Site No: C 203041

BCA Index No.: A2-0593 - 0707

SCHEDULE "A" PROPERTY DESCRIPTION

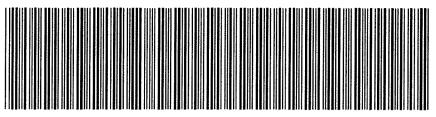
875 Melrose Avenue Bronx, NY 10451 Section: 9 Block: 2408 Lot: part of Lot 1 (formerly Lot 20)

ALL that certain plot, piece or parcel of land situate, lying and being in the Borough of the Bronx, County of Bronx, City and State of New York, and being bounded and described as follows:

BEGINNING at the corner formed by the intersection of the Northerly side of East 161st Street (100 feet wide) with the Westerly side of Melrose Avenue (80 feet wide);

Thence along the Westerly side of Melrose Avenue, North 14degrees 40 minutes 02 seconds East, 68.52 feet to a point;

Thence North 74 degrees 15 minutes 28 seconds West, 102.39 feet to a point;


Thence South 15 degrees 44 minutes 32 seconds West, 70.45 feet to a point in the Northerly sideline of East 161st Street;

Thence South 75 degrees 19 minutes 58 seconds East, 103.68 feet to the point and place of BEGINNING.

APPENDIX B

NYC DEPARTMENT OF FINANCE OFFICE OF THE CITY REGISTER

This page is part of the instrument. The City Register will rely on the information provided by you on this page for purposes of indexing this instrument. The information on this page will control for indexing purposes in the event of any conflict with the rest of the document.

2010091300801001002E0D9B

 RECORDIN	IG AND	ENDORSEMENT	COVER	PAGE

PAGE 1 OF 12

Document ID: 2010091300801001

Document Date: 09-09-2010

Preparation Date: 09-13-2010

Document Type: EASEMENT Document Page Count: 10

PRESENTER:

TITLEASSOCIATES - PICK-UP/ TA#10-02-180B

AS AGENT FOR STEWART TITLE 825 THIRD AVENUE - 30TH FLOOR

NEW YORK, NY 10022

212-758-0050

ifeldman@titleassociates.com

RETURN TO:

RUSSELL KIVLER, ESO

HIRSCHEN SINGER & EPSTEIN LLP

902 BROADWAY

NEW YORK, NY 10010

PROPERTY DATA

Borough

Block Lot

Unit

Address

BRONX

2408 1 Entire Lot **361 EAST 161 STREET**

Property Type: COMMERCIAL REAL ESTATE Easement

CROSS REFERENCE DATA

CRFN______ or Document ID_____ or ____ Year___ Reel __ Page ____ or File Number___

PARTIES

GRANTOR/SELLER:

COURTLANDT CORNERS II HOUSING DEVELOPMENT FUND COR 902 BROADWAY, 13 FLOOR.

NEWYORK, NY 10010

x Additional Parties Listed on Continuation Page

GRANTEE/BUYER:

NEW YORK STATE DEPARTMENT OF

ENVIRONMENTAL CONSERV

NYC Real Property Transfer Tax:

625 BROADWAY

ALBANY, NY 12233-1500

ŀ	EES	AND	TAXES

Filing Fee:

Mortgage	
Mortgage Amount:	\$ 0.00
Taxable Mortgage Amount:	\$ 0.00
Exemption:	
TAXES: County (Basic):	\$ 0.00
City (Additional):	\$ 0.00
Spec (Additional):	\$ 0.00
TASF:	\$ 0.00
MTA:	\$ 0.00
NYCTA:	\$ 0.00
Additional MRT:	\$ 0.00
TOTAL:	\$ 0.00
Recording Fee:	\$ 87.00
Affidavit Fee:	\$ 0.00

NYS Real Estate Transfer Tax: S 0.00 RECORDED OR FILED IN THE OFFICE OF THE CITY REGISTER OF THE

> CITY OF NEW YORK Recorded/Filed

09-14-2010 16:31

250.00

0.00

City Register File No.(CRFN):

2010000310267

City Register Official Signature

NYC DEPARTMENT OF FINANCE OFFICE OF THE CITY REGISTER

2010091300801001002C0F1B

RECORDING AND ENDORSEMENT COVER PAGE (CONTINUATION)
10091300801001 Document Date: 09-09-2010 Preparation

Document ID: 2010091300801001

Document Type: EASEMENT

Preparation Date: 09-13-2010

PAGE 2 OF 12

PARTIES

GRANTOR/SELLER:

COURTLANDT CORNERS II ASSOCIATES, L.P.

902 BROADWAY, 13TH FLOOR

NEWYORK, NY 10010

ENVIRONMENTAL EASEMENT GRANTED PURSUANT TO ARTICLE 71, TITLE 36 OF THE NEW YORK STATE ENVIRONMENTAL CONSERVATION LAW

THIS INDENTURE made this _______ day of _______, 20// between Owner(s) Courtlandt Corners II Housing Development Fund Corporation (Fee) and Courtlandt Corners II Associates, L.P. (Beneficial Interest), having an office at 902 Broadway, 13th Floor, New York, New York 10010, Bronx County, State of New York (collectively the "Grantor"), and The People of the State of New York (the "Grantee."), acting through their Commissioner of the Department of Environmental Conservation (the "Commissioner", or "NYSDEC" or "Department" as the context requires) with its headquarters located at 625 Broadway, Albany, New York 12233,

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to encourage the remediation of abandoned and likely contaminated properties ("sites") that threaten the health and vitality of the communities they burden while at the same time ensuring the protection of public health and the environment; and

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to establish within the Department a statutory environmental remediation program that includes the use of Environmental Easements as an enforceable means of ensuring the performance of operation, maintenance, and/or monitoring requirements and the restriction of future uses of the land, when an environmental remediation project leaves residual contamination at levels that have been determined to be safe for a specific use, but not all uses, or which includes engineered structures that must be maintained or protected against damage to perform properly and be effective, or which requires groundwater use or soil management restrictions; and

WHEREAS, the Legislature of the State of New York has declared that Environmental Easement shall mean an interest in real property, created under and subject to the provisions of Article 71, Title 36 of the New York State Environmental Conservation Law ("ECL") which contains a use restriction and/or a prohibition on the use of land in a manner inconsistent with engineering controls which are intended to ensure the long term effectiveness of a site remedial program or eliminate potential exposure pathways to hazardous waste or petroleum; and

WHEREAS, Grantor, is the owner of real property located at the address of 890 Courtlandt Avenue; 370 East 162nd Street; 380 East 162nd Street; 875 Melrose Avenue; and 361, 371, 375, 381 East 161st Street in the City of New York, County of Bronx and State of New York, known and designated on the tax map of the County Clerk of Bronx as tax map parcel numbers: Section 9 Block 2408 Lot 1 (former Lot 20), being the same as that property conveyed to Grantor by deed dated June 30, 2008 and recorded in the office of the City Register of the City of New York in Instrument No. or CRFN No. 2009000002551 and by Declaration and Nominee Agreement dated June 30, 2008 recorded July 25, 2008 in CRFN 2008-000-295946 comprising approximately 0:16 ± acres, and hereinafter more fully described in the Land Title Survey dated July 30, 2007 and revised August 30, 2010 prepared by True North Surveyors, P.C. which will be attached to the Site Management Plan. The property description (the "Controlled Property") is set forth in and attached hereto as Schedule A; and

WHEREAS, the Department accepts this Environmental Easement in order to ensure the protection of human health and the environment and to achieve the requirements for remediation

Environmental Easement Page 1

established for the Controlled Property until such time as this Environmental Easement is extinguished pursuant to ECL Article 71, Title 36; and

NOW THEREFORE, in consideration of the mutual covenants contained herein and the terms and conditions of BCA Index No. A2-0593-0707, Grantor conveys to Grantee a permanent Environmental Easement pursuant to ECL Article 71, Title 36 in, on, over, under, and upon the Controlled Property as more fully described herein ("Environmental Easement")

- 1. <u>Purposes</u>. Grantor and Grantee acknowledge that the Purposes of this Environmental Easement are: to convey to Grantee real property rights and interests that will run with the land in perpetuity in order to provide an effective and enforceable means of encouraging the reuse and redevelopment of this Controlled Property at a level that has been determined to be safe for a specific use while ensuring the performance of operation, maintenance, and/or monitoring requirements; and to ensure the restriction of future uses of the land that are inconsistent with the above-stated purpose.
- 2. <u>Institutional and Engineering Controls.</u> The controls and requirements listed in the Department approved Site Management Plan ("SMP") including any and all Department approved amendments to the SMP are incorporated into and made part of this Environmental Easement. These controls and requirements apply to the use of the Controlled Property, run with the land, are binding on the Grantor and the Grantor's successors and assigns, and are enforceable in law or equity against any owner of the Controlled Property, any lessees and any person using the Controlled Property.
 - A. (1) The Controlled Property may be used for:

Restricted Residential as described in 6 NYCRR Part 375-1.8(g)(2)(ii), Commercial as described in 6 NYCRR Part 375-1.8(g)(2)(iii) and Industrial as described in 6 NYCRR Part 375-1.8(g)(2)(iv)

- (2) All Engineering Controls must be operated and maintained as specified in the Site Management Plan (SMP);
- (3) All Engineering Controls must be inspected at a frequency and in a manner defined in the SMP.
- (4) Groundwater and other environmental or public health monitoring must be performed as defined in the SMP;
- (5) Data and information pertinent to Site Management of the Controlled Property must be reported at the frequency and in a manner defined in the SMP;
- (6) All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- (7) Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP.

County: Bronx

Site No: C 203041

BCA Index No.: A2-0593 - 0707

(8) Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical components of the remedy shall be performed as defined in the SMP.

- (9) Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by this Environmental Easement.
- B. The Controlled Property shall not be used for raising livestock or producing animal products for human consumption, and the above-stated engineering controls may not be discontinued without an amendment or extinguishment of this Environmental Easement.
- C. The SMP describes obligations that the Grantor assumes on behalf of Grantor, its successors and assigns. The Grantor's assumption of the obligations contained in the SMP which may include sampling, monitoring, and/or operating a treatment system, and providing certified reports to the NYSDEC, is and remains a fundamental element of the Department's determination that the Controlled Property is safe for a specific use, but not all uses. The SMP may be modified in accordance with the Department's statutory and regulatory authority. The Grantor and all successors and assigns, assume the burden of complying with the SMP and obtaining an up-to-date version of the SMP from:

Regional Remediation Engineer
NYSDEC – Region 2
Division of Environmental Remediation
One Hunter's Point Plaza, 47- 40 21st Street
Long Island City, NY 11101-5407,
Phone: (718) 482 - 4900

or.

Site Control Section
Division of Environmental Remediation
NYSDEC
625 Broadway
Albany, New York 12233
Phone: (518) 402-9553

- D. Grantor must provide all persons who acquire any interest in the Controlled Property a true and complete copy of the SMP that the Department approves for the Controlled Property and all Department-approved amendments to that SMP.
- E. Grantor covenants and agrees that until such time as the Environmental Easement is extinguished in accordance with the requirements of ECL Article 71, Title 36 of the ECL, the property deed and all subsequent instruments of conveyance relating to the Controlled Property shall state in at least fifteen-point bold-faced type:

This property is subject to an Environmental Easement held by the New York State Department of Environmental

Environmental Easement Page 3

Conservation pursuant to Title 36 of Article 71 of the Environmental Conservation Law.

- F. Grantor covenants and agrees that this Environmental Easement shall be incorporated in full or by reference in any leases, licenses, or other instruments granting a right to use the Controlled Property.
- G. Grantor covenants and agrees that it shall annually, or such time as NYSDEC may allow, submit to NYSDEC a written statement by an expert the NYSDEC may find acceptable certifying under penalty of perjury, in such form and manner as the Department may require, that:
- (1) the inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under the direction of the individual set forth at 6 NYCRR Part 375-1.8(h)(3).
 - (2) the institutional controls and/or engineering controls employed at such site:
 - (i) are in-place;
- (ii) are unchanged from the previous certification, or that any identified changes to the controls employed were approved by the NYSDEC and that all controls are in the Department-approved format; and
- (iii) that nothing has occurred that would impair the ability of such control to protect the public health and environment;
- (3) the owner will continue to allow access to such real property to evaluate the continued maintenance of such controls;
- (4) nothing has occurred that would constitute a violation or failure to comply with any site management plan for such controls;
- (5 the report and all attachments were prepared under the direction of, and reviewed by, the party making the certification:
- (6) to the best of his/her knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and
 - (7) the information presented is accurate and complete.
- 3. <u>Right to Enter and Inspect.</u> Grantee, its agents, employees, or other representatives of the State may enter and inspect the Controlled Property in a reasonable manner and at reasonable times to assure compliance with the above-stated restrictions.
- 4. <u>Reserved Grantor's Rights</u>. Grantor reserves for itself, its assigns, representatives, and successors in interest with respect to the Property, all rights as fee owner of the Property, including:
- A. Use of the Controlled Property for all purposes not inconsistent with, or limited by the terms of this Environmental Easement;
- B. The right to give, sell, assign, or otherwise transfer part or all of the underlying fee interest to the Controlled Property, subject and subordinate to this Environmental Easement;
- 5. Enforcement

County: Bronx Site No: C 203041 BCA Index No.: A2-0593 - 0707

A. This Environmental Easement is enforceable in law or equity in perpetuity by Grantor, Grantee, or any affected local government, as defined in ECL Section 71-3603, against the owner of the Property, any lessees, and any person using the land. Enforcement shall not be defeated because of any subsequent adverse possession, laches, estoppel, or waiver. It is not a defense in any action to enforce this Environmental Easement that: it is not appurtenant to an interest in real property; it is not of a character that has been recognized traditionally at common law; it imposes a negative burden; it imposes affirmative obligations upon the owner of any interest in the burdened property; the benefit does not touch or concern real property; there is no privity of estate or of contract; or it imposes an unreasonable restraint on alienation.

- B. If any person violates this Environmental Easement, the Grantee may revoke the Certificate of Completion with respect to the Controlled Property.
- C. Grantee shall notify Grantor of a breach or suspected breach of any of the terms of this Environmental Easement. Such notice shall set forth how Grantor can cure such breach or suspected breach and give Grantor a reasonable amount of time from the date of receipt of notice in which to cure. At the expiration of such period of time to cure, or any extensions granted by Grantee, the Grantee shall notify Grantor of any failure to adequately cure the breach or suspected breach, and Grantee may take any other appropriate action reasonably necessary to remedy any breach of this Environmental Easement, including the commencement of any proceedings in accordance with applicable law.
- D. The failure of Grantee to enforce any of the terms contained herein shall not be deemed a waiver of any such term nor bar any enforcement rights.
- 6. <u>Notice</u>. Whenever notice to the Grantee (other than the annual certification) or approval from the Grantee is required, the Party providing such notice or seeking such approval shall identify the Controlled Property by referencing the following information:

County, NYSDEC Site Number, NYSDEC Brownfield Cleanup Agreement, State Assistance Contract or Order Number, and the County tax map number or the Liber and Page or computerized system identification number.

Parties shall address correspondence to:

Site Number: C 203041
Office of General Counsel

NYSDEC 625 Broadway

Albany New York 12233-5500

With a copy to:

Site Control Section

Division of Environmental Remediation

NYSDEC 625 Broadway Albany, NY 12233

All notices and correspondence shall be delivered by hand, by registered mail or by Certified mail and return receipt requested. The Parties may provide for other means of receiving and communicating notices and responses to requests for approval.

- 7. Recordation. Grantor shall record this instrument, within thirty (30) days of execution of this instrument by the Commissioner or her/his authorized representative in the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.
- 8. <u>Amendment</u>. Any amendment to this Environmental Easement may only be executed by the Commissioner of the New York State Department of Environmental Conservation or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.
- 9. <u>Extinguishment.</u> This Environmental Easement may be extinguished only by a release by the Commissioner of the New York State Department of Environmental Conservation, or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.
- 10. <u>Joint Obligation</u>. If there are two or more parties identified as Grantor herein, the obligations imposed by this instrument upon them shall be joint and several.

IN WITNESS WHEREOF, Grantor has caused this instrument to be signed in its name.

Courtlandt Corners II Associates, L.P.

Development Fund Corporation	By: Courtlandt Corners II Management
By: Quality	Corp., its general partner.
Print Name: Adam Weinstein	Print Name: Adam Weinstein
Title: President Date:	Title: President Date:

Courtlandt Corners II Housing

Grantor's Acknowledgment

STATE OF NEW YORK)	
COUNTY OF NEWYORK) ss:	
COUNTY OF WEW MODEL	
On the 30th day of Angua	in the year 20 19 before me, the undersigned,
personally appeared Adam Weinstein	, personally known to me or proved to me on the basis
of satisfactory evidence to be the individ	dual(s) whose name is (are) subscribed to the within
instrument and acknowledged to me t	hat he/she/they executed the same in his/her/their
person upon behalf of which the individua	gnature(s) on the instrument, the individual(s), or the
poison upon ochan of which the marvidua	ns) acted, executed the histallicit.
Sull A	
Notary Public - State of New York	125, 11.
	RUSSELL A KIVLER NOTARY PUBLIC STATE OF NEW YORK
W.	New York Courty
	My Commission Expires January 26, 2013
	SEAL
No.	
Grantor	's Acknowledgment
STATE OF NEW YORK 7)	
) ss:	
COUNTY OF /)	
On the day of	in the year 20 hafara me the undersioned
	, in the year 20, before me, the undersigned,
of satisfactory evidence to be the individ	, personally known to me or proved to me on the basis dual(s) whose name is (are) subscribed to the within
instrument and acknowledged to me the	hat he/she/they executed the same in his/her/their
	gnature(s) on the instrument, the individual(s), or the
person upon behalf of which the individual	l(s) acted, executed the instrument.
Notary Public - State of New York	

THIS ENVIRONMENTAL EASEMENT IS HEREBY ACCEPTED BY THE PEOPLE OF THE STATE OF NEW YORK, Acting By and Through the Department of Environmental Conservation as Designee of the Commissioner,

Rv

Dale A. Desnoyers, Director Division of Remediation

Grantee's Acknowledgment

STATE OF NEW YORK)
COUNTY OF Albaux) ss:)

On the day of Serventon in the year 2010, before me, the undersigned, personally appeared Dela Desnoyers, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/ executed the same in his/her/ capacity as Designee of the Commissioner of the State of New York Department of Environmental Conservation, and that by his/her/ signature on the instrument, the individual, or the person upon behalf of which the individual acted, executed the instrument.

Notary Public - State of New York

David J. Chiusano
Notary Public, State of New York
No. 01CH5032146
Qualified in Schenectady County,
Commission Expires August 22, 20

SEAL

Site No: C 203041

BCA Index No.: A2- 0593 - 0707

SCHEDULE "A" PROPERTY DESCRIPTION

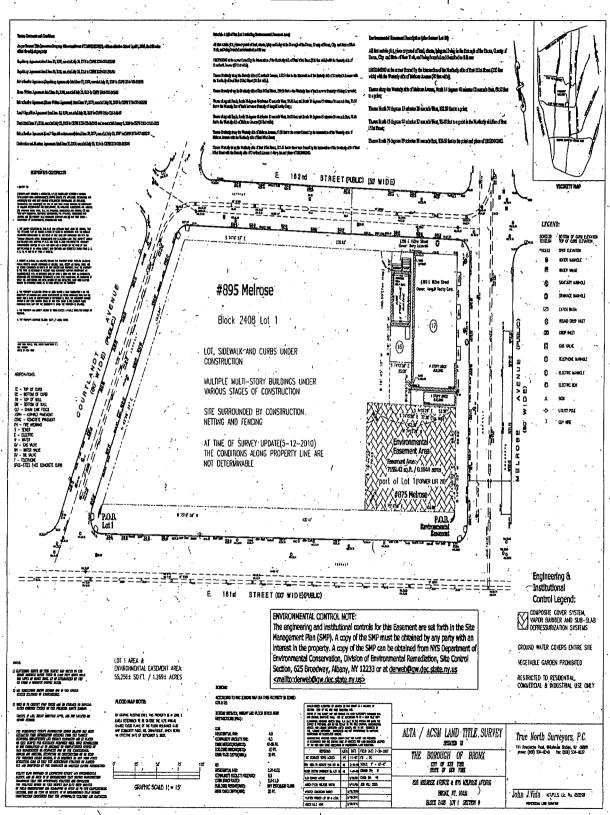
875 Melrose Avenue Bronx, NY 10451

Section: 9 Block: 2408 Lot: part of Lot 1 (formerly Lot 20)

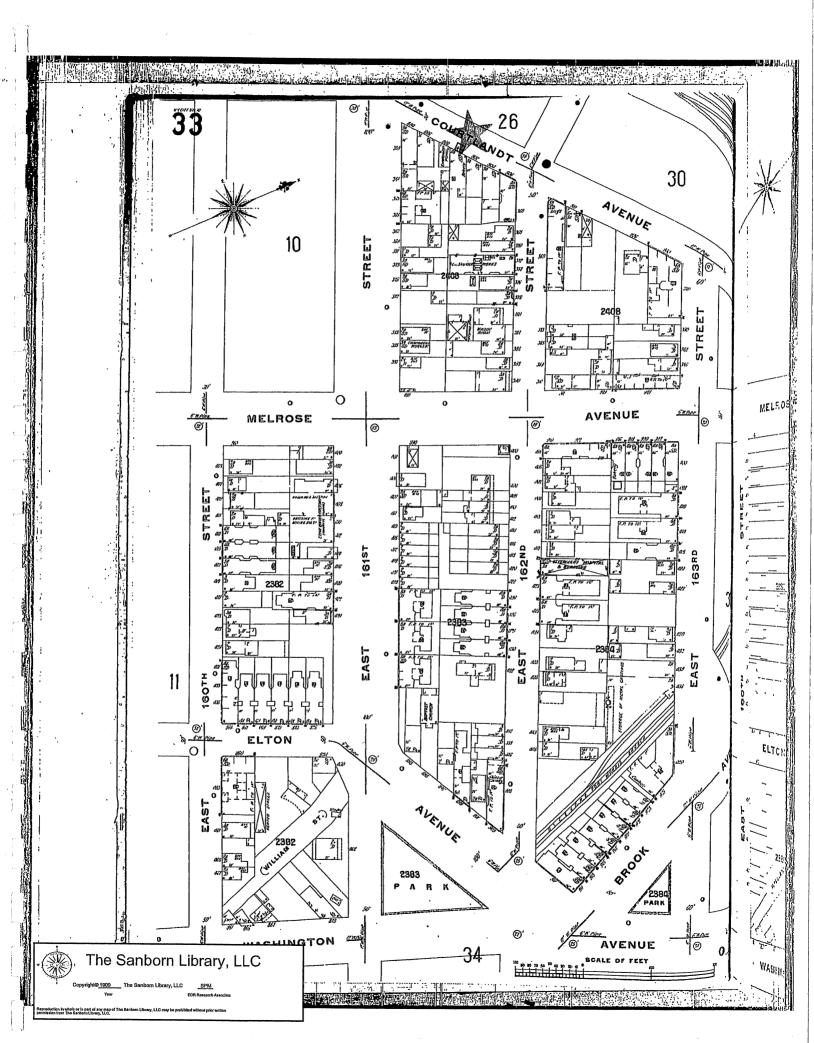
ALL that certain plot, piece or parcel of land situate, lying and being in the Borough of the Bronx, County of Bronx, City and State of New York, and being bounded and described as follows:

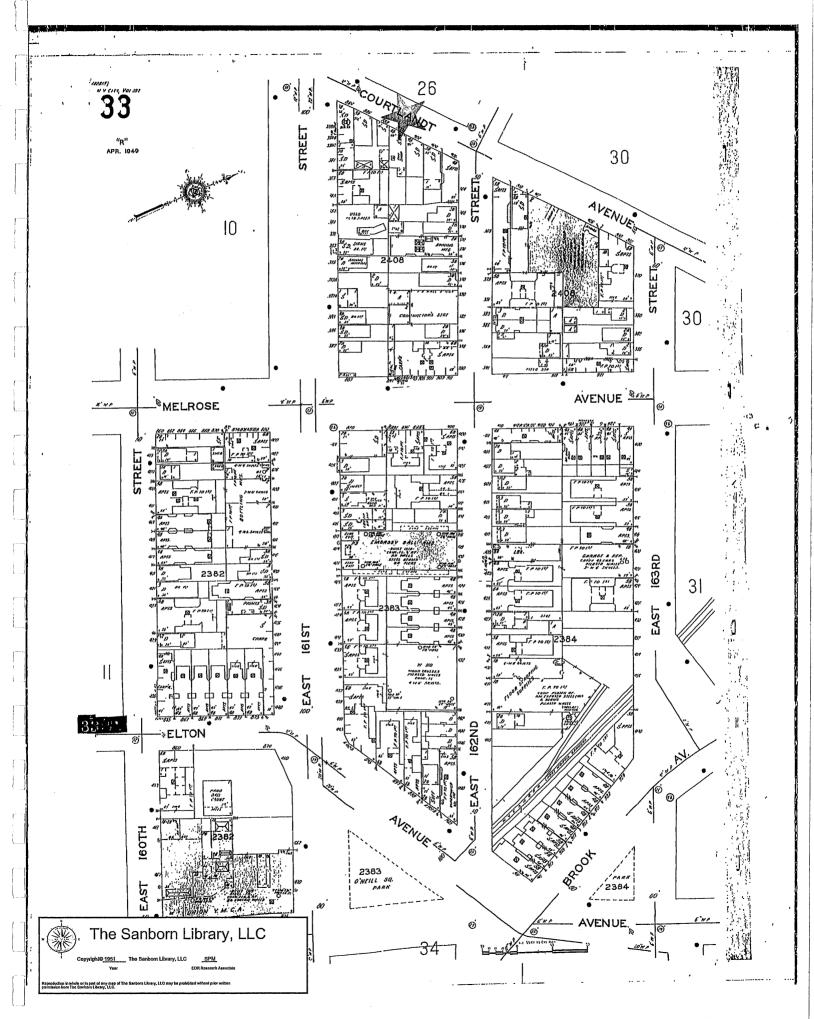
BEGINNING at the corner formed by the intersection of the Northerly side of East 161st Street (100 feet wide) with the Westerly side of Melrose Avenue (80 feet wide);

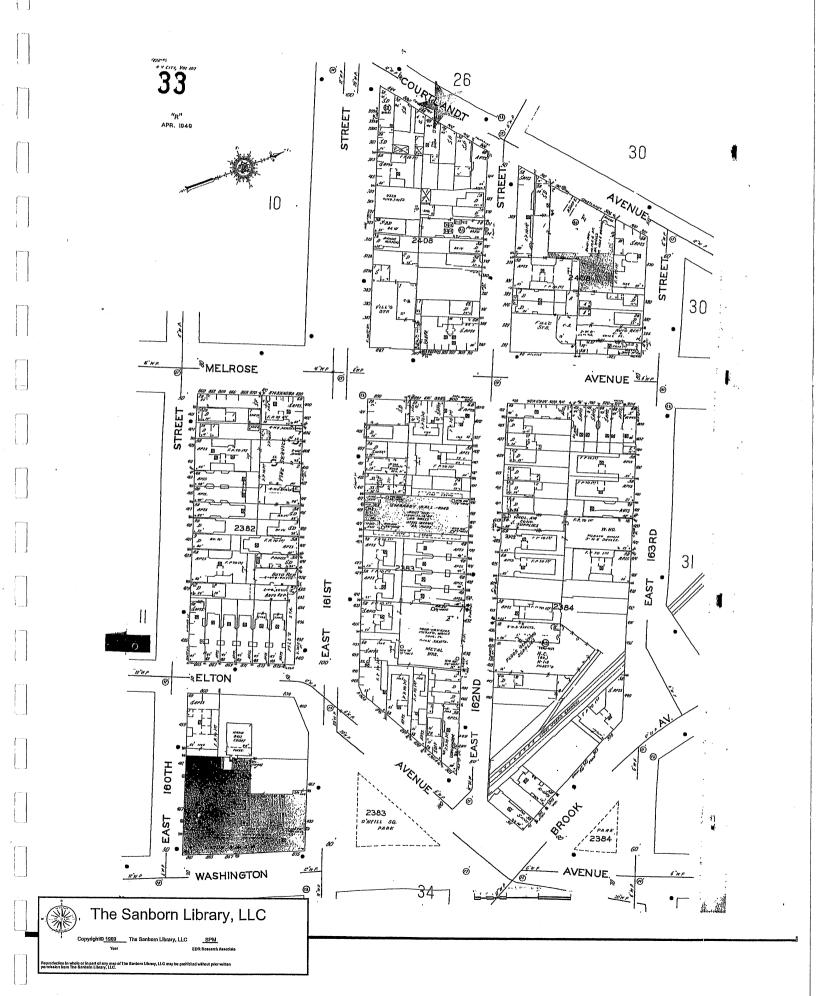
Thence along the Westerly side of Melrose Avenue, North 14degrees 40 minutes 02 seconds East, 68.52 feet to a point;

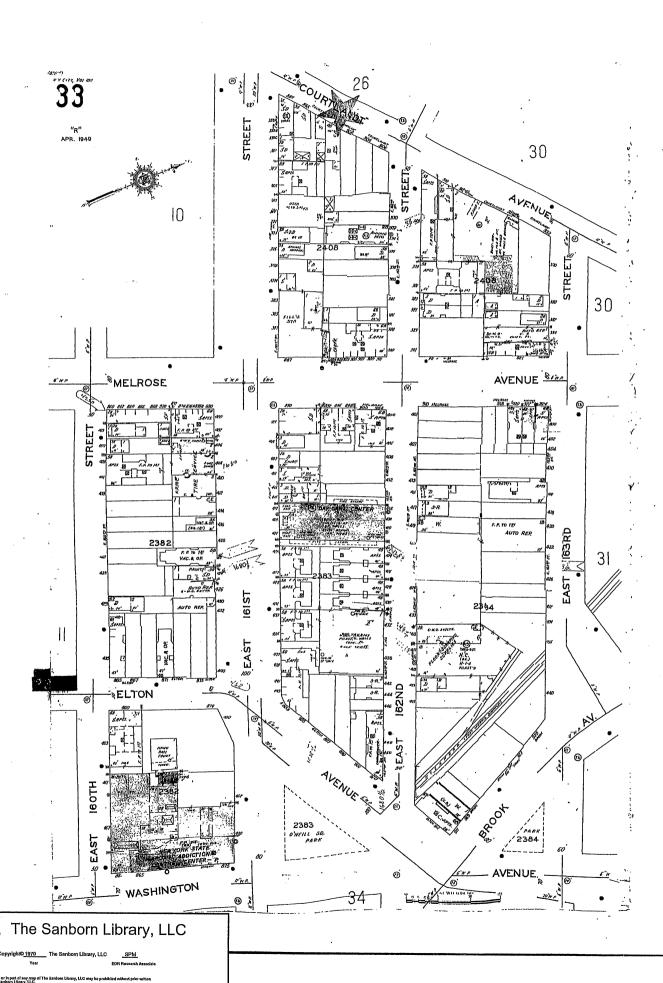

Thence North 74 degrees 15 minutes 28 seconds West, 102.39 feet to a point;

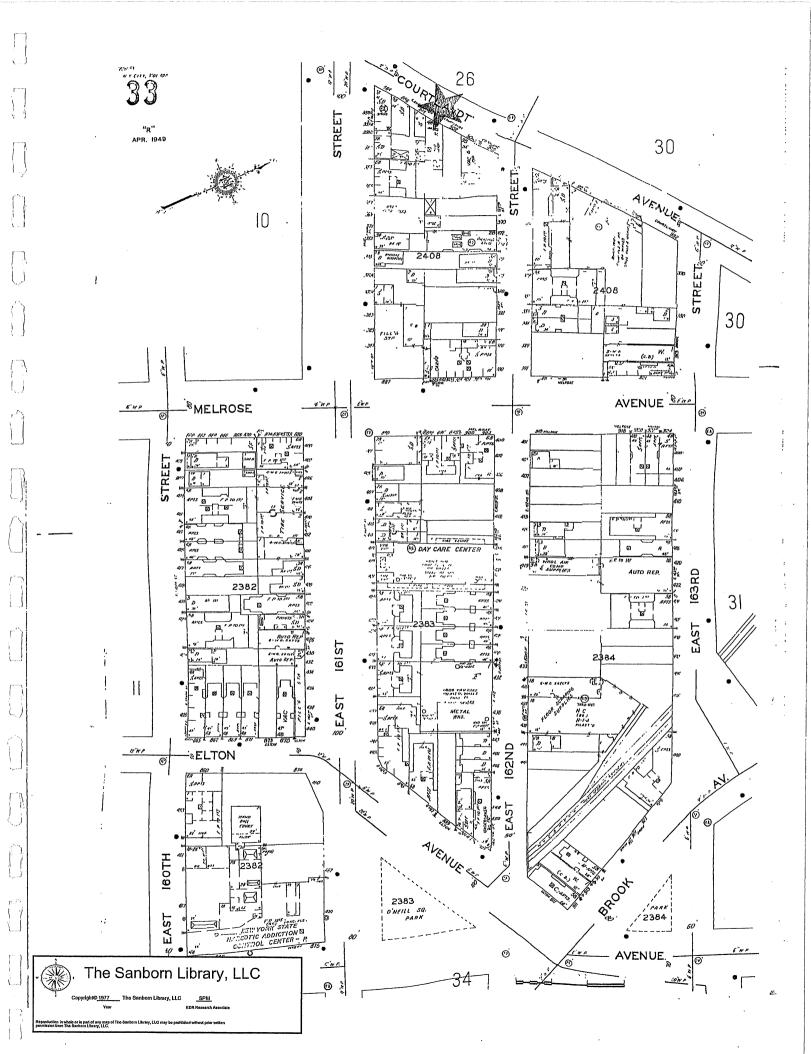
Thence South 15 degrees 44 minutes 32 seconds West, 70.45 feet to a point in the Northerly sideline of East 161st Street;

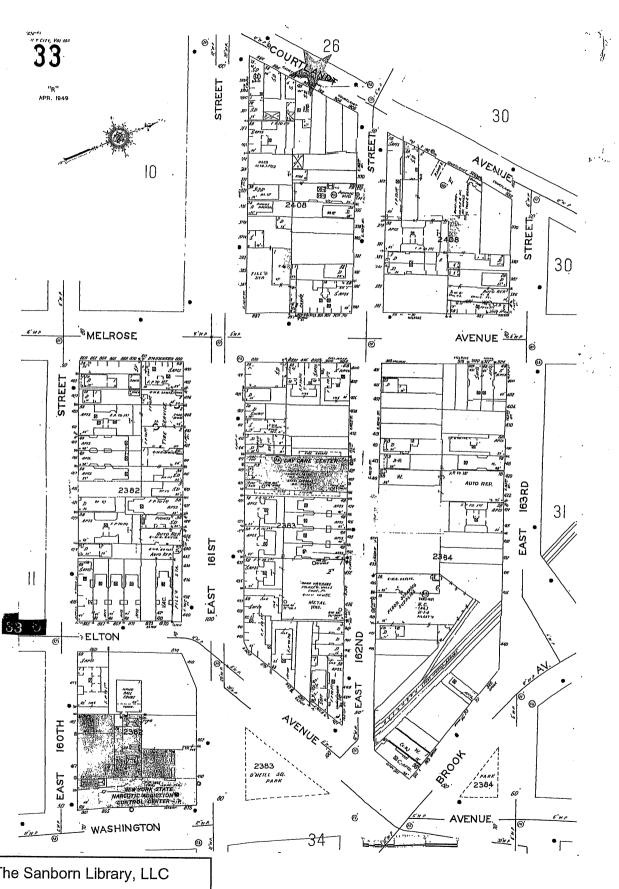

Thence South 75 degrees 19 minutes 58 seconds East, 103.68 feet to the point and place of BEGINNING.

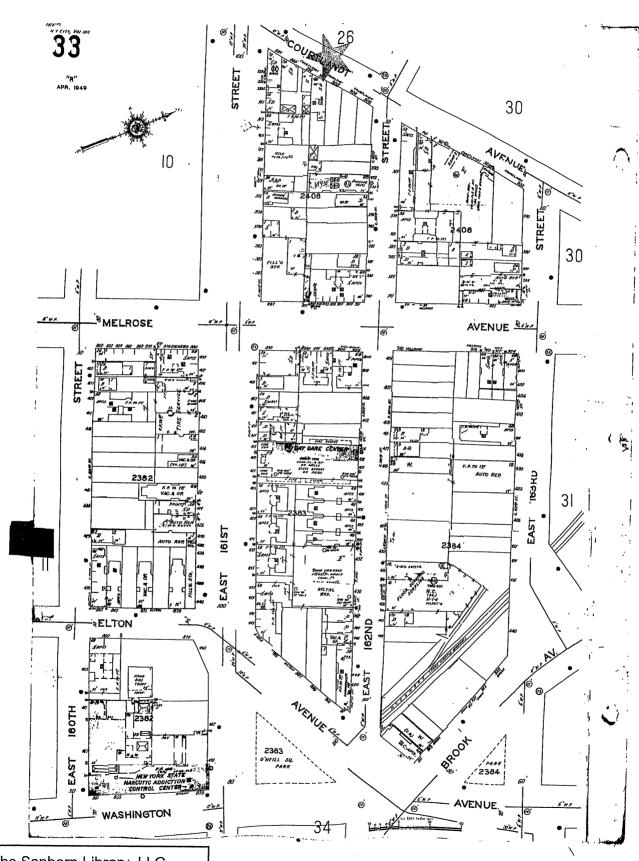

SURVEY


Site No: C 203041




APPENDIX C

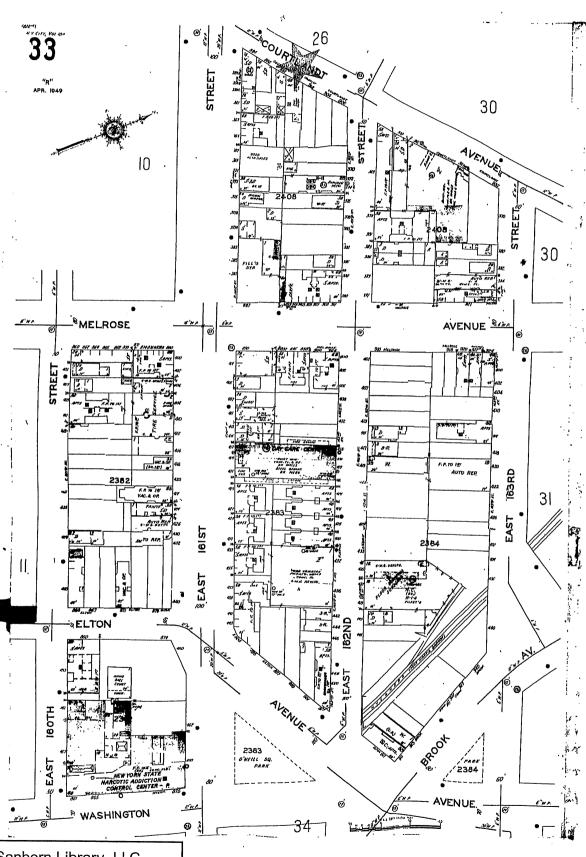




The Sanborn Library, LLC

Copyrightic 1978
Ten Sanborn Library, LLC SPM
EDR Research Associate

Reproduction in which we have find an organ of the Sanborn Library, LLC may be probabiled without prior written

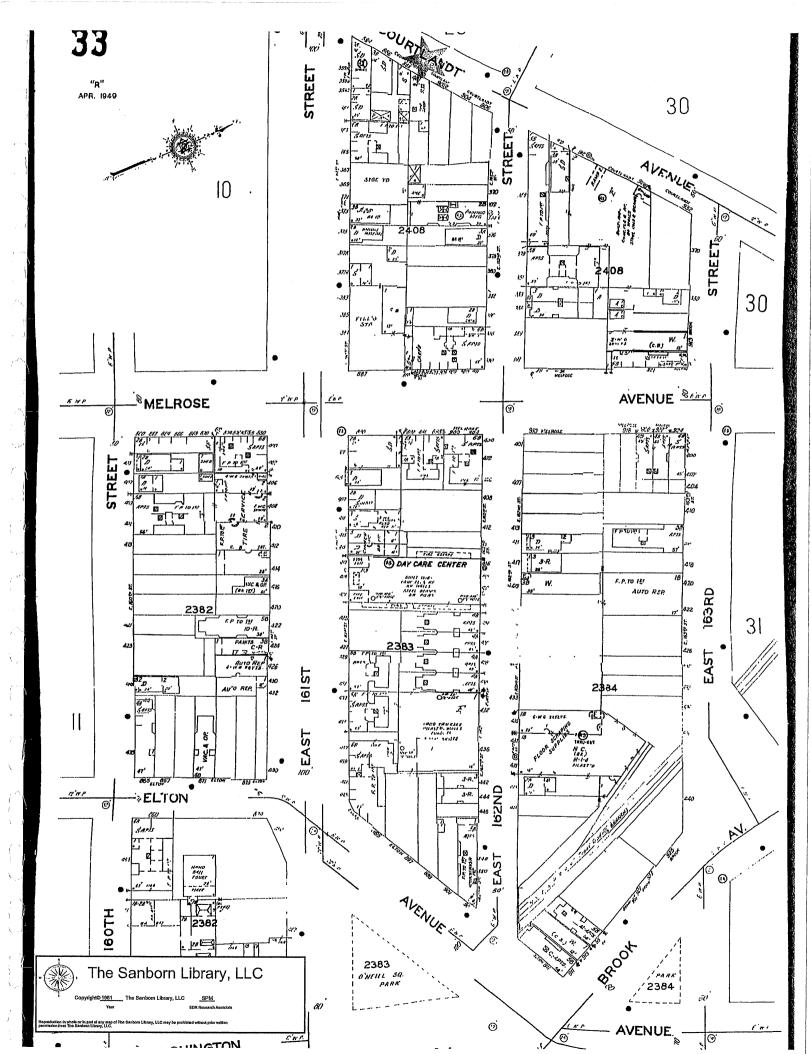

The Sanborn Library, LLC

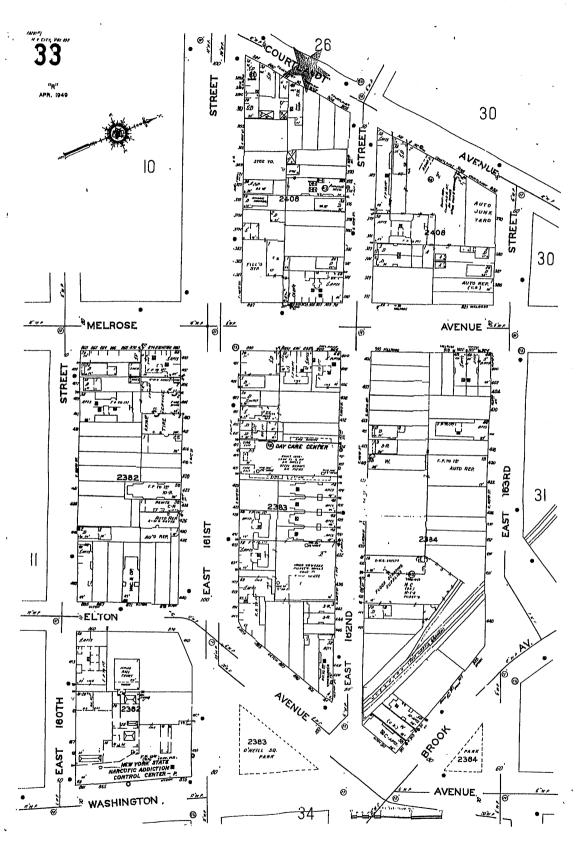
Copyright@_1979

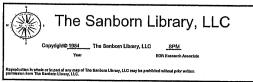
Year

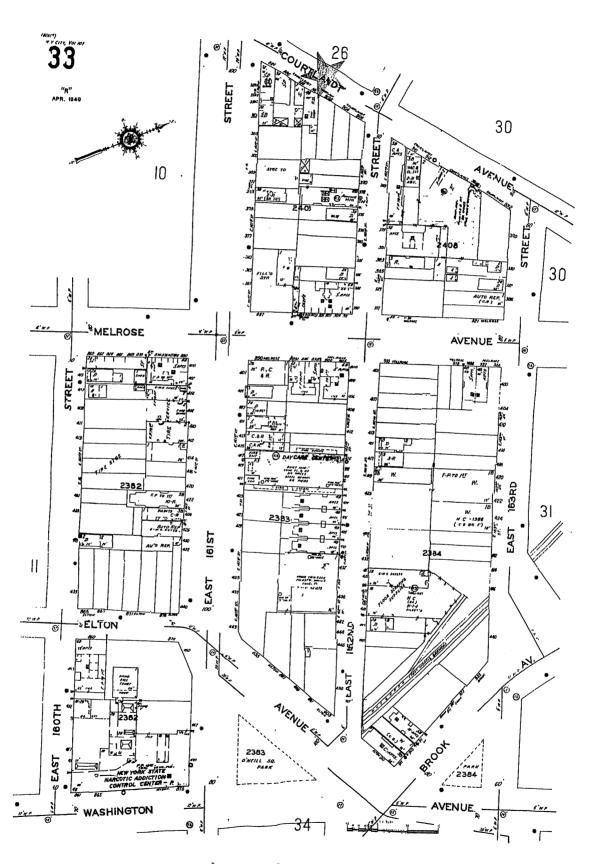
The Sanborn Library, LLC __SPM_
EDR Research Associate

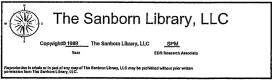
Reproduction in wholes or in part of any age of The Gendron Library, LLC may be probablised without prior written

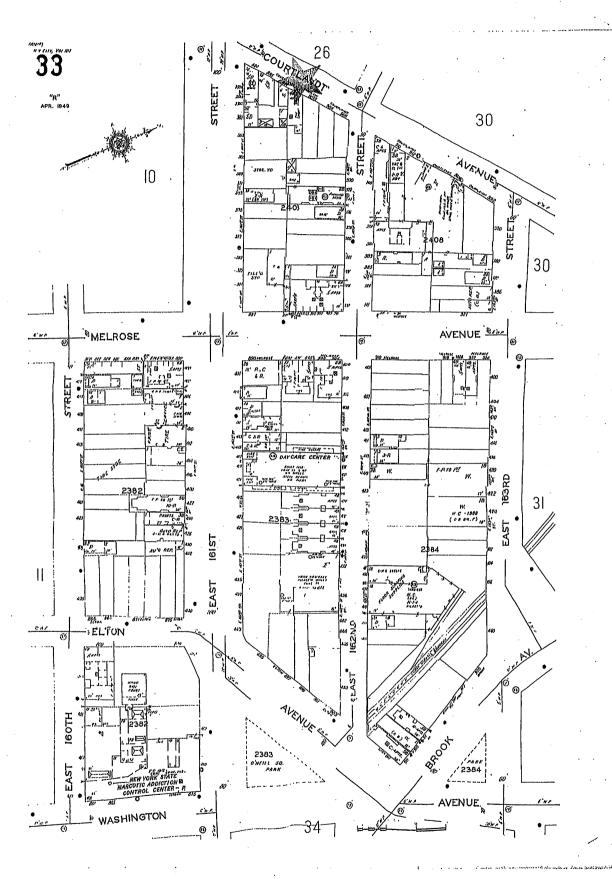

The Sanborn Library, LLC

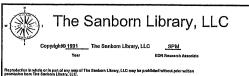

Copyright0.1980
Teas

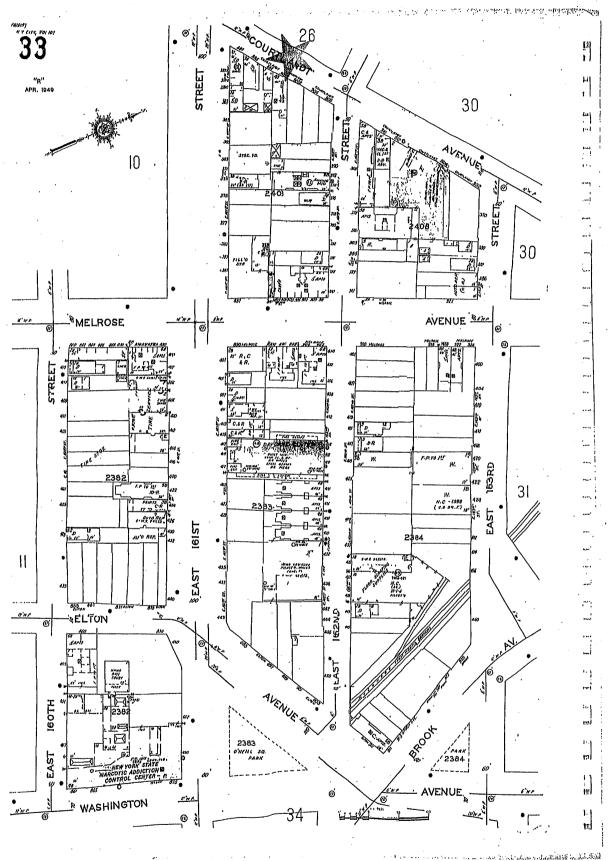

The Sanborn Library, LLC

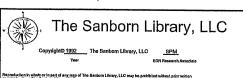

SPM
EDR Research Associate

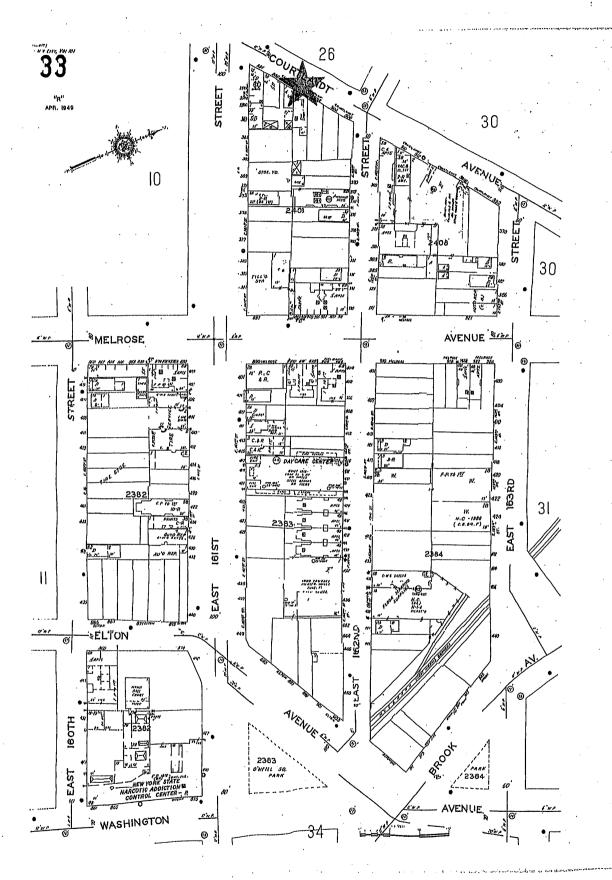

Reproduction in whether or in part all any rape of The Sanborn Library, LLC may be prohibited without prior written

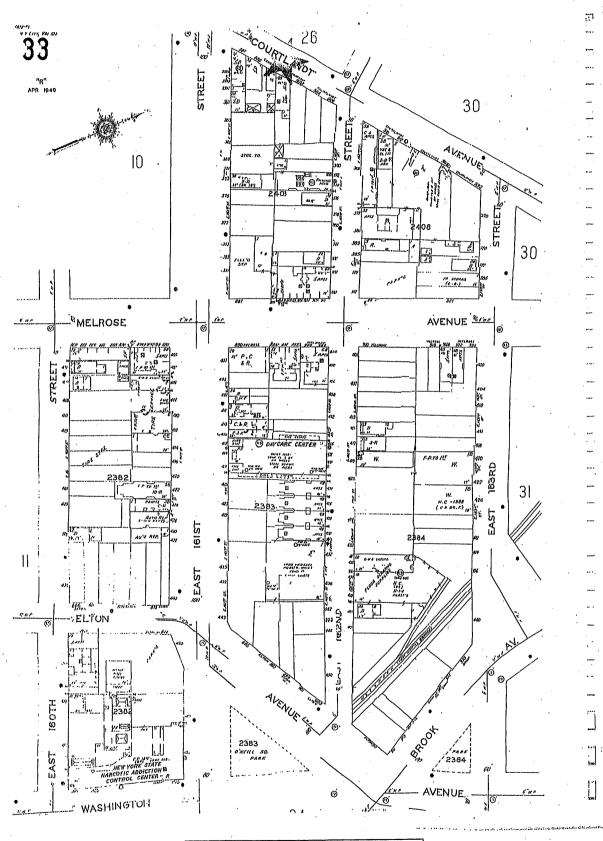


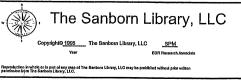


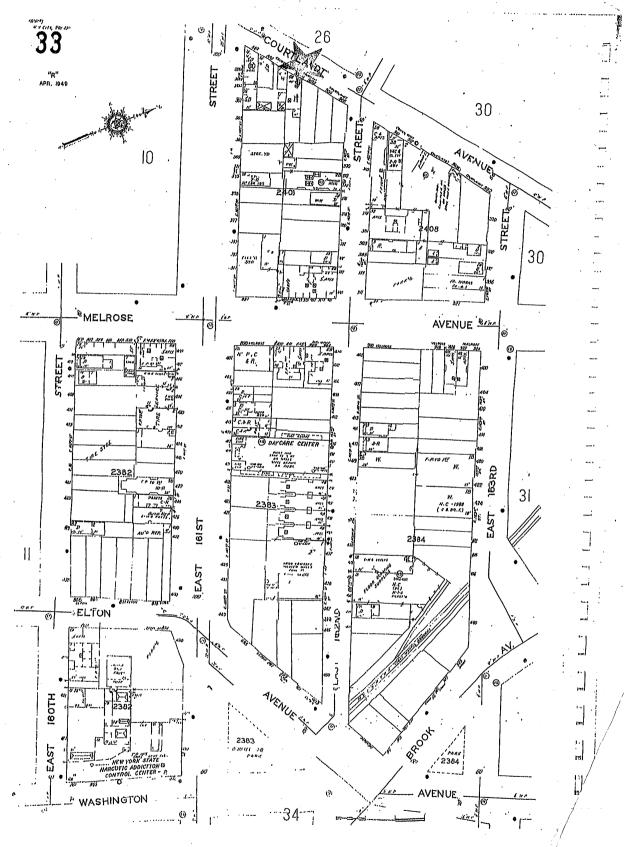


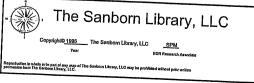





©/99/ Sanborn Co., EDR Sanborn, Inc.




© 1992 Sanborn Co., EDR Sanborn, Inc.



© <u>1995</u> Sanborn Co., EDR Sanborn, Inc.

©<u>1996</u> Sanborn Co., EDR Sanborn, Inc.

APPENDIX E

Table 4-3A Soil Analytical Results

Final Bottom Samples

Volatile Organic Compounds (VOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

SAMPLE TYPE: Soil

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft) RESULT TYPE	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	B-CCII-02 JA17262-2 04/24/2009 10.00 Primary	B-CCII-03 JA17650-1 04/30/2009 10.50 Primary	B-CCII-04 JA19465-1 05/26/2009 2.00 Primary	B-CCII-05 JA19465-2 05/26/2009 20.00 Primary
1,1,1-Trichloroethane	(ug/kg)	680		5.6 U	6.2 U	5.5 U	5.7 U
1,1,2,2-Tetrachloroethane	(ug/kg)			5.6 U	6.2 U	5.5 U	5.7 U
1,1,2-Trichloroethane	(ug/kg)			5.6 U	6.2 U	5.5 U	5.7 U
1,1-Dichloroethane	(ug/kg)	270		5.6 U	6.2 U	5.5 U	5.7 U
1,1-Dichloroethene	(ug/kg)	330		5.6 U	6.2 U	5.5 U	5.7 U
1,2,4-Trichlorobenzene	(ug/kg)			5.6 U	6.2 U	5.5 U	5.7 U
1,2,4-Trimethylbenzene	(ug/kg)	3600		5.6 U	1.2 J	14.9	2.2 J
1,2-Dibromoethane	(ug/kg)			1.1 U	1.2 U	1.1 U	1.1 U
1,2-Dichlorobenzene	(ug/kg)	1100		5.6 U	6.2 U	5.5 U	5.7 U
1,2-Dichloroethane	(ug/kg)	20		1.1 U	1.2 U	1.1 U	1.1 U
1,2-Dichloropropane	(ug/kg)			5.6 U	6.2 U	5.5 U	5.7 U
1,3,5-Trimethylbenzene	(ug/kg)	8400		5.6 U	8.5	10.3	16.7
1,3-Dichlorobenzene	(ug/kg)	2400		5.6 U	6.2 U	5.5 U	5.7 U
1,4-Dichlorobenzene	(ug/kg)	1800		5.6 U	6.2 U	5.5 U	5.7 U
1,4-Dioxane	(ug/kg)	100		140 U	160 U	140 U	140 U
2-Butanone	(ug/kg)	120		11 U	12 U	11 U	11 U
2-Hexanone	(ug/kg)			5.6 U	6.2 U	5.5 U	5.7 U

Table 1 Soil Analytical Results Final Bottom Samples

Volatile Organic Compounds (VOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

SAMPLE TYPE: Soil

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft) RESULT TYPE	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	B-CCII-02 JA17262-2 04/24/2009 10.00 Primary	B-CCII-03 JA17650-1 04/30/2009 10.50 Primary	B-CCII-04 JA19465-1 05/26/2009 2.00 Primary	B-CCII-05 JA19465-2 05/26/2009 20.00 Primary
4-Methyl-2-Pentanone	(ug/kg)			5.6 U	6.2 U	5.5 U	5.7 U
Acetone	(ug/kg)	50		11 U	14.5	11 U	21.8
Benzene	(ug/kg)	60		1.1 U	1.2 U	1.1 U	1.6
Bromodichloromethane	(ug/kg)			5.6 U	6.2 U	5.5 U	5.7 U
Bromoform	(ug/kg)			5.6 U	6.2 U	5.5 U	5.7 U
Bromomethane	(ug/kg)			5.6 U	6.2 U	5.5 U	5.7 U
Carbon Disulfide	(ug/kg)			5.6 U	6.2 U	5.5 U	5.7 U
Carbon Tetrachloride	(ug/kg)	760		5.6 U	6.2 U	5.5 U	5.7 U
Chlorobenzene	(ug/kg)	1100		5.6 U	6.2 U	5.5 U	5.7 U
Chloroethane	(ug/kg)			5.6 U	6.2 U	5.5 U	5.7 U
Chloroform	(ug/kg)	370		5.6 U	6.2 U	5.5 U	5.7 U
Chloromethane	(ug/kg)			5.6 U	6.2 U	5.5 U	5.7 U
cis-1,2-Dichloroethene	(ug/kg)	250		5.6 U	6.2 U	5.5 U	5.7 U
cis-1,3-Dichloropropene	(ug/kg)			5.6 U	6.2 U	5.5 U	5.7 U
Cyclohexane	(ug/kg)			5.6 U	6.2 U	5.5 U	5.7 U
Dibromochloromethane	(ug/kg)			5.6 U	6.2 U	5.5 U	5.7 U
Dibromochloropropane	(ug/kg)			11 U	12 U	11 U	11 U

Table 1 Soil Analytical Results Final Bottom Samples

Volatile Organic Compounds (VOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

SAMPLE TYPE: So

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft) RESULT TYPE	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	B-CCII-02 JA17262-2 04/24/2009 10.00 Primary	B-CCII-03 JA17650-1 04/30/2009 10.50 Primary	B-CCII-04 JA19465-1 05/26/2009 2.00 Primary	B-CCII-05 JA19465-2 05/26/2009 20.00 Primary
Dichlorodifluoromethane	(ug/kg)			5.6 U	6.2 U	5.5 U	5.7 U
Ethylbenzene	(ug/kg)	1000		1.1 U	1.2 U	1.3	1.1 U
Freon 113	(ug/kg)			5.6 U	6.2 U	5.5 U	5.7 U
Isopropylbenzene	(ug/kg)			5.6 U	6.2 U	5.5 U	0.63 J
Methyl Acetate	(ug/kg)			5.6 U	6.2 U	5.5 U	19.7
Methyl Cyclohexane	(ug/kg)			5.6 U	6.2 U	5.5 U	3.2 J
Methyl Tertiary Butyl Ether	(ug/kg)	930		1.1 U	1.2 U	1.1 U	0.78 J
Methylene Chloride	(ug/kg)	50		5.6 U	6.2 U	6.1 U	9.4 U
n-Butylbenzene	(ug/kg)	12000		5.6 U	6.2 U	5.5 U	5.7 U
n-Propylbenzene	(ug/kg)	3900		5.6 U	6.2 U	1.1 J	1.6 J
sec-Butylbenzene	(ug/kg)	11000		5.6 U	6.2 U	5.5 U	1.2 J
Styrene	(ug/kg)			5.6 U	6.2 U	5.5 U	5.7 U
tert-Butylbenzene	(ug/kg)	5900		5.6 U	6.2 U	5.5 U	5.7 U
Tetrachloroethene	(ug/kg)	1300		5.6 U	6.2 U	5.5 U	5.7 U
Toluene	(ug/kg)	700		1.1 U	1.2 U	1.9	1.1 U
trans-1,2-Dichloroethene	(ug/kg)	190		5.6 U	6.2 U	5.5 U	5.7 U
trans-1,3-Dichloropropene	(ug/kg)			5.6 U	6.2 U	5.5 U	5.7 U

Table 1

Soil Analytical Results

Final Bottom Samples

Volatile Organic Compounds (VOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

SAMPLE TYPE: So

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft) RESULT TYPE	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	B-CCII-02 JA17262-2 04/24/2009 10.00 Primary	B-CCII-03 JA17650-1 04/30/2009 10.50 Primary	B-CCII-04 JA19465-1 05/26/2009 2.00 Primary	B-CCII-05 JA19465-2 05/26/2009 20.00 Primary
Trichloroethene	(ug/kg)	470		5.6 U	6.2 U	5.5 U	5.7 U
Trichlorofluoromethane	(ug/kg)			5.6 U	6.2 U	5.5 U	5.7 U
Vinyl chloride	(ug/kg)	20		5.6 U	6.2 U	5.5 U	5.7 U
Xylene (total)	(ug/kg)	260		2.2 U	2.5 U	12.6	2.2 J
Total VOCs	(ug/kg)		10000	0.0	26.1	42.1	71.61

Volatile Organic Compounds (VOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft) RESULT TYPE	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	B-CCII-07 JA19524-1 05/27/2009 2.00 Primary	B-CCII-08 JA19602-2 05/28/2009 20.50 Primary	B-CCII-09 JA19985-1 06/02/2009 20.00 Primary	B-CCII-10 JA19985-2 06/02/2009 20.00 Primary
1,1,1-Trichloroethane	(ug/kg)	680		5.7 U	6.8 U	6.8 U	6.4 U
1,1,2,2-Tetrachloroethane	(ug/kg)			5.7 U	6.8 U	6.8 U	6.4 U
1,1,2-Trichloroethane	(ug/kg)			5.7 U	6.8 U	6.8 U	6.4 U
1,1-Dichloroethane	(ug/kg)	270		5.7 U	6.8 U	6.8 U	6.4 U
1,1-Dichloroethene	(ug/kg)	330		5.7 U	6.8 U	6.8 U	6.4 U
1,2,4-Trichlorobenzene	(ug/kg)			5.7 U	6.8 U	6.8 U	6.4 U
1,2,4-Trimethylbenzene	(ug/kg)	3600		5.1 J	6.8 U	6.8 U	1.8 J
1,2-Dibromoethane	(ug/kg)			1.1 U	1.4 U	1.4 U	1.3 U
1,2-Dichlorobenzene	(ug/kg)	1100		5.7 U	6.8 U	6.8 U	6.4 U
1,2-Dichloroethane	(ug/kg)	20		1.1 U	1.4 U	1.4 U	1.3 U
1,2-Dichloropropane	(ug/kg)			5.7 U	6.8 U	6.8 U	6.4 U
1,3,5-Trimethylbenzene	(ug/kg)	8400		183	6.8 U	6.8 U	2.7 J
1,3-Dichlorobenzene	(ug/kg)	2400		5.7 U	6.8 U	6.8 U	6.4 U
1,4-Dichlorobenzene	(ug/kg)	1800		5.7 U	6.8 U	6.8 U	6.4 U
1,4-Dioxane	(ug/kg)	100		140 U	170 U	170 U	160 U
2-Butanone	(ug/kg)	120		11 U	14 U	14 U	13 U
2-Hexanone	(ug/kg)			5.7 U	6.8 U	6.8 U	6.4 U

Volatile Organic Compounds (VOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

	SITE LAB SAMPLE ID DATE	6NYCRR PART 375	Track 4	B-CCII-07 JA19524-1 05/27/2009	B-CCII-08 JA19602-2 05/28/2009	B-CCII-09 JA19985-1 06/02/2009	B-CCII-10 JA19985-2 06/02/2009
CONSTITUENT	DEPTH (ft) RESULT TYPE	Unrestricted SCO	Alternative SCO	2.00 Primary	20.50 Primary	20.00 Primary	20.00 Primary
4-Methyl-2-Pentanone	(ug/kg)			5.7 U	6.8 U	6.8 U	6.4 U
Acetone	(ug/kg)	50		12.4	42.1	14.9	27.9
Benzene	(ug/kg)	60		1.1 U	1.5	1.4 U	3.5
Bromodichloromethane	(ug/kg)			5.7 U	6.8 U	6.8 U	6.4 U
Bromoform	(ug/kg)			5.7 U	6.8 U	6.8 U	6.4 U
Bromomethane	(ug/kg)			5.7 U	6.8 U	6.8 U	6.4 U
Carbon Disulfide	(ug/kg)			5.7 U	6.8 U	6.8 U	6.4 U
Carbon Tetrachloride	(ug/kg)	760		5.7 U	6.8 U	6.8 U	6.4 U
Chlorobenzene	(ug/kg)	1100		5.7 U	6.8 U	6.8 U	6.4 U
Chloroethane	(ug/kg)			5.7 U	6.8 U	6.8 U	6.4 U
Chloroform	(ug/kg)	370		5.7 U	6.8 U	6.8 U	6.4 U
Chloromethane	(ug/kg)			5.7 U	6.8 U	6.8 U	6.4 U
cis-1,2-Dichloroethene	(ug/kg)	250		5.7 U	6.8 U	6.8 U	6.4 U
cis-1,3-Dichloropropene	(ug/kg)			5.7 U	6.8 U	6.8 U	6.4 U
Cyclohexane	(ug/kg)			5.7 U	6.8 U	6.8 U	1.2 J
Dibromochloromethane	(ug/kg)			5.7 U	6.8 U	6.8 U	6.4 U
Dibromochloropropane	(ug/kg)			11 U	14 U	14 U	13 U

Volatile Organic Compounds (VOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

Dichlorodifluoromethane (ug/kg Ethylbenzene (ug/kg Freon 113 (ug/kg Isopropylbenzene (ug/kg Methyl Acetate (ug/kg Methyl Cyclohexane (ug/kg Methyl Tertiary Butyl Ether (ug/kg Methylene Chloride (ug/kg n-Butylbenzene (ug/kg n-Propylbenzene (ug/kg	1000	5.7 U 0.56 J 5.7 U 5.7 U 7.3 2.5 J	6.8 U 1.4 U 6.8 U 6.8 U 6.8 U	6.8 U 1.4 U 6.8 U 6.8 U 6.8 U	6.4 U 1.3 U 6.4 U 6.4 U 6.4 U
Freon 113 (ug/kg Isopropylbenzene (ug/kg Methyl Acetate (ug/kg Methyl Cyclohexane (ug/kg Methyl Tertiary Butyl Ether (ug/kg Methylene Chloride (ug/kg n-Butylbenzene (ug/kg)	5.7 U 5.7 U 7.3	6.8 U	6.8 U 6.8 U	6.4 U 6.4 U
Isopropylbenzene (ug/kg Methyl Acetate (ug/kg Methyl Cyclohexane (ug/kg Methyl Tertiary Butyl Ether (ug/kg Methylene Chloride (ug/kg n-Butylbenzene (ug/kg)	5.7 U 7.3	6.8 U	6.8 U	6.4 U
Methyl Acetate (ug/kg Methyl Cyclohexane (ug/kg Methyl Tertiary Butyl Ether (ug/kg Methylene Chloride (ug/kg n-Butylbenzene (ug/kg)	7.3			
Methyl Cyclohexane (ug/kg Methyl Tertiary Butyl Ether (ug/kg Methylene Chloride (ug/kg n-Butylbenzene (ug/kg			6.8 U	6.8 U	6.4.11
Methyl Tertiary Butyl Ether (ug/kg Methylene Chloride (ug/kg n-Butylbenzene (ug/kg)	25.1			0.4 U
Methylene Chloride (ug/kg n-Butylbenzene (ug/kg		2.50	6.8 U	6.8 U	6.4 U
n-Butylbenzene (ug/kg	930	1.1 U	1.4 U	1.4 U	0.79 J
	50	5.7 U	7.1 U	6.8 U	6.4 U
n-Propylbenzene (ug/kg	12000	5.7 U	6.8 U	6.8 U	6.4 U
(93.13	3900	0.71 J	6.8 U	6.8 U	6.4 U
sec-Butylbenzene (ug/kg	11000	0.96 J	6.8 U	6.8 U	6.4 U
Styrene (ug/kg)	5.7 U	0.41 J	6.8 U	6.4 U
tert-Butylbenzene (ug/kg	5900	5.7 U	6.8 U	6.8 U	6.4 U
Tetrachloroethene (ug/kg	1300	5.7 U	6.8 U	6.8 U	6.4 U
Toluene (ug/kg	700	0.64 J	1.4 U	1.4 U	1.3 U
trans-1,2-Dichloroethene (ug/kg) 190	5.7 U	6.8 U	6.8 U	6.4 U
trans-1,3-Dichloropropene (ug/kg		5.7 U	6.8 U	6.8 U	6.4 U

Table 1

Soil Analytical Results

Final Bottom Samples

Volatile Organic Compounds (VOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft) RESULT TYPE	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	B-CCII-07 JA19524-1 05/27/2009 2.00 Primary	B-CCII-08 JA19602-2 05/28/2009 20.50 Primary	B-CCII-09 JA19985-1 06/02/2009 20.00 Primary	B-CCII-10 JA19985-2 06/02/2009 20.00 Primary
Trichloroethene	(ug/kg)	470		5.7 U	6.8 U	6.8 U	6.4 U
Trichlorofluoromethane	(ug/kg)			5.7 U	6.8 U	6.8 U	6.4 U
Vinyl chloride	(ug/kg)	20		5.7 U	6.8 U	6.8 U	6.4 U
Xylene (total)	(ug/kg)	260		65.1	2.7 U	2.7 U	10.4
Total VOCs	(ug/kg)		10000	278.27	44.01	14.9	48.29

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft) RESULT TYPE	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	B-CCII-12 JA20601-1 06/10/2009 20.50 Primary	B-CCII-12 JA20601-6 06/10/2009 20.50 Duplicate 1	SW-CCII-09 JA19602-1 05/28/2009 18.50 Primary	SW-CCII-10 JA20601-2 06/10/2009 14.00 Primary
1,1,1-Trichloroethane	(ug/kg)	680		6.0 U	6.3 U	5.7 U	6.1 U
1,1,2,2-Tetrachloroethane	(ug/kg)			6.0 U	6.3 U	5.7 U	6.1 U
1,1,2-Trichloroethane	(ug/kg)			6.0 U	6.3 U	5.7 U	6.1 U
1,1-Dichloroethane	(ug/kg)	270		6.0 U	6.3 U	5.7 U	6.1 U
1,1-Dichloroethene	(ug/kg)	330		6.0 U	6.3 U	5.7 U	6.1 U
1,2,4-Trichlorobenzene	(ug/kg)			6.0 U	6.3 U	5.7 U	6.1 U
1,2,4-Trimethylbenzene	(ug/kg)	3600		6.0 U	6.3 U	2.1 J	6.1 U
1,2-Dibromoethane	(ug/kg)			1.2 U	1.3 U	1.1 U	1.2 U
1,2-Dichlorobenzene	(ug/kg)	1100		6.0 U	6.3 U	5.7 U	6.1 U
1,2-Dichloroethane	(ug/kg)	20		1.2 U	1.3 U	1.1 U	1.2 U
1,2-Dichloropropane	(ug/kg)			6.0 U	6.3 U	5.7 U	6.1 U
1,3,5-Trimethylbenzene	(ug/kg)	8400		6.0 U	6.3 U	4.1 J	6.1 U
1,3-Dichlorobenzene	(ug/kg)	2400		6.0 U	6.3 U	5.7 U	6.1 U
1,4-Dichlorobenzene	(ug/kg)	1800		6.0 U	6.3 U	5.7 U	6.1 U
1,4-Dioxane	(ug/kg)	100		150 U	160 U	140 U	150 U
2-Butanone	(ug/kg)	120		12 U	13 U	11 U	12 U
2-Hexanone	(ug/kg)			6.0 U	6.3 U	5.7 U	6.1 U

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft) RESULT TYPE	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	B-CCII-12 JA20601-1 06/10/2009 20.50 Primary	B-CCII-12 JA20601-6 06/10/2009 20.50 Duplicate 1	SW-CCII-09 JA19602-1 05/28/2009 18.50 Primary	SW-CCII-10 JA20601-2 06/10/2009 14.00 Primary
4-Methyl-2-Pentanone	(ug/kg)			6.0 U	6.3 U	5.7 U	6.1 U
Acetone	(ug/kg)	50		12 U	13 U	39.9	12 U
Benzene	(ug/kg)	60		1.2 U	1.3 U	0.71 J	1.2 U
Bromodichloromethane	(ug/kg)			6.0 U	6.3 U	5.7 U	6.1 U
Bromoform	(ug/kg)			6.0 U	6.3 U	5.7 U	6.1 U
Bromomethane	(ug/kg)			6.0 U	6.3 U	5.7 U	6.1 U
Carbon Disulfide	(ug/kg)			6.0 U	6.3 U	5.7 U	6.1 U
Carbon Tetrachloride	(ug/kg)	760		6.0 U	6.3 U	5.7 U	6.1 U
Chlorobenzene	(ug/kg)	1100		6.0 U	6.3 U	5.7 U	6.1 U
Chloroethane	(ug/kg)			6.0 U	6.3 U	5.7 U	6.1 U
Chloroform	(ug/kg)	370		6.0 U	6.3 U	5.7 U	6.1 U
Chloromethane	(ug/kg)			6.0 U	6.3 U	5.7 U	6.1 U
cis-1,2-Dichloroethene	(ug/kg)	250		6.0 U	6.3 U	5.7 U	6.1 U
cis-1,3-Dichloropropene	(ug/kg)			6.0 U	6.3 U	5.7 U	6.1 U
Cyclohexane	(ug/kg)			6.0 U	6.3 U	5.7 U	6.1 U
Dibromochloromethane	(ug/kg)			6.0 U	6.3 U	5.7 U	6.1 U
Dibromochloropropane	(ug/kg)			12 U	13 U	11 U	12 U

lie Organic Compounds (VOCs

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft) RESULT TYPE	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	B-CCII-12 JA20601-1 06/10/2009 20.50 Primary	B-CCII-12 JA20601-6 06/10/2009 20.50 Duplicate 1	SW-CCII-09 JA19602-1 05/28/2009 18.50 Primary	SW-CCII-10 JA20601-2 06/10/2009 14.00 Primary
Dichlorodifluoromethane	(ug/kg)			6.0 U	6.3 U	5.7 U	6.1 U
Ethylbenzene	(ug/kg)	1000		1.2 U	1.3 U	1.1 U	1.2 U
Freon 113	(ug/kg)			6.0 U	6.3 U	5.7 U	6.1 U
Isopropylbenzene	(ug/kg)			6.0 U	6.3 U	5.7 U	6.1 U
Methyl Acetate	(ug/kg)			6.0 U	6.3 U	6.6	6.1 U
Methyl Cyclohexane	(ug/kg)			6.0 U	6.3 U	5.7 U	6.1 U
Methyl Tertiary Butyl Ether	(ug/kg)	930		1.2 U	1.3 U	0.69 J	1.2 U
Methylene Chloride	(ug/kg)	50		6.2 U	6.3 U	5.7 U	6.1 U
n-Butylbenzene	(ug/kg)	12000		6.0 U	6.3 U	5.7 U	6.1 U
n-Propylbenzene	(ug/kg)	3900		6.0 U	6.3 U	5.7 U	6.1 U
sec-Butylbenzene	(ug/kg)	11000		6.0 U	6.3 U	5.7 U	6.1 U
Styrene	(ug/kg)			6.0 U	6.3 U	5.7 U	6.1 U
tert-Butylbenzene	(ug/kg)	5900		6.0 U	6.3 U	5.7 U	6.1 U
Tetrachloroethene	(ug/kg)	1300		6.0 U	6.3 U	5.7 U	6.1 U
Toluene	(ug/kg)	700		1.2 U	1.3 U	1.1 U	1.2 U
trans-1,2-Dichloroethene	(ug/kg)	190		6.0 U	6.3 U	5.7 U	6.1 U
trans-1,3-Dichloropropene	(ug/kg)			6.0 U	6.3 U	5.7 U	6.1 U

Table 1

Soil Analytical Results

Final Bottom Samples

Volatile Organic Compounds (VOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft) RESULT TYPE	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	B-CCII-12 JA20601-1 06/10/2009 20.50 Primary	B-CCII-12 JA20601-6 06/10/2009 20.50 Duplicate 1	SW-CCII-09 JA19602-1 05/28/2009 18.50 Primary	SW-CCII-10 JA20601-2 06/10/2009 14.00 Primary
Trichloroethene	(ug/kg)	470		6.0 U	6.3 U	5.7 U	6.1 U
Trichlorofluoromethane	(ug/kg)			6.0 U	6.3 U	5.7 U	6.1 U
Vinyl chloride	(ug/kg)	20		6.0 U	6.3 U	5.7 U	6.1 U
Xylene (total)	(ug/kg)	260		2.4 U	2.5 U	4.9	2.4 U
Total VOCs	(ug/kg)		10000	0.0	0.0	59.0	0.0

Volatile Organic Compounds (VOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft) RESULT TYPE	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	SW-CCII-11 JA20601-3 06/10/2009 14.00 Primary	SW-CCII-12 JA20601-4 06/10/2009 14.00 Primary	SW-CCII-13 JA20601-5 06/10/2009 14.00 Primary
1,1,1-Trichloroethane	(ug/kg)	680		9.2 U	6.7 U	6.5 U
1,1,2,2-Tetrachloroethane	(ug/kg)			9.2 U	6.7 U	6.5 U
1,1,2-Trichloroethane	(ug/kg)			9.2 U	6.7 U	6.5 U
1,1-Dichloroethane	(ug/kg)	270		9.2 U	6.7 U	6.5 U
1,1-Dichloroethene	(ug/kg)	330		9.2 U	6.7 U	6.5 U
1,2,4-Trichlorobenzene	(ug/kg)			9.2 U	6.7 U	6.5 U
1,2,4-Trimethylbenzene	(ug/kg)	3600		321	1.5 J	6.5 U
1,2-Dibromoethane	(ug/kg)			1.8 U	1.3 U	1.3 U
1,2-Dichlorobenzene	(ug/kg)	1100		9.2 U	6.7 U	6.5 U
1,2-Dichloroethane	(ug/kg)	20		1.8 U	1.3 U	1.3 U
1,2-Dichloropropane	(ug/kg)			9.2 U	6.7 U	6.5 U
1,3,5-Trimethylbenzene	(ug/kg)	8400		113	1.8 J	6.5 U
1,3-Dichlorobenzene	(ug/kg)	2400		9.2 U	6.7 U	6.5 U
1,4-Dichlorobenzene	(ug/kg)	1800		9.2 U	6.7 U	6.5 U
1,4-Dioxane	(ug/kg)	100		230 U	170 U	160 U
2-Butanone	(ug/kg)	120		18 U	13 U	13 U
2-Hexanone	(ug/kg)			9.2 U	6.7 U	6.5 U

Volatile Organic Compounds (VOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft) RESULT TYPE	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	SW-CCII-11 JA20601-3 06/10/2009 14.00 Primary	SW-CCII-12 JA20601-4 06/10/2009 14.00 Primary	SW-CCII-13 JA20601-5 06/10/2009 14.00 Primary
4-Methyl-2-Pentanone	(ug/kg)			9.2 U	6.7 U	6.5 U
Acetone	(ug/kg)	50		18 U	13 U	13 U
Benzene	(ug/kg)	60		14.4	1.3 U	1.3 U
Bromodichloromethane	(ug/kg)			9.2 U	6.7 U	6.5 U
Bromoform	(ug/kg)			9.2 U	6.7 U	6.5 U
Bromomethane	(ug/kg)			9.2 U	6.7 U	6.5 U
Carbon Disulfide	(ug/kg)			9.2 U	6.7 U	6.5 U
Carbon Tetrachloride	(ug/kg)	760		9.2 U	6.7 U	6.5 U
Chlorobenzene	(ug/kg)	1100		9.2 U	6.7 U	6.5 U
Chloroethane	(ug/kg)			9.2 U	6.7 U	6.5 U
Chloroform	(ug/kg)	370		9.2 U	6.7 U	6.5 U
Chloromethane	(ug/kg)			9.2 U	6.7 U	6.5 U
cis-1,2-Dichloroethene	(ug/kg)	250		9.2 U	6.7 U	6.5 U
cis-1,3-Dichloropropene	(ug/kg)			9.2 U	6.7 U	6.5 U
Cyclohexane	(ug/kg)			9.2 U	6.7 U	6.5 U
Dibromochloromethane	(ug/kg)			9.2 U	6.7 U	6.5 U
Dibromochloropropane	(ug/kg)			18 U	13 U	13 U

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft) RESULT TYPE	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	SW-CCII-11 JA20601-3 06/10/2009 14.00 Primary	SW-CCII-12 JA20601-4 06/10/2009 14.00 Primary	SW-CCII-13 JA20601-5 06/10/2009 14.00 Primary
Dichlorodifluoromethane	(ug/kg)			9.2 U	6.7 U	6.5 U
Ethylbenzene	(ug/kg)	1000		24.7	1.3 U	1.3 U
Freon 113	(ug/kg)			9.2 U	6.7 U	6.5 U
Isopropylbenzene	(ug/kg)			8.0 J	6.7 U	6.5 U
Methyl Acetate	(ug/kg)			9.2 U	6.7 U	6.5 U
Methyl Cyclohexane	(ug/kg)			16.9	6.7 U	6.5 U
Methyl Tertiary Butyl Ether	(ug/kg)	930		1.8 U	1.3 U	1.3 U
Methylene Chloride	(ug/kg)	50		9.2 U	6.7 U	6.5 U
n-Butylbenzene	(ug/kg)	12000		9.2 U	6.7 U	6.5 U
n-Propylbenzene	(ug/kg)	3900		20.0	6.7 U	6.5 U
sec-Butylbenzene	(ug/kg)	11000		7.5 J	6.7 U	6.5 U
Styrene	(ug/kg)			9.2 U	6.7 U	6.5 U
tert-Butylbenzene	(ug/kg)	5900		9.2 U	6.7 U	6.5 U
Tetrachloroethene	(ug/kg)	1300		9.2 U	6.7 U	6.5 U
Toluene	(ug/kg)	700		56.1	1.3 U	1.3 U
trans-1,2-Dichloroethene	(ug/kg)	190		9.2 U	6.7 U	6.5 U
trans-1,3-Dichloropropene	(ug/kg)			9.2 U	6.7 U	6.5 U

Table 1

Soil Analytical Results

Final Bottom Samples

Volatile Organic Compounds (VOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft) RESULT TYPE	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	SW-CCII-11 JA20601-3 06/10/2009 14.00 Primary	SW-CCII-12 JA20601-4 06/10/2009 14.00 Primary	SW-CCII-13 JA20601-5 06/10/2009 14.00 Primary
Trichloroethene	(ug/kg)	470		9.2 U	6.7 U	6.5 U
Trichlorofluoromethane	(ug/kg)			9.2 U	6.7 U	6.5 U
Vinyl chloride	(ug/kg)	20		9.2 U	6.7 U	6.5 U
Xylene (total)	(ug/kg)	260		[350]	2.0 J	2.6 U
Total VOCs	(ug/kg)		10000	931.6	5.3	0.0

Table 4-3B Soil Analytical Results

Final Bottom Samples

Semivolatile Organic Compounds (SVOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft) RESULT TYPE	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	B-CCII-02 JA17262-2 04/24/2009 10.00 Primary	B-CCII-03 JA17650-1 04/30/2009 10.50 Primary	B-CCII-04 JA19465-1 05/26/2009 2.00 Primary	B-CCII-05 JA19465-2 05/26/2009 20.00 Primary
2,4,5-Trichlorophenol	(ug/kg)			180 U	180 U	190 U	180 U
2,4,6-Trichlorophenol	(ug/kg)			180 U	180 U	190 U	180 U
2,4-Dichlorophenol	(ug/kg)			180 U	180 U	190 U	180 U
2,4-Dimethylphenol	(ug/kg)			180 U	180 U	190 U	180 U
2,4-Dinitrophenol	(ug/kg)			720 U	730 U	750 U	730 U
2,4-Dinitrotoluene	(ug/kg)			72 U	73 U	75 U	73 U
2,6-Dinitrotoluene	(ug/kg)			72 U	73 U	75 U	73 U
2-Chloronaphthalene	(ug/kg)			72 U	73 U	75 U	73 U
2-Chlorophenol	(ug/kg)			180 U	180 U	190 U	180 U
2-Methylnaphthalene	(ug/kg)			72 U	25.8 J	52.4 J	24.7 J
3 & 4-Methylphenol	(ug/kg)	330		72 U	73 U	75 U	73 U
3,3-Dichlorobenzidine	(ug/kg)			180 U	180 U	190 U	180 U
4,6-Dinitro-o-cresol	(ug/kg)			720 U	730 U	750 U	730 U
4-Bromophenyl phenyl ether	(ug/kg)			72 U	73 U	75 U	73 U
4-Chlorophenyl phenyl ether	(ug/kg)			72 U	73 U	75 U	73 U
Acenaphthene	(ug/kg)	20000		36 U	36 U	37 U	36 U
Acenaphthylene	(ug/kg)	100000		36 U	18.2 J	37 U	36 U

Semivolatile Organic Compounds (SVOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

	SITE LAB SAMPLE ID			B-CCII-02 JA17262-2	B-CCII-03 JA17650-1	B-CCII-04 JA19465-1	B-CCII-05 JA19465-2
CONSTITUENT	DATE DEPTH (ft) RESULT TYPE	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	04/24/2009 10.00 Primary	04/30/2009 10.50 Primary	05/26/2009 2.00 Primary	05/26/2009 20.00 Primary
Acetophenone	(ug/kg)			180 U	180 U	190 U	180 U
Anthracene	(ug/kg)	100000		36 U	18.1 J	37 U	36 U
Atrazine	(ug/kg)			180 U	180 U	190 U	180 U
Benzaldehyde	(ug/kg)			180 U	180 U	190 U	180 U
Benzo(a)anthracene	(ug/kg)	1000		36 U	49.9	37 U	36 U
Benzo(a)pyrene	(ug/kg)	1000		36 U	50.6	37 U	36 U
Benzo(b)fluoranthene	(ug/kg)	1000		36 U	43.1	37 U	36 U
Benzo(ghi)perylene	(ug/kg)	100000		36 U	43.5	37 U	36 U
Benzo(k)fluoranthene	(ug/kg)	800		36 U	36 U	37 U	36 U
Biphenyl	(ug/kg)			72 U	73 U	75 U	73 U
Bis(2-chloroethoxy)methane	(ug/kg)			72 U	73 U	75 U	73 U
Bis(2-chloroethyl)ether	(ug/kg)			72 U	73 U	75 U	73 U
Bis(2-chloroisopropyl)ether	(ug/kg)			72 U	73 U	75 U	73 U
Bis(2-ethylhexyl)phthalate (BEHP)	(ug/kg)			72 U	97.8	53.8 J	40.4 J
Butyl benzyl phthalate	(ug/kg)			72 U	73 U	75 U	73 U
Caprolactam	(ug/kg)			72 U	73 U	75 U	73 U
Carbazole	(ug/kg)			72 U	73 U	75 U	73 U

Semivolatile Organic Compounds (SVOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft) RESULT TYPE	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	B-CCII-02 JA17262-2 04/24/2009 10.00 Primary	B-CCII-03 JA17650-1 04/30/2009 10.50 Primary	B-CCII-04 JA19465-1 05/26/2009 2.00 Primary	B-CCII-05 JA19465-2 05/26/2009 20.00 Primary
Chrysene	(ug/kg)	1000		36 U	51.7	37 U	36 U
Dibenzo(a,h)anthracene	(ug/kg)	330		36 U	36 U	37 U	36 U
Dibenzofuran	(ug/kg)	7000		72 U	73 U	75 U	73 U
Diethyl phthalate	(ug/kg)			72 U	73 U	75 U	73 U
Dimethyl phthalate	(ug/kg)			72 U	73 U	75 U	73 U
Di-n-butyl phthalate	(ug/kg)			72 U	73 U	75 U	73 U
Di-n-octyl phthalate	(ug/kg)			72 U	73 U	75 U	73 U
Fluoranthene	(ug/kg)	100000		36 U	95.8	37 U	36 U
Fluorene	(ug/kg)	30000		36 U	36 U	37 U	36 U
Hexachlorobenzene	(ug/kg)	330		72 U	73 U	75 U	73 U
Hexachlorobutadiene	(ug/kg)			36 U	36 U	37 U	36 U
Hexachlorocyclopentadiene	(ug/kg)			720 U	730 U	750 U	730 U
Hexachloroethane	(ug/kg)			180 U	180 U	190 U	180 U
Indeno(1,2,3-cd)pyrene	(ug/kg)	500		36 U	35.2 J	37 U	36 U
Isophorone	(ug/kg)			72 U	73 U	75 U	73 U
m-Nitroaniline	(ug/kg)			180 U	180 U	190 U	180 U
Naphthalene	(ug/kg)	12000		36 U	36 U	37 U	36 U

Semivolatile Organic Compounds (SVOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

	SITE LAB SAMPLE ID DATE	6NYCRR PART 375	Track 4	B-CCII-02 JA17262-2 04/24/2009	B-CCII-03 JA17650-1 04/30/2009	B-CCII-04 JA19465-1 05/26/2009	B-CCII-05 JA19465-2 05/26/2009
CONSTITUENT	DEPTH (ft) RESULT TYPE	Unrestricted SCO	Alternative SCO	10.00 Primary	10.50 Primary	2.00 Primary	20.00 Primary
Nitrobenzene	(ug/kg)			72 U	73 U	75 U	73 U
N-Nitrosodiphenylamine	(ug/kg)			180 U	180 U	190 U	180 U
N-Nitrosodipropylamine	(ug/kg)			72 U	73 U	75 U	73 U
o-Cresol	(ug/kg)	330		72 U	73 U	75 U	73 U
o-Nitroaniline	(ug/kg)			180 U	180 U	190 U	180 U
o-Nitrophenol	(ug/kg)			180 U	180 U	190 U	180 U
p-Chloroaniline	(ug/kg)			180 U	180 U	190 U	180 U
p-Chloro-m-cresol	(ug/kg)			180 U	180 U	190 U	180 U
Pentachlorophenol	(ug/kg)	800		360 U	360 U	370 U	360 U
Phenanthrene	(ug/kg)	100000		36 U	36.9	37 U	36 U
Phenol	(ug/kg)	330		72 U	73 U	75 U	73 U
p-Nitroaniline	(ug/kg)			180 U	180 U	190 U	180 U
p-Nitrophenol	(ug/kg)			360 U	360 U	370 U	360 U
Pyrene	(ug/kg)	100000		36 U	80.0	37 U	36 U
Total SVOCs	(ug/kg)		100000	0.0	647	106	65

Semivolatile Organic Compounds (SVOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft) RESULT TYPE	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	B-CCII-07 JA19524-1 05/27/2009 2.00 Primary	B-CCII-08 JA19602-2 05/28/2009 20.50 Primary	B-CCII-09 JA19985-1 06/02/2009 20.00 Primary	B-CCII-10 JA19985-2 06/02/2009 20.00 Primary
2,4,5-Trichlorophenol	(ug/kg)	300	300	190 U	180 U	200 U	210 U
2,4,6-Trichlorophenol	(ug/kg)			190 U	180 U	200 U	210 U
2,4-Dichlorophenol	(ug/kg)			190 U	180 U	200 U	210 U
2,4-Dimethylphenol	(ug/kg)			190 U	180 U	200 U	210 U
2,4-Dinitrophenol	(ug/kg)			770 U	710 U	810 U	840 U
2,4-Dinitrotoluene	(ug/kg)			77 U	71 U	81 U	84 U
2,6-Dinitrotoluene	(ug/kg)			77 U	71 U	81 U	84 U
2-Chloronaphthalene	(ug/kg)			77 U	71 U	81 U	84 U
2-Chlorophenol	(ug/kg)			190 U	180 U	200 U	210 U
2-Methylnaphthalene	(ug/kg)			195	71 U	81 U	84 U
3 & 4-Methylphenol	(ug/kg)	330		77 U	71 U	81 U	84 U
3,3-Dichlorobenzidine	(ug/kg)			190 U	180 U	200 U	210 U
4,6-Dinitro-o-cresol	(ug/kg)			770 U	710 U	810 U	840 U
4-Bromophenyl phenyl ether	(ug/kg)			77 U	71 U	81 U	84 U
4-Chlorophenyl phenyl ether	(ug/kg)			77 U	71 U	81 U	84 U
Acenaphthene	(ug/kg)	20000		39 U	36 U	40 U	42 U
Acenaphthylene	(ug/kg)	100000		83.8	36 U	40 U	42 U

Semivolatile Organic Compounds (SVOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft) RESULT TYPE	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	B-CCII-07 JA19524-1 05/27/2009 2.00 Primary	B-CCII-08 JA19602-2 05/28/2009 20.50 Primary	B-CCII-09 JA19985-1 06/02/2009 20.00 Primary	B-CCII-10 JA19985-2 06/02/2009 20.00 Primary
Acetophenone	(ug/kg)			190 U	180 U	200 U	210 U
Anthracene	(ug/kg)	100000		53.9	36 U	40 U	42 U
Atrazine	(ug/kg)			190 U	180 U	200 U	210 U
Benzaldehyde	(ug/kg)			190 U	180 U	200 U	210 U
Benzo(a)anthracene	(ug/kg)	1000		173	36 U	40 U	42 U
Benzo(a)pyrene	(ug/kg)	1000		243	36 U	40 U	42 U
Benzo(b)fluoranthene	(ug/kg)	1000		299	36 U	40 U	42 U
Benzo(ghi)perylene	(ug/kg)	100000		262	36 U	40 U	42 U
Benzo(k)fluoranthene	(ug/kg)	800		28.9 J	36 U	40 U	42 U
Biphenyl	(ug/kg)			77 U	71 U	81 U	84 U
Bis(2-chloroethoxy)methane	(ug/kg)			77 U	71 U	81 U	84 U
Bis(2-chloroethyl)ether	(ug/kg)			77 U	71 U	81 U	84 U
Bis(2-chloroisopropyl)ether	(ug/kg)			77 U	71 U	81 U	84 U
Bis(2-ethylhexyl)phthalate (BEHP)	(ug/kg)			118	71 U	81 U	84 U
Butyl benzyl phthalate	(ug/kg)			77 U	71 U	81 U	84 U
Caprolactam	(ug/kg)			77 U	71 U	81 U	84 U
Carbazole	(ug/kg)			35.9 J	71 U	81 U	84 U

Semivolatile Organic Compounds (SVOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft) RESULT TYPE	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	B-CCII-07 JA19524-1 05/27/2009 2.00 Primary	B-CCII-08 JA19602-2 05/28/2009 20.50 Primary	B-CCII-09 JA19985-1 06/02/2009 20.00 Primary	B-CCII-10 JA19985-2 06/02/2009 20.00 Primary
Chrysene	(ug/kg)	1000		186	36 U	40 U	42 U
Dibenzo(a,h)anthracene	(ug/kg)	330		65.7	36 U	40 U	42 U
Dibenzofuran	(ug/kg)	7000		77 U	71 U	81 U	84 U
Diethyl phthalate	(ug/kg)			77 U	71 U	81 U	84 U
Dimethyl phthalate	(ug/kg)			77 U	71 U	81 U	84 U
Di-n-butyl phthalate	(ug/kg)			77 U	92.6	81 U	84 U
Di-n-octyl phthalate	(ug/kg)			77 U	71 U	81 U	84 U
Fluoranthene	(ug/kg)	100000		286	36 U	40 U	42 U
Fluorene	(ug/kg)	30000		39 U	36 U	40 U	42 U
Hexachlorobenzene	(ug/kg)	330		77 U	71 U	81 U	84 U
Hexachlorobutadiene	(ug/kg)			39 U	36 U	40 U	42 U
Hexachlorocyclopentadiene	(ug/kg)			770 U	710 U	810 U	840 U
Hexachloroethane	(ug/kg)			190 U	180 U	200 U	210 U
Indeno(1,2,3-cd)pyrene	(ug/kg)	500		200	36 U	40 U	42 U
Isophorone	(ug/kg)			77 U	71 U	81 U	84 U
m-Nitroaniline	(ug/kg)			190 U	180 U	200 U	210 U
Naphthalene	(ug/kg)	12000		49.1	36 U	40 U	42 U

Semivolatile Organic Compounds (SVOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft) RESULT TYPE	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	B-CCII-07 JA19524-1 05/27/2009 2.00 Primary	B-CCII-08 JA19602-2 05/28/2009 20.50 Primary	B-CCII-09 JA19985-1 06/02/2009 20.00 Primary	B-CCII-10 JA19985-2 06/02/2009 20.00 Primary
Nitrobenzene	(ug/kg)			77 U	71 U	81 U	84 U
N-Nitrosodiphenylamine	(ug/kg)			190 U	180 U	200 U	210 U
N-Nitrosodipropylamine	(ug/kg)			77 U	71 U	81 U	84 U
o-Cresol	(ug/kg)	330		77 U	71 U	81 U	84 U
o-Nitroaniline	(ug/kg)			190 U	180 U	200 U	210 U
o-Nitrophenol	(ug/kg)			190 U	180 U	200 U	210 U
p-Chloroaniline	(ug/kg)			190 U	180 U	200 U	210 U
p-Chloro-m-cresol	(ug/kg)			190 U	180 U	200 U	210 U
Pentachlorophenol	(ug/kg)	800		390 U	360 U	400 U	420 U
Phenanthrene	(ug/kg)	100000		146	36 U	40 U	42 U
Phenol	(ug/kg)	330		77 U	71 U	81 U	84 U
p-Nitroaniline	(ug/kg)			190 U	180 U	200 U	210 U
p-Nitrophenol	(ug/kg)			390 U	360 U	400 U	420 U
Pyrene	(ug/kg)	100000		258	36 U	40 U	42 U
Total SVOCs	(ug/kg)		100000	2683	93	0.0	0.0

Semivolatile Organic Compounds (SVOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft) RESULT TYPE	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	B-CCII-12 JA20601-1 06/10/2009 20.50 Primary	B-CCII-12 JA20601-6 06/10/2009 20.50 Duplicate 1	SW-CCII-09 JA19602-1 05/28/2009 18.50 Primary	SW-CCII-10 JA20601-2 06/10/2009 14.00 Primary
2,4,5-Trichlorophenol	(ug/kg)			190 U	190 U	180 U	180 U
2,4,6-Trichlorophenol	(ug/kg)			190 U	190 U	180 U	180 U
2,4-Dichlorophenol	(ug/kg)			190 U	190 U	180 U	180 U
2,4-Dimethylphenol	(ug/kg)			190 U	190 U	180 U	180 U
2,4-Dinitrophenol	(ug/kg)			780 U	780 U	720 U	730 U
2,4-Dinitrotoluene	(ug/kg)			78 U	78 U	72 U	73 U
2,6-Dinitrotoluene	(ug/kg)			78 U	78 U	72 U	73 U
2-Chloronaphthalene	(ug/kg)			78 U	78 U	72 U	73 U
2-Chlorophenol	(ug/kg)			190 U	190 U	180 U	180 U
2-Methylnaphthalene	(ug/kg)			78 U	78 U	23.6 J	73 U
3 & 4-Methylphenol	(ug/kg)	330		78 U	78 U	72 U	73 U
3,3-Dichlorobenzidine	(ug/kg)			190 U	190 U	180 U	180 U
4,6-Dinitro-o-cresol	(ug/kg)			780 U	780 U	720 U	730 U
4-Bromophenyl phenyl ether	(ug/kg)			78 U	78 U	72 U	73 U
4-Chlorophenyl phenyl ether	(ug/kg)			78 U	78 U	72 U	73 U
Acenaphthene	(ug/kg)	20000		39 U	39 U	36 U	36 U
Acenaphthylene	(ug/kg)	100000		39 U	39 U	36 U	36 U

Semivolatile Organic Compounds (SVOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft) RESULT TYPE	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	B-CCII-12 JA20601-1 06/10/2009 20.50 Primary	B-CCII-12 JA20601-6 06/10/2009 20.50 Duplicate 1	SW-CCII-09 JA19602-1 05/28/2009 18.50 Primary	SW-CCII-10 JA20601-2 06/10/2009 14.00 Primary
Acetophenone	(ug/kg)			190 U	190 U	180 U	180 U
Anthracene	(ug/kg)	100000		39 U	39 U	36 U	36 U
Atrazine	(ug/kg)			190 U	190 U	180 U	180 U
Benzaldehyde	(ug/kg)			190 U	190 U	180 U	180 U
Benzo(a)anthracene	(ug/kg)	1000		39 U	39 U	36 U	36 U
Benzo(a)pyrene	(ug/kg)	1000		39 U	39 U	36 U	36 U
Benzo(b)fluoranthene	(ug/kg)	1000		39 U	39 U	36 U	36 U
Benzo(ghi)perylene	(ug/kg)	100000		39 U	39 U	36 U	36 U
Benzo(k)fluoranthene	(ug/kg)	800		39 U	39 U	36 U	36 U
Biphenyl	(ug/kg)			78 U	78 U	72 U	73 U
Bis(2-chloroethoxy)methane	(ug/kg)			78 U	78 U	72 U	73 U
Bis(2-chloroethyl)ether	(ug/kg)			78 U	78 U	72 U	73 U
Bis(2-chloroisopropyl)ether	(ug/kg)			78 U	78 U	72 U	73 U
Bis(2-ethylhexyl)phthalate (BEHP)	(ug/kg)			78 U	78 U	72 U	73 U
Butyl benzyl phthalate	(ug/kg)			78 U	78 U	72 U	73 U
Caprolactam	(ug/kg)			78 U	78 U	72 U	73 U
Carbazole	(ug/kg)			78 U	78 U	72 U	73 U

Semivolatile Organic Compounds (SVOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft) RESULT TYPE	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	B-CCII-12 JA20601-1 06/10/2009 20.50 Primary	B-CCII-12 JA20601-6 06/10/2009 20.50 Duplicate 1	SW-CCII-09 JA19602-1 05/28/2009 18.50 Primary	SW-CCII-10 JA20601-2 06/10/2009 14.00 Primary
Chrysene	(ug/kg)	1000		39 U	39 U	36 U	36 U
Dibenzo(a,h)anthracene	(ug/kg)	330		39 U	39 U	36 U	36 U
Dibenzofuran	(ug/kg)	7000		78 U	78 U	72 U	73 U
Diethyl phthalate	(ug/kg)			78 U	78 U	72 U	73 U
Dimethyl phthalate	(ug/kg)			78 U	78 U	72 U	73 U
Di-n-butyl phthalate	(ug/kg)			78 U	78 U	72 U	73 U
Di-n-octyl phthalate	(ug/kg)			78 U	78 U	72 U	73 U
Fluoranthene	(ug/kg)	100000		39 U	39 U	36 U	36 U
Fluorene	(ug/kg)	30000		39 U	39 U	36 U	36 U
Hexachlorobenzene	(ug/kg)	330		78 U	78 U	72 U	73 U
Hexachlorobutadiene	(ug/kg)			39 U	39 U	36 U	36 U
Hexachlorocyclopentadiene	(ug/kg)			780 U	780 U	720 U	730 U
Hexachloroethane	(ug/kg)			190 U	190 U	180 U	180 U
Indeno(1,2,3-cd)pyrene	(ug/kg)	500		39 U	39 U	36 U	36 U
Isophorone	(ug/kg)			78 U	78 U	72 U	73 U
m-Nitroaniline	(ug/kg)			190 U	190 U	180 U	180 U
Naphthalene	(ug/kg)	12000		39 U	39 U	36 U	36 U

Semivolatile Organic Compounds (SVOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft) RESULT TYPE	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	B-CCII-12 JA20601-1 06/10/2009 20.50 Primary	B-CCII-12 JA20601-6 06/10/2009 20.50 Duplicate 1	SW-CCII-09 JA19602-1 05/28/2009 18.50 Primary	SW-CCII-10 JA20601-2 06/10/2009 14.00 Primary
Nitrobenzene	(ug/kg)			78 U	78 U	72 U	73 U
N-Nitrosodiphenylamine	(ug/kg)			190 U	190 U	180 U	180 U
N-Nitrosodipropylamine	(ug/kg)			78 U	78 U	72 U	73 U
o-Cresol	(ug/kg)	330		78 U	78 U	72 U	73 U
o-Nitroaniline	(ug/kg)			190 U	190 U	180 U	180 U
o-Nitrophenol	(ug/kg)			190 U	190 U	180 U	180 U
p-Chloroaniline	(ug/kg)			190 U	190 U	180 U	180 U
p-Chloro-m-cresol	(ug/kg)			190 U	190 U	180 U	180 U
Pentachlorophenol	(ug/kg)	800		390 U	390 U	360 U	360 U
Phenanthrene	(ug/kg)	100000		39 U	39 U	36 U	36 U
Phenol	(ug/kg)	330		78 U	78 U	72 U	73 U
p-Nitroaniline	(ug/kg)			190 U	190 U	180 U	180 U
p-Nitrophenol	(ug/kg)			390 U	390 U	360 U	360 U
Pyrene	(ug/kg)	100000		39 U	39 U	36 U	36 U
Total SVOCs	(ug/kg)		100000	0.0	0.0	24	0.0

Semivolatile Organic Compounds (SVOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft)	6NYCRR PART 375 Unrestricted	Track 4 Alternative	SW-CCII-11 JA20601-3 06/10/2009 14.00	SW-CCII-12 JA20601-4 06/10/2009 14.00	SW-CCII-13 JA20601-5 06/10/2009 14.00	
	RESULT TYPE	SCO	SCO	Primary	Primary	Primary	
2,4,5-Trichlorophenol	(ug/kg)			200 U	200 U	210 U	
2,4,6-Trichlorophenol	(ug/kg)			200 U	200 U	210 U	
2,4-Dichlorophenol	(ug/kg)			200 U	200 U	210 U	
2,4-Dimethylphenol	(ug/kg)			200 U	200 U	210 U	
2,4-Dinitrophenol	(ug/kg)			810 U	800 U	860 U	
2,4-Dinitrotoluene	(ug/kg)			81 U	80 U	86 U	
2,6-Dinitrotoluene	(ug/kg)			81 U	80 U	86 U	
2-Chloronaphthalene	(ug/kg)			81 U	80 U	86 U	
2-Chlorophenol	(ug/kg)			200 U	200 U	210 U	
2-Methylnaphthalene	(ug/kg)			81 U	80 U	86 U	
3 & 4-Methylphenol	(ug/kg)	330		81 U	80 U	86 U	
3,3-Dichlorobenzidine	(ug/kg)			200 U	200 U	210 U	
4,6-Dinitro-o-cresol	(ug/kg)			810 U	800 U	860 U	
4-Bromophenyl phenyl ether	(ug/kg)			81 U	80 U	86 U	
4-Chlorophenyl phenyl ether	(ug/kg)			81 U	80 U	86 U	
Acenaphthene	(ug/kg)	20000		40 U	40 U	43 U	
Acenaphthylene	(ug/kg)	100000		40 U	40 U	43 U	

Semivolatile Organic Compounds (SVOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft) RESULT TYPE	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	SW-CCII-11 JA20601-3 06/10/2009 14.00 Primary	SW-CCII-12 JA20601-4 06/10/2009 14.00 Primary	SW-CCII-13 JA20601-5 06/10/2009 14.00 Primary
Acetophenone	(ug/kg)			200 U	200 U	210 U
Anthracene	(ug/kg)	100000		40 U	40 U	43 U
Atrazine	(ug/kg)			200 U	200 U	210 U
Benzaldehyde	(ug/kg)			200 U	200 U	210 U
Benzo(a)anthracene	(ug/kg)	1000		40 U	40 U	43 U
Benzo(a)pyrene	(ug/kg)	1000		40 U	40 U	43 U
Benzo(b)fluoranthene	(ug/kg)	1000		40 U	40 U	43 U
Benzo(ghi)perylene	(ug/kg)	100000		40 U	40 U	43 U
Benzo(k)fluoranthene	(ug/kg)	800		40 U	40 U	43 U
Biphenyl	(ug/kg)			81 U	80 U	86 U
Bis(2-chloroethoxy)methane	(ug/kg)			81 U	80 U	86 U
Bis(2-chloroethyl)ether	(ug/kg)			81 U	80 U	86 U
Bis(2-chloroisopropyl)ether	(ug/kg)			81 U	80 U	86 U
Bis(2-ethylhexyl)phthalate (BEHP)	(ug/kg)			81 U	80 U	86 U
Butyl benzyl phthalate	(ug/kg)			81 U	80 U	86 U
Caprolactam	(ug/kg)			81 U	80 U	86 U
Carbazole	(ug/kg)			81 U	80 U	86 U

Semivolatile Organic Compounds (SVOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft) RESULT TYPE	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	SW-CCII-11 JA20601-3 06/10/2009 14.00 Primary	SW-CCII-12 JA20601-4 06/10/2009 14.00 Primary	SW-CCII-13 JA20601-5 06/10/2009 14.00 Primary
Chrysene	(ug/kg)	1000		40 U	40 U	43 U
Dibenzo(a,h)anthracene	(ug/kg)	330		40 U	40 U	43 U
Dibenzofuran	(ug/kg)	7000		81 U	80 U	86 U
Diethyl phthalate	(ug/kg)			81 U	80 U	86 U
Dimethyl phthalate	(ug/kg)			81 U	80 U	86 U
Di-n-butyl phthalate	(ug/kg)			81 U	80 U	86 U
Di-n-octyl phthalate	(ug/kg)			81 U	80 U	86 U
Fluoranthene	(ug/kg)	100000		40 U	40 U	43 U
Fluorene	(ug/kg)	30000		40 U	40 U	43 U
Hexachlorobenzene	(ug/kg)	330		81 U	80 U	86 U
Hexachlorobutadiene	(ug/kg)			40 U	40 U	43 U
Hexachlorocyclopentadiene	(ug/kg)			810 U	800 U	860 U
Hexachloroethane	(ug/kg)			200 U	200 U	210 U
Indeno(1,2,3-cd)pyrene	(ug/kg)	500		40 U	40 U	43 U
Isophorone	(ug/kg)			81 U	80 U	86 U
m-Nitroaniline	(ug/kg)			200 U	200 U	210 U
Naphthalene	(ug/kg)	12000		40 U	40 U	43 U

Semivolatile Organic Compounds (SVOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft) RESULT TYPE	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	SW-CCII-11 JA20601-3 06/10/2009 14.00 Primary	SW-CCII-12 JA20601-4 06/10/2009 14.00 Primary	SW-CCII-13 JA20601-5 06/10/2009 14.00 Primary
Nitrobenzene	(ug/kg)			81 U	80 U	86 U
N-Nitrosodiphenylamine	(ug/kg)			200 U	200 U	210 U
N-Nitrosodipropylamine	(ug/kg)			81 U	80 U	86 U
o-Cresol	(ug/kg)	330		81 U	80 U	86 U
o-Nitroaniline	(ug/kg)			200 U	200 U	210 U
o-Nitrophenol	(ug/kg)			200 U	200 U	210 U
p-Chloroaniline	(ug/kg)			200 U	200 U	210 U
p-Chloro-m-cresol	(ug/kg)			200 U	200 U	210 U
Pentachlorophenol	(ug/kg)	800		400 U	400 U	430 U
Phenanthrene	(ug/kg)	100000		40 U	40 U	43 U
Phenol	(ug/kg)	330		81 U	80 U	86 U
p-Nitroaniline	(ug/kg)			200 U	200 U	210 U
p-Nitrophenol	(ug/kg)			400 U	400 U	430 U
Pyrene	(ug/kg)	100000		40 U	40 U	43 U
Total SVOCs	(ug/kg)		100000	0.0	0.0	0.0

Table 4-3C Soil Analytical Results Final Bottom Samples Metals Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft) RESULT TYPE	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	B-CCII-02 JA17262-2 04/24/2009 10.00 Primary	B-CCII-03 JA17650-1 04/30/2009 10.50 Primary	B-CCII-04 JA19465-1 05/26/2009 2.00 Primary	B-CCII-05 JA19465-2 05/26/2009 20.00 Primary
Aluminum	(mg/kg)			7880 J	10200 J	6310	5370
Antimony	(mg/kg)			2.1 U J	2.2 U J	2.3 U J	2.1 U J
Arsenic	(mg/kg)	13		2.1 U	2.2	2.3 U	2.1 U
Barium	(mg/kg)	350	820	40.0	98.0	44.5	36.0
Beryllium	(mg/kg)	7.2		0.51 U	0.56 U	0.57 U	0.53 U
Cadmium	(mg/kg)	2.5		0.51 U	0.75	0.57 U	0.53 U
Calcium	(mg/kg)			2060	14000 J	26900 J	26500 J
Chromium	(mg/kg)			25.4	25.0	16.4	15.3
Cobalt	(mg/kg)			7.1	7.2 J	6.0	5.6
Copper	(mg/kg)	50	1720	19.0	33.7	16.8	13.3
Iron	(mg/kg)			14300 J	13500	12000 J	11600 J
Lead	(mg/kg)	63	450	10.5 J	[79.8] J	7.0	5.9
Magnesium	(mg/kg)			3970 J	6340 J	17500 J	16700 J
Manganese	(mg/kg)	1600		131 J	257 J	213	184
Mercury	(mg/kg)	0.18	0.73	0.035 U	0.11	0.035 U	0.032 U
Nickel	(mg/kg)	30		15.5	14.6 J	13.5	13.0
Potassium	(mg/kg)			1800 J	1870 J	1820	1570

Metals

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

	SITE LAB SAMPLE ID DATE	6NYCRR PART 375	Track 4	B-CCII-02 JA17262-2 04/24/2009	B-CCII-03 JA17650-1 04/30/2009	B-CCII-04 JA19465-1 05/26/2009	B-CCII-05 JA19465-2 05/26/2009
CONSTITUENT	DEPTH (ft)	Unrestricted	Alternative	10.00	10.50	2.00	20.00
	RESULT TYPE	SCO	SCO	Primary	Primary	Primary	Primary
Selenium	(mg/kg)	3.9		2.1 U	2.2 U	2.3 U	2.1 U
Silver	(mg/kg)	2		1.0 U	1.1 U	1.1 U	1.1 U
Sodium	(mg/kg)			1000 U	1100 U	1100 U	1100 U
Thallium	(mg/kg)			1.0 U	1.1 U	1.1 U	1.1 U
Vanadium	(mg/kg)			28.9	25.1	23.1	20.8
Zinc	(mg/kg)	109	2480	66.8 J	[206] J	36.2	36.0

Table 4 Soil Analytical Results Final Bottom Samples Metals Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft) RESULT TYPE	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	B-CCII-07 JA19524-1 05/27/2009 2.00 Primary	B-CCII-08 JA19602-2 05/28/2009 20.50 Primary	B-CCII-09 JA19985-1 06/02/2009 20.00 Primary	B-CCII-10 JA19985-2 06/02/2009 20.00 Primary
Aluminum	(mg/kg)			10700 J	4670	3940	10000
Antimony	(mg/kg)			2.3 U J	2.1 U	2.5 U	2.4 U
Arsenic	(mg/kg)	13		2.7	2.1 U	2.5 U	2.4 U
Barium	(mg/kg)	350	820	124	30.7	25 U	56.7
Beryllium	(mg/kg)	7.2		0.57 U	0.52 U	0.62 U	0.61 U
Cadmium	(mg/kg)	2.5		0.57 U	0.52 U	0.62 U	0.61 U
Calcium	(mg/kg)			13900	41400	12700	15600
Chromium	(mg/kg)			21.9	12.1	12.0	25.1
Cobalt	(mg/kg)			8.3	5.2 U	6.2 U	8.7
Copper	(mg/kg)	50	1720	27.3	12.6 J	10.6	18.3
Iron	(mg/kg)			15300	11900	7440	14000
Lead	(mg/kg)	63	450	[240]	2.1 U	2.5 U	5.1
Magnesium	(mg/kg)			9310	25400	9000	15900
Manganese	(mg/kg)	1600		266	403	112	184
Mercury	(mg/kg)	0.18	0.73	[0.30]	0.034 U	0.035 U	0.040 U
Nickel	(mg/kg)	30		15.7	8.8	7.8	18.7
Potassium	(mg/kg)			1950 J	1460 J	1200 U J	2880 J

Table 4 Soil Analytical Results

Final Bottom Samples
Metals

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft)	6NYCRR PART 375 Unrestricted	Track 4 Alternative	B-CCII-07 JA19524-1 05/27/2009 2.00	B-CCII-08 JA19602-2 05/28/2009 20.50	B-CCII-09 JA19985-1 06/02/2009 20.00	B-CCII-10 JA19985-2 06/02/2009 20.00
	RESULT TYPE	SCO	SCO	Primary	Primary	Primary	Primary
Selenium	(mg/kg)	3.9		2.3 U	2.1 U	2.5 U	2.4 U
Silver	(mg/kg)	2		1.1 U	1.0 U	1.2 U	1.2 U
Sodium	(mg/kg)			1100 U	1000 U	1200 U	1200 U
Thallium	(mg/kg)			1.1 U	1.0 U	1.2 U	1.2 U
Vanadium	(mg/kg)			27.1	17.6	14.3	29.1
Zinc	(mg/kg)	109	2480	[138]	21.8	19.3	[117]

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft) RESULT TYPE	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	B-CCII-12 JA20601-1 06/10/2009 20.50 Primary	B-CCII-12 JA20601-6 06/10/2009 20.50 Duplicate 1	SW-CCII-09 JA19602-1 05/28/2009 18.50 Primary	SW-CCII-10 JA20601-2 06/10/2009 14.00 Primary
Aluminum	(mg/kg)			5460	6740	5300	4680
Antimony	(mg/kg)			2.4 U J	2.4 U J	2.2 U	2.1 U J
Arsenic	(mg/kg)	13		2.4 U	2.4 U	2.2 U	2.1 U
Barium	(mg/kg)	350	820	36.7	41.6	30.7	24.8
Beryllium	(mg/kg)	7.2		0.61 U	0.59 U	0.54 U	0.52 U
Cadmium	(mg/kg)	2.5		0.61 U	0.59 U	0.54 U	0.52 U
Calcium	(mg/kg)			12800 J	11400 J	27300	2090 J
Chromium	(mg/kg)			16.5	21.2	14.4	16.1
Cobalt	(mg/kg)			6.1 U J	6.7 J	5.6	5.2 U
Copper	(mg/kg)	50	1720	14.7	19.2	15.9 J	11.8
Iron	(mg/kg)			8810 J	10400 J	10300	7840 J
Lead	(mg/kg)	63	450	2.6	3.6	2.3	2.3
Magnesium	(mg/kg)			9310	8850	17200	2720
Manganese	(mg/kg)	1600		147 J	155 J	209	73.4 J
Mercury	(mg/kg)	0.18	0.73	0.036 U	0.038 U	0.035 U	0.032 U
Nickel	(mg/kg)	30		10.9 J	14.2 J	10.3	11.2 J
Potassium	(mg/kg)			1610	1870	1550 J	1050

Metals

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

	SITE LAB SAMPLE ID	CANVODD DADT 275	Track 4	B-CCII-12 JA20601-1	B-CCII-12 JA20601-6	SW-CCII-09 JA19602-1	SW-CCII-10 JA20601-2
CONSTITUENT	DATE DEPTH (ft) RESULT TYPE	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	06/10/2009 20.50 Primary	06/10/2009 20.50 Duplicate 1	05/28/2009 18.50 Primary	06/10/2009 14.00 Primary
Selenium	(mg/kg)	3.9		2.4 U	2.4 U	2.2 U	2.1 U
Silver	(mg/kg)	2		1.2 U	1.2 U	1.1 U	1.0 U
Sodium	(mg/kg)			1200 U	1200 U	1100 U	1000 U
Thallium	(mg/kg)			1.2 U	1.2 U	1.1 U	1.0 U
Vanadium	(mg/kg)			19.6	23.0	20.6	15.8
Zinc	(mg/kg)	109	2480	25.3 J	32.6 J	22.7	22.3 J

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft) RESULT TYPE	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	SW-CCII-11 JA20601-3 06/10/2009 14.00 Primary	SW-CCII-12 JA20601-4 06/10/2009 14.00 Primary	SW-CCII-13 JA20601-5 06/10/2009 14.00 Primary	
Aluminum	(mg/kg)			7460	9520	16900	
Antimony	(mg/kg)			2.3 U J	2.3 U J	2.5 U J	
Arsenic	(mg/kg)	13		2.3 U	2.3 U	2.5 U	
Barium	(mg/kg)	350	820	47.8	67.5	125	
Beryllium	(mg/kg)	7.2		0.58 U	0.58 U	0.64 U	
Cadmium	(mg/kg)	2.5		0.58 U	0.58 U	0.64 U	
Calcium	(mg/kg)			2410 J	2830 J	13900 J	
Chromium	(mg/kg)			21.1	20.3	33.4	
Cobalt	(mg/kg)			7.3	7.3	15.5	
Copper	(mg/kg)	50	1720	17.0	16.2	31.7	
Iron	(mg/kg)			10200 J	13100 J	26000 J	
Lead	(mg/kg)	63	450	3.6	52.5	5.2	
Magnesium	(mg/kg)			4080	4330	16300	
Manganese	(mg/kg)	1600		107 J	151 J	304 J	
Mercury	(mg/kg)	0.18	0.73	0.040 U	0.078	0.041 U	
Nickel	(mg/kg)	30		16.1 J	13.9 J	27.0 J	
Potassium	(mg/kg)			1510	1850	6070	

Table 4

Soil Analytical Results

Final Bottom Samples

Metals

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

	SITE LAB SAMPLE ID			SW-CCII-11 JA20601-3	SW-CCII-12 JA20601-4	SW-CCII-13 JA20601-5
CONSTITUENT	DATE DEPTH (ft) RESULT TYPE	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	06/10/2009 14.00 Primary	06/10/2009 14.00 Primary	06/10/2009 14.00 Primary
Selenium	(mg/kg)	3.9		2.3 U	2.3 U	2.5 U
Silver	(mg/kg)	2		1.2 U	1.2 U	1.3 U
Sodium	(mg/kg)			1200 U	1200 U	1300 U
Thallium	(mg/kg)			1.2 U	1.2 U	1.3 U
Vanadium	(mg/kg)			20.9	25.2	46.7
Zinc	(mg/kg)	109	2480	31.3 J	44.6 J	76.3 J

Table 4-3D Soil Analytical Results

Final Bottom Samples

Pesticide Compounds

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft) RESULT TYPE	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	B-CCII-02 JA17262-2 04/24/2009 10.00 Primary	B-CCII-03 JA17650-1 04/30/2009 10.50 Primary	B-CCII-04 JA19465-1 05/26/2009 2.00 Primary	B-CCII-05 JA19465-2 05/26/2009 20.00 Primary
4,4'-DDD	(ug/kg)	3.3		1.4 U	2.4	1.5 U	1.5 U
4,4'-DDE	(ug/kg)	3.3		1.4 U	3.3	1.5 U	1.5 U
4,4'-DDT	(ug/kg)	3.3		1.4 U	[12.6]	1.5 U	1.5 U
Aldrin	(ug/kg)	5		1.4 U	1.4 U	1.5 U	1.5 U
alpha-BHC	(ug/kg)	20		1.4 U	1.4 U	1.5 U	1.5 U
alpha-Chlordane	(ug/kg)	94		1.4 U	1.4 U	1.5 U	1.5 U
beta-BHC	(ug/kg)	36		1.4 U	1.4 U	1.5 U	1.5 U
delta-BHC	(ug/kg)	40		1.4 U	1.4 U	1.5 U	1.5 U
Dieldrin	(ug/kg)	5		1.4 U	1.4 U	1.5 U	1.5 U
Endosulfan I	(ug/kg)	2400		1.4 U	1.4 U	1.5 U	1.5 U
Endosulfan II	(ug/kg)	2400		1.4 U	1.4 U	1.5 U	1.5 U
Endosulfan sulfate	(ug/kg)	2400		1.4 U	1.4 U	1.5 U	1.5 U
Endrin	(ug/kg)	14		1.4 U	1.4 U	1.5 U	1.5 U
Endrin aldehyde	(ug/kg)			1.4 U	1.4 U	1.5 U	1.5 U
Endrin ketone	(ug/kg)			1.4 U	1.4 U	1.5 U	1.5 U
gamma-Chlordane	(ug/kg)			1.4 U	1.4 U	1.5 U	1.5 U
Heptachlor	(ug/kg)	42		1.4 U	1.4 U	1.5 U	1.5 U

Table 3

Soil Analytical Results

Final Bottom Samples

Pesticide Compounds

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft) RESULT TYPE	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	B-CCII-02 JA17262-2 04/24/2009 10.00 Primary	B-CCII-03 JA17650-1 04/30/2009 10.50 Primary	B-CCII-04 JA19465-1 05/26/2009 2.00 Primary	B-CCII-05 JA19465-2 05/26/2009 20.00 Primary
Heptachlor epoxide	(ug/kg)			1.4 U	1.4 U	1.5 U	1.5 U
Lindane	(ug/kg)	100		1.4 U	1.4 U	1.5 U	1.5 U
Methoxychlor	(ug/kg)			1.4 U	1.4 U	1.5 U	1.5 U
Toxaphene	(ug/kg)			18 U	18 U	19 U	18 U

Table 3 Soil Analytical Results Final Bottom Samples Pesticide Compounds Courtlandt Corners II 895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft) RESULT TYPE	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	B-CCII-07 JA19524-1 05/27/2009 2.00 Primary	B-CCII-08 JA19602-2 05/28/2009 20.50 Primary	B-CCII-09 JA19985-1 06/02/2009 20.00 Primary	B-CCII-10 JA19985-2 06/02/2009 20.00 Primary
4,4'-DDD	(ug/kg)	3.3		1.5 U	1.4 U	1.6 U	1.7 U
4,4'-DDE	(ug/kg)	3.3		[3.6]	1.4 U	1.6 U	1.7 U
4,4'-DDT	(ug/kg)	3.3		[18.8] J	1.4 U	1.6 U	1.7 U
Aldrin	(ug/kg)	5		1.5 U	1.4 U	1.6 U	1.7 U
alpha-BHC	(ug/kg)	20		1.5 U	1.4 U	1.6 U	1.7 U
alpha-Chlordane	(ug/kg)	94		1.5 U	1.4 U	1.6 U	1.7 U
beta-BHC	(ug/kg)	36		1.5 U	1.4 U	1.6 U	1.7 U
delta-BHC	(ug/kg)	40		1.5 U	1.4 U	1.6 U	1.7 U
Dieldrin	(ug/kg)	5		1.5 U	1.4 U	1.6 U	1.7 U
Endosulfan I	(ug/kg)	2400		1.5 U	1.4 U	1.6 U	1.7 U
Endosulfan II	(ug/kg)	2400		1.5 U	1.4 U	1.6 U	1.7 U
Endosulfan sulfate	(ug/kg)	2400		1.5 U	1.4 U	1.6 U	1.7 U
Endrin	(ug/kg)	14		1.5 U	1.4 U	1.6 U	1.7 U
Endrin aldehyde	(ug/kg)			1.5 U	1.4 U	1.6 U	1.7 U
Endrin ketone	(ug/kg)			1.5 U	1.4 U	1.6 U	1.7 U
gamma-Chlordane	(ug/kg)			1.5 U	1.4 U	1.6 U	1.7 U
Heptachlor	(ug/kg)	42		1.5 U	1.4 U	1.6 U	1.7 U

Table 3

Soil Analytical Results

Final Bottom Samples

Pesticide Compounds

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft) RESULT TYPE	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	B-CCII-07 JA19524-1 05/27/2009 2.00 Primary	B-CCII-08 JA19602-2 05/28/2009 20.50 Primary	B-CCII-09 JA19985-1 06/02/2009 20.00 Primary	B-CCII-10 JA19985-2 06/02/2009 20.00 Primary
Heptachlor epoxide	(ug/kg)			1.5 U	1.4 U	1.6 U	1.7 U
Lindane	(ug/kg)	100		1.5 U	1.4 U	1.6 U	1.7 U
Methoxychlor	(ug/kg)			1.5 U	1.4 U	1.6 U	1.7 U
Toxaphene	(ug/kg)			19 U	18 U	20 U	21 U

Table 3 Soil Analytical Results Final Bottom Samples Pesticide Compounds Courtlandt Corners II 895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft) RESULT TYPE	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	B-CCII-12 JA20601-1 06/10/2009 20.50 Primary	B-CCII-12 JA20601-6 06/10/2009 20.50 Duplicate 1	SW-CCII-09 JA19602-1 05/28/2009 18.50 Primary	SW-CCII-10 JA20601-2 06/10/2009 14.00 Primary
4,4'-DDD	(ug/kg)	3.3		1.5 U	1.5 U	1.4 U	1.5 U
4,4'-DDE	(ug/kg)	3.3		1.5 U	1.5 U	1.4 U	1.5 U
4,4'-DDT	(ug/kg)	3.3		1.5 U	1.5 U	1.4 U	1.5 U
Aldrin	(ug/kg)	5		1.5 U	1.5 U	1.4 U	1.5 U
alpha-BHC	(ug/kg)	20		1.5 U	1.5 U	1.4 U	1.5 U
alpha-Chlordane	(ug/kg)	94		1.5 U	1.5 U	1.4 U	1.5 U
beta-BHC	(ug/kg)	36		1.5 U	1.5 U	1.4 U	1.5 U
delta-BHC	(ug/kg)	40		1.5 U	1.5 U	1.4 U	1.5 U
Dieldrin	(ug/kg)	5		1.5 U	1.5 U	1.4 U	1.5 U
Endosulfan I	(ug/kg)	2400		1.5 U	1.5 U	1.4 U	1.5 U
Endosulfan II	(ug/kg)	2400		1.5 U	1.5 U	1.4 U	1.5 U
Endosulfan sulfate	(ug/kg)	2400		1.5 U	1.5 U	1.4 U	1.5 U
Endrin	(ug/kg)	14		1.5 U	1.5 U	1.4 U	1.5 U
Endrin aldehyde	(ug/kg)			1.5 U	1.5 U	1.4 U	1.5 U
Endrin ketone	(ug/kg)			1.5 U	1.5 U	1.4 U	1.5 U
gamma-Chlordane	(ug/kg)			1.5 U	1.5 U	1.4 U	1.5 U
Heptachlor	(ug/kg)	42		1.5 U	1.5 U	1.4 U	1.5 U

Table 3

Soil Analytical Results

Final Bottom Samples

Pesticide Compounds

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04

From 04/24/2009 thru 06/10/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft) RESULT TYPE	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	B-CCII-12 JA20601-1 06/10/2009 20.50 Primary	B-CCII-12 JA20601-6 06/10/2009 20.50 Duplicate 1	SW-CCII-09 JA19602-1 05/28/2009 18.50 Primary	SW-CCII-10 JA20601-2 06/10/2009 14.00 Primary
Heptachlor epoxide	(ug/kg)			1.5 U	1.5 U	1.4 U	1.5 U
Lindane	(ug/kg)	100		1.5 U	1.5 U	1.4 U	1.5 U
Methoxychlor	(ug/kg)			1.5 U	1.5 U	1.4 U	1.5 U
Toxaphene	(ug/kg)			19 U	19 U	18 U	18 U

Table 3 Soil Analytical Results Final Bottom Samples Pesticide Compounds Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft) RESULT TYPE	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	SW-CCII-11 JA20601-3 06/10/2009 14.00 Primary	SW-CCII-12 JA20601-4 06/10/2009 14.00 Primary	SW-CCII-13 JA20601-5 06/10/2009 14.00 Primary
4,4'-DDD	(ug/kg)	3.3		1.6 U	1.6 U	1.7 U
4,4'-DDE	(ug/kg)	3.3		1.6 U	1.6 U	1.7 U
4,4'-DDT	(ug/kg)	3.3		1.6 U	1.6 U	1.7 U
Aldrin	(ug/kg)	5		1.6 U	1.6 U	1.7 U
alpha-BHC	(ug/kg)	20		1.6 U	1.6 U	1.7 U
alpha-Chlordane	(ug/kg)	94		1.6 U	1.6 U	1.7 U
beta-BHC	(ug/kg)	36		1.6 U	1.6 U	1.7 U
delta-BHC	(ug/kg)	40		1.6 U	1.6 U	1.7 U
Dieldrin	(ug/kg)	5		1.6 U	1.6 U	1.7 U
Endosulfan I	(ug/kg)	2400		1.6 U	1.6 U	1.7 U
Endosulfan II	(ug/kg)	2400		1.6 U	1.6 U	1.7 U
Endosulfan sulfate	(ug/kg)	2400		1.6 U	1.6 U	1.7 U
Endrin	(ug/kg)	14		1.6 U	1.6 U	1.7 U
Endrin aldehyde	(ug/kg)			1.6 U	1.6 U	1.7 U
Endrin ketone	(ug/kg)			1.6 U	1.6 U	1.7 U
gamma-Chlordane	(ug/kg)			1.6 U	1.6 U	1.7 U
Heptachlor	(ug/kg)	42		1.6 U	1.6 U	1.7 U

Table 3

Soil Analytical Results

Final Bottom Samples

Pesticide Compounds

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 06/10/2009 - Inclusive

Heptachlor epoxide (ug/kg) 1.6 U 1.6 U 1.7 U Lindane (ug/kg) 100 1.6 U 1.6 U 1.7 U Methoxychlor (ug/kg) 1.6 U 1.6 U 1.7 U Toxaphene (ug/kg) 20 U 20 U 21 U	CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft) RESULT TYPE	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	SW-CCII-11 JA20601-3 06/10/2009 14.00 Primary	SW-CCII-12 JA20601-4 06/10/2009 14.00 Primary	SW-CCII-13 JA20601-5 06/10/2009 14.00 Primary	
Methoxychlor (ug/kg) 1.6 U 1.6 U 1.7 U	Heptachlor epoxide	(ug/kg)			1.6 U	1.6 U	1.7 U	
	Lindane	(ug/kg)	100		1.6 U	1.6 U	1.7 U	
Toxaphene (ug/kg) 20 U 20 U 21 U	Methoxychlor	(ug/kg)			1.6 U	1.6 U	1.7 U	
	Toxaphene	(ug/kg)			20 U	20 U	21 U	

Volatile Organic Compounds (VOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 05/15/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft)	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	SW-CCII-01 JA17263-1 04/24/2009 23.00	SW-CCII-02 JA18789-1 05/15/2009 18.50	SW-CCII-03 JA18661-6 05/14/2009 18.50	SW-CCII-04 JA18661-5 05/14/2009 18.50
1,1,1-Trichloroethane	(ug/kg)	680		5.4 U	5.6 U	7.1 U	6.3 U
1,1,2,2-Tetrachloroethane	(ug/kg)			5.4 U	5.6 U	7.1 U	6.3 U
1,1,2-Trichloroethane	(ug/kg)			5.4 U	5.6 U	7.1 U	6.3 U
1,1-Dichloroethane	(ug/kg)	270		5.4 U	5.6 U	7.1 U	6.3 U
1,1-Dichloroethene	(ug/kg)	330		5.4 U	5.6 U	7.1 U	6.3 U
1,2,4-Trichlorobenzene	(ug/kg)			5.4 U	5.6 U	7.1 U	6.3 U
1,2,4-Trimethylbenzene	(ug/kg)	3600		5.4 U	5.6 U	32.3	252
1,2-Dibromoethane	(ug/kg)			1.1 U	1.1 U	1.4 U	1.3 U
1,2-Dichlorobenzene	(ug/kg)	1100		5.4 U	5.6 U	7.1 U	6.3 U
1,2-Dichloroethane	(ug/kg)	20		1.1 U	1.1 U	1.4 U	1.3 U
1,2-Dichloropropane	(ug/kg)			5.4 U	5.6 U	7.1 U	6.3 U
1,3,5-Trimethylbenzene	(ug/kg)	8400		5.4 U	5.6 U	13.3	94.9
1,3-Dichlorobenzene	(ug/kg)	2400		5.4 U	5.6 U	7.1 U	6.3 U
1,4-Dichlorobenzene	(ug/kg)	1800		5.4 U	5.6 U	7.1 U	6.3 U
1,4-Dioxane	(ug/kg)	100		140 U	140 U	180 U	160 U
2-Butanone	(ug/kg)	120		11 U	11 U	14 U	13 U
2-Hexanone	(ug/kg)			5.4 U	5.6 U	7.1 U	6.3 U

Volatile Organic Compounds (VOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 05/15/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft)	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	SW-CCII-01 JA17263-1 04/24/2009 23.00	SW-CCII-02 JA18789-1 05/15/2009 18.50	SW-CCII-03 JA18661-6 05/14/2009 18.50	SW-CCII-04 JA18661-5 05/14/2009 18.50
4-Methyl-2-Pentanone	(ug/kg)			5.4 U	5.6 U	7.1 U	6.3 U
Acetone	(ug/kg)	50		11 U	37.2	14 U	13 U
Benzene	(ug/kg)	60		1.1 U	0.79 J	[128]	1.6
Bromodichloromethane	(ug/kg)			5.4 U	5.6 U	7.1 U	6.3 U
Bromoform	(ug/kg)			5.4 U	5.6 U	7.1 U	6.3 U
Bromomethane	(ug/kg)			5.4 U	5.6 U	7.1 U	6.3 U
Carbon Disulfide	(ug/kg)			5.4 U	5.6 U	7.1 U	6.3 U
Carbon Tetrachloride	(ug/kg)	760		5.4 U	5.6 U	7.1 U	6.3 U
Chlorobenzene	(ug/kg)	1100		5.4 U	5.6 U	7.1 U	6.3 U
Chloroethane	(ug/kg)			5.4 U	5.6 U	7.1 U	6.3 U
Chloroform	(ug/kg)	370		5.4 U	5.6 U	7.1 U	6.3 U
Chloromethane	(ug/kg)			5.4 U	5.6 U	7.1 U	6.3 U
cis-1,2-Dichloroethene	(ug/kg)	250		5.4 U	5.6 U	7.1 U	6.3 U
cis-1,3-Dichloropropene	(ug/kg)			5.4 U	5.6 U	7.1 U	6.3 U
Cyclohexane	(ug/kg)			5.4 U	5.6 U	6.0 J	6.3 U
Dibromochloromethane	(ug/kg)			5.4 U	5.6 U	7.1 U	6.3 U
Dibromochloropropane	(ug/kg)			11 U	11 U	14 U	13 U

Volatile Organic Compounds (VOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 05/15/2009 - Inclusive

Dichlorodifluoromethane Ethylbenzene	(ug/kg)		SCO	23.00	05/15/2009 18.50	05/14/2009 18.50	05/14/2009 18.50
Ethylbenzene				5.4 U	5.6 U	7.1 U	6.3 U
	(ug/kg)	1000		1.1 U	1.1 U	4.3	12.1
Freon 113	(ug/kg)			5.4 U	5.6 U	7.1 U	6.3 U
Isopropylbenzene	(ug/kg)			5.4 U	5.6 U	2.9 J	7.6
Methyl Acetate	(ug/kg)			5.4 U	5.6 U	7.1 U	6.3 U
Methyl Cyclohexane	(ug/kg)			5.4 U	5.6 U	9.3	13.5
Methyl Tertiary Butyl Ether	(ug/kg)	930		1.1 U	1.1 U	0.80 J	3.1
Methylene Chloride	(ug/kg)	50		5.4 U	5.6 U	7.1 U	1.8 J
n-Butylbenzene	(ug/kg)	12000		5.4 U	5.6 U	7.1 U	6.3 U
n-Propylbenzene	(ug/kg)	3900		5.4 U	5.6 U	5.0 J	23.8
sec-Butylbenzene	(ug/kg)	11000		5.4 U	5.6 U	1.6 J	6.0 J
Styrene	(ug/kg)			5.4 U	5.6 U	7.1 U	6.3 U
tert-Butylbenzene	(ug/kg)	5900		5.4 U	5.6 U	7.1 U	6.3 U
Tetrachloroethene	(ug/kg)	1300		5.4 U	5.6 U	7.1 U	6.3 U
Toluene	(ug/kg)	700		1.1 U	1.1 U	5.6	6.2
trans-1,2-Dichloroethene	(ug/kg)	190		5.4 U	5.6 U	7.1 U	6.3 U
trans-1,3-Dichloropropene	(ug/kg)			5.4 U	5.6 U	7.1 U	6.3 U

Table 5

Soil Analytical Results

Perimeter Samples

Volatile Organic Compounds (VOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 05/15/2009 - Inclusive

	SITE LAB SAMPLE ID	6NYCRR PART 375	Track 4	SW-CCII-01 JA17263-1	SW-CCII-02 JA18789-1	SW-CCII-03 JA18661-6	SW-CCII-04 JA18661-5
CONSTITUENT	DATE	Unrestricted	Alternative	04/24/2009	05/15/2009	05/14/2009	05/14/2009
	DEPTH (ft)	SCO	SCO	23.00	18.50	18.50	18.50
Trichloroethene	(ug/kg)	470		5.4 U	5.6 U	7.1 U	6.3 U
Trichlorofluoromethane	(ug/kg)			5.4 U	5.6 U	7.1 U	6.3 U
Vinyl chloride	(ug/kg)	20		5.4 U	5.6 U	7.1 U	6.3 U
Xylene (total)	(ug/kg)	260		2.2 U	2.3 U	34.8	142
Total VOCs	(ug/kg)		10000	0.0	37.99	243.9	564.6

Volatile Organic Compounds (VOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 05/15/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft)	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	SW-CCII-05 JA18661-4 05/14/2009 18.50	SW-CCII-06 JA18661-3 05/14/2009 18.50	SW-CCII-07 JA18661-2 05/14/2009 18.50	SW-CCII-08 JA18661-1 05/14/2009 18.50
1,1,1-Trichloroethane	(ug/kg)	680		7.0 U	7.4 U	6.8 U	7.8 U
1,1,2,2-Tetrachloroethane	(ug/kg)			7.0 U	7.4 U	6.8 U	R
1,1,2-Trichloroethane	(ug/kg)			7.0 U	7.4 U	6.8 U	7.8 U
1,1-Dichloroethane	(ug/kg)	270		7.0 U	7.4 U	6.8 U	7.8 U
1,1-Dichloroethene	(ug/kg)	330		7.0 U	7.4 U	6.8 U	7.8 U
1,2,4-Trichlorobenzene	(ug/kg)			7.0 U	7.4 U	6.8 U	7.8 U
1,2,4-Trimethylbenzene	(ug/kg)	3600		11.4	7.4 U	3.1 J	7.1 J
1,2-Dibromoethane	(ug/kg)			1.4 U	1.5 U	1.4 U	1.6 U
1,2-Dichlorobenzene	(ug/kg)	1100		7.0 U	7.4 U	6.8 U	7.8 U
1,2-Dichloroethane	(ug/kg)	20		1.4 U	1.5 U	1.4 U	1.6 U
1,2-Dichloropropane	(ug/kg)			7.0 U	7.4 U	6.8 U	7.8 U
1,3,5-Trimethylbenzene	(ug/kg)	8400		5.4 J	7.4 U	1.8 J	2.9 J
1,3-Dichlorobenzene	(ug/kg)	2400		7.0 U	7.4 U	6.8 U	7.8 U
1,4-Dichlorobenzene	(ug/kg)	1800		7.0 U	7.4 U	6.8 U	7.8 U
1,4-Dioxane	(ug/kg)	100		170 U	180 U	170 U	200 U
2-Butanone	(ug/kg)	120		14 U	15 U	14 U	16 U
2-Hexanone	(ug/kg)			7.0 U	7.4 U	6.8 U	7.8 U

Volatile Organic Compounds (VOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 05/15/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft)	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	SW-CCII-05 JA18661-4 05/14/2009 18.50	SW-CCII-06 JA18661-3 05/14/2009 18.50	SW-CCII-07 JA18661-2 05/14/2009 18.50	SW-CCII-08 JA18661-1 05/14/2009 18.50
4-Methyl-2-Pentanone	(ug/kg)			7.0 U	7.4 U	6.8 U	7.8 U
Acetone	(ug/kg)	50		14 U	15 U	14 U	[71.1]
Benzene	(ug/kg)	60		1.4 U	1.5 U	1.4 U	1.6 U
Bromodichloromethane	(ug/kg)			7.0 U	7.4 U	6.8 U	7.8 U
Bromoform	(ug/kg)			7.0 U	7.4 U	6.8 U	7.8 U
Bromomethane	(ug/kg)			7.0 U	7.4 U	6.8 U	7.8 U
Carbon Disulfide	(ug/kg)			7.0 U	7.4 U	6.8 U	1.7 J
Carbon Tetrachloride	(ug/kg)	760		7.0 U	7.4 U	6.8 U	7.8 U
Chlorobenzene	(ug/kg)	1100		7.0 U	7.4 U	6.8 U	7.8 U
Chloroethane	(ug/kg)			7.0 U	7.4 U	6.8 U	7.8 U
Chloroform	(ug/kg)	370		7.0 U	7.4 U	6.8 U	7.8 U
Chloromethane	(ug/kg)			7.0 U	7.4 U	6.8 U	7.8 U
cis-1,2-Dichloroethene	(ug/kg)	250		7.0 U	7.4 U	6.8 U	7.8 U
cis-1,3-Dichloropropene	(ug/kg)			7.0 U	7.4 U	6.8 U	7.8 U
Cyclohexane	(ug/kg)			7.0 U	7.4 U	6.8 U	7.8 U
Dibromochloromethane	(ug/kg)			7.0 U	7.4 U	6.8 U	7.8 U
Dibromochloropropane	(ug/kg)			14 U	15 U	14 U	16 U

Volatile Organic Compounds (VOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 05/15/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft)	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	SW-CCII-05 JA18661-4 05/14/2009 18.50	SW-CCII-06 JA18661-3 05/14/2009 18.50	SW-CCII-07 JA18661-2 05/14/2009 18.50	SW-CCII-08 JA18661-1 05/14/2009 18.50
Dichlorodifluoromethane	(ug/kg)			7.0 U	7.4 U	6.8 U	7.8 U
Ethylbenzene	(ug/kg)	1000		1.3 J	1.5 U	1.4 U	1.3 J
Freon 113	(ug/kg)			7.0 U	7.4 U	6.8 U	7.8 U
Isopropylbenzene	(ug/kg)			7.0 U	7.4 U	6.8 U	7.8 U
Methyl Acetate	(ug/kg)			7.0 U	7.4 U	6.8 U	R
Methyl Cyclohexane	(ug/kg)			1.3 J	7.4 U	6.8 U	7.8 U
Methyl Tertiary Butyl Ether	(ug/kg)	930		156	1.5 U	1.4 U	1.6 U
Methylene Chloride	(ug/kg)	50		2.0 J	2.2 J	2.3 J	2.1 J
n-Butylbenzene	(ug/kg)	12000		7.0 U	7.4 U	6.8 U	7.8 U
n-Propylbenzene	(ug/kg)	3900		1.8 J	7.4 U	6.8 U	1.1 J
sec-Butylbenzene	(ug/kg)	11000		7.0 U	7.4 U	6.8 U	7.8 U
Styrene	(ug/kg)			7.0 U	7.4 U	6.8 U	7.8 U
tert-Butylbenzene	(ug/kg)	5900		7.0 U	7.4 U	6.8 U	7.8 U
Tetrachloroethene	(ug/kg)	1300		7.0 U	7.4 U	6.8 U	7.8 U
Toluene	(ug/kg)	700		1.4	1.5 U	1.4 U	2.3
trans-1,2-Dichloroethene	(ug/kg)	190		7.0 U	7.4 U	6.8 U	7.8 U
trans-1,3-Dichloropropene	(ug/kg)			7.0 U	7.4 U	6.8 U	7.8 U

Table 5

Soil Analytical Results

Perimeter Samples

Volatile Organic Compounds (VOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 05/15/2009 - Inclusive

	SITE			SW-CCII-05	SW-CCII-06	SW-CCII-07	SW-CCII-08
CONSTITUENT	LAB SAMPLE ID DATE	6NYCRR PART 375 Unrestricted	Track 4 Alternative	JA18661-4 05/14/2009	JA18661-3 05/14/2009	JA18661-2 05/14/2009	JA18661-1 05/14/2009
CONSTITUENT	DEPTH (ft)	SCO	SCO	18.50	18.50	18.50	18.50
Trichloroethene	(ug/kg)	470		7.0 U	7.4 U	6.8 U	7.8 U
Trichlorofluoromethane	(ug/kg)			7.0 U	7.4 U	6.8 U	7.8 U
Vinyl chloride	(ug/kg)	20		7.0 U	7.4 U	6.8 U	7.8 U
Xylene (total)	(ug/kg)	260		6.2	3.0 U	2.7 U	7.3
Total VOCs	(ug/kg)		10000	186.8	2.2	7.2	96.9

Table 4-3F Soil Analytical Results

Perimeter Samples

Semivolatile Organic Compounds (SVOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 05/15/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft)	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	SW-CCII-01 JA17263-1 04/24/2009 23.00	SW-CCII-02 JA18789-1 05/15/2009 18.50	SW-CCII-03 JA18661-6 05/14/2009 18.50	SW-CCII-04 JA18661-5 05/14/2009 18.50
2,4,5-Trichlorophenol	(ug/kg)			190 U	190 U	100 U	110 U
2,4,6-Trichlorophenol	(ug/kg)			190 U	190 U	100 U	110 U
2,4-Dichlorophenol	(ug/kg)			190 U	190 U	100 U	110 U
2,4-Dimethylphenol	(ug/kg)			190 U	190 U	100 U	110 U
2,4-Dinitrophenol	(ug/kg)			760 U	770 U	410 U	440 U
2,4-Dinitrotoluene	(ug/kg)			76 U	77 U	41 U	44 U
2,6-Dinitrotoluene	(ug/kg)			76 U	77 U	41 U	44 U
2-Chloronaphthalene	(ug/kg)			76 U	77 U	41 U	44 U
2-Chlorophenol	(ug/kg)			190 U	190 U	100 U	110 U
2-Methylnaphthalene	(ug/kg)			76 U	77 U	41 U	44 U
3 & 4-Methylphenol	(ug/kg)	330		76 U	77 U	41 U	44 U
3,3-Dichlorobenzidine	(ug/kg)			190 U	190 U	100 U	110 U
4,6-Dinitro-o-cresol	(ug/kg)			760 U	770 U	410 U	440 U
4-Bromophenyl phenyl ether	(ug/kg)			76 U	77 U	41 U	44 U
4-Chlorophenyl phenyl ether	(ug/kg)			76 U	77 U	41 U	44 U
Acenaphthene	(ug/kg)	20000		38 U	38 U	21 U	22 U
Acenaphthylene	(ug/kg)	100000		38 U	38 U	21 U	22 U

Semivolatile Organic Compounds (SVOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 05/15/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft)	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	SW-CCII-01 JA17263-1 04/24/2009 23.00	SW-CCII-02 JA18789-1 05/15/2009 18.50	SW-CCII-03 JA18661-6 05/14/2009 18.50	SW-CCII-04 JA18661-5 05/14/2009 18.50
Acetophenone	(ug/kg)			190 U	190 U	100 U	110 U
Anthracene	(ug/kg)	100000		38 U	38 U	21 U	22 U
Atrazine	(ug/kg)			190 U	190 U	100 U	110 U
Benzaldehyde	(ug/kg)			190 U	190 U	100 U	110 U
Benzo(a)anthracene	(ug/kg)	1000		38 U	38 U	21 U	22 U
Benzo(a)pyrene	(ug/kg)	1000		38 U	38 U	21 U	22 U
Benzo(b)fluoranthene	(ug/kg)	1000		38 U	38 U	21 U	22 U
Benzo(ghi)perylene	(ug/kg)	100000		38 U	38 U	21 U	22 U
Benzo(k)fluoranthene	(ug/kg)	800		38 U	38 U	21 U	22 U
Biphenyl	(ug/kg)			76 U	77 U	41 U	44 U
Bis(2-chloroethoxy)methane	(ug/kg)			76 U	77 U	41 U	44 U
Bis(2-chloroethyl)ether	(ug/kg)			76 U	77 U	41 U	44 U
Bis(2-chloroisopropyl)ether	(ug/kg)			76 U	77 U	41 U	44 U
Bis(2-ethylhexyl)phthalate (BEHP)	(ug/kg)			76 U	77 U	53.5	44 U
Butyl benzyl phthalate	(ug/kg)			76 U	77 U	41 U	44 U
Caprolactam	(ug/kg)			76 U	77 U	41 U	44 U
Carbazole	(ug/kg)			76 U	77 U	41 U	44 U

Semivolatile Organic Compounds (SVOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 05/15/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft)	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	SW-CCII-01 JA17263-1 04/24/2009 23.00	SW-CCII-02 JA18789-1 05/15/2009 18.50	SW-CCII-03 JA18661-6 05/14/2009 18.50	SW-CCII-04 JA18661-5 05/14/2009 18.50
Chrysene	(ug/kg)	1000		38 U	38 U	21 U	22 U
Dibenzo(a,h)anthracene	(ug/kg)	330		38 U	38 U	21 U	22 U
Dibenzofuran	(ug/kg)	7000		76 U	77 U	41 U	44 U
Diethyl phthalate	(ug/kg)			76 U	77 U	41 U	44 U
Dimethyl phthalate	(ug/kg)			76 U	77 U	41 U	44 U
Di-n-butyl phthalate	(ug/kg)			76 U	77 U	41 U	44 U
Di-n-octyl phthalate	(ug/kg)			76 U	77 U	41 U	44 U
Fluoranthene	(ug/kg)	100000		38 U	38 U	21 U	22 U
Fluorene	(ug/kg)	30000		38 U	38 U	21 U	22 U
Hexachlorobenzene	(ug/kg)	330		76 U	77 U	41 U	44 U
Hexachlorobutadiene	(ug/kg)			38 U	38 U	21 U	22 U
Hexachlorocyclopentadiene	(ug/kg)			760 U	770 U	410 U	440 U
Hexachloroethane	(ug/kg)			190 U	190 U	100 U	110 U
Indeno(1,2,3-cd)pyrene	(ug/kg)	500		38 U	38 U	21 U	22 U
Isophorone	(ug/kg)			76 U	77 U	41 U	44 U
m-Nitroaniline	(ug/kg)			190 U	190 U	100 U	110 U
Naphthalene	(ug/kg)	12000		38 U	38 U	21 U	22 U

Table 6 Soil Analytical Results

Perimeter Samples

Semivolatile Organic Compounds (SVOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 05/15/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft)	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	SW-CCII-01 JA17263-1 04/24/2009 23.00	SW-CCII-02 JA18789-1 05/15/2009 18.50	SW-CCII-03 JA18661-6 05/14/2009 18.50	SW-CCII-04 JA18661-5 05/14/2009 18.50
Nitrobenzene	(ug/kg)			76 U	77 U	41 U	44 U
N-Nitrosodiphenylamine	(ug/kg)			190 U	190 U	100 U	110 U
N-Nitrosodipropylamine	(ug/kg)			76 U	77 U	41 U	44 U
o-Cresol	(ug/kg)	330		76 U	77 U	41 U	44 U
o-Nitroaniline	(ug/kg)			190 U	190 U	100 U	110 U
o-Nitrophenol	(ug/kg)			190 U	190 U	100 U	110 U
p-Chloroaniline	(ug/kg)			190 U	190 U	100 U	110 U
p-Chloro-m-cresol	(ug/kg)			190 U	190 U	100 U	110 U
Pentachlorophenol	(ug/kg)	800		380 U	380 U	210 U	220 U
Phenanthrene	(ug/kg)	100000		38 U	38 U	21 U	22 U
Phenol	(ug/kg)	330		76 U	77 U	41 U	44 U
p-Nitroaniline	(ug/kg)			190 U	190 U	100 U	110 U
p-Nitrophenol	(ug/kg)			380 U	380 U	210 U	220 U
Pyrene	(ug/kg)	100000		38 U	38 U	21 U	22 U
Total SVOCs	(ug/kg)		100000	0.0	0.0	54	0.0

Semivolatile Organic Compounds (SVOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 05/15/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft)	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	SW-CCII-05 JA18661-4 05/14/2009 18.50	SW-CCII-06 JA18661-3 05/14/2009 18.50	SW-CCII-07 JA18661-2 05/14/2009 18.50	SW-CCII-08 JA18661-1 05/14/2009 18.50
2,4,5-Trichlorophenol	(ug/kg)			110 U	120 U	110 U	110 U
2,4,6-Trichlorophenol	(ug/kg)			110 U	120 U	110 U	110 U
2,4-Dichlorophenol	(ug/kg)			110 U	120 U	110 U	110 U
2,4-Dimethylphenol	(ug/kg)			110 U	120 U	110 U	110 U
2,4-Dinitrophenol	(ug/kg)			450 U	460 U	450 U	450 U
2,4-Dinitrotoluene	(ug/kg)			45 U	46 U	45 U	45 U
2,6-Dinitrotoluene	(ug/kg)			45 U	46 U	45 U	45 U
2-Chloronaphthalene	(ug/kg)			45 U	46 U	45 U	45 U
2-Chlorophenol	(ug/kg)			110 U	120 U	110 U	110 U
2-Methylnaphthalene	(ug/kg)			45 U	46 U	45 U	45 U
3 & 4-Methylphenol	(ug/kg)	330		45 U	46 U	45 U	45 U
3,3-Dichlorobenzidine	(ug/kg)			110 U	120 U	110 U	110 U
4,6-Dinitro-o-cresol	(ug/kg)			450 U	460 U	450 U	450 U
4-Bromophenyl phenyl ether	(ug/kg)			45 U	46 U	45 U	45 U
4-Chlorophenyl phenyl ether	(ug/kg)			45 U	46 U	45 U	45 U
Acenaphthene	(ug/kg)	20000		22 U	23 U	23 U	22 U
Acenaphthylene	(ug/kg)	100000		22 U	23 U	23 U	22 U

Semivolatile Organic Compounds (SVOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 05/15/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft)	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	SW-CCII-05 JA18661-4 05/14/2009 18.50	SW-CCII-06 JA18661-3 05/14/2009 18.50	SW-CCII-07 JA18661-2 05/14/2009 18.50	SW-CCII-08 JA18661-1 05/14/2009 18.50
Acetophenone	(ug/kg)			110 U	120 U	110 U	110 U
Anthracene	(ug/kg)	100000		22 U	23 U	23 U	22 U
Atrazine	(ug/kg)			110 U	120 U	110 U	110 U
Benzaldehyde	(ug/kg)			110 U	120 U	110 U	110 U
Benzo(a)anthracene	(ug/kg)	1000		22 U	23 U	23 U	22 U
Benzo(a)pyrene	(ug/kg)	1000		22 U	23 U	23 U	22 U
Benzo(b)fluoranthene	(ug/kg)	1000		22 U	23 U	23 U	22 U
Benzo(ghi)perylene	(ug/kg)	100000		22 U	23 U	23 U	22 U
Benzo(k)fluoranthene	(ug/kg)	800		22 U	23 U	23 U	22 U
Biphenyl	(ug/kg)			45 U	46 U	45 U	45 U
Bis(2-chloroethoxy)methane	(ug/kg)			45 U	46 U	45 U	45 U
Bis(2-chloroethyl)ether	(ug/kg)			45 U	46 U	45 U	45 U
Bis(2-chloroisopropyl)ether	(ug/kg)			45 U	46 U	45 U	45 U
Bis(2-ethylhexyl)phthalate (BEHP)	(ug/kg)			45 U	46 U	45 U	45 U
Butyl benzyl phthalate	(ug/kg)			45 U	46 U	45 U	45 U
Caprolactam	(ug/kg)			45 U	46 U	45 U	45 U
Carbazole	(ug/kg)			45 U	46 U	45 U	45 U

Table 6 Soil Analytical Results

Perimeter Samples

Semivolatile Organic Compounds (SVOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 05/15/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft)	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	SW-CCII-05 JA18661-4 05/14/2009 18.50	SW-CCII-06 JA18661-3 05/14/2009 18.50	SW-CCII-07 JA18661-2 05/14/2009 18.50	SW-CCII-08 JA18661-1 05/14/2009 18.50
Chrysene	(ug/kg)	1000		22 U	23 U	23 U	22 U
Dibenzo(a,h)anthracene	(ug/kg)	330		22 U	23 U	23 U	22 U
Dibenzofuran	(ug/kg)	7000		45 U	46 U	45 U	45 U
Diethyl phthalate	(ug/kg)			45 U	46 U	45 U	45 U
Dimethyl phthalate	(ug/kg)			45 U	46 U	45 U	45 U
Di-n-butyl phthalate	(ug/kg)			45 U	46 U	45 U	45 U
Di-n-octyl phthalate	(ug/kg)			45 U	46 U	45 U	45 U
Fluoranthene	(ug/kg)	100000		22 U	23 U	23 U	22 U
Fluorene	(ug/kg)	30000		22 U	23 U	23 U	22 U
Hexachlorobenzene	(ug/kg)	330		45 U	46 U	45 U	45 U
Hexachlorobutadiene	(ug/kg)			22 U	23 U	23 U	22 U
Hexachlorocyclopentadiene	(ug/kg)			450 U	460 U	450 U	450 U
Hexachloroethane	(ug/kg)			110 U	120 U	110 U	110 U
Indeno(1,2,3-cd)pyrene	(ug/kg)	500		22 U	23 U	23 U	22 U
Isophorone	(ug/kg)			45 U	46 U	45 U	45 U
m-Nitroaniline	(ug/kg)			110 U	120 U	110 U	110 U
Naphthalene	(ug/kg)	12000		22 U	23 U	23 U	22 U

Table 6 Soil Analytical Results

Perimeter Samples Semivolatile Organic Compounds (SVOCs)

Courtlandt Corners II

895 Melrose Avenue, Bronx, New York

PERIOD: From 04/24/2009 thru 05/15/2009 - Inclusive

CONSTITUENT	SITE LAB SAMPLE ID DATE DEPTH (ft)	6NYCRR PART 375 Unrestricted SCO	Track 4 Alternative SCO	SW-CCII-05 JA18661-4 05/14/2009 18.50	SW-CCII-06 JA18661-3 05/14/2009 18.50	SW-CCII-07 JA18661-2 05/14/2009 18.50	SW-CCII-08 JA18661-1 05/14/2009 18.50
Nitrobenzene	(ug/kg)			45 U	46 U	45 U	45 U
N-Nitrosodiphenylamine	(ug/kg)			110 U	120 U	110 U	110 U
N-Nitrosodipropylamine	(ug/kg)			45 U	46 U	45 U	45 U
o-Cresol	(ug/kg)	330		45 U	46 U	45 U	45 U
o-Nitroaniline	(ug/kg)			110 U	120 U	110 U	110 U
o-Nitrophenol	(ug/kg)			110 U	120 U	110 U	110 U
p-Chloroaniline	(ug/kg)			110 U	120 U	110 U	110 U
p-Chloro-m-cresol	(ug/kg)			110 U	120 U	110 U	110 U
Pentachlorophenol	(ug/kg)	800		220 U	230 U	230 U	220 U
Phenanthrene	(ug/kg)	100000		22 U	23 U	23 U	22 U
Phenol	(ug/kg)	330		45 U	46 U	45 U	45 U
p-Nitroaniline	(ug/kg)			110 U	120 U	110 U	110 U
p-Nitrophenol	(ug/kg)			220 U	230 U	230 U	220 U
Pyrene	(ug/kg)	100000		22 U	23 U	23 U	22 U
Total SVOCs	(ug/kg)		100000	0.0	0.0	0.0	0.0

APPENDIX F

COMMUNITY AIR MONITORING

A Community Air Monitoring Plan (CAMP) requires real-time monitoring for volatile organic compounds (VOCs) and particulates (i.e., dust) at the downwind perimeter of each designated work area when intrusive activities are in progress at contaminated sites. The CAMP is designed to provide a measure of protection for the downwind community (i.e., off-site receptors including residences and businesses and on-site workers not directly involved with the work activities) from potential airborne contaminant releases as a direct result of investigative and remedial work activities. The action levels specified herein require increased monitoring, corrective actions to abate emissions, and/or work shutdown. Additionally, the CAMP helps to confirm that work activities did not spread contamination off-site through the air. Reliance on the CAMP should not preclude simple, common-sense measures to keep VOCs, dust, and odors at a minimum around the work areas.

Community Air Monitoring Plan

Real-time air monitoring for VOCs and/or particulate levels at the perimeter of the exclusion zone or work area will be implemented.

Continuous Monitoring

Continuous monitoring will be required for all ground intrusive activities and during the demolition of contaminated or potentially contaminated structures. Ground intrusive activities include; soil/waste excavation and handling, test pitting or trenching, and the installation of soil borings and/or monitoring wells.

Periodic Monitoring

Periodic Monitoring for VOCs will be required during <u>non-intrusive</u> activities such as the collection of soil and sediment samples or the collection of groundwater samples from existing monitoring wells. "Periodic" monitoring during sample collection includes taking a reading upon arrival at a sample location, monitoring while opening a well cap or overturning soil, monitoring during well baling/purging, and taking a reading prior to leaving a sample location. In some instances, depending upon the proximity of potentially exposed individuals, continuous monitoring may be required during sampling activities. Examples of such situations include groundwater sampling at wells on the curb of a busy urban street, in the midst of a public park, or adjacent to a school or residence.

VOC Monitoring, Response Levels, and Actions

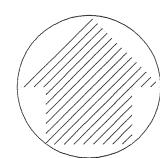
VOCs will be monitored at the downwind perimeter of the immediate work area (i.e., the exclusion zone) on a continuous basis or as otherwise specified. Upwind concentrations will be recorded at the start of each workday and periodically thereafter to establish background conditions. The VOC monitoring work will be performed using equipment appropriate to measure the types of contaminants known or suspected to be present. All VOC monitoring equipment will be calibrated on a daily basis for the contaminant(s) of concern or for an appropriate surrogate. The equipment will be capable of calculating 15-minute running average concentrations, which will be compared to the levels specified below.

VOC Action Levels

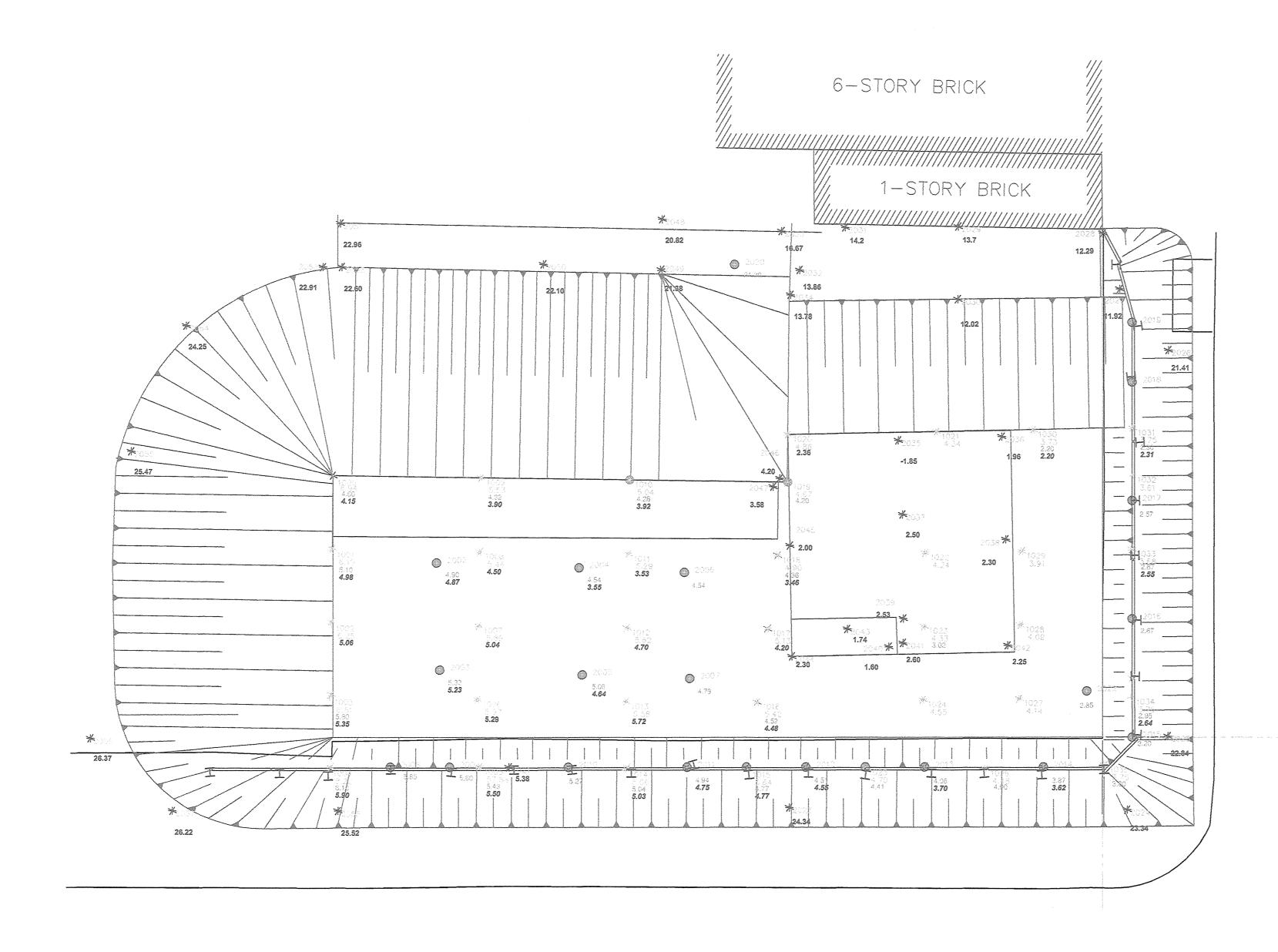
- If the ambient air concentration of total VOC concentrations at the downwind perimeter of the work area or exclusion zone exceeds 5 parts per million (ppm) above background for the 15-minute average, work activities will be temporarily halted and monitoring continued. If the total VOC levels readily decreases (per instantaneous readings) below 5 ppm over background, work activities will resume with continued monitoring.
- If total VOC levels at the downwind perimeter of the work area or exclusion zone persist at levels in excess of 5 ppm over background but less than 25 ppm, work activities will be halted, the source of VOCs identified, corrective actions taken to abate emissions, and monitoring continued. After these steps, work activities will resume if total VOC levels 200 feet downwind of the exclusion zone or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less but in no case less than 20 feet, are below 5 ppm over background for the 15-minute average.
- If the total VOC is above 25 ppm at the perimeter of the work area, activities will be shutdown.

All 15-minute VOC readings must be recorded and be available for State (NYSDEC and NYSDOH) personnel to review. Instantaneous readings, if any, used for decision purposes will also be recorded.

Particulate Monitoring, Response Levels, and Actions


Particulate concentrations will be monitored continuously at the upwind and downwind perimeters of the exclusion zone at temporary particulate monitoring stations. The particulate monitoring will be carried out using real-time monitoring equipment capable of measuring particulate matter less than 10 micrometers in size (PM-10) and capable of integrating particulate concentrations over a period of 15 minutes (or less) for comparison to the airborne particulate action level. The equipment must be equipped with an audible alarm to indicate exceedance of the action level. In addition, fugitive dust migration will be visually assessed during all work activities.

Particulate Action Levels


- If the downwind PM-10 particulate level is 100 micrograms per cubic meter (mcg/m³) greater than background (upwind perimeter) for a 15-minute period or if airborne dust is observed leaving the work area, then dust suppression techniques will be employed. Work may continue with dust suppression techniques provided that downwind PM-10 particulate levels do not exceed 150 mcg/m³ above the upwind level and provided that no visible dust is migrating from the work area.
- If, after implementation of dust suppression techniques, downwind PM-10 particulate levels are greater than 150 mcg/m³ above the upwind level, work will be stopped and a re-evaluation of activities initiated. Work will resume provided that dust suppression measures and other controls are successful in reducing the downwind PM-10 particulate concentration to within 150 mcg/m³ of the upwind level and in preventing visible dust migration.

All readings must be recorded and be available for State (NYSDEC and NYSDOH) personnel to review.

APPENDIX G

PTID	NORTHING	EASTING	DESIGN EL (FT)	ACTUAL POST EXCAV EL (FT)	
1000	5060.51	4908.65	4.60	4.15	6.94
1001	5050.88	4905.95	5.10	4.98	6.19
1002	5041.25	4903.26		5.06	6.25
1003	5031.62	4900.56	5.60	5.35	6.51
1004	5022.32	4897.96	6.10	5.90	8.22
1005	5017.2	4917.29	5.43	5.50	6.29
1006	5026.28	4919.83		5.29	5.97
1007	5035.91	4922.53		5.04	5.86
1008	5045.54	4925.23		4.50	5.44
1009	5055.17	4927.92	4.32	3.90	5.53
1010	5049.83	4947.2	4.28	3.92	5.04
1011	5040.2	4944.5		3.53	5.29
1012	5030.57	4941.8		4.70	5.62
1013	5020.94	4939.1		5.72	5.58
1014	5012.08	4936.62	5.04	5.03	5.66
1015	5007.83	4952.65	4.77	4.77	5.64
1016 1017	5016.43 5025.66	4956.23	4.52	4.48	5.42 5.13
1017	5034.9	4960.07 4963.91	4.36	3.46	4.90
1019	5044.13	4967.75	4.20	3.40	4.67
1020	5050.34	4969.39	7.20	2.36	4.86
1020	5045.65	4988.83		2.50	4.34
1022	5030.18	4983.22			4.24
1023	5020.61	4980.55	3.02		4.33
1024	5011.04	4977.86	0.02		4.55
1025	5004.19	4967.81	4.41		4.70
1026	4999.87	4983.67	4.00		4.48
1027	5007.9	4990.48			4.14
1028	5017.5	4993.17		<u> </u>	4.09
1029	5027.1	4995.85			3.91
1030	5042.6	5001.47	2.20	2.20	3.73
1031	5039.45	5014.5	2.30	2.31	3.75
1032	5033.25	5012.84			3.61
1033	5023.59	5010.24	2.67	2.55	3.68
1034	5004.27	5005.06	2.95	2.64	3.76
1035	4996.29	4999.31	3.80		3.75
2002	5045.58	4919.17	4.90		
2003	5031.46	4915.92	5.33		
2004	5040.07	4937.58	4.54		
2005	5025.95	4934.32	5.06		
2006	5035.86	4951.15	4.54		
2007	5021.82	4948.22	4.79		
2008	5020.42 5018.40	4906.15 4913.89	5.85 5.60	-	
2010	5014.35	4929.36	5.27		
2011	5010.30	4944.84	4.94	<u> </u>	
2012	5006.25	4960.32	4.51		
2013	5002.19	4975.80	4.06		
2014	4998.14	4991.28	3.87		
2015	4998.99	5003.85	3.20		
2016	5014.47	5007.89	2.67		
2017	5029.95	5011.94	2.57		
2018	5045.43	5016.00	0.00		
2019	5053.24	5018.04	0.00		
2020	5074.39	4968.24	21.30		
2021	5016.37	4921.62		5.38	
2022	5006.61	4999.53		2.85	
2023	5001.52	4956.80		24.34	
2024	4989.66	5000.73		23.34	
2025	4997.92	5008.53 5021.84		22.84	
2026	5048.37 5058.03	5021.84 5017.60		21.41	
2027 2028	5058.03	5017.60 5017.31		11.92 12.29	
2029	5071.69	4998.70		13.70	
2030	5062.23	4996.70		12.02	
2030	5075.43	4983.94		14.20	
2032	5073.43	4903.94		13.86	
2033	5077.13	4975.53		16.67	
2034	5068.51	4974.51		13.78	
2035	5045.80	4983.54		-1.85	
2036	5042.76	4997.17		1.96	
2037	5035.97	4981.56		2.50	
2038	5029.20	4994.16	-	2.30	
2039	5022.34	4978.10		2.53	
2040	5019.15	4975.25		1.60	
2041	5019.15	4977.22		2.60	
2042	5015.28	4990.79		2.25	
2043	5022.88	4970.45		1.74	
2044	5021.19	4962.31		2.30	
2045	5035.77	4965.84		2.00	
2046 2047	5044.89 5044.03	4966.80 4965.66		4.20 3.58	
2047	5044.03 5082.78	4965.66 4960.36		20.82	
2048	5076.22	4950.35 4958.51		21.38	
2049	5076.22	4930.31		22.10	
2050	5093.22	4943.33		22.10	
2052	5088.13	4914.52		22.91	
2053	5087.48	4916.96		22.60	
2054	5085.16	4894.69		24.25	
2055	5070.62	4883.20		25.47	
2056	5034.47	4868.06		26.37	
	5000.00	1976 26		26.22	
2057	5022.20	4876.26		20.22	

EAST 161th STREET

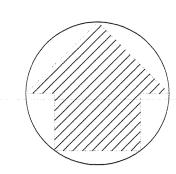
NOTE

- HORIZONTAL CONTROL IS IN LOCAL SYSTEM ESTABLISHED AS N 5000 , E 5000 AT CONTROL POINT PL-1 PROPERTY CORNER. (US FEET)
- VERTICAL DATUM IS IN REFERENCED TO THE BRONX BORO DATUM WHICH IS 2.608 FEET ABOVE MEAN SEA LEVEL AT SANDY HOOK, NJ AS ESTABLISHED BY THE U.S. COAST & GEODETIC SURVEY DATUM.
- THIS SURVEY IS NOT A TITLE SURVEY AND IS NOT TO BE USED FOR THE PURPOSES OF EASEMENT, TITLE OR MORTGAGE CONVEYANCE.
- 4. UNAUTHORIZED ALTERATION OR ADDITION TO A SURVEY MAP BEARING A LICENSED LAND SURVEYOR'S SEAL IS A VIOLATION OF LAW. ONLY COPIES FROM THE ORIGINAL OF THIS SURVEY MARKED WITH ORIGINAL LICENSED LAND SURVEYOR'S SEAL & SIGNATURE SHALL BE CONSIDERED TO BE VALID TRUE
- 5. UTILITY LOCATIONS SHOWN HEREON ARE BASED ON ABOVE GROUND FIELD OBSERVATIONS.

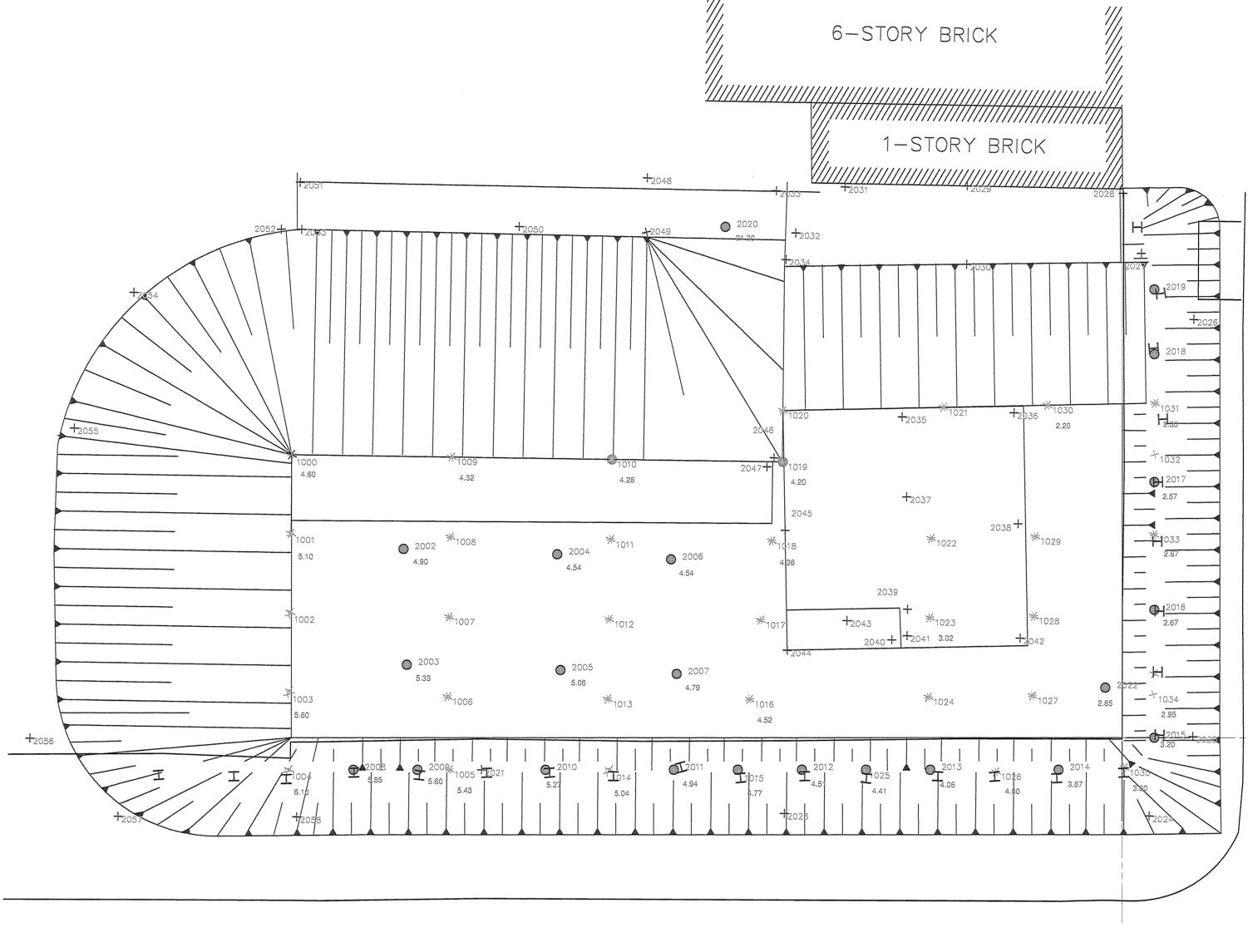
 OTHER UTILITIES NOT GUARANTEED TO BE ACCURATE OR COMPLETE. THE USER OF THIS SURVEY IS RESPONSIBLE FOR MAKING HIS OWN DETERMINATIONS AS TO THE TYPE, LOCATION AND SUITABILITY OF UTILITIES AS MAY BE NECESSARY. CONTRACTOR SHALL CONTACT LOCAL UTILITY AGENCIES FOR INFORMATION BEFORE

CONDUCTING ANY EXCAVATION.

	AST SPRING VALLEY AVE. SUITE MAYWOOD, NJ 07607 TEL. 201-587-1755 FAX. 201-587-9137	
PROJECT SITE:	CORTLANDT CORNERS 1	CORTLANDT CORNERS 2
DATE:	6/25/2009	
GSESP JOB#	NY08-093 - CONTI - CORTLAND	CORNERS
CALCULATED TOTAL VOLUME OF		
EXCAVATION:		5923 CU. YD.
CALCULATED AREA OF MATERIAL		5000 GO TT
USED TO DEMARCATE		5689 SQ. FT.
CALCULATED AREA COVERED BY	ara pagamagan nashira daga ga ga nagina nashiridan ir ga nashiga nashirin na daga pagamaga nashiran ara pagamag	e agus agus agus agus a traigh an agus agus an agus an agus an agus agus agus an agus agus an agus an agus an agus an agus an an agus agus an an an agus agus an an an agus agus agus an an an agus agus agus agus agus an an an agus agus agus agus agus agus agus agus
CALCIUM PEROXIDE:		4492 SQ. FT.
CALCULATED AREA OF WOOD	The state of the s	3980 SQ. FT.


LEGEND:

4.17 -- ELEVATION AT FINAL GRA
5.10 -- DESIGN ELEVATION
6.00 -- ELEVATION POST EYCAVA


4.98 -- ELEVATION POST EXCAVATIO

__ AS BUILT PILE

REV DATE	BY CHKD	DESCRIPTION	REFERENCE DRAWING	DWG. NO.	SCALE: 1"=10'-0"	PROFESSIONAL HUAND SURVEYOR	Gan ENG	rden State	DRAWN: DESIGNED:	DF N/A	PROJECT NAME:	CONTI COURTLAND CORNERS NEW YORK, NY	DRAWING TITLE:	TOPOGRAPHIC SURVEY	REV. 7/31/09
					10 0 10 20	NY LICENSE No. 049468	S U F & P I	R V E Y I N G L A N N I N G	CHECKED:		PROJECT NO.: NY08-	-093	DRAWING No.:	NY08-093-204	
						CERTIFICATE OF AUTHORIZATION NUMBER 24GA27916800	Tel	1.: (201) 587-1755	APPROVED:		CLASSIFICATION: SURVE	Υ		N 100-093-204	

PT ID	NORTHING	EASTING	DESIGN EL (FT)	ACTUAL POST EXCAV EL (FT)	1
1000	5060.51	4908.65	4.60	4.15	6.94
1001	5050.88	4905.95	5.10	4.98	6.19
1002	5041.25	4903.26		5.06	6.25
1003	5031.62	4900.56	5.60	5.35	6.51
1004	5022.32	4897.96	6.10	5.90	8.22
1005	5017.2	4917.29	5.43	5.50	6.29
1006	5026.28	4919.83		5.29	5.97
1007	5035.91	4922.53		5.04	5.86
1008	5045.54	4925.23		4.50	5.44
1009	5055.17	4927.92	4.32	3.90	5.53
1010	5049.83	4947.2	4.28	3.92	5.04
1011	5040.2	4944.5		3.53	5.29
1012	5030.57	4941.8		4.70	5.62
1013	5020.94	4939.1		5.72	5.58
1014	5012.08	4936.62	5.04	5.03	5.66
1015	5007.83	4952.65	4.77	4.77	5.64
1016	5016.43	4956.23	4.52	4.48	5.42
	5016.43		4.52		
1017		4960.07		4.20	5.13
1018	5034.9	4963.91	4.36	3.46	4.90
1019	5044.13	4967.75	4.20		4.67
1020	5050.34	4969.39		2.36	4.86
1021	5045.65	4988.83			4.34
1022	5030.18	4983.22			4.24
1023	5020.61	4980.55	3.02		4.33
1024	5011.04	4977.86			4.55
1025	5004.19	4967.81	4.41		4.70
1026	4999.87	4983.67	4.00	†	4.48
1020	5007.9	4990.48	7.00		4.14
1028	5017.5	4993.17	***************************************	 	4.09
1029	5027.1	4995.85			3.91
1030	5042.6	5001.47	2.20	2.20	3.73
1031	5039.45	5014.5	2.30	2.31	3.75
1032	5033.25	5012.84			3.61
1033	5023.59	5010.24	2.67	2.55	3.68
1034	5004.27	5005.06	2.95	2.64	3.76
1035	4996.29	4999.31	3.80		3.75
2002	5045.58	4919.17	4.90		0.10
2003	5031.46	4915.92	5.33		
2004	5040.07	4937.58	4.54		
2005	5025.95	4934.32	5.06	1	
2006	5035.86	4951.15	4.54		
2007	5021.82	4948.22	4.79		
2008	5020.42	4906.15	5.85		
2009	5018.40	4913.89	5.60		
2010	5014.35	4929.36	5.27		***************************************
2011	5010.30	4944.84	4.94		
2012	5006.25	4960.32	4.51		
2013	5002.19	4975.80	4.06		
2014	4998.14	4991.28	3.87		
2015	4998.99	5003.85	3.20		
2016	5014.47	5007.89	2.67		
2017	5029.95	5011.94	2.57		
2018	5045.43	5016.00	0.00		
2019	5053.24	5018.04	0.00		
2020	5074.39	4968.24	21.30		***************************************
2021	5016.37	4921.62		5.38	
2022	5006.61	4999.53		2.85	
2022	5000.61				
		4956.80		24.34	
2024	4989.66	5000.73		23.34	
2025	4997.92	5008.53		22.84	
2026	5048.37	5021.84		21.41	
2027	5058.03	5017.60		11.92	***************************************
2028	5065.88	5017.31		12.29	
2029	5071.69	4998.70		13.70	
2030	5062.23	4996.16		12.02	
2031	5075.43	4983.94		14.20	
2032	5071.43	4976.54		13.86	
2033	5077.13	4975.53		16.67	
2034	5068.51	4974.51		13.78	
2035	5045.80	4983.54		-1.85	
2036	5042.76	4997.17		1.96	
2037	5035.97	4981.56		2.50	
2038	5029.20	4994.16		2.30	
2039	5029.20	4978.10		2.53	
2039	5022.34	4975.25		1.60	
2040	5019.15	4975.25		2.60	
	<u> </u>				
2042	5015.28	4990.79		2.25	
2043	5022.88	4970.45		1.74	***************************************
2044	5021.19	4962.31		2.30	
2045	5035.77	4965.84		2.00	
2046	5044.89	4966.80		4.20	
2047	5044.03	4965.66		3.58	
2048	5082.78	4960.36		20.82	
2049	5076.22	4958.51		21.38	
2050	5080.94	4943.35		22.10	
2050	5093.22	4943.33		22.10	
	<u> </u>				
2052	5088.13	4914.52		22.91	
2053	5087.48	4916.96		22.60	
2054	5085.16	4894.69		24.25	
2055	5070.62	4883.20		25.47	
2056	5034.47	4868.06		26.37	
				00.00	
2057	5022.20	4876.26		26.22	

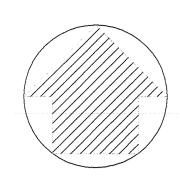
EAST 161th STREET

NOTES:

HORIZONTAL CONTROL IS IN LOCAL SYSTEM ESTABLISHED AS N 5000, E 5000 AT CONTROL POINT PL-1 PROPERTY CORNER. (US FEET)
 VERTICAL DATUM IS IN REFERENCED TO THE BRONX BORO DATUM WHICH IS 2.608 FEET ABOVE MEAN SEA LEVEL AT SANDY HOOK, NJ AS ESTABLISHED BY THE U.S. COAST & GEODETIC SURVEY DATUM.

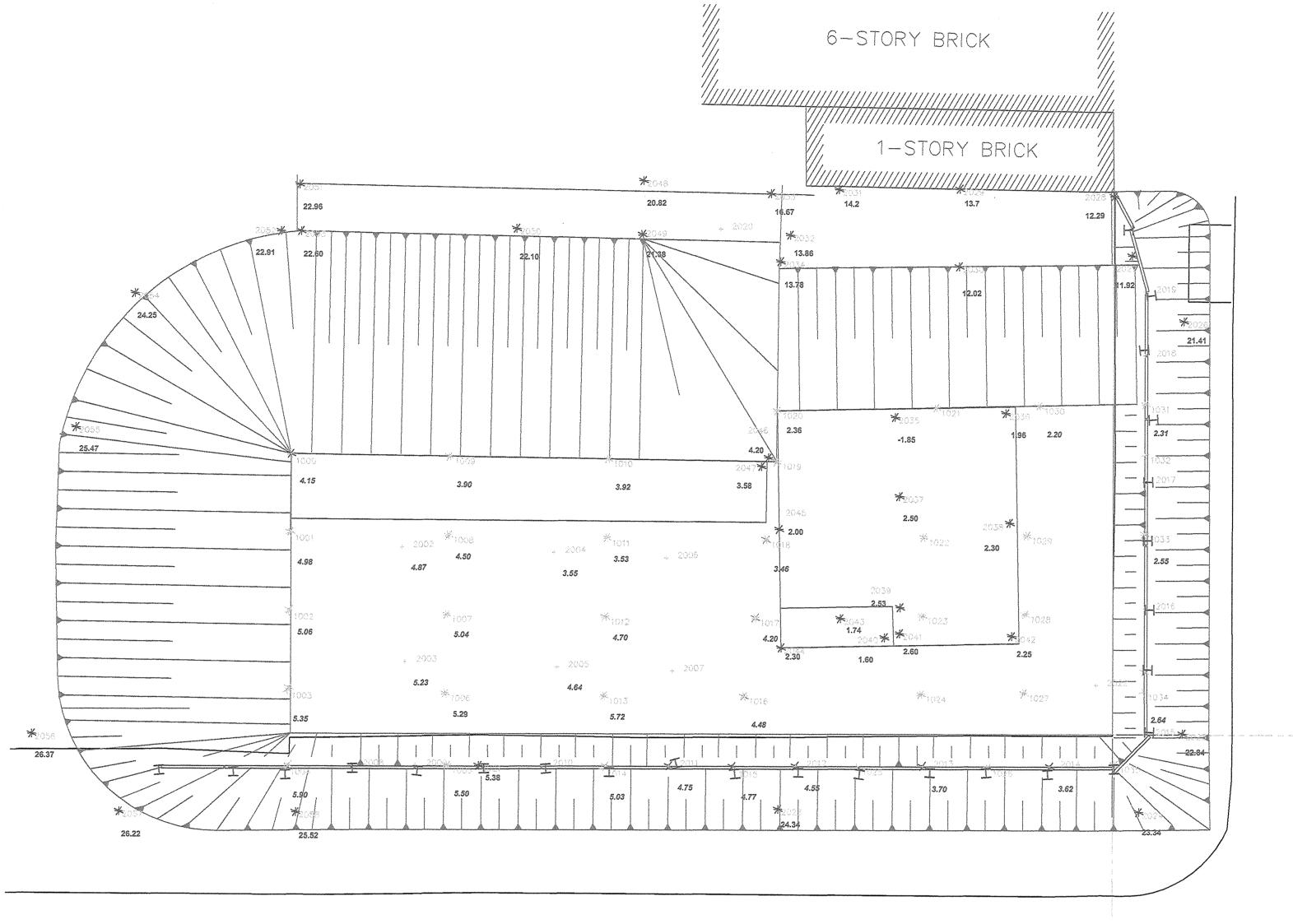
THIS SURVEY IS NOT A TITLE SURVEY AND IS NOT TO BE USED FOR THE PURPOSES OF EASEMENT, TITLE OR MORTGAGE CONVEYANCE.
 UNAUTHORIZED ALTERATION OR ADDITION TO A SURVEY MAP BEARING A LICENSED LAND SURVEYOR'S SEAL IS A VIOLATION OF LAW. ONLY COPIES FROM THE ORIGINAL OF THIS SURVEY MARKED WITH ORIGINAL LICENSED LAND SURVEYOR'S SEAL & SIGNATURE SHALL BE CONSIDERED TO BE VALID TRUE

5. UTILITY LOCATIONS SHOWN HEREON ARE BASED ON ABOVE GROUND FIELD OBSERVATIONS.


OTHER UTILITIES NOT GUARANTEED TO BE ACCURATE OR COMPLETE. THE USER OF THIS SURVEY IS RESPONSIBLE FOR MAKING HIS OWN DETERMINATIONS AS TO THE TYPE, LOCATION AND SUITABILITY OF UTILITIES AS MAY BE NECESSARY. CONTRACTOR SHALL CONTACT LOCAL UTILITY AGENCIES FOR INFORMATION BEFORE CONDUCTING ANY EXCAVATION.

GARDEN STAT	E ENGINEERING, SURVEYING	AND PLA	NNING
25 EA	ST SPRING VALLEY AVE. SU	ITE 350	
	MAYWOOD, NJ 07607		
	TEL. 201-587-1755		
	FAX 201-587-9137		
PROJECT SITE:	CORTLANDT CORNERS 1	C	ORTLANDT CORNERS 2
DATE:	6/25/2009		
GSESP JOB#	NY08-093 - CONTI - CORTLAN	D CORNER	RS .
		The state of the s	

CALCULATED TOTAL VOLUME OF			
EXCAVATION:		59	923 CU. YD.
CALCULATED AREA OF MATERIAL			
USED TO DEMARCATE		56	689 SQ. FT.
CALCULATED AREA COVERED BY			
CALCIUM PEROXIDE:		44	492 SQ. FT.
CALCULATED AREA OF WOOD			
LAGGING:		39	980 SQ. FT.


LEGEND:

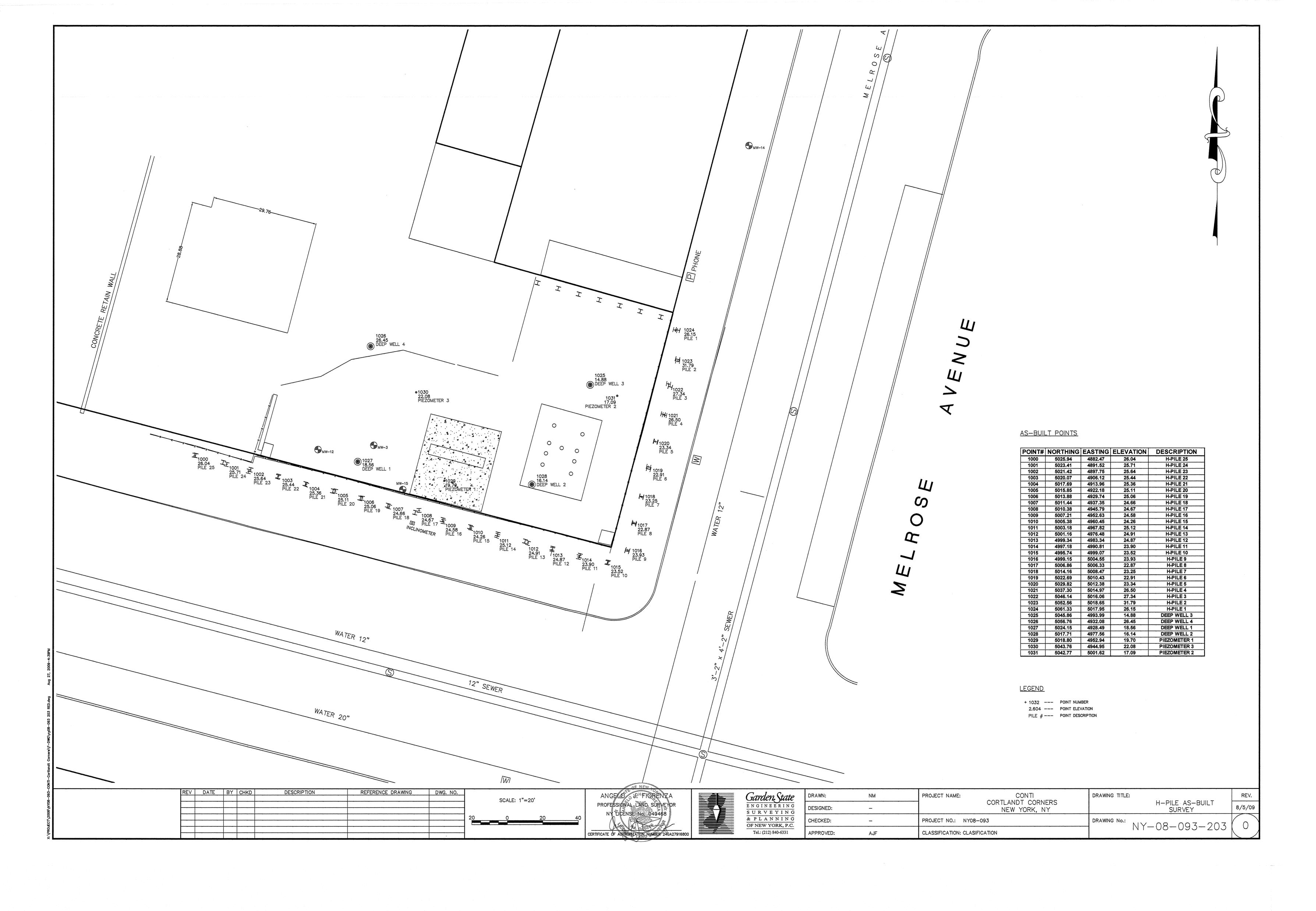
4.17 -- ELEVATION AT FINAL GRADE
5.10 -- DESIGN ELEVATION
4.98 -- ELEVATION POST EXCAVATION

							OF NEW YOR								
REV	DATE	BY CHKD	DESCRIPTION	REFERENCE DRAWING	DWG. NO.		ANGELOS J. FIORENZA	Candon	Ceres	PRAWN:	DF	PROJECT NAME:	CONTI	DRAWING TITLE:	REV.
						SCALE: 1"=10'-0"	PROFESSIONAL LAND SURVEYOR	Garaer	State				COURTLAND CORNERS		TOPOGRAPHIC SURVEY
							NY LICENSE NO DAGGE	ENGINE	ERING D	ESIGNED:	N/A		NEW YORK, NY		7/31/09
						10 0 10 20	N Electivation of the contraction of the contractio		YING	CHECKED:		PROJECT NO.: NY08-	-093	DRAWING No.:	
							and the		NING						NY08-093-210 (0)
						C	CERTIFICATE OF AUTHORIZATION NUMBER 24GA27916	Tel.: (201)	587-1755 A	APPROVED:		CLASSIFICATION: SURVE	Y		

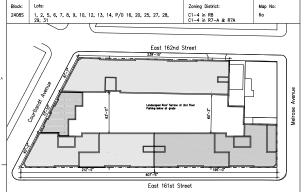
PTID	NORTHING	EASTING	DESIGN EL (FT)	ACTUAL POST EXCAV EL (FT)	EL (FT)
1000	5060.51	4908.65	4.60	4.15	6.94
1001	5050.88	4905.95	5.10	4.98	6.19
1002	5041.25	4903.26		5.06	6.25
1003	5031.62	4900.56	5.60	5.35	6.51
1004	5022.32	4897.96	6.10	5.90	8.22
1005	5017.2	4917.29	5.43	5.50	6.29
1006	5026.28	4919.83		5.29	5.97
1007	5035.91	4922.53		5.04	5.86
1008	5045.54	4925.23		4.50	5.44
1009	5055.17	4927.92	4.32	3.90	5.53
1010	5049.83	4947.2	4.28	3.92	5.04
1011	5040.2	4944.5		3.53	5.29
1012	5030.57	4941.8		4.70	5.62
1013	5020.94	4939.1		5.72	5.58
1014	5012.08	4936.62	5.04	5.03	5.66
1015	5007.83	4952.65	4.77	4.77	5.64
1016	5016.43	4956.23	4.52	4.48	5.42
1017	5025.66	4960.07	4.52	4.20	5.42
1018	5034.9	4963.91	4.36	3.46	
1019	5044.13		4.20	3.40	4.90
		4967.75	4.20		4.67
1020	5050.34	4969.39		2.36	4.86
1021	5045.65	4988.83	Military 1, 1997		4.34
1022	5030.18	4983.22			4.24
1023	5020.61	4980.55	3.02		4.33
1024	5011.04	4977.86			4.55
1025	5004.19	4967.81	4.41		4.70
1026	4999.87	4983.67	4.00		4.48
1027	5007.9	4990.48			4.14
1028	5017.5	4993.17			4.09
1029	5027.1	4995.85			3.91
1030	5042.6	5001.47	2.20	2.20	3.73
1031	5039.45	5014.5	2.30	2.31	3.75
1032	5033.25	5012.84			3.61
1033	5023.59	5010.24	2.67	2.55	3.68
1034	5004.27	5005.06	2.95	2.64	3.76
1035	4996.29	4999.31	3.80	2.04	3.75
2002	5045.58	4919.17	4.90		0.70
2003	5031.46	4915.92	5.33		
2004	5040.07	4937.58	4.54		***************************************
2005	5025.95		5.06		***************************************
		4934.32			
2006	5035.86	4951.15	4.54		***************************************
2007	5021.82	4948.22	4.79		
2008	5020.42	4906.15	5.85		
2009	5018.40	4913.89	5.60		
2010	5014.35	4929.36	5.27		
2011	5010.30	4944.84	4.94		
2012	5006.25	4960.32	4.51		
2013	5002.19	4975.80	4.06		
2014	4998.14	4991.28	3.87		
2015	4998.99	5003.85	3.20		
2016	5014.47	5007.89	2.67		
2017	5029.95	5011.94	2.57		
2018	5045.43	5016.00	0.00		
2019	5053.24	5018.04	0.00		
2020	5074.39	4968.24	21.30		
2021	5016.37	4921.62		5.38	
2022	5006.61	4999.53		2.85	*******************************
2023	5001.52	4956.80		24.34	
2024	4989.66	5000.73		23.34	
2025	4997.92	5008.53		22.84	
2026	5048.37	5021.84		21.41	····
2027	5058.03	5017.60		11.92	
2028	5065.88	5017.31		12.29	····
2028	5003.66	4998.70		13.70	
2030	5071.09	4996.76		12.02	
2030	5002.23	4983.94		14.20	
2032	5073.43				
		4976.54		13.86	
2033	5077.13	4975.53		16.67	
2034	5068.51	4974.51		13.78	
2035	5045.80	4983.54		-1.85	
2036	5042.76	4997.17	***************************************	1.96	
2037	5035.97	4981.56		2.50	
2038	5029.20	4994.16		2.30	
	5022.34	4978.10		2.53	
2039	E010 1E	4975.25		1.60	
2039 2040	5019.15			2.60	
2039 2040 2041	5019.15	4977.22			
2039 2040 2041 2042	5019.15 5015.28	4977.22 4990.79		2.25	
2039 2040 2041	5019.15				
2039 2040 2041 2042	5019.15 5015.28	4990.79		2.25	
2039 2040 2041 2042 2043	5019.15 5015.28 5022.88	4990.79 4970.45		2.25 1.74	
2039 2040 2041 2042 2043 2044	5019.15 5015.28 5022.88 5021.19	4990.79 4970.45 4962.31		2.25 1.74 2.30	
2039 2040 2041 2042 2043 2044 2045 2046	5019.15 5015.28 5022.88 5021.19 5035.77 5044.89	4990.79 4970.45 4962.31 4965.84 4966.80		2.25 1.74 2.30 2.00 4.20	
2039 2040 2041 2042 2043 2044 2045 2046 2047	5019.15 5015.28 5022.88 5021.19 5035.77 5044.89 5044.03	4990.79 4970.45 4962.31 4965.84 4966.80 4965.66		2.25 1.74 2.30 2.00 4.20 3.58	
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048	5019.15 5015.28 5022.88 5021.19 5035.77 5044.89 5044.03 5082.78	4990.79 4970.45 4962.31 4965.84 4966.80 4965.66 4960.36		2.25 1.74 2.30 2.00 4.20 3.58 20.82	
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049	5019.15 5015.28 5022.88 5021.19 5035.77 5044.89 5044.03 5082.78 5076.22	4990.79 4970.45 4962.31 4965.84 4966.80 4965.66 4960.36 4958.51		2.25 1.74 2.30 2.00 4.20 3.58 20.82 21.38	
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050	5019.15 5015.28 5022.88 5021.19 5035.77 5044.89 5044.03 5082.78 5076.22 5080.94	4990.79 4970.45 4962.31 4965.84 4966.80 4965.66 4960.36 4958.51 4943.35		2.25 1.74 2.30 2.00 4.20 3.58 20.82 21.38 22.10	
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051	5019.15 5015.28 5022.88 5021.19 5035.77 5044.89 5044.03 5082.78 5076.22 5080.94 5093.22	4990.79 4970.45 4962.31 4965.84 4966.80 4965.66 4960.36 4958.51 4943.35 4918.27		2.25 1.74 2.30 2.00 4.20 3.58 20.82 21.38 22.10 22.96	
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052	5019.15 5015.28 5022.88 5021.19 5035.77 5044.89 5044.03 5082.78 5076.22 5080.94 5093.22 5088.13	4990.79 4970.45 4962.31 4965.84 4966.80 4965.66 4960.36 4958.51 4943.35 4918.27 4914.52		2.25 1.74 2.30 2.00 4.20 3.58 20.82 21.38 22.10 22.96 22.91	
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053	5019.15 5015.28 5022.88 5021.19 5035.77 5044.89 5044.03 5082.78 5076.22 5080.94 5093.22 5088.13 5087.48	4990.79 4970.45 4962.31 4965.84 4966.80 4965.66 4960.36 4958.51 4943.35 4918.27 4914.52 4916.96		2.25 1.74 2.30 2.00 4.20 3.58 20.82 21.38 22.10 22.96 22.91 22.60	
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054	5019.15 5015.28 5022.88 5021.19 5035.77 5044.89 5044.03 5082.78 5076.22 5080.94 5093.22 5088.13 5087.48 5085.16	4990.79 4970.45 4962.31 4965.84 4966.80 4965.66 4960.36 4958.51 4943.35 4918.27 4914.52 4916.96 4894.69		2.25 1.74 2.30 2.00 4.20 3.58 20.82 21.38 22.10 22.96 22.96 22.91 22.60 24.25	
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055	5019.15 5015.28 5022.88 5021.19 5035.77 5044.89 5044.03 5082.78 5076.22 5080.94 5093.22 5088.13 5087.48 5085.16 5070.62	4990.79 4970.45 4962.31 4965.84 4966.80 4965.66 4960.36 4958.51 4943.35 4918.27 4914.52 4916.96 4894.69 4883.20		2.25 1.74 2.30 2.00 4.20 3.58 20.82 21.38 22.10 22.96 22.91 22.60 24.25 25.47	
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054	5019.15 5015.28 5022.88 5021.19 5035.77 5044.89 5044.03 5082.78 5076.22 5080.94 5093.22 5088.13 5087.48 5085.16	4990.79 4970.45 4962.31 4965.84 4966.80 4965.66 4960.36 4958.51 4943.35 4918.27 4914.52 4916.96 4894.69		2.25 1.74 2.30 2.00 4.20 3.58 20.82 21.38 22.10 22.96 22.96 22.91 22.60 24.25	

EAST 161th STREET

NOTES:


 \mathcal{O}

- HORIZONTAL CONTROL IS IN LOCAL SYSTEM ESTABLISHED AS N 5000, E 5000 AT CONTROL POINT PL-1 PROPERTY CORNER. (US FEET) VERTICAL DATUM IS IN REFERENCED TO THE BRONX BORO DATUM WHICH IS 2.608 FEET ABOVE MEAN SEA LEVEL AT SANDY HOOK, NJ AS ESTABLISHED BY THE U.S. COAST & GEODETIC SURVEY DATUM.
- 3. THIS SURVEY IS NOT A TITLE SURVEY AND IS NOT TO BE USED FOR THE PURPOSES OF EASEMENT, TITLE OR MORTGAGE CONVEYANCE. 4. UNAUTHORIZED ALTERATION OR ADDITION TO A SURVEY MAP BEARING A LICENSED LAND SURVEYOR'S SEAL IS A VIOLATION OF LAW. ONLY COPIES FROM THE ORIGINAL OF THIS SURVEY MARKED WITH ORIGINAL LICENSED LAND SURVEYOR'S SEAL & SIGNATURE SHALL BE CONSIDERED TO BE VALID TRUE
- 5. UTILITY LOCATIONS SHOWN HEREON ARE BASED ON ABOVE GROUND FIELD OBSERVATIONS. OTHER UTILITIES NOT GUARANTEED TO BE ACCURATE OR COMPLETE. THE USER OF THIS SURVEY IS RESPONSIBLE FOR MAKING HIS OWN DETERMINATIONS AS TO THE TYPE, LOCATION AND SUITABILITY OF UTILITIES AS MAY BE NECESSARY. CONTRACTOR SHALL CONTACT LOCAL UTILITY AGENCIES FOR INFORMATION BEFORE CONDUCTING ANY EXCAVATION.


	TE ENGINEERING, SURVEYING AN AST SPRING VALLEY AVE. SUITE MAYWOOD, NJ 07607				
	TEL. 201-587-1755 FAX 201-587-9137				
PROJECT SITE: DATE:	CORTLANDT CORNERS 1 6/25/2009	CORTLANDT CORNERS 2			
SSESP JOB#	NY08-093 - CONTI - CORTLAND CORNERS				
CALCULATED TOTAL VOLUME OF					
XCAVATION: art toward that is septim and the state of the principle and the set of the state of the state of the set of t		5923 CU. YD.			
CALCULATED AREA OF MATERIAL					
SED TO DEMARCATE		5689 SQ. FT.			
CALCULATED AREA COVERED BY		entrant had to the contract of			
ALCIUM PEROXIDE:		4492 SQ. FT.			
CALCULATED AREA OF WOOD					
AGGING:	The state of the s	3980 SQ. FT.			

LEGEND:

				and the same of th					
REV DA	ATE BY CHKD DESCRIPTION	REFERENCE DRAWING DWG. NO.	00115 4" 40' 0"	ANGELO JA FIORENZA	Gardon State	DRAWN: DF	PROJECT NAME: CONTI	DRAWING TITLE:	REV.
			SCALE: 1"=10'-0"	PROFESSIONAL LAND SURVEYOR	Garden state	DESIGNED: N/A	COURTLAND CORNERS	TOPOGRAPHIC SURVEY	7/31/00
			10 0 10 20	NY LIČENSE No. 049468	SURVEYING	DESIGNED. N/A	NEW YORK, NY	DDAWING No.	7/31/09
				MAN SELECTION OF THE PROPERTY	& PLANNING	CHECKED:	PROJECT NO.: NY08-093	DRAWING No.: NY08-093-21	1 0
				CERTIFICATE OF AUTHORIZATION NUMBER 24GA27916800	Tel.: (201) 587-1755	APPROVED:	CLASSIFICATION: SURVEY	11100-095-21	

APPENDIX H

Occupancy and Construction Classification

Occupancy: The building is classified as a Class "A" Multiple Dwelling Occupancy Group J-2 (Section 27-265 NYC Bulding Code and Section 4, Multiple Dwelling Law)

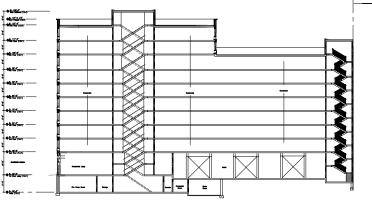
Construction Classification: 1C (Subchapter 4 Table 4-2 Area and Height Limitations for Sprinklered Buldings)

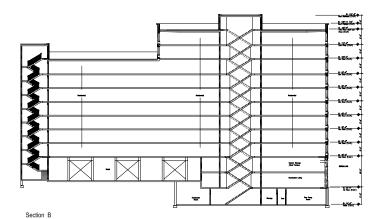
Occupancy Classification (Subchapter 3 Table 3-1)

 Building Occupancy
 Group
 Fire Index

 Residential
 J-2
 1

Accessory Occupancies	Group	Fire Index
Community Room	F-4	1
Storage	B-2	2
Mechanical	D-2	2


Dwelling Unit Tabulations


SECTION A


SECTION A						
	0-BR	1-BR	2-BR	3-BR	3-BR TH	Total Units
Ground	0	0	0	0		0
2	0	3	6	1		10
3	0	3	6	1		10
4	0	3	6	1		10
5	0	3	6	1		10
5 6 7	0	3	6	1		10
7	0	3	6	1		10
8	0	3	6	1		10
9	0	0	3	1		4
10	0	0	3	1		4
Subtotal	0	21	48	9	0	78
SECTION B						
Ground	0	0	0	0		0
2	0	4	7	0		11
3	0	4	7	0		11
4	0	4	7	0		11
5	0	4	7	0		11
6	0	4	7	0		11
7	0	4	7	0		11
8	0	4	7	0		11
9	1	0	2	1		4
10	1	0	2	1		4
Subtotal	2	28	53	2	0	85
SECTION C						
Ground	2	1	2	0	3	8
2	1	4	8	1		14
3	1	4	8	1		14
4	1	4	8	1		14
5	1	4	8	1		14
6	1	4	8	1		14
7	1	4	8	1		14
Subtotal	8	25	50	6	3	92
CCII Total	10	74	151	17	3	255
Distribution (%)	3.9%	29.0%	59.2%	6.7%	1.2%	1005

Section Diagram

Section A

Section C

Courtlandt Corners II

Courtlandt Corners Associates, L.P. 902 Broadway, 13th Floor New York, NY 10010-6033

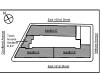
LS 130 West 57th Street New York, New York 1000S

tal 212 247 2660 fax 212 246 7532 www.dattner.com

Structural Engineers
Rodney D. Gibble Consulting Engineers
19 West 21st Street, Suite 501
New York, NY 10010
Tel: (212) 969-2853 x 108

Tel: (212) 989-2853 x 108

Mechanical/Electrics/Plumbing Engineers

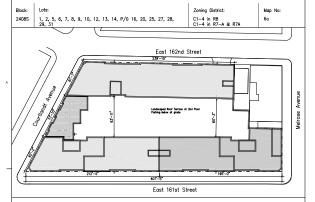

Ettinger Engineering Associates

505 8th Avenue 24th Floor New York, NY 10018 Tel: (212) 244-2410

Landscape Architects
Abel Bainnson Butz, LLP
80 8th Averus, Suite 1105
New York, NY 10011
Tel: (212) 206-0630

PROGRESS SET

Revisions


Key Plan

© 2008 Richard Dattner & Partners Architects P.C.

Site and Section Dlagrams & Dwell. Unit Tabulations

Dose February 29, 2008
Scale 1/8" = 1'-0"
Drave By CA
Checked By
Project No. 0601 Seed

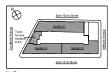
A-002

Zoning Data

Site Data									
Block	24088								
Lots	1.2.5.6.7	7, 8, 9, 10, 12, 13, 14, p/o 16, 20, 25, 27, 28, 29, 31							
Metrose Commons	Urban Rene	rwal Area							
	Site 56	Lots 6, 7, 8, 9.10, p/o 12, 13, 14, p/o 16, 20, 25, 27, 28, 29, 31							
	Site 57	Lot 1							
Privately Owned/Acc	guired Lots	Lots 2, 5, 12 Excluded Lots Lots plo 16, 17							
Location	portions of	portions of the block bounded by Courtlandt Ave., Melrose Ave.,							
	East 161s	t St. and East 152nd St., Bronx, NY							
Zoning Districts	C1-4 in R8	3, C1-4 in R7A & R7A							
Zoning Map	6a								
E-Designation	E-53	Window wall attenuation and alternate ventilation required at							
		Lots 1, 6-10, 12-14, 16, 20, 25, 27-29, 31							
Community Board	Bronx CB	5							

Courtlandt Corners II

Courtlandt Corners 902 Broadway, 13th Floor New York, NY 10010-6033



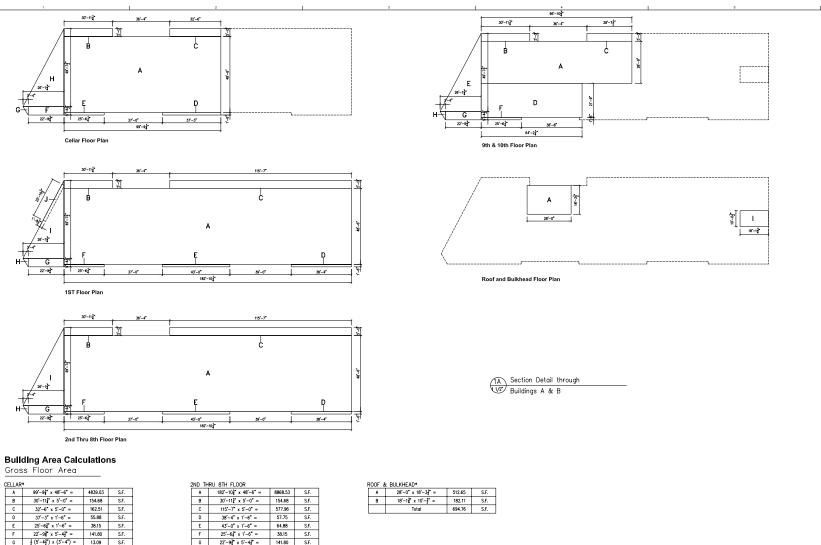
Structural Engineers
Rodney D. Gibble Consulting Engineers
19 West 21st Street, Suite 501
New York, NY 10010
Tet: (212) 989-2853 x 108

Mechanical/Electrical/Filmbing Enginears Ettinger Engineering Associates 505 8th Average 24th Floor New York, NY 10018 Tel: (212) 244-2410

Landscape Architects
Abel Bainnson Butz, LLP
80 8th Avenue, Suite 1105
New York, NY 10011
Tel: (212) 208-0630

PROGRESS SET

2008 Richard Dattner & Partners Architects P.C.


Lot Dimensions & Area Calculations, & ZonIng Data

A-005

Lot Area Calculations

Zoning Area Calcul Note				1000	Variation V		ot area is bas				
Note							ect to verificat		n coma truci	NO.	
Lot	width				depth						
Lot1	24.25	5.	29.33	×	103.68	4	90.48				
Lot2	50.00	8	55.96	×	90.46	4	65.35				
Lot5	25.00	8	27.96	×	115.35	4	102.78				
Lot6	25.00	8	28.00	×	102.78	4	90.21				
Lot7	25.28	8	28.43		90.21	A	77.40	est			
Lot8	25.00	A	27.86	×	77.40	A	64.93	0.51			
Lot9	25.00			×	100.28						
Lot 10	50.00			×	100.28						
Lot 12	25.00			×	100.28						
Lot 13	25.00			×	100.28						
Lot 14	50.00			×	100.28						
pio Let 16*	25.00			×	28.00						
Lot20	103.70			÷	68.52		70.74				
Lot25	50.01		50.00		70.74		71.14				
Lot27	25.00		90.00	Ŷ	71.14	•	71.89				
Lot28	25.00			÷	71.09		72.36				
Lot28	50.01		50.00		72.36		73.30				
Lot29 Lot31	50.01		50.00		73.30		74.25				
Total	50.01	0.	50.00	×	73.30		74.20	_	55.253	0.00	
"directaions of portion	and I set 16 to be	. ince	perceived in ad	a la	he weekled				00,200	or.	
difference or portor	TO EDE TO BO D	***	orpraned at an	-	De reined						
Distribution of Lot	C1-4 in R8								36.439	SE	
Area by District	C1-4 in B74								1.681		
	R7A								17.133	GE	
	Total Lot Ar	ea							55,253		
Relationship to	DO On lo d		of a mide						36.439	0.0	
Wide Street	R8 within 100 ft of a wide street R7A within 100 ft of a wide street								1.681		
	R7A within 100 ft. of a wide street R7A not within 100 ft. of a wide street								17.133		
	R7A not within 100 ft. of a w				steet				55.253		
									00,200	or	
Lot distribution	R8 - comer	lot a	rea						19,634	SF	
	R8 - interior/through lot area								16,805	SF	
	R7A - comer lot area								8,331	SF	
	R7A - interior/through lot an			6-0					10.483	SF	
									55,253	SF	
Summary											
										\neg	
The site is located in	n the Melrose	Con	mmons Urb	an F	tenewal Are	n in	the Bronx, NY	on p	ortions of B	lock 2	1408
bounded by Courtia	ndt Ave. to the	we	st East 162	nd t	it to the nort	h, E	est 15 tet St. s	o the	south and	Meira	se Ave. to
the east. The site is											
in the site. Two lots	on the northe	asto	corner of the	e bio	ck (p/o Lot 1	6 ar	td Lot 17) are	exclu	ided from th	e de	elopment
The marine man	itte d monion f		nen n ia :						337.617	0.6	
The maximum permitted zoning floor area is: The provided total zoning floor area is:									308.020		
						-					
Provided residentia									290,336		
Provided retail ground floor area (included in zoning floor area above The max, permitted number of dwelling units is:						ove.			17,684		

PROGRESS SET

2008 Richard Dattner & Partners Architects P.C.

Courtlandt Corners II

Courtlandt Corners Associates, L.P. 902 Broadway, 13th Floor New York, NY 10010-6033

Structural Engineers
Rodney D. Gibble Consulting Engineers
19 West 21st Street, Suite 501
New York, NY 10010
Tel: (212) 969-2853 x 108 Mechanical/Electrical/Plumbing Engineers Ettinger Engineering Associates

Landscape Architects
Abel Bainnson Butz, LLP
80 8th Avenue, Suite 1105
New York, NY 10011
Tel: (212) 206-0630

130 West 57th Street New York, New York 1000 tal 212 247 2660 fax 212 246 7132

Building Dimensions & Area Calculations Section A

Date February 29, 2008 Scale As Noted Drawn By CA Project No. 0601 A-006

TOTAL GROSS ZONING FLOOR AREA: 94,337.68 S.F.

TOTAL GROSS ZONING FLOOR AREA 1ST FLOOR

2ND THRU 8TH FLOOR

9TH & 10TH FLOOR

TOTAL

*CELLAR & STAIR BULKHEAD GROSS AREA NOT INCLUDED

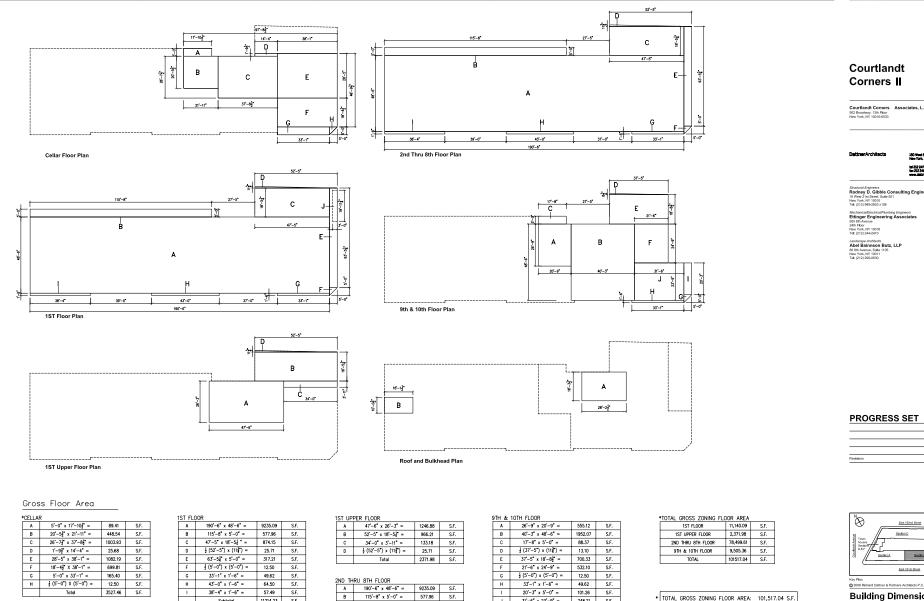
10,460.12 S.F.

73,739.82 S.F.

10,137.74 S.F.

94337.68 S.F.

1ST FLO	DOR		
A	182'-101" x 48'-6" =	8868.53	S.F.
В	30'-11 x 5'-0" =	154.68	S.F.
С	115'-7" x 5'-0" =	577.96	S.F.
D	38'-4" x 1'-6" =	57.75	S.F.
E	43'-0" x 1'-6" =	64.88	S.F.
F	25'-6‡" x 1'-6" =	38.15	S.F.
G	22'-93" x 5'-42" =	141.80	S.F.
н	$\frac{1}{2}(5'-4\frac{1}{2}'') \times (3'-4'') =$	13.09	S.F.
1	½ (26'-1½") x (49'-7½") =	617.42	S.F.
	Subtotal	10534.26	S.F.
J	25'-102" x 1'-82" =	44.19	S.F.
	Total	0490 07000	SF


H $\frac{1}{2}(26'-1\frac{1}{2}') \times (49'-7\frac{1}{2}') = 617.42$ S.F.

Total

6022.56 S.F.

ND THRU 8TH FLOOR							
A	182'-10‡" x 48'-6" = 8868.53 S.F						
В	30'-11‡" x 5'-0" =	154.68	S.F.				
С	115'-7" x 5'-0" =	577.96	S.F.				
D	38'-4" x 1'-6" =	57.75	S.F.				
E	43'-0" x 1'-6" =	64.88	S.F.				
F	25'-6‡" x 1'-6" =	38.15	S.F.				
G	22'-92" × 5'-42" =	141.80	S.F.				
Н	½ (5'-4½") x (3'-4") =	13.09	S.F.				
- 1	½ (26'-1½") x (49'-7½") =	617.42	S.F.				
	Sub-Total	10534.26	S.F.				

	Sub-Total X 7 Floors	73739.82	S.F.			
TH & 10TH FLOOR						
A	95'-10" x 26'-9" =	2565.40	S.F.			
В	30'-11‡" x 5'-0" =	154.68	S.F.			
С	28'-72" x 5'-0" =	142.37	S.F.			
D	64'-21" x 21'-9" =	1395.96	S.F.			
E	1 (26'-11') x (49'-71') =	617.42	S.F.			
F	25'-6‡" x 1'-6" =	38.15	S.F.			
G	22'-92" x 5'-42" =	141.80	S.F.			
Н	½ (5'-4½") x (3'-4") =	13.09	S.F.			
	Sub-Total	5068.87	S.F.			
	Sub-Total X 2 Floors	10137.74	S.F.			

S.F.

* CELLAR AND ROOF GROSS AREAS ARE NOT INCLUDED IN TOTAL GROSS ZONING FLOOR AREA

748.21

4752.68 S.F.

182.11 S.F.

698.38 S.F.

31'-6" x 23'-9" =

Subtotal

10'-0 ½" x 18'-1½" =

Total

Subtotal x 2 Firs. = Total 9505.36 S.F.

*ROOF & BULKHEAD

A 18'-3½" x 28'-2½" = 516.27 S.F.

S.F.

47'-5" x 18'-51 " =

63'-51" x 5'-0" =

33'-1" x 1'-6" =

43'-0" x 1'-6" =

38'-4" x 1'-6" =

Subtotal =

Subtotal x 7 Firs. = Total 78499.61

D ½ (52"-5") x (11½") =

F ½ (5'-0") x (5'-0") =

874.15 S.F.

25.71 S.F.

317.21

12.50 S.F.

49.62 S.F.

57.49 S.F.

11214.23

S.F. 64.50

S.F.

11214.23

74.14 S.F.

11140.09 S.F.

Subtotal

19'-11 x 3'-0" =

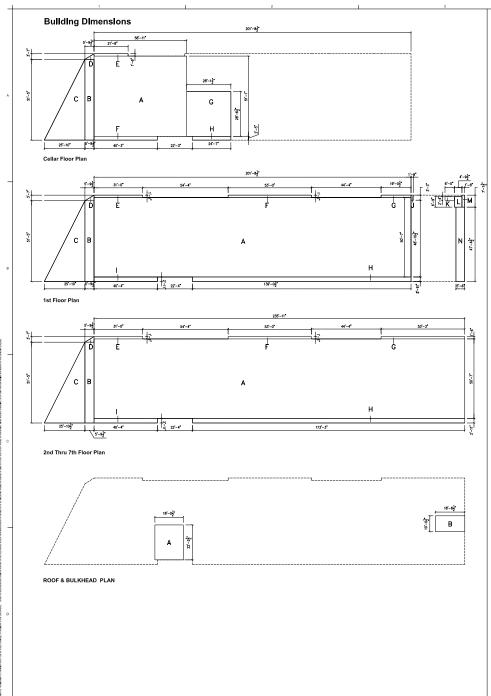
Total

Courtlandt

Courtlandt Corners Associates, L.P. 902 Broadway, 13th Floor New York, NY 10010-6033

130 West 57th Street New York, New York 1000 tel 212 247 2680 fex 212 248 7132

Structural Engineers
Rodney D. Gibble Consulting Engineers


Mechanical/Electrical/Plumbing Engineers
Ettinger Engineering Associates

PROGRESS SET

Building Dimensions & Area Calculations Section B

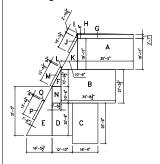
Date February 29, 2008 Scale As Noted Drawn By CA Project No. 0601

Building Area Calculations

Section A Gross Floor Area

A	R FLOOR 201'-8J" x 50'-7" =	10203	S
A	201-81 x 30-/ =	10203	5.1
В	5'-92" x 51'-5" =	298	S.I
С	½ (25'-10") x (51'-5")	665	S.
D	½ (3'-7") x (5'-9 1/2")	10	S.
E	31'-0" x 1'-6" =	46.5	S.
F	53'-0" x 1'-6" =	79.5	SF
G	19'-0 1/2" x 1'-6" =	29	SF
н	139-0 1/2" x 2'-11" =	405.5	SF
- 1	40'-4" x 2'-11" =	117.5	S.
	Total	11854.00	S.

Α	201'-81" x 50'-7" =	10203	S.F.
В	5'-9½" x 51'-5" =	298	S.F.
С	½ (25'-10") x (51'-5")	665	S.F.
D	½ (3'-7") x (5'-9 1/2")	10	S.F.
E	31'-0" x 1'-6" =	46.5	S.F.
F	53'-0" x 1'-6" =	79.5	SF
G	19'-0 1/2" x 1'-6" =	29	SF
н	139-0 1/2" x 2'-11" =	405.5	SF
1	40'-4" x 2'-11" =	117.5	S.F.
J	3'-3" x 1'-8" =	5.29	S.F.
K	2'-4" x 6'-0" =	13.95	S.F.
L	6'-9" x 4'-92" =	32.37	S.F.
М	7'-72" x 1'-8" =	12.72	S.F.
м	5'-6" x 47'-41" =	259.96	S.F.
	Total	12178.29	S.F.


Α	235'-11" x 50'-7" =	11933	S.F.
В	5'-92" x 51'-5" =	298	S.F.
С	½ (25'-10") x (51'-5")	665	S.F.
D	½ (3'-7") x (5'-9 1/2")	10	S.F.
E	31'-0" x 1'-6" =	46.5	S.F.
F	53'-0" x 1'-6" =	79.5	SF
G	53'-3" x 1'-6" =	80	SF
н	173'-3" x 2'-11" =	505	SF
-	40'-4" x 2'-11" =	117.5	S.F.
	Subtotal	13734.50	S.F.
	x 6 Floors = Total	82407.00	S.F.

*R00F	& BULKHEAD		
A	22'-22" x 18'-0 2" =	401.00	S.F.
В	10'-0 ½" X 18'-8½"	187.65	SF
	Total	588.65	S.F.

TOTAL GROSS ZONING FLO	OR AREA	
1ST FLOOR	12178	S.F.
2ND THRU 7TH FLOOR	82407	S.F.
TOTAL	94585	S.F.

- * TOTAL GROSS ZONING FLOOR AREA: 94582 S.F.
- * CELLAR AND ROOF GROSS AREAS ARE NOT INCLUDED IN TOTAL GROSS ZONING FLOOR AREA

Building Dimensions

Building Area Calculations

Section Townhouses Gross Floor Area

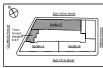
ST &c	2ND FLOORS		
Α	19'-11" x 35'-0" =	704.64	S.F.
В	21'-3½" x 34'-8½" =	738.44	S.F.
С	25'-9" x 16'-4"	420.33	S.F.
D	20'-9" x 12'-10"	266.21	S.F.
Ε	½ (16'-5½") x (31'-3")	256.76	S.F.
F	½ (5'-8½") x (10'-9½")	30.72	SF
G	2'-7" x 35'-5"	90.45	SF
Н	½ (8") x (35'-5")	11.93	SF
- 1	½ (1'-6") X 2'-10½")	2.15	SF
J	1'-6" X 10'-72"	15.97	SF
K	½ (10'-6") X (19'-11")	104.30	SF
L	½ (1'-6') X (9½')	0.59	SF
М	1'-6" X 13'-42"	19.92	SF
N	5'-8½" X 10'-6"	59.79	SF
0	½ (1'-6') X (9½*)	0.59	SF
Р	1'-6" X 13'-42"	19.94	SF
	Total	2742.73	S.F.
	x 2 Floors	5485.46	S.F.

- * TOTAL GROSS ZONING FLOOR AREA: 5485 S.F.
- * ROOF GROSS AREAS ARE NOT INCLUDED IN TOTAL GROSS ZONING FLOOR AREA

Courtlandt Corners II

Courtlandt Corners Associates, L.P. 902 Broadway, 13th Floor New York, NY 10010-6033

Patterna and and the

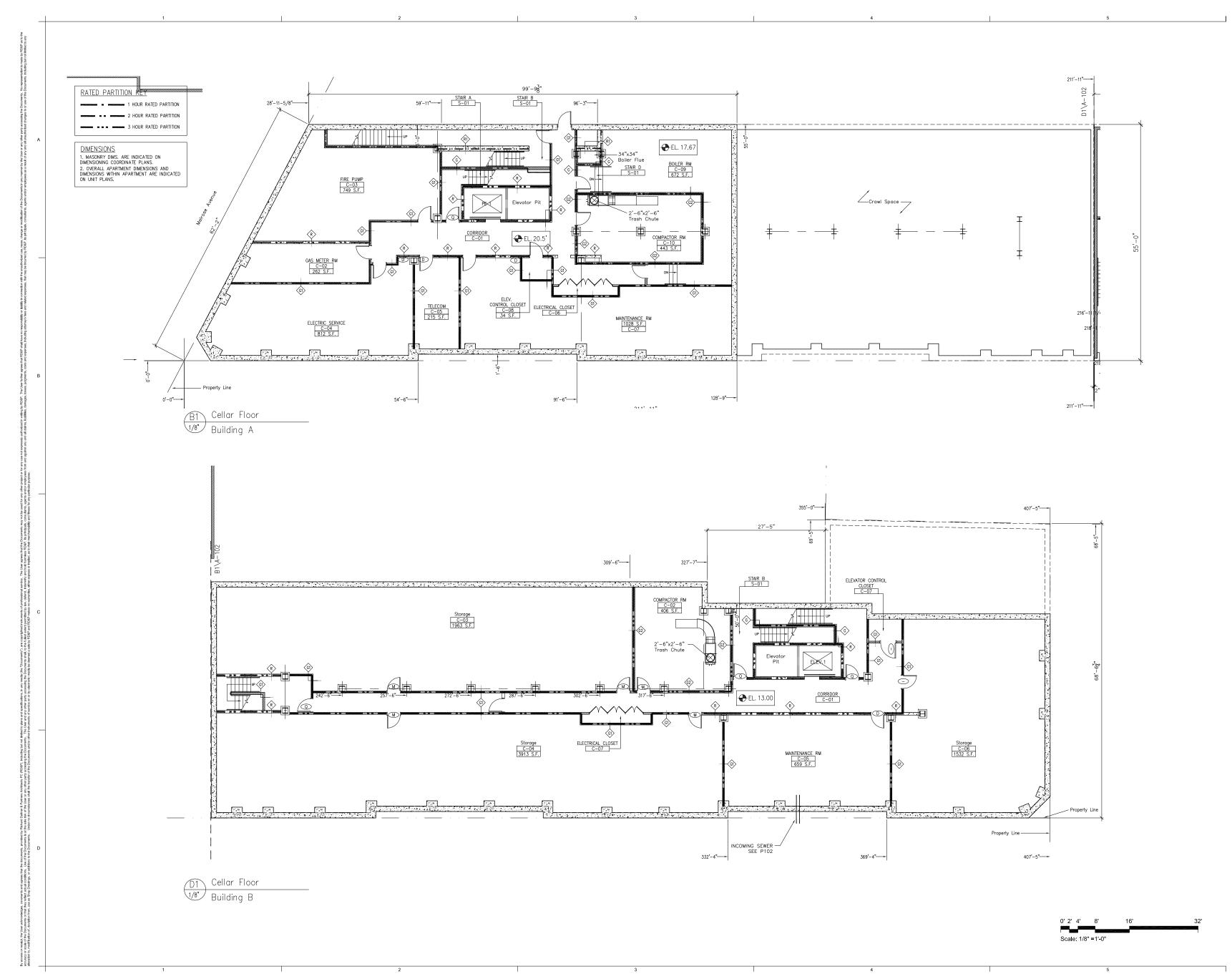


Structural Engineers
Rodney D. Gibble Consulting Engineers
19 West 21st Street, Safe 501
New York, NY 10010
Tet: (212) 989-2853×108

Mechanical/Electrical/Plumbing Engineers
Ettinger Engineering Associates
505 8th Avenue

Landscape Architects
Abel Bainnson Butz, LLP
80 8th Avenue, Suite 1105
New York, NY 10011
Tel: (212) 206-0630

PROGRESS SET



Key Plan

2005 Dichard Datteer & Partners Architects

Building Dimensions & Area Calculations Section C, Townhouses

Date February 29, 2008
Scale As Noted
Drawn By CA
Chicado By
Project No. 0601 Seal

Courtlandt Corners II

Courtlandt Corners II Associates, L.P. 902 Broadway, 13th Floor New York, NY 10010-6033

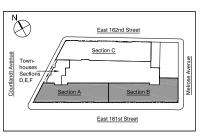
DattnerArchitects

130 West 57th Street New York, New York 10019 tel 212 247 2660 fax 212 245 7132 www.dattner.com

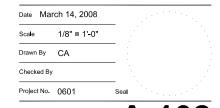
Structural Engineers
Rodney D. Gibble Consulting Engineers
19 West 21st Street, Sulte 501
New York, NY 10010
Tel: (212) 989-2853 x108

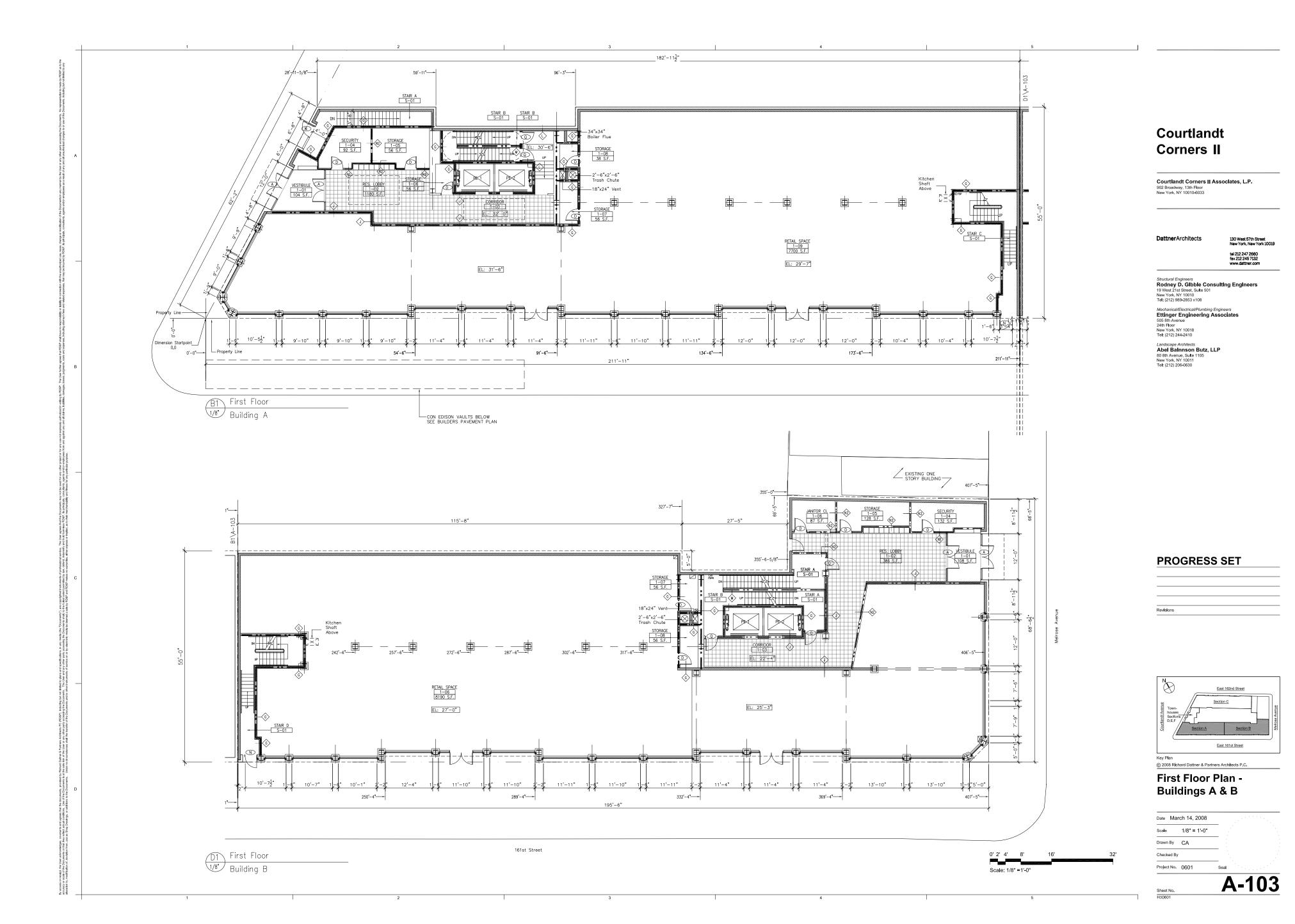
Mechanical/Electrical/Plumbing Engineers
Ettinger Engineering Associates
505 8th Avenue
24th Floor
New York, NY 10018
Tel: (212) 244-2410

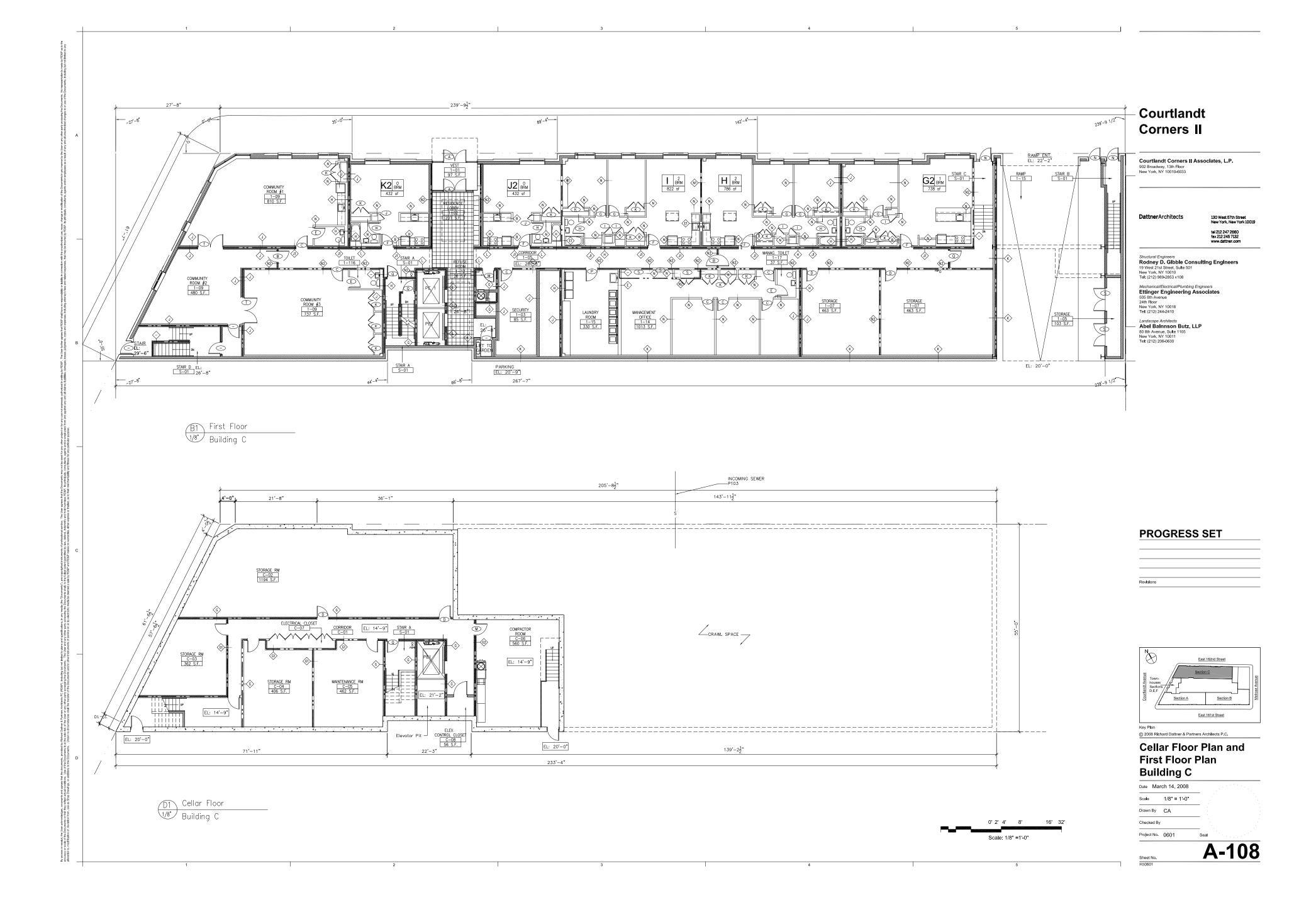
Landscape Architects

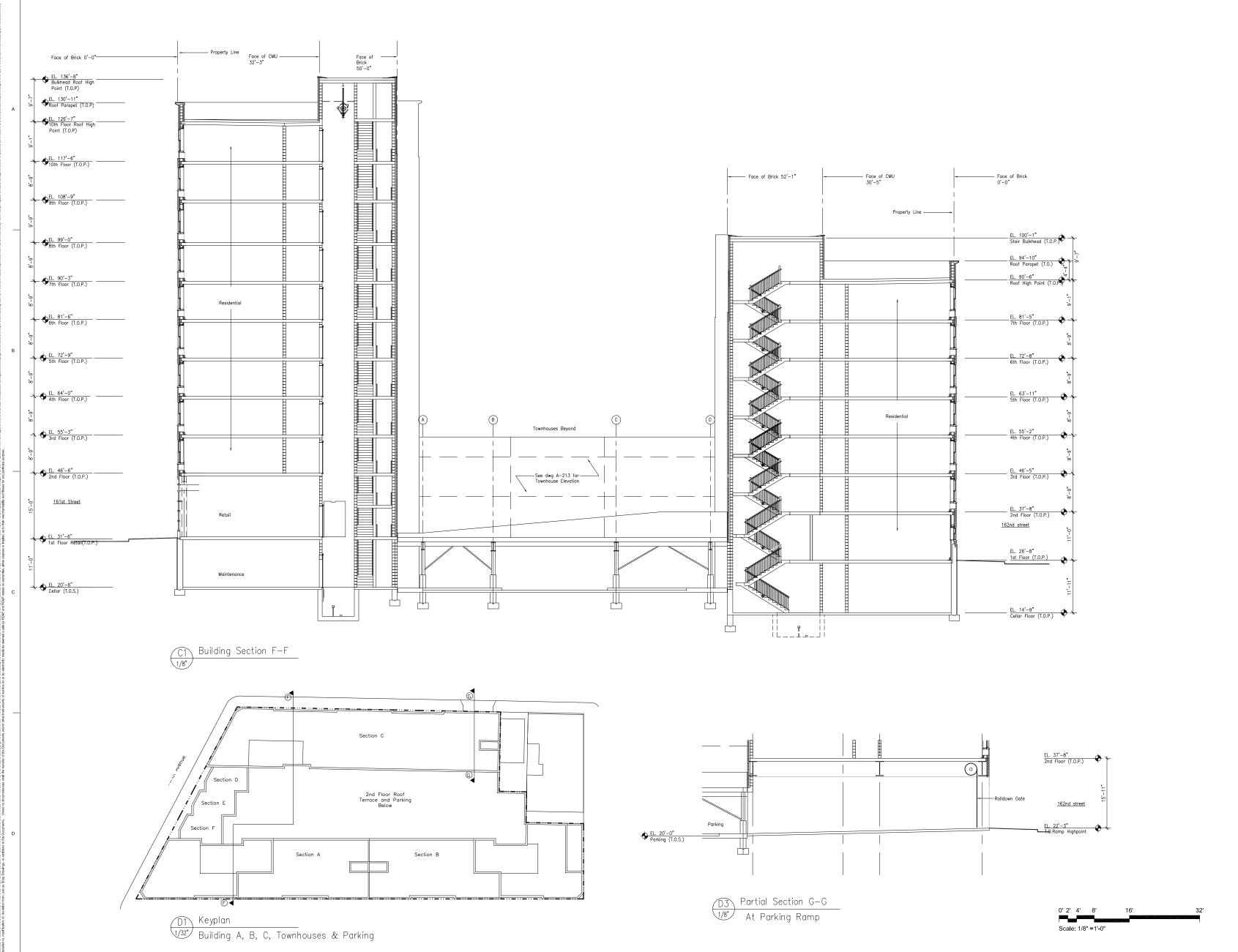

Abel Balnnson Butz, LLP

80 8th Avenue, Suite 1105


New York, NY 10011


Tel: (212) 206-0630


PROGRESS SET



Cellar Floor Plan -Buildings A & B

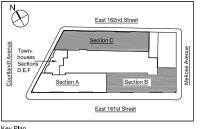
Courtlandt Corners II

Courtlandt Corners II Associates, L.P. 902 Broadway, 13th Floor New York, NY 10010-6033

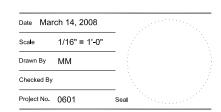
DattnerArchitects

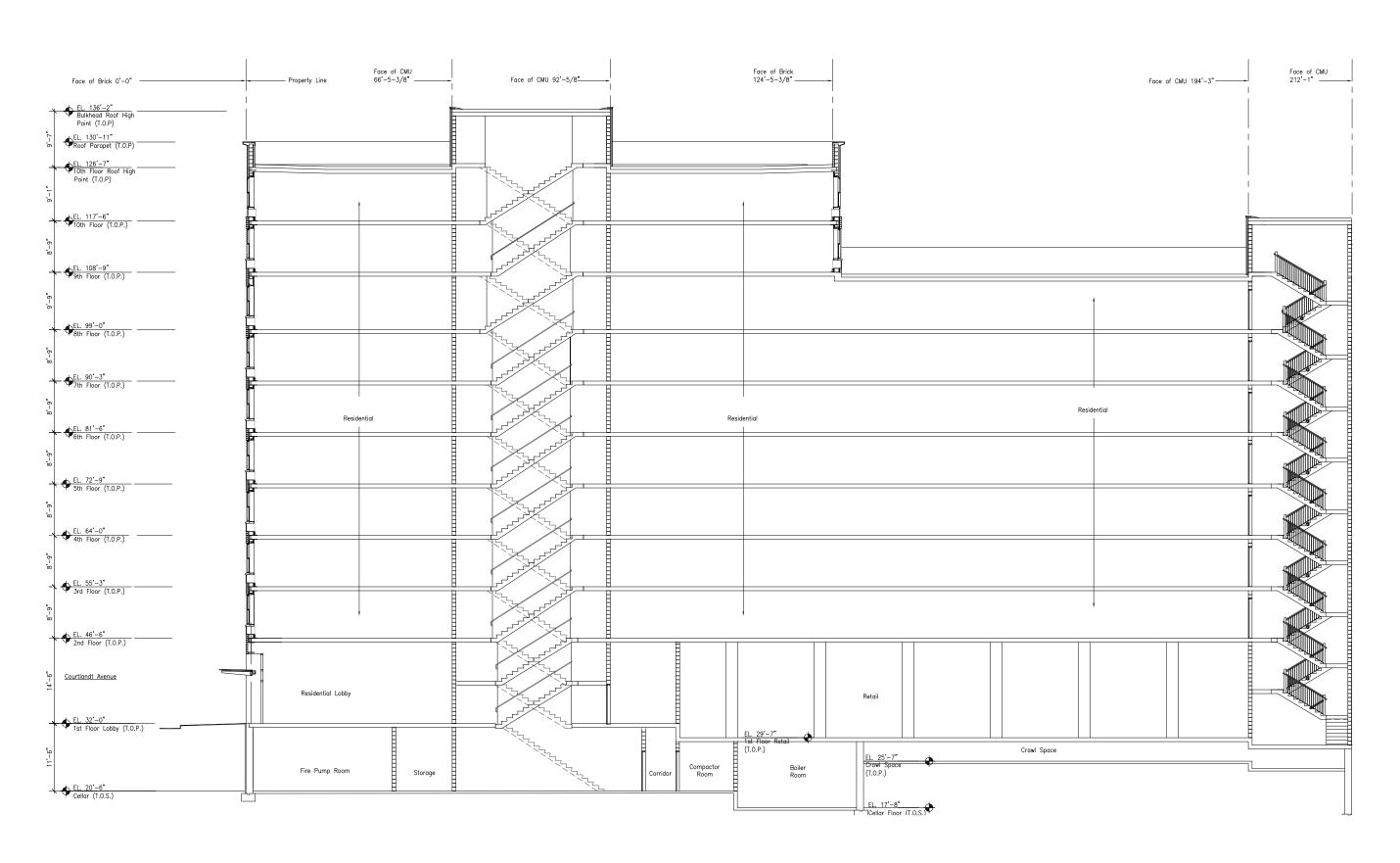
130 West 57th Street New York, New York 10019 tel 212 247 2660 fax 212 245 7132 www.dattner.com

Structural Engineers
Rodney D. Gibble Consulting Engineers
19 West 21st Street, Sulte 501
New York, NY 10010
Tel: (212) 989-2853 x108

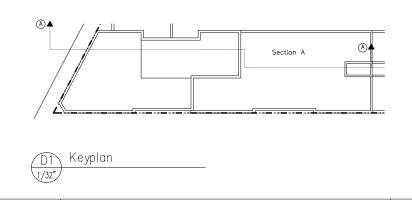

Mechanical/Electrical/Plumbing Engineers
Ettinger Engineering Associates
505 8th Avenue
24th Floor
New York, NY 10018
Tel: (212) 244-2410

Landscape Architects


Abel Balnnson Butz, LLP


80 8th Avenue, Sulte 1105
New York, NY 10011
Tel: (212) 206-0630

PROGRESS SET


Building Sections Buildings B & C

Building Section A-A

1/8" Section A

Courtlandt Corners II

Courtlandt Corners II Associates, L.P. 902 Broadway, 13th Floor New York, NY 10010-6033

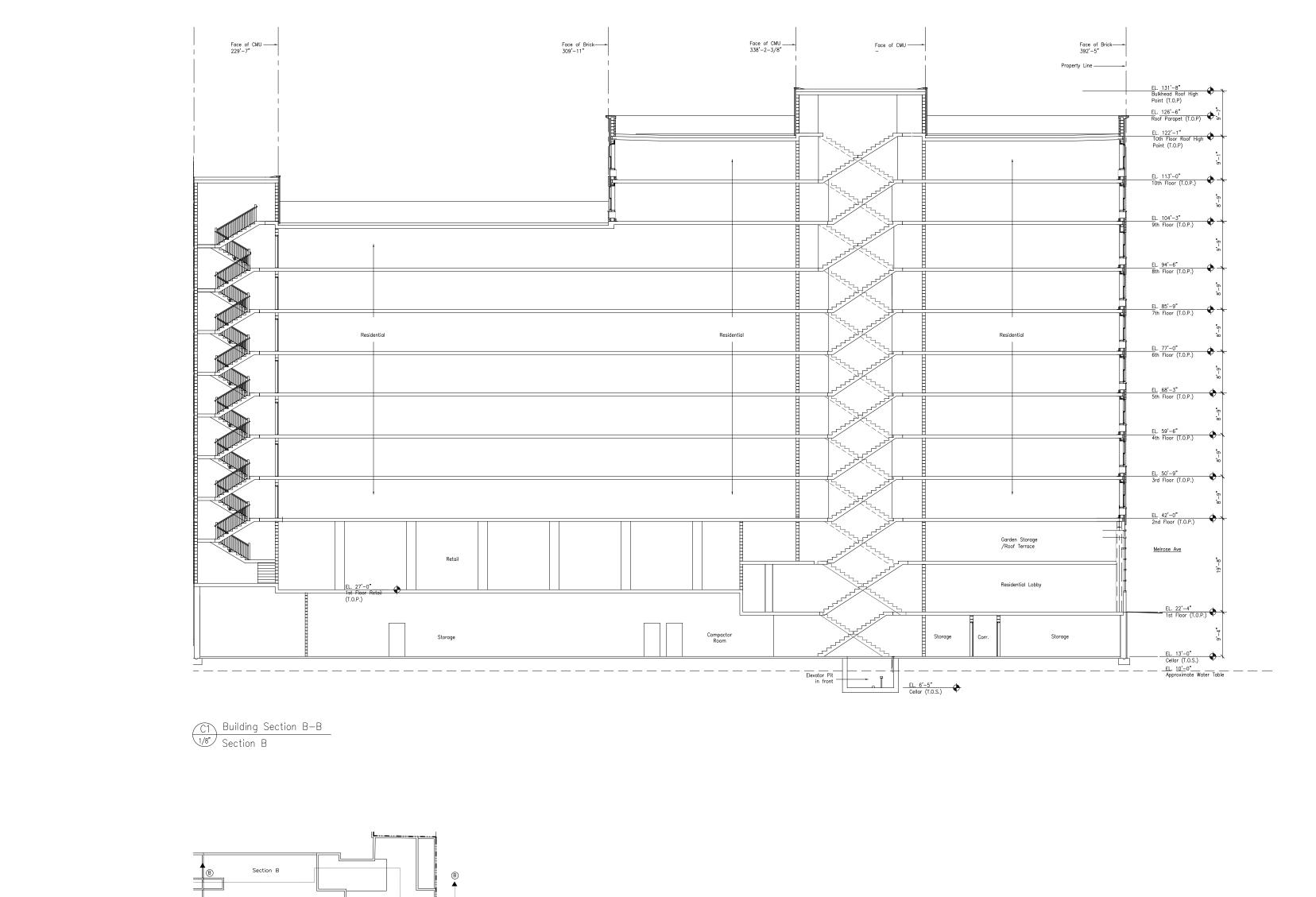
DattnerArchitects

130 West 57th Street New York, New York 10019 tel 212 247 2660 fax 212 245 7132 www.dattner.com

Structural Engineers
Rodney D. Glbble Consulting Engineers
19 West 21st Street, Sulte 501
New York, NY 10010
Tel: (212) 989-2853 x108

Mechanical/Electrical/Plumbing Engineers
Ettinger Engineering Associates
505 8th Avenue
24th Floor
New York, NY 10018
Tel: (212) 244-2410

Landscape Architects


Abel Balnnson Butz, LLP
80 8th Avenue, Suite 1105
New York, NY 10011
Tel: (212) 206-0630

PROGRESS SET

Building Sections -Section A

Date March 14, 2008 Scale 1/16" = 1'-0" Drawn By MM Checked By Project No. 0601

D1 Keyplan

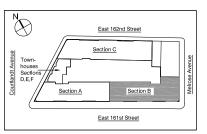
Courtlandt Corners II

Courtlandt Corners II Associates, L.P. 902 Broadway, 13th Floor New York, NY 10010-6033

DattnerArchitects

130 West 57th Street New York, New York 10019

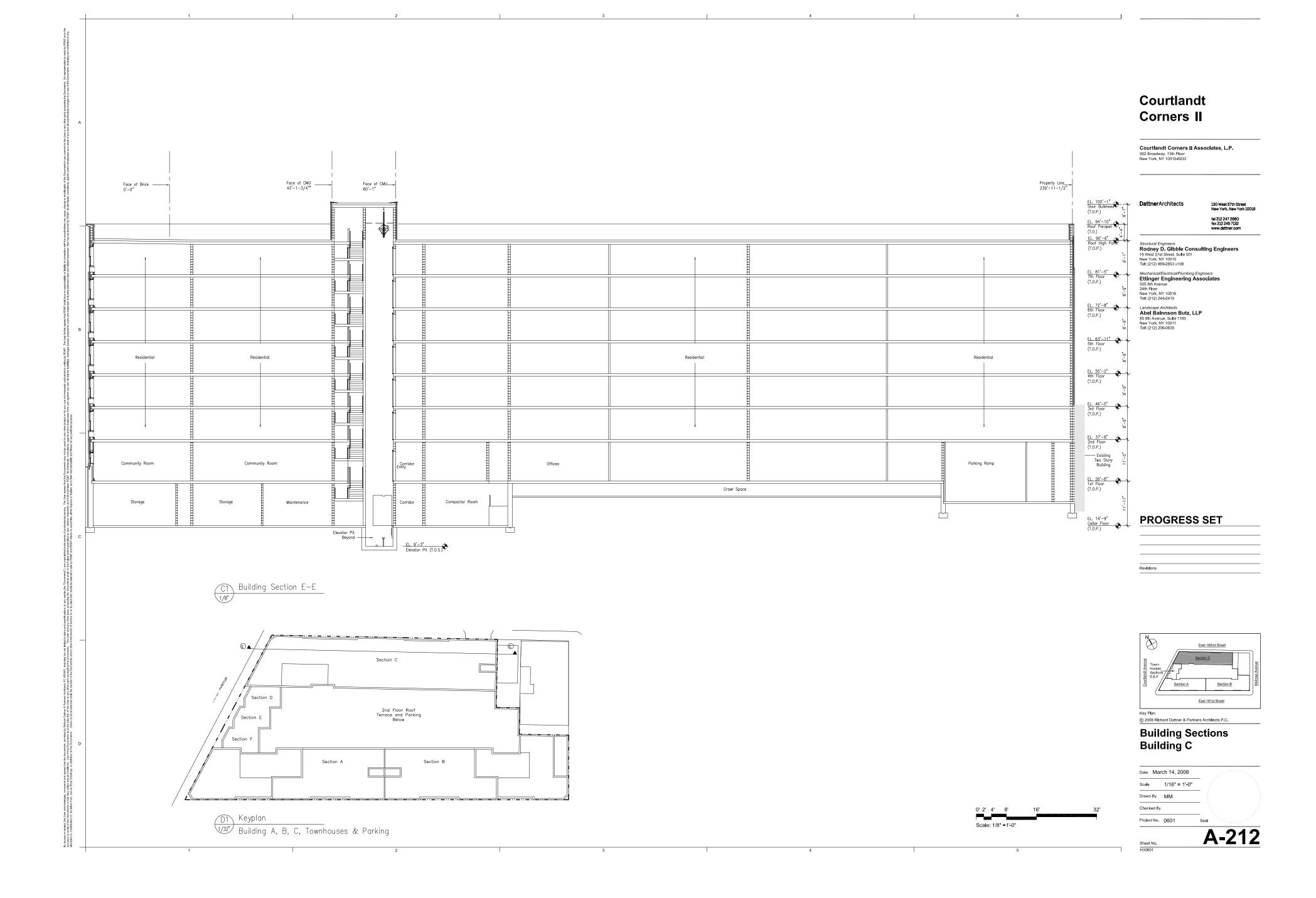
tel 212 247 2660 fax 212 245 7132 www.dattner.com


Structural Engineers
Rodney D. Gibble Consulting Engineers
19 West 21st Street, Sulle 501
New York, NY 10010
Tel: (212) 989-2853 x108

Mechanical/Electrical/Plumbing Engineers
Ettinger Engineering Associates
505 8th Avenue
24th Floor
New York, NY 10018
Tel: (212) 244-2410

Landscape Architects

Abel Balnnson Butz, LLP
80 8th Avenue, Suite 1105
New York, NY 10011
Tel: (212) 206-0630


PROGRESS SET

Scale: 1/8" =1'-0"

Building Sections -Section B

Date March 14, 2008 Scale 1/8" = 1'-0" Drawn By MM Checked By Project No. 0601

Building C PARKING

Building Section A-A

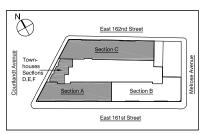
Courtlandt Corners II

Courtlandt Corners II Associates, L.P. 902 Broadway, 13th Floor New York, NY 10010-6033

DattnerArchitects

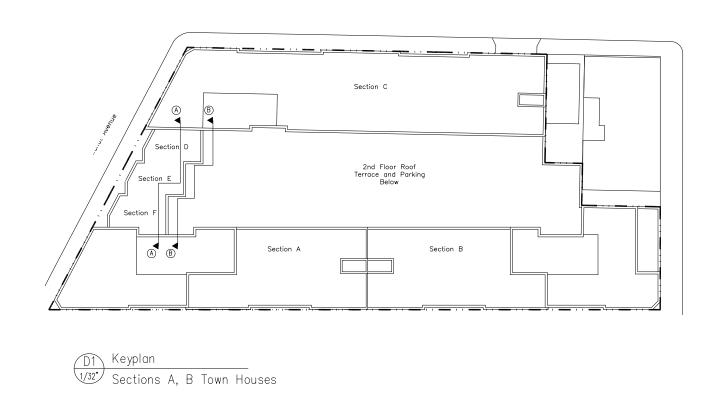
130 West 57th Street New York, New York 10019 tel 212 247 2660 fax 212 245 7132 www.dattner.com

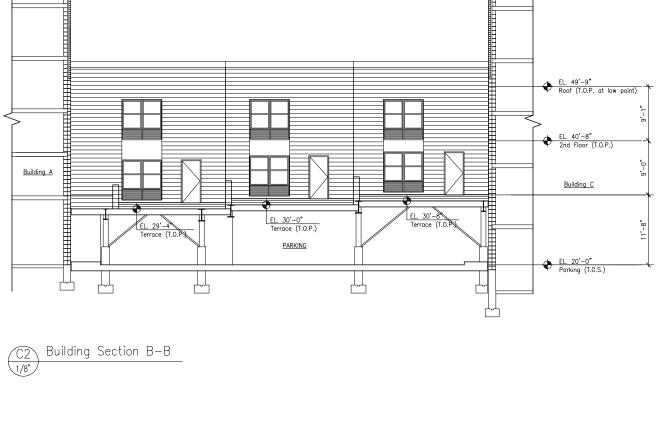
Structural Engineers
Rodney D. Gibble Consulting Engineers
19 West 21st Street, Sulle 501
New York, NY 10010
Tel: (212) 989-2853 x108


Mechanical/Electrical/Plumbing Engineers
Ettinger Engineering Associates
505 8th Avenue
24th Floor
New York, NY 10018
Tel: (212) 244-2410

Landscape Architects

Abel Balnnson Butz, LLP


80 8th Avenue, Sulte 1105
New York, NY 10011
Tel: (212) 206-0630


PROGRESS SET

Building Sections -Section A, Townhouses, and Section C

Date March 14, 2008 Scale 1/16" = 1'-0" Drawn By MM Checked By Project No. 0601

DECLARATION of COVENANTS and RESTRICTIONS

THIS COVENANT, made the __ day of March2010, by Courtlandt Corners II, L.P. ("Courtlandt Corners II"), a corporation organized and existing under the laws of the State of New York and having an office for the transaction of business at 902 Broadway (20th and Broadway), 13th Floor, New York, NY 10010-6033.

WHEREAS, Courtlandt Corners II is the owner of a parcel of real property which is participating in the New York State Department of Environmental Conservation's (the "Department's) Brownsfield Cleanup Program, namely the Courtlandt Corners II (the "Site"), located at 361 E. 161st Street in the City of New York, County of Bronx, State of New York, identified as Block 2408, Lot 20, which is part of lands conveyed by xx to Courtlandt Corners II by deed dated xx and recorded in the Bronx County Clerk's Office on xx on Reel xx, page xx to xx and being more particularly described in Appendix "A," attached to this declaration and made a part hereof, and hereinafter referred to as "the Site"; and

WHEREAS, the Site is the subject of a brownsfield cleanup agreement (the "Agreement") entered into by COURTLANDT CORNERS II and the Department; and

WHEREAS, the Site subject to this Declaration of Covenants and Restrictions is as described in Appendix "A" and shown on a map attached to this declaration as Appendix "B" and made a part hereof; and

WHEREAS, the Department approved a Voluntary Cleanup Program Work Plan, dated November 6, 1998, to eliminate or mitigate all significant threats to the environment presented by the contamination disposed at the Site (the "Remedy") and the Remedy requires that the Site be subject to restrictive covenants; and

WHEREAS, the Remedy consists of, among other things, the construction of a concrete floor and tenxx story building within the former footprint of the entire site (the "Cap"), in the location depicted in Appendix "B" to this declaration.

WHEREAS, the Department required that a Site Management Plan be prepared and submitted for review and approval.

WHEREAS, a Site Management Plan dated ___, xx (the "Site Management Plan") was approved by the Department on _____.

NOW, THEREFORE, Courtlandt Corners II, for itself and its successors and/or assigns, covenants that:

First, unless prior written approval by the New York State Department of Environmental Conservation or if the Department shall no longer exist, any New York State agency or agencies subsequently created to protect the environment of the State and the health of the State's citizens, hereinafter referred to as "the Relevant Agency," is first obtained, there shall be no construction, use or occupancy of the Site which results in the disturbance or excavation of the Site that threatens the integrity of the Cap or that results in unacceptable human exposure to contaminated soils.

Second, the owner of the Site shall keep the Cap placed pursuant to the Remedy in good maintenance and repair.

Third, any soil excavation or other work at the Site that would disturb the Cap shall be conducted in accordance with the Site Management Plan.

Fourth, the owner of the Site shall prohibit the Site from ever being used for purposes other than for intended residential use, without the express written waiver of such prohibition by the Relevant Agency.

Fifth, the owner of the Site shall prohibit the use of the groundwater underlying the Site without treatment rendering it safe for drinking water or industrial purposes, as appropriate, unless the user first obtains permission to do so from the Relevant Agency.

Sixth, the owner of the Site shall continue in full force and effect the foregoing institutional and engineering controls, unless the owner first obtains permission to discontinue such controls from the Relevant Agency.

Seventh, this Declaration is and shall be deemed a covenant that shall run with the land and shall be binding upon all future owners of the Site and shall provide that the owner, and its successors and assigns, consent to the enforcement by the Relevant Agency, of the prohibitions and restrictions that Paragraph X of the Agreement requires to be recorded, and hereby covenants not to contest the authority of the Department to seek enforcement.

Eighth, any deed of conveyance including the Site shall recite that the said conveyance is subject to this Declaration of Covenants and Restrictions.

IN WITNESS WHEREOF, the undersigned has executed this instrument the day written below.

	Courtlandt Corners II, L.P.
	By:
Dated:	
STATE OF NEW YORK)) ss:
COUNTY OF)
personally appearedsatisfactory evidence to be in instrument and acknowledged capacity(ies), and that by his/	, in the year 2010, before me, the undersigned,, personally known to me or proved to me on the basis of dividual(s) whose name is (are) subscribed to the within d to me that he/she/they executed the same in his/her/their /her/their signature(s) on the instrument, the individual(s), or ich the individual(s) acted, executed the instrument.

APPENDIX I

APPENDIX J

GROUNDWATER SAMPLING LOG

PROJECT NAME PROJECT NO.			WELL NO. SAMPLED BY
DATE			
	WELL	INFORMATION	NOTES:
DEPTH TO WATER		(TOC-ft) (wl.protft)	
DEPTH OF WELL		(ft)	
WELL DIAMETER		(inches)	
FEET OF WATER			
CASING VOLUME*		(gal)	
PURGE VOLUME		(gal)	
PRODUCT THICK		(ft)	
WELL CONDITION			
WEATHER			

PURGE DATA						
START PURGE TIME:	START PURGE TIME:					
VOL. PURGED (gal)						
TIME						
pH (units)						
CONDUCTIVITY (umhos/cm)						
TEMP. (C)						
WATER COLOR						
PURGE AND SAMPLE EQUIPT: Polyethylene bailer, Peristaltic Pump (As)						

SAMPLE NUMBER	SAMPLE TIME	ANALYSIS	CONTAINER	# BOTTLES	PRESERVATIVE

ADDITIONAL INFORMATION:

TOC=Top of well casing wl.prot.=top of well protector

*casing volume: 2" = 0.163 gal/ft 4" = 0.653 gal/ft

APPENDIX K

QUALITY ASSURANCE PROJECT PLAN

Site No. C203041 East 161 Street Bronx, New York

May 2010

Prepared for:

Courtlandt Corner LLC 902 Broadway, 13th Floor New York, NY 10010

Prepared by:

ENVIRONMENTAL RESOURCES MANAGEMENT 520 Broad Hollow Road, Suite 210 Melville, New York 11747

QUALITY ASSURANCE PROJECT PLAN

Site No. C203041 East 161 Street Bronx, New York

May 2010

Prepared for:

Courtlandt Corner LLC 902 Broadway, 13th Floor New York, NY 10010

Prepared by:

ENVIRONMENTAL RESOURCES MANAGEMENT

520 Broad Hollow Road, Suite 210 Melville, New York 11747

TABLE OF CONTENTS

TAB	LE OF	CONTENTS	I		
1.0	PUR	PURPOSE AND OBJECTIVES			
	1.1	PURPOSE 1			
	1.2	DEFINITIONS	1		
	1.3	DATA QUALITY OBJECTIVES 1.3.1 Overall Data Quality Objectives 1.3.2 Field Investigation Data Quality Objectives 1.3.3 Laboratory Data Quality Objectives	3 3 4 6		
2.0	PRO	JECT ORGANIZATION AND RESPONSIBILITY	6		
	2.1	ERM PROJECT DIRECTOR	6		
	2.2	ERM PROJECT MANAGER	7		
	2.3	ERM QUALITY ASSURANCE OFFICER	7		
	2.4	ERM FIELD TEAM LEADER	8		
3.0	FIEL	D QUALITY ASSURANCE/QUALITY CONTROL	8		
	3.1	EQUIPMENT MAINTENANCE	8		
	3.2	EQUIPMENT CALIBRATION	9		
	3.3	 EQUIPMENT DECONTAMINATION 3.3.1 General Procedures 3.3.2 Heavy Equipment (drill rigs, etc.) 3.3.3 Non-Aqueous Sampling Equipment (trowels, split-spoons, bowls, bailers, etc.) 3.3.4 Aqueous Sampling Equipment 3.3.5 Meters and Probes 	10 10 11 11 12 13		
	3.4	QUALITY ASSURANCE/QUALITY CONTROL SAMPLING 3.4.1 Field QA/QC Samples 3.4.2 Laboratory QA/QC	13 13 15		
	3.5	FIELD RECORDS 3.5.1 Field Logbook 3.5.2 Field Management Forms	16 17 17		
	3.6	SAMPLE PREPARATION AND CUSTODY 3.6.1 Sample Identification 3.6.2 Sample Containers 3.6.3 Sample Preservation 3.6.4 Sampling Packaging and Shipping	18 18 20 20 24		

<i>3.7</i>	ANALYTICAL LABORATORY	26
3.8	ANALYTICAL TEST PARAMETERS	27
3.9	INSTRUMENT CALIBRATION	28
3.10	DATA MANAGEMENT AND REPORTING PLAN	28
	3.10.1 Data Use and Management Objectives	28
	3.10.2 Reporting	30
	3.10.3 Data Validation	31
	3.10.4 Data Presentation Formats	36
3.11	PERFORMANCE AUDITS	37
	3.11.1 Field Audits	37
	3.11.2 Laboratory Audits	37
	3.11.3 Corrective Actions	38
3.12	WASTE DISPOSAL PLAN	38

1.0 PURPOSE AND OBJECTIVES

1.1 PURPOSE

This Quality Assurance Project Plan (QAPP) was prepared for the Courtlandt Corner Site (the Site). It is intended to set forth guidelines for the generation of reliable data by measurement activities, such that data generated are scientifically valid, defensible, comparable and of known precision and accuracy.

This QAPP contains a detailed discussion of the quality assurance (QA) and quality control (QC) protocols to be utilized by Environmental Resources Management Consulting & Engineering, Inc., (ERM) and laboratory personnel, as well as a project description, and project organization and responsibilities.

1.2 DEFINITIONS

The parameters that will be used to specify data quality objectives, and to evaluate the analytical system performance for all analytical samples are precision, accuracy, representativeness, completeness and comparability (PARCC). Definitions of these and other key terms used in this QAPP are provided below. Each QC sample is also described below. As a minimum, each set of twenty or fewer field samples will include a duplicate (also known as a blind field duplicate) and one sample collected in a sufficient volume to allow the laboratory to perform a matrix spike and matrix spike duplicate or matrix duplicate.

• *Precision* - a measure of the agreement among individual measurements of the sample property under prescribed similar conditions. Precision is generally reported as Relative Standard Deviation (RSD) or Relative Percent Difference (RPD). Relative

standard deviation is used when three or more measurements are available and is calculated as:

$$RSD = \frac{Standard Deviation}{Arithmetic Mean} \times 100$$

Relative percent difference is used for duplicate measurements and is calculated as:

$$RPD = \frac{\text{Value 1 - Value 2}}{\text{Arithmetic Mean}} \times 100$$

• Accuracy - the degree of agreement of a measurement with an accepted reference value. Accuracy is generally reported as a percent recovery, and calculated as:

$$\frac{\text{Measured Value}}{\text{Accepted Value}} \times 100$$

- Representativeness degree to which data represent a characteristic of
 a set of samples. The representativeness of the data is a function of the
 procedures and caution utilized in collecting and analyzing the
 samples. The representativeness can be documented by the relative
 percent difference between separately collected, but otherwise
 identical sample volumes.
- Comparability the expression of information in units and terms consistent with reporting conventions; the collection of data by equivalent means; or the generation of data by the same analytical method. Aqueous samples will be reported as $\mu g/l$, solid samples will be reported in units of $\mu g/kg$ and/or mg/kg, dry weight, and air samples will be reported in ug/m^3 and ppbv.
- Completeness the percentage of valid data obtained relative to that
 which would be expected under normal conditions. Data are judged
 valid if they meet the stated precision and accuracy goals.
- Analyte the chemical or property for which a sample is analyzed.
- *Duplicate* two separate samples taken from the same source by the same person at essentially the same time and under the same conditions that are placed into separate containers for independent analysis. Duplicate samples are intended to assess the effectiveness of equipment decontamination, the precision of sampling efforts, the

impacts of ambient environmental conditions on sensitive analyses (e.g., volatile organics analysis (VOA)), and the potential for contaminants attributable to reagents or decontamination fluids. Identifying such potential sources of error is essential to the success of the sampling program and the validity of the environmental data.

- Field Blanks field blanks (sometimes referred to as "equipment blanks" or "rinseate blanks") are the final analyte-free water rinse from equipment decontamination in the field and are collected at least one during a sampling episode. If analytes pertinent to the project are found in the field blank, the results from the blanks will be used to qualify the levels of analytes in the samples. This qualification is made during data validation. The field blank is analyzed for the same analytes as the sample that has been collected with that equipment.
- Quality Assurance (QA) all means taken in the field and inside the laboratory to make certain that all procedures and protocols use the same calibration and standardization procedures for reporting results; also, a program which integrates the quality planning, quality assessment, and quality improvements activities within an organization.
- Quality Control (QC) all the means taken by an analyst to ensure
 that the total measurement system is calibrated correctly. It is
 achieved by using reference standards, duplicates, replicates, and
 sample spikes. Also, the routine application of procedures designed to
 ensure that the data produced achieve known limits of precision and
 accuracy.
- *Trip Blanks* trip blanks are samples that originate from analyte-free water taken from the laboratory to the sampling site and returned to the laboratory with the volatile organic samples. One trip blank should accompany each cooler containing volatile organics; it will be stored at the laboratory with the samples, and analyzed with the sample set. Trip blanks are only analyzed for VOCs.

1.3 DATA QUALITY OBJECTIVES

1.3.1 Overall Data Quality Objectives

Data Quality Objectives (DQO) are quantitative and qualitative statements specifying the quality of the environmental data necessary to support the decision-making process to guide the investigation and any subsequent

corrective actions. DQO define the total uncertainty in the data that is acceptable for each activity. This uncertainty includes both sampling error and analytical error. Ideally, the prospect of zero uncertainty is the objective; however, the very processes by which data are collected in the field and analyzed in the laboratory contribute to the uncertainty of the data. It is the overall objective to keep the total uncertainty to a minimal level such that it will not hinder the intended use of the data.

The parameters that will be used to specify data quality requirements and to evaluate the analytical system performance for the samples are precision, accuracy, representativeness, completeness and comparability (PARCC). The overall objectives are established such that there is a high degree of confidence in the measurements.

1.3.2 Field Investigation Data Quality Objectives

In order to permit calculation of precision and accuracy for the soil, ground water, and air samples, blind field duplicate, field blanks, trip blanks and matrix spike/matrix spike duplicate (MS/MSD) samples will be collected, analyzed and evaluated.

Through the submission of field QC samples, the distinction can be made between laboratory problems, sampling technique considerations, sample matrix effects, and laboratory artifacts. To assure soil, ground water, and air sample representativeness, all sample collection will be performed in strict accordance with the procedures set forth in this QAPP.

Precision will be calculated as RPD if there are only two analytical points and percent relative standard deviation (% RSD) if there are more than two analytical points. Blind field duplicate and MS/MSD sample analyses will provide the means to assess precision. The submission of field and trip

blanks will provide a check with respect to accuracy and will monitor chemicals that may be introduced during sampling, preservation, handling, shipping and/or the analytical process. In the event that the blanks are contaminated and/or poor precision is obtained, the associated data will be appropriately qualified.

Representativeness will be assured through the implementation of the structured and coherent investigation of which this QAPP is a part. This investigation has been designed so that the appropriate numbers of samples of each matrix and of each location of interest are obtained for analysis.

Ideally, 100% completeness is the goal. However, it must be recognized that unforeseen issues may result in the generation of some data that may not be acceptable for use. Therefore, a completeness target of 90%, as determined by the total number of usable data points versus the total number of data points measured, will be the realistic goal of this program.

Comparability is defined as the extent to which data from one data set can be compared to similar data sets. Comparability between data sets is often questionable due to issues such as different analytical methods used or inter-laboratory differences. In order that the data generated as part of this project remain comparable to any previously generated data or data to be generated in the future, currently published analytical methods have been identified for the analysis of the collected samples. These methods will be performed by an analytical laboratory with a demonstrated proficiency in the analysis of similar samples by the referenced methods. In addition, samples will be collected using documented procedures to ensure consistency of effort and reproducibility if necessary.

1.3.3 Laboratory Data Quality Objectives

The analytical laboratory will demonstrate analytical precision and accuracy by the analysis of various QC samples (i.e., laboratory duplicates, spike samples, matrix spike duplicates and laboratory control samples). Tables 5 through 15 present the relevant precision and accuracy criteria for the analytical parameters. Precision, as well as instrument stability, will also be demonstrated by comparison of calibration response factors from the initial calibration to that of the continuing calibrations. Laboratory accuracy will be evaluated by the addition of surrogate and matrix spike compounds, and will be presented as percent recovery (%R). Precision will be presented as RPD, % RSD, or percent difference (%D), whichever is appropriate for the number and type of QC samples analyzed. Laboratory blanks can also be used to demonstrate the accuracy of the analyses and possible effects from laboratory artifact contamination.

2.0 PROJECT ORGANIZATION AND RESPONSIBILITY

While all personnel involved in an investigation and in the generation of data are implicitly a part of the overall project management and quality assurance program, certain members of the Project Team have specifically designated responsibilities. Project Team members with specific management and quality assurance roles in the investigation are the ERM Project Director (PD), the ERM Project Manager (PM), the ERM Quality Assurance Officer (QAO), and the ERM Field Team Leader (FTL). In the following sections, the roles and responsibilities of key personnel are identified.

2.1 ERM PROJECT DIRECTOR

The ERM Project Director (PD) will be Mr. Ernest Rossano. Mr. Rossano will oversee the ERM PM and be responsible for all technical aspects of the project including the overall quality of the project and project deliverables for ERM. Mr. Rossano has extensive experience with the management and coordination of multi-disciplinary environmental field investigation and remedial projects in New York State.

2.2 ERM PROJECT MANAGER

The ERM Project Manager (PM), Mr. Eugene Gabay, will report to the ERM PD. Mr. Gabay will oversee the ERM QAO and the ERM FTL, field investigation staff, and any subcontractors. Mr. Gabay will also be responsible for all technical aspects of the project for ERM. This includes scheduling, communicating to all parties, technical development and review of all field activities, subcontracting, and the overall quality of the project and project deliverables for ERM. Mr. Gabay has extensive experience in the management and coordination of multi-disciplinary field investigation and remedial projects in New York State.

2.3 ERM QUALITY ASSURANCE OFFICER

The ERM Quality Assurance Officer (QAO), Mr. Andrew Coenen, will report to the ERM PM. Mr. Coenen will have overall responsibility for QA/QC review of all analytical data generated during the field investigation, data validation and qualification of analytical results in terms of data usability. Mr. Coenen has extensive analytical laboratory experience and experience in the validation of analytical data and the protocols and QC specifications of the analytical methods listed in the NYSDEC ASP and the data validation guidance, USEPA Contract Laboratory Program National Functional Guidelines for Organic and Inorganic Data Review and USEPA Region II Data Review SOPs.

2.4 ERM FIELD TEAM LEADER

The ERM Field Team Leader (FTL), Mr. Michel Jean-Baptiste, or a designee, will report to the ERM PM. Mr. Jean-Baptiste will be responsible for the day to day management and coordination of ERM field staff and subcontractors. Mr. Jean-Baptiste will be responsible for the implementation and quality of the field activities. Mr. Jean-Baptiste has extensive environmental field investigation/subcontractor oversight experience in New York State.

The following table summarizes the Personnel Information on this project and also provides contact information.

Name	Title	Company	Address	Telephone Number
Ernest Rossano	Project Director (PD)	ERM	40 Marcus Drive, Suite 200 Melville, New York 11747	(631) 756-8900
Eugene Gabay	Project Manager (PM)	ERM	40 Marcus Drive, Suite 200 Melville, New York 11747	(631) 756-8900
Andrew Coenen	Quality Assurance Officer (QAO)	ERM	40 Marcus Drive, Suite 200 Melville, New York 11747	(631) 756-8900
Edward Wong	Field Team Leader (FTL)	ERM	40 Marcus Drive, Suite 200 Melville, New York 11747	(631) 756-8900
Shirley Ng	Laboratory Project Manager (PM)	Mitkem Laboratories, a Divison of Spectrum Analytical	175 Metro Center Boulevard Warwick, Rhode Island 02886-1755	(401) 732-3400

3.0 FIELD QUALITY ASSURANCE/QUALITY CONTROL

3.1 EQUIPMENT MAINTENANCE

In addition to the laboratory analyses conducted during the course of this investigation, field measurements will be collected for total volatile organics (air monitoring and soil sample screening), pH, conductivity, oxidation/reduction potential (ORP), dissolved oxygen (DO) and turbidity in ground water. A maintenance, calibration, and operation program will be implemented to ensure that routine calibration and maintenance is performed on all field instruments. The program will be administered by ERM's equipment manager, the Quality Assurance Officer (QAO) and the field team members. ERM's equipment manager will perform the scheduled monthly and annual calibration and maintenance. Monthly and annual maintenance, calibration and equipment operation will follow the procedures outlined in the manufacturer's Operation and Field Manuals accompanying the respective instruments.

3.2 EQUIPMENT CALIBRATION

Trained field team members will be familiar with the field calibration, operation, and maintenance of the equipment. They will perform field calibrations, checks, and instrument maintenance daily. The photoionization detector (PID) will be calibrated on a periodic basis with isobutylene. A trained team member will perform daily field checks and instrument maintenance prior to use. The pH, conductivity, ORP, DO and turbidity meters will be calibrated by a trained team member using standard calibration solutions. Field maintenance, calibration and equipment operation will follow the procedures outlined in the manufacturer's Operation and Field Manuals accompanying the respective instruments. All maintenance and calibration will be documented on an instrument-specific master calibration/ maintenance form.

The Field Team Leader (FTL) will be responsible for keeping a master instrument calibration/maintenance form for each measuring device. Each form will include at least the following relevant information:

- Name of device and/or instrument calibrated;
- Device/instrument serial and/or identification (I.D.) number;
- Frequency of calibration;
- Date of calibration;
- Results of calibration;
- Name of person performing the calibration;
- Identification of the calibration standards; and
- Buffer solutions (pH meter only).

3.3 EQUIPMENT DECONTAMINATION

In order to minimize the potential for cross-contamination, all drilling and sampling equipment will be properly decontaminated prior to and after each use.

3.3.1 General Procedures

All heavy equipment will be decontaminated in a designated clean area. Sampling equipment and probes will be decontaminated in an area covered by plastic near the sampling location. All solvents and wash water used in the decontamination process will be collected and drummed for off-site disposal. All disposable sampling equipment will be properly disposed of in dry containers.

All well casing and screen will be steam cleaned, wrapped in clean polyethylene sheeting and stored until the time of well construction.

Extraneous contamination and cross-contamination will be controlled by wrapping the sampling equipment with aluminum foil when not in use and changing and disposing of the sampler's gloves between samples. Decontamination of sampling equipment will be kept to a minimum in the field, and wherever possible, dedicated sampling equipment will be used. Personnel directly involved in equipment decontamination will wear appropriate protective equipment.

3.3.2 Heavy Equipment (drill rigs, etc.)

All drilling equipment and the back of the drilling rig will be decontaminated by steam cleaning prior to performance of the first boring/well installation and between all subsequent borings/well installations. This will include all hand tools, casing, augers, drill rods and bits, tremie pipe and other related tools and equipment. The steam cleaning equipment will be capable of generating live-steam with a minimum temperature of 212 °F.

All water used during drilling and/or steam cleaning operations will be from a potable source and so designated in writing. The drilling contractor is responsible for obtaining all permits from the local potable water purveyor and any other concerned authorities, and provision of any requested back-flow prevention devices. The equipment will be cleaned to the satisfaction of the ERM Hydrogeologist or FTL.

3.3.3 Non-Aqueous Sampling Equipment (trowels, split-spoons, bowls, bailers, etc.)

All non-aqueous sampling equipment will be decontaminated before each use as follows:

- Laboratory-grade glassware detergent and tap water scrub to remove visual contamination;
- · Generous tap water rinse; and
- Distilled and deionized (American Standard for Testing of Materials (ASTM) Type II) water rinse.

3.3.4 Aqueous Sampling Equipment

Factory pre-cleaned disposable bailers will be used during the investigation. In the event that field decontamination of reusable sampling equipment is necessary, decontamination procedures will be as follows:

- Laboratory-grade glassware detergent and tap water scrub to remove visual contamination;
- Generous tap water rinse; and
- Distilled and deionized (ASTM Type II) water rinse;
- 10% nitric acid rinse, followed by a distilled and deionized water rinse (metals only), or
- Methanol (pesticide grade) rinse (volatiles only);
- Total air dry; and
- Distilled and deionized water rinse.

The submersible sampling pumps that are placed in the borehole will be decontaminated with an Alconox detergent rinse and by pumping approximately 5 gallons of potable water through the pump. Since dedicated new lengths of polyethylene tubing will be used for sampling each well, the tubing will not be decontaminated. Unless otherwise specified, the submersible pumps will be decontaminated prior to the sampling the first well and between each subsequent well as follows:

- Potable water rinse.
- Alconox detergent and potable water scrub.

- Potable water rinse.
- Distilled/deionized water rinse.
- Wrap in aluminum foil, shiny side facing out.

3.3.5 *Meters and Probes*

All meters and probes that are used in the field (other than those used solely for air monitoring purposes, <u>e.g.</u>, oxygen meters, explosimeters, etc.) will be decontaminated between use as follows:

- phosphate-free laboratory detergent solution;
- · tap water;
- methanol rinse (at the FTL's discretion);
- deionized water (triple rinse).

A methanol rinse will be used if deemed necessary by the FTL.

3.4 QUALITY ASSURANCE/QUALITY CONTROL SAMPLING

Specific guidance regarding the collection of field and laboratory QA/QC samples is presented separately below.

3.4.1 Field QA/QC Samples

Trip Blanks

The trip blank will be used to determine if any cross-contamination occurs between aqueous samples during shipment. Trip blanks will be supplied by the analytical laboratory as aliquots of distilled, deionized water that will be sealed in a sample bottle prior to initiation of each day of fieldwork. Glass vials (40 ml) with Teflon®-lined lids will be used for trip

blanks. The sealed trip blank bottles will be placed in a cooler with the empty sample bottles and will be shipped to the site by the laboratory personnel. If multiple coolers are necessary to store and transport aqueous VOC samples, then each cooler must contain an individual trip blank. Trip blanks are analyzed for VOCs only. Trip blanks will only be used with aqueous samples and will not be used with soil or air samples.

Field Blanks

Field blanks will be collected to evaluate the cleanliness of soil and aqueous sampling equipment, sample bottles and the potential for cross-contamination of samples due to handling of equipment, sample bottles and contaminants present in the air. Field blanks will <u>not</u> be collected in association with air samples. Field blanks will collected at a frequency of one per decontamination event for each type of sampling equipment, and each media being sampled (e.g., a ground water bailer for ground water, and a hand auger for soil sampling), at a minimum of one per equipment type and/or media per day.

Field blanks will be collected prior to the occurrence of any analytical field sampling event by pouring deionized or potable water over a particular piece of sampling equipment and into a sample container. The analytical laboratory will provide field blank water and sample jars with preservatives for the collection of all field blanks. Glass jars will be used for organic blanks. The field blanks as well as the trip blanks will accompany field personnel to the sampling location. The field blanks will be analyzed for the same analytes as the environmental samples being collected that day and will be shipped with the samples taken.

Field blanks will be taken in accordance with the procedure described below:

- Decontaminate sampler using the procedures specified in the QAPP;
- Pour distilled/deionized water over the sampling equipment and collect the rinsate water in the appropriate sample bottles;
- The sample will be immediately placed in a sample cooler and maintained at a temperature of 4°C until receipt by the laboratory; and
- Fill out sample log, labels and COC forms, and record in field notebook.

Temperature Blanks

The temperature blank will be used to determine the temperature of the samples within the cooler upon arrival at the analytical laboratory. A laboratory-supplied temperature blank will be an aliquot of distilled, deionized water that will be sealed in a sample bottle. The sealed temperature blank bottles will be placed in a cooler with the empty sample bottles and will be shipped to the site by the laboratory personnel. If multiple coolers are necessary to store and transport samples, then each cooler must contain an individual temperature blank.

3.4.2 Laboratory QA/QC

Blind Field Duplicate Samples

Aqueous and soil blind field duplicate samples will be collected analyzed to check laboratory reproducibility of analytical data. Blind field duplicate samples will not be collected in association with air samples.

Blind field duplicate samples will be collected at a frequency of at least 5% (one out of every 20 samples) of the total number of samples collected to evaluate the precision and reproducibility of the analytical methods. All blind field duplicate samples will be submitted to the analytical laboratory

as a normal sample, however will have a fictitious sample identification and fictitious time of sample collection. Each blind field duplicate will be cross-referenced to document which actual sample it is a blind field duplicate of in the field notes and on the master sample log.

Matrix Spike/Matrix Spike Duplicate

Additional environmental sample volume will be collected for use as MS/MSD samples at a frequency of at least 5% (one out of every 20 samples) of the total number of samples collected to evaluate the precision and reproducibility of the analytical methods. To ensure the laboratory has sufficient volume for MS/MSD analysis, triple sample volume must be submitted for aqueous organic extractable and volatile samples once per every 20 samples in a sample delivery group (SDG). MS/MSD samples will not be collected in association with air samples.

3.5 FIELD RECORDS

Proper management and documentation of field activities is essential to ensure that all necessary work is conducted in accordance with the investigation and QAPP in an efficient and high quality manner. Field management procedures include following proper chain of custody procedures to track a sample from collection through analysis, noting when and how samples are split (if necessary), making regular and complete entries in the field logbook, and the consistent use and completion of field management forms. Field management forms and field logbook will be used to document all field activities, as this documentation will support that the samples were collected and handled properly, making the resultant data complete, comparable and defensible. Field logbook procedures and field management forms are identified in the following sections.

3.5.1 Field Logbook

The sample team or individual performing a particular sampling activity will keep a weatherproof field notebook. Field notebooks are intended to provide sufficient data and observations to enable participants to reconstruct events that occurred during projects and to refresh the memory of the field personnel if called upon to give testimony during legal proceedings. In a legal proceeding, notes, if referred to, are subject to cross-examination and are admissible as evidence. The field notebook entries should be factual, detailed, and objective. All entries are to be signed and dated. All members of the field investigation team are to use this notebook, which will be kept as a permanent record. The field notebook will be filled out at the location of sample collection immediately after sampling. It will contain sample descriptions including: sample number, sample collection time, sample location, sample description, sampling method used, daily weather conditions, field measurements, name of sampler, and other site-specific observations. The field notebook will contain any deviations from protocol and why, visitor's names, or community contacts made during sampling, geologic and other site-specific information which may be noteworthy.

3.5.2 Field Management Forms

In addition to maintenance of a field logbook, the use of field management forms will supplement field logbook entries for all field activities associated with this project. Field management forms provide a regular format to record the relevant information for a particular field activity. Use of these forms will ensure that the field team consistently and completely records all pertinent data relative to a particular field activity

on a regular basis. All forms, sample labels, custody seals and other sample documents will be filled out completely.

A list of forms and the associated activities for which each form could be potentially completed is presented below.

<u>Form</u>	<u>Activity</u>
Daily Field Report	Every day of field activity
Daily Instrument Calibration Log	Every day a field instrument is used
Soil Boring Logs	All borings
Monitoring Well Construction Logs	All permanent well installations
Well Development Data Sheet	All well development efforts
Sampling Equipment Checklist	All field sampling efforts
Laboratory Sample Bottle Request	All field sampling efforts
Ground Water Sampling Record	All permanent well sampling
Well Inspection Log	All permanent well sampling
Chain of Custody (COC) Form	All field sampling efforts
Status of Laboratory Sample Data	All field sampling efforts (Master Log)

3.6 SAMPLE PREPARATION AND CUSTODY

3.6.1 Sample Identification

In order to provide for proper identification in the field, and proper tracking in the laboratory, all samples must be labeled in a clear and consistent fashion using the procedures and protocols described below and within the following subsections.

- Sample labels will be waterproof and have a pre-assigned, unique number that is indelible.
- Field personnel must maintain a field notebook. This notebook must be water resistant with sequentially numbered pages. Field activities will be sequentially recorded in the notebook.

- The notebook, along with the COC form, must contain sufficient information to allow reconstruction of the sample collection and handling procedure at a later time.
- Each sample will have a corresponding notebook entry which includes:
 - Sample ID number;
 - Well or other sample location and number;
 - Date and time;
 - Analysis for which sample was collected;
 - Additional comments as necessary; and
 - Samplers' name.
- Each sample must have a corresponding entry on a COC.
- The COC entry for sampling at any one well is to be completed before sampling is initiated at any other well by the same sampling team (or individual).
- In cases where the samples leave the immediate control of the sampling team (i.e., shipment via common carrier) the shipping container must be sealed.

Each sample collected will be designated by an alpha-numeric code that will identify the type of sampling location and a specific sample designation (identifier). Location types will be identified by a two-letter code. Soil vapor (air) samples will begin with "SV". Ground water samples collected from the monitoring wells will begin with "MW". Soil samples collected from the soil borings will begin with "SB". The depth will also be added to soil samples if applicable. The specific sampling designation (identifier) will be identified using a two-digit number. Samples collected for waste characterization will begin with "WC". For example, the first soil boring sample collected at 8 to 12 feet will be identified as SB-01 (8-12).

In the case of QC samples such as field blanks, trip blanks and blind field duplicate samples, six digits will follow FB, TB and DUP respectively to represent the date (e.g., FB040108 would represent a field blank collected on 1 April 2008). For matrix spike/matrix spike duplicate samples, MS/MSD will be added following the applicable sample identification.

3.6.2 Sample Containers

- The analytical laboratory will provide all sample containers.
 - If glass bottles are used, extra glass bottles will be obtained from the laboratory to allow for accidental breakage that may occur.
 - If sample preservation is specified, the necessary preservatives will be placed in the sample bottles by the laboratory.
- The sample bottles will be handled carefully so that any preservatives are not inadvertently spilled.

A more detailed description of the sample containers to be utilized for this investigation can be found in Tables 2 through 4.

3.6.3 Sample Preservation

Sample Preservation

Soil samples collected during the investigation will be preserved by cooling to 4°C and maintained at this temperature until time of analysis. Ground water samples for VOC analysis during the investigation will be preserved by acidification to a pH of <2 using hydrochloric acid (HCl), cooled to 4°C, and maintained at this temperature until time of analysis. A more detailed description of the sample preservation to be utilized for this investigation can be found in Tables 2 through 4.

- Immediately following collection of the samples, they will be placed in a cooler with "freezer-pacs" in order to maintain sample integrity. All volatile sample bottles to be filled to capacity with no headspace for volatilization. If necessary to meet a maximum recommended holding time, the samples are to be shipped by overnight courier to the laboratory.
- The shipping container used will be designed to prevent breakage, spills and contamination of the samples. Tight packing material is to be provided around each sample container and any void around the "freezer-pacs". The container is to be securely sealed, clearly labeled, and accompanied by a COC record. Separate shipping containers should be used for "clean" samples and samples suspected of being heavily contaminated. During winter months, care should be taken to prevent samples from freezing. Sample bottles will not be placed directly on "freezer-pacs".

Sample Holding Time

- All samples will be shipped the same day they are obtained to the analytical laboratory.
- The samples must be stored at or near 4°C and analyzed within specified holding times.
- The analytical laboratory is a NYSDOH ELAP-certified laboratory, and conforms to meeting specifications for documentation, data reduction and reporting. The laboratory will follow all method specifications pertaining to sample holding times contained in the NYSDEC ASP (revised 2005) and/or as prescribed by the specific analytical method.

A more detailed description of the sample holding times to be utilized for this investigation can be found in Tables 2 through 4.

Sample Custody

Chain of Custody - The primary objective of the sample custody procedures is to create an accurate written record that can be used to trace the possession and handling of all samples from the moment of their collection, through analysis, until their final disposition. All field

sampling personnel will adhere to proper sample custody procedures because samples collected during an investigation could be used as evidence in litigation. Therefore, possession of the samples must be traceable from the time each sample is collected until it is analyzed at the laboratory.

Custody Transfer to Field Personnel - The on-site hydrogeologist or the field personnel will maintain custody of samples collected during this investigation. All field personnel are responsible for documenting each sample transfer and maintaining custody of all samples until they are shipped to the laboratory. COC records will be completed at the time of sample collection and will accompany the samples inside the cooler for shipment to the selected laboratory.

The COC record will be signed by each individual who has the samples in their possession. Preparation of the COC record is as follows:

- For every sample, the COC record will be initiated in the field by the
 person collecting the sample. Every sample will be assigned a unique
 identification number that is entered on the COC Record.
- The record will be completed in the field to indicate project, sampling team, etc.
- If the person collecting the sample does not transport the samples to the laboratory or deliver the sample containers for shipment, the first block for Relinquished By ______, Received By _____ will be completed in the field.
- The person transporting the samples to the laboratory or delivering them for shipment will sign the record form as Relinquished By ______.
- If the samples are shipped to the laboratory by commercial carrier, the
 original COC record will be sealed in a watertight container and placed
 in the shipping container, which will be sealed prior to being given to the
 carrier. The carbonless copy of the COC record will be maintained in the
 field file.
- If the samples are directly transported to the laboratory, the COC will be kept in possession of the person delivering the samples.

- For samples shipped by commercial carrier, the waybill will serve as an extension of the COC record between the final field custodian and the laboratory.
- Upon receipt in the laboratory, the Sample Custodian or designated representative, will open the shipping containers, compare the contents with the COC record, and sign and date the record. Any discrepancies will be noted on the COC record.
- If discrepancies occur, the samples in question will be segregated from normal sample storage and the field personnel immediately notified.
- COC records will be maintained with the records for a specific project, becoming part of the data package.

Custody Transfer to Laboratory - All samples collected during the investigation will be submitted to a NYSDOH ELAP-certified laboratory meeting specifications for documentation, sample login, internal chain of custody procedures, sample/analysis tracking, data reduction and reporting. The laboratory will follow all specifications pertaining to laboratory sample custody procedures contained in the NYSDEC ASP (revised 2005).

In general, the following procedures will be followed upon sample receipt. The laboratory will not accept samples collected by project personnel for analysis without a correctly prepared COC record.

The first steps in the laboratory receipt of samples are completing the COC records and project sample log-in form. The laboratory Sample Custodian, or designee, will note that the shipment is accepted and notify the Laboratory Manager or the designated representative of the incoming samples.

Upon sample receipt, the laboratory Sample Custodian, or designee, will:

• Examine all samples and determine if proper temperature has been maintained during shipment. If samples have been damaged during shipment, the remaining samples will be carefully examined to

determine whether they were affected. Any samples affected will also be considered damaged. It will be noted on the COC record that specific samples were damaged and that the samples were removed from the sampling program. Field personnel will be notified as soon as possible that samples were damaged and that they must be resampled, or the testing program changed, and provide an explanation of the cause of damage.

- Compare samples received against those listed on the COC record.
- Verify that sample holding times have not been exceeded.
- Sign and date the COC record and attach the waybill to the COC record.
- Denote the samples in the laboratory sample log-in book which contains the following information:
 - Project identification number
 - Sample numbers
 - Type of samples
 - Date received in laboratory
 - Record of the verified time of sample receipt (VTSR)
 - Date put into storage after analysis is completed
 - Date of disposal.

The last two items will be added to the log when the action is taken.

- Notify the Laboratory Manager of sample arrival.
- Place the completed COC records in the project file.

The VTSR is the time of sample receipt at the laboratory. The date and time the samples are logged in by the Sample Custodian or designee will agree with the date and time recorded by the person relinquishing the samples.

A typical COC can be found as Figure 1.

3.6.4 Sampling Packaging and Shipping

Sample bottles and samples will either be delivered/picked up at the site daily by the analytical laboratory, or delivered/shipped via overnight courier. Once the samples have been collected, proper procedures for packaging and shipping will be followed as described below.

Packaging

Prior to shipment, samples must be packaged in accordance with current United States Department of Transportation (USDOT) regulations. All necessary government and commercial carrier shipping papers must be filled out. The procedure below should be followed regardless of transport method:

- Samples will be transported in metal ice chests or sturdy plastic coolers (cardboard or Styrofoam containers are unacceptable). Air samples will be transported in their original cardboard packing, if applicable, or similar materials.
- Remove previously used labels, tape and postage from cooler.
- Ship filled sample bottles in same cooler in which empty bottles were received.
- Affix a return address label to the cooler.
- Check that all sample bottles are tightly capped.
- Check that all bottle labels are complete.
- Be sure COC forms are complete.
- Wrap sample bottles in bubble pack and place in cooler.
- Pack bottles with extra bubble pack, vermiculite, or Styrofoam "peanuts". Be sure to pack the trip blank, if one is being submitted with the samples.
- Keep samples refrigerated in cooler with bagged ice or frozen cold packs. Do not use ice for packing material; melting will cause bottle contact and possible breakage.
- Separate and retain the sampler's copy of COC and keep with field notes.

- Tape paperwork (COC, manifest, return address) in zipper bag to inside cooler lid.
- Close cooler and apply signed and dated custody seal in such a way that the seal must be broken to open cooler.
- Securely close cooler lid with packing or duct tape. Be sure to tape latches and drain plugs in closed position.

<u>Shipping</u>

Samples should arrive at the laboratory as soon as possible following sample collection to ensure that holding times are not exceeded. All samples must be hand delivered on the same day as sampling or sent via overnight courier. When using a commercial carrier, follow the steps below.

- Securely package samples and complete paperwork.
- Weigh coolers for air transport.
- Complete air bill for commercial carrier (air bills can be partially completed in office prior to sampling to avoid omissions in field). If necessary, insure packages.
- Keep customer copy of air bill with field notes and COC form.
- When coolers have been released to transporter, call receiving laboratory and give information regarding samplers' names, method of arrival.
- Call the lab on day following shipment to be sure all samples arrived intact. If bottles are broken, locations can be determined from COC and resampled.

3.7 ANALYTICAL LABORATORY

The data collected during the course of the investigation activities will be used to determine the presence and concentration of certain analytes in soil, ground water, or air samples.

All soil and ground water samples collected during the investigation will be submitted to Mitkem Laboratories, a Division of Spectrum Analytical Inc. (Mitkem) located at 175 Metro Center Boulevard Warwick, Rhode Island 02886-1755. Mitkem is a NYSDOH ELAP-certified laboratory (Lab I.D. # 11522) meeting specifications for documentation, data reduction and reporting.

All air samples collected during the investigation will also be submitted to Mitkem; however the analysis will be performed at Spectrum Analytical Inc. (Spectrum) located at 11 Almgren Drive, Agawam, Massachusetts 01001. Spectrum is a NYSDOH ELAP-certified laboratory (Lab I.D. # 11393) meeting specifications for documentation, data reduction and reporting.

3.8 ANALYTICAL TEST PARAMETERS

The investigation will require the analysis of approximately eighty-seven (87) ground water samples (including quality assurance/quality control [QA/QC] samples), for Target Compound List (TCL) Volatile Organic Compounds (VOCs) and TCL Semivolatile Organic Compounds (SVOCs) and for Target Analyte List (TAL) Metals. The investigation will also require the analysis of approximately twenty-three (23) soil samples (including QA/QC samples), for TCL VOCs, TCL SVOCs, and TCL Pesticides and TAL Metals. United State Environmental Protection Agency (USEPA) SW-846 protocols will be utilized to analyze the samples. A more detailed description of the analytical methods to be utilized for this investigation can be found in Tables 2 through 4.

In addition to the ground water and soil analyses, soil vapor (air) samples will be collected at approximately twenty four (24) locations using Summa

canisters with flow controllers set at two (2) hours. The samples will be analyzed following "Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition 1997, EPA/625/R-96/010B", Compendium Method TO-15, "Determination Of Volatile Organic Compounds (VOCs) In Air Collected In Specially-Prepared Canisters And Analyzed By Gas Chromatography/Mass Spectrometry (GC/MS)".

One aqueous and one soil sample will also be collected for waste characterization. More samples may be collected if field conditions warrant. A detailed description of the analytical methods to be utilized for waste characterization can be found in Tables 2 through 3.

3.9 INSTRUMENT CALIBRATION

The frequency of laboratory instrument calibration and associated procedures for the specific analytical methods to be followed by the selected laboratory are specified in the individual USEPA analytical method procedures. The selected laboratory's calibration schedule will adhere to all analytical method specifications.

3.10 DATA MANAGEMENT AND REPORTING PLAN

3.10.1 Data Use and Management Objectives

Data Use Objectives

The typical data use objectives for this investigation are:

- Ascertaining if there is a threat to public health or the environment.
- Locating and identifying potential sources of impacts to soil or ground water.

- Delineation of horizontal and vertical constituent concentrations, identifying clean areas, estimating the extent and/or volume of impacted soil and ground water.
- Determining treatment and disposal options.
- Characterizing soil for on-site or off-site treatment.
- Formulating remediation strategies, and estimating remediation costs.

Data Management Objectives

The primary objective of proper data management is to ensure and document that all necessary work is conducted in accordance with the investigation and QAPP in an efficient and high quality manner thereby maximizing the confidence in the data in terms of PARCC. Data management procedures not only include field and laboratory documentation, but also include how the information is handled after the conclusion of field investigation and laboratory analyses area completed. Data handling procedures include project file management, reporting, usability analysis (review and validation) and use of consistent formats for the final presentation of the data.

Project File Specifications

All project information will be kept in a central Project File maintained by the ERM Project Manager in ERM's Melville, New York office location. The Project File will be assigned a unique project number that will be clearly displayed on all project file folders (including electronic files). Electronic files will be maintained in a similarly organized Project File located on the ERM Central Network system that is backed up on a weekly basis. Both hard copy and electronic Project Files will contain, at a minimum copies or originals of the following key project information:

- All correspondence including letters, transmittals, telephone logs, memoranda, and emails;
- Meeting notes;
- Technical information such as analytical data; field survey results, field notes, field logbooks and field management forms;
- Project calculations;
- Subcontractor agreements/contracts, and insurance certificates;
- Project-specific health and safety information/records;
- Access agreements;
- Project document output review/approval documentation; and
- Reports: Monthly Progress, Interim Technical and Draft/Final Technical.

3.10.2 Reporting

Field Data

Field data will be recorded and reported by field personnel using appropriate field data documentation materials such as the field logbook, field management forms and COC forms.

Good field management procedures include following proper chain of custody procedures to track a sample from collection through analysis, noting when and how samples are split (if necessary), making regular and complete entries in the field logbook, and the consistent use and completion of field management forms. Proper completion of these forms and the field logbook are necessary to support the consequent actions that may result from the sample analysis. This documentation will support that the samples were collected and handled properly making the resultant data complete, comparable and defensible.

Laboratory Data

The analytical results of all samples collected as part of the investigation will be reported following NYSDEC ASP 2005 specifications. All laboratory analytical data will be reported as NYSDEC Category B deliverables. The Category B data deliverables include all backup QA/QC documentation necessary to facilitate a complete validation of the data.

In addition, NYSDEC "Sample Identification and Analytical Requirement Summary" and "Sample Preparation and Analysis Summary" forms will be completed and included with each data package. The sample tracking forms are specified and supplied by the 2005 NYSDEC ASP.

The laboratory will also transmit the analytical data in an electronic format to minimize the chances of transposition errors in summarizing the data. The data will be transmitted in an electronic data deliverable (EDD) in GISKEY (most recent version) format and a PDF copy of each ASP deliverable.

3.10.3 Data Validation

All field and laboratory data will be reviewed, validated and qualified as necessary to assess data usability by direct comparison to the specified data quality objectives and/or procedures set forth in this QAPP. Information that can be obtained includes comparison of results obtained from samples taken at the same location, and the identification of missing data points. Examination of the data at the end of the process allows for the assessment of data quality with respect to PARCC.

Field Data Validation Protocol

Field data generated in accordance with the project-specific investigation will primarily consist of field temperature, pH, ORP and specific conductance data, and data associated with soil boring advancement, monitoring well installation and development, and soil classification. This data will be validated by review of the project documentation to check that all forms specified in the work plan and this QAPP have been completely and correctly filled out and that documentation exists for the specified instrument calibrations. This documentation will be considered sufficient to provide that proper procedures have been followed during the field investigation.

Laboratory Data Validation Protocol

Data validation is the assessment of data quality with respect to method specifications and technical performance of the analytical laboratory. Analytical data packages will be examined to ensure that all specified lab components are included, all QA/QC specifications were performed or met, and the data use restrictions are well defined.

Summary documentation regarding QA/QC results will be completed by the laboratory using NYSDEC ASP forms and will be submitted with the raw analytical data packages (NYSDEC ASP Category B deliverables). Data validation will be performed in order to assess and document analytical data quality in accordance with the project data quality objectives. The data review will evaluate data for its quality and usability. This process will qualify results so that the end user of the analytical results can make decisions with consideration of the potential accuracy and precision of the data. For example, the results are acceptable as

presented, qualified as estimated and qualfied with a "J", or rejected and not useable and therefore qualfied with an "R".

The waste characterization samples will not be validated.

The validation of the analytical data will be performed according to the protocols and QC requirements of the analytical methods, the NYSDEC ASP, the National Functional Guidelines for Organic Data Review (October 1999), the National Functional Guidelines for Inorganic Data Review (October 2004), the applicable USEPA Region II Data Review Standard Operating Procedures (SOPs), and the reviewer's professional judgment.

The order in which the aforementioned guidance documents and/or criteria are listed does not imply a hierarchy of reliance on a particular document for validation. ERM will utilize all guidance documents and/or criteria relying on the most comprehensive reference sources to perform the most complete validation possible.

The data validation process will provide an informed assessment of the laboratory's performance based upon contractual requirements and applicable analytical criteria. The report generated as a result of the data validation process will provide a base upon which the usefulness of the data can be evaluated by the end user of the analytical results.

During the validation process, it will be determined whether sufficient back-up data and QA/QC results are available so the reviewer may conclusively determine the quality of data support laboratory submittals for sample results. Each data package will be checked for completeness and technical adequacy of the data. Upon completion of the review, the reviewers will develop a QA/QC data validation report for each SDG.

For the organic parameter analyses, the following items or criteria will be reviewed:

- Case narrative and deliverable compliance
- Holding times both technical and procedural and sample preservation (including pH and temperature)
- System Monitoring (Surrogate) Compound recoveries, summary and data
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) results, recoveries, summary and data
- Blank Spike Sample (BSS) recoveries
- Method blank summary and data
- Gas Chromatography (GC)/Mass Spectroscopy (MS) tuning and performance
- Initial and continuing calibration summaries and data
- Internal standard areas, retention times, summary and data
- Blind Field Duplicate sample results
- Field Blank results
- Trip Blank results
- Organic analysis data sheets (Form I)
- GC/MS chromatograms, mass spectra and quantitation reports
- Quantitation and detection limits
- Qualitative and quantitative compound identification

For the inorganic parameter analyses, the following items or criteria will be reviewed:

- Case narrative and deliverable requirements
- Holding times and sample preservation
- Detection limits
- Inorganic analysis data sheets (Form I)
- Initial and continuing calibration verifications
- Contract Required Detection Limit (CRDL) standard analysis

Lab blank data

- ICP interference check sample analysis
- Matrix Spike analysis
- Matrix Duplicate analysis
- Laboratory Control Sample (LCS) results
- ICP serial dilution analysis
- Equipment Blank data
- Blind Field Duplicate results

After the Summary Reports are prepared for each SDG, the validator will prepare a Data Usability Report (DUSR). The DUSR will be prepared according to the guidelines established by Division of Environmental Remediation Quality Assurance Group and will review the following:

- Is the data package complete as defined under the requirements for the NYSDEC ASP Category B or USEPA CLP deliverables?
- Have all holding times been met?
- Do all the QC data: blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data fall within the protocol required limits and specifications?
- Have all of the data been generated using established and agreed upon analytical protocols?
- Does an evaluation of the raw data confirm the results provided in the data summary sheets and qualify control verification forms?
- Have the correct data qualifiers been used?

Once the data package has been reviewed and the above questions asked and answered the DUSR proceeds to describe the samples and the analytical parameters. Data deficiencies, analytical protocol deviations and quality control problems are identified and their effect-on the data is discussed. The DUSR shall also include recommendations on resampling/reanalysis. All data qualifications must be documented following the NYSDEC ASP 2005 Rev. Guidelines.

3.10.4 Data Presentation Formats

Project data will be presented in consistent formats for all letters, Monthly Progress Reports, Interim Technical Reports, and Draft/Final Technical Reports. Specific formats will be tailored to best fit the needs of the data being presented but general specifications are described below.

Data Records

The data record will generally include one or more of the following:

- Unique sample or field measurement code;
- Sampling or field measurement location and sample or measurement type;
- Sampling or field measurement raw data;
- Laboratory analysis ID number;
- Property or component measured; and
- Result of analysis (e.g., concentration).

Tabular Displays

The following data will generally be presented in tabular displays:

- Unsorted (raw) data;
- Results for each medium or for each constituent monitored;
- Data reduction for statistical analysis;
- Sorting of data by potential stratification factors (e.g., location, soil layer/depth, topography, etc.); and
- Summary data.

Graphical Displays

The following data will be presented in graphical formats (e.g., bar graphs, line graphs, area or plan maps, isopleth plots, cross-sectional plots or transects, three dimensional graphs, etc.):

- Sample locations and sampling grid;
- Boundaries of sampling area;
- Areas where additional data are necessary;
- Constituent concentrations at each sample location;
- Geographical extent of impacts;
- Constituent concentration levels, averages, minima and maxima;
- Changes in concentration in relation to distance from the source, time, depth or other parameters;
- Features affecting intramedia transport; and
- Potential receptors.

3.11 PERFORMANCE AUDITS

3.11.1 Field Audits

During field activities, the QAO will accompany sampling personnel into the field to verify that the sampling program is being properly implemented and to detect and define problems so that corrective action can be taken. All findings will be documented and provided to the ERM Project Manager and FTL.

3.11.2 Laboratory Audits

The NYSDOH ELAP CLP certified laboratory that has satisfactorily completed performance audits and performance evaluation samples will

be used for all sample analysis. The results of the most recent performance audits and performance evaluations will be made available upon request.

3.11.3 *Corrective Actions*

The NYSDOH ELAP CLP certified laboratory utilized for this project will meet the specifications for corrective action protocols typical for performing contract laboratory services. Laboratory corrective action may include instrumentation maintenance, methods modification, cross contamination/carry over issues, sample tracking practices, laboratory information management (LIMs), etc.

Prior to mobilization for the field investigation, a meeting may be scheduled among representatives of ERM and the laboratory to discuss general corrective action approach and establish procedures to ensure good and timely communications among all parties during the investigation. New procedures will be put into effect as appropriate.

3.12 WASTE DISPOSAL PLAN

 The discussion on the general protocol for handling and disposal of solid and liquid wastes generated during the investigation can be found in the work plan.

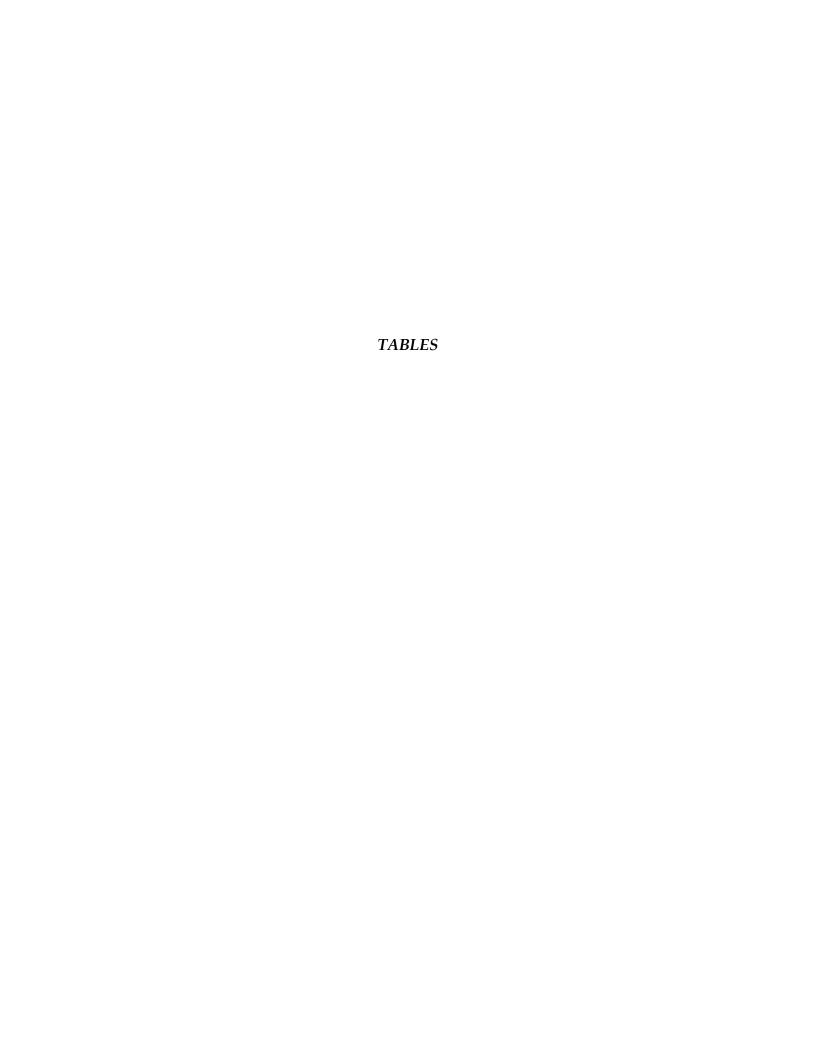


TABLE 1 SAMPLE TOTAL SUMMARY

		15.	Number of	Blind Field	MS/MSD	Field	Trip
Task	Analytical Parameters	Matrix	Samples	Duplicates ¹	Pairs ²	Blanks ³	Blanks ⁴
Ground Water Sampling	TCL VOCs by SW-846 8260B	Aqueous	58	3	3	10	10
	TCL SVOCs by SW-846 8270C	Aqueous	58	3	3	10	0
	TAL Metals by SW-846 6010/7470	Aqueous	58	3	3	10	0
Soil Sampling	TCL VOCs by SW-846 8260B	Soil	20	1	1	5	0
	TCL SVOCs by SW-846 8270C	Soil	20	1	1	5	0
	TCL Pesticides by SW-846 8081	Soil	20	1	1	5	0
	TAL Metals by SW-846 6010/7471	Soil	20	1	1	5	0
Soil Vapor Sampling	TO-15 (Summa Canisters)	Air	24	0	0	0	0
Investigative Derived Wastes	Toxicity Characteristic Leaching	Soil	1	0	0	0	0
	Procedure (TCLP) for VOCs, SVOCs and RCRA Metals,	Aqueous	1	0	0	0	0
	Reactivity to Sulfide and Cyanide, Corrosivity, Flammability ⁵						

TABLE 1 (continued) SAMPLE TOTAL SUMMARY

- 1. Duplicates are generally collected at a minimum frequency of five percent (1 per 20 field samples). More frequent collection may be warranted based on field conditions/observations and/or at the discretion of the Field Team Leader.
- 2. MS/MSD Pairs (two samples) will be collected at a minimum frequency of five percent (1 per 20 field samples). More frequent collection may be warranted based on field conditions/observations and/or at the discretion of the Field Team Leader.
- 3. Field Blanks will be collected at a minimum frequency of one per day. More frequent collection may be warranted based on field conditions/observations and/or at the discretion of the Field Team Leader
- 4. Trip Blanks will be collected at the rate of one per aqueous sample shipment when VOCs are collected.
- 5. Waste Characterization sampling to include TCLP in accordance with SW-846 Method 1311 for VOCs by USEPA SW-846 Method 8260B, SVOCs by USEPA SW-846 Method 8270C, and Metals by USEPA SW-846 Methods 6010B / 7470A, Ignitability, Corrosivity and Reactivity to Sulfide and Cyanide.

TABLE 2
DETAILED SUMMARY OF AQUEOUS SAMPLING PROGRAM
SAMPLE TOTALS, ANALYTICAL METHODS, PRESERVATIVES, HOLDING TIMES AND CONTAINERS

Analytical Parameters	Analytical Method Reference	Sample Preservation	Holding Time ¹	Container ^{2,3}
TCL VOCs	SW-846 8260B	Cool 4°C, pH<2 (HCl)	14 days	3 – 40 ml glass Teflon-lined cap
TCL SVOCs	SW-846 8270C	Cool, 4°C	7 days/ 40 days	2 - 1000 ml (1 Liter) amber bottle
TAL Metals	SW-846 6010B/7470A	Cool 4°C, metals : pH<2 (HNO ₃)	All metals (except mercury) 180 days, Mercury 26 days	1 - 500 ml plastic bottle for metals
Waste Characte	erization			
Toxicity	Sample preparation:	Cool, 4°C	VOCs 14 days/NA/14 days,	See above
Characteristic	USEPA SW-846		SVOCs, 14 days/14 days/40 days,	
Leaching	Method 1311		Metals (except Mercury)	
Procedure	Sample analysis:		14 days/NA/180 days,	
(TCLP)	8260B, 8270C, 6010B, & 7470A		Mercury 5 days/NA/28 days	
Reactivity to	USEPA SW-846	Cool, 4°C	Not Regulated	1 - 1000 ml (1 Liter)
Sulfide and	Methods 9034 and		(14 day holding time is	plastic bottle
Cyanide	9014 (Chapter Seven)		suggested)	
Corrosivity	USEPA SW-846	Cool, 4°C	Not Regulated	1 - 1000 ml (1 Liter)
	Method 9045C			plastic bottle
Flammability	USEPA SW-846	Cool, 4°C	Not Regulated	1 - 1000 ml (1 Liter)
(Ignitability)	Method 1010		-	plastic bottle

TABLE 2 (continued) DETAILED SUMMARY OF AQUEOUS SAMPLING PROGRAM SAMPLE TOTALS, ANALYTICAL METHODS, PRESERVATIVES, HOLDING TIMES AND CONTAINERS

- 1. VOC holding times are days after collection until analysis; SVOC holding times are days after collection until extraction / days from extraction to analysis; Inorganics holding times are days after collection until leaching/days from leaching until extraction (if required)/days from extraction until analysis.
- 2. As specified by Mitkem Laboratories, a Division of Spectrum Analytical Inc.
- 3. Reactivity to Sulfide and Cyanide, Corrosivity, and Flammability (Ignitability) will be collected into the same 1000 ml sample container.

TABLE 3
DETAILED SUMMARY OF SOIL SAMPLING PROGRAM
SAMPLE TOTALS, ANALYTICAL METHODS, PRESERVATIVES, HOLDING TIMES AND CONTAINERS

	Analytical			
Analytical Parameters	Method Reference	Sample Preservation	Holding Time ¹	Container ^{2,3}
TCL VOCs	SW-846 8260B	Cool 4°C,	14 days	1 – 2 oz. glass jar
TCL SVOCs	SW-846 8270C	Cool, 4°C	14 days/ 40 days	1 – 8 oz. glass jar
TCL Pesticides	SW-846 8081A	Cool, 4°C	14 days/ 40 days	1 – 8 oz. glass jar
TAL Metals	SW-846 6010/7471	Cool 4°C	All metals (except mercury) 180 days, Mercury 26 days	1 – 8 oz. glass jar
Waste Characte	erization			
Toxicity Characteristic Leaching Procedure (TCLP)	Sample preparation: USEPA SW-846 Method 1311 Sample analysis: 8260B, 8270C, 6010B, &	Cool, 4°C	VOCs 14 days/NA/14 days, SVOCs, 14 days/14 days/40 days, Metals (<i>except Mercury</i>) 14 days/NA/180 days, Mercury 5 days/NA/28 days	1 – 8 oz. glass jar
Reactivity to Sulfide and Cyanide	7470A USEPA SW-846 Methods 9034 and 9014 (Chapter Seven)	Cool, 4°C	Not Regulated (14 day holding time is suggested)	1 – 8 oz. glass jar
Corrosivity	USEPA SW-846 Method 9045C	Cool, 4°C	Not Regulated	1 – 8 oz. glass jar
Flammability (Ignitability)	USEPA SW-846 Method 1010	Cool, 4°C	Not Regulated	1 – 8 oz. glass jar

TABLE 3 (continued) DETAILED SUMMARY OF SOIL SAMPLING PROGRAM SAMPLE TOTALS, ANALYTICAL METHODS, PRESERVATIVES, HOLDING TIMES AND CONTAINERS

- 1. VOC holding times are days after collection until analysis; SVOC holding times are days after collection until extraction / days from extraction to analysis; Inorganics holding times are days after collection until leaching/days from leaching until extraction (if required)/days from extraction until analysis.
- 2. As specified by Mitkem Laboratories, a Division of Spectrum Analytical Inc.
- 3. SVOC, Metals, TCLP, Reactivity to Sulfide and Cyanide, Corrosivity, and Flammability (Ignitability) will be collected into the same sample container.

TABLE 4 DETAILED SUMMARY OF AIR SAMPLING PROGRAM SAMPLE TOTALS, ANALYTICAL METHODS, PRESERVATIVES, HOLDING TIMES AND CONTAINERS

Analytical Method Reference	Sample Preservation	Holding Time ¹	Container ²
USEPA Method TO-15A	Cool, 4°C	30 days	1 – 6 liter Summa Canister

- Holding times are days after collection until analysis.
 As specified by Spectrum Analytical Inc.

TABLE 5 VOLATILE TARGET COMPOUND LIST (TCL) AND REPORTING LIMITS

		Reporting Limits (RL) 2, 3	
	CAS	Aqueous	Low Soil
Target Compound List (TCL)	Number ¹	(μg/l)	(µg/kg)
dichlorodifluoromethane	75-71-8	1.0	1.0
chloromethane	74-87-3	1.0	1.0
vinyl chloride	75-01-4	1.0	1.0
bromomethane	74-83-9	1.0	1.0
chloroethane	75-00-3	1.0	1.0
trichlorofluoromethane	75-69-4	1.0	1.0
1,1-dichloroethene	75-35-4	1.0	1.0
1,1,2-trichloro-1,2,2-trifluoroethane	76-13-1	1.0	1.0
acetone	67-64-1	5.0	5.0
carbon disulfide	75-15-0	1.0	1.0
methyl acetate	79-20-9	1.0	1.0
methylene chloride	75-09-2	1.0	1.0
trans-1,2-dichloroethene	156-60-5	1.0	1.0
methyl tertiary butyl ether	1634-04-4	1.0	1.0
1,1-dichloroethane	75-34-3	1.0	1.0
cis-1,2-dichloroethene	156-59-2	1.0	1.0
2-butanone	78-93-3	5.0	5.0
chloroform	67-66-3	1.0	1.0
1,1,1-trichloroethane	71-55-6	1.0	1.0
cyclohexane	110-82-7	1.0	1.0
carbon tetrachloride	56-23-5	1.0	1.0
benzene	71-43-2	1.0	1.0
1,2-dichloroethane	107-06-2	1.0	1.0
trichloroethene	79-01-6	1.0	1.0
methylcyclohexane	108-87-2	1.0	1.0
1,2-dichloropropane	78-87-5	1.0	1.0
bromodichloromethane	75-27-4	1.0	1.0
cis-1,3-dichloropropene	10061-01-5	1.0	1.0
4-methyl-2-pentanone	108-10-1	5.0	5.0
toluene	108-88-3	1.0	1.0
trans-1,3-dichloropropene	10061-02-6	1.0	1.0
1,1,2-trichloroethane	79-00-5	1.0	1.0

TABLE 5 (continued) VOLATILE TARGET COMPOUND LIST (TCL) AND REPORTING LIMITS

		Reporting Limits (RL) 2		
	CAS	Aqueous	Soil	
Target Compound List (TCL)	Number ¹	(μg/l)	(µg/kg)	
tetrachloroethene	127-18-4	1.0	1.0	
2-hexanone	591-78-6	5.0	5.0	
dibromochloromethane	124-48-1	1.0	1.0	
1,2-dibromoethane	106-93-4	1.0	1.0	
chlorobenzene	108-90-7	1.0	1.0	
ethylbenzene	100-41-4	1.0	1.0	
xylene (total)	1330-20-7	5.0	5.0	
styrene	100-42-5	1.0	1.0	
bromoform	75-25-2	1.0	1.0	
isopropylbenzene	98-82-8	1.0	1.0	
1,1,2,2-tetrachloroethane	79-34-5	1.0	1.0	
1,3-dichlorobenzene	541-73-1	1.0	1.0	
1,4-dichlorobenzene	106-46-7	1.0	1.0	
1,2-dichlorobenzene	95-50-1	1.0	1.0	
1,2-dibromo-3-chloropropane	96-12-8	1.0	1.0	
1,2,4-trichlorobenzene	120-82-1	1.0	1.0	

- 1. Chemical Abstracts Service (CAS) Registry Number.
- 2. As specified by Mitkem Laboratories, a Division of Spectrum Analytical Inc.
- 3. RL for soil samples are reported on a dry weight basis and will vary per sample pending on that samples percent moisture.

TABLE 6
SEMIVOLATILE TARGET COMPOUND LIST (TCL)
AND REPORTING LIMITS

		Reporting Limits (RL) 2,3		
	CAS	Aqueous	Soil	
Target Compound List (TCL)	Number ¹	(μg/l)	(µg/kg)	
benzaldehyde	100-52-7	10	330	
phenol	108-95-2	10	330	
bis(2-chloroethyl)ether	111-44-4	10	330	
2-chlorophenol	95-57-8	10	330	
2-methylphenol	95-48-7	10	330	
2,2'-oxybis (1-chloropropane)	108-60-1	10	330	
acetophenone	98-86-2	10	330	
4-methylphenol	106-44-5	10	330	
n-nitroso-di-n-propylamine	621-64-7	10	330	
hexachloroethane	67-72-1	10	330	
nitrobenzene	98-95-3	10	330	
isophorone	78-59-1	10	330	
2-nitrophenol	88-75-5	10	330	
2,4-dimethylphenol	105-67-9	10	330	
bis(2-chloroethoxy)methane	111-91-1	10	330	
2,4-dichlorophenol	120-83-2	10	330	
naphthalene	91-20-3	10	330	
4-chloroaniline	106-47-8	10	330	
hexachlorobutadiene	87-68-3	10	330	
caprolactam	105-60-2	10	330	
4-chloro-3-methylphenol	59-50-7	10	330	
2-methylnaphthalene	91-57-6	10	330	
hexachlorocyclopentadiene	77-47-4	10	330	
2,4,6-trichlorophenol	88-06-2	10	330	
2,4,5-trichlorophenol	95-95-4	20	670	
1,1'-biphenyl	92-52-4	10	330	
2-chloronaphthanlene	91-58-7	10	330	
2-nitroaniline	88-74-4	20	670	
dimethylphthalate	131-11-3	10	330	
2,6-dinitrotoluene	606-20-2	10	330	
4-chloro-3-methylphenol	208-96-8	10	330	
3-nitroaniline	99-09-2	20	670	
acenaphthene	83-32-9	10	330	
2,4-dinitrophenol	51-28-5	20	670	
4-nitrophenol	100-02-7	20	670	

TABLE 6 (continued)
SEMIVOLATILE TARGET COMPOUND LIST (TCL)
AND REPORTING LIMITS

		Reporting Limits (RL) ^{2,3}		
	CAS	Aqueous	Soil	
Target Compound List (TCL)	Number ¹	(μg/l)	(µg/kg)	
dibenzofuran	132-64-9	10	330	
2,4-dinitrotoluene	121-14-2	10	330	
diethylphthalate	84-66-2	10	330	
fluorene	86-73-7	10	330	
4-chlorophenol phenyl ether	7005-72-3	10	330	
4-nitroaniline	100-01-6	20	670	
4,6-dinitro-2-methylphenol	534-52-1	20	670	
n-nitrosodiphenylamine	86-30-6	10	330	
4-bromophenyl-phenylether	101-55-3	10	330	
hexachlorobenzene	118-74-1	10	330	
atrazine	1912-24-9	10	330	
pentachlorophenol	87-86-5	20	670	
phenanthrene	85-01-8	10	330	
anthracene	120-12-7	10	330	
carbazole	86-74-8	10	330	
di-n-butylphthalate	84-74-2	10	330	
fluoranthene	206-44-0	10	330	
pyrene	129-00-0	10	330	
butylbenzylphthalate	85-68-7	10	330	
3,3'-dichlorobenzidine	91-94-1	10	330	
benzo(a)anthracene	56-55-3	10	330	
chrysene	218-01-9	10	330	
bis(2-ethylhexyl)phthalate	117-81-7	10	330	
di-n-octylphthalate	117-84-0	10	330	
benzo(b)fluoranthene	205-99-2	10	330	
benzo(k)fluoranthene	207-08-9	10	330	
benzo(a)pyrene	50-32-8	10	330	
indeno(1,2,3-cd)pyrene	193-39-5	10	330	
dibenzo(a,h)anthracene	53-70-3	10	330	
benzo(g,h,i)perylene	191-24-2	10	330	

- 1. Chemical Abstracts Service (CAS) Registry Number.
- 2. As specified by Mitkem Laboratories, a Division of Spectrum Analytical Inc.
- 3. RL for soil samples are reported on a dry weight basis and will vary per sample pending on that samples percent moisture.

TABLE 7
PESTICIDE TARGET COMPOUND LIST (TCL)
AND REPORTING LIMITS

		Reporting Limits (RL) ^{2, 3}
	CAS	Soil
Target Compound List (TCL)	Number ¹	(μg/kg)
4,4'-DDD	72-54-8	3.3
4,4'-DDE	72-55-9	3.3
4,4'-DDT	50-29-3	3.3
aldrin	309-00-2	1.7
alpha-BHC	319-84-6	1.7
alpha-chlordane	5103-71-9	1.7
beta-BHC	319-85-7	1.7
delta-BHC	319-86-8	1.7
dieldrin	60-57-1	3.3
endosu1fan I	959-98-8	1.7
endosulfan II	33213-65-9	3.3
endosulfan sulfate	1031-07-8	3.3
endrin	72-20-8	3.3
endrin aldehyde	7421-93-4	3.3
endrin ketone	53494-70-5	3.3
gamma-BHC (Lindane)	58-89-9	1.7
gamma-chlordane	5103-74-2	1.7
heptachlor	76-44-8	1.7
heptachlor epoxide	1024-57-3	1.7
methoxychlor	72-43-5	17
toxaphene	8001-35-2	170

- 1. Chemical Abstracts Service (CAS) Registry Number.
- 2. As specified by Mitkem Laboratories, a Division of Spectrum Analytical Inc.
- 3. RL are reported on a dry weight basis and will vary per sample pending on that samples percent moisture.

TABLE 8
METALS TARGET ANALYTE LIST (TAL),
REPORTING LIMITS

Target Analyte List (TAL)	CAS Number ¹	Reporting Limits Water (µg/l) ²	Reporting Limits Soil (mg/kg) ^{2,3}
aluminum	7429-90-5	200	10
antimony	7440-36-0	20	1
arsenic	7440-38-2	20	1
barium	7440-39-3	200	10
beryllium	7440-41-7	5.0	0.25
cadmium	7440-43-9	5.0	0.25
calcium	7440-70-2	800	40
chromium	7440-47-3	20	1
cobalt	7440-48-4	50	2.5
copper	7440-50-8	30	1.5
iron	7439-89-6	200	10
lead	7439-92-1	10	0.5
magnesium	7439-95-4	500	25
manganese	7439-96-5	50	2.5
mercury	7439-97-6	0.20	0.033
nickel	7440-02-0	50	2.5
potassium	7440-09-7	1000	50
selenium	7782-49-2	30	1.5
silver	7440-22-4	30	1.5
sodium	7440-23-5	1000	50
thallium	7440-28-0	20	1
vanadium	7440-62-2	50	2.5
zinc	7440-66-6	50	2.5

- 1. Chemical Abstracts Service (CAS) Registry Number.
- 2. As specified by Mitkem Laboratories, a Division of Spectrum Analytical Inc.
- 3. RL are reported on a dry weight basis and will vary per sample pending on that samples percent moisture.

TABLE 9
AIR TARGET COMPOUND LIST (TCL)
AND REPORTING LIMITS

		Reporting Limit/Method			
		Detection Limit			
Compound	CAS	RL	MDL	RL	
List	Number ¹	(<i>ppbv</i>) ²	(ppbv) ²	$(ug/m^3)^2$	
propene	115-07-1	0.5	0.302	0.86	
dichlorodifluoromethane (freon 12)	75-71-8	0.5	0.108	2.47	
chloromethane	74-87-3	0.5	0.124	1.03	
1,2-dichlorotetrafluoroethane (freon 114)	76-14-2	0.5	0.0977	3.49	
vinyl chloride	75-01-4	0.5	0.138	1.28	
1,3-butadiene	106-99-0	0.5	0.186	1.1	
bromomethane	74-83-9	0.5	0.149	1.94	
chloroethane	75-00-3	0.5	0.158	1.32	
acetone	67-64-1	0.5	0.222	1.19	
trichlorofluoromethane (freon 11)	75-69-4	0.5	0.197	2.81	
ethanol	64-17-5	0.5	0.176	0.94	
1,1-dichloroethene	75-35-4	0.5	0.124	1.98	
methylene chloride	75-09-2	0.5	0.11	1.74	
1,1,2-trichlorotrifluoroethane (freon 113)	76-13-1	0.5	0.174	3.83	
carbon disulfide	75-15-0	0.5	0.0972	1.56	
trans-1,2-dichloroethene	156-60-5	0.5	0.0699	1.98	
1,1-dichloroethane	75-34-3	0.5	0.166	2.02	
methyl tert-butyl ether (MTBE)	1634-04-4	0.5	0.108	1.8	
isopropyl alcohol	67-63-0	0.5	0.0923	1.23	
2-butanone (MEK)	78-93-3	0.5	0.105	1.47	
cis-1,2-dichloroethene	156-59-2	0.5	0.121	1.98	
hexane	110-54-3	0.5	0.0923	1.76	
ethyl acetate	141-78-6	0.5	0.154	1.8	
chloroform	67-66-3	0.5	0.221	2.43	
tetrahydrofuran	109-99-9	0.5	0.192	1.47	
1,2-dichloroethane	107-06-2	0.5	0.249	2.02	
1,1,1-trichloroethane	71-55-6	0.5	0.13	2.73	
benzene	71-43-2	0.5	0.124	1.6	
carbon tetrachloride	56-23-5	0.5	0.221	3.15	
cyclohexane	110-82-7	0.5	0.113	1.72	
1,2-dichloropropane	78-87-5	0.5	0.143	2.31	
bromodichloromethane	75-27-4	0.5	0.19	3.35	
trichloroethene	79-01-6	0.5	0.153	2.69	
n-heptane	142-82-5	0.5	0.111	2.05	
4-methyl-2-pentanone (MIBK)	108-10-1	0.5	0.339	2.05	
cis-1,3-dichloropropene	10061-01-5	0.5	0.134	2.27	
trans-1,3-dichloropropene	10061-02-6	0.5	0.116	2.27	

TABLE 9 (continued) AIR TARGET COMPOUND LIST (TCL) AND REPORTING LIMITS

		Reporting Limit/Method Detection Limit			
Compound	CAS	RL	MDL	RL	
List	Number ¹	$(ppbv)^2$	$(ppbv)^2$	$(ug/m^3)^2$	
1,1,2-trichloroethane	79-00-5	0.5	0.16	2.73	
toluene	108-88-3	0.5	0.122	1.88	
2-hexanone (MBK)	591-78-6	0.5	0.289	2.05	
dibromochloromethane	124-48-1	0.5	0.142	4.26	
1,2-dibromoethane (EDB)	106-93-4	0.5	0.168	3.84	
tetrachloroethene	127-18-4	0.5	0.143	3.39	
chlorobenzene	108-90-7	0.5	0.149	2.3	
ethylbenzene	100-41-4	0.5	0.141	2.17	
m,p-xylene	179601-23-1	1	0.246	4.34	
bromoform	75-25-2	0.5	0.19	5.17	
styrene	100-42-5	0.5	0.159	2.13	
o-xylene	95-47-6	0.5	0.116	2.17	
1,1,2,2-tetrachloroethane	79-34-5	0.5	0.253	3.43	
1,3,5-trimethylbenzene	108-67-8	0.5	0.176	2.46	
4-ethyltoluene	622-96-8	0.5	0.117	2.46	
1,2,4-trimethylbenzene	95-63-6	0.5	0.144	2.46	
1,3-dichlorobenzene	541-73-1	0.5	0.15	3.01	
benzyl chloride	100-44-7	0.5	0.174	2.58	
1,4-dichlorobenzene	106-46-7	0.5	0.143	3.01	
1,2-dichlorobenzene	95-50-1	0.5	0.132	3.01	
1,2,4-trichlorobenzene	120-82-1	0.5	0.223	3.71	
hexachlorobutadiene	87-68-3	0.5	0.411	5.33	

- $\label{eq:Notes:$
- 2. As per Spectrum Analytical Inc.

TABLE 10 INVESTIGATIVE DERIVED WASTES COMPOUND LIST AND REPORTING LIMITS

TOXICITY CHARACTERISTIC LEACHING PROCEDURE (TCLP) VOLATILES

Target Compound	CAS	Reporting Limits
List	Number ¹	$(mg/l)^2$
benzene	71-43-2	0.0050
2-butanone	78-93-3	0.0050
carbon tetrachloride	56-23-5	0.0050
chlorobenzene	108-90-7	0.0050
chloroform	67-66-3	0.0050
1,4-dichlorobenzene	106-46-7	0.0050
1,2-dichloroethane	107-06-2	0.0050
1,1-dichloroethene	75-35-4	0.0050
tetrachloroethene	127-18-4	0.0050
trichloroethene	79-01-6	0.0050
vinyl chloride	75-01-4	0.0050

Notes:

- 1. Chemical Abstracts Service (CAS) Registry Number.
- 2. As specified by Mitkem Laboratories, a Division of Spectrum Analytical Inc.

TOXICITY CHARACTERISTIC LEACHING PROCEDURE (TCLP) SEMIVOLATILES

Target Compound	CAS	Reporting Limits
List	Number ¹	(mg/l) ²
2-methylphenol	95-48-7	0.010
3&4-methylphenol ³	108-39-4/106-44-5	0.010
pentachlorophenol	87-86-5	0.020
2,4,5-trichlorophenol	95-95-4	0.020
2,4,6-trichlorophenol	88-06-2	0.010
1,4-dichlorobenzene	106-46-7	0.010
2,4-dinitrotoluene	121-14-2	0.010
hexachlorobenzene	118-74-1	0.010
hexachlorobutadiene	87-68-3	0.010
hexachloroethane	67-72-1	0.010
nitrobenzene	98-95-3	0.010
pyridine	110-86-1	0.010

- 1. Chemical Abstracts Service (CAS) Registry Number.
- 2. As specified by Mitkem Laboratories, a Division of Spectrum Analytical Inc.
- 3. Compounds co-elute.

TABLE 10 (continued) INVESTIGATIVE DERIVED WASTES COMPOUND LIST AND REPORTING LIMITS

TOXICITY CHARACTERISTIC LEACHING PROCEDURE (TCLP) METALS

Target	CAS	Reporting Limits
Analyte List	Number ¹	$(mg/l)^2$
arsenic	7440-38-2	0.2
barium	7440-39-3	2.0
cadmium	7440-43-9	0.05
chromium	7440-47-3	0.2
lead	7439-92-1	0.1
mercury	7439-97-6	0.002
selenium	7782-49-2	0.3
silver	7440-22-4	0.3

Notes:

- 1. Chemical Abstracts Service (CAS) Registry Number.
- 2. As specified by Mitkem Laboratories, a Division of Spectrum Analytical Inc.

GENERAL CHEMISTRY

Danamatan	Compound Number ¹	Reporting Limit ²	Units
Parameter			02,777.0
Reactivity to Sulfide	GIS-210-017	1.0	mg/l (aqueous)
		1.0	mg/kg (soil)
Reactivity to Cyanide	GIS-210-015	1.0	mg/l (aqueous)
		1.0	mg/kg (soil)
Corrosivity (pH)	GIS-210-014	0.2	pH - Standard units
Flammability (Ignitability)	GIS-210-013	200	degrees Fahrenheit

- 1. Identifier utilized by ERM via the database to generate data tables.
- 2. As specified by Mitkem Laboratories, a Division of Spectrum Analytical Inc.

TABLE 11 LABORATORY DATA QUALITY OBJECTIVES (DQOs) FOR PRECISION AND ACCURACY VOLATILE ANALYSES

	Surrogate	Field Duplicate		MS/MSD	MS/MSD	LCS	MS/MSD	MS/MSD	LCS
	Accuracy	Precision Precision	Method	Accuracy	Precision	Accuracy	Accuracy	Precision	Accuracy
QC Compounds	(% R) ¹	(RPD)	Blanks	(% R) ¹	(RPD)	(% R) ¹	(% R) ¹	(RPD)	(% R) ¹
all compounds		< 50	≤ 2.5 x RL		aqueous			Soil	
dichlorodifluoromethane		for	for	32-171	27	51-166	23-160	30	45-162
chloromethane		aqueous	methylene	44-146	26	50-152	37-139	30	51-149
vinyl chloride		-	chloride,	44-151	22	55-145	43-135	28	62-139
bromomethane		< 100	and	51-147	21	57-149	12-138	36	62-132
chloroethane		for	cyclohexane	51-149	22	64-139	8-143	33	62-137
trichlorofluoromethane		soil		42-169	25	70-159	27-159	34	60-148
1,1-dichloroethene			≤5 x RL for	41-141	17	69-135	57-133	21	77-123
1,1,2-trichloro-1,2,2-trifluoroethane			acetone,	45-148	22	73-140	30-154	31	62-134
acetone			2-butanone	42-159	23	46-150	30-150	31	62-134
carbon disulfide				36-131	22	60-150	37-139	24	60-136
methyl acetate			≤ RL for	46-149	21	60-145	51-100	31	57-139
methylene chloride			all other	64-126	14	75-135	53-134	20	77-123
trans-1,2-dichloroethene			compounds	57-131	15	70-124	49-136	22	74-123
methyl tertiary butyl ether			_	50-141	14	74-124	56-132	22	76-129
1,1-dichloroethane				65-133	16	74-127	57-133	21	77-123
cis-1,2-dichloroethene				62-131	13	75-130	56-136	20	77-122
2-butanone				54-143	18	60-130	37-165	35	46-148
chloroform				71-133	16	79-125	55-130	21	78-121
1,1,1-trichloroethane				58-149	20	77-135	46-147	23	74-129
cyclohexane				31-151	23	61-126	37-142	27	66-123
carbon tetrachloride				54-156	19	72-140	30-168	34	69-134
benzene				48-137	12	77-122	50-134	21	80-116
1,2-dichloroethane				66-145	18	66-137	50-145	21	74-131
trichloroethene				60-138	14	77-123	46-144	22	80-119
methylcyclohexane				40-150	21	71-128	25-149	32	63-130
1,2-dichloropropane				72-127	13	80-119	56-133	20	81-119
bromodichloromethane				74-123	15	76-128	47-150	21	81-123

TABLE 11 (continued)
LABORATORY DATA QUALITY OBJECTIVES (DQOs) FOR PRECISION AND ACCURACY
VOLATILE ANALYSES

	Surrogate Accuracy	Field Duplicate Precision	Method	MS/MSD Accuracy	MS/MSD Precision	LCS Accuracy	MS/MSD Accuracy	MS/MSD Precision	LCS Accuracy
QC Compounds	(% R) ¹	(RPD)	Blanks	(% R) ¹	(RPD)	(% R) ¹	(% R) ¹	(RPD)	(% R) ¹
					aqueous			soil	
cis-1,3-dichloropropene				69-127	14	79-120	50-130	20	82-120
4-methyl-2-pentanone				59-140	16	63-136	48-147	26	68-141
toluene				48-141	13	79-122	46-141	23	82-118
trans-1,3-dichloropropene				69-132	16	78-125	46-113	22	80-123
1,1,2-trichloroethane				74-131	13	83-120	54-140	22	82-120
tetrachloroethene				54-141	14	71-128	38-155	27	67-129
2-hexanone				52-150	19	58-136	35-155	31	51-139
dibromochloromethane				32-171	27	51-166	47-146	22	82-127
1,2-dibromoethane				74-125	11	79-122	51-140	21	85-122
chlorobenzene				70-124	11	80-120	44-140	24	84-116
ethylbenzene				48-140	14	80-123	38-145	27	81-118
xylene (total)				46-141	13	77-125	38-145	27	77-124
styrene				58-139	13	80-130	39-147	25	82-126
bromoform				56-137	14	80-125	42-152	23	74-129
isopropylbenzene				52-138	14	76-134	40-140	27	75-125
1,1,2,2-tetrachloroethane				67-125	12	72-118	47-136	26	75-125
1,3-dichlorobenzene				69-123	12	75-117	31-148	27	79-117
1,4-dichlorobenzene				70-121	12	75-118	31-144	27	77-114
1,2-dichlorobenzene				72-123	11	79-116	33-148	25	82-116
1,2-dibromo-3-chloropropane				69-139	16	75-140	41-145	29	70-129
1,2,4-trichlorobenzene				60-131	14	70-130	15-160	33	65-128
dibromofluoromethane	68-123	3 (soil)	76-123 (v	water)					
1,2-dichloroethane-d4	59-136	s (soil)	63-140 (v	water)					
toluene-d8	57-123	3 (soil)	78-117 (v	water)					
4-bromofluorobenzene	65-140	(soil)	73-125 (v	water)					

QC = Quality Control; % R = Percent Recovery; RPD = Relative Percent Difference; MS = Matrix Spike; MSD = Matrix Spike Duplicate; BS = Blank Spike; BSD = Blank Spike Duplicate; Lab Check Sample; RL = Reporting Limit.

^{1.} As specified by Mitkem Laboratories, a Division of Spectrum Analytical Inc.

TABLE 12 LABORATORY DATA QUALITY OBJECTIVES (DQOs) FOR PRECISION AND ACCURACY SEMIVOLATILE ANALYSES

QC Compounds	Surrogate Accuracy	Field Duplicate Precision (RPD)	Method Blanks	MS/MSD Accuracy (% R) 1	MS/MSD Precision (RPD)	LCS Accuracy	MS/MSD Accuracy	MS/MSD Precision (RPD)	LCS Accuracy (% R) ¹
all compounds	(% R) ¹	(KPD) < 50	$\leq 5 \times RL \text{ for}$	(% K) 1	aqueous	(% R) ¹	(% R) ¹	soil	(%0 K) 1
benzaldehyde		for	any	4-126	33	1-161	1-28	41	1-109
phenol		aqueous	phthalate	6-89	34	10-68	42-107	21	58-104
bis(2-chloroethyl)ether		aqueous	ester.	32-116	32	54-116	36-113	23	54-110
2-chlorophenol		< 100	CStC1.	33-106	29	54-103	44-105	20	62-100
2-methylphenol		for	≤ RL for	28-113	31	47-104	47-110	20	62-107
2,2'-oxybis (1-chloropropane)		soil	all other	31-113	32	55-111	39-112	24	58-108
acetophenone		3011	compounds	30-122	31	55-116	33-108	22	53-101
4-methylphenol			compounds	25-112	30	41-101	46-114	19	63-108
n-nitroso-di-n-propylamine				28-129	32	54-126	38-123	22	54-119
hexachloroethane				18-97	35	33-94	24-106	27	56-101
nitrobenzene				30-118	32	54-111	38-112	22	57-106
isophorone				32-118	31	57-115	39-113	19	57-108
2-nitrophenol				33-117	30	57-113	29-115	24	59-107
2,4-dimethylphenol				30-119	29	48-114	42-118	18	58-109
bis(2-chloroethoxy)methane				32-122	32	58-120	43-118	20	60-115
2,4-dichlorophenol				34-113	28	58-109	48-107	18	62-104
naphthalene				26-102	32	46-95	32-109	25	55-99
4-chloroaniline				19-98	31	43-103	17-87	30	30-80
hexachlorobutadiene				23-97	34	34-95	39-108	22	54-108
caprolactam				34-138	27	49-137	1-97	42	1-58
4-chloro-3-methylphenol				37-124	24	59-115	48-117	20	63-113
2-methylnaphthalene				28-106	32	44-101	37-112	23	55-104
hexachlorocyclopentadiene				11-95	38	16-97	1-104	42	31-111
2,4,6-trichlorophenol				38-116	27	59-113	51-111	20	62-108
2,4,5-trichlorophenol				42-121	26	61-118	53-114	21	64-113
1,1'-biphenyl				37-111	31	53-110	46-117	20	64-109
2-chloronaphthanlene				35-108	30	50-108	48-109	18	63-106

TABLE 12 (continued)
LABORATORY DATA QUALITY OBJECTIVES (DQOs) FOR PRECISION AND ACCURACY
SEMIVOLATILE ANALYSES

		Field								
	Surrogate	Duplicate		MS/MSD	MS/MSD	LCS	MS/MSD	MS/MSD	LCS	
QC Compounds	Accuracy	Precision	Method	Accuracy	Precision	Accuracy	Accuracy	Precision	Accuracy	
,	$(\% R)^{1}$	(RPD)	Blanks	(% R) 1	(RPD)	(% R) 1	(% R) 1	(RPD)	(% R) 1	
					aqueous		soil			
2-nitroaniline				31-143	29	54-138	41-135	23	54-136	
dimethylphthalate				40-121	27	54-121	51-114	20	63-114	
2,6-dinitrotoluene				45-127	28	65-124	45-123	21	66-119	
4-chloro-3-methylphenol				37-124	24	59-115	48-117	20	62-113	
3-nitroaniline				25-123	28	47-123	29-110	24	40-110	
acenaphthene				35-111	29	54-105	42-112	23	60-104	
2,4-dinitrophenol				15-154	28	35-146	1-132	36	30-140	
4-nitrophenol				8-113	34	1-86	25-135	29	35-134	
dibenzofuran				39-113	28	59-109	51-111	23	64-107	
2,4-dinitrotoluene				46-126	26	62-124	39-124	21	63-121	
diethylphthalate				39-133	25	55-132	46-126	20	57-129	
fluorene				49-116	25	61-118	42-117	24	62-109	
4-chlorophenol phenyl ether				50-112	18	62-113	39-116	27	55-114	
4-nitroaniline				26-130	31	42-133	25-112	29	44-125	
4,6-dinitro-2-methylphenol				29-135	27	47-131	1-130	38	46-122	
n-nitrosodiphenylamine				38-125	26	60-117	46-127	22	62-117	
4-bromophenyl-phenylether				47-118	25	60-119	53-117	20	63-119	
hexachlorobenzene				50-117	24	62-120	54-115	20	63-119	
atrazine				14-120	25	26-119	19-111	20	24-118	
pentachlorophenol				32-134	23	38-123	27-122	25	40-119	
phenanthrene				50-114	23	63-113	39-124	32	63-113	
anthracene				49-119	28	62-118	44-123	24	63-111	
carbazole				52-127	23	67-124	52-124	23	64-133	
di-n-butylphthalate				52-129	24	62-131	49-128	22	62-127	
fluoranthene				49-116	25	61-118	42-117	24	62-109	
pyrene				47-118	25	59-115	29-138	33	58-114	
butylbenzylphthalate				49-133	25	60-129	42-140	22	60-127	
3,3'-dichlorobenzidine				12-125	34	44-119	1-116	35	38-103	
benzo(a)anthracene				52-113	24	63-114	41-121	30	62-110	
chrysene				54-112	24	65-113	41-120	29	63-110	
bis(2-ethylhexyl)phthalate				48-137	26	59-134	40-147	26	57-133	

TABLE 12 (continued) LABORATORY DATA QUALITY OBJECTIVES (DQOs) FOR PRECISION AND ACCURACY SEMIVOLATILE ANALYSES

QC Compounds	Surrogate Accuracy (% R) ¹	Field Duplicate Precision (RPD)	Method Blanks	MS/MSD Accuracy (% R) ¹	MS/MSD Precision (RPD)	LCS Accuracy (% R) ¹	MS/MSD Accuracy (% R) ¹	MS/MSD Precision (RPD)	LCS Accuracy (% R) ¹
					aqueous			soil	
di-n-octylphthalate				46-147	28	56-144	41-154	26	55-145
benzo(b)fluoranthene				46-120	27	57-119	34-133	33	56-116
benzo(k)fluoranthene				47-121	26	58-121	36-131	32	57-120
benzo(a)pyrene				50-112	24	60-112	39-119	30	60-110
indeno(1,2,3-cd)pyrene				44-124	27	57-129	23-134	30	56-125
dibenzo(a,h)anthracene				43-117	26	57-121	26-124	28	55-117
benzo(g,h,i)perylene				37-122	25	54-123	15-131	31	51-120
nitrobenzene-d5	36-115	(soil)	27-120 (v	vater)					
2-fluorobiphenyl	44-112	2 (soil)	31-111 (v	vater)					
terphenyl-d14	42-133	(soil)	31-124 (v	vater)					
phenol-d5	34-106	(soil)	10-52 (v	vater)					
2-fluorophenol	26-105	s (soil)	10-69 (v	vater)					
2,4,6-tribromophenol	30-126	s (soil)	33-125 (v	vater)					
2-chlorophenol-d4	70-130	(soil)	70-130 (v	vater)					
1,2-dichlorobenzene-d4	70-130	(soil)	70-130 (v	vater)					

1. As specified by Mitkem Laboratories, a Division of Spectrum Analytical Inc.

QC = Quality Control; % R = Percent Recovery; RPD = Relative Percent Difference; MS = Matrix Spike; MSD = Matrix Spike Duplicate; BS = Blank Spike; BSD = Blank Spike Duplicate; LCS = Lab Check Sample; RL = Reporting Limit.

TABLE 13 LABORATORY DATA QUALITY OBJECTIVES (DQOs) FOR PRECISION AND ACCURACY PESTICIDES ANALYSES

QC Compounds	Surrogate Accuracy (% R) ¹	Field Duplicate Precision (RPD)	Method Blanks	MS/MSD Accuracy (% R) ¹	MS/MSD Precision (RPD)	LCS Accuracy (% R) ¹	MS/MSD Accuracy (% R) ¹	MS/MSD Precision (RPD)	LCS Accuracy (% R) ¹
		<u>. </u>			aqueous			soil	
4,4'-DDD							10-155	30.0	10-155
4,4'-DDE							60-135	30.0	60-135
4,4'-DDT							30-155	30.0	30-155
aldrin							30-155	30.0	30-155
alpha-BHC							50-135	30.0	50-135
alpha-chlordane							55-130	30.0	55-130
beta-BHC							50-135	30.0	50-135
delta-BHC							45-145	30.0	45-145
dieldrin							55-135	30.0	55-135
endosu1fan I							10-155	30.0	10-155
endosulfan II					NA		20-160	30.0	20-160
endosulfan sulfate							50-145	30.0	50-145
endrin							50-145	30.0	50-145
endrin aldehyde							20-165	30.0	20-165
endrin ketone							55-145	30.0	55-145
gamma-BHC (Lindane)							50-135	30.0	50-135
gamma-chlordane							55-135	30.0	55-135
heptachlor							35-155	30.0	35-155
heptachlor epoxide							55-140	30.0	55-140
methoxychlor							45-155	30.0	45-155
toxaphene							45-155	30.0	45-155
Surrogate 1	36-115	(soil)	NA						
Surrogate 2	70-130) (soil)	IN P	<u> </u>					

1. As specified by Mitkem Laboratories, a Division of Spectrum Analytical Inc.

QC = Quality Control; % R = Percent Recovery; RPD = Relative Percent Difference; MS = Matrix Spike; MSD = Matrix Spike Duplicate; BS = Blank Spike; BSD = Blank Spike Duplicate; LCS = Lab Check Sample; RL = Reporting Limit

TABLE 14
LABORATORY DATA QUALITY OBJECTIVES (DQOs) FOR PRECISION AND ACCURACY
METALS ANALYSES

	Field Duplicate		Calibration	MS	Laboratory Duplicate	Serial Dilution	LCS
QC Analytes	Precision (RPD)	Method Blanks	ICV & CCV (%R)	Accuracy (% R)	Precision (RPD)	Precision (% D)	Accuracy (% R)
all analytes	for water	< <u>±</u>		75-125 ¹	< 20 ²	< 10 ³	80-120%
aluminum	< 50 for	RL	90-110				for all
antimony	All	for all	90-110				analytes
arsenic	Analytes	analytes	90-110				for water
barium	, and the second	,	90-110				
beryllium	for soil:		90-110				
cadmium	< 100 for		90-110				
calcium	All		90-110				
chromium	Analytes		90-110				
cobalt	,		90-110				manufacturer's
copper			90-110				control limits
iron			90-110				for soil
lead			90-110				
magnesium			90-110				
manganese			90-110				
mercury			80-120				
nickel			90-110				
potassium			90-110				
selenium			90-110				
silver			90-110				
sodium			90-110				
thallium			90-110				
vanadium			90-110				
zinc			90-110				

- 1. Spike recovery limits do not apply when the sample concentration exceeds the spike added concentration by a factor of 4 or more.
- 2. Limit is \pm 20% if values are \geq 5x RL; limit is \pm RL if values are \leq 5x RL; no limit if both values are \leq instrument detection limit (IDL). For soils limits are \pm 35RPD and \pm 2x RL.
- 3. Limit applies only when the analyte concentration in the original sample (I) is $> 50 \times RL$; if I $< 50 \times RL$ then no limit.

QC = Quality Control; RPD = Relative Percent Difference; ICV = Initial Calibration Verification; CCV = Continuing Calibration Verification; % R = Percent Recovery; MS = Matrix Spike Sample; %D = percent difference; LCS = Lab Check Sample; RL = Reporting Limit.

TABLE 15 LABORATORY DATA QUALITY OBJECTIVES (DQOs) FOR PRECISION AND ACCURACY AIR ANALYSES

	Surrogate	Field Duplicate		LCS	Matrix Duplicate
QC Compounds	Accuracy (% R) ¹	Precision (RPD)	Method Blanks	Accuracy (% R) ¹	Precision (RPD)
all compounds	(7010)	< 100	≤ RL	(7014)	(RI D)
propene				70 - 130	30
dichlorodifluoromethane (freon 12)				70 - 130	30
chloromethane				70 - 130	30
1,2-dichlorotetrafluoroethane (freon 114)				70 - 130	30
vinyl chloride				70 - 130	30
1,3-butadiene				70 - 130	30
bromomethane				70 - 130	30
chloroethane				70 - 130	30
acetone				70 - 130	30
trichlorofluoromethane (freon 11)				70 - 130	30
ethanol				55.1 - 230	30
1,1-dichloroethene				70 - 130	30
methylene chloride				70 - 130	30
1,1,2-trichlorotrifluoroethane (freon 113)				70 - 130	30
carbon disulfide				70 - 130	30
trans-1,2-dichloroethene				70 - 130	30
1,1-dichloroethane				70 - 130	30
methyl tert-butyl ether (MTBE)				70 - 130	30
isopropyl alcohol				70 - 130	30
2-butanone (MEK)				70 - 130	30
cis-1,2-dichloroethene				70 - 130	30
hexane				70 - 130	30
ethyl acetate				70 - 130	30
chloroform				70 - 130	30
tetrahydrofuran				70 - 130	30
1,2-dichloroethane				70 - 130	30
1,1,1-trichloroethane				70 - 130	30
benzene				70 - 130	30
carbon tetrachloride				70 - 130	30
cyclohexane				70 - 130	30
1,2-dichloropropane				70 - 130	30
bromodichloromethane				70 - 130	30
trichloroethene				70 - 130	30
n-heptane				70 - 130	30
4-methyl-2-pentanone (MIBK)				70 - 130	30
cis-1,3-dichloropropene				70 - 130	30
trans-1,3-dichloropropene				70 - 130	30

TABLE 15 (continued) LABORATORY DATA QUALITY OBJECTIVES (DQOs) FOR PRECISION AND ACCURACY AIR ANALYSES

QC Compounds	Surrogate Accuracy (% R) ¹	Field Duplicate Precision (RPD)	Method Blanks	LCS Accuracy (% R) ¹	Matrix Duplicate Precision (RPD)
1,1,2-trichloroethane	(7012)	(111 2)	Dittilies	70 - 130	30
toluene				70 - 130	30
2-hexanone (MBK)				70 - 130	30
dibromochloromethane				70 - 130	30
1,2-dibromoethane (EDB)				70 - 130	30
tetrachloroethene				70 - 130	30
chlorobenzene				70 - 130	30
ethylbenzene				70 - 130	30
m,p-xylene				70 - 130	30
bromoform				70 - 130	30
styrene				70 - 130	30
o-xylene				70 - 130	30
1,1,2,2-tetrachloroethane				70 - 130	30
1,3,5-trimethylbenzene				70 - 130	30
4-ethyltoluene				70 - 130	30
1,2,4-trimethylbenzene				70 - 130	30
1,3-dichlorobenzene				70 - 130	30
benzyl chloride				70 - 130	30
1,4-dichlorobenzene				70 - 130	30
1,2-dichlorobenzene				70 - 130	30
1,2,4-trichlorobenzene				70 - 130	30
hexachlorobutadiene				70 - 130	30
4-bromofluorobenzene	75-125				

Notes:

QC = Quality Control; % R = Percent Recovery; RPD = Relative Percent Difference; LCS = Lab Check Sample; RL = Reporting Limit.

^{1.} As specified by Spectrum Analytical Inc.

FIGURE 1 EXAMPLE CHAIN-OF-CUSTODY

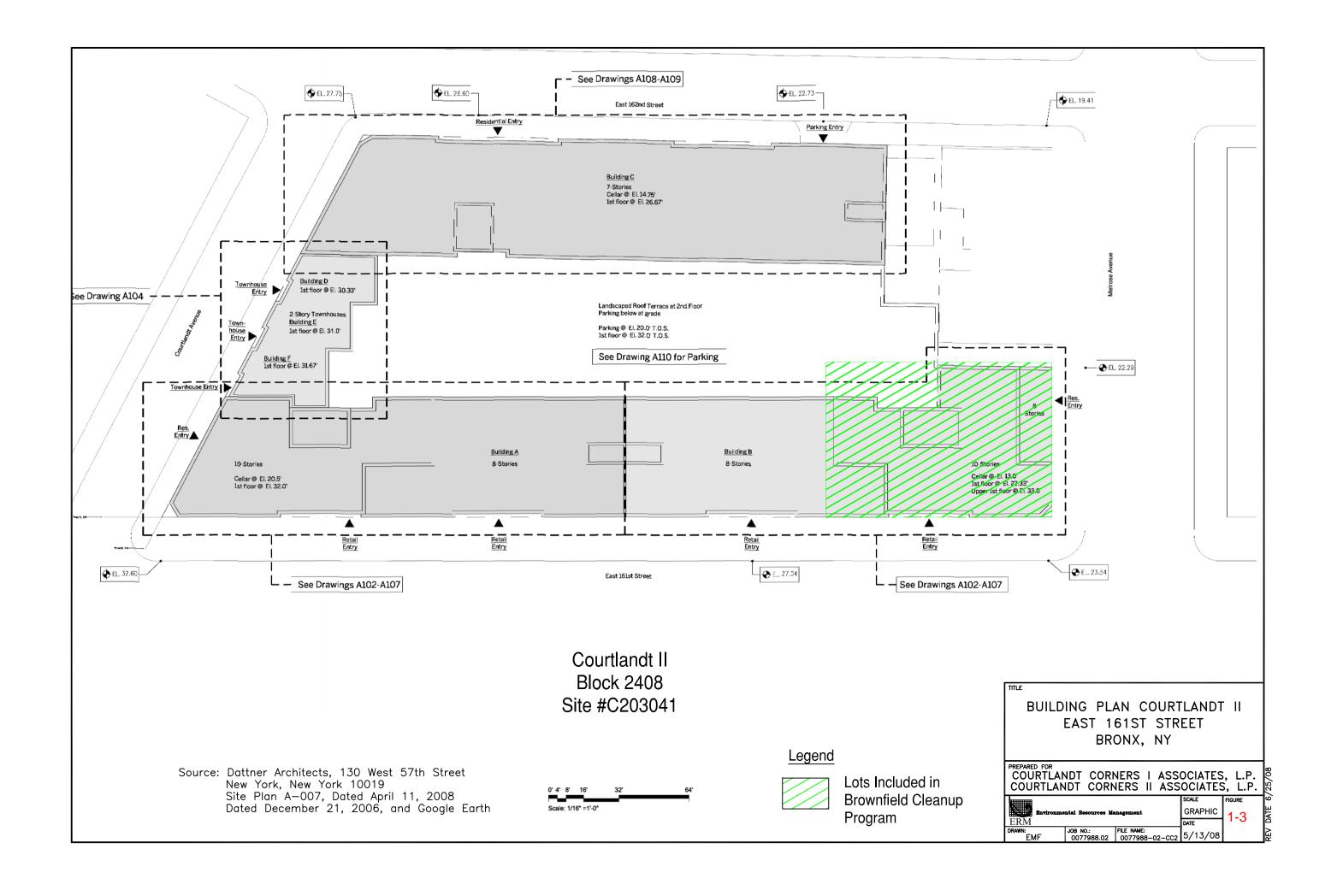

LABOR	LABORATORIES A DIVISION OF SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY						E	C	Ol	RI)	• S					Special Handling: Standard TAT - 7 to 10 business day Rush TAT - Date Needed: All TATs subject to laboratory appromin. 24-hour notification needed for rush Samples disposed of after 60 days unless otherwise instructed.				
Me	0 8 road Hollow Elville NY 1174 51-756-8900	7	_	• -										State:							
Project Mor	roject Mgr.: P.G							RO	N:			- s	ample	r(s):							
1=Na ₂ S2O ₃ 2	=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO ₄ 4=HNO ₃ 5=NaOH 6=Aso =CH ₃ OH 8= NaHSO ₄ 9= 10=								ntain	掛題		૯૬	<u> </u>	Ana	lyses:			QA Reporting No (check if needed	otes:)		
O=Oil SW= S	Water GW=Grou Surface Water SO	Soil SL=Slu X3=	dge A=Air	_	Matrix	Preservative	# of VOA Vials	of Amber Glass	# of Clear Glass	of Plastic								☐ Provide MA DEP MCP C ☐ Provide CT DEP RCP R QA/QC Reporting ☐ Standard ☐ N ☐ Other	eport Level Io QC		
Lab Id:	Sample Id:	Date:	Time:	me: dyT		Tyl		Pre	# of	# of	# of	# of								State specific reporting s	tandards:
- NG				+		-					,	-							-		
							-	-	-	-		-	-	+		-	+				
1				+		-	,	-	-		, 1			+					-		
		.1	_				-	-	-		1	1									
							+		+				\perp								
				,			,				.		_			_					
2 - 12 - 12 - 14 - 14 - 14 - 14 - 14 - 1		1				-	-				-					-	_				
☐ Fax results	when available to ()				Reli	nquis	shed !	by:					Recei	red by	:		Date: T	ime:		
⊠ -E-mail to _				-				V										,	_		
EDD Format								7													
Condition upon	receipt: 🗖 Iced 🗆 A	Ambient X°C	3																		

FIGURE 2 EXAMPLE CUSTODY SEAL

CHAIN OF CUSTODY SEAL

APPENDIX L

	APPENIDIX L – ANNUAL INSPECTION/MONITORING CHECKLIST											
<u>m #</u>	Inspection Items	Yes	<u>No</u>	Comments								
	General Site Inspection											
	Change of ownership or use/transfer of COC?			Prohited use:	If yes, notify NYSDEC 60 days in advance,							
	2 Erection of any structures?											
	3 Any activity likely to disrupt or expose contamination?											
	4 Any activity that will or may tend to interfere with ongoing or completed remedial program or the continued ability to implement engineering or institutional controls?											
	5 Building Floor Slab (Holes, cracks or other physical deficiencies?)											
	Sub-Slab Depressurization System Compliance 6 Vacuum blower system operating and maintained?											
	7 Discharge vent pipe functional and maintained?											
	8 Riser Pipes - Holes, cracks or other physical deficiencies? Blockages in vent pipe?				If yes: Perform smoke or pressure test.							
	9 Valve position modified from last inspection?				If yes: Were subslab vacuum pressure readings verified?							
1	0 Sample and analysis of SSDS effluent for annual report?											
1	1 Analysis of SSDS effluent in Annual Report?											
1	2 Sub-slab vapor monitoring for methane?				If yes (present in sub-slab vapor), perform indoor air sampling of methane							
1	3 Sub-slab pressure measuring ports greater than 0.01 in H2O?											
1	4 Subslab pressure readings in Annual Report?											

875 Melrose Avenue, Bronx, NY BCP SITE C203041

	AP	PENI	DIX L	. – ANNUAL INSPECTION/MONITORING CHECKLIST						
Item #	Inspection Items	Yes	<u>No</u>	Comments						
	Groundwater Compliance									
	Sampled and analyzed three monitoring wells?									
	Sampled and analyzed three monitoring wells?									
	Sampled and analyzed three monitoring wells?									
-	Groundwater results included in Annual Report?									
19	Name of Inspector (print):									
20	Signature of Inspector:									
	Date of Inspection:									
	Date of Last Inspection:									
	Required Date of Next Inspection (add 3 months to current inspection date):									
24	Identify expected inspector for next inspec	ction:								

Additional Comments or Drawings:

Version 2010-1

ose Avenue,		ITH V INCRECTION LOC	DUP SILE							
-	APPENDIX L - MONTHLY INSPECTION LOG To be maintained at the site and included in the Periodic Review Report									
	o be maintained at the site and									
		SSDS FANS	SSDS ALARM							
		OPERATING	OPERATING							
DATE	INSPECTOR	(YES OR NO)	(YES OR NO)							
	1	<u> </u>	1							

APPENDIX M

APPENDIX M - SUBSLAB DEPRESSURIZATION MAINTENANCE CHECKLIST COURTLANDT CORNERS II

ITEM	DESCRIPTION	
1	DATE:	
2	TIME:	
3	PREVIOUS INSPECTION DATE:	
4	INSPECTION TIME SPAN (DAYS):	
5	SYSTEM ID.:	
6	SYSTEM RUNNING (Y or N):	
7	INLET VACUUM TO BLOWER (in H2O):	
8	OPERATING HOURS (run meter):	
9	OPERATING DAYS (HRS/24):	
10	% OPERATION (TIME SPAN/OP. DAYS):	
11	VACUUM EXTRACTION POINT ID:	
12	VACUUM EXTRACTION PRESSURE (in H2O):	
13	VACUUM MONITORING PT. ID:	
14	VACUUM MEASUREMENT (in H2O)	
15	SAMPLE ID:	
16	SAMPLE TYPE (GRAB or TIME WT.)	
17	START TIME SAMPLE:	
18	END TIME SAMPLE:	
19	SAMPLE RESULTS ATTACHED?:	
20	INCREASE (>5%) IN ANY CONTAMINANT?:	

MATERIAL CHANGES IN SUBSLAB OR EXTERIOR SIDEWALK:

MATERIAL CHANGES IN SSDS OPERATIONS:

ACTION ITEMS:

ALL ACTION ITEMS FROM PREVIOUS INSPECTION COMPLETED? (RE-WRITE ITEM IF UNRESOLVED)