PERIODIC REVIEW REPORT July 2022

Cornerstone Site B1 3100 Third Avenue Bronx, NY Site #C203044

Prepared for:

CS MELROSE SITE B, LLC

1865 Palmer Avenue, Suite 203 Larchmont, New York 10538

Prepared by:

CA RICH Geology Services, D.P.C.

17 Dupont Street Plainview, New York 11803

July 13, 2022

New York State Department of Environmental Conservation Division of Environmental Remediation Remedial Bureau B 625 Broadway, Albany, NY 12207-2942

Attn: Sadique Ahmed, Environmental Engineer 1

> Re: Periodic Review Report 2021-2022 Cornerstone Site B1 3100 Third Avenue Bronx, NY <u>BCP #C203044</u>

Dear Mr. Ahmed:

Enclosed please find the Periodic Review Report for 2022 for the above-referenced location prepared by CA RICH Geology Services, D.P.C. If you have any questions pertaining to this report, please feel free to contact the undersigned.

Sincerely,

CA RICH CONSULTANTS, INC

Juson T. Cooper

Jason T. Cooper, PG Vice President

cc: Sarita Wagh, NYSDOH Document Repository

Ecc: Debbie Kenyon, CS Melrose Site B LLC Nick Papakostopoulos C and C Managers Karen Tyll, Tyll Engineering and Consulting P.C.

Table of Contents

Section	<u>Page</u>
EXECUTIVE SUMMARY	
1.0 INTRODUCTION 1.1 Site Description 1.2 Current Site Usage	3
2.0 SITE HISTORY	4
3.0 SUMMARY OF REMEDIAL ACTION	9
4.0 EVALUATION OF REMEDY PERFORMANCE, EFFECTIVENESS AND PROTECTIVENESS 4.1 Site-wide Inspection 4.2 Engineering Controls	5, 12
5.0 INSTITUTIONAL AND ENGINEERING CONTROL (I&EC) PLAN COMPLIANCE REPORT 5.1 Institutional Controls 5.2 Engineering Controls 5.3 Certification	16
 6.0 MONITORING PLAN COMPLIANCE REPORT 6.1 Groundwater Monitoring Well Installation 6.2 Groundwater Monitoring Well Survey 6.3 Groundwater Monitoring Well Sampling and Analysis 6.4 Monitoring Plan Compliance Report Conclusions and Recommendations 	18
 7.0 OPERATION & MAINTENANCE PLAN COMPLIANCE REPORT 7.1 Groundwater Pump and Treat System 7.2 Groundwater Pump and Treat System Discharge Sample and Analysis 7.3 Sub-Slab Depressurization System 7.4 Operation and Maintenance Plan Compliance Report Conclusions and Recommendations 	24
8.0 CONCLUSIONS AND RECOMMENDATIONS	25
9.0 REFERENCES	27

FIGURES

- 1 Property Location Map
- 2 Site Plan
- 3 As-Built SSD Layout and Vapor Barrier
- 4 Vent & Roof Details
- 5 As-Built Pump & Treat System Layout and Detail
- 6 Groundwater Elevation and Contour Map August 13, 2009
- 7 Second Half 2021 Groundwater Contour Map December 14, 2021
- 8 Tetrachloroethylene Concentration in Groundwater December 14, 2021
- 9 First Half 2022 Groundwater Contour Map June 14, 2022
- 10 Tetrachloroethylene Concentrations in Groundwater June 14, 2022

TABLES

- 1 Analytical Results for Volatile Organic Compounds in Groundwater
- 2 Monitoring Well Network
- 3 System Discharge Totals
- 4 System PCE Removal Estimate

APPENDICIES

- A Selected Photographs
- B Site-Wide Inspection Form
- C IC/EC Form
- D Groundwater Sampling Logs
- E Groundwater Analytical Data and DUSR
- F O&M Checklist
- G NYCDEP Sewer Discharge Letter

EXECUTIVE SUMMARY

The following Periodic Review Report (PRR) has been prepared by CA RICH Geology Services, D.P.C. (CA RICH) on behalf of CS Melrose Site B LLC for the Cornerstone Site B1 development. The property is located at 3100 Third Avenue, in the Bronx, New York (hereinafter referred to as "Site"). This document was prepared in accordance with the Site Management Plan (SMP) dated July 19, 2010 (Ref. 1) under Brownfield Cleanup Program (BCP) Agreement, Index Number W2-1126-08-10; Site #C203044.

Cornerstone Site B1 is identified as Block: 2364; Lots: 45 and 9058 on the Bronx Borough Tax Map. Prior to development of the Site, the property was identified as Block: 2364; Lots: 45, 49, 70, and the air rights over p/o 58. The BCP redevelopment portion of the site is comprised of Lots 45 and 70. The Site occupies an area approximately 16,028 square feet and is bounded by a vacant lot to the north, East 158th Street to the south, a small wedged vacant lot and Brook Avenue to the east, and Third Avenue to the west. The Site is located in an area consisting of mixed residential and commercial use. The Site was historically utilized as a store, upholstery business and an undertaker. Circa 1969, the building was also developed as a dry cleaner. In 1989, the building operated as a medical center and a dry cleaner. Lot 70 was historically used as the backyard of the dry cleaner and a community garden. An aerial photograph from Google Earth illustrating the Site location is enclosed as Figure 1 (Property Location Map). A Site Plan is enclosed as Figure 2.

Cornerstone Site B1 was redeveloped into an affordable housing complex with commercial space on the first floor. The building consists of 100% affordable, 107-unit mixed-income/mixed-use rental building. The building is approximately 136,700 square feet (sf), of which approximately 8,500 sf. is commercial space and approximately 1,200 sf. is community facility space. The remainder of the Site contains residential and accessory uses, including approximately 41 parking spaces (approximately 16,000 sf) and a community room for residents (approximately 1,100 sf). Redevelopment activities occurred from 2009 to 2011.

A Remedial Investigation (RI) was conducted at the Site between June and October 2007, and in April 2009 (Ref. 2). In addition, a pre-design investigation was conducted in May and June 2009 (Ref. 3). The RI and pre-design investigation identified the following areas of concern: tetrachloroethylene (PCE or perc) in the subsurface soils, groundwater and soil vapor at the Site, several Semi-Volatile Organic Compounds (SVOCs) and select metals in the subsurface soils at the Site, and select metals in the groundwater beneath the Site. Remedial work was conducted in

accordance with the approved Remedial Action Work Plan (RAWP) dated July 2009 (Ref. 4). The Final Engineering Report (FER), dated November 2010 (Ref. 5), documents the results of remedial action after its completion. After completion of the remedial work, some residual soil and groundwater contamination was left in the subsurface at the Site. The SMP (Ref. 1) was prepared to manage the residual contamination at the Site in perpetuity or until extinguishment of the Environmental Easement in accordance with 6 NYCRR Part 375. The NYSDEC issued a Certificate of Completion (COC) in December 2010 after approving the FER (Ref. 5) and SMP. All reports associated with the Site can be viewed by contacting the NYSDEC or its successor agency managing environmental issues in New York State.

An active groundwater pump and treat system that is comprised of four groundwater pumping wells currently operates on-site. The groundwater from these pumping wells is treated on-site with granular activated carbon and discharged into the New York City sewer system. The remedial program has proven to be effective in reducing PCE concentrations in the groundwater beneath the Site; as such, monitoring wells MW-3, MW-5, and MW-11 are no longer sampled; however, they are gauged for depth to water.

At this time, the Site is in compliance with all major elements of the SMP (Ref. 1). The PRR is due on an annual basis with the next PRR submittal scheduled for July 2023. The requirements for discontinuing site management have not yet been met.

1.0 INTRODUCTION

The following Periodic Review Report has been prepared by CA RICH on behalf of CS Melrose Site B LLC for the Cornerstone Site B1 property located at 3100 Third Avenue in the Bronx, New York (hereinafter referred to as the "Site") (see Figure 1). This document was prepared in accordance with the SMP dated July 19, 2010 (Ref. 1) under Brownfield Cleanup Program (BCP) Agreement, Index Number W2-1126-08-10; Site #C203044.

1.1 Site Description

Cornerstone Site B1 is identified as Block: 2364; Lots: 45 and 9058 on the Bronx Borough Tax Map. Prior to development of the Site, the property was identified as Block: 2364; Lots: 45, 49, 70, and air rights over p/o 58. The Site occupies an area approximately 16,028 square feet and is bounded by a vacant lot to the north, East 158th Street to the south, a small wedged vacant lot and Brook Avenue to the east, and Third Avenue to the west. The Site is located in an area consisting of mixed residential and commercial use. The Site was historically utilized as a store, upholstery business and an undertaker. Circa 1969, the building was also developed as a dry cleaner. In 1989, the building operated as a medical center and a dry cleaner. Lot 70 was historically used as the backyard of the dry cleaner and a community garden. An aerial photograph from Google Earth illustrating the Site location is enclosed as Figure 1 (Property Location Map). A Site Plan is enclosed as Figure 2.

1.2 Current Site Usage

Cornerstone Site B1 was redeveloped into an affordable housing complex with commercial space on the first floor. The building consists of 100% affordable, 107-unit mixed-income/mixed-use rental building. The building is approximately 136,700 square feet (sf.), of which approximately 8,500 sf. is commercial space and approximately 1,200 sf. is community facility space. The remainder of the Site contains residential and accessory uses, including approximately 41 parking spaces (approximately 16,000 sf) and a community room for residents (approximately 1,100 sf.). Redevelopment activities occurred from 2009 to 2011.

2.0 SITE HISTORY

Historical records indicate that Block: 2364; Lot: 45 was originally developed circa 1951 with a single story building with a basement. According to the Phase I Environmental Site Assessment (ESA) dated March 5, 2004 prepared by Pressly and Associates, Inc. (Ref.6), the building was utilized as a store, upholstery business and an undertaker. Circa 1969, the building was also developed as a dry cleaner. In 1989, the building operated as a medical center and a dry cleaner. Lot 70 was historically used as the backyard of the dry cleaner and a community garden. The Phase I ESA concluded the following:

- A dry cleaner operated on the Site in and around the period between 1969 and 1989. The dry cleaner was not identified in the Resource Conservation and Recovery Act (RCRA) database or spill files and probably pre-dated those databases. However, due to past experience with the poor housekeeping operations of these types of facilities, it was recommended that a groundwater investigation be conducted to evaluate the potential presence of dry cleaning solvents in the subsurface on the southern side of the building.
- All reported spills within 1/8 mile of the Site were of small volume and on land, therefore, not likely to impact the Site.
- Although medium radon levels were reported for Bronx County basements, the basement area is currently not occupied.

Based on the findings of the Phase I ESA, a Remedial Investigation (RI) (Ref. 2) was conducted for the Site. The RI was performed to characterize the nature and extent of contamination at the Site. Since the applicant entered into the BCP as a Volunteer, they are only responsible for investigating on-site issues. However, as the planned redevelopment for this Site includes the adjacent Lot 49, the RI was conducted at the Site (Lots 45 and 70) as well as at its adjacent lot (Lot 49). It is noted that the redevelopment area also includes an air rights parcel as part of Lot 58; but, as this parcel is an air rights parcel it was not included in the RI. All three lots (45, 49, and 70) are referred to in the RI as the "Study Area". The investigation was conducted between June and October 2007, and in April 2009. In addition, a pre-design investigation are described in detail in the following Reports:

Periodic Review Report 2022 3100 Third Avenue Bronx, New York

<u>Document</u>

Remedial Investigation Report, CA RICH

Groundwater Investigation and Design Report, CA RICH

Cornerstone Site B1 NYSDEC Site #C203044

Date April 2009

September 2009; Revised November 2009

Generally, the RI and pre-design investigation determined that there had been a release of tetrachloroethene (PCE) to the subsurface soils at the Site. The data indicated that PCE is present below the portions of the former building foundation that were tested, but is most concentrated below the southern portion of the former building, which was formerly used as a dry cleaning facility. Elevated levels of several Semi-Volatile Organic Compounds (SVOCs) commonly referred to as Polynuclear Aromatic Hydrocarbons or "PAHs" and select metals were detected in the soil throughout the Site and in the adjacent Lot 49 at varying depths. There were also four pesticide detections above Part 375 Unrestricted Use Soil Cleanup Objectives (SCOs) (Ref. 7). One polychlorinated biphenyl (PCB) Aroclor (1242) also exceeded the Part 375 Unrestricted Use SCOs. In addition, elevated levels of PCE, acetone, methyl ethyl ketone (MEK), toluene, and xylene were measured in the soil vapor throughout the Site. The levels of acetone and toluene may have been related to a portion of the Site that was once occupied by an undertaker.

As rainwater infiltrates into the soils at the Site, some of the PCE has migrated into the groundwater. PCE was detected above NYSDEC Technical and Operational Guidance Series (TOGS) (Ref. 8) in the overburden and fractured bedrock at on-site monitoring wells MW-7, MW-8, MW-1 and offsite wells MW-2A, MW-5, and MW-6.

Below is a summary of Site conditions when the RI was performed in 2007 and 2009:

Soil

<u>VOCs</u> – Several Volatile Organic Compounds (VOCs) were detected in the soils within the Study Area. PCE was detected in soil samples collected below the basement floor of the former building at concentrations ranging from 3.6 to 49 ug/kg. Detections of MEK (a.k.a. 2-butanone) and acetone were also recorded. None of these detections, however, exceeded the Part 375 Unrestricted Use SCOs (Ref. 7).

<u>SVOCs</u> – Numerous SVOCs were detected in the soils within the Study Area. The compounds that exceeded the Part 375 Unrestricted Use SCOs were: benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, dibenzo(a,h)anthracene.

<u>Metals</u> – Several metals were detected in the subsurface soils within the Study Area. Of these occurrences, the detections of barium, cadmium, calcium, copper, magnesium, lead, mercury, silver, and zinc in the soils within the Study Area exceeded the Part 375 Unrestricted Use SCOs.

<u>Pesticides</u> – Several pesticides were detected in the soils within the Study Area. These included dieldrin, endrin, endosulan sulfate, DDE, DDD, and DDT. Of these, dieldrin exceeded the Part 375 Unrestricted Use SCOs in the shallow, zero to one foot deep samples only. The pesticides dieldrin, 4,4'-DDE, 4,4'-DDD, and 4,4'-DDT exceeded Part 375 Unrestricted Use SCOs throughout the Study Area.

<u>PCBs</u> – There were two detections of polychlorinated biphenyls (PCBs), Aroclors 1242 and 1254, within the Study Area. The detection of Aroclor 1242 exceeded the Part 375 Unrestricted Use SCOs.

Below is a summary of Site conditions when the pre-design investigation was performed in 2009:

Soil

<u>VOCs</u> – Ethyl benzene, isopropylbenzene, naphthalene, PCE, toluene, 1,2,4trimethylbenzene, 1,3,5-trimethylbenzene, m,p-Xylene, and o-Xylene were detected in the soil/fill materials. PCE detections ranged from 0.85 to 55.4 ug/kg. These detections were significantly below Part 375 Unrestricted Use SCOs.

PCE detections ranged from 0.85 to 55.4 ug/kg. These detections were significantly below Part 375 Unrestricted Use SCOs.

<u>SVOCs</u> – Phenol, acenaphthene, acenaphthylene, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, 1,1'-Biphenyl, carbazole, chrysene, dibenzo(a,h)anthracene, dimethyl phthalate, bis(2-Ethylhexyl)phthalate, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, 2-Methylnapthalene, naphthalene, phenanthrene, and pyrene were detected in the soil/fill materials. These detections were significantly below Part 375 Unrestricted Use SCOs.

<u>Pesticides</u> – Alpha-Chlordane, gamma-Chlordane, 4,4'-DDD, 4,4'-DDE, and 4,4'-DDT were detected in the soil/fill materials. The detections of 4,4'-DDT and 4,4'-DDD in sample MW-6A (8 feet) and 4,4'-DDT in sample MW-9 (17 feet) exceeded the Part 375 Unrestricted Use SCOs.

<u>PCBs</u> – Aroclor 1260 was detected in sample MW-2A. This detection was significantly below Part 375 Unrestricted Use SCOs.

<u>Metals</u> – Aluminum, arsenic, barium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, nickel, potassium, vanadium, and zinc were detected in the soil/fill materials. The detections of chromium in samples MW-2A, MW-6A (8 feet), MW-7 (5 feet), MW-8 (16 feet), MW-9 (17 feet), and MW-10 (5 feet); lead in samples MW-7 (5 feet) and MW-9 (17 feet); mercury in sample MW-7 (5 feet); and, zinc in sample MW-8 (16 feet) exceeded the Part 375 Unrestricted Use SCOs.

Site-Related Groundwater

Below is a summary of Site conditions when the RI was performed in 2007 and 2009:

<u>VOCs</u> – Two VOCs, PCE and chloroform, were detected above NYSDEC TOGS Class GA groundwater standards (Ref. 8). Chloroform was detected above NYSDEC TOGS in monitoring wells MW-1, MW-3, and MW-4. PCE was detected above the NYSDEC TOGS in monitoring wells MW-1, MW-2, MW-3, and MW-5. Overall, the PCE detections ranged from 4 to 7,900 ug/L.

<u>Metals</u> – There were six metals that exceeded NYSDEC TOGS groundwater standards in the Study Area; iron, magnesium, manganese, selenium, sodium, and thallium.

Below is a summary of Site conditions when the pre-design investigation was performed in 2009:

 $\underline{\text{VOCs}}$ – Acetone, bromodichloromethane, 2-Butanone (MEK), chloroform, cis-1,2dichloroethene, methylene chloride, PCE, and trichloroethene (TCE)were detected in the groundwater. PCE detections ranged from 0.50 to 17,700 ug/L. The detections of PCE in samples MW-2A (and its associated duplicate), MW-6 (and its associated duplicate), MW-7, MW-8, and OB-MW-8; acetone in sample MW-8; chloroform in samples MW-8 and OB-MW-8; and, TCE in sample MW-2A exceeded NYSDEC TOGS groundwater standards.

<u>SVOCs</u> – Acetophenone, benzaldehyde, bis(2-Ethylhexyl)phthalate, naphthalene, and n-Nitrosodiphenylamine were detected in the groundwater. These detections were significantly below NYSDEC TOGS.

<u>Metals</u> – Aluminum, barium, calcium, chromium, iron, lead, magnesium, manganese, nickel, potassium, selenium, sodium, and zinc were detected in the groundwater. The detections of magnesium in samples MW-2A (and its associated duplicate), MW-6 (and its associated duplicate), MW-7, OB-MW-9, MW-3, and MW-4; aluminum in sample MW-10; chromium and selenium in sample MW-8; and, sodium in samples MW-2A (and its associated duplicate), MW-6 (and its associated duplicate), MW-6 (and its associated duplicate), MW-6 (and its associated duplicate), MW-7, MW-8, OB-MW-8, OB-MW-9, MW-10, MW-3, and MW-4 exceeded NYSDEC TOGS groundwater standards.

Site-Related Soil Vapor Intrusion

The results of the RI showed that the soil vapor within the Study Area had been impacted with VOCs. PCE was detected in all seven of the sub-slab soil vapor points below the former building at concentrations exceeding 1.3 ug/m³, New York State Department of Health's (NYSDOH) mean value of VOCs in air of fuel oil heated homes (Ref. 9). Numerous other VOCs including acetone, MEK, TCE, toluene and xylene were detected at concentrations in excess of the NYSDOH's mean values for indoor air.

Storage Tanks

During the RI, three 275-gallon aboveground storage tanks (ASTs) were observed within the basement of the existing building. At that time, it appeared that one of the ASTs contained liquid, one was empty, and the third was filled with sand. In addition, a fill port and vent pipe likely associated with the ASTs were observed on Third Avenue next to the Site building.

3.0 SUMMARY OF REMEDIAL ACTION

The Site was remediated in accordance with the NYSDEC-approved RAWP dated June 2009 (Ref. 4), RAWP Addendum dated July 2009 (Ref. 10), and the Groundwater Investigation and Design Report dated September 2009; Revised November 2009 (Ref. 11). In addition, all remedial activities were summarized on daily and monthly reports to NYSDEC and NYSDOH and are included in the Final Engineering Report.

The following is a summary of the Remedial Actions performed at the Site:

- Collection of additional soil waste characterization samples to profile the soil/fill for disposal purposes. A waste disposal facility was selected based on the data collected. Based on the requirements of the selected facility, additional soil/fill samples were collected and analyzed to obtain soil disposal facility approval.
- 2. Excavation of soil/fill to 14.8, 15.8, or 22.67 feet below grade (or until bedrock encountered) was completed as needed Site-wide to facilitate construction of the foundation of the proposed new structure. The excavation for the proposed new building's foundation removed all soil/fill exceeding the Track 4 Site Specific Soil Action Levels (SSSALs) established for this Site and soil vapor source areas at the Site.
- Screening for indications of contamination (by visual means, odor, and monitoring with a photoionization detector (PID)) of all excavated soil during any intrusive Site work.
- 4. Collection and analysis of end-point samples to evaluate the performance of the remedy with respect to attainment of the Track 4 SSSALs developed for this Site.
- 5. Appropriate off-site disposal of all material removed from the Site in accordance with all Federal, State and local rules and regulations for handling, transport, and disposal;
- 6. Removal of three 275-gallon ASTs in accordance with applicable regulations;
- 7. A pre-design groundwater investigation that included 1) the installation of soil borings;
 2) the installation of wells MW-2A, MW-6, MW-7, OB-MW-7, MW-8, and OB-MW-8;

and, 3) a pump test on wells MW-2A, MW-6, MW-7, and MW-8. A Pre-Design Investigation Work Plan (Ref. 3) was submitted to NYSDEC in a separate document and was approved on June 16, 2009. The results of the pre-design investigation were included in the Groundwater Investigation and Design Report (Ref.11).

- 8. Injection of Regenox[™] (in-situ chemical oxidation ("ISCO") treatment) into the overburden and overburden/groundwater interface in select portions of the Site. The selected areas contained elevated levels of PCE either in the overburden soil/fill, water flowing within the overburden, or both. The injections were proposed as part of the Groundwater Investigation and Design Report (Ref. 11).
- 9. Based on the results of the pump test, a pump and treat system was installed to collect and treat the halogenated VOC-impacted groundwater (PCE and its degradation products) within shallow bedrock fractures in the locations of MW-2A, MW-6, MW-7, and MW-8. In addition, overburden well MW-11 was installed and added to the monitoring well network. The system design and well installation was included in the Groundwater Investigation and Design Report (Ref. 3).
- 10. MW-2 was abandoned per NYSDEC guidance using imported sand and bentonite. In addition, during abandonment, two to three well volumes of water from the respective monitoring well were removed and disposed of properly.
- 11. Construction and maintenance of an engineered composite cover system consisting of concrete-covered sidewalks, foundation walls, a ventilated parking garage, and concrete building slabs to prevent human exposure to residual contaminated soil/fill remaining under the Site. In addition, a vapor barrier was installed underneath the entire building foundation for additional protection. The composite cover system encompasses the entire footprint of the Site. No exposed soils remain.
- 12. Recording of an Environmental Easement, including active Institutional Controls (ICs), to prevent future exposure to any residual contamination remaining at the Site.
- 13. A Sub-slab Depressurization (SSD) system was incorporated below the foundation of the building for additional protection. The SSD system consists of horizontal trenches containing perforated pipe and gravel. The horizontal pipes were connected to vertical risers that extend above the roof of the building. Any pipe

penetrations through the vapor barrier were sealed in accordance with the manufacturer's recommendations. An SSD fan was mounted to the riser above the roof surface.

- 14. Collection and analysis of post-remedial groundwater samples from wells MW-1, MW-2A, MW-3, MW-4, MW-5, MW-6, MW-7, MW-8, MW-10, and MW-11 to evaluate performance of the remedy.
- 15. Development and implementation of a SMP for long term management of remaining contamination as required by the Environmental Easement, which includes plans for:(1) IC/ECs (2) monitoring, (3) operation and maintenance, and (4) reporting.

Remedial activities were completed at the Site in February 2010.

The overall objective of the remedial action was to remediate environmental conditions at the Site to the satisfaction of the NYSDEC and NYSDOH for its intended future residential and commercial use. The following is a summary of the remedy that was implemented at the Site. The remedial action was conducted in accordance with the approved Remedial Action Work Plan (RAWP) (Ref. 4). The FER dated November 2010 (Ref. 5) documents the results of the remedial action after its completion. The SMP (Ref. 1) provides a detailed description of the procedures required to manage residual contamination left in place at the Site. NYSDEC issued a Certificate of Completion in December 2010 after approving the FER and SMP.

4.0 EVALUATION OF REMEDY PERFORMANCE, EFFECTIVENESS, AND PROTECTIVENESS

The SMP requires inspections of all systems installed at the Site at least annually. In addition, a comprehensive Site-wide inspection is required to be completed annually. Additional inspections in the event of an emergency, such as a natural disaster are also required. The information gathered during the inspection is reported in the following sections.

4.1 Site-wide Inspection

The Site-wide inspection was conducted on June 14, 2022 by Jason Cooper, P.G. of CA RICH. The underground parking garage, surrounding street areas, small courtyard, and all on-site wells were inspected.

No additional Site-wide inspections were conducted during this reporting period as there were no events that warranted emergency inspections. Select photographs of the Site during the inspection are enclosed as Appendix A. The Site-wide Inspection form is enclosed as Appendix B.

4.2 Engineering Controls

Engineering controls at the Site consist of a vapor barrier, a composite cover system, passive subslab depressurization system, and a groundwater pump and treat system. An SSD system under the ventilated parking garage was installed during the construction of the new buildings' foundation as a contingency in the event that the parking garage is no longer ventilated or its design is altered to include occupied living space. At this time the SSD system remains off.

The engineering controls were inspected and evaluated on June 14, 2022 by Jason Cooper, P.G. The groundwater pump and treat system is temporarily off as approved by NYSDEC. No changes to the other engineering controls have occurred from the previous PRR. Based on the June 14, 2022 inspection, the ECs continue to perform as designed and be protective of human health and the environment. The inspection form is enclosed as Appendix B. Details regarding the ECs and their inspection are outlined below.

4.2.1 Vapor Barrier

A 15-mil ASTM E-1745 compliant vapor barrier manufactured by Stego® was installed underneath the building's foundation. The vapor barrier was overlapped by a minimum of six inches and secured with mastic or asphaltic tape. Conduits penetrating the vapor barrier were sealed with mastic or tape as per manufacturers' specifications. The vapor barrier specifications were included in the Final Engineering Report (Ref. 5).

The inspection conducted on June 14, 2022 concluded, based on visual observations, that the concrete basement floor has remained in good condition and the relatively newer concrete in the area of the sewer pipe is also in good condition. No additional modifications were visible in the parking garage. Jason Cooper, P.G. did not identify any areas where the cover system appeared impaired, compromised, or otherwise damaged.

4.2.2 Composite Cover System

For any residual contamination left in place, exposure to residual contaminated soils is prevented by an engineered, composite cover system that was built on the Site. The composite cover system consists of concrete pavement on walkways, concrete parking lots, concrete building slabs and foundation walls, and one foot of gravel which covers the entire Site. Slabs and paving systems include sub-base materials that are at least 12-inches thick. The composite cover system specifications are detailed in the Final Engineering Report (Ref. 5).

The inspection conducted on June 14, 2022 concluded, based on visual observations, that the concrete basement floor has remained in good condition and the concrete in the area of the sewer pipe is also in good condition. No additional modifications were visible in the parking garage. Jason Cooper, P.G. did not identify any areas where the cover system appeared impaired, compromised, or otherwise damaged.

4.2.3 Sub-slab Depressurization System

Installation of an SSD system in addition to the ventilated parking garage was included in the construction of the new buildings' foundation as a contingency in the event that the parking garage is no longer ventilated or its design is altered to include occupied living space. The objective of the SSD system when in operation is to maintain a negative pressure underneath the slab while allowing the vapors below the concrete slab to vent without intruding into the building. The SSD

system consists of horizontal trenches with four-inch perforated PVC pipe, a filter sock, and gravel. The horizontal pipes are connected to three vertical risers that combine into one six-inch header that extends above the roof of the building. A Magnehelic gauge was installed to each of the three riser pipes above the slab to facilitate collection of vacuum readings. These Magnehelics will also serve as warning devices or indicators to ensure that this system is working properly when operational. Sample ports were also installed in each of the riser pipes to allow for the collection of soil gas samples, if needed. In addition, labels were affixed to each riser immediately below the sample ports indicating the following:

SUB-SLAB DEPRESSURIZATION SYSTEM

This is a component of a Sub-Slab Depressurization System

DO NOT ALTER OR DISCONNECT

For Service call: CA RICH Consultants 516-576-8844

The SSD system layout is illustrated on Figure 3 and the typical vent and roof detail is illustrated on Figure 4. If the building design is altered and the SSD system needs to be activated, NYSDEC will be notified and a start-up test will be conducted to confirm that the SSD system is working.

Procedures for operating and maintaining the SSD system are documented in the Operation and Maintenance Plan (O&M) (Section 4 of the SMP, Ref. 1). Procedures for monitoring the system are included in the Monitoring Plan (Section 3 of the SMP, Ref. 1). The SMP also addresses inspection procedures that must occur after any severe weather condition has taken place that may affect on-site ECs.

The Site inspection did not include an inspection of the passive SSD system as no modifications have occurred at the Site. The parking garage continues to be ventilated and activation of the SSD system is not required at this time.

4.2.4 Groundwater Remediation System

A groundwater pump and treat system was installed at the Site to collect and treat the residual halogenated VOC-impacted groundwater (PCE and its degradation products) within the shallow bedrock fractures in the locations of MW-2A, MW-6, MW-7, and MW-8. The piping and vaults for the pump and treat system were installed in December 2009 and February 2010. The mechanical system components were installed in March 2010. NYCDEP Sewer Discharge Permit number 569293 was obtained on April 21, 2010. The system was started up on April 22, 2010. The groundwater pump and treatment system details are illustrated on Figure 5.

Beginning in late 2013, the compressor began to malfunction and actions were taken to repair the system. The groundwater pump and treat system underwent repairs and maintenance from March 2014 to June 2014. During this time the pumps were removed from all wells (wells 2A, 6, 7, and 8) and sent to the manufacturer, QED®, for maintenance and repairs. The pumps were refurbished and reinstalled back in their respective wells in June 2014.

In addition, a brand new five-horse power Campbell-Hausfeld compressor (Model No. CE700) with a 60-gallon receiver was installed in June 2014. The compressor was fitted with coalescing and particulate filtration and an automatic drain. The compressor was not connected to the air dryer as moisture buildup had not been an issue during the operation of the remediation system. If water build-up in the line becomes a problem, the air dryer will be reconnected. The five-horse power air compressor provides 17.2 cfm @ 90 psi and 16.6 cfm @ 175 psi.

The pump and treat system operates 24 hours per day, except during maintenance activities, until the termination criteria have been met. The termination criteria are outlined in Section 2.2.2.3 of the SMP. Procedures for operating and maintaining the Pump and Treat system are provided in the Operation and Maintenance Plan in Section 4 of the SMP. Procedures for monitoring the system are included in the Monitoring Plan (Section 3 of this SMP). The Monitoring Plan also addresses inspection procedures that must occur after any severe weather condition has taken place that may affect on-site ECs.

During the past year the system was not in operation and was turned off on January 5, 2021 as per request by CA RICH and approval by NYSDEC. The groundwater pump and treat system was not inspected for this PRR as it is off. If the system is operating at the time of the next PRR it shall be inspected at that time.

5.0 INSTITUTIONAL AND ENGINEERING CONTROL (I & EC) PLAN COMPLIANCE REPORT

5.1 Institutional Controls

A series of Institutional Controls were required at the Site to: (1) implement, maintain and monitor Engineering Control Systems; (2) prevent future exposure to residual contamination by controlling disturbances of the subsurface contamination; (3) restrict the use of the Site to residential/commercial uses only. Adherence to these ICs on the Site is required under the Environmental Easement and is implemented under the SMP.

These ICs are:

- Compliance with the Environmental Easement and the SMP by the Grantor and the Grantor's successors and assigns;
- All ECs must be operated and maintained as specified in the SMP;
- All ECs on the Controlled Property must be inspected at a frequency and in a manner defined in the SMP;
- Groundwater, indoor air, and other environmental or public health monitoring must be performed as defined in the SMP; and,
- Data and information pertinent to Site Management of the Controlled Property must be reported at the frequency and in a manner defined in the SMP.

ICs identified in the Environmental Easement may not be discontinued without an amendment to or extinguishment of the Environmental Easement.

The Site has a series of ICs in the form of Site restrictions. Adherence to these ICs is required by the Environmental Easement. Site restrictions that apply to the Controlled Property are:

- The property may only be used for restricted residential or commercial use provided that the long-term EC/ICs included in the SMP are employed or eliminated pursuant to the SMP;
- The property may not be used for a higher level of use, such as unrestricted residential use without additional remediation and amendment of the Environmental Easement, as approved by the NYSDEC;
- All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;

- The use of the groundwater underlying the property is prohibited without treatment rendering it safe for intended use;
- Subsurface vegetable gardens and farming on the property are prohibited;
- The Site owner or remedial party will submit to NYSDEC a written statement that certifies, under penalty of perjury, that: (1) controls employed at the Controlled Property are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, (2) nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP while the Environmental Easement is in effect. NYSDEC retains the right to access such Controlled Property at any time in order to evaluate the continued maintenance of any and all controls. This certification shall be submitted annually, or an alternate period of time that NYSDEC may allow and will be made by an expert that the NYSDEC finds acceptable while the Environmental Easement is in effect.

The environmental easement on this property is enforceable in perpetuity and is the mechanism that will be used to continually implement, maintain, monitor, and enforce such specified controls both by the BCP Volunteer, the BCP Volunteer's successors and assigns, and by State or local governments. A copy of the environmental easement with proof of filing with the responsible municipal authority is enclosed in the Final Engineering Report (Ref. 5).

5.2 Engineering Controls

Engineering controls (ECs) at the Site consist of a vapor barrier, a composite cover system, a groundwater pump and treat system, and a sub-slab depressurization system. Assurance of the ECs developed for the Site will be achieved using a combination of site inspections, monitoring, and annual certifications. The engineering controls were inspected and evaluated on June 14, 2022 by Jason Cooper, P.G. Details regarding the engineering controls and their inspection are outlined in Section 4.0. The groundwater pump and treat system was not inspected as it is currently temporarily shut down as approved by NYSDEC.

5.3 Certification

The annual certification for the Site consists of a completed NYSDEC IC/EC Certification Form for BCP Site# C203044. The completed IC/EC Certification Form was signed on July 8, 2022 and is enclosed as Appendix C. The annual certification was prepared in accordance with the SMP and has been signed by Jason Cooper, on behalf of the Owner, CS Melrose Site B, LLC and as the Qualified Environmental Professional.

6.0 MONITORING PLAN COMPLIANCE REPORT

6.1 Groundwater Monitoring Well Installation

From June 26, 2007 through to November 2, 2009 seven monitoring wells (MW-1, MW-2, MW-3, MW-4, MW-5, MW-10, and MW-11) and four pumping wells (MW-2A, MW-6, MW-7, and MW-8) were installed. Monitoring wells MW-1, MW-2 and MW-3 were installed using an air rotary drill rig equipped with an Odex drilling system. The wells were completed using new, four-inch diameter Schedule 40 PVC pipe and factory slotted well screens. The wells were constructed such that the well screens intersected both the water table interface and the soil/bedrock interface. The well installation depths are listed as follows:

<u>Well ID</u>	<u>Terminal Depth (Feet below grade)</u>
MW-1	51
MW-2	45

The wells were completed with number 2 sand, a bentonite seal, and a locking, watertight plug. MW-2 and MW-3 were completed with locking manholes, while MW-1 was left above grade and covered with a metal standpipe.

Monitoring wells MW-4 and MW-5 were installed using hollow stem augers from the ground surface to the top of the bedrock. From that point onward, a tri-cone roller bit attached to an air rotary drill rig was used to advance the borehole. The wells were again completed using new, four-inch diameter Schedule 40 PVC pipe and factory slotted well screens. The wells were constructed such that the well screens intersected both the water table interface and the soil/bedrock interface. The well installation depths are listed below.

<u>Well ID</u>	<u>Terminal Depth (Feet below grade)</u>
MW-3	45
MW-4	35
MW-5	49

The wells were completed with number 2 sand, a bentonite seal, and a locking, watertight plug. MW-5 was completed with a locking manhole, while the casing of MW-4 was left above grade and covered with a metal standpipe.

Pumping wells MW-2A, MW-6, MW-7, and MW-8, and groundwater monitoring well MW-10 were installed using the roto-sonic drilling method or a combination of roto-sonic and air rotary drilling methods. A six-inch hole was advanced through the overburden at least 5 feet into competent bedrock using the roto-sonic drilling method. A four-inch steel casing was then seated into the bedrock, cemented in place and allowed to set for a minimum of 24 hours. A four-inch hole was then drilled through the casing using the roto-sonic drilling method at MW-2A, MW-6, and MW-8. The air rotary drilling method was used at MW-7 and MW-10 due to a mechanical problem with the roto-sonic drill rig. The hole extended until the rate of groundwater flow was deemed sufficient to produce groundwater for monitoring purposes or to a maximum of 60 feet below grade. The well installation depths are listed below:

<u>Well ID</u>	Terminal Depth (Feet below grade)
MW-2A	55
MW-6	45
MW-7	50
MW-8	40
MW-10	57

MW-2A, MW-6, MW-7, MW-8, and MW-10 were completed with number 2 sand, a bentonite seal, a locking, watertight j-plug and flush-mounted bolt-down monitoring well covers,

Monitoring well MW-11 was installed on November 2, 2009 using hollow stem augers from ground surface to the top of the bedrock. The well was installed to a terminal depth of 19.2 feet below grade. The well was completed with number 2 sand, a bentonite seal, a locking j-plug and a flush mounted bolt-down cover.

During drilling activities the shallow groundwater was encountered between 15.05 (MW-8) to 43.20 (MW-10) feet above mean sea level (MSL). The monitoring well locations are illustrated on Figure 2.

Monitoring well MW-2 was properly abandoned on May 21, 2009 and MW-2A was installed in close proximity on May 28, 2009. Drill cuttings that were not used to backfill the borehole were drummed and disposed of off-site.

6.2 Groundwater Monitoring Well Survey

The well casing elevations for monitoring wells MW-1, MW-2, MW-3, MW-4 and MW-5 were surveyed on November 8, 2007, the well casing elevations of monitoring wells, MW-2A, MW-6, MW-7, MW-8 and MW-10 were surveyed on July 14, 2009 and monitoring well MW-11 was surveyed on January 26, 2010. All wells were surveyed by Montrose Surveying Company, a New York State licensed surveyor, to the nearest 0.01-foot. At the time of survey, all wells were flush mounted and no longer in standpipes. The initial depth to groundwater was measured on August 13, 2009. The elevations were then plotted and a water table elevation contour map was prepared to determine the horizontal direction of groundwater flow. Based upon the data collected on August 13, 2009, the Site-specific direction of groundwater flow is toward the southwest. The regional direction of groundwater flow is toward the southwest. The regional direction of groundwater elevation contour maps as well as a tabulation of the Harlem and East Rivers. The groundwater elevation contour maps as well as a tabulation of the casing elevations and depth to water measurements are included on Figure 6.

6.3 Groundwater Monitoring Well Sampling and Analysis

Since issuance of the COC, groundwater samples have been collected on a quarterly basis in accordance with the SMP. As of December 2015, NYSDEC required this sampling to be changed from quarterly to semi-annually. All groundwater samples were submitted to Alpha Analytical Laboratories (an ELAP certified laboratory) for the December 2021 and the June 2022 sampling. All groundwater samples were analyzed for VOCs using USEPA Method 8260 with NYSDEC ASP Category B deliverables. The following samples were also collected for QA/QC purposes: one trip blank, one field blank, one duplicate sample, one matrix spike and one matrix spike duplicate. All groundwater samples were received and analyzed within their respective holding times. Groundwater monitoring wells MW-3 and MW-5 no long require sampling as part of the now semi-annual groundwater sampling as the PCE concentrations have been less than 5 ppb for four consecutive quarters. In addition, beginning in the second half 2015, MW-11 no longer requires

sampling. The groundwater monitoring network is summarized on Table 2. A groundwater sampling log containing sampling details and measurements was completed for each well. A copy of the groundwater sampling log for each half is included in Appendix D.

The laboratory analytical results were compared to their applicable NYSDEC TOGS groundwater standards (Ref. 8) and are summarized on Table 1. A qualified third-party Data Validator reviewed the groundwater laboratory data and a DUSR was prepared. A complete copy of the validated groundwater data package is attached in Appendix E. The analytical data from each sampling round was also submitted to NYSDEC electronically in the Electronic Data Deliverable (EDD) format and checked with the EQuIS program. The following is a summary of each semi-annual sampling event for the second half of 2021 and first half of 2022.

6.3.1 Second Half 2021

The second half 2021 post-remedial groundwater sampling was conducted on December 14, 2021 on monitoring wells MW-1, MW-2A, MW-4, MW-6, MW-7, MW-8, and MW-10.

During this past half, the PCE concentration in all sampled monitoring wells monitored was above the Class GA Groundwater Standard of 5 ug/L or parts per billion (ppb). The following lists the monitoring wells and PCE concentrations for the second half 2021:

<u>Well ID</u>	PCE Concentration (ug/L or ppb)	
MW-1	29	
MW-2A	400	
MW-3	Sampling No Longer Required	
MW-4	13	
MW-5	Sampling No Longer Required	
MW-6	55	
MW-7	42	
MW-8	630	
MW-10	19	
MW-11	Sampling No Longer Required	

A groundwater contour map showing the groundwater flow at the Site on December 14, 2021 is included as Figure 7 and a PCE concentration box plot map is included as Figure 8.

6.3.2 First Half 2022

The first half 2022 post-remedial groundwater sampling was conducted on June 14, 2022 on monitoring wells MW-1, MW-2A, MW-4, MW-6, MW-7, MW-8, and MW-10.

During this past half, the PCE concentration in all sampled monitoring wells monitored was above the Class GA Groundwater Standard of 5 ug/L or parts per billion (ppb) with the exception of MW-10. The following lists the monitoring wells and PCE concentrations for the first half 2022:

<u>Well ID</u>	PCE Concentration (ug/L or ppb)	
MW-1	48	
MW-2A	180	
MW-3	Sampling No Longer Required	
MW-4	6.4	
MW-5	Sampling No Longer Required	
MW-6	42	
MW-7	16	
MW-8	540	
MW-10	3.8	
MW-11	Sampling No Longer Required	

A groundwater contour map showing the groundwater flow at the Site on June 14, 2022 is included as Figure 9 and a PCE concentration box plot map is included as Figure 10.

6.3.3 Conclusions

The results from the semi-annual monitoring sampling show that the operation of the pump and treat system coupled with the Chemical Oxidation Program has resulted in an improvement in the overall quality of the groundwater beneath the Site. The groundwater quality at monitoring wells MW-3, MW-5, MW-11 have achieved non-sampling status and therefore were not sampled during this reporting period

Six of the seven wells sampled (MW-1, MW-4, MW-6, MW-7, and MW-8) exhibited a decrease in PCE concentrations from the December 2021 sampling event to the June 2022 sampling event, which is summarized below.

<u>Well</u>	2021 PCE Concentration (ug/L)	2022 PCE Concentration (ug/L)
MW-1	29	48
MW-2A	400	180
MW-4	13	6.4
MW-6	55	42
MW-7	42	16
MW-8	630	540
MW-10	19	3.8

The groundwater flow at the Site was measured on December 14, 2021 and June 14, 2022 with the system not in operation. The groundwater flow direction at these times was towards the southwest.

6.4 MONITORING PLAN COMPLIANCE REPORT CONCLUSIONS AND RECOMMENDATIONS

From June 2021 to June 2022, there were no monitoring deficiencies and the monitoring plan was in full compliance. Overall, the groundwater beneath the Site has shown a decrease in PCE concentrations. In addition, monitoring wells MW-3 and MW-5 are no longer included in the semi-annual groundwater sampling events as monitoring wells MW-3 and MW-5 have achieved the non-sampling criteria outlined in the SMP (Ref 1). Monitoring well MW-11 has also achieved the non-sampling criteria as of December 2015 with a PCE concentration of 2.5 ug/L, below the NYSDEC standard. The SMP states that groundwater monitoring activities to assess natural attenuation will continue, as determined by the NYSDEC, until residual groundwater concentrations are found to be consistently below NYSDEC standards, or have become asymptotic over an extended period or have become dry. Semi-annual (twice a year) Monitoring will continue until permission to discontinue is granted in writing by the NYSDEC. As PCE concentrations continue to decrease with the groundwater pump and treat inactive, we recommend that the system continue to remain off.

7.0 OPERATION & MAINTENANCE PLAN COMPLIANCE REPORT

7.1 Groundwater Pump and Treat System

Since the groundwater pump and treat system was started up on April 22, 2010, operations and maintenance visits have been conducted in the frequency outlined in the SMP. The groundwater pump and treat system has been functioning normally. However, the pump in pumping well MW-2A is stuck approximately 7-9 feet above the normal depth, but continues to pump water from the well to the system for treatment. Section 4.2.4 of this report details the system repair timeline. The system has been off for this reporting period since January 5, 2021 when the system was approved by NYSDEC to be temporarily shut down. Checklists from each operations and maintenance visit are enclosed in Appendix F and Table 3 summarizes the totalizer reading and clickers for each pumping well. 4.2.4

7.2 Groundwater Pump and Treat System Discharge Sample and Analysis

A sample of the effluent groundwater from the groundwater pump and treat system was obtained every quarter beginning in the second quarter of 2011 until the latest sampling event in October 2018. The samples were submitted to American Analytical Laboratories and analyzed for the NYCDEP B+ parameters. The samples were analyzed within their respective holding times each quarter. The analytical results from each sampling event dating back to the second quarter 2011 indicate that all parameters are in compliance with the permit; therefore, a carbon change-out has not been needed. A hard copy of the laboratory sample results was attached to a summary letter and sent to the NYCDEP. Copies of the letter from the October 2018 sampling is included in Appendix G.

In November 2018, NYCDEP indicated sampling of the system for discharge into the City sewers was no longer required (See Appendix H). Sampling for the NYCDEP B+ parameters have not been collected since the issuance of the NYCDEP e-mail. Sampling of the raw and treated groundwater from the system is conducted on a semi-annual basis during the groundwater sampling events and only analyzed for VOCs. Because the groundwater pump and treat system was shut down on January 5, 2021 no raw or treated groundwater was sampled for analysis.

7.3 Sub-Slab Depressurization System

Installation of an SSD system in addition to the ventilated parking garage was included in the construction of the new buildings' foundation as a contingency in the event that the parking garage is no longer ventilated or its design is altered to include occupied living space. If the building design is altered and the SSD system needs to be activated, NYSDEC will be notified and a start-up test will be conducted to confirm that the SSD system is working. At the time of this Report, no modifications to the building design have occurred and the SSD system remains off. As such, no O&M activities are required at this time.

7.4 Operation & Maintenance Plan Compliance Report Conclusions And Recommendations

The remediation system has operated continuously from the second half 2019 through to January 5, 2021 when it approved to be turned off by NYSDEC. Overall, the groundwater quality beneath the Site has exhibited a decrease in PCE concentrations, which indicates the groundwater pump and treat system did operated effectively in the past.

However, at this time, it appears that the PCE concentrations in the pumping wells are unaffected by operation of the system. The PCE concentrations in the pumping wells have ranged from 3.8 ug/L in MW-10 to 540 ug/L in MW-8 in June 2022 and 13 ug/L in MW-4 to 630 ug/L in MW-8 in December 2021. We recommend the groundwater pump and treat system continue to remain off.

8.0 CONCLUSIONS AND RECOMMENDATIONS

The overall objective of the remedial action is to remediate environmental conditions at the Site to the satisfaction of the NYSDEC and NYSDOH for the future restricted residential/commercial use. As documented in the FER (Ref. 5), the results of the remedial activities conducted at the Site indicate that the identified areas of concern were satisfactorily addressed. NYSDEC issued a Certificate of Completion in October 2010 after reviewing the FER (Ref. 5) and SMP (Ref. 1).

Based on the evaluation of the inspection and monitoring data, the following has been concluded:

- ECs and associated ICs were in place, performed properly, and remain effective;
- The monitoring plan was properly implemented;
- The remedy continues to be protective of public health and the environment and compliant with the decision document for the Site.

• The groundwater pump and treat system remains inactive and a decrease in the PCE concentrations have been observed.

Based on the above conclusions, the following shall continue:

- Operations and maintenance activities of the groundwater pump and treat system should continue in accordance with the schedule outlined in the approved SMP, if and when the system is reactivated;
- Groundwater pump and treat system samples should continue to be collected on a semiannual basis during groundwater sampling events, if and when the system is reactivated;
- Groundwater sampling should continue on a semi-annual basis; and
- The next Periodic Review Report should be submitted in July 2023.

We recommend the groundwater pump and treat system remain inactive as PCE concentrations in the monitoring wells have exhibited a significant decrease since the system was turned off.

9.0 REFERENCES

1. CA RICH Consultants, Inc. Site Management Plan. New York: Author, July 2010.

2. CA RICH Consultants, Inc. <u>Remedial Investigation Report, Cornerstone Site B-1, 3100 Third</u> <u>Avenue, Bronx, N.Y.</u> New York: Author, November 2007; Revised April 2009.

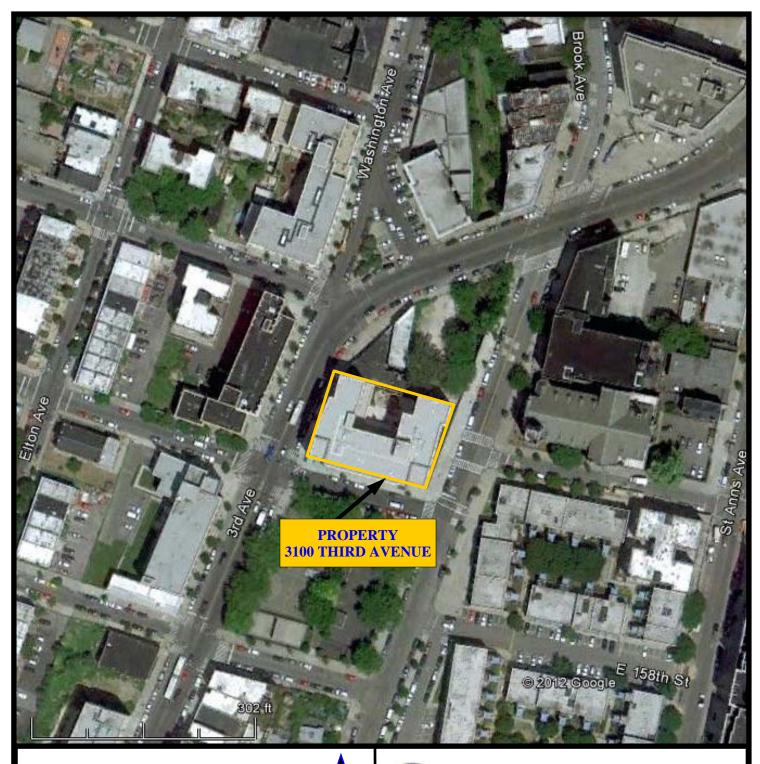
3. CA RICH Consultants, Inc. <u>Groundwater Investigation and Design Report.</u> New York: Author, June 2009.

4. CA RICH Consultants, Inc. <u>Remedial Action Work Plan.</u> New York: Author, June 2009.

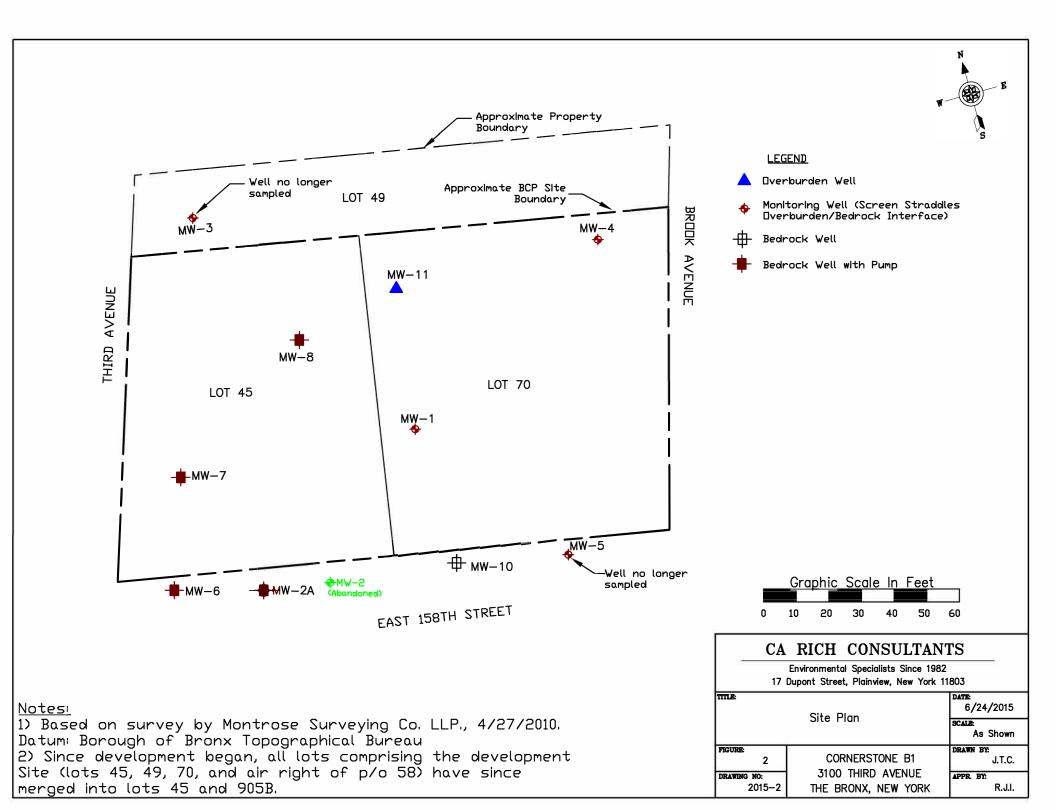
5. CA RICH Consultants, Inc. Final Engineering Report. New York: Author, November 2010.

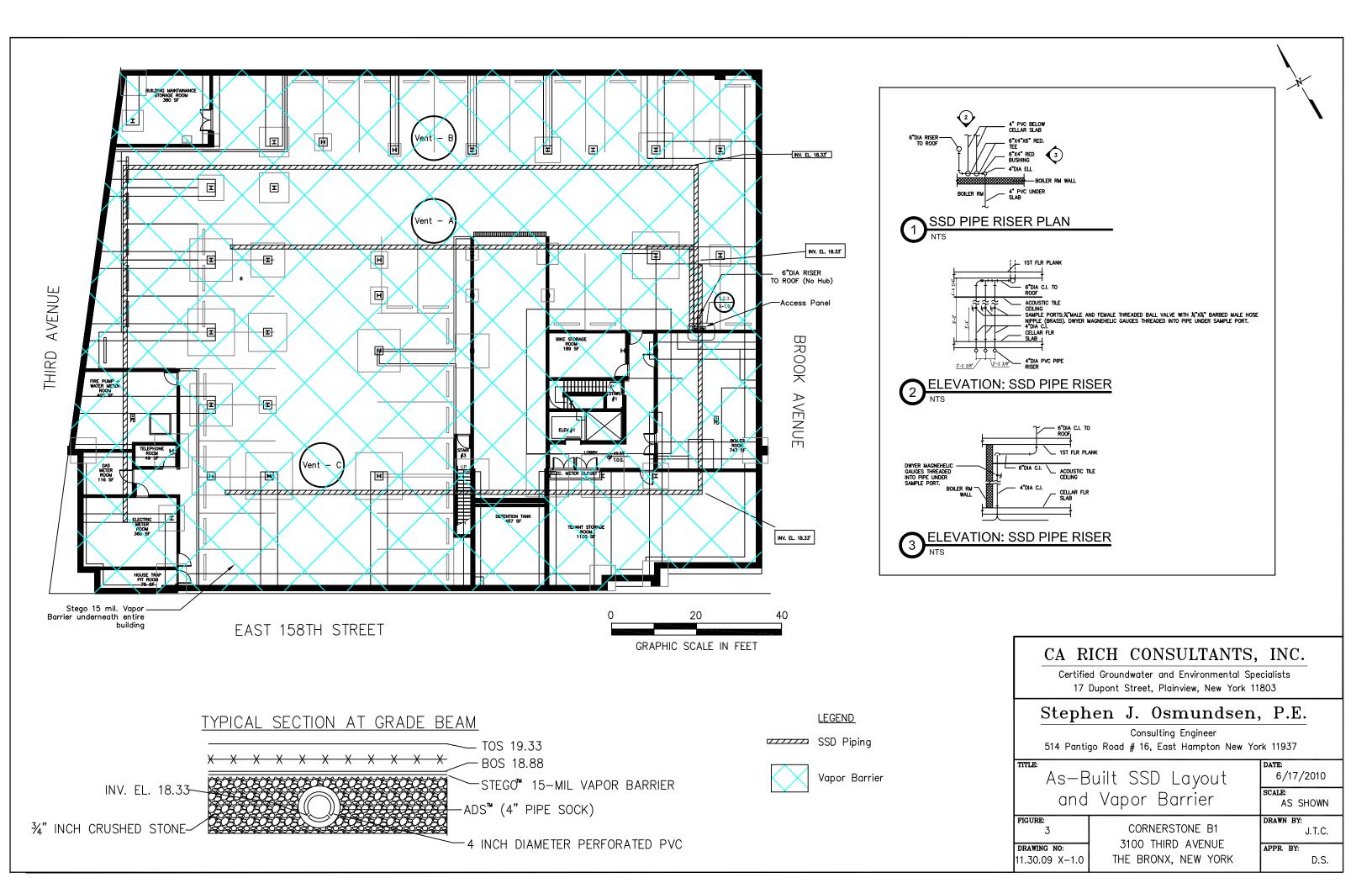
6. Pressly & Associates, Inc. <u>Phase I Environmental Site Assessment For Site B, Block 2364; Lots</u> <u>45, 49, 55, 56, 58, Third Avenue/E.160th Street/Brook Avenue, Bronx, NY. (also includes Lot 70)</u>. New York: Author, March 2004.

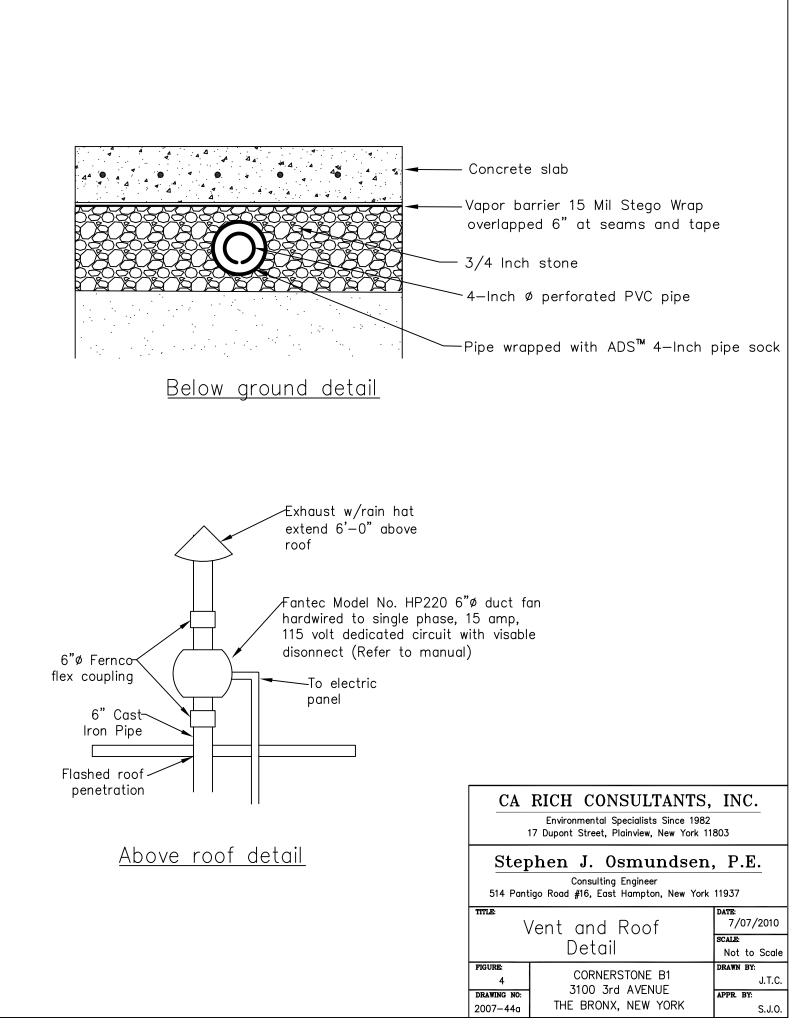
7. NYSDEC. 6 NYCRR Part 375 Environmental Remediation Programs, Subparts 375-1 to 375-4 & 375-6. New York: Author, December 2006.

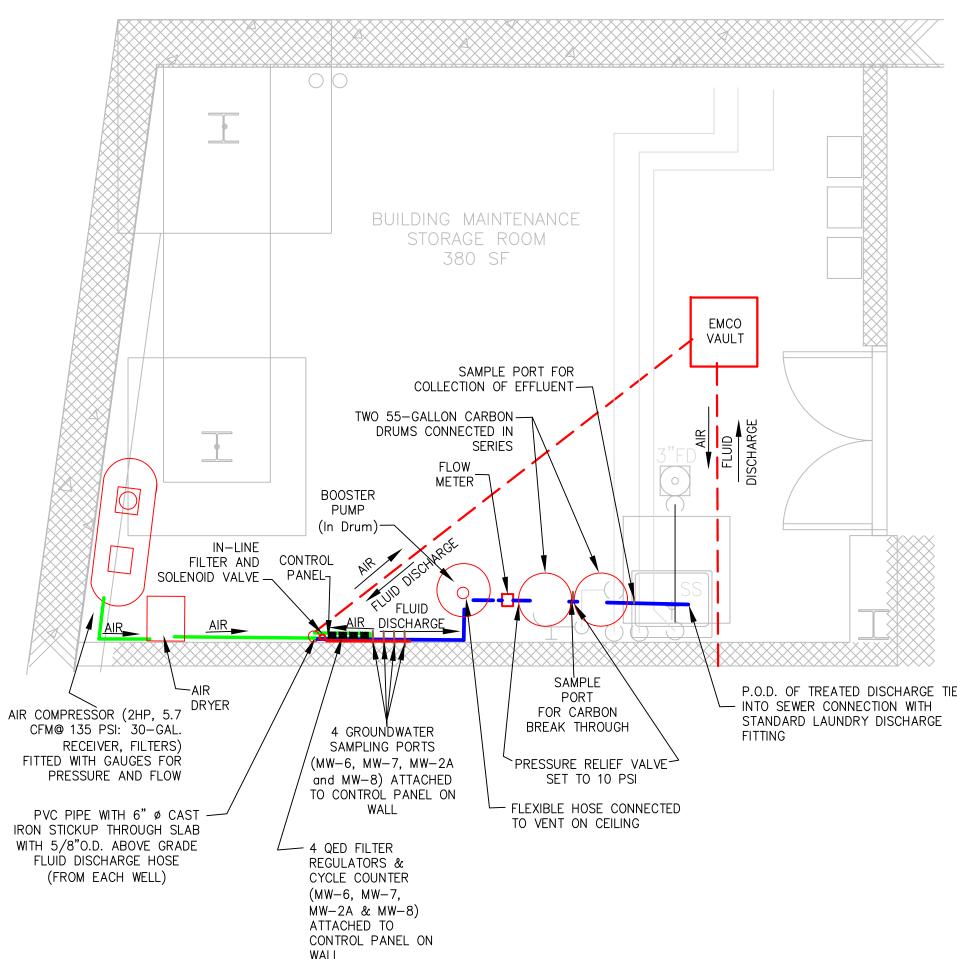

8. NYSDEC. Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. New York: Author, June 1998

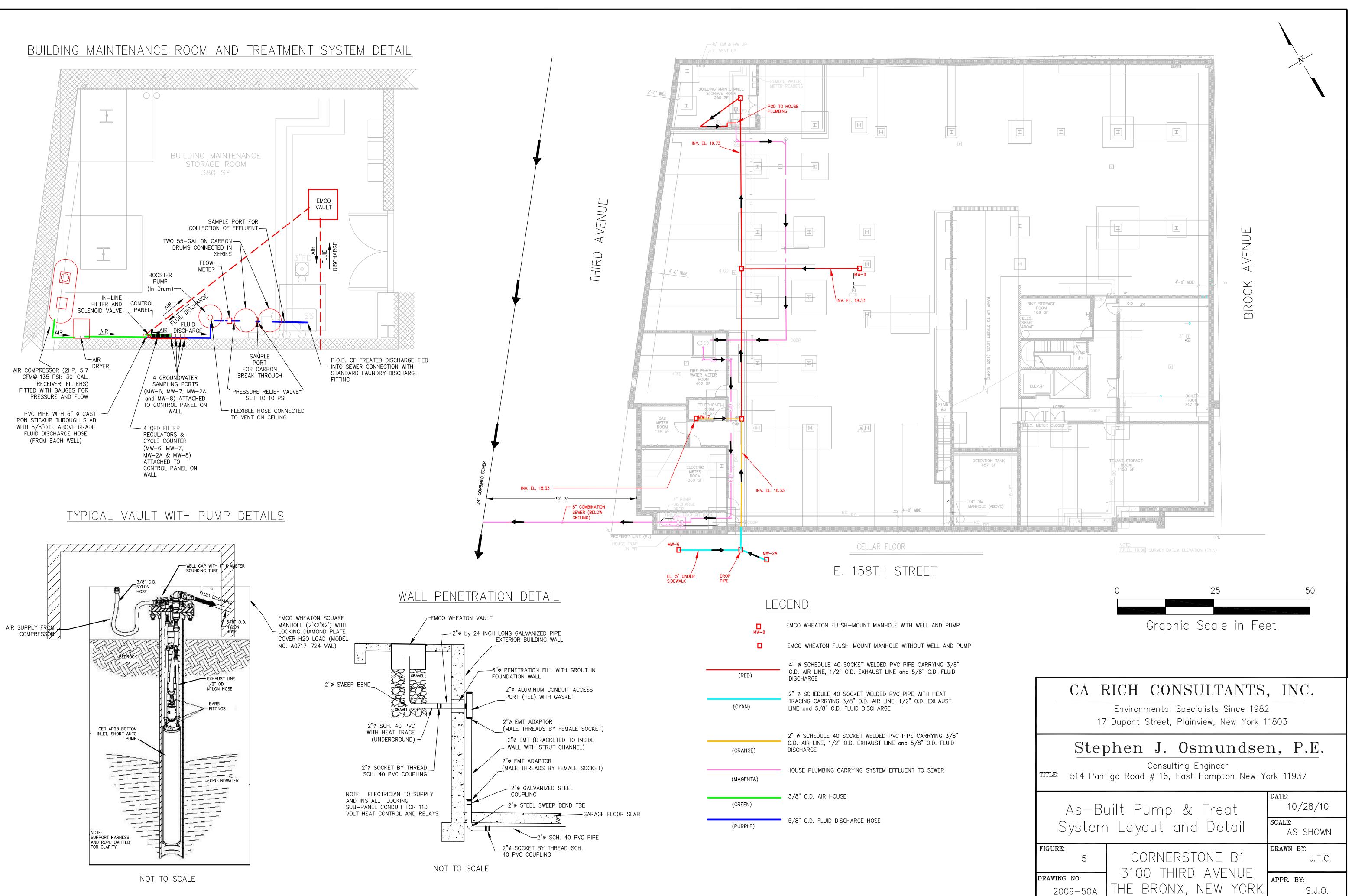
9. NYSDOH. <u>Guidance for Evaluating Soil Vapor Intrusion in the State of New York</u>. New York, Author, October 2006.

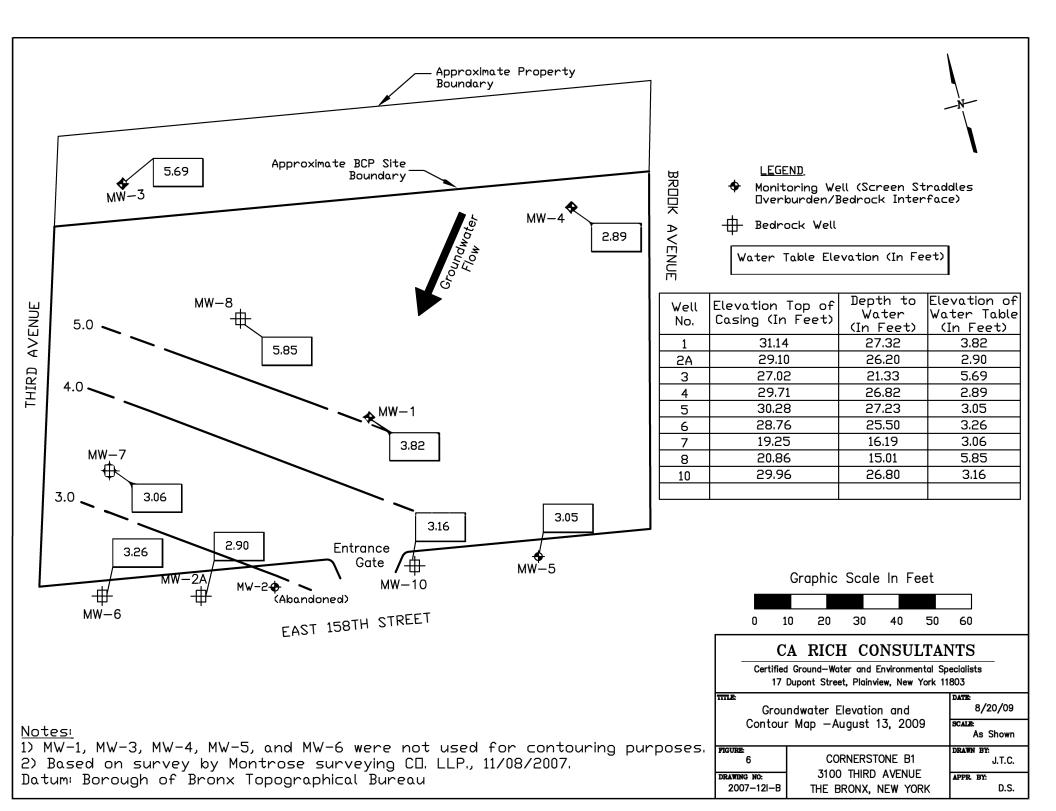

10. CA RICH Consultants, Inc. <u>Remedial Action Work Plan Addendum.</u> New York: Author, July 2009.

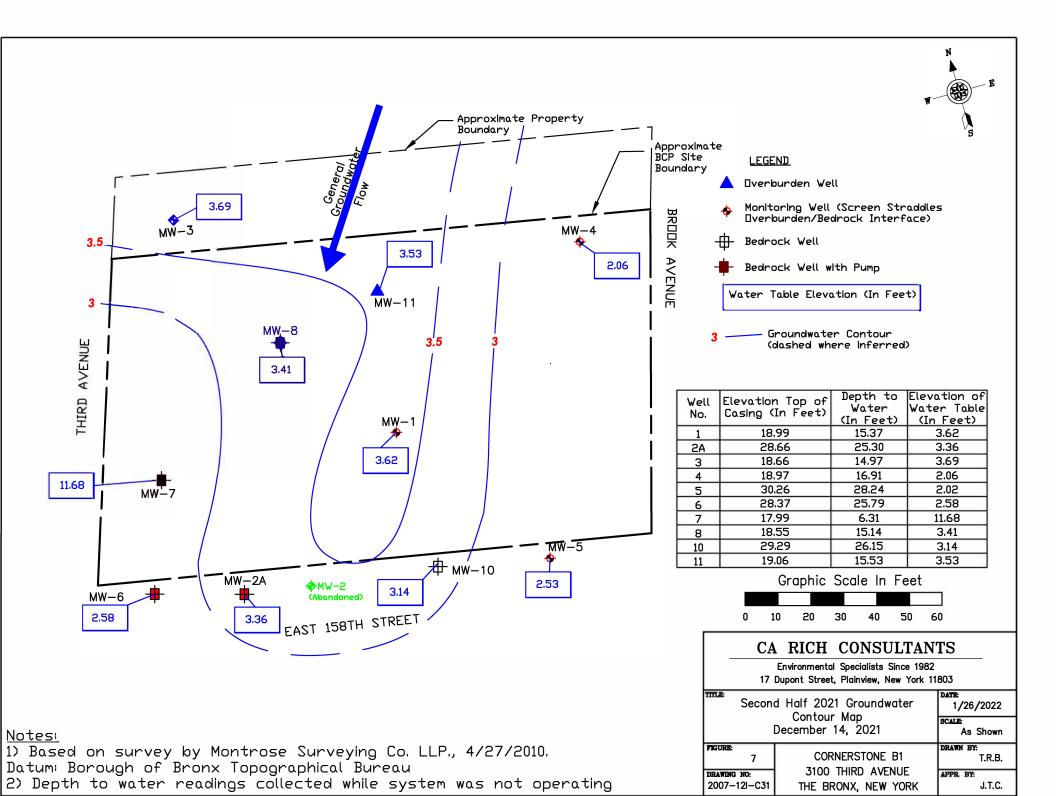

11. CA RICH Consultants, Inc. <u>Groundwater Investigation and Design Report</u>. New York: Author September 2009; Revised November 2009.

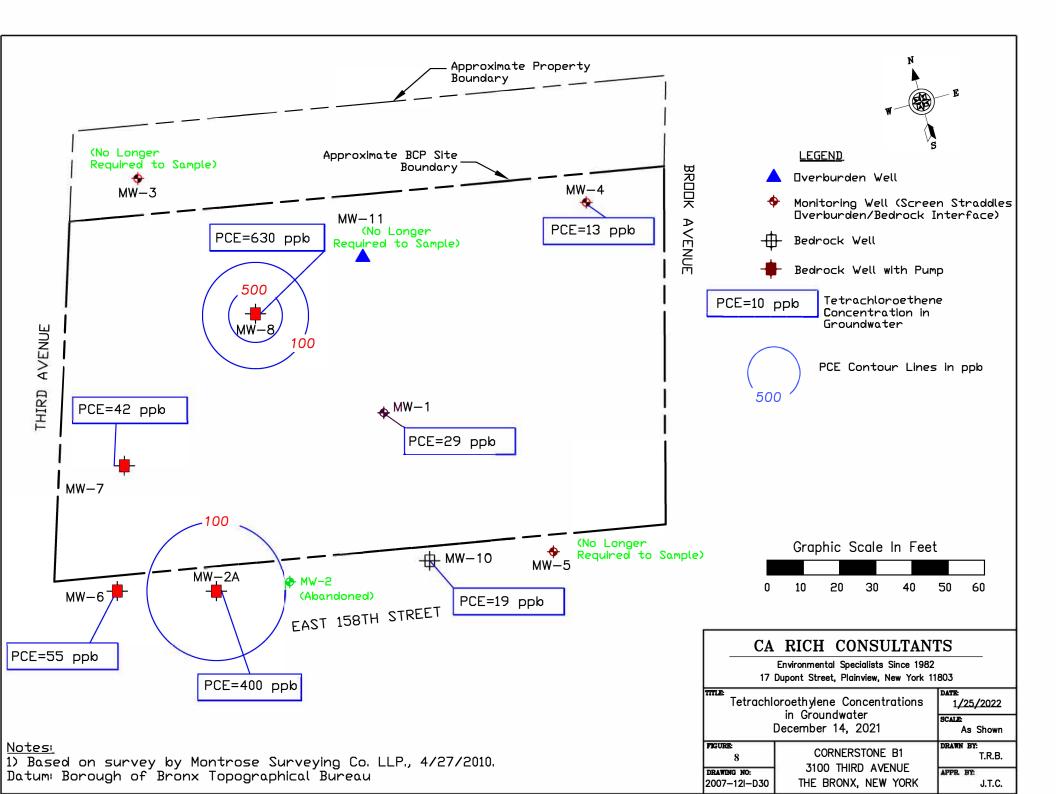

FIGURES

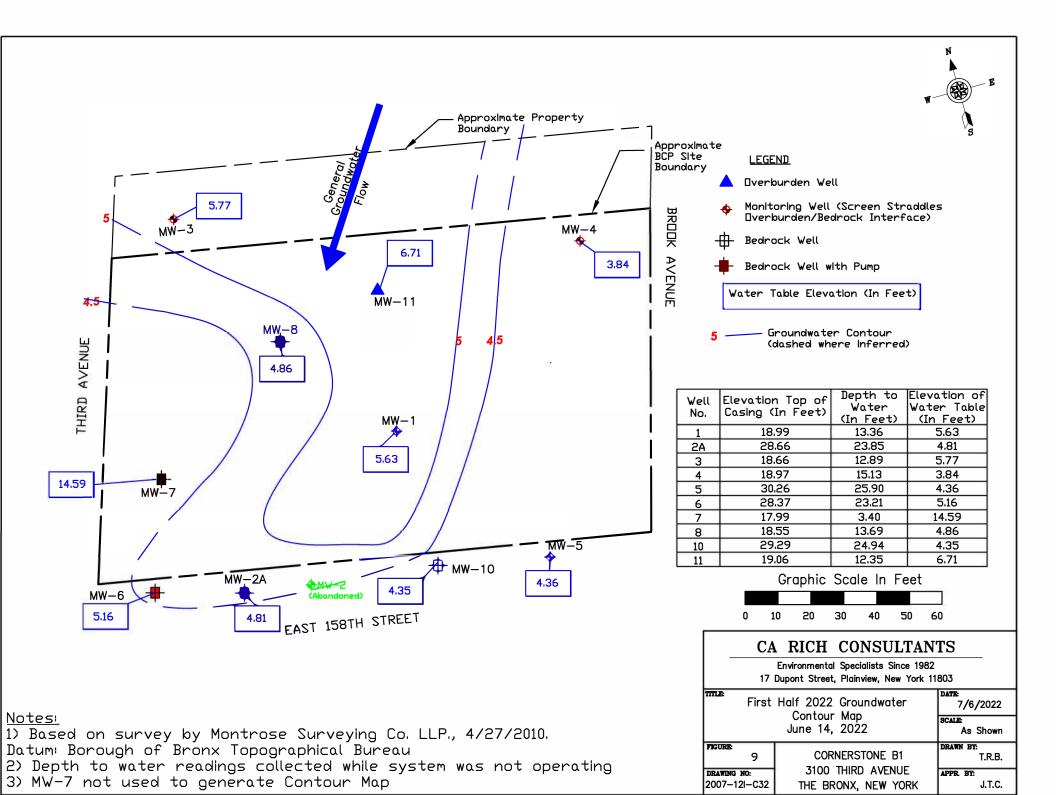


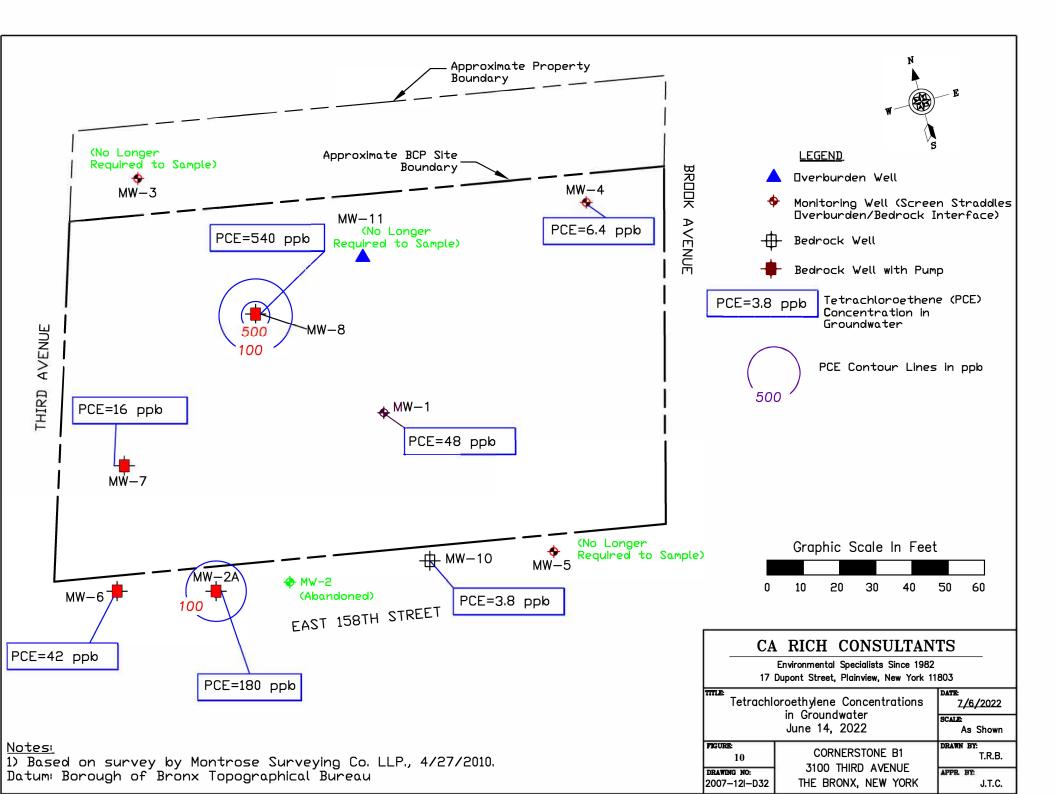

		CA RICH CONSULTANTS 17 Dupont Street, Plainview, NY 11803		
	TITLE:		DATE:	
	Pror	perty Location Map	6/29/2012	
		berty Ebeation map	SCALE:	
N			As Shown	
	FIGURE:		DRAWN BY:	
Adapted from Google Earth 2012	1	Cornerstone Site B-1 3100 Third Avenue	JTC	
Augreu from Google Lurth 2012	DRAWING:	Bronx, New York	APPR. BY:	
		-	RJI	











TABLES

Table 1 Validated Analytical Results for Volatile Organic Compounds In Groundwater

Cornerstone Site B-1 3100 Third Avenue Bronx, New York BCP #C203044

Date of System Start-up: 4/22/2010 ug/L - micrograms per liter or parts per billion ND - Not detected NVG - No Value Given

INUG - No value siven J - Indicates an estimated value UJ - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely

measure the analyte in the sample. Bold and boxed indicates value exceeds TOGS

*NYSDEC Technical and Operational Guidance Series (1.1.1) Ambient water Quality Standards and Guidance Values and Groundwater Effluent Limitations June 1998

R - The sample results are unreliable/useable. The presence or absence of the analyte can not be verified.

Page 1 of 18

Table 1 (MW-1 cont.)

Validated Analytical Results for Volatile Organic Compounds In Groundwater

Cornerstone Site B-1 3100 Third Avenue Bronx, New York BCP #C203044

											44									
	Comments Date Sampled Davs since system start up	s 3rd Q 2014 d 9/19/2014	4th Q 2014 12/10/2014	1st Q 2015 4/1/2015	2nd Q 2015 6/2/2015	2nd Half 2015 12/10/2015	1st Half 2016 6/3/2016	2nd Half 2016 12/16/2016	1st Half 2017 6/13/2017	2nd Half 201 12/1/2017	7 1st Half 20 6/15/201	18 2nd Half 2018 8 12/27/2018	1st Half 2019 6/7/2019	2nd Half 2019 12/4/2019	1st Half 2020 6/3/2020	2nd Half 2020 12/21/2020	1st Half 2021 6/2/2021	2nd Half 2021 12/14/2021	1st Half 2022 6/14/2022	NYSDEC TOGS*
and Councempts (Ber Der Berger and Berger an	Votilie Grganic Compounds Acetore Barcane Barcane Barcane Barcane Bromochloomethane Bromochloomethane Bromochloomethane Bromochloomethane Carbon Tetrachloride Chirotehrane 1.2 Dichlorotehrane 1.2 Dichlorotehrane 1.3 Dichlorotehrane 1.1 Dichlorotehrane 1.2.3 Tritiklorotehrane 1.3 Tritiklorotehrane 1	Inst. Inst. <td< th=""><th>ר ב</th><th>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</th><th>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</th><th>ND ND ND ND ND ND ND ND ND ND ND ND ND N</th><th>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</th><th>C 2 3 3 3 8 6 6 6 5 5 5 6 6 6 5 5 5 6 6 6 5 5 6 6 6 6 5 5 6</th><th>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</th><th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>Jain Jain 0.021 C 0.021<</th><th>3</th><th></th><th><u>वर्ष</u> 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8</th><th>ени ени ени ени ени ени ени ени</th><th>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</th><th>3 3</th><th><u>al</u> 200 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0</th><th></th><th>1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</th></td<>	ר ב	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ND ND ND ND ND ND ND ND ND ND ND ND ND N	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	C 2 3 3 3 8 6 6 6 5 5 5 6 6 6 5 5 5 6 6 6 5 5 6 6 6 6 5 5 6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Jain Jain 0.021 C 0.021<	3		<u>वर्ष</u> 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ени ени ени ени ени ени ени ени	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 3	<u>al</u> 200 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0		1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Bold and boxed indicates value exceeds TOOS	ug/L - micrograms per liter or part ND - Not detected NVG - No Value Given J - Indicates an estimated value UJ - The analyte was not detected reported quantitation limit is appro	d above the r	may or may not rep	present the actu	al limit of		and Groundw	vater Effluent Lim	itations June 19	98	or absence o	the analyte can not	be verified.							
To represent the second	Bold and boxed indicates value	e exceeds TC	GS					MW-1	(PCE versi	us time)										
	000 000 000 000 000 000 000 000 000 00			0			1.000			2/			3,0	000		4,		d df	5.0	

Page 2 of 18

Table 1 Validated Analytical Results for Volatile Organic Compounds In Groundwater

Cornerstone Site B-1

3100 Third Avenue

Bronx, New York BCP #C203044

	Well ID	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	NYSDEC
	Comments	1st Q 2010	2nd Q 2010	3rd Q 2010	4th Q 2010	1st Q 2011	2nd Q 2011	3rd Q 2011	4th Q 2011	1st Q 2012	2nd Q 2012	3rd Q 2012	4th Q 2012	1st Q 2013	2nd Q 2013	3rd Q 2013	4th Q 2013	1st Q 2014	2nd Q 2014	TOGS*
	te Sampled	12/30/2009	5/27/2010	8/25/2010 Q 125 (11/22/2010	3/15/2011	6/8/2011	9/28/2011 Q 524 (12/14/2011 Q 601 (3/14/2012	6/19/2012	10/22/2012	12/6/2012 Q 959 C	3/28/2013	6/13/2013	9/30/2013	1/13/2014	3/27/2014	6/23/2014	
Days since system Volatile Organic Compounds	em start up	-113 C	35	Q 125 (Q 214	Q 327	Q 412 (ຊ 524 (Q 601 (Q 692 (Q 789 C	914	Q 959 C	41361	Q 41438	Q 41547	Q 41652 0	Q 41725	Q 41813 Q	
volatile organic compounds	Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Acetone		ŇD	ND	ND	ND	ND	ND	9.4	J ND	ND	ND R	R ND	UJ ND	ND	ND	R ND	R ND	ND	R ND R	50
Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	1
Bromobenzene Bromochloromethane		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		UJ ND UJ ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5 5
Bromodichloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	50
Bromoform		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	50
Bromomethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	5
2-Butanone (MEK)		ND	ND					R ND I		ND	ND R		R ND F		R ND	R ND	R ND	ND	ND R	NVG
n-Butylbenzene sec-butylbenzene		ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND		UJ ND UJ ND	ND	ND ND	ND	ND	ND	ND ND	5 5
tert-butylbenene		ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND ND		UJ ND	ND ND	ND	ND ND	ND ND	ND ND	ND	5
Carbon Tetrachloride		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	5
Chlorobenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	UJ ND	ND	ND	ND	ND	ND	ND	5
Chloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	5
Chloroform		ND ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	7 NVG
Chloromethane o-Chlorotoluene		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND		UJ ND UJ ND	ND ND	ND ND	ND ND	UJ ND ND	ND ND	ND ND	NVG 5
p-Chlorotoluene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	5
1,2-Dibromo-3-Chloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	UJ ND	ND	ND	ND	ND	ND	ND	0.04
Dibromochloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	50
1,2-Dibromoethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	NVG
1,2-Dichlorobenzene 1,3-Dichlorobenzene		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		UJ ND UJ ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	3
1,4-Dichlorobenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	3
Dichlorodifluoromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	UJ ND	ND	ND	ND	ND	ND	UJ ND	5
1,1-Dichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	5
1,2-Dichloroethane 1,1-Dichloroethene		ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		UJ ND UJ ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	0.6 5
cis-1.2-Dichloroethene		ND	ND 1.5	J ND	ND 1.2	3.1	J 0.88 ,		1.5	1.6	1.9		UJ ND J 1.5	ND 1.5	0.57	J 1.1	2.0	ND ND	1.8	5
trans-1,2-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	5
1,2-Dichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	1
1,3-Dichloropropene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	0.4
2,2-Dichloropropane 1,1-Dichloropropene		ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		UJ ND UJ ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	5.0 5.0
cis-1,3-Dichloropropene		ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND ND	ND	0.4
trans-1,3-Dichloropropene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	0.4
Ethyl Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	5
Hexachlorobutadiene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	0.5
Isopropylbenzene p-Isopropylbenzene		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		UJ ND UJ ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5 5
Methyl tert-butyl Ether		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	10
4-Methyl-2-Pentanone		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	NVG
Methyl bromide		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	NVG
Methylene Chloride Naphthalene		ND ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND		UJ ND	ND ND	ND	ND ND	ND	ND ND	ND ND	5 10
n-Propylbenzene		ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND		UJ ND UJ ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
Styrene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	5
1,1,1,2-Tetrachloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	UJ ND	ND	ND	ND	ND	ND	ND	5
1,1,2,2-Tetrachloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	110	UJ ND	ND	ND	ND	ND	ND	ND	5
Tetrachloroethene Toluene		28,700 ND	4,030 ND	5,970 ND	a 372 ND	a 3,390 ND	354 s	a 647 . ND	J 169 ND	112 ND	215 a	1,150 ND	ab 74.6 UJ ND	131 ND	138 ND	137 ND	518 I	D 1,200 ND	D 490 D ND	5
1,2,3-Trichlorobenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	5
1,2,4-Trichlorobenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	5
1,1,1-Trichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	5
1,1,2-Trichloroethane Trichloroethene		ND ND	ND	ND	ND	ND 8.0 J	ND	ND	ND 1.5	ND 1 4	ND		UJ ND	ND	ND	ND	ND	ND	ND	1
I richloroethene Trichlorofluoromethane		ND ND	5.1 ND	10.1 ND	1.6 ND	8.0 J ND	1.4 ND	2 ND	1.5 ND	1.4 ND	2.0 ND		UJ 1.5 UJ ND	1.6 ND	0.84 ND	J 1.0 ND	3.3 ND	10.9 ND	3.1 ND	5
1,2,3-Trichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	0.04
1,2,4-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	5
1,3,5-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	5
Vinyl Chloride		ND ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	2
m,p-Xylene o-Xylene		ND ND	1.7 ND	J ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		UJ ND UJ ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5 5
Xylene (total)		ND		J ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	5
Notes:				=											=			=	=	
Date of System Start-up:		4/22/2010																		

Notes: Date of System Start-up: 4/ ug/L - micrograms per liter or parts per billion ND - Not detected NVG - No Value Given

J - Indicates an estimated value

UJ - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the

analyte in the sample. Bold and boxed indicates value exceeds TOGS

a - results are from run #2 b - Storage temperature exceeded 6 degrees celsius due to power outage from tropical cyclone on October 29 and 30, 2012

R - The sample results are unreliable/useable. The presence or absence of the analyte can not be verified.

*NYSDEC Technical and Operational Guidance Series (1.1.1) Ambient water Quality Standards and Guidance Values and Groundwater Effluent Limitations June 1998

D - Result from diluted analysis

Page 3 of 18

Table 1 (MW-2A cont.)

Validated Analytical Results for Volatile Organic Compounds In Groundwater

Cornerstone Site B-1 3100 Third Avenue Bronx, New York BCP #C203044

	Well ID	MW-2A	MW-2A	MW-2A	MW-	2A	MW-2A	MW-2A		MW-2A	MW-2A	N	/W-2A	MW	-2A	MW-2A	M	W-2A	MW-2A		MW-2A	MW	-2A	MW-2A	,	/W-2A	MW-2A	NYSDEC
	Date Sampled	9/19/2014	12/10/2014	4 4/1/2015	6/2/20	015	12/10/2015	6/3/201	16 2nd 12	2/16/2016	6/13/2017	12	/1/2017	6/15/2	2018	12/27/2018	6/7	7/2019	12/4/2019	19 1s	6/3/2020	12/21/	2020	6/2/2021	12	/14/2021	6/14/2022	TOGS*
	Volatile Organic Compounds							ual	ų								<u> </u>			ų								ug/l
	Acetone	ND	ND	R ND	ND	R	ND I	R ND	UJ	ND U.	J ND		ND I	UJ NE	D	ND			ND		ND	10	0 J	ND		ND	ND	50
	Bromobenzene	ND	ND	ND	NE	Ś	ND	ND		ND	ND		ND	NE	D	ND			ND		ND	N	D	ND		ND	ND	5
	Bromodichloromethane	ND	ND	ND	ND)	ND	ND		ND	ND		ND	NE	D	ND			ND		ND	N	D	ND		ND	ND	50
	Bromomethane	ND ND	ND	ND ND	ND)	ND ND	ND		ND ND	ND ND		ND ND	NE	D	ND			ND ND	UJ	ND I	UJ NI	D U. D	ND		ND	ND ND	50 5
		ND ND	ND	R ND ND	R ND ND) R	ND I ND	ND	UJ	ND U. ND	J ND ND		ND ND	NE	D	ND ND			ND ND		ND ND	N	D	ND ND		ND ND	ND ND	NVG 5
		ND ND	ND	ND	ND ND	5	ND	ND		ND	ND		ND ND	NE	D D	ND			ND ND		ND ND	N	D	ND		ND	ND	5 5
	Carbon Tetrachloride	ND ND	ND	ND	NE	2	ND	ND		ND	ND	UJ	ND ND	NE	D	ND			ND	UJ	ND ND	N	D	ND		ND	ND ND	5
	Chloroethane	ND	UJ ND	ND	ND)	ND	ND		ND	ND		ND	N	D	ND			ND		ND	N	D	ND		ND	ND	5
	Chloromethane	ND	ND	ND	NE	Ś	ND	ND		ND	ND		ND	NE	D	ND		ģ	ND	5	ND	N	D	ND		ND	ND	NVG
	p-Chlorotoluene	ND	ND	ND	ND)	ND	ND		ND	ND		ND	N	D	ND		ampli	ND		ND	N	D	ND		ND	ND	5
	Dibromochloromethane	ND ND	ND ND	ND ND		5	ND ND	ND ND		ND ND	ND ND		ND ND	NE	D	ND		fors	ND ND		ND ND	N	D	ND ND		ND ND	ND ND	50
	1,2-Dibromoethane 1,2-Dichlorobenzene	ND ND	ND ND	ND ND	ND ND	0	ND	ND		ND	ND ND		ND ND	NE	D D	ND ND		dund	ND ND		ND ND	NI	D	ND		ND	ND ND	NVG 3
<text><text></text></text>	1,3-Dichlorobenzene 1 4-Dichlorobenzene	ND ND	ND ND	ND ND	ND	2	ND ND	ND ND		ND ND	ND ND		ND ND	NE	D	ND ND		ove	ND ND		ND ND	N	D	ND ND		ND ND	ND ND	3
<text><text></text></text>	Dichlorodifluoromethane	ND	ND	ND	NE		ND	ND	UJ	ND	ND		ND	NE	D UJ	ND		ole ab	ND		ND	N	D	ND		ND	ND	
<text><text></text></text>	1,2-Dichloroethane	ND	ND	ND	NE		ND	ND		ND	ND		ND	NE	D	ND		waila	ND		ND	N	D	ND		ND	ND	0.6
<text><text></text></text>	cis-1,2-Dichloroethene	1.9	2.0	ND 2.1	NE 1.6	5	2.1	ND 73.2		0.69 J	2.0		0.80	J NE		ND		ater á	ND			N		ND		3.6	ND	
<text><text></text></text>	1.2-Dichloropropage	ND ND	ND ND	ND ND	ND	5	ND	1.6 ND		ND ND	ND ND		ND	NE	D	ND		No Ki	ND ND		ND ND	N	D	ND ND		0.69 ND	ND ND	1
<text><text></text></text>	2 2-Dichloropropane	ND ND	ND ND	ND ND	ND))	ND	ND ND		ND ND	ND ND		ND ND	NE	D	ND		-	ND ND		ND ND	N	D	ND		ND	ND ND	0.4 5.0
<text><text></text></text>	cis-1.3-Dichloropropene	ND ND	ND ND	ND ND	ND ND	0	ND ND	ND ND		ND ND	ND ND		ND ND	NE	D	ND		jot st	ND ND	UJ	ND ND	N	D D	ND ND		ND ND	ND ND	5.0 0.4
	trans-1,3-Dichloropropene Ethyl Benzene	ND ND	ND	ND ND	ND)	ND ND	ND ND		ND	ND		ND ND	N	D	ND ND		šdun	ND ND	UJ	ND	N	D	ND		ND ND	ND	
	Hexachlorobutadiene	ND	ND	ND	ND	5	ND	ND		ND	ND		ND	NE	D	ND		nd Bu	ND		ND I	UJ NI	D U.	J ND		ND	ND	0.5
<form></form>	p-Isopropylbenzene	ND	ND	ND	ND	Ś	ND	ND		ND	ND		ND	NE	D	ND		ampl	ND		ND	N	D	ND		ND	ND	5
<form></form>	4-Methyl-2-Pentanone	ND	ND	ND	NE	Ś	ND	ND		ND	ND		ND	NE	D	ND		d as s	ND	05	ND	N	D	ND		ND	ND	NVG
Algebraic bills and b	Methylene Chloride	ND	ND	ND	NE	2	ND	ND		ND	ND		ND	NE	D	ND		aldm	ND		ND	N				ND	ND	
A Province and provinc	n-Propylbenzene	ND	ND	ND	NE NE	2	ND	ND		ND	ND		ND		D	ND		not sá	ND	UJ	ND	N	. U. D	ND ND		ND	ND	10
	1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	2	ND	ND		ND ND	0.43	J	ND ND	N	D	ND			ND		ND	N	D	ND		ND	ND	5
	Tetrachloroethene	155	ND 131	ND 175	ND 13	7	158	398	D	78.2	1,980	D	ND 66.9	NI 71	9 D	239]	Ŀ	120		ND 170	85	i0 J	640		400	180	5
	1,2,3-Trichlorobenzene	ND	ND ND	ND ND	ND)	ND	ND		ND	ND		ND ND	NE	D	ND			ND		ND ND	N	ο υ.	ND J ND		ND	ND	5 5
	1,1,1-Trichloroethane	ND ND	ND ND	ND ND	ND ND)	ND	ND		ND ND	ND	UJ	ND ND	NE	D	ND			ND ND	UJ	ND	N	D	J ND ND		ND ND	ND ND	5
	Trichloroethene	ND 2.7	ND 2.2	ND 3.1	ND 2.3	3	ND 3.0	22.5		ND 0.88 J	ND ND		ND ND	NE 4.5	D 5	1.7			ND 0.6		0.54	J 4.	D 3	ND		4.9	1.3	1
2.4. Timespicerum No N		ND ND	ND ND	ND ND	ND	2	ND ND	. ND		ND	ND ND		ND ND	NE	D				ND		ND ND	N	D	ND ND		ND ND	ND ND	
Magnetic Market Marke	1,2,4-Trimethylbenzene	ND ND	ND ND	ND ND	ND	2	ND	ND		ND	ND		ND	NE	D	ND			ND		ND	N	D	ND ND		ND	ND ND	5
	Vinyl Chloride	ND	ND	ND	ND	5	ND	ND		ND	ND		ND	NE	D	ND			ND		ND	N	D	ND		ND	ND	2
	o-Xylene	ND	ND		ND)	ND	ND		ND	ND		ND	NE	D	ND			ND		ND	N	D			ND	ND	
	ND - Not detected NVG - No Value Given J - Indicates an estimated value detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate					a D R	nd Groundwat) - Result from t - The sample	er Effluent L diluted anal results are	mitations J sis	une 1998		absence o	f the analy	yte can not	be verified	1.												
No service of the ser	Bold and boxed indicates value	exceeds TO	GS																									
r_{1}										MW-2A (PCE ver	sus tim	ie)															
$r_{\rm r}$	30,000			•														1										
Por very series of the series	27,000		+ +				+		-		+								-+			-+		-+	\rightarrow			-
18.00 19.00 10	24,000		+				+																					
1500 1500 1500 1500 1500 1500 1500 1500	21,000					 	+		_	_																		_
1500 1500 1500 1500 1500 1500 1500 1500	18,000					<u> </u>	+		_																			_
6.00 3.000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0	5 15 000																											
6.00 3.000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0	10,000																											
6.00 3.000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0	90 12,000																											1
3,000 -1,000 0 1,000 2,000 3,000 4,000 5,000 Days Since System Start-Up																												1
0 -1,000 0 1,000 2,000 3,000 4,000 5,000 Days Since System Start-Up					\uparrow	<u> </u>			+										-+			-		System turn January 5, 2	ed off 021			-
-1,000 0 1,000 2,000 3,000 4,000 5,000 Days Since System Start-Up	3,000		+ +		+											\rightarrow		-+	-+			\rightarrow						-
Days Since System Start-Up					0	\mathbf{v}_{-}	h h		1,000	• •			2.00	00	•			3.000	 +			-	4.0	00	•			5,000
	1,000				-						Days	Since Sys						2,200					.,0					
																							[-	PCE Co	ncentration		

Page 4 of 18

Table 1

Validated Analytical Results for Volatile Organic Compounds In Groundwater

Cornerstone Site B-1 3100 Third Avenue Bronx, New York BCP #C203044

								-																												-	
								_																							_						
					0	W Comr	'ell I nen			N-3	0	2		W-3 2 2010	,		MW-3 1 Q 20			MW 4th Q 2		, .	M۱ 1st C	W-3 0 201	1		W-3 Q 20	11	3r	MW- dQ2				IW-3 NA			YSDEC TOGS*
				C		Sar				9/200				/2010	, 		25/20			11/22/2			3/15				8/20			0/28/2				NA			1000
Veletile	0	Days				m st	art u	ıp	-1	14		Q		34	Q		125		Q	214	1	Q	3	27	Q		112	Q		524		Q		NA	Q		
Volatile	Organ		mpo	unc	15		Unit	ts	u	g/L			u	<u>g/L</u>			ug/L			ug/	L		u	g/L		L	ıg/L			ug/L			L	ug/L			ug/L
Acetone									Ν	ID			1	١D			ND			NE)		N	٧D			ND			ND				NS			50
Benzene										ID ID				ND ND			ND ND			NE NE				ND ND			ND ND			ND ND				NS NS			1 5
Bromoch			Э							ID				ND			ND			NE				ND			ND			ND				NS			5
Bromodi		metha	ne							ID				١D			ND			NE				١D			ND			ND				NS			50
Bromofo Bromom										ID ID				ND ND			ND ND			NE NE				ND ND			ND ND			ND ND				NS NS			50 5
2-Butan										D	1	IJJ		ND ND			ND		R	NE		UJ		ND	R		ND	R		ND		R		NS			NVG
n-Butylb										ID				١D			ND			NE				١D			ND			ND				NS			5
sec-buty tert-buty										ID ID				ND ND			ND ND			NE NE				ND ND			ND ND			ND ND				NS NS			5 5
Carbon										ID				ND			ND			NE				ND			ND			ND				NS			5
Chlorobe		•								ID				١D			ND			NE				١D			ND			ND				NS			5
Chloroet Chlorofo										ID 6				ND 3.7			ND 2.8			NE 1.6				۷D 46 J			ND).46	J		ND 0.53		J		NS NS			5 7
Chlorom		9								ID				ND			ND			NE				40 J ND			ND	3		ND		J		NS			, NVG
o-Chlord									Ν	ID			1	١D			ND			NE)		N	١D			ND			ND				NS			5
p-Chloro					~					ID ID				ND ID			ND			NE				ND			ND			ND				NS			5
1,2-Dibro Dibromo				pan	e					ID ID				ND ND			ND ND			NE NE				ND ND			ND ND			ND ND				NS NS			0.04 50
1,2-Dibr	omoeth	nane							Ν	ID			1	١D			ND			NE)		L.	١D			ND			ND				NS			NVG
1,2-Dich										ID				ND			ND			NE				ND						ND				NS			3
1,3-Dich 1.4-Dich										ID ID				ND ND			ND ND			NE NE				ND ND			ND ND			ND ND				NS NS			3 3
Dichloro	difluor	ometh	ane						Ν	D			1	١D			ND			NE)		N	١D			ND			ND				NS			5
1,1-Dich										ID				ND			ND			NE				ND			ND			ND				NS			5
1,2-Dich 1,1-Dich										ID ID				ND ND			ND ND			NE NE				ND ND			ND ND			ND ND				NS NS			0.6 5
cis-1,2-D	Dichloro	bether								ID			1	١D			ND			NE)			٩D			ND			ND				NS			5
trans-1,2			ene							D				١D			ND			NE				ND			ND			ND				NS			5
1,2-Dich 1,3-Dich										ID ID				ND ND			ND ND			NE NE				ND ND			ND ND			ND ND				NS NS			1 0.4
2,2-Dich										ID				ND			ND			NE				ND			ND			ND				NS			5.0
1,1-Dich										D				١D			ND			NE				ND			ND			ND				NS			5.0
cis-1,3-E trans-1,3				_						ID ID				ND ND			ND ND			NE NE				ND ND			ND ND			ND ND				NS NS			0.4 0.4
Ethyl Be		oropic	pen	0						ID				ND			ND			NE				ND			ND			ND				NS			5
Hexachl			•							D				ND			ND			NE				ND			ND			ND				NS			0.5
Isopropy p-Isopro										ID ID				ND ND			ND ND			NE NE				ND ND			ND ND			ND ND				NS NS			5 5
Methyl te			er							ID				ND			ND			NE				ND			ND			ND				NS			10
4-Methy	l-2-Per	tanon								ID				١D			ND			NE				١D			ND			ND				NS			NVG
Methyl b Methyler										ID ID				ND ND			ND ND			NE NE				ND ND			ND ND			ND ND				NS NS			NVG 5
Naphtha		Jinde								ID ID				ND ND			ND			NE				ND ND			ND			ND				NS			10
n-Propyl	benzer	ne								ID				١D			ND			NE				١D			ND			ND				NS			5
Styrene 1,1,1,2-	Fotrock	Joroot	hone							ID ID				ND ND			ND ND			NE NE				ND ND			ND ND			ND ND				NS NS			5 5
1,1,2,2-										ID				ND			ND			NE				ND			ND			ND				NS			5
Tetrachl									1	01			4	l.1			5.1			3.6	6		0	.73	J	0	0.64	J		0.52		J		NS			5
Toluene 1,2,3-Tri	oblorol									ID ID				ND ND			ND ND			NE NE				ND ND			ND ND			ND ND				NS NS			5 5
1,2,3-11 1,2,4-Tri										ID ID				ND ND			ND			NE				ND ND			ND			ND				NS			5
1,1,1-Tri	chloroe	ethane	9						Ν	ID			1	١D			ND			NE)		Ν	١D			ND			ND				NS			5
1,1,2-Tri			9							ID ID				ND ID			ND			NE NE							ND ND			ND				NS			1
Trichloro Trichloro			ne							ID ID		IJ		ND ND			ND ND			NL NE				ND ND			ND ND			ND ND				NS NS			5 5
1,2,3-Tri	chloro	propar	ne						Ν	D			1	١D			ND			NE)		N	١D			ND			ND				NS			0.04
1,2,4-Tri										ID				ND			ND			NE				ND			ND			ND				NS			5
1,3,5-Tri Vinyl Ch		Denze	ane a							ID ID				ND ND			ND ND			NE NE				ND ND			ND ND			ND ND				NS NS			5 2
m,p-Xyle	ene								Ν	ID			1	١D			ND			NE)		Ν	١D			ND			ND				NS			5
o-Xylene Xylene (e total)									ID ID				ND ND			ND ND			NE NE				ND ND			ND ND			ND ND				NS NS			5 5
Notes:	uud)								n				1	,U			ND			INL	,		r	νU			U			ND				CNI		L	J
Date of										/201	0																										
ug/L - m ND - Noi			er lite	er or	pai	rts p	er bi	illior	1											*NYSD Amhiei												.1.1))				
ND - NO NVG - N			en																4	Ambieı and Gr											58						
UJ - The	analy	te was																		R - The	e sar	mple	resu								rese	ence	or	abser	nce o	f the	analyte
Howeve	r, the n	eporte	d qu	anti	itatio	on lir	nit i:	s ap	pro	kima	te a	and	may	or ma	y no	t re	prese	nt		can no	t be	verif	ied.														
the actu analyte				ation	ı ne	cess	ary	to a	CCU	ratel	y ai	nd p	reci	sely m	easi	ure	ıne																				
Bold an				es v	alu	e ex	cee	ds 1	rog	S		_	_]					NS- No					red a:	s of 4	th Q	2011									
		_	_	_	_	_	_	_	_	_	_	_	_		_	_		_	_	NA - N	ot Aj	oplic	able						_		_		_			_	
										_							2 (02	E.			ime								_								
1															IVI	WV-3	s (PC	-E	ver	sus t	ime	9															
1																																					
1	200 ·		П		Т	Т	Π		Т	Т		П	Т		Т	Т	П	Т	Т										Т		Т	П	Т			Т	
1	180 -									\bot																											
1	100 -		Π	T				T		Ι		Π	T	T		Γ	ΓT				T										T		T				
1	160 ·	\vdash	+	+	+	+	\vdash	\vdash	+	+	-	$\left \right $	+	++	+	+	++	+	+	$\left \cdot \right $	\vdash	+	+			-	+	-	+	++	+	+	+	+	\vdash	+	H
1	440																																				
-	140 -		Гİ		+	1		\square		1		Π			1	1	\uparrow		1										1	$ \uparrow$	1	\square	+				
ion ug/	120 -	\square	\downarrow		+	-		\square	+	+	-		\downarrow	++	-	1	\parallel	+	+	\square			+				+			\parallel	+	$\left \right $			\square	-	μIΙ
l lo											1				1				1										1		1	11					

Page 5 of 18

Concentratio No Sampling Required as of 4th Quarter 2011 -200 -100 ò Days Since System Start-Up

Validated Analytical Results for Volatile Organic Compounds In Groundwater

Cornerstone Site B-1 3100 Third Avenue Bronx, New York BCP #C203044

Well II Comment Date Sample Days since system start u		010 2009	MW-4 2nd Q 2010 5/26/2010 34	MW-4 3rd Q 2010 8/26/2010 Q 126	11/22/2010	3/15/2011	MW-4 2nd Q 2011 6/8/2011 Q 412	MW-4 3rd Q 2011 9/28/2011 Q 524	MW-4 4th Q 2011 12/14/2011 Q 601 (MW-4 1st Q 2012 3/14/2012 Q 692	MW-4 2nd Q 2012 6/19/2012 Q 789	10/22/2012	MW-4 4th Q 2012 12/6/2012 Q 959 (MW-4 1st Q 2013 3/28/2013 Q 1071	MW-4 2nd Q 2013 6/13/2013 Q 1148	MW-4 3rd Q 2013 9/30/2013 Q 1257 (MW-4 4th Q 2013 1/13/2014 Q 1362 (MW-4 1st Q 2014 3/27/2014 Q 1435	MW-4 2nd Q 2014 6/23/2014 Q 1523 C	NYSDEC TOGS*
Volatile Organic Compounds Unit	s ug/l		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Acetone	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	R ND	ND	ND	ND	R ND I	R ND	ND	R ND R	۲ <u>50</u>
Benzene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.0	ND	ND	ND	ND	ND	ND	1
Bromobenzene Bromochloromethane	ND ND		ND ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	5
Bromodichloromethane	ND		ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	50
Bromoform	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50
Bromomethane	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
2-Butanone (MEK)	ND								R ND	ND			R ND F				R ND	ND	ND R	R NVG
n-Butylbenzene sec-butylbenzene	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5 5
tert-butylbenene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Carbon Tetrachloride	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	5
Chlorobenzene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Chloroethane	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Chloroform Chloromethane	4.5 ND		2.0 ND	1.4 ND	1.9 ND	0.58 J ND	0.36 ND	J 0.43 ND	J ND ND	ND ND	ND ND	0.29 ND	J 0.26 . ND	J 0.24 ND	J ND ND	ND ND	ND ND	0.31 ND	J ND ND	7 NVG
o-Chlorotoluene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
p-Chlorotoluene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2-Dibromo-3-Chloropropane	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.04
Dibromochloromethane 1.2-Dibromoethane	ND ND		ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50 NVG
1,2-Dibromoetnane 1,2-Dichlorobenzene	ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NVG 3
1.3-Dichlorobenzene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3
1,4-Dichlorobenzene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3
Dichlorodifluoromethane	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	5
1,1-Dichloroethane	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2-Dichloroethane 1,1-Dichloroethene	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.6 5
cis-1,2-Dichloroethene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
trans-1,2-Dichloroethene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2-Dichloropropane	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,3-Dichloropropene	ND ND		ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.4
2,2-Dichloropropane 1,1-Dichloropropene	ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5.0 5.0
cis-1,3-Dichloropropene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.4
trans-1,3-Dichloropropene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.4
Ethyl Benzene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Hexachlorobutadiene Isopropylbenzene	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.5 5
p-lsopropylbenzene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Methyl tert-butyl Ether	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10
4-Methyl-2-Pentanone	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NVG
Methyl bromide	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NVG
Methylene Chloride Naphthalene	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5 10
n-Propylbenzene	ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
Styrene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,1,2-Tetrachloroethane	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,2,2-Tetrachloroethane	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Tetrachloroethene Toluene	78.1 ND		177 ND	105 ND	116 ND	55.4 ND	36.5 ND	24.5 ND	23.3 ND	16.6 ND	16.3 ND	22.9 ND	20.3 ND	17.5 ND	18.0 ND	14.0 ND	39.2 ND	40.6 ND	10.5 ND	5
1,2,3-Trichlorobenzene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2,4-Trichlorobenzene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,1-Trichloroethane	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,2-Trichloroethane	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Trichloroethene Trichlorofluoromethane	ND ND		ND J ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5 5
1,2,3-Trichloropropane	ND		ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.04
1,2,4-Trimethylbenzene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,3,5-Trimethylbenzene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Vinyl Chloride	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2
m,p-Xylene	ND ND		ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5 5
o-Xylene Xylene (total)	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
Nataa	IND.		שאו	UN	NU	ND	ND	טא		ND	ND	ND	ND	ND	UNI	ND	ND	UN.	UNI	, J

*NYSDEC Technical and Operational Guidance Series (1.1.1) Ambient water Quality Standards and Guidance Values and Groundwater Effluent Limitations June 1998

R - The sample results are unreliable/useable. The presence or absence of the analyte can not be verified.

Notes: Date of System Start-up: 4/22/2 ug/L - micrograms per liter or parts per billion ND - Not detected 4/22/2010

NVG - No Value Given

UU - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Bold and boxed indicates value exceeds TOGS

Page 6 of 18

Table 1 (MW-4 cont.)

Validated Analytical Results for Volatile Organic Compounds In Groundwater

Cornerstone Site B-1 3100 Third Avenue Bronx, New York BCP #C203044

	Well ID	MW-4	MW	-4	MW-4	MV	/-4	MW-4	м	N-4	MW	-4	MW-4		MW-4	MV	V-4	MW-4	MW-	-4	MW-4		MW-4	MW	-4	MW-4	MW-4	MW-4	NYSDEC
	Date Sampled	9/19/2014	12/10/2	2014	1st Q 2015 4/1/2015	2nd Q 6/2/2	015	2nd Half 2015 12/10/2015	6/3	2016	2nd Half 12/16/2	2016	1st Half 2 6/13/201		d Half 2017 2/1/2017	6/15/		2nd Half 2018 12/27/2018	6/7/20	19	2nd Half 20 12/4/2019		st Half 2020 6/3/2020	12/21/2	2020	1st Half 2021 6/2/2021	2nd Half 202 12/14/2021	6/14/2022	TOGS*
Days Volatile Organ	since system start up nic Compounds		Q 169	13 Q	1805 (Q 18	67 Q	2058	Q 2	234 G	243	0 Q	2609	Q	2780	Q 29		3171	Q 3333		3513	Q	3695	Q 389		4059	Q 4254	Q 4436	Q
Acetone	Units	ND	ug/ NE	L R	ug/L ND	ug N	/L D R	ug/L ND	R N	<u>10</u> U	<u>ug/l</u> J ND	L D UJ	ug/L ND		ug/L ND	UJ N	<u>/L</u> D	ug/L ND	ug/L ND	-	ug/L ND		ug/L ND	ug/ NE		ug/L ND	ug/L ND	ug/L ND	<u>ug/L</u> 50
Benzene Bromobenzene	e	ND ND	NE NE)	ND ND	N	D	ND ND		ID ID	ND ND)	ND ND		ND ND	N	D	ND ND	ND ND		ND ND		ND ND	NE	5	ND ND	ND ND	ND ND	1
Bromochlorom Bromodichloro		ND ND	NE NE)	ND ND	N N	D	ND ND		ID ID	ND ND)	ND ND		ND ND	N	D	ND ND	ND ND		ND ND		ND ND	NE	2	ND ND	ND ND	ND 0.96	5 50
Bromoform Bromomethan		ND ND	NE		ND ND	N	D	ND ND	į	ID ID	ND ND		ND ND		ND ND	N	D	ND ND	ND ND		ND ND	UJ UJ	ND	UJ NE		ND ND	ND ND	ND ND	50 5
2-Butanone (M	IEK)	ND ND	NE	R	ND I ND	R N	D R	ND ND	R	ID U.		, UJ	ND ND		ND ND	N	D	ND ND	ND ND		ND ND	05	ND ND	NE NE	5	ND ND	ND ND	ND ND	NVG
n-Butylbenzen sec-butylbenze	ene	ND)	ND	N N	D	ND ND ND	1	ID	ND ND	,	ND		ND ND ND	N N	D	ND ND ND	ND ND ND		ND ND ND		ND		5	ND ND ND	ND ND ND	ND ND ND	5
tert-butylbener Carbon Tetrac	:hloride	ND ND ND	NE)	ND ND	N N	D	ND ND		ID ID)	ND ND ND		ND ND ND	N N N	D	ND ND	ND ND ND		ND ND ND	UJ	ND ND ND	NE NE)	ND ND	ND ND	ND ND ND	5
Chlorobenzene Chloroethane	e	ND	UJ NE NE)	ND ND	N	D	ND ND		ID	ND ND)	ND ND		ND ND ND	N N N	D D	ND ND ND	ND ND ND		ND ND		ND ND	NE NE)	ND ND ND	ND ND ND	ND ND 19	5 5
Chloroform Chloromethan	e	ND ND	NE NE)	0.22 . ND ND	J 0.2 0.4	24 J	0.36 ND ND	J 0	.28 J ID	0.30 ND	D J	ND ND		ND ND ND	N N N	D	ND ND ND	ND ND ND		ND ND ND		ND ND ND	NE NE)	ND ND ND	ND ND ND	19 ND ND	7 NVG
o-Chlorotoluen p-Chlorotoluen	10	ND ND	NE)	ND	N	D	ND		ID ID	ND ND)	ND ND		ND	N	D	ND	ND		ND		ND	NE NE)	ND	ND	ND	5
1,2-Dibromo-3 Dibromochloro	I-Chloropropane	ND ND	NE NE)	ND ND	N	D	ND ND	;	ID ID	ND ND)	ND ND		ND ND	N	D	ND ND	ND ND		ND ND		ND ND	NE NE	2	ND ND	ND ND	ND ND	0.04
1,2-Dibromoet 1,2-Dichlorobe	thane	ND ND	NE		ND ND	N	D	ND ND	į	1D	ND ND		ND ND		ND ND	N	D	ND ND	ND ND		ND ND		ND ND	NE		ND ND	ND ND	ND ND	NVG
1,3-Dichlorobe 1,4-Dichlorobe	enzene	ND ND	NE	Ś	ND ND	N	D	ND ND	į	ID ID	ND		ND ND		ND ND	N	D	ND ND	ND ND		ND ND		ND ND	NE	Ś	ND ND	ND ND	ND ND	3
1,4-Dichlorobe Dichlorodifluor 1 1-Dichloroet	romethane	ND ND		,))	ND ND ND	N	D	ND ND ND		1D U.	J ND ND		ND ND		ND ND ND	N	D U	J ND ND	ND ND ND		ND ND		ND ND ND	NE NE	2	ND ND ND	ND ND ND	ND ND ND	5
1,2-Dichloroet	hane	ND ND ND	NE NE	2	ND ND ND	N	D	ND ND ND	1	1D	ND)	ND ND ND		ND ND ND	N	D	ND	ND ND		ND ND ND	UJ	ND	NE)	ND	ND ND	ND ND ND	5 0.6
1,1-Dichloroet cis-1,2-Dichlor	roethene	ND)	ND	N	D	ND ND ND	1		ND ND)	ND		ND ND ND	N	D	ND ND	ND ND ND		ND		ND ND	NE))	ND ND ND ND	ND ND ND	ND ND	5 5
trans-1,2-Dichl 1,2-Dichloropr	onane	ND ND	NC)	ND ND	N	D	ND		1D 1D	ND ND)	ND ND		ND	N	D	ND ND	ND ND		ND		ND ND	NE	2	ND ND	ND ND	ND ND ND ND	5 1
1,3-Dichloropr 2,2-Dichloropr	onane	ND ND)	ND ND	NI NI NI NI NI NI NI NI NI NI NI NI NI N	D	ND ND		ID ID	ND ND)	ND ND		ND ND	N	D	ND ND	ND ND		ND ND ND		ND ND	NE	5	ND	ND ND	ND ND	0.4 5.0
1,1-Dichloropr cis-1,3-Dichlor	opene ropropene	ND	NE NE)	ND	N	D	ND ND ND		ID	ND)	ND		ND ND ND	N	D	ND	ND		ND	UJ	ND	NE)	ND ND ND	ND	ND ND	5.0
trans-1,3-Dich Ethyl Benzene		ND ND ND)	ND ND ND	N N	D	ND ND ND	į))	ND ND		ND ND ND	N N N	D D	ND ND ND	ND ND ND		ND ND ND	UJ	ND ND ND	NE NE	2	ND ND ND	ND ND ND	ND ND	0.4
Hexachlorobut		ND ND		5	ND ND	NI NI	D	ND ND	į	ID ID			ND ND		ND ND	N	D	ND ND	ND ND		ND ND			UJ NE	Š	ND ND	ND ND	ND ND	5 0.5
p-lsopropylben	izene	ND ND	NE NE		ND ND	N	D	ND ND		ID ID	ND ND		ND ND		ND ND	N	D	ND ND	ND ND		ND ND	UJ	ND ND	NE NE	5	ND ND	ND ND	ND ND	5 5
Methyl tert-but 4-Methyl-2-Per	ntanone	ND ND	NE NE	2	ND ND	N N	D	ND ND	-	ID ID	ND ND	,	ND ND		ND ND	N	D	ND ND	ND ND		ND ND	03	ND ND	NE	5	ND ND	ND ND	ND ND	10 NVG
Methyl bromide Methylene Chle	e oride	ND ND	NE NE)	ND ND ND	N N	D	ND ND ND		ID ID	ND ND		ND ND		ND ND ND	N N UJ N	D	ND ND ND	ND ND		ND ND		ND ND ND	NE)	ND ND ND	ND ND ND	ND ND ND	NVG 5
Naphthalene n-Propylbenze	ine	ND ND)	ND ND ND	N N	D	ND ND ND	1	ID ID)	ND ND		ND	UJ N N N	D D	ND ND ND	ND ND ND		ND ND ND	UJ	ND		5	ND ND ND	ND ND ND	ND ND ND	10 5
Styrene 1,1,1,2-Tetracl		ND ND	NE)	ND	N	D	ND ND ND	1	1D ID	ND ND)	ND ND		ND ND	N	D	ND ND	ND ND		ND		ND ND		5	ND ND	ND ND	ND	5
1,1,2,2-Tetracl Tetrachloroeth	hloroethane 1ene	ND 19.3	NE NE 141. NE	7	ND 26.2	N 27 N	D .8	ND 30.0 ND	2	ID ID 5.5	ND ND 20.1)	ND 20.9		ND 25.0	N 17	D 7.8	ND ND 28.6	ND ND 18 ND		ND 17		ND 13	9		ND ND 10	ND ND 13 ND	ND 6.4 ND	5 5
Toluene 1,2,3-Trichloro	obenzene	ND ND)	ND ND ND	N	D	ND ND ND		ID ID)	ND ND ND		ND ND	UJ N	D	ND ND ND	ND ND ND		ND ND ND	UJ	ND ND ND		0	ND ND	ND ND ND	ND ND ND	5 5
1,2,4-Trichloro 1,1,1-Trichloro	obenzene	ND ND)	ND ND	N	D	ND ND ND		ID ID	ND ND)	ND ND		ND ND	UJ N N N	D D	ND ND	ND ND		ND ND	UJ	ND ND	NE NE)	ND ND ND	ND ND ND	ND ND	5
1,1,2-Trichloro Trichloroethen	pethane	ND	NE)	ND	N N	D	ND ND		ID.	ND		ND ND		ND ND	N	D	ND ND	ND ND		ND		ND 0.23 J	NE	2	ND ND	ND ND	ND	1
Trichlorofluoro 1,2,3-Trichloro	omethane	ND ND ND		5	ND ND ND	N	D	ND ND ND	į				ND ND		ND ND	N N N	D	ND ND ND	ND ND ND		ND ND ND		ND ND		5	ND ND ND	ND ND ND	ND ND	5 0.04
1,2,4-Trimethy 1,3,5-Trimethy	/lbenzene	ND ND	NE	`	ND	N N N N	D	ND ND		חו	ND ND		ND ND		ND	N	D	ND ND	ND		ND		ND ND	NE)	ND ND ND	ND	ND ND	5
Vinyl Chloride m.p-Xvlene		ND ND	NE NE	5	ND ND ND	N	D	ND ND	į		ND)	ND ND	UJ	ND ND ND	N	D	ND ND	ND ND ND		ND ND ND		ND ND	NE)	ND ND	ND ND ND	ND ND	2
o-Xylene		ND	NE)	ND	N	D	ND		ID	ND)	ND		ND ND	N	D	ND	ND		ND		ND	NE)	ND	ND	ND	5
Xylene (total) Notes:			NE)	ND	N	U	ND		ID	ND		ND				-	ND	ND		ND		ND	NE)	ND	ND	ND	5
Date of System ug/L - microgra ND - Not detec	n Start-up: ams per liter or parts sted	per billion									*NYSDE Ambient and Gro	C Techn water Q undwate	ical and Op uality Stan Fffluent L	erational lards and mitations .	Guidance Guidance June 1998	Series (1.1 Values	.1)												
NVG - No Valu											R - The	sample r	esults are o	nreliable/	useable. T	'he presen	ce or abs	ence of the ana	lyte can not	be verifie	ed.								
above the repo																													
reported quant	titation limit is ed indicates value e	xceeds TO	as																										
											м	IW-4 (P	CE versi	ıs time)															
	200			Т		Т																			Т			1	ן ר
	180					_				_								+				-							-
	160				-	$\left \right $			_									+ $+$		_		_							-
	140				/				_									+		_									4
ng/L	120				_/ _					-+					L			+											4
ation	100					\mathcal{V}																							4
entr	80						\setminus																						
Concentration	60				·		\backslash																						
°	40						<u>\</u>																			System turned January 5, 202	l off 1		
	20											_	\sum	\sum		+	•		-							\mathbb{Z}^{\square}			
												-											-	+	•4	• •	<u> </u>		
	0				0					1,000)					000				3,000					4,00	10		5	,000
												D	ays Sinc	e Syster	m Start-L	β													
1	Days Since System Start-Up																												

Page 7 of 18

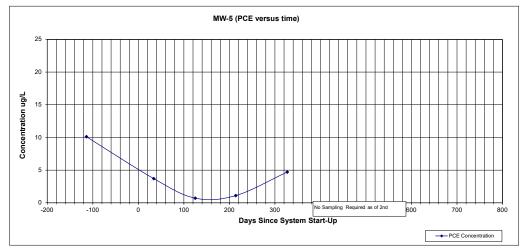
Table 1

Validated Analytical Results for Volatile Organic Compounds In Groundwater

Cornerstone Site B-1 3100 Third Avenue Bronx, New York BCP #C203044

r													
Well ID	MW-5		MW-5	MW-5		MW-5		MW-5		MW-5	MW-5	MW-5	NYSDEC
Comments	1st Q 2010		nd Q 2010	3rd Q 2010		4th Q 2010		1st Q 2011		2nd Q 2011	3rd Q 2011	4th Q 2011	TOGS*
Date Sampled	12/29/2009		/26/2010	8/25/2010	~	11/22/2010		3/15/2011		NA	NA	NA	
Days since system start up Volatile Organic Compounds	-114	Q	34 Q	125	Q	214	Q	327	Q	NA	NA	Q NA Q	
Units	ug/L		ug/L	ug/L		ug/L		ug/L		ug/L	ug/L	ug/L	ug/L
Acetone	ND	UJ	ND	ND		ND		ND		NS	NS	NS	50
Benzene	ND	UJ	ND	ND		ND		ND		NS	NS	NS	1
Bromobenzene	ND	UJ	ND	ND		ND		ND		NS	NS	NS	5
Bromochloromethane	ND	UJ	ND	ND		ND		ND		NS	NS	NS	5
Bromodichloromethane Bromoform	ND ND	UJ	ND ND	1.8 ND		ND ND		ND ND		NS NS	NS NS	NS NS	50 50
Bromonethane	ND	UJ	ND	ND		ND		ND		NS	NS	NS	5
2-Butanone (MEK)	ND	UJ	ND	ND	R	ND	UJ	ND	R	NS	NS	NS	NVG
n-Butylbenzene	ND	UJ	ND	ND		ND		ND		NS	NS	NS	5
sec-butylbenzene	ND	UJ	ND	ND		ND		ND		NS	NS	NS	5
tert-butylbenene	ND	UJ	ND	ND		ND		ND		NS	NS	NS	5
Carbon Tetrachloride	ND ND	UJ	ND ND	ND ND		ND ND		ND ND		NS NS	NS	NS NS	5 5
Chlorobenzene Chloroethane	ND	UJ	ND	ND		ND		ND		NS	NS NS	NS	5
Chloroform	11.2] J	1.8	23.6	1	13.0	٦	5.8		NS	NS	NS	7
Chloromethane	ND	ŰJ	ND	ND		ND	_	ND		NS	NS	NS	NVG
o-Chlorotoluene	ND	UJ	ND	ND		ND		ND		NS	NS	NS	5
p-Chlorotoluene	ND	UJ	ND	ND		ND		ND		NS	NS	NS	5
1,2-Dibromo-3-Chloropropane	ND	UJ	ND	ND		ND		ND		NS	NS	NS	0.04
Dibromochloromethane 1,2-Dibromoethane	ND ND	UJ	ND ND	ND ND		ND ND		ND ND		NS NS	NS NS	NS NS	50 NVG
1,2-Dichlorobenzene	ND	UJ	ND	ND		ND		ND		NS	NS	NS	3
1,3-Dichlorobenzene	ND	UJ	ND	ND		ND		ND		NS	NS	NS	3
1,4-Dichlorobenzene	ND	UJ	ND	ND		ND		ND		NS	NS	NS	3
Dichlorodifluoromethane	ND	UJ	ND	ND		ND		ND		NS	NS	NS	5
1,1-Dichloroethane	ND	UJ	ND	ND		ND		ND		NS	NS	NS	5
1,2-Dichloroethane	ND	UJ	ND	ND		ND		ND		NS	NS	NS	0.6
1,1-Dichloroethene cis-1,2-Dichloroethene	ND ND	UJ	ND ND	ND ND		ND ND		ND ND		NS NS	NS NS	NS NS	5 5
trans-1,2-Dichloroethene	ND	UJ	ND	ND		ND		ND		NS	NS	NS	5
1,2-Dichloropropane	ND	UJ	ND	ND		ND		ND		NS	NS	NS	1
1,3-Dichloropropene	ND	UJ	ND	ND		ND		ND		NS	NS	NS	0.4
2,2-Dichloropropane	ND	UJ	ND	ND		ND		ND		NS	NS	NS	5.0
1,1-Dichloropropene	ND	UJ	ND	ND		ND		ND		NS	NS	NS	5.0
cis-1,3-Dichloropropene	ND ND	UJ	ND ND	ND ND		ND ND		ND ND		NS NS	NS NS	NS NS	0.4
trans-1,3-Dichloropropene Ethyl Benzene	ND	UJ	ND	ND		ND		ND		NS	NS	NS	0.4
Hexachlorobutadiene	ND	UJ	ND	ND		ND		ND		NS	NS	NS	0.5
Isopropylbenzene	ND	UJ	ND	ND		ND		ND		NS	NS	NS	5
p-Isopropylbenzene	ND	UJ	ND	ND		ND		ND		NS	NS	NS	5
Methyl tert-butyl Ether	ND	UJ	ND	ND		ND		ND		NS	NS	NS	10
4-Methyl-2-Pentanone	ND	UJ	ND	ND		ND		ND		NS	NS	NS	NVG
Methyl bromide Methylene Chloride	ND ND	UJ	ND ND	ND ND		ND ND		ND ND		NS NS	NS NS	NS NS	NVG 5
Naphthalene	ND	UJ	ND	ND		ND		ND		NS	NS	NS	5 10
n-Propylbenzene	ND	UJ	ND	ND		ND		ND		NS	NS	NS	5
Styrene	ND	UJ	ND	ND		ND		ND		NS	NS	NS	5
1,1,1,2-Tetrachloroethane	ND	UJ	ND	ND		ND		ND		NS	NS	NS	5
1,1,2,2-Tetrachloroethane	ND	UJ	ND	ND		ND		ND		NS	NS	NS	5
Tetrachloroethene Toluene	10.1 ND	J	3.7 ND	0.71 ND	J	1.1 ND		4.7 ND		NS NS	NS NS	NS NS	5 5
1,2,3-Trichlorobenzene	ND	UJ	ND	ND		ND		ND		NS	NS	NS	5
1,2,4-Trichlorobenzene	ND	UJ	ND	ND		ND		ND		NS	NS	NS	5
1,1,1-Trichloroethane	ND	UJ	ND	ND		ND		ND		NS	NS	NS	5
1,1,2-Trichloroethane	ND	UJ	ND	ND		ND		ND		NS	NS	NS	1
Trichloroethene	ND	UJ	ND	ND		ND		ND		NS	NS	NS	5
Trichlorofluoromethane	ND	UJ	ND	ND		ND		ND		NS	NS	NS	5
1,2,3-Trichloropropane 1,2,4-Trimethylbenzene	ND ND	UJ	ND ND	ND ND		ND ND		ND ND		NS NS	NS NS	NS NS	0.04 5
1,2,4-1 nmethylbenzene 1,3,5-Trimethylbenzene	ND ND	UJ	ND	ND		ND		ND		NS	NS	NS	5
Vinyl Chloride	ND	UJ	ND	ND		ND		ND		NS	NS	NS	2
m,p-Xylene	ND	UJ	ND	ND		ND		ND		NS	NS	NS	5
o-Xylene	ND	UJ	ND	ND		ND		ND		NS	NS	NS	5
Xylene (total)	ND	UJ	ND	ND		ND		ND		NS	NS	NS	5

Xylene (total) Notes: Date of System Start-up: 4 ug/L - micrograms per liter or parts per billion ND - Not detected NVG - No Value Given J - Indicates an estimated value


4/22/2010

U - indicates an estimated value UJ - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. Bold and boxed indicates value exceeds TOGS

*NYSDEC Technical and Operational Guidance Series (1.1.1) Ambient water Quality Standards and Guidance Values and Groundwater Effluent Limitations June 1998

R - The sample results are unreliable/useable. The presence or absence of the analyte can not be verified.

NS- No Sampling Required as of 2nd Q 2011 NA - Not Applicable

Validated Analytical Results for Volatile Organic Compounds In Groundwater

Cornerstone Site B-1 3100 Third Avenue Bronx, New York BCP #C203044

Davs since	Well ID Comments Date Sampled system start up	1st Q 2010 12/30/2009	MW-6 2nd Q 2010 5/27/2010 Q 35	0 3rd (8/26	IW-6 Q 2010 6/2010 126 Q	MW-6 4th Q 2010 11/23/2010 2 215	MW-6 1st Q 2011 3/15/2011 Q 327	MW-6 2nd Q 2011 6/8/2011 Q 412	MW-6 3rd Q 2011 9/28/2011 Q 524	MW-6 4th Q 2011 12/14/2011 Q 601	MW-6 1st Q 2012 3/14/2012 Q 692	MW-6 2nd Q 2012 6/19/2012 Q 789	MW-6 3rd Q 2012 10/22/2012 Q 914				9/30/2013	MW-6 4th Q 2013 1/13/2014 Q 1362	MW-6 1st Q 2014 3/27/2014 Q 1435		NYSDEC TOGS*
Volatile Organic Compo																					
	Units	ug/L	ug/L		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Acetone Benzene		ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	R ND ND	ND ND	ND ND	ND ND	R ND ND	R ND ND	ND ND	R ND F ND	R 50 1
Bromobenzene		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Bromochloromethane		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Bromodichloromethane		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50
Bromoform		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50 5
Bromomethane 2-Butanone (MEK)		ND ND	ND UJ ND		ND ND R		JJ ND	ND R ND	ND R ND	ND R ND	ND ND	ND ND	ND R ND	ND R ND	ND R ND	ND R ND	ND R ND	ND R ND	ND ND	ND ND F	R NVG
n-Butylbenzene		ND	ND		ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
sec-butylbenzene		ND	ND	UJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
tert-butylbenene		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Carbon Tetrachloride		ND ND	ND		ND	ND	ND		JJ ND	ND ND	ND	ND	ND	UJ ND	ND	ND	ND	ND	ND	ND	5
Chlorobenzene Chloroethane		ND	ND ND		1.1 ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
Chloroform		1.0	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.41	J ND	ND	7
Chloromethane		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.40	J ND	ND	ND	NVG
o-Chlorotoluene		ND	ND	UJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
p-Chlorotoluene		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2-Dibromo-3-Chloroprop Dibromochloromethane	ane	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.04 50
1.2-Dibromoethane		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NVG
1,2-Dichlorobenzene		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3
1,3-Dichlorobenzene		ND	ND	UJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3
1,4-Dichlorobenzene		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3
Dichlorodifluoromethane 1,1-Dichloroethane		ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	UJ ND ND	5 5
1.2-Dichloroethane		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.6
1,1-Dichloroethene		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
cis-1,2-Dichloroethene		0.87	J 0.96		ND	2.0	0.43 J	0.7	J 2	ND	ND	0.43	J 1.3	0.42	J 0.29	J 1.1	1.6	1.4	ND	0.48	J 5
trans-1,2-Dichloroethene		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2-Dichloropropane		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,3-Dichloropropene 2,2-Dichloropropane		ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.4 5.0
1,1-Dichloropropene		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0
cis-1,3-Dichloropropene		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.4
trans-1,3-Dichloropropene		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.4
Ethyl Benzene		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Hexachlorobutadiene Isopropylbenzene		ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.5
p-lsopropylbenzene		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Methyl tert-butyl Ether		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10
4-Methyl-2-Pentanone		ND	ND	UJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NVG
Methyl bromide		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NVG
Methylene Chloride		ND ND	ND		ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Naphthalene n-Propylbenzene		ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	10 5
Styrene		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,1,2-Tetrachloroethane		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,2,2-Tetrachloroethane		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Tetrachloroethene Toluene		320 ND	481		199 ND	201	a 139	76.5	135	14.9 ND	11.1	11.5	18.2	36.3	10.8	68.8	34.3	405	D 138	126	5 5
1.2.3-Trichlorobenzene		ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
1,2,4-Trichlorobenzene		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,1-Trichloroethane		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,2-Trichloroethane		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Trichloroethene		1.9	1.8		0.48 J	4.6	1.9	1.6	3.3	ND	ND	0.40	J 1.3	0.73	J 0.36	J 1.8	1.9	2.9	0.59	J 0.62 J	J 5
Trichlorofluoromethane 1,2,3-Trichloropropane		ND ND	UJ ND ND	00	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5 0.04
1,2,4-Trimethylbenzene		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,3,5-Trimethylbenzene		ND	ND	UJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Vinyl Chloride		ND	ND	UJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2
m,p-Xylene		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
o-Xylene Xylene (total)		ND ND	ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND	ND	5
Notes:		ND	ND	UJ	UNI	ND	ND	ND	ND		NU	NU	ND	NU	ND	ND	ND	NU	ND	ND	5
Date of System Start-up:		4/22/2010																			
ug/L - micrograms per lite	r or parts per bi							erational Guida		.1)	D - Anaylte	concentration is	from diluted an	alysis.							
ND - Not detected								lards and Guida			,										
NVG - No Value Given						and Groundw	ater Effluent Li	mitations June	998												
J - Indicates an estimated UJ - The analyte was not		the renorted s	ample quantit	ation limit		P The some	le resulte are :	nreliable/usach	a The press	ce or absence a	f the analyte of	an not he verific	4								
However, the reported qu						is - rile samp	ie results arê û	nreliable/useab	e. The presen	ue ur auserice (n une analyte Ca	an nui be verifié	J.								

J - indicates an estimated value UJ - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. Bold and boxed indicates value exceeds TOGS

a - results are from run #2

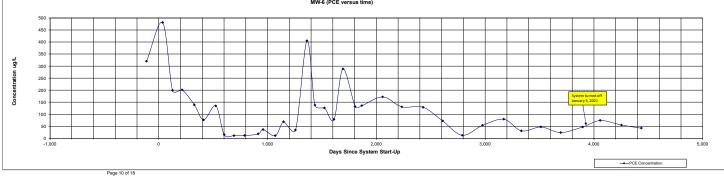

Page 9 of 18

Table 1 (MW-6 cont.)

Validated Analytical Results for Volatile Organic Compounds In Groundwater

Cornerstone Site B-1 3100 Third Avenue Bronx, New York BCP #C203044

	ts 3rd Q 2014 ed 9/19/2014	MW-6 4th Q 2014 12/10/2014 Q 1693 (MW-6 1st Q 2015 4/1/2015 2 1805	6/2/2015	MW-6 2nd Half 20 12/10/201 Q 2058	15 1st Ha	W-6 alf 2016 12016 234 Q	MW-6 2nd Half 2016 12/16/2016 2430	MW-6 1st Half 201 6/13/2017 Q 2609	MW-6 7 2nd Half 2013 12/1/2017 Q 2780	MW-6 1st Half 2018 6/15/2018 Q 2976	MW-6 2nd Half 2018 12/27/2018 Q 3171	6/7/2019	MW-6 2nd Half 2019 12/4/2019 Q 3513	MW-6 1st Half 2020 6/3/2020 Q 3695	12/21/2020	MW-6) 1st Half 2021 6/2/2021 Q 4059	12/14/2021	MW-6 1st Half 2022 6/14/2022 Q 4436 C	NYSDEC TOGS*
Volatile Organic Compounds				-								-								
Unit Acetone	ts ug/L ND	ug/L ND F	ug/L R ND	ug/L ND	R ND		g/L ND UJ	ug/L ND	UJ ND	ug/L ND	UJ ND	ug/L ND	ND	ug/L ND	ug/L ND	ug/L ND	ug/L ND	ug/L ND	ug/L ND	<u>ug/L</u> 50
Benzene	ND	ND	ND	ND	ND	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Bromobenzene	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
Bromochloromethane Bromodichloromethane	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5 50
Bromotorm	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	UJ ND	ND	ND	ND	ND	50
Bromomethane	ND	ND	ND	ND	ND	1	D	ND	ND	ND	ND	ND	ND	ND	UJ ND	IJ ND	ND	ND	ND	5
2-Butanone (MEK)	ND	ND F	R ND		R ND		ND UJ	ND	UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NVG
n-Butylbenzene sec-butylbenzene	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
sec-butylbenzene tert-butylbenene	ND	ND	ND	ND	ND		ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Carbon Tetrachloride	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	UJ ND	ND	ND	ND	ND	5
Chlorobenzene	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Chloroethane	ND	ND	ND	ND	ND		ND .	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Chloroform Chloromethane	ND ND	ND ND	0.47 ND	J 0.23 ND	J 0.19 ND		.25 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.89 UJ ND	J ND ND	ND ND	0.87 J ND	NVG
p-Chlorotoluene	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
p-Chlorotoluene	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2-Dibromo-3-Chloropropane	ND	ND ND	ND	ND	ND		ND ID	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.04
Dibromochloromethane 1,2-Dibromoethane	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	50 NVG
1,2-Dichlorobenzene	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3
1,4-Dichlorobenzene	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3
Dichlorodifluoromethane 1 1-Dichloroethane	ND ND	ND ND	ND ND	ND ND	ND ND		ND UJ	ND ND	ND ND	ND ND	ND ND	UJ ND	ND ND	ND ND	ND UJ ND	ND ND	ND ND	ND ND	ND ND	5
1,1-Dichloroethane 1.2-Dichloroethane	ND	ND	ND	ND	ND		ND ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	0.6
1,1-Dichloroethene	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
cis-1,2-Dichloroethene		J 0.70 .	J 0.57	J ND	1.1		.71 J	1.8	ND	ND	ND	ND	ND	0.72	J ND	ND	ND	0.38	J ND	5
trans-1,2-Dichloroethene 1,2-Dichloropropane	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND UJ ND	ND ND	ND ND	ND ND	5
1,2-Dichloropropene	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	0.4
2,2-Dichloropropane	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	UJ ND	ND	ND	ND	5.0
1,1-Dichloropropene	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	ND ND	ND ND	ND ND	0.5 ND	J ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		UJ ND UJ ND	ND UJ ND	ND ND	ND ND	ND ND	0.4
Ethyl Benzene	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	5
Hexachlorobutadiene	ND	ND	ND	ND	ND	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.5
Isopropylbenzene	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
p-Isopropylbenzene	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND UJ ND	ND ND	ND ND	ND ND	ND ND	5 10
Methyl tert-butyl Ether 4-Methyl-2-Pentanone	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	NVG
Methyl bromide	ND	ND	ND	ND	ND	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NVG
Methylene Chloride	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Naphthalene	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	UJ ND	ND ND	ND ND	ND ND	ND ND	10
n-Propylbenzene Styrene	ND	ND	ND	ND	ND		ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Tetrachloroethene Toluene	79.0 ND	288 (ND	ND 132	136 ND	172 ND		31 ND	129 ND	72.3 ND	12.4 ND	53.7 ND	79.5 ND	31 ND	47 ND	24 ND	47 ND	74 ND	55 ND	42 ND	5
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	UJ ND	ND	ND	ND	ND	5
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	1	ND	ND	ND	ND	ND	ND	ND	ND	UJ ND	ND	ND	ND	ND	5
1,1,1-Trichloroethane	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,2-Trichloroethane Trichloroethene	ND 0.77	ND J 1.5	ND 0.93	J 13.5	ND 1.2		ND .89 J	ND 3.9	ND	ND 0.46	ND J ND	ND 1.4	ND	ND 1.7	ND 0.41	ND J 0.71	ND ND	ND 0.86	ND J 0.60	1
Trichlorofluoromethane	0.77 ND	J 1.5 ND	0.93 ND	J 13.5 ND	1.2 ND		.89 J	3.9 ND	1.3 ND	0.46 ND	J ND ND	1.4 ND	1 ND	1.7 ND	0.41 ND	J 0.71 ND	ND	0.86 ND	J 0.60 ND	5
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.04
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND		ND ID	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Vinyl Chloride m.p-Xvlene	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	UJ ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	UJ ND ND	ND ND	ND ND	ND ND	2
o-Xylene	ND	ND	ND	ND	ND		ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Xylene (total)	ND	ND	ND	ND	ND	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Notes: Date of System Start-up:					*MYSDEC	Technical	Ocomta-	al Guidance Se	orio (1 1 1)											
ua/L - micrograms per liter or part	ts per billion				Ambient wa	ter Quality S	tandards A	al Guidance Se nd Guidance Vi	alues											
ND - Not detected					and Ground	dwater Efflue	nt Limitation	ns June 1998												
VVG - No Value Given					D - Anaylte	concentration	n is from dill	uted analysis.												
J - Indicates an estimated value quantitation limit. However, the n	nonded aus-th	ation limit is			R . The cor	nnie resulto o		le/useable. Th												
quantitation limit. However, the n approximate and may or may not						rabsence of			~											
quantitation necessary to accurat	tely and precise	ly measure the			verified.															
analyte in the sample.																				
Bold and boxed indicates value	exceeds TOG	S			a - results a	are from run #	#2													
									MW-6 (PCE	versus time)										

Validated Analytical Results for Volatile Organic Compounds In Groundwater

Cornerstone Site B-1 3100 Third Avenue Bronx, New York BCP #C203044

Well ID Comments Date Sampled	0 MW-7 s 1st Q 2010 d 12/29/2009	MW-7 2nd Q 2010 5/27/2010	8/26/2010	11/23/2010	MW-7 1st Q 2011 3/15/2011	MW-7 2nd Q 2011 6/8/2011	MW-7 3rd Q 2011 9/28/2011	MW-7 4th Q 2011 12/14/2011	MW-7 1st Q 2012 3/14/2012	MW-7 2nd Q 2012 6/19/2012	MW-7 3rd Q 2012 10/22/2012	MW-7 4th Q 2012 12/6/2012	MW-7 1st Q 2013 3/28/2013	MW-7 2nd Q 2013 6/13/2013	MW-7 3rd Q 2013 9/30/2013	MW-7 4th Q 2013 1/13/2014	MW-7 1st Q 2014 3/27/2014	MW-7 2nd Q 2014 6/23/2014	NYSDEC TOGS*
Days since system start up Volatile Organic Compounds	-114	Q 35	Q 126	Q 215 (327 (Q 412	Q 524	Q 601	Q 692	Q 789 (Q 914	Q 959	Q 1071	Q 1148	Q 1257	Q 1362	Q 1435	Q 1523 C	2
Volatile Organic Compounds Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Acetone	ND	UJ ND	ND	ND L		ND	ND	ND	ND		R ND	ND	ND		R 5.1	J ND		R ND F	۲ 50 1
Benzene Bromobenzene	2.0 ND	J ND UJ ND	ND ND	ND U ND U		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.29 ND	J 1.6 ND	J ND ND	ND ND	ND ND	ND ND	5
Bromochloromethane	ND	UJ ND	ND	ND L	J ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Bromodichloromethane	ND	UJ ND	ND	ND L		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50
Bromoform Bromomethane	ND ND	UJ ND UJ ND	ND ND	ND U ND U		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	50 5
2-Butanone (MEK)	ND	UJ ND	ND	R ND L	J ND I			R ND	ND		R ND	=			R ND	R ND	ND	ND F	NVG
n-Butylbenzene	ND	UJ ND	ND	ND L		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
sec-butylbenzene tert-butylbenene	ND ND	UJ ND UJ ND	ND ND	ND U ND U		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5 5
Carbon Tetrachloride	ND	UJ ND	ND	ND L		ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	5
Chlorobenzene	ND	UJ 0.88	J ND	ND L		••••	J ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Chloroethane Chloroform	ND 1.2	UJ ND J ND	ND ND	ND U ND U		ND 0.44	ND J 0.22	ND J 1.1	ND 0.97	J ND	ND ND	ND ND	ND 0.42	J ND	ND ND	ND ND	ND ND	ND ND	5
Chloromethane	ND	J ND UJ ND	ND ND	ND L		0.44 ND	J 0.22 ND	J 1.1 ND	0.97 ND	J ND ND	ND ND	ND ND	0.42 ND	J ND ND	ND ND	ND ND	ND ND	ND ND	/ NVG
o-Chlorotoluene	ND	UJ ND	ND	ND L	J ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
p-Chlorotoluene 1.2-Dibromo-3-Chloropropane	ND ND	UJ ND UJ ND	ND ND	ND U ND U		ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	5 0.04
1,2-Dibromo-3-Chioropropane Dibromochloromethane	ND ND	UJ ND UJ ND	ND ND			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.04
1,2-Dibromoethane	ND	UJ ND	ND	ND L	J ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NVG
1,2-Dichlorobenzene	ND	UJ ND	ND	ND L		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ND ND	UJ ND UJ ND	ND ND	ND L ND L		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	3 3
Dichlorodifluoromethane	ND	UJ ND	ND	ND L	J ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	UJ ND	5
1,1-Dichloroethane	ND	UJ ND	ND	ND L		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2-Dichloroethane 1,1-Dichloroethene	ND ND	UJ ND UJ ND	ND ND	ND L ND L		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.6 5
cis-1,2-Dichloroethene	ND	UJ ND	ND	ND U		1.1	1.6	1.2		J ND	ND	ND	0.80		J ND	1.0	ND	0.92 J	5
trans-1,2-Dichloroethene	ND	UJ ND	ND	ND L		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2-Dichloropropane 1,3-Dichloropropene	ND ND	UJ ND UJ ND	ND ND	ND L ND L		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	1 0.4
2.2-Dichloropropane	ND	UJ ND	ND	ND U		ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	5.0
1,1-Dichloropropene	ND	UJ ND	ND	ND L	J ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0
cis-1,3-Dichloropropene	ND ND	UJ ND	ND	ND L		ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.4
trans-1,3-Dichloropropene Ethyl Benzene	ND	UJ ND UJ ND	ND ND	ND U ND U		ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 11.6	0.4 5
Hexachlorobutadiene	ND	UJ ND	ND	ND L	J ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.5
Isopropylbenzene	ND	UJ ND	ND	ND L		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
p-lsopropylbenzene Methyl tert-butyl Ether	ND ND	UJ ND UJ ND	ND ND	ND L ND L		ND ND	ND 0.27	ND J ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5 10
4-Methyl-2-Pentanone	ND	UJ ND	ND	ND L		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NVG
Methyl bromide	ND	UJ ND	ND	ND L		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NVG
Methylene Chloride Naphthalene	ND ND	UJ ND UJ ND	ND ND	ND U ND U		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 2.5	ND J ND	ND ND	ND ND	ND ND	ND ND	5 10
n-Propylbenzene	ND	UJ ND	ND	ND U		ND	ND	ND	ND	ND	ND	ND	2.5 ND	J ND ND	ND	ND	ND	ND	5
Styrene	ND	UJ ND	ND	ND L	J ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane	ND ND	UJ ND UJ ND	ND ND	ND U ND U	J ND J ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5 5
Tetrachloroethene	1,670	J 592	2,630	a 1,780 b	J 688	ND 1,370	a 216	ND 575	ND 894	ND b 15.2	ND 102	ND 218	ND 383	a 727	ND 58.1	690	D 677	ND 314 D	5
Toluene	ND	UJ ND	ND	ND L	J ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	ND ND	UJ ND UJ ND	ND ND	ND L		ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5 5
1,2,4-Trichloroethane	ND	UJ ND UJ ND	ND ND	ND U		ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
1,1,2-Trichloroethane	ND	UJ ND	ND	ND L	J ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Trichloroethene Trichlorofluoromethane	4.3 J ND	J 0.73 UJ ND	J 3.5	J 11.7		7.9	2.9 ND	5.9 ND	8.2	ND ND	0.39 ND	J 0.83	J 7.3	8.2 ND	J ND ND	4.2 ND	4.0	J 5.7 ND	5
1,2,3-Trichloropropane	ND ND	UJ ND UJ ND	ND ND	ND U ND U		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5 0.04
1,2,4-Trimethylbenzene	ND	UJ ND	ND	ND L	J ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.4	5
1,3,5-Trimethylbenzene	ND	UJ ND	ND	ND L		ND	ND	ND	ND	ND	0.46	J ND	ND	ND	ND	ND	ND	1.5 J	5
Vinyl Chloride m,p-Xylene	ND ND	UJ ND UJ ND	ND ND	ND L ND L		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 55.8	2 5
o-Xylene	ND	UJ ND	ND	ND L	J ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	22.0	5
Xylene (total)	ND	UJ ND	ND	ND L	J ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	77.9	5
Notes: Date of System Start-up: ug/L - micrograms per liter or part ND - Not detected NVG - No Value Given J - Indicates an estimated value UJ - The analyte was not detected	d above the re			Ambient water and Groundwa D - Results fro	Quality Standai ter Effluent Limi n dilued analys	rds and Guidan itations June 19 is	98	l) e or absence of t	he analyte can	not be verified.									
limit. However, the reported quan not represent the actual limit of qu precisely measure the analyte in t	ntitation limit is uantitation neo the sample.	s approximate a cessary to accu	nd may or may		"0														
Bold and boxed indicates value	exceeds TO	65	1	a - results are f b - results are f							Page 11 of 1	8							
L					2 TAIL TTL						1 490 11 01 1	-							

Table 1

Table 1 (MW-7 cont.)

Validated Analytical Results for Volatile Organic Compounds In Groundwater

Cornerstone Site B-1 3100 Third Avenue Bronx, New York BCP #C203044

Well ID Comments Date Sampled Days since system start up		MW-7 4th Q 2014 12/10/2014 Q 1693 Q	MW-7 1st Q 2015 4/1/2015 Q 1805	MW-7 2nd Q 2015 6/2/2015 Q 1867	MW-7 2nd Half 2015 12/10/2015 Q 2058	MW-7 1st Half 2016 6/3/2016 Q 2234	12/16/2016	MW-7 1st Half 2017 6/13/2017 Q 2609	MW-7 2nd Half 201 12/1/2017 Q 2780	MW-7 7 1st Half 20 6/15/2018 Q 2976	MW-7 18 2nd Half 20 8 12/27/201 Q 3171)18 1st H 8 6/	/W-7 Half 2019 2 7/2019 3333 Q	MW-7 2nd Half 2019 12/4/2019 3513	MW-7 9 1st Half 2 6/3/202 Q 3695	2020 2nd 20 12	MW-7 Half 2020 /21/2020 3896 Q	MW-7 1st Half 2021 6/2/2021 4059	MW-7 2nd Half 202 12/14/2021 Q 4254	MW-7 1 1st Half 202 6/14/2022 Q 4436	2 NYSDEC TOGS*
Days since system start up Voltatio Cognatic Compounds Voltatio Cognatic Compounds Bromochicomethane Bromochicomethane Bromochicomethane Bromochicomethane Bromochicomethane Bromochicomethane Bromochicomethane Estimatic Compounds - Butterne - Butterne - Butterne - Butterne - Butterne - Butterne - Butterne - Butterne - Chicorobenane - 2-Discorobenane - 2-Discorobenane - 2-Discorobenane - 2-Discorobenane - 3-Dichicorobenane - 1,1.2.2-Tetrachicorobenane - 1,1.2.2-Tetrachicorobenane - 1,1.2.2-Tetrachicorobenane - 1,2.2-Timethylbenzene Styrene - 1,3.2-Timethylbenzene - 1,3.2-Timethylbenzene - 1,3.2-Timethylbenzene - 3.3/Jenethylbenzene - 3.3/Jenethylbe	uall NO NO	Q 1000 1000 Fill ND ND ND ND ND ND	301 3 3 ND ND	Q 1867 1867 ND ND ND ND ND ND ND ND ND ND	R ND ND ND ND ND ND ND ND ND ND	R ND ND ND ND ND ND ND ND ND ND ND ND ND N		J ND ND ND ND ND ND ND ND ND ND ND ND ND N	ua/L	Image Image <t< th=""><th>Q 3171 NC /th><th>,</th><th>3333 O 3333 O 33</th><th>1 2</th><th>G 3665 300 300 ND ND ND ND ND ND ND ND ND ND</th><th></th><th>33836 C 230 C 230 ND 230 ND ND ND ND S 3305 C 3305 ND ND S 3305 ND 3305 ND 3305 ND 3305 ND ND ND ND<!--</th--><th>4059 </th><th>Q 4254 9 (1254) 8 (2) 8 (2)</th><th>G 4436 JS 570 ND ND ND ND ND ND ND ND ND ND</th><th>□ □</th></th></t<>	Q 3171 NC	,	3333 O 33	1 2	G 3665 300 300 ND ND ND ND ND ND ND ND ND ND		33836 C 230 C 230 ND 230 ND ND ND ND S 3305 C 3305 ND ND S 3305 ND 3305 ND 3305 ND 3305 ND ND ND ND </th <th>4059 </th> <th>Q 4254 9 (1254) 8 (2) 8 (2)</th> <th>G 4436 JS 570 ND ND ND ND ND ND ND ND ND ND</th> <th>□ □</th>	4059 	Q 4254 9 (1254) 8 (2) 8 (2)	G 4436 JS 570 ND ND ND ND ND ND ND ND ND ND	□ □
ugil - micrograms per liter or part: ND - Not detected NVG - No Value Given J - Indicates an estimated value quantitation inmit. However, the re approximate and may or may not quantitation necessary to accurate analyte in the sample. Bold and boxed indicates value	eported quan represent the lely and preci	actual limit of sely measure the					Ambient water v and Groundwat D - Results fron R - The sample The presence o be verified.	er Effluent Limit. n dilued analysis results are unre	s and Guidance ttions June 1998 liable/useable. analyte can not	Values		b - re	esults are from	1 run #2							
							MW-7 (PCE versus	time)												
3,000 2,750 2,250 2,250 1,750 1,500 1,750 1,500 1,000 250 0 0,1,000				0					s Since Syste	2.000			3,000		Set	em turned off	4.0	00			5,000
								Day	a onice byste	in start-Up									-PCE Concentra	tion	
L																					

Validated Analytical Results for Volatile Organic Compounds In Groundwater

Cornerstone Site B-1 3100 Third Avenue Bronx, New York BCP #C203044

Days sinc	Well ID Comments Date Sampled e system start up	MW-8 1st Q 2010 12/30/2009 -113 (MW-8 2nd Q 2010 5/27/2010 Q 35	MW-8 3rd Q 2010 8/25/2010 Q 125	MW-8 4th Q 2010 11/23/2010 Q 215	MW-8 1st Q 2011 3/15/2011 Q 327	6/8/2011	MW-8 3rd Q 2011 9/28/2011 Q 524 (MW-8 4th Q 2011 12/14/2011 Q 601	MW-8 1st Q 2012 3/14/2012 Q 692 (MW-8 2nd Q 2012 6/19/2012 Q 789	MW-8 3rd Q 201 10/22/201 Q 914	2 4th 0 2 12/6	W-8 Q 2012 5/2012 959 Q	MW-8 1st Q 2013 3/28/2013 1071	MW-8 2nd Q 2013 6/13/2013 Q 1148 (MW-8 3rd Q 2013 9/30/2013 Q 1257	MW-8 4th Q 2013 1/13/2014 Q 1362	MW-8 1st Q 2014 3/27/2014 Q 1435	MW-8 2nd Q 2014 6/23/2014 Q 1523	NYSDEC TOGS*
Volatile Organic Compo																					
Acetone	Units	<u>ug/L</u> 16.6	<u>ug/L</u> J 3.1	J ND	ug/L ND I	<u>ug/L</u> UJ ND	ug/L ND	ug/L ND	ug/L ND	ug/L ND	ug/L ND	R ND		i <u>g/L</u> ND	ug/L ND	ug/L ND I	ug/L R ND	ug/L R ND	ug/L ND	ug/L R ND F	ug/L R 50
Benzene		27.8		J ND J ND		JJ 0.29 J	ND	ND	ND	ND	ND	R ND ND		ND ND	ND	ND I ND	R ND ND	ND ND	ND	ND P	R 50
Bromobenzene		ND		UJ ND		JJ ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	5
Bromochloromethane		ND		UJ ND		JJ ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	5
Bromodichloromethane		ND		UJ ND		JJ ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	50
Bromoform		ND		UJ ND		JJ ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	50
Bromomethane		ND		UJ ND		JJ ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	5
2-Butanone (MEK)		ND ND				JJ ND		R ND I	R ND ND	ND		R ND		ND R				R ND	ND	ND F	R NVG
n-Butylbenzene sec-butylbenzene		ND		UJ ND UJ ND		UJ ND UJ ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
tert-butylbenene		ND		UJ ND		JJ ND	ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	5
Carbon Tetrachloride		ND		UJ ND		JJ ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	5
Chlorobenzene		ND		UJ ND		JJ 1.0	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	5
Chloroethane		ND	ND	UJ ND	ND I	JJ ND	ND	ND	ND	ND	ND	ND	UJ N	ND	ND	ND	ND	ND	ND	ND	5
Chloroform		0.8		J ND		J 0.47 J	0.83	J 0.74 .	J ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	7
Chloromethane		ND		UJ ND		JJ ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	NVG
o-Chlorotoluene		ND		UJ ND		JJ ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	5
p-Chlorotoluene 1,2-Dibromo-3-Chloroprop	ane	ND ND		UJ ND UJ ND		UJ ND UJ ND	ND	ND ND	ND ND	ND	ND ND	ND ND			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5 0.04
Dibromochloromethane	anc	ND		UJ ND UJ ND		JJ ND JJ ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	0.04 50
1,2-Dibromoethane		ND		UJ ND		JJ ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	NVG
1,2-Dichlorobenzene		ND		UJ ND		JJ ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	3
1,3-Dichlorobenzene		ND		UJ ND		JJ ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	3
1,4-Dichlorobenzene		ND	ND	UJ ND	ND I	JJ ND	ND	ND	ND	ND	ND	ND	UJ N	ND	ND	ND	ND	ND	ND	ND	3
Dichlorodifluoromethane		ND		UJ ND		JJ ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	UJ ND	5
1,1-Dichloroethane		ND		UJ ND		JJ ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	5
1,2-Dichloroethane 1,1-Dichloroethene		ND ND		UJ ND		JJ ND	ND	ND	ND ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	0.6 5
cis-1,2-Dichloroethene		ND		UJ ND J ND		J ND J 1.6	ND 1.8	ND 2.2	ND	ND ND	ND 2.5	ND J 2.3		ND 3.0	ND 3.3	ND 2.1	ND J 2.4	ND 4.8	ND J 2.8	ND J 2.3	5 1
trans-1,2-Dichloroethene		ND		UJ ND		J 1.0 JJ ND	ND	ND	ND	ND	ND	J 2.3 ND		ND	ND	ND ND	J 2.4 ND	4.8 ND	J 2.8 ND	J 2.3 C	5
1,2-Dichloropropane		ND		UJ ND		JJ ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	1
1,3-Dichloropropene		ND		UJ ND		JJ ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	0.4
2,2-Dichloropropane		ND	ND	UJ ND	ND I	JJ ND	ND	ND	ND	ND	ND	ND	UJ N	ND	ND	ND	ND	ND	ND	ND	5.0
1,1-Dichloropropene		ND		UJ ND		JJ ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	5.0
cis-1,3-Dichloropropene		ND		UJ ND		JJ ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	0.4
trans-1,3-Dichloropropene		ND		UJ ND		JJ ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	0.4
Ethyl Benzene Hexachlorobutadiene		55.3 ND		J ND		JJ ND	ND	ND	ND ND	ND	ND	ND ND		ND	ND	ND	ND	ND	ND	ND	5 0.5
Isopropylbenzene		2.6		UJ ND UJ ND		UJ ND UJ ND	ND ND	ND ND	ND	ND ND	ND ND	ND			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
p-lsopropylbenzene		ND		UJ ND		JJ ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	5
Methyl tert-butyl Ether		0.58		UJ ND		JJ ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	10
4-Methyl-2-Pentanone		ND	ND	UJ ND	ND I	JJ ND	ND	ND	ND	ND	ND	ND	UJ N	ND	ND	ND	ND	ND	ND	ND	NVG
Methyl bromide		ND		UJ ND		JJ ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	NVG
Methylene Chloride		ND		UJ ND		JJ ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	5
Naphthalene		25.2		UJ ND		JJ ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	10 5
n-Propylbenzene Styrene		8.5 ·		UJ ND UJ ND		UJ ND UJ ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
1,1,1,2-Tetrachloroethane		ND		UJ ND		JJ ND	ND	ND	ND	ND	ND	ND		ND ND	ND	ND	ND	ND	ND	ND	5
1,1,2,2-Tetrachloroethane		ND		UJ ND		UJ ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	5
Tetrachloroethene		198	1,310	J 2,700	a 914 t	o J 460	2,820	a 3,100	1,430	1,340	1,220	a 1,970		849 a	459	a 1,080 a	D 954	D 2,250	D 639	1,800	D 5
Toluene		258		J 0.78		JJ ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	5
1,2,3-Trichlorobenzene		ND		UJ ND		JJ ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	5
1,2,4-Trichlorobenzene		ND		UJ ND		JJ ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	5
1,1,1-Trichloroethane		ND ND		UJ ND		JJ ND	ND	ND	ND ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	5
1,1,2-Trichloroethane Trichloroethene		ND ND	ND 7.1	UJ ND J 11.9	ND 1	JJ <u>ND</u> J 5.7	ND 10.1	ND 18	ND 9.3	ND 10.9	ND 14.9	ND 13.3	00 1	1.9	ND 9.7	ND 11.2	ND 8.2	ND 13.7	ND 6.6	ND 12.9	1 5
Trichlorofluoromethane		ND		J <u>11.9</u> UJ ND		J <u>5.7</u> JJ ND	ND	18 ND	9.3 ND	10.9 ND	14.9 ND	13.3 ND		1.9 ND	9.7 ND	11.2 ND	8.2 ND	13.7 ND	0.6 ND	12.9 ND	5
1,2,3-Trichloropropane		ND		UJ ND		UJ ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	0.04
1,2,4-Trimethylbenzene		84.4		J 0.40		JJ ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	0.89	J ND	ND	ND	5
1,3,5-Trimethylbenzene		18.8	0.33	J 0.33		UJ ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	5
Vinyl Chloride		ND		UJ ND		JJ ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	2
m,p-Xylene		219		J 0.55		JJ 0.35 J	ND	ND	ND	ND	ND	ND		ND	ND	ND	0.92	J ND	ND	ND	5
o-Xylene		109		J 1.4		JJ ND	ND	ND	ND ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	5
Xylene (total)		328	1.9	J 1.9	ND I	JJ 0.58 J	ND	ND	NU	ND	ND	ND	UJ N	ND	ND	ND	0.92	J ND	ND	ND	5

Xylene (total) Notes:

Notes. Date of System Start-up: ug/L - micrograms per liter or parts per billion ND - Not detected

NVG - No Value Given

J - Indicates an estimated value

UJ - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent

4/22/2010

the actual limit of quantitation necessary to accurately and precisely measure the

analyte in the sample. Bold and boxed indicates value exceeds TOGS

*NYSDEC Technical and Operational Guidance Series (1.1.1) Ambient water Quality Standards and Guidance Values and Groundwater Effluent Limitations June 1998

D - Result from diluted analysis

R - The sample results are unreliable/useable. The presence or absence of the analyte can not be verified.

a - results are from run #2

b - results are from run #2

Page 13 of 18

Table 1 (MW-8 cont.)

Validated Analytical Results for Volatile Organic Compounds In Groundwater

Cornerstone Site B-1 3100 Third Avenue Bronx, New York BCP #C203044

r																										
		MW-8 3rd Q 2014 9/19/2014	MW-8 4th Q 2014 12/10/2014	MW-8 1st Q 20 4/1/201)15 2nd	/W-8 Q 2015 2/2015	MW-8 2nd Half 20 12/10/201	15 1st ⊦	WW-8 Half 2016 3/2016	MW-8 2nd Half 21 12/16/201)16 1st	MW-8 t Half 2017 i/13/2017	MW-8 2nd Half 20 12/1/2017	7 1st H	W-8 alf 2018 5/2018	MW-8 2nd Half 2018 12/27/2018	MW-8 1st Half 2019 6/7/2019	MW 2nd Ha 12/4/2	f 2019	MW-8 1st Half 2020 6/3/2020	2nd Ha	W-8 alf 2020 1/2020	MW-8 1st Half 2021 6/2/2021	MW-8 2nd Half 202 12/14/2021	MW-8 1 1st Half 2022 6/14/2022	NYSDEC TOGS*
Days	since system start up		12/10/2014	4/1/201 Q 1805		2/2015 1867 Q	2058		3/2016 2234 (2430	ŭ Q B	2609	12/1/2017 Q 2780		976 C	12/2//2018 3171 C	2 3333	Q 35		3695	Q 38		6/2/2021 Q 4059	12/14/2021 Q 4254	G/14/2022 Q 4436	Q
Volatile Organic	ic Compounds Units	ug/L	ua/L	ua/L		ug/L	ua/L		ug/L	ua/L		ug/L	ua/L		ig/L	ug/L	ua/L	μα	4	ug/L	u	<u>a/L</u>	ua/L	ua/L	ua/L	ua/L
Acetone Benzene		ND ND	ND ND	R ND ND		ND R	ND ND	R	ug/L ND U ND	Ug/L J ND ND	UJ	ug/L ND ND	ND	UJ I	ig/L ND	ND	ND	ug Ni	2	ug/L ND ND	Ň	a <u>/L</u> ND ND	ND	u <u>g/L</u> ND 0.26	<u>ug/L</u> 8.0	J 50
Bromobenzene		ND	ND	ND		ND ND	ND		ND	ND		ND	ND ND	i	ND ND	ND ND	ND ND	N	5	ND	N	ID.	ND ND	ND	ND	5
Bromochloromet		ND ND	ND ND	ND ND		ND ND	ND ND		ND ND	ND ND		ND ND	ND ND		ND ND	ND ND	ND ND	N		ND ND	N	ND ND	ND ND	ND ND	ND ND	5 50
Bromoform	neulane	ND ND	ND ND	ND		ND ND	ND ND		ND ND	ND ND		ND ND	ND ND	i		ND ND	ND ND	N	D UJ	ND ND	N		ND ND	ND ND	ND ND	50 5
Bromomethane 2-Butanone (ME	EK)	ND ND	ND ND	ND ND R ND ND	R	ND R	ND ND	R	ND U	ND J ND	IJJ	ND ND	ND ND		ND ND	ND ND	ND ND	N	ט כ רט כ	ND ND	UJ N	ND ND	ND ND	ND ND	ND ND	5 NVG
n-Butylbenzene		ND ND	ND	ND	i.	ND	ND		ND	ND	00	ND ND	ND	i	ND ND	ND ND	ND ND	N	5	ND	N	1D	ND ND	ND ND	ND ND	5
sec-butylbenzen tert-butylbenene		ND ND	ND ND	ND ND		ND ND	ND ND		ND ND	ND ND		ND ND	ND ND		ND ND	ND ND	ND ND	N		ND ND	~ ~	ND ND	ND ND	ND ND	ND ND	5
Carbon Tetrachl		ND ND	ND ND	ND ND		ND ND	ND		ND	ND ND		ND ND	ND	į	ND	ND ND	ND ND	N	D UJ	ND	N	1D	ND ND	ND	ND	5
Chlorobenzene Chloroethane		ND ND U	ND I ND ND	ND ND ND		ND ND	ND ND		ND ND	ND ND ND		ND ND ND	ND ND		ND ND ND	ND ND	ND	NI NI NI	5	ND ND	N N	ND ND	ND ND	ND ND	ND ND ND	5
Chloroform		ND	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND	ND	N	2	ND	N	1D	ND	ND	ND	7
Chloromethane o-Chlorotoluene		ND ND	ND ND	ND ND		ND ND	ND ND		ND ND	ND ND		ND ND	ND ND		ND	ND ND	ND ND	N	D	ND	N	ND ND	ND ND	0.57 ND	ND ND	NVG 5
p-Chlorotoluene 1,2-Dibromo-3-C	e Chloromon	ND	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND	ND	N	2	ND	N	ND ID	ND	ND	ND	5
Dibromochlorom	nethane	ND ND	ND ND	ND ND		ND ND	ND ND		ND ND	ND ND		ND ND	ND ND	i i	ND ND	ND ND	ND ND	N	5	ND ND	N N	ND ND	ND ND	ND ND	ND ND	0.04 50
1,2-Dibromoetha 1,2-Dichlorobena	ane	ND ND	ND ND	ND ND		ND ND	ND ND		ND ND	ND ND		ND ND	ND ND		ND ND	ND ND	ND ND	N	2	ND ND	N	ND ND	ND ND	ND ND	ND ND	NVG
1,3-Dichlorobena	izene	ND ND	ND ND	ND ND		ND ND	ND ND		ND ND	ND ND		ND ND	ND ND	i		ND ND ND	ND ND	N	5	ND	N N		ND ND	ND ND	ND ND	3
1,4-Dichlorobena Dichlorodifluoror	zene	ND	ND	ND		ND	ND		ND ND U	ND		ND	ND		ND	ND	ND	N	2	ND	N	ND ID	ND	ND	ND	3
1,1-Dichloroetha	ane	ND ND	ND ND	ND ND		ND ND	ND ND		ND	ND		ND ND	ND ND	i	ND ND	ND ND	ND ND	N	D UJ	ND ND	N N	ND ND	ND ND	ND ND	ND ND	5
1,2-Dichloroetha 1.1-Dichloroethe	ane	ND ND	ND ND	ND ND		ND ND	ND ND		ND	ND ND		ND ND	ND ND		ND ND	ND ND	ND ND	N	D	ND ND	N	ND ND	ND ND	ND ND	ND ND	0.6
cis-1,2-Dichloroe	ethene	2.2 J ND	2.9 ND	J ND ND		ND ND 2.6	9.4	J	ND 1.7 ND	2.7 ND	J	ND ND ND	1.8 ND		ND 2.0 U ND	J ND	ND ND	NI	5	ND	N	۱D	ND	1.0	ND	5
trans-1,2-Dichlor 1,2-Dichloroprop	proethene	ND	ND	ND		ND	ND ND	•	ND	ND		ND	ND ND		ND	ND	ND	N		ND	N	ND ND	ND	ND	ND ND	5
1,3-Dichloroprop	pene	ND ND	ND ND	ND ND		ND ND	ND		ND ND	ND ND		ND ND	ND		ND ND	ND ND	ND ND	N	5	ND	N	1D	ND ND	ND ND	ND	0.4
2,2-Dichloroprop 1,1-Dichloroprop	pane	ND ND	ND ND	ND ND		ND ND	ND ND		ND ND	ND ND		ND ND	ND ND		ND ND	ND ND	ND ND	N		ND ND	UJ N		ND ND	ND ND	ND ND	5.0 5.0
cis-1,3-Dichlorop	propene	ND	ND ND	ND ND		ND ND	ND		ND	ND ND		ND ND	ND			ND	ND ND	N	D UJ	ND	N	ID.	ND ND	ND ND	ND	0.4
trans-1,3-Dichlor Ethyl Benzene		ND ND	ND ND	ND ND		ND	ND ND		ND ND	ND ND		ND ND	ND ND	1	ND	ND ND	ND ND	N	D UJ	ND	N	ID ID	ND ND	ND ND	ND ND	0.4
Hexachlorobutad		ND ND	ND ND	ND ND ND ND ND		ND ND	ND ND		ND ND	ND ND		ND ND ND	ND ND			ND	ND ND	N	C	ND	N	1D	ND ND	ND ND	ND ND	5 0.5
Isopropylbenzen p-Isopropylbenze		ND	ND ND ND ND	ND ND		ND ND	ND ND		ND ND	ND ND		ND ND	ND ND	i	ND	ND ND	ND ND	N	D	ND ND		ND ND	ND ND	ND ND	ND ND	5
Methyl tert-butyl 4-Methyl-2-Penta	Ether	ND	ND	ND		ND ND UJ	ND ND		ND	ND		ND ND ND	ND ND		ND ND ND	ND ND	ND ND ND	N	D UJ	ND ND		1D	ND ND	ND ND ND	ND ND	10 NVG
4-Methyl-2-Penta Methyl bromide	anone	ND ND	ND	ND		ND	ND		ND ND	ND ND		ND	ND		ND	ND	ND	N	n n	ND	N	ND ND	ND	ND	ND	NVG
Methylene Chlori Naphthalene	ride	ND ND	ND ND	ND ND		ND ND	ND ND		ND ND	ND ND		ND ND	ND ND	1	ND	ND ND	ND ND	N	- 5 UJ	ND	N		ND ND	ND ND	ND ND	5
n-Propylbenzene	e	ND ND ND	ND ND	ND ND ND		ND ND ND	ND		ND ND ND	ND ND ND		ND ND ND	ND	ļ	ND ND ND	ND ND ND	ND	NI NI NI	5 UJ	ND	N	ID .	ND ND ND	ND ND	ND	5
Styrene 1,1,1,2-Tetrachlo		ND ND	ND ND	ND ND		ND ND	ND ND		ND ND	ND ND		ND ND	ND ND		ND ND	ND ND	ND ND	N	C C	ND ND	N	ND ND	ND ND	ND ND	ND ND	5
1,1,2,2-Tetrachlo	loroethane	ND	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND	ND	N	D	ND	N	1D	ND	ND	ND ND 540	5
Tetrachloroether Toluene	ine	862 C	923 ND	ND 118 ND		ND D	1,640 ND		405 E	0 602 ND		455 ND	609 ND		522 E	4,070 ND	1,100 ND	75 N	n .	720 ND	6	90 1D	540 ND	630 0.27	J ND	5
1,2,3-Trichlorobe	enzene	ND	ND	ND ND		ND	ND		ND	ND		ND ND ND	ND	i	ND	ND	ND	N	D UJ	ND	N	ND	ND	ND	ND	5
1,2,4-Trichlorobe 1,1,1-Trichloroet		ND ND	ND ND	ND ND		ND ND	ND ND		ND ND	ND ND		ND ND	ND ND		ND ND	ND ND	ND ND	NI NI NI	D UJ	ND ND		ND ND	ND ND	ND ND	ND ND	5
1,1,2-Trichloroet	thane	ND 13.5	ND	ND		ND 16	ND		ND	ND 16.7		ND 6.4	ND		ND	ND	ND 18	N		ND		4D 1.8	ND	ND 7.4	ND	1
Trichloroethene Trichlorofluorom		13.5 ND	10.0 ND	ND 1.4 ND	L	16 ND	29.7 ND		9.2 ND	16.7 ND		6.4 ND	17.0 ND	- 1-1	6.8 ND	30.2 ND	18 ND	2: N		6.8 ND		i.8 ID	ND 4.5 ND	7.4 ND	35 ND	5
1.2.3-Trichlorop	propane	ND ND	ND	ND		ND	ND ND		ND	ND		ND	ND	i	ND	ND ND	ND	N	D	ND ND	N	ND	ND	ND	ND ND	0.04
1,2,4-Trimethylb 1.3.5-Trimethylb	penzene	ND ND	ND ND	ND ND		ND ND	ND		ND ND	ND ND		ND ND	ND ND		ND ND	ND	ND ND	N	D	ND	N	ND ND	ND ND	ND ND	ND	5
Vinyl Chloride		ND ND	ND	ND		ND ND	ND		ND	ND ND		ND	ND	1	ND	ND	ND	N	2	ND	UJ N	ID ID	ND	ND	ND	2
m,p-Xylene o-Xylene		ND ND	ND ND	ND ND		ND ND	ND ND		ND ND	ND ND		ND ND	ND ND		ND ND	ND ND	ND ND	N	2	ND ND	N N	ID ID	ND ND	ND ND	ND ND	5 5
Xylene (total)		ND	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND	ND	N		ND		1D	ND	ND	ND	5
Notes: Date of System :	Start-up:							*NYS	SDEC Tech	nical and Op	erational (Guidance Se	eries (1.1.1)													
ug/L - microgran ND - Not detecte	ms per liter or parts per	er billion						Ambi	ient water (Quality Stand er Effluent Li	ards and (Guidance Va	alues													
NVG - No Value	Given							D - R	Result from	diluted analy	sis	10116 1990														
J - Indicates an e	estimated value							P. T	The sample	results are u	nreliable/i	iseable														
UJ - The analyte	e was not detected abo	ove the reporte	l sample quan	titation limit.	However,	the		The p	, presence o	r absence of																
reported quantita	tation limit is approxima ressary to accurately a	nate and may or and precisely m	may not repre-	sent the actu alvie in the se	ual limit of			be ve	erified.																	
quantitation need	Bold and box	xed indicates v	alue exceeds	TOGS	umpie.			a - re	esults are fr	om run #2																
								b - re	esults are fr	om run #2																
											M	N-8 (PCE	versus time)												
	1.500																									
	4,500																									٦
	4,000																									
																		/]	1							
	3,500			+															1							-
۲,	3,000																		1							
Bn u							¥ \												1							
tion	2,500		-	+	+/+		+					_	-	-	-	+ +	-		1							-
Concentration ug/L	2,000				\square						Λ															
Icer					17				$\Lambda \top$		\square	<u>^</u>							T			System	n turned off			1
	1,500	+		+	+/		⊢ ↓	. /	\leftarrow		++	+		\frown		+	-			\vdash		Januar	n turned off ry 5, 2021			-
Col					V	L_ /	\square	\sim				/ \		$ \rangle$					1				$\angle \Gamma$			
Cor	4 000			1	1				- t		1/		∇T						~				·			1
Col	1,000		1	1 /		$ \rangle $			\rightarrow				$\lambda \parallel$, · · · ·	₩~~		-					-				_
Cor	1,000			/																						
Col	500												\vee		\sim											
CO	500				0				1,000	,			2	000			3.0	000				4,000	0			5,000
C	500			-	0				1,000)	Days S	lince Syst	2. tem Start-Up				3,0	000				4,000	D			5,000
Co	500				0				1,000)	Days S	Since Syst					3,0	000				4,000		PCE Concentration		5,000

Page 14 of 18

Table 1 Validated Analytical Results for Volatile Organic Compounds In Groundwater

Cornerstone Site B-1 3100 Third Avenue Bronx, New York BCP #C203044

Cor	Well ID omments Sampled o start up	MW-10 1st Q 2010 12/30/2009 -113 (MW-10 2nd Q 2010 5/26/2010 Q 34 (MW-10 3rd Q 2010 8/25/2010 Q 125	MW-10 4th Q 201 11/22/201 Q 214	3/15/2011	MW-10 2nd Q 2011 6/8/2011 Q 412	MW-10 3rd Q 2011 9/28/2011 Q 524	MW-10 4th Q 2011 12/14/2011 Q 601	MW-10 1st Q 2012 3/14/2012 Q 692	6/19/2012	MW-10 3rd Q 2012 10/22/2012 Q 914 (MW-10 4th Q 2012 12/6/2012 Q 959	MW-10 1st Q 2013 3/28/2013 Q 1071	MW-10 2nd Q 2013 6/13/2013 Q 1148	MW-10 3rd Q 2013 9/30/2013 Q 1257 (0	MW-10 4th Q 2013 1/13/2014 Q 1362 (MW-10 1st Q 2014 3/27/2014 Q 1435	MW-10 2nd Q 2014 6/23/2014 Q 1523 Q	NYSDEC TOGS*
Volatile Organic Compounds																				
	Units	ug/L	ug/L	<u>ug/L</u>	ug/L	<u>ug/L</u>	ug/L	ug/L	<u>ug/L</u>	ug/L	ug/L	ug/L	ug/L	<u>ug/L</u>	ug/L	ug/L	ug/L	<u>ug/L</u>	ug/L	ug/L
Acetone		14.4	6.7		UJ 9.0	J ND	ND	ND	ND	ND	ND I		ND	ND			R ND		R ND R	50
Benzene		0.5	0.10		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Bromobenzene Bromochloromethane		ND ND	ND ND		UJ ND UJ ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
Bromodichloromethane		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50
Bromoform		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50
Bromomethane		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
2-Butanone (MEK)		ND	ND	ND	R ND	UJ ND			R ND	ND	ND I			R ND			R ND	ND	ND R	NVG
n-Butylbenzene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
sec-butylbenzene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
tert-butylbenene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Carbon Tetrachloride		ND	ND		UJ ND	ND		JJ ND	ND	ND	ND		JJ ND	ND	ND	ND	ND	ND	ND	5
Chlorobenzene		ND ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Chloroethane Chloroform		ND 1.9	ND 2.8	ND 1.4	UJ ND J 3.1	ND 0.72 J	ND 0.22	ND J ND	ND 0.32	ND J ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.91	ND J 0.55	ND	5
Chloromethane		ND	2.8 ND		J 3.1 UJ ND	0.72 J ND	0.22 ND	J ND ND	0.32 ND	J ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	0.91 . ND	J 0.55 ND	J 0.32 J ND	NVG
o-Chlorotoluene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
p-Chlorotoluene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2-Dibromo-3-Chloropropane		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.04
Dibromochloromethane		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50
1,2-Dibromoethane		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NVG
1,2-Dichlorobenzene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3
1,3-Dichlorobenzene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3
1,4-Dichlorobenzene Dichlorodifluoromethane		ND ND	ND ND		UJ ND UJ ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND UJ ND	3 5
1,1-Dichloroethane		ND	ND		UJ ND UJ ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	UJ ND ND	5
1,2-Dichloroethane		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.6
1,1-Dichloroethene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
cis-1,2-Dichloroethene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	1.2		J ND	ND	0.62	J ND	ND	5
trans-1,2-Dichloroethene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2-Dichloropropane		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,3-Dichloropropene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.4
2,2-Dichloropropane		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0
1,1-Dichloropropene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0
cis-1,3-Dichloropropene trans-1,3-Dichloropropene		ND ND	ND ND		UJ ND UJ ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.4 0.4
Ethyl Benzene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Hexachlorobutadiene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.5
Isopropylbenzene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
p-lsopropylbenzene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Methyl tert-butyl Ether		ND	ND		UJ ND	0.59 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10
4-Methyl-2-Pentanone		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NVG
Methyl bromide		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NVG
Methylene Chloride		ND ND	ND		UJ ND UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5 10
Naphthalene n-Propylbenzene		ND ND	ND ND		UJ ND UJ ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	10
Styrene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,1,2-Tetrachloroethane		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,2,2-Tetrachloroethane		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Tetrachloroethene	F	21.6	4.3	3.4	J 22.7	23	8.2	4.9	110	106	40.3	69.9	147	53.2	41.9	31.7	67.2	30.3	17.1	5
Toluene	Г	ND	ND		UJ ND	ND	0.41	J ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2,3-Trichlorobenzene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2,4-Trichlorobenzene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,1-Trichloroethane 1,1,2-Trichloroethane		ND ND	ND ND		UJ ND UJ ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	5
1,1,2-1 richloroethane Trichloroethene		ND ND	ND ND		UJ ND UJ ND	ND ND	ND ND	ND ND	ND 1	ND 1.3	ND 0.45	ND J 1.5	ND 4.4	ND 2.2	ND 1.5	ND 0.80 、		ND 0.57	J ND	1 5
Trichlorofluoromethane		ND	ND		UJ ND	ND	ND	ND	ND	ND	0.45 ND	J 1.5 ND	4.4 ND	Z.Z ND	ND	0.80 . ND	J 2.0 ND	0.57 ND	J ND ND	5
1,2,3-Trichloropropane		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.04
1,2,4-Trimethylbenzene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,3,5-Trimethylbenzene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Vinyl Chloride		ND	ND	ND	UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2
m,p-Xylene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
o-Xylene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Xylene (total)		ND	ND	ND	UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5

o-Xylene (Xylene (Ktal) Notes: Date of System Start-up: 4 ug/L - micrograms per liter or parts per billion ND - Not detected NVG - No Value Given

J - Indicates an estimated value

4/22/2010

UJ - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the

analyte in the sample. Bold and boxed indicates value exceeds TOGS

*NYSDEC Technical and Operational Guidance Series (1.1.1) Ambient water Quality Standards and Guidance Values and Groundwater Effluent Limitations June 1998

R - The sample results are unreliable/useable. The presence or absence of the analyte can not be verified.

Page 15 of 18

Table 1 (MW-10 cont.)

Validated Analytical Results for Volatile Organic Compounds In Groundwater

Cornerstone Site B-1 3100 Third Avenue Bronx, New York BCP #C203044

	Comments	MW-10 3rd Q 2014	MW-10 4th Q 2014	MW-10 1st Q 2015	MW-10 2nd Q 2015	MW-10 2nd Half 2015	MW-10 5 1st Half 2016	MW-10 2nd Half 2016	MW-10 1st Half 201	MW-10 7 2nd Half 20	MW-10 7 1st Half 20	MW-10 18 2nd Half 2018	MW-10 1st Half 2019	MW-10 2nd Half 2019	MW-10 9 1st Half 202	MW-10 2nd Half 202	MW-10 0 1st Half 2021	MW-10 2nd Half 2021	MW-10 1st Half 2022	NYSDEC TOGS*
Days since	Date Sampled e system start up		12/10/2014 2 1693	4/1/2015 Q 1805	6/2/2015 Q 1867	12/10/2015 Q 2058	6/3/2016 Q 2234	12/16/2016 Q 2430	6/13/2017 Q 2609	12/1/2017 Q 2780	6/15/201 Q 2976	Q 3171	6/7/2019 Q 3333	12/4/2019 Q 3513	6/3/2020 Q 3695	12/21/2020 Q 3896	6/2/2021 Q 4059	12/14/2021 Q 4254	6/14/2022 Q 4436 C	2
Volatile Organic	Compounds Units	ND	ug/L ND	R ND	ug/L ND	R ND	ug/L R ND	ug/L UJ ND	ug/L UJ ND	ug/L ND	ug/L UJ ND	ug/L ND	ug/L	ug/L ND	ug/L ND	ug/L ND	ug/L ND	ug/L ND	ug/L	ug/L 50
Acetone Benzene		ND	ND	ND ND ND	ND ND ND	ND	R ND ND ND	ND	ND	ND	ND	ND ND ND	<u>ug/1</u> 7.5 ND ND	ND ND ND	ND ND	ND	ND	ND ND ND	ND ND ND	1
Bromobenzene Bromochloromet		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	5
Bromodichlorom	ethane	ND ND	ND ND	ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND	ND ND ND	ND ND	ND ND	ND ND	ND ND	ND ND ND	ND ULI ND	ND ND	ND ND	ND ND	ND ND	50 50
Bromomethane 2-Butanone (MEI	0	ND ND	ND ND	R ND ND ND	ND ND	ND ND R ND	ND ND R ND ND	ND ND UJ ND	ND ND UJ ND	ND ND	ND ND	ND ND ND	ND ND	ND ND	UJ ND UJ ND	UJ ND UJ ND	ND ND	ND ND	ND ND	50 5 NVG
n-Butylbenzene sec-butylbenzene		ND ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
tert-butylbenene		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
Carbon Tetrachl Chlorobenzene	pride	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	UJ ND ND	ND ND	ND ND	ND ND	ND ND	UJ ND ND	ND ND	ND ND	ND ND	ND ND	5
Chloroethane Chloroform		ND 1.3	ND 1.4	ND 0.58	ND J 1	ND 0.84	ND J 0.83	ND J 1.1	ND 0.45	ND J 0.45	ND J ND	ND ND	ND ND	ND 1.1	ND J ND	ND 0.79	ND J 0.75	ND J 0.67	ND ND	5
Chloromethane o-Chlorotoluene		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NVG
p-Chlorotoluene		ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2-Dibromo-3-C Dibromochlorom	ethane	ND ND	ND ND	ND ND	ND ND	ND ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	0.04 50
1,2-Dibromoetha 1,2-Dichlorobena	ne tene	ND ND	ND ND	ND ND ND	ND ND	ND ND ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NVG 3
1,3-Dichlorobena 1,4-Dichlorobena	tene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	3
Dichlorodifluoror 1,1-Dichloroetha	nethane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	UJ ND ND	ND ND	ND ND	ND ND	UJ ND ND	ND ND	ND ND	ND UJ ND	ND ND	ND ND	ND ND	ND ND	5
1.2-Dichloroetha	ne	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND	ND ND ND	ND ND ND	ND ND ND	0.6
1,1-Dichloroethe cis-1,2-Dichloroe	athene	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND 0.78 ND	J ND J ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	5 5
trans-1,2-Dichlor 1,2-Dichloroprop	oethene ane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
1,3-Dichloroprop 2,2-Dichloroprop	ene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.4
1.1-Dichloroprop	ene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5.0 5.0
cis-1,3-Dichlorop trans-1,3-Dichlor	opropene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	UJ ND UJ ND	ND ND	ND ND	ND ND	ND ND	0.4 0.4
Ethyl Benzene Hexachlorobutad		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5 0.5
Isopropylbenzen p-Isopropylbenze	e ine	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5 5
Methyl tert-butyl 4-Methyl-2-Penta	Ether	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	UJ ND ND	ND ND	ND ND	ND ND	ND ND	10 NVG
Methyl bromide		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	NVG
Methylene Chlori Naphthalene	ue	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	UJ ND	ND	ND ND	ND	UJ ND	ND ND	UJ ND	ND ND	ND ND	5 10
n-Propylbenzene Styrene		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND ND ND ND ND ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
1,1,1,2-Tetrachlo 1,1,2,2-Tetrachlo	proethane	ND ND 11.0	ND	ND ND	ND ND	ND ND	ND ND 56.4	ND	ND ND 44.5	ND ND 44,4	ND ND	ND ND	ND ND 18	ND ND	ND ND 27	ND ND 20	ND ND 25	ND ND	ND ND	5 5
Tetrachloroether Toluene	10	ND	ND 25.5 ND	ND ND 50.4 ND	ND ND 38.6 ND	ND ND 72.7 ND	ND	ND 52.4 ND	ND	ND	48.0 ND	ND	ND	ND ND 7.3 ND	ND	ND	ND	ND ND 19 ND	3.8 ND	5 5
1,2,3-Trichlorobe 1,2,4-Trichlorobe		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	UJ ND UI ND	ND ND	ND ND	ND ND	UJ ND UJ ND	ND ND	UJ ND UJ ND	ND ND	ND ND	5
1,1,1-Trichloroet 1,1,2-Trichloroet	hane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	UJ ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
Trichloroethene		0.64 v	J 1.7 ND	1.4 ND	2.5 ND	ND ND	1.4 ND	2.2 ND	3.3 ND	1.8 ND	1.5 ND	J 0.66 ND	J 0.26 ND	J ND ND	0.42 ND	J 0.36 ND	J 0.43 ND	J 0.27 ND	J ND ND	5
Trichlorofluorom 1,2,3-Trichloropr	opane	ND ND ND	ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND	ND	ND ND ND	ND	ND	ND	ND	ND	ND	ND	5 0.04
1,2,4-Trimethylb 1,3,5-Trimethylb	enzene	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	5
Vinyl Chloride m,p-Xylene		ND	ND ND	ND ND	ND ND ND	ND	ND ND ND	ND ND	ND ND	ND ND	ND ND	ND ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND	5 2 5
o-Xylene Xylene (total)		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
Notes:	Start-un							ational Guidarco	Ceries (1 1 1)	110		110	110						.10	
ND - Not detecte NVG - No Value J - Indicates an e UJ - The analyte limit. However, s not represent the precisely measu	Or Spectra District ************************************																			
								MW-10 (PC	E versus t	ime)										
		1					*									1				ן ר
1	40																			1 '
1	20			+		+	+								\rightarrow					4
2						I h														1
16 1 n c	00																			1
Concentration ug/	80			+		-	+++	\vdash	+ $+$						+					-
entr							+													1
ouc	60							\mathbf{i}								S) Ja	stem turned off nuary 5, 2021			1
o	40			+		+ $+$	$-\Psi$	\rightarrow	+	-AV-		+			\rightarrow					4
								M		/						\sim	4			1
	20			\sim					$\uparrow \checkmark$											1
	0					\sim			1						~			\		1
	-1,000			0			1,00	0	Dav	2,0 s Since System			3,0	00			4,000		5	5,000
									Lay								_	PCE Concentration	1	
				Page 16 of 19																

Page 16 of 18

Validated Analytical Results for Volatile Organic Compounds In Groundwater

Cornerstone Site B-1

3100 Third Avenue Bronx, New York BCP #C203044

Days since sys		MW-11 1st Q 2010 12/29/2009 -114	5/26/2010	MW-11 3rd Q 2010 8/25/2010 Q 125 (MW-11 4th Q 2010 11/22/2010 Q 214		MW-11 2nd Q 2011 6/8/2011 412	MW-11 3rd Q 2011 9/28/2011 Q 524 Q	MW-11 4th Q 2011 12/14/2011 Q 601 (MW-11 1st Q 2012 3/14/2012 Q 692	MW-11 2nd Q 2012 6/19/2012 Q 789 (MW-11 3rd Q 2012 10/22/2012 Q 914		NYSDEC TOGS* Q
Volatile Organic Compound														
	Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Acetone		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND F		Dry	50
Benzene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	1
Bromobenzene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5
Bromochloromethane		ND	ND		IJ ND	ND	ND	ND	ND ND	ND	ND	ND	Dry	5
Bromodichloromethane Bromoform		ND ND	ND ND		IJ ND IJ ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	Dry Dry	50 50
Bromomethane		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND		5
2-Butanone (MEK)		ND	UJ ND	ND U		UJ ND		R ND R		ND		R ND	Dry R Dry	NVG
n-Butylbenzene		ND	ND		IJ ND	ND ND	ND	ND ND	ND	ND	ND P	ND	Dry	5
sec-butylbenzene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5
tert-butylbenene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5
Carbon Tetrachloride		ND	ND		IJ ND	ND		JJ ND	ND	ND	ND	ND	UJ Dry	5
Chlorobenzene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5
Chloroethane		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5
Chloroform		3.7	2.4	2.3	J 0.36	J 0.58 J		J 0.38 J		ND	ND	ND	Dry	7
Chloromethane		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	NVG
o-Chlorotoluene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5
p-Chlorotoluene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5
1,2-Dibromo-3-Chloropropan	ie	ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	0.04
Dibromochloromethane		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	50
1,2-Dibromoethane		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	NVG
1,2-Dichlorobenzene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	3
1,3-Dichlorobenzene		ND ND	ND ND		IJ ND IJ ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	Dry	3 3
1,4-Dichlorobenzene Dichlorodifluoromethane		ND ND	ND		IJ ND IJ ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	Dry Dry	3 5
1.1-Dichloroethane		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5
1,2-Dichloroethane		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	0.6
1,1-Dichloroethene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5
cis-1,2-Dichloroethene		ND	ND		IJ ND	ND	ND	ND	ND	0.64	J ND	0.21	J Dry	5
trans-1,2-Dichloroethene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5
1,2-Dichloropropane		ND	ND	ND L	IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	1
1,3-Dichloropropene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	0.4
2,2-Dichloropropane		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5.0
1,1-Dichloropropene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5.0
cis-1,3-Dichloropropene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	0.4
trans-1,3-Dichloropropene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	0.4
Ethyl Benzene		ND ND	ND		IJ ND	ND	ND	ND	ND ND	ND	ND	ND	Dry	5 0.5
Hexachlorobutadiene		ND ND	ND ND		IJ ND IJ ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	Dry Dry	0.5
Isopropylbenzene p-Isopropylbenzene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5
Methyl tert-butyl Ether		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	10
4-Methyl-2-Pentanone		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	NVG
Methyl bromide		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	NVG
Methylene Chloride		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5
Naphthalene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	10
n-Propylbenzene		ND	ND	ND L	IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5
Styrene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5
1,1,1,2-Tetrachloroethane		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5
1,1,2,2-Tetrachloroethane		ND	ND		IJ <u>ND</u>	ND	ND	ND	ND	ND	ND	ND	Dry	5
Tetrachloroethene		279	55.4		11.1	44.7	24.3	8.3	11.2	8.1	10.3	13.8	Dry	5
Toluene		ND	ND		IJ ND	ND	ND	ND	ND ND	ND	ND	ND	Dry	5
1,2,3-Trichlorobenzene		ND	ND		IJ ND	ND	ND	ND		ND	ND	ND	Dry	5
1,2,4-Trichlorobenzene 1,1,1-Trichloroethane		ND ND	ND ND		IJ ND IJ ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	Dry Dry	5 5
1,1,1-Trichloroethane		ND ND	ND		IJ ND IJ ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	Dry	5 1
Trichloroethene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	0.39	J Dry	5
Trichlorofluoromethane		ND	UJ ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	J Dry Dry	5
1,2,3-Trichloropropane		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	0.04
1,2,4-Trimethylbenzene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5
1,3,5-Trimethylbenzene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5
Vinyl Chloride		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	2
m,p-Xylene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5
o-Xylene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5
Xylene (total)		ND	ND	ND L	IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5

Notes: Date of System Start-up: 4/, ug/L - micrograms per liter or parts per billion ND - Not detected NVG - No Value Given 4/22/2010

Notes:

*NYSDEC Technical and Operational Guidance Series (1.1.1) Ambient water Quality Standards and Guidance Values and Groundwater Effluent Limitations June 1998

R - The sample results are unreliable/useable. The presence or absence of the analyte can not be verified.

UJ - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. Bold and boxed indicates value exceeds TOGS

Dry- Not Sampled on 12/6/2012 as the well was dry. NA - Not Applicable

Page 17 of 18

Table 1

Table 1 (MW-11 cont.)

Validated Analytical Results for Volatile Organic Compounds In Groundwater

Cornerstone Site B-1 3100 Third Avenue Bronx, New York BCP #C203044

Days since sys	Well IE Comments ate Sampleo	s 1st Q 2 3/28/20	013 013	MW-11 2nd Q 201 6/13/2013 1148		MW-11 3rd Q 2013 9/30/2013 1257		MW-11 4th Q 20 1/13/20 ⁻ 1362	13	MW-11 1st Q 2014 3/27/2014 1435	Q	MW-11 2nd Q 20 6/23/201 1523		MW- 3rd Q 2 9/19/2 161	014 014	MW-11 4th Q 2014 12/10/2014 1693		MW-11 1st Q 201 4/1/2015 1805	5	MW-11 2nd Q 201 6/2/2015 1867	5 2	MW-11 2nd Half 2015 NA NA	NYSDEC TOGS*
Volatile Organic Compound		, 10/	, Q	(140	Q	1207	ų	1302	ų	1400	ų	1023	U.	101	, u	1093	ų	1003	ų	1007		1974	
Columno organic compound	Units	s ug/L	_	ug/L		ug/L		ug/L		ug/L		ug/L		<u>ug/l</u>	_	ug/L		ug/L		ug/L		ug/L	ug/L
Acetone		ND		ND	R	ND	R	ND		ND	R	ND	R	ND		ND	R	ND		ND	R	NS	50
Benzene		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	1
Bromobenzene		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	5
Bromochloromethane		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	5
Bromodichloromethane		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	50
Bromoform		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	50
Bromomethane		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	5
2-Butanone (MEK)		ND	R		R		R	ND		ND		ND	R			ND	R	ND	R	ND	R	NS	NVG
n-Butylbenzene		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	5
sec-butylbenzene		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	5
tert-butylbenene		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	5
Carbon Tetrachloride		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	5
Chlorobenzene		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	5
Chloroethane		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	5
Chloroform		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	7
Chloromethane		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	NVG
o-Chlorotoluene		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	5
p-Chlorotoluene	•	ND		ND ND		ND ND		ND ND		ND ND		ND		ND ND		ND ND		ND ND		ND ND		NS NS	5
1,2-Dibromo-3-Chloropropan	e	ND										ND											0.04
Dibromochloromethane		ND ND		ND ND		ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		NS NS	50 NVG
1,2-Dibromoethane				ND ND		ND		ND ND						ND ND		ND ND		ND ND		ND ND		NS NS	
1,2-Dichlorobenzene		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		NS NS	3 3
1,3-Dichlorobenzene		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		NS NS	3
1,4-Dichlorobenzene Dichlorodifluoromethane		ND ND		ND ND		ND ND		ND ND		ND ND	UJ	ND ND		ND ND		ND ND		ND ND		ND ND		NS NS	3 5
1,1-Dichloroethane		ND ND		ND		ND		ND		ND	01	ND		ND		ND		ND		ND		NS	5 5
1,2-Dichloroethane		ND ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	5 0.6
1,1-Dichloroethene		ND ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	5
cis-1.2-Dichloroethene		ND		ND		0.49	J	ND		ND		ND		ND		ND		ND		ND		NS	5
trans-1,2-Dichloroethene		ND		ND		0.49 ND	J	ND		ND		ND		ND		ND		ND		ND		NS	5
1,2-Dichloropropane		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	1
1,3-Dichloropropene		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	0.4
2,2-Dichloropropane		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	5.0
1,1-Dichloropropene		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	5.0
cis-1,3-Dichloropropene		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	0.4
trans-1,3-Dichloropropene		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	0.4
Ethyl Benzene		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	5
Hexachlorobutadiene		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	0.5
Isopropylbenzene		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	5
p-Isopropylbenzene		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	5
Methyl tert-butyl Ether		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	10
4-Methyl-2-Pentanone		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	NVG
Methyl bromide		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	NVG
Methylene Chloride		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	5
Naphthalene		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	10
n-Propylbenzene		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	5
Styrene		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	5
1,1,1,2-Tetrachloroethane		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	5
1,1,2,2-Tetrachloroethane		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	5
Tetrachloroethene		5.8		4.4		8.5		6.3		6.8	T	7.8		7.2		5.3		5.5		2.5		NS	5
Toluene		ND		ND		ND		ND		ND	-	ND		ND		ND		ND		ND		NS	5
1,2,3-Trichlorobenzene		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	5
1,2,4-Trichlorobenzene		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	5
1,1,1-Trichloroethane		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	5
1,1,2-Trichloroethane		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	1
Trichloroethene		0.44		ND		0.99	J	0.61	J	ND		0.60	J	0.92		0.84	J	0.62	J	ND		NS	5
Trichlorofluoromethane		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	5
1,2,3-Trichloropropane		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	0.04
1,2,4-Trimethylbenzene		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	5
1,3,5-Trimethylbenzene		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	5
Vinyl Chloride		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	2
m,p-Xylene		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	5
o-Xylene		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	5
Xylene (total)		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		NS	5
Notes:													-										
Date of System Start-up:		4/22/2	2010							nical and Op					.1)								
ug/L - micrograms per liter or	r parts per b	illion								Quality Stand				/alues									
ND - Not detected								and Grou	ndwate	er Effluent Lir	nitat	ions June	1998										
NVG - No Value Given																							
UJ - The analyte was not det	ected above	e the rend	orted sa	mple quanti	ation	limit.				results are u				he preser	ice								
However, the reported quant								or absend	e of th	ie analyte ca	n not	t be verified	1.										
the actual limit of quantitation																							
analyte in the sample.			,	,																			
					_																		
Bold and boxed indicates v	alue excee	ds TOGS	;							g required as	of 2	nd Half 20	15										
								NA - Not	Applica	able													
								MW-1	1 (PC	E versus t	ime	•)											
200												•											
300																							
270	+ +																			+ +			\neg
1 1 1	1 1	N N								1								1					

500

Days Since System Start-Up

1,000

Ó

240 210

> > 30 0 -500

Concentration ug/L

Page 18 of 18

1,500

2,000

---PCE

		C	Table 2 nitoring Well Network Cornerstone Site B-1 3100 Third Avenue Bronx, New York BCP #C203044		
Sample ID	Well Diameter	Depth to Bottom (Feet)	Туре	Sampled This Quarter	Date Sampling No Longer Required
MW-1	4"	40.15	Monitoring Well	Yes	NA
MW-2A	4"	50.93	Monitoring/Pumping Well	Yes	NA
MW-3	4"	35.18	Monitoring Well	No	4th Quarter 2011
MW-4	4"	20.92	Monitoring Well	Yes	NA
MW-5	4"	47.20	Monitoring Well	No	2nd Quarter 2011
MW-6	4"	44.00	Monitoring/Pumping Well	Yes	NA
MW-7	4"	50.00	Monitoring/Pumping Well	Yes	NA
MW-8	4"	35.00	Monitoring/Pumping Well	Yes	NA
MW-10	4"	53.30	Monitoring Well	Yes	NA

Monitoring Well

No

3rd Quarter 2015

Notes:

NA = Not Applicable

MW-11

2"

16.30

						Tal	ole 3	
							charge Total	8
						0,000	onarge rotan	•
						Cornersto	ne Site B-1	
						3100 Thi	rd Avenue	
							New York	
						BCP #	C203044	
	Totalizer Reading in	Cummulative	Gallon Pumped	MW-2A Clicker	MW-6 Clicker	MW-7 Clicker	MW-8 Clicker	
Date	Gallons	Gallons Pumped	Since Last Visit	Reading	Reading	Reading	Reading	Notes
4/27/2010	N/R	N/R	N/R	374	436	221	283	Begin system startup.
5/8/2010	N/R	N/R	N/R	462	17,244	230	483	
8/26/2010	78.2	78.2	78.2	1,886	18,800	263	578	
9/1/2010	4,532.3	4,532.3	4,454.1	47,739	18,800	263	578	
9/14/2010 9/23/2010	4,641.3 12,241.6	4,641.3 12,241.6	109.0 7,600.3	47,745 91,373	18,801 19,209	263 281	579 2,682	
9/23/2010 11/22/2010	60,724.6	60,724.6	48,483.0	568,850	19,209	281	12,702	MW-2A-only pump working
11/23/2010	61,408.4	61,408.4	683.8	569,686	19,449	288	12,783	www.zwony pump working
3/15/2011	91,621.1	91,621.1	30,212.7	94,233	19,600	288	16,832	
6/8/2011	114,997.0	114,997.0	23,375.9	463,248	19,631	298	22,700	
9/29/2011	195,770.0	195,770.0	80,773.0	649,728	19,645	300	22,849	System reading before repair
12/14/2011	262,926.0	262,926.0	67,156.0	649,934	516,524	317	23,929	
3/14/2012 6/19/2012	333,233.0	333,233.0 333,274.0	70,307.0 41.0	302,039 785,465	990,159 604,338	321	23,936 23,941	Elow motor (totalizor approars to be stuck
6/19/2012 10/22/2012	333,274.0 N/R	333,274.0 No Accur		408,847	962,560	322 345	23,941 24,085	Flow meter/totalizer appears to be stuck. Battery dead on flow meter/totalizer. Order new totalizer for next visit.
12/6/2012	N/R	No Accur		856,573	105,792	352	29,411	Replaced battery on flow meter/totalizer. Still not working. Need to speak with vendor
3/28/2013	N/R	No Accur		863,626	734,024	353	29,411	Removed flow meter/totalizer for cleaning and repair. Meter not registering flow.
4/5/2013	0.0	No Accur		N/R	N/R	N/R	N/R	Flow meter/totalizer reinstalled. Meter reads 0 gallons at 12:00 pm.
6/13/2013	51,204.1	384,478.1	51,204.1	72,446	240,165	354	31,465	
9/30/2013	90,183.2	423,457.2	38,979.1	185,457	667,518	354	31,973	
1/13/2014	92,844.2	426,118.2	2,661.0	185,513	127,648	354	31,979	System off upon arrival. Turn on to collect system sample.
3/27/2014 6/10/2014	92,844.2 92,844.2	426,118.2 426,118.2	0.0	185,518 185,537	139,642 140,140	354 373	31,979 32,069	System turned off for repairs. Install refurbished pumps. Flow meter/totalizer not working.
6/23/2014	92,844.2	426,118.2	0.0	185,537	273,555	373	33,178	Removed flow meter/totalizer and clean on-site. Appears to be working upon departure.
8/8/2014	112,274.0	445,548.0	19,429.8	185,541	731,815	373	33,646	
9/19/2014	141,466.0	474,740.0	29,192.0	185,547	82,153	382	37,302	
12/10/2014	199,835.0	533,109.0	58,369.0	185,547	417,822	382	44,426	
4/1/2015	0.0	533,109.0	0.0	185,551	700,164	384	51,921	Replaced battery on flow meter/totalizer. Totalizer at 0 gallons to start.
6/2/2015 9/22/2015	15,471.5 0.0	548,580.5 548,580.5	15,471.5 0.0	185,556 185,559	961,755 618,581	385 387	57,344 67,210	Totalizer reading stuck at 15471.5. Removed unit and cleaned. Totalizer reset at 0.0 at 09:40.
9/22/2015	0.0	548,580.5	0.0	185,559	018,581	367	67,210	System turned off December 4, 2015 as the bottom of the drum was leaking. System turned on for 20 minutes to
12/10/2015	53,746,7	602.327.2	53,746.7	185,560	112,096	412	75,333	collected discharge sample and then turned off.
6/3/2016	115,918.0	664,498.5	62,171.3	185,568	112,769	412	84,940	
9/23/2016	168,211.0	716,791.5	52,293.0	185,568	112,769	412	92,146	
12/16/2016	225,939.0	774,519.5	57,728.0	185,568	112,769	412	102,377	
1/20/2017	228,597.0	777,177.5	2,658.0	185,568	112,771	412	103,060	Bottom outlet of each drum leaking on January 3, 2017 and system was turned off that day. Repairs were made and the system was restarted on January 20, 2017.
1/20/2017	228,397.0	///,1//.5	2,038.0	100,000	112,771	412	103,000	anu tre system was restarted on January 20, 2017.
3/7/2017	261,246.0	809,826.5	32,649.0	185,568	112,771	412	108,434	
6/13/2017	277,975.0	826,555.5	16,729.0	187,387	112,808	414	108,688	
9/12/2017	314,277.0	862,857.5	36,302.0					
12/1/2017		> 862,857.5	Not Known	487,506	112,812	415	124,562	Battery on totalizer was dead. Replaced battery and reading returned to zero. Estimate 35,000 gallons
3/30/2018	32,042.0	894,899.5	32,042.0	491,083	112,812	415	129,588	System was not operating on March 23,2018 through June 25, 2018 due to an electrical issue.
6/27/2018 10/4/2018	32,076.4 32,555.2	894,933.5 895,412.3	34.0 478.8	491,098 492,328	112,812 112,813	415 415	129,794 130,241	System was not operating on March 23,2018 through June 25, 2018 due to an electrical issue. System was not operating from June 26, 2018 to November 3, 2018 due to electrical issue. Fix on 11/3/18
12/27/2018	33,632.2	895,412.3	1,077.0	492,328	112,815	415	130,241	System was not operating from June 26, 2016 to November 3, 2018 due to electrical issue. Fix on 11/3/18 Super informed CA RICH at sampling event that the system has been shutting off.
2/8/2019		, 10515		o collect readings				Routine maintenance conducted on compressor and magnetic start repaired
6/7/2019	96,392.20	958,172	62,760.00	662,555	112,815	417	143,341	
8/7/2019				ling collected				System turned off due to leak in transfer pump hose and repair transfer pump float switch
8/29/2019				ing collected	1			System turned back on
12/4/2019	200,229.00	1,062,009	103,836.80	2,172	112,816	418	166,081	
6/3/2020		>1,062,009	Not Known	2,210	112,847	419	184,179	Totalizer battery dead. Replaced battery & readings returned to zero. Estimate 15,000 gallons this period
11/2/2020	60 100 2	1 133 300		ing collected	125 710	420	104 100	Transfer pump malfunction, system shut down by super.
12/21/2020 1/5/2021	60,199.2	1,122,208	60,199.20	12,325	135,710	420	184,188	Transfer pump repaired and system restarted and left operating upon departure
1/5/2021 6/2/2021	87,271.2	1,149,280.0	27,072.0	ings collected 17,225	431,766	420	184,189	System temporarily shut downapproved by NYSDEC System temporarily shut downapproved by NYSDEC
0/2/2021	01,211.2	1,147,200.0	21,012.0	17,223	431,700	420	104,105	System temporany shut down-approved by N15DEC

Notes:

N/R = No reading

The flow meter/totalizer was not operating properly from 6/19/2012 to 4/4/2013. The cummulative gallons pumped does not take into account the amount of water pumped during this period.

The flow meter/totalizer was not operating properly from 6/2/2015 to 9/22/2015. The cummulative gallons pumped does not take into account the amount of water pumped during this period.

The system was not operating from January 3, 2017 to January 19, 2017 and from April 10, 2017 to July 25, 2017 due to drum leaky drums.

The system was not operating on March 23,2018 through June 25, 2018 due to an electrical issue. System was repaired on June 25th and turned off. CA RICH returned the system on June 27th and sampled. System was operating upon departure.

The system was not operating from June 28, 2018 to October 3, 2018 due to electrical issues. System was repaired on October 3, 2018 and put back into continuous operations.

The system was found on during the December 27, 2018 groundwater sampling event, but the compressor did not appear to be operating correctly and was shut down after VOC influent and effluent samples were collected.

The system remained off from December 27, 2018 to February 8, 2019. The system was repaired on February 8, 2019 and has remained in continuous operation.

The system was off from August 7, 2019 to August 29, 2019 to repair the transfer pump hose and transfer pump float switch. System was reactivated on August 29, 2019.

Thye system was off from November 2, 2020 to December 21, 2020 due a tranfer pump malfunction. The system was turned back on from December 21, 2020 to January 5, 2021.

The actual gallons pumped are more than cummulative total.

Table 4 System PCE Removal Estimate

Cornerstone Site B-1 3100 Third Avenue Bronx, New York BCP #C203044

Period	Days/Period	Operating Days	Gallons/Period	Flow Rate (gal/day)	Flow Rate (Liters/day)	Influent PCE Concentration (ppm)	Effluent PCE Concentration (ppm)	PCE Concentration removed (ppm)	Pounds/Gallon	Gallons Treated This Period	Pounds Removed This Period (lbs)
6/3/2016 to 9/23/2016	112	112	52293	466.90	1767.42	0.041	<0.0002	0.0408	2.37619E-06	52,293	0.12
9/23/2016 to 12/16/2016	84	84	57728	687.24	2601.48	0.045	<0.0002	0.0448	2.60915E-06	57,728	0.15
12/16/2016 to 3/7/2017	81	81	35307	435.89	1650.02	0.043	<0.0002	0.0428	2.49267E-06	35,307	0.09
3/7/2017 to 6/13/2017	98	98	16729	170.70	646.19	0.270	<0.0002	0.2698	1.57131E-05	16,729	0.26
6/13/2017 to 9/12/2017	91	91	36302	398.92	1510.09	0.066	<0.0002	0.0658	3.83219E-06	36,302	0.14
9/12/2017 to 12/1/2017 ¹	80	80	35000	437.50	1656.12	0.061	<0.0002	0.0608	3.54099E-06	35,000	0.12
12/1/2017 to 3/30/2018 ²	119	112	32042	286.09	1082.97	0.066	<0.0002	0.0658	3.83219E-06	32,042	0.12
3/30/2018 to 6/27/2018	87	1	34	34.00	128.70	0.610	<0.0002	0.6098	3.55147E-05	34	0.001
6/27/2018 to 10/4/2018 ³	99	1	479	479.00	1813.21	0.1	<0.0002	0.0998	5.81234E-06	479	0.003
10/4/2018 to 12/27/2018 ⁴	84	3	1077	359.00	1358.96	0.36	<0.00025	0.35975	2.09518E-05	1,077	0.02
12/27/2018 to 6/7/2019 ⁵	162	120	96392	803.27	3040.70	0.18	0.00018	0.17982	1.04727E-05	96,392	1.01
6/7/2019 to 12/4/2019 ⁶	180	160	103837	648.98	2456.66	0.082	<0.00018	0.08182	4.76519E-06	103,837	0.49
12/4/2019 to 6/3/2020 ⁷	182	182	15000	82.42	311.98	0.17	<0.00018	0.16982	9.8903E-06	15,000	0.15
6/3/2020 to 12/21/2020	201	153	60199	393.46	1489.40	0.34	<0.00018	0.33982	1.97911E-05	60,199	1.19
1/5/2021						CA RICH requested system be	turned off-NYSDEC approved. No s	samples collected.			

Notes:

¹- The battery for the totalizer was dead on 12/1/17 and replaced the same day. The PCE removed this time period is estimated

Total

467,220

3.88

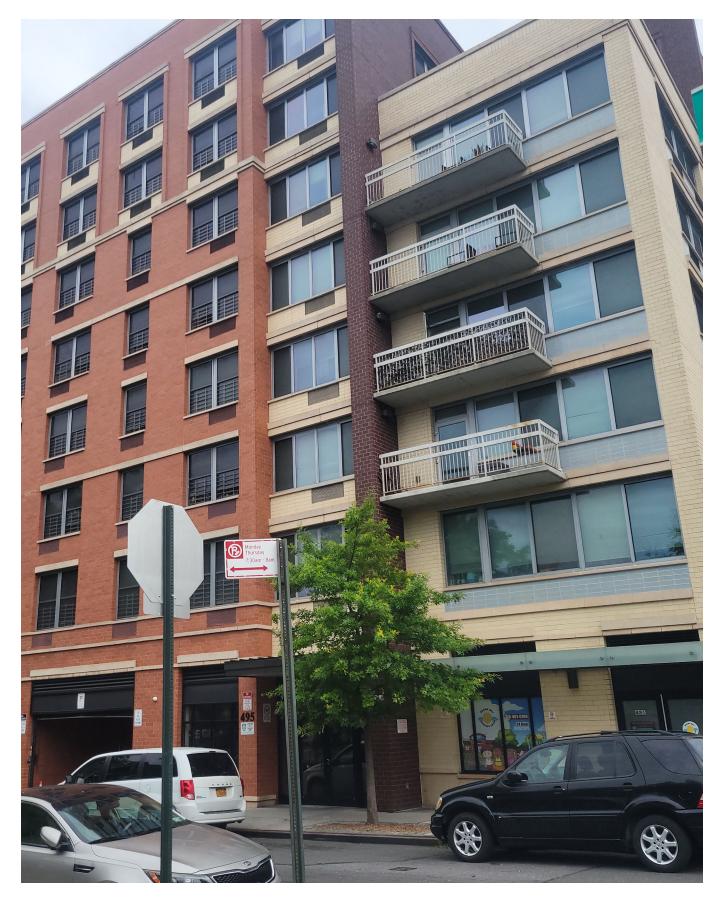
The battery for the totalizer was dead on 12/1/17 and replaced the same day. The PCE removed this time period is estimated

²- The system was off from March 23, 2018 to June 25, 2018 due to electrical issues. The system was turned on June 27, 2018, the sample collected, and system remained on upon departure for approximately 1 day ³⁻ The system was off from June 28, 2018 to October 3, 2018 due to electrical issues. The magnetic start was broken and needed to be replaced. The system has operated continuosly since October 3, 2018.

The system was off from June 28, 2018 to October 3, 2018 due to electrical issues. The magnetic start was broken and needed to be replaced. The system has operated continuosily since October 3,

⁴- The system was repaired on October 3, 2018; however, during the sampling event on December 27, 2018 it was revealed the system was not operating properly

⁵- The system was off from December 27, 2018 to February 8, 2019. The system was repaired and has remained in continuous operation since the repair.


⁶. The system was off from August 7, 2019 to August 29, 2019 due to mechanical issues. The system transfer pump hose and transfer pump float switch were repaired. The system has operated continuously since August 29, 2019.

⁷- The battery in the totalizer was dead and was replaced on June 3, 2020. Amount of gallons treated is unkown. An estimate of 15,000-gallons was used for removal estimate purposes.

ppm = parts per million 1 Liter equals 0.264 gallons

1 Pound equals 453592369 Ug

APPENDIX A SELECT PHOTOGRAPHS

Front of the site building along East 158th Street.

Eastern side of the Site building along Brook Avenue

Front of the Site building along East 158th Street.

Monitoring well MW-5

Well MW-6.

Well MW-2A

Monitoring well MW-10

Monitoring well MW-4

Monitoring well MW-11.

Monitoring well MW-1

Pumping well MW-8

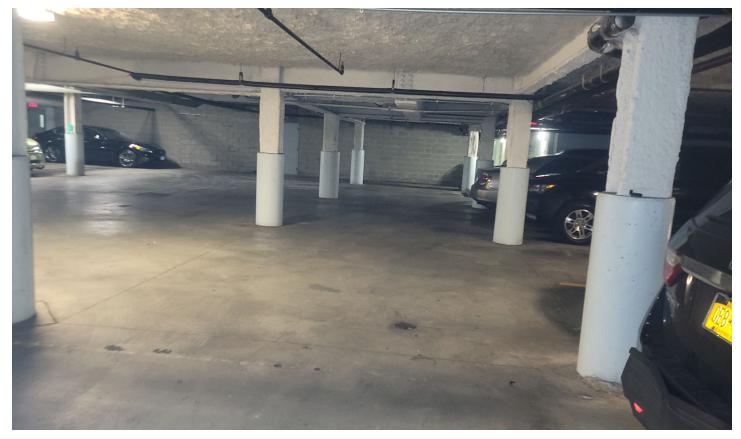
Pumping well MW-7

Sewer trap room in the basement.

View of pump and treat system

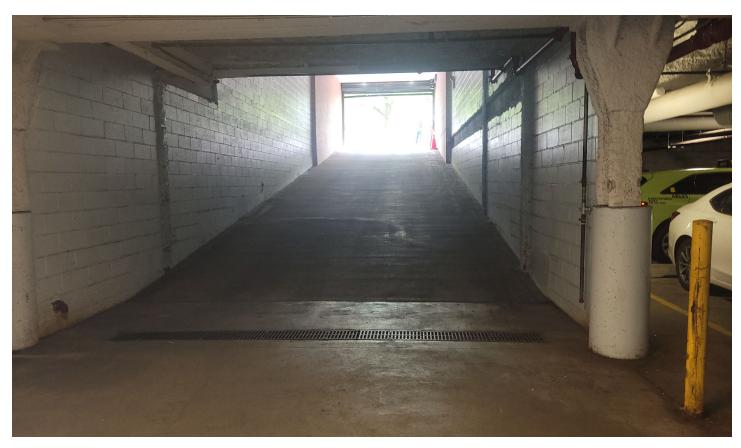
View of pressure gages and clickers associated with the system.

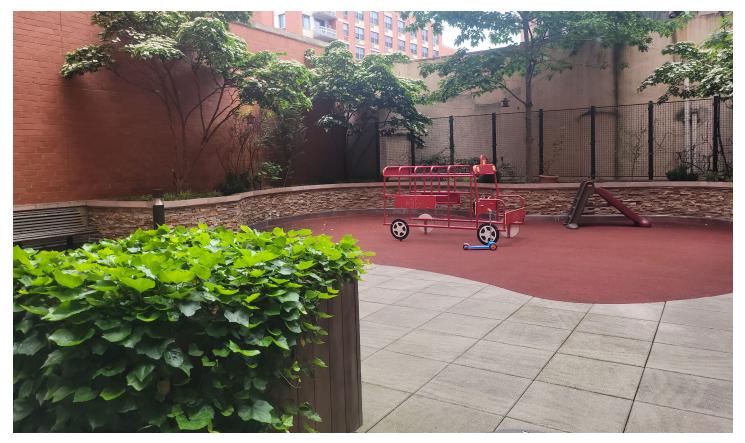
Clicker for MW-6


Clicker for MW-2A


Clicker for MW-8

System compressor


View of basement parking garage.


View of basement parking garage

View of basement parking garage

View of basement parking garage ramp

Courtyard area

Courtyard area

APPENDIX B SITE-WIDE INSPECTION FORM

Site-Wide Inspection Check List Cornerstone Site B-1 3100 Third Avenue Bronx, New York BCP #C203044						
Compliances to be Addressed	Comments					
Provide an evaluation of the condition and continued effectiveness of engineering controls	All systems appear to be in good condition and operating as intended; however, the groundwater					
(foundation walls/slabs, ventilated parking garage, vapor barrier, and concrete sidewalks).	pump and treat system is temporarily off as approved by NYSDEC. No evaluation was done on the GWPT sys.					
Are all institutional controls, including Site usage in compliance?	Yes					
What are the general Site conditions?	Site is well maintained.					
Are Site management activies being conducted including, confirmation sampling and	Yes					
a health and safety inspection?						
Are all Site records up to date?	Yes					
Does Site access remain available to maintain engineering controls?	Yes					
Are all permits and schedules included in the Operation and Maintenance Plan in Compliance?	Yes					
Inspector- Jason Cooper Date/Time- 6/14/2022 at 2:00 PM						

APPENDIX C IC/EC FORM

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

	В	ox 1					
Site No.	Site No. C203044						
Site Nar	ne Cornerstone Site B	1					
City/Tow County:	ress: 3100 3rd Avenue m: Bronx Bronx eage: 0.368	Zip Code: 10451					
Reportin	g Period: June 16, 2021	to June 16, 2022					
			YE	ES NO			
1. Is th	e information above corre	ect?	×				
lf NC), include handwritten abo	ove or on a separate sheet.					
	some or all of the site pro nap amendment during th	perty been sold, subdivided, merged, or is Reporting Period?	undergone a □	X			
	3. Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?						
	4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?						
		stions 2 thru 4, include documentatio on previously submitted with this cert		,			
5. Is th	e site currently undergoin	g development?		X			
			Вс	ox 2			
			YE	S NO			
	e current site use consiste ricted-Residential, Comm	ent with the use(s) listed below? ercial, and Industrial	×				
7. Are	all ICs in place and function	oning as designed?	×				
IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.							
A Correc	tive Measures Work Plar	n must be submitted along with this form	n to address these	e issues.			
Signature	e of Owner, Remedial Party	v or Designated Representative	Date	_			

		Box 2	A.
		YES	NO
8.	Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?		\varkappa
	If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.		
9.	Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years)	\varkappa	
	If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.		
SITE	E NO. C203044	Bo	х 3
ł	Description of Institutional Controls		

Parcel
2364-45

<u>Owner</u> CS Melrose Site B LLC (expected owner) Institutional Control

Landuse Restriction

Ground Water Use Restriction Site Management Plan

Monitoring Plan O&M Plan IC/EC Plan

a) An institutional control was imposed in the form of an environmental easement that : (a) requires compliance with the approved site management plan; (b) limits the use of the property to restricted residential and commercial uses (c) The use of the groundwater underlying the property is prohibited without treatment rendering it safe for intended use; and (d) requires the property owner to complete and submit a periodic certification to the NYSDEC.

b) The property owner will provide a periodic certification of institutional and engineering controls, prepared and submitted by a professional engineer or such other expert acceptable to the NYSDEC, until the NYSDEC notifies the property owner in writing that this certification is no longer needed. This submittal would: (a) contain certification that the institutional controls and engineering controls put in place are still in place and are either unchanged from the previous certification or are compliant with NYSDEC-approved modifications; (b) allow the NYSDEC access to the site; and (c) state that nothing has occurred that would impair the ability of the control to protect public health or the environment, or constitute a violation or failure to comply with the SMP unless otherwise approved by the NYSDEC.
 2364-70 CS Melrose Site B LLC

Ground Water Use Restriction Site Management Plan

Monitoring Plan O&M Plan IC/EC Plan Landuse Restriction

a) An institutional control was imposed in the form of an environmental easement that : (a) requires compliance with the approved site management plan; (b) limits the use of the property to restricted residential and commercial uses (c) The use of the groundwater underlying the property is prohibited without treatment rendering it safe for intended use; and (d) requires the property owner to complete and submit a periodic certification to the NYSDEC.

b) The property owner will provide a periodic certification of institutional and engineering controls, prepared and submitted by a professional engineer or such other expert acceptable to the NYSDEC, until the NYSDEC notifies the property owner in writing that this certification is no longer needed. This submittal would: (a) contain certification that the institutional controls and engineering controls put in place are still in place and are either unchanged from the previous certification or are compliant with NYSDEC-approved modifications; (b) allow the NYSDEC access to the site; and (c) state that nothing has occurred that would impair the ability of the control to protect public health or the environment, or constitute a violation or failure to comply with the SMP unless otherwise approved by the NYSDEC.

Box 4

Description of Engineering Controls

Engineering Control

Parcel 2364-45

> Cover System Groundwater Treatment System

a) Cover System (engineering control) installed to prevent exposure from remaining contamination in soil/fill at the Site. This cover system comprised of concrete-covered sidewalks, foundation walls, ventilated parking garage, and concrete building slabs. In addition, a vapor barrier was also installed underneath the entire building foundation as additional protection.

b) Groundwater Pump and Treat System installed to collect and treat the halogenated VOC impacted groundwater (PCE and its degradation products) within shallow bedrock fractures from four monitoring wells.

Parcel

Engineering Control

c) all engineering controls must be operated and maintained as specified in the NYSDEC-approved Site Management Plan (SMP). No engineering and institutional controls may be discontinued without a NYSDEC-approved amendment or extinguishment of the Environmental Easement;

d) periodic inspections of the Site, certifications of institutional & engineering controls and site usage of controlled property, and site-management reporting to the Department must be conducted in accordance with the NYSDEC-approved SMP;

e) Operation, Monitoring and Maintenance (OM&M) of the Groundwater Pump and Treat System must be performed in a manner specified in the NYSDEC-approved Site Management Plan. **2364-70**

Groundwater Treatment System

Cover System

a) Cover System (engineering control) installed to prevent exposure from remaining contamination in soil/fill at the Site. This cover system comprised of concrete-covered sidewalks, foundation walls, ventilated parking garage, and concrete building slabs. In addition, a vapor barrier was also installed underneath the entire building foundation as additional protection.

b) Groundwater Pump and Treat System installed to collect and treat the halogenated VOC impacted groundwater (PCE and its degradation products) within shallow bedrock fractures from four monitoring wells.

c) all engineering controls must be operated and maintained as specified in the NYSDEC-approved Site Management Plan (SMP). No engineering and institutional controls may be discontinued without a NYSDEC-approved amendment or extinguishment of the Environmental Easement;

d) periodic inspections of the Site, certifications of institutional & engineering controls and site usage of controlled property, and site-management reporting to the Department must be conducted in accordance with the NYSDEC-approved SMP;

e) Operation, Monitoring and Maintenance (OM&M) of the Groundwater Pump and Treat System must be performed in a manner specified in the NYSDEC-approved Site Management Plan.

	Box 5
	Periodic Review Report (PRR) Certification Statements
1.	I certify by checking "YES" below that:
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;
	b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.
	engineering practices, and the information presented is accurate and compete. YES NO
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	YES NO
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.
	Signature of Owner, Remedial Party or Designated Representative Date

Г

IC CERTIFICATIONS SITE NO. C203044

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Jason T. Cooper print name	at <u>CA Rich Consultants</u> , 17 Dupont St. Plainview NY print business address	1
am certifying as <u>Remedial Party</u>	(Owner or Remedial Party)	
for the Site named in the Site Details Se	ction of this form.	
Signature of Owner, Remedial Party, or Rendering Certification	<u>F C2S Melrose Siteb111C 7/8/2022</u> Designated Representative Date	

EC CERTIFICATIONS へこここ Professional Engineer Signature	Box 7
I certify that all information in Boxes 4 and 5 are true. I understand that a false statement m punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.	ade herein is
at <u>CARich Consultants</u> , 17 Dupont St, Plain print name print business address	VIEW NY
am certifying as a Professional Engineer for the Geologist (Owner or Remedial Party Geologist Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification Date)

APPENDIX D GROUNDWATER SAMPLING LOGS

Groundwater Sampling Log Cornerstone Site B-1 3100 Third Avenue Bronx, New York BCP #C203044 Sample ID Date Well Diameter | Depth to Water |Depth to Bottom | Amount Purged Sample Time pН Temperature Conductivity Oxygen/Reduction Dissolved Oxygen (Feet) (Feet) (Gallons) (° Celsius) (ms/cm) Potential (mv) (mg/L)15.37 15 6.70 17,45 174 1.71 1136 5.67 MW-1 12/14/2021 4" 40.15 25.30 $\langle \phi \rangle$ 6938 6.94 56 2.32 6.18 12/14/2021 4" 6.22 *MW-2A 50.93 14.97 4" MW-3 12/14/2021 35.18 No Longer Sampled 16.91 7.01 2 16.91 1.84 147 3,87 1100 4" MW-4 12/14/2021 20.92 28,24 4" MW-5 12/14/2021 47.20 No Longer Sampled 25.79 1020 Ce 6.15 3.70 119 0.75 *MW-6 12/14/2021 4" 44.00 16,86 6.31 10 1210 7.41 1.25 141 7,27 *MW-7 12/14/2021 4" 50.00 0.00 5 15,14 7.38 1130 1.70 4" 16.68 *MW-8 12/14/2021 35.00 146 0.00 15 0925 26.15 6.43 9.52 16.97 5.11 132 MW-10 12/14/2021 4" 53.30 15.53 MW-11 12/14/2021 2" 16.30 No Longer Sampled ystem Samples N/A

Comments:

* - Monitoring well that contains a pump and is piped into system.

Many monitoring wells do not yield three well volumes as they dry up. In the Amount Purged column there are two numbers. The first number indicates the three well volume value and the second number in parathensis indicates the actual volume purged.

Monitoring well MW-2A is the duplicate sample. MS/MSD sample collected from MW-10

Groundwater Sampling Log Cornerstone Site B-1 3100 Third Avenue Bronx, New York BCP #C203044

Sample ID	Date	Well Diameter	Depth to Water (Feet)	Depth to Bottom (Feet)	Amount Purged (Gallons)	Sample Time	рН	Temperature (° Celsius)	Conductivity (ms/cm)	Oxygen/Reduction Potential (mv)	Dissolved Oxyge (mg/L)
MW-1	6/14/2022	4"	13.36	40.15	15	13:36			NA		
*MW-2A	6/14/2022	4"	23.85	50.93	15	9:55			NA		
MW-3	6/14/2022	4"	12.9	35.18				No Longer Sam	oled		
MW-4	6/14/2022	4"	15.13	20.92	6	10:47	0:47 NA				
MW-5	6/14/2022	4"	25.90	47.20	No Longer Sampled						
*MW-6	6/14/2022	4"	23.21	44.00	15	10:12	NA				
*MW-7	6/14/2022	4"	3.40	50.00	20 12:06 NA						
*MW-8	6/14/2022	4"	13.69	35.00	10	10 11:55 NA					
MW-10	6/14/2022	4"	24.94	53.30	10	9:31	ΝΑ				
MW-11	6/14/2022	2"	12.35	16.30	No Longer Sampled						
stem Samples	N/A				System Still Off, Awaiting NYSDEC Decision. No Samples Collected						

Comments:

* - Monitoring well that contains a pump and is piped into system.

Many monitoring wells do not yield three well volumes as they dry up. In the Amount Purged column the number is the amount of water that could be purged until the well went dry. in parathensis indicates the actual volume purged.

Monitoring well MW-2A is the duplicate sample. MS/MSD sample collected from MW-10

NA - Water quality meter was malfunctioning. Results could not be relied upon

APPENDIX E GROUNDWATER ANALYTICAL DATA & DUSRs

Monday, January 03, 2022

Attn: Heather Hayden Alpha Analytical Lab 8 Walkup Drive Westborough, MA 01581

 Project ID:
 L2168804

 SDG ID:
 GCK03360

 Sample ID#s:
 CK03360 - CK03369

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

XI:lle

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 UT Lab Registration #CT00007 VT Lab Registration #VT11301

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG Comments

January 03, 2022

SDG I.D.: GCK03360

Any compound that is not detected above the MDL/LOD is reported as ND on the report and is reported in the electronic deliverables (EDD) as <RL or U at the RL per state and EPA guidance.

Version 1: Analysis results minus raw data.

Version 2: Complete report with raw data.

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Sample Id Cross Reference

January 03, 2022

SDG I.D.: GCK03360

Project ID: L2168804

Client Id	Lab Id	Matrix
MW-1	CK03360	WATER
MW-2A	CK03361	WATER
MW-XX	CK03362	WATER
MW-4	CK03363	WATER
MW-6	CK03364	WATER
MW-7	CK03365	WATER
MW-8	CK03366	WATER
MW-10	CK03367	WATER
FB 121421	CK03368	WATER
ТВ	CK03369	WATER

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

<u>Time</u>

11:36

14:58

Analysis Report

January 03, 2022

FOR: Attn: Heather Hayden Alpha Analytical Lab 8 Walkup Drive Westborough, MA 01581

Sample Informa	ation	Custody Inform	nation	<u>Date</u>
Matrix:	WATER	Collected by:		12/14/21
Location Code:	ALPHA	Received by:	CP	12/21/21
Rush Request:	Standard	Analyzed by:	see "By" below	
P.O.#:				

Laboratory Data

SDG ID: GCK03360 Phoenix ID: CK03360

Project ID:	L2168804
Client ID:	MW-1

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	By	Reference
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
1,1,1-Trichloroethane	ND	5.0	0.25	ug/L	1	12/22/21	HM	SW8260C
1,1,2,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
1,1,2-Trichloroethane	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
1,1-Dichloroethane	ND	5.0	0.25	ug/L	1	12/22/21	HM	SW8260C
1,1-Dichloroethene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
1,1-Dichloropropene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
1,2,3-Trichlorobenzene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
1,2,3-Trichloropropane	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
1,2,4-Trichlorobenzene	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
1,2,4-Trimethylbenzene	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
1,2-Dibromo-3-chloropropane	ND	1.0	0.50	ug/L	1	12/22/21	НМ	SW8260C
1,2-Dibromoethane	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
1,2-Dichlorobenzene	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
1,2-Dichloroethane	ND	0.60	0.50	ug/L	1	12/22/21	НМ	SW8260C
1,2-Dichloropropane	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
1,3,5-Trimethylbenzene	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
1,3-Dichlorobenzene	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
1,3-Dichloropropane	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
1,4-Dichlorobenzene	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
2,2-Dichloropropane	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
2-Chlorotoluene	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
2-Hexanone	ND	2.5	2.5	ug/L	1	12/22/21	НМ	SW8260C
2-Isopropyltoluene	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C 1
4-Chlorotoluene	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
4-Methyl-2-pentanone	ND	2.5	2.5	ug/L	1	12/22/21	НМ	SW8260C
				5				

Project ID: L2168804

Client ID: MW-1

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	By	Reference
Acetone	ND	5.0	2.5	ug/L	1	12/22/21	HM	SW8260C
Acrolein	ND	5.0	2.5	ug/L	1	12/22/21	HM	SW8260C
Acrylonitrile	ND	5.0	2.5	ug/L	1	12/22/21	HM	SW8260C
Benzene	ND	0.70	0.25	ug/L	1	12/22/21	HM	SW8260C
Bromobenzene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Bromochloromethane	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Bromodichloromethane	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Bromoform	ND	5.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Bromomethane	ND	5.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Carbon Disulfide	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Carbon tetrachloride	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Chlorobenzene	ND	5.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Chloroethane	ND	5.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Chloroform	ND	5.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Chloromethane	ND	5.0	0.25	ug/L	1	12/22/21	HM	SW8260C
is-1,2-Dichloroethene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
is-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	12/22/21	HM	SW8260C
bibromochloromethane	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Dibromomethane	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
Dichlorodifluoromethane	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
thylbenzene	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
exachlorobutadiene	ND	0.50	0.20	ug/L	1	12/22/21	HM	SW8260C
opropylbenzene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
i&p-Xylene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
lethyl ethyl ketone	ND	2.5	2.5	ug/L	1	12/22/21	НМ	SW8260C
lethyl t-butyl ether (MTBE)	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
fethylene chloride	ND	3.0	1.0	ug/L	1	12/22/21	HM	SW8260C
laphthalene	ND	1.0	1.0	ug/L	1	12/22/21	HM	SW8260C
-Butylbenzene	ND	1.0	0.25	ug/L ug/L	1	12/22/21	HM	SW8260C
-Propylbenzene	ND	1.0	0.25	ug/L ug/L	1	12/22/21	HM	SW8260C
	ND	1.0	0.25	ug/L ug/L	1	12/22/21	HM	SW8260C
	ND							SW8260C
-Isopropyltoluene	ND	1.0	0.25	ug/L	1	12/22/21	HM	
ec-Butylbenzene		1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Styrene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
ert-Butylbenzene	ND	1.0	0.25	ug/L	1 5	12/22/21	HM	SW8260C
etrachloroethene	29 ND	5.0	1.3	ug/L	5	12/23/21	HM	SW8260C
etrahydrofuran (THF)	ND	5.0	2.5	ug/L	1	12/22/21	HM	SW8260C
oluene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
ans-1,2-Dichloroethene	ND	5.0	0.25	ug/L	1	12/22/21	HM	SW8260C
ans-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	12/22/21	HM	SW8260C
ans-1,4-dichloro-2-butene	ND	2.5	2.5	ug/L	1	12/22/21	HM	SW8260C
richloroethene	0.27	J 1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
richlorofluoromethane	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
richlorotrifluoroethane	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
/inyl chloride	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
QA/QC Surrogates								
6 1,2-dichlorobenzene-d4	98			%	1	12/22/21	HM	70 - 130 %
6 Bromofluorobenzene	97			%	1	12/22/21	HM	70 - 130 %
6 Dibromofluoromethane	105			%	1	12/22/21	HM	70 - 130 %

Project ID: L2168804 Client ID: MW-1

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	104			%	1	12/22/21	HM	70 - 130 %
% 1,2-dichlorobenzene-d4 (5x)	101			%	5	12/23/21	HM	70 - 130 %
% Bromofluorobenzene (5x)	98			%	5	12/23/21	HM	70 - 130 %
% Dibromofluoromethane (5x)	105			%	5	12/23/21	HM	70 - 130 %
% Toluene-d8 (5x)	104			%	5	12/23/21	HM	70 - 130 %

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director January 03, 2022 Reviewed and Released by: Sarah Bell, Project Manager

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Time

9:51

Analysis Report

January 03, 2022

FOR: Attn: Heather Hayden Alpha Analytical Lab 8 Walkup Drive Westborough, MA 01581

Sample InformationCustody InformationMatrix:WATERCollected by:Location Code:ALPHAReceived by:CPRush Request:StandardAnalyzed by:see "By" below

RL/

12/21/21 14:58

Date

12/14/21

Laboratory Data

LOD/

SDG ID: GCK03360 Phoenix ID: CK03361

Project ID:	L2168804
Client ID:	MW-2A

P.O.#:

Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Volatiles								
1,1,1,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
1,1,1-Trichloroethane	ND	5.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
1,1,2,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
1,1,2-Trichloroethane	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
1,1-Dichloroethane	ND	5.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
1,1-Dichloroethene	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
1,1-Dichloropropene	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
1,2,3-Trichlorobenzene	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
1,2,3-Trichloropropane	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
1,2,4-Trichlorobenzene	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
1,2,4-Trimethylbenzene	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
1,2-Dibromo-3-chloropropane	ND	1.0	0.50	ug/L	1	12/22/21	НМ	SW8260C
1,2-Dibromoethane	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
1,2-Dichlorobenzene	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
1,2-Dichloroethane	ND	0.60	0.50	ug/L	1	12/22/21	НМ	SW8260C
1,2-Dichloropropane	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
1,3,5-Trimethylbenzene	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
1,3-Dichlorobenzene	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
1,3-Dichloropropane	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
1,4-Dichlorobenzene	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
2,2-Dichloropropane	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
2-Chlorotoluene	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
2-Hexanone	ND	2.5	2.5	ug/L	1	12/22/21	НМ	SW8260C
2-Isopropyltoluene	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C 1
4-Chlorotoluene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
4-Methyl-2-pentanone	ND	2.5	2.5	ug/L	1	12/22/21	HM	SW8260C

Project ID: L2168804 Client ID: MW-2A

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Acetone	ND	5.0	2.5	ug/L	1	12/22/21	HM	SW8260C
Acrolein	ND	5.0	2.5	ug/L	1	12/22/21	HM	SW8260C
Acrylonitrile	ND	5.0	2.5	ug/L	1	12/22/21	HM	SW8260C
Benzene	ND	0.70	0.25	ug/L	1	12/22/21	HM	SW8260C
Bromobenzene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Bromochloromethane	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Bromodichloromethane	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Bromoform	ND	5.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Bromomethane	ND	5.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Carbon Disulfide	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Carbon tetrachloride	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Chlorobenzene	ND	5.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Chloroethane	ND	5.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Chloroform	0.37	J 5.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Chloromethane	ND	5.0	0.25	ug/L	1	12/22/21	HM	SW8260C
cis-1,2-Dichloroethene	3.6	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
cis-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	12/22/21	HM	SW8260C
Dibromochloromethane	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Dibromomethane	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Dichlorodifluoromethane	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Ethylbenzene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Hexachlorobutadiene	ND	0.50	0.20	ug/L	1	12/22/21	HM	SW8260C
sopropylbenzene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
n&p-Xylene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Methyl ethyl ketone	ND	2.5	2.5	ug/L	1	12/22/21	HM	SW8260C
	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Methyl t-butyl ether (MTBE)	ND	3.0	1.0	ug/L	1	12/22/21	HM	SW8260C
Methylene chloride	ND	3.0 1.0	1.0		1	12/22/21	HM	SW8260C
Naphthalene				ug/L		12/22/21		
n-Butylbenzene	ND	1.0	0.25	ug/L	1		HM	SW8260C
n-Propylbenzene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
o-Xylene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
o-Isopropyltoluene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
sec-Butylbenzene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Styrene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
ert-Butylbenzene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Tetrachloroethene	400	50	13	ug/L	50	12/23/21	HM	SW8260C
Tetrahydrofuran (THF)	ND	5.0	2.5	ug/L	1	12/22/21	HM	SW8260C
Foluene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
rans-1,2-Dichloroethene	0.69	J 5.0	0.25	ug/L	1	12/22/21	HM	SW8260C
rans-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	12/22/21	HM	SW8260C
rans-1,4-dichloro-2-butene	ND	2.5	2.5	ug/L	1	12/22/21	HM	SW8260C
Frichloroethene	4.9	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Frichlorofluoromethane	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Trichlorotrifluoroethane	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Vinyl chloride	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	97			%	1	12/22/21	HM	70 - 130 %
% Bromofluorobenzene	96			%	1	12/22/21	HM	70 - 130 %
% Dibromofluoromethane	104			%	1	12/22/21	HM	70 - 130 %

Project ID: L2168804 Client ID: MW-2A

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	100			%	1	12/22/21	HM	70 - 130 %
% 1,2-dichlorobenzene-d4 (50x)	100			%	50	12/23/21	HM	70 - 130 %
% Bromofluorobenzene (50x)	98			%	50	12/23/21	HM	70 - 130 %
% Dibromofluoromethane (50x)	103			%	50	12/23/21	HM	70 - 130 %
% Toluene-d8 (50x)	104			%	50	12/23/21	HM	70 - 130 %

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director January 03, 2022 Reviewed and Released by: Sarah Bell, Project Manager

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

January 03, 2022

FOR: Attn: Heather Hayden Alpha Analytical Lab 8 Walkup Drive Westborough, MA 01581

1

12/22/21

Sample Information WATER Collecte Matrix: ALPHA Receive Location Code:

Standard

Custody Information							
Collected by:							
Received by:	CP						
Analyzed by:	see "By" below						

Date Time 12/14/21 9:51 12/21/21 14:58

_aboratory Data

LOD/

RL/

ND

2.5

2.5

ug/L

SDG ID: GCK03360 Phoenix ID: CK03362

Project ID:	L2168804
Client ID:	MW-XX

Rush Request:

P.O.#:

Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Volatiles								
1,1,1,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
1,1,1-Trichloroethane	ND	5.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
1,1,2,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
1,1,2-Trichloroethane	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
1,1-Dichloroethane	ND	5.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
1,1-Dichloroethene	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
1,1-Dichloropropene	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
1,2,3-Trichlorobenzene	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
1,2,3-Trichloropropane	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
1,2,4-Trichlorobenzene	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
1,2,4-Trimethylbenzene	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
1,2-Dibromo-3-chloropropane	ND	1.0	0.50	ug/L	1	12/22/21	НМ	SW8260C
1,2-Dibromoethane	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
1,2-Dichlorobenzene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
1,2-Dichloroethane	ND	0.60	0.50	ug/L	1	12/22/21	НМ	SW8260C
1,2-Dichloropropane	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
1,3,5-Trimethylbenzene	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
1,3-Dichlorobenzene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
1,3-Dichloropropane	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
1,4-Dichlorobenzene	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
2,2-Dichloropropane	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
2-Chlorotoluene	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
2-Hexanone	ND	2.5	2.5	ug/L	1	12/22/21	НМ	SW8260C
2-Isopropyltoluene	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
4-Chlorotoluene	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
		1.0	0.20	ug, L		/ / _ 1	1 1111	01102000

4-Methyl-2-pentanone

1

SW8260C

ΗM

Project ID: L2168804 Client ID: MW-XX

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Acetone	ND	5.0	2.5	ug/L	1	12/22/21	HM	SW8260C
Acrolein	ND	5.0	2.5	ug/L	1	12/22/21	HM	SW8260C
Acrylonitrile	ND	5.0	2.5	ug/L	1	12/22/21	HM	SW8260C
Benzene	ND	0.70	0.25	ug/L	1	12/22/21	HM	SW8260C
Bromobenzene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Bromochloromethane	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Bromodichloromethane	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Bromoform	ND	5.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Bromomethane	ND	5.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Carbon Disulfide	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Carbon tetrachloride	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Chlorobenzene	ND	5.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Chloroethane	ND	5.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Chloroform	0.49	J 5.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Chloromethane	ND	5.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
cis-1,2-Dichloroethene	3.5	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
cis-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	12/22/21	НМ	SW8260C
Dibromochloromethane	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
Dibromomethane	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
Dichlorodifluoromethane	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Ethylbenzene	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
Hexachlorobutadiene	ND	0.50	0.20	ug/L	1	12/22/21	НМ	SW8260C
Isopropylbenzene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
m&p-Xylene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Methyl ethyl ketone	ND	2.5	2.5	ug/L	1	12/22/21	HM	SW8260C
Methyl t-butyl ether (MTBE)	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
	ND	3.0	1.0	ug/L	1	12/22/21	HM	SW8260C
Methylene chloride Naphthalene	ND	3.0 1.0	1.0	ug/L ug/L	1	12/22/21	HM	SW8260C
•	ND	1.0	0.25	ug/L ug/L	1	12/22/21	HM	SW8260C
n-Butylbenzene							HM	
n-Propylbenzene	ND	1.0	0.25	ug/L	1	12/22/21		SW8260C
o-Xylene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
p-Isopropyltoluene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
sec-Butylbenzene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Styrene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
tert-Butylbenzene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Tetrachloroethene	420	50	13	ug/L	50	12/23/21	HM	SW8260C
Tetrahydrofuran (THF)	ND	5.0	2.5	ug/L	1	12/22/21	HM	SW8260C
Toluene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
trans-1,2-Dichloroethene	0.73	J 5.0	0.25	ug/L	1	12/22/21	HM	SW8260C
trans-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	12/22/21	HM	SW8260C
trans-1,4-dichloro-2-butene	ND	2.5	2.5	ug/L	1	12/22/21	HM	SW8260C
Trichloroethene	4.7	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Trichlorofluoromethane	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Trichlorotrifluoroethane	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Vinyl chloride	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	97			%	1	12/22/21	HM	70 - 130 %
% Bromofluorobenzene	97			%	1	12/22/21	HM	70 - 130 %
% Dibromofluoromethane	104			%	1	12/22/21	HM	70 - 130 %

Project ID: L2168804 Client ID: MW-XX

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	101			%	1	12/22/21	HM	70 - 130 %
% 1,2-dichlorobenzene-d4 (50x)	99			%	50	12/23/21	HM	70 - 130 %
% Bromofluorobenzene (50x)	96			%	50	12/23/21	HM	70 - 130 %
% Dibromofluoromethane (50x)	104			%	50	12/23/21	HM	70 - 130 %
% Toluene-d8 (50x)	105			%	50	12/23/21	HM	70 - 130 %

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director January 03, 2022 Reviewed and Released by: Sarah Bell, Project Manager

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

<u>Time</u> 11:00

14:58

Analysis Report

January 03, 2022

FOR: Attn: Heather Hayden Alpha Analytical Lab 8 Walkup Drive Westborough, MA 01581

Sample Information		Custody Inform	nation	<u>Date</u>
Matrix:	WATER	Collected by:		12/14/21
Location Code:	ALPHA	Received by:	CP	12/21/21
Rush Request:	Standard	Analyzed by:	see "By" below	
P.O.#:				

Laboratory Data

SDG ID: GCK03360 Phoenix ID: CK03363

Project ID:	L2168804
Client ID:	MW-4

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	By	Reference
Volatiles								
1,1,1,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
1,1,1-Trichloroethane	ND	5.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
1,1,2,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
1,1,2-Trichloroethane	ND	1.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
1,1-Dichloroethane	ND	5.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
1,1-Dichloroethene	ND	1.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
1,1-Dichloropropene	ND	1.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
1,2,3-Trichlorobenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,2,3-Trichloropropane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,2,4-Trichlorobenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,2,4-Trimethylbenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,2-Dibromo-3-chloropropane	ND	1.0	0.50	ug/L	1	12/23/21	HM	SW8260C
1,2-Dibromoethane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,2-Dichlorobenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,2-Dichloroethane	ND	0.60	0.50	ug/L	1	12/23/21	HM	SW8260C
1,2-Dichloropropane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,3,5-Trimethylbenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,3-Dichlorobenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,3-Dichloropropane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,4-Dichlorobenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
2,2-Dichloropropane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
2-Chlorotoluene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
2-Hexanone	ND	2.5	2.5	ug/L	1	12/23/21	HM	SW8260C
2-Isopropyltoluene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C 1
4-Chlorotoluene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
4-Methyl-2-pentanone	ND	2.5	2.5	ug/L	1	12/23/21	HM	SW8260C

Project ID: L2168804 Client ID: MW-4

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	By	Reference
Acetone	ND	5.0	2.5	ug/L	1	12/23/21	HM	SW8260C
Acrolein	ND	5.0	2.5	ug/L	1	12/23/21	HM	SW8260C
Acrylonitrile	ND	5.0	2.5	ug/L	1	12/23/21	HM	SW8260C
Benzene	ND	0.70	0.25	ug/L	1	12/23/21	HM	SW8260C
Bromobenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Bromochloromethane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Bromodichloromethane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Bromoform	ND	5.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Bromomethane	ND	5.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Carbon Disulfide	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Carbon tetrachloride	ND	1.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
Chlorobenzene	ND	5.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Chloroethane	ND	5.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
Chloroform	ND	5.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
Chloromethane	ND	5.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
sis-1,2-Dichloroethene	ND	1.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
sis-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	12/23/21	НМ	SW8260C
Dibromochloromethane	ND	1.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
Dibromomethane	ND	1.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
Dichlorodifluoromethane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
ithylbenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
lexachlorobutadiene	ND	0.50	0.20	ug/L	1	12/23/21	HM	SW8260C
sopropylbenzene	ND	1.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
1&p-Xylene	ND	1.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
lethyl ethyl ketone	ND	2.5	2.5	ug/L	1	12/23/21	НМ	SW8260C
fethyl t-butyl ether (MTBE)	ND	1.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
Aethylene chloride	ND	3.0	1.0	ug/L	1	12/23/21	НМ	SW8260C
laphthalene	ND	1.0	1.0	ug/L	1	12/23/21	HM	SW8260C
n-Butylbenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
-Propylbenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
-Isopropyltoluene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
ec-Butylbenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Styrene								SW8260C
ert-Butylbenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C SW8260C
	13 ND	1.0	0.25	ug/L	1	12/23/21	HM	
etrahydrofuran (THF)	ND	5.0	2.5	ug/L	1	12/23/21	HM	SW8260C
oluene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
ans-1,2-Dichloroethene	ND	5.0	0.25	ug/L	1	12/23/21	HM	SW8260C
ans-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	12/23/21	HM	SW8260C
ans-1,4-dichloro-2-butene	ND	2.5	2.5	ug/L	1	12/23/21	HM	SW8260C
richloroethene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
richlorofluoromethane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
richlorotrifluoroethane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
/inyl chloride	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	100			%	1	12/23/21	HM	70 - 130 %
6 Bromofluorobenzene	99			%	1	12/23/21	HM	70 - 130 %
% Dibromofluoromethane	99			%	1	12/23/21	HM	70 - 130 %

Project ID: L2168804 Client ID: MW-4

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	101			%	1	12/23/21	НМ	70 - 130 %

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director January 03, 2022 Reviewed and Released by: Sarah Bell, Project Manager

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

<u>Time</u>

10:20

14:58

Analysis Report

January 03, 2022

FOR: Attn: Heather Hayden Alpha Analytical Lab 8 Walkup Drive Westborough, MA 01581

Sample Informa	ation	Custody Inform	nation	<u>Date</u>
Matrix:	WATER	Collected by:		12/14/21
Location Code:	ALPHA	Received by:	CP	12/21/21
Rush Request:	Standard	Analyzed by:	see "By" below	
P.O.#:				

Laboratory Data

SDG ID: GCK03360 Phoenix ID: CK03364

Project ID:	L2168804
Client ID:	MW-6

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	By	Reference
							-	
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,1,1-Trichloroethane	ND	5.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,1,2,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,1,2-Trichloroethane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,1-Dichloroethane	ND	5.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,1-Dichloroethene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,1-Dichloropropene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,2,3-Trichlorobenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,2,3-Trichloropropane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,2,4-Trichlorobenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,2,4-Trimethylbenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,2-Dibromo-3-chloropropane	ND	1.0	0.50	ug/L	1	12/23/21	HM	SW8260C
1,2-Dibromoethane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,2-Dichlorobenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,2-Dichloroethane	ND	0.60	0.50	ug/L	1	12/23/21	HM	SW8260C
1,2-Dichloropropane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,3,5-Trimethylbenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,3-Dichlorobenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,3-Dichloropropane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,4-Dichlorobenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
2,2-Dichloropropane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
2-Chlorotoluene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
2-Hexanone	ND	2.5	2.5	ug/L	1	12/23/21	HM	SW8260C
2-Isopropyltoluene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C 1
4-Chlorotoluene	ND	1.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
4-Methyl-2-pentanone	ND	2.5	2.5	ug/L	1	12/23/21	НМ	SW8260C

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Acetone	ND	5.0	2.5	ug/L	1	12/23/21	HM	SW8260C
Acrolein	ND	5.0	2.5	ug/L	1	12/23/21	HM	SW8260C
Acrylonitrile	ND	5.0	2.5	ug/L	1	12/23/21	HM	SW8260C
Benzene	ND	0.70	0.25	ug/L	1	12/23/21	HM	SW8260C
Bromobenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Bromochloromethane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Bromodichloromethane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Bromoform	ND	5.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Bromomethane	ND	5.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Carbon Disulfide	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Carbon tetrachloride	ND	1.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
Chlorobenzene	ND	5.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
Chloroethane	ND	5.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
Chloroform	ND	5.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
Chloromethane	ND	5.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
cis-1,2-Dichloroethene	0.38	J 1.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
cis-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	12/23/21	НМ	SW8260C
Dibromochloromethane	ND	1.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
Dibromomethane	ND	1.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
Dichlorodifluoromethane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Ethylbenzene	ND	1.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
Hexachlorobutadiene	ND	0.50	0.20	ug/L	1	12/23/21	НМ	SW8260C
Isopropylbenzene	ND	1.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
m&p-Xylene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Methyl ethyl ketone	ND	2.5	2.5	ug/L	1	12/23/21	HM	SW8260C
Methyl t-butyl ether (MTBE)	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
	ND	3.0	1.0	ug/L	1	12/23/21	HM	SW8260C
Methylene chloride Naphthalene	ND	3.0 1.0	1.0	ug/L	1	12/23/21	HM	SW8260C
•	ND	1.0	0.25	ug/L ug/L	1	12/23/21	HM	SW8260C
n-Butylbenzene								
n-Propylbenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
o-Xylene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
p-Isopropyltoluene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
sec-Butylbenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Styrene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
tert-Butylbenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Tetrachloroethene	55	5.0	1.3	ug/L	5	12/27/21	HM	SW8260C
Tetrahydrofuran (THF)	ND	5.0	2.5	ug/L	1	12/23/21	HM	SW8260C
Toluene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
trans-1,2-Dichloroethene	ND	5.0	0.25	ug/L	1	12/23/21	HM	SW8260C
trans-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	12/23/21	HM	SW8260C
trans-1,4-dichloro-2-butene	ND	2.5	2.5	ug/L	1	12/23/21	HM	SW8260C
Trichloroethene	0.86	J 1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Trichlorofluoromethane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Trichlorotrifluoroethane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Vinyl chloride	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	101			%	1	12/23/21	HM	70 - 130 %
% Bromofluorobenzene	98			%	1	12/23/21	HM	70 - 130 %
% Dibromofluoromethane	101			%	1	12/23/21	HM	70 - 130 %

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	By	Reference
% Toluene-d8	100			%	1	12/23/21	HM	70 - 130 %
% 1,2-dichlorobenzene-d4 (5x)	103			%	5	12/27/21	HM	70 - 130 %
% Bromofluorobenzene (5x)	98			%	5	12/27/21	HM	70 - 130 %
% Dibromofluoromethane (5x)	105			%	5	12/27/21	HM	70 - 130 %
% Toluene-d8 (5x)	101			%	5	12/27/21	HM	70 - 130 %

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director January 03, 2022 Reviewed and Released by: Sarah Bell, Project Manager

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

<u>Time</u>

12:10

14:58

Analysis Report

January 03, 2022

FOR: Attn: Heather Hayden Alpha Analytical Lab 8 Walkup Drive Westborough, MA 01581

Sample Informa	tion	Custody Informa	<u>tion</u>
Matrix:	WATER	Collected by:	
Location Code:	ALPHA	Received by:	СР
Rush Request:	Standard	Analyzed by:	see "By" below

Laboratory Data

SDG ID: GCK03360 Phoenix ID: CK03365

Date

12/14/21

12/21/21

Project ID:	L2168804
Client ID:	MW-7

P.O.#:

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	By	Reference
Volatiles								
1,1,1,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
1,1,1-Trichloroethane	ND	5.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
1,1,2,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
1,1,2-Trichloroethane	ND	1.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
1,1-Dichloroethane	ND	5.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
1,1-Dichloroethene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,1-Dichloropropene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,2,3-Trichlorobenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,2,3-Trichloropropane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,2,4-Trichlorobenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,2,4-Trimethylbenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,2-Dibromo-3-chloropropane	ND	1.0	0.50	ug/L	1	12/23/21	HM	SW8260C
1,2-Dibromoethane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,2-Dichlorobenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,2-Dichloroethane	ND	0.60	0.50	ug/L	1	12/23/21	HM	SW8260C
1,2-Dichloropropane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,3,5-Trimethylbenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,3-Dichlorobenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,3-Dichloropropane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,4-Dichlorobenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
2,2-Dichloropropane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
2-Chlorotoluene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
2-Hexanone	ND	2.5	2.5	ug/L	1	12/23/21	HM	SW8260C
2-Isopropyltoluene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C 1
4-Chlorotoluene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
4-Methyl-2-pentanone	ND	2.5	2.5	ug/L	1	12/23/21	HM	SW8260C

Project ID: L2168804

Client ID: MW-7

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Acetone	3.2	JS 5.0	2.5	ug/L	1	12/23/21	HM	SW8260C
Acrolein	ND	5.0	2.5	ug/L	1	12/23/21	HM	SW8260C
Acrylonitrile	ND	5.0	2.5	ug/L	1	12/23/21	HM	SW8260C
Benzene	ND	0.70	0.25	ug/L	1	12/23/21	HM	SW8260C
Bromobenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Bromochloromethane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Bromodichloromethane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Bromoform	ND	5.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Bromomethane	ND	5.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Carbon Disulfide	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Carbon tetrachloride	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Chlorobenzene	ND	5.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Chloroethane	ND	5.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Chloroform	0.27	J 5.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Chloromethane	ND	5.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
cis-1,2-Dichloroethene	20	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
cis-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	12/23/21	НМ	SW8260C
Dibromochloromethane	ND	1.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
Dibromomethane	ND	1.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
Dichlorodifluoromethane	ND	1.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
Ethylbenzene	ND	1.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
Hexachlorobutadiene	ND	0.50	0.20	ug/L	1	12/23/21	НМ	SW8260C
lsopropylbenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
m&p-Xylene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Methyl ethyl ketone	ND	2.5	2.5	ug/L	1	12/23/21	HM	SW8260C
Methyl t-butyl ether (MTBE)	ND	1.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
Methylene chloride	ND	3.0	1.0	ug/L	1	12/23/21	НМ	SW8260C
Naphthalene	ND	1.0	1.0	ug/L	1	12/23/21	НМ	SW8260C
n-Butylbenzene	ND	1.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
n-Propylbenzene	ND	1.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
o-Xylene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
p-Isopropyltoluene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
sec-Butylbenzene	ND	1.0	0.25	ug/L ug/L	1	12/23/21	HM	SW8260C
Styrene	ND	1.0	0.25	ug/L ug/L	1	12/23/21	HM	SW8260C
tert-Butylbenzene								SW8260C
Tetrachloroethene	42 ND	5.0	1.3	ug/L	5	12/27/21 12/23/21	HM	
Tetrahydrofuran (THF)	ND	5.0	2.5	ug/L	1		HM	SW8260C
Toluene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
trans-1,2-Dichloroethene	ND	5.0	0.25	ug/L	1	12/23/21	HM	SW8260C
trans-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	12/23/21	HM	SW8260C
trans-1,4-dichloro-2-butene	ND	2.5	2.5	ug/L	1	12/23/21	HM	SW8260C
Trichloroethene	2.6	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Trichlorofluoromethane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Trichlorotrifluoroethane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Vinyl chloride	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	102			%	1	12/23/21	HM	70 - 130 %
% Bromofluorobenzene	98			%	1	12/23/21	HM	70 - 130 %
% Dibromofluoromethane	100			%	1	12/23/21	HM	70 - 130 %

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	105			%	1	12/23/21	HM	70 - 130 %
% 1,2-dichlorobenzene-d4 (5x)	101			%	5	12/27/21	HM	70 - 130 %
% Bromofluorobenzene (5x)	98			%	5	12/27/21	HM	70 - 130 %
% Dibromofluoromethane (5x)	109			%	5	12/27/21	HM	70 - 130 %
% Toluene-d8 (5x)	103			%	5	12/27/21	HM	70 - 130 %

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

S - Laboratory solvent, contamination is possible.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director January 03, 2022

Reviewed and Released by: Sarah Bell, Project Manager

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

<u>Time</u>

11:30

14:58

Analysis Report

January 03, 2022

FOR: Attn: Heather Hayden Alpha Analytical Lab 8 Walkup Drive Westborough, MA 01581

Sample Informa	ation	Custody Inform	nation	<u>Date</u>
Matrix:	WATER	Collected by:		12/14/21
Location Code:	ALPHA	Received by:	CP	12/21/21
Rush Request:	Standard	Analyzed by:	see "By" below	
P.O.#:				

Laboratory Data

SDG ID: GCK03360 Phoenix ID: CK03366

Project ID:	L2168804
Client ID:	MW-8

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	By	Reference
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,1,1-Trichloroethane	ND	5.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,1,2,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,1,2-Trichloroethane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,1-Dichloroethane	ND	5.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,1-Dichloroethene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,1-Dichloropropene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,2,3-Trichlorobenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,2,3-Trichloropropane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,2,4-Trichlorobenzene	ND	1.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
1,2,4-Trimethylbenzene	ND	1.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
1,2-Dibromo-3-chloropropane	ND	1.0	0.50	ug/L	1	12/23/21	НМ	SW8260C
1,2-Dibromoethane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,2-Dichlorobenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,2-Dichloroethane	ND	0.60	0.50	ug/L	1	12/23/21	HM	SW8260C
1,2-Dichloropropane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,3,5-Trimethylbenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,3-Dichlorobenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,3-Dichloropropane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,4-Dichlorobenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
2,2-Dichloropropane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
2-Chlorotoluene	ND	1.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
2-Hexanone	ND	2.5	2.5	ug/L	1	12/23/21	HM	SW8260C
2-Isopropyltoluene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C 1
4-Chlorotoluene	ND	1.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
4-Methyl-2-pentanone	ND	2.5	2.5	ug/L	1	12/23/21	НМ	SW8260C

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Acetone	ND	5.0	2.5	ug/L	1	12/23/21	HM	SW8260C
Acrolein	ND	5.0	2.5	ug/L	1	12/23/21	HM	SW8260C
Acrylonitrile	ND	5.0	2.5	ug/L	1	12/23/21	HM	SW8260C
Benzene	0.26	J 0.70	0.25	ug/L	1	12/23/21	HM	SW8260C
Bromobenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Bromochloromethane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Bromodichloromethane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Bromoform	ND	5.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Bromomethane	ND	5.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Carbon Disulfide	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Carbon tetrachloride	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Chlorobenzene	ND	5.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Chloroethane	ND	5.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Chloroform	0.57	J 5.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Chloromethane	ND	5.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
cis-1,2-Dichloroethene	1.0	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
cis-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	12/23/21	HM	SW8260C
Dibromochloromethane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Dibromomethane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Dichlorodifluoromethane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Ethylbenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Hexachlorobutadiene	ND	0.50	0.20	ug/L	1	12/23/21	НМ	SW8260C
Isopropylbenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
m&p-Xylene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Methyl ethyl ketone	ND	2.5	2.5	ug/L	1	12/23/21	HM	SW8260C
Methyl t-butyl ether (MTBE)	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
	ND	3.0	1.0	ug/L	1	12/23/21	HM	SW8260C
Methylene chloride	ND	3.0 1.0	1.0	ug/L ug/L	1	12/23/21	HM	SW8260C
Naphthalene	ND	1.0	0.25		1	12/23/21	HM	SW8260C
n-Butylbenzene				ug/L			HM	
n-Propylbenzene	ND	1.0	0.25	ug/L	1	12/23/21		SW8260C
o-Xylene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
p-Isopropyltoluene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
sec-Butylbenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Styrene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
tert-Butylbenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Tetrachloroethene	630	100	25	ug/L	100	12/27/21	HM	SW8260C
Tetrahydrofuran (THF)	ND	5.0	2.5	ug/L	1	12/23/21	HM	SW8260C
Toluene	0.27	J 1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
trans-1,2-Dichloroethene	ND	5.0	0.25	ug/L	1	12/23/21	HM	SW8260C
trans-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	12/23/21	HM	SW8260C
trans-1,4-dichloro-2-butene	ND	2.5	2.5	ug/L	1	12/23/21	HM	SW8260C
Trichloroethene	7.4	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Trichlorofluoromethane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Trichlorotrifluoroethane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Vinyl chloride	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	101			%	1	12/23/21	HM	70 - 130 %
% Bromofluorobenzene	97			%	1	12/23/21	HM	70 - 130 %
% Dibromofluoromethane	99			%	1	12/23/21	HM	70 - 130 %

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	By	Reference
% Toluene-d8	96			%	1	12/23/21	HM	70 - 130 %
% 1,2-dichlorobenzene-d4 (100x)	103			%	100	12/27/21	HM	70 - 130 %
% Bromofluorobenzene (100x)	98			%	100	12/27/21	HM	70 - 130 %
% Dibromofluoromethane (100x)	110			%	100	12/27/21	HM	70 - 130 %
% Toluene-d8 (100x)	100			%	100	12/27/21	HM	70 - 130 %

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director January 03, 2022 Reviewed and Released by: Sarah Bell, Project Manager

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

January 03, 2022

FOR: Attn: Heather Hayden Alpha Analytical Lab 8 Walkup Drive Westborough, MA 01581

Sample Information

Matrix:	WATER
Location Code:	ALPHA
Rush Request:	Standard
P.O.#:	

Custody Inform	ation
Collected by:	
Received by:	CP
Analyzed by:	see

CP see "By" below 12/14/21 9:25 12/21/21 14:58

<u>Time</u>

Date

_aboratory Data

SDG ID: GCK03360 Phoenix ID: CK03367

Project ID:	L2168804
Client ID:	MW-10

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	By	Reference
Client MS/MSD	Completed	- QL	MBE	Onito	Bilddorf	12/22/21	Dy	
	Completed							
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
1,1,1-Trichloroethane	ND	5.0	0.25	ug/L	1	12/22/21	HM	SW8260C
1,1,2,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
1,1,2-Trichloroethane	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
1,1-Dichloroethane	ND	5.0	0.25	ug/L	1	12/22/21	HM	SW8260C
1,1-Dichloroethene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
1,1-Dichloropropene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
1,2,3-Trichlorobenzene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
1,2,3-Trichloropropane	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
1,2,4-Trichlorobenzene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
1,2,4-Trimethylbenzene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
1,2-Dibromo-3-chloropropane	ND	1.0	0.50	ug/L	1	12/22/21	HM	SW8260C
1,2-Dibromoethane	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
1,2-Dichlorobenzene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
1,2-Dichloroethane	ND	0.60	0.50	ug/L	1	12/22/21	HM	SW8260C
1,2-Dichloropropane	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
1,3,5-Trimethylbenzene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
1,3-Dichlorobenzene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
1,3-Dichloropropane	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
1,4-Dichlorobenzene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
2,2-Dichloropropane	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
2-Chlorotoluene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
2-Hexanone	ND	2.5	2.5	ug/L	1	12/22/21	HM	SW8260C
2-Isopropyltoluene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C 1
4-Chlorotoluene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	By	Reference
4-Methyl-2-pentanone	ND	2.5	2.5	ug/L	1	12/22/21	HM	SW8260C
Acetone	ND	5.0	2.5	ug/L	1	12/22/21	HM	SW8260C
Acrolein	ND	5.0	2.5	ug/L	1	12/22/21	HM	SW8260C
Acrylonitrile	ND	5.0	2.5	ug/L	1	12/22/21	HM	SW8260C
Benzene	ND	0.70	0.25	ug/L	1	12/22/21	HM	SW8260C
Bromobenzene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Bromochloromethane	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Bromodichloromethane	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Bromoform	ND	5.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Bromomethane	ND	5.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Carbon Disulfide	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Carbon tetrachloride	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Chlorobenzene	ND	5.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Chloroethane	ND	5.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
Chloroform	0.67	J 5.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
Chloromethane	ND	5.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
cis-1,2-Dichloroethene	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
cis-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	12/22/21	НМ	SW8260C
Dibromochloromethane	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
Dibromomethane	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
Dichlorodifluoromethane	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
Ethylbenzene	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
Hexachlorobutadiene	ND	0.50	0.20	ug/L	1	12/22/21	HM	SW8260C
sopropylbenzene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
n&p-Xylene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Methyl ethyl ketone	ND	2.5	2.5	ug/L	1	12/22/21	НМ	SW8260C
Methyl t-butyl ether (MTBE)	ND	1.0	0.25	ug/L	1	12/22/21	НМ	SW8260C
Methylene chloride	ND	3.0	1.0	ug/L	1	12/22/21	НМ	SW8260C
Naphthalene	ND	1.0	1.0	ug/L	1	12/22/21	НМ	SW8260C
n-Butylbenzene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
n-Propylbenzene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
o-Xylene	ND	1.0	0.25	ug/L ug/L	1	12/22/21	HM	SW8260C
o-Isopropyltoluene	ND	1.0	0.25	ug/L ug/L	1	12/22/21	HM	SW8260C
sec-Butylbenzene	ND							
Styrene		1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
ert-Butylbenzene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Tetrachloroethene	19 ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Fetrahydrofuran (THF)	ND	5.0	2.5	ug/L	1	12/22/21	HM	SW8260C
Foluene	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
rans-1,2-Dichloroethene	ND	5.0	0.25	ug/L	1	12/22/21	HM	SW8260C
rans-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	12/22/21	HM	SW8260C
rans-1,4-dichloro-2-butene	ND	2.5	2.5	ug/L	1	12/22/21	HM	SW8260C
Frichloroethene	0.27	J 1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Frichlorofluoromethane	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
Trichlorotrifluoroethane	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
/inyl chloride	ND	1.0	0.25	ug/L	1	12/22/21	HM	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	98			%	1	12/22/21	HM	70 - 130 %
% Bromofluorobenzene	94			%	1	12/22/21	HM	70 - 130 %

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
% Dibromofluoromethane	105			%	1	12/22/21	HM	70 - 130 %
% Toluene-d8	102			%	1	12/22/21	HM	70 - 130 %

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director January 03, 2022 Reviewed and Released by: Sarah Bell, Project Manager

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

<u>Time</u> 12:40

14:58

Analysis Report

January 03, 2022

FOR: Attn: Heather Hayden Alpha Analytical Lab 8 Walkup Drive Westborough, MA 01581

Sample Informa	ation	Custody Informa	ation	Date
Matrix:	WATER	Collected by:		12/14/21
Location Code:	ALPHA	Received by:	СР	12/21/21
Rush Request:	Standard	Analyzed by:	see "By" below	
P.O.#:				

Laboratory Data

SDG ID: GCK03360 Phoenix ID: CK03368

Project ID:	L2168804
Client ID:	FB 121421

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	By	Reference
Volatiles								
1,1,1,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	12/27/21	HM	SW8260C
1,1,1-Trichloroethane	ND	5.0	0.25	ug/L	1	12/27/21	HM	SW8260C
1,1,2,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	12/27/21	HM	SW8260C
1,1,2-Trichloroethane	ND	1.0	0.25	ug/L	1	12/27/21	HM	SW8260C
1,1-Dichloroethane	ND	5.0	0.25	ug/L	1	12/27/21	HM	SW8260C
1,1-Dichloroethene	ND	1.0	0.25	ug/L	1	12/27/21	HM	SW8260C
1,1-Dichloropropene	ND	1.0	0.25	ug/L	1	12/27/21	HM	SW8260C
1,2,3-Trichlorobenzene	ND	1.0	0.25	ug/L	1	12/27/21	HM	SW8260C
1,2,3-Trichloropropane	ND	1.0	0.25	ug/L	1	12/27/21	HM	SW8260C
1,2,4-Trichlorobenzene	ND	1.0	0.25	ug/L	1	12/27/21	HM	SW8260C
1,2,4-Trimethylbenzene	ND	1.0	0.25	ug/L	1	12/27/21	HM	SW8260C
1,2-Dibromo-3-chloropropane	ND	1.0	0.50	ug/L	1	12/27/21	HM	SW8260C
1,2-Dibromoethane	ND	1.0	0.25	ug/L	1	12/27/21	HM	SW8260C
1,2-Dichlorobenzene	ND	1.0	0.25	ug/L	1	12/27/21	HM	SW8260C
1,2-Dichloroethane	ND	0.60	0.50	ug/L	1	12/27/21	HM	SW8260C
1,2-Dichloropropane	ND	1.0	0.25	ug/L	1	12/27/21	HM	SW8260C
1,3,5-Trimethylbenzene	ND	1.0	0.25	ug/L	1	12/27/21	HM	SW8260C
1,3-Dichlorobenzene	ND	1.0	0.25	ug/L	1	12/27/21	HM	SW8260C
1,3-Dichloropropane	ND	1.0	0.25	ug/L	1	12/27/21	HM	SW8260C
1,4-Dichlorobenzene	ND	1.0	0.25	ug/L	1	12/27/21	HM	SW8260C
2,2-Dichloropropane	ND	1.0	0.25	ug/L	1	12/27/21	HM	SW8260C
2-Chlorotoluene	ND	1.0	0.25	ug/L	1	12/27/21	HM	SW8260C
2-Hexanone	ND	2.5	2.5	ug/L	1	12/27/21	HM	SW8260C
2-Isopropyltoluene	ND	1.0	0.25	ug/L	1	12/27/21	HM	SW8260C 1
4-Chlorotoluene	ND	1.0	0.25	ug/L	1	12/27/21	HM	SW8260C
4-Methyl-2-pentanone	ND	2.5	2.5	ug/L	1	12/27/21	HM	SW8260C

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Acetone	3.5	JS 5.0	2.5	ug/L	1	12/27/21	HM	SW8260C
Acrolein	ND	5.0	2.5	ug/L	1	12/27/21	HM	SW8260C
Acrylonitrile	ND	5.0	2.5	ug/L	1	12/27/21	HM	SW8260C
Benzene	ND	0.70	0.25	ug/L	1	12/27/21	HM	SW8260C
Bromobenzene	ND	1.0	0.25	ug/L	1	12/27/21	HM	SW8260C
Bromochloromethane	ND	1.0	0.25	ug/L	1	12/27/21	HM	SW8260C
Bromodichloromethane	ND	1.0	0.25	ug/L	1	12/27/21	HM	SW8260C
Bromoform	ND	5.0	0.25	ug/L	1	12/27/21	HM	SW8260C
Bromomethane	ND	5.0	0.25	ug/L	1	12/27/21	HM	SW8260C
Carbon Disulfide	ND	1.0	0.25	ug/L	1	12/27/21	HM	SW8260C
Carbon tetrachloride	ND	1.0	0.25	ug/L	1	12/27/21	HM	SW8260C
Chlorobenzene	ND	5.0	0.25	ug/L	1	12/27/21	HM	SW8260C
Chloroethane	ND	5.0	0.25	ug/L	1	12/27/21	HM	SW8260C
Chloroform	ND	5.0	0.25	ug/L	1	12/27/21	HM	SW8260C
Chloromethane	ND	5.0	0.25	ug/L	1	12/27/21	HM	SW8260C
cis-1,2-Dichloroethene	ND	1.0	0.25	ug/L	1	12/27/21	HM	SW8260C
cis-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	12/27/21	HM	SW8260C
Dibromochloromethane	ND	1.0	0.25	ug/L	1	12/27/21	НМ	SW8260C
Dibromomethane	ND	1.0	0.25	ug/L	1	12/27/21	HM	SW8260C
Dichlorodifluoromethane	ND	1.0	0.25	ug/L	1	12/27/21	НМ	SW8260C
Ethylbenzene	ND	1.0	0.25	ug/L	1	12/27/21	HM	SW8260C
lexachlorobutadiene	ND	0.50	0.20	ug/L	1	12/27/21	HM	SW8260C
sopropylbenzene	ND	1.0	0.25	ug/L	1	12/27/21	HM	SW8260C
n&p-Xylene	ND	1.0	0.25	ug/L	1	12/27/21	HM	SW8260C
Aethyl ethyl ketone	ND	2.5	2.5	ug/L	1	12/27/21	НМ	SW8260C
Methyl t-butyl ether (MTBE)	ND	1.0	0.25	ug/L	1	12/27/21	HM	SW8260C
Aethylene chloride	ND	3.0	1.0	ug/L	1	12/27/21	НМ	SW8260C
Vaphthalene	ND	1.0	1.0	ug/L	1	12/27/21	HM	SW8260C
n-Butylbenzene	ND	1.0	0.25	ug/L	1	12/27/21	HM	SW8260C
n-Propylbenzene	ND	1.0	0.25	ug/L	1	12/27/21	HM	SW8260C
o-Xylene	ND	1.0	0.25	ug/L	1	12/27/21	HM	SW8260C
p-lsopropyltoluene	ND	1.0	0.25	ug/L	1	12/27/21	HM	SW8260C
	ND	1.0	0.25	ug/L	1	12/27/21	HM	SW8260C
sec-Butylbenzene	ND	1.0	0.25	ug/L ug/L	1	12/27/21	HM	SW8260C
Styrene	ND	1.0	0.25			12/27/21	HM	SW8260C
ert-Butylbenzene				ug/L	1			SW8260C
	ND	1.0	0.25	ug/L	1	12/27/21	HM	
Fetrahydrofuran (THF)	ND	5.0	2.5	ug/L	1	12/27/21	HM	SW8260C
Foluene	ND	1.0	0.25	ug/L	1	12/27/21	HM	SW8260C
rans-1,2-Dichloroethene	ND	5.0	0.25	ug/L	1	12/27/21	HM	SW8260C
rans-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	12/27/21	HM	SW8260C
rans-1,4-dichloro-2-butene	ND	2.5	2.5	ug/L	1	12/27/21	HM	SW8260C
Frichloroethene	ND	1.0	0.25	ug/L	1	12/27/21	HM	SW8260C
Trichlorofluoromethane	ND	1.0	0.25	ug/L	1	12/27/21	HM	SW8260C
Frichlorotrifluoroethane	ND	1.0	0.25	ug/L	1	12/27/21	HM	SW8260C
√inyl chloride	ND	1.0	0.25	ug/L	1	12/27/21	HM	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	102			%	1	12/27/21	HM	70 - 130 %
% Bromofluorobenzene	98			%	1	12/27/21	HM	70 - 130 %
% Dibromofluoromethane	108			%	1	12/27/21	HM	70 - 130 %

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	103			%	1	12/27/21	HM	70 - 130 %

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

S - Laboratory solvent, contamination is possible.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director January 03, 2022 Reviewed and Released by: Sarah Bell, Project Manager

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

January 03, 2022

ALPHA

Standard

FOR: Attn: Heather Hayden Alpha Analytical Lab 8 Walkup Drive Westborough, MA 01581

Sample Information WATER Matrix:

Location Code:

Rush Request:

P.O.#:

Custody Inform	nation
Collected by:	
Received by:	CP
Analyzed by:	see

CP see "By" below

Date Time 12/14/21 12/21/21 14:58

_aboratory Data

SDG ID: GCK03360 Phoenix ID: CK03369

Project ID:	L2168804
Client ID:	ТВ

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Volatiles								
1,1,1,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
1,1,1-Trichloroethane	ND	5.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,1,2,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
1,1,2-Trichloroethane	ND	1.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
1,1-Dichloroethane	ND	5.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,1-Dichloroethene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,1-Dichloropropene	ND	1.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
1,2,3-Trichlorobenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,2,3-Trichloropropane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,2,4-Trichlorobenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,2,4-Trimethylbenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,2-Dibromo-3-chloropropane	ND	1.0	0.50	ug/L	1	12/23/21	HM	SW8260C
1,2-Dibromoethane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,2-Dichlorobenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,2-Dichloroethane	ND	0.60	0.50	ug/L	1	12/23/21	HM	SW8260C
1,2-Dichloropropane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,3,5-Trimethylbenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,3-Dichlorobenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,3-Dichloropropane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
1,4-Dichlorobenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
2,2-Dichloropropane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
2-Chlorotoluene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
2-Hexanone	ND	2.5	2.5	ug/L	1	12/23/21	HM	SW8260C
2-Isopropyltoluene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C 1
4-Chlorotoluene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
4-Methyl-2-pentanone	ND	2.5	2.5	ug/L	1	12/23/21	ΗM	SW8260C

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	By	Reference
Acetone	3.9	JS 5.0	2.5	ug/L	1	12/23/21	HM	SW8260C
Acrolein	ND	5.0	2.5	ug/L	1	12/23/21	HM	SW8260C
Acrylonitrile	ND	5.0	2.5	ug/L	1	12/23/21	HM	SW8260C
Benzene	ND	0.70	0.25	ug/L	1	12/23/21	HM	SW8260C
Bromobenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Bromochloromethane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Bromodichloromethane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Bromoform	ND	5.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Bromomethane	ND	5.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Carbon Disulfide	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Carbon tetrachloride	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Chlorobenzene	ND	5.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Chloroethane	ND	5.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Chloroform	ND	5.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Chloromethane	ND	5.0	0.25	ug/L	1	12/23/21	HM	SW8260C
cis-1,2-Dichloroethene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
cis-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	12/23/21	HM	SW8260C
Dibromochloromethane	ND	1.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
Dibromomethane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Dichlorodifluoromethane	ND	1.0	0.25	ug/L	1	12/23/21	НМ	SW8260C
Ethylbenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
lexachlorobutadiene	ND	0.50	0.20	ug/L	1	12/23/21	HM	SW8260C
sopropylbenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
n&p-Xylene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
lethyl ethyl ketone	ND	2.5	2.5	ug/L	1	12/23/21	НМ	SW8260C
Methyl t-butyl ether (MTBE)	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Aethylene chloride	ND	3.0	1.0	ug/L	1	12/23/21	HM	SW8260C
Vaphthalene	ND	1.0	1.0	ug/L	1	12/23/21	HM	SW8260C
n-Butylbenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
n-Propylbenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
	ND	1.0	0.25			12/23/21	HM	SW8260C
o-Xylene	ND			ug/L	1			
o-Isopropyltoluene		1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
sec-Butylbenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Styrene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
ert-Butylbenzene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Tetrachloroethene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
etrahydrofuran (THF)	ND	5.0	2.5	ug/L	1	12/23/21	HM	SW8260C
oluene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
rans-1,2-Dichloroethene	ND	5.0	0.25	ug/L	1	12/23/21	HM	SW8260C
rans-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	12/23/21	HM	SW8260C
rans-1,4-dichloro-2-butene	ND	2.5	2.5	ug/L	1	12/23/21	HM	SW8260C
richloroethene	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
Trichlorofluoromethane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
richlorotrifluoroethane	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
/inyl chloride	ND	1.0	0.25	ug/L	1	12/23/21	HM	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	101			%	1	12/23/21	HM	70 - 130 %
% Bromofluorobenzene	97			%	1	12/23/21	HM	70 - 130 %
% Dibromofluoromethane	98			%	1	12/23/21	HM	70 - 130 %

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	105			%	1	12/23/21	НМ	70 - 130 %

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TRIP BLANK INCLUDED.

S - Laboratory solvent, contamination is possible.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director January 03, 2022 Reviewed and Released by: Sarah Bell, Project Manager

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report January 03, 2022

QA/QC Data

SDG I.D.: GCK03360

		Blk	LCS	LCSD	LCS	MS	MSD	MS	% Rec	% RPD	
Parameter	Blank		%	%	RPD	%	%	RPD	Limits	Limits	
QA/QC Batch 606152 (ug/L), Q	C Samp	le No: CJ97947 (CK0336	4 (5X) , CK03	365 (5X)	, CK03	3366 (1	00X) , (СК0336	58)		
Volatiles - Water											
1,1,1,2-Tetrachloroethane	ND	1.0	70	78	10.8				70 - 130	30	
1,1,1-Trichloroethane	ND	1.0	89	95	6.5				70 - 130	30	
1,1,2,2-Tetrachloroethane	ND	0.50	81	85	4.8				70 - 130	30	
1,1,2-Trichloroethane	ND	1.0	94	100	6.2				70 - 130	30	
1,1-Dichloroethane	ND	1.0	93	100	7.3				70 - 130	30	
1,1-Dichloroethene	ND	1.0	93	98	5.2				70 - 130	30	
1,1-Dichloropropene	ND	1.0	95	101	6.1				70 - 130	30	
1,2,3-Trichlorobenzene	ND	1.0	90	96	6.5				70 - 130	30	
1,2,3-Trichloropropane	ND	1.0	86	91	5.6				70 - 130	30	
1,2,4-Trichlorobenzene	ND	1.0	86	92	6.7				70 - 130	30	
1,2,4-Trimethylbenzene	ND	1.0	88	94	6.6				70 - 130	30	
1,2-Dibromo-3-chloropropane	ND	1.0	67	72	7.2				70 - 130	30	T
1,2-Dibromoethane	ND	1.0	91	97	6.4				70 - 130	30	
1,2-Dichlorobenzene	ND	1.0	84	90	6.9				70 - 130	30	
1,2-Dichloroethane	ND	1.0	95	99	4.1				70 - 130	30	
1,2-Dichloropropane	ND	1.0	93	99	6.3				70 - 130	30	
1,3,5-Trimethylbenzene	ND	1.0	88	94	6.6				70 - 130	30	
1,3-Dichlorobenzene	ND	1.0	85	91	6.8				70 - 130	30	
1,3-Dichloropropane	ND	1.0	94	99	5.2				70 - 130	30	
1,4-Dichlorobenzene	ND	1.0	84	89	5.8				70 - 130	30	
2,2-Dichloropropane	ND	1.0	87	99	12.9				70 - 130	30	
2-Chlorotoluene	ND	1.0	87	92	5.6				70 - 130	30	
2-Hexanone	ND	5.0	97	99	2.0				70 - 130	30	
2-Isopropyltoluene	ND	1.0	86	92	6.7				70 - 130	30	
4-Chlorotoluene	ND	1.0	89	94	5.5				70 - 130	30	
4-Methyl-2-pentanone	ND	5.0	96	99	3.1				70 - 130	30	
Acetone	ND	5.0	90	95	5.4				70 - 130	30	
Acrolein	ND	5.0	104	110	5.6				70 - 130	30	
Acrylonitrile	ND	5.0	87	91	4.5				70 - 130	30	
Benzene	ND	0.70	94	100	6.2				70 - 130	30	
Bromobenzene	ND	1.0	87	93	6.7				70 - 130	30	
Bromochloromethane	ND	1.0	97	100	3.0				70 - 130	30	
Bromodichloromethane	ND	0.50	83	89	7.0				70 - 130	30	
Bromoform	ND	1.0	64	70	9.0				70 - 130	30	1
Bromomethane	ND	1.0	89	97	8.6				70 - 130	30	
Carbon Disulfide	ND	1.0	91	97	6.4				70 - 130	30	
Carbon tetrachloride	ND	1.0	77	84	8.7				70 - 130	30	
Chlorobenzene	ND	1.0	92	98	6.3				70 - 130	30	
Chloroethane	ND	1.0	100	108	7.7				70 - 130	30	
Chloroform	ND	1.0	95	100	5.1				70 - 130	30	
Chloromethane	ND	1.0	99	105	5.9				70 - 130	30	

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
cis-1,2-Dichloroethene	ND	1.0	94	100	6.2				70 - 130	30
cis-1,3-Dichloropropene	ND	0.40	90	96	6.5				70 - 130	30
Dibromochloromethane	ND	0.50	72	76	5.4				70 - 130	30
Dibromomethane	ND	1.0	92	100	8.3				70 - 130	30
Dichlorodifluoromethane	ND	1.0	107	112	4.6				70 - 130	30
Ethylbenzene	ND	1.0	94	100	6.2				70 - 130	30
Hexachlorobutadiene	ND	0.40	86	90	4.5				70 - 130	30
Isopropylbenzene	ND	1.0	87	94	7.7				70 - 130	30
m&p-Xylene	ND	1.0	95	101	6.1				70 - 130	30
Methyl ethyl ketone	ND	5.0	99	99	0.0				70 - 130	30
Methyl t-butyl ether (MTBE)	ND	1.0	96	102	6.1				70 - 130	30
Methylene chloride	ND	1.0	84	88	4.7				70 - 130	30
Naphthalene	ND	1.0	91	99	8.4				70 - 130	30
n-Butylbenzene	ND	1.0	89	96	7.6				70 - 130	30
n-Propylbenzene	ND	1.0	87	93	6.7				70 - 130	30
o-Xylene	ND	1.0	95	100	5.1				70 - 130	30
p-Isopropyltoluene	ND	1.0	90	96	6.5				70 - 130	30
sec-Butylbenzene	ND	1.0	89	94	5.5				70 - 130	30
Styrene	ND	1.0	96	102	6.1				70 - 130	30
tert-Butylbenzene	ND	1.0	89	94	5.5				70 - 130	30
Tetrachloroethene	ND	1.0	94	101	7.2				70 - 130	30
Tetrahydrofuran (THF)	ND	2.5	103	110	6.6				70 - 130	30
Toluene	ND	1.0	92	96	4.3				70 - 130	30
trans-1,2-Dichloroethene	ND	1.0	98	102	4.0				70 - 130	30
trans-1,3-Dichloropropene	ND	0.40	91	98	7.4				70 - 130	30
trans-1,4-dichloro-2-butene	ND	5.0	72	79	9.3				70 - 130	30
Trichloroethene	ND	1.0	93	96	3.2				70 - 130	30
Trichlorofluoromethane	ND	1.0	93	99	6.3				70 - 130	30
Trichlorotrifluoroethane	ND	1.0	82	85	3.6				70 - 130	30
Vinyl chloride	ND	1.0	102	105	2.9				70 - 130	30
% 1,2-dichlorobenzene-d4	104	%	101	101	0.0				70 - 130	30
% Bromofluorobenzene	98	%	106	104	1.9				70 - 130	30
% Dibromofluoromethane	108	%	99	97	2.0				70 - 130	30
% Toluene-d8	100	%	98	98	0.0				70 - 130	30
Comment:										

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

QA/QC Batch 606010 (ug/L), QC Sample No: CK03363 (CK03360 (5X), CK03361 (50X), CK03362 (50X), CK03363, CK03364, CK03365, CK03366, CK03369)

Volatiles - Water	,						
1,1,1,2-Tetrachloroethane	ND	1.0	92	2 10	9.3	70 - 130	30
1,1,1-Trichloroethane	ND	1.0	94	4 10	8.2	70 - 130	30
1,1,2,2-Tetrachloroethane	ND	0.50	80	99	6 7.6	70 - 130	30
1,1,2-Trichloroethane	ND	1.0	90	09	B 8.5	70 - 130	30
1,1-Dichloroethane	ND	1.0	89	99	7 8.6	70 - 130	30
1,1-Dichloroethene	ND	1.0	92	2 10	0 8.3	70 - 130	30
1,1-Dichloropropene	ND	1.0	94	4 10	4 10.1	70 - 130	30
1,2,3-Trichlorobenzene	ND	1.0	9!	5 10	6.1	70 - 130	30
1,2,3-Trichloropropane	ND	1.0	89	99	8 9.6	70 - 130	30
1,2,4-Trichlorobenzene	ND	1.0	93	3 10	0 7.3	70 - 130	30
1,2,4-Trimethylbenzene	ND	1.0	94	4 10	01 7.2	70 - 130	30
1,2-Dibromo-3-chloropropane	ND	1.0	91	19	5 4.3	70 - 130	30
1,2-Dibromoethane	ND	1.0	9	1 10	9.4	70 - 130	30

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
1,2-Dichlorobenzene	ND	1.0	89	97	8.6				70 - 130	30
1,2-Dichloroethane	ND	1.0	89	95	6.5				70 - 130	30
1,2-Dichloropropane	ND	1.0	89	97	8.6				70 - 130	30
1,3,5-Trimethylbenzene	ND	1.0	94	103	9.1				70 - 130	30
1,3-Dichlorobenzene	ND	1.0	91	98	7.4				70 - 130	30
1,3-Dichloropropane	ND	1.0	92	98	6.3				70 - 130	30
1,4-Dichlorobenzene	ND	1.0	89	96	7.6				70 - 130	30
2,2-Dichloropropane	ND	1.0	94	100	6.2				70 - 130	30
2-Chlorotoluene	ND	1.0	92	101	9.3				70 - 130	30
2-Hexanone	ND	5.0	92	98	6.3				70 - 130	30
2-Isopropyltoluene	ND	1.0	91	100	9.4				70 - 130	30
4-Chlorotoluene	ND	1.0	93	100	7.3				70 - 130	30
4-Methyl-2-pentanone	ND	5.0	91	98	7.4				70 - 130	30
Acetone	ND	5.0	86	96	11.0				70 - 130	30
Acrolein	ND	5.0	112	122	8.5				70 - 130	30
Acrylonitrile	ND	5.0	84	92	9.1				70 - 130	30
Benzene	ND	0.70	89	97	8.6				70 - 130	30
Bromobenzene	ND	1.0	92	100	8.3				70 - 130	30
Bromochloromethane	ND	1.0	93	101	8.2				70 - 130	30
Bromodichloromethane	ND	0.50	91 05	98 100	7.4				70 - 130	30
Bromoform	ND	1.0	95	100	5.1				70 - 130	30
Bromomethane	ND	1.0	91 00	103	12.4				70 - 130	30
Carbon Disulfide	ND	1.0	88	96	8.7				70 - 130	30
Carbon tetrachloride	ND	1.0	94	105	11.1				70 - 130	30
Chlorobenzene	ND	1.0	90 93	99 105	9.5				70 - 130	30
Chloroethane		1.0	93 90	105 98	12.1 8.5				70 - 130 70 - 130	30 30
Chloroform Chloromethane	ND ND	1.0 1.0	90 95	98 104	8.5 9.0				70 - 130	30 30
cis-1,2-Dichloroethene	ND	1.0 1.0	95 91	104	9.0 10.4				70 - 130	30 30
cis-1,3-Dichloropropene	ND	0.40	91	98	7.4				70 - 130	30 30
Dibromochloromethane	ND	0.40	96	103	7.0				70 - 130	30
Dibromomethane	ND	1.0	92	97	5.3				70 - 130	30
Dichlorodifluoromethane	ND	1.0	113	124	9.3				70 - 130	30
Ethylbenzene	ND	1.0	93	103	10.2				70 - 130	30
Hexachlorobutadiene	ND	0.40	94	102	8.2				70 - 130	30
Isopropylbenzene	ND	1.0	95	103	8.1				70 - 130	30
m&p-Xylene	ND	1.0	93	103	10.2				70 - 130	30
Methyl ethyl ketone	ND	5.0	94	99	5.2				70 - 130	30
Methyl t-butyl ether (MTBE)	ND	1.0	92	97	5.3				70 - 130	30
Methylene chloride	ND	1.0	82	88	7.1				70 - 130	30
Naphthalene	ND	1.0	94	102	8.2				70 - 130	30
n-Butylbenzene	ND	1.0	97	106	8.9				70 - 130	30
n-Propylbenzene	ND	1.0	92	101	9.3				70 - 130	30
o-Xylene	ND	1.0	93	99	6.3				70 - 130	30
p-Isopropyltoluene	ND	1.0	95	105	10.0				70 - 130	30
sec-Butylbenzene	ND	1.0	95	103	8.1				70 - 130	30
Styrene	ND	1.0	95	102	7.1				70 - 130	30
tert-Butylbenzene	ND	1.0	95	104	9.0				70 - 130	30
Tetrachloroethene	ND	1.0	92	100	8.3				70 - 130	30
Tetrahydrofuran (THF)	ND	2.5	98	106	7.8				70 - 130	30
Toluene	ND	1.0	92	99	7.3				70 - 130	30
trans-1,2-Dichloroethene	ND	1.0	93	101	8.2				70 - 130	30
trans-1,3-Dichloropropene	ND	0.40	94	101	7.2				70 - 130	30

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
trans-1,4-dichloro-2-butene	ND	5.0	98	106	7.8				70 - 130	30
Trichloroethene	ND	1.0	90	96	6.5				70 - 130	30
Trichlorofluoromethane	ND	1.0	101	109	7.6				70 - 130	30
Trichlorotrifluoroethane	ND	1.0	88	93	5.5				70 - 130	30
Vinyl chloride	ND	1.0	102	111	8.5				70 - 130	30
% 1,2-dichlorobenzene-d4	101	%	100	99	1.0				70 - 130	30
% Bromofluorobenzene	97	%	100	100	0.0				70 - 130	30
% Dibromofluoromethane	103	%	101	98	3.0				70 - 130	30
% Toluene-d8	101	%	99	100	1.0				70 - 130	30
Comment:										

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

QA/QC Batch 605864 (ug/L), QC Sample No: CK03367 (CK03360, CK03361, CK03362, CK03367)

Volatiles - Water

volatiles - water									
1,1,1,2-Tetrachloroethane	ND	1.0	122	131	7.1	122	70 - 130	30	L
1,1,1-Trichloroethane	ND	1.0	109	116	6.2	110	70 - 130	30	
1,1,2,2-Tetrachloroethane	ND	0.50	97	100	3.0	95	70 - 130	30	
1,1,2-Trichloroethane	ND	1.0	98	99	1.0	93	70 - 130	30	
1,1-Dichloroethane	ND	1.0	109	115	5.4	104	70 - 130	30	
1,1-Dichloroethene	ND	1.0	111	115	3.5	107	70 - 130	30	
1,1-Dichloropropene	ND	1.0	104	110	5.6	103	70 - 130	30	
1,2,3-Trichlorobenzene	ND	1.0	97	102	5.0	92	70 - 130	30	
1,2,3-Trichloropropane	ND	1.0	94	94	0.0	93	70 - 130	30	
1,2,4-Trichlorobenzene	ND	1.0	100	102	2.0	93	70 - 130	30	
1,2,4-Trimethylbenzene	ND	1.0	99	106	6.8	96	70 - 130	30	
1,2-Dibromo-3-chloropropane	ND	1.0	117	121	3.4	119	70 - 130	30	
1,2-Dibromoethane	ND	1.0	100	105	4.9	99	70 - 130	30	
1,2-Dichlorobenzene	ND	1.0	97	99	2.0	93	70 - 130	30	
1,2-Dichloroethane	ND	1.0	100	103	3.0	99	70 - 130	30	
1,2-Dichloropropane	ND	1.0	101	103	2.0	98	70 - 130	30	
1,3,5-Trimethylbenzene	ND	1.0	104	106	1.9	97	70 - 130	30	
1,3-Dichlorobenzene	ND	1.0	99	102	3.0	94	70 - 130	30	
1,3-Dichloropropane	ND	1.0	100	105	4.9	99	70 - 130	30	
1,4-Dichlorobenzene	ND	1.0	97	101	4.0	90	70 - 130	30	
2,2-Dichloropropane	ND	1.0	111	115	3.5	104	70 - 130	30	
2-Chlorotoluene	ND	1.0	101	104	2.9	95	70 - 130	30	
2-Hexanone	ND	5.0	87	88	1.1	98	70 - 130	30	
2-Isopropyltoluene	ND	1.0	100	104	3.9	94	70 - 130	30	
4-Chlorotoluene	ND	1.0	102	105	2.9	94	70 - 130	30	
4-Methyl-2-pentanone	ND	5.0	94	92	2.2	97	70 - 130	30	
Acetone	ND	5.0	97	99	2.0	97	70 - 130	30	
Acrolein	ND	5.0	134	134	0.0	126	70 - 130	30	L
Acrylonitrile	ND	5.0	98	100	2.0	93	70 - 130	30	
Benzene	ND	0.70	102	107	4.8	99	70 - 130	30	
Bromobenzene	ND	1.0	100	103	3.0	92	70 - 130	30	
Bromochloromethane	ND	1.0	108	108	0.0	101	70 - 130	30	
Bromodichloromethane	ND	0.50	109	114	4.5	106	70 - 130	30	
Bromoform	ND	1.0	133	137	3.0	137	70 - 130	30	l,m
Bromomethane	ND	1.0	113	123	8.5	89	70 - 130	30	
Carbon Disulfide	ND	1.0	103	110	6.6	98	70 - 130	30	
Carbon tetrachloride	ND	1.0	126	137	8.4	130	70 - 130	30	I.
Chlorobenzene	ND	1.0	98	103	5.0	94	70 - 130	30	
Chloroethane	ND	1.0	119	129	8.1	113	70 - 130	30	

SDG I.D.: GCK03360

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
Chloroform	ND	1.0	106	110	3.7	100			70 - 130	30
Chloromethane	ND	1.0	106	113	6.4	103			70 - 130	30
cis-1,2-Dichloroethene	ND	1.0	109	114	4.5	103			70 - 130	30
cis-1,3-Dichloropropene	ND	0.40	105	109	3.7	101			70 - 130	30
Dibromochloromethane	ND	0.50	121	130	7.2	123			70 - 130	30
Dibromomethane	ND	1.0	101	104	2.9	98			70 - 130	30
Dichlorodifluoromethane	ND	1.0	113	118	4.3	102			70 - 130	30
Ethylbenzene	ND	1.0	101	107	5.8	100			70 - 130	30
Hexachlorobutadiene	ND	0.40	100	101	1.0	89			70 - 130	30
Isopropylbenzene	ND	1.0	104	110	5.6	101			70 - 130	30
m&p-Xylene	ND	1.0	101	107	5.8	100			70 - 130	30
Methyl ethyl ketone	ND	5.0	98	96	2.1	98			70 - 130	30
Methyl t-butyl ether (MTBE)	ND	1.0	105	109	3.7	103			70 - 130	30
Methylene chloride	ND	1.0	103	105	1.9	92			70 - 130	30
Naphthalene	ND	1.0	94	98	4.2	94			70 - 130	30
n-Butylbenzene	ND	1.0	104	108	3.8	99			70 - 130	30
n-Propylbenzene	ND	1.0	102	106	3.8	96			70 - 130	30
o-Xylene	ND	1.0	100	105	4.9	97			70 - 130	30
p-Isopropyltoluene	ND	1.0	103	108	4.7	97			70 - 130	30
sec-Butylbenzene	ND	1.0	104	109	4.7	97			70 - 130	30
Styrene	ND	1.0	103	108	4.7	101			70 - 130	30
tert-Butylbenzene	ND	1.0	102	108	5.7	98			70 - 130	30
Tetrachloroethene	ND	1.0	100	106	5.8	NC			70 - 130	30
Tetrahydrofuran (THF)	ND	2.5	111	111	0.0	110			70 - 130	30
Toluene	ND	1.0	102	113	10.2	100			70 - 130	30
trans-1,2-Dichloroethene	ND	1.0	109	115	5.4	103			70 - 130	30
trans-1,3-Dichloropropene	ND	0.40	105	108	2.8	103			70 - 130	30
trans-1,4-dichloro-2-butene	ND	5.0	122	124	1.6	119			70 - 130	30
Trichloroethene	ND	1.0	100	108	7.7	98			70 - 130	30
Trichlorofluoromethane	ND	1.0	112	118	5.2	111			70 - 130	30
Trichlorotrifluoroethane	ND	1.0	103	108	4.7	94			70 - 130	30
Vinyl chloride	ND	1.0	111	118	6.1	107			70 - 130	30
% 1,2-dichlorobenzene-d4	97	%	97	95	2.1	98			70 - 130	30
% Bromofluorobenzene	96	%	98	100	2.0	100			70 - 130	30
% Dibromofluoromethane	105	%	104	104	0.0	103			70 - 130	30
% Toluene-d8	104	%	102	107	4.8	102			70 - 130	30
Comment:										
The MSD is not reported for this	s batch.									

I = This parameter is outside laboratory LCS/LCSD specified recovery limits.

m = This parameter is outside laboratory MS/MSD specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis Shiller, Laboratory Director January 03, 2022

Monday, Ja	nuary 03, 2022		Sample Criteri	a Exceedances Report				
Criteria:	None		•	(03360 - ALPHA				
State:	NY		661				RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units

*** No Data to Display ***

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

NY Temperature Narration

January 03, 2022

SDG I.D.: GCK03360

The samples in this delivery group were received at 4.7° C. (Note acceptance criteria for relevant matrices is above freezing up to 6° C)

						4.7° WULL	2	
		Su	bcontrac	Subcontract Chain of Custody				
ALPHA		Phoeni 587 Ea Manch	ix Environm ast Middle Ti ester, CT 06	Phoenix Environmental Laboratories 587 East Middle Turnpike Manchester, CT 06040			Alpha Job Number L2168804	lumber
World Class Chemistry								
Client Ir	Client Information		Project Information	ormation	Regula	Regulatory Requirements/Report Limits	ents/Report Lim	iits
Client: Alpha Analytical Labs Address: Eight Walkup Drive Westborough, MA 01581-1019	al Labs Drive MA 01581-1019	Project Location: N Project Manager: H	Location: NY Manager: Heather Hayden	den	State/Federal Program: Regulatory Criteria:	l Program: riteria:		
		Turnaround	d & Delive	urnaround & Deliverables Information				
Phone: 201.299.4429 Email: hhayden@alphalab.com	nalab.com	Due Date: Deliverables:						
		Project Specific R	equireme	Specific Requirements and/or Report Requirements	ements			
Refere	Reference following Alpha Job Number on final report/deliverables: L2168804	ber on final report/de	liverables: I		ort to include N	Report to include Method Blank, LCS/LCSD:	/LCSD:	
Additional Comments:	Additional Comments: Send all results/reports to subreports@alphalab.com Cat B Package, Excel, Equis	ibreports@alphalab.co	om Cat B P					
Lab ID	Client ID	Collection Date/Time	Sample Matrix	Analysis				Batch QC
	MW-1 U3360 MW-2A 033661 MW-2A 033661 MW-4 033624 MW-6 033664 MW-10 033667 MW-10 03367 FB 121421 03367		WATER WATER WATER WATER WATER WATER WATER WATER	8260 8260 8260 8260 8260 8260 8260 8260				Masw;sw
				* 9 UDas -				
				Rud 3 Vous pursampu	r Sampu	<u>, '</u>)		··· ··
Form No: AL_subcoc	Relinquished By NUX ¹ or with a subcoc	1212 121		Date/Time: 11.30 12/21/01 [1]:35	Received By:	marke Ath	Date/Time:	85 h

						4.7° inua	р	
		Su	lbcontrac	Subcontract Chain of Custody				
		Phoe 587 Mano	inix Environn East Middle chester, CT 0	Phoenix Environmental Laboratories 587 East Middle Turnpike Manchester, CT 06040			Alpha Job Number L2168804	umber
Client In	Client Information		Project Information	ormation	Regul	atory Requirem	Regulatory Requirements/Report Limits	its
Client: Alpha Analytical Labs Address: Eight Walkup Drive Westborough, MA 01581-1019	al Labs Drive MA 01581-1019	Project Location: NY Project Manager: Heather Hayden Turnaround & Deliverabl	NY Heather Hay d & Delive	st Location: NY st Manager: Heather Hayden Lurnaround & Deliverables Information	State/Federal Progr Regulatory Criteria:	State/Federal Program: Regulatory Criteria:		
Phone: 201.299.4429 Email: hhayden@alphalab.com	halab.com	Due Date: Deliverables:						
		Project Specific F	Requiremen	t Specific Requirements and/or Report Requirements	ements			
Refere	Reference following Alpha Job Number on		final report/deliverables: L2168804		port to include	Report to include Method Blank, LCS/LCSD:	S/LCSD:	
Additional Comments:	Additional Comments: Send all results/reports to subreports@alphalab.com Cat B Package, Excel, Equis	subreports@alphalab.	.com Cat B	Package, Excel, Equis				
Lab ID	Client ID	Collection Date/Time	Sample Matrix	Analysis				Batch QC
0336 9 TB	telinquished		WATER 21(2)	B260 TBMCA WRUNUd Date/Time: Received	W Received By:	Alli AA	Date/Time:	10.35

DATA USABILITY SUMMARY REPORT – DUSR DATA VALIDATION SUMMARY

ORGANIC ANALYSIS VOLATILES BY GC/MS METHOD 8260C

For Groundwater Samples Collected December 14, 2021 From 3100 Third Avenue, Bronx, NY Cornerstone 2nd Half 2021 Collected by CA Rich Consultants, Inc.

SAMPLE DELIVERY GROUP NUMBER: GCK03360 BY PHOENIX ENVIRONMENTAL LABORATORIES, INC. (ELAP #NY11301)

SUBMITTED TO:

Mr. Jason Cooper CA Rich Consultants, Inc. 17 Dupont Street Plainview, NY 11803

January 22, 2022

PREPARED BY:

Lori A. Beyer/President L.A.B. Validation Corp. 14 West Point Drive East Northport, NY 11731

fou a. Beyer

Cornerstone 2nd Half 2021, 3100 Third Avenue, Bronx, NY Groundwater Samples; December 2021 Sampling Event Data Usability Summary Report (Data Validation): Volatile Organics by GCMS Method 8260C.

Table of Contents:

Introduction Data Qualifier Definitions Sample Receipt

1.0 Volatile Organics by GC/MS SW846 Method 8260C

- 1.1 Holding Time
- 1.2 System Monitoring Compound (Surrogate) Recovery
- 1.3 Matrix Spikes (MS), Matrix Spike Duplicates (MSD)
- 1.4 Laboratory Control Sample/Laboratory Control Duplicates
- 1.5 Blank Contamination
- 1.6 GC/MS Instrument Performance Check (Tuning)
- 1.7 Initial and Continuing Calibrations
- 1.8 Internal Standards
- 1.9 Field Duplicates
- 1.10 Target Compound List Identification
- 1.11 Compound Quantification and Reported Detection Limits
- 1.12 Overall System Performance

APPENDICES:

- A. Chain of Custody Documents
- B. Case Narrative
- C. Data Summary Form Is with Qualifications

Introduction:

A validation was performed on groundwater samples and the associated quality control samples (MS/MSD/Field Duplicate) for organic analysis for samples collected under chain of custody documentation by CA Rich Consultants and submitted to Alpha Analytical for subsequent analysis. Alpha Analytical provided the samples for analysis to Phoenix Environmental. This report contains the laboratory and validation results for the field samples itemized below. The groundwater samples were collected on December 14, 2021.

The samples were analyzed by Phoenix Environmental, utilizing SW846 Methods and submitted under NYSDEC ASP Category B equivalent deliverable requirements for the associated analytical methodologies employed. The analytical testing consisted of the full analyte list for Volatile Organics. The data was evaluated in accordance with EPA Region II National Functional Guidelines for Organic Data Review and EPA Region II SOP HW-24 Revision 4 for 8260C and in conjunction with the analytical methodologies for which the samples were analyzed, where applicable and relevant.

Sample Identification	Laboratory Identification	Sample Matrix	Date Collected	Date Received at Phoenix
MW-1	CK03360	Groundwater	12/14/2021	12/21/2021
MW-2A	CK03361	Groundwater	12/14/2021	12/21/2021
MW-XX [Field Duplicate of MW-2A]	CK03362	Groundwater	12/14/2021	12/21/2021
MW-4	CK03363	Groundwater	12/14/2021	12/21/2021
MW-6	CK03364	Groundwater	12/14/2021	12/21/2021
MW-7	CK03365	Groundwater	12/14/2021	12/21/2021
MW-8	CK03366	Groundwater	12/14/2021	12/21/2021
MW-10 [Plus, MS/MSD]	CK03367	Groundwater	12/14/2021	12/21/2021
FB 121421	CK03368	Aqueous	12/14/2021	12/21/2021
ТВ	CK03369	Aqueous	12/14/2021	12/21/2021

The data validation report pertains to the following samples:

Data Qualifier Definitions:

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

U - The analyte was analyzed for but was not detected above the reported sample quantitation limit.

J - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

UJ - The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.

R - The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control (QC) criteria. The analyte may or may not be present in the sample.

N - The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."

NJ - The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate quantity.

J+ - The result is an estimated quantity, but the result may be biased high.

J- - The result is an estimated quantity, but the result may be biased low.

D - Analyte concentration is from diluted analysis.

Sample Receipt:

The initial chain of custody document provided to Alpha Analytical was not provided in the lab report. The subcontract chain of custody documents indicate that the samples were received at Phoenix Environmental Laboratories on 12/21/21. The cooler temperature for samples was recorded upon receipt at Phoenix and determined to be acceptable (<6.0 degrees C). The actual temperature of 4.7 degrees C is recorded on the "NY temperature narration" provided in the lab report. No problems and/or discrepancies were noted, consequently, the integrity of the field samples has been assumed to be good.

The data summary Form I's included in Appendix C includes all usable (qualified) and unusable (rejected) results for the samples identified above. The Form I's summarize the detailed narrative section of the report.

NOTE:

L.A.B. Validation Corp. believes it is appropriate to note that the data validation criteria utilized for data evaluation is different than the method requirements utilized by the laboratory. Qualified data does not necessarily mean that the laboratory was non-compliant in the analysis that was performed.

1.0 Volatile Organics by GC/MS SW846 Method 8260C

The following method criteria were reviewed: holding times, SMCs/Surrogates, MS, MSD, LCS, Laboratory Spiked Blanks, Field Duplicates, Method Blanks, Tunes, Calibrations, Internal Standards, Target Component Identification, Quantitation, Reported Quantitation Limits and Overall System Performance. The Volatile results are valid and useable as noted within the following text:

1.1 Holding Time

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the technical holding time is exceeded, the data may not be considered valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimates, "J". The non-detects (sample quantitation limits) are required to be flagged as estimated, "UJ", or unusable, "R", if the holding times are grossly exceeded.

Samples were analyzed within the Method required holding times as well as the technical holding times for data validation of 14 days from collection to analysis for HCL preserved as required. No data validation qualifiers were required based upon holding time.

1.2 System Monitoring Compound (Surrogate) Recovery

All samples are spiked with surrogate compounds prior to sample analysis to evaluate overall laboratory performance and efficiency of the analytical technique. If the measure of surrogate concentrations is outside contract specifications, qualifications are required to be applied to associated samples and analytes.

Surrogate recoveries (%R) for Dibromofluoromethane, 1,2-Dichloroethane-d4, Toluene-d8 and 4-Bromofluorobenzene were found to be within acceptable limits (70-130%) for surrogate compounds for all samples.

1.3 Matrix Spikes (MS)/ Matrix Spike Duplicates (MSD)

The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. The MS/MSD may be used in conjunction with other QC criteria for additional qualification of data.

Site-specific MS/MSD was submitted on MW-10. MS recovery values for Bromoform (137%) was above in-house laboratory limits of 70-130%. Bromoform was not detected in the parent sample. Elevated recovery does not support any potential loss of detection and/or result bias. No qualifiers were applied. MSD analysis was not performed and therefore RPD could not be determined.

1.4 Laboratory Control Sample/Laboratory Control Duplicates

The LCS data for laboratory control samples (LCS) are generated to provide information on the accuracy of the analytical method and on the laboratory performance.

LCS/LCS Duplicate recovery values fell within acceptance limits for all analytes with exceptions noted below:

LCS/LCS Duplicate associated with FB 121421 and diluted reanalysis of MW-6, MW-7 and MW-8 yielded Bromoform (64%) and 1,2-Dibromo-3-chloropropane (67%) below limits. Nondetects in FB 121421 have been qualified, "UJ." No qualifiers were required for dilutions on MW-6, MW-7 and MW-8 since only Tetrachloroethene is applicable for diluted reruns since initial values were over the instrument high calibration range (30 ug/L).

LCS/LCS Duplicate associated with MW-10, MW-1, MW-2A and MW-XX yielded Acrolein (134%/134%), Carbon Tetrachloride (137%), Bromoform (133%/137%) and 1,1,1,2-Tetrachloroethane (131%) above limits in the LCS and/or LCS Duplicate. These target analytes were not detected in field samples. No qualifiers were applied.

1.5 Blank Contamination

Quality assurance (QA) blanks, i.e., method, trip and field blanks are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field blanks measure cross-contamination of samples during field operations.

Blank Type	Blank Result	Sample Result	Action for Samples
Method, Storage,	Detects	Not Detected	No qualification required
field, Trip,	<crql*< td=""><td><crql*< td=""><td>Report CRQL value with a U</td></crql*<></td></crql*<>	<crql*< td=""><td>Report CRQL value with a U</td></crql*<>	Report CRQL value with a U
Instrument		>/= CRQL* and $<2x$	No qualification required
		the CRQL**	
	>CRQL*	= CRQL*</td <td>Report CRQL value with a U</td>	Report CRQL value with a U
		>/=CRQL* and =</td <td>Report blank value for sample</td>	Report blank value for sample
		blank concentration	concentration with a U
		>/= CRQL* and >	No qualification required
		blank concentration	
	=CRQL*	= CRQL*</td <td>Report CRQL value with a U</td>	Report CRQL value with a U
		>CRQL*	No qualification required
	Gross	Detects	Report blank value for sample
	Contamination**		concentration with a U

The following table was utilized to qualify target analyte results due to contamination. The largest value from all the associated blanks is required to be utilized:

*2x the CRQL for methylene chloride, 2-butanone, and acetone.

**4x the CRQL for methylene chloride, 2-butanone, and acetone

***Qualifications based on instrument blank results affect only the sample analyzed immediately after the sample that has target compounds that exceed the calibration range or non-target compounds that exceed 100 ug/L. Below is a summary of the compounds in the sample and the associated qualifications that have been applied:

A) Method Blank Contamination:

No target analytes were detected in the method blanks.

B) Field Blank Contamination:

Acetone was detected at 3.5 ug/L in FB 121421. The laboratory reported concentration of this common laboratory contaminant was detected in MW-7 at 3.2 ug/L and was subsequently negated, "U" during the review.

C) Trip Blank Contamination:

Acetone was detected in TB at 3.9 ug/L. The laboratory reported detection of this target compound was negated in MW-7 as discussed above.

1.6 GC/MS Instrument Performance Check

Tuning and performance criteria are established to ensure adequate mass resolution, proper identification of compounds and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The Tuning standard for volatile organics is Bromofluorobenzene (BFB).

Instrument performance was generated within acceptable limits and frequency for Bromofluorobenzene (BFB) for all analyses.

1.7 Initial and Continuing Calibrations

Satisfactory instrument calibration is established to ensure that the instrument can produce acceptable quantitative data. An initial calibration demonstrates that the instrument can produce acceptable performance at the beginning of an experimental sequence. The continuing calibration checks document that the instrument is giving satisfactory daily performance. Initial calibration verifications were acceptable.

A) Response Factor GC/MS:

The response factor measures the instrument's response to specific chemical compounds. The response factor for all compounds must be >/= 0.05 in both initial and continuing calibrations. A value <0.05 indicates a serious detection and quantitation problem (poor sensitivity). Analytes detected in the sample will be qualified as estimated, "J". All non-detects for that compound in the corresponding samples will be rejected, "R". Method 8260C allows for a minimum response factor of 0.1 for Acetone and 2-Butanone. Validation criteria allows response factor to be /=>0.01 for poor responders (Acetone, MEK, Carbon Disulfide, Chloroethane, Chloromethane, Cyclohexane, 1,2-Dibromoethane, Dichlorodifluoromethane, cis-1,2-Dichloroethene, 1,2-Dichloropropane, 1,2-Dibromo-3-chloropropane, Isopropylbenzene, Methyl Acetate, Methylene Chloride, Methylcyclohexane, MTBE, trans-1,2-Dichloroethene, 4-Methyl-2-Pentanone, 2-Hexanone, Trichlorofluoromethane, 1,1,2-Trichloro-1,2,2-Trifluoroethane.

All the response factors for the target analytes reported were found to be within acceptable limits (>/=0.05) and (>/= 0.01 for poor responders) and minimum response criteria in Table 4 of Method 8260C, for the initial and continuing calibrations for all reported analytes.

B) Percent Relative Standard Deviation (%RSD) and Percent Difference (%D): Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentrations. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be <20% and %D must be <20%. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and non-detects are flagged "UJ". If %RSD and %D grossly exceed QC criteria, non-detect data may be qualified, "R", unusable. Additionally, in cases where the %RSD is >20% and eliminating either the high or the low point of the curve does not restore the %RSD to less than or equal to 20% then positive results are qualified, "J". In cases where removal of either the low or high point restores the linearity, then only low or high-level results will be qualified, "J" in the portion of the curve where non-linearity exists. Closing CCV must meet 30% criteria. Poor responders must be </= 40%. ICV met acceptance criteria.

*Method 8260C allows for several analytes to be outside requirements due to the large number of compounds.

Initial Calibrations: The initial calibrations provided and the %RSD were within acceptable limits (20%) and (40% for poor responders) for all reported compounds with exceptions noted below:

ICAL 12/17/2021 – Tetrahydrofuran (23.7%), trans-1,4-Dichloro-2-butene (33.1%) have been qualified, "UJ" in MW-10, MW-1, MW-2A and MW-XX. 1,2-Dibromo-3-chloropropane (29.7%) was above laboratory reported criteria of 20% but below 40%. Data for this analyte was not qualified.

ICAL 12/22/2021 – Methylene Chloride (21.9%) was above laboratory reported criteria but below 40% in the ICAL associated with MW-4, MW-6, MW-7, MW-8 and TB. No qualifiers were applied.

Continuing Calibrations: The continuing calibrations provided and the %D was within acceptable limits (20%) and (40% for poor responders) for all reported compounds except for:

CCAL 12/27/2021 – Carbon Tetrachloride (21.1%), Dibromochloromethane (31.2%), 1,1,1,2-Tetrachloroethane (32.6%), Bromoform (37.4%) and trans-1,4-Dichloro-2-butene (27.7%) have been qualified, "UJ" in the Trip Blank (TB). Additionally, 1,2-Dibromo-3-chloropropane (34.1%) was above criteria of 20% but below 40%. This analyte was not qualified.

1.8 Internal Standards

Internal Standards (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must not vary by more than a factor of 2 (-50% to +100%) from the associated continuing calibration standard. The retention time of the internal standard must not vary more than \pm -30 seconds from the associated continuing calibration standard. If the area count is outside the (-50% to \pm 100%) range of the associated standard, all the positive results for compounds quantitated using

that IS are qualified as estimated, "J", and all non-detects as "UJ", or "R" if there is a severe loss of sensitivity.

If an internal standard retention time varies by more than 30 seconds, professional judgment will be used to determine either partial or total rejection of the data for that sample fraction.

Samples were spiked with the internal standards Pentafluorobenzene, Chlorobenzene-d5, 1,4-Difluorobenzene and 1,4-Dichlorobenzene-d4 prior to sample analysis. The area responses and retention time of each internal standard met QC criteria in all samples.

1.9 Field Duplicates

Field duplicate samples are collected and analyzed as an indication of overall precision. These results are expected to have more variability than laboratory duplicate samples. For water samples an acceptable RPD is 25%. Groundwater sample MW-2A was collected as a blind duplicate, a summary of positive detections is summarized below:

	MW-2A	MW-XX
Trans-1,2-Dichloroethene	0.69 ug/L	0.73 ug/L
Cis-1,2-Dichloroethene	3.6 ug/L	3.5 ug/L
Chloroform	0.37 ug/L	0.49 ug/L
Trichloroethene	4.9 ug/L	4.7 ug/L
Tetrachloroethene	400 ug/L	420 ug/L

Acceptable reproducibility was obtained for detected analytes. No qualifications to the data were required based on field duplicate analysis.

1.10 Target Compound List Identification

TCL compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within =/-0.06RRT units of the standard compound and have an ion spectrum which has a ratio of the primary and secondary m/e intensities within 20% of that in the standard compound.

GC/MS spectra met the qualitative criteria for identification. All retention times were within required specifications.

1.11 Compound Quantification and Reported Detection Limits

GC/MS quantitative analysis is acceptable. Correct internal standards per SW846, response factors were used to calculate final concentrations.

As required, the laboratory reported "J" values between the reporting limits (RL) and Method Detection Limits (MDLs). This is consistent with common laboratory practices and a requirement of the National Environmental Laboratory Approval Program (NELAP).

Samples were initially analyzed undiluted. Diluted reanalysis was required for MW-1 (1:5), MW-2A (1:50), MW-XX (1:50), MW-6 (1:5), MW-7 (1:5) and MW-8 (1:100) since raw concentrations for Tetrachloroethene were above the high calibration limit (30 ug/L). Initial results, qualified, "E" by the laboratory should not be used and the diluted values, qualified, "D" should be used. Dilutions were determined to be acceptable based on target analyte Tetrachloroethene raw concentrations.

1.12 Overall System Performance

Good resolution and chromatographic performance were observed. Raw data was reviewed and confirmed that no carryover exists for any analysis conducted with this data set.

Tentatively Identified Compounds (TICs) were not generated and therefore not evaluated.

Reviewer's Signature Hour Buy Date 01/22/1022

Appendix A Chain of Custody Documents

L'and		ć				5	
Анча		SL Phoer S87 E Mand	Jbcontra nix Environn ast Middle hester, CT 0	Subcontract Chain of Custody Phoenix Environmental Laboratories 587 East Middle Tumpike Manchester, CT 06040			Alpha Job Number L2168804
Clien	Client Information		Project Information	prmation	Regulat	Regulatory Requirements/Report Limits	Report Limits
Client: Alpha Analy Address: Eight Walku Westboroug	Alpha Analytical Labs Eight Walkup Drive Westborough, MA 01581-1019	Project Location: NY Project Manager: Heather Hayden Turnaround & Deliverah	<mark>γγ</mark> Heather Hay d & Delive	≭ Location: NY ≭ Manager: Heather Hayden Turnaround & Deliverables Information	State/Federal Program: Regulatory Criteria:	Program: eria:	
Phone: 201.299.4429 Email: hhayden@alphalab.com	29 Jiphalab.com	Due Date: Deliverables:					
		Project Specific F	Requireme	Project Specific Requirements and/or Report Requirements	ments		
Refe	Reference following Alpha Job Number on	nber on final report/deliverables:		L2168804 Repo	ort to include Met	Report to include Method Blank, LCS/LCSD:	ä
Iditional Comment	Additional Comments: Send all results/reports to subreports@alphalab.com Cat B Package, Excel, Equis	ubreports@alphalab.c	com Cat B I				
A CONTRACT	などのないで、これないという			and the second			
Lab ID	Client ID	Collection Date/Time	Sample Matrix	Analysis			Bath
	MW-1 03360 MW-2A 05361 MW-2A 05369 MW-4 03365 MW-6 03365 MW-8 03365 MW-8 03365 MW-1 03367 HB 121421 03360	12-14-21 11:36 12-14-21 09:51 12-14-21 09:51 12-14-21 10:00 12-14-21 11:00 12-14-21 11:30 12-14-21 12:40 12-14-21 12:40	WATER WATER WATER WATER WATER WATER WATER WATER	8260 8260 8260 8260 8260 8260 8260 8260			Zhasm:sw
			-	¥ 9 UDAS -			
				Rud 3 Vùas prisanpuc	i Sampue-		
	Relinquished E	W: May Jara	12	Date/Time: 11/35 12/24/01 11/35	Received By: WOMMING	the the se	Date/Time:
Form No: AL_subcoc							

01/12/2022

Alpha Job Number L2168804 /Renort Limits				Batch		e: 111.34
Alpha Job L2168804		Blank, LCS/LCSD:				Date/Time
Alpha Job Nun L2168804 Resulatory Requirements/Report Limits	State/Federal Program: Regulatory Criteria:	ndude Method			- prote	Received By: O W Stonelli AA
Phoenix Environmental Laboratories 587 East Middle Tumpike Manchester, CT 06040 Profect Information	es Information	r Report Requ		Analysis	- TBrot Wranged -	Date/Time: 11:35 1 14:35
enix Environmental Lab East Middle Turmpike chester, CT 06040 Project Information	NY Heather Ha nd & Delive	Requireme deliverables		Sample Matrix	WATER	21/21
Man Man	Project Location: NY Project Manager: Heather Hayden Turnaround & Deliverable Deliverables:	Project Specific Requirements and/o mber on final report/deliverables: L2168804 unbrenorts@alphalab.com.Cat R.Packace, F		Collection Date/Time	12-14-21 00:00	Dec 12
Gient Information	Alpha Analytical Labs Eight Walkup Drive Westborough, MA 01581-1019 201.299.4429 hhavden@albhalab.com	Pro Pro Reference following Alpha Job Number Additional Comments: Send all results/reports to subre	「「「「「「「「」」」	Client ID	8	Relinquished By:
Clent	Client: Alpha Analytical Labs Address: Eight Walkup Drive Westborough, MA 0158: Phone: 201.299.4429 Email: hhavden@alphalab.com	Refer		Lab ID	033%6 4	Form No: AL_subcoc

Phoenix Environmental Laboratories, Inc.

Page 49 of 330

Appendix B Case Narrative

NY # 11301

Environmental Laboratories, Inc. 587 East Middle Turnplke, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

SDG: GCK03360

Volatile Water Conformance / Non-Conformance Summary

Project ID / Client ID: L2168804, Alpha Analytical Lab

Form 1 (Analysis):

No observations noted,

Form 2 (Surrogates):

All surrogates met criteria with the following exceptions: None,

Form 3 (Laboratory Control/Matrix Spike):

Sample: CK03367 LCS All LCS recoveries met criteria with the following exceptions: Acrolein 134%, Bromoform 133% All LCSD recoveries met criteria with the following exceptions: Acrolein 134%, Carbon Tetrachloride 137%, 1,1,1,2-Tetrachloroethane 131%, Bromoform 137% All LCS/LCSD RPDs met criteria with the following exceptions: None.

Sample: CK03367 MS All MS recoveries met criteria with the following exceptions: Bromoform 137% All MSD recoveries met criteria with the following exceptions: None. All MS/MSD RPDs met criteria with the following exceptions: None.

Sample: CK03363 LCS All LCS recoveries met criteria with the following exceptions: None. All LCSD recoveries met criteria with the following exceptions: None. All LCS/LCSD RPDs met criteria with the following exceptions: None.

Sample: CJ97947 LCS All LCS recoveries met criteria with the following exceptions: Bromoform 64%, 1,2-Dibromo-3-Chloropropane 67% All LCSD recoveries met criteria with the following exceptions: None. All LCS/LCSD RPDs met criteria with the following exceptions: None.

Form 4 (Method Blank):

File: CHEM15 1222_06.D All compounds were non-detect with the following exceptions: None.

File: CHEM15 1223_07.D All compounds were non-detect with the following exceptions: None.

File: CHEM15 1227_20.D All compounds were non-detect with the following exceptions: None.

Form 5 (Tune):

File: CHEM15 1217_05.D All Tune criteria was met with the following exceptions: None.

File: CHEM15 1222_02.D All Tune criteria was met with the following exceptions: None.

for 1/22/22

Environmental Laboratories, Inc. 587 East Middle Turnplke, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

SDG: GCK03360

Volatile Water Conformance / Non-Conformance Summary

Project ID / Client ID: L2168804, Alpha Analytical Lab

File: CHEM15 1222_34.D All Tune criteria was met with the following exceptions: None.

File: CHEM15 1223_02.D All Tune criteria was met with the following exceptions: None.

File: CHEM15 1227_05.D All Tune criteria was met with the following exceptions: None.

Form 6 (Initial Calibration):

Calibration: CHEM15 12/17/21 - 12/17/21

94% of method compounds met criteria.

The following compounds did not meet % deviation criteria: Tetrahydrofuran (THF) 23.7% (20), Dibromochloromethane 20.8% (20), Bromoform 26.5% (20), trans-1,4-Dichloro-2-butene 33.1% (20), 1,2-Dibromo-3-Chloropropane 29.7% (20)

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: Bromoform 0.088 (0.1)

The following compounds did not meet minimum response factors: None.

Calibration: CHEM15 12/22/21 - 12/23/21 99% of method compounds met criteria. The following compounds did not meet % deviation criteria: Methylene Chloride 21.9% (20) The following compounds did not meet maximum % deviations: None. The following compounds did not meet recommended response factors: None. The following compounds did not meet minimum response factors: None.

Form 7 (Continuing Calibration):

File: CHEM15 1222_02.D (Opening) 100% of method compounds met criteria. Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None. The following compounds did not meet % deviation criteria: None. The following compounds did not meet maximum % deviations: None. The following compounds did not meet recommended response factors: None. The following compounds did not meet minimum response factors: None.

File: CHEM15 1222_29.D (Closing) The following compounds did not meet maximum % deviations: None. The following compounds did not meet minimum response factors: None.

File: CHEM15 1223_02.D (Opening)

100% of method compounds met criteria.

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

File: CHEM15 1223_27.D (Closing)

The following compounds did not meet maximum % deviations: None. The following compounds did not meet minimum response factors: None.

Page 53 of 330

for invin

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040

Fax (860) 645-0823

Tel. (860) 645-1102

SDG: GCK03360

Volatile Water Conformance / Non-Conformance Summary

Project ID / Client ID: L2168804, Alpha Analytical Lab

File: CHEM15 1227_05.D (Opening)

93% of method compounds met criteria.

So of method compounds there internal.
Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.
The following compounds did not meet % deviation criteria: Carbon Tetrachloride 21.1% (20), Dibromochloromethane 31.2% (20), 1,1,1,2-Tetrachloroethane 32.6% (20), Bromoform 37.4% (20), trans-1,4-Dichloro-2-butene 27.7% (20), 1,2-Dibromo-3-Chloropropane 34.1% (20)
The following compounds did not meet maximum % deviations: None.
The following compounds did not meet maximum % deviations: None.
The following compounds did not meet maximum response factors: Bromoform 0.082 (0.1)
The following compounds did not meet maximum % deviations: None.
File: CHEM15 1227_28.D (Closing)
The following compounds did not meet maximum % deviations: None.
The following compounds did not meet maximum % deviations: None.
File: CHEM15 1227_28.D (Closing)
The following compounds did not meet maximum % deviations: None.
Form 8 (Internal Standard and Retention Time):
File: CHEM15 - VOA15-121721a.M / 1217_08.D
All samples met internal standard area and retention time critieria with the following exceptions: None.

File: CHEM15 - VOA15-121721a.M / 1222_02.D All samples met internal standard area and retention time critieria with the following exceptions: None.

File: CHEM15 - VOA15-122221P.M / 1222_37.D All samples met internal standard area and retention time critieria with the following exceptions: None.

File: CHEM15 - VOA15-122221P.M / 1223_02.D All samples met internal standard area and retention time critieria with the following exceptions: None.

File: CHEM15 - VOA15-122221P.M / 1227_05.D All samples met internal standard area and retention time critieria with the following exceptions: None.

01/07/22

Alejandro Paredes **Project Manager**

Ør 1122/22

Appendix C Validated Form I's with Qualifications

CLIENT ID

VOLATILE ORGANICS ANALYSIS DATA SHEET

					, and on Let				E -
Client:	ALPHA			Lab:	Phoenix Env. I	abs	MV	V-1	
SDG No.:	GCK03360	•			Lab Sample ID):	CK03360		Q.
Sample wt/vol:	5	(g/mL)	mL		Lab File ID:		1222_23.D		
Level: (low/med/meth):	Low	łs			Date Received		12/21/21		
% Moisture:	n.a.				Date Analyzed	:	12/22/21		
Instrument:	CHEM15	Column:	RTX-VMS		Dilution Factor	:	125		
Purge Volume	5000	(uL) pH:	< 2		Soil Aliquot Vo	l:	n.a	(uL)	
Matrix: (soil/water)	Water		CON	CENTF	RATION UNITS:	(ug/L	. or ug/Kg)	ug/L	
CAS NO.	(סו		CONC.	Q	MDL/LOD	RL/PQL	R
75-71-8	Dichlorodifluorom				1.0		0.25		_
74-87-3	Chloromethane	eularie			5.0		0.25	5.0	_
75-01-4	Vinyl Chloride				1.0	U	0.25		
74-83-9	Bromomethane				5.0		0.25	1.0	_
75-00-3	Chloroethane				5.0		0.25	5.0	r
75-69-4	Trichlorofluorome	thone		_				5.0	_
75-35-4	1,1-Dichloroether			_	1.0	U	0.25	1.0	
76-13-1	Trichlorotrifluoroe				1.0	U	0.25	1.0	
		mane			1.0	U	0.25	1.0	_
75-15-0	Carbon Disulfide	_		_	1.0	U	0.25	1.0	r
107-02-8	Acrolein				5.0	U	2.5	5.0	r
75-09-2	Methylene Chlorid	le			3.0	U	1.0	3.0	r
67-64-1	Acetone				5.0	U	2.5	5.0	r
156-60-5	Trans-1,2-Dichlor				5.0	U	0.25	5.0	r
1634-04-4	Methyl t-Butyl Eth				1.0	U	0.25	1.0	r
75-34-3	1,1-Dichloroethan	e			5.0	U	0.25	5.0	Г
107-13-1	Acrylonitrile				5.0	U	2.5	5.0	r
156-59-2	Cis-1,2-Dichloroet				1.0	U	0.25	1.0	r
594-20-7	2,2-Dichloropropa	ne			1.0	U	0.25	1.0	r
74-97-5	Bromochlorometh	ane			1.0	U	0.25	1.0	r
67-66-3	Chloroform				5.0	U	0.25	5.0	r
56-23-5	Carbon Tetrachlo	ride			1.0	U	0.25	1.0	r
109-99-9	Tetrahydrofuran (THF)			5.0	4r	UJ 2.5	5.0	
71-55-6	1,1,1-Trichloroeth				5.0	U	0.25	5.0	_
78-93-3	Methyl Ethyl Ketor				2.5	U	2.5	2.5	
563-58-6	1,1-Dichloroprope				1.0	Ū	0.25	1.0	
71-43-2	Benzene				0.70	Ū	0.25	0.70	r
107-06-2	1,2-Dichloroethan	е			0.60	Ŭ	0.50	0.60	r
79-01-6	Trichloroethene				0.27	J	0.25	1.0	_
	Dibromomethane				1.0	Ŭ	0.25	1.0	_
	1,2-dichloropropa	ne			1.0	Ŭ	0.25	1.0	_
	Bromodichloromet				1.0	Ŭ	0.25	1.0	
	cis-1,3-Dichloropro				0.40	Ŭ	0.25	0.40	
	Toluene	1			1.0	Ū	0.25	1.0	
	4-Methyl-2-Pentar	ione			2.5	U	2.5	2.5	
	Tetrachloroethene			-	2.5	E	0.25	1.0	-
	trans-1,3-Dichloro			a l	0.40	U	0.25	1.0	г

FORMIVOA

r≈Result Reported U=Not Detected D=Reported Dilution E/J=Estimated Value X=Not Used S=Lab Solvent

Page 97 of 330

CLIENT ID

VOLATILE ORGANICS ANALYSIS DATA SHEET

							L AN	N/ 4
Client:	ALPHA			Lab:	Phoenix Env. L	.abs	MV	V-1
SDG No.:	GCK03360	e			Lab Sample ID	:	CK03360	
Sample wt/vol:	5	(g/mL)	mL	-	Lab File ID:		1222_23.D	
Level: (low/med/meth):	Low				Date Received	:	12/21/21	
% Moisture:	n.a				Date Analyzed	:	12/22/21	
Instrument:	CHEM15	Column:	RTX-VMS	-:	Dilution Factor:	•	1 25	
Purge Volume	5000	(uL) pH:	< 2	-	Soil Aliquot Vo	l:	n.a	(uL)
Matrix: (soil/water)	Water		CON	CENTF	RATION UNITS:	(ug/L	or ug/Kg)	ug/L
CAS NO.			1D		CONC	Q	MDL/LOD	RL/PQL F
79-00-5	1,1,2-Trichloroeth	ane			1.0	U	0.25	1.0 r
124-48-1	Dibromochlorome	thane			1.0	U	0.25	1.0 r
142-28-9	1,3-Dichloropropa				1.0	Ū	0.25	1.0 r
106-93-4	1,2-Dibromoethar				1.0	Ū	0.25	1.0 r
591-78-6	2-Hexanone				2.5	U	2.5	
		_						2.5 r
108-90-7	Chlorobenzene				5.0	U	0.25	5.0 r
100-41-4	Ethylbenzene				1.0	U	0.25	1.0 r
630-20-6	1,1,1,2-Tetrachlor	oethane			1.0	U	0.25	1.0 r
179601-23-1	m&p-Xylene				1.0	U	0.25	1.0 r
95-47-6	o-Xylene				1.0	U	0.25	1.0 r
100-42-5	Styrene				1.0	U	0.25	1.0 r
75-25-2	Bromoform				5.0	U	0.25	5.0 r
98-82-8	Isopropylbenzene				1.0	Ū	0.25	1.0 r
108-86-1	Bromobenzene				1.0	Ū	0.25	1.0 r
103-65-1	n-Propylbenzene				1.0	U	0.25	1.0 r
79-34-5	1,1,2,2-Tetrachlor	oothana			1.0	U	0.25	
95-49-8	2-Chlorotoluene	Oethane						1.0 r
					1.0	U	0.25	1.0 r
108-67-8	1,3,5-Trimethylbe				1.0	U	0.25	1.0 r
96-18-4	1,2,3-Trichloropro				1.0	U	0.25	1.0 г
110-57-6	trans-1,4-Dichloro	-2-butene			2.5	A	UT 2.5	2.5 r
106-43-4	4-Chlorotoluene				1.0	U	0.25	1.0 r
98-06-6	tert-Butylbenzene				1.0	U	0.25	1.0 r
95-63-6	1,2,4-Trimethylber	nzene			1.0	U	0.25	1.0 r
135-98-8	sec-Butylbenzene				1.0	U	0.25	1.0 r
99-87-6	p-Isopropyltoluene				1.0	U	0.25	1.0 r
541-73-1	1,3-Dichlorobenze	ne			1.0	U	0.25	1.0 r
106-46-7	1,4-Dichlorobenze				1.0	Ū	0.25	1.0 r
527-84-4	2-Isopropyltoluene				1.0	Ū	0.25	1.0 r
104-51-8	n-Butylbenzene				1.0	Ū	0.25	1.0 r
95-50-1	1,2-Dichlorobenze	ne			1.0	Ŭ	0.25	1.0 r
96-12-8	1,2-Dibromo-3-Ch		IA I		1.0	Ŭ	0.20	1.0 r
87-68-3	Hexachlorobutadie				0.50	U	0.50	
120-82-1	1,2,4-Trichloroben							0.50 r
		20110			1.0	U	0.25	1.0 r
	Naphthalene				1.0	U	1.0	1.0 r
87-61 - 6	1,2,3-Trichloroben	zene			1.0	U	0.25	1.0 r

FORMIVOA

r=Result Reported U=Not Detected D=Reported Dilution E/J=Estimated Value X=Not Used S=Lab Solvent

Page 98 of 330 Por

CLIENT ID

VOLATILE ORGANICS ANALYSIS DATA SHEET

					NUN ONLE I				1
Client:	ALPHA			Lab:	Phoenix Env. L	abs	MV	/-2A	, e
SDG No.:	GCK03360				Lab Sample ID	:	CK03361		-
Sample wt/vol:	5	(g/mL)	<u>mL</u>		Lab File ID:				
Level: (low/med/meth):	Low				Date Received	:	12/21/21		
% Moisture:	n.a.				Date Analyzed		12/22/21		
Instrument:	CHEM15	Column:	RTX-VMS		Dilution Factor		1 « S	D	
Purge Volume	(uL) pH:	< 2		Soil Aliquot Vo	:	n.a	(uL)	
Matrix: (soil/water)	Water		CONC	ENTF	RATION UNITS:	(ug/L	or ug/Kg)	ug/L	-
CAS NO.	C	OMPOUN	D		CONC.	Q	MDL/LOD	RL/PQL	P
75-71-8	Dichlorodifluorome				1.0				R
74-87-3	Chloromethane			_			0.25	1.0	
75-01-4	Vinyl Chloride	_			5.0	U	0.25	5.0	
				_	1.0	U	0.25	1.0	
74-83-9	Bromomethane				5.0	U	0.25	5.0	
75-00-3	Chloroethane				5.0	U	0.25	5.0	
75-69-4	Trichlorofluorometh				1.0	U	0.25	1.0	r
75-35-4	1,1-Dichloroethene				1.0	U	0.25	1.0	r
76-13-1	Trichlorotrifluoroeth	nane			1.0	U	0.25	1.0	r
75-15-0	Carbon Disulfide				1.0	U	0.25	1.0	r
107-02-8	Acrolein				5.0	U	2.5	5.0	r
75-09-2	Methylene Chloride)			3.0	U	1.0	3.0	r
67-64-1	Acetone				5.0	U	2.5	5.0	
156-60-5	Trans-1,2-Dichloroe	ethene			0.69	J	0.25	5.0	_
1634-04-4	Methyl t-Butyl Ether				1.0	Ŭ	0.25	1.0	
75-34-3	1,1-Dichloroethane				5.0	Ū	0.25	5.0	_
107-13-1	Acrylonitrile				5.0	U	2.5	5.0	
156-59-2	Cis-1,2-Dichloroeth	ene			3.6		0.25		_
594-20-7	2,2-Dichloropropan				1.0	U	0.25	1.0	
74-97-5	Bromochlorometha					-		1.0	_
67-66-3	Chloroform	le			1.0	U	0.25	1.0	
56-23-5					0.37	J	0.25	5.0	<u> </u>
	Carbon Tetrachloric				1.0	U	0.25	1.0	
109-99-9	Tetrahydrofuran (Th				5.0	4	UJ 2.5	5.0	
71-55-6	1,1,1-Trichloroethar				5.0	U	0.25	5.0	
	Methyl Ethyl Ketone				2.5	U	2.5	2.5	
563-58-6	1,1-Dichloropropen	e			1.0	U	0.25	1.0	_
	Benzene				0.70	U	0.25	0.70	
	1,2-Dichloroethane				0.60	U	0.50	0.60	r
	Trichloroethene				4.9		0.25	1.0	r
	Dibromomethane				1.0	U	0.25	1.0	r
	1,2-dichloropropane				1.0	U	0.25	1.0	r
	Bromodichlorometh				1.0	U	0.25	1.0	r
	cis-1,3-Dichloroprop	pene			0.40	U	0.25	0.40	
108-88-3	Toluene				1.0	U	0.25	1.0	
108-10-1	4-Methyl-2-Pentano	ne			2.5	U	2.5	2.5	
	Tetrachloroethene		Ç	00	370	E	0.25	1.0	
	trans-1,3-Dichloropr	onene			0.40	U	0.25	0.40	

FORMIVOA

r=Result Reported U=Not Detected D=Reported Dilution E/J=Estimated Value X=Not Used S=Lab Solvent

Page 107 of 330

CLIENT ID

VOLATILE ORGANICS ANALYSIS DATA SHEET

Client:	ALPHA		Lat	: Phoenix Env. I	_abs	MW	'-2A
SDG No.:	GCK03360	<i>v</i> .		Lab Sample ID	¢.	CK03361	
Sample wt/vol:	5	(g/mL) <u>mL</u>		Lab File ID:		1222_24.D	20
Level: (low/med/meth):	Low			Date Received	:	12/21/21	
% Moisture:	n.a.			Date Analyzed		12/22/21	
Instrument:	CHEM15	Column: RTX	-VMS	Dilution Factor	:	105	C
Purge Volume	5000	(uL) pH: < 2		Soil Aliquot Vo	l:	n.a.	(uL)
Matrix: (soil/water)	Water		CONCEN	TRATION UNITS:	(ug/L	. or ug/Kg) _	ug/L
CAS NO.	C	COMPOUND		CONC.	Q	MDL/LOD	RL/PQL
79-00-5	1,1,2-Trichloroeth			1.0		0.25	1.0
124-48-1	Dibromochlorome			1.0		0.25	1.0
142-28-9	1,3-Dichloropropa			1.0		0.25	1.0
106-93-4	1,2-Dibromoethar			1.0	U	0.25	1.0
591-78-6	2-Hexanone			2.5	U	2.5	2.5
108-90-7	Chlorobenzene			5.0	U	0.25	5.0
100-41-4	Ethylbenzene				U	0.25	
630-20-6	1,1,1,2-Tetrachlor	oothono		1.0	U	0.25	1.0
179601-23-1		oetnane		1.0	U		1.0
	m&p-Xylene			1.0	U	0.25	1.0
95-47-6	o-Xylene			1.0	-	0.25	1.0
100-42-5	Styrene			1.0	U	0.25	1.0
75-25-2	Bromoform			5.0	U	0.25	5.0
98-82-8	Isopropylbenzene			1.0	U	0.25	1.0
108-86-1	Bromobenzene			1.0	U	0.25	1.0
103-65-1	n-Propylbenzene			1.0	U	0.25	1.0
79-34-5	1,1,2,2-Tetrachlor	oethane		1.0	U	0.25	1.0
95-49-8	2-Chlorotoluene			1.0	U	0.25	1.0
108-67-8	1,3,5-Trimethylbe			1.0	U	0.25	1.0
96-18-4	1,2,3-Trichloropro			1.0	U	0.25	1.0
	trans-1,4-Dichloro	-2-butene		2.5	4	(H.T 2.5	2.5
	4-Chlorotoluene			1.0	U	0.25	1.0
98-06-6	tert-Butylbenzene			1.0	U	0.25	1.0
95-63-6	1,2,4-Trimethylbe			1.0	U	0.25	1.0
	sec-Butylbenzene			1.0	U	0.25	1.0
99-87-6	p-Isopropyltoluene			1.0	U	0.25	1.0
541-73-1	1,3-Dichlorobenze			1.0	U	0.25	1.0
106-46-7	1,4-Dichlorobenze			1.0	U	0.25	1.0
	2-Isopropyltoluene	•		1.0	U	0.25	1.0
	n-Butylbenzene			1.0	U	0.25	1.0
	1,2-Dichlorobenze			1.0	U	0.25	1.0
	1,2-Dibromo-3-Ch			1.0	U	0.50	1.0
	Hexachlorobutadie			0.50	U	0.20	0.50
	1,2,4-Trichlorober			1.0	U	0.25	1.0
	1,2,4-111010ber	zene		1.0		0.201	1.01
	Naphthalene	2010		1.0	U	1.0	1.0

FORMIVOA

r=Result Reported U=Not Detected D=Reported Dilution E/J=Estimated Value X=Not Used S=Lab Solvent

Por 11WArr

CLIENT ID

VOLATILE ORGANICS ANALYSIS DATA SHEET

	1001			10.00					1
Client:	ALPHA			Lab:	Phoenix Env. L	_abs		-XX U-2A	
SDG No.:	GCK03360				Lab Sample ID):	CK03362		÷
Sample wt/vol:	5	(g/mL)	mL		Lab File ID:		1222_25.D		
Level: (low/med/meth):	Low				Date Received	:	12/21/21		
% Moisture:	n.a.				Date Analyzed	:	12/22/21		
Instrument:	CHEM15	Column:	RTX-VMS		Dilution Factor	:	1 4 4	50	
Purge Volume	5000	(uL) pH:	< 2		Soil Aliquot Vo	l:	n.a	(uL)	
Matrix: (soil/water)	Water		CONC	CENTR	RATION UNITS:	(ug/L	or ug/Kg)	ug/L	-
CAS NO.	C		חו		CONC.	Q	MDL/LOD	RL/PQL	R
75-71-8	Dichlorodifluorom			_	1.0		0.25		_
74-87-3	Chloromethane	oundrie			5.0	U	0.25	5.0	
75-01-4	Vinyl Chloride			_	1.0	U	0.25	1.0	
74-83-9	Bromomethane			_	5.0	U	0.25	5.0	
75-00-3	Chloroethane	_			5.0	U	0.25	5.0	
75-69-4	Trichlorofluorome	thane			1.0	υ	0.25	1.0	
75-35-4	1,1-Dichloroethen			_	1.0	U	0.25	1.0	
76-13-1	Trichlorotrifluoroe				1.0	U	0.25		_
75-15-0	Carbon Disulfide	linane		_	1.0	U	0.25	1.0	
107-02-8	Acrolein				5.0	U	2.5	1.0	
75-09-2	Methylene Chlorid	0			3.0	U	2.5	<u>5.0</u> 3.0	
67-64-1	Acetone				5.0	<u>U</u>	2.5	5.0	
156-60-5	Trans-1,2-Dichloro	oethene			0.73		0.25	5.0	_
1634-04-4	Methyl t-Butyl Ethe				1.0	U	0.25	1.0	_
75-34-3	1,1-Dichloroethan				5.0	-U	0.25	5.0	
107-13-1	Acrylonitrile				5.0	<u> </u>	2.5	5.0	
156-59-2	Cis-1,2-Dichloroet	hono			3.5	0	0.25		
594-20-7	2,2-Dichloropropa				1.0	U	0.25	1.0	
74-97-5	Bromochlorometh				1.0	U	0.25	1.0	
67-66-3	Chloroform				0.49	J	0.25	1.0	
56-23-5	Carbon Tetrachlor	ido				_	0.25	5.0	
109-99-9	Tetrahydrofuran (1				1.0 5.0	U	UT 2.5	1.0	
71-55-6	1,1,1-Trichloroetha				5.0	U	0.25	5.0	_
78-93-3	Methyl Ethyl Ketor				2.5	U	2.5	5.0	
563-58-6	1,1-Dichloroprope				1.0	U	0.25	2.5	-
	Benzene				0.70	U	0.25	1.0	
	1,2-Dichloroethane				0.60	U	0.25	0.70	
	Trichloroethene				4.7		0.50	0.60	
	Dibromomethane				4.7	U	0.25	1.0	
	1,2-dichloropropar	P			1.0	U	0.25	1.0 1.0	
	Bromodichloromet				1.0	U	0.25	1.0	
	cis-1,3-Dichloropro				0.40	U	0.25		
	Toluene	pone			1.0	U	0.25	0.40	
	4-Methyl-2-Pentan	one			2.5	U	2.5	1.0	_
	Tetrachloroethene		17	N	440	E		2.5	
	trans-1,3-Dichlorop		Y	00		U	0.25	1.0	
10001 02-0		ropene			0.40	0	0.25	0.40	ſ

FORM I VOA

r=Result Reported U=Not Detected D=Reported Dilution E/J=Estimated Value X=Not Used S=Lab Solvent

Page 119 of 330

CLIENT ID

VOLATILE ORGANICS ANALYSIS DATA SHEET

									1
Client:	ALPHA			Lab:	Phoenix Env. I	_abs		1-XX U-ZA	
SDG No.:	GCK03360	-5			Lab Sample ID);	CK03362		_
Sample wt/vol:	5	(g/mL)	mL	-	Lab File ID:		1222_25.D		
Level: (low/med/meth):	Low				Date Received	:	12/21/21		
% Moisture:	n.a.	0			Date Analyzed	:	12/22/21		
Instrument:	CHEM15	Column:	RTX-VMS	-	Dilution Factor	:	<u> 1 4 </u>	50	
Purge Volume	5000	(uL) pH:	< 2		Soil Aliquot Vo	l: "	n.a	(uL)	
Matrix: (soil/water)	Water	• 6	CON	CENTR	RATION UNITS:	(ug/L	or ug/Kg)	ug/L	-
CAS NO.		COMPOUN	ID		CONC.	Q	MDL/LOD	RL/PQL	R
79-00-5	1,1,2-Trichloroeth				1.0		0.25	1.0	
124-48-1	Dibromochlorome				1.0		0.25		
142-28-9								1.0	_
	1,3-Dichloropropa				1.0		0.25	1.0	
106-93-4	1,2-Dibromoethar	ne			1.0		0.25	1.0	
591-78-6	2-Hexanone				2.5		2.5	2.5	_
108-90-7	Chlorobenzene				5.0		0.25	5.0	_
100-41-4	Ethylbenzene				1.0		0.25	1.0) r
630-20-6	1,1,1,2-Tetrachlor	roethane			1.0	U	0.25	1.0	l r
179601-23-1	m&p-Xylene				1.0	U	0.25	1.0	r
95-47-6	o-Xylene				1.0	U	0.25	1.0	_
100-42-5	Styrene				1.0	U	0.25	1.0	_
75-25-2	Bromoform				5.0	U	0.25	5.0	
98-82-8	Isopropylbenzene	·			1.0	υ	0.25	1.0	_
108-86-1	Bromobenzene				1.0	U	0.25	1.0	
103-65-1	n-Propylbenzene				1.0	Ū	0.25	1.0	
79-34-5	1,1,2,2-Tetrachlor	oethane			1.0	U	0.25	1.0	_
95-49-8	2-Chlorotoluene	octriarie			1.0	U	0.25	1.0	
108-67-8	1,3,5-Trimethylbe	n 7000			1.0	-U	0.25		
96-18-4						-U		1.0	
	1,2,3-Trichloropro				1.0		0.25	1.0	
110-57-6	trans-1,4-Dichloro	-2-butene			2.5	¢	UT 2.5	2.5	
106-43-4	4-Chlorotoluene				1.0		0.25	1.0	
98-06-6	tert-Butylbenzene				1.0	U	0.25	1.0	-
95-63-6	1,2,4-Trimethylbe				1.0	U	0.25	1.0	
	sec-Butylbenzene				1.0	U	0.25	1.0	
99-87-6	p-Isopropyltoluene				1.0	U	0.25	1.0	r
	1,3-Dichlorobenze				1.0	U	0.25	1.0	l r
106-46-7	1,4-Dichlorobenze				1.0	U	0.25	1.0	r
	2-Isopropyltoluene)			1.0	U	0.25	1.0	r
	n-Butylbenzene				1.0	U	0.25	1.0	r
95-50-1	1,2-Dichlorobenze				1.0	U	0.25	1.0	r
96-12-8	1,2-Dibromo-3-Ch	loropropan	e		1.0	υ	0.50	1.0	
87-68-3	Hexachlorobutadi				0.50	U	0.20	0.50	
	1,2,4-Trichlorober				1.0	U	0.25	1.0	
	Naphthalene				1.0	Ū	1.0	1.0	
	1,2,3-Trichlorober	zene			1.0	U	0.25	1.0	

FORMIVOA

r=Result Reported U=Not Detected D=Reported Dilution E/J=Estimated Value X=Not Used S=Lab Solvent

Page 120 of 330

CLIENT ID

VOLATILE ORGANICS ANALYSIS DATA SHEET

Client:	ALPHA			Lab:	Phoenix Env. L	abs	M	W-4
SDG No.:	GCK03360				Lab Sample ID	:	CK03363	
Sample wt/vol:	5	(g/mL)	mL		Lab File ID:		122317.D	
Level: (low/med/meth):	Low	-3			Date Received	:	12/21/21	(
% Moisture:	n.a.	•11			Date Analyzed		12/23/21	
Instrument:	CHEM15	Column:	RTX-VMS		Dilution Factor:		1	
Purge Volume	5000	(uL) pH:	< 2		Soil Aliquot Vol	:	n.a.	(uL)
Matrix: (soil/water)	Water	с.	CONC	ENTF	ATION UNITS:	(ug/L	or ug/Kg)	ug/L
CAS NO.		COMPOUN	JD		CONC.	Q	MDL/LOD	RL/PQL
75-71-8	Dichlorodifluorom				1.0	U	0.25	RL/PQL 1.0
74-87-3	Chloromethane	ictriarie			5.0	U	0.25	
75-01-4	Vinyl Chloride				1.0	<u>U</u>	0.25	5.0
74-83-9	Bromomethane				5.0	U	0.25	
75-00-3	Chloroethane				5.0	<u> </u>	0.25	
75-69-4	Trichlorofluorome	thone			1.0	<u>U</u>	0.25	5.0
75-35-4	1,1-Dichloroether				1.0	<u>U</u>	0.25	1.0
76-13-1	Trichlorotrifluoroe					<u>U</u>	0.25	1.0
75-15-0	Carbon Disulfide	ulane			1.0	<u>U</u>		1.0
107-02-8	Acrolein				1.0	U	0.25	1.0
75-09-2	Methylene Chlorid	10		_	5.0 3.0	<u>U</u>	2.5	5.0
67-64-1	Acetone				5.0	<u>U</u>	1.0 2.5	3.0
156-60-5	Trans-1,2-Dichlor	oothono				U	0.25	5.0
1634-04-4	Methyl t-Butyl Eth			_	5.0	_		5.0
75-34-3	1,1-Dichloroethar				1.0	U	0.25	1.0
107-13-1		e	_	_	5.0	U	0.25	5.0
156-59-2	Acrylonitrile Cis-1,2-Dichloroe	there			5.0	U	2.5	5.0
594-20-7			_	_	1.0	U	0.25	1.0
74-97-5	2,2-Dichloropropa Bromochlorometh				1.0	U	0.25	1.0
67-66-3		ane			1.0	U	0.25	1.0
56-23-5	Chloroform	at al _			5.0	C	0.25	5.0
109-99-9	Carbon Tetrachlo				1.0	U	0.25	1.0
71-55-6	Tetrahydrofuran (5.0	U	2.5	5.0
78-93-3	1,1,1-Trichloroeth				5.0	U	0.25	5.0
563-58-6	Methyl Ethyl Keto				2.5	U	2.5	2.5
71-43-2	1,1-Dichloroprope	ne			1.0	U	0.25	1.0
107-06-2	Benzene				0.70	U	0.25	0.70
79-01-6	1,2-Dichloroethan	e			0.60	U	0.50	0.60
	Trichloroethene Dibromomethane				1.0	U	0.25	1.0
					1.0	U	0.25	1.0
	1,2-dichloropropa Bromodichlorome				1.0	U	0.25	1.0
					1.0	U	0.25	1.0
	cis-1,3-Dichloropr Toluene	opene			0.40	U	0.25	0.40
	A DESCRIPTION OF A DESC	000			1.0	U	0.25	1.0
108-10-1 127-18-4	4-Methyl-2-Pentar				2.5	U	2.5	2.5
	Tetrachloroethene				13		0.25	1.0
10061-02-6	trans-1,3-Dichloro	propene			0.40	U	0.25	0.40

FORMIVOA

r=Result Reported U=Not Detected D=Reported Dilution E/J=Estimated Value X=Not Used S=Lab Solvent

CLIENT ID

VOLATILE ORGANICS ANALYSIS DATA SHEET

		ALTSIS DA			
Client:	ALPHA	Lab:	Phoenix Env. Labs	MV	∿-4
SDG No.:	GCK03360		Lab Sample ID:	CK03363	
Sample wt/vol:	5 (g/mL) <u>mL</u>		Lab File ID:	1223_17.D	
Level: (low/med/meth):	Low		Date Received:	12/21/21	
% Moisture:	n.a.		Date Analyzed:	12/23/21	
Instrument:	CHEM15 Column: RTX-VM	MS	Dilution Factor:	1	
Purge Volume	<u>5000 (</u> uL) pH: <u>< 2</u>		Soil Aliquot Vol:	n.a.	(uL)
Matrix: (soil/water)	WaterCC	DNCENTRA	ATION UNITS: (ug/l	_ or ug/Kg)	ug/L
CAS NO.	COMPOUND		CONC. Q	MDL/LOD	RL/PQL
79-00-5	1,1,2-Trichloroethane		1.0 U	0.25	1.0
124-48-1	Dibromochloromethane		1.0 U	0.25	1.0
142-28-9	1,3-Dichloropropane		1.0 U	0.25	1.0
106-93-4	1,2-Dibromoethane		1.0 U	0.25	1.0
591-78-6	2-Hexanone		2.5 U	2.5	2.5
108-90-7	Chlorobenzene		5.0 U	0.25	5.0
100-41-4	Ethylbenzene		1.0 U	0.25	1.0
630-20-6	1,1,1,2-Tetrachloroethane		1.0 U	0.25	
179601-23-1	m&p-Xylene		1.0 U	0.25	
95-47-6	o-Xylene		1.0 U	0.25	
100-42-5	Styrene		1.0 U	0.25	1.0
75-25-2	Bromoform		5.0 U	0.25	1.0
98-82-8	Isopropylbenzene				5.0
108-86-1				0.25	1.0
	Bromobenzene			0.25	1.0
103-65-1	n-Propylbenzene		1.0 U	0.25	1.0
79-34-5	1,1,2,2-Tetrachloroethane		1.0 U	0.25	1.0
95-49-8	2-Chlorotoluene		1.0 U	0.25	1.0
108-67-8	1,3,5-Trimethylbenzene		1.0 U	0.25	1.0
96-18-4	1,2,3-Trichloropropane		1.0 U	0.25	1.0
110-57-6	trans-1,4-Dichloro-2-butene		2.5 U	2.5	2.5
106-43-4	4-Chlorotoluene		1.0 U	0.25	1.0
98-06-6	tert-Butylbenzene	1	1.0 U	0.25	1.0
95-63-6	1,2,4-Trimethylbenzene		1.0 U	0.25	1.0
135-98-8	sec-Butylbenzene		1.0 U	0.25	1.0
99-87-6	p-Isopropyltoluene		1.0 U	0.25	1.0
541-73-1	1,3-Dichlorobenzene		1.0 U	0.25	1.0
106-46-7	1,4-Dichlorobenzene		1.0 U	0.25	1.0
527-84-4	2-Isopropyltoluene		1.0 U	0.25	1.0
104-51-8	n-Butylbenzene		1.0 U	0.25	1.0
95-50-1	1,2-Dichlorobenzene		1.0 U	0.25	1.0
96-12-8	1,2-Dibromo-3-Chloropropane		1.0 U	0.50	1.0
	Hexachlorobutadiene		0.50 U	0.20	0.50
120-82-1	1,2,4-Trichlorobenzene		1.0 U	0.25	1.0
	Naphthalene	-	1.0 U	1.0	1.0
87-61-6	1,2,3-Trichlorobenzene		1.0 U	0.25	1.0
0/-01-0					1.01

FORM I VOA

r=Result Reported U=Not Detected D=Reported Dilution E/J=Estimated Value X=Not Used S=Lab Solvent

CLIENT ID

VOLATILE ORGANICS ANALYSIS DATA SHEET

Client:	ALPHA			Lab:	Phoenix Env.	Labs	MV	V-6
SDG No.:	GCK03360	e			Lab Sample ID	D:	CK03364	
Sample wt/vol:	5	(g/mL)	mL		Lab File ID:			
Level: (low/med/meth):	Low				Date Received	1:	12/21/21	
% Moisture:	n.a.				Date Analyzed	l:	12/23/21	
Instrument:	CHEM15	Column:	RTX-VMS		Dilution Factor	:	1 🕊	
Purge Volume	5000	(uL) pH	< 2		Soil Aliquot Vo	d:	n.a.	(uL)
Matrix: (soil/water)	Water		CONC	ENTR	ATION UNITS:	(ug/L	. or ug/Kg)	ug/L
CAS NO.	ſ	COMPOUN	ס		CONC.	Q	MDL/LOD	RL/PQL
75-71-8	Dichlorodifluorom		-		1.0		0.25	1.0
74-87-3	Chloromethane				5.0		0.25	
75-01-4	Vinyl Chloride			_				5.0
74-83-9	Bromomethane				1.0		0.25	1.0
					5.0		0.25	5.0
75-00-3	Chloroethane				5.0		0.25	5.0
75-69-4	Trichlorofluorome				1.0		0.25	1.0
75-35-4	1,1-Dichloroethen				1.0	U	0.25	1.0
76-13-1	Trichlorotrifluoroe	thane			1.0	U	0.25	1.0
75-15-0	Carbon Disulfide				1.0	U	0.25	1.0
107-02-8	Acrolein				5.0	U	2.5	5.0
75-09 - 2	Methylene Chloric	le			3.0	U	1.0	3.0
67-64 - 1	Acetone				5.0	U	2.5	5.0
156-60-5	Trans-1,2-Dichlor	oethene			5.0		0.25	5.0
1634-04-4	Methyl t-Butyl Eth				1.0		0.25	1.0
75-34-3	1,1-Dichloroethan				5.0	U	0.25	5.0
107-13-1	Acrylonitrile	0			5.0	U	2.5	5.0
156-59-2	Cis-1,2-Dichloroet	hene			0.38	J	0.25	
594-20-7	2,2-Dichloropropa			-				1.0
					1.0	U	0.25	1.0
74-97-5	Bromochlorometh	ane			1.0	U	0.25	1.0
67-66-3	Chloroform				5.0	U	0.25	5.0
56-23-5	Carbon Tetrachlor				1.0		0.25	1.0
109-99-9	Tetrahydrofuran (*			_	5.0	U	2.5	5.0
71-55-6	1,1,1-Trichloroeth				5.0	U	0.25	5.0
	Methyl Ethyl Ketor				2.5		2.5	2.5
563-58-6	1,1-Dichloroprope	ne			1.0	U	0.25	1.0
	Benzene				0.70	U	0.25	0.70
	1,2-Dichloroethan	e			0.60	U	0.50	0.60
79-01-6	Trichloroethene				0.86	J	0.25	1.0
74-95-3	Dibromomethane				1.0	Ū	0.25	1.0
78-87-5	1,2-dichloropropar	ne			1.0	Ū	0.25	1.0
	Bromodichloromet				1.0		0.25	1.0
	cis-1,3-Dichloropro				0.40		0.25	0.40
	Toluene				1.0		0.25	1.0
	4-Methyl-2-Pentan	one			2.5	U	2.5	2.5
	Tetrachloroethene				55 57	Æ	△ 0.25	1.0
	trans-1,3-Dichloro				0.40	U	0.25	0.40

FORMIVOA

r=Result Reported U=Not Detected D=Reported Dilution E/J=Estimated Value X=Not Used S=Lab Solvent

Page 136 of 330

CLIENT ID

VOLATILE ORGANICS ANALYSIS DATA SHEET

			1007 I I I I		, the onleast			
Client:	ALPHA			Lab:	Phoenix Env. L	.abs	MV	V-6
SDG No.:	GCK03360				Lab Sample ID	:	CK03364	
Sample wt/vol:	5	(g/mL)	mL		Lab File ID:		122318.D	
Level: (low/med/meth):	Low	3			Date Received	į.,	12/21/21	
% Moisture:	n.a.	λ.			Date Analyzed:		12/23/21	
Instrument:	CHEM15	Column:	RTX-VMS		Dilution Factor:		1 4	
Purge Volume	5000	(uL) pHi	< 2		Soil Aliquot Vol	:	n.a	(uL)
Matrix: (soil/water)	Water		CONC	ENTR	ATION UNITS:	(ug/L	or ug/Kg)	ug/L
CAS NO.	ſ		חו		CONC.	Q	MDL/LOD	RL/PQL R
79-00-5	1,1,2-Trichloroeth				1.0	U	0.25	
124-48-1	Dibromochlorome			_				1.0 r
					1.0	U	0.25	1.0 r
142-28-9	1,3-Dichloropropa				1.0	U	0.25	1.0 r
106-93-4	1,2-Dibromoethar	10			1.0	U	0.25	1.0 r
591-78-6	2-Hexanone				2.5	U	2.5	2.5 r
108-90-7	Chlorobenzene				5.0	U	0.25	5.0 r
100-41-4	Ethylbenzene				1.0	U	0.25	1.0 r
630-20-6	1,1,1,2-Tetrachlor	oethane			1.0	U	0.25	1.0 r
179601-23-1	m&p-Xylene				1.0	U	0.25	1.0 r
95-47-6	o-Xylene				1.0	U	0.25	1.0 r
100-42-5	Styrene				1.0	U	0.25	1.0 r
75-25-2	Bromoform				5.0	U	0.25	5.0 r
98-82-8	Isopropylbenzene				1.0	Ū	0.25	1.0 r
108-86-1	Bromobenzene				1.0	Ū	0.25	1.0 r
103-65-1	n-Propylbenzene				1.0	U	0.25	1.0 r
79-34-5	1,1,2,2-Tetrachlor	nethane			1.0	Ŭ	0.25	
95-49-8	2-Chlorotoluene	Vethane			1.0	U	0.25	1.0
108-67-8	1,3,5-Trimethylbe			_		U	0.25	
96-18-4				_	1.0			1.0 r
	1,2,3-Trichloropro				1.0	U	0.25	1.0 r
110-57-6	trans-1,4-Dichloro	-2-butene			2.5	U	2.5	2.5 r
	4-Chlorotoluene				1.0	U	0.25	1.0 r
98-06-6	tert-Butylbenzene				1.0	U	0.25	1.0 r
95-63-6	1,2,4-Trimethylbe				1.0	U	0.25	1.0 r
135-98-8	sec-Butylbenzene				1.0	U	0.25	1.0 r
99-87-6	p-Isopropyltoluene				1.0	U	0.25	1.0 r
541-73-1	1,3-Dichlorobenze				1.0	U	0.25	1.0 г
	1,4-Dichlorobenze	ene			1.0	U	0.25	1.0 r
527-84-4	2-Isopropyltoluene)			1.0	υ	0.25	1.0 r
	n-Butylbenzene				1.0	U	0.25	1.0 r
95-50-1	1,2-Dichlorobenze	ne			1.0	U	0.25	1.0 r
96-12-8	1,2-Dibromo-3-Ch	loropropan	е		1.0	υ	0.50	1.0 r
	Hexachlorobutadie				0.50	U	0.20	0.50 r
	1,2,4-Trichlorober				1.0	Ŭ	0.25	1.0 r
	Naphthalene				1.0	Ū	1.0	1.0 r
					1.0	Ŭ	0.25	1.0 r
87-61-6	1,2,3-Trichloroben	zene						

FORMIVOA

r=Result Reported U=Not Detected D=Reported Dilution E/J=Estimated Value X=Not Used S=Lab Solvent

Page 137 of 330

CLIENT ID

VOLATILE ORGANICS ANALYSIS DATA SHEET	VOLATILE	ORGANICS ANALYSIS	DATA SHEET
---------------------------------------	----------	-------------------	------------

				NUN ONCE I			
Client:	ALPHA		Lab:	Phoenix Env. I	_abs	MV	V-7
SDG No.:	GCK03360			Lab Sample ID):	CK03365	
Sample wt/vol:	5	(g/mL) <u>mL</u>		Lab File ID:		122319.D	
Level: (low/med/meth):	Low			Date Received		12/21/21	
% Moisture:	n.a.			Date Analyzed	:	12/23/21	
Instrument:	CHEM15	Column: RTX-VM	IS	Dilution Factor		1 4 5	
Purge Volume	5000	(uL) pH: <u>< 2</u>		Soil Aliquot Vo	l:	n.a((uL)
Matrix: (soil/water)	Water	со	NCENTF	RATION UNITS:	(ug/L	or ug/Kg)	ug/L
CAS NO.	C	OMPOUND		CONC.	Q	MDL/LOD	RL/PQL
75-71-8	Dichlorodifluorome		_	1.0		0.25	RL/PQL
74-87-3	Chloromethane	Anano		5.0	U	0.25	5.0
75-01-4	Vinyl Chloride		_	1.0	0	0.25	1.0
74-83-9	Bromomethane			5.0	U	0.25	
75-00-3	Chloroethane		_	5.0	U	0.25	5.0
75-69-4	Trichlorofluoromet	hana					5.0
75-35-4			_	1.0	U	0.25	1.0
	1,1-Dichloroethene			1.0	U	0.25	1.0
76-13-1	Trichlorotrifluoroet	nane		1.0	U	0.25	1.0
75-15-0	Carbon Disulfide			1.0	U	0.25	1.0
107-02-8	Acrolein			5.0	U	2.5	5.0
75-09-2	Methylene Chlorid	<u>e</u>		3.0	U	1.0	3.0
67-64-1	Acetone		5.0	3.2	18) 2.5	5.0
156-60-5	Trans-1,2-Dichloro			5.0	U	0.25	5.0
1634-04-4	Methyl t-Butyl Ethe			1.0	U	0.25	1.0
75-34-3	1,1-Dichloroethane)		5.0	Ų	0.25	5.0
107-13-1	Acrylonitrile			5.0	U	2.5	5.0
156-59-2	Cis-1,2-Dichloroet	nene		20		0.25	1.0
594-20-7	2,2-Dichloropropa	ne		1.0	U	0.25	1.0
74-97-5	Bromochlorometha	ine		1.0	U	0.25	1.0
67-66-3	Chloroform			0.27	J	0.25	5.0
56-23-5	Carbon Tetrachlori	de		1.0	U	0.25	1.0
109-99-9	Tetrahydrofuran (T			5.0	Ū	2.5	5.0
	1,1,1-Trichloroetha			5.0	Ū	0.25	5.0
	Methyl Ethyl Keton			2.5	Ū	2.5	2.5
	1,1-Dichloroproper			1.0	Ŭ	0.25	1.0
	Benzene			0.70	Ŭ	0.25	0.70
	1,2-Dichloroethane			0.60	Ŭ	0.50	0.60
	Trichloroethene		_	2.6	-	0.25	1.0
	Dibromomethane			1.0	U	0.25	1.0
	1,2-dichloropropan	<u>م</u>		1.0	U	0.25	1.0
	Bromodichloromet			1.0	U	0.25	1.0
	cis-1,3-Dichloropro			0.40	U	0.25	
	Toluene	perio			U		0.40
		200		1.0		0.25	1.0
	4-Methyl-2-Pentan	JIIE	UN	2.5	U	2.5	2.5
	Tetrachloroethene		42	46	F	0.25	0.40
10061-02-6	trans-1,3-Dichlorop	ropene		0.40	U	0.25	0.40

FORMIVOA

r=Result Reported U=Not Detected D=Reported Dilution E/J=Estimated Value X=Not Used S=Lab Solvent

Page 147 of 330

1 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT ID

		L1515 D/			
Client:	ALPHA	Lab:	Phoenix Env. Labs	, MV	V-7
SDG No.:	GCK03360		Lab Sample ID:	CK03365	
Sample wt/vol:	5 (g/mL) <u>mL</u>		Lab File ID:	1223_19.D	
Level: (low/med/meth):	Low		Date Received:	12/21/21	
% Moisture:	n.a.		Date Analyzed:	12/23/21	,
Instrument:	CHEM15 Column: RTX-VMS	<u>s</u>	Dilution Factor:	1 4 5	_
Purge Volume	5000(uL) pH: <u>< 2</u>		Soil Aliquot Vol:	n.a((uL)
Matrix: (soil/water)	Water CON	NCENTR/	ATION UNITS: (ug	/L or ug/Kg) _	ug/L
CAS NO.	COMPOUND		CONC. G	MDL/LOD	RL/PQL F
79-00-5	1,1,2-Trichloroethane		1.0 U		1.0 r
124-48-1	Dibromochloromethane		1.0 U		1.0 r
142-28-9	1,3-Dichloropropane		1.0 U		1.0 r
106-93-4	1,2-Dibromoethane		1.0 U		1.0 r
591-78-6	2-Hexanone		2.5 U		2.5 r
108-90-7	Chlorobenzene		5.0 U		5.0 r
100-41-4	Ethylbenzene		1.0 U		1.0 r
630-20-6	1,1,1,2-Tetrachloroethane		1.0 U		1.0 r
179601-23-1	m&p-Xylene		1.0 U		1.0 r
95-47-6	o-Xylene		1.0 U		
100-42-5	Styrene		1.0 U		1.0 r 1.0 r
75-25-2	Bromoform		5.0 U		5.0 r
98-82-8	Isopropylbenzene		1.0 U		1.0 r
108-86-1	Bromobenzene		1.0 U		
103-65-1	n-Propylbenzene		1.0 U		
79-34-5	1,1,2,2-Tetrachloroethane				1.0 r
95-49-8	2-Chlorotoluene				1.0 r
108-67-8					1.0 r
96-18-4	1,3,5-Trimethylbenzene				1.0 r
110-57-6	1,2,3-Trichloropropane trans-1,4-Dichloro-2-butene		1.0 U 2.5 U		1.0 r
106-43-4				2.5	2.5 r
	4-Chlorotoluene tert-Butylbenzene		1.0 U 1.0 U		1.0 r
95-63-6				**	1.0 r
135-98-8	1,2,4-Trimethylbenzene				1.0 r
	sec-Butylbenzene		1.0 U		1.0 r
99-87-6	p-Isopropyltoluene		1.0 U		1.0 r
541-73-1	1,3-Dichlorobenzene		1.0 U		1.0 r
106-46-7	1,4-Dichlorobenzene		1.0 U		1.0 r
	2-Isopropyltoluene		1.0 U	0.25	1.0 r
	n-Butylbenzene		1.0 U	0.25	1.0 r
95-50-1	1,2-Dichlorobenzene		1.0 U	0.25	1.0 r
	1,2-Dibromo-3-Chloropropane		1.0 U	0.50	1.0 r
	Hexachlorobutadiene		0.50 U	0.20	0.50 r
120-82-1	1,2,4-Trichlorobenzene		1.0 U	0.25	1.0 r
04 00 0			4 01 11	1 1 1	101 -
	Naphthalene 1,2,3-Trichlorobenzene		1.0 U 1.0 U	1.0 0.25	1.0 r 1.0 r

FORMIVOA

r=Result Reported U=Not Detected D=Reported Dilution E/J=Estimated Value X=Not Used S=Lab Solvent

Page 148 of 330

CLIENT ID

VOLATILE ORGANICS ANALYSIS DATA SHEET

Client:	ALPHA			Lab:	Phoenix Env.	_abs	MV	V-8	
SDG No.:	GCK03360	ē			Lab Sample ID):	CK03366		
Sample wt/vol:	5	(g/mL)	mL		Lab File ID:		1223_20.D		
Level: (low/med/meth):	Low	60			Date Received	l:	12/21/21		
% Moisture:	n.a.	6			Date Analyzed	:	12/23/21		
Instrument:	CHEM15	Column:	RTX-VMS		Dilution Factor	:	<u> 1 d </u>]	00	
Purge Volume	5000	(uL) pH:	< 2		Soil Aliquot Vo	Ŀ	n.a	(uL)	
Matrix: (soil/water)	Water		CONC	ENTF	RATION UNITS:	(ug/L	. or ug/Kg)	ug/L	
CAS NO.	(סו		CONC.	Q	MDL/LOD	RL/PQL	P
75-71-8	Dichlorodifluorom				1.0		0.25		R r
74-87-3	Chloromethane	ethane			5.0		0.25	5.0	
75-01-4	Vinyl Chloride				1.0		0.25		r
74-83-9	Bromomethane	_		_	5.0		0.25	1.0 5.0	r
75-00-3	Chloroethane			_	5.0		0.25		r
75-69-4	Trichlorofluorome	thana			1.0		0.25	5.0	r
75-35-4	1,1-Dichloroethen							1.0	r
76-13-1	Trichlorotrifluoroe				1.0		0.25	1.0	٢
75-15-0		Inane		_	1.0		0.25		r
107-02-8	Carbon Disulfide				1.0	U	0.25	1.0	r
	Acrolein	1-		_	5.0	U	2.5		r
75-09-2	Methylene Chloric	le			3.0	U	1.0		r
67-64-1	Acetone	0			5.0	U	2.5	5.0	r
156-60-5	Trans-1,2-Dichlor				5.0	U	0.25	5.0	r
1634-04-4	Methyl t-Butyl Eth				1.0	U	0.25	1.0	r
75-34-3	1,1-Dichloroethan	е			5.0	U	0.25	5.0	r
	Acrylonitrile				5.0	U	2.5	5.0	r
156-59-2	Cis-1,2-Dichloroet				1.0		0.25	1.0	r
	2,2-Dichloropropa				1.0	U	0.25	1.0	r
	Bromochlorometh	ane		_	1.0	U	0.25	1.0	r
	Chloroform				0.57	J	0.25		r
	Carbon Tetrachlor				1.0	U	0.25	1.0	
	Tetrahydrofuran (5.0	U	2.5	5.0	_
	1,1,1-Trichloroeth				5.0		0.25	5.0	_
	Methyl Ethyl Ketor				2.5	U	2.5	2.5	_
	1,1-Dichloroprope	ne			1.0	U	0.25	1.0	
	Benzene				0.26	J	0.25	0.70	_
	1,2-Dichloroethan	e		Ĩ	0.60	U	0.50	0.60	r
	Trichloroethene				7.4		0.25	1.0	r
	Dibromomethane				1.0	Ų	0.25	1.0	
	1,2-dichloropropar				1.0	U	0.25	1.0	
	Bromodichloromet				1.0	U	0.25	1.0	
	cis-1,3-Dichloropro	opene			0.40	U	0.25	0.40	r
	Toluene				0.27	J	0.25	1.0	r
	4-Methyl-2-Pentar				2.5	U	2.5	2.5	r
	Tetrachloroethene		6	30	590	F	D 0.25	1.0	_
10061-02-6	trans-1,3-Dichloro	oropene			0.40	U	0.25	0.40	r

FORMIVOA

r=Result Reported U=Not Detected D=Reported Dilution E/J=Estimated Value X=Not Used S=Lab Solvent

Page 160 of 330 For 11WW

CLIENT ID

VOLATILE ORGANICS ANA	LYSIS DATA SHEET

	VOLATILE ORGANICS AN				
Client:	ALPHA	Lab:	Phoenix Env. Labs	MV	V-8
SDG No.:	GCK03360		Lab Sample ID:	CK03366	
Sample wt/vol:	5 (g/mL) <u>mL</u>		Lab File ID:	1223_20.D	
Level: (low/med/meth);	Low		Date Received:	12/21/21	
% Moisture:	n.a.		Date Analyzed:	12/23/21	
Instrument:	CHEM15 Column: RTX-V	MS	Dilution Factor:	<u> 1 d1</u>	<i>w</i>
Purge Volume	5000 (uL) pH: <2		Soil Aliquot Vol:	n.a	(uL)
Matrix: (soil/water)	Water	ONCENTR	ATION UNITS: (ug/	L or ug/Kg)	ug/L
CAS NO.	COMPOUND		CONC. Q	MDL/LOD	RL/PQL R
79-00-5	1,1,2-Trichloroethane		1.0 U	0.25	1.0 r
124-48-1	Dibromochloromethane		1.0 U	0.25	1.0 r
142-28-9	1,3-Dichloropropane		1.0 U	0.25	
106-93-4	1,2-Dibromoethane			0.25	1.0 r
591-78-6				the second se	1.0 r
	2-Hexanone		2.5 U	2.5	2.5 r
108-90-7	Chlorobenzene		5.0 U	0.25	5.0 r
100-41-4	Ethylbenzene		1.0 U	0.25	1.0 r
630-20-6	1,1,1,2-Tetrachloroethane		1.0 U	0.25	1.0 r
179601-23-1	m&p-Xylene		1.0 U	0.25	1.0 г
95-47-6	o-Xylene		1.0 U	0.25	1.0 r
100-42-5	Styrene		1.0 U	0.25	1.0 r
75-25-2	Bromoform		5.0 U	0.25	5.0 r
98-82-8	Isopropylbenzene		1.0 U	0.25	1.0 г
108-86-1	Bromobenzene		1.0 U	0.25	1.0 r
103-65-1	n-Propylbenzene		1.0 U	0.25	1.0 r
79-34-5	1,1,2,2-Tetrachloroethane		1.0 U	0.25	1.0 r
95-49-8	2-Chlorotoluene		1.0 U	0.25	1.0 r
108-67-8	1,3,5-Trimethylbenzene		1.0 U	0.25	1.0 r
	1,2,3-Trichloropropane		1.0 U	0.25	1.0 r
	trans-1,4-Dichloro-2-butene		2.5 U	2.5	2.5 r
	4-Chlorotoluene		1.0 U	0.25	1.0 r
	tert-Butylbenzene		1.0 U	0.25	1.0 r
	1,2,4-Trimethylbenzene		1.0 U	0.25	1.0 r
	sec-Butylbenzene			0.25	
					1.0 r
	p-Isopropyltoluene		1.0 U	0.25	1.0 r
	1,3-Dichlorobenzene		1.0 U	0.25	1.0 r
	1,4-Dichlorobenzene		1.0 U	0.25	1.0 r
	2-Isopropyltoluene		1.0 U	0.25	1.0 r
	n-Butylbenzene		1.0 U	0.25	1.0 r
	1,2-Dichlorobenzene		1.0 U	0.25	1.0 r
	1,2-Dibromo-3-Chloropropane		1.0 U	0.50	1.0 r
	Hexachlorobutadiene		0.50 U	0.20	0.50 r
	1,2,4-Trichlorobenzene		1.0 U	0.25	1.0 r
	Naphthalene		1.0 U	1.0	1.0 r
				1	4.0
87-61-6	1,2,3-Trichlorobenzene		1.0 U	0.25	1.0 r

FORM I VOA

r=Result Reported U=Not Detected D=Reported Dilution E/J=Estimated Value X=Not Used S=Lab Solvent

Page 161 of 330

1 VOLATILE ORGANICS ANALYSIS DATA SHEET CLIENT ID

			1010 0	ATT OT LET		r	
Client:	ALPHA		Lab:	Phoenix Env. L	.abs	MW	-10
SDG No.:	GCK03360			Lab Sample ID	:	CK03367	
Sample wt/vol:	5 (g/mL)	mL		Lab File ID:		1222_22.D	
Level: (low/med/meth):	Low			Date Received	1	12/21/21	
% Moisture:	n.a			Date Analyzed;		12/22/21	
Instrument:	CHEM15 Column	RTX-VMS		Dilution Factor:		1	
Purge Volume	5000(uL) pH	: < 2		Soil Aliquot Vol	I)	n.a,	(uL)
Matrix: (soil/water)	Water	CONC	CENTF	RATION UNITS:	(ug/L	. or ug/Kg)	ug/L
CAS NO.	COMPOU	ND		CONC.	Q	MDL/LOD	RL/PQL F
75-71-8	Dichlorodifluoromethane	·····		1.0	Ū	0.25	1.0
74-87-3	Chloromethane			5.0	Ū	0.25	5.0
75-01-4	Vinyl Chloride			1.0	Ū	0.25	1.0
74-83-9	Bromomethane			5.0	Ū	0.25	5.0
75-00-3	Chloroethane			5.0	Ū	0.25	5.0
75-69-4	Trichlorofluoromethane			1.0	Ū	0.25	1.0
75-35-4	1,1-Dichloroethene			1.0	Ū	0.25	1.0
76-13-1	Trichlorotrifluoroethane			1.0	Ū	0.25	1.0
75-15-0	Carbon Disulfide			1.0	Ū	0.25	1.0
107-02-8	Acrolein			5.0	Ŭ	2.5	5.0
75-09-2	Methylene Chloride			3.0	Ū	1.0	3.0 r
67-64-1	Acetone			5.0	Ū	2.5	5.0 r
156-60-5	Trans-1,2-Dichloroethene			5.0	Ū	0.25	5.0 r
1634-04-4	Methyl t-Butyl Ether (MTBE)		1.0	Ū	0.25	1.0 r
75-34-3	1,1-Dichloroethane	/		5.0	Ū	0.25	5.0 r
107-13-1	Acrylonitrile			5.0	Ū	2.5	5.0 r
156-59-2	Cis-1,2-Dichloroethene			1.0	Ū	0.25	1.0 r
594-20-7	2,2-Dichloropropane			1.0	Ū	0.25	1.0 r
74-97-5	Bromochloromethane			1.0	Ū	0.25	1.0 r
67-66-3	Chloroform			0.67	J	0.25	5.0 r
56-23-5	Carbon Tetrachloride			1.0		0.25	1.0
109-99-9	Tetrahydrofuran (THF)			5.0	U	VT 2.5	5.0 r
71-55-6	1,1,1-Trichloroethane			5.0	Ų	0.25	5.0 r
78-93-3	Methyl Ethyl Ketone			2.5	Ū	2.5	2.5 r
563-58-6	1,1-Dichloropropene			1.0	U	0.25	1.0 r
71-43-2	Benzene			0.70	Ū	0.25	0.70 r
107-06-2	1,2-Dichloroethane			0.60	U	0.50	0.60 r
79-01-6	Trichloroethene			0.27	J	0.25	1.0 r
74-95-3	Dibromomethane			1.0	Ū	0.25	1.0 r
78-87-5	1,2-dichloropropane			1.0	U	0.25	1.0 r
75-27-4	Bromodichloromethane			1.0	U	0.25	1.0 r
10061-01-5	cis-1,3-Dichloropropene			0.40	U	0.25	0.40 r
108-88-3	Toluene			1.0	U	0.25	1.0 r
108-10-1	4-Methyl-2-Pentanone			2.5	U	2.5	2.5 r
127-18-4	Tetrachloroethene			19		0.25	1.0 r
10061-02-6	trans-1,3-Dichloropropene			0.40	U	0.25	0.40 r

FORMIVOA

r=Result Reported U=Not Detected D=Reported Dilution E/J=Estimated Value X=Not Used S=Lab Solvent

Page 172 of 330

CLIENT ID

VOLATILE ORGANICS ANALYSIS DATA SHEET

				ATA SHEET			
Client:	ALPHA		Lab:	Phoenix Env. L	abs	MM	/ -10
SDG No.:	GCK03360			Lab Sample ID	:	CK03367	
Sample wt/vol:	5	(g/mL) <u>mL</u>		Lab File ID;		1222_22.D	
Level: (low/med/meth):	Low			Date Received	:	12/21/21	
% Moisture:	n.a.			Date Analyzed:		12/22/21	
Instrument:	CHEM15	Column: RTX-	√MS	Dilution Factor:		1	
Purge Volume	5000 (0	uL) pH: <u>< 2</u>		Soil Aliquot Vol	:	n.a.	(uL)
Matrix: (soil/water)	Water	(RATION UNITS:	(ug/L	or ug/Kg)	ug/L
CAS NO.	C	OMPOUND		CONC.	Q	MDL/LOD	RL/PQL
79-00-5	1,1,2-Trichloroetha			1.0	Ū	0.25	1.0
124-48-1	Dibromochlorometh			1.0	U	0.25	1.0
142-28-9	1,3-Dichloropropan			1.0	U	0.25	
106-93-4	1,2-Dibromoethane						1.0
				1.0	U	0.25	1.0
591-78-6	2-Hexanone			2.5	U	2.5	2.5
108-90-7	Chlorobenzene			5.0	U	0.25	5.0
100-41-4	Ethylbenzene			1.0	U	0.25	1.0
630-20-6	1,1,1,2-Tetrachloro	ethane		1.0	U	0.25	1.0
179601-23-1	m&p-Xylene			1.0	U	0.25	1.0
95-47-6	o-Xylene			1.0	U	0.25	1.0
100-42-5	Styrene			1.0	U	0.25	1.0
75-25-2	Bromoform			5.0	U	0.25	5.0
98-82-8	Isopropylbenzene			1.0	U	0.25	1.0
108-86-1	Bromobenzene			1.0	Ū	0.25	1.0
103-65-1	n-Propylbenzene			1.0	Ū	0.25	1.0
79-34-5	1,1,2,2-Tetrachloro	ethane		1.0	Ŭ	0.25	1.0
95-49-8	2-Chlorotoluene	othano		1.0	U	0.25	1.0
108-67-8	1,3,5-Trimethylbenz	2000		1.0	U	0.25	
96-18-4	1,2,3-Trichloroprop				_		1.0
			_	1.0	U	0.25	1.0
110-57-6	trans-1,4-Dichloro-2	2-butene		2.5	-11	J 2.5	2.5
	4-Chlorotoluene			1.0	U	0.25	1.0
	tert-Butylbenzene			1.0	U	0.25	1.0
	1,2,4-Trimethylbenz	ene		1.0	U	0.25	1.0
	sec-Butylbenzene			1.0	U	0.25	1.0
	p-Isopropyltoluene			1.0	U	0.25	1.0
	1,3-Dichlorobenzen	е		1.0	U	0.25	1.0
	1,4-Dichlorobenzen	е		1.0	U	0.25	1.0
527-84-4	2-Isopropyltoluene			1.0	U	0.25	1.0
104-51-8	n-Butylbenzene			1.0	U	0.25	1.0
	1,2-Dichlorobenzen	e		1.0	U	0.25	1.0
	1,2-Dibromo-3-Chlo			1.0	Ū	0.50	1.0
	Hexachlorobutadier			0.50	Ū	0.20	0.50
	1,2,4-Trichlorobenz			1.0	Ŭ	0.25	1.0
	Naphthalene			1.0	U	1.0	1.0
	1,2,3-Trichlorobenzo			1.0	U	0.25	1.0
8/-h1-h		ene					

FORM I VOA

r=Result Reported U=Not Detected D=Reported Dilution E/J=Estimated Value X=Not Used S=Lab Solvent

Page 173 of 330

CLIENT ID

VOLATILE ORGANICS	ANALYSIS	DATA	SHEET

	VOLATILE ORGANICS A				1
Client:	ALPHA	Lab:	Phoenix Env. Labs	FB 1	21421
SDG No.:	GCK03360		Lab Sample ID:	CK03368	
Sample wt/vol:	5 (g/mL) <u>mL</u>		Lab File ID;		
Level: (low/med/meth);	Low		Date Received:	12/21/21	
% Moisture:	n.a.		Date Analyzed:	12/27/21	
Instrument:	CHEM15 Column: RTX-V	MS	Dilution Factor:	1	- -
Purge Volume	5000(uL) pH: <u>< 2</u>		Soil Aliquot Vol:	n.a.	.(uL)
Matrix: (soil/water)	WaterC	CONCENT	RATION UNITS: (ug/	'L or ug/Kg)	ug/L
CAS NO.	COMPOUND		CONC. Q	MDL/LOD	RL/PQL F
75-71-8	Dichlorodifluoromethane			0.25	
74-87-3	Chloromethane		5.0 U	0.25	
75-01-4					
	Vinyl Chloride		1.0 U	0.25	
74-83-9	Bromomethane		5.0 U	0.25	
75-00-3	Chloroethane		5.0 U	0.25	
75-69-4	Trichlorofluoromethane		1.0 U	0.25	
75-35-4	1,1-Dichloroethene		1.0 U	0.25	
76-13-1	Trichlorotrifluoroethane		1.0 U	0.25	1.0
75-15-0	Carbon Disulfide		1.0 U	0.25	1.0
107-02-8	Acrolein		5.0 U	2.5	5.0
75-09-2	Methylene Chloride		3.0 U	1.0	3.0
67-64-1	Acetone		3.5 JØ	2.5	5.0
156-60-5	Trans-1,2-Dichloroethene		5.0 U	0.25	5.0
1634-04-4	Methyl t-Butyl Ether (MTBE)		1.0 U	0.25	1.0
75-34-3	1,1-Dichloroethane		5.0 U	0.25	5.0
107-13-1	Acrylonitrile		5.0 U	2.5	5.0
156-59-2	Cis-1,2-Dichloroethene		1.0 U	0.25	1.0
594-20-7	2,2-Dichloropropane		1.0 U	0.25	1.0
74-97-5	Bromochloromethane		1.0 U	0.25	1.0
67-66-3	Chloroform		5.0 U	0.25	
56-23-5	Carbon Tetrachloride				
109-99-9	Tetrahydrofuran (THF)		1.0 U 5.0 U	0.25	1.0
					5.0
71-55-6	1,1,1-Trichloroethane		5.0 U	0.25	5.0
78-93-3	Methyl Ethyl Ketone		2.5 U	2.5	2.5
563-58-6	1,1-Dichloropropene		1.0 U	0.25	1.0
71-43-2	Benzene		0.70 U	0.25	0.70
107-06-2	1,2-Dichloroethane		0.60 U	0.50	0.60
	Trichloroethene		1.0 U	0.25	1.0
74-95-3	Dibromomethane		1.0 U	0.25	1.0
	1,2-dichloropropane		1.0 U	0.25	1.0
	Bromodichloromethane		1.0 U	0.25	1.0
	cis-1,3-Dichloropropene		0.40 U	0.25	0.40
108-88-3	Toluene		1.0 U	0.25	1.0
108-10-1	4-Methyl-2-Pentanone		2.5 U	2.5	2.5
	Tetrachloroethene		1.0 U	0.25	1.0
	trans-1,3-Dichloropropene		0.40 U	0.25	0.40

FORMIVOA

r=Result Reported U=Not Detected D=Reported Dilution E/J=Estimated Value X=Not Used S=Lab Solvent

Page 178 of 330

CLIENT ID

VOLATILE ORGANICS ANALYSIS DATA SHEET

								1
Client:	ALPHA		Lab:	Phoenix Env. L	abs	FB 1	21421	
SDG No.:	GCK03360			Lab Sample ID	:	CK03368		-
Sample wt/vol:	5 (g/mL)	mL		Lab File ID:		22.D		
Level: (low/med/meth):	Low			Date Received	:	12/21/21		
% Moisture:	n.a.			Date Analyzed:		12/27/21	70 2) 2	
Instrument:	CHEM15 Column:	RTX-VMS		Dilution Factor:			2 9	
Purge Volume	(uL) pH:	< 2		Soil Aliquot Vol	:	n.a.	(uL)	
Matrix: (soil/water)	Water	CONC	CENTR	ATION UNITS:	(ug/L	. or ug/Kg)	ug/L	2
CAS NO.	COMPOUN	מו		CONC.	Q	MDL/LOD	RL/PQL	R
79-00-5	1,1,2-Trichloroethane			1.0	U	0.25	1.0	
124-48-1	Dibromochloromethane			1.0	U	0.25		
142-28-9					-		1.0	_
	1,3-Dichloropropane			1.0	U	0.25	1.0	_
106-93-4	1,2-Dibromoethane			1.0	U	0.25	1.0	
591-78-6	2-Hexanone			2.5	U	2.5	2.5	
108-90-7	Chlorobenzene			5.0	U	0.25	5.0	_
100-41-4	Ethylbenzene			1.0	U	0.25	1.0	_
630-20-6	1,1,1,2-Tetrachloroethane			1.0	υ	0.25	1.0	_
179601-23-1	m&p-Xylene			1.0	υ	0.25	1.0	
95-47-6	o-Xylene			1.0	U	0.25	1.0	
100-42-5	Styrene			1.0	U	0.25	1.0	
75-25-2	Bromoform			5.0	-4	UT 0.25	5.0	
98-82-8	Isopropylbenzene			1.0	U	0.25	1.0	
108-86-1	Bromobenzene			1.0	U	0.25	1.0	
103-65-1	n-Propylbenzene			1.0	U	0.25	1.0	
79-34-5	1,1,2,2-Tetrachloroethane			1.0	U	0.25	1.0	+
95-49-8	2-Chlorotoluene			1.0	Ū	0.25	1.0	_
108-67-8	1,3,5-Trimethylbenzene			1.0	Ū	0.25	1.0	
96-18-4	1,2,3-Trichloropropane			1.0	Ū	0.25	1.0	
110-57-6	trans-1,4-Dichloro-2-butene			2.5	Ŭ	2.5	2.5	
106-43-4	4-Chlorotoluene			1.0		0.25	1.0	
98-06-6	tert-Butylbenzene			1.0	Ū	0.25	1.0	
95-63-6	1,2,4-Trimethylbenzene			1.0	υ	0.25	1.0	
135-98-8	sec-Butylbenzene			1.0	U	0.25		
99-87-6	p-Isopropyltoluene				U	0.25	1.0	
541-73-1				1.0			1.0	_
	1,3-Dichlorobenzene			1.0	U	0.25	1.0	
106-46-7	1,4-Dichlorobenzene			1.0	U	0.25	1.0	
527-84-4	2-Isopropyltoluene			1.0	U	0.25	1.0	
104-51-8	n-Butylbenzene			1.0	U	0.25	1.0	
95-50-1	1,2-Dichlorobenzene			1.0	U	0.25	1.0	
96-12-8 87-68-3	1,2-Dibromo-3-Chloropropan	e		1.0	H	UT 0.50	1.0	<u> </u>
87683	Hexachlorobutadiene			0.50	U	0.20	0.50	
				1 0	U	0.251	1.0	
120-82-1	1,2,4-Trichlorobenzene			1.0		0.25		
	1,2,4-Trichlorobenzene Naphthalene 1,2,3-Trichlorobenzene			1.0 1.0 1.0		1.0 0.25	1.0	

FORMIVOA

r=Result Reported U=Not Detected D=Reported Dilution E/J=Estimated Value X=Not Used S=Lab Solvent

Page 179 of 330

CLIENT ID

Client:	ALPHA			Lab:	Phoenix Env. L	_abs	т	гв
SDG No.:	GCK03360				Lab Sample ID);	CK03369	
Sample wt/vol:	5	(g/mL)	mL		Lab File ID:		1223_22.D	c.
Level: (low/med/meth):	Low				Date Received	:	12/21/21	
% Moisture:	n.a.				Date Analyzed	l.	12/23/21	
Instrument:	CHEM15	Column;	RTX-VMS		Dilution Factor		1	
Purge Volume	5000	(uL) pH:	< 2		Soil Aliquot Vo	l:	n.a.	(uL)
Matrix: (soil/water)	Water		CONC	ENTR	ATION UNITS:	(ug/L	or ug/Kg)	ug/L
CAS NO.		COMPOUN	חו		CONC.	Q	MDL/LOD	RL/PQL
75-71-8	Dichlorodifluorom				1.0		0.25	
74-87-3	Chloromethane	CUARC			5.0	U	0.25	1.0
75-01-4	Vinyl Chloride				1.0	_	0.25	5.0
74-83-9	Bromomethane				5.0	U	0.25	1.0
75-00-3						-		5.0
	Chloroethane	41			5.0	U	0.25	5.0
75-69-4	Trichlorofluorome				1.0	U	0.25	1.0
75-35-4	1,1-Dichloroether				1.0	U	0.25	1.0
76-13-1	Trichlorotrifluoroethane				1.0	U	0.25	1.0
75-15-0	Carbon Disulfide				1.0	U	0.25	1.0
107-02-8	Acrolein				5.0	U	2.5	5.0
75-09-2	Methylene Chlorid	de			3.0	U	1.0	3.0
67-64-1	Acetone				3.9	JS	2.5	5.0
156-60-5	Trans-1,2-Dichlor	oethene			5.0	U	0.25	5.0
1634-04-4	Methyl t-Butyl Eth	er (MTBE)			1.0	U	0.25	1.0
75-34-3	1,1-Dichloroethar	e			5.0	U	0.25	5.0
107-13-1	Acrylonitrile				5.0	Ū	2.5	5.0
156-59-2	Cis-1,2-Dichloroe	thene			1.0	Ū	0.25	1.0
	2,2-Dichloropropa				1.0	Ū	0.25	1.0
74-97-5	Bromochlorometh				1.0	Ū	0.25	1.0
67-66-3	Chloroform	ane			5.0	U	0.25	5.0
56-23-5	Carbon Tetrachlo	rido					U.25	1.0
109-99-9	Tetrahydrofuran (5.0	U	2.5	5.0
	1,1,1-Trichloroeth				5.0	U	0.25	5.0
	Methyl Ethyl Keto				2.5	U	2.5	
	1,1-Dichloroprope			_		U	0.25	2.5
	Benzene	ne			1.0	U		1.0
	1,2-Dichloroethan				0.70		0.25	0.70
		e			0.60	U	0.50	0.60
	Trichloroethene				1.0	U	0.25	1.0
	Dibromomethane				1.0	U	0.25	1.0
	1,2-dichloropropa				1.0	U	0.25	1.0
	Bromodichlorome				1.0	U	0.25	1.0
	cis-1,3-Dichloropr	opene			0.40	U	0.25	0.40
	Toluene				1.0	Ų	0.25	1.0
	4-Methyl-2-Pentar				2.5	U	2.5	2.5
	Tetrachloroethene				1.0	U	0.25	1.0
10061-02-6	trans-1,3-Dichloro	propene			0.40	U	0.25	0.40

FORMIVOA

r=Result Reported U=Not Detected D=Reported Dilution E/J=Estimated Value X=Not Used S=Lab Solvent

Page 183 of 330

CLIENT ID

VOLATILE ORGANICS ANALYSIS DATA SHEET

SDG No.: GCK03360 Lab Sample ID: CK03369 Sample wt/vol: 5 (g/mL) mL Lab File ID: 1223_22.D Level: (low/med/meth): Low Date Received: 12/21/21 % Moisture: n.a. Date Analyzed: 12/23/21 Instrument: CHEM15 Column: RTX-VMS Dilution Factor: 1 Purge Volume 5000 (uL) pH: <2 Soil Aliquot Vol: n.a. (uL)		VOLATILE ORGANICS ANA	AL 1 313 D	ATA SHEET		
Sample wt/vol: 5 (g/mL) mL Lab File ID: 1223_22.D Level: (low/med/meth): Low Date Received: 12/21/21 % Moisture: n.a. Date Analyzed: 12/23/21 Instrument: CHEM15 Column: RTX-VMS Dilution Factor: 1 Purge Volume	Client:	ALPHA	Lab:	Phoenix Env. Labs	т	В
Level: (low/med/meth): Low Date Received: 12/221/21 % Moisture: n.a. Date Analyzed: 12/23/21 Instrument: CHEM15 Column: RTX-VMS Dilution Factor: 1 Purge Volume 5000 (uL) pH: <2	SDG No.:	GCK03360		Lab Sample ID:	CK03369	
Molsture: n.a. Date Analyzed: 12/23/21 Instrument: CHEM15 Column: RTX-VMS Dilution Factor: 1 Purge Volume 5000 (uL) pH < 2	Sample wt/vol:	5 (g/mL) <u>mL</u>		Lab File ID:	1223_22.D	
Instrument: CHEM15 Column: RTX-VMS Dilution Factor: 1 Purge Volume 5000 (uL) pH: <2	Level: (low/med/meth):	Low		Date Received:	12/21/21	
Purge Volume 5000 (uL) pH: <2 Soil Aliquot Vol: n.a. (uL) Matrix: (soil/water) Water CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L CAS NO. COMPOUND CONC. Q MDL/LOD RL/PQL 79-00-5 1,1,2-Trichloroethane 1.0 U 0.25 1.0 124-48-1 Dibromochloromethane 1.0 U 0.25 1.0 142-28-9 1,3-Dichloropropane 1.0 U 0.25 1.0 106-93-4 1,2-Dibromoethane 2.5 U 2.25 2.5 108-90-7 Chlorobenzene 5.0 U 0.25 1.0 630-20-6 1,1,1,2-Tetrachloroethane 1.0 U 0.25 1.0 109-41-8 Bromoform 5.0 U 0.25 1.0 109-42-5 Styrene 1.0 U 0.25 1.0 109-42-5 Bromoform 5.0 4/t (JT) 0.25 1.0 109-43-5 1,1,2.2	% Moisture:	n.a.		Date Analyzed:	12/23/21	
Matrix: (soil/water) Water COMCENTRATION UNITS: (ug/L or ug/Kg) ug/L CAS NO. COMPOUND CONC. Q MDL/LOD RL/PQL 78-00-5 1,1,2-Trichloroethane 1.0 U 0.25 1.0 124-48-1 Dibromochloromethane 1.0 U 0.25 1.0 142-28-9 1.3-Dichloroperpane 1.0 U 0.25 1.0 106-93-4 1.2-Dibromoethane 2.5 U 2.5 2.5 108-90-7 Chlorobenzene 5.0 U 0.25 1.0 100-41-4 Ethylbenzene 1.0 U 0.25 1.0 630-20-6 1,1,1,2-Tetrachloroethane 1.0 U 0.25 1.0 179601-23-1 m&p-Xylene 1.0 U 0.25 1.0 179612-23-1 m&p-Xylene 1.0 U 0.25 1.0 179-25-2 Bromobrizene 1.0 U 0.25 1.0 108-86-1 Bromobezene 1.0 U	Instrument:	CHEM15 Column: RTX-VM	IS	Dilution Factor:	1	
CAS NO. COMPOUND CONC. Q MDL/LOD RL/PQL 79-00-5 1,1,2-Trichloroethane 1.0 U 0.25 1.0 124-48-1 Dibromochloromethane 1.0 U 0.25 1.0 142-28-9 1,3-Dichloropropane 1.0 U 0.25 1.0 142-28-9 1,3-Dichloropropane 1.0 U 0.25 1.0 106-93-4 1,2-Dibromochlane 2.5 U 2.5 2.5 108-90-7 Chloroberzene 5.0 U 0.25 1.0 630-20-6 1,1,12-Tetrachloroethane 1.0 U 0.25 1.0 1094-41-4 Ethylbenzene 1.0 U 0.25 1.0 100-42-5 Styrene 1.0 U 0.25 1.0 100-42-5 Styrene 1.0 U 0.25 1.0 100-42-5 Styrene 1.0 U 0.25 1.0 108-86-1 Bromoform 5.0 U <t< td=""><td>Purge Volume</td><td>5000(uL) pH: <u>< 2</u></td><td></td><td>Soil Aliquot Vol:</td><td>n.a.</td><td>(uL)</td></t<>	Purge Volume	5000(uL) pH: <u>< 2</u>		Soil Aliquot Vol:	n.a.	(uL)
79-00-5 1,1,2-Trichloroethane 1.0 U 0.25 1.0 124-48-1 Dibromochloromethane 1.0 U 0.25 1.0 142-28-0 1,3-Dichloropropane 1.0 U 0.25 1.0 142-28-0 1,3-Dichloropropane 1.0 U 0.25 1.0 106-93-4 1,2-Dibromoethane 1.0 U 0.25 1.0 50 U 0.25 5.0 0.0 0.25 5.0 108-90-7 Chlorobenzene 5.0 U 0.25 1.0 630-20-6 1,1,1.2-Tetrachloroethane 1.0 U 0.25 1.0 178601-23-1 mbp-Xylene 1.0 U 0.25 1.0 178601-23-1 mbp-Xylene 1.0 U 0.25 1.0 100-42-5 Styrene 1.0 U 0.25 1.0 100-42-5 Bromobenzene 1.0 U 0.25 1.0 108-85-1 Bromobenzene 1.0 U 0.25 1.0 108-85-1 In-Propylbenzene 1.0	Matrix: (soil/water)	Water CO	NCENTR	RATION UNITS: (ug/l	_ or ug/Kg)	ug/L
79-00-5 1,1,2-Trichloroethane 1.0 U 0.25 1.0 124-48-1 Dibromochloromethane 1.0 U 0.25 1.0 142-28-0 1,3-Dichloropropane 1.0 U 0.25 1.0 142-28-0 1,3-Dichloropropane 1.0 U 0.25 1.0 106-93-4 1,2-Dibromoethane 1.0 U 0.25 1.0 50 U 0.25 5.0 0.0 0.25 5.0 108-90-7 Chlorobenzene 5.0 U 0.25 1.0 630-20-6 1,1,1.2-Tetrachloroethane 1.0 U 0.25 1.0 178601-23-1 mbp-Xylene 1.0 U 0.25 1.0 178601-23-1 mbp-Xylene 1.0 U 0.25 1.0 100-42-5 Styrene 1.0 U 0.25 1.0 100-42-5 Bromobenzene 1.0 U 0.25 1.0 108-85-1 Bromobenzene 1.0 U 0.25 1.0 108-85-1 In-Propylbenzene 1.0	CAS NO.	COMPOUND		CONC. O	MDL/LOD	RL/PQL
124-48-1 Dibromochloromethane 1.0 J J 0.25 1.0 142-28-9 1,3-Dichloropropane 1.0 U 0.25 1.0 106-93-4 1,2-Dibromoethane 1.0 U 0.25 1.0 591-78-6 2-Hexanone 2.5 U 2.5 2.5 108-90-7 Chlorobenzene 5.0 U 0.25 5.0 100-41-4 Ethylbenzene 1.0 U 0.25 1.0 630-20-6 1,1,1.2-Tetrachloroethane 1.0 U 0.25 1.0 179601-23-1 m&p-Xylene 1.0 U 0.25 1.0 104-42-5 Styrene 1.0 U 0.25 1.0 75-25-2 Bromoform 5.0 J J 0.25 1.0 108-86-1 Bromobenzene 1.0 U 0.25 1.0 103-65-1 n-Propylbenzene 1.0 U 0.25 1.0 104-67-8 1,3,5-Trimethylbenzene <						
142-28-9 1,3-Dichloropropane 1.0 U 0.25 1.0 106-93-4 1,2-Dibromoethane 1.0 U 0.25 1.0 591-78-6 2-Hexanone 2.5 U 2.5 2.5 108-90-7 Chlorobenzene 5.0 U 0.25 5.0 100-41-4 Ethylbenzene 1.0 U 0.25 1.0 630-20-6 1,1,1,2-Tetrachloroethane 1.0 U 0.25 1.0 179601-23-1 m&p-Xylene 1.0 U 0.25 1.0 95-47-6 o-Xylene 1.0 U 0.25 1.0 100-42-5 Styrene 1.0 U 0.25 1.0 101-42-5 Styrene 1.0 U 0.25 1.0 103-85-1 n-Propylbenzene 1.0 U 0.25 1.0 108-86-1 Bromobenzene 1.0 U 0.25 1.0 103-85-1 n-Propylbenzene 1.0 U 0.25 1.0 103-85-1 n-Propylbenzene 1.0 U 0.25						
106-93-4 1,2-Dibromethane 1.0 U 0.25 1.0 591-78-6 2-Hexanone 2.5 U 2.5 2.5 108-90-7 Chlorobenzene 5.0 U 0.25 5.0 100-41-4 Ethylbenzene 1.0 U 0.25 1.0 630-20-6 1,1,1,2-Tetrachloroethane 1.0 U 0.25 1.0 179601-23-1 m&p-Xylene 1.0 U 0.25 1.0 100-42-5 Styrene 1.0 U 0.25 1.0 100-42-5 Styrene 1.0 U 0.25 1.0 108-86-1 Bromoform 5.0 4' (77)<0.25						
591-78-6 2-Hexanone 2.5 U 2.5 2.5 108-90-7 Chlorobenzene 5.0 U 0.25 5.0 100-41-4 Ethylbenzene 1.0 U 0.25 1.0 630-20-6 1,1,1,2-Tetrachloroethane 1.0 U 0.25 1.0 179601-23-1 m&p-Xylene 1.0 U 0.25 1.0 10-42-5 Styrene 1.0 U 0.25 1.0 10-42-5 Styrene 1.0 U 0.25 5.0 98-82-8 Isopropylbenzene 1.0 U 0.25 1.0 108-86-1 Bromobenzene 1.0 U 0.25 1.0 108-86-1 n-Propylbenzene 1.0 U 0.25 1.0 108-86-1 n-Propylbenzene 1.0 U 0.25 1.0 108-67-8 1.3,5-Trimethylbenzene 1.0 U 0.25 1.0 108-67-8 1.3,5-Trimethylbenzene 1.0 U 0.						
108-90-7 Chlorobenzene 5.0 U 0.25 5.0 100-41-4 Ethylbenzene 1.0 U 0.25 1.0 630-20-6 1,1,1,2-Tetrachloroethane 1.0 U 0.25 1.0 179601-23-1 m&p-Xylene 1.0 U 0.25 1.0 95-47-6 o-Xylene 1.0 U 0.25 1.0 100-42-5 Styrene 1.0 U 0.25 1.0 75-25-2 Bromoform 5.0 -4/ 0.25 1.0 98-82-8 Isopropylbenzene 1.0 U 0.25 1.0 108-86-1 Bromobenzene 1.0 U 0.25 1.0 103-65-1 n-Propylbenzene 1.0 U 0.25 1.0 108-84-8 1,2,2-Tetrachloroethane 1.0 U 0.25 1.0 108-67-8 1,3,5-Trimethylbenzene 1.0 U 0.25 1.0 108-67-6 trans-1,4-Dichloro-2-butene 2.5 U <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
100-41-4 Ethylbenzene 1.0 U 0.25 1.0 630-20-6 1,1,1,2-Tetrachloroethane 1.0 U 0.25 1.0 179601-23-1 m&p-Xylene 1.0 U 0.25 1.0 95-47-6 o-Xylene 1.0 U 0.25 1.0 100-42-5 Styrene 1.0 U 0.25 1.0 75-25-2 Bromoform 5.0 -U 0.25 1.0 98-82-8 Isopropylbenzene 1.0 U 0.25 1.0 103-65-1 n-Propylbenzene 1.0 U 0.25 1.0 103-65-1 n-Propylbenzene 1.0 U 0.25 1.0 103-65-1 n-Propylbenzene 1.0 U 0.25 1.0 95-49-8 2-Chlorotoluene 1.0 U 0.25 1.0 108-67-8 1,3.5-Trimethylbenzene 1.0 U 0.25 1.0 96-18-4 1.2.3-Trichloropropane 1.0 U <						
630-20-6 1,1,1,2-Tetrachloroethane 1.0 U 0.25 1.0 179601-23-1 m&p-Xylene 1.0 U 0.25 1.0 95-47-6 o-Xylene 1.0 U 0.25 1.0 100-42-5 Styrene 1.0 U 0.25 1.0 100-42-5 Bromoform 5.0 U 0.7 0.25 5.0 98-82-8 Isopropylbenzene 1.0 U 0.25 1.0 103-65-1 n-Propylbenzene 1.0 U 0.25 1.0 108-67-8 1.3,5-Trimethylbenzene 1.0 U 0.25 1.0 108-67-6 trans-1,4-Dichloro-2-butene 2.5 U 2.5 2.5 106-43-4 4-Chlorotoluene 1.0 <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td></td> <td></td> <td></td> <td></td>	· · · · · · · · · · · · · · · · · · ·					
179601-23-1 m&p-Xylene 1.0 U 0.25 1.0 95-47-6 o-Xylene 1.0 U 0.25 1.0 100-42-5 Styrene 1.0 U 0.25 1.0 100-42-5 Styrene 1.0 U 0.25 1.0 75-25-2 Bromoform 5.0 4r 0.25 1.0 108-86-1 Bromobenzene 1.0 U 0.25 1.0 103-65-1 n-Propylbenzene 1.0 U 0.25 1.0 103-65-1 n-Propylbenzene 1.0 U 0.25 1.0 79-34-5 1,1,2,2-Tetrachloroethane 1.0 U 0.25 1.0 108-67-8 1,3,5-Trimethylbenzene 1.0 U 0.25 1.0 110-57-6 trans-1,4-Dichloro-2-butene 2.5 U 2.5 2.5 106-43-4 4-Chlorotoluene 1.0 U 0.25 1.0 98-06-6 tert-Butylbenzene 1.0 U <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
95-47-6 o-Xylene 1.0 U 0.25 1.0 100-42-5 Styrene 1.0 U 0.25 1.0 75-25-2 Bromoform 5.0 -U 0.25 1.0 98-82-8 Isopropylbenzene 1.0 U 0.25 1.0 108-86-1 Bromobenzene 1.0 U 0.25 1.0 103-65-1 n-Propylbenzene 1.0 U 0.25 1.0 79-34-5 1,1,2,2-Tetrachloroethane 1.0 U 0.25 1.0 95-49-8 2-Chlorotoluene 1.0 U 0.25 1.0 108-67-8 1,3,5-Trimethylbenzene 1.0 U 0.25 1.0 110-57-6 trans-1,4-Dichloro-2-butene 2.5 U 2.5 2.5 106-43-4 4-Chlorotoluene 1.0 U 0.25 1.0 98-06-6 tert-Butylbenzene 1.0 U 0.25 1.0 99-87-6 p-Isopropyltoluene 1.0 U					and the second s	
100-42-5 Styrene 1.0 U 0.25 1.0 75-25-2 Bromoform 5.0 Jr 0.25 5.0 98-82-8 Isopropylbenzene 1.0 U 0.25 1.0 108-86-1 Bromobenzene 1.0 U 0.25 1.0 103-65-1 n-Propylbenzene 1.0 U 0.25 1.0 103-65-1 n-Propylbenzene 1.0 U 0.25 1.0 95-49-8 2-Chlorotoluene 1.0 U 0.25 1.0 95-49-8 2-Chlorotoluene 1.0 U 0.25 1.0 108-67-8 1,3.5-Trimethylbenzene 1.0 U 0.25 1.0 96-18-4 1,2.3-Trichloropropane 1.0 U 0.25 1.0 110-57-6 trans-1,4-Dichloro-2-butene 2.5 U 2.5 2.5 106-43-4 4-Chlorotoluene 1.0 U 0.25 1.0 98-06-6 tert-Butylbenzene 1.0 U <td></td> <td></td> <td></td> <td>201025</td> <td></td> <td></td>				201025		
75-25-2 Bromoform 5.0 Jr Jr 0.25 5.0 98-82-8 Isopropylbenzene 1.0 U 0.25 1.0 108-86-1 Bromobenzene 1.0 U 0.25 1.0 103-65-1 n-Propylbenzene 1.0 U 0.25 1.0 103-65-1 n-Propylbenzene 1.0 U 0.25 1.0 79-34-5 1.1,2,2-Tetrachloroethane 1.0 U 0.25 1.0 95-49-8 2-Chlorotoluene 1.0 U 0.25 1.0 108-67-8 1,3,5-Trimethylbenzene 1.0 U 0.25 1.0 96-18-4 1,2,3-Trichloropropane 1.0 U 0.25 1.0 1010-57-6 trans-1,4-Dichloro-2-butene 2.5 U 0.25 1.0 98-06-6 tert-Butylbenzene 1.0 U 0.25 1.0 95-63-6 1,2,4-Trimethylbenzene 1.0 U 0.25 1.0 98-87-6 p-Isopropyltol						
98-82-8 Isopropylbenzene 1.0 U 0.25 1.0 108-86-1 Bromobenzene 1.0 U 0.25 1.0 103-65-1 n-Propylbenzene 1.0 U 0.25 1.0 79-34-5 1,1,2,2-Tetrachloroethane 1.0 U 0.25 1.0 95-49-8 2-Chlorotoluene 1.0 U 0.25 1.0 108-67-8 1,3,5-Trimethylbenzene 1.0 U 0.25 1.0 108-67-8 1,3,5-Trimethylbenzene 1.0 U 0.25 1.0 108-67-8 1,3,5-Trimethylbenzene 1.0 U 0.25 1.0 108-67-8 1,2,4-Trichloropropane 1.0 U 0.25 1.0 110-57-6 trans-1,4-Dichloro-2-butene 2.5 U 2.5 2.5 106-43-4 4-Chlorotoluene 1.0 U 0.25 1.0 98-06-6 tert-Butylbenzene 1.0 U 0.25 1.0 135-98-8 sec-Butylbenzene <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
108-86-1 Bromobenzene 1.0 U 0.25 1.0 103-65-1 n-Propylbenzene 1.0 U 0.25 1.0 79-34-5 1,1,2,2-Tetrachloroethane 1.0 U 0.25 1.0 95-49-8 2-Chlorotoluene 1.0 U 0.25 1.0 108-67-8 1,3,5-Trimethylbenzene 1.0 U 0.25 1.0 96-18-4 1,2,3-Trichloropropane 1.0 U 0.25 1.0 110-57-6 trans-1,4-Dichloro-2-butene 2.5 U 2.5 2.5 106-43-4 4-Chlorotoluene 1.0 U 0.25 1.0 98-06-6 tert-Butylbenzene 1.0 U 0.25 1.0 95-63-6 1,2,4-Trimethylbenzene 1.0 U 0.25 1.0 99-87-6 p-Isopropyltoluene 1.0 U 0.25 1.0 99-87-6 p-Isopropyltoluene 1.0 U 0.25 1.0 106-46-7 1,4-Dichlorobenzene	75-25-2	Bromoform				5.0
103-65-1 n-Propylbenzene 1.0 U 0.25 1.0 79-34-5 1,1,2,2-Tetrachloroethane 1.0 U 0.25 1.0 95-49-8 2-Chlorotoluene 1.0 U 0.25 1.0 108-67-8 1,3,5-Trimethylbenzene 1.0 U 0.25 1.0 96-18-4 1,2,3-Trichloropropane 1.0 U 0.25 1.0 110-57-6 trans-1,4-Dichloro-2-butene 2.5 U 2.5 2.5 106-43-4 4-Chlorotoluene 1.0 U 0.25 1.0 98-06-6 tert-Butylbenzene 1.0 U 0.25 1.0 98-06-6 tert-Butylbenzene 1.0 U 0.25 1.0 98-06-6 tert-Butylbenzene 1.0 U 0.25 1.0 95-63-6 1,2,4-Trimethylbenzene 1.0 U 0.25 1.0 99-87-6 p-Isopropyltoluene 1.0 U 0.25 1.0 106-46-7 1,4-Dichlorobenzene <td>98-82-8</td> <td>Isopropylbenzene</td> <td></td> <td>1.0 U</td> <td>0.25</td> <td>1.0</td>	98-82-8	Isopropylbenzene		1.0 U	0.25	1.0
79-34-5 1,1,2,2-Tetrachloroethane 1.0 U 0.25 1.0 95-49-8 2-Chlorotoluene 1.0 U 0.25 1.0 108-67-8 1,3,5-Trimethylbenzene 1.0 U 0.25 1.0 96-18-4 1,2,3-Trichloropropane 1.0 U 0.25 1.0 96-18-4 1,2,3-Trichloropropane 1.0 U 0.25 1.0 110-57-6 trans-1,4-Dichloro-2-butene 2.5 U 2.5 2.5 106-43-4 4-Chlorotoluene 1.0 U 0.25 1.0 98-06-6 tert-Butylbenzene 1.0 U 0.25 1.0 95-63-6 1,2,4-Trimethylbenzene 1.0 U 0.25 1.0 135-98-8 sec-Butylbenzene 1.0 U 0.25 1.0 99-87-6 p-Isopropyltoluene 1.0 U 0.25 1.0 106-46-7 1,4-Dichlorobenzene 1.0 U 0.25 1.0 104-51-8 n-Butylbenzen	108-86-1	Bromobenzene		1.0 U	0.25	1.0
95-49-8 2-Chlorotoluene 1.0 U 0.25 1.0 108-67-8 1,3,5-Trimethylbenzene 1.0 U 0.25 1.0 96-18-4 1,2,3-Trichloropropane 1.0 U 0.25 1.0 110-57-6 trans-1,4-Dichloro-2-butene 2.5 U 2.5 2.5 106-43-4 4-Chlorotoluene 1.0 U 0.25 1.0 98-06-6 tert-Butylbenzene 1.0 U 0.25 1.0 98-06-6 tert-Butylbenzene 1.0 U 0.25 1.0 98-06-6 tert-Butylbenzene 1.0 U 0.25 1.0 98-63-6 1,2,4-Trimethylbenzene 1.0 U 0.25 1.0 135-98-8 sec-Butylbenzene 1.0 U 0.25 1.0 99-87-6 p-lsopropyltoluene 1.0 U 0.25 1.0 106-46-7 1,4-Dichlorobenzene 1.0 U 0.25 1.0 104-51-8 n-Butylbenzene	103-65-1	n-Propylbenzene		1.0 U	0.25	1.0
95-49-8 2-Chlorotoluene 1.0 U 0.25 1.0 108-67-8 1,3,5-Trimethylbenzene 1.0 U 0.25 1.0 96-18-4 1,2,3-Trichloropropane 1.0 U 0.25 1.0 110-57-6 trans-1,4-Dichloro-2-butene 2.5 U 2.5 2.5 106-43-4 4-Chlorotoluene 1.0 U 0.25 1.0 98-06-6 tert-Butylbenzene 1.0 U 0.25 1.0 95-63-6 1,2,4-Trimethylbenzene 1.0 U 0.25 1.0 99-87-6 p-lsopropyltoluene 1.0 U 0.25 1.0 99-87-6 p-lsopropyltoluene 1.0 U 0.25 1.0 99-87-6 p-lsopropyltoluene 1.0 U 0.25 1.0 135-98-8 sec-Butylbenzene 1.0 U 0.25 1.0 99-87-6 p-lsopropyltoluene 1.0 U 0.25 1.0 106-46-7 1,4-Dichlorobenzene 1.0 U 0.25 1.0 104-51-8 n-Butylbenz	79-34-5			1.0 U	0.25	1.0
108-67-8 1,3,5-Trimethylbenzene 1.0 U 0.25 1.0 96-18-4 1,2,3-Trichloropropane 1.0 U 0.25 1.0 110-57-6 trans-1,4-Dichloro-2-butene 2.5 V 0.0 2.5 2.5 106-43-4 4-Chlorotoluene 1.0 U 0.25 1.0 98-06-6 tert-Butylbenzene 1.0 U 0.25 1.0 99-63-6 1,2,4-Trimethylbenzene 1.0 U 0.25 1.0 135-98-8 sec-Butylbenzene 1.0 U 0.25 1.0 99-87-6 p-Isopropyltoluene 1.0 U 0.25 1.0 106-46-7 1,4-Dichlorobenzene 1.0 U 0.25 1.0 104-51-8 n-Butylbenzene 1.0 U 0.25 1.0 95-50-1						
96-18-4 1,2,3-Trichloropropane 1.0 U 0.25 1.0 110-57-6 trans-1,4-Dichloro-2-butene 2.5 U 2.5 2.5 2.5 106-43-4 4-Chlorotoluene 1.0 U 0.25 1.0 98-06-6 tert-Butylbenzene 1.0 U 0.25 1.0 95-63-6 1,2,4-Trimethylbenzene 1.0 U 0.25 1.0 135-98-8 sec-Butylbenzene 1.0 U 0.25 1.0 99-87-6 p-lsopropyltoluene 1.0 U 0.25 1.0 99-87-6 p-lsopropyltoluene 1.0 U 0.25 1.0 106-46-7 1,4-Dichlorobenzene 1.0 U 0.25 1.0 106-46-7 1,4-Dichlorobenzene 1.0 U 0.25 1.0 104-51-8 n-Butylbenzene 1.0 U 0.25 1.0 95-50-1 1,2-Dichlorobenzene 1.0 U 0.25 1.0 96-12-8 1,2-Di						
110-57-6trans-1,4-Dichloro-2-butene2.5U2.52.5106-43-44-Chlorotoluene1.0U0.251.098-06-6tert-Butylbenzene1.0U0.251.095-63-61,2,4-Trimethylbenzene1.0U0.251.0135-98-8sec-Butylbenzene1.0U0.251.099-87-6p-lsopropyltoluene1.0U0.251.0541-73-11,3-Dichlorobenzene1.0U0.251.0106-46-71,4-Dichlorobenzene1.0U0.251.0527-84-42-lsopropyltoluene1.0U0.251.0104-51-8n-Butylbenzene1.0U0.251.095-50-11,2-Dichlorobenzene1.0U0.251.096-12-81,2-Dibromo-3-Chloropropane1.0U0.251.087-68-3Hexachlorobutadiene0.50U0.200.50120-82-11,2,4-Trichlorobenzene1.0U0.251.091-20-3Naphthalene1.0U1.01.0						
106-43-44-Chlorotoluene1.0U0.251.098-06-6tert-Butylbenzene1.0U0.251.095-63-61,2,4-Trimethylbenzene1.0U0.251.0135-98-8sec-Butylbenzene1.0U0.251.099-87-6p-Isopropyltoluene1.0U0.251.0541-73-11,3-Dichlorobenzene1.0U0.251.0106-46-71,4-Dichlorobenzene1.0U0.251.0527-84-42-Isopropyltoluene1.0U0.251.0104-51-8n-Butylbenzene1.0U0.251.095-50-11,2-Dichlorobenzene1.0U0.251.096-12-81,2-Dibromo-3-Chloropropane1.0U0.200.50120-82-11,2,4-Trichlorobenzene1.0U0.251.091-20-3Naphthalene1.0U1.01.0						
98-06-6tert-Butylbenzene1.0U0.251.095-63-61,2,4-Trimethylbenzene1.0U0.251.0135-98-8sec-Butylbenzene1.0U0.251.099-87-6p-Isopropyltoluene1.0U0.251.0541-73-11,3-Dichlorobenzene1.0U0.251.0106-46-71,4-Dichlorobenzene1.0U0.251.0527-84-42-Isopropyltoluene1.0U0.251.0104-51-8n-Butylbenzene1.0U0.251.095-50-11,2-Dichlorobenzene1.0U0.251.096-12-81,2-Dibromo-3-Chloropropane1.0U0.251.087-68-3Hexachlorobutadiene0.50U0.200.50120-82-11,2,4-Trichlorobenzene1.0U0.251.091-20-3Naphthalene1.0U1.01.0						
95-63-6 1,2,4-Trimethylbenzene 1.0 U 0.25 1.0 135-98-8 sec-Butylbenzene 1.0 U 0.25 1.0 99-87-6 p-lsopropyltoluene 1.0 U 0.25 1.0 541-73-1 1,3-Dichlorobenzene 1.0 U 0.25 1.0 106-46-7 1,4-Dichlorobenzene 1.0 U 0.25 1.0 527-84-4 2-Isopropyltoluene 1.0 U 0.25 1.0 104-51-8 n-Butylbenzene 1.0 U 0.25 1.0 95-50-1 1,2-Dichlorobenzene 1.0 U 0.25 1.0 96-12-8 1,2-Dibromo-3-Chloropropane 1.0 U 0.25 1.0 87-68-3 Hexachlorobutadiene 0.50 U 0.20 0.50 120-82-1 1,2,4-Trichlorobenzene 1.0 U 0.25 1.0 91-20-3 Naphthalene 1.0 U 1.0 1.0						
135-98-8sec-Butylbenzene1.0U0.251.099-87-6p-Isopropyltoluene1.0U0.251.0541-73-11,3-Dichlorobenzene1.0U0.251.0106-46-71,4-Dichlorobenzene1.0U0.251.0527-84-42-Isopropyltoluene1.0U0.251.0104-51-8n-Butylbenzene1.0U0.251.095-50-11,2-Dichlorobenzene1.0U0.251.096-12-81,2-Dibromo-3-Chloropropane1.0U0.201.087-68-3Hexachlorobutadiene0.50U0.200.50120-82-11,2,4-Trichlorobenzene1.0U0.251.091-20-3Naphthalene1.0U1.01.0						
99-87-6 p-Isopropyltoluene 1.0 U 0.25 1.0 541-73-1 1,3-Dichlorobenzene 1.0 U 0.25 1.0 106-46-7 1,4-Dichlorobenzene 1.0 U 0.25 1.0 527-84-4 2-Isopropyltoluene 1.0 U 0.25 1.0 104-51-8 n-Butylbenzene 1.0 U 0.25 1.0 95-50-1 1,2-Dichlorobenzene 1.0 U 0.25 1.0 96-12-8 1,2-Dibromo-3-Chloropropane 1.0 U 0.50 1.0 87-68-3 Hexachlorobutadiene 0.50 U 0.20 0.50 120-82-1 1,2,4-Trichlorobenzene 1.0 U 0.25 1.0 91-20-3 Naphthalene 1.0 U 1.0 1.0						
541-73-1 1,3-Dichlorobenzene 1.0 U 0.25 1.0 106-46-7 1,4-Dichlorobenzene 1.0 U 0.25 1.0 527-84-4 2-Isopropyltoluene 1.0 U 0.25 1.0 104-51-8 n-Butylbenzene 1.0 U 0.25 1.0 95-50-1 1,2-Dichlorobenzene 1.0 U 0.25 1.0 96-12-8 1,2-Dibromo-3-Chloropropane 1.0 U 0.50 1.0 87-68-3 Hexachlorobutadiene 0.50 U 0.20 0.50 120-82-1 1,2,4-Trichlorobenzene 1.0 U 0.25 1.0 91-20-3 Naphthalene 1.0 U 1.0 1.0						
106-46-71,4-Dichlorobenzene1.0U0.251.0527-84-42-Isopropyltoluene1.0U0.251.0104-51-8n-Butylbenzene1.0U0.251.095-50-11,2-Dichlorobenzene1.0U0.251.096-12-81,2-Dibromo-3-Chloropropane1.0U0.501.087-68-3Hexachlorobutadiene0.50U0.200.50120-82-11,2,4-Trichlorobenzene1.0U0.251.091-20-3Naphthalene1.0U1.01.0						
527-84-4 2-Isopropyltoluene 1.0 U 0.25 1.0 104-51-8 n-Butylbenzene 1.0 U 0.25 1.0 95-50-1 1,2-Dichlorobenzene 1.0 U 0.25 1.0 96-12-8 1,2-Dibromo-3-Chloropropane 1.0 U 0.50 1.0 87-68-3 Hexachlorobutadiene 0.50 U 0.20 0.50 120-82-1 1,2,4-Trichlorobenzene 1.0 U 0.25 1.0 91-20-3 Naphthalene 1.0 U 1.0 1.0						
104-51-8 n-Butylbenzene 1.0 U 0.25 1.0 95-50-1 1,2-Dichlorobenzene 1.0 U 0.25 1.0 96-12-8 1,2-Dibromo-3-Chloropropane 1.0 U 0.50 1.0 87-68-3 Hexachlorobutadiene 0.50 U 0.20 0.50 120-82-1 1,2,4-Trichlorobenzene 1.0 U 0.25 1.0 91-20-3 Naphthalene 1.0 U 1.0 1.0						
95-50-1 1,2-Dichlorobenzene 1.0 U 0.25 1.0 96-12-8 1,2-Dibromo-3-Chloropropane 1.0 U 0.50 1.0 87-68-3 Hexachlorobutadiene 0.50 U 0.20 0.50 120-82-1 1,2,4-Trichlorobenzene 1.0 U 0.25 1.0 91-20-3 Naphthalene 1.0 U 1.0 1.0						
96-12-8 1,2-Dibromo-3-Chloropropane 1.0 U 0.50 1.0 87-68-3 Hexachlorobutadiene 0.50 U 0.20 0.50 120-82-1 1,2,4-Trichlorobenzene 1.0 U 0.25 1.0 91-20-3 Naphthalene 1.0 U 1.0 1.0						
87-68-3 Hexachlorobutadiene 0.50 U 0.20 0.50 120-82-1 1,2,4-Trichlorobenzene 1.0 U 0.25 1.0 91-20-3 Naphthalene 1.0 U 1.0 1.0						
120-82-1 1,2,4-Trichlorobenzene 1.0 U 0.25 1.0 91-20-3 Naphthalene 1.0 U 1.0 1.0						
91-20-3 Naphthalene 1.0 U 1.0 1.0						
	120-82-1	1,2,4-Trichlorobenzene				1.0
	91-20-3	Naphthalene				1.0
	87-61-6				0.25	1.0
	67-01-0	1,2,3-11010100e12e11e		1.0 0	0.23	1.0

FORMIVOA

r=Result Reported U=Not Detected D=Reported Dilution E/J=Estimated Value X=Not Used S=Lab Solvent

Page 184 of 330

ANALYTICAL REPORT

Lab Number:	L2231684
Client:	CA Rich Consultants, Inc. 17 Dupont St.
	Plainview, NY 11803
ATTN:	Jason Cooper
Phone:	(516) 576-8844
Project Name:	CORNERSTONE
Project Number:	CORNERSTONE
Report Date:	06/28/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:06282219:30

Project Name:	CORNERSTONE
Project Number:	CORNERSTONE

 Lab Number:
 L2231684

 Report Date:
 06/28/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2231684-01	MW-1	WATER	THIRD AVENUE, BRONX	06/14/22 11:30	06/15/22
L2231684-02	MW-2A	WATER	THIRD AVENUE, BRONX	06/14/22 09:55	06/15/22
L2231684-03	MW-4	WATER	THIRD AVENUE, BRONX	06/14/22 10:47	06/15/22
L2231684-04	MW-6	WATER	THIRD AVENUE, BRONX	06/14/22 10:12	06/15/22
L2231684-05	MW-7	WATER	THIRD AVENUE, BRONX	06/14/22 12:06	06/15/22
L2231684-06	MW-8	WATER	THIRD AVENUE, BRONX	06/14/22 11:55	06/15/22
L2231684-07	MW-10	WATER	THIRD AVENUE, BRONX	06/14/22 09:31	06/15/22
L2231684-08	MW-XX	WATER	THIRD AVENUE, BRONX	06/14/22 09:55	06/15/22
L2231684-09	FIELD BLANK	WATER	THIRD AVENUE, BRONX	06/14/22 13:15	06/15/22
L2231684-10	TRIP BLANK	WATER	THIRD AVENUE, BRONX	06/14/22 00:00	06/15/22

Project Name: CORNERSTONE Project Number: CORNERSTONE

Lab Number: L2231684 Report Date: 06/28/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: CORNERSTONE Project Number: CORNERSTONE
 Lab Number:
 L2231684

 Report Date:
 06/28/22

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Steven Gniadek

Title: Technical Director/Representative

Date: 06/28/22

ORGANICS

VOLATILES

			Serial_N	0:06282219:30
Project Name:	CORNERSTONE		Lab Number:	L2231684
Project Number:	CORNERSTONE		Report Date:	06/28/22
		SAMPLE RESULTS		
Lab ID:	L2231684-01		Date Collected:	06/14/22 11:30
Client ID:	MW-1		Date Received:	06/15/22
Sample Location:	THIRD AVENUE, BRONX		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	06/24/22 03:30			
Analyst:	MV			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	48		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

					ç	Serial_No	:06282219:30	
Project Name:	CORNERSTONE				Lab Nu		L2231684	
Project Number:	CORNERSTONE				Report	Date:	06/28/22	
-		SAMPI		5	•			
Lab ID:	L2231684-01				Date Col	lected:	06/14/22 11:30	
Client ID:	MW-1				Date Rec	eived:	06/15/22	
Sample Location:	THIRD AVENUE, BI	RONX			Field Pre	p:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westboroug	jh Lab						
Trichloroethene		0.21	J	ug/l	0.50	0.18	1	
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
Xylenes, Total		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total		ND		ug/l	2.5	0.70	1	
Dibromomethane		ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1	
Acrylonitrile		ND		ug/l	5.0	1.5	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
Vinyl acetate		ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethane)	ND		ug/l	2.5	0.70	1	
Bromobenzene		ND		ug/l	2.5	0.70	1	
n-Butylbenzene		ND		ug/l	2.5	0.70	1	
sec-Butylbenzene		ND		ug/l	2.5	0.70	1	
tert-Butylbenzene		ND		ug/l	2.5	0.70	1	
o-Chlorotoluene		ND		ug/l	2.5	0.70	1	
p-Chlorotoluene		ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloroprop	bane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1	
Naphthalene		ND		ug/l	2.5	0.70	1	

			Serial_No:06282219:30			
Project Name:	CORNERSTONE		Lab Number:	L2231684		
Project Number:	CORNERSTONE		Report Date:	06/28/22		
		SAMPLE RESULTS				
Lab ID:	L2231684-01		Date Collected:	06/14/22 11:30		
Client ID:	MW-1		Date Received:	06/15/22		
Sample Location:	THIRD AVENUE, BRONX		Field Prep:	Not Specified		

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,4-Dioxane	ND		ug/l	250	61.	1
p-Diethylbenzene	ND		ug/l	2.0	0.70	1
p-Ethyltoluene	ND		ug/l	2.0	0.70	1
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1
Ethyl ether	ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	117	70-130	

			Serial_N	o:06282219:30
Project Name:	CORNERSTONE		Lab Number:	L2231684
Project Number:	CORNERSTONE		Report Date:	06/28/22
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2231684-02 MW-2A THIRD AVENUE, B	D	Date Collected: Date Received: Field Prep:	06/14/22 09:55 06/15/22 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 06/24/22 03:55 MV			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	5.0	1.4	2
1,1-Dichloroethane	ND		ug/l	5.0	1.4	2
Chloroform	ND		ug/l	5.0	1.4	2
Carbon tetrachloride	ND		ug/l	1.0	0.27	2
1,2-Dichloropropane	ND		ug/l	2.0	0.27	2
Dibromochloromethane	ND		ug/l	1.0	0.30	2
1,1,2-Trichloroethane	ND		ug/l	3.0	1.0	2
Tetrachloroethene	180		ug/l	1.0	0.36	2
Chlorobenzene	ND		ug/l	5.0	1.4	2
Trichlorofluoromethane	ND		ug/l	5.0	1.4	2
1,2-Dichloroethane	ND		ug/l	1.0	0.26	2
1,1,1-Trichloroethane	ND		ug/l	5.0	1.4	2
Bromodichloromethane	ND		ug/l	1.0	0.38	2
trans-1,3-Dichloropropene	ND		ug/l	1.0	0.33	2
cis-1,3-Dichloropropene	ND		ug/l	1.0	0.29	2
1,3-Dichloropropene, Total	ND		ug/l	1.0	0.29	2
1,1-Dichloropropene	ND		ug/l	5.0	1.4	2
Bromoform	ND		ug/l	4.0	1.3	2
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.33	2
Benzene	ND		ug/l	1.0	0.32	2
Toluene	ND		ug/l	5.0	1.4	2
Ethylbenzene	ND		ug/l	5.0	1.4	2
Chloromethane	ND		ug/l	5.0	1.4	2
Bromomethane	ND		ug/l	5.0	1.4	2
Vinyl chloride	ND		ug/l	2.0	0.14	2
Chloroethane	ND		ug/l	5.0	1.4	2
1,1-Dichloroethene	ND		ug/l	1.0	0.34	2
trans-1,2-Dichloroethene	ND		ug/l	5.0	1.4	2

					ç	Serial_No	:06282219:30	
Project Name:	CORNERSTONE				Lab Nu	mber:	L2231684	
Project Number:	CORNERSTONE				Report	Date:	06/28/22	
		SAMPI	E RESULTS	5			00,20,22	
Lab ID:	L2231684-02	D			Date Col	lected [.]	06/14/22 09:55	
Client ID:	MW-2A	2			Date Rec		06/15/22	
Sample Location:	THIRD AVENUE, E	BRONX			Field Pre	p:	Not Specified	
Sample Depth:								
Sample Depth: Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
	y GC/MS - Westborou			•				
volatile Organics b								
Trichloroethene		1.3		ug/l	1.0	0.35	2	
1,2-Dichlorobenzene		ND		ug/l	5.0	1.4	2	
1,3-Dichlorobenzene		ND		ug/l	5.0	1.4	2	
1,4-Dichlorobenzene		ND		ug/l	5.0	1.4	2	
Methyl tert butyl ether		ND		ug/l	5.0	1.4	2	
p/m-Xylene		ND		ug/l	5.0	1.4	2	
o-Xylene		ND		ug/l	5.0	1.4	2	
Xylenes, Total		ND		ug/l	5.0	1.4	2	
cis-1,2-Dichloroethene		ND		ug/l	5.0	1.4	2	
1,2-Dichloroethene, Total		ND		ug/l	5.0	1.4	2	
Dibromomethane		ND		ug/l	10	2.0	2	
1,2,3-Trichloropropane		ND		ug/l	5.0	1.4	2	
Acrylonitrile		ND		ug/l	10	3.0	2	
Styrene		ND		ug/l	5.0	1.4	2	
Dichlorodifluoromethane		ND		ug/l	10	2.0	2	
Acetone		ND		ug/l	10	2.9	2	
Carbon disulfide		ND		ug/l	10	2.0	2	
2-Butanone		ND		ug/l	10	3.9	2	
Vinyl acetate		ND		ug/l	10	2.0	2	
4-Methyl-2-pentanone		ND		ug/l	10	2.0	2	
2-Hexanone		ND		ug/l	10	2.0	2	
Bromochloromethane		ND		ug/l	5.0	1.4	2	
2,2-Dichloropropane		ND		ug/l	5.0	1.4	2	
1,2-Dibromoethane		ND		ug/l	4.0	1.3	2	
1,3-Dichloropropane		ND		ug/l	5.0	1.4	2	
1,1,1,2-Tetrachloroethane	3	ND		ug/l	5.0	1.4	2	
Bromobenzene		ND		ug/l	5.0	1.4	2	
n-Butylbenzene		ND		ug/l	5.0	1.4	2	
sec-Butylbenzene		ND		ug/l	5.0	1.4	2	
tert-Butylbenzene		ND		ug/l	5.0	1.4	2	
o-Chlorotoluene		ND ND		ug/l	5.0	1.4 1.4	2	
p-Chlorotoluene	2200	ND		ug/l	5.0	1.4	2	
	סמווש			ug/l				
Hexachlorobutadiene		ND		ug/l	5.0	1.4	2	
		ND		ug/l	5.0	1.4	2	
p-Isopropyltoluene		ND		ug/l	5.0	1.4	2	
Naphthalene		ND		ug/l	5.0	1.4	2	

				Serial_No	0:06282219:30
Project Name:	CORNERSTONE			Lab Number:	L2231684
Project Number:	CORNERSTONE			Report Date:	06/28/22
			SAMPLE RESULTS		
Lab ID:	L2231684-02	D		Date Collected:	06/14/22 09:55
Client ID:	MW-2A			Date Received:	06/15/22
Sample Location:	THIRD AVENUE, E	BRONX		Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
n-Propylbenzene	ND		ug/l	5.0	1.4	2
1,2,3-Trichlorobenzene	ND		ug/l	5.0	1.4	2
1,2,4-Trichlorobenzene	ND		ug/l	5.0	1.4	2
1,3,5-Trimethylbenzene	ND		ug/l	5.0	1.4	2
1,2,4-Trimethylbenzene	ND		ug/l	5.0	1.4	2
1,4-Dioxane	ND		ug/l	500	120	2
p-Diethylbenzene	ND		ug/l	4.0	1.4	2
p-Ethyltoluene	ND		ug/l	4.0	1.4	2
1,2,4,5-Tetramethylbenzene	ND		ug/l	4.0	1.1	2
Ethyl ether	ND		ug/l	5.0	1.4	2
trans-1,4-Dichloro-2-butene	ND		ug/l	5.0	1.4	2

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	111	70-130	

			Serial_N	o:06282219:30
Project Name:	CORNERSTONE		Lab Number:	L2231684
Project Number:	CORNERSTONE		Report Date:	06/28/22
		SAMPLE RESULTS		
Lab ID:	L2231684-03		Date Collected:	06/14/22 10:47
Client ID:	MW-4		Date Received:	06/15/22
Sample Location:	THIRD AVENUE, BRONX		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	06/24/22 04:21			
Analyst:	MV			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	19		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	6.4		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	0.98		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

					ç	Serial No	:06282219:30	
Project Name:	CORNERSTONE				Lab Nu		L2231684	
Project Number:	CORNERSTONE				Report	Date:	06/28/22	
	CONTENCTONE	SAMP		5			00/20/22	
Lab ID:	L2231684-03				Date Col	lected.	06/14/22 10:47	
Client ID:	MW-4				Date Rec		06/15/22	
Sample Location:	THIRD AVENUE, BRC	NX			Field Pre	p:	Not Specified	
Sample Depthy								
Sample Depth: Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
	y GC/MS - Westborough			••••••				
Volatilo Organico S	y come moderough	200						
Trichloroethene		ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
Xylenes, Total		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total		ND		ug/l	2.5	0.70	1	
Dibromomethane		ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1	
Acrylonitrile Styrene		ND ND		ug/l	5.0 2.5	1.5 0.70	1	
Dichlorodifluoromethane		ND		ug/l ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
Vinyl acetate		ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethane	9	ND		ug/l	2.5	0.70	1	
Bromobenzene		ND		ug/l	2.5	0.70	1	
n-Butylbenzene		ND		ug/l	2.5	0.70	1	
sec-Butylbenzene		ND		ug/l	2.5	0.70	1	
tert-Butylbenzene		ND		ug/l	2.5	0.70	1	
o-Chlorotoluene		ND		ug/l	2.5	0.70	1	
p-Chlorotoluene		ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloroprop	bane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1	
Naphthalene		ND		ug/l	2.5	0.70	1	

			Serial_No:06282219:30		
Project Name:	CORNERSTONE		Lab Number:	L2231684	
Project Number:	CORNERSTONE		Report Date:	06/28/22	
		SAMPLE RESULTS			
Lab ID:	L2231684-03		Date Collected:	06/14/22 10:47	
Client ID:	MW-4		Date Received:	06/15/22	
Sample Location:	THIRD AVENUE, BRONX		Field Prep:	Not Specified	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	gh Lab					
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,4-Dioxane	ND		ug/l	250	61.	1
p-Diethylbenzene	ND		ug/l	2.0	0.70	1
p-Ethyltoluene	ND		ug/l	2.0	0.70	1
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1
Ethyl ether	ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	113	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	124	70-130	

			Serial_No	0:06282219:30
Project Name:	CORNERSTONE		Lab Number:	L2231684
Project Number:	CORNERSTONE		Report Date:	06/28/22
	SA	MPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2231684-04 MW-6 THIRD AVENUE, BRONX		Date Collected: Date Received: Field Prep:	06/14/22 10:12 06/15/22 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 06/24/22 04:46 MV			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	0.87	J	ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	42		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: CORNERSTONE Lab Number: L2231684-04 Clent ID: L2231684-04 Date Colected: 06/28/22 Clent ID: MW-6 Date Roccive0: 06/11/22 10:12 Sample Location: THIRD AVENUE, BRONX Date Roccive0: 06/11/22 10:12 Sample Location: THIRD AVENUE, BRONX Date Roccive0: 06/11/22 10:12 Sample Location: THIRD AVENUE, BRONX No Parameter MD Muto Pateon Valatile Organics Versition: ND ugn 0.50 0.18 1 1.20 Ichlorobenzene ND ugn 0.50 0.18 1 1.40 Ichlorobenzene ND ugn 0.50 0.70 1 1.40 Ichlorobenzene ND ugn 0.50 0.70 1 1.40 Ichlorobenzene ND ugn 0.50 0.70 1 1.40 Ichlorobenzene ND ugn 0.5 0.70 1 1.40 Ichlorobenzene ND ugn 0.5 0.70 1 1.40 Ichlorobenzene ND ugn 0.5 0.70 1
Lab ID: L231684-04 Date Collecte: 06/14/22 10:12 Date Received: 06/14/22 10:12 Sample Location: MW-6 THIRD AVENUE, BRONX Pate Received: 06/15/22 Print Pice 06/15/22 Print Pice Not Specified Sample Location: THIRD AVENUE, BRONX Value Pate Received: Not Specified Sample Dept: Parameter Result Qualifier Not Not Specified Not Specified Volatile Organics Vestborough Lab 0.60 ug1 0.50 0.18 1 1.4-Dichlorobenzene ND ug1 2.5 0.70 1 2.9-Dichlorobenzene ND ug1 2.5 0.70 1 2.9-Dichlorobenzene ND ug1 2.5 0.70 1 2.9-Dichlorobenzene ND ug1 2.5 0.70 1 2.9-D
Lab ID: L231684-04 Date Collecte: 06/14/22 10:12 Date Received: 06/14/22 10:12 Sample Location: MW-6 THIRD AVENUE, BRONX Pate Received: 06/15/22 Print Pice 06/15/22 Print Pice Not Specified Sample Location: THIRD AVENUE, BRONX Value Pate Received: Not Specified Sample Dept: Parameter Result Qualifier Not Not Specified Not Specified Volatile Organics Vestborough Lab 0.60 ug1 0.50 0.18 1 1.4-Dichlorobenzene ND ug1 2.5 0.70 1 2.9-Dichlorobenzene ND ug1 2.5 0.70 1 2.9-Dichlorobenzene ND ug1 2.5 0.70 1 2.9-Dichlorobenzene ND ug1 2.5 0.70 1 2.9-D
Client ID: Sample Location:MW-6 THIRD AVENUE, BRONXDate Receive: Field Prey:06/15/22 Field Prey:Not SpecifiedParmeterResultQuilierUnitsRLMDLDituion FactorVoltable Organics by CC/MS - Westborough Labugrl0.500.181TrichlorobenzeneNDugrl0.500.1811.2-DichlorobenzeneNDugrl2.50.7011.4-DichlorobenzeneNDugrl2.50.7011.4-DichlorobenzeneNDugrl2.50.701Metry lent buly letherNDugrl2.50.701ValenesNDugrl2.50.701Cylenes, TotalNDugrl2.50.701NDugrl2.50.701SyleneNDugrl2.50.701Cylenes, TotalNDugrl2.50.701DichlorobetneneNDugrl2.50.701SyleneNDugrl2.50.701CylenesNDugrl2.50.701SyleneNDugrl2.50.701SyleneNDugrl2.50.701SyleneNDugrl2.50.701SyleneNDugrl2.50.701SyleneNDugrl2.50.701SyleneNDugrl2.5
Client ID: Sample Location:MW-6 THIRD AVENUE, BRONXDate Receive: Field Prey:06/15/22 Field Prey:Not SpecifiedParmeterResultQuilierUnitsRLMDLDituion FactorVoltable Organics by CC/MS - Westborough Labugrl0.500.181TrichlorobenzeneNDugrl0.500.1811.2-DichlorobenzeneNDugrl2.50.7011.4-DichlorobenzeneNDugrl2.50.7011.4-DichlorobenzeneNDugrl2.50.701Metry lent buly letherNDugrl2.50.701ValenesNDugrl2.50.701Cylenes, TotalNDugrl2.50.701NDugrl2.50.701SyleneNDugrl2.50.701Cylenes, TotalNDugrl2.50.701DichlorobetneneNDugrl2.50.701SyleneNDugrl2.50.701CylenesNDugrl2.50.701SyleneNDugrl2.50.701SyleneNDugrl2.50.701SyleneNDugrl2.50.701SyleneNDugrl2.50.701SyleneNDugrl2.50.701SyleneNDugrl2.5
Sample Depth: Parameter Result Qualifier Units RL MDL Dilution Factor Volatile Organics by GC/MS - Westborough Lab
ParameterResultQualifierUnitsRLMDLDilution FactorVolatile Organics by GC/MS - Westborough LabTrichlorobene0.60ug/l0.500.1811.2-DichlorobenzeneNDug/l2.50.7011.3-DichlorobenzeneNDug/l2.50.7011.4-DichlorobenzeneNDug/l2.50.701Methy tert butyl etherNDug/l2.50.701or XyleneNDug/l2.50.701Sylene, TotalNDug/l2.50.701L2-DichlorobetneNDug/l2.50.701Sylene, TotalNDug/l2.50.701L2-Dichloroethene, TotalNDug/l2.50.701L2-DichloroetheneNDug/l5.01.01L2-Dichloroethene, TotalNDug/l5.01.01L2-Dichloroethene, TotalNDug/l5.01.01L2-Dichloroethene, TotalNDug/l5.01.01L2-Dichloroethene, TotalNDug/l5.01.01L2-Dichloroethene, TotalNDug/l5.01.01L2-Dichloroethene, TotalNDug/l5.01.01L2-Dichloroethene, TotalNDug/l5.01.01L2-Dichloroethene, TotalNDug/l5.01.01L2-Dichloroeth
ParameterResultQualifierUnitsRLMDLDilution FactorVolatile Organics by GC/MS - Westborough LabTrichlorobene0.60ug/l0.500.1811.2-DichlorobenzeneNDug/l2.50.7011.3-DichlorobenzeneNDug/l2.50.7011.4-DichlorobenzeneNDug/l2.50.701Methy tert butyl etherNDug/l2.50.701or XyleneNDug/l2.50.701Sylene, TotalNDug/l2.50.701L2-DichlorobetneNDug/l2.50.701Sylene, TotalNDug/l2.50.701L2-Dichloroethene, TotalNDug/l2.50.701L2-DichloroetheneNDug/l5.01.01L2-Dichloroethene, TotalNDug/l5.01.01L2-Dichloroethene, TotalNDug/l5.01.01L2-Dichloroethene, TotalNDug/l5.01.01L2-Dichloroethene, TotalNDug/l5.01.01L2-Dichloroethene, TotalNDug/l5.01.01L2-Dichloroethene, TotalNDug/l5.01.01L2-Dichloroethene, TotalNDug/l5.01.01L2-Dichloroethene, TotalNDug/l5.01.01L2-Dichloroeth
Trichloroethene 0.60 ug/l 0.50 0.18 1 1.2-Dichlorobenzene ND ug/l 2.5 0.70 1 1.3-Dichlorobenzene ND ug/l 2.5 0.70 1 1.4-Dichlorobenzene ND ug/l 2.5 0.70 1 1.4-Dichlorobenzene ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 Xylenes, Total ND ug/l 2.5 0.70 1 Xylenes, Total ND ug/l 2.5 0.70 1 L2-Dichloroethene ND ug/l 2.5 0.70 1 L2-Dichloroethene ND ug/l 5.0 1.0 1 L2-Dichloroethene, Total ND ug/l 5.0 1.0 1 L2-Dichloroethene ND ug/l 5.0 1.0 1
1.2-Dichlorobenzene ND ug/l 2.5 0.70 1 1.3-Dichlorobenzene ND ug/l 2.5 0.70 1 1.4-Dichlorobenzene ND ug/l 2.5 0.70 1 Methyl tert bulyl ether ND ug/l 2.5 0.70 1 orXylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 Xylenes, Total ND ug/l 2.5 0.70 1 1.2-Dichloroethene ND ug/l 2.5 0.70 1 1.2-Dichloroethene, Total ND ug/l 2.5 0.70 1 1.2-Dichloroptopane ND ug/l 5.0 1.0 1 </td
1.2-Dichlorobenzene ND ug/l 2.5 0.70 1 1.3-Dichlorobenzene ND ug/l 2.5 0.70 1 1.4-Dichlorobenzene ND ug/l 2.5 0.70 1 Methyl tert bulyl ether ND ug/l 2.5 0.70 1 orXylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 Xylenes, Total ND ug/l 2.5 0.70 1 1.2-Dichloroethene ND ug/l 2.5 0.70 1 1.2-Dichloroethene, Total ND ug/l 2.5 0.70 1 1.2-Dichloroptopane ND ug/l 5.0 1.0 1 </td
1.3-Dichlorobenzene ND ug/l 2.5 0.70 1 1.4-Dichlorobenzene ND ug/l 2.5 0.70 1 Methyl tert butyl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 Xylenes, Total ND ug/l 2.5 0.70 1 Xylenes, Total ND ug/l 2.5 0.70 1 1.2-Dichloroethene ND ug/l 2.5 0.70 1 1.2-Dichloroethene, Total ND ug/l 2.5 0.70 1 1.2-Dichloroethene, Total ND ug/l 5.0 1.0 1 1.2-Dichloroethene, Total ND ug/l 5.0 1.0 1 1.2-Dichloropropane ND ug/l 5.0 1.0 1 1.2-Strinchloropropane ND ug/l 5.0 1.0
I.4-Dichlorobenzene ND ug/l 2.5 0.70 1 Methyl tert butyl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 Xylenes, Total ND ug/l 2.5 0.70 1 Xylenes, Total ND ug/l 2.5 0.70 1 Li-Dichloroethene ND ug/l 2.5 0.70 1 Li-Dichloroethene, Total ND ug/l 2.5 0.70 1 Li-Dichloroptopane ND ug/l 5.0 1.0 1 Li-Si Trichloroptopane ND ug/l 5.0 1.0 1 Styrene ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1
Methyl tert butyl ether ND ug/l 2.5 0.70 1 Methyl tert butyl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 Xylenes, Total ND ug/l 2.5 0.70 1 Xylenes, Total ND ug/l 2.5 0.70 1 L2-Dichloroethene ND ug/l 2.5 0.70 1 L2-Dichloroethene, Total ND ug/l 5.0 1.0 1 L3-Trichloroptpane ND ug/l 5.0 1.0 1 L3-Trichloroptpane ND ug/l 5.0 1.5 1 Styrene ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1
ym-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 xylenes, Total ND ug/l 2.5 0.70 1 xylenes, Total ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 1,2-Dichloroethene, Total ND ug/l 2.5 0.70 1 1,2-Dichloroethene, Total ND ug/l 5.0 1.0 1 1,2-Dichloroethene, Total ND ug/l 5.0 1.0 1 1,2-Dichloroethene, Total ND ug/l 5.0 1.0 1 1,2-Dichloroethene ND ug/l 5.0 1.0 1 1,2-Dichloroethene, Total ND ug/l 5.0 1.0 1 1,2-Dichloroethene ND ug/l 5.0 1.0 1 1,2-Dichloroethene ND ug/l 5.0 1.0
o-Xylene ND ug/l 2.5 0.70 1 Xylenes, Total ND ug/l 2.5 0.70 1 xylenes, Total ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 1,2-Dichloroethene, Total ND ug/l 2.5 0.70 1 Dibromomethane ND ug/l 5.0 1.0 1 1,2-Sirtichloropropane ND ug/l 5.0 1.0 1 Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 5.0 1.0 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Meth
Xylenes, Total ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 1,2-Dichloroethene, Total ND ug/l 2.5 0.70 1 1,2-Dichloroethene, Total ND ug/l 2.5 0.70 1 1,2-Dichloroethene, Total ND ug/l 5.0 1.0 1 1,2-Dichloroethene, Total ND ug/l 5.0 1.0 1 1,2,3-Trichloropropane ND ug/l 5.0 1.5 1 Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 Vinyl acetate ND ug/l 5.0 1.0 1 </td
ND ug/l 2.5 0.70 1 1,2-Dichloroethene, Total ND ug/l 2.5 0.70 1 Dibromomethane ND ug/l 5.0 1.0 1 1,2-Dichloroethene, Total ND ug/l 5.0 1.0 1 Dibromomethane ND ug/l 5.0 1.0 1 1,2,3-Trichloropropane ND ug/l 5.0 1.5 1 Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 5.0 1.0 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 Vinyl acetate ND ug/l 5.0 1.0 1 2-Hexanone ND
1,2-Dichloroethene, Total ND ug/l 2.5 0.70 1 Dibromomethane ND ug/l 5.0 1.0 1 1,2,3-Trichloropropane ND ug/l 2.5 0.70 1 Acrylonitrile ND ug/l 2.5 0.70 1 Styrene ND ug/l 5.0 1.5 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 5.0 1.0 1
Dibromomethane ND ug/l 5.0 1.0 1 1,2,3-Trichloropropane ND ug/l 2.5 0.70 1 Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 5.0 1.0 1
1,2,3-Trichloropropane ND ug/l 2.5 0.70 1 Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 5.0 1.0 1
Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.5 1 2-Butanone ND ug/l 5.0 1.0 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1
Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.5 1 2-Butanone ND ug/l 5.0 1.0 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 5.0 1.0 1
Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 5.0 1.0 1
Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 5.0 1.0 1
2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1
Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1
4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1
2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1
Bromochloromethane ND ug/l 2.5 0.70 1
2,2-Dichloropropane ND ug/l 2.5 0.70 1
1,2-Dibromoethane ND ug/l 2.0 0.65 1
1,3-Dichloropropane ND ug/l 2.5 0.70 1
1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1
Bromobenzene ND ug/l 2.5 0.70 1
n-Butylbenzene ND ug/l 2.5 0.70 1
sec-Butylbenzene ND ug/l 2.5 0.70 1
tert-Butylbenzene ND ug/l 2.5 0.70 1
o-Chlorotoluene ND ug/l 2.5 0.70 1
p-Chlorotoluene ND ug/l 2.5 0.70 1
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1
Hexachlorobutadiene ND ug/l 2.5 0.70 1
Isopropylbenzene ND ug/l 2.5 0.70 1
p-Isopropyltoluene ND ug/l 2.5 0.70 1
Naphthalene ND ug/l 2.5 0.70 1

			Serial_No:06282219:30			
Project Name:	CORNERSTONE		Lab Number:	L2231684		
Project Number:	CORNERSTONE		Report Date:	06/28/22		
		SAMPLE RESULTS				
Lab ID:	L2231684-04		Date Collected:	06/14/22 10:12		
Client ID:	MW-6		Date Received:	06/15/22		
Sample Location:	THIRD AVENUE, BRONX		Field Prep:	Not Specified		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,4-Dioxane	ND		ug/l	250	61.	1
p-Diethylbenzene	ND		ug/l	2.0	0.70	1
p-Ethyltoluene	ND		ug/l	2.0	0.70	1
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1
Ethyl ether	ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	116	70-130	

			Serial_N	0:06282219:30
Project Name:	CORNERSTONE		Lab Number:	L2231684
Project Number:	CORNERSTONE		Report Date:	06/28/22
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2231684-05 MW-7 THIRD AVENUE, B	D BRONX	Date Collected: Date Received: Field Prep:	06/14/22 12:06 06/15/22 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 06/24/22 11:59 PD			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	2.3	J	ug/l	6.2	1.8	2.5
1,1-Dichloroethane	ND		ug/l	6.2	1.8	2.5
Chloroform	4.9	J	ug/l	6.2	1.8	2.5
Carbon tetrachloride	ND		ug/l	1.2	0.34	2.5
1,2-Dichloropropane	ND		ug/l	2.5	0.34	2.5
Dibromochloromethane	ND		ug/l	1.2	0.37	2.5
1,1,2-Trichloroethane	ND		ug/l	3.8	1.2	2.5
Tetrachloroethene	16		ug/l	1.2	0.45	2.5
Chlorobenzene	ND		ug/l	6.2	1.8	2.5
Trichlorofluoromethane	ND		ug/l	6.2	1.8	2.5
1,2-Dichloroethane	ND		ug/l	1.2	0.33	2.5
1,1,1-Trichloroethane	ND		ug/l	6.2	1.8	2.5
Bromodichloromethane	ND		ug/l	1.2	0.48	2.5
trans-1,3-Dichloropropene	ND		ug/l	1.2	0.41	2.5
cis-1,3-Dichloropropene	ND		ug/l	1.2	0.36	2.5
1,3-Dichloropropene, Total	ND		ug/l	1.2	0.36	2.5
1,1-Dichloropropene	ND		ug/l	6.2	1.8	2.5
Bromoform	ND		ug/l	5.0	1.6	2.5
1,1,2,2-Tetrachloroethane	ND		ug/l	1.2	0.42	2.5
Benzene	ND		ug/l	1.2	0.40	2.5
Toluene	2.3	J	ug/l	6.2	1.8	2.5
Ethylbenzene	ND		ug/l	6.2	1.8	2.5
Chloromethane	ND		ug/l	6.2	1.8	2.5
Bromomethane	ND		ug/l	6.2	1.8	2.5
Vinyl chloride	ND		ug/l	2.5	0.18	2.5
Chloroethane	ND		ug/l	6.2	1.8	2.5
1,1-Dichloroethene	ND		ug/l	1.2	0.42	2.5
trans-1,2-Dichloroethene	ND		ug/l	6.2	1.8	2.5

					Ş	Serial_No	p:06282219:30
Project Name:	CORNERSTONE				Lab Nu	mber:	L2231684
Project Number:	CORNERSTONE				Report	Date:	06/28/22
	•••••	SAMP	LE RESULTS	S			00/20/22
Lab ID:	L2231684-05	D			Date Col	lected:	06/14/22 12:06
Client ID:	MW-7	2			Date Red		06/15/22
Sample Location:	THIRD AVENUE, BI	RONX			Field Pre	ep:	Not Specified
Sample Depth:			•				
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics i	by GC/MS - Westboroug	gh Lab					
Trichloroethene		0.48	J	ug/l	1.2	0.44	2.5
1,2-Dichlorobenzene		ND		ug/l	6.2	1.8	2.5
1,3-Dichlorobenzene		ND		ug/l	6.2	1.8	2.5
1,4-Dichlorobenzene		ND		ug/l	6.2	1.8	2.5
Methyl tert butyl ether		ND		ug/l	6.2	1.8	2.5
p/m-Xylene		ND		ug/l	6.2	1.8	2.5
o-Xylene		ND		ug/l	6.2	1.8	2.5
Xylenes, Total		ND		ug/l	6.2	1.8	2.5
cis-1,2-Dichloroethene		2.8	J	ug/l	6.2	1.8	2.5
1,2-Dichloroethene, Tota	l	2.8	J	ug/l	6.2	1.8	2.5
Dibromomethane		ND		ug/l	12	2.5	2.5
1,2,3-Trichloropropane		ND		ug/l	6.2	1.8	2.5
Acrylonitrile		ND		ug/l	12	3.8	2.5
Styrene		ND		ug/l	6.2	1.8	2.5
Dichlorodifluoromethane		ND		ug/l	12	2.5	2.5
Acetone		370		ug/l	12	3.6	2.5
Carbon disulfide		ND		ug/l	12	2.5	2.5
2-Butanone		7.2	J	ug/l	12	4.8	2.5
Vinyl acetate		ND		ug/l	12	2.5	2.5
4-Methyl-2-pentanone		ND		ug/l	12	2.5	2.5
2-Hexanone		ND		ug/l	12	2.5	2.5
Bromochloromethane		ND		ug/l	6.2	1.8	2.5
2,2-Dichloropropane		ND		ug/l	6.2	1.8	2.5
1,2-Dibromoethane		ND		ug/l	5.0	1.6	2.5
1,3-Dichloropropane		ND		ug/l	6.2	1.8	2.5
1,1,1,2-Tetrachloroethan	e	ND		ug/l	6.2	1.8	2.5
Bromobenzene		ND		ug/l	6.2	1.8	2.5
n-Butylbenzene		ND		ug/l	6.2	1.8	2.5
sec-Butylbenzene		ND		ug/l	6.2	1.8	2.5
tert-Butylbenzene				ug/l	6.2	1.8	2.5
o-Chlorotoluene		ND		ug/l	6.2 6.2	1.8 1.8	2.5
p-Chlorotoluene	nano	ND		ug/l	6.2	1.8	2.5
1,2-Dibromo-3-chloropro Hexachlorobutadiene	ране	ND		ug/l	6.2	1.8	2.5
		ND		ug/l	6.2	1.8	2.5
Isopropylbenzene p-Isopropyltoluene		ND		ug/l	6.2	1.8	2.5
Naphthalene		ND		ug/l	6.2	1.8	2.5
		טא		ug/l	0.2	1.ð	2.0

				Serial_No:06282219:30		
Project Name:	CORNERSTONE			Lab Number:	L2231684	
Project Number:	CORNERSTONE			Report Date:	06/28/22	
			SAMPLE RESULTS			
Lab ID:	L2231684-05	D		Date Collected:	06/14/22 12:06	
Client ID: Sample Location:	MW-7 THIRD AVENUE, E	BRONX		Date Received: Field Prep:	06/15/22 Not Specified	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
n-Propylbenzene	ND		ug/l	6.2	1.8	2.5		
1,2,3-Trichlorobenzene	ND		ug/l	6.2	1.8	2.5		
1,2,4-Trichlorobenzene	ND		ug/l	6.2	1.8	2.5		
1,3,5-Trimethylbenzene	ND		ug/l	6.2	1.8	2.5		
1,2,4-Trimethylbenzene	ND		ug/l	6.2	1.8	2.5		
1,4-Dioxane	ND		ug/l	620	150	2.5		
p-Diethylbenzene	ND		ug/l	5.0	1.8	2.5		
p-Ethyltoluene	ND		ug/l	5.0	1.8	2.5		
1,2,4,5-Tetramethylbenzene	ND		ug/l	5.0	1.4	2.5		
Ethyl ether	ND		ug/l	6.2	1.8	2.5		
trans-1,4-Dichloro-2-butene	ND		ug/l	6.2	1.8	2.5		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	113	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	121	70-130	

			Serial_N	0:06282219:30
Project Name:	CORNERSTONE		Lab Number:	L2231684
Project Number:	CORNERSTONE		Report Date:	06/28/22
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2231684-06 D MW-8 THIRD AVENUE, BRC		Date Collected: Date Received: Field Prep:	06/14/22 11:55 06/15/22 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 06/24/22 12:24 PD			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	12	3.5	5
1,1-Dichloroethane	ND		ug/l	12	3.5	5
Chloroform	ND		ug/l	12	3.5	5
Carbon tetrachloride	ND		ug/l	2.5	0.67	5
1,2-Dichloropropane	ND		ug/l	5.0	0.68	5
Dibromochloromethane	ND		ug/l	2.5	0.74	5
1,1,2-Trichloroethane	ND		ug/l	7.5	2.5	5
Tetrachloroethene	540		ug/l	2.5	0.90	5
Chlorobenzene	ND		ug/l	12	3.5	5
Trichlorofluoromethane	ND		ug/l	12	3.5	5
1,2-Dichloroethane	ND		ug/l	2.5	0.66	5
1,1,1-Trichloroethane	ND		ug/l	12	3.5	5
Bromodichloromethane	ND		ug/l	2.5	0.96	5
trans-1,3-Dichloropropene	ND		ug/l	2.5	0.82	5
cis-1,3-Dichloropropene	ND		ug/l	2.5	0.72	5
1,3-Dichloropropene, Total	ND		ug/l	2.5	0.72	5
1,1-Dichloropropene	ND		ug/l	12	3.5	5
Bromoform	ND		ug/l	10	3.2	5
1,1,2,2-Tetrachloroethane	ND		ug/l	2.5	0.84	5
Benzene	ND		ug/l	2.5	0.80	5
Toluene	ND		ug/l	12	3.5	5
Ethylbenzene	ND		ug/l	12	3.5	5
Chloromethane	ND		ug/l	12	3.5	5
Bromomethane	ND		ug/l	12	3.5	5
Vinyl chloride	ND		ug/l	5.0	0.36	5
Chloroethane	ND		ug/l	12	3.5	5
1,1-Dichloroethene	ND		ug/l	2.5	0.84	5
trans-1,2-Dichloroethene	ND		ug/l	12	3.5	5

					S	Serial No	:06282219:30	
Project Name:	CORNERSTONE				Lab Nu		L2231684	
Project Number:	CORNERSTONE				Report	Date:	06/28/22	
··· ·		SAMPL	E RESULTS	6			00/20/22	
Lab ID:	L2231684-06	D			Date Col	lected:	06/14/22 11:55	
Client ID:	MW-8	D			Date Red		06/15/22	
Sample Location:	THIRD AVENUE, I	BRONX			Field Pre		Not Specified	
-								
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westboro	ugh Lab						
Trichloroethene		35		ug/l	2.5	0.88	5	
1,2-Dichlorobenzene		ND		ug/l	12	3.5	5	
1,3-Dichlorobenzene		ND		ug/l	12	3.5	5	
1,4-Dichlorobenzene		ND		ug/l	12	3.5	5	
Methyl tert butyl ether		ND		ug/l	12	3.5	5	
p/m-Xylene		ND		ug/l	12	3.5	5	
o-Xylene		ND		ug/l	12	3.5	5	
Xylenes, Total		ND		ug/l	12	3.5	5	
cis-1,2-Dichloroethene		ND		ug/l	12	3.5	5	
1,2-Dichloroethene, Total		ND		ug/l	12	3.5	5	
Dibromomethane		ND		ug/l	25	5.0	5	
1,2,3-Trichloropropane		ND		ug/l	12	3.5	5	
Acrylonitrile		ND		ug/l	25	7.5	5	
Styrene		ND		ug/l	12	3.5	5	
Dichlorodifluoromethane		ND		ug/l	25	5.0	5	
Acetone		8.0	J	ug/l	25	7.3	5	
Carbon disulfide		ND		ug/l	25	5.0	5	
2-Butanone		ND		ug/l	25	9.7	5	
Vinyl acetate		ND		ug/l	25	5.0	5	
4-Methyl-2-pentanone		ND		ug/l	25	5.0	5	
2-Hexanone		ND		ug/l	25	5.0	5	
Bromochloromethane		ND		ug/l	12	3.5	5	
2,2-Dichloropropane		ND		ug/l	12	3.5	5	
1,2-Dibromoethane		ND		ug/l	10	3.2	5	
1,3-Dichloropropane		ND		ug/l	12	3.5	5	
1,1,1,2-Tetrachloroethane	e	ND		ug/l	12	3.5	5	
Bromobenzene		ND		ug/l	12	3.5	5	
n-Butylbenzene		ND		ug/l	12	3.5	5	
sec-Butylbenzene		ND		ug/l	12	3.5	5	
tert-Butylbenzene		ND		ug/l	12	3.5	5	
o-Chlorotoluene		ND		ug/l	12	3.5	5	
p-Chlorotoluene		ND		ug/l	12	3.5	5	
1,2-Dibromo-3-chloroprop	bane	ND		ug/l	12	3.5	5	
Hexachlorobutadiene		ND		ug/l	12	3.5	5	
Isopropylbenzene		ND		ug/l	12	3.5	5	
p-Isopropyltoluene		ND		ug/l	12	3.5	5	
Naphthalene		ND		ug/l	12	3.5	5	

				Serial_No:06282219:30		
Project Name:	CORNERSTONE			Lab Number:	L2231684	
Project Number:	CORNERSTONE			Report Date:	06/28/22	
		S	SAMPLE RESULTS			
Lab ID:	L2231684-06	D		Date Collected:	06/14/22 11:55	
Client ID:	MW-8			Date Received:	06/15/22	
Sample Location:	THIRD AVENUE,	BRONX		Field Prep:	Not Specified	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
n-Propylbenzene	ND		ug/l	12	3.5	5
1,2,3-Trichlorobenzene	ND		ug/l	12	3.5	5
1,2,4-Trichlorobenzene	ND		ug/l	12	3.5	5
1,3,5-Trimethylbenzene	ND		ug/l	12	3.5	5
1,2,4-Trimethylbenzene	ND		ug/l	12	3.5	5
1,4-Dioxane	ND		ug/l	1200	300	5
p-Diethylbenzene	ND		ug/l	10	3.5	5
p-Ethyltoluene	ND		ug/l	10	3.5	5
1,2,4,5-Tetramethylbenzene	ND		ug/l	10	2.7	5
Ethyl ether	ND		ug/l	12	3.5	5
trans-1,4-Dichloro-2-butene	ND		ug/l	12	3.5	5

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	110	70-130	

		Serial_No:06282219:30
Project Name:	CORNERSTONE	Lab Number: L2231684
Project Number:	CORNERSTONE	Report Date: 06/28/22
	SAMPLE RESULTS	
Lab ID:	L2231684-07	Date Collected: 06/14/22 09:31
Client ID:	MW-10	Date Received: 06/15/22
Sample Location:	THIRD AVENUE, BRONX	Field Prep: Not Specified
Sample Depth:		
Matrix:	Water	
Analytical Method:	1,8260C	
Analytical Date:	06/24/22 13:14	
Analyst:	PD	
-		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	3.8		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

					Ş	Serial No	:06282219:30	
Project Name:	CORNERSTONE				Lab Nu		L2231684	
Project Number:	CORNERSTONE				Report	Date:	06/28/22	
•		SAMP	LE RESULTS	6	•		00,20,22	
Lab ID:	L2231684-07				Date Col	lected:	06/14/22 09:31	
Client ID:	MW-10				Date Red		06/15/22	
Sample Location:	THIRD AVENUE, BR	ONX			Field Pre	p:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westboroug	n Lab						
Trichloroethene		ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
Xylenes, Total		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total		ND		ug/l	2.5	0.70	1	
Dibromomethane		ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1	
Acrylonitrile		ND		ug/l	5.0	1.5	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
Vinyl acetate		ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethane	9	ND		ug/l	2.5	0.70	1	
Bromobenzene		ND ND		ug/l	2.5 2.5	0.70	1	
n-Butylbenzene sec-Butylbenzene		ND		ug/l	2.5	0.70	1	
tert-Butylbenzene		ND		ug/l	2.5	0.70	1	
o-Chlorotoluene		ND		ug/l	2.5	0.70	1	
p-Chlorotoluene		ND		ug/l ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloroprop	Dane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
p-lsopropyltoluene		ND		ug/l	2.5	0.70	1	
Naphthalene		ND		ug/l	2.5	0.70	1	
				- 9, .	-			

ORNERSTONE	Lab Number: L2231684
ORNERSTONE	Report Date: 06/28/22
SAMPLE RESULTS	
L2231684-07	Date Collected: 06/14/22 09:31
MW-10	Date Received: 06/15/22
THIRD AVENUE, BRONX	Field Prep: Not Specified
; 	ORNERSTONE SAMPLE RESULTS _2231684-07 MW-10

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,4-Dioxane	ND		ug/l	250	61.	1
p-Diethylbenzene	ND		ug/l	2.0	0.70	1
p-Ethyltoluene	ND		ug/l	2.0	0.70	1
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1
Ethyl ether	ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	114	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	122	70-130	

			Serial_N	0:06282219:30
Project Name:	CORNERSTONE		Lab Number:	L2231684
Project Number:	CORNERSTONE		Report Date:	06/28/22
		SAMPLE RESULTS		
Lab ID:	L2231684-08	D	Date Collected:	06/14/22 09:55
Client ID:			Date Received:	06/15/22
Sample Location:	THIRD AVENUE, BF	RONA	Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	06/24/22 12:49			
Analyst:	PD			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	5.0	1.4	2
1,1-Dichloroethane	ND		ug/l	5.0	1.4	2
Chloroform	ND		ug/l	5.0	1.4	2
Carbon tetrachloride	ND		ug/l	1.0	0.27	2
1,2-Dichloropropane	ND		ug/l	2.0	0.27	2
Dibromochloromethane	ND		ug/l	1.0	0.30	2
1,1,2-Trichloroethane	ND		ug/l	3.0	1.0	2
Tetrachloroethene	180		ug/l	1.0	0.36	2
Chlorobenzene	ND		ug/l	5.0	1.4	2
Trichlorofluoromethane	ND		ug/l	5.0	1.4	2
1,2-Dichloroethane	ND		ug/l	1.0	0.26	2
1,1,1-Trichloroethane	ND		ug/l	5.0	1.4	2
Bromodichloromethane	ND		ug/l	1.0	0.38	2
trans-1,3-Dichloropropene	ND		ug/l	1.0	0.33	2
cis-1,3-Dichloropropene	ND		ug/l	1.0	0.29	2
1,3-Dichloropropene, Total	ND		ug/l	1.0	0.29	2
1,1-Dichloropropene	ND		ug/l	5.0	1.4	2
Bromoform	ND		ug/l	4.0	1.3	2
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.33	2
Benzene	ND		ug/l	1.0	0.32	2
Toluene	ND		ug/l	5.0	1.4	2
Ethylbenzene	ND		ug/l	5.0	1.4	2
Chloromethane	ND		ug/l	5.0	1.4	2
Bromomethane	ND		ug/l	5.0	1.4	2
Vinyl chloride	ND		ug/l	2.0	0.14	2
Chloroethane	ND		ug/l	5.0	1.4	2
1,1-Dichloroethene	ND		ug/l	1.0	0.34	2
trans-1,2-Dichloroethene	ND		ug/l	5.0	1.4	2

					ç	Serial_No	:06282219:30	
Project Name:	CORNERSTONE				Lab Nu		L2231684	
Project Number:	CORNERSTONE				Report	Date:	06/28/22	
	•••••	SAMPI	E RESULTS	5			00,20,22	
Lab ID:	L2231684-08	D			Date Col	lected [.]	06/14/22 09:55	
Client ID:	MW-XX	2			Date Rec		06/15/22	
Sample Location:	THIRD AVENUE, E	BRONX			Field Pre	p:	Not Specified	
Comple Denthy								
Sample Depth: Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
	y GC/MS - Westborou		Quanner	Units		MDL	Dilution ractor	
Volatile Organics b		Igh Lab						
Trichloroethene		1.4		ug/l	1.0	0.35	2	
1,2-Dichlorobenzene		ND		ug/l	5.0	1.4	2	
1,3-Dichlorobenzene		ND		ug/l	5.0	1.4	2	
1,4-Dichlorobenzene		ND		ug/l	5.0	1.4	2	
Methyl tert butyl ether		ND		ug/l	5.0	1.4	2	
p/m-Xylene		ND		ug/l	5.0	1.4	2	
o-Xylene		ND		ug/l	5.0	1.4	2	
Xylenes, Total		ND		ug/l	5.0	1.4	2	
cis-1,2-Dichloroethene		ND		ug/l	5.0	1.4	2	
1,2-Dichloroethene, Total		ND		ug/l	5.0	1.4	2	
Dibromomethane		ND		ug/l	10	2.0	2	
1,2,3-Trichloropropane		ND		ug/l	5.0	1.4	2	
Acrylonitrile		ND		ug/l	10	3.0	2	
Styrene		ND		ug/l	5.0	1.4	2	
Dichlorodifluoromethane		ND		ug/l	10	2.0	2	
Acetone		ND		ug/l	10	2.9	2	
Carbon disulfide		ND		ug/l	10	2.0	2	
2-Butanone		ND		ug/l	10	3.9	2	
Vinyl acetate		ND		ug/l	10	2.0	2	
4-Methyl-2-pentanone		ND		ug/l	10	2.0	2	
2-Hexanone		ND		ug/l	10	2.0	2	
Bromochloromethane		ND		ug/l	5.0	1.4	2	
2,2-Dichloropropane		ND		ug/l	5.0	1.4	2	
1,2-Dibromoethane		ND		ug/l	4.0	1.3	2	
1,3-Dichloropropane		ND		ug/l	5.0	1.4	2	
1,1,1,2-Tetrachloroethane)	ND		ug/l	5.0	1.4	2	
Bromobenzene		ND		ug/l	5.0	1.4	2	
n-Butylbenzene		ND		ug/l	5.0	1.4	2	
sec-Butylbenzene		ND		ug/l	5.0	1.4	2	
tert-Butylbenzene		ND		ug/l	5.0	1.4	2	
o-Chlorotoluene		ND		ug/l	5.0	1.4	2	
p-Chlorotoluene		ND		ug/l	5.0	1.4	2	
1,2-Dibromo-3-chloroprop	pane	ND		ug/l	5.0	1.4	2	
Hexachlorobutadiene		ND		ug/l	5.0	1.4	2	
Isopropylbenzene		ND		ug/l	5.0	1.4	2	
p-lsopropyltoluene		ND		ug/l	5.0	1.4	2	
Naphthalene		ND		ug/l	5.0	1.4	2	

				Serial_No	0:06282219:30
Project Name:	CORNERSTONE			Lab Number:	L2231684
Project Number:	CORNERSTONE			Report Date:	06/28/22
			SAMPLE RESULTS		
Lab ID:	L2231684-08	D		Date Collected:	06/14/22 09:55
Client ID:	MW-XX			Date Received:	06/15/22
Sample Location:	THIRD AVENUE, E	BRONX		Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
n-Propylbenzene	ND		ug/l	5.0	1.4	2
1,2,3-Trichlorobenzene	ND		ug/l	5.0	1.4	2
1,2,4-Trichlorobenzene	ND		ug/l	5.0	1.4	2
1,3,5-Trimethylbenzene	ND		ug/l	5.0	1.4	2
1,2,4-Trimethylbenzene	ND		ug/l	5.0	1.4	2
1,4-Dioxane	ND		ug/l	500	120	2
p-Diethylbenzene	ND		ug/l	4.0	1.4	2
p-Ethyltoluene	ND		ug/l	4.0	1.4	2
1,2,4,5-Tetramethylbenzene	ND		ug/l	4.0	1.1	2
Ethyl ether	ND		ug/l	5.0	1.4	2
trans-1,4-Dichloro-2-butene	ND		ug/l	5.0	1.4	2

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	108	70-130	

		Serial_No:06282219:30
Project Name:	CORNERSTONE	Lab Number: L2231684
Project Number:	CORNERSTONE	Report Date: 06/28/22
	SAMPLE RESULT	rs
Lab ID:	L2231684-09	Date Collected: 06/14/22 13:15
Client ID:	FIELD BLANK	Date Received: 06/15/22
Sample Location:	THIRD AVENUE, BRONX	Field Prep: Not Specified
Sample Depth:		
Matrix:	Water	
Analytical Method:	1,8260C	
Analytical Date:	06/24/22 11:10	
Analyst:	PD	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

					ç	Serial_No	:06282219:30
Project Name:	CORNERSTONE				Lab Nu	mber:	L2231684
Project Number:	CORNERSTONE				Report	Date:	06/28/22
-		SAMP	LE RESULTS	;	•		
Lab ID:	L2231684-09				Date Col	lected:	06/14/22 13:15
Client ID:	FIELD BLANK				Date Rec	eived:	06/15/22
Sample Location:	THIRD AVENUE, BRO	NX			Field Pre	p:	Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough L	_ab					
Trichloroethene		ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1
p/m-Xylene		ND		ug/l	2.5	0.70	1
o-Xylene		ND		ug/l	2.5	0.70	1
Xylenes, Total		ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total		ND		ug/l	2.5	0.70	1
Dibromomethane		ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1
Acrylonitrile		ND		ug/l	5.0	1.5	1
Styrene		ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1
Acetone		ND		ug/l	5.0	1.5	1
Carbon disulfide		ND		ug/l	5.0	1.0	1
2-Butanone		ND		ug/l	5.0	1.9	1
Vinyl acetate		ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1
2-Hexanone		ND		ug/l	5.0	1.0	1
Bromochloromethane		ND		ug/l	2.5	0.70	1
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane)	ND		ug/l	2.5	0.70	1
Bromobenzene		ND		ug/l	2.5	0.70	1
n-Butylbenzene		ND		ug/l	2.5	0.70	1
sec-Butylbenzene		ND		ug/l	2.5	0.70	1
tert-Butylbenzene		ND		ug/l	2.5	0.70	1
o-Chlorotoluene		ND ND		ug/l	2.5 2.5	0.70	1
p-Chlorotoluene 1,2-Dibromo-3-chloroprop	ana	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1
Isopropylbenzene		ND		ug/l	2.5	0.70	1
p-lsopropyltoluene		ND		ug/l ug/l	2.5	0.70	1
Naphthalene		ND			2.5	0.70	1
				ug/l	2.0	0.70	I

					Ś	Serial_No	06282219:30	
Project Name:	CORNERSTONE				Lab Nu	mber:	L2231684	
Project Number:	CORNERSTONE				Report	Date:	06/28/22	
		SAMPI		6				
Lab ID:	L2231684-09				Date Col	lected:	06/14/22 13:15	
Client ID:	FIELD BLANK				Date Rec	ceived:	06/15/22	
Sample Location:	THIRD AVENUE, BRO	NX			Field Pre	p:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	v GC/MS - Westborough L	ab						

Volatile Organics by GC/MS - Westb	orough Lab					
n-Propylbenzene	ND	ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	1	
1,4-Dioxane	ND	ug/l	250	61.	1	
p-Diethylbenzene	ND	ug/l	2.0	0.70	1	
p-Ethyltoluene	ND	ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54	1	
Ethyl ether	ND	ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	121	70-130	

		Serial_No:06282219:30
Project Name:	CORNERSTONE	Lab Number: L2231684
Project Number:	CORNERSTONE	Report Date: 06/28/22
	SAMPLE RESULTS	
Lab ID:	L2231684-10	Date Collected: 06/14/22 00:00
Client ID:	TRIP BLANK	Date Received: 06/15/22
Sample Location:	THIRD AVENUE, BRONX	Field Prep: Not Specified
Sample Depth:		
Matrix:	Water	
Analytical Method:	1,8260C	
Analytical Date:	06/24/22 11:35	
Analyst:	PD	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

					5	Serial_No	:06282219:30	
Project Name:	CORNERSTONE				Lab Nu	mber:	L2231684	
Project Number:	CORNERSTONE				Report	Date:	06/28/22	
	•••••	SAMP	LE RESULTS				00,20,22	
Lab ID:	L2231684-10				Date Coll	ected.	06/14/22 00:00	
Client ID:	TRIP BLANK				Date Rec		06/15/22	
Sample Location:	THIRD AVENUE, BRO	NX			Field Pre		Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough L	ab						
Trichloroethene		ND			0.50	0.18	1	
1,2-Dichlorobenzene		ND		ug/l	2.5	0.18	1	
1,3-Dichlorobenzene		ND		ug/l ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
Xylenes, Total		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total		ND		ug/l	2.5	0.70	1	
Dibromomethane		ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1	
Acrylonitrile		ND		ug/l	5.0	1.5	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
Vinyl acetate		ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethane		ND		ug/l	2.5	0.70	1	
Bromobenzene		ND		ug/l	2.5	0.70	1	
n-Butylbenzene		ND		ug/l	2.5	0.70	1	
sec-Butylbenzene		ND		ug/l	2.5	0.70	1	
tert-Butylbenzene		ND		ug/l	2.5	0.70	1	
o-Chlorotoluene		ND		ug/l	2.5	0.70	1	
p-Chlorotoluene		ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloroprop	ane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1	
Naphthalene		ND		ug/l	2.5	0.70	1	

					Serial_N	lo:06282219:30
Project Name:	CORNERSTONE				Lab Number:	L2231684
Project Number:	CORNERSTONE				Report Date:	06/28/22
		SAMP	LE RESULTS	5		
Lab ID:	L2231684-10				Date Collected:	06/14/22 00:00
Client ID:	TRIP BLANK				Date Received:	06/15/22
Sample Location:	THIRD AVENUE, BROI	NX			Field Prep:	Not Specified
Sample Depth:						
Parameter		Result	Qualifier	Units	RL MDL	Dilution Factor

Parameter	Result	Quaimer	Units	RL.	WDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,4-Dioxane	ND		ug/l	250	61.	1
p-Diethylbenzene	ND		ug/l	2.0	0.70	1
p-Ethyltoluene	ND		ug/l	2.0	0.70	1
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1
Ethyl ether	ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	110	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	121	70-130	

 Lab Number:
 L2231684

 Report Date:
 06/28/22

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst:

1,8260C 06/23/22 20:22 TMS

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	· Westborough Lab	for sample(s): 01-04	Batch:	WG1654899-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

 Lab Number:
 L2231684

 Report Date:
 06/28/22

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst:

1,8260C 06/23/22 20:22 TMS

arameter	Result Qualit	iier Units	RL	MDL
olatile Organics by GC/MS -	· Westborough Lab for sa	ample(s): 01-04	Batch:	WG1654899-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

 Lab Number:
 L2231684

 Report Date:
 06/28/22

Method Blank Analysis Batch Quality Control

Analytical Method:1,8Analytical Date:06/Analyst:TM

1,8260C 06/23/22 20:22 TMS

arameter	Result	Qualifier Units	;	RL	MDL
platile Organics by GC/MS - V	Vestborough Lab	o for sample(s):	01-04	Batch:	WG1654899-5
o-Chlorotoluene	ND	ug/l		2.5	0.70
p-Chlorotoluene	ND	ug/l		2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l		2.5	0.70
Hexachlorobutadiene	ND	ug/l		2.5	0.70
Isopropylbenzene	ND	ug/l		2.5	0.70
p-Isopropyltoluene	ND	ug/l		2.5	0.70
Naphthalene	ND	ug/l		2.5	0.70
n-Propylbenzene	ND	ug/l		2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l		2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l		2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l		2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l		2.5	0.70
1,4-Dioxane	ND	ug/l		250	61.
p-Diethylbenzene	ND	ug/l		2.0	0.70
p-Ethyltoluene	ND	ug/l		2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/l		2.0	0.54
Ethyl ether	ND	ug/l		2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l		2.5	0.70

		Acceptance		
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	110		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	98		70-130	
Dibromofluoromethane	123		70-130	

 Lab Number:
 L2231684

 Report Date:
 06/28/22

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst:

1,8260C 06/24/22 09:56 PD

arameter	Result Q	ualifier Units	RL	MDL
olatile Organics by GC/MS - W	estborough Lab fo	r sample(s): 05-10	Batch:	WG1655588-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

 Lab Number:
 L2231684

 Report Date:
 06/28/22

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:06/24/22 09:56Analyst:PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	05-10 Batch:	WG1655588-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

 Lab Number:
 L2231684

 Report Date:
 06/28/22

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst: 1,8260C 06/24/22 09:56 PD

arameter	Result C	ualifier Units	RL	MDL
olatile Organics by GC/MS - W	/estborough Lab fo	or sample(s): 05-10	Batch:	WG1655588-5
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Hexachlorobutadiene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
1,4-Dioxane	ND	ug/l	250	61.
p-Diethylbenzene	ND	ug/l	2.0	0.70
p-Ethyltoluene	ND	ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54
Ethyl ether	ND	ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70

		Acceptance		
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	108		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	117		70-130	

Lab Control Sample Analysis Batch Quality Control

Lab Number: L2231684 Report Date: 06/28/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD imits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-04 Batch:	WG1654899-3	WG1654899-4		
Methylene chloride	110		110		70-130	0	20
1,1-Dichloroethane	110		110		70-130	0	20
Chloroform	110		110		70-130	0	20
Carbon tetrachloride	110		110		63-132	0	20
1,2-Dichloropropane	99		100		70-130	1	20
Dibromochloromethane	93		93		63-130	0	20
1,1,2-Trichloroethane	91		93		70-130	2	20
Tetrachloroethene	100		100		70-130	0	20
Chlorobenzene	100		100		75-130	0	20
Trichlorofluoromethane	120		120		62-150	0	20
1,2-Dichloroethane	99		100		70-130	1	20
1,1,1-Trichloroethane	110		110		67-130	0	20
Bromodichloromethane	100		100		67-130	0	20
trans-1,3-Dichloropropene	88		90		70-130	2	20
cis-1,3-Dichloropropene	100		100		70-130	0	20
1,1-Dichloropropene	100		100		70-130	0	20
Bromoform	87		93		54-136	7	20
1,1,2,2-Tetrachloroethane	110		120		67-130	9	20
Benzene	100		100		70-130	0	20
Toluene	100		100		70-130	0	20
Ethylbenzene	110		100		70-130	10	20
Chloromethane	120		110		64-130	9	 20
Bromomethane	120		110		39-139	9	20

Lab Control Sample Analysis Batch Quality Control

Lab Number: L2231684 Report Date: 06/28/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-04 Batch: \	NG1654899-3	WG1654899-4			
Vinyl chloride	120		110		55-140	9	20	
Chloroethane	120		110		55-138	9	20	
1,1-Dichloroethene	120		110		61-145	9	20	
trans-1,2-Dichloroethene	110		110		70-130	0	20	
Trichloroethene	89		88		70-130	1	20	
1,2-Dichlorobenzene	100		100		70-130	0	20	
1,3-Dichlorobenzene	100		100		70-130	0	20	
1,4-Dichlorobenzene	100		100		70-130	0	20	
Methyl tert butyl ether	79		83		63-130	5	20	
p/m-Xylene	110		105		70-130	5	20	
o-Xylene	105		105		70-130	0	20	
cis-1,2-Dichloroethene	110		110		70-130	0	20	
Dibromomethane	100		100		70-130	0	20	
1,2,3-Trichloropropane	86		92		64-130	7	20	
Acrylonitrile	97		100		70-130	3	20	
Styrene	110		105		70-130	5	20	
Dichlorodifluoromethane	110		110		36-147	0	20	
Acetone	97		100		58-148	3	20	
Carbon disulfide	120		110		51-130	9	20	
2-Butanone	85		80		63-138	6	20	
Vinyl acetate	260	Q	270	Q	70-130	4	20	
4-Methyl-2-pentanone	69		76		59-130	10	20	
2-Hexanone	73		82		57-130	12	20	

Lab Control Sample Analysis Batch Quality Control

Lab Number: L2231684 Report Date: 06/28/22

Parameter	LCS %Recovery	Qual	LCSD %Recover	/ Qual	%Recovery Limits	RPD	RP Qual Lim	
volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-04 Batch:	WG1654899-3	WG1654899-4			
Bromochloromethane	110		110		70-130	0	20)
2,2-Dichloropropane	150	Q	150	Q	63-133	0	20)
1,2-Dibromoethane	92		94		70-130	2	20)
1,3-Dichloropropane	91		93		70-130	2	20)
1,1,1,2-Tetrachloroethane	92		96		64-130	4	20)
Bromobenzene	100		100		70-130	0	20)
n-Butylbenzene	110		110		53-136	0	20)
sec-Butylbenzene	110		110		70-130	0	20)
tert-Butylbenzene	110		110		70-130	0	20)
o-Chlorotoluene	100		100		70-130	0	20)
p-Chlorotoluene	100		100		70-130	0	20)
1,2-Dibromo-3-chloropropane	89		93		41-144	4	20)
Hexachlorobutadiene	110		110		63-130	0	20)
Isopropylbenzene	100		100		70-130	0	20)
p-Isopropyltoluene	110		110		70-130	0	20)
Naphthalene	90		95		70-130	5	20)
n-Propylbenzene	100		100		69-130	0	20)
1,2,3-Trichlorobenzene	96		100		70-130	4	20)
1,2,4-Trichlorobenzene	100		100		70-130	0	20)
1,3,5-Trimethylbenzene	100		100		64-130	0	20)
1,2,4-Trimethylbenzene	100		100		70-130	0	20)
1,4-Dioxane	82		90		56-162	9	20)
p-Diethylbenzene	100		100		70-130	0	20)

Project Name: CORNERSTONE Project Number: CORNERSTONE

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-04 Batch:	WG1654899-3	WG1654899-4				
p-Ethyltoluene	100		100		70-130	0		20	
1,2,4,5-Tetramethylbenzene	100		100		70-130	0		20	
Ethyl ether	88		90		59-134	2		20	
trans-1,4-Dichloro-2-butene	90		94		70-130	4		20	

Surrogate	LCS %Recovery Qua	LCSD al %Recovery Qual	Acceptance Criteria
			70.400
1,2-Dichloroethane-d4	97	98	70-130
Toluene-d8	98	100	70-130
4-Bromofluorobenzene	96	97	70-130
Dibromofluoromethane	105	106	70-130

Parameter	LCS %Recovery	Qual	LCSD %Recover	'Y Qual	%Recovery Limits	RPD	RPD .imits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	05-10 Batch	: WG1655588-3	WG1655588-4		
Methylene chloride	110		110		70-130	0	20
1,1-Dichloroethane	110		110		70-130	0	20
Chloroform	110		110		70-130	0	20
Carbon tetrachloride	110		120		63-132	9	20
1,2-Dichloropropane	100		110		70-130	10	20
Dibromochloromethane	98		99		63-130	1	20
1,1,2-Trichloroethane	96		98		70-130	2	20
Tetrachloroethene	100		100		70-130	0	20
Chlorobenzene	100		100		75-130	0	20
Trichlorofluoromethane	110		120		62-150	9	20
1,2-Dichloroethane	100		110		70-130	10	20
1,1,1-Trichloroethane	110		110		67-130	0	20
Bromodichloromethane	100		110		67-130	10	20
trans-1,3-Dichloropropene	94		95		70-130	1	20
cis-1,3-Dichloropropene	110		110		70-130	0	20
1,1-Dichloropropene	100		110		70-130	10	20
Bromoform	92		96		54-136	4	20
1,1,2,2-Tetrachloroethane	120		120		67-130	0	20
Benzene	100		110		70-130	10	20
Toluene	100		110		70-130	10	20
Ethylbenzene	100		110		70-130	10	20
Chloromethane	110		110		64-130	0	20
Bromomethane	130		120		39-139	8	20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limi	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	05-10 Batch:	WG1655588-3	WG1655588-4			
Vinyl chloride	110		110		55-140	0	20	
Chloroethane	110		110		55-138	0	20	
1,1-Dichloroethene	110		120		61-145	9	20	
trans-1,2-Dichloroethene	110		120		70-130	9	20	
Trichloroethene	88		92		70-130	4	20	
1,2-Dichlorobenzene	100		110		70-130	10	20	
1,3-Dichlorobenzene	100		110		70-130	10	20	
1,4-Dichlorobenzene	100		110		70-130	10	20	
Methyl tert butyl ether	87		91		63-130	4	20	
p/m-Xylene	105		110		70-130	5	20	
o-Xylene	105		105		70-130	0	20	
cis-1,2-Dichloroethene	110		110		70-130	0	20	
Dibromomethane	110		110		70-130	0	20	
1,2,3-Trichloropropane	92		97		64-130	5	20	
Acrylonitrile	100		100		70-130	0	20	
Styrene	105		110		70-130	5	20	
Dichlorodifluoromethane	100		110		36-147	10	20	
Acetone	89		89		58-148	0	20	
Carbon disulfide	110		120		51-130	9	20	
2-Butanone	71		82		63-138	14	20	
Vinyl acetate	290	Q	300	Q	70-130	3	20	
4-Methyl-2-pentanone	79		81		59-130	3	20	
2-Hexanone	79		83		57-130	5	20	

Parameter	LCS %Recovery	Qual	LCSD %Recove	ery Qual	%Recovery Limits	RPD	RPD imits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	05-10 Batc	n: WG1655588-3	3 WG1655588-4		
Bromochloromethane	110		110		70-130	0	20
2,2-Dichloropropane	140	Q	150	Q	63-133	7	20
1,2-Dibromoethane	98		100		70-130	2	20
1,3-Dichloropropane	98		99		70-130	1	20
1,1,1,2-Tetrachloroethane	97		100		64-130	3	20
Bromobenzene	98		100		70-130	2	20
n-Butylbenzene	110		120		53-136	9	20
sec-Butylbenzene	100		110		70-130	10	20
tert-Butylbenzene	100		110		70-130	10	20
o-Chlorotoluene	98		110		70-130	12	20
p-Chlorotoluene	100		100		70-130	0	20
1,2-Dibromo-3-chloropropane	92		98		41-144	6	20
Hexachlorobutadiene	100		120		63-130	18	20
Isopropylbenzene	97		100		70-130	3	20
p-Isopropyltoluene	100		110		70-130	10	20
Naphthalene	92		98		70-130	6	20
n-Propylbenzene	100		110		69-130	10	20
1,2,3-Trichlorobenzene	96		100		70-130	4	20
1,2,4-Trichlorobenzene	100		100		70-130	0	20
1,3,5-Trimethylbenzene	100		110		64-130	10	20
1,2,4-Trimethylbenzene	100		110		70-130	10	20
1,4-Dioxane	86		90		56-162	5	20
p-Diethylbenzene	100		110		70-130	10	20

Project Name: CORNERSTONE Project Number: CORNERSTONE

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	' Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	05-10 Batch:	WG1655588-3	WG1655588-4				
p-Ethyltoluene	99		110		70-130	11		20	
1,2,4,5-Tetramethylbenzene	99		100		70-130	1		20	
Ethyl ether	92		98		59-134	6		20	
trans-1,4-Dichloro-2-butene	96		95		70-130	1		20	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qua	I %Recovery Qual	Criteria
1,2-Dichloroethane-d4	99	99	70-130
Toluene-d8	100	100	70-130
4-Bromofluorobenzene	96	96	70-130
Dibromofluoromethane	104	105	70-130

Matrix Spike Analysis Batch Quality Control

Project Name: CORNERSTONE Project Number: CORNERSTONE

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS MW-10	•	_ab Assoc	ciated sample(s): 05-10 QC	Batch ID: WG16555				
Methylene chloride	ND	10	11	110	11	110	70-130	0	20
1,1-Dichloroethane	ND	10	11	110	11	110	70-130	0	20
Chloroform	ND	10	11	110	11	110	70-130	0	20
Carbon tetrachloride	ND	10	12	120	12	120	63-132	0	20
1,2-Dichloropropane	ND	10	11	110	11	110	70-130	0	20
Dibromochloromethane	ND	10	9.9	99	9.9	99	63-130	0	20
1,1,2-Trichloroethane	ND	10	10	100	10	100	70-130	0	20
Tetrachloroethene	3.8	10	15	112	15	112	70-130	0	20
Chlorobenzene	ND	10	11	110	11	110	75-130	0	20
Trichlorofluoromethane	ND	10	12	120	12	120	62-150	0	20
1,2-Dichloroethane	ND	10	11	110	10	100	70-130	10	20
1,1,1-Trichloroethane	ND	10	12	120	12	120	67-130	0	20
Bromodichloromethane	ND	10	11	110	11	110	67-130	0	20
trans-1,3-Dichloropropene	ND	10	9.5	95	9.3	93	70-130	2	20
cis-1,3-Dichloropropene	ND	10	11	110	10	100	70-130	10	20
1,1-Dichloropropene	ND	10	12	120	11	110	70-130	9	20
Bromoform	ND	10	9.5	95	9.4	94	54-136	1	20
1,1,2,2-Tetrachloroethane	ND	10	12	120	12	120	67-130	0	20
Benzene	ND	10	11	110	11	110	70-130	0	20
Toluene	ND	10	11	110	11	110	70-130	0	20
Ethylbenzene	ND	10	11	110	11	110	70-130	0	20
Chloromethane	ND	10	11	110	11	110	64-130	0	20
Bromomethane	ND	10	4.6	46	5.6	56	39-139	20	20

Matrix Spike Analysis Batch Quality Control

Project Name: CORNERSTONE Project Number: CORNERSTONE Lab Number: L2231684 Report Date: 06/28/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - MW-10		Lab Assoc	ciated sample		Batch ID: WG16555					684-07	Client ID:
Vinyl chloride	ND	10	12	120	11	110		55-140	9		20
Chloroethane	ND	10	13	130	11	110		55-138	17		20
1,1-Dichloroethene	ND	10	12	120	12	120		61-145	0		20
trans-1,2-Dichloroethene	ND	10	12	120	12	120		70-130	0		20
Trichloroethene	ND	10	9.4	94	9.1	91		70-130	3		20
1,2-Dichlorobenzene	ND	10	10	100	10	100		70-130	0		20
1,3-Dichlorobenzene	ND	10	11	110	11	110		70-130	0		20
1,4-Dichlorobenzene	ND	10	10	100	10	100		70-130	0		20
Methyl tert butyl ether	ND	10	9.6	96	9.4	94		63-130	2		20
p/m-Xylene	ND	20	24	120	22	110		70-130	9		20
o-Xylene	ND	20	22	110	22	110		70-130	0		20
cis-1,2-Dichloroethene	ND	10	11	110	11	110		70-130	0		20
Dibromomethane	ND	10	11	110	11	110		70-130	0		20
1,2,3-Trichloropropane	ND	10	9.6	96	9.5	95		64-130	1		20
Acrylonitrile	ND	10	11	110	10	100		70-130	10		20
Styrene	ND	20	22	110	21	105		70-130	5		20
Dichlorodifluoromethane	ND	10	10	100	11	110		36-147	10		20
Acetone	ND	10	9.9	99	9.8	98		58-148	1		20
Carbon disulfide	ND	10	12	120	12	120		51-130	0		20
2-Butanone	ND	10	7.8	78	8.2	82		63-138	5		20
Vinyl acetate	ND	10	29	290	Q 29	290	Q	70-130	0		20
4-Methyl-2-pentanone	ND	10	8.7	87	8.8	88		59-130	1		20
2-Hexanone	ND	10	8.8	88	8.9	89		57-130	1		20

_

Matrix Spike Analysis Batch Quality Control

Project Name: CORNERSTONE Project Number: CORNERSTONE

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS MW-10	- Westborough La	ab Asso	ciated sample(s	s): 05-10 Q0	C Batch ID: WG16555	588-6 WG1655	588-7 QC Sample	: L223	1684-07	Client ID:
Bromochloromethane	ND	10	12	120	12	120	70-130	0		20
2,2-Dichloropropane	ND	10	13	130	12	120	63-133	8		20
1,2-Dibromoethane	ND	10	10	100	10	100	70-130	0		20
1,3-Dichloropropane	ND	10	10	100	10	100	70-130	0		20
1,1,1,2-Tetrachloroethane	ND	10	10	100	10	100	64-130	0		20
Bromobenzene	ND	10	10	100	10	100	70-130	0		20
n-Butylbenzene	ND	10	11	110	11	110	53-136	0		20
sec-Butylbenzene	ND	10	11	110	11	110	70-130	0		20
tert-Butylbenzene	ND	10	11	110	11	110	70-130	0		20
o-Chlorotoluene	ND	10	11	110	10	100	70-130	10		20
p-Chlorotoluene	ND	10	10	100	10	100	70-130	0		20
1,2-Dibromo-3-chloropropane	ND	10	9.8	98	10	100	41-144	2		20
Hexachlorobutadiene	ND	10	10	100	9.9	99	63-130	1		20
Isopropylbenzene	ND	10	11	110	11	110	70-130	0		20
p-Isopropyltoluene	ND	10	11	110	11	110	70-130	0		20
Naphthalene	ND	10	14	140	Q 11	110	70-130	24	Q	20
n-Propylbenzene	ND	10	11	110	11	110	69-130	0		20
1,2,3-Trichlorobenzene	ND	10	10	100	10	100	70-130	0		20
1,2,4-Trichlorobenzene	ND	10	10	100	10	100	70-130	0		20
1,3,5-Trimethylbenzene	ND	10	11	110	11	110	64-130	0		20
1,2,4-Trimethylbenzene	ND	10	13	130	11	110	70-130	17		20
1,4-Dioxane	ND	500	440	88	500	100	56-162	13		20
p-Diethylbenzene	ND	10	12	120	11	110	70-130	9		20

Matrix Spike Analysis

Project Name:	CORNERSTONE	Batch Quality Control	Lab Number:	L2231684
Project Number:	CORNERSTONE		Report Date:	06/28/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	/ Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS MW-10	5 - Westborough L	.ab Asso	ciated sample(s	s): 05-10 Q	C Batch ID:	WG16555	588-6 WG1655	5588-7	QC Sample	: L223	1684-07	Client ID:
p-Ethyltoluene	ND	10	12	120		11	110		70-130	9		20
1,2,4,5-Tetramethylbenzene	ND	10	11	110		10	100		70-130	10		20
Ethyl ether	ND	10	9.9	99		10	100		59-134	1		20
trans-1,4-Dichloro-2-butene	ND	10	9.3	93		9.0	90		70-130	3		20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	99	97	70-130
4-Bromofluorobenzene	98	97	70-130
Dibromofluoromethane	101	101	70-130
Toluene-d8	99	99	70-130

Project Name:CORNERSTONEProject Number:CORNERSTONE

Serial_No:06282219:30 *Lab Number:* L2231684 *Report Date:* 06/28/22

Sample Receipt and Container Information

Frozen

Initial Final Temp

Were project specific reporting limits specified?

YES

Cooler Information

Container Information

Cooler	Custody Seal
A	Absent

Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2231684-01A	Vial HCI preserved	А	NA		2.6	Y	Absent		NYTCL-8260(14)
L2231684-01B	Vial HCl preserved	А	NA		2.6	Υ	Absent		NYTCL-8260(14)
L2231684-01C	Vial HCI preserved	А	NA		2.6	Y	Absent		NYTCL-8260(14)
L2231684-02A	Vial HCI preserved	А	NA		2.6	Y	Absent		NYTCL-8260(14)
L2231684-02B	Vial HCI preserved	А	NA		2.6	Y	Absent		NYTCL-8260(14)
L2231684-02C	Vial HCI preserved	А	NA		2.6	Y	Absent		NYTCL-8260(14)
L2231684-03A	Vial HCl preserved	А	NA		2.6	Y	Absent		NYTCL-8260(14)
L2231684-03B	Vial HCI preserved	А	NA		2.6	Y	Absent		NYTCL-8260(14)
L2231684-03C	Vial HCI preserved	А	NA		2.6	Y	Absent		NYTCL-8260(14)
L2231684-04A	Vial HCI preserved	А	NA		2.6	Y	Absent		NYTCL-8260(14)
L2231684-04B	Vial HCl preserved	А	NA		2.6	Y	Absent		NYTCL-8260(14)
L2231684-04C	Vial HCI preserved	А	NA		2.6	Y	Absent		NYTCL-8260(14)
L2231684-05A	Vial HCl preserved	А	NA		2.6	Y	Absent		NYTCL-8260(14)
L2231684-05B	Vial HCl preserved	А	NA		2.6	Y	Absent		NYTCL-8260(14)
L2231684-05C	Vial HCl preserved	А	NA		2.6	Y	Absent		NYTCL-8260(14)
L2231684-06A	Vial HCl preserved	А	NA		2.6	Y	Absent		NYTCL-8260(14)
L2231684-06B	Vial HCl preserved	А	NA		2.6	Y	Absent		NYTCL-8260(14)
L2231684-06C	Vial HCl preserved	А	NA		2.6	Y	Absent		NYTCL-8260(14)
L2231684-07A	Vial HCl preserved	А	NA		2.6	Y	Absent		NYTCL-8260(14)
L2231684-07A1	Vial HCl preserved	А	NA		2.6	Y	Absent		NYTCL-8260(14)
L2231684-07A2	Vial HCI preserved	А	NA		2.6	Y	Absent		NYTCL-8260(14)
L2231684-07B	Vial HCI preserved	А	NA		2.6	Y	Absent		NYTCL-8260(14)
L2231684-07B1	Vial HCl preserved	А	NA		2.6	Y	Absent		NYTCL-8260(14)

Project Name:CORNERSTONEProject Number:CORNERSTONE

Serial_No:06282219:30 *Lab Number:* L2231684 *Report Date:* 06/28/22

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2231684-07B2	Vial HCI preserved	A	NA		2.6	Y	Absent		NYTCL-8260(14)
L2231684-07C	Vial HCI preserved	А	NA		2.6	Y	Absent		NYTCL-8260(14)
L2231684-07C1	Vial HCI preserved	А	NA		2.6	Y	Absent		NYTCL-8260(14)
L2231684-07C2	Vial HCI preserved	А	NA		2.6	Y	Absent		NYTCL-8260(14)
L2231684-08A	Vial HCI preserved	А	NA		2.6	Y	Absent		NYTCL-8260(14)
L2231684-08B	Vial HCI preserved	А	NA		2.6	Y	Absent		NYTCL-8260(14)
L2231684-08C	Vial HCI preserved	А	NA		2.6	Y	Absent		NYTCL-8260(14)
L2231684-09A	Vial HCI preserved	А	NA		2.6	Y	Absent		NYTCL-8260(14)
L2231684-09B	Vial HCI preserved	А	NA		2.6	Y	Absent		NYTCL-8260(14)
L2231684-09C	Vial HCI preserved	А	NA		2.6	Y	Absent		NYTCL-8260(14)
L2231684-10A	Vial HCI preserved	A	NA		2.6	Y	Absent		NYTCL-8260(14)
L2231684-10B	Vial HCI preserved	А	NA		2.6	Y	Absent		NYTCL-8260(14)

Project Name: CORNERSTONE

Project Number: CORNERSTONE

Lab Number: L2231684

Report Date: 06/28/22

GLOSSARY

Acronyms

-	
DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	 Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	 No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name: CORNERSTONE Project Number: CORNERSTONE

Lab Number: L2231684 Report Date: 06/28/22

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Foolinoles

Serial_No:06282219:30

L2231684

06/28/22

Lab Number:

Report Date:

Project Name: CORNERSTONE

Project Number: CORNERSTONE

Data Qualifiers

Identified Compounds (TICs).

- ${f M}$ Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Project Name: CORNERSTONE Project Number: CORNERSTONE

 Lab Number:
 L2231684

 Report Date:
 06/28/22

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D/8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193 Client Information Client: CA RICH (Address: 17 Dupont		Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Co Project Information Project Name: Project Location: Project Location: Project # (Use Project name as Pr Project Manager:	Vay oper Ave, Suite Cornerston Third Aven	e ue, Bronx	Pag	e 1 of 2	Delivi Delivi Regu	erable ASP-, EQui Other	s A S (1 File Require)	ASP-	S (4 File)	ALPHA Job # JJJJ 1084 Billing Information Same as Client Info Po # Disposal Site Information Please identify below location of
Plainview, NY 11803 Phone: 516-576-88 Fax: Email: Jcooper@d These samples have b	carichinc.com	ALPHAQuote #: Turn-Around Time Standard Rush (only if pre approved) ed by Alpha		Due Date # of Days				NY Re NY Un NYC S	Standard: stricted L restricted ewer Dis	lse	Other	2-51	applicable disposal facilities. Disposal Facility: NJ NY Other:
Other project specific Please specify Metals	requirements/comm	and the second				1	VOC 8260	YSIS					Sample Filtration o Done Lab to do Lab to do Lab to do Chease Specify below)
ALPHA Lab ID (Lab Use Only)	Sa MW-1	mple ID	Date	lection Time	Sample Matrix	Sampler's Initials							Sample Specific Comments
07.05 07.05	MW-2A MW-4 MW-6 MW-7 MW-7 MW-8 MW-10 MW-10ms MW-10msd		6/14/2022 6/14/2022 6/14/2022 6/14/2022 6/14/2022 6/14/2022 6/14/2022 6/14/2022	9:55 10:47 10:12 12:06 11:55 9:31 9:35 9:37	GW GW GW GW GW GW GW	JP/MY JP/MY JP/MY JP/MY JP/MY JP/MY JP/MY	x x x x x x x x x x						
Preservative Code MW	MW-XX Container Code P = Plastic	Westboro: Certification N		9:55	GW	JP/MY	x	_		-			Please print clearly, legibly
$C = HNO_3$ $D = H_2SO_4$ E = NaOH F = MeOH $G = NaHSO_4$ $H = Na_2S_2O_3$	A = Amber Glass V = Vial G = Glass B = Bacteria Cup C = Cube O = Other E = Encore D = BOD Bottle	Mansfield: Certification No Relinquished E	3y:	Date/ 6/15/22 -/6/22		Preservative	Receiv	4		111	Date/	Time 55 8/6	and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS.

Serial_No:06282219:30

	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	Vay	105	Page	₽ д f 2		Date I in L	Rec'd	1151	<u>9</u> 9		ALPHA JOB #	1
Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Project Information Project Name: Project Location:	Cornerstone Third Avenu			的成立了	2011 C	ASP-/ EQuis	1.0		ASP-E	3 5 (4 File)	Billing Information Same as Client Info PO#	
Client Information	Carlos Carlos	Project #						Other	£		5	26		
Client: CA RICH C	Consultants	(Use Project name as Pr	roject#) 🗹				Regu	latory I	Requirer	ment			Disposal Site Information	
Address: 17 Dupont	Street	Project Manager:	Jason Coop	ber				NY TO	GS		NY Par	1 375	Please identify below location of	8
Plainview, NY 11803		ALPHAQuote #:						AWQ \$	Standards		NY CP	-51	applicable disposal facilities.	
Phone: 516-576-88	344	Turn-Around Time						NY Re	stricted U	se 🗌	Other		Disposal Facility:	
Fax:		Standard		Due Date	E.			NY Un	restricted	Use			🗌 NJ 🗌 NY	
Email: Jcooper@o	arichinc.com	Rush (only if pre approved		# of Days	к;			NYC S	ewer Disc	charge			Other:	
These samples have b	een previously analyze	ed by Alpha 🗹					ANAI	YSIS		-		1	Sample Filtration	0
Other project specific Please specify Metals		ients:					IC 8260						Done Lab to do Preservation Lab to do	a I B O
							VOC						(Please Specify below)	U.
ALPHA Lab ID	Sa	imple ID	Col	lection	Sample	Sampler's								i
(Lab Use Only)			Date	Time	Matrix	Initials							Sample Specific Comments	e
316840911	Field Blank (6/14/22)		6/14/2022	1:15	FB	JP/MY	x							
10.10 Min	Trip Blank (6/14/22)		6/14/2022		ТВ	JP/MY	x							
Mic										_				
										_				
							-			_				
							-			_		_		-
							-			_		_		-
							-			_				-
							-		2000 A	-	-	-		-
$D = H_2SO_4$ E = NaOH F = MeOH $G = NaHSO_4$ $H = Na_2S_2O_3$	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup C = Cube O = Other E = Encore D = BOD Bottle	Westboro: Certification N Mansfield: Certification N Relinquished Automatic Part Mary	lo: MA015	6/15/22	/Time 9:53 - <u>(3:57</u>)		Paul	24	Q Caree	eq.	j Date/	9-10	Please print clearly, legibl and completely. Samples not be logged in and turnaround time clock will start until any ambiguities résolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREE TO BE BOUND BY ALPH TERMS & CONDITIONS.	I not are G HA'S
Form No: 01-25 (rev. 30-Se	pt-2013)	- 0	761	15-12.8	Ecc)	mh	-0	NG	- 6	1157	240	05-30	N 1	
Page 63 of 63			1						-	22.0				

DATA USABILITY SUMMARY REPORT – DUSR DATA VALIDATION SUMMARY

ORGANIC ANALYSIS VOLATILES BY GC/MS METHOD 8260C

For Groundwater Samples Collected June 14, 2022 From 3100 Third Avenue, Bronx, NY Cornerstone 2nd Half 2022 Collected by CA Rich Consultants, Inc.

SAMPLE DELIVERY GROUP NUMBER: L2231684 BY ALPHA ANALYTICAL - (ELAP #11148)

SUBMITTED TO:

Mr. Jason Cooper CA Rich Consultants, Inc. 17 Dupont Street Plainview, NY 11803

July 04, 2022

PREPARED BY:

 \mathcal{L}

Lori A. Beyer/President L.A.B. Validation Corp. 14 West Point Drive East Northport, NY 11731

Joei a. Bugh

Cornerstone 2nd Half 2022, 3100 Third Avenue, Bronx, NY Groundwater Samples; June 2022 Sampling Event Data Usability Summary Report (Data Validation): Volatile Organics by GCMS Method 8260C.

Table of Contents:

Introduction Data Qualifier Definitions Sample Receipt

1.0 Volatile Organics by GC/MS SW846 Method 8260C

- 1.1 Holding Time
- 1.2 System Monitoring Compound (Surrogate) Recovery
- 1.3 Matrix Spikes (MS), Matrix Spike Duplicates (MSD)
- 1.4 Laboratory Control Sample/Laboratory Control Duplicates
- 1.5 Blank Contamination
- 1.6 GC/MS Instrument Performance Check (Tuning)
- 1.7 Initial and Continuing Calibrations
- 1.8 Internal Standards
- 1.9 Field Duplicates
- 1.10 Target Compound List Identification
- 1.11 Compound Quantification and Reported Detection Limits
- 1.12 Overall System Performance

APPENDICES:

- A. Chain of Custody Documents and Sample Receipt Checklist
- B. Case Narrative
- C. Data Summary Form Is with Qualifications

Introduction:

A validation was performed on groundwater samples and the associated quality control samples (MS/MSD/Field Duplicate) for organic analysis for samples collected under chain of custody documentation by CA Rich Consultants and submitted to Alpha Analytical for subsequent analysis. This report contains the laboratory and validation results for the field samples itemized below. The groundwater samples were collected on June 14, 2022.

The samples were analyzed by Alpha Analytical, utilizing SW846 Methods and submitted under NYSDEC ASP Category B equivalent deliverable requirements for the associated analytical methodologies employed. The analytical testing consisted of the full analyte list for Volatile Organics.

The data was evaluated in accordance with EPA Region II National Functional Guidelines for Organic Data Review and EPA Region II SOP HW-24 Revision 4 for 8260C and in conjunction with the analytical methodologies for which the samples were analyzed, where applicable and relevant.

Sample Identification	Laboratory Identification	Sample Matrix	Date Collected	Date Received
MW-1	L2231684-01	Groundwater	06/14/2022	06/15/2022
MW-2A	L2231684-02	Groundwater	06/14/2022	06/15/2022
MW-4	L2231684-03	Groundwater	06/14/2022	06/15/2022
MW-6	L2231684-04	Groundwater	06/14/2022	06/15/2022
MW-7	L2231684-05	Groundwater	06/14/2022	06/15/2022
MW-8	L2231684-06	Groundwater	06/14/2022	06/15/2022
MW-10	L2231684-07	Groundwater	06/14/2022	06/15/2022
[Plus, MS/MSD]				
MW-XX	L2231684-08	Groundwater	06/14/2022	06/15/2022
[Field Duplicate of				
MW-2A]				
Field Blank	L2231684-09	Aqueous	06/14/2022	06/15/2022
Trip Blank	L2231684-10	Aqueous	06/14/2022	06/15/2022

The data validation report pertains to the following samples:

Data Qualifier Definitions:

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

U - The analyte was analyzed for but was not detected above the reported sample quantitation limit.

J - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

UJ - The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.

R - The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control (QC) criteria. The analyte may or may not be present in the sample.

N - The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."

NJ - The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate quantity.

J+ - The result is an estimated quantity, but the result may be biased high.

J- - The result is an estimated quantity, but the result may be biased low.

D - Analyte concentration is from diluted analysis.

Sample Receipt:

The Chain of Custody documents indicate that the samples were received at Alpha Analytical via laboratory courier on 06/15/22. Sample login notes were generated. The cooler temperature for samples was recorded upon receipt at Alpha and determined to be acceptable (<6.0 degrees C). The actual temperature of 2.6 degrees C is recorded on the sample receipt checklist provided in Appendix A of this report. No problems and/or discrepancies were noted, consequently, the integrity of the field samples has been assumed to be good.

The data summary Form I's included in Appendix C includes all usable (qualified) and unusable (rejected) results for the samples identified above. The Form I's summarize the detailed narrative section of the report.

NOTE:

L.A.B. Validation Corp. believes it is appropriate to note that the data validation criteria utilized for data evaluation is different than the method requirements utilized by the laboratory. Qualified data does not necessarily mean that the laboratory was non-compliant in the analysis that was performed.

1.0 Volatile Organics by GC/MS SW846 Method 8260C

The following method criteria were reviewed: holding times, SMCs/Surrogates, MS, MSD, LCS, Laboratory Spiked Blanks, Field Duplicates, Method Blanks, Tunes, Calibrations, Internal Standards, Target Component Identification, Quantitation, Reported Quantitation Limits and Overall System Performance. The Volatile results are valid and useable except for non-detects for 1,4-Dioxane due to low calibration response in initial and continuing calibrations as noted within the following text:

1.1 Holding Time

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the technical holding time is exceeded, the data may not be considered valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimates, "J". The non-detects (sample quantitation limits) are required to be flagged as estimated, "UJ", or unusable, "R", if the holding times are grossly exceeded.

Samples were analyzed within the Method required holding times as well as the technical holding times for data validation of 14 days from collection to analysis for HCL preserved vials as required. No data validation qualifiers were required based upon holding time.

1.2 System Monitoring Compound (Surrogate) Recovery

All samples are spiked with surrogate compounds prior to sample analysis to evaluate overall laboratory performance and efficiency of the analytical technique. If the

measure of surrogate concentrations is outside contract specifications, qualifications are required to be applied to associated samples and analytes.

Surrogate recoveries (%R) for Dibromofluoromethane, 1,2-Dichloroethane-d4, Toluene-d8 and 4-Bromofluorobenzene were found to be within acceptable limits for surrogate compounds for all samples.

1.3 Matrix Spikes (MS)/ Matrix Spike Duplicates (MSD)

The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. The MS/MSD may be used in conjunction with other QC criteria for additional qualification of data.

Site-specific MS/MSD was performed by the laboratory on sample MW-10 as required by chain of custody. Acceptable recovery values were obtained for all spiked/target compounds except for Vinyl Acetate (290/290%) and Naphthalene (140%) in the MS and/or MSD. RPD for Naphthalene (24%) was outside 20% criteria. No qualifiers were applied based on recovery outliers since elevated recovery does not support any potential loss of detection and/or result bias. Based on professional judgment, data was also not qualified for Naphthalene RPD outlier.

1.4 Laboratory Control Sample/Laboratory Control Duplicates The LCS data for laboratory control samples (LCS) are generated to provide information on the accuracy of the analytical method and on the laboratory performance.

LCS/LCS Duplicate recovery values fell within acceptance limits for all analytes with exceptions noted below:

LCS /LCS Duplicate associated with MW-1, MW-2A, MW-4 and MW-6 yielded Vinyl Acetate (260%/270%) and 2,2-Dichloropropane (150%/150%) above inhouse limits. Since these target analytes were not detected in corresponding field samples and high recovery does not support any potential loss of detection and/or result bias, the data was not qualified based on these outliers.

LCS /LCS Duplicate associated with MW-7, MW-8, MW-XX, MW-10, Field Blank, and Trip Blank also yielded Vinyl Acetate (290%/300%) and 2,2-Dichloropropane (140%/158%) above in-house limits. Since these target analytes were not detected in corresponding field samples and high recovery does not support any potential loss of detection and/or result bias, the data was not qualified based on these outliers.

1.5 Blank Contamination

(-1,0) = -30

Quality assurance (QA) blanks, i.e., method, trip and field blanks are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field blanks measure cross-contamination of samples during field operations.

The following table was utilized to qualify target analyte results due to contamination. The largest value from all the associated blanks is required to be utilized:

Blank Type	Blank Result	Sample Result	Action for Samples
Method, Storage, field,	Detects	Not Detected	No qualification required
Trip, Instrument	<crql*< td=""><td><crql*< td=""><td>Report CRQL value with a U</td></crql*<></td></crql*<>	<crql*< td=""><td>Report CRQL value with a U</td></crql*<>	Report CRQL value with a U
		>/= CRQL* and <2x the	No qualification required
		CRQL**	
	>CRQL*	= CRQL*</td <td>Report CRQL value with a U</td>	Report CRQL value with a U
		>/=CRQL* and = blank</td <td>Report blank value for sample concentration</td>	Report blank value for sample concentration
		concentration	with a U
X	R A	>/= CRQL* and > blank	No qualification required
		concentration	
	=CRQL*	= CRQL*</td <td>Report CRQL value with a U</td>	Report CRQL value with a U
		>CRQL*	No qualification required
	Gross Contamination**	Detects	Report blank value for sample concentration
			with a U

*2x the CRQL for methylene chloride, 2-butanone, and acetone.

**4x the CRQL for methylene chloride, 2-butanone, and acetone

***Qualifications based on instrument blank results affect only the sample analyzed immediately after the sample that has target compounds that exceed the calibration range or non-target compounds that exceed 100 ug/L.

Below is a summary of the compounds in the sample and the associated qualifications that have been applied:

Below is a summary of the compounds in the sample and the associated qualifications that have been applied:

A) Method Blank Contamination:

No target analytes were detected in the method blanks.

B) **Field Blank Contamination:**

No target analytes were detected in the Field Blank.

C) **Trip Blank Contamination:**

No target analytes were detected in the Trip Blank.

**The end user should proceed with caution when making decisions based on common lab contaminant detections (Acetone/Methylene Chloride/2-Butanone) where the compounds could not be negated due to lack of presence in the corresponding blanks. For example, Acetone was detected in MW-8 at 8.0 ug/L. 2-Butanone (7.2 ug/L) and Methylene Chloride (2.3 ug/L) in MW-7. Detected concentrations in these samples have been qualified, "J" by the laboratory since final quantitated values are below the reporting limit.

1.6 GC/MS Instrument Performance Check

Tuning and performance criteria are established to ensure adequate mass resolution, proper identification of compounds and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The Tuning standard for volatile organics is Bromofluorobenzene (BFB).

Instrument performance was generated within acceptable limits and frequency for Bromofluorobenzene (BFB) for all analyses.

1.7 Initial and Continuing Calibrations

Satisfactory instrument calibration is established to ensure that the instrument can produce acceptable quantitative data. An initial calibration demonstrates that the instrument can produce acceptable performance at the beginning of an experimental sequence. The continuing calibration checks document that the instrument is giving satisfactory daily performance. Initial calibration verification yielded Bromomethane (34.3%) and Vinyl Acetate (39.3%) outside 30% criteria. Non-detects in all samples have been qualified, "UJ."

A) Response Factor GC/MS:

The response factor measures the instrument's response to specific chemical compounds. The response factor for all compounds must be >/= 0.05 in both initial and continuing calibrations. A value <0.05 indicates a serious detection and quantitation problem (poor sensitivity). Analytes detected in the sample will be qualified as estimated, "J". All non-detects for that compound in the corresponding samples will be rejected, "R". Method 8260C allows for a minimum response factor of 0.1 for Acetone and 2-Butanone. Validation criteria allows response factor to be /=>0.01 for poor responders (Acetone, MEK, Carbon Disulfide, Chloroethane, Chloromethane, Cyclohexane, 1,2-Dibromoethane, Dichlorodifluoromethane, cis-1,2-Dichloropropane, 1,2-Dibromo-3-chloropropane, Isopropylbenzene, Methyl Acetate, Methylene Chloride, Methylcyclohexane, MTBE, trans-1,2-Dichloroethene, 4-Methyl-2-Pentanone, 2-Hexanone, Trichlorofluoromethane, 1,1,2-Trichloro-1,2,2-Trifluoroethane.

All the response factors for the target analytes reported were found to be within acceptable limits (>/=0.05) and (>/= 0.01 for poor responders) and minimum response criteria in Table 4 of Method 8260C, for the initial and continuing calibrations for all reported analytes except for 1,4-Dioxane (0.001). Non-detects for this compound have been rejected, "R" in all samples. 1,4-Dioxane is a poorpurge analyte.

B) Percent Relative Standard Deviation (%RSD) and Percent Difference (%D): Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentrations. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be <20% and %D must be <20%. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and nondetects are flagged "UJ". If %RSD and %D grossly exceed QC criteria, non-detect data may be qualified, "R", unusable. Additionally, in cases where the %RSD is >20% and eliminating either the high or the low point of the curve does not restore the %RSD to less than or equal to 20% then positive results are qualified, "J". In cases where removal of either the low or high point restores the linearity, then only low or high-level results will be qualified, "J" in the portion of the curve where nonlinearity exists. Closing CCV must meet 30% criteria. Poor responders must be </= 40%.

*Method 8260C allows for several analytes to be outside requirements due to the large number of compounds.

Initial Calibrations: The initial calibrations provided and the %RSD were within acceptable limits (20%) and (40% for poor responders) for all reported compounds.

Continuing Calibrations: The continuing calibrations provided and the %D was within acceptable limits (20%) and (40% for poor responders) for all reported compounds with exceptions discussed below:

CCAL VOA122 06/23/2022 – Vinyl Acetate (188.9%), and 2,2-Dichloropropane (40.5%) associated with MW-1, MW-2A, MW-4, and MW-6 was outside criteria. Non-detects have been qualified, "UJ."

CCAL VOA122 06/24/2022 – Vinyl Acetate (160.7%), and 2,2-Dichloropropane (51.9%) associated with Field Blank, Trip Blank, MW-7, MW-8, MW-XX, and MW-10 was outside criteria. Non-detects have been qualified, "UJ."

1.8 Internal Standards

Internal Standards (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must not vary by more than a factor of 2 (-50% to +100%) from the associated continuing calibration standard. The retention time of the internal standard must not vary more than +/-30 seconds from the associated continuing calibration standard. If

the area count is outside the (-50% to +100%) range of the associated standard, all the positive results for compounds quantitated using

that IS are qualified as estimated, "J", and all non-detects as "UJ", or "R" if there is a severe loss of sensitivity.

If an internal standard retention time varies by more than 30 seconds, professional judgment will be used to determine either partial or total rejection of the data for that sample fraction.

All samples were spiked with the internal standards Chlorobenzene-d5, Fluorobenzene and 1,4-Dichlorobenzene-d4 prior to sample analysis. The area responses and retention time of each internal standard met QC criteria in all samples.

1.9 Field Duplicates

(A) 6 5

Field duplicate samples are collected and analyzed as an indication of overall precision. These results are expected to have more variability than laboratory duplicate samples. Generally, water samples an acceptable RPD is 25%. Groundwater sample MW-2A was collected as a blind duplicate, a summary of positive detections is summarized below:

	MW-2A	MW-XX
Trichloroethene	1.3 ug/L	1.4 ug/L
Tetrachloroethene	180 ug/L	180 ug/L

Precision is acceptable. No qualifications to the data were required based on field duplicate analysis.

1.10 Target Compound List Identification

TCL compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within =/-0.06RRT units of the standard compound and have an ion spectrum which has a ratio of the primary and secondary m/e intensities within 20% of that in the standard compound.

GC/MS spectra met the qualitative criteria for identification. All retention times were within required specifications.

1.11 Compound Quantification and Reported Detection Limits

GC/MS quantitative analysis is acceptable. Correct internal standards per SW846, response factors were used to calculate final concentrations.

As required, the laboratory reported "J" values between the reporting limits (RL) and Method Detection Limits (MDLs). This is consistent with common laboratory practices and a requirement of the National Environmental Laboratory Approval Program (NELAP).

Samples were initially analyzed undiluted except for MW-2A (1:2), MW-XX (1:2) and MW-8 (1:5). Dilutions were determined to be acceptable based on target analyte Tetrachloroethene raw concentrations. Reporting limits have been adjusted accordingly. There is potential that lower-level detections were lost in sample dilutions. Analysis is acceptable.

1.12 Overall System Performance

Good resolution and chromatographic performance were observed. Raw data was reviewed and confirmed that no carryover exists for any analysis conducted with this data set.

toric is a set the set of the

Tentatively Identified Compounds (TICs) were not generated and therefore not evaluated.

Reviewer's Signature Poura Buy Date 07/04/2022

Appendix A Chain of Custody Documents and Sample Receipt Checklist

ALPHA	NEW YORK CHAIN OF CUSTODY	Sprvice Centers Mistraali, NJ 07430: 35 Whitmay Rd, Suite 5 Albary, NY 12205: 14 Vyalket Way Tanswanda, NY 14150: 275 Cooper Ave, Suite 105	r Rd, Swite 5 Vay oper Ave, Suite 1	So	Page	3 € 1 7 N →	Date Rec'd 115133	eels	ALPHAJob# InCU
Westborough, MA 01661 5 Walkup Dr.		Project Information	The second	A STATE			Deliverables	A DESCRIPTION OF A DESC	Elling Information
TEL 508-858-9220 FAX: 508-858-9723	TEL: 506-822-9300 FAX: 508-822-9300	Project Name:	Cornerstone			2	ASP.A	ASP-B	Same as Client Info
	partie was ach as	Project Location:	Third Avenue,	e, Branx			EQUIS (1 File)	EQuIS (4 File)	
Client Information		Project #				1	C Other		
Client CA RICH	CA RICH Consultants	(Use Project name as Pr	roject #)			1	Regulatory Requirement	the second s	Disposal Site Information
Address: 17 Dupont Street	t Street	Project Manager	Jason Cooper	er		j,	VY TOOS	NY Part 375	Diasca irlantifu holosu (overtoon of
Plainview, NY 11803		ALPHAQuote #:					AWO Standards	NY CP-51	applicable disposal facilities.
Phone: 516-576-8844	3844	Turn-Around Time	and the state	Contraction of the second	10 10 10 10 10 10 10 10 10 10 10 10 10 1		NY Restricted Use	Other	Disposal Facility
Fax		Standard	2	Due Date		19 (h)	NY Unrestricted Use]	
Email: Jcooper@	Jcooper@carichinc.com	if pre		# of Days:		9	NYC Sever Dischargo	ĝa	en
These samples have I	These samples have been previously analyzed by Alpha	ed by Alpha				10	ANALYSIS		Samole Filtration
Other project specifi	Other project specific requirements/comments:	rents:				i			
						3,8	0		Lab to do
Please specify Metals or TAI	s or TAL						921		
						e.	8 20		
Al PHA Lah ID			and a	Collambian			٨		(Please Specify below)
(Lab Use Only)	Sa	Sample ID	Date C	Timo	Matrix	Sampler's			T
RI NEN DI	MW-1		COUCH NG	Delei -					Sample Specific Comments
	Labor o 6		770714110	11:00		T	×		
600	WWW-ZA		6/14/2022	9.55	GW	YMAL	*		
50	MW-4		6/14/2022	10:47	GW	,YMN/df	x		
20	MWV-6		6/14/2022	10:12	GW	JPANN	x		
02	TWW-7		6/14/2022	12:06	GW		×		
0m	MW-8		6/14/2022	11:55	GW	AWIN	×		
CO	MW-10		6/14/2022	9:31			×		
0775	MVV-10ms		6/14/2022	9:35					
0789	-MW-10msd		6/14/2022	9:37		T			
88-44	XX-MW		6/14/2022	9:65		T			
Preservative Code: MW A = None B = HCI	Container Code P = Plasfic A = Amber Glass	Westboro: Certification No: MA935 Mansfield: Certification No: MA015	0: MA935 0: MA015			200			Please print clearly, Jegibly
$C = HNO_3$ $D = H_2SO_4$ E = NaOH	V = Via! G = Glass 8 = Bacteria Cup				đ	Preservative			 and completely. Samples can not be logged in and turnaround time clock will not
F = MeOH G = NaHSO,	C = Cube 0 = Other	Relinquished E	By:	Date/Time	ime	1 "	Received By.	/ Date/Time	start until any ambiguities are
H = Na ₂ S ₂ O ₃	E = Encore	11/1 hr	~	CEL2110	615 -	Mer.	R	111/12. 5	THE COC THE CLIENT
KVE = Zn Acinaroh D = Other	D = BOD Bottle	The Baugena	00000 0a 1	11/202	13:20	Charles 1	20 mano 200	10115122110	GO BE BOUND BY ALPHA'S
Form No: 01-25 (rev. 30-Sept-2013)	pp(-2013)	76	An all	(12/2)		MAL	11/2 6	1220 4121	TERMS & CONDITIONS
			110 000		1	in an		01101	7

1

Page 16 of 754

1 his senare.

Wurktitt Besche Binstein Besche Binstein Besc	ALPHA	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whimey Rd, Suith 5 Albary, NY 12305: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite 105	y Rd, Suite 5 Nay Poper Ave, Suite	105	Page	200	Date Rec'd in Lab [0] 101	tela	ALPHA Job# UN SU	
Mean Fix on constants Project is Third Aremos, Bond Example Exa	Yesthorough, MA 01581 8 Walkup Dr. TEL 508-848-9220	Mansfield, MA 02048 320 Forbes Blvd TEL: 608-622-9300	Project Information Project Name:	Cornerstor	di la constante da		100	Defiverables	ASP.R	Billing Information	1251
matrixed Project at Consultants <	FAX: 508-888-9193	FAX: 506-822-3288	Project Location:	Third Aven	01		4	EQUIS (1 File)	EQUIS (4 File)		
Ch RCH Constaltants (Use Froject arm as Froject arm) Segnetion of a model M Part 275 Period Constaltants Ch RCH Constaltants Propert Manager: Jasen Cooper Jasen Cooper<	Client Information		Project #					Other			
If Dispeti Streek Project Manager. Jasen Cooper	Client: CA RICH C	consultants	(Use Project name as P	-				Regulatory Requireme	ent state of the second state of the	Disposal Site Information	5
Mr. 1803 All PHACuade #. All PHACuade #. Nr. CPSI Nr. CPSI Nr. CPSI 515-57-58.44 Ton-Anomal Tane Ton-Anomal Tane Nr. Conservation Nr. Vinwentiand be Nr. CPSI 515-57-58.44 Tune Anomal Tane Ruth Yony transmission All PHACuade #. Nr. Conservation Be Nr. Co	Address: 17 Dupont	Street	Project Manager.	Jason Coo	Der			V NY TOGS		Diesse Identify holion Income	1
S16-57-6-8844 Turn Anound Trace <	ainview, NY 11803		ALPHAQuote #		100		ŧ		NY CP-S1	rease ruenury provinceauon or applicable disposal facilities.	
Control Bandation Due Date: Standation Munerification Munerification CostoningCarterinitiz.com Rush honly fine approved # of Days: Anthrest life Increase to behange CostoningCarterinitiz.com Rush honly fine approved Increase to behange Increase to behange CostoningCarterinitiz.com Rush honly fine approved Anthrest life Increase to behange CostoningCarterinitiz.com Sample ID Oot increase Anthrest life Increase to behange CostoningCarterinitiz.com Sample ID Oot increase Sample ID Increase to behange CostoningCarterinitiz.com Bank (firtazzi) Fire Elbink (firtazzi) Fire Elbink (firtazzi) Fire Elbink (firtazzi) CostoningCarterinitiz.com Bank (firtazzi) Fire Elbink (firtazzi) Fire Elbink (firtazzi) Fire Elbink (firtazzi) CostoningCarterinitiz.com Bank (firtazzi) Fire Elbink (firtazzi) Fire Elbink (firtazzi) Fire Elbink (firtazzi) Fire Elbink (firtazzi) CostoningCarterinitiz.com Bank (firtazzi) Fire Elbink (firtazzi) Fire Elbink (firtazzi) Fire Elbink (firtazzi) CostoningCarterinitiz.com Bank (firtazzi) Fire Elbink (firtazzi) Fire Elbink (firtazzi) Fire Elbink (firtazzi) CostoningCarterinitiz.com Fire Elbink (firtazzi)	Phone: 516-576-88	44	Turn-Around Time			and a set	31 1	NY Restricted Use	d. 3	Disposal Facility.	i
Item Events from theme monology analyzed by Apha Item Events from the monology analyze		สกัสน้ำกระธอกภ	Standar Rush (only # pre approve:	the second second	Due Date	5 5	(R),	NY Unrestricted US	3		
of specific requirements/comments: If Matalis or TAL. Sample ID /ul>	hese samples have be	een previousiv analvze	ed by Alpha]	fan in L		T	ANALYSIS	aßr	Samole Filtration	
iPy Matais or TAL. iPy Matais or TAL. Lab ID Sample ID Collection Nample ID Collection Nample ID Container Cole Nample ID Container Cole Nample ID Container Cole Nample ID Container Cole Nample ID Nample ID Nample ID Nample ID Nample ID <td>ther project specific</td> <td>requirements/comm</td> <td>e untra</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>Indenit and inter</td> <td>0 -</td>	ther project specific	requirements/comm	e untra				1			Indenit and inter	0 -
Signable iD Collection Call Collection Sample iD 0.0n() Sample iD Collection Sample iS 0.0n() Sample iD Date Time Matrix 0.0n() Sample iD Collection Sample iS 0.0n() Sample iD Date Time 0.0n() Felici Blank (git/4/22) 61/4/2022 115 0.0n() Tip Blank (git/4/22) 60/1/2 116 0.0n()							1	09		Done Lab to do Preservation	
HA Lab ID Sample ID Collection Sample	ease specify Metals	or TAL.					TT	28 DC		Lab to do	m o .
Lab ID Sample ID Collection Sample Sample's Collection Sample's Sample's <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3</td> <td></td> <td></td> <td>(Please Specify below)</td> <td></td>							3			(Please Specify below)	
Off Field Blank (6/14/22) Uate Time mmers	ALPHA Lab ID	Sa	mple ID	3	llection	Sample	-	- 1 - 1			
Off Field Blank (6/14/22) 6/14/2022 1:15 FB JPMV X I I Model Field Blank (6/14/22) 6/14/2022 1:15 FB JPMV X I				Uate	Ime	WIRDLIN	SPORT			Sample Specific Comments	1) e
Other Trip Blank (6/14/22) 5/14/202 TB JP/MV × I	3	Field Blank (6/14/22)		6/14/2022	1:15	E		×			Π
Container Code Container Tree Container Tree A = Amber Glass Mansfeldi. Certification No: MA335 Container Tree A = Amber Glass Mansfeldi. Certification No: MA335 Container Tree A = Amber Glass Mansfeldi. Certification No: MA315 Container Tree A = Amber Glass Mansfeldi. Certification No: MA315 Container Tree A = Amber Glass Mansfeldi. Certification No: MA315 Container Tree A = Amber Glass Mansfeldi. Certification No: MA315 Container Tree A = Amber Glass Mansfeldi. Certification No: MA315 Container Tree A = Amber Glass Mansfeldi. Certification No: MA315 Container Tree A = Amber Glass Mansfeldi. Certification No: MA315 Container Tree A = Amber Glass Mansfeldi. Certification No: MA315 Container Tree A = Amber Glass Mansfeldi. Certification No: MA315 Container Tree A = Amber Glass Mansfeldi. Certification No: MA315 Container Tree A = Colore C = Cube Container Tree V A = Boote D = BOO Botte D = BOO Botte Mansfeldi. A = Roote D = BOO Botte Mansfeldi. Mansfeldi.	(Fol	Trip Blank (6/14/22)		6/14/2022		TB		×			Т
Addition	milia						I.				
Address Container Code Westboro: Certification No: MA935 Address Container Trie A Amatiner Code Westboro: Certification No: MA935 Container Code Westboro: Certification No: MA935 A Amatiner Code Wastboro: Certification No: MA935 A E Amatiner Code Manatiner Trine A E Amatiner Code Manatiner Trine A E Amatiner Code Manatiner Manat							1				
Container Code Westboro: Certification No: MA935 Container Tripe N							1				
Ode: Container Code Westboro: Certification No: MAG35 Dode: Container Tore P = Phastic Nansfield: Certification No: MAG35 V = Xmbre Glass Nansfield: Certification No: MAG35 Container Tore P = Phastic Nansfield: Certification No: MAG15 Certification No: MAG15 A = Ambre Glass Nansfield: Certification No: MAG15 Cericute Certifi							÷				
Adminer Code Westboro: Certification No: MAG35 Container Trice No A Amber Glass Mansfeld: Certification No: MAG35 Container Trice No A Amber Glass Mansfeld: Certification No: MAG15 Container Trice No A Same Code Westboro: Certification No: MAG15 Container Trice No A Same Code Westboro: Certification No: MAG15 Container Trice No A Same Code Westboro: Certification No: MAG15 Container Trice No A Same Code Westboro: Certification No: MAG15 Container Trice No A Same Code Mansfeld: Certification No: MAG15 Preservalie No A S Glass E Encore E Cobe Mansfeld: Certification No A S Gue Date/Time Receiver By Mansfeld: Certification Mansfeld: Certification A S Gue Date/Time Receiver By Mansfeld: Certification Mansfeld: Certification A S Gue Date/Time Receiver By Mansfeld: Certification Mansfeld: Certification A S Gue D Sept-2013 Container Trice Mansfeld: Certification Mansfeld: Certification							11 A				T
ode: Container Code Westboro: Certification No: MA935 Container Trine No P = Plastic Wastboro: Certification No: MA935 Container Trine V A = Amber Glass Mansfeld: Certification No: MA015 Container Trine V V = Vrat S = Glass Mansfeld: Certification No: MA015 Preserva ive B = Becteria Cup Container Trine V V C = Cube Container Trine M V C = Cube Container Trine V V C = Cube Container Trine V V C = Cube C = Cube Container Trine V C = Cube C = Cube Container Trine V C = Cube C = Cube Container Trine V C = Cube C = Cube Container Trine V C = Cube C = Cube C = Cube V C = Cube C = Cube C = Cube V C = Cube C = Cube C = Cube V C = Cube C = Cube C = Cube V C = Cube C = Cube C = Cube V C = Cube C = Cube C = Cube V C = Cube C = Cube C = Cube C = Cube											T
Odde: Container Code Westboro: Certification No: MA935 Container Tyne Image: Container Tyne P = Plastic Mansfield: Certification No: MA015 Container Tyne V V = Vait S = Glass Mansfield: Certification No: MA015 Preservalise V = Vait S = Glass Mansfield: Certification No: MA015 Preservalise C = Glass B = Bacteria Cup Preservalise M C = Cube O = Other B = Encore B = Encore C = Cube O = Other B = Encore B = Encore C = Cube D = BOD Bottie M D = C S (rev. 30-Sept-2013) D = Encore M M							1				T
A = Amber Joses Mail subject Cellisication No. MAULD V = Vait V Preservalie V = Grass S = Grass G = Grass B = Becervalie C = Gube Preservalie D = BOD Bottie Preservalie	ode:	Container Code P = Plastic	Westboro: Certification	No: MA935		Cor				Please print clearly, legibly	1
C = Cube 0 = Other E = Enorre E = Enorre 0 = 800 Battie 0		∧ - Autom Gasts V = Viat G = Gigss B = Bacteria Cub						> 0		and completely. Samples c not be logged in and tumaround time clock will n	28 T
$E = Enore = \frac{1}{2} $		C = Cube	Relinquished	By:	Date	e/Time		B.	/ Gate/Time	start until any ambiguities a	e
Vale March 1 2 2 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2	HOR	E = Encore 0 ± 800 Bottie	All A	X M	6/15/22	41.53 14	the th	aux mappe	201/1	- THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA	ψ ρ
	m No: 01-25 (rev. 30-Sej	at-2013)	Vally 1 Cal	16.24	North			11/22	11 241 5 12 2 10	TERMS & CONDITIONS.	

Page 17 of 754

6636 I

Sample Delivery Group Summary

Alpha Job Number : L2231684 Account Name : CA Rich Consultants, Ind Project Number : CORNERSTONE Project Name : CORNERSTONE	o.	Received Reviewer	:15-JUN-2022 :Melissa Wood
Delivery Information Samples Delivered By: Alpha Courier			
Chain of Custody Present			
Cooler Information			
Cooler Seal/Seal# Preserva A Absent/ ice	tion	Temperature(°C) 2.6	Additional Information
Condition Information			
1) All'samples on COC received?		YES	~
2) Extra samples received?		NO	
3) Are there any sample container discrepancies?		NO	
4) Are there any discrepancies between sample labels & COC?		? NO	
5) Are samples in appropriate containers for requested analysis?		is? YES	
6) Are samples properly preserved for requested analysis?		YES	
7) Are samples within holding time for requested analysis?		YES	
8) All sampling equipment returned?		NA	
Volatile Organics/VPH			
1) Reagent Water Vials Frozen by Client?		NO	

Appendix B Case Narrative

Project Name: CORNERSTONE Project Number: CORNERSTONE

Lab Number: L2231684 Report Date: 06/28/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some to be set quality defined failed storector and still be within method sompliance. In these instances the specific failure is not harrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

0.000

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

 Lab Number:
 L2231684

 Report Date:
 06/28/22

list infines villaging a sala a sance sence herbarr units and life and manager and

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Som Duild

Report Date: 06/28/22

Title: Technical Director/Representative

Appendix C Validated Form I's with Qualifications

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
				. = .		
75-09-2	Methylene chloride	ND	2.5	0.70	U	
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U	
67-66-3	Chloroform	ND	2.5	0.70	U	
56-23-5	Carbon tetrachloride	ND	0.50	0.13	<u>U</u>	والمحقيقة المستحد المستحد
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U	
124-48-1	Dibromochloromethane	ND	0.50	0.15	U	
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U	
127-18-4	Tetrachloroethene	48	0.50	0.18		
108-90-7	Chlorobenzene	ND	2.5	0.70	U	
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U	
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U	
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U	
75-27-4	Bromodichloromethane	ND	0.50	0.19	U	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U	
542-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U	Abiyani
563-58-6	1,1-Dichloropropene	ND	2.5	0.70	U	
75-25-2	Bromoform	ND	2.0	0.65	U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U	
71-43-2	Benzene	ND	0.50	0.16	U	
108-88-3	Toluene	ND	2.5	0.70	U	
100-41-4	Ethylbenzene	ND	2.5	0.70	U	
74-87-3	Chloromethane	ND	2.5	0.70	U	
74-83-9	Bromomethane	ND	2.5	0.70	-+ UT	
75-01-4	Vinyl chloride	ND	1.0	0.07	U	

for 71312 Ø PHA AN AL

Sample Matrix Analytical Method Lab File ID Sample Amount	 CA Rich Consultants, Inc. CORNERSTONE L2231684-01 MW-1 THIRD AVENUE, BRONX WATER 1,8260C V22220623N22 10 ml LOW 	Date Collected Date Received Date Analyzed Dilution Factor Analyst Instrument ID GC Column	 L2231684 CORNERSTONE 06/14/22 11:30 06/15/22 06/24/22 03:30 1 MV VOA122 RTX-502.2 N/A
Level	: LOW	%Solids	: N/A
Extract Volume (MeOH)	: N/A	Injection Volume	: N/A

ug/L CAS NO. Parameter Results RL MDL Qualifier U 75-00-3 Chloroethane ND 2.5 0.70 U 75-35-4 1,1-Dichloroethene ND 0.50 0.17 156-60-5 trans-1,2-Dichloroethene ND 2.5 0.70 U 79-01-6 J Trichloroethene 0.21 0.50 0.18 95-50-1 ND U 1,2-Dichlorobenzene 2.5 0.70 U 541-73-1 1,3-Dichlorobenzene ND 2.5 0.70 106-46-7 1,4-Dichlorobenzene ND 2.5 0.70 U 1634-04-4 Methyl tert butyl ether ND 2.5 0.70 U 179601-23-1 ND 0.70 U p/m-Xylene 2.5 95-47-6 ND 0.70 U o-Xylene 2.5 1330-20-7 Xylenes, Total ND 2.5 0.70 U 0.70 U 156-59-2 cis-1,2-Dichloroethene ND 2.5 540-59-0 1,2-Dichloroethene, Total ND 2.5 0.70 U 74-95-3 Dibromomethane ND 5.0 1.0 U U 96-18-4 1,2,3-Trichloropropane ND 0.70 2.5 107-13-1 ND U Acrylonitrile 5.0 1.5 100-42-5 ND U Styrene 2.5 0.70 75-71-8 Dichlorodifluoromethane ND 5.0 1.0 U 67-64-1 ND 5.0 U Acetone 1.5 75-15-0 Carbon disulfide ND 5.0 U 1.0 U 78-93-3 2-Butanone ND 5.0 1.9 108-05-4 Vinyl acetate ND 5.0 1.0 H 108-10-1 4-Methyl-2-pentanone ND 5.0 1.0 U 591-78-6 ND 5.0 1.0 U 2-Hexanone 74-97-5 Bromochloromethane ND 2.5 0.70 U

0-71317

Client Project Name Lab ID Client ID Sample Location Sample Matrix Analytical Method Lab File ID Sample Amount	: CA Rich Consultants, Inc. : CORNERSTONE : L2231684-01 : MW-1 : THIRD AVENUE, BRONX : WATER : 1,8260C : V22220623N22 : 10 ml	Lab Number: L2231684Project Number: CORNERSTONEDate Collected: 06/14/22 11:30Date Received: 06/15/22Date Analyzed: 06/24/22 03:30Dilution Factor: 1Analyst: MVInstrument ID: VOA122GC Column: RTX-502.2
Sample Amount Level Extract Volume (MeOH)	: LOW	GC Column : RTX-502.2 %Solids : N/A Injection Volume : N/A

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	#UJ
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U
108-86-1	Bromobenzene	ND	2.5	0.70	U
104-51-8	n-Butylbenzene	ND	2.5	0.70	U
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U
96-12-8	1,2-Dlbromo-3-chloropropane	ND	2.5	0.70	U
87-68-3	Hexachlorobutadiene	ND	2.5	0.70	U
98-82-8	Isopropylbenzene	ND	2.5	0.70	U
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U
91-20-3	Naphthalene	ND	2.5	0.70	U
103-65-1	n-Propylbenzene	ND	2.5	0.70	U
87-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U
123-91-1	1,4-Dioxane	ND	250	61,	JR
105-05-5	p-Diethylbenzene	ND	2.0	0.70	U
622-96-8	p-Ethyltoluene	ND	2.0	0.70	U
95-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U
60-29-7	Ethyl ether	ND	2.5	0.70	U

for713m HA Δ ANAL CAL

110-57-6	trans-1,4-Dichloro-2-butene	ND	2.5	0.70	U
CAS NO.	Parameter	Results	RL	MÐL	Qualifier
			ug/L		
Extract Volume (MeOH) 🔅 N/A			Injection Volume		: N/A
Level	: LOW		%Solids		: N/A
Sample An	nount : 10 ml		GC Colu		: RTX-502.2
Lab File ID	: V22220623N22		Instrume	ent ID	: VOA122
Analytical N	Aethod : 1,8260C		Analyst		: MV
Sample Ma	trix : WATER		Dilution	Factor	÷ 1
Sample Lo	cation : THIRD AVENUE, BRONX		Date An	alyzed	: 06/24/22 03:30
Client ID	: MW-1		Date Re	ceived	: 06/15/22
Lab ID	: L2231684-01		Date Co	llected	: 06/14/22 11:30
Project Na	me : CORNERSTONE		Project I	Number	: CORNERSTONE
Client	: CA Rich Consultants, Inc.		Lab Nun	nber	: L2231684

Client	: CA Rich Consultants, Inc.
Project Name	CORNERSTONE
Lab ID	: L2231684-02D
Client ID	: MW-2A
Sample Location	: THIRD AVENUE, BRONX
Sample Matrix	WATER
Analytical Method	: 1,8260C
Lab File ID	: V22220623N23
Sample Amount	: 5 ml
Level	: LOW
Extract Volume (MeOH)	: N/A

Lab Number	: L2231684
Project Number	: CORNERSTONE
Date Collected	: 06/14/22 09:55
Date Received	: 06/15/22
Date Analyzed	: 06/24/22 03:55
Dilution Factor	: 2
Analyst	: MV
Instrument ID	: VOA122
GC Column	: RTX-502.2
%Solids	: N/A
Injection Volume	: N/A

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	5.0	1.4	U
75-34-3	1,1-Dichloroethane	ND	5.0	1.4	U
67-66-3	Chloroform	ND	5.0	1.4	U
56-23-5	Carbon tetrachloride	ND	1.0	0.27	U
78-87-5	1,2-Dichloropropane	ND	2.0	0.27	U
124-48-1	Dibromochloromethane	ND	1.0	0.30	U
79-00-5	1,1,2-Trichloroethane	ND	3.0	1.0	U
127-18-4	Tetrachloroethene	180	1.0	0.36	
108-90-7	Chlorobenzene	ND	5.0	1.4	U
75-69-4	Trichlorofluoromethane	ND	5.0	1.4	U
107-06-2	1,2-Dichloroethane	ND	1.0	0.26	U
71-55-6	1,1,1-Trichloroethane	ND	5.0	1.4	U
75-27-4	Bromodichloromethane	ND	1.0	0.38	U
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.33	U
10061-01-5	cls-1,3-Dichloropropene	ND	1.0	0.29	U
542-75-6	1,3-Dichloropropene, Total	ND	1.0	0.29	U
563-58-6	1,1-Dichloropropene	ND	5.0	1.4	U
75-25-2	Bromoform	ND	4.0	1.3	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.33	U
71-43-2	Benzene	ND	1.0	0.32	U
108-88-3	Toluene	ND	5.0	1.4	U
100-41-4	Ethylbenzene	ND	5.0	1.4	U
74-87-3	Chloromethane	ND	5.0	1.4	U
74-83-9	Bromomethane	ND	5.0	1.4	-UJ
75-01-4	Vinyl chloride	ND	2.0	0.14	U

for 713m ANAI

Client	: CA Rich Consultants, Inc.	Lab Number : L2231684
Project Name	: CORNERSTONE	Project Number : CORNERSTONE
Lab ID	: L2231684-02D	Date Collected : 06/14/22 09:55
Client ID	: MW-2A	Date Received : 06/15/22
Sample Location	: THIRD AVENUE, BRONX	Date Analyzed : 06/24/22 03:55
Sample Matrix	: WATER	Dilution Factor : 2
Analytical Method	: 1,8260C	Analyst : MV
Lab File ID	: V22220623N23	Instrument ID : VOA122
Sample Amount	: 5 ml	GC Column : RTX-502.2
Level	: LOW	%Solids : N/A
Extract Volume (MeO	H) : N/A	Injection Volume : N/A

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-00-3	Chloroethane	ND	5.0	1.4	U
75-35-4	1,1-Dichloroethene	ND	1.0	0.34	U
156-60-5	trans-1,2-Dichloroethene	ND	5.0	1.4	U
79-01-6	Trichloroethene	1.3	1.0	0.35	
95-50-1	1,2-Dichlorobenzene	ND	5.0	1.4	U
541-73-1	1,3-Dichlorobenzene	ND	5.0	1.4	U
106-46-7	1,4-Dichlorobenzene	ND	5.0	1.4	U
1634-04-4	Methyl tert butyl ether	ND	5.0	1.4	U
179601-23-1	p/m-Xylene	ND	5.0	1.4	U
95-47-6	o-Xylene	ND	5.0	1.4	U
1330-20-7	Xylenes, Total	ND	5.0	1.4	U
156-59-2	cis-1,2-Dichloroethene	ND	5.0	1.4	U
540-59-0	1,2-Dichloroethene, Total	ND	5.0	1.4	U
74-95-3	Dibromomethane	ND	10	2.0	U
96-18-4	1,2,3-Trichloropropane	ND	5.0	1.4	U
107-13-1	Acrylonitrile	ND	10	3.0	U
100-42-5	Styrene	ND	5.0	1.4	U
75-71-8	Dichlorodifluoromethane	ND	10	2.0	U
67-64-1	Acetone	ND	10	2.9	U
75-15-0	Carbon disulfide	ND	10	2.0	U
78-93-3	2-Butanone	ND	10	3.9	U
108-05-4	Vinyl acetate	ND	10	2.0	TUJ
108-10-1	4-Methyl-2-pentanone	ND	10	2.0	U
591-78-6	2-Hexanone	ND	10	2.0	U
74-97-5	Bromochloromethane	ND	5.0	1.4	U

gor 7/312

Client	: CA Rich Consultants, Inc.	Lab Number	:	L223 ⁻
Project Name	: CORNERSTONE	Project Number	ŝ	CORI
Lab ID	: L2231684-02D	Date Collected	:	06/14
Client ID	: MW-2A	Date Received	:	06/15
Sample Location	: THIRD AVENUE, BRONX	Date Analyzed	:	06/24
Sample Matrix	: WATER	Dilution Factor	:	2
Analytical Method	: 1,8260C	Analyst	:	ΜV
Lab File ID	: V22220623N23	Instrument ID	:	VOA1
Sample Amount	: 5 ml	GC Column		RTX-
Level	: LOW	%Solids	2	N/A
Extract Volume (MeOH)	: N/A	Injection Volume	:	N/A

		-	ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
594-20-7	2,2-Dichloropropane	ND	5.0	1.4	-UJ
106-93-4	1,2-Dibromoethane	ND	4.0	1.3	U
142-28-9	1,3-Dichloropropane	ND	5.0	1.4	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	1.4	U
108-86-1	Bromobenzene	ND	5.0	1.4	U
104-51-8	n-Butylbenzene	ND	5.0	1.4	U
135-98-8	sec-Butylbenzene	ND	5.0	1.4	U
98-06-6	tert-Butylbenzene	ND	5.0	1.4	U
95-49-8	o-Chlorotoluene	ND	5.0	1.4	U
106-43-4	p-Chlorotoluene	ND	5.0	1.4	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.4	U
37 - 68-3	Hexachlorobutadiene	ND	5.0	1.4	U
8-82-8	Isopropylbenzene	ND	5.0	1.4	U
9-87-6	p-Isopropyltoluene	ND	5.0	1.4	U
1-20-3	Naphthalene	ND	5.0	1.4	U
03-65-1	n-Propylbenzene	ND	5.0	1.4	U
17-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.4	U
20-82-1	1,2,4-Trichlorobenzene	ND	5.0	1.4	U
08-67-8	1,3,5-Trimethylbenzene	ND	5.0	1.4	U
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	1.4	U
23-91-1	1,4-Dioxane	ND	500	120	J UL
05-05-5	p-Diethylbenzene	ND	4.0	1.4	U
22-96-8	p-Ethyltoluene	ND	4.0	1.4	U
5-93-2	1,2,4,5-Tetramethylbenzene	ND	4.0	1.1	U
0-29-7	Ethyl ether	ND	5.0	1.4	U

L2231684 CORNERSTONE 06/14/22 09:55 06/15/22 06/24/22 03:55

2 MV VOA122 RTX-502.2

110-57-6	trans-1.4	-Dichloro-2-butene	ND	5.0	1.4	U
CAS NO.	Parame	ter	Results	RL	MDL	Qualifier
				ug/L		
Extract Vo	olume (MeOH)	N/A		Injection	Volume	: N/A
Level		LOW		%Solids		: N/A
Sample A	mount	5 ml		GC Colu	Imn	: RTX-502.2
Lab File I	D ;	V22220623N23		Instrume	ent ID	: VOA122
Analytical	Method	1,8260C		Analyst		: MV
Sample N	latrix :	WATER		Dilution	Factor	: 2
Sample L	ocation	THIRD AVENUE, BRONX		Date Ana	alyzed	: 06/24/22 03:55
Client ID	0	MW-2A		Date Re	ceived	: 06/15/22
Lab ID	8	L2231684-02D		Date Co	llected	: 06/14/22 09:55
Project N	ame	CORNERSTONE		Project N	Number	: CORNERSTONE
Client		CA Rich Consultants, Inc.		Lab Nun	nber	: L2231684

Client	: CA Rich Consultants, Inc.
Project Name	CORNERSTONE
Lab ID	: L2231684-03
Client ID	: MW-4
Sample Location	THIRD AVENUE, BRONX
Sample Matrix	: WATER
Analytical Method	: 1,8260C
Lab File ID	: V22220623N24
Sample Amount	: 10 ml
Level	: LOW
Extract Volume (MeOH)) : N/A

Lab Number	: L2231684
Project Number	: CORNERSTONE
Date Collected	: 06/14/22 10:47
Date Received	: 06/15/22
Date Analyzed	: 06/24/22 04:21
Dilution Factor	11
Analyst	: MV
Instrument ID	: VOA122
GC Column	: RTX-502.2
%Solids	: N/A
Injection Volume	: N/A

CAS NO.		·	ug/L		
	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	19	2.5	0.70	
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	6.4	0.50	0.18	
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	0.98	0.50	0.19	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
542-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U
563-58-6	1,1-Dichloropropene	ND	2.5	0.70	U
75-25-2	Bromoform	ND	2.0	0.65	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	U
108-88-3	Toluene	ND	2.5	0.70	U
100-41-4	Ethylbenzene	ND	2.5	0.70	U
74-87-3	Chloromethane	ND	2.5	0.70	U
74-83-9	Bromomethane	ND	2.5	0.70	-UJ
75-01-4	Vinyl chloride	ND	1.0	0.07	U

for 13m

Client	 CA Rich Consultants, Inc. CORNERSTONE L2231684-03 MW-4 THIRD AVENUE, BRONX WATER 1,8260C 	Lab Number	: L2231684
Project Name		Project Number	: CORNERSTONE
Lab ID		Date Collected	: 06/14/22 10:47
Client ID		Date Received	: 06/15/22
Sample Location		Date Analyzed	: 06/24/22 04:21
Sample Matrix		Dilution Factor	: 1
Analytical Method		Analyst	: MV
Lab File ID Sample Amount Level Extract Volume (MeOH)	: V22220623N24 : 10 ml : LOW	Instrument ID GC Column %Solids Injection Volume	: VOA122 : RTX-502.2 : N/A

	Parameter		ug/L		
CAS NO.		Results	RL	MDL	Qualifier
75-00-3	Chloroethane	ND	2.5	0.70	U
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U
79-01-6	Trichloroethene	ND	0.50	0.18	U
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U
179601-23-1	p/m-Xylene	ND	2.5	0.70	U
95-47-6	o-Xylene	ND	2.5	0.70	U
1330-20-7	Xylenes, Total	ND	2.5	0.70	U
156-59-2	cis-1,2-DIchloroethene	ND	2.5	0.70	U
540-59-0	1,2-Dichloroethene, Total	ND	2.5	0.70	U
74-95-3	Dibromomethane	ND	5.0	1.0	U
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U
107-13-1	Acrylonitrile	ND	5.0	1.5	U
100-42-5	Styrene	ND	2.5	0.70	U
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U
57-64-1	Acetone	ND	5.0	1.5	U
75-15-0	Carbon disulfide	ND	5.0	1.0	U
78-93-3	2-Butanone	ND	5.0	1.9	U
08-05-4	Vinyl acetate	ND	5.0	1.0	-UJ
08-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U
91-78-6	2-Hexanone	ND	5.0	1.0	U
4-97-5	Bromochloromethane	ND	2.5	0.70	U

Client	: CA Rich Consultants, Inc.	Lab I
Project Name	: CORNERSTONE	Proje
Lab ID	: L2231684-03	Date
Client ID	: MW-4	Date
Sample Location	: THIRD AVENUE, BRONX	Date
Sample Matrix	: WATER	Diluti
Analytical Method	: 1,8260C	Anal
Lab File ID	: V22220623N24	Instr
Sample Amount	: 10 ml	GC
Level	: LOW	%So
Extract Volume (MeC	DH) : N/A	Injec

Lab Number:L2231684Project Number:CORNERSTONEDate Collected:06/14/22 10:47Date Received:06/15/22Date Analyzed:06/24/22 04:21Dilution Factor:1Analyst:MVInstrument ID:VOA122GC Column:RTX-502.2%Solids:N/AInjection Volume:N/A

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	LUJ
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U
108-86-1	Bromobenzene	ND	2.5	0.70	U
104-51-8	n-Butylbenzene	ND	2.5	0.70	U
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U
87-68-3	Hexachlorobutadlene	ND	2.5	0.70	U
98-82-8	Isopropylbenzene	ND	2.5	0.70	U
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U
91-20-3	Naphthalene	ND	2.5	0.70	U
103-65-1	n-Propylbenzene	ND	2.5	0.70	U
37-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U
123-91-1	1,4-Dioxane	ND	250	61,	JR
05-05-5	p-D lethylbenzene	ND	2.0	0.70	U
622-96-8	p-Ethyltoluene	ND	2.0	0.70	U
95-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U
0-29-7	Ethyl ether	ND	2.5	0.70	U

80-2/312 ЪH 1 ANALY CAL

110-57-6	trans-1,4-Dichloro-2-butene	ND	2.5	0.70	U
CAS NO.	Parameter	Results	RL	MDL	Qualifier
			ug/L		
Extract Vol	ume (MeOH) : N/A		Injection	Volume	: N/A
Level	: LOW		%Solids		: N/A
Sample An			GC Colu		: RTX-502.2
Lab File ID			Instrume	ent ID	: VOA122
Analytical I	257		Analyst		: MV
Sample Ma	atrix : WATER		Dilution	Factor	: 1
Sample Lo	cation : THIRD AVENUE, BRONX		Date An	alyzed	: 06/24/22 04:21
Client ID	: MW-4		Date Re	ceived	: 06/15/22
Lab ID	: L2231684-03		Date Co	llected	: 06/14/22 10:47
Project Na	me : CORNERSTONE		Project N	lumber	: CORNERSTONE
Client	: CA Rich Consultants, Inc.		Lab Nun	nber	: L2231684

Client	: CA Rich Consultants, Inc.	Lab Number : L2231684
Project Name	: CORNERSTONE	Project Number : CORNERSTONE
Lab ID	: L2231684-04	Date Collected : 06/14/22 10:12
Client ID	: MW-6	Date Received : 06/15/22
Sample Location	: THIRD AVENUE, BRONX	Date Analyzed : 06/24/22 04:46
Sample Matrix	: WATER	Dilution Factor : 1
Analytical Method	: 1,8260C	Analyst : MV
Lab File ID	: V22220623N25	Instrument ID : VOA122
Sample Amount	: 10 ml	GC Column : RTX-502.2
Level	: LOW	%Solids : N/A
Extract Volume (MeOH) : N/A	Injection Volume : N/A

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	0.87	2.5	0.70	J
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	42	0.50	0.18	
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cls-1,3-Dichloropropene	ND	0.50	0.14	U
542-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U
563-58-6	1,1-Dichloropropene	ND	2.5	0.70	U
75-25-2	Bromoform	ND	2.0	0.65	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	U
108-88-3	Toluene	ND	2.5	0.70	U
100-41-4	Ethylbenzene	ND	2.5	0.70	U
74-87-3	Chloromethane	ND	2.5	0.70	U
74-83-9	Bromomethane	ND	2.5	0.70	UJ
75-01-4	Vinyl chloride	ND	1.0	0.07	U

forisim iA ANAL

Client	:	CA Rich Consultants, Inc.
Project Name	:	CORNERSTONE
Lab ID	:	L2231684-04
Client ID	;	MW-6
Sample Location	1	THIRD AVENUE, BRONX
Sample Matrix	:	WATER
Analytical Method	1	1,8260C
Lab File ID		V22220623N25
Sample Amount	:	10 ml
Level	:	LOW
Extract Volume (MeOH)	;	N/A

Lab Number	; L2231684
Project Number	: CORNERSTONE
Date Collected	: 06/14/22 10:12
Date Received	: 06/15/22
Date Analyzed	: 06/24/22 04:46
Dilution Factor	÷1
Analyst	: MV
Instrument ID	: VOA122
GC Column	: RTX-502.2
%Solids	: N/A
Injection Volume	: N/A

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-00-3	Chloroethane	ND	2.5	0.70	บ	
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U	
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U	
79-01-6	Trichloroethene	0.60	0.50	0.18		
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U	
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U	
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U	
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	
1330-20-7	Xylenes, Total	ND	2.5	0.70	U	
156-59-2	cis-1,2-Dichloroethene	ND	2.5	0.70	U	
540-59-0	1,2-Dichloroethene, Total	ND	2.5	0.70	U	
74-95-3	Dibromomethane	ND	5.0	1.0	U	
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U	
107-13-1	Acrylonitrile	ND	5.0	1.5	U	
100-42-5	Styrene	ND	2.5	0.70	U	
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U	
67-64-1	Acetone	ND	5.0	1.5	U	
75-15-0	Carbon disulfide	ND	5.0	1.0	U	
78-93-3	2-Butanone	ND	5.0	1.9	U	
108-05-4	Vinyl acetate	ND	5.0	1.0	+ UT	
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U	
591-78-6	2-Hexanone	ND	5.0	1.0	U	
74-97-5	Bromochloromethane	ND	2.5	0.70	U	

		· · · · · · · · · · · · · · · · · · ·	ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	+UT
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	U
530-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U
108-86-1	Bromobenzene	ND	2.5	0.70	U
104-51-8	n-Butylbenzene	ND	2.5	0.70	U
35-98-8	sec-Butylbenzene	ND	2.5	0.70	U
8-06-6	tert-Butylbenzene	ND	2.5	0.70	U
95-49-8	o-Chiorotoluene	ND	2.5	0.70	U
06-43-4	p-Chlorotoluene	ND	2.5	0.70	U
6-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U
37-68-3	Hexachlorobutadiene	ND	2.5	0.70	U
8-82-8	Isopropylbenzene	ND	2.5	0.70	U
9-87-6	p-Isopropyltolue ne	ND	2.5	0.70	U
1-20-3	Naphthalene	ND	2.5	0.70	U
03-65-1	n-Propylbenzene	ND	2.5	0.70	U
7-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U
20-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U
08-67-8	1,3,5-Trímethylbenzene	ND	2.5	0.70	U
5-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U
23-91-1	1,4-Dioxane	ND	250	61.	JR
05-05-5	p-Dlethylbenzene	ND	2.0	0.70	U
22-96-8	p-Ethyltoluene	ND	2.0	0.70	U
5-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U
D-29-7	Ethyl ether	ND	2.5	0.70	U
		and the second second second			

801713122 iA ANJ

110-57-6	trans-1,4-Dichloro-2-butene	ND	2.5	0.70	U
CAS NO.	Parameter	Results	RL	MDL	Qualifier
			ug/L		
Extract Vo	lume (MeOH) : N/A		Injection	Volume	: N/A
Level	: LOW		%Solids		: N/A
Sample Ar	nount : 10 ml		GC Colu	Imn	: RTX-502.2
Lab File ID	: V22220623N25		Instrume	ent ID	: VOA122
Analytical	Method : 1,8260C		Analyst		: MV
Sample Ma	atrix : WATER		Dilution	Factor	£1
Sample Lo	cation : THIRD AVENUE, BRONX		Date An	alyzed	: 06/24/22 04:46
Client ID	: MW-6		Date Re	ceived	: 06/15/22
Lab ID	: L2231684-04		Date Co	llected	: 06/14/22 10:12
Project Na	me : CORNERSTONE		Project I	lumber	: CORNERSTONE
Client	: CA Rich Consultants, Inc.		Lab Nun	ıber	: L2231684

Client	:	CA Rich Consultants, Inc.	L	ab Number
Project Name	:	CORNERSTONE	F	Project Number
Lab ID	:	L2231684-05D	0	Date Collected
Client ID	:	MW-7	0	Date Received
Sample Location	;	THIRD AVENUE, BRONX	0	Date Analyzed
Sample Matrix	:	WATER	0	Dilution Factor
Analytical Method	;	1,8260C	Α	Analyst
Lab File ID	:	V22220624A10	li li	nstrument ID
Sample Amount	:	4 ml	G	GC Column
Level	:	LOW	9	6Solids
Extract Volume (MeOH)	:	N/A	li li	njection Volume

Lab Number:L2231684Project Number:CORNERSTONEDate Collected:06/14/22 12:06Date Received:06/15/22Date Analyzed:06/24/22 11:59Dilution Factor:2.5Analyst:PDInstrument ID:VOA122GC Column:RTX-502.2%Solids:N/AInjection Volume:N/A

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-09-2	Methylene chloride	2.3	6.2	1.8	J	
75-34-3	1,1-Dichloroethane	ND	6.2	1.8	U	
67-66-3	Chloroform	4.9	6.2	1.8	J	
56-23-5	Carbon tetrachloride	ND	1.2	0.34	U	
78-87-5	1,2-Dichloropropane	ND	2.5	0.34	U	
124-48-1	Dibromochloromethane	ND	1.2	0.37	U	
79-00-5	1,1,2-Trichloroethane	ND	3.8	1.2	U	
127-18-4	Tetrachloroethene	16	1.2	0.45		
108-90-7	Chlorobenzene	ND	6.2	1.8	U	
75-69-4	Trichlorofluoromethane	ND	6.2	1.8	U	
107-06-2	1,2-Dichloroethane	ND	1.2	0.33	U	
71-55-6	1,1,1-Trichloroethane	ND	6.2	1.8	U	
75-27-4	Bromodichloromethane	ND	1.2	0.48	U	
10061-02-6	trans-1,3-Dichloropropene	ND	1.2	0.41	U	
10061-01-5	cls-1,3-Dichloropropene	ND	1.2	0.36	U	
542-75-6	1,3-Dichloropropene, Total	ND	1.2	0.36	U	
563-58-6	1,1-Dichloropropene	ND	6.2	1.8	U	
75-25-2	Bromoform	ND	5.0	1.6	U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.2	0.42	U	
71-43-2	Benzene	ND	1.2	0.40	U	
108-88-3	Toluene	2.3	6.2	1.8	J	
100-41-4	Ethylbenzene	ND	6.2	1.8	U	
74-87-3	Chloromethane	ND	6.2	1.8	U	
74-83-9	Bromomethane	ND	6.2	1.8	JUJ	
75-01-4	Vinyl chloride	ND	2.5	0.18	U	

JOL- 1/3/2 iΑ ANA

Client Project Name Lab ID Client ID	: CA Rich Consultants, Inc. : CORNERSTONE : L2231684-05D	Lab Number: L2231684Project Number: CORNERSTONEDate Collected: 06/14/22 12:06Date Descrived: 06/14/22 12:06
Client ID Sample Location Sample Matrix Analytical Method	: MW-7 : THIRD AVENUE, BRONX : WATER : 1,8260C	Date Received: 06/15/22Date Analyzed: 06/24/22 11:59Dilution Factor: 2.5Analyst: PD
Lab File ID Sample Amount Level Extract Volume (MeOH)	: V22220624A10 : 4 ml : LOW	Instrument ID : VOA122 GC Column : RTX-502.2 %Solids : N/A Injection Volume : N/A

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-00-3	Chloroethane	ND	6.2	1.8	U	
75-35-4	1,1-Dichloroethene	ND	1.2	0.42	υ	
156-60-5	trans-1,2-Dichloroethene	ND	6.2	1.8	U	
79-01-6	Trichloroethene	0.48	1.2	0.44	J	
95-50-1	1,2-Dichlorobenzene	ND	6.2	1.8	U	
541-73-1	1,3-Dichlorobenzene	ND	6.2	1.8	U	
106-46-7	1,4-Dichlorobenzene	ND	6.2	1.8	U	
1634-04-4	Methyl tert butyl ether	ND	6.2	1.8	U	
179601-23-1	p/m-Xylene	ND	6.2	1.8	U	
95-47-6	o-Xylene	ND	6.2	1.8	U	
1330-20-7	Xylenes, Total	ND	6.2	1.8	U	
156-59-2	cis-1,2-Dichloroethene	2.8	6.2	1.8	J	
540-59-0	1,2-Dichloroethene, Total	2.8	6.2	1.8	J	
74-95-3	Dibromomethane	ND	12	2.5	U	
96-18-4	1,2,3-Trichloropropane	ND	6.2	1.8	U	
107-13-1	Acrylonitrile	ND	12	3.8	U	
100-42-5	Styrene	ND	6.2	1.8	U	
75-71-8	Dichlorodifluoromethane	ND	12	2.5	U	
67-64-1	Acetone	370	12	3.6		
75-15-0	Carbon disulfide	ND	12	2.5	U	
78-93-3	2-Butanone	7.2	12	4.8	J	
08-05-4	Vinyl acetate	ND	12	2.5	+UJ	
08-10-1	4-Methyl-2-pentanone	ND	12	2.5	U	
591-78-6	2-Hexanone	ND	12	2.5	U	
4-97-5	Bromochloromethane	ND	6.2	1.8	U	

Client	: CA Rich Consultants, Inc.	Lab Number
Project Name	: CORNERSTONE	Project Number
Lab ID	: L2231684-05D	Date Collected
Client ID	: MW-7	Date Received
Sample Location	: THIRD AVENUE, BRONX	Date Analyzed
	: WATER	Dilution Factor
Analytical Method	: 1,8260C	Analyst
Lab File ID	: V22220624A10	Instrument ID
Sample Amount	: 4 ml	GC Column
Level	: LOW	%Solids
Extract Volume (MeOH)	: N/A	Injection Volum

Lab Number:L2231684Project Number:CORNERSTONEDate Collected:06/14/22 12:06Date Received:06/15/22Date Analyzed:06/24/22 11:59Dilution Factor:2.5Analyst:PDnstrument ID:VOA122GC Column:RTX-502.2%Solids:N/Anjection Volume:N/A

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
594-20 - 7	2,2-Dichloropropane	ND	6.2	1.8	J-UT
106-93-4	1,2-Dlbromoethane	ND	5.0	1.6	U
142-28-9	1,3-Dichloropropane	ND	6.2	1.8	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	6.2	1.8	U
108-86-1	Bromobenzene	ND	6.2	1.8	U
104-51-8	n-Butylbenzene	ND	6.2	1.8	U
135-98-8	sec-Butylbenzene	ND	6.2	1.8	U
98-06-6	tert-Butylbenzene	ND	6.2	1.8	U
95-49-8	o-Chlorotoluene	ND	6.2	1.8	U
106-43-4	p-Chlorotoluene	ND	6.2	1.8	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	6.2	1.8	U
87-68-3	Hexachlorobutadiene	ND	6.2	1.8	U
98-82-8	Isopropylbenzene	ND	6.2	1.8	U
99-87-6	p-Isopropyltoluene	ND	6.2	1.8	U
91-20-3	Naphthalene	ND	6.2	1.8	U
103-65-1	n-Propylbenzene	ND	6.2	1.8	U
37-61-6	1,2,3-Trichlorobenzene	ND	6.2	1.8	U
120-82-1	1,2,4-Trichlorobenzene	ND	6.2	1.8	U
108-67-8	1,3,5-Trimethylbenzene	ND	6.2	1.8	U
95-63-6	1,2,4-Trimethylbenzene	ND	6,2	1.8	U
123-91-1	1,4-Dloxane	ND	620	150	wh
05-05-5	p-Diethylbenzene	ND	5.0	1.8	U
22-96-8	p-Ethyltoluene	ND	5.0	1.8	U
5-93-2	1,2,4,5-Tetramethylbenzene	ND	5.0	1.4	U
60-29-7	Ethyl ether	ND	6.2	1.8	U

forism PHA $\Delta 1$ ANALYTICAL

Client Project Name Lab ID Client ID Sample Locatior Sample Matrix Analytical Metho Lab File ID Sample Amount Level Extract Volume (: WATER d : 1,8260C : V22220624A10 : 4 ml : LOW		Lab Nun Project N Date Co Date Re Date An Dilution I Analyst Instrume GC Colu %Solids Injection	Number llected ceived alyzed Factor ent ID imn	: L2231684 : CORNERSTONE : 06/14/22 12:06 : 06/15/22 : 06/24/22 11:59 : 2.5 : PD : VOA122 : RTX-502.2 : N/A : N/A
CAS NO.	Parameter	Results	ug/L RL	MDL	Qualifier
110-57-6	trans-1,4-Dichloro-2-butene	ND	6.2	1.8	U

Client Project Name Lab ID	CA Rich Consultants, Inc. CORNERSTONE L2231684-06D	Project Number : (L2231684 CORNERSTONE 06/14/22 11:55
Client ID	: MW-8		06/15/22
Sample Location	: THIRD AVENUE, BRONX	Date Analyzed : 0	06/24/22 12:24
Sample Matrix	: WATER	Dilution Factor :	5
Analytical Method	: 1,8260C	Analyst : I	PD
Lab File ID	: V22220624A11	Instrument ID	VOA122
Sample Amount	: 2 ml	GC Column : I	RTX-502.2
Level	: LOW	%Solids : I	N/A
Extract Volume (MeOH)	; N/A	Injection Volume ; I	N/A

ug/L CAS NO. Parameter Results RL MDL Qualifier ND U 75-09-2 Methylene chloride 12 3.5 U 75-34-3 1,1-Dichloroethane ND 12 3.5 67-66-3 Chloroform ND 12 3.5 U 56-23-5 Carbon tetrachloride ND 0.67 U 2.5 78-87-5 ND υ 1,2-Dichloropropane 5.0 0.68 124-48-1 ND 0.74 U Dibromochloromethane 2.5 79-00-5 ND 1,1,2-Trichloroethane 7.5 2.5 U 127-18-4 Tetrachloroethene 540 2.5 0.90 108-90-7 Chlorobenzene ND 12 3.5 U U 75-69-4 Trichlorofluoromethane ND 12 3.5 2.5 U 107-06-2 1,2-Dichloroethane ND 0.66 71-55-6 3.5 U 1,1,1-Trichloroethane ND 12 75-27-4 Bromodichloromethane ND 2.5 0.96 U 10061-02-6 trans-1,3-Dichloropropene ND 2.5 0.82 U U 10061-01-5 cis-1,3-Dichloropropene ND 2.5 0.72 542-75-6 2.5 1,3-Dichloropropene, Total ND 0.72 U 563-58-6 ND U 1,1-Dichloropropene 12 3.5 75-25-2 Bromoform ND 10 3.2 U 79-34-5 1,1,2,2-Tetrachloroethane ND 2.5 0.84 U 71-43-2 Benzene ND 2.5 0.80 U U 108-88-3 Toluene ND 12 3.5 U 100-41-4 Ethylbenzene ND 12 3.5 74-87-3 Chloromethane ND 12 3.5 U 74-83-9 Bromomethane ND 12 3.5 -0 U 75-01-4 Vinyl chloride ND 5.0 0.36

Client	: CA Rich Consultants, Inc.
Project Name	: CORNERSTONE
Lab ID	: L2231684-06D
Client ID	: MW-8
Sample Location	: THIRD AVENUE, BRONX
Sample Matrix	: WATER
Analytical Method	: 1,8260C
Lab File ID	: V22220624A11
Sample Amount	: 2 ml
Level	: LOW
Extract Volume (MeOH)) : N/A

Lab Number	: L2231684
Project Number	: CORNERSTONE
Date Collected	: 06/14/22 11:55
Date Received	: 06/15/22
Date Analyzed	: 06/24/22 12:24
Dilution Factor	: 5
Analyst	: PD
Instrument ID	: VOA122
GC Column	: RTX-502.2
%Solids	: N/A
Injection Volume	: N/A

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-00-3	Chloroethane	ND	12	3.5	U
75-35-4	1,1-Dichloroethene	ND	2.5	0.84	U
156-60-5	trans-1,2-Dichloroethene	ND	12	3.5	U
79-01-6	Trichloroethene	35	2.5	0.88	
95-50-1	1,2-Dichlorobenzene	ND	12	3.5	U
541-73-1	1,3-Dichlorobenzene	ND	12	3.5	U
106-46-7	1,4-Dichlorobenzene	ND	12	3.5	U
1634-04-4	Methyl tert butyl ether	ND	12	3.5	U
179601-23-1	p/m-Xylene	ND	12	3.5	U
95-47-6	o-Xylene	ND	12	3.5	U
1330-20-7	Xylenes, Total	ND	12	3.5	U
156-59-2	cls-1,2-Dichloroethene	ND	12	3.5	U
540-59-0	1,2-Dichloroethene, Total	ND	12	3.5	U
74-95-3	Dibromomethane	ND	25	5.0	U
96-18-4	1,2,3-Trichloropropane	ND	12	3.5	U
107-13-1	Acrylonitrile	ND	25	7.5	U
100-42-5	Styrene	ND	12	3.5	U
75-71-8	Dichlorodifluoromethane	ND	25	5.0	U
67-64-1	Acetone	8.0	25	7.3	J
75-15-0	Carbon disulfide	ND	25	5.0	U
78-93-3	2-Butanone	ND	25	9.7	U
108-05-4	Vinyl acetate	ND	25	5.0	+UJ
108-10-1	4-Methyl-2-pentanone	ND	25	5.0	U
591-78-6	2-Hexanone	ND	25	5.0	U
74-97-5	Bromochloromethane	NÐ	12	3.5	U

Client Project Name Lab ID Client ID Sample Location Sample Matrix Analytical Method Lab File ID Sample Amount	: CA Rich Consultants, Inc. : CORNERSTONE : L2231684-06D : MW-8 : THIRD AVENUE, BRONX : WATER : 1,8260C : V22220624A11 : 2 ml - LOW	Date Collected Date Received Date Analyzed Dilution Factor Analyst Instrument ID GC Column	: L2231684 : CORNERSTONE : 06/14/22 11:55 : 06/15/22 : 06/24/22 12:24 : 5 : PD : VOA122 : RTX-502.2
Sample Amount Level Extract Volume (MeOH)	: LOW	GC Column %Solids Injection Volume	: N/A

		12-	ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
594-20-7	2,2-Dichloropropane	ND	12	3.5	+UJ
106-93-4	1,2-Dibromoethane	ND	10	3.2	U
142-28-9	1,3-Dichloropropane	ND	12	3.5	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	12	3.5	U
108-86-1	Bromobenzene	ND	12	3.5	U
104-51-8	n-Butylbenzene	ND	12	3.5	U
135-98-8	sec-Butylbenzene	ND	12	3.5	U
98-06-6	tert-Butylbenzene	ND	12	3.5	U
95-49-8	o-Chlorotoluene	ND	12	3.5	U
106-43-4	p-Chlorotoluene	ND	12	3.5	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	12	3.5	U
87-68-3	Hexachlorobutadiene	ND	12	3.5	U
98-82-8	Isopropylbenzene	ND	12	3.5	U
99-87-6	p-isopropyltolue ne	ND	12	3.5	U
91-20-3	Naphthalene	ND	12	3.5	U
103-65-1	n-Propylbenzene	ND	12	3.5	U
87-61-6	1,2,3-Trichlorobenzene	ND	12	3.5	U
120-82-1	1,2,4-Trichlorobenzene	ND	12	3.5	U
108-67-8	1,3,5-Trimethylbenzene	ND	12	3.5	U
95-63-6	1,2,4-Trimethylbenzene	ND	12	3.5	U
123-91-1	1,4-Dioxane	ND	1200	300	UR
105-05-5	p-Diethylbenzene	ND	10	3.5	U
622-96-8	p-Ethyltoluene	ND	10	3.5	U
95-93-2	1,2,4,5-Tetramethylbenzene	ND	10	2.7	U
60-29-7	Ethyl ether	ND	12	3.5	U

for BIN

110-57-6	trans-1,4-Dichloro-2-butene	ND 12 3.5 U
CAS NO.	Parameter	Results RL MDL Qualifier
		ug/L
Extract Vo	blume (MeOH) : N/A	Injection Volume : N/A
Level	: LOW	%Solids : N/A
Sample A	mount : 2 ml	GC Column : RTX-502.2
Lab File II	D : V22220624A11	Instrument ID : VOA122
Analytical	Method : 1,8260C	Analyst : PD
Sample N	latrix : WATER	Dilution Factor : 5
Sample L	ocation : THIRD AVENUE, BRONX	Date Analyzed :: 06/24/22 12:24
Client ID	: MW-8	Date Received : 06/15/22
Lab ID	: L2231684-06D	Date Collected : 06/14/22 11:55
Project Na	ame : CORNERSTONE	Project Number 📑 CORNERSTONE
Client	: CA Rich Consultants, Inc.	Lab Number : L2231684

ಜನೆ ಕಲ್ಲಿ ಕಲ್ಲೇ ಎಂದಿ ಕಲ್ಲಿ ಮನಗಳನ್ನು

Client Droiget Name	CA Rich Consultants, Inc.	Lab Number : L2231684
Project Name	: CORNERSTONE	Project Number CORNERSTONE
Lab ID	: L2231684-07	Date Collected : 06/14/22 09:31
Client ID	: MW-10	Date Received : 06/15/22
Sample Location	: THIRD AVENUE, BRONX	Date Analyzed : 06/24/22 13:14
Sample Matrix	: WATER	Dilution Factor : 1
Analytical Method	: 1,8260C	Analyst : PD
Lab File ID	: V22220624A13	Instrument ID : VOA122
Sample Amount	: 10 ml	GC Column : RTX-502.2
Level	: LOW	%Solids : N/A
Extract Volume (MeOH) :: N/A	Injection Volume : N/A

			ug/L		
CAS NO.	Parameter	Results	RL	MDL.	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	ND	2.5	0.70	U
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	3.8	0.50	0.18	
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cls-1,3-Dichloropropene	ND	0.50	0.14	U
542-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U
563-58-6	1,1-Dichloropropene	ND	2.5	0.70	U
75-25-2	Bromoform	ND	2.0	0.65	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	U
108-88-3	Toluene	ND	2.5	0.70	U
00-41-4	Ethylbenzene	ND	2.5	0.70	U
74-87-3	Chloromethane	ND	2.5	0.70	U
4-83-9	Bromomethane	ND	2.5	0.70	JUJ
/5-01-4	Vinyl chloride	ND	1.0	0.07	U

Jor 7/3m iA

Client	 : CA Rich Consultants, Inc. : CORNERSTONE : L2231684-07 : MW-10 : THIRD AVENUE, BRONX : WATER : 1,8260C : V22220624A13 : 10 ml 	Lab Number	: L2231684
Project Name		Project Number	: CORNERSTONE
Lab ID		Date Collected	: 06/14/22 09:31
Client ID		Date Received	: 06/15/22
Sample Location		Date Analyzed	: 06/24/22 13:14
Sample Matrix		Dilution Factor	: 1
Analytical Method		Analyst	: PD
Lab File ID		Instrument ID	: VOA122
Sample Amount		GC Column	: RTX-502.2
•			
Level	: LOW	%Solids	: N/A
Extract Volume (MeOH)		Injection Volume	• N/A
		injoodon volunio	N

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-00-3	Chloroethane	ND	2.5	0.70	U
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U
79-01-6	Trichloroethene	ND	0.50	0.18	U
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U
179601-23-1	p/m-Xylene	ND	2.5	0.70	U
95-47-6	o-Xylene	ND	2.5	0.70	U
1330-20-7	Xylenes, Total	ND	2.5	0.70	U
156-59-2	cls-1,2-Dichloroethene	ND	2.5	0.70	U
540-59-0	1,2-Dichloroethene, Total	ND	2.5	0.70	U
74-95-3	Dibromomethane	ND	5.0	1.0	U
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U
107-13-1	Acrylonitrile	ND	5.0	1.5	U
100-42-5	Styrene	ND	2.5	0.70	U
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U
67-64-1	Acetone	ND	5.0	1.5	U
75-15-0	Carbon disulfide	ND	5.0	1.0	U
78-93-3	2-Butanone	ND	5.0	1.9	U
108-05-4	Vinyl acetate	ND	5.0	1.0	-UJ
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U
591-78-6	2-Hexanone	ND	5.0	1.0	U
74-97-5	Bromochloromethane	ND	2.5	0.70	U

yor 21312

Client	: CA Rich Consultants, Inc.	Lab Number	: L2231684
Project Name	: CORNERSTONE	Project Number	: CORNERSTONE
Lab ID	: L2231684-07	Date Collected	: 06/14/22 09:31
Client ID	: MW-10	Date Received	: 06/15/22
Sample Location	: THIRD AVENUE, BRONX	Date Analyzed	: 06/24/22 13:14
Sample Matrix	: WATER	Dilution Factor	:1
Analytical Method	: 1,8260C	Analyst	: PD
Lab File ID	: V22220624A13	Instrument ID	: VOA122
Sample Amount	: 10 ml	GC Column	: RTX-502.2
Level	: LOW	%Solids	: N/A
Extract Volume (MeOH) : N/A	Injection Volume	: N/A

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	LUT	
106-93-4	1,2-Dlbromoethane	ND	2.0	0.65	U	
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	U	
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U	
108-86-1	Bromobenzene	ND	2.5	0.70	U	
104-51-8	n-Butylbenzene	ND	2.5	0.70	U	
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U	
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U	
5-49-8	o-Chlorotoluene	ND	2.5	0.70	U	
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U	
6-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U	
7-68-3	Hexachlorobutadlene	ND	2.5	0.70	U	
8-82-8	Isopropylbenzene	ND	2.5	0.70	U	
9-87-6	p-Isopropyltoluene	ND	2.5	0.70	U	
1-20-3	Naphthalene	ND	2.5	0.70	U	
03-65-1	n-Propylbenzene	ND	2.5	0.70	U	
37-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U	
20-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U	
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U	
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U	
123-91-1	1,4-Dioxane	ND	250	61,	uR	
05-05-5	p-Diethylbenzene	ND	2,0	0.70	U	
22-96-8	p-Ethyltoluene	ND	2.0	0.70	U	
5-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U	
0-29-7	Ethyl ether	ND	2.5	0.70	U	

110-57-6	trans-	1,4-Dichloro-2-butene	ND	2.5	0.70	U
CAS NO.	Paran	neter	Results	RL	MDL	Qualifier
	_			ug/L		
				пјесиоп	voiume	≅ N/A
	xtract Volume (MeOH)		Injection Volume			S
	evel	LOW		%Solids		N/A
S	ample Amount	: 10 ml	GC Column			RTX-502.2
La	ab File ID	: V22220624A13	,			: VOA122
Α	nalytical Method	: 1,8260C	Analyst			: PD
S	ample Matrix	: WATER		Dilution	Factor	÷ 1
S	ample Location	: THIRD AVENUE, BRONX		Date Ana	alyzed	: 06/24/22 13:14
-	lient ID	: MW-10		Date Re	ceived	: 06/15/22
	ab ID	: L2231684-07		Date Co	lected	: 06/14/22 09:31
	roject Name	: CORNERSTONE		Project N	lumber	: CORNERSTONE
-	lient	: CA Rich Consultants, Inc.	Lab Number			: L2231684

Client Project Nam Lab ID Client ID Sample Loc: Sample Mat Analytical M Lab File ID Sample Amo Level Extract Volu	: L2231684-08D : MW-XX MW-2-A ation : THIRD AVENUE, BRONX rix : WATER ethod : 1,8260C : V22220624A12		Lab Num Project N Date Col Date Re Date Ana Dilution I Analyst Instrume GC Colu %Solids Injection	lumber llected ceived alyzed Factor ent ID mn	 L2231684 CORNERSTONE 06/14/22 09:55 06/15/22 06/24/22 12:49 2 PD VOA122 RTX-502.2 N/A N/A
CAS NO.	Parameter	Results	ug/L RL	MDL	Qualifier
	- anameter	nesulta	nE	MDL	Guaimer
75-09-2	Methylene chloride	ND	5.0	1.4	U
75-34-3	1,1-Dichloroethane	ND	5.0	1.4	U
67-66-3	Chloroform	ND	5.0	1.4	U
56-23-5	Carbon tetrachloride	ND	1.0	0.27	U
78-87-5	1,2-Dichloropropane	ND	2.0	0.27	U
124-48-1	Dibromochloromethane	ND	1.0	0.30	U
79-00-5	1,1,2-Trichloroethane	ND	3.0	1.0	U
127-18-4	Tetrachloroethene	180	1.0	0.36	
108-90-7	Chlorobenzene	ND	5.0	1.4	U
75-69-4	Trichlorofluoromethane	ND	5.0	1.4	U
107-06-2	1,2-Dichloroethane	ND	1.0	0.26	U
71-55-6	1,1,1-Trichloroethane	ND	5.0	1.4	U
75-27-4	Bromodichloromethane	ND	1.0	0.38	U
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.33	U
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	U
542-75-6	1,3-Dichloropropene, Total	ND	1.0	0.29	U
563-58-6	1,1-Dichloropropene	ND	5.0	1.4	U
75-25-2	Bromoform	ND	4.0	1.3	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.33	U
71-43-2	Benzene	ND	1.0	0.32	U
108-88-3	Toluene	ND	5.0	1.4	U
100-41-4	Ethylbenzene	ND	5.0	1.4	U
74-87-3	Chloromethane	ND	5.0	1.4	U
74-83-9	Bromomethane	ND	5.0	1.4	+UJ
75-01-4	Vinyl chloride	ND	2.0	0.14	U

PUTINE ALPHA

Client Project Name Lab ID Client ID Sample Location Sample Matrix Analytical Method Lab File ID Sample Amount Level Extract Volume (I	: WATER : 1,8260C : V22220624A12 : 5 ml : LOW		Lab Num Project N Date Col Date Red Date Ana Dilution I Analyst Instrume GC Colu %Solids Injection	Number Ilected ceived alyzed Factor Int ID mn	: L2231684 CORNERSTONE 06/14/22 09:55 06/15/22 06/24/22 12:49 2 PD VOA122 RTX-502.2 N/A N/A
CAS NO.	Parameter	Results	ug/L RL	MDL	Qualifier
75-00-3	Chloroethane	ND	5.0	1.4	U
75-35-4	1,1-Dichloroethene	ND	1.0	0.34	U
156-60-5	trans-1,2-Dichloroethene	ND	5.0	1.4	U
79-01-6	Trichloroethene	1.4	1.0	0.35	
95-50-1	1,2-Dichlorobenzene	ND	5.0	1.4	U
541-73-1	1,3-Dichlorobenzene	ND	5.0	1.4	U
106-46-7	1,4-Dichlorobenzene	ND	5.0	1.4	U
1634-04-4	Methyl tert butyl ether	ND	5.0	1.4	U
179601-23-1	p/m-Xylene	ND	5.0	1.4	U
95-47-6	o-Xylene	ND	5.0	1.4	U
1330-20-7	Xylenes, Total	ND	5.0	1.4	U
156-59-2	cis-1,2-Dlchloroethene	ND	5.0	1.4	U
540-59-0	1,2-Dichloroethene, Total	ND	5.0	1.4	U
74-95-3	Dibromomethane	ND	10	2.0	U
96-18-4	1,2,3-Trichloropropane	ND	5.0	1.4	U
107-13-1	AcrylonItrile	ND	10	3.0	U
100-42-5	Styrene	ND	5.0	1.4	U
75-71-8	Dichlorodlfluoromethane	ND	10	2.0	U
67-64-1	Acetone	ND	10	2.9	U
75-15-0	Carbon disulfide	ND	10	2.0	U
78-93-3	2-Butanone	ND	10	3.9	U
108-05-4	Vinyl acetate	ND	10	2.0	J-UJ
108-10-1	4-Methyl-2-pentanone	ND	10	2.0	U
591-78-6	2-Hexanone	ND	10	2.0	U
74-97-5	Bromochloromethane	ND	5.0	1.4	U

Client Project Name Lab ID Client ID Sample Location Sample Matrix Analytical Method Lab File ID Sample Amount Level Extract Volume (M	: V22220624A12 : 5 ml : LOW		Lab Num Project N Date Col Date Red Date Ana Dilution I Analyst Instrume GC Colu %Solids Injection	lumber lected ceived alyzed Factor nt ID mn	 L2231684 CORNERSTONE 06/14/22 09:55 06/15/22 06/24/22 12:49 2 PD VOA122 RTX-502.2 N/A N/A
CAS NO.	Parameter	Results	ug/L RL	MDL	Qualifier
					. +
594-20-7	2,2-Dichloropropane	ND	5.0	1.4	JF ()]
106-93-4	1,2-Dibromoethane	ND	4.0	1.3	U
142-28-9	1,3-Dichloropropane	ND	5.0	1.4	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	1.4	U
108-86-1	Bromobenzene	ND	5.0	1.4	U
104-51-8	n-Butylbenzene	ND	5.0	1.4	U
135-98-8	sec-Butylbenzene	ND	5.0	1.4	U
98-06-6	tert-Butylbenzene	ND	5.0	1.4	U
95-49-8	o-Chlorotoluene	ND	5.0	1.4	U
106-43-4	p-Chlorotoluene	ND	5.0	1.4	U
96-12-8	1,2-Dlbromo-3-chloropropane	ND	5.0	1.4	U
87-68-3	Hexachlorobutadlene	ND	5.0	1.4	U
98-82-8	Isopropylbenzene	ND	5.0	1.4	U
99-87-6	p-isopropyltoluene	ND	5.0	1.4	U
91-20-3	Naphthalene	ND	5.0	1.4	U
103-65-1	n-Propylbenzene	ND	5.0	1.4	U
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.4	U
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	1.4	U
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	1.4	U ,
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	1.4	U
123-91-1	1,4-Dioxane	ND	500	120	-t-R
105-05-5	p-Diethylbenzene	ND	4.0	1.4	U
622-96-8	p-Ethyltoluene	ND	4.0	1.4	U
95-93-2					
	1,2,4,5-Tetramethylbenzene	ND	4.0	1.1	υ
60-29-7	Ethyl ether	ND	5.0	1.4	U

110-57-6	trans-1,4-Dichloro-2-butene	ND	5.0	1.4	U
CAS NO.	Parameter	Results	RL	MDL	Qualifier
			ug/L		
Extract Vo	lume (MeOH) : N/A		Injection	Volume	: N/A
Level	: LOW		%Solids		: N/A
Sample Ar	nount : 5 ml		GC Colu	: RTX-502.2	
Lab File ID	: V22220624A12		Instrume	: VOA122	
Analytical	Method : 1,8260C		Analyst	; PD	
Sample Ma	atrix : WATER		Dilution	: 2	
Sample Lo	cation : THIRD AVENUE, BRONX		Date An	alyzed	: 06/24/22 12:49
Client ID	: MW-XX MW-2A		Date Re	ceived	: 06/15/22
Lab ID	: L2231684-08D		Date Co	llected	: 06/14/22 09:55
Project Na	me : CORNERSTONE		Project I	Number	: CORNERSTONE
Client	: CA Rich Consultants, Inc.		Lab Nun	: L2231684	

Jan 7/3m ANAL

Client Project Name Lab ID Client ID Sample Locatio Sample Matrix Analytical Meth Lab File ID Sample Amoun Level Extract Volume	: WATER od : 1,8260C : V22220624A08 t : 10 ml : LOW		Lab Num Project N Date Col Date Rec Date Ana Dilution F Analyst Instrume GC Colui %Solids Injection	lumber lected ceived lyzed Factor nt ID mn	: L2231684 : CORNERSTONE : 06/14/22 13:15 : 06/15/22 : 06/24/22 11:10 : 1 : PD : VOA122 : RTX-502.2 : N/A : N/A
CAS NO.	Parameter	Results	ug/L RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	ND	2.5	0.70	U
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	ND	0.50	0.18	U
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cls-1,3-Dichloropropene	ND	0.50	0.14	U
542-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U
563-58-6	1,1-Dichloropropene	ND	2.5	0.70	U
75-25-2	Bromoform	ND	2.0	0.65	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	U
108-88-3	Toluene	ND	2.5	0.70	U
100-41-4	Ethylbenzene	ND	2.5	0.70	U
74-87-3	Chloromethane	ND	2.5	0.70	U
74-83-9	Bromomethane	ND	2.5	0.70	TUT
75-01-4	Vinyl chloride	ND	1.0	0.07	U
	Tinyi olionoc		1.0	0.07	

Client Project Name Lab ID Client ID Sample Loca Sample Matri Analytical Me Lab File ID Sample Amo Level Extract Volun	: L2231684-09 : FIELD BLANK tion : THIRD AVENUE, BRONX x : WATER thod : 1,8260C : V22220624A08		Lab Num Project N Date Col Date Rec Date Ana Dilution I Analyst Instrume GC Colu %Solids Injection	lumber llected ceived alyzed Factor nt ID mn	: L2231684 : CORNERSTONE : 06/14/22 13:15 : 06/15/22 : 06/24/22 11:10 : 1 : PD : VOA122 : RTX-502.2 : N/A : N/A
CAS NO.	Parameter	Results	ug/L RL	MDL	Qualifier
75-00-3	Chloroethane	ND	2.5	0.70	U
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U
79-01-6	Trichioroethene	ND	0.50	0.18	U
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U
179601-23-1	p/m-Xylene	ND	2.5	0.70	U
95-47-6	o-Xylene	ND	2.5	0.70	U
1330-20-7	Xylenes, Total	ND	2.5	0.70	U
156-59-2	cls-1,2-Dichloroethene	ND	2.5	0.70	U
540-59-0	1,2-Dichloroethene, Total	ND	2.5	0.70	U
74-95-3	Dibromomethane	ND	5.0	1.0	U
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U
107-13-1	Acrylonitrile	ND	5.0	1.5	U
100-42-5	Styrene	ND	2.5	0.70	U
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U
67-64-1	Acetone	ND	5.0	1.5	U
75-15-0	Carbon disulfide	ND	5.0	1.0	U
78-93-3	2-Butanone	ND	5.0	1.9	U
108-05-4	Vinyl acetate	ND	5.0	1.0	+UJ
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U
591-78-6	2-Hexanone	ND	5.0	1.0	U
74-97-5	Bromochloromethane	ND	2.5	0.70	U

8017/312 ΗÀ ANAL

Client Project Name Lab ID Client ID Sample Location Sample Matrix Analytical Method Lab File ID Sample Amount Level Extract Volume (I	: WATER : 1,8260C : V22220624A08 : 10 ml : LOW		Lab Num Project N Date Col Date Red Date Ana Dilution I Analyst Instrume GC Colu %Solids Injection	lumber llected ceived alyzed Factor nt ID	: L2231684 : CORNERSTONE : 06/14/22 13:15 : 06/15/22 : 06/24/22 11:10 : 1 : PD : VOA122 : RTX-502.2 : N/A : N/A
CAS NO.	Parameter \	Results	ug/L RL	MDL	Qualifier
504.00.7		ND	0.5	0.70	
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	105
106-93-4	1,2-Dlbromoethane	ND	2.0	0.65	U
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	
108-86-1	Bromobenzene	ND	2.5	0.70	U
104-51-8	n-Butylbenzene	ND	2.5	0.70	U
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U
87-68-3	Hexachlorobutadiene	ND	2.5	0.70	U
98-82-8	Isopropylbenzene	ND	2.5	0.70	U
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U
91-20-3	Naphthalene	ND	2.5	0.70	U
103-65-1	n-Propylbenzene	ND	2.5	0.70	U
87-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U
95 - 63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U
123-91-1	1,4-Dioxane	ND	250	61.	-oR
105-05-5	p-Dlethylbenzene	ND	2.0	0.70	U
622-96-8	p-Ethyltoluene	ND	2.0	0.70	U
95-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U
60-29-7	Ethyl ether	ND	2.5	0.70	U

901-71312 iA ANAL

110-57-6	trans-1,4-Dichloro-2-butene	ND	2.5	0.70	U
CAS NO.	Parameter	Results	RL	MDL	Qualifier
			ug/L		
	ume (MeOH) : N/A		Injection	Volume	≅ N/A
Level			%Solids	: N/A	
Sample Am			GC Column		
Lab File ID	: V22220624A08		Instrument ID		
Analytical M	- DAG		Analyst		
Sample Ma			Dilution Factor		
Sample Loo			Date An		: 06/24/22 11:10 : 1
Client ID	: FIELD BLANK		Date Re		: 06/15/22
Lab ID	: L2231684-09		Date Co		: 06/14/22 13:15
Project Nar			Project I		: CORNERSTONE
Client	: CA Rich Consultants, Inc.		Lab Number		

Client Project Name Lab ID Client ID Sample Location Sample Matrix Analytical Methoo Lab File ID Sample Amount Level Extract Volume (I	: WATER : 1,8260C : V22220624A09 : 10 ml : LOW		Lab Num Project N Date Col Date Rec Date Ana Dilution F Analyst Instrume GC Colum %Solids Injection	lumber lected ceived lyzed factor nt ID mn	 L2231684 CORNERSTONE 06/14/22 00:00 06/15/22 06/24/22 11:35 1 PD VOA122 RTX-502.2 N/A N/A
CAS NO.	Parameter	Results	ug/L RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	ND	2.5	0.70	U
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	ND	0.50	0.18	U
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cls-1,3-Dichloropropene	ND	0.50	0.14	U
542-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U
563-58-6	1,1-Dichloropropene	ND	2.5	0.70	U
75-25-2	Bromoform	ND	2.0	0.65	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	U
108-88-3	Toluene	ND	2.5	0.70	U
100-41-4	Ethylbenzene	ND	2.5	0.70	U
74-87-3	Chloromethane	ND	2.5	0.70	U
74-83-9	Bromomethane	ND	2.5	0.70	#UJ
75-01-4	Vinyi chloride	ND	1.0	0.07	U

for 7/31m iΑ ANAL

Client Project Name Lab ID Client ID Sample Location Sample Matrix Analytical Method Lab File ID Sample Amount Level Extract Volume (N	: V22220624A09 : 10 ml : LOW		Lab Num Project N Date Col Date Rec Date Ana Dilution I Analyst Instrume GC Colu %Solids Injection	lumber lected ceived alyzed Factor nt ID mn	 L2231684 CORNERSTONE 06/14/22 00:00 06/15/22 06/24/22 11:35 1 PD VOA122 RTX-502.2 N/A N/A
CAS NO.	Parameter	Results	ug/L RL	MDL	Qualifier
75-00-3	Chloroethane	ND	2.5	0.70	U
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U
79-01 - 6	Trichloroethene	ND	0.50	0.18	U
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U
179601-23-1	p/m-Xylene	ND	2.5	0.70	U
95-47-6	o-Xylene	ND	2.5	0.70	U
1330-20-7	Xylenes, Total	ND	2.5	0.70	U
156-59-2	cis-1,2-Dlchloroethene	ND	2.5	0.70	U
540-59-0	1,2-Dichloroethene, Total	ND	2.5	0.70	U
74-95-3	Dibromomethane	ND	5.0	1.0	U
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U
107-13-1	Acrylonitrile	ND	5.0	1.5	U
100-42-5	Styrene	ND	2.5	0.70	U
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U
67-64-1	Acetone	ND	5.0	1.5	U
75-15-0	Carbon disulfide	ND	5.0	1.0	U
78-93-3	2-Butanone	ND	5.0	1.9	U
108-05-4	Vinyl acetate	ND	5.0	1.0	+UT
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U
591-78-6	2-Hexanone	ND	5.0	1.0	U
74-97-5	Bromochloromethane	ND	2.5	0.70	U
and the second sec					

Client Project Na Lab ID Client ID Sample Lo Sample M Analytical Lab File II Sample A Level Extract Vo	: L2231684-10 : TRIP BLANK ocation : THIRD AVENUE, BRONX latrix : WATER Method : 1,8260C D : V22220624A09		Lab Num Project N Date Col Date Red Date Ana Dilution I Analyst Instrume GC Colu %Solids Injection	lumber llected ceived alyzed Factor nt ID mn	: L2231684 : CORNERSTONE : 06/14/22 00:00 : 06/15/22 : 06/24/22 11:35 : 1 : PD : VOA122 : RTX-502.2 : N/A : N/A
CAS NO.	Parameter	Results	ug/L RL	MDL	Qualifier
)					
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	JUJ
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U
108-86-1	Bromobenzene	ND	2.5	0.70	U
104-51-8	n-Butylbenzene	ND	2.5	0.70	U
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U
87-68-3	Hexachlorobutadiene	ND	2.5	0.70	U
98-82-8	Isopropylbenzene	ND	2.5	0.70	υ
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U
91-20-3	Naphthalene	ND	2.5	0.70	U
103-65-1	n-Propylbenzene	ND	2.5	0.70	U
87-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U
123-91-1	1,4-Dioxane	ND	250	61.	JR
105-05-5	p-Dlethylbenzene	ND	2.0	0.70	U
622-96-8	p-Ethyltoluene	ND	2.0	0.70	U
95-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U
60-29-7	Ethyl ether	ND	2.5	0.70	U

13/22 ANAL ÷Α

110-57-6	trans-1,4-Dichloro-2-butene	ND	2.5	0.70	U	
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
			ug/L			
Extract Volu	ime (MeOH) : N/A		Injection	Volume	≆ N/A	
Level	: LOW		%Solids		: N/A	
Sample Am			GC Colu		RTX-502.2	
Lab File ID	: V22220624A09		Instrume	ent ID	: VOA122	
Analytical M	lethod : 1,8260C		Analyst		: PD	
Sample Mat	trix : WATER		Dilution	Factor	:1	
Sample Loc	ation : THIRD AVENUE, BRONX		Date An	alyzed	: 06/24/22 11:	35
Client ID	: TRIP BLANK		Date Re	ceived	: 06/15/22	
Lab ID	: L2231684-10		Date Co	llected	: 06/14/22 00:	00
Project Nam	e : CORNERSTONE		Project I		: CORNERST	ONE
Client	: CA Rich Consultants, Inc.		Lab Nun	nber	: L2231684	

APPENDIX F O&M CHECKLISTS

Operation and Maintenance Check List Groundwater Pump and Treat System Cornerstone Site B-1 3100 Third Avenue Bronx, New York BCP #C203044							
Name: Jason Cooper/Jessica Proscia	Weather: Sunny 40s						
Date: 12/14/2021 Components to be Checked				Comments			
				Comments			
System operating? Yes/No (if no please explain)	No -	· ap	proved to	Emporary Sh	iutdown		
Pressure at compressor (psi).							
Is the automatic drain on the compressor operating correctly? Yes/No (if no please explain)							
Has the oil been changed?	Date:						
Yes/No (if no please explain)		よいよい	5				
Have the compressor filters been changed?	Date:						
Yes/No (if no please explain)			<u>.</u>				
List condition of the carbon drums.	OK-	rust	Ċ				
Reading from flow meter.	\$	7, 2'	11.2				
Effluent sample obtained?	Date:	NA		Tin	ne:		
yes/no							
Are there any loose connections or leaks?							
(please check/tighten all bolts and nuts)							
Yes/No (if yes please explain)							
Temperature from heat trace dial.	off						
Note condition of vaults.	ok.	mы	·8 is 105	ły			
Pressure from filter regulator.	MW-2A:		MW-6:	MW-7:	MW-8:		
Readings from cycle counter.	мw-2а: 17, да	5	MW-6: 431,766	MW-7: 420	MW-8: 184, 189		
Are all well caps secure?							
Yes/No (if no please explain)	Yes						
Pumps operating?							
Yes/No (if no please explain)	-			54 			
Has the air quality check been performed?		1.1.1.1					
Yes/No (if no please explain)							
Have all air filters and filter bowl drains been checked?	_						
Yes/No (if no please explain)							
Has the filter regulator been checked for saturation?							
Yes/No (if no please explain)							
Additional comments:	12						

Operation and Maintenance Check List Groundwater Pump and Treat System Cornerstone Site B-1 3100 Third Avenue Bronx, New York BCP #C203044					
Name: Mike Yager/Jessica Proscia	Weather: O	vercas	t 70s		
Date: 6/14/2022					
Components to be Checked				Comments	
System operating? Yes/No (if no please explain)	No -	· cap	proved to	emporary Sh	iutdown
Pressure at compressor (psi).					
Is the automatic drain on the compressor operating correctly? Yes/No (if no please explain)					
Has the oil been changed?	Date:	0.00			
Yes/No (if no please explain)		2020	כ		
Have the compressor filters been changed?	Date:		00000		
Yes/No (if no please explain)			N		
List condition of the carbon drums.	OK-	rust	5		
Reading from flow meter.	\$'	7, 2°	11.2		
Effluent sample obtained?	Date:	NA		Tin	ne:
yes/no					
Are there any loose connections or leaks?					
(please check/tighten all bolts and nuts)					
Yes/No (if yes please explain)					
Temperature from heat trace dial.	off				
Note condition of vaults.	ok.	mы	-8 is 105	ły	
Pressure from filter regulator.	MW-2A:		MW-6:	MW-7:	MW-8:
Readings from cycle counter.	мw-2А: 17,22	5	MW-6: 431,766	MW-7: 420	MW-8: 184, 189
Are all well caps secure?					
Yes/No (if no please explain)	yes				
Pumps operating?		510			
Yes/No (if no please explain)				194 17	
Has the air quality check been performed?					
Yes/No (if no please explain)					
Have all air filters and filter bowl drains been checked?	_				
Yes/No (if no please explain)				and the second second	
Has the filter regulator been checked for saturation?					
Yes/No (if no please explain)				and the second sec	
Additional comments:	12				

APPENDIX G

NYCDEP Discharge Sampling Requirement

Jason Cooper

From:	Hulbert, Sean <shulbert@dep.nyc.gov></shulbert@dep.nyc.gov>
Sent:	Tuesday, November 27, 2018 11:14 AM
То:	Jason Cooper
Cc:	Adi Dor (ador@ccmanagers.com)
Subject:	RE: Cornerstone Discharge letter and results

Good Morning Jason,

I hope you are well today.

I hope you had a good Thanksgiving.

Thank you for providing these sampling results.

FYI – the Letter of Approval dated September 28, 2018 does not require quarterly sampling.

However, you may continue to perform sampling if you choose.

Thank you.

Sean H. Hulbert, P.E. | Assistant Chemical Engineer | Division of Pollution Control and Monitoring | Bureau of Wastewater Treatment | NYC Environmental Protection

(O) (718) 595-4715 | (F) (718) 595-4771 | shulbert@dep.nyc.gov

Confidentiality Notice: This e-mail communication and any attachments may contain confidential and privileged information for the use of the designated recipients named above. If you are not the intended recipient, you are hereby notified that you have received this communication in error and that any review, disclosure, dissemination, distribution or copying of it or its contents is prohibited. If you have received this communication in error, please notify me immediately by replying to this message and deleting it from your computer. Thank you.

From: Jason Cooper <JCooper@carichinc.com>
Sent: Tuesday, November 20, 2018 11:42 AM
To: Hulbert, Sean <shulbert@dep.nyc.gov>
Cc: Adi Dor (ador@ccmanagers.com) <ador@ccmanagers.com>
Subject: Cornerstone Discharge letter and results

Sean,

Attached are the letter and results.

Jason Cooper, PG Senior Project Manager CA RICH Consultants, Inc. 17 Dupont Street Plainview, NY 11803 Office Phone: 516-576-8844 Ext. 208