ELTON CROSSING/ SITE C – FAMILY

899 ELTON AVENUE

BRONX, NEW YORK

Supplemental Remedial Investigation Report

AKRF Project Number: 11901

NYSDEC BCP Number: C203073

Prepared for:

Michael MacCabe NYCDEC, Region 2 Division of Environmental Remediation 625 Broadway Albany, New York 12233-7016

Prepared by:

AKRF, Inc. 440 Park Avenue South New York, New York 10016 (212) 696-0670

JUNE 2015

TABLE OF CONTENTS

LIST O	F ACRONYMS
EXECI	ITIVE SUMMARY
SUPPL	EMENTAL REMEDIAL INVESTIGATION REPORT
1.0 \$	SITE BACKGROUND
1.1	Site Location and Current Usage
1.2	Description of Surrounding Property4
2.0 \$	SITE HISTORY
2.1	Past Uses and Ownership
2.2	Previous Investigations
3.0 F	PROJECT MANAGEMENT
3.1	Project Organization
3.2	Health and Safety
4.0 \$	SITE INVESTIGATION ACTIVITIES9
4.1	Boring Installation
4.2	Soil Vapor Probe Installation9
4.3	Bedrock Monitoring Well Installation9
4.4	Groundwater Monitoring Well Survey10
4.5	Sample Collection and Chemical Analysis10
5.0 ľ	NATURE AND EXTENT OF CONTAMINATION14
5.1	Geological and Hydrogeological Conditions14
5.2	Soil Analytical Results14
5.3	Groundwater Analytical Results
5.4	Soil Vapor and Ambient Air Analytical Results16
6.0 (QUALITATIVE HUMAN HEALTH EXPOSURE ASSESSMENT
6.1	Contaminants of Concern in Respective Media17
6.2	Potential Routes of Exposure
6.3	Exposure Route
6.4	Potential Receptors
6.5	Existence of Human Health Exposure Pathways

6.6	Overall Human Health Exposure Assessment	19
7.0	CONCLUSIONS	20

FIGURES

Figure 1 – Site Location Map

- Figure 2 Site Plan and Sample Locations
- Figure 3 Groundwater Elevation Contour Map March 11, 2015
- Figure 4 Soil Sample Concentrations Above NYSDEC SCOs
- Figure 5 Groundwater Sample Concentrations Above NYSDEC AWQS
- Figure 6 Soil Vapor Concentrations Above AGVs

TABLES

- Tables 1 through 4 Soil Analytical Results
- Table 5 through 8 Groundwater Analytical Results
- Table 9 Soil Vapor and Ambient Air Analytical Results

APPENDICES

- Appendix A Soil Boring Logs and Soil Vapor and Ambient Air Sampling Logs
- Appendix B Monitoring Well Installation, Development, and Sampling Logs
- Appendix C Laboratory Data Deliverables and DUSRs for Soil, Groundwater, and Soil Vapor Analyses

LIST OF ACRONYMS

Acronym	Definition					
CAMP	Community Air Monitoring Plan					
COC	Contaminant of Concern					
CPP	Citizen Participation Plan					
DER-10	New York State Department of Environmental Conservation Technical Guide 10					
ELAP	Environmental Laboratory Approval Program					
GPS	Global Positioning System					
HASP	Health and Safety Plan					
HAZWOPER	Hazardous Waste Operations and Emergency Response					
IRM	Interim Remedial Measure					
NAPL	Non-aqueous Phase Liquid					
NYS DOH ELAP	New York State Department of Health Environmental Laboratory					
	Accreditation Program					
OSHA	Occupational Safety and Health Administration					
PID	Photoionization Detector					
QEP	Qualified Environmental Professional					
RI	Remedial Investigation					
SRIR	Supplemental Remedial Investigation Report					
SCO	Soil Cleanup Objective					

CERTIFICATION

We, Michelle Lapin, P.E. and Deborah Shapiro, QEP are Qualified Environmental Professionals, as defined inDER-10. We have direct responsibility for implementation of the Supplemental Remedial Investigation for the Elton Crossing/ Site C - Family Site. We are responsible for the content of this Supplemental Remedial Investigation Report (SRIR), have reviewed its contents and certify the SRIR is accurate to the best of our knowledge and contains all available environmental information and data regarding the Site.

filloge Michelle Lapin, P.E. 6-18-15 **Qualified Environmental Professional** Date Signature D. Alapus Deborah Shapiro, QEP 6-18-15 Qualified Environmental Professional Date Signature

EXECUTIVE SUMMARY

This Supplemental Remedial Investigation Report (SRIR) summarizes the Supplemental Remedial Investigation conducted in February and March 2015 at the Elton Crossing/Site C – Family Site in accordance with the Draft Supplemental Remedial Investigation Work Plan (SRIWP) dated January 2015. The purpose of the Supplemental Remedial Investigation was to further delineate soil and soil vapor contamination and to determine whether past uses have affected groundwater at the Site. The New York State Department of Environmental Conservation (NYSDEC) approved the SRIWP via email on February 10, 2015.

Site Location and Current Usage

The Site is located at 899 Elton Avenue in the Bronx, New York. A Site Location Map is provided as Figure 1. The legal definition of the Site is Tax Block 2383, Lots 19, 25, 27, 29, 30, 31, 33, and 35 and a section of Melrose Crescent between East 161st Street and East 162nd Street. Lot 19 is developed with an approximately 9,200-square foot vacant, one-story building with a partial cellar, which is anticipated to be demolished in early Summer 2015. The remaining lots are vacant. The Site is located in an area developed with predominantly residential, educational, and commercial uses. A Site Plan is provided as Figure 2.

Summary of Past Uses of Site

Historic reports indicated that Lot 19 was developed with: an automobile garage from 1927 to 1940; a factory in 1945; freezer and oven mobile units in 1961; a metal works from at least 1969 to 1978; and Blasco Supply company from 2000 to 2005. Lot 25 was developed with an automobile garage in 1921 and a funeral home from at least 1927 to 1984. Lot 27 was developed with an undertaker and a multi-story residential building from at least 1969 to 1979. Lot 29 was developed with a beauty shop, a lawyers' office, a dentist, and a multi-story residential building from 1927 to 1971. Lot 35 was developed with the Elton Glass Works, Soenning Plumbing and Heating, and a butcher and glazer in 1927, and stores and a multi-story residential building in 1965. The other lots were developed historically as multi-story residences with cellars that likely contained petroleum storage tanks.

Summary of the Work Performed under the Supplemental Remedial Investigation

The following scope of work was completed at the Site:

- 1. Collected one soil sample from a floor drain within the Site building;
- 2. Advanced 6 soil borings and collected 10 soil samples for chemical analysis from 4 of the soil borings to evaluate soil quality;
- 3. Installed three bedrock groundwater monitoring wells and collected three groundwater samples for chemical analysis from the monitoring wells to evaluate groundwater quality; and
- 4. Installed one soil vapor probe within the Site building and collected one soil vapor sample and one ambient air sample for chemical analysis.

Summary of Hydrogeological Findings

The following geologic and hydrogeologic conditions were noted by the investigation for the Site:

- 1. The Site lies at an elevation of approximately 30 feet above National Geodetic Vertical Datum of 1929 (an approximation of sea level).
- 2. Depth to bedrock at the Site varies between approximately 9 and 17 feet below grade.

- 3. The stratigraphy of the Site, from the surface down, consists of between three and nine feet of fill comprising sand, silt, gravel, concrete, brick, plastic, glass, concrete, and asphalt, underlain by apparent native sand and gravel on top of bedrock (Inwood Marble).
- 4. Groundwater was encountered within bedrock fractures between 14.72 and 17.15 feet below grade. No surficial groundwater was present at the Site.
- 5. Based on site-specific groundwater measurements, groundwater flow is generally to the northwest. Regional groundwater flow is generally to the south towards the Harlem River, located approximately 1.7 miles south of the Site.

Summary of Environmental Findings

- 1. The soil sample collected from the floor drain during the Supplemental RI was compared to the NYSDEC Unrestricted Use Soil Cleanup Objectives (UUSCOs) and Restricted Residential Soil Cleanup Objectives (RRSCOs). No volatile organic compunds (VOCs) were detected in the soil sample and semivolatile organic compounds (SVOCs) were not detected above UUSCOs or RRSCOs. Six metals, including arsenic [13.3 parts per million (ppm)], cadmium (7.1 ppm), copper (130 ppm), lead (354 ppm), nickel (35.7 ppm), and zinc (833 ppm), were detected above their respective UUSCOs in the soil sample. Cadmium was also detected above the RRSCO. One polychlorinated biphenyl (PCB), Aroclor 1262, was detected at 451 parts per billion (ppb), above the 100 ppb UUSCO for total PCBs. The pesticides 4,4'-DDD, 4,4'-DDE, 4,4'-DDT, aldrin, alpha-chlordane, dieldrin, endrin, and heptachlor were detected above their respective UUSCOs. Additionally, dieldrin was detected at a concentration of 7,220 ppb, above its RRSCO of 200 ppb.
- 2. The soil samples collected during the Supplemental RI were compared to the NYSDEC UUSCOs and RRSCOs. VOCs were detected in seven soil samples analyzed, at levels below applicable USCOs or RRSCOs. Twenty-four SVOCs were detected in 7 soil samples analyzed with a maximum total SVOC concentration of 11,449.3 ppb in the soil sample collected from SSB-1 (5-7). Two polycyclic aromatic hydrocarbons (PAHs), dibenzo(a,h)anthracene and indeno[1,2,3-cd]pyrene, were detected in soil sample SSB-1 (5-7) at concentrations above their respective UUSCOs and RRSCOs. Up to 21 metals were detected in all soil samples analyzed. Eight metals, including arsenic (up to 16.1 ppm), barium (up to 792 ppm), cadmium (up to 17.7 ppm), copper (up to 270 ppm), lead (up to 1,940 ppm), mercury (up to 44 ppm), nickel (up to 43.1 ppm), and zinc (up to 1,320 ppm), were detected above their respective UUSCOs in 6 of the soil samples analyzed. Of these metals, arsenic in one sample, barium in two samples, cadmium in two samples, lead in three samples, and mercury in three samples, were detected above their respective RRSCOs. PCBs were detected in three soil samples analyzed. Aroclor 1262 was detected at a concentration of 485 ppb in soil sample SSB-1 (0-2) above the 100 ppb UUSCO for total PCBs, and at concentrations of 14,700 ppb and 3,030 ppb in soil samples SSB-1 (5-7) and SSB-1 (7-9), respectively, above the 1,000 ppb RRSCO for total PCBs. Up to eight pesticides were detected in eight soil samples analyzed. 4,4'-DDD, 4,4'-DDE, alpha-chlordane, dieldrin, endrin, gamma-BHC (lindane), and heptachlor were detected in up to six of the soil samples exceeding their respective UUSCOs. Additionally, alpha-chlordane and dieldrin were detected at concentrations exceeding their respective RRCCOs in soil samples SSB-1 (0-2), SSB-1 (5-7), and SSB-1 (7-9).
- 3. The groundwater samples collected during the Supplemental RI were compared to the NYSDEC Class GA Ambient Water Quality Standards (AWQS) (drinking water standards), although groundwater is not used as a source of potable water in the Bronx. The VOCs acetone, chloroform, tetrachloroethene, and toluene were detected in one or more of the groundwater samples analyzed. Chloroform was detected in groundwater sample MW-3 at a concentration of 9.5 micrograms per liter (μ g/L), above its AWQS of 7 μ g/L. It is noted that the VOCs bromodichloromethane and chloroform were detected at low levels below

applicable AWQS in the aqueous field blank. No SVOCs were detected above AWQS in any of the groundwater samples. Fourteen metals were detected in the unfiltered groundwater samples (total metals analysis) and 10 metals were detected in the filtered groundwater samples (dissolved metals analysis). Four total metals (iron, magnesium, manganese, and sodium) and three dissolved metals (iron, magnesium, and sodium) were detected in at least one of the groundwater samples above their respective AWQS. The metals detected above their AWQSs in the total and dissolved groundwater samples are typical of groundwater quality in the Bronx. No PCBs or pesticides were detected in the groundwater samples.

- Thirteen VOCs [1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, 2,2,4-trimethylpentane, 4-4. ethyltoluene, ethanol, ethylbenzene, heptane, hexane, m,p-xylene, o-xylene, styrene, tetrachloroethylene (PCE), and toluene] were detected in the soil vapor sample (SSV-1). PCE was detected at a concentration of 111 micrograms per cubic meter ($\mu g/m^3$) in sample SSV-1, which is above its NYSDOH AGV of 30 μ g/m³. VOCs associated with petroleum [including benzene, toluene, ethylbenzene, xylenes (collectively referred to as BTEX), 1,2,4and 1,3,5-trimethylbenzene, ethanol, ethylbenzene, heptane, hexane, m,p-xylene, and oxylene,] were detected at concentrations up to 123,000 µg/m³. Solvent-related VOCs [including styrene, tetrachloroethylene (PCE), and toluene] were detected at concentrations up to $871 \,\mu\text{g/m}^3$. Low level VOC concentrations were also noted in the ambient air sample (SAA-1). The VOCs 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, 2,2,4-trimethylpentane, 4-ethyltoluene, acetone, benzene, cis-1,2-dichloroethylene, dichlorodifluoromethane, ethanol, ethyl benzene, hexane, isopropyl alcohol, m,p-xylene, methyl ethyl ketone, o-xylene, propylene, toluene, trichlorofluoromethane, and xylenes were detected at concentrations below soil vapor concentrations, are not included in the NYSDOH matrices, and are not likely to be related to Site contamination. Acetone, benzene, cis-1,2-dichloroethylene, dichlorodifluoromethane, methyl ethyl ketone, propylene, and trichlorofluoromethane were detected in ambient air sample SAA-1 but were not detected in the soil vapor sample.
- 5. Based on an evaluation of the data and information from the investigation, there is some contaminated soil and soil vapor present at the Site. The elevated levels of SVOCs, metals, PCBs, and pesticides in the soil and the elevated levels of VOCs in the soil vapor seem to be attributed to the historic use at the Site.

SUPPLEMENTAL REMEDIAL INVESTIGATION REPORT

1.0 SITE BACKGROUND

This Supplemental Remedial Investigation Report (SRIR) summarizes the Supplemental Remedial Investigation conducted in February and March 2015 at the Elton Crossing/Site C –Family Site in accordance with the Draft Supplemental Remedial Investigation Work Plan (SRIWP) dated January 2015. The purpose of the Supplemental Remedial Investigation was to further delineate soil and soil vapor contamination and to determine whether past uses have affected groundwater and sediment at the Site. The New York State Department of Environmental Conservation (NYSDEC) approved the SRIWP via email on February 10, 2015.

1.1 Site Location and Current Usage

The Site is located at 899 Elton Avenue in the Bronx, New York. A Site Location Map is provided as Figure 1. The legal definition of the Site is Tax Block 2383, Lots 19, 25, 27, 29, 30, 31, 33, and 35 and a section of Melrose Crescent between East 161st Street and East 162nd Street. Lot 19 is developed with an approximately 9,200-square foot vacant, one-story building with a partial cellar, which is anticipated to be demolished in early Summer 2015. The remaining lots are vacant. A Site Plan is provided as Figure 2.

1.2 Description of Surrounding Property

The Site is abutted by East 162nd Street to the north, beyond which are vacant lots and buildings; East 161st Street to the south, beyond which are residential buildings with first floor commercial space; Elton Avenue followed by Boricua College to the east; and residential buildings to the west, followed by Melrose Avenue. The Harlem River is the nearest water body and is located approximately 1.7 miles south of the Site. The Site is located in a predominantly developed area consisting of residential, educational, commercial, and industrial buildings.

2.0 SITE HISTORY

2.1 Past Uses and Ownership

Historic reports indicated that Lot 19 was developed with: an automobile garage from 1927 to 1940; a factory in 1945; freezer and oven mobile units in 1961; a metal works from at least 1969 to 1978; and Blasco Supply company from 2000 to 2005. Lot 25 was developed with an automobile garage in 1921 and a funeral home from at least 1927 to 1984. Lot 27 was developed with an undertaker and a multi-story residential building from at least 1969 to 1979. Lot 29 was developed with a beauty shop, a lawyers' office, a dentist, and a multi-story residential building from 1927 to 1971. Lot 35 was developed with the Elton Glass Works, Soenning Plumbing and Heating, and a butcher and glazer in 1927, and stores and a multi-story residential building in 1965. The other lots were developed historically as multi-story residences with cellars that likely contained petroleum storage tanks.

2.2 **Previous Investigations**

<u>Phase I Environmental Site Assessment, Melrose Commons Site C, Bronx, New York,</u> <u>Environmental Health Investigations, Inc., February 2011</u>

The Phase I Environmental Site Assessment (ESA) identified several on-site and off-site conditions that may have affected the Site. The identified conditions included the historic usage of the Site as a factory, metal works, automobile garage, glass works, freezer and oven mobile unit warehouse, glazer, plumbing and heating store, undertaker, beauty shop, dentist, and as a funeral home. The use of oils and other petroleum-containing fluids, acids, solvents, formaldehyde, phenol, and methanol, and heavy metals are commonly associated with these historic uses. Suspect asbestos-containing materials (ACM), suspect lead-based paint (LBP), suspect mercury-containing fluorescent light bulbs, and suspect polychlorinated biphenyl (PCB)-containing fluorescent light ballasts were also identified in the building at Lot 19. The surrounding area was historically mixed-use and included: a gasoline station, auto repair facilities, and a paint store south of the Site on East 161st Street; a dry cleaner west of the Site on East 161st Street; and a Brownfield Cleanup Program site south of the Site across East 161st Street.

The Phase I ESA also noted that, due to past residential development at the Site, there is a possibility that underground storage tanks (USTs) may exist at the Site. However, no information regarding the status of former or current petroleum storage tanks on the Site was included in the Phase I ESA.

<u>Geotechnical Investigation, East 161st Street and Elton Avenue, Bronx, New York, Tectonic</u> <u>Engineering and Surveying Consultants, February 2014</u>

Tectonic Engineering and Surveying Consultants (Tectonic) conducted a geotechnical engineering study of the Site. The investigation included the advancement of 46 test borings and probes (B-1 through B-46) and the excavation of 4 test pits (TP-1 through TP-4). Two observation wells were installed in borings B-20 and B-35. It is noted that one of the installed wells was dry. According to Tectonic's report, uncontrolled fill was reported to depths ranging from 2 to 14 feet below grade, generally consisting of sand with varying amounts of silt and gravel. The fill was underlain by native soil typically encountered between 4 and 13 feet below grade, generally consisting of silt and gravel with cobbles and boulders. In several borings and test pits, abundant brick, debris, and refuse were encountered at depths ranging from 7.5 to 23 feet below grade. Groundwater was observed within bedrock at elevations ranging from approximately 20.4 to 20.5 feet below grade.

<u>Remedial Investigation (Phase II), Melrose Commons Site C–Family, Block 2328, Lots 19, 25, 27, 29, 30, 31, 35,8900, and a section of Melrose Crescent between East 161st Street and East 162nd Street, Bronx, New York, AKRF, February 2014</u>

AKRF conducted a Remedial Investigation (RI) at the Site in April 2014. The investigation included a geophysical survey and utility mark-outs, the installation of 14 soil borings with the collection and analysis of 27 soil samples, and the installation of 6 soil vapor probes with the collection and analysis of 6 soil vapor samples and 1 ambient air sample. Groundwater was not encountered above bedrock during the investigation.

Volatile organic compounds (VOCs) were detected in 15 of the 27 soil samples. Eleven VOCs (acetone, chloroform, ethylbenzene, isopropylbenzene, m,p-xylene, methylchlorohexane, methylene chloride, o-xylene, toluene, thrichlorofluoromethane, and total xylenes) were detected in one or more of the soil samples below NYSDEC Unrestricted Use Soil Cleanup Objectives M,p-xylene and o-xylene were detected in soil sample SB-13 (8-10) at (UUSCOs). concentrations of 583 and 386 parts per billion (ppb), respectively, which is above the respective UUSCOs of 260 ppb, but below their respective Restricted Residential Soil Cleanup Objectives (RRSCOs) of 100,000 ppb. No VOCs were detected at concentrations exceeding RRSCOs. Twenty-three SVOCs were detected in 20 of the 27 soil samples with a maximum total SVOC concentration of 35,357.30 ppb in soil sample SB-6 (5-7). Seven polycyclic aromatic hydrocarbons (PAHs) {benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluroanthene, chrysene, dibenzo(a,h)anthracene, and indeno[1,2,3-cd]pyrene} were detected in one or more soil samples at concentrations above their respective UUSCOs. Additionally, six SVOCs including benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, chrysene, dibenzo(a,h)anthracene, and indeno[1,2,3-cd]pyrene were detected in at least seven soil samples at concentrations above their respective RRSCOs.

Nine metals, including barium, cadmium, chromium, copper, lead, mercury, nickel, silver, and zinc, exceeded their respective UUSCOs in 21 of the 27 soil samples. Of these metals, barium in ten samples, cadmium in one sample, copper in one sample, lead in six samples, and mercury in three samples, exceeded their respective RRSCOs. TwoPCBs, Aroclor 1248 and Aroclor 1260, were detected in 3 of the 27 soil samples. Aroclor 1248 was detected in soil samples SB-13 (0-2) and SB-13 (8-10) at concentrations of 910 ppb and 110 ppb, respectively, exceeding its UUSCO of 100 ppb of total PCBs per sample. Five pesticides including 4,4'-DDD, 4,4'-DDE, 4,4'-DDT, dieldrin, and endrin, were detected in 18 of the soil samples at concentrations above their respective UUSCOs. Additionally, 4,4'-DDE was detected in soil sample SB-13(8-10) at a concentration of 10,400 ppb, exceeding its RRSCO of 8,900 ppb.

Thirty-one VOCs were detected in the six soil vapor samples. Methylene chloride was detected at a concentration of 77.5 micrograms per cubic meter (μ g/m³), above its AGV of 60 μ g/m³ established by the New York State Department of Health (NYSDOH). Carbon tetrachloride was also detected above its AGV of 5 μ g/m³, at a concentration of 8.2 μ g/m³ in soil vapor sample SV-1. PCE and TCE were also detected in at least one of the soil vapor samples; however, these values were below the NYSDOH AGVs for these compounds. VOCs associated with petroleum [including benzene, toluene, ethylbenzene, xylenes (collectively referred to as BTEX), 1,2,4- and 1,3,5-trimethylbenzene, cyclohexane, n-heptane, n-hexane, 4-ethyltoluene, and 2,2,4-trimethylpentane] were detected at concentrations up to 870 μ g/m³. Solvent-related VOCs [including acetone, chloroform, and methyl ethyl ketone (MEK)] were detected at concentrations up to 530 μ g/m³. Low level VOC concentrations were also noted in the ambient air sample.

The report concluded that there is some contaminated soil and soil vapor present at the Site. The elevated xylenes, photoionization detector (PID) readings, staining, and petroleum odors seem to be associated with former fuel oil use at the Site. The SVOCs and metals present and chemical-like odor observed in the soil, and the VOCs in the soil vapor seem to be attributable to the historic use at the Site and subsequent demolition of the former structures. The elevated levels of pesticides indicate the prior usage of pesticides at the Site and possible storage in the cellar of the former structures.

3.0 PROJECT MANAGEMENT

3.1 **Project Organization**

The Qualified Environmental Professionals (QEPs) responsible for preparation of this report are Michelle Lapin, P.E. and Deborah Shapiro, QEP. The environmental scientist responsible for the oversight and direction of field activities and sampling is Amy Jordan.

3.2 Health and Safety

All work described in this report was performed in full compliance with applicable laws and regulations, including Site and Occupational Safety and Health Administration (OSHA) worker safety requirements and Hazardous Waste Operations and Emergency Response (HAZWOPER) requirements. The work described in this report was also performed in accordance with a Sitespecific Health and Safety Plan (HASP), included as part of the SRIWP dated February 2015.

4.0 SITE INVESTIGATION ACTIVITIES

The following activities were performed as part of the Supplemental Remedial Investigation:

- 1. Collected one soil sample from a floor drain within the Site building;
- 2. Advanced 6 soil borings and collected 10 soil samples for chemical analysis from 4 of the soil borings to evaluate soil quality;
- 3. Installed three bedrock groundwater monitoring wells and collected three groundwater samples for chemical analysis from the monitoring wells to evaluate groundwater quality; and
- 4. Installed one soil vapor probe within the Site building and collected one soil vapor sample and one ambient air sample for chemical analysis.

The soil samples, bedrock groundwater monitoring wells, soil vapor sample point, and ambient air sample locations are shown on Figure 2.

4.1 Boring Installation

Six soil borings (SSB-1 through SSB-3 and MW-1 through MW-3) were advanced across the Site on February 18, 19, and 25, 2015 by Aquifer Drilling and Testing, Inc. (ADT) of Mineola, New York. Due to limited access inside the building, a direct push drill rig was used to advance soil borings SSB-1 through SSB-3 and MW-1. Soil borings MW-2 and MW-3 were advanced on the vacant portions of the Site using a rotosonic drill rig. Bedrock was encountered between 9 and 10 feet below the building slab and between 9 and 17 feet below sidewalk grade at the vacant portions of the Site. Groundwater was not encountered above bedrock in any of the soil borings.

Continuous soil cores were obtained using a stainless steel, macro-core sampler with an internal acetate liner at soil borings SSB-1 through SSB-3 and MW-1. Soil cores were obtained using a stainless steel casing with an internal disposable plastic liner at soil borings MW-2 and MW-3. Soil cores were field-screened using a PID, which measures relative concentrations of VOCs in the soil. The PID was calibrated at the beginning of each field day with 100 parts per million (ppm) isobutylene calibration gas. At each boring location, AKRF field personnel recorded and documented subsurface conditions. Boring logs were prepared by an AKRF environmental scientist and are attached in Appendix A. The soil boring locations were measured from fixed points upon their completion. The soil boring locations are shown on Figure 2.

4.2 Soil Vapor Probe Installation

One soil vapor sampling probe (SSV-1) was installed using a direct-push drill rig by advancing a 0.75-inch diameter hollow probe rod fitted with an expendable 6-inch long stainless steel screened drive point approximately 5 feet below the concrete slab of the building. Dedicated Teflon-lined polyethylene tubing with threaded fittings was connected to the probe. The hollow probe rod was then removed and the boring was backfilled with clean silica sand. Hydrated bentonite was used to fill the remaining void around the sampling tubing to ground surface.

On February 26, 2015, a soil vapor sample was collected from the soil vapor probe. The sampling was conducted in conformance with the applicable procedures described in ASTM E 2600-08 "Standard Practice for Assessment of Vapor Intrusion into Structures on Property Involved in Real Estate Transactions" and the October 2006 NYSDOH Soil Vapor Intrusion Guidance Document protocols. The soil vapor sampling location was measured from fixed points upon its completion and is shown on Figure 2.

4.3 Bedrock Monitoring Well Installation

Three bedrock monitoring wells were installed between February 18 and 26, 2015. A rotosonic drill rig was used to advance a steel core barrel from grade to bedrock. Once competent bedrock was reached, steel casing was advanced over the core barrel into competent bedrock, sealed with

grout, and cured overnight. The following day, a bedrock core barrel was advanced through the casing, and continuous bedrock samples were collected by spinning the coring barrel fitted with a cutting shoe. Drilling continued 10 feet into the groundwater table. After completing the coring process, the core barrel was removed. The wells were finished with protective locking well covers that extended one to two feet above grade. The bedrock monitoring well locations are shown on Figure 2.

The wells were developed immediately after installation via surging and pumping. The purge water was monitored for turbidity and water quality indicators (i.e., pH, dissolved oxygen, oxidation-reduction potential, temperature, and specific conductivity) with measurements collected approximately every five minutes. Development continued until turbidity was less than 50 nephelometric turbidity units (NTUs) for three successive readings or until water quality indicatorsstabilized, or well went dry, whichever occured first. The criteria for stabilization was three successive readings within $\pm 10\%$ for pH, temperature and specific conductivity. Monitoring well MW-1 did not recharge during development; therefore, stabilization could not be achieved. In addition, development water was screened for evidence of contamination by visual and olfactory methods and by using a calibrated PID. No evidence of contamination (i.e., odor, staining, elevated PID readings, etc.) was noted. As such, purge water was discharged beneath the Site. Well installation and development logs were prepared by an AKRF environmental scientist and are attached in Appendix B. Detailed results of groundwater screening are recorded on the well development and installation logs.

4.4 Groundwater Monitoring Well Survey

The well casing elevations and well locations were surveyed on March 11, 2015 by Montrose Surveying Company, a New York State licensed surveyor, to the nearest 0.01 foot. Depth to groundwater was measured the same day using a sonic interface tape. The elevations were then plotted and a water table elevation contour map was prepared to determine the horizontal direction of groundwater flow. Based upon the data collected on March 11, 2015, the Sitespecific direction of groundwater flow is to the northwest. A groundwater elevation contour map and a tabulation of the casing elevations and depth to water measurements are shown on Figure 3.

4.5 Sample Collection and Chemical Analysis

4.5.1 Soil Sampling

One soil sample (SS-1) was collected for chemical analysis during this investigation from a floor drain within the southern portion of the Site building (Lot 19). The drain appeared to be associated with historic operations. Although the work plan initially proposed to collect soil samples from three floor drains, upon further investigation, it appeared that one of the floor drains was actually the house trap and the other drain had a concrete bottom that contained no soil; therefore, only one soil sample was collected from within the Site building. The soil sample was obtained using a hand auger and was field-screened using a PID.

Ten soil samples were collected for chemical analysis during this investigation from three soil borings (SSB-1 through SSB-3) advanced at the Site. Three soil samples per boring were collected. Soil samples were collected from the 0 to 2 feet below grade interval, the 5 to 7 foot interval, and from the boring terminus. An additional soil sample was collected from the terminus of soil boring MW-3 (16.5-17 feet below grade) as field evidence of contamination (petroleum-like odors, staining, and a PID reading of 30 ppm) was observed. In addition, one trip blank, one field blank, one blind duplicate, and one matrix spike/matrix spike duplicate were collected. No soil samples were collected from soil borings MW-1 or MW-2 in accordance with the work plan. Soil samples collected from soil borings SSB-1 through SSB-3 were analyzed for VOCs, SVOCs, TAL metals, PCBs, and pesticides. The soil sample collected from soil boring MW-3 was analyzed

for VOCs and SVOCs only. AKRF field personnel documented and recorded soil conditions, which is described on the soil boring logs included in Attachment A.

Samples were placed into laboratory-supplied containers, were labeled and placed in an ice-filled cooler and shipped to the laboratory via courier with appropriate chain-ofcustody documentation. All samples were analyzed by Accutest using Category B deliverables. Soil sample collection for chemical analyses, including dates of collection and sample depths, are reported in Tables 1 through 4. Figure 2 shows the soil boring and sample locations. All data was validated by a third-party data validator and a DUSR was prepared. The DUSR is included as Appendix C.

4.5.2 Soil Vapor Sampling

One soil vapor sample (SSV-1) and one ambient air sample (SAA-1) were collected for chemical analysis during this investigation in accordance with the *New York State Department of Health (NYSDOH) Final Guidance on Soil Vapor Intrusion, October 2006.* The soil vapor sample was collected from approximately five feet below the concrete floor slab within the Site building. The ambient air sample was collected from the exterior portion of the Site for QA/QC purposes.

Prior to collection, the soil vapor probe was purged of three sample volumes using a peristaltic pump at a flow rate of approximately 0.1 liters/minute. During purging, an inverted five-gallon bucket was placed over each sampling point and helium gas was introduced through a small hole in the bucket to saturate the atmosphere around the sample port with helium gas. Purged vapors were collected in a Tedlar bag and field-screened for organic vapors using a PID. The purged air was also monitored using a portable helium detector to check for short-circuiting of ambient air into the soil vapor sampling point. The soil vapor point passed the seal integrity test with a helium reading of ND (Not Detected). No PID readings were detected.

After purging, the probe was connected via Teflon-lined polyethylene tubing to a laboratory-supplied 6-liter SUMMA canister equipped with a flow regulator set to collect a sample over a two-hour sampling period. The ambient air sample was collected from the vacant portion of the Site in a 6-liter SUMMA canister for an approximately two-hour sampling period. The ambient air sample was collected concurrently with the soil vapor sample to establish background conditions and for comparison purposes. Immediately after opening the flow control valve, the initial SUMMA canister vacuum (inches of mercury) was noted. After approximately two hours, the flow controller valve was closed, the final vacuum noted, and the canister placed in a shipping carton for delivery to the laboratory.

Sample containers were labeled and placed in a shipping carton and shipped to the laboratory via courier with appropriate chain of custody documentation. All samples were analyzed by Accutest, a NYSDOH certified laboratory, with Category B deliverables for VOCs TO-15. All data was validated by a third-party data validator and a DUSR was prepared. The soil vapor and ambient air sampling locations are shown on Figure 2. Soil vapor and ambient air sample data is reported in Table 5. The DUSR is included as Appendix C.

4.5.3 Groundwater Sampling

Three groundwater samples (MW-1 to MW-3) were collected for chemical analysis during this investigation using low-flow sampling methodology. In addition, one trip blank, one field blank, one blind duplicate, and one matrix spike/matrix spike duplicate were collected. Groundwater samples collected from the wells were analyzed for VOCs using EPA Method 8260, SVOCs using EPA Method 8270, pesticides using EPA Method 8081, PCBs using EPA Method 8082, and TAL metals (6000/7000 series). The

groundwater analyses for metals was conducted on both filtered and unfiltered samples; filtering occurred in the field using inline filters.

All samples were analyzed by Accutest Laboratories (Accutest), a New York State Department of Health (NYSDOH) certified laboratory, with Category B deliverables for VOCs using EPA Method 8260, SVOCs using EPA Method 8270, pesticides using EPA Method 8081, PCBs using EPA Method 8082, and TAL metals (6000/7000 series) (filtered and unfiltered). Sample containers were labeled and placed in an ice-filled cooler and shipped to the laboratory via courier with appropriate chain-of-custody documentation. Third-party data validation was performed and reported a DUSR was prepared. The groundwater sample locations are shown on Figure 2. Groundwater data is reported in Tables 5 through 8. Monitoring well installation, development, and sampling logs are included as Appendix B.

4.5.4 Chemical Analysis

Chemical analytical work has been performed under a quality assurance program that includes the following:

Factor	Description							
Quality Assurance Officer	The chemical analytical QA/QC was directed by Michelle Lapin, P.E., of AKRF.							
Third Party Data Validator	The third-party data validation was performed by Lori Beyer of L.A.B. Validation Corp.							
Chamical Analytical Laboratory	Chemical analytical laboratory used in this investigation was Accutest Laboratories of Dayton,							
Chemical Analytical Laboratory	New Jersey, a NYS Environmental Laboratory Approval Program (ELAP)-certified laboratory.							
	Soil analytical methods:							
	• TAL Metals by EPA Method 6000/7000 (rev. 2007)							
	• TCL VOCs by EPA Method 8260C (rev. 2006)							
	• TCL SVOCs by EPA Method 8270D (rev. 2007)							
	TCL Pesticides by EPA Method 8081B (rev. 2000)							
	• TCL PCBs by EPA Method 8082A (rev. 2000)							
Chamical Analytical Mathada	Groundwater analytical methods:							
Chemical Analytical Methods	• TAL Metals (total and dissolved) by EPA Method 6000/7000 (rev. 2007)							
	• TCL VOCs by EPA Method 8260C (rev. 2006)							
	• TCL SVOCs by EPA Method 8270D (rev. 2007)							
	TCL Pesticides by EPA Method 8081B (rev. 2000)							
	• TCL PCBs by EPA Method 8082A (rev. 2000)							
	Soil vapor and ambient air analytical method:							
	VOCs by EPA Method TO-15							

4.5.5 Quality Assurance/Quality Control (QA/QC)

QA/QC procedures were used to provide performance information with regard to accuracy, precision, sensitivity, representation, completeness, and comparability associated with the sampling and analysis for this investigation. Field QA/QC procedures were used (1) to document that samples are representative of actual conditions at the Site and (2) to identify possible cross-contamination from field activities or sample transit. Laboratory QA/QC procedures and analyses were used to demonstrate whether analytical results have been biased either by interfering compounds in the sample matrix, or by laboratory techniques that may have introduced systematic or random errors to the analytical process.

QA/QC samples were analyzed at an ELAP-certified laboratory. QA/QC sampling consisted of the following:

- One blind soil duplicate sample;
- One soil matrix spike/matrix spike duplicate (MS/MSD) sample;
- One groundwater blind duplicate sample;
- One groundwater MS/MSD sample;

- Two aqueous trip blank samples;
- Two aqueous field blank samples; and
- One ambient air SUMMA canister.

QA/QC samples were submitted with the collected soil, groundwater, and soil vapor samples. The field blanks, duplicate soil samples, and MS/MSDs were analyzed for the same analyte list as the accompanying soil and groundwater samples. The trip blank samples were submitted for laboratory analysis for VOCs by EPA Method 8260. The ambient air sample was analyzed for VOCs by EPA Method TO-15. The third-party data validation performed by L.A.B. Validation Corp. was reported in DUSRs for soil, groundwater, air, and soil vapor laboratory analytical data sets (see Appendix C).

Two VOCs, bromodichlormethane and chloroform, were detected in the field blank submitted with the groundwater samples on March 11, 2015. Therefore, laboratory reported concentrations of chloroform in groundwater samples MW-1, MW-2, and MW-2 blind duplicate sample MW-X were negated. The reported concentration in MW-3 was not negated; however, it is noted that this detection should be utilized with caution when making decisions soley based on this detection. In addition, soil sample MW-3 (16.5-17) was re-ananalyzed at 1 gram due to complicated matrix and demonstrated matrix intereference of non-target petroleum range analytes. The 1 gram re-analysis was determined to be acceptable.

Low level VOC concentrations were noted in the ambient air sample. These VOCs were detected at concentrations well below the soil vapor concentrations and are not likely to be related to Site contamination or sample compromise.

The DUSR identified additional qualifiers for specific compounds for specific samples. These qualifiers have been added to the data summary tables provided as Tables 1 through 9. The data sets were determined to be acceptable for use with the additional data qualifiers. The changes included the addition of a "J" qualifier indicating that the contaminant detections in the samples were considered estimated values, or in several cases, change to a "UJ" qualifier indicating the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. The "R" qualifier indicates that the data are unusable and were rejected due to instrument calibration criteria. The "N" qualifier indicates the presence of an analyte for which there is presumptive evidence to make a tentative identification. The "NJ" qualifier indicates the presence of an analyte for which there is present its approximate quantity. The "J+" qualifier indicates an estimated quantity biased high and the "J-" qualifier indicates an estimated quantity biased high and the "J-" qualifier indicates an estimated quantity biased high and the "J-"

5.0 NATURE AND EXTENT OF CONTAMINATION

5.1 Geological and Hydrogeological Conditions

5.1.1 Topography

Surface topography is generally level, except for a slight slope on the northeastern corner of the Site that descends towards East 162nd Street. Based on reports compiled by the U.S. Geological Survey (Central Park Quadrangle), the Site lies at an elevation of approximately 30 feet above the National Geodetic Vertical Datum of 1929 (an approximation of sea level).

5.1.2 Stratigraphy

Soil observed during the investigation consisted primarily of sand with varying amounts of gravel and silt. Fill was observed in the soil borings from grade, up to six feet below grade and contained sand, gravel, glass, brick, and concrete. The fill was underlain by apparent native sand and gravel underlain by bedrock encountered between 9 and 17 feet below grade. Suspect contamination (e.g., PID readings, staining, and odors) was observed directly above bedrock in boring MW-3 from 16.5 to 17 feet below grade.

5.1.3 Hydrogeology

Groundwater was encountered within bedrock fractures between 14.72 and 17.15 feet below grade at the Site. Site-specific groundwater flow is generally to the northwest. Regional groundwater flow is generally to the south towards the Harlem River, located approximately 1.7 miles south of the Site. Groundwater in the Bronx is not used as a source of drinking water. A groundwater elevation contour map and a tabulation of the casing elevations and depth to water measurements are shown on Figure 3.

5.2 Soil Analytical Results

Eleven soil samples were collected for laboratory analysis. Soil sample analytical results were compared to the NYSDEC Unrestricted Use Soil Cleanup Objectives (UUSCOs) and the NYSDEC Restricted Residential Use Soil Cleanup Objectives (RRSCOs) listed in 6 NYCRR Subpart 375.

Soil sample analytical results are included in Tables 1 through 4 and the sample locations are shown on Figure 2. A concentration map depicting exceedances of the UUSCOs and/or RRSCOs in soil is provided as Figure 4.

5.2.1 Volatile Organic Compounds in Soil

The VOCs acetone, carbon disulfide, chloroform, ethylbenzene, isopropylbenzene, m,pxylene, methylchylohexane, o-xylene, tetrachloroethene, toluene, and xylenes were detected in one or more of the soil samples analyzed at concentrations below applicable UUSCOs or RRSCOs. Soil VOC results are presented in Table 1.

5.2.2 Semivolatile Organic Compounds in Soil

Twenty-four SVOCs were detected in 8 soil samples analyzed with a maximum total SVOC concentration of 11,449.3 ppb in the soil sample collected from SSB-1 (5-7). Two polycyclic aromatic hydrocarbons (PAHs), dibenzo(a,h)anthracene and indeno[1,2,3-cd]pyrene, were detected in soil sample SSB-1 (5-7) at concentrations above their respective UUSCOs and RRSCOs. Soil SVOC results are presented in Table 2.

5.2.3 Metals in Soil

Up to 21 of the 23 metals analyzed were detected in all soil samples analyzed. Eight metals, including arsenic (up to 16.1 ppm), barium (up to 792 ppm), cadmium (up to 17.7 ppm), copper (up to 270 ppm), lead (up to 1,940 ppm), mercury (up to 44 ppm), nickel (up to 43.1 ppm), and zinc (up to 1,320 ppm), exceeded their respective UUSCOs in 7 of the soil samples. Of these metals, arsenic in one sample, barium in two samples, cadmium in three samples, lead in three samples, and mercury in three samples exceeded their respective RRSCOs. Soil metals results are presented in Table 3.

5.2.4 Polychlorinated Biphenyls and Pesticides in Soil

One PCB was detected in four soil samples analyzed. Aroclor 1262 was detected at concentrations of 485 ppb and 451 ppb in soil samples SSB-1 (0-2) and SS-1, respectively, above the 100 ppb UUSCO for total PCBs, and at concentrations of 14,700 ppb and 3,030 ppb in soil samples SSB-1 (5-7) and SSB-1 (7-9), respectively, above the 1,000 ppb RRSCO for total PCBs.

Up to eight pesticides were detected in nine soil samples analyzed; 4,4'-DDD, 4,4'-DDE, alpha-chlordane, dieldrin, endrin, gamma-BHC (lindane), and heptachlor were detected in up to seven of the soil samples at concentrations exceeding their respective UUSCOs. Additionally, alpha-chlordane and dieldrin were detected at concentrations exceeding their respective RRSCOs in soil samples SSB-1 (0-2), SSB-1 (5-7), and SSB-1 (7-9). Dieldrin was also detected at a concentration exceeding its respective RRSCO in soil sample SS-1. Soil sample results for PCBs and pesticides are presented in Table 4.

5.3 Groundwater Analytical Results

Three groundwater samples were collected for laboratory analysis. Groundwater analytical results were compared to the NYSDEC Class GA Ambient Water Quality Standards (AWQS) (drinking water standards), although groundwater is not used as a source of potable water in the Bronx.

Groundwater sample analytical results are included in Tables 4 through 8, and sample locations are shown on Figure 2. A concentration map depicting exceedances of the AWQSs in groundwater is provided as Figure 4.

5.3.1 Volatile Organic Compounds in Groundwater

The VOCs acetone, bromodichloromethane, chloroform, tetrachloroethene, and toluene were detected in the groundwater samples. Chloroform was detected in each of the groundwater samples and exceeded its AWQS of 7 μ g/L in groundwater sample MW-3 at a concentration of 9.5 micrograms per liter (μ g/L). Two VOCs, bromodichloromethane and chloroform, were detected at low levels below applicable AWQS in the aqueous field blank. According to the DUSR, the detection of chloroform in MW-3 should be utilized with caution when making decisions soley based on this detection. Groundwater analytical results for VOCs are presented in Table 5.

5.3.2 Semivolatile Organic Compounds in Groundwater

No SVOCs were detected in groundwater sample MW-1. Two SVOCs, acenaphthene and acetophenone, were detected in groundwater samples MW-2 and MW-3 at concentrations below their respective AWQS. Groundwater analytical results for SVOCs are presented in Table 6.

5.3.3 Metals in Groundwater

Fourteen metals were detected in the unfiltered groundwater samples (total metals analysis) and ten metals were detected in the filtered samples (dissolved metals analysis).

Four total metals (iron, magnesium, manganese, and sodium) and three dissolved metals (iron, magnesium, and sodium) were detected in at least one of the groundwater samples above their respective AWQS. The metals detected above AWQS in the total and dissolved groundwater samples are typical of groundwater quality in the Bronx and are not related to a spill or release. Groundwater analytical results for metals are presented in Table 7.

5.3.4 Polychlorinated Biphenyls and Pesticides in Groundwater

No PCBs or pesticides were detected in the groundwater samples. Groundwater analytical results for PCBs and pesticides are presented in Table 8.

5.4 Soil Vapor and Ambient Air Analytical Results

One soil vapor sample and one ambient air sample was collected for laboratory analysis. Concentrations of VOCs detected in the soil gas and ambient air samples were compared to the NYSDOH 2006 Guidance for Evaluating Soil Vapor Intrusion air guideline values (AGVs) and matrices, and the September 2013 NYSDOH Fact Sheet update for PCE. These values provide a means of comparison; however, since the AGVs reflect indoor air conditions, the comparison assumes that any soil vapor detected would completely penetrate into the building, a condition that does not typically occur. In addition, AGVs have only been established for five VOCs [carbon tetrachloride, methylene chloride, 1,1,1-trichloroethane (1,1,1-TCA), trichloroethene (TCE), and PCE] and matrices have only been established for carbon tetrachloride, PCE, 1,1,1-TCA, TCE, vinyl chloride, 1,1-dichloroethene, and cis-1,2-dichloroethene.

A summary table of data for chemical analyses performed on soil vapor and the ambient air sample is included in Table 5. Soil vapor and ambient air sample locations are shown on Figure 2. Figure 6 depicts soil vapor and ambient air concentrations above AGVs.

5.4.1 Volatile Organic Compounds in Soil Vapor

Thirteen VOCs [1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, 2,2,4-trimethylpentane, 4-ethyltoluene, ethanol, ethylbenzene, heptane, hexane, m,p-xylene, o-xylene, styrene, tetrachloroethylene (PCE), and toluene] were detected in the soil vapor sample. PCE was detected at a concentration of 111 micrograms per cubic meter (μ g/m³), which is above its NYSDOH AGV of 30 μ g/m³. VOCs associated with petroleum [including benzene, toluene, ethylbenzene, xylenes (collectively referred to as BTEX), 1,2,4- and 1,3,5-trimethylbenzene, ethanol, ethylbenzene, heptane, hexane, m,p-xylene, and o-xylene,] were detected at concentrations up to 123,000 μ g/m³. Solvent-related VOCs (including styrene, PCE, and toluene) were detected at concentrations up to 871 μ g/m³.

5.4.2 Volatile Organic Compounds in Ambient Air

Low level VOC concentrations were also noted in the ambient air sample. The VOCs 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, 2,2,4-trimethylpentane, 4-ethyltoluene, acetone, benzene, cis-1,2-dichloroethylene, dichlorodifluoromethane, ethanol, ethyl benzene, hexane, isopropyl alcohol, m,p-xylene, methyl ethyl ketone, o-xylene, propylene, toluene, trichlorofluoromethane, and xylenes were detected at concentrations below soil vapor concentrations, are not included in the NYSDOH matrices, and are not likely to be related to Site contamination. Acetone, benzene, cis-1,2-dichloroethylene, dichlorodifluoromethane, methyl ethyl ketone, propylene, and trichlorofluoromethane were detected in the ambient air sample but were not detected in the soil vapor sample.

6.0 QUALITATIVE HUMAN HEALTH EXPOSURE ASSESSMENT

The objective of the qualitative exposure assessment is to identify potential receptors and pathways for human exposure to the contaminants of concern (COC) that are present at, or migrating from, the Site. The identification of exposure pathways describes the route that the COC takes to travel from the source to the receptor. An identified pathway indicates that the potential for exposure exists; it does not imply that exposures actually occur.

The Remedial Investigation and Supplemental Remedial Investigation as described in the Remedial Investigation Report (RIR) and SRIR are sufficient to complete a Qualitative Human Health Exposure Assessment (QHHEA). The QHHEA was performed to determine whether the Site poses an existing or future health hazard to the Site's exposed or potentially exposed population. The sampling data from the RI and supplemental RI were evaluated to determine whether there is any health risk by characterizing the exposure setting, identifying exposure pathways, and evaluating contaminant fate and transport. This QHHEA was prepared in accordance with Appendix 3B and Section 3.3 (b) 8 of the NYSDEC Draft DER-10 Technical Guidance for Site Investigation and Remediation.

6.1 Contaminants of Concern in Respective Media

Based on the results of the RI and SRI, the contaminants of concern are:

Soil:

The VOCs m,p-Xylene and o-Xylene were detected above their respective UUSCOs.

The SVOCs benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene were detected above their respective UUSCOs and/or RRSCOs.

The metals arsenic, barium, cadmium, chromium, copper, lead, mercury, nickel, silver, and zinc were detected above their respective UUSCOs and/or RRSCOs.

PCB Aroclor 1262 was detected above the UUSCO and RRSCO for total PCBs.

The pesticides 4,4'-DDD, 4,4'-DDE, 4,4'-DDT, Aldrin, alpha-Chlordane, dieldrin, endrin, gamma-BHC (Lindane), and heptachlor were detected above their respective UUSCOs and/or RRSCOs.

Groundwater:

The VOC chloroform was detected in groundwater above AWQS.

Total metals, including iron, manganese, magnesium, and sodium and dissolved metals, including iron, magnesium, and sodium, exceeded AWQS.

Soil Vapor:

The VOCs carbon tetrachloride, methylene chloride, and tetrachloroethylene (PCE) were detected above their respective AGVs.

VOCs associated with petroleum [including benzene, toluene, ethylbenzene, xylenes (collectively referred to as BTEX), 1,2,4- and 1,3,5-trimethylbenzene, ethanol, ethylbenzene, heptane, hexane, m,p-xylene, and o-xylene,] were detected at concentrations up to 123,000 μ g/m³ and solvent-related VOCs (including styrene, PCE, and toluene) were detected at concentrations up to 871 μ g/m³.

6.2 **Potential Routes of Exposure**

The five elements of an exposure pathway are:

- 1. The source of contamination;
- 2. The environmental media and transport mechanisms;

- 3. The point of exposure;
- 4. The route of exposure; and
- 5. The receptor population.

These elements of an exposure pathway may be based on past, present, or future events. An exposure pathway is considered complete when all five elements of an exposure pathway are documented. A potential exposure pathway exists when any one or more of the five elements comprising an exposure pathway cannot be documented. An exposure pathway may be eliminated from further evaluation when any one of the five elements comprising an exposure pathway has not existed in the past, does not exist in the present, and will never exist in the future.

6.3 Exposure Route

An exposure route is the mechanism by which a receptor comes into contact with a chemical. Three potential primary routes exist by which chemicals can enter the body:

- Ingestion of water, fill, or soil;
- Inhalation of vapors and particulates; and
- Dermal contact with water, fill, soil, or building materials.

6.4 **Potential Receptors**

The Site is currently occupied by a vacant warehouse building and vacant lots. The area immediately surrounding the Site is predominantly residential, commercial, and industrial in nature. The proposed future use of the Site is residential with retail use. The land use in the surrounding area is anticipated to remain residential/commercial since several new residential/commercial projects are under construction in the neighborhood.

On-Site Receptors: As the Site is currently vacant and the on-site building is not occupied, the only on-site potential sensitive receptors are trespassers.

During redevelopment of the Site, the on-site potential sensitive receptors will include construction workers and inspectors. Once the Site is redeveloped, the on-site potential sensitive receptors will include: adult and child residents, maintenance staff, and commercial workers.

Off-Site Receptors: Potential off-site receptors within a 0.25-mile radius of the Site include: adult and child residents, commercial and construction workers, students, pedestrians, trespassers, and cyclists, based on the following:

- 1. Commercial Businesses existing and future
- 2. Residential Buildings existing and future
- 3. Building Construction/Renovation existing and future
- 4. Pedestrians, Trespassers, Cyclists existing and future
- 5. Schools existing and future

6.5 Existence of Human Health Exposure Pathways

This evaluation consists of the following components: contaminant source; contaminant release and transport mechanism; point of exposure; route of exposure; and receptor population.

On-Site Existing Conditions: Although the Site is fenced and locked, there is a potential exposure pathway from surface soil/fill to trespassers.

Off-Site Existing Conditions: There is an existing potential exposure pathway from VOCs in soil gas to enter into the adjoining buildings as a result of any basement floor or lower wall openings/cracks. The indoor air quality at the adjoining properties may be susceptible to contamination from subsurface vapor intrusion attributable to VOCs emitted from the Site. The

potential receptors from such a migration pathway into the building would be to off-site construction and commercial workers, and adult and child residents. The primary route of exposure would be inhalation. There is also a potential exposure pathway from any dust emanating from the Site to off-site pedestrians, visitors, cyclists, and adult and child residents.

On-Site Future Conditions: Once redevelopment activities begin, there will be a potential exposure pathway from construction workers coming into direct contact with surface and subsurface soils as a result of construction and excavation activities. In addition, on-site construction workers potentially could ingest or inhale dust from any exposed impacted soil and fill. Similarly, off-site receptors could be exposed to dust and vapors from on-site activities.

Once the redevelopment of the Site has been completed (assuming no remediation) there will be a potential exposure pathway to adult and child residents, maintenance staff, and commercial workers from the inhalation of any potential off-gassing of VOC vapors from the subsurface. The VOC vapors could migrate from residual compounds in the soil and/or groundwater and enter the building through any cracks or openings in the foundation. There will also be a potential exposure pathway from dermal contact, inhalation, or ingestion of surface soil/fill in any landscaped or non-capped areas by adult and child residents, visitors, and trespassers.

Off-Site Future Conditions: There is a potential exposure pathway from soil gas emanating from the subsurface to enter into the adjoining buildings as a result of any basement floor or lower wall openings/cracks. The indoor air quality at the adjoining properties would be susceptible to contamination from subsurface vapor intrusion. Off-site commercial workers and adult or child residents could potentially inhale these vapors. There will also be a potential exposure pathway from any dust emanating from the Site to off-site pedestrians, visitors, cyclists, and adult and child residents.

6.6 Overall Human Health Exposure Assessment

Exposure pathways for the current Site condition include ingestion and/or dermal contact with exposed soil/fill at the Site to trespassers; inhalation from dust emanating from the Site to tresspassers and off-site pedestrians, visitors, cyclists, and adult and child residents; and from inhalation of VOCs from soil gas emanating from the Site entering into the adjoining buildings by off-site construction and commercial workers, and adult and child residents. Once redevelopment activities begin, there will be a potential exposure pathway from contaminated surface soil/fill to construction workers as these workers could potentially ingest, inhale or have dermal contact with any exposed impacted fill or soil. Without remediation, once redevelopment of the Site has been completed, there will be a potential exposure pathway from the potential off-gassing of residual organic vapors in the subsurface to adult and child residents, maintenance staff, visitors, and commercial workers through cracks or openings in the foundations of the new building and surrounding buildings. There will also be a potential exposure pathway from dermal contact, inhalation, or ingestion of surface soil in any landscaped or non-capped areas by adult and child residents, visitors, and trespassers. In addition, there will be a potential exposure pathway from any dust emanating from the Site to off-site pedestrians, visitors, cyclists, and adult and child residents.

Based on the results of the QHHEA, a NYSDEC-approved Remedial Action Work Plan (RAWP) should be implemented to ensure that the potential exposure pathways identified do not become complete. The RAWP should address the contaminated soil/fill at the Site and the implementation of certain engineering and/or institutional controls.

7.0 CONCLUSIONS

Based on an evaluation of the data collected from the Site as part of the Supplemental RI, there is some contaminated sediment, soil, groundwater, and soil vapor present at the Site. The elevated levels of PCBs, pesticides and metals in the soil and sediment, detection of chloroform in the groundwater, and the elevated levels of VOCs in the soil vapor seem to be attributed to the historic usage of the Site. Based on the results of the QHHEA, which was based on the findings of both the RI and Supplemental RI, a NYSDEC-approved Remedial Action Work Plan (RAWP) should be implemented to ensure that the potential exposure pathways identified do not become complete. The RAWP should address the contaminated soil/fill at the Site and include the implementation of certain engineering and/or institutional controls.

FIGURES

ects/11901 - MELROSE COMMONS SITE C-FAMILY/11901 Fig 1 Site Location map.mxd

TABLES

Table 1 Elton Crossing Site C - Family 899 Elton Avenue Bronx, NY Subsurface Soil Analytical Results Volatile Organic Compounds

							Volatilo Organi	e eempeanae								
Client ID	Part 375	Part 375	SSB-1 (0-2)	SSB-1 (5-7)	SSB-1 (7-9)	SSB-2 (0-2)	SSB-X	SSB-2 (5-7)	SSB-2 (8-10)	SSB-3 (0-2)	SSB-3 (5-7)	SSB-3 (7.5-9.5)	MW-3 (16.5-17)	SS-1	FB20150226	TB20150226
Lab Sample ID	Unrestricted	Restricted	JB88935-1	JB88935-2	JB88935-3	JB88935-4	JB88935-7	JB88935-5	JB88935-6	JB88935-8	JB88935-9	JB88935-10	JB88569-1	JB88569-2	JB88935-12	JB88935-11
Date Sampled	sco	Residential	2/25/2015	2/25/2015	2/25/2015	2/25/2015	2/25/2015	2/25/2015	2/25/2015	2/26/2015	2/26/2015	2/26/2015	2/18/2015	2/19/2015	2/26/2015	2/26/2015
		SCO														
µg/Kg	µg/Kg	µg/Kg													µg/L	µg/L
1.1.1-Trichloroethane	680	100.000	9.8 U	9.4 U	5.8 U	5 U	5.5 U	5.4 U	5.5 U	6 U	4.7 U	5 U	28 U	5.9 U	1 U	1 U
1,1,2,2-Tetrachloroethane	NS	NS	98.0	9.4 U	5.8 U	5.0	5.5 U	54 U	5.5 U	6 U	47 U	5.0	28 U	590	1 U	1 U
1,1,2-Trichloroethane	NS	NS	98.0	94 U	58 U	5 U	55 U	54 U	55 U	6.0	47 U	5 U	28 U	590	1 U	1.U
1.1-Dichloroethane	270	26.000	98.0	9.4 U	5.8 U	5.0	5.5 U	54 U	5.5 U	6 U	47 U	5.0	28 U	590	1 U	1 U
1 1-Dichloroethene	330	100 000	981	9411	581	5.0	55 U	5411	55 U	60	4711	5.0	28 11	5911	1	1 11
1 2 3-Trichlorobenzene	NS	NS	9.8.11	9411	5.8 U	5.11	5.5 U	5411	5.5 U	611	4711	5.0	28 11	5911	5.11	5.11
1,2,3-Trichlorobenzene	NS	NS	9.8 11	9.4 11	5.8 U	5 11	5.5 0	5.4 U	5.5 U	611	4.7 0	50	28.11	5.9 0	5.0	5.0
1,2,4 memorobenzene	NS	NS	20 11	19 1	12 11	991	11	11	11	12 11	9411	10 11	56 U	12 11	10 11	10 11
1,2 Dibromoethano	NS	NS	20 0	1011	120	0.00 11	111	111	111	12.0	0.04 11	100	56 U	120	211	211
1,2-Dibioindeniane	1 100	100.000	2.0	1.9 0	5.2.0	0.99 0	5.5.11	5.11	5.5.11	1.2 0	0.94 0	5.1	3.0 0	5.0 U	2.0	2.0
1,2-Dichloroothano	1,100	3 100	9.8 0	9.4 0	1.2 11	0.00.11	111	1.1.1	111	1211	4.7 0	50	5611	1211	1.1	1 1
1,2-Dichloropropapa	20 NS	3,100 NS	0.8.11	0.4 11	5.9.11	0.99 0	5511	5411	5.5 11	1.2 0	0.94 0	5.11	29.11	5.0.11	1.1	1 1
1,2-Dichloropropane	140	10.000	9.8 0	9.4 0	5.0 U	50	5.5 0	5.4 U	5.5 0	0.0	4.7 0	50	20 0	5.9 0	10	10
1,3-Dichlorobenzene	2,400	49,000	9.8 U	9.4 U	5.8 U	50	5.5 U	5.4 U	5.5 U	60	4.7 U	50	28 U	5.9 U	10	10
2 Butenene (MEK)	1,800	13,000	9.8 U	9.4 U	5.8 U	5 U	5.5 U	5.4 U	5.5 U	6 U	4.7 U	5 U	28 U	5.9 U	10	10
2-Butanone (MEK)	120	100,000	20 R	19 R	12 R	9.9 R					9.4 R		20 R	12 R		
2-Rexamone	NS	NS	9.8 R	9.4 R	5.8 R	5 R	5.5 R	5.4 R	5.5 K	6 R	4.7 R	5 R	28 R	5.9 R	5 R	5 R
4-Methyl-2-pentanone(MIBK)	NS	NS	9.8 R	9.4 R	5.8 R	5 R	5.5 R	5.4 R	5.5 K	6 R	4.7 R	5 R	28 R	5.9 R	5 R	5 R
Remone	50	100,000	13.2 J+	34.4 J+	9.3 J+	9.9 R		11 R	23.9 J+	12 R	9.4 R	10 R	32.6 J+	12 R	10 R	10 R
Benzene	60 NC	4,800	20	1.9 U	1.2 U	0.99 0	1.1 U	1.1 U	1.1 U	1.2 U	0.94 0	1 U	5.6 U	1.2 U	T U	10
Bromochloromethane	NS NG	NS NG	9.6 U	9.4 0	5.6 U	50	5.5 U	5.4 U	5.5 U	60	4.7 U	50	28 0	5.9 U	50	50
Bromodicnioromethane	NS NC	NS NC	9.8 U	9.4 U	5.8 U	50	5.5 U	5.4 U	5.5 U	60	4.7 U	50	28 U	5.9 UJ	10	10
Bromotorm	NS	NS NC	9.8 U	9.4 U	5.8 U	50	5.5 U	5.4 U	5.5 U	60	4.7 U	50	28 U	5.9 UJ	4 0	40
Corbon disulfido	NS NC	NS	9.6 0	9.4 0	5.6 U	50	5.5 U	5.4 0	5.5 U	60	4.7 0	50	20 U	5.9 0	20	20
Carbon disulide	113	113	9.8 0	9.4 0	5.8 U	50	5.5 U	5.4 U	5.5 U	60	4.7 0	50	15.5 J	5.9 0	20	20
Carbon tetrachionde	700	2,400	9.6 U	9.4 0	5.6 U	50	5.5 U	5.4 U	5.5 U	60	4.7 U	50	20 U	5.9 05	10	10
Chloroothana	1,100	100,000	9.6 0	9.4 0	5.6 U	50	5.5 U	5.4 0	5.5 U	60	4.7 0	50	20 U	5.9 0	1 1 1 1	1 1 1 1
Chloroform	270	10.000	9.6 0	9.4 0	5.6 U	50	5.5 U	5.4 0	0.45	60	4.7 0	50	20 U	5.9 0	1 UJ	1 UJ
Chloromothana	370	49,000	9.8 0	0.51 5	5.8 0	50	5.5 0	5.4 0	0.45 5	6.1	4.7 0	50	28.0	5.9 0	1.11	1 111
	113	100.000	9.6 U	9.4 0	5.6 U	50	5.5 U	5.4 U	5.5 U	60	4.7 U	50	20 U	5.9 0	1 UJ	1 UJ
cis-1,2-Dichloroethene	250	100,000	9.8 U	9.4 U	5.8 U	50	5.5 U	5.4 U	5.5 U	60	4.7 U	50	28 U	5.9 U	10	10
Cis-1,3-Dichloropropene	NS	NS NC	9.8 U	9.4 U	5.8 U	50	5.5 U	5.4 U	5.5 U	60	4.7 U	50	28 U	5.9 U	T U	10
Dikromochloromothono	NS NC	NS NC	9.8 0	9.4 0	5.8 U	50	5.5 U	5.4 U	5.5 U	60	4.7 0	50	20 U	5.9 0	30	50
Dibromocnioromethane	NS	NS NC	9.8 U	9.4 U	5.8 U	50	5.5 U	5.4 U	5.5 U	60	4.7 U	50	28 U	5.9 UJ	- T U	10
Dichlorodinuoromethane	1.000	NS 44.000	9.8 U	9.4 0	5.8 U	5 0	5.5 U	5.4 U	5.5 U	60	4.7 0	50	28 0	5.9 U	50	50
Ethylbenzene Eroop 112	1,000	41,000	2.0	1.9 0	5.2.0	0.99 0	5.5.11	5.4.11	5.5.11	1.2 0	0.94 0	5.1	2.9 J	5.0 U	5.1	5.11
Isopropylbonzopo	NS	NS	9.8 0	9.4 0	5.8 U	50	5.5 U	5.4 U	5.5 U	611	4.7 0	50	200	5.90	3.0	211
	NG	NG	9.0 0	9.4 0	1.2 11	0.00.11	1.1.1	5.4 0	1.1.1	0.5 1	0.49 J	5.0	2.7 J	1.2 U	2.0	2.0
Mothyl Acotato	NS	NS	0.811	0.4 11	5.9.11	0.99 0	5511	5411	5.5 11	0.5 5	0.27 5	5.11	2.0 J	5.0.11	5.0	5.0
Methyl Tort Butyl Ethor	020	100.000	9.8 0	9.4 0	1.2 11	0.00.11	111	1.1.1	111	1211	4.7 0	50	5611	1211	1 11	1 11
Methyl Telt Butyl Ether	930 NS	100,000 NS	0.811	0.4 11	5.9.11	0.99 0	5511	5411	5.5 11	1.2 0	0.94 0	5.11	1.1 1	5.0.11	5.0	5.0
Methylopa chlorida	50	100.000	9.0 0	9.4 U	5.00	5.0	5.5 0	5.4 U	5.5 0	611	4.7 U	50	29.11	5.9 U	211	211
	NS	NS	3.0 0	1.4 U	1211	0.00.11	111	1 1 11	111	0331	0.94.11	1 11	471	1211	1 11	1 11
Styropo	NS	NS	0.811	0.4 11	5.9.11	0.99 0	5511	5411	5511	0.33 J	0.94 0	5.11	4.7 J	5.0.11	5.0	5.0
Tetrachloroethene	1 300	19,000	9.0 U Q Q I I	0 03 1	0.67 1	50	5.5 0	5.4.0	5.5 0	11.9	4.7 0	50	20 0	5.50	1 11	1 11
Toluene	700	100.000	3.0 U 2 H	1011	1 2 11	0 00 11	1 1 11	1 1 11	0.23 1	1211	0 04 11	1 11	1 1	1011	1 11	1 11
trans-1 2-Dichloroethene	100	100,000		0/11	5.2.0	5.55 0	5511	5711	5511	6.11	/ 7 11	511	2811	5011	1 11	1 11
trans-1 3-Dichloropropene	NS	NS	0.0 U 0.8 I I	9.4 0	5.00	5.0	5.5 0	5411	5511	11.8	4711	5.0	20 0	5.30	1	1
Trichloroethene	470	21 000	0.0 0	0/11	5.00	50	5.5 0	5.4.0	5.5 0	11.9	4.7 0	50	200	5.30	1 11	1 11
Trichlorofluoromethane	Ne	21,000 NS	0011	9.4 0	5.00	50	5.5 0	5.4 0	5.5 0	6.0	4.7 0	50	20 0	5.50	511	511
Vinyl chloride	20	900	9.0 U 0.8 I I	9.4 0	5.0 U	50	5.5 0	5.4 0	5.5 0		4.7 U	50	20 U	5.90	1 111	1 1 1 1
Yulene (total)	20	100 000	9.0 U	9.4 0	3.0 U	0.00.11	5.5 U 4 4 H	5.4 U 1 1 I I	5.5 U 4 4 11	000	4.7 0	1 11	20 U	1211	1 UJ	1 UJ
	200	100,000	20	1.9 U	1.2 U	0.88 0	1.1 0	1.1 U	1.1 U	0.03 J	0.27 J	10	1.5	1.2 U	10	10

Client ID	Part 375	Part 375	SSB-1 (0-2)	SSB-1 (5-7)	SSB-1 (7-9)	SSB-2 (0-2)	SSB-X	SSB-2 (5-7)	SSB-2 (8-10)	SSB-3 (0-2)	SSB-3 (5-7)	SSB-3 (7.5-9.5)	MW-3 (16.5-17)	SS-1	FB20150226
Lab Sample ID	Unrestricted	Restricted	JB88935-1	JB88935-2	JB88935-3	JB88935-4	JB88935-7	JB88935-5	JB88935-6	JB88935-8	JB88935-9	JB88935-10	JB88569-1	JB88569-2	JB88935-12
Date Sampled	SCO	Residential	2/25/2015	2/25/2015	2/25/2015	2/25/2015	2/25/2015	2/25/2015	2/25/2015	2/26/2015	2/26/2015	2/26/2015	2/18/2015	2/19/2015	2/26/2015
Dilution		SCO	1	1	1/2 †	1	1	1	1	1	1/5 †	1	1	1	1
1 1'- Rinhonyd	pg/rtg	pg/kg	470.11	159 1	95 11	72 11	72 11	67 11	72.11	76 11	76 11	75 11	74.11	92 11	111
1.2.4.5-Tetrachlorobenzene	NS	NS	1 200 11	49.2 L	210 11	180 11	180 U	170 11	180 11	190 11	190 U	190 11	180 11	210 11	2.2.11
1.4-Dioxane	100	13.000	240 U	40.1 U	43 U	36 U	36 U	33 U	36 U	38 U	38 U	37 U	37 U	41 U	11 U
2.3.4.6-Tetrachlorophenol	NS	NS	1.200 U	200 U	210 U	180 U	180 U	170 U	180 U	190 U	190 U	190 U	180 U	210 U	5.4 U
2.4.5-Trichlorophenol	NS	NS	1.200 U	200 U	210 U	180 U	180 U	170 U	180 U	190 U	190 U	190 U	180 U	210 U	5.4 U
2,4,6-Trichlorophenol	NS	NS	1,200 U	200 U	210 U	180 U	180 U	170 U	180 U	190 U	190 U	190 U	180 U	210 U	5.4 U
2,4-Dichlorophenol	NS	NS	1,200 U	200 U	210 U	180 U	180 U	170 U	180 U	190 U	190 U	190 U	180 U	210 U	2.2 U
2,4-Dimethylphenol	NS	NS	1,200 U	200 U	210 U	180 U	180 U	170 U	180 U	190 U	190 U	190 U	180 U	210 R	5.4 U
2,4-Dinitrophenol	NS	NS	4,700 R	810 U	850 U	730 U	730 U	670 U	720 U	760 U	760 U	750 U	740 U	830 UJ	22 U
2,4-Dinitrotoluene	NS	NS	240 R	41 U	43 U	36 U	36 U	33 U	36 U	38 U	38 U	37 U	37 U	41 U	1.1 U
2,6-Dinitrotoluene	NS	NS	240 R	41 U	43 U	36 U	36 U	33 U	36 U	38 U	38 U	37 U	37 U	41 U	1.1 U
2-Chloronaphthalene	NS	NS	470 U	81 U	85 U	73 U	73 U	67 U	72 U	76 U	76 U	75 U	74 U	83 U	2.2 U
2-Chlorophenol	NS	NS	470 U	81 U	85 U	73 U	73 U	67 U	72 U	76 U	76 U	75 U	74 U	83 U	5.4 U
2-Methylnaphthalene	NS	NS	276 J	1,280 J-	68.2 J	73 U	73 U	67 U	72 U	76 U	76 U	75 U	74 U	83 U	1.1 U
2-memylphenol	330	100,000	470 U	81 U	85 U	/3 U	73 U	170 U	12 U	76 U	76 U	/5 U	74 U	83 U	2.2 U
2-Nitronhenol	NS	NS	1,200 U	200 U	210 U	180 U	180 U	170 U	180 U	190 U	190 U	190 U	180 U	210 U	5.4 U
384-Methylphenol	NS	NS	470 H	81 11	243 .1	73 1	73 11	67 11	72 11	76 1	76 11	75 11	74 11	83 11	2211
3.3'-Dichlorobenzidine	NS	NS	470 R	81 U	85 U	73 U	73 U	67 U	72 U	76 U	76 U	75 U	74 U	83 R	2.2 U
3-Nitroaniline	NS	NS	1,200 R	200 U	210 U	180 U	180 U	170 U	180 U	190 U	190 U	190 U	180 U	210 UJ	5.4 U
4,6-Dinitro-o-cresol	NS	NS	4,700 R	810 U	850 U	730 U	730 U	670 U	720 U	760 U	760 U	750 U	740 U	830 U	22 U
4-Bromophenyl phenyl ether	NS	NS	470 U	81 U	85 U	73 U	73 U	67 U	72 U	76 U	76 U	75 U	74 U	83 U	2.2 U
4-Chloro-3-methyl phenol	NS	NS	1,200 U	200 U	210 U	180 U	180 U	170 U	180 U	190 U	190 U	190 U	180 U	210 U	5.4 U
4-Chloroaniline	NS	NS	1,200 U	200 U	210 U	180 U	180 U	170 U	180 U	190 U	190 U	190 U	180 U	210 R	5.4 U
4-Chlorophenyl phenyl ether	NS	NS	470 U	81 U	85 U	73 U	73 U	67 U	72 U	76 U	76 U	75 U	74 U	83 U	2.2 U
4-Nitroaniline	NS	NS	1,200 R	200 U	210 U	180 U	180 U	170 U	180 U	190 U	190 U	190 U	180 U	210 U	5.4 U
4-Nitrophenol	NS	NS	2,400 R	410 U	430 U	360 U	360 U	330 U	360 U	380 U	380 U	370 U	370 U	410 U	11 U
Acenaphthene	20,000	100,000	240 U	41 U	43 U	36 U	36 U	33 U	36 U	38 U	38 U	37 U	671	41 U	1.1 U
Acenaphthylene	100,000	100,000	119 J	288 J-	130 J	36 U	36 U	33 U	36 U	38 U	38 U	37 U	37 U	41 U	1.1 U
Acetophenone	NS 400.000	NS 100.000	163 J	200 0	210 0	180 U	180 0	170 0	180 0	190 U	190 U	190 0	180 0	117 J	2.2 U
Attoring	100,000	100,000	127 J	307 J-	200 J	36 U	36 U	53 U	30 0	36 U	36 U	37 U	37 U	41 U 92 II	2211
Benzaldebyde	NS	NS	1 200 U	200 U	210 U	180 U	180 U	170 U	180 U	190 U	190 U	190 U	180 U	210 U	54 U
Benzo(a)anthracene	1.000	1.000	155 J	342 J-	41.1 J	36 U	36 U	33 U	16.2 J	38 U	38 U	37 U	138	35.9 J	1.1 U
Benzo(a)pyrene	1,000	1,000	127 J	340 J-	43 U	36 U	36 U	33 U	20.7 J	38 U	38 U	37 U	86.5	32.4 J	1.1 U
Benzo(b)fluoranthene	1,000	1,000	186 J	491 J-	43 U	36 U	36 U	33 U	26 J	38 U	38 U	37 U	89.1	68.3	1.1 U
Benzo(g,h,i)perylene	100,000	100,000	539 R	2,100 J-	529 J	36 U	36 U	33 U	23.3 J	38 U	38 U	37 U	45	63.2	1.1 U
Benzo(k)fluoranthene	800	3,900	240 U	155 J-	43 U	36 U	36 U	33 U	36 U	38 U	38 U	37 U	21 J	20.3 J	1.1 U
bis(2-Chloroethoxy)methane	NS	NS	470 U	81 U	85 U	73 U	73 U	67 U	72 U	76 U	76 U	75 U	74 U	83 U	2.2 U
bis(2-Chloroethyl)ether	NS	NS	470 U	81 U	85 U	73 U	73 U	67 U	72 U	76 U	76 U	75 U	74 U	83 U	2.2 U
bis(2-Chloroisopropyl)ether	NS	NS	470 U	81 U	85 U	73 U	73 U	67 U	72 U	76 U	76 U	75 U	74 U	83 U	2.2 U
bis(2-Ethylnexyl)phthalate	NS	NS	284 J	318 J-	81.3 J	73 U	73 U	141	170	76 U	2/3	75 U	74 U	2,520 R	2.2 U
Butyl benzyl phthalate	NS	NS	1,560 J	91 11	204 J	73 U	73 U	67 U	72 U	417	7,030 D	75 U	74 U	07.0	2.2 U
Carbazole	NS	NS	470 U	91.1	20.6 J	73 U	73 U	67 U	72 U	76 U	76 U	75 U	74 U	83 U	11 U
Chrysene	1.000	3,900	167 J	354	26.7 .1	36 U	36 U	33 U	25.7 .1	38 U	38 U	37 U	526	59.5	11.0
Dibenzo(a,h)anthracene	330	330	240 U	406 J-	98.5 J	36 U	36 U	33 U	36 U	38 U	38 U	37 U	37 U	16.2 J	1.1 U
Dibenzofuran	7,000	59,000	470 U	103 J-	85 U	73 U	73 U	67 U	72 U	76 U	76 U	75 U	74 U	83 U	5.4 U
Diethyl phthalate	NS	NS	470 U	81 U	85 U	73 U	73 U	67 U	72 U	76 U	76 U	75 U	74 U	83 U	2.2 U
Dimethyl phthalate	NS	NS	470 U	81 U	85 U	73 U	73 U	67 U	72 U	76 U	76 U	75 U	74 U	83 U	2.2 U
Di-n-butyl phthalate	NS	NS	470 U	87.2 J-	85 U	73 U	73 U	67 U	72 U	76 U	76 U	75 U	74 U	152	2.2 U
Di-n-octyl phthalate	NS	NS	470 U	81 U	85 U	73 U	73 U	67 U	72 U	76 U	76 U	75 U	74 U	83 U	2.2 U
Fluoranthene	100,000	100,000	124 J	396 J-	22 J	36 U	36 U	33 U	23.4 J	38 U	38 U	37 U	241	57.6	1.1 U
Hexachlerebenzene	30,000	1 200	240 0	41 U 91 U	43 0	36 U	36 U	53 U	30 0	36 U	36 U	37 U	37 U	41 U 92 II	1.1 U
Hexachlorobutadiene	NS	1,200 NS	240 11	41 11	43 11	36 11	36 U	33 11	36 11	38 11	38 11	37 11	37 11	41 11	1.1 U
Hexachlorocyclopentadiene	NS	NS	2.400 R	410 U	430 U	360 U	360 U	330 U	360 U	380 U	380 U	370 U	370 U	410 U	11 U
Hexachloroethane	NS	NS	1,200 U	200 U	210 U	180 U	180 U	170 U	180 U	190 U	190 U	190 U	180 U	210 U	2.2 U
Indeno(1,2,3-cd)pyrene	500	500	420 J	1,230 J-	55.3 J	36 U	36 U	33 U	21.2 J	38 U	38 U	37 U	34.3 J	43.6	1.1 U
Isophorone	NS	NS	470 U	81 U	85 U	73 U	73 U	67 U	72 U	76 U	76 U	75 U	74 U	83 U	2.2 U
Naphthalene	12,000	100,000	164 J	752 J-	43 U	36 U	36 U	33 U	36 U	38 U	38 U	37 U	37 U	41 U	1.1 U
Nitrobenzene	NS	NS	470 U	81 U	85 U	73 U	73 U	67 U	72 U	76 U	76 U	75 U	74 U	83 U	2.2 U
N-Nitroso-di-n-propylamine	NS	NS	470 U	81 J-	85 U	73 U	73 U	67 U	72 U	76 U	76 U	75 U	74 U	83 U	2.2 U
N-Nitrosodiphenylamine	NS	NS	1,200 U	44.8 J-	210 U	180 U	180 U	170 U	180 U	190 U	190 U	190 U	180 U	210 U	5.4 U
Pentacniorophenol	800	6,700	2,400 U	410 U	430 U	360 U	360 U	330 U	360 U	380 U	380 U	370 U	370 U	410 U	11 U
Phenal	320	100,000	114 J	404 J-	22.9 J	36 U	36 U	33 U 67 U	18.6 J	38 U	38 U	37 U	37 U	01.3	1.1 U
Pyrene	100.000	100,000	164 1	283 L	43 11	36 11	36 11	33 11	31.8 1	38 11	38 11	37 11	248 848	68.7	11 11
, Junio	100,000	100,000	104 J	~00 J*	43 0	30 0	30 0	33 0	UI.0 J	30 0	30 0	310	J40	-00.1	1.1 0

Table 2 iton Crossing Site C - Family 899 Elton Avenue Bronx, NY Subsurtae Soil Analytical Results Semivolatile Organic Compounds

Elt

Pyrene Note: † = The dilution rate varies.
Table 3 Elton Crossing Site C - Family 899 Elton Avenue Bronx, NY Subsurface Soil Analytical Results Metals

Client ID Lab Sample ID Date Sampled	Part 375 Unrestricted SCO	Part 375 Restricted Residential	SSB-1 (0-2) JB88935-1 2/25/2015	SSB-1 (5-7) JB88935-2 2/25/2015	SSB-1 (7-9) JB88935-3 2/25/2015	SSB-2 (0-2) JB88935-4 2/25/2015	SSB-X JB88935-7 2/25/2015	SSB-2 (5-7) JB88935-5 2/25/2015	SSB-2 (8-10) JB88935-6 2/25/2015	SSB-3 (0-2) JB88935-8 2/26/2015	SSB-3 (5-7) JB88935-9 2/26/2015	SSB-3 (7.5-9.5) JB88935-10 2/26/2015	SS-1 JB88569-2 2/19/2015	FB20150226 JB88935-12 2/26/2015
Dilution		sco	1/2/100 †	1/10 †	1	1	1	1	1	1	1	1/2 †	1/2/3 †	1
mg/kg	mg/kg	mg/kg												μg/L
Aluminum	NS	NS	16,100	9,410	10,900	11,300	12,000	13,200	11,500	14,500	61,500	9,390	6,810	200 U
Antimony	NS	NS	5.2	4.3	2 U	2.2 U	2.3 U	2.2 U	2.3 U	2.3 U	2.3 U	2.3 U	7.4 c	6 U
Arsenic	13	16	16.1 c	14.5	4.6	3.3	3	3.1	6	4.4	3.9	4.3	13.3	3 U
Barium	350	400	792	492	139	53.6	56.4	70.5	119	51.1	148	66.8	124	200 U
Beryllium	7.2	72	0.67	0.56	0.64	0.74	0.7	0.81	0.65	0.66	2.6	1.5	0.22	1 U
Cadmium	2.5	4.3	11.9 c	17.7	4.3	0.55 U	0.57 U	0.55 U	2.1	0.57 U	0.6	0.62	7.1 c	3 U
Calcium	NS	NS	39,700	15,500	6,740	3,030	3,300	6,120	11,800	1,290	16,100	1,530	36,500	5,000 U
Chromium	NS	NS	62.2 c	52.7	32.9	26.5	25.2	36.3	33.2	26.4	61.9	30.1	50.1 c	10 U
Cobalt	NS	NS	12.8	9.9	10.5	9.5	9.6	11.3	9.7	8.5	18.5	16.9	25.4	50 U
Copper	50	270	198 c	270	95.3	29.9	31.1	21.9	33.3	14.4	44.8	36.1	130 c	10 U
Iron	NS	NS	61,400	31,600	30,400	20,000	19,700	23,600	29,600	22,000	38,900	37,200	73,700	100 U
Lead	63	400	935 c	1,940	373	17	27	100	450	8	15	7	354 c	3 U
Magnesium	NS	NS	4,940	4,230	6,440	5,500	5,750	6,280	5,570	4,280	15,400	3,440	3,660	5,000 U
Manganese	NS	NS	456 c	272	229	413	479	415	345	265	450	1,520	547 c	15 U
Mercury	0.18	0.81	44	5.3	0.82	0.034 U	0.033 U	0.057	0.13	0.035 U	0.035 U	0.033 U	0.038 U	0.2 U
Nickel	30	310	34.7	43.1	30.6	18.8	20.3	23.3	21.4	16.8	38.6	28.3	35.7	10 U
Potassium	NS	NS	1,380	1,220	2,290	2,080	2,040	4,440	3,400	1,660	6,490	1,290	2,080	10,000 U
Selenium	3.9	180	4 Uc	2 U	2 U	2.2 U	2.3 U	2.2 U	2.3 U	2.3 U	2.3 U	2.3 U	4 Uc	10 U
Silver	2	180	1.5 c	1.5	0.9	1.4	1.4	1	0.97	1.4	1.3	0.58 U	1.5 Uc	10 U
Sodium	NS	NS	1,620	1,000 U	1,000 U	1,100 U	1,100 U	1,100 U	1,100 U	1,100 U	2,860	1,200 U	1,000	10,000 U
Thallium	NS	NS	2 Uc	1 U	1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	2.3 Uc	2 Uc	2 U
Vanadium	NS	NS	73.2 c	52.8	33.9	30.2	29.4	35.5	31.1	34.9	95.1	45.4	41.2	50 U
Zinc	109	10,000	1,280	1,320	404	73	71	99	633	35	95	71	833	20 U

Notes: † = The dilution rate varies.

Table 4 Elton Crossing Site C - Family 899 Elton Avenue Bronx, NY Subsurface Soil Analytical Results PCBs and Pesticides

Client ID	Bort 275	Port 275	SSP 1 (0.2)	SSD 1 (5 7)	SSP 1 (7.0)	SSD 2 (0 2)	66D V	SSD 2 (5 7)	SSD 2 (9 10)	SSB 2 (0.2)	SSD 2 (5 7)	SSB 2 (7 5 0 5)	66.1	EP20150226
Lab Sample ID	Part 375	Part 3/5	33B-1 (0-2)	33B-1 (3-7)	33B-1 (7-9)	33D-2 (0-2)	33D-A	556-2 (5-7)	33D-2 (0-10)	33B-3 (U-2)	33D-3 (3-7)	33D-3 (7.3-9.3)	33-1	FB20150220
Lab Sample ID	SCO	Restricted	3/35/3015	3/35/3015	JB00933-3	3/35/3015	3/35/3015	JB00933-5	3/35/3015	3/36/3015	3/36/3015	3/36/3015	2/10/2015	JB00933-12
Dilution	300	Residential	1/20 +	2/25/2015 4/E ±	2/25/2015	2/25/2015	2/25/2015	2/25/2015	2/25/2015	2/20/2015	2/20/2015	2/20/2015	2/19/2015	2/20/2015
Dilation		300	1/20	1/5			•	'				•		1 '
µg/Kg	µg/Kg	µg/Kg												μg/L
Aroclor 1016	NS	NS	46 U	40 U	40 U	36 U	35 U	36 U	36 U	36 U	36 U	37 U	38 U	0.33 U
Aroclor 1221	NS	NS	46 U	40 U	40 U	36 U	35 U	36 U	36 U	36 U	36 U	37 U	38 U	0.33 U
Aroclor 1232	NS	NS	46 U	40 U	40 U	36 U	35 U	36 U	36 U	36 U	36 U	37 U	38 U	0.33 U
Aroclor 1242	NS	NS	46 U	40 U	40 U	36 U	35 U	36 U	36 U	36 U	36 U	37 U	38 U	0.33 U
Aroclor 1248	NS	NS	46 U	40 U	40 U	36 U	35 U	36 U	36 U	36 U	36 U	37 U	38 U	0.33 U
Aroclor 1254	NS	NS	46 U	40 U	40 U	36 U	35 U	36 U	36 U	36 U	36 U	37 U	38 U	0.33 U
Aroclor 1260	NS	NS	46 U	40 U	40 U	36 U	35 U	36 U	36 U	36 U	36 U	37 U	38 U	0.33 U
Aroclor 1262	NS	NS	14,700 D	3,030 b	485 a	36 U	35 U	36 U	36 U	36 U	36 U	37 U	451 b	0.33 U
Aroclor 1268	NS	NS	46 U	40 U	40 U	36 U	35 U	36 U	36 U	36 U	36 U	37 U	38 U	0.33 U
Total PCBs	100	1,000	14,700	3,030	485	ND	ND	ND	ND	ND	ND	ND	451	ND
	_								_					
Dilution			1/100/500 †	1/100/500 †	1/100/500 †	1	1	1	1	1	1	1	1/100/200 †	1
4,4'-DDD	3.3	13,000	7,320 D	7,280	2,150	1.2	1.2	7.9	6.8	0.72 U	0.73 U	0.73 U	144	0.0067 U
4,4'-DDE	3.3	8,900	2,710 D	1,030	530	1.9	2.3	61.2	59.3	2.6	20.2	0.73 U	1,250	0.0067 U
4,4'-DDT	3.3	7,900	0.94 U	0.79 U	0.84 U	0.69 U	0.73 U	0.68 U	0.73 U	0.72 U	0.73 U	0.73 U	1,190	0.0067 U
Aldrin	5	97	0.94 U	0.79 U	0.84 U	0.69 U	0.73 U	0.68 U	0.73 U	0.72 U	0.73 U	0.73 U	23.1 a	0.0067 U
alpha-BHC	20	480	0.94 U	0.79 U	0.84 U	0.69 U	0.73 U	0.68 U	0.73 U	0.72 U	0.73 U	0.73 U	0.75 U	0.0067 U
alpha-Chlordane	94	4,200	19,400 JD	13,600 a	8,330 a	2.2	3.7	16.1	12.3	0.72 U	1.6	0.73 U	2,340	0.0067 U
beta-BHC	36	360	0.94 U	0.79 U	0.84 U	0.69 U	0.73 U	0.68 U	0.73 U	0.72 U	0.73 U	0.73 U	0.75 U	0.0067 U
delta-BHC	40	100,000	0.94 U	0.79 U	0.84 U	0.69 U	0.73 U	0.68 U	0.73 U	0.72 U	0.73 U	0.73 U	0.75 U	0.0067 U
Dieldrin	5	200	8,930 D	20,300	3,210	1.1	2.6	40.5	16.3	0.72 U	2.8	0.73 U	7,220	0.0067 U
Endosulfan sulfate	2,400	24,000	0.94 U	0.79 U	0.84 U	0.69 U	0.73 U	0.68 U	0.73 U	0.72 U	0.73 U	0.73 U	0.75 U	0.0067 U
Endosulfan-I	2,400	24,000	0.94 U	0.79 U	0.84 U	0.69 U	0.73 U	0.68 U	0.73 U	0.72 U	0.73 U	0.73 U	0.75 U	0.0067 U
Endosulfan-II	2,400	24,000	0.94 U	0.79 U	0.84 U	0.69 U	0.73 U	0.68 U	0.73 U	0.72 U	0.73 U	0.73 U	0.75 U	0.0067 U
Endrin	14	11,000	817 D	834	330	0.69 U	0.73 U	0.68 U	0.73 U	0.72 U	0.73 U	0.73 U	168	0.0067 U
Endrin aldehyde	NS	NS	0.94 U	0.79 U	0.84 U	0.69 U	0.73 U	0.68 U	0.73 U	0.72 U	0.73 U	0.73 U	0.75 U	0.0067 U
Endrin ketone	NS	NS	0.94 U	453	43.1	0.69 U	0.73 U	0.68 U	0.73 U	0.72 U	0.73 U	0.73 U	0.75 U	0.0067 U
gamma-BHC (Lindane)	100	1,300	253 D	958	0.84 U	0.69 U	0.73 U	0.68 U	0.73 U	0.72 U	0.73 U	0.73 U	0.75 U	0.0067 U
gamma-Chlordane	NS	NS	21,600 D	15,200	9,150	2.7	5.5	30.6	31.2	0.72 U	2.6 a	0.73 U	3,330	0.0067 U
Heptachlor	42	2,100	0.94 U	0.79 U	938	0.69 U	0.73 U	0.94	0.73 U	0.72 U	0.73 U	0.73 U	1,520	0.0067 U
Heptachlor epoxide	NS	NS	0.94 U	0.79 U	0.84 U	0.69 U	0.73 U	0.68 U	0.73 U	0.72 U	0.73 U	0.73 U	322 a	0.0067 U
Methoxychlor	NS	NS	1.9 U	1.6 U	1.7 U	1.4 U	1.5 U	1.4 U	1.5 U	1.4 U	1.5 U	1.5 U	1.5 U	0.013 U
Toxaphene	NS	NS	23 U	20 U	21 U	17 U	18 U	17 U	18 U	18 U	18 U	18 U	19 U	0.17 U

Notes: † = The dilution rate varies.

Table 5 Elton Crossing Site C - Family 899 Elton Avenue Bronx, NY Groundwater Analytical Results Volatile Organic Compounds

Client ID	NYSDEC	MW-1	MW-2	MW-X	MW-3	TB20150311	FB20150311
Lab Sample ID	Class GA	JB89708-1	JB89708-2	JB89708-4	JB89708-3	JB89708-5	JB89708-6
Date Sampled	Ambient	3/11/2015	3/11/2015	3/11/2015	3/11/2015	3/11/2015	3/11/2015
-	Standard						
μg/L	µg/L						
1,1,1-Trichloroethane	5	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	5	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	1	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	5	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethene	5	1 U	1 U	1 U	1 U	1 U	1 U
1,2,3-Trichlorobenzene	5	5 U	5 U	5 U	5 U	5 U	5 U
1,2,4-Trichlorobenzene	5	5 U	5 U	5 U	5 U	5 U	5 U
1,2-Dibromo-3-chloropropane	0.04	10 U	10 U				
1,2-Dibromoethane	0.0006	2 U	2 U	2 U	2 U	2 U	2 U
1,2-Dichlorobenzene	3	1 U	1 U	1 U	17	1 U	1 U
1,2-Dichloroethane	0.6	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloropropane	1	1 U	1 U	1 U	1 U	1 U	1 U
1,3-Dichlorobenzene	3	1 U	1 U	1 U	1 U	1 U	1 U
1,4-Dichlorobenzene	3	1 U	1 U	10	10	1 U	10
2-Butanone (MEK)	50	10 R	10 R				
2-Hexanone	50	5 U	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-pentanone(MIBK)	NS	5 U	5 U	5 U	5 U	5 U	5 U
Acetone	50	7.6 J	16	16.7	32.5 J+	10 UJ	10 UJ
Benzene	1	1 U	1 U	10	1 U	1 U	1 U
Bromochloromethane	5	5 U	50	50	5 U	50	50
Bromodichloromethane	50	1 U	1 U	1 U	1 U	1 U	0.48 J
Bromotorm	50	4 0	4 U	4 U	4 U	4 U	4 U
Bromometnane	5	20	20	20	20	20	20
Carbon disulfide	60	20	20	20	20	20	20
Carbon tetrachioride	5	10	10	10	10	10	10
	5	10	10	10	10	10	10
Chloroethane	5	10	10	10	10	10	10
Chloroform Chloromathana	7	10	10	10	9.5	10	1.6
chloromethane	5	10	10	10	10	10	10
cis-1,2-Dichloroethene	5 NC	10	10	10	10	10	10
Cis-1,3-Dicilioropropene	NS	5.1	5.0	5.11	5.1	5.1	5.1
Dibromochloromothano	50	111	111	1 11	111	1 11	111
Dichlorodifluoromethane	5	5.1	5.0	5.0	5.0	5.0	5.1
Ethylbenzene	5	1 11	1 11	1 11	111	1 11	1 11
Erron 113	5	5.0	5.0	5.0	5.0	5.0	5.0
Isopropylbenzene	5	211	211	211	211	211	211
m.p-Xvlene	0.002	1 U	1 U	1 U	1 U	1 U	1 U
Methyl Acetate	NS	5 U	5 U	5 U	5 U	5 U	5 U
Methyl Tert Butyl Ether	10	1 U	1 U	1 U	1 U	1 U	1 U
Methylcyclohexane	NS	5 U	5 U	5 U	5 U	5 U	5 U
Methylene chloride	5	2 U	2 U	2 U	2 U	2 U	2 U
o-Xylene	5	1 U	1 U	1 U	1 U	1 U	1 U
Styrene	5	5 U	5 U	5 U	5 U	5 U	5 U
Tetrachloroethene	5	0.99 J	1 U	1 U	1 U	1 U	1 U
Toluene	5	1 U	0.48 J	0.43 J	0.56 J	1 U	1 U
trans-1,2-Dichloroethene	5	1 U	1 U	1 U	1 U	1 U	1 U
trans-1,3-Dichloropropene	NS	1 U	1 U	1 U	1 U	1 U	1 U
Trichloroethene	5	1 U	1 U	1 U	1 U	1 U	1 U
Trichlorofluoromethane	5	5 U	5 U	5 U	5 U	5 U	5 U
Vinyl chloride	2	1 U	1 U	1 U	1 U	1 U	1 U
Xylene (total)	NS	1 U	1 U	1 U	1 U	<u>1 U</u>	<u>1 U</u>

Table 6 Elton Crossing Site C - Family 899 Elton Avenue Bronx, NY Groundwater Analytical Results Semivolatile Organic Compounds

Client ID NYSDEC MW-X FB20150311 MW-1 MW-2 MW-3 Lab Sample ID Class GA JB89708-1 JB89708-2 JB89708-4 JB89708-3 JB89708-6 3/11/2015 3/11/2015 3/11/2015 3/11/2015 3/11/2015 Date Sampled Ambient Standard µg/L µg/L 1,1'-Biphenyl 1.1 U 1 U 1 U 1 U 1 U 5 1,2,4,5-Tetrachlorobenzene 5 2 U 2 U 2.1 U 2 U 2.1 U 1,4-Dioxane NS 1 U 1 U 1 U 1 U 1.1 U 2,3,4,6-Tetrachlorophenol NS 5 U 5 U 5.2 U 5 U 5.3 U 2,4,5-Trichlorophenol NS 5 U 5 U 5.2 U 5 U 5.3 U NS 5 U 5.2 U 5 U 5.3 U 2,4,6-Trichlorophenol 5 U 2,4-Dichlorophenol 5 2 U 2 U 2.1 U 2 U 2.1 U 2,4-Dimethylphenol 50 5 U 5 U 52 U 5 U 53 U 2,4-Dinitrophenol 10 20 U 20 U 21 U 20 U 21 U 2,4-Dinitrotoluene 5 1 U 1 U 1 U 1 U 1.1 U 1 U 1 U 1 U 1 U 1.1 U 2,6-Dinitrotoluene 5 10 2 U 2.1 U 2-Chloronaphthalene 2 U 2.1 U 2 U 2-Chlorophenol NS 5 U 5 U 52 U 5 U 53 U 2-Methylnaphthalene NS 1 U 1 U 1 U 1 U 11 U 2-Methylphenol NS 2 U 2 U 2.1 U 2 U 2.1 U 2-Nitroaniline 5 5 U 5 U 5.2 U 5 U 5.3 U NS 2-Nitrophenol 5 U 5 U 5.2 U 5 U 5.3 U 2 U 3&4-Methylphenol 0.002 2 U 2.1 U 2 U 2.1 U 3.3'-Dichlorobenzidine 5 211 211 21 U 2 R 21 U 3-Nitroaniline 5 5 U 5 U 5.2 U 5 U 5.3 U NS 20 U 20 U 21 U 20 U 21 U 4,6-Dinitro-o-cresol 4-Bromophenyl phenyl ether NS 2.1 U 2.1 U 2 U 2 U 2 U NS 5 U 5 U 5.2 U 5 U 5.3 U 4-Chloro-3-methyl phenol 4-Chloroaniline 5 5 U 5 U 52 U 5 U 53 U 4-Chlorophenyl phenyl ether NS 2 U 2 U 2.1 U 2 U 2.1 U 4-Nitroaniline 5 U 5 U 5.2 U 5 U 5.3 U 5 NS 4-Nitrophenol 10 U 10 U 10 U 10 U 11 U 1 U 1 U 1 U 0.88 J 1.1 U Acenaphthene 20 Acenaphthylene NS 1 U 1 U 1 U 1 U 1.1 U Acetophenone NS 211 0.84 .1 0.66 J 211 21 U Anthracene 50 1 U 1 U 1 U 1 U 1.1 U 2 U 2.1 U Atrazine 7.5 2 U 2.1 U 2 U NS 5 U 5 U 5.2 U 5 U 5.3 U Benzaldehvde 0.002 1 U 1 U 1.1 U Benzo(a)anthracene 1 U 1 U Benzo(a)pyrene ND 1 U 1 U 1 U 1 U 1.1 U Benzo(b)fluoranthene 0.002 1 U 1 U 1 U 1 U 1.1 U Benzo(g,h,i)perylene NS 1 U 1 U 1 U 1 U 1.1 U 0.002 1 U 1 U 1 U 1 U 1.1 U Benzo(k)fluoranthene 2 U bis(2-Chloroethoxv)methane 2 U 2.1 U 2 U 2.1 U 5 bis(2-Chloroethyl)ether 1 2 U 2 U 2.1 U 2 U 2.1 U bis(2-Chloroisopropyl)ether 5 2 U 2 U 2.1 U 2 U 2.1 U bis(2-Ethylhexyl)phthalate 5 2 U 2 U 2.1 U 2 U 2.1 U 50 2 U 2 U 2.1 U 2 U <u>2.1</u>U Butyl benzyl phthalate NS 2 U 2 U 2.1 U 2 U 2.1 U Caprolactam 1 U Carbazole NS 1 U 1 U 1 U 1.1 U Chrysene 0.002 1 U 1 U 1 U 1 U 1.1 U Dibenzo(a,h)anthracene NS 1 U 1 U 1 U 1 U 1.1 U NS 5 U 5 U 5.2 U 5 U 5.3 U Dibenzofuran Diethyl phthalate 50 2 U 2 U 2.1 U 2 U 2.1 U 2 U 2 U 2.1 U 2 U 2.1 U Dimethyl phthalate 50 Di-n-butyl phthalate 50 2 U 2 U 2.1 U 2 U 2.1 U Di-n-octyl phthalate 50 2 U 2 U 2.1 U 2 U 2.1 U Fluoranthene 50 1 U 1 U 1 U 1 U 1.1 U 50 1 U 1 U 1 U 1 U 1.1 U Fluorene 1 U 1 U 1 U 1 U 1.1 U 0.04 Hexachlorobenzene 1 U Hexachlorobutadiene 0.5 1 U 1 U 1 U 1.1 U Hexachlorocyclopentadiene 5 10 U 10 U 10 U 10 U 11 U Hexachloroethane 5 2 U 2 U 2.1 U 2 U 2.1 U 0.002 1 U 1 U 1 U 1 U 1.1 U Indeno(1,2,3-cd)pyrene 50 2 U 2 U 2.1 U 2 U 2.1 U Isophorone Naphthalene 10 1 U 1 U 1 U 1 U 1.1 U 0.4 2 U 2 U 2.1 U 2 U 2.1 U Nitrobenzene N-Nitroso-di-n-propylamine NS 2 U 2 U 2.1 U 2 U 21 U N-Nitrosodiphenylamine 50 5 U 5 U 5.2 U 5 U 5.3 U 10 U 10 U 10 U 10 U 11 U Pentachlorophenol NS Phenanthrene 50 1 U 1 U 1 U 1.1 U 1 U 2 U NS 2 U 2.1 U 2 U 2.1 U Phenol Pyrene 50 1 U 1 U 1 U 1 U 11 U

Table 7 Elton Crossing Site C - Family 899 Elton Avenue Bronx, NY Groundwater Analytical Results Metals

motaio											
Client ID	NYSDEC	MW-1	MW-2	MW-X	MW-3	FB20150311					
Lab Sample ID	Class GA	JB89708-1	JB89708-2	JB89708-4	JB89708-3	JB89708-6					
Date Sampled	Ambient	3/11/2015	3/11/2015	3/11/2015	3/11/2015	3/11/2015					
	Standard										
Total Metals - μg/L	μg/L										
Aluminum	NS	200 U	2,140	1,560	273	200 U					
Antimony	3	6 U	6 U	6 U	6 U	6 U					
Arsenic	25	7.1	3.2	3 U	3 U	3 U					
Barium	1,000	200 U									
Beryllium	3	1 U	2	1.7	1 U	1 U					
Cadmium	5	3 U	3 U	3 U	3 U	3 U					
Calcium	NS	71,500	78,400	72,700	56,600	5,000 U					
Chromium	50	18.7	11.9	10 U	10 U	10 U					
Cobalt	NS	50 U									
Copper	200	10 U	11.9	10.2	10 U	10 U					
Iron	300	100 U	19,200	15,300	4,160	100 U					
Lead	25	3 U	23.2	20.3	3 U	3 U					
Magnesium	35,000	40,700	24,500	22,000	15,000	5,000 U					
Manganese	500	15 U	524	473	135	15 U					
Mercury	0.7	0.2 U									
Nickel	100	10 U	20	16.6	10 U	10 U					
Potassium	NS	22,200	39,800	38,000	53,700	10,000 U					
Selenium	10	10 U									
Silver	50	10 U									
Sodium	20,000	60,400	224,000	217,000	91,500	10,000 U					
Thallium	0.5	2 U	2 U	2 U	2 U	2 U					
Vanadium	NS	50 U									
Zinc	2,000	20 U	57.6	49.1	20 U	20 U					

Filtered Metals - µg/L

Aluminum	NS	200 U	200 U	200 U	298	200 U
Antimony	3	6 U	6 U	6 U	6 U	6 U
Arsenic	25	7.3	3 U	3 U	3 U	3 U
Barium	1,000	200 U	200 U	200 U	200 U	200 U
Beryllium	3	1 U	1 U	1 U	1 U	1 U
Cadmium	5	3 U	3 U	3 U	3 U	3 U
Calcium	NS	70,800	29,200	30,000	56,200	5,000 U
Chromium	50	18.1	10 U	10 U	10 U	10 U
Cobalt	NS	50 U	50 U	50 U	50 U	50 U
Copper	200	10 U	10 U	10 U	10 U	10 U
Iron	300	100 U	100 U	100 U	4,190	100 U
Lead	25	3 U	3 U	3 U	3.1	3 U
Magnesium	35,000	41,100	5,280	5,440	15,400	5,000 U
Manganese	500	15 U	15 U	15 U	154	15 U
Mercury	0.7	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Nickel	100	10 U	10 U	10 U	10 U	10 U
Potassium	NS	22,600	41,000	41,200	49,200	10,000 U
Selenium	10	10 U	10 U	10 U	10 U	10 U
Silver	50	10 U	10 U	10 U	10 U	10 U
Sodium	20,000	60,900	239,000	239,000	84,900	10,000 U
Thallium	0.5	2 U	2 U	2 U	2 U	2 U
Vanadium	NS	50 U	50 U	50 U	50 U	50 U
Zinc	2,000	20 U	20 U	20 U	20 U	20 U

Table 8 Elton Crossing Site C - Family 899 Elton Avenue Bronx, NY Groundwater Analytical Results PCBs and Pesticides

Client ID	NYSDEC	MW-1	MW-2	MW-X	MW-3	FB20150311					
Lab Sample ID	Class GA	JB89708-1	JB89708-2	JB89708-4	JB89708-3	JB89708-6					
Date Sampled	Ambient	3/11/2015	3/11/2015	3/11/2015	3/11/2015	3/11/2015					
	Standard										
Polychlorinated Biphenyls - µg/L	μg/L										
Aroclor 1016	NS	0.05 U									
Aroclor 1221	NS	0.05 U									
Aroclor 1232	NS	0.05 U									
Aroclor 1242	NS	0.05 U									
Aroclor 1248	NS	0.05 U									
Aroclor 1254	NS	0.05 U									
Aroclor 1260	NS	0.05 U									
Total PCBs	0.09	ND	ND	ND	ND	ND					
Pesticides - µg/L											
4,4'-DDD	0.3	0.0067 U									
4,4'-DDE	0.2	0.0067 U									
4,4'-DDT	0.2	0.0067 U									
Aldrin	ND	0.0067 U									
alpha-BHC	0.01	0.0067 U									
alpha-Chlordane	NS	0.0067 U									
beta-BHC	0.04	0.0067 U									
delta-BHC	0.04	0.0067 U									
Dieldrin	0.004	0.0067 U									
Endosulfan sulfate	NS	0.0067 U									
Endosulfan-l	NS	0.0067 U									
Endosulfan-II	NS	0.0067 U									
Endrin	ND	0.0067 U									
Endrin aldehyde	5	0.0067 U									
Endrin ketone	5	0.0067 U									
gamma-BHC (Lindane)	0.05	0.0067 U									
gamma-Chlordane	NS	0.0067 U									
Heptachlor	0.04	0.0067 U									
Heptachlor epoxide	0.03	0.0067 U									
Methoxychlor	35	0.013 U									
Toxaphene	0.06	0.17 U	0.17 U	0 17 U	0.17 U	0.17 U					

Table 9 Elton Crossing Site C - Family 899 Elton Avenue Bronx, NY Groundwater Analytical Results Volatile Organic Compounds

Client ID	NYSDOH 2006	SAA-1	SSV-1
Lab Sample ID	Soil Vapor	JB88930-2	JB88930-1
Date Sampled	Intrusion	2/26/2015	2/26/2015
Dilution	Air Guideline	1	57.2
	Value		
µg/m³	µg/m³		
1,1,1-Trichloroethane	100	1.1 U	130 U
1,1,2,2-Tetrachloroethane	NS	1.4 U	160 U
1,1,2-Trichloroethane	NS	1.1 U	130 U
1,1-Dichloroethane	NS	0.81 U	93 U
1,1-Dichloroethylene	NS	0.79 U	91 U
1,2,4-Trichlorobenzene	NS	1.5 U	170 U
1,2,4-Trimethylbenzene	NS	3.1	123,000 D
1,2-Dibromoethane	NS	1.5 U	180 U
1,2-Dichloroethane	NS	0.81 U	93 U
1,2-Dichloropropane	NS	0.92 U	110 U
1,3,5-Trimethylbenzene	NS	0.98	39,700 D
1,3-Butadiene	NS	0.44 U	51 U
1,4-Dioxane	NS	0.72 U	83 U
2,2,4-Trimethylpentane	NS	0.65 J	958
2-Chlorotoluene	NS	1 U	120 U
2-Hexanone	NS	0.82 U	94 U
3-Chloropropene	NS	0.63 U	72 U
4-Ethyltoluene	NS	0.88 J	30,700 D
Acetone	NS	6.4	55 U
Benzene	NS	1.1	73 U
Benzyl Chloride	NS	1 U	120 U
Bromodichloromethane	NS	1.3 U	150 U
Bromoethene	NS	0.87 U	100 U
Bromoform	NS	2.1 U	240 U
Bromomethane	NS	0.78 U	89 U
Carbon disulfide	NS	0.62 U	72 U
Carbon tetrachloride	5	1.3 U	140 U
Chlorobenzene	NS	0.92 U	110 U
Chloroethane	NS	0.53 U	61 U
Chloroform	NS	0.98 U	110 U
Chloromethane	NS	1.2	47 U
cis-1,2-Dichloroethylene	NS	0.79 U	91 U
cis-1,3-Dichloropropene	NS	0.91 U	100 U
Cyclonexane	NS	0.69 0	79 U
Dibromocniorometnane	NS	1.7 0	200 U
Ethonol	NS	2.7	526
Ethalloi Ethyl Acotato	NS	0.72.11	92 11
Ethylhenzene	NS	0.72 0	7 860
Erron 113	NS	15 11	180 11
Freen 114	NS	1.5 0	160 U
Hentane	NS	0.82 11	305
Hexachlorobutadiene	NS	21 U	250 U
Hexane	NS	0.78	193
Isopropyl Alcohol	NS	0.88	57 U
m.p-Xvlene	NS	2.4	47.800 D
m-Dichlorobenzene	NS	1.2 U	140 U
Methyl ethyl ketone	NS	0.53 J	68 U
Methyl Isobutyl Ketone	NS	0.82 U	94 U
Methyl Tert Butyl Ether	NS	0.72 U	83 U
Methylene chloride	60	0.69 U	80 U
Methylmethacrylate	NS	0.82 U	94 U
o-Dichlorobenzene	NS	1.2 U	140 U
o-Xylene	NS	1.1	27,200 D
p-Dichlorobenzene	NS	1.2 U	140 U
Propylene	NS	1.5	98 U
Styrene	NS	0.85 U	118
Tertiary Butyl Alcohol	NS	0.61 U	70 U
Tetrachloroethylene	30	0.27 U	111
Tetrahydrofuran	NS	0.59 U	68 U
Toluene	NS	1.9	871
trans-1,2-Dichloroethylene	NS	0.79 U	91 U
trans-1,3-Dichloropropene	NS	0.91 U	100 U
Trichloroethylene	5	0.21 U	25 U
Trichlorofluoromethane	NS	1.3	130 U
Vinyl Acetate	NS	0.7 U	81 U
Vinyl chloride	NS	0.51 U	59 U
Xylenes (total)	NS	3.5	75,100 D

Tables Elton Crossing Site C - Family 899 Elton Avenue Bronx, NY

GENERAL

- NS: No standard has been established for this analyte.
- ND : Not detected at a concentration exceeding the laboratory reporting limit.
 - U: The analyte was not detected above the laboratory reporting limit.
 - J: The reported concentration is an estimated value.
- UJ: The analyte was analyzed for, but not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- **J+**: The result is an estimated quantity, but the result may be biased high.
- R: The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control (QC) criteria. The analyte may or may not be present in the sample.
- a: More than 40 % RPD for detected concentrations between the two GC columns.
- **b** : Result is from Run# 2.
- **c**: Elevated detection limit due to dilution required for high interfering element.
- SSB-X : Blind Duplicate of SSB-2 (0-2)
- MW-X : Blind Dupicate of MW-2

SOIL

Exceedences of Part 375 Unrestricted Soil Cleanup Objectives are highlighted in bold font.

Exceedances of Part 375 Restricted Residential Soil Cleanup Objectives are highlighted in grey.

Part 375 Soil								
Cleanup								
Objectives								

Soil Clean-up Objectives listed in NYSDEC (New York State Department of Environmental Conservation) "Part 375" Regulations (6 NYCRR Part 375). Objectives

- µg/kg : micrograms per kilogram = parts per billion (ppb)
- mg/kg : milligrams per kilogram = parts per million (ppm)

GROUNDWATER

NYSDEC	Now York State Department of Environmental Concervation Technical and Operational
Class GA	New York State Department of Environmental Conservation Technical and Operational
Ambient	and Groundwater Effluent Limitations
Standard	

µg/L : micrograms per Liter = parts per billion (ppb)

SOIL VAPOR

NYSDOH	
Soil Vapor	NYSDOH Air Guideline Values (AGVs) and Table 3.3 Matrix 1 and 2 Chemicals presented in the Final
Intrusion	: Guidance for Evaluating Soil Vapor Intrusion in the State of New York, dated October 2006 ("NYSDOH
Air Guidance	Vapor Intrusion Guidance Document"), updated September 2013 for change of AGV for PCE.
Value	

µg/m³ : micrograms per cubic meter of air

APPENDIX A SOIL BORING LOGS, AND SOIL VAPOR AND AMBIENT AIR SAMPLING LOGS

S	OIL	BORING	Elton Crossing	- 899 Elton Avenue	Boring No			C	
	L	_OG	AKRF Project Nu	umber: 11901	Sheet 1	of 3		3	50-1
440 Pa Phone	ark Avenu (212) 690	New York, NY 6-0670 Fax (212) 726-	Drilling Method: Sampling Method: Driller : Sampler:	Geoprobe Direct Push 5' Macrocore ADT A. Jordan	Drilling Start Time Date Weather:	14 2/25/	:55 2015 25 °F.	Finish Time Clear	15:15
Depth (feet)	Recovery (Inches)	Surface Condition:	Grass/Snow		Odor	Moisture	OId	NAPL	Samples Collected for Lab Analysis
1 2	25	Top 3": CONCRET	E (FILL).		ND	Dry	ND	ND	SB-1 (0-2)
<u>3_</u> 4 5		Bottom 22": Brown (FILL).	SAND, some Bric	k, trace fine Gravel	ND	Dry	ND	ND	
6 7 8 9	23	Brown-black SANE Concrete (FILL).	D, some Silt, trace	ND	Dry	ND	ND	SB-1 (5-7) SB-1 (7-9)	
10_ 11_ 12_ 13_ 14_ 15_ 16_ 17_ 18_ 19_ 20	N/A	BEDROCK (Marble	e).		N/A	N/A	N/A	N/A	
Notes: below PID = p	Bedro groun ohotoio	ock encountered and d surface.	t approximately 9	feet below ground s	urface. Gro	oundwate	r encoun ND = N	ntered at 5	55.2' ted

SOIL	BORING	Elton Crossing	g - 899 Elton Avenue	Boring No)_		6	
	LOG	AKRF Project N	umber: 11901	Sheet 1	of 2		3	30-1
440 Park Ave	PAKRF	Drilling Method: Sampling Method: Driller : Sampler:	Geoprobe Direct Push 5' Macrocore ADT A. Jordan	Drilling Start Time Date	14: 2/25/	55 2015 25 °E	Finish 15:15 Time .	
Depth (feet) Recovery	Surface Condition:	Grass/Snow		lop O	Moisture	ai	NAPL	Samples Collected for Lab Analysis
_21 _22 _23 _24 _25 _26 _27 _28 _29 _30 N// _31 _32 _33 _34 _32 _33 _34 _35 _36 _37 _38 _39 _40	BEDROCK (MARE	BLE).		N/A	N/A	N/A	N/A	5.21
below grou PID = photo	ind surface.	approximately s	reet below ground s	urrace. Gro	ounawate	ND = N	Not Detect	ed

SOIL BORING		Elton Crossing	- 899 Elton Avenue	Boring No.					
	L	_OG	AKRF Project Nu	umber: 11901	Sheet 1	of 3		3.	50-1
440 Pa Phone	ark Avenu (212) 696	e South, New York, NY 6-0670 Fax (212) 726-	Drilling Method: Sampling Method: Driller : Sampler:	Geoprobe Direct Push 5' Macrocore ADT A. Jordan	Drilling Start Time Date Weather:	14: 2/25/	:55 2015 25 °F.	Finish Time Clear	15:15
Depth (feet)	Recovery (Inches)	Surface Condition:	Grass/Snow		Odor	Moisture	QIA	NAPL	Samples Collected for Lab Analysis
41 42 43 44 45 46 47 48 49 50 51 52 53 53 54 55	N/A	BEDROCK (MARE	BLE).		N/A	N/A	N/A	N/A	
<u>56</u> <u>17</u> <u>18</u> <u>19</u> 20		End of boring at 55	5.2' below ground s	surface.					
Notes below PID =	Bedro groune photoio	ock encountered and surface.	t approximately 9) feet below ground s	surface. Gro	oundwate	r encoun ND = 1	tered at 5	5 5.2' ed

S	SOIL BORING		Elton Crossing	- 899 Elton Avenue	Boring No.			6 D J	
	L	LOG	AKRF Project Nu	umber: 11901	Sheet 1	of 1		3	5 D- 2
440 Park Avenue South, New York, NY Phone (212) 606 0670 - Fax (212) 726		e South, New York, NY 6-0670 Fax (212) 726-	Drilling Method: Sampling Method: Driller : Sampler:	Geoprobe Direct Push 5' Macrocore ADT A. Jordan	Drilling Start 15:45 Time 2/25/2015 Weather: 25 °F		:45 /2015 25 °F.	Finish 16:00 Time Clear	
Depth (feet)	Recovery (Inches)	Surface Condition:	Grass/Snow		Odor	Moisture	QIA	NAPL	Samples Collected for Lab Analysis
1 2 3 4 5	26	Top 3": CONCRET Middle 3": Brown-b Brick (FILL). Bottom 20": Brown	ΓΕ (FILL). black SAND, trace α SAND.	fine Gravel, Glass,	ND ND ND	Dry Dry Dry	ND ND ND	ND ND ND	SB-2 (0-2)
6 7 8 9 10	11	Brown SAND.			ND	Dry	ND	ND	SB-2 (5-7) SB-2 (8-10)
11 12 13 14 15_	15	Brown SAND, trac	e fine Gravel, trace	e Marble.	ND	Dry	ND	ND	
<u>16</u>	19	Brown SAND, trac	e fine Gravel, trace	e Marble.	Petroleum- Like	ND	15 30	ND	MW-3 (16.5- 17)
<u>18</u> <u>19</u> 20 Notes:	Bedro	ock encountered a	t approximately 1	7 feet below ground	surface. Gr	roundwat	er encou	ntered at	20.25'
below PID =	groun photoio	d surface.					ND = N	Not Detec	ted

S	SOIL BORING		Elton Crossing	J - 899 Elton Avenue	Boring No.			CD 2	
	L	OG	AKRF Project N	umber: 11901	Sheet 1 of 1		50-2		
440 Pa Phone	440 Park Avenue South, New York, NY Phone (212) 696-0670 Eax (212) 726		Drilling Method: Sampling Method: Driller : Sampler:	Geoprobe Direct Push 5' Macrocore ADT A. Jordan	Drilling Start Time Date Weather:	15 2/25/	:45 /2015 25 °F	Finish Time 16:00	
Depth (feet)	Recovery (Inches)	Surface Condition:	Grass/Snow		Odor	Moisture	QIA	NAPL	Samples Collected for Lab Analysis
<u>21</u> <u>22</u> 23 24 25 26 26 27	N/A	BEDROCK (MARE	3LE).		N/A	N/A	N/A	N/A	
$ \begin{array}{r} 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 34 \\ 35 \\ 36 \\ 37 \\ 38 \\ 39 \\ 40 \\ \end{array} $									
Notes: below PID = p	Bedro ground photoio	ock encountered a d surface. nization detector	t approximately 1	0 feet below ground	surface. Gi	roundwat	er encou ND = N	ntered at	20.25'

S	OIL	BORING	Elton Crossing	- 899 Elton Avenue	Boring No.			6	CD 2
	L	_OG	AKRF Project Nu	umber: 11901	Sheet 1	of 1		3	30-3
440 Pa Phone	ark Avenu (212) 696	e South, New York, NY 6-0670 Fax (212) 726-	Drilling Method: Sampling Method: Driller : Sampler:	Geoprobe Direct Push 5' Macrocore ADT A. Jordan	Drilling Start Time Date Weather:	15 2/25/	:45 /2015 25 °F;	Finish Time , Clear	16:00
Depth (feet)	Recovery (Inches)	Surface Condition:	Grass/Snow		Odor	Moisture	aiq	NAPL	Samples Collected for Lab Analysis
_1 _2 _3	39	Top 3": CONCRET	E (FILL).		ND	Dry	ND	ND	SB-3 (0-2)
 4 5		Bottom 36": Brown trace Asphalt (FILL	SAND, some fine _).	Gravel,	ND	Dry	ND	ND	
6 7 8 9	25	Brown SAND, trac	e fine Gravel.		ND	Dry	ND	ND	SB-3 (5-7) SB-3 (7.5- 9.5)
10111314151617181920	N/A	BEDROCK (MARE	BLE).		N/A	N/A	N/A	N/A	
Notes: Ground	: End o dwater	f boring at 10 feet not encountered.	below ground su	Irface on suspected I	bedrock.				
PID =	photoio	nization detector					ND = I	Not Detect	ted

S	SOIL BORING		Elton Crossing	J - 899 Elton Avenue	Boring No. CC-1		C 1		
	L	OG	AKRF Project N	umber: 11901	Sheet 1	of 1		3	03-1
	\mathcal{T}	NK RF	Drilling Method: Sampling Method:	Hand Auger Hand Auger	Drilling Start			Finish	
440 D		Couth Now York NV	Complex.		Time	2/10/	25	Time	11:30
Phone (2	212) 696-0	1670 Fax (212) 726-0942	Sampler:	A. Jordan	Weather:	2/19/	2015 25 °F,	Clear	
Depth (feet)	Recovery (Inches)	Surface Condition:	Sand		Odor	Moisture	OId	NAPL	Samples Collected for Lab Analysis
1	6	Brown Sand, some	e Silt Metal (FILL).		ND	Moist	ND	ND	SS-1
2									
3									
4									
5									
6									
8									
9									
<u> 10 </u>									
<u>11</u>									
<u>12</u>									
<u>13</u>									
<u>14</u>									
<u>15</u>									
_16									
<u> 17 </u>									
18									
<u>19</u>									
20 Notes	· End c	f boring at 1 foot	helow around eu	rface					
Groun	dwater	not encountered.	sciow ground su	11405.					
PID =	photoic	nization detector					ND = N	lot Detect	ed

AKRF, Inc. Environmental Consultants

Soil Vapor Sampling Log

Job No:	11901 899 Elton Avenue,	Client:	Elton Crossing Associates, L.P.
Project Location:	Bronx, NY	Sampled By:	A. Jordan
Date:	02/26/2015		
	Sample ID:	SSV-1	
	Canister ID:	A763	
	Flow Controller ID:	FC501	
	Purg	ing	
	Time Started:	06:40	
	Time Stopped:	06:45	
	Vol. Purged:	1.0 liter	<u>'S</u>
	Flow Rate:	0.1 L/mi	<u>n</u>
	Laboratory Sample	(Summa Canister)	2

Time Started:	06:46	Vacuum:	-28	inHg
Time		_		
Stopped:	08:49	Vacuum:	-8	inHg

Field Sample

PID Calibration:	100 ppm
Time Started:	06:35
Time Stopped:	06:40
PID Reading:	Not Detected
He Reading	Not Detected

AKRF, Inc. Environmental Consultants

Ambient Air Sampling Log

Job No:	11901	Client:	Elton Crossing Associates, L.P.
Project Location:	899 Elton Avenue, Bronx, NY	Sampled By:	A. Jordan
Date: _	02/26/2015		

Sample ID:	SAA-1
Canister ID:	A1083
Flow Controller ID:	FC331

Laboratory Sample (Summa Canister)

Time Started:	06:50	Vacuum:	-29	inHg
Time				
Stopped:	08:50	Vacuum:	-8	inHg

Potential VOC sources in vicinity: None

APPENDIX B MONITORING WELL INSTALLATION, DEVELOPMENT, AND SAMPLING LOGS

	DE Inc	Elton Crossing - 899 Elton Avenue, Bronx, New York		Well ID:	MW-	·1
	KF, IIIC.	AKRF	F Project Number : 11901	Sheet 1	Sheet 1 of 1	
Environm 440 Park / New	ental Consultants Avenue South, 7th Fl. York. NY 10016	Drilling Method: Geoprobe/Air Rotary Driller : ADT Weather: 25 °F Logged by: A. Jordan		Drilling Finish Time: Start Time: 10:50 14:30 Date: 02/25/2015 Date: 02/26/2015		
-			[
Depth (feet)	Well Construction	Surface Con	ndition: Concrete Floor Slab	Soil Bor	ing Log	Recovery (Inches)
1 0		Stick-up well cov seal: +1' to 0.5' be	er, locking cap, and concrete elow grade			
1 2		Grout: grade to 5	Grout: grade to 5' below grade		ome	45
3 3 4		4" diameter steel grade	casing: +2.07' to 17' below	Brick, trace fine Gravel, Glass (FILL).		
5				Top 35": Brown some Brick, trac Gravel, Glass (F	SAND, e fine FILL).	40
7 8				Bottom 5": COB (MARBLE).	BLES	
9						
10 11				Brown SAND, tr medium Gravel,	ace fine to trace Marble.	36
12						
13 14				Brown SAND, tr	ace fine to	
15 16				Marble.		19
17		Inwood marble (b	pedrock): 17' below grade			
18-55 56	-	Groundwater: 55.	.2' below grade			
57		Bottom of well: 5	7.11' below grade			
Groundwate	er encountered at 55 s were not collected	5.2' below grade durir I during well installat	ng drilling on 02/25/2015. ion.			

	DE Inc	Elton Crossing - 899 Elton Avenue, Bronx, New York	Well ID: MW-	-2						
	xr, mc.	AKRF Project Number : 11901	Sheet 1 of 1							
Environm	ental Consultants	Drilling Method: Rotosonic	Drilling Start Time: 12:35 Finish Time:							
440 Park Avenu	ue South, 7th Fl. Ne	Driller : ADT W Weather: 25 °F	Date: 02/18/2015 Date: 02/19/2015							
Yo	rk, NY 10016	Logged by: A. Jordan								
Depth (feet)	Well Constructior	Surface Condition: Grass	Soil Boring Log	Recovery (Inches)						
2 1 0	\mathbf{X}	Stick-up well cover, locking cap, and concrete seal: +2' to 0.5' below grade								
1		Grout: grade to 5' below grade								
2		4"-diameter steel casing: +2.07' to 17' below grade	Brown SAND, some Brick, trace fine Gravel, Glass (FILL).	45						
4										
5 6			Top 35": Brown SAND, some Brick, trace fine	40						
7			Bottom 5": COBBLES							
8			(Marble).							
9			Brown SAND, trace fine to medium Gravel, trace Marble							
11				36						
12										
13			Brown SAND, trace fine to							
14			medium Gravel, trace Marble.	10						
15				19						
16 		Inwood marble (bedrock): 17' below grade								
18		Groundwater: 17.2' below grade								
19										
20										
21										
22										
23										
24										
25										
26		Bottom of well: 27' below grade								
Notes:	Groundwate	ar depth indicator	l							
Groundwate Soil sample	Groundwater encountered at 17.2' below grade during drilling on 02/19/2015. Soil samples were not collected during well installation.									

	DE Inc	Elton Crossing - 899 Elton Avenue, Bronx, New Yor	k Well No.	MW-3				
	xr, mc.	AKRF Project Number : 11901	Sheet 1	of 1				
			Drilling					
Environm	ental Consultants	Drilling Method: Rotosonic	Start Time: 16:15 Finish Tin	ne: 13:00				
440 Park Avenu	e South, 7th Fl. New	Weather: 25 °F	Date: 02/18/2015 Date: 02/1	9/2015				
Yo	rk, NY 10016	Logged by: A. Jordan						
Depth (feet)	Well Construction	Surface Condition: Grass	Soil Boring Log	Recovery (Inches)				
3 2 1 0	X	Stick-up well cover, locking cap, and concrete seal: +2.5' to 0.5' below grade						
1		Grout: 0' to 5' below grade						
2		4"diameter steel casing: 2.57' to 17' below grad	le Brown SAND, some Brick, trace fine Gravel, Glass (FILL).	45				
4 5 6 7			Top 35": Brown SAND, some Brick, trace fine Gravel, Glass (FILL). Bottom 5": COBBLES (Marble).	11				
8 9			Prown SAND, trace fine i					
10 11 12			medium Gravel, trace Ma	arble. 36				
13 14 15 16			Brown SAND, trace fine t medium Gravel, trace Marble (petroleum-like or staining, and 30 ppm).	to dors, 19				
17		Soil sample MW-3 (16.5-17) Inwood marble (bedrock): 17' below grade						
18 19								
20		Groundwater: 20.25' below grade						
21								
22								
23								
24								
25								
26								
27		Bottom of well: 27' below grade						
Notes: Groundwate	er encountered at 20	ר מפונת וחמוכמנסר ו.25' below grade during drilling on 02/19/2015. Soi	I sample analyzed for VOCs					
by EPA Method 8260 and SVOCs by EPA Method 8270 collected from 16.5-17.5' below grade.								

CAK RF							Well Development Log
Job No: 1190	1		Client:	Elton Crossing Ass	ociates, L.P.		Well No:
Project Location: 899 Elton A	venue, Bronx, New	v York	Developed By:	A. Jordan			
Date: 2/26/201	5		Time:	14:30			MW-1
PID at surface:	Not Detected						
Total Depth:	57.11	feet	Well Diameter:	2	1 inches		*= 0.163 * WC for 2" wells
Depth to Water:	55.2	2 feet	Well Volume*:	1.25	5 gallons		*= 0.653 * WC for 4" wells
Water Column (WC):	1.91	feet	Volume Purged:	1.25	5 gallons		*= 1.469 * WC for 6" wells
Pump Rate	Turbidity	Temperature	Conductivity	DO	pH	ORP	Comments
Time (ml/min)	(NTU)	(°C)	(mS/cm)	(mg/L)		(mV)	(problems, odor, sheen)
							Well was dry prior to stabilization and did not recharge. +:Reading higher than detectable limit.

	RF							Well Development Log
Job No:	11901			Client:	Elton Crossing As	sociates, L.P.		Well No:
Project Locat	ion: 899 Elton Av	enue, Bronx, New	/ York	Developed By:	A. Jordan			
Date:	2/19/2015			Time:	15:10			MW-2
PID at surfac	e:	Not Detected			T			
Total Depth:		30.11	feet	Well Diameter:		4 inches		*= 0.163 * WC for 2" wells
Depth to Wat	er:	19.20) feet	Well Volume*:	7.1	2 gallons		*= 0.653 * WC for 4" wells
Water Colum	n (WC):	10.91	feet	Volume Purged:	17.1	7 gallons		*= 1.469 * WC for 6" wells
	Pump Rate	Turbidity	Temperature	Conductivity	DO	pH	ORP	Comments
Time	(ml/min)	(NTU)	(°C)	(mS/cm)	(mg/L)	10.00	(mV)	(problems, odor, sheen)
15:10	1000	1000+	18.98	2.00	5.39	10.69	23	
15:15	1000	1000+	17.30	1.99	5.36	10.68	11	
15:20	1000	654	17.35	1.98	5.35	10.69	-3	
15:25	1000	690	17.65	1.98	5.36	10.69	-5	
15:30	1000	585	17.68	1.73	5.41	10.69	-3	
15:35	1000	588	15.43	1.77	5.48	10.69	-6	
15:40	1000	317	15.42	1.77	5.48	10.69	-5	
15:45	1000	281	15.42	1.77	5.37	10.69	-8	Light brown in color, high
15:50	1000	193	15.41	1.77	5.39	10.69	-8	silt content.
15:55	1000	433	15.41	1.77	5.45	10.69	-7	
16:00	1000	78	15.41	1.77	5.48	10.69	-8	
16:05	1000	48	15.41	1.77	5.51	10.69	-8	
16:10	1000	15	15.41	1.77	5.88	10.69	-7	
16:15	1000	13	15.41	1.77	5.88	10.69	-8	
								_
Pur	ge until turbidity is le	ss than 50 NTU for	three successive readin	gs or until water quality i	ndicators are within 109	% for three successive re	adings. Purge a	minimum of three well volumes.

O AK	RF							Well Development Log
Job No:	11901			Client:	Elton Crossing Ass	ociates, L.P.		Well No:
Project Locat	ion: 899 Elton Av	enue, Bronx, New	/ York	Developed By:	A. Jordan			
Date:	2/19/2015			Time:	15:30			MW-3
PID at surface	e:	Not Detected						
Total Depth:		30.11	feet	Well Diameter:	4	4 inches		*= 0.163 * WC for 2" wells
Depth to Wate	er:	20.25	5 feet	Well Volume*:	6.44	4 gallons		*= 0.653 * WC for 4" wells
Water Colum	n (WC):	9.86	i feet	Volume Purged:	1.25	5 gallons		*= 1.469 * WC for 6" wells
	Pump Rate	Turbidity	Temperature	Conductivity	DO	pH	ORP	Comments
Time	(ml/min)	(NTU) 100 i	(°C) 20.05	(mS/cm)	(mg/L)	10.12	(mV)	(problems, odor, sheen)
15.50	1000	100+	20.03	1.13	3.30	10.12	-212	_
15:35	1000	100+	20.19	1.11	3.39	10.14	-201	_
15:40	1000	155	18.89	1.12	3.37	10.20	-254	_
15:45	1000	89.5	18.74	1.13	3.35	10.19	-387	_
15:50	1000	37.3	18.65	1.11	3.34	10.18	-388	
15:55	1000	35.5	17.99	1.11	3.36	10.17	-415	
16:00	1000	36.8	17.88	1.11	3.33	10.17	-415	
16:05	1000	28.1	17.85	1.12	3.35	10.18	-426	No odor or sheen
Pur	ge until turbidity is le	ss than 50 NTU for t	three successive readin	gs or until water quality	indicators are within 10%	6 for three successive re	adings. Purge a	minimum of three well volumes.

Well Sampling Log

Job No:				Client: Elton Cr	ossing Associat	tes, L.P.	Well No:		
Project Locat	tion:	899 Elton Aver	ue, Bronx, Ne	w York		Sampled By:	Amy Jordan		
Date:		3/11/2015				Sampling Time:	8:55		MW-1
PID at surfac	e:	Not Detected							
Total Depth: 57.11 ft. below top of casing						Water Column:	42.39	feet	*= 0.163 * WC for 2" wells
Depth to Water: 14.72 ft. below top of casing						Well Volume*:	27.68	gallons	*= 0.653 * WC for 4" wells
Depth to Product: Not Detected						Volume Purged:	1	gallon	*= 1.469 * WC for 6" wells
Approx. Pum	p Intake:	25.00	ft. below top o	f casing		Well Diam.:	4	inches	Target maximum
			-	-		Purging Device (pump type):		flow rate is
						QED San	nple Pro Bladde	er Pump	100 ml/min
Time	Depth to Water	Purge Rate	Temp	Conductivity	DO	nH	ORP	Turbidity	Comments
	(Ft.)	(ml/min)	(°C)	(mS/cm)	(mg/L)	pri	(mV)	(NTU)	(problems, odor, sheen)
8:30	14.73	100	12.53	1.13	7.48	7.48	175	7.1	_
8:35	14.73	100	12.51	1.12	7.12	7.61	173	4.5	
8:40	14.73	100	12.29	1.11	6.66	7.88	167	0.5	
8:45	14.73	100	12.26	1.11	6.59	7.89	167	0.0	
8:50	14.73	100	12.23	1.11	6.41	7.98	165	0.0	
8:55				SAN	IPLE				
9.10	14 75	100	13 11	1 1 1	6.51	8 22	163	0.0	-
0.10	14.70	100	10.11	1.11	0.01	0.22	100	0.0	-
									No odor or sheen
									-
									_
Crownshows	Stabilization Criteria: +/- 3 mS/cm +/- 0.3 mg/L						+/- 10 mV	<50 NTU	If water quality parameters do not stabilize and/or turbidity is greater than 50 NTU within two hours, discontinue purging and collect sample.
Groundwate	r samples analy:	zed for: VOC	s, svocs, P	esticides, PCB	s, and total a	na aissolved TA	L Metals		

Well Sampling Log

Job No: Project Location: Date: PID at surface: Total Depth: Depth to Water: Depth to Product: Approx. Pump In Time	: take:	11901 899 Elton Aven 3/11/2015 Not Detected 27.80 16.02 Not Detected 20.00	ft. below top of ft. below top of ft. below top of ft. below top of	v York f casing f casing		Client: Elton Cro Sampled By: Sampling Time: Water Column:	ossing Associat Amy Jordan 13:15 11.78	es, L.P.	Well No: MW-2
Project Location: Date: PID at surface: Total Depth: Depth to Water: Depth to Product: Approx. Pump In Time	: .take:	899 Elton Aven 3/11/2015 Not Detected 27.80 16.02 Not Detected 20.00	tt. below top o ft. below top o ft. below top o ft. below top o	v York f casing f casing		Sampled By: Sampling Time: Water Column:	Amy Jordan 13:15 11.78	feet	MW-2
Date: PID at surface: Total Depth: Depth to Water: Depth to Product: Approx. Pump In Time	: take:	3/11/2015 Not Detected 27.80 16.02 Not Detected 20.00	ft. below top of ft. below top of ft. below top of	f casing f casing		Sampling Time: Water Column:	13:15	feet	MW-2
PID at surface: Total Depth: Depth to Water: Depth to Product: Approx. Pump In Time	: .take: .poth to Water	Not Detected 27.80 16.02 Not Detected 20.00	ft. below top of ft. below top of ft. below top of	f casing f casing		Water Column:	11.78	feet	*- 0 163 * W/C for 2" wells
Total Depth: Depth to Water: Depth to Product: Approx. Pump In Time	: .take: .poth to Water	27.80 16.02 Not Detected 20.00	ft. below top of ft. below top of ft. below top of	f casing f casing		Water Column:	11.78	feet	*- 0.163 * WC for 2" wells
Depth to Water: Depth to Product: Approx. Pump In Time De	: .take: 	16.02 Not Detected 20.00	ft. below top of	f casing					
Depth to Product: Approx. Pump In Time De	: take:	Not Detected 20.00	ft. below top of			Well Volume*:	7.69	gallons	*= 0.653 * WC for 4" wells
Approx. Pump In Time De	take:	20.00	ft. below top of			Volume Purged:	1	gallon	*= 1.469 * WC for 6" wells
Time De	epth to Water			f casing		Well Diam.:	4	inches	Target maximum
Time	epth to Water					Purging Device (pump type):		flow rate is
Time	epth to Water					QED Sam	ple Pro Bladde	r Pump	100 ml/min
		Purge Rate	Temp	Conductivity	DO	pН	ORP	Turbidity	Comments
10.00	(Ft.)	(ml/min)		(mS/cm)	(mg/L)	11.10	(mV)	(NTU) 475	(problems, odor, sneen)
12.20	10.02	100	15.70	1.69	2.14	11.10	-30	1/0	-
12:25	16.03	100	15.82	1.69	1.94	11.09	-50	189	-
12:30	16.03	100	15.92	1.69	1.81	11.11	-61	153	-
12:35	16.03	100	15.99	1.69	1.78	11.11	-61	134	_
12:40	16.04	100	16.02	1.69	1.66	11.12	-62	119	-
12:45	16.04	100	16.05	1.68	1.65	11.12	-63	100	
12:50	16.04	100	16.06	1.68	1.67	11.13	-63	91.9	_
12:55	16.04	100	16.09	1.68	1.73	11.13	-62	66.8	
13:00	16.04	100	16.09	1.68	1.73	11.13	-63	46.0	No odor or sheen
13:05	16.04	100	16.09	1.68	1.73	11.13	-66	43.2	
13:10	16.04	100	16.09	1.68	1.73	11.13	-65	41.8]
13:15				SAM	1PLE				1
13:30	16.04	100	15.25	1.69	2.00	11.10	-66	89.2	
									1
									1
									-
	Stabilization	n Criteria:		+/- 3 mS/cm	+/- 0.3 mg/L	+/- 0.1 pH units	+/- 10 mV	<50 NTU	If water quality parameters do not stabilize and/or turbidity is greater than 50 NTU within two hours, discontinue purging and collect sample.

Well Sampling Log

Job No:		11901				Client: Elton Cr	ossing Associat	tes, L.P.	Well No:
Project Locat	tion:	899 Elton Aver	nue, Bronx, Ne	w York		Sampled By:	Amy Jordan		
Date:		3/11/2015				Sampling Time:	11:10		MW-3
PID at surfac	æ:	Not Detected							
Total Depth:30.11 ft. below top of casing						Water Column:	10.65	feet	*= 0.163 * WC for 2" wells
Depth to Water: 17.15 ft. below top of casing						Well Volume*:	6.95	gallons	*= 0.653 * WC for 4" wells
Depth to Pro	duct:	Not Detected				Volume Purged:	1	gallon	*= 1.469 * WC for 6" wells
Approx. Pum	p Intake:	25.00	ft. below top o	f casing		Well Diam.:	4	inches	Target maximum
						Purging Device (pump type):		flow rate is
						QED Sam	ple Pro Bladde	er Pump	100 ml/min
Time	Depth to Water	Purge Rate	Temp	Conductivity	DO	nH	ORP	Turbidity	Comments
	(Ft.)	(ml/min)	(°C)	(mS/cm)	(mg/L)	pii	(mV)	(NTU)	(problems, odor, sheen)
10:45	17.09	100	13.69	0.972	2.38	9.64	-135	46.1	_
10:50	17.09	100	14.05	0.96	1.32	9.64	-150	43.6	
10:55	17.09	100	14.07	0.956	1.28	9.63	-152	43.3	
11:00	17.10	100	14.21	0.96	1.10	9.65	-152	43.1	
11:05	17.10	100	14.31	0.96	1.00	9.66	-154	41.5	
11:10				SAN	1PLE				
11:55	17.11	100	15.41	1.04	1.29	9.41	-180	27.2	
									No odor or sheen
									1
									-
									-
									-
									_
	Stabilization	n Criteria:		+/- 3 mS/cm	+/- 0.3 mg/L	+/- 0.1 pH units	+/- 10 mV	<50 NTU	If water quality parameters do not stabilize and/or turbidity is greater than 50 NTU within two hours, discontinue purging and collect sample.
Groundwate	r samples analyz	zed for: VOC	Cs. SVOCs, P	esticides, PCB	s. and total a	nd dissolved TA	L Metals		

APPENDIX C LABORATORY DATA DELIVERABLES AND DUSRS FOR SOIL, GROUNDWATER, AND SOIL VAPOR ANALYSES

DATA USABILITY SUMMARY REPORT (DUSR)

ORGANIC ANALYSIS

EPA Compendium Method TO-15 LOW LEVEL VOLATILES BY GC/MS

For Soil Vapor and Ambient Air Samples Collected February 26, 2015 From Elton Crossing (Site C – Family) 899 Elton Avenue, Bronx, New York By AKRF, Inc.

SAMPLE DELIVERY GROUP NUMBER: JB88930 Accutest Laboratories (ELAP #10983)

SUBMITTED TO:

Ms. Deborah Shapiro AKRF, Inc. 440 Park Avenue South, 7th Floor New York, New York 10016

April 03, 2015

PREPARED BY:

Lori A. Beyer/President 14 West Point Drive East Northport, NY 11731 JW

Elton Crossing, 899 Elton Avenue, Bronx, NY; February 2015. Data Validation Report: Volatile Organics – TO15

Table of Contents:

Introduction Data Qualifier Definitions Sample Receipt

- 1.0 Volatile Organics by GC/MS EPA Compendium Method TO-15 Low Level
 - 1.1 Holding Time
 - 1.2 Surrogate Standards
 - 1.3 Matrix Spikes (MS), Matrix Spike Duplicates (MSD), Laboratory Duplicate, Field Duplicate Analysis
 - 1.4 Laboratory Control Sample
 - 1.5 Blank Contamination
 - 1.6 GC/MS Instrument Performance Check
 - 1.7 Initial and Continuing Calibrations
 - 1.8 Internal Standards
 - 1.9 Target Compound List Identification
 - 1.10 Tentatively Identified Compounds
 - 1.11 Compound Quantification and Reported Detection Limits
 - 1.12 Overall System Performance

APPENDICES:

- A. Data Summary Form Is with Qualifications
- B. Chain of Custody Document
- C. Case Narrative

Introduction:

A validation was performed on two (2) summa canister soil vapor/ambient air samples for Volatile Organic analysis collected by AKRF, Inc. and submitted to Accutest Laboratories for subsequent analysis under chain of custody documentation. This report contains the laboratory and validation results for the field samples itemized below. The samples were collected on February 26, 2015.

The samples were analyzed by Accutest Laboratories utilizing EPA Method TO-15 and in accordance with NYSDEC Analytical Services Protocol and submitted under NYSDEC ASP Category B equivalent deliverable requirements for the associated analytical methodology employed. The analytical testing consisted of the selected TO-15 Compound List.

The data was evaluated in accordance with the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (Publication 9240.1-05), EPA SOP #HW31 (Revision 6) and in conjunction with the analytical methodology for which the samples were analyzed, where applicable and relevant.

Sample Identification	Laboratory	Sample Matrix	Collection	
	Identification	(Air Type)	Date	
SV-1	JB88930-1	Soil Vapor	02/26/15	
AA-1	JB88930-2	Ambient Air	02/26/15	

The data validation report pertains to the following field air samples:

Data Qualifier Definitions:

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

J - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

UJ - The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.

R - The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control (QC) criteria. The analyte may or may not be present in the sample.

N - The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."

NJ - The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate quantity.

J+ - The result is an estimated quantity, but the result may be biased high.

J- - The result is an estimated quantity, but the result may be biased low.

D - Analyte concentration is from diluted analysis.

Sample Receipt:

The Chain of Custody document from 02/26/15 indicates that the air samples were received on 02/26/15 via laboratory courier following completion of the sampling event. Sample login notes and the chain of custody indicate that at the Validated Time of Sample Receipt (VTSR) at the laboratory no unresolved discrepancies were notated and therefore the integrity of the summa canister samples is assumed to be good.

Summa Canisters were leak tested prior to collection of each sample. Initial pressure gauge is recorded on the chain of custody and is required to be approximately 30 psi with zero air. Acceptable canister pressure was observed for these samples.

The data summary Form I's included in Appendix A includes all usable (qualified) and unusable (rejected) results for the samples identified above. The Form I's summarize the detailed narrative section of the report. All data validation qualifications have been reported on the Form I's for ease of review and verification.

NOTE:

L.A.B. Validation Corp. believes it is appropriate to note that the data validation criteria utilized for data evaluation is different than the method requirements utilized by the laboratory. Qualified data does not necessarily mean that the laboratory was non-compliant in the analysis that was performed.

1.0 Volatile Organics by EPA Compendium Method TO-15 – Low Level

The following method criteria were reviewed: holding times, surrogate standards, LCS, Blanks, Field/Laboratory Duplicate, Tunes, Calibrations, Internal Standards, Target Component Identification and Quantitation, Reported Quantitation Limits and Overall System Performance. The volatile results were considered to be valid and useable as noted on the Form I's in Appendix A and within the following text:

1.1 Holding Time

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the technical holding time is exceeded, the data may not be considered valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimates, "J". The non-detects (sample quantitation limits) are required to be flagged as estimated, "J", or unusable, "R", if the holding times are grossly exceeded.

Summa canister analysis was performed within 30 days from collection as required.

1.2 Surrogate Standards

All samples are spiked with surrogate compounds prior to sample analysis to evaluate overall laboratory performance and efficiency of the analytical technique. If the measure of surrogate concentrations is outside contract specifications, qualifications are required to be applied to associated samples and analytes.

Samples were spiked with 4-Bromofluorobenzene. High recovery was observed for initial analysis of SV-1 due to high late eluting target compounds. This sample was reanalyzed at a secondary dilution and with reduced matrix effects, acceptable surrogate recovery was observed. No qualifications to the data were required since analyte concentrations over the high calibration range were obtained from diluted reanalysis.

It should be noted that TO15 does not mandate the addition of surrogate standards.

1.3 Matrix Spikes (MS)/ Matrix Spike Duplicates (MSD)/Laboratory Duplicate /Field Duplicate Analysis

The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices.

Matrix Spike/Matrix Spike Duplicate analysis was not performed on samples pertaining to this SDG.

Batch laboratory duplicate analysis was submitted. Acceptable precision (RPD); <25% was observed for detected compounds.

Field Duplicate analysis was not submitted. Generally acceptable precision for Field Duplicate analysis is 50%.

Acceptable precision for air lab duplicate analysis is 25%. The following criteria are utilized for Laboratory Duplicate analysis:

Criteria	Detected Compounds	Non-Detected Compounds
The RPD is within the limits of 0 and 25%	No qualification	No qualification
The RPD >25%	J in the parent and duplicate samples	Not applicable
The RPD could not be calculated since the compound was only detected in either the parent of duplicate sample. However, the detected concentration was =2x<br the reporting limit	No qualification	No qualification
The RPD could not be calculated since the compound was only detected in either the parent or duplicate sample However, the detected concentration was >2x the reporting limit.	J in the parent or duplicate sample	UJ in the parent of duplicate sample

No qualifications to the data were required based on MS/MSD/Laboratory Duplicate and Field Duplicate analysis.
1.4 Laboratory Control Sample

The LCS data for laboratory control samples (LCS) are generated to provide information on the accuracy of the analytical method and on the laboratory performance.

Acceptable LCS/LCS Duplicate was analyzed with all applicable spiked target compounds yielding recovery values between 70-130% for initial analysis of SV-1. 1,2,4-Trichlorobenzene recovered high at 131% (upper limit 130%) in the LCS/LCS Duplicate applicable to diluted analysis of SV-1 and analysis of AA-1. This compound was not detected in either run and therefore high recovery does not support any potential loss of detection and therefore no qualifications were applied.

1.5 Blank Contamination

Quality assurance (QA) blanks; i.e. method, trip and field blanks are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field blanks measure cross-contamination of samples during field operations. Storage blanks measure cross-contamination during sample storage of the field samples. Canister blanks measure crosscontamination from the sampling media.

The following table was utilized to qualify target analyte results due to contamination. The largest value from all the associated blanks is required to be utilized:

Blank Type	Blank Result	Sample Result	Action for Samples
Method,	Detects	Not Detected	No qualification required
Storage, field,	<crql*< td=""><td><crql*< td=""><td>Report CRQL value with a U</td></crql*<></td></crql*<>	<crql*< td=""><td>Report CRQL value with a U</td></crql*<>	Report CRQL value with a U
Trip,		>/= CRQL* and	No qualification required
Instrument		,2x the CRQL**	
	>CRQL*	= CRQL*</td <td>Report CRQL value with a U</td>	Report CRQL value with a U
		>/=CRQL* and	Report blank value for sample
		= blank</td <td>concentration with a U</td>	concentration with a U
		concentration	
		>/= CRQL* and $>$	No qualification required
		blank	
		concentration	
	=CRQL*	= CRQL*</td <td>Report CRQL value with a U</td>	Report CRQL value with a U
		>CRQL*	No qualification required
	Gross	Detects	Report blank value for sample
	Contamination**		concentration with a U

Phone (516) 523-7891 email LABValidation@aol.com

*2x the CRQL for methylene chloride, 2-butanone and acetone. **4x the CRQL for methylene chloride, 2-butanone, and acetone ***Qualifications based on instrument blank results affect only the sample analyzed immediately after the sample that has target compounds that exceed the calibration range or non-target compounds that exceed 100 ug/L.

A) Method Blank Contamination:

The method blanks were determined to be free of any contamination. Acceptable canister certification documentation and blanks were submitted. No contamination was observed.

B) **Field Blank Contamination:**

Field Blank analysis was not conducted for this SDG.

C) **Trip Blank Contamination:**

Trip Blank analysis was not conducted for this SDG.

D) Storage Blank Contamination:

Storage blanks were not submitted for this SDG. It should be noted that storage blanks are not mandated by EPA Method TO-15.

1.6 GC/MS Instrument Performance Check

Tuning and performance criteria are established to ensure adequate mass resolution, proper identification of compounds and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The Tuning standard for volatile organics is Bromofluorobenzene (BFB).

Instrument performance was generated within acceptable limits and frequency (24 hours) for Bromofluorobenzene (BFB) for all analyses conducted for this SDG.

1.7 Initial and Continuing Calibrations

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration checks document that the instrument is giving satisfactory daily performance.

A) Response Factor GC/MS:

The response factor measures the instrument's response to specific chemical compounds. The response factor for all compounds must be >/= 0.05 in both initial and continuing calibrations. A value <0.05 indicates a serious detection and quantitation problem (poor sensitivity). Analytes detected in the sample will be qualified as estimated, "J". All non-detects for that compound in the corresponding samples will be rejected, "R".

The following compounds are allowed to be >0.01 without qualification: 2-Butanone Carbon Disulfide Chloroethane 1,2-Dibromoethane 1,2-Dichloropropane 1,4-Dioxane 1,2-Dibromo-3-chloroproane Methylene Chloride

All the response factors for the target analytes reported were found to be within acceptable limits (>/=0.05) [or >/=0.01 for the 9 compounds above] and remaining analytes, for the initial and continuing calibrations.

B) Percent Relative Standard Deviation (%RSD) and Percent Difference (%D):

Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentrations. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be <30% and

Phone (516) 523-7891 email LABValidation@aol.com

%D must be <30%. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and non-detects are flagged "UJ". If %RSD and %D grossly exceed QC criteria (>90%), non-detect data may be qualified, "R", unusable. Additionally, in cases where the %RSD is >30% and eliminating either the high or the low point of the curve does not restore the %RSD to less than or equal to 30% then positive results are qualified, "J". In cases where removal of either the low or high point restores the linearity, then only low or high level results will be qualified, "J" in the portion of the curve where non linearity exists. Poor responders have an allowance of 40% RSD and 40% Difference.

Initial Calibrations: The initial calibrations provided and the %RSD was within acceptable limits (30%) for all requested target compounds. Initial calibration verification standard also met QC requirements.

Continuing Calibrations: The continuing calibrations provided and the %D was within acceptable limits (30%) for all reported target compounds.

1.8 Internal Standards

Internal Standards (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must not vary by more than a factor of 2 (40% to +40%) from the associated continuing calibration standard. The retention time of the internal standard must not vary more than +/-20 seconds from the associated continuing calibration standard. If the area count is outside the (-40% to +40%) range of the associated standard, all of the positive results for compounds quantitated using that IS are qualified as estimated, "J", and all non-detects as "UJ", or "R" if there is a severe loss of sensitivity.

If an internal standard retention time varies by more than 20 seconds, professional judgment will be used to determine either partial or total rejection of the data for that sample fraction.

Internal Standard area responses met QC requirements for all analysis pertaining to this data set as compared to the continuing calibration.

1.9 Target Compound List Identification

TCL compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within =/- 0.06RT units of the standard compound and have an ion spectra which has a ratio of the primary and secondary m/e intensities within 20% of that in the standard compound.

GC/MS spectra met the qualitative criteria for identification.

1.10 Tentatively Identified Compounds (TICs)

TICs were not required. When submitted, the identification must be considered tentative (both quantitative and qualitative) due to the lack of required compound specific response factors. Consequently all concentrations should be considered estimated, "J" and as a result of the qualitative uncertainty should be qualified, "N" where an identification has been made.

TICs were not required with this data set.

1.11 Compound Quantification and Reported Detection Limits

GC/MS quantitative analysis is considered to be acceptable. Correct internal standards and response factors and air volumes were used to calculate final concentrations.

Sample results have been presented in ug/m3 as well as ppbv on the laboratory reporting forms.

Sample SV-1 was reanalyzed at a secondary dilution by using reduced sample volume of 20ml. Reporting limits have been adjusted accordingly. Raw concentrations were determined to be within the instruments upper half of the linear calibration range resulting in acceptable analysis. Analytes obtained from diluted reanalysis have been qualified, "D" as required by NYSDEC.

1.12 Overall System Performance

GC/MS analytical methodology was acceptable for this analysis. The data reported agrees with the raw data provided in the final report. The laboratory provided a complete data package and reported all data using acceptable protocols and laboratory qualifiers as defined in the report package.

Reviewer's Signature <u>How'a Beyer</u> Date <u>04/03/20</u>15

Appendix A Data Summary Form I's With Qualifications

				Rep	ort of .	Analy	sis					Page 1 of	3
Client Sam Lab Sampl Matrix: Method: Project:	ple ID: le ID:	SV-1 JB88930 AIR - S TO-15 Elton C	SV-1 JB88930-1 Date Sampled: 02/26/15 AIR - Soil Vapor Comp. Summa ID: A763,A411 Date Received: 02/26/15 TO-15 Per cent Solids: n/a										<u>+</u>
Run #1 Run #2	File ID 5W100 5W100	72.D 89.D	DF 57.2 57.2	Analyzed 03/07/15 03/07/15	By ML ML	Pro n/a n/a	ep Date	P n n	rep /a /a	Batch	Analyti V5W39 V5W40	ical Batcl 99 10	n
Run #1 Run #2	Initial 200 ml 20.0 ml	Volume											
VOA TO15	5 List												_
CAS No.	MW	Compo	ound		Result	RL	MDL	Units	Q	Result	RL	MDL	Units
67-64-1 106-99-0 71-43-2 75-27-4 75-25-2 74-83-9 593-60-2 100-44-7 75-15-0 108-90-7 75-00-3 67-66-3 74-87-3 107-05-1 95-49-8 56-23-5 110-82-7 75-34-3	58.08 54.09 78.11 163.8 252.8 94.94 106.9 126 76.14 112.6 64.52 119.4 50.49 76.53 126.6 153.8 84.16 98.96	Aceton 1,3-Bu Benzen Bromo Bromo Bromo Bromo Bromo Benzyl Carbon Chloro Chloro Chloro Chloro 3-Chloro 2-Chloro Carbon Cycloh 1,1-Dic	e tadiene le dichlorome form methane ethene Chloride disulfide benzene ethane form methane ropropene rotoluene tetrachlori exane chloroethan	thane de	ND ND ND ND ND ND ND ND ND ND ND ND ND N	23 23 23 23 23 23 23 23 23 23 23 23 23 2	12 3.9 2.8 3.3 4.0 3.8 3.9 5.4 3.5 3.9 4.8 2.7 9.0 4.3 3.7 2.9 3.1 3.1	ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv		ND ND ND ND ND ND ND ND ND ND ND ND ND N	55 51 73 150 240 89 100 120 72 110 61 110 47 72 120 140 79 93	29 8.6 8.9 22 41 15 17 28 11 18 13 13 19 13 19 18 11 13	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3
75-35-4 106-93-4 107-06-2 78-87-5 123-91-1 75-71-8 124-48-1 156-60-5 156-59-2 10061-01-5 541-73-1 95-50-1 106-46-7 10061-02-6	96.94 187.9 98.96 113 88.12 120.9 208.3 96.94 96.94 111 147 147 147 147 111	1,1-Dia 1,2-Dia 1,2-Dia 1,2-Dia 1,2-Dia 1,4-Dia Dichlor trans-1, cis-1,2- cis-1,3- m-Dichl o-Dichl p-Dichl trans-1,	chloroethyle oromoethan chloropropa oxane codifluorom ochlorome ,2-Dichloroet Dichloropr lorobenzene orobenzene orobenzene ,3-Dichloro	ene e e ne thane thane thane thylene hylene e e e e e propene	ND ND ND ND ND ND ND ND ND ND ND ND	23 23 23 23 23 23 23 23 23 23 23 23 23 2	5.9 3.1 2.6 3.3 14 3.4 4.3 8.1 2.7 2.9 3.8 3.4 4.2 2.9	ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv		ND ND ND ND ND ND ND ND ND ND ND ND ND	91 180 93 110 83 110 200 91 91 100 140 140 140 140	23 24 11 15 50 17 37 32 11 13 23 20 25 13	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

				iluly	515			1	age 2 01	5
Client Samp Lab Sample Matrix: Method: Project:	Client Sample ID: SV-1 Lab Sample ID: JB88930-1 Matrix: AIR - Soil Vapor Com Method: TO-15 Project: Elton Crossing, 899 E		ma ID: A76 nue, Bronx,	53,A4 NY	11	Date Samp Date Recei Percent So				
VOA TO15	List									
CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	MDL	Units
64-17-5	46.07	Ethanol	279	57	19	ppbv	526	110	36	ug/m3
100-41-4	106.2	Ethylbenzene	1810	23	4.0	ppbv	7860	100	17	ug/m3
141-78-6	88	Ethyl Acetate	ND	23	7.0	ppbv	ND	83	25	ug/m3
622-96-8	120.2	4-Ethyltoluene	6250× D	230	37	ppbv	30700×D	1100	180	ug/m3
76-13-1	187.4	Freon 113	ND	23	4.5	ppbv	ND	180	34	ug/m3
76-14-2	170.9	Freon 114	ND	23	3.6	ppbv	ND	160	25	ug/m3
142-82-5	100.2	Heptane	74.5	23	2.4	ppbv	305	94	9.8	ug/m3
87-68-3	260.8	Hexachlorobutadiene	ND	23	5.8	ppby	ND	250	62	ug/m3
110-54-3	86.17	Hexane	54.8	23	4.8	ppby	193	81	17	ug/m3
591-78-6	100	2-Hexanone	ND	23	7.3	ppby	ND	94	30	ug/m3
67-63-0	60.1	Isopropyl Alcohol	ND	23	7.6	ppby	ND	57	19	ug/m3
75-09-2	84.94	Methylene chloride	ND	23	15	ppby	ND	80	52	ug/m3
78-93-3	72.11	Methyl ethyl ketone	ND	23	4.6	ppby	ND	68	14	10/m3
108-10-1	100.2	Methyl Isobutyl Ketone	ND	23	4.8	ppby	ND	94	20	ug/m3
1634-04-4	88 15	Methyl Tert Butyl Ether	ND	23	4.6	nnby	ND	83	17	$\mu g/m3$
80-62-6	100 12	Methylmethacrylate	ND	23	4.1	nnhv	ND	94	17	$\mu g/m3$
115-07-1	42	Propylene	ND	57	5.5	nnhv	ND	98	9.4	$u_{\rm B}/m_{\rm M}$
100-42-5	104 1	Styrene	27.7	23	3.8	nnhv	118	98	16	$u_{\rm B}/m_{\rm H}$
71-55-6	133.4	1 1 1-Trichloroethane	ND	23	2.8	nnhv	ND	130	15	110/m3
79-34-5	167.9	1 1 2 2-Tetrachloroethane	ND	23	4 6	nnhv	ND	160	32	$\frac{u_{\rm B}}{m_{\rm M}}$
79-00-5	133.4	1,1,2. Trichloroethane	ND	23	4.0	ppbv	ND	130	22	$u_{\rm B}/m_{\rm H}$
120-82-1	181 5	1 2 4-Trichlorobenzene	ND	23	7.0	nnby	ND	170	52	ug/m3
95-63-6	120.2	1 2 4-Trimethylbenzene	25000 ~ 1	230	34	nnhy	123000-2/	1100	170	ug/m3
108-67-8	120.2	1.3.5-Trimethylbonzone	8080 2 0	230	22	ppbv	39700 2 1	1100	160	ug/m3
540-84-1	11/ 2	2 2 4 Trimothylpontano	205	23	20	ppbv	958	110	14	ug/m3
75 65 0	7/ 12	Tartiary Butyl Alcohol	ND	23	5.0	ppbv	ND	70	15	ug/m3
127 19 /	165.8	Totrachloroothylono	16.3	16	13	ppbv	111	31	20	ug/m3
100 00 0	72 11	Tetrahydrofuran	ND	22	5.6	ppov	ND	68	17	ug/m3
109-55-5	02 14	Telianyuroruran	221	23	3.0	ppbv	871	87	12	ug/m3
70 01 6	52.14 121 A	Trichloroothylono	ND	16	3.5	ppbv	ND	25	19	ug/m3
75-01-0	101.4	Trichlorofluoromathana	ND	22	22	ppbv	ND	130	10	ug/m3
75-05-4	62 5	Vinyl chloride	ND	23	25	ppbv	ND	50	80	ug/m3
102 05 1	02.J 96	Vinyl Acotate	ND	23	11	ppbv	ND	93 81	20	ug/m3
100-03-4	106 2	winyi Acetale	11000-20	230	70	ppbv	17800-8	1000	340	ug/m3
05 47 6	100.2	ni, p-Aylene	6260 2	230	20	ppov	27200 & 1	1000	170	ug/m3
1330-20-7	106.2	Xylenes (total)	17300 ° D	230	39 39	ppbv	75100-0	1000	170	ug/m3
CAS No.	Surrog	ate Recoveries Run# 1	l Run#	2	Limits					
460-00-4	4-Brom	ofluorobenzene 154% ¹	0 114%		65-128%	6				

Report of Analysis

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Jot 4/2/15

Page 2 of 3

4

			Report of A	nalys	sis					Page 3 of	3
Client Sample ID: Lab Sample ID: Matrix: Method: Project:		SV-1 JB88930-1 AIR - Soil Vapor Comp. TO-15 Elton Crossing, 899 Eltor	1	Date Sa Date R Percent	amp eceiv t Sol	02/26/15 02/26/15 n/a		4.1			
VOA TO15 L	list										
CAS No.	MW	Compound	Result	RL	MDL	Units	Q	Resul	lt RL	MDL	Units

(a) Result is from Run# 2

(b) Outside control limits due to matrix interference.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

				Rep	ort of A	Analys	sis				F	age 1 of	2
Client Sam Lab Sampl Matrix: Method: Project:	Client Sample ID: Lab Sample ID: Matrix: Method: Project: File ID		AA-1 JB88930-2 AIR - Ambient Air Comp. Summa ID: A1083 TO-15 Elton Crossing, 899 Elton Avenue, Bronx, NY Date Sampled: 0 Date Received: 0 Per cent Solids: n								//26/15 //26/15 a		
Run #1 Run #2	File ID 5W100	1 90.D	DF A	Analyzed)3/07/15	By ML	Pre n/a	p Date	P n	rep] /a	Batch	Analytic V5W400	cal Batch)	1
Run #1 Run #2	Initial 400 ml	Volume											
VOA TOI	5 List												
CAS No.	MW	Compou	nd		Result	RL	MDL	Units	Q	Result	RL	MDL	Units
67-64-1 106-99-0 71-43-2 75-27-4 75-25-2 74-83-9 593-60-2 100-44-7 75-15-0 108-90-7 75-00-3 67-66-3 74-87-3 107-05-1 95-49-8 56-23-5 110-82-7 75-34-3	58.08 54.09 78.11 163.8 252.8 94.94 106.9 126 76.14 112.6 64.52 119.4 50.49 76.53 126.6 153.8 84.16 98.96	Acetone 1,3-Butac Benzene Bromodie Bromoof Bromoof Bromoof Bromoof Bromoof Bromoof Bromoof Bromoof Carbon d Chlorobe Chlorofo Chlorofo Chlorofo 2-Chloro Carbon te Cyclohex 1,1-Dich	liene chlorometha rm ethane hene hloride isulfide nzene nane rm ethane propene toluene etrachloride cane loroethane	ne	2.7 ND 0.34 ND ND ND ND ND ND ND ND ND ND ND ND ND	0.20 0.20	0.11 0.034 0.025 0.029 0.035 0.033 0.035 0.047 0.031 0.034 0.042 0.024 0.024 0.037 0.037 0.032 0.025 0.027	ppbv ppbv		6.4 ND 1.1 ND ND ND ND ND ND ND ND ND ND ND ND ND	$\begin{array}{c} 0.48\\ 0.44\\ 0.64\\ 1.3\\ 2.1\\ 0.78\\ 0.87\\ 1.0\\ 0.62\\ 0.92\\ 0.53\\ 0.98\\ 0.41\\ 0.63\\ 1.0\\ 1.3\\ 0.69\\ 0.81\\ \end{array}$	$\begin{array}{c} 0.26\\ 0.075\\ 0.080\\ 0.19\\ 0.36\\ 0.13\\ 0.15\\ 0.24\\ 0.097\\ 0.16\\ 0.11\\ 0.12\\ 0.16\\ 0.12\\ 0.17\\ 0.16\\ 0.093\\ 0.11\\ \end{array}$	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3
$\begin{array}{c} 75\text{-}35\text{-}4\\ 106\text{-}93\text{-}4\\ 107\text{-}06\text{-}2\\ 78\text{-}87\text{-}5\\ 123\text{-}91\text{-}1\\ 75\text{-}71\text{-}8\\ 124\text{-}48\text{-}1\\ 156\text{-}60\text{-}5\\ 156\text{-}59\text{-}2\\ 10061\text{-}01\text{-}5\\ 541\text{-}73\text{-}1\\ 95\text{-}50\text{-}1\\ 106\text{-}46\text{-}7\\ 10061\text{-}02\text{-}6\end{array}$	96.94 187.9 98.96 113 88.12 120.9 208.3 96.94 96.94 111 147 147 147 147 111	1,1-Dichl 1,2-Dichl 1,2-Dichl 1,2-Dichl 1,4-Diox Dichloroo trans-1,2- cis-1,2-D cis-1,3-D m-Dichlor p-Dichlor trans-1,3-	loroethylene omoethane loroethane doropropane ane difluorometh chlorometha Dichloroethy ichloroprop robenzene obenzene obenzene Dichloroprop	hane ine nylene lene ene opene	ND ND ND 0.55 ND ND ND ND ND ND ND	$\begin{array}{c} 0.20\\$	0.052 0.027 0.023 0.029 0.12 0.030 0.038 0.070 0.023 0.025 0.033 0.029 0.037 0.025	ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv		ND ND ND ND 2.7 ND ND ND ND ND ND ND ND	$\begin{array}{c} 0.79\\ 1.5\\ 0.81\\ 0.92\\ 0.72\\ 0.99\\ 1.7\\ 0.79\\ 0.79\\ 0.91\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 0.91 \end{array}$	0.21 0.21 0.093 0.13 0.43 0.15 0.32 0.28 0.091 0.11 0.20 0.17 0.22 0.11	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

11 of 502 100 JB88930 JB88930

Client Sample ID:AA-1Lab Sample ID:JB88930-2Matrix:AIR - Ambient Air Comp.Summa ID:A1083Date Received:	02/26/15 02/26/15 n/a	4.2
Matrix: AIR - Ambient Air Comp. Summa ID: A1083 Date Received:	02/26/15 n/a	The second
	n/a	
Method: TO-15 Percent Solids:		4
Project: Elton Crossing, 899 Elton Avenue, Bronx, NY		
VOA TO15 List		
CAS No. MW Compound Result RL MDL Units Q Result	alt RL MDL Un	ıits
64-17-5 46.07 Ethanol 3.7 0.50 0.17 ppbv 7.0	0.94 0.32 ug/	/m3
100-41-4 106.2 Ethylbenzene 0.14 0.20 0.035 ppbv J 0.61	0.87 0.15 ug/	/m3
141-78-6 88 Ethyl Acetate ND 0.20 0.061 ppbv ND	0.72 0.22 ug/	/m3
622-96-8 120.2 4-Ethyltoluene 0.18 0.20 0.032 ppbv J 0.88	0.98 0.16 ug/	/m3
76-13-1 187.4 Freon 113 ND 0.20 0.040 ppbv ND	1.5 0.31 ug/	/m3
76-14-2 170.9 Freon 114 ND 0.20 0.031 ppbv ND	1.4 0.22 ug/	/m3
142-82-5 100.2 Heptane ND 0.20 0.021 ppbv ND	0.82 0.086 ug/	/m3
87-68-3 260.8 Hexachlorobutadiene ND 0.20 0.051 ppbv ND	2.1 0.54 ug/	/m3
110-54-3 86.17 Hexane 0.22 0.20 0.042 ppbv 0.78	0.70 0.15 ug/	/m3
591-78-6 100 2-Hexanone ND 0.20 0.064 ppbv ND	0.82 0.26 ug/	/m3
67-63-0 60.1 Isopropyl Alcohol 0.36 0.20 0.066 ppbv 0.88	0.49 0.16 ug/	/m3
75-09-2 84.94 Methylene chloride ND 0.20 0.13 ppbv ND	0.69 0.45 ug/	/m3
78-93-3 72.11 Methyl ethyl ketone 0.18 0.20 0.040 ppbv J 0.53	0.59 0.12 ug/	/m3
108-10-1 100.2 Methyl Isobutyl Ketone ND 0.20 0.042 ppbv ND	0.82 0.17 ug/	/m3
1634-04-4 88.15 Methyl Tert Butyl Ether ND 0.20 0.041 ppbv ND	0.72 0.15 ug/	/m3
80-62-6 100.12 Methylmethacrylate ND 0.20 0.036 ppby ND	0.82 0.15 ug/	/m3
115-07-1 42 Propylene 0.85 0.50 0.048 ppbv 1.5	0.86 0.082 ug/	/m3
100-42-5 104.1 Styrene ND 0.20 0.033 ppbv ND	0.85 0.14 ug/	/m3
71-55-6 133.4 1.1.1-Trichloroethane ND 0.20 0.024 ppby ND	1.1 0.13 ug/	/m3
79-34-5 167.9 1.1.2.2-Tetrachloroethane ND 0.20 0.040 ppby ND	1.4 0.27 ug/	/m3
79-00-5 133.4 1.1.2-Trichloroethane ND 0.20 0.035 ppby ND	1.1 0.19 ug/	/m3
120-82-1 181.5 1.2.4-Trichlorobenzene ND 0.20 0.061 ppby ND	1.5 0.45 ug/	/m3
95-63-6 120.2 1.2.4-Trimethylbenzene 0.64 0.20 0.029 ppby 3.1	0.98 0.14 ug/	/m3
108-67-8 120 2 1 3 5-Trimethylbenzene 0.20 0.20 0.029 ppby 0.98	0.98 0.14 ug/	/m3
540-84-1 114 2 2 2 4-Trimethylpentane 0.14 0.20 0.025 ppby I 0.65	0.93 0.12 ug/	/m3
75-65-0 74 12 Tertiary Butyl Alcohol ND 0.20 0.044 ppby ND	0.61 0.13 ug/	/m3
127-18-4 165.8 Tetrachloroethylene ND 0.040 0.037 ppby ND	0.27 0.25 ug/	/m3
109-99-9 72 11 Tetrahydrofuran ND 0.20 0.049 ppby ND	0.59 0.14 ug/	/m3
108.88.3 92 14 Toluene 0.51 0.20 0.030 mby 1.9	0.75 0.11 ug/	/m3
79-01-6 131.4 Trichloroethylene ND 0.040 0.030 ppby ND	0.21 0.16 ug/	/m3
75-69-4 137 4 Trichlorofluoromethane 0.23 0.20 0.029 ppby 1.3	1.1 0.16 ug/	/m3
75-01-4 62 5 Vinvl chloride ND 0.20 0.031 ppbv ND	0.51 0.079 ug/	/m3
108-05-4 86 Vinyl cristice ND 0.20 0.095 mby ND	0.70 0.33 ug/	/m3
106.2 m n.Xylene 0.56 0.20 0.069 nnhy 2.4	0.87 0.30 ug/	/m3
95_47_6 106 2 0.2 Viene 0.25 0.20 0.034 nnhv 1.1	0.87 0.15 119/	/m3
1330-20-7 106.2 Order total 0.80 0.20 0.031 ppbv 111 1330-20-7 106.2 Xylenes (total) 0.80 0.20 0.034 ppbv 3.5	0.87 0.15 ug/	/m3
CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits	-	
4b0-00-4 4-Bromofluorobenzene 107% b5-128%		

Report of Analysis

Page 2 of 2

ND = Not detectedMDL = Method Detection Limit $J \ = \ Indicates \ an \ estimated \ value$

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Appendix B Chain of Custody

Rd					-										
ACCUTEST. CHAIN	OF CUST	ſODY			Lat Queta P	5X. Ring #		SZM-	2/5/20	15-8	PAG	e_/_	OF _	1_	
Air samp	Client / Reporting In	formation	South Provide Aug	Plochage		123,244		2	15 88	930			10		
Address 1111 Day Areas 1011	1. 17-22	Project Na Street	Elion (nousing	(Site	C-Fi	amily)	Temperature (Fi Start	shrenheli)	Maximum;	25		Requi	ested A	nalya
City New VIX NV State	<u>1 Har</u>	City Rep	<u>899 E</u>	Hin Voar	AVENUC N	plata		stop Z:	ว์	Minimum:	25				
Project Contact AN Shapino E-mail (IS	hapina an	Project #	119))	WAY IN	<u> </u>		Atmostipheric P Start:	ressure (loch	es of hig) Maximum:			ist		
Phone # 646 388 9544 Fax #		Client Purc	chase Order #					Slop:		Minimum:			orting L		
a jardan	Air Type Sampl	ing Equipment info	191 3	Start Same	line Inform	ation		Other weather o	ommont:	No. 1. F			15 Rep		
a	Indoor(I)	Canister Flow		Time	Canister	Interior			Time	Canister	Interior		lard TO-		
Leb Sample # Field ID / Point of Collection	Ambleni(A) Seriel #	BL or 1L Seriel #	Date	(24hr clock)	Pressure ("Ha)	Temp (F)	Sampler Init.	Date	(24hr clock)	Pressure ("Hg)	Temp (F)	Sampler	Stand		
2 AA-1	H A1083	GL 17.331	22615	0690	-29	25 75	AL AL	2/2015	0890	-8	25	H) Al	X	_	
/	\square		V			Ž	-1	1512910	1			/	-		
		+	A		-A				1	-		/			1
	1		2		/		_	+			1	<u> </u>	-		L
	/		No. of Concession, Name	-/		_		/						Ź	
		+A		/				/		-/			A	_	-
Turnaround Time (Business day		1	1				1			1			\rightarrow		
Blanderd - 16 Days 10 Day 5 Day 3 Day 3 Day	Approved By:		All NJDEP TO Comm A Comm B Reduced T2	D-15 is mar	idatory Full	T1	George 20	L	ym ^m	Commenta /	Remarks		in the second		/139
1 Day Other	D#1#:		Other: Car	ACCY	в										
Man Maiorani Data yang 16/15	- 15745 Received By:	10man, 211Bl	150093D	Tallegulation D	ge possess	1 Hall	s (a) (a2)	for delivery.		Hacelvad By	2-4	1.54	00000	2523	010
slinguisheft liy: Data Yimo:	Received Br	SHUSI	weny	Mer	flan	n	<u></u>	bela Time	7890	2 Receivend Dy: 4	4	1	-		-
INITIAL ACCOMPANY JE 11/A	faculted by?	XX	My	Contactly Small #	54			1.1			1	V			
			1												- 34

JB88930: Chain of Custody Page 1 of 2

1000 a mart

5.1

5

Accutest Laboratories Sample Receipt Summary

Accutest Job Number: Date / Time Received:	Delivery Method:				Project:					
Coolor Society	V or N			V or	N	Sample Integrit		Y or	N	
1. Custody Seals Present: 2. Custody Seals Intact:		3. COC Pro 4. Smpl Dates	esent: s/Time OK			1. Sample labels 2. Container label	present on bottles: Ing complete:			

ler Temperature	<u>Y o</u>	or N		3. Sample container label / COC agree:	V		
				Sample Integrity - Condition	Y	or	_
tion:				1. Sample recvd within HT:	V		
				2. All containers accounted for:			
		0		3. Condition of sample:		Intac	d
Y		or N	N/A	Sample Integrity - Instructions	Y	or	
		1		1. Analysis requested is clear:			
	V			2. Bottles received for unspecified tests			
				3. Sufficient volume recvd for analysis:	V		
		V		4. Compositing instructions clear:			
				5. Filtering Instructions clear:			[

Comments

Addutest Laboratories V:732.329.0200 2235 US Highway 130 F: 732.329.3499 Dayton, New Jersey www/accutest.com

JB88930: Chain of Custody Page 2 of 2

Appendix C Case Narrative

CASE NARRATIVE / CONFORMANCE SUMMARY

Client:	AKRF	Job No	JB88930

Site: Elton Crossing, 899 Elton Avenue, Bronx, NY

On 02/26/2015, 2 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at Accutest Laboratories. Samples were intact and chemically preserved, unless noted below. An Accutest Job Number of JB88930 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Volatiles by GCMS By Method TO-15

	Matrix: AIR	Batch ID:	V5W399						
	All samples were analyzed within the recommended method holding time.								
338	All method blanks for this batch meet method specific criteria.								
-	Sample(s) JB89305-1DUP were used	as the QC samples in	ndicated. (BATCH)						
п	JB88930-1 for 4-Bromofluorobenzene	e: Outside control lim	its due to matrix interference.						

Matrix: AIR	Batch ID: V	V5W400	
 All samples were analyzed with	in the recommended method h	holding time.	

All method blanks for this batch meet method specific criteria.

Sample(s) JB89060-3DUP were used as the QC samples indicated. CBATCH

Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting Accutest's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

Accutest Laboratories is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by Accutest Laboratories indicated via signature on the report cover

Page 1 of 1

Report Date 3/11/2015 11:32:37 A

DATA USABILITY SUMMARY REPORT – DUSR DATA VALIDATION SUMMARY

ORGANIC/INORGANIC ANALYSES

TARGET COMPOUND LIST (TCL) VOLATILES BY GC/MS TARGET COMPOUND LIST (TCL) SEMIVOLATILES BY GC/MS TARGET COMPOUND LIST (TCL) PESTICIDES BY GC PCBs BY GC TARGET ANALYTE LIST (TAL) BY ICP/CV

For Soil Samples Collected February 18, 2015, February 19, 2015, February 25, 2015 and February 26, 2015 And Groundwater Samples Collected March 11, 2015 From 899 Elton Avenue Bronx, New York Elton Crossing Collected by AKRF, Inc.

SAMPLE DELIVERY GROUP NUMBERs: JB88569, JB88935, JB89708 BY ACCUTEST LABORATORIES - NJ (ELAP #10983)

SUBMITTED TO:

Ms. Deborah Shapiro AKRF, Inc. 440 Park Avenue South, 7th Floor New York, NY 10016

April 06, 2015

PREPARED BY:

Lori A. Beyer/President L.A.B. Validation Corp. 14 West Point Drive East Northport, NY 11731

Elton Crossing, 899 Elton Avenue, Bronx, New York – Soil and Groundwater Samples; February/March 2015 Sampling Event

Data Usability Summary Report (Data Validation): TCL Volatiles, TCL Semivolatiles, TCL Pesticides, PCBs and TAL Metals.

Table of Contents:

Introduction Data Qualifier Definitions Sample Receipt

1.0 Target Compound List (TCL) Volatile Organics by GC/MS SW846 Method 8260C

- 1.1 Holding Time
- 1.2 System Monitoring Compound (Surrogate) Recovery
- 1.3 Matrix Spikes (MS), Matrix Spike Duplicates (MSD)
- 1.4 Laboratory Control Sample/Blank Spikes
- 1.5 Blank Contamination
- 1.6 GC/MS Instrument Performance Check (Tuning)
- 1.7 Initial and Continuing Calibrations
- 1.8 Internal Standards
- 1.9 Field Duplicates
- 1.10 Target Compound List Identification
- 1.11 Compound Quantification and Reported Detection Limits
- 1.12 Overall System Performance

2.0 Target Compound List (TCL) Semivolatile Organics by GC/MS SW846 Method 8270D

- 2.1 Holding Time
- 2.2 Surrogate Recovery
- 2.3 Matrix Spikes (MS), Matrix Spike Duplicates (MSD)
- 2.4 Laboratory Control Sample
- 2.5 Method Blanks
- 2.6 GC/MS Instrument Performance Check (Tuning)
- 2.7 Initial and Continuing Calibrations
- 2.8 Internal Standards
- 2.9 Field Duplicates
- 2.10 Target Compound List Identification
- 2.11 Compound Quantification and Reported Detection Limits
- 2.12 Overall System Performance
- 3.0 Target Compounds List (TCL) Pesticides by GC Method 8081B and PCBs by GC SW846 Method 8082A
 - 3.1 Holding Time
 - 3.2 Surrogate Recovery
 - 3.3 Matrix Spikes (MS), Matrix Spike Duplicates (MSD)
 - 3.4 Laboratory Control Samples
 - 3.5 Blanks
 - 3.6 Calibration Verification
 - 3.7 Field Duplicates
 - 3.8 Target Compound Identification
 - 3.9 Compound Quantification and Reported Detection Limits
 - 3.10 Overall Assessment of Data

- 4.0 Target Analyte List (TAL) Metals by ICP/Cold Vapor SW846 Methods 6010C/7470A/7471B
 - 4.1 Holding Times
 - 4.2 Calibration (Initial and Continuing Calibration Verifications)
 - 4.3 Blanks
 - 4.4 Spiked Sample Recovery
 - 4.5 Laboratory/Field Duplicates
 - 4.6 Laboratory Control Sample
 - 4.7 Interference Check Sample
 - 4.8 ICP Serial Dilution
 - 4.9 Sample Results Verification
 - 4.10 Overall Assessment of Data

APPENDICES:

- A. Chain of Custody Documents
- B. Case Narratives
- C. Data Summary Form Is with Qualifications

Introduction:

A validation was performed on soil and groundwater samples and the associated quality control samples (MS/MSD/Field Duplicates/Field and Trip Blanks) for organic/inorganic analysis for samples collected under chain of custody documentation by AKRF, Inc. and submitted to Accutest Laboratories for subsequent analysis. This report contains the laboratory and validation results for the field samples itemized below. The samples were collected February 18, 2015, February 19, 2015, February 26, 2015 and March 11, 2015.

The samples were analyzed by Accutest Laboratories (NJ), utilizing SW846 Methods and submitted under NYSDEC ASP Category B equivalent deliverable requirements for the associated analytical methodologies employed. The analytical testing consisted of the Target Compound/Analyte Lists for Volatile Organics, Semivolatile Organics, Pesticides, PCBs and TAL (23) Metals. Groundwater samples were also analyzed for Total and Dissolved Metals. Field Blanks were analyzed for full suite VOA, SVOA, Pesticides, PCBs and TAL Metals. Trip Blanks were analyzed for VOA.

The data was evaluated in accordance with EPA Region II National Functional Guidelines for Organic and Inorganic Data Review and EPA Region II SOPs for 8260, 8270, 8081, 8082 and Metals and also in conjunction with the analytical methodologies for which the samples were analyzed, where applicable and relevant.

Sample Identification	Laboratory Identification	Sample Matrix	Analysis	Date Collected/Received
MW-3 (16.5-17)	JB88569-1	Soil	VOA/SVOA	2/18/15, 2/20/15
SS-1	JB88569-2	Soil	VOA/SVOA/Pest/PCB/Metals	2/19/15, 2/20/15
SSB-1 (0-2)	JB88935-1	Soil	VOA/SVOA/Pest/PCB/Metals	2/25/15, 2/26/15
SSB-1 (5-7)	JB88935-2	Soil	VOA/SVOA/Pest/PCB/Metals	2/25/15, 2/26/15
SSB-1 (7-9)	JB88935-3	Soil	VOA/SVOA/Pest/PCB/Metals	2/25/15, 2/26/15
SSB-2 (0-2)	JB88935-4	Soil	VOA/SVOA/Pest/PCB/Metals	2/25/15, 2/26/15
SSB-2 (5-7)	JB88935-5	Soil	VOA/SVOA/Pest/PCB/Metals	2/25/15, 2/26/15
SSB-2 (8-10)	JB88935-6	Soil	VOA/SVOA/Pest/PCB/Metals	2/25/15, 2/26/15
SSB-X [Field Duplicate of SSB-2 (0-2)]	JB88935-7	Soil	VOA/SVOA/Pest/PCB/Metals	2/25/15, 2/26/15
SSB-3 (0-2) Plus MS/MSD	JB88935-8 JB88935-8D JB88935-8S	Soil	VOA/SVOA/Pest/PCB/Metals	2/26/15, 2/26/15
SSB-3 (5-7)	JB88935-9	Soil	VOA/SVOA/Pest/PCB/Metals	2/26/15, 2/26/15
SSB-3 (7.5-9.5)	JB88935-10	Soil	VOA/SVOA/Pest/PCB/Metals	2/26/15, 2/26/15
TB20150226	JB88935-11	Aqueous	VOA	2/26/15, 2/26/15
FB20150226	JB88935-12	Aqueous	VOA/SVOA/Pest/PCB/Metals	2/26/15, 2/26/15
MW-1	JB89708-1 JB89708-1F	Groundwater	VOA/SVOA/Pest/PCB/Metals/ Dissolved Metals	3/11/15, 3/11/15
MW-2	JB89708-2 JB89708-2F	Groundwater	VOA/SVOA/Pest/PCB/Metals/ Dissolved Metals	3/11/15, 3/11/15
MW-3	JB89708-3	Groundwater	VOA/SVOA/Pest/PCB/Metals/	3/11/15, 3/11/15
Plus MS/MSD	JB89708-3F		Dissolved Metals	
MW-X (Field Duplicate of MW-2)	JB89708-4 JB89708-4F	Groundwater	VOA/SVOA/Pest/PCB/Metals/ Dissolved Metals	3/11/15, 3/11/15
TB20150311	JB89708-5	Aqueous	VOA	3/11/15, 3/11/15
FB20150311	JB89708-6	Aqueous	VOA/SVOA/Pest/PCB/Metals	3/11/15, 3/11/15

The data validation report pertains to the following samples:

Data Qualifier Definitions:

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

J - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

UJ - The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.

R - The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control (QC) criteria. The analyte may or may not be present in the sample.

N - The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."

NJ - The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate quantity.

J+ - The result is an estimated quantity, but the result may be biased high.

J- - The result is an estimated quantity, but the result may be biased low.

D - Analyte concentration is from diluted analysis.

Sample Receipt:

The Chain of Custody documents indicates that the samples were received at Accutest Laboratories via courier upon completion of each sampling event. Sample login notes were generated. The cooler temperature for all sample receipts were recorded upon receipt at Accutest Laboratories and determined to be acceptable (<6.0 degrees C). The actual temperature is recorded on the chain of custody documents, sample receipt checklists in addition to the case narratives provided in Appendix B of this report.

MW-3 (16.5-17) was preserved for Volatile Organics upon receipt. As requested by AKRF, the sample identifications for soils collected on February 25, 2015 and February 26, 2015 were updated to reflect, "SSB" identifications. An updated chain of custody is included in this report.

No unresolved problems and/or discrepancies were noted, consequently, the integrity of the samples has been assumed to be good.

Samples for Volatile analysis were collected in by Method 5035A in Encore devices. All analyses were conducted via low level procedures.

The data summary Form I's included in Appendix C includes all usable (qualified) and unusable (rejected) results for the samples identified above. The Form I's summarize the detailed narrative section of the report.

NOTE:

L.A.B. Validation Corp. believes it is appropriate to note that the data validation criteria utilized for data evaluation is different than the method requirements utilized by the laboratory. Qualified data does not necessarily mean that the laboratory was non-compliant in the analysis that was performed.

1.0 Target Analyte List (TCL) Volatile Organics by GC/MS SW846 Method 8260C

The following method criteria were reviewed: holding times, SMCs, MS, MSD, LCS, Laboratory Spiked Blanks, Method Blanks, Tunes, Calibrations, Internal Standards, Target Component Identification, Quantitation, Reported Quantitation Limits and Overall System Performance. The Volatile results were considered to be valid and useable with the exception of non-detects for Acetone, 2-Butanone, 4-Methyl-2-Pentanone and 2-Hexanone in SS-1, MW-3 (16.5-17), FB20150226, TB20150226, SSB-3 (0-2), SSB-1 (0-2), SSB-1 (5-7), SSB-1 (7-9), SSB-2 (5-7), SSB-X, SSB-3 (0-2), SSB-3 (5-7), SSB-3 (7.5-9.5), SSB-2 (0-2), SSB-2 (8-10) and 2-Butanone in groundwater samples MW-1, MW-2, MW-3, MW-X, FB20150311 and TB20150311 as noted within the following text:

1.1 Holding Time

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the technical holding time is exceeded, the data may not be considered valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimates, "J". The non-detects (sample quantitation limits) are required to be flagged as estimated, "J", or unusable, "R", if the holding times are grossly exceeded.

Samples pertaining to these SDGs were performed within the Method required holding times as well as the technical holding times for data validation of 14 days from collection to analysis. Soil samples were collected in encores (3/location) in accordance with SW846 Method 5035A. No data validation qualifiers were required based upon holding time.

1.2 System Monitoring Compound (Surrogate) Recovery

All samples are spiked with surrogate compounds prior to sample analysis to evaluate overall laboratory performance and efficiency of the analytical technique. If the measure of surrogate concentrations is outside contract specification, qualifications are required to be applied to associated samples and analytes.

Surrogate recoveries (%R) were found to be within acceptable limits for all four (4) surrogate compounds for all analyses pertaining to these SDGs.

1.3 Matrix Spikes (MS)/ Matrix Spike Duplicates (MSD)

The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. The MS/MSD may be used in conjunction with other QC criteria for additional qualification of data.

MS/MSD analyses were conducted for each analytical sequence and were spiked with all components as required by the analytical procedure. Sitespecific soil MS/MSD was performed by the laboratory on SSB-3 (0-2) and MW-3 as requested on the chain of custody by ARKF field sampling personnel. All spike recoveries and RPD fell within in house established limits for soil MS/MSD. Aqueous MS/MSD on MW-3 results in high spike recoveries for Acetone, 2-Hexanone and 4-Methyl-2-Pentanone in the MS and/or MSD. Acetone results in the parent sample (32.5 ug/L) must be considered estimated, biased high, "J+"

No qualifications to the data were required based on professional judgment for batch (non-site specific) MS/MSD analysis.

1.4 Laboratory Control Sample/Blank Spikes

The LCS data for laboratory control samples (LCS) are generated to provide information on the accuracy of the analytical method and on the laboratory performance.

LCS/Blank Spikes were analyzed for each sequence. Recovery values were acceptable for all spiked analytes.

1.5 Blank Contamination

Quality assurance (QA) blanks; i.e. method, trip and field blanks are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field blanks measure cross-contamination of samples during field operations.

The following table was utilized to qualify target analyte results due to contamination. The largest value from all the associated blanks is required to be utilized:

Blank Type	Blank Result	Sample Result	Action for Samples
Method,	Detects	Not Detected	No qualification required
Storage, field,	<crql*< td=""><td><crql*< td=""><td>Report CRQL value with a U</td></crql*<></td></crql*<>	<crql*< td=""><td>Report CRQL value with a U</td></crql*<>	Report CRQL value with a U
Trip,		> = CRQL* and	No qualification required
Instrument		<2x the CRQL**	
	>CRQL*	= CRQL*</td <td>Report CRQL value with a U</td>	Report CRQL value with a U
		>/=CRQL* and	Report blank value for sample
		= blank</td <td>concentration with a U</td>	concentration with a U
		concentration	
		> = CRQL* and >	No qualification required
		blank	
		concentration	
	=CRQL*	= CRQL*</td <td>Report CRQL value with a U</td>	Report CRQL value with a U
		>CRQL*	No qualification required
	Gross	Detects	Report blank value for sample
	Contamination**		concentration with a U

*2x the CRQL for methylene chloride, 2-butanone and acetone.

4x the CRQL for methylene chloride, 2-butanone, and acetone *Qualifications based on instrument blank results affect only the sample analyzed immediately after the sample that has target compounds that exceed the calibration range or non-target compounds that exceed 100 ug/L.

Below is a summary of the compounds in the sample and the associated qualifications that have been applied:

A) Method Blank Contamination:

No target analytes were detected in the method blanks associated with sample analysis.

B) Field Blank Contamination:

Target analytes were not detected above the reporting limits in the Field blanks associated with samples with the exceptions noted below:

FB20150311 – Bromodichloromethane was detected at 0.48 ug/L and Chloroform at 1.6 ug/L in the field blank associated with groundwater samples. Associated sample results were evaluated based on the above criteria and the laboratory reported concentrations of Chloroform were negated in samples MW-1, MW-2 and MW-X. The reported concentration in MW-3 (9.5 ug/L) for this compound could not be negated, however, the end user should proceed with caution when making decisions based on this detection.

C) **Trip Blank Contamination:**

Target analytes were not detected in the Trip blanks.

1.6 GC/MS Instrument Performance Check

Tuning and performance criteria are established to ensure adequate mass resolution, proper identification of compounds and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The Tuning standard for volatile organics is Bromofluorobenzene (BFB).

Instrument performance was generated within acceptable limits and frequency for Bromofluorobenzene (BFB) for all analyses conducted for these SDGs.

1.7 Initial and Continuing Calibrations

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence.

The continuing calibration checks document that the instrument is giving satisfactory daily performance. Initial calibration verifications were acceptable.

A) Response Factor GC/MS:

The response factor measures the instrument's response to specific chemical compounds. The response factor for all compounds must be >/= 0.05 in both initial and continuing calibrations. A value <0.05 indicates a serious detection and quantitation problem (poor sensitivity). Analytes detected in the sample will be qualified as estimated, "J". All non-detects for that compound in the corresponding samples will be rejected, "R". Method 8260C allows for a minimum response factor of 0.1 for Acetone, 2-Butanone, 2-Hexanone and 4-Methyl-2-Pentanone.

All the response factors for the target analytes reported were found to be within acceptable limits (>/=0.05) and minimum response criteria in Table 4 of Method 8260C, for the initial and continuing calibrations for all reported analytes with the exceptions listed below:

ICAL 1/9/15 GCMS3C – Acetone (0.036), 2-Butanone (0.037), 4-Methyl-2-Pentanone (0.073), 2-Hexanone (0.079) – Non-detects have been rejected, "R" in SS-1, MW-3 (16.5-17), SSB-3 (0-2), SSB-1 (0-2), SSB-1 (5-7), SSB-1 (7-9), SSB-2 (5-7), SSB-X, SSB-3 (0-2), SSB-3 (5-7), SSB-3 (7.5-9.6), SSB-2 (0-2), SSB-2 (8-10). Detections have been qualified estimated, biased high, "J+"

ICAL 2/5/15 GCMS2B – Acetone (0.093), 2-Butanone (0.033), 4-Methyl-2-Pentanone (0.094), 2-Hexanone (0.079) – Non-detects have been rejected, "R" in FB20150226 and TB20150226.

ICAL 2/21/15 GCMSL – 2-Butanone (0.039). Non-detects have been rejected, "R" in MW-1, MW-2, MW-3, MW-X, FB20150311 and TB20150311.

CCAL 2/23/15 GCMS3C – Acetone (0.032), 2-Butanone (0.04), 4-Methyl-2-Pentanone (0.092) and 2-Hexanone (0.08). Results for SS-2 were previously qualified based on ICAL and no additional qualifications to the data are required.

CCAL 3/2/15 GCMS3C – Acetone (0.029), 2-Butanone (0.031), 4-Methyl-2-Pentanone (0.068) and 2-Hexanone (0.013). Results for MW-3 (16.5-17) were previously qualified based on ICAL and no additional qualifications to the data are required.

CCAL 3/3/15 GCMS3C – Acetone (0.030), 2-Butanone (0.035), 4-Methyl-2-Pentanone (0.088) and 2-Hexanone (0.089). Results for SSB-1 (7-9), SSB-2 (5-7), SSB-X, SSB-3 (5-7), SSB-3 (7.5-9.5), SSB-2 (0-2), and SSB-2 (8-10) were previously qualified based on ICAL and no additional qualifications to the data are required.

CCAL 3/4/15 GCMS2B – 2-Butanone (0.037), 2-Hexanone (0.085). Non-detects in FB20150226 and TB20150226 were previously rejected due to ICAL response factors.

CCAL 3/17/15 GCMSL – 2-Butanone (0.045). FB20150311 and TB20150311 non-detects were previously rejected, "R."

CCAL 3/18/15 GCMSL – 2-Butanone (0.040). MW-1, MW-2, MW-3 and MW-X non-detects were previously rejected, "R."

B) Percent Relative Standard Deviation (%RSD) and Percent Difference (%D):

Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentrations. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be <20% and %D must be <20%. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and non-detects are flagged "UJ". If %RSD and %D grossly exceed QC criteria, nondetect data may be qualified, "R", unusable. Additionally, in cases where the %RSD is >20% and eliminating either the high or the low point of the curve does not restore the %RSD to less than or equal to 20% then positive results are qualified, "J". In cases where removal of either the low or high point restores the linearity, then only low or high level results will be qualified, "J" in the portion of the curve where non linearity exists. Closing CCV must meet 30% criteria.

Initial Calibrations: The initial calibrations provided and the %RSD were within acceptable limits (20%) for all reported compounds.

Continuing Calibrations: The continuing calibrations provided and the %D was within acceptable limits (20%) for all reported compounds with the following exceptions:

CCAL 2/23/15 GCMS3C – Carbon Tetrachloride (25.3%), 1,2-Dichloroethane (37.4%), Bromodichloromethane (21.6%), 4-Methyl-2-Pentanone (26.0%), Dibromochloromethane (20.4%) and Bromoform (22.2%).

CCAL 3/4/15 GCMS2B – Chloromethane (34.1%), Vinyl Chloride (26.9%) and Chloroethane (24.6%)' "UJ" non-detects in FB20150226 and TB20150226.

CCAL 3/17/15 GCMSL – Acetone (45.8%) – Non-detects in FB20150311 and TB20150311 have been qualified, "UJ."

1.8 Internal Standards

Internal Standards (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must not vary by more than a factor of 2 (-50% to +100%) from the associated continuing calibration standard. The retention time of the internal standard must not vary more than +/-30 seconds from the associated continuing calibration standard. If the area count is outside the (-50% to +100%) range of the associated standard, all of the positive results for compounds quantitated using that IS are qualified as estimated, "J", and all non-detects as "UJ", or "R" if there is a severe loss of sensitivity.

If an internal standard retention time varies by more than 30 seconds, professional judgment will be used to determine either partial or total rejection of the data for that sample fraction.

All samples were spiked with the internal standards Chlorobenzene-d5, Fluorobenzene and 1,4-Dichlorobenzene-d4 prior to sample analysis. The area responses and retention time of each internal standard met QC criteria in all samples associated with these SDGs.

1.9 Field Duplicates

Field duplicate samples are collected and analyzed as an indication of overall precision. These results are expected to have more variability than laboratory duplicate samples. Soil samples are also expected to have a greater variance due to the difficulties associated with collecting exact duplicate soil samples.

Generally for soil samples an acceptable RPD is 50% and water samples an acceptable RPD is 10%.

Field Duplicate analysis was collected on SSB-2. Target analytes were not detected in either run. Acceptable precision was observed.

Acetone %D was high in MW-3/MW-X field duplicate series. Detection of this analyte in MW-3 (32.5%) was previously qualified as biased high, "J+." MW-X detection of 16.7 ug/L is most likely representative of the acetone concentration from this sample location.

1.10 Target Compound List Identification

TCL compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within =/- 0.06RRT units of the standard compound and have an ion spectra which has a ratio of the primary and secondary m/e intensities within 20% of that in the standard compound.

GC/MS spectra met the qualitative criteria for identification. All retention times were within required specifications.

1.11 Compound Quantification and Reported Detection Limits

GC/MS quantitative analysis is considered to be acceptable. Correct internal standards per SW846, response factors and percent moisture were used to calculate final concentrations.

As required, the laboratory reported "J" values between the reporting limits (RL) and Method Detection Limits (MDLs). This is consistent with common laboratory practices and a requirement of the National Environmental Laboratory Approval Program (NELAP).

Soil samples were initially analyzed undiluted. MW-3 (16.5-17) was reanalyzed at 1g due to complicated matrix and demonstrated matrix interference of non-target petroleum range analytes. The initial data set was submitted by the laboratory for corresponding QC purposes. The 1gram analysis was submitted by the laboratory and has been determined that analysis is acceptable. Acetone (32.6 ug/kg) could not be negated due to laboratory or field contamination in MW-3 (16.5-17). The end user should proceed with caution when making decisions based on common laboratory contaminants since detected levels are consistent with laboratory contamination levels. This sample was preserved for VOA analysis at the laboratory and there is the possibility that the sample was contaminated at the laboratory. The result was previously qualified as estimated due to ICAL data.

Remaining soil and all groundwater samples were all analyzed undiluted. No secondary dilutions were required.

1.12 Overall System Performance Good resolution and chromatographic performance were observed.

Tentatively Identified Compounds (TICs) were not generated and therefore not evaluated. MW-3 (16.5-17) chromatogram demonstrates significant non-target peaks.

2.0 Target Compound List (TCL) Semivolatile Organics by GC/MS SW846 Method 8270D

The following method criteria were reviewed: holding times, Surrogates, MS, MSD, LCS, Blanks, Tunes, Calibrations, Internal Standards, Target Component Identification, Quantitation, Reported Quantitation Limits and overall system performance. The Semivolatile results were considered to be valid and usable With the exception of non-detects for 3,3'-Dichlorobenzidine, 2,4-Dimethylphenol and 4-Chloroaniline in SS-1 due to low (<10%) recovery in MS/MSD and 2,4-Dinitrophenol, 4-Dinitrophenol, 4,6-Dinitro-o-cresol, 2-Nitrophenol, 2,4-Dinitrotoluene, 3,3'-Dichlorobenzidine, Hexachlorocyclopentadiene, 3-Nitroaniline and 4-Nitroaniline in SSB-1 (0-2) and also no-detects for 3,3'-Dichlorobenzidine in MW-3 as noted within the following text:

2.1 Holding Time

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the technical holding time is exceeded, the data may not be considered valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimates, "J". The non-detects (sample quantitation limits) are required to be flagged as estimated, "J", or unusable, "R", if the holding times are grossly exceeded.

All samples were extracted and analyzed within the method required holding times and the technical holding times (14 days from collection to extraction and 40 days from extraction to analysis for soil samples and 7 days from collection to extraction for aqueous samples) for analysis required for data validation.

SSB-1 (5-7) was reextracted within holding time due to surrogate recovery outliers.

2.2 Surrogate Recovery

All samples are spiked with surrogate compounds prior to sample preparation/extraction to evaluate overall laboratory performance and efficiency of the analytical technique. Additionally, the sample itself may produce effects due to such factors as interferences and high concentrations of analytes. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the evaluation of the data is dependent upon reextraction and/or reanalysis to confirm/negate laboratory error or matrix related problems. Discussion of surrogate recoveries that fell outside (above/below) QC guidelines is itemized below:

All samples were spiked with six (6) surrogate standards at the sample extraction portion of analysis. Acceptable recoveries were observed for all samples with the exception of SSB-1 (5-7) which yielded low 2-Fluorobiphenyl (36%) and Terphenyl-d14 (41%) from initial analysis. Reextraction confirms low surrogate recovery values for all six (6) surrogates thus confirming a matrix effect. The initial data set has been utilized and base neutral detections have been qualified estimated, biased low, "J-"

2.3 Matrix Spikes (MS)/Matrix Spike Duplicates (MSD)

The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices.

Aqueous and Soil MS/MSD analysis was submitted with each extraction batch. Based on professional judgment, no qualifications to the data were made based on non-site specific MS/MSD.

The National Functional Guidelines provide and allow for flexibility when qualifying the parent sample based on MS/MSD data.

SS-1 was selected by the laboratory for MS/MSD analysis. 2,4-Dimethylphenol. 4-Chloroaniline, 3,3'-Dichlorobenzidine, bis (2ethylhexyl) phthalate and 3-Nitroaniline recovered low in the MS and/or MSD. <10% was observed for 2,4-Dimethylphenol, 4-Chloroaniline, 3,3'-Dichlorobenzidine and therefore non-detects have been rejected in the parent sample; SS-1. Non-detects 3-Nitroaniline have been qualified estimated, "UJ." No qualifications were applied to bis (2-ethylhexyl) phthalate since the spike concentration relative to sample amount was low.

Additionally, SSB-1 (0-2) was utilized for MS/MSD analysis. As a result of complicated matrix, recovery values for 2,4-Dinitrophenol, 4,6-Dinitroo-cresol, 2-Nitrophenol, 4-Nitrophenol, 2,4-Dinitrotoluene, 3,3'-Dichlorobenzidine, Hexachlorocyclopentadiene, 3-Nitroaniline, 4-Nitroaniline were either non recoverable or <10% in the MS and/or MSD. As a result, many RPD fell outside range. Additionally, Butyl benzyl phthalate recovered low but reasonable per the methodology. Nondetects for all analytes with the exception of Butyl benzyl phthalate were rejected, "R" in the parent sample; SSB-1 (0-2).

Groundwater MW-3 was selected by AKRF field sampling personnel for MS/MSD analysis. Recovery values were acceptable all spiked compounds with the exception of 3,3'-Dichlorobenzidine (6%). Non-detects in the parent sample MW-3 must be considered unreliable and has been rejected, "R."

2.4 Laboratory Control Sample

The LCS data for laboratory control samples (LCS) are generated to provide information on the accuracy of the analytical method and on the laboratory performance.

LCS/Blank Spikes were analyzed for each analytical extraction batch. Recovery values were acceptable for all spiked analytes.

2.5 Method Blanks

Quality assurance (QA) blanks; i.e. method, trip and field blanks are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Field blanks measure cross-contamination of samples during field operations.

The following table was utilized to qualify target analyte results due to contamination. The largest value from all the associated blanks is required to be utilized:

For:	Flag Sample Result	Report CRQL &	No Qualification is
	with a "U" when:	Qualify "U" when:	Needed when:
Phthalates (common	Sample Conc. is	Sample Conc. Is	Sample Conc. is
laboratory	>CRQL, but =5x</td <td><crql <="" =5x<="" and="" td=""><td>>CRQL and >5x</td></crql></td>	<crql <="" =5x<="" and="" td=""><td>>CRQL and >5x</td></crql>	>CRQL and >5x
contaminants)	blank value	blank value	blank value
Other Contaminants	Sample Conc. is	Sample Conc. Is	Sample Conc. is
	>CRQL, but =1x</td <td><crql <="" =1x<="" and="" td=""><td>>CRQL and >1x</td></crql></td>	<crql <="" =1x<="" and="" td=""><td>>CRQL and >1x</td></crql>	>CRQL and >1x
	blank value	blank value	blank value

Below is a summary of the compounds in the sample and the associated qualification that have been applied:

A) Method Blank Contamination:

The soil and aqueous extraction blanks applicable to these samples were found to be free of target analyte contamination.

B) **Field Blank Contamination:**

No target analytes were detected in the field blanks applicable to field samples.
2.6 GC/MS Instrument Performance Check

Tuning and performance criteria are established to ensure adequate mass resolution proper identification of compounds and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The Tuning standard for semivolatile organics is decafluorotriphenylphosphine (DFTPP).

Instrument performance was generated within acceptable limits and frequency (12 hours) for decafluorotriphenylphosphine (DFTPP) for all analyses.

2.7 Initial and Continuing Calibrations

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration checks document that the instrument is giving satisfactory daily performance.

A) Response Factor GC/MS:

The response factor measures the instrument's response to specific chemical compounds. The response factor for all compounds must be >/= 0.05 in both initial and continuing calibrations. A value <0.05 indicates a serious detection and quantitation problem (poor sensitivity). Analytes detected in the sample will be qualified as estimated, "J". All non-detects for that compound in the corresponding samples will be rejected, "R".

All the response factors for the target analytes reported were found to be within acceptable limits (>/=0.05), for the initial (average RRF) and continuing calibrations.

 B) Percent Relative Standard Deviation (%RSD) and Percent Difference (%D):
 Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentrations. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be <20% and %D must be <20%. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and non-detects are flagged "UJ". If %RSD and %D grossly exceed QC criteria, nondetect data may be qualified, "R", unusable. Additionally, in cases where the %RSD is >30% and eliminating either the high or the low point of the curve does not restore the %RSD to less than or equal to 20% then positive results are qualified, "J". In cases where removal of either the low or high point restores the linearity, then only low or high level results will be qualified, "J" in the portion of the curve where non linearity exists. Due to the large number of analytes in this method, it is expected for some analytes to fall outside acceptance criteria and the calibration is still considered valid.

Acceptable Initial Calibration Verifications were performed.

Initial Calibrations: The initial calibrations provided and the %RSD were within acceptable limits (20%) for all compounds with exceptions noted below: ICAL 2/23/15 GCMS3P – 2,4-Dinitrophenol (32.7%) – "UJ" non- detects in SS-1.

Continuing Calibrations: The continuing calibrations provided and the %D was within acceptable limits (20%) for all compounds.

2.8 Internal Standards

Internal Standards (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must not vary by more than a factor of 2 (-50% to +100%) from the associated continuing calibration standard. The retention time of the internal standard must not vary more than +/-30 seconds from the associated continuing calibration standard. If the area count is outside the (-50% to +100%) range of the associated standard, all of the positive results for compounds quantitated using that IS are qualified as estimated, "J", and all non-detects as "UJ", or "R" if there is a severe loss of sensitivity.

If an internal standard retention time varies by more than 30 seconds, professional judgment will be used to determine either partial or total rejection of the data for that sample fraction.

All area responses and retention times fell within established QC ranges with the following exceptions:

SSB-1 (0-2) resulted in Chrysene-d12 low response. This sample was analyzed as part of an MS/MSD series and similar results were obtained in MS/MSD analysis and therefore confirm a sample matrix effect. This sample also could not be concentrated to a final volume of 1ml as required by the method. The extract was documented to be viscous and the sample volume was 5mls. Reporting limits have been adjusted accordingly. Positive detections have been qualified estimated, "J" in this sample due to internal standard outlier.

SSB-1 (5-7) also resulted in Chrysene-d12 low response. This sample was reextracted within holding time due to low surrogate recovery. The rextract also yielded Chrysene-d12 low response. The initial data set has been utilized and again, positive detections have been qualified as estimated and were previously qualified based on surrogate recovery data.

Initial analysis of SSB-1 (7-9) also resulted in Chrysene-d12 and Perylene-d12 low area responses. This extract was reanalyzed at a 1:2 dilution and with reduced matrix effects, only Chryene-d12 recovered low. Positive detections have been qualified, "J" for this sample.

2.9 Field Duplicates

Field duplicate samples are collected and analyzed as an indication of overall precision. These results are expected to have more variability than laboratory duplicate samples. Soil samples are also expected to have a greater variance due to the difficulties associated with collecting exact duplicate soil samples. Generally for soil samples an acceptable RPD is 50% and for water samples an acceptable RPD is 10%.

Field Duplicate analysis was collected on SB-2 (0-2) and MW-2. Acceptable precision was observed.

2.10 Target Compound List Identification

TCL compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within =/- 0.06RRT units of the standard compound and have an ion spectra which has a ratio of the primary and secondary m/e intensities within 20% of that in the standard compound.

Mass spectra meet criteria for all detected analytes.

Tentatively Identified Compounds (TICs) were not provided by the laboratory and therefore not evaluated. Chromatograms demonstrate significant non-target peaks in MW-3 (16.5-17), SSB-1 (0-2), SSB-1 (5-7), SSB-1 (7-9) and MW-3.

2.11 Compound Quantification and Reported Detection Limits

GC/MS quantitative analysis is considered to be acceptable. Correct internal standards, response factors and percent moisture were used to calculate final concentrations.

As required, the laboratory reported "J" values between the reporting limits (RL) and Method Detection Limits (MDLs). This is consistent with common laboratory practices and a requirement of the National Environmental Laboratory Approval Program (NELAP).

Groundwater samples were analyzed undiluted.

SSB-1 (0-2) could only be concentrated to a final volume of 5mls. SSB-1 (7-9) was reanalyzed at 1:2 dilution due to IS outliers. Initial data set has been utilized and diluted reanalysis was to confirm a matrix effect. SSB-3 (5-7) was reanalyzed at a 1:5 dilution in order to obtain butyl benzyl phthalate within the upper half of the linear calibration range. This value has been qualified, "D" as required by NYSDEC.

2.12 Overall System Performance

Acceptable system performance was maintained throughout the analysis.

Several sample chromatograms document complicated matrices.

3.0 Target Analyte Pesticides by GC SW846 Method 8081B and PCBs by SW846 Method 8082A.

The following method criteria were reviewed: holding times, Surrogates, MS, MSD, LCS, Blanks, Analytical Sequences, Calibrations, Target Component Identification, Quantitation, Reported Quantitation Limits and overall system performance. The Pesticide and PCBs results are considered to be valid and usable as noted within the following text:

3.1 Holding Time

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the technical holding time is exceeded, the data may not be considered valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimates, "J". The non-detects (sample quantitation limits) are required to be flagged as estimated, "J", or unusable, "R", if the holding times are grossly exceeded.

Samples were extracted and analyzed within the method required holding times and the technical holding times required for data validation (14 days for soil) and seven (7) days for aqueous matrices for extraction. All extracts were analyzed within forty (40) days in accordance with the analytical method requirements.

3.2 Surrogate Recovery

All samples are spiked with surrogate compounds prior to sample preparation/extraction to evaluate overall laboratory performance and efficiency of the analytical technique. Additionally, the sample itself may produce effects due to such factors as interferences and high concentrations of analytes. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the evaluation of the data is dependent upon reextraction and/or reanalysis to confirm/negate laboratory error or matrix related problems. No qualifications were applied if one of the spiked surrogates are above acceptance limits on one of the two columns. Discussion of surrogate recoveries that fell outside (above/below) QC guidelines is itemized below:

Pesticides:

Acceptable surrogate recovery values for TCMX and DCB were observed for all analyses with exceptions noted below:

Diluted reanalysis of SS-1, SSB-1 (0-2), SSB-1 (5-7), SSB-3 (7-9) resulted in non-recoverable TCMX and DCB recovery. Acceptable surrogate values were observed for initial analysis and therefore no qualifications to the data was required.

PCBs:

Acceptable surrogate recovery values for TCMX and DCB were observed for all analyses with the exception noted below:

SSB-1 (5-7) high DCB due to interference. No qualifications were applied.

3.3 Matrix Spikes (MS)/Matrix Spike Duplicates (MSD)

The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices.

The National Functional Guidelines indicate that MS/MSD data alone shall not be utilized to qualify sample data. MS/MSD was submitted with each batch. Data was not qualified for non-site specific QC based on professional judgment.

Pesticides:

Soil MS/MSD was conducted on SS-1. Due to complicated matrix and documented matrix interferences and high sample concentration relative to spike amount, the recovery values and RPD for many analytes fell outside range. Based on professional judgment and acceptable LCS analysis, no qualifications to the data were applied.

Soil MS/MSD was also conducted on SSB-2 (0-2) and SSB-3 (0-2). Acceptable recoveries and RPD were observed for all spiked compounds.

Groundwater MS/MSD was performed on MW-3. High recovery values were observed for most of the spiked analytes in the MS, however, analytes were not detected in the parent sample and therefore high recoveries do not support any potential loss of detection.

PCBs:

MS/MSD analysis was conducted on SSB-3 (0-2). Acceptable spike recoveries and RPD were observed for Aroclor 1016 and 1260.

Additionally, MS/MSD analysis was also performed on SSB-1 (5-7). High recovery values were obtained for Aroclor 1016 and Aroclor 1260 due to interference with Aroclor 1262 that was detected in the parent sample. Based on professional judgment, no data qualifiers were applied.

Groundwater MS/MSD was performed on MW-3. Acceptable recoveries and RPD were observed.

3.4 Laboratory Control Sample

The LCS data for laboratory control samples (LCS) are generated to provide information on the accuracy of the analytical method and on the laboratory performance.

LCS/Blank Spikes were analyzed for each analytical extraction batch for Pesticides and PCBs. Recovery values were acceptable and no qualifications were applied.

3.5 Blanks

Quality assurance (QA) blanks; i.e. method, instrument, trip and field blanks are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Instrument blanks measure carryover for cross contamination. Field blanks measure cross-contamination of samples during field operations.

The following table was utilized to qualify target analyte results due to contamination. The largest value from all the associated blanks is required to be utilized:

For:	Flag Sample Result	Report CRQL &	No Qualification is
	with a "U" when:	Qualify "U" when:	Needed when:
Any Contaminant	Sample Conc. is	Sample Conc. Is	Sample Conc. is
	>CRQL, but =5x</td <td><crql <="" =5x<="" and="" td=""><td>>CRQL and >5x</td></crql></td>	<crql <="" =5x<="" and="" td=""><td>>CRQL and >5x</td></crql>	>CRQL and >5x
	blank value	blank value	blank value

Extraction and Instrument blanks were performed at the appropriate frequency.

Below is a summary of blank contamination:

- A) Method Blank Contamination: No target analytes were detected in the associated method blanks and no data validation qualifiers were required based upon method blank data.
- B) Field Blank Contamination:

Target analytes were not detected in the Field Blanks.

3.6 Calibration Verification

Initial and continuing calibration sequence was performed as required for individual and multi-component Pesticide and PCBs standards. Acceptable DDT and Endrin breakdown percent difference (<20%) was observed. Acceptable retention times were obtained for all analysis and GC resolution is acceptable for both columns.

Linearity criteria for the initial standards have been satisfied for both columns as detailed below:

%RSD </= 20% for single component compounds except alpha-BHC and delta-BHC %RSD </=30% for Toxaphene peaks %RSD </= 30% for surrogates (TCMX and DCB) %RSD <20% for PCB aroclors.

Continuing calibration verifications:

For Pesticide analysis acceptable percent difference for any pesticide is 20% and for PCB analysis, the acceptable limit is 15%.

3.7 Field Duplicates

Field duplicate samples are collected and analyzed as an indication of overall precision. These results are expected to have more variability than laboratory duplicate samples. Soil samples are also expected to have a greater variance due to the difficulties associated with collecting exact duplicate soil samples. Generally for soil samples an acceptable RPD is 50% and 10% for aqueous samples. Field Duplicate analysis was collected on MW-2. No Pesticides or PCBs were detected in either analysis. Field Duplicate analysis was also collected on SSB-2 (0-2). Acceptable precision was observed.

3.8 Target Compound Identification

Qualitative criteria for compound identification have been established to minimize the number of false positives and false negatives. The retention times of all target analytes have been verified in the samples to that of the analyzed reference standards

Sample analysis was conducted via the internal standard method.

Acceptable DDT/Endrin breakdown was observed.

Positive Pesticide and PCB sample results are compared and where %Difference >25% when quantitated on the two columns the qualifications below are applied. Sample chromatograms were reviewed for the presence of interference. The following qualifications were applied where neither column shows interference:

%Difference	Qualifier
0-25%	None
26-70%	"J"
71-100%	"JN"
101-200% (no interference)	"R"
101-200% (interference detecte	d)* "JN"
>50% (Pesticide value is <crq< td=""><td>L)** "U"</td></crq<>	L)** "U"
>201%	" R "

*When the reported %D is 101-200%, but interference is determined on either column, the results shall be qualified, "JN" ** When the reported pesticide value is lower than the CRQL, and the

%D is >50%, raise the value to the CRQL and qualify "U", undetected.

As recommended by SW846 Method 8000, the laboratory has reported the lower value obtained when comparison of each column for Pesticides.

PCB results from SS-1, SSB-1 (0-2) were obtained from the higher column concentration.

Acceptable % difference was observed for reported analytes with the following exceptions:

SS-1 – Aldrin (68.8%), alpha-Chlordane (31.7%), 4,4'-DDD (29.6%) and Heptachlor epoxide (61.8%). The laboratory reported results must be considered estimated, "J."

SSB-1 (0-2) – alpha-Chlordane (45.4%); The laboratory reported result must be considered estimated, "J."

SSB-1 (5-7) – Endrin Ketone (31.4%), alpha-Chlordane (45.0%) and Aroclor 1262 (27.8%) - The laboratory reported results must be considered estimated, "J."

SSB-1 (7-9) – alpha-Chlordane (45.2%) – The laboratory reported result must be considered estimated, "J." SSB-2 (0-2) – Dieldrin (30.8%) – Qualified estimated, "J."

SSB-3 (5-7) – gamma-Chlordane (63.2%). Qualified estimated, "J."

3.9 Compound Quantification and Reported Detection Limits

TCL compounds are identified on the GC by using the analyte's relative retention time (RRT) and by comparison to the primary column and the secondary confirmation column data. The laboratory reported the lower of the concentrations for primary/confirmatory column results as required. Soil results were reported on a dry weight basis as required.

Samples were initially analyzed undiluted. SS-1 was reanalyzed at 1:100 and 1:200 in order to obtain pesticide concentrations within the instruments linear calibration range.

SSB-1 (0-2), SSB-1 (5-7) and SB-1 (7-9) required secondary and tertiary diluted reanalysis at 1:100 and 1:500 for Pesticides. PCB reanalysis was performed at 1:20 dilution for SSB-1 (0-2) and 1:5 for SSB-1 (5-7).

Several sample chromatograms document complicated sample matrices.

3.10 Overall System Performance

Acceptable system performance was maintained throughout the analysis of all samples. Good resolution and chromatographic performance were observed.

Soil samples were concentrated to 10ml for Pesticides and PCBs. This is acceptable practice and method compliant. The laboratory reporting levels reflect the appropriate extraction concentration volume.

4.0 TAL (23) Metals by ICP/Cold Vapor SW846 Methods 6010C/7470A/7471B

The following method criteria were reviewed: holding times, CRDL standards, calibration, blanks, MS, laboratory duplicates, LCS, interference check sample, ICP serial dilutions and sample results verification. The soil and groundwater metals (total and dissolved) results are considered to be valid and usable with the appropriate qualifiers as notated in the following text:

4.1 Holding Times

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the technical holding time is exceeded, the data may not be considered valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimates, "J". The non-detects (sample quantitation limits) are required to be flagged as estimated, "J", or unusable, "R", if the holding times are grossly exceeded.

Samples were digested and analyzed for TAL Metals within the method required holding times and the technical holding times for data validation. No qualifications were applied based upon holding time criteria. Samples for dissolved metals were field filtered.

4.2 Calibration (ICV/CCV)

Satisfactory instrument calibration is established to ensure that the instruments are capable of producing acceptable quantitative data. An initial calibration demonstrates that the instruments are capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration checks document that the instruments are giving satisfactory sequential performance and that the initial calibration is still valid. The ICP and Mercury instruments were calibrated utilizing a minimum of a four-point curve in addition to blanks at the beginning of each analytical run. The calibrations have been determined to be acceptable, yielding correlation coefficients of 0.995 or greater.

For ICP analysis, satisfactory instrument performance near the Contract Required Detection Limit (CRDL) was demonstrated by analyzing a CRDL standard at the beginning and end of the analytical run. The instruments were calibrated properly by analyzing the CRDL solution at the correct levels, and analyzed at the required frequency at the beginning and end of each analytical run.

All recoveries were within acceptable limits of 90-110 % for initial calibration pertaining to field samples.

Continuing calibrations were within acceptable limits of 90-110% recovery of the true values for ICP and Mercury (80-120%) for all field samples.

No qualifications were applied based upon ICV/CCV analysis.

4.3 Blanks

Quality assurance (QA) blanks, i.e. method, field or preparation blanks are prepared to identify any contamination that may have been introduced into the samples during sample preparation or field activity. Preparation blanks measure laboratory contamination. Field blanks measure cross-contamination of samples during field operations.

All digestion/prep/ICB/CCB/Field blanks were generated within acceptable limits yielding final concentrations less than the CRDL.

No qualifications to the data were made based upon blank contamination.

4.4 Spiked Sample Recovery

The spike data are generated to determine the long terms precision and accuracy of the analytical method in various matrices.

Aqueous spike recoveries are qualified based on the criteria below: <30% - "R" all detects and non-detects

Between 30%-74% - results >/=MDL "J" and non-detects "UJ" Between 126-150% - results >/=MDL "J" and >150% - results >/= MDL "R" Soil spike recoveries are qualified based on the criteria below: <10% - "R" all detects and non-detects Between 10%-74% - results >/= MDL "J" and non-detects "UJ" Between 126-200% - results >/=MDL "J" and >200% - results >/= MDL "R"

SSB-2 (5-7) was utilized for Mercury MS/MSD. Acceptable recoveries and RPD were observed.

SSB-3 (0-2) was selected by AKRF field sampling personnel for MS/MSD analysis. Antimony recovered low (51.7%) in the MS and also in the MSD (50.3%). Acceptable post digestion spike was performed. Manganese also recovered low (71.5%) in the MSD. Results in the parent sample have been qualified "J/UJ."

Spike outliers due to low spike amount relative to sample concentrations were not qualified for this MS/MSD series. Specifically; Aluminum and Iron.

Groundwater MS/MSD was performed on MW-3 for both total and dissolved metals. Acceptable recovery and RPD were observed for all elements.

No qualifications to the data were made for non-site specific MS/MSD.

4.5 Laboratory/Field Duplicates

The laboratory uses duplicate sample determinations to demonstrate acceptable method precision at the time of analysis. Duplicate analyses are also performed to generate data in order to determine the long-term precision of the analytical method on various matrices.

Laboratory Duplicates: RPD >20% but <100% - J detected concentrations RPD >/=100% - R all detected and non-detected concentrations

Field Duplicates: RPD >/=35% but <120% - qualify sample and duplicate results >/= CRQL "J" RPD >/= 120% - rejected sample and duplicate results >/= CRQL "R"

Field Duplicate analysis was collected on SSB-2 (0-2) as SSB-X. The laboratory reported result must be considered estimated, "J." Field Duplicate analysis was also collected in MW-2 as MW-X. Arsenic was detected at 3.2 ug/L in MW-2, however, not in the field duplicate. Results have been qualified, "J/UJ"

Chromium was detected at 11.9 ug/L in MW-2, however, not in the field duplicate. Results have been qualified, "J/UJ."

4.6 Laboratory Control Sample

The laboratory Control Sample (LCS) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. Aqueous and solid Laboratory Control samples shall be analyzed for each analyte utilizing the same sample preparation, analytical methods and QA/QC procedures as employed for the samples.

The LCS was analyzed and reported for all ICP and Mercury analysis. Associated LCS recoveries were within the acceptable limits for TAL Metals analyses (80-120%).

4.7 Interference Check Sample

The interference check sample (ICS) verifies the laboratory's interelement and background correction factors. The ICS consists of two solutions A and AB. Solution A consists of interference, and solution AB consists of the analytes mixed with interferents.

SW846 Method 6010 requires solution A and solution AB to be analyzed separately. The recoveries for the ICP interference check sample were all within the acceptable limits of 80-120%. No data qualifications were made based upon ICS analysis.

4.8 ICP Serial Dilution

The serial dilution of samples quantitated by ICP determines whether or not significant physical or chemical interferences exist due to sample matrix. An ICP serial dilution analysis must be performed on a sample for each group of samples with a similar matrix type and concentration, or for each Sample Delivery Group (SDG), whichever is more frequent.

Acceptable ICP serial dilutions were performed at a 5-fold dilution as required by the method where the initial concentration is equal or greater than 50x MDL. The serial dilution analysis agrees within a 10% difference of the original determination after correction for dilution for all elements with the following exceptions:

SSB-3 (0-2) – Arsenic (14.1%), Cadmium (100%) and Silver (23.8%). Outliers can be attributed to low sample concentration and therefore no qualifications were applied based on these outliers.

4.9 Sample Results Verification

Analyte quantitation was generated in accordance with protocols. The raw data was verified and found within the linear range of each instrument used for quantitation. Raw data supplied corresponds with reported values. Verification of the calculations yielded reported results.

Metals analysis resulted in acceptable results.

In cases where the dissolved results are slightly higher than the total values, it can be concluded that the specific element is in the dissolved form.

4.10 Overall Assessment of Data

The data generated were of acceptable quality. All analysis was initially conducted undiluted. Secondary diluted reanalysis was performed where interferences were observed.

For the TAL Metals analysis results are usable at the concentrations presented in the validated spreadsheets.

Reviewer's Signature foll Q. Ruff Date 04/06/2015

Appendix A Chain of Custody Documents

JB88569: Chain of Custody Page 1 of 3

5.1 5

		4	Accutest Labor	atories Sample Re	eceipt Summary			
Accutest Job Number: JB88	8569	Cilent	: AKRF		Project: Elton Crossing			
Date / Time Received: 2/20	/2015 3:30	0:00 PM	Delivery Method:	Other Courier	Airbill #'s:			
Cooler Temps (Initial/Adjuste	ed): #1:(3	<u>/2.7): 0</u>						
Cooler Security Y 1. Custody Seals Present:	or N	3. COC	Y_or_ Present: ☑	N Sample Integrit	y - Documentation	<u> </u>	or N	
2. Custody Seals Intact:		4. Smpl Dai	tes/Time OK 🛛 🖌	2. Container label	ing complete:	\checkmark		
Cooler Temperature	_Y_or	<u> </u>		3. Sample contair	ner label / COC agree:	\checkmark		
1. Temp criteria achleved: 2. Cooler temp verification: 3. Cooler media: 4. No, Coolers	IR Ice	Gun (Bag) 1	원 정	Sample Integrif 1. Sample recvd v 2. All containers a 3. Condition of sa	ty <u>- Condition</u> vithin HT: accounted for: mple:	<u>Y</u> ☑ ☑	or N	
Quality Control Preservatio	Y_	<u>N N</u>	<u>/A_</u>	Sample Integrit	v - Instructions	Y	_N_	_N/A_
1. Trip Blank present / cooler:			ן	1. Analysis reque	ested is clear:			
2. Trip Blank listed on COC:]	2. Bottles receive	d for unspecified tests			
3. Samples preserved properly:				3. Sufficient volu	me recvd for analysis:	\checkmark		
4. VOCs headspace free:			9	4. Compositing in	nstructions clear:			\checkmark
				5. Filtering instru	ctions clear:			
Comments 1) -1(MW-3): Rec'd 1 2) Incomplete coc: Sar	x 8oz jer, no s mples not reli	separale voc jør nquished to lab	sent. Voa's to run first. by courier (Impulse).					

Acculest Laboratories V:732.329.0200

2235 US Highway 130 F: 732.329.3499

Daylon, New Jersey www/acculest.com

5.1 5

JB88569: Chain of Custody Page 2 of 3

Sample Receipt Summary - Problem Resolution

 Accutest Job Number:
 JB88569
 Initiator:
 daveh

 CSR:
 M Cordova
 Response Date:
 2/20/2015

Response: Do a Low level preservation in the lab for the VOC.

Accutest Laboratories V:732_329_0200 2235 US Highway 130 F: 732 329 3499 Dayton, New Jersey www/accutest.com

JB88569: Chain of Custody Page 3 of 3

	SLL CHA STB FB 7EL 72	LIN OF CUSTODY 235 Route 130, Dayton, NJ (HR10 2-329-2020 FAX: 732-3499/3480	IM DU (Sec recontent chance p	PAGE OF
Client / Reporting Information	Proje	act Information	Requested Analysis / sea	IEST CODE sharel
Company Name Culter	Project Name:	THE STATE OF STREET, S	requested Analysis (560	Matrix Codes
UKIF, INC	Elton Crossing			DW - Drinking Water
440 Port Avenue South 78	Birnel 900 FHM AVENIE			WW - Ground Water WW - Waler
City AINI NEW IONI	CRY Darman And State	Billing Information (If different from Report to) Company Name		SO - Sol
INA INA IOUR	BUIX NY	- 10 - X-	SE S	SED-Sediment
DEbarah Smaro dhaaro Gakrf	Prodect 1901	Street Address	Red and a	LIQ - Other Liquid
Prove 280, OCUL	Ciant Purchase Onter #	Gily Stata Zip	- 003	SOL - Other Sold WP - Wine
Samoler(s) Name(a) Phone #	Protect Mananer	A meuricau		FB-Field Blank EB-Egylorment Blank
Q TSraign 610.405.2847	C Shapiro	Analioon	ASS V	RB- Rinse Blank TB-Trip Blank
4	Culfactor	Manther of pressrived Baltine		
Accurat Server Field ID / Point of Collection	MEDH/DI VAL	tampies U ANE	JJJJJJ	
1 58-1(0-1)	2/2-11- 1520	Dy Mains Automation 2 2 2 2 2 2 2 2		LAB USE ONLY
7 58-1(5-7)	2/20/10 1020	N - 2 - 7	XXXXX	D55
3 50-17-01	2123115 1223	9 2 1 1 1	XXXXX	ENCORC
U 38-210-2)	2123113 1020	19 2 7 1 2 3	XXXXX	146
C 50202	2/20/10 100/1	12 2 7 1 1 2 3		49128
1 SR-7 (R-1)	2/20/15 1/20	-12 2 7 1 1 1 2		5100
1 SR-V	2125/15 102()	9 2 7 1 1 2		1-1
0 52202	212015 1000	191 2 7 1 1 1	XXXXX	V13,8
0 50 310-21	210010 0013		XXXXX	MITTAL ASESSMENT 38 a
9 30 30 71	120115 0010		XXXX	Contraction of the second seco
	42015 0035		XXXX	LABELL VERNEIGATION JR
8 30 3 M3 M3D (0 2)	2/20/15 0/15	9 5 0 2 6	XXXXX	
	2/10/15 1100)			
The state of	Spring and By (Accupted PM) Dates	Commercial "A" (Level 1) NYASP Cate	gory A	mants / Special Instructions
S Day RUSH	19-19 N 19	Commercial "B" (Level 2) NYASP Cate	gory B PRAK CMG1	ashapiro a akit and
3 Day RUSH	N. T. M. R. Caller S. Caller	State Forms	Quordan Q	UKAE WILL TEALITS ETC.
2 Day RUSH	TOBAL PROPERTY AND ADDRESS OF	Commercial "C" Other	Kaga SAL	Could
i Day Rosh	LANE STONE MY STON	NJ Date of Known Quality Protocol Reporting	Summary	and all the
Emergency & Ruch T/A data available VIA Lablax .	Sample Custody must be docu	12 - 10 HJ Reduced = Results + OC Summary + Parts	al Raw datu 9 Cried (U	es recicle 426 15 (00)
"ANTON - OXIE AD" STATION	(a) 162 (a) Maratived By:	Mellinguisted By:	Data Title;	Received By:
Répulshed by Sampler:	Parinda Coll	theolig 2	0	2 A PA
3 Relinguistat by	3	WWW DI Man Marco Caro	we spelly the	4 In OF
5	1 5 5 STATE 1	- M Constraint 52	Nant Preserved whore applicable	Coofer Temp

100.00

5.1

S

JB88935: Chain of Custody Page 1 of 8

JB88935: Chain of Custody Page 2 of 8

Accutest Laboratories Sample Receipt Summary

Accutest Job Number: JB88	935	Client:			Project:			
Date / Time Received: 2/26/	2015 7:20:	00 PM	Delivery Method	:	Airbill #'s:			
Cooler Temps (Initial/Adjuste	ed): #1:(1.	2/0.9): #2:	<u>(1/0.7):_0</u>					
Cooler Security Y	or N		<u>Y</u> o	<u>r N</u>	Sample Integrity - Documentation	Y	or_N	
1. Custody Seals Present:		3. COC P	resent: 🖌		1. Sample labels present on bottles:	\checkmark		
2. Custody Seals Intact:		4. Smpl Date	s/Time OK 🖌 🖌		2. Container labeling complete:	\checkmark		
Cooler Temperature	Y or	<u>N_</u>			3. Sample container label / COC agree:			
1. Temp criterla achleved:					Sample Integrity - Condition	<u> Y </u>	or N	
2. Cooler temp verification:	IR G	un			1. Sample recvd within HT:	\checkmark		
3. Cooler media:	Ice (B	ag)			2. All containers accounted for:	\checkmark		
4. No. Coolers:	2				3. Condition of sample:		Intact	
Quality Control Preservatio	<u>Y</u> or	N N/A			Sample Integrity - Instructions	Y	or N	N/A
1. Trip Blank present / cooler:	1				1. Analysis requested is clear:	\checkmark		
2. Trip Blank listed on COC:	V				2. Bottles received for unspecified tests			
3. Samples preserved properly:	\checkmark				3. Sufficient volume recvd for analysis:	\checkmark		
4. VOCs headspace free:	4				4. Compositing instructions clear:			\checkmark
					5. Filtering instructions clear:			

Comments

Accutest Laboratories V:732.329.0200 2235 US Highway 130 F: 732 329.3499 Dayton, New Jersey www/accutest.com 5.1 **5**

JB88935: Chain of Custody Page 3 of 8

Image: Control of Con	Client / Reporting Information	Sugar	Sido-	TEL 732	-329-0200	FAX:	732,329-3 com	499/148	80		tores a	Accu	telet Charan			1.00	Accumit.leb	TR	Stat	125 DEN
Image: All of the state of the sta	ny Nama	Project Name:		Projec	t Inform	nation				2010			Re	quest	nd Ana	itysis (.see T	ESTCOD	E sheet)		Matrix Cod
MO Putty Parket Putty P	akri, inc.	Enn	Crais	Rus	a 1.	1.01		-						16	1	2) OW - Orinking V
NM ONG BTLIX NV State Order Transmitter State	440 Aur Awoner Javin 7	899	Elin	AVENTE				-			AND D					1X		1 3		OW - Ground W WW - Wate
Design of the second	NY IONA	Prini	v An	1 dieds	Corps	my Plante	NOO (N ON	Paratit I	TOVID BLOG	yort top	-	-	1			ET.		1.7		SO - Soil SL- Sludge
And Construction Description Description <thdescription< th=""></thdescription<>	Contact Wash I der syn Comai	Project # 11	A IN	Y	Streat /	Gifensa	1	1	-	ATT	-	714	No.	B	121		1.5	1.3		SED-Sedimer
Max Max <td>200 Contra Da Carel Gur</td> <td>Client Purchase</td> <td>Order #</td> <td></td> <td>City</td> <td>- 54</td> <td>-</td> <td></td> <td>ata</td> <td></td> <td>Zo</td> <td>12</td> <td>pe</td> <td>0</td> <td>曰</td> <td>3</td> <td>t K</td> <td></td> <td>14</td> <td>AIR - Air SOL - Other Si</td>	200 Contra Da Carel Gur	Client Purchase	Order #		City	- 54	-		ata		Zo	12	pe	0	曰	3	t K		14	AIR - Air SOL - Other Si
Image: Project of the state	a) Marriella) Proce #	Project Mananer			-		5-0	-		A.		1	X		1	10	145			WP - Wipe FB-Fleid Blen
Field IO / Point of Codection Jacobi Trace	0124 010 405 2347	Cl. sh	oniging	L. R	100		- Ot		. 15	e.		IA	3	2	2/7	N.		1	19-	RB- Rinse Blan TB-Trip Blan
Field D/ Point of Collection Description Date The original Banyod Market Prace Prace <td></td> <td>195 1979</td> <td>2 hours</td> <td>Collector</td> <td>1</td> <td>-</td> <td>100</td> <td>T</td> <td>Mambac</td> <td>l la</td> <td>Doites</td> <td>7</td> <td>1.</td> <td>10</td> <td>33</td> <td></td> <td>E OF</td> <td></td> <td></td> <td>-</td>		195 1979	2 hours	Collector	1	-	100	T	Mambac	l la	Doites	7	1.	10	33		E OF			-
SSE-1(1) 225/15 520 4	Field ID / Point of Collection	MECHUDI VILLI II	Dete	Time	Sempled by	Metrix	V at Settin	P I	TONH	Surger Cli West	NEON	F	12	A	Y.	H		8	1	LAB USE ON
2 2	<u> </u>		125/15	1520	U.	S	4			1	1	X	X	X	X	X		100	2422	
Signal Zisis Gradinese Gradinese <thgradinese< th=""> <thgradine< td=""><td>5 5.8-1 (7-0)</td><td>12</td><td>212515</td><td>1520</td><td>9</td><td>3</td><td>4</td><td></td><td></td><td>11</td><td>3</td><td>X</td><td>X</td><td>X</td><td>X</td><td>X</td><td>S. (</td><td>125</td><td></td><td>a series in a series of the</td></thgradine<></thgradinese<>	5 5.8-1 (7-0)	12	212515	1520	9	3	4			11	3	X	X	X	X	X	S. (125		a series in a series of the
Still 2 (57) 21251/5 (20) Still 2 (57) 21251/5 (20) Still 2 (57) Still 2 (9+0) 21251/5 (20) G Still 2 (57) Still 2 (57) Still 2 (57) Still 2 (15) 21251/5 (20) G Still 2 (10) Still 2 (10) Still 2 (10) Still 2 (15) 21251/5 (20) G Still 2 (10) Still 2 (10) Still 2 (10) Still 2 (15) 21251/5 (20) G Still 2 (10) Still 2 (10) Still 2 (10) Still 2 (15) 21261/5 040 Still 2 (10) Still 2 (10) 21261/5 040 Still 2 (10) Still	· S38-2(0-2)	05,00,5	2125115	1600	12	1	4			1	2	13	X	X	X	X	-			
S.35-2 (9-D) 2/25/15 1/20) G S 4 S X <td>S.38-2 (5-7)</td> <td>1000</td> <td>2125/15</td> <td>1615</td> <td>CH-</td> <td>S</td> <td>4</td> <td>T</td> <td></td> <td>1</td> <td>3</td> <td>X</td> <td>X</td> <td>X</td> <td>Ì</td> <td>X -</td> <td></td> <td>-</td> <td></td> <td></td>	S.38-2 (5-7)	1000	2125/15	1615	CH-	S	4	T		1	3	X	X	X	Ì	X -		-		
SSE 3 (1-2) 216(1)5 0045 01 3 4 1 3 X	<u>3.15-2 (9-10)</u>	0130 11225	2/25/15	11070	Gi	\$	4			1	3	X	X	X	X	X	1			1
SSR-3 SSR-3 <th< td=""><td>CSH 210-25</td><td></td><td>425175</td><td>1100S</td><td>aj</td><td>5</td><td>4</td><td></td><td></td><td>1</td><td>3</td><td>X</td><td>X</td><td>X</td><td>X</td><td>X</td><td>1</td><td></td><td></td><td></td></th<>	CSH 210-25		425175	1100S	aj	5	4			1	3	X	X	X	X	X	1			
SSS-3(1545) Alais 0335 Alsis 0335 Alsis 0335 Alsis 1 Alsis 2 A	(SB-3(5-1)	617 278	2126115	0940	uj -	3	#			1	3	X	X	X	X	X	_			
SSE-3- M_M_H_L_D_(0-2) F2(6/15) 6/15 6/15 5 8 4 6 X X X X TB 201:50/226 2/1/0/15 1/00 6/12 2 2 4 6 X X X X The new off The (Burease stery) Annual to (Assessing the (Devices The (Laws 2)) Data (Devices the (Laws 2)) UVASP Category A Commends (Assessing the (Laws 2)) UVASP Category A Star 10 Business Days Genometrical "A" (Laws 2) UVASP Category A PKLV (MOI) OSh Op (Low) 3 Day RUBH Genometrical "A" (Laws 2) UVASP Category B PKLV (MOI) OSh Op (Low) 3 Day RUBH Genometrical "A" (Laws 2) UVASP Category B PKLV (MOI) OSh Op (Low) 3 Day RUBH Genometrical "A" (Laws 2) UVASP Category B PKLV (MOI) OSh Op (Low) 1 O bay RUBH Genometrical "A" (Laws 2) UVASP Category B PKLV (MOI) Op (Law) 1 O bay RUBH Genometrical "A" (Laws 2) Genometrical "B" (Laws 2) UVASP Category B PKLV (MOI) Op (Law) 1 O bay RUBH Genometrical "C" (Contractial "C" (C	S3-3(13-95)		2 2615	0925	2	5	1		100		3	X	3	X	X	X		-	15 Jul 10	14 - A
IS_2012/20 12/10/15 1000 dig 2 2 Themanuand Trivel (Bureness darye) Assumed by planess PM, / David Data	SSE-3-MN(MILD(0-2)	1	120115	0945	al	S	8	117	1019	A	6	1X	X	X	X	X		11.00		· · · · · ·
9 Bit. 10 Business Days Aservers By (Assess PM) / Devic Commercial "A" (Lavel 1) (WASP Casegory A 9 Std. 10 Business Days Gommercial "A" (Lavel 1) (WASP Casegory A Commercial "A" (Lavel 1) 1 Day RUSH Gommercial "A" (Lavel 1) (WASP Casegory B PL(UK PNG) (UShOPHO @) GK/F 2 Day RUSH Gommercial "C" ODD Format (UShOPHO @) GK/F 1 Day RUSH Gommercial "C" ODD Format (UShOPHO @) GK/F 1 Day RUSH Gommercial "C" ODD Format (UShOPHO @) GK/F 1 Day RUSH Gommercial "C" ODD Format (UShOPHO @) GK/F 1 Day RUSH Gommercial "C" ODD Format (UShOPHO @) GK/F 1 Day RUSH Gommercial "C" ODD Format (UShOPHO @) GK/F 1 Day RUSH Gommercial "C" ODD Format (UShOPHO @) GK/F 1 Day RUSH Gommercial "C" ODD Format (UShOPHO @) GK/F 1 Day RUSH Gommercial "C" ODD Format (UShOPHO @) GK/F 1 Day RUSH Gommercial "C" ODD Format (UShOPHO @) GK/F 1 Day RUSH Gommercial "C" ODD Format (UShOPHO @) GK/F 1 Day RUSH Gomm	Tomeround Time (Bueross days)	12.000	2/10/15	1100	di	29	2	2				X		14			1111		100	-
S Dey RUSH S Dey RUSH	Stri 10 Business Dave	corners Dy (Album	in Phili / Danes	1	. C. C	ommerci	al "A" (La	Debran	within init	WY.	ASP Cate	gory A		D		Corre	ents / Speci	i Instructi	orna danang	10000000
2 Doy Note: 2 Doy Not	5 Day RUSH		15. (M)	* . *	町。	ULLITT (1	of "B" (Le Lievel 344)	5.8	NY.	ASP Cate le Forma	igory B		TK	ur	email	ast	apire) (ii) (i	Kif and
determined in the strategy of the strateg	2 Day RUSH	DECOURS.			"日"	J Raduca omroerch	d 11 *C*	5.00	100		Forma	1	-	a	pro	lan (a) (KIF	W	18.111	HJ, MAC.
All Deduces Financial Contractions of Proceedings and Proceedings of Proceedings	other	11-12-1		7	Coôvinanti	NJ Deta o	Known I	Quelity	Protoco	A Reports	ng el	e.	MA	-44	ep-	-31261-	-0	KA A	E.	
Bampin Custody must be documented below each time samples change and the document of the	NY IS MUSIC THAT ONLY WITH A DECK	Same	ne Custody mu	nt birdocum	mind bel	ow mach	Li Reduce	d = Flan	nila + Q	C Surrena	is + OC 8 iy + Parti for the	Minnery MRew dat		12.1		- Ann	10		2/-	5 P
NY CAT - UKEF AND THE USE WALD In the second by Barrier Barry Barr	CAN - WKA ARD 212 1150	@ 16209 5	contract By:	Him.				lafiriyala	fied By:	Pastes	ION, MICH	ociun ce	ourier de	D	ste Theat	- Pre-	italized By:	1		

JB88935: Chain of Custody Page 7 of 8

ACCUTEST			2235 TEL, 732-3	N (OF (L NJ ORB	TOE	ŊΥ			1980-10	X Tracks	0#		3.4	-	die Onle	PAG	= 2 21/5/7	_ 0	F <u>2</u>
Client / Reporting Information	1978		Project	www	ation	om	A. M.	1	-	NI-AND	10.07	Rec	unstar	Anat	inte f e	TE	TCO	T.	ßă	84	35 FEUI
Company Name OVIL 15	Project Name:	Crock		•			1.80	10	32.0	1221	152	ľ				1	T				Wat Dr Coost
MNIT: IL	E-IIUI	Crain	2				Xanad	in the	-			8.			2				1	10	GW - Ground Wa WW - Weber
THE HORE AND J. I FIOT	City C	Emm	AMUXH SUM	Billing	Information y Name	on (W diffi	ereal from	n Rapo	rt to)	-		20			XX	1	1		-		SW - Surface Wa SO - Soli
reset Contact	FID	X.	NY	Street #	contraste.	1		_	18,2	21	0	2	5		3						SED-Sediment OI - Oil
Annah Singino culvicina anti-	10000	101		Corona /	ECH DES	1.4.3					326	8	80	N	9		1				LiQ - Other Liqui AIR - Air SOL - Other Soll
141 328 9544	Claim Parchase (Dedar #		CRy			Sur			Ζφ		5		R	tal.	-3					WP - Wipe FB-Fleid Blank
Anders Marriels (01) 415 2547	Project Manager	ih Jho	ത്ര	Atlantic	n:		1.1		1	1	N	360	cle	-	MC	38		1	1		RB- Rinse Blank
guilting with 100 strift	- Second		Collection	1	138	E.or	M	attabar ef	ireserved	Duttee W1	-,		SHC	3	1	64			1.0		
Field ID / Point of Collection		Dala	Time	Sampled by.	Metrix	F of boltom	P I	NOSTAL NOSTAL	NOK D We	NCD+	TOI	10	d'	ď	F				1		LAB UBE ONL
FB20150226	SALDIAS.,	2/2/0/15	0945	Cit	99	8	3	1	4		X	X	X	X	X	64					4.5
		hine and	-/		4			X										1	1	10	2
1.	-/-	100 Marine	1		18	0.23		4			197	1	1				X		-	2.00	1
1	1		1		355	100	X					1			101		1				1
	/	/				1		23				1		21		Y	11	316	2.4	1	6
1						1		-	1		4					1	- 37			1_	1
	2.33163	-/	10.1		1	100					1				-1		-	-	1		1.
	t _{e:} 1≡ 300 1	/	21150	12	1	199			7,81	1	1.0				1	in to	3		1		
1	/	8 (100199122)	6.0,64	1										1			1	1		1	5
Turnetound Thin (Downess days)	1		1	1		Dela	Celivora	bie infu	mation	11	161	1	\$30() 	1	100	Same	Ve (Br		1/		1.255
The Stat. 10 Bankirona Days	Approvined By (Accus	ent (* Hil): / Exete:	0		Comment	al "A" (L	avul 1)	- 3	NY.	ASP Cale	pery A		Plec	10	PN	vil	d	shor	NTTV	a o	VEE ANd
S BOW RUSH			2.3	Ē	FULLTI (Level 3+4	0		5 96	In Forms	any a		ai	inde	na	OF	r.C	an	wl	124	HI GH
2 Dey RUSH	1.1		- <u>1</u>	E	Communed	al "C"			_ oth	er	E	1.	J.	La.	1100	na	47.1	nase	D	140	anga ic.
Other	The series	0.		Commen	NJ Dela	or Known wrolfa Ori	duality I	motoco motal "i	l' = Rem	ng Ini + QC S	ummary		-76	Y		out		epu			-
Distances of Distances	Bar	ple Custody m	int be docum	ented bi	low sact	time sa	nigiles c	mar + Q hange	poeses	fon, Incl	uching ci	ourier's	dollainry	4	- 36	3			i ii		and the second second
Airdon - alle (AN) ZIZION	5@. 1020		- Ch	C hough a	100	10	2	we my	1.000			194		Ante Think		2	nivod D	λ: λ:	-		1. 11
eevoquijened by Sempler: Data Tanui	N.C.	All and a second	r711-1	101	VA	M	A Collimpulse	und By;		15		4	12	lata Thre	: 10	Rec	elved B	'n			3
Date Terne:	1. 1.	i ()	XS	SIL	An.	1	Cuelody 5	***		0	NON WEREN	. 0	Susarved.	i where a	epicable		2	On I	21	Caulter	Terry).

JB88935: Chain of Custody Page 8 of 8

April 2, 2015

Ms. Deborah Shapiro AKRF, Inc. 440 Park Avenue South New York, NY 10016

RE: Accutest Job # JB88935 - Reissues

Dear Ms. Shapiro,

The final report for Accutest jobs number JB88935 has been edited to reflect changes to your data package. These edits have been incorporated into the revised report which is attached.

The letter "S" has been added to samples ID begins with "SB" as per Ms. Lindsay Deckard's request on 4/1/2015. The attached report incorporates this revision.

Please contact me at 732-355-4550 if I may be of further assistance in this matter, or if you have any further questions regarding this data report.

Sincerely,

matthe a. Colo

Matthew Cordova

Accutest Laboratories

New Jersey * Building B * 2235 Route 130 * Dayton, NJ 08810 * tel:732,329.0200 * fax:732.329,3499 * http://www.accutest.com

	Gw	CHA	IN OF CU	STODY				P		OF	_	•
	1-1	nB .	15 Route 110, Devton NJ	06810	FED EX Trad	king V		Buttle Order	SE M	-2/5/200	5/2	
	ç	TEL 71	2-329-0200 FAX: 732-32	-3499/3480	Accuses Qua			Acculation and	. 1	168970	8	
Client / Reporting Information	I IIII	Proje	ect Information	The second	R	equested Analys	16 (100	TEST COD	E sheet)	Mat	rix Codes	
Company Nume OKTE, INC Street Address 440 Park Aving City City Store Over NN NY 1006 Provest Company Of Sharp to a AKTE. CO Phone & OHG-388 9544	Project Norma E Street 9.90 Cay Br M Class Pulphase	Hun Crassin 1 Ehon Ave Unx NY 1901	Alling Information (II Company Matrix Strivet Addres City	dillerend from Report to) State Z	VOC 8260	0(c) 8081 ×	INTERLY OF AUC			DW - C GW - C WW SW - S S SEC LIO SOL W FBB EB Eq	Inniving Water Ground Water V - Weler Iurface Water Vo - Soll - Studge - S	5.
GIONOSZERI	Project Manager	Shapiro Contena	Attension:	0 60H M03 M03 Nose M03 Molece	VCORE =	Prob	H			RB- TG	Rinse Blank Trip Blank	- თ
General Prield ID / Point of Collection 1 2 MW - 1 2 MW - 3 MW - 3		Direc Tree 3/11/15 085 1315 1110 1120 321 					¥ ¥ ¥				34-00 de 55 18 265	le
5F F8205031									1		<u> </u>	
50 million	1					E.	-	1 2	A 300 M	IL RUT	Prohilt	ē
Lamantuda Time (Rusiness days) Std. 10 Business Days S Day RUSH J Day RUSH D Day RUSH D Day RUSH D Day RUSH	Approved By (Acco	utest PM) / Date:	Commercial "/ Commercial " FULLT1 (Lev NJ Reduced Commercial "C NJ Date of K	(* (Level 1) NYA * (Level 2) NYA 1 3+4) 3 1 * GCC * Other rown Quality Protocol Reputiti	SP Category A SP Category B 6 Forms Fermal r g	INITI	GISO AL AS	cm E8SMEN	al ap T-Am	KUUNQUK 213	11.101	
Emergency & Rush T/A data assistable VIA Laters Betweened by Sampley	Si Si	mple Coststay multi be da Resident By	Commented "A" - Result NJ F	Is Only, Commercial "B" - Robul agreed - Remark + CC Summer Is samples chertige cospess Relinguisting By	s - OC Summery y + Partial Raw data op_including court	LABE	L VER	FICATIO	N			
1 (1) CALO (1)	TURNE STUTIS	1 July	non	2 Relinquisbed By	KNO-	5 -// Date Time	1148	2 Received B	, X		2	
3 Robinguahed by 5	T invent :	3 Macanivated Thys		4 Custony Sears	0 тат 0 матра	AC	rent state	_14	00-32- -D	Cooler Temp	CFP ODV/S	S.C.

JB89708: Chain of Custody Page 1 of 3

Accutest Laboratories Sample Receipt Summary

LABURATOR	700					Protect: ELTON CROS	SING		
Accutest Job Number: JB89	708			lathadi Ar	outest Courier	Arbill #a	31110		
Date / Time Received: 3/11/	2015 5:4	8:00 PM			cutest Courier	Airbiii # S;			
ooler Temps (Initial/Adjuste	d): #1:(3.7/1.9):_i	<u>#2; (3.6/1.8): #3; (</u>	<u>4.1/2.3): 0</u>					
Cooler Security Y	or N			Y or N	Sample Integrit	y - Documentation	<u>Y</u>	or N	
1. Custody Seals Present: 🛛 🗹		3. C	OC Present:		1. Sample labels	present on bottles:		\checkmark	
2. Custody Seals Intact:		4. Smp	I Dates/Time OK		2. Container label	ing complete:	\checkmark		
Cooler Temperature	Yo	r N			3. Sample contair	er label / COC agree:	\checkmark		
1. Temp criterla achleved:	V				Sample Integrif	v - Condition	<u>Y</u>	o <u>r N</u>	
2. Cooler temp verification:	IR	Gun			1. Sample recvd v	vithin HT:	\checkmark		
3. Cooler media:	Ice	(Bag)			2. All containers a	ccounted for:	\checkmark		
4. No, Coolers		3			3. Condition of sa	mple:	Ir	ntact	
Quality Control Preservatio	<u>Y</u>	<u>N</u>	N/A		Sample Integrit	v - Instructions	<u>Y</u>	_ <u>N_</u>	N/A
1. Trip Blank present / cooler:	\checkmark				1. Analysis reque	sted is clear:			
2. Trip Blank IIsted on COC:	\checkmark				2. Bottles receive	d for unspecified tests		\checkmark	
3. Samples preserved properly:	\checkmark				3. Sufficient volu	me recvd for analysis:	\checkmark		
4. VOCs headspace free:	\checkmark				4. Compositing Ir	structions clear:			\checkmark
					5. Filtering Instru	ctions clear:			×
Comments -2,3,4 & 6 All Voc Views	rec a witho	ut ingividuai	iedeis. Ony Tiedei pi	aced on pag. Cemp	as sarup accordingy				

Accutest Laboratories V:732.329.0200 2235 US Highway 130 F: 732.329.3499 Dayton, New Jersey www/acculest.com 5.1 5

JB89708: Chain of Custody Page 2 of 3

Sample Receipt Summary - Problem Resolution

Accutest Job Number: JB89708	Initiator:	ANDREWS
CSR: M Cordova	Response Date:	3/11/2015

Response: Proceed

Accutest Laboratories V:732.329.0200 2235 US Highway 130 F: 732,329.3499 Dayton, New Jersey www/acculest.com

JB89708: Chain of Custody Page 3 of 3

L.A.B. Validation Corp, 14 West Point Drive, East Northport, NY 11731

Appendix B Case Narratives

(516) 523-7891; email LABValidation@aol.com

CASE NARRATIVE / CONFORMANCE SUMMARY

Client:	AKRF	Job No	JB88569
Site:	Elton Crossing, 899 Elton Avenue, Bronx, NY	Report Date	3/4/2015 5:07:17 PM

On 02/20/2015, 2 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at Accutest Laboratories at a temperature of 3.0 C. Samples were intact and chemically preserved, unless noted below. An Accutest Job Number of JB88569 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Volatiles by GCMS By Method SW846 8260C

Matrix: SO	Batch ID:	V3C5362

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

- Sample(s) JB88638-1DUP, JB88638-2MS, JB88638-1DUP were used as the QC samples indicated.
- RPD(s) for Duplicate for Tetrachloroethene, Trichloroethene are outside control limits for sample JB88638-1DUP. Outside control limits possibly due to sample non-homogeneity.

Matrix: SO	Batch ID:	V3C5371

All samples were analyzed within the recommended method holding time.

- Sample(s) JB88935-8MS, JB88935-8MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- JB88569-1: Dilution required due to matrix interference.

Extractables by GCMS By Method SW846 8270D

Γ	Matrix: SO	Batch ID:	OP81964
	All samples were ext	racted within the recommended metho	d holding time.
	All method blanks fo	r this batch meet method specific crite	ria.
	Sample(s) JB88569-	2MS, JB88569-2MSD were used as the	ne QC samples indicated.
•	Matrix Spike Recove Ethylhexyl)phthalate	ery(s) for 2,4-Dimethylphenol, 3,3'-Di are outside in house control limits.	chlorobenzidine, 3-Nitroaniline, 4-Chloroaniline, bis(2-
-	Matrix Spike Duplica	ate Recovery(s) for 2,4-Dimethylphen	ol, 3,3'-Dichlorobenzidine are outside in house control limits.
-	RPD(s) for MSD for Chlorophenol, 2-Nitr Atrazine, bis(2-Ethyl Hexachlorocyclopent OP81964-MSD. Ana	1,2,4,5-Tetrachlorobenzene, 2,4-Dim rophenol, 3&4-Methylphenol, 3,3'-Dic hexyl)phthalate, Di-n-butyl phthalate, tadiene, Hexachloroethane, Isophorom alytical precision exceeds in-house con	ethylphenol, 2,6-Dinitrotoluene, 2-Chloronaphthalene, 2- hlorobenzidine, 3-Nitroaniline, 4-Chloroaniline, 4-Nitrophenol, Hexachlorobenzene, Hexachlorobutadiene, e, N-Nitrosodiphenylamine are outside control limits for sample ntrol limits.
Γ	Matrix: SO	Batch ID:	OP82013

All samples were extracted within the recommended method holding time.

- Sample(s) JB88736-1MS, JB88736-1MSD were used as the QC samples indicated. (BATCK)
- All method blanks for this batch meet method specific criteria.

Wednesday, March 04, 2015

Extractables by GC By Method SW846 8081B

Matrix: SO	Batch ID: OP81980

- All samples were extracted within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB88569-2MS, JB88569-2MSD, OP81980-MSMSD were used as the QC samples indicated.
- Matrix Spike / Matrix Spike Duplicate Recovery(s) for Aldrin, delta-BHC, gamma-BHC (Lindane) are outside control limits. Outside control limits due to matrix interference.
- Matrix Spike / Matrix Spike Duplicate Recovery(s) for 4,4'-DDD, 4,4'-DDE, 4,4'-DDT, alpha-Chlordane, Dieldrin, Endrin, gamma-Chlordane, Heptachlor, Heptachlor epoxide are outside control limits. Outside control limits due to high level in sample relative to spike amount.
- RPD(s) for MSD for Aldrin, beta-BHC, delta-BHC, Endosulfan sulfate, Endosulfan-II, Endrin aldehyde, Heptachlor epoxide, Methoxychlor are outside control limits for sample OP81980-MSD. Outside control limits due to matrix interference.
- JB88569-2 for Decachlorobiphenyl: Outside control limits due to dilution.
- JB88569-2 for Heptachlor epoxide: More than 40 % RPD for detected concentrations between the two GC columns.
- JB88569-2 for Tetrachloro-m-xylene: Outside control limits due to dilution.
- JB88569-2 for Decachlorobiphenyl: Outside control limits due to dilution.
- JB88569-2 for Tetrachloro-m-xylene: Outside control limits due to dilution.
- JB88569-2 for Aldrin: More than 40 % RPD for detected concentrations between the two GC columns.

Extractables by GC By Method SW846 8082A

Matrix: SO	Batch ID:	OP81975

- All samples were extracted within the recommended method holding time.
- Sample(s) JB88665-1QMS, JB88665-1QMSD, OP81975-MSMSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- JB88569-2 for Aroclor 1262: Reported from 2nd signal. %D of check on 1st signal excess method criteria (20 %) so using for confirmation only.

N

Metals By Method SW846 6010C

Matrix: SO	Batch ID:	MP85014
All samples were digested	d within the recommended metho	d holding time.
All method blanks for thi	s batch meet method specific crite	eria.
Sample(s) JB88510-3M5	S, JB88510-3MSD, JB88510-3SE	DL were used as the QC samples for metals.
Matrix Spike Recovery(s matrix interference and/o) for Aluminum, Antimony, Mag r sample nonhomogeneity.	nesium are outside control limits. Spike recovery indicates possible
Matrix Spike Duplicate R indicates possible matrix	ecovery(s) for Aluminum, Antin interference and/or sample nonho	nony, Magnesium, Zinc are outside control limits. Spike recovery omogeneity.
Matrix Spike / Matrix Sp amount. Refer to lab con	ike Duplicaet Recovery(s) for Irontrol or spike blank for recovery i	on are outside control limits. Spike amount low relative to the sampl nformation.
RPD(s) for Serial Dilutio homogeneity.	n for Manganese are outside con	trol limits for sample MP85014-SD1. Probable cause due to sample
JB88569-2 for Silver: Ele	evated detection limit due to dilut	ion required for high interfering element.
JB88569-2 for Manganes	e: Elevated detection limit due to	dilution required for high interfering element.
JB88569-2 for Lead; Elev	vated detection limit due to dilution	on required for high interfering element.
JB88569-2 for Chromiun	n: Elevated detection limit due to	dilution required for high interfering element.
JB88569-2 for Selenium:	Elevated detection limit due to d	ilution required for high interfering element.
JB88569-2 for Copper: E	levated detection limit due to dilu	ution required for high interfering element.

- JB88569-2 for Cadmium: Elevated detection limit due to dilution required for high interfering element.
- = JB88569-2 for Antimony: Elevated detection limit due to dilution required for high interfering element.
- MP85014-SD1 for Manganese: Serial dilution indicates possible matrix interference.
- JB88569-2 for Thallium: Elevated detection limit due to dilution required for high interfering element.

Metals By Method SW846 7471B

Γ	Matrix: SO	Batch ID:	MP84996
10	All samples were digested within the re	commended method	d holding time.
-11	All method blanks for this batch meet r	nethod specific crite	eria.

Sample(s) JB88642-9MS, JB88642-9MSD were used as the QC samples for metals.

Wet Chemistry By Method SM2540 G-97

Matrix: SO	Batch ID:	GN20701	

The data for SM2540 G-97 meets quality control requirements.

Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting Accutest's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

Accutest Laboratories is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by Accutest Laboratories indicated via signature on the report cover

CASE NARRATIVE / CONFORMANCE SUMMARY

Client:	AKRF	Job No	JB88935
Site:	Elton Crossing, 899 Elton Avenue, Bronx, NY	Report Date	3/12/2015 5:24:06 PM

On 02/26/2015, 10 Sample(s), 1 Trip Blank(s) and 1 Field Blank(s) were received at Accutest Laboratories at a temperature of #1: (1.2/0.9); #2: (1/0.7) C. Samples were intact and chemically preserved, unless noted below. An Accutest Job Number of JB88935 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Volatiles by GCMS By Method SW846 8260C

Matrix: AQ	Batch ID:	V2B5771
 All samples were ana 	alyzed within the recommended metho	d holding time.
 Sample(s) JB88920- 	6MS, JB88920-6MSD were used as t	he QC samples indicated. $(BATCH)$
 All method blanks for 	or this batch meet method specific crite	eria.
Matrix: SO	Batch ID:	V3C5371
 All samples were ana 	alyzed within the recommended metho	d holding time.
 All method blanks fo 	or this batch meet method specific crite	eria.
 Sample(s) JB88935- 	8MS, JB88935-8MSD were used as t	he QC samples indicated.
Matrix: SO	Batch ID:	V3C5373
 All samples were ana 	alyzed within the recommended metho	d holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) JB88985-8MS, JB88985-8MSD were used as the QC samples indicated.

for 1/115

JB88935

Extractables by GCMS By Method SW846 8270D

Matrix: AQ	Batch ID:	OP82087
------------	-----------	---------

- All samples were extracted within the recommended method holding time.
- Sample(s) JB88985-9MS, JB88985-9MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.

Matrix: SO Batch ID: OP82080

All samples were extracted within the recommended method holding time.

- Sample(s) JB88935-1MS, JB88935-1MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- Matrix Spike Recovery(s) for 2,4-Dinitrophenol, 2,4-Dinitrotoluene, 2,6-Dinitrotoluene, 2-Nitrophenol, 3,3'-Dichlorobenzidine,
 3-Nitroaniline, 4,6-Dinitro-o-cresol, 4-Nitroaniline, 4-Nitrophenol, Butyl benzyl phthalate, Hexachlorocyclopentadiene,
 Hexachloroethane are outside control limits. Outside of in house control limits.
- Matrix Spike Duplicate Recovery(s) for 2,4-Dinitrophenol, 2,4-Dinitrotoluene, 2,6-Dinitrotoluene, 3,3'-Dichlorobenzidine, 3-Nitroaniline, 4,6-Dinitro-o-cresol, 4-Nitroaniline, 4-Nitrophenol, Butyl benzyl phthalate, Hexachlorocyclopentadiene, Hexachloroethane, 2-Nitrophenol are outside control limits. Outside of in house control limits.
- RPD(s) for MSD for 2-Nitrophenol are outside control limits for sample OP82080-MSD. Analytical precision exceeds inhouse control limits.
- JB88935-3: Confirmation run for internal standard areas.
- JB88935-1: Elevated detection limit due to high final volume of viscous extract.

Matrix: SO	Batch ID:	OP82124	

- All samples were extracted within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB89139-1AMS, JB89139-1AMSD were used as the QC samples indicated.
- Matrix Spike Recovery(s) for 2,4-Dinitrophenol, 4,6-Dinitro-o-cresol are outside control limits.
- Matrix Spike Duplicate Recovery(s) for 2,4-Dinitrophenol, 2-Nitrophenol, 4,6-Dinitro-o-cresol are outside control limits.
 Outside of in house control limits.
- JB88935-2 for Terphenyl-d14: Outside control limits due to matrix interference. Confirmed by re-extraction.
- JB88935-2 for 2-Fluorobiphenyl: Outside control limits due to matrix interference. Confirmed by re-extraction.

Thursday, March 12, 2015

Extractables by GC By Method SW846 8081B

	Matrix: AQ	Batch ID:	OP82097	
-	All samples were extracted within	the recommended metho	d holding time.	
ш	All method blanks for this batch meet method specific criteria.			
Γ	Matrix: SO Batch ID: OP82082			
-	All samples were extracted within the recommended method holding time.			

- All method blanks for this batch meet method specific criteria.
- Sample(s) JB88935-4MS, JB88935-4MSD, JB88935-8MS, JB88935-8MSD, OP82082-MS2MSD, OP82082-MSMSD were
 used as the QC samples indicated.
- = JB88935-2 for Tetrachloro-m-xylene: Outside control limits due to dilution.
- JB88935-1 for Decachlorobiphenyl: Outside control limits due to dilution.
- JB88935-3 for Tetrachloro-m-xylene: Outside control limits due to dilution.
- JB88935-3 for alpha-Chlordane: More than 40 % RPD for detected concentrations between the two GC columns.
- JB88935-2 for Decachlorobiphenyl: Outside control limits due to dilution.
- JB88935-2 for alpha-Chlordane: More than 40 % RPD for detected concentrations between the two GC columns.
- JB88935-1 for Tetrachloro-m-xylene: Outside control limits due to dilution.
- JB88935-2 for Decachlorobiphenyl: Outside control limits due to dilution.
- JB88935-1 for alpha-Chlordane: More than 40 % RPD for detected concentrations between the two GC columns.
- JB88935-3 for Tetrachloro-m-xylene: Outside control limits due to dilution.
- JB88935-3 for Decachlorobiphenyl: Outside control limits due to dilution.
- JB88935-3 for Decachlorobiphenyl: Outside control limits due to dilution.
- JB88935-2 for Tetrachloro-m-xylene: Outside control limits due to dilution.
- JB88935-1 for Decachlorobiphenyl: Outside control limits due to matrix interference.
- JB88935-1 for Tetrachloro-m-xylene: Outside control limits due to dilution.
- JB88935-1 for Decachlorobiphenyl: Outside control limits due to dilution.
- = JB88935-9 for gamma-Chlordane: More than 40 % RPD for detected concentrations between the two GC columns.
- JB88935-2 for Decachlorobiphenyl: Outside control limits due to matrix interference.

N

Extractables by GC By Method SW846 8082A

	Matrix: AQ	Batch ID:	OP82095
	All samples were extracted within the recommended method holding time.		
	All method blanks for this batch meet method specific criteria.		
	Matrix: SO	Batch ID:	OP82081
	All samples were extracted within the recommended method holding time.		
	Sample(s) JB88935-2MS, JB88935-2MSD, JB88935-8MS, JB88935-8MSD, OP82081-MSMSD, OP82081-MS2MSD2 were used as the QC samples indicated.		
ł.	All method blanks for this batch meet method specific criteria.		

- Matrix Spike / Matrix Spike Duplicate Recovery(s) for Aroclor 1016, Aroclor 1260 are outside control limits. Outside control limits due to matrix interference.
- RPD(s) for MSD for Aroclor 1262 are outside control limits for sample OP82081-MSD. Outside control limits due to matrix interference.
- JB88935-2 for Aroclor 1262: Reported from 1st signal. %D of check on 2nd signal excess method criteria (20 %) so using for confirmation only.
- JB88935-1 for Aroclor 1262: Reported from 1st signal. %D of check on 2nd signal excess method criteria (20 %) so using for confirmation only.
- JB88935-2 for Decachlorobiphenyl: Outside control limits due to matrix interference.
- JB88935-1 for Decachlorobiphenyl: Outside control limits due to matrix interference.
- JB88935-3 for Aroclor 1262: More than 40 % RPD for detected concentrations between the two GC columns.
- = OP82081-MS for Decachlorobiphenyl: Outside control limits due to matrix interference.
- OP82081-MSD for Decachlorobiphenyl: Outside control limits due to matrix interference.
- JB88935-2 for Decachlorobiphenyl: Outside control limits due to matrix interference.

N

Metals By Method SW846 6010C

Matrix: AQ	Batch ID: MP85109
All samples were digested within	in the recommended method holding time.
All method blanks for this batch	n meet method specific criteria.
Sample(s) JB88877-2MS, JB88	8877-2MSD, JB88877-2SDL were used as the QC samples for metals.
RPD(s) for Serial Dilution for E limits for sample MP85109-SD	Beryllium, Cadmium, Chromium, Cobalt, Copper, Nickel, Silver, Vanadium are outside control 01. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).
Matrix: SO	Batch ID: MP85117
All samples were digested within	in the recommended method holding time.
All method blanks for this batch	n meet method specific criteria.
Sample(s) JB88935-8MS, JB88	8935-8MSD, JB88935-8SDL were used as the QC samples for metals.
Matrix Spike Recovery(s) for A sample nonhomogeneity.	Antimony are outside control limits. Spike recovery indicates possible matrix interference and/or
Matrix Spike Duplicate Recover matrix interference and/or samp	ry(s) for Antimony, Manganese are outside control limits. Spike recovery indicates possible le nonhomogeneity.
Matrix Spike / Matrix Spike Du the sample amount. Refer to lab	plicate Recovery(s) for Aluminum, Iron are outside control limits. Spike amount low relative to b control or spike blank for recovery information.
RPD(s) for Serial Dilution for A difference acceptable due to low	Arsenic, Cadmium, Silver are outside control limits for sample MP85117-SD1. Percent v initial sample concentration (< 50 times IDL).
JB88935-1 for Vanadium: Eleva	ated detection limit due to dilution required for high interfering element.
JB88935-1 for Lead: Elevated d	letection limit due to dilution required for high interfering element.
JB88935-10 for Thallium: Eleva	ated detection limit due to dilution required for high interfering element.
JB88935-1 for Thallium: Elevat	ed detection limit due to dilution required for high interfering element.
JB88935-1 for Silver: Elevated	detection limit due to dilution required for high interfering element.
JB88935-1 for Manganese: Elev	vated detection limit due to dilution required for high interfering element.
JB88935-1 for Copper: Elevated	d detection limit due to dilution required for high interfering element.
JB88935-1 for Chromium: Eleva	ated detection limit due to dilution required for high interfering element.
JB88935-1 for Cadmium: Eleva	ted detection limit due to dilution required for high interfering element.
JB88935-1 for Arsenic: Elevated	d detection limit due to dilution required for high interfering element.
IB88935-1 for Selenium: Elevat	the distantion limit due to dilution annuined for high interfering alongoat

Γ	Matrix: AQ	Batch ID:	MP85104
щ	All samples were digested within	the recommended metho	d holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) JB88992-2MS, JB88992-2MSD were used as the QC samples for metals.

Metals By Method SW846 7471B

Matrix: SO	Batch ID:	MP85098
All samples were digested within	n the recommended method	od holding time.

- All method blanks for this batch meet method specific criteria.
- Sample(s) JB88935-5MS, JB88935-5MSD were used as the QC samples for metals.
- Matrix: SO Batch ID: MP85116

All samples were digested within the recommended method holding time.

- All method blanks for this batch meet method specific criteria.
- Sample(s) JB88935-8MS, JB88935-8MSD were used as the QC samples for metals.

Wet Chemistry By Method SM2540 G-97

Γ	Matrix: SO	Batch ID:	GN20980
-	The data for SM2540 G-97 mee	ts quality control requirem	nents.
Γ	Matrix: SO	Batch ID:	GN20981

The data for SM2540 G-97 meets quality control requirements.

Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting Accutest's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

Accutest Laboratories is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by Accutest Laboratories indicated via signature on the report cover

Page 6 of 6

CASE NARRATIVE / CONFORMANCE SUMMARY

Client:	AKRF	Job No	JB89708
Site:	Elton Crossing, 899 Elton Avenue, Bronx, NY	Report Date	3/25/2015 10:53:33 A

On 03/11/2015, 4 Sample(s), 1 Trip Blank(s) and 1 Field Blank(s) were received at Accutest Laboratories at temperatures of 3.6C/ 4.1C/ 3.7C. Samples were intact and chemically preserved, unless noted below. An Accutest Job Number of JB89708 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Volatiles by GCMS By Method SW846 8260C

	Matrix: AQ	Batch ID:	VL7339
86	All samples were analyzed within	the recommended metho	d holding time.

- All method blanks for this batch meet method specific criteria.
- Sample(s) JB89870-10MS, JB89870-10MSD were used as the QC samples indicated. CBATCH

Matrix: AQ	Batch ID: VL	7340
------------	--------------	------

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- = Sample(s) JB89708-3MS, JB89708-3MSD were used as the QC samples indicated.
- Matrix Spike Recovery(s) for 2-Hexanone, 4-Methyl-2-pentanone(MIBK), Acetone are outside control limits. Outside control limits due to matrix interference.
- Matrix Spike Duplicate Recovery(s) for 2-Hexanone, 4-Methyl-2-pentanone(MIBK) are outside control limits. Outside control limits due to matrix interference.

Extractables by GCMS By Method SW846 8270D

Matrix: AQ	Batch ID:	OP82372

- All samples were extracted within the recommended method holding time.
- Sample(s) JB89708-3MS, JB89708-3MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- Matrix Spike Recovery(s) for 3,3'-Dichlorobenzidine are outside control limits. Outside of in-house control limits due to matrix interference.
- Matrix Spike Duplicate Recovery(s) for 3,3'-Dichlorobenzidine are outside control limits. Outside of in-house control limits due to matrix interference.

Extractables by GC By Method SW846 8081B

Matrix: AQ	Batch ID:	OP82325	

- All samples were extracted within the recommended method holding time.
- Sample(s) JB89708-3MS, JB89708-3MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- Matrix Spike Recovery(s) for 4,4'-DDD, 4,4'-DDE, 4,4'-DDT, beta-BHC, Endosulfan sulfate, Endosulfan-I, Endrin, Endrin aldehyde, Endrin ketone, gamma-Chlordane, Heptachlor, Methoxychlor are outside control limits. Outside control limits due to matrix interference.
- Matrix Spike Duplicate Recovery(s) for 4,4'-DDD are outside control limits. Outside control limits due to matrix interference.
- Matrix Spike Recovery(s) for delta-BHC are outside control limits. Matrix Spike Recovery(s) for 4,4'-DDD, 4,4'-DDE, 4,4'-DDT, beta-BHC, Endosulfan sulfate, Endosulfan-I, Endrin, Endrin aldehyde, Endrin ketone, gamma-Chlordane, Heptachlor, Methoxychlor, delta-BHC are outside control limits.
- = JB89708-1 for Decachlorobiphenyl: High percent recoveries and no positive found in the sample.
- OP82325-BS1 for delta-BHC: Reported from 1st signal. %D of check on 2nd signal exceed method criteria (20%) so using for confirmation only.
- OP82325-MS for Decachlorobiphenyl: Outside control limits due to matrix interference.
- OP82325-MSD for delta-BHC: Reported from 1st signal. %D of check on 2nd signal exceed method criteria (20%) so using for confirmation only.

Extractables by GC By Method SW846 8082A

Matrix: AQ	Batch ID:	OP82386

- All samples were extracted within the recommended method holding time.
- Sample(s) JB89708-3MS, JB89708-3MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.

Metals By Method SW846 6010C

Γ	Matrix: AQ	Batch ID:	MP85287
 All samples were digested within the recommended method holding time. 			

All method blanks for this batch meet method specific criteria.

- Sample(s) JB89708-3FMS, JB89708-3FMSD, JB89708-3FSDL, JB89708-3MS, JB89708-3MSD, JB89708-3SDL were used as the QC samples for metals.
- RPD(s) for Serial Dilution for Chromium, Silver, Vanadium, Chromium, Cobalt, Copper, Lead, Nickel, Zinc are outside control limits. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).</p>

Metals By Method SW846 7470A

	Matrix:	AQ	Ba	atch ID:	: MP85294

All samples were digested within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) JB89708-3FMS, JB89708-3FMSD, JB89708-3MSD, JB89708-3MSD were used as the QC samples for metals.

Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting Accutest's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

Accutest Laboratories is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by Accutest Laboratories indicated via signature on the report cover

Wednesday, March 25, 2015

Page 2 of 2

Appendix C Data Summary Form I's With Qualifications

		Repo	rt of A	nalysis				Page 1 of 2
Client Sam Lab Sample Matrix: Method: Project:	ple ID: MW-3 (16.5-17) e ID: JB88569-1 SO - Soil SW846 8260C Elton Crossing, 899 E	Elton Avenu	ie, Bronx,	NY	Date Date Perc	Sampled: Received: ent Solids:	02/18 02/20 89.8	3/15)/15
Run #1 ^a Run #2	File ID DF A 3C118228.D 1 0	Analyzed 03/02/15	By PS	Prep D n/a	ate	Prep Bate n/a	ch A V	Analytical Batch /3C5371
Run #1 Run #2	Initial Weight 1.0 g							
VOA TCL	List							
CAS No.	Compound	Result	RL	MDL	Units	Q		
67-64-1 71-43-2 74-97-5	Acetone Benzene Bromochloromethane	32.6 ND ND	56 5.6 28	8.2 0.97 1.3	ug/kg ug/kg ug/kg	łЈ	+	
75-27-4 75-25-2 74-83-9	Bromodichloromethane Bromoform Bromomethane	ND ND ND	28 28 28	1.3 0.59 1.6	ug/kg ug/kg ug/kg			
78-93-3 75-15-0 56-23-5	2-Butanone (MEK) Carbon disulfide Carbon tetrachloride	NÐ 15.3 ND	56 28 28	6.7 1.3 0.79	ug/kg ug/kg ug/kg	R J		
108-90-7 75-00-3 67 66 3	Chlorobenzene Chloroethane Chloroform	ND ND	28 28 28	0.68	ug/kg ug/kg			
74-87-3 110-82-7	Chloromethane Cyclohexane	ND ND	28 28 56	1.7 2.0	ug/kg ug/kg			
96-12-8 124-48-1 106-93-4	1,2-Dibromo-3-chloropropan Dibromochloromethane 1,2-Dibromoethane	ND ND ND	28 5.6	2.9 0.75 0.86	ug/kg ug/kg ug/kg			
95-50-1 541-73-1 106-46-7	1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	ND ND ND	28 28 28	0.90 0.87 0.92	ug/kg ug/kg ug/kg			
75-71-8 75-34-3 107-06-2	Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane	ND ND ND	28 28 5,6	2.9 2.0 0.64	ug/kg ug/kg ug/kg			
75-35-4 156-59-2	1,1-Dichloroethene cis-1,2-Dichloroethene trong 1,2 Dichloroethene	ND ND	28 28 28	1.4 1.4	ug/kg ug/kg			
78-87-5 10061-01-5	1,2-Dichloropropane cis-1,3-Dichloropropene	ND ND ND	28 28 28	0.95	ug/kg ug/kg			
10001-02-6 100-41-4 76-13-1 591-78-6	Ethylbenzene Freon 113 2-Hexanone	2.9 ND	28 5.6 28 28	0.59 0.59 1.6 3.1	ug/kg ug/kg ug/kg	J		
	= 10/10/000		50	0.1	~~o~ ~o	N		

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis										
Client Samp Lab Sample Matrix: Method: Project:	ple ID: MW-3 (16.5-17) D: JB88569-1 SO - Soil SW846 8260C Elton Crossing, 899 E	lton Avenue,	Bronx, N	Y	Date Date Perc	e Sampled: e Received: cent Solids:	02/18/15 02/20/15 89.8			
VOA TCL	List									
CAS No.	Compound	Result	RL	MDL	Units	Q				
98-82-8 79-20-9	Isopropylbenzene Methyl Acetate	2.7 ND	28 28	0.85 2.7	ug/kg ug/kg	J				
108-87-2	Methylcyclohexane Methyl Tort Butyl Ethor	1.1 ND	28	0.76	ug/kg	J				
108-10-1	4-Methyl-2-pentanone(MIBK)		28	1.8	ug/kg	R				
75-09-2 100-42-5	Styrene	ND ND	28 28	5.3 0.78	ug/kg ug/kg					
79-34-5 127-18-4	1,1,2,2-Tetrachloroethane Tetrachloroethene	ND ND	28 28	0.81 1.1	ug/kg ug/kg					
108-88-3 87-61-6	Toluene 1,2,3-Trichlorobenzene	1.0 ND	5.6 28	0.83 0.85	ug/kg ug/kg	J				
120-82-1 71-55-6	1,2,4-Trichlorobenzene	ND ND	28 28	1.0 0.74	ug/kg ug/kg					
79-00-5	1,1,2-Trichloroethane	ND	28	1.0	ug/kg					
75-69-4	Trichlorofluoromethane	ND	28	0.92	ug/kg					
75-01-4	m,p-Xylene	ND 2.8	28 5.6	0.79 1.3	ug/kg	Ţ				
95-47-6 1330-20-7	o-Xylene Xylene (total)	4.7 7.5	$5.6 \\ 5.6$	0.79 0.79	ug/kg ug/kg	J				
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its					
1868-53-7	Dibromofluoromethane	86%		70-1	22%					
17060-07-0 2037-26-5	Toluene-D8	88% 101%		68-1 77-1	.24% .25%					
460-00-4	4-Bromofluorobenzene	91%		72-1	30%					

Report of Analysis

(a) Dilution required due to matrix interference.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

John M

13 of 1502 ACCUTEST: JB68569

4.1 4

		Repo	ort of An	Page 1 of 2			
Client Sam Lab Sample Matrix: Method: Project:	ple ID: SS-1 e ID: JB88569-2 SO - Soil SW846 8260C SW84 Elton Crossing, 899 E	Date Sampled: Date Received: 846 5035 Percent Solids: Elton Avenue, Bronx, NY				e Sampled: Received: cent Solids:	02/19/15 02/20/15 79.8
Run #1 Run #2	File ID DF A 3C118090.D 1 0	Analyzed 2/23/15	By PS	Prep D 02/21/1	ate 5 08:20	Prep Batch n/a	n Analytical Batch V3C5362
Run #1 Run #2	Initial Weight 5.3 g						
VOA TCL	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1 71-43-2	Acetone Benzene	ND ND	12 1.2	1.7 0.21	ug/kg ug/kg	R	
74-97-5 75-27-4	Bromochloromethane Bromodichloromethane	ND ND	5.9 5.9	0.28 0.28	ug/kg ug/kg	UJ	
75-25-2 74-83-9 78-03-3	Bromoform Bromomethane 2 Butanopa (MEK)	ND	5.9 5.9	0.13 0.34	ug/kg ug/kg	R	
75-15-0 56-23-5	Carbon disulfide Carbon tetrachloride	ND	5.9 5.9	0.28	ug/kg ug/kg ug/kg	$\overline{\partial T}$	
108-90-7 75-00-3	Chlorobenzene Chloroethane	ND ND	5.9 5.9	0.14 0.28	ug/kg ug/kg		
67-66-3 74-87-3	Chloroform Chloromethane	ND ND	5.9 5.9	0.12 0.35	ug/kg ug/kg		
110-82-7 96-12-8	Cyclohexane 1,2-Dibromo-3-chloropropane	ND ND	5.9 12	0.42	ug/kg ug/kg	UT	
124-48-1 106-93-4 95-50-1	1,2-Dibromoethane	ND	5.9 1.2 5.9	0.18 0.18 0.19	ug/kg ug/kg ug/kg	05	
541-73-1 106-46-7	1,3-Dichlorobenzene 1,4-Dichlorobenzene	ND ND	5.9 5.9	0.18	ug/kg ug/kg		
75-71-8 75-34-3	Dichlorodifluoromethane 1,1-Dichloroethane	ND ND	5.9 5.9	0.62 0.42	ug/kg ug/kg		
107-06-2 75-35-4	1,2-Dichloroethane 1,1-Dichloroethene	NÐ ND	1.2 5.9	0.14 0.29	ug/kg ug/kg	υፓ	
156-59-2 156-60-5 78-87-5	cis-1,2-Dichloroethene trans-1,2-Dichloroethene	ND ND	5.9 5.9 5.9	0.31 0.22 0.20	ug/kg ug/kg		
10061-01-5 10061-02-6	cis-1,3-Dichloropropene trans-1,3-Dichloropropene	ND ND	5.9 5.9	0.15 0.20	ug/kg ug/kg		
100-41-4 76-13-1 591-78-6	Ethylbenzene Freon 113 2-Hexanone	ND ND ND	1.2 5.9 5.9	0.13 0.34 0.66	ug/kg ug/kg ug/kg	R	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

for41115

17 of 1502 ACCUTEST; JB88569

Client Sample Lab Sample Matrix: Method: Project:	Client Sample ID: SS-1 Lab Sample ID: JB88569-2 Matrix: SO - Soil Method: SW846 8260C SW Project: Elton Crossing, 899 VOA TCL List		6 5035 ton Avenue,	Date Date Perc , Bronx, NY			Sampled: Received: ent Solids:	02/19/15 02/20/15 79.8	
VOA TCL	List								
CAS No.	Compoun	ıd	Result	RL	MDL	Units	Q		
98-82-8 70-20-0	Isopropyll Mothyl Ad	penzene	ND	5.9	0.18	ug/kg			
108-87-2	Mothyleve	clohevane	ND	5.9	0.16	ug/kg			
1634-04-4	Methyl Te	ert Butyl Ether	ND	1.2	0.20	11g/kg			
108-10-1	4-Methyl-	2-pentanone(MIBK)	NO	5.9	0.38	ug/kg	R		
75-09-2	Methylene	e chloride	ND	5.9	1.1	ug/kg			
100-42-5	Styrene		ND	5.9	0.17	ug/kg			
79-34-5	1,1,2,2-T	etrachloroethane	ND	5.9	0.17	ug/kg			
127-18-4	Tetrachlor	roethene	ND	5.9	0.23	ug/kg			
108-88-3	Toluene		ND	1.2	0.18	ug/kg			
87-61-6	1,2,3-Tric	chlorobenzene	ND	5.9	0.18	ug/kg			
120-82-1	1,2,4-Tric	chlorobenzene	ND	5.9	0.21	ug/kg			
71-55-6	1,1,1-Tric	hloroethane	ND	5.9	0.16	ug/kg			
79-00-5	1,1,2-Tric	chloroethane	ND	5.9	0.21	ug/kg			
79-01-6	Trichloroe	ethene	ND	5.9	0.23	ug/kg			
75-69-4	Trichlorof	luoromethane	ND	5.9	0.20	ug/kg			
75-01-4	Vinyl chlo	oride	ND	5.9	0.17	ug/kg			
	m,p-Xyler	ne	ND	1.2	0.27	ug/kg			
95-47-6	o-Xylene		ND	1.2	0.17	ug/kg			
1330-20-7	Xylene (to	otal)	ND	1.2	0.17	ug/kg			
CAS No.	Surrogate	Recoveries	Run# 1	Run# 2	Lim	its			
1868-53-7	Dibromof	luoromethane	91%		70-1	22%			
17060-07-0	1,2-Dichlo	proethane-D4	106%		68-1	24%			
2037-26-5	Toluene-D	08	99%		77-1	25%			
460-00-4	4-Bromof	luorobenzene	94%		72-1	30%			

Report of Analysis

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Joh 411/15

Page 2 of 2

4.2

Raw Data: 3C118234.D

Accutest Laboratories

Report of Analysis

Client Sample ID: SSB-1 (0-2) Lab Sample ID: JB88935-1 Date Sampled: 02/25/15 Matrix: SO - Soil Date Received: 02/26/15 70.6 SW846 8260C SW846 5035 Percent Solids: Method: Project: Elton Crossing, 899 Elton Avenue, Bronx, NY File ID DF Prep Date Prep Batch **Analytical Batch** Analyzed By 3C118234.D PS 02/27/15 09:00 V3C5371 Run #1 1 03/02/15 n/a Run #2 Initial Weight Run #1 3.6 g Run #2 **VOA TCL List** CAS No. Compound Result RL MDL Units Q ug/kg 7 J-67-64-1 Acetone 13.2 20 2.9 71-43-2 Benzene ND 2.00.34 ug/kg 74-97-5 Bromochloromethane ND 9.8 0.47ug/kg 75-27-4 Bromodichloromethane ND 9.8 0.47 ug/kg ug/kg 75-25-2 Bromoform ND 9.8 0.21 74-83-9 Bromomethane ND 9.8 0.57 ug/kg 78-93-3 2-Butanone (MEK) ND 20 2.4 ug/kg ĸ 75-15-0 Carbon disulfide ND 9.8 0.47 ug/kg ug/kg 56-23-5 Carbon tetrachloride ND 9.8 0.28 108-90-7 Chlorobenzene ND 9.8 0.24 ug/kg 9.8 75-00-3 Chloroethane ND 0.47 ug/kg 67-66-3 Chloroform ND 9.8 0.20 ug/kg 74-87-3 Chloromethane ND 9.8 0.59 ug/kg ND 9.8 0.69 ug/kg 110-82-7 Cyclohexane 96-12-8 1.2-Dibromo-3-chloropropane ND 20 1.0 ug/kg ug/kg 124-48-1 Dibromochloromethane ND 9.8 0.27 1,2-Dibromoethane ND 2.0 0.30 ug/kg 106-93-4 ND 9.8 0.32 95-50-1 1,2-Dichlorobenzene ug/kg ND 9.8 0.31 ug/kg 541-73-1 1,3-Dichlorobenzene ND 9.8 0.32 ug/kg 106-46-7 1,4-Dichlorobenzene ug/kg 75-71-8 Dichlorodifluoromethane ND 9.8 1.0 75-34-3 1.1-Dichloroethane ND 9.8 0.70 ug/kg ug/kg 107-06-2 1,2-Dichloroethane ND 2.0 0.23 ND 9.8 0.48 ug/kg 75-35-4 1,1-Dichloroethene 156-59-2 cis-1,2-Dichloroethene ND 9.8 0.51 ug/kg 0.37 ug/kg 156-60-5 trans-1,2-Dichloroethene ND 9.8 ND 9.8 0.34 ug/kg 78-87-5 1,2-Dichloropropane ug/kg cis-1,3-Dichloropropene ND 9.8 0.25 10061-01-5 trans-1,3-Dichloropropene ND 9.8 0.33 ug/kg 10061-02-6 Ethylbenzene ND 2.0 0.21 ug/kg 100-41-4 ND 0.56 ug/kg Freon 113 9.8 76-13-1 591-78-6 2-Hexanone NĐ 9.8 1.1 ug/kg

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 2

Report of Analysis

44									
Client Samp Lab Sample Matrix: Method: Project:	ple ID: e ID:	SSB-1 (0-2) JB88935-1 SO - Soil SW846 8260C SW846 Elton Crossing, 899 El	5 5035 ton Avenue,	Bronx, N	Y	Date Date Perc	Sampled: Received: ent Solids:	02/25/15 02/26/15 70.6	
VOA TCL	List								
CAS No.	Comp	ound	Result	RL	MDL	Units	Q		
98-82-8	Isopro	pylbenzene	ND	9.8	0.30	ug/kg			
79-20-9	Methy	1 Acetate	ND	9.8	0.95	ug/kg			
108-87-2	Methy	lcyclohexane	ND	9.8	0.27	ug/kg			
1634-04-4	Methy	1 Tert Butyl Ether	ND	2.0	0.33	ug/kg	0		
108-10-1	4-Met	hyl-2-pentanone(MIBK)	NÐ	9.8	0.63	ug/kg	K		
75-09-2	Methy	lene chloride	ND	9.8	1.9	ug/kg			
100-42-5	Styren	e	ND	9.8	0.28	ug/kg			
79-34-5	1,1,2,	2-Tetrachloroethane	ND	9.8	0.29	ug/kg			
127-18-4	Tetrac	hloroethene	ND	9.8	0.38	ug/kg			
108-88-3	Toluer	ne	ND	2.0	0.29	ug/kg			
87-61-6	1,2,3-	Trichlorobenzene	ND	9.8	0.30	ug/kg			
120-82-1	1,2,4-	Trichlorobenzene	ND	9.8	0.35	ug/kg			
71-55-6	1,1,1-	Trichloroethane	ND	9.8	0.26	ug/kg			
79-00-5	1,1,2-	Trichloroethane	ND	9.8	0.35	ug/kg			
79-01-6	Trichl	oroethene	ND	9.8	0.39	ug/kg			
75-69-4	Trichl	orofluoromethane	ND	9.8	0.33	ug/kg			
75-01-4	Vinyl	chloride	ND	9.8	0.28	ug/kg			
	m,p-X	ylene	ND	2.0	0.44	ug/kg			
95-47-6	o-Xyle	ene	ND	2.0	0.28	ug/kg			
1330-20-7	Xylen	e (total)	ND	2.0	0.28	ug/kg			
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lim	its			
1868-53-7	Dibroi	nofluoromethane	91%		70-1	22%			
17060-07-0	1,2-Di	chloroethane-D4	93%		68-1	24%			
2037-26-5	Toluer	ne-D8	99%		77-1	25%			
460-00-4	4-Bror	nofluorobenzene	101%		72-1	30%			

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

4.1 4

for 412/15

Raw Data: 3C118235.D

Accutest Laboratories

Report of Analysis

Client Sample ID: SSB-1 (5-7) Lab Sample ID: JB88935-2 Date Sampled: 02/25/15 02/26/15 SO - Soil Date Received: Matrix: 78.5 SW846 8260C SW846 5035 Percent Solids: Method: Project: Elton Crossing, 899 Elton Avenue, Bronx, NY File ID Prep Date Prep Batch Analytical Batch DF Analyzed By 02/27/15 09:00 V3C5371 03/02/15 PS Run #1 3C118235.D 1 n/a Run #2 Initial Weight Run #1 3.4 g Run #2 VOA TCL List CAS No. Compound Result RL MDL Units Q J+ ug/kg 67-64-1 Acetone 34.419 2.8 ug/kg 71-43-2 Benzene ND 1.9 0.33 74-97-5 Bromochloromethane ND 9.4 0.45 ug/kg ug/kg 75-27-4 Bromodichloromethane ND 9.4 0.45 75-25-2 Bromoform ND 9.4 0.20 ug/kg 74-83-9 **Bromomethane** ND 9.4 0.55 ug/kg ĸ 2-Butanone (MEK) ND 19 2.3 ug/kg 78-93-3 75-15-0 Carbon disulfide ND 9.4 0.44 ug/kg 56-23-5 Carbon tetrachloride ND 9.4 0.27 ug/kg Chlorobenzene ND 9.4 0.23 ug/kg 108-90-7 9.4 0.45 75-00-3 Chloroethane ND ug/kg Chloroform 9.4 0.19 ug/kg J 67-66-3 0.51 ND 9.4 0.56 ug/kg 74-87-3 Chloromethane 0.66 ug/kg ND 9.4 110-82-7 Cyclohexane ug/kg 96-12-8 1,2-Dibromo-3-chloropropane ND 19 0.98 Dibromochloromethane ND 9.4 0.25 ug/kg 124-48-1 ND 1.9 0.29 ug/kg 1.2-Dibromoethane 106-93-4 9.4 0.30 95-50-1 1.2-Dichlorobenzene ND ug/kg ug/kg ND 9.4 0.29 541-73-1 1.3-Dichlorobenzene ND 9.4 0.31 ug/kg 106-46-7 1.4-Dichlorobenzene 0.98 ug/kg 75-71-8 Dichlorodifluoromethane ND 9.4 1.1-Dichloroethane ND 9.4 0.67 ug/kg 75-34-3 107-06-2 1,2-Dichloroethane ND 1.9 0.22 ug/kg 0.46 ug/kg 1,1-Dichloroethene ND 9.4 75-35-4 156-59-2 cis-1,2-Dichloroethene ND 9.4 0.49 ug/kg 0.35 ug/kg 156-60-5 trans-1,2-Dichloroethene ND 9.4 0.32 ug/kg 1,2-Dichloropropane ND 9.4 78-87-5 ug/kg 9.4 0.24 10061-01-5 cis-1,3-Dichloropropene ND ND 9.4 0.32 ug/kg 10061-02-6 trans-1,3-Dichloropropene ND 1.9 0.20 ug/kg Ethylbenzene 100-41-4 0.54 Freon 113 9.4 ug/kg 76-13-1 ND 2-Hexanone -ND-9.4 1.0 ug/kg 591-78-6

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

33 of 2362 -foryinis ACCUTEST. JB88935

Page 1 of 2

Report of Analysis

Client Samp Lab Sample Matrix: Method: Project:	ple ID: SSB-1 (5-7) e ID: JB88935-2 SO - Soil SW846 8260C SV Elton Crossing, 89	W846 5035 99 Elton Avenue	, Bronx, I	٩Y	Date Date Per c	Sampled: Received: ent Solids:	02/25/15 02/26/15 78.5	
VOA TCL	List							
CAS No.	Compound	Result	RL	MDL	Units	Q		
98-82-8	Isopropylbenzene	ND	9.4	0.29	ug/kg			
79-20-9	Methyl Acetate	ND	9.4	0.91	ug/kg			
108-87-2	Methylcyclohexane	ND	9.4	0.26	ug/kg			
1634-04-4	Methyl Tert Butyl Ether	ND	1.9	0.31	ug/kg	0		
108-10-1	4-Methyl-2-pentanone(MI	BK) ND	9.4	0.60	ug/kg	K		
75-09-2	Methylene chloride	ND	9.4	1.8	ug/kg			
100-42-5	Styrene	ND	9.4	0.26	ug/kg			
79-34-5	1,1,2,2-Tetrachloroethane	ND	9.4	0.27	ug/kg			
127-18-4	Tetrachloroethene	0.93	9.4	0.37	ug/kg	J		
108-88-3	Toluene	ND	1.9	0.28	ug/kg			
87-61-6	1,2,3-Trichlorobenzene	ND	9.4	0.28	ug/kg			
120-82-1	1,2,4-Trichlorobenzene	ND	9.4	0.34	ug/kg			
71-55-6	1,1,1-Trichloroethane	ND	9.4	0.25	ug/kg			
79-00-5	1,1,2-Trichloroethane	ND	9.4	0.34	ug/kg			
79-01-6	Trichloroethene	ND	9.4	0.37	ug/kg			
75-69-4	Trichlorofluoromethane	ND	9.4	0.31	ug/kg			
75-01-4	Vinyl chloride	ND	9.4	0.26	ug/kg			
	m,p-Xylene	ND	1.9	0.42	ug/kg			
95-47-6	o-Xylene	ND	1.9	0.26	ug/kg			
1330-20-7	Xylene (total)	ND	1.9	0.26	ug/kg			
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	2 Lim	its			
1868-53-7	Dibromofluoromethane	89%		70-1	22%			
17060-07-0	1,2-Dichloroethane-D4	98%		68-1	.24%			
2037-26-5	Toluene-D8	96%		77-1	.25%			
460-00-4	4-Bromofluorobenzene	99%		72-1	30%			

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

go My12/15

JB68935

Page 2 of 2

Raw Data: 3C118255.D

Accutest Laboratories

Report of Analysis

Client Sample ID: SSB-1 (7-9) Lab Sample ID: JB88935-3 Date Sampled: 02/25/15 Matrix: SO - Soil Date Received: 02/26/15 Method: SW846 8260C SW846 5035 Percent Solids: 78.0 Project: Elton Crossing, 899 Elton Avenue, Bronx, NY File ID DF Analyzed By Prep Date Prep Batch **Analytical Batch** Run #1 3C118255.D 1 03/03/15 PS 02/27/15 09:00 n/a V3C5373 Run #2 Initial Weight Run #1 5.5 g Run #2 VOA TCL List RL **MDL** Units Q CAS No. Compound Result 8 J+ 67-64-1 Acetone 9.3 12 1.7 ug/kg ug/kg 71-43-2 Benzene ND 1.2 0.20 ug/kg 74-97-5 Bromochloromethane ND 5.8 0.28 75-27-4 Bromodichloromethane ND 5.8 0.28 ug/kg 75-25-2 Bromoform ND 5.8 0.12 ug/kg ND ug/kg 74-83-9 **Bromomethane** 5.8 0.34 ug/kg 78-93-3 2-Butanone (MEK) ND 12 1.4 ug/kg 75-15-0 Carbon disulfide ND 5.8 0.28 56-23-5 Carbon tetrachloride ND 5.8 0.17 ug/kg 108-90-7 Chlorobenzene ND 5.8 0.14 ug/kg 75-00-3 Chloroethane ND 0.28 ug/kg 5.8 ug/kg 67-66-3 Chloroform ND 5.8 0.12 74-87-3 Chloromethane ND 5.8 0.35 ug/kg 110-82-7 Cvclohexane ND 5.8 0.41 ug/kg 96-12-8 1,2-Dibromo-3-chloropropane ND 12 0.61 ug/kg Dibromochloromethane ND 5.8 0.16 124-48-1 ug/kg 106-93-4 1.2-Dibromoethane ND 1.2 0.18 ug/kg ND 95-50-1 1,2-Dichlorobenzene 5.8 0.19 ug/kg 541-73-1 1,3-Dichlorobenzene ND 5.8 0.18 ug/kg ND 5.8 ug/kg 106-46-7 1.4-Dichlorobenzene 0.19 75-71-8 Dichlorodifluoromethane ND 5.8 0.61 ug/kg 1.1-Dichloroethane ND 5.8 0.42 ug/kg 75-34-3 107-06-2 1.2 1,2-Dichloroethane ND 0.13 ug/kg 75-35-4 1,1-Dichloroethene ND 5.8 0.29 ug/kg 156-59-2 cis-1,2-Dichloroethene ND 5.8 0.30 ug/kg 0.22 trans-1,2-Dichloroethene ND 5.8 ug/kg 156-60-5 ND 5.8 0.20 78-87-5 1.2-Dichloropropane ug/kg ND 5.8 0.15 ug/kg 10061-01-5 cis-1,3-Dichloropropene ND 5.8 0.20 ug/kg 10061-02-6 trans-1,3-Dichloropropene 100-41-4 Ethylbenzene ND 1.2 0.12 ug/kg ug/kg 76-13-1 Freon 113 ND 5.8 0.33 -ND 591-78-6 2-Hexanone 5.8 0.65 ug/kg

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

JO/4/115

42 of 2362 ACCUTEST JB88935

Page 1 of 2

Report of Analysis

Client Samp Lab Sample Matrix: Method: Project:	ble ID: SSB-1 (7-9) DD: JB88935-3 SO - Soil SW846 8260C SW84 Elton Crossing, 899 E	16 5035 lton Avenue,	Bronx, N	Date Sampled Date Received Percent Solids nx, NY			02/25/15 02/26/15 78.0
VOA TCL I	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	5.8	0.18	ug/kg		
79-20-9	Methyl Acetate	ND	5.8	0.56	ug/kg		
108-87-2	Methylcyclohexane	ND	5.8	0.16	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	1.2	0.19	ug/kg	P	
108-10-1	4-Methyl-2-pentanone(MIBK)	-ND-	5.8	0.37	ug/kg	K	
75-09-2	Methylene chloride	ND	5.8	1.1	ug/kg		
100-42-5	Styrene	ND	5.8	0.16	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.8	0.17	ug/kg		
127-18-4	Tetrachloroethene	0.67	5.8	0.23	ug/kg	J	
108-88-3	Toluene	ND	1.2	0.17	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	5.8	0.18	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	5.8	0.21	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	5.8	0.16	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	5.8	0.21	ug/kg		
79-01-6	Trichloroethene	ND	5.8	0.23	ug/kg		
75-69-4	Trichlorofluoromethane	ND	5.8	0.19	ug/kg		
75-01-4	Vinyl chloride	ND	5.8	0.16	ug/kg		
	m,p-Xylene	ND	1.2	0.26	ug/kg		
95-47-6	o-Xylene	ND	1.2	0.16	ug/kg		
1330-20-7	Xylene (total)	ND	1.2	0.16	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
1868-53-7	Dibromofluoromethane	89%		70-1	22%		
17060-07-0	1,2-Dichloroethane-D4	95%		68-1	24%		
2037-26-5	Toluene-D8	101%		77-1	25%		
460-00-4	4-Bromofluorobenzene	98%		72-1	30%		

MDL = Method Detection Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

for 4/2/15

43 of 2362 ACCUTEST, JB88935

RL = Reporting Limit

ND = Not detected

E = Indicates value exceeds calibration range

Page 2 of 2

Raw Data: 3C118260.D

Accutest Laboratories

Report of Analysis

Page 1 of 2

4.4

Client Sam Lab Sampl Matrix: Method: Project:	ple ID: SSB-2 (0-2) e ID: JB88935-4 SO - Soil SW846 8260C SW84 Elton Crossing, 899 E	6 5035 Iton Avenue	, Bronx, N	JY	Date Sampled: 02/25/15 Date Received: 02/26/15 Per cent Solids: 91.5 Y				
Run #1 Run #2	File ID DF A 3C118260.D 1 0	nalyzed 3/03/15	By PS	Prep D 02/27/1	ate 5 09:00	Prep Batch n/a	Analytical Batch V3C5373		
Run #1 Run #2	Initial Weight 5.5 g								
VOA TCL	List								
CAS No.	Compound	Result	RL	MDL	Units	Q			
67-64-1 71-43-2 74-97-5 75-27-4 75-25-2 74-83-9 78-93-3 75-15-0 56-23-5 108-90-7 75-00-3 67-66-3 74-87-3 110-82-7	Acetone Benzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Cyclohexane	ND ND ND ND ND ND ND ND ND ND ND ND ND	9.9 0.99 5.0 5.0 5.0 9.9 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	$\begin{array}{c} 1.5\\ 0.17\\ 0.24\\ 0.24\\ 0.11\\ 0.29\\ 1.2\\ 0.24\\ 0.14\\ 0.12\\ 0.24\\ 0.10\\ 0.30\\ 0.35\\ \end{array}$	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	R			
96-12-8 124-48-1 106-93-4 95-50-1 541-73-1 106-46-7 75-71-8 75-34-3 107-06-2 75-35-4 156-59-2 156-60-5 78-87-5 10061-01-5 10061-02-6 100-41-4 76-13-1	1,2-Dibromo-3-chloropropane Dibromochloromethane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene Freon 113	ND ND ND ND ND ND ND ND ND ND ND ND ND N	9.9 5.0 0.99 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	0.52 0.13 0.15 0.16 0.52 0.36 0.11 0.24 0.26 0.19 0.17 0.13 0.17 0.13 0.17 0.11 0.29	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg				

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

foryinis

Report of Analysis

Client Sample ID: SSB-2 (0-2) Lab Sample ID: JB88935-4 Matrix: SO - Soil Method: SW846 8260C SW Project: Elton Crossing, 899			l6 5035 Iton Avenue	e, Bronx, N	Y	Dat Dat Per	e Sampled: e Received: cent Solids:	02/25/15 02/26/15 91.5
VOA TCL	List							
CAS No.	Comp	ound	Result	RL	MDL	Units	Q	
98-82-8	Isopro	pylbenzene	ND	5.0	0.15	ug/kg		
79-20-9	Methy	I Acetate	ND	5.0	0.48	ug/kg		
108-87-2	Methy	lcyclohexane	ND	5.0	0.14	ug/kg		
1634-04-4	Methy	1 Tert Butyl Ether	ND	0.99	0.16	ug/kg	0	
108-10-1	4-Met	hyl-2-pentanone(MIBK)	NB	5.0	0.32	ug/kg	K	
75-09-2	Methy	lene chloride	ND	5.0	0.94	ug/kg		
100-42-5	Styren	e	ND	5.0	0.14	ug/kg		
79-34-5	1,1,2,	2-Tetrachloroethane	ND	5.0	0.15	ug/kg		
127-18-4	Tetrac	hloroethene	ND	5.0	0.19	ug/kg		
108-88-3	Toluer	ne	ND	0.99	0.15	ug/kg		
87-61-6	1,2,3-	Trichlorobenzene	ND	5.0	0.15	ug/kg		
120-82-1	1,2,4-	Trichlorobenzene	ND	5.0	0.18	ug/kg		
71-55-6	1,1,1-	Trichloroethane	ND	5.0	0.13	ug/kg		
79-00-5	1,1,2-	Trichloroethane	ND	5.0	0.18	ug/kg		
79-01-6	Trichl	oroethene	ND	5.0	0.19	ug/kg		
75-69-4	Trichl	orofluoromethane	ND	5.0	0.16	ug/kg		
75-01-4	Vinyl	chloride	ND	5.0	0.14	ug/kg		
	m,p-X	ylene	ND	0.99	0.22	ug/kg		
95-47-6	o-Xyle	ene	ND	0.99	0.14	ug/kg		
1330-20-7	Xylen	e (total)	ND	0.99	0.14	ug/kg		
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7	Dibroi	nofluoromethane	90%		70-1	.22%		
17060-07-0	1,2-Di	chloroethane-D4	103%		68-1	24%		
2037-26-5	Toluer	ne-D8	102%		77-1	.25%		
460-00-4	4-Bror	nofluorobenzene	95%		72-1	30%		

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

to My1215

4.4 4

Raw Data: 3C118256.D

Accutest Laboratories

Report of Analysis

Client Sample ID: SSB-2 (5-7) Date Sampled: 02/25/15 Lab Sample ID: JB88935-5 Date Received: 02/26/15 Matrix: SO - Soil 92.0 Method: SW846 8260C SW846 5035 Percent Solids: Elton Crossing, 899 Elton Avenue, Bronx, NY Project: Analytical Batch File ID DF Analyzed By Prep Date Prep Batch Run #1 3C118256.D 1 03/03/15 PS 02/27/15 09:00 n/a V3C5373 Run #2 Initial Weight Run #1 5.0 g Run #2 VOA TCL List RL MDL Units Q CAS No. Compound Result ND ug/kg 67-64-1 Acetone 11 1.6 ND 0.19 ug/kg 71-43-2 Benzene 1.1 ND 5.4 0.26 ug/kg 74-97-5 Bromochloromethane 75-27-4 Bromodichloromethane ND 5.4 0.26 ug/kg 75-25-2 Bromoform ND 5.4 0.12 ug/kg 74-83-9 ND 0.32 ug/kg Bromomethane 5.4 ND ug/kg 78-93-3 2-Butanone (MEK) 11 1.3 ND 0.26 ug/kg 75-15-0 Carbon disulfide 5.4ug/kg 56-23-5 Carbon tetrachloride ND 5.40.15 108-90-7 Chlorobenzene ND 5.4 0.13 ug/kg ug/kg 75-00-3 Chloroethane ND 5.4 0.26 67-66-3 Chloroform ND 5.4 0.11 ug/kg ND 5.4 0.33 ug/kg 74-87-3 Chloromethane ND ug/kg 110-82-7 Cyclohexane 5.40.38 1,2-Dibromo-3-chloropropane ND 0.57 ug/kg 96-12-8 11 ND Dibromochloromethane 5.4 0.15 ug/kg 124-48-1 ND 106-93-4 1,2-Dibromoethane 1.1 0.17ug/kg ND 5.40.18 ug/kg 95-50-1 1.2-Dichlorobenzene 541-73-1 1,3-Dichlorobenzene ND 5.40.17 ug/kg 1,4-Dichlorobenzene ND 5.4 0.18 ug/kg 106-46-7 75-71-8 Dichlorodifluoromethane ND 5.4 0.57 ug/kg ug/kg 75-34-3 1.1-Dichloroethane ND 5.4 0.39 107-06-2 1,2-Dichloroethane ND 0.13 ug/kg 1.1 75-35-4 1,1-Dichloroethene ND 5.4 0.27 ug/kg 0.28 156-59-2 cis-1,2-Dichloroethene ND 5.4ug/kg trans-1,2-Dichloroethene ND 5.4 0.20 156-60-5 ug/kg ND 5.4 0.19 ug/kg 78-87-5 1,2-Dichloropropane cis-1,3-Dichloropropene ND 5.4 0.14 ug/kg 10061-01-5 trans-1,3-Dichloropropene ND 5.4 0.18 ug/kg 10061-02-6 0.12 ug/kg 100-41-4 Ethylbenzene ND 1.1 76-13-1 Freon 113 ND 5.4 0.31 ug/kg ND 0.61 ug/kg 591-78-6 2-Hexanone 5.4

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

.5 4

59 of 2362 ACCUTEST, JB88935

Report of Analysis

Client Samp Lab Sample Matrix: Method: Project:	ole ID: SSB-2 (5-7) D: JB88935-5 SO - Soil SW846 8260C SW84 Elton Crossing, 899 E	16 5035 Iton Avenue	e, Bronx, N	Y	Date Samp Date Rece Percent Sc	oled: ived: olids:	02/25/15 02/26/15 92.0	
VOA TCL I	List							
CAS No.	Compound	Result	RL	MDL	Units Q			
98-82-8	Isopropylbenzene	ND	5.4	0.17	ug/kg			
79-20-9	Methyl Acetate	ND	5.4	0.53	ug/kg			
108-87-2	Methylcyclohexane	ND	5.4	0.15	ug/kg			
1634-04-4	Methyl Tert Butyl Ether	ND	1.1	0.18	ug/kg			
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.4	0.35	ug/kg			
75-09-2	Methylene chloride	ND	5.4	1.0	ug/kg			
100-42-5	Styrene	ND	5.4	0.15	ug/kg			
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.4	0.16	ug/kg			
127-18-4	Tetrachloroethene	ND	5.4	0.21	ug/kg			
108-88-3	Toluene	ND	1.1	0.16	ug/kg			
87-61-6	1,2,3-Trichlorobenzene	ND	5.4	0.17	ug/kg			
120-82-1	1,2,4-Trichlorobenzene	ND	5.4	0.20	ug/kg			
71-55-6	1,1,1-Trichloroethane	ND	5.4	0.14	ug/kg			
79-00-5	1,1,2-Trichloroethane	ND	5.4	0.19	ug/kg			
79-01-6	Trichloroethene	ND	5.4	0.21	ug/kg			
75-69-4	Trichlorofluoromethane	ND	5.4	0.18	ug/kg			
75-01-4	Vinyl chloride	ND	5.4	0.15	ug/kg			
	m,p-Xylene	ND	1.1	0.25	ug/kg			
95-47-6	o-Xylene	ND	1.1	0.15	ug/kg			
1330-20-7	Xylene (total)	ND	1.1	0.15	ug/kg			
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its			
1868-53-7	Dibromofluoromethane	87%		70-1	22%			
17060-07-0	1,2-Dichloroethane-D4	96%		68-1	24%			
2037-26-5	Toluene-D8	101%		77-1	125%			
460-00-4	4-Bromofluorobenzene	97%		72-1	130%			

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

80/ y12/15

Page 2 of 2

Report of Analysis

Page 1 of 2

Client Sam Lab Sampl Matrix: Method: Project:	ple ID: SSB-2 (8-10) e ID: JB88935-6 SO - Soil SW846 8260C SW840 Elton Crossing, 899 El	6 5035 ton Avenu	e, Bro	onx, NY	Date Date Perc	Sampled: 02 Received: 02 ent Solids: 91	2/25/15 2/26/15 5
Run #1 Run #2	File ID DF A 3C118261.D 1 03	nalyzed 3/03/15	By PS	Prep 1 02/27/	Date /15 09:00	Prep Batch n/a	Analytical Batch V3C5373
Run #1 Run #2	Initial Weight 5.0 g						
VOA TCL	List						
CAS No.	Compound	Result	R	L MDL	Units	Q	
67-64-1	Acetone	23.9	11	1.6	ug/kg	J+	
71-43-2	Benzene	ND	1.	1 0.19	ug/kg		
74-97-5	Bromochloromethane	ND	5.	5 0.26	ug/kg		
75-27-4	Bromodichloromethane	ND	5.	5 0.26	ug/kg		
75-25-2	Bromoform	ND	5.	5 0.12	ug/kg		
74-83-9	Bromomethane	ND	5.	5 0.32	ug/kg	•	
78-93-3	2-Butanone (MEK)	ND	11	1.3	ug/kg	R	
75-15-0	Carbon disulfide	ND	5.	5 0.26	ug/kg		
56-23-5	Carbon tetrachloride	ND	5.	5 0.16	ug/kg		
108-90-7	Chlorobenzene	ND	5.	5 0.13	ug/kg		
75-00-3	Chloroethane	ND	5.	5 0.26	ug/kg		
67-66-3	Chloroform	0.45	5.	5 0.11	ug/kg	J	
74-87-3	Chloromethane	ND	5.	5 0.33	ug/kg		
110-82-7	Cyclohexane	ND	5.	5 0.39	ug/kg		
96-12-8	1,2-Dibromo-3-chloropropane	ND	11	0.57	ug/kg		
124-48-1	Dibromochloromethane	ND	5.	5 0.15	ug/kg		
106-93-4	1,2-Dibromoethane	ND	1.	1 0.17	ug/kg		
95-50-1	1,2-Dichlorobenzene	ND	5.	5 0.18	ug/kg		
541-73-1	1,3-Dichlorobenzene	ND	5.	5 0.17	ug/kg		
106-46-7	1,4-Dichlorobenzene	ND	5.	5 0.18	ug/kg		
75-71-8	Dichlorodifluoromethane	ND	5.	5 0.57	ug/kg		
75-34-3	1,1-Dichloroethane	ND	5.	5 0.39	ug/kg		
107-06-2	1,2-Dichloroethane	ND	1.	1 0.13	ug/kg		
75-35-4	1,1-Dichloroethene	ND	5.	5 0.27	ug/kg		
156-59-2	cis-1,2-Dichloroethene	ND	5.	5 0.28	ug/kg		
156-60-5	trans-1,2-Dichloroethene	ND	5.	5 0.21	ug/kg		
78-87-5	1,2-Dichloropropane	ND	5.	5 0.19	ug/kg		
10061-01-5	cis-1,3-Dichloropropene	ND	5.	5 0.14	ug/kg		
10061-02-6	trans-1,3-Dichloropropene	ND	5.	5 0.18	ug/kg		
100-41-4	Ethylbenzene	ND	1.	1 0.12	ug/kg		
76-13-1	Freon 113	ND	5.	5 0.31	ug/kg		
591-78-6	2-Hexanone	ND	5.	5 0.61	ug/kg	R	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

for 412/15

67 of 2362

JB68935

ER

Report of Analysis

Client Samp Lab Sample Matrix: Method: Project:	ble ID: SSB-2 (8-10) D: JB88935-6 SO - Soil SW846 8260C SW840 Elton Crossing, 899 El	6 5035 ton Avenue,	Bronx, N	Y	Date Date Perc	Sampled: Received: ent Solids:	02/25/15 02/26/15 91.5	
VOA TCL I	List							
CAS No.	Compound	Result	RL	MDL	Units	Q		
98-82-8 79-20-9 108-87-2 1634-04-4 108-10-1 75-09-2 100-42-5 79-34-5 127-18-4 108-88-3 87-61-6 120-82-1 71-55-6 79-00-5 79-01-6 75-69-4	Isopropylbenzene Methyl Acetate Methylcyclohexane Methyl Tert Butyl Ether 4-Methyl-2-pentanone(MIBK) Methylene chloride Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Trichloroethene Trichlorofluoromethane	ND ND ND ND ND ND ND ND ND ND ND ND ND N	$5.5 \\ 5.5 \\ 5.5 \\ 1.1 \\ 5.5 $	$\begin{array}{c} 0.17\\ 0.53\\ 0.15\\ 0.18\\ 0.35\\ 1.0\\ 0.15\\ 0.16\\ 0.21\\ 0.16\\ 0.21\\ 0.16\\ 0.17\\ 0.20\\ 0.15\\ 0.20\\ 0.21\\ 0.18\\ \end{array}$	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	R J		
75-01-4 95-47-6	Vinyl chloride m,p-Xylene	ND ND	5.5 1.1	0.15 0.25 0.15	ug/kg ug/kg			
1330-20-7	Xylene (total)	ND	1.1	0.15	ug/kg			
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its			
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	85% 103% 105% 95%		70-1 68-1 77-1 72-1	22% 24% 25% 30%			

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

for KINIS

68 of 2362

Page 2 of 2

Raw Data: 3C118257.D

Accutest Laboratories

Report of Analysis								
Client Sam Lab Sampl Matrix: Method: Project:	ple ID: SSB-X SSB-X e ID: JB88935-7 SO - Soil SW846 8260C SW8 Elton Crossing, 899 I	-2 0-2 46 5035 Elton Avenu	L) ne, Bronx,	NY	Date Sampled: 02/ Date Received: 02/ Percent Solids: 90	/25/15 /26/15 8		
Run #1 Run #2	File ID DF . 3C118257.D 1 1	Analyzed 03/03/15	By PS	Prep D 02/27/1	ate Prep Batch 5 09:00 n/a	Analytical Batch V3C5373		
Run #1 Run #2	Initial Weight 5.0 g							
VOA TCL	List							
CAS No.	Compound	Result	RL	MDL	Units Q			
67-64-1	Acetone	-ND-	11	1.6	ug/kg 🥂			
71-43-2	Benzene	ND	1.1	0.19	ug/kg			
74-97-5	Bromochloromethane	ND	5.5	0.27	ug/kg			
75-27-4	Bromodichloromethane	ND	5.5	0.27	ug/kg			
75-25-2	Bromoform	ND	5.5	0.12	ug/kg			
74-83-9	Bromomethane	ND	5.5	0.32	ug/kg			
78-93-3	2-Butanone (MEK)	ND-	11	1.3	ug/kg 🔨			
75-15-0	Carbon disulfide	ND	5.5	0.26	ug/kg			
56-23-5	Carbon tetrachloride	ND	5.5	0.16	ug/kg			
108-90-7	Chlorobenzene	ND	5.5	0.13	ug/kg			
75-00-3	Chloroethane	ND	5.5	0.26	ug/kg			
67-66-3	Chloroform	ND	5.5	0.11	ug/kg			
74-87-3	Chloromethane	ND	5.5	0.33	ug/kg			
110-82-7	Cyclohexane	ND	5.5	0.39	ug/kg			
96-12-8	1,2-Dibromo-3-chloropropan	e ND	11	0.57	ug/kg			
124-48-1	Dibromochloromethane	ND	5.5	0.15	ug/kg			
106-93-4	1,2-Dibromoethane	ND	1.1	0.17	ug/kg			
95-50-1	1,2-Dichlorobenzene	ND	5.5	0.18	ug/kg			
541-73-1	1,3-Dichlorobenzene	ND	5.5	0.17	ug/kg			
106-46-7	1,4-Dichlorobenzene	ND	5.5	0.18	ug/kg			
75-71-8	Dichlorodifluoromethane	ND	5.5	0.57	ug/kg			
75-34-3	1,1-Dichloroethane	ND	5.5	0.39	ug/kg			
107-06-2	1,2-Dichloroethane	ND	1.1	0.13	ug/kg			
75-35-4	1,1-Dichloroethene	ND	5.5	0.27	ug/kg			
156-59-2	cis-1,2-Dichloroethene	ND	5.5	0.29	ug/kg			
156-60-5	trans-1,2-Dichloroethene	ND	5.5	0.21	ug/kg			
78-87-5	1,2-Dichloropropane	ND	5.5	0.19	ug/kg			
10061-01-5	cis-1,3-Dichloropropene	ND	5.5	0.14	ug/kg			
10061-02-6	trans-1,3-Dichloropropene	ND	5.5	0.19	ug/kg			
100-41-4	Ethylbenzene	ND	1.1	0.12	ug/kg			
76-13-1	Freon 113	ND	5.5	0.32	ug/kg			
591-78-6	2-Hexanone	ND	5.5	0.61	ug/kg			

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

HANNIS BACCUTEST

Report of Analysis

Client Sample ID:	SSB-X SSB-2(0-2)			
Lab Sample ID:	JB88935-7	Date Sampled:	02/25/15	
Matrix:	SO - Soil	Date Received:	02/26/15	
Method:	SW846 8260C SW846 5035	Percent Solids:	90.8	
Project:	Elton Crossing, 899 Elton Avenue, Bronx, NY			
VOA TCL List				

CAS No.	Compound	Result	RL	MDL	Units
98-82-8	Isopropylbenzene	ND	5.5	0.17	ug/kg
79-20-9	Methyl Acetate	ND	5.5	0.53	ug/kg
108-87-2	Methylcyclohexane	ND	5.5	0.15	ug/kg
1634-04-4	Methyl Tert Butyl Ether	ND	1.1	0.18	ug/kg
108-10-1	4-Methyl-2-pentanone(MIBK)_	NÐ	5.5	0.35	ug/kg
75-09-2	Methylene chloride	ND	5.5	1.0	ug/kg
100-42-5	Styrene	ND	5.5	0.15	ug/kg
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.5	0.16	ug/kg
127-18-4	Tetrachloroethene	ND	5.5	0.21	ug/kg
108-88-3	Toluene	ND	1.1	0.16	ug/kg
87-61-6	1,2,3-Trichlorobenzene	ND	5.5	0.17	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	5.5	0.20	ug/kg
71-55-6	1,1,1-Trichloroethane	ND	5.5	0.15	ug/kg
79-00-5	1,1,2-Trichloroethane	ND	5.5	0.20	ug/kg
79-01-6	Trichloroethene	ND	5.5	0.22	ug/kg
75-69-4	Trichlorofluoromethane	ND	5.5	0.18	ug/kg
75-01-4	Vinyl chloride	ND	5.5	0.16	ug/kg
	m,p-Xylene	ND	1.1	0.25	ug/kg
95-47-6	o-Xylene	ND	1.1	0.16	ug/kg
1330-20-7	Xylene (total)	ND	1.1	0.16	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts
1868-53-7	Dibromofluoromethane	87%		70-12	22%
17060-07-0	1,2-Dichloroethane-D4	99%		68-12	24%
2037-26-5	Toluene-D8	105%		77-12	25%
460-00-4	4-Bromofluorobenzene	94%		72-13	30%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Q

R

Page 2 of 2

4.7

for 412/15 76 of 2362 JB88935

Raw Data: 3C118222.D

Accutest Laboratories

Report of Analysis

Client Sample ID: SSB-3 (0-2) Date Sampled: 02/26/15 Lab Sample ID: JB88935-8 Date Received: 02/26/15 Matrix: SO - Soil 88.3 Method: SW846 8260C SW846 5035 Percent Solids: Project: Elton Crossing, 899 Elton Avenue, Bronx, NY Analytical Batch File ID DF Analyzed By Prep Date Prep Batch Run #1 3C118222.D 1 03/02/15 PS 02/27/15 09:00 n/a V3C5371 Run #2 Initial Weight Run #1 4.7 g Run #2 VOA TCL List MDL Units Compound Result RL Q CAS No. ug/kg 67-64-1 Acetone ND 12 1.8 1.2 0.21 ug/kg 71-43-2 Benzene ND ND 0.29 ug/kg 74-97-5 Bromochloromethane 6.0 75-27-4 Bromodichloromethane ND 6.0 0.29 ug/kg 75-25-2 Bromoform ND 6.0 0.13 ug/kg ND 6.0 0.35 ug/kg 74-83-9 Bromomethane ug/kg 78-93-3 2-Butanone (MEK) ND 12 1.5 0.29 ug/kg 75-15-0 Carbon disulfide ND 6.0 ug/kg Carbon tetrachloride ND 6.0 0.17 56-23-5 6.0 0.15 ug/kg 108-90-7 Chlorobenzene ND 75-00-3 Chloroethane ND 6.0 0.29 ug/kg 67-66-3 Chloroform ND 6.0 0.12 ug/kg ND 6.0 0.36 ug/kg 74-87-3 Chloromethane ug/kg 110-82-7 Cvclohexane ND 6.0 0.43 ug/kg 12 0.63 96-12-8 1,2-Dibromo-3-chloropropane ND ug/kg Dibromochloromethane ND 6.0 0.16 124-48-1 ug/kg 106-93-4 1,2-Dibromoethane ND 1.2 0.19 ND 6.0 0.19 ug/kg 95-50-1 1,2-Dichlorobenzene 541-73-1 1,3-Dichlorobenzene ND 6.0 0.19 ug/kg 1,4-Dichlorobenzene ND 6.0 0.20 ug/kg 106-46-7 75-71-8 Dichlorodifluoromethane ND 6.0 0.63 ug/kg ug/kg 75-34-3 1.1-Dichloroethane ND 6.0 0.43 0.14 107-06-2 1,2-Dichloroethane ND 1.2 ug/kg 0.30 75-35-4 1,1-Dichloroethene ND 6.0 ug/kg ND 0.31 ug/kg 156-59-2 cis-1,2-Dichloroethene 6.0 ug/kg trans-1,2-Dichloroethene ND 6.0 0.23 156-60-5 ug/kg 1,2-Dichloropropane ND 6.0 0.21 78-87-5 cis-1,3-Dichloropropene ND 6.0 0.15 ug/kg 10061-01-5 ug/kg trans-1,3-Dichloropropene ND 6.0 0.20 10061-02-6 ND 1.2 0.13 ug/kg 100-41-4 Ethylbenzene 0.35 76-13-1 Freon 113 ND 6.0 ug/kg

ND = Not detected MDL = Method Detection Limit

ND

6.0

0.67

RL = Reporting Limit

591-78-6

E = Indicates value exceeds calibration range

2-Hexanone

J = Indicates an estimated value

ug/kg

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

. 2

PONULIIS

Report of Analysis

Client Samp Lab Sample Matrix: Method: Project:	ple ID: SSB-3 (0-2) E ID: JB88935-8 SO - Soil SW846 8260C SW8 Elton Crossing, 899 E	46 5035 Elton Avenue	6 5035 ton Avenue, Bronx, NY			Sampled: Received: ent Solids:	02/26/15 02/26/15 88.3	
VOA TCL	List							
CAS No.	Compound	Result	RL	MDL	Units	Q		
98-82-8	Isopropylbenzene	ND	6.0	0.18	ug/kg			
79-20-9	Methyl Acetate	ND	6.0	0.58	ug/kg			
108-87-2	Methylcyclohexane	ND	6.0	0.17	ug/kg			
1634-04-4	Methyl Tert Butyl Ether	ND	1.2	0.20	ug/kg	R		
108-10-1	4-Methyl-2-pentanone(MIBK)_NHD	6.0	0.39	ug/kg			
75-09-2	Methylene chloride	ND	6.0	1.1	ug/kg			
100-42-5	Styrene	ND	6.0	0.17	ug/kg			
79-34-5	1,1,2,2-Tetrachloroethane	ND	6.0	0.18	ug/kg			
127-18-4	Tetrachloroethene	ND	6.0	0.23	ug/kg			
108-88-3	Toluene	ND	1.2	0.18	ug/kg			
87-61-6	1,2,3-Trichlorobenzene	ND	6.0	0.18	ug/kg			
120-82-1	1,2,4-Trichlorobenzene	ND	6.0	0.22	ug/kg			
71-55-6	1,1,1-Trichloroethane	ND	6.0	0.16	ug/kg			
79-00-5	1,1,2-Trichloroethane	ND	6.0	0.22	ug/kg			
79-01-6	Trichloroethene	ND	6.0	0.24	ug/kg			
75-69-4	Trichlorofluoromethane	ND	6.0	0.20	ug/kg			
75-01-4	Vinyl chloride	ND	6.0	0.17	ug/kg			
	m,p-Xylene	0.50	1.2	0.27	ug/kg	J		
95-47-6	o-Xylene	0.33	1.2	0.17	ug/kg	J		
1330-20-7	Xylene (total)	0.83	1.2	0.17	ug/kg	J		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its			
1868-53-7	Dibromofluoromethane	91%		70 -1	122%			
17060-07-0	1,2-Dichloroethane-D4	102%		68- 1	124%			
2037-26-5	Toluene-D8	99%		77-1	125%			
460-00-4	4-Bromofluorobenzene	90%	72-130%					

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

for yizis

4.8

B88935

Raw Data: 3C118258.D

Accutest Laboratories

Report of Analysis

Page 1 of 2

4.9

Client Sam Lab Sampl Matrix: Method: Project:	ple ID: SSB-3 (5-7) e ID: JB88935-9 SO - Soil SW846 8260C SW840 Elton Crossing, 899 El	6 5035 ton Avenu	e, Bronx, N	JY	Date Date Perc	Sampled: 02 Received: 02 ent Solids: 87	/26/15 /26/15 /.6
Run #1 Run #2	File ID DF A: 3C118258.D 1 03	nalyzed 3/03/15	By PS	Prep D 02/27/1	ate 5 09:00	Prep Batch n/a	Analytical Batch V3C5373
Run #1 Run #2	Initial Weight 6.1 g						
VOA TCL	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
71-43-2 74-97-5 75-27-4 75-25-2 74-83-9 78-93-3 75-15-0 56-23-5 108-90-7 75-00-3 67-66-3 74-87-3 110-82-7 96-12-8 124-48-1 106-93-4 95-50-1 541-73-1	Benzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chlorobenzene Chloroform Chloromethane Cyclohexane 1,2-Dibromo-3-chloropropane Dibromochloromethane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	$\begin{array}{c} 0.94 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 9.4 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 9.4 \\ 4.7 \\ 0.94 \\ 4.7 \\ 4.7 \\ 4.7 \end{array}$	$\begin{array}{c} 0.16\\ 0.23\\ 0.23\\ 0.099\\ 0.27\\ 1.1\\ 0.22\\ 0.13\\ 0.11\\ 0.22\\ 0.096\\ 0.28\\ 0.33\\ 0.49\\ 0.13\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ \end{array}$	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	R	
106-46-7 75-71-8 75-34-3 107-06-2 75-35-4 156-59-2 156-60-5 78-87-5 10061-01-5 10061-02-6 100-41-4 76-13-1 591-78-6	1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene Freon 113 2-Hexanone	ND ND ND ND ND ND ND ND ND ND ND ND	4.7 4.7 0.94 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.	$\begin{array}{c} 0.15\\ 0.49\\ 0.33\\ 0.11\\ 0.23\\ 0.24\\ 0.18\\ 0.16\\ 0.12\\ 0.16\\ 0.099\\ 0.27\\ 0.52 \end{array}$	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	R	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

\$0 1.11/1 T

Report of Analysis

Client Samp Lab Sample Matrix: Method: Project:	ble ID: SSB-3 (5-7) E ID: JB88935-9 SO - Soil SW846 8260C SW84 Elton Crossing, 899 E	16 5035 Iton Avenue, Bronx, NY			Date Sampled: Date Received: Percent Solids:		02/26/15 02/26/15 87.6
VOA TCL	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	0.49	4.7	0.14	ug/kg	J	
79-20-9	Methyl Acetate	ND	4.7	0.45	ug/kg		
108-87-2	Methylcyclohexane	ND	4.7	0.13	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	0.94	0.16	ug/kg	D	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	4.7	0.30	ug/kg	K-	
75-09-2	Methylene chloride	ND	4.7	0.89	ug/kg		
100-42-5	Styrene	ND	4.7	0.13	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	4.7	0.14	ug/kg		
127-18-4	Tetrachloroethene	ND	4.7	0.18	ug/kg		
108-88-3	Toluene	ND	0.94	0.14	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	4.7	0.14	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	4.7	0.17	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	4.7	0.12	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	4.7	0.17	ug/kg		
79-01-6	Trichloroethene	ND	4.7	0.18	ug/kg		
75-69-4	Trichlorofluoromethane	ND	4.7	0.16	ug/kg		
75-01-4	Vinyl chloride	ND	4.7	0.13	ug/kg		
	m,p-Xylene	0.27	0.94	0.21	ug/kg	J	
95-47-6	o-Xylene	ND	0.94	0.13	ug/kg		
1330-20-7	Xylene (total)	0.27	0.94	0.13	ug/kg	J	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
1868-53-7	Dibromofluoromethane	91%		70-1	22%		
17060-07-0	1,2-Dichloroethane-D4	100%		68-1	24%		
2037-26-5	Toluene-D8	99%		77-1	25%		
460-00-4	4-Bromofluorobenzene	92%	72-130%				

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

80×12/15

92 of 2362

Page 2 of 2

4.9 4

Raw Data: 3C118259.D

Accutest Laboratories

Report of Analysis

Client Sample ID: SSB-3 (7.5-9.5) Lab Sample ID: JB88935-10 Date Sampled: 02/26/15 02/26/15 Matrix: SO - Soil Date Received: Method: SW846 8260C SW846 5035 Percent Solids: 89.2 Project: Elton Crossing, 899 Elton Avenue, Bronx, NY File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 3C118259.D 1 03/03/15 PS 02/27/15 09:00 n/a V3C5373 Run #2 Initial Weight Run #1 5.6 g Run #2 **VOA TCL List** RL MDL Units CAS No. Compound Result Q ug/kg 67-64-1 Acetone ND 10 1.5 ug/kg 71-43-2 ND 1.0 0.17 Benzene ug/kg 74-97-5 Bromochloromethane ND 5.0 0.24 ND 0.24 ug/kg 75-27-4 Bromodichloromethane 5.0 ND 5.0 0.11 ug/kg 75-25-2 Bromoform ug/kg ND 5.0 0.29 74-83-9 Bromomethane ug/kg 78-93-3 ND 10 1.2 2-Butanone (MEK) ug/kg Carbon disulfide ND 5.0 0.24 75-15-0 0.14 ug/kg 56-23-5 Carbon tetrachloride ND 5.0 108-90-7 Chlorobenzene ND 5.0 0.12 ug/kg ug/kg 0.24 75-00-3 Chloroethane ND 5.0 5.0 0.10 ug/kg Chloroform ND 67-66-3 5.0 0.30 ug/kg 74-87-3 Chloromethane ND ND 5.0 0.35 ug/kg 110-82-7 Cyclohexane 1,2-Dibromo-3-chloropropane ND 10 0.52 ug/kg 96-12-8 5.0 0.14 124-48-1 Dibromochloromethane ND ug/kg 106-93-4 1.2-Dibromoethane ND 1.0 0.16 ug/kg 95-50-1 1,2-Dichlorobenzene ND 5.0 0.16 ug/kg ND 5.0 0.16 ug/kg 541-73-1 1,3-Dichlorobenzene ug/kg 106-46-7 1.4-Dichlorobenzene ND 5.0 0.17 ND 5.0 0.52 ug/kg 75-71-8 Dichlorodifluoromethane 5.0 0.36 ug/kg 1.1-Dichloroethane ND 75-34-3 1,2-Dichloroethane ND 1.0 0.12 ug/kg 107-06-2 1.1-Dichloroethene ND 5.0 0.25 ug/kg 75-35-4 156-59-2 cis-1,2-Dichloroethene ND 5.0 0.26 ug/kg ug/kg 5.0 0.19 156-60-5 trans-1,2-Dichloroethene ND 78-87-5 1,2-Dichloropropane ND 5.0 0.17 ug/kg 10061-01-5 0.13 ug/kg cis-1,3-Dichloropropene ND 5.0 ug/kg 5.0 10061-02-6 trans-1,3-Dichloropropene ND 0.17 100-41-4 Ethylbenzene ND 1.0 0.11 ug/kg ug/kg 76-13-1 Freon 113 ND 5.0 0.29 591-78-6 2-Hexanone ND 5.0 0.56 ug/kg

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

for yours

99 of 2362 ACCUTEST JB88935

Page 1 of 2

-				A	1	
ν.	010	Or1	· ot	- Λ m a	1370	10
IV.	CU.	U1 I	. 01	- Alla	11 V O	19
	- r					

Lab Sample Matrix: Method:		Date Sampled:02/26/15Date Received:02/26/15Percent Solids:89.2					
Project:	Elton Crossing, 899	Elton Avenue	, Bronx, N	Y			
VOA TCL	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	5.0	0.15	ug/kg		
79-20-9	Methyl Acetate	ND	5.0	0.48	ug/kg		
108-87-2	Methylcyclohexane	ND	5.0	0.14	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.17	ug/kg	0	
108-10-1	4-Methyl-2-pentanone(MIB	K) _ND	5.0	0.32	ug/kg	K	
75-09-2	Methylene chloride	ND	5.0	0.95	ug/kg		
100-42-5	Styrene	ND	5.0	0.14	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.0	0.15	ug/kg		
127-18-4	Tetrachloroethene	ND	5.0	0.20	ug/kg		
108-88-3	Toluene	ND	1.0	0.15	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	0.15	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.18	ug/kg		
71-55-6	1.1.1-Trichloroethane	ND	5.0	0.13	ug/kg		
79-00-5	1.1.2-Trichloroethane	ND	5.0	0.18	ug/kg		
79-01-6	Trichloroethene	ND	5.0	0.20	ug/kg		
75-69-4	Trichlorofluoromethane	ND	5.0	0.17	ug/kg		
75-01-4	Vinyl chloride	ND	5.0	0.14	ug/kg		
	m.p-Xvlene	ND	1.0	0.23	ug/kg		
95-47-6	o-Xvlene	ND	1.0	0.14	ug/kg		
1330-20-7	Xylene (total)	ND	1.0	0.14	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7	Dibromofluoromethane	88%		70-1	22%		
17060-07-0	1.2-Dichloroethane-D4	100%		68- 1	24%		
2037-26-5	Toluene-D8	107%		77-1	25%		
460-00-4	4-Bromofluorobenzene	96%		72-1	30%		

forgizis

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

4.10

Raw Data: 2B128056.D

Matrix:

Project:

Run #1

Run #2

Run #1

Run #2

67-64-1

71-43-2

74-97-5

75-27-4

75-25-2

74-83-9

78-93-3

Bromoform

Bromomethane

2-Butanone (MEK)

Accutest Laboratories

Report of Analysis

Client Sample ID: TB20150226 Lab Sample ID: JB88935-11 Date Sampled: 02/26/15 Date Received: 02/26/15 AQ - Trip Blank Soil Percent Solids: n/a Method: SW846 8260C Elton Crossing, 899 Elton Avenue, Bronx, NY Prep Batch File ID DF Prep Date Analytical Batch Analyzed By V2B5771 2B128056.D 03/04/15 BK 1 n/a n/a Purge Volume 5.0 ml VOA TCL List CAS No. Compound Result RL MDL Units Q Acetone -ND 10 2.7 ug/l Benzene ND 1.0 0.21 ug/l Bromochloromethane ND 5.0 0.49 ug/l Bromodichloromethane ND 1.0 0.19 ug/l

ND	4,0	0.31	
ND	2.0	0.39	
-NĐ-	10	2.3	
ND	2.0	0.17	
ND	1.0	0.22	
ND	1.0	0.19	
ND	1.0	0.65	
ND	1.0	0.20	
NID	1.0	0.24	

75-15-0	Carbon disulfide	ND	2.0	0.17	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	0.22	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.19	ug/l
75-00-3	Chloroethane	ND	1.0	0.65	ug/l (
67-66-3	Chloroform	ND	1.0	0.20	ug/l
74-87-3	Chloromethane	ND	1.0	0.24	ug/l (
110-82-7	Cyclohexane	ND	5.0	0.23	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	10	1.2	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.22	ug/l
106-93-4	1,2-Dibromoethane	ND	2.0	0.21	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.16	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.24	ug/l
75-71-8	Dichlorodifluoromethane	ND	5.0	0.31	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.35	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.30	ug/l
75-35-4	1,1-Dichloroethene	ND	1.0	0.50	ug/l
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.33	ug/l
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.51	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.34	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.18	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.32	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.31	ug/l
76-13-1	Freon 113	ND	5.0	0.50	ug/l

-NĐ-

5.0

2.3

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

591-78-6

E = Indicates value exceeds calibration range

2-Hexanone

J = Indicates an estimated value

ug/l

ug/l

ug/l

ug/l

R

J

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Client Sample ID:TB20150226Lab Sample ID:JB88935-11Matrix:AQ - Trip BlanMethod:SW846 8260CProject:Elton Crossing	nk Soil 3, 899 Elton Avenue	Date Sampled: Date Received: Percent Solids:	02/26/15 02/26/15 n/a		
VOA TCL List					
CAS No. Compound	Result	RL	MDL	Units Q	
98-82-8 Isopropylbenzene	ND	2.0	0.22	ug/l	
79-20-9 Methyl Acetate	ND	5.0	1.4	ug/l	
108-87-2 Methylcyclohexane	ND	5.0	0.22	ug/l	
1634-04-4 Methyl Tert Butyl Eth	er ND	1.0	0.19	ug/l	
108-10-1 4-Methyl-2-pentanone	(MIBK) ND	5.0	1.2	ug/1 👗	
75-09-2 Methylene chloride	ND	2.0	0.89	ug/l	
100-42-5 Styrene	ND	5.0	0.19	ug/l	
79-34-5 1,1,2,2-Tetrachloroetl	hane ND	1.0	0.39	ug/l	
127-18-4 Tetrachloroethene	ND	1.0	0.35	ug/l	
108-88-3 Toluene	ND	1.0	0.22	ug/l	
87-61-6 1,2,3-Trichlorobenzer	ne ND	5.0	0.27	ug/l	
120-82-1 1,2,4-Trichlorobenzer	ne ND	5.0	0.22	ug/l	
71-55-6 1,1,1-Trichloroethane	ND	1.0	0.32	ug/l	
79-00-5 1,1,2-Trichloroethane	ND	1.0	0.36	ug/l	
79-01-6 Trichloroethene	ND	1.0	0.25	ug/l	
75-69-4 Trichlorofluoromethar	ne ND	5.0	0.47	ug/l	
75-01-4 Vinyl chloride	NĐ-	1.0	0.16	ug/I VJ	
m,p-Xylene	ND	1.0	0.35	ug/l	
95-47-6 o-Xylene	ND	1.0	0.20	ug/l	
1330-20-7 Xylene (total)	ND	1.0	0.20	ug/l	
CAS No. Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 Dibromofluoromethan	e 101%		76-1	20%	
17060-07-0 1 2-Dichloroethane-D	4 96%		73-1	22%	
2037-26-5 Toluene-D8	99%		84-1	19%	
460-00-4 4-Bromofluorobenzen	P 101%		78-1	17%	

Report of Analysis

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

for41,115

Page 2 of 2

Raw Data: 2B128057.D

Accutest Laboratories

Report of Analysis

Client Sample ID: FB20150226 JB88935-12 Date Sampled: 02/26/15 Lab Sample ID: Date Received: 02/26/15 Matrix: AQ - Field Blank Soil Method: SW846 8260C Percent Solids: n/a Project: Elton Crossing, 899 Elton Avenue, Bronx, NY Prep Batch Analytical Batch File ID DF Analyzed By Prep Date V2B5771 Run #1 2B128057.D 1 03/04/15 BK n/a n/a Run #2 Purge Volume Run #1 5.0 ml Run #2 VOA TCL List CAS No. Compound Result RL MDL Units Q ug/l 67-64-1 Acetone ND 10 2.7 71-43-2 Benzene ND 1.0 0.21 ug/l 74-97-5 Bromochloromethane ND 5.0 0.49 ug/l 75-27-4 Bromodichloromethane ND 1.0 0.19 ug/l 75-25-2 Bromoform ND 4.0 0.31 ug/l 74-83-9 Bromomethane ND 2.0 0.39 ug/l ND 2.3 ug/l 🖊 78-93-3 2-Butanone (MEK) 10 75-15-0 Carbon disulfide ND 2.0 0.17 ug/l 56-23-5 Carbon tetrachloride ND 1.0 0.22 ug/l 108-90-7 Chlorobenzene ND 1.0 0.19 ug/l ug/l VJ 75-00-3 Chloroethane -NĐ 1.0 0.65 0.20 ug/l 67-66-3 Chloroform ND 1.0 ND 0.24 ug/l 74-87-3 Chloromethane 1.0 U ND 5.00.23 ug/l 110-82-7 Cyclohexane 1,2-Dibromo-3-chloropropane ND 10 1.2 ug/l 96-12-8 Dibromochloromethane ND 1.0 0.22 ug/l 124-48-1 1.2-Dibromoethane ND 2.0 0.21 ug/l 106-93-4 95-50-1 1.2-Dichlorobenzene ND 1.0 0.16 ug/l 541-73-1 1.3-Dichlorobenzene ND 1.0 0.22 ug/l 106-46-7 1,4-Dichlorobenzene ND 1.0 0.24 ug/l ug/l 75-71-8 Dichlorodifluoromethane ND 5.0 0.31 1.1-Dichloroethane ND 0.35 ug/l 75-34-3 1.0 107-06-2 1,2-Dichloroethane ND 0.30 1.0 ug/l 0.50 ug/l 75-35-4 1,1-Dichloroethene ND 1.0 156-59-2 cis-1,2-Dichloroethene ND 1.0 0.33 ug/l 156-60-5 trans-1,2-Dichloroethene ND 1.0 0.51 ug/l ND 0.34 78-87-5 1,2-Dichloropropane 1.0 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.18 ug/l 0.32 10061-02-6 trans-1,3-Dichloropropene ND 1.0 ug/l Ethylbenzene ND 1.0 0.31 ug/l 100-41-4 0.50 76-13-1 Freon 113 ND 5.0ug/l

ND = Not detected MDL = Method Detection Limit

-NĐ

RL = Reporting Limit

591-78-6

E = Indicates value exceeds calibration range

2-Hexanone

J = Indicates an estimated value

ug/l

2.3

5.0

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 2

4.12 4

10/11/15

Client Samp Lab Sample Matrix: Method: Project:	at Sample ID:FB20150226Sample ID:JB88935-12rix:AQ - Field Blank Soilhod:SW846 8260Cect:Elton Crossing, 899 Elton Avenue, Bronx, NY				Date Sampled: Date Received: Percent Solids:	02/26/15 02/26/15 n/a	
VOA TCL	List						
CAS No.	Comp	ound	Result	RL	MDL	Units Q	
98-82-8	Isopro	pylbenzene	ND	2.0	0.22	ug/l	
79-20-9	Methy	1 Acetate	ND	5.0	1.4	ug/l	
108-87-2	Methy	lcyclohexane	ND	5.0	0.22	ug/l	
1634-04-4	Methy	1 Tert Butyl Ether	ND	1.0	0.19	ug/l	
108-10-1	4-Met	hyl-2-pentanone(MIBK)	ND	5.0	1.2	ug/l	
75-09-2	Methy	lene chloride	ND	2.0	0.89	ug/l	
100-42-5	Styren	e	ND	5.0	0.19	ug/l	
79-34-5	1,1,2,	2-Tetrachloroethane	ND	1.0	0.39	ug/l	
127-18-4	Tetrac	hloroethene	ND	1.0	0.35	ug/l	
108-88-3	Toluer	ne	ND	1.0	0.22	ug/l	
87-61-6	1,2,3-	Trichlorobenzene	ND	5.0	0.27	ug/l	
120-82-1	1,2,4-	Trichlorobenzene	ND	5.0	0.22	ug/l	
71-55-6	1,1,1-	Trichloroethane	ND	1.0 -	0.32	ug/l	
79-00-5	1,1,2-	Trichloroethane	ND	1.0	0.36	ug/l	
79-01-6	Trichl	oroethene	ND	1.0	0.25	ug/l	
75-69-4	Trichl	orofluoromethane	ND	5.0	0.47	ug/l	
75-01-4	Vinyl	chloride	ND	1.0	0.16	ug/1 UT	
	m,p-X	vlene	ND	1.0	0.35	ug/l	
95-47-6	o-Xyle	ene	ND	1.0	0.20	ug/l	
1330-20-7	Xylen	e (total)	ND	1.0	0.20	ug/l	
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibroi	nofluoromethane	102%		76-1	20%	
17060-07-0	1,2-Di	chloroethane-D4	96%		73-1	.22%	
2037-26-5	Toluer	ne-D8	100%		84-1	19%	
460-00-4	4-Bror	nofluorobenzene	101%		78-1	17%	

Report of Analysis

for yours

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 2

Raw Data: L270715.D

Accutest Laboratories

Report of Analysis

Client Sam Lab Sample Matrix: Method: Project:	Bronx, N	Date Sampled: 03/11/15 Date Received: 03/11/15 Percent Solids: n/a x, NY					
Run #1 Run #2	File ID DF	Analyzed 1 03/18/15	By VC	Prep Da n/a	ate	Prep Batch n/a	Analytical Batch VL7340
Run #1 Run #2	Purge Volume 5.0 ml						
VOA TCL	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	7.6	10	2.7	ug/l	J	
71-43-2	Benzene	ND	1.0	0.21	ug/I		
74-97-5	Bromochloromethane	ND	5.0	0.49	ug/l		
75-27-4	Bromodichloromethane	ND	1.0	0.19	ug/I		
75-25-2	Bromotorm	ND	4.0	0.31	ug/I		
74-83-9	Bromomethane	ND	2.0	0.39	ug/I	R	
78-93-3	2-Butanone (MEK)	-HH-	10	2.3	ug/l	N	
75-15-0	Carbon disulfide	ND	2.0	0.17	ug/1		
56-23-5	Carbon tetrachloride	ND	1.0	0.22	ug/I		
108-90-7	Chlorobenzene	ND	1.0	0.19	ug/l		
75-00-3	Chloroethane	ND	1.0	0.65	ug/I		
67-66-3	Chloroform	0.44 NU	1.0	0.20	ug/l	1	
74-87-3	Chloromethane	ND	1.0	0.24	ug/l		
110-82-7	Cyclohexane	ND	5.0	0.23	ug/l		
96-12-8	1,2-Dibromo-3-chloropropan	e ND	10	1.2	ug/l		
124-48-1	Dibromochloromethane	ND	1.0	0.22	ug/l		
106-93-4	1,2-Dibromoethane	ND	2.0	0.21	ug/l		
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.16	ug/l		
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l		
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.24	ug/l		
75-71-8	Dichlorodifluoromethane	ND	5.0	0.31	ug/l		
75-34-3	1,1-Dichloroethane	ND	1.0	0.35	ug/l		
107-06-2	1,2-Dichloroethane	ND	1.0	0.30	ug/l		
75-35-4	1,1-Dichloroethene	ND	1.0	0.50	ug/l		
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.33	ug/l		
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.51	ug/l		
78-87-5	1,2-Dichloropropane	ND	1.0	0.34	ug/l		
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.18	ug/l		
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.32	ug/l		
100-41-4	Ethylbenzene	ND	1.0	0.31	ug/l		
76-13-1	Freon 113	ND	5.0	0.50	ug/l		
591-78-6	2-Hexanone	ND	5.0	2.3	ug/l		

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 2

13 of 1744 АССИТЕЯТ, JB89708

Client Samp Lab Sample Matrix: Method: Project:	le ID: ID:	MW-1 JB89708-1 AQ - Ground Water SW846 8260C Elton Crossing, 899 Elt	ton Avenue,	Bronx, N	Y	Date Date Perce	Sampled: Received: ent Solids:	03/11/15 03/11/15 n/a
VOA TCL I	List							
CAS No.	Compound		Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene		ND	2.0	0.22	ug/l		
79-20-9	Methyl Acetate		ND	5.0	1.4	ug/l		
108-87-2	Methy	lcyclohexane	ND	5.0	0.22	ug/l		
1634-04-4	Methyl Tert Butyl Ether		ND	1.0	0.19	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBK)		ND	5.0	1.2	ug/l		
75-09-2	Methylene chloride		ND	2.0	0.89	ug/l		
100-42-5	Styrene		ND	5.0	0.19	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane		ND	1.0	0.39	ug/l		
127-18-4	Tetrachloroethene		0.99	1.0	0.35	ug/l	J	
108-88-3	Toluene		ND	1.0	0.22	ug/l		
87-61-6	1,2,3-Trichlorobenzene		ND	5.0	0.27	ug/l		
120-82-1	1,2,4-Trichlorobenzene		ND	5.0	0.22	ug/l		
71-55-6	1,1,1-Trichloroethane		ND	1.0	0.32	ug/l		
79-00-5	1,1,2-Trichloroethane		ND	1.0	0.36	ug/l		
79-01-6	Trichloroethene		ND	1.0	0.25	ug/l		
75-69-4	Trichl	orofluoromethane	ND	5.0	0.47	ug/l		
75-01-4	Vinyl	chloride	ND	1.0	0.16	ug/l		
	m,p-X	ylene	ND	1.0	0.35	ug/l		
95-47-6	o-Xyle	ene	ND	1.0	0.20	ug/l		
1330-20-7	Xylen	e (total)	ND	1.0	0.20	ug/l		
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7	Dibromofluoromethane		90%		76-1	20%		
17060-07-0	1,2-D	ichloroethane-D4	84%		73-1	22%		
2037-26-5	Tolue	ne-D8	89%		84-1	l 19 %		
460-00-4	4-Bromofluorobenzene		87%		78-1	17%		

Report of Analysis

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

4.1

Raw Data: L270716.D

Accutest Laboratories

Report of Analysis

Page 1 of 2

4.3

Client Sam Lab Sampl Matrix: Method: Project:	ple ID: MW-2 e ID: JB89708-2 AQ - Ground Water SW846 8260C Elton Crossing, 899 1	Elton Avenue,	Bronx, N	Date Sampled: 03/11/15 Date Received: 03/11/15 Percent Solids: n/a				
Run #1 Run #2	File ID DF L270716.D 1	Analyzed 1 03/18/15	By VC	Prep Da n/a	ate	Prep Batch n/a	Analytical Batch VL7340	
Run #1 Run #2	Purge Volume 5.0 ml							
VOA TCL	List							
CAS No.	Compound	Result	RL	MDL	Units	Q		
67-64-1	Acetone	16.0	10	2.7	ug/l			
71-43-2	Benzene	ND	1.0	0.21	ug/l			
74-97-5	Bromochloromethane	ND	5.0	0.49	ug/l			
75-27-4	Bromodichloromethane	ND	1.0	0.19	ug/l			
75-25-2	Bromoform	ND	4.0	0.31	ug/l			
74-83-9	Bromomethane	ND	2.0	0.39	ug/l	D		
78-93-3	2-Butanone (MEK)	ND	10	2.3	ug/l			
75-15-0	Carbon disulfide	ND	2.0	0.17	ug/l			
56-23-5	Carbon tetrachloride	ND	1.0	0.22	ug/l			
108-90-7	Chlorobenzene	ND	1.0	0.19	ug/l			
75-00-3	Chloroethane	ND	1.0	0.65	ug/l			
67-66-3	Chloroform	17ND	1.0	0.20	ug/l			
74-87-3	Chloromethane	ND	1.0	0.24	ug/l			
110-82-7	Cyclohexane	ND	5.0	0.23	ug/l			
96-12-8	1,2-Dibromo-3-chloropropar	ie ND	10	1.2	ug/l			
124-48-1	Dibromochloromethane	ND	1.0	0.22	ug/l			
106-93-4	1,2-Dibromoethane	ND	2.0	0.21	ug/l			
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.16	ug/l			
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l			
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.24	ug/l			
75-71-8	Dichlorodifluoromethane	ND	5.0	0.31	ug/l			
75-34-3	1,1-Dichloroethane	ND	1.0	0.35	ug/I			
107-06-2	1,2-Dichloroethane	ND	1.0	0.30	ug/1			
75-35-4	1,1-Dichloroethene	ND	1.0	0.50	ug/I			
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.33	ug/1			
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.01	ug/1			
78-87-5	1,2-Dichloropropane	ND	1.0	0.34	ug/1			
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.18	ug/1			
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.32	ug/1			
100-41-4	Ethylbenzene	ND	1.0	0.31	ug/1			
76-13-1	Freon 113	ND	5.0	0.00	ug/1			
591-78-6	2-Hexanone	ND	5.0	2.3	ug/1			

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

for 1/3115
Client Samp Lab Sample	le ID: MW-2 ID: JB89708-2				Date	Sampled:	03/11/15
Matrix:	AQ - Ground Water				Date	Received:	03/11/15
Method:	SW846 8260C		D 17	. 7	Perce	ent Solids:	n/a
Project:	Elton Crossing, 899	Elton Avenue	, Bronx, N	Y			
VOA TCL I	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	2.0	0.22	ug/l		
79-20-9	Methyl Acetate	ND	5.0	1.4	ug/l		
108-87-2	Methylcyclohexane	ND	5.0	0.22	ug/l		
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.19	ug/l		
108-10-1	4-Methyl-2-pentanone(MIB	K) ND	5.0	1.2	ug/l		
75-09-2	Methylene chloride	ND	2.0	0.89	ug/l		
100-42-5	Styrene	ND	5.0	0.19	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.39	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.35	ug/l		
108-88-3	Toluene	0.48	1.0	0.22	ug/l	J	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	0.27	ug/l		
120-82-1	1,2,4-Trichlorobenzene	ND -	5.0	0.22	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.32	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.36	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.25	ug/l		
75-69-4	Trichlorofluoromethane	ND	5.0	0.47	ug/l		
75-01-4	Vinyl chloride	ND	1.0	0.16	ug/l		
	m,p-Xylene	ND	1.0	0.35	ug/l		
95-47-6	o-Xylene	ND	1.0	0.20	ug/l		
1330-20-7	Xylene (total)	ND	1.0	0.20	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7	Dibromofluoromethane	91%		76-1	120%		
17060-07-0	1,2-Dichloroethane-D4	85%		73-1	22%		
2037-26-5	Toluene-D8	91%		84-1	l 19 %		
460-00-4	4-Bromofluorobenzene	86%		78-1	17%		

Report of Analysis

Page 2 of 2

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

JB69708

Raw Data: L270717.D

Accutest Laboratories

Report of Analysis

Page 1 of 2

٦

Client Sample Lab Sample Matrix: Method: Project:	ple ID: e ID:	MW-3 JB8970 AQ - G SW846 Elton C	8-3 round Water 8260C rossing, 899	Elton Avenue	e, Bronx	, NY	Date Date Per c	e Sampled: (e Received: (ent Solids: 1	03/11/15 03/11/15 1/a
Run #1 Run #2	File ID L27071	.7.D	DF 1	Analyzed 03/18/15	By VC	Prep D n/a	Date	Prep Batch n/a	Analytical Batch VL7340
Run #1 Run #2	Purge 5.0 ml	Volume							
VOA TCL	List								
CAS No.	Comp	ound		Result	RL	MDL	Units	Q	
67-64-1	Aceto	ne		32.5	10	2.7	ug/l	J+	
71-43-2	Benze	ne		ND	1.0	0.21	ug/l		
74-97-5	Bromo	ochlorom	ethane	ND	5.0	0.49	ug/l		
75-27-4	Bromo	odichloro	methane	ND	1.0	0.19	ug/l		
75-25-2	Bromo	oform		ND	4.0	0.31	ug/l		
74-83-9	Bromo	omethane		ND	2.0	0.39	ug/l	2	
78-93-3	2-Buta	none (M	EK)	-ND	10	2.3	ug/1 🧗		
75-15-0	Carbo	n disulfic	le	ND	2.0	0.17	ug/l		
56-23-5	Carbo	n tetrach	loride	ND	1.0	0.22	ug/l		
108-90-7	Chlore	obenzene		ND	1.0	0.19	ug/l		
75-00-3	Chlore	oethane		ND	1.0	0.65	ug/l		
67-66-3	Chlore	oform		9.5	1.0	0.20	ug/l		
74-87-3	Chlore	omethane	1	ND	1.0	0.24	ug/l		
110-82-7	Cyclo	hexane		ND	5.0	0.23	ug/l		
96-12-8	1,2-Di	ibromo-3	-chloropropa	ne ND	10	1.2	ug/l		
124-48-1	Dibro	mochloro	methane	ND	1.0	0.22	ug/l		
106-93-4	1,2-Di	lbromoet	hane	ND	2.0	0.21	ug/l		
95-50-1	1,2-Di	ichlorobe	nzene	ND	1.0	0.16	ug/l		
541-73-1	1,3-D i	lchlorobe	nzene	ND	1.0	0.22	ug/l		
106-46-7	1,4-Di	ichlorobe	nzene	ND	1.0	0.24	ug/l		
75-71-8	Dichlo	orodifluo	romethane	ND	5.0	0.31	ug/l		
75-34-3	1,1-Di	ichloroet	hane	ND	1.0	0.35	ug/l		
107-06-2	1,2-Di	ichloroet	nane	ND	1.0	0.30	ug/l		
75-35-4	1,1-Di	chloroet	hene	ND	1.0	0.50	ug/l		
156-59-2	cis-1,2	2-Dichlor	oethene	ND	1.0	0.33	ug/l		
156-60-5	trans-1	l,2-Dichl	oroethene	ND	1.0	0.51	ug/l		
78-87-5	1,2-Di	lchloropr	opane	ND	1.0	0.34	ug/l		
10061-01-5	cis-1,3	8-Dichlor	opropene	ND	1.0	0.18	ug/l		
10061-02-6	trans-1	l,3-Dichl	oropropene	ND	1.0	0.32	ug/l		
100-41-4	Ethylb	enzene		ND	1.0	0.31	ug/l		
76-13-1	Freon	113		ND	5.0	0.50	ug/l		
591-78-6	2-Hex	anone		ND	5.0	2.3	ug/l		

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

for yours

JB89708 31 of 1744

Client Samp Lab Sample Matrix: Method: Project:	ple ID: e ID:	MW-3 JB89708-3 AQ - Ground Water SW846 8260C Elton Crossing, 899 El	Date Date Perc	Sampled: Received: ent Solids:	03/11/15 03/11/15 n/a			
VOA TCL	List							
CAS No.	Comp	ound	Result	RL	MDL	Units	Q	
98-82-8	Isopro	pylbenzene	ND	2.0	0.22	ug/l		
79-20-9	Methy	1 Acetate	ND	5.0	1.4	ug/l		
108-87-2	Methy	lcyclohexane	ND	5.0	0.22	ug/l		
1634-04-4	Methy	I Tert Butyl Ether	ND	1.0	0.19	ug/l		
108-10-1	4-Met	hyl-2-pentanone(MIBK)	ND	5.0	1.2	ug/l		
75-09-2	Methy	lene chloride	ND	2.0	0.89	ug/l		
100-42-5	Styren	e	ND	5.0	0.19	ug/l		
79-34-5	1,1,2,	2-Tetrachloroethane	ND	1.0	0.39	ug/l		
127-18-4	Tetrac	hloroethene	ND	1.0	0.35	ug/l		
108-88-3	Toluer	ne	0.56	1.0	0.22	ug/l	J	
87-61-6	1,2,3-	Trichlorobenzene	ND	5.0	0.27	ug/l		
120-82-1	1.2.4-	Trichlorobenzene	ND	5.0	0.22	ug/l		
71-55-6	1.1.1-	Trichloroethane	ND	1.0	0.32	ug/l		
79-00-5	1.1.2-	Trichloroethane	ND	1.0	0.36	ug/l		
79-01-6	Trichl	oroethene	ND	1.0	0.25	ug/l		
75-69-4	Trichl	orofluoromethane	ND	5.0	0.47	ug/l		
75-01-4	Vinvl	chloride	ND	1.0	0.16	ug/l		
	m.p-X	vlene	ND	1.0	0.35	ug/l		
95-47-6	o-Xvle	ene	ND	1.0	0.20	ug/l		
1330-20-7	Xylen	e (total)	ND	1.0	0.20	ug/l		
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lin	nits		
1868-53-7	Dibro	nofluoromethane	90%		76-2	120%		
17060-07-0	1,2-Di	chloroethane-D4	85%		73-2	122%		
2037-26-5	Toluer	1e-D8	91%		84-3	119%		
460-00-4	4-Bron	nofluorobenzene	86%		78-3	117%		

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 2

32 of 1744 ACCUTEST. JB89708

Raw Data: L270718.D

Accutest Laboratories

		Repor	t of A	nalysis			Page 1 of 2
Client Sam Lab Sample Matrix: Method: Project:	ple ID: MW-X (MU e ID: JB89708-4 AQ - Ground Water SW846 8260C Elton Crossing, 899	ノーン) Elton Avenue	e, Bronx,	NY	Date Date Perce	Sampled: 03 Received: 03 ent Solids: n/a	/11/15 /11/15 1
Run #1 Run #2	File ID DF L270718.D 1	Analyzed 03/18/15	By VC	Prep D n/a	ate	Prep Batch n/a	Analytical Batch VL7340
Run #1 Run #2	Purge Volume 5.0 ml						
VOA TCL	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1 71-43-2 74-97-5 75-27-4 75-25-2 74-83-9 78-93-3 75-15-0 56-23-5 108-90-7 75-00-3 67-66-3 74-87-3 110-82-7 96-12-8 124-48-1 106-93-4 95-50-1 541-73-1 106-46-7	Acetone Benzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chlorobenzene Chloroothane Chloroothane Chloromethane Cyclohexane 1,2-Dibromo-3-chloropropa Dibromochloromethane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	16.7 ND ND ND ND ND ND ND ND ND ND ND ND ND	$ \begin{array}{c} 10\\ 1.0\\ 5.0\\ 1.0\\ 4.0\\ 2.0\\ 10\\ 2.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 5.0\\ 10\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.$	$\begin{array}{c} 2.7\\ 0.21\\ 0.49\\ 0.19\\ 0.31\\ 0.39\\ 2.3\\ 0.17\\ 0.22\\ 0.19\\ 0.65\\ 0.20\\ 0.24\\ 0.23\\ 1.2\\ 0.22\\ 0.21\\ 0.16\\ 0.22\\ 0.24\\ \end{array}$	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	C	
100-46-7 75-71-8 75-34-3 107-06-2 75-35-4 156-59-2 156-60-5 78-87-5 10061-01-5 10061-02-6 100-41-4 76-13-1 591-78-6	Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene Freon 113 2-Hexanone	ND ND ND ND ND ND ND ND ND ND ND	$\begin{array}{c} 1.0\\ 5.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1$	0.24 0.31 0.35 0.30 0.50 0.33 0.51 0.34 0.34 0.32 0.31 0.50 2.3	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l		

MDL = Method Detection Limit ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Lot 40 of 1744

Client Samp Lab Sample Matrix: Method: Project:	ble ID: MW-X DID: JB89708-4 AQ - Grou SW846 826 Elton Cross	イールン・ nd Water 60C sing, 899 Ele	2) ton Avenu	1e,	Bronx, N	JY	Date Date Perce	Sampled: Received: ent Solids:	03/11/15 03/11/15 n/a	
VOA TCL	List									
CAS No.	Compound		Result		RL	MDL	Units	Q		
98-82-8	Isopropylbenzene		ND		2.0	0.22	ug/l			
79-20-9	Methyl Acetate		ND		5.0	1.4	ug/l			
108-87-2	Methylcyclohexan	e	ND		5.0	0.22	ug/l			
1634-04-4	Methyl Tert Butyl	Ether	ND		1.0	0.19	ug/l			
108-10-1	4-Methyl-2-pentan	one(MIBK)	ND		5.0	1.2	ug/l			
75-09-2	Methylene chloride	e	ND		2.0	0.89	ug/l			
100-42-5	Stvrene		ND		5.0	0.19	ug/l			
79-34-5	1.1.2.2-Tetrachlor	oethane	ND		1.0	0.39	ug/l			
127-18-4	Tetrachloroethene		ND		1.0	0.35	ug/l			
108-88-3	Toluene		0.43		1.0	0.22	ug/l	J		
87-61-6	1,2,3-Trichlorober	nzene	ND		5.0	0.27	ug/l			
120-82-1	1,2,4-Trichlorober	nzene	ND		5.0	0.22	ug/l			
71-55-6	1,1,1-Trichloroeth	ane	ND		1.0	0.32	ug/l			
79-00-5	1,1,2-Trichloroeth	ane	ND		1.0	0.36	ug/l			
79-01-6	Trichloroethene		ND		1.0	0.25	ug/l			
75-69-4	Trichlorofluorome	thane	ND		5.0	0.47	ug/l			
75-01-4	Vinyl chloride		ND		1.0	0.16	ug/l			
	m,p-Xylene		ND		1.0	0.35	ug/l			
95-47-6	o-Xylene		ND		1.0	0.20	ug/l			
1330-20-7	Xylene (total)		ND		1.0	0.20	ug/l			
CAS No.	Surrogate Recove	ries	Run# 1		Run# 2	Lim	its			
1868-53-7	Dibromofluoromet	thane	90%			76-1	20%			
17060-07-0	1,2-Dichloroethan	e-D4	85%			73-1	.22%			
2037-26-5	Toluene-D8		91%			84-1	19%			
460-00-4	4-Bromofluoroben	zene	86%			78-1	17%			

Report of Analysis

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

for 1413115

41 of 1744 ACCUTEST. JB89708

Page 2 of 2

Raw Data: L270688.D

Accutest Laboratories

Report of Analysis

Client Sample ID: TB20150311 JB89708-5 Date Sampled: 03/11/15 Lab Sample ID: 03/11/15 Date Received: Matrix: AQ - Trip Blank Water Percent Solids: n/a Method: SW846 8260C Project: Elton Crossing, 899 Elton Avenue, Bronx, NY Prep Date Prep Batch **Analytical Batch** File ID DF Analyzed By VL7339 n/a Run #1 L270688.D 1 03/17/15 VC n/a Run #2 Purge Volume 5.0 ml Run #1 Run #2 VOA TCL List RL MDL Units Q Result CAS No. Compound ND 10 2.7 ug/l 67-64-1 Acetone 1.0 0.21 ug/l ND 71-43-2 Benzene ND 5.0 0.49 ug/l 74-97-5 Bromochloromethane ND 1.0 0.19 ug/l 75-27-4 Bromodichloromethane ND 4.0 0.31 ug/l Bromoform 75-25-2 ND 2.0 0.39 ug/l 74-83-9 Bromomethane 2.3 ug/l ND 10 78-93-3 2-Butanone (MEK) 2.0 0.17 ug/l Carbon disulfide ND 75-15-0 1.0 0.22 ug/l ND Carbon tetrachloride 56-23-5 0.19 ug/l ND 1.0 108-90-7 Chlorobenzene ND 1.0 0.65 ug/l 75-00-3 Chloroethane 0.20 ug/l ND 1.0 Chloroform 67-66-3 0.24 ug/l ND 1.0 74-87-3 Chloromethane 0.23 ug/l ND 5.0 110-82-7 Cyclohexane 10 1.2 ug/l 1,2-Dibromo-3-chloropropane ND 96-12**-**8 1.0 0.22 ug/l ND 124-48-1 Dibromochloromethane ND 2.0 0.21 ug/l 106-93-4 1.2-Dibromoethane ND 1.0 0.16 ug/l 1,2-Dichlorobenzene 95-50-1 ND 1.0 0.22 ug/l 1,3-Dichlorobenzene 541-73-1 ND 1.0 0.24 ug/l 106-46-7 1,4-Dichlorobenzene Dichlorodifluoromethane ND 5.0 0.31 ug/l 75-71-8 0.35 ug/l 1,1-Dichloroethane ND 1.0 75-34-3 0.30 ug/l ND 1.0 1,2-Dichloroethane 107-06-2 0.50 ug/l 1.1-Dichloroethene ND 1.0 75-35-4 1.0 0.33 ug/l cis-1,2-Dichloroethene ND 156-59-2 1.0 0.51 ug/l ND 156-60-5 trans-1,2-Dichloroethene 0.34 ug/l ND 1.0 78-87-5 1,2-Dichloropropane

ND = Not detected MDL = Method Detection Limit

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

ND

ND

ND

ND

ND

1.0

1.0

1.0

5.0

5.0

0.18

0.32

0.31

0.50

2.3

RL = Reporting Limit

10061-01-5

10061-02-6

100-41-4

591-78-6

76-13-1

E = Indicates value exceeds calibration range

Ethylbenzene

Freon 113

2-Hexanone

J = Indicates an estimated value

ug/l

ug/l

ug/l

ug/l

ug/l

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

413715

49 of 1744 ACCUTEST. JB89708

Page 1 of 2

Г

Client Samp Lab Sample Matrix: Method: Project:	ole ID: e ID:	TB20150311 JB89708-5 AQ - Trip Blank Water SW846 8260C Elton Crossing, 899 El	ton Avenue	, Bronx, N	Y	Date Date Perce	Sampled: Received: ent Solids:
VOA TCL	List						
CAS No.	Comp	ound	Result	RL	MDL	Units	Q
98-82-8	Isopro	pylbenzene	ND	2.0	0.22	ug/l	
79-20-9	Methy	Î Acetate	ND	5.0	1.4	ug/l	
108-87-2	Methy	lcyclohexane	ND	5.0	0.22	ug/l	
1634-04-4	Methy	I Tert Butyl Ether	ND	1.0	0.19	ug/l	
108-10-1	4-Met	hyl-2-pentanone(MIBK)	ND	5.0	1.2	ug/l	
75-09-2	Methy	lene chloride	ND	2.0	0.89	ug/l	
100-42-5	Styren	е	ND	5.0	0.19	ug/l	
79-34-5	1.1.2.2-Tetrachloroethane		ND	1.0	0.39	ug/l	
127-18-4	Tetrac	hloroethene	ND	1.0	0.35	ug/l	
108-88-3	Toluer	ie	ND	1.0	0.22	ug/l	
87-61-6	1,2,3-	Frichlorobenzene	ND	5.0	0.27	ug/l	
120-82-1	1,2,4-	Frichlorobenzene	ND	5.0	0.22	ug/l	
71-55-6	1,1,1-	Trichloroethane	ND	1.0	0.32	ug/l	
79-00-5	1,1,2-	Trichloroethane	ND	1.0	0.36	ug/l	
79-01-6	Trichl	proethene	ND	1.0	0.25	ug/l	
75-69-4	Trichl	orofluoromethane	ND	5.0	0.47	ug/l	
75-01-4	Vinyl	chloride	ND	1.0	0.16	ug/l	
	m,p-X	ylene	ND	1.0	0.35	ug/l	
95-47-6	o-Xyle	ene	ND	1.0	0.20	ug/l	
1330-20-7	Xylene	e (total)	ND	1.0	0.20	ug/l	
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibror	nofluoromethane	89%		76-1	20%	
17060-07-0	1,2-Di	chloroethane-D4	84%		73-1	22%	
2037-26-5	Toluer	ie-D8	89%		84-1	19%	
460-00-4	4-Bror	nofluorobenzene	87%	78-117%			

Report of Analysis

RL = Reporting Limit

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

03/11/15 03/11/15 n/a

E = Indicates value exceeds calibration range

Raw Data: L270679.D

Accutest Laboratories

Report of Analysis

Client Sample ID: FB20150311 Date Sampled: 03/11/15 Lab Sample ID: IB89708-6 Date Received: 03/11/15 Matrix: AQ - Field Blank Water Percent Solids: n/a Method: SW846 8260C Elton Crossing, 899 Elton Avenue, Bronx, NY Project: Prep Batch Analytical Batch File ID DF Analyzed By Prep Date VL7339 Run #1 L270679.D 1 03/17/15 VC n/a n/a Run #2 Purge Volume Run #1 5.0 ml Run #2 VOA TCL List RL MDL Units Q CAS No. Compound Result 67-64-1 NĐ 10 2.7 ug/l Acetone ND 1.0 0.21 ug/l 71-43-2 Benzene Bromochloromethane ND 5.0 0.49 ug/l 74-97-5 75-27-4 Bromodichloromethane 0.48 1.0 0.19 ug/l J 75-25-2 Bromoform ND 4.0 0.31 ug/l 74-83-9 ND 2.0 0.39 ug/l **Bromomethane** -ND 2.3 ug/l 78-93-3 2-Butanone (MEK) 10 ND 2.0 0.17 ug/l 75-15-0 Carbon disulfide ND 1.0 0.22 56-23-5 Carbon tetrachloride ug/l Chlorobenzene ND 1.0 0.19 ug/l 108-90-7 75-00-3 Chloroethane ND 1.0 0.65 ug/l 0.20 67-66-3 Chloroform 1.6 1.0 ug/l 0.24 Chloromethane ND 1.0 ug/l 74-87-3 ND 5.0 0.23 ug/l 110-82-7 Cyclohexane 1,2-Dibromo-3-chloropropane ND 10 1.2 ug/l 96-12-8 1.0 0.22 Dibromochloromethane ND ug/l 124-48-1 ND 2.0 0.21 ug/l 106-93-4 1,2-Dibromoethane 1.2-Dichlorobenzene ND 1.0 0.16 ug/l 95-50-1 541-73-1 1,3-Dichlorobenzene ND 1.0 0.22 ug/l ug/l 1.4-Dichlorobenzene ND 1.0 0.24

75-71-8 Dichlorodifluoromethane ND 5.0 0.31 ug/l 75-34-3 1.1-Dichloroethane ND 1.0 0.35 ug/l 0.30 1,2-Dichloroethane ND 1.0 ug/l 107-06-2 0.50 75-35-4 1,1-Dichloroethene ND 1.0 ug/l ND 0.33 ug/l 156-59-2 cis-1,2-Dichloroethene 1.0 trans-1,2-Dichloroethene ND 1.0 0.51 ug/l 156-60-5 1,2-Dichloropropane ND 1.0 0.34 ug/l 78-87-5 cis-1,3-Dichloropropene ND 1.0 0.18 ug/l 10061-01-5 trans-1,3-Dichloropropene ND 1.0 0.32 ug/l 10061-02-6 1.0 0.31 100-41-4 Ethylbenzene ND ug/l 0.50 76-13-1 Freon 113 ND 5.0 ug/l ND 2.3 591-78-6 2-Hexanone 5.0 ug/l

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

106-46-7

E = Indicates value exceeds calibration range

I = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

4.10

51 of 1744 ACCUTEST JB89708

Client Samp Lab Sample Matrix: Method: Project:	ole ID: E ID:	FB20150311 JB89708-6 AQ - Field Blank Wate SW846 8260C Elton Crossing, 899 El	r ton Avenue	, Bronx, N	Date Date Perce	03/11/15 03/11/15 n/a		
VOA TCL I	List							
CAS No.	Comp	ound	Result	RL	MDL	Units	Q	
98-82-8	Isopro	pylbenzene	ND	2.0	0.22	ug/l		
79-20-9	Methy	1 Acetate	ND	5.0	1.4	ug/l		
108-87-2	Methy	lcyclohexane	ND	5.0	0.22	ug/l		
1634-04-4	Methy	1 Tert Butyl Ether	ND	1.0	0.19	ug/l		
108-10-1	4-Met	hyl-2-pentanone(MIBK)	ND	5.0	1.2	ug/l		
75-09-2	Methy	lene chloride	ND	2.0	0.89	ug/l		
100-42-5	Styren	e	ND	5.0	0.19	ug/l		
79-34-5	1,1,2,	2-Tetrachloroethane	ND	1.0	0.39	ug/l		
127-18-4	Tetrac	hloroethene	ND	1.0	0.35	ug/l		
108-88-3	Tolue	ne	ND	1.0	0.22	ug/l		
87-61-6	1,2,3-	Trichlorobenzene	ND	5.0	0.27	ug/l		
120-82-1	1,2,4-	Trichlorobenzene	ND	5.0	0.22	ug/l		
71-55-6	1,1,1-	Trichloroethane	ND	1.0	0.32	ug/l		
79-00-5	1,1,2-	Trichloroethane	ND	1.0	0.36	ug/l		
79-01-6	Trichl	oroethene	ND	1.0	0.25	ug/l		
75-69-4	Trichl	orofluoromethane	ND	5.0	0.47	ug/l		
75-01-4	Vinyl	chloride	ND	1.0	0.16	ug/l		
	m,p-X	lylene	ND	1.0	0.35	ug/l		
95-47-6	o-Xyl	ene	ND	1.0	0.20	ug/l		
1330-20-7	Xylen	e (total)	ND	1.0	0.20	ug/l		
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7	Dibro	mofluoromethane	89%		76- 1	120%		
17060-07-0	1,2-D	ichloroethane-D4	82%		73-1	122%		
2037-26-5	Tolue	ne-D8	92%		84-1	l 19 %		
460-00-4	4-Bro	nofluorobenzene	90%		78 -1	117%		

Report of Analysis

4.10

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

52 of 1744 ACCUTEST, JB69708

		Repo	rt of A	nalysis			Page 1 of 3
Client Sam Lab Samp Matrix: Method: Project:	aple ID: MW-3 (16.5-17) le ID: JB88569-1 SO - Soil SW846 8270D SV Elton Crossing, 89	W846 3546 9 Elton Avenu	ie, Bronx,	NY	Date Date Per c	Sampled: Received: ent Solids:	02/18/15 02/20/15 89.8
Run #1 Run #2	File ID DF 3E69851.D 1	Analyzed 02/27/15	By SD	Prep D 02/26/1	ate 15	Prep Batch OP82013	Analytical Batch E3E3014
Run #1 Run #2	Initial Weight Final Vo. 30.1 g 1.0 ml	lume					
ABN TCL	List (SOM0 2.0)						
CAS No.	Compound	Result	RL	MDL	Units	Q	
95-57-8	2-Chlorophenol	ND	74	37	ug/kg		
59-50-7	4-Chloro-3-methyl phenol	ND	180	37	ug/kg		
120-83-2	2,4-Dichlorophenol	ND	180	60	ug/kg		
105-67-9	2,4-Dimethylphenol	ND	180	62	ug/kg		
51-28-5	2,4-Dinitrophenol	ND	740	45	ug/kg		
534-52-1	4,6-Dinitro-o-cresol	ND	740	45	ug/kg		
95-48-7	2-Methylphenol	ND	74	42	ug/kg		
	3&4-Methylphenol	ND	74	47	ug/kg		
88-75-5	2-Nitrophenol	ND	180	39	ug/kg		
100-02-7	4-Nitrophenol	ND	370	63	ug/kg		
87-86-5	Pentachlorophenol	ND	370	63	ug/kg		
108-95-2	Phenol	ND	74	39	ug/kg		
58-90-2	2,3,4,6-Tetrachlorophenol	I ND	180	38	ug/kg		
95-95-4	2,4,5-Trichlorophenol	ND	180	43	ug/kg		
88-06-2	2,4,6-Trichlorophenol	ND	180	35	ug/kg		
83-32-9	Acenaphthene	671	37	11	ug/kg		
208-96-8	Acenaphthylene	ND	37	12	ug/kg		
98-86-2	Acetophenone	ND	180	6.5	ug/kg		
120-12-7	Anthracene	ND	37	13	ug/kg		
1912-24-9	Atrazine	ND	74	7.3	ug/kg		
56-55-3	Benzo(a)anthracene	138	37	12	ug/kg		
50-32-8	Benzo(a)pyrene	86.5	37	11	ug/kg		
205-99-2	Benzo(b)fluoranthene	89.1	37	12	ug/kg		
191-24-2	Benzo(g,h,i)perylene	45.0	37	14	ug/kg		
207-08-9	Benzo(k)fluoranthene	21.0	37	14	ug/kg	J	
101-55-3	4-Bromophenyl phenyl eth	ier ND	74	13	ug/kg		
85-68-7	Butyl benzyl phthalate	ND	74	21	ug/kg		
92-52-4	1,1'-Biphenyl	ND	74	4.3	ug/kg		
100-52-7	Benzaldehyde	ND	180	8.5	ug/kg		
91-58-7	2-Chloronaphthalene	ND	74	11	ug/kg		
106-47-8	4-Chloroaniline	ND	180	12	ug/kg		
86-74-8	Carbazole	ND	74	17	ug/kg		

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

4

Report of Analysis

Client Sample ID:	MW-3 (16.5-17)	Data Gammiada	02/19/15	
Lab Sample ID:	JB88268-1	Date Sampled:	02/18/15	
Matrix:	SO - Soil	Date Received:	02/20/15	
Method:	SW846 8270D SW846 3546	Percent Solids:	89.8	
Project:	Elton Crossing, 899 Elton Avenue, Bronx, NY			
ABN TCL List (SO	PM0 2.0)			

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	74	12	ug/kg	
218-01-9	Chrysene	526	37	13	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	74	15	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	74	11	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	74	11	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	74	11	ug/kg	
121-14-2	2.4-Dinitrotoluene	ND	37	16	ug/kg	
606-20-2	2.6-Dinitrotoluene	ND	37	14	ug/kg	
91-94-1	3.3'-Dichlorobenzidine	ND	74	9.4	ug/kg	
123-91-1	1 4-Dioxane	ND	37	24	11g/kg	
53-70-3	Dibenzo(a h)anthracene	ND	37	13	11g/kg	
132-64-9	Dibenzofuran	ND	74	11	11g/kg	
84-74-2	Di-n-hutyl nhthalate	ND	74	8.2	110/kg	
117-84-0	Di-n-octyl phthalate	ND	74	18	110/ko	
84-66-2	Diethyl nhthalate	ND	74	13	110/kg	
131_11_3	Dimothyl phthalate	ND	74	13	ug/kg	
117_81_7	bis(2-Ethylhoxyl)phthalate	ND	74	33	ug/kg	
206-44-0	Fluoranthana	241	37	16	ug/kg	
200-44-0 86.73.7	Fluorono	ND	37	12	ug/kg	
110 7/ 1	Havachlarabanzana	ND	7/	12	ug/kg	
110-74-1 97 69 3	Havachlorobutadiana	ND	37	10	ug/kg	
77 47 4	Hovachlorocyclopontadiona	ND	370	38	ug/kg	
67 72 1	Hovachloroothano	ND	180	10	ug/kg	
102 20 5	Indono(1, 2, 2, cd) pyrono	24.2	37	12	ug/kg	т
193-39-J 79 50 1	Indeno(1,2,3-cd)pyrene	34.3 ND	7/	10	ug/kg	J
10-33-1	2 Mathylpanhthalana	ND	74	21	ug/kg	
91-37-0	2 Nitroanilino	ND	19	16	ug/kg	
00-14-4	2 Nitroonilino	ND	100	10	ug/kg	
99-09-2 100 01 6	A Nitroanilino	ND	100	13	ug/kg	
100-01-0	4-INITOdillille Narhthalana	ND	27	14	ug/kg	
91-20-3	Naphinaiene	ND	71	10	ug/kg	
98-90-3	Nilrobenzene	ND	74	11	ug/kg	
021-04-7	N-INITOSO-01-n-propylamine	ND	14	9.0	ug/kg	
86-30-6	N-INitrosodipnenylamine	ND	180	17	ug/kg	
85-01-8	Phenanthrene	ND	31	1/	ug/kg	
129-00-0	Pyrene	848	3/	14	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	180	11	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	70%		22-12	21%	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 3

		Repo	rt of A	nalysis			Page 1 of 3
Client Sam Lab Sampl Matrix: Method: Project:	ple ID: SS-1 e ID: JB88569-2 SO - Soil SW846 8270D SW8 Elton Crossing, 899	846 3546 Elton Avenu	ie, Bronx,	NY	Date Date Per c	e Sampled: Received: ent Solids:	02/19/15 02/20/15 79.8
Run #1 Run #2	File IDDF3P41070.D1	Analyzed 02/25/15	By SW	Prep D 02/24/1	Pate 15	Prep Batch OP81964	Analytical Batch E3P1790
Run #1 Run #2	Initial Weight Final Volu 30.2 g 1.0 ml	me					
ABN TCL	List (SOM0 2.0)						
CAS No.	Compound	Result	RL	MDL	Units	Q	
95-57-8	2-Chlorophenol	ND	83	41	ug/kg		
120-83-2	2 4-Dichlorophenol	ND	210	67	ug/kg		
105-67-9	2 4-Dimethylphenol	ND	210	70	ug/kg	R	
51-28-5	2 4-Dinitrophenol	ND	830	51	ug/kg	UT	
534-52-1	4.6-Dinitro-o-cresol	ND	830	51	ug/kg		
95-48-7	2-Methylphenol	ND	83	47	ug/kg		
00 10 1	3&4-Methylphenol	ND	83	53	ug/kg		
88-75-5	2-Nitrophenol	ND	210	44	ug/kg		
100-02-7	4-Nitrophenol	ND	410	70	ug/kg		
87-86-5	Pentachlorophenol	ND	410	71	ug/kg		
108-95-2	Phenol	ND	83	44	ug/kg		
58-90-2	2,3,4,6-Tetrachlorophenol	ND	210	43	ug/kg		
95-95-4	2,4,5-Trichlorophenol	ND	210	48	ug/kg		
88-06-2	2,4,6-Trichlorophenol	ND	210	39	ug/kg		
83-32-9	Acenaphthene	ND	41	12	ug/kg		
208-96-8	Acenaphthylene	ND	41	13	ug/kg		
98-86-2	Acetophenone	117	210	7.3	ug/kg	J	
120-12-7	Anthracene	ND	41	15	ug/kg		
1912-24-9	Atrazine	ND	83	8.2	ug/kg		
56-55-3	Benzo(a)anthracene	35.9	41	14	ug/kg	J	
50-32-8	Benzo(a)pyrene	32.4	41	13	ug/kg	J	
205-99-2	Benzo(b)fluoranthene	68.3	41	14	ug/kg		
191-24-2	Benzo(g,h,i)perylene	63.2	41	15	ug/kg	-	
207-08-9	Benzo(k)fluoranthene	20.3	41	16	ug/kg	J	
101-55-3	4-Bromophenyl phenyl ethe	r ND	83	15	ug/kg		
85-68-7	Butyl benzyl phthalate	87.6	83	24	ug/Kg		
92-52-4	1,1'-Biphenyl	ND	83	4.8	ug/kg		
100-52-7	Benzaldehyde	ND	210	9.5	ug/kg		
91-58-7	2-Chloronaphthalene	ND	83	13	ug/Kg	R	
106-47-8	4-Chloroaniline	ND	210	15	ug/kg		
86-74-8	Carbazole	ND	83	19	ug/kg		

MDL = Method Detection Limit ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

for y 11/15

19 of 1502 ACCUTEST JB88569

		Report	of Ana	alysi	S	Page 2 o
Client Sam Lab Sample Matrix: Method: Project:	Client Sample ID:SS-1Lab Sample ID:JB88569-2Matrix:SO - SoilMethod:SW846 8270DProject:Elton Crossing, 899		Bronx, N	Y	Date Sampled: 02/19/15 Date Received: 02/20/15 Per cent Solids: 79.8	
ABN TCL	List (SOM0 2.0)					
CAS No.	Compound	Result	RL	MDI	Units Q	
105-60-2	Caprolactam	ND	83	13	ug/kg	
218-01-9	Chrysene	59.5	41	14	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	83	17	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	83	12	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	83	12	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	83	12	ug/kg	
121-14-2	2.4-Dinitrotoluene	ND	41	18	ug/kg	
606-20-2	2.6-Dinitrotoluene	ND	41	16	ug/kg	
91-94-1	3.3'-Dichlorobenzidine	ND	83	11	ug/kg K	
123-91-1	1.4-Dioxane	ND	41	27	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	16.2	41	14	ug/kg J	
132-64-9	Dibenzofuran	ND	83	12	ug/kg	
84-74-2	Di-n-butyl phthalate	152	83	9.2	ug/kg	
117-84-0	Di-n-octvl phthalate	ND	83	20	ug/kg	
84-66-2	Diethyl phthalate	ND	83	14	ug/kg	
131-11-3	Dimethyl phthalate	ND	83	15	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	2520	83	37	ug/kg	
206-44-0	Fluoranthene	57.6	41	18	ug/kg	
86-73-7	Fluorene	ND	41	14	ug/kg	
118-74-1	Hexachlorobenzene	ND	83	14	ug/kg	
87-68-3	Hexachlorobutadiene	ND	41	12	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	410	42	ug/kg	
67-72-1	Hexachloroethane	ND	210	12	ug/kg	
193-39-5	Indeno(1.2.3-cd)pyrene	43.6	41	14	ug/kg	
78-59-1	Isophorone	ND	83	11	ug/kg	
91-57-6	2-Methylnaphthalene	ND	83	23	ug/kg	
88-74-4	2-Nitroaniline	ND	210	18	ug/kg	
99-09-2	3-Nitroaniline	ND	210	17	ug/kg VT	
100-01-6	4-Nitroaniline	ND	210	16	ug/kg	
91-20-3	Naphthalene	ND	41	11	ug/kg	
98-95-3	Nitrobenzene	ND	83	12	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	83	10	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	210	25	ug/kg	
85-01-8	Phenanthrene	61.3	41	19	ug/kg	
129-00-0	Pyrene	68.7	41	16	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	210	13	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	L	imits	
367-12-4	2-Fluorophenol	50%		2	2-121%	

MDL = Method Detection Limit ND = Not detected

E = Indicates value exceeds calibration range

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

80/4/11/5

of 3

Raw Data: 3E69948.D

Accutest Laboratories

Report of Analysis

Client Sample ID: SSB-1 (0-2) Lab Sample ID: JB88935-1 Date Sampled: 02/25/15 Date Received: 02/26/15 Matrix: SO - Soil Method: SW846 8270D SW846 3546 Percent Solids: 70.6 Elton Crossing, 899 Elton Avenue, Bronx, NY Project: Analytical Batch File ID DF Analyzed By Prep Date Prep Batch OP82080 E3E3018 Run #1 a 3E69948.D 1 03/03/15 SW 03/02/15 Run #2 Initial Weight **Final Volume** Run #1 30.0 g * 5.0 ml Run #2 ABN TCL List (SOM0 2.0) CAS No. Compound Result RL MDL Units Q 95-57-8 2-Chlorophenol 240 ug/kg ND 470 4-Chloro-3-methyl phenol ug/kg 59-50-7 ND 1200 240 120-83-2 2,4-Dichlorophenol ND 1200 380 ug/kg

105-67-9	2,4-Dimethylphenol	ND	1200	400	ug/kg
51-28-5	2,4-Dinitrophenol	-ND	4700	290	ug/kg 👗
534-52-1	4,6-Dinitro-o-cresol	NÐ	4700	290	ug/kg 🥂
95-48-7	2-Methylphenol	ND	470	270	ug/kg
	3&4-Methylphenol	ND	470	300	ug/kg
88-75-5	2-Nitrophenol	-ND	1200	250	ug/kg 👗
100-02-7	4-Nitrophenol	ND	2400	400	ug/kg 🏌
87-86-5	Pentachlorophenol	ND	2400	400	ug/kg
108-95-2	Phenol	ND	470	250	ug/kg
58-90-2	2,3,4,6-Tetrachlorophenol	ND	1200	240	ug/kg
95-95-4	2,4,5-Trichlorophenol	ND	1200	270	ug/kg
88-06-2	2,4,6-Trichlorophenol	ND	1200	220	ug/kg
83-32-9	Acenaphthene	ND	240	68	ug/kg
208-96-8	Acenaphthylene	119	240	76	ug/kg 🥂 丁
98-86-2	Acetophenone	163	1200	42	ug/kg 🕂 丁
120-12-7	Anthracene	127	240	83	ug/kg 才 丁
1912-24-9	Atrazine	ND	470	47	ug/kg
56-55-3	Benzo(a)anthracene	155	240	77	ug/kg 🕂 J
50-32-8	Benzo(a)pyrene	127	240	72	ug/kg 🕂 🕂
205-99-2	Benzo(b)fluoranthene	186	240	79	ug/kg 🕂 🕂
191-24-2	Benzo(g,h,i)perylene	539	240	88	ug/kg 🎵 🎽
207-08-9	Benzo(k)fluoranthene	ND	240	89	ug/kg
101-55-3	4-Bromophenyl phenyl ether	ND	470	86	ug/kg
85-68-7	Butyl benzyl phthalate	1580	470	140	ug/kg 🖵
92-52-4	1,1'-Biphenyl	ND	470	27	ug/kg
100-52-7	Benzaldehyde	ND	1200	54	ug/kg
91-58-7	2-Chloronaphthalene	ND	470	73	ug/kg
106-47-8	4-Chloroaniline	ND	1200	76	ug/kg
86-74-8	Carbazole	ND	470	110	ug/kg

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 3

Client Samp Lab Sample Matrix: Method: Project:	ble ID: SSB-1 (0-2) ID: JB88935-1 SO - Soil SW846 8270D SW8 Elton Crossing, 899 E	46 3546 Elton Avenue	, Bronx, N	Y	Date Sampled: Date Received: Percent Solids:	02/25/15 02/26/15 70.6
ABN TCL L	List (SOM0 2.0)					
CAS No.	Compound	Result	RL	MDL	Units Q	
105-60-2	Caprolactam	ND	470	74	ug/kg	
218-01-9	Chrysene	167	240	80	ug/kg JJ	
111-91-1	bis(2-Chloroethoxy)methane	ND	470	95	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	470	71	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	470	70	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	470	71	ug/kg	
121-14-2	2,4-Dinitrotoluene	_NĐ	240	100	ug/kg 🔨	
606-20-2	2,6-Dinitrotoluene	ND	240	90	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	-ND	470	60	ug/kg R	
123-91-1	1,4-Dioxane	ND	240	150	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	240	81	ug/kg	
132-64-9	Dibenzofuran	ND	470	70	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	470	52	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	470	110	ug/kg	
84-66-2	Diethyl phthalate	ND	470	81	ug/kg	
131-11-3	Dimethyl phthalate	ND	470	83	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	284	470	210	ug/kg JJ	
206-44-0	Fluoranthene	124	240	100	ug/kg + T	
86-73-7	Fluorene	ND	240	77	ug/kg	
118-74-1	Hexachlorobenzene	ND	470	77	ug/kg	
87-68-3	Hexachlorobutadiene	ND	240	66	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	2400	240	ug/kg 🖊	
67-72-1	Hexachloroethane	ND	1200	66	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	420	240	82	ug/kg 🎵	
78-59-1	Isophorone	ND	470	64	ug/kg	
91-57-6	2-Methylnaphthalene	276	470	130	ug/kg 🕂 🔳	
88-74-4	2-Nitroaniline	ND	1200	100	ug/kg	
99-09-2	3-Nitroaniline	ND	1200	94	ug/kg 🔀	
100-01-6	4-Nitroaniline	ND-	1200	92	ug/kg 🥂	
91-20-3	Naphthalene	164	240	64	ug/kg J J	
98-95-3	Nitrobenzene	ND	470	68	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	470	58	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	1200	140	ug/kg	
85-01-8	Phenanthrene	114	240	110	ug/kg JJ	
129-00-0	Pyrene	164	240	91	ug/kg 🤺 🕂	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	1200	72	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	

Report of Analysis

ND = Not detected MDL = Method Detection Limit

58%

RL = Reporting Limit

367-12-4

J = Indicates an estimated value

22-121%

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

2-Fluorophenol

Page 2 of 3

Report of Analysis

Page 1 of 3

4.2

Client Sam Lab Sampl Matrix: Method: Project:	aple ID: SSB-1 (5-7) le ID: JB88935-2 SO - Soil SW846 8270D SW Elton Crossing, 899	846 3546 Elton Avenu	ie, Bronx,	NY	Date Date Perc	Sampled: 02 Received: 02 ent Solids: 78	/25/15 /26/15 .5
	File ID DF	Analyzed	By	Prep D	ate	Prep Batch	Analytical Batch
Run #1	M112350.D 1	03/06/15	ALS	03/04/1	5	OP82124	EM4646
Run #2 ^a	3E69949.D 1	03/03/15	SW	03/02/1	5	OP82080	E3E3018
	Initial Weight Final Volu	me					
Run #1	31.3 g 1.0 ml						
Run #2	30.0 g 1.0 ml						
ADN ICL	List (SOIVIO 2.0)						
CAS No.	Compound	Result	RL	MDL	Units	Q	
95-57-8	2-Chlorophenol	ND	81	41	ug/kg		
59-50-7	4-Chloro-3-methyl phenol	ND	200	41	ug/kg		
120-83-2	2,4-Dichlorophenol	ND	200	66	ug/kg		
105-67-9	2,4-Dimethylphenol	ND	200	68	ug/kg		
51-28-5	2,4-Dinitrophenol	ND	810	50	ug/kg		
534-52-1	4,6-Dinitro-o-cresol	ND	810	50	ug/kg		
95-48-7	2-Methylphenol	ND	81	46	ug/kg		
	3&4-Methylphenol	ND	81	52	ug/kg		
88-75-5	2-Nitrophenol	ND	200	43	ug/kg		
100-02-7	4-Nitrophenol	ND	410	69	ug/kg		
87-86-5	Pentachlorophenol	ND	410	70	ug/kg		
108-95-2	Phenol	ND	81	43	ug/kg		
58-90-2	2.3.4.6-Tetrachlorophenol	ND	200	42	ug/kg		
95-95-4	2.4.5-Trichlorophenol	ND	200	47	ug/kg		
88-06-2	2.4.6-Trichlorophenol	ND	200	38	ug/kg		
83-32-9	Acenaphthene	ND	41	12	ug/kg		
208-96-8	Acenaphthylene	288	41	13	ug/kg	<i>T</i> –	
98-86-2	Acetophenone	ND	200	7.2	ug/kg	Ŭ	
120-12-7	Anthracene	387	41	14	ug/kg	\mathcal{J}^{-}	
1912-24-9	Atrazine	ND	81	8.0	ug/kg	-	
56-55-3	Benzo(a)anthracene	342	41	13	ug/kg	J-	
50-32-8	Benzo(a)pyrene	340	41	12	ug/kø	J -	
205-99-2	Benzo(b)fluoranthene	491	41	14	ug/kg	.T -	
191-24-2	Benzo(g, h, i) pervlene	2100	41	15	10/kg	.T-	
207-08-9	Benzo(k)fluoranthene	155	41	15	110/kg	<u></u>	
101-55-3	4-Bromophenyl nhenyl ether	ND	81	15	ug/kg	<u> </u>	
85-68-7	Butyl benzyl nhthalate	1390	81	24	11g/kg	J-	
92-52-4	1.1'-Binhenvl	158	81	4.7	110/kg	.T-	
100-52-7	Benzaldehvde	ND	200	9.4	110/kg	\checkmark	
91-58-7	2-Chloronaphthalene	ND	81	13	110/kg		
106-47-8	4-Chloroaniline	ND	200	13	110/ko		
86-74-8	Carbazole	91 1	81	19	110/ko	J -	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

fol 4/3/15

Client Sam	nle ID: SSB-1 (5-7)						
Lab Sample	e ID: IB88935-2				Date	Sampled:	02/25/15
Matrix:	SO - Soil				Date	Received	02/26/15
Method:	SW846 8270D SW84	6 3546			Perc	ent Solids:	78.5
Project:	Elton Crossing, 899 E	Iton Avenue.	Bronx, N	Y			
ABN TCL I	List (SOM0 2.0)						
CAS No.	Compound	Result	RL	MDL	Units	Q	
105-60-2	Caprolactam	ND	81	13	ug/kg		
218-01-9	Chrysene	354	41	14	ug/kg	5 -	
111-91-1	bis(2-Chloroethoxy)methane	ND	81	16	ug/kg		
111-44-4	bis(2-Chloroethyl)ether	ND	81	12	ug/kg		
108-60-1	bis(2-Chloroisopropyl)ether	ND	81	12	ug/kg		
7005-72-3	4-Chlorophenyl phenyl ether	ND	81	12	ug/kg		
121-14-2	2,4-Dinitrotoluene	ND	41	18	ug/kg		
606-20-2	2.6-Dinitrotoluene	ND	41	16	ug/kg		
91-94-1	3.3'-Dichlorobenzidine	ND	81	10	ug/kg		
123-91-1	1.4-Dioxane	ND	41	26	ug/kg		
53-70-3	Dihenzo(a h)anthracene	406	41	14	11g/kg	J -	
132-64-9	Dibenzofuran	103	81	12	110/kg	T -	
84-74-2	Di-n-butyl nhthalate	87 2	81	9.0	110/kg	Ť-	
117-84-0	Di-n-octyl phthalate	ND	81	20	110/kg	9	
84-66-2	Diethyl phthalate	ND	Q1	14	ug/kg		
131-11 3	Dimothyl phthalate	ND	Q1	14	ug/kg		
117 91 7	bis(2 Ethylhovyl)phthalato	318	Q1	36	ug/kg	T -	
206 44 0	Eluoranthono	206	41	10	ug/kg	T	
200-44-0	Fluorana	390 ND	41	10	ug/kg	5-	
00-73-7	Havachlarabangana	ND	41 01	10	ug/kg		
110-74-1		ND	01	13	ug/kg		
81-08-3	Hexachioroduladiene	ND	41	11	ug/kg		
//-4/-4	Hexachlorocyclopentadiene	ND	410	42	ug/kg		
67-72-1	Hexachloroethane	ND	200	11	ug/kg	T-	
193-39-5	Indeno(1,2,3-cd)pyrene	1230	41	14	ug/kg	J	
78-59-1	Isophorone	ND	81	11	ug/kg		
91-57-6	2-Methylnaphthalene	1280	81	23	ug/kg	J -	
88-74-4	2-Nitroaniline	ND	200	18	ug/kg		
99-09-2	3-Nitroaniline	ND	200	16	ug/kg		
100-01-6	4-Nitroaniline	ND	200	16	ug/kg		
91-20-3	Naphthalene	752	41	11	ug/kg	J -	
98-95-3	Nitrobenzene	ND	81	12	ug/kg		
621-64-7	N-Nitroso-di-n-propylamine	ND	81	9.9	ug/kg		
86-30-6	N-Nitrosodiphenylamine	44.8	200	24	ug/kg	-J J -	-
85-01-8	Phenanthrene	404	41	19	ug/kg	J -	
129-00-0	Pyrene	283	41	16	ug/kg	<u>Ĵ</u> -	
95-94-3	1,2,4,5-Tetrachlorobenzene	49.2	200	12	ug/kg	JJ	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
367-12-4	2-Fluorophenol	37%	10% ^b	22-1	21%		

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

JON-113/15

36 of 2362 ACCUTEST, JB88935

Page 2 of 3

Report of Analysis

Page 1 of 3

Client Sam Lab Sampl Matrix: Method: Project:	ple ID: SSB-1 (7-9 e ID: JB88935-3 SO - Soil SW846 82' Elton Cros) 70D SW sing, 899	846 3546 Elton Avenue	e, E	Bronx, N	Y	Date Date Perc	Sampled: 02 Received: 02 ent Solids: 78	2/25/15 2/26/15 3.0
Run #1	File ID E 3E69950.D 1	ØF	Analyzed 03/03/15	B	y W	Prep D 03/02/1	ate 5	Prep Batch OP82080	Analytical Batch E3E3018
Run #2 ª	3E69962.D 2		03/03/15	SI	P	03/02/1	5	OP82080	E3E3019
	Initial Weight F	inal Volu	ime	_					
Run #1 Run #2	30.0 g 1 30.0 g 1	.0 ml .0 ml							
ABN TCL	List (SOM0 2.0)								
CAS No.	Compound		Result		RL	MDL	Units	Q	
95-57-8	2-Chlorophenol		ND		85	43	ug/kg		
59-50-7	4-Chloro-3-methyl	phenol	ND		210	43	ug/kg		
120-83-2	2,4-Dichloropheno	ol	ND		210	69	ug/kg		
105-67-9	2,4-Dimethylphen	ol	ND		210	72	ug/kg		
51-28-5	2,4-Dinitrophenol		ND		850	52	ug/kg		
534-52-1	4,6-Dinitro-o-cres	ol	ND		850	52	ug/kg		
95-48-7	2-Methylphenol		ND		85	49	ug/kg		
	3&4-Methylpheno	1	243		85	54	ug/kg 🕤	J	
88-75-5	2-Nitrophenol		ND		210	45	ug/kg		
100-02-7	4-Nitrophenol		ND		430	72	ug/kg		
87-86-5	Pentachlorophenol		ND		430	73	ug/kg		
108-95-2	Phenol		ND		85	45	ug/kg		
58-90-2	2,3,4,6-Tetrachlor	ophenol	ND		210	44	ug/kg		
95-95-4	2,4,5-Trichloroph	enol	ND		210	50	ug/kg		
88-06-2	2,4,6-Trichloroph	enol	ND		210	40	ug/kg		
83-32-9	Acenaphthene		ND		43	12	ug/kg		
208-96-8	Acenaphthylene		130		43	14	ug/kg	ナ	
98-86-2	Acetophenone		ND		210	7.5	ug/kg		
120-12-7	Anthracene		200		43	15	ug/kg	J	
1912-24-9	Atrazine		ND		85	8.4	ug/kg		
56-55-3	Benzo(a)anthracen	e	41.1		43	14	ug/kg	+ +	
50-32-8	Benzo(a)pyrene		ND		43	13	ug/kg		
205-99-2	Benzo(b)fluoranthe	ene	ND		43	14	ug/kg		
191-24-2	Benzo(g.h.i)pervle	ne	529		43	16	ug/kg	J	
207-08-9	Benzo(k)fluoranthe	ene	ND		43	16	ug/kg		
101-55-3	4-Bromophenvl ph	enyl ethe	r ND		85	16	ug/kg		
85-68-7	Butyl benzyl phtha	late	284		85	25	ug/kg	ナ	
92-52-4	1,1'-Biphenvl		ND		85	5.0	ug/kg		
100-52-7	Benzaldehvde		ND		210	9.8	ug/kg		
91-58-7	2-Chloronaphthale	ne	ND		85	13	ug/kg		
106-47-8	4-Chloroaniline		ND		210	14	ug/kg		
86-74-8	Carbazole		20.6		85	20	ug/kg	JT	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

10/414/15

Client Sam Lab Sampl Matrix: Method: Project:	ple ID: SSB-1 (7-9) e ID: JB88935-3 SO - Soil SW846 8270D SW84 Elton Crossing, 899 E	l6 3546 lton Avenue,	Bronx, N	Y	Date Date Perc	Sampled: Received: ent Solids:	02/25/15 02/26/15 78.0	
ABN TCL	List (SOM0 2.0)							
CAS No.	Compound	Result	RL	MDL	Units	Q		
105-60-2	Caprolactam	ND	85	13	ug/kg			
218-01-9	Chrysene	26.7	43	14	ug/kg	子丁		
111-91-1	bis(2-Chloroethoxy)methane	ND	85	17	ug/kg			
111-44-4	bis(2-Chloroethyl)ether	ND	85	13	ug/kg			
108-60-1	bis(2-Chloroisopropyl)ether	ND	85	13	ug/kg			
7005-72-3	4-Chlorophenyl phenyl ether	ND	85	13	ug/kg			
121-14-2	2,4-Dinitrotoluene	ND	43	19	ug/kg			
606-20-2	2,6-Dinitrotoluene	ND	43	16	ug/kg			
91-94-1	3,3'-Dichlorobenzidine	ND	85	11	ug/kg			
123-91-1	1,4-Dioxane	ND	43	28	ug/kg			
53-70-3	Dibenzo(a,h)anthracene	98.5	43	15	ug/kg	5		
132-64-9	Dibenzofuran	ND	85	13	ug/kg			
84-74-2	Di-n-butyl phthalate	ND	85	9.5	ug/kg			
117-84-0	Di-n-octyl phthalate	ND	85	21	ug/kg			
84-66-2	Diethyl phthalate	ND	85	15	ug/kg			
131-11-3	Dimethyl phthalate	ND	85	15	ug/kg			
117-81-7	bis(2-Ethylhexyl)nhthalate	81.3	85	38	uø/kø	+T		
206-44-0	Fluoranthene	22.0	43	19	uø/kø	+		
86-73-7	Fluorene	ND	43	14	11ø/kø	J _		
118-74-1	Hexachlorobenzene	ND	85	14	110/kg			
87-68-3	Hexachlorobutadiene	ND	43	12	110/kg			
77_47_4	Heyachlorocyclopentadiene	ND	430	44	110/kg			
67.72.1	Heyachloroethane	ND	210	12	110/kg			
102 20 5	Indono(1, 2, 3, cd) pyrono	55 3	13	15	ug/kg			
78 50 1	Isophoropa	ND	85	11	ug/kg	J		
01 57 6	2 Mothylnaphthalono	68.2	85	24	ug/kg	L		
91-37-0 99 7 <i>1 1</i>	2 Nitroanilino	ND	210	10	ug/kg	5 2		
00-74-4	2 Nitroaniline	ND	210	17	ug/kg			
33-03-2 100 01 c	A Nitroanilino	ND	210	17	ug/kg			
01 20 2	4-iviii Odilillile Naphthalana	ND	42	17				
00 05 0	Nitrobonzono	ND	45	12				
30-33-3 601 64 7	N Nitropo di companya stati	ND	00	14				
06 20 0	N Nitrosodink	ND	80 210	10	ug/kg			
00-30-0	IN-INITrosociprenylamine	22.0	42	20 10	ug/kg	L		
80-00-0	rnenantnrene Demons	22.9 ND	43	19	ug/kg	-1° J		
129-00-0	ryrene	ND	45	10	ug/kg			
95-94-3	1,2,4,5-1 etrachlorobenzene	ND	210	13	ug/kg			
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its			
367-12-4	2-Fluorophenol	61%	59%	22-1	121%			

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Pry MIT

Page 2 of 3

Raw Data: 3E69938.D

Accutest Laboratories

Report of Analysis

Client Sample ID: SSB-2 (0-2) Lab Sample ID: JB88935-4 Date Sampled: 02/25/15 Matrix: SO - Soil Date Received: 02/26/15 Method: SW846 8270D SW846 3546 Percent Solids: 91.5 Project: Elton Crossing, 899 Elton Avenue, Bronx, NY File ID DF Analyzed Prep Date Prep Batch **Analytical Batch** By Run #1 3E69938.D 1 03/02/15 SW 03/02/15 OP82080 E3E3018 Run #2 Initial Weight **Final Volume** Run #1 1.0 ml 30.0 g Run #2 ABN TCL List (SOM0 2.0) CAS No. Compound Result RL MDL Units Q 95-57-8 2-Chlorophenol ND 73 36 ug/kg 4-Chloro-3-methyl phenol ND 180 36 ug/kg 59-50-7 120-83-2 2,4-Dichlorophenol ND 180 59 ug/kg 105-67-9 2,4-Dimethylphenol ND 180 61 ug/kg ND 730 44 ug/kg 51-28-5 2,4-Dinitrophenol 730 ug/kg 534-52-1 4,6-Dinitro-o-cresol ND 44 73 42 ug/kg 95-48-7 2-Methylphenol ND 3&4-Methylphenol 73 46 ug/kg ND 39 88-75-5 180 ug/kg 2-Nitrophenol ND 100-02-7 4-Nitrophenol ND 360 62 ug/kg 87-86-5 Pentachlorophenol ND 360 62 ug/kg ND 73 38 ug/kg 108-95-2 Phenol 38 ug/kg 58-90-2 2.3.4.6-Tetrachlorophenol ND 180 ND 180 42 ug/kg 95-95-4 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol ND 180 34 ug/kg 88-06-2 ug/kg 83-32-9 Acenaphthene ND 36 11 Acenaphthylene 208-96-8 ND 36 12 ug/kg 98-86-2 Acetophenone ND 180 6.4 ug/kg ND 13 ug/kg Anthracene 36 120-12-7 ug/kg 1912-24-9 Atrazine ND 73 7.2 12 ug/kg 56-55-3 Benzo(a)anthracene ND 36 36 11 ug/kg 50-32-8 Benzo(a)pyrene ND 12 205-99-2 Benzo(b)fluoranthene ND 36 ug/kg 36 14 ug/kg 191-24-2 Benzo(g,h,i)perylene ND ND 36 14 ug/kg 207-08-9 Benzo(k)fluoranthene 101-55-3 4-Bromophenyl phenyl ether ND 73 13 ug/kg 85-68-7 Butyl benzyl phthalate ND 73 21 ug/kg 92-52-4 1,1'-Biphenyl ND 73 4.2 ug/kg Benzaldehyde ND 180 8.4 ug/kg 100-52-7 91-58-7 2-Chloronaphthalene ND 73 11 ug/kg 106-47-8 4-Chloroaniline ND 180 12 ug/kg

ND = Not detected MDL = Method Detection Limit

ND

73

17

RL = Reporting Limit

86-74-8

E = Indicates value exceeds calibration range

Carbazole

J = Indicates an estimated value

ug/kg

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

53 of 2362 ACCUTEST, JB88935

Client Sample ID: Lab Sample ID: Matrix: Method: Project:	SSB-2 (0-2) JB88935-4 SO - Soil SW846 8270D SW846 3546 Elton Crossing, 899 Elton Avenue, Bronx, NY	Date Sampled: Date Received: Percent Solids:	02/25/15 02/26/15 91.5	
ABN TCL List (SO	M0 2.0)			

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	73	11	ug/kg	
218-01-9	Chrysene	ND	36	12	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	73	15	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	73	11	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	73	11	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	73	11	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	36	16	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	36	14	ug/kg	
91-94-1	3.3'-Dichlorobenzidine	ND	73	9.3	ug/kg	
123-91-1	1,4-Dioxane	ND	36	24	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	36	12	ug/kg	
132-64-9	Dibenzofuran	ND	73	11	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	73	8.1	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	73	18	ug/kg	
84-66-2	Diethyl phthalate	ND	73	12	ug/kg	
131-11-3	Dimethyl phthalate	ND	73	13	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	73	32	ug/kg	
206-44-0	Fluoranthene	ND	36	16	ug/kg	
86-73-7	Fluorene	ND	36	12	ug/kg	
118-74-1	Hexachlorobenzene	ND	73	12	ug/kg	
87-68-3	Hexachlorobutadiene	ND	36	10	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	360	37	ug/kg	
67-72-1	Hexachloroethane	ND	180	10	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	36	13	ug/kg	
78-59-1	Isophorone	ND	73	9.8	ug/kg	
91-57-6	2-Methylnaphthalene	ND	73	20	ug/kg	
88-74-4	2-Nitroaniline	ND	180	16	ug/kg	
99-09-2	3-Nitroaniline	ND	180	15	ug/kg	
100-01-6	4-Nitroaniline	ND	180	14	ug/kg	
91-20-3	Naphthalene	ND	36	9.9	ug/kg	
98-95-3	Nitrobenzene	ND	73	11	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	73	8.9	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	180	22	ug/kg	
85-01-8	Phenanthrene	ND	36	17	ug/kg	
129-00-0	Pyrene	ND	36	14	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	180	11	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	s	
367-12-4	2-Fluorophenol	79%		22-12	1%	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

В =

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Raw Data: 3E69939.D

Accutest Laboratories

Report of Analysis

Client Sample ID: SSB-2 (5-7) Date Sampled: 02/25/15 Lab Sample ID: JB88935-5 Date Received: 02/26/15 Matrix: SO - Soil Method: SW846 8270D SW846 3546 Percent Solids: 92.0 Project: Elton Crossing, 899 Elton Avenue, Bronx, NY Analytical Batch File ID DF Analyzed By Prep Date Prep Batch OP82080 E3E3018 3E69939.D 03/02/15 SW 03/02/15 Run #1 1 Run #2 Initial Weight **Final Volume** 1.0 ml Run #1 32.6 g Run #2 ABN TCL List (SOM0 2.0) Result RL MDL Units Q CAS No. Compound

95-57-8	2-Chlorophenol	ND	67	33	11g/kg
59-50-7	4-Chloro-3-methyl nhenol	ND	170	33	ug/kg
120-83-2	2 4-Dichloronhenol	ND	170	54	11g/kg
105-67-9	2 4-Dimethylphenol	ND	170	56	ug/kg
51-28-5	2 4-Dinitronhenol	ND	670	41	ug/kg
534-52-1	4 6-Dinitro-o-cresol	ND	670	41	ug/kg
95-48-7	2-Methylphenol	ND	67	38	ug/kg
00 10 1	3&4-Methylphenol	ND	67	42	ug/kg
88-75-5	2-Nitrophenol	ND	170	35	ug/kg
100-02-7	4-Nitrophenol	ND	330	56	ug/kg
87-86-5	Pentachlorophenol	ND	330	57	ug/kg
108-95-2	Phenol	ND	67	35	ug/kg
58-90-2	2.3.4.6-Tetrachlorophenol	ND	170	34	ug/kg
95-95-4	2.4.5-Trichlorophenol	ND	170	39	ug/kg
88-06-2	2,4,6-Trichlorophenol	ND	170	31	ug/kg
83-32-9	Acenaphthene	ND	33	9.7	ug/kg
208-96-8	Acenaphthylene	ND	33	11	ug/kg
98-86-2	Acetophenone	ND	170	5.9	ug/kg
120-12-7	Anthracene	ND	33	12	ug/kg
1912-24-9	Atrazine	ND	67	6.6	ug/kg
56-55-3	Benzo(a)anthracene	ND	33	11	ug/kg
50-32-8	Benzo(a)pyrene	ND	33	10	ug/kg
205-99-2	Benzo(b)fluoranthene	ND	33	11	ug/kg
191-24-2	Benzo(g,h,i)perylene	ND	33	12	ug/kg
207-08-9	Benzo(k)fluoranthene	ND	33	13	ug/kg
101-55-3	4-Bromophenyl phenyl ether	ND	67	12	ug/kg
85-68-7	Butyl benzyl phthalate	ND	67	19	ug/kg
92-52-4	1,1'-Biphenyl	ND	67	3.9	ug/kg
100-52-7	Benzaldehyde	ND	170	7.7	ug/kg
91-58-7	2-Chloronaphthalene	ND	67	10	ug/kg
106-47-8	4-Chloroaniline	ND	170	11	ug/kg
86-74-8	Carbazole	ND	67	15	ug/kg

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

61 of 2362

Client Sample ID: Lab Sample ID: Matrix: Method: Project:	: SSB-2 (5-7) JB88935-5 SO - Soil SW846 8270D SW8 Elton Crossing, 899	846 3546 Elton Avenue	, Bronx,	NY	Date Date Perce	Sampled: Received: ent Solids:	02/25/15 02/26/15 92.0	
ABN TCL List (S	OM0 2.0)							
CAS No. Com	pound	Result	RL	MDL	Units	Q		
105-60-2 Canr	olactam	ND	67	11	11ø/kø			

105-60-2	Caprolactam	ND	67	11	ug/kg
218-01-9	Chrysene	ND	33	11	ug/kg
111-91-1	bis(2-Chloroethoxy)methane	ND	67	13	ug/kg
111-44-4	bis(2-Chloroethyl)ether	ND	67	10	ug/kg
108-60-1	bis(2-Chloroisopropyl)ether	ND	67	9.9	ug/kg
7005-72-3	4-Chlorophenyl phenyl ether	ND	67	10	ug/kg
121-14-2	2,4-Dinitrotoluene	ND	33	15	ug/kg
606-20-2	2,6-Dinitrotoluene	ND	33	13	ug/kg
91-94-1	3,3'-Dichlorobenzidine	ND	67	8.5	ug/kg
123-91-1	1,4-Dioxane	ND	33	22	ug/kg
53-70-3	Dibenzo(a,h)anthracene	ND	33	11	ug/kg
132-64-9	Dibenzofuran	ND	67	9.9	ug/kg
84-74-2	Di-n-butyl phthalate	ND	67	7.4	ug/kg
117-84-0	Di-n-octyl phthalate	ND	67	16	ug/kg
84-66-2	Diethyl phthalate	ND	67	11	ug/kg
131-11-3	Dimethyl phthalate	ND	67	12	ug/kg
117-81-7	bis(2-Ethylhexyl)phthalate	141	67	29	ug/kg
206-44-0	Fluoranthene	ND	33	15	ug/kg
86-73-7	Fluorene	ND	33	11	ug/kg
118-74-1	Hexachlorobenzene	ND	67	11	ug/kg
87-68-3	Hexachlorobutadiene	ND	33	9.3	ug/kg
77-47-4	Hexachlorocyclopentadiene	ND	330	34	ug/kg
67-72-1	Hexachloroethane	ND	170	9.3	ug/kg
193-39-5	Indeno(1,2,3-cd)pyrene	ND	33	12	ug/kg
78-59-1	Isophorone	ND	67	9.0	ug/kg
91-57-6	2-Methylnaphthalene	ND	67	19	ug/kg
88-74-4	2-Nitroaniline	ND	170	15	ug/kg
99-09-2	3-Nitroaniline	ND	170	13	ug/kg
100-01-6	4-Nitroaniline	ND	170	13	ug/kg
91-20-3	Naphthalene	ND	33	9.1	ug/kg
98-95-3	Nitrobenzene	ND	67	9.6	ug/kg
621-64-7	N-Nitroso-di-n-propylamine	ND	67	8.1	ug/kg
86-30-6	N-Nitrosodiphenylamine	ND	170	20	ug/kg
85-01-8	Phenanthrene	ND	33	15	ug/kg
129-00-0	Pyrene	ND	33	13	ug/kg
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	170	10	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2		Limits
367-12-4	2-Fluorophenol	74%			22-121%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

JB88935 62 of 2362

Raw Data: 3E69940.D

Accutest Laboratories

Report of Analysis

Client Sam Lab Sampl Matrix: Method: Project:	ple ID: SSB-2 (8-10) e ID: JB88935-6 SO - Soil SW846 8270D S Elton Crossing, 89	W846 3546 99 Elton Avenue	, Bronx,	NY	Date Date Perc	e Sampled: Received: ent Solids:	02/25/15 02/26/15 91.5
Run #1 Run #2	File ID DF 3E69940.D 1	Analyzed 03/02/15	By SW	Prep D 03/02/1	ate 5	Prep Batcl OP82080	h Analytical Batch E3E3018
Run #1 Run #2	Initial Weight Final Vo 30.3 g 1.0 ml	lume					
ABN TCL	List (SOM0 2.0)						
CAS No.	Compound	Result	RL	MDL	Units	Q	
95-57-8	2-Chlorophenol	ND	72	36	ug/kg		
59-50-7	4-Chloro-3-methyl phenol	ND	180	30	ug/kg		
120-83-2	2,4-Dicniorophenol	ND	180	00 61	ug/kg		
103-67-9	2,4-Dimetnyiphenoi	ND	180	01	ug/kg		
51-28-5	2,4-Dinitrophenol	ND	720	44	ug/kg		
534-52-1	4,6-Dinitro-o-cresol	ND	720	44	ug/kg		
95-48-7	2-Methylphenol	ND	12	41	ug/kg		
00 75 5	3&4-Methylphenol	ND	12	40	ug/kg		
88-75-5	2-Nitrophenol	ND	180	38	ug/kg		
100-02-7	4-Nitrophenol	ND	360	61	ug/kg		
87-86-5	Pentachlorophenol	ND	360	62	ug/kg		
108-95-2	Phenol	ND	72	38	ug/kg		
58-90-2	2,3,4,6-Tetrachloropheno	I ND	180	37	ug/kg		
95-95-4	2,4,5-Trichlorophenol	ND	180	42	ug/kg		
88-06-2	2,4,6-Trichlorophenol	ND	180	34	ug/kg		
83-32-9	Acenaphthene	ND	36	10	ug/kg		
208-96-8	Acenaphthylene	ND	36	12	ug/kg		
98-86-2	Acetophenone	ND	180	6.3	ug/kg		
120-12-7	Anthracene	ND	36	13	ug/kg		
1912-24-9	Atrazine	ND	72	7.1	ug/kg		
56-55-3	Benzo(a)anthracene	16.2	36	12	ug/kg	J	
50-32-8	Benzo(a)pyrene	20.7	36	11	ug/kg	J	
205-99-2	Benzo(b)fluoranthene	26.0	36	12	ug/kg	J	
191-24-2	Benzo(g,h,i)perylene	23.3	36	13	ug/kg	J	
207-08-9	Benzo(k)fluoranthene	ND	36	14	ug/kg		
101-55-3	4-Bromophenyl phenyl et	ner ND	72	13	ug/kg		
85-68-7	Butyl benzyl phthalate	ND	72	21	ug/kg		
92-52-4	1,1'-Biphenyl	ND	72	4.2	ug/kg		
100-52-7	Benzaldehyde	ND	180	8.3	ug/kg		
91-58-7	2-Chloronaphthalene	ND	72	11	ug/kg		
106-47-8	4-Chloroaniline	ND	180	12	ug/kg		
86-74-8	Carbazole	ND	72	17	ug/kg		

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 3

4.6 4

Client Samp Lab Sample Matrix: Method: Project:	ble ID: SSB-2 (8-10) PID: JB88935-6 SO - Soil SW846 8270D SW84 Elton Crossing, 899 El	6 3546 Iton Avenue, 2	Bronx, N	Y	Date Date Perce	Sampled: Received: ent Solids:	02/25/15 02/26/15 91.5
ABN TCL I	List (SOM0 2.0)						
CAS No.	Compound	Result	RL	MDL	Units	Q	
105 60 2	Caprolactam	ND	72	11	ua/ka		
219 01 0	Chrusene	25.7	36	12	ug/kg	T	
210-01-9	bis(2 Chloroothovy)mothono	AD.	70	15	ug/kg	J	
111-91-1	bis(2-Chloroethoxy)methane	ND	16	10	ug/kg		
111-44-4	bis(2-Chloroethyl)ether	ND	14	11	ug/kg		
108-60-1	bis(2-Chloroisopropyl)ether	ND	14	11	ug/kg		
1005-12-3	4-Chlorophenyl phenyl ether	ND	14	11	ug/kg		
121-14-2	2,4-Dinitrotoluene	ND	30	10	ug/kg		
606-20-2	2,6-Dinitrotoluene	ND	36	14	ug/kg		
91-94-1	3,3'-Dichlorobenzidine	ND	72	9.2	ug/kg		
123-91-1	1,4-Dioxane	ND	36	23	ug/kg		
53-70-3	Dibenzo(a,h)anthracene	ND	36	12	ug/kg		
132-64-9	Dibenzofuran	ND	72	11	ug/kg		
84-74-2	Di-n-butyl phthalate	ND	72	8.0	ug/kg		
117-84-0	Di-n-octyl phthalate	ND	72	18	ug/kg		
84-66-2	Diethyl phthalate	ND	72	12	ug/kg		
131-11-3	Dimethyl phthalate	ND	72	13	ug/kg		
117-81-7	bis(2-Ethylhexyl)phthalate	170	72	32	ug/kg		
206-44-0	Fluoranthene	23.4	36	16	ug/kg	J	
86-73-7	Fluorene	ND	36	12	ug/kg		
118-74-1	Hexachlorobenzene	ND	72	12	ug/kg		
87-68-3	Hexachlorobutadiene	ND	36	10	ug/kg		
77-47-4	Hexachlorocyclopentadiene	ND	360	37	ug/kg		
67-72-1	Hexachloroethane	ND	180	10	ug/kg		
193-39-5	Indeno(1,2,3-cd)pyrene	21.2	36	13	ug/kg	J	
78-59-1	Isophorone	ND	72	9.7	ug/kg		
91-57-6	2-Methylnaphthalene	ND	72	20	ug/kg		
88-74-4	2-Nitroaniline	ND	180	16	ug/kg		
99-09-2	3-Nitroaniline	ND -	180	14	ug/kg		
100-01-6	4-Nitroaniline	ND	180	14	ug/kg		
91-20-3	Naphthalene	ND	36	9.8	ug/kg		
98-95-3	Nitrobenzene	ND	72	10	ug/kg		
621-64-7	N-Nitroso-di-n-propylamine	ND	72	8.8	ug/kg		
86-30-6	N-Nitrosodinhenvlamine	ND	180	22	ug/kg		
85-01-8	Phenanthrene	18.6	36	16	ug/kg	J	
129-00-0	Pvrene	31.8	36	14	ug/kg	Ĭ	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	180	11	ug/kg	5	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lin	nits		
367-12-4	2-Fluorophenol	73%		22-	121%		

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

70 of 2362

Page 2 of 3

Raw Data: 3E69941.D

Accutest Laboratories

Report of Analysis							Page 1 of 3
Client Sam Lab Sampl Matrix: Method: Project:	ple ID: SSB-X SS e ID: JB88935-7 SO - Soil SW846 8270D SV Elton Crossing, 89	8 – 2 (0) V846 3546 9 Elton Avenu	- 2) e, Bronx, 2	NY	Date Date Perc	Sampled: 02 Received: 02 ent Solids: 90	/25/15 /26/15 .8
Run #1 Run #2	File ID DF 3E69941.D 1	Analyzed 03/02/15	By SW	Prep D 03/02/1	ate 5	Prep Batch OP82080	Analytical Batch E3E3018
Run #1 Run #2	Initial Weight Final Vol 30.3 g 1.0 ml	ume					
ABN TCL	List (SOM0 2.0)						
CAS No.	Compound	Result	RL	MDL	Units	Q	
95-57-8 59-50-7 120-83-2	2-Chlorophenol 4-Chloro-3-methyl phenol 2 4-Dichlorophenol	ND ND	73 180 180	36 36 59	ug/kg ug/kg ug/kg		
105-67-9 51-28-5 534-52-1	2,4-Dimethylphenol 2,4-Dinitrophenol 4,6-Dinitrophenol	ND ND ND	180 730 730	61 44 44	ug/kg ug/kg ug/kg		
95-48-7 88-75-5	2-Methylphenol 3&4-Methylphenol 2-Nitrophenol	ND ND	73 73 180	41 46 39	ug/kg		
100-02-7 87-86-5 108-95-2	4-Nitrophenol Pentachlorophenol Phenol	ND ND	360 360 73	61 62 38	ug/kg ug/kg		
58-90-2 95-95-4 88-06-2	2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	ND ND ND	180 180 180	37 42 34	ug/kg ug/kg ug/kg		
83-32-9 208-96-8 98-86-2	Acenaphthene Acenaphthylene Acetophenone	ND ND	36 36 180	11 12 6.4	ug/kg ug/kg		
120-12-7 1912-24-9	Anthracene Atrazine Banzo (a) anthracene	ND ND	36 73 36	13 7.2 12	ug/kg		
50-32-8 205-99-2	Benzo(a)antin acene Benzo(a)pyrene Benzo(b)fluoranthene	ND ND	36 36	11 12 14	ug/kg ug/kg		
191-24-2 207-08-9 101-55-3	Benzo(g,n,1)perylene Benzo(k)fluoranthene 4-Bromophenyl phenyl eth	ND ND er ND	36 73 72	14 14 13	ug/kg ug/kg ug/kg		
85-68-7 92-52-4 100-52-7	Butyl benzyl phthalate 1,1'-Biphenyl Benzaldehyde	ND ND ND	73 73 180	4.2 8.4	ug/kg ug/kg ug/kg		
91-58-7 106-47-8 86-74-8	2-Chloroaniline 4-Chloroaniline Carbazole	ND ND ND	180 73	12 17	ug/kg ug/kg ug/kg		

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 $N \,=\, Indicates \ presumptive \ evidence \ of \ a \ compound$

Report of Analysis

Client Sample ID: Lab Sample ID: Matrix:	SSB-X $SSB = 2 (0-2)$ JB88935-7 SO - Soil	Date Sampled: Date Received: Bergent Solids:	02/25/15 02/26/15	
Method: Project:	SW846 8270D SW846 3546 Elton Crossing, 899 Elton Avenue, Bronx, NY	Percent Solids:	90.8	

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	73	11	ug/kg	
218-01-9	Chrysene	ND	36	12	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	73	15	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	73	11	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	73	11	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	73	11	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	36	16	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	36	14	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	73	9.2	ug/kg	
123-91-1	1,4-Dioxane	ND	36	24	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	36	12	ug/kg	
132-64-9	Dibenzofuran	ND	73	11	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	73	8.1	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	73	18	ug/kg	
84-66-2	Diethyl phthalate	ND	73	12	ug/kg	
131-11-3	Dimethyl phthalate	ND	73	13	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	73	32	ug/kg	
206-44-0	Fluoranthene	ND	36	16	ug/kg	
86-73-7	Fluorene	ND	36	12	ug/kg	
118-74-1	Hexachlorobenzene	ND	73	12	ug/kg	
87-68-3	Hexachlorobutadiene	ND	36	10	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	360	37	ug/kg	
67-72-1	Hexachloroethane	ND	180	10	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	36	13	ug/kg	
78-59-1	Isophorone	ND	73	9.8	ug/kg	
91-57-6	2-Methylnaphthalene	ND	73	20	ug/kg	
88-74-4	2-Nitroaniline	ND	180	16	ug/kg	
99-09-2	3-Nitroaniline	ND	180	15	ug/kg	
100-01-6	4-Nitroaniline	ND	180	14	ug/kg	
91-20-3	Naphthalene	ND	36	9.9	ug/kg	
98-95-3	Nitrobenzene	ND	73	11	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	73	8.9	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	180	22	ug/kg	
85-01-8	Phenanthrene	ND	36	17	ug/kg	
129-00-0	Pyrene	ND	36	14	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	180	11	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	79 %		22-1	21%	
367-12-4	2-Fluorophenol	79%		22-1	21%	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Raw Data: 3E69942.D

Accutest Laboratories

Report of Analysis

4.8

Client Sam Lab Sampl Matrix: Method: Project:	ple ID: SSB-3 (0-2) e ID: JB88935-8 SO - Soil SW846 8270D SW8 Elton Crossing, 899 F	46 3546 Elton Avenue	e, Bronx, I	١Y	Date Date Perc	Sampled: 02 Received: 02 ent Solids: 88	/26/15 /26/15 .3
Run #1 Run #2	File ID DF 2 3E69942.D 1 0	Analyzed 03/02/15	By SW	Prep D 03/02/1	ate 5	Prep Batch OP82080	Analytical Batch E3E3018
Run #1 Run #2	Initial Weight Final Volum 30.0 g 1.0 ml	ne					
ABN TCL	List (SOM0 2.0)						
CAS No.	Compound	Result	RL	MDL	Units	Q	
95-57-8	2-Chlorophenol	ND	76	38	ug/kg		
59-50-7	4-Chloro-3-methyl phenol	ND	190	38	ug/kg		
120-83-2	2,4-Dichlorophenol	ND	190	61	ug/kg		
105-67-9	2,4-Dimethylphenol	ND	190	63	ug/kg		
51-28-5	2,4-Dinitrophenol	ND	760	46	ug/kg		
534-52-1	4,6-Dinitro-o-cresol	ND	760	46	ug/kg		
95-48-7	2-Methylphenol	ND	76	43	ug/kg		
	3&4-Methylphenol	ND	76	48	ug/kg		
88-75-5	2-Nitrophenol	ND	190	40	ug/kg		
100-02-7	4-Nitrophenol	ND	380	64	ug/kg		
87-86-5	Pentachlorophenol	ND	380	65	ug/kg		
108-95-2	Phenol	ND	76	40	ug/kg		
58-90-2	2,3,4,6-Tetrachlorophenol	ND	190	39	ug/kg		
95-95-4	2,4,5-Trichlorophenol	ND	190	44	ug/kg		
88-06-2	2,4,6-Trichlorophenol	ND	190	35	ug/kg		
83-32-9	Acenaphthene	ND	38	11	ug/kg		
208-96-8	Acenaphthylene	ND	38	12	ug/kg		
98-86-2	Acetophenone	ND	190	6.6	ug/kg		
120-12-7	Anthracene	ND	38	13	ug/kg		
1912-24-9	Atrazine	ND	76	7.4	ug/kg		
56-55-3	Benzo(a)anthracene	ND	38	12	ug/kg		
50-32-8	Benzo(a)pyrene	ND	38	12	ug/kg		
205-99-2	Benzo(b)fluoranthene	ND	38	13	ug/kg		
191-24-2	Benzo(g,h,i)perylene	ND	38	14	ug/kg		
207-08-9	Benzo(k)fluoranthene	ND	38	14	ug/kg		
101-55-3	4-Bromophenyl phenyl ether	ND	76	14	ug/kg		
85-68-7	Butyl benzyl phthalate	417	76	22	ug/kg		
92-52-4	1,1'-Biphenyl	ND	76	4.4	ug/kg		
100-52-7	Benzaldehyde	ND	190	8.7	ug/kg		
91-58-7	2-Chloronaphthalene	ND	76	12	ug/kg		
106-47-8	4-Chloroaniline	ND	190	12	ug/kg		
86-74-8	Carbazole	ND	76	17	ug/kg		

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

85 of 2362 ACCUTEST: JB88935

Client Sample ID:SSB-3 (0-2)Lab Sample ID:JB88935-8Matrix:SO - SoilMethod:SW846 8270DProject:Elton Crossing, 899 Elton		l6 3546 Iton Avenue,	3546 on Avenue, Bronx, NY			Sampled: Received: ent Solids:	02/26/15 02/26/15 88.3
ABN TCL	List (SOM0 2.0)						
CAS No.	Compound	Result	RL	MDL	Units	Q	
105-60-2	Caprolactam	ND	76	12	ug/kg		
218-01-9	Chrysene	ND	38	13	ug/kg		
111-91-1	bis(2-Chloroethoxy)methane	ND	76	15	ug/kg		
111-44-4	bis(2-Chloroethyl)ether	ND	76	11	ug/kg		
108-60-1	bis(2-Chloroisopropyl)ether	ND	76	11	ug/kg		
7005-72-3	4-Chlorophenyl phenyl ether	ND	76	11	ug/kg		
121-14-2	2,4-Dinitrotoluene	ND	38	16	ug/kg		
606-20-2	2,6-Dinitrotoluene	ND	38	14	ug/kg		
91-94-1	3,3'-Dichlorobenzidine	ND	76	9.6	ug/kg		
123-91-1	1,4-Dioxane	ND	38	25	ug/kg		
53-70-3	Dibenzo(a,h)anthracene	ND	38	13	ug/kg		
132-64-9	Dibenzofuran	ND	76	11	ug/kg		
84-74-2	Di-n-butyl phthalate	ND	76	8.4	ug/kg		
117-84-0	Di-n-octyl phthalate	ND	76	18	ug/kg		
84-66-2	Diethyl phthalate	ND	76	13	ug/kg		
131-11-3	Dimethyl phthalate	ND	76	13	ug/kg		
117-81-7	bis(2-Ethylhexyl)phthalate	ND	76	33	ug/kg		
206-44-0	Fluoranthene	ND	38	17	ug/kg		
86-73-7	Fluorene	ND	38	12	ug/kg		
118-74-1	Hexachlorobenzene	ND	76	12	ug/kg		
87-68-3	Hexachlorobutadiene	ND	38	10	ug/kg		
77-47-4	Hexachlorocyclopentadiene	ND	380	39	ug/kg		
67-72-1	Hexachloroethane	ND	190	10	ug/kg		
193-39-5	Indeno(1,2,3-cd)pyrene	ND	38	13	ug/kg		
78-59-1	Isophorone	ND	76	10	ug/kg		
91-57-6	2-Methylnaphthalene	ND	76	21	ug/kg		
88-74-4	2-Nitroaniline	ND	190	17	ug/kg		
99-09-2	3-Nitroaniline	ND	190	15	ug/kg		
100-01-6	4-Nitroaniline	ND	190	15	ug/kg		
91-20-3	Naphthalene	ND	38	10	ug/kg		
98-95-3	Nitrobenzene	ND	76	11	ug/kg		
621-64-7	N-Nitroso-di-n-propylamine	ND	76	9.2	ug/kg		
86-30-6	N-Nitrosodiphenylamine	ND	190	23	ug/kg		

ND = Not detected MDL = Method Detection Limit

1,2,4,5-Tetrachlorobenzene

Surrogate Recoveries

ND

ND

ND

Run#1

86%

38

38

190

Run#2

17

14 12

RL = Reporting Limit

85-01-8

129-00-0

95-94-3

CAS No.

367-12-4

E = Indicates value exceeds calibration range

2-Fluorophenol

Phenanthrene

Pyrene

J = Indicates an estimated value

ug/kg

ug/kg

ug/kg

Limits

22-121%

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

86 of 2362 ن ک ACCUTEST, JB88935

Report of Analysis

Client Sample ID: SSB-3 (5-7) JB88935-9 Date Sampled: 02/26/15 Lab Sample ID: Date Received: 02/26/15 Matrix: SO - Soil 87.6 Method: SW846 8270D SW846 3546 Percent Solids: Elton Crossing, 899 Elton Avenue, Bronx, NY Project: DF Analytical Batch File ID Analyzed By Prep Date Prep Batch Run #1 3E69943.D 1 03/02/15 SW 03/02/15 **OP82080** E3E3018 03/03/15 SP 03/02/15 **OP82080** E3E3019 Run #2 3E69960.D 5 Initial Weight **Final Volume** Run #1 30.0 g 1.0 ml Run #2 30.0 g 1.0 ml ABN TCL List (SOM0 2.0) Result RL MDL Units Q CAS No. Compound 95-57-8 2-Chlorophenol ND 76 38 ug/kg 59-50-7 4-Chloro-3-methyl phenol ND 190 38 ug/kg 120-83-2 2,4-Dichlorophenol ND 190 61 ug/kg 105-67-9 2,4-Dimethylphenol ND 190 64 ug/kg 51-28-5 2,4-Dinitrophenol ND 760 46 ug/kg 534-52-1 4,6-Dinitro-o-cresol ND 760 46 ug/kg 76 43 ug/kg 95-48-7 2-Methylphenol ND 3&4-Methylphenol ND 76 48 ug/kg 88-75-5 2-Nitrophenol ND 190 40 ug/kg 100-02-7 **4-Nitrophenol** ND 380 64 ug/kg 87-86-5 Pentachlorophenol ND 380 65 ug/kg 76 108-95-2 Phenol ND 40 ug/kg 190 39 ug/kg 58-90-2 2,3,4,6-Tetrachlorophenol ND 2,4,5-Trichlorophenol ND 190 44 ug/kg 95-95-4 88-06-2 2,4,6-Trichlorophenol ND 190 36 ug/kg ND 38 11 ug/kg 83-32-9 Acenaphthene 38 Acenaphthylene ND 12 ug/kg 208-96-8 98-86-2 Acetophenone ND 190 6.7 ug/kg 38 120-12-7 Anthracene ND 13 ug/kg 76 ug/kg 1912-24-9 Atrazine ND 7.556-55-3 Benzo(a)anthracene ND 38 12 ug/kg Benzo(a)pyrene ND 38 12 ug/kg 50-32-8 Benzo(b)fluoranthene ND 38 13 ug/kg 205-99-2 38 Benzo(g,h,i)perylene ND 14 ug/kg 191-24-2 207-08-9 Benzo(k)fluoranthene ND 38 14 ug/kg 101-55-3 4-Bromophenyl phenyl ether ND 76 14 ug/kg 7030 a D 380 110 ug/kg 85-68-7 Butyl benzyl phthalate 92-52-4 1,1'-Biphenyl ND 76 4.4 ug/kg Benzaldehyde 190 ug/kg 100-52-7 ND 8.8 76 2-Chloronaphthalene ND 12 ug/kg 91-58-7 ND 190 12 106-47-8 4-Chloroaniline ug/kg ND 76 18 ug/kg 86-74-8 Carbazole

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 3

Client Sample ID: Lab Sample ID: Matrix: Method:	SSB-3 (5-7) JB88935-9 SO - Soil SW846 8270D SW846 3546	Date Sampled: Date Received: Percent Solids:	02/26/15 02/26/15 87.6	
Project:	Elton Crossing, 899 Elton Avenue, Bronx, NY	T ci cent Sonds.	01.0	

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q	
105-60-2	Caprolactam	ND	76	12	ug/kg		
218-01-9	Chrysene	ND	38	13	ug/kg		
111-91-1	bis(2-Chloroethoxy)methane	ND	76	15	ug/kg		
111-44-4	bis(2-Chloroethyl)ether	ND	76	11	ug/kg		
108-60-1	bis(2-Chloroisopropyl)ether	ND	76	11	ug/kg		
7005-72-3	4-Chlorophenyl phenyl ether	ND	76	11	ug/kg		
121-14-2	2,4-Dinitrotoluene	ND	38	17	ug/kg		
606-20-2	2,6-Dinitrotoluene	ND	38	14	ug/kg		
91-94-1	3,3'-Dichlorobenzidine	ND	76	9.7	ug/kg		
123-91-1	1,4-Dioxane	ND	38	25	ug/kg		
53-70-3	Dibenzo(a,h)anthracene	ND	38	13	ug/kg		
132-64-9	Dibenzofuran	ND	76	11	ug/kg		
84-74-2	Di-n-butyl phthalate	ND	76	8.4	ug/kg		
117-84-0	Di-n-octyl phthalate	ND	76	19	ug/kg		
84-66-2	Diethyl phthalate	ND	76	13	ug/kg		
131-11-3	Dimethyl phthalate	ND	76	13	ug/kg		
117-81-7	bis(2-Ethylhexyl)phthalate	273	76	34	ug/kg		
206-44-0	Fluoranthene	ND	38	17	ug/kg		
86-73-7	Fluorene	ND	38	12	ug/kg		
118-74-1	Hexachlorobenzene	ND	76	12	ug/kg		
87-68-3	Hexachlorobutadiene	ND	38	11	ug/kg		
77-47-4	Hexachlorocyclopentadiene	ND	380	39	ug/kg		
67-72-1	Hexachloroethane	ND	190	11	ug/kg		
193-39-5	Indeno(1,2,3-cd)pyrene	ND	38	13	ug/kg		
78-59-1	Isophorone	ND	76	10	ug/kg		
91-57-6	2-Methylnaphthalene	ND	76	21	ug/kg		
88-74-4	2-Nitroaniline	ND	190	17	ug/kg		
99-09-2	3-Nitroaniline	ND	190	15	ug/kg		
100-01-6	4-Nitroaniline	ND	190	15	ug/kg		
91-20-3	Naphthalene	ND	38	10	ug/kg		
98-95-3	Nitrobenzene	ND	76	11	ug/kg		
621-64-7	N-Nitroso-di-n-propylamine	ND	76	9.3	ug/kg		
86-30-6	N-Nitrosodiphenylamine	ND	190	23	ug/kg		
85-01-8	Phenanthrene	ND	38	17	ug/kg		
129-00-0	Pyrene	ND	38	15	ug/kg		
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	190	12	ug/kg		
					00		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts		
367-12-4	2-Fluorophenol	78%	76%	22-12	21%		
							1

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Page 2 of 3

4.9 4

Raw Data: 3E69944.D

Accutest Laboratories

		Repo	rt of Aı	nalysis			Page 1 of 3
Client Sam Lab Samp Matrix: Method: Project:	nple ID: SSB-3 (7.5-9.5) le ID: JB88935-10 SO - Soil SW846 8270D SW8 Elton Crossing, 899 F	46 3546 Elton Avenu	e, Bronx, I	NY	Date Date Perc	Sampled: 0 Received: 0 ent Solids: 8	2/26/15 2/26/15 9.2
Run #1 Run #2	File ID DF J 3E69944.D 1 1	Analyzed 03/03/15	By SW	Prep D 03/02/1	ate 5	Prep Batch OP82080	Analytical Batch E3E3018
Run #1 Run #2	Initial Weight Final Volum 30.0 g 1.0 ml	ne					
ABN TCL	List (SOM0 2.0)						
CAS No.	Compound	Result	RL	MDL	Units	Q	
95-57-8	2-Chlorophenol	ND	75	37	ug/kg		
59-50-7	4-Chloro-3-methyl phenol	ND	190	37	ug/kg		
120-83-2	2.4-Dichlorophenol	ND	190	60	ug/kg		
105-67-9	2.4-Dimethylphenol	ND	190	63	ug/kg		
51-28-5	2.4-Dinitrophenol	ND	750	46	ug/kg		
534-52-1	4.6-Dinitro-o-cresol	ND	750	46	ug/kg		
95-48-7	2-Methylphenol	ND	75	43	ug/kg		
	3&4-Methylphenol	ND	75	47	ug/kg		
88-75-5	2-Nitrophenol	ND	190	40	ug/kg		
100-02-7	4-Nitrophenol	ND	370	63	ug/kg		
87-86-5	Pentachlorophenol	ND	370	64	ug/kg		
108-95-2	Phenol	ND	75	39	ug/kg		
58-90-2	2.3.4.6-Tetrachlorophenol	ND	190	38	ug/kg		
95-95-4	2,4,5-Trichlorophenol	ND	190	43	ug/kg		
88-06-2	2,4,6-Trichlorophenol	ND	190	35	ug/kg		
83-32-9	Acenaphthene	ND	37	11	ug/kg		
208-96-8	Acenaphthylene	ND	37	12	ug/kg		
98-86-2	Acetophenone	ND	190	6.6	ug/kg		
120-12-7	Anthracene	ND	37	13	ug/kg		
1912-24-9	Atrazine	ND	75	7.4	ug/kg		
56-55-3	Benzo(a)anthracene	ND	37	12	ug/kg		
50-32-8	Benzo(a)pyrene	ND	37	11	ug/kg		
205-99-2	Benzo(b)fluoranthene	ND	37	12	ug/kg		
191-24-2	Benzo(g,h,i)perylene	ND	37	14	ug/kg		
207-08-9	Benzo(k)fluoranthene	ND	37	14	ug/kg		
101-55-3	4-Bromophenyl phenyl ether	ND	75	14	ug/kg		

ND = Not detected MDL = Method Detection Limit

Butyl benzyl phthalate

2-Chloronaphthalene

1,1'-Biphenyl

Benzaldehyde

4-Chloroaniline

Carbazole

ND

ND

ND

ND

ND

ND

75

75

190

75

190

75

14 22

4.3

8.6

12

12

17

RL = Reporting Limit

85-68-7

92-52-4

100-52-7

91-58-7

86-74-8

106-47-8

E = Indicates value exceeds calibration range

J = Indicates an estimated value

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

10

Matrix: Method: Project:	SO - Soil SW846 8270D SW846 3546 Elton Crossing, 899 Elton Avenue, Bronx, NY	Date Received: Percent Solids:	02/26/15 89.2	
Matrix:	SO - Soil	Date Received:	02/26/15	
Client Sample ID: Lab Sample ID:	SSB-3 (7.5-9.5) JB88935-10	Date Sampled:	02/26/15	

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	75	12	ug/kg	
218-01-9	Chrysene	ND	37	13	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	75	15	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	75	11	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	75	11	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	75	11	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	37	16	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	37	14	ug/kg	
91-94-1	3.3'-Dichlorobenzidine	ND	75	9.5	ug/kg	
123-91-1	1.4-Dioxane	ND	37	24	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	37	13	ug/kg	
132-64-9	Dibenzofuran	ND	75	11	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	75	8.3	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	75	18	ug/kg	
84-66-2	Diethyl phthalate	ND	75	13	ug/kg	
131-11-3	Dimethyl phthalate	ND	75	13	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	75	33	ug/kg	
206-44-0	Fluoranthene	ND	37	16	ug/kg	
86-73-7	Fluorene	ND	37	12	ug/kg	
118-74-1	Hexachlorobenzene	ND	75	12	ug/kg	
87-68-3	Hexachlorobutadiene	ND	37	10	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	370	38	ug/kg	
67-72-1	Hexachloroethane	ND	190	10	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	37	13	ug/kg	
78-59-1	Isophorone	ND	75	10	ug/kg	
91-57-6	2-Methylnaphthalene	ND	75	21	ug/kg	
88-74-4	2-Nitroaniline	ND	190	16	ug/kg	
99-09-2	3-Nitroaniline	ND	190	15	ug/kg	
100-01-6	4-Nitroaniline	ND	190	15	ug/kg	
91-20-3	Naphthalene	ND	37	10	ug/kg	
98-95-3	Nitrobenzene	ND	75	11	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	75	9.1	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	190	22	ug/kg	
85-01-8	Phenanthrene	ND	37	17	ug/kg	
129-00-0	Pyrene	ND	37	14	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	190	11	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	84%		22-1	21%	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

4.10 4

Raw Data: F144713.D

Accutest Laboratories

Report of Analysis

Client Sample ID: FB20150226 Lab Sample ID: JB88935-12 Date Sampled: 02/26/15 Matrix: AQ - Field Blank Soil Date Received: 02/26/15 Method: SW846 8270D SW846 3510C Percent Solids: n/a Project: Elton Crossing, 899 Elton Avenue, Bronx, NY File ID DF Analyzed Prep Date Prep Batch Analytical Batch By Run #1 F144713.D 1 03/02/15 KLS 03/02/15 OP82087 EF6057 Run #2 **Final Volume** Initial Volume 1.0 ml Run #1 920 ml Run #2 ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.4	1.4	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.4	1.4	ug/l	
120-83-2	2,4-Dichlorophenol	ND	2.2	1.8	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.4	2.0	ug/l	
51-28-5	2,4-Dinitrophenol	ND	22	7.1	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	22	1.4	ug/l	
95-48-7	2-Methylphenol	ND	2.2	1.4	ug/l	
	3&4-Methylphenol	ND	2.2	1.2	ug/l	
88-75-5	2-Nitrophenol	ND	5.4	2.0	ug/l	
100-02-7	4-Nitrophenol	ND	11	0.99	ug/l	
87-86-5	Pentachlorophenol	ND	11	1.5	ug/l	
108-95-2	Phenol	ND	2.2	0.59	ug/l	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.4	1.5	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.4	1.9	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.4	1.7	ug/l	
83-32-9	Acenaphthene	ND	1.1	0.32	ug/l	
208-96-8	Acenaphthylene	ND	1.1	0.22	ug/l	
98-86-2	Acetophenone	ND	2.2	0.40	ug/l	
120-12-7	Anthracene	ND	1.1	0.21	ug/l	
1912-24-9	Atrazine	ND	2.2	0.46	ug/l	
100-52-7	Benzaldehyde	ND	5.4	0.73	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.1	0.23	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.1	0.26	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.24	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.34	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.24	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.2	0.27	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.2	0.24	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.1	0.30	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.2	0.37	ug/l	
106-47-8	4-Chloroaniline	ND	5.4	0.33	ug/l	
86-74-8	Carbazole	ND	1.1	0.18	ug/l	

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 3

Client Sample ID: Lab Sample ID:	FB20150226 JB88935-12	Date Sampled:	02/26/15	
Matrix:	AQ - Field Blank Soil	Date Received:	02/26/15	
Method:	SW846 8270D SW846 3510C	Percent Solids:	n/a	
Project:	Elton Crossing, 899 Elton Avenue, Bronx, NY			
				_

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.2	0.44	ug/l	
218-01-9	Chrysene	ND	1.1	0.18	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.2	0.46	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.2	0.47	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.2	0.44	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.2	0.41	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.1	0.35	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.1	0.28	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.2	0.61	ug/l	
123-91-1	1,4-Dioxane	ND	1.1	0.78	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.30	ug/l	
132-64-9	Dibenzofuran	ND	5.4	0.25	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.2	0.63	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.2	0.27	ug/l	
84-66-2	Diethyl phthalate	ND	2.2	0.25	ug/l	
131-11-3	Dimethyl phthalate	ND	2.2	0.28	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.2	0.60	ug/l	
206-44-0	Fluoranthene	ND	1.1	0.18	ug/l	
86-73-7	Fluorene	ND	1.1	0.30	ug/l	
118-74-1	Hexachlorobenzene	ND	1.1	0.50	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.1	0.42	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	11	0.52	ug/l	
67-72-1	Hexachloroethane	ND	2.2	0.31	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.44	ug/l	
78-59-1	Isophorone	ND	2.2	0.37	ug/I	
91-57-6	2-Methylnaphthalene	ND	1.1	0.32	ug/l	
88-74-4	2-Nitroaniline	ND	5.4	0.34	ug/l	
99-09-2	3-Nitroaniline	ND	5.4	0.28	ug/l	
100-01-6	4-Nitroaniline	ND	5.4	0.33	ug/l	
91-20-3	Naphthalene	ND	1.1	0.29	ug/l	
98-95-3	Nitrobenzene	ND	2.2	0.56	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.2	0.41	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.4	0.22	ug/l	
85-01-8	Phenanthrene	ND	1.1	0.20	ug/l	
129-00-0	Pyrene	ND	1.1	0.21	ug/l	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.2	0.48	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	56%		12-1	10%	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: MW-1 Lab Sample ID: JB89708-1 Date Sampled: 03/11/15 03/11/15 Matrix: AQ - Ground Water Date Received: Method: SW846 8270D SW846 3510C Percent Solids: n/a Project: Elton Crossing, 899 Elton Avenue, Bronx, NY Analytical Batch File ID DF Analyzed By Prep Date Prep Batch Run #1 P93886.D 1 03/17/15 SD 03/16/15 **OP82372 EP4048** Run #2 **Initial Volume Final Volume** 1.0 ml Run #1 1000 ml Run #2 ABN TCL List (SOM0 2.0) Q RL MDL Units CAS No. Compound Result 95-57-8 2-Chlorophenol ND 5.0 1.3 ug/l 59-50-7 4-Chloro-3-methyl phenol ND 5.0 1.3 ug/l 2.0 120-83-2 2,4-Dichlorophenol ND 1.6 ug/l ND 5.0 1.8 ug/l 105-67-9 2,4-Dimethylphenol ND 20 6.5 ug/l 2,4-Dinitrophenol 51-28-5 20 ND 1.3 ug/l 534-52-1 4,6-Dinitro-o-cresol 2-Methylphenol ND 2.0 1.3 ug/l 95-48-7 3&4-Methylphenol ND 2.0 1.1 ug/l 5.0 1.9 ug/l 88-75-5 2-Nitrophenol ND 0.91 ug/l 100-02-7 4-Nitrophenol ND 10 10 ug/l 87-86-5 Pentachlorophenol ND 1.4 ND 2.0 0.55 ug/l 108-95-2 Phenol ug/l ND 5.0 1.4 58-90-2 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol ND 5.0 1.7 ug/l 95-95-4 2,4,6-Trichlorophenol ND 5.01.5 ug/l 88-06-2 1.0 0.30 ug/l 83-32-9 Acenaphthene ND 208-96-8 Acenaphthylene ND 1.0 0.20 ug/l ND 0.36 98-86-2 Acetophenone 2.0ug/l Anthracene ND 1.0 0.19 ug/l 120-12-7 2.0 0.42 ug/l 1912-24-9 Atrazine ND Benzaldehyde ND 5.0 0.67 ug/l 100-52-7 ND 1.0 0.22 ug/l Benzo(a)anthracene 56-55-3 ND 1.0 0.24 ug/l 50-32-8 Benzo(a)pyrene Benzo(b)fluoranthene ND 1.0 0.22 ug/l 205-99-2 191-24-2 Benzo(g,h,i)perylene ND 1.0 0.31 ug/l 0.22 ND 1.0 ug/l 207-08-9 Benzo(k)fluoranthene 2.0 0.25 ug/l 101-55-3 4-Bromophenyl phenyl ether ND ND 2.0 0.22 ug/l 85-68-7 Butyl benzyl phthalate ND 1.0 0.27 ug/l 92-52-4 1,1'-Biphenyl

ND = Not detected MDL = Method Detection Limit

ND

ND

ND

2.0

5.0

1.0

0.34

0.30

0.17

RL = Reporting Limit

91-58-7

106-47-8

86-74-8

E = Indicates value exceeds calibration range

2-Chloronaphthalene

4-Chloroaniline

Carbazole

J = Indicates an estimated value

ug/l

ug/l

ug/l

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

15 of 1744

Page 1 of 3
Report of Analysis

Client Sample ID:	MW-1		00/11/15
Lab Sample ID:	JB89708-1	Date Sampled:	03/11/15
Matrix:	AQ - Ground Water	Date Received:	03/11/15
Method:	SW846 8270D SW846 3510C	Percent Solids:	n/a
Project:	Elton Crossing, 899 Elton Avenue, Bronx, NY		
ADMITOL I :-+ (90			

ABN TCL List (SOM0 2.0)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CAS No.	Compound	Result	RL	MDL	Units	Q
218-01-9ChryseneND1.00.16ug/l111-91-1bis(2-Chloroethoxy)methaneND2.00.42ug/l111-44-4bis(2-Chloroethyl)etherND2.00.43ug/l108-60-1bis(2-Chlorosopropyl)etherND2.00.41ug/l108-60-1bis(2-Chlorophenyl phenyl etherND2.00.38ug/l121-14-22,4-DinitrotolueneND1.00.32ug/l606-20-22,6-DinitrotolueneND1.00.26ug/l123-91-11,4-DioxaneND1.00.72ug/l53-70-3Dibenzo(a, h)anthraceneND1.00.28ug/l132-64-9DibenzofuranND5.00.23ug/l132-64-9DibenzofuranND2.00.58ug/l117-84-0Di-n-octyl phthalateND2.00.25ug/l117-84-0Di-n-octyl phthalateND2.00.26ug/l117-84-0FluorantheneND1.00.26ug/l117-81-7bis(2-Ethylhexyl)phthalateND2.00.25ug/l117-81-7bis(2-Ethylhexyl)phthalateND1.00.48ug/l186-73-7FluorantheneND1.00.48ug/l19-74-4HexachlorobenzeneND1.00.48ug/l19-75-62-MethylaphthaleneND1.00.48ug/l19-57-62-MethylaphthaleneND1.00.26 <t< td=""><td>105-60-2</td><td>Caprolactam</td><td>ND</td><td>2.0</td><td>0.41</td><td>ug/l</td><td></td></t<>	105-60-2	Caprolactam	ND	2.0	0.41	ug/l	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	218-01-9	Chrysene	ND	1.0	0.16	ug/l	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.42	ug/l	
108-60-1bis(2-Chloroisopropyl)ether NDND2.00.41ug/l7005-72-34-Chlorophenyl phenyl ether NDND2.00.38ug/l121-14-22.4-Dinitrotoluene 91-94-1ND1.00.32ug/l123-91-11.4-Dioxane NDND1.00.72ug/l132-64-9Dibenzo(a, h)anthracene NDND1.00.72ug/l132-64-9Dibenzofuran NDND2.00.58ug/l132-64-9Dibenzofuran NDND2.00.25ug/l131-16-Di-n-octyl phthalate NDND2.00.25ug/l131-11-3Dimethyl phthalate NDND2.00.25ug/l131-11-3Dimethyl phthalate NDND2.00.26ug/l117-81-7bis(2-Ethylhexyl)phthalate NDND2.00.26ug/l117-81-7Fluoranthene NDND1.00.16ug/l86-73-7Fluoranthene NDND1.00.46ug/l87-74-4Hexachlorobenzene ND1.00.48ug/l193-39-5Indeno(1,2,3-cd)pyrene ND1.00.48ug/l193-39-5Indeno(1,2,3-cd)pyrene ND1.00.26ug/l193-39-5Indeno(1,2,3-cd)pyrene ND1.00.26ug/l193-39-5Indeno(1,2,3-cd)pyrene ND1.00.26ug/l190-01-64-Nitroaniline ND5.00.30ug/l190-02-3	111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.43	ug/l	
7005-72-34-Chlorophenyl phenyl etherND2.00.38ug/l121-14-22,4-DinitrotolueneND1.00.32ug/l606-20-22,6-DinitrotolueneND1.00.26ug/l91-94-13,3'-DichlorobenzidineND1.00.72ug/l123-91-11,4-DioxaneND1.00.72ug/l53-70-3Dibenzo(a,h)anthraceneND1.00.28ug/l132-64-9DibenzofuranND2.00.58ug/l117-84-0Di-n-octyl phthalateND2.00.23ug/l84-74-2Di-n-octyl phthalateND2.00.25ug/l117-84-0Di-n-octyl phthalateND2.00.26ug/l117-81-7bis(2-Ethylhexyl)phthalateND2.00.55ug/l117-81-7bis(2-Ethylhexyl)phthalateND2.00.55ug/l118-74-1HexachlorobenzeneND1.00.46ug/l86-73-7FluorantheneND1.00.46ug/l118-74-1HexachlorobenzeneND1.00.48ug/l193-39-5Indeno(1,2,3-cd)pyreneND1.00.48ug/l193-39-5Indeno(1,2,3-cd)pyreneND1.00.29ug/l193-39-5Indeno(1,2,3-cd)pyreneND1.00.29ug/l193-39-5Indeno(1,2,3-cd)pyreneND1.00.29ug/l190-01-64-NitroanilineND5.0<	108-60-1	bis(2-Chloroisopropyl)ether	ND	2.0	0.41	ug/l	
121-14-22,4-DinitrotolueneND1.00.32ug/l606-20-22,6-DinitrotolueneND1.00.26ug/l91-94-13,3'-DichlorobenzidineND2.00.56ug/l123-91-11,4-DioxaneND1.00.72ug/l132-64-9Dibenzo(a,h)anthraceneND1.00.28ug/l132-64-9DibenzofuranND5.00.23ug/l84-74-2Di-n-butyl phthalateND2.00.58ug/l117-84-0Di-n-octyl phthalateND2.00.25ug/l117-84-0Di-n-octyl phthalateND2.00.26ug/l117-84-0FluorantheneND2.00.26ug/l117-81-7bis(2-Ethylhexyl)phthalateND2.00.55ug/l206-44-0FluorantheneND1.00.16ug/l86-73-7FluorantheneND1.00.46ug/l118-74-1HexachlorobenzeneND1.00.39ug/l17-47-4HexachlorocyclopentadieneND1.00.46ug/l193-39-5Indeno(1,2,3-cd)pyreneND1.00.44ug/l191-39-3Indeno(1,2,3-cd)pyreneND1.00.29ug/l193-39-5Indeno(1,2,3-cd)pyreneND1.00.29ug/l193-39-5Indeno(1,2,3-cd)pyreneND1.00.29ug/l193-39-5Indeno(1,2,3-cd)pyreneND1.00.29 <t< td=""><td>7005-72-3</td><td>4-Chlorophenyl phenyl ether</td><td>ND</td><td>2.0</td><td>0.38</td><td>ug/l</td><td></td></t<>	7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.38	ug/l	
606-20-22,6-DinitrotolueneND1.00.26ug/l $91-94-1$ 3,3'-DichlorobenzidineND2.00.56ug/l $123-91-1$ 1,4-DioxaneND1.00.72ug/l $53.70-3$ Dibenzo(a,h)anthraceneND1.00.28ug/l $132-64-9$ DibenzofuranND5.00.23ug/l $84-74-2$ Di-n-butyl phthalateND2.00.25ug/l $84-74-2$ Di-n-octyl phthalateND2.00.23ug/l $131-11-3$ Dimethyl phthalateND2.00.23ug/l $131-11-3$ Dimethyl phthalateND2.00.26ug/l $117-81-7$ bis(2-Ethylhexyl)phthalateND2.00.55ug/l $206-44-0$ FluorantheneND1.00.16ug/l $86-73-7$ FluoreneND1.00.26ug/l $118-74-1$ HexachlorobenzeneND1.00.46ug/l $18-768-3$ HexachlorobutadieneND1.00.46ug/l $193-39-5$ Indeno(1,2,3-cd)pyreneND1.00.44ug/l $19-57-6$ 2-MethylnaphthaleneND1.00.29ug/l $100-01-6$ 4-NitroanilineND5.00.32ug/l $91-57-6$ 2-MethylnaphthaleneND1.00.29ug/l $91-57-6$ 2-MethylnaphthaleneND1.00.27ug/l $91-20-3$ NaphthaleneND1.00.27 </td <td>121-14-2</td> <td>2.4-Dinitrotoluene</td> <td>ND</td> <td>1.0</td> <td>0.32</td> <td>ug/l</td> <td></td>	121-14-2	2.4-Dinitrotoluene	ND	1.0	0.32	ug/l	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	606-20-2	2.6-Dinitrotoluene	ND	1.0	0.26	ug/l	
123-91-11,4-DioxaneND1.00.72ug/l53-70-3Dibenzo(a,h)anthraceneND1.00.28ug/l132-64-9DibenzofuranND5.00.23ug/l84-74-2Di-n-butyl phthalateND2.00.58ug/l117-84-0Di-n-octyl phthalateND2.00.25ug/l84-66-2Diethyl phthalateND2.00.26ug/l131-11-3Dimethyl phthalateND2.00.26ug/l117-81-7bis(2-Ethylhexyl)phthalateND2.00.55ug/l206-44-0FluorantheneND1.00.16ug/l86-73-7FluoreneND1.00.27ug/l118-74-1HexachlorobenzeneND1.00.46ug/l87-68-3HexachlorobutadieneND1.00.46ug/l97-72-1HexachlorootyclopentadieneND1.00.48ug/l193-39-5Indeno(1,2,3-cd)pyreneND1.00.40ug/l91-57-62-MethylnaphthaleneND1.00.29ug/l91-57-62-MethylnaphthaleneND5.00.32ug/l99-09-23-NitroanilineND5.00.32ug/l91-57-62-MethylnaphthaleneND1.00.27ug/l91-57-62-MethylnaphthaleneND5.00.32ug/l91-57-62-MethylnaphthaleneND5.00.32ug/l91	91-94-1	3.3'-Dichlorobenzidine	ND	2.0	0.56	ug/l	
53-70-3Dibenzo(a,h)anthraceneND1.00.28ug/l132-64-9DibenzofuranND5.00.23ug/l84-74-2Di-n-butyl phthalateND2.00.58ug/l117-84-0Di-n-octyl phthalateND2.00.25ug/l84-66-2Diethyl phthalateND2.00.23ug/l131-11-3Dimethyl phthalateND2.00.26ug/l131-11-3Dimethyl phthalateND2.00.25ug/l131-11-3Dimethyl phthalateND2.00.55ug/l206-44-0FluorantheneND1.00.16ug/l86-73-7FluoreneND1.00.27ug/l118-74-1HexachlorobenzeneND1.00.39ug/l87-68-3HexachlorocyclopentadieneND1.00.48ug/l97-72-1HexachlorocyclopentadieneND1.00.48ug/l91-37-62-MethylnaphthaleneND1.00.40ug/l91-57-62-MethylnaphthaleneND1.00.29ug/l91-09-23-NitroanilineND5.00.32ug/l91-09-23-NitroanilineND5.00.30ug/l91-20-3NaphthaleneND1.00.72ug/l98-95-3NitrobenzeneND2.00.52ug/l86-30-6N-NitrosodiphenylamineND2.00.21ug/l92-94-31.2	123-91-1	1.4-Dioxane	ND	1.0	0.72	ug/l	
132-64-9DibenzofuranND5.00.23ug/l84-74-2Di-n-butyl phthalateND2.00.58ug/l117-84-0Di-n-octyl phthalateND2.00.25ug/l84-66-2Diethyl phthalateND2.00.23ug/l131-11-3Dimethyl phthalateND2.00.26ug/l117-81-7bis(2-Ethylhexyl)phthalateND2.00.55ug/l206-44-0FluorantheneND1.00.16ug/l86-73-7FluoreneND1.00.46ug/l118-74-1HexachlorobenzeneND1.00.48ug/l87-68-3HexachlorocyclopentadieneND1.00.48ug/l97-74-4HexachlorocyclopentadieneND1.00.48ug/l193-39-5Indeno(1, 2, 3-cd) pyreneND1.00.40ug/l91-57-62-MethylnaphthaleneND1.00.29ug/l88-74-42-NitroanilineND5.00.32ug/l99-09-23-NitroanilineND5.00.32ug/l91-20-3NaphthaleneND1.00.27ug/l88-30-6N-Nitroso-di-n-propylamineND2.00.38ug/l85-01-8PhenanthreneND1.00.21ug/l129-00-0PyreneND1.00.19ug/l129-00-0PyreneND1.00.19ug/l129-04-31,2,4,5-Te	53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.28	ug/l	
84-74-2Di-n-butyl phthalateND 2.0 0.58 ug/l 117-84-0Di-n-octyl phthalateND 2.0 0.25 ug/l 84-66-2Diethyl phthalateND 2.0 0.23 ug/l 131-11-3Dimethyl phthalateND 2.0 0.26 ug/l 117-81-7bis(2-Ethylhexyl)phthalateND 2.0 0.55 ug/l 206-44-0FluorantheneND 1.0 0.16 ug/l 86-73-7FluoreneND 1.0 0.27 ug/l 118-74-1HexachlorobenzeneND 1.0 0.46 ug/l 87-68-3HexachlorobutadieneND 1.0 0.48 ug/l 87-68-3HexachlorocyclopentadieneND 1.0 0.48 ug/l 87-73-7Indeno(1,2,3-cd)pyreneND 1.0 0.44 ug/l 87-68-3Indeno(1,2,3-cd)pyreneND 1.0 0.44 ug/l 91-57-62-MethylnaphthaleneND 1.0 0.40 ug/l 91-57-62-MethylnaphthaleneND 5.0 0.32 ug/l 91-57-62-MethylnaphthaleneND 5.0 0.32 ug/l 91-20-3NaphthaleneND 5.0 0.30 ug/l 92-95-3NitrobenzeneND 2.0 0.38 ug/l 86-30-6N-NitrosodiphenylamineND 5.0 0.21 ug/l 86-30-6N-NitrosodiphenylamineND 5.0 0.21 ug/l <	132-64-9	Dibenzofuran	ND	5.0	0.23	ug/l	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	84-74-2	Di-n-butyl phthalate	ND	2.0	0.58	ug/l	
84-66-2Diethyl phthalateND2.00.23ug/l131-11-3Dimethyl phthalateND2.00.26ug/l117-81-7bis(2-Ethylhexyl)phthalateND2.00.55ug/l206-44-0FluorantheneND1.00.16ug/l86-73-7FluoreneND1.00.27ug/l118-74-1HexachlorobenzeneND1.00.46ug/l87-68-3HexachlorobutadieneND1.00.48ug/l77-47-4HexachlorocyclopentadieneND1.00.48ug/l67-72-1HexachlorocyclopentadieneND2.00.29ug/l193-39-5Indeno(1,2,3-cd)pyreneND1.00.44ug/l91-57-62-MethylnaphthaleneND1.00.29ug/l99-09-23-NitroanilineND5.00.32ug/l91-20-3NaphthaleneND1.00.27ug/l98-95-3NitrobenzeneND2.00.52ug/l621-64-7N-Nitroso-di-n-propylamineND2.00.38ug/l86-30-6N-NitrosodiphenylamineND5.00.21ug/l85-01-8PhenanthreneND1.00.19ug/l129-00-0PyreneND1.00.19ug/l95-94-31,2,4,5-TetrachlorobenzeneND2.00.44ug/l	117-84-0	Di-n-octyl phthalate	ND	2.0	0.25	ug/l	
131-11-3Dimethyl phthalateND2.00.26ug/l117-81-7bis(2-Ethylhexyl)phthalateND2.00.55ug/l206-44-0FluorantheneND1.00.16ug/l86-73-7FluoreneND1.00.27ug/l118-74-1HexachlorobenzeneND1.00.46ug/l87-68-3HexachlorobutadieneND1.00.48ug/l77-47-4HexachlorocyclopentadieneND100.48ug/l67-72-1HexachlorocthaneND2.00.29ug/l193-39-5Indeno(1,2,3-cd)pyreneND1.00.44ug/l91-57-62-MethylnaphthaleneND1.00.29ug/l99-09-23-NitroanilineND5.00.32ug/l99-09-23-NitroanilineND5.00.30ug/l91-20-3NaphthaleneND1.00.27ug/l86-30-6N-NitrosodiphenylamineND2.00.38ug/l86-30-6N-NitrosodiphenylamineND2.00.38ug/l129-00-0PyreneND1.00.19ug/l129-00-0PyreneND1.00.19ug/l95-94-31,2,4,5-TetrachlorobenzeneND2.00.44ug/l	84-66-2	Diethyl phthalate	ND	2.0	0.23	ug/l	
117-81-7bis(2-Ethylhexyl)phthalateND2.0 0.55 ug/l206-44-0FluorantheneND 1.0 0.16 ug/l86-73-7FluoreneND 1.0 0.27 ug/l118-74-1HexachlorobenzeneND 1.0 0.46 ug/l87-68-3HexachlorobutadieneND 1.0 0.39 ug/l77-47-4HexachlorocyclopentadieneND 10 0.48 ug/l67-72-1HexachloroethaneND 2.0 0.29 ug/l193-39-5Indeno(1,2,3-cd)pyreneND 1.0 0.40 ug/l78-59-1IsophoroneND 2.0 0.34 ug/l91-57-62-MethylnaphthaleneND 1.0 0.29 ug/l88-74-42-NitroanilineND 5.0 0.32 ug/l99-09-23-NitroanilineND 5.0 0.30 ug/l91-20-3NaphthaleneND 1.0 0.27 ug/l86-30-6N-Nitroso-di-n-propylamineND 2.0 0.38 ug/l86-30-6N-NitrosodiphenylamineND 5.0 0.21 ug/l129-00-0PyreneND 1.0 0.19 ug/l129-00-0PyreneND 1.0 0.19 ug/l129-00-0PyreneND 1.0 0.19 ug/l129-01-0PyreneND 1.0 0.19 ug/l129-01-0PyreneND 1.0 0.19 ug/l	131-11-3	Dimethyl phthalate	ND	2.0	0.26	ug/l	
206-44-0FluorantheneND1.00.16ug/l86-73-7FluoreneND1.00.27ug/l118-74-1HexachlorobenzeneND1.00.46ug/l87-68-3HexachlorobutadieneND1.00.39ug/l77-47-4HexachlorocyclopentadieneND100.48ug/l67-72-1HexachloroethaneND2.00.29ug/l193-39-5Indeno(1,2,3-cd)pyreneND1.00.40ug/l78-59-1IsophoroneND2.00.34ug/l91-57-62-MethylnaphthaleneND1.00.29ug/l88-74-42-NitroanilineND5.00.32ug/l99-09-23-NitroanilineND5.00.30ug/l91-20-3NaphthaleneND1.00.27ug/l86-30-6N-Nitroso-di-n-propylamineND2.00.52ug/l85-01-8PhenanthreneND1.00.19ug/l129-00-0PyreneND1.00.19ug/l129-00-0PyreneND1.00.19ug/l129-04-31,2,4,5-TetrachlorobenzeneND2.00.44ug/l	117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	0.55	ug/l	
86-73-7 Fluorene ND 1.0 0.27 ug/l 118-74-1 Hexachlorobenzene ND 1.0 0.46 ug/l 87-68-3 Hexachlorobutadiene ND 1.0 0.39 ug/l 77-47-4 Hexachlorocyclopentadiene ND 10 0.48 ug/l 67-72-1 Hexachlorocyclopentadiene ND 2.0 0.29 ug/l 193-39-5 Indeno(1,2,3-cd)pyrene ND 1.0 0.40 ug/l 78-59-1 Isophorone ND 2.0 0.34 ug/l 91-57-6 2-Methylnaphthalene ND 1.0 0.29 ug/l 88-74-4 2-Nitroaniline ND 5.0 0.32 ug/l 99-09-2 3-Nitroaniline ND 5.0 0.26 ug/l 100-01-6 4-Nitroaniline ND 5.0 0.30 ug/l 91-20-3 Naphthalene ND 1.0 0.27 ug/l 98-95-3 Nitrobenzene ND 2.0 0.52 ug/l 621-64-7 N-Nitrosodiphenylamine </td <td>206-44-0</td> <td>Fluoranthene</td> <td>ND</td> <td>1.0</td> <td>0.16</td> <td>ug/l</td> <td></td>	206-44-0	Fluoranthene	ND	1.0	0.16	ug/l	
118-74-1HexachlorobenzeneND1.0 0.46 ug/l 87-68-3HexachlorobutadieneND1.0 0.39 ug/l 77-47-4HexachlorocyclopentadieneND10 0.48 ug/l 67-72-1HexachloroethaneND2.0 0.29 ug/l 193-39-5Indeno(1,2,3-cd)pyreneND1.0 0.40 ug/l 78-59-1IsophoroneND2.0 0.34 ug/l 91-57-62-MethylnaphthaleneND1.0 0.29 ug/l 88-74-42-NitroanilineND5.0 0.32 ug/l 99-09-23-NitroanilineND5.0 0.26 ug/l 100-01-64-NitroanilineND5.0 0.30 ug/l 91-20-3NaphthaleneND1.0 0.27 ug/l 86-30-6N-Nitroso-di-n-propylamineND2.0 0.38 ug/l 86-30-6N-NitrosodiphenylamineND5.0 0.21 ug/l 129-00-0PyreneND 1.0 0.19 ug/l 95-94-31,2,4,5-TetrachlorobenzeneND 2.0 0.44 ug/l	86-73-7	Fluorene	ND	1.0	0.27	ug/l	
87-68-3 Hexachlorobutadiene ND 1.0 0.39 ug/l 77-47-4 Hexachlorocyclopentadiene ND 10 0.48 ug/l 67-72-1 Hexachlorocyclopentadiene ND 2.0 0.29 ug/l 193-39-5 Indeno(1,2,3-cd)pyrene ND 1.0 0.40 ug/l 78-59-1 Isophorone ND 2.0 0.34 ug/l 91-57-6 2-Methylnaphthalene ND 1.0 0.29 ug/l 88-74-4 2-Nitroaniline ND 5.0 0.32 ug/l 99-09-2 3-Nitroaniline ND 5.0 0.26 ug/l 100-01-6 4-Nitroaniline ND 5.0 0.30 ug/l 91-20-3 Naphthalene ND 1.0 0.27 ug/l 98-95-3 Nitrobenzene ND 2.0 0.52 ug/l 621-64-7 N-Nitroso-di-n-propylamine ND 2.0 0.38 ug/l 86-30-6 N-Nitrosodiphenylamine ND 5.0 0.21 ug/l 129-00-0 P	118-74-1	Hexachlorobenzene	ND	1.0	0.46	ug/l	
77-47-4HexachlorocyclopentadieneND100.48ug/l67-72-1HexachloroethaneND2.00.29ug/l193-39-5Indeno(1,2,3-cd)pyreneND1.00.40ug/l78-59-1IsophoroneND2.00.34ug/l91-57-62-MethylnaphthaleneND1.00.29ug/l88-74-42-NitroanilineND5.00.32ug/l99-09-23-NitroanilineND5.00.26ug/l100-01-64-NitroanilineND5.00.30ug/l91-20-3NaphthaleneND1.00.27ug/l98-95-3NitrobenzeneND2.00.52ug/l621-64-7N-Nitroso-di-n-propylamineND2.00.38ug/l85-01-8PhenanthreneND1.00.19ug/l129-00-0PyreneND1.00.19ug/l95-94-31,2,4,5-TetrachlorobenzeneND2.00.44ug/l	87-68-3	Hexachlorobutadiene	ND	1.0	0.39	ug/l	
67-72-1HexachloroethaneND2.00.29ug/l193-39-5Indeno(1,2,3-cd) pyreneND1.00.40ug/l78-59-1IsophoroneND2.00.34ug/l91-57-62-MethylnaphthaleneND1.00.29ug/l88-74-42-NitroanilineND5.00.32ug/l99-09-23-NitroanilineND5.00.26ug/l100-01-64-NitroanilineND5.00.30ug/l91-20-3NaphthaleneND1.00.27ug/l98-95-3NitrobenzeneND2.00.52ug/l621-64-7N-Nitroso-di-n-propylamineND2.00.38ug/l86-30-6N-NitrosodiphenylamineND5.00.21ug/l129-00-0PyreneND1.00.19ug/l95-94-31,2,4,5-TetrachlorobenzeneND2.00.44ug/l	77-47-4	Hexachlorocyclopentadiene	ND	10	0.48	ug/l	
193-39-5Indeno(1,2,3-cd)pyreneND1.00.40ug/l78-59-1IsophoroneND2.00.34ug/l91-57-62-MethylnaphthaleneND1.00.29ug/l88-74-42-NitroanilineND5.00.32ug/l99-09-23-NitroanilineND5.00.26ug/l100-01-64-NitroanilineND5.00.30ug/l91-20-3NaphthaleneND1.00.27ug/l98-95-3NitrobenzeneND2.00.52ug/l621-64-7N-Nitroso-di-n-propylamineND2.00.38ug/l86-30-6N-NitrosodiphenylamineND5.00.21ug/l129-00-0PyreneND1.00.19ug/l95-94-31,2,4,5-TetrachlorobenzeneND2.00.44ug/l	67-72-1	Hexachloroethane	ND	2.0	0.29	ug/l	
78-59-1IsophoroneND2.00.34ug/l91-57-62-MethylnaphthaleneND1.00.29ug/l88-74-42-NitroanilineND5.00.32ug/l99-09-23-NitroanilineND5.00.26ug/l100-01-64-NitroanilineND5.00.30ug/l91-20-3NaphthaleneND1.00.27ug/l98-95-3NitrobenzeneND2.00.52ug/l621-64-7N-Nitroso-di-n-propylamineND2.00.38ug/l86-30-6N-NitrosodiphenylamineND5.00.21ug/l129-00-0PyreneND1.00.19ug/l95-94-31,2,4,5-TetrachlorobenzeneND2.00.44ug/l	193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.40	ug/l	
91-57-62-MethylnaphthaleneND1.00.29ug/l88-74-42-NitroanilineND5.00.32ug/l99-09-23-NitroanilineND5.00.26ug/l100-01-64-NitroanilineND5.00.30ug/l91-20-3NaphthaleneND1.00.27ug/l98-95-3NitrobenzeneND2.00.52ug/l621-64-7N-Nitroso-di-n-propylamineND2.00.38ug/l86-30-6N-NitrosodiphenylamineND5.00.21ug/l129-00-0PyreneND1.00.19ug/l95-94-31,2,4,5-TetrachlorobenzeneND2.00.44ug/l	78-59-1	Isophorone	ND	2.0	0.34	ug/l	
88-74-4 2-Nitroaniline ND 5.0 0.32 ug/l 99-09-2 3-Nitroaniline ND 5.0 0.26 ug/l 100-01-6 4-Nitroaniline ND 5.0 0.30 ug/l 91-20-3 Naphthalene ND 1.0 0.27 ug/l 98-95-3 Nitrobenzene ND 2.0 0.52 ug/l 621-64-7 N-Nitroso-di-n-propylamine ND 2.0 0.38 ug/l 86-30-6 N-Nitrosodiphenylamine ND 5.0 0.21 ug/l 85-01-8 Phenanthrene ND 1.0 0.19 ug/l 129-00-0 Pyrene ND 1.0 0.19 ug/l 95-94-3 1,2,4,5-Tetrachlorobenzene ND 2.0 0.44 ug/l	91-57-6	2-Methylnaphthalene	ND	1.0	0.29	ug/l	
99-09-23-NitroanilineND5.00.26ug/l100-01-64-NitroanilineND5.00.30ug/l91-20-3NaphthaleneND1.00.27ug/l98-95-3NitrobenzeneND2.00.52ug/l621-64-7N-Nitroso-di-n-propylamineND2.00.38ug/l86-30-6N-NitrosodiphenylamineND5.00.21ug/l85-01-8PhenanthreneND1.00.19ug/l129-00-0PyreneND1.00.19ug/l95-94-31,2,4,5-TetrachlorobenzeneND2.00.44ug/l	88-74-4	2-Nitroaniline	ND	5.0	0.32	ug/l	
100-01-64-NitroanilineND5.00.30ug/l91-20-3NaphthaleneND1.00.27ug/l98-95-3NitrobenzeneND2.00.52ug/l621-64-7N-Nitroso-di-n-propylamineND2.00.38ug/l86-30-6N-NitrosodiphenylamineND5.00.21ug/l85-01-8PhenanthreneND1.00.19ug/l129-00-0PyreneND1.00.19ug/l95-94-31,2,4,5-TetrachlorobenzeneND2.00.44ug/l	99-09-2	3-Nitroaniline	ND	5.0	0.26	ug/l	
91-20-3 Naphthalene ND 1.0 0.27 ug/l 98-95-3 Nitrobenzene ND 2.0 0.52 ug/l 621-64-7 N-Nitroso-di-n-propylamine ND 2.0 0.38 ug/l 86-30-6 N-Nitrosodiphenylamine ND 5.0 0.21 ug/l 85-01-8 Phenanthrene ND 1.0 0.19 ug/l 129-00-0 Pyrene ND 1.0 0.19 ug/l 95-94-3 1,2,4,5-Tetrachlorobenzene ND 2.0 0.44 ug/l	100-01-6	4-Nitroaniline	ND	5.0	0.30	ug/l	
98-95-3 Nitrobenzene ND 2.0 0.52 ug/l 621-64-7 N-Nitroso-di-n-propylamine ND 2.0 0.38 ug/l 86-30-6 N-Nitrosodiphenylamine ND 5.0 0.21 ug/l 85-01-8 Phenanthrene ND 1.0 0.19 ug/l 129-00-0 Pyrene ND 1.0 0.19 ug/l 95-94-3 1,2,4,5-Tetrachlorobenzene ND 2.0 0.44 ug/l	91-20-3	Naphthalene	ND	1.0	0.27	ug/l	
621-64-7 N-Nitroso-di-n-propylamine ND 2.0 0.38 ug/l 86-30-6 N-Nitrosodiphenylamine ND 5.0 0.21 ug/l 85-01-8 Phenanthrene ND 1.0 0.19 ug/l 129-00-0 Pyrene ND 1.0 0.19 ug/l 95-94-3 1,2,4,5-Tetrachlorobenzene ND 2.0 0.44 ug/l	98-95-3	Nitrobenzene	ND	2.0	0.52	ug/l	
86-30-6 N-Nitrosodiphenylamine ND 5.0 0.21 ug/l 85-01-8 Phenanthrene ND 1.0 0.19 ug/l 129-00-0 Pyrene ND 1.0 0.19 ug/l 95-94-3 1,2,4,5-Tetrachlorobenzene ND 2.0 0.44 ug/l	621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.38	ug/l	
85-01-8 Phenanthrene ND 1.0 0.19 ug/l 129-00-0 Pyrene ND 1.0 0.19 ug/l 95-94-3 1,2,4,5-Tetrachlorobenzene ND 2.0 0.44 ug/l	86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.21	ug/l	
129-00-0 Pyrene ND 1.0 0.19 ug/l 95-94-3 1,2,4,5-Tetrachlorobenzene ND 2.0 0.44 ug/l	85-01-8	Phenanthrene	ND	1.0	0.19	ug/l	
95-94-3 1,2,4,5-Tetrachlorobenzene ND 2.0 0.44 ug/l	129-00-0	Pyrene	ND	1.0	0.19	ug/l	
	95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.44	ug/l	
CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits	CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4 2-Fluorophenol 43% 12-110%	367-12-4	2-Fluorophenol	43%		12-1	10%	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

B = In

B = Indicates analyte found in associated method blank

J = Indicates an estimated value

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Raw Data: P93887.D

Accutest Laboratories

Report of Analysis

Client Sam Lab Sampl Matrix: Method: Project:	ple ID: MW-2 e ID: JB89708-2 AQ - Ground Wate SW846 8270D SV Elton Crossing, 89	er N846 3510C 9 Elton Avenu	ie, Bronx,	NY	Date Date Perc	e Sampled: Received: ent Solids:	03/11/15 03/11/15 n/a
Run #1 Run #2	File IDDFP93887.D1	Analyzed 03/17/15	By SD	Prep D 03/16/1	ate 5	Prep Bate OP82372	h Analytical Batch EP4048
Run #1 Run #2	Initial Volume Final Final Volume Final Final Volume Final	lume					
ABN TCL	List (SOM0 2.0)						
CAS No.	Compound	Result	RL	MDL	Units	Q	
95-57-8	2-Chlorophenol	ND	5.0	1.3	ug/l		
59-50-7 120-83-2	4-Chloro-3-methyl phenol 2,4-Dichlorophenol	ND	5.0 2.0	1.5	ug/l ug/l		
105-67-9 51-28-5	2,4-Dimethylphenol 2,4-Dinitrophenol	ND	5.0 20	1.8 6.5	ug/l		
534-52-1 95-48-7	4,6-Dinitro-o-cresol 2-Methylphenol	ND ND	20	1.3	ug/l		
88-75-5	3&4-Methylphenol 2-Nitrophenol	ND ND	2.0 5.0	1.1 1.9	ug/l ug/l		
100-02-7 87-86-5	4-Nitrophenol Pentachlorophenol	ND ND	10 10	$\begin{array}{c} 0.91 \\ 1.4 \end{array}$	ug/l ug/l		
108-95-2 58-90-2	Phenol 2,3,4,6-Tetrachlorophenol	ND ND	2.0 5.0	$\begin{array}{c} 0.55 \\ 1.4 \end{array}$	ug/l ug/l		
95-95-4 88-06-2	2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	ND ND	5.0 5.0	$\begin{array}{c} 1.7\\ 1.5\end{array}$	ug/l ug/l		
83-32-9 208-96-8	Acenaphthene Acenaphthylene	ND ND	1.0 1.0	0.30 0.20	ug/l ug/l		
98-86-2 120-12-7	Acetophenone Anthracene	0.84 ND	2.0 1.0	0.36 0.19	ug/l ug/l	J	
1912-24-9 100-52-7	Atrazine Benzaldebyde	ND ND	2.0 5.0	0.42 0.67	ug/l ug/l		
56-55-3 50-32-8	Benzo(a)anthracene Benzo(a)pyrene	ND ND	1.0 1.0	0.22 0.24	ug/l ug/l		
205-99-2	Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g, h, i)pervlene	ND	1.0	0.22	ug/l		
207-08-9	Benzo(k)fluoranthene	ND ND	1.0	0.22	ug/l		
101-55-3 85-68-7	Butyl benzyl phthalate	ND	2.0	0.23	ug/l		
92-52-4 91-58-7 106-47-8	1,1'-Bipnenyl 2-Chloronaphthalene 4-Chloroaniline	ND ND ND	2.0 5.0	0.27 0.34 0.30	ug/l ug/l ug/l		

ND = Not detected MDL = Method Detection Limit

ND

1.0

RL = Reporting Limit

86-74-8

E = Indicates value exceeds calibration range

Carbazole

J = Indicates an estimated value

ug/l

0.17

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 3

Report of Analysis

Client Sample ID:MW-2Lab Sample ID:JB89708-2Matrix:AQ - Ground WaterMethod:SW846 8270DSW846 8270DSW846 3510CProject:Elton Crossing, 899 Elton Avenue, Bronx, NY	Date Sampled: Date Received: Percent Solids:	03/11/15 03/11/15 n/a	
---	--	-----------------------------	--

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.0	0.41	ug/l	
218-01-9	Chrysene	ND	1.0	0.16	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.42	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.43	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.0	0.41	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.38	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.32	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.26	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	0.56	ug/l	
123-91-1	1,4-Dioxane	ND	1.0	0.72	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.28	ug/l	
132-64-9	Dibenzofuran	ND	5.0	0.23	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.0	0.58	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.0	0.25	ug/l	
84-66-2	Diethyl phthalate	ND	2.0	0.23	ug/l	
131-11-3	Dimethyl phthalate	ND	2.0	0.26	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	0.55	ug/l	
206-44-0	Fluoranthene	ND	1.0	0.16	ug/l	
86-73-7	Fluorene	ND	1.0	0.27	ug/l	
118-74-1	Hexachlorobenzene	ND	1.0	0.46	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.0	0.39	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	0.48	ug/l	
67-72-1	Hexachloroethane	ND	2.0	0.29	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.40	ug/l	
78-59-1	Isophorone	ND	2.0	0.34	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.0	0.29	ug/l	
88-74-4	2-Nitroaniline	ND	5.0	0.32	ug/l	
99-09-2	3-Nitroaniline	ND	5.0	0.26	ug/l	
100-01-6	4-Nitroaniline	ND	5.0	0.30	ug/l	
91-20-3	Naphthalene	ND	1.0	0.27	ug/l	
98-95-3	Nitrobenzene	ND	2.0	0.52	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.38	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.21	ug/l	
85-01-8	Phenanthrene	ND	1.0	0.19	ug/l	
129-00-0	Pyrene	ND	1.0	0.19	ug/l	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.44	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	37%		12-1	10%	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

 $J \,=\, Indicates \ an \ estimated \ value$

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

25 of 1744 ACCUTEST, JB89708

Page 2 of 3

Raw Data: P93888.D

Report	of An	alysis
--------	-------	--------

Client Sam Lab Sampl Matrix: Method: Project:	ple ID: MW-3 le ID: JB89708-3 AQ - Ground Water SW846 8270D SW8 Elton Crossing, 899	846 3510C Elton Avenu	ie, Bronx,	NY	Date Date Perc	Sampled: (Received: (ent Solids: 1)3/11/15)3/11/15 1/a
Run #1 Run #2	File IDDFP93888.D1	Analyzed 03/17/15	By SD	Prep D 03/16/1	ate 5	Prep Batch OP82372	Analytical Batch EP4048
Run #1 Run #2	Initial Volume Final Volu 1000 ml 1.0 ml	me					
ABN TCL	List (SOM0 2.0)						
CAS No.	Compound	Result	RL	MDL	Units	Q	
95-57-8	2-Chlorophenol	ND	5.0	1.3	ug/l		
59-50-7	4-Chloro-3-methyl phenol	ND	5.0	1.3	ug/l		
120-83-2	2,4-Dichlorophenol	ND	2.0	1.6	ug/l		
105-67-9	2,4-Dimethylphenol	ND	5.0	1.8	ug/l		
51-28-5	2,4-Dinitrophenol	ND	20	6.5	ug/l		
534-52-1	4,6-Dinitro-o-cresol	ND	20	1.3	ug/l		
95-48-7	2-Methylphenol	ND	2.0	1.3	ug/l		
	3&4-Methylphenol	ND	2.0	1.1	ug/l		
88-75-5	2-Nitrophenol	ND	5.0	1.9	ug/l		
100-02-7	4-Nitrophenol	ND	10	0.91	ug/l		
87-86-5	Pentachlorophenol	ND	10	1.4	ug/l		
108-95-2	Phenol	ND	2.0	0.55	ug/l		
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.0	1.4	ug/l		
95-95-4	2,4,5-Trichlorophenol	ND	5.0	1.7	ug/l		
88-06-2	2,4,6-Trichlorophenol	ND	5.0	1.5	ug/l		
83-32-9	Acenaphthene	0.88	1.0	0.30	ug/l	J	
208-96-8	Acenaphthylene	ND	1.0	0.20	ug/l		
98-86-2	Acetophenone	ND	2.0	0.36	ug/l		
120-12-7	Anthracene	ND	1.0	0.19	ug/l		
1912-24-9	Atrazine	ND	2.0	0.42	ug/l		
100-52-7	Benzaldehyde	ND	5.0	0.67	ug/l		
56-55-3	Benzo(a)anthracene	ND	1.0	0.22	ug/l		
50-32-8	Benzo(a)pyrene	ND	1.0	0.24	ug/l		
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.22	ug/l		
191-24-2	Benzo(g,h,i)pervlene	ND	1.0	0.31	ug/l		
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.22	ug/l		
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.25	ug/l		
85-68-7	Butyl benzyl phthalate	ND	2.0	0.22	ug/l		
92-52-4	1.1'-Biphenyl	ND	1.0	0.27	ug/l		
91-58-7	2-Chloronanhthalene	ND	2.0	0.34	ug/l		
106-47-8	4-Chloroaniline	ND	5.0	0.30	ug/1		
86-74-8	Carbazole	ND	1.0	0.17	ug/l		

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 3

'n

Report of Analysis

Client Samp Lab Sample Matrix: Method: Project:	ole ID: MW-3 ID: JB89708-3 AQ - Ground Water SW846 8270D SW Elton Crossing, 899	7846 3510C Elton Avenue,	Bronx, N	Y	Date Sampled Date Received Percent Solids	: 03/11/15 : 03/11/15 : n/a
ABN TCL I	List (SOM0 2.0)					
CAS No.	Compound	Result	RL	MDL	Units Q	
105-60-2	Caprolactam	ND	2.0	0.41	ug/l	
218-01-9	Chrysene	ND	1.0	0.16	ug/l	
111-91-1	bis(2-Chloroethoxy)methan	e ND	2.0	0.42	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.43	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.0	0.41	ug/l	
7005-72-3	4-Chlorophenyl phenyl ethe	r ND	2.0	0.38	ug/l	
121-14-2	2.4-Dinitrotoluene	ND	1.0	0.32	ug/l	
606-20-2	2.6-Dinitrotoluene	ND	1.0	0.26	ug/l	
91-94-1	3.3'-Dichlorobenzidine	NO	2.0	0.56	ug/1 <i>R</i>	
123-91-1	1.4-Dioxane	ND	1.0	0.72	ug/l	
53-70-3	Dibenzo(a.h)anthracene	ND	1.0	0.28	ug/l	
132-64-9	Dibenzofuran	ND	5.0	0.23	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.0	0.58	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.0	0.25	ug/l	
84-66-2	Diethyl phthalate	ND	2.0	0.23	ug/l	
131-11-3	Dimethyl phthalate	ND	2.0	0.26	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	0.55	ug/l	
206-44-0	Fluoranthene	ND	1.0	0.16	ug/l	
86-73-7	Fluorene	ND	1.0	0.27	ug/l	
118-74-1	Hexachlorobenzene	ND	1.0	0.46	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.0	0.39	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	0.48	ug/l	
67-72-1	Hexachloroethane	ND	2.0	0.29	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.40	ug/l	
78-59-1	Isophorone	ND	2.0	0.34	ug/l	
91-57-6	2-Methylnanhthalene	ND	1.0	0.29	ug/l	
88-74-4	2-Nitroaniline	ND	5.0	0.32	ug/l	
99-09-2	3-Nitroaniline	ND	5.0	0.26	ug/l	
100-01-6	4-Nitroaniline	ND	5.0	0.30	ug/l	
91-20-3	Naphthalene	ND	1.0	0.27	ug/l	
98-95-3	Nitrobenzene	ND	2.0	0.52	ug/l	
621-64-7	N-Nitroso-di-n-propylamin	e ND	2.0	0.38	ug/l	
86-30-6	N-Nitrosodinhenvlamine	ND	5.0	0.21	ug/l	
85-01-8	Phenanthrene	ND	1.0	0.19	ug/l	
129-00-0	Pyrene	ND	1.0	0.19	ug/l	
95-94-3	1.2.4.5-Tetrachlorobenzen	ND	2.0	0.44	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	39%		12-1	10%	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Raw Data: P93889.D

Accutest Laboratories

Report of Analysis

(MW-2 Client Sample ID: MW-X JB89708-4 Date Sampled: 03/11/15 Lab Sample ID: AQ - Ground Water Date Received: 03/11/15 Matrix: SW846 8270D SW846 3510C Percent Solids: n/a Method: Elton Crossing, 899 Elton Avenue, Bronx, NY Project: Prep Date Prep Batch **Analytical Batch** File ID DF Analyzed By 03/17/15 SD 03/16/15 OP82372 **EP4048** P93889.D 1 Run #1 Run #2 Initial Volume **Final Volume** 1.0 ml Run #1 960 ml Run #2 ABN TCL List (SOM0 2.0) CAS No. Compound Result RL MDL Units Q ug/l 95-57-8 5.2 1.3 2-Chlorophenol ND 59-50-7 4-Chloro-3-methyl phenol ND 5.2 1.4 ug/l ug/l ND 2.1 2,4-Dichlorophenol 1.7 120-83-2 5.2 1.9 ug/l 2,4-Dimethylphenol ND 105-67-9 ug/l ND 21 6.8 51-28-5 2,4-Dinitrophenol 4,6-Dinitro-o-cresol ND 21 1.4 ug/l 534-52-1 2-Methylphenol ND 2.1 1.3 ug/l 95-48-7 2.1 ug/l 3&4-Methylphenol ND 1.1 ug/l 88-75-5 2-Nitrophenol ND 5.2 1.9 0.94 ug/l 4-Nitrophenol ND 10 100-02-7 1.4 ug/l 10 87-86-5 Pentachlorophenol ND 2.1 0.57 ug/l 108-95-2 Phenol ND 2.2.4.6 Tetrachlorophenol 5 2 MD 1 5 50 00 2 ug/l

86-74-8	Carbazole	ND	1.0	0.18	ug/l
106-47-8	4-Chloroaniline	ND	5.2	0.31	ug/l
91-58-7	2-Chloronaphthalene	ND	2.1	0.36	ug/l
92-52-4	1,1'-Biphenyl	ND	1.0	0.29	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.1	0.23	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.1	0.26	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.23	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.32	ug/l
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.23	ug/l
50-32-8	Benzo(a)pyrene	ND	1.0	0.25	ug/l
56-55-3	Benzo(a)anthracene	ND	1.0	0.23	ug/l
100-52-7	Benzaldehyde	ND	5.2	0.70	ug/l
1912-24-9	Atrazine	ND	2.1	0.44	ug/l
120-12-7	Anthracene	ND	1.0	0.20	ug/l
98-86-2	Acetophenone	0.66	2.1	0.38	ug/l
208-96-8	Acenaphthylene	ND	1.0	0.21	ug/l
83-32-9	Acenaphthene	ND	1.0	0.31	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.2	1.6	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.2	1.8	ug/l
28-90-2	2,3,4,0-1 etrachtorophenol	ND	5.2	1.5	ug/1

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

J

10/1/3/15

42 of 1744 ACCUTEST, JB89708

Page 1 of 3

5

Report of Analysis

Lab Sample ID:JB89708-4IMatrix:AQ - Ground WaterIMethod:SW846 8270DSW846 3510CProject:Elton Crossing, 899 Elton Avenue, Bronx, NY	Date Sampled: Date Received: Percent Solids:	03/11/15 03/11/15 n/a	
---	--	-----------------------------	--

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.1	0.42	ug/l	
218-01-9	Chrysene	ND	1.0	0.17	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.1	0.44	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.1	0.45	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.1	0.42	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.1	0.40	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.33	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.27	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.1	0.58	ug/l	
123-91-1	1,4-Dioxane	ND	1.0	0.74	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.29	ug/l	
132-64-9	Dibenzofuran	ND	5.2	0.24	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.1	0.61	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.1	0.26	ug/l	
84-66-2	Diethyl phthalate	ND	2.1	0.24	ug/l	
131-11-3	Dimethyl phthalate	ND	2.1	0.27	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.1	0.58	ug/l	
206-44-0	Fluoranthene	ND	1.0	0.17	ug/l	
86-73-7	Fluorene	ND	1.0	0.28	ug/l	
118-74-1	Hexachlorobenzene	ND	1.0	0.48	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.0	0.40	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	0.50	ug/l	
67-72-1	Hexachloroethane	ND	2.1	0.30	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.42	ug/l	
78-59-1	Isophorone	ND	2.1	0.35	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.0	0.30	ug/l	
88-74-4	2-Nitroaniline	ND	5.2	0.33	ug/l	
99-09-2	3-Nitroaniline	ND	5.2	0.27	ug/l	
100-01-6	4-Nitroaniline	ND	5.2	0.31	ug/l	
91-20-3	Naphthalene	ND	1.0	0.28	ug/l	
98-95-3	Nitrobenzene	ND	2.1	0.54	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.1	0.39	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.2	0.21	ug/l	
85-01-8	Phenanthrene	ND	1.0	0.19	ug/l	
129-00-0	Pyrene	ND	1.0	0.20	ug/l	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.1	0.46	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	38%	12-110%			

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Jory131,5

Report of Analysis

Client Sample ID: FB20150311 Date Sampled: 03/11/15 Lab Sample ID: JB89708-6 Date Received: 03/11/15 AQ - Field Blank Water Matrix: Percent Solids: n/a SW846 8270D SW846 3510C Method: Project: Elton Crossing, 899 Elton Avenue, Bronx, NY Prep Date Prep Batch Analytical Batch File ID DF Analyzed By OP82372 EP4048 03/17/15 SD 03/16/15 Run #1 P93890.D 1 Run #2 **Final Volume** Initial Volume Run #1 950 ml 1.0 ml Run #2 ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units Q
95-57-8	2-Chlorophenol	ND	5.3	1.3	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.3	1.4	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.1	1.7	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.3	1.9	ug/l
51-28-5	2,4-Dinitrophenol	ND	21	6.9	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	21	1.4	ug/l
95-48-7	2-Methylphenol	ND	2.1	1.3	ug/l
	3&4-Methylphenol	ND	2.1	1.1	ug/l
88-75-5	2-Nitrophenol	ND	5.3	1.9	ug/l
100-02-7	4-Nitrophenol	ND	11	0.95	ug/l
87-86-5	Pentachlorophenol	ND	11	1.4	ug/l
108-95-2	Phenol	ND	2.1	0.58	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.3	1.5	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.3	1.8	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.3	1.6	ug/l
83-32-9	Acenaphthene	ND	1.1	0.31	ug/l
208-96-8	Acenaphthylene	ND	1.1	0.21	ug/l
98-86-2	Acetophenone	ND	2.1	0.38	ug/l
120-12-7	Anthracene	ND	1.1	0.20	ug/l
1912-24-9	Atrazine	ND	2.1	0.45	ug/l
100-52-7	Benzaldehyde	ND	5.3	0.71	ug/l
56-55-3	Benzo(a)anthracene	ND	1.1	0.23	ug/l
50-32-8	Benzo(a)pyrene	ND	1.1	0.25	ug/l
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.23	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.33	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.23	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.1	0.26	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.1	0.23	ug/l
92-52-4	1,1'-Biphenyl	ND	1.1	0.29	ug/l
91-58-7	2-Chloronaphthalene	ND	2.1	0.36	ug/l
106-47-8	4-Chloroaniline	ND	5.3	0.32	ug/l
86-74-8	Carbazole	ND	1.1	0.18	ug/l

ND = Not detected MDL = Method Detection Limit

RL = **Reporting Limit**

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 3

Report of Analysis

Client Sample ID: Lab Sample ID: Matrix: Method: Project:	JB89708-6 AQ - Field Blank Water SW846 8270D SW846 3510C Elton Crossing, 899 Elton Avenue, Bronx, NY	Date Sampled: Date Received: Percent Solids:	03/11/15 03/11/15 n/a
Client Sample ID:	FB20150311		00/44/45

ABN TCL List (SOM0 2.0)

105-60-2 Caprolactam ND 2.1 0.43 ug/l 218-01-9 Chrysene ND 1.1 0.17 ug/l 111-91-1 bis(2-Chloroethy)methane ND 2.1 0.44 ug/l 108-60-1 bis(2-Chloroisopropy)lether ND 2.1 0.46 ug/l 108-60-1 bis(2-Chloroisopropy)lether ND 2.1 0.40 ug/l 10705-72-3 4-Chlorophenyl phenyl ether ND 2.1 0.40 ug/l 121-14-2 2,4-Dinitrotoluene ND 1.1 0.34 ug/l 606-20-2 2,6-Dinitrotoluene ND 1.1 0.77 ug/l 123-91-1 1,4-Dioxane ND 1.1 0.75 ug/l 132-64-9 Dibenzo(a,h)anthracene ND 2.1 0.61 ug/l 132-64-9 Dibenzofuran ND 2.1 0.26 ug/l 117-84-0 Di-n-octyl phthalate ND 2.1 0.28 ug/l 117-81-7 bis(2-Ethylnexyl)phthalate ND 2.1 0.28 ug/l </th <th>CAS No.</th> <th>Compound</th> <th>Result</th> <th>RL</th> <th>MDL</th> <th>Units</th> <th>Q</th>	CAS No.	Compound	Result	RL	MDL	Units	Q
218-01-9 Chrysene ND 1.1 0.17 ug/l 111-91-1 bis(2-Chloroethy))ether ND 2.1 0.44 ug/l 111-44-4 bis(2-Chloroethy))ether ND 2.1 0.43 ug/l 108-60-1 bis(2-Chloroisopropy))ether ND 2.1 0.40 ug/l 7005-72-3 4-Chlorophenyl phenyl ether ND 2.1 0.40 ug/l 121-14-2 2,4-Dinitrotoluene ND 1.1 0.34 ug/l 606-20-2 2,6-Dinitrotoluene ND 1.1 0.75 ug/l 123-91-1 1,4-Dioxane ND 1.1 0.75 ug/l 132-64-9 Dibenzofuran ND 5.3 0.24 ug/l 132-64-9 Dibenzofuran ND 2.1 0.26 ug/l 117-84-0 Di-n-octyl phthalate ND 2.1 0.26 ug/l 117-81-7 bis(2-Ethylphthalate ND 2.1 0.28 ug/l 117-81-7 bis(2-Ethylphthalate ND 1.1 0.14 ug/l 117-81-	105-60-2	Caprolactam	ND	2.1	0.43	ug/l	
111-91-1 bis(2-Chloroethoxy)methane ND 2.1 0.44 ug/l 111-44-4 bis(2-Chloroethyl)ether ND 2.1 0.43 ug/l 108-60-1 bis(2-Chloroethyl)ether ND 2.1 0.43 ug/l 7005-72-3 4-Chlorophnyl phenyl ether ND 2.1 0.44 ug/l 121-14-2 2,4-Dinitrotoluene ND 1.1 0.34 ug/l 91-94-1 3,3'-Dichlorobenzidine ND 2.1 0.59 ug/l 123-91-1 1,4-Dioxane ND 1.1 0.75 ug/l 53-70-3 Dibenzofuran ND 5.3 0.24 ug/l 117-84-0 Di-n-octyl phthalate ND 2.1 0.26 ug/l 84-74-2 Di-n-octyl phthalate ND 2.1 0.25 ug/l 117-84-6 Di-n-octyl phthalate ND 2.1 0.28 ug/l 113-11-3 Dimethyl phthalate ND 2.1 0.28 ug/l 117-81-7 bis(2-Ethylneyl)phthalate ND 1.1 0.44 ug/l	218-01-9	Chrysene	ND	1.1	0.17	ug/l	
111-44-4 bis(2-Chlorostopropyl)ether ND 2.1 0.46 ug/l 108-60-1 bis(2-Chlorostopropyl)ether ND 2.1 0.43 ug/l 7005-72-3 4-Chlorophenyl phenyl ether ND 2.1 0.40 ug/l 121-14-2 2,4-Dinitrotoluene ND 1.1 0.34 ug/l 606-20-2 2,6-Dinitrotoluene ND 1.1 0.75 ug/l 123-91-1 1,4-Dioxane ND 1.1 0.75 ug/l 53-70-3 Dibenzofuran ND 5.3 0.24 ug/l 132-64-9 Dibenzofuran ND 2.1 0.61 ug/l 132-64-9 Dibenzofuran ND 2.1 0.61 ug/l 84-74-2 Di-n-butyl phthalate ND 2.1 0.28 ug/l 117-84-0 Di-n-octyl phthalate ND 2.1 0.28 ug/l 117-81-7 bis(2-Ethylheyl)phthalate ND 2.1 0.58 ug/l 118-74-1 Hexachlorobenzene ND 1.1 0.44 ug/l 86	111-91-1	bis(2-Chloroethoxy)methane	ND	2.1	0.44	ug/l	
108-60-1 bis(2-Chloroisopropyl)ether ND 2.1 0.43 ug/l 7005-72-3 4-Chlorophenyl phenyl ether ND 2.1 0.44 ug/l 121-14-2 2.4-Dinitrotoluene ND 1.1 0.34 ug/l 91-94-1 3.3'-Dichlorobenzidine ND 1.1 0.77 ug/l 123-91-1 1.4-Dioxane ND 1.1 0.75 ug/l 53-70-3 Dibenzo(a,h)anthracene ND 5.3 0.24 ug/l 84-74-2 Di-n-butyl phthalate ND 2.1 0.61 ug/l 117-84-0 Di-n-octyl phthalate ND 2.1 0.26 ug/l 117-81-5 bis(2-Ethylhexyl)phthalate ND 2.1 0.28 ug/l 117-81-7 bis(2-Ethylhexyl)phthalate ND 2.1 0.28 ug/l 117-81-7 bis(2-Ethylhexyl)phthalate ND 1.1 0.17 ug/l 206-44-0 Fluoranthene ND 1.1 0.48 ug/l 118-74-1 Hexachlorobetzete ND 1.1 0.41 ug/l	111-44-4	bis(2-Chloroethyl)ether	ND	2.1	0.46	ug/l	
7005-72-3 4-Chlorophenyl phenyl ether ND 2.1 0.40 ug/l 121-14-2 2.4-Dinitrotoluene ND 1.1 0.34 ug/l 606-20-2 2.6-Dinitrotoluene ND 1.1 0.72 ug/l 91-94-1 3.3'-Dichlorobenzidine ND 2.1 0.59 ug/l 123-91-1 1.4-Dioxane ND 1.1 0.75 ug/l 53-70-3 Dibenzo(a,h)anthracene ND 2.1 0.61 ug/l 117-84-0 Di-n-otyl phthalate ND 2.1 0.26 ug/l 84-74-2 Di-n-butyl phthalate ND 2.1 0.26 ug/l 84-66-2 Diethyl phthalate ND 2.1 0.28 ug/l 117-84-0 Di-n-otyl phthalate ND 2.1 0.28 ug/l 1206-44-0 Fluoranthene ND 1.1 0.17 ug/l 86-73-7 Fluoranthene ND 1.1 0.48 ug/l 87-78-3 Hexachlorobenzene ND 1.1 0.48 ug/l 133-39-5	108-60-1	bis(2-Chloroisopropyl)ether	ND	2.1	0.43	ug/l	
121-14-2 2,4-Dinitrotoluene ND 1.1 0.34 ug/l 606-20-2 2,6-Dinitrotoluene ND 1.1 0.27 ug/l 91-94-1 3,3'-Dichlorobenzidine ND 2.1 0.59 ug/l 123-91-1 1,4-Dioxane ND 1.1 0.75 ug/l 53-70-3 Dibenzo(a,h)anthracene ND 1.1 0.29 ug/l 84-66-2 Di-n-butyl phthalate ND 2.1 0.61 ug/l 84-66-2 Diethyl phthalate ND 2.1 0.26 ug/l 117-84-0 Di-n-octyl phthalate ND 2.1 0.28 ug/l 117-81-7 bis(2-Ethylhexyl)phthalate ND 2.1 0.28 ug/l 117-81-7 bis(2-Ethylhexyl)phthalate ND 1.1 0.17 ug/l 86-73-7 Fluorene ND 1.1 0.48 ug/l 87-68-3 Hexachlorobutadiene ND 1.1 0.41 ug/l 17-47-4 Hexachlorobutadiene ND 1.1 0.41 ug/l 18-78-1<	7005-72-3	4-Chlorophenyl phenyl ether	ND	2.1	0.40	ug/l	
606-20-2 2, 6-Dinitrotoluene ND 1.1 0.27 ug/l 91-94-1 3, 3'-Dichlorobenzidine ND 2.1 0.59 ug/l 123-91-1 1, 4-Dioxane ND 1.1 0.75 ug/l 32-64-9 Dibenzo(a,h)anthracene ND 5.3 0.24 ug/l 84-74-2 Di-n-butyl phthalate ND 2.1 0.61 ug/l 84-74-2 Di-n-octyl phthalate ND 2.1 0.26 ug/l 84-66-2 Diethyl phthalate ND 2.1 0.28 ug/l 117-81-7 bis(2-Ethylhexyl)phthalate ND 2.1 0.58 ug/l 206-44-0 Fluoranthene ND 1.1 0.17 ug/l 86-73-7 Fluorene ND 1.1 0.48 ug/l 7-74-4 Hexachlorobenzene ND 1.1 0.41 ug/l 77-47-4 Hexachlorocyclopentadiene ND 1.1 0.41 ug/l 187-68-3 Indeno(1,	121-14-2	2,4-Dinitrotoluene	ND	1.1	0.34	ug/l	
91-94-1 3,3'-Dichlorobenzidine ND 2.1 0.59 ug/l 123-91-1 1,4-Dioxane ND 1.1 0.75 ug/l 53-70-3 Dibenzo(a,h)anthracene ND 5.3 0.24 ug/l 132-64-9 Dibenzofuran ND 5.3 0.24 ug/l 84-74-2 Di-n-butyl phthalate ND 2.1 0.61 ug/l 84-76-2 Dien-octyl phthalate ND 2.1 0.26 ug/l 84-66-2 Diethyl phthalate ND 2.1 0.28 ug/l 117-81-7 bis(2-Ethylkexyl)phthalate ND 2.1 0.58 ug/l 206-44-0 Fluoranthene ND 1.1 0.17 ug/l 86-73-7 Fluorene ND 1.1 0.48 ug/l 87-68-3 Hexachlorobenzene ND 1.1 0.44 ug/l 87-74-4 Hexachlorocyclopentadiene ND 1.1 0.41 ug/l 91-33-95 Indeno(1, 2, 3-cd)pyrene ND 2.1 0.36 ug/l 91-33-94	606-20-2	2,6-Dinitrotoluene	ND	1.1	0.27	ug/l	
123-91-1 1,4-Dioxane ND 1.1 0.75 ug/l 53-70-3 Dibenzo(a,h)anthracene ND 1.1 0.29 ug/l 132-64-9 Dibenzofuran ND 5.3 0.24 ug/l 84-74-2 Di-n-butyl phthalate ND 2.1 0.61 ug/l 117-84-0 Di-n-octyl phthalate ND 2.1 0.26 ug/l 84-66-2 Diethyl phthalate ND 2.1 0.28 ug/l 117-81-7 bis(2-Ethylhexyl)phthalate ND 2.1 0.58 ug/l 206-44-0 Fluoranthene ND 1.1 0.17 ug/l 118-74-1 Hexachlorobenzene ND 1.1 0.48 ug/l 118-74-1 Hexachlorocyclopentadiene ND 1.1 0.44 ug/l 77-47-4 Hexachlorocyclopentadiene ND 1.1 0.42 ug/l 193-39-5 Indeno(1,2,3-cd)pyrene ND 1.1 0.34 ug/l 91-57-6 2-Methylnaphthalene ND 1.1 0.33 ug/l 99-0	91-94-1	3,3'-Dichlorobenzidine	ND	2.1	0.59	ug/l	
53-70-3 Dibenzo(a,h)anthracene ND 1.1 0.29 ug/l 132-64-9 Dibenzofuran ND 5.3 0.24 ug/l 84-74-2 Di-n-butyl phthalate ND 2.1 0.61 ug/l 117-84-0 Di-n-octyl phthalate ND 2.1 0.26 ug/l 84-66-2 Diethyl phthalate ND 2.1 0.28 ug/l 131-11-3 Dimethyl phthalate ND 2.1 0.28 ug/l 131-11-3 Dimethyl phthalate ND 2.1 0.58 ug/l 206-44-0 Fluoranthene ND 1.1 0.17 ug/l 86-73-7 Fluorene ND 1.1 0.48 ug/l 87-68-3 Hexachlorobenzene ND 1.1 0.48 ug/l 87-68-3 Hexachlorocyclopentadiene ND 1.1 0.41 ug/l 97-47-4 Hexachlorocyclopentadiene ND 1.1 0.41 ug/l 913-3-9.5 Indeno(1,2,3-cd)pyrene ND 1.1 0.31 ug/l 91-3-7-6	123-91-1	1,4-Dioxane	ND	1.1	0.75	ug/l	
132-64-9 Dibenzofuran ND 5.3 0.24 ug/l 84-74-2 Di-n-butyl phthalate ND 2.1 0.61 ug/l 117-84-0 Di-n-octyl phthalate ND 2.1 0.26 ug/l 84-66-2 Diethyl phthalate ND 2.1 0.25 ug/l 131-13-3 Dimethyl phthalate ND 2.1 0.58 ug/l 206-44-0 Fluoranthene ND 1.1 0.17 ug/l 206-44-0 Fluoranthene ND 1.1 0.17 ug/l 86-73-7 Fluorene ND 1.1 0.48 ug/l 118-74-1 Hexachlorobenzene ND 1.1 0.48 ug/l 87-68-3 Hexachlorocyclopentadiene ND 1.1 0.41 ug/l 77-47-4 Hexachlorocyclopentadiene ND 1.1 0.41 ug/l 193-39-5 Inden0(1,2,3-cd)pyrene ND 1.1 0.42 ug/l 88-74-4 2-Nitroaniline ND 5.3 0.33 ug/l 91-57-6 2-Methyl	53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.29	ug/l	
84-74-2 Di-n-butyl phthalate ND 2.1 0.61 ug/l 117-84-0 Di-n-octyl phthalate ND 2.1 0.26 ug/l 84-66-2 Diethyl phthalate ND 2.1 0.25 ug/l 131-11-3 Dimethyl phthalate ND 2.1 0.28 ug/l 117-81-7 bis(2-Ethylhexyl)phthalate ND 2.1 0.58 ug/l 206-44-0 Fluoranthene ND 1.1 0.17 ug/l 86-73-7 Fluorene ND 1.1 0.48 ug/l 87-68-3 Hexachlorobenzene ND 1.1 0.44 ug/l 87-68-3 Hexachlorocyclopentadiene ND 1.1 0.41 ug/l 77-47-4 Hexachlorocyclopentadiene ND 1.1 0.41 ug/l 193-39-5 Indeno(1, 2, 3-cd) pyrene ND 1.1 0.42 ug/l 198-76-6 2-Methylnaphthalene ND 5.3 0.33 ug/l 99-09-2 3-Nitroaniline ND 5.3 0.32 ug/l 100-01-6	132-64-9	Dibenzofuran	ND	5.3	0.24	ug/l	
117-84-0 Di-n-octyl phthalate ND 2.1 0.26 ug/l 84-66-2 Diethyl phthalate ND 2.1 0.25 ug/l 131-11-3 Dimethyl phthalate ND 2.1 0.28 ug/l 117-81-7 bis(2-Ethylhexyl)phthalate ND 2.1 0.58 ug/l 206-44-0 Fluoranthene ND 1.1 0.17 ug/l 86-73-7 Fluorene ND 1.1 0.48 ug/l 87-68-3 Hexachlorobenzene ND 1.1 0.41 ug/l 77-47-4 Hexachlorobutadiene ND 1.1 0.41 ug/l 97-85-3 Indeno(1,2,3-cd) pyrene ND 1.1 0.42 ug/l 91-57-6 2-Methylnaphthalene ND 1.1 0.42 ug/l 91-57-6 2-Methylnaphthalene ND 5.3 0.33 ug/l 99-09-2 3-Nitroaniline ND 5.3 0.32 ug/l 91-20-3 Naphthalene ND 1.1 0.28 ug/l 98-95-3 Nitrobenze	84-74-2	Di-n-butyl phthalate	ND	2.1	0.61	ug/l	
84-66-2 Diethyl phthalate ND 2.1 0.25 ug/l 131-11-3 Dimethyl phthalate ND 2.1 0.28 ug/l 117-81-7 bis(2-Ethylhexyl)phthalate ND 2.1 0.58 ug/l 206-44-0 Fluoranthene ND 1.1 0.17 ug/l 86-73-7 Fluorene ND 1.1 0.29 ug/l 118-74-1 Hexachlorobenzene ND 1.1 0.48 ug/l 87-68-3 Hexachlorobutadiene ND 1.1 0.41 ug/l 77-47-4 Hexachlorocyclopentadiene ND 1.1 0.41 ug/l 193-39-5 Indeno(1,2,3-cd)pyrene ND 1.1 0.42 ug/l 91-57-6 2-Methylnaphthalene ND 1.1 0.31 ug/l 91-57-6 2-Methylnaphthalene ND 5.3 0.33 ug/l 99-09-2 3-Nitroaniline ND 5.3 0.32 ug/l 91-20-3 Naphthalene ND 1.1 0.28 ug/l 98-95-3 Nitro	117-84-0	Di-n-octyl phthalate	ND	2.1	0.26	ug/l	
131-11-3 Dimethyl phthalate ND 2.1 0.28 ug/l 117-81-7 bis(2-Ethylhexyl)phthalate ND 2.1 0.58 ug/l 206-44-0 Fluoranthene ND 1.1 0.17 ug/l 86-73-7 Fluorene ND 1.1 0.29 ug/l 118-74-1 Hexachlorobenzene ND 1.1 0.48 ug/l 87-68-3 Hexachlorobutadiene ND 1.1 0.41 ug/l 77-47-4 Hexachlorocyclopentadiene ND 1.1 0.41 ug/l 67-72-1 Hexachlorooethane ND 2.1 0.30 ug/l 193-39-5 Indeno(1,2,3-cd)pyrene ND 1.1 0.42 ug/l 91-57-6 2-Methylnaphthalene ND 5.3 0.33 ug/l 91-90-2 3-Nitroaniline ND 5.3 0.32 ug/l 100-01-6 4-Nitroaniline ND 5.3 0.32 ug/l 91-20-3 Naphthalene ND 1.1 0.28 ug/l 98-95-3 Nitrobenz	84-66-2	Diethyl phthalate	ND	2.1	0.25	ug/l	
117-81-7 bis(2-Ethylhexyl)phthalate ND 2.1 0.58 ug/l 206-44-0 Fluoranthene ND 1.1 0.17 ug/l 86-73-7 Fluorene ND 1.1 0.29 ug/l 118-74-1 Hexachlorobenzene ND 1.1 0.48 ug/l 87-68-3 Hexachlorobutadiene ND 1.1 0.41 ug/l 77-47-4 Hexachlorocyclopentadiene ND 1.1 0.41 ug/l 67-72-1 Hexachlorochtane ND 2.1 0.30 ug/l 193-39-5 Indeno(1, 2, 3-cd) pyrene ND 1.1 0.42 ug/l 91-57-6 2-Methylnaphthalene ND 1.1 0.31 ug/l 98-76-4 2-Nitroaniline ND 5.3 0.32 ug/l 99-09-2 3-Nitroaniline ND 5.3 0.32 ug/l 91-20-3 Naphthalene ND 1.1 0.28 ug/l 98-95-3 Nitrobenzene ND 2.1 0.40 ug/l 88-30-6 N-Nitrosodiphen	131-11-3	Dimethyl phthalate	ND	2.1	0.28	ug/l	
206-44-0 Fluoranthene ND 1.1 0.17 ug/l 86-73-7 Fluorene ND 1.1 0.29 ug/l 118-74-1 Hexachlorobenzene ND 1.1 0.48 ug/l 87-68-3 Hexachlorobutadiene ND 1.1 0.41 ug/l 87-68-3 Hexachlorocyclopentadiene ND 1.1 0.41 ug/l 87-68-3 Hexachlorocyclopentadiene ND 1.1 0.41 ug/l 87-68-3 Hexachlorocyclopentadiene ND 2.1 0.30 ug/l 193-39-5 Indeno(1,2,3-cd)pyrene ND 1.1 0.42 ug/l 98-59-1 Isophorone ND 2.1 0.36 ug/l 91-57-6 2-Methylnaphthalene ND 5.3 0.33 ug/l 99-09-2 3-Nitroaniline ND 5.3 0.28 ug/l 100-01-6 4-Nitroaniline ND 5.3 0.32 ug/l 98-95-3 Nitrobenzene ND 2.1 0.55 ug/l 621-64-7 N-Nitrosod	117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.1	0.58	ug/l	
86-73-7 Fluorene ND 1.1 0.29 ug/l 118-74-1 Hexachlorobenzene ND 1.1 0.48 ug/l 87-68-3 Hexachlorobutadiene ND 1.1 0.41 ug/l 87-68-3 Hexachlorobutadiene ND 1.1 0.41 ug/l 87-68-3 Hexachlorocyclopentadiene ND 1.1 0.41 ug/l 87-68-3 Hexachlorocyclopentadiene ND 1.1 0.41 ug/l 77-47-4 Hexachlorocyclopentadiene ND 2.1 0.30 ug/l 193-39-5 Indeno(1,2,3-cd) pyrene ND 1.1 0.42 ug/l 78-59-1 Isophorone ND 1.1 0.42 ug/l 91-57-6 2-Methylnaphthalene ND 1.1 0.31 ug/l 98-74-4 2-Nitroaniline ND 5.3 0.33 ug/l 99-09-2 3-Nitroaniline ND 5.3 0.32 ug/l 100-01-6 4-Nitroaniline ND 1.1 0.28 ug/l 98-95-3 Ni	206-44-0	Fluoranthene	ND	1.1	0.17	ug/l	
118-74-1 Hexachlorobenzene ND 1.1 0.48 ug/l 87-68-3 Hexachlorobutadiene ND 1.1 0.41 ug/l 77-47-4 Hexachlorocyclopentadiene ND 11 0.51 ug/l 67-72-1 Hexachloroethane ND 2.1 0.30 ug/l 193-39-5 Indeno(1,2,3-cd)pyrene ND 1.1 0.42 ug/l 78-59-1 Isophorone ND 2.1 0.36 ug/l 91-57-6 2-Methylnaphthalene ND 1.1 0.31 ug/l 88-74-4 2-Nitroaniline ND 5.3 0.33 ug/l 99-09-2 3-Nitroaniline ND 5.3 0.32 ug/l 100-01-6 4-Nitroaniline ND 5.3 0.32 ug/l 98-95-3 Nitrobenzene ND 2.1 0.55 ug/l 621-64-7 N-Nitrosodiphenylamine ND 2.1 0.40 ug/l 86-30-6 N-Nitrosodiphenylamine ND 5.3 0.22 ug/l 129-00-0 Pyrene<	86-73-7	Fluorene	ND	1.1	0.29	ug/l	
87-68-3 Hexachlorobutadiene ND 1.1 0.41 ug/l 77-47-4 Hexachlorocyclopentadiene ND 11 0.51 ug/l 67-72-1 Hexachloroethane ND 2.1 0.30 ug/l 193-39-5 Indeno(1,2,3-cd)pyrene ND 1.1 0.42 ug/l 78-59-1 Isophorone ND 2.1 0.36 ug/l 91-57-6 2-Methylnaphthalene ND 1.1 0.31 ug/l 88-74-4 2-Nitroaniline ND 5.3 0.33 ug/l 99-09-2 3-Nitroaniline ND 5.3 0.32 ug/l 100-01-6 4-Nitroaniline ND 5.3 0.32 ug/l 98-95-3 Nitrobenzene ND 2.1 0.55 ug/l 621-64-7 N-Nitrosodiphenylamine ND 5.3 0.22 ug/l 86-30-6 N-Nitrosodiphenylamine ND 5.3 0.22 ug/l 129-00-0 Pyrene ND 1.1 0.19 ug/l 95-94-3 1,2,4,5-Tetrachloro	118-74-1	Hexachlorobenzene	ND	1.1	0.48	ug/l	
77-47-4 Hexachlorocyclopentadiene ND 11 0.51 ug/l 67-72-1 Hexachloroethane ND 2.1 0.30 ug/l 193-39-5 Indeno(1,2,3-cd)pyrene ND 1.1 0.42 ug/l 78-59-1 Isophorone ND 2.1 0.36 ug/l 91-57-6 2-Methylnaphthalene ND 1.1 0.31 ug/l 88-74-4 2-Nitroaniline ND 5.3 0.33 ug/l 99-09-2 3-Nitroaniline ND 5.3 0.28 ug/l 100-01-6 4-Nitroaniline ND 5.3 0.32 ug/l 98-95-3 Nitrobenzene ND 2.1 0.55 ug/l 621-64-7 N-Nitroso-di-n-propylamine ND 5.3 0.22 ug/l 86-30-6 N-Nitrosodiphenylamine ND 5.3 0.22 ug/l 85-01-8 Phenanthrene ND 1.1 0.19 ug/l 129-00-0 Pyrene ND 1.1 0.47 ug/l CAS No. Sur ogate Recoveries </td <td>87-68-3</td> <td>Hexachlorobutadiene</td> <td>ND</td> <td>1.1</td> <td>0.41</td> <td>ug/l</td> <td></td>	87-68-3	Hexachlorobutadiene	ND	1.1	0.41	ug/l	
67-72-1 Hexachloroethane ND 2.1 0.30 ug/l 193-39-5 Indeno(1,2,3-cd)pyrene ND 1.1 0.42 ug/l 78-59-1 Isophorone ND 2.1 0.36 ug/l 91-57-6 2-Methylnaphthalene ND 1.1 0.31 ug/l 88-74-4 2-Nitroaniline ND 5.3 0.33 ug/l 99-09-2 3-Nitroaniline ND 5.3 0.28 ug/l 100-01-6 4-Nitroaniline ND 5.3 0.32 ug/l 91-20-3 Naphthalene ND 1.1 0.28 ug/l 98-95-3 Nitrobenzene ND 2.1 0.40 ug/l 621-64-7 N-Nitroso-di-n-propylamine ND 2.1 0.40 ug/l 86-30-6 N-Nitrosodiphenylamine ND 1.1 0.19 ug/l 129-00-0 Pyrene ND 1.1 0.20 ug/l 95-94-3 1,2,4,5-Tetrachlorobenzene ND 2.1 0.47 ug/l CAS No. Surrogate Recoveries<	77-47-4	Hexachlorocyclopentadiene	ND	11	0.51	ug/l	
193-39-5 Indeno(1,2,3-cd)pyrene ND 1.1 0.42 ug/l 78-59-1 Isophorone ND 2.1 0.36 ug/l 91-57-6 2-Methylnaphthalene ND 1.1 0.31 ug/l 88-74-4 2-Nitroaniline ND 5.3 0.33 ug/l 99-09-2 3-Nitroaniline ND 5.3 0.28 ug/l 100-01-6 4-Nitroaniline ND 5.3 0.32 ug/l 91-20-3 Naphthalene ND 1.1 0.28 ug/l 98-95-3 Nitrobenzene ND 2.1 0.55 ug/l 621-64-7 N-Nitroso-di-n-propylamine ND 2.1 0.40 ug/l 86-30-6 N-Nitrosodiphenylamine ND 5.3 0.22 ug/l 85-01-8 Phenanthrene ND 1.1 0.19 ug/l 129-00-0 Pyrene ND 1.1 0.20 ug/l 95-94-3 1,2,4,5-Tetrachlorobenzene ND 2.1 0.47 ug/l CAS No. Surrogate Recoveries	67-72-1	Hexachloroethane	ND	2.1	0.30	ug/l	
78-59-1 Isophorone ND 2.1 0.36 ug/l 91-57-6 2-Methylnaphthalene ND 1.1 0.31 ug/l 88-74-4 2-Nitroaniline ND 5.3 0.33 ug/l 99-09-2 3-Nitroaniline ND 5.3 0.28 ug/l 100-01-6 4-Nitroaniline ND 5.3 0.32 ug/l 91-20-3 Naphthalene ND 1.1 0.28 ug/l 98-95-3 Nitrobenzene ND 2.1 0.55 ug/l 621-64-7 N-Nitroso-di-n-propylamine ND 2.1 0.40 ug/l 86-30-6 N-Nitrosodiphenylamine ND 5.3 0.22 ug/l 85-01-8 Phenanthrene ND 1.1 0.19 ug/l 129-00-0 Pyrene ND 1.1 0.20 ug/l 95-94-3 1,2,4,5-Tetrachlorobenzene ND 2.1 0.47 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits 367-12-4 2-Fluorophenol 45%	193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.42	ug/l	
91-57-6 2-Methylnaphthalene ND 1.1 0.31 ug/l 88-74-4 2-Nitroaniline ND 5.3 0.33 ug/l 99-09-2 3-Nitroaniline ND 5.3 0.28 ug/l 100-01-6 4-Nitroaniline ND 5.3 0.32 ug/l 91-20-3 Naphthalene ND 1.1 0.28 ug/l 98-95-3 Nitrobenzene ND 2.1 0.55 ug/l 621-64-7 N-Nitroso-di-n-propylamine ND 2.1 0.40 ug/l 86-30-6 N-Nitrosodiphenylamine ND 5.3 0.22 ug/l 85-01-8 Phenanthrene ND 1.1 0.19 ug/l 129-00-0 Pyrene ND 1.1 0.20 ug/l 95-94-3 1,2,4,5-Tetrachlorobenzene ND 2.1 0.47 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits 367-12-4 2-Fluorophenol 45% 12-110%	78-59-1	Isophorone	ND	2.1	0.36	ug/l	
88-74-4 2-Nitroaniline ND 5.3 0.33 ug/l 99-09-2 3-Nitroaniline ND 5.3 0.28 ug/l 100-01-6 4-Nitroaniline ND 5.3 0.32 ug/l 91-20-3 Naphthalene ND 1.1 0.28 ug/l 98-95-3 Nitrobenzene ND 2.1 0.55 ug/l 621-64-7 N-Nitroso-di-n-propylamine ND 2.1 0.40 ug/l 86-30-6 N-Nitrosodiphenylamine ND 5.3 0.22 ug/l 85-01-8 Phenanthrene ND 1.1 0.19 ug/l 129-00-0 Pyrene ND 1.1 0.20 ug/l 95-94-3 1,2,4,5-Tetrachlorobenzene ND 2.1 0.47 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits 367-12-4 2-Fluorophenol 45% 12-110%	91-57-6	2-Methylnaphthalene	ND	1.1	0.31	ug/l	
99-09-2 3-Nitroaniline ND 5.3 0.28 ug/l 100-01-6 4-Nitroaniline ND 5.3 0.32 ug/l 91-20-3 Naphthalene ND 1.1 0.28 ug/l 98-95-3 Nitrobenzene ND 2.1 0.55 ug/l 621-64-7 N-Nitroso-di-n-propylamine ND 2.1 0.40 ug/l 86-30-6 N-Nitrosodiphenylamine ND 5.3 0.22 ug/l 85-01-8 Phenanthrene ND 1.1 0.19 ug/l 129-00-0 Pyrene ND 1.1 0.20 ug/l 95-94-3 1,2,4,5-Tetrachlorobenzene ND 2.1 0.47 ug/l CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 367-12-4 2-Fluorophenol 45% 12-110%	88-74-4	2-Nitroaniline	ND	5.3	0.33	ug/l	
100-01-6 4-Nitroaniline ND 5.3 0.32 ug/l 91-20-3 Naphthalene ND 1.1 0.28 ug/l 98-95-3 Nitrobenzene ND 2.1 0.55 ug/l 621-64-7 N-Nitroso-di-n-propylamine ND 2.1 0.40 ug/l 86-30-6 N-Nitrosodiphenylamine ND 5.3 0.22 ug/l 85-01-8 Phenanthrene ND 1.1 0.19 ug/l 129-00-0 Pyrene ND 1.1 0.20 ug/l 95-94-3 1,2,4,5-Tetrachlorobenzene ND 2.1 0.47 ug/l CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 367-12-4 2-Fluorophenol 45% 12-110%	99-09-2	3-Nitroaniline	ND	5.3	0.28	ug/l	
91-20-3 Naphthalene ND 1.1 0.28 ug/l 98-95-3 Nitrobenzene ND 2.1 0.55 ug/l 621-64-7 N-Nitroso-di-n-propylamine ND 2.1 0.40 ug/l 86-30-6 N-Nitrosodiphenylamine ND 5.3 0.22 ug/l 85-01-8 Phenanthrene ND 1.1 0.19 ug/l 129-00-0 Pyrene ND 1.1 0.20 ug/l 95-94-3 1,2,4,5-Tetrachlorobenzene ND 2.1 0.47 ug/l CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 367-12-4 2-Fluorophenol 45% 12-110%	100-01-6	4-Nitroaniline	ND	5.3	0.32	ug/l	
98-95-3 Nitrobenzene ND 2.1 0.55 ug/l 621-64-7 N-Nitroso-di-n-propylamine ND 2.1 0.40 ug/l 86-30-6 N-Nitrosodiphenylamine ND 5.3 0.22 ug/l 85-01-8 Phenanthrene ND 1.1 0.19 ug/l 129-00-0 Pyrene ND 1.1 0.20 ug/l 95-94-3 1,2,4,5-Tetrachlorobenzene ND 2.1 0.47 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits 367-12-4 2-Fluorophenol 45% 12-110%	91-20-3	Naphthalene	ND	1.1	0.28	ug/l	
621-64-7 N-Nitroso-di-n-propylamine ND 2.1 0.40 ug/l 86-30-6 N-Nitrosodiphenylamine ND 5.3 0.22 ug/l 85-01-8 Phenanthrene ND 1.1 0.19 ug/l 129-00-0 Pyrene ND 1.1 0.20 ug/l 95-94-3 1,2,4,5-Tetrachlorobenzene ND 2.1 0.47 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits 367-12-4 2-Fluorophenol 45% 12-110%	98-95-3	Nitrobenzene	ND	2.1	0.55	ug/l	
86-30-6 N-Nitrosodiphenylamine ND 5.3 0.22 ug/l 85-01-8 Phenanthrene ND 1.1 0.19 ug/l 129-00-0 Pyrene ND 1.1 0.20 ug/l 95-94-3 1,2,4,5-Tetrachlorobenzene ND 2.1 0.47 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits 367-12-4 2-Fluorophenol 45% 12-110%	621-64-7	N-Nitroso-di-n-propylamine	ND	2.1	0.40	ug/l	
85-01-8 Phenanthrene ND 1.1 0.19 ug/l 129-00-0 Pyrene ND 1.1 0.20 ug/l 95-94-3 1,2,4,5-Tetrachlorobenzene ND 2.1 0.47 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits 367-12-4 2-Fluorophenol 45% 12-110%	86-30-6	N-Nitrosodiphenylamine	ND	5.3	0.22	ug/l	
129-00-0 Pyrene ND 1.1 0.20 ug/l 95-94-3 1,2,4,5-Tetrachlorobenzene ND 2.1 0.47 ug/l CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 367-12-4 2-Fluorophenol 45% 12-110%	85-01-8	Phenanthrene	ND	1.1	0.19	ug/l	
95-94-31,2,4,5-TetrachlorobenzeneND2.10.47ug/lCAS No.Surrogate RecoveriesRun# 1Run# 2Limits367-12-42-Fluorophenol45%12-110%	129-00-0	Pyrene	ND	1.1	0.20	ug/l	
CAS No.Surrogate RecoveriesRun# 1Run# 2Limits367-12-42-Fluorophenol45%12-110%	95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.1	0.47	ug/l	
367-12-4 2-Fluorophenol 45% 12-110%	CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
	367-12-4	2-Fluorophenol	45%		12-1	10%	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 3

Accutest LabLink@841363 10:44 06-Mar-2015

	Report of Analysis							
Client Sam Lab Sample Matrix: Method: Project:	ple ID: SS-1 e ID: JB88569 SO - Soi SW846 8 Elton Cr	-2 1 8081B SW rossing, 899	/846 3546) Elton Avenu	e, Bronx, N	Y	Date Date Perc	e Sampled: e Received: cent Solids:	02/19/15 02/20/15 79.8
Run #1 Run #2 Run #3	File ID 1G109446.D 1G109488.D 1G109516.D	DF 1 100 200	Analyzed 02/24/15 02/25/15 02/26/15	By KJ KJ YD	Prep D 02/24/1 02/24/1 02/24/1	ate 5.5 5.5	Prep Batc OP81980 OP81980 OP81980	h Analytical Batch G1G3602 G1G3603 G1G3604
Run #1 Run #2 Run #3	Initial Weight 16.7 g 16.7 g 16.7 g	Final Volu 10.0 ml 10.0 ml 10.0 ml	ume					
Pesticide T	CL List							
CAS No.	Compound		Result	RL	MDL	Units	Q	
309-00-2 319-84-6 319-85-7 319-86-8 58-89-9 5103-71-9 5103-74-2 60-57-1 72-54-8 72-55-9	Aldrin ^a alpha-BHC beta-BHC delta-BHC gamma-BHC (L alpha-Chlordane gamma-Chlorda Dieldrin 4,4'-DDD 4.4'-DDE	indane) e ne	23.1 ND ND ND 2340 b 3330 b 7220 e 144 b 1250 b	0.75 0.75 0.75 0.75 0.75 75 75 150 75 75	0.35 0.22 0.47 0.37 0.37 28 52 59 41 30	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	5	
50-29-3 72-20-8 1031-07-8 7421-93-4 959-98-8 33213-65-9 76-44-8	4,4'-DDT Endrin Endosulfan sulfa Endrin aldehyde Endosulfan-I Endosulfan-II Hentachlor	ite	1190 b 168 b ND ND ND ND 1520 b	75 75 0.75 0.75 0.75 0.75 0.75 75	37 24 0.32 0.39 0.28 0.45 37	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg		
1024-57-3 72-43-5 53494-70-5 8001-35-2	Heptachlor epox Methoxychlor Endrin ketone Toxaphene	tide ^a	322- ^b ND ND ND	75 1.5 0.75 19	28 0.73 0.31 9.5	ug/kg ug/kg ug/kg ug/kg		
CAS No.	Surrogate Reco	veries	Run# 1	Run# 2	Run	# 3	Limits	
877-09-8 877-09-8 2051-24-3 2051-24-3	Tetrachloro-m-x Tetrachloro-m-x Decachlorobiphe Decachlorobiphe	ylene ylene enyl enyl	106% 128% 87% 92%	0% d 0% d 0% d 0% d	0% 0% 0%	d d d	10-129% 10-129% 10-144% 10-144%	

(a) More than 40 % RPD for detected concentrations between the two GC columns.

ND = Not detected MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

N

	Report of Analysis							
Client Sam Lab Sampl Matrix: Method: Project:	iple ID: SSB-1 le ID: JB8893 SO - S SW840 Elton ((0-2) 35-1 oil 5 8081B SW Crossing, 899	/846 3546) Elton Avenue	e, Bronx, N	IY	Da Da Pei	te Sampled: te Received: cent Solids:	02/25/15 02/26/15 70.6
Run #1 Run #2 Run #3	File ID 4G53977.D 4G54005.D 4G54029.D	DF 1 100 500	Analyzed 03/03/15 03/04/15 03/04/15	By YD KJ KJ	Prep Da 03/02/1 03/02/1 03/02/1	ate 5 5 5	Prep Bato OP82082 OP82082 OP82082 OP82082	h Analytical Batch G4G1399 G4G1400 G4G1400
Run #1 Run #2 Run #3	Initial Weight 15.1 g 15.1 g 15.1 g	Final Vol 10.0 ml 10.0 ml 10.0 ml	ume					
Pesticide T	CL List							
CAS No.	Compound		Result	RL	MDL	Units	Q	
309-00-2 319-84-6 319-85-7 319-86-8 58-89-9 5103-71-9 5103-74-2 60-57-1 72-54-8 72-55-9 50-29-3 72-20-8 1031-07-8 7421-93-4 959-98-8 33213-65-9 76-44-8 1024-57-3	Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (alpha-Chlordan gamma-Chlord Dieldrin 4,4'-DDD 4,4'-DDT Endrin Endosulfan sul Endrin aldehyd Endosulfan-II Heptachlor Heptachlor epd	Lindane) ne ^b lane fate le vxide	ND ND ND 253** 19400 * 21600 * 8930 * 7320 * 2710* ND 817* ND 817 * ND ND ND ND ND ND ND	$\begin{array}{c} 0.94\\ 0.94\\ 0.94\\ 0.94\\ 94\\ 470\\ 470\\ 470\\ 470\\ 470\\ 94\\ 0.$	$\begin{array}{c} 0.43\\ 0.28\\ 0.58\\ 0.46\\ 46\\ 170\\ 320\\ 180\\ 260\\ 38\\ 0.46\\ 30\\ 0.40\\ 0.49\\ 0.36\\ 0.56\\ 0.46\\ 0.35\\ \end{array}$	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	DRADD D	
72-43-5	Methoxychlor	ixiue	ND	0.94 1.9	0.35 0.92	ug/kg ug/kg		
53494-70-5	Endrin ketone		ND	0.94	0.38	ug/kg		
8001-35-2	Toxaphene		ND	23	12	ug/kg		
CAS No.	Surrogate Rec	overies	Run# 1	Run# 2	Run#	¥ 3	Limits	
877-09-8 877-09-8 2051-24-3 2051-24-3	Tetrachloro-m- Tetrachloro-m- Decachlorobipl Decachlorobipl	xylene xylene 1enyl 1enyl	34% 103% 95% 251% e	0% d 0% d 0% d 0% d	0% d 0% d 0% d		10-129% 10-129% 10-144% 10-144%	

(a) Result is from Run# 2

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
 - N = Indicates presumptive evidence of a compound

	Report of Analysis								
Client Sam Lab Sample Matrix: Method: Project:	ple ID: SSB-1 (e ID: JB8893 SO - So SW846 Elton C	(5-7) 5-2 bil 8081B SW rossing, 899	/846 3546 Elton Avenue	e, Bronx, N	Y	Da Da Per	te Sampled: te Received: cent Solids:	02/25/15 02/26/15 78.5	
Run #1 Run #2 Run #3	File ID 4G53978.D 4G54006.D 4G54030.D	DF 1 100 500	Analyzed 03/03/15 03/04/15 03/04/15	By YD KJ KJ	Prep D 03/02/2 03/02/2 03/02/2	Date 15 15 15	Prep Batc OP82082 OP82082 OP82082 OP82082	h Analytical Batch G4G1399 G4G1400 G4G1400	
Run #1 Run #2 Run #3	Initial Weight 16.1 g 16.1 g 16.1 g	Final Volu 10.0 ml 10.0 ml 10.0 ml	ıme						
Pesticide T	CL List								
CAS No.	Compound		Result	RL	MDL	Units	Q		
309-00-2 319-84-6 319-85-7 319-86-8 58-89-9 5103-71-9 5103-74-2 60-57-1 72-54-8 72-55-9 50-29-3 72-20-8 1031-07-8 7421-93-4 959-98-8 33213-65-9 76-44-8 1024-57-3 72-50-5	Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (I alpha-Chlordan gamma-Chlordan Dieldrin 4,4'-DDD 4,4'-DDD 4,4'-DDT Endrin Endosulfan sulf Endrin aldehyd Endosulfan-II Heptachlor Heptachlor	Lindane) e ^b ane àate e xide	ND ND ND 958 * 13600 * 15200 * 20300 * 7280 * 1030 * ND 834 * ND ND ND ND ND ND ND ND ND ND ND	0.79 0.79 0.79 0.79 79 400 400 400 400 79 79 0.7	$\begin{array}{c} 0.36\\ 0.24\\ 0.49\\ 0.39\\ 39\\ 150\\ 270\\ 150\\ 43\\ 32\\ 0.39\\ 26\\ 0.34\\ 0.41\\ 0.30\\ 0.47\\ 0.39\\ 0.30\\ 0.77\\ 220\\ 0.30\\ 0.77\\ 220\\ 0.30\\ 0.77\\ 220\\ 0.30\\ 0.77\\ 220\\ 0.30\\ 0.77\\ 220\\ 0.30\\ 0.77\\ 220\\ 0.30\\ 0.77\\ 220\\ 0.30\\ 0.77\\ 0.30\\ 0.30\\ 0.77\\ 0.30\\ 0.77\\ 0.30\\ 0.77\\ 0.30\\ 0.77\\ 0.30\\ 0.77\\ 0.30\\ 0.77\\ 0.30\\ 0.77\\ 0.30\\ 0.77\\ 0.30\\ 0.77\\ 0.30\\ 0.77\\ 0.30\\ 0.77\\ 0.30\\ 0.77\\ 0.30\\ 0.77\\ 0.30\\ 0.30\\ 0.77\\ 0.30\\ 0.30\\ 0.77\\ 0.30\\ 0.30\\ 0.77\\ 0.30\\ 0.30\\ 0.30\\ 0.77\\ 0.30\\$	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	ADDOD D		
53494-70-5 8001-35-2	Toxaphene		453 MD	79 20	32 10	ug/kg ug/kg	JD		
CAS No.	Surrogate Reco	overies	Run# 1	Run# 2	Run	# 3	Limits		
877-09-8 877-09-8 2051-24-3 2051-24-3	Tetrachloro-m-> Tetrachloro-m-> Decachlorobiph Decachlorobiph	kylene kylene enyl enyl	64% 61% 79% 163% ^e	0% d 0% d 0% d	0% 0% 0%	d d d	10-129% 10-129% 10-144% 10-144%		

(a) Result is from Run# 2

ND = Not detected MDL = Method Detection Limit

E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

15/13

RL = Reporting Limit

		Керо		a1y 515			rage 1 01
Client Sam Lab Sample Matrix: Method: Project:	ple ID: SSB-1 (7-9) e ID: JB88935-3 SO - Soil SW846 8081B Elton Crossing	SW846 3546 , 899 Elton Avenu	e, Bronx, N	Υ	Da Da Per	te Sampled: te Received: cent Solids:	02/25/15 02/26/15 78.0
Run #1 Run #2 Run #3	File ID DF 4G53979.D 1 4G54007.D 100 4G54031.D 500	Analyzed 03/03/15 03/04/15 03/04/15	By YD KJ KJ	Prep D 03/02/1 03/02/1 03/02/1	ate 5 5 5	Prep Bate OP82082 OP82082 OP82082	h Analytical Batch G4G1399 G4G1400 G4G1400
Run #1 Run #2 Run #3	Initial Weight Final 15.3 g 10.0 15.3 g 10.0 15.3 g 10.0	Volume ml ml ml					
CAS No.	Compound	Result	RL	MDL	Units	0	
309-00-2 319-84-6 319-85-7 319-86-8 58-89-9 5103-71-9 5103-74-2 60-57-1 72-54-8 72-55-9 50-29-3 72-20-8 1031-07-8 7421-93-4 959-98-8 33213-65-9 76-44-8 1024-57-3 72-43-5 53494-70-5 8001-35-2	Aldrin alpha-BHC beta-BHC gamma-BHC (Lindane alpha-Chlordane ^a gamma-Chlordane Dieldrin 4,4'-DDD 4,4'-DDT Endrin Endosulfan sulfate Endrin aldehyde Endosulfan-I Endosulfan-I Heptachlor Heptachlor Heptachlor Endrin ketone Toxaphene	ND ND ND ND 8330- 9150- 3210- 2150- 530- ND 330- ND ND ND ND ND ND ND ND ND ND ND ND ND	0.84 0.84 0.84 0.84 0.84 420 420 84 84 0.84 0.84 0.84 0.84 0.84 0.84 0.	0.39 0.25 0.52 0.41 0.41 160 290 33 46 34 0.41 27 0.36 0.44 0.32 0.50 41 0.31 0.82 0.34 11	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	50 0 0 0 0 0 0 0 0	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run	# 3	Limits	
877-09-8 877-09-8 2051-24-3 2051-24-3	Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl	86% 96% 76%	0% d 0% d 0% d	0% d 0% d 0% d	1 1 1	10-129% 10-129% 10-144%	

Report of Analysis

(a) More than 40 % RPD for detected concentrations between the two GC columns.

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 2

Raw Data: 4G53980.D

Accutest Laboratories

Client Sam Lab Samp Matrix: Method: Project:	nple ID: SSB- le ID: JB889 SO - SW84 Elton	2 (0-2) 935-4 Soil 16 8081B S Crossing, 8	5W846 3546 99 Elton Avent	ie, Bronx, I	NY	Date Date Perc	Sampled: Received: ent Solids:	02/25/15 02/26/15 91.5
Run #1 Run #2	File ID 4G53980.D	DF 1	Analyzed 03/03/15	By YD	Prep D 03/02/1	ate .5	Prep Bate OP82082	h Analytical Batch G4G1399
Run #1 Run #2	Initial Weigh 15.8 g	t Final V 10.0 ml	olume					
Pesticide 7	FCL List							
CAS No.	Compound		Result	RL	MDL	Units	Q	
309-00-2	Aldrin		ND	0.69	0.32	ug/kg		

Report of Analysis

309-00-2	Aldrin	ND	0.69	0.32	ug/kg	
319-84-6	alpha-BHC	ND	0.69	0.21	ug/kg	
319-85-7	beta-BHC	ND	0.69	0.43	ug/kg	
319-86-8	delta-BHC	ND	0.69	0.34	ug/kg	
58-89 - 9	gamma-BHC (Lindane)	ND	0.69	0.34	ug/kg	
5103-71-9	alpha-Chlordane	2.2	0.69	0.26	ug/kg	
5103-74-2	gamma-Chlordane	2.7	0.69	0.48	ug/kg	
60-57-1	Dieldrin	1.1	0.69	0.27	ug/kg	J
72-54-8	4,4'-DDD	1.2	0.69	0.38	ug/kg	
72-55-9	4,4'-DDE	1.9	0.69	0.28	ug/kg	
50-29-3	4,4'-DDT	ND	0.69	0.34	ug/kg	
72-20-8	Endrin	ND	0.69	0.22	ug/kg	
1031-07-8	Endosulfan sulfate	ND	0.69	0.30	ug/kg	
7421-93-4	Endrin aldehyde	ND	0.69	0.36	ug/kg	
959-98-8	Endosulfan-I	ND	0.69	0.26	ug/kg	
33213-65-9	Endosulfan-II	ND	0.69	0.41	ug/kg	
76-44-8	Heptachlor	ND	0.69	0.34	ug/kg	
1024-57-3	Heptachlor epoxide	ND	0.69	0.26	ug/kg	
72-43-5	Methoxychlor	ND	1.4	0.68	ug/kg	
53494-70-5	Endrin ketone	ND	0.69	0.28	ug/kg	
8001-35-2	Toxaphene	ND	17	8.7	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	108%		10-12	29%	
877-09-8	Tetrachloro-m-xylene	108%		10-12	29%	
2051-24-3	Decachlorobiphenyl	73%		10-14	4%	
2051-24-3	Decachlorobiphenyl	85%		10-14	4%	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

4.4

John JB88935

Raw Data: 4G53986.D

Accutest Laboratories

	Report of Analysis								
Client Sam Lab Sampl Matrix: Method: Project:	ple ID: SSB-2 (5-7) e ID: JB88935-5 SO - Soil SW846 8081B S Elton Crossing, 8	W846 3546 99 Elton Avenue	, Bronx, N	Y	Date Date Per c	e Sampled: 02 Received: 02 ent Solids: 92	2/25/15 2/26/15 2.0		
Run #1 Run #2	File ID DF 4G53986.D 1	Analyzed 03/03/15	By YD	Prep D 03/02/1	ate 5	Prep Batch OP82082	Analytical Batch G4G1399		
Run #1 Run #2	Initial Weight Final V 15.9 g 10.0 ml	olume							
Pesticide T	CL List								
CAS No.	Compound	Result	RL	MDL	Units	Q			
309-00-2	Aldrin	ND	0.68	0.31	ug/kg				
319-84-6	alpha-BHC	ND	0.68	0.20	ug/kg				
319-85-7	beta-BHC	ND	0.68	0.43	ug/kg				
319-86-8	delta-BHC	ND	0.68	0.34	ug/kg				
58-89-9	gamma-BHC (Lindane)	ND	0.68	0.33	ug/kg				
5103-71-9	alpha-Chlordane	16.1	0.68	0.25	ug/kg				
5103-74-2	gamma-Chlordane	30.6	0.68	0.47	ug/kg				
60-57-1	Dieldrin	40.5	0.68	0.27	ug/kg				
72-54-8	4,4'-DDD	7.9	0.68	0.37	ug/kg				
72-55-9	4,4'-DDE	61.2	0.68	0.28	ug/kg				
50-29-3	4,4'-DD'I'	ND	0.68	0.34	ug/kg				
72-20-8	Endrin	ND	0.68	0.22	ug/kg				
1031-07-8	Endosulfan sulfate	ND	0.68	0.29	ug/kg				
7421-93-4	Endrin aldehyde	ND	0.68	0.36	ug/kg				
959-98-8	Endosulfan-l	ND	0.68	0.26	ug/kg				
33213-65-9	Endosulfan-II	ND	0.68	0.41	ug/kg				
76-44-8	Heptachlor	0.94	0.68	0.33	ug/kg				
1024-57-3	Heptachlor epoxide	ND	0.68	0.26	ug/kg				
72-43-5	Methoxychlor	ND	1.4	0.67	ug/kg				
53494-70-5	Endrin ketone	ND	0.68	0.28	ug/kg				
8001-35-2	Toxaphene	ND	17	8.6	ug/kg				
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its				
877-09-8	Tetrachloro-m-xylene	102%		10-1	29 %				
877-09-8	Tetrachloro-m-xylene	97%		10-1	29%				

ND = Not detected MDL = Method Detection Limit

65%

66%

RL = Reporting Limit

2051-24-3

2051-24-3

E = Indicates value exceeds calibration range

Decachlorobiphenyl

Decachlorobiphenyl

J = Indicates an estimated value

10-144%

10-144%

- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Raw Data: 4G53987.D

Accutest Laboratories

			Repor	rt of Ar	alysis			Page 1 of 1
Client Sam Lab Sample Matrix: Method: Project:	ple ID: SSB-2 (i e ID: JB88935 SO - Soi SW846 Elton Ci	8-10) 5-6 61 8081B SV rossing, 899	V846 3546 9 Elton Avenue	e, Bronx, I	١Y	Date Date Perc	e Sampled: Received: cent Solids:	02/25/15 02/26/15 91.5
Run #1 Run #2	File ID 4G53987.D	DF 1	Analyzed 03/03/15	By YD	Prep D 03/02/1	ate 5	Prep Batch OP82082	Analytical Batch G4G1399
Run #1 Run #2	Initial Weight 15.0 g	Final Vol 10.0 ml	ume					
Pesticide T	CL List							
CAS No.	Compound		Result	RL	MDL	Units	Q	
309-00-2 319-84-6 319-85-7 319-86-8	Aldrin alpha-BHC beta-BHC delta-BHC		ND ND ND ND	0.73 0.73 0.73 0.73	0.34 0.22 0.45 0.36	ug/kg ug/kg ug/kg ug/kg		

CAS NO.	Compound	Result	KL	MDL	Units
309-00-2	Aldrin	ND	0.73	0.34	ug/kg
319-84-6	alpha-BHC	ND	0.73	0.22	ug/kg
319-85-7	beta-BHC	ND	0.73	0.45	ug/kg
319-86-8	delta-BHC	ND	0.73	0.36	ug/kg
58-89-9	gamma-BHC (Lindane)	ND	0.73	0.36	ug/kg
5103-71-9	alpha-Chlordane	12.3	0.73	0.27	ug/kg
5103-74-2	gamma-Chlordane	31.2	0.73	0.50	ug/kg
60-57-1	Dieldrin	16.3	0.73	0.28	ug/kg
72-54-8	4,4'-DDD	6.8 -	0.73	0.40	ug/kg
72-55-9	4,4'-DDE	59.3	0.73	0.29	ug/kg
50-29-3	4,4'-DDT	ND	0.73	0.36	ug/kg
72-20-8	Endrin	ND	0.73	0.24	ug/kg
1031-07-8	Endosulfan sulfate	ND	0.73	0.31	ug/kg
7421-93-4	Endrin aldehyde	ND	0.73	0.38	ug/kg
959-98-8	Endosulfan-I	ND	0.73	0.28	ug/kg
33213-65-9	Endosulfan-II	ND	0.73	0.44	ug/kg
76-44-8	Heptachlor	ND	0.73	0.35	ug/kg
1024-57-3	Heptachlor epoxide	ND	0.73	0.27	ug/kg
72-43-5	Methoxychlor	ND	1.5	0.71	ug/kg
53494-70-5	Endrin ketone	ND	0.73	0.30	ug/kg
8001-35-2	Toxaphene	ND	18	9.2	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
877-09-8	Tetrachloro-m-xylene	98%		10-1	29%
877-09-8	Tetrachloro-m-xylene	92%		10-1	.29%
2051-24-3	Decachlorobiphenyl	89%		10-1	44%
2051-24-3	Decachlorobiphenyl	82%		10-1	44%

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

JB88935

Raw Data: 4G53988.D

Accutest Laboratories

Report of AnalysisClient Sample ID:SSB-XSSB-2(O-2)Lab Sample ID:JB88935-7Date Sampled:02/2Matrix:SO - SoilDate Received:02/2Method:SW846 8081BSW846 3546Per cent Solids:90.2Project:Elton Crossing, 899 Elton Avenue, Bronx, NYSW846 3014SW846 3014								Page 1 of 1	
								2/25/15 2/26/15).8	
Run #1 Run #2	File ID 4G53988.D	DF 1	Analyzed 03/03/15	By YD	Prep E 03/02/	Date 15	Prep Batch OP82082	Analytical Batch G4G1399	
Run #1 Run #2	Initial Weight 15.0 g	Final Vol 10.0 ml	lume						
Pesticide T	CL List								
CAS No.	Compound		Result	RL	MDL	Units	Q		
309-00-2 319-84-6 319-85-7 319-86-8 58-89-9 5103-71-9 5103-74-2 60-57-1 72-54-8 72-55-9 50-29-3 72-20-8 1031-07-8 7421-93-4 959-98-8	Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (L alpha-Chlordand gamma-Chlordand Dieldrin 4,4'-DDD 4,4'-DDD 4,4'-DDT Endrin Endosulfan sulfa Endrin aldehyde Endosulfan-I	indane) e ine ate	ND ND ND ND 3.7 5.5 2.6 1.2 2.3 ND ND ND ND ND ND ND	0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73	0.34 0.22 0.46 0.36 0.27 0.51 0.29 0.40 0.30 0.36 0.24 0.32 0.38 0.28	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg			
33213-65-9 76-44-8 1024-57-3 72-43-5 53494-70-5 8001-35-2	Endosulfan-II Endosulfan-II Heptachlor Heptachlor epox Methoxychlor Endrin ketone Toxaphene	cide	ND ND ND ND ND ND	0.73 0.73 0.73 1.5 0.73 18	0.28 0.44 0.36 0.27 0.72 0.30 9.3	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg			
CAS No. 877-09-8 877-09-8 2051-24-3 2051-24-3	Surrogate Reco Tetrachloro-m-x Tetrachloro-m-x Decachlorobiphe Decachlorobiphe	weries tylene tylene enyl enyl	Run# 1 118% 114% 83% 72%	Run# 2	Lim 10-1 10-1 10-1 10-1	nits 129% 129% 144% 144%			

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

7 4

Raw Data: 4G53989.D

Accutest Laboratories

Report of Analysis

Client Sam Lab Sampl Matrix: Method: Project:	ple ID: SSB-3 (0-2) e ID: JB88935-8 SO - Soil SW846 8081B Elton Crossing	SW846 3546 , 899 Elton Avenu	e, Bronx, N	Y	Date Date Perc	e Sampled: Received: cent Solids:	02/26/15 02/26/15 88.3
Run #1 Run #2	File ID DF #1 4G53989.D 1 #2		By YD	Prep D 03/02/1	ate .5	Prep Batc OP82082	h Analytical Batch G4G1399
Run #1 Run #2	Initial Weight Final 15.7 g 10.0	Volume ml					
Pesticide T	CL List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
309-00-2	Aldrin	ND	0.72	0.33	ug/kg		
319-84-6	alpha-BHC	ND	0.72	0.22	ug/kg		
319-85-7	beta-BHC	ND	0.72	0.45	ug/kg		
319-86-8	delta-BHC	ND	0.72	0.36	ug/kg		
58-89-9	gamma-BHC (Lindane) ND	0.72	0.35	ug/kg		
5103-71-9	alpha-Chlordane	ND	0.72	0.27	ug/kg		
5103-74-2	gamma-Chlordane	ND	0.72	0.50	ug/kg		
60-57-1	Dieldrin	ND	0.72	0.28	ug/kg		
72-54-8	4,4'-DDD	ND	0.72	0.39	ug/kg		
72-55-9	4.4'-DDE	2.6	0.72	0.29	ug/kg		
50-29-3	4,4'-DDT	ND	0.72	0.36	ug/kg		
72-20-8	Endrin	ND	0.72	0.23	ug/kg		
1031-07-8	Endosulfan sulfate	ND	0.72	0.31	ug/kg		
7421-93-4	Endrin aldehyde	ND	0.72	0.38	ug/kg		
959-98-8	Endosulfan-I	ND	0.72	0.27	ug/kg		
33213-65-9	Endosulfan-II	ND	0.72	0.43	ug/kg		
76-44-8	Heptachlor	ND	0.72	0.35	ug/kg		
1024-57-3	Heptachlor epoxide	ND	0.72	0.27	ug/kg		
72-43-5	Methoxychlor	ND	1.4	0.71	ug/kg		
53494-70-5	Endrin ketone	ND	0.72	0.29	ug/kg		
8001-35-2	Toxaphene	ND	18	9.1	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
877-09-8	Tetrachloro-m-xylene	97 %		10-1	29%		
877-09-8	Tetrachloro-m-xylene	93%		10-1	29%		
2051-24-3	Decachlorobiphenyl	71%		10-1	44%		
2051-24-3	Decachlorobiphenyl	70%		10-1	44%		

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Raw Data: 4G53990.D

Accutest Laboratories

Report of Analysis Page 1 of 1 Client Sample ID: SSB-3 (5-7) Lab Sample ID: JB88935-9 Date Sampled: 02/26/15 Date Received: 02/26/15 Matrix: SO - Soil Percent Solids: 87.6 Method: SW846 8081B SW846 3546 Project: Elton Crossing, 899 Elton Avenue, Bronx, NY Analytical Batch Prep Date **Prep Batch** File ID DF Analyzed By G4G1399 YD 03/02/15 OP82082 Run #1 4G53990.D 1 03/03/15 Run #2 **Final Volume** Initial Weight Run #1 15.7 g 10.0 ml Run #2 Pesticide TCL List CAS No. Compound Result RL MDL Units Q 309-00-2 Aldrin ND 0.73 0.33 ug/kg 319-84-6 alpha-BHC ND 0.73 0.22 ug/kg 319-85-7 beta-BHC ND 0.73 0.45 ug/kg 319-86-8 delta-BHC ND 0.73 0.36 ug/kg 58-89-9 gamma-BHC (Lindane) ND 0.73 0.36 ug/kg alpha-Chlordane 1.6 0.73 0.27 ug/kg 5103-71-9 gamma-Chlordane a 2.6 0.73 0.50 ug/kg 5103-74-2 J 60-57-1 Dieldrin 2.8 0.73 0.28 ug/kg 72-54-8 4,4'-DDD ND 0.73 0.40 ug/kg 4,4'-DDE 0.29 72-55-9 20.2 0.73 ug/kg 50-29-3 4,4'-DDT ND 0.73 0.36 ug/kg Endrin 0.73 0.24 72-20-8 ND ug/kg Endosulfan sulfate 0.73 0.31 ug/kg 1031-07-8 ND Endrin aldehyde ND 0.73 0.38 ug/kg 7421-93-4 959-98-8 Endosulfan-I ND 0.73 0.28 ug/kg Endosulfan-II ND 0.73 0.44 ug/kg 33213-65-9 0.35 76-44-8 Heptachlor ND 0.73 ug/kg 1024-57-3 Heptachlor epoxide ND 0.73 0.27 ug/kg ND 0.71 72-43-5 Methoxychlor 1.5 ug/kg ND 0.73 0.30 53494-70-5 Endrin ketone ug/kg 8001-35-2 Toxaphene ND 18 9.2 ug/kg Run#2 Limits CAS No. Run#1 Surrogate Recoveries 877-09-8 108% 10-129% Tetrachloro-m-xylene 877-09-8 Tetrachloro-m-xylene 98% 10-129% 10-144% 2051-24-3 Decachlorobiphenyl 88%

(a) More than 40 % RPD for detected concentrations between the two GC columns.

71%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

2051-24-3

E = Indicates value exceeds calibration range

Decachlorobiphenyl

J = Indicates an estimated value

10-144%

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Raw Data: 4G53991.D

Accutest Laboratories

Report of Analysis Page 1 of 1 Client Sample ID: SSB-3 (7.5-9.5) Lab Sample ID: JB88935-10 Date Sampled: 02/26/15 Matrix: SO - Soil Date Received: 02/26/15 Method: SW846 8081B SW846 3546 Percent Solids: 89.2 Elton Crossing, 899 Elton Avenue, Bronx, NY Project: Analytical Batch File ID DF Analyzed By Prep Date Prep Batch Run #1 4G53991.D 1 03/03/15 YD 03/02/15 **OP82082** G4G1399 Run #2 Initial Weight Final Volume Run #1 15.3 g 10.0 ml Run #2 Pesticide TCL List CAS No. Compound Result RL MDL Units Q 309-00-2 Aldrin ND 0.73 0.34 ug/kg 319-84-6 alpha-BHC ND 0.73 0.22 ug/kg 319-85-7 beta-BHC ND 0.73 0.46 ug/kg 319-86-8 delta-BHC ND 0.73 0.36 ug/kg 58-89-9 gamma-BHC (Lindane) ND 0.73 0.36 ug/kg 5103-71-9 alpha-Chlordane ND 0.73 0.27 ug/kg 5103-74-2 gamma-Chlordane ND 0.73 0.51 ug/kg 60-57-1 Dieldrin ND 0.73 0.29 ug/kg 72-54-8 4,4'-DDD ND 0.73 0.40 ug/kg 72-55-9 4,4'-DDE ND 0.73 0.30 ug/kg ug/kg 50-29-3 4.4'-DDT ND 0.73 0.36 72-20-8 Endrin ND 0.73 0.24 ug/kg Endosulfan sulfate 1031-07-8 ND 0.73 0.32 ug/kg 7421-93-4 Endrin aldehvde ND 0.73 0.38 ug/kg Endosulfan-I ug/kg 959-98-8 ND 0.73 0.28 Endosulfan-II 33213-65-9 0.73 0.44 ND ug/kg 0.36 76-44-8 Heptachlor ND 0.73 ug/kg 1024-57-3 Heptachlor epoxide ND 0.73 0.27 ug/kg 72-43-5 Methoxychlor ND 1.5 0.72 ug/kg 53494-70-5 Endrin ketone ND 0.73 0.30 ug/kg 8001-35-2 Toxaphene ND 18 9.2 ug/kg

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
877-09-8	Tetrachloro-m-xylene	106%		10-129%
877-09-8	Tetrachloro-m-xylene	103%		10-129%
2051-24-3	Decachlorobiphenyl	104%		10-144%
2051-24-3	Decachlorobiphenyl	95%		10-144%

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Raw Data: 4G54035.D

Accutest Laboratories

Report of Analysis

Client Sam Lab Sampl Matrix: Method: Project:	ple ID: FB20150226 e ID: JB88935-12 AQ - Field Blank SW846 8081B S Elton Crossing, 8	Soil SW846 3510C 199 Elton Avenu	e, Bronx, N	Y	Date Date Perc	e Sampled: e Received: cent Solids:	02/26/15 02/26/15 n/a
Run #1 Run #2	File ID DF 4G54035.D 1	Analyzed 03/04/15	AnalyzedByPrep Date03/04/15KJ03/02/15		ite 5	Prep Batch OP82097	n Analytical Batch G4G1400
Run #1 Run #2	Initial VolumeFinal V300 ml2.0 ml	olume					
Pesticide T	CL List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
309-00-2	Aldrin	ND	0.0067	0.0053	ug/l		
319-84-6	alpha-BHC	ND	0.0067	0.0016	ug/1		
319-85-7	beta-BHC	ND	0.0067	0.0015	ug/1		
319-86-8	delta-BHC	ND	0.0067	0.0012	ug/l		
58-89-9	gamma-BHC (Lindane)	ND	0.0067	0.0011	ug/l		
5103-71-9	alpha-Chlordane	ND	0.0067	0.0019	ug/l		
5103-74-2	gamma-Chlordane	ND	0.0067	0.0014	ug/l		
60-57-1	Dieldrin	ND	0.0067	0.0011	ug/l		
72-54-8	4,4'-DDD	ND	0.0067	0.0017	ug/l		
72-55-9	4,4'-DDE	ND	0.0067	0.0011	ug/l		
50-29-3	4,4'-DDT	ND	0.0067	0.0021	ug/l		
72-20-8	Endrin	ND	0.0067	0.0013	ug/l		
1031-07-8	Endosulfan sulfate	ND	0.0067	0.0013	ug/l		
7421-93-4	Endrin aldehyde	ND	0.0067	0.0024	ug/l		
53494-70-5	Endrin ketone	ND	0.0067	0.0032	ug/l		
959-98-8	Endosulfan-I	ND	0.0067	0.0019	ug/l		
33213-65-9	Endosulfan-II	ND	0.0067	0.0013	ug/l		
76-44-8	Heptachlor	ND	0.0067	0.0014	ug/l		
1024-57-3	Heptachlor epoxide	ND	0.0067	0.0018	ug/l		
72-43-5	Methoxychlor	ND	0.013	0.0027	ug/l		
8001-35-2	Toxaphene	ND	0.17	0.098	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts		
877-09-8	Tetrachloro-m-xylene	64%		26-13	82%		
877-09-8	Tetrachloro-m-xylene	63%		26-13	32%		
2051-24-3	Decachlorobiphenyl	29%		10-11	8%		
2051-24-3	Decachlorobiphenyl	22%		10-11	l 8 %		

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Raw Data: 1G109967.D

Accutest Laboratories

Report of Analysis

Client Sam Lab Sample Matrix: Method: Project:	Client Sample ID: MW-1 Lab Sample ID: JB89708-1 Matrix: AQ - Ground Water Method: SW846 8081B SW846 8081B SW846 3510C Project: Elton Crossing, 899 Elton Avenue,				e, Bronx, N	Y	Date Date Perc	e Sampled: e Received: cent Solids:	03/11/15 03/11/15 n/a
Run #1 Run #2	File IDDFAnalyzedByPrep Date1G109967.D103/13/15KJ03/13/15		ite 5	Prep Bate OP82325	h Analytical Batch G1G3618				
Run #1 Run #2	Initial 300 ml	Volume	Final Vol 2.0 ml	lume					
Pesticide T	CL List								
CAS No.	Comp	ound		Result	RL	MDL	Units	Q	
309-00-2	Aldrin			ND	0.0067	0.0053	ug/l		
319-84-6	alpha-	BHC		ND	0.0067	0.0016	ug/l		
319-85-7	beta-B	HC		ND	0.0067	0.0015	ug/l		
319-86-8	delta-H	BHC		ND	0.0067	0.0012	ug/l		
58-89-9	gamm	a-BHC (I	Lindane)	ND	0.0067	0.0011	ug/l		
5103-71-9	alpha-	Chlordan	e	ND	0.0067	0.0019	ug/l		
5103-74-2	gamm	a-Chlorda	ane	ND	0.0067	0.0014	ug/l		
60-57-1	Dieldr	in		ND	0.0067	0.0011	ug/l		
72-54-8	4,4'-D	DD		ND	0.0067	0.0017	ug/l		
72-55-9	4,4'-D	DE		ND	0.0067	0.0011	ug/l		
50-29-3	4,4'-D	DT		ND	0.0067	0.0021	ug/l		
72-20-8	Endrir	1		ND	0.0067	0.0013	ug/l		
1031-07-8	Endos	ulfan sulf	fate	ND	0.0067	0.0013	ug/l		
7421-93-4	Endrir	ı aldehyd	e	ND	0.0067	0.0024	ug/l		
53494-70-5	Endrir	h ketone		ND	0.0067	0.0032	ug/l		
959-98-8	Endos	ulfan-I		ND	0.0067	0.0019	ug/l		
33213-65-9	Endos	ulfan-II		ND	0.0067	0.0013	ug/l		
76-44-8	Hepta	chlor		ND	0.0067	0.0014	ug/l		
1024-57-3	Hepta	chlor epo	xide	ND	0.0067	0.0018	ug/l		
72-43-5	Metho	xychlor		ND	0.013	0.0027	ug/l		
8001-35-2	Тохар	hene		ND	0.17	0.098	ug/l		
CAS No.	Surro	gate Rec	overies	Run# 1	Run# 2	Lim	its		
877-09-8	Tetrac	hloro-m-	xylene	99%		26-1	32%		
877-09-8	Tetrac	hloro-m-	xylene	104%		26-1	32%		
2051-24-3	Decac	hlorobiph	nenyl	99%		10-1	18%		
2051-24-3	Decac	hlorobiph	nenyl	121% ^a		10-1	18%		

(a) High percent recoveries and no positive found in the sample.

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

~

4

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Raw Data: 1G109968.D

Accutest Laboratories

Report of Analysis

Client Sample ID: MW-2 Lab Sample ID: IB89708-2 Date Sampled: 03/11/15 Date Received: AQ - Ground Water 03/11/15 Matrix: SW846 8081B SW846 3510C Percent Solids: n/a Method: Project: Elton Crossing, 899 Elton Avenue, Bronx, NY Prep Date **Prep Batch Analytical Batch** File ID DF Analyzed By G1G3618 03/13/15 **OP82325** Run #1 1G109968.D 1 03/13/15 KJ Run #2 **Final Volume Initial Volume** Run #1 300 ml 2.0 ml Run #2 Pesticide TCL List CAS No. Result RL MDL Units Q Compound 309-00-2 Aldrin ND 0.0067 0.0053 ug/l 319-84-6 alpha-BHC ND 0.0067 0.0016 ug/l 319-85-7 beta-BHC ND 0.0067 0.0015 ug/l 319-86-8 delta-BHC ND 0.0067 0.0012 ug/l 58-89-9 gamma-BHC (Lindane) ND 0.0067 0.0011 ug/l alpha-Chlordane ND 0.0067 0.0019ug/l 5103-71-9 0.0067 0.0014 5103-74-2 gamma-Chlordane ND ug/l ND 0.0067 0.0011 ug/l 60-57-1 Dieldrin 4,4'-DDD ND 0.0067 0.0017 72-54-8 ug/l 72-55-9 4,4'-DDE ND 0.0067 0.0011 ug/l 50-29-3 4.4'-DDT ND 0.0067 0.0021 ug/l 72-20-8 Endrin ND 0.0067 0.0013 ug/l Endosulfan sulfate ND 0.0067 0.0013 ug/l 1031-07-8 0.0067 0.0024 7421-93-4 Endrin aldehyde ND ug/l Endrin ketone ND 0.0067 0.0032 ug/l 53494-70-5 Endosulfan-I 0.0067 0.0019 ug/l 959-98-8 ND 0.0067 0.0013 33213-65-9 Endosulfan-II ND ug/l ND 0.0067 0.0014 ug/l 76-44-8 Heptachlor 1024-57-3 Heptachlor epoxide ND 0.0067 0.0018 ug/l Methoxychlor ND 0.013 0.0027 ug/l 72-43-5 8001-35-2 Toxaphene ND 0.17 0.098 ug/l Limits Run#1 Run#2 CAS No. Surrogate Recoveries 877-09-8 93% 26-132% Tetrachloro-m-xylene **87**% 26-132% 877-09-8 Tetrachloro-m-xylene 10-118% Decachlorobiphenyl 62% 2051-24-3 2051-24-3 Decachlorobiphenyl 63% 10-118%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

27 of 1744 ACCUTEST. JB89708

Page 1 of 1

Raw Data: 1G109969.D

Accutest Laboratories

Report of Analysis

Client Sam Lab Sampl Matrix: Method: Project:	ple ID: MW-3 e ID: JB89708-3 AQ - Ground Wate SW846 8081B SV Elton Crossing, 89	er W846 3510C 9 Elton Avenue	e, Bronx, N	Y	Date Date Perc	e Sampled: Received: ent Solids:	03/11/15 03/11/15 n/a
Run #1 Run #2	File ID DF 1G109969.D 1	Analyzed 03/13/15	AnalyzedByPrep Date03/13/15KJ03/13/15		te	Prep Batc OP82325	h Analytical Batch G1G3618
Run #1 Run #2	Initial VolumeFinal Vo300 ml2.0 ml	lume					
Pesticide T	CL List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
309-00-2	Aldrin	ND	0.0067	0.0053	ug/l		
319-84-6	alnha-BHC	ND	0.0067	0.0016	ug/l		
319-85-7	beta-BHC	ND	0.0067	0.0015	ug/l		
319-86-8	delta-BHC	ND	0.0067	0.0012	ug/l		
58-89-9	gamma-BHC (Lindane)	ND	0.0067	0.0011	ug/l		
5103-71-9	alpha-Chlordane	ND	0.0067	0.0019	ug/l		
5103-74-2	gamma-Chlordane	ND	0.0067	0.0014	ug/l		
60-57-1	Dieldrin	ND	0.0067	0.0011	ug/l		
72-54-8	4,4'-DDD	ND	0.0067	0.0017	ug/l		
72-55-9	4,4'-DDE	ND	0.0067	0.0011	ug/l		
50-29-3	4.4'-DDT	ND	0.0067	0.0021	ug/l		
72-20-8	Endrin	ND	0.0067	0.0013	ug/l		
1031-07-8	Endosulfan sulfate	ND	0.0067	0.0013	ug/l		
7421-93-4	Endrin aldehyde	ND	0.0067	0.0024	ug/l		
53494-70-5	Endrin ketone	ND	0.0067	0.0032	ug/l		
959-98-8	Endosulfan-I	ND	0.0067	0.0019	ug/l		
33213-65-9	Endosulfan-II	ND	0.0067	0.0013	ug/l		
76-44-8	Heptachlor	ND	0.0067	0.0014	ug/l		
1024-57-3	Heptachlor epoxide	ND	0.0067	0.0018	ug/l		
72-43-5	Methoxychlor	ND	0.013	0.0027	ug/l		
8001-35-2	Toxaphene	ND	0.17	0.098	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	S		
877-09-8	Tetrachloro-m-xylene	82%		26-13	2%		
877-09-8	Tetrachloro-m-xylene	87%		26-13	2%		
2051-24-3	Decachlorobiphenyl	70 %		10-11	8%		
2051-24-3	Decachlorobiphenyl	89%		10-11	8%		

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Raw Data: 1G109970.D

Accutest Laboratories

Report of Analysis Page 1 of 1 NW-Client Sample ID: MW-X Lab Sample ID: JB89708-4 Date Sampled: 03/11/15 Matrix: AQ - Ground Water Date Received: 03/11/15 Method: SW846 8081B SW846 3510C Percent Solids: n/a Elton Crossing, 899 Elton Avenue, Bronx, NY Project: Prep Date Prep Batch **Analytical Batch** File ID DF Analyzed By 1G109970.D 03/13/15 KJ 03/13/15 OP82325 G1G3618 Run #1 1 Run #2 **Final Volume** Initial Volume 2.0 ml Run #1 300 ml Run #2 Pesticide TCL List CAS No. Compound Result RĽ MDL Units Q 0.0067 0.0053 ug/l 309-00-2 ND Aldrin 319-84-6 alpha-BHC ND 0.0067 0.0016 ug/l ND 0.0067 0.0015 319-85-7 beta-BHC ug/l ND 0.0067 0.0012 delta-BHC ug/l 319-86-8 gamma-BHC (Lindane) ND 0.0067 0.0011 58-89-9 ug/l alpha-Chlordane ND 0.0067 0.0019 ug/l 5103-71-9 ND 0.0067 0.0014 ug/l 5103-74-2 gamma-Chlordane 0.0067 0.0011 60-57-1 ND ug/l Dieldrin 72-54-8 4,4'-DDD ND 0.0067 0.0017 ug/l 0.0067 0.0011 72-55-9 4.4'-DDE ND ug/l 50-29-3 4.4'-DDT ND 0.0067 0.0021 ug/l 0.0067 0.0013 72-20-8 Endrin ND ug/l ND 0.0067 0.0013 ug/l 1031-07-8 Endosulfan sulfate ND 0.0067 0.0024 ug/l 7421-93-4 Endrin aldehyde 0.0067 0.0032 53494-70-5 **Endrin ketone** ND ug/l 959-98-8 Endosulfan-I ND 0.0067 0.0019 ug/l 33213-65-9 Endosulfan-II ND 0.0067 0.0013 ug/l ND 0.0067 0.0014 ug/l 76-44-8 Heptachlor 0.0018 ug/l 1024-57-3 Heptachlor epoxide ND 0.0067 ND 0.013 0.0027 ug/l 72-43-5 Methoxychlor 0.17 0.098 8001-35-2 Toxaphene ND ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits 26-132% 877-09-8 94% Tetrachloro-m-xylene 877-09-8 Tetrachloro-m-xylene 87% 26-132% Decachlorobiphenyl 79% 10-118% 2051-24-3 84% 10-118% Decachlorobiphenyl 2051-24-3

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

10/4/3/15

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

4

Raw Data: 1G109971.D

Accutest Laboratories

			Repo	rt of An	alysis			Page 1 of
Client Sam Lab Sampl Matrix: Method: Project:	aple ID: FB2015 le ID: JB89703 AQ - Fi SW846 Elton C	0311 8-6 eld Blank \ 8081B S\ rossing, 89	Water W846 3510C 9 Elton Avenu	ie, Bronx, N	Y	Date Date Perc	Sampled: Received: ent Solids:	03/11/15 03/11/15 n/a
Run #1 Run #2	File ID 1G109971.D	DF 1	Analyzed 03/13/15	By KJ	Prep Da 03/13/1	ate 5	Prep Bate OP82325	h Analytical Batch G1G3618
Run #1 Run #2	Initial Volume 300 ml	Final Vo 2.0 ml	lume					
Pesticide T	'CL List							
CAS No.	Compound		Result	RL	MDL	Units	Q	
309-00-2 319-84-6 319-85-7 319-86-8 58-89-9 5103-71-9	Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (I alpha-Chlordan	Lindane) e	ND ND ND ND ND	0.0067 0.0067 0.0067 0.0067 0.0067 0.0067	0.0053 0.0016 0.0015 0.0012 0.0011 0.0019	ug/l ug/l ug/l ug/l ug/l ug/l		
5103-74-2 60-57-1 72-54-8 72-55-9 50-29-3 72-20-8	gamma-Chlord Dieldrin 4,4'-DDD 4,4'-DDE 4,4'-DDT Endrin	ane	ND ND ND ND ND ND	0.0067 0.0067 0.0067 0.0067 0.0067 0.0067	0.0014 0.0011 0.0017 0.0011 0.0021 0.0013	ug/l ug/l ug/l ug/l ug/l ug/l		
1031-07-8	Endosulfan sulf	fate	ND	0.0067	0.0013	ug/1		

7421-93-4	Endrin aldehyde	ND	0.0067	0.0024	ug/l
53494-70-5	Endrin ketone	ND	0.0067	0.0032	ug/l
959-98-8	Endosulfan-I	ND	0.0067	0.0019	ug/l
33213-65-9	Endosulfan-II	ND	0.0067	0.0013	ug/l
76-44-8	Heptachlor	ND	0.0067	0.0014	ug/l
1024-57-3	Heptachlor epoxide	ND	0.0067	0.0018	ug/l
72-43-5	Methoxychlor	ND	0.013	0.0027	ug/l
8001-35-2	Toxaphene	ND	0.17	0.098	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts
877-09-8	Tetrachloro-m-xylene	93%		26-13	32%
877-09-8	Tetrachloro-m-xylene	88%		26-13	32%
2051-24-3	Decachlorobiphenyl	73%		10-1	18%
2051-24-3	Decachlorobiphenyl	78%		10-1	1 8 %

MDL = Method Detection Limit ND = Not detected

RL = Reporting Limit

- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Accutest LabLink@841363 10:44 06-Mar-2015

	Report of Analysis									
Client Sam Lab Sampl Matrix: Method: Project:	ple ID: SS-1 e ID: JB88569 SO - So SW846 Elton C	ID:SS-1Date Sampled:D:JB88569-2Date Sampled:SO - SoilDate Received:SW846 8082ASW846 3546Percent Solids:Elton Crossing, 899 Elton Avenue, Bronx, NYSW846 3546								
Run #1 Run #2	File ID XX166935.D	DF 1	Analyzed 02/24/15	By JR	Prep D 02/24/1	ate 15	Prep Bate OP81975	h Analytical Batch GXX5268		
Run #1 Run #2	Initial Weight 16.7 g	Final Vo 10.0 ml	lume							
PCB List										
CAS No.	Compound		Result	RL	MDL	Units	Q			
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 11100-14-4 37324-23-5 CAS No.	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1268 Aroclor 1262 a Surrogate Rec	overies	ND ND ND ND ND ND 451 Run# 1	38 38 38 38 38 38 38 38 38 38 38 38 38	9.8 23 19 12 11 18 12 11 12 11 12 Lim	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg				
877-09-8 877-09-8 2051-24-3 2051-24-3	Tetrachloro-m- Tetrachloro-m- Decachlorobiph Decachlorobiph	xylene xylene ienyl ienyl	90% 92% 99% 91%		14-1 14-1 10-1 10-1	139% 139% 155% 155%				

(a) Reported from 2nd signal. %D of check on 1st signal excess method criteria (20 %) so using for confirmation only.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sam Lab Sample Matrix: Method: Project:	ple ID: SSB-1 (0 e ID: JB88935 SO - Soi SW846 8 Elton Cr)-2) i-1 1 8082A SW ossing, 899	846 3546 Elton Avenue	e, Bronx, N	Y	Date Date Perc	Sampled: Received: ent Solids:	02/25/15 02/26/15 70.6
Run #1	File ID XX167111 D	DF 1	Analyzed	By IN	Prep Da 03/02/1	ate 5	Prep Batch OP82081	Analytical Batch GXX5273
Run #2	XX167120.D	20	03/02/15	JN	03/02/1	5	OP82081	GXX5273
[Initial Weight	Final Volu	ıme					
Run #1	15.3 g	10.0 ml						
Run #2	15.3 g	10.0 ml						
PCB List								
CAS No.	Compound		Result	RL	MDL	Units	Q	
12674-11-2	Aroclor 1016		ND	46	12	ug/kg		
11104-28-2	Aroclor 1221		ND	46	28	ug/kg		
11141-16-5	Aroclor 1232		ND	46	23	ug/kg		
53469-21-9	Aroclor 1242		ND	46	15	ug/kg		
12672-29-6	Aroclor 1248		ND	46	14	ug/kg		
11097-69-1	Aroclor 1254		ND	46	22	ug/kg		
11096-82-5	Aroclor 1260		ND	46	15	ug/kg		
11100-14-4	Aroclor 1268		ND	46	14	ug/kg	7	
37324-23-5	Aroclor 1262 a		14700-5	930	290	ug/kg	D	
CAS No.	Surrogate Reco	overies	Run# 1	Run# 2	Limi	its		
877-09-8	Tetrachloro-m-x	cylene	125%	59%	14-1	39%		
877-09-8	Tetrachloro-m-x	ylene	90%	37%	14-1	39 %		
2051-24-3	Decachlorobiph	enyl	280% ^c	84%	10-1	55%		
2051-24-3	Decachlorobiph	enyl	126%	139%	10-1	55%		

(a) Reported from 1st signal. %D of check on 2nd signal excess method criteria (20 %) so using for confirmation only.

(b) Result is from Run# 2

(c) Outside control limits due to matrix interference.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

for 1415115

4.1 4

E = Indicates value exceeds calibration range

Report of Analysis

Page 1 of 1

4.2

Client Sam	ple ID: SSB-1 (5-7)						
Lab Sample	e ID: JB88935-2				Date	Sampled: 02	25/15
Matrix:	SO - Soil				Date	Received: 02	26/15
Method:	SW846 8082A	SW846 3546			Perc	ent Solids: 78	5.5
Project:	Elton Crossing,	899 Elton Avenue	e, Bronx, N	Y			
	File ID DF	Analyzed	By	Prep D	ate	Prep Batch	Analytical Batch
Run #1	XX167110.D 1	03/02/15	JŇ	03/02/1	5	OP82081	GXX5273
Run #2	XX167119.D 5	03/02/15	JN	03/02/1	5	OP82081	GXX5273
	Initial Weight Final	Volume					
Run #1	15.8 g 10.0 m	าไ					
Run #2	15.8 g 10.0 n	าไ					
PCB List							
CAS No.	Compound	Result	RL	MDL	Units	Q	
12674-11-2	Aroclor 1016	ND	40	10	ug/kg		
11104-28-2	Aroclor 1221	ND	40	24	ug/kg		
11141 - 16 - 5	Aroclor 1232	ND	40	20	ug/kg		
53469-21-9	Aroclor 1242	ND	40	13	ug/kg		
12672-29-6	Aroclor 1248	ND	40	12	ug/kg		
11097-69-1	Aroclor 1254	ND	40	19	ug/kg		
11096-82-5	Aroclor 1260	ND	40	13	ug/kg		
11100-14-4	Aroclor 1268	ND	40	12	ug/kg	-	
37324-23-5	Aroclor 1262 a	3030 5	200	64	ug/kg	JD	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
877-09-8	Tetrachloro-m-xylene	131%	103%	14-1	39%		
877-09-8	Tetrachloro-m-xylene	120%	65%	14-1	39%		
2051-24-3	Decachlorobiphenyl	326% c	166% ^c	10-1	55%		
2051-24-3	Decachlorobiphenvl	199% ^c	166% c	10-1	55%		

(a) Reported from 1st signal. %D of check on 2nd signal excess method criteria (20 %) so using for confirmation only.

(b) Result is from Run# 2

(c) Outside control limits due to matrix interference.

JOP 415715

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

Raw Data: XX167109.D

Accutest Laboratories

Report of Analysis

Client Sample ID: SSB-1 (7-9) JB88935-3 Date Sampled: 02/25/15 Lab Sample ID: Date Received: 02/26/15 Matrix: SO - Soil Method: SW846 8082A SW846 3546 Percent Solids: 78.0 Elton Crossing, 899 Elton Avenue, Bronx, NY Project: Analytical Batch File ID DF Analyzed By Prep Date Prep Batch Run #1 XX167109.D 1 03/02/15 JN 03/02/15 **OP82081** GXX5273 Run #2 **Initial Weight Final Volume** Run #1 15.9 g 10.0 ml Run #2 **PCB** List RL MDL Units CAS No. Compound Result Q Aroclor 1016 40 10 12674-11-2 ND ug/kg Aroclor 1221 40 24 11104-28-2 ND ug/kg Aroclor 1232 20 ug/kg 11141-16-5 ND 40 53469-21-9 Aroclor 1242 ND 40 13 ug/kg 12672-29-6 Aroclor 1248 ND 40 12 ug/kg 11097-69-1 Aroclor 1254 ND 19 ug/kg 40 Aroclor 1260 11096-82-5 ND 40 13 ug/kg 11100-14-4 Aroclor 1268 40 12 ND ug/kg 37324-23-5 Aroclor 1262 a 40 13 485 ug/kg Run#1 Run#2 Limits CAS No. Surrogate Recoveries 14-139% 877-09-8 Tetrachloro-m-xylene 74% 877-09-8 Tetrachloro-m-xylene 87% 14-139% 10-155% 2051-24-3 Decachlorobiphenyl 143% 10-155% 101% 2051-24-3 Decachlorobiphenyl

(a) More than 40 % RPD for detected concentrations between the two GC columns.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- $N \ = \ Indicates \ presumptive \ evidence \ of \ a \ compound$

4.3

Page 1 of 1

E = Indicates value exceeds calibration range

Report of Analysis

Client Sample ID: SSB-2 (0-2) Lab Sample ID: JB88935-4 Date Sampled: 02/25/15 Matrix: SO - Soil Date Received: 02/26/15 Method: SW846 8082A SW846 3546 Percent Solids: 91.5 Project: Elton Crossing, 899 Elton Avenue, Bronx, NY **Analytical Batch** File ID DF Analyzed By Prep Date Prep Batch Run #1 XX167138.D 1 03/03/15 JN 03/02/15 **OP82081** GXX5274 Run #2 **Initial Weight Final Volume** Run #1 10.0 ml 15.0 g Run #2 **PCB** List Compound RL MDL Units Q CAS No. Result ug/kg 12674-11-2 Aroclor 1016 ND 36 9.5 11104-28-2 Aroclor 1221 ND 36 22 ug/kg 11141-16-5 Aroclor 1232 ND 36 18 ug/kg 53469-21-9 Aroclor 1242 36 12 ug/kg ND 12672-29-6 Aroclor 1248 ug/kg ND 36 11 17 11097-69-1 Aroclor 1254 36 ug/kg ND 11096-82-5 Aroclor 1260 ND 36 12 ug/kg 11100-14-4 Aroclor 1268 ND 36 11 ug/kg 37324-23-5 Aroclor 1262 36 12 ND ug/kg Limits CAS No. Surrogate Recoveries Run#1 Run#2 14-139% 877-09-8 89% Tetrachloro-m-xylene 877-09-8 Tetrachloro-m-xylene 80% 14-139% 10-155% 2051-24-3 Decachlorobiphenyl 97%

76%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

2051-24-3

E = Indicates value exceeds calibration range

Decachlorobiphenyl

J = Indicates an estimated value

10-155%

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Raw Data: XX167139.D

Accutest Laboratories

Report of Analysis Client Sample ID: SSB-2 (5-7) Date Sampled: 02/25/15 JB88935-5 Lab Sample ID: Date Received: 02/26/15 Matrix: SO - Soil 92.0 Percent Solids: SW846 8082A SW846 3546 Method: Elton Crossing, 899 Elton Avenue, Bronx, NY Project: **Prep Batch Analytical Batch** Prep Date File ID DF Analyzed By OP82081 GXX5274 03/02/15 03/03/15 JN Run #1 XX167139.D 1 Run #2 Final Volume Initial Weight Run #1 15.0 g 10.0 ml Run #2 PCB List Units Result RL MDL Q Compound CAS No. ug/kg Aroclor 1016 ND 36 9.4 12674-11-2 Aroclor 1221 ND 36 22 ug/kg 11104-28-2 Aroclor 1232 ND 36 18 ug/kg 11141-16-5 53469-21-9 Aroclor 1242 ND 36 12 ug/kg Aroclor 1248 ND 36 11 ug/kg 12672-29-6 Aroclor 1254 ND 36 17 ug/kg 11097-69-1 Aroclor 1260 36 12 ug/kg 11096-82-5 ND Aroclor 1268 ND 36 11 ug/kg 11100-14-4 Aroclor 1262 ND 36 12 ug/kg 37324-23-5 Run#2 Limits Surrogate Recoveries Run#1 CAS No. 110% 14-139% 877-09-8 Tetrachloro-m-xylene 14-139% 98% 877-09-8 Tetrachloro-m-xylene 10-155% Decachlorobiphenyl 111% 2051-24-3

91%

MDL = Method Detection Limit ND = Not detected

RL = Reporting Limit

2051-24-3

Decachlorobiphenyl

J = Indicates an estimated value

10-155%

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

Report of Analysis

Client Sample ID: SSB-2 (8-10) Lab Sample ID: JB88935-6 Date Sampled: 02/25/15 Matrix: SO - Soil Date Received: 02/26/15 Method: SW846 8082A SW846 3546 Percent Solids: 91.5 Project: Elton Crossing, 899 Elton Avenue, Bronx, NY Analytical Batch File ID DF Analyzed By Prep Date Prep Batch Run #1 XX167140.D 1 03/03/15 JN 03/02/15 **OP82081** GXX5274 Run #2 **Initial Weight Final Volume** Run #1 15.0 g 10.0 ml Run #2 **PCB** List Compound Result RL MDL Units Q CAS No. 12674-11-2 Aroclor 1016 ND 36 9.5 ug/kg 11104-28-2 Aroclor 1221 ND 36 22 ug/kg 11141-16-5 Aroclor 1232 ND 36 18 ug/kg 53469-21-9 Aroclor 1242 ND 36 12 ug/kg 12672-29-6 Aroclor 1248 ND 36 11 ug/kg 17 ug/kg 11097-69-1 Aroclor 1254 ND 36 11096-82-5 Aroclor 1260 ND 36 12 ug/kg 11100-14-4 Aroclor 1268 ND 36 11 ug/kg 37324-23-5 Aroclor 1262 36 12 ND ug/kg Run#1 Run#2 Limits CAS No. Surrogate Recoveries

91%

83%

97%

79%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

877-09-8

877-09-8

2051-24-3

2051-24-3

Tetrachloro-m-xylene

Tetrachloro-m-xylene

Decachlorobiphenyl

Decachlorobiphenyl

J = Indicates an estimated value

14-139%

14-139% 10-155%

10-155%

- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 1 of 1

E = Indicates value exceeds calibration range

Raw Data: XX167141.D

Accutest Laboratories

	Report of Analysis										
Client Sam Lab Sampl Matrix: Method: Project:	ple ID: SSB-X e ID: JB8893 SO - So SW846 Elton C	5-7 vil 8082A SV crossing, 899	8 – L. C V846 3546 9 Elton Avenue	0-2) , Bronx, N	Y	Date Date Perc	Sampled: Received: ent Solids:	02/25/15 02/26/15 90.8			
Run #1 Run #2	File ID XX167141.D	DF 1	Analyzed 03/03/15	By JN	Prep D 03/02/1	ate 5	Prep Batch OP82081	Analytical Batch GXX5274			
Run #1 Run #2	Initial Weight 15.8 g	Final Vol 10.0 ml	ume								
PCB List											
CAS No.	Compound		Result	RL	MDL	Units	Q				
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 11100-14-4 37324-23-5	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1268 Aroclor 1262		ND ND ND ND ND ND ND	35 35 35 35 35 35 35 35 35 35	9.1 21 18 11 11 16 11 10 11	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg					
CAS No.	Surrogate Rec	overies	Run# 1	Run# 2	Lim	its					
877-09-8 877-09-8 2051-24-3 2051-24-3	Tetrachloro-m- Tetrachloro-m- Decachlorobipl Decachlorobipl	xylene xylene 1enyl 1enyl	109% 97% 115% 91%		14-1 14-1 10-1 10-1	.39% .39% .55% .55%					

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sam Lab Sample Matrix: Method: Project:	ple ID: SSB-3 (e ID: JB8893 SO - So SW846 Elton C	(0-2) 5-8 il 8082A SW rossing, 899	V846 3546) Elton Avenu	e, Bronx, N	Y	Date Date Perc	Sampled: Received: ent Solids:	02/26/15 02/26/15 88.3
Run #1 Run #2	File ID XX167142.D	DF 1	Analyzed 03/03/15	By JN	Prep D 03/02/1	ate 5	Prep Batch OP82081	n Analytical Batch GXX5274
Run #1 Run #2	Initial Weight 15.7 g	Final Vol 10.0 ml	ume					
PCB List								
CAS No.	Compound		Result	RL	MDL	Units	Q	
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 11100-14-4 37324-23-5	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1268 Aroclor 1262		ND ND ND ND ND ND ND ND	36 36 36 36 36 36 36 36 36	9.4 22 18 11 11 17 12 11 11	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg		
CAS No.	Surrogate Rec	overies	Run# 1	Run# 2	Lim	its		
877-09-8 877-09-8 2051-24-3 2051-24-3	Tetrachloro-m- Tetrachloro-m- Decachlorobipl Decachlorobipl	xylene xylene henyl henyl	111% 100% 121% 95%		14-1 14-1 10-1 10-1	.39% .39% .55% .55%		

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

Report of Analysis

Page 1 of 1

Client Sam	ple ID: SSB-3 ((5-7)					_		
Lab Sample ID: JB88935-9			Date Sampled: 02/26/15						
Matrix: SO - Soil			Date				Received: 02/26/15		
Method:	SW846	N846 3546	846 3546 Percent Solids: 87.6						
Project:	Elton C	rossing, 89	9 Elton Avenu	e, Bronx, N	Y				
	File ID	DF	Analyzed	By	Prep Date		Prep Batch	Analytical Batch	
Run #1	XX167143.D 1		03/03/15	JN	03/02/15		OP82081	GXX5274	
Run #2									
	Initial Weight Final V		lume						
Run #1 Run #2	15.7 g	10.0 ml							
PCB List									
CAS No.	Compound		Result	RL	MDL	Units	Q		
12674-11-2	Aroclor 1016		ND	36	9.5	ug/kg			
11104-28-2	Aroclor 1221		ND	36	22	ug/kg			
11141-16-5	Aroclor 1232		ND	36	18	ug/kg			
53469-21-9	Aroclor 1242		ND	36	12	ug/kg			
12672-29-6	Aroclor 1248		ND	36	11	ug/kg			
11097-69-1	Aroclor 1254		ND	36	17	ug/kg			
11096-82-5	Aroclor 1260		ND	36	12	ug/kg			
11100-14-4	Aroclor 1268		ND	36	11	ug/kg			
37324-23-5	Aroclor 1262		ND	36	12	ug/kg			
CAS No.	Surrogate Recoveries		Run# 1	Run# 2	Run# 2 Limits				
877-09-8	Tetrachloro-m-xylene		120%		14-1	l 39 %			
877-09-8	Tetrachloro-m-xylene		107%		14-139%				
2051-24-3	Decachlorobiphenyl		154%		10-155%				
2051-24-3	Decachlorobiphenyl		104%		10-155%				

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

1 of 1
Raw Data: XX167144.D

Accutest Laboratories

Report of Analysis

Page 1 of 1

Client Sam	ple ID: SSB-3 (7.5-9.5)				Data	Samuladı 0	0/26/15	
Lao Sampi	e ID: 100033	3-10 31				Date	Bassived: 02	2/20/13 D/20/15	
Matrix:	SU - 50	11 00001 CV				Date	Received: 02	2/20/13	
Dreiset.	SVV040	0002A 3V	V640 3340 D Elton Asiania	o Decent N	v	Perc	ent sonus: os).2	
Project:	Ellon C	rossing, 89	9 Ellon Avenu	e, droiix, iv	1				
	File ID	DF	Analyzed	Ву	Prep Date		Prep Batch	Analytical Batch	
Run #1	XX167144.D	1	03/03/15	JN	03/02/1	15	OP82081	GXX5274	
Run #2									
	Initial Weight	Final Vol	ume						
Run #1	15.3 g	10.0 ml							
Run #2	8								
PCB List								,	
CAS No.	Compound		Result	RL	MDL	Units	Q		
12674-11-2	Aroclor 1016		ND	37	9.5	ug/kg			
11104-28-2	Aroclor 1221		ND	37	22	ug/kg			
11141-16-5	Aroclor 1232		ND	37	19	ug/kg			
53469-21-9	Aroclor 1242		ND	37	12	ug/kg			
12672-29-6	Aroclor 1248		ND	37	11	ug/kg			
11097-69-1	Aroclor 1254		ND	37	17	ug/kg			
11096-82-5	Aroclor 1260		ND	37	12	ug/kg			
11100-14-4	Aroclor 1268		ND	37	11	ug/kg			
37324-23-5	Aroclor 1262		ND	37	12	ug/kg			
CAS No.	Surrogate Rec	overies	Run# 1	Run# 2	Lim	its			
877-09-8	Tetrachloro-m-	xylene	108%		14-1	39%			
877-09-8	Tetrachloro-m-	xylene	97%		14-1	39%			
2051-24-3	Decachlorobiph	enyl	118%		10-1	55%			
2051-24-3	Decachlorobiph	enyl	91%		10-1	55%			

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Ĩ

Raw Data: 5G38508.D

Accutest Laboratories

Report of Analysis

Client Sample ID: FB20150226 Lab Sample ID: JB88935-12 Date Sampled: 02/26/15 Matrix: AQ - Field Blank Soil Date Received: 02/26/15 Method: SW846 8082A SW846 3510C Percent Solids: n/a Project: Elton Crossing, 899 Elton Avenue, Bronx, NY Analytical Batch File ID DF Analyzed Prep Date Prep Batch By Run #1 5G38508.D 1 03/03/15 JN 03/02/15 **OP82095** G5G966 Run #2 Initial Volume **Final Volume** 2.0 ml Run #1 300 ml Run #2 **PCB** List RL MDL Q CAS No. Compound Result Units Aroclor 1016 ND 0.33 0.085 ug/l 12674-11-2 Aroclor 1221 0.33 0.18 ug/l 11104-28-2 ND 11141-16-5 Aroclor 1232 ND 0.33 0.26 ug/l 0.057 53469-21-9 Aroclor 1242 ND 0.33 ug/l 0.097 Aroclor 1248 ND 0.33 ug/l 12672-29-6 Aroclor 1254 0.094 ug/l 11097-69-1 ND 0.33 Aroclor 1260 0.33 0.14 11096-82-5 ND ug/l Aroclor 1268 0.33 0.087 ND ug/l 11100-14-4 37324-23-5 Aroclor 1262 0.33 0.040 ug/l ND Run# 1 Run#2 Limits CAS No. Surrogate Recoveries 20-130% 877-09-8 Tetrachloro-m-xylene 61% Tetrachloro-m-xylene 20-130% 877-09-8 66% 29% 10-122% 2051-24-3 Decachlorobiphenyl

37%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

2051-24-3

E = Indicates value exceeds calibration range

Decachlorobiphenyl

J = Indicates an estimated value

10-122%

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

115 of 2362 ACCUTEST. JB68935

Page 1 of 1

Raw Data: 5G39047.D

Accutest Laboratories

Report of Analysis

Client Sample ID: MW-1 Date Sampled: 03/11/15 Lab Sample ID: JB89708-1 Date Received: 03/11/15 Matrix: AQ - Ground Water Percent Solids: Method: SW846 8082A SW846 3510C n/a Project: Elton Crossing, 899 Elton Avenue, Bronx, NY Prep Batch Analytical Batch File ID DF Analyzed By Prep Date G5G981 OP82386 Run #1 5G39047.D 1 03/19/15 DG 03/16/15 Run #2 Initial Volume **Final Volume** 1000 ml 1.0 ml Run #1 Run #2 **PCB** List Q RL MDL Units CAS No. Compound Result 0.013 12674-11-2 Aroclor 1016 ND 0.050 ug/l 11104-28-2 Aroclor 1221 ND 0.050 0.027 ug/l 0.039 11141-16-5 Aroclor 1232 ND 0.050 ug/l ND 0.050 0.0086 ug/l 53469-21-9 Aroclor 1242 12672-29-6 Aroclor 1248 0.050 0.015 ug/l ND Aroclor 1254 ND 0.050 0.014 ug/l 11097-69-1 11096-82-5 Aroclor 1260 ND 0.050 0.021 ug/l Limits Run#2 Surrogate Recoveries Run#1 CAS No. 20-130% 877-09-8 Tetrachloro-m-xylene 75% 20-130% 89% 877-09-8 Tetrachloro-m-xylene 10-122% 2051-24-3 Decachlorobiphenyl 60% 10-122% 61%

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

2051-24-3

E = Indicates value exceeds calibration range

Decachlorobiphenyl

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

19 of 1744 ACCUTEST. JB89708

Raw Data: 5G39048.D

Accutest Laboratories

Report of Analysis

Page 1 of 1

4.3

Client Sam Lab Sample Matrix: Method: Project:	ple ID: MW-2 e ID: JB89703 AQ - G SW846 Elton C	3-2 round Water 8082A SW rossing, 899	/846 3510C Elton Avenue	e, Bronx, N	Y	Date Date Perc	Sampled: Received: ent Solids:	03/11/15 03/11/15 n/a
Run #1 Run #2	File ID 5G39048.D	DF 1	Analyzed 03/19/15	By DG	Prep Da 03/16/15	ite 5	Prep Batch OP82386	Analytical Batch G5G981
Run #1 Run #2	Initial Volume 1000 ml	Final Volu 1.0 ml	ıme					
PCB List								
CAS No.	Compound		Result	RL	MDL	Units	Q	
12674-11-2	Aroclor 1016 Aroclor 1221		ND	0.050	0.013	ug/l ug/l		
11141-16-5	Aroclor 1221		ND	0.050	0.039	ug/1		
53469-21-9	Aroclor 1242		ND	0.050	0.0086	ug/l		
12672-29-6	Aroclor 1248		ND	0.050	0.015	ug/l		
11097-69-1	Aroclor 1254		ND	0.050	0.014	ug/l		
11096-82-5	Aroclor 1260		ND	0.050	0.021	ug/l		
CAS No.	Surrogate Rec	overies	Run# 1	Run# 2	Limi	ts		
877-09-8	Tetrachloro-m-	xylene	82%		20-13	30%		
877-09-8	Tetrachloro-m-	xylene	96%		20-13	30%		
2051-24-3	Decachlorobiph	enyl	39%		10-12	22%		
2051-24-3	Decachlorobiph	enyl	41%	10-122%				

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

Raw Data: 5G39049.D

Accutest Laboratories

Report of Analysis

Client Sample ID: MW-3 Lab Sample ID: JB89708-3 Date Sampled: 03/11/15 Matrix: AQ - Ground Water Date Received: 03/11/15 Method: SW846 8082A SW846 3510C Percent Solids: n/a Project: Elton Crossing, 899 Elton Avenue, Bronx, NY Analytical Batch File ID DF Analyzed By Prep Date Prep Batch DG Run #1 5G39049.D 1 03/19/15 03/16/15 OP82386 G5G981 Run #2 **Final Volume** Initial Volume 1.0 ml 1000 ml Run #1 Run #2 **PCB** List MDL Q CAS No. Compound Result RL Units 12674-11-2 Aroclor 1016 ND 0.050 0.013 ug/l Aroclor 1221 0.027 ug/l 11104-28-2 ND 0.050 11141-16-5 Aroclor 1232 ND 0.050 0.039 ug/l Aroclor 1242 ND 0.050 0.0086 ug/l 53469-21-9 Aroclor 1248 0.015 ug/l ND 0.050 12672-29-6 11097-69-1 Aroclor 1254 ND 0.050 0.014 ug/l 11096-82-5 Aroclor 1260 0.050 0.021 ug/l ND Run#2 Limits CAS No. Surrogate Recoveries Run#1 20-130% 69% 877-09-8 Tetrachloro-m-xylene 20-130% Tetrachloro-m-xylene 70% 877-09-8 10-122% 2051-24-3 Decachlorobiphenyl 34% 10-122% Decachlorobiphenyl 36% 2051-24-3

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

37 of 1744 ACCUTEST, JB89708

E = Indicates value exceeds calibration range

Report of Analysis Page 1 of 1 Client Sample ID: MW-X JB89708-4 Date Sampled: 03/11/15 Lab Sample ID: AQ - Ground Water Date Received: 03/11/15 Matrix: SW846 8082A SW846 3510C Percent Solids: n/a Method: Elton Crossing, 899 Elton Avenue, Bronx, NY Project: Prep Batch **Analytical Batch** File ID DF Analyzed Prep Date By DG 03/16/15 OP82386 G5G981 Run #1 5G39050.D 03/19/15 1 Run #2 Initial Volume **Final Volume** Run #1 1000 ml 1.0 ml Run #2 **PCB** List CAS No. Compound Result RL MDL Units Q 0.013 ug/l 12674-11-2 Aroclor 1016 ND 0.050 11104-28-2 Aroclor 1221 ND 0.050 0.027 ug/l 0.039 11141-16-5 Aroclor 1232 ND 0.050 ug/l 0.0086 Aroclor 1242 ND ug/l 53469-21-9 0.050 Aroclor 1248 12672-29-6 ND 0.050 0.015 ug/l Aroclor 1254 ND 0.050 0.014 11097-69-1 ug/l 0.050 0.021 11096-82-5 Aroclor 1260 ND ug/l Run#1 Run#2 Limits CAS No. Surrogate Recoveries 20-130% 79% 877-09-8 Tetrachloro-m-xylene 20-130% 877-09-8 Tetrachloro-m-xylene 92% 10-122% 2051-24-3 Decachlorobiphenyl 35% Decachlorobiphenyl 36% 10-122% 2051-24-3

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Ja / 13715

4

E = Indicates value exceeds calibration range

Raw Data: 5G39051.D

Accutest Laboratories

Report of Analysis

Client Sample ID: FB20150311 Date Sampled: Lab Sample ID: JB89708-6 03/11/15 Date Received: Matrix: AQ - Field Blank Water 03/11/15 Method: SW846 8082A SW846 3510C Percent Solids: n/a Project: Elton Crossing, 899 Elton Avenue, Bronx, NY Analytical Batch File ID DF Analyzed By Prep Date Prep Batch G5G981 Run #1 5G39051.D 1 03/19/15 DG 03/16/15 **OP82386** Run #2 **Initial Volume Final Volume** 1000 ml 1.0 ml Run #1 Run #2 **PCB** List RL MDL Units Q CAS No. Compound Result 12674-11-2 Aroclor 1016 ND 0.050 0.013 ug/l Aroclor 1221 ND 0.050 0.027 ug/l 11104-28-2 11141-16-5 Aroclor 1232 ND 0.050 0.039 ug/l Aroclor 1242 ND 0.050 0.0086 53469-21-9 ug/l Aroclor 1248 0.050 0.015 ND ug/l 12672-29-6 Aroclor 1254 0.050 0.014 ug/l 11097-69-1 ND 11096-82-5 Aroclor 1260 ND 0.050 0.021 ug/l Run#1 Run#2 Limits CAS No. Surrogate Recoveries 20-130% 877-09-8 Tetrachloro-m-xylene 86% 20-130% Tetrachloro-m-xylene **99%** 877-09-8 10-122% Decachlorobiphenyl 38% 2051-24-3 Decachlorobiphenyl 39% 10-122% 2051-24-3

ND = Not detected MDL = Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

57 of 1744

4.10

Page 1 of 1

Accutest LabLink@841363 10:44 06-Mar-2015

Client Sample Lab Sample II Matrix:	D: SS D: JB SC	-1 88569-2) - Soil	000 71		P			Date Sampled: Date Received: Percent Solids:	02/19/15 02/20/15 79.8
Project:	El	ton Crossing	, 899 Elto	n Ave	nue, Bronx,	NY			
Metals Analys	sis								
Analyte	Result	RL	Units	DF	Prep	Analyzed	By	Method	Prep Method
Aluminum	6810	49	mg/kg	1	02/24/15	02/24/15	BS	SW846 6010C ²	SW846 3050B 5
Antimony ^a	7.4	4.0	mg/kg	2	02/24/15	02/25/15	BS	SW846 6010C ³	SW846 3050B ⁵
Arsenic	13.3	2.0	mg/kg	1	02/24/15	02/24/15	BS	SW846 6010C ²	SW846 3050B ⁵
Barium	124	20	mg/kg	1	02/24/15	02/24/15	BS	SW846 6010C ²	SW846 3050B ⁵
Beryllium	0.22	0.20	mg/kg	1	02/24/15	02/24/15	BS	SW846 6010C ²	SW846 3050B ⁵
Cadmium ^a	7.1	0.99	mg/kg	2	02/24/15	02/25/15	BS	SW846 6010C ³	SW846 3050B ⁵
Calcium	36500	490	mg/kg	1	02/24/15	02/24/15	BS	SW846 6010C ²	SW846 3050B ⁵
Chromium ^a	50.1	2.0	mg/kg	2	02/24/15	02/25/15	BS	SW846 6010C ³	SW846 3050B ⁵
Cobalt	25.4	4.9	mg/kg	1	02/24/15	02/24/15	BS	SW846 6010C ²	SW846 3050B ⁵
Copper ^a	130	4.9	mg/kg	2	02/24/15	02/25/15	BS	SW846 6010C ³	SW846 3050B ⁵
Iron	73700	99	mg/kg	2	02/24/15	02/25/15	BS	SW846 6010C ³	SW846 3050B ⁵
Lead ^a	354	4.0	mg/kg	2	02/24/15	02/25/15	BS	SW846 6010C ³	SW846 3050B ⁵
Magnesium	3660	490	mg/kg	1	02/24/15	02/24/15	BS	SW846 6010C ²	SW846 3050B ⁵
Manganese ^a	547	3.0	mg/kg	2	02/24/15	02/25/15	BS	SW846 6010C ³	SW846 3050B ⁵
Mercury	< 0.03	0.038	mg/kg	1	02/23/15	02/23/15	JW	SW846 7471B ¹	SW846 7471B ⁴
Nickel	35.7	4.0	mg/kg	1	02/24/15	02/24/15	BS	SW846 6010C ²	SW846 3050B ⁵
Potassium	2080	990	mg/kg	1	02/24/15	02/24/15	BS	SW846 6010C ²	SW846 3050B ⁵
Selenium ^a	< 4.0	4.0	mg/kg	2	02/24/15	02/25/15	BS	SW846 6010C ³	SW846 3050B ⁵
Silver ^a	< 1.5	1.5	mg/kg	3	02/24/15	02/25/15	BS	SW846 6010C ³	SW846 3050B ⁵
Sodium	1000	990	mg/kg	1	02/24/15	02/24/15	BS	SW846 6010C ²	SW846 3050B ⁵
Thallium ^a	< 2.0	2.0	mg/kg	2	02/24/15	02/25/15	BS	SW846 6010C ³	SW846 3050B ⁵
Vanadium	41.2	4.9	mg/kg	1	02/24/15	02/24/15	BS	SW846 6010C ²	SW846 3050B ⁵
Zinc	833	4.9	mg/kg	1	02/24/15	02/24/15	BS	SW846 6010C ²	SW846 3050B ⁵

Report of Analysis

Page 1 of 1

(1) Instrument QC Batch: MA36102
 (2) Instrument QC Batch: MA36116

(3) Instrument QC Batch: MA36120

(4) Prep QC Batch: MP84996

(5) Prep QC Batch: MP85014

(a) Elevated detection limit due to dilution required for high interfering element.

Client Sample Lab Sample I Matrix:	e ID: SSB-1 D: JB8893 SO - So		Date Sampled: Date Received: Percent Solids:	02/25/15 02/26/15 70.6										
Project:	Elton C	Crossing	, 899 Eltor	1 Ave	nue, Bronx,	NY								
Metals Analys	Metals Analysis													
Analyte	Result	RL	Units	DF	Prep	Analyzed	By	Method	Prep Method					
Aluminum	16100	50	mg/kg	1	03/03/15	03/03/15	кк	SW846 6010C ²	SW846 3050B ⁵					
Antimony	5.2	2.0	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵					
Arsenic ^a	16.1	4.0	mg/kg	2	03/03/15	03/04/15	KK	SW846 6010C ³	SW846 3050B ⁵					
Barium	792	20	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵					
Beryllium	0.67	0.20	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵					
Cadmium ^a	11.9	1.0	mg/kg	2	03/03/15	03/04/15	KK	SW846 6010C ³	SW846 3050B ⁵					
Calcium	39700	500	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵					
Chromium ^a	62.2	2.0	mg/kg	2	03/03/15	03/04/15	KK	SW846 6010C ³	SW846 3050B ⁵					
Cobalt	12.8	5.0	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵					
Copper ^a	198	5.0	mg/kg	2	03/03/15	03/04/15	КК	SW846 6010C ³	SW846 3050B ⁵					
Iron	61400	100	mg/kg	2	03/03/15	03/04/15	KK	SW846 6010C ³	SW846 3050B ⁵					
Lead ^a	935	4.0	mg/kg	2	03/03/15	03/04/15	KK	SW846 6010C ³	SW846 3050B ⁵					
Magnesium	4940	500	mg/kg	1	03/03/15	03/03/15	КК	SW846 6010C ²	SW846 3050B ⁵					
Manganese ^a	456	3.0	mg/kg	2	03/03/15	03/04/15	КК	SW846 6010C ³	SW846 3050B ⁵					
Mercury	44.0	4.3	mg/kg	100	03/02/15	03/02/15	MA	SW846 7471B ¹	SW846 7471B ⁴					
Nickel	34.7	4.0	mg/kg	1	03/03/15	03/03/15	кк	SW846 6010C ²	SW846 3050B ⁵					
Potassium	1380	1000	mg/kg	1	03/03/15	03/03/15	КК	SW846 6010C ²	SW846 3050B ⁵					
Selenium ^a	< 4.0	4.0	mg/kg	2	03/03/15	03/04/15	КК	SW846 6010C ³	SW846 3050B ⁵					
Silver ^a	1.5	1.0	mg/kg	2	03/03/15	03/04/15	КК	SW846 6010C ³	SW846 3050B ⁵					
Sodium	1620	1000	mg/kg	1	03/03/15	03/03/15	КК	SW846 6010C ²	SW846 3050B ⁵					
Thallium ^a	< 2.0	2.0	mg/kg	2	03/03/15	03/04/15	KK	SW846 6010C ³	SW846 3050B ⁵					
Vanadium ^a	73.2	10	mg/kg	2	03/03/15	03/04/15	КК	SW846 6010C ³	SW846 3050B ⁵					
Zinc	1280	5.0	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵					

Report of Analysis

Page 1 of 1

(1) Instrument QC Batch: MA36149

(2) Instrument QC Batch: MA36162

(3) Instrument QC Batch: MA36168(4) Prep QC Batch: MP85098

(5) Prep QC Batch: MP85117

(a) Elevated detection limit due to dilution required for high interfering element.

Client Sample Lab Sample I Matrix:	D: JB	B-1 (5-7) 38935-2 - Soil						Date Sampled: Date Received: Percent Solids:	02/25/15 02/26/15 78.5			
Project:	Elt	on Crossing,	899 Eltor	n Ave	nue, Bronx,	NY						
Metals Analysis												
Analyte	Result	RL	Units	DF	Prep	Analyzed	By	Method	Prep Method			
Aluminum	9410	51	mg/kg	1	03/03/15	03/03/15	кк	SW846 6010C ²	SW846 3050B 5			
Antimony	4.3	2.0	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵			
Arsenic	14.5	2.0	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵			
Barium	492	20	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵			
Beryllium	0.56	0.20	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵			
Cadmium	17.7	0.51	mg/kg	1	03/03/15	03/03/15	КК	SW846 6010C ²	SW846 3050B ⁵			
Calcium	15500	510	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵			
Chromium	52.7	1.0	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵			
Cobalt	9.9	5.1	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵			
Copper	270	2.5	mg/kg	1	03/03/15	03/04/15	КК	SW846 6010C ³	SW846 3050B ⁵			
Iron	31600	51	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵			
Lead	1940	2.0	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵			
Magnesium	4230	510	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵			
Manganese	272	1.5	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵			
Mercury	5.3	0.40	mg/kg	10	03/02/15	03/02/15	MA	SW846 7471B ¹	SW846 7471B ⁴			
Nickel	43.1	4.1	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵			
Potassium	1220	1000	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵			
Selenium	< 2.0	2.0	mg/kg	1	03/03/15	03/03/15	КК	SW846 6010C ²	SW846 3050B ⁵			
Silver	1.5	0.51	mg/kg	1	03/03/15	03/03/15	КК	SW846 6010C ²	SW846 3050B ⁵			
Sodium	< 1000	1000	mg/kg	1	03/03/15	03/03/15	КК	SW846 6010C ²	SW846 3050B ⁵			
Thallium	< 1.0	1.0	mg/kg	1	03/03/15	03/03/15	кк	SW846 6010C ²	SW846 3050B ⁵			
Vanadium	52.8	5.1	mg/kg	1	03/03/15	03/03/15	КК	SW846 6010C ²	SW846 3050B ⁵			
Zinc	1320	5.1	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵			

Report of Analysis

(1) Instrument QC Batch: MA36149

(1) Instrument QC Batch: MA36149
 (2) Instrument QC Batch: MA36162
 (3) Instrument QC Batch: MA36168
 (4) Prep QC Batch: MP85098
 (5) Prep QC Batch: MP85117

Client Sample ID: SSB-1 (7-9) Lab Sample ID: JB88935-3 Matrix: SO - Soil								Date Sampled: Date Received: Percent Solids:	02/25/15 02/26/15 78.0					
Project:	E	lton Crossing	, 899 Elto	n Ave	nue, Bronx,	NY			1010					
Metals Analy	Metals Analysis													
Analyte	Resul	lt RL	Units	DF	Prep	Analyzed	By	Method	Prep Method					
Aluminum	10900) 50	mg/kg	1	03/03/15	03/03/15	кк	SW846 6010C ²	SW846 3050B 5					
Antimony	< 2.0	2.0	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵					
Arsenic	4.6	2.0	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵					
Barium	139	20	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵					
Beryllium	0.64	0.20	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵					
Cadmium	4.3	0.50	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵					
Calcium	6740	500	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵					
Chromium	32.9	1.0	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵					
Cobalt	10.5	5.0	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵					
Copper	95.3	2.5	mg/kg	1	03/03/15	03/04/15	KK	SW846 6010C ³	SW846 3050B ⁵					
Iron	30400) 50	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵					
Lead	373	2.0	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵					
Magnesium	6440	500	mg/kg	1	03/03/15	03/03/15	КК	SW846 6010C ²	SW846 3050B ⁵					
Manganese	229	1.5	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵					
Mercury	0.82	0.038	mg/kg	1	03/02/15	03/02/15	MA	SW846 7471B ¹	SW846 7471B ⁴					
Nickel	30.6	4.0	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵					
Potassium	2290	1000	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵					
Selenium	< 2.0	2.0	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵					
Silver	0.90	0.50	mg/kg	1	03/03/15	03/03/15	КК	SW846 6010C ²	SW846 3050B ⁵					
Sodium	< 100	0 1000	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵					
Thallium	<1.0	1.0	mg/kg	1	03/03/15	03/03/15	КК	SW846 6010C ²	SW846 3050B ⁵					
Vanadium	33.9	5.0	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵					
Zinc	404	5.0	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵					

Report of Analysis

(1) Instrument QC Batch: MA36149

(2) Instrument QC Batch: MA36162

(3) Instrument QC Batch: MA36168

(4) Prep QC Batch: MP85098

(5) Prep QC Batch: MP85117

Client Sample ID: SSB-2 (0-2 Lab Sample ID: JB88935-4 Matrix: SO - Soil Project: Elton Cros						_	Date Sampled: Date Received: Percent Solids:	02/25/15 02/26/15 91.5		
Project:	E	ton C	rossing,	899 Eltor	1 Ave	nue, Bronx,	NY			
Metals Analy	sis									
Analyte	Result	t	RL	Units	DF	Prep	Analyzed	Ву	Method	Prep Method
Aluminum	11300		55	mg/kg	1	03/03/15	03/03/15	кк	SW846 6010C ²	SW846 3050B ⁵
Antimony	< 2.2		2.2	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B 5
Arsenic	3.3		2.2	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B 5
Barium	53.6		22	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Beryllium	0.74		0.22	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Cadmium	< 0.5	5	0.55	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Calcium	3030		550	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Chromium	26.5		1.1	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Cobalt	9.5		5.5	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Copper	29.9		2.7	mg/kg	1	03/03/15	03/04/15	KK	SW846 6010C ³	SW846 3050B ⁵
Iron	20000		55	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Lead	16.5		2.2	mg/kg	1	03/03/15	03/03/15	КК	SW846 6010C ²	SW846 3050B ⁵
Magnesium	5500		550	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Manganese	413		1.6	mg/kg	1	03/03/15	03/03/15	КК	SW846 6010C ²	SW846 3050B ⁵
Mercury	< 0.03	34	0.034	mg/kg	1	03/02/15	03/02/15	MA	SW846 7471B ¹	SW846 7471B ⁴
Nickel	18.8		4.4	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Potassium	2080		1100	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Selenium	< 2.2		2.2	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Silver	1.4		0.55	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Sodium	<110	0	1100	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Thallium	<1.1		1.1	mg/kg	1	03/03/15	03/03/15	КΚ	SW846 6010C ²	SW846 3050B ⁵
Vanadium	30.2		5.5	mg/kg	1	03/03/15	03/03/15	КК	SW846 6010C ²	SW846 3050B ⁵
Zinc	73.1		5.5	mg/kg	1	03/03/15	03/03/15	КК	SW846 6010C ²	SW846 3050B ⁵

Instrument QC Batch: MA36149
 Instrument QC Batch: MA36162

(3) Instrument QC Batch: MA36168

(4) Prep QC Batch: MP85098

(5) Prep QC Batch: MP85117

Zinc

Report of Analysis

Client Sample Lab Sample I Matrix:	e ID: 5 D:]	SSB-2 (B889) SO - S	(5-7) 35-5 oil				Date Sampled: Date Received: Percent Solids:	02/25/15 02/26/15 92.0		
Project:]	Elton (Crossing,	899 Eltor	1 Ave	nue, Bronx,	NY			
Metals Analys	sis									
Analyte	Resu	lt	RL	Units	DF	Prep	Analyzed	Ву	Method	Prep Method
Aluminum	1320	0	55	mg/kg	1	03/03/15	03/03/15	кк	SW846 6010C ²	SW846 3050B 5
Antimony	< 2.2	2	2.2	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B 5
Arsenic	3.1		2.2	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B 5
Barium	70.5		22	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B 5
Beryllium	0.81		0.22	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B 5
Cadmium	< 0.	55	0.55	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B 5
Calcium	6120		550	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Chromium	36.3		1.1	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B 5
Cobalt	11.3		5.5	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Copper	21.9		2.8	mg/kg	1	03/03/15	03/04/15	KK	SW846 6010C ³	SW846 3050B 5
Iron	2360	0	55	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Lead	99.8		2.2	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Magnesium	6280		550	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Manganese	415		1.7	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Mercury	0.05	7	0.032	mg/kg	1	03/02/15	03/02/15	MA	SW846 7471B ¹	SW846 7471B ⁴
Nickel	23.3		4.4	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Potassium	4440		1100	mg/kg	1	03/03/15	03/03/15	КК	SW846 6010C ²	SW846 3050B ⁵
Selenium	< 2.	2	2.2	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Silver	1.0		0.55	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Sodium	< 11	00	1100	mg/kg	1	03/03/15	03/03/15	КK	SW846 6010C ²	SW846 3050B ⁵
Thallium	<1.	1	1.1	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Vanadium	35.5		5.5	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Zinc	98.9		5.5	mg/kg	1	03/03/15	03/03/15	КК	SW846 6010C ²	SW846 3050B ⁵

Report of Analysis

Page 1 of 1

(1) Instrument QC Batch: MA36149

(2) Instrument QC Batch: MA36162

(3) Instrument QC Batch: MA36168

(4) Prep QC Batch: MP85098

Zinc

(5) Prep QC Batch: MP85117

Client Sample Lab Sample I Matrix: Project:	SSB-2 (B889 SO - S Elton	(8-10) 35-6 Soil Crossing.	899 Eltor	n Ave		Date Sampled: Date Received: Percent Solids:	02/25/15 02/26/15 91.5			
110j000										
Metals Analy	sis									
Analyte	Resu	lt	RL	Units	DF	Prep	Analyzed	Ву	Method	Prep Method
Aluminum	1150	0	56	mg/kg	1	03/03/15	03/03/15	кк	SW846 6010C ²	SW846 3050B ⁵
Antimony	< 2.	3	2.3	mg/kg	1	03/03/15	03/03/15	КК	SW846 6010C ²	SW846 3050B ⁵
Arsenic	6.0		2.3	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Barium	119		23	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Beryllium	0.65		0.23	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Cadmium	2.1		0.56	mg/kg	1	03/03/15	03/03/15	КК	SW846 6010C ²	SW846 3050B ⁵
Calcium	1180	0	560	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Chromium	33.2		1.1	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Cobalt	9.7		5.6	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Copper	33.3		2.8	mg/kg	1	03/03/15	03/04/15	KK	SW846 6010C ³	SW846 3050B ⁵
Iron	2960	0	56	mg/kg	1	03/03/15	03/03/15	КК	SW846 6010C ²	SW846 3050B ⁵
Lead	450		2.3	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Magnesium	5570		560	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Manganese	345		1.7	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Mercury	0.13		0.034	mg/kg	1	03/02/15	03/02/15	MA	SW846 7471B ¹	SW846 7471B ⁴
Nickel	21.4		4.5	mg/kg	1	03/03/15	03/03/15	КК	SW846 6010C ²	SW846 3050B ⁵
Potassium	3400		1100	mg/kg	1	03/03/15	03/03/15	КК	SW846 6010C ²	SW846 3050B ⁵
Selenium	< 2.	3	2.3	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Silver	0.97		0.56	mg/kg	1	03/03/15	03/03/15	КК	SW846 6010C ²	SW846 3050B ⁵
Sodium	< 11	00	1100	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Thallium	<1.	1	1.1	mg/kg	1	03/03/15	03/03/15	КК	SW846 6010C ²	SW846 3050B ⁵
Vanadium	31.1		5.6	mg/kg	1	03/03/15	03/03/15	КК	SW846 6010C ²	SW846 3050B ⁵
Zinc	633		5.6	mg/kg	1	03/03/15	03/03/15	КК	SW846 6010C ²	SW846 3050B ⁵

Report of Analysis

(1) Instrument QC Batch: MA36149

(2) Instrument QC Batch: MA36162

(3) Instrument QC Batch: MA36168
(4) Prep QC Batch: MP85098

(5) Prep QC Batch: MP85117

Page 1 of 1

Report of Analysis Page 2													
Client Sample Lab Sample II Matrix: Project:	ID: SSB-X D: JB8893 SO - So Elton C	5-7 bil	899 Eltor) Aver	(O-2)	NY		Date Sampled: Date Received: Per cent Solids:	02/25/15 02/26/15 90.8				
Metals Analysi	Metals Analysis												
Analyte Result RL Units DF Prep Analyzed By Method Prep Method													
Analyte	Result	RL	Units	DF	Prep	Analyzed	Ву	Method	Prep Method				
Aluminum	12000	57	ma/ka	1	03/03/15	03/03/15	ĸĸ	SW/846 6010C 2	SW846 3050B 5				
Antimony	< 2 3	23	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B 5				
Arsenic	3.0	2.3	mg/kg	1	03/03/15	03/03/15	кк	SW846 6010C ²	SW846 3050B 5				
Barium	56 4	23	mg/kg	1	03/03/15	03/03/15	кк	SW846 6010C ²	SW846 3050B 5				
Beryllium	0.70	0.23	mg/kg	î	03/03/15	03/03/15	кк	SW846 6010C ²	SW846 3050B 5				
Cadmium	< 0.57	0.57	mg/kg	1	03/03/15	03/03/15	кк	SW846 6010C ²	SW846 3050B 5				
Calcium	3300	570	mg/kg	1	03/03/15	03/03/15	кк	SW846 6010C ²	SW846 3050B 5				
Chromium	25.2	1.1	mg/kg	1	03/03/15	03/03/15	кк	SW846 6010C ²	SW846 3050B 5				
Cobalt	9.6	5.7	mg/kg	1	03/03/15	03/03/15	КК	SW846 6010C ²	SW846 3050B 5				
Copper	31.1	2.9	mg/kg	1	03/03/15	03/04/15	кк	SW846 6010C 3	SW846 3050B 5				
Iron	19700	57	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B 5				
Lead	26.8	2.3	mg/kg	1	03/03/15	03/03/15	КК	SW846 6010C ²	SW846 3050B ⁵				
Magnesium	5750	570	mg/kg	1	03/03/15	03/03/15	кк	SW846 6010C ²	SW846 3050B ⁵				
Manganese	479	1.7	mg/kg	1	03/03/15	03/03/15	КК	SW846 6010C ²	SW846 3050B ⁵				
Mercury	< 0.033	0.033	mg/kg	1	03/02/15	03/02/15	MA	SW846 7471B ¹	SW846 7471B ⁴				
Nickel	20.3	4.6	mg/kg	1	03/03/15	03/03/15	кк	SW846 6010C ²	SW846 3050B ⁵				
Potassium	2040	1100	mg/kg	1	03/03/15	03/03/15	КК	SW846 6010C ²	SW846 3050B ⁵				
Selenium	< 2.3	2.3	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵				
Silver	1.4	0.57	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵				
Sodium	< 1100	1100	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵				
Thallium	< 1.1	1.1	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵				
Vanadium	29.4	5.7	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵				
Zinc	71.4	5.7	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵				

(1) Instrument QC Batch: MA36149

(2) Instrument QC Batch: MA36162(3) Instrument QC Batch: MA36168

(4) Prep QC Batch: MP85098

(5) Prep QC Batch: MP85117

Client Sample	D: JB889	3 (0-2) 935-8		Date Sampled:	02/26/15				
Matrix:	SO - 5	Soil						Date Received:	02/26/15
								Percent Solids:	88.3
Project:	Elton	Crossing,	899 Eltor	1 Ave	nue, Bronx,	NY			
Metals Analys	sis								
Analyte	Result	RL	Units	DF	Prep	Analyzed	Ву	Method	Prep Method
Aluminum	14500	57	mg/kg	1	03/03/15	03/03/15	кк	SW846 6010C ²	SW846 3050B 5
Antimony	<2.3 🥑	$J_{2.3}$	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Arsenic	4.4	2.3	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Barium	51.1	23	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Beryllium	0.66	0.23	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Cadmium	< 0.57	0.57	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Calcium	1290	570	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Chromium	26.4	1.1	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Cobalt	8.5	5.7	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Copper	14.4	2.9	mg/kg	1	03/03/15	03/04/15	KK	SW846 6010C ³	SW846 3050B ⁵
Iron	22000	57	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Lead	8.3	2.3	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Magnesium	4280	570	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Manganese	265 🗍	1.7	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Mercury	< 0.035	0.035	mg/kg	1	03/03/15	03/03/15	MA	SW846 7471B ¹	SW846 7471B ⁴
Nickel	16.8	4.6	mg/kg	1	03/03/15	03/03/15	КК	SW846 6010C ²	SW846 3050B ⁵
Potassium	1660	1100	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Selenium	< 2.3	2.3	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Silver	1.4	0.57	mg/kg	1	03/03/15	03/03/15	КК	SW846 6010C ²	SW846 3050B ⁵
Sodium	< 1100	1100	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Thallium	<1.1	1.1	mg/kg	1	03/03/15	03/03/15	КК	SW846 6010C ²	SW846 3050B ⁵
Vanadium	34.9	5.7	mg/kg	1	03/03/15	03/03/15	КК	SW846 6010C ²	SW846 3050B ⁵
Zinc	34.5	5.7	mg/kg	1	03/03/15	03/03/15	КК	SW846 6010C ²	SW846 3050B ⁵

Report of Analysis

Instrument QC Batch: MA36156
 Instrument QC Batch: MA36162

(3) Instrument QC Batch: MA36168

(4) Prep QC Batch: MP85116

(5) Prep QC Batch: MP85117

Page 1 of 1

Ja (414115

Client Sample Lab Sample II Matrix:	ID: S D: JH S	SB-3 38893 D - So	(5-7) 55-9 bil	000 51		P	N/X/		Date Sampled: Date Received: Per cent Solids:	02/26/15 02/26/15 87.6
Project:	E	lton C	crossing,	, 899 Elto	n Ave	nue, Bronx,	ΝY			
Metals Analys	is									
Analyte	Resul	t	RL	Units	DF	Prep	Analyzed	By	Method	Prep Method
Aluminum	61500		57	mg/kg	1	03/03/15	03/03/15	КК	SW846 6010C ²	SW846 3050B ⁵
Antimony	< 2.3		2.3	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Arsenic	3.9		2.3	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Barium	148		23	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Beryllium	2.6		0.23	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Cadmium	0.60		0.57	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Calcium	16100		570	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Chromium	61.9		1.1	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Cobalt	18.5		5.7	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Copper	44.8		2.8	mg/kg	1	03/03/15	03/04/15	КК	SW846 6010C ³	SW846 3050B ⁵
Iron	38900		57	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Lead	15.1		2.3	mg/kg	1	03/03/15	03/03/15	КK	SW846 6010C ²	SW846 3050B ⁵
Magnesium	15400		570	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Manganese	450		1.7	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Mercury	< 0.0	35	0.035	mg/kg	1	03/02/15	03/02/15	MA	SW846 7471B ¹	SW846 7471B ⁴
Nickel	38.6		4.5	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Potassium	6490		1100	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Selenium	< 2.3		2.3	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Silver	1.3		0.57	mg/kg	1	03/03/15	03/04/15	KK	SW846 6010C ³	SW846 3050B ⁵
Sodium	2860		1100	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Thallium	< 1.1		1.1	mg/kg	1	03/03/15	03/04/15	KK	SW846 6010C ³	SW846 3050B ⁵
Vanadium	95.1		5.7	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Zinc	94.8		5.7	mg/kg	1	03/03/15	03/03/15	КК	SW846 6010C ²	SW846 3050B ⁵

Report of Analysis

(1) Instrument QC Batch: MA36149

(2) Instrument QC Batch: MA36162

(3) Instrument QC Batch: MA36168

(4) Prep QC Batch: MP85098
(5) Prep QC Batch: MP85117

Client Sample Lab Sample I	e ID: S ID: J	SSB-3 B8893	(7.5-9.5) 35-10						Date Sampled:	02/26/15
Matrix:	5	50 - S	bil						Date Received:	02/26/15
	_					_			Percent Solids:	89.2
Project:	1	Elton (Crossing,	899 Elto	n Ave	nue, Bronx,	NY			
Metals Analy	sis									
Analyte	Resu	lt	RL	Units	DF	Prep	Analyzed	By	Method	Prep Method
Aluminum	9390		58	mg/kg	1	03/03/15	03/03/15	КК	SW846 6010C ²	SW846 3050B ⁵
Antimony	< 2.3	3	2.3	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Arsenic	4.3		2.3	mg/kg	1	03/03/15	03/03/15	КК	SW846 6010C ²	SW846 3050B ⁵
Barium	66.8		23	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Beryllium	1.5		0.23	mg/kg	1	03/03/15	03/03/15	КК	SW846 6010C ²	SW846 3050B ⁵
Cadmium	0.62		0.58	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Calcium	1530		580	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Chromium	30.1		1.2	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Cobalt	16.9		5.8	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Copper	36.1		2.9	mg/kg	1	03/03/15	03/04/15	KK	SW846 6010C ³	SW846 3050B ⁵
Iron	3720	0	58	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Lead	7.4		2.3	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Magnesium	3440		580	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Manganese	1520		3.5	mg/kg	2	03/03/15	03/04/15	KK	SW846 6010C ³	SW846 3050B ⁵
Mercury	< 0.0)33	0.033	mg/kg	1	03/02/15	03/02/15	MA	SW846 7471B ¹	SW846 7471B ⁴
Nickel	28.3		4.6	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Potassium	1290		1200	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Selenium	< 2.3	3	2.3	mg/kg	1	03/03/15	03/03/15	КК	SW846 6010C ²	SW846 3050B ⁵
Silver	< 0.5	58	0.58	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵
Sodium	< 12	00	1200	mg/kg	1	03/03/15	03/03/15	КК	SW846 6010C ²	SW846 3050B ⁵
Thallium ^a	< 2.3	3	2.3	mg/kg	2	03/03/15	03/04/15	КК	SW846 6010C ³	SW846 3050B ⁵
Vanadium	45.4		5.8	mg/kg	1	03/03/15	03/03/15	КК	SW846 6010C ²	SW846 3050B ⁵
Zinc	71.4		5.8	mg/kg	1	03/03/15	03/03/15	KK	SW846 6010C ²	SW846 3050B ⁵

Report of Analysis

(1) Instrument QC Batch: MA36149

(2) Instrument QC Batch: MA36162

(3) Instrument QC Batch: MA36168

(4) Prep QC Batch: MP85098

(5) Prep QC Batch: MP85117

(a) Elevated detection limit due to dilution required for high interfering element.

Client Sample ID:FB20150226Lab Sample ID:JB88935-12Matrix:AQ - Field Blank SoilProject:Elton Crossing, 899 Elton Avenue, Bronx, NY						Date Sampled: Date Received: Per cent Solids:	02/26/15 02/26/15 n/a			
Total Metals	Analys	sis								
Analyte	Res	ult	RL	Units	DF	Prep	Analyzed	By	Method	Prep Method
Aluminum	< 2	00	200	ug/l	1	03/02/15	03/03/15	кк	SW846 6010C ²	SW846 3010A ⁴
Antimony	< 6	.0	6.0	ug/l	1	03/02/15	03/03/15	КК	SW846 6010C ²	SW846 3010A ⁴
Arsenic	< 3	.0	3.0	ug/l	1	03/02/15	03/03/15	кк	SW846 6010C ²	SW846 3010A 4
Barium	< 2	00	200	ug/l	1	03/02/15	03/03/15	кк	SW846 6010C ²	SW846 3010A ⁴
Beryllium	< 1	.0	1.0	ug/l	1	03/02/15	03/03/15	КК	SW846 6010C ²	SW846 3010A ⁴
Cadmium	< 3	.0	3.0	ug/l	1	03/02/15	03/03/15	КК	SW846 6010C ²	SW846 3010A ⁴
Calcium	< 5	000	5000	ug/l	1	03/02/15	03/03/15	КК	SW846 6010C ²	SW846 3010A ⁴
Chromium	< 1	0	10	ug/l	1	03/02/15	03/03/15	КК	SW846 6010C ²	SW846 3010A ⁴
Cobalt	< 5	0	50	ug/l	1	03/02/15	03/03/15	КК	SW846 6010C ²	SW846 3010A ⁴
Copper	< 1	0	10	ug/l	1	03/02/15	03/03/15	кк	SW846 6010C ²	SW846 3010A 4
Iron	<1	00	100	ug/l	1	03/02/15	03/03/15	КК	SW846 6010C ²	SW846 3010A ⁴

03/02/15 03/03/15 кк

03/02/15 03/03/15 кк

03/02/15 03/03/15 кк

03/02/15 03/02/15 DP

03/02/15 03/03/15 кк

SW846 6010C²

SW846 6010C²

SW846 6010C²

SW846 7470A ¹

SW846 6010C²

SW846 3010A 4

SW846 3010A 4

SW846 3010A 4

SW846 7470A 3

SW846 3010A 4

Report of Analysis

(1)	Tractorenant	00	Dataha	MA 20150
1) instrument	UU	Datch;	WA30130

< 3.0

<15

< 10

< 10

<10

< 2.0

< 50

< 20

< 5000

< 0.20

< 10000

< 10000

3.0

15

10

10

10

2.0

50

20

5000

0.20

10000

10000

ug/l

1

1

1

1

1

1

1

1

1

1

1

1

1

(2) Instrument QC Batch: MA36162

(3) Prep QC Batch: MP85104

(4) Prep QC Batch: MP85109

Lead

Magnesium

Manganese

Mercury

Potassium

Selenium

Nickel

Silver

Zinc

Sodium

Thallium

Vanadium

4.12

116 of 2362 ACCUTEST JB88935

	Report of Analysis			Page 1
Client Sample ID: Lab Sample ID: Matrix:	MW-1 JB89708-1 AQ - Ground Water	Date Sampled: Date Received: Per cent Solids:	03/11/15 03/11/15 n/a	
Project:	Elton Crossing, 899 Elton Avenue, Bronx, NY			

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	< 200	200	ug/l	1	03/16/15	03/17/15 вѕ	SW846 6010C ²	SW846 3010A 4
Antimony	< 6.0	6.0	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Arsenic	7.1	3.0	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Barium	< 200	200	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Beryllium	< 1.0	1.0	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Cadmium	< 3.0	3.0	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Calcium	71500	5000	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Chromium	18.7	10	ug/l	1	03/16/15	03/18/15 BS	SW846 6010C ³	SW846 3010A ⁴
Cobalt	< 50	50	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Copper	< 10	10	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Iron	< 100	100	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Lead	< 3.0	3.0	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Magnesium	40700	5000	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Manganese	< 15	15	ug/l	1	03/16/15	03/18/15 BS	SW846 6010C ³	SW846 3010A ⁴
Mercury	< 0.20	0.20	ug/l	1	03/16/15	03/16/15 DP	SW846 7470A ¹	SW846 7470A ⁵
Nickel	< 10	10	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Potassium	22200	10000	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Selenium	< 10	10	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Silver	< 10	10	ug/l	1	03/16/15	03/18/15 BS	SW846 6010C ³	SW846 3010A ⁴
Sodium	60400	10000	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Thallium	< 2.0	2.0	ug/l	1	03/16/15	03/18/15 BS	SW846 6010C ³	SW846 3010A ⁴
Vanadium	< 50	50	ug/l	1	03/16/15	03/18/15 BS	SW846 6010C ³	SW846 3010A ⁴
Zinc	< 20	20	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴

(1) Instrument QC Batch: MA36233

(2) Instrument QC Batch: MA36242

(3) Instrument QC Batch: MA36252
(4) Prep QC Batch: MP85287

(5) Prep QC Batch: MP85294

4.1

4

	Report of Analysis		Page 1	l c
Client Sample ID: Lab Sample ID: Matrix:	MW-1 JB89708-1F AQ - Groundwater Filtered	Date Sampled: Date Received:	03/11/15 03/11/15	
Project:	Elton Crossing, 899 Elton Avenue, Bronx, NY	Percent Solids:	n/a	

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	< 200	200	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A 4
Antimony	< 6.0	6.0	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Arsenic	7.3	3.0	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Barium	< 200	200	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Beryllium	< 1.0	1.0	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Cadmium	< 3.0	3.0	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Calcium	70800	5000	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A 4
Chromium	18.1	10	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Cobalt	< 50	50	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Copper	< 10	10	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Iron	< 100	100	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Lead	< 3.0	3.0	ug/l	1	03/16/15	03/17/15 вѕ	SW846 6010C ²	SW846 3010A ⁴
Magnesium	41100	5000	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Manganese	< 15	15	ug/l	1	03/16/15	03/17/15 вѕ	SW846 6010C ²	SW846 3010A ⁴
Mercury	< 0.20	0.20	ug/l	1	03/16/15	03/16/15 DP	SW846 7470A ¹	SW846 7470A ⁵
Nickel	< 10	10	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Potassium	22600	10000	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Selenium	< 10	10	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Silver	< 10	10	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Sodium	60900	10000	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Thallium	< 2.0	2.0	ug/l	1	03/16/15	03/18/15 BS	SW846 6010C ³	SW846 3010A ⁴
Vanadium	< 50	50	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Zinc	< 20	20	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴

(1) Instrument QC Batch: MA36233

(2) Instrument QC Batch: MA36242

(3) Instrument QC Batch: MA36252
(4) Prep QC Batch: MP85287

(5) Prep QC Batch: MP85294

Page 1 of 1

Client Sample ID:	MW-2		
Lab Sample ID:	IB89708-2	Date Sampled:	03/11/15
Matrix:	AQ - Ground Water	Date Received:	03/11/15
C. Carago and an extension of A.		Percent Solids:	n/a
Project:	Elton Crossing, 899 Elton Avenue, Bronx, NY		
Total Metals Analy	/sis		

Report of Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	2140	200	110/]	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Antimony	< 6.0	6.0	ug/1	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A 4
Arsenic	3.2 -	3.0	ug/1	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A 4
Barium	< 200	200	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A 4
Bervllium	2.0	1.0	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A 4
Cadmium	< 3.0	3.0	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A 4
Calcium	78400	5000	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Chromium	11.9 J	10	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A 4
Cobalt	< 50	50	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Copper	11.9	10	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A 4
Iron	19200	100	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Lead	23.2	3.0	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Magnesium	24500	5000	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Manganese	524	15	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Mercury	< 0.20	0.20	ug/l	1	03/16/15	03/16/15 DP	SW846 7470A ¹	SW846 7470A ⁵
Nickel	20.0	10	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Potassium	39800	10000	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Selenium	< 10	10	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Silver	< 10	10	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Sodium	224000	10000	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Thallium	< 2.0	2.0	ug/l	1	03/16/15	03/18/15 BS	SW846 6010C ³	SW846 3010A ⁴
Vanadium	< 50	50	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Zinc	57.6	20	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴

Instrument QC Batch: MA36233
 Instrument QC Batch: MA36242

(3) Instrument QC Batch: MA36252

(4) Prep QC Batch: MP85287
(5) Prep QC Batch: MP85294

for

4.3

Page 1 of 1

Report of Analysis

of Analysis		Page 1 of 1

Project:	Elton Crossing, 899 Elton Avenue, Bronx, NY			
		Percent Solids:	n/a	
Matrix:	AO - Groundwater Filtered	Date Received:	03/11/15	
Lab Sample ID:	JB89708-2F	Date Sampled:	03/11/15	
Client Sample ID:	MW-2			

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	< 200	200	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Antimony	< 6.0	6.0	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Arsenic	< 3.0	3.0	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Barium	< 200	200	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Beryllium	< 1.0	1.0	ug/l	1	03/16/15	03/17/15 вѕ	SW846 6010C ²	SW846 3010A ⁴
Cadmium	< 3.0	3.0	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Calcium	29200	5000	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Chromium	< 10	10	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Cobalt	< 50	50	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Copper	< 10	10	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Iron	< 100	100	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Lead	< 3.0	3.0	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Magnesium	5280	5000	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Manganese	<15	15	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Mercury	< 0.20	0.20	ug/l	1	03/16/15	03/16/15 DP	SW846 7470A ¹	SW846 7470A ⁵
Nickel	< 10	10	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Potassium	41000	10000	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Selenium	< 10	10	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Silver	< 10	10	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Sodium	239000	10000	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Thallium	< 2.0	2.0	ug/l	1	03/16/15	03/18/15 BS	SW846 6010C ³	SW846 3010A ⁴
Vanadium	< 50	50	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Zinc	< 20	20	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴

(1) Instrument QC Batch: MA36233

(2) Instrument QC Batch: MA36242
(3) Instrument QC Batch: MA36252

(4) Prep QC Batch: MP85287

(5) Prep QC Batch: MP85294

	Report of Analysis			Page 1
Client Sample ID: Lab Sample ID: Matrix:	MW-3 JB89708-3 AQ - Ground Water	Date Sampled: Date Received: Percent Solids:	03/11/15 03/11/15 n/a	
Project:	Elton Crossing, 899 Elton Avenue, Bronx, NY			

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	273	200	ug/l	ĩ	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Antimony	< 6.0	6.0	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Arsenic	< 3.0	3.0	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Barium	< 200	200	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Beryllium	< 1.0	1.0	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Cadmium	< 3.0	3.0	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Calcium	56600	5000	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Chromium	< 10	10	ug/l	1	03/16/15	03/18/15 BS	SW846 6010C ³	SW846 3010A ⁴
Cobalt	< 50	50	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Copper	< 10	10	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Iron	4160	100	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Lead	< 3.0	3.0	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Magnesium	15000	5000	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Manganese	135	15	ug/l	1	03/16/15	03/18/15 BS	SW846 6010C ³	SW846 3010A ⁴
Mercury	< 0.20	0.20	ug/l	1	03/16/15	03/16/15 DP	SW846 7470A ¹	SW846 7470A ⁵
Nickel	< 10	10	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Potassium	53700	10000	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Selenium	< 10	10	ug/l	1	03/16/15	03/17/15 вѕ	SW846 6010C ²	SW846 3010A ⁴
Silver	< 10	10	ug/l	1	03/16/15	03/18/15 BS	SW846 6010C ³	SW846 3010A ⁴
Sodium	91500	10000	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Thallium	< 2.0	2.0	ug/l	1	03/16/15	03/18/15 BS	SW846 6010C ³	SW846 3010A ⁴
Vanadium	< 50	50	ug/l	1	03/16/15	03/18/15 BS	SW846 6010C ³	SW846 3010A ⁴
Zinc	< 20	20	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴

(1) Instrument QC Batch: MA36233

(2) Instrument QC Batch: MA36242

(3) Instrument QC Batch: MA36252(4) Prep QC Batch: MP85287

(5) Prep QC Batch: MP85294

Page 1 of 1

				-
Client Sample ID: Lab Sample ID: Matrix:	MW-3 JB89708-3F AQ - Groundwater Filtered	Date Sampled: Date Received: Percent Solids:	03/11/15 03/11/15 n/a	
Project:	Elton Crossing, 899 Elton Avenue, Bronx, NY			

Report of Analysis

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	298	200	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Antimony	< 6.0	6.0	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Arsenic	< 3.0	3.0	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Barium	< 200	200	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Bervllium	< 1.0	1.0	ug/l	1	03/16/15	03/17/15 вѕ	SW846 6010C ²	SW846 3010A ⁴
Cadmium	< 3.0	3.0	ug/l	1	03/16/15	03/17/15 вѕ	SW846 6010C ²	SW846 3010A ⁴
Calcium	56200	5000	ug/l	1	03/16/15	03/17/15 вѕ	SW846 6010C ²	SW846 3010A ⁴
Chromium	< 10	10	ug/l	1	03/16/15	03/18/15 BS	SW846 6010C ³	SW846 3010A ⁴
Cobalt	< 50	50	ug/l	1	03/16/15	03/17/15 вѕ	SW846 6010C ²	SW846 3010A ⁴
Copper	< 10	10	ug/l	1	03/16/15	03/17/15 вѕ	SW846 6010C ²	SW846 3010A ⁴
Iron	4190	100	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Lead	3.1	3.0	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Magnesium	15400	5000	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Manganese	154	15	ug/l	1	03/16/15	03/18/15 BS	SW846 6010C ³	SW846 3010A ⁴
Mercury	< 0.20	0.20	ug/l	1	03/16/15	03/16/15 DP	SW846 7470A ¹	SW846 7470A ⁵
Nickel	< 10	10	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Potassium	49200	10000	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Selenium	< 10	10	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Silver	< 10	10	ug/l	1	03/16/15	03/18/15 BS	SW846 6010C ³	SW846 3010A ⁴
Sodium	84900	10000	ug/l	1	03/16/15	03/17/15 вѕ	SW846 6010C ²	SW846 3010A ⁴
Thallium	< 2.0	2.0	ug/l	1	03/16/15	03/18/15 BS	SW846 6010C ³	SW846 3010A ⁴
Vanadium	< 50	50	ug/l	1	03/16/15	03/18/15 BS	SW846 6010C ³	SW846 3010A ⁴
Zinc	< 20	20	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴

(1) Instrument QC Batch: MA36233

(2) Instrument QC Batch: MA36242

(3) Instrument QC Batch: MA36252

(4) Prep QC Batch: MP85287
(5) Prep QC Batch: MP85294

Page 1 of 1

	Page 1 of									
Client Sample ID:MW-X(HUJ-L)Lab Sample ID:JB89708-4Date Sampled:03/11/15Matrix:AQ - Ground WaterDate Received:03/11/15Project:Elton Crossing, 899 Elton Avenue, Bronx, NYn/a										
Total Metals .	Analysis									
Analyte	Result	RL	Units	DF	Prep	Analyzed	By	Method	Prep Method	
Aluminum	1560	200	ug/l	1	03/16/15	03/17/15	BS	SW846 6010C ²	SW846 3010A ⁴	
Antimony	< 6.0	6.0	ug/l	1	03/16/15	03/17/15	BS	SW846 6010C ²	SW846 3010A 4	
Arsenic	<3.0 UJ	3.0	ug/l	1	03/16/15	03/17/15	BS	SW846 6010C ²	SW846 3010A ⁴	
Barium	< 200	200	ug/l	1	03/16/15	03/17/15	BS	SW846 6010C ²	SW846 3010A ⁴	
Beryllium	1.7	1.0	ug/l	1	03/16/15	03/17/15	BS	SW846 6010C ²	SW846 3010A ⁴	
Cadmium	< 3.0	3.0	ug/l	1	03/16/15	03/17/15	BS	SW846 6010C ²	SW846 3010A ⁴	
Calcium	72700	5000	ug/l	1	03/16/15	03/17/15	BS	SW846 6010C ²	SW846 3010A ⁴	
Chromium	<10 (7	10	ug/l	1	03/16/15	03/17/15	BS	SW846 6010C ²	SW846 3010A ⁴	
Cobalt	< 50	50	ug/l	1	03/16/15	03/17/15	BS	SW846 6010C ²	SW846 3010A ⁴	
Copper	10.2	10	ug/l	1	03/16/15	03/17/15	BS	SW846 6010C ²	SW846 3010A ⁴	
Iron	15300	100	ug/l	1	03/16/15	03/17/15	BS	SW846 6010C ²	SW846 3010A ⁴	
Lead	20.3	3.0	ug/l	1	03/16/15	03/18/15	BS	SW846 6010C ³	SW846 3010A ⁴	
Magnesium	22000	5000	ug/l	1	03/16/15	03/17/15	BS	SW846 6010C ²	SW846 3010A ⁴	
Manganese	473	15	ug/l	1	03/16/15	03/17/15	BS	SW846 6010C ²	SW846 3010A ⁴	
Mercury	< 0.20	0.20	ug/l	1	03/16/15	03/16/15	DP	SW846 7470A ¹	SW846 7470A ⁵	
Nickel	16.6	10	ug/l	1	03/16/15	03/17/15	BS	SW846 6010C ²	SW846 3010A ⁴	
Potassium	38000	10000	ug/l	1	03/16/15	03/17/15	BS	SW846 6010C ²	SW846 3010A ⁴	
Selenium	< 10	10	ug/l	1	03/16/15	03/17/15	BS	SW846 6010C ²	SW846 3010A ⁴	
Silver	< 10	10	ug/l	1	03/16/15	03/17/15	BS	SW846 6010C ²	SW846 3010A ⁴	
Sodium	217000	10000	ug/l	1	03/16/15	03/17/15	BS	SW846 6010C ²	SW846 3010A ⁴	
Thallium	< 2.0	2.0	ug/l	1	03/16/15	03/18/15	BS	SW846 6010C ³	SW846 3010A ⁴	
Vanadium	< 50	50	ug/l	1	03/16/15	03/17/15	BS	SW846 6010C ²	SW846 3010A ⁴	
Zinc	49.1	20	ug/l	1	03/16/15	03/17/15	BS	SW846 6010C ²	SW846 3010A ⁴	

03/16/15 03/17/15 BS

49.1

ug/l

1

20

Instrument QC Batch: MA36233
 Instrument QC Batch: MA36242

(3) Instrument QC Batch: MA36252

Zinc

(4) Prep QC Batch: MP85287
(5) Prep QC Batch: MP85294

RL = Reporting Limit

fo/4/3/15

47 of 1744 ACCUTEST JB89708 LANGRATH

f 1

	Report of Analysis		Page 1 of 1
Client Sample ID: Lab Sample ID: Matrix:	MW-X (MW-2) JB89708-4F AQ - Groundwater Filtered	Date Sampled: Date Received: Percent Solids:	03/11/15 03/11/15 n/a
Project:	Elton Crossing, 899 Elton Avenue, Bronx, NY		

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	< 200	200	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Antimony	< 6.0	6.0	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A 4
Arsenic	< 3.0	3.0	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Barium	< 200	200	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Beryllium	< 1.0	1.0	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Cadmium	< 3.0	3.0	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Calcium	30000	5000	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Chromium	< 10	10	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Cobalt	< 50	50	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Copper	< 10	10	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Iron	< 100	100	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Lead	< 3.0	3.0	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Magnesium	5440	5000	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Manganese	< 15	15	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Mercury	< 0.20	0.20	ug/l	1	03/16/15	03/16/15 DP	SW846 7470A ¹	SW846 7470A ⁵
Nickel	< 10	10	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Potassium	41200	10000	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A 4
Selenium	< 10	10	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Silver	< 10	10	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Sodium	239000	10000	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Thallium	< 2.0	2.0	ug/l	1	03/16/15	03/18/15 BS	SW846 6010C ³	SW846 3010A ⁴
Vanadium	< 50	50	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Zinc	< 20	20	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴

(1) Instrument QC Batch: MA36233

(2) Instrument QC Batch: MA36242
(3) Instrument QC Batch: MA36252

(4) Prep QC Batch: MP85287

(5) Prep QC Batch: MP85294

RL = Reporting Limit

Jo-MU13/15

Client Sample Lab Sample II Matrix:	Client Sample ID:FB20150311Lab Sample ID:JB89708-6Matrix:AQ - Field Blank Water						Date Sampled: Date Received: Percent Solids:	03/11/15 03/11/15 n/a	
Project:	E	lton Crossi	ng, 899 Elt	on Ave	nue, Bronx,	, NY		Tercent Sonds.	ii/a
Total Metals A	Analysis	5							
Analyte	Resu	t RL	Units	DF	Prep	Analyzed	By	Method	Prep Method
Aluminum	< 200) 200	ug/l	1	03/16/15	03/17/15	BS	SW846 6010C ²	SW846 3010A ⁴
Antimony	< 6.0	6.0	ug/l	1	03/16/15	03/17/15	BS	SW846 6010C ²	SW846 3010A ⁴
Arsenic	< 3.0	3.0	ug/l	1	03/16/15	03/17/15	BS	SW846 6010C ²	SW846 3010A ⁴
Barium	< 200) 200	ug/l	1	03/16/15	03/17/15	BS	SW846 6010C ²	SW846 3010A ⁴
Beryllium	< 1.0	1.0	ug/l	1	03/16/15	03/17/15	BS	SW846 6010C ²	SW846 3010A ⁴
Cadmium	< 3.0	3.0	ug/l	1	03/16/15	03/17/15	BS	SW846 6010C ²	SW846 3010A ⁴
Calcium	< 500	0 5000) ug/l	1	03/16/15	03/17/15	BS	SW846 6010C ²	SW846 3010A ⁴
Chromium	< 10	10	ug/l	1	03/16/15	03/17/15	BS	SW846 6010C ²	SW846 3010A ⁴
Cobalt	< 50	50	ug/l	1	03/16/15	03/17/15	BS	SW846 6010C ²	SW846 3010A ⁴
Copper	< 10	10	ug/l	1	03/16/15	03/17/15	BS	SW846 6010C ²	SW846 3010A 4
Iron	< 100) 100	ug/l	1	03/16/15	03/17/15	BS	SW846 6010C ²	SW846 3010A 4
Lead	< 3.0	3.0	ug/l	1	03/16/15	03/17/15	BS	SW846 6010C ²	SW846 3010A 4
Magnesium	< 500	0 5000) ug/l	1	03/16/15	03/17/15	BS	SW846 6010C ²	SW846 3010A ⁴
Manganese	< 15	15	ug/l	1	03/16/15	03/17/15	BS	SW846 6010C ²	SW846 3010A ⁴
Mercury	< 0.2	0 0.20	ug/l	1	03/16/15	03/16/15	DP	SW846 7470A ¹	SW846 7470A ⁵
Nickel	< 10	10	ug/l	1	03/16/15	03/17/15	BS	SW846 6010C ²	SW846 3010A 4
Potassium	< 100	00 100)0 ug/l	1	03/16/15	03/17/15	BS	SW846 6010C ²	SW846 3010A ⁴
Selenium	< 10	10	ug/l	1	03/16/15	03/17/15	BS	SW846 6010C ²	SW846 3010A ⁴
Silver	< 10	10	ug/l	1	03/16/15	03/17/15	BS	SW846 6010C ²	SW846 3010A ⁴
Sodium	< 100	000 1000)0 ug/l	1	03/16/15	03/17/15	BS	SW846 6010C ²	SW846 3010A 4

1

1

1

03/16/15 03/19/15 BS

03/16/15 03/17/15 BS

03/16/15 03/17/15 BS

ug/l

ug/l

ug/l

(1) Instrument QC Batch: MA36233

< 2.0

< 50

< 20

2.0

50

20

(2) Instrument QC Batch: MA36242

(3) Instrument QC Batch: MA36262

(4) Prep QC Batch: MP85287

(5) Prep QC Batch: MP85294

Thallium

Zinc

Vanadium

Report of Analysis

58 of 1744

ACCUTEST

JB89708

SW846 6010C ³

SW846 6010C²

SW846 6010C²

SW846 3010A 4

SW846 3010A ⁴

SW846 3010A 4

4.10 4

	Report of Analysis			Page 1 of 1
Client Sample ID:	FB20150311			
Lab Sample ID:	JB89708-6F	Date Sampled:	03/11/15	
Matrix:	AO - Field Blank Filtered	Date Received:	03/11/15	
		Percent Solids:	n/a	
Project:	Elton Crossing, 899 Elton Avenue, Bronx, NY			

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	< 200	200	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Antimony	< 6.0	6.0	ug/l	1	03/16/15	03/17/15 вѕ	SW846 6010C ²	SW846 3010A ⁴
Arsenic	< 3.0	3.0	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Barium	< 200	200	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Bervllium	< 1.0	1.0	ug/l	1	03/16/15	03/17/15 вѕ	SW846 6010C ²	SW846 3010A ⁴
Cadmium	< 3.0	3.0	ug/l	1	03/16/15	03/17/15 вѕ	SW846 6010C ²	SW846 3010A ⁴
Calcium	< 5000	5000	ug/l	1	03/16/15	03/17/15 вѕ	SW846 6010C ²	SW846 3010A ⁴
Chromium	< 10	10	ug/l	1	03/16/15	03/17/15 вѕ	SW846 6010C ²	SW846 3010A ⁴
Cobalt	< 50	50	ug/l	1	03/16/15	03/17/15 вѕ	SW846 6010C ²	SW846 3010A ⁴
Copper	< 10	10	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Iron	< 100	100	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Lead	< 3.0	3.0	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Magnesium	< 5000	5000	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Manganese	< 15	15	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Mercury	< 0.20	0.20	ug/l	1	03/16/15	03/16/15 DP	SW846 7470A ¹	SW846 7470A ⁵
Nickel	< 10	10	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Potassium	< 10000	10000	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Selenium	< 10	10	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Silver	< 10	10	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Sodium	< 10000	10000	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Thallium	< 2.0	2.0	ug/l	1	03/16/15	03/19/15 BS	SW846 6010C ³	SW846 3010A ⁴
Vanadium	< 50	50	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴
Zinc	< 20	20	ug/l	1	03/16/15	03/17/15 BS	SW846 6010C ²	SW846 3010A ⁴

(1) Instrument QC Batch: MA36233

(2) Instrument QC Batch: MA36242
(3) Instrument QC Batch: MA36262

(4) Prep QC Batch: MP85287

(5) Prep QC Batch: MP85294

