; and to ensure the potential restriction of future uses of the land that are inconsistent with the above-stated purpose.

2. <u>Institutional and Engineering Controls</u>. The following controls apply to the use of the Controlled Property, run with the land, are binding on the Grantor and the Grantor's successors and assigns, and are enforceable in law or equity against any owner of the Controlled Property, any lessees, and any person using the Controlled Property:

A. The Controlled Property may be used for unrestricted use so long as the following short-term engineering controls are employed:

(i) The use of the groundwater underlying the Controlled Property is prohibited without

treatment rendering it safe for the intended use and approval by the NYS Department of Health;

(ii) Compliance with all elements of the NYSDEC-approved Site Management Plan, dated November 2008 ("SMP").

The Grantor hereby acknowledges receipt of a copy of the NYSDEC-approved SMP. The SMP describes obligations that Grantor assumes on behalf of Grantor, its successors and assigns. The Grantor's assumption of the obligations contained in the SMP which may include sampling, monitoring, and/or operating a treatment system on the Controlled Property, and providing certified reports to the NYSDEC, is and remains a fundamental element of the Department's determination that the Controlled Property is safe for all uses. Upon notice of not less than thirty (30) days the Department in exercise of its discretion and consistent with applicable law may revise the SMP. This notice shall be a final agency determination. The Grantor and all successors and assigns, assume the burden of complying with the SMP and obtaining an up-to-date version of the SMP from:

Regional Remediation Engineer	or	Site Control Section
egion 2		Division of Environmental Remediation
NYS DEC		NYSDEC
One Hunter's Plaza		625 Broadway
47-40 21 st Street		Albany, New York 12233
Long Island City, NY 11101		,,

B. The above-stated engineering controls may not be discontinued without an amendment or extinguishment of this Environmental Easement.

C. Grantor covenants and agrees that until such time as the Environmental Easement is extinguished in accordance with the requirements of Article 71, Title 36 of the ECL, the property deed and all subsequent instruments of conveyance relating to the Controlled Property shall state in at least fifteen-point bold-faced type:

This property is subject to an environmental easement held by the New York State Department of Environmental Conservation pursuant to Title 36 of Article 71 of the Environmental Conservation Law.

D. Grantor covenants and agrees that this Environmental Easement shall be incorporated in full or by reference in any leases, licenses, or other instruments granting a right to use the Controlled Property.

E. Grantor covenants and agrees that it shall annually, or such time as NYSDEC may allow, submit to NYSDEC a written statement by an expert the NYSDEC may find acceptable

certifying under penalty of perjury that the controls employed at the Controlled Property are unchanged from the previous certification or that any changes to the controls employed at the Controlled Property were approved by the NYSDEC, and that nothing has occurred that would impair the ability of such control to protect the public health and environment or constitute a violation or failure to comply with any Site Management Plan for such controls and giving access to such Controlled Property to evaluate continued maintenance of such controls.

3. <u>Right to Enter and Inspect.</u> Grantee, its agents, employees, or other representatives of the State may enter and inspect the Controlled Property in a reasonable manner and at reasonable times to assure compliance with the above-stated restrictions.

4. <u>Reserved Grantor's Rights</u>. Grantor reserves for itself, its assigns, representatives, and successors in interest with respect to the Property, all rights as fee owner of the Controlled Property, including:

1. Use of the Controlled Property for all purposes not inconsistent with, or limited by the terms of this Environmental Easement;

2. The right to give, sell, assign, or otherwise transfer the underlying fee interest to the Controlled Property by operation of law, by deed, or by indenture, subject and subordinate to this Environmental Easement;

5. <u>Enforcement</u>

A. This Environmental Easement is enforceable in law or equity in perpetuity by Grantor, Grantee, or any affected local government, as defined in ECL Section 71-3603, against the owner of the Property, any lessees, and any person using the land. Enforcement shall not be defeated because of any subsequent adverse possession, laches, estoppel, or waiver. It is not a defense in any action to enforce this Environmental Easement that: it is not appurtenant to an interest in real property; it is not of a character that has been recognized traditionally at common law; it imposes a negative burden; it imposes affirmative obligations upon the owner of any interest in the burdened property; the benefit does not touch or concern real property; there is no privity of estate or of contract; or it imposes an unreasonable restraint on alienation.

B. If any person intentionally violates this Environmental Easement, the Grantee may revoke the Certificate of Completion provided under ECL Article 27, Title 14, or Article 56, Title 5 with respect to the Controlled Property.

C. Grantee shall notify Grantor of a breach or suspected breach of any of the terms of this Environmental Easement. Such notice shall set forth how Grantor can cure such breach or suspected breach and give Grantor a reasonable amount of time from the date of receipt of notice

in which to cure. At the expiration of such period of time to cure, or any extensions granted by Grantee, the Grantee shall notify Grantor of any failure to adequately cure the breach or suspected breach. Grantor shall then have a reasonable amount of time from receipt of such notice to cure. At the expiration of said second period, Grantee may commence any proceedings and take any other appropriate action reasonably necessary to remedy any breach of this Environmental Easement in accordance with applicable law to require compliance with the terms of this Environmental Easement.

D. The failure of Grantee to enforce any of the terms contained herein shall not be deemed a waiver of any such term nor bar its enforcement rights in the event of a subsequent breach of or noncompliance with any of the terms of this Environmental Easement.

6. <u>Notice</u>. Whenever notice to the State (other than the annual certification) or approval from the State is required, the Party providing such notice or seeking such approval shall identify the Controlled Property by referencing the following information: County, NYSDEC Site Number, NYSDEC Contract or Order Number, and the County tax map number or the Liber and Page or computerized system identification number.

Parties shall address correspondence to: Environmental Easement Attorney Office of General Counsel NYSDEC 625 Broadway Albany New York 12233-5500

Such correspondence shall be delivered by hand, or by registered mail or by Certified mail and return receipt requested. The Parties may provide for other means of receiving and communicating notices and responses to requests for approval.

7. <u>Recordation</u>. Grantor shall record this instrument, within thirty (30) days of execution of this instrument by the Commissioner or her/his authorized representative in the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

8. <u>Amendment</u>. This Environmental Easement may be amended only by an amendment executed by the Commissioner of the New York State Department of Environmental Conservation and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

9. <u>Extinguishment.</u> This Environmental Easement may be extinguished only by a release by the Commissioner of the New York State Department of Environmental Conservation and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

10. <u>Joint Obligation</u>. If there are two or more parties identified as Grantor herein, the obligations imposed by this instrument upon them shall be joint and several.

IN WITNESS WHEREOF, Grantor has caused this instrument to be signed in its name.

Grantor's Name:

3035 White Plains Housing Development Fund Corp. as Nominee for 3035 White Plains Retail, LLC

By: 3035 White Plains Retail, LLC, a New York limited liability oppany, as Attorney-in-Fast By: Minher Date: 12 - 19.08 a Title:

Grantor's Name:

3035 White Plains Housing Development Fund Corp. as Nominee for Adee and Lester Limited Partnership

- By: Adee and Lester Limited Partnership, a New York limited partnership, as Attorney-in-Fact
 - By: Adee and Lester GP LLC, a New York limited liability company, its General Partner
 - By: Bedford Part Associates, ELC, a New York limited liability company, its Member

By MemberDate: 12-19.08 Title:

THIS ENVIRONMENTAL EASEMENT IS HEREBY ACCEPTED BY THE PEOPLE OF THE STATE OF NEW YORK, Acting By and Through the Department of Environmental Conservation

by:

Alexander B. Grannis, Commissioner

Grantor's Acknowledgment		
STATE OF NEW YORK)		
COUNTY OF Marsan) ss:		
On the $\underline{//}$ day of $\underline{/}$ day of \underline{/} day of $\underline{/}$ day of \underline{/} day of \underline{/} day of $\underline{/}$ day of \underline{/} day of		
personally appeared <u>On ARKEN</u> personally known to me or proved to me on the basis		
of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within		
instrument and acknowledged to me that he/she/they executed the same in his/her/their		
capacity(ies), and that by his/her/their signature(s) on the instrument, the individual(s), or the		
person upon behalf of which the individual(s) acted, executed the instrument.		

Notary Public - State of New York

CAROL GIULIANI Notary Public, State of New York No. 24-4903000 Qualified in Nassau County Commission Expires July 31, 20____

Grantor's Acknowledgment

STATE OF NEW YORK) COUNTY OF Marsan) ss: On the <u>19</u> day determine, in the year 20 **of**, before me, the undersigned, personally appeared <u>**or**</u> <u>ARker</u> personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their capacity(ies), and that by his/her/their signature(s) on the instrument, the individual(s), or the person upon behalf of which the individual(s) acted, executed the instrument.

Notary Public - State of New York

CAROL GIULIANI Notary Public, State of New York No. 24 <303300 Qualified in Nossau County Commission Fixpires July 31, 20___

Grantee's Acknowledgment

STATE OF NEW YORK)) ss: COUNTY OF ALBANY)

On the _____ day of _____, in the year 20__, before me, the undersigned, personally appeared ALEXANDER B. GRANNIS, personally known to me or proved to me on the basis of satisfactory evidence to be the individual whose name is subscribed to the within instrument and acknowledged to me that he executed the same in his capacity as Commissioner of the State of New York Department of Environmental Conservation, and that by his signature on the instrument, the individual, or the person upon behalf of which the individual acted, executed the instrument.

Notary Public - State of New York

SCHEDULE A

SCHEDULE B

MAP OF CONTROLLED PROPERTY