

Quarterly Monitoring Report First Quarter 2013

New Housing New York Legacy Project (Via Verde) 700-730 Brook Avenue, Bronx, NY BCP Site ID: C203043

May 2013

Prepared for:

NYSDEC, Region 2
Division of Environmental Remediation
47-40 21st Street
Long Island City, NY 1101

On Behalf of

Via Verde Homes, LLC Via Verde Rental Associates, L.P. 902 Broadway, 13th Floor New York, New York 10010

Prepared by:

CA RICH CONSULTANTS, INC. 17 Dupont Street Plainview, NY 11803-1614

May 22, 2013

NYSDEC, Region 2
Division of Environmental Remediation
47-40 21st Street
Long Island City, NY 1101

Attn: Mandy Yau

Re: Quarterly Monitoring Report

1st Quarter 2013 Groundwater Sampling

Via Verde

700-730 Brook Avenue, Bronx, NY

BCP Site ID: C203043

Dear Ms. Yau:

CA RICH Consultants, Inc. is pleased to present the Quarterly Monitoring Report for the Fourth Quarter 2012 in connection with the above-captioned Site. This Report is being submitted on behalf of Via Verde Homes, LLC and Via Verde Rental Associates, L.P. (the BCP Volunteer) and was prepared in accordance with the NYSDEC-approved Site Management Plan (SMP) dated December, 2011.

If there are any questions regarding this document, please do not hesitate to call our office.

Sincerely,

Richard J. Izzo, CPG Senior Associate

cc: Chris Doroski, NYSDOH (email only)

Jennifer Wu (email only) Michael Wadman (email only)

TABLE OF CONTENTS

Section	<u>1</u>		<u>Page</u>
1.0	INTRO	DUCTION	1
2.0	SITE D	ESCRIPTION AND BACKGROUND	1
3.0	MEDIA	MONITORING PROGRAM	2
	3.1	Groundwater	
4.0	CONCL	LUSIONS AND RECOMMENDATIONS	4
REFER	RENCES		5
<u>FIGUR</u>	<u>ES</u>		
Figure Figure Figure	2	Site Location Monitoring Well Locations and Water Table Map Concentration of Key Constituents vs. Time	
TABLE	S		
Table 1 Table 2 Table 3	<u>2</u> 3	Validated Analytical Results for Volatile Organic Compounds in C Validated Analytical Results for Semi-volatile Organic Compound Validated Analytical Results for PCBs in Groundwater Validated Analytical Results for Total Metals in Groundwater	
APPEN	NDICES		
Append		Field Forms and Chain of Custody Data Usability Summary Report for Groundwater Samples	

First Quarter 2013
Quarterly Monitoring Report
Via Verde
BCP Site # C203043

1.0 INTRODUCTION

The following Quarterly Monitoring Report has been prepared by CA RICH Consultants, Inc. (CA RICH) on behalf of Via Verde Homes, LLC and Via Verde Rental Associates, L.P. This document is required as an element of the Site Management Plan (SMP) (Ref. 1) at The New Housing New York Legacy Project (hereinafter referred to as Via Verde or the Site), 700-730 Brook Avenue, Bronx, NY (BCP Site ID: C203043. The Site is being managed under the New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP). The Site was remediated in accordance with Brownfield Cleanup Agreement (BCA) Index #W2-1129-08-11, Site #C203043, which was executed on February 23, 2009. The Certificate of Completion was received on December 23, 2011.

2.0 SITE DESCRIPTION AND BACKGROUND

Via Verde Homes, LLC, Via Verde Rental Associates, L.P., and the City of New York Department of Housing Preservation and Development ("HPD") entered into a Brownfield Cleanup Agreement (BCA) with the New York State Department of Environmental Conservation (NYSDEC) in February 2009 to investigate and remediate a 1.41-acre property located in the Bronx, New York. The property was remediated to restricted residential, use, and will be used for mixed commercial and residential purposes. It is noted that the Deed was transferred on December 30, 2009 and HPD no longer has any ownership interest.

The Site is located in the County of the Bronx, New York and is identified as Section 9, Block 2359; Lot 51, which includes Condominium Lots 1001, 1002, 1003, and 1004, and was formerly part of Lots 1 and 3 on the Bronx County Tax Map. The Site is an approximately 1.41-acre area bounded by East 156th Street to the north, an athletic field to the south, New York City Housing Authority Bronxchester Houses and South Bronx High School to the east, and Brook Avenue to the west (see Figure 1). The boundaries of the Site are more fully described in the metes and bounds Site description that is part of the Environmental Easement. A copy of the Environmental Easement is included in the Final Engineering Report (Ref. 2).

Ca RICH Environmental Specialists

First Quarter 2013 Quarterly Monitoring Report Via Verde BCP Site # C203043

Under the BCP, the Site was remediated to Track 4 Site Specific Soil Action Levels ("SSSALs") established for the Site as listed in the FER. Low levels of polyaromatic hydrocarbons and metals remain in the soil in limited areas throughout the Site. Based upon the detection and distribution of groundwater contaminants, in-situ chemical oxidation was performed in the area of the former service station (northwest corner of the Site). On April 1st through 9th, 2010 Regenox[™] and ORC® Advanced (ISCO treatment) was injected into the shallow groundwater and soil/fill in the smear zone.

The results from post-remedial groundwater monitoring indicate that fuel related volatile organic compounds (VOCs) and some metals remain within the groundwater above NYSDEC Technical and Administrative Guidance (TOGS) standards (Ref. 3).

As remaining contaminated soil and groundwater exist beneath the Site, implementation of Institutional Controls (ICs) and Engineering Controls (ECs) were required at the Site to be managed through implementation of the Site management Plan (SMP). Exposure to soil vapor (potential off-gassing from residual Volatile Organic Compounds (VOCs) in the groundwater) is being prevented by the composite cover system, which is comprised of concrete-covered sidewalks, courtyard areas, foundation walls, concrete building slabs as well as a 2-foot clean fill buffer on all non-capped areas. A vapor barrier and active Sub-Slab Depressurization (SSD) system were installed underneath each of the five building foundations as additional protection.

3.0 MEDIA MONITORING PROGRAM

3.1 Groundwater

Four post-remedial groundwater monitoring wells designated MW-6, MW-7, MW-8, & MW-9 were installed, developed and surveyed at the Site in July 2011 and will serve as the groundwater monitoring wells for the post-remedial groundwater monitoring. The locations of the four wells and direction of groundwater flow are illustrated on Figure 2.

CA RICH conducted the First Quarter round of groundwater sampling on March 11th and 13th, 2013. The four monitoring wells were purged and sampled in accordance with EPA's Low-Flow (minimal drawdown) Groundwater Sampling Procedures. Copies of the requisite field forms and Chain-of-Custody are attached as Appendix A. Quality Assurance/Quality Control (QA/QC) samples were also collected and analyzed in connection with the testing as set forth in

C3 RICH Environmental Specialists

First Quarter 2013 Quarterly Monitoring Report Via Verde BCP Site # C203043

the SMP and included one trip blank, one field blank per day of field work, one duplicate, one matrix spike, and one matrix spike duplicate. In addition, the data was validated by a qualified third-party and a DUSR was prepared (Appendix B).

Groundwater samples were collected from the wells, submitted to ELAP and CLP-certified Accutest Laboratories in Dayton, NJ and analyzed for Volatile Organic Compounds (VOCs) via EPA Method 8260, Semi-Volatile Organic Compounds (SVOCs) via EPA Method 8270, PCBs and dissolved TAL metals (plus hexavalent chromium) with NYSDEC ASP Category B deliverables. All post-remedial groundwater sampling results have been provided to NYSDEC in the appropriate Electronic Data Deliverable format.

All on-site sampling equipment was decontaminated between each use in the following manner: laboratory grade detergent and fresh water wash using a scrub brush, followed by two fresh water rinses and final air dry. The submersible pump used for groundwater sample collection was decontaminated between sample collection by passing the detergent and water mixture through the pump, followed by two fresh water rinses. Gloves worn for sample handling were discarded between sample collections. Dedicated, new polyethylene tubing was used at each well location for purging and sampling. The 40-mil sample vials were filled completely and checked to ensure that no air bubbles were present.

3.1.1 Summary of Results

The results of the sampling program are presented on Tables 1-4. In addition to the tabular presentation, a graph plotting the concentration of key constituents versus time is included as Figure 3.

As illustrated on Table 1, fuel-related VOCs in excess of NYSDEC TOGS continue to be detected in on-site well MW-8. The most elevated fuel-related compound concentration is 34.8 ug/L of ethylbenzene. Chloroform, was detected in well MW-6 at a concentration in excess of TOGS standards during this most recent sampling event. No VOCs were detected in MW-7 or MW-9 in excess of TOGS Standards.

As shown on Figure 3, comparison of concentrations for naphthalene, n-propylbenzene, 1,2,4-trimethylbenzene, and total xylenes in MW-8 between the 4th quarter 2011 sampling event and

C3 RICH Environmental Specialists

First Quarter 2013 Quarterly Monitoring Report Via Verde BCP Site # C203043

the 1st quarter 2013 sampling event indicates a continued general reduction in concentration for

these selected compounds.

Semi-volatile organic analysis (Table 2) did not detect any targeted compounds at concentrations

in excess of TOGS standards.

Analysis for PCBs (Table 3) did not detect any of these compounds in any of the samples. These

compounds were also not detected in any of the previous sampling rounds.

Analysis for metals (Table 4) detected iron, magnesium, manganese, sodium and chromium

(trivalent) at levels in excess of TOGS Standards.

4.0 CONCLUSIONS AND RECOMMENDATIONS

Based upon our review of the analytical results from the 1st quarter 2013 sampling event and

comparison of the results to those generated during the previous events, it appears that the

detected levels of fuel-related VOCs generally continue to decline below initial concentrations.

The levels of targeted metals continue to fluctuate above and below TOGS Standards. PCBs

remain undetected in all wells and SVOCs remain below TOGS standards.

Based upon the results of the first year of post remedial monitoring, CA RICH submitted a formal

petition to modify the sampling program on April 2, 2013. The petition was approved by the

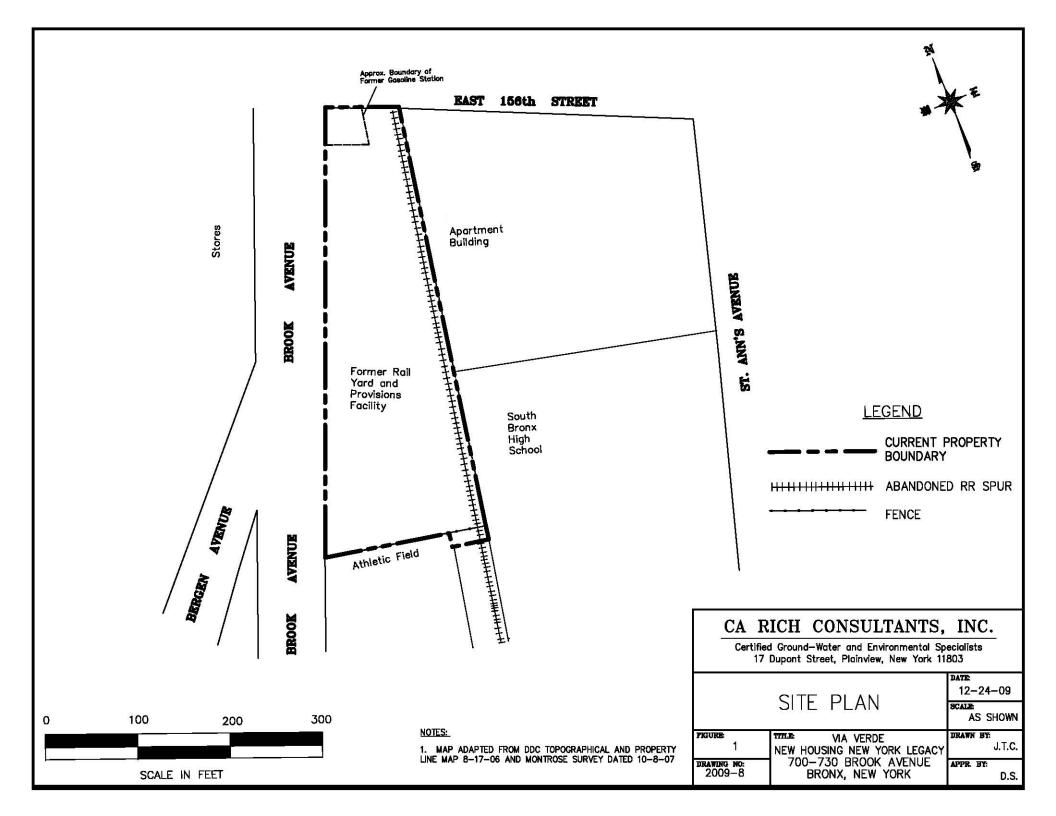
Department via their letter dated may 9, 2013 and includes reduction of sampling frequency from

quarterly to semi-annually and reduction of the parameter list to include only VOCs and

dissolved TAL metals. The modifications to the sampling program will be put in place during the

December 2013 sampling event.

4



First Quarter 2013 Quarterly Monitoring Report Via Verde BCP Site # C203043

REFERENCES

- 1. Stephen J. Osmundsen, P.E. Site Management Plan. New York: Author, December 7, 2011.
- 2. Stephen J. Osmundsen, P.E. Final Engineering Report. New York: Author, December 21, 2011.
- 3. New York State Department of Environmental Conservation; Division of Water Technical and Operation Guidance Series (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations; June 1998.

FIGURES

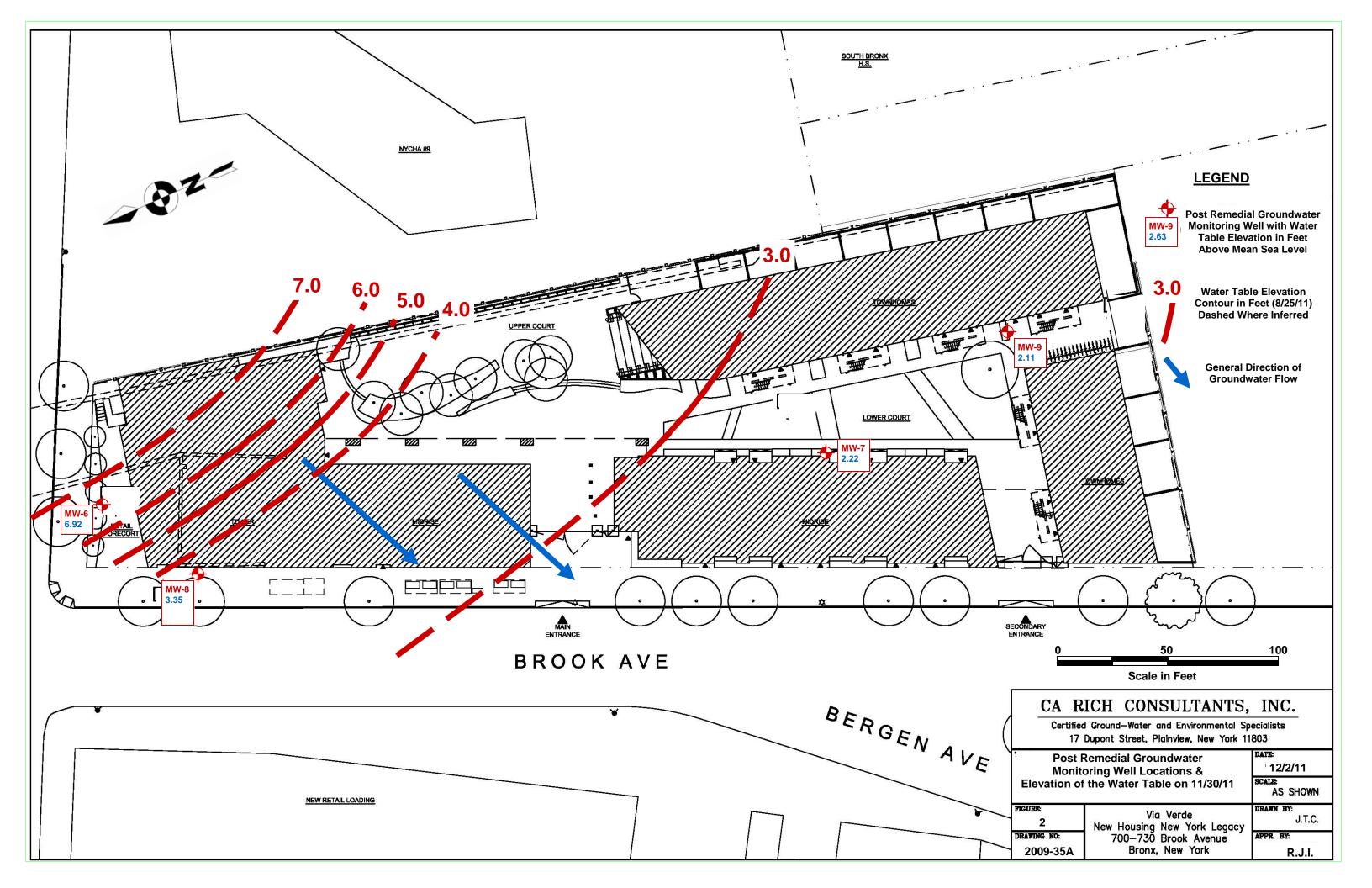
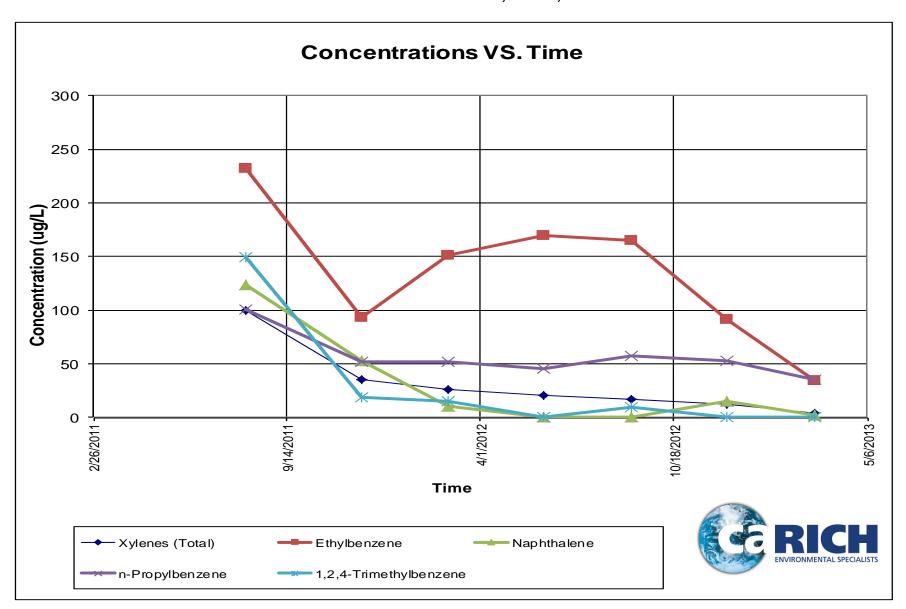



FIGURE 3

Concentrations Trends of Selected Compounds in Groundwater Monitoring Well MW-8

Via Verde

700-730 Brook Avenue, Bronx, NY

TABLES

Table 1

Validated Analytical Results for Volatile Organic Compounds In Groundwater Via Verde aka New Housing New York Legacy Project 700-730 Brook Avenue, Bronx, New York

|--|

Sample ID	MW-6	MW-7	MW-8	MW-9	MW-XX**	Field Blank	Trip Blank	Trip Blank	
Matrix		groundwater	groundwater	groundwater	groundwater	liquid	liquid	liquid	NYSDEC
Date Sampled	3/13/2013	3/11/2013	3/13/2013	3/11/2013	3/13/2013	3/13/2013	3/11/2013	3/13/2013	TOGs*
Volatile Organic Compounds									
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Acetone	R	R	10.5J	R	9.6 J	R	R	R	50
Benzene	ND	ND	7.1	ND	7.0	ND	ND	ND	1
Bromobenzene	ND	ND	ND	ND	ND	ND	ND	ND	5
Bromochloromethane	ND	ND	ND	ND	ND	ND	ND	ND	5
Bromodichloromethane	ND	ND	ND	ND	ND	ND	ND	ND	50
Bromoform	ND	ND	ND	ND	ND	ND	ND	ND	50
Bromomethane	ND	ND	ND	ND	ND	ND	ND	ND	5
2-Butanone (MEK)	ND	R	R	R	R	R	R	R	50
n-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	5
sec-Butylbenzene	ND	ND	3.7 J	ND	3.5 J	ND	ND	ND	5
tert-Butylbenzene	ND	ND	0.92 J	ND	0.95 J	ND	ND	ND	5
Carbon tetrachloride	ND	ND	ND	ND	ND	ND	ND	ND	5
Chlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	5
Chlorothane	ND 40.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5 7
Chloroform	12.3 ND	ND ND	ND	ND	ND	ND	ND	ND ND	
Chloromethane o-Chlorotoluene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NVG 5
p-Chlorotoluene	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	5 5
1,2-Dibromo-3-Chloropropane	ND	ND	ND	ND	ND	ND	ND	ND	0.04
Dibromochloromethane	ND	ND	ND	ND	ND	ND	ND	ND	50
1,2-Dibromoethane	ND	ND	ND	ND	ND	ND	ND	ND	NVG
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	3
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	3
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	3
Dichlorodifluoromethane	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	0.6
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	5
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	5
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	1
1,3-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	5
2,2-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1-Dichloropropene	ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND	5
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.4 0.4
Ethylbenzene	ND ND	ND ND	33.8	ND	33.2	ND	ND	ND ND	5
Hexachlorobutadiene	ND	ND	ND	ND	ND	ND	ND	ND	0.5
Isopropylbenzene	ND	ND	22.2	ND	21.8	ND	ND	ND	5
p-Isopropyltoluene	ND	ND	0.28 J	ND	0.30 J	ND	ND	ND	5
Methyl Tert Butyl Ether	ND	ND	ND	ND	ND	ND	ND	ND	10
4-Methyl-2-Pentanone (MIBK)	ND	ND	ND	ND	ND	ND	ND	ND	NVG
Methylene bromide	ND	ND	ND	ND	ND	ND	ND	ND	NVG
Methylene Chloride	ND	ND	ND	ND	ND	ND	ND	ND	5
Naphthalene	ND	ND	2.3 J	ND	2.4 J	ND	ND	ND	10
n-Propylbenzene	ND	ND	34.8	ND	34.5	ND	ND	ND	5
Styrene	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	5
Tetrachloroethene	ND	ND	ND	ND	ND	ND	ND	ND	5
Toluene	ND	ND	2.7 ND	ND	2.8 ND	ND	ND	ND ND	5
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND ND	ND	5
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND		ND ND	5
1,1,1-Trichloroethane 1,1,2-Trichloroethane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5 1
	ND ND	0.24 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
Trichloroethene Trichlorofluoromethane	ND ND	0.24 J ND	ND	ND	ND	ND	ND	ND ND	5 5
1,2,3-Trichloropropane	ND ND	ND ND	ND	ND	ND	ND	ND	ND ND	0.04
1,2,4-Trimethylbenzene	ND ND	ND	1.1 J	ND	1.1 J	ND	ND	ND ND	5
1,3,5-Trimethylbenzene	ND	ND	0.47 J	ND	0.43 J	ND	ND	ND	5
Vinyl chloride	ND	ND	ND	ND	ND	ND	ND	ND	2
m,p-Xylene	ND	ND	3.1	ND	3.0	ND	ND	ND	5
o-Xylene	ND	ND	0.67 J	ND	0.59 J	ND	ND	ND	5
Xylene (total)	0.27 J	ND	3.7	ND	3.6	ND	ND	ND	5
Notes:									

*NYSDEC Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations; June 1998 ** MW-XX is a duplicate of MW-8

Notes:

ug/L - micrograms per liter or parts per billion

ND - Not detected at or above laboratory detection limits

NVG - No Value Given

J - Estimated Value

R- The presence or absence of this analyte cannot be verified

Boxed and bold indicates exceedance groundwater standards or guidance values

Table 2

Validated Analytical Results for Semi-Volatile Organic Compounds In Groundwater Via Verde aka New Housing New York Legacy Project 700-730 Brook Avenue, Bronx, New York BCP # C203043

Matrix Date Sampled emi-Volatile Organic Compounds Units -Chlorophenol -Chloro-3-methyl phenol -4-Dinethylphenol -4-Dinethylphenol -4-Dinitrophenol -6-Dinitro-2-methylphenol -4-Methylphenol -4-Methylphenols -Nitrophenol -Nitrophenol -Nitrophenol -Nitrophenol -Nitrophenol -Nitrophenol -Nitrophenol -Nitrophenol -Nitrophenol -Noterial	groundwater 3/13/2013 ug/L ND ND ND ND R UJ ND	groundwater 3/11/2013 ug/L ND	groundwater 3/13/2013 ug/L ND	groundwater 3/11/2013 ug/L ND	groundwater 3/13/2013 ug/L ND	liquid 3/13/2013 ug/L ND	ug/L NVG NVG 5 50 10 NVG 1
emi-Volatile Organic Compounds Units -Chlorophenol -Chloro-3-methyl phenol -4-Dichlorophenol -4-Dimethylphenol -4-Dimitrophenol -6-Dinitro-2-methylphenol -Methylphenol -4-Methylphenols -Nitrophenol -4-Methylphenols -Nitrophenol -entachlorophenol -henol -4,5-Trichlorophenol -6,5-Trichlorophenol -6,6-Trichlorophenol -6,7-Trichlorophenol	ug/L ND ND ND R UJ ND ND ND ND ND	ug/L ND ND ND ND UJ ND ND ND ND	ug/L ND ND ND ND ND R UJ ND ND	ug/L ND ND ND ND UJ ND ND	ug/L ND ND ND ND R UJ ND	ug/L ND ND ND ND R UJ	NVG NVG 5 50 10 NVG
Chlorophenol -Chloro-3-methyl phenol -Chloro-3-methyl phenol -4-Dichlorophenol -4-Dimethylphenol -4-Dimitro-2-methylphenol -4-Methylphenol -4-Methylphenols -Nitrophenol -4-Methylphenol -4-Methylphenols -Nitrophenol -4-Intachlorophenol -4-S-Trichlorophenol -4-S-Trichlorophenol -4-S-Trichlorophenol -4-Cenaphthene	ND N	ND N	ND ND ND ND R UJ ND ND ND	ND ND ND ND UJ ND ND ND	ND ND ND ND R UJ ND	ND ND ND ND R UJ	NVG NVG 5 50 10 NVG
Chlorophenol Chloro-3-methyl phenol 4-Dichlorophenol 4-Dimethylphenol 4-Dimethylphenol 6-Dinitro-2-methylphenol Methylphenol 4-Methylphenol 4-Methylphenols Nitrophenol Nitrophenol Nitrophenol Nitrophenol entachlorophenol henol 4,5-Trichlorophenol 4,6-Trichlorophenol cenaphthene cenaphthylene cetophenone nthracene	ND N	ND N	ND ND ND ND R UJ ND ND ND	ND ND ND ND UJ ND ND ND	ND ND ND ND R UJ ND	ND ND ND ND R UJ	NVG NVG 5 50 10 NVG
Chloro-3-methyl phenol 4-Dichlorophenol 4-Dimethylphenol 4-Dimethylphenol 6-Dinitro-2-methylphenol Methylphenol 1-4-Methylphenol 1-4-Methylphenol Nitrophenol Nitrophenol Nitrophenol 1-4-Trichlorophenol 1-4-	ND ND R U ND	ND ND ND ND ND ND ND ND ND	ND ND ND R UJ ND ND ND ND	ND ND ND UJ ND ND ND	ND ND ND R UJ ND	ND ND ND R UJ	NVG 5 50 10 NVG
4-Dichlorophenol 4-Dintrophenol 4-Dinitrophenol 6-Dinitro-2-methylphenol Methylphenol 4-Methylphenol Nitrophenol Nitrophenol Nitrophenol entachlorophenol henol 4,5-Trichlorophenol cenaphthene cenaphthylene cetophenone nthracene	ND ND R UJ ND	ND ND UJ ND	ND ND R UJ ND ND	ND ND UJ ND ND	ND ND R UJ ND	ND ND R UJ	5 50 10 NVG
4-Dimethylphenol 4-Dinitrophenol 6-Dinitro-2-methylphenol Methylphenol 4-Methylphenols 4-Methylphenols Nitrophenol entachlorophenol henol 4,5-Trichlorophenol cenaphthene cenaphthylene cetophenone nthracene	ND R UJ ND	ND UJ ND ND ND ND ND ND ND ND ND	ND R UJ ND ND	ND UJ ND ND ND	ND R UJ ND	ND R UJ	50 10 NVG
4-Dinitrophenol 6-Dinitro-2-methylphenol -Methylphenol -Methylphenols -Nitrophenol -Nitrophenol -Nitrophenol entachlorophenol henol -4,5-Trichlorophenol -4,6-Trichlorophenol cenaphthene cenaphthylene cetophenone nthracene	R UJ ND ND ND ND UJ ND ND ND ND	UJ ND ND ND ND ND	R UJ ND ND ND	UJ ND ND ND	R UJ ND	R UJ	10 NVG
6-Dinitro-2-methylphenol -Methylphenol -4-Methylphenols -Nitrophenol -Nitrophenol -Nitrophenol -Initrophenol -Initrophenol -Initrophenol -Initrophenol -Initrophenol -Initrophenol -Initrophenol -Initrophenol -Initrophenol	UJ ND	ND ND ND ND ND	UJ ND ND ND	ND ND ND	UJ ND	UJ	NVG
Methylphenol +4-Methylphenols +Nitrophenol -Nitrophenol entachlorophenol henol 4,5-Trichlorophenol 4,6-Trichlorophenol cenaphthene cenaphthylene cetophenone nthracene	ND ND ND ND UJ ND ND ND ND	ND ND ND ND ND	ND ND ND	ND ND	ND		-
+4-Methylphenols -Nitrophenol -Nitrophenol -Nitrophenol -entachlorophenol -henol -4,5-Trichlorophenol -4,6-Trichlorophenol -enaphthene -eenaphthylene -eetophenone -entachene	ND ND ND UJ ND ND	ND ND ND ND	ND ND	ND		ND	1
Nitrophenol Nitrophenol entachlorophenol henol 4,5-Trichlorophenol 4,6-Trichlorophenol cenaphthene cenaphthylene cetophenone nthracene	ND ND UJ ND ND	ND ND ND	ND		ND		
Nitrophenol entachlorophenol henol 4,5-Trichlorophenol 4,6-Trichlorophenol cenaphthene cenaphthylene cetophenone nthracene	ND UJ ND ND ND	ND ND		ND		ND	1
entachlorophenol henol 4,5-Trichlorophenol 4,6-Trichlorophenol cenaphthene cenaphthylene cetophenone nthracene	UJ ND ND ND	ND	ND	ND	ND	ND	NVG
henol 4,5-Trichlorophenol 4,6-Trichlorophenol cenaphthene cenaphthylene cetophenone nthracene	ND ND ND		140	ND	ND	ND	NVG
henol 4,5-Trichlorophenol 4,6-Trichlorophenol cenaphthene cenaphthylene cetophenone nthracene	ND ND	ND	UJ	ND	UJ	UJ	NVG
4,5-Trichlorophenol 4,6-Trichlorophenol cenaphthene cenaphthylene cetophenone nthracene	ND		ND	ND	ND	ND	1
4,6-Trichlorophenol cenaphthene cenaphthylene cetophenone nthracene		ND	ND	ND	ND	ND	NVG
cenaphthene cenaphthylene cetophenone nthracene		ND	ND	ND	ND	ND	NVG
cenaphthylene cetophenone nthracene	ND	ND	UJ	ND	0.51 J	ND	20
cetophenone nthracene	ND	ND	ND	ND	0.51 3 ND	ND	
nthracene							NVG
	ND	ND	ND	ND	ND	ND	NVG
trazine	ND	ND	ND	ND	ND	ND	50
	ND	ND	ND	ND	ND	ND	7.5
enzo(a)anthracene	ND	ND	ND	ND	ND	ND	0.002
enzo(a)pyrene	ND	ND	ND	ND	ND	ND	ND
enzo(b)fluoranthene	ND	ND	ND	ND	ND	ND	0.002
enzo(g,h,i)perylene	ND	ND	ND	ND	ND	ND	NVG
enzo(k)fluoranthene	ND	ND	ND	ND	ND	ND	0.002
Bromophenyl-phenylether	ND	ND	ND	ND	ND	ND	NVG
utylbenzylphthalate	ND	ND	ND	ND	ND	ND	50
1' -Biphenyl	ND	ND	ND	ND	ND	ND	5
enzaldehyde	ND	ND	ND	ND	ND	ND	NVG
-Chloronaphthalene	ND	ND	ND	ND	ND	ND	10
·							
Chloroaniline	ND	ND	ND	ND	ND	ND	5
arbazole	ND	ND	ND	ND	ND	ND	NVG
aprolactam	ND	ND	ND	ND	ND	ND	NVG
hrysene	ND	ND	ND	ND	ND	ND	0.002
s(2-Chloroethoxy)methane	ND	ND	ND	ND	ND	ND	5
s(2-Chloroethyl)ether	ND	ND	ND	ND	ND	ND	1
s(2-Chloroisopropyl)ether	ND	ND	ND	ND	ND	ND	NVG
-Chlorophenyl-phenylether	ND	ND	ND	ND	ND	ND	NVG
4-Dinitrotoluene	ND	ND	ND	ND	ND	ND	5
6-Dinitrotoluene	ND	ND	ND	ND	ND	ND	5
3-Dichlorobenzidine	ND	ND	ND	ND	ND	ND	5
ibenzo(a,h)anthracene	ND	ND	ND	ND	ND	ND	NVG
* · · · *	ND	ND	ND	ND	ND	ND	NVG
ibenzofuran	ND	ND	ND ND	ND	ND	ND ND	
i-n-butylphthalate							50
i-n-octyl phthalate	ND	ND	ND	ND	ND	ND	50
iethylphthalate	ND	ND	ND	ND	ND	ND	50
imethylphthalate	ND	ND	ND	ND	ND	ND	50
s(2-Ethylhexyl)phthalate	ND	ND	ND	ND	ND	ND	5
uoranthene	ND	ND	ND	ND	ND	ND	50
uorene	ND	ND	ND	ND	ND	ND	50
exachlorobenzene	ND	ND	ND	ND	ND	ND	0.04
exachlorobutadiene	ND	ND	ND	ND	ND	ND	0.5
exachlorocyclopentadiene	UJ	ND	UJ	ND	UJ	UJ	5
exachlorocyclopentadiene	ND	ND	ND	ND	ND	ND	5
	ND	ND	ND	ND	ND	ND	
deno(1,2,3-cd)pyrene							0.002
ophorone	ND	ND	ND	ND	ND	ND	50
Methylnaphthalene	ND	ND	UJ	ND	0.53 J	ND	NGV
Nitroaniline	ND	ND	ND	ND	ND	ND	5
Nitroaniline	ND	ND	ND	ND	ND	ND	5
Nitroaniline	ND	ND	ND	ND	ND	ND	5
aphthalene	ND	ND	2.4	ND	2.6	ND	10
itrobenzene	ND	ND	ND	ND	ND	ND	0.4
-Nitroso-di-n-propylamine	ND	ND	ND	ND	ND	ND	NVG
-Nitrosodiphenylamine	ND	ND	ND	ND	ND	ND	50
henanthrene	ND	ND	ND	ND	ND	ND	50
yrene	ND	ND	ND	ND	ND	ND	50
vrene lotes:	140	140	140	140	140	140	
otes. g/L - micrograms per liter or parts per bill	lion		*NYSDEC Tec	hnical and One	rational Guidan	ce Series (1.1.1	()
D - Not detected at or above laboratory of				· Quality Standa			,
VG - No Value Given				ter Effluent Lim			
- Estimated Value				duplicate of MV			
J - recorded quantitation limit is approxin	nate					nnot be verified	!

Table 3

Validated Analytical Results for PCBs In Groundwater

Via Verde aka New Housing New York Legacy Project 700-730 Brook Avenue, Bronx, New York BCP # C203043

Sample ID	MW-6	MW-7	MW-8	MW-9	MW-XX**	Field Blank	NYSDEC
Matrix	groundwater	groundwater	groundwater	groundwater	groundwater	liquid	
Date Sampled	3/13/2013	3/11/2013	3/13/2013	3/11/2013	3/13/2013	3/13/2013	TOGS***
PCBs							
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Aroclor-1016	ND	ND	ND	ND	ND	ND	0.09 *
Aroclor-1221	ND	ND	ND	ND	ND	ND	0.09 *
Aroclor-1232	ND	ND	ND	ND	ND	ND	0.09 *
Aroclor-1242	ND	ND	ND	ND	ND	ND	0.09 *
Aroclor-1248	ND	ND	ND	ND	ND	ND	0.09 *
Aroclor-1254	ND	ND	ND	ND	ND	ND	0.09 *
Aroclor-1260	ND	ND	ND	ND	ND	ND	0.09 *

Notes:

ug/L - micrograms per liter or parts per billion

ND - Not detected at or above laboratory detection limits

***NYSDEC Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations; June 1998

^{*} Applies to the sum of these compounds

^{**} MW-XX is a duplicate of MW-8

Table 4 Validated Analytical Results for Metals In Groundwater

Via Verde aka New Housing New York Legacy Project 700-730 Brook Avenue, Bronx, New York BCP # C203043

Sample ID	MW-6	MW-7	MW-8	MW-9	MW-XX**	Field Blank	NYSDEC
Matrix	groundwater	groundwater	groundwater	groundwater	groundwater	liquid	TOGS*
Date Sampled	3/13/2013	3/11/2013	3/13/2013	3/11/2013	3/13/2013	3/13/2013	
Total Metals Unfiltered							
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Aluminum	2,230	<200	4,010	491	3,560	<200	NVG
Antimony	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	3
Arsenic	<3.0	<3.0	8.2	4.1	8.0	<3.0	25
Barium	<200	<200	<200	<200	<200	<200	1,000
Berylium	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	3
Cadmium	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	5
Calcium	49,000	129,000	136,000	110,000	139,000	<5,000	NVG
Chromium	37.7	<10	2,910	300	2,260	<10	50
Cobalt	<50	<50	<50	<50	<50	<50	NVG
Copper	<10	<10	73.9	13.4	57.7	<10	200
Iron	2,810	228	22,500	2,150	20,200	<100	300
Lead	<3.0	<3.0	3.3	<3.0	3.1	<3.0	25
Magnesium	6,660	25,600	36,000	7,940	36,600	<5,000	35,000
Manganese	76.2	43.1	3,180	691	3,160	<15	300
Mercury	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.7
Nickel	22.0	<10	1,390	146	1,090	<10	100
Potassium	<10,000	<10,000	<10,000	10,400	<10,000	<10,000	NVG
Selenium	<10	<10	<10	<10	<10	<10	10
Silver	<10	<10	<10	<10	<10	<10	50
Sodium	27,600	60,300	85,400	78,300	85,800	<10,000	20,000
Thallium	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	0.5
Vanadium	<50	<50	<50	<50	<50	<50	NVG
Zinc	22.3	<20	<20UJ	<20	23.3	<20	2,000
Chromium, Hexavalent	<10	<10	<10	<10	<10	<10	50
Chromium, Trivalent	38	<20	2,900	300	2,300	<20	50
Total Metals Filtered Units	/1	/!	/!	/!	/1	/1	/!
	ug/L 344	ug/L <200	ug/L <200	ug/L 434	ug/L <200	ug/L NA	ug/L NVG
Aluminum	<1.0	<200 <1.0	<1.0	<1.0	<1.0	NA NA	3
Antimony Arsenic	<3.0	<3.0	<3.0	<3.0	3.1	NA NA	25
Barium	<200	<200	<200	<200	<200	NA NA	1,000
Berylium	<1.0	<1.0	<1.0	<1.0	<1.0	NA NA	3
Cadmium	<3.0	<3.0	<3.0	<3.0	<3.0	NA NA	5
Calcium	46,700	130,000	140,000	113,000	140,000	NA NA	NVG
Chromium	<10	<10	19.9	380	19.1	NA NA	50
Cobalt	<50	<50	<50	<50	<50	NA NA	NVG
Copper	<10	<10	<10	13.2	<10	NA NA	200
Iron	419	123	325	2,290	293	NA	300
Lead	<3.0	<3.0	<3.0	<3.0	<3.0	NA	25
Magnesium	5,760	25,700	35,400	7,990	35,400	NA	35,000
Manganese	20.3	41.3	3.070	708	3,050	NA	300
Mercury	<0.20	<0.20	<0.20	<0.20	<0.20	NA	0.7
Nickel	14.7	<10	70.8	187	68.9	NA	100
Potassium	<10,000	<10,000	<10,000	10,500	<10,000	NA	NVG
Selenium	<10	<10	<10	<10	<10	NA	10
Silver	<10	<10	<10	<10	<10	NA	50
Sodium	26,700	60,300	90,600	80,800	89,600	NA	20,000
Thallium	<1.0	<1.0	<1.0	<1.0	<1.0	NA	0.5
Vanadium	<50	<50	<50	<50	<50	NA	NVG
Zinc	<20	<20	<20	<20	<20	NA	2,000
Chromium, Hexavalent	<10	<10	<10	<10	<10	NA	50
Chromium, Trivalent	<20	<20	19.9	380	19.1	NA	50
Notes:							

ug/L - micrograms per liter or parts per billion

ND - Not detected at or above laboratory detection limits

NVG - No Value Given

J - Estimated Value

a - Hexavalent Chromium is <10ppb

b - Analysis done out of holding time

*NYSDEC Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations; June 1998

** MW-XX is a duplicate of MW-8

c - Calculated as: (Chromium) - (Chromium, Hexavalent)

R- the presence or absence of the analyte cannot be verified

Boxed and bold indicates exceedance of groundwater standards or guidance values

A DDENIDICES
APPENDICES

Appendix A

Field Forms and Chain of Custody

07-MM

177 1 1 7	Location: (Site/Facility Name) 1/18 Date: 3 / 13 / 13 Sampling Personnel: 1/11 4 4 7 R Weather: Cle 44, 12,244, 2	Via Veade FR 7 40°F	ide t			Depth to: (Below MP) Pump Intak	Depth to: (Below MP) Top Pump Intake at (ft. below MP)	14 1	Bottom 27	of screen
4	4				***************************************	Well Diameter:_ Purging Device:	Well Diameter: 2 Purging Device: (Pump type)	p type)	6 GRundtos	59
Static Depth to Water (Prior to installing pump) 23	stalling	Ind	mp) 23.30	ణ		Purge Sta Sample S	Purge Start Time:Sample Start Time:	122V		Purge End Time:
Pump Purge Dial 1 Rate	Purge Rate		Cum. Volume Purged	Temp.	Spec. Conduct.²	Hď	ORP/Eh³	DO	Turbidity	Comments
ml/min	ml/n	Ë	Liters	ပ	us/cm		mv	mg/L	Ē	
		l		3%	3%	±0.1	± 10	+0.3	10%	
10.5/175			144	01.01	0.464	7.77	366	4.53	74.0	
22	12 T		Jumo -	Recharge	19 J	S.	200	\$e.7	300%	
				80.68		7.31	230	9,58	47.9	100
_	3	G		30,00	C. 482	57.30	5/8	9.63	7.8	
V(3.5) / 60	0 3	2 5	"	20	0, 463	1.3	37.5	9.65	68.0	
The same	3	4	LE CESEN	7 2 2 2	なながら					
					•					100 Maria 100 Ma
								, ,		44
										7100
										7000
										Potential Control of the Control of
					-					1,000
										0,000,000,000
										PARAMAL
										1,000
-				-						
										1984
1 Brown dial actual of the second of the sec	<u> </u>	-								
	2	<u>(</u>	Talaite of	7				1		

Pump dial setting (Example: hertz, cycles/minute, etc)
 uSiemens per cm (same as umhos/cm) at 25°C
 Oxidation reduction potential (stand in for Eh)

Start Sample & 1220 End 1:30

MW-8 MW-XX		VI.	2 2 2 5 5 5					0000000	The state of the s				79.	TANAMAN TANAMA		TOTAL THE STATE OF) NATI		7,111	7,000
	_ of screen	Purge End Time:	Comments				7000000						7.100				1000	1000	7100	
	24,48 Bottom 28.00	Marie Burge E	Turbidity	DEN C	10%	45.7	333	347	344	243	, ,									
nent Log		Ptve)	DO	mg/l.	± 0.3	3.02	2.70	2.62	2.53	2.50	*									
Water Quality Measurement Log	Depth to: // (Below MP) Top Pump Intake at (ft. below MP). Well Diameter: 2 "	Purging Device: (Pump type) Purge Start Time:	ORP/Eh³	mv	± 10	-/68	-206	-218	-220	1230					7-110					
Vater Qualit	Depth to: (Below MP) Pump Intake at (Purging Device: (Pu Purge Start Time: Sample Start Time:	T. O.		+0.1	6.66	6.72	31.0	\$.	7,2,3		-								
>		, ,	Spec. Conduct. ²	uS/cm	3%	1.59	1.5	i.S.	1.53	1,57										
		0.70		ပ္	3%	16:31	10.55	10:01	(2) (2) (3) (4)	10,26										
5 ,	e.2.1e	18	m. lume rged	Liters		Topl	•			1400							THE PLANTAGE OF THE PARTY OF TH			
		1 of C	Purge Rate	ml/min		00/	8	5) (c)	200										
ENVIRONMENTAL SPECIALISTS	Name) With	oint (MP):	Pump Dial ¹			211	= = :		76.11	7	wich									
ENVIRONME	Location: (Site/Facility Name)_ Date: 3/13/13 Sampling Personnel: MY Weather: (1/241)	Meil ID: $MM = 8$ Static Depth to Water (Prior to installing pump)	Water Depth Below MP	됴	0.33 ft			2 7 3 7 3 7	22.25	94.83										
	Location: Date: 2 Sampling Weather:	Well ID: Static Dep	Gock Time	24 HR	Tolerance	0935	3 /3 3 /3 3 /3		00 1 00 00 00 00 00 00 00 00 00 00 00 00	0.950										

1. Pump dial setting (Example: hertz, cycles/minute, etc)

2. uSiemens per cm (same as umhos/cm) at 25°C 3. Oxidation reduction potential (stand in for Eh)

Start sample a 0955 end: 1110

Cation (Cito/Encility	Nome 1	1 15 - 3								•
Date: 3 [1] 301)	7 (Allie) 1.	16 VESTER		-]	Depth to:			122	of screen
Sampling Personnel: 7	4K 1872	2				(Below MP)	r) Top		Bottom O	
Weather: Cloudy	100	-				Well Diameter:	Well Diameter:		5	The state of the s
Identify Measuring Point (MP): Well ID: مراس ما الم	int (MP):	1000	(ú.5)/y			Purging D	evice: (Pump	Purging Device: (Pump type) 5.000 fes	Sat bru	
Static Depth to Water (Prior to installing pump)	Prior to	nstalling pur	ਕ	35	1	Purge Start Time:Sample Start Time:	rt Time:	- d		
Clock Water Time Depth	Pump Díal ¹	Purge Rate	m. lume	Temp.	Spec.	Hd	ORP/Eh³	00	Turbidity	Turbidity Comments
Below MP			Purged							
24 HR FT		ml/min	Liters	ູດ	ms/cm		mv	mg/L	ZE	
) eou				3%	3%	±0.1	± 10	± 0.3	10%	
	(0લ	ઝ્ડ								
	801	300	1641	20,00	11.11	6,72	156	2.57	163	147 - 1
rd V	108	38	}	30,47	1) ()	6.73	146	2.00	41.9	1/2
	% 9	302		30.05	10.00	64.79	137	3,10	7.5	(604)
ন	105	39		30.55	11.11	18.9	131	550)	477	TANKS TO THE TANKS
	/e%	S		20,47	j. ii	<u>S</u>	127	15:7	10.7	
٦,	601	žą		20° 7	1.1.1	2,5	124	158.	6,7	, and the second
1155 31.96	63	300		36,5	1.11	6.80	123	1.83	7.	1986
١.	103	300		30.37	17:7	\$	18/	200	, ×	The state of the s
1505 31.96	108	360	594	30.69	1.11	6.79	120	Fk:	2.1	
			•							777
The state of the s				WHULL						The state of the s
										1,000
										10000
111111111111111111111111111111111111111										
										A STATE OF THE STA
										WASTER TO THE TAXABLE
1. Pump dial setting (Example: hert; cycles/min.te etc)	Example: 1	hertz cycles	/ministe of							0000000
			17.7							

Pump dial setting (Example: hertz, cycles/minute, etc)
 uSiemens per cm (same as umhos/cm) at 25°C
 Oxidation reduction potential (stand in for Eh)

MS & MSD done to day Stack Soungoling 1210 End Soungling 1240

Location: (Site/Facility Name) \(\) Sampling Personnel: \(\text{Cloudy} \) \(\frac{45^{\infty}}{45^{\infty}} \) \(\text{Indentify Measuring Point (MP):} \) \(\text{Weather:} \) \(\text{Cloudy} \) \(\frac{45^{\infty}}{45^{\infty}} \) \(\text{Indentify Measuring Point (MP):} \) \(\text{Well ID:} \) \(\text{TVU} \) \(-9 \) \(\text{Static Depth to Water Prior to in Below MP} \) \(\text{Time Depth Dial } \) \(\text{Below MP} \) \(\text{Time Depth Dial } \) \(\text{Below MP} \) \(\text{Time Depth Dial } \) \(\text{Lorance Dial }	Depth to:			Purging Device: (Pump type) Mini - Manscon	31. To Sample Start Time: 15.15	m. Temp. Spec. pH ORP/Eh³ DO Turbidity Comments	ml/min Liters °C uS/cm mv/I mre/I	±0.1 ±10 ±0.3	150 18.56 1.19 7.56 29 3.50 4.15 100 15.52 1.12 7.99 1/5 2.85 33.3 100 15.62 1.12 7.99 1/3 4.62 35.3 100 16.03 1.12 7.89 1/40 4.85 44.5 100 16.04 1.11 7.85 1.39 4.10 4.50 100 3.5 16.04 1.11 7.85 1.31 4.10 4.10 32.0	
	Vesde			ģ	31,	m. lume	7		3,5	
on: (Site/Facility	y Name) Vic.	MTY / 3TC	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	oint (MP):	r (Prior to install	Pump Pur _i Dial ¹ Rate			(2.8 (2.5 / 12.5	
Location Date: Samplii Weath, Weath, Identify Dog Static Clock Time Toleran 1023 1023	Location: (Site/Facility Date: 3 11 2013	ing Personnel:	V Money wing D	y ivited suiting P	Depth to Wate	Water Depth Below MD		Tolerance 0.33 ft	0950 24.43 1005 24.48 1005 24.41 1005 24.41 1005 24.41 1005 24.45 1020 25.00 1035 25.00 1035 25.00	

1. Pump dial setting (Example: hertz, cycles/minute, etc)
2. uSiemens per cm (same as umhos/cm) at 25°C
3. Oxidation reduction potential (stand in for Eh)

Start Sampling 2 10:35 Sample Full 2011:35

ACCUTEST.) B		CHAI 2235 TEL 732-	Route 130 329-0200) Dayton	, NJ 0881 2-329-349	0			ij.		reo-ex Assured	1-1125-2319	•					E_L 3099,	OF
Client / Reporting Information	Project Name		Project	Informa	tion	(III)							Req	uestec	Analy	els (see '	TEST CO	DDE shee	t)	Matrix Codes
CA Rich Consultants	Vial			Manager and the second											hert	her of				DW - Drinking Wale GW - Ground Water WW - Water SW - Surface Water
17 Dyport Street Lainview NY 1803	Brook		Dilling I Company	nformatic y Namo	on Lif witte	runt fro	om Rep	ort to						tred	tref				SO - Soll SL- Studge SED-Sediment OI - Oil	
Richard Izzo Rizze@corichine	Project # • CON Client Purchase	Order #	Street Au	Menus		3	Late		Zh	,	3	0		1.41	1417				LiQ - Other Liquid AIR - Air SOL - Other Sotid WP - Wipe	
516-576-8844 516-576-0013 Primore # Desper Cooper Michael Verger	Project Manager				Attintion:							8260	100	5 5	Meta	1146 4414				FB-Field Blank EB-Equipment Blant RB- Rinse Blank TB-Trip Blank
Field ID / Point of Collection	MEOH/DI Viel #	Date	Collection	Sampled by	Matte	iaUfod to to	1	Hunther	NONE NONE	DI Water	ENCORE	8	VOC	RB	74	M				LAB USE ONLY
F MW-9		5/1/13	1135	Try	GW	9	3	١	5		H	3	S	2	Ų.	i			-	£30
1 mw-7		3/11/13	1240	Tout	6W	9	3	i	5	Ħ	Ħ	3	2	2	N.	1				A9
MW-7MS		2/11/13	1240	18	GW.	9	3	1	S	П	Ħ	3	2	3	i	1				C47
MW-7/150		3/11/17	1240	Silly	GW	9	3	i	5		Н	3	à	X	1	1				434
Trip Blank					TB	1	1				H	1								
Turnsround Time (Butiness days)						Data	Deliv	erable I	eform	ation	Н	Ellist	15 N. S.	Secret.		Co	inments i	Special Inc	tructions	
AGLd. 10 Business Days S Day RUBH 3 Day EMERGENCY 2 Day EMERGENCY	Approved By (Acc	ofust PM): / Dete:			Commor		evel 2)			NYA: State		t	}	-2	4 h	r he	x Cl	none	*	
1 Day EMERGENCY Other Exercipency & Rush T/A data available VIA Labilitik	8	ample Custody	nat be docu	manteo	nlow eas	Commerce Commerce NJ Fladu	ial "B"	= Resul	(a + Q)	- / C Summ	nary		la courier	delive	ny.	-00-0	Total la		11	
Hip for the Emples East Times 3/1/2 Security to Barriers Date Tons	100 000 00	Racelyed B	Mis	X	and		Reline 2	ulahed	B/.	hu		La	ul		Bate Til	1/13	Paceton 2 Paceton	11	the	/
/ June 14 June 14 July		3					4	- Canad	uy.						2	ODDESANT	4	1	William Street	MCCARL MANDER / L. C.

2A

JB30991: Chain of Custody

Page 1 of 3

	6W
	FBB
	WYB
ACC	JTEST
	ANDRATORIES

ACCUTEST:			CHAI 2235 TEL, 732-3	Route 130 29-0200	i, Daylon,	NJ 0881 2-329-34	0		}). ().		Tracking	0.0	me)	(come)	Riptie Or Accutest	Der Control #	E_L_0	7]
Client / Reporting Information	Project Name:	eresonation in	Project	Informa	tion			10	250		31330	Req	uester	A	unia Fero	TEST CO	DE shee	t)	Matrix Codes
CA Pich Consultants Inc. Seel Asiers 17 Depont Street	Via V	K Ave	Billing /	nformatio V Name	om Rep	ort to)	95705(1)				Filtered (This ch	eed (the				DW - Drinking Water GW - Ground Water WW - Water SW - Surface Water SO - Soll SL - Studge SED-Sediment			
Plainview, NY 11803 Project Contact E-mail	BRON	Χ	NΥ	Street Ac	WASE									1/60	3				OI - Oil LIQ - Other Liquid
Project Content Rich 1230 1:220 D Caridvint. COM Prone 8 510 570 8844 514574 0093 Sampler(s) Nample) Phone 8	Client Purchase C	Drder W	Street Address City State Zip								82.70		Metals Fi	H HUHH				AIR - Air SOL - Other Solid WP - Wipe FB-Field Blank EB-Equipment Blank	
Mike Yager + Tom BROWN	Project Manager			Allention							836	12	2.	ne	metals				RB- Rinse Blank TB-Trip Blank
Accident Sample 9 Field (D / Point of Collection	MEOH/DI Vel #	Date	Chilecturi Time	Sampled by	Matrix	# of today	HC	HO3 HO3	H2SO4 G	MECH ENCORE	700	SVOC	829	TAL	TALM				LAB USE ONLY
-1F MW-6		3/13/13	1330	ATY/TA	GW	9	3	1	5		3	2	2	Ī	1				D35
-2F MW-8		3/13/13	1110	my/m		9	3	1	5		3	2	2	I	1				A9
-3F MW-XX		3/13/13		MH/IL		9	3	1	5		3	2	2	1	1				019
-4F Field Blank 3/13 -5 TRip Blank 3/13		3/13/13 3/13/13		myre	FB TB	7	d 2		5		2	2	2		1				472
Turniscond Time (Business days)	TANKS SANDANA	NO. WATER STREET	MINISTER MANAGEMENT	and the same of		Dat	n Deliv	erable	Informati	on	10503	LINE ILII	1000000	51000	ESANCIO	Comments	Special In	structions //	CONTRACTOR STATE
Std. 19 Business Days S Ld. 19 Business Days S Day RUSH 3 Day EMERGENCY 2 Day EMERGENCY 1 Day EMERGENCY other Emergency & Rush T/A data available V/A Labbrid Reliquished by Sempler: Dass Tipes 1 3 13 14 15 1 3 13 14 15 1 3 13 15 1 3 13 15 1 5 15 15 1 5 15 1 5 15 1 5 15 1 5 15 1 5 15 1 5 15 1 5 15 1 5 15 1 5 15 1 5 15 1 5 15 1 1 15		imple Gusiejty in	ust be docur	10000	Commerce Commerce FULLT1 NJ Reduce Commerce	tel "A" (I Level 3+ ed lat."C" Commer Commer	Level 1 Level 2 4) clai "A" clai "B")) □ Resu □ Resu	Ils Only Its + QC S	NYASP Ca NYASP Ca State Form EDD Form Other Summery + Par	tegory B		N # H	YS Ab	TO. Chea	Hex (GS De ne fi ne ed	tect X **	me X ion Li	mits dissolved +
ReHoquished by Sampler:		Received By:	0				Relin 4	pertelup	By:					Date T	mar.	Receive 4	ed-Bys	1	
Relinquished by: Date T(me) 5		Received By:					Custo	ody Basi	9		I Intect I Wat Mit	act	Pressr		s applicable	,	0	# .	Cooler Temp. 2.60C

5IP

JB31271: Chain of Custody Page 1 of 3

Appendix B

DUSR

DATA USABILITY SUMMARY REPORT – DUSR DATA VALIDATION SUMMARY

ORGANIC/INORGANIC ANALYSES

TARGET COMPOUND LIST (TCL) VOLATILES BY GC/MS
TARGET COMPOUND LIST (TCL) SEMIVOLATILES BY GC/MS
PCBs BY GC ECD
TARGET ANALYTE LIST (TAL) METALS (Total and Dissolved) BY ICP/ICP-MS/CV
And Total and Dissolved HEXAVALENT CHROMIUM
BY CLASSICAL WET CHEMISTRY TECHNIQUES

For Groundwater Samples Collected March 11, 2013 and March 13, 2013 From 700-730 Brook Avenue, Bronx, NY Via Verde aka New Housing New York Legacy Project Collected by CA Rich Consultants

> SAMPLE DELIVERY GROUP NUMBERs: JB30991 and JB31271 BY ACCUTEST LABORATORIES (ELAP #10983)

SUBMITTED TO:

Mr. Jason Cooper CA Rich Consultants, Inc. 17 Dupont Street Plainview, NY 11803

May 21, 2013

PREPARED BY:

Lori A. Beyer/President
L.A.B. Validation Corp.

14 West Point Drive
East Northport, NY 11731

L.A.B. Validation Corp. 14 West Point Drive, East Northport, NY 11731

700-730 Brook Avenue, Bronx – Via Verde; Groundwater Samples; March 2013 (Q1) Sampling Event Data Usability Summary Report (Data Validation): TCL Volatiles, TCL Semivolatiles, PCBs, TAL Metals (Total and Dissolved) and Hexavalent Chromium (Total and Dissolved).

Table of Contents:

Introduction

Data Qualifier Definitions

Sample Receipt

- 1.0 Target Compound List (TCL) Volatile Organics by GC/MS SW846 Method 8260
 - 1.1 Holding Time
 - 1.2 System Monitoring Compound (Surrogate) Recovery
 - 1.3 Matrix Spikes (MS), Matrix Spike Duplicates (MSD)
 - 1.4 Laboratory Control Sample/Blank Spikes
 - 1.5 Blank Contamination
 - 1.6 GC/MS Instrument Performance Check (Tuning)
 - 1.7 Initial and Continuing Calibrations
 - 1.8 Internal Standards
 - 1.9 Field Duplicates
 - 1.10 Target Compound List Identification
 - 1.11 Compound Quantification and Reported Detection Limits
 - 1.12 Overall System Performance
- 2.0 Target Compound List (TCL) Semivolatile Organics by GC/MS SW846 Method 8270
 - 2.1 Holding Time
 - 2.2 Surrogate Recovery
 - 2.3 Matrix Spikes (MS), Matrix Spike Duplicates (MSD)
 - 2.4 Laboratory Control Sample
 - 2.5 Method Blanks
 - 2.6 GC/MS Instrument Performance Check (Tuning)
 - 2.7 Initial and Continuing Calibrations
 - 2.8 Internal Standards
 - 2.9 Field Duplicates
 - 2.10 Target Compound List Identification
 - 2.11 Compound Quantification and Reported Detection Limits
 - 2.12 Overall System Performance
- 3.0 PCBs by GC SW846 Method 8082
 - 3.1 Holding Time
 - 3.2 Surrogate Recovery
 - 3.3 Matrix Spikes (MS), Matrix Spike Duplicates (MSD)
 - 3.4 Laboratory Control Samples
 - 3.5 Blanks
 - 3.6 Calibration Verification
 - 3.7 Field Duplicates
 - 3.8 Target Compound Identification
 - 3.9 Compound Quantification and Reported Detection Limits
 - 3.10 Overall Assessment of Data

L.A.B. Validation Corp, 14 West Point Drive, East Northport, NY 11731

- 4.0 Target Analyte List (TAL) Metals (Total and Dissolved) by ICP/ICP-MS/Cold Vapor SW846 Methods 6010/6020/7471
 - 4.1 Holding Times
 - 4.2 Calibration (Initial and Continuing Calibration Verifications)
 - 4.3 Blanks
 - 4.4 Spiked Sample Recovery
 - 4.5 Laboratory/Field Duplicates
 - 4.6 Laboratory Control Sample
 - 4.7 Interference Check Sample
 - 4.8 ICP Serial Dilution
 - 4.9 Sample Results Verification
 - 4.10 Overall Assessment of Data
- 5.0 General Chemistry Analysis/Hexavalent and Trivalent Chromium (Total and Dissolved)
 - 5.1 Holding Times
 - 5.2 Calibration
 - 5.3 Blanks
 - 5.4 Spiked Sample Recovery
 - 5.5 Laboratory/Field Duplicates
 - 5.6 Laboratory Control Sample
 - 5.7 Sample Results Verification
 - 5.8 Overall Assessment of Data

APPENDICES:

- A. Data Summary Tables with Qualifications
- B. Chain of Custody Documents
- C. SDG Narratives

Introduction:

A validation was performed on groundwater samples and the associated quality control samples for organic/inorganic analysis for samples collected under chain of custody documentation by CA Rich Consultants and submitted to Accutest Laboratories for subsequent analysis. This report contains the laboratory and validation results for the field samples itemized below. The groundwater samples were collected on March 11, 2013 and March 13, 2013.

The samples were analyzed by Accutest Laboratories, utilizing SW846 Methods and submitted under NYSDEC ASP Category B equivalent deliverable requirements for the associated analytical methodologies employed. The analytical testing consisted of the Target Compound/Analyte Lists for Volatile Organics, Semivolatile Organics, PCBs, TAL Metals (Total and Dissolved) and Hexavalent Chromium (Total and Dissolved).

The data was evaluated in accordance with EPA Region II National Functional Guidelines for Organic and Inorganic Data Review (October 2006) and EPA Region II SOPs for 8260, 8270, 8082 and Metals (August 2008 with 2009 updates) and also in conjunction with the analytical methodologies for which the samples were analyzed, where applicable and relevant.

The data validation report pertains to the following samples:

Sample	Laboratory	Sample	Date	Date
Identification	Identification	Matrix	Collected	Received
MW-9	JB30991-1, JB30991-1F	Groundwater	03/11/13	03/11/13
MW-7 (plus MS/MSD)	JB30991-2, JB30991-2D, JB30991-2F, JB30991-2FD, JB30991-2S	Groundwater	03/11/13	03/11/13
Trip Blank 03/11/13	JB30991-3	Aqueous	03/11/13	03/11/13
MW-6	JB31271-1, JB31271-1F	Groundwater	03/13/13	03/13/13
MW-8	JB31271-2, JB31271-2F	Groundwater	03/13/13	03/13/13
MW-XX (Field Duplicate of MW-8)	JB31271-3, JB31271-3F	Groundwater	03/13/13	03/13/13
Field Blank	JB31271-4	Aqueous	03/13/13	03/13/13
3/13/13				
Trip Blank 3/13/13	JB31271-5	Aqueous	03/13/13	03/13/13

Data Qualifier Definitions:

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate quantity.

Sample Receipt:

The Chain of Custody document indicates that the samples were received at Accutest Laboratories via laboratory courier on 03/11/13 and 03/13/13 upon completion of the sampling event. Sample login notes were generated. The cooler temperature for all sample receipts were recorded upon receipt at Accutest Laboratories and determined to be acceptable (<6.0 degrees C). The actual temperature is recorded on the chain of custody document in addition to the case narratives provided in Appendix C of this report.

No unresolved problems and/or discrepancies were noted, consequently, the integrity of the samples has been assumed to be good.

The data summary tables included in Appendix A includes all usable (qualified) and unusable (rejected) results for the samples identified above. These tables summarize the detailed narrative section of the report. All data validation qualifications have been reported in the excel spreadsheet.

NOTE:

L.A.B. Validation Corp. believes it is appropriate to note that the data validation criteria utilized for data evaluation is different than the method requirements utilized by the laboratory. Qualified data does not necessarily mean that the laboratory was non-compliant in the analysis that was performed.

1.0 Target Analyte List (TCL) Volatile Organics by GC/MS SW846 Method 8260

The following method criteria were reviewed: holding times, SMCs, MS, MSD, LCS, Laboratory Spiked Blanks, Method Blanks, Tunes, Calibrations, Internal Standards, Target Compound Identification, Quantitation, Reported Quantitation Limits and Overall System Performance. The Volatile results were considered to be valid and useable with the exception of Acetone and 2-Butanone non-detects in samples MW-7, MW-9, Trip Blank 03/11/13, MW-8, MW-XX, Field Blank 3/13/13 and Trip Blank 3/13/13 as well as Acetone in MW-6 due to low initial/continuing calibration response factors as noted within the following text:

1.1 Holding Time

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the technical holding time is exceeded, the data may not be considered valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimates, "J". The non-detects (sample quantitation limits) are required to be flagged as estimated, "J", or unusable, "R", if the holding times are grossly exceeded.

Samples pertaining to these SDGs were performed within the Method required holding times as well as the technical holding times for data validation of 14 days from collection to analysis. Samples were properly preserved with HCL to pH <2. No data validation qualifiers were required based upon holding time.

1.2 System Monitoring Compound (Surrogate) Recovery

All samples are spiked with surrogate compounds prior to sample analysis to evaluate overall laboratory performance and efficiency of the analytical technique. If the measure of surrogate concentrations is outside contract specification, qualifications are required to be applied to associated samples and analytes.

Surrogate recoveries (%R) were found to be within acceptable limits for all four (4) surrogate compounds for all analyses pertaining to these SDGs for analysis.

1.3 Matrix Spikes (MS)/ Matrix Spike Duplicates (MSD)

The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. The MS/MSD may be used in conjunction with other QC criteria for additional qualification of data.

MS/MSD analyses were conducted for each analytical sequence and were spiked with all components as required by the analytical procedure. Site-specific aqueous MS/MSD was performed by the laboratory on sample MW-7. Acceptable spike recoveries and RPD were obtained for site specific MS/MSD analysis.

Several RPD fell slightly outside in house established acceptance limits for batch MS/MSD. Acceptable recovery values were obtained for all spiked analytes. Based on professional judgment, no qualifications to the data were required for non site specific QC.

1.4 Laboratory Control Sample/Blank Spikes

The LCS data for laboratory control samples (LCS) are generated to provide information on the accuracy of the analytical method and on the laboratory performance.

LCS/Blank Spikes were analyzed for each sequence. Recovery values were acceptable and no qualifications were applied.

1.5 Blank Contamination

Quality assurance (QA) blanks; i.e. method, trip and field blanks are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field blanks measure cross-contamination of samples during field operations.

The following table was utilized to qualify target analyte results due to contamination. The largest value from all the associated blanks is required to be utilized:

For:	Flag Sample Result	Report CRQL &	No Qualification is			
	with a "U" when:	Qualify "U" when:	Needed when:			
Methylene Chloride,	Sample Conc. Is	Sample Conc. is	Sample Conc. is			
Acetone, Toluene &	>CRQL, but $>CRQL and >10x$	<crql <="" =10x<="" and="" td=""><td colspan="4">>CRQL and >10x</td></crql>	>CRQL and >10x			
2-Butanone	blank value	blank value	blank value			
Other Contaminants	Sample Conc. Is	Sample Conc. Is	Sample Conc. is			
	>CRQL, but $>CRQL and >5x$	<crql <="" =5x<="" and="" td=""><td>>CRQL and >5x</td></crql>	>CRQL and >5x			
	blank value	blank value	blank value			

Below is a summary of the compounds in the sample and the associated qualifications that have been applied:

A) Method Blank Contamination:

No target analytes were detected in the method blanks associated with sample analysis.

B) Field Blank Contamination:

No target analytes were detected in the field blank associated with sample analysis.

C) Trip Blank Contamination:

No target analytes were detected in the trip blanks associated with sample analysis.

1.6 GC/MS Instrument Performance Check

Tuning and performance criteria are established to ensure adequate mass resolution, proper identification of compounds and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The Tuning standard for volatile organics is Bromofluorobenzene (BFB).

Instrument performance was generated within acceptable limits and frequency for Bromofluorobenzene (BFB) for all analyses conducted for these SDGs.

1.7 Initial and Continuing Calibrations

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence.

The continuing calibration checks document that the instrument is giving satisfactory daily performance.

A) Response Factor GC/MS:

The response factor measures the instrument's response to specific chemical compounds. The response factor for all compounds must be >/= 0.05 in both initial and continuing calibrations. A value <0.05 indicates a serious detection and quantitation problem (poor sensitivity). Analytes detected in the sample will be qualified as estimated, "J". All non-detects for that compound in the corresponding samples will be rejected, "R".

All the response factors for the target analytes reported were found to be within acceptable limits (>/=0.05), for the initial and continuing calibrations for all reported TCL analytes with the following exceptions:

ICAL 02/18/13 GCMS3D – Non-detects for Acetone (0.040) and 2-Butanone (0.044) were rejected, "R" in MW-7, MW-9, and Trip Blank (03/11/13).

ICAL 2/18/13 GCMS1A – Non-detects for Acetone (0.043) were rejected, "R" in MW—6, Field Blank 3/13/13 and Trip Blank 3/13/13.

CCAL 03/18/13 GCMS3D – Acetone – 0.035 and 2-Butanone (0.044). Non-detects were previously rejected, "R" due to low ICAL response.

CCAL 3/21/13 am GCMS1A – Acetone (0.033) and 2-Butanone (0.047) were rejected in Field Blank 3/13/13 and Trip Blank 3/13/13. 2-Butanone was rejected in MW-8 and MW-XX. The laboratory reported detections for Acetone in MW-8 and MW-XX must be considered estimated, "J."

*Acetone and 2-Butanone are poor responders.

B) Percent Relative Standard Deviation (%RSD) and Percent Difference (%D):

Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentrations. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be <30% and %D must be <25%. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and non-detects are flagged "UJ". If %RSD and %D grossly exceed QC criteria, nondetect data may be qualified, "R", unusable. Additionally, in cases where the %RSD is >30% and eliminating either the high or the low point of the curve does not restore the %RSD to less than or equal to 30% then positive results are qualified, "J". In cases where removal of either the low or high point restores the linearity, then only low or high level results will be qualified, "J" in the portion of the curve where non linearity exists.

Initial Calibrations: The initial calibrations provided and the %RSD were within acceptable limits (30%) for all compounds.

Continuing Calibrations: The continuing calibrations provided and the %D was within acceptable limits (25%) for all compounds.

1.8 Internal Standards

Internal Standards (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must not vary by more than a factor of 2 (50% to +100%) from the associated continuing calibration standard. The retention time of the internal standard must not vary more than +/-30 seconds from the associated continuing calibration standard. If the area count is outside the (-50% to +100%) range of the associated standard, all of the positive results for compounds quantitated using that IS are qualified as estimated, "J", and all non-detects as "UJ", or "R" if there is a severe loss of sensitivity.

If an internal standard retention time varies by more than 30 seconds, professional judgment will be used to determine either partial or total rejection of the data for that sample fraction.

All samples were spiked with the internal standards Chlorobenzene-d5, Fluorobenzene and 1,4-Dichlorobenzene-d4 prior to sample analysis. The area responses and retention time of each internal standard met QC criteria in all samples associated with these SDGs.

1.9 Field Duplicates

Field duplicate samples are collected and analyzed as an indication of overall precision. These results are expected to have more variability than laboratory duplicate samples. Generally an acceptable RPD is 10% for water samples.

Groundwater sample MW-8 was collected in duplicate, a summary of positive detections in ug/L is summarized below:

	MW-8	MW-XX
Acetone	10.5	9.6
Benzene	7.1	7.0
Sec-Butylbenzene	3.7	3.5
Tert-Butylbenzene	0.92	0.95
Ethylbenzene	33.8	33.2
Isopropylbenzene	22.2	21.8
p-Isopropyltoluene	0.28	0.30
Naphthalene	2.3	2.4
n-Propylbenzene	34.8	34.5
Toluene	2.7	2.8
1,2,4-Trimethylbenzene	1.1	1.1
1,3,5-Trimethylbenzene	0.47	0.43
M,p-Xylene	3.1	3.0
o-Xylene	0.67	0.59
Xylene (total)	3.7	3.6

Acceptable precision was observed for all detected analytes.

1.10 Target Compound List Identification

TCL compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within =/- 0.06RRT units of the standard compound and have an ion spectra which has a ratio of the primary and secondary m/e intensities within 20% of that in the standard compound.

GC/MS spectra met the qualitative criteria for identification. All retention times were within required specifications.

1.10 Compound Quantification and Reported Detection Limits

GC/MS quantitative analysis is considered to be acceptable. Correct internal standards per SW846 and response factors and dilution corrections were used to calculate final concentrations.

As required, the laboratory reported "J" values between the reporting limits (RL) and Method Detection Limits (MDLs). This is consistent with common laboratory practices and a requirement of the National Environmental Laboratory Approval Program (NELAP).

All groundwater samples were analyzed undiluted.

1.11 Overall System Performance Good resolution and chromatographic performance were observed.

Tentatively Identified Compounds (TICs) were not generated and therefore not evaluated.

2.0 Target Compound List (TCL) Semivolatile Organics by GC/MS SW846 Method 8270

The following method criteria were reviewed: holding times, Surrogates, MS, MSD, LCS, Blanks, Tunes, Calibrations, Internal Standards, Target Component Identification, Quantitation, Reported Quantitation Limits and overall system performance. The Total Semivolatile results were considered to be valid and usable with the exception of non-detects for 2,4-Dinitrophenol in samples MW-6, MW-8, MW-XX and Field Blank 3/13/13 due to non-recoverable MS/MSD recoveries as noted within the following text:

2.1 Holding Time

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the technical holding time is exceeded, the data may not be considered valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimates, "J". The non-detects (sample quantitation limits) are required to be flagged as estimated, "J", or unusable, "R", if the holding times are grossly exceeded.

All aqueous samples were extracted and analyzed within the method required holding times and the technical holding times (7 days from collection for water samples) required for data validation.

2.2 Surrogate Recovery

All samples are spiked with surrogate compounds prior to sample preparation/extraction to evaluate overall laboratory performance and efficiency of the analytical technique. Additionally, the sample itself may produce effects due to such factors as interferences and high concentrations of analytes. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the evaluation of the data is dependent upon reextraction and/or reanalysis to confirm/negate laboratory error or matrix related problems. Discussion of surrogate recoveries that fell outside (above/below) QC guidelines is itemized below:

All samples were spiked with six (6) surrogate standards at the sample extraction portion of analysis. Acceptable recovery values were obtained for all groundwater analyses.

The method blank applicable to MW-9 and MW-7 resulted in low 2-Fluorobiphenyl recovery (32%). The method allows one surrogate per fraction to be outside acceptance limits providing the recovery value is >10%. No laboratory action is required and no qualifications to the data were made.

2.3 Matrix Spikes (MS)/Matrix Spike Duplicates (MSD)

The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices.

Aqueous MS/MSD analysis was performed on MW-7 and was spiked with all components as required by the analytical procedure. Acceptable recovery values were obtained. The RPD for 4-Chloroaniline was outside in house acceptance limits (40%). Based on professional judgment, no qualifications to the data were made.

Batch MS/MSD was submitted with SDG JB31271. 2,4-Dinitrophenol was not recoverable in the MS and MSD. Non-detects for this analyte in samples MW-6, MW-8, MW-XX and Field Blank 03/13/13 were rejected, "R."

2.4 Laboratory Control Sample

The LCS data for laboratory control samples (LCS) are generated to provide information on the accuracy of the analytical method and on the laboratory performance.

LCS/Blank Spikes were analyzed for each analytical extraction batch. Recovery values were acceptable and no qualifications were applied.

2.5 Method Blanks

Quality assurance (QA) blanks; i.e. method, trip and field blanks are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Field blanks measure cross-contamination of samples during field operations.

The following table was utilized to qualify target analyte results due to contamination. The largest value from all the associated blanks is required to be utilized:

For:	Flag Sample Result	Report CRQL &	No Qualification is
	with a "U" when:	Qualify "U" when:	Needed when:
Phthalates (common	Sample Conc. is	Sample Conc. Is	Sample Conc. is
laboratory	>CRQL, but $<$ CRQL and $<$ /=10x	<	>CRQL and >10x
contaminants)	blank value	blank value	blank value
Other Contaminants	Sample Conc. is	Sample Conc. Is	Sample Conc. is
	>CRQL, but $>CRQL and >5x$	<crql <="" =5x<="" and="" td=""><td>>CRQL and >5x</td></crql>	>CRQL and >5x
	blank value	blank value	blank value

Below is a summary of the compounds in the sample and the associated qualification that have been applied:

A) Method Blank Contamination:

Target analytes were not detected in any of the method blanks associated with sample analysis.

B) Field Blank Contamination:

Target analytes were not detected in the field blank associated with sample analysis.

2.6 GC/MS Instrument Performance Check

Tuning and performance criteria are established to ensure adequate mass resolution proper identification of compounds and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The Tuning standard for semivolatile organics is decafluorotriphenylphosphine (DFTPP).

Instrument performance was generated within acceptable limits and frequency (12 hours) for decafluorotriphenylphosphine (DFTPP) for all analyses.

2.7 Initial and Continuing Calibrations

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration checks document that the instrument is giving satisfactory daily performance.

A) Response Factor GC/MS:

The response factor measures the instrument's response to specific chemical compounds. The response factor for all compounds must be >/= 0.05 in both initial and continuing calibrations. A value <0.05 indicates a serious detection and quantitation problem (poor sensitivity). Analytes detected in the sample will be qualified as estimated, "J." All non-detects for that compound in the corresponding samples will be rejected, "R".

All the response factors for the target analytes reported were found to be within acceptable limits (>/=0.05), for the initial (average RRF) and continuing calibrations.

B) Percent Relative Standard Deviation (%RSD) and Percent Difference (%D):

Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentrations. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the

instrument's daily performance. Percent RSD must be <30% and %D must be <25%. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and non-detects are flagged "UJ". If %RSD and %D grossly exceed QC criteria, non-detect data may be qualified, "R", unusable. Additionally, in cases where the %RSD is >30% and eliminating either the high or the low point of the curve does not restore the %RSD to less than or equal to 30% then positive results are qualified, "J". In cases where removal of either the low or high point restores the linearity, then only low or high level results will be qualified, "J" in the portion of the curve where non linearity exists.

Initial Calibrations: The initial calibrations provided and the %RSD were within acceptable limits (30%) for all compounds with the following exceptions:

ICAL GCMSF 03/22/13 – 2,4-Dinitrophenol – 40.5%. "UJ" non-detects in MW-7 and MW-9.

Continuing Calibrations: The continuing calibrations provided and the %D was within acceptable limits (25%) for all compounds with the following exceptions:

Hexachlorocyclopentaidne; 49.25%, 2,4-Dinitrophenol; 34.6%, 4,6-Dinitro-2-Methylphenol; 32.9% and Pentachlorophenol; 36.5%. Non-detects for these compounds in MW-6, MW-8, MW-XX and Field Blank 03/13/13 must be considered estimated, "UJ."

2.8 Internal Standards

Internal Standards (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must not vary by more than a factor of 2 (-50% to +100%) from the associated continuing calibration standard. The retention time of the internal standard must not vary more than +/-30 seconds from the associated continuing calibration standard. If the area count is outside the (-50% to +100%) range of the associated standard, all of the positive results for compounds quantitated using that IS are qualified as estimated, "J", and all non-detects as "UJ", or "R" if there is a severe loss of sensitivity.

If an internal standard retention time varies by more than 30 seconds, professional judgment will be used to determine either partial or total rejection of the data for that sample fraction.

All area responses and retention times fell within established QC ranges.

2.9 Field Duplicates

Field duplicate samples are collected and analyzed as an indication of overall precision. These results are expected to have more variability than laboratory duplicate samples. Generally for water samples an acceptable RPD is 10%.

Groundwater sample MW-8 was collected in duplicate. Acceptable precision was observed for detected analytes Naphthalene. Acenaphthene (0.51 ug/L) and 2-Methylnaphthalene (0.53 ug/L) were detected in the field duplicate but not in the original sample. The laboratory reported non-detects in MW-8 must be considered estimated, "UJ" for these compounds.

2.10 Target Compound List Identification

TCL compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within =/- 0.06RRT units of the standard compound and have an ion spectra which has a ratio of the primary and secondary m/e intensities within 20% of that in the standard compound.

Mass spectra meet criteria for all detected analytes.

All samples were analyzed undiluted.

Tentatively Identified Compounds (TICs) were not provided by the laboratory and therefore not evaluated.

2.11 Compound Quantification and Reported Detection Limits

GC/MS quantitative analysis is considered to be acceptable. Correct internal standards and response factors were used to calculate final concentrations.

As required, the laboratory reported "J" values between the reporting limits (RL) and Method Detection Limits (MDLs). This is consistent with common laboratory practices and a requirement of the National Environmental Laboratory Approval Program (NELAP).

2.12 Overall System Performance
Acceptable system performance was maintained throughout the analysis.

3.0 PCBs by GC SW846 Method 8082

The following method criteria were reviewed: holding times, Surrogates, MS, MSD, LCS, Blanks, Analytical Sequences, Calibrations, Target Component Identification, Quantitation, Reported Quantitation Limits and overall system performance. The PCB results were considered to be valid and usable as noted within the following text:

3.1 Holding Time

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the technical holding time is exceeded, the data may not be considered valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimates, "J". The non-detects (sample quantitation limits) are required to be flagged as estimated, "J", or unusable, "R", if the holding times are grossly exceeded.

All groundwater samples were extracted and analyzed within the method required holding times and the technical holding times required for data validation (7 days for water).

3.2 Surrogate Recovery

All samples are spiked with surrogate compounds prior to sample preparation/extraction to evaluate overall laboratory performance and efficiency of the analytical technique. Additionally, the sample itself may produce effects due to such factors as interferences and high concentrations of analytes. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the evaluation of the data is dependent upon reextraction and/or reanalysis to confirm/negate laboratory error or matrix related problems. Discussion of surrogate recoveries that fell outside (above/below) QC guidelines is itemized below:

Acceptable surrogate recovery values were obtained for all aqueous analysis.

3.3 Matrix Spikes (MS)/Matrix Spike Duplicates (MSD)

The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices.

The National Functional Guidelines indicate that MS/MSD data alone shall not be utilized to qualify sample data.

Aqueous PCB matrix spike analysis was conducted on MW-6 and MW-7. Acceptable recovery values and RPD were obtained. No qualifications to the data were required.

3.4 Laboratory Control Sample

The LCS data for laboratory control samples (LCS) are generated to provide information on the accuracy of the analytical method and on the laboratory performance.

LCS/Blank Spikes were analyzed for each analytical extraction batch for PCBs. Recovery values were acceptable and no qualifications were applied for groundwater analyses.

3.5 Blanks

Quality assurance (QA) blanks; i.e. method, instrument, trip and field blanks are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Instrument blanks measure carryover for cross contamination. Field blanks measure cross-contamination of samples during field operations.

The following table was utilized to qualify target analyte results due to contamination. The largest value from all the associated blanks is required to be utilized:

For:	Flag Sample Result	Report CRQL &	No Qualification is
	with a "U" when:	Qualify "U" when:	Needed when:
Any Contaminant	Sample Conc. is	Sample Conc. Is	Sample Conc. is
	>CRQL, but $>CRQL and >5x$	<crql <="" =5x<="" and="" td=""><td>>CRQL and >5x</td></crql>	>CRQL and >5x
	blank value	blank value	blank value

Extraction and Instrument blanks were performed at the appropriate frequency.

Below is a summary of blank contamination:

A) Method Blank Contamination:

No target analytes were detected in the associated method blanks. No data validation qualifiers were required based upon method blank data.

B) Field Blank Contamination:

Target analytes were not detected in the Field Blank associated with sample analysis.

3.6 Calibration Verification

Initial and continuing calibration sequence was performed as required for multi-component PCB standards. Acceptable retention times were obtained for all analysis and GC resolution is acceptable for both columns.

Linearity criteria for the initial standards have been satisfied for both columns as detailed below:

%RSD </= 30% for surrogates (TCMX and DCB) %RSD <20% for PCB aroclors.

Continuing calibration verifications:

For PCB analysis acceptable percent difference for any PCB analysis is 15%.

No qualifications have been applied based on these criteria.

3.7 Field Duplicates

Field duplicate samples are collected and analyzed as an indication of overall precision. These results are expected to have more variability than laboratory duplicate samples. Generally for water samples an acceptable RPD is 10%.

MW-8 was utilized as the aqueous blind field duplicate (MW-XX). Target analytes were not detected in either analytical run for PCBs.

3.8 Target Compound Identification

Qualitative criteria for compound identification have been established to minimize the number of false positives and false negatives. The retention times of all target analytes have been verified in the samples to that of the analyzed reference standards

Positive PCB sample results are compared and where %Difference >25% when quantitated on the two columns the qualifications below are applied. Sample chromatograms were reviewed for the presence of interference. The following qualifications were applied where neither column shows interference:

%Difference	Qualifier
0-25%	None
26-70%	"J"
71-100%	"JN"
101-200% (no interference)	"R"
101-200% (interference detected)*	"JN"
>50% (Pesticide value is <crql)*< td=""><td>* "U"</td></crql)*<>	* "U"
>201%	"R"

^{*}When the reported %D is 101-200%, but interference is determined on either column, the results shall be qualified, "JN"

All sample results have been evaluated based on these criteria.

Groundwaters:

None

3.9 Compound Quantification and Reported Detection Limits

TCL compounds are identified on the GC by using the analyte's relative retention time (RRT) and by comparison to the primary column and the secondary confirmation column data. The laboratory reported the lower of the concentrations for primary/confirmatory column results as required.

^{**} When the reported pesticide value is lower than the CRQL, and the %D is >50%, raise the value to the CRQL and qualify "U", undetected.

3.10 Overall System Performance

Acceptable system performance was maintained throughout the analysis of all samples. Good resolution and chromatographic performance were observed.

4.0 TAL Metals (Total and Dissolved) by ICP/ICP-MS/Cold Vapor SW846 Methods 6010/6020/7471

The following method criteria were reviewed: holding times, CRDL standards, calibration, blanks, MS, laboratory duplicates, LCS, interference check sample, ICP serial dilutions and sample results verification. In order to meet the groundwater standard criteria, all samples were analyzed by ICP-MS techniques for Antimony and Thallium. The groundwater results were considered to be valid and usable with the appropriate qualifiers as notated in the following text:

4.1 Holding Times

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the technical holding time is exceeded, the data may not be considered valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimates, "J". The non-detects (sample quantitation limits) are required to be flagged as estimated, "J", or unusable, "R", if the holding times are grossly exceeded.

All samples were digested and analyzed for Metals within the method required holding times and the technical holding times for data validation. No qualifications were applied based upon holding time criteria.

4.2 Calibration (ICV/CCV)

Satisfactory instrument calibration is established to ensure that the instruments are capable of producing acceptable quantitative data. An initial calibration demonstrates that the instruments are capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration checks document that the instruments are giving satisfactory sequential performance and that the initial calibration is still valid.

The ICP, ICP/MS and Mercury instruments were calibrated utilizing a minimum of a four-point curve in addition to blanks at the beginning of each analytical run. The calibrations had been determined to be acceptable, yielding correlation coefficients of 0.995 or greater.

For ICP analysis, satisfactory instrument performance near the Contract Required Detection Limit (CRDL) was demonstrated by analyzing a CRDL standard at the beginning and end of the analytical run. The instruments were calibrated properly by analyzing the CRDL solution at the correct levels, and analyzed at the required frequency at the beginning and end of each analytical run.

All recoveries were within acceptable limits of 90-110 % for initial calibration pertaining to field samples.

Continuing calibrations were within acceptable limits of 90-110% recovery of the true values for ICP and Mercury (80-120%) for all field samples.

No qualifications were applied based upon ICV/CCV analysis.

4.3 Blanks

Quality assurance (QA) blanks, i.e. method, field or preparation blanks are prepared to identify any contamination that may have been introduced into the samples during sample preparation or field activity. Preparation blanks measure laboratory contamination. Field blanks measure cross-contamination of samples during field operations.

All digestion/prep/ICB/CCB/Field blanks were generated within acceptable limits yielding final concentrations less than the CRDL.

No qualifications to the data were made based upon blank contamination.

4.4 Spiked Sample Recovery

The spike data are generated to determine the long terms precision and accuracy of the analytical method in various matrices.

Aqueous spike recoveries are qualified based on the criteria below:

<30% - "R" all detects and non-detects

Between 30%-74% - results >/=MDL "J" and non-detects "UJ"

Between 126-150% - results >/=MDL "J" and
>150% - results >/= MDL "R"

SDG JB30991:

Aqueous MS/MSD was performed on MW-7 for both total and dissolved metals. Analysis resulted in acceptable recovery values for all elements. Acceptable RPD was observed. ICP-MS MS/MSD met QC requirements where the sample concentration is <50x the IDL.

SDG JB31271:

Aqueous MS/MSD analysis was conducted on MW-6. Analysis resulted in acceptable recovery values and RPD for all elements for both total and dissolved analysis. ICP-MS MS/MSD met QC requirements.

4.5 Laboratory/Field Duplicates

The laboratory uses duplicate sample determinations to demonstrate acceptable method precision at the time of analysis. Duplicate analyses are also performed to generate data in order to determine the long-term precision of the analytical method on various matrices.

Laboratory Duplicates:

RPD >20% but <100% - J detected concentrations RPD >/=100% - R all detected and non-detected concentrations

Field Duplicates:

RPD >/=35% but <120% - qualify sample and duplicate results >/= CROL "J"

RPD >/= 120% - rejected sample and duplicate results >/= CRQL "R"

Aqueous Laboratory Duplicate analysis was conducted on MW-7 for JB30991 and MW-6 for JB31271. Acceptable RPD values were obtained for all elements for ICP and ICP-MS analysis.

Field Duplicate analysis was conducted on MW-8 (MW-XX).

A summary of detected concentrations in ppb is listed below:

Tota	л	$\mathbf{N}\mathbf{I}$	ata	le.
1 Uta	ш	TAT	eta	15:

I otal Mictals.		
	MW-8	MW-XX (Duplicate)
Aluminum	4010	3560
Arsenic	8.2	8.0
Calcium	136000	139000
Chromium	2910	2260
Copper	73.9	57.7
Iron	22500	20200
Lead	3.3	3.1
Magnesium	36000	36600
Manganese	3180	3160
Nickel	1390	1090
Sodium	85400	85800
Zinc	ND	23.3
Dissolved Metals:		
Calcium	140000	140000
Chromium	19.9	19.1
Iron	325	293
Magnesium	35400	35400
Manganese	3070	3050
Nickel	70.8	68.9
Sodium	90600	89600

Zinc must be considered estimated in the total analysis of MW-8 and MW-XX. No additional qualifications to the data were required based on field duplicate analysis.

4.6 Laboratory Control Sample

The laboratory Control Sample (LCS) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. Aqueous and solid Laboratory Control samples shall be analyzed for each analyte utilizing the same sample preparation, analytical methods and QA/QC procedures as employed for the samples.

The LCS was analyzed and reported for all ICP, ICP-MS and Mercury analysis. Associated LCS recoveries were within the acceptable limits for TAL Metals analyses (80-120%).

4.7 Interference Check Sample

The interference check sample (ICS) verifies the laboratory's interelement and background correction factors. The ICS consists of two solutions A and AB. Solution A consists of interference, and solution AB consists of the analytes mixed with interferents.

SW846 Method 6010 requires solution A and solution AB to be analyzed separately. The recoveries for the ICP interference check sample were all within the acceptable limits of 80-120%. No data qualifications were made based upon ICS analysis.

4.8 ICP Serial Dilution

The serial dilution of samples quantitated by ICP determines whether or not significant physical or chemical interferences exist due to sample matrix. An ICP serial dilution analysis must be performed on a sample for each group of samples with a similar matrix type and concentration, or for each Sample Delivery Group (SDG), whichever is more frequent.

Acceptable ICP and ICP-MS serial dilution was performed at a 5-fold dilution as required by the method where the initial concentration is equal or greater than 50x IDL. The serial dilution analysis agrees within a 10% difference of the original determination after correction for dilution for all elements where the sample concentration was determined to be <50x the IDL.

4.9 Sample Results Verification

Analyte quantitation was generated in accordance with protocols. The raw data was verified and found within the linear range of each instrument used for quantitation. Raw data supplied corresponds with reported values. Verification of the calculations yielded reported results.

Metals analysis resulted in acceptable results.

4.10 Overall Assessment of Data

The data generated were of acceptable quality.

For the TAL analysis, results are usable at the concentration presented in the validated spreadsheets.

ICP-MS analysis was conducted at a 1:2 dilution.

5.0 General Chemistry Analysis

Groundwater samples were analyzed for Hexavalent (SW846 Method 7196) and Trivalent Chromium (determined by calculation) - Total and Dissolved. The groundwater results were considered to be valid and usable as notated in the following text:

5.1 Holding Times

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the technical holding time is exceeded, the data may not be considered valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimates, "J". The non-detects (sample quantitation limits) are required to be flagged as estimated, "J", or unusable, "R", if the holding times are grossly exceeded.

Samples for Hexavalent Chromium (Total and Dissolved) were performed within 24 hours of collection as required by the method.

5.2 Calibration

Acceptable ICVs and CCVs were analyzed. No qualifications were applied based upon calibration data.

5.3 Blanks

Quality assurance (QA) blanks, i.e. method, field or preparation blanks are prepared to identify any contamination, which may have been introduced into the samples during sample preparation or field activity. Preparation blanks measure laboratory contamination. Field blanks measure cross-contamination of samples during field operations.

Acceptable method blanks were analyzed with these SDGs as dictated by the analytical methods employed.

5.4 Spiked Sample Recovery

The spike data are generated to determine the long-term precision and accuracy of the analytical method in various matrices.

Matrix spike analysis was performed on MW-6 and MW-7. Acceptable spike recoveries were obtained.

5.5 Laboratory/Field Duplicates

The laboratory uses duplicate sample determinations to demonstrate acceptable method precision at the time of analysis. Duplicate analyses are also performed to generate data in order to determine the long-term precision of the analytical method on various matrices.

Acceptable laboratory duplicate analysis on MW-6 and MW-7 was conducted as required by the method. The RPD fell outside acceptance limits due to low concentrations (less than the reporting limit) detected in the original sample.

Field duplicate analysis (MW-XX) was collected on MW-8. Precision as defined by Relative Percent Difference (RPD) was found to be within acceptable limits of $\pm 20\%$ for Hexavalent Chromium; no detections above the reporting limit.

5.6 Laboratory Control Sample

The laboratory Control Sample (LCS) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. Aqueous and solid Laboratory Control samples shall be analyzed for each analyte utilizing the same sample preparation, analytical methods and QA/QC procedures as employed for the samples.

Acceptable LCS was analyzed.

5.7 Sample Results Verification

Analyte quantitation was generated in accordance with protocols. The instrument logs were verified and found within the linear ranges of each instrument used for quantitation.

5.8 Overall Assessment of Data

The data was of acceptable quality.

Reviewer's Signature FOLIBL Date 05/20/13

Appendix A
Data Summary Tables
With Qualifications

Table 1

Validated Analytical Results for Volatile Organic Compounds In Groundwater Via Verde aka New Housing New York Legacy Project

700-730 Brook Avenue, Bronx, New York BCP # C203043

								·	
Sample ID		MW-7	MW-8	MW-9	MW-XX**	Fleld Blank	Trip Blank	Trip Blank liquid	NYSDEC
Matrix Date Sampled	groundwater 3/13/2013	groundwater 3/11/2013	groundwater 3/13/2013	groundwater 3/11/2013	groundwater 3/13/2013	liquid 3/13/2013	liquid 3/11/2013	3/13/2013	TOGs*
Volatile Organic Compounds	3/13/2013	3/11/2010	0/10/2010	0/11/2010	GFTGTZGTG	0/10/2010	0/11/2010	0,10,2010	
Course -	und	uall	nall	uall	uall	uall	ug/l	uall	ug/L
Units	ug/L HOR	ug/L N D &	ug/L	ug/L AHD R	ug/L	ug/L MÐ R	ug/L NHÐ €	ug/L MD R	50
Acetone	ND ND	ND ND	10.5 J	ND ND	9.6 J	ND ND	ND ND	ND ND	1
Benzene	ND	ND ND	ND	ND	ND	ND	ND	ND ND	5
Bromobenzene Bromochloromethane	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	5
Bromodichloromethane	ND ND	ND	ND ND	ND	ND	ND	ND	ND	50
Bromoform	ND	ND	ND ND	ND	ND	ND	ND	ND	50
Bromomethane	ND	ND	ND	ND	ND	ND	ND .	ND _	5
2-Butanone (MEK)	ND	NO R	NHD R	NAR	A GH	NO R	ND R	NO R	50
n-Butylbenzene	ND	ND	ND	ND	ND 1	ND	ND	ND	5
sec-Butylbenzene	ND	ND	3.7 J	ND	3.5 J	ND	ND	ND	5
tert-Butylbenzene	ND	ND	0,92 J	ND	0,95 J	ND	ND	ND	5
Carbon tetrachloride	ND	ND	ND	ND	ND	ND	ND	ND	5
Chlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	5
Chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	5
Chloroform	12,3	ND	ND	ND	ND	ND	ND	ND	7
Chloromethane	ND	ND	ND	ND	ND	ND	ND	ND	NVG
o-Chlorotoluene	ND	ND	ND	ND	ND	ND	ND	ND	5
p-Chlorotoluene	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2-Dibromo-3-Chloropropane	ND	ND	ND	ND	ND	ND	ND	ND	0.04
Dibromochloromethane	ND	ND	ND	ND	ND	ND	ND	ND	50
1,2-Dibromoethane	ND	ND	ND	ND	ND	ND	ND	ND	NVG
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	3
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	3
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	3
Dichlorodifluoromethane	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2-Dichloroethane	ND	ND 	ND	ND	ND	ND	ND	ND	0.6
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	5
cls-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	5
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND ND	ND ND	5
1,2-Dichloropropane	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	1
1,3-Dichloropropane	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	5 5
2,2-Dichloropropane	ND ND	ND ND	ND	ND	ND	ND	ND	ND ND	5
1.1-Dichloropropene	ND ND	ND	ND	ND	ND	ND	ND	ND	0.4
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	ND ND	ND	ND	ND	ND	ND	ND	ND	0.4
Ethylbenzene	ND	ND	33.8	ND	33.2	ND	ND	ND	5
Hexachlorobutadiene	ND	ND	ND	ND	ND	ND	ND	ND	0.5
Isopropylbenzene	ND	ND	22.2	ND	21.8	ND	ND	ND	5
p-Isopropyltoluene	ND	ND	0.28 J	ND	0,30 J	ND	ND	ND	5
Methyl Tert Butyl Ether	ND	ND	ND	ND	ND	ND	ND	ND	10
4-Methyl-2-Pentanone (MIBK)	ND	ND	ND	ND	ND	ND	ND	ND	NVG
Methylene bromide	ND	ND	ND	ND	ND	ND	ND	ND	NVG
Methylene Chloride	ND	ND	ND	ND	ND	ND	ND	ND	5
Naphthalene	ND	ND	2.3 J	ND	2.4 J	ND	ND	ND	10
n-Propylbenzene	ND	ND	34.8	ND	34.5	ND	ND	ND	5
Styrene	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	5
Tetrachloroethene	ND	ND	ND	ND	ND	ND	ND	ND	5
Toluene	ND	ND	2.7	ND	2,8	ND	ND	ND	5
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,1-Trichioroethane	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,2-Trichioroethane	ND	ND	ND	ND	ND	ND	ND	ND	1
Trichloroethene	ND	0.24 J	ND	ND	ND	ND	ND	ND	5
Trichlorofluoromethane	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	0,04
1,2,4-Trimethylbenzene	ND	ND	1.1 J	ND	1;1 J	ND	ND	ND	5
1,3,5-Trimethylbenzene	ND	ND	0.47 J	ND	0.43 J	ND	ND	ND	5
Vinyl chloride	ND	ND	ND	ND	ND	ND	ND	ND	2
n,p-Xylene	ND	ND	3,1	ND	3.0	ND	ND	ND	5
o-Xylene Kylene (total)	ND 0.27 J	ND ND	0,67 J 3.7	ND ND	0,59 J 3.6	ND ND	ND ND	ND ND	5 5

Notes:

ug/L - micrograms per liter or parts per billion

ND - Not detected at or above laboratory detection limits

NVG - No Value Given

J - Estimated Value

*NYSDEC Technical and Operational Guidance Series (1.1.1)
Amblent Water Quality Standards and Guidance Values
and Groundwater Effluent Limitations; June 1998
** MW-XX is a duplicate of MW-8

Table 2

Validated Analytical Results for Semi-Volatile Organic Compounds In Groundwater

Vla Verde aka New Housing New York Legacy Project 700-730 Brook Avenue, Bronx, New York BCP # C203043

BCP # C203043							
Sample ID	MW-6	MW-7	MW-8	MW-9	MW-XX**	Fleld Blank	Trip Blank
Matrix	groundwater	groundwater	groundwater	groundwater	groundwater	liquld	liquita
Date Sampled	3/13/2013	3/11/2013	3/13/2013	3/11/2013	3/13/2013	3/13/2013	3/13/2013
Semi-Volatile Organic Compounds					0		uan.
Units 2-Chlorophenol	ug/L ND	ug/L ND	ug/L ND	ug/L ND	ug/L ND	ug/L ND	ug/L NVG
4-Chloro-3-methyl phenol	ND	ND	ND	ND ND	ND	ND	NVG
2,4-Dichlorophenol	ND	ND	ND	ND	ND	ND	5
2,4-Dimethylphenol	ND	ND	ND	ND	ND A	ND _	50
2.4-Dinitrophenol	NO R	N D 🗸	- NO R	NO CHA	HÐ 🦰	ND	10
4.6-Dinitro-2-methylphenol	NÐ 🗸	ND	N D	ND	MÐ 🗸	NO U	NVG
2-Methylphenol	ND	ND	ND	ND	ND	ND	1
3+4-Methylphenols	ND	ND	ND	ND	ND	ND	1
2-Nitrophenol	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NVG
4-Nitrophenol Pentachlorophenol	ND V3	ND ND	ND (C)	ND	ND VJ	NO U.	NVG NVG
Phenol	ND	ND	ND	ND	ND	ND	1
2,4,5-Trichlorophenol	ND	ND	ND	ND	ND	ND	NVG
2.4,6-Trichlorophenol	ND	ND	ND	ND	ND	ND	NVG
Acenaphthene	ND	ND	NB 🕔	ND	0,51 J	ND	20
Acenaphthylene	ND	ND	ND	ND	ND	ND	NVG
Acetophenone	ND	ND	ND	ND	ND	ND	NVG
Anthracene	ND	ND	ND	ND	ND	ND	50
Atrazine	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	7.5
Benzo(a)anthracene	ND ND	ND ND	ND	ND	ND ND	ND ND	0.002 ND
Benzo(a)pyrene Benzo(b)fluoranthene	ND ND	ND	ND	ND	ND ND	ND	0.002
Benzo(g,h,l)perylene	ND ND	ND	ND	ND	ND	ND	NVG
Benzo(k)fluoranthene	ND	ND	ND	ND	ND	ND	0.002
4-Bromophenyl-phenylether	ND	ND	ND	ND	ND	ND	NVG
Butylbenzylphthalate	ND	ND	ND	ND	ND	ND	50
1,1'-Blphenyl	ND	ND	ND	ND	ND	ND	5
Benzaldehyde	ND	ND	ND	ND	ND	ND	NVG
2-Chloronaphthalene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	10
4-Chloroanlline Carbazole	ND	ND	ND	ND	ND	ND	5 NVG
Caprolactam	ND	ND	ND	ND	ND	ND	NVG
Chrysene	ND	ND	ND	ND	ND	ND	0.002
bis(2-Chloroethoxy)methane	ND	ND	ND	ND	ND	ND	5
bis(2-Chloroethyl)ether	ND	ND	ND	ND	ND	ND	1
bls(2-Chlorolsopropyl)ether	ND	ND	ND	ND	ND	ND	NVG
4-Chlorophenyl-phenylether	ND	ND	ND	ND	ND	ND	NVG
2,4-Dinitrotoluene	ND	ND	ND	ND	ND	ND	5
2,6-Dinitrotoluene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5 5
3,3-Dichlorobenzidine Dibenzo(a,h)anthracene	ND	ND	ND	ND	ND	ND	NVG
Dibenzofuran	ND	ND	ND	ND	ND	ND	NVG
Di-n-butylphthalate	ND	ND	ND	ND	ND	ND	50
DI-n-octyl phthalate	ND	ND	ND	ND	ND	ND	50
Diethylphthalate	ND	ND	ND	ND	ND	ND	50
Dimethylphthalate	ND	ND	ND	ND	ND	ND	50
bis(2-Ethylhexyl)phthalate	ND	ND	ND	ND	ND ND	ND ND	5
Fluoranthene	ND ND	ND ND	ND ND	ND ND	ND	ND ND	50 50
Hexachlorobenzene	ND ND	ND	ND	ND	ND	ND	0.04
Hexachlorobutadlene	ND	ND	ND	ND	ND	- ND	0.5
Hexachlorocyclopentadlene	LV CH	ND	CV GH	ND	MB VJ	יין מא	5
Hexachloroethane	ND	ND	ND	ND	ND	ND	5
Indeno(1,2,3-cd)pyrene	ND	ND	ND	ND	ND	ND	0.002
Isophorone	ND	ND	ND	ND	ND	ND	50
2-Methylnaphthalene	ND	ND		ND	0.53 J	ND	NGV
2-Nitroanline	ND	ND	ND	ND ND	ND ND	ND ND	5
3-Nitroaniline 4-Nitroaniline	ND ND	ND ND	ND ND	ND DN	ND	ND ND	5 5
4-Nitroaniine Naphihalene	ND ND	ND ND	2:4	ND ND	2.6	ND	10
Nitrobenzene	ND	ND ND	ND	ND	ND	ND	0.4
N-Nitroso-di-n-propylamine	ND	ND	ND	ND	ND	ND	NVG
N-Nitrosodiphenylamine	ND	ND	ND	ND	ND	ND	50
Phenanthrene	ND	ND	ND	ND	ND	ND	50
Pyrene	ND	ND	ND	ND	ND	ND	50
Notes:							

Notes:
ug/L - micrograms per liter or parts per billion
ND - Not detected at or above laboratory detection limits
NVG - No Value Given
J - Estimated Value

*NYSDEC Technical and Operational Guidance Series (1.1.1)
Ambient Water Quality Standards and Guidance Values
and Groundwater Effluent Limitations; June 1998
** MW-XX |s a duplicate of MW-8

Table 3	Validated Analytical Results for PCBs In Groundwater Via Verde aka New Housing New York Legacy Project 700-730 Brook Avenue, Bronx, New York BCP # C203043

Sample ID	9-WM	MW-7	MW-8	6-MM	MW-XX**	Field Blank	
Matrix	groundwater	groundwater	groundwater	groundwater	groundwater	liquid	NYSDEC TOOOTH
Date Sampled	3/13/2013	3/11/2013	3/13/2013	3/11/2013	3/13/2013	3/13/2013	850.I
PCBs							
Units	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L
Aroclor-1016	QN	QN	Q	Q	QN	Q	* 60.0
Aroclor-1221	ND	Q	Q	2	QN	Q	* 60.0
Aroclor-1232	ND	Q	Q	Q	ND	QN	* 60.0
Aroclor-1242	N	Q	Q	Q	QN	QN	* 60.0
Aroclor-1248	Q	Q	Q	Q	ND	ΩN	* 60.0
Aroclor-1254	Q.	Q	2	2	QN	QN	* 60.0
Aroclor-1260	Q	Q	Q	Q.	Q	QN	* 60.0
Notes:							
ug/L - micrograms per liter or parts per billion	iter or parts per bi	llion		***NYSDEC Tecl	***NYSDEC Technical and Operational Guidance Series (1.1.1)	ional Guidance	series (1.1.1)
ND - Not detected at or above laboratory detection limits	above laboratory	detection limits		Ambient Water C	Ambient Water Quality Standards and Guidance Values	and Guidance Va	alues
* Applies to the sum of these compounds	these compounds			and Groundwate	and Groundwater Effluent Limitations; June 1998	ins; June 1998	
** MW-XX is a duplicate of MW-8	e of MW-8						

Table 4 Validated Analytical Results for Metals In Groundwater

Via Verde aka New Housing New York Legacy Project 700-730 Brook Avenue, Bronx, New York BCP # C203043

Sample ID	MW-6	MW-7	MW-8	MW-9	MW-XX**	Fleid Blank	NYSDEC
Matrix	groundwater	groundwater	groundwaler	groundwater	groundwater	liquid	TOGS*
Date Sampled	3/13/2013	3/11/2013	3/13/2013	3/11/2013	3/13/2013	3/13/2013	
Total Metals Unfiltered							
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Aluminum	2,230	<200	4,010	491	3,560	<200	NVG
Antimony	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	3
Arsenic	<3.0	<3.0	8.2	4.1	8.0	<3.0	25
Barium	<200	<200	<200	<200	<200	<200	1,000
Berylium	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	3
Cadmium	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	5
Calcium	49,000	129,000	136,000	110,000	139,000	<5,000	NVG
Chromium	37.7	<10	2,910	300	2,260	<10	50
Cobalt	<50	<50	<50	<50	<50	<50	NVG
Copper	<10	<10	73.9	13,4	57.7	<10	200
Iron	2,810	228	22,500	2,150	20,200	<100	300
Lead	<3.0	<3.0	3.3	<3.0	3.1	<3.0	25
Magnesium	6,660	25,600	36,000	7,940	36,600	<5,000	35,000
Manganese	76.2	43.1	3,180	691	3,160	<15	300
Mercury	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.7
Nickel	22.0	<10	1,390	146	1,090	<10	100
Potassium	<10,000	<10,000	<10,000	10,400	<10,000	<10,000	NVG
Selenium	<10	<10	<10	<10	<10	<10	10
Silver	<10	<10	<10	<10	<10	<10	50
Sodium	27,600	60,300	85,400	78,300	85,800	<10,000	20,000
Thallium	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	0.5
Vanadium	<50	<50	<50	<50	<50	<50	NVG
Zinc	22.3	<20	24.0 < 2		23.3	<20	2,000
Chromium, Hexavalent	<0.010a	<0.010a	<0.010a	<0.010a	<0.010a	<0.010a	50
Chromium, Trivalent	380 39	<0.020c	2,900	300	2,300	<0.020c	50
Total Metals Filtered					/		
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Aluminum	344	<200	<200	434	<200	NA NA	NVG
Antimony	<1.0	<1.0	<1.0	<1.0	<1.0	NA NA	3
Arsenic	<3.0	<3.0	<3.0	<3.0	3.1	NA NA	25
Barium	<200	<200	<200	<200	<200	NA NA	1,000
Berylium	<1.0	<1.0	<1.0	<1.0	<1.0	NA NA	3
Cadmium	<3.0	<3.0	<3.0	<3.0	<3.0	NA NA	5
Calcium	46,700	130,000	140,000	113,000	140,000	NA NA	NVG
Chromium	<10	<10	19.9	380	19.1	NA NA	50
Cobalt	<50	<50	<50	<50	<50	NA NA	NVG
Copper	<10	<10	<10	13.2	<10	NA NA	200
Iron	419	123	325	2,290	293	NA NA	300
Lead	<3.0	<3.0	<3.0	<3.0	<3.0	NA NA	25
Magnesium	5,760	25,700	35,400	7,990	35,400	NA NA	35,000
Manganese	20.3	41.3	3,070	708	3,050	NA NA	300
Mercury	<0.20	<0.20	<0.20	<0.20	<0.20	NA NA	0.7
Nickel	14.7	<10		187	68.9	NA NA	100
			70.8				NVG
Potassium	<10,000	<10,000	<10,000	10,500	<10,000 <10	NA NA	10
Selenium	<10	<10	<10	<10	<10		50
Silver	<10	<10	<10	<10 80.800		NA NA	20,000
Sodium	26,700	60,300	90,600		89,600	NA NA	
Thallium	<1.0	<1.0	<1.0	<1.0	<1.0	NA NA	0.5
Vanadium	<50	<50	<50	<50	<50	NA NA	NVG
Zinc	<20	<20	<20	<20	<20	NA NA	2,000
Chromium, Hexavalent	<0.010a	<0,010a	<0.010a	<0.010a	<0.010a	NA NA	50
Chromium, Trivalent	<0.020	<0.020c	0.020	380	<0.020 / 9	/ NA	50
Notes: ug/L - micrograms per liter	i na nodo ses timo		19.9	MANADEO To the	sign) and O====#=	nal Cuidanaa Da	ion (1 1 1)
nyr micrograms per liter	or parts per billio)(I		NIOUEC IECNI	nical and Operatio	mai Guidance Sel	100 (1.1.1)

ND - Not detected at or above laboratory detection limits

NVG - No Value Given

J - Estimated Value

a - Hexavalent Chromium is <10ppb

*NYSDEC Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations; June 1998

** MW-XX is a duplicate of MW-8

c - Calculated as: (Chromium) - (Chromium, Hexavalent)

R- the presence or absence of the analyte cannot be verified

b - Analysis done out of holding time R- the present
Boxed and hold indicates exceedance of groundwater standards or guidance values

Client Sample ID: MW-9

Lab Sample ID: JB30991-1 Matrix: AQ - Grou

AQ - Ground Water

Date Sampled: 03/11/13
Date Received: 03/11/13

Method:

SW846 8260B

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	3D84237.D	1	03/19/13	NT	n/a	n/a	V3D3623
T #0							

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
		0			и	
67-64-1	Acetone	NH) K	10	3.3	ug/l	
71-43-2	Benzene	ND	1.0	0.24	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.14	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.30	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.21	ug/J	
75-25-2	Bromoform	ND	4.0	0.21	ug/l	
74-83-9	Bromomethane	ND	2.0	0.22	ug/l	
78-93-3	2-Butanone (MEK)	ND C	10	2.4	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	0.17	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	0.21	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	0.30	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.22	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.23	ug/l	
75-00-3	Chloroethane	ND	1.0	0.26	ug/l	
67-66-3	Chloroform	ND o	1.0	0.20	ug/l	
74-87-3	Chloromethane	ND	1.0	0.21	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	0.15	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.30	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	10	0.54	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.14	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.20	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.22	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.30	ug/l	
75-71-8	Dichlorodifluoromethane	ND	5.0	0.27	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.11	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.26	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.19	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.19	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.21	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.48	ug/l	
142-28-9	1,3-Dichloropropane	ND	5.0	0.23	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \hbox{Indicates analyte found in associated method blank}$

Client Sample ID: MW-9

Lab Sample ID:

JB30991-1

Matrix: Method:

Project:

AQ - Ground Water

SW846 8260B

Via Verde, 700-730 Brook Avenue, Bronx, NY

Date Sampled: Date Received: 03/11/13

03/11/13

Percent Solids: n/a

VOA 8260 List

VOA 8200 I	2181					
CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7	2,2-Dichloropropane	ND	5.0	0.15	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	0.30	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.19	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.23	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.24	ug/l	
98-82-8	Isopropylbenzene	ND	2.0	0.45	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	0.22	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.16	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	0.83	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.26	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.70	ug/l	
91-20-3	Naphthalene	ND	5.0	1.1	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	0.24	ug/l	
100-42-5	Styrene	ND	5.0	0.21	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.24	ug/I	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/I	
127-18-4	Tetrachloroethene	ND	1.0	0.28	ug/l	
108-88-3	Toluene	ND	1.0	0.23	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	0.28	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.20	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.24	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.29	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.22	ug/l	
75-69-4	Trichlorofluoromethane	ND	5.0	0.27	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.53	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.19	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.36	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.21	ug/l	
	m,p-Xylene	ND	1.0	0.42	ug/l	
95-47-6	o-Xylene	ND	1.0	0.24	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.24	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	113%		81-12		
17060-07-0	1,2-Dichloroethane-D4	110%		74-12	27%	
2037-26-5	Toluene-D8	112%		80-12	22%	
460-00-4	4-Bromofluorobenzene	104%		78-11	16%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-9

File ID

Lab Sample ID:

JB30991-1

AO - Ground Water

Date Sampled: 03/11/13 Date Received:

Matrix: Method:

SW846 8270D SW846 3510C

03/11/13

Percent Solids: n/a

Via Verde, 700-730 Brook Avenue, Bronx, NY Project:

DF

Run #2 a	R97904.D	1	
Run #1	F21874.D	1	

Prep Date Analyzed By 03/26/13 AD 03/15/13 03/15/13 03/21/13 **ALS**

Prep Batch OP64419 OP64419

Analytical Batch EF5131 ER3881

	Initial Volume	Final Volume
Run #1	930 ml	1.0 ml
Run #2	890 ml	1.0 ml

ABN TCL List (CLP4.2 list)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.4	1.0	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.4	2.0	ug/l	
120-83-2	2,4-Dichlorophenol	ND	5.4	1.2	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.4	1.6	ug/l	
51-28-5	2,4-Dinitrophenol	ND UJ	22	18	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	22	1.1	ug/l	
95-48-7	2-Methylphenol	ND	2.2	1.1	ug/l	
	3&4-Methylphenol	ND	2.2	0.99	ug/l	
88-75-5	2-Nitrophenol	ND	5.4	1.6	ug/l	
100-02-7	4-Nitrophenol	ND	11	5.6	ug/l	
87-86-5	Pentachlorophenol	ND	11	1.5	ug/l	
108-95-2	Phenol	ND	2.2	1.4	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.4	1.7	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.4	1.4	ug/l	
83-32-9	Acenaphthene	ND	1.1	0.28	ug/l	
208-96-8	Acenaphthylene	ND	1.1	0.25	ug/l	
98-86-2	Acetophenone	ND	2.2	0.31	ug/l	
120-12-7	Anthracene	ND	1.1	0.31	ug/l	
1912-24-9	Atrazine	ND	5.4	0.52	ug/l	
100-52-7	Benzaldehyde	ND	5.4	3.5	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.1	0.24	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.1	0.24	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.49	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.35	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.55	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.2	0.38	ug/I	
85-68-7	Butyl benzyl phthalate	ND	2.2	0.31	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.1	0.33	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.2	0.32	ug/l	
106-47-8	4-Chloroaniline	ND	5.4	0.57	ug/l	
86-74-8	Carbazole	ND	1.1	0.39	ug/l	
105-60-2	Caprolactam	ND	2.2	0.74	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-9

Lab Sample ID: JB30991-1

Matrix:

AO - Ground Water

Method:

Project:

SW846 8270D SW846 3510C

Via Verde, 700-730 Brook Avenue, Bronx, NY

Date Sampled: 03/11/13 Date Received: 03/11/13

Percent Solids: n/a

ABN TCL List (CLP4.2 list)

CAS No.	Compound	Result	RL	MDL	Units	Q
218-01-9	Chrysene	ND	1.1	0.31	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.2	0.33	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.2	0.33	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.2	0.49	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.2	0.34	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	2.2	0.46	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	2.2	0.50	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.4	0.39	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.1.	0.41	ug/l	
132-64-9	Dibenzofuran	ND	5.4	0.28	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.2	0.60	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.2	0.33	ug/l	
84-66-2	Diethyl phthalate	ND	2.2	0.35	ug/l	
131-11-3	Dimethyl phthalate	ND	2.2	0.30	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.2	0.63	ug/l	
206-44-0	Fluoranthene	ND	1.1	0.34	ug/l	
86-73-7	Fluorene	ND	1.1	0.30	ug/l	
118-74-1	Hexachlorobenzene	ND	1.1	0.36	ug/l	
87-68-3	Hexachlorobutadiene	ND ==	1.1	0.55	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	11	7.6	ug/l	
67-72-1	Hexachloroethane	ND	2.2	0.59	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.40	ug/l	
78-59-1	Isophorone	ND	2.2	0.29	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.1	0.41	ug/l	
88-74-4	2-Nitroaniline	ND	5.4	1.2	ug/I	
99-09-2	3-Nitroaniline	ND	5.4	1.4	ug/l	
100-01-6	4-Nitroaniline	ND	5.4	1.8	ug/l	
91-20-3	Naphthalene	ND	1.1	0.28	ug/l	
98-95-3	Nitrobenzene	ND	2.2	0.45	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.2	0.32	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.4	0.33	ug/l	
85-01-8	Phenanthrene	ND	1.1	0.31	ug/l	
129-00-0	Pyrene	ND	1.1	0.29	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	36%	56%	10-8		
4165-62-2	Phenol-d5	26%	38%	10-7	4%	
118-79-6	2,4,6-Tribromophenol	96%	88%	24-1	48%	
4165-60-0	Nitrobenzene-d5	77%	88%	38-1	29%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Client Sample ID: MW-9

Lab Sample ID:

JB30991-1

Matrix: Method: AQ - Ground Water

Project:

SW846 8270D SW846 3510C

Via Verde, 700-730 Brook Avenue, Bronx, NY

03/11/13 Date Sampled: Date Received: 03/11/13

Percent Solids: n/a

ABN TCL List (CLP4.2 list)

CAS No.

1718-51-0

Surrogate Recoveries

Run#1

Run#2 Limits

321-60-8

2-Fluorobiphenyl Terphenyl-d14

68% 90% 86% 98%

42-117% 14-132%

(a) Confirmation run.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

By

OPM

Prep Date 03/15/13

Client Sample ID:	MW-9
Lab Sample ID:	JB3099

File ID

2G78720.D

JB30991-1

Date Sampled: 03/11/13 Date Received: 03/11/13

Matrix:

AQ - Ground Water SW846 8082A SW846 3510C

DF

1

Percent Solids: n/a

Method: Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Analyzed

03/16/13

Prep Batch Analytical Batch OP64424 G2G2616

Run #1 Run #2

	Initial Volume	Final Volume
Run #1	915 ml	10.0 ml
Run #2		

PCB List

CASN	٧o.	Compound	Result	RL	MDL	Units	Q
12674-	-11-2	Aroclor 1016	ND	0.55	0.14	ug/l	
11104-	-28-2	Aroclor 1221	ND	0.55	0.30	ug/l	
11141-	-16-5	Aroclor 1232	ND	0.55	0.42	ug/l	
53469-	-21-9	Aroclor 1242	ND	0.55	0.094	ug/l	
12672-	-29-6	Aroclor 1248	ND	0.55	0.16	ug/l	
11097-	-69-1	Aroclor 1254	ND	0.55	0.15	ug/l	
11096-	82-5	Aroclor 1260	ND	0.55	0.23	ug/l	
11100-	14-4	Aroclor 1268	ND	0.55	0.14	ug/l	
37324-	23-5	Aroclor 1262	ND	0.55	0.066	ug/l	
CAS N	lo.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
877-09	-8	Tetrachloro-m-xylene	84%		27-1	44%	
877-09	8-8	Tetrachloro-m-xylene	76%		27-1	44%	
2051-2	4-3	Decachlorobiphenyl	59%		10-1	39%	
2051-2	4-3	Decachlorobiphenyl	52%		10-1	39%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

_=

Report of Analysis

Client Sample ID: MW-9

Lab Sample ID: JB30991-1

Matrix:

AQ - Ground Water

Date Sampled: 03/11/13 Date Received: 03/11/13

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	491	200	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Antimony	< 1.0	1.0	ug/l	2	03/14/13	03/18/13 VC	SW846 6020A ¹	SW846 3010A ⁴
Arsenic	< 3.0	3.0	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Barium	< 200	200	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Beryllium	< 1.0	1.0	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Cadmium	< 3.0	3.0	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Calcium	110000	5000	ug/1	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Chromium	300	10	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Cobalt	< 50	50	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Copper	13.4	10	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Iron	2150	100	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Lead	< 3.0	3.0	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Magnesium	7940	5000	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Manganese	691	15	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Mercury	< 0.20	0.20	ug/l	1	03/22/13	03/22/13 DP	SW846 7470A ²	SW846 7470A ⁶
Nickel	146	10	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Potassium	10400	10000	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Selenium	< 10	10	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Silver	< 10	10	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Sodium	78300	10000	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Thallium	< 1.0	1.0	ug/l	2	03/14/13	03/18/13 VC	SW846 6020A ¹	SW846 3010A ⁴
Vanadium	< 50	50	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Zinc	< 20	20	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵

(1) Instrument QC Batch: MA30729
(2) Instrument QC Batch: MA30768
(3) Instrument QC Batch: MA30771
(4) Prep QC Batch: MP70451
(5) Prep QC Batch: MP70451A
(6) Prep QC Batch: MP70641

Page 1 of 1

Client Sample ID: MW-9 Lab Sample ID:

JB30991-1

AQ - Ground Water

Date Sampled: Date Received: 03/11/13

03/11/13

Percent Solids: n/a

Project:

Matrix:

Via Verde, 700-730 Brook Avenue, Bronx, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent Chromium, Trivalent ^a	< 0.010 0.30	0.010 0.020	mg/l mg/l	1 1	03/11/13 21:59 03/23/13 05:32		SW846 7196A SW846 6010/7196A M

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

2

Report of Analysis

Client Sample ID: MW-9

Lab Sample ID: JB30991-1F

Matrix:

AQ - Groundwater Filtered

Date Sampled: 03/11/13 Date Received: 03/11/13

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	434	200	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Antimony	< 1.0	1.0	ug/l	2	03/14/13	03/18/13 VC	SW846 6020A ¹	SW846 3010A ⁴
Arsenic	< 3.0	3.0	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Barium	< 200	200	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Beryllium	< 1.0	1.0	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Cadmium	< 3.0	3.0	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Calcium	113000	5000	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Chromium	380	10	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Cobalt	< 50	50	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Copper	13.2	10	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Iron	2290	100	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Lead	< 3.0	3.0	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Magnesium	7990	5000	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Manganese	708	15	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Mercury	< 0.20	0.20	ug/l	1	03/22/13	03/22/13 DP	SW846 7470A ²	SW846 7470A ⁶
Nickel	187	10	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Potassium	10500	10000	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Selenium	< 10	10	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Silver	< 10	10	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Sodium	80800	10000	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Thallium	< 1.0	1.0	ug/l	2	03/14/13	03/18/13 VC	SW846 6020A ¹	SW846 3010A ⁴
Vanadium	< 50	50	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Zinc	< 20	20	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵

(1) Instrument QC Batch: MA30729
(2) Instrument QC Batch: MA30768
(3) Instrument QC Batch: MA30771
(4) Prep QC Batch: MP70451
(5) Prep QC Batch: MP70451A
(6) Prep QC Batch: MP70641

Client Sample ID: MW-9

Lab Sample ID:

JB30991-1F

Matrix:

AQ - Groundwater Filtered

Date Sampled: Date Received:

03/11/13 03/11/13

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

General Chemistry

Method RLUnits DF Analyzed By Analyte Result mg/l 03/11/13 21:59 CW SW846 7196A 0.0101 Chromium, Hexavalent < 0.010 03/23/13 05:37 BL SW846 6010/7196A M Chromium, Trivalent a 0.020mg/l 1 0.38

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

Client Sample ID: MW-7

Lab Sample ID:

JB30991-2

Matrix: Method: AQ - Ground Water

SW846 8260B

Date Sampled: Date Received: 03/11/13 03/11/13

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

File ID

DF 1

Analyzed By 03/19/13 NT Prep Date n/a

Prep Batch

Analytical Batch

n/a

V3D3623

Run #1 Run #2

Purge Volume

3D84236.D

Run #1 Run #2 5.0 ml

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units Q
67-64-1	Acetone	ND R	10	3.3	ug/l
71-43-2	Benzene	ND	1.0	0.24	ug/l
108-86-1	Bromobenzene	ND	5.0	0.14	ug/l
74-97-5	Bromochloromethane	ND	5.0	0.30	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.21	ug/l
75-25-2	Bromoform	ND	4.0	0.21	ug/l
74-83-9	Bromomethane	ND	2.0	0.22	ug/l
78-93-3	2-Butanone (MEK)	ND K	10	2.4	ug/l
104-51-8	n-Butylbenzene	ND	5.0	0.17	ug/l
135-98-8	sec-Butylbenzene	ND	5.0	0.21	ug/l
98-06-6	tert-Butylbenzene	ND	5.0	0.30	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	0.22	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.23	ug/l
75-00-3	Chloroethane	ND	1.0	0.26	ug/l
67-66-3	Chloroform	ND	1.0	0.20	ug/l
74-87-3	Chloromethane	ND	1.0	0.21	ug/l
95-49-8	o-Chlorotoluene	ND	5.0	0.15	ug/l
106-43-4	p-Chlorotoluene	ND	5.0	0.30	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	10	0.54	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.14	ug/I
106-93-4	1,2-Dibromoethane	ND	2.0	0.20	ug/I
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.22	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.30	ug/l
75-71-8	Dichlorodifluoromethane	ND	5.0	0.27	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.11	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.26	ug/l
75-35-4	1,1-Dichloroethene	ND	1.0	0.19	ug/l
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.19	ug/l
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.21	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.48	ug/l
142-28-9	1,3-Dichloropropane	ND	5.0	0.23	ug/l

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Client Sample ID: MW-7

Lab Sample ID:

JB30991-2

Matrix:

Project:

AQ - Ground Water

Method:

SW846 8260B

Via Verde, 700-730 Brook Avenue, Bronx, NY

Date Sampled: 03/11/13 Date Received: 03/11/13

Percent Solids: n/a

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q	
594-20-7	2,2-Dichloropropane	ND	5.0	0.15	ug/l		
563-58-6	1,1-Dichloropropene	ND	5.0	0.30	ug/l		
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.21	ug/l		
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.19	ug/l		
100-41-4	Ethylbenzene	ND	1.0	0.23	ug/l		
87-68-3	Hexachlorobutadiene	ND	5.0	0.24	ug/l		
98-82-8	Isopropylbenzene	ND	2.0	0.45	ug/l		
99-87-6	p-Isopropyltoluene	ND	5.0	0.22	ug/l		
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.16	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	0.83	ug/l		
74-95-3	Methylene bromide	ND	5.0	0.26	ug/l		
75-09-2	Methylene chloride	ND	2.0	0.70	ug/l		
91-20-3	Naphthalene	ND -	5.0	1.1	ug/l		
103-65-1	n-Propylbenzene	ND	5.0	0.24	ug/l		
100-42-5	Styrene	ND	5.0	0.21	ug/l		
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.24	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.28	ug/l		
108-88-3	Toluene	ND	1.0	0.23	ug/l		
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	0.28	ug/l		
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.20	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.24	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.29	ug/l		
79-01-6	Trichloroethene	0.24	1.0	0.22	ug/l	J	
75-69-4	Trichlorofluoromethane	ND	5.0	0.27	ug/l		
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.53	ug/l		
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.19	ug/l		
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.36	ug/l		
75-01-4	Vinyl chloride	ND	1.0	0.21	ug/l		
.0 02 2	m,p-Xylene	ND	1.0	0.42	ug/l		
95-47-6	o-Xylene	ND	1.0	0.24	ug/l		
1330-20-7	Xylene (total)	ND	1.0	0.24	ug/l		
1000 20 1	Aylene (total)	112	110		-6		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits				
1868-53-7	Dibromofluoromethane	112%	81-121%				
17060-07-0	1,2-Dichloroethane-D4	108%	74-127%				
2037-26-5	Toluene-D8	112%	80-122%				
460-00-4	4-Bromofluorobenzene	105%	78-116%				
200 00 1							

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B \,=\, Indicates \ analyte \ found \ in \ associated \ method \ blank$ N = Indicates presumptive evidence of a compound

Client Sample ID: MW-7 Lab Sample ID:

JB30991-2

Date Sampled: 03/11/13 Date Received: 03/11/13

Matrix:

AQ - Ground Water

Percent Solids: n/a

Method:

SW846 8270D SW846 3510C

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	F21875.D	1	03/26/13	AD	03/15/13	OP64419	EF5131

ER3881 Run #2 a R97905.D 03/21/13 **ALS** 03/15/13 OP64419 1

Initial Volume Final Volume Run #1 950 ml 1.0 ml Run #2 930 ml 1.0 ml

ABN TCL List (CLP4.2 list)

CAS No.	Compound	Result	RL	MDL	Units Q)
95-57-8	2-Chlorophenol	ND	5.3	1.0	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.3	1.9	ug/l	
120-83-2	2,4-Dichlorophenol	ND	5.3	1.2	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.3	1.6	ug/l	
51-28-5	2,4-Dinitrophenol	NE UJ	21	17	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	21	1.0	ug/l	
95-48-7	2-Methylphenol	ND	2.1	1.1	ug/l	
	3&4-Methylphenol	ND	2.1	0.97	ug/l	
88-75-5	2-Nitrophenol	ND	5.3	1.6	ug/l	
100-02-7	4-Nitrophenol	ND	11	5.5	ug/l	
87-86-5	Pentachlorophenol	ND	11	1.5	ug/l	
108-95-2	Phenol	ND	2.1	1.3	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.3	1.6	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.3	1.4	ug/l	
83-32-9	Acenaphthene	ND	1.1	0.28	ug/l	
208-96-8	Acenaphthylene	ND	1.1	0.24	ug/l	
98-86-2	Acetophenone	ND	2.1	0.30	ug/I	
120-12-7	Anthracene	ND	1.1	0.30	ug/I	
1912-24-9	Atrazine	ND	5.3	0.51	ug/l	
100-52-7	Benzaldehyde	ND	5.3	3.4	ug/I	
56-55-3	Benzo(a)anthracene	ND	1.1	0.24	ug/I	
50-32-8	Benzo(a)pyrene	ND	1.1	0.24	ug/1	
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.48	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.34	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.54	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.1	0.38	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.1	0.30	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.1	0.32	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.1	0.31	ug/l	
106-47-8	4-Chloroaniline	ND	5.3	0.56	ug/l	
86-74-8	Carbazole	ND	1.1	0.38	ug/l	
105-60-2	Caprolactam	ND	2.1	0.73	ug/l	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Client Sample ID: MW-7

Lab Sample ID:

JB30991-2

AQ - Ground Water

03/11/13 Date Sampled: Date Received:

03/11/13

Matrix: Method:

SW846 8270D SW846 3510C

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

ABN TCL List (CLP4.2 list)

ABN ICL I	List (CLI 4.2 list)					
CAS No.	Compound	Result	RL	MDL	Units	Q
218-01-9	Chrysene	ND	1.1	0.30	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.1	0.32	ug/l	
111-44-4	bis (2-Chloroethyl) ether	ND	2.1	0.32	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.1	0.48	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.1	0.33	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	2.1	0.45	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	2.1	0.49	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.3	0.38	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.40	ug/l	
132-64-9	Dibenzofuran	ND	5.3	0.28	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.1	0.58	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.1	0.32	ug/l	
84-66-2	Diethyl phthalate	ND	2.1	0.34	ug/I	
131-11-3	Dimethyl phthalate	ND	2.1	0.30	ug/l	
117-81-7	bis (2-Ethylhexyl) phthalate	ND	2.1	0.62	ug/l	
206-44-0	Fluoranthene	ND	1.1	0.33	ug/l	
86-73-7	Fluorene	ND	1.1	0.29	ug/l	
118-74-1	Hexachlorobenzene	ND	1.1	0.36	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.1	0.54	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	11	7.5	ug/l	
67-72-1	Hexachloroethane	ND	2.1	0.58	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.39	ug/l	
78-59-1	Isophorone	ND	2.1	0.29	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.1	0.40	ug/l	
88-74-4	2-Nitroaniline	ND	5.3	1.2	ug/l	
99-09-2	3-Nitroaniline	ND	5.3	1.3	ug/l	
100-01-6	4-Nitroaniline	ND	5.3	1.7	ug/l	
91-20-3	Naphthalene	ND	1.1	0.27	ug/l	
98-95-3	Nitrobenzene	ND	2.1	0.44	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.1	0.32	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.3	0.32	ug/l	
85-01-8	Phenanthrene	ND	1.1	0.31	ug/l	
129-00-0	Pyrene	ND	1.1	0.28	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	40%	46%	10-8		
4165-62-2	Phenol-d5	28%	30%	10-7		
118-79-6	2,4,6-Tribromophenol	100%	78%		48%	
4165-60-0	Nitrobenzene-d5	81%	72%	38-1	29%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

 $B \,=\, Indicates \ analyte \ found \ in \ associated \ method \ blank$

Lab Sample ID:

JB30991-2

Matrix: Method:

Project:

AQ - Ground Water

SW846 8270D SW846 3510C

Via Verde, 700-730 Brook Avenue, Bronx, NY

03/11/13 Date Sampled:

03/11/13 Date Received:

Percent Solids: n/a

ABN TCL List (CLP4.2 list)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
321-60-8	2-Fluorobiphenyl	62%	69%	42-117%
1718-51-0	Terphenyl-d14	96%	96%	14-132%

(a) Confirmation run.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

By

OPM

Page 1 of 1

Client Sample ID: MW-7

Lab Sample ID:

JB30991-2

AQ - Ground Water

Date Sampled: Date Received:

03/11/13 03/11/13

Matrix: Method:

SW846 8082A SW846 3510C

DF

1

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Analyzed

03/16/13

Prep Batch

Analytical Batch G2G2616

Run #1 Run #2

03/15/13

Prep Date

OP64424

Initial Volume 910 ml

File ID

2G78721.D

Final Volume 10.0 ml

Run #1 Run #2

PCB List

2051-24-3

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	0.55	0.14	ug/l	
11104-28-2	Aroclor 1221	ND	0.55	0.30	ug/l	
11141-16-5	Aroclor 1232	ND	0.55	0.42	ug/l	
53469-21-9	Aroclor 1242	ND	0.55	0.095	ug/l	
12672-29-6	Aroclor 1248	ND	0.55	0.16	ug/l	
11097-69-1	Aroclor 1254	ND	0.55	0.15	ug/l	
11096-82-5	Aroclor 1260	ND	0.55	0.23	ug/l	
11100-14-4	Aroclor 1268	ND	0.55	0.14	ug/l	
37324-23-5	Aroclor 1262	ND	0.55	0.066	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	82%		27-1	44%	
877-09-8	Tetrachloro-m-xylene	78%		27-1	44%	
2051-24-3	Decachlorobiphenyl	72%		10-13	39%	

64%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

Decachlorobiphenyl

J = Indicates an estimated value

10-139%

Client Sample ID: MW-7

Lab Sample ID:

JB30991-2

Matrix:

AQ - Ground Water

Date Sampled: Date Received:

Percent Solids: n/a

03/11/13 03/11/13

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	< 200	200	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Antimony	< 1.0	1.0	ug/l	2	03/14/13	03/19/13 VC	SW846 6020A ¹	SW846 3010A ⁴
Arsenic	< 3.0	3.0	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Barium	< 200	200	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Beryllium	< 1.0	1.0	ug/I	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Cadmium	< 3.0	3.0	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Calcium	129000	5000	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Chromium	< 10	10	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Cobalt	< 50	50	ug/I	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Copper	< 10	10	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Iron	228	100	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Lead	< 3.0	3.0	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Magnesium	25600	5000	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Manganese	43.1	15	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Mercury	< 0.20	0.20	ug/l	1	03/22/13	03/22/13 DP	SW846 7470A ²	SW846 7470A ⁶
Nickel	< 10	10	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Potassium	< 10000	10000	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Selenium	< 10	10	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Silver	< 10	10	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Sodium	60300	10000	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Thallium	< 1.0	1.0	ug/l	2	03/14/13	03/19/13 VC	SW846 6020A ¹	SW846 3010A ⁴
Vanadium	< 50	50	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Zinc	< 20	20	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵

(1) Instrument QC Batch: MA30737 (2) Instrument QC Batch: MA30768 (3) Instrument QC Batch: MA30771 (4) Prep QC Batch: MP70451 (5) Prep QC Batch: MP70451A (6) Prep QC Batch: MP70641

Client Sample ID: MW-7 Lab Sample ID:

JB30991-2

AQ - Ground Water

Date Sampled: Date Received:

03/11/13 03/11/13 Percent Solids: n/a

Project:

Matrix:

Via Verde, 700-730 Brook Avenue, Bronx, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent	< 0.010	0.010	mg/l	1	03/11/13 21:59		SW846 7196A
Chromium, Trivalent ^a	< 0.020	0.020	mg/l	1	03/23/13 04:56		SW846 6010/7196A M

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

Client Sample ID: MW-7

Lab Sample ID:

JB30991-2F

Matrix:

AQ - Groundwater Filtered

Date Sampled: 03/11/13

Date Received: 03/11/13

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	< 200	200	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Antimony	< 1.0	1.0	ug/l	2	03/14/13	03/18/13 VC	SW846 6020A ¹	SW846 3010A ⁴
Arsenic	< 3.0	3.0	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Barium	< 200	200	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Beryllium	< 1.0	1.0	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Cadmium	< 3.0	3.0	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Calcium	130000	5000	ug/1	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Chromium	< 10	10	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Cobalt	< 50	50	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Copper	< 10	10	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Iron	123	100	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Lead	< 3.0	3.0	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Magnesium	25700	5000	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Manganese	41.3	15	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Mercury	< 0.20	0.20	ug/l	1	03/22/13	03/22/13 DP	SW846 7470A ²	SW846 7470A ⁶
Nickel	< 10	10	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Potassium	< 10000	10000	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Selenium	< 10	10	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Silver	< 10	10	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Sodium	60300	10000	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Thallium	< 1.0	1.0	ug/l	2	03/14/13	03/18/13 VC	SW846 6020A ¹	SW846 3010A ⁴
Vanadium	< 50	50	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵
Zinc	< 20	20	ug/l	1	03/14/13	03/23/13 BL	SW846 6010C ³	SW846 3010A ⁵

(1) Instrument QC Batch: MA30729
(2) Instrument QC Batch: MA30768
(3) Instrument QC Batch: MA30771
(4) Prep QC Batch: MP70451
(5) Prep QC Batch: MP70451A
(6) Prep QC Batch: MP70641

Lab Sample ID:

JB30991-2F

Matrix:

AQ - Groundwater Filtered

Date Sampled: 03/11/13

03/11/13

Date Received:

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent	< 0.010	0.010	mg/l	1	03/11/13 21:59		SW846 7196A
Chromium, Trivalent ^a	< 0.020	0.020	mg/l	1	03/23/13 05:20		SW846 6010/7196A M

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

Client Sample ID: TRIP BLANK

Lab Sample ID: JB30991-3
Matrix: AQ - Trip Blank Water

AQ - Trip Blank Water Date Received: 03/11/13 SW846 8260B Percent Solids: n/a

Date Sampled:

03/11/13

Project: Via Verde, 700-730 Brook Avenue, Bronx, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 3D84235.D 1 03/19/13 NT n/a n/a V3D3623

Run #2

Method:

Purge Volume

Run #1 5.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	NO R	10	3.3	ug/l	
71-43-2	Benzene	ND	1.0	0.24	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.14	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.30	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.21	ug/l	
75-25-2	Bromoform	ND	4.0	0.21	ug/I	
74-83-9	Bromomethane	ND	2.0	0.22	ug/l	
78-93-3	2-Butanone (MEK)	ND R	10	2.4	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	0.17	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	0.21	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	0.30	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.22	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.23	ug/l	
75-00-3	Chloroethane	ND	1.0	0.26	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
74-87-3	Chloromethane	ND	1.0	0.21	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	0.15	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.30	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	10	0.54	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.14	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.20	ug/I	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.22	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.30	ug/l	
75-71-8	Dichlorodifluoromethane	ND	5.0	0.27	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.11	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.26	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.19	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.19	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.21	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.48	ug/l	
142-28-9	1,3-Dichloropropane	ND	5.0	0.23	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TRIP BLANK

Lab Sample ID:

JB30991-3

Matrix:

AQ - Trip Blank Water

Method:

SW846 8260B

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Date Received: 03/11/13 Percent Solids: n/a

03/11/13

Date Sampled:

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7	2,2-Dichloropropane	ND	5.0	0.15	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	0.30	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.19	ug/I	
100-41-4	Ethylbenzene	ND	1.0	0.23	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.24	ug/l	
98-82-8	Isopropylbenzene	ND	2.0	0.45	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	0.22	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.16	ug/I	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	0.83	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.26	ug/I	
75-09-2	Methylene chloride	ND	2.0	0.70	ug/I	
91-20-3	Naphthalene	ND	5.0	1.1	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	0.24	ug/l	
100-42-5	Styrene	ND	5.0	0.21	ug/I	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.24	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.28	ug/l	
108-88-3	Toluene	ND	1.0	0.23	ug/I	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	0.28	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.20	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.24	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.29	ug/I	
79-01-6	Trichloroethene	ND	1.0	0.22	ug/I	
75-69-4	Trichlorofluoromethane	ND	5.0	0.27	ug/I	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.53	ug/I	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.19	ug/I	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.36	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.21	ug/l	
	m,p-Xylene	ND	1.0	0.42	ug/I	
95-47-6	o-Xylene	ND	1.0	0.24	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.24	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	114%		81-12	21%	
17060-07-0	1,2-Dichloroethane-D4	109%		74-12	27%	
2037-26-5	Toluene-D8	112%		80-12	22%	
460-00-4	4-Bromofluorobenzene	105%		78-11	16%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Lab Sample ID: Matrix:

JB31271-1

Date Sampled: Date Received: 03/13/13 03/13/13

Method:

AQ - Ground Water SW846 8260B

Percent Solids: n/a

Project:

DF

1

Via Verde, 700-730 Brook Avenue, Bronx, NY

Prep Batch

Analytical Batch

Run #1 Run #2 1A125916.D

Analyzed By CC03/22/13

Prep Date n/a

n/a

V1A5417

Purge Volume

Run #1

 $5.0 \, \mathrm{ml}$

File ID

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	NDR	10	3.3	ug/l	
71-43-2	Benzene	ND	1.0	0.24	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.14	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.30	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.21	ug/l	
75-25-2	Bromoform	ND	4.0	0.21	ug/l	
74-83-9	Bromomethane	ND	2.0	0.22	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.4	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	0.17	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	0.21	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	0.30	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.22	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.23	ug/l	
75-00-3	Chloroethane	ND	1.0	0.26	ug/l	
67-66-3	Chloroform	12.3	1.0	0.20	ug/l	
74-87-3	Chloromethane	ND	1.0	0.21	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	0.15	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.30	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	10	0.54	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.14	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.20	ug/I	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.22	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.30	ug/l	
75-71-8	Dichlorodifluoromethane	ND	5.0	0.27	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.11	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.26	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.19	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.19	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.21	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.48	ug/l	
142-28-9	1,3-Dichloropropane	ND	5.0	0.23	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 2 of 2

Client Sample ID: MW-6

Lab Sample ID: JB31271-1

Matrix:

AQ - Ground Water

Method: Project:

SW846 8260B

Via Verde, 700-730 Brook Avenue, Bronx, NY

Report of Analysis

Date Sampled: 03/13/13 Date Received: 03/13/13

Percent Solids: n/a

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
	-		- 0		14	,
594-20-7	2,2-Dichloropropane	ND	5.0	0.15	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	0.30	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.19	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.23	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.24	ug/I	
98-82-8	Isopropylbenzene	ND	2.0	0.45	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	0.22	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.16	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	0.83	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.26	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.70	ug/l	
91-20-3	Naphthalene	ND	5.0	1.1	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	0.24	ug/l	
100-42-5	Styrene	ND	5.0	0.21	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.24	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.28	ug/l	
108-88-3	Toluene	ND	1.0	0.23	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	0.28	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.20	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.24	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.29	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.22	ug/l	
75-69-4	Trichlorofluoromethane	ND	5.0	0.27	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.53	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.19	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.36	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.21	ug/l	
10 01 1	m,p-Xylene	ND	1.0	0.42	ug/l	
95-47-6	o-Xylene	ND	1.0	0.24	ug/l	
1330-20-7	Xylene (total)	0.27	1.0	0.24	ug/l	J
1000 20 7	Aylene (total)	0.21	1.0	0,21	чь, т	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	97%		81-12	21%	
17060-07-0	1,2-Dichloroethane-D4	86%		74-12		
2037-26-5	Toluene-D8	94%		80-12		
460-00-4	4-Bromofluorobenzene	85%		78-11		
100-00-1	1 Diomondonomente	0070		,011	. 0 / 0	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-6

Lab Sample ID:

JB31271-1

AQ - Ground Water

Date Sampled: Date Received:

03/13/13 03/13/13

Matrix: Method:

SW846 8270D SW846 3510C

Project:

Percent Solids: n/a

Via Verde, 700-730 Brook Avenue, Bronx, NY

Analyzed

04/03/13

Prep Batch

Analytical Batch

Run #1 Run #2 File ID F22233.D DF 1

By NAP Prep Date 03/19/13

OP64567

EF5143

Initial Volume 900 mI

Final Volume

Run #1

1.0 ml

Run #2

ABN TCL List (CLP4.2 list)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.6	1.1	ug/I	
59-50-7	4-Chloro-3-methyl phenol	ND	5.6	2.0	ug/l	
120-83-2	2,4-Dichlorophenol	ND	5.6	1.3	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.6	1.7	ug/l	
51-28-5	2,4-Dinitrophenol	ND K	22	18	ug/l	
534-52-1	4,6-Dinitro-o-cresol	NDUJ	22	1.1	ug/l	
95-48-7	2-Methylphenol	ND	2.2	1.2	ug/l	
	3&4-Methylphenol	ND	2.2	1.0	ug/l	
88-75-5	2-Nitrophenol	ND	5.6	1.7	ug/l	
100-02-7	4-Nitrophenol	ND	11	5.8	ug/l	
87-86-5	Pentachlorophenol	ND UJ	11	1.5	ug/l	
108-95-2	Phenol	ND	2.2	1.4	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.6	1.7	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.6	1.4	ug/l	
83-32-9	Acenaphthene	ND	1.1	0.29	ug/l	
208-96-8	Acenaphthylene	ND	1.1	0.25	ug/l	
98-86-2	Acetophenone	ND	2.2	0.32	ug/l	
120-12-7	Anthracene	ND	1.1	0.32	ug/l	
1912-24-9	Atrazine	ND	5.6	0.54	ug/l	
100-52-7	Benzaldehyde	ND	5.6	3.6	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.1	0.25	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.1	0.25	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.51	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.36	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.57	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.2	0.40	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.2	0.32	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.1	0.34	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.2	0.33	ug/l	
106-47-8	4-Chloroaniline	ND	5.6	0.59	ug/l	
86-74-8	Carbazole	ND	1.1	0.40	ug/l	
105-60-2	Caprolactam	ND	2.2	0.77	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-6

JB31271-1 Lab Sample ID:

Matrix:

AQ - Ground Water

Method:

SW846 8270D SW846 3510C

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Date Received: 03/13/13 Percent Solids: n/a

03/13/13

Date Sampled:

ABN TCL List (CLP4.2 list)

CAS No.	Compound	Result	RL	MDL	Units	Q
218-01-9	Chrysene	ND	1.1	0.32	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.2	0.34	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.2	0.34	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.2	0.50	ug/l	
7005-72-3		ND	2.2	0.35	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	2.2	0.47	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	2.2	0.51	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.6	0.40	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.42	ug/l	
132-64-9	Dibenzofuran	ND	5.6	0.29	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.2	0.62	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.2	0.34	ug/l	
84-66-2	Diethyl phthalate	ND	2.2	0.36	ug/l	
131-11-3	Dimethyl phthalate	ND	2.2	0.31	ug/l	
117-81-7	bis (2-Ethylhexyl) phthalate	ND	2.2	0.65	ug/l	
206-44-0	Fluoranthene	ND	1.1	0.35	ug/l	
86-73-7	Fluorene	ND	1.1	0.31	ug/l	
118-74-1	Hexachlorobenzene	ND	1.1	0.38	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.1	0.57	ug/l	
77-47-4	Hexachlorocyclopentadiene	NĐ VJ	11	7.9	ug/l	
67-72-1	Hexachloroethane	ND	2.2	0.61	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.42	ug/l	
78-59-1	Isophorone	ND	2.2	0.30	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.1	0.43	ug/l	
88-74-4	2-Nitroaniline	ND	5.6	1.2	ug/l	
99-09-2	3-Nitroaniline	ND	5.6	1.4	ug/l	
100-01-6	4-Nitroaniline	ND	5.6	1.8	ug/l	
91-20-3	Naphthalene	ND	1.1	0.29	ug/l	
98-95-3	Nitrobenzene	ND	2.2	0.47	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.2	0.34	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.6	0.34	ug/l	
85-01-8	Phenanthrene	ND	1.1	0.32	ug/l	
129-00-0	Pyrene	ND	1.1	0.30	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	45%		10-8	3%	
4165-62-2		28%		10-7	4%	
118-79-6	2,4,6-Tribromophenol	112%		24-1	48%	
4165-60-0	Nitrobenzene-d5	94%		38-1	29%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Lab Sample ID:

JB31271-1

Matrix:

AQ - Ground Water

SW846 8270D SW846 3510C

Method: Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Date Sampled: 03/13/13

Date Received: 03/13/13

Percent Solids: n/a

ABN TCL List (CLP4.2 list)

CAS No.

Surrogate Recoveries

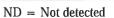
Run#1

Run#2 Limits

321-60-8

2-Fluorobiphenyl

88%


42-117%

1718-51-0

Terphenyl-d14

100%

14-132%

Lab Sample ID: Matrix:

JB31271-1

AQ - Ground Water

Date Sampled: Date Received:

03/13/13 03/13/13

Method:

SW846 8082A SW846 3510C

Percent Solids: n/a

Via Verde, 700-730 Brook Avenue, Bronx, NY Project:

File ID Run #1 2G79012.D

DF Analyzed 03/22/13 1

Prep Date 03/18/13

By

OPM

Prep Batch OP64531

Analytical Batch G2G2621

Run #2

Initial Volume 910 ml

Final Volume 10.0 ml

Run #1 Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	0.55	0.14	ug/l	
11104-28-2	Aroclor 1221	ND	0.55	0.30	ug/l	
11141-16-5	Aroclor 1232	ND	0.55	0.42	ug/l	
53469-21-9	Aroclor 1242	ND	0.55	0.095	ug/l	
12672-29-6	Aroclor 1248	ND	0.55	0.16	ug/l	
11097-69-1	Aroclor 1254	ND	0.55	0.15	ug/l	
11096-82-5	Aroclor 1260	ND	0.55	0.23	ug/l	
11100-14-4	Aroclor 1268	ND	0.55	0.14	ug/l	
37324-23-5	Aroclor 1262	ND	0.55	0.066	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	2 Limits		
877-09-8	Tetrachloro-m-xylene	71%		27-1	14%	
877-09-8	Tetrachloro-m-xylene	65%		27-14	44%	
2051-24-3	Decachlorobiphenyl	65%		10-13	39%	
2051-24-3	Decachlorobiphenyl	62%	10-139%			

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Lab Sample ID: JB31271-1 AQ - Ground Water Matrix:

Date Sampled: 03/13/13 Date Received: 03/13/13 Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	2230	200	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Antimony	< 1.0	1.0	ug/l	2	03/21/13	03/22/13 VC	SW846 6020A ¹	SW846 3010A ⁵
Arsenic	< 3.0	3.0	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Barium	< 200	200	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Beryllium	< 1.0	1.0	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Cadmium	< 3.0	3.0	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Calcium	49000	5000	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Chromium	37.7	10	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Cobalt	< 50	50	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Copper	< 10	10	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Iron	2810	100	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Lead	< 3.0	3.0	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Magnesium	6660	5000	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Manganese	76.2	15	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Mercury	< 0.20	0.20	ug/l	1	03/23/13	03/23/13 RP	SW846 7470A ³	SW846 7470A ⁶
Nickel	22.0	10	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Potassium	< 10000	10000	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Selenium	< 10	10	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Silver	< 10	10	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Sodium	27600	10000	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Thallium	< 1.0	1.0	ug/l	2	03/21/13	03/22/13 VC	SW846 6020A ¹	SW846 3010A ⁵
Vanadium	< 50	50	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Zinc	22.3	20	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴

Report of Analysis

(1) Instrument QC Batch: MA30767 (2) Instrument QC Batch: MA30771 (3) Instrument QC Batch: MA30779 (4) Prep QC Batch: MP70618 (5) Prep QC Batch: MP70618A (6) Prep QC Batch: MP70675

Lab Sample ID:

JB31271-1

Matrix:

AQ - Ground Water

Date Sampled: Date Received:

03/13/13 03/13/13

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

General Chemistry

Result RLUnits DF Analyzed Method Analyte By Chromium, Hexavalent < 0.010 0.010mg/l 1 03/14/13 10:12 AD SW846 7196A Chromium, Trivalent a 0.038 0.020mg/l 1 03/23/13 00:18 BL SW846 6010/7196A M

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

Client Sample ID: MW-6

Lab Sample ID: JB31271-1F Date Sampled: 03/13/13

Matrix: AQ - Groundwater Filtered Date Received: 03/13/13

Percent Solids: n/a

Project: Via Verde, 700-730 Brook Avenue, Bronx, NY

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	344	200	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Antimony	< 1.0	1.0	ug/l	2	03/21/13	03/22/13 VC	SW846 6020A ¹	SW846 3010A ⁵
Arsenic	< 3.0	3.0	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Barium	< 200	200	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Beryllium	< 1.0	1.0	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Cadmium	< 3.0	3.0	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Calcium	46700	5000	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Chromium	< 10	10	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ^{. 4}
Cobalt	< 50	50	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Copper	< 10	10	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Iron	419	100	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Lead	< 3.0	3.0	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Magnesium	5760	5000	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Manganese	20.3	15	ug/I	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Mercury	< 0.20	0.20	ug/l	1	03/23/13	03/23/13 RP	SW846 7470A ³	SW846 7470A ⁶
Nickel	14.7	10	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Potassium	< 10000	10000	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Selenium	< 10	10	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Silver	< 10	10	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Sodium	26700	10000	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Thallium	< 1.0	1.0	ug/l	2	03/21/13	03/22/13 VC	SW846 6020A ¹	SW846 3010A ⁵
Vanadium	< 50	50	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Zinc	< 20	20	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴

(1) Instrument QC Batch: MA30767
(2) Instrument QC Batch: MA30771
(3) Instrument QC Batch: MA30779
(4) Prep QC Batch: MP70618
(5) Prep QC Batch: MP70618A
(6) Prep QC Batch: MP70675

Lab Sample ID: JB31271-1F

Matrix:

AQ - Groundwater Filtered

Date Sampled: 03/13/13

Date Received: 03/13/13
Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent	< 0.010	0.010	mg/l	1	03/14/13 10:16		SW846 7196A
Chromium, Trivalent ^a	< 0.020	0.020	mg/l	1	03/23/13 02:34		SW846 6010/7196A M

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

Client Sample ID: MW-8

Lab Sample ID: JB31271-2

Matrix: Method: AQ - Ground Water

SW846 8260B

Via Verde, 700-730 Brook Avenue, Bronx, NY

Date Sampled: 03/13/13 Date Received: 03/13/13

Percent Solids: n/a

Project:

Prep Batch Analytical Batch Prep Date File ID DF Analyzed By CC n/a V1A5416 03/21/13 Run #1 1A125893.D n/a 1

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	10.5 J	10	3.3	ug/l	
71-43-2	Benzene	7.1	1.0	0.24	ug/l	
108-86-1	Bromobenzene	ND o	5.0	0.14	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.30	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.21	ug/l	
75-25-2	Bromoform	ND	4.0	0.21	ug/I	
74-83-9	Bromomethane	ND	2.0	0.22	ug/l	
78-93-3	2-Butanone (MEK)	ND P	10	2.4	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	0.17	ug/l	
135-98-8	sec-Butylbenzene	3.7	5.0	0.21	ug/l	J
98-06-6	tert-Butylbenzene	0.92	5.0	0.30	ug/l	J
56-23-5	Carbon tetrachloride	ND	1.0	0.22	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.23	ug/l	
75-00-3	Chloroethane	ND	1.0	0.26	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
74-87-3	Chloromethane	ND	1.0	0.21	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	0.15	ug/I	
106-43-4	p-Chlorotoluene	ND	5.0	0.30	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	10	0.54	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.14	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.20	ug/1	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.22	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.30	ug/l	
75-71-8	Dichlorodifluoromethane	ND	5.0	0.27	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.11	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.26	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.19	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.19	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.21	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.48	ug/l	
142-28-9	1,3-Dichloropropane	ND	5.0	0.23	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: MW-8

Lab Sample ID: JB31271-2

Matrix: Method:

Project:

AQ - Ground Water

SW846 8260B

Via Verde, 700-730 Brook Avenue, Bronx, NY

Date Sampled: 03/13/13 Date Received: 03/13/13

Percent Solids: n/a

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7	2,2-Dichloropropane	ND	5.0	0.15	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	0.30	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.19	ug/l	
100-41-4	Ethylbenzene	33.8	1.0	0.23	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.24	ug/l	
98-82-8	Isopropylbenzene	22,2	2.0	0.45	ug/l	
99-87-6	p-Isopropyltoluene	0.28	5.0	0.22	ug/l	J
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.16	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	0.83	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.26	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.70	ug/l	
91-20-3	Naphthalene	2.3	5.0	1.1	ug/l	J
103-65-1	n-Propylbenzene	34.8	5.0	0.24	ug/l	
100-42-5	Styrene	ND	5.0	0.21	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.24	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.28	ug/l	
108-88-3	Toluene	2.7	1.0	0.23	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	0.28	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.20	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.24	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.29	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.22	ug/l	
75-69-4	Trichlorofluoromethane	ND	5.0	0.27	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.53	ug/l	
95-63-6	1,2,4-Trimethylbenzene	1.1	2.0	0.19	ug/l	J
108-67-8	1,3,5-Trimethylbenzene	0.47	2.0	0.36	ug/l	J
75-01-4	Vinyl chloride	ND	1.0	0.21	ιιg/I	
	m,p-Xylene	3.1	1.0	0.42	ug/l	
95-47-6	o-Xylene	0.67	1.0	0.24	ug/1	J
1330-20-7	Xylene (total)	3.7	1.0	0.24	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	98%		81-1	21%	
17060-07-0	1,2-Dichloroethane-D4	87%		74-1	27%	
2037-26-5	Toluene-D8	98%		80-1	22%	
460-00-4	4-Bromofluorobenzene	86%		78-1	16%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Ву

NAP

Prep Date

03/19/13

Client Sample ID: MW-8

Lab Sample ID:

File ID F22234.D

JB31271-2 AQ - Ground Water Date Sampled: Date Received: 03/13/13 03/13/13

Matrix: Method:

SW846 8270D SW846 3510C

Percent Solids:

n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Analyzed

04/03/13

Prep Batch OP64567

Analytical Batch EF5143

Run #1 Run #2

Initial Volume 1000 ml Run #1

Final Volume 1.0 ml

DF

1

Run #2

ABN TCL List (CLP4.2 list)

95-57-8 2-Chlorophenol ND 5.0 0.97 ug/l	CAS No.	Compound	Result	RL	MDL	Units	Q
120-83-2 2,4-Dichlorophenol ND 5.0 1.2 ug/l	95-57-8	2-Chlorophenol	ND	5.0	0.97	ug/l	
105-67-9 2,4-Dimethylphenol ND 5.0 1.5 ug/l	59-50-7	4-Chloro-3-methyl phenol	ND	5.0	1.8	ug/l	
Si-28-5 2,4-Dinitrophenol ND 20 17 ug/l	120-83-2	2,4-Dichlorophenol	ND	5.0	1.2	ug/l	
S34-52-1	105-67-9	2,4-Dimethylphenol		5.0	1.5	ug/l	
95-48-7 2-Methylphenol ND 2.0 0.93 ug/l	51-28-5	2,4-Dinitrophenol	ND K	20	17	ug/l	
3&4-Methylphenol ND 2.0 0.93 ug/l 88-75-5 2-Nitrophenol ND 5.0 1.5 ug/l 100-02-7 4-Nitrophenol ND 10 5.2 ug/l 87-86-5 Pentachlorophenol ND 10 1.4 ug/l 108-95-2 Phenol ND 2.0 1.3 ug/l 95-95-4 2,4,5-Trichlorophenol ND 5.0 1.6 ug/l 88-06-2 2,4,6-Trichlorophenol ND 5.0 1.3 ug/l 83-32-9 Acenaphthylene ND 1.0 0.26 ug/l 208-96-8 Acenaphthylene ND 1.0 0.23 ug/l 98-86-2 Acetophenone ND 1.0 0.29 ug/l 120-12-7 Anthracene ND 1.0 0.29 ug/l 191-24-9 Atrazine ND 5.0 0.49 ug/l 100-52-7 Benzoldehyde ND 5.0 3.3 ug/l	534-52-1	4,6-Dinitro-o-cresol	NDUJ	20	0.99	ug/l	
88-75-5 2-Nitrophenol ND 5.0 1.5 ug/l 100-02-7 4-Nitrophenol ND 10 5.2 ug/l 87-86-5 Pentachlorophenol ND 10 1.4 ug/l 108-95-2 Phenol ND 2.0 1.3 ug/l 95-95-4 2,4,5-Trichlorophenol ND 5.0 1.6 ug/l 88-06-2 2,4,6-Trichlorophenol ND 5.0 1.3 ug/l 83-32-9 Acenaphthylene ND 1.0 0.26 ug/l 208-96-8 Acenaphthylene ND 1.0 0.23 ug/l 98-86-2 Acetophenone ND 1.0 0.29 ug/l 120-12-7 Anthracene ND 1.0 0.29 ug/l 1912-24-9 Atrazine ND 5.0 0.49 ug/l 100-52-7 Benzaldehyde ND 5.0 3.3 ug/l 50-32-8 Benzo(a)pyrene ND 1.0 0.	95-48-7	2-Methylphenol	ND	2.0	1.0	ug/l	
100-02-7 4-Nitrophenol ND 10 5.2 ug/l 87-86-5 Pentachlorophenol ND 10 1.4 ug/l 108-95-2 Phenol ND 2.0 1.3 ug/l 95-95-4 2,4,5-Trichlorophenol ND 5.0 1.6 ug/l 88-06-2 2,4,6-Trichlorophenol ND 5.0 1.3 ug/l 83-32-9 Acenaphthene ND 1.0 0.26 ug/l 208-96-8 Acenaphthylene ND 1.0 0.23 ug/l 98-86-2 Acetophenone ND 1.0 0.23 ug/l 120-12-7 Anthracene ND 1.0 0.29 ug/l 1912-24-9 Atrazine ND 5.0 0.49 ug/l 100-52-7 Benzaldehyde ND 5.0 3.3 ug/l 56-55-3 Benzo(a)anthracene ND 1.0 0.23 ug/l 50-32-8 Benzo(b)fluoranthene ND 1.0		3&4-Methylphenol	ND	2.0	0.93	ug/l	
100-02-7 4-Nitrophenol ND 10 5.2 ug/l 87-86-5 Pentachlorophenol ND 10 1.4 ug/l 108-95-2 Phenol ND 2.0 1.3 ug/l 95-95-4 2,4,5-Trichlorophenol ND 5.0 1.6 ug/l 88-06-2 2,4,6-Trichlorophenol ND 5.0 1.3 ug/l 83-32-9 Acenaphthene ND 1.0 0.26 ug/l 208-96-8 Acenaphthylene ND 1.0 0.23 ug/l 98-86-2 Acetophenone ND 1.0 0.29 ug/l 120-12-7 Anthracene ND 1.0 0.29 ug/l 1912-24-9 Atrazine ND 5.0 0.49 ug/l 100-52-7 Benzaldehyde ND 5.0 3.3 ug/l 50-32-8 Benzo(a)aptracene ND 1.0 0.23 ug/l 205-99-2 Benzo(b)fluoranthene ND 1.0	88-75-5	2-Nitrophenol	ND	5.0	1.5	ug/l	
108-95-2 Phenol ND 2.0 1.3 ug/l 95-95-4 2,4,5-Trichlorophenol ND 5.0 1.6 ug/l 88-06-2 2,4,6-Trichlorophenol ND 5.0 1.3 ug/l 83-32-9 Acenaphthene ND 1.0 0.26 ug/l 208-96-8 Acenaphthylene ND 1.0 0.23 ug/l 98-86-2 Acetophenone ND 2.0 0.29 ug/l 120-12-7 Anthracene ND 1.0 0.29 ug/l 1912-24-9 Atrazine ND 5.0 0.49 ug/l 100-52-7 Benzaldehyde ND 5.0 3.3 ug/l 56-55-3 Benzo(a)anthracene ND 1.0 0.23 ug/l 50-32-8 Benzo(a)pyrene ND 1.0 0.23 ug/l 205-99-2 Benzo(b)fluoranthene ND 1.0 0.32 ug/l 191-24-2 Benzo(g,h,i)perylene ND 1.0 0.32 ug/l 207-08-9 Benzo(k)fluoranthene ND 1.0 0.51 ug/l 101-55-3 4-Bromophenyl phenyl ether ND 2.0 0.36 ug/l 85-68-7 Butyl benzyl phthalate ND 2.0 0.29 ug/l 92-52-4 1,1'-Biphenyl ND 1.0 0.30 ug/l 91-58-7 2-Chloronaphthalene ND 5.0 0.53 ug/l 106-47-8 4-Chloroaniline ND 5.0 0.53 ug/l 86-74-8 Carbazole ND 1.0 0.36 ug/l	100-02-7			10	5.2	ug/l	
95-95-4 2,4,5-Trichlorophenol ND 5.0 1.6 ug/l 88-06-2 2,4,6-Trichlorophenol ND 5.0 1.3 ug/l 83-32-9 Acenaphthene ND 1.0 0.26 ug/l 208-96-8 Acenaphthylene ND 1.0 0.23 ug/l 98-86-2 Acetophenone ND 2.0 0.29 ug/l 120-12-7 Anthracene ND 1.0 0.29 ug/l 1912-24-9 Atrazine ND 5.0 0.49 ug/l 100-52-7 Benzaldehyde ND 5.0 3.3 ug/l 56-55-3 Benzo(a)anthracene ND 1.0 0.23 ug/l 50-32-8 Benzo(a)pyrene ND 1.0 0.23 ug/l 205-99-2 Benzo(b)fluoranthene ND 1.0 0.36 ug/l 191-24-2 Benzo(k)fluoranthene ND 1.0 0.31 ug/l 207-08-9 Benzo(k)fluoranthene ND	87-86-5	Pentachlorophenol	NEUT	10	1.4	ug/l	
88-06-2 2,4,6-Trichlorophenol ND 5.0 1.3 ug/l 83-32-9 Acenaphthene ND 1.0 0.26 ug/l 208-96-8 Acenaphthylene ND 1.0 0.23 ug/l 98-86-2 Acetophenone ND 2.0 0.29 ug/l 120-12-7 Anthracene ND 1.0 0.29 ug/l 1912-24-9 Atrazine ND 5.0 0.49 ug/l 100-52-7 Benzaldehyde ND 5.0 0.49 ug/l 56-55-3 Benzo(a)anthracene ND 1.0 0.23 ug/l 50-32-8 Benzo(a)pyrene ND 1.0 0.23 ug/l 205-99-2 Benzo(b)fluoranthene ND 1.0 0.46 ug/l 191-24-2 Benzo(g,h,i)perylene ND 1.0 0.32 ug/l 207-08-9 Benzo(k)fluoranthene ND 1.0 0.51 ug/l 85-68-7 Butyl benzyl phthalate ND 2.0 0.36 ug/l 92-52-4 1,1'-Biphenyl <t< td=""><td>108-95-2</td><td>Phenol</td><td>ND</td><td>2.0</td><td>1.3</td><td>ug/l</td><td></td></t<>	108-95-2	Phenol	ND	2.0	1.3	ug/l	
83-32-9 Acenaphthene ND 1.0 0.26 ug/l 208-96-8 Acenaphthylene ND 1.0 0.23 ug/l 98-86-2 Acetophenone ND 2.0 0.29 ug/l 120-12-7 Anthracene ND 1.0 0.29 ug/l 1912-24-9 Atrazine ND 5.0 0.49 ug/l 100-52-7 Benzaldehyde ND 5.0 3.3 ug/l 56-55-3 Benzo(a)anthracene ND 1.0 0.23 ug/l 50-32-8 Benzo(a)pyrene ND 1.0 0.23 ug/l 205-99-2 Benzo(b)fluoranthene ND 1.0 0.32 ug/l 191-24-2 Benzo(g,h,i)perylene ND 1.0 0.32 ug/l 207-08-9 Benzo(k)fluoranthene ND 1.0 0.51 ug/l 85-68-7 Butyl benzyl phthalate ND 2.0 0.36 ug/l 92-52-4 1,1'-Biphenyl ND	95-95-4	2,4,5-Trichlorophenol	ND	5.0	1.6	ug/l	
208-96-8 Acenaphthylene ND 1.0 0.23 ug/l 98-86-2 Acetophenone ND 2.0 0.29 ug/l 120-12-7 Anthracene ND 1.0 0.29 ug/l 1912-24-9 Atrazine ND 5.0 0.49 ug/l 100-52-7 Benzaldehyde ND 5.0 3.3 ug/l 56-55-3 Benzo(a)anthracene ND 1.0 0.23 ug/l 50-32-8 Benzo(a)pyrene ND 1.0 0.23 ug/l 205-99-2 Benzo(b)fluoranthene ND 1.0 0.46 ug/l 191-24-2 Benzo(g,h,i)perylene ND 1.0 0.32 ug/l 207-08-9 Benzo(k)fluoranthene ND 1.0 0.51 ug/l 101-55-3 4-Bromophenyl phenyl ether ND 2.0 0.36 ug/l 85-68-7 Butyl benzyl phthalate ND 2.0 0.29 ug/l 92-52-4 1,1'-Biphenyl <td< td=""><td>88-06-2</td><td>2,4,6-Trichlorophenol</td><td>ND</td><td>5.0</td><td>1.3</td><td>ug/l</td><td></td></td<>	88-06-2	2,4,6-Trichlorophenol	ND	5.0	1.3	ug/l	
98-86-2 Acetophenone ND 2.0 0.29 ug/l 120-12-7 Anthracene ND 1.0 0.29 ug/l 1912-24-9 Atrazine ND 5.0 0.49 ug/l 100-52-7 Benzaldehyde ND 5.0 3.3 ug/l 56-55-3 Benzo(a)anthracene ND 1.0 0.23 ug/l 50-32-8 Benzo(a)pyrene ND 1.0 0.23 ug/l 205-99-2 Benzo(b)fluoranthene ND 1.0 0.46 ug/l 191-24-2 Benzo(g,h,i)perylene ND 1.0 0.32 ug/l 207-08-9 Benzo(k)fluoranthene ND 1.0 0.51 ug/l 101-55-3 4-Bromophenyl phenyl ether ND 2.0 0.36 ug/l 85-68-7 Butyl benzyl phthalate ND 2.0 0.29 ug/l 92-52-4 1,1'-Biphenyl ND 1.0 0.30 ug/l 91-58-7 2-Chloronaphthalene	83-32-9	Acenaphthene	ND	1.0	0.26	ug/I	
120-12-7 Anthracene ND 1.0 0.29 ug/l 1912-24-9 Atrazine ND 5.0 0.49 ug/l 100-52-7 Benzaldehyde ND 5.0 3.3 ug/l 56-55-3 Benzo(a)anthracene ND 1.0 0.23 ug/l 50-32-8 Benzo(a)pyrene ND 1.0 0.23 ug/l 205-99-2 Benzo(b)fluoranthene ND 1.0 0.46 ug/l 191-24-2 Benzo(g,h,i)perylene ND 1.0 0.32 ug/l 207-08-9 Benzo(k)fluoranthene ND 1.0 0.51 ug/l 101-55-3 4-Bromophenyl phenyl ether ND 2.0 0.36 ug/l 85-68-7 Butyl benzyl phthalate ND 2.0 0.29 ug/l 92-52-4 1,1'-Biphenyl ND 1.0 0.30 ug/l 91-58-7 2-Chloronaphthalene ND 2.0 0.30 ug/l 106-47-8 4-Chloroaniline	208-96-8	Acenaphthylene	ND	1.0	0.23	ug/I	
1912-24-9 Atrazine ND 5.0 0.49 ug/l 100-52-7 Benzaldehyde ND 5.0 3.3 ug/l 56-55-3 Benzo(a)anthracene ND 1.0 0.23 ug/l 50-32-8 Benzo(a)pyrene ND 1.0 0.23 ug/l 205-99-2 Benzo(b)fluoranthene ND 1.0 0.46 ug/l 191-24-2 Benzo(g,h,i)perylene ND 1.0 0.32 ug/l 207-08-9 Benzo(k)fluoranthene ND 1.0 0.51 ug/l 101-55-3 4-Bromophenyl phenyl ether ND 2.0 0.36 ug/l 85-68-7 Butyl benzyl phthalate ND 2.0 0.29 ug/l 92-52-4 1,1'-Biphenyl ND 1.0 0.30 ug/l 91-58-7 2-Chloronaphthalene ND 2.0 0.30 ug/l 106-47-8 4-Chloroaniline ND 5.0 0.53 ug/l 86-74-8 Carbazole	98-86-2	Acetophenone	ND	2.0		ug/l	
100-52-7 Benzaldehyde ND 5.0 3.3 ug/l 56-55-3 Benzo(a)anthracene ND 1.0 0.23 ug/l 50-32-8 Benzo(a)pyrene ND 1.0 0.23 ug/l 205-99-2 Benzo(b)fluoranthene ND 1.0 0.46 ug/l 191-24-2 Benzo(g,h,i)perylene ND 1.0 0.32 ug/l 207-08-9 Benzo(k)fluoranthene ND 1.0 0.51 ug/l 101-55-3 4-Bromophenyl phenyl ether ND 2.0 0.36 ug/l 85-68-7 Butyl benzyl phthalate ND 2.0 0.29 ug/l 92-52-4 1,1'-Biphenyl ND 1.0 0.30 ug/l 91-58-7 2-Chloronaphthalene ND 2.0 0.30 ug/l 106-47-8 4-Chloroaniline ND 5.0 0.53 ug/l 86-74-8 Carbazole ND 1.0 0.36 ug/l	120-12-7		ND	1.0	0.29	ug/l	
56-55-3 Benzo(a)anthracene ND 1.0 0.23 ug/l 50-32-8 Benzo(a)pyrene ND 1.0 0.23 ug/l 205-99-2 Benzo(b)fluoranthene ND 1.0 0.46 ug/l 191-24-2 Benzo(g,h,i)perylene ND 1.0 0.32 ug/l 207-08-9 Benzo(k)fluoranthene ND 1.0 0.51 ug/l 101-55-3 4-Bromophenyl phenyl ether ND 2.0 0.36 ug/l 85-68-7 Butyl benzyl phthalate ND 2.0 0.29 ug/l 92-52-4 1,1'-Biphenyl ND 1.0 0.30 ug/l 91-58-7 2-Chloronaphthalene ND 2.0 0.30 ug/l 106-47-8 4-Chloroaniline ND 5.0 0.53 ug/l 86-74-8 Carbazole ND 1.0 0.36 ug/l	1912-24-9	Atrazine	ND	5.0	0.49	ug/l	
50-32-8 Benzo(a) pyrene ND 1.0 0.23 ug/i 205-99-2 Benzo(b) fluoranthene ND 1.0 0.46 ug/l 191-24-2 Benzo(g,h,i) perylene ND 1.0 0.32 ug/l 207-08-9 Benzo(k) fluoranthene ND 1.0 0.51 ug/l 101-55-3 4-Bromophenyl phenyl ether ND 2.0 0.36 ug/l 85-68-7 Butyl benzyl phthalate ND 2.0 0.29 ug/l 92-52-4 1,1'-Biphenyl ND 1.0 0.30 ug/l 91-58-7 2-Chloronaphthalene ND 2.0 0.30 ug/l 106-47-8 4-Chloroaniline ND 5.0 0.53 ug/l 86-74-8 Carbazole ND 1.0 0.36 ug/l	100-52-7	Benzaldehyde	ND	5.0	3.3	ug/l	
205-99-2 Benzo(b)fluoranthene ND 1.0 0.46 ug/l 191-24-2 Benzo(g,h,i)perylene ND 1.0 0.32 ug/l 207-08-9 Benzo(k)fluoranthene ND 1.0 0.51 ug/l 101-55-3 4-Bromophenyl phenyl ether ND 2.0 0.36 ug/l 85-68-7 Butyl benzyl phthalate ND 2.0 0.29 ug/l 92-52-4 1,1'-Biphenyl ND 1.0 0.30 ug/l 91-58-7 2-Chloronaphthalene ND 2.0 0.30 ug/l 106-47-8 4-Chloroaniline ND 5.0 0.53 ug/l 86-74-8 Carbazole ND 1.0 0.36 ug/l	56-55-3	Benzo(a)anthracene	ND	1.0	0.23	ug/l	
191-24-2 Benzo(g,h,i)perylene ND 1.0 0.32 ug/l 207-08-9 Benzo(k)fluoranthene ND 1.0 0.51 ug/l 101-55-3 4-Bromophenyl phenyl ether ND 2.0 0.36 ug/l 85-68-7 Butyl benzyl phthalate ND 2.0 0.29 ug/l 92-52-4 1,1'-Biphenyl ND 1.0 0.30 ug/l 91-58-7 2-Chloronaphthalene ND 2.0 0.30 ug/l 106-47-8 4-Chloroaniline ND 5.0 0.53 ug/l 86-74-8 Carbazole ND 1.0 0.36 ug/l	50-32-8	Benzo(a)pyrene	ND	1.0	0.23	ug/i	
207-08-9 Benzo(k)fluoranthene ND 1.0 0.51 ug/l 101-55-3 4-Bromophenyl phenyl ether ND 2.0 0.36 ug/l 85-68-7 Butyl benzyl phthalate ND 2.0 0.29 ug/l 92-52-4 1,1'-Biphenyl ND 1.0 0.30 ug/l 91-58-7 2-Chloronaphthalene ND 2.0 0.30 ug/l 106-47-8 4-Chloroaniline ND 5.0 0.53 ug/l 86-74-8 Carbazole ND 1.0 0.36 ug/l	205-99-2	Benzo(b)fluoranthene	ND	1.0	0.46	ug/l	
101-55-3 4-Bromophenyl phenyl ether ND 2.0 0.36 ug/l 85-68-7 Butyl benzyl phthalate ND 2.0 0.29 ug/l 92-52-4 1,1'-Biphenyl ND 1.0 0.30 ug/l 91-58-7 2-Chloronaphthalene ND 2.0 0.30 ug/l 106-47-8 4-Chloroaniline ND 5.0 0.53 ug/l 86-74-8 Carbazole ND 1.0 0.36 ug/l	191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.32	ug/l	
85-68-7 Butyl benzyl phthalate ND 2.0 0.29 ug/l 92-52-4 1,1'-Biphenyl ND 1.0 0.30 ug/l 91-58-7 2-Chloronaphthalene ND 2.0 0.30 ug/l 106-47-8 4-Chloroaniline ND 5.0 0.53 ug/l 86-74-8 Carbazole ND 1.0 0.36 ug/l	207-08-9	Benzo(k)fluoranthene	ND	1.0	0.51	ug/l	
92-52-4 1,1'-Biphenyl ND 1.0 0.30 ug/l 91-58-7 2-Chloronaphthalene ND 2.0 0.30 ug/l 106-47-8 4-Chloroaniline ND 5.0 0.53 ug/l 86-74-8 Carbazole ND 1.0 0.36 ug/l	101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.36	ug/l	
91-58-7 2-Chloronaphthalene ND 2.0 0.30 ug/l 106-47-8 4-Chloroaniline ND 5.0 0.53 ug/l 86-74-8 Carbazole ND 1.0 0.36 ug/l	85-68-7	Butyl benzyl phthalate	ND	2.0	0.29	ug/l	
106-47-8 4-Chloroaniline ND 5.0 0.53 ug/l 86-74-8 Carbazole ND 1.0 0.36 ug/l	92-52-4	1,1'-Biphenyl	ND	1.0		ug/l	
86-74-8 Carbazole ND 1.0 0.36 ug/l	91-58-7	2-Chloronaphthalene	ND		0.30	ug/l	
	106-47-8	4-Chloroaniline	ND	5.0			
105-60-2 Caprolactam ND 2.0 0.69 ug/l	86-74-8	Carbazole					
	105-60-2	Caprolactam	ND	2.0	0.69	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-8

Lab Sample ID: JB31271-2

Matrix: Method:

Project:

AQ - Ground Water

SW846 8270D SW846 3510C

Via Verde, 700-730 Brook Avenue, Bronx, NY

Date Sampled: 03/13/13 Date Received: 03/13/13

Percent Solids: n/a

ABN TCL List (CLP4.2 list)

			70			
CAS No.	Compound	Result	RL	MDL	Units	Q
218-01-9	Chrysene	ND	1.0	0.29	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.31	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.31	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.0	0.45	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.31	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	2.0	0.43	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	2.0	0.46	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.0	0.36	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.38	ug/l	
132-64-9	Dibenzofuran	ND	5.0	0.27	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.0	0.56	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.0	0.31	ug/l	
84-66-2	Diethyl phthalate	ND =	2.0	0.33	ug/l	
131-11-3	Dimethyl phthalate	ND	2.0	0.28	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	0.59	ug/l	
206-44-0	Fluoranthene	ND	1.0	0.32	ug/l	
86-73-7	Fluorene	ND	1.0	0.28	ug/l	
118-74-1	Hexachlorobenzene	ND	1.0	0.34	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.0	0.51	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND UJ	10	7.1	ug/l	
67-72-1	Hexachloroethane	ND	2.0	0.55	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.37	ug/l	
78-59-1	Isophorone	ND	2.0	0.27	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.0	0.38	ug/l	
88-74-4	2-Nitroaniline	ND	5.0	1,1	ug/l	
99-09-2	3-Nitroaniline	ND	5.0	1.3	ug/l	
100-01-6	4-Nitroaniline	ND	5.0	1.7	ug/l	
91-20-3	Naphthalene	2.4	1.0	0.26	ug/l	
98-95-3	Nitrobenzene	ND	2.0	0.42	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.30	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.31	ug/l	
85-01-8	Phenanthrene	ND	1.0	0.29	ug/l	
129-00-0	Pyrene	ND	1.0	0.27	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
367-12-4	2-Fluorophenol	38%		10-8	3%	
4165-62-2	Phenol-d5	23%		10-7	4%	
118-79-6	2,4,6-Tribromophenol	103%		24-1	48%	
4165-60-0	Nitrobenzene-d5	81%		38-1	29%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Lab Sample ID: JB31271-2

Matrix:

AQ - Ground Water

Date Sampled: Date Received:

03/13/13

Method:

SW846 8270D SW846 3510C

Saic Received.

03/13/13

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Percent Solids: n/a

ABN TCL List (CLP4.2 list)

CAS No. Surrogate Recoveries

Run# 1 Run# 2

Limits

321-60-8 2-Fluorobiphenyl 1718-51-0 Terphenyl-d14 74% 83% 42-117% 14-132%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank
N = Indicates presumptive evidence of a compound

ω

By

OPM

Prep Date

03/18/13

Client Sample ID: MW-8

Lab Sample ID: Matrix:

JB31271-2

File ID

870 ml

2G79013.D

AQ - Ground Water

SW846 8082A SW846 3510C

DF

1

Date Sampled: 03/13/13 Date Received:

03/13/13

Percent Solids: n/a

Method: Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Analyzed

03/22/13

Prep Batch OP64531

Analytical Batch G2G2621

Run #1 Run #2

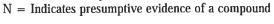
Initial Volume Final Volume 10.0 ml

Run #1 Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	0.57	0.15	ug/l	
11104-28-2	Aroclor 1221	ND	0.57	0.31	ug/l	
11141-16-5	Aroclor 1232	ND	0.57	0.44	ug/l	
53469-21-9	Aroclor 1242	ND	0.57	0.099	ug/l	
12672-29-6	Aroclor 1248	ND	0.57	0.17	ug/l	
11097-69-1	Aroclor 1254	ND	0.57	0.16	ug/l	
11096-82-5	Aroclor 1260	ND	0.57	0.24	ug/l	
11100-14-4	Aroclor 1268	ND	0.57	0.15	ug/l	
37324-23-5	Aroclor 1262	ND	0.57	0.069	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	59%		27-1	44%	
877-09-8	Tetrachloro-m-xylene	49%		27-1	44%	
2051-24-3	Decachlorobiphenyl	51%		10-1	39%	
2051-24-3	Decachlorobiphenyl	46%		10-1	39%	

ND = Not detected


MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-8 Lab Sample ID:

JB31271-2

AQ - Ground Water

Date Sampled: 03/13/13 Date Received: 03/13/13

Percent Solids: n/a

Project:

Matrix:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	4010	200	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Antimony	< 1.0	1.0	ug/l	2	03/21/13	03/22/13 VC	SW846 6020A ¹	SW846 3010A ⁵
Arsenic	8.2	3.0	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Barium	< 200	200	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Beryllium	< 1.0	1.0	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Cadmium	< 3.0	3.0	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Calcium	136000	5000	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Chromium	2910	10	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Cobalt	< 50	50	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Copper	73.9	10	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Iron	22500	100	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Lead	3.3	3.0	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Magnesium	36000	5000	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Manganese	3180	15	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Mercury	< 0.20	0.20	ug/l	1	03/23/13	03/23/13 RP	SW846 7470A ³	SW846 7470A ⁶
Nickel	1390	10	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Potassium	< 10000	10000	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Selenium	< 10	10	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Silver	< 10	10	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Sodium	85400	10000	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Thallium	< 1.0	1.0	ug/l	2	03/21/13	03/22/13 VC	SW846 6020A ¹	SW846 3010A ⁵
Vanadium	< 50	50	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Zinc	<20 (J	20	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴

(1) Instrument QC Batch: MA30767 (2) Instrument QC Batch: MA30771 (3) Instrument QC Batch: MA30779 (4) Prep QC Batch: MP70618 (5) Prep QC Batch: MP70618A (6) Prep QC Batch: MP70675

JB31271-2

Lab Sample ID: Matrix:

AQ - Ground Water

Date Sampled: 03/13/13 Date Received:

03/13/13

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Percent Solids: n/a

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent	< 0.010	0.010	mg/l	1	03/14/13 10:12		SW846 7196A
Chromium, Trivalent ^a	2.9	0.020	mg/l	1	03/23/13 00:30		SW846 6010/7196A M

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

Client Sample ID: MW-8

Lab Sample ID:

JB31271-2F

Matrix:

AQ - Groundwater Filtered

Date Sampled: Date Received: 03/13/13

03/13/13

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	< 200	200	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Antimony	< 1.0	1.0	ug/l	2	03/21/13	03/22/13 VC	SW846 6020A ¹	SW846 3010A ⁵
Arsenic	< 3.0	3.0	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Barium	< 200	200	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Beryllium	< 1.0	1.0	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Cadmium	< 3.0	3.0	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Calcium	140000	5000	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Chromium	19.9	10	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Cobalt	< 50	50	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Copper	< 10	10	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Iron	325	100	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Lead	< 3.0	3.0	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Magnesium	35400	5000	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Manganese	3070	15	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Mercury	< 0.20	0.20	ug/l	1	03/23/13	03/23/13 RP	SW846 7470A ³	SW846 7470A ⁶
Nickel	70.8	10	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Potassium	< 10000	10000	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Selenium	< 10	10	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Silver	< 10	10	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Sodium	90600	10000	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Thallium	< 1.0	1.0	ug/l	2	03/21/13	03/22/13 VC	SW846 6020A ¹	SW846 3010A ⁵
Vanadium	< 50	50	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Zinc	< 20	20	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴

(1) Instrument QC Batch: MA30767 (2) Instrument QC Batch: MA30771 (3) Instrument QC Batch: MA30779 (4) Prep QC Batch: MP70618 (5) Prep QC Batch: MP70618A (6) Prep QC Batch: MP70675

Page 1 of 1

Client Sample ID: MW-8

Lab Sample ID: JB31271-2F

Matrix:

AQ - Groundwater Filtered

Date Sampled: 03/13/13

Date Received: 03/13/13 Per cent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent	< 0.010	0.010	mg/l	1	03/14/13 10:16		SW846 7196A
Chromium, Trivalent ^a	0.020	0.020	mg/l	1	03/23/13 02:40		SW846 6010/7196A M

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

Client Sample ID: MW-XX JB31271-3

Lab Sample ID: Matrix:

AQ - Ground Water

SW846 8260B

Date Sampled: 03/13/13 Date Received: 03/13/13

Percent Solids: n/a

Method: Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Analytical Batch Prep Date Prep Batch File ID DF Analyzed By V1A5416 Run #1 1A125894.D 1 03/21/13 CC n/a n/a Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	9.6 J	10	3.3	ug/l	J
71-43-2	Benzene	7.0	1.0	0.24	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.14	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.30	ug/i	
75-27-4	Bromodichloromethane	ND	1.0	0.21	ug/l	
75-25-2	Bromoform	ND	4.0	0.21	ug/l	
74-83-9	Bromomethane	ND	2.0	0.22	ug/l	
78-93-3	2-Butanone (MEK)	ND C	10	2.4	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	0.17	ug/l	
135-98-8	sec-Butylbenzene	3.5	5.0	0.21	ug/l	J
98-06-6	tert-Butylbenzene	0.95	5.0	0.30	ug/l	J
56-23-5	Carbon tetrachloride	ND	1.0	0.22	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.23	ug/l	
75-00-3	Chloroethane	ND	1.0	0.26	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
74-87-3	Chloromethane	ND	1.0	0.21	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	0.15	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.30	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	10	0.54	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.14	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.20	ug/l	
95-50-1	1,2-Dichlorobenzene	ND ·	1.0	0.22	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.30	ug/l	
75-71-8	Dichlorodifluoromethane	ND	5.0	0.27	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.11	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.26	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.19	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.19	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.21	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.48	ug/l	
142-28-9	1,3-Dichloropropane	ND	5.0	0.23	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: MW-XX

Lab Sample ID:

JB31271-3

Matrix: Method: Project:

AQ - Ground Water

SW846 8260B

Via Verde, 700-730 Brook Avenue, Bronx, NY

03/13/13 Date Sampled: Date Received: 03/13/13

Percent Solids: n/a

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7	2,2-Dichloropropane	ND	5.0	0.15	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	0.30	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.19	ug/l	
100-41-4	Ethylbenzene	33.2	1.0	0.23	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.24	ug/l	
98-82-8	Isopropylbenzene	21.8	2.0	0.45	ug/I	
99-87-6	p-Isopropyltoluene	0.30	5.0	0.22	ug/l	J
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.16	ug/l	_
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	0.83	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.26	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.70	ug/l	
91-20-3	Naphthalene	2.4	5.0	1.1	ug/l	J
103-65-1	n-Propylbenzene	34.5	5.0	0.24	ug/l	•
100-42-5	Styrene	ND	5.0	0.21	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.24	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.28	ug/l	
108-88-3	Toluene	2.8	1.0	0.23	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	0.28	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.20	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.24	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.29	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.22	ug/l	
75-69-4	Trichlorofluoromethane	ND	5.0	0.27	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.53	ug/l	
95-63-6	1,2,4-Trimethylbenzene	1.1 ×	2.0	0.19	ug/l	J
108-67-8	1,3,5-Trimethylbenzene	0.43	2.0	0.36	ug/l	J
75-01-4	Vinyl chloride	ND	1.0	0.21	ug/l	
	m,p-Xylene	3.0	1.0	0.42	ug/l	
95-47-6	o-Xylene	0.59	1.0	0.24	ug/l	J
1330-20-7	Xylene (total)	3.6	1.0	0.24	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	98%		81-1		
17060-07-0	1,2-Dichloroethane-D4	85%		74-1	27%	
2037-26-5	Toluene-D8	98%		80-1	22%	
460-00-4	4-Bromofluorobenzene	85%		78-1	16%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

Client Sample ID: MW-XX

Lab Sample ID: JB31271-3

Matrix: Method: AQ - Ground Water

SW846 8270D SW846 3510C

Via Verde, 700-730 Brook Avenue, Bronx, NY

Date Sampled: 03/13/13 Date Received: 03/13/13

Percent Solids: n/a

Project: By

Run #1

File ID DF F22235.D 1

Analyzed 04/03/13

Prep Date NAP 03/19/13

Prep Batch OP64567

Analytical Batch

EF5143

Run #2

Initial Volume Run #1 890 ml

Final Volume 1.0 ml

Run #2

ABN TCL List (CLP4.2 list)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.6	1.1	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.6	2.0	ug/l	
120-83-2	2,4-Dichlorophenol	ND	5.6	1.3	ug/l	
105-67-9	2,4-Dimethylphenol	ND O	5.6	1.7	ug/l	
51-28-5	2,4-Dinitrophenol	ND	22	19	ug/I	
534-52-1	4,6-Dinitro-o-cresol	ND UJ	22	1.1	ug/l	
95-48-7	2-Methylphenol	ND	2.2	1.2	ug/l	
	3&4-Methylphenol	ND	2.2	1.0	ug/l	
88-75-5	2-Nitrophenol	ND	5.6	1.7	ug/l	
100-02-7	4-Nitrophenol	ND =	11	5.8	ug/l	
87-86-5	Pentachlorophenol	ND UI	11	1.6	ug/i	
108-95-2	Phenol	ND	2.2	1.4	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.6	1.8	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.6	1.4	ug/I	
83-32-9	Acenaphthene	0.51	1.1	0.30	ug/l	J
208-96-8	Acenaphthylene	ND	1.1	0.26	ug/l	
98-86-2	Acetophenone	ND	2.2	0.32	ug/l	
120-12-7	Anthracene	ND	1.1	0.32	ug/l	
1912-24-9	Atrazine	ND	5.6	0.55	ug/l	
100-52-7	Benzaldehyde	ND	5.6	3.7	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.1	0.25	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.1	0.25	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.51	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.36	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.57	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.2	0.40	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.2	0.32	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.1	0.34	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.2	0.33	ug/l	
106-47-8	4-Chloroaniline	ND	5.6	0.59	ug/l	
86-74-8	Carbazole	ND	1.1	0.40	ug/1	
105-60-2	Caprolactam	ND	2.2	0.77	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Lab Sample ID:

JB31271-3

AQ - Ground Water

Date Sampled: 03/13/13

Date Received: 03/13/13

Matrix: Method: Project:

SW846 8270D SW846 3510C

Via Verde, 700-730 Brook Avenue, Bronx, NY

Percent Solids: n/a

ABN TCL List (CLP4.2 list)

ABN ICL I	LIST (CLP4.2 IIST)					
CAS No.	Compound	Result	RL	MDL	Units	Q
218-01-9	Chrysene	ND	1.1	0.32	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.2	0.34	ug/l	
111-44-4	bis (2-Chloroethyl)ether	ND	2.2	0.35	ug/l	
108-60-1	bis (2-Chloroisopropyl) ether	ND	2.2	0.51	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.2	0.35	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	2.2	0.48	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	2.2	0.52	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.6	0.40	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.42	ug/l	
132-64-9	Dibenzofuran	ND	5.6	0.30	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.2	0.62	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.2	0.35	ug/l	
84-66-2	Diethyl phthalate	ND	2.2	0.37	ug/l	
131-11-3	Dimethyl phthalate	ND	2.2	0.32	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.2	0.66	ug/l	
206-44-0	Fluoranthene	ND	1.1	0.36	ug/l	
86-73-7	Fluorene	ND	1.1	0.31	ug/l	
118-74-1	Hexachlorobenzene	ND	1.1	0.38	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.1	0.58	ug/l	
77-47-4	Hexachlorocyclopentadiene	NEUJ	11	8.0	ug/l	
67-72-1	Hexachloroethane	ND	2.2	0.62	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.42	ug/l	
78-59-1	Isophorone	ND	2.2	0.31	ug/l	
91-57-6	2-Methylnaphthalene	0.53	1.1	0.43	ug/l	J
88-74-4	2-Nitroaniline	ND	5.6	1.2	ug/l	
99-09-2	3-Nitroaniline	ND	5.6	1.4	ug/l	
100-01-6	4-Nitroaniline	ND	5.6	1.9	ug/l	
91-20-3	Naphthalene	2.6	1.1	0.29	ug/l	
98-95-3	Nitrobenzene	ND	2.2	0.47	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.2	0.34	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.6	0.34	ug/l	
85-01-8	Phenanthrene	ND	1.1	0.33	ug/l	
129-00-0	Pyrene	ND	1.1	0.30	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	46%		10-83		
4165-62-2	Phenol-d5	28%		10-74	1 %	
118-79-6	2,4,6-Tribromophenol	110%		24-14		
4165-60-0	Nitrobenzene-d5	86%		38-12	29%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 3 of 3

Client Sample ID: MW-XX

Lab Sample ID: JB31271-3

Matrix:

AQ - Ground Water

Date Sampled: Date Received:

03/13/13

Method:

03/13/13

SW846 8270D SW846 3510C

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

ABN TCL List (CLP4.2 list)

CAS No. Surrogate Recoveries

Run# 2 Run#1

Limits

321-60-8

2-Fluorobiphenyl

81%

42-117%

1718-51-0

Terphenyl-d14

91%

14-132%

Client Sample ID: MW-XX

Lab Sample ID: Matrix:

JB31271-3

AQ - Ground Water SW846 8082A SW846 3510C

Date Sampled: 03/13/13 Date Received: 03/13/13

Percent Solids: n/a

Method: Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Run #1

File ID 2G79014.D

Analyzed DF 03/22/13 1

By **OPM** Prep Date 03/18/13

Prep Batch OP64531

Analytical Batch G2G2621

Run #2

Initial Volume Run #1 920 ml

Final Volume 10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	0.54	0.14	ug/1	
11104-28-2	Aroclor 1221	ND	0.54	0.29	ug/l	
11141-16-5	Aroclor 1232	ND	0.54	0.42	ug/l	
53469-21-9	Aroclor 1242	ND	0.54	0.093	ug/l	
12672-29-6	Aroclor 1248	ND	0.54	0.16	ug/l	
11097-69-1	Aroclor 1254	ND	0.54	0.15	ug/1	
11096-82-5	Aroclor 1260	ND	0.54	0.23	ug/l	
11100-14-4	Aroclor 1268	ND	0.54	0.14	ug/l	
37324-23-5	Aroclor 1262	ND	0.54	0.065	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run# 2 Limits		
877-09-8	Tetrachloro-m-xylene	62%		27-1	44%	
877-09-8	Tetrachloro-m-xylene	49%		27-1	44%	
2051-24-3	Decachlorobiphenyl	57%		10-1	39%	
2051-24-3	Decachlorobiphenyl	51%		10-1	39%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: MW-XX

Lab Sample ID: JB31271-3

Matrix: AQ - Ground Water

Date Sampled: 03/13/13 Date Received: 03/13/13

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	3560	200	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Antimony	< 1.0	1.0	ug/l	2	03/21/13	03/22/13 VC	SW846 6020A ¹	SW846 3010A ⁵
Arsenic	8.0	3.0	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Barium	< 200	200	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Beryllium	< 1.0	1.0	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Cadmium	< 3.0	3.0	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Calcium	139000	5000	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Chromium	2260	10	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Cobalt	< 50	50	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Copper	57.7	10	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Iron	20200	100	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Lead	3.1	3.0	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Magnesium	36600	5000	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Manganese	3160	15	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Mercury	< 0.20	0.20	ug/l	1	03/23/13	03/23/13 RP	SW846 7470A ³	SW846 7470A ⁶
Nickel	1090	10	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Potassium	< 10000	10000	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Selenium	< 10	10	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Silver	< 10	10	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Sodium	85800	10000	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Thallium	< 1.0	1.0	ug/l	2	03/21/13	03/22/13 VC	SW846 6020A ¹	SW846 3010A ⁵
Vanadium	< 50	50	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Zinc	23.3	20	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴

(1) Instrument QC Batch: MA30767
(2) Instrument QC Batch: MA30771
(3) Instrument QC Batch: MA30779
(4) Prep QC Batch: MP70618
(5) Prep QC Batch: MP70618A
(6) Prep QC Batch: MP70675

Client Sample ID: MW-XX

Lab Sample ID:

JB31271-3

Matrix:

AQ - Ground Water

Date Sampled:

03/13/13

Date Received:

03/13/13

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

General Chemistry

Method RLDF Analyzed By Analyte Result Units 03/14/13 10:12 AD SW846 7196A 0.010 Chromium, Hexavalent a < 0.010 mg/l 1 Chromium, Trivalent ^b 03/23/13 00:36 BL SW846 6010/7196A M 1 0.020mg/l

(a) Analysis done out of holding time.

(b) Calculated as: (Chromium) - (Chromium, Hexavalent)

Client Sample ID: MW-XX

Lab Sample ID: JB31271-3F

Matrix:

AQ - Groundwater Filtered

Date Sampled: 03/13/13 Date Received: 03/13/13

Date Received: 03/13 Per cent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	< 200	200	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Antimony	< 1.0	1.0	ug/l	2	03/21/13	03/22/13 VC	SW846 6020A ¹	SW846 3010A ⁵
Arsenic	3.1	3.0	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Barium	< 200	200	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Beryllium	< 1.0	1.0	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Cadmium	< 3.0	3.0	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Calcium	140000	5000	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Chromium	19.1	10	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Cobalt	< 50	50	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Copper	< 10	10	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Iron	293	100	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Lead	< 3.0	3.0	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Magnesium	35400	5000	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Manganese	3050	15	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Mercury	< 0.20	0.20	ug/l	1	03/23/13	03/23/13 RP	SW846 7470A ³	SW846 7470A ⁶
Nickel	68.9	10	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Potassium	< 10000	10000	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Selenium	< 10	10	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Silver	< 10	10	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Sodium	89600	10000	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Thallium	< 1.0	1.0	ug/l	2	03/21/13	03/22/13 VC	SW846 6020A ¹	SW846 3010A ⁵
Vanadium	< 50	50	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴
Zinc	< 20	20	ug/l	1	03/21/13	03/23/13 BL	SW846 6010C ²	SW846 3010A ⁴

(1) Instrument QC Batch: MA30767
(2) Instrument QC Batch: MA30771
(3) Instrument QC Batch: MA30779
(4) Prep QC Batch: MP70618
(5) Prep QC Batch: MP70618A
(6) Prep QC Batch: MP70675

Client Sample ID: MW-XX

Lab Sample ID: JB31271-3F

AQ - Groundwater Filtered

Date Sampled: 03/13/13

Date Received: 03/13/13

Project:

Matrix:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Percent Solids: n/a

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent ^a	< 0.010	0.010	mg/l	1	03/14/13 10:16		SW846 7196A
Chromium, Trivalent ^b	< 0.020	0.020	mg/l	1	03/23/13 02:46		SW846 6010/7196A M

(a) Analysis done out of holding time.

(b) Calculated as: (Chromium) - (Chromium, Hexavalent)

JB31271

Client Sample ID: FIELD BLANK 3/13

Lab Sample ID:

JB31271-4

Matrix:

AQ - Field Blank Water

Method:

SW846 8260B

Date Sampled: 03/13/13 Date Received:

03/13/13

Percent Solids: n/a

Via Verde, 700-730 Brook Avenue, Bronx, NY Project:

Run #1

DF File ID 1A125891.D 1

Analyzed By CC 03/21/13

Prep Date n/a

Prep Batch n/a

Analytical Batch V1A5416

Run #2

Purge Volume

 $5.0 \, \mathrm{ml}$

Run #1 Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND R	10	3.3	ug/l	
71-43-2	Benzene	ND	1.0	0.24	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.14	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.30	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.21	ug/l	
75-25-2	Bromoform	ND	4.0	0.21	ug/l	
74-83-9	Bromomethane	ND	2.0	0.22	ug/l	
78-93-3	2-Butanone (MEK)	ND-	10	2.4	ug/I	
104-51-8	n-Butylbenzene	ND	5.0	0.17	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	0.21	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	0.30	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.22	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.23	ug/l	
75-00-3	Chloroethane	ND	1.0	0.26	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
74-87-3	Chloromethane	ND	1.0	0.21	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	0.15	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.30	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	10	0.54	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.14	ug/I	
106-93-4	1,2-Dibromoethane	ND	2.0	0.20	ug/1	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.22	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.30	ug/l	
75-71-8	Dichlorodifluoromethane	ND	5.0	0.27	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.11	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.26	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.19	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.19	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.21	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.48	ug/l	
142-28-9	1,3-Dichloropropane	ND	5.0	0.23	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Client Sample ID: FIELD BLANK 3/13

Lab Sample ID:

JB31271-4

Matrix:

AQ - Field Blank Water

Method: Project:

SW846 8260B

Via Verde, 700-730 Brook Avenue, Bronx, NY

Date Sampled: 03/13/13 Date Received: 03/13/13

Percent Solids: n/a

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7	2,2-Dichloropropane	ND	5.0	0.15	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	0.30	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.19	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.23	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.24	ug/l	
98-82-8	Isopropylbenzene	ND	2.0	0.45	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	0.22	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.16	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	0.83	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.26	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.70	ug/l	
91-20-3	Naphthalene	ND °	5.0	1.1	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	0.24	ug/l	
100-42-5	Styrene	ND	5.0	0.21	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.24	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.28	ug/I	
108-88-3	Toluene	ND	1.0	0.23	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	0.28	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.20	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.24	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.29	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.22	ug/l	
75-69-4	Trichlorofluoromethane	ND	5.0	0.27	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.53	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.19	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.36	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.21	ug/l	
	m,p-Xylene	ND	1.0	0.42	ug/I	
95-47-6	o-Xylene	ND	1.0	0.24	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.24	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	99%		81-12		
17060-07-0	1,2-Dichloroethane-D4	89% 74-127%			27%	
2037-26-5	Toluene-D8 94% 80-12				22%	
460-00-4	4-Bromofluorobenzene	83%		78-1	16%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

By

NAP

Client Sample ID: FIELD BLANK 3/13

Lab Sample ID:

JB31271-4

Matrix:

AQ - Field Blank Water

DF

1

SW846 8270D SW846 3510C

Date Sampled: 03/13/13 Date Received: 03/13/13

Percent Solids: n/a

Method: Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Analyzed

04/03/13

Prep Date 03/19/13

Prep Batch OP64567

Analytical Batch EF5143

Run #1 Run #2

File ID

F22236.D

Final Volume Initial Volume

550 ml

1.0 ml

Run #1 Run #2

ABN TCL List (CLP4.2 list)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	9.1	1.8	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	9.1	3.3	ug/l	
120-83-2	2,4-Dichlorophenol	ND	9.1	2.1	ug/l	
105-67-9	2,4-Dimethylphenol	ND _	9.1	2.8	ug/l	
51-28-5	2,4-Dinitrophenol	ND K	36	30	ug/l	
534-52-1	4,6-Dinitro-o-cresol	NDUT	36	1.8	ug/l	
95-48-7	2-Methylphenol	ND	3.6	1.9	ug/l	
	3&4-Methylphenol	ND	3.6	1.7	ug/l	
88-75-5	2-Nitrophenol	ND	9.1	2.7	ug/l	
100-02-7	4-Nitrophenol	ND	. 18	9.5	ug/1	
87-86-5	Pentachlorophenol	ND UJ	18	2.5	ug/l	
108-95-2	Phenol	ND	3.6	2.3	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	9.1	2.8	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	9.1	2.3	ug/l	
83-32-9	Acenaphthene	ND	1.8	0.48	ug/l	
208-96-8	Acenaphthylene	ND	1.8	0.41	ug/l	
98-86-2	Acetophenone	ND	3.6	0.52	ug/l	
120-12-7	Anthracene	ND	1.8	0.52	ug/l	
1912-24-9	Atrazine	ND	9.1	0.89	ug/l	
100-52-7	Benzaldehyde	ND	9.1	5.9	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.8	0.41	ug/1	
50-32-8	Benzo(a)pyrene	ND	1.8	0.41	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.8	0.83	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.8	0.59	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.8	0.93	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	3.6	0.65	ug/l	
85-68-7	Butyl benzyl phthalate	ND	3.6	0.53	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.8	0.55	ug/l	
91-58-7	2-Chloronaphthalene	ND	3.6	0.54	ug/l	
106-47-8	4-Chloroaniline	ND	9.1	0.96	ug/l	
86-74-8	Carbazole	ND	1.8	0.65	ug/l	
105-60-2	Caprolactam	ND	3.6	1.3	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Client Sample ID: FIELD BLANK 3/13

Lab Sample ID:

JB31271-4

AQ - Field Blank Water

Date Sampled: Date Received: 03/13/13 03/13/13

Matrix: Method:

SW846 8270D SW846 3510C

Percent Solids:

n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

ABN TCL List (CLP4.2 list)

CAS No.	Compound	Result	RL	MDL	Units	Q
218-01-9	Chrysene	ND	1.8	0.52	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	3.6	0.56	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	3.6	0.56	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	3.6	0.83	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	3.6	0.57	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	3.6	0.77	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	3.6	0.84	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	9.1	0.65	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.8	0.69	ug/l	
132-64-9	Dibenzofuran	ND	9.1	0.48	ug/l	
84-74-2	Di-n-butyl phthalate	ND	3.6	1.0	ug/l	
117-84-0	Di-n-octyl phthalate	ND	3.6	0.56	ug/l	
84-66-2	Diethyl phthalate	ND	3.6	0.59	ug/l	
131-11-3	Dimethyl phthalate	ND	3.6	0.51	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	3.6	1.1	ug/l	
206-44-0	Fluoranthene	ND	1.8	0.58	ug/l	
86-73-7	Fluorene	ND	1.8	0.50	ug/l	
118-74-1	Hexachlorobenzene	ND	1.8	0.61	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.8	0.93	ug/l	
77-47-4	Hexachlorocyclopentadiene	NBUJ	18	13	ug/l	
67-72-1	Hexachloroethane	ND	3.6	1.0	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.8	0.68	ug/l	
78-59-1	Isophorone	ND	3.6	0.50	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.8	0.70	ug/l	
88-74-4	2-Nitroaniline	ND	9.1	2.0	ug/l	
99-09-2	3-Nitroaniline	ND	9.1	2.3	ug/l	
100-01-6	4-Nitroaniline	ND	9.1	3.0	ug/l	
91-20-3	Naphthalene	ND	1.8	0.47	ug/l	
98-95-3	Nitrobenzene	ND	3.6	0.76	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	3.6	0.55	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	9.1	0.55	ug/l	
85-01-8	Phenanthrene	ND	1.8	0.53	ug/l	
129-00-0	Pyrene	ND	1.8	0.49	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	47%		10-83	3%	
4165-62-2	Phenol-d5	33%		10-7	4%	
118-79-6	2,4,6-Tribromophenol	107%	24-148%			
4165-60-0	Nitrobenzene-d5	76%	38-129%			

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blankN = Indicates presumptive evidence of a compound

Client Sample ID: FIELD BLANK 3/13

Lab Sample ID:

JB31271-4

Date Sampled:

03/13/13

Matrix:

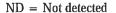
AQ - Field Blank Water

Date Received:

03/13/13

Method:

SW846 8270D SW846 3510C


Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Percent Solids: n/a

ABN TCL List (CLP4.2 list)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
321-60-8	2-Fluorobiphenyl	77%		42-117%
1718-51-0	Terphenyl-d14	111%		14-132%

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

OPM

Client Sample ID: FIELD BLANK 3/13

2G79015.D

670 ml

Lab Sample ID: Matrix:

JB31271-4

1

AQ - Field Blank Water

03/18/13

Date Sampled: 03/13/13 Date Received: 03/13/13

Method:

SW846 8082A SW846 3510C

OP64531

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

03/22/13

Prep Batch Analytical Batch

G2G2621

Analyzed Prep Date File ID DF By

Run #1 Run #2

> Final Volume Initial Volume

Run #1

10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	0.75	0.19	ug/l	
11104-28-2	Aroclor 1221	ND ×	0.75	0.40	ug/l	
11141-16-5	Aroclor 1232	ND	0.75	0.57	ug/l	
53469-21-9	Aroclor 1242	ND	0.75	0.13	ug/l	
12672-29-6	Aroclor 1248	ND :	0.75	0.22	ug/l	
11097-69-1	Aroclor 1254	ND	0.75	0.21	ug/l	
11096-82-5	Aroclor 1260	ND	0.75	0.31	ug/l	
11100-14-4	Aroclor 1268	ND	0.75	0.19	ug/l	
37324-23-5	Aroclor 1262	ND	0.75	0.090	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	76%		27-1	44%	
877-09-8	Tetrachloro-m-xylene	71%		27-1	44%	
2051-24-3	Decachlorobiphenyl	49%		10-1	39%	
2051-24-3	Decachlorobiphenyl	45%		10-1	39%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

4.7

Report of Analysis

Client Sample ID: FIELD BLANK 3/13

Lab Sample ID: JB31271-4 Date Sampled: 03/13/13

Matrix: AQ - Field Blank Water Date Received: 03/13/13

Percent Solids: n/a

Project: Via Verde, 700-730 Brook Avenue, Bronx, NY

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	< 200	200	ug/l	1	03/22/13	03/23/13 ND	SW846 6010C ¹	SW846 3010A ⁵
Antimony	< 1.0	1.0	ug/l	2	03/22/13	03/26/13 VC	SW846 6020A ⁴	SW846 3010A ⁶
Arsenic	< 3.0	3.0	ug/l	1	03/22/13	03/23/13 ND	SW846 6010C ¹	SW846 3010A ⁵
Barium	< 200	200	ug/l	1	03/22/13	03/23/13 ND	SW846 6010C ¹	SW846 3010A ⁵
Beryllium	< 1.0	1.0	ug/l	1	03/22/13	03/23/13 ND	SW846 6010C ¹	SW846 3010A ⁵
Cadmium	< 3.0	3.0	ug/1	1	03/22/13	03/23/13 ND	SW846 6010C ¹	SW846 3010A ⁵
Calcium	< 5000	5000	ug/l	1	03/22/13	03/23/13 ND	SW846 6010C ¹	SW846 3010A ⁵
Chromium	< 10	10	ug/l	1	03/22/13	03/23/13 ND	SW846 6010C ¹	SW846 3010A ⁵
Cobalt	< 50	50	ug/l	1	03/22/13	03/23/13 ND	SW846 6010C ¹	SW846 3010A ⁵
Copper	< 10	10	ug/l	1	03/22/13	03/23/13 ND	SW846 6010C ¹	SW846 3010A ⁵
Iron	< 100	100	ug/l	1	03/22/13	03/23/13 ND	SW846 6010C ¹	SW846 3010A ⁵
Lead	< 3.0	3.0	ug/l	1	03/22/13	03/23/13 ND	SW846 6010C ¹	SW846 3010A ⁵
Magnesium	< 5000	5000	ug/l	1	03/22/13	03/23/13 ND	SW846 6010C ¹	SW846 3010A ⁵
Manganese	< 15	15	ug/l	1	03/22/13	03/23/13 ND	SW846 6010C ¹	SW846 3010A ⁵
Mercury	< 0.20	0.20	ug/l	1	03/23/13	03/23/13 RP	SW846 7470A ²	SW846 7470A ⁷
Nickel	< 10	10	ug/l	1	03/22/13	03/23/13 ND	SW846 6010C ¹	SW846 3010A ⁵
Potassium	< 10000	10000	ug/l	1	03/22/13	03/23/13 ND	SW846 6010C ¹	SW846 3010A ⁵
Selenium	< 10	10	ug/l	1	03/22/13	03/23/13 ND	SW846 6010C ¹	SW846 3010A ⁵
Silver	< 10	10	ug/l	1	03/22/13	03/25/13 ND	SW846 6010C ³	SW846 3010A ⁵
Sodium	< 10000	10000	ug/l	1	03/22/13	03/23/13 ND	SW846 6010C ¹	SW846 3010A ⁵
Thallium	< 1.0	1.0	ug/l	2	03/22/13	03/26/13 VC	SW846 6020A ⁴	SW846 3010A ⁶
Vanadium	< 50	50	ug/l	1	03/22/13	03/23/13 ND	SW846 6010C ¹	SW846 3010A ⁵
Zinc	< 20	20	ug/l	1	03/22/13	03/23/13 ND	SW846 6010C ¹	SW846 3010A ⁵

(1) Instrument QC Batch: MA30778
(2) Instrument QC Batch: MA30779
(3) Instrument QC Batch: MA30781
(4) Instrument QC Batch: MA30791
(5) Prep QC Batch: MP70643
(6) Prep QC Batch: MP70643A
(7) Prep QC Batch: MP70675

Page 1 of 1

Client Sample ID: FIELD BLANK 3/13

Lab Sample ID: JB3

JB31271-4

Matrix:

AQ - Field Blank Water

Date Sampled: 03/13/13 Date Received: 03/13/13

Percent Solids: n/a

Project:

Via Verde, 700-730 Brook Avenue, Bronx, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent	< 0.010	0.010	mg/l	1	03/14/13 10:12		SW846 7196A
Chromium, Trivalent ^a	< 0.020	0.020	mg/l	1	03/23/13 17:14		SW846 6010/7196A M

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

Client Sample ID: TRIP BLANK 3/13

Lab Sample ID: JB31271-5 Date Sampled: 03/13/13

Matrix: AQ - Trip Blank Water Date Received: 03/13/13

Method: SW846 8260B Percent Solids: n/a

Project: Via Verde, 700-730 Brook Avenue, Bronx, NY

Prep Batch Analytical Batch File ID DF Analyzed By Prep Date V1A5416 Run #1 1A125892.D 1 03/21/13 CCn/a n/a Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND C	10	3.3	ug/l	
71-43-2	Benzene	ND	1.0	0.24	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.14	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.30	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.21	ug/l	
75-25-2	Bromoform	ND	4.0	0.21	ug/1	
74-83-9	Bromomethane	ND _	2.0	0.22	ug/1	
78-93-3	2-Butanone (MEK)	ND /	10	2.4	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	0.17	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	0.21	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	0.30	ug/I	
56-23-5	Carbon tetrachloride	ND	1.0	0.22	ug/I	
108-90-7	Chlorobenzene	ND	1.0	0.23	ug/l	
75-00-3	Chloroethane	ND	1.0	0.26	ug/1	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
74-87-3	Chloromethane	ND	1.0	0.21	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	0.15	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.30	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	10	0.54	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.14	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.20	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.22	ug/i	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.30	ug/l	
75-71-8	Dichlorodifluoromethane	ND	5.0	0.27	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.11	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.26	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.19	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.19	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.21	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.48	ug/l	
142-28-9	1,3-Dichloropropane	ND	5.0	0.23	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Client Sample ID: TRIP BLANK 3/13

Date Sampled: 03/13/13 Lab Sample ID: JB31271-5 AQ - Trip Blank Water Date Received: 03/13/13 Matrix: Method: SW846 8260B Percent Solids: n/a

Via Verde, 700-730 Brook Avenue, Bronx, NY Project:

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7	2,2-Dichloropropane	ND	5.0	0.15	ug/I	
563-58-6	1,1-Dichloropropene	ND	5.0	0.30	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.19	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.23	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.24	ug/l	
98-82-8	Isopropylbenzene	ND	2.0	0.45	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	0.22	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.16	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	0.83	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.26	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.70	ug/l	
91-20-3	Naphthalene	ND	5.0	1.1	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	0.24	ug/l	
100-42-5	Styrene	ND	5.0	0.21	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.24	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.28	ug/l	
108-88-3	Toluene	ND	1.0	0.23	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	0.28	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.20	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.24	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.29	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.22	ug/l	
75-69-4	Trichlorofluoromethane	ND	5.0	0.27	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.53	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.19	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.36	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.21	ug/1	
	m,p-Xylene	ND	1.0	0.42	ug/l	
95-47-6	o-Xylene	ND	1.0	0.24	ug/1	
1330-20-7	Xylene (total)	ND	1.0	0.24	ug/1	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	99%		81-12		
17060-07-0	1,2-Dichloroethane-D4	89%		74-12		
2037-26-5	Toluene-D8	94%		80-12		
460-00-4	4-Bromofluorobenzene	83%		78-11	.6%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

 $J \,=\, Indicates \; an \; estimated \; value$

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Appendix B
Chain of Custody
Documents

ACCUTEST:) B		2235 TEL 732-0	Route 130) Dayton	, NJ 0881 2-329-34	10		7	9		0.07.440	X Tracking			-	- 1	e Order Co	rip of #	1	OF
Client / Reporting Information	Amount des	Marine Marin	Project	Informa	-	02020			200	NE.	int and	NEPOSE	Rec	ueste	d Anal	yala (s	see TES			10	Matrix Codes
Company Marie CA Rich Consultants Breat Address	Project Name: Via V	21 E	1.18/1.5											•	ches	000	5				DW - Drinking Waler GW - Ground Waler WW - Waler
17 Dypont Street	Broc		State	Dilling I Georgian	nformatie r Namo	on (if with	erunt f	from Re	port to	1	Harrier			1	arel	trefin	,				SW - Surface Water SO - Soll SL- Sludge SED-Sediment
Project Control	Project #	7-		Street Ac	Mirens		_					-			T.	14					Oi - Oil Liù - Other Liquid AIR - Air
Plainuica NY 11803 Project Contact Richard Izzo Rizzo@corichinc	Clant Purchase	Order #		City			-	State	-		Ζĺφ	827.0	0		3	3.00					SOL - Other Solid WP - Wipe
516-576-8844 516-576-0013 Sampler (6) Name(6) Promi # JOSEM Goope Michely Gregor	Project Manager			Attention									100	.5	TAL Metal	16/26/5 WATE					FB-Fleld Blank EB-Equipment Blank RB- Rinse Blank TB-Trip Blank
Accused Sample II Field ID / Point of Collection	MEOH/Ol Vel #	Date	Collective	Sampled by	Matte	a Used ha la	HÇ	NAOH HNO3	H2504 H	1	MECH	3		RB	M	TAL					LAB USE ONLY
-18 MW-9		3/11/13	1135	Thy	GW	9	3	١	5			3	S	2	T.	Ĺ					
		2000										1					_	_	_		E30
1 mw-7		3/11/13	1240	They They	6W	9	3	1	5	\vdash		3	2	2	1	1	-	-	-	-	A9 C47
-29 MW-7MS MW-7MSD		3/11/13	1240	SAY	(1.)	9	3	- 1	5			3	2	2	1	-	-			-	434
Mw. +msb		2[11]	1200	I'my	yu	9		-			$\exists \exists$		0	01	1				†		12/
-3 Trip Blank					тв	1	1					1					-				
Turnsround Time (Butiness days)				e partico	_	Data	a Deli	verable	tefore	nation	Ш	BHS	10000	×1610		STATE OF	Comme	nts / Spec	sal Instru	ctions	
Gtd. 10 Business Days 6 Day RUSH 3 Day EMERGENCY 2 Day EMERGENCY	Approved By (Acc	stant PM); / Date:			Common		Level :			NY Su ED			3	2	14 h	r	ĥex	Chro	ne i	K	
1 Day EMERGENCY other Emergency & Rush T/A data available V/A Leblink			1			Commer Commer NJ Radu	cial "B	" = Res	O + ellu	C Sun	ry + Par	Sad Flane o	ata								
Belly Green type Samples: 1 Mary 1 3/11 1 Mary 1 5 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100000000	Received By:	Mint be docu	Hantogh	and	n time s	Relli 2	los cha Inquishe		1	ulon, li	La	u	delive	Date Ti	1/13		selved By:	14	h	_

zA

JB30991: Chain of Custody

Page 1 of 3

Accutest Laboratories Sample Receipt Summary

Accutest Job Number: JB30991 Clie	er: JB30991 Client: CA RICH				Project: VIA VERDE						
Date / Time Received: 3/11/2013 17.05	Delivery Method:	Accutest Courier	Airbill #'s:								
Cooler Temps (Initial/Adjusted): #1: (4/4): #2: (4	<u>/4); 0</u>										
Cooler Security Y or N	Y or N	Sample Integrit	y - Documentation	Υ (or N						
I, Gustouy Seals Flesent.	C Present:	1. Sample labels	present on bottles:	\checkmark							
2. Custody Seals Inlact: 4. Smpl	Dales/Time OK 🔽 🔲	2. Container labe	ling complete:	\checkmark							
Cooler Temperature Y or N		3. Sample contain	ner label / COC agree:	\checkmark							
1. Temp criteria achieved:		Sample Integri	ty - Condition	<u>Y</u> (or N						
Cooler temp verification: Bar Therm		1. Sample recvd	wilhin HT:	✓							
3. Cooler media: Ice (Bag)		2, All containers a	accounted for:	V							
4. No, Coolers		3. Condition of sa	imple:	fn	tact						
Quality Control Preservation Y N	N/A	Sample Integri	ty - Instructions	<u>Y</u>	<u>N</u> _	N/A					
1. Trip Blank present / cooler: ✓		1. Analysis reque	ested is clear:		V						
2_Trip Blank listed on COC:		2 Bottles receive	ed for unspecified lesls		\checkmark						
3. Samples preserved properly:		3. Sufficient volu	me recvd for analysis:	\checkmark							
4 VOCs headspace free:		4. Compositing is	nstructions clear:			\checkmark					
		5, Filtering instru	ictions clear:		V						
Comments 11 metal volumes include one 500ml HNO3 mgmt split the 500ml so the lab can have one the lab filtered xcr volume sparingly as to pres 22 has the same issue except that triple (ms	bottle for total xcr and one bottle for le serve what is left for dissolved metals	ab filtered xcr. There was	no additional poly bottle submitted for	le was field I	filtered or no	t, Sample as noted to use					

Accutest Laboratorles V:732,329,0200

2235 US Highway 130 F: 732,329,3499

Dayton, New Jersey www/accutest.com

JB30991: Chain of Custody

Page 2 of 3

Sample Receipt Summary - Problem Resolution

Accutest Job Number: JB30991

CSR:	M Cordova	Response Date:	3/13/2013	

Response: Action taken is correct. Sample are all to be lab filtered and totals for Metals and XCR 7196A. Client did not order separate XCR bottles and therefore we did not receive them.

Accutest Laboratories V:732,329,0200

2235 US Highway 130 F: 732.329.3499

Dayton, New Jersey www/acculest.com

JB30991: Chain of Custody Page 3 of 3

	GW
	F3
	WB
ACCUTES	3T.
LANDRATE	OW CHES

Data T(me)

ACCUTEST.	CHAIN OF CUS' 2235 Route 130, Dayton, NJ 088 TEL, 732-329-0200 FAX: 722-329-34	O FED.	EX Tracking 8 EX Tracking 8 EX Tracking 8 EX Tracking 8 EX EX	PAGE 1 OF 1
Client / Reporting Information	Project Information		Requested Applysis Food	TEST CODE sheet) Metrix Codes
Company Name CCA Fish Consultants Inc. Project Name: Via Vende			Her They	DW - Drinking Weter GW - Ground Water WW - Water
17 Dupont Street BROOK AV	C Billing Information (If diff	erent from Report to)	1 33	SW - Surface Water SO - Soli
Plainview NY 11803 BRONX	State Company Name Street Adoress		70 Filtered 1Filtered	SL-Studge SED-Sediment OI - Oil LIQ - Other Liquid
Rich Ison Nieson Deaniching, com			3 12	AIR - Air SOL - Other Solid
Phone # 516 576 8844 516 576 0093 Citiest Furchase Order #	City	State Zip	18 2 12	WP - Wipe FB-Fletd Blank
Sampler(s) Nemo(s) Phone # Project Manager Mike Yager + Tom BROWN	Atlention	22,8	1 3 S S S S S S S S S S S S S S S S S S	EB-Equipment Blank RB- Rinse Blank TB-Trip Blank
Accused Accused Field (D / Point of Collection MECHIDI Vel 8 Date	Chilecton Sampled Time Sy Metric # of tection	HACK HANDS H	PC8 PC8 PC8	LAB USE ONLY
-16 MW-6 3/13/	3 13-30 MY/TBGW 9	3 1 5 3		D35
-2F MW-8 3/13/	3 1110 my/m6W 9	3 1 5 3	2211	A9
-3F MW - XX 3/13/		3 1 5 3		C19
27 JUN XX 3/13/	N MINUS 1	7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	12 12 1	4.72
-4F Field Blank 3/13 3/13/	13 MITA FB 7	à 5 2	22 1	
-4F Field Blank 3/13 3/13/ -5 TRip Blank 3/13 3/13		a 5 2 2 2	44	
			 	
Turniscued Time (Business days)	Day Day	a Deliverable Information		comments / Special Instructions
Approved By (Accutest PM): I De Stel. 10 Business Days 5 Day RUSH J Day EMERGENCY 2 Day EMERGENCY 1 Day EMERGENCY	Commercial "B" (FULLT1 (Level 3- NJ Reduced Commercial "C"	Level 2) NYASP Catagory B 4) State Forms EDD Format Other Clai*A* ** Results Only	*24ka / NYS TOO * Her Chaon	Hex Chrome * 5 Detection Limits ne For Total + Dissolval +
citier Emergency & Rush T/A data available VIA Lablink	NJ Rod	rolal "B" = Results + QC Summary rond + Results + QC Summary + Partial Raw	Lab Fitte	ned *
Retinquished by Sampler: Onis Time: Received by Sampler: 18.3/13/13 15.3% Received by Sampler: Onis Time: Onis	only thust be documented below each time. Niès Lauf	Relinquished by: Relinquished by: Relinquished by:	Date Time: 179	Macelved Dy: 2 Received Dy:

Custody Bast #

SIP

JB31271: Chain of Custody Page 1 of 3

(J)

Accutest Laboratories Sample Receipt Summary

Accutest Job Number: JB312	Client:	CA Rich Co	nsultants	s, Inc.		Project: Via Verde				
Date / Time Received: 3/13/2013 17:45		5	Delivery Method: Accu			utest Courier				
Cooler Temps (Initial/Adjusted)): #1 <u>; (2.6</u>	3/2,6); <u>0</u>								
1. Custody Seals Present: 2. Custody Seals Intact: Cooler Temperature 1. Temp criteria achieved: 2. Cooler temp verification: 3. Cooler media: 4. No, Coolers	Y or	3, COC Pri		Y or ✓	<u>N</u>	Sample labels p Container label	ing complete; uer label / COC agree; uy - Condition vithin HT: uccounted for:	V V V	DI N	
Quality Control_Preservation 1, Trip Blank present / cooler: 2. Trip Blank listed on COC: 3. Samples preserved properly: 4, VOCs headspace free:	Y	N N/A	<u> </u>			Analysis reque Boltles receive	ed for unspecified tests me recvd for analysis: nstructions clear:	<u>Y</u>		<u>N/A</u> ☑
Comments 11 thru -3 Did not rec for dissolved XCR and s 24 No collection time	ubsequently	y preserved for o	Total & Dissolv dissolved meta	ved XCR ar	nalysis. 50		will be aliquoted for total XCR. R	emaining volume		
Accutest Laboratorles V:732.329.0200					2235 US HI F: 732,3	ghway 130 29.3499				Daylon, New Jersey www/accutest.com

JB31271: Chain of Custody

Page 2 of 3

Sample Receipt Summary - Problem Resolution

Accutest Job Number: JB31271

3/14/2013 CSR: M Cordova Response Date:

Response: 1. That's is the Correct procedure for these samples. 2. Log in 13:30 for time and 3/13 collection.

Accutest Laboratories V:732,329,0200

2235 US Highway 130 F: 732.329.3499

Dayton, New Jersey www/accutest.com

JB31271: Chain of Custody Page 3 of 3

Appendix C Case Narratives

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: C. A. Rich Consultants Job No JB30991

Site: Via Verde, 700-730 Brook Avenue, Bronx, NY Report Date 4/4/2013 4:47:23 PM

On 03/11/2013, 2 Sample(s), 1 Trip Blank(s) and 0 Field Blank(s) were received at Accutest Laboratories at a temperature of 4 C. Samples were intact and chemically preserved, unless noted below. An Accutest Job Number of JB30991 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Volatiles by GCMS By Method SW846 8260B

Matrix: AO Batch ID: V3D3623

- All samples were analyzed within the recommended method holding time.
- Sample(s) JB30991-2MS, JB30991-2MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.

Extractables by GCMS By Method SW846 8270D

Matrix: AQ Batch ID: OP64419

- All samples were extracted within the recommended method holding time.
- Sample(s) JB30991-2MS, JB30991-2MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- RPD(s) for MSD for 4-Chloroaniline are outside control limits for sample OP64419-MSD. Outside control limits due to matrix interference.
- JB30991-2: Confirmation run.
- JB30991-1: Confirmation run.
- OP64419-MB1 for 2-Fluorobiphenyl: Outside of in house control limits.

Extractables by GC By Method SW846 8082A

Matrix: AQ Batch ID: OP64424

- All samples were extracted within the recommended method holding time.
- Sample(s) JB30991-2MS, JB30991-2MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.

Metals By Method SW846 6010C

Matrix: AQ Batch ID: MP70451A

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB30991-2FMS, JB30991-2FMSD, JB30991-2FSDL, JB30991-2MSD, JB30991-2MSD, JB30991-2SDL were used as the QC samples for metals.
- RPD(s) for Serial Dilution for Aluminum, Chromium, Cobalt, Copper, Nickel, Selenium, Vanadium, Zinc, Aluminum are
 outside control limits for sample MP70451A-SD1, MP70451A-SD2. Percent difference acceptable due to low initial sample
 concentration (< 50 times IDL).

Metals By Method SW846 6020A

Matrix: AQ

Batch ID: MP70451

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB30991-2FMS, JB30991-2FMSD, JB30991-2MS, JB30991-2MSD, JB30991-2SDL, JB30991-2FSDL were used as the QC samples for metals.
- RPD(s) for Serial Dilution for Thallium, Antimony, Thallium are outside control limits for sample MP70451-SD1, MP70451-SD2. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).</p>

Metals By Method SW846 7470A

Matrix: AQ

Batch ID: MP70641

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB30991-2FMS, JB30991-2FMSD, JB30991-2MS, JB30991-2MSD were used as the QC samples for metals.

Wet Chemistry By Method SW846 6010/7196A M

Matrix: AO

Batch ID: R121290

- The data for SW846 6010/7196A M meets quality control requirements.
- JB30991-2 for Chromium, Trivalent: Calculated as: (Chromium) (Chromium, Hexavalent)

Matrix: AQ

Batch ID: R121291

- The data for SW846 6010/7196A M meets quality control requirements.
- JB30991-2F for Chromium, Trivalent: Calculated as: (Chromium) (Chromium, Hexavalent)

Matrix: AO

Batch ID: R121292

- The data for SW846 6010/7196A M meets quality control requirements.
- JB30991-1 for Chromium, Trivalent: Calculated as: (Chromium) (Chromium, Hexavalent)

Matrix: AQ

Batch ID: R121293

- The data for SW846 6010/7196A M meets quality control requirements.
- JB30991-1F for Chromium, Trivalent: Calculated as: (Chromium) (Chromium, Hexavalent)

Wet Chemistry By Method SW846 7196A

Matrix: AQ

Batch ID: GN81268

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB30991-1DUP, JB30991-1FMS, JB30991-1MS, JB30991-1FDUP were used as the QC samples for Chromium, Hexavalent.
- RPD(s) for Duplicate for Chromium, Hexavalent are outside control limits for sample GN81268-D2. RPD acceptable due to low duplicate and sample concentrations.

Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting Accutest's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

Accutest Laboratories is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by Accutest Laboratories indicated via signature on the report cover

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: C. A. Rich Consultants

Job No

JB31271

Site:

Via Verde, 700-730 Brook Avenue, Bronx, NY

Report Date

4/4/2013 5:26:36 PM

On 03/13/2013, 3 Sample(s), 1 Trip Blank(s) and 1 Field Blank(s) were received at Accutest Laboratories at a temperature of 2.6 C. Samples were intact and chemically preserved, unless noted below. An Accutest Job Number of JB31271 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Volatiles by GCMS By Method SW846 8260B

Matrix: AQ

Batch ID: V1A5416

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB31378-15MS, JB31378-15MSD were used as the QC samples indicated.
- RPD(s) for MSD for 1,2,4-Trimethylbenzene, 1,2-Dichloroethane, 1,3-Dichlorobenzene, 1,4-Dichlorobenzene, Bromobenzene, Methylene bromide, Naphthalene are outside control limits for sample JB31378-15MSD. Outside control limits due to matrix interference.

Matrix: AQ

Batch ID: V1A5417

- All samples were analyzed within the recommended method holding time.
- Sample(s) JB31501-1MS, JB31501-1MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.

Extractables by GCMS By Method SW846 8270D

Matrix: AQ

Batch ID: OP64567

- All samples were extracted within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB31517-4MS, JB31517-4MSD were used as the QC samples indicated.
- Matrix Spike Recovery(s) for 2,4-Dinitrophenol are outside control limits. Outside control limits due to matrix interference.
- Matrix Spike Duplicate Recovery(s) for 2,4-Dinitrophenol are outside control limits. Outside control limits due to matrix interference.
- OP64567-BS1 for Caprolactam: Outside of in house control limits, but within reasonable method recovery limits.

Extractables by GC By Method SW846 8082A

Matrix: AQ

Batch ID: OP64531

- All samples were extracted within the recommended method holding time.
- Sample(s) JB31271-1MS, JB31271-1MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.

Metals By Method SW846 6010C

Matrix: AQ Batch ID: MP70618

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB31271-1MS, JB31271-1MSD, JB31271-1SDL were used as the QC samples for metals.
- RPD(s) for Serial Dilution for Cobalt, Lead, Silver, Zinc are outside control limits for sample MP70618-SD1. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).</p>

Matrix: AQ Batch ID: MP70643

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- MP70643-MB1 for Beryllium: All reported results <RL or >10x MB value.

Metals By Method SW846 6020A

Matrix: AQ Batch ID: MP70618A

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB31271-1MS, JB31271-1MSD, JB31271-1SDL were used as the QC samples for metals.
- RPD(s) for Serial Dilution for Antimony, Thallium are outside control limits for sample MP70618A-SD1. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

Matrix: AQ Batch ID: MP70643A

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

Metals By Method SW846 7470A

Matrix: AQ Batch ID: MP70675

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB31271-2MS, JB31271-2MSD were used as the QC samples for metals.

JB31271

Wet Chemistry By Method SW846 6010/7196A M

Matrix: AO Batch ID: R121284

- The data for SW846 6010/7196A M meets quality control requirements.
- JB31271-1 for Chromium, Trivalent: Calculated as: (Chromium) (Chromium, Hexavalent)

Matrix: AQ Batch ID: R121285

- The data for SW846 6010/7196A M meets quality control requirements.
- JB31271-2 for Chromium, Trivalent: Calculated as: (Chromium) (Chromium, Hexavalent)

Matrix: AQ Batch ID: R121286

- The data for SW846 6010/7196A M meets quality control requirements.
- JB31271-3 for Chromium, Trivalent: Calculated as: (Chromium) (Chromium, Hexavalent)

Matrix: AQ Batch ID: R121287

- The data for SW846 6010/7196A M meets quality control requirements.
- JB31271-1F for Chromium, Trivalent: Calculated as: (Chromium) (Chromium, Hexavalent)

Matrix: AQ Batch ID: R121288

- The data for SW846 6010/7196A M meets quality control requirements.
- JB31271-2F for Chromium, Trivalent: Calculated as: (Chromium) (Chromium, Hexavalent)

Matrix: AQ Batch ID: R121289

- The data for SW846 6010/7196A M meets quality control requirements.
- JB31271-3F for Chromium, Trivalent: Calculated as: (Chromium) (Chromium, Hexavalent)

Matrix: AQ Batch ID: R121318

- The data for SW846 6010/7196A M meets quality control requirements.
- JB31271-4 for Chromium, Trivalent: Calculated as: (Chromium) (Chromium, Hexavalent)

Wet Chemistry By Method SW846 7196A

Matrix: AQ Batch ID: GN81454

- All method blanks for this batch meet method specific criteria.
- Sample(s) JB31271-1FDUP, JB31271-1FMS, JB31271-1MS, JB31271-1DUP were used as the QC samples for Chromium, Hexavalent.
- RPD(s) for Duplicate for Chromium, Hexavalent are outside control limits for sample GN81454-D1. RPD acceptable due to low duplicate and sample concentrations.
- JB31271-3 for Chromium, Hexavalent: Analysis done out of holding time.
- JB31271-3F for Chromium, Hexavalent: Analysis done out of holding time.

Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting Accutest's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

Accutest Laboratories is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by Accutest Laboratories indicated via signature on the report cover