

Quarterly Monitoring Report Fourth Quarter 2012

New Housing New York Legacy Project (Via Verde) 700-730 Brook Avenue, Bronx, NY BCP Site ID: C203043

February 2013

Prepared for:

NYSDEC, Region 2
Division of Environmental Remediation
47-40 21st Street
Long Island City, NY 1101

On Behalf of

Via Verde Homes, LLC Via Verde Rental Associates, L.P. 902 Broadway, 13th Floor New York, New York 10010

Prepared by:

CA RICH CONSULTANTS, INC. 17 Dupont Street Plainview, NY 11803-1614

February 14, 2013

NYSDEC, Region 2
Division of Environmental Remediation
47-40 21st Street
Long Island City, NY 1101

Attn: Mandy Yau

Re: Quarterly Monitoring Report

4th Quarter 2012 Groundwater Sampling

Via Verde

700-730 Brook Avenue, Bronx, NY

BCP Site ID: C203043

Dear Ms. Yau:

CA RICH Consultants, Inc. is pleased to present the Quarterly Monitoring Report for the Fourth Quarter 2012 in connection with the above-captioned Site. This Report is being submitted on behalf of Via Verde Homes, LLC and Via Verde Rental Associates, L.P. (the BCP Volunteer) and was prepared in accordance with the NYSDEC-approved Site Management Plan (SMP) dated December, 2011.

If there are any questions regarding this document, please do not hesitate to call our office.

Sincerely,

Richard J. Izzo, CPG Senior Associate

cc: Chris Doroski, NYSDOH (email only)

Ari Goldstein (email only) Michael Wadman (email only)

TABLE OF CONTENTS

Section	<u>1</u>		<u>Page</u>
1.0	INTRO	DUCTION	1
2.0	SITE D	1	
3.0	MEDIA	2	
	3.1	Groundwater	
4.0	CONCL	LUSIONS AND RECOMMENDATIONS	4
REFER	RENCES		5
<u>FIGUR</u>	<u>ES</u>		
Figure Figure Figure	2	Site Location Monitoring Well Locations and Water Table Map Concentration of Key Constituents vs. Time	
TABLE	S		
Table 1 Table 2 Table 3	<u>2</u> 3	Validated Analytical Results for Volatile Organic Compounds in C Validated Analytical Results for Semi-volatile Organic Compound Validated Analytical Results for PCBs in Groundwater Validated Analytical Results for Total Metals in Groundwater	
APPEN	NDICES		
Append		Field Forms and Chain of Custody Data Usability Summary Report for Groundwater Samples	

Fourth Quarter 2012 Quarterly Monitoring Report Via Verde BCP Site # C203043

1.0 INTRODUCTION

The following Quarterly Monitoring Report has been prepared by CA RICH Consultants, Inc. (CA RICH) on behalf of Via Verde Homes, LLC and Via Verde Rental Associates, L.P. This document is required as an element of the Site Management Plan (SMP) (Ref. 1) at The New Housing New York Legacy Project (hereinafter referred to as Via Verde or the Site), 700-730 Brook Avenue, Bronx, NY (BCP Site ID: C203043. The Site is being managed under the New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP). The Site was remediated in accordance with Brownfield Cleanup Agreement (BCA) Index #W2-1129-08-11, Site #C203043, which was executed on February 23, 2009. The Certificate of Completion was received on December 23, 2011.

2.0 SITE DESCRIPTION AND BACKGROUND

Via Verde Homes, LLC, Via Verde Rental Associates, L.P., and the City of New York Department of Housing Preservation and Development ("HPD") entered into a Brownfield Cleanup Agreement (BCA) with the New York State Department of Environmental Conservation (NYSDEC) in February 2009 to investigate and remediate a 1.41-acre property located in the Bronx, New York. The property was remediated to restricted residential, use, and will be used for mixed commercial and residential purposes. It is noted that the Deed was transferred on December 30, 2009 and HPD no longer has any ownership interest.

The Site is located in the County of the Bronx, New York and is identified as Section 9, Block 2359; Lot 51, which includes Condominium Lots 1001, 1002, 1003, and 1004, and was formerly part of Lots 1 and 3 on the Bronx County Tax Map. The Site is an approximately 1.41-acre area bounded by East 156th Street to the north, an athletic field to the south, New York City Housing Authority Bronxchester Houses and South Bronx High School to the east, and Brook Avenue to the west (see Figure 1). The boundaries of the Site are more fully described in the metes and bounds Site description that is part of the Environmental Easement. A copy of the Environmental Easement is included in the Final Engineering Report (Ref. 2).

Ca RICH Environmental Specialists

Third Quarter 2012 Quarterly Monitoring Report Via Verde BCP Site # C203043

Under the BCP, the Site was remediated to Track 4 Site Specific Soil Action Levels ("SSSALs") established for the Site as listed in the FER. Low levels of polyaromatic hydrocarbons and metals remain in the soil in limited areas throughout the Site. Based upon the detection and distribution of groundwater contaminants, in-situ chemical oxidation was performed in the area of the former service station (northwest corner of the Site). On April 1st through 9th, 2010 Regenox[™] and ORC® Advanced (ISCO treatment) was injected into the shallow groundwater and soil/fill in the smear zone.

The results from post-remedial groundwater monitoring indicate that fuel related volatile organic compounds (VOCs) and some metals remain within the groundwater above NYSDEC Technical and Administrative Guidance (TOGS) standards (Ref. 3).

As remaining contaminated soil and groundwater exist beneath the Site, implementation of Institutional Controls (ICs) and Engineering Controls (ECs) were required at the Site to be managed through implementation of the Site management Plan (SMP). Exposure to soil vapor (potential off-gassing from residual Volatile Organic Compounds (VOCs) in the groundwater) is being prevented by the composite cover system, which is comprised of concrete-covered sidewalks, courtyard areas, foundation walls, concrete building slabs as well as a 2-foot clean fill buffer on all non-capped areas. A vapor barrier and active Sub-Slab Depressurization (SSD) system were installed underneath each of the five building foundations as additional protection.

3.0 MEDIA MONITORING PROGRAM

3.1 Groundwater

Four post-remedial groundwater monitoring wells designated MW-6, MW-7, MW-8, & MW-9 were installed, developed and surveyed at the Site in July 2011 and will serve as the groundwater monitoring wells for the post-remedial groundwater monitoring. The locations of the four wells and direction of groundwater flow are illustrated on Figure 2.

CA RICH conducted the Fourth Quarter 2012 round of groundwater sampling on December 12th and 13th, 2012. The four monitoring wells were purged and sampled in accordance with EPA's Low-Flow (minimal drawdown) Groundwater Sampling Procedures. Copies of the requisite field forms and Chain-of-Custody are attached as Appendix A. Quality Assurance/Quality Control (QA/QC) samples were also collected and analyzed in connection with the testing as set forth in

C3 RICH Environmental Specialists

Third Quarter 2012 Quarterly Monitoring Report Via Verde BCP Site # C203043

the SMP and included one trip blank, one field blank per day of field work, one duplicate, one matrix spike, and one matrix spike duplicate. In addition, the data was validated by a qualified third-party and a DUSR was prepared (Appendix B).

Groundwater samples were collected from the wells, submitted to ELAP and CLP-certified Accutest Laboratories in Dayton, NJ and analyzed for Volatile Organic Compounds (VOCs) via EPA Method 8260, Semi-Volatile Organic Compounds (SVOCs) via EPA Method 8270, PCBs and dissolved TAL metals (plus hexavalent chromium) with NYSDEC ASP Category B deliverables. All post-remedial groundwater sampling results have been provided to NYSDEC in the appropriate Electronic Data Deliverable format.

All on-site sampling equipment was decontaminated between each use in the following manner: laboratory grade detergent and fresh water wash using a scrub brush, followed by two fresh water rinses and final air dry. The submersible pump used for groundwater sample collection was decontaminated between sample collection by passing the detergent and water mixture through the pump, followed by two fresh water rinses. Gloves worn for sample handling were discarded between sample collections. Dedicated, new polyethylene tubing was used at each well location for purging and sampling. The 40-mil sample vials were filled completely and checked to ensure that no air bubbles were present.

3.1.1 Summary of Results

The results of the sampling program are presented on Tables 1-4. In addition to the tabular presentation, a graph plotting the concentration of key constituents versus time is included as Figure 3.

As illustrated on Table 1, fuel-related VOCs in excess of NYSDEC TOGS continue to be detected in on-site well MW-8. The most elevated fuel-related compound concentration is 91.2 ug/L of ethylbenzene. Chloroform, was detected in well MW-6 at a concentration in excess of TOGS standards during this most recent sampling event. No VOCs were detected in MW-7 or MW-9 in excess of TOGS Standards.

As shown on Figure 3, comparison of concentrations for naphthalene, n-propylbenzene, 1,2,4-trimethylbenzene, and total xylenes in MW-8 between the 4th quarter 2011 sampling event and

Ca RICH Environmental Specialists

Third Quarter 2012 **Quarterly Monitoring Report** Via Verde

BCP Site # C203043

the 4th quarter 2012 sampling event indicates a continued general reduction in concentration for

these selected compounds.

Semi-volatile organic analysis (Table 2) did not detect any targeted compounds at concentrations

in excess of TOGS standards.

Analysis for PCBs (Table 3) did not detect any of these compounds in any of the samples. These

compounds were also not detected in any of the previous sampling rounds.

Analysis for metals (Table 4) detected iron, manganese and sodium at levels in excess of TOGS

Standards.

CONCLUSIONS AND RECOMMENDATIONS 4.0

Based upon our review of the analytical results from the 4th quarter 2012 sampling event and

comparison of the results to those generated during the previous events, it appears that the

detected levels of fuel-related VOCs generally continue to decline below initial concentrations.

The levels of targeted metals continue to fluctuate above and below TOGS Standards. PCBs

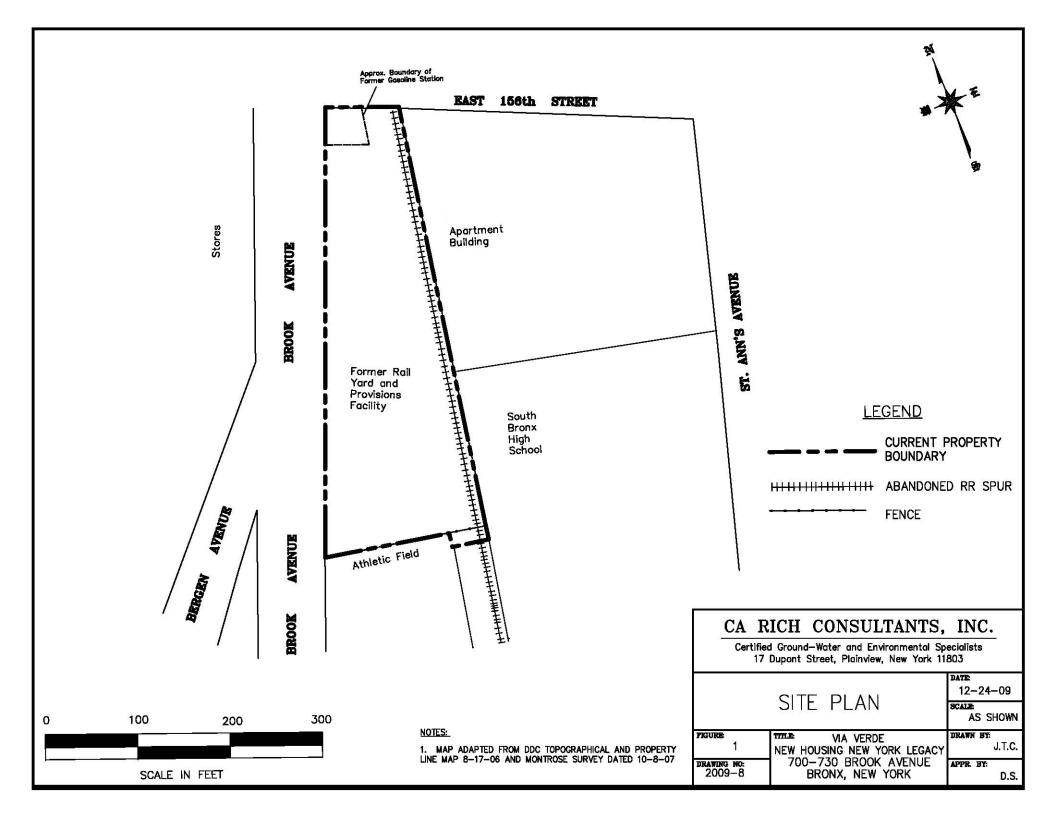
remain undetected in all wells and SVOcs remain below TOGS standards.

Based upon the results of the first year of post remedial monitoring, CA RICH recommends that

the analytical parameters targeted for future post remedial monitoring be reduced to VOCs and

RCRA metals.

4



Third Quarter 2012 Quarterly Monitoring Report Via Verde BCP Site # C203043

REFERENCES

- 1. Stephen J. Osmundsen, P.E. Site Management Plan. New York: Author, December 7, 2011.
- 2. Stephen J. Osmundsen, P.E. Final Engineering Report. New York: Author, December 21, 2011.
- 3. New York State Department of Environmental Conservation; Division of Water Technical and Operation Guidance Series (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations; June 1998.

FIGURES

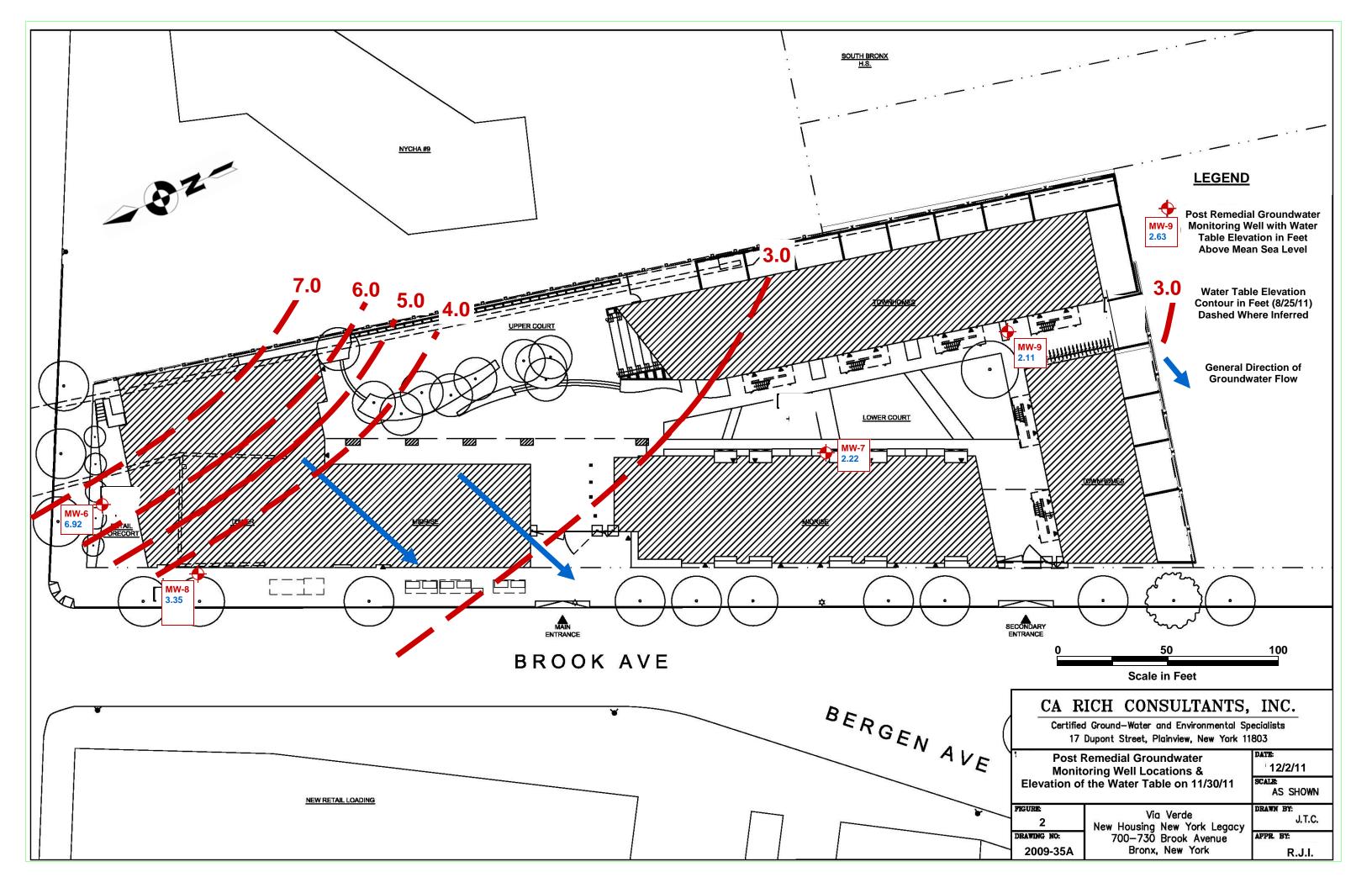
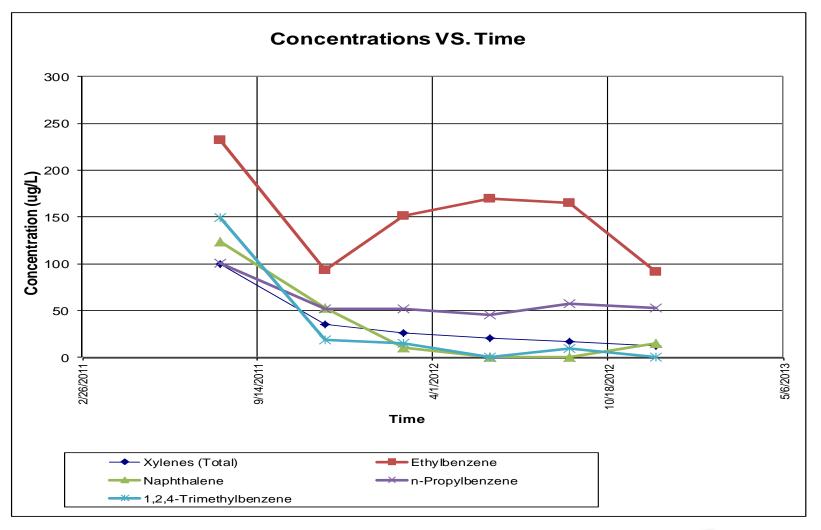



FIGURE 3

Concentrations Trends of Selected Compounds in Groundwater Monitoring Well MW-8

Via Verde

700-730 Brook Avenue, Bronx, NY

TABLES

Table 1

Validated Analytical Results for Volatile Organic Compounds In Groundwater Via Verde aka New Housing New York Legacy Project 700-730 Brook Avenue, Bronx, New York

BC.	D #	C20	3በ/13

Sample II	MW-6	MW-7	MW-8	MW-9	MW-XX**	Field Blank	Trip Blank	
Matri		groundwater	groundwater	groundwater	groundwater	liquid	liquid	NYSDEC TOGs*
Date Sample	12/12/2012	12/13/2012	12/12/2012	12/13/2012	12/12/2012	12/13/2012	12/13/2012	1005
Volatile Organic Compounds								
Unit	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Acetone	ND	ND R	ND	ND R	ND	ND R	ND R	50
Benzene	ND	ND	5.6	ND	5.0	ND	ND	1
Bromobenzene	ND	ND	ND	ND	ND	ND	ND	5
Bromochloromethane	ND	ND	ND	ND	ND	ND	ND	5
Bromodichloromethane	2.6	ND	ND	ND	ND	ND	ND	50
Bromoform	ND	ND	ND	ND	ND	ND	ND	50
Bromomethane	ND	ND	ND	ND	ND	ND	ND	5
2-Butanone (MEK)	ND	ND	ND	ND	ND	ND	ND	50
n-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	5
sec-Butylbenzene	ND	ND	5.3	ND	5.2	ND	ND	5
tert-Butylbenzene	ND	ND	1.0 J	ND	1.0 J	ND	ND	5
Carbon tetrachloride	ND	ND	ND	ND	ND	ND	ND	5
Chlorobenzene	ND	ND	ND	ND	ND	ND	ND	5
Chloroethane	ND	ND	ND	ND	ND	ND	ND	5
Chloroform	23.9	ND	ND	ND	ND	ND	ND	7
Chloromethane	ND	ND	ND	ND	ND	ND	ND	NVG
o-Chlorotoluene	ND	ND	ND	ND	ND	ND	ND	5
p-Chlorotoluene	ND	ND	ND	ND	ND	ND	ND	5
1,2-Dibromo-3-Chloropropane	ND	ND	ND	ND	ND	ND	ND	0.04
Dibromochloromethane	ND	ND	ND	ND	ND	ND	ND	50
1,2-Dibromoethane	ND	ND	ND	ND	ND	ND	ND	NVG
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	3
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	3
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	3
Dichlorodifluoromethane	ND	ND	ND	ND	ND	ND	ND	5
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	5
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	0.6
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	5
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	5
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	5
1,2-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	1
1,3-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	5
2,2-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	5
1,1-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	5
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	0.4
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	0.4
Ethylbenzene	ND	ND	91.2	ND	90.4	ND	ND	5
Hexachlorobutadiene	ND	ND ND	ND 05.0	ND	ND	ND	ND	0.5
Isopropylbenzene	ND ND	ND ND	25.2	ND ND	24.7 0.70 J	ND	ND ND	5
p-Isopropyltoluene	ND	ND ND	0.73 J ND	ND ND	0.70 J ND	ND ND	ND ND	5
Methyl Tert Butyl Ether	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	10
4-Methyl-2-Pentanone (MIBK)	ND	ND	ND	ND	ND ND	ND	ND ND	NVG
Methylene bromide Methylene Chloride	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	NVG 5
Naphthalene	ND	ND ND	14.9	ND ND	15.5	ND	ND ND	10
n-Propylbenzene	ND	ND ND	52.3	ND ND	51.1	ND	ND ND	5
Styrene	ND	ND	ND	ND	ND	ND	ND	5
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	5 5
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	5
Tetrachloroethene	ND	ND	0.39 J	0.44 J	0.41 J	ND	ND	5
Toluene	ND	ND	4.8	ND	4.9	ND	ND	5
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	5
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	5
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	5
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	1
Trichloroethene	ND	0.33 J	ND	ND	ND	ND	ND	5
Trichlorofluoromethane	ND	ND	ND	ND	ND	ND	ND	5
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	ND	ND	0.04
1,2,4-Trimethylbenzene	ND	ND	5.1	ND	5.3	ND	ND	5
1,3,5-Trimethylbenzene	ND	ND	1.5 J	ND	1.5 J	ND	ND	5
Vinyl chloride	ND	ND	ND	ND	ND	ND	ND	2
m,p-Xylene	ND	ND	10.3	ND	10.8	ND	ND	5
o-Xylene	ND	ND	1.5	ND	1.5	ND	ND	5
Xylene (total)	ND	ND	11.8	ND	12.3	ND	ND	5
Notes:								

INUTES:

ug/L - micrograms per liter or parts per billion

ND - Not detected at or above laboratory detection limits

NVG - No Value Given

J - Estimated Value

*NYSDEC Technical and Operational Guidance Series (1.1.1)
Ambient Water Quality Standards and Guidance Values
and Groundwater Effluent Limitations; June 1998
*** MW-XX is a duplicate of MW-8
R- the presence or absence of the analyte cannot be verified

Boxed and bold indicates exceedance groundwater standards or guidance values

Table 2

Validated Analytical Results for Semi-Volatile Organic Compounds In Groundwater Via Verde aka New Housing New York Legacy Project 700-730 Brook Avenue, Bronx, New York BCP # C203043

Sample ID		MW-7	MW-8	MW-9	MW-XX**	Field Blank	NYSDEC
Matrix	groundwater	groundwater	groundwater	groundwater	groundwater	liquid	TOGS*
Date Sampled	12/12/2012	12/13/2012	12/12/2012	12/13/2012	12/12/2012	12/13/2012	
Semi-Volatile Organic Compounds							
Units	ug/L ND	ug/L ND	ug/L ND	ug/L ND	ug/L ND	ug/L ND	ug/L
2-Chlorophenol 4-Chloro-3-methyl phenol	ND ND	ND ND	ND	ND ND	ND	ND	NVG NVG
2,4-Dichlorophenol	ND	ND	ND	ND	ND	ND	5
2,4-Dimethylphenol	ND	ND	ND	ND	ND	ND	50
2,4-Dinitrophenol	ND	ND	ND	ND	ND	ND	10
4,6-Dinitro-2-methylphenol	ND	ND	ND	ND	ND	ND	NVG
2-Methylphenol	ND	ND	ND	ND	ND	ND	1
3+4-Methylphenols	ND	ND	ND	ND	ND	ND	1
2-Nitrophenol	ND	ND	ND	ND	ND	ND	NVG
4-Nitrophenol	ND	ND	ND	ND	ND	ND	NVG
Pentachlorophenol	ND	ND	ND	ND	ND	ND	NVG
Phenol	ND	ND	ND	ND	ND	ND	1
2,4,5-Trichlorophenol	ND	ND	ND	ND	ND	ND	NVG
2,4,6-Trichlorophenol	ND	ND	ND	ND	ND	ND	NVG
Acenaphthene	ND	ND	ND	ND	ND	ND	20
Acenaphthylene	ND	ND	ND	ND	ND	ND	NVG
Acetophenone	ND	ND	ND	ND	ND	ND	NVG
Anthracene	ND	ND	ND	ND	ND	ND	50
Atrazine	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	7.5
Benzo(a)anthracene Benzo(a)pyrene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.002
` " "	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND
Benzo(b)fluoranthene Benzo(g,h,i)perylene	ND ND	ND ND	ND	ND ND	ND ND	ND ND	0.002 NVG
Benzo(k)fluoranthene	ND	ND	ND	ND	ND	ND	0.002
4-Bromophenyl-phenylether	ND	ND	ND	ND	ND	ND	NVG
Butylbenzylphthalate	ND	ND	ND	ND	ND	ND	50
1,1' -Biphenyl	ND	ND	ND	ND	ND	ND	5
Benzaldehyde	ND	ND	ND	ND	ND	ND	NVG
2-Chloronaphthalene	ND	ND	ND	ND	ND	ND	10
4-Chloroaniline	ND	ND	ND	ND	ND	ND	5
Carbazole	ND	ND	ND	ND	ND	ND	NVG
Caprolactam	ND	ND	ND	ND	ND	ND	NVG
Chrysene	ND	ND	ND	ND	ND	ND	0.002
bis(2-Chloroethoxy)methane	ND	ND	ND	ND	ND	ND	5
bis(2-Chloroethyl)ether	ND	ND	ND	ND	ND	ND	1
bis(2-Chloroisopropyl)ether	ND	ND	ND	ND	ND	ND	NVG
4-Chlorophenyl-phenylether	ND	ND	ND	ND	ND	ND	NVG
2,4-Dinitrotoluene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
2,6-Dinitrotoluene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
3,3-Dichlorobenzidine	ND ND	ND ND	ND	ND ND	ND	ND	5 NVG
Dibenzo(a,h)anthracene Dibenzofuran	ND	ND	ND	ND	ND	ND	NVG
Di-n-butylphthalate	ND	ND	ND	ND	ND	ND	50
Di-n-octyl phthalate	ND	ND	ND	ND	ND	ND	50
Diethylphthalate	ND	ND	ND	ND	ND	ND	50
Dimethylphthalate	ND	ND	ND	ND	ND	ND	50
bis(2-Ethylhexyl)phthalate	ND	ND	ND	ND	ND	ND	5
Fluoranthene	ND	ND	ND	ND	ND	ND	50
Fluorene	ND	ND	ND	ND	ND	ND	50
Hexachlorobenzene	ND	ND	ND	ND	ND	ND	0.04
Hexachlorobutadiene	ND	ND	ND	ND	ND	ND	0.5
Hexachlorocyclopentadiene	ND	ND	ND	ND	ND	ND	5
Hexachloroethane	ND	ND	ND	ND	ND	ND	5
Indeno(1,2,3-cd)pyrene	ND	ND	ND	ND	ND	ND	0.002
Isophorone	ND	ND	ND	ND	ND	ND	50
2-Methylnaphthalene	ND	ND	2.1	ND	2	ND	NGV
2-Nitroaniline	ND	ND	ND	ND	ND	ND	5
3-Nitroaniline	ND	ND	ND	ND	ND	ND	5
4-Nitroaniline	ND	ND	ND 20.4	ND	ND 40.0	ND ND	5
Naphthalene	ND	ND	20.4	ND	19.9	ND	10
Nitrobenzene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.4
N-Nitroso-di-n-propylamine	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NVG
N-Nitrosodiphenylamine Phenanthrene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	50 50
Pyrene Pyrene	ND ND	ND	ND	ND	ND	ND ND	50 50
Notes:							50

ryteile
Notes:
ug/L - micrograms per liter or parts per billion
ND - Not detected at or above laboratory detection limits
NVG - No Value Given
J - Estimated Value

*NYSDEC Technical and Operational Guidance Series (1.1.1)
Ambient Water Quality Standards and Guidance Values
and Groundwater Effluent Limitations; June 1998
** MW-XX is a duplicate of MW-8

Boxed and bold indicates exceedance of groundwater standards or guidance values

Table 3

Validated Analytical Results for PCBs In Groundwater

Via Verde aka New Housing New York Legacy Project 700-730 Brook Avenue, Bronx, New York BCP # C203043

Sample ID	MW-6	MW-7	MW-8	MW-9	MW-XX**	Field Blank	NVCDEO
Matrix	groundwater	groundwater	groundwater	groundwater	groundwater	liquid	NYSDEC
Date Sampled	12/12/2012	12/13/2012	12/12/2012	12/13/2012	12/12/2012	12/13/2012	TOGS***
PCBs							
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Aroclor-1016	ND	ND	ND	ND	ND	ND	0.09 *
Aroclor-1221	ND	ND	ND	ND	ND	ND	0.09 *
Aroclor-1232	ND	ND	ND	ND	ND	ND	0.09 *
Aroclor-1242	ND	ND	ND	ND	ND	ND	0.09 *
Aroclor-1248	ND	ND	ND	ND	ND	ND	0.09 *
Aroclor-1254	ND	ND	ND	ND	ND	ND	0.09 *
Aroclor-1260	ND	ND	ND	ND	ND	ND	0.09 *

Notes:

ug/L - micrograms per liter or parts per billion

ND - Not detected at or above laboratory detection limits

***NYSDEC Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations; June 1998

^{*} Applies to the sum of these compounds

^{**} MW-XX is a duplicate of MW-8

Table 4 Validated Analytical Results for Metals In Groundwater

Via Verde aka New Housing New York Legacy Project 700-730 Brook Avenue, Bronx, New York BCP # C203043

Sample ID	MW-6	MW-7	MW-8	MW-9	MW-XX**	Field Blank	
Matrix	groundwater	groundwater	groundwater	groundwater	groundwater	liquid	NYSDEC
Date Sampled	•	_	•	12/13/2012	•	12/13/2012	TOGS*
Total Metals Unfiltered	12/12/2012	12/13/2012	12/12/2012	12/13/2012	12/12/2012	12/13/2012	
Units	ua/I	ua/I	ua/I	ua/I	ua/I	ua/I	ua/I
	ug/L 342	ug/L <200	ug/L	ug/L <200	ug/L	ug/L <200	ug/L NVG
Aluminum	<1.0	<1.0	4,050 <1.0	<200 <1.0	4,530 <1.0	<1.0	3
Antimony	<3.0	<3.0	9.7	4.1	10.7	<3.0	25
Arsenic	<3.0 <200	<3.0 <200	9.7 <200	<200	<200	<3.0 <200	1,000
Barium	<200 <1.0	<200 <1.0	<200 <1.0	<200 <1.0	<200 <1.0	<200 <1.0	3
Berylium		<3.0			<3.0		5 5
Cadmium	<3.0		<3.0	<3.0		<3.0	
Calcium	13,000	111,000	131,000	134,000	136,000	<5,000	NVG
Chromium	<10	<10	26.7	42.8	28.4	<10	50
Cobalt	<50	<50	<50	<50	<50	<50	NVG
Copper	<10 426	<10 337	20.5	<10	25.5	<10	200
Iron			11,600	526	12,800	<100	300
Lead	<3.0	<3.0	14.5	<3.0	16.6	<3.0	25
Magnesium	<5,000	21,200	33,600	7,190	35,200	<5,000	35,000
Manganese	29.0	42.9	2,600	596	2,720	<15	300
Mercury	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.7
Nickel	<10	<10	15.4	25.1	16.4	<10	100
Potassium	<10,000	<10,000	<10,000	12,800	<10,000	<10,000	NVG
Selenium	<10	<10	<10	<10	<10	<10	10
Silver	<10	<10	<10	<10 90,600	<10	<10	50
Sodium	11,700	63,400	81,800		85,000	<10,000	20,000
Thallium	<1.0	<1.0 <50	<1.0	<1.0	<1.0 <50	<1.0	0.5 NVG
Vanadium	<50		<50	<50		<50	
Zinc	<20	<20	24.0	<20	25.9 <0.010b R	<20	2,000
Chromium, Hexavalent	<0.010b R	<0.010	<0.010b R	<0.010b R		<0.010	50 50
Chromium, Trivalent	<0.020c	<0.020c	<0.020c	0.043c	0.022c	<0.020c	50
Total Metals Filtered	/1	/1	/1	/1	/1	/1	/1
Units	ug/L	ug/L	ug/L	ug/L	ug/L NA	ug/L	ug/L NVG
Aluminum	NA NA	<200 <1.0	NA NA	<200 <1.0	NA NA	<200	3
Antimony	NA NA	<3.0	NA NA	3.7	NA NA	<1.0 <3.0	25
Arsenic	NA NA	<3.0 <200	NA NA	<200	NA NA	<3.0 <200	1,000
Barium	NA NA	<200 <1.0	NA NA	<200 <1.0	NA NA	<200 <1.0	3
Berylium	NA NA	<3.0	NA NA	<3.0	NA NA	<3.0	5 5
Cadmium	NA NA	105,000	NA NA	128,000	NA NA	<5,000	NVG
Calcium Chromium	NA NA	<10a	NA NA	128,000 <10a	NA NA	<5,000 <10a	50
	NA NA	<50	NA NA	<50	NA NA	<50	NVG
Cobalt	NA NA	<10	NA NA	<10	NA NA	<10	200
Copper Iron	NA NA	<100	NA NA	<100	NA NA	<100	300
Lead	NA NA	<3.0	NA NA	<3.0	NA NA	<3.0	25
Magnesium	NA NA	20,000	NA NA	6,770	NA NA	<5,000	35,000
Manganese	NA NA	35.9	NA NA	565	NA NA	<15	300
· ·	NA NA	<0.20	NA NA	<0.20	NA NA	<0.20	0.7
Mercury Nickel	NA NA	<10	NA NA	10.4	NA NA	<10	100
Potassium	NA NA	<10,000	NA NA	12,100	NA NA	<10,000	NVG
Selenium	NA NA	<10,000	NA NA	<10	NA NA	<10,000	10
Silver	NA NA	<10	NA NA	<10	NA NA	<10	50
Sodium	NA NA	60,500	NA NA	84,400	NA NA	<10,000	20,000
Thallium	NA NA	<1.0	NA NA	<1.0	NA NA	<1.0	0.5
Vanadium	NA NA	<50	NA NA	<50	NA NA	<50	NVG
Zinc	NA NA	<30 <20	NA NA	<30 <20	NA NA	<30 <20	2,000
Chromium, Hexavalent	NA NA	NA	NA NA	NA	NA NA	NA	2,000 50
Chromium, Trivalent	NA NA	<0.020c	NA NA	<0.020c	NA NA	<0.020c	50 50
Motes:	INA	₹0.0200	INA	\0.0200	INA	₹0.0200	30

ug/L - micrograms per liter or parts per billion ND - Not detected at or above laboratory detection limits

NVG - No Value Given

J - Estimated Value

a - Hexavalent Chromium is <10ppb

*NYSDEC Technical and Operational Guidance Series (1.1.1)
Ambient Water Quality Standards and Guidance Values
and Groundwater Effluent Limitations; June 1998

** MW-XX is a duplicate of MW-8

c - Calculated as: (Chromium) - (Chromium, Hexavalent)

R- the presence or absence of the analyte cannot be verified

b - Analysis done out of holding time R- the prese Boxed and bold indicates exceedance of groundwater standards or guidance values

A DDENIDICES
APPENDICES

Appendix A

Field Forms and Chain of Custody

MM-(O

	5			_																				···		 		_
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 821 X 1 1 1			The state of the s										**************************************							The state of the s			STEEL VITTE STEEL		- Line -	
of screen		***************************************	ين	Purge End Time:	Sample End Time:	Comments																						
35	Bottom 7.7	7 ~	MINI MINISTER			Turbidity		DTN	10%		85.9	777	20,8	ن س	ري. و	4.7	<i>ا</i> ئ ائ	0.0	500	2,2	5,6	ري بر	5.2					
Ö		֓֞֝֟֓֓֓֓֓֟֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓		しょり	1230	. 00		mg/L	± 0.3		7,47	5.2.3	8.02	8,49	613	663	9.33	9,32	1.8% Sy	204	ري دن دن	9,0 P	9.10				Laboratory of	
	(c Top	Pump Intake at (Itt. below lviP) Well Diameter:	Purging Device: (Pump type)	rt Time:	art Time:	ORP/Eh³		mv	± 10		171	145	157	172	181	187	710	777	S S	791	390	303	310					
Depth to:	(Below MP)	Pump Intake at Well Diameter:	Purging D	Purge Start Time:	Sample Start Time:	Hd			± 0.1		7.18	ار =	768	TOM	7.03	12.97	260	300	~ €.3	005	6.83	(4:88	6.87					
		***************************************				Spec. Conduct.²		uS/cm	3%	t	0.23	Cl&17	0,70 0,40	C 80	0,193	0,76	0.167	0.65	C 163	0.600	0.00	CIST	0.157					
					35	Temp.		ڼ	3%		12.33	けらな		= 2	11.45	12012.59	12 28	10.	11,73	=.4S	11.66	1.68	11.76				- Western	
202		- KG	5	,	np) 2/	Cum. Volume	Purged	Liters		<u>پ</u>																		
V, \ \	2	25	1	-	stalling pur	Purge Rate		ml/min		k '.	300	3	2/2	300	ž	3	400	28/1	200	3	400	ire Si	न्छ					
Name)			nt (MP):	47	Prior to in	Pump Dial ¹				多りが	29.8	く	9,6	CT	0.1 1/20	2. 1. 2. 3. 3.	9.8	8.8	CL Qe	9.5	9.5	9.9 Poi	9.8				- +	
Location: (Site/Eacility Name)	//t/t	rersonnel:	easuring Poi	well ID: MV - (3	Static Depth to Water (Prior to installing pump)	Water Depth	Below MP	H	0.33 ft	ن مرواه	7.75	34.6	2/1.5	とう	74.5	2(35	S.S.	57/2	$\sum_{i} T_{i} C_{i}$	365	26.5	Stiss/	36.5					
Location: (Date:	Sampling Personnel Weather:	Identify M	Well ID:	Static Dep	Clock		24 HR	Tolerance		2	<u> </u>	300	S	135	345	シエ	2511	(3)	1700	1205	ر د زو	315	- ALLEGE CONTROL OF THE PARTY O				

^{1.} Pump dial setting (Example: hertz, cycles/minute, etc)

S'S--MIQ

Start Symple = 1217 End Symple = 1235

^{2.} uSiemens per cm (same as umhos/cm) at 25°C3. Oxidation reduction potential (stand in for Eh)

MW-B MW-XX

	3	Ì																		_						
	NEW HOLL	THE REST		,	1625	ころ	<i>A</i> .																		THE COLUMN TWO IS NOT	
ofscreen				からない	Purge End Time:	Sample End Time:	Comments					THE PROPERTY OF THE PROPERTY O										-				
29.75		3		MAN MANSON	•		Turbidity	UTU	10%			7	101	2.11	ربز مون 0	86,3	H'L'	789								
-]]	Pump Intake at (ft. below MP)	[[]			, 8SD	00	mg/L	₹ 0.3			5.8	.83	1,42	ニガゴ	1.3%	123	1.20	?)							
	P) Top	ike at (ft. be	eter:	evice: (Pump	Purge Start Time: 7.27	art Time:	ORP/Eh³	mv	± 10			[][811	8 1-	<u>ئ</u>	-13º	811-	ûC! -								
Depth to:	(Below M	Pump into	Well Diameter:	Purging D	Purge Start Time:	Sample Start Time:	Hď		±0.1			6.88	C.S	(i. 7f)	ر د ت	(3.77	677	ن.7(<i>و</i>		A CONTRACTOR OF THE CONTRACTOR						
		-	-				Spec. Conduct.²	uS/cm	%8			الاز	1.48	1.48).4 <i>&</i>	外!	 								
						<i>30</i>		ာ့	3%			13,43	17.62	N N	(C)	13,02	13 14	3.4	•							
Vocas						mp) 22,	Cum. Volume Purged	Liters									Ą	2501k								
			SOM/SO	100	××·	nstalling pu	Purge Rate	ml/min		137		125	Uni	žŠ	75	75	75	7)							
(Facility Name) 19 3 ch	,	104 TE	J.Pari	nt (MP):	N N N	(Prior to i	Pump Dial ¹	,) tx1 (EQ!	4.7	ر. ر	ر و	a L	(J	<u>ئ</u> ك			_					
0	/_	Personnel:		asuring Po	\$-\^\X\	Static Depth to Water (Prior to installing pump)	Water Depth Below MP	Ħ	0.33 ft	Boxes ?	発で人	27.25	74.64	337.50	2,70	K B	バタ アプ	چ الح الح								
Location: (Sit	Date:	Sampling Personnel:	Weather:	Identify M	Well ID:	Static Dep	Glock Time	24 HR	Tolerance		A COUNTY	8	なる	83	23	ATIC	<u>4</u> 5	% 55								

1. Pump dial setting (Example: hertz, cycles/minute, etc)

2. uSiemens per cm (same as umhos/cm) at 25°C3. Oxidation reduction potential (stand in for Eh)

Start Sumpling 0851 End Sumpling 01025 Strong Petickum clear

Belth for Depth for Dept	Dr. 31.33
Sampling Personnel:	1. Pump dial setting (Example: hertz, cycles/minute, etc) 2. uSiemens per cm (same as umhos/cm) at 25°C 3. Oxidation reduction potential (stand in for Eh)

Conduct Cond	/ 33,75 of screen	Bottom		тет	MIMI MWOSEER	V Purge End Time: 0937	Sample End Time:	Turbidity	mg/L NTU	± 0.3		2,2	5	2.50 /C.5		7. 27 P. 27			3,66 151			THE PROPERTY OF THE PROPERTY O		
192 192 192 193		Below MP) Top	'ump Intake at (ft. belo	Vell Diameter: _숙"	urging Device: (Pump t	'urge Start Time: 🖊 😢		ORP/Eh³	vm			24	100 VO	15 15 15 15 15 15 15 15 15 15 15 15 15 1	-86	T	76 roa	4 105	7.74 106					
Installing pump) Purge Cum. Tr Purge Cum. Tr Purge Volume Purge Volume Purged 150 160 160 160 160 160 160 160			α.	Λ		<u> </u>	ss	Spec. Conduct. ²						1.27	4,7,7	1.47		1.32	ر. رو					
in: (Site/Facility Name) Via. Us. Bersonnel: The Marker (MP): Tap Water Pump Purge Depth Dial Rate Below MP The Marker Pump Purge Depth Dial Rate Below MP The Multiple Color Co	qs.				of.		(dund	m. lume rged				200)			The state of the s				
in: (Site/Facility no. (Site/Facility no. (Add) Bersonnel: Add Water Water Depth Below MP FT Co. 0.33 ft Co. 0.35	Vame) Via Ve	100	2 Mary	300F 1452	17		Prior to installing	Pump Purge Dial 1 Rate	m/m		0						_		1.1 (CD)					
THE REPORT OF THE PROPERTY OF	n: (Site/Facility r	Date: 12/13/113		Weather: ('lordy	/ Measuring Poir	Well ID: 1960-9	Depth to Water (Water Depth Below MP	Þ	Tolerance 0.33 ft	Begno purg	2700	0		<u> ال</u>	734.74	5 24.00	28 80	8					

1. Pump dial setting (Example: hertz, cycles/minute, etc)

2. uSiemens per cm (same as umhos/cm) at 25°C3. Oxidation reduction potential (stand in for Eh)

bitu wo fump = 22.22 DTB = 33.75 SAMPLE SHAT: 0937 END : 1025

		7
r	I	

	CCUTEST:	GW WTB		CHAII 2235 Roi 732-329-0	ute 130 200), Day FAX:	ton, NJ	0881	0	80 ;		PED EX	Transland 142 d Guelle #			0034	Acquire C	order Cont at Jeb #	J6:	0	
70005	Client / Reporting Information 190	The state of the s	AcomyPhysics a	Project I	nformat	tion		127.00	ine.	lht:		1000	Reg	rested	Analy	sis (see	TEST	ODE	heet)	1980	Matrix Codes
	Rich Inc. Burgant St.	700-730	Verde Brook A	re	Billing Ir	nformatio	on (if differ	ent from	ı Report	l to)	7.197										DW - Drinklog Walter GW - Ground Water WW - Weter SW - Surfece Weter SO - Soil St Sludge
17	State Alv			Company	(remmo						1				2					SED-Sediment OI - Oil	
TOLOGO C	ontari E-mail	Project #			Street Ad	dress										hrome	1				LIQ - Other Liquid AIR - Air
Richard Izzo Proce # (SID) \$710 8844						City State Zip							0,50		S	٦					SOL - Other Solid WP - Wipe FB-Field Blank EB-Equipment Blank RB- Rinse Blank
amplen	s) Name(s) Priorie	Richard	T770		Attention							1,2			Met Ca	Ť.					TB-Trip Blank
VIE	e Yayer + Toin Ocean	KILIKU		Collection				No	miber of p	ensarye		7.5	3	2	-	+	1				
Accuracy Sample #	Field ID / Point of Collection	MEOH/OI Visil N	Date	Time	Eampled by	Metrix	1 1	HCI NeOH	HASOM HZSOM	NONE DI Warte	MEOH	NC	3	76	F	15	-			4	LAB USE ONLY
- 1	MW-8		12/12/12		MYTE	GW	98			4	₩	1	7	1	\$	X-	-		\vdash		AMET 18
- 7	MW-xx		12/12/12	1005	14/18	GW	1.5	-		-	H	1	T	X	\Diamond	\Diamond		+-		_	ME 46
-3	MW-10		12/12/12		MYER	(JW	9	_	-	H	Н	13	1-1	-	X	_	-	-		_	2064
-4	Trip Clark		12/13/1)			T6	-					1	F								
								H			H										
																	Comment	in / Stran	dal Instruc	Oon DV	
i	Turnamend Tene (Business days) Std, 16 Business Days Std, 10 Business Days (by Contract only) 10 Day RUSH	Approved By (Acc	utest PM): / Dale:	M, EX 11	E	Comme	rciāl "A" (l rcial "B" (i (Laval 3+	evel 21	while int	R	NYASP Ca NYASP Ca Slate Form	itagory B		KI	P	X (<u> </u>	un	re bld	(,	me
į	5 Day RUSH 3 Day EMERGENCY 2 Day EMERGENCY 1 Day EMERGENCY						Commer Commer	cial "B" =	Results	Only + QC	Other Summery	artial Row	deta	E	3/	16	(S)			<u> </u>	
(SEE	rgency & Rush T/A data available VIA Labirit	8 71.2/1.7	mple Custody m	wat be docu	mented t	below ea	ach time s	Relings	chang whee By	e poss	JE.	neluding	courie	r delive	Daty T	Ter 10	Ruce	cired By,	1	1657601	
1/	- //		Received By:	NEX.	-			2 Relinqu	lished By	17	-9-	<u> </u>			Date T			alved By:	- 3		
3	former of amper-		3					4	y Seal #			☐ Intao		Preser	ved who	m applicati	4		Onice	Co	5,0°c8
Relin	quished by: Date Tir	ne:	Received By:					Lumso	America			D Noth		555755	120	(TE)	41		180		5.0 c3

JB23729: Chain of Custody Page 1 of 3

CA Kich Consultants In	Project Name	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		www	.nccute			499/:	3480		Accord	et Quets	ין יי	66		Aroze	order Cantro et Job #	JB23	82	
17 Deposit Sitred Cap Project Connect NY 11803 Project Connect E-mail Kichory Izzu Rizzu@correning. Pronon 8 5 No 576-8844 516-576-008	Drawis Brackis Bron X Project # Canni Purchase	arde Avenve	Project Siate AJY		nformatic y Namo odress	on (If shifte	orani te		port to)	Žφ	820	ST.		Rotels Filled Trichas	Metals Whitelan Chang	OF TEST (CODE at	neot)		Matrix Codes DW - Dinking Water GW - Ground Weler WW - Weler SW - Surface Weler SU - Sulface SU - Sulface SU - Gener GU - Guer G
MICHARD Page Tasun Carper Amount Field ID / Point of Collection - (F MW-1460) - MW-1460 - MW-14	MECHIDI VILI II	13/3/12 13/3/12 13/3/12 13/3/12	Time 1025 1238 1238 1239 1251	Hay	(3) (3) (3) (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	9 9 9 9 1	9 3 3 3 3 3	Number 1	5 5 5	Becore Becore	XX XXXX XX	11.000	XXXX R3	X XXX 74/	X XXXX 74L/					LAB USE ONLY 24 86 MC 18 ME 46, 2078
Turnaround Time (Business days) Std. 15 Business Days Bid. 16 Business Days Bid. 16 Business Days (by Contract only) 10 Day RUSH 3 Day RUSH 3 Day SMERGENCY 1 Day EMERGENCY 1 Day EMERGENCY Emergency & Rush Tink date available VIA Lablink Replaylabed by Samphr: Date Time: Replaylabed by Samphr: Date Time:	Approved By (Acci	rinple Custody in	nust be docur	0000	Commerce Commerce FULLT1 NJ Reduce Commerce	cial "A" (I cial "B" (I Level 3+ ced cial "C" Commen NJ Redu	evel 1 Level 2 4) cial "A" cial "B" ced * Fi ample Reting	# Resu	ins Only the + QC Surr QB power	IYABP Car IYABP Car Itate Form DD Form Other	nal Raw	data			م الماري	2 Y	کات	Instructions 342 344		NTACI

JB23822: Chain of Custody Page 1 of 3

Appendix B

DUSR

DATA USABILITY SUMMARY REPORT – DUSR DATA VALIDATION SUMMARY

ORGANIC/INORGANIC ANALYSES

TARGET COMPOUND LIST (TCL) VOLATILES BY GC/MS
TARGET COMPOUND LIST (TCL) SEMIVOLATILES BY GC/MS
PCBs BY GC ECD

TARGET ANALYTE LIST (TAL) METALS (Total and Dissolved) BY ICP/ICP-MS/CV
And HEXAVALENT CHROMIUM
BY CLASSICAL WET CHEMISTRY TECHNIQUES

For Groundwater Samples Collected
December 12, 2012 and December 13, 2012
From 700-730 Brook Avenue, Bronx, NY
Via Verde aka New Housing New York Legacy Project
Collected by CA Rich Consultants

SAMPLE DELIVERY GROUP NUMBERs: JB23729 and JB23822 BY ACCUTEST LABORATORIES (ELAP #10983)

SUBMITTED TO:

Mr. Rich Izzo, CPG CA Rich Consultants, Inc. 17 Dupont Street Plainview, NY 11803

cc: Deborah Shapiro CA Rich Consultants, Inc. 17 Dupont Street Plainview, NY 11803

February 12, 2013

PREPARED BY:

Lori A. Beyer/President
L.A.B. Validation Corp.

14 West Point Drive
East Northport, NY 11731

L.A.B. Validation Corp, 14 West Point Drive, East Northport, NY 11731

700-730 Brook Avenue, Bronx – Via Verde; Groundwater Samples; September 2012 (Q4) Sampling Event

Data Usability Summary Report (Data Validation): TCL Volatiles, TCL Semivolatiles, PCBs, TAL Metals (Total and Dissolved) and Hexavalent Chromium.

Table of Contents:

Introduction

Data Oualifier Definitions

Sample Receipt

- 1.0 Target Compound List (TCL) Volatile Organics by GC/MS SW846 Method 8260
 - 1.1 Holding Time
 - 1.2 System Monitoring Compound (Surrogate) Recovery
 - 1.3 Matrix Spikes (MS), Matrix Spike Duplicates (MSD)
 - 1.4 Laboratory Control Sample/Blank Spikes
 - 1.5 Blank Contamination
 - 1.6 GC/MS Instrument Performance Check (Tuning)
 - 1.7 Initial and Continuing Calibrations
 - 1.8 Internal Standards
 - 1.9 Field Duplicates
 - 1.10 Target Compound List Identification
 - 1.11 Compound Quantification and Reported Detection Limits
 - 1.12 Overall System Performance
- 2.0 Target Compound List (TCL) Semivolatile Organics by GC/MS SW846 Method 8270
 - 2.1 Holding Time
 - 2.2 Surrogate Recovery
 - 2.3 Matrix Spikes (MS), Matrix Spike Duplicates (MSD)
 - 2.4 Laboratory Control Sample
 - 2.5 Method Blanks
 - 2.6 GC/MS Instrument Performance Check (Tuning)
 - 2.7 Initial and Continuing Calibrations
 - 2.8 Internal Standards
 - 2.9 Field Duplicates
 - 2.10 Target Compound List Identification
 - 2.11 Compound Quantification and Reported Detection Limits
 - 2.12 Overall System Performance
- 3.0 PCBs by GC SW846 Method 8082
 - 3.1 Holding Time
 - 3.2 Surrogate Recovery
 - 3.3 Matrix Spikes (MS), Matrix Spike Duplicates (MSD)
 - 3.4 Laboratory Control Samples
 - 3.5 Blanks
 - 3.6 Calibration Verification
 - 3.7 Field Duplicates
 - 3.8 Target Compound Identification
 - 3.9 Compound Quantification and Reported Detection Limits
 - 3.10 Overall Assessment of Data

L.A.B. Validation Corp, 14 West Point Drive, East Northport, NY 11731

- 4.0 Target Analyte List (TAL) Metals (Total and Dissolved) by ICP/ICP-MS/Cold Vapor SW846 Methods 6010/6020/7471
 - 4.1 Holding Times
 - 4.2 Calibration (Initial and Continuing Calibration Verifications)
 - 4.3 Blanks
 - 4.4 Spiked Sample Recovery
 - 4.5 Laboratory/Field Duplicates
 - 4.6 Laboratory Control Sample
 - 4.7 Interference Check Sample
 - 4.8 ICP Serial Dilution
 - 4.9 Sample Results Verification
 - 4.10 Overall Assessment of Data
- 5.0 General Chemistry Analysis/Hexavalent and Trivalent Chromium
 - 5.1 Holding Times
 - 5.2 Calibration
 - 5.3 Blanks
 - 5.4 Spiked Sample Recovery
 - 5.5 Laboratory/Field Duplicates
 - 5.6 Laboratory Control Sample
 - 5.7 Sample Results Verification
 - 5.8 Overall Assessment of Data

APPENDICES:

- A. Data Summary Tables with Qualifications
- B. Chain of Custody Documents
- C. SDG Narratives

Introduction:

A validation was performed on groundwater samples and the associated quality control samples for organic/inorganic analysis for samples collected under chain of custody documentation by CA Rich Consultants and submitted to Accutest Laboratories for subsequent analysis. This report contains the laboratory and validation results for the field samples itemized below. The groundwater samples were collected on December 12, 2012 and December 13, 2012.

The samples were analyzed by Accutest Laboratories, utilizing SW846 Methods and submitted under NYSDEC ASP Category B equivalent deliverable requirements for the associated analytical methodologies employed. The analytical testing consisted of the Target Compound/Analyte Lists for Volatile Organics, Semivolatile Organics, PCBs, TAL Metals (Total and Dissolved) and Hexavalent Chromium.

The data was evaluated in accordance with EPA Region II National Functional Guidelines for Organic and Inorganic Data Review (October 2006) and EPA Region II SOPs for 8260, 8270, 8082 and Metals (August 2008 with 2009 updates) and also in conjunction with the analytical methodologies for which the samples were analyzed, where applicable and relevant.

The data validation report pertains to the following samples:

Sample	Laboratory	Sample	Date	Date		
Identification	Identification	Matrix	Collected	Received		
MW-8	JB23729-1	Groundwater	12/12/12	12/13/12		
MW-XX	JB23729-2	Groundwater	12/12/12	12/13/12		
(Field Duplicate of						
MW-8)						
MW-6	JB23729-3	Groundwater	12/12/12	12/13/12		
Trip Blank	JB23729-4	Aqueous	12/12/12	12/13/12		
12/12/12		_				
MW-9	JB23822-1, JB23822-1F	Groundwater	12/13/12	12/14/12		
MW-7	JB23822-2, JB23822-2F,	Groundwater	12/13/12	12/14/12		
MW-7 MSD	JB23822-2D, JB23822-DF	Groundwater	12/13/12	12/14/12		
MW-7 MS	JB23822-2S, JB23822-2SF	Groundwater	12/13/12	12/14/12		
Field Blank	JB23822-3, JB23822-3F	Aqueous	12/13/12	12/14/12		
12/13/12						
Trip Blank	JB23822-4	Aqueous	12/13/12	12/14/12		
12/13/12		· 		_		

Data Qualifier Definitions:

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate quantity.

Sample Receipt:

The Chain of Custody document indicates that the samples were received at Accutest Laboratories via Federal Express on 12/13/12 and 12/14/12 upon completion of the sampling event. Sample login notes were generated. The cooler temperature for all sample receipts were recorded upon receipt at Accutest Laboratories and determined to be acceptable (<6.0 degrees C). The actual temperature is recorded on the chain of custody document in addition to the case narratives provided in Appendix C of this report.

Hexavalent Chromium was received with minimal/outside time remaining on the 24 hour holding time for all samples with the exception of MW-7. Analysis was performed outside the allowable holding time for all samples except MW-7 and as a result, the non-detects for Hexavalent Chromium must be considered unreliable and have been rejected, "R."

No unresolved problems and/or discrepancies were noted, consequently, the integrity of the samples has been assumed to be good.

The data summary tables included in Appendix A includes all usable (qualified) and unusable (rejected) results for the samples identified above. These tables summarize the detailed narrative section of the report. All data validation qualifications have been reported in the excel spreadsheet.

NOTE:

L.A.B. Validation Corp. believes it is appropriate to note that the data validation criteria utilized for data evaluation is different than the method requirements utilized by the laboratory. Qualified data does not necessarily mean that the laboratory was non-compliant in the analysis that was performed.

1.0 Target Analyte List (TCL) Volatile Organics by GC/MS SW846 Method 8260

The following method criteria were reviewed: holding times, SMCs, MS, MSD, LCS, Laboratory Spiked Blanks, Method Blanks, Tunes, Calibrations, Internal Standards, Target Compound Identification, Quantitation, Reported Quantitation Limits and Overall System Performance. The Volatile results were considered to be valid and useable with the exception of Acetone and 2-Butanone non-detects in samples MW-7, MW-9, Field Blank 12/13/12 and Trip Blank 12/13/12 due to low initial/continuing calibration response factors as noted within the following text:

1.1 Holding Time

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the technical holding time is exceeded, the data may not be considered valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimates, "J". The non-detects (sample quantitation limits) are required to be flagged as estimated, "J", or unusable, "R", if the holding times are grossly exceeded.

Samples pertaining to these SDGs were performed within the Method required holding times as well as the technical holding times for data validation of 14 days from collection to analysis. Samples were properly preserved with HCL to pH <2. No data validation qualifiers were required based upon holding time.

1.2 System Monitoring Compound (Surrogate) Recovery

All samples are spiked with surrogate compounds prior to sample analysis to evaluate overall laboratory performance and efficiency of the analytical technique. If the measure of surrogate concentrations is outside contract specification, qualifications are required to be applied to associated samples and analytes.

Surrogate recoveries (%R) were found to be within acceptable limits for all four (4) surrogate compounds for all analyses pertaining to these SDGs for analysis.

1.3 Matrix Spikes (MS)/ Matrix Spike Duplicates (MSD)

The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. The MS/MSD may be used in conjunction with other QC criteria for additional qualification of data.

MS/MSD analyses were conducted for each analytical sequence and were spiked with all components as required by the analytical procedure. Sitespecific aqueous MS/MSD was performed by the laboratory on samples MW-6 and MW-7.

The RPD for 1,2,3-Trichlorobenzene fell slightly outside in house established acceptance limits for MW-6 MS/MSD. Acceptable recovery values were obtained for all spiked analytes. Based on professional judgment, no qualifications to the data were required.

Acceptable RPD was observed for all analytes for MW-7 MS/MSD. Matrix Spike recovery for 1,2-Dichloropropane fell above (127%) acceptance limits. Acceptable recoveries were observed for MSD. Since this analyte was not detected in the original unspiked sample, no qualifications to the data were required based on high recovery since no loss of detection was observed.

1.4 Laboratory Control Sample/Blank Spikes

The LCS data for laboratory control samples (LCS) are generated to provide information on the accuracy of the analytical method and on the laboratory performance.

LCS/Blank Spikes were analyzed for each sequence. Recovery values were acceptable and no qualifications were applied.

1.5 Blank Contamination

Quality assurance (QA) blanks; i.e. method, trip and field blanks are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field blanks measure cross-contamination of samples during field operations.

The following table was utilized to qualify target analyte results due to contamination. The largest value from all the associated blanks is required to be utilized:

For:	Flag Sample Result	Report CRQL &	No Qualification is			
	with a "U" when:	Qualify "U" when:	Needed when:			
Methylene Chloride,	Sample Conc. Is	Sample Conc. is	Sample Conc. is			
Acetone, Toluene &	>CRQL, but $<$ CRQL and $<$ /=10x	<	>CRQL and >10x			
2-Butanone	blank value	blank value	blank value			
Other Contaminants	Sample Conc. Is	Sample Conc. Is	Sample Conc. is			
	>CRQL, but $>CRQL and >5x$	<crql <="" =5x<="" and="" td=""><td>>CRQL and >5x</td></crql>	>CRQL and >5x			
	blank value	blank value	blank value			

Below is a summary of the compounds in the sample and the associated qualifications that have been applied:

A) Method Blank Contamination:

No target analytes were detected in the method blanks associated with sample analysis.

B) Field Blank Contamination:

No target analytes were detected in the field blank associated with sample analysis.

C) Trip Blank Contamination:

No target analytes were detected in the trip blanks associated with sample analysis.

1.6 GC/MS Instrument Performance Check

Tuning and performance criteria are established to ensure adequate mass resolution, proper identification of compounds and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The Tuning standard for volatile organics is Bromofluorobenzene (BFB).

Instrument performance was generated within acceptable limits and frequency for Bromofluorobenzene (BFB) for all analyses conducted for these SDGs.

1.7 Initial and Continuing Calibrations

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence.

The continuing calibration checks document that the instrument is giving satisfactory daily performance.

A) Response Factor GC/MS:

The response factor measures the instrument's response to specific chemical compounds. The response factor for all compounds must be >/= 0.05 in both initial and continuing calibrations. A value <0.05 indicates a serious detection and quantitation problem (poor sensitivity). Analytes detected in the sample will be qualified as estimated, "J". All non-detects for that compound in the corresponding samples will be rejected, "R".

All the response factors for the target analytes reported were found to be within acceptable limits (>/=0.05), for the initial and continuing calibrations for all reported TCL analytes with the following exceptions:

ICAL 11/06/12 GCMS3D – Non-detects for Acetone (0.041) were rejected, "R" in MW-7, MW-9, Field Blank 12/13/12 and Trip Blank (12/13/12).

CCAL 12/26/12 GCMS3D – Acetone – 0.035 and 2-Butanone (0.044). Non-detects for 2-Butanone (0.044) were rejected, "R" in MW-7, MW-9, Field Blank 12/13/12 and Trip Blank (12/13/12). Acetone was previously rejected, "R" due to low ICAL response.

*Acetone and 2-Butanone are poor responders.

B) Percent Relative Standard Deviation (%RSD) and Percent Difference (%D):

Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentrations. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be <30% and %D must be <25%. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and non-detects are flagged "UJ". If %RSD and %D grossly exceed QC criteria, nondetect data may be qualified, "R", unusable. Additionally, in cases where the %RSD is >30% and eliminating either the high or the low point of the curve does not restore the %RSD to less than or equal to 30% then positive results are qualified, "J". In cases where removal of either the low or high point restores the linearity, then only low or high level results will be qualified, "J" in the portion of the curve where non linearity exists.

Initial Calibrations: The initial calibrations provided and the %RSD were within acceptable limits (30%) for all compounds.

Continuing Calibrations: The continuing calibrations provided and the %D was within acceptable limits (25%) for all compounds.

1.8 Internal Standards

Internal Standards (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must not vary by more than a factor of 2 (-50% to +100%) from the associated continuing calibration standard. The retention time of the internal standard must not vary more than +/-30 seconds from the associated continuing calibration standard. If the area count is outside the (-50% to +100%) range of the associated standard, all of the positive results for compounds quantitated using that IS are qualified as estimated, "J", and all non-detects as "UJ", or "R" if there is a severe loss of sensitivity.

If an internal standard retention time varies by more than 30 seconds, professional judgment will be used to determine either partial or total rejection of the data for that sample fraction.

All samples were spiked with the internal standards Chlorobenzene-d5, Fluorobenzene and 1,4-Dichlorobenzene-d4 prior to sample analysis. The area responses and retention time of each internal standard met QC criteria in all samples associated with these SDGs.

1.9 Field Duplicates

Field duplicate samples are collected and analyzed as an indication of overall precision. These results are expected to have more variability than laboratory duplicate samples. Generally an acceptable RPD is 10% for water samples.

Groundwater sample MW-8 was collected in duplicate, a summary of positive detections in ug/L is summarized below:

MW-8	MW-XX
5.6	5.0
5.3	5.2
1.0	1.0
91.2	90.4
25.2	24.7
0.73	0.70
14.9	15.5
52.3	51.1
0.39	0.41
4.8	4.9
5.1	5.3
1.5	1.5
10.3	10.8
1.5	1.5
11.8	12.3
	5.6 5.3 1.0 91.2 25.2 0.73 14.9 52.3 0.39 4.8 5.1 1.5 10.3 1.5

Acceptable precision was observed for all detected analytes.

1.10 Target Compound List Identification

TCL compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within =/- 0.06RRT units of the standard compound and have an ion spectra which has a ratio of the primary and secondary m/e intensities within 20% of that in the standard compound.

GC/MS spectra met the qualitative criteria for identification. All retention times were within required specifications.

1.10 Compound Quantification and Reported Detection Limits

GC/MS quantitative analysis is considered to be acceptable. Correct internal standards per SW846 and response factors and dilution corrections were used to calculate final concentrations.

As required, the laboratory reported "J" values between the reporting limits (RL) and Method Detection Limits (MDLs). This is consistent with common laboratory practices and a requirement of the National Environmental Laboratory Approval Program (NELAP).

All groundwater samples were analyzed undiluted.

1.11 Overall System Performance
Good resolution and chromatographic performance were observed.

Tentatively Identified Compounds (TICs) were not generated and therefore not evaluated.

2.0 Target Compound List (TCL) Semivolatile Organics by GC/MS SW846 Method 8270

The following method criteria were reviewed: holding times, Surrogates, MS, MSD, LCS, Blanks, Tunes, Calibrations, Internal Standards, Target Component Identification, Quantitation, Reported Quantitation Limits and overall system performance. The Total Semivolatile results were considered to be valid and usable as noted within the following text:

2.1 Holding Time

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the technical holding time is exceeded, the data may not be considered valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimates, "J". The non-detects (sample quantitation limits) are required to be flagged as estimated, "J", or unusable, "R", if the holding times are grossly exceeded.

All aqueous samples were extracted and analyzed within the method required holding times and the technical holding times (7 days from collection for water samples) required for data validation.

2.2 Surrogate Recovery

All samples are spiked with surrogate compounds prior to sample preparation/extraction to evaluate overall laboratory performance and efficiency of the analytical technique. Additionally, the sample itself may produce effects due to such factors as interferences and high concentrations of analytes. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the evaluation of the data is dependent upon reextraction and/or reanalysis to confirm/negate laboratory error or matrix related problems. Discussion of

surrogate recoveries that fell outside (above/below) QC guidelines is itemized below:

All samples were spiked with six (6) surrogate standards at the sample extraction portion of analysis. Acceptable recovery values were obtained for all groundwater analyses.

2.3 Matrix Spikes (MS)/Matrix Spike Duplicates (MSD)

The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices.

Aqueous MS/MSD analysis was performed on MW-7 and was spiked with all components as required by the analytical procedure. Acceptable recovery values were obtained. The RPD for 2,4-Dinitrophenol was outside in house acceptance limits (44%). Based on professional judgment, no qualifications to the data were made.

Aqueous MS/MSD was also conducted on MW-6. All recovery values fell within acceptance limits. Many RPD fell outside in house established ranges. Based on acceptable LCS and professional judgment, no qualifications to the data were applied.

2.4 Laboratory Control Sample

The LCS data for laboratory control samples (LCS) are generated to provide information on the accuracy of the analytical method and on the laboratory performance.

LCS/Blank Spikes were analyzed for each analytical extraction batch. Recovery values were acceptable and no qualifications were applied.

2.5 Method Blanks

Quality assurance (QA) blanks; i.e. method, trip and field blanks are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Field blanks measure cross-contamination of samples during field operations.

The following table was utilized to qualify target analyte results due to contamination. The largest value from all the associated blanks is required to be utilized:

For:	Flag Sample Result	Report CRQL &	No Qualification is
	with a "U" when:	Qualify "U" when:	Needed when:
Phthalates (common	Sample Conc. is	Sample Conc. Is	Sample Conc. is
laboratory	>CRQL, but =10x</td <td><crql <="" =10x<="" and="" td=""><td>>CRQL and >10x</td></crql></td>	<crql <="" =10x<="" and="" td=""><td>>CRQL and >10x</td></crql>	>CRQL and >10x
contaminants)	blank value	blank value	blank value
Other Contaminants	Sample Conc. is	Sample Conc. Is	Sample Conc. is
	>CRQL, but $>CRQL and >5x$	<crql <="" =5x<="" and="" td=""><td>>CRQL and >5x</td></crql>	>CRQL and >5x
	blank value	blank value	blank value

Below is a summary of the compounds in the sample and the associated qualification that have been applied:

A) Method Blank Contamination:

Acceptable levels of Naphthalene 0.95 ug/L was detected in the method blank associated with MW-6, MW-8 and MW-XX. This compound was negated in MW-6. Samples concentrations detected in MW-8 and MW-XX were determined to be >5x the blank level and therefore the laboratory reported concentration of Naphthalene in these samples must be considered real and no qualifications to the data were required.

B) Field Blank Contamination:

Target analytes were not detected in the field blank associated with sample analysis.

2.6 GC/MS Instrument Performance Check

Tuning and performance criteria are established to ensure adequate mass resolution proper identification of compounds and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The Tuning standard for semivolatile organics is decafluorotriphenylphosphine (DFTPP).

Instrument performance was generated within acceptable limits and frequency (12 hours) for decafluorotriphenylphosphine (DFTPP) for all analyses.

2.7 Initial and Continuing Calibrations

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration checks document that the instrument is giving satisfactory daily performance.

A) Response Factor GC/MS:

The response factor measures the instrument's response to specific chemical compounds. The response factor for all compounds must be >/= 0.05 in both initial and continuing calibrations. A value <0.05 indicates a serious detection and quantitation problem (poor sensitivity). Analytes detected in the sample will be qualified as estimated, "J." All non-detects for that compound in the corresponding samples will be rejected, "R".

All the response factors for the target analytes reported were found to be within acceptable limits (>/=0.05), for the initial (average RRF) and continuing calibrations.

B) Percent Relative Standard Deviation (%RSD) and Percent Difference (%D):

Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentrations. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be <30% and %D must be <25%. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and non-detects are flagged "UJ". If %RSD and %D grossly exceed QC criteria, nondetect data may be qualified, "R", unusable. Additionally, in cases where the %RSD is >30% and eliminating either the high or the low point of the curve does not restore the %RSD to less than or equal to 30% then positive results are qualified, "J". In cases where removal of either the low or high point restores the linearity, then only low or high level results will be qualified, "J" in the portion of the curve where non linearity exists.

Initial Calibrations: The initial calibrations provided and the %RSD were within acceptable limits (30%) for all compounds.

Continuing Calibrations: The continuing calibrations provided and the %D was within acceptable limits (25%) for all compounds.

2.8 Internal Standards

Internal Standards (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must not vary by more than a factor of 2 (-50% to +100%) from the associated continuing calibration standard. The retention time of the internal standard must not vary more than +/-30 seconds from the associated continuing calibration standard. If the area count is outside the (-50% to +100%) range of the associated standard, all of the positive results for compounds quantitated using that IS are qualified as estimated, "J", and all non-detects as "UJ", or "R" if there is a severe loss of sensitivity.

If an internal standard retention time varies by more than 30 seconds, professional judgment will be used to determine either partial or total rejection of the data for that sample fraction.

All area responses and retention times fell within established QC ranges.

2.9 Field Duplicates

Field duplicate samples are collected and analyzed as an indication of overall precision. These results are expected to have more variability than laboratory duplicate samples. Generally for water samples an acceptable RPD is 10%.

Groundwater sample MW-8 was collected in duplicate. Acceptable precision was observed for detected analytes Naphthalene and 2-Methylnaphthalene.

2.10 Target Compound List Identification

TCL compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within =/- 0.06RRT units of the standard compound and have an ion spectra which has a ratio of the primary

and secondary m/e intensities within 20% of that in the standard compound.

Mass spectra meet criteria for all detected analytes.

All samples were analyzed undiluted.

Tentatively Identified Compounds (TICs) were not provided by the laboratory and therefore not evaluated.

2.11 Compound Quantification and Reported Detection Limits

GC/MS quantitative analysis is considered to be acceptable. Correct internal standards and response factors were used to calculate final concentrations.

As required, the laboratory reported "J" values between the reporting limits (RL) and Method Detection Limits (MDLs). This is consistent with common laboratory practices and a requirement of the National Environmental Laboratory Approval Program (NELAP).

2.12 Overall System Performance

Acceptable system performance was maintained throughout the analysis.

3.0 PCBs by GC SW846 Method 8082

The following method criteria were reviewed: holding times, Surrogates, MS, MSD, LCS, Blanks, Analytical Sequences, Calibrations, Target Component Identification, Quantitation, Reported Quantitation Limits and overall system performance. The PCB results were considered to be valid and usable as noted within the following text:

3.1 Holding Time

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the technical holding time is exceeded, the data may not be considered valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimates, "J". The non-detects (sample quantitation limits) are required to be flagged as estimated, "J", or unusable, "R", if the holding times are grossly exceeded.

All groundwater samples were extracted and analyzed within the method required holding times and the technical holding times required for data validation (7 days for water).

3.2 Surrogate Recovery

All samples are spiked with surrogate compounds prior to sample preparation/extraction to evaluate overall laboratory performance and efficiency of the analytical technique. Additionally, the sample itself may produce effects due to such factors as interferences and high concentrations of analytes. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the evaluation of the data is dependent upon reextraction and/or reanalysis to confirm/negate laboratory error or matrix related problems. Discussion of surrogate recoveries that fell outside (above/below) QC guidelines is itemized below:

Acceptable surrogate recovery values were obtained for all aqueous analysis.

3.3 Matrix Spikes (MS)/Matrix Spike Duplicates (MSD)

The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices.

The National Functional Guidelines indicate that MS/MSD data alone shall not be utilized to qualify sample data.

Batch aqueous PCB matrix spike/matrix spike duplicate analysis was submitted for SDG JB23729. All recovery values and RPD met QC requirements.

Aqueous PCB matrix spike analysis was conducted on MW-7. Acceptable recovery values and RPD were obtained. No qualifications to the data were required.

3.4 Laboratory Control Sample

The LCS data for laboratory control samples (LCS) are generated to provide information on the accuracy of the analytical method and on the laboratory performance.

LCS/Blank Spikes were analyzed for each analytical extraction batch for PCBs. Recovery values were acceptable and no qualifications were applied for groundwater analyses.

3.5 Blanks

Quality assurance (QA) blanks; i.e. method, instrument, trip and field blanks are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Instrument blanks measure carryover for cross contamination. Field blanks measure cross-contamination of samples during field operations.

The following table was utilized to qualify target analyte results due to contamination. The largest value from all the associated blanks is required to be utilized:

For:	Flag Sample Result	Report CRQL &	No Qualification is	
	with a "U" when:	Qualify "U" when:	Needed when:	
Any Contaminant	Sample Conc. is	Sample Conc. Is	Sample Conc. is	
	>CRQL, but $>CRQL and >5x$	<crql <="" =5x<="" and="" td=""><td>>CRQL and >5x</td></crql>	>CRQL and >5x	
	blank value	blank value	blank value	

Extraction and Instrument blanks were performed at the appropriate frequency.

Below is a summary of blank contamination:

A) Method Blank Contamination:

No target analytes were detected in the associated method blanks. No data validation qualifiers were required based upon method blank data.

B) Field Blank Contamination:

Target analytes were not detected in the Field Blank associated with sample analysis.

3.6 Calibration Verification

Initial and continuing calibration sequence was performed as required for multi-component PCB standards. Acceptable retention times were obtained for all analysis and GC resolution is acceptable for both columns.

Linearity criteria for the initial standards have been satisfied for both columns as detailed below:

%RSD </= 30% for surrogates (TCMX and DCB) %RSD <20% for PCB aroclors.

Continuing calibration verifications:

For PCB analysis acceptable percent difference for any PCB analysis is 15%.

No qualifications have been applied based on these criteria.

3.7 Field Duplicates

Field duplicate samples are collected and analyzed as an indication of overall precision. These results are expected to have more variability than laboratory duplicate samples. Generally for water samples an acceptable RPD is 10%.

MW-8 was utilized as the aqueous blind field duplicate (MW-XX). Target analytes were not detected in either analytical run for PCBs.

3.8 Target Compound Identification

Qualitative criteria for compound identification have been established to minimize the number of false positives and false negatives. The retention times of all target analytes have been verified in the samples to that of the analyzed reference standards

Positive PCB sample results are compared and where %Difference >25% when quantitated on the two columns the qualifications below are applied. Sample chromatograms were reviewed for the presence of interference. The following qualifications were applied where neither column shows interference:

%Difference	Qualifier
0-25%	None
26-70%	"J"
71-100%	"JN"
101-200% (no interference)	"R"
101-200% (interference detected)	"JN"
>50% (Pesticide value is <crql)< td=""><td>** "U"</td></crql)<>	** "U"
>201%	"R"

*When the reported %D is 101-200%, but interference is determined on either column, the results shall be qualified, "JN"

** When the reported pesticide value is lower than the CRQL, and the %D is >50%, raise the value to the CRQL and qualify "U", undetected.

All sample results have been evaluated based on these criteria.

Groundwaters:

None

3.9 Compound Quantification and Reported Detection Limits

TCL compounds are identified on the GC by using the analyte's relative retention time (RRT) and by comparison to the primary column and the secondary confirmation column data. The laboratory reported the lower of the concentrations for primary/confirmatory column results as required.

3.10 Overall System Performance

Acceptable system performance was maintained throughout the analysis of all samples. Good resolution and chromatographic performance were observed.

4.0 TAL Metals (Total and Dissolved) by ICP/ICP-MS/Cold Vapor SW846 Methods 6010/6020/7471

The following method criteria were reviewed: holding times, CRDL standards, calibration, blanks, MS, laboratory duplicates, LCS, interference check sample, ICP serial dilutions and sample results verification. In order to meet the groundwater standard criteria, all samples were analyzed by ICP-MS techniques for Antimony and Thallium. The groundwater results were considered to be valid and usable with the appropriate qualifiers as notated in the following text:

4.1 Holding Times

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the technical holding time is exceeded, the data may not be considered valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimates, "J". The non-detects (sample quantitation limits) are required to be flagged as estimated, "J", or unusable, "R", if the holding times are grossly exceeded.

All samples were digested and analyzed for Metals within the method required holding times and the technical holding times for data validation. No qualifications were applied based upon holding time criteria.

4.2 Calibration (ICV/CCV)

Satisfactory instrument calibration is established to ensure that the instruments are capable of producing acceptable quantitative data. An initial calibration demonstrates that the instruments are capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration checks document that the instruments are giving satisfactory sequential performance and that the initial calibration is still valid.

The ICP, ICP/MS and Mercury instruments were calibrated utilizing a minimum of a four-point curve in addition to blanks at the beginning of each analytical run. The calibrations had been determined to be acceptable, yielding correlation coefficients of 0.995 or greater.

For ICP analysis, satisfactory instrument performance near the Contract Required Detection Limit (CRDL) was demonstrated by analyzing a CRDL standard at the beginning and end of the analytical run. The instruments were calibrated properly by analyzing the CRDL solution at the correct levels, and analyzed at the required frequency at the beginning and end of each analytical run.

All recoveries were within acceptable limits of 90-110 % for initial calibration pertaining to field samples.

Continuing calibrations were within acceptable limits of 90-110% recovery of the true values for ICP and Mercury (80-120%) for all field samples.

No qualifications were applied based upon ICV/CCV analysis.

4.3 Blanks

Quality assurance (QA) blanks, i.e. method, field or preparation blanks are prepared to identify any contamination that may have been introduced into the samples during sample preparation or field activity. Preparation blanks measure laboratory contamination. Field blanks measure cross-contamination of samples during field operations.

All digestion/prep/ICB/CCB/Field blanks were generated within acceptable limits yielding final concentrations less than the CRDL.

No qualifications to the data were made based upon blank contamination.

4.4 Spiked Sample Recovery

The spike data are generated to determine the long terms precision and accuracy of the analytical method in various matrices.

Aqueous spike recoveries are qualified based on the criteria below: <30% - "R" all detects and non-detects
Between 30%-74% - results >/=MDL "J" and non-detects "UJ"
Between 126-150% - results >/=MDL "J" and
>150% - results >/= MDL "R"

SDG JB23729:

Aqueous MS/MSD was performed on MW-8. Analysis resulted in acceptable recovery values for all elements. Acceptable RPD was observed. ICP-MS MS/MSD met QC requirements.

SDG JB238222:

Aqueous MS/MSD analysis was conducted on MW-7. Analysis resulted in acceptable recovery values and RPD for all elements for both total and dissolved analysis. ICP-MS MS/MSD met QC requirements.

4.5 Laboratory/Field Duplicates

The laboratory uses duplicate sample determinations to demonstrate acceptable method precision at the time of analysis. Duplicate analyses are also performed to generate data in order to determine the long-term precision of the analytical method on various matrices.

Laboratory Duplicates:

RPD >20% but <100% - J detected concentrations RPD >/=100% - R all detected and non-detected concentrations

Field Duplicates:

RPD >/=35% but <120% - qualify sample and duplicate results >/= CRQL "J"

RPD >/= 120% - rejected sample and duplicate results >/= CRQL "R"

Aqueous Laboratory Duplicate analysis was conducted on MW-8 for JB237329 and MW-8 for JB23822. Acceptable RPD values were obtained for all elements for ICP and ICP-MS analysis.

Field Duplicate analysis was conducted on MW-8 (MW-XX).

A summary of detected concentrations in ppb is listed below:

	MW-8	MW-XX (Duplicate)
Aluminum	4050	4530
Arsenic	9.7	10.7
Calcium	131,000	136,000
Chromium	26.7	28.4
Copper	20.5	25.5
Iron	11,600	12,800
Lead	14.5	16.6
Magnesium	33,600	35,200
Manganese	2,600	2,720
Nickel	15.4	16.4
Sodium	81,800	85,000
Zinc	24.0	25.9

No qualifications to the data was required based on field duplicate analysis.

4.6 Laboratory Control Sample

The laboratory Control Sample (LCS) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. Aqueous and solid Laboratory Control samples shall be analyzed for each analyte utilizing the same sample preparation, analytical methods and QA/QC procedures as employed for the samples.

The LCS was analyzed and reported for all ICP, ICP-MS and Mercury analysis. Associated LCS recoveries were within the acceptable limits for TAL Metals analyses (80-120%).

4.7 Interference Check Sample

The interference check sample (ICS) verifies the laboratory's interelement and background correction factors. The ICS consists of two solutions A and AB. Solution A consists of interference, and solution AB consists of the analytes mixed with interferents.

SW846 Method 6010 requires solution A and solution AB to be analyzed separately. The recoveries for the ICP interference check sample were all within the acceptable limits of 80-120%. No data qualifications were made based upon ICS analysis.

4.8 ICP Serial Dilution

The serial dilution of samples quantitated by ICP determines whether or not significant physical or chemical interferences exist due to sample matrix. An ICP serial dilution analysis must be performed on a sample for each group of samples with a similar matrix type and concentration, or for each Sample Delivery Group (SDG), whichever is more frequent.

Acceptable ICP and ICP-MS serial dilution was performed at a 5-fold dilution as required by the method where the initial concentration is equal or greater than 50x IDL. The serial dilution analysis agrees within a 10% difference of the original determination after correction for dilution for all elements where the sample concentration was determined to be <50x the IDL.

4.9 Sample Results Verification

Analyte quantitation was generated in accordance with protocols. The raw data was verified and found within the linear range of each instrument used for quantitation. Raw data supplied corresponds with reported values. Verification of the calculations yielded reported results.

Metals analysis resulted in acceptable results.

4.10 Overall Assessment of Data

The data generated were of acceptable quality.

For the TAL analysis, results are usable at the concentration presented in the validated spreadsheets.

ICP-MS analysis was conducted at a 1:2 dilution.

5.0 General Chemistry Analysis

Groundwater samples were analyzed for Hexavalent and Trivalent Chromium. The groundwater results for MW-7 were considered to be valid and usable as notated in the following text. Non-detects for MW-8, MW-XX, Field Blank, MW-6 and MW-9 were rejected, "R" since analysis was performed beyond the 24 hour allowable holding time from collection.

5.1 Holding Times

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the technical holding time is exceeded, the data may not be considered valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimates, "J". The non-detects (sample quantitation limits) are required to be flagged as estimated, "J", or unusable, "R", if the holding times are grossly exceeded.

Samples were received with minimal time remaining to conduct the Hexavalent Chromium analysis and therefore analyzed beyond 24 hours of collection as required for all samples except MW-7. Non-detects must be considered unreliable, "R" and have been rejected.

5.2 Calibration

Acceptable ICVs and CCVs were analyzed. No qualifications were applied based upon calibration data.

5.3 Blanks

Quality assurance (QA) blanks, i.e. method, field or preparation blanks are prepared to identify any contamination, which may have been introduced into the samples during sample preparation or field activity. Preparation blanks measure laboratory contamination. Field blanks measure cross-contamination of samples during field operations.

Acceptable method blanks were analyzed with these SDGs as dictated by the analytical methods employed.

5.4 Spiked Sample Recovery

The spike data are generated to determine the long-term precision and accuracy of the analytical method in various matrices.

Matrix spike analysis was performed on MW-6 and MW-7. Acceptable spike recoveries were obtained.

5.5 Laboratory/Field Duplicates

The laboratory uses duplicate sample determinations to demonstrate acceptable method precision at the time of analysis. Duplicate analyses are also performed to generate data in order to determine the long-term precision of the analytical method on various matrices.

Acceptable laboratory duplicate analysis on MW-7 and MW-7 was conducted as required by the method.

Field duplicate analysis was collected on MW-8. Precision as defined by Relative Percent Difference (RPD) was found to be within acceptable limits of \pm 0% for Hexavalent Chromium; no detections above the reporting limit; however, analysis was performed beyond the 24 hour holding time from collection.

5.6 Laboratory Control Sample

The laboratory Control Sample (LCS) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. Aqueous and solid Laboratory Control samples shall be analyzed for each analyte utilizing the same sample preparation, analytical methods and QA/QC procedures as employed for the samples.

Acceptable LCS was analyzed.

5.7 Sample Results Verification

Analyte quantitation was generated in accordance with protocols. The instrument logs were verified and found within the linear ranges of each instrument used for quantitation.

5.8 Overall Assessment of Data

The data was of acceptable quality with the exception of non-detects for samples analyzed outside holding time as noted above.

Reviewer's Signature Sou'a. Bliff Date 02/12/13

Appendix A
Data Summary Tables
With Qualifications

Table 1

Validated Analytical Results for Volatile Organic Compounds in Groundwater Via Verde aka New Housing New York Legacy Project 700-730 Brook Avenue, Bronx, New York BCP # C203043

Total Tot	Sample	ID MW-6	MW-7	MW-8	MW-9	MW-XX**	Fleid Blank	Trip Blank	
Value Valu	Ma	trix groundwater	groundwater	groundwater	groundwater	groundwater	liquld	llquld	NYSDEC TOGs*
United U	· · · · · · · · · · · · · · · · · · ·	led 12/12/2012	12/13/2012	12/12/2012	12/13/2012	12/12/2012	12/13/2012	12/13/2012	,,,,,,
No. No.	Volatile Organic Compounds								
	ju _i	its ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
No. No.	Acetone	ND	ND R	ND	ND R	ND	ND R	ND R	50
Stronger No	Benzene	ND	ND	5.6	ND	5.0	ND	ND	1
Strong-def-browneshtane 2.6	Bromobenzene	ND	ND	ND	ND	ND	ND	ND	5
Standardom N.D. N	Bromochloromelhane	ND	ND	ND	ND	ND	ND	ND	5
No. No.	Bromodichloromethane	2,6	ND	ND	ND	ND	ND		50
Seldenterme MEIG ND	Bromoform	ND							
VEBUJENDEZINES ND ND ND ND ND ND ND N	Bromomethane	ND		ND					1
See Buty/senzene	2-Butanone (MEK)	ND						, ,	ı
Search elastication ND	n-Butylbenzene								
Description	sec-Butylbenzene								ı
Discontanterizeria	tert-Butylbenzene								
Decorations	Carbon tetrachloride								ı
Chicorelatine	Chlorobenzene		1						1
ND	Chloroethane		-4						
Chicrotolulene	Chloroform								I
ND ND ND ND ND ND ND ND	Chloromethane								1
1,2-Dilistomon-3-Chikoropropane	o-Chiorotoluene								1
	p-Chlorotoluene								1
	1,2-Dibromo-3-Chloropropane								
	Dibromochloromethane	ND							1
A-Dichicrorbenzene ND	1,2-Dibromoethane		1						1
(A-Dichlorobarzene ND ND ND ND ND ND ND N	1,2-Dichlorobenzene								1
	1,3-Dichlorobenzene		1						1
1-Dichloroethane	1,4-Dichlorobenzene		1						ı
	Dichlorodifluoromethane								1
ND ND ND ND ND ND ND ND	1,1-Dichloroethane								1
No. No.	1,2-Dichloroethane			I .					
ND ND ND ND ND ND ND ND	1,1-Dichloroethene								1
	cis-1,2-Dichloroethene								1
3-Dichloropropane	trans-1,2-Dichloroethene								ı
ND ND ND ND ND ND ND ND	1,2-Dichloropropane								1
ND ND ND ND ND ND ND ND	PANELSKY DECKE SPANELS			1					1
ND	CONTRACTOR								
ND ND ND ND ND ND ND ND	1723/2							U	ı
September ND									
ND ND ND ND ND ND ND ND	1100 10		0.9						
ND ND ND ND ND ND ND ND	7		110	-	1				ı
No									
Methyl Tert Butyl Ether			100		Pi 3				ı
Methyle-2-Pentanone (MIBK)				2.5					
Methylene bromide	Contraction and insulation and insulation								1
No	THE PERSON NAMED OF TAXABLE PARTY.								
Aphthalene									
ND ND ND ND ND ND ND ND	· ·				6 0 1		•		l .
ND ND ND ND ND ND ND ND	The second secon								
1,1,2-Tetrachloroethane			1		(i)				ı
1,12,2-Tetrachloroethane ND ND ND ND ND ND ND ND ND S etrachloroethane ND ND ND 0.39 J 0.44 J 0.41 J ND <									
etrachloroethene ND ND ND 0.39 J 0.44 J 0.41 J ND ND 5 cluene ND ND ND 4.8 ND 4.9 ND ND ND 5 2,3-Trichlorobenzene ND <									
Oluene ND ND 4.8 ND 4.9 ND ND 5 2,2,3-Trichlorobenzene ND ND <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
2,3-Trichlorobenzene ND ND ND ND ND ND ND ND S 5 2,4-Trichlorobenzene ND	the transfer to the second sec		4	1.0					
2,4-Trichlorobenzene									
1,1-Trichloroethane ND D	' '								1
1,1,2-Trichloroethane ND ND </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>1</td>								1	1
ND ND ND ND ND ND ND ND	1,1,2-Trichloroethane				l .				1
Trichloroffluoremethane	Trichlorgethene	1							1
2,3-Trichloropropane			0.00	U.				ND	
2.4-Trimethylbenzene ND ND 5.1 ND 5.3 ND ND 5 ,3,5-Trimethylbenzene ND ND 1.5 J ND 1.5 J ND ND ND ND 5 finyl chloride ND 2 n,p-Xylene ND ND ND 1.5 ND 1.5 ND ND 5	1.2.3-Trichloropropane								
3,5-Trimethylbenzene ND ND 1.5 J ND 1.5 J ND ND 5 mp finyl chloride ND 2 n,p-Xylene ND ND ND 10.8 ND ND ND 5 -Xylene ND ND 1.5 ND 1.5 ND ND 5	1,2,4-Trimethylbenzene		11						5.50
finyl chloride ND ND ND ND ND ND ND ND 2 n,p-Xylene ND ND 10.3 ND 10.8 ND ND 5 -Xylene ND ND 1.5 ND 1.5 ND ND 5	DESCRIPTION OF THE PROPERTY OF								ı
n,p-Xylene	Vinyl chloride								
-Xylene ND ND 1.5 ND ND 5	m.p-Xylene		100					ND	ı
	o-Xylene							ND	ı
	Xylene (total)	1					ND	ND	5

Xyterie (total) ND

Notes:
ug/L - micrograms per liter or parts per billion
ND - Not detected at or above laboratory detection limits
NVG - No Value Given
J - Estimated Value

*NYSDEC Technical and Operational Guidance Series (1.1.1)
Ambient Water Quality Standards and Guidance Values
and Groundwater Effluent Limitations; June 1998
** MW-XX is a duplicate of MW-8

Table 2

Validated Analytical Results for Seml-Volatile Organic Compounds In Groundwater Via Verde aka New Housing New York Legacy Project 700-730 Brook Avenue, Bronx, New York BCP # C203043

Sample ID	MW-6	MW-7	MW-8	MW-9	MW-XX**	Field Blank	NYSDEC
Matrix	groundwaler	groundwater	groundwaler	groundwater	groundwaler	liquid	TOGS*
Date Sampled	12/12/2012	12/13/2012	12/12/2012	12/13/2012	12/12/2012	12/13/2012	
Seml-Volatile Organic Compounds Units		all	ug/L	ug/L	ug/L	ug/L	ug/L
2-Chlorophenol	ug/L ND	ug/L ND	ND ND	ND ND	ND ND	ND ND	NVG
4-Chloro-3-methyl phenol	ND	ND	ND	ND ND	ND	ND	NVG
2,4-Dichlorophenol	ND	ND	ND	ND	ND	ND	5
2,4-Dimethylphenol	ND	ND	ND	ND	ND	ND	50
2,4-Dinitrophenol	ND	ND	ND	ND	ND	ND	10
4,6-Dinitro-2-methylphenol	ND	ND	ND	ND	ND	ND	NVG
2-Methylphenol	ND	ND	ND	ND	ND	ND	1
3+4-Methylphenols	ND	ND	ND	ND	ND	ND	1
2-Nitrophenol	ND	ND	ND	ND	ND	ND	NVG
4-Nitrophenol	ND	ND	ND	ND	ND	ND	NVG
Pentachlorophenol	ND	ND	ND	ND	ND	ND	NVG
Phenol	ND	ND	ND	ND	ND	ND	1
2,4,5-Trichlorophenol	ND	ND	ND	ND	ND	ND	NVG
2,4,6-Trichlorophenol	ND	ND	ND	ND	ND	ND	NVG
Acenaphthene	ND	ND	ND ND	ND ND	ND ND	ND ND	20 NVG
Acenaphthylene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NVG
Acetophenone Anthracene	ND	ND ND	ND ND	ND ND	ND ND	ND ND	50
Anthracene Afrazine	ND	ND ND	ND	ND	ND ND	ND ND	7.5
Airazine Benzo(a)anthracene	ND	ND ND	ND	ND	ND	ND	0.002
Benzo(a)pyrene	ND	ND ND	ND ND	ND	ND	ND	ND
Benzo(b)fluoranthene	ND	ND	ND	ND	ND	NĐ	0.002
Benzo(g,h,i)perylane	ND	ND	ND	ND	ND	ND	NVG
Benzo(k)fluoranthene	ND	ND	ND	ND	ND	ND	0.002
4-Bromophenyl-phenylether	ND	ND	ND	ND	ND	NĐ	NVG
Butylbenzylphthalate	ND	ND	ND	ND	ND	ND	50
1,1' -Biphenyl	ND	ND	ND	ND	ND	ND	5
Benzaldehyde	ND	ND	ND	ND	ND	ND	NVG
2-Chloronaphthalene	ND	ND	ND	ND	ND	ND	10
4-Chloroaniline	ND	ND	ND	ND	ND	ND	5
Carbazole	ND	ND	ND	ND	ND	ND	NVG
Caprolactam	ND	ND	ND	ND	ND	ND	NVG
Chrysene	ND	ND	ND	ND	ND	ND	0.002
bis(2-Chloroethoxy)methane	ND	ND	ND	ND	ND	ND	5
bis(2-Chloroethyl)ether	ND	ND	ND ND	ND ND	ND ND	ND ND	1
pis(2-Chloroisopropyl)ether	ND ND	ND ND	ND	ND	ND ND	ND	NVG NVG
4-Chlorophenyl-phenylether	ND	ND	ND	ND	ND	ND	5
2,4-Dinitrotoluene 2,6-Dinitrotoluene	ND	ND	ND	ND	ND	ND	5
3,3-Dichloroberizidine	ND	ND	ND	ND	ND	ND	5
Dibenzo(a,h)anthracene	ND	ND	ND	ND	ND	ND	NVG
Dibenzofuran	ND	ND	ND	ND	ND	ND	NVG
Di-n-butylphthalate	ND	ND	ND	ND	ND	ND	50
Di-n-octyl phthalate	ND	ND	ND	ND	ND	ND	50
Diethylphthalate	ND	ND	ND	ND	ND	ND	50
Dimethylphthalate	ND	ND	ND	ND	ND	ND	50
bis(2-Ethylhexyl)phthalate	ND	ND	ND	ND	ND	ND	5
Fluoranthene	ND	ND	ND	ND	ND	ND	50
Fluorene	ND	ND	ND	ND	ND	ND	50
Hexachloroberizene	ND	ND	ND	ND	ND	ND	0.04
-lexachlorobutadiene	ND	ND	ND	ND	ND	ND	0.5
Hexachlorocyclopentadiene	ND	ND	ND	ND	ND	ND	5
fexachloroethane	ND	ND	ND	ND	ND	ND	5
ndeno(1,2,3-cd)pyrene	ND	ND	ND	ND	ND	ND	0.002
sophorone	ND	ND	ND	ND	ND	ND	50
2-Methylnaphthalene	ND ND	ND	2.1 ND	ND ND	2 ND	ND ND	NGV
2-Nitroaniline	ND ND	ND ND	ND ND	ND ND	ND	ND ND	5
3-Nitroaniline	ND ND	ND ND	ND ND	ND	ND	ND	5 5
Naphthalene	225	ND ND	20.4	ND ND	19.9	ND	10
vapninalene IV L	ND	ND	ND	ND	ND	ND	0.4
vitrobenzene V-Nitroso-di-n-propylamine	ND	ND ND	ND	ND	ND	ND	NVG
N-Nitrosodiphenylamine	ND	ND	ND	ND	ND	ND ND	50
Phenanthrene	ND	ND	ND	ND	ND	ND	50
Pyrene	ND	ND	ND	ND	ND	ND	50

Pytene ND
Notes:
ug/L - micrograms per liter or parts per billion
ND - Not detected at or above laboratory detection limits
NVG - No Value Given
J - Estimated Value

*NYSDEC Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations; June 1998 ** MW-XX is a duplicate of MW-8

Boxed and bold indicates exceedance of groundwater standards or guidance values

Table 3

Validated Analytical Results for PCBs In Groundwater

Via Verde aka New Housing New York Legacy Project 700-730 Brook Avenue, Bronx, New York BCP # C203043

Sample ID	MW-6	MW-7	MW-8	MW-9	MW-XX**	Field Blank	NVCDEC
Matrix	groundwater	groundwater	groundwater	groundwater	groundwater	liquid	NYSDEC TOGS***
Date Sampled	12/12/2012	12/13/2012	12/12/2012	12/13/2012	12/12/2012	12/13/2012	1065
PCBs							
Units	ug/L						
Aroclor-1016	ND	ND	ND	ND	ND	ND	0.09 *
Aroclor-1221	ND	ND	ND	ND	ND	ND	0.09 *
Aroclor-1232	ND	ND	ND	ND	ND	ND	0.09 *
Aroclor-1242	ND	ND	ND	ND	ND	ND	0.09 *
Aroclor-1248	ND	ND	ND	ND	ND	ND	0.09 *
Aroclor-1254	ND	ND	ND	ND	ND	ND	0.09 *
Aroclor-1260	ND	ND	ND	ND	ND	ND	0.09 *

ug/L - micrograms per liter or parts per billion

ND - Not detected at or above laboratory detection limits

* Applies to the sum of these compounds

** MW-XX is a duplicate of MW-8

***NYSDEC Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations; June 1998

Table 4 Validated Analytical Results for Metals in Groundwater

Via Verde aka New Housing New York Legacy Project 700-730 Brook Avenue, Bronx, New York BCP # C203043

0 1 10		****	10110	14147.0	MW-XX**	Field Blank	
Sample ID	MW-6	MW-7	MW-8	MW-9		liquid	NYSDEC
Matrix	groundwater	groundwater	groundwater	groundwater 12/13/2012	groundwater 12/12/2012	12/13/2012	TOGS*
Date Sampled	12/12/2012	12/13/2012	12/12/2012	12/13/2012	12/12/2012	12/13/2012	
Total Metals Unfiltered			=0			ug/L	ug/L
Units	ug/L	ug/L	ug/L	ug/L <200	ug/L 4,530	ug/∟ <200	NVG
Aluminum	342	<200 <1.0	4,050 <1.0	<1.0	4,530 <1,0	<1.0	3
Antimony	<1.0	<3.0	9.7	4.1	10.7	<3.0	25
Arsenic	<3,0 <200	<200	<200	<200	<200	<200	1,000
Barium	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	3
Berylium	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	5
Cadmium Calcium	13,000	111,000	131,000	134,000	136,000	<5,000	NVG
Chromium	<10	<10	26.7	42.8	28.4	<10	50
Cobalt	<50	<50	<50	<50	<50	<50	NVG
Copper	<10	<10	20.5	<10	25.5	<10	200
Iron	426	337	11.600	526	12,800	<100	300
Lead	<3.0	<3.0	14.5	<3.0	16.6	<3.0	25
Magnesium	<5,000	21,200	33,600	7,190	35,200	<5,000	35,000
Manganese	29.0	42,9	2,600	596	2,720	<15	300
Mercury	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.7
Nickel	<10	<10	15.4	25.1	16.4	<10	100
Potassium	<10,000	<10.000	<10,000	12,800	<10,000	<10,000	NVG
Selenium	<10	<10	<10	<10	<10	<10	10
Silver	<10	<10	<10	<10	<10	<10	50
Sodium	11,700	63,400	81,800	90,600	85,000	<10,000	20,000
Thallium	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	0.5
Vanadium	<50	<50	<50	<50	<50	<50	NVG
Zinc	<20	<20	24.0	<20	25.9	<20	2,000
Chromium, Hexavalent	<0.010b R	<0.010	<0.010b R	<0.010b 🤾	<0.010b R	<0.010	50
Chromium, Trivalent	<0.020c	<0.020c	<0.020c	0.043c	0.022c	<0.020c	50
Total Metals Filtered							
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Aluminum	NA	<200	NA	<200	NA	<200	NVG
Antimony	NA	<1.0	NA	<1.0	NA	<1.0	3
Arsenic	NA	<3.0	NA	3.7	NA	<3.0	25
Barium	NA NA	<200	NA	<200	NA	<200	1,000
Beryllum	NA	<1.0	NA	<1.0	NA	<1.0	3
Cadmium	NA	<3.0	NA 	<3.0	NA 	<3.0	5
Calcium	NA	105,000	NA 	128,000	NA NA	<5,000	NVG 50
Chromium	NA	<10a	NA NA	<10a	NA NA	<10a	NVG
Cobalt	NA	<50	NA NA	<50	NA NA	<50 <10	200
Copper	NA	<10	NA NA	<10	NA NA	<100	300
Iron	NA NA	<100	NA NA	<100 <3.0	NA NA	<3.0	25
Lead	NA NA	<3.0	NA NA	6,770	NA NA	<5,000	35,000
Magnesium	NA NA	20,000 35.9	NA NA	565	NA NA	<15	300
Manganese	NA NA	<0.20	NA NA	<0.20	NA NA	<0.20	0.7
Mercury	NA NA	<10	NA NA	10.4	NA NA	<10	100
Nickel Potassium	NA NA	<10,000	NA NA	12,100	NA NA	<10,000	NVG
Selenium	NA NA	<10	NA NA	<10	NA NA	<10	10
Silver	NA NA	<10	NA NA	<10	NA NA	<10	50
Sodium	NA NA	60,500	NA NA	84,400	NA NA	<10,000	20,000
Thallium	NA NA	<1.0	NA NA	<1.0	NA NA	<1.0	0.5
Vanadium	NA NA	<50	NA NA	<50	NA NA	<50	NVG
Zinc	NA NA	<20	NA NA	<20	NA NA	<20	2,000
Chromium, Hexavalent	NA	NA NA	NA NA	NA	NA	NA	50
Chromium, Trivalent	NA NA	<0.020c	NA .	<0.020c	NA	<0.020c	50
ATT - ATTOMINE THE PARTY OF			· · · · · · · · · · · · · · · · · · ·		1		

*NYSDEC Technical and Operational Guidance Series (1,1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations; June 1998
** MW-XX is a duplicate of MW-8

c - Calculated as: (Chromium) - (Chromium, Hexavalent)

Chromium, Trivalent NA <0.020c NA <0.020c

Notes:

ug/L - micrograms per liter or parts per billion *NYSDEC To
ND - Not detected at or above laboratory detection limits Ambient Wal
NVG - No Value Given and Grounds
J - Estimated Value ** MW-XX is
a - Hexavalent Chromium is <10ppb c - Calculate
b - Analysis done out of holding time

Boxed and bold indicates exceedance of groundwater standards or guidance values

Accutest Laboratories

Report of Analysis

By

TLR

Page 1 of 2

Client Sample ID: MW-8

Lab Sample ID:

JB23729-1

Date Sampled: 12/12/12 Date Received: 12/13/12

Matrix: Method:

AQ - Ground Water

SW846 8260B

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Analyzed

12/26/12

Analytical Batch Prep Batch

Run #1

File ID DF 3B90863.D 1

Prep Date n/a

n/a

V3B4235

Run #2

Purge Volume

Run #1

Run #2

5.0 ml

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.3	ug/l	
71-43-2	Benzene	5.6	1.0	0.24	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.14	ug/I	
74-97-5	Bromochloromethane	ND	5.0	0.30	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.21	ug/l	
75-25-2	Bromoform	ND	4.0	0.21	ug/l	
74-83-9	Bromomethane	ND	2.0	0.22	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.4	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	0.17	ug/l	
135-98-8	sec-Butylbenzene	5.3	5.0	0.21	ug/l	
98-06-6	tert-Butylbenzene	1.0	5.0	0.30	ug/l	J
56-23-5	Carbon tetrachloride	ND	1.0	0.22	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.23	ug/l	
75-00-3	Chloroethane	ND	1.0	0.26	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
74-87-3	Chloromethane	ND	1.0	0.21	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	0.15	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.30	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	10	0.54	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.14	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.20	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.22	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.30	ug/l	
75-71-8	Dichlorodifluoromethane	ND	5.0	0.27	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.11	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.26	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.19	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.19	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.21	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.48	ug/l	
142 20 0	1 0 D: 11	ATD	r 0	0.00	/1	

ND = Not detected

142-28-9

MDL - Method Detection Limit

ND

5.0

0.23

RL = Reporting Limit

E = Indicates value exceeds calibration range

1,3-Dichloropropane

J = Indicates an estimated value

ug/l

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: MW-8

Lab Sample ID: JB23729-1 Matrix:

AQ - Ground Water

SW846 8260B

Date Sampled: 12/12/12 Date Received: 12/13/12

Method: Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Percent Solids: n/a

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7	2,2-Dichloropropane	ND	5.0	0.15	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	0.30	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.19	ug/l	
100-41-4	Ethylbenzene	91.2	1.0	0.23	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.24	ug/l	
98-82-8	Isopropylbenzene	25.2	2.0	0.45	ug/l	
99-87-6	p-Isopropyltoluene	0.73	5.0	0.22	ug/l	J
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.16	ug/l	_
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	0.83	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.26	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.70	ug/l	
91-20-3	Naphthalene	14.9	5.0	1.1	ug/l	
103-65-1	n-Propylbenzene	52.3	5.0	0.24	ug/l	
100-42-5	Styrene	ND	5.0	0.21	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.24	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/l	
127-18-4	Tetrachloroethene	0.39	1.0	0.28	ug/l	J
108-88-3	Toluene	4.8	1.0	0.23	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	0.28	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.20	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.24	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.29	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.22	ug/l	
75-69-4	Trichlorofluoromethane	ND	5.0	0.27	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.53	ug/l	
95-63-6	1,2,4-Trimethylbenzene	5.1	2.0	0.19	ug/l	
108-67-8	1,3,5-Trimethylbenzene	1.5	2.0	0.36	ug/l	J
75-01-4	Vinyl chloride	ND	1.0	0.21	ug/l	
	m,p-Xylene	10.3	1.0	0.42	ug/l	
95-47-6	o-Xylene	1.5	1.0	0.24	ug/l	
1330-20-7	Xylene (total)	11.8	1.0	0.24	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	104%		81-12		
17060-07-0	1,2-Dichloroethane-D4	102%		74-17		
2037-26-5	Toluene-D8	103%		80-17		
460-00-4	4-Bromofluorobenzene	99%		78-1	16%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

Accutest Laboratories

Report of Analysis

Page 1 of 3

Client Sample ID: MW-8

Lab Sample ID:

JB23729-1

Date Sampled: Date Received:

12/12/12 12/13/12

Matrix: Method: AQ - Ground Water

SW846 8270D SW846 3510C

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

File ID DF Prep Date Prep Batch **Analytical Batch** Analyzed By Run #1 F19062.D 12/22/12 **KLS** 12/19/12 OP62130 EF5019 1

Run #2

Final Volume Initial Volume Run #1 900 ml 1.0 ml

Run #2

ABN TCL List (CLP4.2 list)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.6	1.1	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.6	2.0	ug/l	
120-83-2	2,4-Dichlorophenol	ND	5.6	1.3	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.6	1.7	ug/l	
51-28-5	2,4-Dinitrophenol	ND	22	18	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	22	1.1	ug/l	
95-48-7	2-Methylphenol	ND	2.2	1.2	ug/l	
	3&4-Methylphenol	ND	2.2	1.0	ug/l	
88-75-5	2-Nitrophenol	ND	5.6	1.7	ug/l	
100-02-7	4-Nitrophenol	ND	11	5.8	ug/l	
87-86-5	Pentachlorophenol	ND	11	1.5	ug/l	
108-95-2	Phenol	ND	2.2	1.4	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.6	1.7	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.6	1.4	ug/l	
83-32-9	Acenaphthene	ND	1.1	0.29	ug/l	
208-96-8	Acenaphthylene	ND	1.1	0.25	ug/l	
98-86-2	Acetophenone	ND	2.2	0.32	ug/l	
120-12-7	Anthracene	ND	1.1	0.32	ug/l	
1912-24-9	Atrazine	ND	5.6	0.54	ug/l	
100-52-7	Benzaldehyde	ND	5.6	3.6	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.1	0.25	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.1	0.25	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.51	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.36	ug/I	
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.57	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.2	0.40	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.2	0.32	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.1	0.34	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.2	0.33	ug/l	
106-47-8	4-Chloroaniline	ND	5.6	0.59	ug/l	
86-74-8	Carbazole	ND	1.1	0.40	ug/l	
105-60-2	Caprolactam	ND	2.2	0.77	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: MW-8

Lab Sample ID: JB23729-1

Matrix: Method:

Project:

AQ - Ground Water

SW846 8270D SW846 3510C

Via Verde, 700-730 Brook Avenue, Bronx, NY

12/12/12 Date Sampled: Date Received: 12/13/12

Percent Solids: n/a

ABN TCL List (CLP4.2 list)

CAS No.	Compound	Result	RL	MDL	Units	Q
218-01-9	Chrysene	ND	1.1	0.32	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.2	0.34	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.2	0.34	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.2	0.50	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.2	0.35	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	2.2	0.47	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	2.2	0.51	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.6	0.40	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.42	ug/l	
132-64-9	Dibenzofuran	ND	5.6	0.29	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.2	0.62	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.2	0.34	ug/l	
84-66-2	Diethyl phthalate	ND	2.2	0.36	ug/l	
131-11-3	Dimethyl phthalate	ND	2.2	0.31	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.2	0.65	ug/l	
206-44-0	Fluoranthene	ND	1.1	0.35	ug/l	
86-73-7	Fluorene	ND	1.1	0.31	ug/l	
118-74-1	Hexachlorobenzene	ND	1.1	0.38	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.1	0.57	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	11	7.9	ug/l	
67-72-1	Hexachloroethane	ND	2.2	0.61	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.42	ug/l	
78-59-1	Isophorone	ND	2.2	0.30	ug/l	
91-57-6	2-Methylnaphthalene	2.1	1.1	0.43	ug/l	
88-74-4	2-Nitroaniline	ND	5.6	1.2	ug/l	
99-09-2	3-Nitroaniline	ND	5.6	1.4	ug/l	
100-01-6	4-Nitroaniline	ND	5.6	1.8	ug/l	
91-20-3	Naphthalene	20.4	1.1	0.29	ug/l	
98-95-3	Nitrobenzene	ND	2.2	0.47	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.2	0.34	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.6	0.34	ug/l	
85-01-8	Phenanthrene	ND	1.1	0.32	ug/l	
129-00-0	Pyrene	ND	1.1	0.30	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	45%		10-83	8 %	
4165-62-2	Phenol-d5	28%		10-33		
118-79-6	2,4,6-Tribromophenol	83%		24-14		
4165-60-0	Nitrobenzene-d5	68%		38-12		
1100-00-0	THEODOILLOIC GO	0070		00 12	-070	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Client Sample ID: MW-8

Lab Sample ID: JB23729-1

Matrix:

AQ - Ground Water

SW846 8270D SW846 3510C

Date Received: 12/13/12 Percent Solids: n/a

Date Sampled: 12/12/12

Method: Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

ABN TCL List (CLP4.2 list)

CAS No. Surrogate Recoveries Run#1 Run#2 Limits

321-60-8 1718-51-0

2-Fluorobiphenyl Terphenyl-d14

75% 87% 42-117% 14-132%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Accutest Laboratories

Report of Analysis

Page 1 of 1

Client Sample ID: MW-8

File ID

XX128153.D

Lab Sample ID:

JB23729-1

By

JR

Prep Date

12/19/12

Date Sampled: 12/12/12

Matrix:

AQ - Ground Water

Date Received:

12/13/12

Method:

SW846 8082A SW846 3510C

DF

1

Percent Solids: n/a

OP62133

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Analyzed

12/27/12

Prep Batch Analytical Batch

GXX4551

Run #1 Run #2

Initial Volume Run #1 940 ml

Final Volume 10.0 ml

Run #2

PCB List

CAS No	Compound	Result	RI.	MDL	Units	0
CAB No.	Сощроши	Kesuit	IV.L	IVIDE	OHILD	V

12674-11-2	Aroclor 1016	ND	0.53	0.14	ug/l
11104-28-2	Aroclor 1221	ND	0.53	0.29	ug/l
11141-16-5	Aroclor 1232	ND	0.53	0.41	ug/l
53469-21-9	Aroclor 1242	ND	0.53	0.091	ug/l
12672-29-6	Aroclor 1248	ND	0.53	0.15	ug/l
11097-69-1	Aroclor 1254	ND	0.53	0.15	ug/l
11096-82-5	Aroclor 1260	ND	0.53	0.22	ug/l
11100-14-4	Aroclor 1268	ND	0.53	0.14	ug/l
37324-23-5	Aroclor 1262	ND	0.53	0.064	ug/l

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
877-09-8	Tetrachloro-m-xylene	82%		27-144%
877-09-8	Tetrachloro-m-xylene	81%		27-144%
2051-24-3	Decachlorobiphenyl	49%		10-139%
2051-24-3	Decachlorobiphenyl	50%		10-139%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: MW-8

Lab Sample ID: JB23729-1

Matrix:

AQ - Ground Water

Date Sampled: 12/12/12 Date Received: 12/13/12

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	4050	200	ug/l	1	12/22/12	12/24/12 cs	SW846 6010C ²	SW846 3010A ⁴
Antimony	< 1.0	1.0	ug/l	2	12/22/12	12/24/12 VC	SW846 6020A ¹	SW846 3010A ⁵
Arsenic	9.7	3.0	ug/l	1	12/22/12	12/24/12 CS	SW846 6010C ²	SW846 3010A ⁴
Barium	< 200	200	ug/l	1	12/22/12	12/24/12 CS	SW846 6010C ²	SW846 3010A ⁴
Beryllium	< 1.0	1.0	ug/l	1	12/22/12	12/24/12 CS	SW846 6010C ²	SW846 3010A ⁴
Cadmium	< 3.0	3.0	ug/l	1	12/22/12	12/24/12 CS	SW846 6010C ²	SW846 3010A ⁴
Calcium	131000	5000	ug/l	1	12/22/12	12/24/12 cs	SW846 6010C ²	SW846 3010A ⁴
Chromium	26.7	10	ug/l	1	12/22/12	12/24/12 CS	SW846 6010C ²	SW846 3010A ⁴
Cobalt	< 50	50	ug/l	1	12/22/12	12/24/12 CS	SW846 6010C ²	SW846 3010A ⁴
Copper	20.5	10	ug/l	1	12/22/12	12/24/12 CS	SW846 6010C ²	SW846 3010A ⁴
Iron	11600	100	ug/l	1	12/22/12	12/24/12 CS	SW846 6010C ²	SW846 3010A ⁴
Lead	14.5	3.0	ug/l	1	12/22/12	12/24/12 CS	SW846 6010C ²	SW846 3010A ⁴
Magnesium	33600	5000	ug/l	1	12/22/12	12/24/12 CS	SW846 6010C ²	SW846 3010A ⁴
Manganese	2600	15	ug/l	1	12/22/12	12/24/12 CS	SW846 6010C ²	SW846 3010A ⁴
Mercury	< 0.20	0.20	ug/l	1	12/24/12	12/26/12 CS	SW846 7470A ³	SW846 7470A ⁶
Nickel	15.4	10	ug/l	1	12/22/12	12/24/12 CS	SW846 6010C ²	SW846 3010A ⁴
Potassium	< 10000	10000	ug/l	1	12/22/12	12/24/12 CS	SW846 6010C ²	SW846 3010A ⁴
Selenium	< 10	10	ug/l	1	12/22/12	12/24/12 CS	SW846 6010C ²	SW846 3010A ⁴
Silver	< 10	10	ug/l	1	12/22/12	12/24/12 CS	SW846 6010C ²	SW846 3010A ⁴
Sodium	81800	10000	ug/l	1	12/22/12	12/24/12 CS	SW846 6010C ²	SW846 3010A ⁴
Thallium	< 1.0	1.0	ug/l	2	12/22/12	12/24/12 VC	SW846 6020A ¹	SW846 3010A ⁵
Vanadium	< 50	50	ug/l	1	12/22/12	12/24/12 cs	SW846 6010C ²	SW846 3010A ⁴
Zinc	24.0	20	ug/l	1	12/22/12	12/24/12 CS	SW846 6010C ²	SW846 3010A ⁴

(1) Instrument QC Batch: MA30140
(2) Instrument QC Batch: MA30148
(3) Instrument QC Batch: MA30150
(4) Prep QC Batch: MP68735
(5) Prep QC Batch: MP68735A
(6) Prep QC Batch: MP68781

mg/l

1

1

Client Sample ID: MW-8

JB23729-1

Lab Sample ID: Matrix:

AQ - Ground Water

Date Sampled: 12/12/12

Date Received: 12/13/12

Method

SW846 7196A

SW846 6010/7196A M

Percent Solids: n/a

12/13/12 21:06 MM

12/24/12 19:12 CS

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

< 0.010

General Chemistry

Chromium, Hexavalent a

Result RLUnits DF Analyzed By Analyte

0.010

Chromium, Trivalent ^b < 0.020 0.020 mg/l

(a) Analysis done out of holding time.

(b) Calculated as: (Chromium) - (Chromium, Hexavalent)

Ja /218713

Accutest Laboratories

Report of Analysis

Ву

TLR

Page 1 of 2

Client Sample ID: MW-XX

Lab Sample ID:

JB23729-2

Date Sampled:

12/12/12

Matrix:

AQ - Ground Water

Date Received:

12/13/12

Method:

SW846 8260B

Percent Solids: n/a

Project:

DF

1

Via Verde, 700-730 Brook Avenue, Bronx, NY

Analyzed

12/26/12

Prep Batch n/a

Prep Date

n/a

Analytical Batch V3B4235

Run #1 Run #2

Purge Volume

3B90864.D

Run #1

5.0 ml

File ID

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.3	ug/l	
71-43-2	Benzene	5.0	1.0	0.24	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.14	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.30	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.21	ug/l	
75-25-2	Bromoform	ND	4.0	0.21	ug/l	
74-83-9	Bromomethane	ND	2.0	0.22	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.4	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	0.17	ug/l	
135-98-8	sec-Butylbenzene	5.2	5.0	0.21	ug/l	
98-06-6	tert-Butylbenzene	1.0	5.0	0.30	ug/l	J
56-23-5	Carbon tetrachloride	ND	1.0	0.22	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.23	ug/l	
75-00-3	Chloroethane	ND	1.0	0.26	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
74-87-3	Chloromethane	ND	1.0	0.21	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	0.15	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.30	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	10	0.54	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.14	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.20	ug/I	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.22	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/I	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.30	ug/I	
75-71-8	Dichlorodifluoromethane	ND	5.0	0.27	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.11	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.26	ug/I	
75-35-4	1,1-Dichloroethene	ND	1.0	0.19	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.19	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.21	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.48	ug/I	
142-28-9	1,3-Dichloropropane	ND	5.0	0.23	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: MW-XX

Lab Sample ID: JB23729-2

Matrix: Method:

Project:

AQ - Ground Water SW846 8260B

Via Verde, 700-730 Brook Avenue, Bronx, NY

Date Sampled: 12/12/12 Date Received: 12/13/12

Percent Solids: n/a

VOA 8260 List

S94-20-7 2,2-Dichloropropane ND 5.0 0.15 ug/l	CAS No.	Compound	Result	RL	MDL	Units	Q
563-58-6		-					
10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.21 ug/l	594-20-7		ND				
10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.19 ug/l	563-58-6			5.0			
100-41-4	10061-01-5			1.0			
87-68-3 Hexachlorobutadiene ND 5.0 0.24 ug/l 98-82-8 Isopropylbenzene 24.7 2.0 0.45 ug/l 99-87-6 p-Isopropyltoluene 0.70 5.0 0.22 ug/l 1634-04-4 Methyl Tert Butyl Ether ND 1.0 0.16 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 0.26 ug/l 74-95-3 Methylene bromide ND 5.0 0.26 ug/l 75-09-2 Methylene chloride ND 2.0 0.70 ug/l 91-20-3 Naphthalene 15.5 5.0 1.1 ug/l 103-65-1 n-Propylbenzene 51.1 5.0 0.24 ug/l 100-42-5 Styrene ND 5.0 0.24 ug/l 100-42-5 Styrene ND 5.0 0.24 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.21 ug/l 127-18-4 Tetrachloroethene	10061-02-6		ND	1.0	0.19		
98-82-8 Isopropylbenzene 24.7 2.0 0.45 ug/l 99-87-6 p-Isopropyltoluene 0.70 5.0 0.22 ug/l 1634-04-4 Methyl Tert Butyl Ether ND 1.0 0.16 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 0.83 ug/l 74-95-3 Methylene bromide ND 5.0 0.26 ug/l 91-20-3 Naphthalene 15.5 5.0 1.1 ug/l 103-65-1 n-Propylbenzene 51.1 5.0 0.24 ug/l 100-42-5 Styrene ND 5.0 0.21 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 5.0 0.24 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.23 ug/l 108-88-3 Toluene 4.9 1.0 0.23 ug/l 87-61-6 1,2,3-Trichloroethane ND 5.0 0.28 ug/l 12-8-21 1,2,4-Tr	100-41-4			1.0	0.23	ug/l	
99-87-6 p-Isopropyltoluene 0.70 5.0 0.22 ug/I J 1634-04-4 Methyl Tert Butyl Ether ND 1.0 0.16 ug/I 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 0.83 ug/I 74-95-3 Methylene bromide ND 5.0 0.26 ug/I 75-09-2 Methylene chloride ND 2.0 0.70 ug/I 91-20-3 Naphthalene 15.5 5.0 1.1 ug/I 103-65-1 n-Propylbenzene 51.1 5.0 0.24 ug/I 100-42-5 Styrene ND 5.0 0.21 ug/I 630-20-6 1,1,1,2-Tetrachloroethane ND 5.0 0.24 ug/I 127-18-4 Tetrachloroethene 0.41 1.0 0.28 ug/I 127-18-4 Tetrachloroethene ND 5.0 0.28 ug/I 120-88-3 Toluene 4.9 1.0 0.23 ug/I 120-88-3	87-68-3	Hexachlorobutadiene	ND	5.0	0.24	ug/l	
1634-04-4 Methyl Tert Butyl Ether ND 1.0 0.16 ug/l	98-82-8	Isopropylbenzene	24.7	2.0	0.45	ug/l	
108-10-1	99-87-6	p-Isopropyltoluene	0.70	5.0	0.22	ug/l	J
74-95-3 Methylene bromide ND 5.0 0.26 ug/l 75-09-2 Methylene chloride ND 2.0 0.70 ug/l 91-20-3 Naphthalene 15.5 5.0 1.1 ug/l 103-65-1 n-Propylbenzene 51.1 5.0 0.24 ug/l 100-42-5 Styrene ND 5.0 0.21 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 5.0 0.24 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.21 ug/l 127-18-4 Tetrachloroethene 0.41 1.0 0.28 ug/l 108-88-3 Toluene 4.9 1.0 0.23 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 5.0 0.28 ug/l 120-82-1 1,2,4-Trichloroethane ND 1.0 0.24 ug/l 79-00-5 1,1,1-Trichloroethane ND 1.0 0.29 ug/l 79-01-6 Trichlorofluorom	1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.16	ug/l	
75-09-2 Methylene chloride ND 2.0 0.70 ug/l 91-20-3 Naphthalene 15.5 5.0 1.1 ug/l 103-65-1 n-Propylbenzene 51.1 5.0 0.24 ug/l 100-42-5 Styrene ND 5.0 0.21 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 5.0 0.24 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.21 ug/l 127-18-4 Tetrachloroethene 0.41 1.0 0.28 ug/l 108-88-3 Toluene 4.9 1.0 0.23 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 5.0 0.28 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 5.0 0.20 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.24 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.22 ug/l 79-01-6 Trichloroethene ND 1.0 0.22 ug/l 75-69-4 Trichlorofluoromethane ND 5.0 0.53 ug/l 96-18-4 1,2,3-Trichloropropane ND 5.0 0.53 ug/l 95-63-6 1,2,4-Trimethylbenzene 5.3 2.0 0.19 ug/l 108-67-8 1,3,5-Trimethylbenzene 1.5 2.0 0.36 ug/l 75-01-4 Vinyl chloride ND 1.0 0.21 ug/l m,p-Xylene 10.8 1.0 0.42 ug/l 95-47-6 0-Xylene 1.5 1.0 0.24 ug/l 1330-20-7 Xylene (total) 12.3 1.0 0.24 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits 1868-53-7 Dibromofluoromethane 100% 81-121% 17060-07-0 1,2-Dichloroethane-D4 96% 74-127% 2037-26-5 Toluene-D8 103% 80-122%	108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	0.83	ug/l	
T5-09-2 Methylene chloride ND 2.0 0.70 ug/l 91-20-3 Naphthalene 15.5 5.0 1.1 ug/l 103-65-1 n-Propylbenzene 51.1 5.0 0.24 ug/l 100-42-5 Styrene ND 5.0 0.21 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 5.0 0.24 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.21 ug/l 127-18-4 Tetrachloroethene 0.41 1.0 0.28 ug/l 108-88-3 Toluene 4.9 1.0 0.23 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 5.0 0.28 ug/l 120-82-1 1,2,4-Trichloroethane ND 5.0 0.20 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.24 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.29 ug/l 79-01-6 Trichloroethene ND 1.0 0.22 ug/l 75-69-4 Trichloroethene ND 5.0 0.53 ug/l 96-18-4 1,2,3-Trichloropropane ND 5.0 0.53 ug/l 95-63-6 1,2,4-Trimethylbenzene 5.3 2.0 0.19 ug/l 108-67-8 1,3,5-Trimethylbenzene 1.5 2.0 0.36 ug/l 75-01-4 Vinyl chloride ND 1.0 0.21 ug/l m,p-Xylene 10.8 1.0 0.42 ug/l 95-47-6 0-Xylene 1.5 1.0 0.24 ug/l 1330-20-7 Xylene (total) 12.3 1.0 0.24 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits 1868-53-7 Dibromofluoromethane 100% 81-121% 17060-07-0 1,2-Dichloroethane-D4 96% 74-127% 2037-26-5 Toluene-D8 103% 80-122%	74-95-3	Methylene bromide	ND	5.0	0.26	ug/l	
91-20-3 Naphthalene 15.5 5.0 1.1 ug/l 103-65-1 n-Propylbenzene 51.1 5.0 0.24 ug/l 100-42-5 Styrene ND 5.0 0.21 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 5.0 0.24 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.21 ug/l 108-88-3 Toluene 4.9 1.0 0.23 ug/l 120-82-1 1,2,4-Trichloroethane ND 5.0 0.28 ug/l 120-82-1 1,2,4-Trichloroethane ND 1.0 0.28 ug/l 171-55-6 1,1,1-Trichloroethane ND 1.0 0.24 ug/l 179-00-5 1,1,2-Trichloroethane ND 1.0 0.29 ug/l 179-01-6 Trichloroethane ND 1.0 0.22 ug/l 176-69-4 Trichlorofluoromethane ND 1.0 0.22 ug/l 195-63-6 1,2,4-Trimethylbenzene 1.5 2.0 0.36 ug/l 108-67-8 1,3,5-Trimethylbenzene 1.5 2.0 0.36 ug/l 108-67-8 1,3,5-Trimethylbenzene 1.5 2.0 0.36 ug/l 108-67-8 0-Xylene 10.8 1.0 0.24 ug/l 10.8 1.0 0.24 ug/l 10.8 1.0 0.21 ug/l 1330-20-7 Xylene 10.8 1.0 0.24 ug/l 12.3 1.0 0.24 ug/l 12.3 1.0 0.24 ug/l 1320-20-7 Toluene-D8 103% 80-122%	75-09-2		ND	2.0	0.70		
103-65-1 n-Propylbenzene 51.1 5.0 0.24 ug/l 100-42-5 Styrene ND 5.0 0.21 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 5.0 0.24 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.21 ug/l 127-18-4 Tetrachloroethene 0.41 1.0 0.28 ug/l J 108-88-3 Toluene 4.9 1.0 0.23 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 5.0 0.28 ug/l 120-82-1 1,2,4-Trichloroethane ND 1.0 0.24 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.22 ug/l 79-01-6 Trichlorofluoromethane ND 1.0 0.22 ug/l 79-01-6 Trichlorofluoromethane ND 5.0 0.27 ug/l 96-18-4 1,2,3-Trichloropropane ND 5.0 0.53 ug/l 95-63-6 1,2,4-Trimethylbenzene 5.3 2.0 0.19 ug/l 108-67-8 1,3,5-Trimethylbenzene 1.5 2.0 0.36 ug/l J 75-01-4 Vinyl chloride ND 1.0 0.21 ug/l m,p-Xylene 10.8 1.0 0.42 ug/l 1330-20-7 Xylene 1.5 1.0 0.24 ug/l 12.3 1.0 0.24 ug/l CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 1868-53-7 Dibromofluoromethane 100% 81-121% 17060-07-0 1,2-Dichloroethane-D4 96% 74-127% 2037-26-5 Toluene-D8 103% 80-122%	91-20-3		15.5	5.0	1.1		
100-42-5 Styrene	103-65-1		51.1	5.0	0.24		
630-20-6 1,1,1,2-Tetrachloroethane ND 5.0 0.24 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.21 ug/l 127-18-4 Tetrachloroethene 0.41 1.0 0.28 ug/l 108-88-3 Toluene 4.9 1.0 0.23 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 5.0 0.28 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 5.0 0.20 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.24 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.29 ug/l 79-01-6 Trichloroethene ND 1.0 0.22 ug/l 75-69-4 Trichlorofluoromethane ND 5.0 0.27 ug/l 95-63-6 1,2,4-Trimethylbenzene 5.3 2.0 0.19 ug/l 108-67-8 1,3,5-Trimethylbenzene 1.5 2.0 0.36 ug/l 95-47-6<	100-42-5		ND	5.0	0.21		
79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.21 ug/l 127-18-4 Tetrachloroethene 0.41 1.0 0.28 ug/l 108-88-3 Toluene 4.9 1.0 0.23 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 5.0 0.28 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 5.0 0.20 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.24 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.29 ug/l 79-01-6 Trichloroethene ND 1.0 0.22 ug/l 75-69-4 Trichlorofluoromethane ND 5.0 0.27 ug/l 96-18-4 1,2,3-Trichloropropane ND 5.0 0.53 ug/l 95-63-6 1,2,4-Trimethylbenzene 5.3 2.0 0.19 ug/l 108-67-8 1,3,5-Trimethylbenzene 1.5 2.0 0.36 ug/l 95-47-6			ND	5.0	0.24		
127-18-4 Tetrachloroethene 0.41 1.0 0.28 ug/l J 108-88-3 Toluene 4.9 1.0 0.23 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 5.0 0.28 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 5.0 0.20 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.24 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.29 ug/l 79-01-6 Trichloroethene ND 1.0 0.22 ug/l 75-69-4 Trichlorofluoromethane ND 5.0 0.53 ug/l 96-18-4 1,2,3-Trichloropropane ND 5.0 0.53 ug/l 95-63-6 1,2,4-Trimethylbenzene 5.3 2.0 0.19 ug/l 108-67-8 1,3,5-Trimethylbenzene 1.5 2.0 0.36 ug/l 75-01-4 Vinyl chloride ND 1.0 0.21 ug/l 95-4				1.0	0.21		
108-88-3 Toluene 4.9 1.0 0.23 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 5.0 0.28 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 5.0 0.20 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.24 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.29 ug/l 79-01-6 Trichloroethene ND 1.0 0.22 ug/l 75-69-4 Trichlorofluoromethane ND 5.0 0.27 ug/l 96-18-4 1,2,3-Trichloropropane ND 5.0 0.53 ug/l 95-63-6 1,2,4-Trimethylbenzene 5.3 2.0 0.19 ug/l 108-67-8 1,3,5-Trimethylbenzene 1.5 2.0 0.36 ug/l 75-01-4 Vinyl chloride ND 1.0 0.21 ug/l m,p-Xylene 1.5 1.0 0.24 ug/l 1330-20-7 Xylene (total) <t< td=""><td></td><td></td><td>0.41</td><td></td><td>0.28</td><td>_</td><td>J</td></t<>			0.41		0.28	_	J
87-61-6 1,2,3-Trichlorobenzene ND 5.0 0.28 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 5.0 0.20 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.24 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.29 ug/l 79-01-6 Trichloroethene ND 1.0 0.22 ug/l 75-69-4 Trichlorofluoromethane ND 5.0 0.27 ug/l 96-18-4 1,2,3-Trichloropropane ND 5.0 0.53 ug/l 95-63-6 1,2,4-Trimethylbenzene 5.3 2.0 0.19 ug/l 108-67-8 1,3,5-Trimethylbenzene 1.5 2.0 0.36 ug/l 75-01-4 Vinyl chloride ND 1.0 0.21 ug/l 95-47-6 0-Xylene 1.5 1.0 0.24 ug/l 1330-20-7 Xylene (total) 12.3 1.0 0.24 ug/l 1688-53-7 <t< td=""><td></td><td></td><td>4.9</td><td>1.0</td><td>0.23</td><td></td><td>•</td></t<>			4.9	1.0	0.23		•
120-82-1 1,2,4-Trichlorobenzene ND 5.0 0.20 ug/l							
71-55-6 1,1,1-Trichloroethane ND 1.0 0.24 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.29 ug/l 79-01-6 Trichloroethene ND 1.0 0.22 ug/l 75-69-4 Trichlorofluoromethane ND 5.0 0.27 ug/l 96-18-4 1,2,3-Trichloropropane ND 5.0 0.53 ug/l 95-63-6 1,2,4-Trimethylbenzene 5.3 2.0 0.19 ug/l 108-67-8 1,3,5-Trimethylbenzene 1.5 2.0 0.36 ug/l 75-01-4 Vinyl chloride ND 1.0 0.21 ug/l m,p-Xylene 10.8 1.0 0.42 ug/l 95-47-6 o-Xylene 1.5 1.0 0.24 ug/l 1330-20-7 Xylene (total) 12.3 1.0 0.24 ug/l 1688-53-7 Dibromofluoromethane 100% 81-121% 17060-07-0 1,2-Dichloroethane-D4 96% 74-127% <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
79-00-5 1,1,2-Trichloroethane ND 1.0 0.29 ug/l 79-01-6 Trichloroethene ND 1.0 0.22 ug/l 75-69-4 Trichlorofluoromethane ND 5.0 0.27 ug/l 96-18-4 1,2,3-Trichloropropane ND 5.0 0.53 ug/l 95-63-6 1,2,4-Trimethylbenzene 5.3 2.0 0.19 ug/l 108-67-8 1,3,5-Trimethylbenzene 1.5 2.0 0.36 ug/l 75-01-4 Vinyl chloride ND 1.0 0.21 ug/l m,p-Xylene 10.8 1.0 0.42 ug/l 95-47-6 o-Xylene 1.5 1.0 0.24 ug/l 1330-20-7 Xylene (total) 12.3 1.0 0.24 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits 1868-53-7 Dibromofluoromethane 100% 81-121% 17060-07-0 1,2-Dichloroethane-D4 96% 74-127%							
79-01-6 Trichloroethene ND 1.0 0.22 ug/l 75-69-4 Trichlorofluoromethane ND 5.0 0.27 ug/l 96-18-4 1,2,3-Trichloropropane ND 5.0 0.53 ug/l 95-63-6 1,2,4-Trimethylbenzene 5.3 2.0 0.19 ug/l 108-67-8 1,3,5-Trimethylbenzene 1.5 2.0 0.36 ug/l 75-01-4 Vinyl chloride ND 1.0 0.21 ug/l m,p-Xylene 10.8 1.0 0.42 ug/l 95-47-6 o-Xylene 1.5 1.0 0.24 ug/l 1330-20-7 Xylene (total) 12.3 1.0 0.24 ug/l CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 1868-53-7 Dibromofluoromethane 100% 81-121% 17060-07-0 1,2-Dichloroethane-D4 96% 74-127% 2037-26-5 Toluene-D8 103% 80-122%				1.0	0.29		
75-69-4 Trichlorofluoromethane ND 5.0 0.27 ug/l 96-18-4 1,2,3-Trichloropropane ND 5.0 0.53 ug/l 95-63-6 1,2,4-Trimethylbenzene 5.3 2.0 0.19 ug/l 108-67-8 1,3,5-Trimethylbenzene 1.5 2.0 0.36 ug/l 75-01-4 Vinyl chloride ND 1.0 0.21 ug/l m,p-Xylene 10.8 1.0 0.42 ug/l 95-47-6 o-Xylene 1.5 1.0 0.24 ug/l 1330-20-7 Xylene (total) 12.3 1.0 0.24 ug/l CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 1868-53-7 Dibromofluoromethane 100% 81-121% 17060-07-0 1,2-Dichloroethane-D4 96% 74-127% 2037-26-5 Toluene-D8 103% 80-122%							
96-18-4 1,2,3-Trichloropropane ND 5.0 0.53 ug/l 95-63-6 1,2,4-Trimethylbenzene 5.3 2.0 0.19 ug/l 108-67-8 1,3,5-Trimethylbenzene 1.5 2.0 0.36 ug/l 75-01-4 Vinyl chloride ND 1.0 0.21 ug/l m,p-Xylene 10.8 1.0 0.42 ug/l 95-47-6 o-Xylene 1.5 1.0 0.24 ug/l 1330-20-7 Xylene (total) 12.3 1.0 0.24 ug/l CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 1868-53-7 Dibromofluoromethane 100% 81-121% 17060-07-0 1,2-Dichloroethane-D4 96% 74-127% 2037-26-5 Toluene-D8 103% 80-122%							
95-63-6 1,2,4-Trimethylbenzene 5.3 2.0 0.19 ug/l 108-67-8 1,3,5-Trimethylbenzene 1.5 2.0 0.36 ug/l 75-01-4 Vinyl chloride ND 1.0 0.21 ug/l m,p-Xylene 10.8 1.0 0.42 ug/l 95-47-6 o-Xylene 1.5 1.0 0.24 ug/l 1330-20-7 Xylene (total) 12.3 1.0 0.24 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits 1868-53-7 Dibromofluoromethane 100% 81-121% 17060-07-0 1,2-Dichloroethane-D4 96% 74-127% 2037-26-5 Toluene-D8 103% 80-122%							
108-67-8 1,3,5-Trimethylbenzene 1.5 2.0 0.36 ug/l J 75-01-4 Vinyl chloride ND 1.0 0.21 ug/l m,p-Xylene 10.8 1.0 0.42 ug/l 95-47-6 o-Xylene 1.5 1.0 0.24 ug/l 1330-20-7 Xylene (total) 12.3 1.0 0.24 ug/l CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 1868-53-7 Dibromofluoromethane 100% 81-121% 17060-07-0 1,2-Dichloroethane-D4 96% 74-127% 2037-26-5 Toluene-D8 103% 80-122%							
75-01-4 Vinyl chloride m,p-Xylene ND 1.0 0.21 ug/l ug/l ug/l ug/l 95-47-6 o-Xylene 1330-20-7 1.5 1.0 0.24 ug/l ug/l 1330-20-7 Xylene (total) 12.3 1.0 0.24 ug/l CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 1868-53-7 Dibromofluoromethane 17060-07-0 1,2-Dichloroethane-D4 2037-26-5 Toluene-D8 103% 81-121% 74-127% 80-122%						_	T
m,p-Xylene 10.8 1.0 0.42 ug/l 95-47-6 o-Xylene 1.5 1.0 0.24 ug/l 1330-20-7 Xylene (total) 12.3 1.0 0.24 ug/l 12.3 1.0 ug/l 12.3 1.0 ug/l 12.3 1.0 ug/l 12.3 1.0 ug/l 12.3 u							J
95-47-6 o-Xylene 1.5 1.0 0.24 ug/l 1330-20-7 Xylene (total) 12.3 1.0 0.24 ug/l	70 01 1						
1330-20-7 Xylene (total) 12.3 1.0 0.24 ug/l CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 1868-53-7 Dibromofluoromethane 100% 81-121% 17060-07-0 1,2-Dichloroethane-D4 96% 74-127% 2037-26-5 Toluene-D8 103% 80-122%	95_47_6						
CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 1868-53-7 Dibromofluoromethane 100% 81-121% 17060-07-0 1,2-Dichloroethane-D4 96% 74-127% 2037-26-5 Toluene-D8 103% 80-122%							
1868-53-7 Dibromofluoromethane 100% 81-121% 17060-07-0 1,2-Dichloroethane-D4 96% 74-127% 2037-26-5 Toluene-D8 103% 80-122%	1000-20-7	Aylene (total)	12.0	1.0	0.21	u ₆ /1	
17060-07-0 1,2-Dichloroethane-D4 96% 74-127% 2037-26-5 Toluene-D8 103% 80-122%	CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
17060-07-0 1,2-Dichloroethane-D4 96% 74-127% 2037-26-5 Toluene-D8 103% 80-122%	1868-53-7	Dibromofluoromethane	100%		81-1	21%	
2037-26-5 Toluene-D8 103% 80-122%			96%				
		4-Bromofluorobenzene					

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

4.2

Accutest Laboratories

Report of Analysis

By

KLS

Page 1 of 3

Client Sample ID: MW-XX

Lab Sample ID:

JB23729-2

Date Sampled:

12/12/12

Matrix:

AQ - Ground Water

1

Date Received: 12/13/12

Method:

SW846 8270D SW846 3510C

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Run #1

File ID F19063.D DF Analyzed 12/22/12

Prep Date 12/19/12

Prep Batch OP62130

Analytical Batch EF5019

Run #2

Initial Volume Final Volume

Run #1

1.0 ml

Run #2

ABN TCL List (CLP4.2 list)

910 ml

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.5	1.1	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.5	2.0	ug/l	
120-83-2	2,4-Dichlorophenol -	ND	5.5	1.3	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.5	1.7	ug/l	
51-28-5	2,4-Dinitrophenol	ND	22	18	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	22	1.1	ug/l	
95-48-7	2-Methylphenol	ND	2.2	1.1	ug/l	
	3&4-Methylphenol	ND	2.2	1.0	ug/l	
88-75-5	2-Nitrophenol	ND	5.5	1.6	ug/l	
100-02-7	4-Nitrophenol	ND	11	5.7	ug/l	
87-86-5	Pentachlorophenol	ND	11	1.5	ug/l	
108-95-2	Phenol	ND	2.2	1.4	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.5	1.7	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.5	1.4	ug/l	
83-32-9	Acenaphthene	ND	1.1	0.29	ug/l	
208-96-8	Acenaphthylene	ND	1.1	0.25	ug/l	
98-86-2	Acetophenone	ND	2.2	0.31	ug/l	
120-12-7	Anthracene	ND	1.1	0.32	ug/l	
1912-24-9	Atrazine	ND	5.5	0.54	ug/l	
100-52-7	Benzaldehyde	ND	5.5	3.6	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.1	0.25	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.1	0.25	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.50	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.35	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.56	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.2	0.39	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.2	0.32	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.1	0.33	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.2	0.33	ug/l	
106-47-8	4-Chloroaniline	ND	5.5	0.58	ug/l	
86-74-8	Carbazole	ND	1.1	0.40	ug/l	
105-60-2	Caprolactam	ND	2.2	0.76	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-XX

Lab Sample ID: JB23729-2

Matrix: Method: AQ - Ground Water

Report of Analysis

Date Sampled: 12/12/12 Date Received: 12/13/12

SW846 8270D SW846 3510C

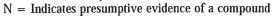
Percent Solids: n/a

Project: Via Verde, 700-730 Brook Avenue, Bronx, NY

ABN TCL List (CLP4.2 list)

CAS No.	Compound	Result	RL	MDL	Units	Q
218-01-9	Chrysene	ND	1.1	0.32	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.2	0.34	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.2	0.34	ug/l	
108-60-1	bis (2-Chloroisopropyl) ether	ND	2.2	0.50	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.2	0.34	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	2.2	0.47	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	2.2	0.51	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.5	0.40	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.42	ug/l	
132-64-9	Dibenzofuran	ND	5.5	0.29	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.2	0.61	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.2	0.34	ug/1	
84-66-2	Diethyl phthalate	ND	2.2	0.36	ug/l	
131-11-3	Dimethyl phthalate	ND	2.2	0.31	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.2	0.64	ug/l	
206-44-0	Fluoranthene	ND	1.1	0.35	ug/l	
86-73-7	Fluorene	ND	1.1	0.30	ug/l	
118-74-1	Hexachlorobenzene	ND	1.1	0.37	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.1	0.56	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	11	7.8	ug/l	
67-72-1	Hexachloroethane	ND	2.2	0.60	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.41	ug/l	
78-59-1	Isophorone	ND	2.2	0.30	ug/l	
91-57-6	2-Methylnaphthalene	2.0	1.1	0.42	ug/l	
88-74-4	2-Nitroaniline	ND	5.5	1.2	ug/l	
99-09-2	3-Nitroaniline	ND	5.5	1.4	ug/l	
100-01-6	4-Nitroaniline	ND	5.5	1.8	ug/l	
91-20-3	Naphthalene	19.9	1.1	0.28	ug/l	
98-95-3	Nitrobenzene	ND	2.2	0.46	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.2	0.33	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.5	0.34	ug/l	
85-01-8	Phenanthrene	ND	1.1	0.32	ug/l	
129-00-0	Pyrene	ND	1.1	0.30	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
367-12-4	2-Fluorophenol	49%		10-8	3%	
4165-62-2	Phenol-d5	31%		10-7		
118-79-6	2,4,6-Tribromophenol	92%		24-1	48%	
4165-60-0	Nitrobenzene-d5	75%		38-1	29%	

ND = Not detected


MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-XX

JB23729-2

Date Sampled: 12/12/12

Lab Sample ID: Matrix:

AQ - Ground Water

Date Received: 12/13/12

Method:

SW846 8270D SW846 3510C

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

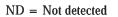
ABN TCL List (CLP4.2 list)

CAS No. Surrogate Recoveries Run#1 Run#2 Limits

321-60-8

2-Fluorobiphenyl

82%


42-117%

1718-51-0

Terphenyl-d14

92%

14-132%

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: MW-XX

Lab Sample ID: Matrix:

JB23729-2

AQ - Ground Water

DF

1

Date Sampled: 12/12/12 Date Received: 12/13/12

Method:

SW846 8082A SW846 3510C

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Analytical Batch

Run #1 Run #2

File ID XX128154.D Analyzed 12/27/12

Prep Date By JR 12/19/12

Prep Batch OP62133

GXX4551

Initial Volume Final Volume 950 ml

Run #1

10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q

12674-11-2	Aroclor 1016	ND	0.53	0.13	ug/l
11104-28-2	Aroclor 1221	ND	0.53	0.29	ug/l
11141-16-5	Aroclor 1232	ND	0.53	0.41	ug/l
53469-21-9	Aroclor 1242	ND	0.53	0.091	ug/l
12672-29-6	Aroclor 1248	ND	0.53	0.15	ug/l
11097-69-1	Aroclor 1254	ND	0.53	0.15	ug/l
11096-82-5	Aroclor 1260	ND	0.53	0.22	ug/l
11100-14-4	Aroclor 1268	ND	0.53	0.14	ug/l
37324-23-5	Aroclor 1262	ND	0.53	0.063	ug/l

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
877-09-8	Tetrachloro-m-xylene	74%		27-144%
877-09-8	Tetrachloro-m-xylene	72%		27-144%
2051-24-3	Decachlorobiphenyl	46%		10-139%
2051-24-3	Decachlorobiphenyl	49%		10-139%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

4.2

Report of Analysis

Client Sample ID: MW-XX

Lab Sample ID: JB23729-2

Matrix:

AQ - Ground Water

Date Sampled: 12/12/12
Date Received: 12/13/12

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	4530	200	ug/l	1	12/22/12	12/24/12 CS	SW846 6010C ²	SW846 3010A ⁴
Antimony	< 1.0	1.0	ug/l	2	12/22/12	12/24/12 VC	SW846 6020A ¹	SW846 3010A ⁵
Arsenic	10.7	3.0	ug/l	1	12/22/12	12/24/12 cs	SW846 6010C ²	SW846 3010A ⁴
Barium	< 200	200	ug/l	1	12/22/12	12/24/12 cs	SW846 6010C ²	SW846 3010A ⁴
Beryllium	< 1.0	1.0	ug/l	1	12/22/12	12/24/12 cs	SW846 6010C ²	SW846 3010A ⁴
Cadmium	< 3.0	3.0	ug/l	1	12/22/12	12/24/12 cs	SW846 6010C ²	SW846 3010A ⁴
Calcium	136000	5000	ug/l	1	12/22/12	12/24/12 cs	SW846 6010C ²	SW846 3010A ⁴
Chromium	28.4	10	ug/l	1	12/22/12	12/24/12 cs	SW846 6010C ²	SW846 3010A ⁴
Cobalt	< 50	50	ug/l	1	12/22/12	12/24/12 cs	SW846 6010C ²	SW846 3010A ⁴
Copper	25.5	10	ug/l	1	12/22/12	12/24/12 cs	SW846 6010C ²	SW846 3010A ⁴
Iron	12800	100	ug/l	1	12/22/12	12/24/12 cs	SW846 6010C ²	SW846 3010A ⁴
Lead	16.6	3.0	ug/l	1	12/22/12	12/24/12 cs	SW846 6010C ²	SW846 3010A ⁴
Magnesium	35200	5000	ug/l	1	12/22/12	12/24/12 CS	SW846 6010C ²	SW846 3010A ⁴
Manganese	2720	15	ug/l	1	12/22/12	12/24/12 cs	SW846 6010C ²	SW846 3010A ⁴
Mercury	< 0.20	0.20	ug/l	1	12/24/12	12/26/12 cs	SW846 7470A ³	SW846 7470A ⁶
Nickel	16.4	10	ug/l	1	12/22/12	12/24/12 cs	SW846 6010C ²	SW846 3010A ⁴
Potassium	< 10000	10000	ug/l	1	12/22/12	12/24/12 CS	SW846 6010C ²	SW846 3010A ⁴
Selenium	< 10	10	ug/l	1	12/22/12	12/24/12 cs	SW846 6010C ²	SW846 3010A ⁴
Silver	< 10	10	ug/l	1	12/22/12	12/24/12 CS	SW846 6010C ²	SW846 3010A ⁴
Sodium	85000	10000	ug/l	1	12/22/12	12/24/12 cs	SW846 6010C ²	SW846 3010A ⁴
Thallium	< 1.0	1.0	ug/l	2	12/22/12	12/24/12 VC	SW846 6020A ¹	SW846 3010A ⁵
Vanadium	< 50	50	ug/l	1	12/22/12	12/24/12 CS	SW846 6010C ²	SW846 3010A ⁴
Zinc	25.9	20	ug/l	1	12/22/12	12/24/12 CS	SW846 6010C ²	SW846 3010A ⁴

(1) Instrument QC Batch: MA30140
(2) Instrument QC Batch: MA30148
(3) Instrument QC Batch: MA30150
(4) Prep QC Batch: MP68735
(5) Prep QC Batch: MP68735A
(6) Prep QC Batch: MP68781

Client Sample ID: MW-XX

Lab Sample ID: JB23729-2

Matrix:

AQ - Ground Water

Date Sampled: 12/12/12 Date Received: 12/13/12

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent ^a	<0.010 R	0.010	mg/l	1	12/13/12 21:06		SW846 7196A
Chromium, Trivalent ^b	0.022	0.020	mg/l	1	12/24/12 19:23		SW846 6010/7196A M

(a) Analysis done out of holding time.

(b) Calculated as: (Chromium) - (Chromium, Hexavalent)

for [2/8/13

Report of Analysis

Client Sample ID: MW-6

Lab Sample ID: JB23729-3 Matrix: AQ - Ground Water

Date Received: 12/13/12

Method:

SW846 8260B

Percent Solids: n/a

Date Sampled:

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

12/12/12

Prep Batch **Analytical Batch** DF Prep Date Analyzed By TLR V3B4235 1 12/26/12 n/a n/a

Run #1 Run #2

Purge Volume

3B90852.D

File ID

 $5.0 \, ml$ Run #1

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.3	ug/l	
71-43-2	Benzene	ND	1.0	0.24	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.14	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.30	ug/l	
75-27-4	Bromodichloromethane	2.6	1.0	0.21	ug/l	
75-25-2	Bromoform	ND	4.0	0.21	ug/l	
74-83-9	Bromomethane	ND	2.0	0.22	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.4	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	0.17	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	0.21	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	0.30	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.22	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.23	ug/l	
75-00-3	Chloroethane	ND	1.0	0.26	ug/l	
67-66-3	Chloroform	23.9	1.0	0.20	ug/l	
74-87-3	Chloromethane	ND	1.0	0.21	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	0.15	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.30	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	10	0.54	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.14	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.20	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.22	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.30	ug/l	
75-71-8	Dichlorodifluoromethane	ND	5.0	0.27	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.11	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.26	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.19	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.19	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.21	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.48	ug/l	
142-28-9	1,3-Dichloropropane	ND	5.0	0.23	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-6

Lab Sample ID:

JB23729-3

AQ - Ground Water

Date Sampled: 12/12/12 Date Received: 12/13/12

Matrix: Method:

SW846 8260B

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

VOA 8260 List

	1.00						
CAS No.	Compound	Result	RL	MDL	Units	Q	
594-20-7	2,2-Dichloropropane	ND	5.0	0.15	ug/l		
563-58-6	1,1-Dichloropropene	ND	5.0	0.30	ug/l		
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.21	ug/l		
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.19	ug/l		
100-41-4	Ethylbenzene	ND	1.0	0.23	ug/l		
87-68-3	Hexachlorobutadiene	ND	5.0	0.24	ug/l		
98-82-8	Isopropylbenzene	ND	2.0	0.45	ug/l		
99-87-6	p-Isopropyltoluene	ND	5.0	0.22	ug/l		
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.16	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	0.83	ug/l		
74-95-3	Methylene bromide	ND	5.0	0.26	ug/l		
75-09-2	Methylene chloride	ND	2.0	0.70	ug/l		
91-20-3	Naphthalene	ND	5.0	1.1	ug/l		
103-65-1	n-Propylbenzene	ND	5.0	0.24	ug/l		
100-42-5	Styrene	ND	5.0	0.21	ug/l		
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.24	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.28	ug/l		
108-88-3	Toluene	ND	1.0	0.23	ug/l		
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	0.28	ug/l		
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.20	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.24	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.29	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.22	ug/l		
75-69-4	Trichlorofluoromethane	ND	5.0	0.27	ug/l		
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.53	ug/l		
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.19	ug/l		
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.36	ug/l		
75-01-4	Vinyl chloride	ND	1.0	0.21	ug/l		
	m,p-Xylene	ND	1.0	0.42	ug/l		
95-47-6	o-Xylene	ND	1.0	0.24	ug/l		
1330-20-7	Xylene (total)	ND	1.0	0.24	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts		
1868-53-7	Dibromofluoromethane	103%		81-12	21%		
17060-07-0	1,2-Dichloroethane-D4	105%		74-12	27%		
2037-26-5	Toluene-D8	105%		80-13	22%		
460-00-4	4-Bromofluorobenzene	103%		78-1	16%		

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

By KLS

JB23729-3

Date Sampled:

12/12/12

Matrix:

AQ - Ground Water

Date Received:

12/13/12

Method:

SW846 8270D SW846 3510C

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Prep Batch

Analytical Batch

Run #1

File ID F19064.D Analyzed 12/22/12

Prep Date 12/19/12

OP62130

EF5019

Run #2

Initial Volume Final Volume

DF

1

960 ml

1.0 ml

Run #1 Run #2

ABN TCL List (CLP4.2 list)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.2	1.0	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.2	1.9	ug/l	
120-83-2	2,4-Dichlorophenol	ND	5.2	1.2	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.2	1.6	ug/l	
51-28-5	2,4-Dinitrophenol	ND	21	17	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	21	1.0	ug/l	
95-48-7	2-Methylphenol	ND	2.1	1.1	ug/l	
	3&4-Methylphenol	ND	2.1	0.96	ug/l	
88-75-5	2-Nitrophenol	ND	5.2	1.6	ug/l	
100-02-7	4-Nitrophenol	ND	10	5.4	ug/l	
87-86-5	Pentachlorophenol	ND	10	1.4	ug/l	
108-95-2	Phenol	ND	2.1	1.3	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.2	1.6	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.2	1.3	ug/l	
83-32-9	Acenaphthene	ND	1.0	0.27	ug/l	
208-96-8	Acenaphthylene	ND	1.0	0.24	ug/l	
98-86-2	Acetophenone	ND	2.1	0.30	ug/l	
120-12-7	Anthracene	ND	1.0	0.30	ug/l	
1912-24-9	Atrazine	ND	5.2	0.51	ug/l	
100-52-7	Benzaldehyde	ND	5.2	3.4	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.0	0.24	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.0	0.24	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.48	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.34	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.53	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.1	0.37	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.1	0.30	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.0	0.32	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.1	0.31	ug/l	
106-47-8	4-Chloroaniline	ND	5.2	0.55	ug/l	
86-74-8	Carbazole	ND	1.0	0.38	ug/l	
105-60-2	Caprolactam	ND	2.1	0.72	ug/l	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

Client Sample ID: MW-6

JB23729-3 Lab Sample ID:

Matrix: Method:

Project:

AQ - Ground Water

SW846 8270D SW846 3510C

Via Verde, 700-730 Brook Avenue, Bronx, NY

Date Received: 12/13/12 Percent Solids: n/a

Date Sampled: 12/12/12

ABN TCL List (CLP4.2 list)

CAS No.	Compound	Result	RL	MDL	Units	Q
218-01-9	Chrysene	ND	1.0	0.30	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.1	0.32	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.1	0.32	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.1	0.47	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.1	0.33	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	2.1	0.44	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	2.1	0.48	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.2	0.38	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.39	ug/l	
132-64-9	Dibenzofuran	ND	5.2	0.28	ug/I	
84-74-2	Di-n-butyl phthalate	ND	2.1	0.58	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.1	0.32	ug/l	
84-66-2	Diethyl phthalate	ND	2.1	0.34	ug/l	
131-11-3	Dimethyl phthalate	ND	2.1	0.29	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.1	0.61	ug/l	
206-44-0	Fluoranthene	ND	1.0	0.33	ug/l	
86-73-7	Fluorene	ND	1.0	0.29	ug/l	
118-74-1	Hexachlorobenzene	ND	1.0	0.35	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.0	0.53	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	7.4	ug/l	
67-72-1	Hexachloroethane	ND	2.1	0.57	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.39	ug/l	
78-59-1	Isophorone	ND	2.1	0.28	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.0	0.40	ug/l	
88-74-4	2-Nitroaniline	ND	5.2	1.2	ug/l	
99-09-2	3-Nitroaniline	ND	5.2	1.3	ug/l	1
100-01-6	4-Nitroaniline	ND .	5.2	1.7	ug/l	R (R)
91-20-3	Naphthalene	2.2	1.0	0.27	ug/l	B
98-95-3	Nitrobenzene	ND	2.1	0.44	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.1	0.31	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.2	0.32	ug/l	
85-01-8	Phenanthrene	ND	1.0	0.30	ug/l	
129-00-0	Pyrene	ND	1.0	0.28	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	42%		10-8		
4165-62-2	Phenol-d5	24%		10-7		
118-79-6	2,4,6-Tribromophenol	90%		24-1	48%	
4165-60-0	Nitrobenzene-d5	70%		38-1	29%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-6

Lab Sample ID: JB23729-3

Matrix:

AQ - Ground Water

Date Sampled: 12/12/12

Method:

SW846 8270D SW846 3510C

Date Received: 12/13/12

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Percent Solids: n/a

ABN TCL List (CLP4.2 list)

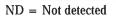
CAS No. Surrogate Recoveries Run#1

Run#2

321-60-8

2-Fluorobiphenyl Terphenyl-d14

81%


42-117%

1718-51-0

97%

14-132%

Limits

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: MW-6

Lab Sample ID:

JB23729-3

AQ - Ground Water

Date Sampled:

12/12/12

Matrix:

Date Received:

12/13/12

Method:

SW846 8082A SW846 3510C

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

File ID DF Analyzed Ву Prep Date Run #1 XX128155.D 1 12/27/12 JR 12/19/12

Prep Batch Analytical Batch OP62133 GXX4551

Run #2

Initial Volume

Final Volume

930 ml

10.0 ml

Run #1 Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	0.54	0.14	ug/l	
11104-28-2	Aroclor 1221	ND	0.54	0.29	ug/l	
11141-16-5	Aroclor 1232	ND	0.54	0.41	ug/l	
53469-21-9	Aroclor 1242	ND	0.54	0.092	ug/l	
12672-29-6	Aroclor 1248	ND	0.54	0.16	ug/l	
11097-69-1	Aroclor 1254	ND	0.54	0.15	ug/l	
11097-09-1	Aroclor 1260	ND	0.54	0.13	ug/l	
11100-14-4	Aroclor 1268	ND	0.54	0.14		
			500.7		ug/l	
37324-23-5	Aroclor 1262	ND	0.54	0.065	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
877-09-8	Tetrachloro-m-xylene	74%		27-1	44%	
877-09-8	Tetrachloro-m-xylene	79 %		27-1	44%	
2051-24-3	Decachlorobiphenyl	67%		10-1	39%	
2051-24-3	Decachlorobiphenyl	73%	10-139%			

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-6

Lab Sample ID: JB23729-3
Matrix: AQ - Ground Water

Date Sampled: 12/12/12
Date Received: 12/13/12

Percent Solids: n/a

Project: Via Verde, 700-730 Brook Avenue, Bronx, NY

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	342	200	ug/l	1	12/22/12	12/24/12 cs	SW846 6010C ²	SW846 3010A ⁴
Antimony	< 1.0	1.0	ug/l	2	12/22/12	12/24/12 VC	SW846 6020A ¹	SW846 3010A ⁵
Arsenic	< 3.0	3.0	ug/l	1	12/22/12	12/24/12 CS	SW846 6010C ²	SW846 3010A ⁴
Barium	< 200	200	ug/l	1	12/22/12	12/24/12 CS	SW846 6010C ²	SW846 3010A ⁴
Beryllium	< 1.0	1.0	ug/l	1	12/22/12	12/24/12 CS	SW846 6010C ²	SW846 3010A ⁴
Cadmium	< 3.0	3.0	ug/l	1	12/22/12	12/24/12 CS	SW846 6010C ²	SW846 3010A ⁴
Calcium	13000	5000	ug/l	1	12/22/12	12/24/12 cs	SW846 6010C ²	SW846 3010A ⁴
Chromium	< 10	10	ug/l	1	12/22/12	12/24/12 CS	SW846 6010C ²	SW846 3010A ⁴
Cobalt	< 50	50	ug/l	1	12/22/12	12/24/12 CS	SW846 6010C ²	SW846 3010A ⁴
Copper	< 10	10 -	ug/l	1	12/22/12	12/24/12 CS	SW846 6010C ²	SW846 3010A ⁴
Iron	426	100	ug/l	1	12/22/12	12/24/12 cs	SW846 6010C ²	SW846 3010A ⁴
Lead	< 3.0	3.0	ug/l	1	12/22/12	12/24/12 CS	SW846 6010C ²	SW846 3010A ⁴
Magnesium	< 5000	5000	ug/l	1	12/22/12	12/24/12 CS	SW846 6010C ²	SW846 3010A ⁴
Manganese	29.0	15	ug/l	1	12/22/12	12/24/12 CS	SW846 6010C ²	SW846 3010A ⁴
Mercury	< 0.20	0.20	ug/l	1	12/24/12	12/26/12 cs	SW846 7470A ³	SW846 7470A ⁶
Nickel	< 10	10	ug/l	1	12/22/12	12/24/12 CS	SW846 6010C ²	SW846 3010A ⁴
Potassium	< 10000	10000	ug/l	1	12/22/12	12/24/12 CS	SW846 6010C ²	SW846 3010A ⁴
Selenium	< 10	10	ug/l	1	12/22/12	12/24/12 cs	SW846 6010C ²	SW846 3010A ⁴
Silver	< 10	10	ug/l	1	12/22/12	12/24/12 cs	SW846 6010C ²	SW846 3010A ⁴
Sodium	11700	10000	ug/l	1	12/22/12	12/24/12 CS	SW846 6010C ²	SW846 3010A ⁴
Thallium	< 1.0	1.0	ug/l	2	12/22/12	12/24/12 VC	SW846 6020A ¹	SW846 3010A ⁵
Vanadium	< 50	50	ug/l	1	12/22/12	12/24/12 cs	SW846 6010C ²	SW846 3010A ⁴
Zinc	< 20	20	ug/l	1	12/22/12	12/24/12 CS	SW846 6010C ²	SW846 3010A ⁴

(1) Instrument QC Batch: MA30140
(2) Instrument QC Batch: MA30148
(3) Instrument QC Batch: MA30150
(4) Prep QC Batch: MP68735
(5) Prep QC Batch: MP68735A
(6) Prep QC Batch: MP68781

Client Sample ID: MW-6

Lab Sample ID: JB23729-3

Matrix:

AQ - Ground Water

Date Sampled: 12/12/12 Date Received: 12/13/12

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent ^a	<0.010 R	0.010	mg/l	1	12/13/12 21:06		SW846 7196A
Chromium, Trivalent ^b	<0.020	0.020	mg/l	1	12/24/12 19:29		SW846 6010/7196A M

Report of Analysis

(a) Analysis done out of holding time.

(b) Calculated as: (Chromium) - (Chromium, Hexavalent)

Report of Analysis

By

TLR

Page 1 of 2

Client Sample ID: TRIP BLANK

Lab Sample ID:

JB23729-4

Date Sampled:

12/12/12

Matrix:

AQ - Trip Blank Water

DF

1

Date Received:

12/13/12

Method:

SW846 8260B

Percent Solids: n/a

n/a

Prep Date

n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Analyzed

12/26/12

Prep Batch

Analytical Batch V3B4235

Run #1 Run #2

Run #1

Purge Volume 5.0 ml

File ID

3B90860.D

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.3	ug/l	
71-43-2	Benzene	ND	1.0	0.24	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.14	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.30	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.21	ug/l	
75-25-2	Bromoform	ND	4.0	0.21	ug/l	
74-83-9	Bromomethane	ND	2.0	0.22	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.4	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	0.17	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	0.21	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	0.30	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.22	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.23	ug/l	
75-00-3	Chloroethane	ND	1.0	0.26	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
74-87-3	Chloromethane	ND	1.0	0.21	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	0.15	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.30	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	10	0.54	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.14	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.20	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.22	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.30	ug/l	
75-71-8	Dichlorodifluoromethane	ND	5.0	0.27	ug/l	
75-34-3	1,1-Dichloroethane	ND.	1.0	0.11	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.26	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.19	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.19	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.21	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.48	ug/l	
142-28-9	1,3-Dichloropropane	ND	5.0	0.23	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TRIP BLANK

Lab Sample ID:

JB23729-4 AQ - Trip Blank Water

Matrix: Method: Project:

SW846 8260B

Via Verde, 700-730 Brook Avenue, Bronx, NY

Date Sampled: 12/12/12 Date Received: 12/13/12

Percent Solids: n/a

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7	2,2-Dichloropropane	ND	5.0	0.15	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	0.30	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.19	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.23	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.24	ug/l	
98-82-8	Isopropylbenzene	ND	2.0	0.45	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	0.22	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.16	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	0.83	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.26	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.70	ug/l	
91-20-3	Naphthalene	ND	5.0	1.1	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	0.24	ug/l	
100-42-5	Styrene	ND	5.0	0.21	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.24	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.28	ug/l	
108-88-3	Toluene	ND	1.0	0.23	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	0.28	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.20	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.24	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.29	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.22	ug/l	
75-69-4	Trichlorofluoromethane	ND	5.0	0.27	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.53	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.19	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.36	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.21	ug/l	
	m,p-Xylene	ND	1.0	0.42	ug/l	
95-47-6	o-Xylene	ND	1.0	0.24	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.24	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	102%		81-12	21%	
17060-07-0	1,2-Dichloroethane-D4	103%		74-12	27%	
2037-26-5	Toluene-D8	105%		80-12	22%	
460-00-4	4-Bromofluorobenzene	103%		78-11	.6%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

By

NT

Page 1 of 2

Client Sample ID: MW-9

Lab Sample ID: Matrix:

JB23822-1 AQ - Ground Water Date Sampled:

12/13/12

Date Received: 12/14/12

Method:

SW846 8260B

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Analytical Batch Prep Batch

Run #1

File ID 3D81258.D Analyzed 12/26/12

Prep Date n/a

n/a

V3D3497

DF

1

Run #2

Purge Volume

Run #1

5.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND R	10	3.3	ug/l	
71-43-2	Benzene	ND	1.0	0.24	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.14	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.30	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.21	ug/l	
75-25-2	Bromoform	ND	4.0	0.21	ug/l	
74-83-9	Bromomethane	ND	2.0	0.22	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.4	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	0.17	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	0.21	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	0.30	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.22	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.23	ug/l	
75-00-3	Chloroethane	ND	1.0	0.26	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
74-87-3	Chloromethane	ND	1.0	0.21	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	0.15	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.30	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	10	0.54	ug/I	
124-48-1	Dibromochloromethane	ND	1.0	0.14	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.20	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.22	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.30	ug/l	
75-71-8	Dichlorodifluoromethane	ND	5.0	0.27	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.11	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.26	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.19	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.19	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.21	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.48	ug/l	
142-28-9	1,3-Dichloropropane	ND	5.0	0.23	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Client Sample ID: MW-9

Lab Sample ID: JB23822-1 Date Sampled: 12/13/12
Matrix: AQ - Ground Water Date Received: 12/14/12
Method: SW846 8260B Percent Solids: n/a

Project: Via Verde, 700-730 Brook Avenue, Bronx, NY

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7	2,2-Dichloropropane	ND	5.0	0.15	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	0.30	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.19	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.23	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.24	ug/l	
98-82-8	Isopropylbenzene	ND	2.0	0.45	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	0.22	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.16	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	0.83	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.26	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.70	ug/l	
91-20-3	Naphthalene	ND	5.0	1.1	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	0.24	ug/l	
100-42-5	Styrene	ND	5.0	0.21	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.24	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/l	
127-18-4	Tetrachloroethene	0.44	1.0	0.28	ug/l	J
108-88-3	Toluene	ND	1.0	0.23	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	0.28	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.20	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.24	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.29	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.22	ug/l	
75-69-4	Trichlorofluoromethane	ND	5.0	0.27	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.53	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.19	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.36	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.21	ug/l	
	m,p-Xylene	ND	1.0	0.42	ug/l	
95-47-6	o-Xylene	ND	1.0	0.24	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.24	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	94%		81-12	21%	
17060-07-0	1,2-Dichloroethane-D4	87%	*(74-12		
2037-26-5	Toluene-D8	101%		80-12		
460-00-4	4-Bromofluorobenzene	91%		78-11	16%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 $N \, = \, \text{Indicates presumptive evidence of a compound} \,$

Page 1 of 3

Client Sample ID: MW-9

Lab Sample ID: JB23822-1

Matrix:

AQ - Ground Water

Date Sampled: 12/13/12 Date Received: 12/14/12

Method:

SW846 8270D SW846 3510C

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Run #1

File ID F19087.D Analyzed Ву 12/24/12 NAP Prep Date Prep Batch OP62194 12/20/12

Analytical Batch EF5020

Run #2

Initial Volume Final Volume

Run #1 920 ml 1.0 ml

DF

1

Run #2

ABN TCL List (CLP4.2 list)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.4	1.1	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.4	2.0	ug/l	
120-83-2	2,4-Dichlorophenol	ND	5.4	1.3	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.4	1.7	ug/l	
51-28-5	2,4-Dinitrophenol	ND	22	18	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	22	1.1	ug/l	
95-48-7	2-Methylphenol	ND	2.2	1.1	ug/l	
	3&4-Methylphenol	ND	2.2	1.0	ug/l	
88-75-5	2-Nitrophenol	ND	5.4	1.6	ug/l	
100-02-7	4-Nitrophenol	ND	11	5.7	ug/l	
87-86-5	Pentachlorophenol	ND	11	1.5	ug/l	
108-95-2	Phenol	ND	2.2	1.4	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.4	1.7	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.4	1.4	ug/l	
83-32-9	Acenaphthene	ND	1.1	0.29	ug/l	
208-96-8	Acenaphthylene	ND	1.1	0.25	ug/l	
98-86-2	Acetophenone	ND	2.2	0.31	ug/l	
120-12-7	Anthracene	ND	1.1	0.31	ug/l	
1912-24-9	Atrazine	ND	5.4	0.53	ug/l	
100-52-7	Benzaldehyde	ND	5.4	3.5	ug/l	
56-55-3	Benzo(a) anthracene	ND	1.1	0.25	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.1	0.25	ug/i	
205-99-2	Benzo(b) fluoranthene	ND	1.1	0.50	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.35	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.55	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.2	0.39	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.2	0.31	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.1	0.33	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.2	0.32	ug/l	9
106-47-8	4-Chloroaniline	ND	5.4	0.57	ug/l	
86-74-8	Carbazole	ND	1.1	0.39	ug/l	
105-60-2	Caprolactam	ND	2.2	0.75	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

JB23822

Client Sample ID: MW-9

Lab Sample ID: JB23822-1

Matrix:

AQ - Ground Water

Date Sampled: 12/13/12 Date Received: 12/14/12 Percent Solids: n/a

Method: Project:

SW846 8270D SW846 3510C Via Verde, 700-730 Brook Avenue, Bronx, NY

Report of Analysis

ABN TCL List (CLP4.2 list)

	` '					
CAS No.	Compound	Result	RL	MDL	Units	Q
218-01-9	Chrysene	ND	1.1	0.31	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.2	0.33	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.2	0.33	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.2	0.49	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.2	0.34	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	2.2	0.46	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	2.2	0.50	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.4	0.39	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.41	ug/l	
132-64-9	Dibenzofuran	ND	5.4	0.29	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.2	0.60	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.2	0.33	ug/l	
84-66-2	Diethyl phthalate	ND	2.2	0.36	ug/l	
131-11-3	Dimethyl phthalate	ND	2.2	0.31	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.2	0.64	ug/l	
206-44-0	Fluoranthene	ND	1.1	0.35	ug/i	
86-73-7	Fluorene	ND	1.1	0.30	ug/l	
118-74-1	Hexachlorobenzene	ND	1.1	0.37	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.1	0.56	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	11	7.7	ug/l	
67-72-1	Hexachloroethane	ND	2.2	0.60	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.41	ug/l	
78-59-1	Isophorone	ND	2.2	0.30	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.1	0.42	ug/l	
88-74-4	2-Nitroaniline	ND	5.4	1.2	ug/l	
99-09-2	3-Nitroaniline	ND	5.4	1.4	ug/l	
100-01-6	4-Nitroaniline	ND	5.4	1.8	ug/l	
91-20-3	Naphthalene	ND	1.1	0.28	ug/l	
98-95-3	Nitrobenzene	ND	2.2	0.46	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.2	0.33	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.4	0.33	ug/l	
85-01-8	Phenanthrene	ND	1.1	0.32	ug/l	
129-00-0	Pyrene	ND	1.1	0.29	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	43%		10-8		
4165-62-2	Phenol-d5	30%		10-7		
118-79-6	2,4,6-Tribromophenol	86%		24-1		
4165-60-0	Nitrobenzene-d5	69%		38-1	29%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Client Sample ID: MW-9

Lab Sample ID: JB23822-1

Matrix:

AQ - Ground Water

Date Sampled: 12/13/12 Date Received: 12/14/12

Percent Solids: n/a

Method: Project:

SW846 8270D SW846 3510C Via Verde, 700-730 Brook Avenue, Bronx, NY

ABN TCL List (CLP4.2 list)

CAS No. Surrogate Recoveries

Run#1 Run#2 Limits

321-60-8 2-Fluorobiphenyl Terphenyl-d14 1718-51-0

72% 89%

42-117% 14-132%

Report of Analysis

By

LP

Page 1 of 1

Client Sample ID: MW-9

JB23822-1

Date Sampled:

Lab Sample ID: Matrix:

AQ - Ground Water

Date Received:

12/13/12 12/14/12

Method:

SW846 8082A SW846 3510C

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Analyzed

12/22/12

Prep Batch

Analytical Batch

Run #1 Run #2

DF

1

Q

Prep Date

12/20/12

G2G2545 OP62197

Run #1

Initial Volume Final Volume

895 ml

File ID

2G75586.D

10.0 ml

Run #2

PCB List

Compound RLMDL Units CAS No. Result

12674-11-2 Aroclor 1016 ND 0.56 0.14 ug/l 11104-28-2 Aroclor 1221 ND 0.560.30 ug/l 11141-16-5 Aroclor 1232 ND 0.56 0.43 ug/l Aroclor 1242 ND 0.096 53469-21-9 0.56 ug/l

Aroclor 1248 ND 12672-29-6 0.56 0.16 ug/l Aroclor 1254 ND 11097-69-1 0.560.16 ug/l 11096-82-5 Aroclor 1260 ND 0.56 0.23 ug/l

11100-14-4 Aroclor 1268 ND 0.56 0.15 ug/l Aroclor 1262 0.067 37324-23-5 ND 0.56ug/l

Run#1

Run#2

Limits

CAS No. Surrogate Recoveries 27-144% 877-09-8 Tetrachloro-m-xylene 74% 877-09-8 Tetrachloro-m-xylene 85% 27-144% 10-139% 2051-24-3

Decachlorobiphenyl 53% 2051-24-3 Decachlorobiphenyl 62% 10-139%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

4.1

Report of Analysis

Client Sample ID: MW-9

Lab Sample ID: JB23822-1 Date Sampled: 12/13/12
Matrix: AQ - Ground Water Date Received: 12/14/12

Percent Solids: n/a

Project: Via Verde, 700-730 Brook Avenue, Bronx, NY

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed B	y Method	Prep Method
Aluminum	< 200	200	ug/l	1	12/26/12	12/28/12 B	SW846 6010C ¹	SW846 3010A ⁵
Antimony	< 1.0	1.0	ug/l	2	12/26/12	12/29/12 R	SW846 6020A ⁴	SW846 3010A ⁶
Arsenic	4.1	3.0	ug/l	1	12/26/12	12/28/12 N	D SW846 6010C ³	SW846 3010A ⁵
Barium	< 200	200	ug/l	1	12/26/12	12/28/12 B	_ SW846 6010C ¹	SW846 3010A ⁵
Beryllium	< 1.0	1.0	ug/l	1	12/26/12	12/28/12 B	_ SW846 6010C ¹	SW846 3010A ⁵
Cadmium	< 3.0	3.0	ug/l	1	12/26/12	12/28/12 N	D SW846 6010C ³	SW846 3010A ⁵
Calcium	134000	5000	ug/l	1	12/26/12	12/28/12 B	_ SW846 6010C ¹	SW846 3010A ⁵
Chromium	42.8	10	ug/l	1	12/26/12	12/28/12 B	_ SW846 6010C ¹	SW846 3010A ⁵
Cobalt	< 50	50	ug/l	1	12/26/12	12/28/12 N	D SW846 6010C ³	SW846 3010A ⁵
Copper	< 10	10	ug/l	1	12/26/12	12/28/12 B	_ SW846 6010C ¹	SW846 3010A ⁵
Iron	526	100	ug/l	1	12/26/12	12/28/12 B	_ SW846 6010C ¹	SW846 3010A ⁵
Lead	< 3.0	3.0	ug/l	1	12/26/12	12/28/12 N	D SW846 6010C ³	SW846 3010A ⁵
Magnesium	7190	5000	ug/l	1	12/26/12	12/28/12 B	SW846 6010C ¹	SW846 3010A ⁵
Manganese	596	15	ug/l	1	12/26/12	12/28/12 B	_ SW846 6010C ¹	SW846 3010A ⁵
Mercury	< 0.20	0.20	ug/l	1	12/27/12	12/27/12 D	P SW846 7470A ²	SW846 7470A ⁷
Nickel	25.1	10	ug/l	1	12/26/12	12/28/12 N	D SW846 6010C ³	SW846 3010A ⁵
Potassium	12800	10000	ug/l	1	12/26/12	12/28/12 B	L SW846 6010C ¹	SW846 3010A ⁵
Selenium	< 10	10	ug/l	1	12/26/12	12/28/12 N	D SW846 6010C ³	SW846 3010A ⁵
Silver	< 10	10	ug/l	1	12/26/12	12/28/12 B	L SW846 6010C ¹	SW846 3010A ⁵
Sodium	90600	10000	ug/l	1	12/26/12	12/28/12 B	L SW846 6010C ¹	SW846 3010A ⁵
Thallium	< 1.0	1.0	ug/l	2	12/26/12	12/29/12 R	SW846 6020A ⁴	SW846 3010A ⁶
Vanadium	< 50	50	ug/l	1	12/26/12	12/28/12 B	SW846 6010C ¹	SW846 3010A ⁵
Zinc	< 20	20	ug/l	1	12/26/12	12/28/12 N	D SW846 6010C ³	SW846 3010A ⁵

(1) Instrument QC Batch: MA30167
(2) Instrument QC Batch: MA30170
(3) Instrument QC Batch: MA30176
(4) Instrument QC Batch: MA30182
(5) Prep QC Batch: MP68786
(6) Prep QC Batch: MP68786A
(7) Prep QC Batch: MP68820

Client Sample ID: MW-9

JB23822-1

Lab Sample ID: Matrix:

AQ - Ground Water

Date Sampled: 12/13/12 Date Received: 12/14/12

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Percent Solids: n/a

General Chemistry

Analyte

Result RL

DF Units

1

1

12/14/12 12:32 RI

Analyzed

SW846 7196A

Method

Chromium, Hexavalent a Chromium, Trivalent b

< 0.010

0.010 mg/l 0.020 mg/l

12/28/12 00:59 BL

SW846 6010/7196A M

(a) Analysis done out of holding time.

(b) Calculated as: (Chromium) - (Chromium, Hexavalent)

for (2 M3

Page 1 of 1

Client Sample ID: MW-9

Lab Sample ID: JB23822-1F

Matrix:

AQ - Groundwater Filtered

Date Sampled: 12/13/12 Date Received: 12/14/12

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	< 200	200	ug/i	1	12/26/12	12/28/12 BL	SW846 6010C ¹	SW846 3010A ⁵
Antimony	< 1.0	1.0	ug/l	2	12/26/12	12/29/12 RP	SW846 6020A ⁴	SW846 3010A ⁶
Arsenic	3.7	3.0	ug/l	1	12/26/12	12/28/12 ND	SW846 6010C ³	SW846 3010A ⁵
Barium	< 200	200	ug/I	1	12/26/12	12/28/12 BL	SW846 6010C ¹	SW846 3010A ⁵
Beryllium	< 1.0	1.0	ug/l	1	12/26/12	12/28/12 BL	SW846 6010C ¹	SW846 3010A ⁵
Cadmium	< 3.0	3.0	ug/l	1	12/26/12	12/28/12 ND	SW846 6010C ³	SW846 3010A ⁵
Calcium	128000	5000	ug/l	1	12/26/12	12/28/12 BL	SW846 6010C ¹	SW846 3010A ⁵
Chromium a	< 10	10	ug/l	1	12/26/12	12/28/12 BL	SW846 6010C ¹	SW846 3010A ⁵
Cobalt	< 50	50	ug/l	1	12/26/12	12/28/12 ND	SW846 6010C ³	SW846 3010A ⁵
Copper	< 10	10	ug/l	1	12/26/12	12/28/12 BL	SW846 6010C ¹	SW846 3010A ⁵
Iron	< 100	100	ug/l	1	12/26/12	12/28/12 BL	SW846 6010C ¹	SW846 3010A ⁵
Lead	< 3.0	3.0	ug/l	1	12/26/12	12/28/12 ND	SW846 6010C ³	SW846 3010A ⁵
Magnesium	6770	5000	ug/l	1	12/26/12	12/28/12 BL	SW846 6010C ¹	SW846 3010A ⁵
Manganese	565	15	ug/l	1	12/26/12	12/28/12 BL	SW846 6010C ¹	SW846 3010A ⁵
Mercury	< 0.20	0.20	ug/l	1	12/27/12	12/27/12 DP	SW846 7470A ²	SW846 7470A ⁷
Nickel	10.4	10	ug/l	1	12/26/12	12/28/12 ND	SW846 6010C ³	SW846 3010A ⁵
Potassium	12100	10000	ug/l	1	12/26/12	12/28/12 BL	SW846 6010C ¹	SW846 3010A ⁵
Selenium	< 10	10	ug/l	1	12/26/12	12/28/12 ND	SW846 6010C ³	SW846 3010A ⁵
Silver	< 10	10	ug/l	1	12/26/12	12/28/12 BL	SW846 6010C ¹	SW846 3010A ⁵
Sodium	84400	10000	ug/l	1	12/26/12	12/28/12 BL	SW846 6010C ¹	SW846 3010A ⁵
Thallium	< 1.0	1.0	ug/l	2	12/26/12	12/29/12 RP	SW846 6020A ⁴	SW846 3010A ⁶
Vanadium	< 50	50	ug/l	1	12/26/12	12/28/12 BL	SW846 6010C ¹	SW846 3010A ⁵
Zinc	< 20	20	ug/l	1	12/26/12	12/28/12 ND	SW846 6010C ³	SW846 3010A ⁵

Report of Analysis

(1) Instrument QC Batch: MA30167 (2) Instrument QC Batch: MA30170 (3) Instrument QC Batch: MA30176 (4) Instrument QC Batch: MA30182 (5) Prep QC Batch: MP68786 (6) Prep QC Batch: MP68786A (7) Prep QC Batch: MP68820

(a) Hexavalent chromium is < 10 ppb.

Client Sample ID: MW-9

Lab Sample ID: JB23822-1F

Matrix:

AQ - Groundwater Filtered

Date Sampled: 12/13/12
Date Received: 12/14/12

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

General Chemistry

Analyte Result RL Units DF Analyzed By Method

Chromium, Trivalent a < 0.020 0.020 mg/l 1 12/28/12 01:11 BL SW846 6010/7196A M

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

By

NT

Page 1 of 2

Client Sample ID: MW-7

Lab Sample ID: JB23822-2

Matrix:

AQ - Ground Water

DF

1

Analyzed

12/26/12

Method:

SW846 8260B

n/a

Prep Date

Date Sampled: 12/13/12

Date Received: 12/14/12

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Prep Batch

Analytical Batch

V3D3497 n/a

Run #1 Run #2

Purge Volume

3D81259.D

Run #1

5.0 ml

File ID

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND R	10	3.3	ug/l	
71-43-2	Benzene	ND	1.0	0.24	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.14	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.30	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.21	ug/l	
75-25-2	Bromoform	ND	4.0	0.21	ug/l	
74-83-9	Bromomethane	ND	2.0	0.22	ug/l	
78-93-3	2-Butanone (MEK)	ND-R	10	2.4	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	0.17	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	0.21	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	0.30	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.22	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.23	ug/I	
75-00-3	Chloroethane	ND	1.0	0.26	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
74-87-3	Chloromethane	ND	1.0	0.21	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	0.15	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.30	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	10	0.54	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.14	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.20	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.22	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.30	ug/l	
75-71-8	Dichlorodifluoromethane	ND	5.0	0.27	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.11	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.26	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.19	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.19	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.21	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.48	ug/l	
142-28-9	1,3-Dichloropropane	ND	5.0	0.23	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-7

JB23822-2 Lab Sample ID:

Matrix:

AQ - Ground Water

SW846 8260B

Date Sampled: 12/13/12 Date Received: 12/14/12

Percent Solids: n/a

Method: Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7	2,2-Dichloropropane	ND	5.0	0.15	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	0.30	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.19	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.23	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.24	ug/l	
98-82-8	Isopropylbenzene	ND	2.0	0.45	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	0.22	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.16	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	0.83	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.26	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.70	ug/l	
91-20-3	Naphthalene	ND	5.0	1.1	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	0.24	ug/l	
100-42-5	Styrene	ND	5.0	0.21	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.24	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.28	ug/l	
108-88-3	Toluene	ND	1.0	0.23	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	0.28	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.20	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.24	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.29	ug/l	
79-01-6	Trichloroethene	0.33	1.0	0.22	ug/l	J
75-69-4	Trichlorofluoromethane	ND	5.0	0.27	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.53	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.19	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.36	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.21	ug/l	
	m,p-Xylene	ND	1.0	0.42	ug/l	
95-47-6	o-Xylene	ND	1.0	0.24	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.24	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	96%		81-12	21%	
17060-07-0	1,2-Dichloroethane-D4	90%		74-12	27%	10
2037-26-5	Toluene-D8	101%		80-12	22%	
460-00-4	4-Bromofluorobenzene	92%		78-11	16%	

ND = Not detectedRL = Reporting Limit MDL - Method Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: MW-7

Lab Sample ID:

JB23822-2

Matrix: Method: AQ - Ground Water

SW846 8270D SW846 3510C

Date Sampled: 12/13/12 Date Received: 12/14/12

Percent Solids: n/a

Via Verde, 700-730 Brook Avenue, Bronx, NY

Project:

Prep Batch **Analytical Batch** File ID DF Analyzed Ву Prep Date OP62194 EF5020 12/24/12 NAP 12/20/12 Run #1 F19088.D 1

Run #2

Final Volume Initial Volume

Run #1 940 ml 1.0 ml

Run #2

ABN TCL List (CLP4.2 list)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.3	1.0	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.3	1.9	ug/l	
120-83-2	2,4-Dichlorophenol	ND	5.3	1.2	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.3	1.6	ug/l	
51-28-5	2,4-Dinitrophenol	ND	21	18	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	21	1.1	ug/l	
95-48-7	2-Methylphenol	ND	2.1	1.1	ug/l	
	3&4-Methylphenol	ND	2.1	0.98	ug/l	
88-75-5	2-Nitrophenol	ND	5.3	1.6	ug/l	
100-02-7	4-Nitrophenol	ND	11	5.5	ug/l	
87-86-5	Pentachlorophenol	ND	11	1.5	ug/l	
108-95-2	Phenol	ND	2.1	1.4	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.3	1.7	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.3	1.4	ug/l	
83-32-9	Acenaphthene	ND	1.1	0.28	ug/l	
208-96-8	Acenaphthylene	ND	1.1	0.24	ug/l	
98-86-2	Acetophenone	ND	2.1	0.30	ug/l	
120-12-7	Anthracene	ND	1.1	0.31	ug/l	
1912-24-9	Atrazine	ND	5.3	0.52	ug/l	
100-52-7	Benzaldehyde	ND	5.3	3.5	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.1	0.24	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.1	0.24	ug/i	
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.49	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.34	ug/l	
207-08-9	Benzo(k) fluoranthene	ND	1.1	0.54	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.1	0.38	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.1	0.31	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.1	0.32	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.1	0.32	ug/l	
106-47-8	4-Chloroaniline	ND	5.3	0.56	ug/l	
86-74-8	Carbazole	ND	1.1	0.38	ug/l	
105-60-2	Caprolactam	ND	2.1	0.73	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-7

Lab Sample ID: JB23822-2

Matrix: Method:

Project:

AQ - Ground Water

SW846 8270D SW846 3510C

Via Verde, 700-730 Brook Avenue, Bronx, NY

Date Sampled: 12/13/12 Date Received: 12/14/12

Percent Solids: n/a

ABN TCL List (CLP4.2 list)

CAS No.	Compound	Result	RL	MDL	Units	Q
218-01-9	Chrysene	ND =	1.1	0.31	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.1	0.33	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.1	0.33	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.1	0.48	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	ug/l			
121-14-2	2,4-Dinitrotoluene	ND	2.1 2.1	0.33 0.45	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	2,1	0.49	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.3	0.38	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.40	ug/l	
132-64-9	Dibenzofuran	ND	5.3	0.28	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.1	0.59	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.1	0.33	ug/l	
84-66-2	Diethyl phthalate	ND	2.1	0.35	ug/l	
131-11-3	Dimethyl phthalate	ND	2.1	0.30	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.1	0.62	ug/l	
206-44-0	Fluoranthene	ND	1.1	0.34	ug/l	
86-73-7	Fluorene	ND	1.1	0.29	ug/l	
118-74-1	Hexachlorobenzene	ND	1.1	0.36	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.1	0.54	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	11	7.6	ug/l	
67-72-1	Hexachloroethane	ND	2.1	0.59	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.40	ug/l	
78-59-1	Isophorone	ND	2.1	0.29	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.1	0.41	ug/l	
88-74-4	2-Nitroaniline	ND	5.3	1.2	ug/l	
99-09-2	3-Nitroaniline	ND	5.3	1.3	ug/l	
100-01-6	4-Nitroaniline	ND	5.3	1.8	ug/l	
91-20-3	Naphthalene	ND	1.1	0.28	ug/l	
98-95-3	Nitrobenzene	ND	2.1	0.45	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.1	0.32	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.3	0.32	ug/l	
85-01-8	Phenanthrene	ND	1.1	0.31	ug/l	
129-00-0	Pyrene	ND	1.1	0.29	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	36%		10-83		
4165-62-2	Phenol-d5	23%		10-74		
118-79-6	2,4,6-Tribromophenol	80%		24-14	18 %	
4165-60-0	Nitrobenzene-d5	62%		38-12	29%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Client Sample ID: MW-7

Lab Sample ID: JB23822-2

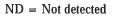
Matrix: Method:

Project:

AQ - Ground Water

SW846 8270D SW846 3510C

Via Verde, 700-730 Brook Avenue, Bronx, NY


Date Sampled: 12/13/12
Date Received: 12/14/12

Percent Solids: n/a

ABN TCL List (CLP4.2 list)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
321-60-8	2-Fluorobiphenyl	63%		42-117%
1718-51-0	Terphenyl-d14	91%		14-132%

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Ву

LP

Page 1 of 1

Client Sample ID: MW-7

File ID

895 ml

2G75587.D

Lab Sample ID:

IB23822-2

Date Sampled:

12/13/12

Matrix:

AQ - Ground Water

Date Received:

12/14/12

Method:

SW846 8082A SW846 3510C

Percent Solids: n/a

Prep Date

12/20/12

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Analyzed

12/22/12

Prep Batch OP62197

Analytical Batch G2G2545

Run #1 Run #2

Initial Volume Final Volume

DF

1

Run #1

10.0 ml

Run #2

PCB List

CAS No. Compound Result RL MDL Q Units

12674-11-2 Aroclor 1016 ND 0.56 0.14 ug/l 11104-28-2 Aroclor 1221 0.56 0.30 ND ug/l 11141-16-5 Aroclor 1232 0.560.43ND ug/l 53469-21-9 Aroclor 1242 ND 0.56 0.096 ug/l 12672-29-6 Aroclor 1248 ND 0.56 0.16 ug/l 11097-69-1 Aroclor 1254 ND 0.56 0.16 ug/l

Aroclor 1260 11096-82-5 ND 0.560.23 ug/l 11100-14-4 Aroclor 1268 ND 0.56 0.15 ug/l 37324-23-5 Aroclor 1262 ND 0.560.067 ug/l

CAS No. Surrogate Recoveries Run# 1 Run#2 Limits 877-09-8 Tetrachloro-m-xylene 68% 27-144%

877-09-8 Tetrachloro-m-xylene 83% 27-144% 2051-24-3 Decachlorobiphenyl 62% 10-139% 2051-24-3

74%

10-139%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

Decachlorobiphenyl

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-7

Lab Sample ID: JB23822-2

Matrix:

AQ - Ground Water

Date Sampled: 12/13/12 Date Received: 12/14/12

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	< 200	200	ug/l	1	12/26/12	12/27/12 BL	SW846 6010C ¹	SW846 3010A ⁴
Antimony	< 1.0	1.0	ug/l	2	12/26/12	12/29/12 RP	SW846 6020A ³	SW846 3010A ⁵
Arsenic	< 3.0	3.0	ug/l	1	12/26/12	12/27/12 BL	SW846 6010C ¹	SW846 3010A ⁴
Barium	< 200	200	ug/l	1	12/26/12	12/27/12 BL	SW846 6010C ¹	SW846 3010A ⁴
Beryllium	< 1.0	1.0	ug/I	1	12/26/12	12/27/12 BL	SW846 6010C ¹	SW846 3010A ⁴
Cadmium	< 3.0	3.0	ug/l	1	12/26/12	12/27/12 BL	SW846 6010C ¹	SW846 3010A ⁴
Calcium	111000	5000	ug/l	1	12/26/12	12/27/12 BL	SW846 6010C ¹	SW846 3010A ⁴
Chromium	< 10	10	ug/l	1	12/26/12	12/27/12 BL	SW846 6010C ¹	SW846 3010A ⁴
Cobalt	< 50	50	ug/l	1	12/26/12	12/27/12 BL	SW846 6010C ¹	SW846 3010A ⁴
Copper	< 10	10	ug/l	1	12/26/12	12/27/12 BL	SW846 6010C ¹	SW846 3010A ⁴
Iron	337	100	ug/l	1	12/26/12	12/27/12 BL	SW846 6010C ¹	SW846 3010A ⁴
Lead	< 3.0	3.0	ug/l	1	12/26/12	12/27/12 BL	SW846 6010C ¹	SW846 3010A ⁴
Magnesium	21200	5000	ug/l	1	12/26/12	12/27/12 BL	SW846 6010C ¹	SW846 3010A ⁴
Manganese	42.9	15	ug/l	1	12/26/12	12/27/12 BL	SW846 6010C ¹	SW846 3010A ⁴
Mercury	< 0.20	0.20	ug/l	1	12/27/12	12/27/12 DP	SW846 7470A ²	SW846 7470A ⁶
Nickel	< 10	10	ug/l	1	12/26/12	12/27/12 BL	SW846 6010C ¹	SW846 3010A ⁴
Potassium	< 10000	10000	ug/l	1	12/26/12	12/27/12 BL	SW846 6010C ¹	SW846 3010A ⁴
Selenium	< 10	10	ug/l	1	12/26/12	12/27/12 BL	SW846 6010C ¹	SW846 3010A ⁴
Silver	< 10	10	ug/l	1	12/26/12	12/27/12 BL	SW846 6010C ¹	SW846 3010A ⁴
Sodium	63400	10000	ug/l	1	12/26/12	12/27/12 BL	SW846 6010C ¹	SW846 3010A ⁴
Thallium	< 1.0	1.0	ug/l	2	12/26/12	12/29/12 RP	SW846 6020A ³	SW846 3010A ⁵
Vanadium	< 50	50	ug/l	1	12/26/12	12/27/12 BL	SW846 6010C ¹	SW846 3010A ⁴
Zinc	< 20	20	ug/l	1	12/26/12	12/27/12 BL	SW846 6010C ¹	SW846 3010A ⁴

(1) Instrument QC Batch: MA30167
(2) Instrument QC Batch: MA30170
(3) Instrument QC Batch: MA30182
(4) Prep QC Batch: MP68786
(5) Prep QC Batch: MP68786A
(6) Prep QC Batch: MP68820

AQ - Ground Water

Date Sampled: 12/13/12
Date Received: 12/14/12

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent Chromium, Trivalent ^a	< 0.010 K < 0.020	0.010 0.020	mg/l mg/l	1	12/14/12 12:32 12/27/12 22:07		SW846 7196A SW846 6010/7196A M

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

fot 8/13

Page 1 of 1

Client Sample ID: MW-7

Lab Sample ID: JB23822-2F

Matrix:

AQ - Groundwater Filtered

Date Sampled: 12/13/12
Date Received: 12/14/12

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	< 200	200	ug/l	1	12/26/12	12/27/12 BL	SW846 6010C ¹	SW846 3010A ⁴
Antimony	< 1.0	1.0	ug/l	2	12/26/12	12/29/12 RP	SW846 6020A ³	SW846 3010A ⁵
Arsenic	< 3.0	3.0	ug/l	1	12/26/12	12/27/12 BL	SW846 6010C ¹	SW846 3010A ⁴
Barium	< 200	200	ug/l	1	12/26/12	12/27/12 BL	SW846 6010C ¹	SW846 3010A ⁴
Beryllium	< 1.0	1.0	ug/l	1	12/26/12	12/27/12 BL	SW846 6010C ¹	SW846 3010A ⁴
Cadmium	< 3.0	3.0	ug/l	1	12/26/12	12/27/12 BL	SW846 6010C ¹	SW846 3010A ⁴
Calcium	105000	5000	ug/l	1	12/26/12	12/27/12 BL	SW846 6010C ¹	SW846 3010A ⁴
Chromium a	< 10	10	ug/l	1	12/26/12	12/27/12 BL	SW846 6010C ¹	SW846 3010A ⁴
Cobalt	< 50	50	ug/l	1	12/26/12	12/27/12 BL	SW846 6010C ¹	SW846 3010A ⁴
Copper	< 10	10	ug/l	1	12/26/12	12/27/12 BL	SW846 6010C ¹	SW846 3010A ⁴
Iron	< 100	100	ug/l	1	12/26/12	12/27/12 BL	SW846 6010C ¹	SW846 3010A ⁴
Lead	< 3.0	3.0	ug/l	1	12/26/12	12/27/12 BL	SW846 6010C ¹	SW846 3010A ⁴
Magnesium	20000	5000	ug/l	1	12/26/12	12/27/12 BL	SW846 6010C ¹	SW846 3010A ⁴
Manganese	35.9	15	ug/l	1	12/26/12	12/27/12 BL	SW846 6010C ¹	SW846 3010A ⁴
Mercury	< 0.20	0.20	ug/l	1	12/27/12	12/27/12 DP	SW846 7470A ²	SW846 7470A ⁶
Nickel	< 10	10	ug/l	1	12/26/12	12/27/12 BL	SW846 6010C ¹	SW846 3010A ⁴
Potassium	< 10000	10000	ug/l	1	12/26/12	12/27/12 BL	SW846 6010C ¹	SW846 3010A ⁴
Selenium	< 10	10	ug/l	1	12/26/12	12/27/12 BL	SW846 6010C ¹	SW846 3010A ⁴
Silver	< 10	10	ug/l	1	12/26/12	12/27/12 BL	SW846 6010C ¹	SW846 3010A ⁴
Sodium	60500	10000	ug/l	1	12/26/12	12/27/12 BL	SW846 6010C ¹	SW846 3010A ⁴
Thallium	< 1.0	1.0	ug/1	2	12/26/12	12/29/12 RP	SW846 6020A ³	SW846 3010A ⁵
Vanadium	< 50	50	ug/l	1	12/26/12	12/27/12 BL	SW846 6010C ¹	SW846 3010A ⁴
Zinc	< 20	20	ug/l	1	12/26/12	12/27/12 BL	SW846 6010C ¹	SW846 3010A ⁴

(1) Instrument QC Batch: MA30167
(2) Instrument QC Batch: MA30170
(3) Instrument QC Batch: MA30182
(4) Prep QC Batch: MP68786
(5) Prep QC Batch: MP68786A
(6) Prep QC Batch: MP68820

(a) Hexavalent chromium is < 10 ppb.

Client Sample ID: MW-7

Lab Sample ID: JB23822-2F

Matrix:

AQ - Groundwater Filtered

Date Sampled: 12/13/12 Date Received: 12/14/12

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

General Chemistry

Chromium, Trivalent a

Analyte

Result

< 0.020

RL

0.020

Units DF

1

mg/l

Analyzed 12/27/12 22:42 BL

Method

SW846 6010/7196A M

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

Report of Analysis

Page 1 of 2

Client Sample ID: FIELD BLANK 12/13

Lab Sample ID:

JB23822-3

AQ - Field Blank Water

DF

1

Ву

NT

Date Sampled: 12/13/12 Date Received: 12/14/12

Matrix: Method:

SW846 8260B

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Analyzed

12/26/12

Prep Batch n/a

Prep Date

n/a

Analytical Batch V3D3497

Run #1 Run #2

Purge Volume

3D81262.D

Run #1

5.0 ml

File ID

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND R	10	3.3	ug/l	
71-43-2	Benzene	ND	1.0	0.24	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.14	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.30	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.21	ug/l	
75-25-2	Bromoform	ND	4.0	0.21	ug/l	
74-83-9	Bromomethane	ND	2.0	0.22	ug/l	
78-93-3	2-Butanone (MEK)	ND-R	10	2.4	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	0.17	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	0.21	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	0.30	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.22	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.23	ug/l	
75-00-3	Chloroethane	ND	1.0	0.26	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
74-87-3	Chloromethane	ND	1.0	0.21	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	0.15	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.30	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	10	0.54	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.14	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.20	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.22	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.30	ug/l	
75-71-8	Dichlorodifluoromethane	ND	5.0	0.27	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.11	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.26	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.19	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.19	ug/l	100
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.21	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.48	ug/l	
142-28-9	1,3-Dichloropropane	ND	5.0	0.23	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: FIELD BLANK 12/13

Lab Sample ID: JB23822-3

Date Sampled: 12/13/12 Date Received: 12/14/12 Matrix: AQ - Field Blank Water Percent Solids: n/a Method: SW846 8260B

Project: Via Verde, 700-730 Brook Avenue, Bronx, NY

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7	2,2-Dichloropropane	ND	5.0	0.15	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	0.30	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.19	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.23	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.24	ug/l	
98-82-8	Isopropylbenzene	ND	2.0	0.45	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	0.22	ug/I	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.16	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	0.83	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.26	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.70	ug/l	
91-20-3	Naphthalene	ND	5.0	1.1	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	0.24	ug/l	
100-42-5	Styrene	ND	5.0	0.21	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.24	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.28	ug/l	
108-88-3	Toluene	ND	1.0	0.23	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	0.28	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.20	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.24	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.29	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.22	ug/l	
75-69-4	Trichlorofluoromethane	ND	5.0	0.27	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.53	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.19	ug/I	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.36	ug/I	
75-01-4	Vinyl chloride	ND	1.0	0.21	ug/1	
	m,p-Xylene	ND	1.0	0.42	ug/l	
95-47-6	o-Xylene	ND	1.0	0.24	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.24	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	95%		81-12	21%	
17060-07-0	1,2-Dichloroethane-D4	89%		74-12	27%	
2037-26-5	Toluene-D8	102%		80-12		
460-00-4	4-Bromofluorobenzene	91%		78-11	16%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: FIELD BLANK 12/13

Lab Sample ID: JB23822-3

Matrix:

Method:

Project:

AQ - Field Blank Water

SW846 8270D SW846 3510C

Via Verde, 700-730 Brook Avenue, Bronx, NY

Date Sampled: 12/13/12

Date Received: 12/14/12

Percent Solids: n/a

File ID Prep Date Prep Batch **Analytical Batch** DF Analyzed Ву OP62194 EF5020 Run #1 F19091.D 1 12/24/12 NAP 12/20/12

Run #2

Initial Volume Final Volume

Run #1 840 ml 1.0 ml

Run #2

ABN TCL List (CLP4.2 list)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	6.0	1.2	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	6.0	2.2	ug/l	
120-83-2	2,4-Dichlorophenol	ND	6.0	1.4	ug/l	
105-67-9	2,4-Dimethylphenol	ND	6.0	1.8	ug/l	
51-28-5	2,4-Dinitrophenol	ND	24	20	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	24	1.2	ug/l	
95-48-7	2-Methylphenol	NĐ	2.4	1.2	ug/l	
	3&4-Methylphenol	ND	2.4	1.1	ug/l	
88-75-5	2-Nitrophenol	ND	6.0	1.8	ug/l	
100-02-7	4-Nitrophenol	ND	12	6.2	ug/l	
87-86-5	Pentachlorophenol	ND	12	1.7	ug/l	
108-95-2	Phenol	ND	2.4	1.5	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	6.0	1.9	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	6.0	1.5	ug/l	
83-32-9	Acenaphthene	ND	1.2	0.31	ug/l	
208-96-8	Acenaphthylene	ND	1.2	0.27	ug/l	
98-86-2	Acetophenone	ND	2.4	0.34	ug/l	
120-12-7	Anthracene	ND	1.2	0.34	ug/l	
1912-24-9	Atrazine	ND	6.0	0.58	ug/l	
100-52-7	Benzaldehyde	ND	6.0	3.9	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.2	0.27	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.2	0.27	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.2	0.54	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.2	0.38	ug/l	
207-08-9	Benzo(k) fluoranthene	ND	1.2	0.61	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.4	0.43	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.4	0.34	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.2	0.36	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.4	0.35	ug/l	
106-47-8	4-Chloroaniline	ND	6.0	0.63	ug/l	
86-74-8	Carbazole	ND	1.2	0.43	ug/l	
105-60-2	Caprolactam	ND	2.4	0.82	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: FIELD BLANK 12/13

Lab Sample ID: JB23822-3

Date Sampled: 12/13/12 Matrix: AQ - Field Blank Water Date Received: 12/14/12 SW846 8270D SW846 3510C Percent Solids: n/a Method:

Via Verde, 700-730 Brook Avenue, Bronx, NY Project:

ABN TCL List (CLP4.2 list)

CAS No.	Compound	Result	RL	MDL	Units	Q
218-01-9	Chrysene	ND	1.2	0.34	ug/l	
111-91-1	bis (2-Chloroethoxy) methane	ND	2.4	0.37	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.4	0.37	ug/l	
108-60-1	bis (2-Chloroisopropyl) ether	ND	2.4	0.54	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.4	0.37	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	2.4	0.51	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	2.4	0.55	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	6.0	0.43	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.2	0.45	ug/l	
132-64-9	Dibenzofuran	ND	6.0	0.32	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.4	0.66	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.4	0.37	ug/l	
84-66-2	Diethyl phthalate	ND	2.4	0.39	ug/l	
131-11-3	Dimethyl phthalate	ND	2.4	0.34	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.4	0.70	ug/l	
206-44-0	Fluoranthene	ND	1.2	0.38	ug/l	
86-73-7	Fluorene	ND	1.2	0.33	ug/l	
118-74-1	Hexachlorobenzene	ND	1.2	0.40	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.2	0.61	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	12	8.5	ug/l	
67-72-1	Hexachloroethane	ND	2.4	0.65	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.2	0.45	ug/l	
78-59-1	Isophorone	ND	2.4	0.33	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.2	0.46	ug/l	
88-74-4	2-Nitroaniline	ND	6.0	1.3	ug/l	
99-09-2	3-Nitroaniline	ND	6.0	1.5	ug/l	
100-01-6	4-Nitroaniline	ND	6.0	2.0	ug/l	
91-20-3	Naphthalene	ND	1.2	0.31	ug/l	
98-95-3	Nitrobenzene	ND	2.4	0.50	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.4	0.36	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	6.0	0.36	ug/l	
85-01-8	Phenanthrene	ND	1.2	0.35	ug/l	
129-00-0	Pyrene	ND	1.2	0.32	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
367-12-4	2-Fluorophenol	37%		10-8	3%	
4165-62-2	Phenol-d5	26%		10-7		
118-79-6	2,4,6-Tribromophenol	73%		24-1	48%	
4165-60-0	Nitrobenzene-d5	55%		38-1	29%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Project:

Report of Analysis

Page 3 of 3

Client Sample ID: FIELD BLANK 12/13

Lab Sample ID: JB23822-3

Matrix: AQ - Field Blank Water
Method: SW846 8270D SW846 35100

SW846 8270D SW846 3510C Pe Via Verde, 700-730 Brook Avenue, Bronx, NY

Date Received: 12/14/12
Percent Solids: n/a

Date Sampled: 12/13/12

ABN TCL List (CLP4.2 list)

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

321-60-8 2-Fluorobiphenyl 60% 42-117% 1718-51-0 Terphenyl-d14 88% 14-132%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Accutest Laboratories

Report of Analysis

By

LP

Page 1 of 1

File ID

2G75588.D

Client Sample ID: FIELD BLANK 12/13

Lab Sample ID:

JB23822-3

Date Sampled: 12/13/12

Matrix:

AO - Field Blank Water

DF

1

Date Received: 12/14/12

Method:

SW846 8082A SW846 3510C

Project:

Percent Solids: n/a

Via Verde, 700-730 Brook Avenue, Bronx, NY

Analyzed

12/22/12

Analytical Batch

Run #1

Run #2

Prep Date 12/20/12

Prep Batch OP62197

G2G2545

Initial Volume Final Volume 900 ml

Run #1

10.0 ml

Run #2

PCB List

2051-24-3

2051-24-3

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	0.56	0.14	ug/l	
11104-28-2	Aroclor 1221	ND	0.56	0.30	ug/l	
11141-16-5	Aroclor 1232	ND	0.56	0.43	ug/l	
53469-21-9	Aroclor 1242	ND	0.56	0.096	ug/l	
12672-29-6	Aroclor 1248	ND	0.56	0.16	ug/l	
11097-69-1	Aroclor 1254	ND	0.56	0.16	ug/l	
11096-82-5	Aroclor 1260	ND	0.56	0.23	ug/l	
11100-14-4	Aroclor 1268	ND	0.56	0.14	ug/l	
37324-23-5	Aroclor 1262	ND	0.56	0.067	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	75%		27-1	44%	
877-09-8	Tetrachloro-m-xylene	90%		27-1	44%	

37%

43%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

Decachlorobiphenyl

Decachlorobiphenyl

J = Indicates an estimated value

10-139%

10-139%

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: FIELD BLANK 12/13

Lab Sample ID: JB23822-3

Matrix: AQ - Field Blank Water Date Sampled: 12/13/12 Date Received: 12/14/12 Percent Solids: n/a

Project: Via Verde, 700-730 Brook Avenue, Bronx, NY

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	< 200	200	ug/l	1	12/26/12	12/28/12 BL	SW846 6010C ¹	SW846 3010A ⁵
Antimony	< 1.0	1.0	ug/i	2	12/26/12	12/29/12 RP	SW846 6020A ⁴	SW846 3010A ⁶
Arsenic	< 3.0	3.0	ug/l	1	12/26/12	12/28/12 ND	SW846 6010C ³	SW846 3010A ⁵
Barium	< 200	200	ug/l	1	12/26/12	12/28/12 BL	SW846 6010C ¹	SW846 3010A ⁵
Beryllium	< 1.0	1.0	ug/l	1	12/26/12	12/28/12 BL	SW846 6010C ¹	SW846 3010A ⁵
Cadmium	< 3.0	3.0	ug/l	1	12/26/12	12/28/12 ND	SW846 6010C ³	SW846 3010A ⁵
Calcium	< 5000	5000	ug/l	1	12/26/12	12/28/12 BL	SW846 6010C ¹	SW846 3010A ⁵
Chromium	< 10	10	ug/l	1	12/26/12	12/28/12 BL	SW846 6010C ¹	SW846 3010A ⁵
Cobalt	< 50	50	ug/l	1	12/26/12	12/28/12 ND	SW846 6010C ³	SW846 3010A ⁵
Copper	< 10	10	ug/l	1	12/26/12	12/28/12 BL	SW846 6010C ¹	SW846 3010A ⁵
Iron	< 100	100	ug/l	1	12/26/12	12/28/12 BL	SW846 6010C ¹	SW846 3010A ⁵
Lead	< 3.0	3.0	ug/l	1	12/26/12	12/28/12 ND	SW846 6010C ³	SW846 3010A ⁵
Magnesium	< 5000	5000	ug/l	1	12/26/12	12/28/12 BL	SW846 6010C ¹	SW846 3010A ⁵
Manganese	< 15	15	ug/l	1	12/26/12	12/28/12 BL	SW846 6010C ¹	SW846 3010A ⁵
Mercury	< 0.20	0.20	ug/l	1	12/27/12	12/27/12 DP	SW846 7470A ²	SW846 7470A ⁷
Nickel	< 10	10	ug/l	1	12/26/12	12/28/12 ND	SW846 6010C ³	SW846 3010A ⁵
Potassium	< 10000	10000	ug/l	1	12/26/12	12/28/12 BL	SW846 6010C ¹	SW846 3010A ⁵
Selenium	< 10	10	ug/l	1	12/26/12	12/28/12 ND	SW846 6010C ³	SW846 3010A ⁵
Silver	< 10	10	ug/l	1	12/26/12	12/28/12 BL	SW846 6010C ¹	SW846 3010A ⁵
Sodium	< 10000	10000	ug/l	1	12/26/12	12/28/12 BL	SW846 6010C ¹	SW846 3010A ⁵
Thallium	< 1.0	1.0	ug/l	2	12/26/12	12/29/12 RP	SW846 6020A ⁴	SW846 3010A ⁶
Vanadium	< 50	50	ug/l	1	12/26/12	12/28/12 BL	SW846 6010C ¹	SW846 3010A ⁵
Zinc	< 20	20	ug/l	1	12/26/12	12/28/12 ND	SW846 6010C ³	SW846 3010A ⁵

Report of Analysis

(1) Instrument QC Batch: MA30167 (2) Instrument QC Batch: MA30170 (3) Instrument QC Batch: MA30176 (4) Instrument QC Batch: MA30182 (5) Prep QC Batch: MP68786 (6) Prep QC Batch: MP68786A (7) Prep QC Batch: MP68820

Client Sample ID: FIELD BLANK 12/13

Lab Sample ID: JB23822-3

Matrix: AQ - Field Blank Water Date Sampled: 12/13/12 Date Received: 12/14/12

Percent Solids: n/a

Via Verde, 700-730 Brook Avenue, Bronx, NY Project:

General Chemistry

Method Result RL Units DF Analyzed Ву Analyte < 0.010 / 0.010 1 12/14/12 12:32 RI SW846 7196A

Chromium, Hexavalent mg/l Chromium, Trivalent a < 0.020 0.020 mg/l 1 12/28/12 01:05 BL SW846 6010/7196A M

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

4.6

Report of Analysis

Client Sample ID: FIELD BLANK 12/13

Lab Sample ID: JB23822-3F

Matrix: AQ - Field Blank Filtered

Date Sampled: 12/13/12
Date Received: 12/14/12

Percent Solids: n/a

Project: Via Verde, 700-730 Brook Avenue, Bronx, NY

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	< 200	200	ug/l	1	12/26/12	12/28/12 BL	SW846 6010C ¹	SW846 3010A ⁵
Antimony	< 1.0	1.0	ug/l	2	12/26/12	12/29/12 RP	SW846 6020A ⁴	SW846 3010A ⁶
Arsenic	< 3.0	3.0	ug/l	1	12/26/12	12/28/12 ND	SW846 6010C ³	SW846 3010A ⁵
Barium	< 200	200	ug/l	1	12/26/12	12/28/12 BL	SW846 6010C ¹	SW846 3010A ⁵
Beryllium	< 1.0	1.0	ug/l	1	12/26/12	12/28/12 BL	SW846 6010C ¹	SW846 3010A ⁵
Cadmium	< 3.0	3.0	ug/l	1	12/26/12	12/28/12 ND	SW846 6010C ³	SW846 3010A ⁵
Calcium	< 5000	5000	ug/l	1	12/26/12	12/28/12 BL	SW846 6010C ¹	SW846 3010A ⁵
Chromium a	< 10	10	ug/l	1	12/26/12	12/28/12 BL	SW846 6010C ¹	SW846 3010A ⁵
Cobalt	< 50	50	ug/l	1	12/26/12	12/28/12 ND	SW846 6010C ³	SW846 3010A ⁵
Copper	< 10	10	ug/l	1	12/26/12	12/28/12 BL	SW846 6010C ¹	SW846 3010A ⁵
Iron	< 100	100	ug/l	1	12/26/12	12/28/12 BL	SW846 6010C ¹	SW846 3010A ⁵
Lead	< 3.0	3.0	ug/l	1	12/26/12	12/28/12 ND	SW846 6010C ³	SW846 3010A ⁵
Magnesium	< 5000	5000	ug/l	1	12/26/12	12/28/12 BL	SW846 6010C ¹	SW846 3010A ⁵
Manganese	< 15	15	ug/l	1	12/26/12	12/28/12 BL	SW846 6010C ¹	SW846 3010A ⁵
Mercury	< 0.20	0.20	ug/l	1	12/27/12	12/27/12 DP	SW846 7470A ²	SW846 7470A ⁷
Nickel	< 10	10	ug/l	1	12/26/12	12/28/12 ND	SW846 6010C ³	SW846 3010A ⁵
Potassium	< 10000	10000	ug/l	1	12/26/12	12/28/12 BL	SW846 6010C ¹	SW846 3010A ⁵
Selenium	< 10	10	ug/l	1	12/26/12	12/28/12 ND	SW846 6010C ³	SW846 3010A ⁵
Silver	< 10	10	ug/l	1	12/26/12	12/28/12 BL	SW846 6010C ¹	SW846 3010A ⁵
Sodium	< 10000	10000	ug/l	1	12/26/12	12/28/12 BL	SW846 6010C ¹	SW846 3010A ⁵
Thallium	< 1.0	1.0	ug/l	2	12/26/12	12/29/12 RP	SW846 6020A ⁴	SW846 3010A ⁶
Vanadium	< 50	50	ug/l	1	12/26/12	12/28/12 BL	SW846 6010C ¹	SW846 3010A ⁵
Zinc	< 20	20	ug/l	1	12/26/12	12/28/12 ND	SW846 6010C ³	SW846 3010A ⁵

(1) Instrument QC Batch: MA30167
(2) Instrument QC Batch: MA30170
(3) Instrument QC Batch: MA30176
(4) Instrument QC Batch: MA30182
(5) Prep QC Batch: MP68786
(6) Prep QC Batch: MP68786A
(7) Prep QC Batch: MP68820

(a) Hexavalent chromium is < 10 ppb.

Client Sample ID: FIELD BLANK 12/13

Lab Sample ID:

JB23822-3F

Matrix:

AQ - Field Blank Filtered

Date Sampled: 12/13/12

Date Received: 12/14/12

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Percent Solids: n/a

General Chemistry

Analyte

Result

RL

Units

DF

Analyzed

Method Ву

Chromium, Trivalent a

< 0.020

0.020

mg/l 1 12/28/12 01:17 BL

SW846 6010/7196A M

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

Client Sample ID: TRIP BLANK 12/13

Lab Sample ID:

JB23822-4

AQ - Trip Blank Water

Date Sampled: 12/13/12 Date Received: 12/14/12

Matrix: Method:

SW846 8260B

Percent Solids: n/a

Project:

Prep Date

Via Verde, 700-730 Brook Avenue, Bronx, NY

12/26/12

Analytical Batch Prep Batch

Run #1 Run #2

File ID 3D81263.D Analyzed Ву NT

n/a

n/a

V3D3497

Run #2

Purge Volume

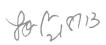
Run #1

5.0 ml

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND R	10	3.3	ug/l	
71-43-2	Benzene	ND	1.0	0.24	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.14	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.30	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.21	ug/l	
75-25-2	Bromoform	ND	4.0	0.21	ug/l	
74-83-9	Bromomethane	ND _	2.0	0.22	ug/l	
78-93-3	2-Butanone (MEK)	ND C	10	2.4	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	0.17	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	0.21	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	0.30	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.22	ug/I	
108-90-7	Chlorobenzene	ND	1.0	0.23	ug/l	
75-00-3	Chloroethane	ND	1.0	0.26	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
74-87-3	Chloromethane	ND	1.0	0.21	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	0.15	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.30	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	10	0.54	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.14	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.20	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.22	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.30	ug/l	
75-71-8	Dichlorodifluoromethane	ND	5.0	0.27	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.11	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.26	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.19	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.19	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.21	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.48	ug/l	
142-28-9	1,3-Dichloropropane	ND	5.0	0.23	ug/l	

ND = Not detected


MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Client Sample ID: TRIP BLANK 12/13

Lab Sample ID: JB23822-4

Matrix: AQ - Trip Blank Water

SW846 8260B Method:

Project: Via Verde, 700-730 Brook Avenue, Bronx, NY Date Sampled: 12/13/12 Date Received: 12/14/12

Percent Solids: n/a

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7	2,2-Dichloropropane	ND	5.0	0.15	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	0.30	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.19	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.23	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.24	ug/l	
98-82-8	Isopropylbenzene	ND	2.0	0.45	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	0.22	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.16	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	0.83	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.26	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.70	ug/l	
91-20-3	Naphthalene	ND	5.0	1.1	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	0.24	ug/l	
100-42-5	Styrene	ND	5.0	0.21	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.24	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.28	ug/l	
108-88-3	Toluene	ND	1.0	0.23	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	0.28	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.20	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.24	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.29	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.22	ug/l	
75-69-4	Trichlorofluoromethane	ND	5.0	0.27	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.53	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.19	ug/I	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.36	ug/I	
75-01-4	Vinyl chloride	ND	1.0	0.21	ug/l	
	m,p-Xylene	ND	1.0	0.42	ug/l	
95-47-6	o-Xylene	ND	1.0	0.24	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.24	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	96%		81-12		
17060-07-0	1,2-Dichloroethane-D4	89%		74-12		
2037-26-5	Toluene-D8	100%		80-12	22%	
460-00-4	4-Bromofluorobenzene	91%		78-11	6%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Appendix B
Chain of Custody
Documents

		7
r	I	

	CCUTEST:	GW WTB		CHAII 2235 Roi 732-329-0	ute 130 200), Day FAX:	ton, NJ	0881	0	80 ;		PED EX	Transland 142 d Guelle #			0034	Acquire C	order Cont at Jeb #	J6	0	
70005	Client / Reporting Information 190	The state of the s	AcomyPhysics a	Project I	nformat	tion		KG/36	ine.	lht:		1000	Reg	rested	Analy	sis (see	TEST	ODE	(heet)	19.00	Matrix Codes
	Rich Inc. Burgant St.	700-730	Verde Brook A	re	Billing Ir	nformatio	on (if differ	ent from	ı Report	l to)	7.197										DW - Drinklog Walter GW - Ground Water WW - Weter SW - Surfece Weter SO - Soil St Sludge
17	State V Lugara	Brank	N		Company	(remmo						1				2					SED-Sediment OI - Oil
TOLOGO C	ontari E-may	Project #			Street Ad	dress										hrome	1				LIQ - Other Liquid AIR - Air
Richard SIL	Lord Izzo 5710 8844	Client Purchase	Audience		City			Stav	u.		Zφ	09)0%	0758		S	7					SOL - Other Solid WP - Wipe FB-Field Blank EB-Equipment Blank RB- Rinse Blank
amplen	s) Name(s) Priorie	Richard	T770		Attention							1,2			Met Ca	Ŧ,				1	TB-Trip Blank
VIE	e Yayer + Toin Ocean	KILIKU		Collection				No	miber of p	ensarye		7.5	3	2	-	+	1				
Accuracy Sample #	Field ID / Point of Collection	MEOH/OI Visil N	Date	Time	Eampled by	Metrix	1 1	HCI NeOH	HASOM HZSOM	NONE DI Warte	MEOH	NC	3	7	F	15	-			4	LAB USE ONLY
- 1	MW-8		12/12/12		MYTE	GW	98			4	₩	1	7	1	\$	X-	-		\vdash		AMET 18
- 7	MW-xx		12/12/12	1005	14/18	GW	1.5			-	\vdash	1	T	X	\Diamond	\Diamond		+-		_	ME 46
-3	MW-10		12/12/12		MYER	(JW	9		-	H	Н	13	1-1	-	X	_	-	-		_	2064
-4	Trip Clark		12/13/1)			T6	-					1	F								
											H										
																	Comment	in / Stran	pal Instruc	Oos DE	
i	Turnamend Tene (Business days) Std, 16 Business Days Std, 10 Business Days (by Contract only) 10 Day RUSH	Approved By (Acc	utest PM): / Dale:	M, EX 11	E	Comme	rciāl "A" (l rcial "B" (i (Laval 3+	Level 21	while int	R	NYASP Ca NYASP Ca Slate Form	itagory B		KI	P	X (<u> </u>	un	ne bld	(,	me
į	5 Day RUSH 3 Day EMERGENCY 2 Day EMERGENCY 1 Day EMERGENCY						Commer Commer	cial "B" =	Results	Only + QC	Other Summery nmary + P	artial Row	deta	X	3/	16	(S)			<u> </u>	
(SEE	rgancy & Rush T/A data available VIA Labirit	8 71.2/1.7	mple Custody m	wat be docu	mented t	below ea	ach time s	Relings	chang whee By	e poss	ession, I	neluding	courie	r delive	Daty T	Ter 10	Ruci	cired By	$\sqrt{\Lambda}$		
1/	- //		Received By:	NEX.	-			2 Stellogu	lished By	17	-9-	<u> </u>			Date T			alved By:			
3	former of amper-		3					4	y Seal #			☐ Intao		Preser	ved who	m applicati	4		Onice	Co	5,0°c8
Relin	quished by: Date Tir	ne:	Received By:					Cumso	America			D Noth		555755	120	(TE)	41		120		5.0 c3

JB23729: Chain of Custody Page 1 of 3

Accutest Laboratories Sample Receipt Summary

Accutest Job Number: JB23729 Cllent:	CA RICH - NY	Project: VIA VERDE	
Date / Time Received: 12/13/2012 10:00	Delivery Method:	FedEx Airbill #'s: 79428536003	34
Cooler Temps (Initial/Adjusted): #1: (5/5): 0			
Cooler Security Y or N	Y or N	Sample Integrity - Documentation	Y or N
1. Custody Seals Present:			
2. Custody Seals Intact:		Sample labels present on bottles:	
2. Oustody Obale Intact.		Container labeling complete: Sample container label / COC agree:	
Cooler Temperature Y or N		3. Sample container label / COC agree:	
1. Temp criteria achieved:		Sample Integrity - Condition	Y or N
Cooler temp verification: Bar Therm		Sample recvd within HT:	
3. Cooler media: Ice (Bag)		All containers accounted for:	
4. No, Coolers1		3. Condition of sample:	Broken / Leaking
Quality Control Preservatio Y N N//	A	Sample Integrity - Instructions	Y N N/A
1. Trip Blank present / cooler:	_	Analysis requested is clear:	<u>Y</u> <u>N</u> <u>N/A</u> ☑
2. Trip Blank listed on COC:		Bottles received for unspecified tests	
Zi Trip Statist 10000 Sir O'O'O		Sufficient volume recvd for analysis:	
3. Samples preserved properly:		Sufficient volume recvo for analysis. Compositing instructions clear:	
4. VOCs headspace free: ✓		, ,	
The state of the s		5. Filtering instructions clear:	
Comments -1 & -2 XCR VOL REC'D IN HOLD WITH ONLY 25	MINUTES LEFT, COLLECTED 12/	12/12 @ 10:25 PROCESSED OUT.	
-1 1 OF 4 950ML REC'D BROKEN			
-3 NO TIME ON COC OR LABELS.			
Accutest Laboratories V:732,329,0200	2235 US F: 732	Highway 130 .329.3499	Daylon, New Jersey www/accutest.com

JB23729: Chain of Custody

Page 2 of 3

Sample Receipt Summary - Problem Resolution

Accutest Job Number: JB23729

CSR: M Cordova

Response Date:

12/17/2012

Response: Proceed with all XCr analysis and tests requiring 950 ml bottles The sample time for MW-6 was 12:35

Accutest Laboratories V:732.329.0200

2235 US Highway 130 F: 732.329.3499

Daylon, New Jersey www/scculesl.com

JB23729: Chain of Custody Page 3 of 3

ACCUTEST:	CiW FB WUTB	Tel:	CHAI 2235 Ro 732-329	oute 1:	30, Day	ton, N 732-3	NJ 08 29-3	810				PEGER 7'	Tipoter 42	175	66	16 7 174		P.	Central #	238	
Client / Reporting Information		LUCKY.	Project	Inform	ation	3/4/2	V 19 3	8.3	1.13	8.5	900	999	Req	ueste	d Anal	yals (s	ee TE	ST COD	E sheet)		Matrix Codes
Correspy Home CA KICH Consultants In: 5000 A ANCH Consultants In: 17 Deposit 55treet Confect Consultants Programmer NY 11803 Richard Izza Rizzo@correny Phone Consultant	Bron X	Avenue	State NY	Billing Compar Sweet A	Informati ny Namo	nie II jac		ram A	eport (o)	Σ,		0	92.20		& Fillied Hord	S While In chang					DW - Drinking Wat GW - Ground Wat WW - Water SW - Burkes Wat SD - Sol GL - Skoppe SED-Sadmant AIR - Az SU - Other Sol WP - Wep FB-Fiold Blank
5 lb 576-8344 516-576-0093 Sempler(s) Name(s) Phone	Project Manage			Attenboo	n:			-		_	_	820	94		6	Elal					EB-Equipment Bia RB-Hinse Blank
Michael Pager / Jason Cooper			Conscion					No.	c of press	nated Block		-	8	/902	1	6				1 1	T8-Trip Slank
Amendment Field ID / Point of Collection	MEOH/DI Vial #	Dete	Time	Sampled by	Matra	# of bollle	P	8	NOS NO	NO.	Becore	S	Sta	3	17	741					LAB USE ONL
- G MW-9	-	12/3/12	1025	Thy	GW	9	3	ì	5	\top	Ħ	X	X	X	X	×					ex 86
/ mw-7469		12 13 12	1238	3/11	GW	9	3	1	5			X	X	X	X	8					ME18
E MW7MS		12/3/12	1238	Tou	GWI	9	3	1	5		П	X	X	X	X	X					ME46
MW 7 msb		13/13/13	12.34	Try	GW	9	3	J.	5	+	+	X	X	X	X	~		-	-	\vdash	20.78
- 3F Field Blank 12/13		13/12	1251	4/x1	GB	8	2	1	5	T	Ħ	X	X	X	X	X					
-4 TripAlank 12/13		ecturitie.		77	T13	1	1	ľ	1		П	X									
		-					$^{+}$	H	+	t	H										
							П				П								-	\Box	
					-	-	+				Н										
Turnaround Time (Dusiness days)	- mates t	Zac y Zab	Carle IV.	SIN	ń :				Informa		BP Cate	0.25	TIO)	14175		13974	Comm	ents / Sp	ecial Instru	ctions	
Std. 16 Buelnese Days Std. 16 Buelnese Days Btd. 16 Buelnese Days (by Contract only) 10 Day RUSH 8 Day RUSH	Approved By (Acc	ulest PM); / Date:		目	Comment Comment FULLT1 NJ Reduc	(a) "B" ((Level 34	Level :			NYA	SP Cete	gory B	71 <u>5</u>	- C	اخدا	edy	-	كتمت	<u>رو</u> 34	42	DAFAI
3 Day EMBRUENCY 2 Day EMBRUENCY 1 Day EMBRUENCY					Commer	Commer	rcini "B"	- Rec	ulta + QC	Sumr	nary									-	100
Emergency & Rush T/A data available V/A Lablink	s	emple Custody n	nust be docu	mented t	nelow ex	h time a	ample	es chi	ngs po					delive		-					
1 Che City 121	2/12	Received By:	1Ex				2	equistie:			FCD	X	_		Date To	1/12	0,0	Heceived D	Δ	_	2
Repliquished by Bernphr: Date Tir		3					4			_	-	Later		Water 1	-			4			Ocator Press
Relinquished by: Date Tir	4:	Received By: 6					Curt	edy Ber	u at			Intact Notinta	d	Presar	T.T.	e applicat			On le		Cooler Temp. 2. 0

JB23822: Chain of Custody Page 1 of 3

Accutest Laboratories Sample Receipt Summary

10:00			IA VERDE		
	Delivery Method:	FedEx Airbill #'s:	794297566774/6167		
l: (2/2):_#2: (1/1)	<u>; 0</u>				
		Sample Integrity - Documen	tation Y	or N	
•	17.1		ties:	11	
4. Smpi Da	les/Time OK 💉	2. Container labeling complete.	~	11	
or N		3. Sample container label / COC	agree:	H	
1 1		Sample Integrity - Condition	n <u>Y</u>	or N	
				V	
	e:	2. All containers accounted for:	[V]	11	
2		Condition of sample:	<u></u>	Intact	
<u> N N</u>	<u>/A_</u>	Sample Integrity - Instruction	one y	N	N/A
1 1	I.	Analysis requested is clear:	[V]		
Fi 1	Ĭ	Bottles received for unspecifi	ed tests	V	
E1		3. Sufficient volume recvd for a	nalysis:	[]	
1 [1	1	4. Compositing instructions clea	ar: []	[]	~
		Filtering instructions clear:			V
3	4. Smpl Dal	3. COC Present: 4. Smpl Dates/Time OK OF N Bar Therm Ice (Bag) 2 N N/A	1. Sample labels present on bot 2. Container labeling complete: 3. Sample container label / COC Sample Integrity - Condition 1. Sample recvd within HT: 2. All containers accounted for: 3. Condition of sample: N N/A Sample Integrity - Instruction 1. Analysis requested is clear: 2. Bottles received for unspecific 3. Sufficient volume recvd for a 4. Compositing instructions clear: 5. Filtering instructions clear:	1. Sample labels present on bottles: 2. Container labeling complete: 3. Sample container label / COC agree: Sample Integrity - Condition 1. Sample recvd within HT: 2. All containers accounted for: 3. Condition of sample: N N/A Sample integrity - Instructions 1. Analysis requested is clear: 2. Bottles received for unspecified tests 3. Sufficient volume recvd for analysis: 4. Compositing instructions clear: 5. Filtering instructions clear:	3. COC Present: 4. Smpl Dates/Time OK Or N Sample Integrity - Condition 1. Sample Integrity - Condition 1. Sample Integrity - Condition 1. Sample recvd within HT: 2. All containers accounted for: 3. Condition of sample: N N/A Sample Integrity - Instructions 1. Analysis requested is clear: 2. Bottles received for unspecified tests 3. Sufficient volume recvd for analysis: 4. Compositing instructions clear: 5. Filtering Instructions clear:

JB23822: Chain of Custody Page 2 of 3

Sample Receipt Summary - Problem Resolution

Accutest Job Number: JB23822

CSR: M Cordova

Response Date:

12/14/2012

Response: Proceed with analysis per CARICH

<u>ე</u>

Accutest Laboratories V:732 329.0200 2235 US Highway 130 F: 732.329.3499 Dayton, New Jersey www/acculest.com

JB23822: Chain of Custody Page 3 of 3

Appendix C Case Narratives

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: C. A. Rich Consultants Job No JB23729

Site: Via Verde, 700-730 Brook Avenue, Bronx, NY Report Date 12/31/2012 4:57:42 P

On 12/13/2012, 3 Sample(s), 1 Trip Blank(s) and 0 Field Blank(s) were received at Accutest Laboratories at a temperature of 5 C. Samples were intact and chemically preserved, unless noted below. An Accutest Job Number of JB23729 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Volatiles by GCMS By Method SW846 8260B

Matrix: AQ Batch ID: V3B4235

- All samples were analyzed within the recommended method holding time.
- Sample(s) JB23729-3MS, JB23729-3MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- RPD(s) for MSD for 1,2,3-Trichlorobenzene are outside control limits for sample JB23729-3MSD. Outside control limits due to matrix interference.

Extractables by GCMS By Method SW846 8270D

Matrix: AQ Batch ID: OP62130

- All samples were extracted within the recommended method holding time.
- Sample(s) JB23729-3MS, JB23729-3MSD were used as the QC samples indicated.
- Sample(s) JB23729-3 have compound(s) reported with a "B" qualifier, indicating analyte is found in the associated method blank.
- RPD(s) for MSD for 1,1'-Biphenyl, 2,4-Dimethylphenol, 2-Chloronaphthalene, 2-Chlorophenol, 2-Methylphenol, 2-Methylphenol, 2-Nitroaniline, Acenaphthene, Acenaphthylene, Acetophenone, Benzaldehyde, bis(2-Chloroethoxy)methane, bis(2-Chloroethyl)ether, bis(2-Chloroisopropyl)ether, Dibenzofuran, Hexachloroethane, Isophorone, N-Nitroso-di-n-propylamine, Naphthalene, Nitrobenzene are outside control limits for sample OP62130-MSD.

Extractables by GC By Method SW846 8082A

Matrix: AQ Batch ID: OP62133

- All samples were extracted within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB23845-1MS, JB23845-1MSD, OP62133-MSMSD were used as the QC samples indicated.

Metals By Method SW846 6010C

Matrix: AQ Batch ID: MP68735

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB23729-1MS, JB23729-1MSD, JB23729-1SDL were used as the QC samples for metals.
- RPD(s) for Serial Dilution for Arsenic, Cadmium, Cobalt, Lead, Selenium, Vanadium, Zinc are outside control limits for sample MP68735-SD1. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).</p>

Metals By Method SW846 6020A

Matrix: AQ Batch ID: MP68735A

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB23729-1MS, JB23729-1MSD, JB23729-1SDL were used as the QC samples for metals.
- RPD(s) for Serial Dilution for Antimony, Thallium are outside control limits for sample MP68735A-SD1. Percent difference
 acceptable due to low initial sample concentration (< 50 times IDL).

Metals By Method SW846 7470A

Matrix: AO

Batch ID: MP68781

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB23789-3MS, JB23789-3MSD were used as the QC samples for metals.

Wet Chemistry By Method SW846 6010/7196A M

Matrix: AQ

Batch ID: R118883

- The data for SW846 6010/7196A M meets quality control requirements.
- JB23729-1 for Chromium, Trivalent: Calculated as: (Chromium) (Chromium, Hexavalent)

Matrix: AO

Batch ID: R118884

- The data for SW846 6010/7196A M meets quality control requirements.
- JB23729-2 for Chromium, Trivalent: Calculated as: (Chromium) (Chromium, Hexavalent)

Matrix: AO

Batch ID: R118885

- The data for SW846 6010/7196A M meets quality control requirements.
- JB23729-3 for Chromium, Trivalent: Calculated as: (Chromium) (Chromium, Hexavalent)

Wet Chemistry By Method SW846 7196A

Matrix: AQ

Batch ID: GN76687

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB23729-3DUP, JB23729-3MS were used as the QC samples for Chromium, Hexavalent.
- JB23729-3 for Chromium, Hexavalent: Analysis done out of holding time.
- JB23729-1 for Chromium, Hexavalent: Analysis done out of holding time.
- JB23729-2 for Chromium, Hexavalent: Analysis done out of holding time.

Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting Accutest's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

Accutest Laboratories is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by Accutest Laboratories indicated via signature on the report cover

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: C. A. Rich Consultants Job No

JB23822

Site:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Report Date

1/8/2013 3:33:59 PM

On 12/14/2012, 2 Sample(s), 1 Trip Blank(s) and 2 Field Blank(s) were received at Accutest Laboratories at a temperature of 2 C. Samples were intact and chemically preserved, unless noted below. An Accutest Job Number of JB23822 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Volatiles by GCMS By Method SW846 8260B

Matrix: AO

Batch ID: V3D3497

- All samples were analyzed within the recommended method holding time.
- Sample(s) JB23822-2MS, JB23822-2MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- Matrix Spike Recovery(s) for 1,2-Dichloropropane are outside control limits. Outside control limits due to matrix interference.

Extractables by GCMS By Method SW846 8270D

Matrix: AQ

Batch ID: OP62194

- All samples were extracted within the recommended method holding time.
- Sample(s) JB23822-2MS, JB23822-2MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- RPD(s) for MSD for 2,4-Dinitrophenol are outside control limits for sample OP62194-MSD. Outside control limits due to matrix interference.

Extractables by GC By Method SW846 8082A

Matrix: AO

Batch ID:

OP62197

- All samples were extracted within the recommended method holding time.
- Sample(s) JB23822-2MS, JB23822-2MSD, OP62197-MSMSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.

Metals By Method SW846 6010C

Matrix: AQ Batch ID: MP68786

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB23822-2FMS, JB23822-2FMSD, JB23822-2FSDL, JB23822-2MS, JB23822-2MSD, JB23822-2SDL were used as
 the QC samples for metals.
- RPD(s) for Serial Dilution for Aluminum, Cadmium, Chromium, Cobalt, Copper, Nickel, Selenium, Zinc, Iron, Vanadium are
 outside control limits for sample MP68786-SD1, MP68786-SD2. Percent difference acceptable due to low initial sample
 concentration (< 50 times IDL).
- JB23822-3F for Chromium: Hexavalent chromium is <10 ppb.
- JB23822-1F for Chromium: Hexavalent chromium is <10 ppb.
- JB23822-2F for Chromium: Hexavalent chromium is <10 ppb.

Metals By Method SW846 6020A

Matrix: AQ Batch ID: MP68786A

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB23822-2FMS, JB23822-2FMSD, JB23822-2MSD, JB23822-2FSDL, JB23822-2SDL were used as the QC samples for metals.
- RPD(s) for Serial Dilution for Antimony, Thallium, Antimony are outside control limits for sample MP68786A-SD1, MP68786A-SD2. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

Metals By Method SW846 7470A

Matrix: AQ Batch ID: MP68820

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB23822-2FMS, JB23822-2FMSD, JB23822-2MS, JB23822-2MSD were used as the QC samples for metals.

Wet Chemistry By Method SW846 6010/7196A M

Matrix: AQ Batch ID: R119051

- The data for SW846 6010/7196A M meets quality control requirements.
- JB23822-2 for Chromium, Trivalent: Calculated as: (Chromium) (Chromium, Hexavalent)

Matrix: AQ Batch ID: R119052

- The data for SW846 6010/7196A M meets quality control requirements.
- JB23822-2F for Chromium, Trivalent: Calculated as: (Chromium) (Chromium, Hexavalent)

Matrix: AO Batch ID: R119053

- The data for SW846 6010/7196A M meets quality control requirements.
- JB23822-1 for Chromium, Trivalent: Calculated as: (Chromium) (Chromium, Hexavalent)

Matrix: AQ Batch ID: R119054

- The data for SW846 6010/7196A M meets quality control requirements.
- JB23822-3 for Chromium, Trivalent: Calculated as: (Chromium) (Chromium, Hexavalent)

Matrix: AQ Batch ID: R119055

- The data for SW846 6010/7196A M meets quality control requirements.
- JB23822-1F for Chromium, Trivalent: Calculated as: (Chromium) (Chromium, Hexavalent)

Matrix: AQ Batch ID: R119056

- The data for SW846 6010/7196A M meets quality control requirements.
- JB23822-3F for Chromium, Trivalent: Calculated as: (Chromium) (Chromium, Hexavalent)

Wet Chemistry By Method SW846 7196A

Matrix: AQ Batch ID: GN76719

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB23822-2DUP, JB23822-2MS were used as the QC samples for Chromium, Hexavalent.
- JB23822-1 for Chromium, Hexavalent: Analysis done out of holding time.

#Error