

Quarterly Monitoring Report Second Quarter 2013

New Housing New York Legacy Project (Via Verde) 700-730 Brook Avenue, Bronx, NY BCP Site ID: C203043

August 2013

Prepared for:

NYSDEC, Region 2 Division of Environmental Remediation 47-40 21st Street Long Island City, NY 1101

On Behalf of

Via Verde Homes, LLC Via Verde Rental Associates, L.P. 902 Broadway, 13th Floor New York, New York 10010

Prepared by:

CA RICH CONSULTANTS, INC. 17 Dupont Street Plainview, NY 11803-1614

August 13, 2013

NYSDEC, Region 2 Division of Environmental Remediation 47-40 21st Street Long Island City, NY 1101

Attn: Jane O'Connell

Re:

Quarterly Monitoring Report 2nd Quarter 2013 Groundwater Sampling Via Verde 700-730 Brook Avenue, Bronx, NY BCP Site ID: C203043

Dear Ms. O'Connell:

CA RICH Consultants, Inc. is pleased to present the Quarterly Monitoring Report for the Second Quarter 2013 in connection with the above-captioned Site. This Report is being submitted on behalf of Via Verde Homes, LLC and Via Verde Rental Associates, L.P. (the BCP Volunteer) and was prepared in accordance with the NYSDEC-approved Site Management Plan (SMP) dated December, 2011.

If there are any questions regarding this document, please do not hesitate to call our office.

Sincerely,

1. Jar

Richard J. Izzo, CPG Senior Associate

cc: Chris Doroski, NYSDOH (email only) Jennifer Wu (email only) Michael Wadman (email only)

TABLE OF CONTENTS

Section	<u>l</u>		<u>Page</u>
1.0	INTRO	DUCTION	1
2.0	SITE D	ESCRIPTION AND BACKGROUND	1
3.0	MEDIA	MONITORING PROGRAM	2
	3.1	Groundwater	
4.0	CONCL	USIONS AND RECOMMENDATIONS	4
REFER	ENCES		5

FIGURES

Figure 1	Site Location
Figure 2	Monitoring Well Locations and Water Table Map
Figure 3	Concentration of Key Constituents vs. Time

TABLES

Table 1	Validated Analytical Results for Volatile Organic Compounds in Groundwater
Table 2	Validated Analytical Results for Semi-volatile Organic Compounds in Groundwater
Table 3	Validated Analytical Results for PCBs in Groundwater
Table 4	Validated Analytical Results for Total Metals in Groundwater

APPENDICES

Appendix A	Field Forms and Chain of Custody
Appendix B	Data Usability Summary Report for Groundwater Samples

1.0 INTRODUCTION

The following Quarterly Monitoring Report has been prepared by CA RICH Consultants, Inc. (CA RICH) on behalf of Via Verde Homes, LLC and Via Verde Rental Associates, L.P. This document is required as an element of the Site Management Plan (SMP) (Ref. 1) at The New Housing New York Legacy Project (hereinafter referred to as Via Verde or the Site), 700-730 Brook Avenue, Bronx, NY (BCP Site ID: C203043. The Site is being managed under the New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP). The Site was remediated in accordance with Brownfield Cleanup Agreement (BCA) Index #W2-1129-08-11, Site #C203043, which was executed on February 23, 2009. The Certificate of Completion was received on December 23, 2011.

2.0 SITE DESCRIPTION AND BACKGROUND

Via Verde Homes, LLC, Via Verde Rental Associates, L.P., and the City of New York Department of Housing Preservation and Development ("HPD") entered into a Brownfield Cleanup Agreement (BCA) with the New York State Department of Environmental Conservation (NYSDEC) in February 2009 to investigate and remediate a 1.41-acre property located in the Bronx, New York. The property was remediated to restricted residential, use, and will be used for mixed commercial and residential purposes. It is noted that the Deed was transferred on December 30, 2009 and HPD no longer has any ownership interest.

The Site is located in the County of the Bronx, New York and is identified as Section 9, Block 2359; Lot 51, which includes Condominium Lots 1001, 1002, 1003, and 1004, and was formerly part of Lots 1 and 3 on the Bronx County Tax Map. The Site is an approximately 1.41-acre area bounded by East 156th Street to the north, an athletic field to the south, New York City Housing Authority Bronxchester Houses and South Bronx High School to the east, and Brook Avenue to the west (see Figure 1). The boundaries of the Site are more fully described in the metes and bounds Site description that is part of the Environmental Easement. A copy of the Environmental Easement is included in the Final Engineering Report (Ref. 2).

Under the BCP, the Site was remediated to Track 4 Site Specific Soil Action Levels ("SSSALs") established for the Site as listed in the FER. Low levels of polyaromatic hydrocarbons and metals remain in the soil in limited areas throughout the Site. Based upon the detection and distribution of groundwater contaminants, in-situ chemical oxidation was performed in the area of the former service station (northwest corner of the Site). On April 1st through 9th, 2010 Regenox[™] and ORC® Advanced (ISCO treatment) was injected into the shallow groundwater and soil/fill in the smear zone.

The results from post-remedial groundwater monitoring indicate that fuel related volatile organic compounds (VOCs) and some metals remain within the groundwater above NYSDEC Technical and Administrative Guidance (TOGS) standards (Ref. 3).

As remaining contaminated soil and groundwater exist beneath the Site, implementation of Institutional Controls (ICs) and Engineering Controls (ECs) were required at the Site to be managed through implementation of the Site management Plan (SMP). Exposure to soil vapor (potential off-gassing from residual Volatile Organic Compounds (VOCs) in the groundwater) is being prevented by the composite cover system, which is comprised of concrete-covered sidewalks, courtyard areas, foundation walls, concrete building slabs as well as a 2-foot clean fill buffer on all non-capped areas. A vapor barrier and active Sub-Slab Depressurization (SSD) system were installed underneath each of the five building foundations as additional protection.

3.0 MEDIA MONITORING PROGRAM

3.1 Groundwater

Four post-remedial groundwater monitoring wells designated MW-6, MW-7, MW-8, & MW-9 were installed, developed and surveyed at the Site in July 2011 and will serve as the groundwater monitoring wells for the post-remedial groundwater monitoring. The locations of the four wells and direction of groundwater flow are illustrated on Figure 2.

CA RICH conducted the Second Quarter round of groundwater sampling on June 3rd and 4th 2013. The four monitoring wells were purged and sampled in accordance with EPA's Low-Flow (minimal drawdown) Groundwater Sampling Procedures. Copies of the requisite field forms and Chain-of-Custody are attached as Appendix A. Quality Assurance/Quality Control (QA/QC) samples were also collected and analyzed in connection with the testing as set forth in

the SMP and included one trip blank, one field blank per day of field work, one duplicate, one matrix spike, and one matrix spike duplicate. In addition, the data was validated by a qualified third-party and a DUSR was prepared (Appendix B).

Groundwater samples were collected from the wells, submitted to ELAP and CLP-certified Accutest Laboratories in Dayton, NJ and analyzed for Volatile Organic Compounds (VOCs) via EPA Method 8260, Semi-Volatile Organic Compounds (SVOCs) via EPA Method 8270, PCBs and dissolved TAL metals (plus hexavalent chromium) with NYSDEC ASP Category B deliverables. All post-remedial groundwater sampling results have been provided to NYSDEC in the appropriate Electronic Data Deliverable format.

All on-site sampling equipment was decontaminated between each use in the following manner: laboratory grade detergent and fresh water wash using a scrub brush, followed by two fresh water rinses and final air dry. The submersible pump used for groundwater sample collection was decontaminated between sample collection by passing the detergent and water mixture through the pump, followed by two fresh water rinses. Gloves worn for sample handling were discarded between sample collections. Dedicated, new polyethylene tubing was used at each well location for purging and sampling. The 40-mil sample vials were filled completely and checked to ensure that no air bubbles were present.

3.1.1 Summary of Results

The results of the sampling program are presented on Tables 1-4. In addition to the tabular presentation, a graph plotting the concentration of key constituents versus time is included as Figure 3.

As illustrated on Table 1, fuel-related VOCs in excess of NYSDEC TOGS continue to be detected in on-site well MW-8. The most elevated fuel-related compound concentration is 51.8 ug/L of ethylbenzene. Chloroform, was detected in well MW-6 at a concentration in excess of TOGS standards during this most recent sampling event. No VOCs were detected in MW-7 or MW-9 in excess of TOGS Standards.

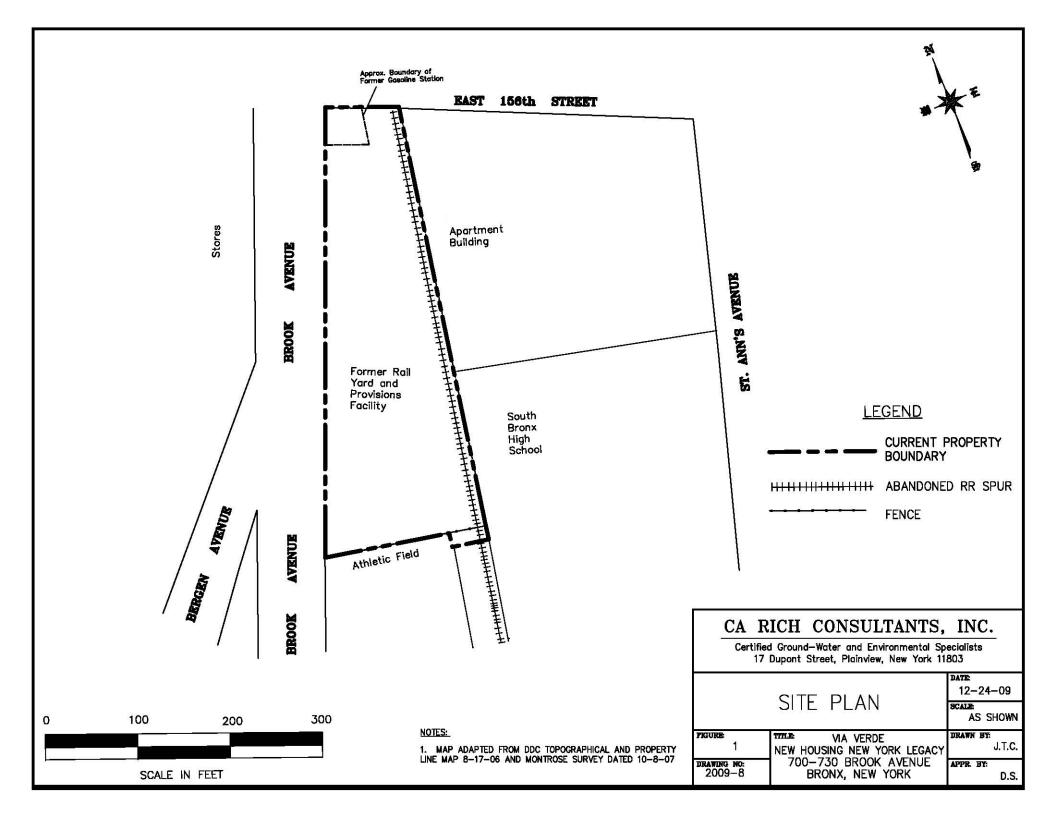
As shown on Figure 3, comparison of concentrations for naphthalene, n-propylbenzene, 1,2,4trimethylbenzene, and total xylenes in MW-8 between the 4th quarter 2011 sampling event and the 2nd quarter 2013 sampling event indicates a continued general reduction in concentration for these selected compounds.

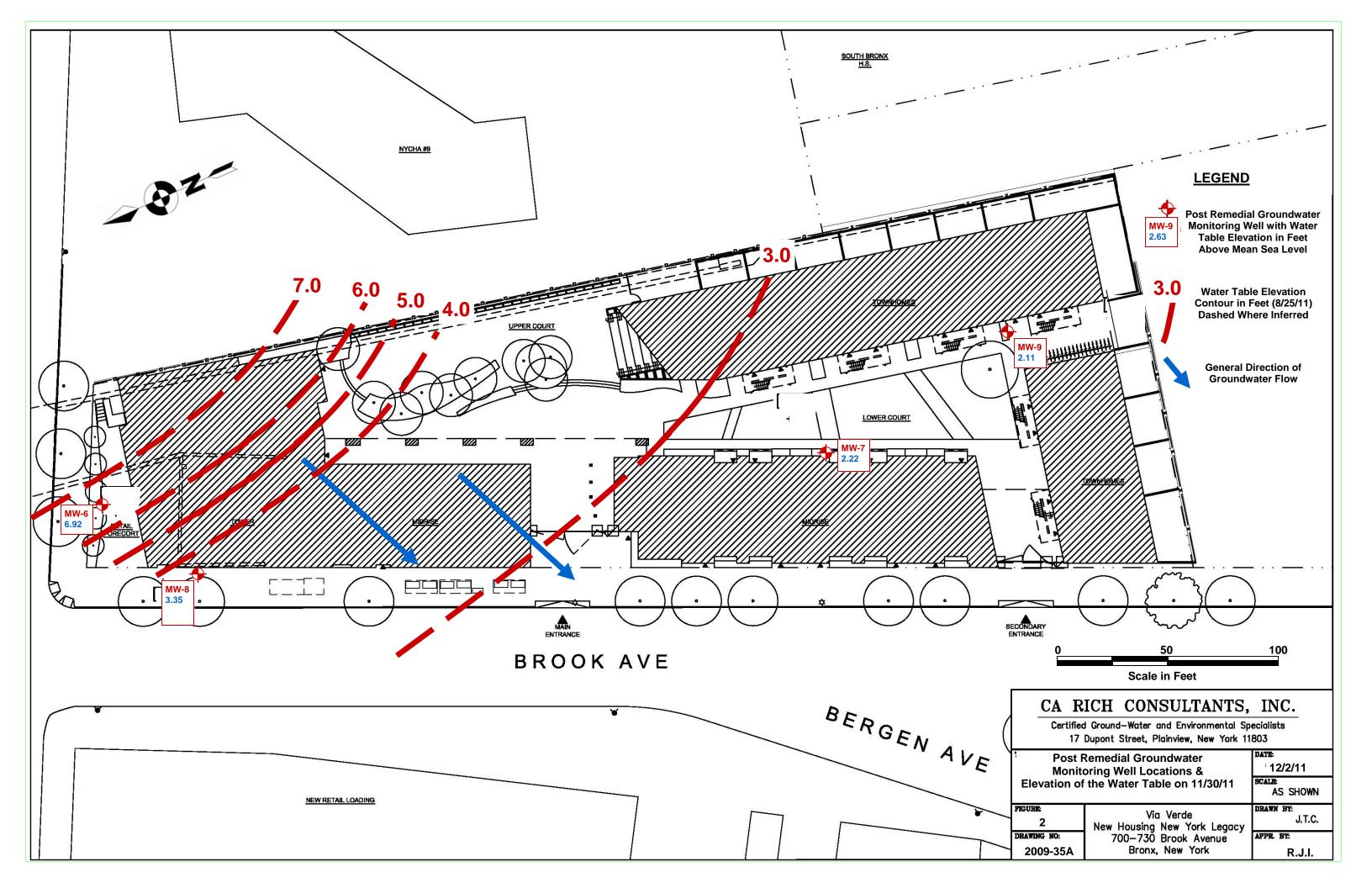
Semi-volatile organic analysis (Table 2) did not detect any targeted compounds at concentrations in excess of TOGS standards.

Analysis for PCBs (Table 3) did not detect any of these compounds in any of the samples. These compounds were also not detected in any of the previous sampling rounds.

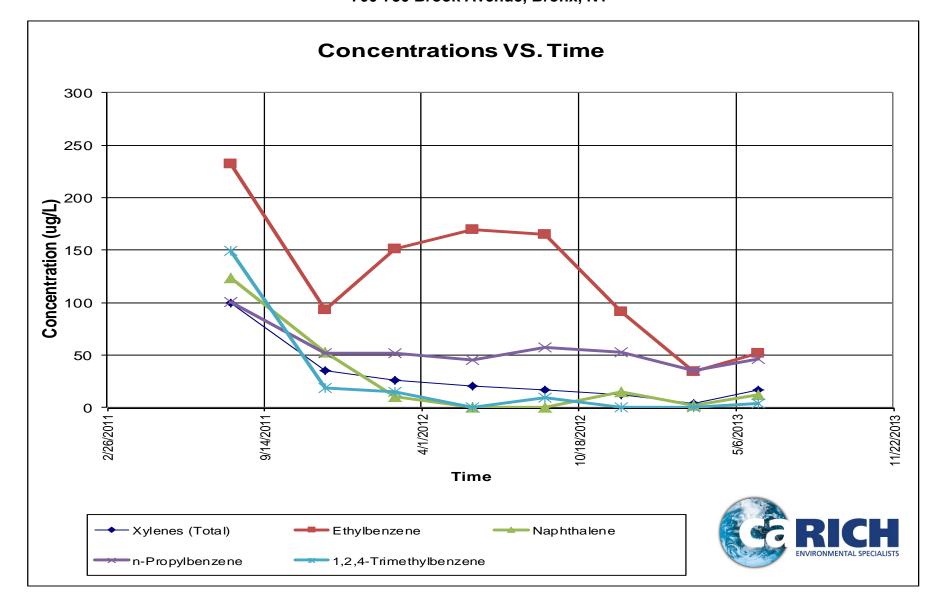
Analysis for metals (Table 4) detected magnesium, manganese, selenium and sodium at levels in excess of TOGS Standards.

4.0 CONCLUSIONS AND RECOMMENDATIONS


Based upon our review of the analytical results from the 2nd quarter 2013 sampling event and comparison of the results to those generated during the previous events, it appears that the detected levels of fuel-related VOCs generally continue to decline below initial concentrations. The levels of targeted metals continue to fluctuate above and below TOGS Standards. PCBs remain undetected in all wells and SVOCs remain below TOGS standards.


Based upon the results of the first year of post remedial monitoring, CA RICH submitted a formal petition to modify the sampling program on April 2, 2013. The petition was approved by the Department via their letter dated May 9, 2013 and includes reduction of sampling frequency from quarterly to semi-annually and reduction of the parameter list to include only VOCs and dissolved TAL metals. The modifications to the sampling program will be put in place during the next scheduled sampling event in December 2013.

REFERENCES


- 1. Stephen J. Osmundsen, P.E. Site Management Plan. New York: Author, December 7, 2011.
- 2. Stephen J. Osmundsen, P.E. Final Engineering Report. New York: Author, December 21, 2011.
- 3. New York State Department of Environmental Conservation; Division of Water Technical and Operation Guidance Series (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations; June 1998.

FIGURES

FIGURE 3 Concentrations Trends of Selected Compounds in Groundwater Monitoring Well MW-8 Via Verde 700-730 Brook Avenue, Bronx, NY

TABLES

Via Verde aka New Housing New York Legacy Project 700-730 Brook Avenue, Bronx, New York BCP # C203043 Sample ID MW-6 MW-7 MW-8 MW-9 MW-XX** Field Blank Trip Blank												
Sample ID Matrix Date Sampled	MW-6 groundwater 6/3/2013	MW-7 groundwater 6/4/2013	MW-8 groundwater 6/3/2013	MW-9 groundwater 6/4/2013	MW-XX** groundwater 6/3/2013	Field Blank liquid 6/3/2013	Trip Blank liquid 6/3/2013	NYSDEC TOGs*				
/olatile Organic Compounds												
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L				
Acetone	ND	ND	ND	4.1 J	ND	ND	ND	50				
Benzene	ND	ND	8.5	ND	8.3	ND	ND	1				
Bromobenzene	ND	ND	ND	ND	ND	ND	ND	5				
Bromochloromethane	ND	ND	ND	ND	ND	ND	ND	5				
Bromodichloromethane	1.2	ND	ND	ND	ND	ND	ND	50				
Bromoform	ND	ND	ND	ND	ND	ND	ND	50				
Bromomethane	ND	ND	ND	ND	ND	ND	ND	5				
2-Butanone (MEK)	ND R	ND R	10.8 J	ND R	13.2 J	ND R	ND R	50				
n-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	5				
sec-Butylbenzene	ND	ND	5.2	ND	5.2	ND	ND	5				
ert-Butylbenzene	ND	ND	1.3 J	ND	1.2 J	ND	ND	5				
Carbon tetrachloride	ND	ND	ND	ND	ND	ND	ND	5				
Chlorobenzene	ND	ND	ND	ND	ND	ND	ND	5				
Chloroethane	ND	ND	ND	ND	ND	ND	ND	5				
Chloroform	18.6	ND	ND	ND	ND ND	ND	ND	7				
Chloromethane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NVG				
p-Chlorotoluene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5				
o-Chlorotoluene 1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	ND	ND	5 0.04				
1,2-Dibromo-3-chioropropane Dibromochloromethane	ND	ND	ND	ND	ND	ND	ND	0.04 50				
1,2-Dibromoethane	ND	ND	ND	ND	ND	ND	ND	NVG				
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	3				
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	3				
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	3				
Dichlorodifluoromethane	ND	ND	ND	ND	ND	ND	ND	5				
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	5				
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	0.6				
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	5				
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	5				
rans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	5				
1,2-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	1				
1,3-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	5				
2,2-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	5				
1,1-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	5				
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	0.4				
rans-1,3-Dichloropropene	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	0.4				
Ethylbenzene Hexachlorobutadiene	ND	ND	51.8 ND	ND	52.4 ND	ND	ND	5 0.5				
sopropylbenzene	ND	ND	28.5	ND	28.3	ND	ND	0.5				
p-lsopropyltoluene	ND	ND	0.63 J	ND	0.62 J	ND	ND	5				
Methyl Tert Butyl Ether	ND	ND	ND	ND	0.02 J	ND	ND	5 10				
1-Methyl-2-pentanone(MIBK)	ND	ND	ND	ND	ND	ND	ND	NVG				
Methylene bromide	ND	ND	ND	ND	ND	ND	ND	NVG				
Methylene chloride	ND	ND	ND	ND	ND	ND	ND	5				
Naphthalene	ND	ND	12.0	ND	12.0	ND	ND	10				
-Propylbenzene	ND	ND	46.6	ND	46.3	ND	ND	5				
Styrene	ND	ND	ND	ND	ND	ND	ND	5				
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	5				
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	5				
Tetrachloroethene	ND	ND	ND	ND	ND	ND	ND	5				
Foluene	ND	ND	4.9	ND	4.9	ND	ND	5				
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	5				
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	5				
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	5				
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	1				
Trichloroethene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5				
Trichlorofluoromethane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5				
1,2,3-Trichloropropane	ND	ND	ND 4.2	ND	ND 4.3	ND	ND	0.04				
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	ND	ND	4.2 1.1 J	ND	4.3 1.1 J	ND	ND	5 5				
/i,3,5-Trimetnyibenzene /inyl chloride	ND	ND	ND	ND	ND	ND	ND	5				
n,p-Xylene	ND	ND	15.3	ND	15.8	ND	ND	2 5				
p-Xylene	ND	ND	1.4	ND	1.5	ND	ND	5				
Kylene (total)	ND	ND	16.8	ND	17.3	ND	ND	5				
Votes: <i>ig/L</i> - micrograms per liter or parts per l <i>ID</i> - Not detected at or above laborator VVG - No Value Given	billion		*NYSDEC Teo Ambient Wate	chnical and Op r Quality Stan	erational Guid	ance Series (1 dance Values						

		Та	ble 2									
Validated Analy			-	•	s In Ground	water						
			ng New York Lo nue, Bronx, Ne									
	BCP # C203043											
Sample I	D MW-6	MW-7	MW-8	MW-9	MW-XX**	Field Blank	NYSDEC					
Matri		groundwater	groundwater	groundwater	groundwater	liquid	TOGS					
Date Sample	6/3/2013	6/4/2013	6/3/2013	6/4/2013	6/3/2013	6/3/2013	L					
Semi-Volatile Organic Compounds												
Unit	0	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L					
2-Chlorophenol	ND	ND	ND	ND	ND	ND	NVG					
4-Chloro-3-methyl phenol	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NVG					
2,4-Dichlorophenol 2,4-Dimethylphenol	ND	ND	ND	ND	ND	ND	5 50					
2,4-Dinitrophenol	ND	ND	ND	ND	ND	ND	10					
4,6-Dinitro-o-cresol	ND	ND	ND	ND	ND	ND	NVG					
2-Methylphenol	ND	ND	ND	ND	ND	ND	1					
3&4-Methylphenol	ND	ND	ND	ND	ND	ND	1					
2-Nitrophenol	ND	ND	ND	ND	ND	ND	NVG					
4-Nitrophenol	ND	ND	ND	ND	ND	ND	NVG					
Pentachlorophenol	ND	ND	ND	ND	ND	ND	NVG					
Phenol	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1					
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	ND	ND	ND	ND	ND	ND	NVG NVG					
Acenaphthene	ND	ND	0.52 J	ND	UJ	ND	20					
Acenaphthylene	ND	ND	0.32 J	ND	ND	ND	20 NVG					
Acetophenone	ND	ND	ND	ND	ND	ND	NVG					
Anthracene	ND	ND	ND	ND	ND	ND	50					
Atrazine	ND	ND	ND	ND	ND	ND	7.5					
Benzaldehyde	ND	ND	ND	ND	ND	ND	0.002					
Benzo(a)anthracene	ND	ND	ND	ND	ND	ND	ND					
Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	0.002					
Benzo(b)fluoranthene	ND	ND	ND	ND	ND	ND	NVG					
Benzo(g,h,i)perylene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.002 NVG					
Benzo(k)fluoranthene 4-Bromophenyl phenyl ether	ND	ND	ND	ND	ND	ND	50					
Butyl benzyl phthalate	ND	ND	ND	ND	ND	ND	5					
1,1'-Biphenyl	ND	ND	ND	ND	ND	ND	NVG					
2-Chloronaphthalene	ND	ND	ND	ND	ND	ND	10					
4-Chloroaniline	UJ	ND	UJ	ND	UJ	UJ	5					
Carbazole	ND	ND	ND	ND	ND	ND	NVG					
Caprolactam	ND	ND	ND	ND	ND	ND	NVG					
Chrysene	ND	ND	ND	ND	ND	ND	0.002					
bis(2-Chloroethoxy)methane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5					
bis(2-Chloroethyl)ether bis(2-Chloroisopropyl)ether	ND	ND	ND	ND	ND	ND	1 NVG					
4-Chlorophenyl phenyl ether	ND	ND	ND	ND	ND	ND	NVG					
2,4-Dinitrotoluene	ND	ND	ND	ND	ND	ND	5					
2,6-Dinitrotoluene	ND	ND	ND	ND	ND	ND	5					
3,3'-Dichlorobenzidine	ND	ND	ND	ND	ND	ND	5					
Dibenzo(a,h)anthracene	ND	ND	ND	ND	ND	ND	NVG					
Dibenzofuran	ND	ND	ND	ND	ND	ND	NVG					
Di-n-butyl phthalate	ND	ND	ND	ND	ND	ND	50					
Di-n-octyl phthalate	ND	ND	ND	ND	ND	ND	50					
Diethyl phthalate Dimethyl phthalate	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	50 50					
Dimethyl phthalate bis(2-Ethylhexyl)phthalate	ND	ND	ND	0.81 J	ND	ND	50 5					
Fluoranthene	ND	ND	UJ	ND	0.58 J	ND	50					
Fluorene	ND	ND	ND	ND	ND	ND	50					
Hexachlorobenzene	ND	ND	ND	ND	ND	ND	0.04					
Hexachlorobutadiene	ND	ND	ND	ND	ND	ND	0.5					
Hexachlorocyclopentadiene	ND	ND	ND	ND	ND	ND	5					
Hexachloroethane	ND	ND	ND	ND	ND	ND	5					
Indeno(1,2,3-cd)pyrene	ND	ND	ND	ND	ND	ND	0.002					
Isophorone	ND	ND	ND	ND	ND	ND	50					
2-Methylnaphthalene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NGV					
2-Nitroaniline 3-Nitroaniline	ND	ND	ND	ND	ND	ND	5 5					
4-Nitroaniline	ND	ND	ND	ND	ND	ND	5					
Naphthalene	ND	1.8	6.4 J	1.4	1.5 J	ND	10					
Nitrobenzene	ND	ND	ND	ND	ND	ND	0.4					
N-Nitroso-di-n-propylamine	ND	ND	ND	ND	ND	ND	NVG					
N-Nitrosodiphenylamine	ND	ND	ND	ND	ND	ND	50					
Phenanthrene	ND	ND	ND	ND	ND	ND	50					
Pyrene	ND	ND	UJ	ND	0.48 J	ND	50					
Notes: ug/L - micrograms per liter or parts per b	illion		*NYSDEC Tec	hnical and One	rational Guidan	ce Series (1 1 1)					
ND - Not detected at or above laboratory			Ambient Water	Quality Standa	ards and Guidar	nce Values	/					
NVG - No Value Given			and Groundwa	ter Effluent Lim	itations; June 1							
J - Estimated Value UJ-Not detected, a Boxed and bold indicates exceedance				duplicate of MV	v-8							
Boxed and bold mulcates exceedance	or groundwate	n stanuarus of	guiuance valt	671	I							

			Table	3								
Validated Analytical Results for PCBs In Groundwater Via Verde aka New Housing New York Legacy Project 700-730 Brook Avenue, Bronx, New York BCP # C203043												
Sample ID	MW-6	MW-7	MW-8	MW-9	MW-XX**	Field Blank	NYSDEC					
Matrix Date Sampled	groundwater 6/3/2013	groundwater 6/4/2013	groundwater 6/3/2013	groundwater 6/4/2013	groundwater 6/3/2013	liquid 6/3/2013	TOGS***					
PCBs	0,0,2010	0, 1, 2010		0, 112010	0,0,2010	0,0,2010						
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L					
Aroclor-1016	ND	ND	ND	ND	ND	ND	0.09 *					
Aroclor-1221	ND	ND	ND	ND	ND	ND	0.09 *					
Aroclor-1232	ND	ND	ND	ND	ND	ND	0.09 *					
Aroclor-1242	ND	ND	ND	ND	ND	ND	0.09 *					
Aroclor-1248	ND	ND	ND	ND	ND	ND	0.09 *					
Aroclor-1254	ND	ND	ND	ND	ND	ND	0.09 *					
Aroclor-1260	ND	ND	ND	ND	ND	ND	0.09 *					
Notes:			1			1						
ug/L - micrograms per li	iter or parts per b	illion		***NYSDEC Tec	hnical and Opera	tional Guidance S	Series (1.1.1)					
ND - Not detected at or					Quality Standards							
* Applies to the sum of t					er Effluent Limitati							
** MW-XX is a duplicate						,						

Table 4	
Validated Analytical Results for Metals In Groundwater	

Via Verde aka New Housing New York Legacy Project

700-730 Brook Avenue, Bronx, New York

BCP # C203043

Sample ID	MW-6	MW-7	MW-8	MW-9	MW-XX**	Field Blank	NYSDEC
Matrix	groundwater	groundwater	groundwater	groundwater	groundwater	liquid	TOGS*
Date Sampled	6/3/2013	6/4/2013	6/3/2013	6/4/2013	6/3/2013	6/3/2013	1000
Total Metals Filtered							
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Aluminum	<200	<200	<200	<200	<200	<200	NVG
Antimony	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	3
Arsenic	<3.0	<3.0	4.2	<3.0	5.9	<3.0	25
Barium	<200	<200	<200	<200	<200	<200	1,000
Berylium	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	3
Cadmium	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	5
Calcium	25,100	121,000	145,000	119,000	141,000	<5,000	NVG
Chromium	<10	<10	<10	<10	<10	<10	50
Cobalt	<50	<50	<50	<50	<50	<50	NVG
Copper	<10	<10	<10	<10	<10	<10	200
Iron	<100	<100	179 J	<100	209	<100	300
Lead	<3.0	<3.0	3.8 J	<3.0	<3.0 UJ	<3.0	25
Magnesium	<5,000	24,200	36,800	8,920	36,300	<5,000	35,000
Manganese	<15	49.0	3,160	782	3,220	<15	300
Mercury	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.7
Nickel	<10	<10	16.1	86.4	15.1	<10	100
Potassium	<10,000	<10,000	<10,000	12,700	<10,000	<10,000	NVG
Selenium	<10	<10	28.5 J	<10	<10 UJ	<10	10
Silver	<10	<10	<10	<10	<10	<10	50
Sodium	19,500	66,200	87,700	96,700	95,000	<10,000	20,000
Thallium	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	0.5
Vanadium	<50	<50	<50	<50	<50	<50	NVG
Zinc	<20	<20	<20	<20	<20	<20	2,000
Chromium, Hexavalent	<0.010	<0.010	<0.010	<0.010	<0.010 R	<0.010 a	50
Chromium, Trivalent	<0.020 c	50					

Notes:

ug/L - micrograms per liter or parts per billion

ND - Not detected at or above laboratory detection limits

NVG - No Value Given

J - Estimated Value UJ- not detected, approx. quantitation limit

a - analyzed from non-filtered sample

R- cannot be verified

*NYSDEC Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations; June 1998 ** MW-XX is a duplicate of MW-8

c - Calculated as: (Chromium) - (Chromium, Hexavalent)

Boxed and bold indicates exceedance of groundwater standards or guidance values

APPENDICES

Appendix A

Field Forms and Chain of Custody

Water Quality Measurement Log

NW-U

Location:	Site/Facility	Name)	Viak	de			Depth to:		/		of screen			
Date:	13/13	· · · · · · · · · · · · · · · · · · ·					(Below M			Bottom				
Sampling	Personnel:	N	Y+TB					-	elow MP)					
Weather:	- Kain	L					Well Diar							
Identify N	leasuring Poi	int (MP):_					Purging D	evice: (Pum art Time:	p type)			: 1 . A M		
Well ID:	MW-U	<u> </u>		<u> </u>					<u>IURO</u>	a	Purge End Time:			
	th to Water							tart Time: _		05	Sample End Time:			
Clock		Pump	Purge	Cum.	Temp.	Spec.	рН	ORP/Eh ³	DO	Turbidity	Comments			
Time	Depth	Dial ¹	Rate	Volume		Conduct. ²								
	Below MP			Purged				· ·						
24 HR	FŤ		nl/min	Liters	°℃	uS/cm		mv	mg/L	NTU				
Tolerance	0.33 ft				3%	3%	± 0.1	± 10	± 0.3	10%				
		9.3	100			<u> </u>	10.55	130	7.46	629				
1030 1035	24.95	<u> </u>	100		19.88	0.240	6.46		7.46	526				
1040	25.10					0.240	6.43		7.17	300				
1045	17615		_		19.48	0.246	642	139	6.59	387 362		· · · ·		
10,50	25,15 25,20 25,25				19.45	0,254	6.42	139	6.31	282				
1055	25.25	,			19.43	0,257	6.45	137	0.18	257				
1100	25,50	1		29Al	19.43	0.200	246		(0.08	2-15				
		1		/										
												······		
									. ·.			· · ·		
											1			
	· · · · · · · ·													
			~		<u> </u>						· · · · · · · · · · · · · · · · · · ·	· ·		
		1					-					· · ···		
						- <u> </u>						,		
								<u>}</u>						
		1								-		· · · ·		
[1							-						

1. Pump dial setting (Example: hertz, cycles/minute, etc)

2. uSiemens per cm (same as umhos/cm) at 25°C

3. Oxidation reduction potential (stand in for Eh)

Water Quality Measurement Log

MW-8 MW-XX

	(a), (),		Viala	r A a			-						
Location:	(Site/Facility	Name)	VIAV	400				·			of screen		
Date:	0/3/13		1					IP) Top		Bottom			
Sampling	Personnel:	<u></u> _/V	MAR				Pump Intake at (ft. below MP)						
Weather:	705 R	τι'nΥ_	-				Well Diar	neter:					
Identify N	leasuring Po	int (MP):_			· .		Purging D	Device: (Pun	np type) <u>1</u> 7 <i>50</i>				
Well ID:	μω	<u>~8 </u>					Purge Sta	art Time:	<u> </u>		Purge End Time:		
Static Dep	th to Water	(Prior to i	nstalling pu	mp) 🗧 🗧	<u>2.35</u>	_		tart Time: _		-	Sample End Time:		
Clock	Water	Pump	Purge	Cum.	Temp.	Spec.	рн	ORP/Eh ³	DO	Turbidity	Comments		
Time	Depth	Dial 1	Rate	Volume		Conduct. ²							
ļ	Below MP			Purged								-	
24 HR	FT	ŧ	ml/min	Liters	°C	uS/cm		mv	mg/L	NTU			
Tolerance	0.33 ft				3%	3%	±0.1	± 10	± 0.3	10%			
0875	24.55	9.5	125	IgAl	20.41	1.33	6.72	-168	3.96	718			
0830	24.60	9.5	150	7	20.41	1.32	6.45	-149	3.81	315			
0835	25125	8.5	150		20.40	1.31	6.27		3,77	253			
0840	25.35	9.5	140		20,41	1.30	6.31	= 135	3-62	254			
0845	25.50	9.5			20.47		1.32	~ 33	3.52	248			
						· ·		1	- [-			
			-								······································		
		+		1				1		1			
								1		-	······································		
								1					
				·				1]				
			- [··						
		1											
						1							
			!	·····									

Pump dial setting (Example: hertz, cycles/minute, etc)
 uSiemens per cm (same as umhos/cm) at 25°C

3. Oxidation reduction potential (stand in for Eh)

ition reduction potential (stand in for En)

pump on 756

Begin sumpling 2 0850 Static 1-22,35

Bugge rate; 125 mil/mil

Water Quality Measurement Log

Date: 👍	Personnel:							to:		33,73	of screen	······································
Veathor	: Personnel:_ : <u>Sunay</u>	75 - 2	<u> </u>				(Below)	Bottom		
dentify M	Angensin- D	15					Pump (ntake at (ft.	below MP)	30		
Vell ID:	measuring PC	oint (MP):_	Jop of	Casing (North		Duracia a	ameter:				
dentify Measuring Point (MP): Tep & Casing (Worth) Vell ID: <u>MW 4</u> tatic Depth to Water (Prior to installing pump) 21.54								Device: (Pui	mp type)	mini-m	on Soin	
lock	Water	(Prior to)	installing pu	mp)_ <u>21.</u> .	<u>54</u>		Furge S	tart Time: <u>(</u>	003		Purge End Time:	1130
ime	vvaler	Pump	Purge	Cum.	Temp.	Spec.	Sample	Start Time:			Sample End Time:	1240
1116	Depth	Dial 1	Rate	Volume		Conduct. ²	рН	ORP/Eh ³	DO	Turbidity	Comments	10-10
	Below MP			Purged		Conduct	1	1			comments	
I HR		ļ	}	-		1	[
	<u>14</u>		ml/min	Liters	°c	1.5/	}		[
olerance	0.33 ft					uS/cm		mv	mg/L	NTU	ĺ	
V5C	22.40	<u> </u>			3%	3%	± 0.1	± 10	± 0.3			
		9.5 10.4	~50				3.29			10%		
ji			50	· <u></u> ·	24.17	112 7	2 Jul	102				
6		10.4	~50		23,55	1.12	7.53	-123	3.41	504		
	25.94	10.5	50		22,00	1.11		-172	2.93 2.97 2.98	760		
120		10,5	50		22.3	1.17	227	-164	2.47	433		
	24.12 24.13	10.5	50		21.85	1.13		-159	2.48_			
			50		21,46		7,15	-170	2.31	266		
135	24.11	10.5	Sõ		21.27	1.10		-180	255	270		
<u>- cc-</u>							7.16	-174	2.56	237		
	·····											
							·····					
			İ				···					
	<u> </u>											
									İ			
··												
b dial	setting (Exar oer cm (same	nple: hert	z, cycles/mi	nute, etc)								

Г.

Water Quality Measurement Log

Date: <u>(</u> Sampling Weather: Identify N Well (D:	(Site/Facilit 2443 Personnel: Measuring Po MW - 7 Doth to Water Water Depth Below MP	JC 1 / 70 int (MP):_	<u>Б</u> Тор с	f Casing	1	Spec. Conduct. ²	Well Dia Purging I Purge Sta	VIP) Top take at (ft. <u>t</u> meter:	pelow MP)	Bottom 20 nini- ma	of screen	0905- 1045
24 HR Tolerance D755 0830	FT 0.33 ft 21.56	9.6	ml/min ⁻	Liters	°C 3%	uS/cm 3%	± 0.1	mv ± 10	mg/L ± 0.3	NTU 10%		
0935 0840 845 850	21.63 21.63 21.63 21.63 21.63 21.63 21.63 21.63 21.63 21.63	95-9-95-95-05-05-05-05-05-05-05-05-05-05-05-05-05	300 301 301 300 300 300 300 360		18.79 18.00 18.07 18.00 18.00 19.03 19.03 19.13 19.13 19.20	1.01 1.02 1.02 1.02 1.02 1.02 1.03 1.03 1.03	(0.59 (0.45 (0.38 (0.35 (0.35 (0.36 (0.36 (0.37	113 78 70 (23 (22 (22) (22)	4.14 3.85 3.70 3.55 3.30 3.20 3.07 3.02	173 127 649 537 48.00 3%7 3%7 3%7 3%7)	
. usiemens	l setting (Exa per cm (san reduction p	he as umh	os/cm} at 24	5°C	ML	N-6- N-7-2	2.831	· -	Static			S & MSN
		·			m	w-9-2	<i>a.</i> 62		હીમાર		Ce	15 \$ MSD Mecked from

MWF

COUTEST.		CHAIN OF CUSTODY 2235 Route 130, Dayton, NJ 08810 TEL. 732-329-0200 FAX: 732-329-3490/3480 www.accutest.com										PAGE 1 OF 1 P							FLPN		
Client / Reporting Information			Project	Informa									Rea	uesteo	l Agalysi	. (See	TEST C	ODE st		1071	Matrix Codes
Company Name CA Rich Consultants, Inc Street Addraes	Project Name:	Verde							*****						como						DW - Drinking Water GW - Ground Water
17 Dilanat St	Street Roc	nt Ale												~	20						WW - Water SW - Surface Water
City PlAinview, NY 11803	City BR	Verde xx Ave on x	State NV	Compan	y Name	on (if differ	rent fro	om Repo	rt to)				0	Filtered	1000						SO - Soil SL- Sludge SED-Sediment
Rich Tezo Mizzo Dearichine. 6	Droject #			Street A	ddress	,						0	20	žΫ	4						OI - OII LIQ - Other Liquid AIR - Air
<u><u><u>R</u>:<u></u><u>A</u> <u>T</u><u>Z</u><u>Z</u><u>B</u> <u>Г</u><u>Z</u><u>Z</u><u>B</u> <u>C</u><u>A</u> <u>A</u> <u>A</u> <u>A</u> <u>A</u> <u>A</u> <u>A</u> <u>A</u> <u>A</u> <u>A</u></u></u>	Client Purchase			City			s	State		Zip		826	82		Suc						SOL - Other Solid WP - Wipe FB-Field Blank
Mi VAGERT T. BROWN	Project Manage	r	Collection	Attention		r						9	20	metals	Chrom	85					EB-Equipment Blank RB- Rinse Blank TB-Trip Blank
Accutest Sample # Field ID / Point of Collection	MEOH/DI Via! #	Date	Time	Sampled by	Matrix	# of battles		Number of HOBN HOBN	T	-11	ENCORE	Dar	SUDC	TALI	Her	00					LAB USE ONLY
1= MW-6		6/3/13	1220	myn	GW	9	3		6			X	X	X	x	X	r	1			D27
2 F mw-8		6/3/13	1015	mila	GW	9	3		6			X	X	X	X	X	2				0.11
3 F, MW - XX		6/3/13	destination in the second second second second second second second second second second second second second s	my/TB		9	3		6			X	X	x	X	X					045
-4 Frield BlAnk 6/13		6/03/13	1230	myfo	FB		a		6			x	X	£		×	<				2196
-3 TRIP Blank 6/13		6/3/13			B	1	1					X									2 q
			ļ		ļ																
									++	++											
			+						++							_	_	 			
				+					++											_	
									╉╍┼												
		1		+					++												
Turnaround Time (Business days)			1			Data	Delive	erable In	ormat	ion						Co	mments	/ Special	Instruction	s	
Std. 10 Business Days	Approved By (Acc	utest PM): / Date:			Commerc	ial "A" (Le ial "B" (Le	vel 1) vel 2)			NYASP NYASP	Catego			Xe	24h	R	Hex	c Cl	hron	ne ?	K
3 Day EMERGENCY					FULLT1 (NJ Reduc	Level 3+4)			State Fo				NУ	STO	365	Net	fect	ian	Lim	its
2 Day EMERGENCY					Commerc	ial "C"				Other _				¥ L							s dissolved
other						Commercia Commercia	al "B" =	= Results	+ QC :												> aissourd
Emergency & Rush T/A data available VIA Lablink	s	ample Custody m	ust be docur	nented by		NJ Reduce	ed = Re	esults + (C Sun	nmarv +	Partial R	aw data		lolius	only	-1	H43 f	sitter	eccl ;	*	
Bothigalished by Sampler.	/13 1:3	Received By:	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				Reling	uished By	: 7				Juner		Date Time:	945	Receive	d By:	X	/	
Relinquished by Sampler: Date Time	2.1.2.	Received By:	<u>с Д</u>	4			2 Relina	uished By	-	Ebe	۶K				2 - 4-13 Date Time:		2 Receive	J. Bur	97		
3 Relinquished by: Date Time		3 Raceived By:					4			/		ntaci			d where app	icab/e	4				
5		5					7	88	Ł			Not intact			d where app					Cooler	
								7	Cou	Ks T LE	40.										B

N6-181248 JB38641: Chain of Custody Page 1 of 3

			223: TEL. 732-	5 Route 13	30, Daytor	CUST					[С FED-EX 79	191 Tracking	15 158		436	Bo	ttle Order Cr		1		PN
Client / Reporting Information			s	www	.accutest.c	om	10100	,			Ľ	Accutes	Quote #				Act	outest Job #	JI	338-	761	
	Project Name:		Projec	t Inform	ation								Req	uestec	Analy	sis (s	e TES	T CODE	sheet)		Matrix C	odes
Company Name CA Rich Consult	ants Via	Verde													Col						DW - Drinki	
17 Dunint Street	Street Bro	ok Ave	1.10												Hered)						GW - Grour WW - W	Vater
Planniew NY 11803			State	Billing	Information Name	on (if differe	ent fro	om Repo	rt to)						Ū						SW - Surfac SO - S SL- Slu	Soil
	E-mail Project #			Street A	ddress										Ŷ						SED-Sed Ol - C	timent Dil
Richard Iszo Rizzo Q Cari	Chinc. Client Purchase	st Ren.	GWS									0	0Ł	5	Mane						LIQ - Other AIR - /	r Liquid
516-576-8844 516-576	·0093	Order #		City			St	ate		Zip		826	57	5	5						SOL - Othe WP - W	/ipe
Sampler(s) Name(s) Jason Cooper Thomas Bravel	Phone # Project Manage			Attentio	1:							8	8	metal	5						FB-Field I EB-Equipme RB- Rinse	nt Blank
			Collection	1	T		,	Number of	preserv	ed Bottle		\sim	J	L	1	6					TB-Trip E	
Accusest Sample # Field ID / Point of Collection	MEOH/DI Vial #			Sampled]		H	5 8	¥	CH Alle	ORE	2	SVOC	Y	ఫ	g						
MW-7	MEOH/D/ VIBI#	Date	Time	3/18	Matrix		3 NaOH	HNO3 H2SO4	NONE	MEOH	ŭ,	\geq		F	T	Ľ					LAB USE	ONLY
1/ mw-7ms		6413	1045	776	1 /		3	++	6			X	×	×	×	×					EL3	2
MW-7MSD		101413	1045	34	GW		3	+	6	++		×	X	X	×	×			+		-CII	
		letato	1015	TP	04		4	+ + -	6	++		×	×	×	×	×			++		644	
z MW-9		6413		3/18	GW		3		10	++	++,		V	X	$\overline{\mathbf{v}}$				++		2190	IG
		1201-1412-	[1 10	00		-		M	++	++	$ \rightarrow $	×+	\sim	+	+			+			
Trip Blank					TB	1	1		$\uparrow \uparrow$	++	+++	X							+-+			
											++	-							+-+		+	
																			++			
				ļ			_														1	
				ļ			_														-	
Turnaround Time (Business days)		L				Data De																
Std. 10 Business Days	Approved By (Accu	test PM): / Date:				al "A" (Leve	əl 1)	able init			Category	/ A	T	V /	211				al Instruct	ons		
5 Day RUSH						al "B" (Leve Level 3+4)	əl 2)			YASP	Category	В	ŀ	九	14	hr	hex	Chr	5 Me	X		
3 Day EMERGENCY					NJ Reduce	d			the second	DD Fo			[NY	5 -	T6 G	5	Icter	ton	Lim	ds	
1 Day EMERGENCY					Commerci	al "C" Commercial '	"A" = f	Results (Other		-		¥ 1	tex	Chi	ome		ALM	1	dissolu	
other Emergency & Rush T/A data available VIA Lablink						Commercial '	"B" = {	Results +	QC SI		and at the		F	1 40	 /)	<u>-16</u>	(CIS		ellino.	ABOU	10
Balling tiched by Sampler:	Sa Me Time:	Received By:	ist be docum	ented be	low each	time sam	ples d	change	posse	ession,	includi	ing co	l urier d		7	- 1	£16	414	ued			
1/Menz Jon	0 <u>14/13</u> 2:0	1 Fee	LEX			2		shed By:	1	εÐ	\checkmark			0		94	S Rece	ived By:	$ \land $			week and a set of the
3	ate Time:	Received By: 3				Re	əlinqul	shed By:		- X 4	1			D	ate Time:		Rece	ived By:	À			
Relinguished by: Da	ate Time:	Received By: 5				Ci	^{ustody}	gral# J	- 70	2/0	Int int	act	P		where a	plicable	4		On Ice	Coo	ier Temp.	
iB						l_	/	011		JUL_		ot intact							3		3.0	2.06
																					1	(8)

N6-181007 JB38761: Chain of Custody Page 1 of 3

Appendix B

DUSR

L.A.B. Validation Corp, 14 West Point Drive, East Northport, NY 11731

DATA USABILITY SUMMARY REPORT – DUSR DATA VALIDATION SUMMARY

ORGANIC/INORGANIC ANALYSES

TARGET COMPOUND LIST (TCL) VOLATILES BY GC/MS TARGET COMPOUND LIST (TCL) SEMIVOLATILES BY GC/MS PCBs BY GC ECD TARGET ANALYTE LIST (TAL) METALS (Dissolved) BY ICP/CV And Dissolved HEXAVALENT CHROMIUM BY CLASSICAL WET CHEMISTRY TECHNIQUES

For Groundwater Samples Collected June 03, 2013 and June 04, 2013 From 700-730 Brook Avenue, Bronx, NY Via Verde aka New Housing New York Legacy Project Collected by CA Rich Consultants

SAMPLE DELIVERY GROUP NUMBERs: JB38641 and JB38761 BY ACCUTEST LABORATORIES (ELAP #10983)

SUBMITTED TO:

Mr. Rich Izzo CA Rich Consultants, Inc. 17 Dupont Street Plainview, NY 11803

August 09, 2013

PREPARED BY:

Lori A. Beyer/President L.A.B. Validation Corp. 14 West Point Drive East Northport, NY 11731

fou a faith

L.A.B. Validation Corp, 14 West Point Drive, East Northport, NY 11731

700-730 Brook Avenue, Bronx - Via Verde; Groundwater Samples; June 2013 (Q2) Sampling Event Data Usability Summary Report (Data Validation): TCL Volatiles, TCL Semivolatiles, PCBs, TAL Metals (Dissolved) and Hexavalent Chromium (Dissolved).

Table of Contents:

Introduction Data Qualifier Definitions Sample Receipt

- 1.0
- Target Compound List (TCL) Volatile Organics by GC/MS SW846 Method 8260
 - 1.1 Holding Time
 - 1.2 System Monitoring Compound (Surrogate) Recovery
 - 1.3 Matrix Spikes (MS), Matrix Spike Duplicates (MSD)
 - 1.4 Laboratory Control Sample/Blank Spikes
 - 1.5 Blank Contamination
 - GC/MS Instrument Performance Check (Tuning) 1.6
 - 1.7 Initial and Continuing Calibrations
 - 1.8 Internal Standards
 - 1.9 **Field Duplicates**
 - 1.10 Target Compound List Identification
 - Compound Quantification and Reported Detection Limits 1.11
 - **Overall System Performance** 1.12

Target Compound List (TCL) Semivolatile Organics by GC/MS SW846 Method 8270 2.0

- Holding Time 2.1
- Surrogate Recovery 2.2
- Matrix Spikes (MS), Matrix Spike Duplicates (MSD) 2.3
- 2.4 Laboratory Control Sample
- 2.5 Method Blanks
- GC/MS Instrument Performance Check (Tuning) 2.6
- 2.7Initial and Continuing Calibrations
- 2.8 Internal Standards
- 2.9 **Field Duplicates**
- Target Compound List Identification 2.10
- 2.11 Compound Quantification and Reported Detection Limits
- **Overall System Performance** 2.12
- PCBs by GC SW846 Method 8082 3.0
 - 3.1 Holding Time
 - 3.2 Surrogate Recovery
 - Matrix Spikes (MS), Matrix Spike Duplicates (MSD) 3.3
 - Laboratory Control Samples 3.4
 - 3.5 Blanks
 - Calibration Verification 3.6
 - 3.7 **Field Duplicates**
 - 3.8 Target Compound Identification
 - Compound Quantification and Reported Detection Limits 3.9
 - Overall Assessment of Data 3.10

L.A.B. Validation Corp, 14 West Point Drive, East Northport, NY 11731

- 4.0 Target Analyte List (TAL) Metals (Dissolved) by ICP/Cold Vapor SW846 Methods 6010/7471
 - 4.1 Holding Times
 - 4.2 Calibration (Initial and Continuing Calibration Verifications)
 - 4.3 Blanks
 - 4.4 Spiked Sample Recovery
 - 4.5 Laboratory/Field Duplicates
 - 4.6 Laboratory Control Sample
 - 4.7 Interference Check Sample
 - 4.8 ICP Serial Dilution
 - 4.9 Sample Results Verification
 - 4.10 Overall Assessment of Data

5.0 General Chemistry Analysis/Hexavalent and Trivalent Chromium (Dissolved)

- 5.1 Holding Times
- 5.2 Calibration
- 5.3 Blanks
- 5.4 Spiked Sample Recovery
- 5.5 Laboratory/Field Duplicates
- 5.6 Laboratory Control Sample
- 5.7 Sample Results Verification
- 5.8 Overall Assessment of Data

APPENDICES:

- A. Data Summary Tables with Qualifications
- B. Chain of Custody Documents
- C. SDG Narratives

Introduction:

A validation was performed on groundwater samples and the associated quality control samples for organic/inorganic analysis for samples collected under chain of custody documentation by CA Rich Consultants and submitted to Accutest Laboratories for subsequent analysis. This report contains the laboratory and validation results for the field samples itemized below. The groundwater samples were collected on June 03, 2013 and June 04, 2013.

The samples were analyzed by Accutest Laboratories, utilizing SW846 Methods and submitted under NYSDEC ASP Category B equivalent deliverable requirements for the associated analytical methodologies employed. The analytical testing consisted of the Target Compound/Analyte Lists for Volatile Organics, Semivolatile Organics, PCBs, TAL Metals (Dissolved) and Hexavalent Chromium (Dissolved).

The data was evaluated in accordance with EPA Region II National Functional Guidelines for Organic and Inorganic Data Review (October 2006) and EPA Region II SOPs for 8260, 8270, 8082 and Metals (August 2008 with 2009 updates) and also in conjunction with the analytical methodologies for which the samples were analyzed, where applicable and relevant.

Sample	Laboratory	Sample	Date	Date
Identification	Identification	Matrix	Collected	Received
MW-6	JB38641-1, JB38641-1F	Groundwater	06/03/13	06/04/13
MW-8	JB38641-2, JB38641-2F	Groundwater	06/03/13	06/04/13
MW-XX	JB38641-3, JB38641-3F	Groundwater	06/03/13	06/04/13
(Duplicate of MW-8)				
Field Blank 6/3	JB38641-4, JB38641-4F	Aqueous	06/03/13	06/04/13
Trip Blank 6/3	JB38641-5	Aqueous	06/03/13	06/04/13
MW-7 (plus MS/MSD)	JB38761-1, JB38761-1D,	Groundwater	06/04/13	06/05/13
	JB38761-1F, JB38761-1FD,			
	JB38761-1FS, JB38761-1S			
MW-9	JB38761-2, JB38761-2F	Groundwater	06/04/13	06/05/13

The data validation report pertains to the following samples:

Data Qualifier Definitions:

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

J - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

UJ - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

R - The sample results are rejected due to deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

N - The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."

NJ - The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate quantity.

D - Indicates the analyte concentration is from diluted analysis.

Sample Receipt:

The Chain of Custody document indicates that the samples were received at Accutest Laboratories via Federal Express on 06/04/13 and 06/05/13 upon completion of the sampling event. Sample login notes were generated. The cooler temperature for all sample receipts were recorded upon receipt at Accutest Laboratories and determined to be acceptable (<6.0 degrees C). The actual temperature is recorded on the chain of custody document in addition to the case narratives provided in Appendix C of this report.

No unresolved problems and/or discrepancies were noted, consequently, the integrity of the samples has been assumed to be good.

The data summary tables included in Appendix A includes all usable (qualified) and unusable (rejected) results for the samples identified above. These tables summarize the detailed narrative section of the report. All data validation qualifications have been reported in the excel spreadsheet.

NOTE:

L.A.B. Validation Corp. believes it is appropriate to note that the data validation criteria utilized for data evaluation is different than the method requirements utilized by the laboratory. Qualified data does not necessarily mean that the laboratory was non-compliant in the analysis that was performed.

1.0 Target Analyte List (TCL) Volatile Organics by GC/MS SW846 Method 8260

The following method criteria were reviewed: holding times, SMCs, MS, MSD, LCS, Laboratory Spiked Blanks, Method Blanks, Tunes, Calibrations, Internal Standards, Target Compound Identification, Quantitation, Reported Quantitation Limits and Overall System Performance. The Volatile results were considered to be valid and useable with the exception of 2-Butanone non-detects in all samples due to low initial/continuing calibration response factors as noted within the following text:

1.1 Holding Time

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the technical holding time is exceeded, the data may not be considered valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimates, "J". The non-detects (sample quantitation limits) are required to be flagged as estimated, "J", or unusable, "R", if the holding times are grossly exceeded.

Samples pertaining to these SDGs were performed within the Method required holding times as well as the technical holding times for data validation of 14 days from collection to analysis. Samples were properly preserved with HCL to pH <2. No data validation qualifiers were required based upon holding time.

1.2 System Monitoring Compound (Surrogate) Recovery

All samples are spiked with surrogate compounds prior to sample analysis to evaluate overall laboratory performance and efficiency of the analytical technique. If the measure of surrogate concentrations is outside contract specification, qualifications are required to be applied to associated samples and analytes.

Surrogate recoveries (%R) were found to be within acceptable limits for all four (4) surrogate compounds for all analyses pertaining to these SDGs for analysis.

1.3 Matrix Spikes (MS)/ Matrix Spike Duplicates (MSD)

The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. The MS/MSD may be used in conjunction with other QC criteria for additional qualification of data.

MS/MSD analyses were conducted for each analytical sequence and were spiked with all components as required by the analytical procedure. Sitespecific aqueous MS/MSD was performed by the laboratory on sample MW-7. Acceptable spike recoveries and RPD were obtained for site specific MS/MSD analysis.

Several RPD fell slightly outside in house established acceptance limits for batch MS/MSD. Acceptable recovery values were obtained for all spiked analytes. Based on professional judgment, no qualifications to the data were required for non site specific QC.

1.4 Laboratory Control Sample/Blank Spikes

The LCS data for laboratory control samples (LCS) are generated to provide information on the accuracy of the analytical method and on the laboratory performance.

LCS/Blank Spikes were analyzed for each sequence. Recovery values were acceptable with the exception of high 1,1,2,2-Tetrachloroethane applicable to MW-6, Field Blank and Trip Blank. Since this compound was not detected in associated sample analysis, no qualifications were applied.

1.5 Blank Contamination

Quality assurance (QA) blanks; i.e. method, trip and field blanks are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field blanks measure cross-contamination of samples during field operations.

The following table was utilized to qualify target analyte results due to contamination. The largest value from all the associated blanks is required to be utilized:

For:	Flag Sample Result with a "U" when:	Report CRQL & Qualify "U" when:	No Qualification is Needed when:				
Methylene Chloride, Acetone, Toluene &	Sample Conc. Is >CRQL, but =10x</td <td>Sample Conc. is <!-- CRQL and </ =10x</td--><td>Sample Conc. is >CRQL and >10x</td></td>	Sample Conc. is CRQL and </ =10x</td <td>Sample Conc. is >CRQL and >10x</td>	Sample Conc. is >CRQL and >10x				
2-Butanone	blank value	blank value	blank value				
Other Contaminants	Sample Conc. Is >CRQL, but =5x<br blank value	Sample Conc. Is <crql <="" =5x<br="" and="">blank value</crql>	Sample Conc. is >CRQL and >5x blank value				

Below is a summary of the compounds in the sample and the associated qualifications that have been applied:

A) Method Blank Contamination:

No target analytes were detected in the method blanks associated with sample analysis.

B) Field Blank Contamination:

No target analytes were detected in the field blank associated with sample analysis.

C) Trip Blank Contamination:

No target analytes were detected in the trip blanks associated with sample analysis.

1.6 GC/MS Instrument Performance Check

Tuning and performance criteria are established to ensure adequate mass resolution, proper identification of compounds and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The Tuning standard for volatile organics is Bromofluorobenzene (BFB).

Instrument performance was generated within acceptable limits and frequency for Bromofluorobenzene (BFB) for all analyses conducted for these SDGs.

1.7 Initial and Continuing Calibrations

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence.

The continuing calibration checks document that the instrument is giving satisfactory daily performance.

A) Response Factor GC/MS:

The response factor measures the instrument's response to specific chemical compounds. The response factor for all compounds must be >/= 0.05 in both initial and continuing calibrations. A value <0.05 indicates a serious detection and quantitation problem (poor sensitivity). Analytes detected in the sample will be qualified as estimated, "J". All non-detects for that compound in the corresponding samples will be rejected, "R".

All the response factors for the target analytes reported were found to be within acceptable limits (>/=0.05), for the initial and continuing calibrations for all reported TCL analytes with the following exceptions:

ICAL 05/23/13 GCMS1C – Non-detects for and 2-Butanone (0.049) were rejected, "R" in MW-6, Field Blank and Trip Blank. The laboratory reported concentrations of 2-Butanone in MW-8 and the field duplicate (MW-XX) must be considered estimated, "J."

CCAL 06/08/13 GCMS1C – 2-Butanone (0.043); reported hits in MW-8 and MW-XX are estimated, "J."

ICAL 05/28/13 GCMSY – Non-detects for 2-Butanone (0.042) were rejected, "R" in MW-7 and MW-9.

CCAL 06/06/13 GCMS3Y – 2-Butanone (0.043). Non-detects were previously rejected, "R" due to low ICAL response in MW-7.

CCAL 06/12/13 GCMS3Y – 2-Butanone (0.038). Non-detects were previously rejected, "R" due to low ICAL response in MW-9.

*2-Butanone is a poor responder as documented by the EPA.

B) Percent Relative Standard Deviation (%RSD) and Percent Difference (%D):

Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentrations. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be <30% and %D must be <25%. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and non-detects are flagged "UJ". If %RSD and %D grossly exceed QC criteria, nondetect data may be qualified, "R", unusable. Additionally, in cases where the %RSD is >30% and eliminating either the high or the low point of the curve does not restore the %RSD to less than or equal to 30% then positive results are qualified, "J". In cases where removal of either the low or high point restores the linearity, then only low or high level results will be qualified, "J" in the portion of the curve where non linearity exists.

Initial Calibrations: The initial calibrations provided and the %RSD were within acceptable limits (30%) for all compounds.

Continuing Calibrations: The continuing calibrations provided and the %D was within acceptable limits (25%) for all compounds.

1.8 Internal Standards

Internal Standards (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must not vary by more than a factor of 2 (-50% to +100%) from the associated continuing calibration standard. The retention time of the internal standard must not vary more than +/-30 seconds from the associated continuing calibration standard. If the area count is outside the (-50% to +100%) range of the associated standard, all of the positive results for compounds quantitated using that IS are qualified as estimated, "J", and all non-detects as "UJ", or "R" if there is a severe loss of sensitivity.

If an internal standard retention time varies by more than 30 seconds, professional judgment will be used to determine either partial or total rejection of the data for that sample fraction.

All samples were spiked with the internal standards Chlorobenzene-d5, Fluorobenzene and 1,4-Dichlorobenzene-d4 prior to sample analysis. The area responses and retention time of each internal standard met QC criteria in all samples associated with these SDGs.

1.9 Field Duplicates

Field duplicate samples are collected and analyzed as an indication of overall precision. These results are expected to have more variability than laboratory duplicate samples. Generally an acceptable RPD is 10% for water samples.

nons m ug/L is sum	marized below.
<u>MW-8</u>	MW-XX
8.5	8.3
10.8	13.2
5.2	5.2
1.3	1.2
51.8	52.4
28.5	28.3
0.63	0.62
12.0	12.0
46.6	46.3
4.9	4.9
4.2	4.3
1.1	1.1
15.3	15.8
1.4	1.5
16.8	17.3
	<u>MW-8</u> 8.5 10.8 5.2 1.3 51.8 28.5 0.63 12.0 46.6 4.9 4.2 1.1 15.3 1.4

Groundwater sample MW-8 was collected in duplicate, a summary of positive detections in ug/L is summarized below:

Acceptable precision was observed for all detected analytes.

1.10 Target Compound List Identification

TCL compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within =/- 0.06RT units of the standard compound and have an ion spectra which has a ratio of the primary and secondary m/e intensities within 20% of that in the standard compound.

GC/MS spectra met the qualitative criteria for identification. All retention times were within required specifications.

1.10 Compound Quantification and Reported Detection Limits

GC/MS quantitative analysis is considered to be acceptable. Correct internal standards per SW846 and response factors and dilution corrections were used to calculate final concentrations. As required, the laboratory reported "J" values between the reporting limits (RL) and Method Detection Limits (MDLs). This is consistent with common laboratory practices and a requirement of the National Environmental Laboratory Approval Program (NELAP).

All groundwater samples were analyzed undiluted.

1.11 Overall System Performance Good resolution and chromatographic performance were observed.

> Acetone was detected in MW-9. This common laboratory contaminant could not be negated in the sample since it was not detected in any of the method, field or trip blanks. The end user should proceed with caution when making decisions based on Acetone detections at levels consistent with laboratory contamination values.

Tentatively Identified Compounds (TICs) were not generated and therefore not evaluated.

2.0 Target Compound List (TCL) Semivolatile Organics by GC/MS SW846 Method 8270

The following method criteria were reviewed: holding times, Surrogates, MS, MSD, LCS, Blanks, Tunes, Calibrations, Internal Standards, Target Component Identification, Quantitation, Reported Quantitation Limits and overall system performance. The Total Semivolatile results were considered to be valid and usable as noted within the following text:

2.1 Holding Time

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the technical holding time is exceeded, the data may not be considered valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimates, "J". The non-detects (sample quantitation limits) are required to be flagged as estimated, "J", or unusable, "R", if the holding times are grossly exceeded.

All aqueous samples were extracted and analyzed within the method required holding times and the technical holding times (7 days from collection for water samples) required for data validation.

2.2 Surrogate Recovery

All samples are spiked with surrogate compounds prior to sample preparation/extraction to evaluate overall laboratory performance and efficiency of the analytical technique. Additionally, the sample itself may produce effects due to such factors as interferences and high concentrations of analytes. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the evaluation of the data is dependent upon reextraction and/or reanalysis to confirm/negate laboratory error or matrix related problems. Discussion of surrogate recoveries that fell outside (above/below) QC guidelines is itemized below:

All samples were spiked with six (6) surrogate standards at the sample extraction portion of analysis. Acceptable recovery values were obtained for all groundwater analyses.

2.3 Matrix Spikes (MS)/Matrix Spike Duplicates (MSD)

The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices.

Aqueous MS/MSD analysis was performed on MW-7 and was spiked with all components as required by the analytical procedure. Acceptable recovery values were obtained.

2.4 Laboratory Control Sample

The LCS data for laboratory control samples (LCS) are generated to provide information on the accuracy of the analytical method and on the laboratory performance.

LCS/Blank Spikes were analyzed for each analytical extraction batch. Recovery values were acceptable with the exception of 4-Chloroaniline which recovered low (41%) in the blank spike applicable to MW-6, MW-8, MW-XX and the Field Blank. Non-detects have been qualification, "UJ." No additional qualifications were applied.

2.5 Method Blanks

Quality assurance (QA) blanks; i.e. method, trip and field blanks are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Field blanks measure cross-contamination of samples during field operations.

The following table was utilized to qualify target analyte results due to contamination. The largest value from all the associated blanks is required to be utilized:

For:	Flag Sample Result with a "U" when:	Report CRQL & Qualify "U" when:	No Qualification is Needed when:
Phthalates (common laboratory	Sample Conc. is	Sample Conc. Is	Sample Conc. is
	>CRQL, but =10x</td <td><crql <="" =10x<="" and="" td=""><td>>CRQL and >10x</td></crql></td>	<crql <="" =10x<="" and="" td=""><td>>CRQL and >10x</td></crql>	>CRQL and >10x
contaminants)	blank value	blank value	blank value
Other Contaminants	Sample Conc. is	Sample Conc. Is	Sample Conc. is
	>CRQL, but =5x</td <td><crql <="" =5x<="" and="" td=""><td>>CRQL and >5x</td></crql></td>	<crql <="" =5x<="" and="" td=""><td>>CRQL and >5x</td></crql>	>CRQL and >5x
	blank value	blank value	blank value

Below is a summary of the compounds in the sample and the associated qualification that have been applied:

A) Method Blank Contamination:

Target analytes were not detected in any of the method blanks associated with sample analysis.

B) Field Blank Contamination:

Target analytes were not detected in the field blank associated with sample analysis.

2.6 GC/MS Instrument Performance Check

Tuning and performance criteria are established to ensure adequate mass resolution proper identification of compounds and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The Tuning standard for semivolatile organics is decafluorotriphenylphosphine (DFTPP).

Instrument performance was generated within acceptable limits and frequency (12 hours) for decafluorotriphenylphosphine (DFTPP) for all analyses.

2.7 Initial and Continuing Calibrations

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration checks document that the instrument is giving satisfactory daily performance.

A) Response Factor GC/MS:

The response factor measures the instrument's response to specific chemical compounds. The response factor for all compounds must be >/= 0.05 in both initial and continuing calibrations. A value <0.05 indicates a serious detection and quantitation problem (poor sensitivity). Analytes detected in the sample will be qualified as estimated, "J." All non-detects for that compound in the corresponding samples will be rejected, "R".

All the response factors for the target analytes reported were found to be within acceptable limits (>/=0.05), for the initial (average RRF) and continuing calibrations.

B) Percent Relative Standard Deviation (%RSD) and Percent
 Difference (%D):
 Percent RSD is calculated from the initial calibration and is

Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentrations. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be <30% and %D must be <25%. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and non-detects are flagged "UJ". If %RSD and %D grossly exceed QC criteria, non-detect data may be qualified, "R", unusable. Additionally, in cases where the %RSD is >30% and eliminating either the high or the

low point of the curve does not restore the %RSD to less than or equal to 30% then positive results are qualified, "J". In cases where removal of either the low or high point restores the linearity, then only low or high level results will be qualified, "J" in the portion of the curve where non linearity exists.

Initial Calibrations: The initial calibrations provided and the %RSD were within acceptable limits (30%) for all compounds.

Continuing Calibrations: The continuing calibrations provided and the %D was within acceptable limits (25%) for all compounds.

2.8 Internal Standards

Internal Standards (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must not vary by more than a factor of 2 (-50% to +100%) from the associated continuing calibration standard. The retention time of the internal standard must not vary more than +/-30 seconds from the associated continuing calibration standard. If the area count is outside the (-50% to +100%) range of the associated standard, all of the positive results for compounds quantitated using that IS are qualified as estimated, "J", and all non-detects as "UJ", or "R" if there is a severe loss of sensitivity.

If an internal standard retention time varies by more than 30 seconds, professional judgment will be used to determine either partial or total rejection of the data for that sample fraction.

All area responses and retention times fell within established QC ranges.

2.9 Field Duplicates

Field duplicate samples are collected and analyzed as an indication of overall precision. These results are expected to have more variability than laboratory duplicate samples. Generally for water samples an acceptable RPD is 10%. Groundwater sample MW-8 was collected in duplicate. Low level hits were detected for Acenaphthene in MW-8 but not the duplicate and low levels of Fluoranthene and Pyrene were detected in the duplicate but not in the original sample. The laboratory reported hits and non-detects in MW-8 and MW-XX must be considered estimated, "J/UJ" for these compounds.

Naphthalene was detected in MW-8 at 6.4 ug/L and in the duplicate at a lower concentration of 1.5 ug/L. Again, results must be considered estimated, "J." It is recommended that the higher value be utilized for decision making purposes.

2.10 Target Compound List Identification

TCL compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within =/- 0.06RT units of the standard compound and have an ion spectra which has a ratio of the primary and secondary m/e intensities within 20% of that in the standard compound.

Mass spectra meet criteria for all detected analytes.

All samples were analyzed undiluted.

Tentatively Identified Compounds (TICs) were not provided by the laboratory and therefore not evaluated.

2.11 Compound Quantification and Reported Detection Limits

GC/MS quantitative analysis is considered to be acceptable. Correct internal standards and response factors were used to calculate final concentrations.

As required, the laboratory reported "J" values between the reporting limits (RL) and Method Detection Limits (MDLs). This is consistent with common laboratory practices and a requirement of the National Environmental Laboratory Approval Program (NELAP).

2.12 Overall System Performance Acceptable system performance was maintained throughout the analysis.

Low level Bis (2-ethylhexyl) phthalate was detected in MW-9 (0.81 ug/L). This common laboratory contaminant could not be negated in this sample since the compound was not detected in the method or Field Blank.

3.0 PCBs by GC SW846 Method 8082

The following method criteria were reviewed: holding times, Surrogates, MS, MSD, LCS, Blanks, Analytical Sequences, Calibrations, Target Component Identification, Quantitation, Reported Quantitation Limits and overall system performance. The PCB results were considered to be valid and usable as noted within the following text:

3.1 Holding Time

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the technical holding time is exceeded, the data may not be considered valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimates, "J". The non-detects (sample quantitation limits) are required to be flagged as estimated, "J", or unusable, "R", if the holding times are grossly exceeded.

All groundwater samples were extracted and analyzed within the method required holding times and the technical holding times required for data validation (7 days for water).

3.2 Surrogate Recovery

All samples are spiked with surrogate compounds prior to sample preparation/extraction to evaluate overall laboratory performance and efficiency of the analytical technique. Additionally, the sample itself may produce effects due to such factors as interferences and high concentrations of analytes. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the evaluation of the data is dependent upon reextraction and/or reanalysis to confirm/negate laboratory error or matrix related problems. Discussion of surrogate recoveries that fell outside (above/below) QC guidelines is itemized below: Acceptable surrogate recovery values were obtained for all aqueous analysis.

3.3 Matrix Spikes (MS)/Matrix Spike Duplicates (MSD)

The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices.

The National Functional Guidelines indicate that MS/MSD data alone shall not be utilized to qualify sample data.

Aqueous PCB matrix spike analysis was conducted on MW-7. Acceptable recovery values and RPD were obtained. No qualifications to the data were required.

3.4 Laboratory Control Sample

The LCS data for laboratory control samples (LCS) are generated to provide information on the accuracy of the analytical method and on the laboratory performance.

LCS/Blank Spikes were analyzed for each analytical extraction batch for PCBs. Recovery values were acceptable and no qualifications were applied for groundwater analyses.

3.5 Blanks

Quality assurance (QA) blanks; i.e. method, instrument, trip and field blanks are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Instrument blanks measure carryover for cross contamination. Field blanks measure cross-contamination of samples during field operations.

The following table was utilized to qualify target analyte results due to contamination. The largest value from all the associated blanks is required to be utilized:

For:	Flag Sample Result	Report CRQL &	No Qualification is
	with a "U" when:	Qualify "U" when:	Needed when:
Any Contaminant	Sample Conc. is	Sample Conc. Is	Sample Conc. is
	>CRQL, but =5x</td <td><crql <="" =5x<="" and="" td=""><td>>CRQL and >5x</td></crql></td>	<crql <="" =5x<="" and="" td=""><td>>CRQL and >5x</td></crql>	>CRQL and >5x
	blank value	blank value	blank value

Extraction and Instrument blanks were performed at the appropriate frequency.

Below is a summary of blank contamination:

- A) Method Blank Contamination: No target analytes were detected in the associated method blanks. No data validation qualifiers were required based upon method blank data.
- B) Field Blank Contamination:

Target analytes were not detected in the Field Blank associated with sample analysis.

3.6 Calibration Verification

Initial and continuing calibration sequence was performed as required for multi-component PCB standards. Acceptable retention times were obtained for all analysis and GC resolution is acceptable for both columns.

Linearity criteria for the initial standards have been satisfied for both columns as detailed below:

%RSD </= 30% for surrogates (TCMX and DCB) %RSD <20% for PCB aroclors.

Continuing calibration verifications: For PCB analysis acceptable percent difference for any PCB analysis is 15%.

No qualifications have been applied based on these criteria.

3.7 Field Duplicates

Field duplicate samples are collected and analyzed as an indication of overall precision. These results are expected to have more variability than laboratory duplicate samples. Generally for water samples an acceptable RPD is 10%.

MW-8 was utilized as the aqueous blind field duplicate (MW-XX). Target analytes were not detected in either analytical run for PCBs.

3.8 Target Compound Identification

Qualitative criteria for compound identification have been established to minimize the number of false positives and false negatives. The retention times of all target analytes have been verified in the samples to that of the analyzed reference standards

Positive PCB sample results are compared and where %Difference >25% when quantitated on the two columns the qualifications below are applied. Sample chromatograms were reviewed for the presence of interference. The following qualifications were applied where neither column shows interference:

%Difference	Qualifier
0-25%	None
26-70%	"J"
71-100%	"JN"
101-200% (no interference)	" R "
101-200% (interference detected	d)* "JN"
>50% (Pesticide value is <crq)< td=""><td></td></crq)<>	
>201%	"R"

*When the reported %D is 101-200%, but interference is determined on either column, the results shall be qualified, "JN"

** When the reported pesticide value is lower than the CRQL, and the %D is >50%, raise the value to the CRQL and qualify "U", undetected.

All sample results have been evaluated based on these criteria.

Groundwaters: None

3.9 Compound Quantification and Reported Detection Limits

TCL compounds are identified on the GC by using the analyte's relative retention time (RRT) and by comparison to the primary column and the secondary confirmation column data. The laboratory reported the lower of the concentrations for primary/confirmatory column results as required.

3.10 Overall System Performance

Acceptable system performance was maintained throughout the analysis of all samples. Good resolution and chromatographic performance were observed.

4.0 TAL Metals (Dissolved) by ICP/Cold Vapor SW846 Methods 6010/7471

The following method criteria were reviewed: holding times, CRDL standards, calibration, blanks, MS, laboratory duplicates, LCS, interference check sample, ICP serial dilutions and sample results verification. The groundwater results were considered to be valid and usable with the appropriate qualifiers as notated in the following text:

4.1 Holding Times

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the technical holding time is exceeded, the data may not be considered valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimates, "J". The non-detects (sample quantitation limits) are required to be flagged as estimated, "J", or unusable, "R", if the holding times are grossly exceeded.

All samples were filtered upon receipt and and analyzed for Dissolved Metals within the method required holding times and the technical holding times for data validation. No qualifications were applied based upon holding time criteria.

4.2 Calibration (ICV/CCV)

Satisfactory instrument calibration is established to ensure that the instruments are capable of producing acceptable quantitative data. An initial calibration demonstrates that the instruments are capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration checks document that the instruments are giving satisfactory sequential performance and that the initial calibration is still valid.

The ICP and Mercury instruments were calibrated utilizing a minimum of a four-point curve in addition to blanks at the beginning of each analytical run. The calibrations had been determined to be acceptable, yielding correlation coefficients of 0.995 or greater. For ICP analysis, satisfactory instrument performance near the Contract Required Detection Limit (CRDL) was demonstrated by analyzing a CRDL standard at the beginning and end of the analytical run. The instruments were calibrated properly by analyzing the CRDL solution at the correct levels, and analyzed at the required frequency at the beginning and end of each analytical run.

All recoveries were within acceptable limits of 90-110 % for initial calibration pertaining to field samples.

Continuing calibrations were within acceptable limits of 90-110% recovery of the true values for ICP and Mercury (80-120%) for all field samples.

No qualifications were applied based upon ICV/CCV analysis.

4.3 Blanks

Quality assurance (QA) blanks, i.e. method, field or preparation blanks are prepared to identify any contamination that may have been introduced into the samples during sample preparation or field activity. Preparation blanks measure laboratory contamination. Field blanks measure cross-contamination of samples during field operations.

All digestion/prep/ICB/CCB/Field blanks were generated within acceptable limits yielding final concentrations less than the CRDL.

No qualifications to the data were made based upon blank contamination.

4.4 Spiked Sample Recovery

The spike data are generated to determine the long terms precision and accuracy of the analytical method in various matrices. Aqueous spike recoveries are qualified based on the criteria below: <30% - "R" all detects and non-detects Between 30%-74% - results >/=MDL "J" and non-detects "UJ" Between 126-150% - results >/=MDL "J" and >150% - results >/= MDL "R"

SDG JB38641:

Aqueous MS/MSD was performed on MW-8 for dissolved metals. Analysis resulted in acceptable recovery values for all elements. Acceptable RPD was observed.

SDG JB38761:

Aqueous MS/MSD analysis was conducted on MW-6 for dissolved metals Analysis resulted in acceptable recovery values and RPD for all elements for both total and dissolved analysis.

4.5 Laboratory/Field Duplicates

The laboratory uses duplicate sample determinations to demonstrate acceptable method precision at the time of analysis. Duplicate analyses are also performed to generate data in order to determine the long-term precision of the analytical method on various matrices.

Laboratory Duplicates:

RPD >20% but <100% - J detected concentrations RPD >/=100% - R all detected and non-detected concentrations

Field Duplicates:

RPD >/=35% but <120% - qualify sample and duplicate results >/= CRQL "J" RPD >/= 120% - rejected sample and duplicate results >/= CRQL "R"

Aqueous Laboratory Duplicate analysis was conducted on MW-6 and MW-7. Acceptable RPD values were obtained for all elements.

Field Duplicate analysis was conducted on MW-8 (MW-XX).

A summary of detected concentrations in ppb is listed below:

Dissolved Metals:

plicate)

Lead and Selenium must be considered estimated "J/UJ" in the analysis of MW-8 and MW-XX. No additional qualifications to the data were required based on field duplicate analysis.

4.6 Laboratory Control Sample

The laboratory Control Sample (LCS) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. Aqueous and solid Laboratory Control samples shall be analyzed for each analyte utilizing the same sample preparation, analytical methods and QA/QC procedures as employed for the samples.

The LCS was analyzed and reported for all ICP and Mercury analysis. Associated LCS recoveries were within the acceptable limits for TAL Metals analyses (80-120%).

4.7 Interference Check Sample

The interference check sample (ICS) verifies the laboratory's interelement and background correction factors. The ICS consists of two solutions A and AB. Solution A consists of interference, and solution AB consists of the analytes mixed with interferents.

SW846 Method 6010 requires solution A and solution AB to be analyzed separately. The recoveries for the ICP interference check sample were all within the acceptable limits of 80-120%. No data qualifications were made based upon ICS analysis.

4.8 ICP Serial Dilution

The serial dilution of samples quantitated by ICP determines whether or not significant physical or chemical interferences exist due to sample matrix. An ICP serial dilution analysis must be performed on a sample for each group of samples with a similar matrix type and concentration, or for each Sample Delivery Group (SDG), whichever is more frequent.

Acceptable ICP and ICP-MS serial dilution was performed at a 5-fold dilution as required by the method where the initial concentration is equal or greater than 50x IDL. The serial dilution analysis agrees within a 10% difference of the original determination after correction for dilution for all elements where the sample concentration was determined to be <50x the IDL with the exception of Iron in MW-8. Results for this element have been qualified, "J."

4.9 Sample Results Verification

Analyte quantitation was generated in accordance with protocols. The raw data was verified and found within the linear range of each instrument used for quantitation. Raw data supplied corresponds with reported values. Verification of the calculations yielded reported results.

Metals analysis resulted in acceptable results.

4.10 Overall Assessment of Data

The data generated were of acceptable quality.

For the TAL analysis, results are usable at the concentration presented in the validated spreadsheets.

5.0 General Chemistry Analysis

Groundwater samples were analyzed for Hexavalent (SW846 Method 7196) and Trivalent Chromium (determined by calculation) - Dissolved. Samples were filtered upon receipt at the laboratory. The groundwater results were considered to be valid and usable with the exception of nondetects in MW-XX due to holding time exceedence as notated in the following text:

5.1 Holding Times

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the technical holding time is exceeded, the data may not be considered valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimates, "J". The non-detects (sample quantitation limits) are required to be flagged as estimated, "J", or unusable, "R", if the holding times are grossly exceeded.

Samples for Hexavalent Chromium were performed within 24 hours of collection as required by the method with the exception of MW-XX. Non-detects have been rejected, "R."

*Note: Dissolved Chromium was not detected in the metals analysis for this sample and therefore if there is no "total" chromium in the dissolved sample at 10 ug/L, then no chromium can be in the hexavalent form. Additionally, MW-8 was analyzed within holding time and no hexavalent chromium was detected.

5.2 Calibration

Acceptable ICVs and CCVs were analyzed. No qualifications were applied based upon calibration data.

5.3 Blanks

Quality assurance (QA) blanks, i.e. method, field or preparation blanks are prepared to identify any contamination, which may have been introduced into the samples during sample preparation or field activity. Preparation blanks measure laboratory contamination. Field blanks measure cross-contamination of samples during field operations.

Acceptable method blanks were analyzed with these SDGs as dictated by the analytical methods employed.

Field Blank analysis was conducted on the unfiltered sample.

5.4 Spiked Sample Recovery

The spike data are generated to determine the long-term precision and accuracy of the analytical method in various matrices.

Matrix spike analysis was performed on MW-6 and MW-7. Acceptable spike recoveries were obtained.

5.5 Laboratory/Field Duplicates

The laboratory uses duplicate sample determinations to demonstrate acceptable method precision at the time of analysis. Duplicate analyses are also performed to generate data in order to determine the long-term precision of the analytical method on various matrices.

Acceptable laboratory duplicate analysis on MW-6 and MW-7 was conducted as required by the method. Acceptable precision was observed. Field duplicate analysis (MW-XX) was collected on MW-8. Precision as defined by Relative Percent Difference (RPD) was found to be within acceptable limits of +/- 20% for Hexavalent Chromium; no detections above the reporting limit.

5.6 Laboratory Control Sample

The laboratory Control Sample (LCS) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. Aqueous and solid Laboratory Control samples shall be analyzed for each analyte utilizing the same sample preparation, analytical methods and QA/QC procedures as employed for the samples.

Acceptable LCS was analyzed.

5.7 Sample Results Verification

Analyte quantitation was generated in accordance with protocols. The instrument logs were verified and found within the linear ranges of each instrument used for quantitation.

5.8 Overall Assessment of Data

The data was of acceptable quality.

Reviewer's Signature four A. Buy Date 08709/13

L.A.B. Validation Corp, 14 West Point Drive, East Northport, NY 11731

Appendix A Data Summary Tables With Qualifications

	_			Table 1					
Val	lidate	d Analytica	l Results fc	ur Volatile O	rganic Com	pounds in (Groundwate	r	
					ew York Legac				
			700-730 Br	-	Bronx, New Y	ork			
				BCP # C203	1043				
San	mple ID	MW-6	MW-7	MW-8	MW-9	MW-XX**	Field Blank	Trip Blank	WYEDEC
	Matrix	1	groundwater		groundwater	groundwater		fiquid	NYSDEC TOG6*
Date Sa	ampled	6/3/2013	6/4/2013	6/3/2013	6/4/2013	6/3/2013	6/3/2013	6/3/2013	
Volatile Organic Compounds		[· ·	I '	1	<u>ا</u>	ī 1	Ê t	1
	Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Acetone	1	ND	ND	ND	4.1 J	ND	ND	ND	50
Benzene	ļ	ND	ND	8.5	ND	8.3	ND	ND	1
Bromobenzena	1	ND	ND	ND	ND	ND	ND	ND ND	5
Bromochloromethane	1	ND 10	ND ND	ND	ND	ND	ND ND	ND ND	5
Bromodichloromethane	1	1.2 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	50 50
Bromoform	1	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	50 5
Bromomethane	1	ND R		10.8 J	ND R	13.2 J	NDR	NDR	5 50
2-Butanone (MEK) n-Butylbenzene	1		NDIN	ND	ND	ND	ND	ND	5
n-Butyloenzene	ļ	ND	ND	5.2	ND	5.2	ND	ND	5
tert-Butylbenzene	,	ND	ND	1.3 J	ND	1.2 J	DN	ND	5
Carbon tetrachioride	ļ	ND	ND	ND	ND	ND	ND	ND	5
Chlorobenzene	I	ND	ND	ND	ND	ND	ND	ND	5
Chloroethane	1	ND	ND	ND	ND	ND	ND	ND	5
Chloroform	1	18.6	ND	ND	ND	ND	ND	ND	7
Chloromethane	1	ND	ND	ND	ND	ND ND	ND	ND ND	NVG
o-Chlorotoluene	1	ND	ND	ND	ND	ND ND	ND ND	ND ND	5
p-Chlorotoluene	1	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	5 0.04
1,2-Dibromo-3-chloropropane	1	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.04 50
Dibromochioromethane	1	ND ND		ND ND	ND ND	ND	ND ND	ND	50 NVG
1,2-Dibromoethane	ł	טא DN	ND ND	DN DN	ND	ND	ND	ND	3
1,2-Dichlorobenzene	'	ND	ND	ND	ND	ND	ND	ND	3
1,3-Dichlorobenzene 1,4-Dichlorobenzene	'	ND	ND	ND	ND	ND	ND	ND	3
1,4-Dichlorodifluoromethane	'	ND	ND	ND	ND	ND	ND	ND	5
1,1-Dichloroethane	'	ND	ND	ND	ND	ND	ND	ND	5
1,2-Dichloroethane	'	ND	ND	ND	ND	ND	ND	ND	0.6
1,1-Dichloroethene	'	ND	ND	ND	ND	ND	ND	ND	5
cis-1,2-Dichloroethene	'	ND	ND	ND	ND	ND	ND	ND	5
trans-1,2-Dichloroethene	'	ND	ND	ND	ND	ND	ND	ND	5
1,2-Dichloropropane	1	ND	ND	ND	ND	ND	ND	ND	1
1,3-Dichloropropane	,	ND	ND	ND	ND	ND	ND	ND	5
2,2-Dichloropropane	1	ND	ND	ND	ND	ND	ND ND	ND ND	5
1,1-Dichloropropene	1	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	5 0,4
cis-1,3-Dichloropropene	1	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	0.4
trans-1,3-Dichloropropene	1	ND ND	ND ND	51.8	ND ND	52.4	ND	ND	0.4 5
Ethylbenzene Hexachlorobutadiene	1	ND ND	ND	ND	ND	ND	ND	ND	0.5
Hexachlorobutadiene Isopropyibenzene	1	ND	ND	28.5		28.3	ND	ND	5
p-Isopropyltoluene	1	ND	ND	0.63 J	ND	0.62 J	ND	ND	5
P-Isopropykoluene Methyl Tert Bulyl Ether	1	ND	ND	ND	ND	ND	ND	ND	10
4-Methyl-2-pentanone(MIBK)	1	ND	ND	ND	ND	ND	ND	ND	NVG
Methylene bromide		ND	ND	ND	ND	ND	ND	ND	NVG
Methylene chloride		ND	ND	ND	ND	ND		ND ND	5
Naphthalene		ND	ND	12.0	ND	12.0	ND ND	ND	10
n-Propylbenzene		ND	ND	46.6	ND ND	46.3	ND ND	ND ND	5 5
Styrene		ND	ND	ND		ND ND	ND ND	ND ND	5
1,1,1,2-Tetrachloroethane		ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	5
1,1,2,2-Tetrachloroethane		ND ND	ND ND	ND	ND ND	ND	ND	ND	5
Tetrachloroethene		ND		4,9	ND	4.9	ND	ND	5
Toluene 1,2,3-Trichlorobenzene		ND	ND	4.5 ND	ND	ND	ND	ND	5
1,2,3-Inchlorobenzene 1,2,4-Trichlorobenzene		ND	ND	ND	ND	ND	ND	ND	5
1,1,1-Trichloroethane		ND	ND	ND	ND	ND	ND	ND	5
1,1,2-Trichloroethane		ND	ND	ND	ND	ND	ND	ND	1
Trichloroethene		ND	ND	ND	ND	ND	ND	ND	5
Trichlorofluoromethane		ND	ND	ND	ND	ND	ND	ND	5
1,2,3-Trichloropropane		ND	ND	ND	ND	ND	ND	ND ND	0.04
1,2,4-Trimethylbenzene		ND	ND	4.2	ND	4.3	ND	ND	5
1,3,5-Trimethylbenzene		ND	ND	1.1 J	ND	1.1 J	ND	ND	5
Vinyl chloride		ND	ND	ND 15.2		ND 15.8		ND ND	2
m,p-Xylene		ND	ND	15.3		15.8 1.5		ND	5
o-Xylene		ND	ND	1.4	ND ND	1.5		ND	5
Xylene (total)		ND	ND	16.8		11.0	1.11		
Notes: ug/L - micrograms per liter or pa				*NYSDEC TO	achoical and O	nerational Gui	idance Series ((1.1.1)	

 ugr, - micrograms per later or parts per ballion
 THISDEC (connect and operational studies of the studies of th

far 878713

Validated Analytic	cal Results f	or Semi-Vol	atile Organic	Compound	s ln Groundv	/ater	
validated Analytic			ig New York Le		o in orounde		
			ig New Fork Le				
	700-7		C203043				
Sample ID	MW-6	MW-7	MW-8	MW-9	MW-XX**	Field Blank Equid	NYSDEC TOGS
Matrix	groundwater	groundwater	groundwater	groundwater 6/4/2013	groundwater 6/3/2013	6/3/2013	1003
Date Sampled	6/3/2013	6/4/2013	6/3/2013	0/4/2013	0/3/2013	0/0/2010	
Semi-Volatile Organic Compounds Units	ug/L	ug/L	ug/L	ug/L	Աց/Լ	ug/L	ug/L
-Chlorophenol	ND	ND	ND	ND	ND	ND	NVG
-Chloro-3-methyl phenol	ND	ND	ND	ND	ND	ND	NVG
4-Dichlorophenol	ND	ND	NO	ND	ND	ND	5
4-Dimethylphenol	ND	NO	ND	ND	ND	ND	50
4-Dinitrophenol	ND	ND	ND	ND	ND	ND	10
6-Dinitro-o-cresol	ND	ND	ND	ND	ND	ND	NVG
-Methyphenol	ND	ND	ND	ND	ND	ND	1
&4-Methylphenol	ND	ND	ND	ND	ND	ND	1
-Nitrophenol	ND	ND	ND	ND	ND	ND	NVG
-Nitrophenol	ND	ND	ND	ND	ND	ND	NVG
entachlorophenol	ND	ND	ND	ND	ND ND	ND ND	NVG
henol	ND ND	ND ND	ND ND	ND ND	ND	ND	1 NVG
2,4,5-Trichlorophenol	ND ND	NU ND	NU ND	ND	ND	ND	NVG
2,4,6-Trichlorophenol	ND ND	ND	0,52 J	ND	NOUJ	ND	20
Acenaphthelee	ND	DA	0.52 J ND	ND	ND	ND	NVG
Acenaphthylene	ND	ND	ND	ND	ND	ND	NVG
Acetophenone Anthracene	ND	ND	ND	ND	ND	ND	50
Anthracene Atrazine	ND	ND	ND	ND	ND	ND	7.5
Arazine Benzaldehyde	ND	ND	ND	ND	ND	ND	0.002
Senzo(a)anthracene	ND	ND	ND	ND	ND	ND	ND
Senzo(a)pyrene	ND	ND	ND	ND	ND	ND	0.002
Senzo(b)fuoranthene	ND	ND	ND	ND	ND	ND	NVG
Senzo(g,h,i)perylene	ND	ND	ND	ND	ND	ND	0.002
Benzo(k)fluoranthene	ND	ND	ND	ND	ND	ND	NVG
Bromophenyl phenyl ether	ND	ND	ND	ND	ND	ND	50
Butyl benzyl phthalate	ND	ND	ND	ND	ND	ND	5
,1'-Biphenyl	DND	ND	ND	ND	ND	ND	NVG
2-Chloronaphthalene	ND	ND	ND	ND		ND ND VĴ	10 -
I-Chloroaniline	UU da		NDUJ				-
Carbazole	ND	NO	ND	ND	ND	ND ND	NVG
Caprolaciam	ND	ND	ND	ND	ND ND	ND	NVG 0.002
Chrysene	ND	ND	ND	ND ND	ND	ND	5
ols(2-Chloroethoxy)methane	ND	ND	ND ND	ND	ND	ND	1
bis(2-Chloroethyl)ether	ND	ND ND	ND	ND	ND	ND	NVG
bis(2-Chioroisopropyl)ether	ND ND	ND	ND	ND	ND	ND	NVG
4-Chlorophenyl phenyl ether	ND	ND	ND	ND	ND	ND	5
2,4-Dinitrotoluene	ND	ND	ND	ND	ND	ND	5
2,6-Dinitrotoluene	ND	ND	ND	ND	ND	ND	5
3,3'-Dichlorobenzidine	ND	ND	ND	ND	ND	ND	NVG
Dibenzo(a,h)anthracene	ND	ND	ND	ND	ND	ND	NVG
Dibenzofuran Di-n-butyl ohthalate	ND	ND	ND	ND	ND	ND	50
	ND	ND	ND	ND	ND	ND	50
Di-n-octyl phthalate Diethyl phthalate	ND	ND	ND	ND	ND ND	ND	50
Directly philabate	ND	ND	DND	ND	ND	ND	50
sis(2-Ethylhexyl)phthalate	ND	ND	ND	0.81 J	ND	ND	5
Fluoranthene	ND	ND	ND UJ	DND	0.58 J	ND	50
Fluorene	ND	ND	ND	ND	ND	ND	50
Hexachlorobenzene	ND	ND	ND	ND	ND	ND	0.04
Hexachlorobutadiene	ND	ND	ND	ND	ND	ND	0.5
Hexachlorocyclopentadiene	ND	ND	ND	ND	ND	ND	5
Hexachloroethane	ND	ND	ND	ND	ND	ND	5
Indeno(1,2,3-cd)pyrene	ND	ND	ND	ND	ND	ND	0.002
isophorone	ND	ND	ND	ND	ND	ND ND	50
2-Methyinaphthalene	ND	ND	ND	ND ND	ND ND	NU ND	NGV 5
2-Nitroaniine	ND	NO	ND ND	ND	ND	ND	5
3-Nitroan≊ne	ND	ND		ND	ND	ND	5
4-NitroanTrie	ND	ND 1.8	ND 6.4 J	1.4	1.5 J	ND	10
Naphthalene	ND	1.8 ND	0.4 J	ND	ND	ND	0.4
Nitrobenzene	ND ND	ND	ND	ND	ND	ND	NVG
N-Nitroso-di-n-propylamine	ND ND	ND	ND	ND	ND	ND	50
N-Nitrosodiphenylamine	NO	ND	ND	ND	ND	ND	50
Phenanthrene	NO	ND	NOUS		0.48 J	ND	50
Pyrene			·		-1		·
Notes: ug/L - micrograms per liter or parts per b	Tion .		*NYSDEC Te	chnical and Op	erational Guidar	ico Series (1.1.	1)
ND - Not detected at or above laboratory	detection limits	;	Amblent Wate	r Quality Stand	lards and Guida	nce Values	
NVG - No Value Given			and Groundwa	ater Effluent Lir duplicate of M	nitations; June 1	1938	
J - Estimated Value							

folgn13

			Table 3				
	>	Validated Analy ^r Vía Verde aka 700-730	dated Analytical Results for PCBs In Groundwater Via Verde aka New Housing New York Legacy Project 700-730 Brook Avenue, Bronx, New York BCP # C203043	or PCBs In Gr sw York Legacy Bronx, New Yor	oundwater Project k		
Sample ID Matrix Date Sampled	MW-6 groundwater 6/3/2013	MW-7 groundwater 6/4/2013	MVV-8 groundwater 6/3/2013	MW-9 groundwater 6/4/2013	MVV-XX** groundwater 6/3/2013	Field Blank liquid 6/3/2013	NYSDEC TOGS***
PCBs	<u> </u> /μι	/u/	10/1	/μ1	/ul	/ur	///
Aroclor-1016	ND	ND L	L N N	ND 1	ND 1 1 0 N	ND	190 t
Aroclor-1221	QN	QN	QN	DN	QN	QN	0.09 *
Aroclor-1232	ND	QN	g	QN	QN	QN	0.09 *
Aroclor-1242	QN	ND	QN	QN	Q	QN	* 60.0
Aroclor-1248	QN	QN	Q	QN	Q	Q	* 60.0
Aroclor-1254	QN	Q	Q	ND	DN	QN	* 60.0
Aroclor-1260	QN	QN	Q	QN	QN	QN	* 60.0
Notes: ug/L - micrograms per liter or parts per billion ND - Not detected at or above laboratory detection limits * Applies to the sum of these compounds ** MW-XX is a duplicate of MW-8	liter or parts per b r above laboratory these compound te of MW-8	villion / detection limits s		***NYSDEC Tec Ambient Water (and Groundwate	***NYSDEC Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations; June 1998	ional Guidance { and Guidance V ons; June 1998	Series (1.1.1) alues

	Valid	lated Analytic	Table 4 al Results for	Metals in Gro	oundwater		
		Via Verde aka N	ew Housing Nev	v York Legacy I	Project		
			Brook Avenue, B				
		100 100 1	BCP # C2030				
			BCF # 02000				
Sample ID	MW-6	MW-7	MW-8	MW-9	MW-XX**	Field Blank	NYSDEC
Matrix	groundwater	groundwater	groundwater	groundwater	groundwater	liquid	TOGS*
Date Sampled	6/3/2013	6/4/2013	6/3/2013	6/4/2013	6/3/2013	6/3/2013	
fotal Metals Filtered							
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Aluminum	<200	<200	<200	<200	<200	<200	NVG
Antimony	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	3
Arsenic	<3.0	<3.0	4.2	<3.0	5.9	<3.0	25
Barium	<200	<200	<200	<200	<200	<200	1,000
Berylium	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	3
Cadmium	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	5
Calcium	25,100	121,000	145,000	119,000	141,000	<5,000	NVG
Chromium	<10	<10	<10	<10	<10	<10	50
Cobalt	<50	<50	<50	<50	<50	<50	NVG
Copper	<10	<10	<10	<10	<10	<10	200
ron	<100	<100	179 J	<100	209	<100	300
_ead	<3.0	<3.0	3.8 T	<3.0	<3.0 U.T	<3.0	25
Magnesium	<5,000	24,200	36,800	8,920	36,300	<5,000	35,000
Manganese	<15	49.0	3,160	782	3,220	<15	300
Mercury	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.7
Nickel	<10	<10	16.1	86.4	15.1	<10	100
Potassium	<10,000	<10,000	<10,000	12,700	<10,000	<10,000	NVG
Selenium	<10	<10	28.5 丁	<10	<10 <i>UJ</i>	<10	10
Silver	<10	<10	<10	<10	<10	<10	50
Sodium	19,500	66,200	87,700	96,700	95,000	<10,000	20,000
Thallium	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	0.5
Vanadium	<50	<50	<50	<50	<50	<50	NVG
Zinc	<20	<20	<20	<20	<20	<20	2,000
Chromium, Hexavalent	<0.010	<0.010	<0.010	<0.010.br		<0.010 a	50
Chromium, Trivalent	<0.020 c	<0.020 c	<0.020 c	<0.020 c	<0.020 c	<0.020 c	50
Notes: ug/L – micrograms per lite ND – Not detected at or a	er or parts per bl bove laboratory	llion detection limits		Ambient Water	nical and Operation Quality Standards	and Guidance	Values

NVG - No Value Given

J - Estimated Value

a - analyzed from non-filtered sample ,

b - Analysis done out of holding time (

and Groundwater Effluent Limitations; June 1998 ** MW-XX is a duplicate of MW-8 c - Calculated as: (Chromium) - (Chromium, Hexavalent)

d- Analysis done out of holding time as per client request

Boxed and bold indicates exceedance of groundwater standards or guidance values

8/8/9/13

		Repo	rt of Ai	nalysis			Page 1 of 2
Client San Lab Samp Matrix: Method: Project:			ue, Bronx,	NY	Date		3/03/13 5/04/13 'a
Run #1 Run #2	File ID DF 1C116997.D 1	Analyzed 06/06/13	By TYG	Prep D n/a	ate	Prep Batch n/a	Analytical Batch V1C5184
Run #1 Run #2	Purge Volume 5.0 ml						
VOA 8260	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1 71-43-2 108-86-1	Acetone Benzene Bromobenzene	ND ND ND	10 1.0 5.0	3.3 0.24 0.14	ug/l ug/l ug/l		
74-97-5 75-27-4 75-25-2	Bromochloromethane Bromodichloromethane Bromoform	ND 1.2 ND	5.0 1.0 4.0	0.30 0.21 0.21	ug/l ug/l ug/l		
74-83-9 78-93-3 104-51-8	Bromomethane 2-Butanone (MEK) n-Butylbenzene	ND ND ND	2.0 - 10 5.0	0.22 2.4 0.17	ug/l ug/l ug/l		
135-98-8 98-06-6 56-23-5	sec-Butylbenzene tert-Butylbenzene Carbon tetrachloride	ND ND ND	5.0 5.0 1.0	0.21 0.30 0.22	ug/l ug/l ug/l		
108-90-7 75-00-3 67-66-3	Chlorobenzene Chloroethane Chloroform	ND ND 18.6	1.0 1.0 1.0	0.23 0.26 0.20	ug/l ug/l ug/l		
74-87-3 95-49-8 106-43-4	Chloromethane o-Chlorotoluene p-Chlorotoluene	ND ND ND	1.0 5.0 5.0	0.21 0.15 0.30	ug/l ug/l ug/l		
96-12-8 124-48-1 106-93-4	1,2-Dibromo-3-chloropro Dibromochloromethane 1,2-Dibromoethane	pane ND ND ND	10 1.0 2.0	0.54 0.14 0.20	ug/l ug/l ug/l		
95-50-1 541-73-1	1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	ND ND ND	1.0 1.0 1.0	0.22 0.22 0.30	ug/l ug/l ug/l		
106-46-7 75-71-8 75-34-3	Dichlorodifluoromethane 1,1-Dichloroethane	ND ND	5.0 1.0	0.27 0.11 0.26	ug/l ug/l		
107-06-2 75-35-4 156-59-2	1,2-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trong 1,2 Dichloroethene	ND ND ND ND	1.0 1.0 1.0 1.0	0.28 0.19 0.19 0.21	ug/l ug/l ug/l ug/l		
156-60-5 78-87-5 142-28-9	trans-1,2-Dichloroethene 1,2-Dichloropropane 1,3-Dichloropropane	ND ND ND	1.0 1.0 5.0	0.21 0.48 0.23	ug/I ug/I ug/I		

MDL - Method Detection Limit ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

4.1

fa/71813

Report of Analysis

Lab Sample Matrix: Method: Project:	AQ - Ground Water SW846 8260B	ook Avenue, Bronx, NY			Date	Sampled: Received: ent Solids:	06/03/13 06/04/13 n/a	
VOA 8260 I	list							
CAS No.	Compound	Result	RL	MDL	Units	Q		
594-20-7	2,2-Dichloropropane	ND	5.0	0.15	ug/l			
563-58-6	1,1-Dichloropropene	ND	5.0	0.30	ug/l			
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.21	ug/l			
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.19	ug/l			
100-41-4	Ethylbenzene	ND	1.0	0.23	ug/l			
87-68-3	Hexachlorobutadiene	ND . : .	5.0	0.24	ug/l			
98-82-8	Isopropylbenzene	ND	2.0	0.45	ug/l			
99-87-6	p-Isopropyltoluene	ND	5.0	0.22	ug/l			
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.16	ug/l			
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	0.83	ug/l			
74-95-3	Methylene bromide	ND	5.0	0.26	ug/l			
75-09-2	Methylene chloride	ND set	2.0	0.70	ug/l			
91-20-3	Naphthalene	ND	5.0	1,1	ug/l			
103-65-1	n-Propylbenzene	ND	5.0	0.24	ug/l			
100-42-5	Styrene	ND	5.0	0.21	ug/l			
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.24	ug/l			
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/l			
127-18-4	Tetrachloroethene	ND	1.0	0.28	ug/l			
108-88-3	Toluene	ND	1.0	0.23	ug/l			
87-61-6	1,2,3-Trichlorobenzene	NĐ	5.0	0.28	ug/l			
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.20	ug/l			
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.24	ug/l			
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.29	ug/l			
79-01-6	Trichloroethene	ND	1.0	0.22	ug/l			
75-69-4	Trichlorofluoromethane	ND	5.0	0.27	ug/l			
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.53	ug/l			
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.19	ug/l			
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.36	ug/l			
75-01-4	Vinyl chloride	ND	1.0	0.21	ug/l			
	m,p-Xylene	ND	1.0	0.42	ug/l			
95-47-6	o-Xylene	ND	1.0	0.24	ug/l			
1330-20-7	Xylene (total)	ND	1.0	0.24	ug/l			
CAS No.	Surrogate Recoveries	Run# 1	Run#2	Lim	its			
1868-53-7	Dibromofluoromethane	96%		80-1	19%			
17060-07-0	1,2-Dichloroethane-D4	102%			22%			
2037-26-5	Toluene-D8	99%			20%			
460-00-4	4-Bromofluorobenzene	92%			16%			

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E =Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 2

4.1 2

Ţ

			Repo	rt of Ai	nalysis			Page 1 of 3
Client Sam Lab Sampl Matrix: Method: Project:	e ID: JB3864 AQ - G SW846	1-1 round Water 8270D SW rde, 700-730	'846 3510C	ue, Bronx,	NY	Date		1/03/13 1/04/13 a
Run #1 Run #2	File ID F25027.D	DF 1	Analyzed 06/16/13	By NAP	Prep D 06/05/1		Prep Batch OP66558	Analytical Batch EF5253
Run #1 Run #2	Initial Volume 890 ml	Final Volu 1.0 ml	ime					
ABN TCL	List (CLP4.2 lis	t)						
CAS No.	Compound		Result	RL	MDL	Units	Q	
95-57-8 59-50-7 120-83-2 105-67-9 51-28-5 534-52-1 95-48-7 88-75-5 100-02-7 87-86-5 108-95-2 95-95-4 88-06-2 83-32-9 208-96-8 98-86-2 120-12-7 1912-24-9 100-52-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9	2-Chlorophene 4-Chloro-3-me 2,4-Dichloropi 2,4-Dimitrophe 4,6-Dinitro-o- 2-Methylphene 3&4-Methylph 2-Nitrophenol 4-Nitrophenol 2,4,5-Trichlor 2,4,6-Trichlor Acenaphthene Acenaphthene Acenaphthyler Acetophenone Anthracene Atrazine Benzaldehyde Benzo(a)anthr Benzo(a)pyrer Benzo(b)fluor Benzo(k)fluor	ethyl phenol henol henol enol cresol ol enol enol rophenol ne acene ne acene ne anthene erylene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	$\begin{array}{c} 5.6\\ 5.6\\ 5.6\\ 5.6\\ 22\\ 22\\ 2.2\\ 2.2\\ 2.2\\ 2.2\\ 5.6\\ 11\\ 11\\ 2.2\\ 5.6\\ 5.6\\ 1.1\\ 1.1\\ 2.2\\ 1.1\\ 5.6\\ 5.6\\ 1.1\\ 1.1\\ 1.1\\ 1.1\\ 1.1\\ 1.1\\ 1.1\end{array}$	$\begin{array}{c} 1.1\\ 2.0\\ 1.3\\ 1.7\\ 19\\ 1.1\\ 1.2\\ 1.0\\ 1.7\\ 5.8\\ 1.6\\ 1.4\\ 1.8\\ 1.4\\ 0.30\\ 0.26\\ 0.32\\ 0.32\\ 0.55\\ 3.7\\ 0.25\\ 0.25\\ 0.51\\ 0.36\\ 0.57\end{array}$	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1		
207-08-9 101-55-3 85-68-7 92-52-4 91-58-7 106-47-8 86-74-8 105-60-2	Benzo(k)fluor. 4-Bromopheny Butyl benzyl r 1,1'-Biphenyl 2-Chloronaph 4-Chloroanilir Carbazole Caprolactam	yl phenyl eth ohthalate thalene		2.2 2.2 1.1 2.2	$\begin{array}{c} 0.57\\ 0.40\\ 0.32\\ 0.34\\ 0.33\\ 0.59\\ 0.40\\ 0.77\end{array}$	ug/I ug/I ug/I ug/I ug/I ug/I ug/I		

MDL - Method Detection Limit ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

fa/6/1/13

12 of 47

Report of Analysis

Client Sample ID: MW-6 Lab Sample ID: JB38641-1 Matrix: AQ - Ground Water Method: SW846 8270D SW840 Project: Via Verde, 700-730 Br			e, Bronx, N	Y	Date	Sampled: Received: ent Solids:	06/03/13 06/04/13 n/a	
ABN TCL	List (CLP4.2 list)							
CAS No.	Compound	Result	RL	MDL	Units	Q		
218-01-9	Chrysene	ND	1.1	0.32	ug/l			
111-91-1	bis(2-Chloroethoxy)methane	ND	2.2	0.34	ug/l			
111-44-4	bis(2-Chloroethyl)ether	ND	2.2	0.35	ug/l			
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.2	0.51	ug/l			
7005-72-3	4-Chlorophenyl phonyl ether		2.2	0.35	ug/l			
121-14-2	2,4-Dinitrotoluene	ND	2.2	0.48	ug/l			
606-20-2	2,6-Dinitrotoluene	ND	2.2	0.52	ug/l			
91-94-1	3,3'-Dichlorobenzidine	ND	5.6	0.40	ug/l			
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.42	ug/l			
132-64-9	Dibenzofuran	ND	5.6	0.30	ug/l			
84-74-2	Di-n-butyl phthalate	ND	2.2	0.62	ug/l			
117-84-0	Di-n-octyl phthalate	ND	2.2	0.35	ug/l			
84-66-2	Diethyl phthalate	ND	2.2	0.37	ug/l			
131-11-3	Dimethyl phthalate	ND	2.2	0,32	ug/l			
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.2	0.66	ug/l			
206-44-0	Fluoranthene	ND	1.1	0.36	ug/l			
86-73-7	Fluorene	ND	1.1	0.31	ug/l			
118-74-1	Hexachlorobenzene	ND	1.1	0.38	ug/l			
87-68-3	Hexachlorobutadiene	ND.	1.1	0.58	ug/l			
77-47-4	Hexachlorocyclopentadiene	ND	. 11	8.0	ug/l			
67-72-1	Hexachloroethane	ND	2.2	0.62	ug/l			
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.42	ug/l			
78-59-1	Isophorone	ND	2.2	0.31	ug/l			
91-57-6	2-Methylnaphthalene	ND	1.1	0.43	ug/l			
88-74-4	2-Nitroaniline	ND	5.6	1.2	ug/l			
99-09-2	3-Nitroaniline	ND	5.6	1.4	ug/l			
100-01-6	4-Nitroaniline	ND	5.6	1.9	ug/l			
91-20-3	Naphthalene	ND	1.1	0.29	ug/l			
98-95-3	Nitrobenzene	ND	2.2	0.47	ug/l			
621-64-7	N-Nitroso-di-n-propylamine	ND	2.2	0.34	ug/l			
86-30-6	N-Nitrosodiphenylamine	ND	5.6	0.34	ug/l			
85-01-8	Phenanthrene	ND	1.1	0.33	ug/l			
129-00-0	Pyrene	ND	1.1	0.30	ug/l			
CAS No.	Surrogate Recoveries	Run# 1	Run#2	Lin	nits			
367-12-4	2-Fluorophenol	40%		10-	110%			
4165-62-2	Phenol-d5	27%			110%			
4105-02-2	2,4,6-Tribromophenol	75%			143%			
4165-60-0	Nitrobenzene-d5	94%			130%			

ND = Not detected MDL - Method Detection Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

4.1 <u>A</u>

Page 2 of 3

- 1

RL = Reporting Limit

E = Indicates value exceeds calibration range

Surrogate Recoveries

2-Fluorobiphenyl Terphenyl-d14

CAS No.

321-60-8

1718-51-0

Report of Analysis

Page 3 of 3

Client Sample ID: Lab Sample ID: Matrix: Method: Project:	MW-6 JB38641-1 AQ - Ground Water SW846 8270D SW846 3510C Via Verde, 700-730 Brook Avenue, Bronx, NY	Date Sampled: Date Received: Percent Solids:	06/04/13	4.1 4
ABN TCL List (CI				

Run#2

Limits

35-120%

14-152%

Run#1

90%

86%

MD	= Not detected	MDL -	Method	Detection	Limit
IND.	= 1 YOU UCLECTED		Tricthou	Dettection	T)IIIII

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

			Repor	t of Ana	alysis			Page 1 of 1
Client Sample Lab Sample Matrix: Method: Project:	e ID: JB3864 AQ - G SW846	round Water 8082A SW		e, Bronx, N	IY	Date		5/03/13 5/04/13 a
Run #1 Run #2	File ID EF120966.D	DF 1	Analyzed 06/11/13	By JR	Prep D 06/05/1		Prep Batch OP66554	Analytical Batch GEF4776
Run #1 Run #2	Initial Volume 900 ml	Final Volu 10.0 ml	ume					
PCB List								
CAS No.	Compound		Result	RL	MDL	Units	Q	
$\begin{array}{c} 12674\text{-}11\text{-}2\\ 11104\text{-}28\text{-}2\\ 11141\text{-}16\text{-}5\\ 53469\text{-}21\text{-}9\\ 12672\text{-}29\text{-}6\\ 11097\text{-}69\text{-}1\\ 11096\text{-}82\text{-}5\\ 11100\text{-}14\text{-}4\\ 37324\text{-}23\text{-}5\end{array}$	Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1268		ND ND ND ND ND ND ND ND	$\begin{array}{c} 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\end{array}$	$\begin{array}{c} 0.14 \\ 0.30 \\ 0.43 \\ 0.096 \\ 0.16 \\ 0.16 \\ 0.23 \\ 0.14 \\ 0.067 \end{array}$	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l		
CAS No.	Surrogate Rec	overies	Run# 1	Run# 2	Lim	its		
877-09-8 877-09-8 2051-24-3 2051-24-3	Tetrachloro-m Tetrachloro-m Decachlorobip Decachlorobip	xylene henyl	75% 85% 69% 64%		25-1 10-1	43% 43% 134% 134%		

MDL - Method Detection Limit $ND = Not \ detected$

RL = Reporting Limit

E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

4 -

					reep	010 01 11			
Client Sample Lab Sample II Matrix:			6 541-1F Groundwa	ter Filter	red			Date Sampled: Date Received: Percent Solids:	06/03/13 06/04/13 n/a
Project:		Via V	Verde, 700-	730 Broo	ok Ave	enue, Bronx	, NY		
Dissolved Met	als A	nalysis	3	<u></u>				- MML ANY	<u> </u>
Analyte	Res	ult	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	<2	00	200	ug/l	1	06/07/13	06/11/13 JY	SW846 6010C ¹	SW846 3010A ⁴
Antimony	<1	.0	1.0	ug/l	2	06/07/13	06/12/13 VC	SW846 6020A ²	SW846 3010A ⁵
Arsenic	< 3		3.0	ug/l	1	06/07/13	06/11/13 JY	SW846 6010C [[]	SW846 3010A ⁴
Barium	< 2		200	ug/l	1	06/07/13	06/11/13 JY	SW846 6010C ¹	SW846 3010A ⁴
Beryllium	<1	.0	1.0	ug/l	1	06/07/13	06/11/13 JY	SW846 6010C ¹	SW846 3010A 4
Cadmium	<3		3.0	ug/l	1	06/07/13	06/11/13 JY	SW846 6010C ¹	SW846 3010A ⁴
Calcium	251	00	5000	ug/I	1	06/07/13	06/11/13 JY	SW846 6010C ¹	SW846 3010A 4
Chromium	<1	0	10	ug/l	1	06/07/13	06/11/13 JY	SW846 6010C ¹	SW846 3010A ⁴
Cobalt	< 5	0	50	ug/l	1	06/07/13	06/11/13 jy	SW846 6010C ¹	SW846 3010A ⁴
Copper	<1	0	10	ug/l	1	06/07/13	06/11/13 jy	SW846 6010C ¹	SW846 3010A 4
Iron	<1	00	. 100	ug/l	1	06/07/13	06/11/13 JY	SW846 6010C ¹	SW846 3010A 4
Lead	< 3	.0	3.0	ug/l	1	06/07/13	06/11/13 JY	SW846 6010C 1	SW846 3010A 4
Magnesium	< 5	000	5000	ug/l	1	06/07/13	06/11/13 JY	SW846 6010C ¹	SW846 3010A ⁴
Manganese	<1	5	15	ug/l	1	06/07/13	06/11/13 jy	SW846 6010C ¹	SW846 3010A ⁴
Mercury	<0	.20	0.20	ug/l	1	06/13/13	06/13/13 DP	SW846 7470A ³	SW846 7470A ⁶
Nickel	<1	0	10	ug/1	1	06/07/13	06/11/13 jy	SW846 6010C ¹	SW846 3010A ⁴
Potassium	<1	0000	10000	ug/l	1	06/07/13	06/11/13 JY	SW846 6010C 1	SW846 3010A 4
Selenium	<1	0	10	ug/l	1	06/07/13	06/11/13 JY	SW846 6010C 1	SW846 3010A ⁴
Silver	<1	0	10	ug/l	1	06/07/13	06/11/13 JY	SW846 6010C ¹	SW846 3010A ⁴
Sodium	195	00	10000	ug/l	1	06/07/13		SW846 6010C ¹	SW846 3010A 4
Thallium	<1		1,0	ug/l	2		06/12/13 VC		SW846 3010A ⁵
Vanadium	< 5		50	ug/l	1	06/07/13	06/11/13 JY	SW846 6010C ¹	SW846 3010A ⁴
Zinc	< 2		20	ug/l	1	06/07/13	06/11/13 JY	SW846 6010C ¹	SW846 3010A ⁴

Report of Analysis

Instrument QC Batch: MA31416
 Instrument QC Batch: MA31431

(2) Instrument QC Batch: MA31440
(4) Prep QC Batch: MP72450
(5) Prep QC Batch: MP72450A
(6) Drep QC Batch: MP72450A

(6) Prep QC Batch: MP72562

Page 1 of 1

			Repor	t of An	alysis			Page 1 of 1
Client Sample ID: Lab Sample ID: Matrix:	MW-6 JB3864 AQ - Gi	1-1F roundwater Fil	tered			Date Sampled Date Received Percent Solids	: 06/	/03/13 /04/13
Project: Via Verde, 700-730 Brook Avenue, Bronx, NY								
General Chemistry	7		48 v					
Analyte		Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexava Chromium, Trivale		< 0.010 < 0.020	0.010 0.020	mg/l mg/l	1 1	06/04/13 10:58 06/11/13 17:16		SW846 7196A SW846 6010/7196A M

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

4.2

1

		Repo	rt of Ai	nalysis			Page 1 of 3	
Client San Lab Samp Matrix: Method: Project:		Brook Aven	ue, Bronx,	NY	Date	T	5/03/13 5/04/13 a	
Run #1 Run #2		Analyzed 06/08/13	By MD	Prep D n/a	ate	Prep Batch n/a	n Analytical Batch V1C5189	
Run #1 Run #2	Purge Volume 5.0 ml							
VOA 8260	List							
CAS No.	Compound	Result	RL	MDL	Units	Q		
67-64-1 71-43-2	Acetone Benzene	ND 8.5	10 1.0	3.3 0.24	ug/l ug/l			
108-86-1	Bromobenzene	ND	5.0	0.14	ug/l			
74-97-5	Bromochloromethane	ND	5.0	0.30	ug/l			
75-27-4	Bromodichloromethane	ND	1.0	0.21	ug/l			
75-25-2	Bromoform	ND	4.0	0.21	ug/l			
74-83-9	Bromomethane	ND	2.0	0.22	ug/l			
78-93-3	2-Butanone (MEK)	10.8	Guineda	2.4	ug/l			
104-51-8	n-Butylbenzene	ND	5.0	0.17	ug/l			
135-98-8	sec-Butylbenzene	5.2	5.0	0.21	ug/l			
98-06-6	tert-Butylbenzene	1.3	5.0	0.30	ug/l	J		
56-23-5	Carbon tetrachloride	ND	1.0	0.22	ug/l			
108-90-7	Chlorobenzene	ND	1.0	0.23	ug/l			
75-00-3	Chloroethane	ND	1.0	0.26	ug/l			
67-66-3	Chloroform	ND	1.0	0.20	ug/l			
74-87-3	Chloromethane	ND	1.0	0.21	ug/l			
95-49-8	o-Chlorotoluene	ND	5.0	0.15	ug/l			
106-43-4	p-Chlorotoluene	ND	5.0	0.30	ug/l			
96-12-8	1,2-Dibromo-3-chloropropa	ne ND	10	0.54	ug/l			
124-48-1	Dibromochloromethane	ND	1.0	0.14	ug/l			
106-93-4	1,2-Dibromoethane	ND	2.0	0.20	ug/l			
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.22	ug/l			
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l			
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.30	ug/l			
75-71-8	Dichlorodifluoromethane	ND	5.0	0.27	ug/l			
75-34-3	1,1-Dichloroethane	ND	1.0	0.11	ug/l			
107-06-2	1,2-Dichloroethane	ND	1.0	0.26	ug/l			
75-35-4	1,1-Dichloroethene	ND	1.0	0.19	ug/l			
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.19	ug/1			
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.21	ug/l			
78-87-5	1,2-Dichloropropane	ND	1.0	0.48	ug/l			
142-28-9	1,3-Dichloropropane	ND	5.0	0.23	ug/l			

MDL - Method Detection Limit ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blankN = Indicates presumptive evidence of a compound

Jan 8/13

4. ω

Report of Analysis

Client Sample ID: MW-8 Lab Sample ID: JB38641-2 Matrix: AQ - Ground Water Method: SW846 8260B Project: Via Verde, 700-730 Brogeneration		rook Avenue	, Bronx, N	!Y	Date	Sampled: Received: ent Solids:	06/03/13 06/04/13 n/a	
VOA 8260 I	ist					<u>. a. (drm</u>		
CAS No. Compound		Result	RL	MDL	Units	Q		
594-20-7	2,2-Dichloropropane	ND	5.0	0.15	ug/l			
563-58-6	1,1-Dichloropropene	ND	5.0	0.30	ug/l			
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.21	ug/l			
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.19	ug/l			
100-41-4	Ethylbenzene	51.8	1.0	0.23	ug/l			
87-68-3	Hexachlorobutadiene	ND	5.0	0.24	ug/l			
98-82-8	Isopropylbenzene	28.5	2.0	0.45	ug/l	_		
99-87-6	p-Isopropyltoluene	0.63	5.0	0.22	ug/l	J		
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.16	ug/l			
108-10-1	4-Methyl-2-pentanone(MIBK)		5,0	0.83	ug/l			
74-95-3	Methylene bromide	ND	5.0	0.26	ug/l			
75-09-2	Methylene chloride	ND I	2.0	0.70	ug/l			
91-20-3	Naphthalene	12.0	5.0	1.1	ug/l			
103-65-1	n-Propylbenzene	46.6	5.0	0.24	ug/l			
100-42-5	Styrene	ND	5.0	0.21	ug/l			
630-20-6	1,1,1,2-Tetrachloroethane	ND and	5.0	0.24	ug/l			
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/l			
127-18-4	Tetrachloroethene	ND	1.0	0.28	ug/l			
108-88-3	Toluene	4.9	1.0	0.23	ug/l			
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	0.28	ug/l			
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.20	ug/l			
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.24	ug/l			
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.29	ug/l			
79-01-6	Trichloroethene	ND	1.0	0.22	ug/l			
75-69-4	Trichlorofluoromethane	ND	5.0	0.27	ug/l			
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.53	ug/l			
95-63-6	1,2,4-Trimethylbenzene	4.2	2.0	0.19	ug/l	-		
108-67-8	1,3,5-Trimethylbenzene	1.1	2.0	0.36	ug/l	J		
75-01-4	Vinyl chloride	ND	1.0	0.21	ug/l			
	m,p-Xylene	15.3	1.0	0.42	ug/l			
95-47-6	o-Xylene	14	1.0	0.24	ug/l			
1330-20-7	Xylene (total)	16.8	1.0	0.24	ug/1			
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	nits			
1868-53-7	Dibromofluoromethane	95%		80-3	119%			
17060-07-0	1,2-Dichloroethane-D4	97%			122%			
2037-26-5	Toluene-D8	100%			120%			
460-00-4	4-Bromofluorobenzene	91%			116%			

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 2

			Repo	rt of Ar	nalysis			Page 1 of 3		
Client Sam Lab Sampl Matrix: Method: Project:	e ID: JB3864 AQ - G SW846	1-2 round Water 8270D SW8 rde, 700-730		ue, Bronx,	NY	Date		3/03/13 3/04/13 ′a		
Run #1 Run #2			Analyzed 06/16/13	By KLS	Prep D 06/05/1		Prep Batch OP66558	Analytical Batch EF5252		
Run #1 Run #2	Initial Volume 880 ml	Final Volu 1.0 ml	me							
ABN TCL	List (CLP4.2 lis	:)								
CAS No.	Compound		Result	RL	MDL	Units	Q			
95-57-8 59-50-7 120-83-2 105-67-9 51-28-5 534-52-1 95-48-7 88-75-5 100-02-7 87-86-5 108-95-2 95-95-4 88-06-2 83-32-9 208-96-8 98-86-2 120-12-7 1912-24-9 100-52-7 56-55-3 50-32-8 205-99-2 191-24-2	2-Chloropheno 4-Chloro-3-me 2,4-Dichloropheno 2,4-Dinitrophe 4,6-Dinitro-o- 2-Methylpheno 3&4-Methylpheno 4-Nitrophenol 2,4,5-Trichlor 2,4,5-Trichlor 2,4,6-Trichlor Acenaphthene Acenaphthylen Acetophenone Anthracene Atrazine Benzaldehyde Benzo(a)nthra Benzo(b)fluora Benzo(g,h,i)po	thyl phenol henol nol cresol el enol enol ophenol ophenol e acene e anthene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	5.7 5.7 2.3 2.3 2.3 2.3 2.3 5.7 11 11 2.3 5.7 5.7 1.1 1.1 2.3 5.7 5.7 1.1 1.	$\begin{array}{c} 2.1\\ 1.3\\ 1.7\\ 19\\ 1.1\\ 1.2\\ 1.1\\ 1.7\\ 5.9\\ 1.6\\ 1.5\\ 1.8\\ 1.5\\ 0.30\\ 0.26\\ 0.32\\ 0.33\\ 0.55\\ 3.7\\ 0.26\\ 0.26\\ 0.52\\ 0.37\end{array}$	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	J			
207-08-9 101-55-3 85-68-7 92-52-4 91-58-7 106-47-8 86-74-8 105-60-2	Benzo(k) fluora 4-Bromopheny Butyl benzyl p 1,1'-Biphenyl 2-Chloronapht 4-Chloroanilin Carbazole Caprolactam	anthene A phenyl ethe hthalate halene	ND	1.1 2.3 2.3 1.1 2.3	$\begin{array}{c} 0.58 \\ 0.41 \\ 0.33 \\ 0.34 \\ 0.60 \\ 0.41 \\ 0.78 \end{array}$	ug/l ug/l ug/l ug/l ug/l ug/l ug/l				

ND = Not detected MDL - Method Detection Limit

 $RL = Reporting \ Limit$

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Sotenil

20 of 47 ACCUTEST JB38641

4.3 <u>Z</u>

Report of Analysis

Client Samp Lab Sample Matrix: Method: Project:			Bronx, N	Y	Date	Sampled: Received: ent Solids:	06/03/13 06/04/13 n/a
ABN TCL I	List (CLP4.2 list)		nu 1				
CAS No.	Compound	Result	RL	MDL	Units	Q	
218-01-9	Chrysene	ND	1.1	0.33	ug/l		
111-91-1	bis(2-Chloroethoxy)methane	ND	2.3	0.35	ug/l		
111-44-4	bis(2-Chloroethyl)ether	ND	2.3	0.35	ug/l		
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.3	0.52	ug/l		
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.3	0.35	ug/l		
121-14-2	2,4-Dinitrotoluene	ND	2.3	0.48	ug/l		
606-20-2	2,6-Dinitrotoluene	ND	2.3	0.52	ug/l		
91-94-1	3,3'-Dichlorobenzidine	ND	5.7	0.41	ug/l		
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.43	ug/l		
132-64-9	Dibenzofuran	ND	5.7	0.30	ug/l		
84-74-2	Di-n-butyl phthalate	ND	2.3	0.63	ug/l		
117-84-0	Di-n-octyl phthalate	ND	2.3	0.35	ug/l		
84-66-2	Diethyl phthalate	ND	2.3	0.37	ug/l		
	Dimethyl phthalate	ND	2.3	0.32	ug/l		
131-11-3	bis(2-Ethylhexyl)phthalate	ND	2.3	0.67	ug/l		
117-81-7	Fluoranthene	NDUJ	1.1	0.36	ug/l		
206-44-0		ND	1.1	0.31	ug/l		
86-73-7	Fluorene Hexachlorobenzene	ND	1.1	0.38	ug/l		
118-74-1		ND	1.1	0.58	ug/l		
87-68-3	Hexachlorobutadiene	ND	11	8.1	ug/l		
77-47-4	Hexachlorocyclopentadiene	ND	2.3	0.62	ug/l		
67-72-1	Hexachloroethane	19 A. A. A. A. A. A. A. A. A. A. A. A. A.	- A.		ug/l		
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.42			
78-59-1	Isophorone	ND	2.3	0.31	ug/l		
91-57-6	2-Methylnaphthalene	ND	11	0.44	ug/l		
88-74-4	2-Nitroaniline	ND	5.7	1.3	ug/l		
99-09-2	3-Nitroaniline	ND	5.7	1.4	ug/l		
100-01-6	4-Nitroaniline	ND	5.7	1.9	ug/1		
91-20-3	Naphthalene	6.4 J	1.1	0.29	ug/l		
98-95-3	Nitrobenzene	ND	2.3	0.48	ug/l		
621-64-7	N-Nitroso-di-n-propylamine	ND	2.3	0.34	ug/l		
86-30-6	N-Nitrosodiphenylamine	ND	5.7	0.35	ug/l		
85-01-8	Phenanthrene	ND , FT	1.1	0.33	ug/l		
129-00-0	Pyrene	ND UJ	1.1	0.31	ug/l		
CAS No.	Surrogate Recoveries	Run#1	Run#2	Lin	nits		
367-12-4	2-Fluorophenol	29%			110%		
4165-62-2	Phenol-d5	22%			110%		
118-79-6	2,4,6-Tribromophenol	60%			143%		
4165-60-0	Nitrobenzene-d5	86%		31-	130%		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

for fin 113

Page 2 of 3

4.3

Report of Analysis

Page 3 of 3

Client Sample ID: Lab Sample ID: Matrix: Method: Project:	MW-8 JB38641-2 AQ - Ground Water SW846 8270D SW846 3510C Via Verde, 700-730 Brook Avenue, Bronx, NY	Date Sampled: Date Received: Percent Solids:	06/04/13	4.3 2
ABN TCL List (CI				

CAS No.	Surrogate Recoveries	Run# 1	Run#2	Limits
321-60-8	2-Fluorobiphenyl	84%		35-120%
1718-51-0	Terphenyl-d14	72%		14-152%

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- \mathbf{B} = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Report of Analysis								
Client Samj Lab Sample Matrix: Method: Project:	e ID: JB38641 AQ - Gi SW846	round Water 8082A SW		1e, Bronx, N	ΓY	Date		6/03/13 6/04/13 /a
Run #1 Run #2	File ID EF120967.D	DF 1	Analyzed 06/11/13	By JR	Prep Da 06/05/1		Prep Batch OP66554	Analytical Batch GEF4776
Run #1 Run #2	Initial Volume 900 ml	Final Volu 10.0 ml	ume					
PCB List								
CAS No.	Compound		Result	RL	MDL	Units	Q	
$\begin{array}{c} 12674\text{-}11\text{-}2\\ 11104\text{-}28\text{-}2\\ 11141\text{-}16\text{-}5\\ 53469\text{-}21\text{-}9\\ 12672\text{-}29\text{-}6\\ 11097\text{-}69\text{-}1\\ 11096\text{-}82\text{-}5\\ 11100\text{-}14\text{-}4\\ 37324\text{-}23\text{-}5\end{array}$	Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1268		ND ND ND ND ND ND ND ND	$\begin{array}{c} 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\end{array}$	0.14 0.30 0.43 0.096 0.16 0.16 0.23 0.14 0.067	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l		
CAS No.	Surrogate Rec	overies	Run# 1	Run#2	Lim	its		
877-09-8 877-09-8 2051-24-3 2051-24-3	Tetrachloro-m- Tetrachloro-m- Decachlorobipl Decachlorobipl	xylene henyl	63% 61% 50% 48%	· · · · · · · ·	25-1 10-1	43% 43% 34% 34%		

MDL - Method Detection Limit ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

- J = Indicates an estimated valueB = Indicates analyte found in associated method blankN = Indicates presumptive evidence of a compound

Report	of	Analysis	
*		•	

Client Sample ID: Lab Sample ID:	MW-8 JB38641-2F	Date Sampled:	
Matrix:	AQ - Groundwater Filtered	Date Received: Percent Solids:	
Project:	Via Verde, 700-730 Brook Avenue, Bronx, NY		
Dissolved Metals A			

Analyte	Result	RL	Units

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	< 200	200	ug/l	1	06/07/13	06/11/13 ND	SW846 6010C ¹	SW846 3010A ⁴
Antimony	< 1.0	1.0	ug/l	2	06/07/13	06/12/13 VC	SW846 6020A ²	SW846 3010A ⁵
Arsenic	4,2	3.0	ug/l	1	06/07/13	06/11/13 ND	SW846 6010C ¹	SW846 3010A ⁴
Barium	< 200	200	ug/l	1	06/07/13	06/11/13 ND	SW846 6010C ¹	SW846 3010A ⁴
Beryllium	< 1.0	1.0	ug/l	1	06/07/13	06/11/13 ND	SW846 6010C ¹	SW846 3010A ⁴
Cadmium	< 3.0	3.0	ug/l	1	06/07/13	06/11/13 ND	SW846 6010C ¹	SW846 3010A ⁴
Calcium	145000	5000	ug/l	1	06/07/13	06/11/13 ND	SW846 6010C 1	SW846 3010A ⁴
Chromium	< 10	10	ug/l	1	06/07/13	06/11/13 ND	SW846 6010C ¹	SW846 3010A ⁴
Cobalt	< 50	50	ug/l	1	06/07/13	06/11/13 ND	SW846 6010C ¹	SW846 3010A ⁴
Copper	<10	10	ug/l	1	06/07/13	06/11/13 ND	SW846 6010C ¹	SW846 3010A ⁴
Iron	179 ປ	100	ug/l	1	06/07/13	06/11/13 ND	SW846 6010C ¹	SW846 3010A ⁴
Lead	3.8 丁	3.0	ug/l	1	06/07/13	06/11/13 ND	SW846 6010C ¹	SW846 3010A ⁴
Magnesium	36800	5000	ug/l	1	06/07/13	06/11/13 ND	SW846 6010C ¹	SW846 3010A ⁴
Manganese	3160	15	ug/l	1	06/07/13	06/11/13 ND	SW846 6010C ¹	SW846 3010A ⁴
Mercury	< 0.20	0.20	ug/l	1	06/13/13	06/13/13 DP	SW846 7470A ³	SW846 7470A ⁶
Nickel	16.1	10	ug/l	1	06/07/13	06/11/13 ND	SW846 6010C ¹	SW846 3010A ⁴
Potassium	< 10000	10000	ug/l	1	06/07/13	06/11/13 ND	SW846 6010C ¹	SW846 3010A ⁴
Selenium	28.5 J	. 10	ug/l	1	06/07/13	06/11/13 ND	SW846 6010C ¹	SW846 3010A ⁴
Silver	< 10	10	ug/l	1	06/07/13	06/11/13 ND	SW846 6010C ¹	SW846 3010A ⁴
Sodium	87700	10000	ug/l	1	06/07/13	06/11/13 ND	SW846 6010C ¹	SW846 3010A ⁴
Thallium	< 1.0	1.0	ug/l	2	06/07/13	06/12/13 VC	SW846 6020A ²	SW846 3010A ⁵
Vanadium	< 50	50	ug/I	1	06/07/13	06/11/13 ND	SW846 6010C ¹	SW846 3010A ⁴
Zinc	< 20	20	ug/l	1	06/07/13	06/11/13 ND	SW846 6010C ¹	SW846 3010A ⁴

(1) Instrument QC Batch: MA31410 (2) Instrument QC Batch: MA31431 (3) Instrument QC Batch: MA31440 (4) Prep QC Batch: MP72450 (5) Prep QC Batch: MP72450A (6) Prep QC Batch: MP72562

OV FIAID

Page 1 of 1

		Repor	t of An	alysis			Page 1 of 1
Client Sample ID: Lab Sample ID: Matrix:	MW-8 JB38641-2F AQ - Groundwater Fil	ltered			Date Sampled Date Received Percent Solids	: 06/	03/13 04/13
Project:	Via Verde, 700-730 Brook Avenue, Bronx, NY						
General Chemistry	,						
Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexava Chromium, Trivale		0.010 0.020	mg/l mg/l	1 1	06/04/13 10:13 06/11/13 00:09		SW846 7196A SW846 6010/7196A M

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

			Repo	rt of Ar	nalysis			Page 1 of 2
Client Sam Lab Sampl Matrix: Method: Project:	le ID: J	MW-XX B38641-3 AQ - Ground Water SW846 8260B Via Verde, 700-730		ie, Bronx,	NY	Date		5/03/13 5/04/13 /a
Run #1 Run #2	File ID 1C11711	DF 4.D 1	Analyzed 06/08/13	By MD	Prep Da 11/a	ate	Prep Batch n/a	Analytical Batch V1C5189
Run #1 Run #2	Purge Vo 5.0 ml	olume						
VOA 8260	List							
CAS No.	Compo	und	Result	RL	MDL	Units	Q	
67-64-1 71-43-2 108-86-1 74-97-5 75-27-4 75-25-2 74-83-9 78-93-3 104-51-8 135-98-8	Bromod Bromofe Bromon 2-Butan n-Butyll	enzene hloromethane lichloromethane orm nethane one (MEK)	ND 8.3 ND ND ND 13.2 ND 5.2	$ \begin{array}{c} 10 \\ 1.0 \\ 5.0 \\ 1.0 \\ 4.0 \\ 2.0 \\ 10 \\ 5.0 \\ 5.0 \\ 5.0 \\ \end{array} $	3.3 0.24 0.14 0.30 0.21 0.21 0.22 2.4 0.17 0.21	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l		
98-06-6 56-23-5 108-90-7 75-00-3 67-66-3 74-87-3 95-49-8	tert-But Carbon Chlorob Chloroe Chlorof Chloron o-Chlor	ylbenzene tetrachloride penzene othane orm nethane otoluene	1.2 ND ND ND ND ND ND	5.0 1.0 1.0 1.0 1.0 1.0 5.0	0.30 0.22 0.23 0.26 0.20 0.21 0.15	ug/l ug/l ug/l ug/l ug/l ug/l	J	
106-43-4 96-12-8 124-48-1 106-93-4 95-50-1 541-73-1 106-46-7 75-71-8	1,2-Dib Dibrom 1,2-Dib 1,2-Dic 1,3-Dic 1,4-Dic	otoluene romo-3-chloroprop ochloromethane romoethane hlorobenzene hlorobenzene hlorobenzene odifluoromethane	ND ND ND ND ND ND ND ND ND	5.0 10 1.0 2.0 1.0 1.0 1.0 5.0	0.30 0.54 0.14 0.20 0.22 0.22 0.30 0.27	ug/l ug/l ug/l ug/l ug/l ug/l ug/l		
75-34-3 107-06-2 75-35-4 156-59-2 156-60-5 78-87-5 142-28-9	1,1-Dic 1,2-Dic 1,1-Dic cis-1,2- trans-1, 1,2-Dic	hloroethane hloroethane hloroethene Dichloroethene 2-Dichloroethene hloropropane hloropropane	ND ND ND ND ND ND	1.0 1.0 1.0 1.0 1.0 1.0 5.0	0.11 0.26 0.19 0.19 0.21 0.48 0.23	ug/l ug/l ug/l ug/l ug/l ug/l		

MDL - Method Detection Limit ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

formons

26 of 47

Report of Analysis

Client Samp Lab Sample Matrix: Method: Project:				Y	Date Sampled: Date Received: Percent Solids:		06/03/13 06/04/13 n/a	
VOA 8260 L	ist	11110 (199)			499 m r			
CAS No.	Compound	Result	RL	MDL	Units	Q		
594-20-7	2,2-Dichloropropane	ND	5.0	0.15	ug/l			
563-58-6	1,1-Dichloropropene	ND	5.0	0.30	ug/l			
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.21	ug/l			
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.19	ug/l			
100-41-4	Ethylbenzene	52.4	1.0	0.23	ug/l			
87-68-3	Hexachlorobutadiene	ND	5.0	0.24	ug/l			
98-82-8	Isopropylbenzene	28.3	2.0	0.45	ug/l			
99-87-6	p-Isopropyltoluene	0.62	5.0	0.22	ug/l	J		
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.16	ug/l			
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	0.83	ug/l		,	
74-95-3	Methylene bromide	ND	5.0	0.26	ug/l			
75-09-2	Methylene chloride	ND	2.0	0.70	ug/l			
91-20-3	Naphthalene	12.0	5.0	1.1	ug/l			
103-65-1	n-Propylbenzene	46.3	5.0	0.24	ug/l			
100-42-5	Styrene	ND	5.0	0.21	ug/l			
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.24	ug/l			
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/l			
127-18-4	Tetrachloroethene	ND	1.0	0.28	ug/l			
108-88-3	Toluene	4.9	1.0	0.23	ug/l			
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	0.28	ug/l			
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.20	ug/l			
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.24	ug/l			
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.29	ug/l			
79-01-6	Trichloroethene	ND	1.0	0.22	ug/l			
75-69-4	Trichlorofluoromethane	ND	5.0	0.27	ug/l			
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.53	ug/l			
	1,2,4-Trimethylbenzene	4.3	2.0	0.19	ug/l			
95-63-6 108-67-8	1,3,5-Trimethylbenzene	1.1	2.0	0.36	ug/l	l		
75-01-4	Vinyl chloride	ND	1.0	0.21	ug/l	*1		
10-01-4	m,p-Xylene	15.8		0.42	ug/l			
05 47 0	1 5	1.5	1.0	0.24	ug/l			
95-47-6 1330-20-7	o-Xylene Xylene (total)	17.3	1.0	0.24	ug/l			
1990-20-1	Ayrene (total)	11.0						
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its			
1868-53-7	Dibromofluoromethane	94%		80-1	19%			
17060-07-0	1,2-Dichloroethane-D4	96%		74-1	22%			
2037-26-5	Toluene-D8	100%			20%			
460-00-4	4-Bromofluorobenzene	90%			16%			

Page 2 of 2

4.5

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

			Repo	rt of A	nalysis		Page 1 of 3
Client San Lab Samj Matrix: Method: Project:	ple ID: JB386 AQ - (SW84	41-3 Ground Wa 6 8270D - S	ter SW846 3510C '30 Brook Aven	ue, Bronx	נ נ	Date Received: 0	16/03/13 16/04/13 1/a
Run #1 Run #2	File ID F25028.D	DF 1	Analyzed 06/16/13	By NAP	Prep Date 06/05/13	Prep Batch OP66558	Analytical Batch EF5253
Run #1 Run #2	Initial Volume 870 ml	e Final V 1.0 ml	olume				

ABN TCL List (CLP4.2 list)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.7	1.1	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.7	2.1	ug/l	
120-83-2	2,4-Dichlorophenol	ND	5.7	1.3	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.7	1.8	ug/l	
51-28-5	2,4-Dinitrophenol	ND	23	19	ug/I	
534-52-1	4,6-Dinitro-o-cresol	ND	23	1.1	ug/I	
95-48-7	2-Methylphenol	ND	2.3	1.2	ug/l	
	3&4-Methylphenol	ND	2.3	1.1	ug/l	
88-75-5	2-Nitrophenol	ND	5.7	1.7	ug/l	
100-02-7	4-Nitrophenol	ND	11	6.0	ug/l	
87-86-5	Pentachlorophenol	ND	11	1.6	ug/l	
108-95-2	Phenol	ND	2.3	1.5	ug/1	
95-95-4	2,4,5-Trichlorophenol	ND	5.7	1.8	ug/I	
88-06-2	2,4,6-Trichlorophenol	ND	5.7	1.5	ug/I	
83-32-9	Acenaphthene	ND (V)	1.1	0.30	ug/l	
208-96-8	Acenaphthylene	ND	1.1	0.26	ug/l	
98-86-2	Acetophenone	ND	2.3	0.33	ug/l	
120-12-7	Anthracene	ND	1.1	0.33	ug/l	
1912-24-9	Atrazine	ND	5.7	0.56	ug/l	
100-52-7	Benzaldehyde	ND	5.7	3.7	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.1	0.26	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.1	0.26	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.52	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.37	ug/1	
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.59	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.3	0.41	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.3	0,33	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.1	0.35	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.3	0.34	ug/l	
106-47-8	4-Chloroaniline	ND UJ	5.7	0.61	ug/l	
86-74-8	Carbazole	ND ·	1.1	0.41	ug/l	
105-60-2	Caprolactam	ND	2.3	0.79	ug/l	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

fo&113

Report of Analysis

Client Samp Lab Sample Matrix: Method: Project:		MW-XX JB38641-3 AQ - Ground Water SW846 8270D SW846 3510C Via Verde, 700-730 Brook Avenue, Bronx, NY			IY	Date	Sampled: Received: ent Solids:	
ABN TCL I	List (CI	.P4.2 list)		4, 1, 140mm				
CAS No.	Comp	ound	Result	RL	MDL	Units	Q	
218-01-9	Chrys	ene	ND	1.1	0.33	ug/l		
111-91-1	bis(2-	Chloroethoxy)methane	ND	2.3	0.35	ug/l		
111-44-4		Chloroethyl)ether	ND	2.3	0.35	ug/l		
108-60-1		Chloroisopropyl)ether	ND	2.3	0.52	ug/i		
7005-72-3		prophenyl phenyl ether	ND	2.3	0.36	ug/l		
121-14-2		initrotoluene	ND	2.3	0.49	ug/l		
606-20-2		initrotoluene	ND	2.3	0.53	ug/l		
91-94-1		Dichlorobenzidine	ND	5.7	0.41	ug/l		
53-70-3		zo(a,h)anthracene	ND	1.1	0.43	ug/l		
132-64-9		zofuran	ND	5.7	0.30	ug/l		
84-74-2		outyl phthalate	ND	2.3	0.64	ug/l		
117-84-0		octyl phthalate	ND	2.3	0.35	ug/l		
84-66-2		yl phthalate	ND	2.3	0.38	ug/l		
131-11-3		hyl phthalate	ND	2.3	0.33	ug/l		
117-81-7		Ethylhexyl)phthalate	ND	2.3	0.67	ug/l		
206-44-0		anthene	0.58	1.1	0.37	ug/l	J	
86-73-7	Fluor		ND	1.1	0.32	ug/l		
118-74-1		chlorobenzene	ND	1.1	0.39	ug/l		
87-68-3		chlorobutadiene	ND	1.1	0.59	ug/l		
77-47-4		chlorocyclopentadiene	ND	11	8.2	ug/l		
67-72-1		chloroethane	ND	2.3	0.63	ug/l		
193-39-5		o(1,2,3-cd)pyrene	ND	1,1	0.43	ug/l		
78-59-1	Isoph		ND	2.3	0.31	ug/l		
91-57-6		hylnaphthalene	ND .	1.1	0.44	ug/l		
88-74-4		oaniline	ND	5.7	1.3	ug/l		
99-09-2		oaniline	ND	5.7	1.4	ug/l		
100-01-6		oaniline	ND	5.7	1.9	ug/l		
91-20-3		halene	1.5 5	1.1	0.30	ug/l		
98-95-3		oenzene	ND	2.3	0.48	ug/l		
621-64-7		roso-di-n-propylamine	ND	2.3	0.35	ug/l		
86-30-6		rosodiphenylamine	ND	5.7	0.35	ug/l		
85-01-8		inthrene		1.1	0.34	ug/l		
129-00-0	Pyren		0.48	1.1	0.31	ug/l	1	
CAS No.	Surro	egate Recoveries	Run# 1	Run#2	Lim	its		
367-12-4	2-Flu	orophenol	32%			10%		
4165-62-2	Pheno		23%			10%		
118-79-6	2,4,6	Tribromophenol	71%			43%		
4165-60-0		benzene-d5	90%		31-1	30%		

ND = Not detectedMDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

 $J = Indicates \ an \ estimated \ value$

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

20m /13

Page 2 of 3

Report of Analysis

Client Sample ID: MW-XX 06/03/13 Date Sampled: Lab Sample ID: JB38641-3 Date Received: 06/04/13 Matrix: AQ - Ground Water SW846 8270D SW846 3510C Percent Solids: n/a Method: Via Verde, 700-730 Brook Avenue, Bronx, NY Project: ABN TCL List (CLP4.2 list)

CAS No.	Surrogate Recoveries	Run# 1	Run#2	Limits
321-60-8	2-Fluorobiphenyl	84%		35-120%
1718-51-0	Terphenyl-d14	72%		14-152%

 $ND\,=\,Not\;detected$ MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 3 of 3

			Repo	rt of Ana	lysis			Page 1 of 1
Client Samp Lab Sample Matrix: Method: Project:	ID: JB38641-3 AQ - Gro SW846 80	3 und Water)82A SW84 e, 700-730 Bi		ie, Bronx, N	Y	Date		/03/13 /04/13 a
Run #1 Run #2			nalyzed 6/11/13	By JR	Prep Da 06/05/1		Prep Batch OP66554	Analytical Batch GEF4776
Run #1 Run #2		Final Volum 10.0 ml	e			• - H•		
PCB List								
CAS No.	Compound		Result	RL	MDL	Units	Q	
12674-11-2	Aroclor 1016		ND	0.53	0.13	ug/l		
11104-28-2	Aroclor 1221		ND	0.53	0.29	ug/l		
11141-16-5	Aroclor 1232		ND	0.53	0.41	ug/l		
53469-21-9	Aroclor 1242		ND .	0.53 0.53	$\begin{array}{c} 0.091 \\ 0.15 \end{array}$	ug/l		
12672-29-6	Aroclor 1248 Aroclor 1254		ND ND	0.53	0.15	ug/l ug/l		
11097-69-1 11096-82-5	Aroclor 1254 Aroclor 1260		ND	0.53	0.13	ug/l		
111090-02-3	Aroclor 1268		ND	0.53	0.14	ug/l		
37324-23-5	Aroclor 1262		ND	0.53	0.063	ug/l		
CAS No.	Surrogate Recov	veries	Run# 1	Run# 2	Lim	its		
877-09-8	Tetrachloro-m-xy	/lene	91%	N	25-1			
877-09-8	Tetrachloro-m-xy	/lene	85%		25-1			
2051-24-3	Decachlorobiphe		55%	÷	10-1			
2051-24-3	Decachlorobiphe	nyl	53%		10-1	34%		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

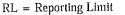
J = Indicates an estimated value

- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: MW-XX Date Sampled: 06/03/13 JB38641-3F Lab Sample ID: Date Received: 06/04/13 AQ - Groundwater Filtered Matrix: Percent Solids: n/a Via Verde, 700-730 Brook Avenue, Bronx, NY Project: **Dissolved Metals Analysis** . -- ...

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	< 200	200	ug/l	1	06/07/13	06/12/13 JY	SW846 6010C ¹	SW846 3010A ⁴
	< 1.0	1.0	ug/I	2		06/12/13 VC	SW846 6020A ²	SW846 3010A ⁵
Antimony				1		06/12/13 JY	SW846 6010C ¹	SW846 3010A ⁴
Arsenic	5.9	3.0	ug/l	-		06/12/13 JY	SW846 6010C ¹	SW846 3010A ⁴
Barium	< 200	200	ug/l	1			SW846 6010C ¹	SW846 3010A 4
Beryllium	< 1.0	1.0	ug/l	1		06/12/13 JY		
Cadmium	< 3.0	3.0	ug/l	1		06/12/13 JY	SW846 6010C 1	SW846 3010A ⁴
Calcium	141000	5000	ug/l	1	06/07/13		SW846 6010C 1	SW846 3010A 4
Chromium	< 10	10	ug/l	1	06/07/13	06/12/13 jy	SW846 6010C ¹	SW846 3010A ⁴
Cobalt	< 50	50	ug/l	1	06/07/13	06/12/13 JY	SW846 6010C ¹	SW846 3010A ⁴
Copper	< 10	10	ug/l	1	06/07/13	06/12/13 JY	SW846 6010C ¹	SW846 3010A ⁴
Iron	209	.100	ug/l	1	06/07/13	06/12/13 JY	SW846 6010C ¹	SW846 3010A ⁴
Lead	<3.0 VJ		ug/l	1	06/07/13	06/12/13 JY	SW846 6010C ¹	SW846 3010A ⁴
Magnesium	36300	5000	ug/l	i	06/07/13	06/12/13 JY	SW846 6010C ¹	SW846 3010A ⁴
Manganese	3220	15	ug/l	1	06/07/13	06/12/13 JY	SW846 6010C ¹	SW846 3010A ⁴
Mercury	< 0.20	0.20	ug/l	1	06/13/13	06/13/13 DP	SW846 7470A ³	SW846 7470A ⁶
Nickel	15.1	10	ug/l	1	06/07/13	06/12/13 JY	SW846 6010C ¹	SW846 3010A ⁴
Potassium	< 10000	10000	ug/l	1	06/07/13	06/12/13 jy	SW846 6010C 1	SW846 3010A ⁴
Selenium	<1005	10	ug/l	1	06/07/13	06/12/13 JY	SW846 6010C 1	SW846 3010A 4
Silver	< 10	10	ug/l	1	06/07/13		SW846 6010C ¹	SW846 3010A ⁴
Sodium	95000	10000	ug/l	1	06/07/13	06/12/13 JY	SW846 6010C ¹	SW846 3010A ⁴
Thallium	< 1.0	1.0	ug/l	2	06/07/13	06/12/13 vc	SW846 6020A ²	SW846 3010A ⁵
Vanadium	< 50	50	ug/l	1	06/07/13	06/12/13 JY	SW846 6010C ¹	SW846 3010A ⁴
Zinc	< 20	20	ug/1	1	06/07/13		SW846 6010C ¹	SW846 3010A ⁴


(1) Instrument QC Batch: MA31416 (2) Instrument QC Batch: MA31431 (3) Instrument QC Batch: MA31440 (4) Prep QC Batch: MP72450 (5) Prep QC Batch: MP72450A

(6) Prep QC Batch: MP72562

Jo/819/13

Page 1 of 1

32 of 47 ACCUTEST JB38641

			Repor	t of An	alysis			Page 1 of 1
Client Sample ID: Lab Sample ID: Matrix:	MW-XX JB38641-3F AQ - Ground	water Filte	ered			Date Sampled Date Received Percent Solids	: 06/	
Project:	Via Verde, 70	Via Verde, 700-730 Brook Avenue, Bronx, NY						
General Chemistry	1			2m -				
Analyte	Re	sult	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexava	lent ^a < t	0.010 R	0.010	mg/l	1	06/04/13 10:58		SW846 7196A

<0.010 K 0.010 <0.020 0.020 mg/l 1 06/12/13 02:34 JY SW846 6010/7196A M Chromium, Trivalent ^b

(a) Analysis done out of holding time as per client request.

(b) Calculated as: (Chromium) - (Chromium, Hexavalent)

Jok 8/9/12

RL = Reporting Limit

-	~ ~		
D on orf	~+	Λ +n ∩ 3	77010
Report	UH.	мпа	18818
****	~	-	

		Ropo		Julyon			1 age 1 of
Client Samp Lab Sample Matrix: Method: Project:			ue, Bronx,	NY	Date		3/03/13 5/04/13 'a
Run #1 Run #2		Analyzeđ 06/06/13	By TYG	Prep D n/a	ate	Prep Batch n/a	Analytical Batch V1C5184
Run #1 Run #2	Purge Volume 5.0 ml	· · ·					
VOA 8260	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	ND	10	3.3	ug/l		
71-43-2	Benzene	ND	1.0	0.24	ug/l		
108-86-1	Bromobenzene	ND	5.0	0.14	ug/l		
74-97-5	Bromochloromethane	ND	5.0	0.30	ug/l		
75-27-4	Bromodichloromethane	ND	1.0	0.21	ug/l		
75-25-2	Bromoform	ND	4.0	0.21	ug/I		
74-83-9	Bromomethane	ND	2.0	0.22	ug/l		
78-93-3	2-Butanone (MEK)	NDR	10	2.4	ug/l		
104-51-8	n-Butylbenzene	ND	5.0	0.17	ug/l		
135-98-8	sec-Butylbenzene	ND	5.0	0.21	ug/l		
98-06-6	tert-Butylbenzene	ND	5.0	0.30	ug/l		
56-23-5	Carbon tetrachloride	ND	1.0	0.22	ug/l		
108-90-7	Chlorobenzene	ND	1.0	0.23	ug/l		
75-00-3	Chloroethane	ND	1.0	0.26	ug/l		
67-66-3	Chloroform	ND	1.0	0.20	ug/l		
07-00-3 74-87-3	Chloromethane	ND	1.0	0.21	ug/l		
74-87-3 95-49-8	o-Chlorotoluene	ND	5.0	0.15	ug/l		
95-49-8 106-43-4	p-Chlorotoluene	ND	5.0	0.30	ug/l		
	1,2-Dibromo-3-chloropropar		10	0.54	ug/l		
96-12-8 124-48-1	Dibromochloromethane	ND :	1.0	0.14	ug/l		
	1,2-Dibromoethane	ND	2.0	0.20	ug/l		
106-93-4	1,2-Dichlorobenzene	ND	1.0	0.20	ug/l		
95-50-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l		
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.30	ug/l		
106-46-7	Dichlorodifluoromethane	ND	5.0	0.27	ug/l		
75-71-8 75-34-3	1,1-Dichloroethane	ND	1.0	0.11	ug/l		
	1,2-Dichloroethane	ND	1.0	0.26	ug/l		
107-06-2		ND	1.0	0.19	ug/l		
75-35-4	1,1-Dichloroethene cis-1,2-Dichloroethene	ND	1.0	0.19	ug/l		
156-59-2		ND	1.0	0.21	ug/l		
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.48	ug/l		
78-87-5	1,2-Dichloropropane			0.48	ug/1 ug/l		
142-28-9	1,3-Dichloropropane	ND	5.0	0,40	ug/1		

MDL - Method Detection Limit ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

 $\begin{array}{l} J = \mbox{Indicates an estimated value} \\ B = \mbox{Indicates analyte found in associated method blank} \\ N = \mbox{Indicates presumptive evidence of a compound} \end{array}$

falfon 8713

4.7

Page 1 of 2

Report of Analysis

Client Samp Lab Sample Matrix: Method: Project:			ok Avenue, Bronx, NY			Date Sampled: Date Received: Percent Solids:	
VOA 8260 I	List					<u> </u>	
CAS No.	Compound	Result	RL	MDL	Units	Q	
594-20-7	2,2-Dichloropropane	ND	5.0	0.15	ug/l		
563-58-6	1,1-Dichloropropene	ND	5.0	0.30	ug/l		
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.21	ug/l		
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.19	ug/l		
100-41-4	Ethylbenzene	ND	1.0	0.23	ug/l		
87-68-3	Hexachlorobutadiene	ND	5.0	0.24	ug/l		
98-82-8	Isopropylbenzene	ND	2.0	0.45	ug/l		
99-87-6	p-Isopropyltoluene	ND	5.0	0.22	ug/l		
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.16	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	0.83	ug/l		
74-95-3	Methylene bromide	ND	5.0	0.26	ug/l		
75-09-2	Methylene chloride	ND	2.0	0.70	ug/l		
91-20-3	Naphthalene	ND	5.0	1.1	ug/l		
103-65-1	n-Propylbenzene	ND	5.0	0.24	ug/l		
100-42-5	Styrene	ND	5.0	0.21	ug/l		
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.24	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.28	ug/l		
108-88-3	Toluene	ND	1.0	0.23	ug/l		
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	0.28	ug/l		
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.20	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.24	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.29	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.22	ug/l		
75-69-4	Trichlorofluoromethane	ND	5.0	0.27	ug/l		
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.53	ug/l		
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.19	ug/l		
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.36	ug/l		
75-01-4	Vinyl chloride	ND	1.0	0.21	ug/l		
	m,p-Xylene	ND	1.0	0.42	ug/l		
95-47-6	o-Xylene	ND	1.0	0.24	ug/l		
1330-20-7	Xylene (total)	ND	1.0	0.24	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lin	iits		
1868-53-7	Dibromofluoromethane	94%		80-1	19%		
17060-07-0	1,2-Dichloroethane-D4	101%	:	74-1	122%		
2037-26-5	Toluene-D8	99%			120%		
460-00-4	4-Bromofluorobenzene	93%		76-1	16%		

MDL - Method Detection Limit ND = Not detected

RL = Reporting LimitE = Indicates value exceeds calibration range J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 2 of 2

		Repo	rt of A	nalysis			Page 1 of 3
Client Samp Lab Sample Matrix: Method: Project:		/ater /846 3510C	ue, Bronx,	NY	Date		5/03/13 5/04/13 a
Run #1 Run #2	File ID DF F25029.D 1	Analyzed 06/16/13	By NAP	Prep D 06/05/1		Prep Batch OP66558	Analytical Batch EF5253
Run #1 Run #2	Initial VolumeFinal Volume640 ml1.0 ml	ume					
ABN TCL	List (CLP4.2 list)						
CAS No.	Compound	Result	RL	MDL	Units	Q	
59-50-7 120-83-2 105-67-9 51-28-5 534-52-1 95-48-7 88-75-5 100-02-7 87-86-5 108-95-2 95-95-4 88-06-2 83-32-9 208-96-8 98-86-2 120-12-7 1912-24-9 100-52-7 56-55-3 50-32-8	4-Chloro-3-methyl phenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 4,6-Dinitro-o-cresol 2-Methylphenol 3&4-Methylphenol 2-Nitrophenol 4-Nitrophenol Pentachlorophenol Phenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzo(a)anthracene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	$\begin{array}{c} 7.8\\ 7.8\\ 7.8\\ 7.8\\ 31\\ 3.1\\ 3.1\\ 3.1\\ 7.8\\ 16\\ 16\\ 3.1\\ 7.8\\ 7.8\\ 1.6\\ 1.6\\ 3.1\\ 1.6\\ 7.8\\ 7.8\\ 1.6\\ 1.6\\ 1.6\\ 1.6\\ 1.6\end{array}$	$\begin{array}{c} 2.8\\ 1.8\\ 2.4\\ 26\\ 1.5\\ 1.6\\ 1.4\\ 2.3\\ 8.1\\ 2.2\\ 2.0\\ 2.4\\ 2.0\\ 0.41\\ 0.36\\ 0.45\\ 0.45\\ 0.76\\ 5.1\\ 0.35\\ 0.35\end{array}$	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1		
50-32-8 205-99-2 191-24-2 207-08-9 101-55-3 85-68-7 92-52-4 91-58-7 106-47-8 86-74-8 105-60-2	Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene 4-Bromophenyl phenyl eth Butyl benzyl phthalate 1,1'-Biphenyl 2-Chloronaphthalene 4-Chloroaniline Carbazole Caprolactam	ND ND ND	1.6 1.6 1.6 3.1 3.1 1.6 3.1 3.1 1.6 3.1	$\begin{array}{c} 0.33\\ 0.71\\ 0.50\\ 0.80\\ 0.56\\ 0.45\\ 0.47\\ 0.46\\ 0.83\\ 0.56\\ 1.1\end{array}$	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l		

MDL - Method Detection Limit ND = Not detected

 $RL = Reporting \ Limit$

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

80(1877)13

36 of 47

47

Report of Analysis

	FIELD BLANK 6/3 JB38641-4 AQ - Field Blank Water SW846 8270D SW846 3510C Via Verde, 700-730 Brook Avenue, Bronx, NY	Date Sampled: Date Received: Percent Solids:	06/04/13	
--	---	--	----------	--

ABN TCL List (CLP4.2 list)

CAS No.	Compound	Result	RL	MDL	Units	Q
218-01-9	Chrysene	ND	1.6	0.45	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	3.1	0.48	ug/I	
111-44-4	bis(2-Chloroethyl)ether	ND	3.1	0.48	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	3.1	0.71	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	3.1	0.49	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	3.1	0.67	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	3.1	0.72	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	7.8	0.56	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.6	0.59	ug/l	
132-64-9	Dibenzofuran	ND	7.8	0.41	ug/l	
84-74-2	Di-n-butyl phthalate	ND	3.1	0.87	ug/l	
117-84-0	Di-n-octyl phthalate	ND	3.1	0.48	ug/l	
84-66-2	Diethyl phthalate	ND	3.1	0.51	ug/l	
131-11-3	Dimethyl phthalate	ND	3.1	0.44	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	3.1	0.92	ug/l	
206-44-0	Fluoranthene	ND	1.6	0.50	ug/l	
86-73-7	Fluorene	ND	1.6	0.43	ug/I	
118-74-1	Hexachlorobenzene	ND	1.6	0.53	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.6	0.80	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	16	11	ug/l	
67-72-1	Hexachloroethane	ND	3.1	0.86	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.6	0.58	ug/l	
78-59-1	Isophorone	ND	3.1	0.43	ug/l	
91-57-6	2-Methylnaphthalene		1.6	0.60	ug/l	
88-74-4	2-Nitroaniline	ND	7.8	1.7	ug/l	
99-09-2	3-Nitroaniline	ND	7.8	2.0	ug/l	
100-01-6	4-Nitroaniline	ND	7.8	2.6	ug/l	
91-20-3	Naphthalene	ND	1.6	0.40	ug/l	
98-95-3	Nitrobenzene	ND	3.1	0.65	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	3.1	0.47	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	7.8	0.48	ug/l	
85-01-8	Phenanthrene	ND	1.6	0.46	ug/l	
129-00-0	Pyrene	ND	1.6	0.42	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run#2	Lim	its	
367-12-4	2-Fluorophenol	77%			10%	
4165-62-2	Phenol-d5	74%			.10%	
118-79-6	2,4,6-Tribromophenol	76%			43%	
4165-60-0	Nitrobenzene-d5	78%		31-1	30%	

MDL - Method Detection Limit ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID:FIELD BLANK 6/3Lab Sample ID:JB38641-4Date Sampled:06/03/13Matrix:AQ - Field Blank WaterDate Received:06/04/13Method:SW846 8270D SW846 3510CPercent Solids:n/aProject:Via Verde, 700-730 Brook Avenue, Bronx, NYNY

ABN TCL List (CLP4.2 list)

CAS No.	Surrogate Recoveries	Run# 1	Run#2	Limits
321-60-8	2-Fluorobiphenyl	77%		35-120%
1718-51-0	Terphenyl-d14	79%		14-152%

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 3 of 3

47

		Repo	rt of Ana	alysis			Page 1 of 1
Client Sam Lab Sampl Matrix: Method: Project:	e ID: JB38641-4 AQ - Field B SW846 8082		ue, Bronx, N	IY	Date	–	5/03/13 5/04/13 ⁄a
Run #1 Run #2	File ID DF EF120969.D 1	Analyzed 06/11/13	By JR	Prep Da 06/05/1		Prep Batch OP66554	Analytical Batch GEF4776
Run #1 Run #2		al Volume 0 ml					
PCB List							
CAS No.	Compound	Result	RL	MDL	Units	Q	
12674-11-2	Aroclor 1016	ND	0.56	0.14	ug/l		
11104-28-2	Aroclor 1221	ND	0.56	0.30	ug/l		
11141-16-5	Aroclor 1232	ND	0.56	0.43	ug/l		
53469-21-9	Aroclor 1242	ND	0.56	0.097	ug/l		
12672-29-6		ND	0.56	0.16	ug/l		
11097-69-1		ND	0.56	0.16	ug/l		
11096-82-5		ND	0.56	0.23	ug/l		
11100-14-4		ND	0.56	0.15	ug/l		
37324-23-5	Aroclor 1262	ND	0.56	0.067	ug/l		
CAS No.	Surrogate Recoveri	ies Run# 1	Run#2	Lim	its		
877-09-8	Tetrachloro-m-xyler	ne 104%		25-1	43%		
877-09-8	Tetrachloro-m-xylei			25-1	43%		
2051-24-3	Decachlorobiphenyl			10-1	34%		
0051 04 0	Descalitonahinhonul		1.	10-1	34%		

57%

MDL - Method Detection Limit ND = Not detected

 $RL = Reporting \ Limit$

2051-24-3

E = Indicates value exceeds calibration range

Decachlorobiphenyl

J = Indicates an estimated value

10-134%

- B = Indicates analyte found in associated method blankN = Indicates presumptive evidence of a compound

47

Lab Sample ID: JB38 Matrix: AQ	RL	k Filtere		enue, Bronx	., NY	Date Sampled: Date Received: Percent Solids:	06/03/13 06/04/13 n/a
Dissolved Metals Analysi	is RL			-	- 		<u></u>
	RL	Units					
•		0/1110	DF	Prep	Analyzed By	v Method	Prep Method
Aluminum < 200 Antimony < 1.0 Arsenic < 3.0 Barium < 200 Beryllium < 1.0 Cadmium < 3.0 Calcium < 5000 Chromium < 10 Cobalt < 50 Copper < 10 Iron < 100 Lead < 3.0 Magnesium < 5000 Magnesium < 5000 Magnesium < 5000 Magnesium < 100 Selenium < 10 Silver < 10 Sodium < 1.0000 Thallium < 1.0	10 10	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	06/07/13 06/07/13 06/07/13 06/07/13 06/07/13 06/07/13 06/07/13 06/07/13 06/07/13 06/07/13 06/07/13 06/07/13 06/07/13 06/07/13 06/07/13 06/07/13 06/07/13 06/07/13 06/07/13 06/07/13	06/12/13 JY 06/12/13 JY	 SW846 6020A 2 SW846 6010C 1 	SW846 3010A ⁴ SW846 3010A ⁵ SW846 3010A ⁴ SW846 3010A ⁵ SW846 3010A ⁴

Instrument QC Batch: MA31416
 Instrument QC Batch: MA31431
 Instrument QC Batch: MA31440
 Prep QC Batch: MP72450
 Prep QC Batch: MP72450A
 Prep QC Batch: MP72562

Page 1 of 1

			Repor	t of An	alysis			Page 1 of 1
Client Sample ID: Lab Sample ID: Matrix:	JB3864	BLANK 6/3 1-4F eld Blank Filt	ercd			Date Sampled Date Received Percent Solids	: 06/	/03/13 /04/13
Project:	Via Ver	de, 700-730 E	srook Avenu	e, Bronx, I	NY			
General Chemistry	r							
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexava Chromium, Trivale		< 0.010 < 0.020	0.010	mg/l mg/l	1 1	06/04/13 10:13 06/12/13 02:40		SW846 7196A SW846 6010/7196A M

(a) Analyzed from non-filtered sample.(b) Calculated as: (Chromium) - (Chromium, Hexavalent)

48

		Repo	rt of Ar	alysis			Page 1 of 2
Client Samp Lab Samp Matrix: Method: Project:			ue, Bronx,	NY	Date		5/03/13 5/04/13 a
Run #1 Run #2		Analyzed 06/06/13	By TYG	Prep Da n/a	ate	Prep Batch n/a	Analytical Batch V1C5184
Run #1 Run #2	Purge Volume 5.0 ml						
VOA 8260	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1 71-43-2	Acctone Benzene	ND ND	10 1.0	3.3 0.24	ug/1 ug/1		
108-86-1 74-97-5	Bromobenzene Bromochloromethane	ND ND ND	5.0 5.0 1.0	0.14 0.30 0.21	ug/l ug/l ug/l		
75-27-4 75-25-2 74-83-9	Bromodichloromethane Bromoform Bromomethane		4.0	0.21 0.21 0.22	ug/l ug/l		
78-93-3 104-51-8	2-Butanone (MEK) n-Butylbenzene	ND R ND	10 5.0	2.4 0.17	ug/l ug/l		
135-98-8 98-06-6	sec-Butylbenzene tert-Butylbenzene	ND ND	5.0 5.0	0.21	ug/l ug/l		
56-23-5 108-90-7	Carbon tetrachloride Chlorobenzene	ND ND ND	1.0 1.0 1.0	0.22 0.23 0.26	ug/l ug/l ug/l		
75-00-3 67-66-3 74-87-3	Chloroethane Chloroform Chloromethane	ND ND ND	1.0 1.0 1.0	0.20 0.21	ug/l ug/l		
95-49-8 106-43-4	o-Chlorotoluene p-Chlorotoluene	ND ND	5.0 5.0	0.15 0.30	ug/l ug/l		
96-12-8 124-48-1	1,2-Dibromo-3-chloropropa Dibromochloromethane	ND	10 1.0	$\begin{array}{c} 0.54 \\ 0.14 \\ 0.20 \end{array}$	ug/l ug/l		
106-93-4 95-50-1	1,2-Dibromoethane 1,2-Dichlorobenzene	ND ND ND	2.0 1.0 1.0	0.20 0.22 0.22	ug/l ug/l ug/l		
541-73-1 106-46-7 75-71-8	1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane	ND ND ND	1.0 1.0 5.0	0.22 0.30 0.27	ug/l ug/l		
75-34-3 107-06-2	1,1-Dichloroethane 1,2-Dichloroethane	ND ND	1.0 1.0	0.11 0.26	ug/l ug/l		
75-35-4 156-59-2 156-60-5	1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene	ND ND ND	1.0 1.0 1.0	0.19 0.19 0.21	ug/l ug/l ug/l		
130-00-3 78-87-5 142-28-9	1,2-Dichloropropane 1,3-Dichloropropane	ND ND	1.0 5.0	0.48 0.23	ug/l ug/l		

MDL - Method Detection Limit ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Jo. 1718713

Report of Analysis

Client Samp Lab Sample Matrix: Method: Project:			, Bronx, N	Υ	Date	Sampled: Received: ent Solids:	06/03/13 06/04/13 n/a
VOA 8260 I	Jist					····	
CAS No.	Compound	Result	RL	MDL	Units	Q	
594-20-7	2,2-Dichloropropane	ND	5.0	0.15	ug/l		
563-58-6	1,1-Dichloropropene	ND	5.0	0.30	ug/l		
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.21	ug/l		
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.19	ug/l		
100-41-4	Ethylbenzene	ND	1.0	0.23	ug/l		
87-68-3	Hexachlorobutadiene	ND	5.0	0.24	ug/l		
98-82-8	Isopropylbenzene	ND	2.0	0.45	ug/l		
99-87-6	p-Isopropyltoluene	ND	5.0	0.22	ug/l		
1634-04-4	Methyl Tert Butyl Ether	ND	10	0.16	ug/I		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	0.83	ug/l		
74-95-3	Methylene bromide	ND	5.0	0.26	ug/l		
75-09-2	Methylene chloride	ND	2.0	0.70	ug/l		
91-20-3	Naphthalene	ND	5.0	1.1	ug/l		
103-65-1	n-Propylbenzene	ND	5.0	0.24	ug/l		
100-42-5	Styrene	ND	5.0	0.21	ug/l		
630-20-6	1,1,1,2-Tetrachloroethane	ND ,	5.0	0.24	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.28	ug/l		
108-88-3	Toluene	ND	1.0	0.23	ug/l		
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	0.28	ug/l		
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.20	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.24	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.29	ug/l		
79-01-6	Trichloroethene	ND ····	1.0	0.22	ug/l		
75-69-4	Trichlorofluoromethane	ND	5.0	0.27	ug/l		
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.53	ug/l		
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.19	ug/l		
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.36	ug/l		
75-01-4	Vinyl chloride	ND	1.0	0.21	ug/l		
10-01-4	m,p-Xylene	ND	1.0	0.42	ug/l		
95-47-6	o-Xylene	ND	1.0	0.24	ug/l		
1330-20-7	Xylene (total)	ND	1.0	0.24	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lin	nits		
1868-53-7	Dibromofluoromethane	94%		80-	119%		
17060-07-0	1,2-Dichloroethane-D4	101%		74-	122%		
2037-26-5	Toluene-D8	99%			120%		
460-00-4	4-Bromofluorobenzene	93%			116%		

MDL - Method Detection Limit ND = Not detected

RL = Reporting Limit

J = Indicates an estimated value

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 2 of 2

43 of 47 ACCUTEST JB38641

		Repo	rt of Ar	nalysis			Page 1 of 2
Client Sam Lab Samp Matrix: Method: Project:	-	rook Aven	ue, Bronx,	NY	Date	+ ····· F ··· · · ·	i/04/13 i/05/13 a
Run #1 Run #2		malyzed 6/06/13			ate	Prep Batch n/a	Analytical Batch VY5816
Run #1 Run #2	Purge Volume 5.0 ml						
VOA 8260	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	ND	10	3.3	ug/l		
71-43-2	Benzene	ND	1.0	0.24	ug/l		
108-86-1	Bromobenzene	ND	5.0	0.14	ug/l		
74-97-5	Bromochloromethane	ND	5.0	0.30	ug/l		
75-27-4	Bromodichloromethane	ND	1.0	0.21	ug/l		
75-25-2	Bromoform	ND	4.0	0.21	ug/l		
74-83-9	Bromomethane	ND 🔥	2.0	0.22	ug/l		
78-93-3	2-Butanone (MEK)	NDK	10	2.4	ug/l		
104-51-8	n-Butylbenzene	ND	5.0	0.17	ug/l		
135-98-8	sec-Butylbenzene	ND.	5.0	0.21	ug/l		
98-06-6	tert-Butylbenzene	ND	5.0	0.30	ug/l		
56-23-5	Carbon tetrachloride	ND	1.0	0.22	ug/l		
108-90-7	Chlorobenzene	ND	1.0	0.23	ug/l		
75-00-3	Chloroethane	ND	1.0	0.26	ug/l		
67-66-3	Chloroform	ND	1.0	0.20	ug/l		
74-87-3	Chloromethane	ND	1.0	0.21	ug/l		
95-49-8	o-Chlorotoluene	ND	5.0	0.15	ug/l		
106-43-4	p-Chlorotoluene	ND	5.0	0.30	ug/l		
96-12-8	1,2-Dibromo-3-chloropropan		10	0.54	ug/l		
124-48-1	Dibromochloromethane	ND -	1.0	0.14	ug/l		
106-93-4	1,2-Dibromoethane	ND	2.0	0.20	ug/l		
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.22	ug/1		
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l		
106-46-7	1,4-Dichlorobenzene	ND	1.0 5.0	$0.30 \\ 0.27$	ug/l		
75-71-8	Dichlorodifluoromethane	ND	5.0 1.0	0.27	ug/l ug/l		
75-34-3	1,1-Dichloroethane	ND	1.0	0.11	ug/l		
107-06-2	1,2-Dichloroethane	ND ND	1.0	0.20	ug/1		
75-35-4	1,1-Dichloroethene		1.0	0.19	ug/1 ug/1		
156-59-2	cis-1,2-Dichloroethene	ND ND	1.0	0.19	ug/l		
156-60-5	trans-1,2-Dichloroethene	ND ND	1.0	0.21	ug/l		
78-87-5	i,2-Dichloropropane	ND ND	1.0 5.0	0.48	ug/l		
142-28-9	1,3-Dichloropropane	IND	3,0	0.60	ug/1		

MDL - Method Detection Limit ND = Not detected

RL = Reporting LimitE = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blankN = Indicates presumptive evidence of a compound

JOPAN3

8 of 27 JB38761

Report of Analysis

Client Samp Lab Sample Matrix: Method: Project:		ook Avenue, E	Bronx, N	Y	Date	Sampled: Received: ent Solids:	06/04/13 06/05/13 n/a
VOA 8260 I	Jist						
CAS No.	Compound	Result	RL	MDL	Units	Q	
594-20-7	2,2-Dichloropropane		5.0	0.15	ug/l		
563-58-6	1,1-Dichloropropene		5.0	0.30	ug/l		
10061-01-5	cis-1,3-Dichloropropene		1.0	0.21	ug/l		
10061-02-6	trans-1,3-Dichloropropene		1.0	0.19	ug/l		
100-41-4	Ethylbenzene		1.0	0.23	ug/l		
87-68-3	Hexachlorobutadiene		5.0	0.24	ug/l		
98-82-8	Isopropylbenzene	ND	2.0	0.45	ug/l		
99-87-6	p-Isopropyltoluene	ND	5.0	0.22	ug/l		
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.16	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	0.83	ug/l		
74-95-3	Methylene bromide	ND	5.0	0.26	ug/l		
75-09-2	Methylene chloride	ND	2.0	0.70	ug/l		
91-20-3	Naphthalene	ND	5.0	1.1	ug/l		
103-65-1	n-Propylbenzene	ND	5.0	0.24	ug/l		
100-42-5	Styrene	ND	5.0	0.21	ug/l		
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.24	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/I		
127-18-4	Tetrachloroethene		1.0	0.28	ug/l		
108-88-3	Toluene	ND	1.0	0.23	ug/l		
87-61-6	1,2,3-Trichlorobenzene		5.0	0.28	ug/l		
120-82-1	1,2,4-Trichlorobenzene		5.0	0.20	ug/l		
71-55-6	1,1,1-Trichloroethane		1.0	0.24	ug/l		
79-00-5	1,1,2-Trichloroethane		1.0	0.29	ug/l		
79-01-6	Trichloroethene		1.0	0.22	ug/l		
75-69-4	Trichlorofluoromethane		5.0	0.27	ug/l		
96-18-4	1,2,3-Trichloropropane		5.0	0.53	ug/l		
95-63-6	1,2,4-Trimethylbenzene		2.0	0.19	ug/l		
108-67-8	1,3,5-Trimethylbenzene		2.0	0.36	ug/l		
75-01-4	Vinyl chloride	and the second second second second second second second second second second second second second second second	1.0	0.21	ug/l		
10 01.4	m,p-Xylene		1.0	0.42	ug/l		
95-47-6	o-Xylene		1.0	0.24	ug/l		
1330-20-7	Xylene (total)	ND	1.0	0.24	ug/l		
	Surrogate Recoveries		Run# 2	Lin	_		
CAS No.	Surrogate Recoveries	Runt 1	100077 2	1111			
1868-53-7	Dibromofluoromethane	100%		80-	119%		
17060-07-0	1,2-Dichloroethane-D4	92%		74-	122%		
2037-26-5	Toluene-D8	100%		80-	120%		
460-00-4	4-Bromofluorobenzene	103%		76-	116%		

MDL - Method Detection Limit ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

 $J\,=\,Indicates \ an \ estimated \ value$

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 2 of 2

		Repo	rt of Aı	alysis			Page 1 of 3
Client Sam Lab Sampl Matrix: Method: Project:			ue, Bronx,	NY	Date		3/04/13 5/05/13 ′a
Run #1 Run #2		Analyzed 06/15/13	By ALS	Prep D 06/06/1		Prep Batch OP66578	Analytical Batch E2P1064
Run #1 Run #2	Initial Volume Final Volum 950 ml 1.0 ml	10					
ABN TCL	List (CLP4.2 list)						
CAS No.	Compound	Result	RL	MDL	Units	Q	
95-57-8	2-Chlorophenol	ND	5.3	1.0	ug/l		
59-50-7	4-Chloro-3-methyl phenol	ND	5.3	1.9	ug/l		
120-83-2	2,4-Dichlorophenol	ND	5.3	1.2	ug/l		
105-67-9	2,4-Dimethylphenol	ND	5.3	1.6	ug/l		
51-28-5	2,4-Dinitrophenol	ND	21	17	ug/l		
534-52-1	4,6-Dinitro-o-cresol	ND	21	1.0	ug/l		
95-48-7	2-Methylphenol	ND	2.1	1.1	ug/l		
	3&4-Methylphenol	ND	2.1	0.97	ug/l		
88-75-5	2-Nitrophenol	ND	5.3	1.6	ug/l		
100-02-7	4-Nitrophenol	ND	11	5.5	ug/l		
87-86-5	Pentachlorophenol	ND	11	1.5	ug/1		
108-95-2	Phenol	ND	2.1	1.3	ug/l		
95-95-4	2,4,5-Trichlorophenol	ND	5.3	1.6	ug/l		
88-06-2	2,4,6-Trichlorophenol	ND	5.3	1.4	ug/l		
83-32-9	Acenaphthene	ND	1.1	0.28	ug/l		
208-96-8	Acenaphthylene	ND	1.1	0.24	ug/l		
98-86-2	Acetophenone	ND	2.1	0.30	ug/l		
120-12-7	Anthracene	ND	1.1	0.30	ug/l		
1912-24-9	Atrazine	ND	5.3	0.51	ug/l		
100-52-7	Benzaldehyde	ND .	5.3	3.4	ug/l		
56-55-3	Benzo(a)anthracene	ND	11	0.24	ug/l		
50-32-8	Benzo(a)pyrene	ND	1.1	0.24	ug/l		
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.48	ug/l		
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.34	ug/l		
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.54	ug/l		
101-55-3	4-Bromophenyl phenyl ether	ND	2.1	0.38	ug/l		
85-68-7	Butyl benzyl phthalate	ND	2.1	0.30	ug/l		
92-52-4	1,1'-Biphenył	ND	1.1	0.32	ug/l		
91-58-7	2-Chloronaphthalene	ND	2.1	0.31	ug/l		
100 17 0	1 Ohlanganiling	ND .	53	0.56	119/1		

ND = Not detected MDL - Method Detection Limit

ND

ND

ND

RL = Reporting Limit

106-47-8

86-74-8

105-60-2

E = Indicates value exceeds calibration range

4-Chloroaniline

Carbazole

Caprolactam

J = Indicates an estimated value

ug/l

ug/l

ug/l

0.56

0.38

0.73

5.3

1.1

2.1

 \overline{B} = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Samp Lab Sample Matrix: Method: Project:			e, Bronx, N	Y	Date	Sampled: Received: ent Solids:	06/04/13 06/05/13 n/a
ABN TCL I	List (CLP4.2 list)						
CAS No.	Compound	Result	RL	MDL	Units	Q	
218-01-9	Chrysene	ND	1.1	0.30	ug/l		
111-91-1	bis(2-Chloroethoxy)methane	ND	2.1	0.32	ug/l		
111-44-4	bis(2-Chloroethyl)ether	ND	2.1	0.32	ug/l		
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.1	0.48	ug/l		
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.1	0.33	ug/l		
121-14-2	2,4-Dinitrotoluene	ND	2.1	0.45	ug/l		
606-20-2	2,6-Dinitrotoluene	ND	2.1	0.49	ug/I		
91-94-1	3,3'-Dichlorobenzidine	ND	5.3	0.38	ug/l		
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.40	ug/l		
132-64-9	Dibenzofuran	ND	5.3	0.28	ug/l		
84-74-2	Di-n-butyl phthalate	ND	2.1	0.58	ug/l		
117-84-0	Di-n-octyl phthalate	ND	2.1	0.32	ug/l		
84-66-2	Diethyl phthalate	ND	2.1	0.34	ug/l		
131-11-3	Dimethyl phthalate	ND	2.1	0.30	ug/l		
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.1	0.62	ug/l		
206-44-0	Fluoranthene	ND	1.1	0.33	ug/l		
86-73-7	Fluorene	ND	1.1	0.29	ug/l		
118-74-1	Hexachlorobenzene	ND	1.1	0.36	ug/l		
87-68-3	Hexachlorobutadiene	ND	1.1	0.54	ug/l		
77-47-4	Hexachlorocyclopentadiene	ND .	11	7.5	ug/l		
67-72-1	Hexachloroethane	ND	2.1	0.58	ug/l		
193-39-5	Indeno(1,2,3-cd)pyrene	ND	11	0.39	ug/l		
78-59-1	Isophorone	ND	2.1	0.29	ug/l		
91-57-6	2-Methylnaphthalene	ND	1.1	0.40	ug/l		
88-74-4	2-Nitroaniline	ND	5.3	1.2	ug/l		
99-09-2	3-Nitroaniline	ND	5.3	1.3	ug/l		
100-01-6	4-Nitroaniline	ND	5.3	1.7	ug/l		
91-20-3	Naphthalene	1.8	1.1	0.27	ug/l		
98-95-3	Nitrobenzene	ND	2.1	0.44	ug/l		
621-64-7	N-Nitroso-di-n-propylamine	ND	2.1	0.32	ug/l		
86-30-6	N-Nitrosodiphenylamine	ND	5.3	0.32	ug/l		
85-01-8	Phenanthrene	ND	1.1	0.31	ug/l		
129-00-0	Pyrene	ND	1.1	0.28	uġ/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lin	nits		
367-12-4	2-Fluorophenol	58%	, ·		110%		
4165-62-2	Phenol-d5	40%	11		110%		
118-79-6	2,4,6-Tribromophenol	108%	Ъ.		143%		
4165-60-0	Nitrobenzene-d5	96%		31-	130%		

MDL - Method Detection Limit ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blankN = Indicates presumptive evidence of a compound

4.1

Page 2 of 3

Report of Analysis

Page 3 of 3

846 8	Fround V S 8270D	• SW84	l6 3510C rook Avent	ie, Bronx, NY		te Received: cent Solids:		
				ie, Bronx, NY	r		ercent Sonds.	ercent sonus. Iva

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
321-60-8	2-Fluorobiphenyl	100%		35-120%
1718-51-0	Terphenyl-d14	102%		14-152%

MDL - Method Detection Limit ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

- J = Indicates an estimated value B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

			Repor	rt of Ana	alysis			Page 1 of 1
Client Samp Lab Sample Matrix: Method: Project:	ID: JB387 AQ - SW84	61-1 Ground Wate 6 8082A SV		ue, Bronx, N	ĮΥ	Date	~~	5/04/13 5/05/13 'a
Run #1 Run #2	File ID EF121007.D	DF 1	Analyzed 06/11/13	By JR	Prep Da 06/06/1		Prep Batch OP66580	Analytical Batch GEF4777
Run #1 Run #2	Initial Volum 900 ml	e Final Vo 10.0 ml	lume					
PCB List								
CAS No.	Compound		Result	RL	MDL	Units	Q	
$12674-11-2\\11104-28-2\\11141-16-5\\53469-21-9\\12672-29-6\\11097-69-1\\11096-82-5\\11100-14-4\\37324-23-5$	Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1268	2	ND ND ND ND ND ND ND ND	$\begin{array}{c} 0.56 \\ 0.56 \\ 0.56 \\ 0.56 \\ 0.56 \\ 0.56 \\ 0.56 \\ 0.56 \\ 0.56 \\ 0.56 \end{array}$	$\begin{array}{c} 0.14 \\ 0.30 \\ 0.43 \\ 0.096 \\ 0.16 \\ 0.16 \\ 0.23 \\ 0.14 \\ 0.067 \end{array}$	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l		
CAS No.	Surrogate R	ecoveries	Run# 1	Run# 2	Lim	its		
877-09-8 877-09-8 2051-24-3 2051-24-3	Tetrachloro- Tetrachloro- Decachlorob Decachlorob	m-xylenc Iphenyl	75% 85% 69% 65%		25-1 10-1	143% 143% 134% 134%		

MDL - Method Detection Limit ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

13 of 27

				Rep	ort of A	nalysis		Page 1 c
Client Sample Lab Sample II Matrix:	D: JB387	7 761-1F Groundwa	ter Filter	ed			Date Sampled: Date Received: Percent Solids:	06/04/13 06/05/13 n/a
Project:	Via V	/erde, 700-	730 Broo	ok Ave	enue, Bronx	, NY		
Dissolved Meta	als Analysi	\$						
Analyte	Result	RL	Units	DF	Prep	Analyzed By	y Method	Prep Method
Aluminum	< 200	200	ug/l	1	06/11/13	06/12/13 JY	SW846 6010C ¹	SW846 3010A ⁴
Antimony	< 1.0	1.0	ug/l	$\overline{2}$	06/11/13	06/19/13 vo	SW846 6020A ³	SW846 3010A ⁵
Arsenic	< 3.0	3.0	ug/l	1	06/11/13	06/12/13 JY	SW846 6010C ¹	SW846 3010A ⁴
Barium	< 200	200	ug/l	1	06/11/13	06/12/13 JY	SW846 6010C ¹	SW846 3010A ⁴
Beryllium	< 1.0	1.0	ug/l	1	06/11/13	06/12/13 JY	SW846 6010C ¹	SW846 3010A ⁴
Cadmium	< 3.0	3.0	ug/l	1	06/11/13	06/12/13 JY	SW846 6010C 1	SW846 3010A ⁴
Calcium	121000	5000	ug/l	1		06/12/13 JY	SW846 6010C ¹	SW846 3010A ⁴
Chromium	< 10	10	ug/l	1		06/12/13 JY	SW846 6010C ¹	SW846 3010A ⁴
Cobalt	< 50	50	ug/l	1		06/12/13 JY	SW846 6010C ¹	SW846 3010A ⁴
Copper	< 10	10	ug/l	1	06/11/13	06/12/13 JY	SW846 6010C ¹	SW846 3010A ⁴
Iron	< 100	100	ug/l	1	06/11/13	06/12/13 JY	SW846 6010C ¹	SW846 3010A ⁴
Lead	< 3.0	3.0	ug/l	1	06/11/13	06/12/13 JY	SW846 6010C ¹	SW846 3010A ⁴
Magnesium	24200	5000	ug/l	1	06/11/13	06/12/13 JY	SW846 6010C ¹	SW846 3010A ⁴
Manganese	49.0	15	ug/l	1	06/11/13	06/12/13 JY	SW846 6010C ¹	SW846 3010A ⁴
Mercury	< 0.20	0.20	ug/l	1	06/14/13	06/14/13 A	A SW846 7470A ²	SW846 7470A ⁶
Nickel	< 10	10	ug/l	1	06/11/13	06/12/13 JY	SW846 6010C ¹	SW846 3010A ⁴
Potassium	< 10000	10000	ug/l	1	06/11/13	06/12/13 JY	SW846 6010C ¹	SW846 3010A 4
Selenium	< 10	10	ug/l	1	06/11/13	06/12/13 JY		SW846 3010A ⁴
Silver	< 10	10	ug/l	1	06/11/13	06/12/13 JY		SW846 3010A ⁴
Sodium	66200	10000	ug/l	1	06/11/13	06/12/13 JY		SW846 3010A 4
Thallium	<1.0	1.0	ug/l	2	06/11/13	06/19/13 v	-	SW846 3010A 5
Vanadium	< 50	50	ug/l	1		06/12/13 JY		SW846 3010A ⁴
Zinc	< 20	20	ug/l	1	06/11/13	06/12/13 JY	Y SW846 6010C ¹	SW846 3010A ⁴

Instrument QC Batch: MA31422
 Instrument QC Batch: MA31447

(3) Instrument QC Batch: MA31475

(4) Prep QC Batch: MP72509

(5) Prep QC Batch: MP72509A(6) Prep QC Batch: MP72593

4.2

Page 1 of 1

RL = Reporting Limit

Report	of Analysis	
1 Coport	01 1 1141 9 010	

Page 1 of 1

Client Sample ID:MW-7Lab Sample ID:JB38761-1FMatrix:AQ - Groundwater Filtered						Date Sampled:06/04/13Date Received:06/05/13Percent Solids:n/a			
Project:		e, 700-730 B	rook Avenu	e, Bronx, I	NY				
General Chemistry	7								
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method	
Chromium, Hexava	lent	< 0.010	0.010	mg/l	1	06/05/13 10:42		SW846 7196A	
Chromium, Trivale		< 0.020	0.020	mg/l	1	06/12/13 18:45	JΥ	SW846 6010/7196A M	

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

		Repor	t of A	nalysis			Page 1 of
Client Sam Lab Sampl Matrix: Method: Project:		Brook Avenu	e, Bronx,	NY	Date	-	5/04/13 5/05/13 a
Run #1 Run #2		Analyzed 06/12/13	By RS	Prep D n/a	ate	Prep Batch n/a	Analytical Batch VY5827
Run #1 Run #2	Purge Volume 5.0 ml						
VOA 8260	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	4.1	10	3.3	ug/l	J	
71-43-2	Benzene	ND	1.0	0.24	ug/l		
108-86-1	Bromobenzene	ND	5.0	0.14	ug/l		
74-97-5	Bromochloromethane	ND	5.0	0.30	ug/l		
75-27-4	Bromodichloromethane	ND	1.0	0.21	ug/l		
75-25-2	Bromoform	ND	4.0	0.21	ug/l		
74-83-9	Bromomethane	ND	2.0	0.22	ug/l		
78-93-3	2-Butanone (MEK)	ND R	10	2.4	ug/l		
104-51-8	n-Butylbenzene	ND	5.0	0.17	ug/l		
135-98-8	sec-Butylbenzene	ND	5.0	0.21	ug/l		
98-06-6	tert-Butylbenzene	ND	5.0	0.30	ug/l		
56-23-5	Carbon tetrachloride	ND	1.0	0.22	ug/l		
108-90-7	Chlorobenzene	ND	1.0	0.23	ug/l		
75-00-3	Chloroethane	ND	1.0	0.26	ug/l		
67-66-3	Chloroform	ND	1.0	0.20	ug/l		
74-87-3	Chloromethane	ND	1.0	0.21	ug/l		
95-49-8	o-Chlorotoluene	ND	5.0	0.15	ug/l		
95-49-8 106-43-4	p-Chlorotoluene	ND	5.0	0.30	ug/l		
100-43-4 96-12-8	1,2-Dibromo-3-chloropropa		10	0.54	ug/l		
124-48-1	Dibromochloromethane	ND	1.0	0.14	ug/l		
106-93-4	1,2-Dibromoethane	ND	2.0	0.20	ug/l		
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.22	ug/l		
53-30-1 541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l		
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.30	ug/l		
106-46-7 75-71-8	Dichlorodifluoromethane	ND	5.0	0.27	ug/l		
75-71-8 75-34-3	1,1-Dichloroethane	ND	1.0	0.11	ug/l		
75-34-3 107-06-2	1,2-Dichloroethane	ND	1.0	0.26	ug/l		
75-35-4	1,1-Dichloroethene	ND	1.0	0.19	ug/l		
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.19	ug/l		
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.21	ug/l		
78-87-5	1,2-Dichloropropane	ND	1.0	0.48	ug/l		
10-01-0	1,2-Dichoropropane		1.0	0.10	~`o` ^		

ND = Not detected MDL - Method Detection Limit

E = Indicates value exceeds calibration range

RL = Reporting Limit

 $J\,=\,Indicates \;an\;estimated\;value$

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Partino

16 of 27 ACOLITEST, J838761

Report of Analysis

	ethod: SW846 8260B		ple ID: JB38761-2 AQ - Ground Water				Date	Sampled: Received: ent Solids:	06/04/13 06/05/13 n/a	
VOA 8260 L	ist									
CAS No.	Compound	Result	RL	MDL	Units	Q				
594-20-7	2,2-Dichloropropane	ND	5.0	0.15	ug/l					
563-58-6	1,1-Dichloropropene	ND	5.0	0.30	ug/l					
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.21	ug/l					
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.19	ug/l					
100-41-4	Ethylbenzene	ND	1.0	0.23	ug/l					
87-68-3	Hexachlorobutadiene	ND	5.0	0.24	ug/l					
98-82-8	Isopropylbenzene	ND	2.0	0.45	ug/l					
99-87-6	p-Isopropyltoluene	ND	5.0	0.22	ug/1					
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.16	ug/l					
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	0.83	ug/l					
74-95-3	Methylene bromide	ND	5.0	0.26	ug/l					
75-09-2	Methylene chloride	ND	2.0	0.70	ug/l					
91-20-3	Naphthalene	ND	5.0	1.1	ug/l					
103-65-1	n-Propylbenzene	ND	5.0	0.24	ug/l					
100-42-5	Styrene	ND	5.0	0.21	ug/l					
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.24	ug/l					
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/l					
127-18-4	Tetrachloroethene	ND	1.0	0.28	ug/l					
108-88-3	Toluene	ND	1.0	0.23	ug/l					
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	0.28	ug/l					
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.20	ug/l					
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.24	ug/l					
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.29	ug/l					
79-01-6	Trichloroethene	ND	1.0	0.22	ug/l					
75-69-4	Trichlorofluoromethane	ND	5.0	0.27	ug/l					
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.53	ug/l					
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.19	ug/l					
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.36	ug/l					
75-01-4	Vinyl chloride	ND	1.0	0.21	ug/l					
10-01-1	m,p-Xylene	ND	1.0	0.42	ug/l					
95-47-6	o-Xylene	ND	1.0	0.24	ug/l					
1330-20-7	Xylene (total)	ND	1.0	0.24	ug/l					
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lin	nits					
	mat the stress	0.40/		ያበ	119%					
1868-53-7	Dibromofluoromethane	94%			122%					
17060-07-0	1,2-Dichloroethane-D4	92%			122%					
2037-26-5	Toluene-D8	91%			116%					
460-00-4	4-Bromofluorobenzene	94%		10-	11070					

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 \tilde{B} = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 2

4. ω

		Repo	rt of An	alysis			Page 1 of 3
Client Sam Lab Sampl Matrix: Method: Project:		W846 3510C	ue, Bronx,	NY	Date		/04/13 /05/13 a
Run #1 Run #2	File ID DF 2P24424.D 1	Analyzed 06/15/13	By ALS	Prep D 06/06/1		Prep Batch OP66578	Analytical Batch E2P1064
Run #1 Run #2	Initial Volume Final Vo 1000 ml 1.0 ml	lume				نبرین ۱۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ -	
ABN TCL	List (CLP4.2 list)						
CAS No.	Compound	Result	RL	MDL	Units	Q	
59-50-7 120-83-2 105-67-9 51-28-5 534-52-1 95-48-7 88-75-5 100-02-7 87-86-5 108-95-2 95-95-4 88-06-2 83-32-9 208-96-8 98-86-2 120-12-7 1912-24-9 100-52-7 56-55-3	4-Chloro-3-methyl phenol 2,4-Dichlorophenol 2,4-Dimitrophenol 2,4-Dimitrophenol 4,6-Dinitro-o-cresol 2-Methylphenol 3&4-Methylphenol 2-Nitrophenol 4-Nitrophenol Pentachlorophenol Phenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4,6-Trichlorophenol Acenaphthene Acenaphthene Acetophenone Anthracene Atrazine Benzaldehyde Benzo(a)anthracene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	5.0 5.0 2.0 2.0 2.0 2.0 5.0 1.0 1.0 1.0 1.0 5.0 5.0 1.0	$\begin{array}{c} 1.8\\ 1.2\\ 1.5\\ 17\\ 0.99\\ 1.0\\ 0.93\\ 1.5\\ 5.2\\ 1.4\\ 1.3\\ 1.6\\ 1.3\\ 0.26\\ 0.23\\ 0.29\\ 0.29\\ 0.29\\ 0.49\\ 3.3\\ 0.23\\ 0.23\\ 0.23\end{array}$	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l		
50-32-8 205-99-2 191-24-2 207-08-9 101-55-3 85-68-7 92-52-4 91-58-7 106-47-8 86-74-8 105-60-2	Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene 4-Bromophenyl phenyl et Butyl benzyl phthalate 1,1'-Biphenyl 2-Chloronaphthalene 4-Chloroaniline Carbazole Caprolactam	ND ND ND ND ND ND ND ND ND ND ND	$1.0 \\ 1.0 \\ 1.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 1.0 \\ 2.0 \\ 5.0 \\ 1.0 \\ 2.0 \\ 2.0 \\ 1.0 \\ 2.0 \\ 1.0 \\ 2.0 \\ 1.0 \\ 2.0 \\ 1.0 $	$\begin{array}{c} 0.23 \\ 0.46 \\ 0.32 \\ 0.51 \\ 0.36 \\ 0.29 \\ 0.30 \\ 0.30 \\ 0.53 \\ 0.36 \\ 0.69 \end{array}$	ug/i ug/i ug/i ug/i ug/i ug/i ug/i ug/i		

ND = Not detected MDL - Method Detection Limit

 $RL = Reporting \ Limit$

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID:MW-9Lab Sample ID:JB38761-2Matrix:AQ - Ground WaterMethod:SW846 8270DProject:Via Verde, 700-730 Br				ue, Bronx, N	Y	Date	Sampled: Received: ent Solids:	06/04/13 06/05/13 n/a	
ABN TCL I	List (CL	.P4.2 list)							
CAS No.	Comp	ound	Result	RL	MDĽ	Units	Q		
218-01-9	Chrys		ND	1.0	0.29	ug/l			
111-91-1	bis(2-0	Chloroethoxy)methane	ND	2.0	0.31	ug/l			
111-44-4		Chloroethyl)ether	ND	2.0	0.31	ug/l			
108-60-1		Chloroisopropyl)ether	ND	2.0	0.45	ug/l			
7005-72-3		prophenyl phenyl ether	ND	2.0	0.31	ug/l			
121-14-2		initrotoluene	ND	2.0	0.43	ug/l			
606-20-2		initrotoluene	ND .	2.0	0.46	ug/I			
91-94-1		Dichlorobenzidine	ND	5.0	0.36	ug/l			
53-70-3	-	zo(a,h)anthracene	ND	1.0	0.38	ug/l			
132-64-9		zofuran	ND	5.0	0.27	ug/l			
84-74-2		outyl phthalate	ND	2.0	0.56	ug/l			
117-84-0		octyl phthalate	ND	2.0	0.31	ug/l			
84-66-2		/l phthalate	ND	2.0	0.33	ug/l			
131-11-3		hyl phthalate	ND	2.0	0.28	ug/l			
117-81-7		Ethylhexyl)phthalate	0.81	2.0	0.59	ug/l	J		
206-44-0		anthene	ND	1.0	0.32	ug/l			
86-73-7	Fluor		ND	1.0	0,28	ug/l			
118-74-1		chlorobenzene	ND .	1.0	0.34	ug/I			
87-68-3		chlorobutadiene	ND	1.0	0.51	ug/l			
77-47-4		hlorocyclopentadiene	ND	10	7.1	ug/l			
67-72-1		chloroethane	ND	2.0	0.55	ug/l			
193-39-5		o(1,2,3-cd)pyrene	ND	1.0	0.37	ug/l			
78-59-1	Isoph		ND .	2.0	0.27	ug/l			
91-57-6		hylnaphthalene	ND	1.0	0.38	ug/l			
88-74-4		oaniline	ND	5.0	1.1	ug/l			
99-09-2	3-Nitr	oaniline	ND	5.0	1.3	ug/l			
100-01-6		oaniline	ND	5.0	1.7	ug/l			
91-20-3		halene	1.4	1.0	0.26	ug/l			
98-95-3		penzene	ND	2.0	0.42	ug/l			
621-64-7		roso-di-n-propylamine	ND	2.0	0.30	ug/l			
86-30-6		rosodiphenylamine	ND	5.0	0.31	ug/l			
85-01-8		nthrene	ND	1.0	0.29	ug/l			
129-00-0	Pyren	e	ND	1.0	0.27	ug/l			
CAS No.	Surro	ogate Recoveries	Run# 1	Run#2	Lin	nits			
367-12-4	2-Flu	orophenol	45%			110%			
4165-62-2	Pheno		32%		10-	110%			
118-79-6		Tribromophenol	97%		29-	143%			
4165-60-0		benzene-d5	79%		31-	130%			

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

4. ω

Report of Analysis

Page 3 of 3

Client Sample ID: Lab Sample ID: Matrix: Method: Project:	MW-9 JB38761-2 AQ - Ground Water SW846 8270D SW846 3510C Via Verde, 700-730 Brook Avenue, Bronx, NY	Date Sampled: Date Received: Percent Solids:	06/05/13	4.3 4
---	---	--	----------	----------

ABN TCL List (CLP4.2 list)

CAS No.	Surrogate Recoveries	Run#1	Run#2	Limits
321-60-8	2-Fluorobiphenyl	83%		35-120%
1718-51-0	Terphenyl-d14	87%		14-152%

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

- \overline{B} = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

JB38761

J = Indicates an estimated value

			Repor	t of Ana	lysis			Page 1 of	
Client Samp Lab Sample Matrix: Method: Project:	D: JB387 AQ - SW84	61-2 Ground Wat 6 8082A S	er W846 3510C 30 Brook Avenue	e, Bronx, N	Y	Date Sampled: 06/04/13 Date Received: 06/05/13 Percent Solids: n/a			
Run #1 Run #2	File ID EF121006.D	DF 1	Analyzed 06/11/13	By JR	Prep Da 06/06/13		Prep Batch OP66580	Analytical Batch GEF4777	
Run #1 Run #2	Initial Volum 900 ml	e Final V 10.0 ml	olume						
PCB List									
CAS No.	Compound		Result	RL	MDL	Units	Q		
12674-11-2	Aroclor 1016)	ND	0.56	0.14	ug/l			
11104-28-2	Aroclor 1221	l	ND	0.56	0.30	ug/I			
11141-16-5	Aroclor 1232	2	ND · ·	0.56	0.43	ug/l			
53469-21-9			ND	0.56	0.096	ug/l			
12672-29-6	Aroclor 1248	3	ND	0.56	0.16	ug/l			
11097-69-1			ND	0.56	0.16	ug/l			
11096-82-5			ND	0.56	0.23	ug/l			
11100-14-4			ND	0.56	0.14	ug/l			
37324-23-5	Aroclor 126	2	ND	0.56	0.067	ug/l			
CAS No.	Surrogate R	ecoveries	Run# 1	Run#2	Lim	its			
877-09-8	Tetrachloro-	m-xylene	68%	1	25-1	43%			
877-09-8	Tetrachloro-		76%			43%			
2051-24-3	Decachlorot	iphenyl	46%		10-1	34%			
	D thuck		120/		10-1	34%			

43%

MDL - Method Detection Limit ND = Not detected

RL = Reporting Limit

2051-24-3

E = Indicates value exceeds calibration range

Decachlorobiphenyl

J = Indicates an estimated value

10-134%

- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Accutest LabLink@744599 10:57 30-Jul-2013

Report of Analysis	
	•

Page 1 of 1

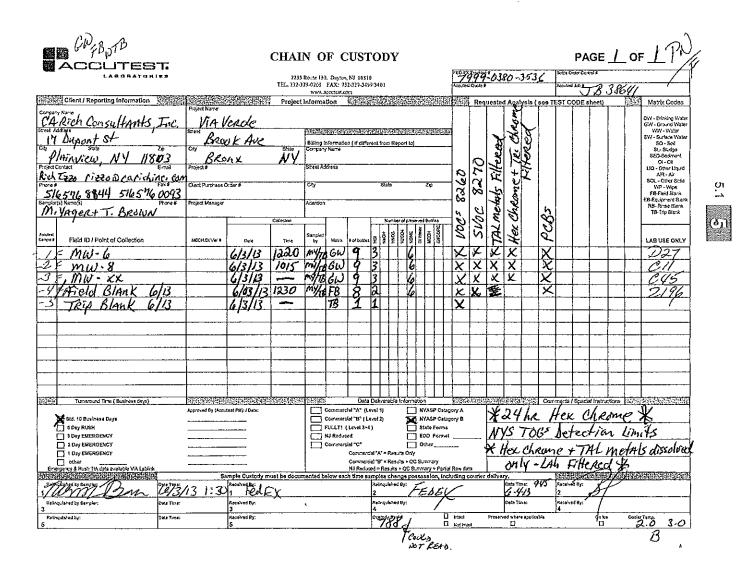
Client Sample Lab Sample II Matrix:	D: JB38	-9 761-2F · Groundwa	ter Filter	ed į				Date Sampled: Date Received: Percent Solids:	06/04/13 06/05/13 n/a
Project:	Via V	Verde, 700-	730 Broo	ok Ave	enue, Bronx	, NY			
Dissolved Met	als Analysi	is							
Analyte	Result	RL	Units	DF	Prep	Analyzed	By	Method	Prep Method
Aluminum	< 200	200	ug/l	1	06/11/13	06/12/13	JY	SW846 6010C ¹	SW846 3010A ⁴
Antimony	< 1.0	1.0	ug/l	2	06/11/13	06/19/13	VC	SW846 6020A ³	SW846 3010A ⁵
Arsenic	< 3.0	3.0	ug/l	1	06/11/13	06/12/13	JY	SW846 6010C ¹	SW846 3010A 4
Barium	< 200	200	ug/l	1	06/11/13	06/12/13	JΥ	SW846 6010C ¹	SW846 3010A ⁴
Beryllium	< 1.0	1.0	ug/l	1	06/11/13	06/12/13	JY	SW846 6010C 1	SW846 3010A ⁴
Cadmium	< 3.0	3.0	ug/l	1	06/11/13	06/12/13	JY	SW846 6010C ¹	SW846 3010A ⁴
Calcium	119000	5000	ug/l	1	06/11/13	06/12/13	JY	SW846 6010C ¹	SW846 3010A 4
Chromium	< 10	10	ug/l	1	06/11/13	06/12/13	JY	SW846 6010C ¹	SW846 3010A 4
Cobalt	< 50	50	ug/l	1	06/11/13	06/12/13	JY	SW846 6010C 1	SW846 3010A ⁴
Copper	< 10	10	ug/l	1	06/11/13	06/12/13	JY	SW846 6010C 1	SW846 3010A 4
Iron	<100	100	ug/l	1	06/11/13	06/12/13	JY	SW846 6010C ¹	SW846 3010A ⁴
Lead	< 3.0	3.0	ug/l	1	06/11/13	06/12/13	JY	SW846 6010C ¹	SW846 3010A ⁴
Magnesium	8920	5000	ug/l	1	06/11/13	06/12/13	JΥ	SW846 6010C 1	SW846 3010A 4
Manganese	782	15	ug/l	1	06/11/13	06/12/13	JY	SW846 6010C 1	SW846 3010A 4
Mercury	< 0.20	0.20	ug/l	1	06/14/13	00/10/00	AA		SW846 7470A ⁶
Nickel	86.4	10	ug/l	1	06/11/13	06/12/13	JY	SW846 6010C 1	SW846 3010A 4
Potassium	12700	10000	ug/l	1	06/11/13	00, 24, 25	JY	SW846 6010C 1	SW846 3010A 4
Selenium	<10	10	ug/l	1	06/11/13	06/12/13	JY	SW846 6010C 1	SW846 3010A 4
Silver	< 10	. 10	ug/l	1	06/11/13		JY	SW846 6010C 1	SW846 3010A ⁴
Sodium	96700	10000	ug/l	1	06/11/13	06/12/13		SW846 6010C 1	SW846 3010A ⁴
Thallium	<1.0	1.0	ug/l	2	06/11/13	••••==	VC	V	SW846 3010A ⁵
Vanadium	< 50	50	ug/l	1	06/11/13		JY	SW846 6010C 1	SW846 3010A ⁴
Zinc	< 20	20	ug/l	1	06/11/13	06/12/13	JΥ	SW846 6010C ¹	SW846 3010A ⁴

Instrument QC Batch: MA31422
 Instrument QC Batch: MA31447
 Instrument QC Batch: MA31475
 Prep QC Batch: MP72509
 Prep QC Batch: MP72509A
 Prep QC Batch: MP72593

Accutest LabLink@744599 10:57 30-Jul-2013

			Repor	t of An	alysis			Page 1 of 1
Client Sample ID: Lab Sample ID: Matrix:	MW-9 JB3876 AQ - G	1-2F roundwater Fil	tered			Date Sampled Date Received Percent Solids	: 06	/04/13 /05/13 a
Project:	Via Ver	de, 700-730 Bi	rook Avenu	ie, Bronx,	NY			
General Chemistry	1							
Analyte		Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexava	dent ^a	< 0.010	0.010	mg/l	1	06/05/13 10:42	RI	SW846 7196A
Chromium, Trivale		< 0.020	0.020	mg/l	1	06/12/13 19:56	JY	SW846 6010/7196A M
(a) Analysis done o	ut-of-hold		}					

(b) Calculated as: (Chromium) - (Chromium, Hexavalent)


fot 19/13

4.4 4

Appendix B Chain of Custody Documents

JB38641: Chain of Custody Page 1 of 3

Accutest Laboratories Sample Receipt Summary

ate / Time Received: 6/4/2			Delivery N	athor		FedEx	Airbill #'s: 799903803536			
	013 9:45		_ '	ictiou.						
ooler Temps (Initial/Adjuste	d): <u>#1: (</u>	<u>2/2); #2:</u>	<u>(3/3); 0</u>							
ooler Security Y	_or N			Y or	N.	Sample Integri	ty - Documentation	Y	or N	
. Custody Seals Present:			OC Present:	$\mathbf{\nabla}$		1, Sample labels	s present on bottles:	$\mathbf{\nabla}$		
. Custody Seals Intact:		4. Smp	I Dates/Time OK	\checkmark		2. Container lab	eling complete:	\checkmark		
ooler Temperature	Yo	<u>r N</u>				3. Sample conta	iner label / COC agree:	$\mathbf{\nabla}$		
1. Temp criteria achieved:	$\mathbf{\Sigma}$					Sample Integr	ity - Condition	Y	or N	
2. Cooler temp verification:		Therm				1. Sample recvd		$\mathbf{\Sigma}$		
3. Cooler media:	lce	(Bag)				2. All containers	accounted for:	\checkmark		
4. No, Coolers		2				3. Condition of s	ample:	<u> </u>	ntact	
uality Control_Preservatio	<u>n Y</u>	<u>N</u> .	<u>N/A</u>			Sample integr	rity - Instructions	Y	<u>N</u>	N/A
1. Trip Blank present / cooler:	$\mathbf{\Sigma}$					1. Analysis requ	uested is clean	Σ		
2. Trip Blank listed on COC:	\checkmark					2. Bottles receit	ved for unspecified tests		\mathbf{V}	
3. Samples preserved properly:						3. Sufficient vol	lume recvd for analysis:	\mathbf{V}		
4. VOCs headspace free:						4. Compositing	instructions clear:			$\mathbf{\Sigma}$
•	_					5. Filtering inst	ructions clear:			
Comments -2F XCR SAMPLES	TAKEN DIF	ECTLY TO	LAB UPON RECEIF	ΥТ.						
-2F MW-6: TAKEN 6	3/13 AT 10	:15 , SAMF	PLE MADE 24 HR HO	AD TIME.						
-3F MW-XX TAKEN I VISUALLY -2F AND	5/3/13 NO 1 3-F APPEA	rime on S. R to be t	AMPLES OR COC ,J 'HE DUP. IF THIS IS	UST A HA: THE CASE	SH MARK E THIS SA	MPLE DID NOT MAK	E 24HR HOLD TIME.			
-4 XCR LAB FILTER	AND META	LS VOLUI	HES RECEIVED NO	CHECKE	D OFF O	N COC. FILTER REQU	JEST SENT FOR BOTH.			

JB38641: Chain of Custody Page 2 of 3 0 1

(ð))

Sample Receipt Summary - Problem Resolution

Accutest Job Number: JB38641

CSR: Michelle

nertene

Response Date: 6/4/2013

Response: -3F, use time of 1015 ok to run -2 and -3 out of HT -4, please run for dissolved metals, XCR and CR3

Per Jason Cooper

Accutest Laboratories V:732.329.0200 2235 US Highway 130 F: 732.329.3499 Dayton, New Jersey www.facoutest.com

JB38641: Chain of Custody Page 3 of 3

The provident of the porting intermetion the provident of	Project Name Via Street Brot	Verde	Project		econtest.co			10				Access	-1~] 10.4+1	(),4	Q	4361		¥ del treto	TR	387	<u>4</u>
CA Kich Consultants 17 Durant Street	Via Street Brot				100/1	情識			Э¢	2.52		8 A.S.	Req	vested	Anat	/sis (ce	H TĘST	CODE	theet)		
17 Duaint Street	Street Brot														$\overline{}$						DW - Drinking Water
Sate Za	1027	V A				12112					e	2			Here)					ľ	GW - Ground Water WAV - Water SW - Surface Water
	1 . 0		State State	Billing I Company	nformatio Name	n (E diffe.	rênî fr	rom Rep	ort to	2		-			ũ					l l	SO - Sol SU- Sudge
	Brank			Street A	diess.							4		1	ž						SED-Sedment Of - On UQ - Other Liquid
Charl Tazo Rizzo@ Carichine.	Ciert Purchases	t Ren.	GWS	City				52's			Ζφ	$\neg \delta$	0	R	Chrane						AR-Ar SOL-Other Solid
6-576-8844 516-576-0093	Project Manager											8260	OFES	metads	Ð	Í					WP - Wpa FB-Field Bank EB-Egubment Bank
pier(s) Name(s) ASSA Cooper Thomas Brach	Project Manager			Aterion	5										£7rī		İ				RB-Rinse Bank TB-Trip Blank
	}	-	Collecton	1			T	Ny=ber	al pre	ienei B	Boten	12 2	SVOC	744	`₩ X	PCBS					
Field ID / Point of Collection	RECHOIVER	Data	Te≙∌	Sampled by		Ø of batter		동 동 동		ă	ENCO.	Š	S	F	Hex						LAB USE ONLY
1 <u>mw-7</u>	<u> </u>	6413	1045	3/10			3		6			X	X	×	х.	\times					ELZ
1 mw-7ms		6413	1045	3/18	GW GW		3		6		-+	X	X	X	X	~윗-					CI!
		white h	1015	127P	<u>v</u> r		ľ	-+-+		4-	+	×	×	<u> </u>	$\hat{}$	<u> </u>	+			+	21996
MW-9	1	643		3/18	Gω		3		C	8		X	X	X	X	X	- [
		•••						\square	-	$\left \right $					<u> </u>	`					
Trip Blank				<u> </u>	Тв		1	+	-	++	-+-+	X									
								+				+				+					<u> </u>
																	- -	1			
	ļ									\downarrow											
Turnaround Time (Business days)	80000			12:02		Data	Delor		Inform			ESE			353	2000	Commen	ta / Soecia	llostacto		
Still 16 Business Days	Approved By (Accu				Commerci	(a)"A" (Le	ivel 1)	}] N/	ASP Cab ASP Cab	igory A		X	24	ĥr	hex	Δr		¥	Contra Proposition
B Day RUSH					FULLTI (Level 3+4) }	1	E	5ts	te Form	•			YE.	TW	<u>रिष्ट</u>	<u> </u>	tim	í	1.
2 Day EMERGENCY					NJ Raduc Comunerci	41 °C"] oe	O Forma ter	nt		11	<u>[]</u>		<u>, (</u>				1 ()
1 Day EMERGENCY other						Commerci Commerci	ai * 8*	# Result	8+0	C Sum	тау			<u>*</u>	1-12	<u>« (h.</u> 1	Corre		4Lite	als	aussolud
Emergency & Rush TIA data available VIA Labins	50	mple Custory m	ust be docum	L nanted b	stow eac	NJ Rešuc h tima se	ed = P imple	Resulta I Is chan	ga bo	Suт.те 088es	ry + Pari ston, In	al Raw da siyding d	≥ ourier	AC .	19	~ !	-ah	いけ	Sed Based	振动的	RAPORT
Manz for 10/4	/13 2:a	Received By FOL	2 FV				R#1:	taisted !	By:	F	eD7	6			6KI	7 9	15 2	eloed Hy:	$\overline{\mathcal{A}}$		
telinquisted by Europier; Oate Time:		Received By: 3					Rein: 4	quinked (ey:			/			oze he	ec . :	Juc 4	alved By:	Y		<u> </u>
teloguished by: Date Time:		Racalvad By: 5					Cert	744	*	78	10 8	intad J Notima	a.	Frankty	ed ectore	40045351			On ka	Cech	3.0 Z.U
· · · · · · · · · · · · · · · · · · ·								<u> </u>													(A)

JB38761: Chain of Custody Page 1 of 3 сл Сл

(ق)

Accutest Laboratories Sample Receipt Summary

Date / Time Received: 6/5/20			Delivery Method:					
ooler Temps (Initial/Adjusted)	; <u>#1: (</u> 3/	<u>3); #2; (2/2);</u>	<u>0</u>					
	or N	a	<u>Y or N</u>		ty - Documentation		or N	
1. Custody Seals Present. 🗹 2. Custody Seals Intact: 🗹		3. COC F 4. Smpl Dat		1, 00(1))(0 100616	present on bottles: ling complete:			
Cooler Temperature	Y or				ner label / COC agree:			
1. Temp criteria achieved:	⊠ BarTi			Sample Integri		-	or <u>N</u>	
2. Cooler temp verification: 3. Cooler media:	lce (i			1. Sample recvd		N		
4. No, Coolers -		2	-	2. All containars 3. Condition of sa			ntact	_
Quality Control_Preservation	<u>Y</u>	<u>N N</u>	<u>A</u> _		ity - Instructions	Y	_N_	N/A
1. Trip Blank present / cooler:		2	l	1. Analysis requ	ested is clear.	$\mathbf{\nabla}$		
2, Trip Blank listed on COC:	\checkmark			2. Bottles receiv	ed for unspecified tests		Σ	
3. Samples preserved properly.	\checkmark			1	ume recyd for analysis:	$\mathbf{\Sigma}$		_
4. VOCs headspace free:	\mathbf{Z}		1		instructions clear;			Ø
				5. Filtering instru	uctions clear:			⊻
DID NOT REC TRIP BL	ANK							
Accutest Laboratories				35 US Highway 130 F; 732.329.3493				ayton, New Jerse

JB38761: Chain of Custody Page 2 of 3 ທ ມ

Sample Receipt Summary - Problem Resolution

Accutest Job Number: JB38761

CSR: Michelle

Response Date: 6/5/2013

Response: -2, please use time of 1245 Jason Cooper notified of missing TB

Accuteal Laboratories V;732.329,0200

2235 US Highway 130 F: 732.329.3499

Dayton, New Jersey www/accutest.com

JB38761: Chain of Custody Page 3 of 3

,

L.A.B. Validation Corp, 14 West Point Drive, East Northport, NY 11731

Appendix C Case Narratives

CASE NARRATIVE / CONFORMANCE SUMMARY

Client:	C. A. Rich Consultants	Job No	JB38641
Site:	Via Verde, 700-730 Brook Avenue, Bronx, NY	Report Date	6/26/2013 6:20:19 PM

On 06/04/2013, 3 Sample(s), 1 Trip Blank(s) and 2 Field Blank(s) were received at Accutest Laboratories at a temperature of 3 C. Samples were intact and chemically preserved, unless noted below. An Accutest Job Number of JB38641 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Volatiles by GCMS By Method SW846 8260B

	Matrix: AQ	Batch ID:	V1C5184
63	All samples were analyzed with	hin the recommended metho	d holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) JB38586-4MS, JB38586-4MSD were used as the QC samples indicated.

- Blank Spike Recovery(s) for 1,1,2,2-Tetrachloroethane are outside control limits. High percent recoveries and no associated positive found in the QC batch.
- RPD(s) for MSD for Dichlorodifluoromethane, Trichlorofluoromethane are outside control limits for sample JB38586-4MSD. Outside control limits due to matrix interference.

Matrix: AQ	Batch ID:	V1C5189	

* All samples were analyzed within the recommended method holding time.

^a Sample(s) JB38737-2MS, JB38737-2MSD were used as the QC samples indicated.

²³ All method blanks for this batch meet method specific criteria.

Extractables by GCMS By Method SW846 8270D

Matrix: AQ	Batch ID:	OP66558

- ⁴⁴ All samples were extracted within the recommended method holding time.
- ¹³ Sample(s) JB38641-2MS, JB38641-2MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- Blank Spike Recovery(s) for 4-Chloroaniline are outside control limits. Outside of in house control limits.

Extractables by GC By Method SW846 8082A

Matrix: AQ	Batch ID:	OP66554

■ All samples were extracted within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

¹⁸ Sample(s) JB38646-2MS, JB38646-2MSD, OP66554-MSMSD were used as the QC samples indicated.

Metals By Method SW846 6010C

Matrix: AQ	Batch ID: MP72450	

- ¹² All samples were digested within the recommended method holding time.
- ⁸⁴ All method blanks for this batch meet method specific criteria.
- ^a Sample(s) JB38641-2FMS, JB38641-2FMSD, JB38641-2FSDL were used as the QC samples for metals.
- RPD(s) for Serial Dilution for Aluminum, Arsenic, Cadmium, Chromium, Lead, Nickel, Selenium, Zinc are outside control limits for sample MP72450-SD1. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).</p>
- RPD(s) for Serial Dilution for Iron are outside control limits for sample MP72450-SD1. Serial dilution indicates possible matrix interference.

Metals By Method SW846 6020A

Matrix: AQ	Batch ID:	MP72450A	

- ¹³ All samples were digested within the recommended method holding time.
- ¹³ All method blanks for this batch meet method specific criteria.
- ¹⁸ Sample(s) JB38641-2FMS, JB38641-2FMSD, JB38641-2FSDL were used as the QC samples for metals.
- RPD(s) for Serial Dilution for Antimony, Thallium are outside control limits for sample MP72450A-SD1. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).</p>

Metals By Method SW846 7470A

[Matrix: AQ	Batch ID: MP72562
	and the state	* * * * * * * * *

All samples were digested within the recommended method holding time.

- * All method blanks for this batch meet method specific criteria.
- Sample(s) JB38574-2MS, JB38574-2MSD, JB38574-2DUP were used as the QC samples for metals.
- RPD(s) for Duplicate for Mercury are outside control limits for sample MP72562-D1. RPD acceptable due to low duplicate and sample concentrations.

Wet Chemistry By Method SW846 6010/7196A M

Matrix: AQ	Batch ID: R123805	

- The data for SW846 6010/7196A M meets quality control requirements.
- JB38641-2F for Chromium, Trivalent: Calculated as: (Chromium) (Chromium, Hexavalent)

Matrix: AQ	Batch ID:	R123854	

¹⁴ The data for SW846 6010/7196A M meets quality control requirements.

¹⁰ JB38641-1F for Chromium, Trivalent: Calculated as: (Chromium) - (Chromium, Hexavalent)

Matrix:	AO	Batch ID:	R123855
maan	$n_{\rm V}$	Baton ibi	10122022

¹⁹ The data for SW846 6010/7196A M meets quality control requirements.

JB38641-3F for Chromium, Trivalent: Calculated as: (Chromium) - (Chromium, Hexavalent)

Matrix: AQ	Batch ID: R124098
------------	-------------------

The data for SW846 6010/7196A M meets quality control requirements.

JB38641-4F for Chromium, Trivalent: Calculated as: (Chromium) - (Chromium, Hexavalent)

Wet Chemistry By Method SW846 7196A

ſ	Matrix: AQ	Batch ID: G	IN86138

* All samples were analyzed within the recommended method holding time.

- ¹⁰ All method blanks for this batch meet method specific criteria.
- ¹³ Sample(s) JB38641-1FDUP, JB38641-1FMS were used as the QC samples for Chromium, Hexavalent.
- JB38641-4F for Chromium, Hexavalent: Analyzed from non-filtered sample.
- JB38641-3F for Chromium, Hexavalent: Analysis done out of holding time as per client request.

Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting Accutest's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

Accutest Laboratories is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by Accutest Laboratories indicated via signature on the report cover

CASE NARRATIVE / CONFORMANCE SUMMARY

Client:	C. A. Rich Consultants	Job No	JB38761
Site:	Via Verde, 700-730 Brook Avenue, Bronx, NY	Report Date	6/24/2013 5:06:25 PM

On 06/05/2013, 2 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at Accutest Laboratories at a temperature of 3 C. Samples were intact and chemically preserved, unless noted below. An Accutest Job Number of JB38761 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Volatiles by GCMS By Method SW846 8260B

Γ	Matrix: AQ	Batch ID:	VY5816				
5	All samples were analyzed within the recommended method holding time.						

- Sample(s) JB38761-1MS, JB38761-1MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.

	Matrix:	AQ		Batch ID:	VY58	27	11	

- ⁿ All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- * Sample(s) JB39170-16MS, JB39170-16MSD were used as the QC samples indicated.

Extractables by GCMS By Method SW846 8270D

	Matrix: AQ	Batch ID:	OP66578			
ទេ						

- Sample(s) JB38761-1MS, JB38761-1MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.

Extractables by GC By Method SW846 8082A

<u> </u>	•	
 11 1 1	D-4-1-1D-	000000
Matrix: AO	Batch ID:	OP66580
		ar rat

- All samples were extracted within the recommended method holding time.
- Main All method blanks for this batch meet method specific criteria.
- [™] Sample(s) JB38761-1MS, JB38761-1MSD were used as the QC samples indicated.

Metals By Method SW846 6010C

Matrix: AQ	Batch ID:	MP72509	

All samples were digested within the recommended method holding time.

- ¹⁸ All method blanks for this batch meet method specific criteria.
- Sample(s) JB38761-1FMS, JB38761-1FMSD, JB38761-1FSDL were used as the QC samples for metals.
- RPD(s) for Serial Dilution for Aluminum, Chromium, Cobalt, Copper, Iron, Nickel, Selenium, Silver, Vanadium, Zinc are outside control limits for sample MP72509-SD1. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

Metals By Method SW846 6020A

Matrix: AQ

- All samples were digested within the recommended method holding time.
- ¹⁸ All method blanks for this batch meet method specific criteria.
- Sample(s) JB38761-1FMS, JB38761-1FMSD, JB38761-1FSDL were used as the QC samples for metals.
- RPD(s) for Serial Dilution for Antimony, Thallium are outside control limits for sample MP72509A-SD1. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).</p>

Metals By Method SW846 7470A

Matrix: AQ	Batch ID:	MP72593

- All samples were digested within the recommended method holding time.
- M All method blanks for this batch meet method specific criteria.
- ¹⁰ Sample(s) JB38761-1FMS, JB38761-1FMSD were used as the QC samples for metals.

Wet Chemistry By Method SW846 6010/7196A M

	Matrix: AQ	Batch ID:	R123908
B	The data for SW846 6010/7196	A M meets quality control	

¹⁶ JB38761-1F for Chromium, Trivalent: Calculated as: (Chromium) - (Chromium, Hexavalent)

Matrix:	AQ	Batch ID:	R123909

¹⁸ The data for SW846 6010/7196A M meets quality control requirements.

^a JB38761-2F for Chromium, Trivalent: Calculated as: (Chromium) - (Chromium, Hexavalent)

Wet Chemistry By Method SW846 7196A

Matrix: AQ

Batch ID: GN86218

- All method blanks for this batch meet method specific criteria.
- ¹⁸ Sample(s) JB38761-1FDUP, JB38761-1FMS were used as the QC samples for Chromium, Hexavalent.
- JB38761-2F for Chromium, Hexavalent: Analysis done out of holding time.

Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting Accutest's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

Accutest Laboratories is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by Accutest Laboratories indicated via signature on the report cover

