

September 11, 2012

NYSDEC, Region 2
Division of Environmental Remediation
47-40 21st Street
Long Island City, NY 1101

Attn: Mandy Yau

Re: Quarterly Monitoring Report

2nd Quarter 2012 Groundwater Sampling

Via Verde

700-730 Brook Avenue, Bronx, NY

BCP Site ID: C203043

Dear Ms. Yau:

CA RICH Consultants, Inc. is pleased to provide you with the following Quarterly Monitoring Report (QMR) for the above-referenced Site in accordance with the NYSDEC-approved Site Management Plan (SMP) dated December, 2011.

The second quarter 2012 sampling event concludes one year of post remedial groundwater monitoring and represents the fourth of eight scheduled sampling rounds required in the SMP. The sampling was completed on June 5th and 6th, 2012; performed by CA RICH Environmental Scientists, Michael Yager and Jason Cooper and included the four on-site post remedial groundwater monitoring wells designated MW-6, MW-7, MW-8 and MW-9. The locations of the four wells and direction of groundwater flow are illustrated on Figure 1.

The four monitoring wells were purged and sampled in accordance with EPA's Low-Flow (minimal drawdown) Groundwater Sampling Procedures. Copies of the requisite field forms and Chain-of-Custody are attached as Appendix A. Quality Assurance/Quality Control (QA/QC) samples were also collected and analyzed in connection with the testing as set forth in the SMP and included one trip blank, one field blank per day of field work, one duplicate, one matrix spike, and one matrix spike duplicate. In addition, the data was validated by a qualified third-party and a DUSR was prepared (Appendix B).

Groundwater samples were collected from the wells, submitted to ELAP and CLP-certified Accutest Laboratories in Dayton, NJ and analyzed for Volatile Organic Compounds (VOCs) via EPA Method 8260, Semi-Volatile Organic Compounds (SVOCs) via EPA Method 8270, PCBs and dissolved TAL metals (plus hexavalent chromium) with NYSDEC ASP Category B deliverables. The validated analytical results are summarized on Tables 1 through 4. In addition, comparison of key parameter concentrations over time for MW-8 is illustrated on Figure 2. All post-remedial groundwater sampling results have been provided to NYSDEC in the appropriate Electronic Data Deliverable format.

As illustrated on Table 1, fuel-related VOCs in excess of NYSDEC TOGS continue to be detected in on-site well MW-8. The most elevated fuel-related compound concentration is 170 ug/L of ethylbenzene. Chloroform, which was detected in well MW-6 during previous sampling rounds in excess of TOGS standards, was found to be below the 7 ug/L standard during this most recent sampling event. No other VOCs were detected in any other well in excess of TOGS Standards.

Ca RICH Environmental Specialists

As shown on Figure 2, comparison of concentrations for naphthalene, n-propylbenzene, 1,2,4-trimethylbenzene, and total xylenes in MW-8 between the 4th quarter 2011 sampling event and the 2nd quarter 2012 sampling event indicates a continued reduction in concentration for these selected compounds. Ethylbenzene, however was detected at a higher concentration this quarter as compared to the last sampling round, but still remains well below the concentration recorded during the initial post remedial sampling round during the third quarter of 2011. The other VOCs detected also exhibit a general decrease in concentration between sampling events.

Semi-volatile organic analysis (Table 2) did not detect any targeted compounds at concentrations in excess of TOGS standards.

Analysis for PCBs (Table 3) did not detect any of these compounds in any of the samples. These compounds were also not detected in the previous sampling round.

Analysis for metals (Table 4) detected iron, manganese and sodium at levels in excess of TOGS Standards. Chromium was detected in sample MW-6 at a concentration of 184 ug/L which is in excess of the TOGS standard of 50 ug/L. Lead remains below TOGS Standards in all samples.

Based upon our review of the analytical results from the 2nd quarter 2012 sampling event and comparison of the results to those generated during the previous events, it appears that the detected levels of fuel-related VOCs generally continue to decline below initial concentrations. The levels of targeted metals (with the exception of the isolated detection of chromium in MW-6) have also generally decreased, most notably lead which decreased to below TOGS Standards. PCBs remain undetected in all wells.

Based upon the results of the first year of post remedial monitoring, CA RICH recommends that the analytical parameters targeted for future post remedial monitoring be reduced to VOCs and RCRA metals.

If there are any questions regarding this letter, please do not hesitate to call our office.

Sincerely,

CA RICH CONSULTANTS, INC.

Richard J. Izzo, CPG Senior Associate

cc: Chris Doroski, NYSDOH (email only)
Ari Goldstein (email only)

Michael Wadman (email only)

FIGURES

FIGURE 2

Concentrations Trends of Selected Compounds in Groundwater Monitoring Well MW-8

Via Verde

700-730 Brook Avenue, Bronx, NY

TABLES

Table 1

Validated Analytical Results for Volatile Organic Compounds In Groundwater Via Verde aka New Housing New York Legacy Project 700-730 Brook Avenue, Bronx, New York

BCP # C203043

Sample ID	MW-6	MW-7	MW-8	MW-9	MW-XX**	Field Blank	Trip Blank	NYSDEC
Matrix	-	groundwater	groundwater	groundwater	groundwater	liquid	liquid	TOGs*
Date Sampled	6/6/2012	6/5/2012	6/6/2012	6/5/2012	6/6/2012	6/6/2012	6/6/2012	
Volatile Organic Compounds								
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Acetone	ND	ND	ND	ND	ND	4.6 J	ND	50
Benzene	ND	ND	1.3	ND	1.3	ND	ND	1
Bromobenzene	ND	ND	ND	ND	ND	ND	ND	5
Bromochloromethane	ND	ND	ND	ND	ND	ND	ND	5
Bromodichloromethane	ND	ND	ND	ND	ND	ND	ND	50
Bromoform	ND	ND	ND	ND	ND	ND	ND	50
Bromomethane	ND	ND	ND	ND	ND	ND	ND	5
2-Butanone (MEK)	ND	ND R	7.4 J	ND R	10.2	ND	ND	50
n-Butylbenzene	ND ND	ND ND	5.2 4.8 J	ND ND	4.9 J 4.5 J	ND ND	ND ND	5
sec-Butylbenzene	ND ND	ND ND	4.6 J 0.90 J	ND ND	0.93 J	ND	ND ND	5
tert-Butylbenzene	ND ND	ND ND	0.90 J ND	ND ND	0.93 J ND	ND	ND ND	5
Carbon tetrachloride Chlorobenzene	ND	ND ND	ND	ND	ND ND	ND	ND	5 5
Chloroethane	ND	ND	ND	ND	ND	ND	ND	5
Chloroform	2.9	ND	ND	0.23 J	ND	ND	ND	7
Chloromethane	ND	ND	ND	ND	ND	ND	ND	, NVG
o-Chlorotoluene	ND	ND	ND	ND	ND	ND	ND	5
p-Chlorotoluene	ND	ND	ND	ND	ND	ND	ND	5
1,2-Dibromo-3-Chloropropane	ND	ND	ND	ND	ND	ND	ND	0.04
Dibromochloromethane	ND	ND	ND	ND	ND	ND	ND	50
1,2-Dibromoethane	ND	ND	ND	ND	ND	ND	ND	NVG
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	3
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	3
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	3
Dichlorodifluoromethane	ND	ND	ND	ND	ND	ND	ND	5
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	5
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	0.6
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	5
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	5
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND ND	ND	ND	5
1,2-Dichloropropane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1
1,3-Dichloropropane	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	5
2,2-Dichloropropane 1,1-Dichloropropene	ND	ND ND	ND	ND	ND ND	ND	ND	5 5
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	0.4
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	0.4
Ethylbenzene	0.23 J	ND	170	ND	162.0	ND	ND	5
Hexachlorobutadiene	ND	ND	ND	ND	ND	ND	ND	0.5
Isopropylbenzene	ND	ND	22.7	ND	21.1	ND	ND	5
p-Isopropyltoluene	ND	ND	0.98 J	ND	0.94 J	ND	ND	5
Methyl Tert Butyl Ether	ND	ND	ND	ND	ND	ND	ND	10
4-Methyl-2-Pentanone (MIBK)	ND	ND	ND	ND	ND	ND	ND	NVG
Methylene bromide	ND	ND	ND	ND	ND	ND	ND	NVG
Methylene Chloride	ND	ND	ND	ND	ND	ND	ND	5
Naphthalene	ND	ND	3.4 J	ND	3.9 J	ND	ND	10
n-Propylbenzene	ND	ND	45.3	ND	41.9	ND	ND	5
Styrene	ND	ND	ND	ND	ND	ND	ND	5
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	5
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND ND	ND	ND	5
Tetrachloroethene	ND	ND ND	ND	ND	ND C.4	ND	ND	5
Toluene	ND	ND ND	6.6 ND	ND	6.4 ND	ND	ND	5
1,2,3-Trichlorobenzene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
1,2,4-Trichlorobenzene 1.1.1-Trichloroethane	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	5 5
1,1,1-Trichloroethane	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	1
1,1,2-1 richioroethane Trichloroethene	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	5
Trichlorofluoromethane	ND	ND	ND	ND	ND ND	ND	ND	5
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	ND	ND	0.04
1,2,4-Trimethylbenzene	ND	ND	18.2	ND	16.6	ND	ND	5
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	5
Vinyl chloride	ND	ND	ND	ND	ND	ND	ND	2
m,p-Xylene	ND	ND	17.0	ND	16.3	ND	ND	5
	ND	ND	3.8	ND	3.7	ND	ND	5
o-Xylene	IND	IND						

*NYSDEC Technical and Operational Guidance Series (1.1.1)
Ambient Water Quality Standards and Guidance Values
and Groundwater Effluent Limitations; June 1998
** MW-XX is a duplicate of MW-8

R- the presence or absence of the analyte cannot be verified due to quality control criter

Notes:

ug/L - micrograms per liter or parts per billion

MD - Not detected at or above laboratory detection limits

NVG - No Value Given

J - Estimated Value

WJ - Reported quantitation limit is approximate

Boxed and bold indicates exceedance groundwater standards or guidance values

Table 2

Validated Analytical Results for Semi-Volatile Organic Compounds In Groundwater Via Verde aka New Housing New York Legacy Project 700-730 Brook Avenue, Bronx, New York BCP # C203043

Sample ID		MW-7	MW-8	MW-9	MW-XX**	Field Blank	NYSDEC
Matrix	groundwater	groundwater	groundwater	groundwater	groundwater	liquid	TOGS*
Date Sampled	6/6/2012	6/5/2012	6/6/2012	6/5/2012	6/6/2012	6/6/2012	
Semi-Volatile Organic Compounds	ua/l	//	//	//	//	//	/!
Units 2-Chlorophenol	ug/L ND	ug/L ND	ug/L ND	ug/L ND	ug/L ND	ug/L ND	ug/L NVG
4-Chloro-3-methyl phenol	ND	ND	ND	ND	ND	ND	NVG
2,4-Dichlorophenol	ND	ND	ND	ND	ND	ND	5
2,4-Dimethylphenol	ND	ND	ND	ND	ND	ND	50
2,4-Dinitrophenol	ND	ND	ND	ND	ND	ND	10
4,6-Dinitro-2-methylphenol	ND	ND	ND	ND	ND	ND	NVG
2-Methylphenol	ND	ND	ND	ND	ND	ND	1
3+4-Methylphenols	ND	ND	ND	ND	ND	ND	1
2-Nitrophenol	ND	ND	ND	ND	ND	ND	NVG
4-Nitrophenol	ND	ND	ND	ND	ND	ND	NVG
Pentachlorophenol	ND	ND	ND	ND	ND	ND	NVG
Phenol	ND	ND	ND	ND	ND	ND	1
2,4,5-Trichlorophenol	ND	ND	ND	ND	ND	ND	NVG
2,4,6-Trichlorophenol	ND	ND	ND	ND	ND	ND	NVG
Acenaphthene	ND	ND	0.61 J	ND	0.60 J	ND	20
Acenaphthylene	ND	ND	ND	ND	ND	ND	NVG
Acetophenone	ND	ND	ND	ND	ND	ND	NVG
Anthracene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	50
Atrazine	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	7.5 0.002
Benzo(a)anthracene Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	0.002 ND
Benzo(b)fluoranthene	ND	ND	ND	ND	ND	ND	0.002
Benzo(g,h,i)perylene	ND	ND	ND	ND	ND	ND	NVG
Benzo(k)fluoranthene	ND	ND	ND	ND	ND	ND	0.002
4-Bromophenyl-phenylether	ND	ND	ND	ND	ND	ND	NVG
Butylbenzylphthalate	ND	ND	ND	ND	ND	ND	50
1,1' -Biphenyl	ND	ND	ND	ND	ND	ND	5
Benzaldehyde	ND	ND	ND	ND	ND	ND	NVG
2-Chloronaphthalene	ND	ND	ND	ND	ND	ND	10
4-Chloroaniline	ND	ND	ND	ND	ND	ND	5
Carbazole	ND	ND	ND	ND	ND	ND	NVG
Caprolactam	ND	ND	ND	ND	ND	ND	NVG
Chrysene	ND	ND	ND	ND	ND	ND	0.002
bis(2-Chloroethoxy)methane	ND	ND	ND	ND	ND	ND	5
bis(2-Chloroethyl)ether	ND	ND	ND	ND	ND	ND	1
bis(2-Chloroisopropyl)ether	ND	ND	ND	ND	ND	ND ND	NVG
4-Chlorophenyl-phenylether	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NVG
2,4-Dinitrotoluene	ND ND	ND ND	ND	ND ND	ND	ND	5 5
2,6-Dinitrotoluene 3,3-Dichlorobenzidine	ND ND	ND ND	ND	ND ND	ND	ND	5
Dibenzo(a,h)anthracene	ND	ND	ND	ND	ND	ND	NVG
Dibenzofuran	ND	ND	0.47 J	ND	ND	ND	NVG
Di-n-butylphthalate	ND	ND	ND	ND	ND	ND	50
Di-n-octyl phthalate	ND	ND	ND	ND	ND	ND	50
Diethylphthalate	ND	ND	ND	ND	ND	ND	50
Dimethylphthalate	ND	ND	ND	ND	ND	ND	50
bis(2-Ethylhexyl)phthalate	ND	ND	ND	ND	ND	ND	5
Fluoranthene	ND	ND	0.57 J	ND	0.50 J	ND	50
Fluorene	ND	ND	0.51 J	ND	0.48 J	ND	50
Hexachlorobenzene	ND	ND	ND	ND	ND	ND	0.04
Hexachlorobutadiene	ND	ND	ND	ND	ND	ND	0.5
Hexachlorocyclopentadiene	ND	ND	ND	ND	ND	ND	5
Hexachloroethane	ND	ND	ND	ND	ND	ND	5
Indeno(1,2,3-cd)pyrene	ND	ND	ND	ND	ND	ND	0.002
Isophorone	ND	ND	ND	ND	ND	ND	50
2-Methylnaphthalene	ND	ND	ND	ND	ND	ND	NGV
2-Nitroaniline	ND ND	ND ND	ND ND	ND ND	ND ND	ND	5
3-Nitroaniline	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
4-Nitroaniline Naphthalene	ND ND	ND ND	2.2	ND ND	1.1	ND ND	5 10
Nitrobenzene	ND ND	ND ND	ND	ND	ND	ND	0.4
N-Nitroso-di-n-propylamine	ND ND	ND ND	ND	ND	ND	ND	NVG
N-Nitrosodiphenylamine	ND	ND	ND	ND	ND	ND	50
Phenanthrene	ND	ND	0.92 J	ND	0.89 J	ND	50
Pyrene	ND	ND	0.42 J	ND	ND	ND	50
Notes:	1	1		1	i	1	

*NYSDEC Technical and Operational Guidance Series (1.1.1)
Ambient Water Quality Standards and Guidance Values
and Groundwater Effluent Limitations; June 1998
** MW-XX is a duplicate of MW-8

Pyrene ND ND 0.42 J

Notes:
ug/L - micrograms per liter or parts per billion "NYSDEC Technic.
ND - Not detected at or above laboratory detection limits Ambient Water Quandwater E
J - Estimated Value "MW-XX is a dupl
UJ - Reported quantitation limit is approximate

Boxed and bold indicates exceedance of groundwater standards or guidance values

Table 3

Validated Analytical Results for PCBs In Groundwater

Via Verde aka New Housing New York Legacy Project 700-730 Brook Avenue, Bronx, New York BCP # C203043

Sample ID	MW-6	MW-7	MW-8	MW-9	MW-XX**	Field Blank	NVCDEC
Matrix	groundwater	groundwater	groundwater	groundwater	groundwater	liquid	NYSDEC
Date Sampled	6/6/2012	6/5/2012	6/6/2012	6/5/2012	6/6/2012	6/6/2012	TOGS***
PCBs							
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Aroclor-1016	ND	ND	ND	ND	ND	ND	0.09 *
Aroclor-1221	ND	ND	ND	ND	ND	ND	0.09 *
Aroclor-1232	ND	ND	ND	ND	ND	ND	0.09 *
Aroclor-1242	ND	ND	ND	ND	ND	ND	0.09 *
Aroclor-1248	ND	ND	ND	ND	ND	ND	0.09 *
Aroclor-1254	ND	ND	ND	ND	ND	ND	0.09 *
Aroclor-1260	ND	ND	ND	ND	ND	ND	0.09 *

Notes:

ug/L - micrograms per liter or parts per billion

ND - Not detected at or above laboratory detection limits

***NYSDEC Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations; June 1998

^{*} Applies to the sum of these compounds

^{**} MW-XX is a duplicate of MW-8

Table 4 Validated Analytical Results for Total Metals In Groundwater

Via Verde aka New Housing New York Legacy Project 700-730 Brook Avenue, Bronx, New York BCP # C203043

Sample ID	MW-6	MW-7	MW-8	MW-9	MW-XX**	Field Blank	NYSDEC
Matrix	groundwater	groundwater	groundwater	groundwater	groundwater	liquid	TOGS*
Date Sampled	6/6/2012	6/5/2012	6/6/2012	6/5/2012	6/6/2012	6/6/2012	1000
Total Metals							
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Aluminum	6,900	<200	2,800 J	465	3,280 J	<200	NVG
Antimony	<1.0	<1.0	<1.0	1.0	<1.0	<1.0	3
Arsenic	<3.0	<3.0	8.7 J	<3.0	11.9 J	<3.0	25
Barium	<200	<200	<200	<200	<200	<200	1,000
Berylium	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	3
Cadmium	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	5
Calcium	35,200 J	156,000	153,000 J	142,000	153,000 J	<5,000 UJ	NVG
Chromium	184	<10	15.7 J	<10	17.7 J	<10	50
Cobalt	<50	<50	<50	<50	<50	<50	NVG
Copper	20.30	<10	17.4	<10	20.5	<10	200
Iron	9,930	426	8,970	854	9,760	<100	300
Lead	8.6	<3.0	11.8 J	3.7	13.8 J	<3.0	25
Magnesium	8,260	32,000	34,800	5,210	34,800	<5,000	35,000
Manganese	232 J	39.8	3,220 J	354	3,180 J	<15 UJ	300
Mercury	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.7
Nickel	88.4	<10	13.9	<10	14.9	<10	100
Potassium	<10,000	<10,000	<10,000	14,200	<10,000	<10,000	NVG
Selenium	<10	<10	<10	<10	<10	<10	10
Silver	<10	<10	<10	<10	<10	<10	50
Sodium	23,400	72,200	86,900	70,600	87,900	<10,000	20,000
Thallium	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	0.5
Vanadium	<50	<50	<50	<50	<50	<50	NVG
Zinc	44.7	<20	23.6	<20	23.7	<20	2,000
Chromium, Hexavalent	<10	<10	<10	<10	<10	<10	50
Chromium, Trivalent	180	<20	<20	<20	<20	<20	50

Notes:

ug/L - micrograms per liter or parts per billion ND - Not detected at or above laboratory detection limits

NVG - No Value Given

J - Estimated Value

UJ - Reported quantitation limit is approximate

*NYSDEC Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations; June 1998

** MW-XX is a duplicate of MW-8

R- the presence or absence of the analyte cannot be verified

Boxed and bold indicates exceedance of groundwater standards or guidance values

A DDENIDICES
APPENDICES

Appendix A

Field Forms and Chain of Custody

l ocation:	ocation: (Site/Eacility Name)	Name	110 110 011	dis		*****	Denth to	A Terrest of the State of the S			30000
Date:	(1/2/	/	× × ×	,			(Bolow MD)	10,10	" 	400	oi screen
Sampling	Sampling Personnel: Jusen	Jason	Cirrye.	(mile)	16.92-	-	Pump Inta	at		Souton Section	
Weather:	Weather: <u> </u>	1000	-	•	j		Well Diameter:	neter:	2,10		
Identify N	Identify Measuring Point (MP);		XX-CNW	×		-	Purging D	Purging Device: (Pump type)		MINI-W	2000
Static Der	oth to Water (Prior to ir	nstalling pu	mp) OD	, 3 <i>a</i>		Purge Sta Sample St	Furge Start Time:	3845		Sample End Time: 0075
Clock	Clock Water Pump Purge Cu Time Depth Dial Rate Vo Below MP Pump Purge Vo	Pump Dial ¹	Purge Rate	Cum. Volume Purged	Temp.	Spec. Conduct. ²	Hd	ORP/Eh³	DQ	Turbidity	Comments
24 HR	Ħ		ml/min	Liters	J,	m2/cm		mv	mg/L	NTU	
Tolerance	0.33 ft				3%	3%	±0.1	± 10	±0.3	70%	
08/0	24.40	15.3	/ قرم	1981	17.94	1.63	J. 13	901-	3.55	154	
0436	7.5.5. 5.5.5.6.6.6.6.6.6.6.6.6.6.6.6.6.6.	10,00 12,00	8		1137	197	200	-106	1.40	7 87	
0835	24.71	15,5	80		13.39	, 0,0,0	7.09	1/05	1.35	35.6	
0240	94.46	(5,3	દ્ધ		174	1.66	7.08	~/05	1.17	26.6	
0845	78.70	15.3	20		17.38	1.66	7.09	-105	1.70	24.0	
											and the second s
											THE PROPERTY OF THE PROPERTY O
											WATER COLUMN TO THE COLUMN TO
				No.							
1. Pump c	1. Pump dial setting (Example: hertz. cycles/minute. etc)	vample, h	Prty Cycles	/minite etc	<u>ب</u>						

Pump dial setting (Example: hertz, cycles/minute, etc)
 uSiemens per cm (same as umhos/cm) at 25°C
 Oxidation reduction potential (stand in for Eh)

Petroleum odor

	/ /						Deptn to:		/ / / / / / / / / / / / / / / / / / /		מו אכו עליו
Date: 6/6/19	6/10	_	{				(Below MP)	P) Top		Bottom /	
Sampling Personnel: Weather:	irsonnel:	050	7 7 7				Pump Intake at (Well Diameter:	Pump Intake at (ft. below MP)_ Well Diameter:	į.	8	The state of the s
Identify Measuring Point (MP):	asuring Poir	nt (MP):	100 K	LAVC-	No.H		Purging D	Purging Device: (Pump type)	otype) M	MINI-MOASOW	<u>8.05 cm</u> 1.2 5
Static Depth to Water (Prior to installing pump)	to Water (Prior to in	stalling pur	24	97.		Sample Start Time: 1	art Time:	1135		Furge End Time: 1:35
Clock M Time D	Water Depth Below MP	Pump Dial 1	Purge Rate	n. lume 'ged	Temp.	Spec. Conduct. ²	Hd		DO	Turbidity	
24 HR	Ē	. —	ml/min	Liters	ာ့	uS/cm		mv	mg/L	UTN	
Tolerance	0.33 ft				3%	3%	±0.1	± 10	± 0.3	10%	
0011	26.5	15,3	201	14557	20.90	0.369	17,13	140	9.66	525	
	51.45	£,0	SS SS		न प	0,367			7.57	357	
	37.50	برز			21.45	0,366	3.1.		7:7	\$5.	
	31.50	16.7	20		21.33	0.368	7.10	145	16,06	332	
	7.53	15.0	ည		08118	0.371	a)' /@	145	7. د	277	
2										,	
					į						
					-						
											700
											11///1000000000000000000000000000000000

Pump dial setting (Example: hertz, cycles/minute, etc)
 uSiemens per cm (same as umhos/cm) at 25°C
 Oxidation reduction potential (stand in for Eh)

location (Ocation: (Site/Eacility Name)	Namel	2 2 2 2 2 2	3			Depth +0.			300	The state of the s
Date: CS	S	······································				1		, Top.	• 		
Sampling Personnel:		7	<u>2</u>				Pump Int	اد) ake at (ft. be	Pump Intake at (ft. below MP)	2010III	
Weather: (- 1	55ch					Well Diar	المريز meter:		1	
Identify Me Well ID:	Identify Measuringやoint (MP): Well ID: ハハハー	nt (MP):_	400	ر ک	Journa	হা	Purging D	Purging Device: (Puml	Purging Device: (Pump type) $\frac{N(1)1}{N(1)}$ $\frac{D(2)26}{N(1)}$	IIVIE ME	Direct Of 20
Static Dept	Static Depth to Water (Prior to installing pump)	(Prior to ir	nstalling pur	mp) <2 (53		Sample S	Sample Start Time:	04.30		ole End Time:
		Pump	Purge	Cum.	Temp.	Spec.	Hd	ORP/Eh³	00	Turbidity	Comments
⊕ E -	Depth Below MP	Dial 1	Rate	Volume Purged		Conduct. ²					
24 HR	ь		ml/min	Liters	ာ့	/η gS/cm		νω	mg/L	UTN	
Tolerance	0.33 ft				%E	3%	± 0.1	± 10	± 0.3	10%	
0830	24.31	15/	90	1641	17.54	1.34	8.04	165	65.21	238	ANALYSIS AND ANALYSIS ANALYSIS AND ANALYSIS ANALYSIS AND
	24.32	15	0 0 7		17.13	1.35	8.09	151	46.6	4.18	
် လ		ju.	<u>.</u>	16.63	452	277,00	9o Vo	146	9,00	5	
1		Ţ	0	`	なら	- Carloga) John J	30%	765	
		7	0		Š.	3		3	, 25 33	150	
S					15.57	4	フ が む	4	(A)	2	
	(C)		8		.	(O) . Aug.	00 (% (%)	\ \ \ \ \	and the second	(5)	
3 8	2:4	. i.	Š) J 9	1. R.	8	75	55.3	0	
74.20	30 20 20 20 20 20 20 20 20 20 20 20 20 20	3	S,		77.9	- 25 - 25	00	R	\. \. \.	()~ (}a ()	
											mana.
											THE PARTY OF THE P
											Tre control of the co
1 Dimen	dial cotting (Example: borts	4]									

Pump dial setting (Example: hertz, cycles/minute, etc)
 uSiemens per cm (same as umhos/cm) at 25°C
 Oxidation reduction potential (stand in for Eh)

Location: (Location: (Sjte/Facility Name)	Name)	V.a. V2,26	3/2			Depth to:			3c -	ofscreen
Date: 🕡	(5//2						(Below MP)	P) Top			
Sampling Personnel:	ersonnel:	Juson	Course 10	m. K. Your	12		Pump Inta	at	- 1	28,	**************************************
Weather:	Claris	60.7		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Well Diameter:_	neter:	\$		
identify M	Identify Measuring Point (MP):	int (MP):_	Ton a	PVC	Cosing	-	Purging D	Purging Device: (Pump type)	type) M	MINIT-ME	- Mans 600
Well ID: ✓	1110-4		***************************************	7			Purge Start Time:_	rt Time:	0.7.0		Purge End Time: 1130
Static Dep	Static Depth to Water (Prior to installing pump)	(Prior to ir	nstalling pu	*	g T		Sample Start Time:	art Time:	1130		Sample End Time: 1245
Clock Time	Water Depth Below MP	Pump Dial ¹	Purge Rate	m. lume rged	Temp.	Spec. Conduct. ²	Hd		DO	Turbidity	Comments
24 HR	F		ml/min	Liters	ာ့	u\$/cm		шv	mg/L	DTN	
Tolerance	0.33 ft				3%	%8	± 0.1	± 10	±0.3	10%	
1100	tt 12	0 5	380		(8,13	1,36	16.9	5t.)	3,55	1741	
0111		13.9	30€			Ī	0.14	108	1.94	131	
1,30	21.13	2	Ą		(4,80	1, 1,	6. 60.	15%	1.51	50.9	
123	21.16	2.9	300		14.7	 2.	ر ق ف	シナ	ار ب	33.0	
1130	31.18	(3, ૧	300		<u>ड</u> 	<u>1</u>	હે. કે	Ţ	1,27	23.6	
											Add the second s

											OUT THE RESERVE OF THE PERSON
											TAXABLE CONTRACTOR OF THE CONT
											1991/19 MAJALAJ 111111 MAJAJA
- C		1 - 1									
ל משנים 1	1) +41+00 01	4.0	solving ctrops	1 Direct Aisless tips (Example: boxts and or /minute attal							

Pump dial setting (Example: hertz, cycles/minute, etc)
 uSiemens per cm (same as umhos/cm) at 25°C
 Oxidation reduction potential (stand in for Eh)

MS & MSD Collected from MW-7

CHAIN OF CUSTODY Accurest New Jersey

PAGE / OF /

		i chili	2235 Route 1	3	J 08810		FELT-EX racking #	icking #		Bottle Order Control #		
LABOR	LABORATORIES	ਰਗ ।	1EL. 752-529-0200 WWW	ζ.	FAA: 752-529-5499/5460 ccutest.com		Accurest Cuote #	# ano		Accurest Job #		
Client / Reporting Information	150 100 100		Project Information	rmation				Requested Analysis (see TEST CODE sheet)	100000	Matrix Codes
ompany Name	Z	ine.		Andrews and the state of the st	secina essecia i presidente de la facto de							DW - Drinking Water GW - Ground Water
at Address	Street G	L V		llng Information (if	different from Repo	ort to)			242 X H	41-25-41-41-41-41-41-41-41-41-41-41-41-41-41-		WW - Water SW - Surface Water
	à Ö		State	npany Name	Company Name			(B.V.		-	SL- Sludge SED-Sediment
oject Contact E-mail		CLAIM ADJUSTER CONTACT NAME:	Street	et Address				りとと	11.+			U- OI - OII LIQ - Other Liquid AIR - Air
जुरुप्त	Fax# CLAIMS NUMBER#	UMBER#	City		State	. Zip	9E.	P.S.	74			VP - Vriet Solid VP - Wipe FB-Field Blank
2		CHARTIS PRICING NEEDED:	Attenti	ntion:			8 5	5 S)(W)			EB-Equipment Blank RB- Rinse Blank TB-Trip Blank
The section of the se		3	Collection		Number	Bottle	Dl	0/	72			
coulest Field ID / Point of Collection	MECH/DI Vial #	## Date	Sample Time by	ed Matrix	HMO3 HCI HCI #	ENCORE DI Mater NOME HS204	7/1	15	71			LAB USE ONLY
mw-9		5/15/0	10 30 M	Ay GW 8	_ 	5	メ	×	. >			
		•							-			
mw-7		115/2	m/ She	1/2 CW 9	3 1	5	X	メメ	×			
mw-Tms		1 2/2/2		9 100 100	3 11	<u>.</u>		X	メ			
mw.7MsD		15/13	1345 /2	1, EW 9	3	5.	· ×	X	又			:
		,							-			
	romerrura dech											
	. ************************************											
2853												
Turnaround Time (Business days)			L		Data Deliverable Information	nformation	•	_	0	Comments / Special Instructions	tions	
std. 10 Business Days	Approved By	Approved by (Accutest PM): / Date:		Commercial "B" (Level 2)	4 (Level 1) 3" (Level 2)	NYASP Category B	NYASP Category B		~	_		
☐ 5 Day RUSH					el 3+4 }	State Forms	ms		7		-	
3 Day EMERGENCY 2 Day EMERGENCY				NJ Reduced Commercial "C"	ź	EDD Format	mat	1	1			
1 bay EMERGENCY			I		Commercial "A" = Results Only	s Only				-		
upher Emergency & Rush T/A data available VIA Labiink				SZ	Commercial "B" = Results + QC Summary NJ Reduced = Results + QC Summary + Partial Raw data	s + QC Summary QC Summary + Pa	ırtial Raw data					
		Sample Custody must be documented below each time samples change possession, including courier delivery	t be document	ted below each ti	ne samples chan	ge possession,	including cou	rier deliven	***************************************			
Relinguished by Sampler:	Date Time / 12	Received By:	W.		Relinquished By:	3y:			Date Time:	Received By:		
Refinquished by Sampler:	Date Time:	Received By:			Reitnquished By:	By:			Date Time:	Received By:		
Relinquished by:	Date Time:	Received By:	**************************************		Custody Seal #		Intact Not intact	Preserve	Preserved where applicable	On Ice	Coaler Temp.	remp.
	1 M + 1 mm m m m m m m m m m m m m m m m m	<u>0</u>					- 1		Not intact	Not intact	Not infact	Not infact

GD 18FB			
CCL.	JT	ES	377
	A D O D	A T 13 6	

Relisquished by:

CHAIN OF CUSTODY

PAGE I OF I E Accutest New Jersey
2235 Route 130, Dayton, NJ 08810
TEL 732-329-0200 FAX: 732-329-3499/3480 7984-7898 5776 Scatesticks JB 8258 www.eccutest.com
Project Information Client / Reporting Information Requested Analysis (see TEST CODE sheet) Matrix Codes D.W.- Drinking Wester G.W.- Green Wilder W.W.- Green Wilder S.D.- Sold S.C. Studge SED-Sediment OI-OI IUG-Other Expl ARI-AV SOL-Other Sold W.P.- Wype FEP-Fadd Brak TB-Trip Brak TB-Trip Brak Via Verde CARICH Consultants 17 Supont Street Brook Ave Billing Information (If different from Report to) Plainview NY 11803 */ Bronk Law adjuster contact name: Richard Izzo B CLAIMS NUMBER # 8360 516-576-8844 83 CHARTIS PRICING NEEDED: Jason Cooper Mike Yayer Field ID / Point of Collection SEOR DLVM # LAB USE ONLY 1035 3/my GW MW-8 6/6/12 UTC35 AMET23 2 MW-6 1300 My GW 6/6/12 MEYI 9991 3 MW-XX 6/6/12 Field Blank 6/6/12 6/6/10 1340 TM FB X *©*∞0 Trip Blank 113 γ Turnaround Time (Business days) Commercial "A" (Level 1)
Commercial "B" (Level 2)
FULLY1 (Level 3+4) NYASP Category A
NYASP Category B Approved By (Accutest PMp:) Date: Std. 10 Bushess Days
5 Day RUSH
3 Day EMERGENCY 11 Chame State Forms
EDD Formet
Other MJ Reduced
Commercial "C" 2 Day EMERGENCY 1 Day EMERGENCY other
Emergency & Rush T/A data prezatie V/A Labork Commercial 16" = Results + OC Summery
NJ Reduced = Results + OC Summery + Partial Revidata
Sample Custody must be documented below each time samples change possession, including courter delivery 1 Felfo 6/6/12 orates Reliminated By: el od Ey 946 672

608

610

☐ Not incacl

JB8258: Chain of Custody Page 1 of 2

celved Ey:

M

Appendix B

DUSR

DATA USABILITY SUMMARY REPORT – DUSR DATA VALIDATION SUMMARY

ORGANIC/INORGANIC ANALYSES

TARGET COMPOUND LIST (TCL) VOLATILES BY GC/MS
TARGET COMPOUND LIST (TCL) SEMIVOLATILES BY GC/MS
PCBs BY GC ECD
TARGET ANALYTE LIST (TAL) METALS (Total) BY ICP/ICP-MS/CV
And HEXAVALENT CHROMIUM
BY CLASSICAL WET CHEMISTRY TECHNIQUES

For Groundwater Samples Collected June 05, 2012 and June 06, 2012 From 700-730 Brook Avenue, Bronx, NY Via Verde Collected by CA Rich Consultants

SAMPLE DELIVERY GROUP NUMBERS: JB8123 and JB8258 BY ACCUTEST LABORATORIES (ELAP #10983)

SUBMITTED TO:

Mr. Rich Izzo, CPG CA Rich Consultants, Inc. 17 Dupont Street Plainview, NY 11803

cc: Ms. Deborah Shapiro CA Rich Consultants, Inc. 17 Dupont Street Plainview, NY 11803

September 10, 2012

PREPARED BY:

Lori A. Beyer/President
L.A.B. Validation Corp.

14 West Point Drive
East Northport, NY 11731

L.A.B. Validation Corp, 14 West Point Drive, East Northport, NY 11731

700-730 Brook Avenue, Bronx – Via Verde; Groundwater Samples; June 2012 (Q2) Sampling Event Data Usability Summary Report (Data Validation): TCL Volatiles, TCL Semivolatiles, PCBs, TAL Metals (Total) and Hexavalent Chromium.

Table of Contents:

Introduction

Data Qualifier Definitions

Sample Receipt

- 1.0 Target Compound List (TCL) Volatile Organics by GC/MS SW846 Method 8260
 - 1.1 Holding Time
 - 1.2 System Monitoring Compound (Surrogate) Recovery
 - 1.3 Matrix Spikes (MS), Matrix Spike Duplicates (MSD)
 - 1.4 Laboratory Control Sample/Blank Spikes
 - 1.5 Blank Contamination
 - 1.6 GC/MS Instrument Performance Check (Tuning)
 - 1.7 Initial and Continuing Calibrations
 - 1.8 Internal Standards
 - 1.9 Field Duplicates
 - 1.10 Target Compound List Identification
 - 1.11 Compound Quantification and Reported Detection Limits
 - 1.12 Overall System Performance
- 2.0 Target Compound List (TCL) Semivolatile Organics by GC/MS SW846 Method 8270
 - 2.1 Holding Time
 - 2.2 Surrogate Recovery
 - 2.3 Matrix Spikes (MS), Matrix Spike Duplicates (MSD)
 - 2.4 Laboratory Control Sample
 - 2.5 Method Blanks
 - 2.6 GC/MS Instrument Performance Check (Tuning)
 - 2.7 Initial and Continuing Calibrations
 - 2.8 Internal Standards
 - 2.9 Field Duplicates
 - 2.10 Target Compound List Identification
 - 2.11 Compound Quantification and Reported Detection Limits
 - 2.12 Overall System Performance
- 3.0 PCBs by GC SW846 Method 8082
 - 3.1 Holding Time
 - 3.2 Surrogate Recovery
 - 3.3 Matrix Spikes (MS), Matrix Spike Duplicates (MSD)
 - 3.4 Laboratory Control Samples
 - 3.5 Blanks
 - 3.6 Calibration Verification
 - 3.7 Field Duplicates
 - 3.8 Target Compound Identification
 - 3.9 Compound Quantification and Reported Detection Limits
 - 3.10 Overall Assessment of Data

L.A.B. Validation Corp, 14 West Point Drive, East Northport, NY 11731

- 4.0 Target Analyte List (TAL) Metals by ICP/ICP-MS/Cold Vapor SW846 Methods 6010/6020/7471
 - 4.1 Holding Times
 - 4.2 Calibration (Initial and Continuing Calibration Verifications)
 - 4.3 Blanks
 - 4.4 Spiked Sample Recovery
 - 4.5 Laboratory/Field Duplicates
 - 4.6 Laboratory Control Sample
 - 4.7 Interference Check Sample
 - 4.8 ICP Serial Dilution
 - 4.9 Sample Results Verification
 - 4.10 Overall Assessment of Data
- 5.0 General Chemistry Analysis/Hexavalent and Trivalent Chromium
 - 5.1 Holding Times
 - 5.2 Calibration
 - 5.3 Blanks
 - 5.4 Spiked Sample Recovery
 - 5.5 Laboratory/Field Duplicates
 - 5.6 Laboratory Control Sample
 - 5.7 Sample Results Verification
 - 5.8 Overall Assessment of Data

APPENDICES:

- A. Data Summary Tables with Qualifications
- B. Chain of Custody Documents
- C. SDG Narratives

Introduction:

A validation was performed on groundwater samples and the associated quality control samples for organic/inorganic analysis for samples collected under chain of custody documentation by CA Rich Consultants and submitted to Accutest Laboratories for subsequent analysis. This report contains the laboratory and validation results for the field samples itemized below. The groundwater samples were collected on June 05, 2012 and June 06, 2012.

The samples were analyzed by Accutest Laboratories, utilizing SW846 Methods and submitted under NYSDEC ASP Category B equivalent deliverable requirements for the associated analytical methodologies employed. The analytical testing consisted of the Target Compound/Analyte Lists for Volatile Organics, Semivolatile Organics, PCBs, TAL Metals (Total) and Hexavalent Chromium.

The data was evaluated in accordance with EPA Region II National Functional Guidelines for Organic and Inorganic Data Review (October 2006) and EPA Region II SOPs for 8260, 8270, 8082 and Metals (August 2008 with 2009 updates) and also in conjunction with the analytical methodologies for which the samples were analyzed, where applicable and relevant.

The data validation report pertains to the following samples:

Sample	Laboratory	Sample	Date	Date
Identification	Identification	Matrix	Collected	Received
MW-9	JB8123-1	Groundwater	06/05/12	06/06/12
MW-7	JB8123-2	Groundwater	06/05/12	06/06/12
MW-7 MSD	JB8123-2D	Groundwater	06/05/12	06/06/12
MW-7 MS	JB8123-2S	Groundwater	06/05/12	06/06/12
MW-8	JB8258-1	Groundwater	06/06/12	06/07/12
MW-6	JB8258-2	Groundwater	06/06/12	06/07/12
MW-XX (Field Duplicate of MW-8)	JB8258-3	Groundwater	06/06/12	06/07/12
Field Blank 06/06/12	JB8258-4	Aqueous	06/06/12	06/07/12
Trip Blank	JB8258-5	Aqueous	06/06/12	06/07/12

Data Qualifier Definitions:

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate quantity.

Sample Receipt:

The Chain of Custody document indicates that the samples were received at Accutest Laboratories via Federal Express on 06/06/12 and 06/07/12 upon completion of the sampling event. Sample login notes were generated. The cooler temperature for all sample receipts were recorded upon receipt at Accutest Laboratories and determined to be acceptable (<6.0 degrees C). The actual temperature is recorded on the chain of custody document in addition to the case narratives provided in Appendix B of this report.

No unresolved problems and/or discrepancies were noted, consequently, the integrity of the samples has been assumed to be good.

The data summary tables included in Appendix A includes all usable (qualified) and unusable (rejected) results for the samples identified above. These tables summarize the detailed narrative section of the report. All data validation qualifications have been reported in the excel spreadsheet.

NOTE:

L.A.B. Validation Corp. believes it is appropriate to note that the data validation criteria utilized for data evaluation is different than the method requirements utilized by the laboratory. Qualified data does not necessarily mean that the laboratory was non-compliant in the analysis that was performed.

1.0 Target Analyte List (TCL) Volatile Organics by GC/MS SW846 Method 8260

The following method criteria were reviewed: holding times, SMCs, MS, MSD, LCS, Laboratory Spiked Blanks, Method Blanks, Tunes, Calibrations, Internal Standards, Target Component Identification, Quantitation, Reported Quantitation Limits and Overall System Performance. The Volatile results were considered to be valid and useable with the exception of 2-Butanone non-detects in samples MW-7 and MW-9 due to low initial/continuing calibration response as noted within the following text:

1.1 Holding Time

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the technical holding time is exceeded, the data may not be considered valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimates, "J". The non-detects (sample quantitation limits) are required to be flagged as estimated, "J", or unusable, "R", if the holding times are grossly exceeded.

Samples pertaining to these SDGs were performed within the Method required holding times as well as the technical holding times for data validation of 14 days from collection to analysis. Samples were properly preserved with HCL to pH <2. No data validation qualifiers were required based upon holding time.

1.2 System Monitoring Compound (Surrogate) Recovery

All samples are spiked with surrogate compounds prior to sample analysis to evaluate overall laboratory performance and efficiency of the analytical technique. If the measure of surrogate concentrations is outside contract specification, qualifications are required to be applied to associated samples and analytes.

Surrogate recoveries (%R) were found to be within acceptable limits for all four (4) surrogate compounds for all analyses pertaining to these SDGs for analysis.

1.3 Matrix Spikes (MS)/ Matrix Spike Duplicates (MSD)

The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. The MS/MSD may be used in conjunction with other QC criteria for additional qualification of data.

MS/MSD analyses were conducted for each analytical sequence and were spiked with all components as required by the analytical procedure. Site-specific aqueous MS/MSD was performed by the laboratory on sample MW-7. Acceptable recovery values and RPD was observed for all analytes for MW-7 MS/MSD.

No qualifications to the data were required based on batch (non-site specific QC). Ethylbenzene and Xylenes recovered low in the batch QC series pertaining to samples MW-6, MW-8, MW-XX, Field Blank and Trip Blank due to high concentrations relative to spike amounts in the original sample.

1.4 Laboratory Control Sample/Blank Spikes

The LCS data for laboratory control samples (LCS) are generated to provide information on the accuracy of the analytical method and on the laboratory performance.

LCS/Blank Spikes were analyzed for each sequence no qualifications to the data were required for applicable samples since acceptable recovery values were observed for all spiked constituents.

1.5 Blank Contamination

Quality assurance (QA) blanks; i.e. method, trip and field blanks are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field blanks measure cross-contamination of samples during field operations.

The following table was utilized to qualify target analyte results due to contamination. The largest value from all the associated blanks is required to be utilized:

For:	Flag Sample Result with a "U" when:	Report CRQL & Qualify "U" when:	No Qualification is Needed when:
Methylene Chloride,	,	Sample Conc. is	Sample Conc. is
Acetone, Toluene &	>CRQL, but $<$ CRQL and $<$ / $=10x$	<	>CRQL and >10x
2-Butanone	blank value	blank value	blank value
Other Contaminants	Sample Conc. Is	Sample Conc. Is	Sample Conc. is
	>CRQL, but $>CRQL and >5x$	<crql <="" =5x<="" and="" td=""><td>>CRQL and >5x</td></crql>	>CRQL and >5x
	blank value	blank value	blank value

Below is a summary of the compounds in the sample and the associated qualifications that have been applied:

A) Method Blank Contamination:

No target analytes were detected in the method blanks associated with sample analysis.

B) Field Blank Contamination:

Acceptable levels of Acetone were detected in the field blank associated with sample analysis. The laboratory reported concentrations of Acetone were negated in MW-8 and the corresponding field duplicate (MW-XX) since the sample concentrations were determined to be <10x the blank level. No additional qualifications are required based on field blank concentrations.

C) Trip Blank Contamination:

No target analytes were detected in the trip blank associated with sample analysis.

1.6 GC/MS Instrument Performance Check

Tuning and performance criteria are established to ensure adequate mass resolution, proper identification of compounds and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The Tuning standard for volatile organics is Bromofluorobenzene (BFB).

Instrument performance was generated within acceptable limits and frequency for Bromofluorobenzene (BFB) for all analyses conducted for these SDGs.

1.7 Initial and Continuing Calibrations

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence.

The continuing calibration checks document that the instrument is giving satisfactory daily performance.

A) Response Factor GC/MS:

The response factor measures the instrument's response to specific chemical compounds. The response factor for all compounds must be >/= 0.05 in both initial and continuing calibrations. A value <0.05 indicates a serious detection and quantitation problem (poor sensitivity). Analytes detected in the sample will be qualified as estimated, "J". All non-detects for that compound in the corresponding samples will be rejected, "R".

All the response factors for the target analytes reported were found to be within acceptable limits (>/=0.05), for the initial and continuing calibrations for all reported TCL analytes with the following exceptions:

ICAL 03/09/12 GCMS2B – Non-detects for 2-Butanone (0.039) were rejected, "R" in MW-7 and MW-9.

CCAL 06/06/12 GCMS2B – 2-Butanone (0.044). No additional qualifications to the data was required since non-detects for MW-7 and MW-9 were previously rejected due to low response factor in initial calibration.

B) Percent Relative Standard Deviation (%RSD) and Percent Difference (%D):

Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentrations. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be <30% and %D must be <25%. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and non-detects are flagged "UJ". If %RSD and %D grossly exceed QC criteria, nondetect data may be qualified, "R", unusable. Additionally, in cases where the %RSD is >30% and eliminating either the high or the low point of the curve does not restore the %RSD to less than or equal to 30% then positive results are qualified, "J". In cases where removal of either the low or high point restores the linearity, then only low or high level results will be qualified, "J" in the portion of the curve where non linearity exists.

Initial Calibrations: The initial calibrations provided and the %RSD were within acceptable limits (30%) for all compounds.

Continuing Calibrations: The continuing calibrations provided and the %D was within acceptable limits (25%) for all compounds.

1.8 Internal Standards

Internal Standards (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must not vary by more than a factor of 2 (-50% to +100%) from the associated continuing calibration standard. The retention time of the internal standard must not vary more than +/-30 seconds from the associated continuing calibration standard. If the area count is outside the (-50% to +100%) range of the associated standard, all of the positive results for compounds quantitated using that IS are qualified as estimated, "J", and all non-detects as "UJ", or "R" if there is a severe loss of sensitivity.

If an internal standard retention time varies by more than 30 seconds, professional judgment will be used to determine either partial or total rejection of the data for that sample fraction.

All samples were spiked with the internal standards Chlorobenzene-d5, Fluorobenzene and 1,4-Dichlorobenzene-d4 prior to sample analysis. The area responses and retention time of each internal standard met QC criteria in all samples associated with these SDGs.

1.9 Field Duplicates

Field duplicate samples are collected and analyzed as an indication of overall precision. These results are expected to have more variability than laboratory duplicate samples. Generally an acceptable RPD is 10% for water samples.

Groundwater sample MW-8 was collected in duplicate, a summary of positive detections is summarized below:

	MW-8	MW-XX
Benzene	1.3 ug/L	1.3 ug/L
2-Butanone	7.4 ug/L	10.2 ug/L
n-Butylbenzene	5.2 ug/L	4.9 ug/L
sec-butylbenzene	4.8 ug/L	4.5 ug/L
Tert-butylbenzene	0.90 ug/L	0.93 ug/L
Chloroethane	ND	0.95 ug/L
Chloromethane	ND	0.80 ug/L
Ethylbenzene	170 ug/L	162 ug/L
Isopropylbenzene	22.7 ug/L	21.2 ug/L
p-Isopropyltoluene	0.98 ug/L	0.94 ug/L
Naphthalene	3.4 ug/L	3.9 ug/L
n-Propylbenzene	45.3 ug/L	41.9 ug/L
Toluene	6.6 ug/L	6.4 ug/L
1,2,4-Trimethylbenzene	18.2 ug/L	16.6 ug/L
Xylenes (total)	20.8 ug/L	20.0 ug/L

Chloromethane and Chloroethane were negated during the review process since the mass spectra does not meet the qualitative criteria for identification in MW-XX. Raw data pertaining to MW-8 was reviewed and confirmed these analytes are not present.

No additional qualifications to the data were made based on blind duplicate data.

1.10 Target Compound List Identification

TCL compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within =/- 0.06RRT units of the standard compound and have an ion spectra which has a ratio of the primary and secondary m/e intensities within 20% of that in the standard compound.

GC/MS spectra met the qualitative criteria for identification with the exception of Chloromethane and Chloroethane which were negated in MW-XX as indicated in Section 1.10 above. All retention times were within required specifications.

1.10 Compound Quantification and Reported Detection Limits

GC/MS quantitative analysis is considered to be acceptable. Correct internal standards per SW846 and response factors and dilution corrections were used to calculate final concentrations.

As required, the laboratory reported "J" values between the reporting limits (RL) and Method Detection Limits (MDLs). This

reporting limits (RL) and Method Detection Limits (MDLs). This is consistent with common laboratory practices and a requirement of the National Environmental Laboratory Approval Program (NELAP).

All groundwater samples were analyzed undiluted.

1.11 Overall System Performance
Good resolution and chromatographic performance were observed.

Tentatively Identified Compounds (TICs) were not generated and therefore not evaluated.

2.0 Target Compound List (TCL) Semivolatile Organics by GC/MS SW846 Method 8270

The following method criteria were reviewed: holding times, Surrogates, MS, MSD, LCS, Blanks, Tunes, Calibrations, Internal Standards, Target Component Identification, Quantitation, Reported Quantitation Limits and overall system performance. The Total Semivolatile results were considered to be valid and usable as noted within the following text:

2.1 Holding Time

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the technical holding time is exceeded, the data may not be considered valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimates, "J". The non-detects (sample quantitation limits) are required to be flagged as estimated, "J", or unusable, "R", if the holding times are grossly exceeded.

All aqueous samples were extracted and analyzed within the method required holding times and the technical holding times (7 days from collection for water samples) required for data validation.

2.2 Surrogate Recovery

All samples are spiked with surrogate compounds prior to sample preparation/extraction to evaluate overall laboratory performance and efficiency of the analytical technique. Additionally, the sample itself may produce effects due to such factors as interferences and high concentrations of analytes. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the evaluation of the data is dependent upon reextraction and/or reanalysis to confirm/negate laboratory error or matrix related problems. Discussion of surrogate recoveries that fell outside (above/below) QC guidelines is itemized below:

All samples were spiked with six (6) surrogate standards at the sample extraction portion of analysis. Acceptable recovery values were obtained for all groundwater analyses.

2.3 Matrix Spikes (MS)/Matrix Spike Duplicates (MSD)

The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices.

Aqueous MS/MSD analysis was performed on MW-7 and was spiked with all components as required by the analytical procedure. Acceptable recovery values and RPD were obtained.

2.4 Laboratory Control Sample

The LCS data for laboratory control samples (LCS) are generated to provide information on the accuracy of the analytical method and on the laboratory performance.

LCS/Blank Spikes were analyzed for each analytical extraction batch. Recovery values were acceptable and no qualifications were applied.

2.5 Method Blanks

Quality assurance (QA) blanks; i.e. method, trip and field blanks are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Field blanks measure cross-contamination of samples during field operations.

The following table was utilized to qualify target analyte results due to contamination. The largest value from all the associated blanks is required to be utilized:

For:	Flag Sample Result	Report CRQL &	No Qualification is
	with a "U" when:	Qualify "U" when:	Needed when:
Phthalates (common	Sample Conc. is	Sample Conc. Is	Sample Conc. is
laboratory	>CRQL, but =10x</td <td><crql <="" =10x<="" and="" td=""><td>>CRQL and >10x</td></crql></td>	<crql <="" =10x<="" and="" td=""><td>>CRQL and >10x</td></crql>	>CRQL and >10x
contaminants)	blank value	blank value	blank value
Other Contaminants	Sample Conc. is	Sample Conc. Is	Sample Conc. is
	>CRQL, but =5x</td <td><crql <="" =5x<="" and="" td=""><td>>CRQL and >5x</td></crql></td>	<crql <="" =5x<="" and="" td=""><td>>CRQL and >5x</td></crql>	>CRQL and >5x
	blank value	blank value	blank value

Below is a summary of the compounds in the sample and the associated qualification that have been applied:

A) Method Blank Contamination:

Target analytes were not detected in the extraction blanks applicable to sample analysis.

B) Field Blank Contamination:

Target analytes were not detected in the field blank associated with sample analysis.

2.6 GC/MS Instrument Performance Check

Tuning and performance criteria are established to ensure adequate mass resolution proper identification of compounds and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The Tuning standard for semivolatile organics is decafluorotriphenylphosphine (DFTPP).

Instrument performance was generated within acceptable limits and frequency (12 hours) for decafluorotriphenylphosphine (DFTPP) for all analyses.

2.7 Initial and Continuing Calibrations

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration checks document that the instrument is giving satisfactory daily performance.

A) Response Factor GC/MS:

The response factor measures the instrument's response to specific chemical compounds. The response factor for all compounds must be >/= 0.05 in both initial and continuing calibrations. A value <0.05 indicates a serious detection and quantitation problem (poor sensitivity). Analytes detected in the sample will be qualified as estimated, "J." All non-detects for that compound in the corresponding samples will be rejected, "R".

All the response factors for the target analytes reported were found to be within acceptable limits (>/=0.05), for the initial (average RRF) and continuing calibrations.

B) Percent Relative Standard Deviation (%RSD) and Percent Difference (%D):

Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentrations. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be <30% and %D must be <25%. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and non-detects are flagged "UJ". If %RSD and %D grossly exceed QC criteria, nondetect data may be qualified, "R", unusable. Additionally, in cases where the %RSD is >30% and eliminating either the high or the low point of the curve does not restore the %RSD to less than or equal to 30% then positive results are qualified, "J". In cases where removal of either the low or high point restores the linearity, then only low or high level results will be qualified, "J" in the portion of the curve where non linearity exists.

Initial Calibrations: The initial calibrations provided and the %RSD were within acceptable limits (30%) for all compounds.

Continuing Calibrations: The continuing calibrations provided and the %D was within acceptable limits (25%) for all compounds.

2.8 Internal Standards

Internal Standards (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must not vary by more than a factor of 2 (-50% to +100%) from the associated continuing calibration standard. The retention time of the internal standard must not vary more than +/-30 seconds from the associated continuing calibration standard. If the area count is outside the (-50% to +100%) range of the associated standard, all of the positive results for compounds quantitated using that IS are qualified as estimated, "J", and all non-detects as "UJ", or "R" if there is a severe loss of sensitivity.

If an internal standard retention time varies by more than 30 seconds, professional judgment will be used to determine either partial or total rejection of the data for that sample fraction.

All area responses and retention times fell within established QC ranges.

2.9 Field Duplicates

Field duplicate samples are collected and analyzed as an indication of overall precision. These results are expected to have more variability than laboratory duplicate samples. Generally for water samples an acceptable RPD is 10%.

Groundwater sample MW-8 was collected in duplicate, a summary of positive detections is summarized below:

	MW-8	MW-XX
Acenaphthene	0.61 ug/L	0.60 ug/L
Dibenzofuran	0.47 ug/L	ND
Fluoranthene	0.57 ug/L	0.50 ug/L
Fluorene	0.51 ug/L	0.48 ug/L
Naphthalene	2.2 ug/L	1.1 ug/L
Phenanthrene	0.92 ug/L	0.89 ug/L
Pyrene	0.42 ug/L	ND

* *** **

The low concentration laboratory reported values for Dibenzofuran and Pyrene must be considered estimated in MW-8 since they were not detected in the corresponding duplicate analysis.

2.10 Target Compound List Identification

TCL compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within =/- 0.06RRT units of the standard compound and have an ion spectra which has a ratio of the primary and secondary m/e intensities within 20% of that in the standard compound.

Mass spectra meet criteria for all detected analytes.

All samples were analyzed undiluted.

Tentatively Identified Compounds (TICs) were not provided by the laboratory and therefore not evaluated.

2.11 Compound Quantification and Reported Detection Limits

GC/MS quantitative analysis is considered to be acceptable. Correct internal standards and response factors were used to calculate final concentrations.

As required, the laboratory reported "J" values between the reporting limits (RL) and Method Detection Limits (MDLs). This is consistent with common laboratory practices and a requirement of the National Environmental Laboratory Approval Program (NELAP).

2.12 Overall System Performance

Acceptable system performance was maintained throughout the analysis.

3.0 PCBs by GC SW846 Method 8082

The following method criteria were reviewed: holding times, Surrogates, MS, MSD, LCS, Blanks, Analytical Sequences, Calibrations, Target Component Identification, Quantitation, Reported Quantitation Limits and overall system performance. The PCB results were considered to be valid and usable as noted within the following text:

3.1 Holding Time

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the technical holding time is exceeded, the data may not be considered valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimates, "J". The non-detects (sample quantitation limits) are required to be flagged as estimated, "J", or unusable, "R", if the holding times are grossly exceeded.

All groundwater samples were extracted and analyzed within the method required holding times and the technical holding times required for data validation (7 days for water).

3.2 Surrogate Recovery

All samples are spiked with surrogate compounds prior to sample preparation/extraction to evaluate overall laboratory performance and efficiency of the analytical technique. Additionally, the sample itself may produce effects due to such factors as interferences and high concentrations of analytes. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the evaluation of the data is dependent upon reextraction and/or reanalysis to confirm/negate laboratory error or matrix related problems. Discussion of surrogate recoveries that fell outside (above/below) QC guidelines is itemized below:

Acceptable surrogate recovery values were obtained for all aqueous analysis.

3.3 Matrix Spikes (MS)/Matrix Spike Duplicates (MSD)

The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices.

The National Functional Guidelines indicate that MS/MSD data alone shall not be utilized to qualify sample data.

Aqueous PCB matrix spike analysis was conducted on MW-7. Acceptable recovery and RPD values were obtained.

3.4 Laboratory Control Sample

The LCS data for laboratory control samples (LCS) are generated to provide information on the accuracy of the analytical method and on the laboratory performance.

LCS/Blank Spikes were analyzed for each analytical extraction batch for PCBs. Recovery values were acceptable and no qualifications were applied for groundwater analyses.

3.5 Blanks

Quality assurance (QA) blanks; i.e. method, instrument, trip and field blanks are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Instrument blanks measure carryover for cross contamination. Field blanks measure cross-contamination of samples during field operations.

The following table was utilized to qualify target analyte results due to contamination. The largest value from all the associated blanks is required to be utilized:

For:	Flag Sample Result with a "U" when:	Report CRQL & Qualify "U" when:	No Qualification is Needed when:
Any Contaminant	Sample Conc. is	Sample Conc. Is	Sample Conc. is
	>CRQL, but $>CRQL and >5x$	<crql <="" =5x<="" and="" th=""><th>>CRQL and >5x</th></crql>	>CRQL and >5x
	blank value	blank value	blank value

Extraction and Instrument blanks were performed at the appropriate frequency.

Below is a summary of blank contamination:

A) Method Blank Contamination:

No target analytes were detected in the associated method blanks and no data validation qualifiers were required based upon method blank data.

B) Field Blank Contamination:

Target analytes were not detected in the Field Blank associated with sample analysis.

3.6 Calibration Verification

Initial and continuing calibration sequence was performed as required for multi-component PCB standards. Acceptable retention times were obtained for all analysis and GC resolution is acceptable for both columns.

Linearity criteria for the initial standards have been satisfied for both columns as detailed below:

%RSD </= 30% for surrogates (TCMX and DCB) %RSD >20% for PCB aroclors.

Continuing calibration verifications:

For PCB analysis acceptable percent difference for any PCB analysis is 15%.

No qualifications have been applied based on these criteria.

3.7 Field Duplicates

Field duplicate samples are collected and analyzed as an indication of overall precision. These results are expected to have more variability than laboratory duplicate samples. Generally for water samples an acceptable RPD is 10%.

MW-8 was utilized as the aqueous blind field duplicate (MW-XX). Target analytes were not detected in either analytical run for PCBs.

3.8 Target Compound Identification

Qualitative criteria for compound identification have been established to minimize the number of false positives and false negatives. The retention times of all target analytes have been verified in the samples to that of the analyzed reference standards. Positive PCB sample results are compared and where %Difference >25% when quantitated on the two columns the qualifications below are applied. Sample chromatograms were reviewed for the presence of interference. The following qualifications were applied where neither column shows interference:

%Difference	<u>Qualifier</u>
0-25%	None
26-70%	66 3 99
71-100%	ee III 33
101-200% (no interference)	"R"
101-200% (interference detected)*	ee III >>
>50% (Pesticide value is <crql)*< td=""><td>: * 66U 99</td></crql)*<>	: * 66U 99
>201%	66R**

^{*}When the reported %D is 101-200%, but interference is determined on either column, the results shall be qualified, "JN"

All sample results have been evaluated based on these criteria.

Groundwaters:

None

3.9 Compound Quantification and Reported Detection Limits

TCL compounds are identified on the GC by using the analyte's relative retention time (RRT) and by comparison to the primary column and the secondary confirmation column data. The laboratory reported the lower of the concentrations for primary/confirmatory column results as required.

3.10 Overall System Performance

Acceptable system performance was maintained throughout the analysis of all samples. Good resolution and chromatographic performance were observed.

^{**} When the reported pesticide value is lower than the CRQL, and the %D is >50%, raise the value to the CRQL and qualify "U", undetected.

4.0 TAL Metals by ICP/ICP-MS/Cold Vapor SW846 Methods 6010/6020/7471

The following method criteria were reviewed: holding times, CRDL standards, calibration, blanks, MS, laboratory duplicates, LCS, interference check sample, ICP serial dilutions and sample results verification. In order to meet the groundwater standard criteria, all samples were analyzed by ICP-MS techniques for Antimony and Thallium. The groundwater results were considered to be valid and usable with the appropriate qualifiers as notated in the following text:

4.1 Holding Times

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the technical holding time is exceeded, the data may not be considered valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimates, "J". The non-detects (sample quantitation limits) are required to be flagged as estimated, "J", or unusable, "R", if the holding times are grossly exceeded.

All samples were digested and analyzed for Metals within the method required holding times and the technical holding times for data validation. No qualifications were applied based upon holding time criteria.

4.2 Calibration (ICV/CCV)

Satisfactory instrument calibration is established to ensure that the instruments are capable of producing acceptable quantitative data. An initial calibration demonstrates that the instruments are capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration checks document that the instruments are giving satisfactory sequential performance and that the initial calibration is still valid.

The ICP, ICP/MS and Mercury instruments were calibrated utilizing a minimum of a four-point curve in addition to blanks at the beginning of each analytical run. The calibrations had been determined to be acceptable, yielding correlation coefficients of 0.995 or greater.

For ICP analysis, satisfactory instrument performance near the Contract Required Detection Limit (CRDL) was demonstrated by analyzing a CRDL standard at the beginning and end of the analytical run. The instruments were calibrated properly by analyzing the CRDL solution at the correct levels, and analyzed at the required frequency at the beginning and end of each analytical run.

All recoveries were within acceptable limits of 90-110 % for initial calibration pertaining to field samples.

Continuing calibrations were within acceptable limits of 90-110% recovery of the true values for ICP and Mercury (80-120%) for all field samples.

No qualifications were applied based upon ICV/CCV analysis.

4.3 Blanks

Quality assurance (QA) blanks, i.e. method, field or preparation blanks are prepared to identify any contamination that may have been introduced into the samples during sample preparation or field activity. Preparation blanks measure laboratory contamination. Field blanks measure cross-contamination of samples during field operations.

All digestion/prep/ICB/CCB/Field blanks were generated within acceptable limits yielding final concentrations less than the CRDL.

No qualifications to the data were made based upon blank contamination.

4.4 Spiked Sample Recovery

The spike data are generated to determine the long terms precision and accuracy of the analytical method in various matrices.

Aqueous spike recoveries are qualified based on the criteria below: <30% - "R" all detects and non-detects

Between 30%-74% - results >/=MDL "J" and non-detects "UJ"

Between 126-150% - results >/=MDL "J" and
>150% - results >/= MDL "R"

SDG JB8123:

Aqueous MS/MSD analysis was conducted on MW-7. Analysis resulted in acceptable recovery values for all elements. No qualifications to the ICP or ICP-MS data were required.

SDG JB8258:

Aqueous MS/MSD analysis was conducted on MW-XX. Analysis resulted in acceptable recovery values and RPD for all elements with the exception of Calcium and Manganese which recovered low in the MSD. Laboratory reported results must be considered estimated, "J/UJ" in samples MW-8, MW-XX, MW-6 and the Field Blank for these elements.

4.5 Laboratory/Field Duplicates

The laboratory uses duplicate sample determinations to demonstrate acceptable method precision at the time of analysis. Duplicate analyses are also performed to generate data in order to determine the long-term precision of the analytical method on various matrices.

Laboratory Duplicates:

RPD >20% but <100% - J detected concentrations RPD >/=100% - R all detected and non-detected concentrations

Field Duplicates:

RPD >/=35% but <120% - qualify sample and duplicate results >/= CRQL "J"

RPD >/= 120% - rejected sample and duplicate results >/= CRQL "R"

Aqueous Laboratory Duplicate analysis was conducted on MW-7. Acceptable RPD values were obtained for all elements.

Field Duplicate analysis was conducted on MW-8 (MW-XX).

A summary of detected concentrations in ppb is listed below:

	<u>MW-8</u>	MW-XX (Duplicate)
Aluminum	2800	3280
Arsenic	8.7	11.9
Calcium	153000	153000
Chromium	15.7	17.7
Copper	17.4	20.5
Iron	8970	9670
Lead	11.8	13.8
Magnesium	34800	34800
Manganese	3220	3180
Nickel	13.9	14.9
Sodium	86900	87900
Zinc	23.6	23.7

Based on >10% RPD between original and duplicate analysis the following element concentrations must be considered estimated, "J/UJ" for both MW-8 and MW-XX:

Aluminum, Arsenic, Chromium and Lead.

4.6 Laboratory Control Sample

The laboratory Control Sample (LCS) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. Aqueous and solid Laboratory Control samples shall be analyzed for each analyte utilizing the same sample preparation, analytical methods and QA/QC procedures as employed for the samples.

The LCS was analyzed and reported for all ICP, ICP-MS and Mercury analysis. Associated LCS recoveries were within the acceptable limits for TAL Metals analyses (80-120%).

4.7 Interference Check Sample

The interference check sample (ICS) verifies the laboratory's interelement and background correction factors. The ICS consists of two solutions A and AB. Solution A consists of interference, and solution AB consists of the analytes mixed with interferents.

SW846 Method 6010 requires solution A and solution AB to be analyzed separately. The recoveries for the ICP interference check sample were all within the acceptable limits of 80-120%. No data qualifications were made based upon ICS analysis.

4.8 ICP Serial Dilution

The serial dilution of samples quantitated by ICP determines whether or not significant physical or chemical interferences exist due to sample matrix. An ICP serial dilution analysis must be performed on a sample for each group of samples with a similar matrix type and concentration, or for each Sample Delivery Group (SDG), whichever is more frequent.

Acceptable ICP and ICP-MS serial dilution was performed at a 5-fold dilution as required by the method where the initial concentration is equal or greater than 50x IDL. The serial dilution analysis agrees within a 10% difference of the original determination after correction for dilution for all elements where the sample concentration was determined by be <50x the IDL.

4.9 Sample Results Verification

Analyte quantitation was generated in accordance with protocols. The raw data was verified and found within the linear range of each instrument used for quantitation. Raw data supplied corresponds with reported values. Verification of the calculations yielded reported results.

Metals analysis resulted in acceptable results.

4.10 Overall Assessment of Data

The data generated were of acceptable quality.

For the TAL analysis, results are usable at the concentration presented in the validated spreadsheets.

ICP-MS analysis was conducted at a 1:2 dilution.

5.0 General Chemistry Analysis

Groundwater samples were analyzed for Hexavalent and Trivalent Chromium. The groundwater results were considered to be valid and usable as notated in the summary tables and through the text below.

5.1 Holding Times

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the technical holding time is exceeded, the data may not be considered valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimates, "J". The non-detects (sample quantitation limits) are required to be flagged as estimated, "J", or unusable, "R", if the holding times are grossly exceeded.

Samples were analyzed within 24 hours of collection as required for Hexavalent Chromium for all field samples.

5.2 Calibration

Acceptable ICVs and CCVs were analyzed. No qualifications were applied based upon calibration data.

5.3 Blanks

Quality assurance (QA) blanks, i.e. method, field or preparation blanks are prepared to identify any contamination, which may have been introduced into the samples during sample preparation or field activity. Preparation blanks measure laboratory contamination. Field blanks measure cross-contamination of samples during field operations.

Acceptable method blanks were analyzed with these SDGs as dictated by the analytical methods employed.

5.4 Spiked Sample Recovery

The spike data are generated to determine the long-term precision and accuracy of the analytical method in various matrices.

Matrix spike analysis was performed on MW-7. Acceptable spike recoveries were obtained.

5.5 Laboratory/Field Duplicates

The laboratory uses duplicate sample determinations to demonstrate acceptable method precision at the time of analysis. Duplicate analyses are also performed to generate data in order to determine the long-term precision of the analytical method on various matrices.

Acceptable laboratory duplicate analysis on MW-7 was conducted as required by the method.

Field duplicate analysis was collected on MW-8. Precision as defined by Relative Percent Difference (RPD) was found to be within acceptable limits of \pm 0% for Hexavalent Chromium; no detections above the reporting limit.

5.6 Laboratory Control Sample

The laboratory Control Sample (LCS) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. Aqueous and solid Laboratory Control samples shall be analyzed for each analyte utilizing the same sample preparation, analytical methods and QA/QC procedures as employed for the samples.

Acceptable LCS was analyzed.

5.7 Sample Results Verification

Analyte quantitation was generated in accordance with protocols. The instrument logs were verified and found within the linear ranges of each instrument used for quantitation.

5.8 Overall Assessment of Data

The data was of acceptable quality.

Reviewer's Signature Jou' a Buy Date 09/10/12

Appendix A Data Summary Tables With Qualifications

Table 1

Validated Analytical Results for Volatile Organic Compounds In Groundwater Via Verde aka New Housing New York Legacy Project 700-730 Brook Avenue, Bronx, New York

BCP # C203043

Sample ID	MW-6	MW-7	MW-8	MW-9	MW-XX**	Field Blank	Trip Blank	NYSDEC
Matrix Date Sampled	groundwater 6/6/2012	groundwater 6/5/2012	groundwater 6/6/2012	groundwater 6/5/2012	groundwater 6/6/2012	liquid 6/6/2012	liquid 6/6/2012	TOGs*
Volatile Organic Compounds	0/0/2012	0/3/2012	6/6/2012	6/5/2012	6/6/2012	6/6/2012	6/6/2012	
				,	,,		,,	
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Acetone	ND	ND	49.6 N	MD		() 4.6 J	ND	50
Benzene	ND	ND	1.3	ND	1.3	ND	ND	1
Bromobenzene	ND	ND	ND	ND	ND	ND	ND	5
Bromochloromethane	ND	ND	ND	ND	ND	ND	ND	5
Bromodichloromethane	ND	ND	ND	ND	ND	ND	ND	50
Bromoform	ND	ND	ND	ND	ND	ND	ND	50
Bromomethane	ND	ND _	ND	ND O	ND	ND	ND	5
2-Butanone (MEK)	ND	ND 🤾	7.4 J	ND 🔨	10.2	ND	ND	50
n-Butylbenzene	ND	ND	5.2	ND	4.9 J	ND	ND	5
sec-Butylbenzene	ND	ND	4.8 J	ND	4.5 J	ND	ND	5
ert-Butylbenzene	ND	ND	0.90 J	ND	0.93 J	ND	ND	5
Carbon tetrachloride	ND	ND	ND	ND	ND	ND	ND	5
Chlorobenzene	ND	ND	ND	ND	ND	ND	ND	5
Chloroethane	ND	ND	ND	ND	0/85 J 🎶	O ND	ND	5
Chloroform	2.9	ND	ND	0.23 J	ND "	ND	ND	7
Chloromethane	ND	ND	ND	ND	0.80+	/U ND	ND	NVG
-Chiorotoluene	ND	ND	ND	ND	ND	ND	ND	5
-Chiorotoluene	ND	ND	ND	ND	ND	ND	ND	5
,2-Dibromo-3-Chloropropane	ND	ND	ND	ND	ND	ND	ND	0.04
Dibromochloromethane	ND	ND	ND	ND	ND	ND	ND	50
,2-Dibromoethane	ND	ND	ND	ND	ND	ND	ND	NVG
.2-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	3
.3-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	3
.4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	3
Dichlorodifluoromethane	ND	ND	ND	ND	ND	ND	ND	5
.1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	5
,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	0.6
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	5
ris-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	5
rans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	5
1,2-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	1
1,3-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	5
2,2-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	5
1,1-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	5
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	0.4
rans-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	0.4
Ethylbenzene	0.23 J	ND	170	ND	162.0	ND	ND ND	5
Hexachlorobutadiene	0.23 J ND	ND ND	ND	ND ND	ND	ND	ND	0.5
	ND	ND ND	22.7	ND	21.1	ND	ND ND	5
sopropylbenzene	ND ND	ND ND	0.98 J	ND		ŧ	ND	ł
o-Isopropyltoluene	ł	Į.	l .	1	0.94 J	ND	}	5
Methyl Tert Butyl Ether	ND	ND	ND	ND	ND	ND	ND	10
1-Methyl-2-Pentanone (MIBK)	ND	ND	ND	ND	ND	ND	ND	NVG
Methylene bromide	ND	ND	ND	ND	ND	ND	ND	NVG
Methylene Chloride	ND	ND	ND	ND	ND	ND	ND	5
vaphthalene	ND	ND	3.4 J	ND	3.9 J	ND	ND	10
n-Propylbenzene	ND	ND	45.3	ND	41.9	ND	ND	5
Styrene	ND	ND	ND	ND	ND	ND	ND	5
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	5
,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	5
etrachloroethene	ND	ND	ND	ND	ND	ND	ND	5
oluene	ND	ND	6.6	ND	6.4	ND	ND	5
,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	5
,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	5
,1,1-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	5
,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	1
richloroethene	ND	ND	ND	ND	ND	ND	ND	5
richlorofluoromethane	ND	ND	ND	ND	ND	ND	ND	5
,2,3-Trichloropropane	ND	ND	ND	МD	ND	ND	ND	0.04
,2,4-Trimethylbenzene	ND	ND	18.2	ND	16.6] ND	ND	5
,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	5
/inyl chloride	ND	ND	ND	ND	ND	ND	ND	2
n,p-Xylene	ND	ND	17.0	ND	16.3	ND	ND	5
-Xylene	ND	ND	3.8	ND	3.7	ND	ND	5
		ND	20.8	ND	20.0	ND	ND	5

ug/L - micrograms per liter or parts per billion
ND - Not detected at or above laboratory detection limits
NVG - No Value Given
J - Estimated Value

*NYSDEC Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations; June 1998
** MW-XX is a duplicate of MW-8

R- the presence or absence of the analyte cannot be verified due to quality control criteria

UJ - Reported quantitation limit is approximate R- the presence of Boxed and bold indicates exceedance groundwater standards or guidance values

Table 2

Validated Analytical Results for Semi-Volatile Organic Compounds In Groundwater

Via Verde aka New Housing New York Legacy Project 700-730 Brook Avenue, Bronx, New York BCP # C203043

Sample ID	WW-6	MW-7	NW-8	MVV-9	WW-XX**	Field Blank	NYSDEC
Matrix	groundwater	groundwater	groundwater	groundwater	groundwater	liquid	TOGS*
Date Sampled	6/6/2012	6/5/2012	6/6/2012	6/5/2012	6/6/2012	6/6/2012	1003
Semi-Volatile Organic Compounds							
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
2-Chlorophenol	ND	ND	ND	ND	ND	ND	NVG
4-Chloro-3-methyl phenol	ND	ND	ND	ND	ND	ND	NVG
2,4-Dichlorophenol	ND	ND	ND	ND	ND	ND	5
2,4-Dimethylphenol	ND	ND	ND	ND	ND	ND	50
2,4-Dinitrophenol	ND	ND	ND	ND	ND	ND	10
4,6-Dinitro-2-methylphenol	ND	ND	ND	ND	ND	ND	NVG
2-Methylphenol	ND	ND	ND	ND	ND	ND	1
3+4-Methylphenois	ND	ND	ND	ND	ND	ND	1
2-Nitrophenol	ND	ND	ND	ND	ND	ND	NVG
4-Nitrophenol	ND	ND	ND	ND	ND	ND	NVG
Pentachlorophenol	ND	ND	ND	ND	ND	ND	NVG
Phenol	ND	ND	ND	ND	ND	ND	1
2,4,5-Trichlorophenol	ND	ND	ND	ND	ND	ND	NVG
2,4,6-Trichlorophenol	ND	ND	ND	ND	ND	ND	NVG
Acenaphthene	ND	ND	0.61 J	ND	0.60 J	ND	20
Acenaphthylene	ND	ND	ND	ND	ND	ND	NVG
Acetophenone	ND	ND	ND	ND	ND	ND	NVG
Anthracene	ND	ND	ND	ND	ND	ND	50
Atrazine	ND	ND	ND	ND	ND	ND	7.5
Benzo(a)anthracene	ND	ND	ND	ND	ND	ND	0.002
Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	ND	ND	ND	ND	ND	ND	0.002
Benzo(g,h,i)perylene	ND	ND	ND	ND	ND	ND	NVG
Benzo(k)fiuoranthene	ND	ND	ND	ND	ND	ND	0.002
4-Bromophenyl-phenylether	ND	ND	ND	ND	ND	ND	NVG
Butylbenzylphthalate	ND	ND	ND	ND	ND	ND	50
1,1'-Biphenyl	ND	ND	ND	ND	ND	ND	5
Benzaldehyde	ND	ND	ND	ND	ND	ND	NVG
2-Chloronaphthalene	ND	ND	ND	ND	ND	ND	10
4-Chloroaniline	ND	ND	ND	ND	ND	ND	5
Carbazole	ND	ND	ND	ND	ND	ND	NVG
Caprolactam	ND	ND	ND	ND	ND	ND	NVG
Chrysene	ND	ND	ND	ND	ND	ND	0.002
•	ND	ND	ND	ND	ND	ND	5
bis(2-Chloroethoxy)methane bis(2-Chloroethyl)ether	ND	ND	ND	ND	ND	ND	1
	ND	ND	ND	ND	ND	ND	NVG
bis(2-Chloroisopropyl)ether	ND	ND	ND	ND	ND	ND	NVG
4-Chlorophenyl-phenylether 2.4-Dinitrotoluene	ND	ND	ND	ND	ND	ND	5
	ND	ND	ND	ND	ND	ND	1
2,6-Dinitrotoluene	ND	ND ND	ND	ND	ND	ND	5
3,3-Dichlorobenzidine	ND	ND	ND	ND	ND	ND	NVG
Dibenzo(a,h)anthracene	ND	ND ND	0.47.4	ND	ND	ND	1
Dibenzofuran	ND ND	ND	ND	ND ND	ND	ND	NVG
Di-n-butylphthalate	ND	ND	ND	ND	ND	ND	50
Di-n-octyl phthalate	ND	ND	i	1	ND	1	50
Diethylphthalate	!	1	ND	ND	1	ND ND	50
Dimethylphthalate	ND ND	ND ND	ND	ND	ND	1	50
bis(2-Ethylhexyl)phthalate	ŧ	i	ND 0.57	ND	ND	ND	5
Fluoranthene	ND	ND	0.57 J	ND	0.50 J	ND	50
Fluorene	ND	ND	0.51 J	ND	0.48 J	ND	50
Hexachlorobenzene	ND	ND	ND	ND	ND	ND	0.04
Hexachlorobutadiene	ND	ND	ND	ND	ND	ND	0.5
Hexachlorocyclopentadiene	ND	ND	ND	ND	ND	ND	5
Hexachloroethane	ND	ND	ND	ND	ND	ND	5
Indeno(1,2,3-cd)pyrene	ND	ND	ND	ND	ND	ND	0.002
Isophorone	ND	ND	ND	ND	ND	ND	50
2-Methylnaphthalene	ND	ND	ND	ND	ND	ND	NGV
2-Nitroaniline	ND	ND	ND	ND	ND	ND	5
3-Nitroaniline	ND	ND	ND	ND	ND	ND	5
4-Nitroaniline	ND	ND	ND	ND	ND	ND	5
Naphthalene	ND	ND	2.2	ND	1.1	ND	10
Nitrobenzene	ND	ND	ND	ND	ND	ND	0.4
N-Nitroso-di-n-propylamine	ND	ND	ND	ND	ND	ND	NVG
N-Nitrosodiphenylamine	ND	ND	- ND	ND	ND	ND	50
Ot	ND	ND	0.92 J	↓ ND	0.89 J	ND	50
Phenanthrene	ND		0.42 3	T	1	1	

*NYSDEC Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations; June 1998 ** MW-XX is a duplicate of MW-8

Notes:

ug/L - micrograms per liter or parts per billion

ND - Not detected at or above laboratory detection limits

NVG - No Value Given

J - Estimated Value

UJ - Reported quantitation limit is approximate

Boxed and bold indicates exceedance of groundwater standards or guidance values

	milyara magamatana kata kata kata kata kata kata kata	decreasion and a suppression of the suppression of	Table 3		vients makanatimonistiskontokontokontokontokontokontokontokont		All principal designations of the control of the co
		Validated Analytical Results for PCBs In Groundwater Via Verde aka New Housing New York Legacy Project 700-730 Brook Avenue, Bronx, New York BCP # C203043	dated Analytical Results for PCBs In Groundw Via Verde aka New Housing New York Legacy Project 700-730 Brook Avenue, Bronx, New York BCP # C203043	or PCBs In Green South PCBs In Green South Police South PcBs In Green South PcBs In Green South PcBs In Green PcBs	oundwater Project k		
Sample ID Matrix Date Sampled	MW-6 groundwater 6/6/2012	MW-7 groundwater 6/5/2012	MW-8 groundwater 6/6/2012	MW-9 groundwater 6/5/2012	MW-XX** groundwater 6/6/2012	Field Blank liquid 6/6/2012	NYSDEC TOGS***
PCBs Units	ng/L	ug/L	7/Bn	ng/L	ng/L	ng/L	ng/L
Aroclor-1016	2	S	2	9	2	9	* 60.0
Aroclor-1221	S	2	2	9	2	2	* 60.0
Aroclor-1232	2	8	9	9	2	9	* 60.0
Aroclor-1242	2	2	2	2	2	9	* 60.0
Aroclor-1248	2	2	2	9	2	9	* 60.0
Aroclor-1254	2	2	2	9	2	9	* 60.0
Aroclor-1260	2	2	2	9	2	2	* 60.0
Notes: ug/L - micrograms per liter or parts per billion ND - Not detected at or above laboratory detection limits * Applies to the sum of these compounds ** MW-XX is a duplicate of MW-8	liter or parts per bil r above laboratory f these compounds te of MW-8	llion detection limits		***NYSDEC Tec Ambient Water C and Groundwate	***NYSDEC Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations; June 1998	ional Guidance S and Guidance Vé ins; June 1998	series (1.1.1) alues

Table 4 Validated Analytical Results for Total Metals In Groundwater

Via Verde aka New Housing New York Legacy Project 700-730 Brook Avenue, Bronx, New York BCP # C203043

	MAGANA						
Sample ID	MW-6	MW-7	8-WM	MVV-9	MW-XX**	Field Blank	NYSDEC
Matrix	groundwater	groundwater	groundwater	groundwater	groundwater	liquid	TOGS*
Date Sampled	6/6/2012	6/5/2012	6/6/2012	6/5/2012	6/6/2012	6/6/2012	
Total Metals							
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Aluminum	6,900	<200	2,800 🤳	465	3,280 🗍	<200	NVG
Antimony	<1.0	<1.0	<1.0	1.0	<1.0	<1.0	3
Arsenic	<3.0	<3.0	8.7 🕡	<3.0	11.9 🎵	<3.0	25
Barium	<200	<200	<200	<200	<200	<200	1,000
Berylium	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	3
Cadmium	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	5
Calcium	35,200	156,000	153,000 🎳	142,000	153,000 🍶	<5,000 🕢	NVG
Chromium	184	<10	15.7 犹	<10	17.7 J	<10	50
Cobalt	<50	<50	<50	<50	<50	<50	NVG
Copper	20.30	<10	17.4	<10	20.5	<10	200
Iron	9,930	426	8,970	854	9,760	<100	300
Lead	8.6	<3.0	11.8 🍸	3.7	13.8 🗸	<3.0	25
Magnesium	8,260	32,000	34,800	5,210	34,800	<5,000	35,000
Manganese	232 J	39.8	3,220 🧷	354	3,180 🗸	<15 VJ	300
Mercury	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.7
Nickel	88.4	<10	13.9	<10	14.9	<10	100
Potassium	<10,000	<10,000	<10,000	14,200	<10,000	<10,000	NVG
Selenium	<10	<10	<10	<10	<10	<10	10
Silver	<10	<10	<10	<10	<10	<10	50
Sodium	23,400	72,200	86,900	70,600	87,900	<10,000	20,000
Thallium	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	0.5
Vanadium	<50	<50	<50	<50	<50	<50	NVG
Zinc	44.7	<20	23.6	<20	23.7	<20	2,000
Chromium, Hexavalent	<10	<10	<10	<10	<10	<10	50
Chromium, Trivalent	180	<20	<20	<20	<20	<20	50

Notes:

ug/L - micrograms per liter or parts per billion

ND - Not detected at or above laboratory detection limits

NVG - No Value Given

J - Estimated Value

UJ - Reported quantitation limit is approximate

*NYSDEC Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations; June 1998

** MW-XX is a duplicate of MW-8

R- the presence or absence of the analyte cannot be verified

Boxed and bold indicates exceedance of groundwater standards or guidance values

Lab Sample ID:

JB8123-1

Matrix: Method:

Project:

AQ - Ground Water

1

SW846 8260B

Via Verde, 700-730 Brook Avenue, Bronx, NY

Date Sampled: Date Received:

06/05/12 06/06/12

Percent Solids: n/a

Run #1 Run #2 File ID 2B96420.D DF Analyzed 06/07/12

Ву DR Prep Date n/a

Prep Batch n/a

Analytical Batch V2B4353

Purge Volume

Run #1 Run #2

 $5.0 \, \mathrm{ml}$

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.3	ug/l	
71-43-2	Benzene	ND	1.0	0.24	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.14	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.30	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.21	ug/l	
75-25-2	Bromoform	ND	4.0	0.21	ug/l	
74-83-9	Bromomethane	ND "	2.0	0.22	ug/l	
78-93-3	2-Butanone (MEK)	ND K	10	2.4	ug/l	
104-51-8	n-Butylbenzene	ND "	5.0	0.17	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	0.21	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	0.30	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.22	ug/I	
108-90-7	Chlorobenzene	ND	1.0	0.23	ug/l	
75-00-3	Chloroethane	ND	1.0	0.26	ug/l	
67-66-3	Chloroform	0.23	1.0	0.20	ug/l	J
74-87-3	Chloromethane	ND	1.0	0.21	ug/l	J
95-49-8	o-Chlorotoluene	ND	5.0	0.15	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.30	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	10	0.54	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.14	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.20	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.22	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.30	ug/l	
75-71-8	Dichlorodifluoromethane	ND	5.0	0.27	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.11	ug/l	
107-06-2	1,2-Dichloroethane	ND -	1.0	0.26	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.19	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.19	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.21	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.48	ug/l	
142-28-9	1,3-Dichloropropane	ND	5.0	0.23	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Lab Sample ID: Matrix:

JB8123-1 AQ - Ground Water

Method:

AQ - Ground Water SW846 8260B

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Date Sampled: 06/05/12 Date Received: 06/06/12

Percent Solids: n/a

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7	2,2-Dichloropropane	ND	5.0	0.15	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	0.30	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.30	ug/I ug/I	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/I ug/I	
100-41-4	Ethylbenzene	ND	1.0	0.23	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.24	ug/I ug/I	
98-82-8	Isopropylbenzene	ND	2.0	0.45	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	0.43	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.16	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	0.83	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.33	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.70	ug/l	
91-20-3	Naphthalene	ND	5.0	1.1	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	0.24	ug/l	
100-42-5	Styrene	ND	5.0	0.21	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.24	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.28	ug/l	
108-88-3	Toluene	ND	1.0	0.23	ug/I	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	0.28	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.20	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.24	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.29	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.22	ug/l	
75-69-4	Trichlorofluoromethane	ND	5.0	0.27	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.53	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.19	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.36	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.21	ug/l	
	m,p-Xylene	ND	1.0	0.42	ug/l	
95-47-6	o-Xylene	ND	1.0	0.24	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.24	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	s	
1868-53-7	Dibromofluoromethane	101%		81-12	10/	
17060-07-0	1,2-Dichloroethane-D4	103%		74-12		
2037-26-5	Toluene-D8	104%		80-12		
460-00-4	4-Bromofluorobenzene	96%		78-11		
		2070		10-11	U 70	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-9 Lab Sample ID: JB8123-1

Matrix: Method: AQ - Ground Water

Project:

SW846 8270D SW846 3510C Via Verde, 700-730 Brook Avenue, Bronx, NY Date Sampled: Date Received:

06/05/12 06/06/12

Percent Solids: n/a

- 1									_
1	Run #1 Run #2	File ID 3P10861.D	DF 1	Analyzed 06/08/12	By KH	Prep Date 06/07/12	Prep Batch OP57515	Analytical Batch E3P504	_
1	Nun #4								

Initial Volume Final Volume 955 ml

Run #1

1.0 ml

Run #2

ABN TCL List (CLP4.2 list)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.2	1.0	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.2	1.9	ug/l	
120-83-2	2,4-Dichlorophenol	ND	5.2	1.2	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.2	1.6	ug/l	
51-28-5	2,4-Dinitrophenol	ND	21	17	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	21	1.0	ug/l	
95-48-7	2-Methylphenol	ND	2.1	1.1	ug/l	
	3&4-Methylphenol	ND	2.1	0.97	ug/l	
88-75-5	2-Nitrophenol	ND	5.2	1.6	ug/l	
100-02-7	4-Nitrophenol	ND	10	5.4	ug/l	
87-86-5	Pentachlorophenol	ND	10	1.5	ug/l	
108-95-2	Phenol	ND	2.1	1.3	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.2	1.6	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.2	1.4	ug/l	
83-32-9	Acenaphthene	ND	1.0	0.28	ug/l	
208-96-8	Acenaphthylene	ND	1.0	0.24	ug/l	
98-86-2	Acetophenone	ND	2.1	0.30	ug/l	
120-12-7	Anthracene	ND	1.0	0.30	ug/l	
1912-24-9	Atrazine	ND	5.2	0.51	ug/l	
100-52-7	Benzaldehyde	ND	5.2	3.4	ug/I	
56-55-3	Benzo(a)anthracene	ND	1.0	0.24	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.0	0.24	ug/l	
205-99-2	Benzo(b) fluoranthene	ND	1.0	0.48	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.34	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.53	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.1	0.37	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.1	0.30	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.0	0.32	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.1	0.31	ug/l	
106-47-8	4-Chloroaniline	ND	5.2	0.55	ug/l	
86-74-8	Carbazole	ND	1.0	0.38	ug/l	
105-60-2	Caprolactam	ND	2.1	0.72	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Lab Sample ID: JB8123-1

Matrix: Method:

AQ - Ground Water

SW846 8270D SW846 3510C

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Date Sampled: 06/05/12 Date Received: 06/06/12

Percent Solids: n/a

ABN TCL List (CLP4.2 list)

CAS No.	Compound	Result	RL	MDL	Units	Q
218-01-9	Chrysene	ND	1.0	0.30	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.1	0.32	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.1	0.32	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.1	0.48	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.1	0.33	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	2.1	0.45	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	2.1	0.48	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.2	0.38	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.40	ug/l	
132-64-9	Dibenzofuran	ND	5.2	0.28	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.1	0.58	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.1	0.32	ug/l	
84-66-2	Diethyl phthalate	ND	2.1	0.34	ug/l	
131-11-3	Dimethyl phthalate	ND	2.1	0.30	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.1	0.61	ug/l	
206-44-0	Fluoranthene	ND	1.0	0.33	ug/l	
86-73-7	Fluorene	ND	1.0	0.29	ug/l	
118-74-1	Hexachlorobenzene	ND	1.0	0.35	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.0	0.54	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	7.4	ug/l	
67-72-1	Hexachloroethane	ND	2.1	0.58	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.39	ug/l	
78-59-1	Isophorone	ND	2.1	0.29	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.0	0.40	ug/l	
88-74-4	2-Nitroaniline	ND	5.2	1.2	ug/l	
99-09-2	3-Nitroaniline	ND	5.2	1.3	ug/l	
100-01-6	4-Nitroaniline	ND	5.2	1.7	ug/l	
91-20-3	Naphthalene	ND	1.0	0.27	ug/l	
98-95-3	Nitrobenzene	ND	2.1	0.44	ug/I	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.1	0.32	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.2	0.32	ug/l	
85-01-8	Phenanthrene	ND	1.0	0.31	ug/l	
129-00-0	Pyrene	ND	1.0	0.28	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	42%		10-83	3%	
4165-62-2	Phenol-d5	28%		10-74	1%	
118-79-6	2,4,6-Tribromophenol	106%		24-14	18%	
4165-60-0	Nitrobenzene-d5	82%		38-12	29%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Lab Sample ID:

JB8123-1

Matrix:

AQ - Ground Water

SW846 8270D SW846 3510C

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Date Sampled:

06/05/12 06/06/12

Date Received:

Percent Solids: n/a

ABN TCL List (CLP4.2 list)

CAS No.

Method:

Surrogate Recoveries

Run#1

Run#2

Limits

321-60-8

2-Fluorobiphenyl

89%

42-117%

1718-51-0

Terphenyl-d14

114%

14-132%

ND = Not detected

RL = Reporting Limit E = Indicates value exceeds calibration range

MDL - Method Detection Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Ву

AZ

Prep Date

06/06/12

Client Sample ID: MW-9

Lab Sample ID:

JB8123-1

AQ - Ground Water

DF

1

Date Sampled:

06/05/12

Matrix: Method:

SW846 8082A SW846 3510C

Date Received:

Q

06/06/12 Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Analyzed

06/07/12

Prep Batch Analytical Batch OP57508 G2G2387

Run #1 Run #2

Final Volume

Initial Volume 950 ml

File ID

2G68140.D

10.0 ml

Run #1 Run #2

PCB List

CAS No. Compound RL**MDL** Result Units

12674-11-2	Aroclor 1016	ND	0.53	0.13	ug/l
11104-28-2	Aroclor 1221	ND	0.53	0.29	ug/l
11141-16-5	Aroclor 1232	ND	0.53	0.41	ug/l
53469-21-9	Aroclor 1242	ND	0.53	0.091	ug/l
12672-29-6	Aroclor 1248	ND	0.53	0.15	ug/l
11097-69-1	Aroclor 1254	ND	0.53	0.15	ug/l
11096-82-5	Aroclor 1260	ND	0.53	0.22	ug/l
11100-14-4	Aroclor 1268	ND	0.53	0.14	ug/l
37324-23-5	Aroclor 1262	ND	0.53	0.063	ug/l

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
877-09-8	Tetrachloro-m-xylene	80%		27-144%
877-09-8	Tetrachloro-m-xylene	84%		27-144%
2051-24-3	Decachlorobiphenyl	61%		10-139%
2051-24-3	Decachlorobiphenyl	62%		10-139%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: MW-9

Lab Sample ID: JB8123-1 Matrix:

AQ - Ground Water

Date Sampled: Date Received: 06/06/12

06/05/12

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	465	200	ug/l	1	06/07/12	06/20/12 BL	SW846 6010C ³	SW846 3010A ⁵
Antimony	1.0	1.0	ug/l	2	06/07/12	06/15/12 RP	SW846 6020A ²	SW846 3010A ⁶
Arsenic	< 3.0	3.0	ug/l	1	06/07/12	06/20/12 BL	SW846 6010C ³	SW846 3010A ⁵
Barium	< 200	200	ug/l	1	06/07/12	06/20/12 BL	SW846 6010C ³	SW846 3010A ⁵
Beryllium	< 1.0	1.0	ug/I	1	06/07/12	06/20/12 BL	SW846 6010C ³	SW846 3010A ⁵
Cadmium	< 3.0	3.0	ug/l	1	06/07/12	06/20/12 BL	SW846 6010C ³	SW846 3010A ⁵
Calcium	142000	5000	ug/l	1	06/07/12	06/20/12 BL	SW846 6010C ³	SW846 3010A ⁵
Chromium	< 10	10	ug/l	1	06/07/12	06/20/12 BL	SW846 6010C ³	SW846 3010A ⁵
Cobalt	< 50	50	ug/l	1	06/07/12	06/20/12 BL	SW846 6010C ³	SW846 3010A ⁵
Copper	< 10	10	ug/l	1	06/20/12	06/21/12 BL	SW846 6010C ⁴	SW846 3010A ⁵
Iron	854	100	ug/l	1	06/07/12	06/20/12 BL	SW846 6010C ³	SW846 3010A ⁵
Lead	3.7	3.0	ug/l	1	06/07/12	06/20/12 BL	SW846 6010C ³	SW846 3010A ⁵
Magnesium	5210	5000	ug/I	1	06/07/12	06/20/12 BL	SW846 6010C ³	SW846 3010A ⁵
Manganese	354	15	ug/l	1	06/07/12	06/20/12 BL	SW846 6010C ³	SW846 3010A 5
Mercury	< 0.20	0.20	ug/l	1	06/12/12	06/12/12 JW	SW846 7470A ¹	SW846 7470A ⁷
Nickel	< 10	10	ug/l	1	06/07/12	06/20/12 BL	SW846 6010C ³	SW846 3010A ⁵
Potassium	14200	10000	ug/l	1	06/07/12	06/20/12 BL	SW846 6010C ³	SW846 3010A ⁵
Selenium	< 10	10	ug/l	1	06/07/12	06/20/12 BL	SW846 6010C ³	SW846 3010A ⁵
Silver	< 10	10	ug/I	1	06/07/12	06/20/12 BL	SW846 6010C ³	SW846 3010A ⁵
Sodium	70600	10000	ug/l	1	06/07/12	06/20/12 BL	SW846 6010C ³	SW846 3010A ⁵
Thallium	< 1.0	1.0	ug/l	2	06/07/12	06/15/12 RP	SW846 6020A ²	SW846 3010A ⁶
Vanadium	< 50	50	ug/l	1	06/07/12	06/20/12 BL	SW846 6010C ³	SW846 3010A ⁵
Zinc	< 20	20	ug/l	1	06/07/12	06/20/12 BL	SW846 6010C ³	SW846 3010A ⁵

(1) Instrument QC Batch: MA28776 (2) Instrument QC Batch: MA28804

(3) Instrument QC Batch: MA28824

(4) Instrument QC Batch: MA28844

(5) Prep QC Batch: MP64858 (6) Prep QC Batch: MP64858A

(7) Prep QC Batch: MP64939

Report of Analysis

Client Sample ID: MW-9 Lab Sample ID:

JB8123-1

AQ - Ground Water

Date Sampled: 06/05/12 Date Received: 06/06/12

Project:

Matrix:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Percent Solids: n/a

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent Chromium, Trivalent ^a	< 0.010 < 0.020	0.010 0.020	mg/l mg/l	1	06/06/12 10:25 06/20/12 03:39		SW846 7196A SW846 6010/7196A M

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

Lab Sample ID: JB8123-2

Matrix: Method: AQ - Ground Water

SW846 8260B

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Date Sampled: Date Received:

06/05/12 06/06/12

Percent Solids: n/a

		~~~~					
	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	2B96419.D	1	06/07/12	DR	n/a	n/a	V2B4353
Run #2			9				

Purge Volume

Run #1 Run #2 5.0 ml

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.3	ug/l	
71-43-2	Benzene	ND	1.0	0.24	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.14	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.30	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.21	ug/l	
75-25-2	Bromoform	ND	4.0	0.21	ug/l	
74-83-9	Bromomethane	ND 10	2.0	0.22	ug/l	
78-93-3	2-Butanone (MEK)	ND 📏	10	2.4	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	0.17	ug/I	
135-98-8	sec-Butylbenzene	ND	5.0	0.21	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	0.30	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.22	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.23	ug/l	
75-00-3	Chloroethane	ND	1.0	0.26	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
74-87-3	Chloromethane	ND	1.0	0.21	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	0.15	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.30	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	10	0.54	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.14	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.20	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.22	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.30	ug/l	
75-71-8	Dichlorodifluoromethane	ND	5.0	0.27	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.11	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.26	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.19	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.19	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.21	ug/I	
78-87-5	1,2-Dichloropropane	ND	1.0	0.48	ug/l	
142-28-9	1,3-Dichloropropane	ND	5.0	0.23	ug/I	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Lab Sample ID: JB8123-2

Matrix: Method:

AQ - Ground Water

SW846 8260B

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Date Sampled: 0
Date Received: 0

06/05/12 06/06/12

Percent Solids: n/a

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7	2,2-Dichloropropane	ND	5.0	0.15	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	0.30	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.19	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.23	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.24	ug/l	
98-82-8	Isopropylbenzene	ND	2.0	0.45	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	0.22	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.16	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	0.83	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.26	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.70	ug/l	
91-20-3	Naphthalene	ND	5.0	1.1	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	0.24	ug/l	
100-42-5	Styrene	ND	5.0	0.21	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.24	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.28	ug/l	
108-88-3	Toluene	ND	1.0	0.23	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	0.28	ug/I	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.20	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.24	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.29	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.22	ug/l	
75-69-4	Trichlorofluoromethane	ND	5.0	0.27	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.53	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.19	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.36	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.21	ug/I	
	m,p-Xylene	ND	1.0	0.42	ug/l	
95-47-6	o-Xylene	ND	1.0	0.24	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.24	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7	Dibromofluoromethane	101%		81-1	21%	
17060-07-0	1,2-Dichloroethane-D4	103%		74-1	27%	
2037-26-5	Toluene-D8	103%		80-1	22%	
460-00-4	4-Bromofluorobenzene	95%		78-1	16%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

By

KH

Client Sample ID: MW-7 Lab Sample ID: JB8123-2

Matrix:

AQ - Ground Water

Method: Project:

SW846 8270D SW846 3510C

Date Sampled: Date Received:

06/05/12 06/06/12

Percent Solids: n/a

Via Verde, 700-730 Brook Avenue, Bronx, NY

File ID Run #1 3P10862.D

DF 1

Analyzed 06/08/12

Prep Date 06/07/12

Prep Batch OP57515

Analytical Batch

E3P504

Run #2

Initial Volume Final Volume

970 ml

1.0 ml

Run #1 Run #2

ABN TCL List (CLP4.2 list)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.2	1.0	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.2	1.9	ug/l	
120-83-2	2,4-Dichlorophenol	ND	5.2	1.2	ug/I	
105-67-9	2,4-Dimethylphenol	ND	5.2	1.6	ug/l	
51-28-5	2,4-Dinitrophenol	ND	21	17	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	21	1.0	ug/l	
95-48-7	2-Methylphenol	ND	2.1	1.1	ug/l	
	3&4-Methylphenol	ND	2.1	0.95	ug/l	
88-75-5	2-Nitrophenol	ND	5.2	1.5	ug/l	
100-02-7	4-Nitrophenol	ND	10	5.4	ug/l	
87-86-5	Pentachlorophenol	ND	10	1.4	ug/l	
108-95-2	Phenol	ND	2.1	1.3	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.2	1.6	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.2	1.3	ug/l	
83-32-9	Acenaphthene	ND	1.0	0.27	ug/l	
208-96-8	Acenaphthylene	ND	1.0	0.24	ug/l	
98-86-2	Acetophenone	ND	2.1	0.29	ug/l	
120-12-7	Anthracene	ND	1.0	0.30	ug/l	
1912-24-9	Atrazine	ND	5.2	0.50	ug/l	
100-52-7	Benzaldehyde	ND	5.2	3.4	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.0	0.23	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.0	0.23	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.47	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.33	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.52	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.1	0.37	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.1	0.30	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.0	0.31	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.1	0.31	ug/l	
106-47-8	4-Chloroaniline	ND	5.2	0.54	ug/l	
86-74-8	Carbazole	ND	1.0	0.37	ug/l	
105-60-2	Caprolactam	ND	2.1	0.71	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Lab Sample ID: JB8123-2

Matrix: Method: AQ - Ground Water

SW846 8270D SW846 3510C

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Date Sampled: 06/05/12

Date Received: 06/06/12

Percent Solids: n/a

ABN TCL List (CLP4.2 list)

CAS No.	Compound	Result	RL	MDL	Units	Q
218-01-9	Chrysene	ND	1.0	0.30	ug/l	
111-91-1	bis (2-Chloroethoxy) methane	ND	2.1	0.32	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.1	0.32	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.1	0.47	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.1	0.32	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	2.1	0.44	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	2.1	0.48	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.2	0.37	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.39	ug/l	
132-64-9	Dibenzofuran	ND	5.2	0.27	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.1	0.57	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.1	0.32	ug/l	
84-66-2	Diethyl phthalate	ND	2.1	0.34	ug/l	
131-11-3	Dimethyl phthalate	ND	2.1	0.29	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.1	0.60	ug/l	
206-44-0	Fluoranthene	ND	1.0	0.33	ug/l	
86-73-7	Fluorene	ND	1.0	0.29	ug/l	
118-74-1	Hexachlorobenzene	ND	1.0	0.35	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.0	0.53	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	7.3	ug/l	
67-72-1	Hexachloroethane	ND	2.1	0.57	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.39	ug/I	
78-59-1	Isophorone	ND	2.1	0.28	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.0	0.40	ug/l	
88-74-4	2-Nitroaniline	ND	5.2	1.1	ug/l	
99-09-2	3-Nitroaniline	ND	5.2	1.3	ug/l	
100-01-6	4-Nitroaniline	ND	5.2	1.7	ug/l	
91-20-3	Naphthalene	ND	1.0	0.27	ug/l	
98-95-3	Nitrobenzene	ND	2.1	0.43	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.1	0.31	ug/I	
86-30-6	N-Nitrosodiphenylamine	ND	5.2	0.31	ug/l	
85-01-8	Phenanthrene	ND	1.0	0.30	ug/l	
129-00-0	Pyrene	ND	1.0	0.28	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
367-12-4	2-Fluorophenol	44%		10-8	3%	
4165-62-2	Phenol-d5	33%		10-7	4%	
118-79-6	2,4,6-Tribromophenol	95%		24-148%		
4165-60-0	Nitrobenzene-d5	77%		38-1	29%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

6.0

Client Sample ID: MW-7 Lab Sample ID: JB8123-2

Matrix:

AQ - Ground Water

Method:

SW846 8270D SW846 3510C

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Date Sampled:

06/05/12

Date Received:

06/06/12

Percent Solids: n/a

ABN TCL List (CLP4.2 list)

CAS No.

Surrogate Recoveries

Run# 1

Run# 2

Limits

321-60-8

2-Fluorobiphenyl

79%

42-117%

1718-51-0

Terphenyl-d14

102%

14-132%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Lab Sample ID:

JB8123-2

Matrix:

AQ - Ground Water

Method: Project:

SW846 8082A SW846 3510C

Via Verde, 700-730 Brook Avenue, Bronx, NY

Date Sampled: 06/05/12

Date Received: 06/06/12

Percent Solids: n/a

			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
Run #1	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1 Run #2	2G68141.D	1	06/08/12	AZ	06/06/12	OP57508	G2G2387

Initial Volume Final Volume

1000 ml

10.0 ml

Run #1 Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 11100-14-4	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1268	ND ND ND ND ND ND ND	0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.13 0.27 0.39 0.086 0.15 0.14 0.21 0.13	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	
37324-23-5 CAS No. 877-09-8 877-09-8 2051-24-3 2051-24-3	Aroclor 1262 Surrogate Recoveries Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl Decachlorobiphenyl	ND Run# 1 90% 90% 54% 64%	0.50 Run# 2	0.060 Limi 27-14 27-14 10-13	14% 14% 39%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

# Report of Analysis

Client Sample ID: MW-7 Lab Sample ID:

JB8123-2

Matrix:

AQ - Ground Water

Date Sampled: 06/05/12

Date Received: 06/06/12

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

#### Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	< 200	200	ug/l	1	06/07/12	06/20/12 BL	SW846 6010C ³	SW846 3010A ⁵
Antimony	< 1.0	1.0	ug/l	2	06/07/12	06/15/12 RP	SW846 6020A ²	SW846 3010A ⁶
Arsenic	< 3.0	3.0	ug/l	1	06/07/12	06/20/12 BL	SW846 6010C ³	SW846 3010A ⁵
Barium	< 200	200	ug/l	1	06/07/12	06/20/12 BL	SW846 6010C ³	SW846 3010A ⁵
Beryllium	< 1.0	1.0	ug/l	1	06/07/12	06/20/12 BL	SW846 6010C ³	SW846 3010A ⁵
Cadmium	< 3.0	3.0	ug/l	1	06/07/12	06/20/12 BL	SW846 6010C ³	SW846 3010A ⁵
Calcium	156000	5000	ug/l	1	06/07/12	06/20/12 BL	SW846 6010C ³	SW846 3010A ⁵
Chromium	< 10	10	ug/l	1	06/07/12	06/20/12 BL	SW846 6010C ³	SW846 3010A ⁵
Cobalt	< 50	50	ug/l	1	06/07/12	06/20/12 BL	SW846 6010C ³	SW846 3010A ⁵
Copper	< 10	10	ug/l	1	06/20/12	06/21/12 BL	SW846 6010C ⁴	SW846 3010A ⁵
Iron	426	100	ug/l	1	06/07/12	06/20/12 BL	SW846 6010C ³	SW846 3010A ⁵
Lead	< 3.0	3.0	ug/l	1	06/07/12	06/20/12 BL	SW846 6010C ³	SW846 3010A ⁵
Magnesium	32000	5000	ug/l	1	06/07/12	06/20/12 BL	SW846 6010C ³	SW846 3010A ⁵
Manganese	39.8	15	ug/l	1	06/07/12	06/20/12 BL	SW846 6010C ³	SW846 3010A ⁵
Mercury	< 0.20	0.20	ug/l	1	06/12/12	06/12/12 JW	SW846 7470A ¹	SW846 7470A ⁷
Nickel	< 10	10	ug/l	1	06/07/12	06/20/12 BL	SW846 6010C ³	SW846 3010A ⁵
Potassium	< 10000	10000	ug/l	1	06/07/12	06/20/12 BL	SW846 6010C ³	SW846 3010A ⁵
Selenium	< 10	10	ug/l	1	06/07/12	06/20/12 BL	SW846 6010C ³	SW846 3010A-5
Silver	< 10	10	ug/I	1	06/07/12	06/20/12 BL	SW846 6010C ³	SW846 3010A ⁵
Sodium	72200	10000	ug/l	1	06/07/12	06/20/12 BL	SW846 6010C ³	SW846 3010A ⁵
Thallium	< 1.0	1.0	ug/l	2	06/07/12	06/15/12 RP	SW846 6020A ²	SW846 3010A ⁶
Vanadium	< 50	50	ug/l	1	06/07/12	06/20/12 BL	SW846 6010C ³	SW846 3010A ⁵
Zinc	< 20	20	ug/l	1	06/07/12	06/20/12 BL	SW846 6010C ³	SW846 3010A ⁵

(1) Instrument QC Batch: MA28776 (2) Instrument QC Batch: MA28804 (3) Instrument QC Batch: MA28824(4) Instrument QC Batch: MA28844 (5) Prep QC Batch: MP64858 (6) Prep QC Batch: MP64858A (7) Prep QC Batch: MP64939



ü

Client Sample ID: MW-7 Lab Sample ID: JB8123-2

Dao Samp Matrix:

AQ - Ground Water

Date Sampled: 06/05/12

Date Received: 06/06/12

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Percent Solids: n/a

#### General Chemistry

Änalyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent	< 0.010	0.010	mg/l	1	06/06/12 10:44		SW846 7196A
Chromium, Trivalent ^a	< 0.020	0.020	mg/l	1	06/20/12 03:28	BL	SW846 6010/7196A M

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

same many property and

Client Sample ID: MW-8 Lab Sample ID: JB8258-1

Matrix: Method: AQ - Ground Water

SW846 8260B

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Date Sampled: Date Received:

06/06/12 06/07/12

Percent Solids: n/a

Prep Batch

Run #2

File ID Run #1 U159881.D DF 1

Analyzed Ву 06/18/12 MS Prep Date n/a

n/a

Analytical Batch VU7436

Purge Volume

Run #1

5.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	19:6 MC	10	3.3	ug/l	
71-43-2	Benzene	1.3	1.0	0.24	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.14	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.30	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.21	ug/l	
75-25-2	Bromoform	ND	4.0	0.21	ug/l	
74-83-9	Bromomethane	ND	2.0	0.22	ug/l	
78-93-3	2-Butanone (MEK)	7.4	10	2.4	ug/l	J
104-51-8	n-Butylbenzene	5.2	5.0	0.17	ug/l	•
135-98-8	sec-Butylbenzene	4.8	5.0	0.21	ug/I	I
98-06-6	tert-Butylbenzene	0.90	5.0	0.30	ug/l	J
56-23-5	Carbon tetrachloride	ND	1.0	0.22	ug/l	Ū
108-90-7	Chlorobenzene	ND	1.0	0.23	ug/l	
75-00-3	Chloroethane	ND	1.0	0.26	ug/I	
67-66-3	Chloroform	ND	1.0	0.20	ug/I	
74-87-3	Chloromethane	ND	1.0	0.21	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	0.15	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.30	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	10	0.54	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.14	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.20	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.22	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.30	ug/l	
75-71-8	Dichlorodifluoromethane	ND	5.0	0.27	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.11	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.26	ug/I	
75-35-4	1,1-Dichloroethene	ND	1.0	0.19	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.19	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.21	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.48	ug/l	
142-28-9	1,3-Dichloropropane	ND	5.0	0.23	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank





# Report of Analysis

Client Sample ID: MW-8 Lab Sample ID: JB8258-1

Matrix: Method:

Project:

AQ - Ground Water SW846 8260B

Via Verde, 700-730 Brook Avenue, Bronx, NY

Date Sampled: 06/06/12 Date Received:

06/07/12

Percent Solids: n/a

#### VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7	2,2-Dichloropropane	ND	5.0	0.15	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	0.30	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.19	ug/l	
100-41-4	Ethylbenzene	170	1.0	0.23	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.24	ug/l	
98-82-8	Isopropylbenzene	22.7	2.0	0.45	ug/l	
99-87-6	p-Isopropyltoluene	0.98	5.0	0.22	ug/l	J
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.16	ug/l	J
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	0.83	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.26	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.70	ug/l	
91-20-3	Naphthalene	3.4	5.0	1.1	ug/l	J
103-65-1	n-Propylbenzene	45.3	5.0	0.24	ug/l	J
100-42-5	Styrene	ND	5.0	0.21	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.24	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.28	ug/l	
108-88-3	Toluene	6.6	1.0	0.23	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	0.28	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.20	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.24	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.29	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.22	ug/l	
75-69-4	Trichlorofluoromethane	ND	5.0	0.27	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.53	ug/I	
95-63-6	1,2,4-Trimethylbenzene	18.2	2.0	0.19	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.36	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.21	ug/l	
	m,p-Xylene	17.0	1.0	0.42	ug/l	
95-47-6	o-Xylene	3,8	1.0	0.24	ug/l	
1330-20-7	Xylene (total)	20.8	1.0	0.24	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	94%		81-12	21%	
17060-07-0	1,2-Dichloroethane-D4	89%		74-12		
2037-26-5	Toluene-D8	98%		80-12		
460-00-4	4-Bromofluorobenzene	89%		78-11		

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



Client Sample ID: MW-8 Lab Sample ID: JB8258-1

Matrix: Method: AQ - Ground Water

SW846 8270D SW846 3510C

Date Sampled: Date Received:

06/06/12 06/07/12

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

File ID DF Analyzed Ву Prep Date Prep Batch Analytical Batch Run #1 2M44507.D 1 06/12/12 OYA 06/07/12 OP57541 E2M1917 Run #2

Initial Volume Final Volume 950 ml

1.0 ml

Run #1 Run #2

ABN TCL List (CLP4.2 list)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.3	1.0	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.3	1.9	ug/l	
120-83-2	2,4-Dichlorophenol	ND	5.3	1.2	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.3	1.6	ug/l	
51-28-5	2,4-Dinitrophenol	ND	21	17	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	21	1.0	ug/l	
95-48-7	2-Methylphenol	ND	2.1	1.1	ug/I	
	3&4-Methylphenol	ND	2.1	0.97	ug/l	
88-75-5	2-Nitrophenol	ND	5.3	1.6	ug/l	
100-02-7	4-Nitrophenol	ND	11	5.5	ug/l	
87-86-5	Pentachlorophenol	ND	11	1.5	ug/l	
108-95-2	Phenol	ND	2.1	1.3	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.3	1.6	ug/I	
88-06-2	2,4,6-Trichlorophenol	ND	5.3	1.4	ug/l	
83-32-9	Acenaphthene	0.61	1.1	0.28	ug/l	J
208-96-8	Acenaphthylene	ND	1.1	0.24	ug/l	_
98-86-2	Acetophenone	ND	2.1	0.30	ug/l	
120-12-7	Anthracene	ND	1.1	0.30	ug/l	
1912-24-9	Atrazine	ND	5.3	0.51	ug/I	
100-52-7	Benzaldehyde	ND	5.3	3.4	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.1	0.24	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.1	0.24	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.48	ug/I	
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.34	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.54	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.1	0.38	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.1	0.30	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.1	0.32	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.1	0.31	ug/l	
106-47-8	4-Chloroaniline	ND	5.3	0.56	ug/l	
86-74-8	Carbazole	ND	1.1	0.38	ug/l	
105-60-2	Caprolactam	ND	2.1	0.73	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



Client Sample ID: MW-8 Lab Sample ID: JB8258-1

Matrix:

AQ - Ground Water

Method:

SW846 8270D SW846 3510C

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Date Sampled: 06/06/12 Date Received: 06/07/12

Percent Solids: n/a

#### ABN TCL List (CLP4.2 list)

CAS No.	Compound	Result	RL	MDL	Units	Q
218-01-9	Chrysene	ND	1.1	0.30	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.1	0.32	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.1	0.32	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.1	0.48	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	NĎ	2.1	0.33	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	2.1	0.45	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	2.1	0.49	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.3	0.38	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.40	ug/l	
132-64-9	Dibenzofuran	0.47	5.3	0.28	ug/I	J
84-74-2	Di-n-butyl phthalate	ND	2.1	0.58	ug/l	J
117-84-0	Di-n-octyl phthalate	ND	2.1	0.32	ug/l	
84-66-2	Diethyl phthalate	ND	2.1	0.34	ug/I	
131-11-3	Dimethyl phthalate	ND	2.1	0.30	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.1	0.62	ug/l	
206-44-0	Fluoranthene	0.57	1.1	0.33	ug/l	J
86-73-7	Fluorene	0.51	1.1	0.29	ug/l	Ĵ
118-74-1	Hexachlorobenzene	ND	1.1	0.36	ug/l	3
87-68-3	Hexachlorobutadiene	ND	1.1	0.54	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	11	7.5	ug/l	
67-72-1	Hexachloroethane	ND	2.1	0.58	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.39	ug/l	
78-59-1	Isophorone	ND	2.1	0.29	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.1	0.40	ug/l	
88-74-4	2-Nitroaniline	ND	5.3	1.2	ug/l	
99-09-2	3-Nitroaniline	ND	5.3	1.3	ug/l	
100-01-6	4-Nitroaniline	ND	5.3	1.7	ug/l	
91-20-3	Naphthalene	2.2	1.1	0.27	ug/l	
98-95-3	Nitrobenzene	ND	2.1	0.44	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.1	0.32	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.3	0.32	ug/l	
85-01-8	Phenanthrene	0.92	1.1	0.31	ug/l	J
129-00-0	Pyrene	0.42	1.1	0.28	ug/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	24%		10-8	3%	
4165-62-2	Phenol-d5	20%		10-7	4%	
118-79-6	2,4,6-Tribromophenol	59%		24-1	48%	
4165-60-0	Nitrobenzene-d5	96%		38-1	29%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank





Client Sample ID: MW-8 Lab Sample ID: JB8258-1

Lab Sample ID: Matrix:

AQ - Ground Water

Method:

SW846 8270D SW846 3510C

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Date Sampled: 06/06/12 Date Received: 06/07/12

Percent Solids: n/a

ABN TCL List (CLP4.2 list)

CAS No.

Surrogate Recoveries

Run# 1

Run#2

Limits

321-60-8

2-Fluorobiphenyl

86%

42-117%

1718-51-0

Terphenyl-d14

97%

14-132%

ND = Not detected

RL = Reporting Limit E = Indicates value exceeds calibration range

MDL - Method Detection Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



Client Sample ID: MW-8 Lab Sample ID: JB8258-1

Matrix:

AQ - Ground Water

Method: Project:

NAW DOLG. PROMINE

SW846 8082A SW846 3510C

Via Verde, 700-730 Brook Avenue, Bronx, NY

Date Sampled:

06/06/12 Date Received: 06/07/12

Percent Solids: n/a

File ID DF Analyzed Prep Date Analytical Batch Ву Prep Batch Run #1 5G1754.D 1 06/12/12 ΑZ 06/08/12 OP57555 G5G37

Run #2

Initial Volume 950 ml

Final Volume 10.0 ml

Run #1 Run #2

**PCB** List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	0.53	0.13	ug/l	
11104-28-2	Aroclor 1221	ND	0.53	0.29	ug/l	
11141-16-5	Aroclor 1232	ND	0.53	0.41	ug/l	
53469-21-9	Aroclor 1242	ND	0.53	0.091	ug/l	
12672-29-6	Aroclor 1248	ND	0.53	0.15	ug/l	
11097-69-1	Aroclor 1254	ND	0.53	0.15	ug/l	
11096-82-5	Aroclor 1260	ND	0.53	0.22	ug/l	
11100-14-4	Aroclor 1268	ND	0.53	0.14	ug/l	
37324-23-5	Aroclor 1262	ND	0.53	0.063	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	88%		27-1	44%	
877-09-8	Tetrachloro-m-xylene	89%			44%	
2051-24-3	Decachlorobiphenyl	69%			39%	
2051-24-3	Decachlorobiphenyl	87%			39%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



#### Page 1 of 1

# Report of Analysis

Client Sample ID: MW-8 Lab Sample ID:

JB8258-1

Matrix:

AQ - Ground Water

Date Sampled:

06/06/12

Date Received: 06/07/12

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Percent Solids: n/a

#### Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	2800 🧷	200	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Antimony	< 1.0	1.0	ug/l	2	06/08/12	06/20/12 VC	SW846 6020A ⁴	SW846 3010A ⁶
Arsenic	8.7	3.0	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Barium	< 200	200	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Beryllium	< 1.0	1.0	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Cadmium	< 3.0	3.0	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Calcium	153000 🎵	5000	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Chromium	15.7 J	10	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Cobalt	< 50	50	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Copper	17.4	10	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Iron	8970	100	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Lead	11.8 🥒	3.0	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Magnesium	34800	5000	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Manganese	3220	15	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Mercury	< 0.20	0.20	ug/l	1	06/13/12	06/13/12 DP	SW846 7470A ²	SW846 7470A ⁷
Nickel	13.9	10	ug/l	1	06/08/12	06/19/12 BL	SW846 6010C ³	SW846 3010A ⁵
Potassium	< 10000	10000	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Selenium	< 10	10	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Silver	< 10	10	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Sodium	86900	10000	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Thallium	< 1.0	1.0	ug/l	2	06/08/12	06/20/12 VC	SW846 6020A ⁴	SW846 3010A ⁶
Vanadium	< 50	50	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Zinc	23.6	20	ug/l	1	06/08/12	06/19/12 BL	SW846 6010C ³	SW846 3010A ⁵

(1) Instrument QC Batch: MA28762 (2) Instrument QC Batch: MA28791 (3) Instrument QC Batch: MA28824 (4) Instrument QC Batch: MA28839 (5) Prep QC Batch: MP64879

(6) Prep QC Batch: MP64879A (7) Prep QC Batch: MP64953

fa(9/6/12

Client Sample ID: MW-8 Lab Sample ID: JB8258-1

Matrix:

AQ - Ground Water

Date Sampled: 06/06/12

Date Received: 06/07/12

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

#### General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent Chromium, Trivalent ^a	< 0.010 < 0.020	0.010 0.020	mg/l mg/l	poort proof	06/07/12 10:09 06/10/12 10:23		SW846 7196A SW846 6010/7196A M

Report of Analysis

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)



Client Sample ID: MW-6 Lab Sample ID: JB8258-2

Matrix:

AQ - Ground Water

SW846 8260B

Date Sampled: 06/06/12 Date Received: 06/07/12

Percent Solids: n/a

Method: Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	U159677.D	1	06/13/12	MS	n/a	n/a	VU7427

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units (	)
67-64-1	Acetone	ND	10	3.3	ug/l	
71-43-2	Benzene	ND	1.0	0.24	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.14	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.30	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.21	ug/l	
75-25-2	Bromoform	ND	4.0	0.21	ug/I	
74-83-9	Bromomethane	ND	2.0	0.22	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.4	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	0.17	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	0.21	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	0.30	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.22	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.23	ug/l	
75-00-3	Chloroethane	ND	1.0	0.26	ug/l	
67-66-3	Chloroform	2.9	1.0	0.20	ug/l	
74-87-3	Chloromethane	ND	1.0	0.21	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	0.15	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.30	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	10	0.54	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.14	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.20	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.22	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.30	ug/l	
75-71-8	Dichlorodifluoromethane	ND	5.0	0.27	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.11	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.26	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.19	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.19	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.21	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.48	ug/l	
142-28-9	1,3-Dichloropropane	ND	5.0	0.23	ug/l	
	* *	-28-18-18-18-18-18-18-18-18-18-18-18-18-18			S	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



#### Page 2 of 2

Client Sample ID: MW-6 Lab Sample ID: JB8258-2

Matrix: Method:

Project:

AQ - Ground Water

SW846 8260B

Via Verde, 700-730 Brook Avenue, Bronx, NY

Report of Analysis

Date Sampled: Date Received:

06/06/12 06/07/12

Percent Solids: n/a

#### VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7	2,2-Dichloropropane	ND	5.0	0.15	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	0.30	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.19	ug/l	
100-41-4	Ethylbenzene	0.23	1.0	0.23	ug/l	J
87-68-3	Hexachlorobutadiene	ND	5.0	0.24	ug/l	J
98-82-8	Isopropylbenzene	ND	2.0	0.45	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	0.22	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.16	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	0.83	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.26	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.70	ug/l	
91-20-3	Naphthalene	ND	5.0	1.1	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	0.24	ug/l	
100-42-5	Styrene	ND	5.0	0.21	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.24	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.28	ug/l	
108-88-3	Toluene	ND	1.0	0.23	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	0.28	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.20	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.24	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.29	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.22	ug/l	
75-69-4	Trichlorofluoromethane	ND	5.0	0.27	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.53	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.19	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.36	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.21	ug/l	
	m,p-Xylene	ND	1.0	0.42	ug/I	
95-47-6	o-Xylene	ND	1.0	0.24	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.24	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	94%		81-12	21%	
17060-07-0	56-66-90-93-56-05-55-55-55-55-55-55-55-55-55-55-55-55-		27%			
2037-26-5	Toluene-D8	96%		80-12	22%	
460-00-4	4-Bromofluorobenzene	95%		78-1	16%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



#### Accutest Laboratories

# Report of Analysis

Page 1 of 3

Client Sample ID: MW-6

Lab Sample ID: JB8258-2

Matrix: Method: Project:

AQ - Ground Water

SW846 8270D SW846 3510C

Via Verde, 700-730 Brook Avenue, Bronx, NY

Date Sampled:

06/06/12 Date Received: 06/07/12

Percent Solids: n/a

File ID DF Analyzed Prep Date By

Prep Batch Analytical Batch Run #1 2M44508.D 1 06/12/12 OYA 06/07/12 OP57541 E2M1917 Run #2

Initial Volume Final Volume

840 ml

Run #1 Run #2

1.0 ml

#### ABN TCL List (CLP4.2 list)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	6.0	1.2	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	6.0	2.2	ug/l	
120-83-2	2,4-Dichlorophenol	ND	6.0	1.4	ug/l	
105-67-9	2,4-Dimethylphenol	ND	6.0	1.8	ug/l	
51-28-5	2,4-Dinitrophenol	ND	24	20	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	24	1.2	ug/l	
95-48-7	2-Methylphenol	ND	2.4	1.2	ug/l	
	3&4-Methylphenol	ND	2.4	1.1	ug/l	
88-75-5	2-Nitrophenol	ND	6.0	1.8	ug/l	
100-02-7	4-Nitrophenol	ND	12	6.2	ug/l	
87-86-5	Pentachlorophenol	ND	12	1.7	ug/I	
108-95-2	Phenol	ND	2.4	1.5	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	6.0	1.9	ug/I	
88-06-2	2,4,6-Trichlorophenol	ND	6.0	1.5	ug/l	
83-32-9	Acenaphthene	ND	1.2	0.31	ug/I	
208-96-8	Acenaphthylene	ND	1.2	0.27	ug/l	
98-86-2	Acetophenone	ND	2.4	0.34	ug/l	
120-12-7	Anthracene	ND	1.2	0.34	ug/l	
1912-24-9	Atrazine	ND	6.0	0.58	ug/l	
100-52-7	Benzaldehyde	ND	6.0	3.9	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.2	0.27	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.2	0.27	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.2	0.54	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.2	0.38	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.2	0.61	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.4	0.43	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.4	0.34	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.2	0.36	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.4	0.35	ug/l	
106-47-8	4-Chloroaniline	ND	6.0	0.63	ug/l	
86-74-8	Carbazole	ND	1.2	0.43	ug/l	
105-60-2	Caprolactam	ND	2.4	0.82	ug/l	

ND = Not detected

 $\ensuremath{\mathsf{MDL}}$  - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



Client Sample ID: MW-6 Lab Sample ID: JB8258-2

Matrix: Method: AQ - Ground Water

SW846 8270D SW846 3510C

Project: Via Verde, 700-730 Brook Avenue, Bronx, NY

06/06/12 Date Sampled: Date Received: 06/07/12

Percent Solids: n/a

#### ABN TCL List (CLP4.2 list)

CAS No.	Compound	Result	RL	MDL	Units	Q
218-01-9	Chrysene	ND	1.2	0.34	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.4	0.37	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.4	0.37	ug/l	
108-60-1	bis (2-Chloroisopropyl) ether	ND	2.4	0.54	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.4	0.37	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	2.4	0.51	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	2.4	0.55	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	6.0	0.43	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.2	0.45	ug/l	
132-64-9	Dibenzofuran	ND	6.0	0.32	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.4	0.66	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.4	0.37	ug/l	
84-66-2	Diethyl phthalate	ND	2.4	0.39	ug/l	
131-11-3	Dimethyl phthalate	ND	2.4	0.34	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.4	0.70	ug/l	
206-44-0	Fluoranthene	ND	1.2	0.38	ug/l	
86-73-7	Fluorene	ND	1.2	0.33	ug/l	
118-74-1	Hexachlorobenzene	ND	1.2	0.40	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.2	0.61	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	12	8.5	ug/l	
67-72-1	Hexachloroethane	ND	2.4	0.65	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.2	0.45	ug/l	
78-59-1	Isophorone	ND	2.4	0.33	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.2	0.46	ug/l	
88-74-4	2-Nitroaniline	ND	6.0	1.3	ug/l	
99-09-2	3-Nitroaniline	ND	6.0	1.5	ug/l	
100-01-6	4-Nitroaniline	ND	6.0	2.0	ug/l	
91-20-3	Naphthalene	ND	1.2	0.31	ug/l	
98-95-3	Nitrobenzene	ND	2.4	0.50	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.4	0.36	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	6.0	0.36	ug/l	
85-01-8	Phenanthrene	ND	1.2	0.35	ug/l	
129-00-0	Pyrene	ND	1.2	0.32	ug/I	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	26%		10-8	3%	
4165-62-2	Phenol-d5	22% 10-7				
118-79-6	2,4,6-Tribromophenol	58%			48%	
4165-60-0	Nitrobenzene-d5	86%		38-1	29%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



Client Sample ID: MW-6

Lab Sample ID: JB8258-2

Matrix:

AQ - Ground Water

SW846 8270D SW846 3510C

Method: Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Date Sampled: 06/06/12

Date Received: 06/07/12

Percent Solids: n/a

ABN TCL List (CLP4.2 list)

CAS No.

Surrogate Recoveries

Run# 1

Run# 2

Limits

321-60-8

 $2\hbox{-}Fluor obiphenyl\\$ 

80%

42-117%

1718-51-0 T

Terphenyl-d14

94%

14-132%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



#### **Accutest Laboratories**

# Report of Analysis

Page 1 of 1

Client Sample ID: MW-6

JB8258-2

Lab Sample ID:

Matrix: Method: AQ - Ground Water

DF

1

SW846 8082A SW846 3510C

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Analyzed

06/12/12

Date Sampled: 06/06/12 Date Received: 06/07/12

Percent Solids: n/a

Run #1 Run #2

File ID

37324-23-5 Aroclor 1262

5G1755.D

By AZ Prep Date 06/08/12

Prep Batch OP57555

Analytical Batch G5G37

Initial Volume 890 ml

Final Volume 10.0 ml

Run #1 Run #2

**PCB** List

CAS No.	Compound	Result	RL	MDL	Units	Q
	Aroclor 1016	ND		0.14	ug/l	

12074-11-2	Arocior 1016	ND	0.56	0.14	ug/l
11104-28-2	Aroclor 1221	ND	0.56	0.30	ug/l
11141-16-5	Aroclor 1232	ND	0.56	0.43	ug/l
53469-21-9	Aroclor 1242	ND	0.56	0.097	ug/l
12672-29-6	Aroclor 1248	ND	0.56	0.16	ug/I
11097-69-1	Aroclor 1254	ND	0.56	0.16	ug/l
11096-82-5	Aroclor 1260	ND	0.56	0.23	ug/l
11100-14-4	Aroclor 1268	ND	0.56	0.15	ug/l

ND

0.56

0.067

ug/l

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
877-09-8	Tetrachloro-m-xylene	96%		27-144%
877-09-8	Tetrachloro-m-xylene	110%		27-144%
2051-24-3	Decachlorobiphenyl	71%		10-139%
2051-24-3	Decachlorobiphenyl	87%		10-139%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



Client Sample ID: MW-6 Lab Sample ID:

JB8258-2

Matrix:

AQ - Ground Water

Date Sampled: 06/06/12

Date Received: 06/07/12 Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

#### Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum ^a	6900	200	ug/l	1	06/08/12	06/19/12 BL	SW846 6010C ³	SW846 3010A ⁵
Antimony	< 1.0	1.0	ug/l	2	06/08/12	06/20/12 VC	SW846 6020A ⁴	SW846 3010A 6
Arsenic	< 3.0	3.0	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Barium	< 200	200	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Beryllium	< 1.0	1.0	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A 5
Cadmium	< 3.0	3.0	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Calcium ^a	35200	5000	ug/l	1	06/08/12	06/19/12 BL	SW846 6010C ³	SW846 3010A ⁵
Chromium	184	10	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Cobalt	< 50	50	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Copper	20.3	10	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Iron ^a	9930	100	ug/l	1	06/08/12	06/19/12 BL	SW846 6010C ³	SW846 3010A ⁵
Lead	8.6	3.0	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Magnesium	8260	5000	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Manganese	232 J	15	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Mercury	< 0.20	0.20	ug/I	1	06/13/12	06/13/12 DP	SW846 7470A ²	SW846 7470A 7
Nickel ^a	88.4	10	ug/l	1	06/08/12	06/19/12 BL	SW846 6010C ³	SW846 3010A ⁵
Potassium	< 10000	10000	ug/I	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Selenium	< 10	10	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Silver	< 10	10	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Sodium	23400	10000	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Thallium	< 1.0	1.0	ug/l	2	06/08/12	06/20/12 VC	SW846 6020A ⁴	SW846 3010A ⁶
Vanadium	< 50	50	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Zinc ^a	44.7	20	ug/l	1	06/08/12	06/19/12 BL	SW846 6010C ³	SW846 3010A ⁵

(1) Instrument QC Batch: MA28762

(2) Instrument QC Batch: MA28791

(3) Instrument QC Batch: MA28824

(4) Instrument QC Batch: MA28839

(5) Prep QC Batch: MP64879

(6) Prep QC Batch: MP64879A

(7) Prep QC Batch: MP64953

(a) Elevated sample detection limit due to difficult sample matrix.

# Report of Analysis

Client Sample ID: MW-6 Lab Sample ID: JB8258-2

Matrix:

AQ - Ground Water

Date Sampled: 06/06/12

Date Received: 06/07/12

Percent Solids: n/a

Project:

 $Via\ Verde,\ 700-730\ Brook\ Avenue,\ Bronx,\ NY$ 

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent Chromium, Trivalent ^a	< 0.010 0.18	0.010 0.020	mg/l mg/l	passed board	06/07/12 10:28 06/10/12 10:29		SW846 7196A SW846 6010/7196A M

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

Client Sample ID: MW-XX Lab Sample ID: JB8258-3

Matrix: Method:

Project:

AQ - Ground Water

SW846 8260B Via Verde, 700-730 Brook Avenue, Bronx, NY Date Sampled: 06/06/12 Date Received: 06/07/12

Percent Solids: n/a

File ID DF Analyzed Ву Prep Date Prep Batch Analytical Batch Run #1 U159720.D 1 06/14/12 MS n/a n/a VU7429 Run #2

Purge Volume 5.0 ml

Run #1 Run #2

#### VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	26.4 1/	10	3.3	ug/l	
71-43-2	Benzene	1.3	1.0	0.24	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.14	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.30	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.21	ug/l	
75-25-2	Bromoform	ND	4.0	0.21	ug/l	
74-83-9	Bromomethane	ND	2.0	0.22	ug/l	
78-93-3	2-Butanone (MEK)	10.2	10	2.4	ug/l	
104-51-8	n-Butylbenzene	4.9	5.0	0.17	ug/l	J
135-98-8	sec-Butylbenzene	4.5	5.0	0.21	ug/l	Ĵ
98-06-6	tert-Butylbenzene	0.93	5.0	0.30	ug/l	J
56-23-5	Carbon tetrachloride	ND	1.0	0.22	ug/l	•
108-90-7	Chlorobenzene	ND	1.0	0.23	ug/l	
75-00-3	Chloroethane	0.95 🎶	1.0	0.26	ug/l	J
67-66-3	Chloroform	ND	1.0	0.20	ug/l	-
74-87-3	Chloromethane	0.80 //	1.0	0.21	ug/l	J
95-49-8	o-Chlorotoluene	ND	5.0	0.15	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.30	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	10	0.54	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.14	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.20	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.22	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.30	ug/l	
75-71-8	Dichlorodifluoromethane	ND	5.0	0.27	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.11	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.26	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.19	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.19	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.21	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.48	ug/l	
142-28-9	1,3-Dichloropropane	ND	5.0	0.23	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank





## Report of Analysis

Client Sample ID: MW-XX

Lab Sample ID: JB8258-3

Matrix:

AQ - Ground Water

Method: SW846 8260B Project: Via Verde, 700

Via Verde, 700-730 Brook Avenue, Bronx, NY

Date Sampled: 06/06/12

Date Received: 06/07/12

Percent Solids: n/a

#### VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q	
594-20-7	2,2-Dichloropropane	ND	5.0	0.15	ug/l		
563-58-6	1,1-Dichloropropene	ND	5.0	0.30	ug/l		
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.21	ug/l		
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.19	ug/l		
100-41-4	Ethylbenzene	162	1.0	0.23	ug/l		
87-68-3	Hexachlorobutadiene	ND	5.0	0.24	ug/l		
98-82-8	Isopropylbenzene	21.1	2.0	0.45	ug/l		
99-87-6	p-Isopropyltoluene	0.94	5.0	0.22	ug/l	J	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.16	ug/l	J	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	0.83	ug/l		
74-95-3	Methylene bromide	ND	5.0	0.26	ug/l		
75-09-2	Methylene chloride	ND	2.0	0.70	ug/l		
91-20-3	Naphthalene	3.9	5.0	1.1	ug/l	J	
103-65-1	n-Propylbenzene	41.9	5.0	0.24	ug/l	J	
100-42-5	Styrene	ND	5.0	0.21	ug/l		
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.24	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.28	ug/l		
108-88-3	Toluene	6.4	1.0	0.23	ug/l		
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	0.28	ug/l		
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.20	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.24	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.29	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.22	ug/l		
75-69-4	Trichlorofluoromethane	ND	5.0	0.27	ug/l		
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.53	ug/I		
95-63-6	1,2,4-Trimethylbenzene	16.6	2.0	0.19	ug/l		
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.36	ug/l		
75-01-4	Vinyl chloride	ND	1.0	0.21	ug/l		
	m,p-Xylene	16.3	1.0	0.42	ug/l		
95-47-6	o-Xylene	3.7	1.0	0.24	ug/l		
1330-20-7	Xylene (total)	20.0	1.0	0.24	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts		
1868-53-7	Dibromofluoromethane	95%		81-13	21%		
17060-07-0	1,2-Dichloroethane-D4	90%		74-13			
2037-26-5	Toluene-D8	100%		80-13	80-122%		
460-00-4	4-Bromofluorobenzene	90%		78-1	16%		

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound



Č)

#### Accutest Laboratories

# Report of Analysis

Ву

OYA

Prep Date

06/07/12

Page 1 of 3

Client Sample ID: Lab Sample ID:

MW-XX JB8258-3

Matrix:

AQ - Ground Water

DF

1

Date Sampled:

Date Received:

06/06/12 06/07/12

Method:

SW846 8270D SW846 3510C

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Analyzed

06/12/12

Prep Batch Analytical Batch OP57541 E2M1917

Run #1 Run #2

Final Volume

Initial Volume 1000 ml

File ID

2M44509.D

1.0 ml

Run #1 Run #2

ABN TCL List (CLP4.2 list)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.0	0.97	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.0	1.8	ug/l	
120-83-2	2,4-Dichlorophenol	ND	5.0	1.2	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.0	1.5	ug/l	
51-28-5	2,4-Dinitrophenol	ND	20	17	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	20	0.99	ug/l	
95-48-7	2-Methylphenol	ND	2.0	1.0	ug/l	
	3&4-Methylphenol	ND	2.0	0.93	ug/l	
88-75-5	2-Nitrophenol	ND	5.0	1.5	ug/l	
100-02-7	4-Nitrophenol	ND	10	5.2	ug/l	
87-86-5	Pentachlorophenol	ND	10	1.4	ug/l	
108-95-2	Phenol	ND	2.0	1.3	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.0	1.6	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.0	1.3	ug/l	
83-32-9	Acenaphthene	0.60	1.0	0.26	ug/l	J
208-96-8	Acenaphthylene	ND	1.0	0.23	ug/l	
98-86-2	Acetophenone	ND	2.0	0.29	ug/l	
120-12-7	Anthracene	ND	1.0	0.29	ug/l	
1912-24-9	Atrazine	ND	5.0	0.49	ug/l	
100-52-7	Benzaldehyde	ND	5.0	3.3	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.0	0.23	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.0	0.23	ug/l	
205-99-2	Benzo(b) fluoranthene	ND	1.0	0.46	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.32	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.51	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.36	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.0	0.29	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.0	0.30	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.0	0.30	ug/I	
106-47-8	4-Chloroaniline	ND	5.0	0.53	ug/l	
86-74-8	Carbazole	ND	1.0	0.36	ug/l	
105-60-2	Caprolactam	ND	2.0	0.69	ug/l	
					_	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



# Report of Analysis

Client Sample ID: MW-XX Lab Sample ID: JB8258-3

Matrix:

AQ - Ground Water

Method: Project:

SW846 8270D SW846 3510C

Via Verde, 700-730 Brook Avenue, Bronx, NY

Date Sampled: Date Received:

06/06/12 06/07/12

Percent Solids: n/a

#### ABN TCL List (CLP4.2 list)

CAS No.	Compound	Result	RL	MDL	Units	Q
218-01-9	Chrysene	ND	1.0	0.29	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.31	ug/l	
111-44-4	bis (2-Chloroethyl) ether	ND	2.0	0.31	ug/l	
108-60-1	bis (2-Chloroisopropyl) ether	ND	2.0	0.45	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.31	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	2.0	0.43	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	2.0	0.46	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.0	0.36	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.38	ug/l	
132-64-9	Dibenzofuran	ND	5.0	0.27	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.0	0.56	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.0	0.31	ug/l	
84-66-2	Diethyl phthalate	ND	2.0	0.33	ug/I	
131-11-3	Dimethyl phthalate	ND	2.0	0.28	ug/l	
117-81-7	bis (2-Ethylhexyl) phthalate	ND	2.0	0.59	ug/l	
206-44-0	Fluoranthene	0.50	1.0	0.32	ug/l	J
86-73-7	Fluorene	0.48	1.0	0.28	ug/l	J
118-74-1	Hexachlorobenzene	ND	1.0	0.34	ug/l	,
87-68-3	Hexachlorobutadiene	ND	1.0	0.51	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	7.1	ug/l	-
67-72-1	Hexachloroethane	ND	2.0	0.55	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.37	ug/l	
78-59-1	Isophorone	ND	2.0	0.27	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.0	0.38	ug/l	
88-74-4	2-Nitroaniline	ND	5.0	1.1	ug/l	
99-09-2	3-Nitroaniline	ND	5.0	1.3	ug/l	
100-01-6	4-Nitroaniline	ND	5.0	1.7	ug/l	
91-20-3	Naphthalene	1.1	1.0	0.26	ug/l	
98-95-3	Nitrobenzene	ND	2.0	0.42	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.30	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.31	ug/l	
85-01-8	Phenanthrene	0.89	1.0	0.29	ug/l	J
129-00-0	Pyrene	ND	1.0	0.27	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	30%		10-8	3%	
4165-62-2	Phenol-d5	22%		10-7	4%	
118-79-6	2,4,6-Tribromophenol	83%	24-1	24-148%		
4165-60-0	Nitrobenzene-d5	91%		38-1	29%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



Client Sample ID: MW-XX

Lab Sample ID: JB8258-3

Matrix: Method: AQ - Ground Water

AQ - Ground water

Project:

SW846 8270D SW846 3510C

Via Verde, 700-730 Brook Avenue, Bronx, NY

Date Sampled: 06/06/12 Date Received: 06/07/12

Percent Solids: n/a

ABN TCL List (CLP4.2 list)

CAS No.

Surrogate Recoveries

Run# 1

Run# 2

Limits

321-60-8

2-Fluorobiphenyl

81%

42-117%

1718-51-0

Terphenyl-d14

92%

14-132%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



# Report of Analysis

Page 1 of 1

Client Sample ID: MW-XX Lab Sample ID:

JB8258-3

Matrix:

AQ - Ground Water

DF

1

Date Sampled: 06/06/12

Method:

SW846 8082A SW846 3510C

Date Received: 06/07/12 Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Run #1

File ID 5G1780.D Analyzed Ву 06/12/12 HQ Prep Date 06/08/12

Prep Batch OP57555

Analytical Batch G5G38

Run #2

Final Volume

Run #1

Initial Volume 930 ml

Compound

10.0 ml

Run #2

PCB List CAS No.

Result	RL	MDL	Units	Q

12674-11-2	Aroclor 1016	ND	0.54	0.14	ug/l
11104-28-2	Aroclor 1221	ND	0.54	0.29	ug/l
11141-16-5	Aroclor 1232	ND	0.54	0.41	ug/l
53469-21-9	Aroclor 1242	ND	0.54	0.092	ug/l
12672-29-6	Aroclor 1248	ND	0.54	0.16	ug/l
11097-69-1	Aroclor 1254	ND	0.54	0.15	ug/l
11096-82-5	Aroclor 1260	ND	0.54	0.22	ug/l
11100-14-4	Aroclor 1268	ND	0.54	0.14	ug/l
37324-23-5	Aroclor 1262	ND	0.54	0.065	ug/l

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
877-09-8	Tetrachloro-m-xylene	116%		27-144%
877-09-8	Tetrachloro-m-xylene	121%		27-144%
2051-24-3	Decachlorobiphenyl	89%		10-139%
2051-24-3	Decachlorobiphenyl	111%		10-139%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



Client Sample ID: MW-XX

Lab Sample ID: JB8258-3

Matrix:

AQ - Ground Water

Date Sampled: 06/06/12 Date Received: 06/07/12

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

#### Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	3280	200	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Antimony	< 1.0	1.0	ug/l	2	06/08/12	06/20/12 VC	SW846 6020A ⁴	SW846 3010A 6
Arsenic	11,9 🕽	3.0	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Barium	< 200	200	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Beryllium	<1.0	1.0	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Cadmium	< 3.0	3.0	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A 5
Calcium	153000	5000	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Chromium	17.7 J	10	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Cobalt	< 50	50	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Copper	20.5	10	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Iron	9760	100	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Lead	13.8 J	3.0	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Magnesium	34800	5000	ug/I	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Manganese	3180 💚	15	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Mercury	< 0.20	0.20	ug/l	1	06/13/12	06/13/12 DP	SW846 7470A ²	SW846 7470A ⁷
Nickel	14.9	10	ug/l	1	06/08/12	06/19/12 BL	SW846 6010C ³	SW846 3010A ⁵
Potassium	< 10000	10000	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Selenium	< 10	10	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Silver	< 10	10	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Sodium	87900	10000	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Thallium	< 1.0	1.0	ug/l	2	06/08/12	06/20/12 VC	SW846 6020A ⁴	SW846 3010A ⁶
Vanadium	< 50	50	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Zinc	23.7	20	ug/l	1	06/08/12	06/19/12 BL	SW846 6010C ³	SW846 3010A ⁵

Instrument QC Batch: MA28762
 Instrument QC Batch: MA28791

(3) Instrument QC Batch: MA28824

(4) Instrument QC Batch: MA28839

(5) Prep QC Batch: MP64879 (6) Prep QC Batch: MP64879A (7) Prep QC Batch: MP64953





Client Sample ID: MW-XX Lab Sample ID: JB8258-3

Matrix:

AQ - Ground Water

Date Sampled: 06/06/12 Date Received: 06/07/12

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent ^a	< 0.010	0.010	mg/l	1	06/07/12 10:28		SW846 7196A
Chromium, Trivalent ^b	< 0.020	0.020	mg/l	1	06/10/12 10:35		SW846 6010/7196A M

(a) Analysis done out of holding time.

⁽b) Calculated as: (Chromium) - (Chromium, Hexavalent)

# Report of Analysis

Ву

MS

Prep Date

n/a

Page 1 of 2

Client Sample ID: FIELD BLANK 6/6/12

Lab Sample ID: Matrix:

JB8258-4

File ID

U159722.D

AQ - Field Blank Water

DF

1

Date Sampled:

06/06/12 Date Received: 06/07/12

Method:

SW846 8260B

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Analyzed

06/14/12

Analytical Batch Prep Batch VU7429 n/a

Run #1

Run #2

Purge Volume

Run #1  $5.0 \, \mathrm{ml}$ 

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	4.6	10	3.3	ug/l	J
71-43-2	Benzene	ND	1.0	0.24	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.14	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.30	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.21	ug/l	
75-25-2	Bromoform	ND	4.0	0.21	ug/l	
74-83-9	Bromomethane	ND	2.0	0.22	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.4	ug/I	
104-51-8	n-Butylbenzene	ND	5.0	0.17	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	0.21	ug/I	
98-06-6	tert-Butylbenzene	ND	5.0	0.30	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.22	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.23	ug/l	
75-00-3	Chloroethane	ND	1.0	0.26	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
74-87-3	Chloromethane	ND	1.0	0.21	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	0.15	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.30	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	10	0.54	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.14	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.20	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.22	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.30	ug/l	
75-71-8	Dichlorodifluoromethane	ND	5.0	0.27	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.11	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.26	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.19	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.19	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.21	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.48	ug/l	
142-28-9	1,3-Dichloropropane	ND	5.0	0.23	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank





Lab Sample ID:

JB8258-4

Matrix: Method: AQ - Field Blank Water

SW846 8260B

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Date Sampled: Date Received:

06/06/12 06/07/12

Percent Solids: n/a

#### VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7	2,2-Dichloropropane	ND	5.0	0.15	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	0.30	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.19	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.23	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.24	ug/l	
98-82-8	İsopropylbenzene	ND	2.0	0.45	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	0.22	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.16	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	0.83	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.26	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.70	ug/l	
91-20-3	Naphthalene	ND	5.0	1.1	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	0.24	ug/l	
100-42-5	Styrene	ND	5.0	0.21	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.24	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.28	ug/l	
108-88-3	Toluene	ND	1.0	0.23	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	0.28	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.20	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.24	ug/I	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.29	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.22	ug/l	
75-69-4	Trichlorofluoromethane	ND	5.0	0.27	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.53	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.19	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.36	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.21	ug/l	
	m,p-Xylene	ND	1.0	0.42	ug/l	
95-47-6	o-Xylene	ND	1.0	0.24	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.24	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	94%		81-17	21%	
17060-07-0	1,2-Dichloroethane-D4	89%		74-12	27%	
2037-26-5	Toluene-D8	99%		80-12	22%	
460-00-4	4-Bromofluorobenzene	98%		78-1	16%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



Lab Sample ID:

JB8258-4

Matrix:

AQ - Field Blank Water

SW846 8270D SW846 3510C

Method: Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Date Sampled: Date Received:

06/06/12 06/07/12

Percent Solids: n/a

Run #1	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #2	2M44449.D	1	06/08/12	OYA	06/07/12	OP57541	E2M1915
Kun #Z							

Initial Volume Final Volume Run #1 1000 ml 1.0 ml Run #2

ABN TCL List (CLP4.2 list)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.0	0.97	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.0	1.8	ug/l	
120-83-2	2,4-Dichlorophenol	ND	5.0	1.2	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.0	1.5	ug/l	
51-28-5	2,4-Dinitrophenol	ND	20	17	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	20	0.99	ug/I	
95-48-7	2-Methylphenol	ND	2.0	1.0	ug/l	
	3&4-Methylphenol	ND	2.0	0.93	ug/l	
88-75-5	2-Nitrophenol	ND	5.0	1.5	ug/l	
100-02-7	4-Nitrophenol	ND	10	5.2	ug/l	
87-86-5	Pentachlorophenol	ND	10	1.4	ug/l	
108-95-2	Phenol	ND	2.0	1.3	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.0	1.6	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.0	1.3	ug/l	
83-32-9	Acenaphthene	ND	1.0	0.26	ug/l	
208-96-8	Acenaphthylene	ND	1.0	0.23	ug/l	
98-86-2	Acetophenone	ND	2.0	0.29	ug/l	
120-12-7	Anthracene	ND	1.0	0.29	ug/l	
1912-24-9	Atrazine	ND	5.0	0.49	ug/l	
100-52-7	Benzaldehyde	ND	5.0	3.3	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.0	0.23	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.0	0.23	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.46	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.32	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.51	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.36	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.0	0.29	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.0	0.30	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.0	0.30	ug/l	
106-47-8	4-Chloroaniline	ND	5.0	0.53	ug/l	
86-74-8	Carbazole	ND	1.0	0.36	ug/l	
105-60-2	Caprolactam	ND	2.0	0.69	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



Lab Sample ID:

Matrix:

Method:

Project:

JB8258-4

AQ - Field Blank Water

SW846 8270D SW846 3510C

Via Verde, 700-730 Brook Avenue, Bronx, NY

Date Sampled: 06/06/12 06/07/12 Date Received:

Percent Solids: n/a

#### ABN TCL List (CLP4.2 list)

CAS No.	Compound	Result	RL	MDL	Units	Q
218-01-9	Chrysene	ND	1.0	0.29	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.31	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.31	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.0	0.45	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.31	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	2.0	0.43	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	2.0	0.46	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.0	0.36	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.38	ug/l	
132-64-9	Dibenzofuran	ND	5.0	0.27	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.0	0.56	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.0	0.31	ug/l	
84-66-2	Diethyl phthalate	ND	2.0	0.33	ug/l	
131-11-3	Dimethyl phthalate	ND	2.0	0.28	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	0.59	ug/l	
206-44-0	Fluoranthene	ND	1.0	0.32	ug/l	
86-73-7	Fluorene	ND	1.0	0.28	ug/l	
118-74-1	Hexachlorobenzene	ND	1.0	0.34	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.0	0.51	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	7.1	ug/l	
67-72-1	Hexachloroethane	ND	2.0	0.55	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.37	ug/I	
78-59-1	Isophorone	ND	2.0	0.27	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.0	0.38	ug/l	
88-74-4	2-Nitroaniline	ND	5.0	1.1	ug/I	
99-09-2	3-Nitroaniline	ND	5.0	1.3	ug/l	
100-01-6	4-Nitroaniline	ND	5.0	1.7	ug/l	
91-20-3	Naphthalene	ND	1.0	0.26	ug/l	
98-95-3	Nitrobenzene	ND	2.0	0.42	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.30	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.31	ug/l	
85-01-8	Phenanthrene	ND	1.0	0.29	ug/l	
129-00-0	Pyrene	ND	1.0	0.27	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	40%		10-8	3%	
4165-62-2	Phenol-d5	24%	10-74%			
118-79-6	2,4,6-Tribromophenol	99%		24-1	48%	
4165-60-0	Nitrobenzene-d5	96%		38-13	29%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



Lab Sample ID:

JB8258-4

Matrix:

AQ - Field Blank Water

Method:

SW846 8270D SW846 3510C

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Date Sampled:

06/06/12 06/07/12

Date Received:

Percent Solids: n/a

ABN TCL List (CLP4.2 list)

CAS No.

Surrogate Recoveries

Run#1

Run#2

42-117%

321-60-8 1718-51-0 2-Fluorobiphenyl Terphenyl-d14

88% 102%

14-132%

Limits

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



Ву

HQ

Client Sample ID: FIELD BLANK 6/6/12

Lab Sample ID:

IB8258-4

AQ - Field Blank Water

DF

1

Date Sampled: 06/06/12

Matrix: Method:

SW846 8082A SW846 3510C

Date Received:

06/07/12

Project:

Percent Solids: n/a

Via Verde, 700-730 Brook Avenue, Bronx, NY

Analyzed

06/12/12

Prep Batch Analytical Batch

Run #1

Run #2

Prep Date

06/08/12

OP57555

Q

G5G38

Initial Volume 910 ml

File ID

5G1781.D

Final Volume

Run #1 Run #2

10.0 ml

**PCB** List

CAS No.	Compound	Result	RL	MDL	Units	
12674-11-2	Aroclor 1016	ND	0.55	0.14	ug/l	
11104-28-2	Aroclor 1221	ND	0.55	0.30	ug/l	
11141-16-5	Aroclor 1232	ND	0.55	0.42	ug/l	
53469-21-9	Aroclor 1242	ND	0.55	0.095	ug/l	
12672 20 6	Arcolor 1240	NID	V EE	0.10	/1	

12672-29-6 Aroclor 1248 ND 0.550.16ug/l 11097-69-1 Aroclor 1254 ND 0.550.15 ug/l 11096-82-5 Aroclor 1260 ND 0.55 0.23 ug/l 11100-14-4 Aroclor 1268 ND 0.550.14ug/l 37324-23-5 Aroclor 1262 ND 0.55 0.066ug/1

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
877-09-8	Tetrachloro-m-xylene	102%		27-144%
877-09-8	Tetrachloro-m-xylene	117%		27-144%
2051-24-3	Decachlorobiphenyl	67%		10-139%
2051-24-3	Decachlorobiphenyl	81%		10-139%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



Lab Sample ID:

JB8258-4

Matrix:

AQ - Field Blank Water

Date Sampled: 06/06/12 Date Received:

06/07/12

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

#### Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	< 200	200	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Antimony	< 1.0	1.0	ug/l	2	06/08/12	06/20/12 VC	SW846 6020A ⁴	SW846 3010A ⁶
Arsenic	< 3.0	3.0	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Barium	< 200	200	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Beryllium	< 1.0	1.0	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Cadmium	< 3.0	3.0	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Calcium	< 5000 🎶	5000	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Chromium	< 10	10	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Cobalt	< 50	50	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Copper	< 10	10	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Iron	< 100	100	ug/l	100	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Lead	< 3.0	3.0	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Magnesium	< 5000	_5000	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Manganese	<15 (/)	15	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Mercury	< 0.20	0.20	ug/l	1	06/13/12	06/13/12 DP	SW846 7470A ²	SW846 7470A ⁷
Nickel	< 10	10	ug/l	1	06/08/12	06/19/12 BL	SW846 6010C ³	SW846 3010A ⁵
Potassium	< 10000	10000	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Selenium	< 10	10	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Silver	< 10	10	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Sodium	< 10000	10000	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Thallium	< 1.0	1.0	ug/l	2	06/08/12	06/20/12 VC	SW846 6020A ⁴	SW846 3010A ⁶
Vanadium	< 50	50	ug/l	1	06/08/12	06/10/12 GT	SW846 6010C ¹	SW846 3010A ⁵
Zinc	< 20	20	ug/l	1	06/08/12	06/19/12 BL	SW846 6010C ³	SW846 3010A ⁵

(1) Instrument QC Batch: MA28762 (2) Instrument QC Batch: MA28791 (3) Instrument QC Batch: MA28824 (4) Instrument QC Batch: MA28839 (5) Prep QC Batch: MP64879 (6) Prep QC Batch: MP64879A (7) Prep QC Batch: MP64953

to/6/6/12

# Report of Analysis

Page 1 of 1

Client Sample ID: FIELD BLANK 6/6/12

Lab Sample ID: Matrix:

JB8258-4 AQ - Field Blank Water Date Sampled: 06/06/12

Date Received: 06/07/12

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Percent Solids: n/a

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent Chromium, Trivalent ^a	< 0.010 < 0.020	0.010 0.020	mg/l mg/l	<u>14</u>	06/07/12 10:28		SW846 7196A SW846 6010/7196A M

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)



Client Sample ID: TRIP BLANK

Lab Sample ID:

JB8258-5

Matrix: Method: AQ - Trip Blank Water

SW846 8260B

Via Verde, 700-730 Brook Avenue, Bronx, NY

Date Sampled:

06/06/12 Date Received: 06/07/12

Percent Solids: n/a

Project:

File ID U159885.D DF 1

Analyzed 06/18/12

Ву MS Prep Date n/a

Prep Batch n/a

Analytical Batch

VU7436

Run #1 Run #2

Purge Volume

Run #1 Run #2  $5.0 \, \mathrm{ml}$ 

#### VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.3	ug/l	
71-43-2	Benzene	ND	1.0	0.24	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.14	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.30	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.21	ug/l	
75-25-2	Bromoform	ND	4.0	0.21	ug/l	
74-83-9	Bromomethane	ND	2.0	0.22	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.4	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	0.17	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	0.21	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	0.30	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.22	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.23	ug/l	
75-00-3	Chloroethane	ND	1.0	0.26	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
74-87-3	Chloromethane	ND	1.0	0.21	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	0.15	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.30	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	10	0.54	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.14	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.20	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.22	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.30	ug/l	
75-71-8	Dichlorodifluoromethane	ND	5.0	0.27	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.11	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.26	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.19	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.19	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.21	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.48	ug/l	
142-28-9	1,3-Dichloropropane	ND	5.0	0.23	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value

B = Indicates analyte found in associated method blank



Client Sample ID: TRIP BLANK

Lab Sample ID:

JB8258-5

Matrix: Method:

Project:

AQ - Trip Blank Water

SW846 8260B

Via Verde, 700-730 Brook Avenue, Bronx, NY

Date Sampled: 06/06/12 Date Received: 06/07/12

Percent Solids: n/a

#### VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q	
594-20-7	2,2-Dichloropropane	ND	5.0	0.15	ug/l		
563-58-6	1,1-Dichloropropene	ND	5.0	0.30	ug/l		
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.21	ug/l		
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.19	ug/l		
100-41-4	Ethylbenzene	ND	1.0	0.23	ug/l		
87-68-3	Hexachlorobutadiene	ND	5.0	0.24	ug/l		
98-82-8	Isopropylbenzene	ND	2.0	0.45	ug/l		
99-87-6	p-Isopropyltoluene	ND	5.0	0.22	ug/l		
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.16	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	0.83	ug/l		
74-95-3	Methylene bromide	ND	5.0	0.26	ug/l		
75-09-2	Methylene chloride	ND	2.0	0.70	ug/l		
91-20-3	Naphthalene	ND	5.0	1.1	ug/l		
103-65-1	n-Propylbenzene	ND	5.0	0.24	ug/l		
100-42-5	Styrene	ND	5.0	0.21	ug/l		
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.24	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.28	ug/l		
108-88-3	Toluene	ND	1.0	0.23	ug/l		
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	0.28	ug/l		
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.20	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.24	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.29	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.22	ug/l		
75-69-4	Trichlorofluoromethane	ND	5.0	0.27	ug/I		
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.53	ug/l		
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.19	ug/l		
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.36	ug/l		
75-01-4	Vinyl chloride	ND	1.0	0.21	ug/l		
	m,p-Xylene	ND	1.0	0.42	ug/l		
95-47-6	o-Xylene	ND	1.0	0.24	ug/l		
1330-20-7	Xylene (total)	ND	1.0	0.24	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7	Dibromofluoromethane	93%		81-1	21%		
17060-07-0	1,2-Dichloroethane-D4	87%		74-1	74-127%		
2037-26-5	Toluene-D8	98% 80-1229			22%		
460-00-4	4-Bromofluorobenzene	99%		78-1	16%		

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



# Appendix B Chain of Custody Documents

	ED.	•	
MA	CC		

PAGE _/ OF / CHAIN OF CUSTODY Accutest New Jersey
2235 Route 130, Dayton, NJ 08810
TEL, 732-329-0200 FAX: 732-329-3499/3480 LABORATORIES www.accutest.com Client / Reporting Information Project Information Requested Analysis ( see TEST CODE sheet) OW - Drinking Water
GW - Ground Weter
WW - Water
SO - Soil
SL - Studge
SEO-Sediment
OI - Other Libuid
AIR - AIR
SOL - Other Estid
WP - Wape
FB-Field Blank
TB- Tinp Blank Via Verde Brook Avenue 8270 LAIM ADJUSTER CONTACT NAME Streat Address 8360 Richard Jason Cooper/Mike gyage-CHARTIS PRICING NEEDED: SVOC Field ID / Point of Collection LAB USE ONLY mw-9 1030 6/5/12 Ymy GW 8 487 AMET 14 mw-7 mw-7ms mw-7msD 1245 2/ny GW 1245 2/ny GW 1245 2/ny GW MEYI 982 TI MOME NYASP Category A
NYASP Category B
State Forms Approved By (Accutest PMI: / Date Commercial "A" (Level 1) Std. 10 Business Days
S Day RUSH
3 Day EMERGENCY
1 Day EMERGENCY
1 Day EMERGENCY
1 Other
Emergency & Rush T/A data avail Commercial "B" (Level 2)

FULLT1 (Level 3+4) NJ Reduced
Commercial "C" EDD Format
Other Convercial "B" = Results + QC Surrenary NJ Reduced = Results + QC Summary + Partial Raw data each time samples change possession, including cour Sample Custody must be docur G 5/12 Date Time: 6-6-12 1015 FEDER

☐ Not inter

Received By:

JB8123: Chain of Custody Page 1 of 3

2.0 3,0





#### **Accutest Laboratories Sample Receipt Summary**

Accutest Job Number: JB81	23 Client:	CA RICH		Project: VIA VERDE	
Date / Time Received: 6/6/2	012 10:15	Delivery Method:	FedEx	Airbill #'s: MASTER #51	17-0527-3448
Cooler Temps (Initial/Adjusted	i): #1: (2/2); #2: (3/3);	0		***************************************	
Cooler Security Y  1. Custody Seals Present:  2. Custody Seals Intact:   Cooler Temperature  1. Temp criteria achieved: 2. Cooler temp verification: 3. Cooler media: 4. No, Coolers  Quality Control Preservation	3. COC P 4. Smpl Date  Y or N  Bar Therm Ice (bag)	s/Time OK 🗹 📋	1. Sample labels 2. Container labe 3. Sample contain  Sample Integri 1. Sample record 2. All containers a 3. Condition of sa	ty - Condition  within HT: accounted for:	Y or N  O O  Y or N  Y or N  Intact
Quality Control Preservation  1. Trip Blank present / cooler:  2. Trip Blank listed on COC:  3. Samples preserved properly:  4. VOCs headspace free:		<u>1</u>	Analysis required     Bottles receive     Sufficient volu	ed for unspecified tests ime recvd for analysis: nstructions clear:	Y N N/A
Comments Sample-1: ONLY 2 VC	A'S RECEIVED , 3rd vial re	c'd emply.			
Accutest Laboratories V:732,329,0200			JS Highway 130 732,329,3499		Dayton, New Jersey www/accutest.com

JB8123: Chain of Custody Page 2 of 3





#### Sample Receipt Summary - Problem Resolution

Accutest Job Number: JB8123

CSR: Michelle

Response Date:

6/7/2012

Response: Jason Cooper notified, please proceed w/analyis w/no voa screen

22

Accutest Laboratorie V:732.329.0200 2235 US Highway 130 F: 732.329.3499

Dayton, New Jersey www/accutest.com

JB8123: Chain of Custody Page 3 of 3



GOTBED				
ĊĊ.		Property Control	-	9
	 000	* *		~ ~

#### CHAIN OF CUSTODY

GD TPED	CHAI	N O	F CU	ST	OD	Y				1					P	AGE	: /	0	F_LE
(ACCUTEST)	Ace 2235 Rou		w Jersey	1861U					FEO.	ANTA	<u>~7</u>	Z-		IE OF	tia Order C				
LABORATORIES	TEL, 732-329-0	200 FA	X: 732-32	9-3499	/3480				Acculo	79 st Quote f	84-1	1898	5776			5	<u>a a a a a a a a a a a a a a a a a a a </u>	3	
Client / Reporting Information	Project Inf	ww.accu		72 P.	24 S	2012		545	14A	Pag		d Anat	/sis ( se					252	1
CARICH COMPANY Name: VIA Verde	****				24   4   42   4			1020 (100)		Keg	ueste		ysis ( se	e iES	CODE	sheet)		1337	Matrix Codes
												Chram			l				DW - Drinking Water GW - Ground Water
Give Al Galle 250 Casy Al Galle 250 Casy Al	<u> </u>	<u> </u>			MANAGE AND ADDRESS OF THE PARTY			erene.	4			1 1		}					WW - Water SW - Surface Water
	State C	ompany Nar	nation ( if di	ferent f	rom Res	ort to)			-			text Tri			1	Ì			SO - Sof SL- Sludge
Project Contact Project Contact  E-mail CLAIM ADJUSTER CONTACT N.	10ME.   C	reet Addres						·				X		1					SED-Sediment Ot - Oil
Kichard Tare	IMRE:	sect Modres	3									7							LIQ - Other Liquid AIR - Air
Phone # 516 - 5176 - 9344 Fax # CLAIMS NUMBER # Sample(s) Name(s) Phone #	c	ity			State		Z	ip	13	3		~25							SOL - Other Solid WP - Wipe
Sampler(s) Name(s) Phone #	- A	tention:							8360	00		12							FB-Freid Blank EB-Equipment Blank
Jason Cooper Mike Vager CHARTIS PRICING NEEDED	); LJ	West (UGS).								13							RB- Rinte Blank TB-Trip Blank		
	Collection			H	Numbe	of pres	erved Ba		188	18	3	12							
Sample # Field ID / Point of Collection MEOH/DI Val # Date	Time Se	ampled by Ma	tia Fortest	ns 0	HNO1	H2SO4	Dr Wede	ENCORE	13	5000	8	12			-				
/ MW-8 6/6/12	1000	TAV GU		3	1	5	101:	2   4	X	X	X	×		+			+-+		LAB USE ONLY
7,6/1%	1000	may CV	-	1	- 1	۲	$\vdash$	++	+^	-	~	×	-+				+-+		UTC35
2 MW-6 6/6/12	1300 3	my G	19	3		5	╁┼	++	-								+		HUL123
<i>(4)</i>	1000	MIY GV	7	1		1	$\vdash \vdash$	╁┼	X	X	X.	X		+		+	+-+		MEYI
3 MW-XX 6/6/12	X	my Ci	1 G	3	11	5	$\vdash \vdash$	+	X	-							+-1		9997
0,74,70		my Col	7	+	-	7	$\vdash$	++	12	X	K	X	$\dashv$			-	+		
4 Field Blank 6/6/12 6/6/12	1340 2	MY FI	3 8	12	1	5	$\vdash$	+	×					-					
10707	100/	7 -	3 0	191	- -	13	$\vdash$	++	10	X	K.	X	-	+			+-+		
-5 Trip Blank	0000	-17	1 2	2	++	+	$\vdash$	++	×					-			+-		
			<u> </u>	ox	++	+	╁	++	12						+	-	+-+		
			-	$\dagger \dagger$	++	+	$\vdash$	++	-					-		+-	-		
		_		+	++	╁	$\vdash$	++	<del> </del>	-						+	+-		
Turnaround Time ( Business days)	S 1470 FE	12/50	Dai	a Deliv	erable (	l nforma	tion		1200	1763	On the second	121450	(N) (C)	ommen	nts / Soe	cial Instru	uctions	Marie 1	31500000000
Approved By (Accutest PM): / Date:	1 3		nercial "A" ( nercial "B" (					SP Catego					inistration, 3				`	7	
5 Day RUSH			tercial "8" ( F1 (Level 3:		)	X		SP Catego Forms	ory B		1	<del>-</del>	- 7				A ()	44	
3 Day EMERGENCY 2 Day EMERGENCY		NJ Re						Format			_	101	(1)	<u>.</u>	1/1	100	<u>.</u>	U	
1 Day EMERGENCY	1	Comm	tercis) "C" Comme	dal "A"	= Result	s Only	Othe	г			1	1/	-1	TI	$\mathcal{O}$	•			
other Emergency & Rush T/A data available VIA Labānk			Comme	cial "B"	= Result	s + QC	Summ	ary				X	<del>-</del>	-					
Sample Custody mu Relinquished by Saggaler: Date Time:	ust be document	ted below	each time	sample	s chan	ge pos	mmary ssessi	+ Partial i	ksw data Iding c	ourier e	deliver	#		198	- Anti	-77	70//	W-000	
1 January 6/6/12 1630 1 Felfo	;			Relino	quished E	ly: Z	EDE	_				Dale Tim	6.712	Roci	civers By:	K	general.		10-10 00 22 23 10 0 0 N
Resignation by Sampler: Cale Time: Received By:				Rollne	quished E		1	<u> </u>				Date Tim			eived By:	y C			
Refinquished by: Date Time: Recolved By:				4 Guista	dy Seal i			[V	intact				applicable	4					
5 5				1 6	208	6	10		Not inter	-1	eserv	The state of the s	applicable.			On le		Cooler	I. O G

JB8258: Chain of Custody Page 1 of 2





### **Accutest Laboratories Sample Receipt Summary**

Accutest Job Number: JB8	258 C	lient:	Project:	
Date / Time Received: 6/7/	2012	Delivery Method:	Airbill #'s:	
Cooler Temps (Initial/Adjuste	ed): #1: (2/2): #2	<u>: (1/1);   0</u>		
Cooler Security  1. Custody Seals Present: 2. Custody Seals Intact:  Cooler Temperature  1. Temp criteria achieved: 2. Cooler temp verification: 3. Cooler media: 4. No. Coolers:	Comment Comment	OC Present:   I Dates/Time OK	1. Sample labels present on bottles: 2. Container labeling complete: 3. Sample container label / COC agree:  Sample Integrity - Condition 1. Sample recvd within HT: 2. All containers accounted for:	Y or N  ✓ □  ✓ □  ✓ □  ✓ □  ✓ □  ✓ □  ✓ or N  ✓ □  ✓ □  ✓ or N
Quality Control Preservation  1. Trip Blank present / cooler:  2. Trip Blank listed on COC:  3. Samples preserved properly:  4. VOCs headspace free:		N/A	3. Condition of sample:  Sample Integrity - Instructions  1. Analysis requested is clear: 2. Bottles received for unspecified tests 3. Sufficient volume recyd for analysis: 4. Compositing instructions clear:	Intact
Comments			5. Filtering instructions clear:	
Accutest Laboratories V:732,329,0200			2235 US Highway 130 F: 732.329.3499	Dayton, New Jersey www/accutest.com

JB8258: Chain of Custody

Page 2 of 2



# **Appendix C Case Narratives**



#### CASE NARRATIVE / CONFORMANCE SUMMARY

Client:

C. A. Rich Consultants

Job No

JB8123

Site:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Report Date

6/22/2012 2:29:59 PM

On 06/06/2012, 2 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at Accutest Laboratories at a temperature of 3 C. Samples were intact and chemically preserved, unless noted below. An Accutest Job Number of JB8123 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

#### Volatiles by GCMS By Method SW846 8260B

Matrix: AQ

Batch ID: V2B4353

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB8123-2MS, JB8123-2MSD were used as the QC samples indicated.

#### Extractables by GCMS By Method SW846 8270D

Matrix: AQ

Batch ID:

OP57515

- All samples were extracted within the recommended method holding time.
- Sample(s) JB8123-2MS, JB8123-2MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.

#### Extractables by GC By Method SW846 8082A

Matrix: AQ

Batch ID:

OP57508

- ** All samples were extracted within the recommended method holding time.
- * All method blanks for this batch meet method specific criteria.
- Sample(s) JB8123-2MS, JB8123-2MSD, OP57508-MSMSD were used as the QC samples indicated.

#### Metals By Method SW846 6010C

Matrix: AQ

Batch ID:

MP64858

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB8123-2MS, JB8123-2MSD, JB8123-2SDL were used as the QC samples for metals.
- RPD(s) for Serial Dilution for Aluminum, Arsenic, Cadmium, Chromium, Cobalt, Copper, Nickel, Silver, Vanadium, Zinc are outside control limits for sample MP64858-SD1. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

#### Metals By Method SW846 6020A

Matrix: AQ

Batch ID: MP64858A

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB8123-2MS, JB8123-2MSD, JB8123-2SDL were used as the QC samples for metals.
- RPD(s) for Serial Dilution for Antimony, Thallium are outside control limits for sample MP64858A-SD1. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

#### Metals By Method SW846 7470A

Matrix: AO

Batch ID: MP64939

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB8123-2MS, JB8123-2MSD were used as the QC samples for metals.

#### Wet Chemistry By Method SW846 6010/7196A M

Matrix: AQ

Batch ID: R112183

- The data for SW846 6010/7196A M meets quality control requirements.
- JB8123-2 for Chromium, Trivalent: Calculated as: (Chromium) (Chromium, Hexavalent)

Matrix: AO

Batch ID:

R112184

- The data for SW846 6010/7196A M meets quality control requirements.
- JB8123-1 for Chromium, Trivalent: Calculated as: (Chromium) (Chromium, Hexavalent)

#### Wet Chemistry By Method SW846 7196A

Matrix: AQ

Batch ID: GN67290

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB8123-2DUP, JB8123-2MS were used as the QC samples for Chromium, Hexavalent.

Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting Accutest's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

Accutest Laboratories is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by Accutest Laboratories indicated via signature on the report cover





#### CASE NARRATIVE / CONFORMANCE SUMMARY

Client:

C. A. Rich Consultants

Job No

JB8258

Site:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Report Date

6/21/2012 3:19:20 PM

On 06/07/2012, 3 Sample(s), 1 Trip Blank(s) and 1 Field Blank(s) were received at Accutest Laboratories at a temperature of 1 C. Samples were intact and chemically preserved, unless noted below. An Accutest Job Number of JB8258 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

#### Volatiles by GCMS By Method SW846 8260B

Matrix: AO

Batch ID: VU7427

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB8480-1MS, JB8480-1MSD were used as the QC samples indicated.
- Matrix Spike Recovery(s) for Ethylbenzene, Xylene (total) are outside control limits. Outside control limits due to high level in sample relative to spike amount.

Matrix: AQ

Batch ID: VU7429

- All samples were analyzed within the recommended method holding time
- Sample(s) JB8480-6MS, JB8480-6MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.

Matrix: AQ

Batch ID: VU7436

- All samples were analyzed within the recommended method holding time.
- Sample(s) JB8606-2MS, JB8606-2MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.

#### Extractables by GCMS By Method SW846 8270D

Matrix: AQ

Batch ID: OP57541

- All samples were extracted within the recommended method holding time.
- Sample(s) JB8227-1MS, JB8227-1MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.

#### Extractables by GC By Method SW846 8082A

Matrix: AQ

Batch ID:

OP57555

- All samples were extracted within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB8258-1MS, JB8258-1MSD, OP57555-MSMSD were used as the QC samples indicated.

#### Metals By Method SW846 6010C

Matrix: AO Batch ID: MP64879

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB8258-3SDL, JB8258-3MS, JB8258-3MSD, JB8258-3SDL were used as the QC samples for metals.
- RPD(s) for Serial Dilution for Beryllium, Cadmium, Cobalt, Nickel, Selenium, Silver, Zinc are outside control limits for sample MP64879-SD2. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).
- JB8258-2 for Iron: Elevated sample detection limit due to difficult sample matrix.
- JB8258-2 for Calcium: Elevated sample detection limit due to difficult sample matrix.
- JB8258-2 for Zinc: Elevated sample detection limit due to difficult sample matrix.
- JB8258-2 for Aluminum: Elevated sample detection limit due to difficult sample matrix.
- JB8258-2 for Nickel: Elevated sample detection limit due to difficult sample matrix.

#### Metals By Method SW846 6020A

Matrix: AQ

Batch ID: MP64879A

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB8258-3SDL were used as the QC samples for metals.
- RPD(s) for Serial Dilution for Antimony, Thallium are outside control limits for sample MP64879A-SD2. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

#### Metals By Method SW846 7470A

Matrix: AO

Batch ID: MP64953

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB8177-13AFMS, JB8177-13AFMSD were used as the QC samples for metals.

#### Wet Chemistry By Method SW846 6010/7196A M

Matrix: AQ

Batch ID: R111383

- The data for SW846 6010/7196A M meets quality control requirements.
- JB8258-4 for Chromium, Trivalent: Calculated as: (Chromium) (Chromium, Hexavalent)

Matrix: AQ

Batch ID:

- The data for SW846 6010/7196A M meets quality control requirements.
- JB8258-1 for Chromium, Trivalent: Calculated as: (Chromium) (Chromium, Hexavalent)

Matrix: AQ

Batch ID: R111385

- The data for SW846 6010/7196A M meets quality control requirements.
- JB8258-2 for Chromium, Trivalent: Calculated as: (Chromium) (Chromium, Hexavalent)

Matrix: AQ

Batch ID:

R111386

R111384

- The data for SW846 6010/7196A M meets quality control requirements.
- JB8258-3 for Chromium, Trivalent: Calculated as: (Chromium) (Chromium, Hexavalent)

# Wet Chemistry By Method SW846 7196A

Matrix: AQ

Batch ID: GN67350

N

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB8258-1DUP, JB8258-1MS were used as the QC samples for Chromium, Hexavalent.
- JB8258-3 for Chromium, Hexavalent: Analysis done out of holding time.

Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting Accutest's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

Accutest Laboratories is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by Accutest Laboratories indicated via signature on the report cover