PERIODIC REVIEW REPORT July 2023

Cornerstone Site B1 3100 Third Avenue Bronx, NY Site #C203044

Prepared for:

CS MELROSE SITE B, LLC

1865 Palmer Avenue, Suite 203 Larchmont, New York 10538

Prepared by:

CA RICH Geology Services, D.P.C.

17 Dupont Street Plainview, New York 11803

July 31, 2023

New York State Department of Environmental Conservation Division of Environmental Remediation Remedial Bureau B 625 Broadway, Albany, NY 12207-2942

Attn: Sadique Ahmed, Environmental Engineer 1

> Re: Periodic Review Report 2022-2023 Cornerstone Site B1 3100 Third Avenue Bronx, NY <u>BCP #C203044</u>

Dear Mr. Ahmed:

Enclosed please find the Periodic Review Report for 2023 for the above-referenced location prepared by CA RICH Geology Services, D.P.C. If you have any questions pertaining to this report, please feel free to contact the undersigned.

Sincerely,

CA RICH CONSULTANTS

Jason T. Cooper

Jason T. Cooper, PG Vice President

cc: Sarita Wagh, NYSDOH Document Repository

Ecc: Debbie Kenyon, CS Melrose Site B LLC Nick Papakostopoulos C and C Managers Karen Tyll, Tyll Engineering and Consulting P.C.

Table of Contents

Section	<u>Page</u>
EXECUTIVE SUMMARY	
1.0 INTRODUCTION 1.1 Site Description 1.2 Current Site Usage	3
2.0 SITE HISTORY	4
3.0 SUMMARY OF REMEDIAL ACTION	9
4.0 EVALUATION OF REMEDY PERFORMANCE, EFFECTIVENESS AND PROTECTIVENESS 4.1 Site-wide Inspection 4.2 Engineering Controls	s, 12
5.0 INSTITUTIONAL AND ENGINEERING CONTROL (I&EC) PLAN COMPLIANCE REPORT 5.1 Institutional Controls 5.2 Engineering Controls 5.3 Certification	16
 6.0 MONITORING PLAN COMPLIANCE REPORT 6.1 Groundwater Monitoring Well Installation 6.2 Groundwater Monitoring Well Survey 6.3 Groundwater Monitoring Well Sampling and Analysis 6.4 Monitoring Plan Compliance Report Conclusions and Recommendations 	18
 7.0 OPERATION & MAINTENANCE PLAN COMPLIANCE REPORT 7.1 Groundwater Pump and Treat System 7.2 Groundwater Pump and Treat System Discharge Sample and Analysis 7.3 Sub-Slab Depressurization System 7.4 Operation and Maintenance Plan Compliance Report Conclusions and Recommendations 	24
8.0 CONCLUSIONS AND RECOMMENDATIONS	25
9.0 REFERENCES	27

FIGURES

- 1 Property Location Map
- 2 Site Plan
- 3 As-Built SSD Layout and Vapor Barrier
- 4 Vent & Roof Details
- 5 As-Built Pump & Treat System Layout and Detail
- 6 Groundwater Elevation and Contour Map August 13, 2009
- 7 Second Half 2022 Groundwater Contour Map December 20, 2022
- 8 Tetrachloroethylene Concentration in Groundwater December 20, 2022
- 9 First Half 2023 Groundwater Contour Map June 28, 2023
- 10 Tetrachloroethylene Concentrations in Groundwater June 28, 2023

TABLES

- 1 Analytical Results for Volatile Organic Compounds in Groundwater
- 2 Monitoring Well Network
- 3 System Discharge Totals
- 4 System PCE Removal Estimate

APPENDICIES

- A Selected Photographs
- B Site-Wide Inspection Form
- C IC/EC Form
- D Groundwater Sampling Logs
- E Groundwater Analytical Data and DUSR
- F O&M Checklist
- G NYCDEP Sewer Discharge Letter

EXECUTIVE SUMMARY

The following Periodic Review Report (PRR) has been prepared by CA RICH Geology Services, D.P.C. (CA RICH) on behalf of CS Melrose Site B LLC for the Cornerstone Site B1 development. The property is located at 3100 Third Avenue, in the Bronx, New York (hereinafter referred to as "Site"). This document was prepared in accordance with the Site Management Plan (SMP) dated July 19, 2010 (Ref. 1) under Brownfield Cleanup Program (BCP) Agreement, Index Number W2-1126-08-10; Site #C203044.

Cornerstone Site B1 is identified as Block: 2364; Lots: 45 and 9058 on the Bronx Borough Tax Map. Prior to development of the Site, the property was identified as Block: 2364; Lots: 45, 49, 70, and the air rights over p/o 58. The BCP redevelopment portion of the site is comprised of Lots 45 and 70. The Site occupies an area approximately 16,028 square feet and is bounded by a vacant lot to the north, East 158th Street to the south, a small wedged vacant lot and Brook Avenue to the east, and Third Avenue to the west. The Site is located in an area consisting of mixed residential and commercial use. The Site was historically utilized as a store, upholstery business and an undertaker. Circa 1969, the building was also developed as a dry cleaner. In 1989, the building operated as a medical center and a dry cleaner. Lot 70 was historically used as the backyard of the dry cleaner and a community garden. An aerial photograph from Google Earth illustrating the Site location is enclosed as Figure 1 (Property Location Map). A Site Plan is enclosed as Figure 2.

Cornerstone Site B1 was redeveloped into an affordable housing complex with commercial space on the first floor. The building consists of 100% affordable, 107-unit mixed-income/mixed-use rental building. The building is approximately 136,700 square feet (sf), of which approximately 8,500 sf. is commercial space and approximately 1,200 sf. is community facility space. The remainder of the Site contains residential and accessory uses, including approximately 41 parking spaces (approximately 16,000 sf) and a community room for residents (approximately 1,100 sf). Redevelopment activities occurred from 2009 to 2011.

A Remedial Investigation (RI) was conducted at the Site between June and October 2007, and in April 2009 (Ref. 2). In addition, a pre-design investigation was conducted in May and June 2009 (Ref. 3). The RI and pre-design investigation identified the following areas of concern: tetrachloroethylene (PCE or perc) in the subsurface soils, groundwater and soil vapor at the Site, several Semi-Volatile Organic Compounds (SVOCs) and select metals in the subsurface soils at the Site, and select metals in the groundwater beneath the Site. Remedial work was conducted in

accordance with the approved Remedial Action Work Plan (RAWP) dated July 2009 (Ref. 4). The Final Engineering Report (FER), dated November 2010 (Ref. 5), documents the results of remedial action after its completion. After completion of the remedial work, some residual soil and groundwater contamination was left in the subsurface at the Site. The SMP (Ref. 1) was prepared to manage the residual contamination at the Site in perpetuity or until extinguishment of the Environmental Easement in accordance with 6 NYCRR Part 375. The NYSDEC issued a Certificate of Completion (COC) in December 2010 after approving the FER (Ref. 5) and SMP. All reports associated with the Site can be viewed by contacting the NYSDEC or its successor agency managing environmental issues in New York State.

An active groundwater pump and treat system that is comprised of four groundwater pumping wells currently operates on-site. The groundwater from these pumping wells is treated on-site with granular activated carbon and discharged into the New York City sewer system. The remedial program has proven to be effective in reducing PCE concentrations in the groundwater beneath the Site; as such, monitoring wells MW-3, MW-5, and MW-11 are no longer sampled; however, they are gauged for depth to water.

At this time, the Site is in compliance with all major elements of the SMP (Ref. 1). The PRR is due on an annual basis with the next PRR submittal scheduled for July 2024. The requirements for discontinuing site management have not yet been met.

1.0 INTRODUCTION

The following Periodic Review Report has been prepared by CA RICH on behalf of CS Melrose Site B LLC for the Cornerstone Site B1 property located at 3100 Third Avenue in the Bronx, New York (hereinafter referred to as the "Site") (see Figure 1). This document was prepared in accordance with the SMP dated July 19, 2010 (Ref. 1) under Brownfield Cleanup Program (BCP) Agreement, Index Number W2-1126-08-10; Site #C203044.

1.1 Site Description

Cornerstone Site B1 is identified as Block: 2364; Lots: 45 and 9058 on the Bronx Borough Tax Map. Prior to development of the Site, the property was identified as Block: 2364; Lots: 45, 49, 70, and air rights over p/o 58. The Site occupies an area approximately 16,028 square feet and is bounded by a vacant lot to the north, East 158th Street to the south, a small wedged vacant lot and Brook Avenue to the east, and Third Avenue to the west. The Site is located in an area consisting of mixed residential and commercial use. The Site was historically utilized as a store, upholstery business and an undertaker. Circa 1969, the building was also developed as a dry cleaner. In 1989, the building operated as a medical center and a dry cleaner. Lot 70 was historically used as the backyard of the dry cleaner and a community garden. An aerial photograph from Google Earth illustrating the Site location is enclosed as Figure 1 (Property Location Map). A Site Plan is enclosed as Figure 2.

1.2 Current Site Usage

Cornerstone Site B1 was redeveloped into an affordable housing complex with commercial space on the first floor. The building consists of 100% affordable, 107-unit mixed-income/mixed-use rental building. The building is approximately 136,700 square feet (sf.), of which approximately 8,500 sf. is commercial space and approximately 1,200 sf. is community facility space. The remainder of the Site contains residential and accessory uses, including approximately 41 parking spaces (approximately 16,000 sf) and a community room for residents (approximately 1,100 sf.). Redevelopment activities occurred from 2009 to 2011.

2.0 SITE HISTORY

Historical records indicate that Block: 2364; Lot: 45 was originally developed circa 1951 with a single-story building with a basement. According to the Phase I Environmental Site Assessment (ESA) dated March 5, 2004 prepared by Pressly and Associates, Inc. (Ref.6), the building was utilized as a store, upholstery business and an undertaker. Circa 1969, the building was also developed as a dry cleaner. In 1989, the building operated as a medical center and a dry cleaner. Lot 70 was historically used as the backyard of the dry cleaner and a community garden. The Phase I ESA concluded the following:

- A dry cleaner operated on the Site in and around the period between 1969 and 1989. The dry cleaner was not identified in the Resource Conservation and Recovery Act (RCRA) database or spill files and probably pre-dated those databases. However, due to past experience with the poor housekeeping operations of these types of facilities, it was recommended that a groundwater investigation be conducted to evaluate the potential presence of dry cleaning solvents in the subsurface on the southern side of the building.
- All reported spills within 1/8 mile of the Site were of small volume and on land, therefore, not likely to impact the Site.
- Although medium radon levels were reported for Bronx County basements, the basement area is currently not occupied.

Based on the findings of the Phase I ESA, a Remedial Investigation (RI) (Ref. 2) was conducted for the Site. The RI was performed to characterize the nature and extent of contamination at the Site. Since the applicant entered into the BCP as a Volunteer, they are only responsible for investigating on-site issues. However, as the planned redevelopment for this Site includes the adjacent Lot 49, the RI was conducted at the Site (Lots 45 and 70) as well as at its adjacent lot (Lot 49). It is noted that the redevelopment area also includes an air rights parcel as part of Lot 58; but, as this parcel is an air rights parcel it was not included in the RI. All three lots (45, 49, and 70) are referred to in the RI as the "Study Area". The investigation was conducted between June and October 2007, and in April 2009. In addition, a pre-design investigation are described in detail in the following Reports:

Periodic Review Report 2023 3100 Third Avenue Bronx, New York

Document

Remedial Investigation Report, CA RICH

Groundwater Investigation and Design Report, CA RICH

Cornerstone Site B1 NYSDEC Site #C203044

Date April 2009

September 2009; Revised November 2009

Generally, the RI and pre-design investigation determined that there had been a release of tetrachloroethene (PCE) to the subsurface soils at the Site. The data indicated that PCE is present below the portions of the former building foundation that were tested, but is most concentrated below the southern portion of the former building, which was formerly used as a dry cleaning facility. Elevated levels of several Semi-Volatile Organic Compounds (SVOCs) commonly referred to as Polynuclear Aromatic Hydrocarbons or "PAHs" and select metals were detected in the soil throughout the Site and in the adjacent Lot 49 at varying depths. There were also four pesticide detections above Part 375 Unrestricted Use Soil Cleanup Objectives (SCOs) (Ref. 7). One polychlorinated biphenyl (PCB) Aroclor (1242) also exceeded the Part 375 Unrestricted Use SCOs. In addition, elevated levels of PCE, acetone, methyl ethyl ketone (MEK), toluene, and xylene were measured in the soil vapor throughout the Site. The levels of acetone and toluene may have been related to a portion of the Site that was once occupied by an undertaker.

As rainwater infiltrates into the soils at the Site, some of the PCE has migrated into the groundwater. PCE was detected above NYSDEC Technical and Operational Guidance Series (TOGS) (Ref. 8) in the overburden and fractured bedrock at on-site monitoring wells MW-7, MW-8, MW-1 and offsite wells MW-2A, MW-5, and MW-6.

Below is a summary of Site conditions when the RI was performed in 2007 and 2009:

Soil

<u>VOCs</u> – Several Volatile Organic Compounds (VOCs) were detected in the soils within the Study Area. PCE was detected in soil samples collected below the basement floor of the former building at concentrations ranging from 3.6 to 49 ug/kg. Detections of MEK (a.k.a. 2-butanone) and acetone were also recorded. None of these detections, however, exceeded the Part 375 Unrestricted Use SCOs (Ref. 7).

<u>SVOCs</u> – Numerous SVOCs were detected in the soils within the Study Area. The compounds that exceeded the Part 375 Unrestricted Use SCOs were: benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, dibenzo(a,h)anthracene.

<u>Metals</u> – Several metals were detected in the subsurface soils within the Study Area. Of these occurrences, the detections of barium, cadmium, calcium, copper, magnesium, lead, mercury, silver, and zinc in the soils within the Study Area exceeded the Part 375 Unrestricted Use SCOs.

<u>Pesticides</u> – Several pesticides were detected in the soils within the Study Area. These included dieldrin, endrin, endosulfan sulfate, DDE, DDD, and DDT. Of these, dieldrin exceeded the Part 375 Unrestricted Use SCOs in the shallow, zero to one foot deep samples only. The pesticides dieldrin, 4,4'-DDE, 4,4'-DDD, and 4,4'-DDT exceeded Part 375 Unrestricted Use SCOs throughout the Study Area.

<u>PCBs</u> – There were two detections of polychlorinated biphenyls (PCBs), Aroclors 1242 and 1254, within the Study Area. The detection of Aroclor 1242 exceeded the Part 375 Unrestricted Use SCOs.

Below is a summary of Site conditions when the pre-design investigation was performed in 2009:

Soil

<u>VOCs</u> – Ethyl benzene, isopropylbenzene, naphthalene, PCE, toluene, 1,2,4trimethylbenzene, 1,3,5-trimethylbenzene, m,p-Xylene, and o-Xylene were detected in the soil/fill materials. PCE detections ranged from 0.85 to 55.4 ug/kg. These detections were significantly below Part 375 Unrestricted Use SCOs.

PCE detections ranged from 0.85 to 55.4 ug/kg. These detections were significantly below Part 375 Unrestricted Use SCOs.

<u>SVOCs</u> – Phenol, acenaphthene, acenaphthylene, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, 1,1'-Biphenyl, carbazole, chrysene, dibenzo(a,h)anthracene, dimethyl phthalate, bis(2-Ethylhexyl)phthalate, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, 2-Methylnapthalene,

naphthalene, phenanthrene, and pyrene were detected in the soil/fill materials. These detections were significantly below Part 375 Unrestricted Use SCOs.

<u>Pesticides</u> – Alpha-Chlordane, gamma-Chlordane, 4,4'-DDD, 4,4'-DDE, and 4,4'-DDT were detected in the soil/fill materials. The detections of 4,4'-DDT and 4,4'-DDD in sample MW-6A (8 feet) and 4,4'-DDT in sample MW-9 (17 feet) exceeded the Part 375 Unrestricted Use SCOs.

<u>PCBs</u> – Aroclor 1260 was detected in sample MW-2A. This detection was significantly below Part 375 Unrestricted Use SCOs.

<u>Metals</u> – Aluminum, arsenic, barium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, nickel, potassium, vanadium, and zinc were detected in the soil/fill materials. The detections of chromium in samples MW-2A, MW-6A (8 feet), MW-7 (5 feet), MW-8 (16 feet), MW-9 (17 feet), and MW-10 (5 feet); lead in samples MW-7 (5 feet) and MW-9 (17 feet); mercury in sample MW-7 (5 feet); and, zinc in sample MW-8 (16 feet) exceeded the Part 375 Unrestricted Use SCOs.

Site-Related Groundwater

Below is a summary of Site conditions when the RI was performed in 2007 and 2009:

<u>VOCs</u> – Two VOCs, PCE and chloroform, were detected above NYSDEC TOGS Class GA groundwater standards (Ref. 8). Chloroform was detected above NYSDEC TOGS in monitoring wells MW-1, MW-3, and MW-4. PCE was detected above the NYSDEC TOGS in monitoring wells MW-1, MW-2, MW-3, and MW-5. Overall, the PCE detections ranged from 4 to 7,900 ug/L.

<u>Metals</u> – There were six metals that exceeded NYSDEC TOGS groundwater standards in the Study Area; iron, magnesium, manganese, selenium, sodium, and thallium.

Below is a summary of Site conditions when the pre-design investigation was performed in 2009:

 $\underline{\text{VOCs}}$ – Acetone, bromodichloromethane, 2-Butanone (MEK), chloroform, cis-1,2dichloroethene, methylene chloride, PCE, and trichloroethene (TCE)were detected in the groundwater. PCE detections ranged from 0.50 to 17,700 ug/L. The detections of PCE in samples MW-2A (and its associated duplicate), MW-6 (and its associated duplicate), MW-7, MW-8, and OB-MW-8; acetone in sample MW-8; chloroform in samples MW-8 and OB-MW-8; and, TCE in sample MW-2A exceeded NYSDEC TOGS groundwater standards.

<u>SVOCs</u> – Acetophenone, benzaldehyde, bis(2-Ethylhexyl)phthalate, naphthalene, and n-Nitrosodiphenylamine were detected in the groundwater. These detections were significantly below NYSDEC TOGS.

<u>Metals</u> – Aluminum, barium, calcium, chromium, iron, lead, magnesium, manganese, nickel, potassium, selenium, sodium, and zinc were detected in the groundwater. The detections of magnesium in samples MW-2A (and its associated duplicate), MW-6 (and its associated duplicate), MW-7, OB-MW-9, MW-3, and MW-4; aluminum in sample MW-10; chromium and selenium in sample MW-8; and, sodium in samples MW-2A (and its associated duplicate), MW-6 (and its associated duplicate), MW-6 (and its associated duplicate), MW-8, OB-MW-8, OB-MW-9, MW-10, MW-3, and MW-4 exceeded NYSDEC TOGS groundwater standards.

Site-Related Soil Vapor Intrusion

The results of the RI showed that the soil vapor within the Study Area had been impacted with VOCs. PCE was detected in all seven of the sub-slab soil vapor points below the former building at concentrations exceeding 1.3 ug/m³, New York State Department of Health's (NYSDOH) mean value of VOCs in air of fuel oil heated homes (Ref. 9). Numerous other VOCs including acetone, MEK, TCE, toluene and xylene were detected at concentrations in excess of the NYSDOH's mean values for indoor air.

Storage Tanks

During the RI, three 275-gallon aboveground storage tanks (ASTs) were observed within the basement of the existing building. At that time, it appeared that one of the ASTs contained liquid, one was empty, and the third was filled with sand. In addition, a fill port and vent pipe likely associated with the ASTs were observed on Third Avenue next to the Site building.

3.0 SUMMARY OF REMEDIAL ACTION

The Site was remediated in accordance with the NYSDEC-approved RAWP dated June 2009 (Ref. 4), RAWP Addendum dated July 2009 (Ref. 10), and the Groundwater Investigation and Design Report dated September 2009; Revised November 2009 (Ref. 11). In addition, all remedial activities were summarized on daily and monthly reports to NYSDEC and NYSDOH and are included in the Final Engineering Report.

The following is a summary of the Remedial Actions performed at the Site:

- Collection of additional soil waste characterization samples to profile the soil/fill for disposal purposes. A waste disposal facility was selected based on the data collected. Based on the requirements of the selected facility, additional soil/fill samples were collected and analyzed to obtain soil disposal facility approval.
- 2. Excavation of soil/fill to 14.8, 15.8, or 22.67 feet below grade (or until bedrock encountered) was completed as needed Site-wide to facilitate construction of the foundation of the proposed new structure. The excavation for the proposed new building's foundation removed all soil/fill exceeding the Track 4 Site Specific Soil Action Levels (SSSALs) established for this Site and soil vapor source areas at the Site.
- Screening for indications of contamination (by visual means, odor, and monitoring with a photoionization detector (PID)) of all excavated soil during any intrusive Site work.
- 4. Collection and analysis of end-point samples to evaluate the performance of the remedy with respect to attainment of the Track 4 SSSALs developed for this Site.
- 5. Appropriate off-site disposal of all material removed from the Site in accordance with all Federal, State and local rules and regulations for handling, transport, and disposal;
- 6. Removal of three 275-gallon ASTs in accordance with applicable regulations;
- 7. A pre-design groundwater investigation that included 1) the installation of soil borings;
 2) the installation of wells MW-2A, MW-6, MW-7, OB-MW-7, MW-8, and OB-MW-8;

and, 3) a pump test on wells MW-2A, MW-6, MW-7, and MW-8. A Pre-Design Investigation Work Plan (Ref. 3) was submitted to NYSDEC in a separate document and was approved on June 16, 2009. The results of the pre-design investigation were included in the Groundwater Investigation and Design Report (Ref.11).

- 8. Injection of Regenox[™] (in-situ chemical oxidation ("ISCO") treatment) into the overburden and overburden/groundwater interface in select portions of the Site. The selected areas contained elevated levels of PCE either in the overburden soil/fill, water flowing within the overburden, or both. The injections were proposed as part of the Groundwater Investigation and Design Report (Ref. 11).
- 9. Based on the results of the pump test, a pump and treat system was installed to collect and treat the halogenated VOC-impacted groundwater (PCE and its degradation products) within shallow bedrock fractures in the locations of MW-2A, MW-6, MW-7, and MW-8. In addition, overburden well MW-11 was installed and added to the monitoring well network. The system design and well installation was included in the Groundwater Investigation and Design Report (Ref. 3).
- 10. MW-2 was abandoned per NYSDEC guidance using imported sand and bentonite. In addition, during abandonment, two to three well volumes of water from the respective monitoring well were removed and disposed of properly.
- 11. Construction and maintenance of an engineered composite cover system consisting of concrete-covered sidewalks, foundation walls, a ventilated parking garage, and concrete building slabs to prevent human exposure to residual contaminated soil/fill remaining under the Site. In addition, a vapor barrier was installed underneath the entire building foundation for additional protection. The composite cover system encompasses the entire footprint of the Site. No exposed soils remain.
- 12. Recording of an Environmental Easement, including active Institutional Controls (ICs), to prevent future exposure to any residual contamination remaining at the Site.
- 13. A Sub-slab Depressurization (SSD) system was incorporated below the foundation of the building for additional protection. The SSD system consists of horizontal trenches containing perforated pipe and gravel. The horizontal pipes were connected to vertical risers that extend above the roof of the building. Any pipe

penetrations through the vapor barrier were sealed in accordance with the manufacturer's recommendations. An SSD fan was mounted to the riser above the roof surface.

- 14. Collection and analysis of post-remedial groundwater samples from wells MW-1, MW-2A, MW-3, MW-4, MW-5, MW-6, MW-7, MW-8, MW-10, and MW-11 to evaluate performance of the remedy.
- 15. Development and implementation of a SMP for long term management of remaining contamination as required by the Environmental Easement, which includes plans for:(1) IC/ECs (2) monitoring, (3) operation and maintenance, and (4) reporting.

Remedial activities were completed at the Site in February 2010.

The overall objective of the remedial action was to remediate environmental conditions at the Site to the satisfaction of the NYSDEC and NYSDOH for its intended future residential and commercial use. The following is a summary of the remedy that was implemented at the Site. The remedial action was conducted in accordance with the approved Remedial Action Work Plan (RAWP) (Ref. 4). The FER dated November 2010 (Ref. 5) documents the results of the remedial action after its completion. The SMP (Ref. 1) provides a detailed description of the procedures required to manage residual contamination left in place at the Site. NYSDEC issued a Certificate of Completion in December 2010 after approving the FER and SMP.

4.0 EVALUATION OF REMEDY PERFORMANCE, EFFECTIVENESS, AND PROTECTIVENESS

The SMP requires inspections of all systems installed at the Site at least annually. In addition, a comprehensive Site-wide inspection is required to be completed annually. Additional inspections in the event of an emergency, such as a natural disaster are also required. The information gathered during the inspection is reported in the following sections.

4.1 Site-wide Inspection

The Site-wide inspection was conducted on June 28, 2023 by Jason Cooper, P.G. of CA RICH. The underground parking garage, surrounding street areas, small courtyard, and all on-site wells were inspected.

No additional Site-wide inspections were conducted during this reporting period as there were no events that warranted emergency inspections. Select photographs of the Site during the inspection are enclosed as Appendix A. The Site-wide Inspection form is enclosed as Appendix B.

4.2 Engineering Controls

Engineering controls at the Site consist of a vapor barrier, a composite cover system, passive subslab depressurization system, and a groundwater pump and treat system. An SSD system under the ventilated parking garage was installed during the construction of the new buildings' foundation as a contingency in the event that the parking garage is no longer ventilated or its design is altered to include occupied living space. At this time the SSD system remains off.

The engineering controls were inspected and evaluated on June 28, 2023 by Jason Cooper, P.G. The groundwater pump and treat system is temporarily off as approved by NYSDEC. No changes to the other engineering controls have occurred from the previous PRR. Based on the June 28, 2023 inspection, the ECs continue to perform as designed and be protective of human health and the environment. The inspection form is enclosed as Appendix B. Details regarding the ECs and their inspection are outlined below.

4.2.1 Vapor Barrier

A 15-mil ASTM E-1745 compliant vapor barrier manufactured by Stego® was installed underneath the building's foundation. The vapor barrier was overlapped by a minimum of six inches and secured with mastic or asphaltic tape. Conduits penetrating the vapor barrier were sealed with mastic or tape as per manufacturers' specifications. The vapor barrier specifications were included in the Final Engineering Report (Ref. 5).

The inspection conducted on June 28, 2023 concluded, based on visual observations, that the concrete basement floor has remained in good condition and the relatively newer concrete in the area of the sewer pipe is also in good condition. No additional modifications were visible in the parking garage. Jason Cooper, P.G. did not identify any areas where the cover system appeared impaired, compromised, or otherwise damaged.

4.2.2 Composite Cover System

For any residual contamination left in place, exposure to residual contaminated soils is prevented by an engineered, composite cover system that was built on the Site. The composite cover system consists of concrete pavement on walkways, concrete parking lots, concrete building slabs and foundation walls, and one foot of gravel which covers the entire Site. Slabs and paving systems include sub-base materials that are at least 12-inches thick. The composite cover system specifications are detailed in the Final Engineering Report (Ref. 5).

The inspection conducted on June 28, 2023 concluded, based on visual observations, that the concrete basement floor has remained in good condition and the concrete in the area of the sewer pipe is also in good condition. No additional modifications were visible in the parking garage. Jason Cooper, P.G. did not identify any areas where the cover system appeared impaired, compromised, or otherwise damaged.

4.2.3 Sub-slab Depressurization System

Installation of an SSD system in addition to the ventilated parking garage was included in the construction of the new buildings' foundation as a contingency in the event that the parking garage is no longer ventilated or its design is altered to include occupied living space. The objective of the SSD system when in operation is to maintain a negative pressure underneath the slab while allowing the vapors below the concrete slab to vent without intruding into the building. The SSD

system consists of horizontal trenches with four-inch perforated PVC pipe, a filter sock, and gravel. The horizontal pipes are connected to three vertical risers that combine into one six-inch header that extends above the roof of the building. A Magnehelic gauge was installed to each of the three riser pipes above the slab to facilitate collection of vacuum readings. These Magnehelics will also serve as warning devices or indicators to ensure that this system is working properly when operational. Sample ports were also installed in each of the riser pipes to allow for the collection of soil gas samples, if needed. In addition, labels were affixed to each riser immediately below the sample ports indicating the following:

SUB-SLAB DEPRESSURIZATION SYSTEM

This is a component of a Sub-Slab Depressurization System

DO NOT ALTER OR DISCONNECT

For Service call: CA RICH Consultants 516-576-8844

The SSD system layout is illustrated on Figure 3 and the typical vent and roof detail is illustrated on Figure 4. If the building design is altered and the SSD system needs to be activated, NYSDEC will be notified and a start-up test will be conducted to confirm that the SSD system is working.

Procedures for operating and maintaining the SSD system are documented in the Operation and Maintenance Plan (O&M) (Section 4 of the SMP, Ref. 1). Procedures for monitoring the system are included in the Monitoring Plan (Section 3 of the SMP, Ref. 1). The SMP also addresses inspection procedures that must occur after any severe weather condition has taken place that may affect on-site ECs.

The Site inspection did not include an inspection of the passive SSD system as no modifications have occurred at the Site. The parking garage continues to be ventilated and activation of the SSD system is not required at this time.

4.2.4 Groundwater Remediation System

A groundwater pump and treat system was installed at the Site to collect and treat the residual halogenated VOC-impacted groundwater (PCE and its degradation products) within the shallow bedrock fractures in the locations of MW-2A, MW-6, MW-7, and MW-8. The piping and vaults for the pump and treat system were installed in December 2009 and February 2010. The mechanical system components were installed in March 2010. NYCDEP Sewer Discharge Permit number 569293 was obtained on April 21, 2010. The system was started up on April 22, 2010. The groundwater pump and treatment system details are illustrated on Figure 5.

Beginning in late 2013, the compressor began to malfunction and actions were taken to repair the system. The groundwater pump and treat system underwent repairs and maintenance from March 2014 to June 2014. During this time the pumps were removed from all wells (wells 2A, 6, 7, and 8) and sent to the manufacturer, QED®, for maintenance and repairs. The pumps were refurbished and reinstalled back in their respective wells in June 2014.

In addition, a brand new five-horse power Campbell-Hausfeld compressor (Model No. CE700) with a 60-gallon receiver was installed in June 2014. The compressor was fitted with coalescing and particulate filtration and an automatic drain. The compressor was not connected to the air dryer as moisture buildup had not been an issue during the operation of the remediation system. If water build-up in the line becomes a problem, the air dryer will be reconnected. The five-horse power air compressor provides 17.2 cfm @ 90 psi and 16.6 cfm @ 175 psi.

The pump and treat system operates 24 hours per day, except during maintenance activities, until the termination criteria have been met. The termination criteria are outlined in Section 2.2.2.3 of the SMP. Procedures for operating and maintaining the Pump and Treat system are provided in the Operation and Maintenance Plan in Section 4 of the SMP. Procedures for monitoring the system are included in the Monitoring Plan (Section 3 of this SMP). The Monitoring Plan also addresses inspection procedures that must occur after any severe weather condition has taken place that may affect on-site ECs.

During the past year the system was not in operation and was turned off on January 5, 2021 as per request by CA RICH and approval by NYSDEC. The groundwater pump and treat system was not inspected for this PRR as it is off. If the system is operating at the time of the next PRR it shall be inspected at that time.

5.0 INSTITUTIONAL AND ENGINEERING CONTROL (I & EC) PLAN COMPLIANCE REPORT

5.1 Institutional Controls

A series of Institutional Controls were required at the Site to: (1) implement, maintain and monitor Engineering Control Systems; (2) prevent future exposure to residual contamination by controlling disturbances of the subsurface contamination; (3) restrict the use of the Site to residential/commercial uses only. Adherence to these ICs on the Site is required under the Environmental Easement and is implemented under the SMP.

These ICs are:

- Compliance with the Environmental Easement and the SMP by the Grantor and the Grantor's successors and assigns;
- All ECs must be operated and maintained as specified in the SMP;
- All ECs on the Controlled Property must be inspected at a frequency and in a manner defined in the SMP;
- Groundwater, indoor air, and other environmental or public health monitoring must be performed as defined in the SMP; and,
- Data and information pertinent to Site Management of the Controlled Property must be reported at the frequency and in a manner defined in the SMP.

ICs identified in the Environmental Easement may not be discontinued without an amendment to or extinguishment of the Environmental Easement.

The Site has a series of ICs in the form of Site restrictions. Adherence to these ICs is required by the Environmental Easement. Site restrictions that apply to the Controlled Property are:

- The property may only be used for restricted residential or commercial use provided that the long-term EC/ICs included in the SMP are employed or eliminated pursuant to the SMP;
- The property may not be used for a higher level of use, such as unrestricted residential use without additional remediation and amendment of the Environmental Easement, as approved by the NYSDEC;
- All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;

- The use of the groundwater underlying the property is prohibited without treatment rendering it safe for intended use;
- Subsurface vegetable gardens and farming on the property are prohibited;
- The Site owner or remedial party will submit to NYSDEC a written statement that certifies, under penalty of perjury, that: (1) controls employed at the Controlled Property are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, (2) nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP while the Environmental Easement is in effect. NYSDEC retains the right to access such Controlled Property at any time in order to evaluate the continued maintenance of any and all controls. This certification shall be submitted annually, or an alternate period of time that NYSDEC may allow and will be made by an expert that the NYSDEC finds acceptable while the Environmental Easement is in effect.

The environmental easement on this property is enforceable in perpetuity and is the mechanism that will be used to continually implement, maintain, monitor, and enforce such specified controls both by the BCP Volunteer, the BCP Volunteer's successors and assigns, and by State or local governments. A copy of the environmental easement with proof of filing with the responsible municipal authority is enclosed in the Final Engineering Report (Ref. 5).

5.2 Engineering Controls

Engineering controls (ECs) at the Site consist of a vapor barrier, a composite cover system, a groundwater pump and treat system, and a sub-slab depressurization system. Assurance of the ECs developed for the Site will be achieved using a combination of site inspections, monitoring, and annual certifications. The engineering controls were inspected and evaluated on June 28, 2023 by Jason Cooper, P.G. Details regarding the engineering controls and their inspection are outlined in Section 4.0. The groundwater pump and treat system was not inspected as it is currently temporarily shut down as approved by NYSDEC.

5.3 Certification

The annual certification for the Site consists of a completed NYSDEC IC/EC Certification Form for BCP Site# C203044. The completed IC/EC Certification Form was signed on July 26, 2023 and is enclosed as Appendix C. The annual certification was prepared in accordance with the SMP and has been signed by Jason Cooper, on behalf of the Owner, CS Melrose Site B, LLC and as the Qualified Environmental Professional.

6.0 MONITORING PLAN COMPLIANCE REPORT

6.1 Groundwater Monitoring Well Installation

From June 26, 2007 through to November 2, 2009 seven monitoring wells (MW-1, MW-2, MW-3, MW-4, MW-5, MW-10, and MW-11) and four pumping wells (MW-2A, MW-6, MW-7, and MW-8) were installed. Monitoring wells MW-1, MW-2 and MW-3 were installed using an air rotary drill rig equipped with an Odex drilling system. The wells were completed using new, four-inch diameter Schedule 40 PVC pipe and factory slotted well screens. The wells were constructed such that the well screens intersected both the water table interface and the soil/bedrock interface. The well installation depths are listed as follows:

<u>Well ID</u>	<u>Terminal Depth (Feet below grade)</u>
MW-1	51
MW-2	45

The wells were completed with number 2 sand, a bentonite seal, and a locking, watertight plug. MW-2 and MW-3 were completed with locking manholes, while MW-1 was left above grade and covered with a metal standpipe.

Monitoring wells MW-4 and MW-5 were installed using hollow stem augers from the ground surface to the top of the bedrock. From that point onward, a tri-cone roller bit attached to an air rotary drill rig was used to advance the borehole. The wells were again completed using new, four-inch diameter Schedule 40 PVC pipe and factory slotted well screens. The wells were constructed such that the well screens intersected both the water table interface and the soil/bedrock interface. The well installation depths are listed below.

<u>Well ID</u>	<u>Terminal Depth (Feet below grade)</u>
MW-3	45
MW-4	35
MW-5	49

The wells were completed with number 2 sand, a bentonite seal, and a locking, watertight plug. MW-5 was completed with a locking manhole, while the casing of MW-4 was left above grade and covered with a metal standpipe.

Pumping wells MW-2A, MW-6, MW-7, and MW-8, and groundwater monitoring well MW-10 were installed using the roto-sonic drilling method or a combination of roto-sonic and air rotary drilling methods. A six-inch hole was advanced through the overburden at least 5 feet into competent bedrock using the roto-sonic drilling method. A four-inch steel casing was then seated into the bedrock, cemented in place and allowed to set for a minimum of 24 hours. A four-inch hole was then drilled through the casing using the roto-sonic drilling method at MW-2A, MW-6, and MW-8. The air rotary drilling method was used at MW-7 and MW-10 due to a mechanical problem with the roto-sonic drill rig. The hole extended until the rate of groundwater flow was deemed sufficient to produce groundwater for monitoring purposes or to a maximum of 60 feet below grade. The well installation depths are listed below:

<u>Well ID</u>	Terminal Depth (Feet below grade)
MW-2A	55
MW-6	45
MW-7	50
MW-8	40
MW-10	57

MW-2A, MW-6, MW-7, MW-8, and MW-10 were completed with number 2 sand, a bentonite seal, a locking, watertight j-plug and flush-mounted bolt-down monitoring well covers,

Monitoring well MW-11 was installed on November 2, 2009 using hollow stem augers from ground surface to the top of the bedrock. The well was installed to a terminal depth of 19.2 feet below grade. The well was completed with number 2 sand, a bentonite seal, a locking j-plug and a flush mounted bolt-down cover.

During drilling activities, the shallow groundwater was encountered between 15.05 (MW-8) to 43.20 (MW-10) feet above mean sea level (MSL). The monitoring well locations are illustrated on Figure 2.

Monitoring well MW-2 was properly abandoned on May 21, 2009 and MW-2A was installed in close proximity on May 28, 2009. Drill cuttings that were not used to backfill the borehole were drummed and disposed of off-site.

6.2 Groundwater Monitoring Well Survey

The well casing elevations for monitoring wells MW-1, MW-2, MW-3, MW-4 and MW-5 were surveyed on November 8, 2007, the well casing elevations of monitoring wells, MW-2A, MW-6, MW-7, MW-8 and MW-10 were surveyed on July 14, 2009 and monitoring well MW-11 was surveyed on January 26, 2010. All wells were surveyed by Montrose Surveying Company, a New York State licensed surveyor, to the nearest 0.01-foot. At the time of survey, all wells were flush mounted and no longer in standpipes. The initial depth to groundwater was measured on August 13, 2009. The elevations were then plotted and a water table elevation contour map was prepared to determine the horizontal direction of groundwater flow. Based upon the data collected on August 13, 2009, the Site-specific direction of groundwater flow is toward the southwest. The regional direction of groundwater flow is toward the southwest. The regional direction of groundwater elevation contour maps as well as a tabulation of the Harlem and East Rivers. The groundwater elevation contour maps as well as a tabulation of the casing elevations and depth to water measurements are included on Figure 6.

6.3 Groundwater Monitoring Well Sampling and Analysis

Since issuance of the COC, groundwater samples have been collected on a quarterly basis in accordance with the SMP. As of December 2015, NYSDEC required this sampling to be changed from quarterly to semi-annually. All groundwater samples were submitted to Alpha Analytical Laboratories (an ELAP certified laboratory) for the December 2021 and the June 2022 sampling. All groundwater samples were analyzed for VOCs using USEPA Method 8260 with NYSDEC ASP Category B deliverables. The following samples were also collected for QA/QC purposes: one trip blank, one field blank, one duplicate sample, one matrix spike and one matrix spike duplicate. All groundwater samples were received and analyzed within their respective holding times. Groundwater monitoring wells MW-3 and MW-5 no longer require sampling as part of the now semi-annual groundwater sampling as the PCE concentrations have been less than 5 ppb for four consecutive quarters. In addition, beginning in the second half 2015, MW-11 no longer requires

sampling. The groundwater monitoring network is summarized on Table 2. A groundwater sampling log containing sampling details and measurements was completed for each well. A copy of the groundwater sampling log for each half is included in Appendix D.

The laboratory analytical results were compared to their applicable NYSDEC TOGS groundwater standards (Ref. 8) and are summarized on Table 1. A qualified third-party Data Validator reviewed the groundwater laboratory data and a DUSR was prepared. A complete copy of the validated groundwater data package is attached in Appendix E. The analytical data from each sampling round was also submitted to NYSDEC electronically in the Electronic Data Deliverable (EDD) format and checked with the EQuIS program. The following is a summary of each semi-annual sampling event for the second half of 2022 and first half of 2023.

6.3.1 Second Half 2022

The second half 2022 post-remedial groundwater sampling was conducted on December 21, 2022 on monitoring wells MW-1, MW-2A, MW-4, MW-6, MW-7, MW-8, and MW-10.

During this past half, the PCE concentration in all sampled monitoring wells monitored was above the Class GA Groundwater Standard of 5 ug/L or parts per billion (ppb), with the exception of MW-4 and MW-7. The following lists the monitoring wells and PCE concentrations for the second half 2022:

<u>Well ID</u>	PCE Concentration (ug/L or ppb)	
MW-1	25	
MW-2A	210	
MW-3	Sampling No Longer Required	
MW-4	2.8	
MW-5	Sampling No Longer Required	
MW-6	43	
MW-7	1.8	
MW-8	830	
MW-10	6.1	
MW-11	Sampling No Longer Required	

A groundwater contour map showing the groundwater flow at the Site on December 21, 2022 is included as Figure 7 and a PCE concentration box plot map is included as Figure 8.

6.3.2 First Half 2023

The first half 2023 post-remedial groundwater sampling was conducted on June 28, 2023 on monitoring wells MW-1, MW-2A, MW-4, MW-6, MW-7, MW-8, and MW-10. It should be noted that the basement of the building was recently flooded with sewer water, according to the building superintendent. This water was noted in the well box of MW-7 and MW-4. It does not appear that water infiltrated into MW-4; however, it appears that it occurred in MW-7 due to the cap design of this pumping well along with the abnormally shallow groundwater. The liquid in each of the well boxes was pumped out.

During this past half, the PCE concentration in all sampled monitoring wells monitored was above the Class GA Groundwater Standard of 5 ug/L or parts per billion (ppb). The following lists the monitoring wells and PCE concentrations for the first half 2023:

<u>Well ID</u>	PCE Concentration (ug/L or ppb)	
MW-1	29	
MW-2A	4,000	
MW-3	Sampling No Longer Required	
MW-4	16	
MW-5	Sampling No Longer Required	
MW-6	53	
MW-7	77	
MW-8	680	
MW-10	6.3	
MW-11	Sampling No Longer Required	

A groundwater contour map showing the groundwater flow at the Site on June 28, 2023 is included as Figure 9 and a PCE concentration box plot map is included as Figure 10.

6.3.3 Conclusions

The results from the semi-annual monitoring sampling show that the operation of the pump and treat system coupled with the Chemical Oxidation Program has resulted in an improvement in the overall quality of the groundwater beneath the Site. The groundwater quality at monitoring wells MW-3, MW-5, MW-11 have achieved non-sampling status and therefore were not sampled during this reporting period

The PCE concentrations from the December 2022 and June 2023 sampling events are summarized below.

Well	2022 PCE Concentration (ug/L)	2023 PCE Concentration (ug/L)
MW-1	25	29
MW-2A	210	4,000
MW-4	2.8	16
MW-6	43	53
MW-7	1.8	77
MW-8	830	680
MW-10	6.1	6.3

The groundwater flow at the Site was measured on December 21, 2022 and June 28, 2023 with the system not in operation. The groundwater flow direction at these times was towards the southwest.

The PCE concentrations from the Second Half 2021 (the last groundwater sample with an active groundwater pump and treatment system) are relatively similar to the latest groundwater sampling conducted in June 2023; however, MW-2A was noted with a significant increase of PCE from 210 to 4,000 ug/L. In addition, TCE concentrations above TOGS have been observed MW-2A, MW-7, and MW-8. These three (MW-2A, MW-7, and MW-8) are pumping wells, which are screened within the bedrock.

6.4 MONITORING PLAN COMPLIANCE REPORT CONCLUSIONS AND RECOMMENDATIONS

From June 2022 to June 2023, there were no monitoring deficiencies and the monitoring plan was in full compliance. Overall, the groundwater beneath the Site has shown a decrease in PCE concentrations. In addition, monitoring wells MW-3 and MW-5 are no longer included in the semi-annual groundwater sampling events as monitoring wells MW-3 and MW-5 have achieved the non-sampling criteria outlined in the SMP (Ref 1). Monitoring well MW-11 has also achieved the non-sampling criteria as of December 2015 with a PCE concentration of 2.5 ug/L, which is below the NYSDEC standard. The SMP states that groundwater monitoring activities to assess natural attenuation will continue, as determined by the NYSDEC, until residual groundwater concentrations are found to be consistently below NYSDEC standards, or have become asymptotic over an extended period or have become dry. Semi-annual (twice a year) monitoring will continue until

permission to discontinue is granted in writing by the NYSDEC. As current PCE concentrations remain similar to the last groundwater samples collected while the groundwater pump and treat was active, we recommend that the system continue to remain off.

7.0 OPERATION & MAINTENANCE PLAN COMPLIANCE REPORT

7.1 Groundwater Pump and Treat System

Since the groundwater pump and treat system was started up on April 22, 2010, operations and maintenance visits have been conducted in the frequency outlined in the SMP. The groundwater pump and treat system has been functioning normally. However, the pump in pumping well MW-2A is stuck approximately 7-9 feet above the normal depth, but continues to pump water from the well to the system for treatment. Section 4.2.4 of this report details the system repair timeline. The system has been off for this reporting period and since January 5, 2021 when the system was approved by NYSDEC to be temporarily shut down. Checklists from each operation and maintenance visit are enclosed in Appendix F and Table 3 summarizes the totalizer reading and clicker readings for each pumping well. 4.2.4

7.2 Groundwater Pump and Treat System Discharge Sample and Analysis

A sample of the effluent groundwater from the groundwater pump and treat system was obtained every quarter beginning in the second quarter of 2011 until the latest sampling event in October 2018. The samples were submitted to American Analytical Laboratories and analyzed for the NYCDEP B+ parameters. The samples were analyzed within their respective holding times each quarter. The analytical results from each sampling event dating back to the second quarter 2011 indicate that all parameters are in compliance with the permit; therefore, a carbon change-out has not been needed. A hard copy of the laboratory sample results was attached to a summary letter and sent to the NYCDEP. Copies of the letter from the October 2018 sampling is included in Appendix G.

In November 2018, NYCDEP indicated sampling of the system for discharge into the City sewers was no longer required (See Appendix H). Sampling for the NYCDEP B+ parameters have not been collected since the issuance of the NYCDEP e-mail. Sampling of the raw and treated groundwater from the system is conducted on a semi-annual basis during the groundwater

sampling events and only analyzed for VOCs. Because the groundwater pump and treat system was shut down on January 5, 2021 no raw or treated groundwater was sampled for analysis.

7.3 Sub-Slab Depressurization System

Installation of an SSD system in addition to the ventilated parking garage was included in the construction of the new buildings' foundation as a contingency in the event that the parking garage is no longer ventilated or its design is altered to include occupied living space. If the building design is altered and the SSD system needs to be activated, NYSDEC will be notified and a start-up test will be conducted to confirm that the SSD system is working. At the time of this Report, no modifications to the building design have occurred and the SSD system remains off. As such, no O&M activities are required at this time.

7.4 Operation & Maintenance Plan Compliance Report Conclusions And Recommendations

The remediation system has operated continuously from the second half 2019 through to January 5, 2021 when it was approved to be turned off by NYSDEC. Overall, the groundwater quality beneath the Site has exhibited a decrease in PCE concentrations, which indicates the groundwater pump and treat system did operate effectively in the past.

However, at this time, it appears that the PCE concentrations in the pumping wells are unaffected by operation of the system. We recommend the groundwater pump and treat system continue to remain off.

8.0 CONCLUSIONS AND RECOMMENDATIONS

The overall objective of the remedial action is to remediate environmental conditions at the Site to the satisfaction of the NYSDEC and NYSDOH for the future restricted residential/commercial use. As documented in the FER (Ref. 5), the results of the remedial activities conducted at the Site indicate that the identified areas of concern were satisfactorily addressed. NYSDEC issued a Certificate of Completion in October 2010 after reviewing the FER (Ref. 5) and SMP (Ref. 1).

Based on the evaluation of the inspection and monitoring data, the following has been concluded:

- ECs and associated ICs were in place, performed properly, and remain effective;
- The monitoring plan was properly implemented;

- The remedy continues to be protective of public health and the environment and compliant with the decision document for the Site.
- The groundwater pump and treat system remains inactive and the PCE concentrations have remained similar to the most recent sampling event with the groundwater pump and treat system active with the exception of MW-2A. Groundwater monitoring well MW-2A exhibited a PCE concentration of 210 ug/L during the last sampling round with the system operational while the most recent sampling event exhibited 4,000 ug/L.

Based on the above conclusions, the following shall continue:

- Operations and maintenance activities of the groundwater pump and treat system should continue in accordance with the schedule outlined in the approved SMP, if the system is to be reactivated;
- Groundwater pump and treat system samples should continue to be collected on a semiannual basis during groundwater sampling events, if the system is to be reactivated;
- Groundwater sampling should continue on a semi-annual basis;
- The protective box around MW-8 needs to be replaced as it has rusted and the hinges on the cover of the box have broken. At this point, the protective box is not a safety issue, but should replaced in the near future.
- The next Periodic Review Report should be submitted in July 2024.

9.0 REFERENCES

1. CA RICH Consultants, Inc. Site Management Plan. New York: Author, July 2010.

2. CA RICH Consultants, Inc. <u>Remedial Investigation Report, Cornerstone Site B-1, 3100 Third</u> <u>Avenue, Bronx, N.Y.</u> New York: Author, November 2007; Revised April 2009.

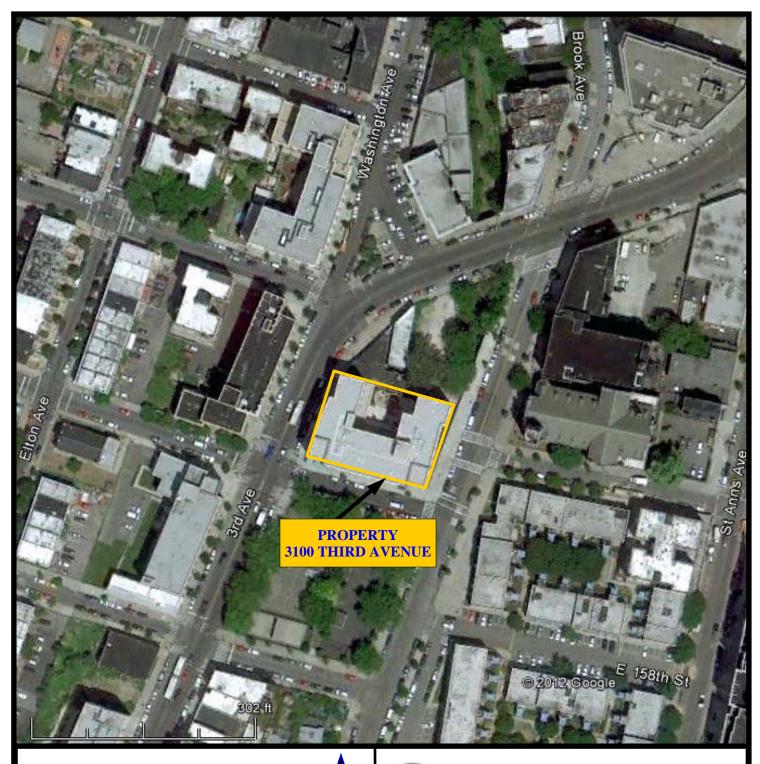
3. CA RICH Consultants, Inc. <u>Groundwater Investigation and Design Report.</u> New York: Author, June 2009.

4. CA RICH Consultants, Inc. <u>Remedial Action Work Plan.</u> New York: Author, June 2009.

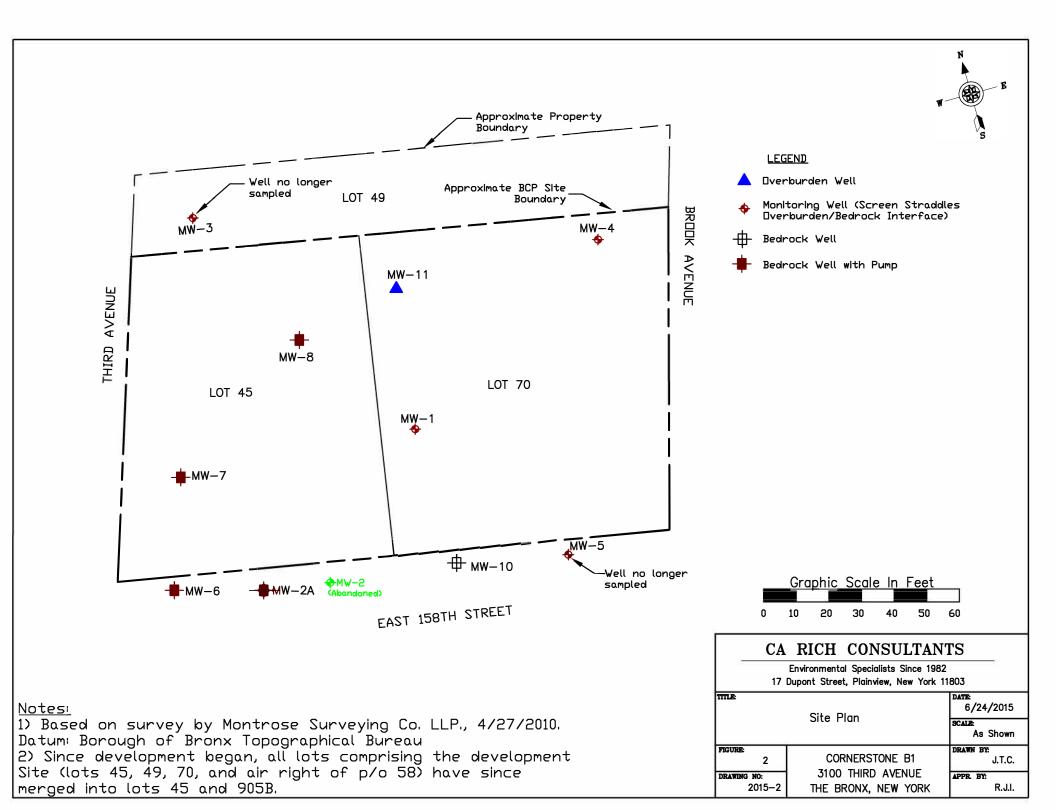
5. CA RICH Consultants, Inc. Final Engineering Report. New York: Author, November 2010.

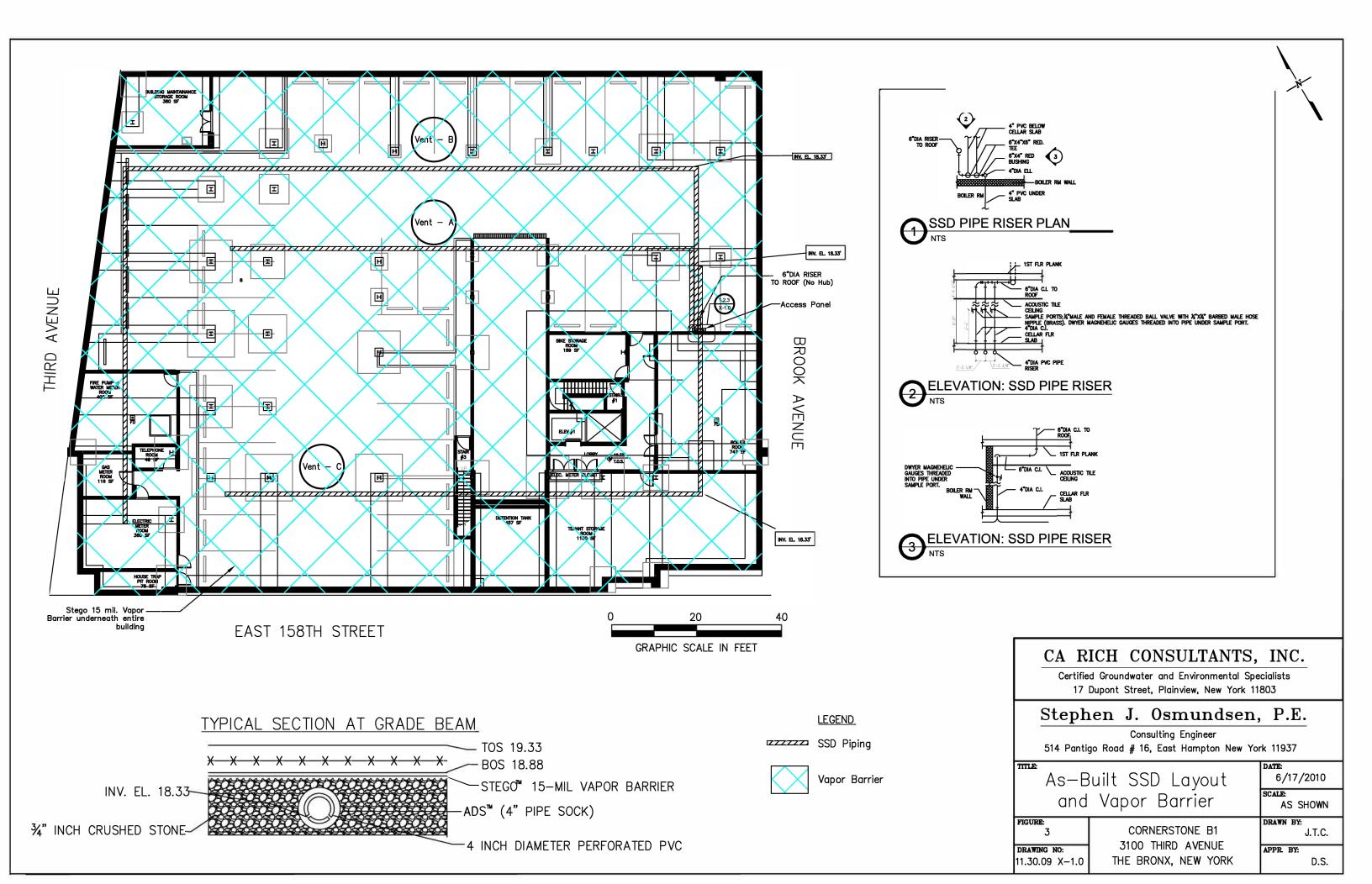
6. Pressly & Associates, Inc. <u>Phase I Environmental Site Assessment For Site B, Block 2364; Lots</u> <u>45, 49, 55, 56, 58, Third Avenue/E.160th Street/Brook Avenue, Bronx, NY. (also includes Lot 70)</u>. New York: Author, March 2004.

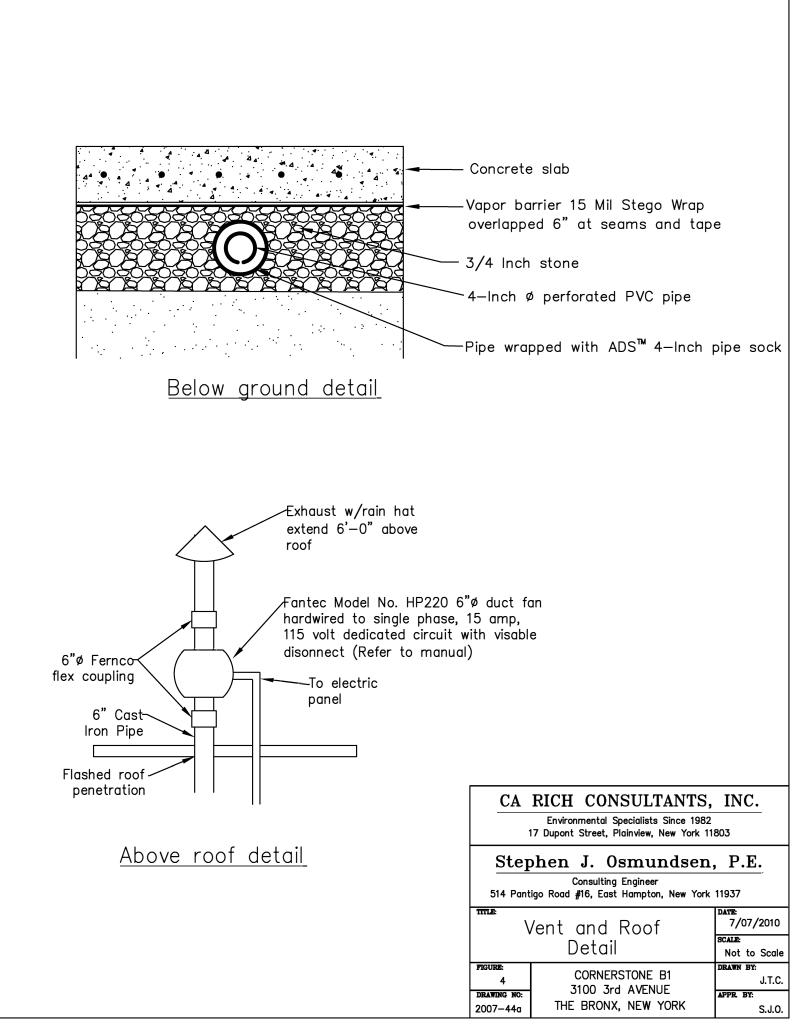
7. NYSDEC. 6 NYCRR Part 375 Environmental Remediation Programs, Subparts 375-1 to 375-4 & 375-6. New York: Author, December 2006.

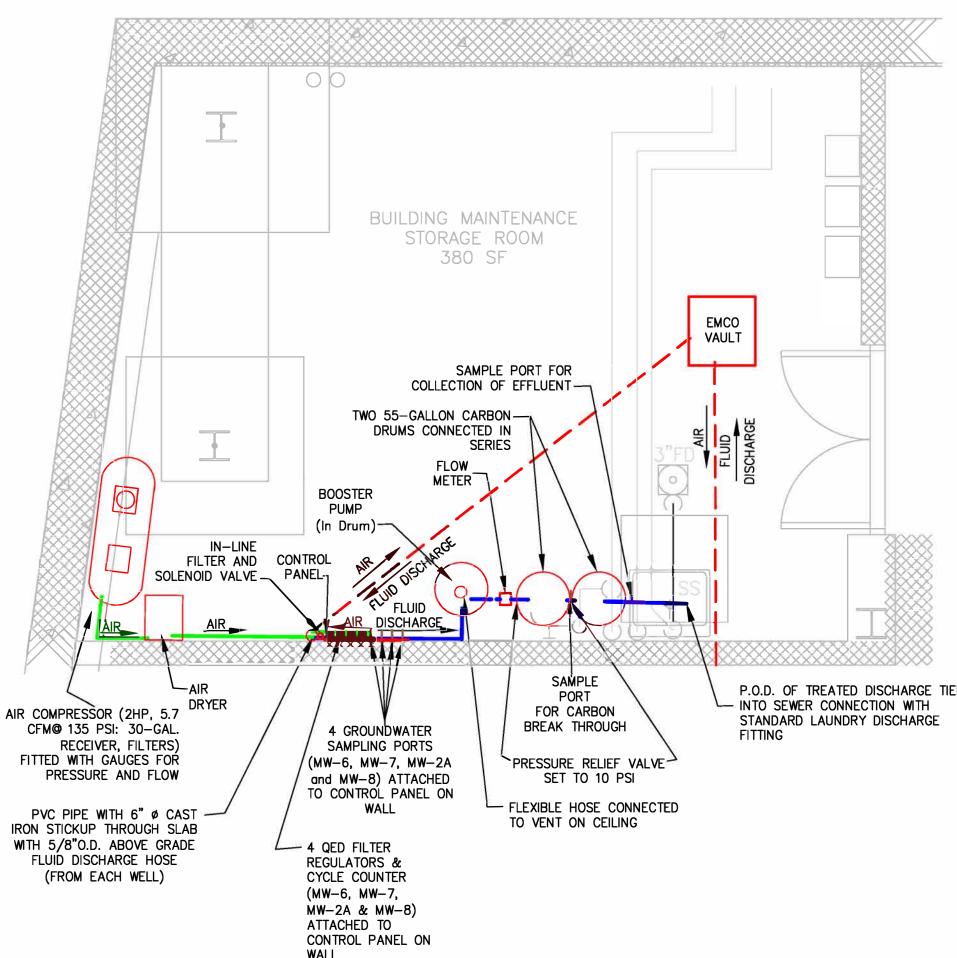

8. NYSDEC. Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. New York: Author, June 1998

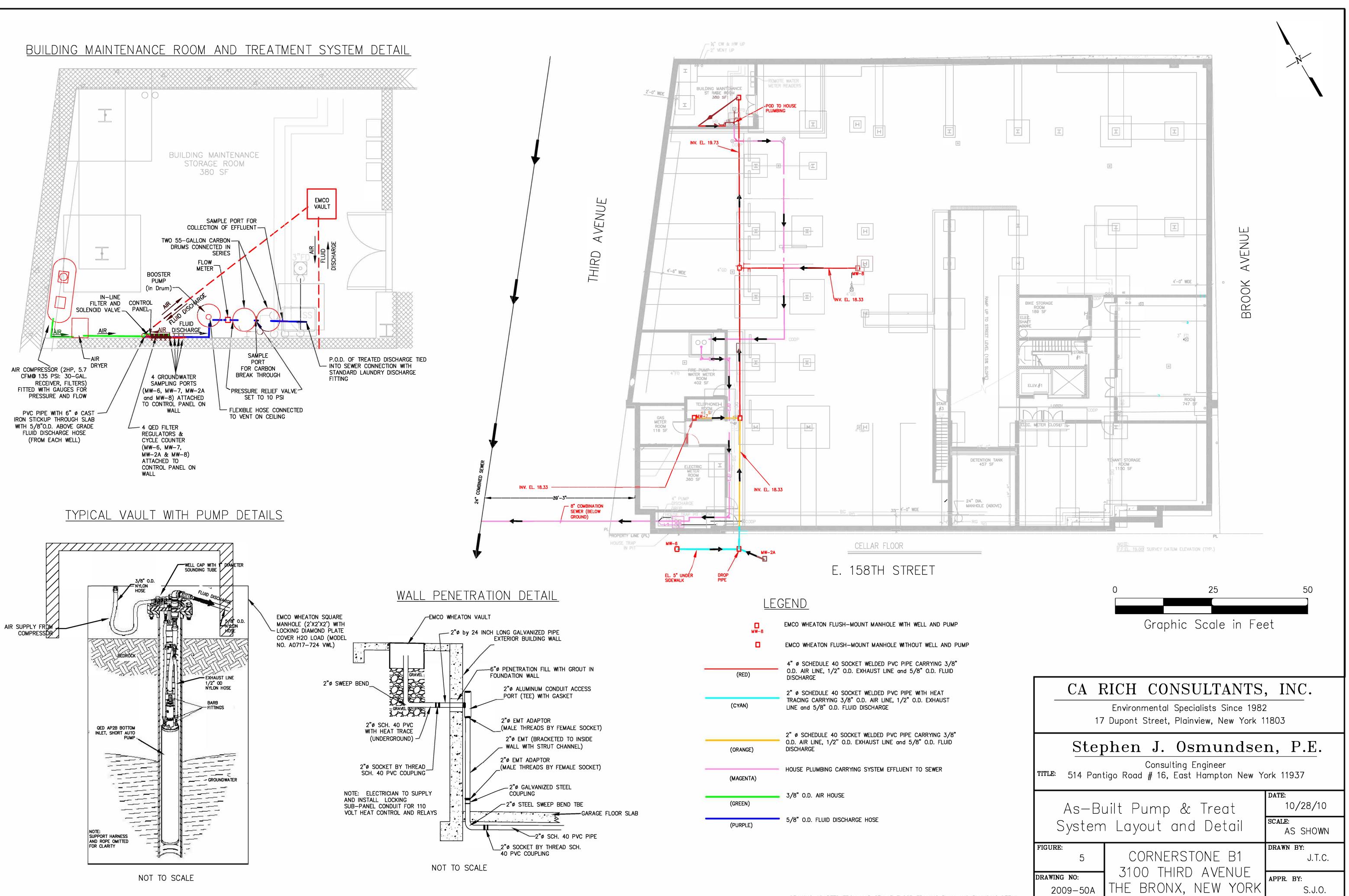
9. NYSDOH. <u>Guidance for Evaluating Soil Vapor Intrusion in the State of New York</u>. New York, Author, October 2006.

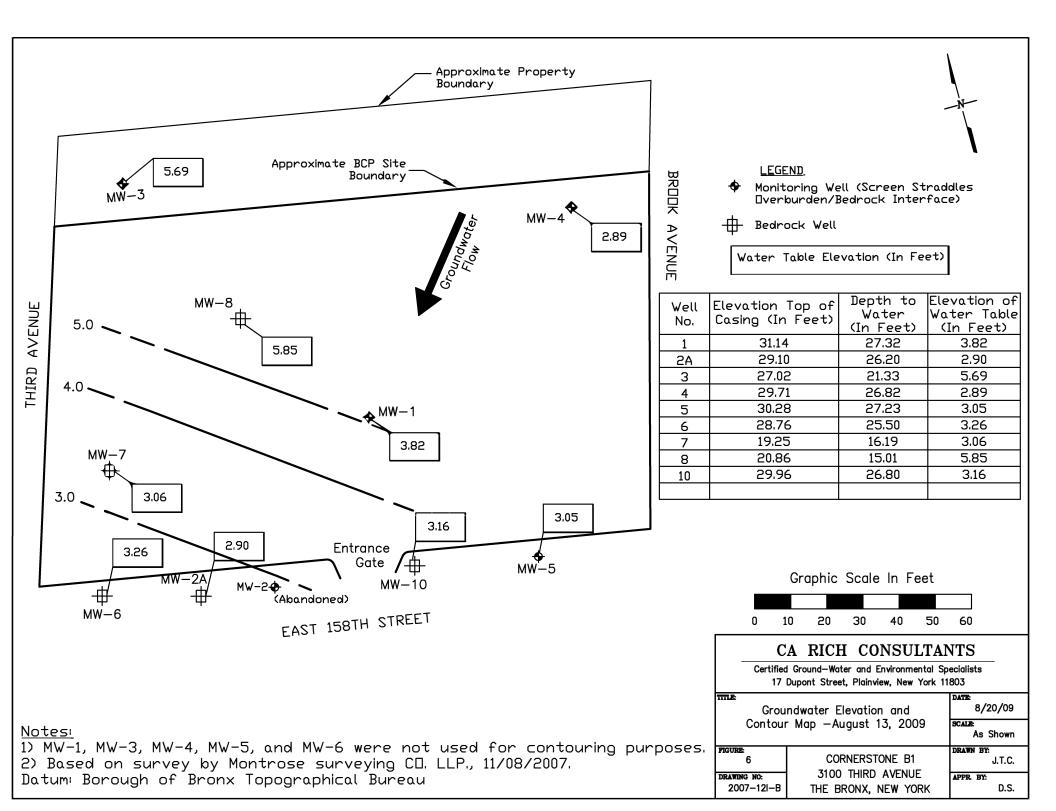

10. CA RICH Consultants, Inc. <u>Remedial Action Work Plan Addendum.</u> New York: Author, July 2009.

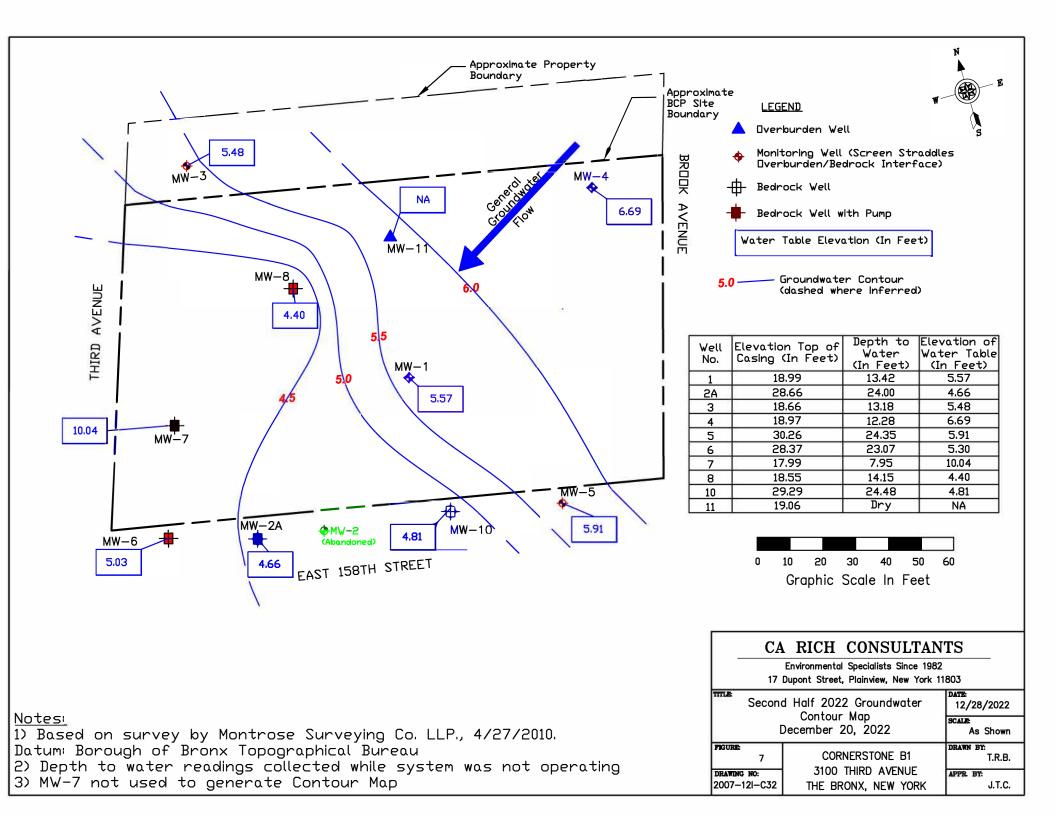

11. CA RICH Consultants, Inc. <u>Groundwater Investigation and Design Report</u>. New York: Author September 2009; Revised November 2009.

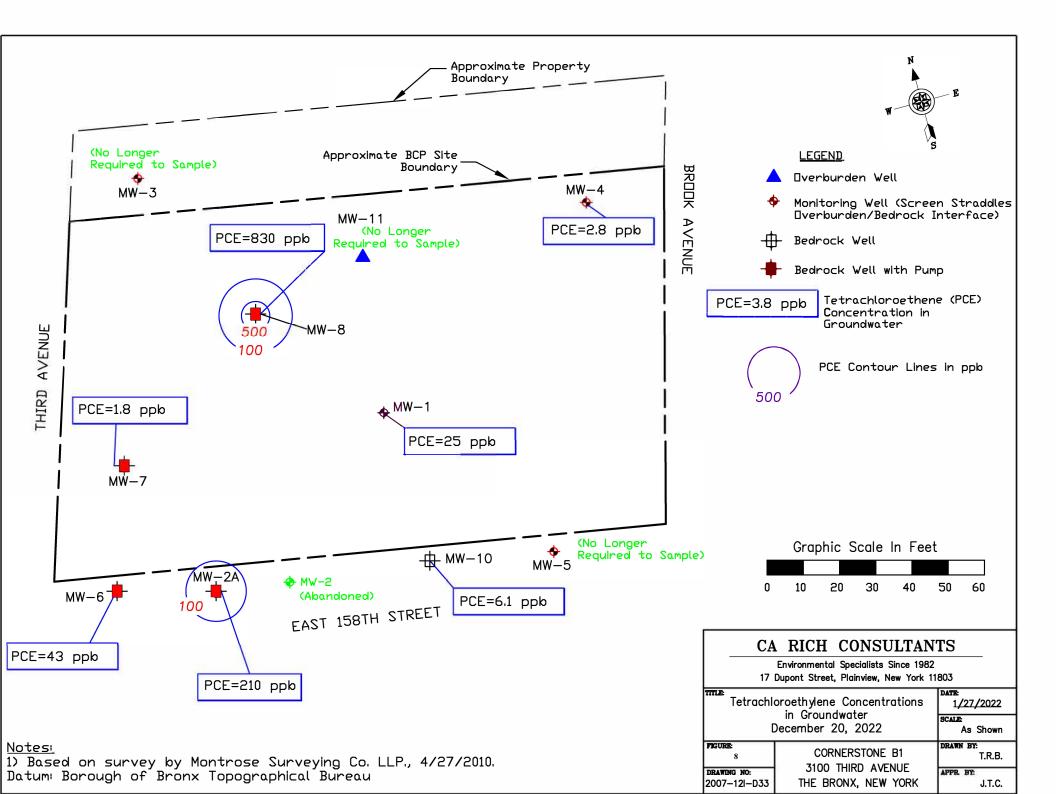

FIGURES

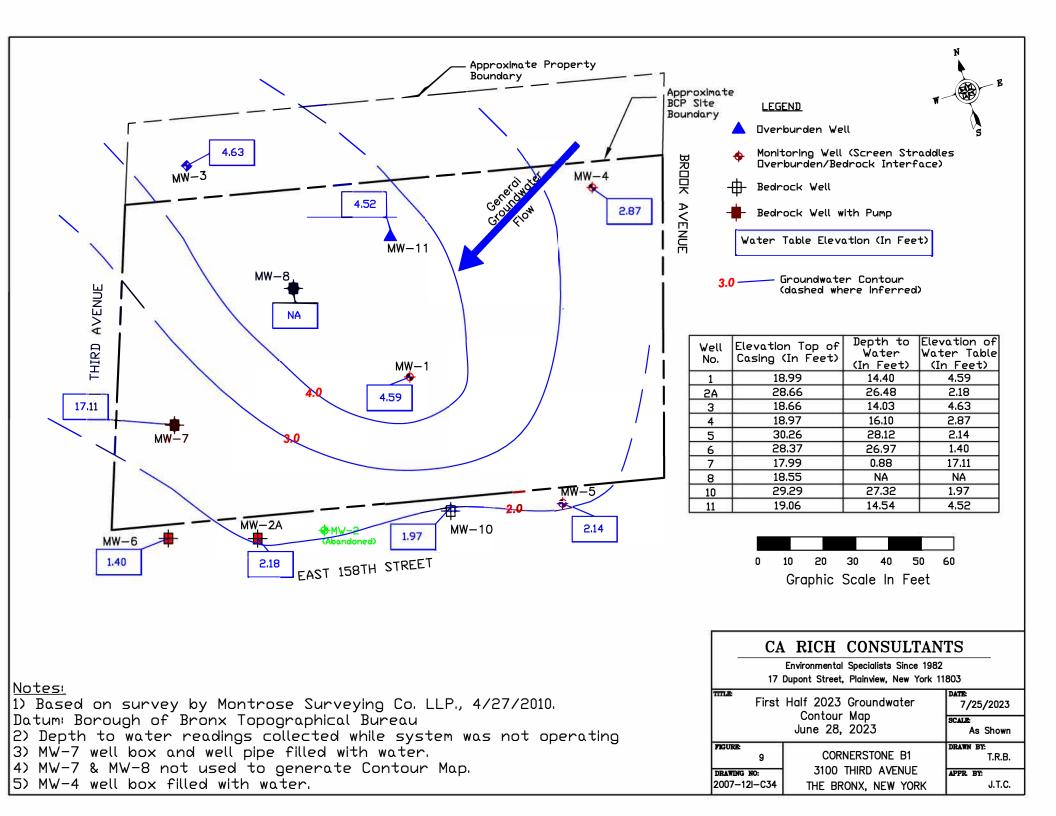


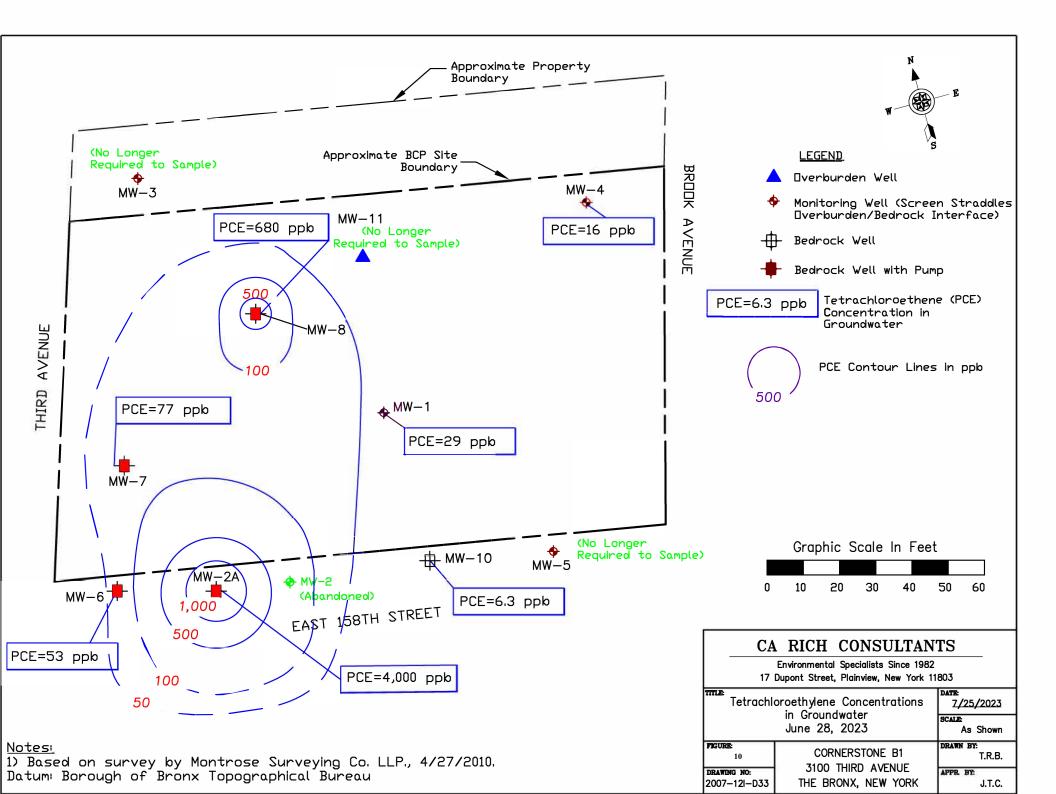

		CA RICH CONSULTANTS 17 Dupont Street, Plainview, NY 11803		
	TITLE:		DATE:	
	Pror	perty Location Map	6/29/2012	
		berty Ebeation map	SCALE:	
N			As Shown	
	FIGURE:		DRAWN BY:	
Adapted from Google Earth 2012	1	Cornerstone Site B-1 3100 Third Avenue	JTC	
Augreu from Google Lurth 2012	DRAWING:	Bronx, New York	APPR. BY:	
		-	RJI	











TABLES

Validated Analytical Results for Volatile Organic Compounds In Groundwater

Cornerstone Site B-1 3100 Third Avenue Bronx, New York BCP #C203044

Well Commen Date Sample Days since system start t	ts 1st Q 201 ed 12/29/200		10 3rd Q 2010 10 8/25/2010	MW-1 4th Q 2010 11/22/2010 Q 214	MW-1 1st Q 2011 3/15/2011 Q 327	MW-1 2nd Q 2011 6/8/2011 Q 412	MW-1 3rd Q 2011 9/28/2011 Q 524	MW-1 4th Q 2011 12/14/2011 Q 601		6/19/2012	MW-1 3rd Q 2012 10/22/2012 Q 914	12/6/2012	MW-1 1st Q 2013 3/28/2013 Q 1071	MW-1 2nd Q 2013 6/13/2013 Q 1148	MW-1 3rd Q 2013 9/30/2013 Q 1257	MW-1 4th Q 2013 1/13/2014 Q 1362	MW-1 1st Q 2014 3/27/2014 Q 1435	6/23/2014	NYSDEC TOGS*
Volatile Organic Compounds Uni	ts ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/l	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Acetone	9.0	J ND	ND	ND	ND	ND	ug/L ND	ND	ND		R ND	ND	ND	ND		R 6.0	J ND	R ND	R 50
Benzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Bromobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Bromochloromethane Bromodichloromethane	ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5 50
Bromotorm	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	50
Bromomethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
2-Butanone (MEK)	ND	UJ ND			UJ ND			R ND	ND		R ND	R ND		R ND		R ND	ND	ND	R NVG
n-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
sec-butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
tert-butylbenene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Carbon Tetrachloride	ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	UJ ND	ND	ND	ND	ND	ND	ND	5
Chlorobenzene Chloroethane	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
Chloroform	7.4	2.4	2.4	2.4	1.4		J 1.3	0.94	J 0.67	J 0.60	J 0.42	J 0.33	J ND	ND	0.35	J ND	ND	0.34	J 7
Chloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.74	J ND	ND	ND	NVG
o-Chlorotoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
p-Chlorotoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2-Dibromo-3-Chloropropane	ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.04 50
Dibromochloromethane 1.2-Dibromoethane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	50 NVG
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3
Dichlorodifluoromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	UJ ND	5
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.6
1,1-Dichloroethene cis-1,2-Dichloroethene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 14.3	ND ND	ND ND	ND ND	ND ND	ND ND	5 5
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	14.3 ND	ND	ND	ND	ND	ND	5
1,2-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.4
2,2-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0
1,1-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	0.4 0.4
Ethyl Benzene	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	5
Hexachlorobutadiene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.5
Isopropylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
p-Isopropylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Methyl tert-butyl Ether	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10
4-Methyl-2-Pentanone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NVG
Methyl bromide Methylene Chloride	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NVG 5
Naphthalene	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5 10
n-Propylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Styrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Tetrachloroethene Toluene	22.4 ND	16.6		48.8 ND	28.1	13.8 ND	13.9	29.6 ND	30.4	42.5 ND	36.0	69.1	44.5 ND	38.3	34.3 ND	31.1 ND	35.0 ND	28.0	5
1,2,3-Trichlorobenzene	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Trichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.65	J 5.7	0.88	J 0.71	J ND	ND	ND	5
Trichlorofluoromethane	ND	UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2,3-Trichloropropane 1,2,4-Trimethylbenzene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.04 5
1,2,4- I rimethylbenzene 1,3,5-Trimethylbenzene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
Vinyl Chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2
m,p-Xylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
o-Xylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Xylene (total)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Notes: Date of System Start-up: ug/L - micrograms per liter or parts per ND - Not detected NVG - No Value Given J - Indicates an estimated value	4/22/20 billion	0		Ambient wate	r Quality Standa	erational Guidan ards and Guidan iitations June 19	ce Values	1)											

UJ - Indicates an estimated value UJ - The analyte was not detected above the reported sample quantitation limit.

However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely

measure the analyte in the sample. Bold and boxed indicates value exceeds TOGS

R - The sample results are unreliable/useable. The presence or absence of the analyte can not be verified.

Page 1 of 18

Table 1 (MW-1 cont.)

Validated Analytical Results for Volatile Organic Compounds In Groundwater

Cornerstone Site B-1 3100 Third Avenue Bronx, New York BCP #C203044

Unit Unit N N N N <th></th> <th>BCP #C203</th> <th>D44</th> <th></th>													BCP #C203	D44										
	Comments Date Sampled	3rd Q 2014 9/19/2014	4th Q 12/10/	2014 2014	1st Q 2015 4/1/2015	2nd Q 201 6/2/2015	5 2	2nd Half 2015 12/10/2015	1st Half 20 6/3/2016	16 2nd Half 2 12/16/20	016 1st Half 2017 16 6/13/2017	2nd Half 201 12/1/2017	7 1st Half 201 6/15/2018	8 2nd Half 2018 12/27/2018	1st Half 2019 6/7/2019	2nd Half 2019 12/4/2019	1st Half 2020 6/3/2020	2nd Half 2020 12/21/2020	1st Half 2021 6/2/2021	2nd Half 2021 12/14/2021	1st Half 2022 6/14/2022	2nd Half 2022 12/20/2022	1st Half 2023 6/28/2023	
	Days since system start up Volatile Organic Compounds	1611	Q 169	93 Q	1805	Q 1867	Q	2058	u 2204	Q 2430	Q 2609	Q 2780	Q 2976	Q 3171	Q 3333	Q 3513	Q 3695	Q 3896		Q 4254	Q 4436		Q 4815 C	
	Acetone	ND	<u>uq</u> Ni	<u>/L</u> DR	ND	ND	R	ND	R ND	UJ ND	R ND	ND	UJ ND	ND	ND	ND	ND	4.4	J ND	ND	ND	ND	ND	<u>ug/L</u> 50
	Bromobenzene	ND	N	D	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
	Bromochloromethane Bromodichloromethane	ND	N	D	ND	ND		ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	
	Bromoform	ND	N	D	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50
	2-Butanone (MEK)	ND	N	DR	ND	R ND	R	ND	R ND	UJ ND	R ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NVG
	n-Butylbenzene sec-butylbenzene	ND	N	D	ND	ND ND		ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND	ND ND	5
	tert-butylbenene	ND	N	D	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
	Chlorobenzene	ND	N	D	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
	Chloroethane Chloroform	ND 0.29	J NI	D	0.42	J ND		ND ND	ND ND	ND	ND 0.74	ND J 0.41	J ND	ND 1.4	ND	ND 2.2	J ND	ND ND	ND ND	ND ND	ND ND	0.77	J ND	5
	Chloromethane o-Chlorotoluene	ND ND	N	D	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NVG 5
	p-Chlorotoluene	ND	N	D	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
	Dibromochloromethane	ND	N	D	ND	ND		ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	50
		ND ND	N	D	ND ND			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	NVG 3
	1,3-Dichlorobenzene	ND	N	D	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3
	Dichlorodifluoromethane	ND	N	D	ND	ND		ND	ND	UJ ND	ND	ND	ND	UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
	1.2-Dichloroethane	ND ND	N	D D	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND I ND	JJ ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5 0.6
	1,1-Dichloroethene	ND	N	D	ND	ND		ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
	trans-1,2-Dichloroethene	ND	N	D	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
	1.3-Dichloropropene	ND	N	D	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1 0.4
A set of the s	2,2-Dichloropropane	ND	N	D	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0
	cis-1,3-Dichloropropene	ND	N	D	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.4
	Ethyl Benzene	ND	NI	D	ND ND	ND		ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND ND	5
			N	D	ND ND			ND	ND ND		ND ND	ND ND	ND ND				ND		ND ND	ND ND			ND ND	
	p-lsopropylbenzene	ND	N	D	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
	4-Methyl-2-Pentanone	ND	N	D	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	NVG
	Methylene Chloride	ND	N	D D	ND ND	ND ND		ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NVG 5
	Naphthalene	ND ND	N	D	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	UJ ND ND	ND ND	ND ND	ND I	JJ ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	10 5
		ND	N	D	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
	1,1,2,2-Tetrachloroethane	ND	NI	D	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
<footnote><footnote><footnote></footnote></footnote></footnote>	Toluene	ND	N	D	18.4 ND	ND		ND	20.8 ND	ND	12.3 ND	13.3 ND	ND	13.1 ND	ND	ND	50 ND	ND	28 ND	ND	ND	25 ND	29 ND	5
11. If constructions 0					ND ND				ND ND			ND ND		ND			JJ ND JJ ND		ND			ND	ND	5
Table of the set of the field of the set of th	1,1,1-Trichloroethane	ND	N	D	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
	Trichloroethene	ND	N	D	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.52	ND	0.27	0.21	J ND	ND	5
Add Provide Name Provide Na	1.2.3-Trichloropropage	ND	N	D	ND	ND		ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	5 0.04
$\log \log $	1.3.5-Trimethylbenzene	ND ND	N	D	ND			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND	ND ND	ND ND	ND ND			ND ND	5
$\frac{ v _{1} = v _{1} + v _{2} + v$	Vinyl Chloride	ND	N	D	ND	ND		ND	ND	ND	ND	UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2
	o-Xylene	ND	N	D	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
	Notes:	ND	N	D	ND	ND		ND	*NYSDEC	Technical and	Operational Guidar	ce Series (1.1.)		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
M2. A black large was not detected above the reported sparticipation limit. However, the sparticipation limit. H	Date of System Start-up: ug/l - micrograms per liter or part:	s ner hillion							Ambient w	ater Quality Sta dwater Effluent	ndards and Guidar Limitations June 1	nce Values 998												
	ND - Not detected NVG - No Value Given	o per onnon											e or absence of t	he analyte can no	t be verified									
										inple reduite di		. The process		ne analyte can ne	be venned.									
	UJ - The analyte was not detected reported quantitation limit is appro	l above the re ximate and n	eported sar nay or may	mple quant not repres	titation limit. sent the actu	However, the al limit of	9																	
MW-1 (PCE versus time)	quantitation necessary to accurate	elv and precis	selv measu	ire the ana	lyte in the sa	ample.																		
Total																								
Torong and the second s											MW-1 (PCE versu	s time)											
The second secon	120		, ,				-									· · · ·								
The second secon																/								
	100																							
								_																
															1			Syster	n turned off					
5 $20 + 100 + 1$	0 - 60								+	_								Januar	γ 5, 2021				_	
5 $20 + 100 + 1$	antra 1					\wedge			$1 1 \rangle$						1			1	\wedge					
						711				-														
		_				<u>/ `</u>		A						$ \rightarrow $			+ $+$	\rightarrow		\mathbf{M}				
					T			•								$ \cdot $								
Days Since System Start-Up	0 -1,000				0				1,000		└──				3,000	└── ├ ──		4,000		· · · ·	5,000		6,0	00
												Day	s Since Syst	em Start-Up						_				

----- PCE Concentration

Page 2 of 18

Table 1 Validated Analytical Results for Volatile Organic Compounds In Groundwater

Cornerstone Site B-1 3100 Third Avenue

Bronx, New York BCP #C203044

	Well ID	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	NYSDEC
	Comments Date Sampled	1st Q 2010 12/30/2009	2nd Q 2010 5/27/2010	3rd Q 2010 8/25/2010	4th Q 2010 11/22/2010	1st Q 2011 3/15/2011	2nd Q 2011 6/8/2011	3rd Q 2011 9/28/2011	4th Q 2011 12/14/2011	1st Q 2012 3/14/2012	2nd Q 2012 6/19/2012	3rd Q 2012 10/22/2012	4th Q 2012 12/6/2012	1st Q 2013 3/28/2013	2nd Q 2013 6/13/2013	3rd Q 2013 9/30/2013	4th Q 2013 1/13/2014	1st Q 2014 3/27/2014	2nd Q 2014 6/23/2014	TOGS*
	system start up										Q 789 C		Q 959 C						Q 41813 Q	,
Volatile Organic Compour																				
	Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Acetone		ND	ND	ND	ND	ND	ND	9.4	J ND	ND	ND R		UJ ND	ND		R ND	R ND	ND	R ND R	50
Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	1 5
Bromobenzene Bromochloromethane		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		UJ ND UJ ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
Bromodichloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	50
Bromoform		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	50
Bromomethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	UJ ND	ND	ND	ND	ND	ND	ND	5
2-Butanone (MEK)		ND	ND	ND F		UJ ND			R ND	ND	ND R		R ND F			R ND	R ND	ND	ND R	
n-Butylbenzene		ND ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	5 5
sec-butylbenzene tert-butylbenene		ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND		UJ ND UJ ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
Carbon Tetrachloride		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	5
Chlorobenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	5
Chloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	UJ ND	ND	ND	ND	ND	ND	ND	5
Chloroform		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	7
Chloromethane		ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND		UJ ND	ND	ND	NVG
o-Chlorotoluene p-Chlorotoluene		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		UJ ND UJ ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5 5
1,2-Dibromo-3-Chloropropa	ne	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND UJ ND	ND	ND	ND	ND	ND	ND	0.04
Dibromochloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	50
1,2-Dibromoethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	UJ ND	ND	ND	ND	ND	ND	ND	NVG
1,2-Dichlorobenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	3
1,3-Dichlorobenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	3
1,4-Dichlorobenzene Dichlorodifluoromethane		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND		UJ ND	ND ND	ND	ND ND	ND ND	ND ND	ND UJ ND	3
1,1-Dichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND		UJ ND UJ ND	ND	ND ND	ND	ND	ND	ND ND	5
1,2-Dichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	0.6
1,1-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	5
cis-1,2-Dichloroethene		ND	1.0	J ND	1.2	3.1	J 0.88	J 1.3	1.5	1.6	1.9		J 1.5	1.5	0.57	J 1.1	2.0	ND	1.8	5
trans-1,2-Dichloroethene		ND ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND ND	5
1,2-Dichloropropane 1,3-Dichloropropene		ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND		UJ ND UJ ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.4
2,2-Dichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	5.0
1,1-Dichloropropene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	5.0
cis-1,3-Dichloropropene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	0.4
trans-1,3-Dichloropropene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		JJ ND	ND	ND	ND	ND	ND	ND	0.4
Ethyl Benzene Hexachlorobutadiene		ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND		UJ ND UJ ND	ND	ND	ND ND	ND ND	ND ND	ND	5 0.5
Isopropylbenzene		ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND		UJ ND UJ ND	ND ND	ND ND	ND	ND	ND	ND ND	5
p-lsopropylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	5
Methyl tert-butyl Ether		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	10
4-Methyl-2-Pentanone		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	NVG
Methyl bromide		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	NVG
Methylene Chloride Naphthalene		ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	5 10
n-Propylbenzene		ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND		UJ ND UJ ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
Styrene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	5
1,1,1,2-Tetrachloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	5
1,1,2,2-Tetrachloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	5
Tetrachloroethene		28,700	4,030	5,970	a 372	a 3,390	354	a 647	J 169	112	215 a	1,150	ab 74.6	131	138	137	518	D 1,200	D 490 D	5
Toluene 1,2,3-Trichlorobenzene		ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND		UJ ND UJ ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5 5
1,2,3-Trichlorobenzene		ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND		UJ ND UJ ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
1,1,1-Trichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	5
1,1,2-Trichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	1
Trichloroethene		ND	5.1	10.1	1.6	8.0 J	1.4	2	1.5	1.4	2.0		UJ 1.5	1.6	0.84	J 1.0	3.3	10.9	3.1	5
Trichlorofluoromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	5
1,2,3-Trichloropropane 1,2,4-Trimethylbenzene		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		UJ ND UJ ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.04
1,2,4-Trimethylbenzene		ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND		UJ ND UJ ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
Vinyl Chloride		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	2
m,p-Xylene		ND		J ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	5
o-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	5
Xylene (total)		ND	1.7	J ND	ND	ND	ND	ND	ND	ND	ND	ND	UJ ND	ND	ND	ND	ND	ND	ND	5

Xylene (total) Notes:

Notes: Date of System Start-up: 4/ ug/L - micrograms per liter or parts per billion ND - Not detected 4/22/2010

NVG - No Value Given

J - Indicates an estimated value

UJ - The analyte was not detected above the reported sample quantitation limit.

However, the reported quantitation limit is approximate and may or may not represent

the actual limit of quantitation necessary to accurately and precisely measure the

analyte in the sample. Bold and boxed indicates value exceeds TOGS

a - results are from run #2 b - Storage temperature exceeded 6 degrees celsius due to power outage from tropical cyclone on October 29 and 30, 2012

R - The sample results are unreliable/useable. The presence or absence of the analyte can not be verified.

*NYSDEC Technical and Operational Guidance Series (1.1.1) Ambient water Quality Standards and Guidance Seles (Ambient water Quality Standards and Guidance Values and Groundwater Effluent Limitations June 1998

D - Result from diluted analysis

Page 3 of 18

Table 1 (MW-2A cont.)

Validated Analytical Results for Volatile Organic Compounds In Groundwater

Cornerstone Site B-1 3100 Third Avenue Bronx, New York BCP #C203044

	Well ID Comments Date Sampled	3rd Q 2014 9/19/2014	MW-2A 4th Q 2014 12/10/2014	MW-2A 1st Q 2015 4/1/2015	MW-2A 2nd Q 2015 6/2/2015	MW-2A 2nd Half 2015 12/10/2015	MW-2A 1st Haif 2016 6/3/2016	MW-2A 2nd Half 2016 12/16/2016	MW-2A 1st Half 2017 0 2500	12/1/2017	MW-2A 1st Half 2018 0/15/2018	12/27/2018	MW-2A 1st Half 2019 6/7/2019	12/4/2019	019 1st Half 202 9 6/3/2020	12/21/20	020 1st Half 20 6/2/20	2021 2nd Half 2 21 12/14/20	2021 1st Half 20 021 6/14/202	2 12/20/2022	6/28/2023	NYSDEC TOGS*
	Days since system start up Volatile Organic Compounds Actions Services Compounds Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane ex-butytenzene set-set-butytenzene set-set-butyten	1911 1914 ND ND	0 1993 0 30 199	0 1865 0 R 1865 0 ND ND N	2 1867 41.00 ND ND ND ND ND ND ND ND ND ND	0 20058 ugfl. ND ND ND ND	0 2234 iiiji. iiiji. ND ND ND	2 2330 WAL ND ND ND ND	Q 2009 U 2009 U 2009 ND ND ND ND ND ND ND ND ND ND	о 2780	○ 2976 □ 0.01 ND ND ND	0 3771 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 Wet not sampled as sampling pump got stuck. No water available above pump for sampling.	9513 up1. ND ND	0 3695 Indi ND ND ND ND ND UU ND ND ND ND	2985 0 100 0 101 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 002 0 003 0 004 0 005 0 006 0 007 0 008 0 009 0 000 0 001 0 002 0 003 0 004 0 005 0 006 0 007 0 008 0 008	الجام الجام الجام الم الح الح الح الح الح <th>Q 4254 upl ND ND ND ND</th> <th>Q 4436 IpL IpL ND ND ND</th> <th>0 4825 IIII NO NO NO NO</th> <th>Q 4815 </th> <th>1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</th>	Q 4254 upl ND ND ND ND	Q 4436 IpL IpL ND ND ND	0 4825 IIII NO NO NO NO	Q 4815	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
P_{P}	o-Xylene (total) Notes: Date of System Start-up: ug/L - micrograms per liter or part. ND - Not detected NVG - No Value Given J - Indicates an estimated value detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate	ND ND	ND			ND *NYSDEC Te Ambient wate and Groundw D - Result fro R - The samc	ND ND chnical and Opera r Quality Standard ater Effluent Limit m diluted analysis le results are unre	ND ND tional Guidance S s and Guidance V ations June 1998	ND ND ND eries (1.1.1) alues	ND ND	ND	ND		ND ND ND						ND	ND	555
$r_{r}}}}}}}}}$									MW-2A (F	PCE versus t	ime)											
	27,000 24,000 21,000 18,000 15,000 9,000 6,000 6,000 0,000 0,000 0,000							1,000							3,000			4,0	January 5, 202		5,	
										Days Since	System Sta	rt-Up						Γ		CE Concentration		

Table 1

Validated Analytical Results for Volatile Organic Compounds In Groundwater

Cornerstone Site B-1 3100 Third Avenue Bronx, New York BCP #C203044

								-																												-	
								_																							_						
					0	W Comr	'ell I nen			N-3	0	2		W-3 2 2010	,		MW-3 1 Q 20			MW 4th Q 2		, .	M۱ 1st C	W-3 0 201	1		W-3 Q 20	11	3r	MW- dQ2				IW-3 NA			YSDEC TOGS*
				C		Sar				9/200				/2010	·		25/20			11/22/2			3/15				8/20			0/28/2				NA			1000
Veletile	0	Days				m st	art u	ıp	-1	14		Q		34	Q		125		Q	214	1	Q	3	27	Q		112	Q		524		Q		NA	Q		
Volatile	Organ		mpo	unc	15		Unit	ts	u	g/L			u	<u>g/L</u>			ug/L			ug/	L		u	g/L		L	ıg/L			ug/L			L	ug/L			ug/L
Acetone									Ν	ID			1	١D			ND			NE)		N	١D			ND			ND				NS			50
Benzene										ID ID				ND ND			ND ND			NE NE				ND ND			ND ND			ND ND				NS NS			1 5
Bromoch			Э							ID				ND			ND			NE				ND			ND			ND				NS			5
Bromodi		metha	ne							ID				١D			ND			NE				١D			ND			ND				NS			50
Bromofo Bromom										ID ID				ND ND			ND ND			NE NE				ND ND			ND ND			ND ND				NS NS			50 5
2-Butan										D	1	IJJ		ND ND			ND		R	NE		UJ		ND	R		ND	R		ND		R		NS			NVG
n-Butylb										ID				١D			ND			NE				١D			ND			ND				NS			5
sec-buty tert-buty										ID ID				ND ND			ND ND			NE NE				ND ND			ND ND			ND ND				NS NS			5 5
Carbon										ID				ND			ND			NE				ND			ND			ND				NS			5
Chlorobe		•								ID				١D			ND			NE				١D			ND			ND				NS			5
Chloroet Chlorofo										ID 6				ND 3.7			ND 2.8			NE 1.6				۷D 46 J			ND).46	J		ND 0.53		J		NS NS			5 7
Chlorom		9								ID				ND			ND			NE				40 J ND			ND	3		ND		J		NS			, NVG
o-Chlord									Ν	ID			1	١D			ND			NE)		N	١D			ND			ND				NS			5
p-Chloro					~					ID ID				ND ID			ND			NE				ND			ND			ND				NS			5
1,2-Dibro Dibromo				pan	e					ID ID				ND ND			ND ND			NE NE				ND ND			ND ND			ND ND				NS NS			0.04 50
1,2-Dibr	omoeth	nane							Ν	ID			1	١D			ND			NE)		L.	١D			ND			ND				NS			NVG
1,2-Dich										ID				ND			ND			NE				ND						ND				NS			3
1,3-Dich 1.4-Dich										ID ID				ND ND			ND ND			NE NE				ND ND			ND ND			ND ND				NS NS			3 3
Dichloro	difluor	ometh	ane						Ν	D			1	١D			ND			NE)		N	١D			ND			ND				NS			5
1,1-Dich										ID				ND			ND			NE				ND			ND			ND				NS			5
1,2-Dich 1,1-Dich										ID ID				ND ND			ND ND			NE NE				ND ND			ND ND			ND ND				NS NS			0.6 5
cis-1,2-D	Dichloro	bether								ID			1	١D			ND			NE)			٩D			ND			ND				NS			5
trans-1,2			ene							D				١D			ND			NE				ND			ND			ND				NS			5
1,2-Dich 1,3-Dich										ID ID				ND ND			ND ND			NE NE				ND ND			ND ND			ND ND				NS NS			1 0.4
2,2-Dich										ID				ND			ND			NE				ND			ND			ND				NS			5.0
1,1-Dich										D				١D			ND			NE				ND			ND			ND				NS			5.0
cis-1,3-E trans-1,3				_						ID ID				ND ND			ND ND			NE NE				ND ND			ND ND			ND ND				NS NS			0.4 0.4
Ethyl Be		oropic	pen	0						ID				ND			ND			NE				ND			ND			ND				NS			5
Hexachl			•							D				ND			ND			NE				ND			ND			ND				NS			0.5
Isopropy p-Isopro										ID ID				ND ND			ND ND			NE NE				ND ND			ND ND			ND ND				NS NS			5 5
Methyl te			er							ID				ND			ND			NE				ND			ND			ND				NS			10
4-Methy	l-2-Per	tanon								ID				١D			ND			NE				١D			ND			ND				NS			NVG
Methyl b Methyler										ID ID				ND ND			ND ND			NE NE				ND ND			ND ND			ND ND				NS NS			NVG 5
Naphtha		Jinde								ID ID				ND ND			ND			NE				ND ND			ND			ND				NS			10
n-Propyl	benzer	ne								ID				١D			ND			NE				١D			ND			ND				NS			5
Styrene 1,1,1,2-	Fotrock	Joroot	hone							ID ID				ND ND			ND ND			NE NE				ND ND			ND ND			ND ND				NS NS			5 5
1,1,2,2-										ID				ND			ND			NE				ND			ND			ND				NS			5
Tetrachl									1	01			4	l.1			5.1			3.6	6		0	.73	J	0	0.64	J		0.52		J		NS			5
Toluene 1,2,3-Tri	oblorol									ID ID				ND ND			ND ND			NE NE				ND ND			ND ND			ND ND				NS NS			5 5
1,2,3-11 1,2,4-Tri										ID ID				ND ND			ND			NE				ND ND			ND			ND				NS			5
1,1,1-Tri	chloroe	ethane	9						Ν	ID			1	١D			ND			NE)		Ν	١D			ND			ND				NS			5
1,1,2-Tri			9							ID ID				ND ID			ND			NE NE							ND ND			ND				NS			1
Trichloro Trichloro			ne							ID ID		IJ		ND ND			ND ND			NL				ND ND			ND ND			ND ND				NS NS			5 5
1,2,3-Tri	chloro	propar	ne						Ν	D			1	١D			ND			NE)		N	١D			ND			ND				NS			0.04
1,2,4-Tri										ID				ND			ND			NE				ND			ND			ND				NS			5
1,3,5-Tri Vinyl Ch		Denze	ane a							ID ID				ND ND			ND ND			NE NE				ND ND			ND ND			ND ND				NS NS			5 2
m,p-Xyle	ene								Ν	ID			1	١D			ND			NE)		Ν	١D			ND			ND				NS			5
o-Xylene Xylene (e total)									ID ID				ND ND			ND ND			NE NE				ND ND			ND ND			ND ND				NS NS			5 5
Notes:	uud)								n				1	,U			ND			INL	,		r	νU			U			ND				CNI		L	J
Date of										/201	0																										
ug/L - m ND - Noi			er lite	er or	pai	rts p	er bi	illior	1											*NYSD Amhiei												.1.1))				
ND - NO NVG - N			en																4	Ambieı and Gr											58						
UJ - The	analy	te was																		R - The	e sar	mple	resu								rese	ence	or	abser	nce o	f the	analyte
Howeve	r, the n	eporte	d qu	anti	itatio	on lir	nit i:	s ap	pro	kima	te a	and	may	or ma	y no	t re	prese	nt		can no	t be	verif	ied.														
the actu analyte				ation	ı ne	cess	ary	to a	CCU	ratel	y ai	nd p	reci	sely m	easi	ure	ıne																				
Bold an				es v	alu	e ex	cee	ds 1	rog	S		_	_]					NS- No					red a:	s of 4	th Q	2011									
		_	_	_	_	_	_	_	_	_	_	_	_		_	_		_	_	NA - N	ot Aj	oplic	able						_		_		_			_	
										_							2 (02	E.			ime								_								
1															IVI	WV-3	s (PC	-E	ver	sus t	ime	9															
1																																					
1	200 ·		П		Т	Т	Π		Т	Т		П	Т		Т	Т	П	Т	Т										Т		Т	П	Т			Т	
1	180 -									\bot																											
1	100 -		Π	T				T		Ι		Π	T	T		Γ	ΓT				T										T		T				
1	160 ·	\vdash	+	+	+	+	\vdash	\vdash	+	+	-	$\left \right $	+	++	+	+	++	+	+	$\left \cdot \right $	\vdash	+	+			-	+	-	+	++	+	+	+	+	\vdash	+	H
1	440																																				
-	140 -		Гİ		+	1		\square		1		Π			1	1	$\uparrow\uparrow$		1										1	$ \uparrow$	1	\square	+				
ion ug/	120 -	\square	\downarrow		+	-		\square	+	+	-		\downarrow	++	-	1	\parallel	+	+	\square			+				+			\parallel	+	$\left \right $			\square	-	μIΙ
l lo											1				1				1										1		1	11					

Page 5 of 18

Concentratio No Sampling Required as of 4th Quarter 2011 -200 -100 ò Days Since System Start-Up

Table 1 Validated Analytical Results for Volatile Organic Compounds In Groundwater

Cornerstone Site B-1 3100 Third Avenue Bronx, New York BCP #C203044

Well ID Comments Date Sampled Days since system start up Volatile Organic Compounds	MW-4 1st Q 20 ⁻ 12/29/200 -114	10 2	MW-4 nd Q 2010 5/26/2010 34 (MW-4 3rd Q 2010 8/26/2010 Q 126	MW-4 4th Q 2010 11/22/2010 Q 214	3/15/2011	MW-4 2nd Q 2011 6/8/2011 Q 412	9/28/2011	MW-4 4th Q 2011 12/14/2011 Q 601	MW-4 1st Q 2012 3/14/2012 Q 692	MW-4 2nd Q 2012 6/19/2012 Q 789	MW-4 3rd Q 2012 10/22/2012 Q 914	MW-4 4th Q 2012 12/6/2012 Q 959 C	MW-4 1st Q 2013 3/28/2013 Q 1071	MW-4 2nd Q 2013 6/13/2013 Q 1148	MW-4 3rd Q 2013 9/30/2013 Q 1257 (MW-4 4th Q 2013 1/13/2014 Q 1362	MW-4 1st Q 2014 3/27/2014 Q 1435	MW-4 2nd Q 2014 6/23/2014 Q 1523 Q	NYSDEC TOGS*
Units	<u>ug/L</u>		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Acetone	ND		ND	ND	ND	ND	ND	ND	ND	ND		R ND	ND	ND			R ND	ND	R ND R	R 50
Benzene Bromobenzene	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	2.0 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
Bromochloromethane	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Bromodichloromethane	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50
Bromoform	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50
Bromomethane	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
2-Butanone (MEK)	ND	UJ	ND						R ND	ND			R ND F				R ND	ND	ND R	R NVG
n-Butylbenzene	ND ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5 5
sec-butylbenzene tert-butylbenene	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
Carbon Tetrachloride	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	5
Chlorobenzene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Chloroethane	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Chloroform	4.5		2.0	1.4	1.9	0.58 J	0.00	J 0.43	J ND	ND	ND	0.29	J 0.26 J	0.21	J ND	ND	ND	0.31	J ND	7
Chloromethane	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NVG
o-Chlorotoluene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
p-Chlorotoluene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2-Dibromo-3-Chloropropane Dibromochloromethane	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.04 50
1,2-Dibromoethane	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NVG
1,2-Dichlorobenzene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3
1,3-Dichlorobenzene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3
1,4-Dichlorobenzene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3
Dichlorodifluoromethane	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	5
1,1-Dichloroethane	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2-Dichloroethane	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.6
1,1-Dichloroethene	ND ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5 5
cis-1,2-Dichloroethene trans-1,2-Dichloroethene	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
1,2-Dichloropropane	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,3-Dichloropropene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.4
2,2-Dichloropropane	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0
1,1-Dichloropropene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0
cis-1,3-Dichloropropene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.4
trans-1,3-Dichloropropene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.4
Ethyl Benzene Hexachlorobutadiene	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5 0.5
Isopropylbenzene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
p-Isopropylbenzene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Methyl tert-butyl Ether	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10
4-Methyl-2-Pentanone	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NVG
Methyl bromide	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NVG
Methylene Chloride	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Naphthalene n Brenidhenzene	ND ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10
n-Propylbenzene Styrene	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5 5
1,1,1,2-Tetrachloroethane	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,2,2-Tetrachloroethane	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Tetrachloroethene	78.1	ПΓ	177	105	116	55.4	36.5	24.5	23.3	16.6	16.3	22.9	20.3	17.5	18.0	14.0	39.2	40.6	10.5	5
Toluene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2,3-Trichlorobenzene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2,4-Trichlorobenzene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,1-Trichloroethane 1,1,2-Trichloroethane	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
Trichloroethene	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
Trichlorofluoromethane	ND	UJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2,3-Trichloropropane	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.04
1,2,4-Trimethylbenzene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,3,5-Trimethylbenzene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Vinyl Chloride	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2
m,p-Xylene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
o-Xylene	ND		ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Xylene (total) Notes:	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5

*NYSDEC Technical and Operational Guidance Series (1.1.1) Ambient water Quality Standards and Guidance Values and Groundwater Effluent Limitations June 1998

R - The sample results are unreliable/useable. The presence or absence of the analyte can not be verified.

Notes: Date of System Start-up: 4/22/2 ug/L - micrograms per liter or parts per billion ND - Not detected

NVG - No Value Given

UU - The analyse was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

4/22/2010

Bold and boxed indicates value exceeds TOGS

Table 1 (MW-4 cont.)

Validated Analytical Results for Volatile Organic Compounds In Groundwater

Cornerstone Site B-1 3100 Third Avenue Bronx, New York BCP #C203044

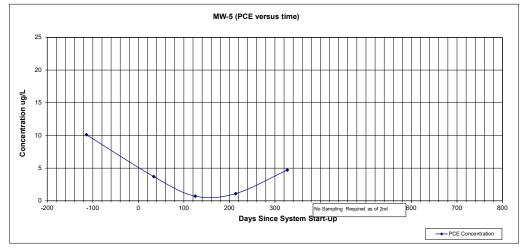
F																							
Well Commen Date Sample Days since system start i	nts 3rd Q 201- led 9/19/2014	MW-4 4 4th Q 2014 12/10/2014 Q 1693	MW-4 1st Q 2015 4/1/2015 Q 1805	MW-4 2nd Q 2015 6/2/2015 Q 1867	MW-4 2nd Half 20 12/10/201: Q 2058	MW-4 15 1st Half 2 5 6/3/201 Q 2234	016 2nd Ha	lf 2016 1st H 2016 6/13	W-4 alf 2017 3/2017 609 C	MW-4 2nd Half 2017 12/1/2017 2780	MW-4 1st Half 2018 6/15/2018 Q 2976	MW-4 2nd Half 201 12/27/2018 Q 3171	MW-4 3 1st Half 201 6/7/2019 Q 3333	MW-4 9 2nd Half 2 12/4/20 Q 3513	019 1st Ha 19 6/3/	V-4 if 2020 2 2020 i95 Q	MW-4 Ind Half 2020 12/21/2020 3896	MW-4 1st Half 202 6/2/2021 Q 4059	MW-4 1 2nd Half 20 12/14/202 Q 4254	MW-4 21 1st Half 202 1 6/14/2022 Q 4436	MW-4 2 2nd Half 2023 12/20/2022 Q 4625	MW-4 1st Half 2023 6/28/2023 Q 4815	NYSDEC TOGS*
Unit Acctione Berzare Berzare Eliconoberroarchana Eliconobertoarchana Bromodorn Bromodorn Bromosthane Schooldhillowershane Bromodorn Bromosthane Catson Tetrachloride Catson Tetrachloride Catson Tetrachloride Catson Tetrachloride Chicochanae Chico	Its undle NO NO NO	91 90	R 001 N0 0 N0 0	μ NC NC	R 1000 R 2000 R 200	H2 H2 R N0 N0 N0 N0	20 20 20 20 20 20 20 20 20 20			ND N	U	UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ	91 920 <	edd ND ND			101 100 100 100 100 100 100 100 100 100	919 929 929 929 929 929 929 929 929 929	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	unit unit ND ND	upl NC NC	4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	up1. 101 5 5 5 5 5 5 5 5 5 6 7 7 8 8 9 3 3 3 5 0.04 5 5 0.8 5 1 1.0
ugl micrograms per liter or part ND - Not detected NVG - No Value Given UJ - The analyte was not detecte above the reported sample quantitation limit. However, the reported quantitation limit is Bold and boxed indicates value	d	38					and Gr	oundwater Efflue	ent Limitati	and Guidance \ ons June 1998 able/useable. T		bsence of the an	alyte can not be v	verified.									
								МУ	V-4 (PCE	e versus time)												
Concentration ug1 00 160 100 100 100 00 00 00 00 00 00						1.00				2,000	tem Start-Up		3,000			4.0		ystem turned off		5,000		6,	
									Daj	,										PCE	Concentration		
			Page 7 of 1																				

Page 7 of 18

Table 1

Validated Analytical Results for Volatile Organic Compounds In Groundwater

Cornerstone Site B-1 3100 Third Avenue Bronx, New York BCP #C203044


Well ID	MW-5		MW-5	MW-5		MW-5		MW-5		MW-5	MW-5	MW-5		NYSDEC
Comments	1st Q 2010	2n	d Q 2010	3rd Q 2010		4th Q 2010		1st Q 2011	2	2nd Q 2011	3rd Q 2011	4th Q 2011		TOGS*
Date Sampled	12/29/2009		26/2010	8/25/2010		11/22/2010		3/15/2011		NA	NA	NA		
Days since system start up	-114	Q	34 Q	125	Q	214	Q	327	Q	NA	NA	Q NA	Q	
Volatile Organic Compounds														
Units	ug/L ND	UJ	ug/L ND	ug/L ND		ug/L ND		ug/L ND		ug/L NS	ug/L NS	ug/L NS		<u>ug/L</u> 50
Benzene	ND	UJ	ND	ND		ND		ND		NS	NS	NS		1
Bromobenzene	ND	UJ	ND	ND		ND		ND		NS	NS	NS		5
Bromochloromethane	ND	UJ	ND	ND		ND		ND		NS	NS	NS		5
Bromodichloromethane	ND	UJ	ND	1.8		ND		ND		NS	NS	NS		50
Bromoform	ND	UJ	ND	ND		ND		ND		NS	NS	NS		50
Bromomethane	ND	UJ	ND	ND		ND		ND		NS	NS	NS		5
2-Butanone (MEK)	ND	UJ	ND	ND	R	ND	UJ		R	NS	NS	NS		NVG
n-Butylbenzene	ND	UJ	ND	ND		ND		ND		NS	NS	NS		5
sec-butylbenzene tert-butylbenene	ND ND	UJ UJ	ND ND	ND ND		ND ND		ND ND		NS NS	NS NS	NS NS		5 5
Carbon Tetrachloride	ND	UJ	ND	ND		ND		ND		NS	NS	NS		5
Chlorobenzene	ND	UJ	ND	ND		ND		ND		NS	NS	NS		5
Chloroethane	ND	UJ	ND	ND		ND		ND		NS	NS	NS		5
Chloroform	11.2	J	1.8	23.6	1	13.0	1	5.8		NS	NS	NS		7
Chloromethane	ND	UJ	ND	ND	-	ND	-	ND		NS	NS	NS		NVG
o-Chlorotoluene	ND	UJ	ND	ND		ND		ND		NS	NS	NS		5
p-Chlorotoluene	ND	UJ	ND	ND		ND		ND		NS	NS	NS		5
1,2-Dibromo-3-Chloropropane	ND	UJ	ND	ND		ND		ND		NS	NS	NS		0.04
Dibromochloromethane	ND ND	UJ UJ	ND ND	ND ND		ND ND		ND ND		NS NS	NS NS	NS NS		50 NVG
1,2-Dibromoethane 1,2-Dichlorobenzene	ND	UJ	ND	ND		ND		ND		NS	NS	NS		3
1,3-Dichlorobenzene	ND	UJ	ND	ND		ND		ND		NS	NS	NS		3
1.4-Dichlorobenzene	ND	UJ	ND	ND		ND		ND		NS	NS	NS		3
Dichlorodifluoromethane	ND	UJ	ND	ND		ND		ND		NS	NS	NS		5
1,1-Dichloroethane	ND	UJ	ND	ND		ND		ND		NS	NS	NS		5
1,2-Dichloroethane	ND	UJ	ND	ND		ND		ND		NS	NS	NS		0.6
1,1-Dichloroethene	ND	UJ	ND	ND		ND		ND		NS	NS	NS		5
cis-1,2-Dichloroethene	ND	UJ	ND	ND		ND		ND		NS	NS	NS		5
trans-1,2-Dichloroethene 1,2-Dichloropropane	ND ND	UJ UJ	ND ND	ND ND		ND ND		ND ND		NS NS	NS NS	NS NS		5 1
1,3-Dichloropropene	ND	UJ	ND	ND		ND		ND		NS	NS	NS		0.4
2,2-Dichloropropane	ND	UJ	ND	ND		ND		ND		NS	NS	NS		5.0
1,1-Dichloropropene	ND	UJ	ND	ND		ND		ND		NS	NS	NS		5.0
cis-1,3-Dichloropropene	ND	UJ	ND	ND		ND		ND		NS	NS	NS		0.4
trans-1,3-Dichloropropene	ND	UJ	ND	ND		ND		ND		NS	NS	NS		0.4
Ethyl Benzene	ND	UJ	ND	ND		ND		ND		NS	NS	NS		5
Hexachlorobutadiene	ND	UJ	ND	ND		ND		ND		NS	NS	NS		0.5
Isopropylbenzene	ND ND	UJ	ND ND	ND ND		ND ND		ND		NS NS	NS NS	NS NS		5 5
p-Isopropylbenzene Methyl tert-butyl Ether	ND	UJ	ND	ND		ND		ND ND		NS	NS	NS		5 10
4-Methyl-2-Pentanone	ND	UJ	ND	ND		ND		ND		NS	NS	NS		NVG
Methyl bromide	ND	UJ	ND	ND		ND		ND		NS	NS	NS		NVG
Methylene Chloride	ND	UJ	ND	ND		ND		ND		NS	NS	NS		5
Naphthalene	ND	UJ	ND	ND		ND		ND		NS	NS	NS		10
n-Propylbenzene	ND	UJ	ND	ND		ND		ND		NS	NS	NS		5
Styrene	ND	UJ	ND	ND		ND		ND		NS	NS	NS		5
1,1,1,2-Tetrachloroethane	ND	UJ	ND	ND		ND		ND		NS	NS	NS		5
1,1,2,2-Tetrachloroethane Tetrachloroethene	ND 10.1	J	ND 3.7	ND 0.71	J	ND 1.1		ND 4.7		NS NS	NS NS	NS NS		5 5
Toluene	10.1 ND	IJ	3.7 ND	0.71 ND	J	1.1 ND		4.7 ND		NS	NS	NS		5
1,2,3-Trichlorobenzene	ND	UJ	ND	ND		ND		ND		NS	NS	NS		5
1,2,4-Trichlorobenzene	ND	UJ	ND	ND		ND		ND		NS	NS	NS		5
1,1,1-Trichloroethane	ND	UJ	ND	ND		ND		ND		NS	NS	NS		5
1,1,2-Trichloroethane	ND	UJ	ND	ND		ND		ND		NS	NS	NS		1
Trichloroethene	ND	UJ	ND	ND		ND		ND		NS	NS	NS		5
Trichlorofluoromethane	ND	UJ	ND	ND		ND		ND		NS	NS	NS		5
1,2,3-Trichloropropane	ND	UJ	ND	ND		ND		ND		NS	NS	NS		0.04
1,2,4-Trimethylbenzene	ND ND	UJ	ND ND	ND		ND		ND ND		NS NS	NS NS	NS NS		5 5
1,3,5-Trimethylbenzene Vinyl Chloride	ND ND	UJ	ND ND	ND ND		ND ND		ND ND		NS NS	NS NS	NS NS		5
m,p-Xylene	ND	UJ	ND	ND		ND		ND		NS	NS	NS		5
o-Xylene	ND	UJ	ND	ND		ND		ND		NS	NS	NS		5
Xylene (total)	ND	UJ	ND	ND		ND		ND		NS	NS	NS		5
ter e														

 NU
 UJ
 NU
 UJ
 NU
 NU<

*NYSDEC Technical and Operational Guidance Series (1.1.1) Ambient water Quality Standards and Guidance Values and Groundwater Effluent Limitations June 1998

R - The sample results are unreliable/useable. The presence or absence of the analyte can not be verified.

NS- No Sampling Required as of 2nd Q 2011 NA - Not Applicable

Validated Analytical Results for Volatile Organic Compounds In Groundwater

Cornerstone Site B-1 3100 Third Avenue Bronx, New York BCP #C203044

Date	Well ID Comments	MW-6 1st Q 2010 12/30/2009	9	MW-6 2nd Q 201 5/27/2010	5 (MW-6 Brd Q 2010 8/26/2010	11/23/2	2010 2010	MW-6 1st Q 2011 3/15/2011	MW-6 2nd Q 2011 6/8/2011	MW-6 3rd Q 2011 9/28/2011	MW-6 4th Q 2011 12/14/2011	MW-6 1st Q 2012 3/14/2012	6/19/2012	10/22/2012	MW-6 4th Q 2012 12/6/2012	3/28/201	13 2nd Q 2013 3 6/13/2013	9/30/2013	MW-6 4th Q 2013 1/13/2014	MW-6 1st Q 2014 3/27/2014	MW-6 2nd Q 2014 6/23/2014	NYSDEC TOGS*
Days since syster Volatile Organic Compounds	m start up	-113	Q	35	Q	126	Q 215	5 Q	327	Q 412	Q 524	Q 601	Q 692	Q 789	Q 914	Q 959	Q 1071	Q 1148	Q 1257	Q 1362	Q 1435	Q 1523 C	2
roladio organio oonipoundo	Units	ug/L		ug/L		ug/L	ug/	L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Acetone		ŇD		ND	UJ	ND	NE)	ND	ND	ND	ND	ND	ND	R ND	ND	ND	ND		R ND	ND	R ND F	R 50
Benzene		ND		ND	UJ	ND	NE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Bromobenzene Bromochloromethane		ND ND		ND	UJ	ND ND	NE		ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	5 5
Bromodichloromethane		ND		ND ND	UJ	ND	NE NE		ND ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	50
Bromoform		ND		ND	UJ	ND	NE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50
Bromomethane		ND		ND	UJ	ND	NE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
2-Butanone (MEK)		ND	UJ	ND	UJ	ND	R ND					R ND	ND	ND	R ND	R ND	R ND	R ND		R ND	ND	ND F	R NVG
n-Butylbenzene		ND		ND	UJ	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
sec-butylbenzene tert-butylbenene		ND ND		ND ND	UJ	ND ND	NE NE		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
Carbon Tetrachloride		ND		ND	UJ	ND	NE		ND		JJ ND	ND	ND	ND	ND	UJ ND	ND	ND	ND	ND	ND	ND	5
Chlorobenzene		ND		ND	UJ	1.1	NE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Chloroethane		ND		ND	UJ	ND	NE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Chloroform		1.0		ND	UJ	ND	NE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.41	J ND	ND	7
Chloromethane		ND		ND	UJ	ND	NE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.40	J ND	ND	ND	NVG
o-Chlorotoluene p-Chlorotoluene		ND ND		ND	UJ	ND ND	NE		ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND	5
1,2-Dibromo-3-Chloropropane		ND		ND ND	UJ	ND ND	NE NE		ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.04
Dibromochloromethane		ND		ND	UJ	ND	NE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50
1,2-Dibromoethane		ND		ND	UJ	ND	NE)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NVG
1,2-Dichlorobenzene		ND		ND	UJ	ND	NE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3
1,3-Dichlorobenzene		ND ND		ND	UJ	ND	NE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3
1,4-Dichlorobenzene Dichlorodifluoromethane		ND ND		ND ND	UJ	ND ND	NE NE		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND UJ ND	3 5
1,1-Dichloroethane		ND		ND	UJ	ND	NE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2-Dichloroethane		ND		ND	UJ	ND	NE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.6
1,1-Dichloroethene		ND		ND	UJ	ND	NE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
cis-1,2-Dichloroethene		0.87	J	0.96	J	ND	2.0		0.43 J	0.7	J 2	ND	ND	0.43	J 1.3	0.42	J 0.29	J 1.1	1.6	1.4	ND	0.48 J	J 5
trans-1,2-Dichloroethene		ND ND		ND	UJ	ND	NE		ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2-Dichloropropane 1,3-Dichloropropene		ND		ND ND	UJ	ND ND	NE NE		ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1 0.4
2,2-Dichloropropane		ND		ND	UJ	ND	NE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0
1,1-Dichloropropene		ND		ND	UJ	ND	NE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0
cis-1,3-Dichloropropene		ND		ND	UJ	ND	NE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.4
trans-1,3-Dichloropropene		ND		ND	UJ	ND	NE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.4
Ethyl Benzene		ND		ND	UJ	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Hexachlorobutadiene Isopropylbenzene		ND ND		ND ND	UJ	ND ND	NE NE		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.5 5
p-Isopropylbenzene		ND		ND	UJ	ND	NE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Methyl tert-butyl Ether	ND ND<																ND	10					
4-Methyl-2-Pentanone		ND ND <th< td=""><td>ND</td><td>ND</td><td>NVG</td></th<>														ND	ND	NVG					
Methyl bromide		ND ND<														ND	NVG						
Methylene Chloride			ND UJ ND ND<															ND	5				
Naphthalene n-Propylbenzene		ND ND<															ND ND	10 5					
Styrene	ie ND ND<																ND	5					
1,1,1,2-Tetrachloroethane																						ND	5
1,1,2,2-Tetrachloroethane		ND ND<															ND	5					
Tetrachloroethene		320	ЦĽ	481	J	199	201		139	76.5	135	14.9	11.1	11.5	18.2	36.3	10.8	68.8	34.3	405	D 138	126	5
Toluene 1,2,3-Trichlorobenzene		ND ND		ND	UJ	ND	NE		ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2,3-Trichlorobenzene		ND		ND ND	UJ	ND ND	NE NE		ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
1,1,1-Trichloroethane		ND		ND	UJ	ND	NE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,2-Trichloroethane		ND		ND	UJ	ND	NE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Trichloroethene		1.9		1.8	J	0.48	J 4.6		1.9	1.6	3.3	ND	ND	0.40	J 1.3	0.73	J 0.36	J 1.8	1.9	2.9	0.59	J 0.62 J	J 5
Trichlorofluoromethane		ND	UJ	ND	UJ	ND	NE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2,3-Trichloropropane 1,2,4-Trimethylbenzene		ND ND		ND ND	UJ	ND ND	NE NE		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.04 5
1,3,5-Trimethylbenzene		ND		ND	UJ	ND	NL		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Vinyl Chloride		ND		ND	UJ	ND	NE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2
m,p-Xylene		ND		ND	UJ	ND	NE)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
o-Xylene		ND		ND	UJ	ND	NE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Xylene (total)		ND		ND	UJ	ND	NE)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Notes: Date of System Start-up:		4/22/2010	n																				
ug/L - micrograms per liter or pa ND - Not detected NVG - No Value Given	arts per bil		,				Ambien	nt water (Quality Stand	erational Guida ards and Guida mitations June :	nce Values	1.1)	D - Anaylte	concentration is	from diluted ana	Ilysis.							
J - Indicates an estimated value UJ - The analyte was not detect		the reported	d samp	ole quantit	tation li	imit.	R - The	sample	results are u	nreliable/useab	le. The presen	ce or absence o	f the analyte ca	an not be verified	ı.								

J - Indicates an estimated value UJ - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. Bold and boxed indicates value exceeds TOGS

R - The sample results are unreliable/useable. The presence or absence of the analyte can not be verified.

a - results are from run #2

Page 9 of 18

Table 1 (MW-6 cont.)

Validated Analytical Results for Volatile Organic Compounds In Groundwater

Cornerstone Site B-1 3100 Third Avenue Bronx, New York BCP #C203044

																						1 1
Deve sizes a	Well ID Comments Date Sampled system start up	3rd Q 2014	MW-6 4th Q 2014 12/10/2014 Q 1693	MW-6 1st Q 2015 4/1/2015 Q 1805	MW-6 2nd Q 2015 6/2/2015 Q 1867	MW-6 2nd Half 2015 12/10/2015 Q 2058 0	MW-6 1st Half 2016 6/3/2016 2234	MW-6 2nd Half 201 12/16/2016 Q 2430	MW-6 6 1st Half 2017 6/13/2017 Q 2609	MW-6 2nd Half 201 12/1/2017 Q 2780	MW-6 7 1st Half 2018 6/15/2018 Q 2976	MW-6 2nd Half 2018 12/27/2018 Q 3171	MW-6 3 1st Half 2019 6/7/2019 Q 3333	MW-6 2nd Half 2019 12/4/2019 Q 3513 (MW-6 1st Half 20 6/3/202 Q 3695	MW-6 020 2nd Half 2020 0 12/21/2020 Q 3896	MW-6 1st Half 2021 6/2/2021 Q 4059	MW-6 2nd Half 202 12/14/2021 Q 4254	MW-6 1 1st Half 2022 6/14/2022 Q 4436	MW-6 2nd Half 2022 12/20/2022 Q 4625	MW-6 1st Half 2023 6/28/2023 Q 4815 C	NYSDEC TOGS*
Volatile Organic Co Acetone Benzene Berzene Bromochloromethan Bromochloromethan Bromochloromethan Bromochloromethan Bromochloromethan Bromochloromethan Bromochloromethan Bromochloromethan Caboroform Bromochloromethan Caboroformethane e-c-bulyberzene tert-bulyberzene tert-bulyberzene tert-bulyberzene tert-bulyberzene Chloroformethane - Chlorotolurene p-Chlorotolurene p-Chlorotolurene p-Chlorotolurene p-Chlorotolurene p-Chlorotolurene p-Chlorotolurene p-Chlorotolurene p-Chlorotolurene p-Chlorotolurene p-Chlorotoethane 1,3 Dichlorotethane 1,3 Dichlorotethane 1,3 Dichlorotethane 1,3 Dichlorotethane 1,3 Dichlorotethane 1,3 Dichlorotethane 1,3 Dichlorotethane 1,3 Dichlorotethane 1,3 Dichlorotethane 1,3 Dichlorotyberzene Hetsyl tert-buly Eth 1,3 Dichlorotyberzene Hetsyl tert-buly Eth 1,3 Jichloropter 1,3 Jichloropter 2,3 Yefnel 1,3 Jichloropter 1,3 Jichloropter 1,4 Jichloropter 1,4 Ji	mrpounds Units in in	ud.1. ND ND		iggl iggl R NO NO NO NO	ua/L	R NO P NO NO N	ugl. ND ND	U U ND	U	3 7.00 3	3 10 10 10 10 10 10 10 10 10 10	U U U U U U U U U U U U U U U U U U U	G 2000 900 1900 NO NO NO NO NO NO NO NO NO NO	<u>af</u> 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2000 C C C C C C C C C C C C C C C C C C	J. J.W. J. J.W. ND ND ND ND ND ND ND ND ND ND	3 3	G 42-5 407 100 100 100 100 100 100 100 100 100 1	J ++	J High High High ND ND ND	901.0 901.0 901.0 90 900.0 90 <	ugll ugl 50 1 1 5 5 5 5 5 5 5 5 5 6 7 7 NVG 6 5 7 7 7 7 8 5 7 7 9 0 10 0 </th
quantitation necessa analyte in the sampl Bold and boxed ind	le.					a - results are fr																
										MW-6 (PCE v	ersus time)											
	500																					1
Concentration ug/L	450 400 350 350 250 150 100 50 0 -1,000						1,000			2000						System for array 5, 2 4,000	ed off 221		5,000			
	-1,000			0			1,000			2,000 Days	Since System S	Start-Up	3,000			4,000				E Concentration	6,0	OUL
																			PC	E Concentration		

Page 10 of 18

Validated Analytical Results for Volatile Organic Compounds In Groundwater

Cornerstone Site B-1 3100 Third Avenue Bronx, New York BCP #C203044

Well ID Comments Date Sampled	1st Q 2010 2nd	Q 2010 3rd 27/2010 8/2	MW-7 I Q 2010 26/2010	MW-7 4th Q 2010 11/23/2010	MW-7 1st Q 2011 3/15/2011	MW-7 2nd Q 2011 6/8/2011	MW-7 3rd Q 2011 9/28/2011	MW-7 4th Q 2011 12/14/2011	MW-7 1st Q 2012 3/14/2012	MW-7 2nd Q 2012 6/19/2012	MW-7 3rd Q 2012 10/22/2012	MW-7 4th Q 2012 12/6/2012	MW-7 1st Q 2013 3/28/2013	MW-7 2nd Q 2013 6/13/2013	MW-7 3rd Q 2013 9/30/2013	MW-7 4th Q 2013 1/13/2014	MW-7 1st Q 2014 3/27/2014	MW-7 2nd Q 2014 6/23/2014	NYSDEC TOGS*
Days since system start up	-114 Q	35 Q	126 Q	215 C	327 (Q 412 C	ຊ 524 (Q 601 (Q 692 (ຊ 789 (Q 914	Q 959 (Q 1071	Q 1148 C	1257	Q 1362 (ຊ 1435	Q 1523 Q	2
Volatile Organic Compounds Units	110/1							110/1					110/1						110/1
Acetone			ug/L ND	ug/L ND U	ug/L J ND	ug/L ND	ug/L ND	ug/L ND	ug/L ND	ug/L ND F	ug/L R ND	ug/L ND	ug/L ND	ug/L ND F	<u>ug/L</u> ₹ 5.1	<u>ug/L</u> J ND	ug/L ND	R ND R	ug/L 50
Benzene		ND	ND	ND U		ND	ND	ND	ND	ND .	ND	ND	0.29	J 1.6	ND	ND	ND	ND ND	1
Bromobenzene		ND	ND	ND U	J ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Bromochloromethane		ND	ND	ND U		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Bromodichloromethane		ND	ND	ND U		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50
Bromoform Bromomethane		ND	ND	ND U		ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50 5
2-Butanone (MEK)		ND ND	ND ND R	ND U. ND U.		ND R ND F	ND R ND I	R ND	ND ND	ND ND F	ND R ND	ND R ND	ND R ND	ND R ND F	ND R ND	ND R ND	ND ND	ND ND R	-
n-Butylbenzene		ND	ND	ND U		ND	ND I	ND	ND	ND I	ND	ND	ND	ND I	ND	ND	ND	ND ND	5
sec-butylbenzene		ND	ND	ND U		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
tert-butylbenene		ND	ND	ND U		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Carbon Tetrachloride		ND	ND	ND U		ND	ND	ND	ND	ND		JJ ND	ND	ND	ND	ND	ND	ND	5
Chlorobenzene		0.88 J	ND	ND U		0.77		ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Chloroethane Chloroform		ND ND	ND ND	ND U. ND U.		ND 0.44 J	ND J 0.22		ND 0.97 、	ND J ND	ND ND	ND ND	ND 0.42	ND J ND	ND ND	ND ND	ND ND	ND ND	5
Chloromethane		ND	ND	ND U		0.44 C	ND 0.22	ND	0.97 . ND	ND	ND	ND	0.42 ND	ND	ND	ND	ND	ND	NVG
o-Chlorotoluene		ND	ND	ND U		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
p-Chlorotoluene	ND UJ	ND	ND	ND U	J ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2-Dibromo-3-Chloropropane		ND	ND	ND U		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.04
Dibromochloromethane		ND	ND	ND U		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50
1,2-Dibromoethane 1,2-Dichlorobenzene		ND ND	ND ND	ND U. ND U.		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NVG 3
1,3-Dichlorobenzene		ND	ND	ND U		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3
1,4-Dichlorobenzene		ND	ND	ND U		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3
Dichlorodifluoromethane	ND UJ	ND	ND	ND U	J ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		UJ ND	5
1,1-Dichloroethane		ND	ND	ND U		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2-Dichloroethane 1,1-Dichloroethene		ND	ND ND	ND U. ND U.		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	0.6 5
cis-1,2-Dichloroethene		ND ND	ND	ND U. ND U.		ND 1.1	ND 1.6	1.2	ND 0.99 v	J ND	ND ND	ND ND	ND 0.80	J 1.0 J	ND ND	ND 1.0	ND ND	ND 0.92 J	5
trans-1.2-Dichloroethene		ND	ND	ND U		ND	ND	ND	ND ND	ND	ND	ND	ND	ND 1.0 1	ND	ND	ND	0.52 J	5
1,2-Dichloropropane	ND UJ	ND	ND	ND U	J ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,3-Dichloropropene		ND	ND	ND U		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.4
2,2-Dichloropropane		ND	ND	ND U		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0
1,1-Dichloropropene cis-1,3-Dichloropropene		ND ND	ND ND	ND U. ND U.		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5.0 0.4
trans-1.3-Dichloropropene		ND	ND	ND U		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.4
Ethyl Benzene		ND	ND	ND U		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	11.6	5
Hexachlorobutadiene	ND UJ	ND	ND	ND U		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.5
Isopropylbenzene		ND	ND	ND U		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
p-lsopropylbenzene		ND	ND	ND U		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Methyl tert-butyl Ether 4-Methyl-2-Pentanone		ND ND	ND ND	ND U. ND U.		ND ND	0.27 ND	J ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	10 NVG
Methyl bromide		ND	ND	ND U		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NVG
Methylene Chloride		ND	ND	ND U		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Naphthalene	ND UJ	ND	ND	ND U		ND	ND	ND	ND	ND	ND	ND	2.5	J ND	ND	ND	ND	ND	10
n-Propylbenzene		ND	ND	ND U		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Styrene 1.1.1.2-Tetrachloroethane		ND	ND	ND U		ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5 5
1,1,1,2-1 etrachloroethane		ND ND	ND ND	ND U. ND U.		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
Tetrachloroethene			2,630 a	1,780 b	688	1,370 a	216	575	894	15.2	102	218	383	a 727	58.1	690 E	677	314 D	5
Toluene	ND UJ	ND	ND	ND U	J ND	ND	ND	ND	ND.	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2,3-Trichlorobenzene		ND	ND	ND U		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2,4-Trichlorobenzene		ND	ND	ND U		ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,1-Trichloroethane 1,1,2-Trichloroethane		ND ND	ND ND	ND U. ND U.		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
Trichloroethene		0.73 J	3.5 J	11.7 J		7.9	2.9	5.9	8.2	ND		J 0.83	J 7.3	8.2	ND	4.2	4.0	J 5.7	5
Trichlorofluoromethane	ND UJ	ND	ND	ND U	J ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2,3-Trichloropropane		ND	ND	ND U		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.04
1,2,4-Trimethylbenzene		ND	ND	ND U		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.4	5
1,3,5-Trimethylbenzene Vinyl Chloride		ND ND	ND ND	ND U		ND ND	ND ND	ND ND	ND ND	ND ND	0.46 ND	J ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1.5 J ND	5
m,p-Xylene		ND	ND	ND U		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	55.8	5
o-Xylene	ND UJ		ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	22.0	5
Xylene (total)	ND UJ	ND	ND	ND U	J ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	77.9	5
Notes: Date of System Start-up: ug/L - micrograms per liter or parts ND - Not detected NVG - No Value Given J - Indicates an estimated value	ND UJ ND ND <th< th=""><th></th><th></th></th<>																		
limit. However, the reported quan not represent the actual limit of qu precisely measure the analyte in t	titation limit is approx iantitation necessary i he sample.	imate and may	or may nd			enable/Useable.	i ne presence	or absence of th	ie analyte can n	ot de venned.									
Bold and boxed indicates value	exceeds TOGS			a - results are fr b - results are fr							Page 11 of 18	1							
I				S results and II	om run #∠						. ayo 110110								

Table 1

Table 1 (MW-7 cont.)

Validated Analytical Results for Volatile Organic Compounds In Groundwater

Cornerstone Site B-1 3100 Third Avenue Bronx, New York BCP #C203044

Well ID Comments	MW-7 3rd Q 2014	MW-7 4th Q 2014	MW-7 1st Q 2015	MW- 2nd Q 2	7 2015 24	MW-7 nd Half 2015	MN 5 1stH≠	V-7 If 2016	MW-7 2nd Half 201	MN 6 1stH≠	N-7 alf 2017	MW-7 2nd Half 201	7 1st	MW-7 Half 2018	MV 2nd Ha	V-7 alf 2018	MW-7 1st Half 2019	MV 2nd Ha	/-7 lf 2019	MW-7 1st Half 20	M 20 2nd H	W-7 Ialf 2020	MW-7 1st Half 202	MN 21 2nd Ha	N-7 alf 2021	MW-7 1st Half 202	M 2 2nd⊦	W-7 Ialf 2022	MW-7 1st Half 2023	NYSDEC TOGS*
Date Sampled Days since system start up	9/19/2014 1611 (12/10/2014	4/1/2015 Q 1805	6/2/20 Q 1867	15	12/10/2015 2058	6/3/ Q 22	2016	12/16/2016 2430	6/13	/2017 509 C	12/1/2017 2780	0 Q	/15/2018 2976	12/27	/2018 71 C	6/7/2019 3333	12/4/ Q 35	2019	6/3/2020 3695	12/2	1/2020 896 Q	6/2/2021 4059	12/14	4/2021 254 Q	6/14/2022 4436	12/2	1411 2022 20/2022 1625 Q	6/28/2023 4815 Q	
Date Samplet Days since system start yo Votatik Grganic Computed Barame Bromochromethane Bromochromethane Bromochromethane Bromochromethane Bromochromethane Bromochromethane Bromochromethane Bromochromethane Chicrothane Ch	9/19/2014 16311 0 16311 0 16311 0 ND ND ND ND ND ND ND ND ND ND	12/10/2014 Q 1693 (ug/L	4/1/2015 Q 1805 R ND ND ND ND ND ND ND ND ND ND ND	62/22024 0 1865 0 18	15 7 8 8 9 1	12/10/2015 22/2016 22/200000000		2016	12/16/2016 2/430 I ND ND ND ND ND ND ND ND ND ND		/2017 509 C g/L 4D	12/1/2017 2/1/2017 ND ND ND ND ND ND ND ND ND ND		15/2018 2076 2076 2076 2076 2076 2076 2076 2076		/2018 // C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	67/2019 3333 3333 ND ND ND ND ND ND ND ND ND ND	12/4/		6/3/2023 3695 3695 300 ND ND ND ND ND ND ND ND ND ND ND ND ND		1/10/2020 O	6/2/2021 44059 44059 44059 11 11 11 11 10 10 10 10 10 10		1/2021	6/14/2022 4436 ug/L		0/2022	6/23/23/23 4815 0 3014 NC ND ND ND ND ND ND ND ND ND ND	10/35* util 0 1 5 5 5 5 5 5 5 5 5 5 5 5 5
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Vinul Chloride	ND ND ND	1.0 ND ND	J ND ND ND	ND ND ND		ND ND ND	N	ID ID ID	ND ND ND		4D 4D	ND ND ND		ND ND ND	N N N	ID ID	ND ND ND	N N	D	ND ND ND			ND ND ND	N N	1D 1D	ND ND ND		ND ND ND	ND ND ND	5 5 2
Vinyl Chloride m.p-Xylene o-Xylene	2.9	ND 3.9 J 1.4	J ND	ND ND ND		ND ND ND	N	ID ID ID	ND ND ND		1D 1D	ND ND ND		ND ND ND	N N N	ID ID ID	ND ND ND	N N N	D	ND ND ND		ND ND ND	ND ND ND	~ ~ ~	ND ND	ND ND ND		ND ND ND	ND ND ND	2 5 5
Xylene (total) Notes:	5.0	J 1.4 5.3	ND	ND		ND		ID	ND	N	١D	ND		ND	N	D	ND	N	D	ND		ND	ND	N	ND	ND		ND	ND	5
Date of System Start-up: upd micrograms per liter or parts IND - Not detected NVG - No Value Given J - Indicates an estimated value quantitation imit. However, the re approximate and may or may not t quantitation necessary to accurate analyte in the sample. Bold and boxed indicates value	ported quantit epresent the a ly and precise	actual limit of aly measure the							Ambient wate	er Quality S vater Effluei rom dilued a ole results a	tandards i nt Limitati analysis are unrelia		Values	1.1.1)			a - results are b - results are	from run #	2											
										M	N-7 (PC	E versus tir	ne)																	
3,000 2,750 2,250 2,250 2,250 1,750 1,750 1,500 1,000 750 500 2,50 0,00 2,50 0,00 2,50 0,00 2,50 1,000 2,50 1,000 2,50 2,500 2								1,000				2,000		•			3,000			System Januar	turned off +5, 2021					5,000			6.0	00
-1,000				-				.,000						e System	Start-U	р	2,000				-,00				_	.,				
																										+	PCE Concer	ntration		

Validated Analytical Results for Volatile Organic Compounds In Groundwater

Cornerstone Site B-1 3100 Third Avenue Bronx, New York BCP #C203044

	Well ID	MW-8	MW-8	MW-8	MW-8	MW-8	MW-8	MW-8	MW-8	MW-8	MW-8	MW-8	MW-8	B N	/W-8	MW-8	MW-8	MW-8	MW-8	MW-8	NYSDEC
	omments	1st Q 2010	2nd Q 2010		4th Q 2010	1st Q 2011	2nd Q 2011	3rd Q 2011	4th Q 2011	1st Q 2012	2nd Q 2012	3rd Q 2012			Q 2013	2nd Q 2013	3rd Q 2013	4th Q 2013	1st Q 2014	2nd Q 2014	TOGS*
	Sampled	12/30/2009	5/27/2010	8/25/2010	11/23/2010	3/15/2011	6/8/2011	9/28/2011	12/14/2011	3/14/2012	6/19/2012	10/22/2012			28/2013	6/13/2013	9/30/2013	1/13/2014	3/27/2014	6/23/2014	
Days since system	n start up	-113 (ຊ 35	Q 125	Q 215	Q 327	Q 412	Q 524 C	ጋ 601 (Q 692 (י 789 ב	Q 914	Q 959	Q 1	1071 Q	1148 0	Q 1257	Q 1362	Q 1435	Q 1523	
Volatile Organic Compounds	Units		110/1	110/1		1.00/1				110/1	110/1					110/	110/1		110/1		
Acetone	Units	ug/L 16.6	<u>ug/L</u> J 3.1	<u>ug/L</u> J ND	ug/L ND	ug/L UJ ND	ug/L ND	ug/L ND	ug/L ND	ug/L ND	ug/L ND I	ug/L R ND	UJ ND		ug/L ND	ug/L ND F	u <u>g/L</u> R ND	u <u>g/L</u> R ND	ug/L ND	ug/L R ND	ug/L R 50
Benzene	ŀ	27.8		J ND		UJ 0.29 J	ND	ND	ND	ND	ND	ND	UJ ND		ND	ND	ND	ND	ND	ND	1
Bromobenzene	F	ND		UJ ND		UJ ND	ND	ND	ND	ND	ND	ND	UJ ND		ND	ND	ND	ND	ND	ND	5
Bromochloromethane		ND	ND	UJ ND	ND	UJ ND	ND	ND	ND	ND	ND	ND	UJ ND		ND	ND	ND	ND	ND	ND	5
Bromodichloromethane		ND		UJ ND		UJ ND	ND	ND	ND	ND	ND	ND	UJ ND		ND	ND	ND	ND	ND	ND	50
Bromoform		ND		UJ ND		UJ ND	ND	ND	ND	ND	ND	ND	UJ ND		ND	ND	ND	ND	ND	ND	50
Bromomethane 2-Butanone (MEK)		ND ND		UJ ND UJ ND		UJ ND UJ ND	ND R ND I	ND R ND F	ND R ND	ND ND	ND ND	ND R ND	UJ ND R ND		ND R	ND ND F	ND R ND	ND R ND	ND ND	ND ND	5 R NVG
n-Butylbenzene		ND		UJ ND		UJ ND	ND I		ND	ND	ND I	R ND ND	UJ ND		ND R	ND r	R ND ND	R ND ND	ND	ND	5
sec-butylbenzene		ND		UJ ND		UJ ND	ND	ND	ND	ND	ND	ND	UJ ND		ND	ND	ND	ND	ND	ND	5
tert-butylbenene		ND		UJ ND		UJ ND	ND	ND	ND	ND	ND	ND	UJ ND		ND	ND	ND	ND	ND	ND	5
Carbon Tetrachloride		ND		UJ ND		UJ ND	ND	ND	ND	ND	ND	ND	UJ ND		ND	ND	ND	ND	ND	ND	5
Chlorobenzene		ND		UJ ND		UJ 1.0	ND	ND	ND	ND	ND	ND	UJ ND		ND	ND	ND	ND	ND	ND	5
Chloroethane		ND		UJ ND		UJ ND	ND	ND	ND	ND	ND	ND	UJ ND		ND	ND	ND	ND	ND	ND	5
Chloroform		0.8	- 1.0	J ND		J 0.47 J	0.83	J 0.74 J	J ND	ND	ND	ND	UJ ND		ND	ND	ND	ND	ND	ND	7
Chloromethane		ND		UJ ND		UJ ND	ND	ND	ND	ND	ND	ND	UJ ND		ND	ND	ND	ND	ND	ND	NVG
o-Chlorotoluene p-Chlorotoluene		ND ND		UJ ND UJ ND		UJ ND UJ ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	UJ ND UJ ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5 5
1,2-Dibromo-3-Chloropropane		ND		UJ ND		UJ ND	ND	ND	ND	ND	ND	ND	UJ ND		ND	ND	ND	ND	ND	ND	0.04
Dibromochloromethane		ND		UJ ND		UJ ND	ND	ND	ND	ND	ND	ND	UJ ND		ND	ND	ND	ND	ND	ND	50
1,2-Dibromoethane		ND		UJ ND		UJ ND	ND	ND	ND	ND	ND	ND	UJ ND		ND	ND	ND	ND	ND	ND	NVG
1,2-Dichlorobenzene		ND	ND	UJ ND	ND	UJ ND	ND	ND	ND	ND	ND	ND	UJ ND		ND	ND	ND	ND	ND	ND	3
1,3-Dichlorobenzene		ND		UJ ND		UJ ND	ND	ND	ND	ND	ND	ND	UJ ND		ND	ND	ND	ND	ND	ND	3
1,4-Dichlorobenzene		ND		UJ ND		UJ ND	ND	ND	ND	ND	ND	ND	UJ ND		ND	ND	ND	ND	ND	ND	3
Dichlorodifluoromethane		ND		UJ ND		UJ ND	ND	ND	ND	ND	ND	ND	UJ ND		ND	ND	ND	ND		UJ ND	5
1,1-Dichloroethane 1,2-Dichloroethane		ND ND		UJ ND UJ ND		UJ ND UJ ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	UJ ND UJ ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5 0.6
1,1-Dichloroethene		ND		UJ ND UJ ND		UJ ND	ND	ND	ND	ND	ND	ND	UJ ND UJ ND		ND	ND	ND	ND	ND	ND	5
cis-1,2-Dichloroethene		ND		J ND		J 1.6	1.8	2.2	ND	ND	2.5	J 2.3	J 3.0		3.3		J 2.4	4.8	J 2.8	J 2.3	J 5
trans-1,2-Dichloroethene		ND		UJ ND		UJ ND	ND	ND	ND	ND	ND	ND	UJ ND		ND	ND	ND	ND	ND	ND	5
1,2-Dichloropropane		ND		UJ ND		UJ ND	ND	ND	ND	ND	ND	ND	UJ ND		ND	ND	ND	ND	ND	ND	1
1,3-Dichloropropene		ND		UJ ND		UJ ND	ND	ND	ND	ND	ND	ND	UJ ND		ND	ND	ND	ND	ND	ND	0.4
2,2-Dichloropropane		ND		UJ ND		UJ ND	ND	ND	ND	ND	ND	ND	UJ ND		ND	ND	ND	ND	ND	ND	5.0
1,1-Dichloropropene		ND		UJ ND		UJ ND	ND	ND	ND	ND	ND	ND	UJ ND		ND	ND	ND	ND	ND	ND	5.0
cis-1,3-Dichloropropene		ND ND		UJ ND		UJ ND	ND	ND	ND ND	ND	ND	ND	UJ ND		ND	ND	ND	ND	ND	ND	0.4
trans-1,3-Dichloropropene Ethyl Benzene	ŀ	55.3		UJ ND J ND		UJ ND UJ ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	UJ ND UJ ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.4 5
Hexachlorobutadiene	ŀ	ND		UJ ND		UJ ND	ND	ND	ND	ND	ND	ND	UJ ND		ND	ND	ND	ND	ND	ND	0.5
Isopropylbenzene		2.6		UJ ND		UJ ND	ND	ND	ND	ND	ND	ND	UJ ND		ND	ND	ND	ND	ND	ND	5
p-Isopropylbenzene		ND		UJ ND		UJ ND	ND	ND	ND	ND	ND	ND	UJ ND		ND	ND	ND	ND	ND	ND	5
Methyl tert-butyl Ether		0.58	J ND	UJ ND	ND	UJ ND	ND	ND	ND	ND	ND	ND	UJ ND		ND	ND	ND	ND	ND	ND	10
4-Methyl-2-Pentanone		ND		UJ ND		UJ ND	ND	ND	ND	ND	ND	ND	UJ ND		ND	ND	ND	ND	ND	ND	NVG
Methyl bromide		ND		UJ ND		UJ ND	ND	ND	ND	ND	ND	ND	UJ ND		ND	ND	ND	ND	ND	ND	NVG
Methylene Chloride Naphthalene	ŀ	ND 25.2		UJ ND		UJ ND	ND	ND	ND ND	ND	ND	ND	UJ ND		ND	ND	ND	ND	ND	ND	5 10
n-Propylbenzene	ŀ	8.5		UJ ND UJ ND		UJ ND UJ ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	UJ ND UJ ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
Styrene	H	ND		UJ ND		UJ ND UJ ND	ND	ND	ND	ND	ND	ND	UJ ND		ND	ND	ND	ND	ND	ND	5
1,1,1,2-Tetrachloroethane		ND		UJ ND		UJ ND	ND	ND	ND	ND	ND	ND	UJ ND		ND	ND	ND	ND	ND	ND	5
1,1,2,2-Tetrachloroethane		ND		UJ ND		UJ ND	ND	ND	ND	ND	ND	ND	UJ ND		ND	ND	ND	ND	ND	ND	5
Tetrachloroethene	[198	1,310	J 2,700	a 914	bJ 460	2,820	a 3,100	1,430	1,340	1,220	a 1,970	b 849	а	459 a	1,080 a	D 954	D 2,250	D 639	1,800	D 5
Toluene		258		J 0.78		UJ ND	ND	ND	ND	ND	ND	ND	UJ ND		ND	ND	ND	ND	ND	ND	5
1,2,3-Trichlorobenzene		ND		UJ ND		UJ ND	ND	ND	ND	ND	ND	ND	UJ ND		ND	ND	ND	ND	ND	ND	5
1,2,4-Trichlorobenzene		ND ND		UJ ND		UJ ND	ND	ND	ND ND	ND	ND	ND	UJ ND		ND	ND	ND	ND	ND	ND	5
1,1,1-Trichloroethane 1,1,2-Trichloroethane		ND		UJ ND UJ ND		UJ ND UJ ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	UJ ND UJ ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
Trichloroethene		ND	7.1	J 11.9	11.4	J 5.7	10.1	18	9.3	10.9	14.9	13.3	J 11.9		9.7	11.2	ND 8.2	13.7	6.6	12.9	5
Trichlorofluoromethane		ND		UJ ND		UJ ND	ND	ND	ND	ND	ND	ND	UJ ND		ND	ND	ND	ND	ND	ND	5
1,2,3-Trichloropropane		ND		UJ ND		UJ ND	ND	ND	ND	ND	ND	ND	UJ ND		ND	ND	ND	ND	ND	ND	0.04
1,2,4-Trimethylbenzene	F	84.4		J 0.40	ND	UJ ND	ND	ND	ND	ND	ND	ND	UJ ND		ND	ND	0.89	J ND	ND	ND	5
1,3,5-Trimethylbenzene		18.8		J 0.33		UJ ND	ND	ND	ND	ND	ND	ND	UJ ND		ND	ND	ND	ND	ND	ND	5
Vinyl Chloride	[ND		UJ ND		UJ ND	ND	ND	ND	ND	ND	ND	UJ ND		ND	ND	ND	ND	ND	ND	2
m,p-Xylene	L	219		J 0.55		UJ 0.35 J	ND	ND	ND	ND	ND	ND	UJ ND		ND	ND	0.92	J ND	ND	ND	5
o-Xylene	- F	109		J 1.4		UJ ND	ND	ND	ND ND	ND	ND	ND	UJ ND		ND	ND	ND	ND	ND	ND	5
Xylene (total)		328	1.9	J 1.9	ND	UJ 0.58 J	ND	ND	שא	ND	ND	ND	UJ ND		ND	ND	0.92	J ND	ND	ND	5

Notes: Date of System Start-up: ug/L - micrograms per liter or parts per billion ND - Not detected

NVG - No Value Given

J - Indicates an estimated value

UJ - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the

4/22/2010

analyte in the sample. Bold and boxed indicates value exceeds TOGS

*NYSDEC Technical and Operational Guidance Series (1.1.1) Ambient water Quality Standards and Guidance Values and Groundwater Effluent Limitations June 1998

D - Result from diluted analysis

R - The sample results are unreliable/useable. The presence or absence of the analyte can not be verified.

a - results are from run #2

b - results are from run #2

Page 13 of 18

Table 1 (MW-8 cont.)

Validated Analytical Results for Volatile Organic Compounds In Groundwater

Cornerstone Site B-1 3100 Third Avenue Bronx, New York BCP #C203044

																							1
	Well ID Comments ate Sampled tem start up	3rd Q 2014	MW-8 4th Q 2014 12/10/201 Q 1693	MW-8 4 1st Q 2015 4 4/1/2015 Q 1805	MW-8 5 2nd Q 2015 6/2/2015 Q 1867	12/10/2015	MW-8 1st Half 2016 6/3/2016 Q 2234	12/16/2016	MW-8 1st Half 2017 6/13/2017 2 2609	12/1/2017	MW-8 1st Half 2018 6/15/2018 Q 2976	MW-8 2nd Half 201 12/27/2018 Q 3171		MW-8 9 2nd Half 201 12/4/2019 Q 3513		2020	MW-8 2nd Half 2020 12/21/2020 3896	MW-8 1st Half 2021 6/2/2021 Q 4059	MW-8 2nd Half 2021 12/14/2021 Q 4254	MW-8 1st Half 2022 6/14/2022 Q 4436	MW-8 2nd Half 2022 12/20/2022 Q 4625	MW-8 1st Half 2023 6/28/2023 Q 4815 0	NYSDEC TOGS*
Volatile Organic Compo		ug/L ND	ug/L ND	ug/L R ND	ug/L ND	ug/L R ND	ug/L R ND	u <u>g/L</u> UJ ND L	ug/L IJ ND	ug/L ND	<u>ug/L</u>	ug/L ND	ug/L ND	ug/L ND	ug/ NE	L	ug/L ND	ug/L ND	ug/L ND	<u>ug/L</u> 8.0	ug/L	ug/L ND	<u>ug/L</u> 50
Acetone Benzene Bromobenzene		ND ND ND	ND ND ND	R ND ND ND	ND ND ND	R ND ND ND	R ND ND ND	UJ ND U ND ND	IJ ND ND ND	ND ND ND	ug/L UJ ND ND ND	ND ND	ND ND ND	ND ND ND	NE NE)	ND ND ND	ND ND ND	ND 0.26 ND	8.0 J ND ND	J ND J ND ND ND	ND ND ND	50
Bromochloromethane Bromodichloromethane		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NE)	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5 50
Bromoform Bromomethane		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	UJ NE UJ NE	,)) UJ	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	50 5
2-Butanone (MEK) n-Butylbenzene		ND ND	ND ND	R ND ND	R ND ND	R ND ND	R ND ND	UJ ND U ND	IJ ND ND	ND ND	ND ND	ND ND	ND ND ND ND	ND ND	NE)	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NVG 5
sec-butylbenzene tert-butylbenene		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NE)	ND ND	ND ND ND ND	ND ND	ND ND	ND ND	ND ND	5 5
Carbon Tetrachloride Chlorobenzene		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	UJ NE NE)	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5 5
Chloroethane Chloroform		ND	UJ ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NE)	ND ND ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5 7
Chloromethane o-Chlorotoluene		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NE)	ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND	0.57 ND	ND ND	ND ND	ND ND	NVG 5
p-Chlorotoluene 1,2-Dibromo-3-Chloroprop Dibromochloromethane	pane	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND	ND ND ND	ND ND	ND ND ND	ND ND ND	ND ND	ND ND ND	ND ND	ND ND ND	NE)	ND ND	ND ND	ND ND ND	ND ND	ND ND	ND ND ND	5 0.04 50
1,2-Dibromochloromethane 1,2-Dibromoethane 1,2-Dichlorobenzene		ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND	ND ND ND	ND ND	ND	ND ND ND	ND ND ND	ND	ND ND	NE NE)	ND ND ND ND ND ND	ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	NVG
1,3-Dichlorobenzene 1,4-Dichlorobenzene		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND ND ND	ND ND	ND ND	ND	ND ND	NE)	ND	ND	ND ND ND	ND ND	ND ND	ND ND ND	3
Dichlorodifluoromethane 1,1-Dichloroethane		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	UJ ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	UJ NE)	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
1,2-Dichloroethane 1,1-Dichloroethene		ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NE)	ND ND ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.6 5
cis-1,2-Dichloroethene trans-1,2-Dichloroethene		2.2 ND	J 2.9 ND	J ND ND	2.6 ND	ND 9.4 ND	ND ND ND ND ND ND ND J 1.7 ND	2.7 ND	J ND ND	1.8 ND	2.0 ND	UJ ND ND	ND ND	ND ND	NE)	ND ND	ND ND	1.0 ND	ND ND ND ND	ND ND	ND ND	5
1,2-Dichloropropane 1,3-Dichloropropene		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NE) UJ	ND	ND ND ND ND	ND ND	ND ND	ND ND	ND ND	1 0.4
2,2-Dichloropropane 1,1-Dichloropropene		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NE) UJ	ND ND	ND ND ND ND	ND ND	ND ND	ND ND	ND ND	5.0 5.0
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	e	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	UJ NE UJ NE) UJ	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5.0 5.0 0.4 0.4 5 0.5
Ethyl Benzene Hexachlorobutadiene Isopropylbenzene		ND ND	ND ND ND	ND ND	ND ND	ND ND ND	ND ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND			ND ND	ND ND ND ND	ND ND	ND ND	ND ND	ND ND	5 0.5 5
Isopropylbenzene p-Isopropylbenzene Methyl tert-butyl Ether		ND ND	ND ND ND	ND ND	ND ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND ND	ND ND	ND	NE		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5 5 10
Methyl tert-butyl Ether 4-Methyl-2-Pentanone Methyl bromide		ND ND ND	ND ND ND	ND ND		UJ ND ND	ND ND ND	ND ND	ND ND	ND ND ND	ND ND	ND ND	ND ND ND	ND ND	UJ NE NE		ND ND	ND ND	ND ND	ND ND ND	ND ND	ND ND	NVG NVG
Methylene Chloride Naphthalene		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	UJ NE	,	ND	ND ND ND ND	ND ND	ND ND	ND ND	ND ND	5
n-Propylbenzene Styrene		ND ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND ND ND	ND ND	NE NE)	ND ND	ND ND ND	ND ND	ND ND ND	ND ND	ND ND	5
1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane		ND ND 862	ND ND	ND ND 118	ND ND	ND ND	ND ND ND ND 405	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NE	, ,	ND ND ND ND ND ND	ND ND 540	ND ND		ND ND	ND ND	5 5
Tetrachloroethene Toluene		ND	D 923 ND	ND	1,060 ND	D 1,640 ND	ND	D 602 ND	455 ND	609 ND	D 622 ND	D 4,070 ND	ND	750 ND	72 N		690 ND	ND	630 0.27	J ND	830 ND	680 ND	5 5
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	UJ NE UJ NE		ND ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5 5
1,1,1-Trichloroethane 1,1,2-Trichloroethane		ND ND 13.5	ND ND	ND ND	ND ND	ND ND	ND ND 9.2	ND ND	ND ND	ND ND 17.0	ND ND	ND ND	ND ND 18	ND ND 25			ND ND 6.8	ND ND 4.5 ND	ND ND 7.4	ND ND 35	ND ND 380	ND ND	5
Trichloroethene Trichlorofluoromethane 1,2,3-Trichloropropane		ND	10.0 ND ND	1.4 ND ND	16 ND ND	29.7 ND ND	9.2 ND ND	16.7 ND ND	6.4 ND ND	ND ND	16.8 ND ND	30.2 ND ND	ND ND	ND ND	6.8 NE)	ND ND	4.5 ND	ND ND	ND	ND ND	620 ND ND	5 0.04
1,2,3-1 ricnioropropane 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene		ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND	ND ND ND	ND ND ND	ND ND	ND ND ND	ND ND	ND ND ND	ND	ND ND ND)	ND	ND ND	ND ND ND	ND ND	ND ND ND	ND ND ND	5
Vinyl Chloride m.p-Xylene		ND ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NE) UJ	ND ND ND ND	ND ND ND	ND ND	ND ND ND ND	ND ND	ND ND	2
o-Xylene Xylene (total)		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND ND	ND ND	NE)	ND ND	ND ND ND	ND ND	ND ND	ND ND	ND ND	5
Notes: Date of System Start-up: ug/L - micrograms per liter	r or parts pe	r billion					Ambient wate	chnical and Operati r Quality Standards	and Guidance \	Series (1.1.1) /alues													
ND - Not detected NVG - No Value Given J - Indicates an estimated	l value							ater Effluent Limitat m diluted analysis	ions June 1998														
J - Indicates an estimated UJ - The analyte was not o reported quantitation limit	detected abo							le results are unreli or absence of the a															
quantitation necessary to	accurately a	nd precisely	measure the air s value exceed	nalyte in the san	nple.		a - results are b - results are																
										MW-8 (PCE ve	ersus time)												
4,50	00																						1
4,00	00											$\neg \uparrow$											
3,50	00		+ +		_		_					<u> </u>	_			_		+ +		_	+		
J 3,00	00	_	$ \wedge $						_			_/_ \-				_		+ - +					
	∞ _ ^		$I \rightarrow$									_/											
2,50 2,00 2,00 0,00 0,00 0,00 0,00 0,00		\	<u> </u>				_					$+ \perp$											
000 1,50			/ \			\perp	\land									System	n turned off y 5, 2021						
1,00	•		<u> </u>]	\sim													, .,						
50		\mathbf{N}			NT	\sim $$	\sim	/ T					\rightarrow		\sim	-	\neg		•				
]
	0			+	1,000	• •		2,000		· · · · ·	3,0	00			4,000	- 1			5,000			6,0	000
									Day	s Since System	n Start-Up												
				Page 14 of 18																PCE	Concentration		
				Page 14 of 18																			

Table 1 Validated Analytical Results for Volatile Organic Compounds In Groundwater

Cornerstone Site B-1 3100 Third Avenue Bronx, New York BCP #C203044

Date Days since system	Well ID comments Sampled m start up	MW-10 1st Q 2010 12/30/2009 -113 (MW-10 2nd Q 2010 5/26/2010 Q 34 0	MW-10 3rd Q 2010 8/25/2010 Q 125	MW-10 4th Q 2010 11/22/2010 Q 214	3/15/2011	MW-10 2nd Q 2011 6/8/2011 Q 412	MW-10 3rd Q 2011 9/28/2011 Q 524	MW-10 4th Q 2011 12/14/2011 Q 601	MW-10 1st Q 2012 3/14/2012 Q 692	6/19/2012	MW-10 3rd Q 2012 10/22/2012 Q 914	MW-10 4th Q 2012 12/6/2012 Q 959	MW-10 1st Q 2013 3/28/2013 Q 1071	MW-10 2nd Q 2013 6/13/2013 Q 1148	MW-10 3rd Q 2013 9/30/2013 Q 1257 0	MW-10 4th Q 2013 1/13/2014 Q 1362	MW-10 1st Q 2014 3/27/2014 Q 1435	MW-10 2nd Q 2014 6/23/2014 Q 1523 C	NYSDEC TOGS*
Volatile Organic Compounds	11																			
Acetone	Units	<u>ug/L</u> 14.4	<u>ug/L</u> 6.7 ,	<u>ug/L</u> J ND	<u>ug/L</u> UJ 9.0	J ND	ug/L ND	ug/L ND	ug/L ND	ug/L ND	ug/L ND I	ug/L R ND	ug/L ND	ug/L ND	ug/L ND	R ND F	u <u>g/L</u> R ND	ug/L ND	ug/L R ND F	<u>ug/L</u> R 50
Benzene		0.5			UJ ND	J ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	1
Bromobenzene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Bromochloromethane		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Bromodichloromethane		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50
Bromoform		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50
Bromomethane 2-Butanone (MEK)		ND ND	ND ND	ND ND	UJ ND R ND	ND	ND	ND	ND R ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5 R NVG
n-Butylbenzene		ND	ND		R ND UJ ND	UJ ND ND	R ND ND	R ND ND	R ND ND	ND ND	ND I ND	R ND ND	R ND ND	R ND ND	ND ND	R ND F	R ND ND	ND ND	ND F ND	5
sec-butylbenzene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
tert-butylbenene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Carbon Tetrachloride		ND	ND		UJ ND	ND	ND I	JJ ND	ND	ND	ND	ND	UJ ND	ND	ND	ND	ND	ND	ND	5
Chlorobenzene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Chloroethane		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Chloroform Chloromethane		1.9 ND	2.8 ND	1.4 ND	J 3.1 UJ ND	0.72 J	0.22	J ND	0.32 ND	J ND	ND	ND	ND	ND	ND	ND	0.91	J 0.55	J 0.32	J 7 NVG
o-Chlorotoluene		ND ND	ND ND		UJ ND UJ ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NVG 5
p-Chlorotoluene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2-Dibromo-3-Chloropropane		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.04
Dibromochloromethane		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50
1,2-Dibromoethane		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NVG
1,2-Dichlorobenzene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3
1,3-Dichlorobenzene		ND ND	ND ND		UJ ND UJ ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3
1,4-Dichlorobenzene Dichlorodifluoromethane		ND	ND		UJ ND UJ ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND UJ ND	5
1,1-Dichloroethane		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	5
1,2-Dichloroethane		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.6
1,1-Dichloroethene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
cis-1,2-Dichloroethene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	1.2	0.52	J ND	ND	0.62	J ND	ND	5
trans-1,2-Dichloroethene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2-Dichloropropane		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,3-Dichloropropene 2,2-Dichloropropane		ND ND	ND ND		UJ ND UJ ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	0.4 5.0
1,1-Dichloropropene		ND	ND		UJ ND UJ ND	ND ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	5.0
cis-1,3-Dichloropropene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.4
trans-1,3-Dichloropropene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.4
Ethyl Benzene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Hexachlorobutadiene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.5
Isopropylbenzene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
p-Isopropylbenzene Methyl tert butyl Ether		ND ND	ND ND		UJ ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5 10
Methyl tert-butyl Ether 4-Methyl-2-Pentanone		ND ND	ND ND		UJ ND UJ ND	0.59 J ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	10 NVG
Methyl bromide		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NVG
Methylene Chloride		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Naphthalene		ND	ND	ND	UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10
n-Propylbenzene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Styrene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane		ND ND	ND ND		UJ ND UJ ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Tetrachloroethene	ŀ	21.6	4.3	ND 3.4	UJ ND J 22.7	ND 23	ND 8.2	ND 4.9	110	ND 106	ND 40.3	ND 69.9	ND 147	ND 53.2	ND 41.9	ND 31.7	ND 67.2	ND 30.3	ND 17.1	5
Toluene	ŀ	ND	A.3 ND		UJ ND	ND ND	0.41	4.9 J ND	ND	ND	40.3 ND	ND	ND	53.2 ND	41.9 ND	ND	ND		ND	5
1,2,3-Trichlorobenzene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2,4-Trichlorobenzene		ND	ND	ND	UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,1-Trichloroethane		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,2-Trichloroethane		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Trichloroethene Trichlorofluoromethane		ND ND	ND ND		UJ ND	ND ND	ND ND	ND ND	1 ND	1.3 ND	0.45 ND	J 1.5 ND	4.4 ND	2.2 ND	1.5 ND	0.80 J	J 2.0 ND	0.57 ND	J ND ND	5
1,2,3-Trichloropropane		ND	ND		UJ ND UJ ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	о 0.04
1,2,4-Trimethylbenzene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,3,5-Trimethylbenzene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Vinyl Chloride		ND	ND	ND	UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2
m,p-Xylene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
o-Xylene		ND	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Xylene (total)		ND	ND	ND	UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5

o-Xyene (total) Notes: Date of System Start-up: 4 ug/L - micrograms per liter or parts per billion ND - Not detected NVG - No Value Given

J - Indicates an estimated value

UJ - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the

4/22/2010

analyte in the sample. Bold and boxed indicates value exceeds TOGS

R - The sample results are unreliable/useable. The presence or absence of the analyte can not be verified.

*NYSDEC Technical and Operational Guidance Series (1.1.1) Ambient water Quality Standards and Guidance Values and Groundwater Effluent Limitations June 1998

Page 15 of 18

Table 1 (MW-10 cont.)

Validated Analytical Results for Volatile Organic Compounds In Groundwater

Cornerstone Site B-1 3100 Third Avenue Bronx, New York BCP #C203044

Comr	/ell ID MW-10 ments 3rd Q 201 mpled 9/19/2014 tart up 1611	MW-10 4 4th Q 2014 12/10/2014 Q 1693	MW-10 1st Q 2015 4/1/2015 Q 1805	MW-10 2nd Q 2015 6/2/2015 Q 1867	MW-10 2nd Half 2015 12/10/2015 Q 2058 0	MW-10 1st Half 2016 6/3/2016 2 2234	MW-10 2nd Half 2016 12/16/2016 Q 2430	MW-10 1st Half 2017 6/13/2017 Q 2609	MW-10 2nd Half 2017 12/1/2017 Q 2780	MW-10 1st Half 2018 6/15/2018 Q 2976	MW-10 2nd Half 2018 12/27/2018 Q 3171	MW-10 1st Half 2019 6/7/2019 Q 3333	MW-10 2nd Half 2019 12/4/2019 Q 3513	MW-10 1st Half 202 6/3/2020 Q 3695	MW-10 2nd Half 2020 12/21/2020 Q 3896	MW-10 0 1st Half 202 6/2/2021 Q 4059	MW-10 1 2nd Half 2021 12/14/2021 Q 4254	MW-10 1st Half 2022 6/14/2022 Q 4436	MW-10 2nd Half 2022 12/20/2022 Q 4625	MW-10 1st Half 2023 6/28/2023 Q 4815	NYSDEC TOGS*
Volatile Örganic Compour Acetone Bervane Bervane Bromodichioomethane Bromodichioomethane Bromodichioomethane Bromodichioomethane Bromodichioomethane Cabuptenerse Cabuptenerse exclusione (MEK) Second Cabuptenerse exclusione (MEK) Chioroberrare System Chiolonoberrare Chioroberrare Ch	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND 1.4 ND ND ND ND ND ND ND ND	R R R R R R R R R R R R R R R R R R R	ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND	ND ND 0.65 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	2 2 2 5 2 5 2 2 2 5 5 2 2 2 5 5 2 2 2 2	1 1			ND ND ND ND 20 ND ND	ydl ND ND	isiL NO NO NO NO	HEL NOD NDD NDD NDD NDD NDD NDD NDD NDD NDD	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		unit f 0 50 1 1 5 5 5 5 5 5 5 5 5 60 0.44 60 0.44 60 0.44 60 5 5 5 6 5 7 NVG 8 5 8 5 9 0.44 6 5 7 1 7 1 8 5 9 1 9 1 9 1 9 1 9 5 9 5 9 1 9 5 9 5 9 5 9 5 9 5 9 5 9 1 9
							M	V-10 (PCE v	ersus time)												
Ourcentration ugL						1.000			2,000 Days Si	Ince System S	tart-Up	3,000			4,000	stem turned off		5,000			
			Deep 40 of 10															PI	CE Concentration		
			Page 16 of 18																		

Validated Analytical Results for Volatile Organic Compounds In Groundwater

Cornerstone Site B-1

3100 Third Avenue Bronx, New York BCP #C203044

Days since sys		MW-11 1st Q 2010 12/29/2009 -114	5/26/2010	MW-11 3rd Q 2010 8/25/2010 Q 125 (MW-11 4th Q 2010 11/22/2010 Q 214		MW-11 2nd Q 2011 6/8/2011 412	MW-11 3rd Q 2011 9/28/2011 Q 524 Q	MW-11 4th Q 2011 12/14/2011 Q 601 (MW-11 1st Q 2012 3/14/2012 Q 692	MW-11 2nd Q 2012 6/19/2012 Q 789 (MW-11 3rd Q 2012 10/22/2012 Q 914		NYSDEC TOGS* Q
Volatile Organic Compound														
	Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Acetone		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND F		Dry	50
Benzene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	1
Bromobenzene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5
Bromochloromethane		ND	ND		IJ ND	ND	ND	ND	ND ND	ND	ND	ND	Dry	5
Bromodichloromethane Bromoform		ND ND	ND ND		IJ ND IJ ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	Dry Dry	50 50
Bromomethane		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND		5
2-Butanone (MEK)		ND	UJ ND	ND U		UJ ND		R ND R		ND		R ND	Dry R Dry	NVG
n-Butylbenzene		ND	ND		IJ ND	ND ND	ND	ND ND	ND	ND	ND P	ND	Dry	5
sec-butylbenzene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5
tert-butylbenene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5
Carbon Tetrachloride		ND	ND		IJ ND	ND		JJ ND	ND	ND	ND	ND	UJ Dry	5
Chlorobenzene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5
Chloroethane		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5
Chloroform		3.7	2.4	2.3	J 0.36	J 0.58 J		J 0.38 J		ND	ND	ND	Dry	7
Chloromethane		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	NVG
o-Chlorotoluene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5
p-Chlorotoluene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5
1,2-Dibromo-3-Chloropropan	ie	ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	0.04
Dibromochloromethane		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	50
1,2-Dibromoethane		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	NVG
1,2-Dichlorobenzene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	3
1,3-Dichlorobenzene		ND ND	ND ND		IJ ND IJ ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	Dry	3 3
1,4-Dichlorobenzene Dichlorodifluoromethane		ND ND	ND		IJ ND IJ ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	Dry Dry	3 5
1.1-Dichloroethane		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5
1,2-Dichloroethane		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	0.6
1,1-Dichloroethene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5
cis-1,2-Dichloroethene		ND	ND		IJ ND	ND	ND	ND	ND	0.64	J ND	0.21	J Dry	5
trans-1,2-Dichloroethene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5
1,2-Dichloropropane		ND	ND	ND L	IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	1
1,3-Dichloropropene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	0.4
2,2-Dichloropropane		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5.0
1,1-Dichloropropene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5.0
cis-1,3-Dichloropropene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	0.4
trans-1,3-Dichloropropene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	0.4
Ethyl Benzene		ND ND	ND		IJ ND	ND	ND	ND	ND ND	ND	ND	ND	Dry	5 0.5
Hexachlorobutadiene		ND ND	ND ND		IJ ND IJ ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	Dry Dry	0.5
Isopropylbenzene p-Isopropylbenzene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5
Methyl tert-butyl Ether		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	10
4-Methyl-2-Pentanone		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	NVG
Methyl bromide		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	NVG
Methylene Chloride		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5
Naphthalene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	10
n-Propylbenzene		ND	ND	ND L	IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5
Styrene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5
1,1,1,2-Tetrachloroethane		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5
1,1,2,2-Tetrachloroethane		ND	ND		IJ <u>ND</u>	ND	ND	ND	ND	ND	ND	ND	Dry	5
Tetrachloroethene		279	55.4		11.1	44.7	24.3	8.3	11.2	8.1	10.3	13.8	Dry	5
Toluene		ND	ND		IJ ND	ND	ND	ND	ND ND	ND	ND	ND	Dry	5
1,2,3-Trichlorobenzene		ND	ND		IJ ND	ND	ND	ND		ND	ND	ND	Dry	5
1,2,4-Trichlorobenzene 1,1,1-Trichloroethane		ND ND	ND ND		IJ ND IJ ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	Dry Dry	5 5
1,1,1-Trichloroethane		ND ND	ND		IJ ND IJ ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	Dry	5 1
Trichloroethene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	0.39	J Dry	5
Trichlorofluoromethane		ND	UJ ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	J Dry Dry	5
1,2,3-Trichloropropane		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	0.04
1,2,4-Trimethylbenzene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5
1,3,5-Trimethylbenzene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5
Vinyl Chloride		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	2
m,p-Xylene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5
o-Xylene		ND	ND		IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5
Xylene (total)		ND	ND	ND L	IJ ND	ND	ND	ND	ND	ND	ND	ND	Dry	5

Notes: Date of System Start-up: 4/, ug/L - micrograms per liter or parts per billion ND - Not detected NVG - No Value Given 4/22/2010

Notes:

*NYSDEC Technical and Operational Guidance Series (1.1.1) Ambient water Quality Standards and Guidance Values and Groundwater Effluent Limitations June 1998

R - The sample results are unreliable/useable. The presence or absence of the analyte can not be verified.

UJ - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. Bold and boxed indicates value exceeds TOGS

Dry- Not Sampled on 12/6/2012 as the well was dry. NA - Not Applicable

Page 17 of 18

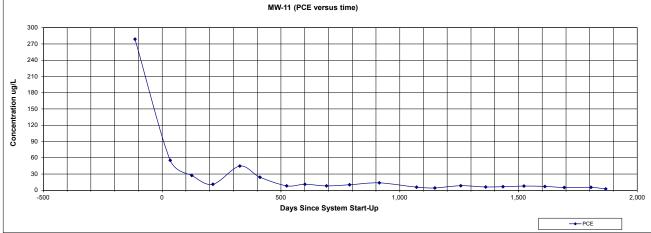

Table 1

Table 1 (MW-11 cont.)

Validated Analytical Results for Volatile Organic Compounds In Groundwater

Cornerstone Site B-1 3100 Third Avenue Bronx, New York BCP #C203044

Comm	ents 1st	W-11 Q 2013	2nd	/IW-11 d Q 2013	3rd C	V-11 2013	MW- 4th Q	2013	MW-11 1st Q 201		MW- 2nd Q 2	2014	MW- 3rd Q 2	2014	MW-11 4th Q 201	4	MW-11 1st Q 201	5	MW-11 2nd Q 2015	MW-11 2nd Half 2015	NYSDEC TOGS*
Date Sam Days since system star	pled 3/2	8/2013 1071	6/	13/2013 1148	9/30	/2013	1/13/2 Q 136	014	3/27/201		6/23/2 152	014	9/19/2	014	12/10/201		4/1/2015 1805	Q	6/2/2015 1867	NA NA	
Volatile Organic Compounds	rt up	1071	Q	1148	Q 12	257	2 130	12 6	1435	Q	152	3 (101	1 Q	1693	Q	1805	ų	1807	NA	
- · U	Jnits	ug/L		ug/L	<u>u</u>	g/L	ug/	L	ug/L		ug/l	L	ug/	L	ug/L		ug/L		ug/L	ug/L	ug/L
Acetone		ND		ND			r ne		ND	R	ND				ND	R	ND		ND	R NS	50
Benzene		ND		ND		ID	NE		ND		ND		NE		ND		ND		ND	NS	1
Bromobenzene Bromochloromethane		ND ND		ND ND		ID ID	NE NE		ND ND		ND ND		NE NE		ND ND		ND ND		ND ND	NS NS	5 5
Bromodichloromethane		ND		ND		ID	NE		ND		ND		NE		ND		ND		ND	NS	50
Bromoform		ND		ND	N	ID	NE)	ND		ND)	NE)	ND		ND		ND	NS	50
Bromomethane		ND		ND		ID	NE		ND		ND		NE		ND		ND		ND	NS	5
2-Butanone (MEK)		ND ND	R	ND ND			R NE		ND ND		ND ND		R NE		ND ND	R	ND ND	R	ND ND	R NS NS	NVG 5
n-Butylbenzene sec-butylbenzene		ND		ND		ID ID	NE NE		ND		ND		NE		ND		ND		ND	NS	5
tert-butylbenene		ND		ND		ID	NE		ND		ND		NE		ND		ND		ND	NS	5
Carbon Tetrachloride		ND		ND	N	ID	NE)	ND		ND)	NE)	ND		ND		ND	NS	5
Chlorobenzene		ND		ND		ID	NE		ND		ND		NE		ND		ND		ND	NS	5
Chloroethane Chloroform		ND ND		ND ND		ID ID	NE NE		ND ND		ND ND		NE NE		ND ND		ND ND		ND ND	NS NS	5 7
Chloromethane		ND		ND		ID ID	NE		ND		ND		NE		ND		ND		ND	NS	, NVG
o-Chlorotoluene		ND		ND		ID ID	NE		ND		ND		NE		ND		ND		ND	NS	5
p-Chlorotoluene		ND		ND	N	ID	NE)	ND		ND)	NE)	ND		ND		ND	NS	5
1,2-Dibromo-3-Chloropropane		ND		ND		ID	NE		ND		ND		NE		ND		ND		ND	NS	0.04
Dibromochloromethane		ND		ND		ID	NE		ND		ND		NE		ND		ND		ND	NS	50
1,2-Dibromoethane 1,2-Dichlorobenzene		ND ND		ND ND		ID ID	NE		ND ND		ND ND		NE NE		ND ND		ND ND		ND ND	NS NS	NVG 3
1,3-Dichlorobenzene		ND		ND		ID ID	NE		ND		ND		NE		ND		ND		ND	NS	3
1,4-Dichlorobenzene		ND		ND		ID	NE)	ND		ND		NE)	ND		ND		ND	NS	3
Dichlorodifluoromethane		ND		ND	N	ID	NE)	ND	UJ	ND)	NE)	ND		ND		ND	NS	5
1,1-Dichloroethane		ND		ND		1D	NE		ND		ND		NE		ND		ND		ND	NS	5
1,2-Dichloroethane		ND		ND		ID	NE		ND ND		ND		NE		ND		ND		ND ND	NS	0.6
1,1-Dichloroethene cis-1,2-Dichloroethene		ND ND		ND ND		ID .49	NE J NE		ND ND		ND ND		NE NE		ND ND		ND ND		ND ND	NS NS	5 5
trans-1,2-Dichloroethene		ND		ND		ID	NE		ND		ND		NE		ND		ND		ND	NS	5
1,2-Dichloropropane		ND		ND	N	ID	NE)	ND		ND)	NE)	ND		ND		ND	NS	1
1,3-Dichloropropene		ND		ND		ID	NE		ND		ND		NE		ND		ND		ND	NS	0.4
2,2-Dichloropropane		ND		ND		ID	NE		ND		ND		NE		ND		ND		ND	NS	5.0
1,1-Dichloropropene		ND ND		ND ND		ID ID	NE NE		ND ND		ND ND		NE NE		ND ND		ND ND		ND ND	NS NS	5.0 0.4
cis-1,3-Dichloropropene trans-1,3-Dichloropropene		ND		ND		ID	NE		ND		ND		NE		ND		ND		ND	NS	0.4
Ethyl Benzene		ND		ND		ID ID	NE		ND		ND		NE		ND		ND		ND	NS	5
Hexachlorobutadiene		ND		ND	N	ID	NE)	ND		ND)	NE)	ND		ND		ND	NS	0.5
Isopropylbenzene		ND		ND		ID	NE		ND		ND		NE		ND		ND		ND	NS	5
p-Isopropylbenzene		ND		ND		ID	NE		ND		ND		NE		ND		ND		ND	NS	5
Methyl tert-butyl Ether		ND ND		ND		ID ID	NE NE		ND ND		ND ND		NE NE		ND ND		ND ND		ND ND	NS NS	10 NVG
4-Methyl-2-Pentanone Methyl bromide		ND ND		ND ND		ID ID	NL		ND ND		ND ND		NL		ND ND		ND ND		ND ND	NS	NVG NVG
Methylene Chloride		ND		ND		ID	NE		ND		ND		NE		ND		ND		ND	NS	5
Naphthalene		ND		ND		ID	NE		ND		ND		NE		ND		ND		ND	NS	10
n-Propylbenzene		ND		ND		ID	NE		ND		ND		NE		ND		ND		ND	NS	5
Styrene		ND		ND		1D	NE		ND		ND		NE		ND		ND		ND	NS	5
1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane		ND ND		ND ND		ID ID	NE		ND ND		ND ND		NE NE		ND ND		ND ND		ND ND	NS NS	5 5
Tetrachloroethene		5.8		4.4		.5	6.3		6.8		7.8		7.2		5.3		5.5		2.5	NS	5
Toluene		ND		ND		1D	N		ND		ND		NE		ND		ND		ND	NS	5
1,2,3-Trichlorobenzene		ND		ND		ID	NE		ND		ND		NE		ND		ND		ND	NS	5
1,2,4-Trichlorobenzene		ND		ND		1D	NE		ND		ND		NE		ND		ND		ND	NS	5
1,1,1-Trichloroethane		ND		ND		ID ID	NE		ND		ND		NE		ND		ND		ND	NS	5
1,1,2-Trichloroethane Trichloroethene		ND 0.44	J	ND ND		ID .99	NE J 0.6		ND ND		ND 0.60		NE 0.9		ND 0.84	J	ND 0.62	J	ND ND	NS NS	1 5
Trichlorofluoromethane		ND	-	ND		ID	5 0.0 NE		ND		ND		NE NE		ND		ND		ND	NS	5
1,2,3-Trichloropropane		ND		ND	N	ID	NE)	ND		ND)	NE)	ND		ND		ND	NS	0.04
1,2,4-Trimethylbenzene		ND		ND		1D	NE		ND		ND		NE		ND		ND		ND	NS	5
1,3,5-Trimethylbenzene		ND		ND		1D	NE		ND		ND		NE		ND		ND		ND	NS	5
Vinyl Chloride m,p-Xylene		ND ND		ND ND		ID ID	NE NE		ND ND		ND ND		NE NE		ND ND		ND ND		ND ND	NS NS	2 5
o-Xylene		ND		ND		ID ID	NE		ND		ND		NE		ND		ND		ND	NS	5
Xylene (total)		ND		ND		ID	NE		ND		ND		NE		ND		ND		ND	NS	5
Notes: Date of System Start-up: ug/L - micrograms per liter or parts p ND - Not detected NVG - No Value Given		22/2010					Ambier	t water	nnical and C Quality Star er Effluent L	dards	and Gui	idance		1.1)							
UJ - The analyte was not detected at However, the reported quantitation lin the actual limit of quantitation necess analyte in the sample.	mit is app	roximate	and m	ay or may	not repre	sent			results are he analyte c				he prese	nce							
Bold and boxed indicates value ex	ceeds T	DGS						samplir ot Applic	g required a able	as of 2	nd Half :	2015									
							MW	-11 (PC	E versus	time)										
300		•																			\neg
270		\mathbf{V}				1															
		Ν				1															
240																					
210		$\downarrow\downarrow$		_		1															
						1															
) b n 180	1	1 1	1		1	1	1						1								

		C	Table 2 nitoring Well Network Cornerstone Site B-1 3100 Third Avenue Bronx, New York BCP #C203044		
Sample ID	Well Diameter	Depth to Bottom (Feet)	Туре	Sampled This Quarter	Date Sampling No Longer Required
MW-1	4"	40.15	Monitoring Well	Yes	NA
MW-2A	4"	50.93	Monitoring/Pumping Well	Yes	NA
MW-3	4"	35.18	Monitoring Well	No	4th Quarter 2011
MW-4	4"	20.92	Monitoring Well	Yes	NA
MW-5	4"	47.20	Monitoring Well	No	2nd Quarter 2011
MW-6	4"	44.00	Monitoring/Pumping Well	Yes	NA
MW-7	4"	50.00	Monitoring/Pumping Well	Yes	NA
MW-8	4"	35.00	Monitoring/Pumping Well	Yes	NA
MW-10	4"	53.30	Monitoring Well	Yes	NA

Monitoring Well

No

3rd Quarter 2015

Notes:

NA = Not Applicable

MW-11

2"

16.30

						Tal	ole 3	
							charge Total	8
						0,000	onarge rotan	•
						Cornersto	ne Site B-1	
						3100 Thi	rd Avenue	
							New York	
						BCP #	C203044	
	Totalizer Reading in	Cummulative	Gallon Pumped	MW-2A Clicker	MW-6 Clicker	MW-7 Clicker	MW-8 Clicker	
Date	Gallons	Gallons Pumped	Since Last Visit	Reading	Reading	Reading	Reading	Notes
4/27/2010	N/R	N/R	N/R	374	436	221	283	Begin system startup.
5/8/2010	N/R	N/R	N/R	462	17,244	230	483	
8/26/2010	78.2	78.2	78.2	1,886	18,800	263	578	
9/1/2010	4,532.3	4,532.3	4,454.1	47,739	18,800	263	578	
9/14/2010 9/23/2010	4,641.3 12,241.6	4,641.3 12,241.6	109.0 7,600.3	47,745 91,373	18,801 19,209	263 281	579 2,682	
9/23/2010 11/22/2010	60,724.6	60,724.6	48,483.0	568,850	19,209	281	12,702	MW-2A-only pump working
11/23/2010	61,408.4	61,408.4	683.8	569,686	19,449	288	12,783	www.zwony pump working
3/15/2011	91,621.1	91,621.1	30,212.7	94,233	19,600	288	16,832	
6/8/2011	114,997.0	114,997.0	23,375.9	463,248	19,631	298	22,700	
9/29/2011	195,770.0	195,770.0	80,773.0	649,728	19,645	300	22,849	System reading before repair
12/14/2011	262,926.0	262,926.0	67,156.0	649,934	516,524	317	23,929	
3/14/2012 6/19/2012	333,233.0	333,233.0 333,274.0	70,307.0 41.0	302,039 785,465	990,159	321	23,936 23,941	Elow meter/tetalizer appears to be stuck
6/19/2012 10/22/2012	333,274.0 N/R	333,274.0 No Accur		408,847	604,338 962,560	322 345	23,941 24,085	Flow meter/totalizer appears to be stuck. Battery dead on flow meter/totalizer. Order new totalizer for next visit.
12/6/2012	N/R	No Accur		856,573	105,792	352	29,411	Replaced battery on flow meter/totalizer. Still not working. Need to speak with vendor
3/28/2013	N/R	No Accur		863,626	734,024	353	29,411	Removed flow meter/totalizer for cleaning and repair. Meter not registering flow.
4/5/2013	0.0	No Accur		N/R	N/R	N/R	N/R	Flow meter/totalizer reinstalled. Meter reads 0 gallons at 12:00 pm.
6/13/2013	51,204.1	384,478.1	51,204.1	72,446	240,165	354	31,465	
9/30/2013	90,183.2	423,457.2	38,979.1	185,457	667,518	354	31,973	
1/13/2014	92,844.2	426,118.2	2,661.0	185,513	127,648	354	31,979	System off upon arrival. Turn on to collect system sample.
3/27/2014 6/10/2014	92,844.2 92,844.2	426,118.2 426,118.2	0.0	185,518 185,537	139,642 140,140	354 373	31,979 32,069	System turned off for repairs. Install refurbished pumps. Flow meter/totalizer not working.
6/23/2014	92,844.2	426,118.2	0.0	185,537	273,555	373	33,178	Removed flow meter/totalizer and clean on-site. Appears to be working upon departure.
8/8/2014	112,274.0	445,548.0	19,429.8	185,541	731,815	373	33,646	
9/19/2014	141,466.0	474,740.0	29,192.0	185,547	82,153	382	37,302	
12/10/2014	199,835.0	533,109.0	58,369.0	185,547	417,822	382	44,426	
4/1/2015	0.0	533,109.0	0.0	185,551	700,164	384	51,921	Replaced battery on flow meter/totalizer. Totalizer at 0 gallons to start.
6/2/2015 9/22/2015	15,471.5 0.0	548,580.5 548,580.5	15,471.5 0.0	185,556 185,559	961,755 618,581	385 387	57,344 67,210	Totalizer reading stuck at 15471.5. Removed unit and cleaned. Totalizer reset at 0.0 at 09:40.
9/22/2015	0.0	548,580.5	0.0	185,559	018,581	367	67,210	System turned off December 4, 2015 as the bottom of the drum was leaking. System turned on for 20 minutes to
12/10/2015	53,746,7	602.327.2	53,746.7	185,560	112,096	412	75,333	collected discharge sample and then turned off.
6/3/2016	115,918.0	664,498.5	62,171.3	185,568	112,769	412	84,940	
9/23/2016	168,211.0	716,791.5	52,293.0	185,568	112,769	412	92,146	
12/16/2016	225,939.0	774,519.5	57,728.0	185,568	112,769	412	102,377	
1/20/2017	228,597.0	777,177.5	2,658.0	185,568	112,771	412	103,060	Bottom outlet of each drum leaking on January 3, 2017 and system was turned off that day. Repairs were made and the system was restarted on January 20, 2017.
1/20/2017	228,397.0	///,1//.5	2,038.0	100,000	112,771	412	103,000	anu tre system was restarted on January 20, 2017.
3/7/2017	261,246.0	809,826.5	32,649.0	185,568	112,771	412	108,434	
6/13/2017	277,975.0	826,555.5	16,729.0	187,387	112,808	414	108,688	
9/12/2017	314,277.0	862,857.5	36,302.0					
12/1/2017		> 862,857.5	Not Known	487,506	112,812	415	124,562	Battery on totalizer was dead. Replaced battery and reading returned to zero. Estimate 35,000 gallons
3/30/2018	32,042.0	894,899.5	32,042.0	491,083	112,812	415	129,588	System was not operating on March 23,2018 through June 25, 2018 due to an electrical issue.
6/27/2018 10/4/2018	32,076.4 32,555.2	894,933.5 895,412.3	34.0 478.8	491,098 492,328	112,812 112,813	415 415	129,794 130,241	System was not operating on March 23,2018 through June 25, 2018 due to an electrical issue. System was not operating from June 26, 2018 to November 3, 2018 due to electrical issue. Fix on 11/3/18
12/27/2018	33,632.2	895,412.3	1,077.0	492,328	112,815	415	130,241	System was not operating from June 26, 2016 to November 3, 2018 due to electrical issue. Fix on 11/3/18 Super informed CA RICH at sampling event that the system has been shutting off.
2/8/2019		, 10515		o collect readings				Routine maintenance conducted on compressor and magnetic start repaired
6/7/2019	96,392.20	958,172	62,760.00	662,555	112,815	417	143,341	
8/7/2019				ling collected				System turned off due to leak in transfer pump hose and repair transfer pump float switch
8/29/2019				ing collected	1			System turned back on
12/4/2019	200,229.00	1,062,009	103,836.80	2,172	112,816	418	166,081	
6/3/2020		>1,062,009	Not Known	2,210	112,847	419	184,179	Totalizer battery dead. Replaced battery & readings returned to zero. Estimate 15,000 gallons this period
11/2/2020	60 100 2	1 133 300		ing collected	125 710	420	104 100	Transfer pump malfunction, system shut down by super.
12/21/2020 1/5/2021	60,199.2	1,122,208	60,199.20	12,325	135,710	420	184,188	Transfer pump repaired and system restarted and left operating upon departure
1/5/2021 6/2/2021	87,271.2	1,149,280.0	27,072.0	ings collected 17,225	431,766	420	184,189	System temporarily shut downapproved by NYSDEC System temporarily shut downapproved by NYSDEC
0/2/2021	01,211.2	1,147,200.0	21,012.0	17,223	431,700	420	104,105	System temporany shut down-approved by N15DEC

Notes:

N/R = No reading

The flow meter/totalizer was not operating properly from 6/19/2012 to 4/4/2013. The cummulative gallons pumped does not take into account the amount of water pumped during this period.

The flow meter/totalizer was not operating properly from 6/2/2015 to 9/22/2015. The cummulative gallons pumped does not take into account the amount of water pumped during this period.

The system was not operating from January 3, 2017 to January 19, 2017 and from April 10, 2017 to July 25, 2017 due to drum leaky drums.

The system was not operating on March 23,2018 through June 25, 2018 due to an electrical issue. System was repaired on June 25th and turned off. CA RICH returned the system on June 27th and sampled. System was operating upon departure.

The system was not operating from June 28, 2018 to October 3, 2018 due to electrical issues. System was repaired on October 3, 2018 and put back into continuous operations.

The system was found on during the December 27, 2018 groundwater sampling event, but the compressor did not appear to be operating correctly and was shut down after VOC influent and effluent samples were collected.

The system remained off from December 27, 2018 to February 8, 2019. The system was repaired on February 8, 2019 and has remained in continuous operation.

The system was off from August 7, 2019 to August 29, 2019 to repair the transfer pump hose and transfer pump float switch. System was reactivated on August 29, 2019.

Thye system was off from November 2, 2020 to December 21, 2020 due a tranfer pump malfunction. The system was turned back on from December 21, 2020 to January 5, 2021.

The actual gallons pumped are more than cummulative total.

Table 4 System PCE Removal Estimate

Cornerstone Site B-1 3100 Third Avenue Bronx, New York BCP #C203044

Period	Days/Period	Operating Days	Gallons/Period	Flow Rate (gal/day)	Flow Rate (Liters/day)	Influent PCE Concentration (ppm)	Effluent PCE Concentration (ppm)	PCE Concentration removed (ppm)	Pounds/Gallon	Gallons Treated This Period	Pounds Removed This Period (lbs)
6/3/2016 to 9/23/2016	112	112	52293	466.90	1767.42	0.041	<0.0002	0.0408	2.37619E-06	52,293	0.12
9/23/2016 to 12/16/2016	84	84	57728	687.24	2601.48	0.045	<0.0002	0.0448	2.60915E-06	57,728	0.15
12/16/2016 to 3/7/2017	81	81	35307	435.89	1650.02	0.043	<0.0002	0.0428	2.49267E-06	35,307	0.09
3/7/2017 to 6/13/2017	98	98	16729	170.70	646.19	0.270	<0.0002	0.2698	1.57131E-05	16,729	0.26
6/13/2017 to 9/12/2017	91	91	36302	398.92	1510.09	0.066	<0.0002	0.0658	3.83219E-06	36,302	0.14
9/12/2017 to 12/1/2017 ¹	80	80	35000	437.50	1656.12	0.061	<0.0002	0.0608	3.54099E-06	35,000	0.12
12/1/2017 to 3/30/2018 ²	119	112	32042	286.09	1082.97	0.066	<0.0002	0.0658	3.83219E-06	32,042	0.12
3/30/2018 to 6/27/2018	87	1	34	34.00	128.70	0.610	<0.0002	0.6098	3.55147E-05	34	0.001
6/27/2018 to 10/4/2018 ³	99	1	479	479.00	1813.21	0.1	<0.0002	0.0998	5.81234E-06	479	0.003
10/4/2018 to 12/27/2018 ⁴	84	3	1077	359.00	1358.96	0.36	<0.00025	0.35975	2.09518E-05	1,077	0.02
12/27/2018 to 6/7/2019 ⁵	162	120	96392	803.27	3040.70	0.18	0.00018	0.17982	1.04727E-05	96,392	1.01
6/7/2019 to 12/4/2019 ⁶	180	160	103837	648.98	2456.66	0.082	<0.00018	0.08182	4.76519E-06	103,837	0.49
12/4/2019 to 6/3/2020 ⁷	182	182	15000	82.42	311.98	0.17	<0.00018	0.16982	9.8903E-06	15,000	0.15
6/3/2020 to 12/21/2020	201	153	60199	393.46	1489.40	0.34	<0.00018	0.33982	1.97911E-05	60,199	1.19
1/5/2021						CA RICH requested system be	turned off-NYSDEC approved. No s	samples collected.			

Notes:

¹- The battery for the totalizer was dead on 12/1/17 and replaced the same day. The PCE removed this time period is estimated

Total

467,220

3.88

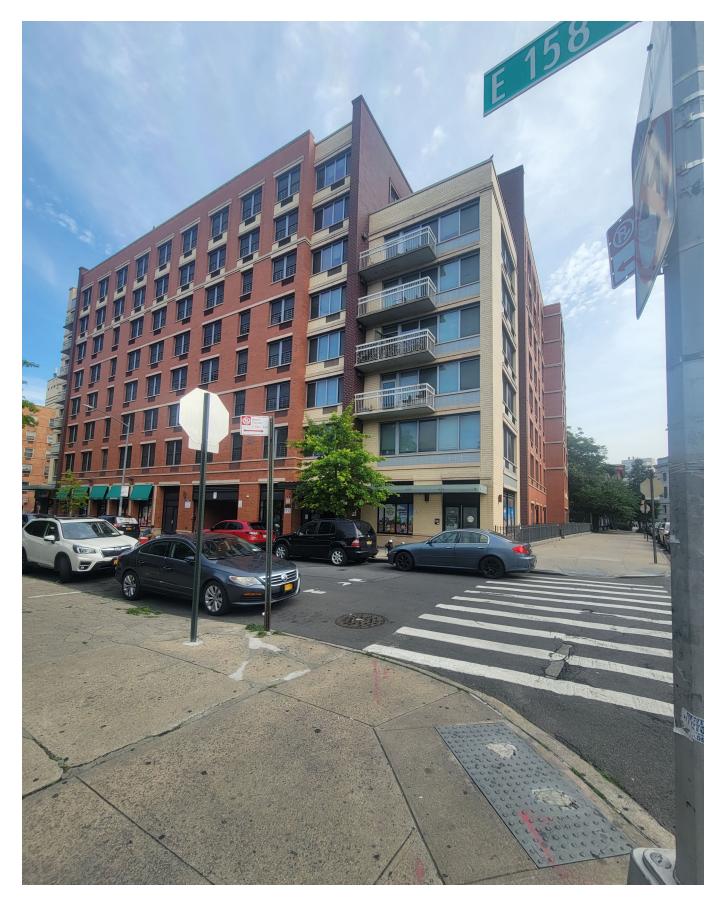
The battery for the totalizer was dead on 12/1/17 and replaced the same day. The PCE removed this time period is estimated

²- The system was off from March 23, 2018 to June 25, 2018 due to electrical issues. The system was turned on June 27, 2018, the sample collected, and system remained on upon departure for approximately 1 day ³⁻ The system was off from June 28, 2018 to October 3, 2018 due to electrical issues. The magnetic start was broken and needed to be replaced. The system has operated continuosly since October 3, 2018.

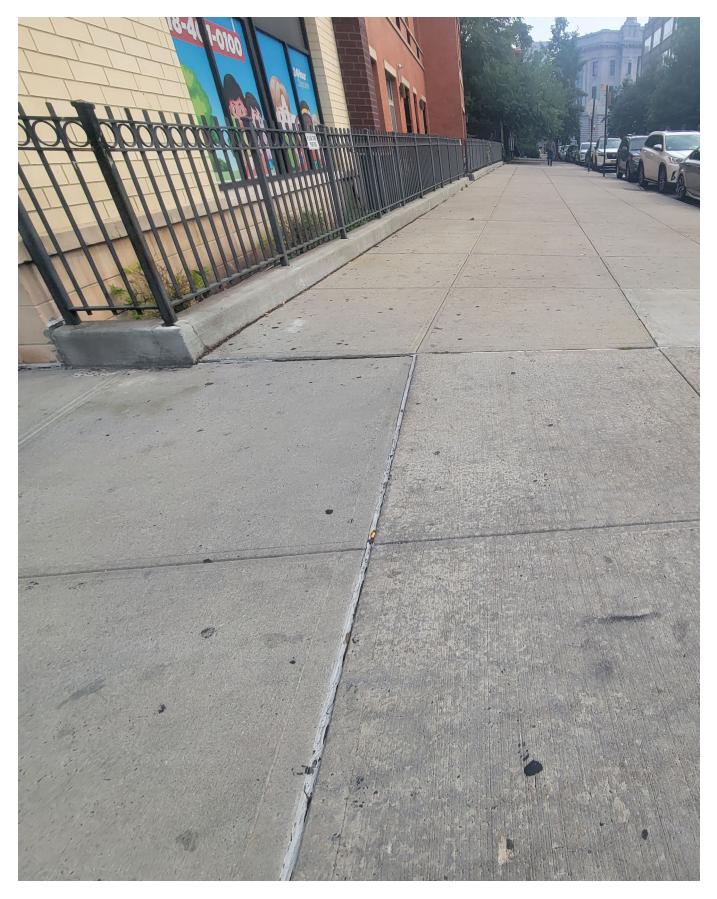
The system was off from June 28, 2018 to October 3, 2018 due to electrical issues. The magnetic start was broken and needed to be replaced. The system has operated continuosily since October 3,

⁴- The system was repaired on October 3, 2018; however, during the sampling event on December 27, 2018 it was revealed the system was not operating properly

⁵- The system was off from December 27, 2018 to February 8, 2019. The system was repaired and has remained in continuous operation since the repair.


⁶. The system was off from August 7, 2019 to August 29, 2019 due to mechanical issues. The system transfer pump hose and transfer pump float switch were repaired. The system has operated continuously since August 29, 2019.

⁷- The battery in the totalizer was dead and was replaced on June 3, 2020. Amount of gallons treated is unkown. An estimate of 15,000-gallons was used for removal estimate purposes.

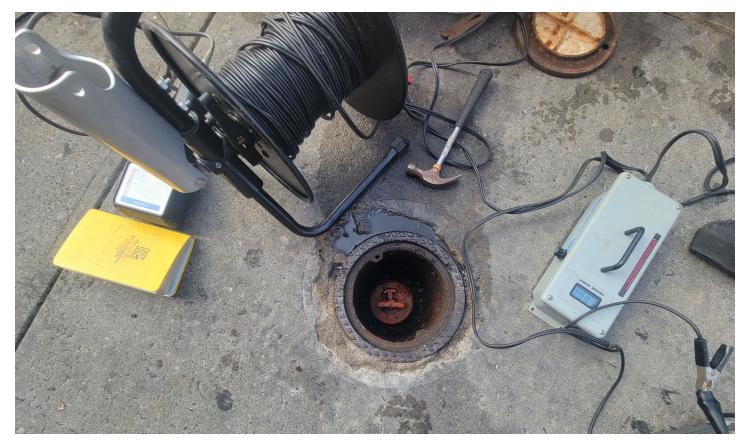

ppm = parts per million 1 Liter equals 0.264 gallons

1 Pound equals 453592369 Ug

APPENDIX A SELECT PHOTOGRAPHS

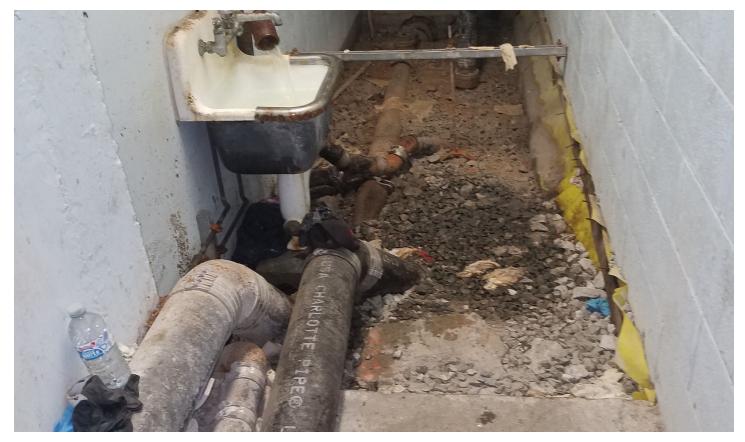
Site building.

East side of the Site building.

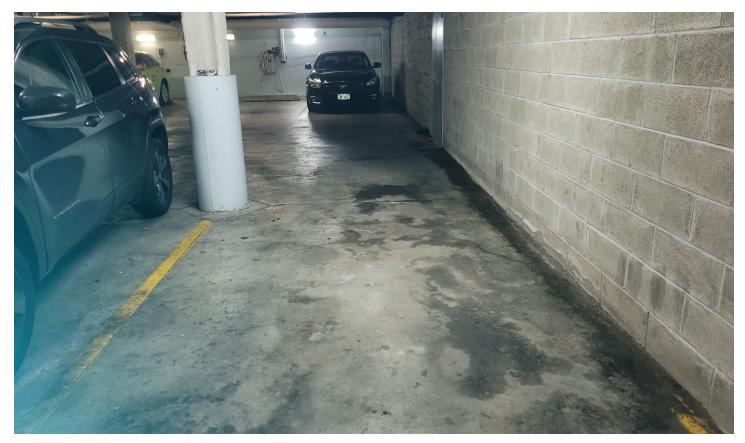

Front of the Site building, near the western side.

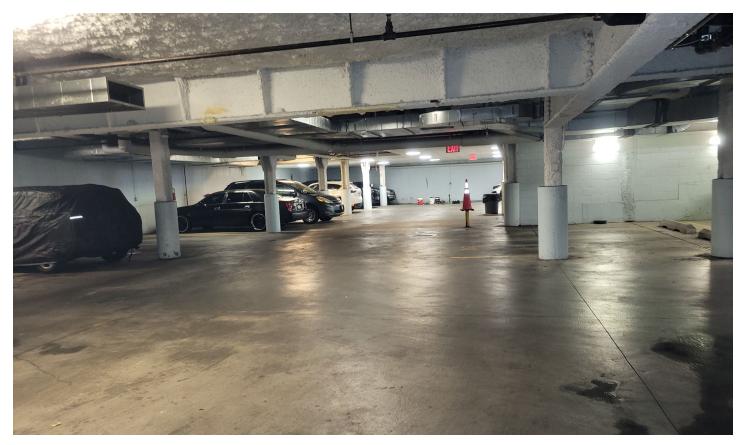
MW-2A

MW-5

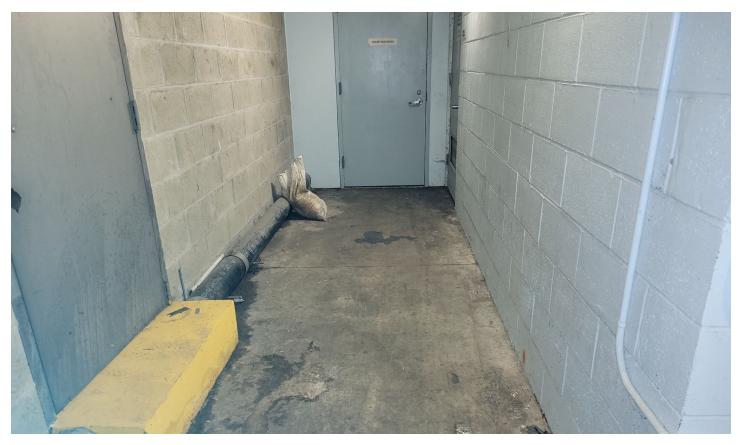

MW-1

MW-3

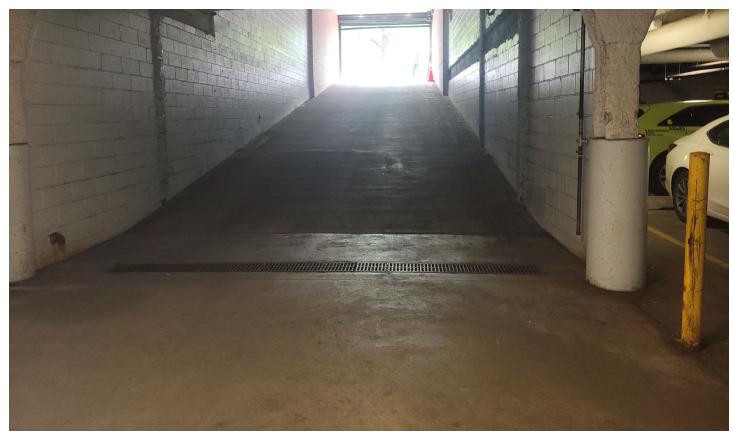


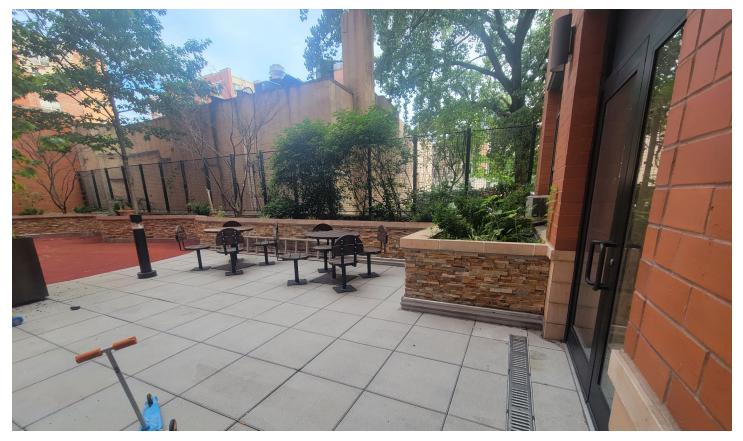

Sewer trap room in the basement.

Groundwater pump and treat system


Southern portion of the parking garage.

View of basement area.


Groundwater pump and treat system gages and hoses.


Basement hallway near sewer trap.

View of basement area.

View of basement parking garage ramp

Courtyard area.

Courtyard area

APPENDIX B SITE-WIDE INSPECTION FORM

Site-Wide Inspection Check List Cornerstone Site B-1 3100 Third Avenue Bronx, New York BCP #C203044					
Comments					
All systems appear to be in good condition and operating as intended; however, the groundwater pump and treat system is temporarily off as approved by NYSDEC. No evaluation was done on the GWPT system is temporarily off as approved by NYSDEC.					
Yes					
Site is well maintained.					
Yes					

Date/Time- 6/28/2023 at 1:30 PM

MW-8 roadbox requires repair as the hinges are broken. This is not currently a safety concern, but the issue should be addressed in the near future.

APPENDIX C IC/EC FORM

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site No.	C203044	Site Details		Box 1	
Site Name Cor	nerstone Site B 1				
Site Address: 3 City/Town: Bron County: Bronx Site Acreage: 0		Zip Code: 10451			
Reporting Perio	d: June 16, 2022 to	June 16, 2023			
				YES	NO
1. Is the inform	nation above correct	?		X	
If NO, includ	le handwritten abov	e or on a separate sheet.			
	r all of the site prop endment during this	erty been sold, subdivided, merg Reporting Period?	jed, or undergone a	0	X
	een any change of RR 375-1.11(d))?	use at the site during this Report	ing Period		X
	deral, state, and/or property during this	local permits (e.g., building, disc Reporting Period?	harge) been issued		×
		tions 2 thru 4, include docume previously submitted with this			
5. Is the site c	urrently undergoing	development?			×
				Box 2	
				YES	NO
	nt site use consister Residential, Comme	nt with the use(s) listed below? rcial, and Industrial		Х	[]
7. Are all ICs i	n place and functior	ning as designed?	X		
		HER QUESTION 6 OR 7 IS NO, s E THE REST OF THIS FORM. Of	-	nd	
A Corrective Me	easures Work Plan	must be submitted along with th	is form to address th	iese iss	ues.
Signature of Ow	ner. Remedial Party	or Designated Representative	Date		

		Box 2	A
		YES	NO
8.	Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?		X
	If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.		
9.	Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years)	×	
	If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.		
SITE	E NO. C203044	Bo	х 3
	Description of Institutional Controls		

Γ	Parcel	Owner	Institutional Control
	2364-45	CS Melrose Site B LLC (expected owner)	
			Landuse Restriction
			Ground Water Use Restriction Site Management Plan
			Monitoring Plan O&M Plan IC/EC Plan
	compliance with the approved residential and commercial up	as imposed in the form of an environmental end d site management plan; (b) limits the use of ses (c) The use of the groundwater underlying t safe for intended use; and (d) requires the p to the NYSDEC.	asement that : (a) requires the property to restricted g the property is prohibited
	and submitted by a professio NYSDEC notifies the property would: (a) contain certification place and are either unchang modifications; (b) allow the N impair the ability of the control	provide a periodic certification of institutional a nal engineer or such other expert acceptable y owner in writing that this certification is no k in that the institutional controls and engineerin yed from the previous certification or are comp YSDEC access to the site; and (c) state that of to protect public health or the environment, as otherwise approved by the NYSDEC. CS Melrose Site B LLC	to the NYSDEC, until the onger needed. This submittal g controls put in place are still in pliant with NYSDEC-approved nothing has occurred that would
			Ground Water Use Restriction Site Management Plan
			Site Management Flan
			Monitoring Plan O&M Plan IC/EC Plan Landuse Restriction
	compliance with the approve residential and commercial u	as imposed in the form of an environmental e d site management plan; (b) limits the use of ses (c) The use of the groundwater underlying t safe for intended use; and (d) requires the p t to the NYSDEC.	the property to restricted g the property is prohibited
	and submitted by a profession NYSDEC notifies the propert would: (a) contain certification place and are either unchange modifications; (b) allow the N impair the ability of the control	provide a periodic certification of institutional a nal engineer or such other expert acceptable y owner in writing that this certification is no lo n that the institutional controls and engineerin ged from the previous certification or are comp YSDEC access to the site; and (c) state that of to protect public health or the environment, as otherwise approved by the NYSDEC.	to the NYSDEC, until the onger needed. This submittal og controls put in place are still in pliant with NYSDEC-approved nothing has occurred that would
			Box 4
	Description of Engine	ering Controls	
	Parcel	Engineering Control	
	2364-45	Engineering control	
		Cover System	
	soil/fill at the Site. This cover ventilated parking garage, an	Groundwater Treatment System ng control) installed to prevent exposure from system comprised of concrete-covered sidev id concrete building slabs. In addition, a vapo g foundation as additional protection.	valks, foundation walls,
**********************		Treat System installed to collect and treat the gradation products) within shallow bedrock fr	

Parcel

Engineering Control

c) all engineering controls must be operated and maintained as specified in the NYSDEC-approved Site Management Plan (SMP). No engineering and institutional controls may be discontinued without a NYSDEC-approved amendment or extinguishment of the Environmental Easement;

d) periodic inspections of the Site, certifications of institutional & engineering controls and site usage of controlled property, and site-management reporting to the Department must be conducted in accordance with the NYSDEC-approved SMP;

e) Operation, Monitoring and Maintenance (OM&M) of the Groundwater Pump and Treat System must be performed in a manner specified in the NYSDEC-approved Site Management Plan. **2364-70**

Groundwater Treatment System Cover System

a) Cover System (engineering control) installed to prevent exposure from remaining contamination in soil/fill at the Site. This cover system comprised of concrete-covered sidewalks, foundation walls, ventilated parking garage, and concrete building slabs. In addition, a vapor barrier was also installed underneath the entire building foundation as additional protection.

b) Groundwater Pump and Treat System installed to collect and treat the halogenated VOC impacted groundwater (PCE and its degradation products) within shallow bedrock fractures from four monitoring wells.

c) all engineering controls must be operated and maintained as specified in the NYSDEC-approved Site Management Plan (SMP). No engineering and institutional controls may be discontinued without a NYSDEC-approved amendment or extinguishment of the Environmental Easement;

d) periodic inspections of the Site, certifications of institutional & engineering controls and site usage of controlled property, and site-management reporting to the Department must be conducted in accordance with the NYSDEC-approved SMP;

e) Operation, Monitoring and Maintenance (OM&M) of the Groundwater Pump and Treat System must be performed in a manner specified in the NYSDEC-approved Site Management Plan.

	Periodic Review Report (PRR) Certification Statements	
1.	I certify by checking "YES" below that:	
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;	
	b) to the best of my knowledge and belief, the work and conclusions described in this certificati are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.	on
	engineering practices, and the mormation presented is accurate and compete. YES NO	
	X 🗆	
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:	
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;	
	(b) nothing has occurred that would impair the ability of such Control, to protect public health a the environment;	nd
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;	
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and	
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.	
	YES NO	
	X 🗆	
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.	
	Signature of Owner, Remedial Party or Designated Representative Date	

Box 5

IC CERTIFICATIONS SITE NO. C203044

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I Jason T. Cooper print name	_at <u>CARich Consultants, 17 Dupont Street</u> , <u>Hainview</u> NY print business address
am certifying as <u>Remedical Party</u>	(Owner or Remedial Party)
for the Site named in the Site Details S	ection of this form.
1 11	

<u>(AJAN T Cooper On Inhalf of CES Melrose Site 81</u>44<u>7/31/2023</u> Signature of Owner, Remedial Party, for Designated Representative Date Rendering Certification

EC CERTIFICATIONS	
QミP P rofessional Engineer Signature	Box 7
I certify that all information in Boxes 4 and 5 are true. I understand that a false stat punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal L	
I Jason T. Cooperat CA Rich Consultants, 17 Superts	st flainuiew N.Y
am certifying as a Professional Engineer for the Geologist Mum Composition Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification Remedial Party, Rendering Certification	lial Party) 7/31/2023 Date

.

APPENDIX D GROUNDWATER SAMPLING LOGS

Groundwater Sampling Log **Cornerstone Site B-1** 3100 Third Avenue Bronx, New York BCP #C203044 Sample ID Date Well Diameter | Depth to Water | Depth to Bottom | Amount Purged Sample Time Conductivity Oxygen/Reduction Dissolved Oxygen pН Temperature (Feet) (Feet) (Gallons) (° Celsius) (ms/cm) Potential (mv) (mg/L) MW-1 12/20/2022 4" 13.42 40.15 30 11:36 6.81 16.89 5.44 177 1.6 12/20/2022 4" -5 *MW-2A 24.00 50.93 5 9:50 7.05 15.6 4.01 1.6 4" MW-3 12/20/2022 13.2 35.18 No Longer Sampled MW-4 12/20/2022 4" 12.28 20.92 22 11:26 7.91 14.87 0.204 125 2.6 MW-5 12/20/2022 4" 24.35 47.20 No Longer Sampled *MW-6 12/20/2022 4" 23.07 9:20 15.91 5.04 44.00 8 6.38 71 0.62 4" *MW-7 12/20/2022 7.95 50.00 15 Did not collect readings *MW-8 12/20/2022 4" 35.00 5 12:40 7.19 16.02 139 0 14.15 1.88 MW-10 12/20/2022 4" 24.48 53.30 12 10:36 15.27 7.97 84 0 7.01 MW-11 12/20/2022 2" Dry 16.30 No Longer Sampled ystem Samples N/A System Still Off, Awaiting NYSDEC Decision. No Samples Collected -----

Comments:

- Monitoring well that contains a pump and is piped into system.

Many monitoring wells do not yield three well volumes as they dry up. In the Amount Purged column the number is the amount of water that could be purged until the well went dry. in parathensis indicates the actual volume purged.

Monitoring well MW-2A is the duplicate sample. MS/MSD sample collected from MW-10

					Corne 3100 Bro	vater Sampling L erstone Site B-1) Third Avenue onx, New York CP #C203044	og				
Sample ID	Date	Well Diameter	Depth to Water (Feet)	Depth to Bottom (Feet)	(Gallons)	Sample Time	рН	Temperature (° Celsius)	Conductivity (ms/cm)	Oxygen/Reduction Potential (mv)	Dissolved Oxygen (mg/L)
MW-1	6/28/2023	4"	14,40	40.15	10-gal	1210	6.89	17.90	4.07	179	0.00
*MW-2A	6/28/2023	4"	26.48	50.93	5-22	0824	6.08	i7.51	4,68	119	1.91
MW-3	6/28/2023	4"	14.03	35.18	0	,		No Longer Sam	pled	1	1
MW-4	6/28/2023	4"	16.10	20.92	6-gal	1030					
MW-5	6/28/2023	4"	28.12	47.20				No Longer Sam	pled		
*MW-6	6/28/2023	4"	26.97	44.00	5-j=11	0846	7.25	17.05	4.09	90	0.00
*MW-7	6/28/2023	4 ⁿ	~~	50.00	0						
*MW-8	6/28/2023	4"		35.00	5-gal	1012	7.79	17.20	1.78	92	0.00
MW-10	6/28/2023	4"	27.32	53.30	10-gal	0934	7.50	18.35	7.91	136	0.00
MW-11	6/28/2023	2"	14.54	16.30	J			No Longer Sam	pled		
ystem Samples	N/A					Syster	n Still Off as p	er NYSDEC Decis	ion. No Samples	Collected	
_	wells do not y dieates the ac IW-2A is the c	tual volume purge Iuplicate sample.	lumes as they dry	up. I n the Amoun	•	e number is the amount readings we Kely infilt 8 could not				-	

APPENDIX E GROUNDWATER ANALYTICAL DATA & DUSRs

ANALYTICAL REPORT

Lab Number:	L2271764
Client:	CA Rich Consultants, Inc.
	17 Dupont St.
	Plainview, NY 11803
ATTN:	Jason Cooper
Phone:	(516) 576-8844
Project Name:	CORNERSTONE
Project Number:	CORNERSTONE
Report Date:	01/04/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:01042316:58

Project Name:	CORNERSTONE
Project Number:	CORNERSTONE

 Lab Number:
 L2271764

 Report Date:
 01/04/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2271764-01	MW-1	WATER	THIRD AVE BX	12/20/22 11:36	12/21/22
L2271764-02	MW-2A	WATER	THIRD AVE BX	12/20/22 09:50	12/21/22
L2271764-03	MW-4	WATER	THIRD AVE BX	12/20/22 11:26	12/21/22
L2271764-04	MW-6	WATER	THIRD AVE BX	12/20/22 09:20	12/21/22
L2271764-05	MW-7	WATER	THIRD AVE BX	12/20/22 13:10	12/21/22
L2271764-06	MW-8	WATER	THIRD AVE BX	12/20/22 12:40	12/21/22
L2271764-07	MW-10	WATER	THIRD AVE BX	12/20/22 10:36	12/21/22
L2271764-08	MW-XX	WATER	THIRD AVE BX	12/20/22 00:00	12/21/22
L2271764-09	TRIP BLANK	WATER	THIRD AVE BX	12/20/22 00:00	12/21/22
L2271764-10	FIELD BLANK 12/20	WATER	THIRD AVE BX	12/20/22 14:00	12/21/22

Project Name: CORNERSTONE Project Number: CORNERSTONE

Lab Number: L2271764 Report Date: 01/04/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: CORNERSTONE Project Number: CORNERSTONE
 Lab Number:
 L2271764

 Report Date:
 01/04/23

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

The WG1729632-6/-7 MS/MSD recoveries, performed on L2271764-02, are below the acceptance criteria for tetrachloroethene (0%/0%) due to the concentration of this compound in the MS/MSD falling below the reported detection limit.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Jufani Morrissey - Tiffani Morrissey

Title: Technical Director/Representative

Date: 01/04/23

ORGANICS

VOLATILES

			Serial_N	o:01042316:58
Project Name:	CORNERSTONE		Lab Number:	L2271764
Project Number:	CORNERSTONE		Report Date:	01/04/23
		SAMPLE RESULTS		
Lab ID:	L2271764-01		Date Collected:	12/20/22 11:36
Client ID:	MW-1		Date Received:	12/21/22
Sample Location:	THIRD AVE BX		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260D			
Analytical Date:	12/29/22 23:24			
Analyst:	PID			
·				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	0.77	J	ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	25		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

					, ,	Serial_No	:01042316:58	
Project Name:	CORNERSTONE				Lab Nu	mber:	L2271764	
Project Number:	CORNERSTONE				Report	Date:	01/04/23	
-		SAMPI		6	•			
Lab ID:	L2271764-01				Date Col	lected:	12/20/22 11:36	
Client ID:	MW-1				Date Red	ceived:	12/21/22	
Sample Location:	THIRD AVE BX				Field Pre	p:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westboro	ugh Lab						
Trichloroethene		ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
Xylenes, Total		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total		ND		ug/l	2.5	0.70	1	
Dibromomethane		ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1	
Acrylonitrile		ND		ug/l	5.0	1.5	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
Vinyl acetate		ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethane	9	ND		ug/l	2.5	0.70	1	
Bromobenzene		ND		ug/l	2.5	0.70	1	
n-Butylbenzene		ND		ug/l	2.5	0.70	1	
sec-Butylbenzene		ND		ug/l	2.5	0.70	1	
tert-Butylbenzene		ND		ug/l	2.5	0.70	1	
o-Chlorotoluene		ND		ug/l	2.5 2.5	0.70	1	
p-Chlorotoluene 1,2-Dibromo-3-chloroprop	ane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene	סמוו כ	ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
p-lsopropyltoluene		ND		ug/l ug/l	2.5	0.70	1	
Naphthalene		ND			2.5	0.70	1	
марнинанене		NU		ug/l	2.0	0.70	I	

		Serial_No:01042316:58						
Project Name:	CORNERSTONE				Lab Nu	mber:	L2271764	
Project Number:	CORNERSTONE				Report	Date:	01/04/23	
		SAMPI		5				
Lab ID:	L2271764-01				Date Col	lected:	12/20/22 11:36	
Client ID:	MW-1				Date Red	ceived:	12/21/22	
Sample Location:	THIRD AVE BX				Field Pre	ep:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	oy GC/MS - Westborough	n Lab						

n-Propylbenzene	ND	ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	1	
1,4-Dioxane	ND	ug/l	250	61.	1	
p-Diethylbenzene	ND	ug/l	2.0	0.70	1	
p-Ethyltoluene	ND	ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54	1	
Ethyl ether	ND	ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	112	70-130	
Dibromofluoromethane	100	70-130	

		Serial_No:01042316:58				
Project Name:	CORNERSTONE			Lab Number:	L2271764	
Project Number:	CORNERSTONE			Report Date:	01/04/23	
			SAMPLE RESULTS			
Lab ID: Client ID: Sample Location:	L2271764-02 MW-2A THIRD AVE BX	D		Date Collected: Date Received: Field Prep:	12/20/22 09:50 12/21/22 Not Specified	
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260D 12/30/22 04:08 PID					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	5.0	1.4	2
1,1-Dichloroethane	ND		ug/l	5.0	1.4	2
Chloroform	ND		ug/l	5.0	1.4	2
Carbon tetrachloride	ND		ug/l	1.0	0.27	2
1,2-Dichloropropane	ND		ug/l	2.0	0.27	2
Dibromochloromethane	ND		ug/l	1.0	0.30	2
1,1,2-Trichloroethane	ND		ug/l	3.0	1.0	2
Tetrachloroethene	210		ug/l	1.0	0.36	2
Chlorobenzene	ND		ug/l	5.0	1.4	2
Trichlorofluoromethane	ND		ug/l	5.0	1.4	2
1,2-Dichloroethane	ND		ug/l	1.0	0.26	2
1,1,1-Trichloroethane	ND		ug/l	5.0	1.4	2
Bromodichloromethane	ND		ug/l	1.0	0.38	2
trans-1,3-Dichloropropene	ND		ug/l	1.0	0.33	2
cis-1,3-Dichloropropene	ND		ug/l	1.0	0.29	2
1,3-Dichloropropene, Total	ND		ug/l	1.0	0.29	2
1,1-Dichloropropene	ND		ug/l	5.0	1.4	2
Bromoform	ND		ug/l	4.0	1.3	2
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.33	2
Benzene	ND		ug/l	1.0	0.32	2
Toluene	ND		ug/l	5.0	1.4	2
Ethylbenzene	ND		ug/l	5.0	1.4	2
Chloromethane	ND		ug/l	5.0	1.4	2
Bromomethane	ND		ug/l	5.0	1.4	2
Vinyl chloride	ND		ug/l	2.0	0.14	2
Chloroethane	ND		ug/l	5.0	1.4	2
1,1-Dichloroethene	ND		ug/l	1.0	0.34	2
trans-1,2-Dichloroethene	ND		ug/l	5.0	1.4	2

					ç	Serial No	:01042316:58	
Project Name:	CORNERSTONE				Lab Nu		L2271764	
Project Number:	CORNERSTONE				Report	Date:	01/04/23	
	CONTENCTORE	SAMP	LE RESULTS	5			01/04/20	
Lab ID:	L2271764-02	D			Date Col	lected:	12/20/22 09:50	
Client ID:	MW-2A	D			Date Red		12/21/22	
Sample Location:	THIRD AVE BX				Field Pre		Not Specified	
						-	·	
Sample Depth:		Bacult	Qualifier	Unito	ы	MDL	Dilution Foster	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
volatile Organics b	oy GC/MS - Westboro	ugn Lab						
Trichloroethene		9.3		ug/l	1.0	0.35	2	
1,2-Dichlorobenzene		ND		ug/l	5.0	1.4	2	
1,3-Dichlorobenzene		ND		ug/l	5.0	1.4	2	
1,4-Dichlorobenzene		ND		ug/l	5.0	1.4	2	
Methyl tert butyl ether		ND		ug/l	5.0	1.4	2	
p/m-Xylene		ND		ug/l	5.0	1.4	2	
o-Xylene		ND		ug/l	5.0	1.4	2	
Xylenes, Total		ND		ug/l	5.0	1.4	2	
cis-1,2-Dichloroethene		ND		ug/l	5.0	1.4	2	
1,2-Dichloroethene, Total		ND		ug/l	5.0	1.4	2	
Dibromomethane		ND		ug/l	10	2.0	2	
1,2,3-Trichloropropane		ND		ug/l	5.0	1.4	2	
Acrylonitrile		ND		ug/l	10	3.0	2	
Styrene		ND		ug/l	5.0	1.4	2	
Dichlorodifluoromethane		ND		ug/l	10	2.0	2	
Acetone		ND		ug/l	10	2.9	2	
Carbon disulfide		ND		ug/l	10	2.0	2	
2-Butanone		ND		ug/l	10	3.9	2	
Vinyl acetate		ND		ug/l	10	2.0	2	
4-Methyl-2-pentanone				ug/l	10	2.0	2	
2-Hexanone Bromochloromethane		ND		ug/l	10 5.0	2.0 1.4	2	
2,2-Dichloropropane		ND		ug/l	5.0	1.4	2	
1,2-Dibromoethane		ND		ug/l ug/l	4.0	1.4	2	
1,3-Dichloropropane		ND		ug/l	5.0	1.3	2	
1,1,1,2-Tetrachloroethane	۵	ND		ug/l	5.0	1.4	2	
Bromobenzene	•	ND		ug/l	5.0	1.4	2	
n-Butylbenzene		ND		ug/l	5.0	1.4	2	
sec-Butylbenzene		ND		ug/l	5.0	1.4	2	
tert-Butylbenzene		ND		ug/l	5.0	1.4	2	
o-Chlorotoluene		ND		ug/l	5.0	1.4	2	
p-Chlorotoluene		ND		ug/l	5.0	1.4	2	
1,2-Dibromo-3-chloroprop	Dane	ND		ug/l	5.0	1.4	2	
Hexachlorobutadiene		ND		ug/l	5.0	1.4	2	
Isopropylbenzene		ND		ug/l	5.0	1.4	2	
p-lsopropyltoluene		ND		ug/l	5.0	1.4	2	
Naphthalene		ND		ug/l	5.0	1.4	2	
•								

					Serial_No:01042316:58					
Project Name:	CORNERSTONE				Lab Nu	mber:	L2271764			
Project Number:	CORNERSTONE				Report	Date:	01/04/23			
		SAMP		S						
Lab ID: Client ID: Sample Location:	L2271764-02 MW-2A THIRD AVE BX	D			Date Col Date Rec Field Pre	ceived:	12/20/22 09:50 12/21/22 Not Specified			
Sample Depth:										
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab										
n-Propylbenzene		ND		ug/l	5.0	1.4	2			
1,2,3-Trichlorobenzene		ND		ug/l	5.0	1.4	2			
1,2,4-Trichlorobenzene		ND		ug/l	5.0	1.4	2			
1,3,5-Trimethylbenzene		ND		ug/l	5.0	1.4	2			
1,2,4-Trimethylbenzene		ND		ug/l	5.0	1.4	2			
1,4-Dioxane		ND		ug/l	500	120	2			
p-Diethylbenzene		ND		ug/l	4.0	1.4	2			
p-Ethyltoluene		ND		ug/l	4.0	1.4	2			
1,2,4,5-Tetramethylbenze	ene	ND		ug/l	4.0	1.1	2			

ND

ND

ug/l

ug/l

% Recovery

102

100

112

98

5.0

5.0

Qualifier

1.4

1.4

Acceptance Criteria

70-130 70-130

70-130

70-130

2 2

4-Bromofluorobenzene Dibromofluoromethane

1,2-Dichloroethane-d4

Ethyl ether

trans-1,4-Dichloro-2-butene

Surrogate

Toluene-d8

		Serial_No:01042316:58					
Project Name:	CORNERSTONE		Lab Number:	L2271764			
Project Number:	CORNERSTONE		Report Date:	01/04/23			
		SAMPLE RESULTS					
Lab ID: Client ID: Sample Location:	L2271764-03 MW-4 THIRD AVE BX		Date Collected: Date Received: Field Prep:	12/20/22 11:26 12/21/22 Not Specified			
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260D 12/29/22 23:50 PID						

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	28		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	2.8		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	2.6		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

						Serial_No	:01042316:58	
Project Name:	CORNERSTONE				Lab Nu	mber:	L2271764	
Project Number:	CORNERSTONE				Report	Date:	01/04/23	
-		SAMPI	E RESULTS	6	•			
Lab ID:	L2271764-03				Date Col	lected:	12/20/22 11:26	
Client ID:	MW-4				Date Red	ceived:	12/21/22	
Sample Location:	THIRD AVE BX				Field Pre	ep:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westboro	ugh Lab						
Trichloroethene		ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
Xylenes, Total		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total		ND		ug/l	2.5	0.70	1	
Dibromomethane		ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1	
Acrylonitrile		ND		ug/l	5.0	1.5	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
Vinyl acetate		ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethan	9	ND		ug/l	2.5	0.70	1	
Bromobenzene		ND		ug/l	2.5	0.70	1	
n-Butylbenzene		ND		ug/l	2.5	0.70	1	
sec-Butylbenzene		ND		ug/l	2.5	0.70	1	
tert-Butylbenzene		ND		ug/l	2.5	0.70	1	
o-Chlorotoluene		ND		ug/l	2.5 2.5	0.70 0.70	1	
1,2-Dibromo-3-chloroprop	ane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene	סמווס	ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l ug/l	2.5	0.70	1	
p-lsopropyltoluene		ND		ug/l	2.5	0.70	1	
Naphthalene		ND		ug/l	2.5	0.70	1	
				uy/i	2.0	0.70	I	

					Serial_No:01042316:58			
Project Name:	CORNERSTONE				Lab Nu	mber:	L2271764	
Project Number:	CORNERSTONE				Report	Date:	01/04/23	
		SAMP	LE RESULTS	6				
Lab ID:	L2271764-03				Date Co	llected:	12/20/22 11:26	
Client ID:	MW-4				Date Re	ceived:	12/21/22	
Sample Location:	THIRD AVE BX				Field Pre	ep:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
						MDL	Dilution ractor	
Volatile Organics b	oy GC/MS - Westboroug	h Lab				mbe		
Volatile Organics b	y GC/MS - Westboroug	h Lab ND		ug/l	2.5	0.70	1	
Ū	y GC/MS - Westboroug						1 1	

2.5

2.5

250

2.0

2.0

2.0

2.5

2.5

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

0.70

0.70

61.

0.70

0.70

0.54

0.70

0.70

1

1

1

1

1

1

1

1

ND

ND

ND

ND

ND

ND

ND

ND

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	112	70-130	
Dibromofluoromethane	102	70-130	

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

1,2,4,5-Tetramethylbenzene

trans-1,4-Dichloro-2-butene

1,4-Dioxane

p-Diethylbenzene

p-Ethyltoluene

Ethyl ether

			Serial_No:01042316:58		
Project Name:	CORNERSTONE		Lab Number:	L2271764	
Project Number:	CORNERSTONE		Report Date:	01/04/23	
		SAMPLE RESULTS			
Lab ID:	L2271764-04		Date Collected:	12/20/22 09:20	
Client ID:	MW-6		Date Received:	12/21/22	
Sample Location:	THIRD AVE BX		Field Prep:	Not Specified	
Sample Depth:					
Matrix:	Water				
Analytical Method:	1,8260D				
Analytical Date:	12/30/22 00:15				
Analyst:	PID				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	43		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name:	CORNERSTONE				Lab Nu	_	L2271764	
-								
Project Number:	CORNERSTONE	CAMD			Report	Date:	01/04/23	
		SAIVIPI	LE RESULTS	>				
Lab ID:	L2271764-04				Date Co		12/20/22 09:20	
Client ID:	MW-6				Date Re		12/21/22	
Sample Location:	THIRD AVE BX				Field Pre	ep:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborou	gh Lab						
Trichloroethene		0.81		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
Xylenes, Total		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total		ND		ug/l	2.5	0.70	1	
Dibromomethane		ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1	
Acrylonitrile		ND		ug/l	5.0	1.5	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
Vinyl acetate		ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone Bromochloromethane		ND ND		ug/l	5.0 2.5	1.0 0.70	1	
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l ug/l	2.0	0.65	1	
1,3-Dichloropropane		ND		ug/l	2.0	0.70	1	
1,1,1,2-Tetrachloroethane	2	ND		ug/l	2.5	0.70	1	
Bromobenzene	-	ND		ug/l	2.5	0.70	1	
n-Butylbenzene		ND		ug/l	2.5	0.70	1	
sec-Butylbenzene		ND		ug/l	2.5	0.70	1	
tert-Butylbenzene		ND		ug/l	2.5	0.70	1	
o-Chlorotoluene		ND		ug/l	2.5	0.70	1	
p-Chlorotoluene		ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloroprop	bane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1	
Naphthalene		ND		ug/l	2.5	0.70	1	

Serial_No:01042316:58

	Serial_No:01042316:58								
Project Name:	CORNERSTONE				Lab Nun	nber:	L2271764		
Project Number:	CORNERSTONE				Report I	Date:	01/04/23		
		SAMP		6					
Lab ID:	L2271764-04				Date Collected:		12/20/22 09:20		
Client ID:	MW-6				Date Rece	eived:	12/21/22		
Sample Location:	THIRD AVE BX				Field Prep):	Not Specified		
Sample Depth:									
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics b	oy GC/MS - Westboroug	h Lab							
n-Propylbenzene		ND		ug/l	2.5	0.70	1		

ug/l

% Recovery

105

101

113

102

2.5

2.5

2.5

2.5

250

2.0

2.0

2.0

2.5

2.5

Qualifier

0.70

0.70

0.70

0.70

61.

0.70

0.70

0.54

0.70

0.70

Acceptance Criteria

70-130

70-130 70-130

70-130

1

1

1

1

1

1

1

1

1

1

ND

ANALYTICAL

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

1,2,4,5-Tetramethylbenzene

trans-1,4-Dichloro-2-butene

1,2-Dichloroethane-d4

4-Bromofluorobenzene

Dibromofluoromethane

Surrogate

Toluene-d8

1,4-Dioxane

p-Diethylbenzene

p-Ethyltoluene

Ethyl ether

			Serial_N	o:01042316:58
Project Name:	CORNERSTONE		Lab Number:	L2271764
Project Number:	CORNERSTONE		Report Date:	01/04/23
		SAMPLE RESULTS		
Lab ID:	L2271764-05		Date Collected:	12/20/22 13:10
Client ID:	MW-7		Date Received:	12/21/22
Sample Location:	THIRD AVE BX		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260D			
Analytical Date:	12/30/22 01:07			
Analyst:	PID			
-				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	1.8		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.18	J	ug/l	0.50	0.16	1
Toluene	4.1		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

							0.01042310.36	
Project Name:	CORNERSTONE				Lab Nu	imber:	L2271764	
Project Number:	CORNERSTONE			_	Report	Date:	01/04/23	
		SAMP		S				
Lab ID:	L2271764-05				Date Co	llected:	12/20/22 13:10	
Client ID:	MW-7				Date Re	ceived:	12/21/22	
Sample Location:	THIRD AVE BX				Field Pre	ep:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	oy GC/MS - Westborou	igh Lab						
Trichloroethene		0.52		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
Xylenes, Total		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		100		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Tota		100		ug/l	2.5	0.70	1	
Dibromomethane		ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1	
Acrylonitrile		ND		ug/l	5.0	1.5	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND			5.0	1.0	1	
Acetone		6.6		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.0	1	
		ND		ug/l		1.9		
Vinyl acetate				ug/l	5.0		1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethan	e	ND		ug/l	2.5	0.70	1	
Bromobenzene		ND		ug/l	2.5	0.70	1	
n-Butylbenzene		ND		ug/l	2.5	0.70	1	
sec-Butylbenzene		ND		ug/l	2.5	0.70	1	
tert-Butylbenzene		ND		ug/l	2.5	0.70	1	
o-Chlorotoluene		ND		ug/l	2.5	0.70	1	
p-Chlorotoluene		ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloroprop	pane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1	
Naphthalene		ND		ug/l	2.5	0.70	1	

Serial_No:01042316:58

					Serial_No:01042316:58					
Project Name:	CORNERSTONE				Lab Nu	imber:	L2271764			
Project Number:	CORNERSTONE				Report	Date:	01/04/23			
		SAMP		6						
Lab ID:	L2271764-05				Date Col	llected:	12/20/22 13:10			
Client ID:	MW-7	Date Received:		ceived:	12/21/22					
Sample Location:	THIRD AVE BX		Field Prep:			ep:	Not Specified			
Sample Depth:										
Oumpie Deptil.										
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor			
Parameter	oy GC/MS - Westborough		Qualifier	Units	RL	MDL	Dilution Factor			
Parameter	by GC/MS - Westborough		Qualifier	Units ug/l	RL 2.5	MDL 0.70	Dilution Factor			
Parameter Volatile Organics b	by GC/MS - Westborough	n Lab	Qualifier							
Parameter Volatile Organics k n-Propylbenzene	by GC/MS - Westborough	Lab ND	Qualifier	ug/l	2.5	0.70	1			
Parameter Volatile Organics b n-Propylbenzene 1,2,3-Trichlorobenzene	by GC/MS - Westborough	ND ND	Qualifier	ug/l ug/l	2.5 2.5	0.70 0.70	1			
Parameter Volatile Organics k n-Propylbenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	by GC/MS - Westborough	ND ND ND ND	Qualifier	ug/l ug/l ug/l	2.5 2.5 2.5	0.70 0.70 0.70	1 1 1			

				A = = = = = = = = = = = = = = = = = = =				
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1		
Ethyl ether	ND		ug/l	2.5	0.70	1		
1,2,4,5-Tetramethylbenzene	0.86	J	ug/l	2.0	0.54	1		
p-Ethyltoluene	ND		ug/l	2.0	0.70	1		
p-Diethylbenzene	ND		ug/l	2.0	0.70	1		
			-					

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	117	70-130	
Dibromofluoromethane	98	70-130	

				Serial_No	0:01042316:58
Project Name:	CORNERSTONE			Lab Number:	L2271764
Project Number:	CORNERSTONE			Report Date:	01/04/23
			SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2271764-06 MW-8 THIRD AVE BX	D		Date Collected: Date Received: Field Prep:	12/20/22 12:40 12/21/22 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260D 12/30/22 03:42 PID				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	12	3.5	5
1,1-Dichloroethane	ND		ug/l	12	3.5	5
Chloroform	ND		ug/l	12	3.5	5
Carbon tetrachloride	ND		ug/l	2.5	0.67	5
1,2-Dichloropropane	ND		ug/l	5.0	0.68	5
Dibromochloromethane	ND		ug/l	2.5	0.74	5
1,1,2-Trichloroethane	ND		ug/l	7.5	2.5	5
Tetrachloroethene	830		ug/l	2.5	0.90	5
Chlorobenzene	ND		ug/l	12	3.5	5
Trichlorofluoromethane	ND		ug/l	12	3.5	5
1,2-Dichloroethane	ND		ug/l	2.5	0.66	5
1,1,1-Trichloroethane	ND		ug/l	12	3.5	5
Bromodichloromethane	ND		ug/l	2.5	0.96	5
trans-1,3-Dichloropropene	ND		ug/l	2.5	0.82	5
cis-1,3-Dichloropropene	ND		ug/l	2.5	0.72	5
1,3-Dichloropropene, Total	ND		ug/l	2.5	0.72	5
1,1-Dichloropropene	ND		ug/l	12	3.5	5
Bromoform	ND		ug/l	10	3.2	5
1,1,2,2-Tetrachloroethane	ND		ug/l	2.5	0.84	5
Benzene	ND		ug/l	2.5	0.80	5
Toluene	ND		ug/l	12	3.5	5
Ethylbenzene	ND		ug/l	12	3.5	5
Chloromethane	ND		ug/l	12	3.5	5
Bromomethane	ND		ug/l	12	3.5	5
Vinyl chloride	ND		ug/l	5.0	0.36	5
Chloroethane	ND		ug/l	12	3.5	5
1,1-Dichloroethene	ND		ug/l	2.5	0.84	5
trans-1,2-Dichloroethene	ND		ug/l	12	3.5	5

					ç	Serial_No	0:01042316:58
Project Name:	CORNERSTONE				Lab Nu		L2271764
Project Number:	CORNERSTONE				Report	Date:	01/04/23
··· , ·····	CONTENCTORE	SAMP	LE RESULTS				01/04/20
Lab ID:	L2271764-06	D			Date Col	lected.	12/20/22 12:40
Client ID:	MW-8	D			Date Red		12/21/22
Sample Location:	THIRD AVE BX				Field Pre		Not Specified
Sample Depth:		. .	o ""			MDI	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
volatile Organics t	by GC/MS - Westborou	ign Lab					
Trichloroethene		380		ug/l	2.5	0.88	5
1,2-Dichlorobenzene		ND		ug/l	12	3.5	5
1,3-Dichlorobenzene		ND		ug/l	12	3.5	5
1,4-Dichlorobenzene		ND		ug/l	12	3.5	5
Methyl tert butyl ether		ND		ug/l	12	3.5	5
p/m-Xylene		ND		ug/l	12	3.5	5
o-Xylene		ND		ug/l	12	3.5	5
Xylenes, Total		ND		ug/l	12	3.5	5
cis-1,2-Dichloroethene		ND		ug/l	12	3.5	5
1,2-Dichloroethene, Tota	l	ND		ug/l	12	3.5	5
Dibromomethane		ND		ug/l	25	5.0	5
1,2,3-Trichloropropane		ND		ug/l	12	3.5	5
Acrylonitrile		ND		ug/l	25	7.5	5
Styrene		ND		ug/l	12	3.5	5
Dichlorodifluoromethane		ND		ug/l	25	5.0	5
Acetone		ND		ug/l	25	7.3	5
Carbon disulfide		ND		ug/l	25	5.0	5
2-Butanone		ND		ug/l	25	9.7	5
Vinyl acetate		ND		ug/l	25	5.0	5
4-Methyl-2-pentanone		ND		ug/l	25	5.0	5
2-Hexanone		ND		ug/l	25	5.0	5
Bromochloromethane		ND		ug/l	12	3.5	5
2,2-Dichloropropane		ND		ug/l	12	3.5	5
1,2-Dibromoethane		ND		ug/l	10	3.2	5
1,3-Dichloropropane		ND		ug/l	12	3.5	5
1,1,1,2-Tetrachloroethan	e	ND		ug/l	12	3.5	5
Bromobenzene		ND		ug/l	12	3.5	5
n-Butylbenzene		ND		ug/l	12	3.5	5
sec-Butylbenzene		ND		ug/l	12	3.5	5
tert-Butylbenzene		ND		ug/l	12	3.5	5
o-Chlorotoluene		ND		ug/l	12	3.5	5
p-Chlorotoluene		ND		ug/l	12	3.5	5
1,2-Dibromo-3-chloropro	pane	ND		ug/l	12	3.5	5
Hexachlorobutadiene		ND		ug/l	12	3.5	5
Isopropylbenzene		ND		ug/l	12	3.5	5
p-Isopropyltoluene		ND		ug/l	12	3.5	5
Naphthalene		ND		ug/l	12	3.5	5

	Serial_No:01042316:58								
Project Name:	CORNERSTONE				Lab Number: L2271764				
Project Number:	CORNERSTONE				Report	Date:	01/04/23		
		SAMP	PLE RESULT	S					
Lab ID:	L2271764-06	D			Date Col	lected:	12/20/22 12:40		
Client ID:	MW-8					ceived:	12/21/22		
Sample Location:	THIRD AVE BX				Field Pre	p:	Not Specified		
Sample Depth:									
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics b	by GC/MS - Westborou	ugh Lab							
n-Propylbenzene		ND		ug/l	12	3.5	5		
1,2,3-Trichlorobenzene		ND		ug/l	12	3.5	5		
1,2,4-Trichlorobenzene		ND		ug/l	12	3.5	5		
1,3,5-Trimethylbenzene		ND		ug/l	12	3.5	5		
1,2,4-Trimethylbenzene		ND		ug/l	12	3.5	5		
1,4-Dioxane		ND		ug/l	1200	300	5		
p-Diethylbenzene		ND		ug/l	10	3.5	5		

s-1,4-Dichloro-2-butene	ND	ug/l	12	3.5	5
Surrogate		% Recovery	Qualifier	Acceptan Criteria	
1,2-Dichloroethane-d4		101		70-13	0
Toluene-d8		102		70-13	0
4-Bromofluorobenzene		112		70-13	0
Dibromofluoromethane		98		70-13	0

ug/l

ug/l

ug/l

10

10

12

3.5

2.7

3.5

ND

ND

ND

5

5

5

p-Ethyltoluene

Ethyl ether

1,2,4,5-Tetramethylbenzene

			Serial_N	0:01042316:58
Project Name:	CORNERSTONE		Lab Number:	L2271764
Project Number:	CORNERSTONE		Report Date:	01/04/23
		SAMPLE RESULTS		
Lab ID:	L2271764-07		Date Collected:	12/20/22 10:36
Client ID:	MW-10		Date Received:	12/21/22
Sample Location:	THIRD AVE BX		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260D			
Analytical Date:	12/30/22 00:41			
Analyst:	PID			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	6.1		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Number:CORNERSTONEReport Date:01/04/23Lab ID:L2271764-07Date Collected:12/20/22 10:36Client ID:MW-10Date Received:12/21/22			Serial_No:01042316:5					0:01042316:58
Lab ID: Lab ID: Lab ID: Cleart ID: MU4/10 Sample Location: THIRD AVE BX Sample Location: ThiRD	Project Name:	CORNERSTONE				Lab Nu	mber:	L2271764
SAMPLE FUSURELab IC:L221764-07 MUTURD AVE BXSubsection <td>Project Number:</td> <td>CORNERSTONE</td> <td></td> <td></td> <td></td> <td>Report</td> <td>Date:</td> <td>01/04/23</td>	Project Number:	CORNERSTONE				Report	Date:	01/04/23
Client Dic Sample LocationMY-10 THRD AVE BXData <t< td=""><td>-</td><td></td><td>SAMP</td><td></td><td>6</td><td>-</td><td></td><td></td></t<>	-		SAMP		6	-		
ParameterResultOutilieNo.N	Lab ID: Client ID: Sample Location:	MW-10				Date Ree	ceived:	12/21/22
Name NM N			. .	o				
Technoretheme ND ug/l 0.50 0.18 1.2-Dichlorobenzene ND ug/l 2.5 0.70 1 1.3-Dichlorobenzene ND ug/l 2.5 0.70 1 1.4-Dichlorobenzene ND ug/l 2.5 0.70 1 1.4-Dichlorobenzene ND ug/l 2.5 0.70 1 1.4-Dichlorobenzene ND ug/l 2.5 0.70 1 ofwly for buly febr ND ug/l 2.5 0.70 1 ofwly for buly febr ND ug/l 2.5 0.70 1 ofwly for buly febr ND ug/l 2.5 0.70 1 2.5 0.70 1 1 1 1 3.12-Dichloroethene ND ug/l 5.0 1.0 1 1.2-Dichloroethene ND ug/l 5.0 1.0 1 1.2-Dichloroethene ND ug/l 5.0 1.0 1				Qualifier	Units	RL	MDL	Dilution Factor
L2.bichkorobenzene ND ug1 2.5 0.70 1 1.3.Dicklorobenzene ND ug1 2.5 0.70 1 1.4.Dicklorobenzene ND ug1 2.5 0.70 1 1.4.Dicklorobenzene ND ug1 2.5 0.70 1 pfm-Xylene ND ug1 2.5 0.70 1 o-Xylene ND ug1 2.5 0.70 1 o-Xylene ND ug1 2.5 0.70 1 o-Xylene ND ug1 2.5 0.70 1 0.5 0.70 1 0 1 0 1 1.2.Dicklorobenen ND ug1 5.0 1.0 1 2.3.Tricklorophane ND ug1 5.0 1.0 1 2.4.rednofiluoromethane ND ug1 5.0 1.0 1 2.4.rednore ND ug1 5.0 1.0 1 2.4.rednore<	Volatile Organics b	by GC/MS - Westborou	gh Lab					
1.4-Dichlorobenzene ND ug1 2.5 0.70 1 1.4-Dichlorobenzene ND ug1 2.5 0.70 1 Mehyl terb buyl ether ND ug1 2.5 0.70 1 or-Xylane ND ug1 2.5 0.70 1 or-Xylane ND ug1 2.5 0.70 1 Xyloros, Tolal ND ug1 2.5 0.70 1 1.2-Dichlorosethene, Total ND ug1 2.5 0.70 1 1.2-Dichlorosethene, Total ND ug1 2.5 0.70 1 1.2-Dichlorosethene, Total ND ug1 5.0 1.0 1 1.2-Dichlorosethene, Total ND ug1 5.0 1.0 1 Dichorodifluoromethane ND ug1 5.0 1.0 1 Actone ND ug1 5.0 1.0 1 Olchorodifluoromethane ND ug1 5.0 1.0 1 Viryl acetate ND ug1 5.0 1.0 1	Trichloroethene		ND		ug/l	0.50	0.18	1
A-Bicklorobenzene ND ug1 2.5 0.70 1 Methyl knt bulyl othor ND ug1 2.5 0.70 1 pim-Xylene ND ug1 2.5 0.70 1 cxXylene ND ug1 2.5 0.70 1 Xylenes, Total ND ug1 2.5 0.70 1 Xylenes, Total ND ug1 2.5 0.70 1 1,2-Dichloroethene ND ug1 2.5 0.70 1 1,2-Dichloroethene, Total ND ug1 2.5 0.70 1 1,2-Dichloroethene ND ug1 2.5 0.70 1 1,2-Dichloroethene ND ug1 5.0 1.5 1 1,2-Dichloroethene ND ug1 5.0 1.6 1 1,2-Dichloroethene ND ug1 5.0 1.0 1 1,2-Dichloroethene ND ug1 5.0 1.0 1	1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1
ND ug1 2.5 0.70 1 pim-Xylene ND ug1 2.5 0.70 1 o-Xylene ND ug1 2.5 0.70 1 xylenes, Total ND ug1 2.5 0.70 1 si-1.20:chloroethene ND ug1 2.5 0.70 1 1.2-Dichloroethene, Total ND ug1 2.5 0.70 1 Dibromomethane ND ug1 2.5 0.70 1 2.3-Trichloroethene, Total ND ug1 2.5 0.70 1 2.4-Strichloroethene ND ug1 2.5 0.70 1 2.3-Trichloroethene ND ug1 5.0 1.0 1 2.5-Strichloroethene ND ug1 5.0 1.0 1 2.4-Strichloroethene ND ug1 5.0 1.0 1 2.5-Conco 1.5 1.0 1 1 Dichorodifluoromethane ND	1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1
ND ugl 2.5 0.70 1 ox/ylene ND ugl 2.5 0.70 1 Xylenes, Total ND ugl 2.5 0.70 1 cis-1,2-bichloroethene ND ugl 2.5 0.70 1 1,2-bichloroethene, Total ND ugl 2.5 0.70 1 1,2-bichloroethene, Total ND ugl 2.5 0.70 1 1,2-bichloroethene, Total ND ugl 2.5 0.70 1 Dibronomethane ND ugl 2.5 0.70 1 Acrytonitile ND ugl 5.0 1.0 1 Action ND ugl 5.0 1.0 1 Action disulfide ND ugl 5.0 1.0 1 2-Buanone ND ugl 5.0 1.0 1 2-Hexanone ND ugl 5.0 1.0 1 2-Dichoronoethane ND <td>1,4-Dichlorobenzene</td> <td></td> <td>ND</td> <td></td> <td>ug/l</td> <td>2.5</td> <td>0.70</td> <td>1</td>	1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1
oxylenes ND ug1 2.5 0.70 1 Xylenes, Total ND ug1 2.5 0.70 1 cis-1.2-Dichloroethene, Total ND ug1 2.5 0.70 1 1.2-Dichloroethene, Total ND ug1 2.5 0.70 1 1.2-Dichloroethene, Total ND ug1 5.0 1.0 1 1.2-Dichloroethene, Total ND ug1 5.0 1.0 1 1.2.3-Trichloropropane ND ug1 5.0 1.0 1 Acrytonitrile ND ug1 5.0 1.0 1 Strene ND ug1 5.0 1.0 1 Carbon disulfde ND ug1 5.0 1.0 1 Carbon disulfde ND ug1 5.0 1.0 1 2-Butonone ND ug1 5.0 1.0 1 2-Butonone ND ug1 2.0 0.66 1	Methyl tert butyl ether		ND		ug/l	2.5	0.70	1
ND ug1 2.5 0.70 1 cis-1,2-Dichloroethene ND ug1 2.5 0.70 1 1,2-Dichloroethene, Total ND ug1 2.5 0.70 1 Dbrommethane ND ug1 5.0 1.0 1 2.3-Trichloropropane ND ug1 5.0 1.0 1 Acylontrile ND ug1 5.0 1.0 1 Acylontrile ND ug1 5.0 1.0 1 Actone ND ug1 5.0 1.0 1 Actone ND ug1 5.0 1.0 1 Actone ND ug1 5.0 1.0 1 Viryl acetate ND ug1 5.0 1.0 1 Viryl acetate ND ug1 5.0 1.0 1 2-Butanone ND ug1 5.0 7.0 1 1.2-Ditoromethane ND ug1	p/m-Xylene		ND		ug/l	2.5	0.70	1
ninit np np< np np np np np np np np np< np np< np np< np np <t< td=""><td>o-Xylene</td><td></td><td>ND</td><td></td><td>ug/l</td><td>2.5</td><td>0.70</td><td>1</td></t<>	o-Xylene		ND		ug/l	2.5	0.70	1
1.2-Dichloroethene, Total ND ug/l 2.5 0.70 1 Dibromomethane ND ug/l 5.0 1.0 1 1.2.3-Trichloropropane ND ug/l 2.5 0.70 1 Acryfontrife ND ug/l 5.0 1.5 1 Styrene ND ug/l 5.0 1.0 1 Actorintrife ND ug/l 5.0 1.0 1 Actorne ND ug/l 5.0 1.0 1 Actorne ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 Yinyl acetate ND ug/l 5.0 1.0 1 Heamone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1.2-Dibromoethane	Xylenes, Total		ND		ug/l	2.5	0.70	1
Dicromonethane ND ug/l 5.0 1.0 1 1.2.3-Trichloropropane ND ug/l 2.5 0.70 1 Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 5.0 1.0 1 Styrene ND ug/l 5.0 1.0 1 Dichloroffluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 2.5 0.70 1 2-Dichoropepane ND ug/l 2.5 0.70 1 1.1,1.2-Tetrachoroethane ND ug/l 2.5 0.70 1 1.1,1.2-Tetr	cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1
1.2.3-Trichloropropane ND ug/l 2.5 0.70 1 Acrytonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 5.0 1.0 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Dichloropropane ND ug/l 2.5 0.70 1 1.1.1.2-Etrachloroethane ND ug/l 2.5 0.70 1 1.1.1.2-Etrachloroethane ND ug/l 2.5 0.70 1 1.1.1.	1,2-Dichloroethene, Tota	l	ND		ug/l	2.5	0.70	1
Arylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Ditromoethane ND ug/l 2.5 0.70 1 1,1,1_2-Tetrachloroethane ND ug/l 2.5 0.70 1 1,1,1_2-Tetrachloroethan	Dibromomethane		ND		ug/l	5.0	1.0	1
Syrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pertanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromorpane ND ug/l 2.5 0.70 1 1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Brom	1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentianone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Dichloropropane ND ug/l 2.5 0.70 1 2.2-Dichloropropane ND ug/l 2.5 0.70 1 1.3-Dichloropropane ND ug/l 2.5 0.70 1 1.1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1	Acrylonitrile		ND		ug/l	5.0	1.5	1
Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Dichloropropane ND ug/l 2.5 0.70 1 2-Dichloropropane ND ug/l 2.5 0.70 1 1.3-Dichloropropane ND ug/l 2.5 0.70 1 1.1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 exc-Butylbenzene ND ug/l 2.5 0.70 1 o-Chloro	Styrene		ND		ug/l	2.5	0.70	1
Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 2-Dichloroptropane ND ug/l 2.5 0.70 1 1,2-Dibromeethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloropethane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloropethane ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1	Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1
Participant ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 ecButylbenzene ND ug/l 2.5 0.70 1 o-Chlo	Acetone		ND		ug/l	5.0	1.5	1
ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1-2-Tetrachloroethane ND ug/l 2.5 0.70 1 1,1-1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 e-Seu-Butylbenzene ND ug/l 2.5 0.70 1 <td< td=""><td>Carbon disulfide</td><td></td><td>ND</td><td></td><td>ug/l</td><td>5.0</td><td>1.0</td><td>1</td></td<>	Carbon disulfide		ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1	2-Butanone		ND		ug/l	5.0	1.9	1
Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2.2-Dichloropropane ND ug/l 2.5 0.70 1 2.2-Dichloropropane ND ug/l 2.5 0.70 1 1.2-Dibromoethane ND ug/l 2.5 0.70 1 1.3-Dichloropropane ND ug/l 2.5 0.70 1 1.3-Dichloropropane ND ug/l 2.5 0.70 1 1.1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 ec-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 <td>Vinyl acetate</td> <td></td> <td>ND</td> <td></td> <td>ug/l</td> <td>5.0</td> <td>1.0</td> <td>1</td>	Vinyl acetate		ND		ug/l	5.0	1.0	1
Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70	4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1
Z.2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 etr-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70	2-Hexanone		ND		ug/l	5.0	1.0	1
1,2-Dibromoethane ND ug/l 2.0 0.65 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 etrt-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l <td< td=""><td>Bromochloromethane</td><td></td><td>ND</td><td></td><td>ug/l</td><td>2.5</td><td>0.70</td><td>1</td></td<>	Bromochloromethane		ND		ug/l	2.5	0.70	1
1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Intertere ND ug/l 2.5 0.70 <	2,2-Dichloropropane		ND		ug/l	2.5	0.70	1
1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1	1,2-Dibromoethane		ND		ug/l	2.0	0.65	1
Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1	1,3-Dichloropropane		ND		ug/l	2.5	0.70	1
n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1	1,1,1,2-Tetrachloroethan	e	ND		ug/l	2.5	0.70	1
sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1	Bromobenzene		ND		ug/l	2.5	0.70	1
tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-lsopropyltoluene ND ug/l 2.5 0.70 1	n-Butylbenzene		ND		ug/l	2.5	0.70	1
o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-lsopropyltoluene ND ug/l 2.5 0.70 1	sec-Butylbenzene		ND		ug/l	2.5	0.70	1
p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-lsopropyltoluene ND ug/l 2.5 0.70 1	tert-Butylbenzene		ND		ug/l	2.5	0.70	1
ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	o-Chlorotoluene		ND		ug/l	2.5	0.70	1
Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	p-Chlorotoluene		ND		ug/l	2.5	0.70	1
Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	1,2-Dibromo-3-chloroprop	pane	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene ND ug/l 2.5 0.70 1	Hexachlorobutadiene		ND		ug/l	2.5	0.70	1
	Isopropylbenzene		ND		ug/l	2.5	0.70	1
Naphthalene ND ug/l 2.5 0.70 1	p-Isopropyltoluene		ND		ug/l	2.5	0.70	1
	Naphthalene		ND		ug/l	2.5	0.70	1

					Serial_No:01042316:58			
Project Name:	CORNERSTONE				Lab Nu	umber:	L2271764	
Project Number:	CORNERSTONE				Report	Date:	01/04/23	
		SAMP	LE RESULTS	5				
Lab ID:	L2271764-07				Date Co	llected:	12/20/22 10:36	
Client ID:	MW-10				Date Re	ceived:	12/21/22	
Sample Location:	THIRD AVE BX				Field Pre	ep:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	oy GC/MS - Westboroug	h Lab						
n-Propylbenzene		ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1	

2.5

250

2.0

2.0

2.0

2.5

2.5

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

0.70

61.

0.70

0.70

0.54

0.70

0.70

1

1

1

1

1

1

1

ND

ND

ND

ND

ND

ND

ND

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	105	70-130
Toluene-d8	103	70-130
4-Bromofluorobenzene	113	70-130
Dibromofluoromethane	100	70-130

1,2,4-Trimethylbenzene

1,2,4,5-Tetramethylbenzene

trans-1,4-Dichloro-2-butene

1,4-Dioxane

p-Diethylbenzene

p-Ethyltoluene

Ethyl ether

				Serial_N	0:01042316:58
Project Name:	CORNERSTONE			Lab Number:	L2271764
Project Number:	CORNERSTONE			Report Date:	01/04/23
			SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2271764-08 MW-XX THIRD AVE BX	D		Date Collected: Date Received: Field Prep:	12/20/22 00:00 12/21/22 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260D 12/30/22 03:16 PID				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	5.0	1.4	2
1,1-Dichloroethane	ND		ug/l	5.0	1.4	2
Chloroform	ND		ug/l	5.0	1.4	2
Carbon tetrachloride	ND		ug/l	1.0	0.27	2
1,2-Dichloropropane	ND		ug/l	2.0	0.27	2
Dibromochloromethane	ND		ug/l	1.0	0.30	2
1,1,2-Trichloroethane	ND		ug/l	3.0	1.0	2
Tetrachloroethene	210		ug/l	1.0	0.36	2
Chlorobenzene	ND		ug/l	5.0	1.4	2
Trichlorofluoromethane	ND		ug/l	5.0	1.4	2
1,2-Dichloroethane	ND		ug/l	1.0	0.26	2
1,1,1-Trichloroethane	ND		ug/l	5.0	1.4	2
Bromodichloromethane	ND		ug/l	1.0	0.38	2
trans-1,3-Dichloropropene	ND		ug/l	1.0	0.33	2
cis-1,3-Dichloropropene	ND		ug/l	1.0	0.29	2
1,3-Dichloropropene, Total	ND		ug/l	1.0	0.29	2
1,1-Dichloropropene	ND		ug/l	5.0	1.4	2
Bromoform	ND		ug/l	4.0	1.3	2
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.33	2
Benzene	ND		ug/l	1.0	0.32	2
Toluene	ND		ug/l	5.0	1.4	2
Ethylbenzene	ND		ug/l	5.0	1.4	2
Chloromethane	ND		ug/l	5.0	1.4	2
Bromomethane	ND		ug/l	5.0	1.4	2
Vinyl chloride	ND		ug/l	2.0	0.14	2
Chloroethane	ND		ug/l	5.0	1.4	2
1,1-Dichloroethene	ND		ug/l	1.0	0.34	2
trans-1,2-Dichloroethene	ND		ug/l	5.0	1.4	2

Serial_No:010423163 Project Name: CORNERSTONE Lab Number: L22717 Project Number: CORNERSTONE Report Date: 01/04/2 SAMPLE RESULTS Content of the second secon	
Project Number: CORNERSTONE Report Date: 01/04/2	764
	20
Lab ID: L2271764-08 D Date Collected: 12/20/22	00.00
Client ID: MW-XX Date Received: 12/21/22	00.00
Sample Location: THIRD AVE BX Field Prep: Not Speci	ified
Sample Depth:	
Parameter Result Qualifier Units RL MDL Dilution Fi	actor
Volatile Organics by GC/MS - Westborough Lab	
Trichloroethene 9.4 ug/l 1.0 0.35 2	
1,2-Dichlorobenzene ND ug/l 5.0 1.4 2	
1,3-Dichlorobenzene ND ug/l 5.0 1.4 2	
1,4-Dichlorobenzene ND ug/l 5.0 1.4 2	
Methyl tert butyl ether ND ug/l 5.0 1.4 2	
p/m-Xylene ND ug/l 5.0 1.4 2	
o-Xylene ND ug/l 5.0 1.4 2	
Xylenes, Total ND ug/l 5.0 1.4 2	
cis-1,2-Dichloroethene ND ug/I 5.0 1.4 2	
1,2-Dichloroethene, Total ND ug/l 5.0 1.4 2	
Dibromomethane ND ug/I 10 2.0 2	
1,2,3-Trichloropropane ND ug/l 5.0 1.4 2	
Acrylonitrile ND ug/l 10 3.0 2 Styrene ND ug/l 5.0 1.4 2	
Carbon disulfide ND ug/l 10 2.0 2 2-Butanone ND ug/l 10 3.9 2	
Vinyl acetate ND ug/l 10 2.0 2	
4-Methyl-2-pentanone ND ug/l 10 2.0 2	
2-Hexanone ND ug/l 10 2.0 2	
BromochloromethaneNDug/l5.01.42	
2,2-Dichloropropane ND ug/l 5.0 1.4 2	
1,2-Dibromoethane ND ug/l 4.0 1.3 2	
1,3-Dichloropropane ND ug/l 5.0 1.4 2	
1,1,1,2-Tetrachloroethane ND ug/l 5.0 1.4 2	
Bromobenzene ND ug/l 5.0 1.4 2	
n-Butylbenzene ND ug/l 5.0 1.4 2	
sec-Butylbenzene ND ug/l 5.0 1.4 2	
tert-Butylbenzene ND ug/l 5.0 1.4 2	
o-Chlorotoluene ND ug/l 5.0 1.4 2	
p-Chlorotoluene ND ug/l 5.0 1.4 2	
1,2-Dibromo-3-chloropropane ND ug/l 5.0 1.4 2	
HexachlorobutadieneNDug/l5.01.42	
Isopropylbenzene ND ug/l 5.0 1.4 2	
p-Isopropyltoluene ND ug/l 5.0 1.4 2	
Naphthalene ND ug/l 5.0 1.4 2	

						Serial_No	0:01042316:58	
Project Name:	CORNERSTONE				Lab Nu	mber:	L2271764	
Project Number:	CORNERSTONE				Report	Date:	01/04/23	
		SAN		S				
Lab ID: Client ID: Sample Location:	L2271764-08 MW-XX THIRD AVE BX	D			Date Co Date Re Field Pre	ceived:	12/20/22 00:00 12/21/22 Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	oy GC/MS - Westborou	ugh Lab						
n-Propylbenzene		ND		ug/l	5.0	1.4	2	
1,2,3-Trichlorobenzene		ND		ug/l	5.0	1.4	2	
1,2,4-Trichlorobenzene		ND		ug/l	5.0	1.4	2	
1,3,5-Trimethylbenzene		ND		ug/l	5.0	1.4	2	
1,2,4-Trimethylbenzene		ND		ug/l	5.0	1.4	2	
1,4-Dioxane		ND		ug/l	500	120	2	
p-Diethylbenzene		ND		ug/l	4.0	1.4	2	
p-Ethyltoluene		ND		ug/l	4.0	1.4	2	

4.0

5.0

5.0

Qualifier

ug/l

ug/l

ug/l

% Recovery

102

101

114

98

1.1

1.4

1.4

Acceptance Criteria

> 70-130 70-130

> 70-130

70-130

ND

ND

ND

4-Bromofluorobenzene Dibromofluoromethane

1,2-Dichloroethane-d4

1,2,4,5-Tetramethylbenzene

trans-1,4-Dichloro-2-butene

Surrogate

Toluene-d8

Ethyl ether

2

2

2

		Serial_N	0:01042316:58
CORNERSTONE		Lab Number:	L2271764
CORNERSTONE		Report Date:	01/04/23
	SAMPLE RESULTS		
L2271764-09		Date Collected:	12/20/22 00:00
TRIP BLANK		Date Received:	12/21/22
THIRD AVE BX		Field Prep:	Not Specified
Water			
1,8260D			
12/29/22 22:06			
PID			
	CORNERSTONE L2271764-09 TRIP BLANK THIRD AVE BX Water 1,8260D 12/29/22 22:06	CORNERSTONE L2271764-09 TRIP BLANK THIRD AVE BX Water 1,8260D 12/29/22 22:06	CORNERSTONE Lab Number: CORNERSTONE SAMPLE RESULTS L2271764-09 TRIP BLANK THIRD AVE BX Water 1,8260D 12/29/22 22:06

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

					:	Serial_No	:01042316:58
Project Name:	CORNERSTONE				Lab Nu	mber:	L2271764
Project Number:	CORNERSTONE				Report	Date:	01/04/23
-	-	SAMPI		3	•		
Lab ID: Client ID: Sample Location:	L2271764-09 TRIP BLANK THIRD AVE BX				Date Col Date Re Field Pre	ceived:	12/20/22 00:00 12/21/22 Not Specified
Sample Depth: Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
	oy GC/MS - Westborou			•••••			
volatile Organios c							
Trichloroethene		ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1
p/m-Xylene		ND		ug/l	2.5	0.70	1
o-Xylene		ND		ug/l	2.5	0.70	1
Xylenes, Total		ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Tota	l	ND		ug/l	2.5	0.70	1
Dibromomethane		ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1
Acrylonitrile		ND		ug/l	5.0	1.5	1
Styrene		ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1
Acetone		ND		ug/l	5.0	1.5	1
Carbon disulfide		ND		ug/l	5.0	1.0	1
2-Butanone		ND		ug/l	5.0	1.9	1
Vinyl acetate		ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1
2-Hexanone		ND		ug/l	5.0	1.0	1
Bromochloromethane		ND		ug/l	2.5	0.70	1
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethan	e	ND		ug/l	2.5	0.70	1
Bromobenzene		ND		ug/l	2.5	0.70	1
n-Butylbenzene		ND		ug/l	2.5	0.70	1
sec-Butylbenzene		ND		ug/l	2.5	0.70	1
tert-Butylbenzene		ND		ug/l	2.5	0.70	1
o-Chlorotoluene		ND		ug/l	2.5	0.70	1
p-Chlorotoluene		ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloroprop	pane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1
Isopropylbenzene		ND		ug/l	2.5	0.70	1
p-lsopropyltoluene		ND		ug/l	2.5	0.70	1
Naphthalene		ND		ug/l	2.5	0.70	1
				~9′'			

					:	Serial_No	0:01042316:58	
Project Name:	CORNERSTONE				Lab Nu	mber:	L2271764	
Project Number:	CORNERSTONE				Report	Date:	01/04/23	
		SAMP		6				
Lab ID:	L2271764-09				Date Col	lected:	12/20/22 00:00	
Client ID:	TRIP BLANK				Date Red	ceived:	12/21/22	
Sample Location:	THIRD AVE BX				Field Pre	ep:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	oy GC/MS - Westboroug	h Lab						
n-Propylbenzene		ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1	

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

% Recovery

ND

ND

ND

ND

ND

ND

ND

ND

ND

1,2-Dichloroethane-d4	102	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	112	70-130
Dibromofluoromethane	100	70-130

0.70

0.70

0.70

61.

0.70

0.70

0.54

0.70

0.70

Acceptance Criteria

2.5

2.5

2.5

250

2.0

2.0

2.0

2.5

2.5

Qualifier

1

1

1

1

1

1

1

1

1

1,2,4-Trichlorobenzene

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

1,2,4,5-Tetramethylbenzene

trans-1,4-Dichloro-2-butene

Surrogate

1,4-Dioxane

p-Diethylbenzene

p-Ethyltoluene

Ethyl ether

			Serial_N	0:01042316:58
Project Name:	CORNERSTONE		Lab Number:	L2271764
Project Number:	CORNERSTONE		Report Date:	01/04/23
		SAMPLE RESULTS		
Lab ID:	L2271764-10		Date Collected:	12/20/22 14:00
Client ID:	FIELD BLANK 12/20		Date Received:	12/21/22
Sample Location:	THIRD AVE BX		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260D			
Analytical Date:	12/29/22 21:40			
Analyst:	PID			
-				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westh	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

					ç	Serial_No	:01042316:58	
Project Name:	CORNERSTONE				Lab Nu	mber:	L2271764	
Project Number:	CORNERSTONE				Report	Date:	01/04/23	
,		SAMP	LE RESULTS	5			01/01/20	
Lab ID:	L2271764-10				Date Col	lected:	12/20/22 14:00	
Client ID:	FIELD BLANK 12/20				Date Rec		12/21/22	
Sample Location:	THIRD AVE BX				Field Pre		Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough	Lab						
Trichloroethene		ND			0.50	0.18	1	
1,2-Dichlorobenzene		ND		ug/l	0.50 2.5	0.18	1	
1,3-Dichlorobenzene		ND		ug/l ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
Xylenes, Total		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total		ND		ug/l	2.5	0.70	1	
Dibromomethane		ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1	
Acrylonitrile		ND		ug/l	5.0	1.5	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
Vinyl acetate		ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethane	9	ND		ug/l	2.5	0.70	1	
Bromobenzene		ND		ug/l	2.5	0.70	1	
n-Butylbenzene		ND		ug/l	2.5	0.70	1	
sec-Butylbenzene		ND		ug/l	2.5	0.70	1	
tert-Butylbenzene		ND		ug/l	2.5	0.70	1	
o-Chlorotoluene		ND		ug/l	2.5	0.70	1	
p-Chlorotoluene		ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloroprop	bane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1	
Naphthalene		ND		ug/l	2.5	0.70	1	

					;	Serial_No	:01042316:58	
Project Name:	CORNERSTONE				Lab Nu	mber:	L2271764	
Project Number:	CORNERSTONE				Report	Date:	01/04/23	
		SAMPL	LE RESULTS	5				
Lab ID:	L2271764-10				Date Col	llected:	12/20/22 14:00	
Client ID:	FIELD BLANK 12/20				Date Ree	ceived:	12/21/22	
Sample Location:	THIRD AVE BX				Field Pre	ep:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough	Lab						
n-Propylbenzene		ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene		ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene		ND		ug/l	2.5	0.70	1	
1,4-Dioxane		ND		ug/l	250	61.	1	
p-Diethylbenzene		ND		ug/l	2.0	0.70	1	
p-Ethyltoluene		ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenze	ene	ND		ug/l	2.0	0.54	1	
Ethyl ether		ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-bute	ne	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	111	70-130	
Dibromofluoromethane	99	70-130	

Project Name:CORNERSTONEProject Number:CORNERSTONE

 Lab Number:
 L2271764

 Report Date:
 01/04/23

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260DAnalytical Date:12/29/22 21:14Analyst:AJK

arameter	Result	Qualifier Units	s RL	MDL
olatile Organics by GC/MS - V	Westborough Lab	o for sample(s):	01-10 Batch:	WG1729632-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

Project Name:CORNERSTONEProject Number:CORNERSTONE

 Lab Number:
 L2271764

 Report Date:
 01/04/23

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260DAnalytical Date:12/29/22 21:14Analyst:AJK

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lat	o for sample(s):	01-10 Batch:	WG1729632-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70

ug/l

ug/l

2.5

2.5

0.70

0.70

ND

ND

sec-Butylbenzene

tert-Butylbenzene

Project Name:	CORNERSTONE
Project Number:	CORNERSTONE

 Lab Number:
 L2271764

 Report Date:
 01/04/23

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260D
Analytical Date:	12/29/22 21:14
Analyst:	AJK

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	01-10 Batch:	WG1729632-5
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Hexachlorobutadiene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
1,4-Dioxane	ND	ug/l	250	61.
p-Diethylbenzene	ND	ug/l	2.0	0.70
p-Ethyltoluene	ND	ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54
Ethyl ether	ND	ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70

	Acceptance			
%Recovery Qualifier	Criteria			
101	70-130			
102	70-130			
112	70-130			
99	70-130			
	%Recovery Qualifier 101 102 112 112			

Value Organics by GC/MS - Westborough Lab Associated sample(s): 01-10 Batch: WG1729632-3 WG1729632-4 Methylene chloride 100 100 70-130 10 20 1,1-Dichloroethane 110 100 70-130 10 20 Chloroform 100 99 70-130 1 20 Chorototh 100 63-132 0 20 12-Dichloroppane 100 70-130 0 20 Dicromochloromethane 97 98 63-130 1 20 Tetrachloroethane 96 90 70-130 0 20 Tetrachloroethane 96 99 70-130 0 20 Tetrachloroethane 96 90 70-130 0 20 Tetrachloroethane 92 87 62-150 6 20 1,1,2-Tichloroethane 100 100 67-130 0 20 1,1,1-Tichloroethane 100 6100 6100	Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
1,1-Deckloroethane 110 100 70-130 10 20 Chloroform 100 99 70-130 1 20 Carbon tetrachloride 100 100 63-132 0 20 1,2-Dichloropropane 100 100 70-130 0 20 Diomochloromethane 97 98 63-130 1 20 1,12-Tinchloroethane 96 70-130 0 20 Tetrachloroethane 96 90 70-130 0 20 Chlorobenzene 94 91 75-130 3 20 Tirchloroethane 92 87 62-150 6 20 1,2-Dichloroethane 100 100 70-130 0 20 1,1-Dichloroethane 100 100 67-130 0 20 1,1-Dichloroethane 100 67-130 0 20 20 1,1-Dichloropropene 96 94 70-130 2 20	Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-10 Batch:	WG1729632-3	WG1729632-4			
Chloroform 100 99 70-130 1 20 Carbon tetrachloride 100 100 63-132 0 20 1.2-Dichloropropane 100 100 70-130 0 20 Dioromethane 97 98 63-130 1 20 1,1.2-Trichloroethane 96 96 70-130 0 20 Tetrachloroethane 96 90 70-130 0 20 Chlorobenzene 94 91 75-130 3 20 Trichloroethane 100 00 70-130 6 20 1.2-Dichloroethane 100 100 70-130 6 20 1.2-Dichloroethane 100 100 70-130 0 20 1.1.1-Trichloroethane 100 100 67-130 0 20 1.3-Dichloropropene 96 94 70-130 2 20 icia.1-3-Dichloropropene 96 94 70-130 2 20	Methylene chloride	100		100		70-130	0		20
Carbon tetrachloride10010063-1320201.2-Dichloropropane10010070-130020Dibromochloromethane979863-1301201.1,2-Trichloroethane969670-130020Tetrachloroethane969070-130620Chiorobenzene949175-130320Trichloroethane928762-150620Trichloroethane928762-1506201.2-Dichloroethane10010070-1300201.1.1-Trichloroethane10010067-1300201.1.1-Trichloroethane10010067-130020I.1.1-Trichloroethane10010067-130020I.1.2-Dichloropropene999770-130220Irans-1.3-Dichloropropene999770-130220I.1.2-Tritchloroethane909454-136420I.1.2-Tetrachloroethane969867-1301020Irans-1.3-Dichloropropene999470-1301020I.1.2-Tetrachloroethane969867-130420I.1.2-Tetrachloroethane969270-130420I.1.2-Tetrachloroethane969270-130420I.1.2-Tetrachloroethane969270-130420 <td>1,1-Dichloroethane</td> <td>110</td> <td></td> <td>100</td> <td></td> <td>70-130</td> <td>10</td> <td></td> <td>20</td>	1,1-Dichloroethane	110		100		70-130	10		20
1.2-Dickloropropane 100 70-130 0 20 Dibromochloromethane 97 98 63-130 1 20 1.1,2-Trichloroethane 96 96 70-130 0 20 Tetrachloroethane 96 900 70-130 6 20 Chlorobenzene 94 91 75-130 3 20 Trichlorofluoromethane 92 87 62-150 6 20 1.2-Dichloroethane 100 100 70-130 0 20 1.1,1-Trichloroethane 100 100 70-130 0 20 1.1,1-Trichloroethane 100 100 67-130 0 20 I.1,1-Trichloroethane 100 100 67-130 0 20 Irans-1,3-Dichloropropene 96 94 70-130 2 20 irans-1,3-Dichloropropene 99 94 70-130 2 20 irans-1,3-Dichloropropene 99 94 54-136 4 20 I.1,1-Dichloropropene 99 94 54-136	Chloroform	100		99		70-130	1		20
Dibromochloromethane 97 98 63-130 1 20 1,1,2-Trichloroethane 96 96 70-130 0 20 Tetrachloroethane 96 90 70-130 6 20 Chlorobenzene 94 91 75-130 3 20 Trichlorothane 92 87 62.150 6 20 1,2-Dichloroethane 90 70-130 0 20 20 1,1-Dichloroethane 92 87 62.150 6 20 1,1.1-Trichloroethane 100 100 70-130 0 20 Bromodichloromethane 100 100 67-130 0 20 20 Irans-1,3-Dichloropropene 96 94 70-130 2 20 20 I,1.2-Zhetrachloroethane 90 97 70-130 2 20 20 I,1.2-Zhetrachloroethane 90 94 54-136 4 20 20 20 20 20<	Carbon tetrachloride	100		100		63-132	0		20
1,1,2-Trichloroethane 96 70-130 0 20 Tetrachloroethane 96 80 70-130 6 20 Chlorobenzene 94 91 75-130 3 20 Trichlorofluoromethane 92 87 62-150 6 20 1,2-Dichloroethane 100 100 70-130 0 20 1,1-Trichloroethane 100 100 67-130 0 20 Smondichloromethane 100 100 67-130 0 20 Irichloroptopene 96 94 70-130 0 20 Irichloroptopene 99 94 70-130 2 20 In-Dichloropropene 99 94 70-130 2 20 In-Dichloropropene 99 94 70-130 4 20 In-Liz-Zietrachloroethane 94 98 67-130 4 20 In-Liz-Zietrachloroethane 94 98 67-130 4 20 Induene 99 94 70-130 5 20	1,2-Dichloropropane	100		100		70-130	0		20
Tetrachloroethene 96 90 70-130 6 20 Chlorobenzene 94 91 75-130 3 20 Trichloroftuoromethane 92 87 62-150 6 20 1,2-Dichloroethane 100 100 70-130 0 20 1,1-Trichloroethane 100 100 67-130 0 20 Bromodichloromethane 100 100 67-130 0 20 tras-1,3-Dichloroptopene 96 94 70-130 2 20 fins-1,3-Dichloroptopene 99 97 70-130 2 20 fins-1,3-Dichloroptopene 99 97 70-130 2 20 fins-1,2-Zietrachloroethane 99 94 54-136 4 20 finuene 99 94 54-136 4 20 foluene 94 98 67-130 4 20 foluene 99 94 70-130 5 20 <td>Dibromochloromethane</td> <td>97</td> <td></td> <td>98</td> <td></td> <td>63-130</td> <td>1</td> <td></td> <td>20</td>	Dibromochloromethane	97		98		63-130	1		20
Chlorobenzene949175-130320Trichlorofluoromethane928762-1506201.2-Dichloroethane10010070-1300201.1.1-Trichloroethane10010067-130020Bromodichloromethane10010067-130020Itans-1,3-Dichloroptopene969470-130220cis-1,3-Dichloroptopene999770-130220I,1-Dichloroptopene999454-136420Bromodich949867-130420I,1.2,2-Tetrachloroethane999454-136420Internet999470-130420Demodichane999470-130420Internet999470-130420Internet999470-130420Internet999470-130520Internet999470-130420Internet999470-130520Internet999470-130420Internet999470-130420Internet999470-130520Internet969270-130420Internet969270-130420Internet969270-13088 </td <td>1,1,2-Trichloroethane</td> <td>96</td> <td></td> <td>96</td> <td></td> <td>70-130</td> <td>0</td> <td></td> <td>20</td>	1,1,2-Trichloroethane	96		96		70-130	0		20
Trichlorofluoromethane928762-1506201,2-Dichloroethane10010070-1300201,1-Trichloroethane10010067-130020Bromodichloromethane10010067-130020trans-1,3-Dichloropropene969470-130220trans-1,3-Dichloropropene999770-1302201,1-Dichloropropene11010070-1301020201,1-Dichloropropene999454-136420Bromoform9994954-1364201,1,2,2-Tetrachloroethane969270-130420Foluene999470-130520Toluene999470-130420Toluene969270-130420Ethylbenzene969270-130420Chloromethane969270-130420Toluene969270-130420Ethylbenzene969270-130420Chloromethane969270-130420Chloromethane969270-130420Chloromethane969270-130420Chloromethane969270-130420Chloromethane969270-130420 <td>Tetrachloroethene</td> <td>96</td> <td></td> <td>90</td> <td></td> <td>70-130</td> <td>6</td> <td></td> <td>20</td>	Tetrachloroethene	96		90		70-130	6		20
1,2-Dichloroethane10010070-1300201,1,1-Trichloroethane10010067-130020Bromodichloromethane10010067-130020trans-1,3-Dichloropropene969470-130220cis-1,3-Dichloropropene999770-130220f,1-Dichloropropene999770-13010201,1-Dichloropropene91010070-13010201,1-Dichloropropene999454-1364201,1,2,2-Tetrachloroethane949867-130420Benzene969270-130420Toluene999470-130520Ethylbenzene969270-130420Chloromethane969270-130520Chloromethane969270-130520	Chlorobenzene	94		91		75-130	3		20
1,1,1-Trichloroethane 100 100 67-130 0 20 Bromodichloromethane 100 100 67-130 0 20 Irans-1,3-Dichloropropene 96 94 70-130 2 20 cis-1,3-Dichloropropene 99 97 70-130 2 20 f.1,1-Dichloropropene 99 97 70-130 2 20 1,1-Dichloropropene 99 91 9100 70-130 2 20 I,1,2,2-Tetrachloroethane 90 94 54-136 4 20 Benzene 96 98 67-130 4 20 Toluene 99 94 54-136 4 20 Benzene 96 92 92 70-130 4 20 Toluene 99 94 94 70-130 4 20 Ethylbenzene 96 92 97 70-130 4 20 Chloromethane 96 92 70-130 4 20 98 92 70-130 4	Trichlorofluoromethane	92		87		62-150	6		20
Bromodichloromethane 100 100 100 67-130 0 20 trans-1,3-Dichloropropene 96 94 70-130 2 20 cis-1,3-Dichloropropene 99 97 70-130 2 20 1,1-Dichloropropene 910 100 70-130 2 20 1,1-Dichloropropene 110 100 70-130 10 20 Bromoform 90 100 70-130 10 20 1,1,2,2-Tetrachloroethane 94 98 67-130 4 20 Benzene 96 92 98 67-130 4 20 Toluene 99 99 92 70-130 4 20 Ethylbenzene 99 94 92 70-130 5 20 Chloromethane 96 92 70-130 4 20 Ethylbenzene 96 92 70-130 4 20 Chloromethane 36 Q	1,2-Dichloroethane	100		100		70-130	0		20
trans-1,3-Dichloropropene969470-130220cis-1,3-Dichloropropene999770-1302201,1-Dichloropropene11010070-1301020Bromoform90949454-1364201,1,2,2-Tetrachloroethane949867-130420Benzene9692949420Toluene9999949420Ethylbenzene96949270-130420Chloromethane96929470-130520Chloromethane96929364-13088Q20	1,1,1-Trichloroethane	100		100		67-130	0		20
cis-1,3-Dichloropropene 99 97 70-130 2 20 1,1-Dichloropropene 110 100 70-130 10 20 Bromoform 90 94 54-136 4 20 1,1,2,2-Tetrachloroethane 94 98 67-130 4 20 Benzene 96 92 70-130 4 20 Toluene 99 94 94 54-136 4 20 Ethylbenzene 96 98 67-130 4 20 20 Chloromethane 99 94 92 70-130 4 20 20 Foluene 99 94 94 70-130 5 20 20 Chloromethane 966 92 70-130 4 20 20 Chloromethane 966 92 70-130 4 20 20	Bromodichloromethane	100		100		67-130	0		20
International internatinternational internatinternational international inter	trans-1,3-Dichloropropene	96		94		70-130	2		20
Bromoform909454-1364201,1,2,2-Tetrachloroethane949867-130420Benzene969270-130420Toluene99949454-136520Ethylbenzene969270-130420Chloromethane969270-130420Derene96929470-130420Chloromethane969288Q20	cis-1,3-Dichloropropene	99		97		70-130	2		20
1,1,2,2-Tetrachloroethane 94 98 67-130 4 20 Benzene 96 92 70-130 4 20 Toluene 99 94 94 20 Ethylbenzene 99 94 70-130 4 20 Chloromethane 96 92 70-130 4 20 Ethylbenzene 996 92 70-130 4 20 Chloromethane 96 92 70-130 4 20	1,1-Dichloropropene	110		100		70-130	10		20
Benzene969270-130420Toluene999470-130520Ethylbenzene969270-130420Chloromethane36Q9364-13088Q20	Bromoform	90		94		54-136	4		20
Toluene 99 94 70-130 5 20 Ethylbenzene 96 92 70-130 4 20 Chloromethane 36 Q 93 64-130 88 Q 20	1,1,2,2-Tetrachloroethane	94		98		67-130	4		20
Ethylbenzene 96 92 70-130 4 20 Chloromethane 36 Q 93 64-130 88 Q 20	Benzene	96		92		70-130	4		20
Chloromethane 36 Q 93 64-130 88 Q 20	Toluene	99		94		70-130	5		20
	Ethylbenzene	96		92		70-130	4		20
Bromomethane 18 Q 45 39-139 86 Q 20	Chloromethane	36	Q	93		64-130	88	Q	20
	Bromomethane	18	Q	45		39-139	86	Q	20

Parameter	LCS %Recovery	Qual	LCSD %Recover	y Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-10 Batch:	WG1729632-3	WG1729632-4				
Vinyl chloride	39	Q	94		55-140	83	Q	20	
Chloroethane	94		90		55-138	4		20	
1,1-Dichloroethene	89		82		61-145	8		20	
trans-1,2-Dichloroethene	100		94		70-130	6		20	
Trichloroethene	100		94		70-130	6		20	
1,2-Dichlorobenzene	91		92		70-130	1		20	
1,3-Dichlorobenzene	93		91		70-130	2		20	
1,4-Dichlorobenzene	90		91		70-130	1		20	
Methyl tert butyl ether	93		94		63-130	1		20	
p/m-Xylene	95		90		70-130	5		20	
o-Xylene	90		85		70-130	6		20	
cis-1,2-Dichloroethene	100		96		70-130	4		20	
Dibromomethane	97		96		70-130	1		20	
1,2,3-Trichloropropane	84		96		64-130	13		20	
Acrylonitrile	110		110		70-130	0		20	
Styrene	80		80		70-130	0		20	
Dichlorodifluoromethane	34	Q	95		36-147	95	Q	20	
Acetone	100		100		58-148	0		20	
Carbon disulfide	86		80		51-130	7		20	
2-Butanone	110		110		63-138	0		20	
Vinyl acetate	99		100		70-130	1		20	
4-Methyl-2-pentanone	86		90		59-130	5		20	
2-Hexanone	92		100		57-130	8		20	

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): (01-10 Batch:	WG1729632-3	WG1729632-4			
Bromochloromethane	96		93		70-130	3		20
2,2-Dichloropropane	100		98		63-133	2		20
1,2-Dibromoethane	97		96		70-130	1		20
1,3-Dichloropropane	100		100		70-130	0		20
1,1,1,2-Tetrachloroethane	98		95		64-130	3		20
Bromobenzene	91		93		70-130	2		20
n-Butylbenzene	100		99		53-136	1		20
sec-Butylbenzene	96		95		70-130	1		20
tert-Butylbenzene	94		94		70-130	0		20
o-Chlorotoluene	97		96		70-130	1		20
p-Chlorotoluene	98		96		70-130	2		20
1,2-Dibromo-3-chloropropane	76		85		41-144	11		20
Hexachlorobutadiene	93		94		63-130	1		20
Isopropylbenzene	96		95		70-130	1		20
p-Isopropyltoluene	94		93		70-130	1		20
Naphthalene	84		93		70-130	10		20
n-Propylbenzene	97		95		69-130	2		20
1,2,3-Trichlorobenzene	87		91		70-130	4		20
1,2,4-Trichlorobenzene	88		92		70-130	4		20
1,3,5-Trimethylbenzene	94		93		64-130	1		20
1,2,4-Trimethylbenzene	95		94		70-130	1		20
1,4-Dioxane	72		78		56-162	8		20
p-Diethylbenzene	93		93		70-130	0		20

Project Name: CORNERSTONE Project Number: CORNERSTONE

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-10 Batch:	WG1729632-3	WG1729632-4				
p-Ethyltoluene	97		95		70-130	2		20	
1,2,4,5-Tetramethylbenzene	91		91		70-130	0		20	
Ethyl ether	86		84		59-134	2		20	
trans-1,4-Dichloro-2-butene	90		94		70-130	4		20	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qu	al %Recovery Qual	Criteria
1,2-Dichloroethane-d4	100	99	70-130
Toluene-d8	101	100	70-130
4-Bromofluorobenzene	108	109	70-130
Dibromofluoromethane	99	98	70-130

Matrix Spike Analysis

	-	
Batch	Quality	Control

Project Name:CORNERSTONEProject Number:CORNERSTONE

 Lab Number:
 L2271764

 Report Date:
 01/04/23

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS MW-2A	- Westborough	Lab Assoc	iated sample(s): 01-10 QC	Batch ID:	WG17296	32-6 WG1729	9632-7	QC Sample	e: L227	1764-02	Client ID:
Methylene chloride	ND	20	20	100		20	100		70-130	0		20
1,1-Dichloroethane	ND	20	20	100		21	105		70-130	5		20
Chloroform	ND	20	20	100		20	100		70-130	0		20
Carbon tetrachloride	ND	20	20	100		21	105		63-132	5		20
1,2-Dichloropropane	ND	20	20	100		20	100		70-130	0		20
Dibromochloromethane	ND	20	18	90		18	90		63-130	0		20
1,1,2-Trichloroethane	ND	20	18	90		18	90		70-130	0		20
Tetrachloroethene	210	20	22	0	Q	22	0	Q	70-130	0		20
Chlorobenzene	ND	20	18	90		17	85		75-130	6		20
Trichlorofluoromethane	ND	20	18	90		18	90		62-150	0		20
1,2-Dichloroethane	ND	20	20	100		20	100		70-130	0		20
1,1,1-Trichloroethane	ND	20	20	100		20	100		67-130	0		20
Bromodichloromethane	ND	20	20	100		19	95		67-130	5		20
trans-1,3-Dichloropropene	ND	20	18	90		18	90		70-130	0		20
cis-1,3-Dichloropropene	ND	20	18	90		18	90		70-130	0		20
1,1-Dichloropropene	ND	20	20	100		20	100		70-130	0		20
Bromoform	ND	20	17	85		17	85		54-136	0		20
1,1,2,2-Tetrachloroethane	ND	20	18	90		18	90		67-130	0		20
Benzene	ND	20	18	90		18	90		70-130	0		20
Toluene	ND	20	18	90		18	90		70-130	0		20
Ethylbenzene	ND	20	18	90		18	90		70-130	0		20
Chloromethane	ND	20	16	80		16	80		64-130	0		20
Bromomethane	ND	20	3.7J	18	Q	5.6	28	Q	39-139	41	Q	20

Matrix Spike Analysis Batch Quality Control

Project Name: CORNERSTONE Project Number: CORNERSTONE

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MS Qual Fou		MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS MW-2A	- Westborough	Lab Assoc	iated sample(s): 01-10 QC	Batch ID: WG	17296	32-6 WG1729	9632-7	QC Sample	e: L227	1764-02	Client ID:
Vinyl chloride	ND	20	20	100	1	9	95		55-140	5		20
Chloroethane	ND	20	20	100	1	9	95		55-138	5		20
1,1-Dichloroethene	ND	20	18	90	1	7	85		61-145	6		20
trans-1,2-Dichloroethene	ND	20	20	100	2	20	100		70-130	0		20
Trichloroethene	9.3	20	19	48	Q 1	8	44	Q	70-130	5		20
1,2-Dichlorobenzene	ND	20	17	85	1	6	80		70-130	6		20
1,3-Dichlorobenzene	ND	20	17	85	1	6	80		70-130	6		20
1,4-Dichlorobenzene	ND	20	16	80	1	6	80		70-130	0		20
Methyl tert butyl ether	ND	20	18	90	1	8	90		63-130	0		20
p/m-Xylene	ND	40	35	88	3	5	88		70-130	0		20
o-Xylene	ND	40	33	82	3	33	82		70-130	0		20
cis-1,2-Dichloroethene	ND	20	19	95	2	20	100		70-130	5		20
Dibromomethane	ND	20	19	95	1	9	95		70-130	0		20
1,2,3-Trichloropropane	ND	20	18	90	1	8	90		64-130	0		20
Acrylonitrile	ND	20	21	105	2	20	100		70-130	5		20
Styrene	ND	40	29	72	2	9	72		70-130	0		20
Dichlorodifluoromethane	ND	20	19	95	1	8	90		36-147	5		20
Acetone	ND	20	18	90	2	20	100		58-148	11		20
Carbon disulfide	ND	20	17	85	1	7	85		51-130	0		20
2-Butanone	ND	20	22	110	2	22	110		63-138	0		20
Vinyl acetate	ND	20	20	100	2	20	100		70-130	0		20
4-Methyl-2-pentanone	ND	20	18	90	1	8	90		59-130	0		20
2-Hexanone	ND	20	18	90	1	9	95		57-130	5		20

Matrix Spike Analysis

Batch Quality Contro	1
----------------------	---

Project Name:CORNERSTONEProject Number:CORNERSTONE

 Lab Number:
 L2271764

 Report Date:
 01/04/23

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - MW-2A	- Westborough	Lab Asso	ciated sample(s): 01-10 QC	Batch ID: WG17296	32-6 WG1729	9632-7 QC Sample	e: L227	1764-02 Client ID:
Bromochloromethane	ND	20	18	90	18	90	70-130	0	20
2,2-Dichloropropane	ND	20	18	90	18	90	63-133	0	20
1,2-Dibromoethane	ND	20	18	90	18	90	70-130	0	20
1,3-Dichloropropane	ND	20	19	95	19	95	70-130	0	20
1,1,1,2-Tetrachloroethane	ND	20	18	90	18	90	64-130	0	20
Bromobenzene	ND	20	17	85	17	85	70-130	0	20
n-Butylbenzene	ND	20	17	85	16	80	53-136	6	20
sec-Butylbenzene	ND	20	18	90	17	85	70-130	6	20
ert-Butylbenzene	ND	20	18	90	18	90	70-130	0	20
o-Chlorotoluene	ND	20	18	90	18	90	70-130	0	20
p-Chlorotoluene	ND	20	18	90	17	85	70-130	6	20
1,2-Dibromo-3-chloropropane	ND	20	16	80	16	80	41-144	0	20
Hexachlorobutadiene	ND	20	16	80	14	70	63-130	13	20
sopropylbenzene	ND	20	18	90	18	90	70-130	0	20
o-Isopropyltoluene	ND	20	17	85	16	80	70-130	6	20
Naphthalene	ND	20	17	85	17	85	70-130	0	20
n-Propylbenzene	ND	20	18	90	17	85	69-130	6	20
1,2,3-Trichlorobenzene	ND	20	16	80	16	80	70-130	0	20
1,2,4-Trichlorobenzene	ND	20	16	80	15	75	70-130	6	20
1,3,5-Trimethylbenzene	ND	20	17	85	17	85	64-130	0	20
1,2,4-Trimethylbenzene	ND	20	18	90	17	85	70-130	6	20
1,4-Dioxane	ND	1000	590	59	620	62	56-162	5	20
p-Diethylbenzene	ND	20	16	80	15	75	70-130	6	20

_

Matrix Spike Analysis

Project Name:	CORNERSTONE	Batch Quality Control	Lab Number:	L2271764
Project Number:	CORNERSTONE		Report Date:	01/04/23

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	v Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS MW-2A	S - Westborough L	ab Assoc	ciated sample(s	s): 01-10 Q	C Batch ID:	WG17296	632-6 WG1729	632-7	QC Sample	: L227 ⁻	1764-02	Client ID:
p-Ethyltoluene	ND	20	18	90		17	85		70-130	6		20
1,2,4,5-Tetramethylbenzene	ND	20	16	80		16	80		70-130	0		20
Ethyl ether	ND	20	17	85		17	85		59-134	0		20
trans-1,4-Dichloro-2-butene	ND	20	17	85		18	90		70-130	6		20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	103	102	70-130
4-Bromofluorobenzene	109	109	70-130
Dibromofluoromethane	100	102	70-130
Toluene-d8	100	100	70-130

Project Name:CORNERSTONEProject Number:CORNERSTONE

Serial_No:01042316:58 *Lab Number:* L2271764 *Report Date:* 01/04/23

Sample Receipt and Container Information

Frozen

Initial Final Temp

Were project specific reporting limits specified?

YES

Cooler Information

Container Information

Cooler	Custody Seal
A	Absent

Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2271764-01A	Vial HCI preserved	А	NA		2.7	Y	Absent		NYTCL-8260(14)
L2271764-01B	Vial HCl preserved	А	NA		2.7	Y	Absent		NYTCL-8260(14)
L2271764-01C	Vial HCI preserved	А	NA		2.7	Y	Absent		NYTCL-8260(14)
L2271764-02A	Vial HCI preserved	А	NA		2.7	Y	Absent		NYTCL-8260(14)
L2271764-02A1	Vial HCI preserved	А	NA		2.7	Y	Absent		NYTCL-8260(14)
L2271764-02A2	Vial HCl preserved	А	NA		2.7	Y	Absent		NYTCL-8260(14)
L2271764-02B	Vial HCl preserved	А	NA		2.7	Y	Absent		NYTCL-8260(14)
L2271764-02B1	Vial HCI preserved	А	NA		2.7	Y	Absent		NYTCL-8260(14)
L2271764-02B2	Vial HCI preserved	А	NA		2.7	Y	Absent		NYTCL-8260(14)
L2271764-02C	Vial HCI preserved	А	NA		2.7	Y	Absent		NYTCL-8260(14)
L2271764-02C1	Vial HCl preserved	А	NA		2.7	Y	Absent		NYTCL-8260(14)
L2271764-02C2	Vial HCl preserved	А	NA		2.7	Y	Absent		NYTCL-8260(14)
L2271764-03A	Vial HCl preserved	А	NA		2.7	Y	Absent		NYTCL-8260(14)
L2271764-03B	Vial HCl preserved	А	NA		2.7	Y	Absent		NYTCL-8260(14)
L2271764-03C	Vial HCl preserved	А	NA		2.7	Y	Absent		NYTCL-8260(14)
L2271764-04A	Vial HCl preserved	А	NA		2.7	Y	Absent		NYTCL-8260(14)
L2271764-04B	Vial HCl preserved	А	NA		2.7	Y	Absent		NYTCL-8260(14)
L2271764-04C	Vial HCl preserved	А	NA		2.7	Y	Absent		NYTCL-8260(14)
L2271764-05A	Vial HCl preserved	А	NA		2.7	Y	Absent		NYTCL-8260(14)
L2271764-05B	Vial HCl preserved	А	NA		2.7	Y	Absent		NYTCL-8260(14)
L2271764-05C	Vial HCl preserved	А	NA		2.7	Y	Absent		NYTCL-8260(14)
L2271764-06A	Vial HCI preserved	А	NA		2.7	Y	Absent		NYTCL-8260(14)
L2271764-06B	Vial HCI preserved	А	NA		2.7	Y	Absent		NYTCL-8260(14)

Project Name:CORNERSTONEProject Number:CORNERSTONE

Serial_No:01042316:58 *Lab Number:* L2271764 *Report Date:* 01/04/23

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2271764-06C	Vial HCI preserved	А	NA		2.7	Y	Absent		NYTCL-8260(14)
L2271764-07A	Vial HCI preserved	А	NA		2.7	Y	Absent		NYTCL-8260(14)
L2271764-07B	Vial HCI preserved	А	NA		2.7	Y	Absent		NYTCL-8260(14)
L2271764-07C	Vial HCI preserved	А	NA		2.7	Y	Absent		NYTCL-8260(14)
L2271764-08A	Vial HCI preserved	А	NA		2.7	Y	Absent		NYTCL-8260(14)
L2271764-08B	Vial HCI preserved	А	NA		2.7	Y	Absent		NYTCL-8260(14)
L2271764-08C	Vial HCI preserved	А	NA		2.7	Y	Absent		NYTCL-8260(14)
L2271764-09A	Vial HCI preserved	А	NA		2.7	Y	Absent		NYTCL-8260(14)
L2271764-09B	Vial HCI preserved	А	NA		2.7	Y	Absent		NYTCL-8260(14)
L2271764-10A	Vial HCI preserved	А	NA		2.7	Y	Absent		NYTCL-8260(14)
L2271764-10B	Vial HCI preserved	А	NA		2.7	Y	Absent		NYTCL-8260(14)
L2271764-10C	Vial HCI preserved	А	NA		2.7	Y	Absent		NYTCL-8260(14)

Project Name: CORNERSTONE

Project Number: CORNERSTONE

Lab Number: L2271764

Report Date: 01/04/23

GLOSSARY

Acronyms

Acronyms	
DL	 Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	 Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name: CORNERSTONE Project Number: CORNERSTONE

Lab Number: L2271764 Report Date: 01/04/23

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, (flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

¹ ooinoles

Serial_No:01042316:58

L2271764

01/04/23

Lab Number:

Report Date:

Project Name: CORNERSTONE

Project Number: CORNERSTONE

Data Qualifiers

Identified Compounds (TICs).

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Project Name: CORNERSTONE Project Number: CORNERSTONE

 Lab Number:
 L2271764

 Report Date:
 01/04/23

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D/8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 C	Way	05	Pag	12		Date Rec in Lab	d 12	12	1/7	22	ALPHA JOD # L2271764	1
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information					Delive	rables			1		Billing Information	
TEL: 508-898-9220	TEL: 508-822-9300	Project Name: Cor	nerstone					ASP-A		V	ASP-B		Same as Client Info	6
FAX: 508-898-9193	FAX: 508-822-3288		ord Ave Bi	6				EQuIS (1	File)	A	EQuIS	(4 File)	PO#	
Client Information			are 4th Q		2		-	Other					Ĩ	
the second s	Consultants			uche and	7		- based	atory Req	iromor		00000	States of	Disposal Site Information	-
		(Use Project name as P		_			source and the party of the		memer					
Address: 17 Dupin		Project Manager: Ja	son Ciepe-		_		1A	NY TOGS			NY Part		Please identify below location	n of
Plainvie	EOGII YU W	ALPHAQuote #:	1. A. A.				1.11	AWQ Stand	ards		NY CP-5	1	applicable disposal facilities.	
Phone: 516-576	-8844	Turn-Around Time	1					NY Restrict	d Use		Other		Disposal Facility:	1999 1999 19
Fax: 516- 576	-0093	Standar	Kb.	Due Date:	5			NY Unrestri	cted Use	1			NJ NY	
	Corich inc. com			# of Days:			In.	NYC Sewer	Dischan	ge			Other:	
These samples have b					r,		ANAL	YSIS					Sample Filtration	Т
Other project specific								1010	-			_	_	
Please specify Metals		inns.					8260						Done Lab to do Preservation Lab to do	t a I
Please specify metals	s of TAL.					-							(Please Specify below)	B o t
ALPHA Lab ID	Sa	mple ID	Colle	ection	Sample	Sampler's	10%							1
(Lab Use Only)		in provide	Date	Time	Matrix	Initials	-						Sample Specific Comments	s e
11764-01	mw-l		12/20/22	11-36	GW	JYTB	X							3
-07	mw-2A		12/20/22	09:50	Gw	32/73	X							3
-02	mw-2AMS	5	12/2/22	09.50	GW	3=/-TB	×							3
-07	mw-2Ams		12/24/22	09:50	GW	3/10	X					-		3
-03		Δ										-		3
the second se			12/20/22	11:26	GW	THB	×	_		-		_		_
-04			12/20/22	09:20	GW	52/13	X				_			3
-05	mw-7		12/20/22	13:10	GW	The	X							3
-06	mw-8		12/20/22	12:40	GW	540	×							3
-07	MW-10		12/20/22	10:36	GW	5/10	X							Э
-08			12/2/22	XXXX	GW	\$/TB	X							3
Preservative Code: A = None B = HCI	Container Code P = Plastic A = Amber Glass	Westboro: Certification Mansfield: Certification Mansfield:	No: MA935	1		tainer Type							Please print clearly, leg and completely. Sample	
C = HNO ₃	V = Vial		10. 1111010		<u> </u>				+				not be logged in and	
$D = H_2 SO_4$	G = Glass					Preservative	B						turnaround time clock v	
E = NaOH	B = Bacteria Cup C = Cube					1 21 2	-						start until any ambiguiti	
= MeOH 3 = NaHSO₄	O = Other	Relinquished	By:	Date/	Time	11	Receive	d By:			Date/Ti	me	resolved. BY EXECUTI	100 A.S. 11
$H = Na_2S_2O_3$	E = Encore	anthon		12/21/22	10:40	tour	The	W A	41	12:	21/2	210	HAS READ AND AGR	FEC
K/E = Zn Ac/NaOH	D = BOD Bottle	Mul Alue	O. AA	12/21/22	12:30	1 IPa	489	narro	20-	121	Jh	211	BE BOUND BY ALL	PHA'S
O = Other		1 9 11 1 10 KUDUT	selles 1	2/1/2	2	-10	50	NI	2/2	toth	X/S	114	TERMS & CONDITION	
Som No. 01 25 LIC from At	0 Carl 2012)		110	12/2/2	-we	The	1.1	121	Lin	14	515	341	(See reverse side.)	
Form No: 01-25 HC (rev. 30 ge 55 of 56	0-Sept-2013)	A A	12/40	1920	ers.	Im	w	- 101	HA	0	040			

Serial_No:01042316:58

	NEW YORK CHAIN OF CUSTODY	Service Centors Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	Nay	05	Page	04	- 1	Date Ro in La		12/	21	22	ALPHA Job	271764	f
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information	2000	-		ALC N	A COLUMN	erables			1		Billing Inform		
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name: Com	rstore	2/			-	ASP-A			ASP	-B IS (4 File)	Same as	S Client Info	
Client Information		Project Location:	third to	u Bh			-	EQuIS Other	TPile) <u>(</u>		15 (4 FIIE)	1 ^{0#}		
Client Information	mentode	(Use Project name as P	e 4h Q	vater alla,	2		and the second second	latory R	enuire	ment	100	-	Disposal Site	Information	
Address: 17 Pupp		Project Manager:					and the local division of the local division	NY TOG	And a Development		NYP	art 375		below location of	
Plainvier		ALPHAQuote #:					T	AWQ Sta		Ē] NY C		applicable disp		
Phone: 516-576		Turn-Around Time	A State	San Street	ACCURATE ON	COLUMN TWO IS NOT	1 -	NY Rest] Other		Disposal Facilit	Y:	
Fax: 516-576		Standard		Due Date		and the second second		NY Unre	stricted	Use			□ NJ	□ NY	
	Corichine.com	Rush (only if pre approved		# of Days				NYC Ser	ver Dis	charge			Other:		
These samples have b		distance in the second s					ANAL	YSIS					Sample Filtr	ation	Ť
Other project specific		nents: /					3260						Done Lab to de Preservation Lab to de	n o	otal Bot
ALPHA Lab ID	Sa	mple ID	Coll	ection	Sample	Sampler's	1065								ť
(Lab Use Only)	2007.0		Date	Time	Matrix	Initials	Contraction of the local division of the loc						Sample Specif	fic Comments	
11764-09	Field Bink		12/20/22	XXXX	Noter	STAB	×								2
-10	Field Bink	12/20	12/20/22	14:00	Water	3/13	Z				_	\square			3
						_			_		_				-
A state of the state of the									-	_	-	\vdash			+
									_	_	-				-
									_	_	+-				+
							\square		-	_	+	++			⊢
									-		+-				┢
									-	-	+				⊢
C = HNO3 D = H2SO4	Container Code P = Plastic A = Amber Glass V = Vial G = Glass	Westboro: Certification N Mansfield: Certification N				I ainer Type Preservative	V ₿	/					and compl not be logg turnaround	d time clock will	can not
= MeOH 3 = NaHSO ₄ H = Na ₂ S ₂ O ₃	B = Bacteria Cup C = Cube O = Other E = Encore D = BOD Bottle	Relinquished	By:	Date/	10=41		Receiv	ed By:	A-A	1/2	BI	e/Time	resolved. E THIS COC HAS REAL	any ambiguities BY EXECUTING C, THE CLIENT D AND AGREE DUND BY ALPH CONDITIONS.	G S IA'S
Form No: 01-25 HC (rev. 30 JE 56 Of 56)-Sept-2013)	1 A	we	Y SIZ	2224	- m	~	Wi	-1	मम	n	2015	(See rever		

DATA USABILITY SUMMARY REPORT – DUSR DATA VALIDATION SUMMARY

ORGANIC ANALYSIS VOLATILES BY GC/MS METHOD 8260D

For Groundwater Samples Collected December 20, 2022 From 3100 Third Avenue, Bronx, NY Cornerstone 4th Quarter 2022 Collected by CA Rich Consultants, Inc.

SAMPLE DELIVERY GROUP NUMBER: L2271764 BY ALPHA ANALYTICAL - (ELAP #11148)

SUBMITTED TO:

Mr. Thomas Brown CA Rich Consultants, Inc. 17 Dupont Street Plainview, NY 11803

Cc: Mr. Jason Cooper/CA Rich Consultants, Inc.

February 02, 2023

PREPARED BY:

Lori A. Beyer/President L.A.B. Validation Corp. 14 West Point Drive East Northport, NY 11731

East Northport, NY 11731 Fou a. But

Cornerstone 4th Quarter 2022, 3100 Third Avenue, Bronx, NY Groundwater Samples; December 2022 Sampling Event Data Usability Summary Report (Data Validation): Volatile Organics by GCMS Method 8260D.

Table of Contents:

Introduction Data Qualifier Definitions Sample Receipt

1.0 Volatile Organics by GC/MS SW846 Method 8260D

- 1.1 Holding Time
- 1.2 System Monitoring Compound (Surrogate) Recovery
- 1.3 Matrix Spikes (MS), Matrix Spike Duplicates (MSD)
- 1.4 Laboratory Control Sample/Laboratory Control Duplicates
- 1.5 Blank Contamination
- 1.6 GC/MS Instrument Performance Check (Tuning)
- 1.7 Initial and Continuing Calibrations
- 1.8 Internal Standards
- 1.9 Field Duplicates
- 1.10 Target Compound List Identification
- 1.11 Compound Quantification and Reported Detection Limits
- 1.12 Overall System Performance

APPENDICES:

- A. Chain of Custody Documents
- B. Case Narrative
- C. Data Summary Form Is with Qualifications

Introduction:

A validation was performed on groundwater samples and the associated quality control samples (MS/MSD/Field Duplicate/Field Blank/Trip Blank) for organic analysis for samples collected under chain of custody documentation by CA Rich Consultants and submitted to Alpha Analytical for subsequent analysis. This report contains the laboratory and validation results for the field samples itemized below. The groundwater samples were collected on December 20, 2022.

The samples were analyzed by Alpha Analytical, utilizing SW846 Methods and submitted under NYSDEC ASP Category B equivalent deliverable requirements for the associated analytical methodologies employed. The analytical testing consisted of the full analyte list for Volatile Organics.

The data was evaluated in accordance with EPA Region II National Functional Guidelines for Organic Data Review and EPA Region II SOP HW-24 Revision 4 for 8260D and in conjunction with the analytical methodologies for which the samples were analyzed, where applicable and relevant.

Sample	Laboratory	Sample	Date	Date
Identification	Identification	Matrix	Collected	Received
MW-1	L2271764-01	Groundwater	12/20/2022	12/21/2022
MW-2A	L2271764-02	Groundwater	12/20/2022	12/21/2022
[Plus, MS/MSD]				
MW-4	L2271764-03	Groundwater	12/20/2022	12/21/2022
MW-6	L2271764-04	Groundwater	12/20/2022	12/21/2022
MW-7	L2271764-05	Groundwater	12/20/2022	12/21/2022
MW-8	L2271764-06	Groundwater	12/20/2022	12/21/2022
MW-10	L2271764-07	Groundwater	12/20/2022	12/21/2022
MW-XX	L2271764-08	Groundwater	12/20/2022	12/21/2022
[Field Duplicate of				
MW-2A]				
Field Blank	L2271764-09	Aqueous	12/20/2022	12/21/2022
Trip Blank	L2271764-10	Aqueous	12/20/2022	12/21/2022

The data validation report pertains to the following samples:

Data Qualifier Definitions:

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

U - The analyte was analyzed for but was not detected above the reported sample quantitation limit.

J - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

UJ - The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.

R - The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control (QC) criteria. The analyte may or may not be present in the sample.

N - The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."

NJ - The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate quantity.

J+ - The result is an estimated quantity, but the result may be biased high.

J- - The result is an estimated quantity, but the result may be biased low.

D - Analyte concentration is from diluted analysis.

Sample Receipt:

The Chain of Custody documents indicate that the samples were received at Alpha Analytical via laboratory courier on 12/21/22. Sample login notes were generated. The cooler temperature for samples was recorded upon receipt at Alpha and determined to be acceptable (<6.0 degrees C). The actual temperature of 2.7 degrees C is recorded on the sample receipt checklist provided the lab report. No problems and/or discrepancies were noted, consequently, the integrity of the field samples has been assumed to be good.

The data summary Form I's included in Appendix C includes all usable (qualified) and unusable (rejected) results for the samples identified above. The Form I's summarize the detailed narrative section of the report.

NOTE:

L.A.B. Validation Corp. believes it is appropriate to note that the data validation criteria utilized for data evaluation is different than the method requirements utilized by the laboratory. Qualified data does not necessarily mean that the laboratory was non-compliant in the analysis that was performed.

1.0 Volatile Organics by GC/MS SW846 Method 8260D

The following method criteria were reviewed: holding times, SMCs/Surrogates, MS, MSD, LCS, Laboratory Spiked Blanks, Field Duplicates, Method Blanks, Tunes, Calibrations, Internal Standards, Target Component Identification, Quantitation, Reported Quantitation Limits and Overall System Performance. The Volatile results are valid and useable except for non-detects for 1,4-Dioxane due to low calibration response in initial and continuing calibrations as noted within the following text:

1.1 Holding Time

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the technical holding time is exceeded, the data may not be considered valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimates, "J". The non-detects (sample quantitation limits) are required to be flagged as estimated, "UJ", or unusable, "R", if the holding times are grossly exceeded.

Samples were analyzed within the Method required holding times as well as the technical holding times for data validation of 14 days from collection to analysis for HCL preserved vials as required. No data validation qualifiers were required based upon holding time.

1.2 System Monitoring Compound (Surrogate) Recovery

All samples are spiked with surrogate compounds prior to sample analysis to evaluate overall laboratory performance and efficiency of the analytical technique. If the

measure of surrogate concentrations is outside contract specifications, qualifications are required to be applied to associated samples and analytes.

Surrogate recoveries (%R) for Dibromofluoromethane, 1,2-Dichloroethane-d4, Toluene-d8 and 4-Bromofluorobenzene were found to be within acceptable limits for surrogate compounds for all samples.

1.3 Matrix Spikes (MS)/ Matrix Spike Duplicates (MSD)

The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. The MS/MSD may be used in conjunction with other QC criteria for additional qualification of data.

Site-specific MS/MSD was performed by the laboratory on sample MW-2A as required by chain of custody. Analysis was performed at 1:2 dilution. Acceptable recovery values were obtained for all spiked/target compounds except for Tetrachloroethene which was not recoverable in the MS (0%) and MSD (0%) due to high parent concentration (210 ug/L) relative to spike amount (20 ug/L). Based on professional judgment, data was not qualified based on this outlier. Additionally, Trichloroethene (48%/44%) also recovered below laboratory limits of 70-130%. The detected concentration in the parent sample (9.3 ug/L) has been qualified, estimated, biased low, "J-." Bromomethane (18%/28%) also recovered below limits. Non-detects have been qualified, "UJ." RPD was acceptable for all spiked analytes. No additional qualifiers were applied.

The National Functional Guidelines and EPA Region 2 SOPs state that "No qualifications to the data are necessary based on MS data <u>alone."</u>

1.4 Laboratory Control Sample/Laboratory Control Duplicates

The LCS data for laboratory control samples (LCS) are generated to provide information on the accuracy of the analytical method and on the laboratory performance.

LCS/LCS Duplicate recovery values fell within acceptance limits for all analytes with exceptions noted below:

LCS /LCS Duplicate was analyzed with the batch for sample analysis and was spiked with all target compounds. LCS recovery was below laboratory limits for Chloromethane (36%), Bromomethane (18%), Vinyl Chloride (39%), and Dichlorodifluoromethane (34%). LCS Duplicate recovery values for these analytes were within acceptance limits. As a result, the RPD was above 20%. Non-detects for these compounds in all samples have been qualified, "UJ."

1.5 Blank Contamination

Quality assurance (QA) blanks, i.e., method, trip and field blanks are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field blanks measure cross-contamination of samples during field operations.

The following table was utilized to qualify target analyte results due to contamination. The largest value from all the associated blanks is required to be utilized:

Blank Type	Blank Result	Sample Result	Action for Samples
Method, Storage, field,	Detects	Not Detected	No qualification required
Trip, Instrument	<crql*< td=""><td><crql*< td=""><td>Report CRQL value with a U</td></crql*<></td></crql*<>	<crql*< td=""><td>Report CRQL value with a U</td></crql*<>	Report CRQL value with a U
		>/= CRQL* and <2x the	No qualification required
		CRQL**	
	>CRQL*	= CRQL*</td <td>Report CRQL value with a U</td>	Report CRQL value with a U
		>/=CRQL* and = blank</td <td>Report blank value for sample concentration</td>	Report blank value for sample concentration
		concentration	with a U
	0	>/= CRQL* and > blank	No qualification required
		concentration	
	=CRQL*	= CRQL*</td <td>Report CRQL value with a U</td>	Report CRQL value with a U
		>CRQL*	No qualification required
	Gross Contamination**	Detects	Report blank value for sample concentration
			with a U

*2x the CRQL for methylene chloride, 2-butanone, and acetone.

**4x the CRQL for methylene chloride, 2-butanone, and acetone

***Qualifications based on instrument blank results affect only the sample analyzed immediately after the sample that has target compounds that exceed the calibration range or non-target compounds that exceed 100 ug/L.

Below is a summary of the compounds in the sample and the associated qualifications that have been applied:

Below is a summary of the compounds in the sample and the associated qualifications that have been applied:

A) Method Blank Contamination:

No target analytes were detected in the method blanks.

B) **Field Blank Contamination:**

No target analytes were detected in the Field Blank.

C) **Trip Blank Contamination:**

No target analytes were detected in the Trip Blank.

**The end user should proceed with caution when making decisions based on common lab contaminant detection for Acetone where the compound could not be negated due to lack of presence in the corresponding blanks. For example, Acetone was detected in MW-7 at 6.6 ug/L.

1.6 GC/MS Instrument Performance Check

Tuning and performance criteria are established to ensure adequate mass resolution, proper identification of compounds and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The Tuning standard for volatile organics is Bromofluorobenzene (BFB).

Instrument performance was generated within acceptable limits and frequency (once prior to ICAL for 8260D) for Bromofluorobenzene (BFB) for all analyses.

1.7 Initial and Continuing Calibrations

Satisfactory instrument calibration is established to ensure that the instrument can produce acceptable quantitative data. An initial calibration demonstrates that the instrument can produce acceptable performance at the beginning of an experimental sequence. The continuing calibration checks document that the instrument is giving satisfactory daily performance. Initial calibration verification yielded Ethyl Ether (32.2%) outside 30% criteria. Non-detects in all samples have been qualified, "UJ."

A) Response Factor GC/MS:

The response factor measures the instrument's response to specific chemical compounds. The response factor for all compounds must be >/= 0.05 in both initial and continuing calibrations. A value <0.05 indicates a serious detection and quantitation problem (poor sensitivity). Analytes detected in the sample will be qualified as estimated, "J". All non-detects for that compound in the corresponding samples will be rejected, "R". Method 8260D allows for a minimum response factor of 0.1 for Acetone and 2-Butanone. Validation criteria allows response factor to be /=>0.01 for poor responders (Acetone, MEK, Carbon Disulfide, Chloroethane, Chloromethane, Cyclohexane, 1,2-Dibromoethane, Dichlorodifluoromethane, cis-1,2-Dichloropropane, 1,2-Dibromo-3-chloropropane, Isopropylbenzene, Methyl Acetate, Methylene Chloride, Methylcyclohexane, MTBE, trans-1,2-Dichloroethene, 4-Methyl-2-Pentanone, 2-Hexanone, Trichlorofluoromethane, 1,1,2-Trichloro-1,2,2-Trifluoroethane.

All the response factors for the target analytes reported were found to be within acceptable limits (>/=0.05) and (>/= 0.01 for poor responders) and minimum response criteria in Table 4 of Method 8260D, for the initial and continuing calibrations for all reported analytes except for 1,4-Dioxane (0.001). Non-detects for this compound have been rejected, "R" in all samples. 1,4-Dioxane is a poorpurge analyte.

B) Percent Relative Standard Deviation (%RSD) and Percent Difference (%D): Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentrations. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be <20% and %D must be <20%. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and nondetects are flagged "UJ". If %RSD and %D grossly exceed OC criteria, non-detect data may be qualified, "R", unusable. Additionally, in cases where the %RSD is >20% and eliminating either the high or the low point of the curve does not restore the %RSD to less than or equal to 20% then positive results are qualified, "J". In cases where removal of either the low or high point restores the linearity, then only low or high-level results will be qualified, "J" in the portion of the curve where nonlinearity exists. Closing CCV must meet 30% criteria. Poor responders must be </= 40%.

*Method 8260D allows for several analytes to be outside requirements due to the large number of compounds.

Initial Calibrations: The initial calibrations provided and the %RSD were within acceptable limits (20%) and (40% for poor responders) for all reported compounds.

Continuing Calibrations: The continuing calibrations provided and the %D was within acceptable limits (20%) and (40% for poor responders) for all reported compounds with exceptions discussed below:

CCAL VOA101 12/29/2022 – Dichlorodifluoromethane – 65.6%, Chloromethane -64.0%, Vinyl Chloride – 61.2%, and Bromomethane – 82.5%. Non-detects in all samples were previously qualified, "UJ" based on LCS/LCS Duplicate data. No additional qualifiers were applied.

1.8 Internal Standards

Internal Standards (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must not vary by more than a factor of 2 (-50% to +100%) from the associated continuing calibration standard. The retention time of the internal standard must not vary more than \pm -30 seconds from the associated continuing calibration standard. If the area count is outside the (-50% to \pm 100%) range of the associated standard, all the positive results for compounds quantitated using that IS are qualified as estimated, "J", and all non-detects as "UJ", or "R" if there is a severe loss of sensitivity.

If an internal standard retention time varies by more than 30 seconds, professional judgment will be used to determine either partial or total rejection of the data for that sample fraction.

All samples were spiked with the internal standards Chlorobenzene-d5, Fluorobenzene and 1,4-Dichlorobenzene-d4 prior to sample analysis. The area responses and retention time of each internal standard met QC criteria in all samples.

1.9 Field Duplicates

Field duplicate samples are collected and analyzed as an indication of overall precision. These results are expected to have more variability than laboratory duplicate samples. Generally, water samples an acceptable RPD is 25%. Groundwater sample MW-2A was collected as a blind duplicate, a summary of positive detections is summarized below:

	<u>MW-2A</u>	MW-XX
Trichloroethene	9.4 ug/L	9.3 ug/L
Tetrachloroethene	210 ug/L	210 ug/L

Precision is acceptable. No qualifications to the data were required based on field duplicate analysis.

1.10 Target Compound List Identification

TCL compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within =/- 0.06RRT units of the standard compound and have an ion spectrum which has a ratio of the primary and secondary m/e intensities within 20% of that in the standard compound.

GC/MS spectra met the qualitative criteria for identification. All retention times were within required specifications.

1.11 Compound Quantification and Reported Detection Limits

GC/MS quantitative analysis is acceptable. Correct internal standards per SW846, response factors were used to calculate final concentrations.

As required, the laboratory reported "J" values between the reporting limits (RL) and Method Detection Limits (MDLs). This is consistent with common laboratory practices and a requirement of the National Environmental Laboratory Approval Program (NELAP).

Samples were initially analyzed undiluted except for MW-2A (1:2), MW-XX (1:2) and MW-8 (1:5). Dilutions were determined to be acceptable based on target analyte Tetrachloroethene raw concentrations. Reporting limits have been adjusted accordingly. There is potential that lower-level detections were lost in sample dilutions. Analysis is acceptable.

1.12 Overall System Performance

Good resolution and chromatographic performance were observed. Raw data was reviewed and confirmed that no carryover exists for any analysis conducted with this data set.

Tentatively Identified Compounds (TICs) were not generated and therefore not evaluated.

Reviewer's Signature LUI Q. BULL Date 02102/2023

Appendix A Chain of Custody Documents

Westborpugh, MA 01551	NEW YORK CHAIN OF CUSTODY Mansfield: XA 02048 320 Fatbes Blvd	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 32205: 14 Walker V Tonawando, NY 14150: 275 Co Project Information	lay	20	Page	2	Date I in I Deliverable	.ab 12	-[21]	22	ALPHA Job # L2271769 Billing Information	
8 Walkup Dr. TEL: 506-898-9220 FAX: 508-898-9193	TEL: 508-622-9380 FAX: 508-622-1265	Project Name: Corr Project Location: Thr	roject Name: Cornestore roject Location: Third Are BX					A S (1 File)	ASP.	-B IS (4 File)	Same as Cilent Info	
Client Information		Project # Corrusto	e yth Q	verter 202	2		Other					
client: CA Rich	Consultants	(Use Project name as Pr	oject #)				Regulatory	Requiremen	nt		Disposal Site Information	
Address: 17 Dupent			in Guper-				NY TO	GS	NY P	art 375	Please identify below location of	10
	NY 11803	ALPHAQuote #:					AWQ	Standards	NYC	P-51	applicable disposal facilities.	
Phone: 516-576		Turn-Around Time					NY Re	stricted Use	Caher		Disposal Facility:	
Fax: 516- 576-		Standard	X	Due Date:			NY Un	restricted Usi	2		VI LINY	
Email: JCcoper@				# of Days:			NYC S	ewer Dischar	ge		Other	
These samples have be							ANALYSIS				Sample Filtration	T
Other project specific	the second s										Done	- 0
Please specify Metals	or TAL.						5 82100				Lab to do Preservation Lab to do	8
ALPHA Lab ID	6.		Colk	ection	Sample	Sampler's	QS.					1
(Lab Use Only)	58	imple ID	Date	Time	Matrix	Initials	\geq				Sample Specific Comments	8
71764-01	mw-l		12/20/22	11-36	GW	J-/TB	X					3
-07	mw-2A		12/10/22	09:50	Gw	T/7B	X					r:
-07	mw-2AM	5	12/24/22	09.50	GW	F/78	×					3
-07	MW-2AMS		12/2/22	09:50	GW	2/78	X					3
-03	mw-4	y.a	12/20/22	11:26	GW	THB	×					3
-04	MW-6		12/20/22	04:20	GW	52/13	X					3
-05	mw-7		12/20/22	13:10	GW	5400	X					3
-06			12/20/22	12:40	GW	340	×					3
-07	MW-10		12/2:/22	10:36	GW	5/10	X					3
-08	mw-XX		12/2/22	XxxX	GW	\$/13	X					3
Preservative Code: A = None B = HCl C = HNO ₁ D = H ₂ SO ₄	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification N Mansfield; Certification N	lo: MA935	1.44.1	Cor	ntainer Type Preservative	V				Please print clearly, legi and completely. Sample not be logged in and turnaround time clock w start until any ambiguitic	es can
F = MeOH $G = NaHSO_4$ $H = Na_2S_2O_3$	C = Cube O = Other E = Enclose D = BOD Bottle	Relinquished	1.25	Date/ 12/24/22 12/24/22	10:40	and the second sec	Received By	1/2/2 12/2/2	Dati 12/21/ 12/21/ 12/21/ 12/21/ 12/21/ 12/21/	e/Time 22/0 62/(2041	resolved, BY EXECUTIN KTHIS COC, THE CLIEN CAS READ AND AGRE CAS READ AND AGRE CAS BE BOUND BY ALP TERMS & CONDITIONS (See reverse side.)	NG T ES PHA'S

The Understand The Understand Project Name: Control Integration Procession Project Name: Control Integration Project Name: Control Integration Cliend Information Project Name: Control Integration Project Name: Control Integration Project Name: Control Integration Cliend Information Project Name: Control Integration Project Name: Project Name: Control Integration Project Name: Control Integration Project Name: Project N	ALPHA Westborough, MA 01581	NEW YORK CHAIN OF CUSTODY Mana 58Hd, MAI 82048	Service Centors Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker V Tonawawda, NY 14150: 275 Co	Hay	105	Pag	e 2 1 2		Date Rec In Lab	'd 12	-121	22	ALPHA JOB # L227176	24
PAX: 288-22.108 Project Location Among Thirld Ave RK Differ Differ Differ Scient Life Auth Consolutions The Project # Consolutions Differ Differ Differ Client Life Auth Consolutions The Project # Consolutions The Project # Consolutions Differ Differ Differ Address: The Auth Consolutions The Project # Consolutions The Project # Consolutions Differ Differ Differ Phone: Standard Consolutions The Project # Consolutions The Project # Consolutions Differ Differ <td></td> <td>320 Fartes Blvd</td> <td>Project Information</td> <td></td> <td>A Street Street</td> <td>- These areas</td> <td>-Angeline</td> <td>Deliv</td> <td>and the second second</td> <td></td> <td>N AC</td> <td></td> <td>Billing Information</td> <td>A Maria Share</td>		320 Fartes Blvd	Project Information		A Street Street	- These areas	-Angeline	Deliv	and the second second		N AC		Billing Information	A Maria Share
Client (Christians) Project # Christ & Christians as Project #) Construction of the project and th			San Market		2/			님님		1997 (m.).				£.
Clinit: Clinit: Clinit: Disposal Side Information Disposal Side Information Addross: Dupy: Project Namager: N W Pail 376 W Pail 376 Addross: Dupy: N Project Namager: N Project Namager: P			Project Location:	7 Third A	we Bh					File)	EG	uis (4 File)	9°*	
Address: IV Pugnt St. Project Manager: IV Pugnt St. Project Manager: IV Pugnt St. Prove St. (5, 5, 5, 4, 5, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	the second se				lui-ter alla	2			and the second s	1910		the state of the s	and the second state of the second second	
MARQUE NY 11/202 ALPHAQuote #: ALPHAQuote #: AVG Standards NY CP-3: Percent actions.			(Use Project name as Pr	roject #)				and the second second	the state of the s	uirement	-	and the s	Disposal Site Information	n
Phone: Sile-57/b-38/H Ten-Acount Time Phone: Sile-57/b-38/H Ten-Acount			Project Manager:	l				1 07	NY TOGS		NY NY	Part 375	the standard structure and struc	
Fax: Sile - 57 (4 - 66 /2) Rush (enty if any approved) Due Date: IV Ursellished Use IV Ursellished Use Email: Vacque (2): Cacher Duckarge IV Ursellished Use IV Ursellished Use IV Ursellished Use Insert approximation of the project specific requirements/comments: ANALYSIS Sample Filtration Insert approximation of the project specific requirements/comments: Insert approximation of the project specific requirements/comments Insert approximation of the project specific requirements/comments ALPHA Lab ID (Lab Use Only) Sample ID Collection Sample Sample / Trop Black Insert approximation of the project specific comments Insert approximation of the project specific comments Insert approximation of the project specific comments II/16/4 - O.9 Trop Black Insert approximation of the project specific comments Insert approximation of the project specific comments Insert approximation of the project specific comments	Plannien	NY 11803	ALPHAQuote #:						AWQ Stan	dards	NY	CP-51	applicable disposal facilities.	
Email: Veryber Go, Conchure.up Rush tenk/ if pry approved. # of Days: Invest Sever Discharge Other These samples have been previously analyzed by Apina ANALYSIS Sample Filtration Invest Sever Discharge Other Other project specific requirements/comments: ANALYSIS Sample Filtration Invest Sever Discharge Other Please specify Metals or TAL. Invest Severitien Invest Severitien Invest Severitien Invest Severitien ALPHA Lab ID (Lab Use ON) Sample ID Other Invest Severitien Sample Severitie Comments T1764 - C9 Tr.p Block Invest Severitien Sample Severitie Comments Sample Severitie Comments T1764 - C9 Tr.p Block Invest Severitien Sample Severitie Comments Sample Severitie Comments T1764 - C9 Tr.p Block Invest Severitien Sample Severitie Comments Sample Severitie Comments Sample Severitie Comments T1764 - C9 Tr.p Block Invest Severitien Sample Severitie Comments Sample Severitie Comments Sample Severitie Comments T1764 - C9 Tr.p Block Invest Severitien Sample Severitie Comments Sampl	Phone: 516-576	-8344	Turn-Around Time	E IN SER					NY Restrict	ad Use	Din	dr.	Disposal Facility	
These samples have been previously analyzed by Alpha Sample Filtration Other project specific requirements/comments: Done Please specify Metals or TAL. Done ALPHA Lab ID (Lab Use Only) Sample ID Collection ALPHA Lab ID (Lab Use Only) Sample ID Onle Time Matrix Initials ALPHA Lab ID (Lab Use Only) Sample ID Onle These specify Metals or TAL. Sample Sample's ALPHA Lab ID (Lab Use Only) Sample ID Onle These specify Metals or TAL. Sample Sample's ALPHA Lab ID (Lab Use Only) Sample ID Onle These specify Metals or TAL. Sample Sample's These specify Metals or TAL. Sample Sample's The Sample's Sample Sample's The Sample's Sample Sample's The Sample's Sample Sample's The Sample's Sample's The Sample's Sample's Sample's Sample's The Sample's Sample's Sample's Sample's Sample's Sample's Sample's Sample's	Fax: 516-576	-0093	Standar	d X b	Due Date	:			NY Unrestr	icted Use			T NJ T NY	
These samples have been previously analyzed by Alpha AnALYSIS Sample Filtration Other project specific requirements/comments:	Email: YLooper@	Conchincuism	Rush (only if pro approved	n [*]	# of Days	n. 1			NYC Sewe	r Duscharg	e		Other	
Other project specific requirements/commants: 			ed by Alpha					ANA	LYSIS				Sample Filtration	
ALPHA Lab ID (Lab Use Only) Sample ID Collection Sample's Initials Sample's Initials Sample's Sample's Sample's Sample's Sample's Sample's Sample's Sample's Sample's			ents: (65					Lab to do Preservation	a
ALPHA Lab ID (Lab Use Only) Sample ID Collection Sample's Initials Sample's Initials Sample's Sample's Sample's Sample's Sample's Sample's Sample's Sample's Sample's								1 CE		1 1			(Discord Days 77, b. 1, s)	0
11764 - 09 Trop Black Halalaz Xxxx Nat 37/73 2 10 Fridd Biak 13/20 13/2022 14:00 Number 37/73 3 10 Fridd Biak 13/20 13/20/22 14:00 Number 37/73 3 10 Fridd Biak 13/20 14:00 Number 37/73 3 3 11 State 13/20 14:00 Number 37/73 1 3 11 State 13/20 14:00 Number 3 3 3 11 State 13/20 14:00 Number 3 3 3 12 State 13/20 14:00 Number 14:00 <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>1</td> <td>· · · · ·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(Please Specify Delow)</td> <td></td>				1		1	· · · · ·						(Please Specify Delow)	
11764 - 09 Trop Black Halalaz Xxxx Nat 37/73 2 10 Fridd Biak 13/20 13/2022 14:00 Not 37/73 3 10 Fridd Biak 13/20 13/20/22 14:00 Not 37/73 3 10 Fridd Biak 13/20 14:00 Not 37/73 1 3 11 State 13/20/22 14:00 Not 37/73 1 1 3 12 13/20/22 14:00 Not 14:00 14:00 1		Sa	mple ID		1			18		1 1				
Image: Second	- Posta provide a second second		,		line	1.110000000							Sample Specific Comment	-
Preservative Code: Centainer Code >= None Pelastic >= Nask0, S = Glass >= Nask0, S = Glass = Nask0, S = Glass Pelasteria Cup Pelasteria Cup Preservative By Preservative By Palabilities ID-4 Preservative By Palabilities ID-4 Preservative By Palabilities ID-4 Palabilities ID-4 Palabilities ID-4 Palabilities ID-4 Palabilities ID-4		Jop Black	1				3773			-	_			
A = None P = Plastic Westboro: Certification No: MA935 Container Type Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock. By EXECUTING S = NaHSO, O = Other Relinquished By: Date/Time Date/Time Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING S = NaHSO, O = Other Date/Time Date/Time Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING S = NaHSO, O = Other Date/Time Date/Time Date/Time Start until any ambiguities are resolved. BY EXECUTING S = Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING S = NaHSO, O = Other Date/Time Date/Time Date/Time Start until any ambiguities are resolved. BY EXECUTING S = Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING S = Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING S = Sam	-10	Field Black	12/20	13/20/22	14:00	Wester	TIAS	2						3
A = None P = Plastic Westboro: Certification No: MA935 Container Type Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock. By EXECUTING S = NaHSO, O = Other Relinquished By: Date/Time Date/Time Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING S = NaHSO, O = Other Date/Time Date/Time Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING S = NaHSO, O = Other Date/Time Date/Time Date/Time Start until any ambiguities are resolved. BY EXECUTING S = Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING S = NaHSO, O = Other Date/Time Date/Time Date/Time Start until any ambiguities are resolved. BY EXECUTING S = Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING S = Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING S = Sam			,	1 ·····				_						
A = None P = Plastic Westboro: Certification No: MA935 Container Type Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock. By EXECUTING S = NaHSO, O = Other Relinquished By: Date/Time Date/Time Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING S = NaHSO, O = Other Date/Time Date/Time Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING S = NaHSO, O = Other Date/Time Date/Time Date/Time Start until any ambiguities are resolved. BY EXECUTING S = Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING S = NaHSO, O = Other Date/Time Date/Time Date/Time Start until any ambiguities are resolved. BY EXECUTING S = Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING S = Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING S = Sam	Bridger Williams													
A = None P = Plastic Westboro: Certification No: MA935 Container Type Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not start until any ambiguites are resolved. By: Date/Time Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguites are resolved. By: Date/Time Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguites are resolved. By: Date/Time Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguites are resolved. By: Date/Time Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguites are resolved. By: = NaOH © = Other Relinquished By: Date/Time Date/Time Secore Differ [= Na_3_2_0_3 E = Encore Relinquished By: Date/Time Please Please Please Please [= Na_3_2_0_3 E = Encore D = 80D Botte														
A = None P = Plastic Westboro: Certification No: MA935 Container Type Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock. By EXECUTING S = NaHSO, O = Other Relinquished By: Date/Time Date/Time Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING S = NaHSO, O = Other Date/Time Date/Time Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING S = NaHSO, O = Other Date/Time Date/Time Date/Time Start until any ambiguities are resolved. BY EXECUTING S = Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING S = NaHSO, O = Other Date/Time Date/Time Date/Time Start until any ambiguities are resolved. BY EXECUTING S = Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING S = Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING S = Sam														
A = None P = Plastic Westboro: Certification No: MA935 Container Type Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock. By EXECUTING S = NaHSO, O = Other Relinquished By: Date/Time Date/Time Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING S = NaHSO, O = Other Date/Time Date/Time Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING S = NaHSO, O = Other Date/Time Date/Time Date/Time Start until any ambiguities are resolved. BY EXECUTING S = Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING S = NaHSO, O = Other Date/Time Date/Time Date/Time Start until any ambiguities are resolved. BY EXECUTING S = Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING S = Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING S = Sam														
A = None P = Plastic Westboro: Certification No: MA935 Container Type Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock. By EXECUTING S = NaHSO, O = Other Relinquished By: Date/Time Date/Time Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING S = NaHSO, O = Other Date/Time Date/Time Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING S = NaHSO, O = Other Date/Time Date/Time Date/Time Start until any ambiguities are resolved. BY EXECUTING S = Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING S = NaHSO, O = Other Date/Time Date/Time Date/Time Start until any ambiguities are resolved. BY EXECUTING S = Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING S = Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING S = Sam														
A = None P = Plastic Westboro: Certification No: MA935 Container Type Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not start until any ambiguites are resolved. By: Date/Time Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguites are resolved. By: Date/Time Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguites are resolved. By: Date/Time Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguites are resolved. By: Date/Time Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguites are resolved. By: = NaOH © = Other Relinquished By: Date/Time Date/Time Secore Differ [= Na_3_2_0_3 E = Encore Relinquished By: Date/Time Please Please Please Please [= Na_3_2_0_3 E = Encore D = 80D Botte														
A = None P = Plastic Westboro: Certification No: MA935 Container Type Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not be logged in and turnaround time clock will not start until any ambiguites are resolved. By: Date/Time Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguites are resolved. By: Date/Time Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguites are resolved. By: Date/Time Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguites are resolved. By: Date/Time Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguites are resolved. By: = NaOH © = Other Relinquished By: Date/Time Date/Time Secore Differ [= Na_3_2_0_3 E = Encore Relinquished By: Date/Time Please Please Please Please [= Na_3_2_0_3 E = Encore D = 80D Botte	· · · · · · · · · · · · · · · · · · ·													
= MaOH C * Cube Relinquished By: Date/Time Inscribent of the control of the cont	A = None 8 = HCI C = HNO ₁ D = H ₂ SO ₂	P = Plastic A ≈ Amber Glass V ≂ Vla1 G ≈ Glass						0	/				and completely. Samp not be logged in and turnaround time clock	oles can will not
orm No: 01-25 HC (rev. 30-Sept-2013)	F = MeOH $G = NaHSO_{a}$ $H = Na_{a}S_{2}O_{a}$	C ≠ Cubie D = Other E = Encore	Relinquished	By: AAL		10=41	Addet	Recein	red By: IP 1 Maria	TAL.			resolved. BY EXECUT THIS COC, THE CLIE HAS READ AND AGE O BE BOUND BY AL	ting Ent Rees Lpha's
	Form No: 01-25 HC (rev. 30	Seo1-2013)	1	in the	NY XPS	1.00	in I		ININ	131	In	274-	(See reverse side.)	
	Page 17 of 633		C A	DAC!	4/1/2	2224		<u>v</u> -		1210	1110	00-12		

Appendix B Case Narrative

Project Name:CORNERSTONEProject Number:CORNERSTONE

Lab Number: L2271764 Report Date: 01/04/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

 Lab Number:
 L2271764

 Report Date:
 01/04/23

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

The WG1729632-6/-7 MS/MSD recoveries, performed on L2271764-02, are below the acceptance criteria for tetrachloroethene (0%/0%) due to the concentration of this compound in the MS/MSD falling below the reported detection limit.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Juffani Morrissey_

Report Date: 01/04/23

for 1129/2023

<u>ALPHA</u>

Title: Technical Director/Representative

Appendix C Validated Form I's with Qualifications

Client Brois et Nome	CA Rich Consultants, Inc.	Lab Number : L2271764
Project Name Lab ID	: CORNERSTONE : L2271764-01	Project Number : CORNERSTONE Date Collected : 12/20/22 11:36
Client ID	: MW-1	Date Received : 12/21/22
Sample Location	THIRD AVE BX	Date Analyzed : 12/29/22 23:24
Sample Matrix	: WATER	Dilution Factor : 1
Analytical Method	: 1,8260D	Analyst : PID
Lab File ID	: V01221229N11	Instrument ID : VOA101
Sample Amount	: 10 ml	GC Column : RTX-502.2
Level	: LOW	%Solids : N/A
Extract Volume (MeOH) : N/A	Injection Volume : N/A

CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
		ND		-	U
75-34-3	1,1-Dichloroethane		2.5	0.70	
67-66-3	Chloroform	0.77	2.5	0.70	J
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	25	0.50	0.18	
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
542-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U
563-58-6	1,1-Dichloropropene	ND	2.5	0.70	U
75-25-2	Bromoform	ND	2.0	0.65	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	U
108-88-3	Toluene	ND	2.5	0.70	U
100-41-4	Ethylbenzene	ND	2.5	0.70	U
74-87-3	Chloromethane	ND	2.5	0.70	N UT
74-83-9	Bromomethane	ND	2.5	0.70	NOT
75-01-4	Vinyl chloride	ND	1.0	0.07	JU UT

for 211/2013 ÷Α ANAL CAL

Client	CA Rich Consultants, Inc.	Lab Number	: L2271764
Project Name	: CORNERSTONE	Project Number	: CORNERSTONE
Lab ID	: L2271764-01	Date Collected	: 12/20/22 11:36
Client ID	: MW-1	Date Received	: 12/21/22
Sample Location	: THIRD AVE BX	Date Analyzed	: 12/29/22 23:24
Sample Matrix	: WATER	Dilution Factor	: 1
Analytical Method	: 1,8260D	Analyst	: PID
Lab File ID	: V01221229N11	Instrument ID	: VOA101
Sample Amount	: 10 ml	GC Column	: RTX-502.2
Level	: LOW	%Solids	: N/A
Extract Volume (MeOH	1) : N/A	Injection Volume	: N/A

			ug/L				
CAS NO.	Parameter	Results	RL	MDL	Qualifier		
75-00-3	Chloroethane	ND	2.5	0.70	U		
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U		
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U		
79-01-6	Trichloroethene	ND	0.50	0.18	U		
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U		
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U		
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U		
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U		
179601-23-1	p/m-Xylene	ND	2.5	0.70	U		
95-47-6	o-Xylene	ND	2.5	0.70	U		
1330-20-7	Xylenes, Total	ND	2.5	0.70	U		
156-59-2	cis-1,2-Dichloroethene	ND	2.5	0.70	U		
540-59-0	1,2-Dichloroethene, Total	ND	2.5	0.70	U		
74-95-3	Dibromomethane	ND	5.0	1.0	U		
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U		
107-13-1	Acrylonitrile	ND	5.0	1.5	U		
100-42-5	Styrene	ND	2.5	0.70	U		
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	* UT		
67-64-1	Acetone	ND	5.0	1.5	u 🗂		
75-15-0	Carbon disulfide	ND	5.0	1.0	U		
78-93-3	2-Butanone	ND	5.0	1.9	U		
108-05-4	Vinyl acetate	ND	5.0	1.0	U		
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U		
591-78-6	2-Hexanone	ND	5.0	1.0	υ		
74-97-5	Bromochloromethane	ND	2.5	0.70	U		

gout A ALPHA

Client Project Name Lab ID Client ID Sample Location Sample Matrix Analytical Method Lab File ID Sample Amount	 CA Rich Consultants, Inc. CORNERSTONE L2271764-01 MW-1 THIRD AVE BX WATER 1,8260D V01221229N11 10 ml 	Lab Number: L2271764Project Number: CORNERSTONEDate Collected: 12/20/22 11:36Date Received: 12/21/22Date Analyzed: 12/29/22 23:24Dilution Factor: 1Analyst: PIDInstrument ID: VOA101GC Column: RTX-502.2
Sample Amount Level Extract Volume (MeOH)	: LOW	GC Column : RTX-502.2 %Solids : N/A Injection Volume : N/A
Extract Volume (MeOH)	i N/A	injection volume : N/A

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	U
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U
108-86-1	Bromobenzene	ND	2.5	0.70	U
104-51-8	n-Butylbenzene	ND	2.5	0.70	U
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U
87-68-3	Hexachlorobutadiene	ND	2.5	0.70	U
98-82-8	Isopropylbenzene	ND	2.5	0.70	U
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U
91-20-3	Naphthalene	ND	2.5	0.70	U
103-65-1	n-Propylbenzene	ND	2.5	0.70	U
87-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U
123-91-1	1,4-Dioxane	ND	250	61,	#R
105-05-5	p-Diethylbenzene	ND	2.0	0.70	U
622-96-8	p-Ethyltoluene	ND	2.0	0.70	U
95-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U
60-29-7	Ethyl ether	ND	2.5	0.70	J VJ

for 1/2912023

iA

110-57-6	trans-1,4-Dichloro-2-butene	ND 2.5 0.70 U	
CAS NO.	Parameter	Results RL MDL Qualifier	
10.10	-	ug/L	
Extract	olume (MeOH): N/A	Injection Volume : N/A	
Level	: LOW	%Solids : N/A	
Sample A		GC Column : RTX-502.2	
Lab File II		Instrument ID : VOA101	
Analytical	Method : 1,8260D	Analyst : PID	
Sample M	atrix : WATER	Dilution Factor : 1	
Sample Lo	ocation : THIRD AVE BX	Date Analyzed : 12/29/22 23	:24
Client ID	: MW-1	Date Received : 12/21/22	
Lab ID	: L2271764-01	Date Collected : 12/20/22 11	:36
Project Na	ame : CORNERSTONE	Project Number : CORNERS	TONE
Client	: CA Rich Consultants, Inc.	Lab Number : L2271764	

Lab Number

: L2271764

CA Rich Consultants, Inc.

Project Name: CORNERSTONELab ID: L2271764-02DClient ID: MW-2ASample Location: THIRD AVE BXSample Matrix: WATERAnalytical Method: 1,8260DLab File ID: V01221229N22Sample Amount: 5 mlLevel: LOWExtract Volume (MeOH): N/A			Project N Date Co Date Re Date Ana Dilution I Analyst Instrume GC Colu %Solids Injection	Number Ilected ceived alyzed Factor ent ID imn	 CORNERSTONE 12/20/22 09:50 12/21/22 12/30/22 04:08 2 PID VOA101 RTX-502.2 N/A N/A
CAS NO.	Parameter	Results	ug/L RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	5.0	1.4	U
75-34-3	1,1-Dichloroethane	ND	5.0	1.4	U
67-66-3	Chloroform	ND	5.0	1.4	U
56-23-5	Carbon tetrachloride	ND	1.0	0.27	U
78-87-5	1,2-Dichloropropane	ND	2.0	0.27	U
124-48-1	Dibromochloromethane	ND	1.0	0.30	U
79-00-5	1,1,2-Trichloroethane	ND	3.0	1.0	U
127-18-4	Tetrachloroethene	210	1.0	0.36	
108-90-7	Chlorobenzene	ND	5.0	1.4	U
75-69-4	Trichlorofluoromethane	ND	5.0	1.4	U
107-06-2	1,2-Dichloroethane	ND	1.0	0.26	U
71-55-6	1,1,1-Trichloroethane	ND	5.0	1.4	U
75-27-4	Bromodichloromethane	ND	1.0	0.38	U
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.33	U
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	U
542-75-6	1,3-Dichloropropene, Total	ND	1.0	0.29	U
563-58-6	1,1-Dichloropropene	ND	5.0	1.4	U
75-25-2	Bromoform	ND	4.0	1.3	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.33	U
71-43-2	Benzene	ND	1.0	0.32	U
108-88-3	Toluene	ND	5.0	1.4	U
100-41-4	Ethylbenzene	ND	5.0	1.4	U
74-87-3	Chloromethane	ND	5.0	1.4	o UT
74-83-9	Bromomethane	ND	5.0	1.4	- UJ
75-01-4	Vinyl chloride	ND	2.0	0.14	+ UJ

0.14 + US Δ ANALY

PHA

ICAL

Client

Client Project Name Lab ID Client ID Sample Location Sample Matrix Analytical Method Lab File ID Sample Amount Level Extract Volume (I	: WATER : 1,8260D : V01221229N22 : 5 ml : LOW		Lab Num Project N Date Co Date Re Date Ana Dilution I Analyst Instrume GC Colu %Solids Injection	lumber llected ceived alyzed Factor ent ID mn	 L2271764 CORNERSTONE 12/20/22 09:50 12/21/22 12/30/22 04:08 2 PID VOA101 RTX-502.2 N/A N/A
CAS NO.	Parameter	Results	ug/L RL	MDL	Qualifier
75-00-3	Chloroethane	ND	5.0	1.4	U
75-35-4	1,1-Dichloroethene	ND	1.0	0.34	U
156-60-5	trans-1,2-Dichloroethene	ND	5.0	1.4	U
79-01-6	Trichloroethene	9.3	1.0	0.35	J-
95-50-1	1,2-Dichlorobenzene	ND	5.0	1.4	U
541-73-1	1,3-Dichlorobenzene	ND	5.0	1.4	U
106-46-7	1,4-Dichlorobenzene	ND	5.0	1.4	U
1634-04-4	Methyl tert butyl ether	ND	5.0	1.4	U
179601-23-1	p/m-Xylene	ND	5.0	1.4	Ų
95-47-6	o-Xylene	ND	5.0	1.4	U
1330-20-7	Xylenes, Total	ND	5.0	1.4	U
156-59-2	cis-1,2-Dichloroethene	ND	5.0	1.4	U
540-59-0	1,2-Dichloroethene, Total	ND	5.0	1.4	U
74-95-3	Dibromomethane	ND	10	2.0	U
96-18-4	1,2,3-Trichloropropane	ND	5.0	1.4	U
107-13-1	Acrylonitrile	ND	10	3.0	U
100-42-5	Styrene	ND	5.0	1.4	U
75-71-8	Dichlorodifluoromethane	ND	10	2.0	H (TT
67-64-1	Acetone	ND	10	2.9	U
75-15-0	Carbon disulfide	ND	10	2.0	U
78-93-3	2-Butanone	ND	10	3.9	U
108-05-4	Vinyl acelate	ND	10	2.0	U
108-10-1	4-Methyl-2-pentanone	ND	10	2.0	U
591-78-6	2-Hexanone	ND	10	2.0	U
74-97-5	Bromochloromethane	ND	5.0	1.4	U
			5.0		

Por ALPHA

Client	: CA Rich Consultants, Inc.	Lab Number	: L2271764
Project Name	: CORNERSTONE	Project Number	: CORNERSTONE
Lab ID	: L2271764-02D	Date Collected	: 12/20/22 09:50
Client ID	: MW-2A	Date Received	: 12/21/22
Sample Location	: THIRD AVE BX	Date Analyzed	: 12/30/22 04:08
Sample Matrix	WATER	Dilution Factor	: 2
Analytical Method	: 1,8260D	Analyst	: PID
Lab File ID	: V01221229N22	Instrument ID	: VOA101
Sample Amount	: 5 ml	GC Column	: RTX-502.2
Level	: LOW	%Solids	: N/A
Extract Volume (MeC	DH) : N/A	Injection Volume	: N/A
		ug/L	

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
594-20-7	2,2-Dichloropropane	ND	5.0	1.4	U
106-93-4	1,2-Dibromoethane	ND	4.0	1.3	U
142-28-9	1,3-Dichloropropane	ND	5.0	1.4	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	1.4	U
108-86-1	Bromobenzene	ND	5.0	1.4	U
104-51-8	n-Butylbenzene	ND	5.0	1.4	U
135-98-8	sec-Butylbenzene	ND	5.0	1.4	U
98-06-6	tert-Butylbenzene	ND	5.0	1.4	U
95-49-8	o-Chlorotoluene	ND	5.0	1.4	U
106-43-4	p-Chlorotoluene	ND	5.0	1.4	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.4	U
37-68-3	Hexachlorobutadiene	ND	5.0	1.4	U
98-82-8	Isopropylbenzene	ND	5.0	1.4	U
99-87-6	p-1sopropyltoluene	ND	5.0	1.4	U
91-20-3	Naphthalene	ND	5.0	1.4	U
103-65-1	n-Propylbenzene	ND	5.0	1.4	U
37-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.4	U
20-82-1	1,2,4-Trichlorobenzene	ND	5.0	1.4	U
08-67-8	1,3,5-Trimethylbenzene	ND	5.0	1.4	U
5-63-6	1,2,4-Trimethylbenzene	ND	5.0	1.4	U
23-91-1	1,4-Dloxane	ND	500	120	of
05-05-5	p-Diethylbenzene	ND	4.0	1.4	U
22-96-8	p-Ethyltoluene	ND	4.0	1.4	U
5-93-2	1,2,4,5-Tetramethylbenzene	ND	4.0	1.1	U
60-29-7	Ethyl ether	ND	5.0	1.4	TUJ

for 1/29/2013

PHA CAL

110-57-6	trans-1,4-Dic	nloro-2-butene	ND	5.0	1.4		U
CAS NO.	Parameter		Results	RL	MDL		Qualifier
			-	ug/L			
Extract Vo	olume (MeOH) : N/	A		Injection	Volume	:	N/A
Level	: LC			%Solids		0.20	N/A
Sample A				GC Colu			RTX-502.2
Lab File II		1221229N22		Instrume			VOA101
Analytical	,	3260D		Analyst		1.5	PID
Sample M		ATER		Dilution	Factor	÷	2
Sample L		IIRD AVE BX		Date Ana	alyzed		12/30/22 04:08
Client ID		N-2A		Date Re	ceived		12/21/22
Lab ID	: L2	271764-02D		Date Co	llected	:	12/20/22 09:50
Project Na	ame : CC	DRNERSTONE		Project N	lumber	:	CORNERSTONE
Client	: CA	Rich Consultants, Inc.		Lab Num	nber	$\mathbf{\hat{v}}$	L2271764

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	28	2.5	0.70	
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	2.8	0.50	0.18	
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	2.6	0.50	0.19	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
542-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U
563-58-6	1,1-Dichloropropene	ND	2.5	0.70	U
75-25-2	Bromoform	ND	2.0	0.65	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	U
108-88-3	Toluene	ND	2.5	0.70	U
100-41-4	Ethylbenzene	ND	2.5	0.70	U
74-87-3	Chloromethane	ND	2.5	0.70	JU (J.T
74-83-9	Bromomethane	ND	2.5	0.70	- UT
75-01-4	Vinyl chloride	ND	1.0	0.07	U ITT

PO1211/223 HA Δ GAL

Client Project Name Lab ID Client ID Sample Location Sample Matrix Analytical Method Lab File ID Sample Amount Level	: CA Rich Consultants, Inc. : CORNERSTONE : L2271764-03 : MW-4 : THIRD AVE BX : WATER : 1,8260D : V01221229N12 : 10 ml : LOW	Date Collected Date Received Date Analyzed Dilution Factor Analyst Instrument ID GC Column %Solids	: L2271764 : CORNERSTONE : 12/20/22 11:26 : 12/21/22 : 12/29/22 23:50 : 1 : PID : VOA101 : RTX-502.2 : N/A
Extract Volume (MeOH)		%Solids	
		-	

		8	ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-00-3	Chloroethane	ND	2.5	0.70	U
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U
79-01-6	Trichloroethene	ND	0.50	0.18	U
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U
179601-23-1	p/m-Xylene	ND	2.5	0.70	U
95-47 - 6	o-Xylene	ND	2.5	0.70	U
1330-20-7	Xylenes, Total	ND	2.5	0.70	U
156-59-2	cis-1,2-Dichloroethene	ND	2.5	0.70	U
540-59-0	1,2-Dichloroethene, Total	ND	2.5	0.70	U
74-95-3	Dibromomethane	ND	5.0	1.0	U
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U
107-13-1	Acrylonitrile	ND	5.0	1.5	U
100-42-5	Styrene	ND	2.5	0.70	U
75-71 - 8	Dichlorodifluoromethane	ND	5.0	1.0	+UJ
67-64-1	Acetone	ND	5.0	1.5	U
75-15-0	Carbon disulfide	ND	5.0	1.0	U
78-93-3	2-Butanone	ND	5.0	1.9	U
108-05-4	Vinyl acetate	ND	5.0	1.0	U
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U
591-78-6	2-Hexanone	ND	5.0	1.0	U
74-97-5	Bromochloromethane	ND	2.5	0.70	U

for 21/12023 ÷Α

Client	: CA Rich Consultants, Inc.	Project Number: CDate Collected: 1Date Received: 1Date Analyzed: 1Dilution Factor: 1Analyst: FInstrument ID: VGC Column: F	L2271764
Project Name	: CORNERSTONE		CORNERSTONE
Lab ID	: L2271764-03		12/20/22 11:26
Client ID	: MW-4		12/21/22
Sample Location	: THIRD AVE BX		12/29/22 23:50
Sample Matrix	: WATER		1
Analytical Method	: 1,8260D		PID
Lab File ID	: V01221229N12		VOA101
Sample Amount	: 10 ml		RTX-502.2
Level	: LOW		N/A
Level Extract Volume (MeOH)		%Solids : I Injection Volume : I	

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	U
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U
108-86-1	Bromobenzene	ND	2.5	0.70	U
104-51-8	n-Butylbenzene	ND	2.5	0.70	U
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U
87-68-3	Hexachlorobutadiene	ND	2.5	0.70	U
98-82-8	Isopropylbenzene	ND	2.5	0.70	U
99-87-6	p-isopropyltoluene	ND	2.5	0.70	U
91-20-3	Naphthalene	ND	2.5	0.70	U
103-65-1	n-Propylbenzene	ND	2.5	0.70	U
87-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U
123-91-1	1,4-Dioxane	ND	250	61.	wh
105-05-5	p-Dlethylbenzene	ND	2.0	0.70	U
622-96-8	p-Ethyltoluene	ND	2.0	0.70	U
95-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U
50-29-7	Ethyl ether	ND	2.5	0.70	-UUT

for 1/29/2023

iA

110-57-6	trans-1,4-Dichloro-2-butene	ND	2.5	0.70		U
CAS NO.	Parameter	Results	RL	MDL		Qualifier
		÷	ug/L			
Extract Vo	blume (MeOH) : N/A		Injection	Volume	3	N/A
Level	: LOW		%Solids			N/A
Sample A			GC Colu		- 2	RTX-502.2
Lab File II			Instrume			VOA101
Analytical			Analyst			PID
Sample M	latrix : WATER		Dilution	Factor	-	1
Sample L			Date An	-	Ģ	12/29/22 23:50
Client ID	: MW-4		Date Re		1.5	12/21/22
Lab ID	: L2271764-03		Date Co			12/20/22 11:26
Project Na	ame : CORNERSTONE			Number		CORNERSTONE
Client	: CA Rich Consultants, Inc.		Lab Nun	nber	:	L2271764

Client	: CA Rich Consultants, Inc.	Lab Number : L2271764
Project Name	: CORNERSTONE	Project Number : CORNERSTONE
Lab ID	: L2271764-04	Date Collected : 12/20/22 09:20
Client ID	: MW-6	Date Received : 12/21/22
Sample Location	THIRD AVE BX	Date Analyzed : 12/30/22 00:15
Sample Matrix	: WATER	Dilution Factor : 1
Analytical Method	: 1,8260D	Analyst : PID
Lab File ID	: V01221229N13	Instrument ID : VOA101
Sample Amount	: 10 ml	GC Column : RTX-502.2
Level	: LOW	%Solids : N/A
Extract Volume (MeOH)	: N/A	Injection Volume : N/A

CAS NO.	Parameter		ug/L				
		Results	RL	MDL	Qualifier		
75-09-2	Methylene chloride	ND	2.5	0.70	U		
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U		
67-66-3	Chloroform	ND	2.5	0.70	U		
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U		
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U		
124-48-1	Dibromochloromethane	ND	0.50	0.15	U		
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U		
127-18-4	Tetrachloroethene	43	0.50	0.18			
108-90-7	Chlorobenzene	ND	2.5	0.70	U		
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U		
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U		
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U		
75-27-4	Bromodichloromethane	ND	0.50	0.19	U		
0061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U		
0061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U		
542-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U		
563-58-6	1,1-Dichloropropene	ND	2.5	0.70	U		
5-25-2	Bromoform	ND	2.0	0.65	U		
9-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U		
1-43-2	Benzene	ND	0.50	0.16	U		
08-88-3	Toluene	ND	2.5	0.70	U		
00-41-4	Ethylbenzene	ND	2.5	0.70	U		
4-87-3	Chloromethane	ND	2.5	0.70	-0	UT	
4-83-9	Bromomethane	ND	2.5	0.70	15-	UT	
5-01-4	Vinyl chloride	ND	1.0	0.07	-0	UT	

for 21112023 PHA Ľ CAL ANALS

Client Project Name Lab ID Client ID Sample Location Sample Matrix Analytical Method Lab File ID Sample Amount Level	: CA Rich Consultants, Inc. : CORNERSTONE : L2271764-04 : MW-6 : THIRD AVE BX : WATER : 1,8260D : V01221229N13 : 10 ml : LOW	Lab Number: L2271764Project Number: CORNERSTONEDate Collected: 12/20/22 09:20Date Received: 12/21/22Date Analyzed: 12/30/22 00:15Dilution Factor: 1Analyst: PIDInstrument ID: VOA101GC Column: RTX-502.2%Solids: N/A
Extract Volume (MeOH)		Injection Volume : N/A

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-00-3	Chloroethane	ND	2.5	0.70	υ
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U
79-01-6	Trichloroethene	0.81	0.50	0.18	
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U
179601-23-1	p/m-Xylene	ND	2.5	0.70	υ
95-47-6	o-Xylene	ND	2.5	0.70	U
1330-20-7	Xylenes, Total	ND	2.5	0.70	U
156-59-2	cis-1,2-Dichloroethene	ND	2.5	0.70	U
540-59-0	1,2-Dichloroethene, Total	ND	2.5	0.70	U
74-95-3	Dibromomethane	ND	5.0	1.0	U
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U
107-13-1	Acrylonitrile	ND	5.0	1.5	U
100-42-5	Styrene	ND	2.5	0.70	U
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	# UJ
67-64-1	Acetone	ND	5.0	1.5	U
75-15-0	Carbon disulfide	ND	5.0	1.0	U
78-93-3	2-Butanone	ND	5.0	1.9	υ
108-05-4	Vinyl acetate	ND	5.0	1.0	U
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U
591-78-6	2-Hexanone	ND	5.0	1.0	U
74-97-5	Bromochloromethane	ND	2.5	0.70	U

for 211/2023 ΉÀ ANAL

Client	: CA Rich Consultants, Inc.	Lab Number : L2271764
Project Name	: CORNERSTONE	Project Number 👔 CORNERSTONE
Lab ID	: L2271764-04	Date Collected : 12/20/22 09:20
Client ID	: MW-6	Date Received : 12/21/22
Sample Location	: THIRD AVE BX	Date Analyzed : 12/30/22 00:15
Sample Matrix	: WATER	Dilution Factor : 1
Analytical Method	: 1,8260D	Analyst : PID
Lab File ID	: V01221229N13	Instrument ID : VOA101
Sample Amount	: 10 ml	GC Column : RTX-502.2
Level	: LOW	%Solids : N/A
Extract Volume (MeOH): N/A	Injection Volume : N/A

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	U
					and a submit a submit of
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U
108-86-1	Bromobenzene	ND	2.5	0.70	U
104-51-8	n-Butylbenzene	ND	2.5	0.70	U
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U
87-68-3	Hexachlorobutadiene	ND	2.5	0.70	U
98-82 - 8	Isopropylbenzene	ND	2.5	0.70	U
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U
91-20-3	Naphthalene	ND	2.5	0.70	U
103-65-1	n-Propylbenzene	ND	2.5	0.70	U
87-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U
123-91-1	1,4-Dioxane	ND	250	61,	UR
105-05-5	p-Diethylbenzene	ND	2.0	0.70	U
622-96-8	p-Ethyltoluene	ND	2.0	0.70	U
95-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U
60-29-7	Ethyl ether	ND	2.5	0.70	+ UT

for ingnors

HΑ

CAL

ANAL

110-57-6	trans	-1,4-Dichloro-2-butene	ND	2.5	0.70		U
CAS NO.	Para	meter	Results	RL	MDL		Qualifier
			·/	ug/L			
Extract	Volume (MeOH	i) :: N/A		Injection	Volume	1	N/A
Level		: LOW		%Solids		0	N/A
	Amount	: 10 ml		GC Colu		· · ·	RTX-502.2
Lab File		: V01221229N13		Instrume			VOA101
	al Method	: 1,8260D		Analyst			PID
Sample		: WATER		Dilution	Factor	- 74	1
	Location	: THIRD AVE BX		Date An		5	12/30/22 00:15
Client II		: MW-6		Date Re		- 21	12/21/22
Lab ID		: L2271764-04		Date Co		-	12/20/22 09:20
Project	Name	: CORNERSTONE		Project I			CORNERSTONE
Client		: CA Rich Consultants, Inc.		Lab Nun		-	L2271764

CAS NO.	Parameter	Results RL MDL	Qualifier
		ug/L	
Extract Volun	ne (MeOH) : N/A	Injection Volume :	N/A
Level	: LOW		N/A
Sample Amo			RTX-502.2
Lab File ID	: V01221229N15		VOA101
Analytical Me		· · · · · · · · · · · · · · · · · · ·	PID
Sample Matri	x : WATER	Dilution Factor :	1
Sample Loca	tion : THIRD AVE BX	Date Analyzed :	12/30/22 01:07
Client ID	: MW-7	Date Received :	12/21/22
Lab ID	: L2271764-05	Date Collected :	12/20/22 13:10
Project Name	CORNERSTONE	Project Number :	CORNERSTONE
Client	: CA Rich Consultants, I	c. Lab Number :	L2271764

75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	ND	2.5	0.70	U
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	1.8	0.50	0.18	
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
542-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U
563-58-6	1,1-Dichloropropene	ND	2.5	0.70	U
75-25-2	Bromoform	ND	2.0	0.65	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	0.18	0.50	0.16	J
108-88-3	Toluene	4.1	2.5	0.70	
100-41-4	Ethylbenzene	ND	2.5	0.70	U
74-87-3	Chloromethane	ND	2.5	0.70	V UT
74-83-9	Bromomethane	ND	2.5	0.70	# UT
75-01-4	Vinyl chloride	ND	1.0	0.07	1 UT

21/2023

iA ANA

Client Project Name Lab ID Client ID Sample Location Sample Matrix Analytical Method Lab File ID Sample Amount Level Extract Volume (M	: V01221229N15 : 10 ml : LOW		Lab Num Project N Date Coll Date Rec Date Ana Dilution F Analyst Instrumen GC Colur %Solids Injection	umber ected eived lyzed actor nt ID nn	: L2271764 : CORNERSTONE : 12/20/22 13:10 : 12/21/22 : 12/30/22 01:07 : 1 : PID : VOA101 : RTX-502.2 : N/A : N/A
CAS NO.	Parameter	Results	ug/L RL	MDL	Qualifier
75-00-3	Chloroethane	ND	2.5	0.70	U
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U
79-01-6	Trichloroethene	0.52	0.50	0.18	
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U
179601-23-1	p/m-Xylene	ND	2.5	0.70	U
95-47-6	o-Xylene	ND	2.5	0.70	U
1330-20-7	Xylenes, Total	ND	2.5	0.70	U
156-59-2	cis-1,2-Dichloroethene	100	2.5	0.70	
540-59-0	1,2-Dichloroethene, Total	100	2.5	0.70	
74-95-3	Dibromomethane	ND	5.0	1.0	U
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U
107-13-1	Acrylonitrile	ND	5.0	1.5	U
100-42-5	Styrene	ND	2.5	0.70	U
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	+UT
67-64-1	Acetone	6.6	5.0	1.5	v v
75-15-0	Carbon disulfide	ND	5.0	1.0	U
78-93-3	2-Butanone	ND	5.0	1.9	U
108-05-4	Vinyi acetate	ND	5.0	1.0	U
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	υ
591-78-6	2-Hexanone	ND	5.0	1.0	U
74-97-5	Bromochloromethane	ND	2.5	0.70	U
					_

for 211NO23 PHA C AL

Client Project Name Lab ID Client ID Sample Location Sample Matrix Analytical Method Lab File ID Sample Amount Level	: CA Rich Consultants, Inc. : CORNERSTONE : L2271764-05 : MW-7 : THIRD AVE BX : WATER : 1,8260D : V01221229N15 : 10 ml : LOW	Lab Number Project Number Date Collected Date Received Date Analyzed Dilution Factor Analyst Instrument ID GC Column %Solids	: L2271764 : CORNERSTONE : 12/20/22 13:10 : 12/21/22 : 12/30/22 01:07 : 1 : PID : VOA101 : RTX-502.2 : N/A
Level Extract Volume (MeOH)		%Solids Injection Volume	

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	U
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U
108-86-1	Bromobenzene	ND	2.5	0.70	U
104-51 - 8	n-Butylbenzene	ND	2.5	0.70	U
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U
87-68-3	Hexachlorobutadiene	ND	2.5	0.70	U
98-82-8	Isopropylbenzene	ND	2.5	0.70	U
99-87-6	p-isopropyltoluene	ND	2.5	0.70	U
91-20-3	Naphthalene	ND	2.5	0.70	U
103-65-1	n-Propylbenzene	ND	2.5	0.70	U
87-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U
123-91-1	1,4-Dioxane	ND	250	61.	JA
105-05-5	p-Diethylbenzene	ND	2.0	0.70	U
622-96-8	p-Ethyltolue ne	ND	2.0	0.70	U
95-93-2	1,2,4,5-Tetramethylbenzene	0.86	2.0	0.54	J
60-29-7	Ethyl ether	ND	2.5	0.70	TUJ

Jar 11291223 PHA ANAL CAL

110-57-6	trans-1,4-Dichloro-2-butene	ND	2.5	0.70		U
CAS NO.	Parameter	Results	RL	MDL		Qualifier
			ug/L			
	olume (MeOH) : N/A		Injection	Volume		N/A
Level	: LOW		%Solids			N/A
Sample A	mount : 10 ml		GC Colu	imn		RTX-502.2
Lab File II	V01221229N15		Instrume	ent ID	12	VOA101
Analytical	Method : 1,8260D		Analyst			PID
Sample M	atrix ; WATER		Dilution	Factor	:	1
Sample L	ocation : THIRD AVE BX		Date An	alyzed	:	12/30/22 01:07
Client ID	: MW-7		Date Re	ceived	:	12/21/22
Lab ID	: L2271764-05		Date Co	llected	:	12/20/22 13:10
Project Na			Project I		1	CORNERSTONE
Client	: CA Rich Consultants, Inc.		Lab Nur			L2271764

Client	: CA Rich Consultants, Inc.	Lab Number : L2271764
Project Name	: CORNERSTONE	Project Number : CORNERSTONE
Lab ID	: L2271764-06D	Date Collected : 12/20/22 12:40
Client ID	: MW-8	Date Received : 12/21/22
Sample Location	: THIRD AVE BX	Date Analyzed : 12/30/22 03:42
Sample Matrix	: WATER	Dilution Factor : 5
Analytical Method	: 1,8260D	Analyst : PID
Lab File ID	: V01221229N21	Instrument ID : VOA101
Sample Amount	: 2 ml	GC Column 👘 RTX-502.2
Level	: LOW	%Solids : N/A
Extract Volume (MeOH	i) : N/A	Injection Volume : N/A

		·	ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	12	3.5	U
75-34-3	1,1-Dichloroethane	ND	12	3.5	U
67-66-3	Chloroform	ND	12	3.5	U
56-23-5	Carbon tetrachloride	ND	2.5	0.67	U
78-87-5	1,2-Dichioropropane	ND	5.0	0.68	U
124-48-1	Dibromochloromethane	ND	2.5	0.74	U
79-00-5	1,1,2-Trichloroethane	ND	7.5	2.5	U
127-18-4	Tetrachloroethene	830	2.5	0.90	
108-90-7	Chlorobenzene	ND	12	3.5	U
75-69-4	Trichlorofluoromethane	ND	12	3.5	U
107-06-2	1,2-Dichloroethane	ND	2.5	0.66	U
71-55-6	1,1,1-Trichloroethane	ND	12	3.5	U
75-27-4	Bromodichloromethane	ND	2.5	0.96	U
10061-02-6	trans-1,3-Dichloropropene	ND	2.5	0.82	U
10061-01-5	cis-1,3-Dichloropropene	ND	2.5	0.72	U
542-75-6	1,3-Dichloropropene, Total	ND	2.5	0.72	U
563-58-6	1,1-Dichloropropene	ND	12	3.5	U
75-25-2	Bromoform	ND	10	3.2	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	2.5	0.84	U
71-43-2	Benzene	ND	2.5	0.80	U
108-88-3	Toluene	ND	12	3.5	U
00-41-4	Ethylbenzene	ND	12	3.5	U
74-87-3	Chloromethane	ND	12	3.5	"UT
/4-83-9	Bromomethane	ND	12	3,5	* UT
/5-01-4	Vinyl chlorlde	ND	5.0	0.36	VUI

POT 21/1223 PHA CAL ANALY

Client Project Name Lab ID Client ID Sample Locati Sample Matrix Analytical Met Lab File ID Sample Amou Level Extract Volum	x : WATER hod : 1,8260D : V01221229N21		Lab Nun Project N Date Co Date Re Date An Dilution Analyst Instrume GC Colu %Solids Injection	lumber llected ceived alyzed Factor ent ID mn	: L2271764 : CORNERSTONE : 12/20/22 12:40 : 12/21/22 : 12/30/22 03:42 : 5 : PID : VOA101 : RTX-502.2 : N/A : N/A
CAS NO.	Parameter	Results	ug/L RL	MDL	Qualifier
75-00-3	Chloroethane	ND	12	3.5	U
75-35-4	1,1-Dichloroethene	ND	2.5	0.84	U
156-60-5	trans-1,2-Dichloroethene	ND	12	3.5	U
79-01-6	Trichloroethene	380	2.5	0.88	
95-50-1	1,2-Dichlorobenzene	ND	12	3.5	U
541-73-1	1,3-Dichlorobenzene	ND	12	3.5	U
106-46-7	1,4-Dichlorobenzene	ND	12	3.5	U
1634-04-4	Methyl tert butyl ether	ND	12	3.5	U
179601-23-1	p/m-Xylene	ND	12	3.5	U
95-47-6	o-Xylene	ND	12	3.5	U
1330-20-7	Xylenes, Total	ND	12	3.5	U
156-59-2	cls-1,2-Dichloroethene	ND	12	3.5	U
540-59-0	1,2-Dichloroethene, Total	ND	12	3.5	U
74-95-3	Dibromomethane	ND	25	5.0	U
96-18-4	1,2,3-Trichloropropane	ND	12	3.5	U
107-13-1	Acrylonitrile	ND	25	7.5	U
100-42-5	Styrene	ND	12	3.5	U
75-71-8	Dichlorodifluoromethane	ND	25	5.0	JUJ
67-64-1	Acetone	ND	25	7.3	U
75-15-0	Carbon disulfide	ND	25	5.0	U
78-93-3	2-Butanone	ND	25	9.7	U
108-05-4	Vinyl acetate	ND	25	5.0	U
108-10-1	4-Methyl-2-pentanone	ND	25	5.0	U
591-78-6	2-Hexanone	ND	25	5.0	U
74-97-5	Bromochloromethane	ND	12	3.5	U
11-12					

POF 21/12023 HA ANAL CAL

Client Project Name Lab ID Client ID Sample Location Sample Matrix Analytical Method Lab File ID Sample Amount Level Extract Volume (I	: WATER d : 1,8260D : V01221229N21 : 2 ml : LOW		Lab Num Project N Date Coll Date Rec Date Ana Dilution F Analyst Instrumer GC Colur %Solids Injection	umber ected eived lyzed actor nt ID nn	: L2271764 : CORNERSTONE : 12/20/22 12:40 : 12/21/22 : 12/30/22 03:42 : 5 : PID : VOA101 : RTX-502.2 : N/A : N/A
CAS NO.	Parameter	Results	ug/L RL	MDL	Qualifier
594-20-7	2,2-Dichloropropane	ND	12	3.5	U
106-93-4	1,2-Dibromoethane	ND	10	3.2	U
142-28-9	1,3-Dichloropropane	ND	12	3.5	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	12	3.5	U
108-86-1	Bromobenzene	ND	12	3.5	U
104-51-8	n-Butylbenzene	ND	12	3.5	U
135-98-8	sec-Butylbenzene	ND	12	3.5	U
98-06-6	tert-Butylbenzene	ND	12	3.5	U
95-49-8	o-Chlorotoluene	ND	12	3.5	U
106-43-4	p-Chlorotoluene	ND	12	3.5	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	12	3.5	U
87-68-3	Hexachlorobutadiene	ND	12	3.5	U
98-82-8	Isopropylbenzene	ND	12	3.5	U
99-87-6	p-Isopropyltolue ne	ND	12	3.5	U
91-20-3	Naphthalene	ND	12	3.5	U
103-65-1	n-Propylbenzene	ND	12	3.5	U
87-61-6	1,2,3-Trichlorobenzene	ND	12	3.5	U
120-82-1	1,2,4-Trichlorobenzene	ND	12	3.5	U
108-67-8	1,3,5-Trimethylbenzene	ND	12	3.5	U
95-63-6	1,2,4-Trimethylbenzene	ND	12	3.5	U
123-91-1	1,4-Dioxane	ND	1200	300	J
105-05-5	p-Dlethylbenzene	ND	10	3.5	U
622-96-8	p-Ethyltoluene	ND	10	3.5	U
95-93-2	1,2,4,5-Tetramethylbenzene	ND	10	2.7	U
60-29-7	Ethyl ether	ND	12	3.5	I UJ

10 59/2027 iA

110-57-6	trans-1,4-Dichloro-2-butene	ND	12	3.5		U
CAS NO.	Parameter	Results	RL	MDL	(Qualifier
			ug/L			
Extract VOI			mjection	volume	in IN/	A
	ume (MeOH) : N/A		Injection		1.4.1	
Level	: LOW		%Solids		N/	
Sample An	iount : 2 ml		GC Colu	IMN	: R	TX-502.2
Lab File ID	: V01221229N21		Instrume	ent ID	: V	OA101
Analytical I	lethod : 1,8260D		Analyst		s Pl	D
Sample Ma	trix : WATER		Dilution	Factor	: 5	
Sample Lo			Date An	alyzed	: 12	2/30/22 03:42
Client ID	: MW-8		Date Re			2/21/22
Lab ID	: L2271764-06D		Date Co			2/20/22 12:40
Project Na			Project I			ORNERSTONE
Client	: CA Rich Consultants, Inc.			nber	282	2271764

75.00.2	Methyle	no oblazida	ND	0.5	0 70	u.
CAS NO.	Paramo	eter	Results	RL	MDL	Qualifier
04040	Deserve		-	ug/L	AUD1	Qualities
Extract V	/olume (MeOH)	; N/A		Injection	Volume	: N/A
Level		: LOW		%Solids		: N/A
Sample .		: 10 ml		GC Colu		: RTX-502.2
Lab File	ID	: V01221229N14		Instrume	ent ID	: VOA101
Analytica	al Method	: 1,8260D		Analyst		: PID
Sample	Matrix	; WATER		Dilution	Factor	: 1
Sample	Location	: THIRD AVE BX		Date Ana	alyzed	: 12/30/22 00:41
Client ID		: MW-10		Date Re	ceived	: 12/21/22
Lab ID		: L2271764-07		Date Co	llected	: 12/20/22 10:36
Project N	Name	CORNERSTONE		Project N	Number	: CORNERSTONE
Client		: CA Rich Consultants, Inc.		Lab Nun	nber	: L2271764

75 00 0			0.5	0.70	
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	ND	2.5	0.70	U
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	6.1	0.50	0.18	
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dlchloropropene	ND	0.50	0.14	U
542-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U
563-58-6	1,1-Dichloropropene	ND	2.5	0.70	U
75-25-2	Bromoform	ND	2.0	0.65	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	υ
108-88-3	Toluene	ND	2.5	0.70	U
100-41-4	Ethylbenzene	ND	2.5	0.70	U
74-87-3	Chloromethane	ND	2.5	0.70	VUJ
74-83-9	Bromomethane	ND	2.5	0.70	V (T)
75-01-4	Vinyl chloride	ND	1.0	0.07	1 UT

for 211/202) iΑ CAI

Client	: CA Rich Consultants, Inc.	Lab Number : L2271764
Project Name	: CORNERSTONE	Project Number : CORNERSTONE
Lab ID	: L2271764-07	Date Collected : 12/20/22 10:36
Client ID	: MW-10	Date Received : 12/21/22
Sample Location	: THIRD AVE BX	Date Analyzed : 12/30/22 00:41
Sample Matrix	: WATER	Dilution Factor : 1
Analytical Method	: 1,8260D	Analyst : PID
Lab File ID	: V01221229N14	Instrument ID : VOA101
Sample Amount	: 10 ml	GC Column : RTX-502.2
Level	: LOW	%Solids : N/A
Extract Volume (MeO	H) : N/A	Injection Volume : N/A

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-00-3	Chloroethane	ND	2.5	0.70	U
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U
79-01-6	Trichloroethene	ND	0.50	0.18	U
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U
06-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U
634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U
79601-23-1	p/m-Xylene	ND	2.5	0.70	U
95-47-6	o-Xylene	ND	2.5	0.70	U
330-20-7	Xylenes, Total	ND	2.5	0.70	U
56-59-2	cls-1,2-Dichloroethene	ND	2.5	0.70	U
540-59-0	1,2-Dichloroethene, Total	ND	2.5	0.70	U
74-95-3	Dibromomethane	ND	5.0	1.0	U
6-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U
07-13-1	Acrylonitrile	ND	5.0	1.5	U
00-42-5	Styrene	ND	2.5	0.70	U
′5-71-8	Dichlorodifluoromethane	ND	5.0	1.0	+UJ
57-64-1	Acetone	ND	5.0	1.5	U
/5-15-0	Carbon disulfide	ND	5.0	1.0	U
8-93-3	2-Butanone	ND	5.0	1.9	U
08-05-4	Vinyl acetate	ND	5.0	1.0	U
08-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U
91-78-6	2-Hexanone	ND	5.0	1.0	U
4-97-5	Bromochloromethane	ND	2.5	0.70	U

801 211/2023 iA ANA

Client	: CA Rich Consultants, Inc.	Lab Number	: L2271764
Project Name	: CORNERSTONE	Project Number	: CORNERSTONE
Lab ID	: L2271764-07	Date Collected	: 12/20/22 10:36
Client ID	: MW-10	Date Received	: 12/21/22
Sample Location	: THIRD AVE BX	Date Analyzed	: 12/30/22 00:41
Sample Matrix	: WATER	Dilution Factor	: 1
Analytical Method	: 1,8260D	Analyst	: PID
Lab File ID	: V01221229N14	Instrument ID	: VOA101
Sample Amount	: 10 ml	GC Column	: RTX-502.2
Level	: LOW	%Solids	: N/A
Extract Volume (MeOH)	: N/A	Injection Volume	: N/A

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	U
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U
108-86-1	Bromobenzene	ND	2.5	0.70	U
104-51-8	n-Butylbenzene	ND	2.5	0.70	U
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U
37-68-3	Hexachlorobutadiene	ND	2.5	0.70	U
98-82-8	Isopropylbenzene	ND	2.5	0.70	U
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U
91-20-3	Naphthalene	ND	2.5	0.70	U
103-65-1	n-Propylbenzene	ND	2.5	0.70	U
87-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U
123-91-1	1,4-Dioxane	ND	250	61.	-or K
105-05-5	p-Diethylbenzene	ND	2.0	0.70	U
522-96-8	p-Ethyltoluene	ND	2.0	0.70	U
95-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U
§0-29-7	Ethyl ether	ND	2.5	0.70	- UJ

Por 1/29/1023

HA

110-57-6	trans-1	4-Dichloro-2-butene	ND	2.5	0.70		U
CAS NO.	Param	eter	Results	RL	MDL	-	Qualifier
				ug/L			
Extract	Volume (MeOH)	: N/A		Injection	Volume	:	N/A
Level		: LOW		%Solids			N/A
Sample	Amount	: 10 ml		GC Colu			RTX-502.2
Lab File		: V01221229N14		Instrume			VOA101
	al Method	: 1,8260D		Analyst		- 325	PID
Sample		WATER		Dilution	Factor	:	
		: THIRD AVE BX		Date An	-	:	12/30/22 00:41
Client II		: MW-10		Date Re			12/21/22
Lab ID		: L2271764-07		Date Co			12/20/22 10:36
Project	Name	CORNERSTONE		Project I			CORNERSTONE
Client		: CA Rich Consultants, Inc.		Lab Nun			L2271764

CAS NO.	Parame	er	Results	ug/L RL	MDL	Qualifier
Extract	Volume (MeOH) :	N/A		Injection	Volume	: N/A
Level	3	LOW		%Solids		: N/A
Sample	Amount :	5 ml		GC Colu	nn	: RTX-502.2
Lab File	ID :	V01221229N20		Instrume	nt ID	: VOA101
Analytic	al Method :	1,8260D		Analyst		: PID
Sample	Matrix :	WATER		Dilution F	actor	: 2
Sample	Location :	THIRD AVE BX		Date Ana	lyzed	12/30/22 03:16
Client ID)	MW-XX MUU-DA		Date Rec	eived	: 12/21/22
Lab ID	:	L2271764-08D		Date Col	ected	: 12/20/22 00:00
Project I	Name :	CORNERSTONE		Project N	umber	: CORNERSTONE
Client	;	CA Rich Consultants, Inc.		Lab Num	ber	: L2271764

CAS NU.	Parameter	nesuits	RL	WDL	Quanner
75-09-2	Methylene chloride	ND	5.0	1.4	U
		ND			U
75-34-3	1,1-Dichloroethane		5.0	1.4	
67-66-3	Chloroform	ND	5.0	1.4	U
56-23-5	Carbon tetrachloride	ND	1.0	0.27	U
78-87-5	1,2-Dichloropropane	ND	2.0	0.27	U
124-48-1	Dibromochloromethane	ND	1.0	0.30	U
79-00-5	1,1,2-Trichloroethane	ND	3.0	1.0	U
127-18-4	Tetrachloroethene	210	1.0	0.36	
108-90 - 7	Chlorobenzene	ND	5.0	1.4	U
75-69-4	Trichlorofluoromethane	ND	5.0	1.4	U
107-06-2	1,2-Dichloroethane	ND	1.0	0.26	U
71-55-6	1,1,1-Trichloroethane	ND	5.0	1.4	U
75-27-4	Bromodichloromethane	ND	1.0	0.38	U
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.33	U
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	U
542-75-6	1,3-Dichloropropene, Total	ND	1.0	0.29	U
563-58-6	1,1-Dichloropropene	ND	5.0	1.4	U
75-25-2	Bromoform	ND	4.0	1.3	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.33	U
71-43-2	Benzene	ND	1.0	0.32	U
108-88-3	Toluene	ND	5.0	1.4	U
100-41-4	Ethylbenzene	ND	5.0	1.4	U
74-87-3	Chloromethane	ND	5.0	1.4	VJ
74-83-9	Bromomethane	ND	5.0	1.4	V UT
75-01-4	Vinyl chloride	ND	2.0	0.14	- UT

for 112912023 ΗA

Client Project Name Lab ID Client ID Sample Location Sample Matrix Analytical Method Lab File ID Sample Amount	: CA Rich Consultants, Inc. : CORNERSTONE : L2271764-08D : MW-XX <i>MW-2A</i> : THIRD AVE BX : WATER : 1,8260D : V01221229N20 : 5 ml	Date Collected Date Received Date Analyzed Dilution Factor Analyst Instrument ID	 L2271764 CORNERSTONE 12/20/22 00:00 12/21/22 12/30/22 03:16 2 PID VOA101 BTX-502.2
Lab File ID		Instrument ID	: VOA101
Sample Amount Level	: 5 ml : LOW	GC Column %Solids	: RTX-502.2 : N/A
Extract Volume (MeO		Injection Volume	: N/A

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-00-3	Chloroethane	ND	5.0	1.4	U
75-35-4	1,1-Dichloroethene	ND	1.0	0.34	U
156-60-5	trans-1,2-Dichloroethene	ND	5.0	1.4	U
79-01-6	Trichloroethene	9.4	1.0	0.35	
95-50-1	1,2-Dichlorobenzene	ND	5.0	1.4	U
541-73-1	1,3-Dichlorobenzene	ND	5.0	1.4	U
106-46-7	1,4-Dichlorobenzene	ND	5.0	1.4	U
1634-04-4	Methyl tert butyl ether	ND	5.0	1.4	U
179601-23-1	p/m-Xylene	ND	5.0	1.4	U
95-47-6	o-Xylene	ND	5.0	1.4	U
1330-20-7	Xylenes, Total	ND	5.0	1.4	U
156-59-2	cis-1,2-Dichloroethene	ND	5.0	1.4	U
540-59-0	1,2-Dichloroethene, Total	ND	5.0	1.4	U
74-95-3	Dibromomethane	ND	10	2.0	U
96-18-4	1,2,3-Trichloropropane	ND	5.0	1.4	U
107-13-1	Acrylonitrile	ND	10	3.0	U
100-42-5	Styrene	ND	5.0	1.4	U
75-71-8	Dichlorodifluoromethane	ND	10	2.0	TUJ
67-64-1	Acetone	ND	10	2.9	U
75-15-0	Carbon disulfide	ND	10	2.0	U
78-93-3	2-Butanone	ND	10	3.9	U
08-05-4	Vinyl acetate	ND	10	2.0	U
08-10-1	4-Methyl-2-pentanone	ND	10	2.0	U
91-78-6	2-Hexanone	ND	10	2.0	U
4-97-5	Bromochloromethane	ND	5.0	1.4	U

for 1129 12023

iA

Client	: CA Rich Consultants, Inc.	Lab Number : L2271764
Project Name	: CORNERSTONE	Project Number : CORNERSTONE
Lab ID	: L2271764-08D	Date Collected : 12/20/22 00:00
Client ID	: MW-XX MW-2A	Date Received 12/21/22
Sample Location	THIRD AVE BX	Date Analyzed : 12/30/22 03:16
Sample Matrix	: WATER	Dilution Factor : 2
Analytical Method	: 1,8260D	Analyst : PID
Lab File ID	: V01221229N20	Instrument ID : VOA101
Sample Amount	: 5 ml	GC Column : RTX-502.2
Level	: LOW	%Solids : N/A
Extract Volume (Me	OH) : N/A	Injection Volume : N/A
		ug/L
AS NO.	Parameter	Besults BL MDI Qualifier

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
594-20-7	2,2-Dichloropropane	ND	5.0	1.4	U
106-93-4	1,2-Dibromoethane	ND	4.0	1.3	U
142-28-9	1,3-Dichloropropane	ND	5.0	1.4	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	1.4	U
108-86-1	Bromobenzene	ND	5.0	1.4	U
104-51-8	n-Butylbenzene	ND	5.0	1.4	U
135-98-8	sec-Butylbenzene	ND	5.0	1.4	U
98-06-6	tert-Butylbenzene	ND	5.0	1.4	U
95-49-8	o-Chłorotoluene	ND	5.0	1.4	U
106-43-4	p-Chlorotoluene	ND	5.0	1.4	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.4	U
37-68-3	Hexachlorobutadiene	ND	5.0	1.4	U
98-82-8	Isopropylbenzene	ND	5.0	1.4	U
99-87-6	p-isopropyitoluene	ND	5.0	1.4	U
91-20-3	Naphthalene	ND	5.0	1.4	U
103-65-1	n-Propylbenzene	ND	5.0	1.4	U
37-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.4	U
20-82-1	1,2,4-Trichlorobenzene	ND	5.0	1.4	U
08-67-8	1,3,5-Trimethylbenzene	ND	5.0	1.4	U
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	1.4	U
23-91-1	1,4-Dloxane	ND	500	120	JR
05-05-5	p-Diethylbenzene	ND	4.0	1.4	U
22-96-8	p-Ethyltoluene	ND	4.0	1.4	U
5-93-2	1,2,4,5-Tetramethylbenzene	ND	4.0	1.1	U
60-29-7	Ethyl ether	ND	5.0	1.4	JUT

Yor 1/29/2023

HA CAL

ANAL

110-57-6	trans-1,4-Dichloro-2-butene	ND	5.0	1.4		U
CAS NO.	Parameter	Results	RL	MDL		Qualifier
		ĵ.	ug/L			
Extract Vo	iume (MeOH) : N/A		Injection	Volume		N/A
Level	: LOW		%Solids		-	N/A
Sample A			GC Colu			RTX-502.2
Lab File II			Instrume		-	VOA101
Analytical	,		Analyst			PID
Sample M			Dilution	Factor	:	2
Sample L			Date An	alyzed		12/30/22 03:16
Client ID	: MW-XX MW-LA	Ν.,	Date Re	ceived	:	12/21/22
Lab ID	: L2271764-08D		Date Co	llected	•	12/20/22 00:00
Project Na	ime : CORNERSTONE		Project I			CORNERSTONE
Client	: CA Rich Consultants, Inc.		Lab Nun	nber	:	L2271764

Client	: CA Rich Consultants, Inc.	Lab Number 🛛 :: L2271764
Project Name	: CORNERSTONE	Project Number : CORNERSTONE
Lab ID	: L2271764-09	Date Collected : 12/20/22 00:00
Client ID	: TRIP BLANK	Date Received : 12/21/22
Sample Location	: THIRD AVE BX	Date Analyzed : 12/29/22 22:06
Sample Matrix	: WATER	Dilution Factor : 1
Analytical Method	: 1,8260D	Analyst : PID
Lab File ID	: V01221229N08	Instrument ID : VOA101
Sample Amount	: 10 ml	GC Column 👘 RTX-502.2
Level	: LOW	%Solids : N/A
Extract Volume (MeOH): N/A	Injection Volume : N/A

			ug/L					
CAS NO.	Parameter	Results	RL	MDL	Qualifier			
75-09-2	Methylene chloride	ND	2.5	0.70	U			
			1000					
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U			
67-66-3	Chloroform	ND	2.5	0.70	U			
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U			
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U			
124-48-1	Dibromochloromethane	ND	0.50	0.15	U			
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U			
127-18-4	Tetrachloroethene	ND	0.50	0.18	U			
108-90-7	Chlorobenzene	ND	2.5	0.70	U			
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U			
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U			
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U			
75-27-4	Bromodichloromethane	ND	0.50	0.19	U			
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U			
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U			
542-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U			
563-58-6	1,1-Dichloropropene	ND	2.5	0.70	U			
75-25-2	Bromoform	ND	2.0	0.65	U			
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U			
71-43-2	Benzene	ND	0.50	0.16	U			
108-88-3	Toluene	ND	2.5	0.70	U			
00-41-4	Ethylbenzene	ND	2.5	0.70	U			
74-87-3	Chloromethane	ND	2.5	0.70	U	UJ		
74-83-9	Bromomethane	ND	2.5	0.70	U	UT		
75-01-4	Vinyl chloride	ND	1.0	0.07	U	UT		
						~ ~		

for 21/1023

iA

Client Project Name Lab ID Client ID Sample Location Sample Matrix Analytical Metho Lab File ID Sample Amount Level Extract Volume (: WATER d : 1,8260D : V01221229N08 : 10 ml : LOW		Lab Num Project N Date Col Date Rec Date Ana Dilution F Analyst Instrume GC Colui %Solids Injection	lumber lected ceived llyzed Factor nt ID mn	: L2271764 : CORNERSTONE : 12/20/22 00:00 : 12/21/22 : 12/29/22 22:06 : 1 : PID : VOA101 : RTX-502.2 : N/A : N/A
CAS NO.	Parameter	Results	ug/L RL	MDL	Qualifier
A					
75-00-3	Chloroethane	ND	2.5	0.70	U
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U
79-01-6	Trichloroethene	ND	0.50	0.18	U
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	υ
179601-23-1	p/m-Xylene	ND	2.5	0.70	U
95-47-6	o-Xylene	ND	2.5	0.70	U
1330-20-7	Xylenes, Total	ND	2.5	0.70	U
156-59-2	cls-1,2-Dichloroethene	ND	2.5	0.70	U
540-59-0	1,2-Dichloroethene, Total	ND	2.5	0.70	U
74-95-3	Dibromomethane	ND	5.0	1.0	U
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U
107-13-1	Acrylonitrile	ND	5.0	1.5	U
100-42-5	Styrene	ND	2.5	0.70	U
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	-UJ
67-64-1	Acetone	ND	5.0	1.5	U
75-15-0	Carbon disulfide	ND	5.0	1.0	U
78-93-3	2-Butanone	ND	5.0	1.9	U
108-05-4	Vinyl acetate	ND	5.0	1.0	U
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U
591-78-6	2-Hexanone	ND	5.0	1.0	U
74-97-5	Bromochloromethane	ND	2.5	0.70	U

POT NOW ANALY

Lab Number

: L2271764

: CA Rich Consultants, Inc.

Project Name Lab ID Client ID Sample Locati Sample Matrix Analytical Met Lab File ID Sample Amou Level Extract Volume	: : WATER hod : 1,8260D : V01221229N08		Date Co Date Red Date And Dilution I Analyst Instrume GC Colu %Solids Injection	llected ceived alyzed Factor ent ID mn	: CORNERSTONE : 12/20/22 00:00 : 12/21/22 : 12/29/22 22:06 : 1 : PID : VOA101 : RTX-502.2 : N/A : N/A
CAS NO.	Parameter	Results	ug/L RL	MDL	Qualifier
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	U
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	υ
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U
108-86-1	Bromobenzene	ND	2,5	0.70	U
104-51-8	n-Butylbenzene	ND	2.5	0.70	U
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U
87-68-3	Hexachlorobutadiene	ND	2.5	0.70	U
98-82-8	Isopropylbenzene	ND	2.5	0.70	U
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U
91-20-3	Naphthalene	ND	2.5	0.70	U
103-65-1	n-Propylbenzene	ND	2.5	0.70	U
87-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U
123-91-1	1,4-Dioxane	ND	250	61.	JR
105-05-5	p-Diethylbenzene	ND	2.0	0.70	U
622-96-8	p-Ethyltoluene	ND	2.0	0.70	U
95-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U
60-29-7	Ethyl ether	ND	2.5	0.70	UJ

Por 1129/2023 iA ANAL CAL

Client

Client	: CA Rich Consultants, Inc.		Lab Num	nber	: L2271764
Project Name	: CORNERSTONE		Project N	lumber	: CORNERSTONE
Lab ID	: L2271764-09		Date Co	llected	: 12/20/22 00:00
Client ID	: TRIP BLANK		Date Re	ceived	: 12/21/22
Sample Location	: THIRD AVE BX		Date Ana	alyzed	: 12/29/22 22:06
Sample Matrix	: WATER		Dilution	Factor	: 1
Analytical Method	: 1,8260D		Analyst		: PID
Lab File ID	: V01221229N08		Instrume	ent ID	: VOA101
Sample Amount	: 10 ml		GC Colu	Imn	: RTX-502.2
Level	: LOW		%Solids		: N/A
Extract Volume (Me	OH) : N/A		Injection	Volume	: N/A
			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
110-57-6 t	rans-1.4-Dichloro-2-butene	ND	2.5	0.70	U
110-07-0 1		ND	2.0	0.70	v

	Parameter		ug/L		
CAS NO.		Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	ND	2.5	0.70	U
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	ND	0.50	0.18	U
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
542-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U
563-58 - 6	1,1-Dichloropropene	ND	2.5	0.70	U
75-25-2	Bromoform	ND	2.0	0.65	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	U
108-88-3	Toluene	ND	2.5	0.70	U
100-41-4	Ethylbenzene	ND	2.5	0.70	U
74-87-3	Chloromethane	ND	2.5	0.70	VUJ
74-83-9	Bromomethane	ND	2.5	0.70	~ UT
75-01-4	Vinyl chloride	ND	1.0	0.07	UUT

for 2112023 ÷Α AL ANAI

Client Project Name Lab ID Client ID Sample Location Sample Matrix Analytical Method Lab File ID Sample Amount Level	 CA Rich Consultants, Inc. CORNERSTONE L2271764-10 FIELD BLANK 12/20 THIRD AVE BX WATER 1,8260D V01221229N07 10 ml LOW 	Lab Number:L2271764Project Number:CORNERSTONEDate Collected:12/20/22 14:00Date Received:12/21/22Date Analyzed:12/29/22 21:40Dilution Factor:1Analyst:PIDInstrument ID:VOA101GC Column:RTX-502.2% Solids:N/A
Extract Volume (MeOH)	: N/A	Injection Volume : N/A

		5	ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-00-3	Chloroethane	ND	2.5	0.70	U
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U
79-01-6	Trichloroethene	ND	0.50	0.18	U
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U
179601-23-1	p/m-Xylene	ND	2.5	0.70	U
95-47-6	o-Xylene	ND	2.5	0.70	U
1330-20-7	Xylenes, Total	ND	2.5	0.70	U
156-59-2	cis-1,2-Dichloroethene	ND	2.5	0.70	U
540-59-0	1,2-Dichloroethene, Total	ND	2.5	0.70	U
74-95-3	Dibromomethane	ND	5.0	1.0	U
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U
107-13-1	Acrylonitrile	ND	5.0	1.5	U
100-42-5	Styrene	ND	2.5	0.70	U
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	UJ
67-64-1	Acetone	ND	5.0	1.5	U
75-15-0	Carbon disulfide	ND	5.0	1.0	U
78-93-3	2-Butanone	ND	5.0	1.9	U
108-05-4	Vinyl acetate	ND	5.0	1.0	U
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U
591-78-6	2-Hexanone	ND	5.0	1.0	U
74-97-5	Bromochloromethane	ND	2.5	0.70	U

POT 211/2023 HA ANAL

GAL

Client	: CA Rich Consultants, Inc.	Lab Number : L2271764
Project Name	: CORNERSTONE	Project Number : CORNERSTONE
Lab ID	: L2271764-10	Date Collected : 12/20/22 14:00
Client ID	: FIELD BLANK 12/20	Date Received 12/21/22
Sample Location	: THIRD AVE BX	Date Analyzed : 12/29/22 21:40
Sample Matrix	: WATER	Dilution Factor : 1
Analytical Method	: 1,8260D	Analyst : PID
Lab File ID	: V01221229N07	Instrument ID : VOA101
Sample Amount	: 10 ml	GC Column : RTX-502.2
Level	: LOW	%Solids : N/A
Extract Volume (MeOH): N/A	Injection Volume : N/A

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	U	
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U	
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	U	
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U	
108-86-1	Bromobenzene	ND	2.5	0.70	U	
104-51-8	n-Butylbenzene	ND	2.5	0.70	U	
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U	
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U	
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U	
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U	
87-68-3	Hexachlorobutadiene	ND	2.5	0.70	U	
98-82-8	Isopropylbenzene	ND	2.5	0.70	U	
99-87-6	p-isopropyltoluene	ND	2.5	0.70	U	
91-20-3	Naphthalene	ND	2.5	0.70	U	
103-65-1	n-Propylbenzene	ND	2.5	0.70	U	
87-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U	
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U	
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U	
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U	
123-91-1	1,4-Dioxane	ND	250	61,	wR	
105-05-5	p-Diethylbenzene	ND	2.0	0.70	U	
622-96-8	p-Ethyltoluene	ND	2.0	0.70	U	
95-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U	
60-29-7	Ethyl ether	ND	2.5	0.70	# UJ	

for 11292023 HA CAL

110-57-6	trans	-1,4-Dichloro-2-butene	ND	2.5	0.70	U	
CAS NO.	Para	meter	Results	RL	MDL	Qualifier	
				ug/L			
Extract	Volume (MeOH) : N/A		Injection	Volume	: N/A	
Level		: LOW		%Solids		: N/A	
	Amount	: 10 ml		GC Coli		: RTX-502.2	
Lab File		: V01221229N07		Instrume		: VOA101	
•	al Method	: 1,8260D		Analyst		: PID	
Sample	Matrix	: WATER		Dilution	Factor	: 1	
Sample	Location	: THIRD AVE BX		Date An	alyzed	: 12/29/22 21:40	
Client ID)	: FIELD BLANK 12/20		Date Re	ceived	: 12/21/22	
Lab ID		: L2271764-10		Date Co	llected	: 12/20/22 14:00	
Project l	Name	: CORNERSTONE		Project I	Number	: CORNERSTONE	
Client		: CA Rich Consultants, Inc.		Lab Nun	nber	: L2271764	

ANALYTICAL REPORT

Lab Number:	L2337223	
Client:	CA Rich Consultants, Inc.	
	17 Dupont St.	
	Plainview, NY 11803	
ATTN:	Jason Cooper	
Phone:	(516) 576-8844	
Project Name:	CORNERSTONE	
Project Number:	CORNERSTONE	
	07/14/23	

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OH (CL108), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:07142313:41

Project Name:	CORNERSTONE
Project Number:	CORNERSTONE

Lab Number:	L2337223
Report Date:	07/14/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2337223-01	MW-1	WATER	BRONX	06/28/23 12:10	06/29/23
L2337223-02	MW-2A	WATER	BRONX	06/28/23 08:24	06/29/23
L2337223-03	MW-XX	WATER	BRONX	06/28/23 08:24	06/29/23
L2337223-04	MW-4	WATER	BRONX	06/28/23 10:30	06/29/23
L2337223-05	MW-6	WATER	BRONX	06/28/23 08:46	06/29/23
L2337223-06	MW-7	WATER	BRONX	06/28/23 11:20	06/29/23
L2337223-07	MW-8	WATER	BRONX	06/28/23 10:12	06/29/23
L2337223-08	MW-10	WATER	BRONX	06/28/23 09:34	06/29/23
L2337223-09	FIELD BLANK 6/28	WATER	BRONX	06/28/23 12:45	06/29/23
L2337223-10	TRIP BLANK	WATER	BRONX	06/28/23 12:50	06/29/23

Project Name: CORNERSTONE Project Number: CORNERSTONE

Lab Number: L2337223 Report Date: 07/14/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: CORNERSTONE Project Number: CORNERSTONE
 Lab Number:
 L2337223

 Report Date:
 07/14/23

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

finial. Wister Lisa Westerlind

Title: Technical Director/Representative

Date: 07/14/23

ORGANICS

VOLATILES

			Serial_N	0:07142313:41
Project Name:	CORNERSTONE		Lab Number:	L2337223
Project Number:	CORNERSTONE		Report Date:	07/14/23
		SAMPLE RESULTS		
Lab ID:	L2337223-01		Date Collected:	06/28/23 12:10
Client ID:	MW-1		Date Received:	06/29/23
Sample Location:	BRONX		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260D			
Analytical Date:	07/12/23 18:10			
Analyst:	MJV			
-				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	29		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

					ç	Serial_No	:07142313:41	
Project Name:	CORNERSTONE				Lab Nu	mber:	L2337223	
Project Number:	CORNERSTONE				Report	Date:	07/14/23	
•		SAMPI		6	•		0	
Lab ID:	L2337223-01				Date Col	lected:	06/28/23 12:10	
Client ID:	MW-1				Date Red		06/29/23	
Sample Location:	BRONX				Field Pre	p:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborou	ugh Lab						
Trichloroethene		ND			0.50	0.18	1	
1,2-Dichlorobenzene		ND		ug/l	2.5	0.18	1	
1,3-Dichlorobenzene		ND		ug/l ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
Xylenes, Total		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total		ND		ug/l	2.5	0.70	1	
Dibromomethane		ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1	
Acrylonitrile		ND		ug/l	5.0	1.5	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
Vinyl acetate		ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethane	9	ND		ug/l	2.5	0.70	1	
Bromobenzene		ND		ug/l	2.5	0.70	1	
n-Butylbenzene		ND		ug/l	2.5	0.70	1	
sec-Butylbenzene		ND		ug/l	2.5	0.70	1	
tert-Butylbenzene		ND		ug/l	2.5	0.70	1	
o-Chlorotoluene		ND		ug/l	2.5	0.70	1	
p-Chlorotoluene		ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloroprop	bane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1	
Naphthalene		ND		ug/l	2.5	0.70	1	

Project Name:	CORNERSTONE		Lab Number:	L2337223
Project Number:	CORNERSTONE		Report Date:	07/14/23
		SAMPLE RESULTS		
Lab ID:	L2337223-01		Date Collected:	06/28/23 12:10
Client ID:	MW-1		Date Received:	06/29/23
Sample Location:	BRONX		Field Prep:	Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,4-Dioxane	ND		ug/l	250	61.	1
p-Diethylbenzene	ND		ug/l	2.0	0.70	1
p-Ethyltoluene	ND		ug/l	2.0	0.70	1
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1
Ethyl ether	ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	102	70-130	

Serial_No:07142313:41

				Serial_No	p:07142313:41
Project Name:	CORNERSTONE			Lab Number:	L2337223
Project Number:	CORNERSTONE			Report Date:	07/14/23
			SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2337223-02 MW-2A BRONX	D		Date Collected: Date Received: Field Prep:	06/28/23 08:24 06/29/23 Not Specified
Sample Depth:					
Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260D 07/09/23 13:30 SLS				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	62	18.	25
1,1-Dichloroethane	ND		ug/l	62	18.	25
Chloroform	ND		ug/l	62	18.	25
Carbon tetrachloride	ND		ug/l	12	3.4	25
1,2-Dichloropropane	ND		ug/l	25	3.4	25
Dibromochloromethane	ND		ug/l	12	3.7	25
1,1,2-Trichloroethane	ND		ug/l	38	12.	25
Tetrachloroethene	4000		ug/l	12	4.5	25
Chlorobenzene	ND		ug/l	62	18.	25
Trichlorofluoromethane	ND		ug/l	62	18.	25
1,2-Dichloroethane	ND		ug/l	12	3.3	25
1,1,1-Trichloroethane	ND		ug/l	62	18.	25
Bromodichloromethane	ND		ug/l	12	4.8	25
trans-1,3-Dichloropropene	ND		ug/l	12	4.1	25
cis-1,3-Dichloropropene	ND		ug/l	12	3.6	25
1,3-Dichloropropene, Total	ND		ug/l	12	3.6	25
1,1-Dichloropropene	ND		ug/l	62	18.	25
Bromoform	ND		ug/l	50	16.	25
1,1,2,2-Tetrachloroethane	ND		ug/l	12	4.2	25
Benzene	ND		ug/l	12	4.0	25
Toluene	ND		ug/l	62	18.	25
Ethylbenzene	ND		ug/l	62	18.	25
Chloromethane	ND		ug/l	62	18.	25
Bromomethane	ND		ug/l	62	18.	25
Vinyl chloride	ND		ug/l	25	1.8	25
Chloroethane	ND		ug/l	62	18.	25
1,1-Dichloroethene	ND		ug/l	12	4.2	25
trans-1,2-Dichloroethene	ND		ug/l	62	18.	25

						Serial_No:07142313:41		
Project Name:	CORNERSTONE					Lab Nur	nber:	L2337223
Project Number:	CORNERSTONE					Report	Date:	07/14/23
	•••••		SAMP	LE RESULTS	6			01/11/20
Lab ID:	L2337223-02	D				Date Coll	ected.	06/28/23 08:24
Client ID:	MW-2A	D				Date Rec		06/29/23
Sample Location:	BRONX					Field Prep		Not Specified
								-
Sample Depth:				•				
Parameter			Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westboro	ugh Lai	b					
Trichloroethene			28		ug/l	12	4.4	25
1,2-Dichlorobenzene			ND		ug/l	62	18.	25
1,3-Dichlorobenzene			ND		ug/l	62	18.	25
1,4-Dichlorobenzene			ND		ug/l	62	18.	25
Methyl tert butyl ether			ND		ug/l	62	18.	25
p/m-Xylene			ND		ug/l	62	18.	25
o-Xylene			ND		ug/l	62	18.	25
Xylenes, Total			ND		ug/l	62	18.	25
cis-1,2-Dichloroethene			ND		ug/l	62	18.	25
1,2-Dichloroethene, Tota			ND		ug/l	62	18.	25
Dibromomethane			ND		ug/l	120	25.	25
1,2,3-Trichloropropane			ND		ug/l	62	18.	25
Acrylonitrile			ND		ug/l	120	38.	25
Styrene			ND		ug/l	62	18.	25
Dichlorodifluoromethane			ND		ug/l	120	25.	25
Acetone			ND		ug/l	120	36.	25
Carbon disulfide			ND		ug/l	120	25.	25
2-Butanone			ND		ug/l	120	48.	25
Vinyl acetate			ND		ug/l	120	25.	25
4-Methyl-2-pentanone			ND		ug/l	120	25.	25
2-Hexanone			ND		ug/l	120	25.	25
Bromochloromethane			ND		ug/l	62	18.	25
2,2-Dichloropropane			ND		ug/l	62	18.	25
1,2-Dibromoethane			ND		ug/l	50	16.	25
1,3-Dichloropropane			ND		ug/l	62	18.	25
1,1,1,2-Tetrachloroethan	e		ND		ug/l	62	18.	25
Bromobenzene			ND		ug/l	62	18.	25
n-Butylbenzene			ND		ug/l	62	18.	25
sec-Butylbenzene			ND		ug/l	62	18.	25
tert-Butylbenzene			ND		ug/l	62	18.	25
o-Chlorotoluene			ND		ug/l	62	18.	25
p-Chlorotoluene			ND		ug/l	62	18.	25
1,2-Dibromo-3-chloroprop	pane		ND		ug/l	62	18.	25
Hexachlorobutadiene			ND		ug/l	62	18.	25
Isopropylbenzene			ND		ug/l	62	18.	25
p-lsopropyltoluene			ND		ug/l	62	18.	25
Naphthalene			ND		ug/l	62	18.	25

		Serial_No:07142313:41					
Project Name:	CORNERSTONE				Lab Nu	mber:	L2337223
Project Number:	CORNERSTONE				Report	Date:	07/14/23
		SAMP	LE RESULTS	6			
Lab ID:	L2337223-02	D			Date Col	lected:	06/28/23 08:24
Client ID:	MW-2A				Date Ree	ceived:	06/29/23
Sample Location:	BRONX				Field Pre	ep:	Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westborou	ıgh Lab					
n-Propylbenzene		ND		ug/l	62	18.	25
1,2,3-Trichlorobenzene		ND		ug/l	62	18.	25
1,2,4-Trichlorobenzene		ND		ug/l	62	18.	25
1,3,5-Trimethylbenzene		ND		ug/l	62	18.	25
1,2,4-Trimethylbenzene		ND		ug/l	62	18.	25
1,4-Dioxane		ND		ug/l	6200	1500	25
p-Diethylbenzene		ND		ug/l	50	18.	25
p-Ethyltoluene		ND		ug/l	50	18.	25
1,2,4,5-Tetramethylbenze	ene	ND		ug/l	50	14.	25
Ethyl ether		ND		ug/l	62	18.	25
2							

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	86	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	91	70-130	

62

ug/l

18.

ND

25

trans-1,4-Dichloro-2-butene

				Serial_No	0:07142313:41
Project Name:	CORNERSTONE			Lab Number:	L2337223
Project Number:	CORNERSTONE			Report Date:	07/14/23
			SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2337223-03 MW-XX BRONX	D		Date Collected: Date Received: Field Prep:	06/28/23 08:24 06/29/23 Not Specified
Sample Depth:					
Matrix:	Water				
Analytical Method: Analytical Date: Analyst:	1,8260D 07/09/23 13:56 SLS				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	tborough Lab					
Methylene chloride	ND		ug/l	62	18.	25
1,1-Dichloroethane	ND		ug/l	62	18.	25
Chloroform	ND		ug/l	62	18.	25
Carbon tetrachloride	ND		ug/l	12	3.4	25
1,2-Dichloropropane	ND		ug/l	25	3.4	25
Dibromochloromethane	ND		ug/l	12	3.7	25
1,1,2-Trichloroethane	ND		ug/l	38	12.	25
Tetrachloroethene	4000		ug/l	12	4.5	25
Chlorobenzene	ND		ug/l	62	18.	25
Trichlorofluoromethane	ND		ug/l	62	18.	25
1,2-Dichloroethane	ND		ug/l	12	3.3	25
1,1,1-Trichloroethane	ND		ug/l	62	18.	25
Bromodichloromethane	ND		ug/l	12	4.8	25
trans-1,3-Dichloropropene	ND		ug/l	12	4.1	25
cis-1,3-Dichloropropene	ND		ug/l	12	3.6	25
1,3-Dichloropropene, Total	ND		ug/l	12	3.6	25
1,1-Dichloropropene	ND		ug/l	62	18.	25
Bromoform	ND		ug/l	50	16.	25
1,1,2,2-Tetrachloroethane	ND		ug/l	12	4.2	25
Benzene	ND		ug/l	12	4.0	25
Toluene	ND		ug/l	62	18.	25
Ethylbenzene	ND		ug/l	62	18.	25
Chloromethane	ND		ug/l	62	18.	25
Bromomethane	ND		ug/l	62	18.	25
Vinyl chloride	ND		ug/l	25	1.8	25
Chloroethane	ND		ug/l	62	18.	25
1,1-Dichloroethene	ND		ug/l	12	4.2	25
trans-1,2-Dichloroethene	ND		ug/l	62	18.	25

						S	erial_No	0:07142313:41
Project Name:	CORNERSTONE					Lab Nur	nber:	L2337223
Project Number:	CORNERSTONE					Report	Date:	07/14/23
	•••••		SAMP	LE RESULTS	6			01/11/20
Lab ID:	L2337223-03	D				Date Coll	ected.	06/28/23 08:24
Client ID:	MW-XX	D				Date Rec		06/29/23
Sample Location:	BRONX					Field Pre		Not Specified
								·
Sample Depth:								
Parameter			Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	by GC/MS - Westboro	ugh Lai	0					
Trichloroethene			28		ug/l	12	4.4	25
1,2-Dichlorobenzene			ND		ug/l	62	18.	25
1,3-Dichlorobenzene			ND		ug/l	62	18.	25
1,4-Dichlorobenzene			ND		ug/l	62	18.	25
Methyl tert butyl ether			ND		ug/l	62	18.	25
p/m-Xylene			ND		ug/l	62	18.	25
o-Xylene			ND		ug/l	62	18.	25
Xylenes, Total			ND		ug/l	62	18.	25
cis-1,2-Dichloroethene			ND		ug/l	62	18.	25
1,2-Dichloroethene, Tota	l		ND		ug/l	62	18.	25
Dibromomethane			ND		ug/l	120	25.	25
1,2,3-Trichloropropane			ND		ug/l	62	18.	25
Acrylonitrile			ND		ug/l	120	38.	25
Styrene			ND		ug/l	62	18.	25
Dichlorodifluoromethane			ND		ug/l	120	25.	25
Acetone			ND		ug/l	120	36.	25
Carbon disulfide			ND		ug/l	120	25.	25
2-Butanone			ND		ug/l	120	48.	25
Vinyl acetate			ND		ug/l	120	25.	25
4-Methyl-2-pentanone			ND		ug/l	120	25.	25
2-Hexanone			ND		ug/l	120	25.	25
Bromochloromethane			ND		ug/l	62	18.	25
2,2-Dichloropropane			ND		ug/l	62	18.	25
1,2-Dibromoethane			ND		ug/l	50	16.	25
1,3-Dichloropropane			ND		ug/l	62	18.	25
1,1,1,2-Tetrachloroethan	e		ND		ug/l	62	18.	25
Bromobenzene			ND		ug/l	62	18.	25
n-Butylbenzene			ND		ug/l	62	18.	25
sec-Butylbenzene			ND		ug/l	62	18.	25
tert-Butylbenzene			ND		ug/l	62	18.	25
o-Chlorotoluene			ND		ug/l	62	18.	25
p-Chlorotoluene			ND		ug/l	62	18.	25
1,2-Dibromo-3-chloropro	pane		ND		ug/l	62	18.	25
Hexachlorobutadiene			ND		ug/l	62	18.	25
Isopropylbenzene			ND		ug/l	62	18.	25
p-lsopropyltoluene			ND		ug/l	62	18.	25
Naphthalene			ND		ug/l	62	18.	25

					S	Serial_No	:07142313:41	
Project Name:	CORNERSTONE				Lab Nu	mber:	L2337223	
Project Number:	CORNERSTONE				Report	Date:	07/14/23	
		SAMP	LE RESULT	S				
Lab ID: Client ID: Sample Location:	L2337223-03 MW-XX BRONX	D			Date Col Date Rec Field Pre	ceived:	06/28/23 08:24 06/29/23 Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborou	ugh Lab						
n-Propylbenzene		ND		ug/l	62	18.	25	
1,2,3-Trichlorobenzene		ND		ug/l	62	18.	25	
1,2,4-Trichlorobenzene		ND		ug/l	62	18.	25	
1,3,5-Trimethylbenzene		ND		ug/l	62	18.	25	
1,2,4-Trimethylbenzene		ND		ug/l	62	18.	25	
1,4-Dioxane		ND		ug/l	6200	1500	25	
p-Diethylbenzene		ND		ug/l	50	18.	25	
p-Diethylbenzene p-Ethyltoluene		ND ND		ug/l ug/l	50 50	18. 18.	25 25	

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	87	70-130
Toluene-d8	103	70-130
4-Bromofluorobenzene	101	70-130
Dibromofluoromethane	92	70-130

ug/l

ug/l

62

62

18.

18.

25

25

ND

ND

Ethyl ether

trans-1,4-Dichloro-2-butene

			Serial_N	0:07142313:41
Project Name:	CORNERSTONE		Lab Number:	L2337223
Project Number:	CORNERSTONE		Report Date:	07/14/23
		SAMPLE RESULTS		
Lab ID:	L2337223-04		Date Collected:	06/28/23 10:30
Client ID:	MW-4		Date Received:	06/29/23
Sample Location:	BRONX		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260D			
Analytical Date:	07/09/23 14:22			
Analyst:	SLS			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	0.78	J	ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	16		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name:	CORNERSTONE				Lab Nu	umber:	L2337223	
Project Number:	CORNERSTONE				Report		07/14/23	
	CONNERSIONE	SAMPL		6	Report	Dute.	07/14/23	
Lab ID: Client ID: Sample Location:	L2337223-04 MW-4 BRONX				Date Col Date Re Field Pre	ceived:	06/28/23 10:30 06/29/23 Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborou	gh Lab						
Trichloroethene		ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
Xylenes, Total		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total		ND		ug/l	2.5	0.70	1	
Dibromomethane		ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1	
Acrylonitrile		ND		ug/l	5.0	1.5	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
Vinyl acetate		ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethane		ND		ug/l	2.5	0.70	1	
Bromobenzene		ND		ug/l	2.5	0.70	1	
n-Butylbenzene		ND		ug/l	2.5	0.70	1	
sec-Butylbenzene		ND		ug/l	2.5	0.70	1	
tert-Butylbenzene		ND		ug/l	2.5	0.70	1	
o-Chlorotoluene		ND		ug/l	2.5	0.70	1	
p-Chlorotoluene		ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloroprop	ane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
p-lsopropyltoluene		ND		ug/l	2.5	0.70	1	
Naphthalene		ND		ug/l	2.5	0.70	1	

			Serial_N	0:07142313:41
Project Name:	CORNERSTONE		Lab Number:	L2337223
Project Number:	CORNERSTONE		Report Date:	07/14/23
		SAMPLE RESULTS		
Lab ID:	L2337223-04		Date Collected:	06/28/23 10:30
Client ID:	MW-4		Date Received:	06/29/23
Sample Location:	BRONX		Field Prep:	Not Specified
Sample Depth:				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westboro	/olatile Organics by GC/MS - Westborough Lab								
n-Propylbenzene	ND		ug/l	2.5	0.70	1			
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1			
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1			
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1			
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1			
1,4-Dioxane	ND		ug/l	250	61.	1			
p-Diethylbenzene	ND		ug/l	2.0	0.70	1			
p-Ethyltoluene	ND		ug/l	2.0	0.70	1			
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1			
Ethyl ether	ND		ug/l	2.5	0.70	1			
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	87	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	91	70-130	

			Serial_N	0:07142313:41
Project Name:	CORNERSTONE		Lab Number:	L2337223
Project Number:	CORNERSTONE		Report Date:	07/14/23
		SAMPLE RESULTS		
Lab ID:	L2337223-05		Date Collected:	06/28/23 08:46
Client ID:	MW-6		Date Received:	06/29/23
Sample Location:	BRONX		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260D			
Analytical Date:	07/09/23 14:49			
Analyst:	SLS			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	53		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name:	CORNERSTONE				Lab Nu	mber:	L2337223	
Project Number:	CORNERSTONE	SAMD	LE RESULTS	2	Report	Date:	07/14/23	
Lab ID: Client ID: Sample Location:	L2337223-05 MW-6 BRONX	SAMP	LE RESULT	5	Date Col Date Rec Field Pre	ceived:	06/28/23 08:46 06/29/23 Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westboroug	lh Lab						
Trichloroethene		1.5		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
Xylenes, Total		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total		ND		ug/l	2.5	0.70	1	
Dibromomethane		ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1	
Acrylonitrile		ND		ug/l	5.0	1.5	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
Vinyl acetate		ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone		ND ND		ug/l ug/l	5.0 5.0	1.0 1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethane)	ND		ug/l	2.5	0.70	1	
Bromobenzene		ND		ug/l	2.5	0.70	1	
n-Butylbenzene		ND		ug/l	2.5	0.70	1	
sec-Butylbenzene		ND		ug/l	2.5	0.70	1	
tert-Butylbenzene		ND		ug/l	2.5	0.70	1	
o-Chlorotoluene		ND		ug/l	2.5	0.70	1	
p-Chlorotoluene		ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloroprop	pane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1	
Naphthalene		ND		ug/l	2.5	0.70	1	

Project Name:	CORNERSTONE		Lab Number:	L2337223
Project Number:	CORNERSTONE		Report Date:	07/14/23
		SAMPLE RESULTS		
Lab ID:	L2337223-05		Date Collected:	06/28/23 08:46
Client ID:	MW-6		Date Received:	06/29/23
Sample Location:	BRONX		Field Prep:	Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	ugh Lab					
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,4-Dioxane	ND		ug/l	250	61.	1
p-Diethylbenzene	ND		ug/l	2.0	0.70	1
p-Ethyltoluene	ND		ug/l	2.0	0.70	1
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1
Ethyl ether	ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	87	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	92	70-130	

				Serial_No	0:07142313:41
Project Name:	CORNERSTONE			Lab Number:	L2337223
Project Number:	CORNERSTONE			Report Date:	07/14/23
			SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2337223-06 MW-7 BRONX	D		Date Collected: Date Received: Field Prep:	06/28/23 11:20 06/29/23 Not Specified
Sample Depth:					
Matrix:	Water				
Analytical Method: Analytical Date: Analyst:	1,8260D 07/09/23 15:15 SLS				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	6.2	1.8	2.5
1,1-Dichloroethane	ND		ug/l	6.2	1.8	2.5
Chloroform	ND		ug/l	6.2	1.8	2.5
Carbon tetrachloride	ND		ug/l	1.2	0.34	2.5
1,2-Dichloropropane	ND		ug/l	2.5	0.34	2.5
Dibromochloromethane	ND		ug/l	1.2	0.37	2.5
1,1,2-Trichloroethane	ND		ug/l	3.8	1.2	2.5
Tetrachloroethene	77		ug/l	1.2	0.45	2.5
Chlorobenzene	ND		ug/l	6.2	1.8	2.5
Trichlorofluoromethane	ND		ug/l	6.2	1.8	2.5
1,2-Dichloroethane	ND		ug/l	1.2	0.33	2.5
1,1,1-Trichloroethane	ND		ug/l	6.2	1.8	2.5
Bromodichloromethane	ND		ug/l	1.2	0.48	2.5
trans-1,3-Dichloropropene	ND		ug/l	1.2	0.41	2.5
cis-1,3-Dichloropropene	ND		ug/l	1.2	0.36	2.5
1,3-Dichloropropene, Total	ND		ug/l	1.2	0.36	2.5
1,1-Dichloropropene	ND		ug/l	6.2	1.8	2.5
Bromoform	ND		ug/l	5.0	1.6	2.5
1,1,2,2-Tetrachloroethane	ND		ug/l	1.2	0.42	2.5
Benzene	ND		ug/l	1.2	0.40	2.5
Toluene	ND		ug/l	6.2	1.8	2.5
Ethylbenzene	ND		ug/l	6.2	1.8	2.5
Chloromethane	ND		ug/l	6.2	1.8	2.5
Bromomethane	ND		ug/l	6.2	1.8	2.5
Vinyl chloride	ND		ug/l	2.5	0.18	2.5
Chloroethane	ND		ug/l	6.2	1.8	2.5
1,1-Dichloroethene	ND		ug/l	1.2	0.42	2.5
trans-1,2-Dichloroethene	ND		ug/l	6.2	1.8	2.5

					Ş	Serial_No	0:07142313:41
Project Name:	CORNERSTONE				Lab Nu	mber:	L2337223
Project Number:	CORNERSTONE				Report	Date:	07/14/23
··· , ·····		SAMPI		S			01/14/20
Lab ID:	L2337223-06	D			Date Col	lected:	06/28/23 11:20
Client ID:	MW-7	D			Date Red		06/29/23
Sample Location:	BRONX				Field Pre		Not Specified
Sample Depth:		_	_				
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics t	by GC/MS - Westborou	ugh Lab					
Trichloroethene		15		ug/l	1.2	0.44	2.5
1,2-Dichlorobenzene		ND		ug/l	6.2	1.8	2.5
1,3-Dichlorobenzene		ND		ug/l	6.2	1.8	2.5
1,4-Dichlorobenzene		ND		ug/l	6.2	1.8	2.5
Methyl tert butyl ether		ND		ug/l	6.2	1.8	2.5
p/m-Xylene		ND		ug/l	6.2	1.8	2.5
o-Xylene		ND		ug/l	6.2	1.8	2.5
Xylenes, Total		ND		ug/l	6.2	1.8	2.5
cis-1,2-Dichloroethene		250		ug/l	6.2	1.8	2.5
1,2-Dichloroethene, Tota	I	250		ug/l	6.2	1.8	2.5
Dibromomethane		ND		ug/l	12	2.5	2.5
1,2,3-Trichloropropane		ND		ug/l	6.2	1.8	2.5
Acrylonitrile		ND		ug/l	12	3.8	2.5
Styrene		ND		ug/l	6.2	1.8	2.5
Dichlorodifluoromethane		ND		ug/l	12	2.5	2.5
Acetone		5.4	J	ug/l	12	3.6	2.5
Carbon disulfide		ND		ug/l	12	2.5	2.5
2-Butanone		ND		ug/l	12	4.8	2.5
Vinyl acetate		ND		ug/l	12	2.5	2.5
4-Methyl-2-pentanone		ND		ug/l	12	2.5	2.5
2-Hexanone		ND		ug/l	12	2.5	2.5
Bromochloromethane		ND		ug/l	6.2	1.8	2.5
2,2-Dichloropropane		ND		ug/l	6.2	1.8	2.5
1,2-Dibromoethane		ND		ug/l	5.0	1.6	2.5
1,3-Dichloropropane		ND		ug/l	6.2	1.8	2.5
1,1,1,2-Tetrachloroethan	e	ND		ug/l	6.2	1.8	2.5
Bromobenzene		ND		ug/l	6.2	1.8	2.5
n-Butylbenzene		ND		ug/l	6.2	1.8	2.5
sec-Butylbenzene		ND		ug/l	6.2	1.8	2.5
tert-Butylbenzene		ND		ug/l	6.2	1.8	2.5
o-Chlorotoluene		ND		ug/l	6.2	1.8	2.5
p-Chlorotoluene		ND		ug/l	6.2	1.8	2.5
1,2-Dibromo-3-chloropro	pane	ND		ug/l	6.2	1.8	2.5
Hexachlorobutadiene		ND		ug/l	6.2	1.8	2.5
Isopropylbenzene		ND		ug/l	6.2	1.8	2.5
p-Isopropyltoluene		ND		ug/l	6.2	1.8	2.5
Naphthalene		ND		ug/l	6.2	1.8	2.5

					Serial_N	lo:07142313:41	
Project Name:	CORNERSTONE				Lab Number:	L2337223	
Project Number:	CORNERSTONE				Report Date:	07/14/23	
		SAMP	LE RESULTS	5			
Lab ID:	L2337223-06	D			Date Collected:	06/28/23 11:20	
Client ID:	MW-7				Date Received:	06/29/23	
Sample Location:	BRONX				Field Prep:	Not Specified	
Sample Depth:							
Parameter		Result	Qualifier	Units	RL MDL	Dilution Factor	
Volatile Organics b	oy GC/MS - Westboro	ugh Lab					
n-Propylbenzene		ND		ua/l	6.2 1.8	2.5	

n-Propylbenzene	ND	ug/l	6.2	1.8	2.5	
1,2,3-Trichlorobenzene	ND	ug/l	6.2	1.8	2.5	
1,2,4-Trichlorobenzene	ND	ug/l	6.2	1.8	2.5	
1,3,5-Trimethylbenzene	ND	ug/l	6.2	1.8	2.5	
1,2,4-Trimethylbenzene	ND	ug/l	6.2	1.8	2.5	
1,4-Dioxane	ND	ug/l	620	150	2.5	
p-Diethylbenzene	ND	ug/l	5.0	1.8	2.5	
p-Ethyltoluene	ND	ug/l	5.0	1.8	2.5	
1,2,4,5-Tetramethylbenzene	ND	ug/l	5.0	1.4	2.5	
Ethyl ether	ND	ug/l	6.2	1.8	2.5	
trans-1,4-Dichloro-2-butene	ND	ug/l	6.2	1.8	2.5	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	86	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	92	70-130	

				Serial_N	p:07142313:41
Project Name:	CORNERSTONE			Lab Number:	L2337223
Project Number:	CORNERSTONE			Report Date:	07/14/23
			SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2337223-07 MW-8 BRONX	D		Date Collected: Date Received: Field Prep:	06/28/23 10:12 06/29/23 Not Specified
Sample Depth:					
Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260D 07/09/23 15:42 SLS				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
Methylene chloride	ND		ug/l	12	3.5	5
1,1-Dichloroethane	ND		ug/l	12	3.5	5
Chloroform	ND		ug/l	12	3.5	5
Carbon tetrachloride	ND		ug/l	2.5	0.67	5
1,2-Dichloropropane	ND		ug/l	5.0	0.68	5
Dibromochloromethane	ND		ug/l	2.5	0.74	5
1,1,2-Trichloroethane	ND		ug/l	7.5	2.5	5
Tetrachloroethene	680		ug/l	2.5	0.90	5
Chlorobenzene	ND		ug/l	12	3.5	5
Trichlorofluoromethane	ND		ug/l	12	3.5	5
1,2-Dichloroethane	ND		ug/l	2.5	0.66	5
1,1,1-Trichloroethane	ND		ug/l	12	3.5	5
Bromodichloromethane	ND		ug/l	2.5	0.96	5
trans-1,3-Dichloropropene	ND		ug/l	2.5	0.82	5
cis-1,3-Dichloropropene	ND		ug/l	2.5	0.72	5
1,3-Dichloropropene, Total	ND		ug/l	2.5	0.72	5
1,1-Dichloropropene	ND		ug/l	12	3.5	5
Bromoform	ND		ug/l	10	3.2	5
1,1,2,2-Tetrachloroethane	ND		ug/l	2.5	0.84	5
Benzene	ND		ug/l	2.5	0.80	5
Toluene	ND		ug/l	12	3.5	5
Ethylbenzene	ND		ug/l	12	3.5	5
Chloromethane	ND		ug/l	12	3.5	5
Bromomethane	ND		ug/l	12	3.5	5
Vinyl chloride	ND		ug/l	5.0	0.36	5
Chloroethane	ND		ug/l	12	3.5	5
1,1-Dichloroethene	0.88	J	ug/l	2.5	0.84	5
trans-1,2-Dichloroethene	ND		ug/l	12	3.5	5

					S	Serial_No	:07142313:41	
Project Name:	CORNERSTONE				Lab Nu	mber:	L2337223	
Project Number:	CORNERSTONE				Report	Date:	07/14/23	
	CONTERCORONE	SAMP		6			01/14/20	
Lab ID:	L2337223-07	D			Date Coll	ected:	06/28/23 10:12	
Client ID:	MW-8	D			Date Con		06/29/23	
Sample Location:	BRONX				Field Pre		Not Specified	
							·	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	oy GC/MS - Westborou	igh Lab						
Trichloroethene		620		ug/l	2.5	0.88	5	
1,2-Dichlorobenzene		ND		ug/l	12	3.5	5	
1,3-Dichlorobenzene		ND		ug/l	12	3.5	5	
1,4-Dichlorobenzene		ND		ug/l	12	3.5	5	
Methyl tert butyl ether		ND		ug/l	12	3.5	5	
p/m-Xylene		ND		ug/l	12	3.5	5	
o-Xylene		ND		ug/l	12	3.5	5	
Xylenes, Total		ND		ug/l	12	3.5	5	
cis-1,2-Dichloroethene		4.0	J	ug/l	12	3.5	5	
1,2-Dichloroethene, Total	l	4.0	J	ug/l	12	3.5	5	
Dibromomethane		ND		ug/l	25	5.0	5	
1,2,3-Trichloropropane		ND		ug/l	12	3.5	5	
Acrylonitrile		ND		ug/l	25	7.5	5	
Styrene		ND		ug/l	12	3.5	5	
Dichlorodifluoromethane		ND		ug/l	25	5.0	5	
Acetone		ND		ug/l	25	7.3	5	
Carbon disulfide		ND		ug/l	25	5.0	5	
2-Butanone		ND		ug/l	25	9.7	5	
Vinyl acetate		ND		ug/l	25	5.0	5	
4-Methyl-2-pentanone		ND		ug/l	25	5.0	5	
2-Hexanone		ND		ug/l	25	5.0	5	
Bromochloromethane		ND		ug/l	12	3.5	5	
2,2-Dichloropropane		ND		ug/l	12	3.5	5	
1,2-Dibromoethane		ND		ug/l	10	3.2	5	
1,3-Dichloropropane		ND		ug/l	12	3.5	5	
1,1,1,2-Tetrachloroethane	9	ND		ug/l	12	3.5	5	
Bromobenzene		ND		ug/l	12	3.5	5	
n-Butylbenzene		ND		ug/l	12	3.5	5	
sec-Butylbenzene		ND		ug/l	12	3.5	5	
tert-Butylbenzene		ND		ug/l	12	3.5	5	
o-Chlorotoluene		ND		ug/l	12	3.5	5	
p-Chlorotoluene		ND		ug/l	12	3.5	5	
1,2-Dibromo-3-chloroprop	bane	ND		ug/l	12	3.5	5	
Hexachlorobutadiene		ND		ug/l	12	3.5	5	
Isopropylbenzene		ND		ug/l	12	3.5	5	
p-Isopropyltoluene		ND		ug/l	12	3.5	5	
Naphthalene		ND		ug/l	12	3.5	5	

						Serial_No	0:07142313:41	
Project Name:	CORNERSTONE				Lab Nu	ımber:	L2337223	
Project Number:	CORNERSTONE				Report	Date:	07/14/23	
		SAM		S				
Lab ID:	L2337223-07	D			Date Co	llected:	06/28/23 10:12	
Client ID:	MW-8				Date Re	ceived:	06/29/23	
Sample Location:	BRONX				Field Pre	ep:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	oy GC/MS - Westboro	ugh Lab						
n-Propylbenzene		ND		ug/l	12	3.5	5	
1,2,3-Trichlorobenzene		ND		ug/l	12	3.5	5	
1,2,4-Trichlorobenzene		ND		ug/l	12	3.5	5	

12

12

1200

10

10

10

12

12

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

3.5

3.5

300

3.5

3.5

2.7

3.5

3.5

5

5

5

5

5

5

5

5

ND

ND

ND

ND

ND

ND

ND

ND

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	85	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	91	70-130	

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

1,2,4,5-Tetramethylbenzene

trans-1,4-Dichloro-2-butene

1,4-Dioxane

p-Diethylbenzene

p-Ethyltoluene

Ethyl ether

			Serial_N	0:07142313:41
Project Name:	CORNERSTONE		Lab Number:	L2337223
Project Number:	CORNERSTONE		Report Date:	07/14/23
		SAMPLE RESULTS		
Lab ID:	L2337223-08		Date Collected:	06/28/23 09:34
Client ID:	MW-10		Date Received:	06/29/23
Sample Location:	BRONX		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260D			
Analytical Date:	07/09/23 16:08			
Analyst:	SLS			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	6.3		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

D • (N)							.07142313.41	
Project Name:	CORNERSTONE				Lab Nu		L2337223	
Project Number:	CORNERSTONE			-	Report	Date:	07/14/23	
		SAMP		5				
Lab ID:	L2337223-08				Date Co		06/28/23 09:34	
Client ID:	MW-10				Date Re		06/29/23	
Sample Location:	BRONX				Field Pre	ep:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	oy GC/MS - Westboroug	gh Lab						
Trichloroethene		0.21	J	ug/l	0.50	0.18	1	
1,2-Dichlorobenzene		ND	5	ug/l	2.5	0.70	1	
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
Xylenes, Total		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Tota	1	ND		ug/l	2.5	0.70	1	
Dibromomethane	1	ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1	
Acrylonitrile		ND		-	5.0	1.5	1	
Styrene		ND		ug/l ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		-	5.0	1.0	1	
2-Butanone		ND		ug/l ug/l	5.0	1.0	1	
Vinyl acetate		ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethan	A	ND		ug/l	2.5	0.70	1	
Bromobenzene	•	ND		ug/l	2.5	0.70	1	
n-Butylbenzene		ND		ug/l	2.5	0.70	1	
sec-Butylbenzene		ND		ug/l	2.5	0.70	1	
tert-Butylbenzene		ND		ug/l	2.5	0.70	1	
o-Chlorotoluene		ND		ug/l	2.5	0.70	1	
p-Chlorotoluene		ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloroproj	pane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene	r · -	ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
p-lsopropyltoluene		ND		ug/l	2.5	0.70	1	
Naphthalene		ND		ug/l	2.5	0.70	1	
				ugn	2.0	0.70	I	

Project Name:	CORNERSTONE		Lab Number:	L2337223
Project Number:	CORNERSTONE		Report Date:	07/14/23
		SAMPLE RESULTS		
Lab ID:	L2337223-08		Date Collected:	06/28/23 09:34
Client ID:	MW-10		Date Received:	06/29/23
Sample Location:	BRONX		Field Prep:	Not Specified
Sample Depth:				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	tborough Lab					
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,4-Dioxane	ND		ug/l	250	61.	1
p-Diethylbenzene	ND		ug/l	2.0	0.70	1
p-Ethyltoluene	ND		ug/l	2.0	0.70	1
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1
Ethyl ether	ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	88	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	92	70-130	

			Serial_N	0:07142313:41
Project Name:	CORNERSTONE		Lab Number:	L2337223
Project Number:	CORNERSTONE		Report Date:	07/14/23
		SAMPLE RESULTS		
Lab ID:	L2337223-09		Date Collected:	06/28/23 12:45
Client ID:	FIELD BLANK 6/28		Date Received:	06/29/23
Sample Location:	BRONX		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260D			
Analytical Date:	07/09/23 16:35			
Analyst:	SLS			
-				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

					ç	Serial_No	:07142313:41	
Project Name:	CORNERSTONE				Lab Nu	mber:	L2337223	
Project Number:	CORNERSTONE				Report	Date:	07/14/23	
•		SAMP	LE RESULTS	6	•		0.,	
Lab ID:	L2337223-09				Date Col	lected:	06/28/23 12:45	
Client ID:	FIELD BLANK 6/28				Date Red		06/29/23	
Sample Location:	BRONX				Field Pre	ep:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
	y GC/MS - Westborough							
volatile organico o		Lub						
Trichloroethene		ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
Xylenes, Total		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total		ND		ug/l	2.5	0.70	1	
Dibromomethane		ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1	
Acrylonitrile		ND		ug/l	5.0	1.5	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
Vinyl acetate		ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND ND		ug/l	2.0 2.5	0.65	1	
		ND		ug/l		0.70	1	
1,1,1,2-Tetrachloroethane Bromobenzene	; 	ND		ug/l	2.5 2.5	0.70	1	
n-Butylbenzene		ND		ug/l	2.5	0.70	1	
sec-Butylbenzene		ND		ug/l ug/l	2.5	0.70	1	
tert-Butylbenzene		ND		-	2.5	0.70	1	
o-Chlorotoluene		ND		ug/l ug/l	2.5	0.70	1	
p-Chlorotoluene		ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloroprop	ane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
p-lsopropyltoluene		ND		ug/l	2.5	0.70	1	
Naphthalene		ND		ug/l	2.5	0.70	1	
				49/1	2.5	0.70	•	

						Serial_No	0:07142313:41
Project Name:	CORNERSTONE				Lab Nu	ımber:	L2337223
Project Number:	CORNERSTONE				Report	Date:	07/14/23
		SAMP	LE RESULTS	5			
Lab ID:	L2337223-09				Date Co	llected:	06/28/23 12:45
Client ID:	FIELD BLANK 6/28				Date Re	ceived:	06/29/23
Sample Location:	BRONX				Field Pre	ep:	Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough	Lab					
n-Propylbenzene		ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene		ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene		ND		ug/l	2.5	0.70	1
1,4-Dioxane		ND		ug/l	250	61.	1
p-Diethylbenzene		ND		ug/l	2.0	0.70	1
p-Ethyltoluene		ND		ug/l	2.0	0.70	1
1,2,4,5-Tetramethylbenze	ene	ND		ug/l	2.0	0.54	1
Ethyl ether		ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	86	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	91	70-130	

2.5

ug/l

0.70

1

ND

trans-1,4-Dichloro-2-butene

			Serial_N	0:07142313:41
Project Name:	CORNERSTONE		Lab Number:	L2337223
Project Number:	CORNERSTONE		Report Date:	07/14/23
		SAMPLE RESULTS		
Lab ID:	L2337223-10		Date Collected:	06/28/23 12:50
Client ID:	TRIP BLANK		Date Received:	06/29/23
Sample Location:	BRONX		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260D			
Analytical Date:	07/09/23 17:01			
Analyst:	SLS			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name:	CORNERSTONE				Lab Nu	mber:	L2337223	
Project Number:	CORNERSTONE				Report	Date:	07/14/23	
Lab ID: Client ID: Sample Location:	L2337223-10 TRIP BLANK BRONX	SAMPI	LE RESULTS	5	Date Col Date Rec Field Pre	ceived:	06/28/23 12:50 06/29/23 Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by	y GC/MS - Westboroug	jh Lab						
Trichloroethene		ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
Xylenes, Total		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total		ND		ug/l	2.5	0.70	1	
Dibromomethane		ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1	
Acrylonitrile		ND		ug/l	5.0	1.5	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
Vinyl acetate		ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethane		ND		ug/l	2.5	0.70	1	
Bromobenzene		ND		ug/l	2.5	0.70	1	
n-Butylbenzene		ND		ug/l	2.5	0.70	1	
sec-Butylbenzene		ND		ug/l	2.5	0.70	1	
tert-Butylbenzene		ND		ug/l	2.5	0.70	1	
o-Chlorotoluene		ND		ug/l	2.5	0.70	1	
p-Chlorotoluene		ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloroprop	ane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1	
Naphthalene		ND		ug/l	2.5	0.70	1	

					Serial_N	o:07142313:41
Project Name:	CORNERSTONE				Lab Number:	L2337223
Project Number:	CORNERSTONE				Report Date:	07/14/23
		SAMP	LE RESULTS	5		
Lab ID:	L2337223-10				Date Collected:	06/28/23 12:50
Client ID:	TRIP BLANK				Date Received:	06/29/23
Sample Location:	BRONX				Field Prep:	Not Specified
Sample Depth:						
Parameter		Result	Qualifier	Units	RL MDL	Dilution Factor

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,4-Dioxane	ND		ug/l	250	61.	1
p-Diethylbenzene	ND		ug/l	2.0	0.70	1
p-Ethyltoluene	ND		ug/l	2.0	0.70	1
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1
Ethyl ether	ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	87	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	92	70-130	

 Lab Number:
 L2337223

 Report Date:
 07/14/23

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst:

1,8260D 07/09/23 09:32 PID

Datable Organics by GC/MS - Westborough Lab for sample(s): 02-10 Batch: WG1802038-5 Methylene chloride ND ug/l 2.5 0.70 1,1-Dichloroethane ND ug/l 2.5 0.70 Carbon tetrachloride ND ug/l 2.5 0.70 Carbon tetrachloride ND ug/l 0.50 0.13 1,2-Dichloropropane ND ug/l 1.0 0.14 Dibromochloromethane ND ug/l 0.50 0.15 1,1-2-Trichloroethane ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 0.50 0.13 1,1-1-Trichloroethane ND ug/l 0.50 0.13 1,1-1-Trichloroethane ND ug/l 0.50 0.13 1,1-1-Trichloropthane ND ug/l 0.50 0.14 1,2-Dichloroptopene ND ug/l 0.50 0.14 1,3-Dichlorop	arameter	Result	Qualifier Units	s RL	MDL
I.1-Dichloroethane ND ug/l 2.5 0.70 Chloroform ND ug/l 2.5 0.70 Carbon tetrachloride ND ug/l 0.50 0.13 1,2-Dichloropropane ND ug/l 1.0 0.14 Dibromochloromethane ND ug/l 0.50 0.15 1,1,2-Trichloroethane ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 2.5 0.70 Trichloroftuoromethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.14 1,3-Dichloropropene ND ug/l 0.50 0.14 1,3-Dichloropropene ND ug/l 0.50 0.14 1,1-Dichloropropene ND	olatile Organics by GC/MS	- Westborough Lab	for sample(s):	02-10 Batch:	WG1802038-5
ND ug/l 2.5 0.70 Carbon tetrachloride ND ug/l 0.50 0.13 1,2-Dichloropropane ND ug/l 1.0 0.14 Dibromochloromethane ND ug/l 0.50 0.15 1,1,2-Trichloroethane ND ug/l 0.50 0.15 1,1,2-Trichloroethane ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 2.5 0.70 Trichloroftluoromethane ND ug/l 2.5 0.70 1,2-Dichloroethane ND ug/l 0.50 0.13 1,1-Trichloroethane ND ug/l 0.50 0.13 1,1-Trichloroethane ND ug/l 0.50 0.14 1,2-Dichloroethane ND ug/l 0.50 0.14 1,1-Trichloroethane ND ug/l 0.50 0.14 1,1-Dichloropropene ND ug/l 0.50 0.14 1,3-Dichloropropene ND ug/l	Methylene chloride	ND	ug/l	2.5	0.70
International and the set of the	1,1-Dichloroethane	ND	ug/l	2.5	0.70
1,2-Dichloropropane ND ug/l 1.0 0.14 Dibromochloromethane ND ug/l 0.50 0.15 1,1,2-Trichloroethane ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 2.5 0.70 1,2-Dichloroethane ND ug/l 2.5 0.70 1,2-Dichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.19 trans-1,3-Dichloropropene ND ug/l 0.50 0.14 1,3-Dichloropropene ND ug/l 0.50 0.14 1,1-Dichloropropene ND ug/l 0.50 0.14 1,2-Zietrachloroethane ND ug/l 0.50 0.14 1,1,2-Zietrachloroethane ND ug/l 0.50 0.14 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 Benzene ND	Chloroform	ND	ug/l	2.5	0.70
Dibromochloromethane ND ug/l 0.50 0.15 1,1,2-Trichloroethane ND ug/l 1.5 0.50 Tetrachloroethane ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 2.5 0.70 Trichloroethane ND ug/l 2.5 0.70 1,2-Dichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.14 1,3-Dichloropropene ND ug/l 0.50 0.14 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1,1-Dichloropropene ND ug/l 0.50 0.14 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.16 Toluene ND ug/l 0.50 0.16 Toluene ND	Carbon tetrachloride	ND	ug/l	0.50	0.13
Instruction ND ug/l 1.5 0.50 Tetrachloroethene ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 2.5 0.70 Trichloroftluoromethane ND ug/l 2.5 0.70 Trichloroethane ND ug/l 2.5 0.70 1,2-Dichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.19 trans-1,3-Dichloropropene ND ug/l 0.50 0.14 1,3-Dichloropropene ND ug/l 0.50 0.14 1,3-Dichloropropene ND ug/l 0.50 0.14 1,3-Dichloropropene ND ug/l 0.50 0.14 1,1-Dichloropropene ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l	1,2-Dichloropropane	ND	ug/l	1.0	0.14
Tetrachloroethene ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 2.5 0.70 Trichlorofluoromethane ND ug/l 2.5 0.70 1,2-Dichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.19 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1,1-Dichloropropene, Total ND ug/l 0.50 0.14 1,1-Dichloropropene ND ug/l 0.50 0.14 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 2.5 0.70 Ethylbenzene ND </td <td>Dibromochloromethane</td> <td>ND</td> <td>ug/l</td> <td>0.50</td> <td>0.15</td>	Dibromochloromethane	ND	ug/l	0.50	0.15
Ind Ind <td>1,1,2-Trichloroethane</td> <td>ND</td> <td>ug/l</td> <td>1.5</td> <td>0.50</td>	1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Trichlorofluoromethane ND ug/l 2.5 0.70 1,2-Dichloroethane ND ug/l 0.50 0.13 1,1-Trichloroethane ND ug/l 2.5 0.70 Bromodichloromethane ND ug/l 2.5 0.70 Bromodichloromethane ND ug/l 0.50 0.19 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1,1-Dichloropropene, Total ND ug/l 2.5 0.70 Bromoform ND ug/l 2.0 0.65 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND <t< td=""><td>Tetrachloroethene</td><td>ND</td><td>ug/l</td><td>0.50</td><td>0.18</td></t<>	Tetrachloroethene	ND	ug/l	0.50	0.18
ND ug/l 0.50 0.13 1,2-Dichloroethane ND ug/l 0.50 0.13 1,1-Trichloroethane ND ug/l 2.5 0.70 Bromodichloromethane ND ug/l 0.50 0.19 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1,1-Dichloropropene ND ug/l 0.50 0.14 1,1-Dichloropropene ND ug/l 0.50 0.14 1,1-2,2-Tetrachloroethane ND ug/l 2.5 0.70 Bromoform ND ug/l 0.50 0.16 Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.	Chlorobenzene	ND	ug/l	2.5	0.70
1,1,1-Trichloroethane ND ug/l 2.5 0.70 Bromodichloromethane ND ug/l 0.50 0.19 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1,3-Dichloropropene ND ug/l 0.50 0.14 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1,1-Dichloropropene, Total ND ug/l 2.5 0.70 Bromoform ND ug/l 2.0 0.65 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 2.5 0.70 Vinyl chloride ND ug/l <td< td=""><td>Trichlorofluoromethane</td><td>ND</td><td>ug/l</td><td>2.5</td><td>0.70</td></td<>	Trichlorofluoromethane	ND	ug/l	2.5	0.70
Bromodichloromethane ND ug/l 0.50 0.19 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1,1-Dichloropropene ND ug/l 2.5 0.70 Bromoform ND ug/l 2.5 0.70 Bromoform ND ug/l 0.50 0.14 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 1.0 0.07 Chloroeethane ND ug/l <td< td=""><td>1,2-Dichloroethane</td><td>ND</td><td>ug/l</td><td>0.50</td><td>0.13</td></td<>	1,2-Dichloroethane	ND	ug/l	0.50	0.13
trans-1,3-Dichloropropene ND ug/l 0.50 0.16 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1,3-Dichloropropene ND ug/l 0.50 0.14 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1,1-Dichloropropene, Total ND ug/l 2.5 0.70 Bromoform ND ug/l 2.0 0.65 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 0.50 0.16 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Bromomethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 2.	1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1,1-Dichloropropene, Total ND ug/l 2.5 0.70 Bromoform ND ug/l 2.0 0.65 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 0.50 <	Bromodichloromethane	ND	ug/l	0.50	0.19
1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1,1-Dichloropropene ND ug/l 2.5 0.70 Bromoform ND ug/l 2.0 0.65 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Bromomethane ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Bromomethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 2.5 0.70 Chloroethane ND ug/l 2.5 0.70 Intyl chloride ND ug/l 2.5 0.70 Intyl chloroethene ND ug/l 0.50 0.17 <td>trans-1,3-Dichloropropene</td> <td>ND</td> <td>ug/l</td> <td>0.50</td> <td>0.16</td>	trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
1,1-Dichloropropene ND ug/l 2.5 0.70 Bromoform ND ug/l 2.0 0.65 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Bromomethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 2.5 0.70 <td>cis-1,3-Dichloropropene</td> <td>ND</td> <td>ug/l</td> <td>0.50</td> <td>0.14</td>	cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform ND ug/l 2.0 0.65 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Bromomethane ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Bromomethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 2.5 0.70	1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Bromomethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 2.5 0.70	1,1-Dichloropropene	ND	ug/l	2.5	0.70
Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Bromomethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 2.5 0.70 Indicate ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 2.5 0.70 Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 2.5 0.70 trans-1,2-Dichloroethene ND ug/l 2.5 0.70	Bromoform	ND	ug/l	2.0	0.65
Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Bromomethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 2.5 0.70 trans-1,2-Dichloroethene ND ug/l 2.5 0.70	1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Bromomethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 2.5 0.70 Chloroethane ND ug/l 1.0 0.07 Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 2.5 0.70	Benzene	ND	ug/l	0.50	0.16
Chloromethane ND ug/l 2.5 0.70 Bromomethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 2.5 0.70	Toluene	ND	ug/l	2.5	0.70
Bromomethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 2.5 0.70	Ethylbenzene	ND	ug/l	2.5	0.70
Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 2.5 0.70	Chloromethane	ND	ug/l	2.5	0.70
Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 2.5 0.70	Bromomethane	ND	ug/l	2.5	0.70
1,1-DichloroetheneNDug/l0.500.17trans-1,2-DichloroetheneNDug/l2.50.70	Vinyl chloride	ND	ug/l	1.0	0.07
trans-1,2-Dichloroethene ND ug/l 2.5 0.70	Chloroethane	ND	ug/l	2.5	0.70
	1,1-Dichloroethene	ND	ug/l	0.50	0.17
Trichloroethene ND ug/l 0.50 0.18	trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
	Trichloroethene	ND	ug/l	0.50	0.18

 Lab Number:
 L2337223

 Report Date:
 07/14/23

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst:

1,8260D 07/09/23 09:32 PID

arameter	Result Qu	ualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab for	r sample(s): 02-10	Batch:	WG1802038-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

 Lab Number:
 L2337223

 Report Date:
 07/14/23

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260
Analytical Date:	07/09/23
Analyst:	PID

1,8260D 07/09/23 09:32 PID

arameter	Result	Qualifier Units	s RL	MDL
olatile Organics by GC/MS - V	/estborough Lab	o for sample(s):	02-10 Batch:	WG1802038-5
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Hexachlorobutadiene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
1,4-Dioxane	ND	ug/l	250	61.
p-Diethylbenzene	ND	ug/l	2.0	0.70
p-Ethyltoluene	ND	ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54
Ethyl ether	ND	ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70

		Acceptance		
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	85		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	91		70-130	

 Lab Number:
 L2337223

 Report Date:
 07/14/23

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260D
Analytical Date:	07/12/23 16:37
Analyst:	MAG

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s): 01	Batch:	WG1802785-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

 Lab Number:
 L2337223

 Report Date:
 07/14/23

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260D
Analytical Date:	07/12/23 16:37
Analyst:	MAG

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lat	o for sample(s):	01 Batch:	WG1802785-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

 Lab Number:
 L2337223

 Report Date:
 07/14/23

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260D
Analytical Date:	07/12/23 16:37
Analyst:	MAG

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	Vestborough Lat	o for sample(s): (01 Batch:	WG1802785-5
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Hexachlorobutadiene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
1,4-Dioxane	ND	ug/l	250	61.
p-Diethylbenzene	ND	ug/l	2.0	0.70
p-Ethyltoluene	ND	ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54
Ethyl ether	ND	ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70

		Acceptance		
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	103		70-130	

Project Name: CORNERSTONE Project Number: CORNERSTONE

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RF Qual Lin	
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	02-10 Batch:	WG1802038-3	WG1802038-4			
Methylene chloride	84		84		70-130	0	2	0
1,1-Dichloroethane	87		89		70-130	2	2	0
Chloroform	85		86		70-130	1	2	0
Carbon tetrachloride	86		89		63-132	3	2	0
1,2-Dichloropropane	83		84		70-130	1	2	0
Dibromochloromethane	91		92		63-130	1	2	0
1,1,2-Trichloroethane	99		99		70-130	0	2	0
Tetrachloroethene	100		110		70-130	10	2	0
Chlorobenzene	97		100		75-130	3	2	0
Trichlorofluoromethane	88		92		62-150	4	2	0
1,2-Dichloroethane	80		80		70-130	0	2	0
1,1,1-Trichloroethane	89		91		67-130	2	2	0
Bromodichloromethane	80		80		67-130	0	2	0
trans-1,3-Dichloropropene	89		90		70-130	1	2	0
cis-1,3-Dichloropropene	80		81		70-130	1	2	0
1,1-Dichloropropene	90		92		70-130	2	2	0
Bromoform	86		86		54-136	0	2	0
1,1,2,2-Tetrachloroethane	94		96		67-130	2	2	0
Benzene	87		89		70-130	2	2	0
Toluene	99		100		70-130	1	2	0
Ethylbenzene	98		100		70-130	2	2	0
Chloromethane	77		80		64-130	4	2	0
Bromomethane	70		72		39-139	3	2	0

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD imits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	02-10 Batch:	WG1802038-3	WG1802038-4		
Vinyl chloride	97		100		55-140	3	20
Chloroethane	88		90		55-138	2	20
1,1-Dichloroethene	93		95		61-145	2	20
trans-1,2-Dichloroethene	88		91		70-130	3	20
Trichloroethene	85		87		70-130	2	20
1,2-Dichlorobenzene	100		100		70-130	0	20
1,3-Dichlorobenzene	100		100		70-130	0	20
1,4-Dichlorobenzene	100		100		70-130	0	20
Methyl tert butyl ether	85		86		63-130	1	20
p/m-Xylene	100		100		70-130	0	20
o-Xylene	95		100		70-130	5	20
cis-1,2-Dichloroethene	86		88		70-130	2	20
Dibromomethane	80		81		70-130	1	20
1,2,3-Trichloropropane	87		89		64-130	2	20
Acrylonitrile	75		72		70-130	4	20
Styrene	100		100		70-130	0	20
Dichlorodifluoromethane	110		110		36-147	0	20
Acetone	77		66		58-148	15	20
Carbon disulfide	86		88		51-130	2	20
2-Butanone	70		68		63-138	3	20
Vinyl acetate	78		76		70-130	3	20
4-Methyl-2-pentanone	82		79		59-130	4	20
2-Hexanone	73		71		57-130	3	20

Project Name: CORNERSTONE Project Number: CORNERSTONE

ameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limit	
atile Organics by GC/MS - Westboroug	gh Lab Associated	sample(s):	02-10 Batch:	WG1802038-3	WG1802038-4			
Bromochloromethane	88		90		70-130	2	20	
2,2-Dichloropropane	90		91		63-133	1	20	
1,2-Dibromoethane	95		97		70-130	2	20	
1,3-Dichloropropane	93		94		70-130	1	20	
1,1,1,2-Tetrachloroethane	97		98		64-130	1	20	
Bromobenzene	100		100		70-130	0	20	
n-Butylbenzene	96		99		53-136	3	20	
sec-Butylbenzene	97		100		70-130	3	20	
tert-Butylbenzene	95		98		70-130	3	20	
o-Chlorotoluene	97		100		70-130	3	20	
p-Chlorotoluene	98		100		70-130	2	20	
1,2-Dibromo-3-chloropropane	82		82		41-144	0	20	
Hexachlorobutadiene	98		100		63-130	2	20	
Isopropylbenzene	97		100		70-130	3	20	
p-Isopropyltoluene	95		99		70-130	4	20	
Naphthalene	84		87		70-130	4	20	
n-Propylbenzene	97		100		69-130	3	20	
1,2,3-Trichlorobenzene	90		94		70-130	4	20	
1,2,4-Trichlorobenzene	94		99		70-130	5	20	
1,3,5-Trimethylbenzene	97		100		64-130	3	20	
1,2,4-Trimethylbenzene	97		100		70-130	3	20	
1,4-Dioxane	60		62		56-162	3	20	
p-Diethylbenzene	95		97		70-130	2	20	

Project Name: CORNERSTONE Project Number: CORNERSTONE

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	02-10 Batch:	WG1802038-3	WG1802038-4				
p-Ethyltoluene	97		100		70-130	3		20	
1,2,4,5-Tetramethylbenzene	94		97		70-130	3		20	
Ethyl ether	86		88		59-134	2		20	
trans-1,4-Dichloro-2-butene	80		80		70-130	0		20	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	84	82	70-130
Toluene-d8	104	103	70-130
4-Bromofluorobenzene	101	100	70-130
Dibromofluoromethane	91	91	70-130

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits		
Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1802785-3 WG1802785-4									
Methylene chloride	100		100		70-130	0	20		
1,1-Dichloroethane	100		100		70-130	0	20		
Chloroform	100		100		70-130	0	20		
Carbon tetrachloride	100		97		63-132	3	20		
1,2-Dichloropropane	100		100		70-130	0	20		
Dibromochloromethane	100		100		63-130	0	20		
1,1,2-Trichloroethane	100		100		70-130	0	20		
Tetrachloroethene	100		98		70-130	2	20		
Chlorobenzene	100		100		75-130	0	20		
Trichlorofluoromethane	95		95		62-150	0	20		
1,2-Dichloroethane	100		100		70-130	0	20		
1,1,1-Trichloroethane	100		97		67-130	3	20		
Bromodichloromethane	100		100		67-130	0	20		
trans-1,3-Dichloropropene	110		100		70-130	10	20		
cis-1,3-Dichloropropene	100		100		70-130	0	20		
1,1-Dichloropropene	100		99		70-130	1	20		
Bromoform	100		100		54-136	0	20		
1,1,2,2-Tetrachloroethane	110		120		67-130	9	20		
Benzene	100		100		70-130	0	20		
Toluene	100		98		70-130	2	20		
Ethylbenzene	100		100		70-130	0	20		
Chloromethane	110		98		64-130	12	20		
Bromomethane	92		90		39-139	2	20		

Lab Control Sample Analysis Batch Quality Control

Project Name: CORNERSTONE Project Number: CORNERSTONE

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits					
Volatile Organics by GC/MS - Westborough I	/olatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1802785-3 WG1802785-4											
Vinyl chloride	100		96		55-140	4	20					
Chloroethane	98		94		55-138	4	20					
1,1-Dichloroethene	100		98		61-145	2	20					
trans-1,2-Dichloroethene	100		99		70-130	1	20					
Trichloroethene	92		88		70-130	4	20					
1,2-Dichlorobenzene	100		110		70-130	10	20					
1,3-Dichlorobenzene	100		100		70-130	0	20					
1,4-Dichlorobenzene	100		100		70-130	0	20					
Methyl tert butyl ether	100		110		63-130	10	20					
p/m-Xylene	105		100		70-130	5	20					
o-Xylene	110		105		70-130	5	20					
cis-1,2-Dichloroethene	100		100		70-130	0	20					
Dibromomethane	100		100		70-130	0	20					
1,2,3-Trichloropropane	98		100		64-130	2	20					
Acrylonitrile	110		100		70-130	10	20					
Styrene	110		105		70-130	5	20					
Dichlorodifluoromethane	99		93		36-147	6	20					
Acetone	84		90		58-148	7	20					
Carbon disulfide	100		97		51-130	3	20					
2-Butanone	100		96		63-138	4	20					
Vinyl acetate	170	Q	170	Q	70-130	0	20					
4-Methyl-2-pentanone	110		100		59-130	10	20					
2-Hexanone	110		110		57-130	0	20					

Lab Control Sample Analysis Batch Quality Control

Volatile Organics by GC/MS - Westborough L Bromochloromethane 2,2-Dichloropropane	Lab Associated	sample(s): 01	Batch: WG	1802785-3											
			Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1802785-3 WG1802785-4												
2.2 Dichloropropago	110		110		70-130	0	20								
2,2-Dichiolopiopane	110		110		63-133	0	20								
1,2-Dibromoethane	110		100		70-130	10	20								
1,3-Dichloropropane	110		100		70-130	10	20								
1,1,1,2-Tetrachloroethane	100		100		64-130	0	20								
Bromobenzene	100		100		70-130	0	20								
n-Butylbenzene	100		100		53-136	0	20								
sec-Butylbenzene	100		100		70-130	0	20								
tert-Butylbenzene	100		100		70-130	0	20								
o-Chlorotoluene	100		100		70-130	0	20								
p-Chlorotoluene	100		100		70-130	0	20								
1,2-Dibromo-3-chloropropane	100		110		41-144	10	20								
Hexachlorobutadiene	110		100		63-130	10	20								
Isopropylbenzene	100		100		70-130	0	20								
p-Isopropyltoluene	100		100		70-130	0	20								
Naphthalene	100		110		70-130	10	20								
n-Propylbenzene	100		100		69-130	0	20								
1,2,3-Trichlorobenzene	100		110		70-130	10	20								
1,2,4-Trichlorobenzene	100		110		70-130	10	20								
1,3,5-Trimethylbenzene	100		100		64-130	0	20								
1,2,4-Trimethylbenzene	100		100		70-130	0	20								
1,4-Dioxane	102		108		56-162	6	20								
p-Diethylbenzene	100		100		70-130	0	20								

Lab Control Sample Analysis Batch Quality Control

Project Name: CORNERSTONE Project Number: CORNERSTONE

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 01	Batch: WG	1802785-3	WG1802785-4			
p-Ethyltoluene	100		100		70-130	0		20
1,2,4,5-Tetramethylbenzene	100		100		70-130	0		20
Ethyl ether	100		110		59-134	10		20
trans-1,4-Dichloro-2-butene	100		110		70-130	10		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	103	105	70-130
Toluene-d8	101	99	70-130
4-Bromofluorobenzene	97	100	70-130
Dibromofluoromethane	99	98	70-130

Matrix Spike Analysis Batch Quality Control

or

Project Name: CORNERSTONE Project Number: CORNERSTONE

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery		covery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS MW-10	- Westborough	Lab Assoc	ciated sample(s): 02-10 QC	Batch ID: WG180	2038-6 WG180	2038-7 Q(C Sample	e: L2337	7223-08	Client ID:
Methylene chloride	ND	10	8.6	86	8.8	88	-	70-130	2		20
1,1-Dichloroethane	ND	10	8.9	89	9.2	92		70-130	3		20
Chloroform	ND	10	9.3	93	9.6	96		70-130	3		20
Carbon tetrachloride	ND	10	8.5	85	9.0	90		63-132	6		20
1,2-Dichloropropane	ND	10	8.5	85	8.6	86	-	70-130	1		20
Dibromochloromethane	ND	10	9.2	92	9.5	95		63-130	3		20
1,1,2-Trichloroethane	ND	10	10	100	11	110		70-130	10		20
Tetrachloroethene	6.3	10	16	97	17	107	-	70-130	6		20
Chlorobenzene	ND	10	9.6	96	10	100	-	75-130	4		20
Trichlorofluoromethane	ND	10	9.0	90	9.2	92		62-150	2		20
1,2-Dichloroethane	ND	10	8.4	84	8.6	86	-	70-130	2		20
1,1,1-Trichloroethane	ND	10	9.1	91	9.4	94		67-130	3		20
Bromodichloromethane	ND	10	8.0	80	8.3	83		67-130	4		20
trans-1,3-Dichloropropene	ND	10	8.5	85	8.8	88	-	70-130	3		20
cis-1,3-Dichloropropene	ND	10	7.4	74	7.6	76	-	70-130	3		20
1,1-Dichloropropene	ND	10	9.0	90	9.4	94	-	70-130	4		20
Bromoform	ND	10	8.5	85	8.8	88		54-136	3		20
1,1,2,2-Tetrachloroethane	ND	10	10	100	10	100		67-130	0		20
Benzene	ND	10	9.0	90	9.2	92	-	70-130	2		20
Toluene	ND	10	10	100	10	100	-	70-130	0		20
Ethylbenzene	ND	10	9.6	96	10	100		70-130	4		20
Chloromethane	ND	10	7.2	72	7.5	75		64-130	4		20
Bromomethane	ND	10	3.4	34	Q 4.8	48	:	39-139	34	Q	20

Matrix Spike Analysis Batch Quality Control

	Batch	Quality	Со
--	-------	---------	----

Project Name: CORNERSTONE Project Number: CORNERSTONE

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS MW-10	- Westborough	Lab Assoc	iated sample(s): 02-10 QC	Batch ID: WG18020	38-6 WG180	2038-7 QC Sample	e: L233	7223-08 Client ID:
Vinyl chloride	ND	10	9.6	96	10	100	55-140	4	20
Chloroethane	ND	10	9.2	92	9.3	93	55-138	1	20
1,1-Dichloroethene	ND	10	9.4	94	9.8	98	61-145	4	20
trans-1,2-Dichloroethene	ND	10	9.0	90	9.2	92	70-130	2	20
Trichloroethene	0.21J	10	8.7	87	9.0	90	70-130	3	20
1,2-Dichlorobenzene	ND	10	10	100	10	100	70-130	0	20
1,3-Dichlorobenzene	ND	10	10	100	10	100	70-130	0	20
1,4-Dichlorobenzene	ND	10	9.9	99	10	100	70-130	1	20
Methyl tert butyl ether	ND	10	9.0	90	9.3	93	63-130	3	20
p/m-Xylene	ND	20	19	95	20	100	70-130	5	20
o-Xylene	ND	20	19	95	20	100	70-130	5	20
cis-1,2-Dichloroethene	ND	10	8.7	87	9.0	90	70-130	3	20
Dibromomethane	ND	10	8.4	84	8.7	87	70-130	4	20
1,2,3-Trichloropropane	ND	10	8.7	87	9.0	90	64-130	3	20
Acrylonitrile	ND	10	7.9	79	8.3	83	70-130	5	20
Styrene	ND	20	19	95	20	100	70-130	5	20
Dichlorodifluoromethane	ND	10	10	100	10	100	36-147	0	20
Acetone	ND	10	7.9	79	8.5	85	58-148	7	20
Carbon disulfide	ND	10	8.6	86	8.9	89	51-130	3	20
2-Butanone	ND	10	7.7	77	7.9	79	63-138	3	20
Vinyl acetate	ND	10	7.5	75	7.6	76	70-130	1	20
4-Methyl-2-pentanone	ND	10	8.7	87	9.0	90	59-130	3	20
2-Hexanone	ND	10	7.7	77	8.1	81	57-130	5	20

Matrix Spike Analysis Batch Quality Control

Project Name: CORNERSTONE Project Number: CORNERSTONE

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recov Qual Limit		Qual	RPD Limits
Volatile Organics by GC/MS - MW-10	- Westborough	Lab Ass	ociated sample	e(s): 02-10 QC	Batch ID: WG18020)38-6 WG180	2038-7 QC Sa	mple: L233	37223-08	Client ID:
Bromochloromethane	ND	10	9.1	91	9.3	93	70-130) 2		20
2,2-Dichloropropane	ND	10	6.8	68	6.8	68	63-133	3 0		20
1,2-Dibromoethane	ND	10	10	100	10	100	70-130	0		20
1,3-Dichloropropane	ND	10	9.7	97	9.9	99	70-130) 2		20
1,1,1,2-Tetrachloroethane	ND	10	9.6	96	9.9	99	64-130) 3		20
Bromobenzene	ND	10	10	100	10	100	70-130	0		20
n-Butylbenzene	ND	10	8.8	88	9.5	95	53-130	6 8		20
sec-Butylbenzene	ND	10	9.1	91	9.8	98	70-130) 7		20
tert-Butylbenzene	ND	10	9.1	91	9.8	98	70-130) 7		20
o-Chlorotoluene	ND	10	9.2	92	9.7	97	70-130) 5		20
p-Chlorotoluene	ND	10	9.4	94	9.9	99	70-130) 5		20
1,2-Dibromo-3-chloropropane	ND	10	8.4	84	8.6	86	41-144	1 2		20
Hexachlorobutadiene	ND	10	8.6	86	9.2	92	63-130) 7		20
Isopropylbenzene	ND	10	9.4	94	10	100	70-130	6		20
p-Isopropyltoluene	ND	10	8.9	89	9.6	96	70-130	8		20
Naphthalene	ND	10	9.6	96	9.7	97	70-130) 1		20
n-Propylbenzene	ND	10	9.2	92	9.8	98	69-130	6		20
1,2,3-Trichlorobenzene	ND	10	9.2	92	9.6	96	70-130) 4		20
1,2,4-Trichlorobenzene	ND	10	9.3	93	9.6	96	70-130) 3		20
1,3,5-Trimethylbenzene	ND	10	9.3	93	9.8	98	64-130) 5		20
1,2,4-Trimethylbenzene	ND	10	9.3	93	9.8	98	70-130) 5		20
1,4-Dioxane	ND	500	290	58	300	60	56-162	2 3		20
p-Diethylbenzene	ND	10	8.8	88	9.3	93	70-130	6		20

Matrix Spike Analysis

		Batch Quality Control	
Project Name:	CORNERSTONE	Lab Number	er: L2337223
Project Number:	CORNERSTONE	Report Dat	e: 07/14/23

Parameter	Native Sample	MS Added	MS Found	MS %Recover	y Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS MW-10	- Westborough L	ab Asso	ciated sample(s	s): 02-10 C	C Batch ID:	WG18020	038-6 WG1802	2038-7	QC Sample	: L233	7223-08	Client ID:
p-Ethyltoluene	ND	10	9.3	93		9.9	99		70-130	6		20
1,2,4,5-Tetramethylbenzene	ND	10	8.7	87		9.0	90		70-130	3		20
Ethyl ether	ND	10	9.1	91		9.4	94		59-134	3		20
trans-1,4-Dichloro-2-butene	ND	10	7.2	72		7.5	75		70-130	4		20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	86	86	70-130
4-Bromofluorobenzene	99	99	70-130
Dibromofluoromethane	92	91	70-130
Toluene-d8	103	103	70-130

Project Name:CORNERSTONEProject Number:CORNERSTONE

Serial_No:07142313:41 *Lab Number:* L2337223 *Report Date:* 07/14/23

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
A	Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2337223-01A	Vial HCl preserved	A	NA		2.5	Y	Absent		NYTCL-8260(14)
L2337223-01B	Vial HCI preserved	А	NA		2.5	Y	Absent		NYTCL-8260(14)
L2337223-01C	Vial HCI preserved	А	NA		2.5	Y	Absent		NYTCL-8260(14)
L2337223-02A	Vial HCI preserved	А	NA		2.5	Y	Absent		NYTCL-8260(14)
L2337223-02B	Vial HCI preserved	А	NA		2.5	Y	Absent		NYTCL-8260(14)
L2337223-02C	Vial HCI preserved	А	NA		2.5	Y	Absent		NYTCL-8260(14)
L2337223-03A	Vial HCI preserved	А	NA		2.5	Y	Absent		NYTCL-8260(14)
L2337223-03B	Vial HCI preserved	А	NA		2.5	Y	Absent		NYTCL-8260(14)
L2337223-03C	Vial HCI preserved	А	NA		2.5	Y	Absent		NYTCL-8260(14)
L2337223-04A	Vial HCI preserved	А	NA		2.5	Y	Absent		NYTCL-8260(14)
L2337223-04B	Vial HCI preserved	А	NA		2.5	Y	Absent		NYTCL-8260(14)
L2337223-04C	Vial HCI preserved	А	NA		2.5	Y	Absent		NYTCL-8260(14)
L2337223-05A	Vial HCI preserved	А	NA		2.5	Y	Absent		NYTCL-8260(14)
L2337223-05B	Vial HCI preserved	А	NA		2.5	Y	Absent		NYTCL-8260(14)
L2337223-05C	Vial HCI preserved	А	NA		2.5	Y	Absent		NYTCL-8260(14)
L2337223-06A	Vial HCI preserved	А	NA		2.5	Y	Absent		NYTCL-8260(14)
L2337223-06B	Vial HCI preserved	А	NA		2.5	Y	Absent		NYTCL-8260(14)
L2337223-06C	Vial HCI preserved	А	NA		2.5	Y	Absent		NYTCL-8260(14)
L2337223-07A	Vial HCI preserved	А	NA		2.5	Y	Absent		NYTCL-8260(14)
L2337223-07B	Vial HCI preserved	А	NA		2.5	Y	Absent		NYTCL-8260(14)
L2337223-07C	Vial HCI preserved	А	NA		2.5	Y	Absent		NYTCL-8260(14)
L2337223-08A	Vial HCI preserved	А	NA		2.5	Y	Absent		NYTCL-8260(14)
L2337223-08A1	Vial HCI preserved	А	NA		2.5	Y	Absent		NYTCL-8260(14)

Project Name:CORNERSTONEProject Number:CORNERSTONE

Serial_No:07142313:41 *Lab Number:* L2337223 *Report Date:* 07/14/23

Container Info	ormation	lr Coolor D		Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2337223-08A2	Vial HCI preserved	А	NA		2.5	Y	Absent		NYTCL-8260(14)
L2337223-08B	Vial HCl preserved	А	NA		2.5	Y	Absent		NYTCL-8260(14)
L2337223-08B1	Vial HCl preserved	А	NA		2.5	Y	Absent		NYTCL-8260(14)
L2337223-08B2	Vial HCl preserved	А	NA		2.5	Y	Absent		NYTCL-8260(14)
L2337223-08C	Vial HCl preserved	А	NA		2.5	Y	Absent		NYTCL-8260(14)
L2337223-08C1	Vial HCl preserved	А	NA		2.5	Y	Absent		NYTCL-8260(14)
L2337223-08C2	Vial HCl preserved	А	NA		2.5	Y	Absent		NYTCL-8260(14)
L2337223-09A	Vial HCl preserved	А	NA		2.5	Y	Absent		NYTCL-8260(14)
L2337223-09B	Vial HCl preserved	А	NA		2.5	Y	Absent		NYTCL-8260(14)
L2337223-09C	Vial HCI preserved	А	NA		2.5	Y	Absent		NYTCL-8260(14)
L2337223-10A	Vial HCl preserved	А	NA		2.5	Y	Absent		NYTCL-8260(14)
L2337223-10B	Vial HCI preserved	А	NA		2.5	Y	Absent		NYTCL-8260(14)

Project Name: CORNERSTONE

Project Number: CORNERSTONE

Lab Number: L2337223

Report Date: 07/14/23

GLOSSARY

Acronyms

PL • Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) EIA. • Estimated Detection Instit: This value represents the level to which target analyte concentrations are exported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations are quantified below the reporting limit (RL). The EDL includes any analyte with the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration the results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration Sample Dapticate. Refer to LCS. EFA • Environmental Protection Agency. LCSD • Laboratory Control Sample Dapticate. Refer to LCS. LOD • Limit of Duratination Elevel to which a target analyte can estilably be detected for a specific analytis or a material containing favor and verified amounts of analytes. LOQ • Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations are reported as estimated values, when those target analyte concentrations are experided analyte. LON • Method	···· ,	
walues, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME). EMPC Estimated Maximum Possible Concentration. The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration on the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes. LCSD - Laboratory Control Sample Duplicate: Ref rot ILCS. LDB - Laboratory Control Sample matrix, free from the analytes or interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes. LOD - Laboratory Control Sample matrix, free from the analyte can reliably be detected for a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD perport formats only). LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at specific concentration. The local perport formats of molitutions, concentrations are explicable. (DoD report formats only.). MDI. - Method Detection Limit: This value represents the level to which target analyte to a specific amount of marix sample for which a micra dance applicable. (DoD report formats on ally sistements from dilutions, cococentrations are availised with andived as a specific c	DL	those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments
analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration. EPA Environmental Protection Agency. LCS Laboratory Control Sample Duplicate: Refer to LCS. LFB Laboratory Control Sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes. LGD Laboratory Control Sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes. LGD Laboratory Control Sample matrix, free from the analytes or interest, spiked with verified known amounts of analytes. LOD Limit of Detection. This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DOD report formats only.) LOQ Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DOD report formats only.) MDL Wethod Detection Limit: This value represents the level to which target analyte concentration instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. MDL Wethod Detection Limit: This value represents the level to which target analyte concentration instrument can accurately mea	EDL	values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis
LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes. LCSD - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes. LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from filutions, concentrations or moisture content, where applicable. (DoD report formats only). LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only). LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values. When those target analyte concentrations are reported as estimated values. Spite Sample: A sample prepared by adding a known	EMPC	analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case
analytes or a material containing known and verified amounts of analytes. LCSD - Laboratory Control Sample Duplicate: Refer to LCS. LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes. LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments form dilutions, concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values. MSD - Matrix Spike Sample: A sample analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values. NDP - Not Calculated: Term is utilized when one or more of the results utili	EPA	- Environmental Protection Agency.
 LFB Laboratory Fortified Black A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified anounts of analytes. LOD Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DOD report formats only.) LOQ Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DOD report formats only.) Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DOD report formats only.) MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentration mass of target analyte to aspecific amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values. MSD Matrix Spike Sample Duplicate: Refer to MS. Nat Applicable. Not Applicable. Not Aguitable. No Results: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit. No Results: Term is utilized for the analysis of Atterberg Limits in	LCS	
 analytes or a material containing known and verified amounts of analytes. LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations or moisture content, where applicable. MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specific amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values. NA - Not Applicable. NOC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit. Not Applicable. Not Applicable. Not Results: Term is utilized for the analysis of Atterberg Limits in soil. No Results: Term is utilized when No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests. RE elative Percent Difference: The res	LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
 specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) LOQ Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimated values. MSD Matrix Spike Sample Duplicate: Refer to MS. NA Not Applicable. Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit. Not Ignitable. No soliphenylamine/Diphenylamine. NNI Not Results: Term is utilized for the analysis of Atterberg Limits in soil. No Results: Term is utilized or the analysis of Atterberg Limits in soil. NR elasive Percent Difference: The results from matrix and/or matrix apple as reported by useful resolue. RPD Piorping Limit: The value at which an instrument can accurately measure an analyte at a specific concent	LFB	
LQQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)MDL. Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LQQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)MDL. Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations or moisture content, where applicable. (DO) report formats adjustments from dilutions, concentrations or moisture content, where applicable.MS. Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.MSD. Matrix Spike Sample : A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.MSD. Matrix Spike Sample : A sample prepared by adding a known mass of target analyte concentration traporting unit.NDPA/DPA. Not Applicable.NC. Not Applicable.NI. Not Ignitable.NR. Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.NR. No Results: Term is utilized from dilutions, concentrations or moisture content, where applicable.RPD. Rela	LOD	specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,
LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)MDL• Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.MS• Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.MSD• Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.MSD• Matrix Spike Sample: A sample prepared by adding a known mass of target analyte non-detect at the parameter's reporting unit.NA• Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.NDPA/DPA• Not Ignitable.NP• Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.NR• No Results: Term is utilized when No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile organic TIC only requests.RL• Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any	LOQ	LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats
values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.MSMatrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.MSDMatrix Spike Sample Duplicate: Refer to MS.NANot Applicable.NCNot Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.NDPA/DPAN-Nitrosodiphenylamine/Diphenylamine.NINot Ignitable.NPNon -Plastic: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.RLReporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.RPDRelative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD).SRMStandard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.STLPSemi-dynamic Tank Leaching Procedure per EPA Method 1315.TEFToxic Equivalent: The resulue assigned to each dioxin and furan to evaluate their to		LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats
 which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values. MSD - Matrix Spike Sample Duplicate: Refer to MS. NA - Not Applicable. NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit. NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine. NI - Not Ignitable. NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil. NR - No Results: Term is utilized for the analysis of Atterberg Limits in soil. NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TLC only requests. RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable. RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples. STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315. TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD. Toxic Equivalent: The measure of a sample's	MDL	values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
 NA - Not Applicable. NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit. NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine. NI - Not Ignitable. NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil. NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests. RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable. RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples. STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315. TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD. TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values. 	MS	which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated
NCNot Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.NDPA/DPA- N-Nitrosodiphenylamine/Diphenylamine.NI- Not Ignitable.NP- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.NR- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.RL- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.RPD- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.SRM- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.STLP- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.TEF- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.TIC- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound	MSD	- Matrix Spike Sample Duplicate: Refer to MS.
 reporting unit. NDPA/DPA N-Nitrosodiphenylamine/Diphenylamine. NI Not Ignitable. NP Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil. NR No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests. RL RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable. RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples. STLP Semi-dynamic Tank Leaching Procedure per EPA Method 1315. TEF Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD. TEQ Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD. TEK Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound 	NA	- Not Applicable.
NI - Not Ignitable. NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil. NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests. RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable. RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples. STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315. TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD. TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values. TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target	NC	
 NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil. NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests. RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable. RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples. STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315. TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD. TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values. TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound 	NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
 NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests. RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable. RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples. STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315. TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD. TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values. TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound 	NI	- Not Ignitable.
 Organic TIC only requests. RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable. RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples. STLP Semi-dynamic Tank Leaching Procedure per EPA Method 1315. TEF Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD. TEQ Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values. TIC 	NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
 includes any adjustments from dilutions, concentrations or moisture content, where applicable. RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples. STLP Semi-dynamic Tank Leaching Procedure per EPA Method 1315. TEF Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD. TEQ Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values. TIC Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound 		Organic TIC only requests.
precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples. STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315. TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD. TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values. TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound	RL	includes any adjustments from dilutions, concentrations or moisture content, where applicable.
associated field samples. STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315. TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD. TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values. TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound	RPD	precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the
 TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD. TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values. TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound 	SRM	1
 TEQ Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values. TIC Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound 		
and then summing the resulting values. TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound		- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
	-	and then summing the resulting values.
	TIC	

Report Format: DU Report with 'J' Qualifiers

Project Name: CORNERSTONE **Project Number:** CORNERSTONE

Lab Number: 12337223 **Report Date:** 07/14/23

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A - Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- С - Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- D - Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- Е - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F - The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G - The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- н - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I - The lower value for the two columns has been reported due to obvious interference.
- J - Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Serial_No:07142313:41

L2337223

07/14/23

Lab Number:

Report Date:

Project Name: CORNERSTONE

Project Number: CORNERSTONE

Data Qualifiers

Identified Compounds (TICs).

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Project Name:CORNERSTONEProject Number:CORNERSTONE

 Lab Number:
 L2337223

 Report Date:
 07/14/23

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethvltoluene.

EPA 8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.

Non-Potable Water

SM4500H, B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables)

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: AI, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: AI, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Агрна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	Vay	05	Page	e 1 f 2	_ mCK93	e Rec'd 1 Lab	6/2	9/23	ALPHA JOD # 12337223	5.
Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Project Information Project Name: Corne Project Location: Brog	rstone	and the set			Deliverat		-	ASP-B EQuIS (4 File)	Billing Information Same as Client Info Po #	100
Client Information Client: CA Rich C	and that	Project # (Use Project name as Pr	oject#) 🕅				C Oth	er ry Requirer	nent		Disposal Site Information	
Address: 17 Suport	:57	Project Manager: Jos					NY	TOGS	N	IY Part 375	Please identify below location of applicable disposal facilities.	
Phone: 516-576-0	8344 093	ALPHAQuote #: Turn-Around Time Standard		Due Date:				Q Standards Restricted U Unrestricted	se 🗌 C Use	IY CP-51 Other	Disposal Facility:	
Email: JCooper@ These samples have be		200		# of Days:			ANALYS	Sewer Disc	harge		Sample Filtration	T
Other project specific		ients:					Cs 8:240				Done Lab to do Preservation Lab to do (Please Specify below)	ta I Bot
ALPHA Lab ID (Lab Use Only)	Sa	mple ID	Colle	ection Time	Sample Matrix	Sampler's Initials	2				Sample Specific Comments	t I e
57273-01 -02 -03 -04 -05 -06 -07 -08 -08 -08-08 -08-10	MW-1 MW-2A MW-2A MW-XX MW-XX MW-6 MW-6 MW-6 MW-7 MW-7 MW-7 MW-7 MW-7 MW-10 MW-1		6 28 23 6 28 23	1210 0824 0824 1030 0846 1120 1013 0934 0938 0936	6W 6W 6W 6W 6W 6W 6W 6W 6W 6W	52/18 52/18 52/18 52/18 52/18 52/18 52/18 52/18 52/18 52/18	$\begin{array}{c} \lambda \\ \lambda $					20 m m m m m m m m m
$B = HGI \qquad 7 1 1 1 4 A C = HNO3 V D = H2SO4 G E = NaOH B F = MeOH C G = NaHSO4 C H = Na2S2O3 E$	Container Code Plastic Amber Glass Vial Galass Bacteria Cup Cube	Westboro: Certification N Mansfield: Certification N Relinquished I Man Kope Man Kope Man Kope Man Kope Choa: Muri	o: MA015 By:	Date/ 6/29/23 6/29/23 6/29	F Time	1106	V B Received I Multi Multi Multi Multi	SAAT	6129 6129	Date/Time 23 9 5 16 50	TO BE BOUND BY ALPHA' TERMS & CONDITIONS.	can not are

CHAIN OF CUSTODY	Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	Vay	95	Page	e 2 f 2	D	ate Rec' in Lab	d (0/29	123	ALPHA JOD # 1233722	3
Westborough, MA 01581 Mansfield, MA 02048 8 Walkup Dr. 320 Forbes Blvd TEL: 508-898-9220 TEL: 508-822-9300 FAX: 508-898-9193 FAX: 508-822-3288	Project Information Project Name: Corrow Project Location: Corrow	erstone X		M	S. Carrier and St.		rables ASP-A EQuIS (1 F	File)		-B IS (4 File)	Billing Information	
Client Information Client: CA Rich Consultants	Project # (Use Project name as Pr	oject #) 🏹				Regula	Other atory Requ	liremen	a los a los de los d	•	Disposal Site Information	
Address: 17 Dupont St Plainview NY 11803 Phone: 516-576-5844	Project Manager: Jas ALPHAQuote #: Turn-Around Time	n Ciope/		NECLANN	to states		IY TOGS WQ Standa IY Restricte		NY P		Please identify below location applicable disposal facilities. Disposal Facility:	1 of
Fax: 516-576-0093 Email: JCoeper@ Carichine.com	Standard		Due Date # of Days				IY Unrestric		e		NJ NY Other:	
These samples have been previously analyze Other project specific requirements/comm Please specify Metals or TAL.		1		8		VOC'S 3260 NA	1010				Sample Filtration Done Lab to do Preservation Lab to do (Please Specify below)	o t a l B o t
ALPHA Lab ID (Lab Use Only) Sar	mple ID	Colle Date	ction Time	Sample Matrix	Sampler's Initials	N					Sample Specific Comments	And Division in which the
57223-09 Field Blank -10 Trip Blank	6/28	6 28 23	1245	FB. TB	3/1B 3/13	×						32
A = None P = Plastic B = HCI A = Amber Glass C = HNO3 V = Vial D = H2SO4 G = Glass E = NaOH B = Bacteria Cup	Westboro: Certification N Mansfield: Certification N	10		<u> </u>	ntainer Type Preservative	V					Please print clearly, leg and completely. Sampl not be logged in and turnaround time clock w start until any ambiguiti	les can will not ies are
F = MeOH C = Cube G = NaHSO4 O = Other H = Na2S2O3 E = Encore K/E = Zn Ac/NaOH D = BOD Bottle O = Other Form No. 01/26 chC (rev. 30-Sept-2013)	Relinquished E	- AAL M mon	Date/ 6/29/23 6/25/23 6/25/23	12:26	1211	V H	Received By: <u>HUM MAD</u> MANNEND HUM GO			750 1650 23 20 27:00	TO BE BOUND BY ALL	NT EES PHA'S

DATA USABILITY SUMMARY REPORT – DUSR DATA VALIDATION SUMMARY

ORGANIC ANALYSIS VOLATILES BY GC/MS METHOD 8260D

For Groundwater Samples Collected June 28, 2023 From 3100 Third Avenue, Bronx, NY Cornerstone 2nd Quarter 2023 Collected by CA Rich Consultants, Inc.

SAMPLE DELIVERY GROUP NUMBER: L2337223 BY ALPHA ANALYTICAL - (ELAP #11148)

SUBMITTED TO:

Mr. Jason Cooper CA Rich Consultants, Inc. 17 Dupont Street Plainview, NY 11803

July 27, 2023

PREPARED BY:

Lori A. Beyer/President L.A.B. Validation Corp. 14 West Point Drive East Northport, NY 11731

fou a super

L.A.B. Validation Corp. 14 West Point Drive, East Northport, NY 11731

Cornerstone 2nd Quarter 2023, 3100 Third Avenue, Bronx, NY Groundwater Samples; June 2023 Sampling Event Data Usability Summary Report (Data Validation): Volatile Organics by GCMS Method 8260D.

Table of Contents:

Introduction Data Qualifier Definitions Sample Receipt

1.0 Volatile Organics by GC/MS SW846 Method 8260D

- 1.1 Holding Time
- 1.2 System Monitoring Compound (Surrogate) Recovery
- 1.3 Matrix Spikes (MS), Matrix Spike Duplicates (MSD)
- 1.4 Laboratory Control Sample/Laboratory Control Duplicates
- 1.5 Blank Contamination
- 1.6 GC/MS Instrument Performance Check (Tuning)
- 1.7 Initial and Continuing Calibrations
- 1.8 Internal Standards
- 1.9 Field Duplicates
- 1.10 Target Compound List Identification
- 1.11 Compound Quantification and Reported Detection Limits
- 1.12 Overall System Performance

APPENDICES:

- A. Chain of Custody Documents
- B. Case Narrative
- C. Data Summary Form Is with Qualifications

Introduction:

A validation was performed on groundwater samples and the associated quality control samples (MS/MSD/Field Duplicate/Field Blank/Trip Blank) for organic analysis for samples collected under chain of custody documentation by CA Rich Consultants and submitted to Alpha Analytical for subsequent analysis. This report contains the laboratory and validation results for the field samples itemized below. The groundwater samples were collected on June 28, 2023.

The samples were analyzed by Alpha Analytical, utilizing SW846 Methods and submitted under NYSDEC ASP Category B equivalent deliverable requirements for the associated analytical methodologies employed. The analytical testing consisted of the full analyte list for Volatile Organics.

The data was evaluated in accordance with EPA Region II National Functional Guidelines for Organic Data Review and EPA Region II SOP HW-24 Revision 4 for 8260D and in conjunction with the analytical methodologies for which the samples were analyzed, where applicable and relevant.

Sample Identification	Laboratory Identification	Sample Matrix	Date Collected	Date Received
MW-1	L2337223-01	Groundwater	06/28/2023	06/29/2023
MW-2A	L2337223-02	Groundwater	06/28/2023	06/29/2023
MW-XX	L2337223-03	Groundwater	06/28/2023	06/29/2023
[Field Duplicate of MW-2A]				
MW-4	L2337223-04	Groundwater	06/28/2023	06/29/2023
MW-6	L2337223-05	Groundwater	06/28/2023	06/29/2023
MW-7	L2337223-06	Groundwater	06/28/2023	06/29/2023
MW-8	L2337223-07	Groundwater	06/28/2023	06/29/2023
MW-10	L2337223-08	Groundwater	06/28/2023	06/29/2023
[Plus, MS/MSD]				
Field Blank 6/28	L2337223-09	Aqueous	06/28/2023	06/29/2023
Trip Blank	L2337223-10	Aqueous	06/28/2023	06/29/2023

The data validation report pertains to the following samples:

Data Qualifier Definitions:

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

U - The analyte was analyzed for but was not detected above the reported sample quantitation limit.

J - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

UJ - The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.

R - The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control (QC) criteria. The analyte may or may not be present in the sample.

N - The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."

NJ - The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate quantity.

J+ - The result is an estimated quantity, but the result may be biased high.

J- - The result is an estimated quantity, but the result may be biased low.

D - Analyte concentration is from diluted analysis.

Sample Receipt:

The Chain of Custody documents indicate that the samples were received at Alpha Analytical via laboratory courier on 06/29/23. Sample login notes were generated. The cooler temperature for samples was recorded upon receipt at Alpha and determined to be acceptable (<6.0 degrees C). The actual temperature of 2.5 degrees C is recorded on the sample receipt checklist provided the lab report. No problems and/or discrepancies were noted, consequently, the integrity of the field samples has been assumed to be good.

The data summary Form I's included in Appendix C includes all usable (qualified) and unusable (rejected) results for the samples identified above. The Form I's summarize the detailed narrative section of the report.

NOTE:

L.A.B. Validation Corp. believes it is appropriate to note that the data validation criteria utilized for data evaluation is different than the method requirements utilized by the laboratory. Qualified data does not necessarily mean that the laboratory was non-compliant in the analysis that was performed.

1.0 Volatile Organics by GC/MS SW846 Method 8260D

The following method criteria were reviewed: holding times, SMCs/Surrogates, MS, MSD, LCS, Laboratory Spiked Blanks, Field Duplicates, Method Blanks, Tunes, Calibrations, Internal Standards, Target Component Identification, Quantitation, Reported Quantitation Limits and Overall System Performance. The Volatile results are valid and useable except for non-detects for 1,4-Dioxane due to low calibration response in initial and continuing calibrations as noted within the following text:

1.1 Holding Time

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the technical holding time is exceeded, the data may not be considered valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimates, "J". The non-detects (sample quantitation limits) are required to be flagged as estimated, "UJ", or unusable, "R", if the holding times are grossly exceeded.

Samples were analyzed within the method required holding times as well as the technical holding times for data validation of 14 days from collection to analysis for HCL preserved vials as required. No data validation qualifiers were required based upon holding time.

1.2 System Monitoring Compound (Surrogate) Recovery

All samples are spiked with surrogate compounds prior to sample analysis to evaluate overall laboratory performance and efficiency of the analytical technique. If the measure of surrogate concentrations is outside contract specifications, qualifications are required to be applied to associated samples and analytes.

Surrogate recoveries (%R) for Dibromofluoromethane, 1,2-Dichloroethane-d4, Toluene-d8 and 4-Bromofluorobenzene were found to be within acceptable limits for surrogate compounds for all samples.

1.3 Matrix Spikes (MS)/ Matrix Spike Duplicates (MSD)

The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. The MS/MSD may be used in conjunction with other QC criteria for additional qualification of data.

Site-specific MS/MSD was performed by the laboratory on sample MW-10 as required by chain of custody. Acceptable recovery values were obtained for all spiked/target compounds except for Bromomethane (34%) in the MS. MSD recovery (48%) was within laboratory limits. RPD (34%) was above 20%. Non-detects in the parent sample for Bromomethane have been qualified, "UJ." No additional qualifiers were applied.

The National Functional Guidelines and EPA Region 2 SOPs state that "No qualifications to the data are necessary based on MS data <u>alone.</u>"

1.4 Laboratory Control Sample/Laboratory Control Duplicates The LCS data for laboratory control samples (LCS) are generated to provide information on the accuracy of the analytical method and on the laboratory performance.

LCS/LCS Duplicate recovery values fell within acceptance limits for all analytes with exceptions noted below:

LCS /LCS Duplicate was analyzed with the batch for sample analysis and was spiked with all target compounds. LCS/LCS Duplicate recovery recovered above laboratory limits in the LCS (170%), and LCS Duplicate (170%) associated with MW-2A, MW-XX, MW-4, MW-6, MW-7, MW-8, MW-10, Field Blank 6/28, and the Trip Blank. Elevated recovery does not support any potential loss of detection and/or result bias. No qualifiers were applied based on these reported outliers by the laboratory.

1.5 Blank Contamination

Quality assurance (QA) blanks, i.e., method, trip and field blanks are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field blanks measure cross-contamination of samples during field operations.

The following table was utilized to qualify target analyte results due to contamination. The largest value from all the associated blanks is required to be utilized:

Blank Type	Blank Result	Sample Result	Action for Samples
Method, Storage, field,	Detects	Not Detected	No qualification required
Trip, Instrument	<crql*< td=""><td><crql*< td=""><td>Report CRQL value with a U</td></crql*<></td></crql*<>	<crql*< td=""><td>Report CRQL value with a U</td></crql*<>	Report CRQL value with a U
		>/= CRQL* and <2x the CRQL**	No qualification required
	>CRQL*	= CRQL*</td <td>Report CRQL value with a U</td>	Report CRQL value with a U
		>/=CRQL* and = blank</td <td>Report blank value for sample concentration</td>	Report blank value for sample concentration
		concentration	with a U
		>/= CRQL* and > blank concentration	No qualification required
	=CRQL*	= CRQL*</td <td>Report CRQL value with a U</td>	Report CRQL value with a U
		>CRQL*	No qualification required
	Gross Contamination**	Detects	Report blank value for sample concentration with a U

*2x the CRQL for methylene chloride, 2-butanone, and acetone.

**4x the CRQL for methylene chloride, 2-butanone, and acetone

***Qualifications based on instrument blank results affect only the sample analyzed immediately after the sample that has target compounds that exceed the calibration range or non-target compounds that exceed 100 ug/L.

Below is a summary of the compounds in the sample and the associated qualifications that have been applied:

Below is a summary of the compounds in the sample and the associated qualifications that have been applied:

A) Method Blank Contamination:

No target analytes were detected in the method blanks.

B) Field Blank Contamination:

No target analytes were detected in Field Blank 6/28.

C) Trip Blank Contamination:

No target analytes were detected in the Trip Blank.

1.6 GC/MS Instrument Performance Check

Tuning and performance criteria are established to ensure adequate mass resolution, proper identification of compounds and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all

circumstances. The Tuning standard for volatile organics is Bromofluorobenzene (BFB).

Instrument performance was generated within acceptable limits and frequency (once prior to ICAL for 8260D) for Bromofluorobenzene (BFB) for all analyses.

1.7 Initial and Continuing Calibrations

Satisfactory instrument calibration is established to ensure that the instrument can produce acceptable quantitative data. An initial calibration demonstrates that the instrument can produce acceptable performance at the beginning of an experimental sequence. The continuing calibration checks document that the instrument is giving satisfactory daily performance. Initial calibration verification yielded Ethyl Ether (32.2%) outside 30% criteria. Non-detects in all samples have been qualified, "UJ."

A) Response Factor GC/MS:

The response factor measures the instrument's response to specific chemical compounds. The response factor for all compounds must be >/= 0.05 in both initial and continuing calibrations. A value <0.05 indicates a serious detection and quantitation problem (poor sensitivity). Analytes detected in the sample will be qualified as estimated, "J". All non-detects for that compound in the corresponding samples will be rejected, "R". Method 8260D allows for a minimum response factor of 0.1 for Acetone and 2-Butanone. Validation criteria allows response factor to be /=>0.01 for poor responders (Acetone, MEK, Carbon Disulfide, Chloroethane, Chloromethane, Cyclohexane, 1,2-Dibromoethane, Dichlorodifluoromethane, cis-1,2-Dichloropropane, 1,2-Dibromo-3-chloropropane, Isopropylbenzene, Methyl Acetate, Methylene Chloride, Methylcyclohexane, MTBE, trans-1,2-Dichloroethene, 4-Methyl-2-Pentanone, 2-Hexanone, Trichlorofluoromethane, 1,1,2-Trichloro-1,2,2-Trifluoroethane.

All the response factors for the target analytes reported were found to be within acceptable limits (>/=0.05) and (>/= 0.01 for poor responders) and minimum response criteria in Table 4 of Method 8260D, for the initial and continuing calibrations for all reported analytes except for 1,4-Dioxane (0.001/0.002). Non-detects for this compound have been rejected, "R" in all samples. 1,4-Dioxane is a poor-purge analyte.

B) Percent Relative Standard Deviation (%RSD) and Percent Difference (%D): Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentrations. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be <20% and %D must be <20%. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and nondetects are flagged "UJ". If %RSD and %D grossly exceed QC criteria, non-detect data may be qualified, "R", unusable. Additionally, in cases where the %RSD is >20% and eliminating either the high or the low point of the curve does not restore the %RSD to less than or equal to 20% then positive results are qualified, "J". In cases where removal of either the low or high point restores the linearity, then only low or high-level results will be qualified, "J" in the portion of the curve where nonlinearity exists. Closing CCV must meet 30% criteria. Poor responders must be </= 40%.

*Method 8260D allows for several analytes to be outside requirements due to the large number of compounds.

Initial Calibrations: The initial calibrations provided and the %RSD were within acceptable limits (20%) and (40% for poor responders) for all reported compounds.

Initial Calibration Verifications: Bromomethane (47.4%) is above criteria in the ICV associated with MW-2A, MW-XX, MW-4, MW-6, MW-7, MW-8, MW-10, Field Blank 6/28, and the Trip Blank. Non-detects have been qualified, "UJ."

Continuing Calibrations: The continuing calibrations provided and the %D was within acceptable limits (20%) and (40% for poor responders) for all reported compounds with exceptions discussed below:

CCAL VOA101 07/09/2023 – Bromomethane – 30.7%, Acrylonitrile – 25.3%, Vinyl Acetate – 21.9%; "UJ" non-detects in MW-2A, MW-XX, MW-4, MW-6, MW-7, MW-8, MW-10, Field Blank 6/28, and the Trip Blank.

CCAL VOA105 07/12/2023 - Vinyl Acetate - 73.6%; "UJ" non-detects in MW-1.

1.8 Internal Standards

Internal Standards (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must not vary by more than a factor of 2 (-50% to +100%) from the associated continuing calibration standard. The retention time of the internal standard must not vary more than +/-30 seconds from the associated continuing calibration standard. If the area count is outside the (-50% to +100%) range of the associated standard, all the positive results for compounds quantitated using that IS are qualified as estimated, "J", and all non-detects as "UJ", or "R" if there is a severe loss of sensitivity.

If an internal standard retention time varies by more than 30 seconds, professional judgment will be used to determine either partial or total rejection of the data for that sample fraction.

All samples were spiked with the internal standards Chlorobenzene-d5, Fluorobenzene and 1,4-Dichlorobenzene-d4 prior to sample analysis. The area responses and retention time of each internal standard met QC criteria in all samples.

1.9 Field Duplicates

Field duplicate samples are collected and analyzed as an indication of overall precision. These results are expected to have more variability than laboratory duplicate samples. Generally, water samples an acceptable RPD is 25%. Groundwater sample MW-2A was collected as a blind duplicate, a summary of positive detections is summarized below:

	MW-2A	MW-XX
Trichloroethene	28 ug/L	28 ug/L
Tetrachloroethene	4000 ug/L	4000 ug/L

Both analyses were performed at 1:25 dilutions due to elevated Tetrachloroethene concentrations. There is potential that lower-level hits were lost in sample dilution. Precision is acceptable for detected compounds. No qualifications for the data were required based on field duplicate analysis.

1.10 Target Compound List Identification

TCL compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within =/- 0.06RRT units of the standard compound and have an ion spectrum which has a ratio of the primary and secondary m/e intensities within 20% of that in the standard compound.

GC/MS spectra met the qualitative criteria for identification. All retention times were within required specifications.

1.11 Compound Quantification and Reported Detection Limits

GC/MS quantitative analysis is acceptable. Correct internal standards per SW846, response factors were used to calculate final concentrations.

As required, the laboratory reported "J" values between the reporting limits (RL) and Method Detection Limits (MDLs). This is consistent with common laboratory practices and a requirement of the National Environmental Laboratory Approval Program (NELAP).

Samples were initially analyzed undiluted except for MW-2A (1:25), MW-XX (1:25), MW-7 (1:2.5) and MW-8 (1:5). Dilutions were determined to be acceptable based on target analyte Tetrachloroethene raw concentrations. Reporting limits have been adjusted accordingly. There is potential that lower-level detections were lost in sample dilutions. Analysis is acceptable.

1.12 Overall System Performance

Good resolution and chromatographic performance were observed. Raw data was reviewed and confirmed that no carryover exists for any analysis conducted with this data set.

Tentatively Identified Compounds (TICs) were not generated and therefore not evaluated.

Reviewer's Signature Reviewer's Signature Reviewer's Date 07/20/2023

L.A.B. Validation Corp. 14 West Point Drive, East Northport, NY 11731

Appendix A Chain of Custody Documents And Sample Receipt Checklist

		AUSTREET	4 ⁷ 2	10 12 12		NY LINESPACES Use 24	(x,y) and (x,y) is the set of the set o			Location and a location of the	CC CC CC CC CC CC CC CC CC CC CC CC CC	(Please Specify below)		Sample Spacific Comments											Please print clearly, legibly and completely Semples can	pue of pages ag ton	turnaround time clock will not		Dated its		- TYTY ALEY AND ACREES
of 2 Da		2132112112112122		× []] (2			7 7 % 3.4 % 4 % 4 % 4 % 4 % 4 % 4 % 4 % 4 % 4 %		07	1		Die Sampler's	S Carl	かんかく	X @ 20	R	× 150 ×	3	N 13	XUXX	5170	K 13	$\times G $	Contarter Type V	an ann an Andreas an Andreas ann an Anna Anna Anna Anna Anna Anna	Preservative		Received By		
		X	and the second			Out Date:	# OT LAYS'		ορογοριά δο λλημορικαι καταιόρκαι ο οπο ξατορογολιά που θυλά Κάθλαλ Υυγκ ορίνου Που του του Τότου Τόρι όρ		والمحافظ	na maa maraa da ahaa ahaa ahaa ahaa ahaa ahaa ah	and the charts of the charts o	Tune	32 (210 6W	13 0324 GW	0324	1030	0346	1120	0 0	03 0934 QU	23 0938 300	0936	i y fal fal son of son	9999999 10100 FOR 10100 FOR 10100		1997)	Date/Time	1. 120123	
Syrvete Centifics Mahwah, MJ 01439, 35 Whitewy Rd, Suita 5 Akary, KY 12205, 14 Water Way Toegaganaka, MY 14389, 275 Canper Awa, Soita 105 Toegaganaka, MY 14389, 275 Canper Awa, Soita 105	Project Name: Corners terres Project Location: Bran	Project rame as Project #)	Project Manager Ussen Cong		THUN NO DIALITY	Startdard X	ALLART (STRY) IS JEEN SOLVOVER)	ed by Alpha 25	1.0.1885. 		чана на на селото со състубита. А миста и селото се осното на селото на пределителното степените на Мандијата Македијата на консе	ου Απολογικό Αλληθούν Αλληγορικό της	NAME AND A DESCRIPTION OF br>A DESCRIPTION OF A DESCRIPTION	Sample ID Date: Date:	\mathcal{L}_{μ} , \mathcal{L}_{μ} , \mathcal{L}_{μ} , \mathcal{L}_{μ} , and \mathcal{L}_{μ} .	123623		and the second se	6/32/2	$\mathcal{C}\mathcal{C}\mathcal{C}$, \mathcal{R} , \mathcal{C} , \mathcal{D}	60/40/2	CC/8 81.91	18210			Marsield: Certification No. MAU 5		ry preserve and the order of the device the transmission of the device device device the state of the transmission of the device of the transmission of the device of the	Relinquished By:	and the second s	and the second se
NEW YORK CHAIN OF CUSTODY Manskedd, MA B2043	320 Forlune Sive TEL SOLA224-9040 FAX 508-826-9289	ine ditants	and the definition of the second s	NY 11803	44.8.2.	209.3	Levere current and	en previousiy anaiyzi	requirements/comm		a de maneiro de la como de como d La como se terresta de la como de c La como de la	23 174L.	n dan mis sa manana da sa anana na kan na manana manana na kanana na kanana manana na kanana na kanana na kanan	r S	Mizz - J	M. 1. 24	$(M_{in}) \rightarrow X X$	YN	Mu2 - Co		M.WX	1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	- MW-15 MS	MaU - 10 MSh	Container Coda A - Plastic	1 2 4 Amber Glass	V = Viti L= Glass	e eacteria Cup		1	e e Endon
ALPHA ALPHA MERCENTRAL	8 Walkup Dr. Tyt beleashadad Fax 308-895-Arga	Charles C. 2 P. 6	17. A. C.	Planner	1	ta il	Ensil JCsonger	Tress samples have been previously analyzed by Alphs	Other project specific requirements/comments:		Provide a state of the state	the second words associ-	NA LANKAWA NA MANA KANA KANA MANA KANA KANA KANA	ALCENTARIAN (Lab Use Only)	12-22-27		3					0%	-0X-+20+	şΨ	Preservative Code. Y C 4						

.

r S	-g	(c.)	85. 20 85.		ž							ents (2)	<u></u>	<u>۲</u>		metres de							, legibly riples can	d dk will rot uitines are	UTING	JENI JREES	ALPHA'S	ŚŚ	2010 and any owner and related to desting a
ALPHA Job # U23337 223	Same as Clent Into Same as Clent Into Pos	BERERE STUDIES INTERACE	Phazzo dentr'y bonon huodran of argelostike chiposai (achèlène.	Dreposial PlaceNey		Contractor Contra	Sample radaun	Done Lab to do	Preservation	runni 1998 - Anna Caramèrie Assidan	irease aprovy muowy	Sumple Specific Comments					A NAME AND A		مراغب این از در مراجع می از این مراجع این می از این مراجع این مراجع این مراجع این مراجع این مراجع این مراجع ای مراجع این از این مراجع			regulary per Jan 2014 And 2014	Please print clearly, legibly and completely. Samples can	rot be logged in and turnaround time clock will not vare writ env employties are	merolivent BY EXECUTING	THIS COC. THE CUENT HAS READ AND AGREES	TO BE BOUND BY ALPHA'S	ter TERMS & CONDITIONS.	
6/29/23	XASP-B EQUIS (4 F14)		1972 AN		y university	 212 Annual constraints of a straight of the straight						••••••••••••••••••••••••••••••••••••						n (en el contra de la contra de							Date/Time	1242 - 3-50	024 1250		DO TE TIME
p Q Q	Jarkeensky ASP-A ECLIS (1 File) Other	Real Balance Real Manuell	**************************************			[] AYC Seere Drockson	ANALYSIS		NE G	÷ \$) 70	2/1	X	X				a strange at the stra							duran daraa dar Dista daraa dara Dista daraa dara	North March	Werner W	- Contraction of the second se	1 1 april 1 april 1
Page 2											Conjunction of the Address and Address and Address of Conjunction of the Address and Addr	Semple Sampler's Națrix Imitels	5 B. 7 143	<u>}</u>		and a construction of the second s		and the second					Container Type	Preservative		20 m	12 :26 - N		
105 100 100		X			Doe Date:	# of Days.					THE REPORT OF A DESCRIPTION OF A DESCRIP	ollection	2002 ×		~~~~		a solve South of the Contract			And an Andrew Andre	***				and the second	28/28/23	26%/S 2	www.Wrst	
Service Centors Sabwah, N. 1274.00. 35 Whitney R.d., Suite 5 Asbary, NY 12205; 13 Walker Way Tonawanda, RY 14150; 275 Coeper Arc. Suite 165	Project Information Project Name Correct forw Project Location Cron X	Project # (Use Project name as Project #)	Project Manager Witer Currer	ALPHAQuote #.	anna dhound anna. Standart XX	Push (only it say agarowed)	d by Alpha 🛛 🖉	21185; 221				Sample ID			(2) x x x x x x x x x x x x x x x x x x x		LANULD VIED VIED VIET IN 17 19 19 19 19 19 19 19 19 19 19 19 19 19		vanarova do og linu i na ma sovat i og som kry se anna ut skill var en mennen og symp i de å given årave slævete (2004 / 4202 af alse) var sove	**************************************		and a second	Westboro: Certification No: MA935 Manual Configuration No: MA935	1400 1400 - 000 000 000 1400 MOV	- a -	14 CO 21 14 14 15 14 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15	all set all all all all all all all all all al	Menner un	and Programiane
NEW YORK CHAIN OF CUSTODY	Markheid, MA 12005 229 Serees Bive Tau 609 822 S200 FAX 908 823 2260	answ there to	554	5081 NV 1	5344 2000	Call Contraction Callor of March Caller	These samples have been previously analyzed by Abha	requirements/comm		or TAL.		E BA	and the Co	1140K	7.40 81241		n y pre mar en en van en		About a service of the Carlo About a service of the About a service of the Carlo About a service of the About a se	A FAMILIANE (FOUND TO A FAMILY OF THE OTHER AND A FAMILY OF THE OTHER AND A FAMILY OF THE OTHER AND A FAMILY OF				A n Amber Gloss V = Viai 6 + Qluss	R = Beclana Cup C = Cahe		c - Ekant D = 800 Botte		
HHAN T	Westboreugh, XA 01583 8 Walkup D/ 700, 509 5959 9250 2 A. 808-888-9160	offenti C4 Kich L	S. 17 DURY	Plaintew	Phone: 516 - 576 - 5844	Estal March 2 100 - 2 100 - 10	These samples have be	Other project specific requirements/comments:		Please specify Metals or TAI	na - Announce and a star of a star Announce and Announce Announce a start of the start of the start of the star	ALPHA Lab ID	ې ۲	$\frac{1}{10}$	212								Freetratus Codel A a Norte	00 H H O O H H SO O H H SO			H = No.S.O. X/F = 7 = AdMaOH	O = Other	

Page 17 of 926

Sample Delivery Group Summary

		Received Reviewer	: 29-JUN-2023 : Monique Irving				
Delivery Information Samples Delivered By : Alpha Courier							
Chain of Custody : Present							
Cooler Information							
Cooler Seal/Seal# A Absent/	Preservation Ice	Temperature(°C) 2.5	Additional Information				
Condition Information							
1) All samples on COC received?	YES						
2) Extra samples received?	NO	NO					
3) Are there any sample container c	NO	NO					
4) Are there any discrepancies between COC & sample labels?							
5) Are samples in appropriate containers for requested analysis?			YES				
6) Are samples properly preserved for requested analysis?			YES				
7) Are samples within holding time	YES	YES					
8) All sampling equipment returned	NA						
Volatile Organics/VPH							
1) Reagent Water Vials Frozen by (NO						

L.A.B. Validation Corp, 14 West Point Drive, East Northport, NY 11731

Appendix B Case Narrative

Project Name: CORNERSTONE Project Number: CORNERSTONE

Lab Number: L2337223 Report Date: 07/14/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:CORNERSTONEProject Number:CORNERSTONE

Lab Number: L2337223 Report Date: 07/14/23

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Kino l. Westere Authorized Signature:

Report Date: 07/14/23

for 712572023

Adela

Title: Technical Director/Representative

L.A.B. Validation Corp, 14 West Point Drive, East Northport, NY 11731

Appendix C Data Summary Form I's With Qualifications

Results Summary Form 1 Volatile Organics by GC/MS

Client Project Name Lab ID Client ID Sample Loca Sample Matr Analytical Me Lab File ID Sample Amo Level Extract Volue	: L2337223-01 : MW-1 ation : BRONX ix : WATER ethod : 1,8260D : V05230712N09		Lab Num Project N Date Coll Date Rec Date Ana Dilution F Analyst Instrumer GC Colur %Solids Injection	umber ected eived lyzed actor nt ID mn	: L2337223 : CORNERSTONE : 06/28/23 12:10 : 06/29/23 : 07/12/23 18:10 : 1 : MJV : VOA105 : RTX-502.2 : N/A : N/A
CAS NO.	Parameter	Results	ug/L RL	MDL	Qualifier
75 00 0			<u> </u>	0 70	
75-09-2	Methylene chloride	ND ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5 2.5	0.70	U
67-66-3 56-23-5	Chloroform Carbon tetrachloride	ND	0.50	0.13	U .
78-87-5	1,2-Dichloropropane	ND	1.0	0.13	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	ບ
127-18-4	Tetrachloroethene	29	0.50	0.18	
108-90-7	Chlorobenzene	ND	2.5	0,70	
75-69-4	Trichlorofiuoromethane	NĐ	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	Ū
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
542-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U
563-58-6	1,1-Dichloropropene	ND	2.5	0.70	U
75-25-2	Bromoform	ND	2.0	0.65	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	
108-88-3	Toluene	ND	2.5	0.70	U
100-41-4	Ethylbenzene	ND	2.5	0.70	
74-87-3	Chloromethane	ND	2.5	0.70	
74-83-9	Bromomethane	ND	2.5	0.70	U
75-01-4	Vinyl chloride	ND	1.0	0.07	U
	······				

for Tostwizz

Client Project Name Lab ID Client ID Sample Location Sample Matrix Analytical Metho Lab File ID Sample Amount Level	: WATER od : 1,8260D : V05230712N09 : 10 ml : LOW		Date Col Date Rec Date Ana Dilution F Analyst Instrume GC Colu %Solids	lumber lected ceived alyzed Factor nt ID mn	: L2337223 : CORNERSTONE : 06/28/23 12:10 : 06/29/23 : 07/12/23 18:10 : 1 : MJV : VOA105 : RTX-502.2 : N/A
Extract Volume		Besulte	ug/L	Volume MDL	
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-00-3	Chloroethane	ND	2.5	0.70	U
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U
79-01-6	Trichloroethene	ND	0.50	0.18	U
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U

75-00-3	Chloroethane	ND	2.5	0.70	U
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	υ
79-01-6	Trichloroethene	ND	0.50	0.18	U
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U
179601-23-1	p/m-Xylene	ND	2.5	0.70	U
95-47-6	o-Xylene	ND	2.5	0.70	U
1330-20-7	Xylenes, Total	ND	2.5	0.70	U
156-59-2	cis-1,2-Dichloroethene	ND	2.5	0.70	U
540-59-0	1,2-Dichloroethene, Total	ND	2.5	0.70	U
74-95-3	Dibromomethane	ND	5.0	1.0	. U
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U
107-13-1	Acrylonitrile	ND	5.0	1.5	U
100-42-5	Styrene	ND	2.5	0.70	U
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U
67-64-1	Acetone	ND	5.0	1.5	U .
75-15-0	Carbon disulfide	ND	5.0	1.0	U
78-93-3	2-Butanone	ND	5.0	1.9	U
108-05-4	Vinyl acetate	ND	5.0	1.0	+ (J)
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U
591-78-6	2-Hexanone	ND	5.0	1.0	U
74-97-5	Bromochloromethane	ND	2.5	0.70	U

for 7/2-572023

HA

Client Project Name	: CA Rich Consultants, Inc. ; CORNERSTONE	Lab Number : L2337223 Project Number : CORNERSTONE
Lab ID	: L2337223-01	Date Collected : 06/28/23 12:10
Client ID	: MW-1	Date Received : 06/29/23
Sample Location	: BRONX	Date Analyzed : 07/12/23 18:10
Sample Matrix	: WATER	Dilution Factor : 1
Analytical Method	: 1,8260D	Analyst : MJV
Lab File ID	: V05230712N09	Instrument ID : VOA105
Sample Amount	: 10 ml	GC Column : RTX-502.2
Level	: LOW	%Solids : N/A
Extract Volume (MeOH)	: N/A	Injection Volume : N/A

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	U	
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U	
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	U	
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U	
108-86-1	Bromobenzene	ND	2.5	0.70	U	
104-51-8	n-Butylbenzene	ND	2.5	0.70	U	
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U	
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U	
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U	
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U	
87-68-3	Hexachlorobutadiene	ND	2.5	0.70	υ	
98-82-8	Isopropylbenzene	ND	2.5	0.70	U	
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U	
91-20-3	Naphthalene	ND	2.5	0.70	U	
103-65-1	n-Propylbenzene	ND	2.5	0.70	U	
87-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U	
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U	
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U	
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	υ	
123-91-1	1,4-Dioxane	ND	250	61.	- P	
105-05-5	p-Diethylbenzene	ND	2.0	0.70	U	
622-96-8	p-Ethyltoluene	ND	2.0	0.70	U	
95-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U	
60-29-7	Ethyl ether	ND	2.5	0.70	U	

for 1000 : A C A L

10-57-6	trans	s-1,4-Dichloro-2-butene	ND	2.5	0.70		U
AS NO.	Para	ameter	Results	RL	MDL		Qualifier
				ug/L			
Extract V	olume (MeOH	I) : N/A		Injection	Volume	:	N/A
Level		: LOW		%Solids		-	N/A
Sample A	Amount	: 10 ml		GC Colu			RTX-502.2
Lab File I		: V05230712N09		Instrume		-	VOA105
Analytica		: 1,8260D		Analyst		-	MJV
Sample M		: WATER		Dilution	Factor		1
Sample L		: BRONX		Date Ana	-	;	07/12/23 18:10
Client ID		: MW-1		Date Re-	ceived	;	06/29/23
Lab ID		: L2337223-01		Date Co	llected	;	06/28/23 12:10
Project N	ame	: CORNERSTONE		Project N		;	CORNERSTONE
Client		: CA Rich Consultants, Inc.		Lab Num	iber	:	L2337223

for Noshia

Client Project Name Lab ID Client ID Sample Location Sample Matrix Analytical Method Lab File ID Sample Amount	: CA Rich Consultants, Inc. : CORNERSTONE : L2337223-02D : MW-2A : BRONX : WATER : 1,8260D : V01230709A13 : 0.4 ml	Project Number Date Collected Date Received Date Analyzed Dilution Factor Analyst Instrument ID GC Column	: L2337223 : CORNERSTONE : 06/28/23 08:24 : 06/29/23 : 07/09/23 13:30 : 25 : SLS : VOA101 : RTX-502.2
Sample Amount Level	: 0.4 ml : LOW		: RTX-502.2 : N/A
Extract Volume (MeOH)		Injection Volume	

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	•••••
75-09-2	Methylene chloride	ND	62	18.	U	
75-34-3	1,1-Dichloroethane	ND	62	18.	U	
67-66-3	Chloroform	ND	62	18.	U	
56-23-5	Carbon tetrachloride	ND	12	3.4	U	•
78-87-5	1,2-Dichloropropane	ND	25	3.4	U	
124-48-1	Dibromochloromethane	ND	12	3.7	U	
79-00-5	1,1,2-Trichloroethane	ND	38	12.	U	
127-18-4	Tetrachloroethene	4000	12	4.5		
108-90-7	Chlorobenzene	ND	62	18.	U	
75-69-4	Trichloroßuoromethane	ND	62	18.	U	
107-06-2	1,2-Dichloroethane	ND	12	3.3	U	
71-55-6	1,1,1-Trichloroethane	ND	62	18.	U	
75-27-4	Bromodichloromethane	ND	12	4.8	U	
10061-02-6	trans-1,3-Dichloropropene	ND	12	4.1	U	
10061-01-5	cis-1,3-Dichloropropene	ND	12	3.6	U	
542-75-6	1,3-Dichloropropene, Total	ND	12	3.6	U	
563-58-6	1,1-Dichloropropene	ND	62	18.	U	
75-25-2	Bromoform	ND	50	16.	U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	12	4.2	U	
71-43-2	Benzene	ND	12	4.0	υ	
108-88-3	Toluene	ND	62	18.	U	
100-41-4	Ethylbenzene	ND	62	18 <i>.</i>	U	
74-87-3	Chloromethane	ND	62	18.	U	
74-83-9	Bromomethane	ND	62	18.	+ UJ	
75-01-4	Vinyl chloride	ND	25	1.8	U	

70572022 CAL

Project Name Lab ID Client ID Sample Location Sample Matrix Analytical Method Lab File ID Sample Amount Level	: CA Rich Consultants, Inc. : CORNERSTONE : L2337223-02D : MW-2A : BRONX : WATER : 1,8260D : V01230709A13 : 0.4 ml : LOW	Lab Number Project Number Date Collected Date Received Date Analyzed Dilution Factor Analyst Instrument ID GC Column %Solids	: L2337223 : CORNERSTONE : 06/28/23 08:24 : 06/29/23 : 07/09/23 13:30 : 25 : SLS : VOA101 : RTX-502.2 : N/A
Extract Volume (MeOH)		Injection Volume	

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-00-3	Chloroethane	ND	62	18.	U
75-35-4	1,1-Dichloroethene	ND	12	4.2	
156-60-5	trans-1,2-Dichloroethene	ND	62	18.	ย
79-01-6	Trichloroethene	28	12	4.4	
95-50-1	1,2-Dichlorobenzene	ND	62	18.	ບ
541-73-1	1,3-Dichlorobenzene	ND	62	18.	U
106-46-7	1,4-Dichlorobenzene	ND	62	18.	U
1634-04-4	Methyl tert butyl ether	ND	62	18.	U
179601-23-1	p/m-Xylene	ND	62	18.	U
95-47-6	o-Xylene	ND	62	18.	U
1330-20-7	Xylenes, Total	ND	62	18.	U
156-59-2	cis-1,2-Dichloroethene	ND	62	18.	U
540-59-0	1,2-Dichloroethene, Total	ND	62	18.	U
74-95-3	Dibromomethane	ND	120	25.	U
96-18-4	1,2,3-Trichloropropane	ND	62	18.	U
107-13-1	Acrylonitrile	ND	120	38.	-+ UJ
100-42-5	Styrene	ND	62	18.	U
75-71-8	Dichlorodifluoromethane	ND	120	25.	U
67-64-1	Acetone	ND	120	36.	U
75-15-0	Carbon disulfide	ND	120	25.	U
78-93-3	2-Butanone	ND	120	48.	U
108-05-4	Vinyl acetate	ND	120	25.	+UT
108-10-1	4-Methyl-2-pentanone	ND	120	25.	U
591-78-6	2-Hexanone	ND	120	25.	U
74-97-5	Bromochloromethane	ND	62	18.	U
	and the second				

for 7/25/2023

Client Project Name Lab ID Client ID Sample Location Sample Matrix Analytical Method Lab File ID Sample Amount	: CA Rich Consultants, Inc. : CORNERSTONE : L2337223-02D : MW-2A : BRONX : WATER : 1,8260D : V01230709A13 : 0.4 ml	Lab Number: L2337223Project Number: CORNERSTONEDate Collected: 06/28/23 08:24Date Received: 06/29/23Date Analyzed: 07/09/23 13:30Dilution Factor: 25Analyst: SLSInstrument ID: VOA101GC Column: RTX-502.2
	: 0.4 ml : LOW	

			ug/L				
CAS NO.	Parameter	Results	RL	MDL	Qualifier		
594-20-7	2,2-Dichloropropane	ND	62	18,	U		
106-93-4	1,2-Dibromoethane	ND	50	16.			
142-28-9	1,3-Dichloropropane	ND	62	18.	U		
	······································						
630-20-6	1,1,1,2-Tetrachioroethane	ND	62	18.	U		
108-86-1	Bromobenzene	ND	62	18.	U		
104-51-8	n-Butylbenzene	ND	62	18.	U		
135-98-8	sec-Butylbenzene	ND	62	18.	U		
98-06-6	tert-Butylbenzene	ND	62	18.	U		
95-49-8	o-Chlorotoluene	ND	62	18.	U		
106-43-4	p-Chlorotoluene	ND	62	18.	U		
96-12-8	1,2-Dibromo-3-chloropropane	ND	62	18.	U		
87-68-3	Hexachlorobutadiene	ND	62	18.	U		
98-82-8	Isopropylbenzene	ND	62	18.	U		
99-87-6	p-Isopropyltoluene	ND	62	18.	U		
91-20-3	Naphthalene	ND	62	18.	U		
103-65-1	n-Propylbenzene	ND	62	18.	U		
87-61-6	1,2,3-Trichlorobenzene	ND	62	18.	U		
120-82-1	1,2,4-Trichlorobenzene	ND	62	18.	U		
108-67-8	1,3,5-Trimethylbenzene	ND	62	18.	U		
95-63-6	1,2,4-Trimethylbenzene	ND	62	18.	U		
123-91-1	1,4-Dioxane	ND	6200	1500	+R		
105-05-5	p-Diethylbenzene	ND	50	18.	U		
622-96-8	p-Ethyltoluene	ND	50		U		
95-93-2	1,2,4,5-Tetramethylbenzene	ND	50	14.	U		
60-29-7	Ethyl ether	ND	62	18.	U		

Par 7/2572023

110-57-6	trans-	-1,4-Dichloro-2-butene	ND	62	18.		U	
CAS NO.	Para		Results	RL	MDL		Qualifier	****
				ug/L				
EX	ttract Volume (MeOH): N/A		Injection	volume	• :	N/A	
	vel	: LOW		%Solids	Markana	-	N/A	
	mple Amount	: 0.4 ml		GC Colu	mn		RTX-502.2	
	b File ID	: V01230709A13		Instrume		-	VOA101	
	alytical Method	: 1,8260D		Analyst			SLS	
	mple Matrix	: WATER		Dilution I	actor	-	25	
	mple Location	: BRONX		Date Ana			07/09/23 13:30)
	ent ID	: MW-2A		Date Red			06/29/23	
Lal	b ID	: L2337223-02D		Date Col		•	06/28/23 08:24	ŀ
Pro	oject Name	: CORNERSTONE		Project N		-	CORNERSTO	
Cli	ent	: CA Rich Consultants, Inc.		Lab Num	ber	:	L2337223	

YON 712572023

			ug/L		
CAS NO.		Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	62	18.	U
75-34-3	1,1-Dichloroethane	ND	62	18,	U
67-66-3	Chloroform	ND	62	18.	U
56-23-5	Carbon tetrachloride	ND	12	3.4	U
78-87-5	1,2-Dichloropropane	ND	25	3.4	U
124-48-1	Dibromochloromethane	ND	12	3.7	U
79-00-5	1,1,2-Trichloroethane	ND	38	12.	U
127-18-4	Tetrachloroethene	4000	12	4.5	
108-90-7	Chlorobenzene	ND	62	18.	U
75-69-4	Trichlorofluoromethane	ND	62	18.	ย
107-06-2	1,2-Dichloroethane	ND	12	3.3	U
71-55-6	1,1,1-Trichloroethane	ND	62	18.	U
75-27-4	Bromodichloromethane	ND	12	4.8	U
10061-02-6	trans-1,3-Dichloropropene	ND	12	4.1	U
10061-01-5	cis-1,3-Dichloropropene	ND	12	3.6	U
542-75-6	1,3-Dichloropropene, Total	ND	12	3.6	U
563-58-6	1,1-Dichloropropene	ND	62	18.	U
75-25-2	Bromoform	ND	50	16.	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	12	4.2	U
71-43-2	Benzene	ND	12	4.0	U
108-88-3	Toluene	ND	62	18.	U
100-41-4	Ethylbenzene	ND	62	18.	U
74-87-3	Chloromethane	ND	62	18.	U
74-83-9	Bromomethane	ND	62	18.	+()
75-01-4	Vinyl chloride	ND	25	1.8	U

for 712572023

Client Project Name Lab ID Client ID Sample Location Sample Matrix Analytical Method Lab File ID Sample Amount Level	: CA Rich Consultants, Inc. : CORNERSTONE : L2337223-03D : MW-XX MW-2A : BRONX : WATER : 1,8260D : V01230709A14 : 0.4 mi : LOW	Project Number Date Collected Date Received Date Analyzed Dilution Factor Analyst	: L2337223 : CORNERSTONE : 06/28/23 08:24 : 06/29/23 : 07/09/23 13:56 : 25 : SLS : VOA101 : RTX-502.2 : N/A
•		%Solids Injection Volume	

		ug/L					
CAS NO.	Parameter	Results	RL	MDL	Qualifier		
75-00-3	Chloroethane	ND	62	18.	u		
75-35-4	1,1-Dichloraethene	ND	12	4.2	U		
156-60-5	trans-1,2-Dichloroethene	ND	62	18.	U		
79-01-6	Trichloroethene	28	12	4.4			
95-50-1	1,2-Dichlorobenzene	ND	62	18.	U		
541-73-1	1,3-Dichlorobenzene	ND	62	18.	U		
106-46-7	1,4-Dichlorobenzene	ND	62	18.	U		
1634-04-4	Methyl tert butyl ether	ND	62	18.	U		
179601-23-1	p/m-Xylene	ND	62	18.	U		
95-47-6	o-Xylene	ND	62	18.	U		
1330-20-7	Xylenes, Total	ND	62	18.	U		
156-59-2	cis-1,2-Dichloroethene	ND	62	18.	U		
540-59-0	1,2-Dichloroethene, Total	ND	62	18.	U		
74-95-3	Dibromomethane	ND	120	25.	U		
96-18-4	1,2,3-Trichloropropane	ND	62	18.	U		
107-13-1	Acrylonitrile	ND	120	38.	+UJ		
100-42-5	Styrene	ND	62	18.	U		
75-71-8	Dichlorodifluoromethane	ND	120	25.	U		
67-64-1	Acetone	ND	120	36.	U		
75-15-0	Carbon disulfide	ND	120	25.	U		
78-93-3	2-Butanone	ND	120	48.	U		
108-05-4	Vinyl acetate	ND	120	25.	* UT		
108-10-1	4-Methyl-2-pentanone	ND	120	25.	U		
591-78-6	2-Hexanone	ND	120	25.	U		
74-97-5	Bromochloromethane	ND	62	18.	U		

for nows A

Client Project Name Lab ID Client ID Sample Location Sample Matrix Analytical Method Lab File ID Sample Amount Level	: CA Rich Consultants, Inc. : CORNERSTONE : L2337223-03D : MW-XX MW-2A : BRONX : WATER : 1,8260D : V01230709A14 : 0.4 ml : LOW	Lab Number:L2337223Project Number:CORNERSTONEDate Collected:06/28/23Date Received:06/29/23Date Analyzed:07/09/23Dilution Factor:25Analyst:SLSInstrument ID:VOA101GC Column:RTX-502.2%Solids:N/A
Level Extract Volume (MeOH)		%Solids : N/A Injection Volume : N/A
		-

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
594-20-7	2,2-Dichloropropane	ND	62	18.	u
106-93-4	1,2-Dibromoethane	ND	50	16,	U
142-28-9	1,3-Dichloropropane	ND	62	18.	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	62	18.	U
108-86-1	Bromobenzene	ND	62	18.	U
104-51-8	n-Butylbenzene	ND	62	18.	U
135-98-8	sec-Butylbenzene	ND	62	18.	U
98-06-6	tert-Butylbenzene	ND	62	18.	U
95-49-8	o-Chloratoluene	ND	62	18.	U
106-43-4	p-Chlorotoluene	ND	62	18.	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	62	18.	U
87-68-3	Hexachlorobutadiene	ND	62	18.	U
98-82-8	Isopropylbenzene	ND	62	18.	U
99-87-6	p-IsopropyItoluene	ND	62	18.	U
91-20-3	Naphthalene	ND	62	18.	U
103-65-1	n-Propylbenzene	ND	62	18.	U
87-61-6	1,2,3-Trichlorobenzene	ND	62	18.	U
120-82-1	1,2,4-Trichlorobenzene	ND	62	18.	U
108-67-8	1,3,5-Trimethylbenzene	ND	62	18.	U
95-63-6	1,2,4-Trimethylbenzene	ND	62	18.	U
123-91-1	1,4-Dioxane	ND	6200	1500	*R
105-05-5	p-Diethylbenzene	ND	50	18.	U
622-96-8	p-Ethyltoluene	ND	50	18.	U
95-93-2	1,2,4,5-Tetramethylbenzene	ND	50	14.	U
60-29-7	Ethyl ether	ND	62	18.	U

for 1252023

110-57-6	trans-1,4-Dichloro-2-butene	ND	62	18.	U
CAS NO.	Parameter	Results	RL	MDL	Qualifier
		<u> </u>	ug/L		
Extract V	/olume (MeOH) : N/A	Inj	jection	Volume	: N/A
Level	: LOW		Solids		: N/A
Sample /	Amount : 0.4 ml	GC	C Colu	mn	: RTX-502.2
Lab File	ID : V01230709A14	Ins	strume	nt ID	: VOA101
Analytica	al Method : 1,8260D	An	nalyst		: SLS
Sample I	Matrix : WATER	Dil	lution F	Factor	: 25
Sample I	Location : BRONX MW-2A	Da	ate Ana	alyzed	: 07/09/23 13:56
Client ID	: MW-XX //// > A	Da	ate Rec	ceived	: 06/29/23
Lab ID	: L2337223-03D	Da	ate Col	lected	: 06/28/23 08:24
Project N	lame : CORNERSTONE	Pro	oject N	lumber	: CORNERSTONE
Client	: CA Rich Consultants, Inc.	La	b Num	iber	: L2337223

JON 7/2-572023

Client	: CA Rich Consultants, Inc.	Lab Number : L2337223
Project Name	: CORNERSTONE	Project Number : CORNERSTONE
Lab ID	: L2337223-04	Date Collected : 06/28/23 10:30
Client ID	: MW-4	Date Received : 06/29/23
Sample Location	: BRONX	Date Analyzed : 07/09/23 14:22
Sample Matrix	: WATER	Dilution Factor : 1
Analytical Method	: 1,8260D	Analyst : SLS
Lab File ID	: V01230709A15	Instrument ID : VOA101
Sample Amount	: 10 ml	GC Column : RTX-502.2
Level	: LOW	%Solids : N/A
Extract Volume (MeOH)) : N/A	Injection Volume : N/A

		ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	0.78	2.5	0.70	J
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	DИ	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	16	0.50	0.18	
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofiuoromethane	ND	2,5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55- 6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
542-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U
563-58-6	1,1-Dichloropropene	ND	2.5	0.70	U
75-25-2	Bromoform	ND	2.0	0.65	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	U
108-88-3	Toluene	ND	2.5	0.70	U
100-41-4	Ethylbenzene	ND	2.5	0.70	U
74-87-3	Chloromethane	ND	2.5	0.70	U
74-83-9	Bromomethane	ND	2.5	0.70	+1/T
75-01-4	Vinyi chloride	ND	1.0	0.07	υ

for 712572023

Client Project Name Lab ID Client ID Sample Loca Sample Matr Analytical Me Lab File ID Sample Amo Level Extract Volur	: L2337223-04 : MW-4 tion : BRONX ix : WATER ethod : 1,8260D : V01230709A15		Lab Num Project N Date Col Date Rec Date Ana Dilution F Analyst Instrume GC Colu %Solids Injection	umber lected ceived lyzed Factor nt ID mn	: L2337223 : CORNERSTONE : 06/28/23 10:30 : 06/29/23 : 07/09/23 14:22 : 1 : SLS : VOA101 : RTX-502.2 : N/A : N/A
CAS NO.	Parameter	Results	ug/L RL	MDL	Qualifier
75-00-3	Chloroethane	ND	2.5	0.70	U
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U
79-01-6	Trichloroethene	ND	0.50	0.18	U
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U
179601-23-1	p/m-Xylene	ND	2.5	0.70	U
95-47-6	o-Xylene	ND	2.5	0.70	U
1330-20-7	Xylenes, Total	ND	2.5	0.70	. U
156-59-2	cis-1,2-Dichloroethene	ND	2.5	0.70	U
540-59-0	1,2-Dichloroethene, Total	ND	2.5	0.70	U
74-95-3	Dibromomethane	ND	5.0	1.0	U
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U
107-13-1	Acrylonitrile	ND	5.0	1.5	Jun OF T
100-42-5	Styrene	ND	2.5	0.70	U
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U
67-64-1	Acetone	ND	5.0	1.5	ບ
75-15-0	Carbon disulfide	ND	5.0	1.0	U
78-93-3	2-Butanone	ND	5.0	1.9	U
108-05-4	Vinyl acetate	ND	5.0	1.0	LUJ .
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U
591-78-6	2-Hexanone	ND	5.0	1.0	U
74-97-5	Bromochloromethane	ND	2.5	0.70	U

for 712572023

Client	: CA Rich Consultants, Inc.	Lab Number : L2337223
Project Name	: CORNERSTONE	Project Number : CORNERSTONE
Lab ID	: L2337223-04	Date Collected : 06/28/23 10:30
Client ID	: MW-4	Date Received : 06/29/23
Sample Location	: BRONX	Date Analyzed : 07/09/23 14:22
Sample Matrix	: WATER	Dilution Factor : 1
Analytical Method	: 1,8260D	Analyst : SLS
Lab File ID	: V01230709A15	Instrument ID : VOA101
Sample Amount	: 10 ml	GC Column : RTX-502.2
Level	: LOW	%Solids : N/A
Extract Volume (MeOH)	: N/A	Injection Volume : N/A

		ug/L					
CAS NO.	Parameter	Results	RL	MDL	Qualifier		
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	U		
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U		
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	U		
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U		
108-86-1	Bromobenzene	ND	2.5	0.70	U .		
104-51-8	n-Butylbenzene	ND	2.5	0.70	U		
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U		
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U		
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U		
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U		
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U		
87-68-3	Hexachlorobutadiene	ND	2.5	0.70	U		
98-82-8	lsopropylbenzene	ND	2.5	0.70	U		
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U		
91-20-3	Naphthalene	ND	2,5	0.70	U		
103-65-1	n-Propylbenzene	ND	2.5	0.70	U		
87-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	υ		
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U		
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U		
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U		
123-91-1	1,4-Dioxane	ND	250	61.	J R		
105-05-5	p-Diethylbenzene	ND	2.0	0.70	U		
622-96-8	p-Ethyltoluene	ND	2.0	0.70	U		
95-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U		
60-29-7	Ethyl ether	ND	2.5	0.70	U		

for 712-572023

Client		: CA Rich Consultants, Inc.		Lab Num	nber	: L2337223
Project Name		: CORNERSTONE		Project N	lumber	: CORNERSTONE
Lab ID		: L2337223-04		Date Col	lected	: 06/28/23 10:30
Client ID		: MW-4		Date Ree	ceived	: 06/29/23
Sample Locati	on	: BRONX		Date Ana	alyzed	: 07/09/23 14:22
Sample Matrix		: WATER		Dilution I	Factor	: 1
Analytical Met	hod	: 1,8260D		Analyst		: SLS
Lab File ID		: V01230709A15		Instrume	nt ID	: VOA101
Sample Amou	nt	: 10 ml		GC Colu	mn	: RTX-502.2
Level		: LOW		%Solids		: N/A
Extract Volum	e (MeOH)	: N/A		Injection	Volume	: N/A
				ug/L		
CAS NO.	Param		Results	RL	MDL	Qualifier
110-57-6	trans_1	.4-Dichloro-2-butene	ND	2.5	0.70	11
110-37-0	02115*1	,	ND	ل, 2	0.70	·····

801-712572023 ng part

Client Project Name Lab ID Client ID Sample Location Sample Matrix Analytical Method Lab File ID Sample Amount Level	: CA Rich Consultants, Inc. : CORNERSTONE : L2337223-05 : MW-6 : BRONX : WATER : 1,8260D : V01230709A16 : 10 ml : LOW	Lab Number: L2337223Project Number: CORNERSTONEDate Collected: 06/28/23 08:46Date Received: 06/29/23Date Analyzed: 07/09/23 14:49Dilution Factor: 1Analyst: SLSInstrument ID: VOA101GC Column: RTX-502.2% Solids: N/A
Extract Volume (MeOH)		Injection Volume : N/A

CAS NO.			ug/L			
	Parameter	Results	RL	MDL	Qualifier	e aan gebeur de ster d
75-09-2	Methylene chloride	ND	2.5	0.70	U	
75-34-3	1,1-Dichloroethane	NÐ	2.5	0.70	U	
67-66-3	Chloroform	ND	2.5	0.70	U	
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U	
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U	
124-48-1	Dibromochloromethane	ND	0.50	0.15	U	
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U	
127-18-4	Tetrachloroethene	53	0.50	0.18		
108-90-7	Chlorobenzene	ND	2.5	0.70	U	
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U	
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U	
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U	
75-27-4	Bromodichloromethane	ND	0.50	0.19	U .	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U	
10061-01-5	cis-1,3-Dichlaropropene	ND	0.50	0.14	U	
542-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U	
563-58-6	1,1-Dichloropropene	ND	2.5	0.70	U	
75-25-2	Bromoform	ND	2.0	0.65	U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U	
71-43-2	Benzene	ND	0.50	0.16	U	
108-88-3	Toluene	ND	2.5	0.70	U	
100-41-4	Ethylbenzene	ND	2.5	0.70	U	
74-87-3	Chloromethane	ND	2.5	0.70	U	
74-83-9	Bromomethane	ND	2.5	0.70	_) بد	J
75-01-4	Vinyl chloride	ND	1.0	0.07	U	

101712572023

Client Project Name Lab ID Client ID Sample Location Sample Matrix Analytical Method Lab File ID Sample Amount Level	: CA Rich Consultants, Inc. : CORNERSTONE : L2337223-05 : MW-6 : BRONX : WATER : 1,8260D : V01230709A16 : 10 ml : LOW	Lab Number: L2337223Project Number: CORNERSTONEDate Collected: 06/28/23 08:46Date Received: 06/29/23Date Analyzed: 07/09/23 14:49Dilution Factor: 1Analyst: SLSInstrument ID: VOA101GC Column: RTX-502.2% Solids: N/A
Extract Volume (MeOH)		Injection Volume : N/A

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-00-3	Chloroethane	ND	2.5	0.70	U	
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U	
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U	
79-01-6	Trichloroethene	1.5	0.50	0.18		
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U	
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U	
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U	
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	
1330-20-7	Xylenes, Total	ND	2.5	0.70	U	
156-59-2	cis-1,2-Dichloroethene	ND	2.5	0.70	ป	
540-59-0	1,2-Dichloroethene, Total	ND	2.5	0.70	U	
74-95-3	Dibromomethane	ND	5.0	1.0	U	
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U	
107-13-1	Acrylonitrile	ND	5.0	1.5	#UT	
100-42-5	Styrene	ND	2.5	0.70	U	
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U	
67-64-1	Acetone	ND	5.0	1.5	U	
75-15-0	Carbon disulfide	ND	5.0	1.0	U	
78-93-3	2-Butanone	ND	5.0	1.9	U	
108-05-4	Vinyl acetate	ND	5.0	1.0	# UJ	
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U	
591-78-6	2-Hexanone	ND	5.0	1.0	U	
74-97-5	Bromochloromethane	ND	2.5	0.70	U	

Jor 7/2-52023

Client Project Name Lab ID Client ID Sample Location Sample Matrix Analytical Method Lab File ID Sample Amount Level	: CA Rich Consultants, Inc. : CORNERSTONE : L2337223-05 : MW-6 : BRONX : WATER : 1,8260D : V01230709A16 : 10 ml : LOW	Lab Number: L2337223Project Number: CORNERSTONEDate Collected: 06/28/23 08:46Date Received: 06/29/23Date Analyzed: 07/09/23 14:49Dilution Factor: 1Analyst: SLSInstrument ID: VOA101GC Column: RTX-502.2% Solids: N/A
Extract Volume (MeOH)		Injection Volume : N/A

			ug/L			
CAS NO.		Results	RL	MDL	Qualifier	
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	U	
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	Ŭ	
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	U	
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U	
108-86-1	Bromobenzene	ND	2.5	0.70	U	
104-51-8	n-Butylbenzene	ND	2.5	0.70	U	
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U	
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U	
95-4 9- 8	o-Chlorotoluene	ND	2.5	0.70	U	
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U	
87-68-3	Hexachlorobutadiene	ND	2.5	0.70	U	
98-82-8	Isopropyibenzene	ND	2.5	0.70	U	
99-87-6	p-isopropyltoluene	ND	2.5	0.70	U	
91-20-3	Naphthalene	ND	2.5	0.70	U	
103-65-1	n-Propyibenzene	ND	2.5	0.70	U	
87-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U	
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U	
108-67-8	1,3,5-Trimethylbenzene	NÐ	2.5	0.70	U	
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U	
123-91-1	1,4-Dioxane	ND	250	61.	+R	
105-05-5	p-Diethylibenzene	ND	2.0	0.70	U	
622-96-8	p-Ethyltoluene	ND	2.0	0.70	U	
95-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U	
60-29-7	Ethyl ether	ND	2.5	0.70	ບ	

for 71257202

110-57-6	trans	-1,4-Dichlaro-2-butene	ND	2.5	0.70	U
CAS NO.	Para	meter Nan kanalan kan Nan kanalan kan	Results	RL	MDL	Qualifier
				ug/L		
Extr	act Volume (MeOH): N/A		Injection	Volume	: N/A
Leve		: LOW		%Solids		: N/A
Sam	nple Amount	: 10 ml		GC Colu	mn	: RTX-502.2
Lab	File ID	: V01230709A16		Instrume	nt iD	: VOA101
Anal	lytical Method	: 1,8260D		Analyst		: SLS
Sam	iple Matrix	: WATER		Dilution I	actor	: 1
Sam	ple Location	: BRONX		Date Ana	alyzed	: 07/09/23 14:49
Clie	nt ID	: MW-6		Date Ree	ceived	: 06/29/23
Lab	ID	: L2337223-05		Date Col	lected	: 06/28/23 08:46
Proje	ect Name	: CORNERSTONE		Project N	lumber	: CORNERSTONE
Clier	nt	: CA Rich Consultants, Inc.		Lab Num	ber	: L2337223

.

Client	: CA Rich Consultants, Inc.	Lab Number : L2337223
Project Name	: CORNERSTONE	Project Number : CORNERSTONE
Lab ID	: L2337223-06D	Date Collected : 06/28/23 11:20
Client ID	: MW-7	Date Received : 06/29/23
Sample Location	: BRONX	Date Analyzed : 07/09/23 15:15
Sample Matrix	: WATER	Dilution Factor : 2.5
Analytical Method	: 1,8260D	Analyst : SLS
Lab File ID	: V01230709A17	Instrument ID : VOA101
Sample Amount	: 4 ml	GC Column : RTX-502.2
Level	: LOW	%Solids : N/A
Extract Volume (MeOH)	: N/A	Injection Volume : N/A

CAS NO.			ug/L			
	Parameter	Results	RL	MDL	Qualifier	
75-09-2	Methylene chloride	ND	6.2	1.8	U	
75-34-3	1,1-Dichloroethane	ND	6.2	1.8	U	
67-66-3	Chloroform	ND	6.2	1.8	U	
56-23-5	Carbon tetrachloride	ND	1.2	0.34	U	
78-87-5	1,2-Dichloropropane	ND	2,5	0.34	U	
124-48-1	Dibromochloromethane	ND	1.2	0.37	U	
79-00-5	1,1,2-Trichloroethane	ND	3.8	1.2	U	
127-18-4	Tetrachloroethene	77	1.2	0.45		
108-90-7	Chlorobenzene	ND	6.2	1.8	U	
75-69-4	Trichlorofluoromethane	ND	6.2	1.8	U	
107-06-2	1,2-Dichloroethane	ND	1.2	0.33	U	
71-55-6	1,1,1-Trichloroethane	ND	6.2	1.8	U	
75-27-4	Bromodichloromethane	ND	1.2	0.48	U	
10061-02-6	trans-1,3-Dichloropropene	ND	1.2	0.41	U	
10061-01-5	cls-1,3-Dichloropropene	ND	1.2	0.36	U	
542-75-6	1,3-Dichloropropene, Total	ND	1.2	0.36	U	
563-58-6	1,1-Dichloropropene	ND	6.2	1.8	U	
75-25-2	Bromoform	ND	5.0	1.6	U	
79-34-5	1,1,2,2-Tetrachioroethane	ND	1.2	0.42	U	
71-43-2	Benzene	ND	1.2	0.40	U	
108-88-3	Toluene	ND	6.2	1.8	U	
100-41-4	Ethylbenzene	ND	6.2	1.8	U	
74-87-3	Chloromethane	ND	6.2	1.8	U	
74-83-9	Bromomethane	ND	6.2	1.8	+UJ	
75-01-4	Vinyl chloride	ND	2.5	0.18	U	

for 712572023 Λ 6

Client Project Name Lab ID Client ID Sample Location Sample Matrix Analytical Method Lab File ID Sample Amount Level	: CA Rich Consultants, Inc. : CORNERSTONE : L2337223-06D : MW-7 : BRONX : WATER : 1,8260D : V01230709A17 : 4 ml : LOW	Lab Number: L2337223Project Number: CORNERSTONEDate Collected: 06/28/23 11:20Date Received: 06/29/23Date Analyzed: 07/09/23 15:15Dilution Factor: 2.5Analyst: SLSInstrument ID: VOA101GC Column: RTX-502.2% Solids: N/A
Level Extract Volume (MeOH)		%Solids : N/A Injection Volume : N/A

		ug/L				
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-00-3	Chloroethane	ND	6.2	1.8	U	
75-35-4	1,1-Dichloroethene	ND	1.2	0.42	U	
156-60-5	trans-1,2-Dichloroethene	ND	6.2	1.8	U	
79-01-6	Trichloroethene	15	1.2	0.44		
95-50-1	1,2-Dichlorobenzene	ND	6.2	1.8	U	
541-73-1	1,3-Dichlorobenzene	ND	6.2	1.8	U	
106-46-7	1,4-Dichlorobenzene	ND	6.2	1.8	U	
1634-04-4	Methyl tert butyl ether	ND	6.2	1.8	U	
179601-23-1	p/m-Xylene	ND	6.2	1.8	U	
95-47-6	o-Xylene	ND	6.2	1.8	U	
1330-20-7	Xylenes, Total	ND	6.2	1.8	U	
156-59-2	cis-1,2-Dichloroethene	250	6.2	1.8		
540-59-0	1,2-Dichloroethene, Total	250	6.2	1.8		
74-95-3	Dibromomethane	ND	12	2.5	U	
96-18-4	1,2,3-Trichloropropane	ND	6.2	1.8	U	
107-13-1	Acrylonitrile	ND	12	3.8	+ UT	
100-42-5	Styrene	ND	6.2	1.8	U	
75-71-8	Dichlorodifluoromethane	ND	12	2.5	U	
67-64-1	Acetone	5.4	12	3.6	J	
75-15-0	Carbon disulfide	ND	12	2.5	U	
78-93-3	2-Butanone	ND	12	4.8	U	
108-05-4	Vinyl acetate	ND	12	2.5	TUT	
108-10-1	4-Methyl-2-pentanone	ND	12	2.5	U	
591-78-6	2-Hexanone	ND	12	2.5	U	
74-97-5	Bromochloromethane	ND	6.2	1.8	U	

for 712572023

Client Project Name Lab ID Client ID Sample Location Sample Matrix Analytical Method Lab File ID Sample Amount	: CA Rich Consultants, Inc. : CORNERSTONE : L2337223-06D : MW-7 : BRONX : WATER : 1,8260D : V01230709A17 : 4 ml	Lab Number: L2337223Project Number: CORNERSTONDate Collected: 06/28/23 11:20Date Received: 06/29/23Date Analyzed: 07/09/23 15:15Dilution Factor: 2.5Analyst: SLSInstrument ID: VOA101GC Column: RTX-502.2	E
	: 4 ml : LOW		

		ug/L				
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
594-20-7	2,2-Dichloropropane	ND	6.2	1.8	U	
06-93-4	1,2-Dibromoethane	ND	5.0	1.6	U	
142-28-9	1,3-Dichloropropane	ND	6.2	1.8	U	
30-20-6	1,1,1,2-Tetrachloroethane	ND	6.2	1.8	U	
08-86-1	Bromobenzene	ND	6.2	1.8	U	
04-51-8	n-Butylbenzene	ND	6.2	1.8	U	
35-98-8	sec-Butylbenzene	NÐ	6.2	1.8	U	
} 8-06- 6	tert-Butylbenzene	ND	6.2	1.8	U	
95-49-8	o-Chlorotoluene	ND	6.2	1.8	U	
06-43-4	p-Chlorotoluene	ND	6.2	1.8	U	
16-12-8	1,2-Dibromo-3-chloropropane	ND	6.2	1.8	U	
37-68-3	Hexachlorobutadiene	ND	6.2	1.8	U	
8-82-8	Isopropylbenzene	ND	6.2	1.8	U	
9-87-6	p-IsopropyItoluene	ND	6.2	1.8	U	
91-20-3	Naphthalene	ND	6.2	1.8	U	
103-65-1	n-Propylbenzene	ND	6.2	1.8	U	
37-61-6	1,2,3-Trichlorobenzene	ND	6.2	1.8	U	
20-82-1	1,2,4-Trichlorobenzene	ND	6.2	1.8	U	
108-67-8	1,3,5-Trimethylbenzene	ND	6.2	1.8	U	
95-63-6	1,2,4-Trimethylbenzene	ND	6.2	1.8	U	
123-91-1	1,4-Dioxane	ND	620	150	JR	
105-05-5	p-Diethylbenzene	ND	5.0	1.8	U	
622-96-8	p-Ethyltoluene	ND	5.0	1.8	U	
95-93-2	1,2,4,5-Tetramethylbenzene	ND	5.0	1.4	U	
60-29-7	Ethyl ether	ND	6.2	1.8	U	

POR 112512023

110-57-6	tran	s-1,4-Dichloro-2-butene	ND	6.2	1.8	U
CAS NO.	Par	ameter	Results	RL	MDL	Qualifier
				ug/L		
Extract V	olume (MeO	H) : N/A		Injection	Volume	e : N/A
Level		: LOW		%Solids		: N/A
Sample A	Amount	: 4 ml		GC Colu	Imn	: RTX-502.2
Lab File I		: V01230709A17		Instrume		: VOA101
Analytica	I Method	: 1,8260D		Analyst		: SLS
Sample N		: WATER		Dilution	Factor	: 2.5
Sample L	ocation	: BRONX		Date An	alyzed	: 07/09/23 15:15
Client ID		: MW-7		Date Re	ceived	: 06/29/23
Lab ID		: L2337223-06D		Date Co	llected	: 06/28/23 11:20
Project N	ame	: CORNERSTONE		Project N	lumber	: CORNERSTONE
Client		: CA Rich Consultants, Inc.		Lab Nun	nber	: L2337223

. for 7/25/2023 -jA

Client Project Name Lab ID Client ID Sample Location Sample Matrix Analytical Method Lab File ID Sample Amount Level	: CA Rich Consultants, Inc. : CORNERSTONE : L2337223-07D : MW-8 : BRONX : WATER : 1,8260D : V01230709A18 : 2 ml : LOW	Lab Number: L2337223Project Number: CORNERSTONEDate Collected: 06/28/23 10:12Date Received: 06/29/23Date Analyzed: 07/09/23 15:42Dilution Factor: 5Analyst: SLSInstrument ID: VOA101GC Column: RTX-502.2% Solids: N/A
Extract Volume (MeOH)		Injection Volume : N/A

CAS NO.			ug/L		
	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	12	3.5	U
5-34-3	1,1-Dichloroethane	ND	12	3.5	U
57-66-3	Chloroform	ND	12	3.5	U
56-23-5	Carbon tetrachloride	ND	2.5	0.67	U
78-87-5	1,2-Dichloropropane	ND	5.0	0.68	U
124-48-1	Dibromochloromethane	ND	2.5	0.74	U
79-00-5	1,1,2-Trichloroethane	ND	7.5	2.5	U
127-18-4	Tetrachloroethene	680	2.5	0.90	
108-90-7	Chlorobenzene	ND	12	3.5	U
75-69-4	Trichlorofluoromethane	ND	12	3.5	U
107-06-2	1,2-Dichloroethane	ND	2.5	0.66	U
71-55-6	1,1,1-Trichloroethane	ND	12	3.5	U
75-27-4	Bromodichloromethane	ND	2.5	0.96	U
10061-02-6	trans-1,3-Dichloropropene	ND	2.5	0.82	U
10061-01-5	cis-1,3-Dichloropropene	ND	2.5	0.72	U
542-75-6	1,3-Dichloropropene, Total	ND	2.5	0.72	U
563-58-6	1,1-Dichioropropene	ND	12	3.5	U
75-25-2	Bromoform	ND	10	3.2	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	2.5	0.84	U
71-43-2	Benzene	ND	2.5	0.80	U
108-88-3	Toluene	ND	12	3.5	υ
100-41-4	Ethylbenzene	ND	12	3.5	U
74-87-3	Chloromethane	ND	12	3.5	U
74-83-9	Bromomethane	ND	12	3.5	+UJ
75-01-4	Vinyi chioride	ND	5.0	0.36	U

for 712 82023

Client	: CA Rich Consultants, Inc.	Lab Number : L2337223
Project Name	: CORNERSTONE	Project Number : CORNERSTONE
Lab ID	: L2337223-07D	Date Collected : 06/28/23 10:12
Client ID	: MW-8	Date Received : 06/29/23
Sample Location	: BRONX	Date Analyzed : 07/09/23 15:42
Sample Matrix	: WATER	Dilution Factor : 5
Analytical Method	: 1,8260D	Analyst : SLS
Lab File ID	: V01230709A18	Instrument ID : VOA101
Sample Amount	: 2 ml	GC Column : RTX-502.2
Level	: LOW	%Solids : N/A
Extract Volume (MeOH): N/A	Injection Volume : N/A

		ug/L				
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
'5-00-3	Chloroethane	ND	12	3.5	U	
5-35-4	1,1-Dichlaroethene	0.88	2.5	0.84	J	
56-60-5	trans-1,2-Dichloroethene	ND	12	3.5	Ų	
9-01-6	Trichloroethene	620	2.5	0.88		
5-50-1	1,2-Dichlorobenzene	ND	12	3.5	บ	
41-73-1	1,3-Dichlorobenzene	ND	12	3.5	U	
06-46-7	1,4-Dichlorobenzene	ND	12	3.5	U	
634-04-4	Methyl tert butyl ether	ND	12	3.5	U	
79601-23-1	p/m-Xylene	ND	12	3.5	U	
5-47-6	o-Xylene	ND	12	3.5	U	
330-20-7	Xylenes, Total	ND	12	3.5	U	
56-59-2	cis-1,2-Dichloroethene	4.0	12	3.5	J	
40-59-0	1,2-Dichloroethene, Total	4.0	12	3.5	J	
4-95-3	Dibromomethane	ND	25	5.0	U	
6-18-4	1,2,3-Trichloropropane	ND	12	3.5	U	
07-13-1	Acrylonitrile	ND	25	7.5	+UJ	
00-42-5	Styrene	ND	12	3.5	U	
'5-71-8	Dichlorodifluoromethane	ND	25	5.0	U	
57-64-1	Acetone	ND	25	7.3	U	
75-15-0	Carbon disulfide	ND	25	5.0	U	
78-93-3	2-Butanone	ND	25	9.7	U	
108-05-4	Vinyl acetate	ND	25	5.0	+UT	
108-10-1	4-Methyl-2-pentanone	ND	25	5.0	U	
591-78-6	2-Hexanone	ND	25	5.0	U	
74-97-5	Bromochloromethane	ND	12	3.5	U	

for 212572023

Client	: CA Rich Consultants, Inc.	Lab Number : L2337223
Project Name	: CORNERSTONE	Project Number : CORNERSTONE
Lab ID	: L2337223-07D	Date Collected : 06/28/23 10:12
Client ID	: MW-8	Date Received : 06/29/23
Sample Location	: BRONX	Date Analyzed : 07/09/23 15:42
Sample Matrix	: WATER	Dilution Factor : 5
Analytical Method	: 1,8260D	Analyst : SLS
Lab File ID	: V01230709A18	Instrument ID : VOA101
Sample Amount	: 2 ml	GC Column : RTX-502.2
Level	: LOW	%Solids : N/A
Extract Volume (MeOH)	: N/A	Injection Volume : N/A

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
594-20-7	2,2-Dichloropropane	ND	12	3.5	U	
106-93-4	1,2-Dibromoethane	ND	10	3.2	U	
142-28-9	1,3-Dichloropropane	ND	12	3.5		
630-20-6	1,1,1,2-Tetrachloroethane	ND	12	3.5	ປ	
108-86-1	Bromobenzene	ND	12	3.5	U	
104-51-8	n-Butylbenzene	ND	12	3.5	U	
135-98-8	sec-Butylbenzene	ND	12	3.5	U	
98-06-6	tert-Butylbenzene	ND	12	3.5	U	
95-49-8	o-Chlorotoluene	ND	12	3.5	U	
106-43-4	p-Chlorotoluene	ND		3.5	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	12	3.5	U	
87-68-3	Hexachlorobutadiene		12	3.5	 U	
98-82-8	isopropyibenzene	ND	12	3.5		
99-87-6	p-Isopropyltolue ne	ND	12	3.5	U	
91-20-3	Naphthalene	ND	12	3.5	ບ	
103-65-1	n-Propylbenzene	ND	12	3.5	U	
87-61-6	1,2,3-Trichlorobenzene	ND	12	3.5	U	
120-82-1	1,2,4-Trichlorobenzene	ND	12	3.5	U	
108-67-8	1,3,5-Trimethylbenzene	ND	12	3.5	U	
95-63-6	1,2,4-Trimethylbenzene	ND	12	3.5	U	
123-91-1	1,4-Dioxane	ND	1200	300	NR	
105-05-5	p-Diethylbenzene	ND	10	3.5	U	
622-96-8	p-Ethyltoluene	ND	10	3.5	U	
95-93-2	1,2,4,5-Tetramethylbenzene	ND	10	2.7	U	
60-29-7	Ethyl ether	ND	12	3.5	U	
60-29-7	Ethyl ether	ND	12	3.5	υ 	

for 7 ALPH

CAS NO.	rarame		Tiesuits	116		
CAS NO.	Parame	tor	Results	ug/L RL	MDL	Qualifier
Exiluor				,		
	ume (MeOH):			Injection	Volume	: N/A
Level		LOW		%Solids		: N/A
Sample An	nount :	2 ml		GC Colu	mn	: RTX-502.2
Lab File ID	:	V01230709A18		Instrume	nt iD	: VOA101
Analytical I	/lethod :	1,8260D		Analyst		: SLS
Sample Ma	trix :	WATER		Dilution I	Factor	: 5
Sample Lo	cation :	BRONX		Date Ana	alyzed	: 07/09/23 15:42
Client ID	•	MW-8		Date Red	ceived	: 06/29/23
Lab ID	:	L2337223-07D		Date Col	lected	: 06/28/23 10:12
Project Nar	ne :	CORNERSTONE		Project N		: CORNERSTONE
Client	:	CA Rich Consultants, Inc.		Lab Num	ıber	: L2337223

for 71252027

Client	: CA Rich Consultants, Inc.	Lab Number : L2337223
Project Name	: CORNERSTONE	Project Number : CORNERSTONE
Lab ID	: L2337223-08	Date Collected : 06/28/23 09:34
Client ID	: MW-10	Date Received : 06/29/23
Sample Location	: BRONX	Date Analyzed : 07/09/23 16:08
Sample Matrix	: WATER	Dilution Factor : 1
Analytical Method	: 1,8260D	Analyst : SLS
Lab File ID	: V01230709A19	Instrument ID : VOA101
Sample Amount	: 10 mi	GC Column : RTX-502.2
Level	: LOW	%Solids : N/A
Extract Volume (MeOH) : N/A	Injection Volume : N/A

		ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier
5-09-2	Methylene chloride	ND	2.5	0.70	U
5-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
7-66-3	Chloraform	ND	2.5	0.70	U
6-23-5	Carbon tetrachioride	ND	0.50	0.13	U
8-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
24-48-1	Dibromochloromethane	ND	0.50	0.15	U
9-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
27-18-4	Tetrachloroethene	6.3	0.50	0.18	
08-90-7	Chlorobenzene	ND	2.5	0.70	U
5-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
07-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
1-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
5-27-4	Bromodichloromethane	ND	0.50	0.19	U
0061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
0061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
542-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U
563-58-6	1,1-Dichloropropene	ND	2.5	0.70	U
75-25-2	Bromoform	ND	2.0	0.65	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	U
108-88-3	Toluene	ND	2.5	0.70	U
100-41-4	Ethylbenzene	ND	2.5	0.70	U
74-87-3	Chloromethane	ND	2.5	0.70	U
74-83-9	Bromomethane	ND	2.5	0.70	+UJ
75-01-4	Vinyl chloride	ND	1.0	0.07	U

for 7123/2023

Client	: CA Rich Consultants, Inc.	Lab Number : L2337223
Project Name	: CORNERSTONE	Project Number : CORNERSTONE
Lab ID	: L2337223-08	Date Collected : 06/28/23 09:34
Client ID	: MW-10	Date Received : 06/29/23
Sample Location	: BRONX	Date Analyzed : 07/09/23 16:08
Sample Matrix	: WATER	Dilution Factor : 1
Analytical Method	: 1,8260D	Analyst : SLS
Lab File ID	: V01230709A19	Instrument ID : VOA101
Sample Amount	: 10 ml	GC Column : RTX-502.2
Level	: LOW	%Solids : N/A
Extract Volume (MeOH)) : N/A	Injection Volume : N/A

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-00-3	Chioroethane	ND	2.5	0.70	U	
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U	
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U	
79-01-6	Trichloroethene	0.21	0.50	0.18	J	
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U	
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U	
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U	
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47- 6	o-Xylene	ND	2.5	0.70	U	
1330-20-7	Xylenes, Total	ND	2.5	0.70	U	
156-59-2	cis-1,2-Dichloroethene	ND	2.5	0.70	U	
540-59-0	1,2-Dichloroethene, Total	ND	2.5	0.70	U	
74-95-3	Dibromomethane	ND	5.0	1.0	U	
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U	
107-13-1	Acrylonitrile	ND	5.0	1.5	#U.T	
100-42-5	Styrene	ND	2.5	0.70	U	
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U	
67-64-1	Acetone	ND	5.0	1.5	U	
75-15-0	Carbon disulfide	ND	5.0	1.0	U	
78-93-3	2-Butanone	ND	5.0	1.9	U	
108-05-4	Vinyl acetate	ND	5.0	1.0	#UJ	
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U	
591-78-6	2-Hexanone	ND	5.0	1.0	U	
74-97-5	Bromochloromethane	ND	2.5	0.70	U	

801-7/252023

Client Project Name Lab ID Client ID Sample Location Sample Matrix Analytical Method Lab File ID Sample Amount	: CA Rich Consultants, Inc. : CORNERSTONE : L2337223-08 : MW-10 : BRONX : WATER : 1,8260D : V01230709A19 : 10 ml : LOW	Lab Number: L2337223Project Number: CORNERSTONEDate Collected: 06/28/23 09:34Date Received: 06/29/23Date Analyzed: 07/09/23 16:08Dilution Factor: 1Analyst: SLSInstrument ID: VOA101GC Column: RTX-502.2% Solids: N/A
Level Extract Volume (MeOH)	: LOW	%Solids : N/A Injection Volume : N/A

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
94-20-7	2,2-Dichloropropane	ND	2.5	0.70	U
06-93-4	1,2-Dibromoethane	ND	2.0	0.65	U
42-28-9	t,3-Dichloropropane	ND	2.5	0.70	U
30-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U
08-86-1	Bromobenzene	ND	2.5	0.70	U
04-51-8	n-Butylbenzene	ND	2.5	0.70	U
35-98-8	sec-Butylbenzene	ND	2.5	0.70	U
8-06-6	tert-Butylbenzene	ND	2.5	0.70	U
5-49-8	o-Chlorotoluene	ND	2.5	0.70	U
06-43-4	p-Chlorotoluene	ND	2.5	0.70	U
6-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U
37-68-3	Hexachlorobutadiene	ND	2.5	0.70	U
98-82-8	Isopropyibenzene	ND	2.5	0.70	U
99-87-6	p-lsopropyltoluene	ND	2.5	0.70	U
91-20-3	Naphthalene	ND	2.5	0.70	U
103-65-1	n-Propyibenzene	ND	2.5	0.70	U
87-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U
123-91-1	1,4-Dioxane	ND	250	61.	J R
105-05-5	p-Diethylbenzene	ND	2.0	0.70	U
622-96-8	p-Ethyltoluene	ND	2.0	0.70	U
95-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U
60-29-7	Ethyl ether	ND	2.5	0.70	U

110-57-6	trans-1	4-Dichloro-2-butene	ND	2.5	0.70		U
AS NO.	Param	eter	Results	RL	MDL	Qı	ualifier
				ug/L			
Extract	t Volume (MeOH)	: N/A		Injection	volume	: N/A	N
Level		: LOW		%Solids		: N/A	
	e Amount	: 10 ml		GC Colu			X-502.2
Lab Fil	• ·	: V01230709A19		Instrume	-	: VO	
		: 1,8260D		Analyst		: SLS	-
		: WATER		Dilution I	Factor	: 1	_
	e Location	: BRONX		Date Ana			09/23 16:08
Client I	-	: MW-10		Date Re	•••	: 06/2	
Lab ID		: L2337223-08		Date Col			28/23 09:34
Project	Name	: CORNERSTONE		Project N			RNERSTONE
Client		: CA Rich Consultants, Inc.		Lab Num			37223

for Tronoes

Project Name: CLab ID: LClient ID: FSample Location: ESample Matrix: VAnalytical Method: 1Lab File ID: VSample Amount: 1	L2337223-09 FIELD BLANK 6/28 BRONX WATER 1,8260D V01230709A20 10 ml LOW	Project Number Date Collected Date Received Date Analyzed Dilution Factor Analyst Instrument ID GC Column	: L2337223 : CORNERSTONE : 06/28/23 12:45 : 06/29/23 : 07/09/23 16:35 : 1 : SLS : VOA101 : RTX-502.2 : N/A : N/A
--	--	--	--

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-09-2	Methylene chloride	ND	2.5	0.70	U	
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U	
67- 6 6-3	Chloroform	NĐ	2.5	0.70	U	
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U	
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U	
124-48-1	Dibromochloromethane	ND	0.50	0.15	U	
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U	
127-18-4	Tetrachloroethene	ND	0.50	0.18	U ·	
108-90-7	Chlorobenzene	ND	2.5	0.70	U	
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U	
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U	
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U	
75-27-4	Bromodichloromethane	ND	0.50	0.19	U	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U	
542-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U	
563-58-6	1,1-Dichloropropene	ND	2.5	0.70	Ŭ	
75-25-2	Bromoform	ND	2.0	0.65	U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U	
71-43-2	Benzene	ND	0.50	0.16	U	
108-88-3	Toluene	ND	2.5	0.70	U	
100-41-4	Ethylbenzene	ND	2.5	0.70	U	
74-87-3	Chloromethane	ND	2.5	0.70	U	
74-83-9	Bromomethane	ND	2.5	0.70	TUT	
75-01-4	Vinyl chloride	ND	1.0	0.07	U	

Extract Volume (MeOH) : N/A Injection Volume : N/A	Client Project Name Lab ID Client ID Sample Location Sample Matrix Analytical Method Lab File ID Sample Amount Level	: CA Rich Consultants, Inc. : CORNERSTONE : L2337223-09 : FIELD BLANK 6/28 : BRONX : WATER : 1,8260D : V01230709A20 : 10 ml : LOW	Lab Number: L2337223Project Number: CORNERSTONEDate Collected: 06/28/23 12:45Date Received: 06/29/23Date Analyzed: 07/09/23 16:35Dilution Factor: 1Analyst: SLSInstrument ID: VOA101GC Column: RTX-502.2% Solids: N/A
--	---	--	---

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-00-3	Chloroethane	ND	2.5	0.70	U	
5-35-4	1,1-Dichloroethene	ND	0.50	0.17	U	
56-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U	
9-01-6	Trichloroethene	ND	0.50	0.18	U	
5-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U	
41-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U	
06-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U	
634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U	
79601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	
330-20-7	Xylenes, Total	ND	2.5	0.70	U .	
56-59-2	cis-1,2-Dichloroethene	ND	2.5	0.70	บ	
40-59-0	1,2-Dichloroethene, Total	ND	2.5	0.70	U	
4-95-3	Dibromomethane	ND	5.0	1.0	U	
6-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U	
107-13-1	Acrylonitrile	ND	5.0	1.5	-+ UT	
00-42-5	Styrene	ND	2.5	0.70	U	
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U	
67-64-1	Acetone	ND	5.0	1.5	U	
75-15-0	Carbon disulfide	ND	5.0	1.0	U	
78-93-3	2-Butanone	ND	5.0	1.9	U	
108-05-4	Vinyl acetate	ND	5.0	1.0	+UJ	
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U	
591-78-6	2-Hexanone	ND	5.0	1.0	U	
74-97-5	Bromochloromethane	ND	2.5	0.70	U	

for 712172023

Client Project Name Lab ID Client ID Sample Location Sample Matrix Analytical Method Lab File ID Sample Amount Level	 : CA Rich Consultants, Inc. : CORNERSTONE : L2337223-09 : FIELD BLANK 6/28 : BRONX : WATER : 1,8260D : V01230709A20 : 10 ml : LOW N/A 	Lab Number:L2337223Project Number:CORNERSTONEDate Collected:06/28/23 12:45Date Received:06/29/23Date Analyzed:07/09/23 16:35Dilution Factor:1Analyst:SLSInstrument ID:VOA101GC Column:RTX-502.2% Solids:N/A
Extract Volume (MeOH)	: N/A	Injection Volume : N/A

		ug/L				
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	U	
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U	
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	U	
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	υ	
108-86-1	Bromobenzene	ND	2.5	0.70	U	
104-51-8	n-Butylbenzene	ND	2.5	0.70	U	
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U	
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U	
95-49-8	o-Chlorotaluene	ND	2.5	0.70	U	
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U	
87-68-3	Hexachlorobutadiene	ND	2.5	0.70	U	
98-82-8	Isopropylbenzene	ND	2.5	0.70	U	
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U	
91-20-3	Naphthalene	ND	2.5	0.70	U	
103-65-1	n-Propylbenzene	ND	2.5	0.70	U	
87-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U	
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U	
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U	
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U	
123-91-1	1,4-Dioxane	ND	250	61.	#R	
105-05-5	p-Diethylbenzene	ND	2.0	0.70	U	
622-96-8	p-Ethyltoluene	ND	2.0	0.70	U	
95-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U	
60-29-7	Ethyl ether	ND	2.5	0.70	U	

for nor3

10-57-6	a tra	ns-1,4-Dichloro-2-butene	ND	2.5	0.70	U
AS NO	e. Pa		Results	RL	MDL	Qualifier
	_		Describe	ug/L	MDI	Ovelliller
E	Extract Volume (MeO	H) : N/A		Injection	Volume	: N/A
L	.evel	: LOW		%Solids		: N/A
S	Sample Amount	: 10 ml		GC Colu		: RTX-502.2
L	ab File ID	: V01230709A20		Instrume		: VOA101
	Analytical Method	: 1,8260D		Analyst		: SLS
S	Sample Matrix	: WATER		Dilution I	Factor	: 1
S	Sample Location	: BRONX		Date Ana	*	: 07/09/23 16:35
C	Client ID	: FIELD BLANK 6/28		Date Red	••••	: 06/29/23
L	ab ID	: L2337223-09		Date Col		: 06/28/23 12:45
F	Project Name	: CORNERSTONE		Project N		: CORNERSTONE
C	Client	: CA Rich Consultants, Inc.		Lab Num	iber	: L2337223

for 7/25/2013 in de 10.4

Client	: CA Rich Consultants, Inc.	Lab Number : L2337223 Project Number : CORNERSTONE
Project Name Lab ID	: CORNERSTONE : L2337223-10	Date Collected : 06/28/23 12:50
Client ID	: TRIP BLANK	Date Received : 06/29/23
Sample Location	: BRONX	Date Analyzed : 07/09/23 17:01
Sample Matrix	: WATER	Dilution Factor : 1
Analytical Method	: 1,8260D	Analyst : SLS
Lab File ID	: V01230709A21	Instrument ID : VOA101
Sample Amount	: 10 ml	GC Column : RTX-502.2
Level	: LOW	%Solids : N/A
Extract Volume (MeO	0H) : N/A	Injection Volume : N/A

CAS NO.			ug/L		
	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	ND	2.5	0.70	U
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	ND	0.50	0.18	U
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	υ
10061-01-5	cls-1,3-Dichloropropene	ND	0.50	0.14	U
542-75-6	1,3-Dichioropropene, Total	ND	0.50	0.14	U
563-58-6	1,1-Dichloropropene	ND	2.5	0.70	U
75-25-2	Bromoform	ND	2.0	0.65	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	U
108-88-3	Toluene	ND	2.5	0.70	U
100-41-4	Ethylbenzene	ND	2.5	0.70	U
74-87-3	Chloromethane	ND	2.5	0.70	U
74-83-9	Bromomethane	ND	2.5	0.70	- UJ
75-01-4	Vinyl chloride	NÐ	1.0	0.07	υ

for 212572023

Client: CA Rich Consultants, Inc.Project Name: CORNERSTONELab ID: L2337223-10Client ID: TRIP BLANKSample Location: BRONXSample Matrix: WATERAnalytical Method: 1,8260DLab File ID: V01230709A21Sample Amount: 10 mlLevel: LOWExtract Volume (MeOH): N/A			Lab Num Project N Date Coll Date Rec Date Ana Dilution F Analyst Instrume GC Colur %Solids Injection	umber lected lived lyzed factor nt ID mn	: L2337223 : CORNERSTONE : 06/28/23 12:50 : 06/29/23 : 07/09/23 17:01 : 1 : SLS : VOA101 : RTX-502.2 : N/A : N/A	
CAS NO.	Parameter	Results	ug/L RL	MDL	Qualifier	
	NA 1999. She i da anana sa ana ana ana ana ana anananana	a "1, "1965 672 7", "2", "0 2, 5, 2000 6, 2000 6, 2000 6, 2000 6, 2000 6, 2000 6, 2000 6, 2000 6, 2000 6, 20		e en anna an agus an 1977 (1977 (1977		
75-00-3	Chloroethane	ND	2.5	0.70	U	
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U	
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U	
79-01-6	Trichloroethene	ND	0.50	0.18	U	
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U	
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U	
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U	
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	
1330-20-7	Xylenes, Total	ND	2.5	0.70	U	
156-59-2	cis-1,2-Dichloroethene	ND	2.5	0.70	Ų	
540-59-0	1,2-Dichloroethene, Total	ND	2.5	0.70	U	
74-95-3	Dibromomethane	ND	5.0	1.0	U	
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U	
107-13-1	Acrylonitrile	ND	5.0	1.5	- UJ	
100-42-5	Styrene	ND	2.5	0.70	U	
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U	
67-64-1	Acetone	ND	5.0	1.5	U	
75-15-0	Carbon disulfide	ND	5.0	1.0	U	
78-93-3	2-Butanone	ND	5.0	1.9	U	
108-05-4	Vinyl acetate	ND	5.0	1.0	+ UJ	
108-10-1	4-Methyl-2-pentanone	NÐ	5.0	1.0	U	
591-78-6	2-Hexanone	ND	5.0	1.0	U	
74-97-5	Bromochloromethane	ND	2.5	0.70	U 2 (A P	

for 212572023

a na

Client	: CA Rich Consultants, Inc.	Lab Number	: L2337223
Project Name	: CORNERSTONE	Project Number	: CORNERSTONE
Lab ID	: L2337223-10	Date Collected	: 06/28/23 12:50
Client ID	: TRIP BLANK	Date Received	: 06/29/23
Sample Location	: BRONX	Date Analyzed	: 07/09/23 17:01
Sample Matrix	: WATER	Dilution Factor	:1
Analytical Method	: 1,8260D	Analyst	: SLS
Lab File ID	: V01230709A21	Instrument ID	: VOA101
Sample Amount	: 10 ml	GC Column	: RTX-502.2
Level	: LOW	%Solids	: N/A
Extract Volume (MeOH)	: N/A	Injection Volume	: N/A

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	U
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U
108-86-1	Bromobenzene	ND	2.5	0.70	U
104-51-8	n-Butylbenzene	ND	2.5	0.70	υ
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U
106-43-4	p-Chlorotoluene	ND	2.5	0.70	υ
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U
87-68-3	Hexachlorobutadiene	ND	2.5	0.70	U
98-82-8	Isopropyłbenzene	ND	2.5	0.70	U
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U
91-20-3	Naphthalene	ND	2.5	0.70	U
103-65-1	n-Propylbenzene	ND	2.5	0.70	U
87-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U
123-91-1	1,4-Dioxane	ND	250	61.	-oR
105-05-5	p-Diethylbenzene	ND	2.0	0.70	U
622-96-8	p-Ethyltoluene	ND	2.0	0.70	U
95-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U
60-29-7	Ethyl ether	ND	2.5	0.70	U.15D2}

YOU 712572027

110-57-6	tran	s-1,4-Dichloro-2-butene	ND	2.5	0.70	U
CAS NO.	Par	ameter	Results	RL	MDL	Qualifier
				ug/L		
Extract	Volume (MeOI	H) : N/A		Injection	Volume	: N/A
Level		: LOW				: N/A
Sample	Amount	: 10 ml		GC Colu		: RTX-502.2
Lab File	ID	: V01230709A21		Instrume		: VOA101
Analytic	al Method	: 1,8260D		Analyst		: SLS
Sample	Matrix	: WATER		Dilution I	Factor	: 1
Sample	Location	: BRONX		Date Ana	alyzed	: 07/09/23 17:01
Client ID	כ	: TRIP BLANK		Date Re	ceived	: 06/29/23
Lab ID		: L2337223-10		Date Co	lected	: 06/28/23 12:50
Project I	Name	: CORNERSTONE	Project Number			: CORNERSTONE
Client		: CA Rich Consultants, Inc.		Lab Num	iber	: L2337223

for 7/25/2023 2NL 2HA ANALYTICAL

APPENDIX F O&M CHECKLISTS

Operation and Maintenance Check List Groundwater Pump and Treat System Cornerstone Site B-1 3100 Third Avenue Bronx, New York BCP #C203044					
Name: Jason Cooper/Thomas Brown	Weather: Su	inny 34	F		
Date: 12/20/2022 Components to be Checked		_		Comments	
				Commenta	
System operating? Yes/No (if no please explain)	No -	æp	proved to	Imporary Sh	utdown
Pressure at compressor (psi).					
Is the automatic drain on the compressor operating correctly?					
Yes/No (if no please explain) Has the oil been changed?	Date:				
Yes/No (if no please explain)		くしん	7		
Have the compressor filters been changed?	Date:				
Yes/No (if no please explain)					
List condition of the carbon drums.	OK-	rusty)		
Reading from flow meter.	gr	1, 21	11.2		
Effluent sample obtained?	Date:	NA		Tin	10:
yes/no	· · · · ·				
Are there any loose connections or leaks?					
(please check/tighten all bolts and nuts)					
Yes/No (if yes please explain)					
Temperature from heat trace dial.	off				
Note condition of vaults.	ok.	mw.	& is jug	ły	
Pressure from filter regulator.	MW-2A:	-	MW-6:	MW-7:	MW-8:
Readings from cycle counter.	MW-2A: 17,22:	5	MW-6: 431,766	MW-7: 420	MW-8: 184, 189
Are all well caps secure?			1		
Yes/No (if no please explain)	Yes				
Pumps operating?					
Yes/No (if no please explain)		_		- 14 	10110
Has the air quality check been performed?					
Yes/No (if no please explain)					
Have all air filters and filter bowl drains been checked?	-				
Yes/No (if no please explain)				and the second	
Has the filter regulator been checked for saturation?					
Yes/No (if no please explain) Additional comments:			202	244.441 b	

Groundwa Co 3	and Maintenance Check List Iter Pump and Treat System ornerstone Site B-1 B100 Third Avenue Bronx, New York BCP #C203044
Name: Jason Cooper/Tom Brown	Weather: Sunny low 80s
Date: 6/28/2023	
Components to be Checked	Comments
System operating? Yes/No (if no please explain)	System remains off as approved by NYSBEC
Pressure at compressor (psi).	
Is the automatic drain on the compressor operating correctly?	
Yes/No (if no please explain)	
Has the oil been changed?	Date: 2020
Yes/No (if no please explain)	
Have the compressor filters been changed?	Date:
Yes/No (if no please explain)	
List condition of the carbon drums.	OK, but rusty
Reading from flow meter.	87, 271.2
Effluent sample obtained?	Date: Time:
yes/no	
Are there any loose connections or leaks?	
(please check/tighten all bolts and nuts)	
Yes/No (if yes please explain)	
Temperature from heat trace dial.	04f
Note condition of vaults.	OK. MW-8 needs to be fixed/replaced
Pressure from filter regulator.	MW-2A: MW-6: MW-7: MW-8:
Readings from cycle counter.	MW-2A: MW-6: MW-7: 420 MW-8: 184 189
Are all well caps secure?	Ves .
Yes/No (if no please explain)	70
Pumps operating?	
Yes/No (if no please explain)	
Has the air quality check been performed?	-
Yes/No (if no please explain)	
Have all air filters and filter bowl drains been checked?	-
Yes/No (if no please explain)	
Has the filter regulator been checked for saturation?	
Yes/No (if no please explain) Additional comments:	