

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION BROWNFIELD CLEANUP PROGRAM (BCP)

ECL ARTICLE 27 / TITLE 14

DEPARTMENT USE ONLY BCP SITE #:

08/2013			BCP SITE #:
Section I. Requestor Information	on		
NAME ZP Realty, LLC			
ADDRESS 1 Penn Plaza, Suite 400)0		
CITY/TOWN New York		ZIP CODE 100)19
PHONE 212-695-2800	FAX 212-695-48	348	E-MAIL joel@pinnacleny.com
from the database must be submitted to DEC with	or other entity requiring author bove, in the <u>NYS Departmen</u> in the application, to document nents, as well as their emplo	nt of State's Corporation & Busin nt that the applicant is authorized overs, meet the requirements of S	ness Entity Database. A print-out of entity information d to do business in NYS. See Appendix A Section 1.5 of <u>DER-10: Technical Guidance for Site</u>
NAME OF REQUESTOR'S REPRESENTATIVE	EJoel Wiener, ZP	Realty, LLC	
ADDRESS 1 Penn Plaza, Suite 400)0		
CITY/TOWN New York		zip code 10()19
PHONE 212-695-2800	FAX 212-695-484	48	E-MAIL joel@pinnacleny.com
NAME OF REQUESTOR'S CONSULTANT F	rank Cherena, Ro	oux Associates, Inc.	
ADDRESS 209 Shafter Street			
city/town Islandia		ZIP CODE 117	749
PHONE 631-232-2600	FAX 631-232-989	8	E-MAIL fcherena@rouxinc.com
NAME OF REQUESTOR'S ATTORNEY SCC	ott Furman, Sive,	Paget & Risel, PC	
ADDRESS 460 Park Avenue, 10th	Floor		
CITY/TOWN New York		ZIP CODE 100)22
PHONE (646) 378-7276	FAX (212) 421-18	91	E-MAIL sfurman@sprlaw.com
THE REQUESTOR MUST CERTIFY THAT HE CHECKING ONE OF THE BOXES BELOW:	SISHE IS EITHER A PART	ICIPANT OR VOLUNTEER IN	ACCORDANCE WITH ECL 27-1405 (1) BY
PARTICIPANT A requestor who either 1) was the owner of th disposal of hazardous waste or discharge of petro person responsible for the contamination, unless as a result of ownership, operation of, or in subsequent to the disposal of hazardous waste or o	oleum or 2) is otherwise a s the liability arises solely nvolvement with the site	solely as a result of owne subsequent to the disposal of I NOTE: By checking this bo appropriate care with respect reasonable steps to: i) stop	rticipant, including a requestor whose liability arises brship, operation of or involvement with the site hazardous waste or discharge of petroleum. bx, the requestor certifies that he/she has exercised to the hazardous waste found at the facility by taking any continuing discharge; ii) prevent any threatened nt or limit human, environmental, or natural resource leased hazardous waste.
Requestor Relationship to Property (check one): Previous Owner If requestor is not the site owner, requestor will ha -Proof of site access must be submitted for non-			Yes No See Appendix B

Section II. Property Information

PROPERTY NAME Parkchester Crossing									
ADDRESS/LOCATION 1590 White Plains Road	CITY/TOWN	a Bronx		ZIP CO	ODE 1046	2			
MUNICIPALITY(IF MORE THAN ONE, LIST ALL):	New York City								
COUNTY Bronx	COUNTY Bronx SITE SIZE (ACRES) 1.62 (total)								
LATITUDE (degrees/minutes/seconds) 40 ° 50	· 26.56 ··	LONGITUDE	(degrees/minut	es/seconds) 7	′ 3 ∘ 51	· 49.27 ··			
HORIZONTAL COLLECTION METHOD:	GPS ✓MAP	HORIZONTA	L REFERENCE	e datum: N	IAD83				
COMPLETE TAX MAP INFORMATION FOR ALL TAX PER THE APPLICATION INSTRUCTIONS. Parcel Address Multiple	PARCELS INCLUDED W See Appendix C		OPERTY BOUN Section No.		TTACH REQ Lot No.	UIRED MAPS Acreage			
If no, please attach a metes and bounds descri 2. Is the required property map attached to the a 3. Is the property part of a designated En-zone p	ption of the property pplication? (applicat pursuant to Tax Law §	See App ion will not be \$ 21(b)(6)?	endix C e processed v	vithout map	✓ Ye○)✓ Ye○ Ye○ Ye	s 🔲 No			
 If no, please attach a metes and bounds description Is the required property map attached to the a Is the property part of a designated En-zone property in Formore information please see Empire States If yes, identify area (name) Percentage of property in En-zone (check one) 	pplication? (application? (application? to Tax Law § e Development's web e): 0-49% s for a large development	See App ion will not be 21(b)(6)? <u>site</u> .	e processed v 50-99% vhere the dev	1 velopment	 D)	s ∏No s ✔No			
 Is the required property map attached to the a Is the property part of a designated En-zone p For more information please see Empire State If yes, identify area (name)	ption of the property pplication? (applicat oursuant to Tax Law § e Development's web e):	See App ion will not be 21(b)(6)? <u>site</u> .	e processed v 50-99% vhere the dev	1 velopment	 D)	s □No s ✔No			
 If no, please attach a metes and bounds description Is the required property map attached to the a Is the property part of a designated En-zone property in the property part of a designated En-zone properties of property in En-zone (check one) Is this application one of multiple application project spans more than 25 acres (see addition properties in related BCP applications: 	ach information)	See App ion will not be 21(b)(6)? <u>site</u> .	e processed v 50-99% vhere the dev	1 velopment	 D)	s □No s ✔No			
 If no, please attach a metes and bounds descri 2. Is the required property map attached to the a 3. Is the property part of a designated En-zone p For more information please see Empire State If yes, identify area (name)	ach information)	See App ion will not be 21(b)(6)? osite.	e processed v 50-99% vhere the dev	1 velopment	 D)	s □No s ✔No			
 If no, please attach a metes and bounds descri Is the required property map attached to the a Is the property part of a designated En-zone p For more information please see Empire State If yes, identify area (name)	pplication? (application? (application?) pplication? (application) be Development's web c): 0-49% s for a large development al criteria in BCP ap mdix D ach information) De EPA Relating to the	See App ion will not be 21(b)(6)? site.	e processed v 50-99% vhere the dev uctions)? If -	1 velopment yes, identif	b)	s 🛛 No s 🗹 No			

Section III. Current Property C) wner/Operator Information			
OWNER'S NAME 1.)Broadhill First Realty A	ssoc. LLC, 2.)West Lane Realty Corp., 3.)Park Pl	ains Inc, 4.)Parkdale First	Realty Asso	ciates, LLC
ADDRESS 21 West 38th Street,	Floor 8			
CITY/TOWN New York	ZIP CODE 1(018		
PHONE 718-398-4433	FAX n/a	E-MAIL trickyfox1	@aol.co	m
OPERATOR'S NAME Multiple Se	ee Appendix C	-		
ADDRESS				
CITY/TOWN	ZIP CODE			
PHONE	FAX	E-MAIL		
Section IV. Requestor Eligibilit	y Information (Please refer to ECL §	27-1407)		
 Are any enforcement actions pending Is the requestor subject to an existing Is the requestor subject to an outstand Has the requestor been determined to Has the requestor previously been de Has the requestor been found in a civact involving contaminants? Has the requestor been convicted of a theft, or offense against public admir Has the requestor knowingly falsified false statement in a matter before the Is the requestor an individual or entit 	vil proceeding to have committed a negligent o a criminal offense that involves a violent felon histration? d or concealed material facts or knowingly sub	7? r intentionally tortious y, fraud, bribery, perjury mitted or made use of a t committed an act	 ☐ Yes 	☑ No ☑ No ☑ No ☑ No ☑ No ☑ No ☑ No
Section V. Property Eligibility	Information (Please refer to ECL § 2	7-1405)		
 If yes, please provide relevant inform 2. Is the property, or was any portion of If yes, please provide: Site # 3. Is the property subject to a permit un If yes, please provide: Permit type: Date permit i 	f the property, listed on the NYS Registry of Ir Class # der ECL Article 27, Title 9, other than an Inte	active Hazardous Waste	☐ Yes Disposal S ☐ Yes ☐ Yes ☐ Yes	☑No Sites? ☑No ☑No
If yes, please provide: Order #	deral enforcement action related to hazardous		□ Yes	√No
Section VI. Project Description				
 What stage is the project starting at? Please attach a description of the project Purpose and scope of the project Estimated project schedule See Appendix F 	Investigation	Remediation		

Section VII. Property's Environmental History

To the extent that existing information/studies/reports are available to the requestor, please attach the following:

1. Environmental Reports See Appendix G

A Phase I environmental site assessment report prepared in accordance with ASTM E 1527 (American Society for Testing and Materials: Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process), and all environmental reports related to contaminants on or emanating from the site.

If a final investigation report is included, indicate whether it meets the requirements of ECL Article 27-1415(2): Tyes No

2. SAMPLING DATA: INDICATE KNOWN CONTAMINANTS AND THE MEDIA WHICH ARE KNOWN TO HAVE BEEN AFFECTED. LABORATORY REPORTS SHOULD BE REFERENCED AND COPIES INCLUDED. See Appendix G

Contaminant Category	Soil	Groundwater	Surface Water	Sediment	Soil Gas
Petroleum	Х	Х			Х
Chlorinated Solvents	х	Х			Х
Other VOCs					
SVOCs	Х	Х			
Metals	х	Х			
Pesticides	х				
PCBs					
Other*					
*Please describe:	•	•	•	•	

3. SUSPECTED CONTAMINANTS: INDICATE SUSPECTED CONTAMINANTS AND THE MEDIA WHICH MAY HAVE BEEN AFFECTED. PROVIDE BASIS FOR ANSWER AS AN ATTACHMENT. See Appendix G

Contaminant Category	Soil	Groundwater	Surface Water	Sediment	Soil Gas
Petroleum					
Chlorinated Solvents					
Other VOCs					
SVOCs					
Metals					
Pesticides					
PCBs					
Other*					
*Please describe:					
4. INDICATE KNOWN O ANSWER AS AN ATTAC	R SUSPECTED SOCIET SOCIE SOCIET SOCIE SOCI	OURCES OF CONTAMI Appendix G	NANTS (CHECK ALL THA	T APPLY). PROVI	DE BASIS FOR
☑ Above Ground Pipeline □ Routine Industrial Oper □ Drums or Storage Cont □ Coal Gas Manufacture Other: <u>Former Dry Cleaner</u>	rations Dump ainers Seepa Indus	ping or Burial of Wastes age Pit or Dry Well trial Accident	Underground Pipeline or Septic tank/lateral field Foundry Sand Unknown ormer Photograph Processing.	☐Adjacent P ☐Electroplat	roperty ing
5. INDICATE PAST LAN	D USES (CHECK	ALL THAT APPLY):			
Coal Gas Manufacturin	ng□Manufacturin ☑Service Statio			Salvage Yard Electroplating	□Bulk Plant □Unknown

6. PROVIDE A LIST OF PREVIOUS PROPERTY OWNERS AND OPERATORS WITH NAMES, LAST KNOWN ADDRESSES AND TELEPHONE NUMBERS AS AN ATTACHMENT. DESCRIBE REQUESTOR'S See Appendix H RELATIONSHIP, IF ANY, TO EACH PREVIOUS OWNER AND OPERATOR. IF NO RELATIONSHIP, PUT "NONE".

Other: Former Bowling Alley, Former Dental Office, Former Photograph Processing

Section VIII. Contact List Information See Appendix I

Please attach, at a minimum, the names and addresses of the following:

- 1. The chief executive officer and planning board chairperson of each county, city, town and village in which the property is located.
- 2. Residents, owners, and occupants of the property and properties adjacent to the property.
- 3. Local news media from which the community typically obtains information.
- 4. The public water supplier which services the area in which the property is located.
- 5. Any person who has requested to be placed on the contact list.
- 6. The administrator of any school or day care facility located on or near the property.
- 7. In cities with a population of one million or more, the local community board if the proposed site is located within such community board's boundaries (*note: per the 2010 census, New York City is the only city in NY with a population over one million).
- 8. The location of a document repository for the project (e.g., local library). In addition, attach a copy of a letter sent to the repository acknowledging that it agrees to act as the document repository for the property.

Section IX. Land Use Factors (Please refer to ECL § 27-1415(3))

bly)
hat apply)
✓Yes □No
I Yes □No
ØYes □No ppendix J
⊡Yes □No
□Yes ☑No
I Yes □No
✓Yes □No
∐Yes ☑No
□Yes ☑No
□Yes ☑No
□Yes ☑No
al, agricultural, and

15. Describe the potential vulnerability of groundwater to contamination that might migrate from the property, including proximity to wellhead protection and groundwater recharge areas in an attachment. See Appendix J

16. Describe the geography and geology of the site in an attachment. See Appendix J

Section X. Statement of Certification and Signatures	
(By requestor who is an individual)	
If this application is approved, I acknowledge and agree to the genera <i>Cleanup Program Applications and Agreements</i> and to execute a Broo of DEC's approval letter. I also agree that in the event of a conflict be forth in DER-32 and the terms contained in a site-specific BCA, the two information provided on this form and its attachments is true and com any false statement made herein is punishable as a Class A misdemean.	wnfield Cleanup Agreement (BCA) within 60 days of the date etween the general terms and conditions of participation set erms in the BCA shall control. I hereby affirm that plete to the best of my knowledge and belief. I am aware that
Date: Signature:	Print Name:
(By an requestor other than an individual) MANAGING ZPREALTY I hereby affirm that I am <u>MEMBER</u> (title) of application; that this application was prepared by me or under my sup acknowledge and agree to the general terms and conditions set forth in Agreements and to execute a Brownfield Cleanup Agreement (BCA) agree that in the event of a conflict between the general terms and con contained in a site-specific BCA, the terms in the BCA shall control. attachments is true and complete to the best of my knowledge and bel punishable as a Class A misdemeanor pursuant to Section 210.45 of th Date: <u>21711</u> Signature:	within 60 days of the date of DEC's approval letter. I also ditions of participation set forth in DER-32 and the terms I hereby affirm that information provided on this form and its ief. I am aware that any false statement made herein is

SUBMITTAL INFORMATION:

Three (3) complete copies are required.

Two (2) copies, one paper copy with original signatures and one electronic copy in Portable Document Format (PDF) on a CD, must be sent to: •

Chief, Site Control Section New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, NY 12233-7020

One (1) paper copy must be sent to the DEC regional contact in the regional office covering the county in which the site is located. Please check our <u>website</u> for the address of our regional offices.

FOR DEPARTMENT USIE ONLY

BCP SITE T&A CODE:_____ LEAD OFFICE:___

APPENDIX A

Section I. Requestor Information NYS Business Authorization

NYS Department of State

Division of Corporations

Entity Information

The information contained in this database is current through January 27, 2015.

Selected Entity Name: ZP REALTY LLC
Selected Entity Status InformationCurrent Entity Name:ZP REALTY LLCDOS ID #:4647688Initial DOS Filing Date:OCTOBER 07, 2014County:NEW YORKJurisdiction:NEW YORKEntity Type:DOMESTIC LIMITED LIABILITY COMPANYCurrent Entity Status:ACTIVE

Selected Entity Address Information

DOS Process (Address to which DOS will mail process if accepted on behalf of the entity) ZP REALTY LLC ONE PENN PLAZA SUITE 4000 NEW YORK, NEW YORK, 10119

Registered Agent

NONE

This office does not require or maintain information regarding the names and addresses of members or managers of nonprofessional limited liability companies. Professional limited liability companies must include the name(s) and address (es) of the original members, however this information is not recorded and only available by viewing the certificate.

*Stock Information

of Shares Type of Stock **\$** Value per Share

No Information Available

*Stock information is applicable to domestic business corporations.

Name History

Filing DateName TypeEntity NameOCT 07, 2014ActualZP REALTY LLC

A **Fictitious** name must be used when the **Actual** name of a foreign entity is unavailable for use in New York State. The entity must use the fictitious name when conducting its activities or business in New York State.

NOTE: New York State does not issue organizational identification numbers.

Search Results New Search

<u>Services/Programs</u> | <u>Privacy Policy</u> | <u>Accessibility Policy</u> | <u>Disclaimer</u> | <u>Return to DOS</u> <u>Homepage</u> | <u>Contact Us</u>

APPENDIX B

Section I. Requestor Information Access Agreement

ACCESS AGREEMENT

ACCESS AGREEMENT made as of this _____ day of February 2015, by and between Broadhill First Realty Assoc. LLC ("Broadhill"), West Lane Realty Corp. ("West Lane"), Park Plains, Inc. ("Park Plains"), and Parkdale First Realty Associates, LLC ("Parkdale") (collectively "Grantors"), and ZP Realty, LLC ("Grantee").

WHEREAS, Broadhill is the owner of fee title to a certain parcel of real property and the improvements constructed thereon located at 1596 White Plains Road, a/k/a 1880 Tremont A venue, Bronx, New York, being more particularly described in Exhibit A-1 annexed hereto and made a part hereof (the "Broadhill Property");

WHEREAS, West Lane is the owner of fee title to a certain parcel of real property and the improvements constructed thereon located at 1584 White Plains Road, Bronx, New York, being more particularly described in Exhibit A-2 annexed hereto and made a part hereof (the "West Lane Property");

WHEREAS, Park Plains is the owner of fee title to certain parcels of real property and the improvements constructed thereon located at 1603 -17 Unionport Road, Bronx, New York, 1895 Guerlain Street, Bronx New York and 1572-78 White Plains Road, Bronx, New York, being more particularly described in Exhibit A-3 annexed hereto and made a part hereof (the "Park Plains Property");

WHEREAS, Parkdale First is the owner of fee title to a certain parcel of real property and the improvements constructed thereon located at 1619-27 Unionport Road, Bronx, New York, being more particularly described in Exhibit A-4 annexed hereto and made a part hereof (the "Parkdale First Property") (the Broadhill Property, the West Lane Property, the Park Plains Property and the Parkdale First Property shall be referred to collectively as the "Grantors' **Property**"); and

WHEREAS, Grantors and Grantee have entered into a contract for the sale of Grantors' Property to Grantee; and

WHEREAS, Grantee has applied to have Grantors' Property accepted into the New York State Brownfield Cleanup Program ("BCP"); and

WHEREAS, following admission of Grantors' Property to the BCP and prior to the closing of the sale of Grantors' Property to Grantee, Grantee may require access to Grantors' Property to carry out investigatory, remedial and other related tasks required by the BCP (collectively, the "Work"); and

WHEREAS, Grantors desire to grant Grantee such access.

NOW, THEREFORE, in consideration of the foregoing and for good and valuable consideration, the receipt of which is hereby acknowledged, Grantors and Grantee agree as follows:

1. Grantors hereby grant reasonable access and a license upon, into, under or through Grantors' Property for the purpose of the entry thereon by Grantee, its agents, employees, architects, engineers, contractors and consultants (collectively, the "Grantee Related Parties" and each a "Grantee Related Party"), vehicles, equipment and materials required by Grantee to satisfy tasks and obligations required by any Brownfield Cleanup Agreement entered into between Grantee and the New York State Department of Environmental Conservation.

2. Grantee Related Parties shall perform the Work in a workmanlike manner and in accordance with industry standards and in accordance with applicable laws, rules and regulations. The rights granted pursuant to paragraph 1 of this Agreement are nonexclusive, it being understood and agreed that Grantor, its agents, employees, workers, contractors and tenants will have full authority to come upon and have unfettered access to Grantors' Property during the performance of the Work. The performance of the Work will not interfere unreasonably with the quiet enjoyment of Grantors' Property Grantors or by the tenants thereof. Grantors agree that they will use commercially reasonable efforts to avoid unreasonable interference with Grantee's exercise of its rights hereunder.

3. All of the foregoing activities shall be performed at Grantee's sole cost and expense.

4. Grantee shall provide reasonable notice to Grantor, but in no event less than 48 hours, prior to Grantee's need for access to Grantors' Property to perform the Work, provided, however, that shorter notice may be required in the event of an emergency.

5. Grantee shall be responsible for obtaining all federal, state or local governmental approvals and providing all notices in relation to the Work.

6. If upon completion of the activities requiring access to Grantors' Property title to Grantors' Property has not yet passed to Grantee, Grantee and/or Grantee Related Parties shall promptly remove all materials and restore Grantors' Property substantially to the condition it was in prior to such activities, subject to any required institutional controls.

7. This Agreement shall be governed by and construed in accordance with the laws of the State of New York. Any proceedings initiated by either party to enforce the terms of or otherwise related to this Agreement shall be brought in the Supreme Court, State of New York.

IN WITNESS WHEREOF, this Agreement has been executed by Grantors and Grantee and is effective as of the date set forth above.

GRANTORS:

Broadhill First Realty Assoc. LLC

By Name: Title:

Park Plains, Inc. By: Jona the Name: Title:

-2-

West Lape Realty Corp.

By: Name. Title: Jonat

Parkdale First Realty Associates, LLC

C By: Jonath Name: Title: menter

GRANTEE:

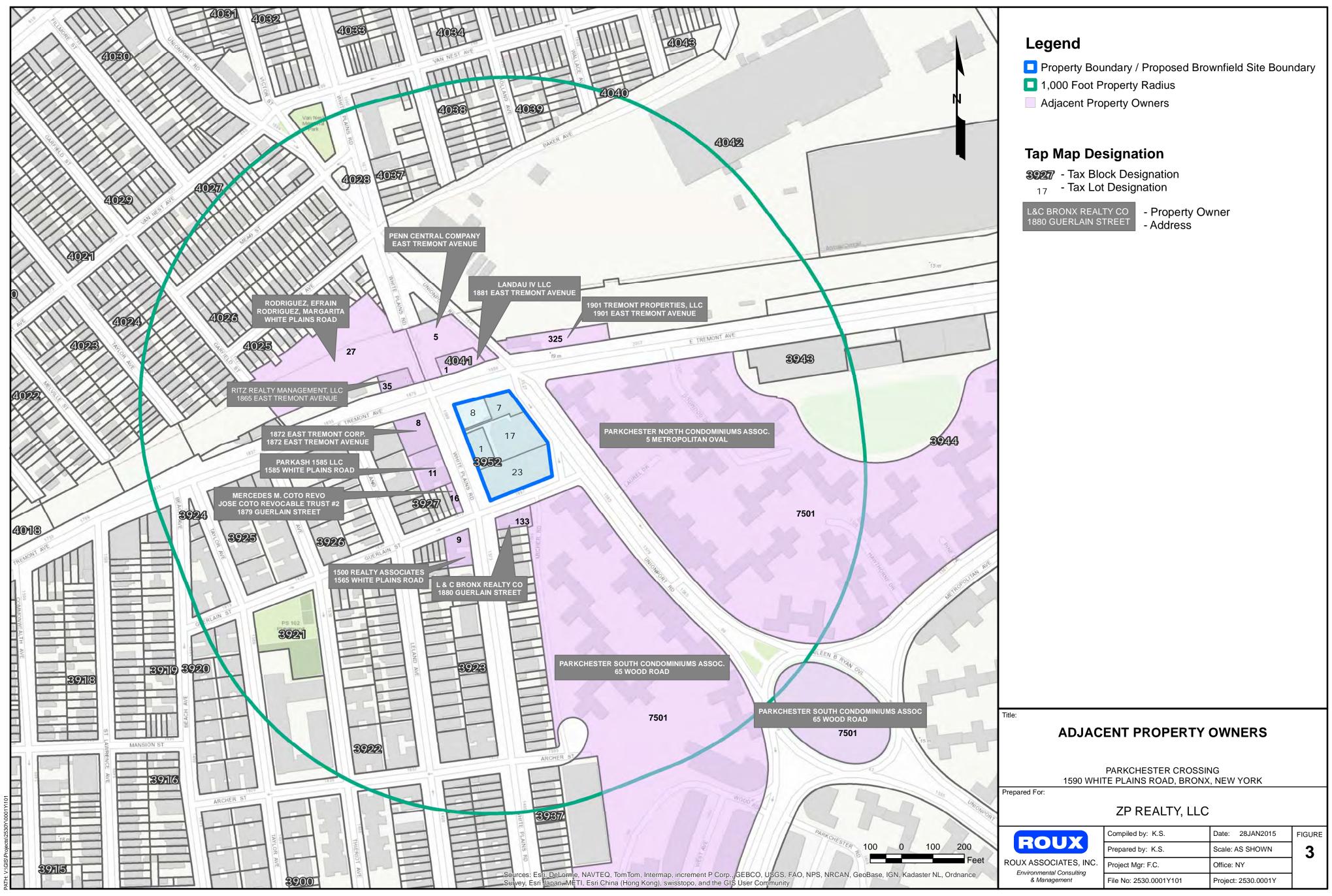
ZP Realty, LLC ₿∳y Joel Wieher 6 Nam title: Managing Member

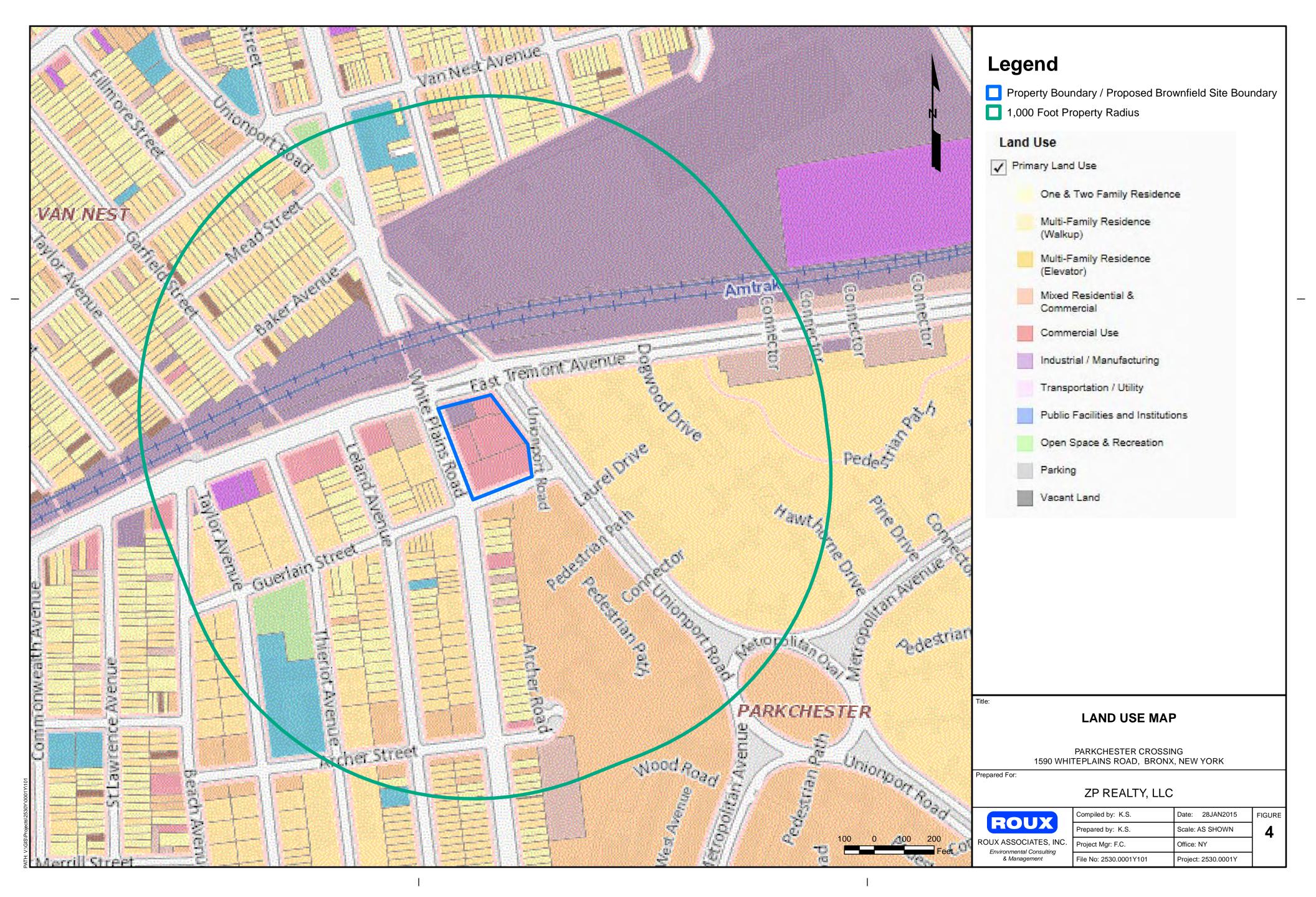
APPENDIX C

Section II. Property Information Tax Map Information

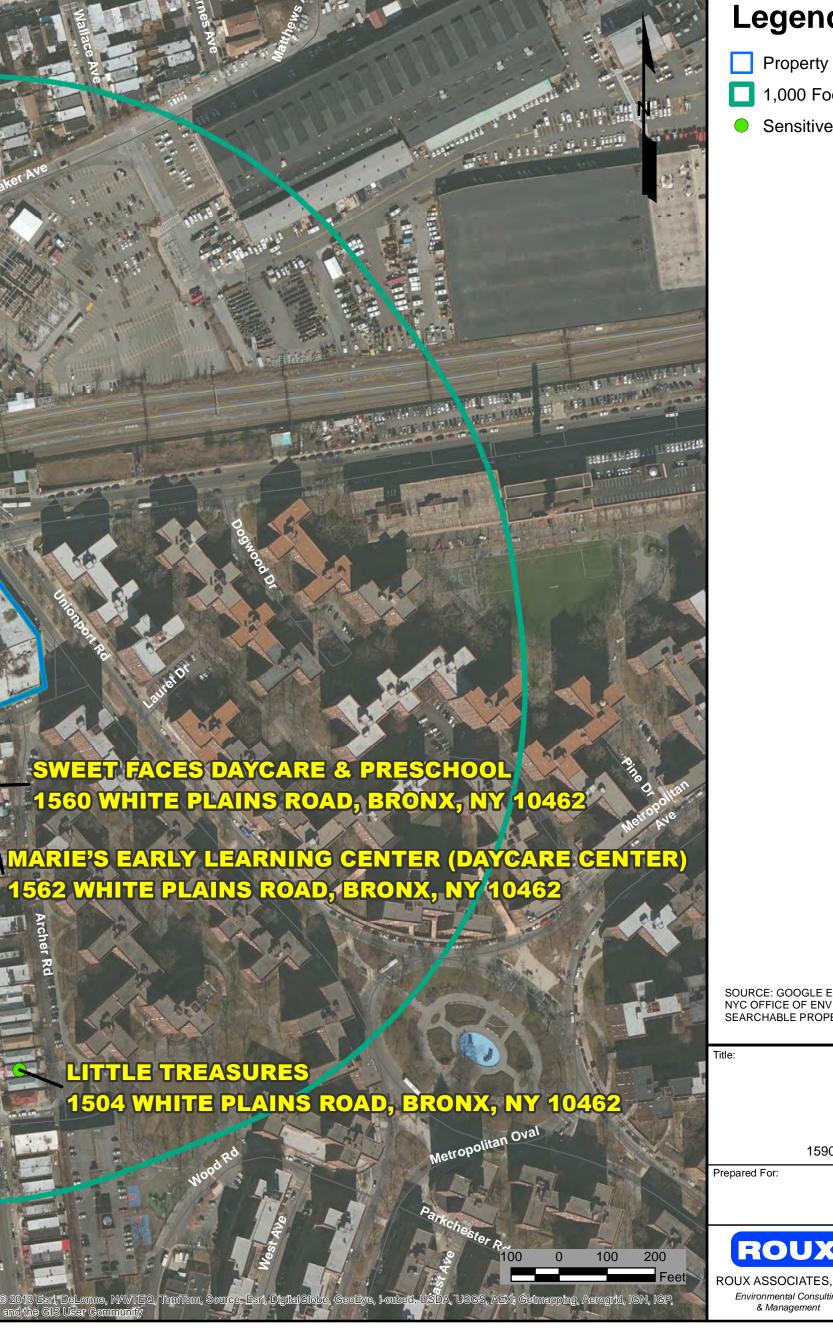
Section II. Property Information and Section III. Currently Property Owner/Operator Information

Address/Location	Parcel No.	Section No.	Block No.	Lot No.	Square Feet	Acreage	Owner	Operator
1584 White Plains Road	NA	2-Bronx	3952	1	7095	0.16	West Lane Realty Corp.	Millie's Unisex Hair Professional 1588B White Plains Road Belle Brokerage Insurance 1588A White Plains Road Dankofi Fashions 1586 White Plains Road Laundromat Corp. 1592 White Plains Road
1619 - 27 Unionport Road	NA	2-Bronx	3952	7	9000	0.21	Parkdale First Realty	Pizza Italia 1625A Unionport Road David G's Barber Shop 1894 East Tremont Avenue Lady Afrique International Market 1621B Unionport Road Almeda Self Defense 1623 Unionport Road
1596 White Plains Road / 1880 East Tremont Avenue	NA	2-Bronx	3952	8	7429	0.17	Broad Hill First Realty Associates, LLC.	White Plains Gas Corporation 1596 White Plains Road
1603 - 17 Unionport Road	NA	2-Bronx	3952	17	25000	0.57	Park Plains Inc.	Furniture World 1603 Unionport Road One Stop 99¢ 1605 Unionport Road Circle of Fun 1607 Unionport Road Furniture World Bedding Zone and Carpet 1611 Unionport Road
1597 Unionport Road / 1895 Guerlain Street / 1572 - 78 White Plains Road	NA	2-Bronx	3952	23	22050	0.51	Park Plains Inc.	Christi Beauty Salon 1597 Unionport Road One Stop Convenience 1905 Guerlain Street Pete's Shoe Repair 1897 Guerlain Street Afrikiko 1897-10 Guerlain Street Mini Market Deli Grocery 1889 Guerlain Street Leonard' Bakery 1572 White Plains Road Kenmar Shops 1578 White Plains Road


Total Site Acreage


1.62

A0001Y\101\2530.0001Y101



SWEET FACES DAYCARE & PRESCHOOL 1560 WHITE PLAINS ROAD, BRONX, NY 10462

COMMUNITY **ZSCHOOL BRONX 102 MENT** BRO

Archer St

Legend

- Property Boundary / Proposed Brownfield Site Boundary
- 1,000 Foot Sensitive Receptor Property Radius
- Sensitive Receptors

SOURCE: GOOGLE EARTH, NYC OFFICE OF ENVIRONMENTAL REMEDITAION (OER): SEARCHABLE PROPERTY ENVIRONMENTAL E-DATABASE (SPEED)

SENSITIVE RECEPTORS

PARKCHESTER CROSSING 1590 WHITE PLAINS ROAD, BRONX, NEW YORK

Prepared For:

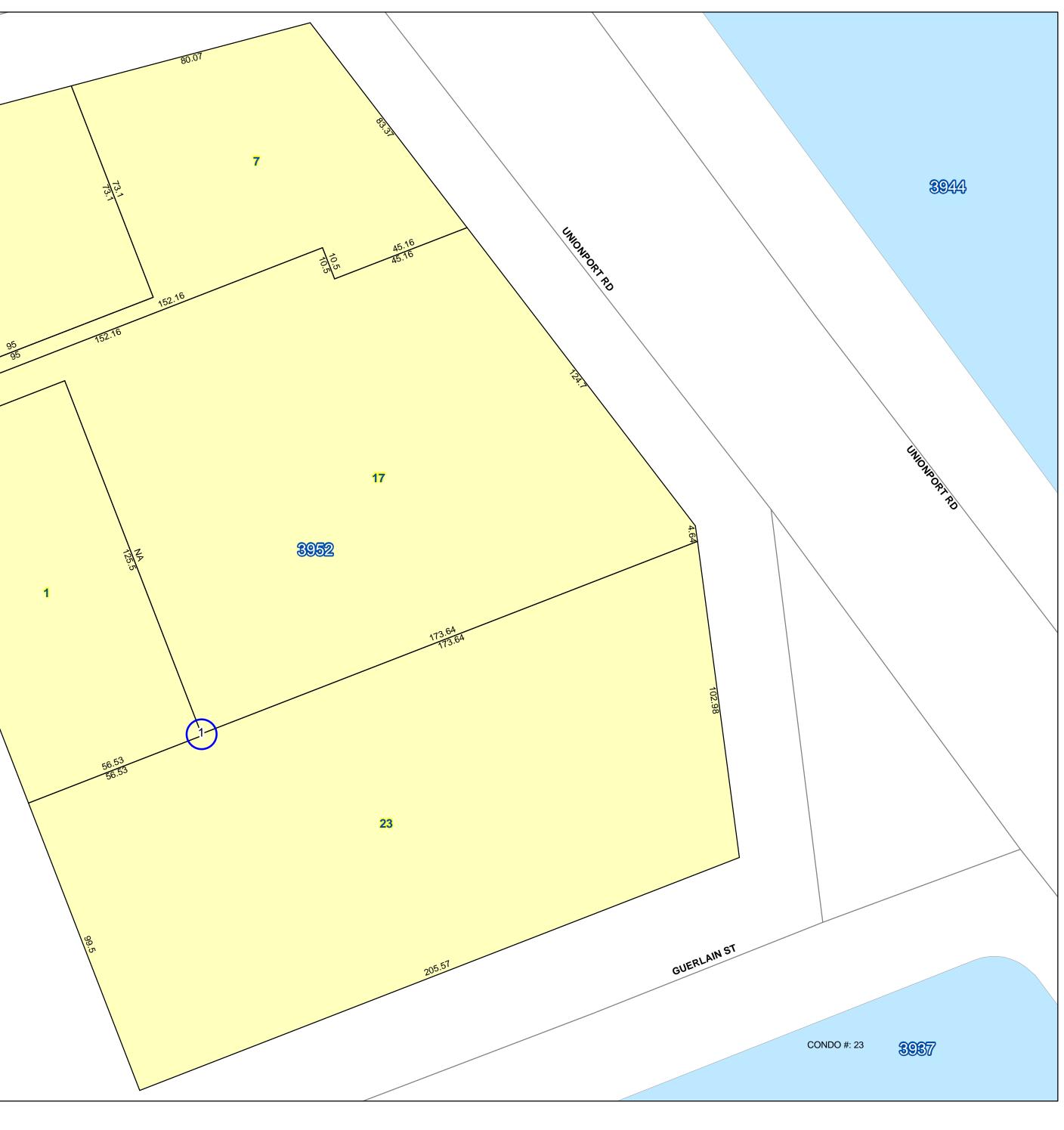
Title:

ZP REALTY, LLC

	Compiled by: K.S.	Date: 28JAN2015	FIGURE
ROUX	Prepared by: K.S.	Scale: AS SHOWN	5
OUX ASSOCIATES, INC. Environmental Consulting	Project Mgr: F.C.	Office: NY	•
& Management	File No: 2530.0001Y101	Project: 2530.0001Y	

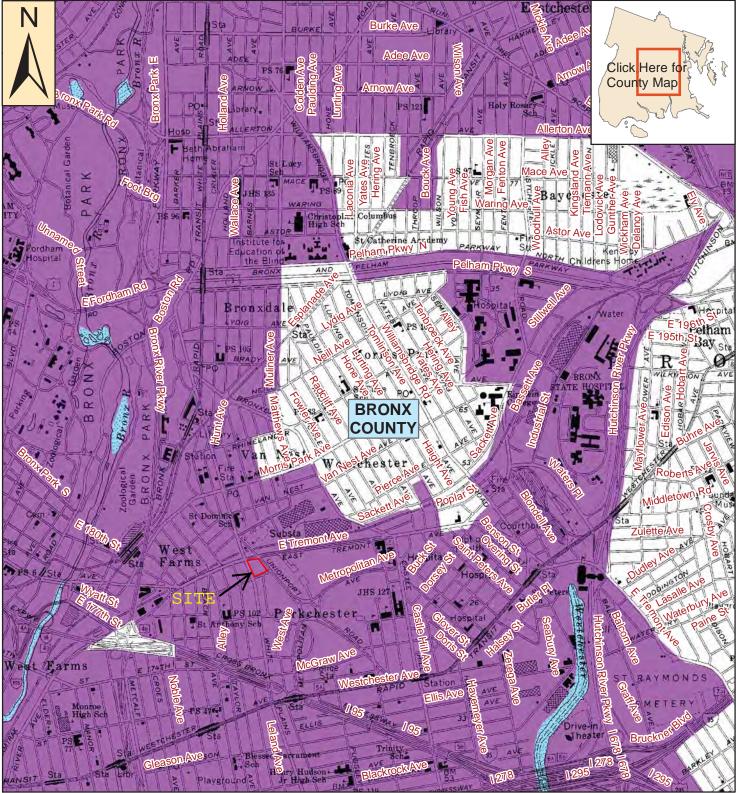
NYC Digital Tax Map

Effective Date: 12-06-2008 01:50:00End Date: Current Bronx Block: 3952


E TREMONT AV 56.53 WHITE PLAINS RD 3927

Legend

•
1
1


• 1 1	Streets Miscellaneous Text Possession Hooks Boundary Lines Lot Face Possession Hooks Regular
	Underwater Tax Lot Polygon Condo Number

Tax Block Polygon

0 15 30 60

Potential Environmental Justice Areas in East Central Bronx County, New York

This computer representation has been compiled from supplied data or information that has not been verified by EPA or NYSDEC. The data is offered here as a general representation only and is not to be used for commercial purposes without verification by an independent professional qualified to verify such data or information.

Neither EPA nor NYSDEC guarantee the accuracy, completeness, or timeliness of the information shown and shall not be liable for any loss or injury resulting from reliance.

Data Source for Potential Environmental Justice Areas: U.S. Census Bureau, 2000 U.S. Census

Potential EJ Area

County Boundary

Waterbodies

For questions about this map contact: New York State Department of Environmental Conservation Office of Environmental Justice 625 Broadway, 14th Floor Albany, New York 12233-1500 (518) 402-8556 ej@gw.dec.state.ny.us

APPENDIX D

<u>Section II</u>. Property Information Part 5 – Property Description

APPENDIX D

SECTION II PART 5 PROPERTY DESCRIPTION NARRATIVE

Property Description

The Site is located in the Parkchester section of Bronx County, City of New York, 10462 as shown on Figure 1 (Appendix B). The Site is an entire city block, approximately 1.62 acres in size. It is bordered by East Tremont Avenue to the North, Guerlain Street to the South, White Plains Road to the West and Unionport Road to the East. In aggregate, the Site is referred to as Parkchester Crossing and is occupied by a gasoline station, a paved access driveway, and several commercial businesses that cover the remaining area of the block as shown on Figure 2 (Appendix B). The Site is pentagonal and comprised of five contiguous tax lots. The New York City Digital Tax Map shown on Figure 3 (included in Appendix B) identifies the Site as Block 3952, Lots 1, 7, 8, 17 and 23. Property descriptions per lot follow:

- Lot 1 (0.16 acres): contains one permanent structure comprised of several vacant businesses, an insurance office, laundromat and barber shop.
- Lot 7 (0.21 acres): contains one permanent structure comprised of several vacant businesses, a martial arts studio, barber shop, market and pizza parlor.
- Lot 8 (0.17 acres): operated as a Wave gas station with two pump islands each with two dispensers and one permanent structure utilized as a convenient store.
- Lot 17 (0.57 acres): contains one permanent structure comprised of several vacant businesses, a furniture store, bar, convenient store and check cashing store. There is also a paved access driveway from White Plains Road.
- Lot 23 (0.51 acres): contains one permanent structure comprised of several abandoned businesses, t-shirt shop, a bakery, grocery store, shoe repair shop, restaurant, convenient store and beauty salon.

The adjacent property owners are identified in Figure 3 (included in Appendix B). Immediately north of the Site across East Tremont Avenue is an active Sunoco gas station. Northeast of the Site, on the corner of East Tremont Avenue and Unionport Road is a car wash. Immediately east of the Site across Unionport Road is a residential community called the Parkchester North Condominiums. Across Guerlain Road south of the Site is Parkchester South Condominiums, a single family residential property and a mixed commercial and residential property. There are multi-family residential properties and a parking garage located to the west of the Site across White Plains Road.

APPENDIX E

<u>Section II</u>. Property Information Part 7 – Permits

			System Facility Name	Informatio	on System Id/				ype Da	10000000	Last Updated D		pplemental E	invironmen	tal Interests
YORK - FACILIT	Y INFORMAT	TION SYSTEM	QUICK AS A WINK CLEANERS		2-6005-00	849	STA	TE MASTER		FIS			-NOCDS PROGRAM	м	
onal EPA Rep			t Site Demographics Facil rial Classification Codes (S		linates Vie	wer Enviro	nmental Jus				d Report	stem C	odes (NAI	CS)	
Data Source	SIC Code	Description			Primary		Data	NAICS	Descrip	otion					Primary
FIS	7216		EANING PLANTS, EXCEPT RUG CL	EANING			Source	Code	_						
		Facili	ty Codes and Flags				FIS	81232	OPERA		D LAUNDRY SE	RVICES (E	EXCEPT COIN	-	
			EPA Region:02							Facility	Mailing Add	resses			
			Duns Number:				Affiliation				the last tr	les les		-	-
			al District Number:14					Type Delivery Point City Name State Postal Code Information Sy RESPONSIBLE PARTY 1498 EAST AVE BRONX NY 10462 FIS			system				
			ve District Number: C Code/Watershed:02030102 /	BRONX	_		LEGALLI	KESPONSIBL	LFARIT	1430 EAST	Contacts	INI	10402	FI3	
-			co Border Indicator:	ununun											
			Federal Facility:NO		-		Affiliation	і Туре		Full Name	Office Phone	Informat	tion System	Mailing Ad	ddress
			Tribal Land:				LEGALLY	RESPONSIB	LE PARTY				FIS	Vie	N
		Alt	ternative Names												
Alternative Na	me		Source o	f Data											
	QUICK A	S A WINK CLEA	ANERS	FIS											
	3	No Or	Podcasts			-	AN-30-2015 Widgets	l			_		UNITED ST		

ENVIRONMENTAL CONSERVATION

New Search Or use the browser back button to get to previous page

DEC Permit Application Detail

?	Application ID:	2-6005-00088/00001
?	Facility:	Merit Tremont
?	Location:	1596 White Plains Road, Bronx, NY 10462
?	Town or City:	Bronx
?	Applicant:	Merit Oil of New York Inc
?	Permit Type:	Stage II Vapor Recovery (Operate)
?	Application Type:	New
?	Date Received:	10/05/1989
?	Status:	Expired as of 12/04/1994
?	Complete Status:	Complete as of 10/20/1989
?	UPA Class:	Minor
?	Short Description:	VAPOR RECOVERY (STAGE 2) 600000 D120
?	ENB Publication Date:	
?	Written Comments Due:	
?	SEQR Class:	Unlisted Action
?	SEQR Determination:	Negative Declaration
?	Lead Agency:	None Designated
?	Environmental Justice:	The application is not subject to the Department's Environmental Justice policy (CP-29). Either the permits needed for the project are not subject to the policy or it has been determined that the project would not affect a Potential Environmental Justice Area.
?	SHPA Status:	The proposed activity is not subject to review in accordance with SHPA. The permit type is exempt or the activity is being reviewed in accordance with federal historic preservation regulations.
?	Coastal Zone Status:	This project is not located in a Coastal Management area and is not subject to the Waterfront Revitalization and Coastal Resources Act.
?	Final Disposition:	Issued as of 02/26/1990
?	Permit Effective Date:	02/26/1990
?	Permit Expiration Date:	12/04/1994
	Stimulus Project:	No

Other Known IDs:		
	NYD982185779 - Facility INdex Database System ID (USEPA)	
DEC Contact:		
	47-40 21ST St, Long Island City, NY 11101 Tel:(718)482-4997	

Please email the Regional Office for additional information or questions regarding this application.

New Search Or use the browser back button to get to previous page

Search Wizard Instructions

ENVIRONMENTAL CONSERVATION

New Search Or use the browser back button to get to previous page

DEC Permit Application Detail

?	Application ID:	2-6005-00088/00002
?	Facility:	Merit Tremont
?	Location:	1596 White Plains Road, Bronx, NY 10462
?	Town or City:	Bronx
?	Applicant:	Merit Oil of New York Inc
?	Permit Type:	Stage II Vapor Recovery (Construct)
?	Application Type:	New
?	Date Received:	05/17/1993
?	Status:	Expired as of 05/26/1994
?	Complete Status:	Complete as of 05/26/1993
?	UPA Class:	Minor
?	Short Description:	VAPOR RECOVERY STAGE 2 CONSTRUCT
?	ENB Publication Date:	
?	Written Comments Due:	
?	SEQR Class:	Unlisted Action
?	SEQR Determination:	Negative Declaration
?	Lead Agency:	None Designated
?	Environmental Justice:	The application is not subject to the Department's Environmental Justice policy (CP-29). Either the permits needed for the project are not subject to the policy or it has been determined that the project would not affect a Potential Environmental Justice Area.
?	SHPA Status:	The proposed activity is not subject to review in accordance with SHPA. The permit type is exempt or the activity is being reviewed in accordance with federal historic preservation regulations.
?	Coastal Zone Status:	This project is not located in a Coastal Management area and is not subject to the Waterfront Revitalization and Coastal Resources Act.
?	Final Disposition:	Issued as of 07/09/1993
?	Permit Effective Date:	07/09/1993
?	Permit Expiration Date:	05/26/1994
	Stimulus Project:	No

Other Known IDs:		
	NYD982185779 - Facility INdex Database System ID (USEPA)	
DEC Contact:		
	47-40 21ST St, Long Island City, NY 11101 Tel:(718)482-4997	

Please email the Regional Office for additional information or questions regarding this application.

New Search Or use the browser back button to get to previous page

Search Wizard Instructions

MERIT OIL CORP

Handler #1 : MERIT OIL CORP

Search Criteria Used (More)		
Level of Detail	Extended 🗸 GO	
Type of Report Output	Text (HTML) V GO	

|--|

Handler ID	NYD982185779
Handler Name	MERIT OIL CORP
State	NY
First Info. Receipt Date	05/11/1987
Last Info. Receipt Date	01/01/2007
Maximum Penalty	\$0

Handler-based Record Counts ?	
Number of CA Area Records	0
Number of CA Events	0
Number of CA Authorities	0
Number of Information Records	5
Number of Current Information Records	1
Number of Permit Series	0
Number of Process Units	0
Number of Violation / Enforcement Records	0
Number of Other IDs	0
Number of HSM Basic Records	0
Number of GIS Records	1
Number of Citation Records	0

Handler Locations and Activities Activity Location	? (handler #1 : MERIT OIL CORP , handler current info NY
NAICS Code 1	44711: Gasoline Stations with Convenience Stores
Owner Name	MERIT OIL CORP
Operator Name	MERIT OIL CORP
Location Street Number	1596
Location Street 1	WHITE PLAINS RD
Location City	BRONX
Location State	NY
Location Zip Code	104623805
Location County	BRONX
113th Congressional District	NY14: New York 14
State District	NYSDEC R2NY
Mailing Street Number	551
Mailing Street 1	W LANCASTER AVE
Mailing City	HAVERFORD
Mailing State	PA
Mailing Zip Code	19041
Mailing Country	US: United States
Contact Street Number	551
Contact Street 1	W LANCASTER AVE
Contact City	HAVERFORD
Contact State	PA
Contact Zip Code	19041
Contact Country	US: United States
Receive Date	01/01/2007
Source Type	Implementer
State Waste Generation	

http://data.rtknet.org/rcris/rcris.php?reptype=f&database=rcris&detail=3&datype=T&all_h... 1/20/2015

Transporter Activity (Yes/No)	No
Operating TSDF Universe	
Full Enforcement Universe	
Radioactive Waste (Yes/No)	No
Recycler Activity (Yes/No)	No
Underground Injection (Yes/No)	No
Importer Activity (Yes/No)	No
Universal Waste Destination Facility	No
Used Oil Universe	NNNNNN
Permit Workload Universe	
Post-Closure Workload Universe	
Corrective Action Workload Universe	No
Closure Workload Universe	
Burner Exemption (Yes/No)	No
Furnace Exemption (Yes/No)	No
Federal Waste Generator	N: Not a generator
Short Term Generator Activity	No
GPRA Renewals Baseline	N
Universal Waste	No
Institutional Control Indicator	No
Human Exposure Control Indicator	No
Groundwater Control Indicator	No
Unaddressed SNC	No
Addressed SNC	No
SNC Compliance Schedule	No
Universal Waste Destination	No
Federal Indicator	
HSM Indicator	No
Subpart K Indicator	
Commercial TSD Indicator	No
TSD Type	
Permit Renewal Workload Universe	
GPRA Corrective Action Baseline	No
NCAPS Corrective Action Priority Ranking	
Environmental Control Indicator	No
Financial Assurance Required	
Active Site Indicator	
Active Site Federally Regulated TSDF	
Active Site Converter TSDF	
Active Site Converter TSDT Active Site State Regulated TSDF	
Federal Universal Waste	No
SNC Universe	No
SNC UNIVERSE	

GIS Data ? (handler #1 : MERIT OIL CORP , GIS information #1)			
GIS Data Owner	02		
GIS Sequence Number	1		
Area Acreage	0		
Data Collection Date	05/02/2009		
Horizontal Accuracy Measure	10		
Coordinate Data Code	082: EPA HEADQUARTERS		
Geometric Code	001: THE POINT REFERENCED BY GEOGRAPHIC COORDINATES		
Horizontal Collection Code	001: BASED ON ADDRESS MATCHING-HOUSE NUMBER		
Horizontal Reference Code	002: NORTH AMERICAN DATUM OF 1983		
Number of Lat/Long Records	1		

http://data.rtknet.org/rcris/rcris.php?reptype=f&database=rcris&detail=3&datype=T&all_h... 1/20/2015

GIS Lat/Long ?

Latitude	40.840943
Longitude	-73.864371
Lat/Long Sequence Number	1

Advanced Handler-based Record Counts ?

Number of NAICS Codes	1
Number of Other Permits	0
Number of Owners / Operators	2
Number of Certifications	1
Number of State Activities	0
Number of Universal Wastes	0
Number of Waste Codes	0
Number of Current Information Records	1
Number of Part A Permit Records	0

Handler Information ? (handle	er #1 : MERIT OIL CORP , handler information record #
Activity Location	NY
Source Type	Implementer
Receive Date	01/01/2007
Site Name	MERIT OIL CORP
Location Street Number	1596
Location Street 1	WHITE PLAINS RD
Location City	BRONX
Location State	NY
Location Zip Code	104623805
State District Code	NYSDEC R2
Mailing Street Number	551
Mailing Street 1	W LANCASTER AVE
Mailing City	HAVERFORD
Mailing State	PA
Mailing Zip Code	19041
Mailing Country	US: UNITED STATES
Contact Street Number	551
Contact Street 1	W LANCASTER AVE
Contact City	HAVERFORD
Contact State	PA
Contact Zip Code	19041
Contact Country	US: UNITED STATES
Importer Activity (Yes/No)	No
Radioactive Waste (Yes/No)	No
Recycler Activity (Yes/No)	No
Transporter Activity (Yes/No)	No
TSD Activity (Yes/No)	No
Underground Injection (Yes/No)	No
Universal Waste Destination (Yes/No)) No
Transfer Facility (Yes/No)	No
Burner Exemption (Yes/No)	No
Furnace Exemption (Yes/No)	No
Used Oil Fuel Burner (Yes/No)	No
Used Oil Processor (Yes/No)	No
Used Oil Refiner (Yes/No)	No
Used Oil Marketer (Yes/No)	No
Used Oil Specification Cert. (Yes/No)	No

Used Oil Transfer Facility (Yes/No)	No
Used Oil Transporter (Yes/No)	No
Off-site Waste Receipt	Verified to be non-commercial
County Code	NY005
State Waste Generation	
Short Term Generator Activity	No

NAICS Codes ? (handler #1 : MERIT OIL CORP , handler information record #1, NAICS code: all)

NAICS Code

44711: Gasoline Stations with Convenience Stores

Owners and Operators ?

Owner Onerster Ind	Current Owner
Owner Operator Ind.	Current Owner
Owner Operator Name	MERIT OIL CORP
Owner Operator Type	Private
Owner Operator Street 1	NOT REQUIRED
Owner Operator City	NOT REQUIRED
Owner Operator State	WY
Owner Operator Country	US: UNITED STATES
Owner Operator Zip	99999
Owner Operator Phone	2125551212

Owners and Operators 🔞

Current Operator
MERIT OIL CORP
Private
NOT REQUIRED
NOT REQUIRED
WY
US: UNITED STATES
99999
2125551212

Certifications ? (handler #1 : MERIT OIL CORP , handler information record #1, certification #1)

Certfication Signed Date	01/01/2007
Certification Title	BRS-MANIFEST
Certification First Name	MASS
Certification Last Name	UPDATE

Hazardous Secondary Material ?

All data fields in this section were blank.

Advanced Handler-based Record Counts 🕐

Number of NAICS Codes	0
Number of Other Permits	0
Number of Owners / Operators	0
Number of Certifications	1
Number of State Activities	0
Number of Universal Wastes	0
Number of Waste Codes	0
Number of Current Information Records	0
Number of Part A Permit Records	0

Handler Information ? (handle	er #1 : MERIT OIL CORP , handler
Activity Location	NY
Source Type	Implementer
Receive Date	01/01/2006
Site Name	MERIT OIL CORP
Location Street Number	1596
Location Street 1	WHITE PLAINS RD
Location City	BRONX
Location State	NY
Location Zip Code	104623805
State District Code	NYSDEC R2
Mailing Street Number	551
Mailing Street 1	W LANCASTER AVE
Mailing City	HAVERFORD
Mailing State	PA
Mailing Zip Code	19041
Mailing Country	US: UNITED STATES
Contact First Name	GEORGE T
Contact Last Name	STEININGER
Contact Street Number	551
Contact Street 1	W LANCASTER AVE
Contact City	HAVERFORD
Contact State	PA
Contact Zip Code	19041
Contact Country	US: UNITED STATES
Importer Activity (Yes/No)	No
Radioactive Waste (Yes/No)	No
Recycler Activity (Yes/No)	No
Transporter Activity (Yes/No)	No
TSD Activity (Yes/No)	No
Underground Injection (Yes/No)	No
Universal Waste Destination (Yes/No)	No
Transfer Facility (Yes/No)	No
Burner Exemption (Yes/No)	No
Furnace Exemption (Yes/No)	No
Used Oil Fuel Burner (Yes/No)	No
Used Oil Processor (Yes/No)	No
Used Oil Refiner (Yes/No)	No
Used Oil Marketer (Yes/No)	No
Used Oil Specification Cert. (Yes/No)	No
Used Oil Transfer Facility (Yes/No)	No
Used Oil Transporter (Yes/No)	No
Off-site Waste Receipt	Verified to be non-commercia
County Code	NY005
State Waste Generation	
Short Term Generator Activity	No

Handler Information ? (handler #1 : MERIT OIL CORP , handler information record #2)

Certifications ? (handler #1 : MERIT OIL CORP , handler information record #2, certification #1)

Certfication Signed Date	01/01/2006
Certification Title	BRS CYCLES 2001 2003 2005
Certification First Name	BRS
Certification Last Name	2001 2003 2005

Hazardous Secondary Material 🕐

Advanced Handler-based Record Co	Jr
Number of NAICS Codes	0
Number of Other Permits	0
Number of Owners / Operators	0
Number of Certifications	0
Number of State Activities	0
Number of Universal Wastes	0
Number of Waste Codes	0
Number of Current Information Records	0
Number of Part A Permit Records	0

Handler Information ? (handle	r #1 : MERIT OIL CORP , handler i	information record #3
Activity Location	NY	
Source Type	Implementer	
Receive Date	07/08/1999	
Site Name	MERIT OIL CORP	
Location Street Number	1596	
Location Street 1	WHITE PLAINS RD	
Location City	BRONX	
Location State	NY	
Location Zip Code	104623805	
State District Code	NYSDEC R2	
Mailing Street Number	551	
Mailing Street 1	W LANCASTER AVE	
Mailing City	HAVERFORD	
Mailing State	PA	
Mailing Zip Code	19041	
Mailing Country	US: UNITED STATES	
Contact Country	US: UNITED STATES	
Importer Activity (Yes/No)	No	
Radioactive Waste (Yes/No)	No	
Recycler Activity (Yes/No)	No	
Transporter Activity (Yes/No)	No	
TSD Activity (Yes/No)	No	
Underground Injection (Yes/No)	No	
Universal Waste Destination (Yes/No)	No	
Transfer Facility (Yes/No)	No	
Burner Exemption (Yes/No)	No	
Furnace Exemption (Yes/No)	No	
Used Oil Fuel Burner (Yes/No)	No	
Used Oil Processor (Yes/No)	No	
Used Oil Refiner (Yes/No)	No	
Used Oil Marketer (Yes/No)	No	
Used Oil Specification Cert. (Yes/No)	No	
Used Oil Transfer Facility (Yes/No)	No	
Used Oil Transporter (Yes/No)	No	
Off-site Waste Receipt	Verified to be non-commercial	
County Code	NY005	
State Waste Generation	Not a Generator	
Short Term Generator Activity	No	

Hazardous Secondary Material ?

(handler #1 : MERIT OIL CORP , HSM record #1)

All data fields in this section were blank.

Advanced	Handler-based	Record	Counts ?

Number of NAICS Codes	1
Number of Other Permits	0
Number of Owners / Operators	0
Number of Certifications	1
Number of State Activities	0
Number of Universal Wastes	0
Number of Waste Codes	0
Number of Current Information Records	0
Number of Part A Permit Records	0

Handler Information 🔞

Handler Information	
Activity Location	NY
Source Type	Annual/Biennial Report
Receive Date	02/08/1994
Site Name	MERIT "TRENONT"
Include in Biennial Report (Yes/No)	Unknown
Location Street 1	1596 WHITE PLAINS RD
Location City	BRONX
Location State	NY
Location Zip Code	104623805
Land Type	Unknown
State District Code	NYSDEC R2
Mailing Street 1	551 W LANCASTER AVENUE
Mailing City	HAVERFORD
Mailing State	PA
Mailing Zip Code	190411494
Contact First Name	GEORGE T
Contact Last Name	STEININGER
Contact Phone	5167314100
Contact Phone Ext	9999
Importer Activity (Yes/No)	No
Radioactive Waste (Yes/No)	No
Recycler Activity (Yes/No)	No
Transporter Activity (Yes/No)	No
TSD Activity (Yes/No)	No
Underground Injection (Yes/No)	No
Universal Waste Destination (Yes/No)	No
Transfer Facility (Yes/No)	No
Burner Exemption (Yes/No)	No
Furnace Exemption (Yes/No)	No
Used Oil Fuel Burner (Yes/No)	No
Used Oil Processor (Yes/No)	No
Used Oil Refiner (Yes/No)	No
Used Oil Marketer (Yes/No)	No
Used Oil Specification Cert. (Yes/No)	No
Used Oil Transfer Facility (Yes/No)	No
Used Oil Transporter (Yes/No)	No
Off-site Waste Receipt	Verified to be non-commercial
Biennial Report Year	1993
County Code	NY005
Short Term Generator Activity	No

NAICS Codes ? (handler #1 : MERIT OIL CORP , handler information record #4, NAICS code: all) NAICS Code 4471: Gasoline Stations

Certifications ?

Certfication Signed Date	02/08/1994
Certification Title	ENG MANAGER
Certification First Name	RONALD H
Certification Last Name	BAMER

Hazardous Secondary Material ?

All data fields in this section were blank.

Advanced Handler-based Record Counts 🕜

Number of NAICS Codes	0
Number of Other Permits	0
Number of Owners / Operators	1
Number of Certifications	0
Number of State Activities	0
Number of Universal Wastes	0
Number of Waste Codes	1
Number of Current Information Records	0
Number of Part A Permit Records	0

Handler Information ?	(handler #1 : MERIT OIL CORP	, handler information record #5)
-----------------------	------------------------------	----------------------------------

Activity Location	NY
Source Type	Notification
Receive Date	05/11/1987
Site Name	MERIT OIL CORP
Location Street Number	1596
Location Street 1	WHITE PLAINS RD
Location City	BRONX
Location State	NY
Location Zip Code	104623805
State District Code	NYSDEC R2
Mailing Street Number	551
Mailing Street 1	W LANCASTER AVE
Mailing City	HAVERFORD
Mailing State	PA
Mailing Zip Code	19041
Contact First Name	DOM
Contact Last Name	DEBENEDICTIS
Contact Street 1	1596 WHITE PLAINS RD
Contact City	BRONX
Contact State	NY
Contact Zip Code	10462
Contact Country	US: UNITED STATES
Contact Phone	5167310036
Importer Activity (Yes/No)	No
Radioactive Waste (Yes/No)	No
Recycler Activity (Yes/No)	No
Transporter Activity (Yes/No)	No
TSD Activity (Yes/No)	No
Underground Injection (Yes/No)	No

Universal Waste Destination (Yes/No)	No
Transfer Facility (Yes/No)	No
Burner Exemption (Yes/No)	No
Furnace Exemption (Yes/No)	No
Used Oil Fuel Burner (Yes/No)	No
Used Oil Processor (Yes/No)	No
Used Oil Refiner (Yes/No)	No
Used Oil Marketer (Yes/No)	No
Used Oil Specification Cert. (Yes/No)	No
Used Oil Transfer Facility (Yes/No)	No
Used Oil Transporter (Yes/No)	No
Off-site Waste Receipt	Verified to be non-commercial
County Code	NY047
Short Term Generator Activity	No

Owners and Operators

(handler #1 : MERIT OIL CORP , handler information record #5, owner or operator #1 : MERIT OIL CORP)

?	OIL CORP)
Owner Operator Ind.	Current Owner
Owner Operator Name	MERIT OIL CORP
Owner Operator Type	Private
Owner Operator Street 1	NOT REQUIRED
Owner Operator City	NOT REQUIRED
Owner Operator State	WY
Owner Operator Zip	99999
Owner Operator Phone	2125551212

Waste Codes ?

Waste Type NONEHQ: DESCRIPTION

Hazardous Secondary Material 🔞

All data fields in this section were blank.

END OF REPORT

This search was done on January 20, 2015. It was compiled from government data last released on May 19, 2013. The data were obtained from the U.S. EPA's **RCRAINFO** database (RCRAINFO).

Search Criteria Used		
RCRA Handler ID	NYD982185779	
Handler Types	All Handlers	
Level of Detail	Extended V GO	
Type of Report Output	Text (HTML) V GO	

APPENDIX F

Section VI. Project Description Purpose and Scope of Project / Estimated Project Schedule

APPENDIX F

SECTION VI PROJECT DESCRIPTION AND ESTIMATED SCHEDULE

Purpose and Scope of Project:

Existing Site structures will be demolished and the Site will be redeveloped into a multi-story building for mixed-use residential, retail, offices, community facilities and parking. Development plans are not finalized and will be contingent on the re-zoning application as the site will be subject to Uniform Land Use Review Procedure.

Estimated Project Schedule:

The applicant anticipates beginning the implementation of a Remedial Investigation Work Plan following the demolition of Site buildings in the second half of 2015. Implementation of remedial measures is expected to coincide with redevelopment construction activities, which are anticipated to begin January 2017 pending ULURP approval.

The following schedule summarizes the anticipated tasks for completion of the BCP requirements. The schedule is estimated and takes into account NYSDEC review of project plans, public comments, and the potential for multiple field mobilizations.

Project Phase	Approximate Time Frame
BCP Application	February 2015
Notification of Application Completeness	February 2015
ENB Publication	February 2015
End of BCP Application Public Comment Period	April 2015
Submission of Remedial Investigation Work Plan (RIWP) to NYSDEC	May 2015
NYSDEC Approval of RIWP	June 2015
Demolition	June/July 2015
Remedial Investigation (RI)	July 2015
Submission of RI Report to NYSDEC	September 2015
End of RI Report Public Comment Period	October 2015
Submission of Remedial Action Work Plan (RAWP) to NYSDEC	November 2015

Project Phase	Approximate Time Frame
NYSDEC Approval of RAWP	December 2015
End of RAWP Public Comment Period	January 2016
Start of Construction / Implementation of RAWP	January/February 2016
Complete RAWP Implementation	November 2016
Submit Final Engineering Report	January 2020
NYSDEC Issue Certificate of Completion	March 2020
Project Complete	May 2020

APPENDIX G

Section VII. Property's Environmental History

- G-1. Property's Environmental History
- G-2. Data Summary Tables from D&B Engineers and Architects, P.C., Phase II ESI, August 22, 2014
- G-3. Documented USTs and ASTs
- G-4. Documented Spills
- G-5. Merritt Environmental Consulting Corp., Phase I ESA, June 10, 2013 (*Provided on Attached CD*)
- G-6. D&B Engineers and Architects, P.C., Phase II ESI, August 22, 2014 (*Provided on Attached CD*)

APPENDIX G-1

Section VII. Property's Environmental History

- Part 1. Environmental Reports
- Part 2. Sampling Data
- Part 3. Suspected Contaminants
- Part 4. Known or Suspected Sources of Contaminants
- Part 5. Past Land Uses

APPENDIX G

SECTION VII

PART 1. PROPERTY'S ENVIRONMENTAL HISTORY: ENVIRONMENTAL REPORTS

The Site consists of five (5) contiguous tax lots operated as a single property comprising a total of 1.62 acres and identified as follows:

Lo	ot 1	_	1584 White Plains Road
Lo	ot 7	_	1619 – 1627 Unionport Road
Lo	ot 8	_	1596 White Plains Road a/k/a 1880 East Tremont Avenue
Lo	ot 17	_	1603 – 1617 Unionport Road
Lo	ot 23	_	1597 Unionport Road a/k/a 1895 Guerlain Street

a/k/a 1572-78 White Plains Road

Any references herein to the "Site" means the entire Site consisting of all five (5) tax lots; however, the findings of prior investigations will be discussed in relation to each individual tax lot.

A Phase I Environmental Site Assessment (ESA) and a Phase II Environmental Site Investigation (ESI) have been conducted at the Site and are attached for reference.

A summary of the findings is provided below.

Phase I Environmental Site Assessment

Merritt Environmental Consulting Corp. (Merritt), June 10, 2013

Merritt completed a Phase I Environmental Site Assessment (ESA) of the Site in accordance with the American Society of Testing Materials (ASTM) E 1527-05 standards. The Merritt Phase I ESA identified the following two recognized environmental conditions (RECs):

• Active gasoline station located onsite at Lot 8 – 1596 White Plains Road/1880 East Tremont Avenue

The gasoline filling station had two previously closed NYSDEC spill incidents. Spill number 8907138 was opened on June 19, 1989, as a result of a tank test failure of the gasoline USTs at the gasoline station. The spill was closed by the NYSDEC on January 16, 1990. Spill number 9307951 was opened on September 30, 1993; however, while the source was gasoline, the amount and cause of the spill were both unknown. The spill was closed by the NYSDEC on March 19, 2003. No information concerning any remediation or detailed rationale for spill closure for either spill was contained with the Phase I ESA report.

• Former potential dry cleaning facility located onsite at Lot 23 – 1597 Unionport Road (identified as Sun Dry Cleaners, 1663 Cleaners Inc, and Daisy Cleaners). According to information indicated by the EDR report, this dry cleaning facility was noted to operate at the above location from 1965 to 2012. According to information contained in the EDR report, a separate dry cleaning facility was reported to be located at a nearby property at 1590 White Plains Road from at least 2007. During the Site reconnaissance as part of the Phase I ESA, the 1590 White Plains Road facility was observed to only be a laundromat that did not currently have dry cleaning operations.

The Phase I ESA also indicated the following other environmental concerns:

- One 1,500-gallon fuel oil aboveground storage tank (AST) within the basement of Lot 17 1603 Unionport Road (PBS# 2-098191);
- One 2,000-gallon fuel oil AST within the basement of Lot 7 1623 Unionport Road (PBS# 2-098191);
- Potential presence of historic fill materials beneath the entire Site (Lots 1 through 23);
- Potential presence of asbestos and lead based paint in the building materials based upon the age of the buildings.

In addition to the two dry cleaners referenced by the Merritt Phase I ESA, the city directory attached to the Phase I ESA noted the presence of a third dry cleaner facility located at 1584 White Plains Road. According to information in the city directory, this dry cleaning facility was identified as Stanton Cleaners and Dyers of Parkchester and was in operation from at least 1961 to 1971.

Phase II Environmental Site Investigation,

D&B Engineers and Architects, P.C. (D&B), August 22, 2014

In June 2014, D&B completed a Phase II Environmental Site Investigation (ESI) for the New York City School Construction Authority to assess environmental conditions and to characterize subsurface media beneath the Site. Due to access constraints some of the investigation was conducted adjacent to the buildings at the Site.

The scope of work included:

- Completion of a geophysical survey at all boring locations;
- Installation of 19 soil borings along with the collection and analysis of 23 soil samples;
- Installation of eight temporary groundwater well points along with the collection and analysis of eight groundwater samples;
- Collection and analysis of four groundwater samples from existing monitoring wells at the Site.
- Collection and analysis of five sub-slab/soil vapor samples.

Summary of Geology and Hydrogeology

Soil borings were completed to a depth of up to 25 feet below land surface (feet bls). According to boring logs contained within the D&B Phase II ESI, the Site was noted to be underlain by historic fill material consisting of fine to coarse sands, gravels, brick, concrete, asphalt, slag, and cinders. A silt and fine sand layer with decomposed weathered rock fragments was observed beneath the historic fill layer during the D&B Phase II ESI. Bedrock was not encountered during the D&B Phase II ESI.

During the D&B Phase II ESI, the groundwater table was observed to be 9 to 22 feet bls, with groundwater as shallow as 4 feet bls from samples collected within building basements. A groundwater elevation contour map was not included in the D&B Phase II ESI, however, groundwater flow was inferred to follow land surface topography and flow to the south.

Summary of Analytical Results

Analytical results from the D&B Phase II ESI indicated that subsurface soil, groundwater, and soil vapor beneath and immediately surrounding the Site are impacted by petroleum-related and chlorinated volatile organic compounds (collectively, VOCs) above applicable guidance values. The VOCs detected are commonly associated with either petroleum-related or chlorinated solvent sources and are attributable to the active gasoline station and multiple former dry cleaning operations at portions of the Site. In addition, metals and semi-volatile organic compounds (SVOCs), particularly polycyclic aromatic hydrocarbons (PAHs), were identified in soils at concentrations above unrestricted use soil cleanup objectives (SCOs) and are likely related to the presence of historic fill.

The scope of work and results of the Phase II ESI are discussed in detail below.

Soil

A total of 19 soil borings were installed as part of the investigation (however, multiple locations were completed offsite in the sidewalk due to access constraints) with a total of 23 discrete soil samples collected and submitted for laboratory analysis for the following list of parameters:

- Target Compound List (TCL) VOCs plus tentatively identified compounds (TICs) via United States Environmental Protection Agency (USEPA) Method 8260;
- TCL SVOCs plus TICs via USEPA Method 8270;
- polychlorinated biphenyls (PCBs) via USEPA 8082A;
- Total Analyte List (TAL) metals (less Al, Ca, Fe, K, Mg and NA) via USEPA SW6010 and SW7471A;
- TCL pesticides/herbicides via USEPA SW8081;
- cyanide via USEPA 9012B; and
- hexavalent chromium via USEPA 7196A.

ROUX ASSOCIATES, INC.

Several samples were also analyzed for waste characterization purposes including Resource Conservation and Recovery Act (RCRA) Characteristics, and total petroleum hydrocarbons (TPH) for both diesel range organics (DRO)/gasoline range organics (GRO). In addition, ten samples were analyzed for leachable lead using the toxicity characteristic leaching procedure (TCLP), and one sample was analyzed for leachable chromium using TCLP. All of the waste characterization parameters were below their respective characteristic hazardous waste threshold values.

The analysis of the soil samples indicated the presence of VOCs, SVOCs, metals, and pesticides exceeding unrestricted use SCOs. Ranges of exceedances are provided in the attached tables from the D&B Phase II ESI.

- **VOCs:** Elevated concentrations of petroleum-related VOCs were primarily located adjacent to or hydraulically downgradient of the active gasoline filling station (Lot_8) at soil sample locations GP-5 and GP-13. Analytes that were indicated to exceed unrestricted use SCOs 1,2,4,-trimethylbenzene, 1,3,5-trimethylbenzene, benzene, ethylbenzene, isopropylbenzene, m,p-xylene, o-xylene, toluene, naphthalene, n-butylbenzene, and n-propylbenzene. Tetrachloroethene (PCE) was detected in soil sample location GP-8 (Lot 1) above unrestricted use SCOs at a concentration of 3.3 mg/kg. This soil sample was collected from immediately below the slab of a building located in the vicinity of a potential former dry cleaner at the Site.
- **SVOCs:** Seven SVOCs were detected above the unrestricted use SCOs; however, the majority of the exceedances were limited to PAHs located within shallow soils with the exception of 2-metyhlnapthelene (exceeding CP-51 Supplemental SCOs for residential use) found in the deeper soils at soil sample locations GP-5 (Lot 17) (i.e., 10-12 feet bls) and GP-13(Lot 13) (i.e., 18-20 feet bls). These soil borings were completed downgradient of the active gasoline filing station at the Site.
- **Metals:** Eleven metals were detected above the unrestricted use SCO including arsenic, barium, cadmium, chromium, cobalt, copper, lead, mercury, nickel, silver, and zinc.
- **Pesticides/Herbicides/PCBs:** No herbicides or PCBs were detected in soil samples above unrestricted use SCOs. One soil sample had an exceedance of a pesticide compound above unrestricted use SCO: soil sample GP-8 (Lot 1) had 4,4-DDE at a concentration of 4.7 *ug*/kg.

Groundwater

A total of eight groundwater samples were collected from temporary sampling points and four groundwater samples were collected from existing monitoring wells. Each groundwater sample was analyzed for the following list of parameters:

- TCL and CP-51 VOCs plus TICs via USEPA 8260;
- TCL and CP-51 SVOCs plus TICs via USEPA 8270;
- TAL metals via USEPA SW6020 and SW7470A (total and dissolved); and

• PCBs USEPA SW8082B.

The analysis of the groundwater samples indicated the presence of VOCs, SVOCs and metals exceeding the NYSDEC Ambient Water Quality Standards and Guidance Values (AWQSGVs). Ranges of exceedances are provided in Table G2 below. Depth to groundwater ranges from approximately 9 feet bls to 22 feet bls across the Site. Groundwater is anticipated to flow generally to the south immediately beneath the Site.

- VOCs: Eighteen VOCs, including 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, benzene, chloroform, cis-1,2-dichloroethene (DCE), ethylbenzene, isopropylbenzene, methyl tert-butyl ether, m,p-xylene, naphthalene, n-butylbenzene, n-propylbenzene, o-xylene, p-isopropyltoluene, sec-butylbenzene, PCE, toluene, and trichloroethene (TCE) were detected in groundwater samples above the AWQSGVs. The highest concentrations of petroleum-related VOCs were primarily located adjacent to and/or hydraulically downgradient of the active gasoline filling station (Lot 8) at groundwater sample locations GW-5, GW-13, GW-16, MW-1, MW-F, and MW-G. The elevated concentrations of chlorinated VOCs in groundwater were observed adjacent to and hydraulically downgradient to the location of former dry cleaners at the Site at groundwater sample locations GW-16 and GW-17 (Lot 23).
- SVOCs: Only three SVOCs were detected in groundwater above the AWQSGVs including m,p-cresols, naphthalene, and phenol. Naphthalene was the most common SVOC in groundwater with detections exceeding the AWQSGVs in four groundwater samples including GW-5, GW-13, MW-F, and MW-G. These exceedances were observed in monitoring wells adjacent to or hydraulically downgradient of the active gasoline filling station at the Site (Lot 8).
- Ten metals including beryllium, cadmium, chromium, lead, manganese, mercury, nickel, selenium, silver, and thallium were detected in the total (unfiltered) groundwater samples at concentrations above their AWQSGVs. Only two exceedances (manganese and selenium) were detected at concentrations above AWQSGVs in the dissolved (filtered) groundwater samples.
- No PCBs were detected in any of the groundwater samples analyzed.

Soil Vapor:

Eighteen soil vapor samples were collected as part of the D&B Phase II ESI. Soil vapor samples were analyzed for VOCs by USEPA Method TO-15 with selective ion monitoring (SIM). There were detections of almost all VOCs analyzed. The following VOCs were detected above the New York State Department of Health Air Guidance Values (NYSDOH AGV): PCE, methylene chloride, and TCE.

SECTION VII PARTS 2, 3, 4, and 5 SAMPLE DATA AND CONTAMINANT INFORMATION

- 2. See attached Tables 2, and 4 through 11. Associated lab data is included in Appendix F with D&B Phase II ESI report (August 2014).
- 3. More significant levels of contamination are likely to exist in soil, groundwater and soil vapor than that were identified in the D&B Phase II ESI as there were many areas of the Site that were not investigated as part of the D&B Phase II ESI. For instance, additional areas of chlorinated VOCs are anticipated based on the fact that the Site had multiple dry cleaners on Site. Additional petroleum contamination is anticipated to exist beneath the active gasoline filing station at the Site and several ASTs were noted to have evidence of overfills.

Roux Associates will prepare a Remedial Investigation Work Plan for submittal to the NYSDEC in order to further delineate the extent of the subsurface impacts at the Site.

4 and 5. Past land uses and known or suspected sources of contaminants at the Site included in the application are summarized by tax lot location in the sections that follow. Analytical results discussed below are from the D&B Phase II ESI. Observations concerning Site conditions were made by Roux Associates during a Site visit on February 3, 2015.

<u>Lot 1</u>

Land Uses and Sources of Potential Contaminants:

- Two Dry cleaners 1590 White Plains Road and 1584 White Plains Road, potential sources of contamination include chlorinated VOCs, Solvents (PCE, petroleum solvents, Freon); spotting chemicals (trichloroethane, methylchloroform, ammonia, peroxides, hydrochloric acid, rust removers, amyl acetate).
- Historic fill As indicated in the D&B Phase II ESI, historic fill was observed throughout the Site within the top ten feet of the soil borings. Potential contaminants include SVOCs, metals, pesticides, and herbicides. In addition, historic fill can contain leachable concentrations of metals in excess of Resource Conservation and Recovery (RCRA) thresholds, and therefore may be considered hazardous waste with respect to management and disposal.

Known Contaminants:

Soil – Sampling locations GP-8 and GP-13 are all located within or immediately adjacent to Lot 1. PCE was detected at location **GP-8** (3.3 mg/kg) above the unrestricted use SCOs. Petroleum-related VOCs detected above the unrestricted use SCOs at **GP-13** included: 1,2,4,-trimethylbenzene, 1,3,5-trimethylbenzene, ethylbenzene, m,p-xylene, o-xylene, and n-propylbenzene.

2-methylnapthalene was detected at GP-13 and it was the only SVOC detected above its CP-51 Supplemental SCOs for residential use.

Metals were detected in soil above the unrestricted use SCOs at GP-8 and GP-13, and included the following arsenic, barium, chromium, lead, mercury, nickel, silver, and zinc. 4,4'-DDE (Dichlorodiphenyldichloroethylene), a pesticide. was detected above the unrestricted use SCOs at GP-8.

Groundwater – Sampling locations GW-5, GW-13, MW-E, MW-F, MW-G, and MW-H are all located immediately adjacent to and hydraulically upgradient to Lot 1. Due to access constraints, no groundwater was collected from Lot 1. VOCs were detected in exceedance of the AWQSGVs at locations **GW-5**, **GW-13**, **MW-F**, **and MW-G**. Analytes detected above the AWQSGVs at these locations included the following petroleum related VOCs: 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, benzene, ethylbenzene, isopropylbenzene, methyl tert-butyl ether, m,p-xylene, naphthalene, n-butylbenzene, n-propylbenzene, o-xylene, p-isopropyltoluene, sec-butylbenzene, and toluene.

SVOCs were detected in exceedance of the AWQSGVs at locations **GW-5**, **GW-13**, **MW-F**, **and MW-G**. Analytes detected above the AWQSGVs included: m&p cresols, naphthalene, and phenol.

Metals were detected in exceedance of the AWQSGVs at all locations except MW-H. Analytes detected above the AWQSGVs included: cadmium, lead, manganese, and silver.

Soil Vapor-Two soil vapor samples were collected associated with Lot 1 - SV 8 and SV-13. Petroleum-related and chlorinated VOCs were detected at both locations. VOCs were detected above the NYSDOH AGV at both locations including methylene chloride, PCE, and TCE.

Lot 7

Land Uses and Sources of Potential Contaminants:

- Dental offices -potential sources of contamination include lead and mercury and dental acids.
- Above Ground Pipeline or Tank One active AST is present (1,500 gallon) containing #2 fuel oil and is listed in the NYSDEC Petroleum Bulk Storage (PBS) Database. Staining on the AST along with stained surface soil was observed during a Site visit completed by Roux Associates on February 3, 2015. Petroleum related soil impacts are potentially present.
- Historic fill As indicated in the D&B Phase II ESI, historic fill was observed throughout the Site within the top ten feet of the soil borings. Potential

contaminants include SVOCs, metals, pesticides, and herbicides. In addition, historic fill can contain leachable concentrations of metals in excess of Resource Conservation and Recovery (RCRA) thresholds, and therefore may be considered hazardous waste with respect to management and disposal.

Known Contaminants:

Soil – Sampling locations GP-2, GP-3 and GP-7 are all located within or immediately adjacent to Lot 7. Metals were detected at these locations in exceedance of the unrestricted use SCOs. Analytes detected above the unrestricted use SCOs included: copper, lead, nickel, silver, and zinc.

Groundwater – Sampling location GW-7 is located within Lot 7. Due to access constraints, it was the only location where groundwater was collected. There was an exceedance of lead, manganese, mercury, and thallium above their respective AWQSGVs in groundwater at GW-7.

Soil Vapor-Three soil vapor samples were associated with Lot 7, SV-2, SV-3, and SV-7. Petroleum-related VOCs including 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, benzene, ethylbenzene, m,p-xylenes, o-xylene and toluene were detected at all locations and in the vicinity of the AST. In addition, detections of PCE were above the NYSDOH AGV at locations SV-2 and SV-3.

Lot 8

Land Uses and Sources of Potential Contaminants:

- Service station 1596 White Plains Road /1880 East Tremont Avenue (current gasoline service station location), potential sources of contamination include petroleum related impacts from historical spills, current use of gasoline and diesel USTs and piping, miscellaneous wastes and solvents.
- Underground Pipeline or Tank Active gasoline service station with five 4,000 gallon USTs, and one 550 gallon UST currently active as listed in the NYSDEC PBS database. Previously closed USTs include: four 4,000 gallon USTs, three 2,000 gallon USTs and one 550 gallon UST.
- Surface Spill or Discharge two historical spills were identified in the Phase I ESA, one of which was opened as the result of petroleum product observed in the excavation during UST removal at the gasoline service station.
- Historic fill As indicated in the D&B Phase II ESI, historic fill was observed throughout the Site within the top ten feet of the soil borings. Potential contaminants include SVOCs, metals, pesticides, and herbicides. In addition, historic fill can contain leachable concentrations of metals in excess of Resource Conservation and Recovery (RCRA) thresholds, and therefore may be considered hazardous waste with respect to management and disposal.

Known Contaminants:

Soil – Due to access limitations, no soil samples were collected from within Lot 8. There were VOC and SVOC soil impacts at GP-5 which is located immediately downgradient of Lot 8 (see Lot 17 summary below). The exceedances detected at GP-5 are likely indicative of a release from the onsite gasoline station operations located in Lot 8. Based on multiple documented historic spills including observation of free product during excavation of former gasoline USTs, and downgradient impacts in soils, it is likely that impacted soil is present at Lot 8.

Metals were detected in exceedance of the unrestricted use SCOs at GP-1, GP-4, and GP-5. Analytes detected above the unrestricted use SCOs included: chromium, copper, lead, mercury, and zinc.

Groundwater – Due to access limitations, there were no groundwater samples collected from Lot 8. Sampling locations GW-5, GW-13, MW-E, MW-F, MW-G, and MW-H are all located immediately adjacent to and hydraulically downgradient of Lot 8. VOCs were detected in exceedance of the AWQSGVs at locations GW-5, GW-13, MW-F, and MW-G. Analytes detected above the AWQSGVs included the following petroleum related VOCs: 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, benzene, ethylbenzene, isopropylbenzene, methyl tert-butyl ether, m,p-xylene, naphthalene, n-butylbenzene, n-propylbenzene, o-xylene, p-isopropyltoluene, secbutylbenzene, and toluene.

SVOCs were detected in exceedance of the AWQSGVs at locations **GW-5**, **GW-13**, **MW-F**, **and MW-G**. Analytes detected above the AWQSGVs included: cresols, naphthalene, and phenol with the highest concentrations detected at GW-13.

Metals were detected in exceedance of the AWQSGVs at all locations except MW-H. Analytes detected above the AWQSGVs included: cadmium, lead, manganese, and silver.

Soil Vapor-Two soil vapor samples were collected associated with Lot 8, SV-1, and SV-4. VOCs were detected at all locations; however detections at locations SV-4 were above the NYSDOH AGV.

<u>Lot 17</u>

Land Uses and Sources of Potential Contaminants:

Above Ground Pipeline or Tank – One active AST is present (2,000 gallon) containing #2 fuel oil AST and is listed in the NYSDEC PBS Database. Petroleum related soil impacts are potentially present, as a result of undocumented releases.

Historic fill – As indicated in the D&B Phase II ESI, historic fill was observed throughout the Site within the top ten feet of the soil borings. Potential contaminants include SVOCs, metals, pesticides, and herbicides. In addition, historic fill can contain leachable concentrations of metals in excess of Resource Conservation and Recovery (RCRA) thresholds, and therefore may be considered hazardous waste with respect to management and disposal.

Known Contaminants:

Soil – Sampling locations GP-5, GP-6, GP-9, GP-10, and GP-11 are all located within Lot 17 and GP-12 is located immediately adjacent to Lot 17. VOCs and SVOCs were detected above the unrestricted use SCOs at location **GP-5** including 1,2,4,-trimethylbenzene, 1,3,5-trimethylbenzene, benzene, ethylbenzene, isopropylbenzene, m,p-xylene, o-xylene, toluene, naphthalene, n-butylbenzene, and n-propylbenzene. Acetone was detected above the unrestricted use SCOs at **GP-6**. 2-methylnapthalene was detected at GP-5 and it was the only SVOC detected above its CP-51 Supplemental SCOs for residential use.

Metals were detected above the unrestricted use SCOs at locations GP-5, GP-6, and GP-9. The detected analytes included: barium, chromium, cobalt, lead, mercury, nickel, and zinc.

Groundwater – Sampling locations GW-5, GW-13, MW-E, MW-F, MW-G, and MW-H are all located within Lot 17. VOCs were detected in exceedance of the AWQSGVs at locations GW-5, GW-13, MW-F, and MW-G. Analytes detected above the AWQSGVs included the following petroleum related VOCs: 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, benzene, ethylbenzene, isopropylbenzene, methyl tert-butyl ether, m,p-xylene, naphthalene, n-butylbenzene, n-propylbenzene, o-xylene, p-isopropyltoluene, sec-butylbenzene, and toluene.

SVOCs were detected in exceedance of the AWQSGVs at locations **GW-5**, **GW-13**, **MW-F**, **and MW-G**. Analytes detected above the AWQSGVs included: cresols, naphthalene, and phenol.

Metals were detected in exceedance of the AWQSGVs at all locations except MW-H. Analytes detected above the AWQSGVs included: beryllium, cadmium, chromium, lead, manganese, nickel, selenium, silver, and thallium.

Soil Vapor-Six soil vapor samples were collected associated with Lot 17, SV-5, SV-6, SV-9, SV-10, SV-11, and SV-12. Chlorinated and petroleum-related VOCs were detected at all locations; however detections of PCE at three locations (SV-5, SV-6, and SV-9) were above the NYSDOH AGV.

Lot 23

Land Uses and Sources of Potential Contaminants:

- Dry cleaners 1597 Unionport Road, potential sources of contamination include chlorinated VOCs, Solvents (perchloroethylene, petroleum solvents, Freon); spotting chemicals (trichloroethane, methylchloroform, ammonia, peroxides, hydrochloric acid, rust removers, amyl acetate).
- Bowling alley 1897 Guerlain Street, potential sources of contamination include use of solvents and degreasers for stripping the finish from bowling lanes, and maintenance of the machinery. Evidence of an unregistered fuel oil UST, in the form of fill lines from an adjacent boiler room, was observed by Roux Associates during a Site visit on February 3, 2015.
- Historic fill As indicated in the D&B Phase II ESI, historic fill was observed throughout the Site within the top ten feet of the soil borings. Potential contaminants include SVOCs, metals, pesticides, and herbicides. In addition, historic fill can contain leachable concentrations of metals in excess of Resource Conservation and Recovery (RCRA) thresholds, and therefore may be considered hazardous waste with respect to management and disposal.

Known Contaminants:

Soil – Sampling locations GP-14, and GP-19 are all located within Lot 23 and locations GP-13, GP-15, GP-16, GP-17, and GP-18 are located immediately adjacent to Lot 23. VOC concentrations of soil samples collected from all sampling locations were below the unrestricted use SCOs except at location GP-13, where 1,2,4,-trimethylbenzene, 1,3,5-trimethylbenzene, ethylbenzene, m,p-xylene, n-propylbenzene, and o-xylene were detected above the unrestricted use SCOs.

PAHs including benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd) pyrene were detected above the unrestricted use SCOs at GP-17. 2-methylnapthalene was detected at GP-13 and it was the only SVOC detected above its CP-51 Supplemental SCOs for residential use. All other sampling locations were below the unrestricted use SCOs for SVOCs.

Metals were detected above the unrestricted use SCOs in five of the seven soil sampling locations associated with Lot 23. Metals detected above the unrestricted use SCOs included barium, copper, lead, mercury, nickel, silver and zinc.

Groundwater – Due to access limitations, no groundwater was collected within Lot 23. However, sampling locations GW-16, GW-17, and GW-18 are all located immediately downgradient of Lot 23 and locations GW-13 and GW-15 are located immediately adjacent to Lot 23.

Chlorinated and petroleum-related VOCs, including 1,2,4-trimethybenzene, 1,3,5-trimethylbenzene, benzene, cis-1,2-dichoroethene, ethylbenzene, isopropylbenzene, m,p-xylene, naphthalene, n-propylbenzene. o-xylene p-isopropyltoluene, secbutylbenzene, toluene, and PCE were detected above the AWQSGVs at locations GW-13, GW-16, GW-17, and GW-18.

Naphthalene was the only SVOC detected above the AWQSGVs (GW-13).

Manganese was detected above the AWQSGVs at all groundwater sampling locations. Selenium was also detected above the AWQSGVs at location GW-17. In addition, chromium, lead, and nickel were detected above AWQSGVs.

Soil Vapor-Six soil vapor samples were collected associated with Lot 23, SV-13 through SV-18. Petroleum-related and chlorinated VOCs were detected at all locations; however detections at four locations (SV-13, SV-14, SV-15, and SV-18) were above the NYSDOH AGV.

Location Unknown

- Former photograph processing facility address unknown, potential sources of contamination include silver, cyanide, solvents, photographic chemicals and oils.
- Analytical results from the D&B Phase II ESI indicated that subsurface soil and/or groundwater at all lots at the Site have been impacted by contaminants above applicable regulatory guidance values. In addition, petroleum-related and chlorinated VOCs were identified in soil vapor throughout the Site, and some concentrations were noted to be several orders of magnitude above their respective AGV. The petroleum-related contaminants encountered at the Site are attributable to documented releases from the onsite active gasoline station or fuel oil storage tanks at the Site. The presence of chlorinated VOCs at the Site is attributable to multiple former dry cleaning operations that historically occupied portions of the Site. The metals and SVOCs, particularly PAHs, which were identified at all sample locations at concentrations above unrestricted use SCOs are related to the presence of historic fill, which was identified throughout the upper 10 feet of soil across the Site.

Summary

Analytical results from the D&B Phase II ESI indicated that subsurface soil and/or groundwater at all lots at the Site have been impacted by contaminants above applicable regulatory guidance values. In addition, petroleum-related and chlorinated VOCs were identified in soil vapor throughout the Site, and some concentrations were noted to be several orders of magnitude above their respective AGV. The petroleum-related contaminants encountered at the Site are attributable to documented releases from the onsite active gasoline station or fuel oil storage tanks at the Site. The presence of chlorinated VOCs at the Site are attributable to multiple former dry cleaning operations that historically occupied portions of the Site. The metals and SVOCs, particularly PAHs, that were identified at all sample locations at concentrations above unrestricted use SCOs are related to the presence of historic fill, which was identified throughout the upper 10 feet of soil across the Site.

APPENDIX G-2

Data Summary Tables from D&B Engineers and Architects, P.C. Phase II ESI, August 22, 2014

MEDIA	CONTAMINANT	CONCENTRATION RANGE	UNITS
Soil Vapor	VOCs	29.83 to 32,644.3	ug/m3
Soil Vapor	Tetrachloroethene	0.34 to 31,193	ug/m3
Soil	1,2,4-Trimethylbenzene	<0.00016 to 33.6	mg/kg
Soil	1,3,5-Trimethylbenzene	<0.00016 to 11	mg/kg
Soil	Acetone	<0.0008 to 0.0578	mg/kg
Soil	Benzene	<0.00016 to 7	mg/kg
Soil	Ethylbenzene	<0.00016 to 13.5	mg/kg
Soil	Isopropylbenzene	<0.00016 to 14.3	mg/kg
Soil	m.p-Xylene	<0.00032 to 43.8	mg/kg
Soil	o-Xylene	<0.00016 to 12.7	mg/kg
Soil	Tetrachloroethene	<0.00016 to 3.3	mg/kg
Soil	Toluene	<0.00016 to 3.4	mg/kg
Soil	Naphthalene	<0.00016 to 32.3	mg/kg
Soil		<0.00016 to 12.6	mg/kg
	n-Butylbenzene	<0.00016 to 41.1	
Soil	n-Propylbenzene	<0.0366 to 0.75	mg/kg
Soil	2-Methylnapthalene		mg/kg
Soil	Indeno(1,2,3-cd)pyrene	<0.0366 to 3.1	mg/kg
Soil	Benzo(a)anthracene	<0.0368 to 6.5	mg/kg
Soil	Benzo(a)pyrene	<0.0366 to 5	mg/kg
Soil	Benzo(b)fluoranthene	<0.0366 to 5.8	mg/kg
Soil	Benzo(k)fluoranthene	<0.0366 to 2.7	mg/kg
Soil	Chrysene	<0.0366 to 5.3	mg/kg
Soil	Dibenzo(a,h)anthracene	<0.0366 to 0.76	mg/kg
Soil	4,4'-DDE	<0.36 to 4.7	ug/kg
Soil	Arsenic	0.473 to 22.6	mg/kg
Soil	Barium	7.86 to 1410	mg/kg
Soil	Cadmium	<0.138 to 5.77	mg/kg
Soil	Chromium	14.9 to 102	mg/kg
Soil	Copper	7.86 to 146	mg/kg
Soil	Lead	9.84 to 3240	mg/kg
Soil	Mercury	<0.005 to 0.881	mg/kg
Soil	Nickel	8.38 to 80.8	mg/kg
Soil	Silver	0.746 to 2.6	mg/kg
Soil	Zinc	18.9 to 1710	mg/kg
Groundwater	1,2,4-Trimethylbenzene	<0.200 to 2600	ug/l
Groundwater	1,3,5-Trimethylbenzene	<0.200 to 750	ug/l
Groundwater	Benzene	<0.200 to 4000	ug/l
Groundwater	Chloroform	<0.200 to 15.8	ug/l
Groundwater	cis-1,2-Dichloroethene	<0.200 to 7.6	ug/i
Groundwater	Ethylbenzene	<0.200 to 4600	ug/l
Groundwater	Isopropylbenzene	<0.200 to 130	ug/l
Groundwater	m,p-Xylene	<0.400 to 13800	ug/l
Groundwater	Naphthalene	<0.200 to 500	ug/l
Groundwater Groundwater	n-Butylbenzene n-Propylbenzene	<0.200 to 5.8 <0.200 to 400	ug/l
Groundwater	o-Xylene	<0.200 to 5100	ug/l ug/l
Groundwater	p-Isopropyitoluene	<0.200 to 14.5	ug/l
Groundwater	sec-Butylbenzene	<0.200 to 30	ug/l
Groundwater	Methyl tert-Butyl Ether	<0.500 to 46.9	ug/l
Groundwater	Tetrachloroethene	<0.200 to 220	ug/l
Groundwater	Toluene	<0.200 to 530	ug/l
Groundwater	Trichloroethene	<0.200 to 8	ug/l
Groundwater	Cresols, m&p	<1 to 3.2	ug/l
Groundwater	Phenol	<1 to 21.9	ug/l
Groundwater	Manganese	0.0125 to 17.9	mg/i

Sample ID Sampling Date Units	SV-1 06/24/14 ug/m ⁸	SV-2 06/24/14 µg/m ⁴	SV-3 06/24/14 ug/m ⁴	3V-4 06/23/1 4 µg/m ³	SV-5 06/23/1 4 µg/m ²	NYSDOH Air Guideline Value µg/m ¹	NYSDOH Table C-1 Upper Fence Limit(Indoor) µg/m ³	NYSDOH Table C-2 90th Percentile Value(Indoor) pg/m ³	NYSDOH Table C-5 35th Percentile Value(Indoor) pg/m ³
1,2,4-Trimethylbenzene	2.36 J	5.41	64.9	89.0 D	107	-	9.8	9.5	-
1,3,5-Trimethylbenzene	0.640 J	2.21 J	33.9	24.1	27	-	3.9	3.7	
Benzene	1.73	7.99	40.6	10.9	1054 D	-	13	9.4	10
Chloroethane	<0.260	<0.260	<0.260	<0.260	<2.64	2	0.4	<1.1	
Chloromethane	1.14	1.16	0.700 J	<0.210	<2.07	-	4.2	3.7	-
cis-1,2-Dichloroethylene	<0.400	<0.400	<0.400	<0.400	<3.96	-	0.4	<1.9	+
Ethylbenzene	1.87 J	3.65	137 D	38.2	127		6.4	5.7	7.62
m,p-Xylenes	5.65	11.7	380 D	143 D	68.6	-	11	22.2	22.2
Methylene Chloride	5.91	3.2	<0.350	1.29 J	<3.47	60	15	10	7.5
Naphthalene	<0.520	<0.520	1.63 J	66.6 D	15.2 J	-		5.1	-
o-Xylene	2.13 J	4.34	133 D	61.2	9.99 J		7.1	7.9	7.24
Tetrachloroethylene	0.75	45.4	745 D	54.2	456	30	2.5	15.9	6.01
Foluene	15.8	11.3	274 D	118 D	26.4		57	43	39.8
Trichioroethylene (TCE)	<0.160	0.48	0.27	0.7	<1.61	5	0.5	4.2	1.36
Vinyl Chloride	<0.0800	~0.0800	0.18	<0.0800	<0.770		0.4	<1.9	+
Sample ID Sampling Date Units	SV-6 06/25/14 µg/m ³	SV-7 06/25/14 µg/m ¹	SV-8 06/24/14 µg/m ³	8V-9 06/25/1 4 µg/m ³	SV-10 06/23/1 4 µg/m ³	NYSDOH Air Guideline Value µg/m ⁸	NYSDOH Table C-1 Upper Fence Limit(Indoor) µg/m ³	NYSDOH Table C-2 90th Percentile Value(Indoor) µg/m ⁸	NYSDOH Table C-5 95th Percentile Value(Indoor) µg/m ³
1,2,4-Trimethylbenzene	73.2	40.8	147	50.1	12.8	-	9.8	9.5	-
1,3,5-Trimethylbenzene	19.2	9.34	70.3	12.3	3.15	-	3.9	3.7	-
Benzene	22.4	4.47	46	36.1	4.15	-	13	9.4	10
Chloroethane	+0.260	<0.260	<2.64	5.54	<0.260	-	0.4	<1.1	
Chloromethane	0.950 J	1.05	<2.07	21.9	<0.210		4.2	3.7	
cls-1,2-Dichloroethylene	<0.400	<0.400	<3.96	<0.400	<0.400	-	0.4	<1.9	-
Ethylbenzene	108 D	23	133	20	6.08	-	6.4	5.7	7.62
n,p-Xylenes	204 D	53.9	477	55.6	23	-	11	22.2	22.2
Methylene Chloride	1.46 J	9.38	167	3.47	2.26	60	16	10	7.5
Naphthalene	9.96	32	<5.24	9.44	3.46	-		5,1	
o-Xylene	70.4 D	19.6	117	23	10.9	-	7.1	7.9	7.24
Tetrachloroethylene	228 D	21	31193 0	47.5	7.46	30	2.5	15.9	6.01
Toluene	23.4	27.1	166	37.3	26		57	43	39.8
Trichloroethylene (TCE)	<0.160	0.21	128	<0.160	0.16	5	0.5	4.2	1.36
Vinvi Chloride	<0.0800	<0.0800	<0.770	6.9	<0.0800	-	0.4	<1.9	-

Table 4 Summary of Detected VOC's Concentrations Greater than AGV and/or Background Concentrations in Soil Vapor

Qualifiers

Notes:

< Analyzed but not detected

J: Estimated value

ug/m³: Micrograms per cubic meter Exceeds the range of all background databases Exceeds the NYSDOH Air Guideline Value

D: Detected at secondary dilution

Table 4

Summary of Detected VOCs Concentrations Greater than AGV and/or Background Concentrations in Soil Vapor

Sample ID Sampling Date Units	SV-11 06/23/14 ug/m*	SV-12 06/25/14 µg/m ³	SV-13 06/23/14 µg/m³	SV-14 06/25/1 4 ug/m*	SV-15 06/26/1 4 ug/m ²	NYSDOH Air Guideline Value µg/m ³	NYSDOH Table C-1 Upper Fence Limit(Indoor) µg/m ³	NYSDOH Table C-2 90th Percentile Value(Indoor) ug/m	NYSDOH Table C-5 95th Percentile Value(Indoor) µg/m ³
1.2.4-Trimethylbenzene	23.6	0.790 J	1.87 J	264 D	14.8 J	-	9.8	9.5	-
1,3,5-Trimethylbenzene	6.39	<0.490	<0.490	69.8	5.41 J	-	3.9	3.7	-
Benzene	20.4	0.580 J	<0.320	2.91	7.03 J	- C	13	9.4	10
Chioroethane	<0.260	+0.260	<0.260	<0.260	<2.64	-	0.4	<1.1	-
Chloromethane	1.67	1.78	+0.210	1.53	4.96 J	-	4.2	3.7	-
cls-1,2-Dichloroethylene	<0.400	<0.400	<0.400	8,72	<3.96		0.4	<1.9	
Ethylbenzene	16.1	0.460 J	<0.430	16.1	6.52 J	-	6.4	5.7	7.62
m.p-Xvienes	52.1	1.56 J	<d.870< td=""><td>59.5</td><td>21.3 J</td><td>-</td><td>11</td><td>22.2</td><td>22.2</td></d.870<>	59.5	21.3 J	-	11	22.2	22.2
Methylene Chloride	11.1	1.01 J	20.5	937 D	5.21 J	60	16	10	7.5
Naphthalene	5.24	~0.520	5.77	8.91	5.24 J	-		5.1	-
o-Xviene	22.2	0.650 J	0.610 J	30.4	8.25 J	1.2	7.3	7.9	7.24
Tetrachloroethylene	4.48	0.34	65.8	143 D	15596 D	30	2.5	15.9	6.01
Toluene	91.2 D	22.2	5.65	22.6	21.9	12	57	43	39.8
Trichloroethylene (TCE)	<0.160	<0.160	0.43	2.79	178	5	0.5	4.2	1.36
Vinvi Chioride	<0.0800	+0.0800	<0.0800	0.38	<0.770		0.4	<1.9	-
Sample ID Sampling Date Units	SV-16 06/25/14 ug/m*	SV-17 06/25/14 μg/m²	SV-18 06/25/14 µg/m ^a			NYSDOH Air Guideline Value µg/m ³	NYSDOH Table C-1 Upper Fence Limit(Indoor) µg/m ³	NYSDOH Table C-2 90th Percentile Value(Indoor) µg/m ⁸	NYSDOH Table C-5 95th Percentile Value(Indoor) µg/m ³
1,2,4-Trimethylbenzene	15.2	259 D	65.4 D	-		1	9.8	9.5	
1,3,5-Trimethylbenzene	4.13	86.0 D	23.6				3.9	3.7	CAR I
Benzene	1.98	3.51	9.58			-	13	9.4	10
Chloroethane	<0.260	0.690 J	<0.260			-	0.4	<1.1	
Chloromethane	1.84	0.870 J	1.01 J			-	4.2	3.7	-
cls-1,2-Dichloroethylene	<0.400	<0.400	+0.400			-	0.4	<1.9	
Ethylbenzene	3.26	15.2	46			-	6.4	5.7	7.62
m,p-Xylenes	11.7	61.7	117 D			-	11	22.2	22.2
Methylene Chloride	6.95	14.6	41.3			60	16	10	7.5
Naphthalene	1.99 J	29.9	16.8			-	-	5.1	-
o-Xylene	5.65	40.8	63.8				7.1	7.9	7.24
Tetrachloroethylene	3.32	27.8	46.8			30	2.5	15.9	6.01
Toluene	12.1	26.8	99.9 D			-	57	43	39.8
Trichloroethylene (TCE)	<0.160	0.21	0.86		100-100 - 100	5	0.5	4.2	1.36
Vinvi Chloride	<0.0800	0.18	<0.0800				0.4	<1.9	-

Qualifiers

Notes:

< Analyzed but not detected

J: Estimated value

ug/m³: Micrograms per cubic meter Exceeds the range of all background databases Exceeds the NYSDOH Air Guideithe Value

D: Detected at secondary dilution

Table 5

Detected VOC Concentrations above Unrestricted Use SCOs and Supplemental SCOs in Soil

Sample ID Sampling Date Start Depth End Depth Units	GP-1(0-5) 6/24/2014 0 feet 5 feet mg/kg	GP-2(0-5) 6/24/2014 0 feet 5 feet mg/kg	GP-3(6-18) 6/24/2014 6 Inches 18 Inches mg/kg	GP-4(0-5) 6/23/2014 0 feet 5 feet mg/kg	GP-5(10-12) 6/23/2014 10 feet 12 feet mg/kg	© NYCRR Part 375 Unrestricted Use Soll Cleanup Objectives (SCOs) mg/kg	CP-51 Soll Cleanup Levels Fuel Oll Contaminated Soll mg/kg	CP-51 SCOs Residentia I Use mg/kg
1,2,4-		1.2	10 Style 10	and and	22.70	144	144	
Trimethylbenzene	<0.00053	<0.00054	<0.00024	<0.00044	28.1D	3.6	3.6	-
1,3,5- Trimethylbenzene	<0.00053	<0.00054	<0.00024	<0.00044	9.2D	8.4	8.4	
							0.4	-
Acetone	0.0273	0.0434	<0.0012	0.0486	<1.2	0.05		-
Benzene	<0.00053	<0.00054	<0.00024	<0.00044	7	0.06	0.06	-
Ethylbenzene	+0.00053	+0.00054	<0.00024	<0.00044	7,70	1	1	-
Isopropylbenzene	<0.00053	<0.00054	< 0.00024	<0.00044	14.3		2.3	100
m,p-Xylene	<0.0011	<0.0011	<0.00049	<0.00089	30.6D	0.26	0.26	14 A
o-Xylene	<0.00053	<0.00054	<0.00024	<0.00044	5.9 D	0.26	-	-
Tetrachioroethene	0.0049J	<0.00054	0.0109	<0.00044	<0.25	1.3	· · · · ·	-
Toluene	<0.00053	<0.00054	<0.00024	<0.00044	3.4	0.7	0.7	-
Naphthalene	<0.00053	<0.00054	<0.00024	0.0022J	32.3	12	-	-
n-Butylbenzene	<0.00053	<0.00054	<0.00024	<0.00044	12.6	12	12	
n-Propylbenzene	<0.00053	<0.00054	<0.00024	<0.00044	41.1	3.9	3.9	-

Sample ID Sampling Date Start Depth End Depth Units	GP-5(18-20) 5/23/2014 18 feet 20 feet mg/kg	GP-6(7-9) 6/25/2014 7 feet 9 feet mg/kg	GP-6(12-14) 6/25/2014 12 feet 14 feet mg/kg	GP-7(9-11) 6/25/2014 9 feet 11 feet mg/kg	GP-7(14-16) 6/25/2014 14 feet 16 feet mg/kg	6 NYCRR Part 375 Unrestricted Use Soll Cleanup Objectives (SCOs) mg/kg	CP-51 Soll Cleanup Levels Fuel Oll Contaminated Soll mg/kg	CP-51 SCOs Residentia I Use mg/kg
1,2,4-	14323	1 Destable	and and and	IT PRODUCT	and the Art	1.11	5.05	1
Trimethylbenzene 1,3,5-	0.0069	<0.00052	+0.00059	<0.00044	<0.00041	3.6	3.6	-
Trimethylbenzene	0.0018 J	+0.00052	<0.00059	<0.00044	<0.00041	8.4	8.4	-
Acetone	0.0241 J	0.0576	<0.003	0.0062 J	0.0066 J	0.05	-	-
Benzene	0.0164	<0.00052	+0.00059	<0.00044	<0.00041	0.06	0.06	
Ethylbenzene	0.0019 J	<0.00052	+0.00059	<0.00044	<0.00041	1	1	-
Isopropylbenzene	<0.00049	<0.00052	<0.00059	<0.00044	<0.00041	-	2.3	100
m,p-Xylene	0.0072 J	<0.001	<0.0012	<0.00088	<0.00082	0.26	0.26	-
o-Xylene	0.0018J	<0.00052	<0.00059	<0.00044	<0.00041	0.26		-
Tetrachloroethene	<0.00049	<0.00052	<0.00059	<0.00044	<0.00041	1.3	÷.	-
Toluene	<0.00049	+0.00052	+0.00059	<0.00044	<0.00041	0.7	0.7	-
Naphthalene	0.0014J	<0.00052	+0.00059	<0.00044	<0.00041	12	÷	-
n-Butylbenzene	+0.00049	+0.00052	<0.00059	<0.00044	<0.00041	12	12	1.00
n-Propylbenzene	<0.00049	<0.00052	<0.00059	<0.00044	<0.00041	3.9	3.9	-

Footnotes/Qualifiers

mg/kg: Milligrams per kilogram < Analyzed for but not detected

J: Estimated value Detected at secondary

D: dilution

No standard -:

Exceeds Unrestricted Use SCO, SCL and/or Supplemental SCO

Sample ID Sampling Date Start Depth End Depth Units	GP-8(6-18) 6/24/2014 6 Inches 18 Inches mg/kg	GP-9(0-5) 6/25/2014 0 feet 5 feet mg/kg	GP-10(6-19) 6/23/2014 6 Inches 19 Inches mg/kg	GP-11(6-23) 6/23/2014 6 inches 23 inches mg/kg	GP-12(0-5) 6/24/2014 0 feet 5 feet mg/kg	Vart 375 Unrestricted Use Soll Cleanup Objectives (SCOs) mg/kg	Cleanup Levels Fuel Oll Contaminated Soli mg/kg	CP-51 SCOs Residentia I Use mg/kg
1.2.4-	1							1
Trimethylbenzene 1,3,5-	<0.00026	+0.00047	<0.00024	<0.00026	<0.00056	3.6	3.6	- 51
Trimethylbenzene	<0.00026	<0.00047	<0.00024	<0.00026	<0.00056	8.4	8.4	-
Acetone	-0.0013	0.0087 J	<0.0012	~0.0013	0.007 J	0.05		-
Benzene	<0.00026	<0.00047	<0.00024	<0.00026	<0.00056	0.06	0.06	
Ethylbenzene	<0.00026	+0.00047	<0.00024	<0.00026	<0.00056	1	1	-
Isopropylbenzene	<0.00026	+0.00047	<0.00024	<0.00026	<0.00056	.÷.	2.3	100
m,p-Xylene	<0.00052	<0.00094	<0.00049	<0.00053	<0.0011	0.26	0.26	-
o-Xylene	<0.00026	<0.00047	<0.00024	<0.00026	<0.00056	0.26		-
Tetrachloroethene	3.3 D	0.0011 J	+0.00024	0.00097J	<0.00056	1.3		-
Toluene	0.00063J	<0.00047	<0.00024	<0.00026	+0.00056	0.7	0.7	-
Naphthalene	<0.00026	0.001 J	<0.00024	<0.00026	<0.00056	12	-	-
n-Butylbenzene	<0.00026	<0.00047	<0.00024	<0.00026	<0.00056	12	12	-
n-Propylbenzene	<0.00026	<0.00047	<0.00024	<0.00026	<0.00056	3.9	3.9	-
Sample ID Sampling Date	GP-13(0-5) 6/23/2014	GP-13(18-20) 6/30/2014	GP-14(6-18) 6/25/2014	GP-15(6-20) 6/26/2014	GP-16(0-5) 6/26/2014	6 NYCRR Part 375 Unrestricted Use	CP-51 Soll Cleanup Levels Fuel	CP-51 SCOs
Start Depth	0 feet	18 feet	6 Inches	6 Inches	0 feet	Soll Cleanup	OII	Residentia
End Depth	5 feet	23 feet	18 Inches	20 Inches	5 feet	Objectives (SCOs)	Contaminated Soli	L Use
Units	mg/kg	maika	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1.2.4-	inging	mana	mana	mana	manag	niging	undrug	
Trimethylbenzene 1,3,5-	<0.00049	33.6 D	<0.00017	<0.00022	~0.00047	3.6	3.6	-
Trimethylbenzene	<0.00049	11.0 D	<0.00017	<0.00022	<0.00047	8.4	8.4	
Acetone	0.0103 J	<0.0515	0.0226	<0.0011	0.0068 J	0.05	-	
Benzene	<0.00049	<0.0103	<0.00017	<0.00022	+0.00047	0.06	0.06	-
Ethylbenzene	+0.00049	13.5 D	<0.00017	<0.00022	<0.00047	1	1	-
Isopropylbenzene	<0.00049	1.5	<0.00017	<0.00022	<0.00047	-	2.3	100
m.p-Xylene	<0.00097	43.8 D	<0.00033	<0.00045	<0.00094	0.26	0.26	-
o-Xylene	<0.00049	12.7 D	+0.00017	<0.00022	<0.00047	0.26		-
Tetrachioroethene	0.0021J	<0.0103	0.0013J	0.022	<0.00047	1.3	+	-
Toluene	<0.00049	0.16	<0.00017	<0.00022	<0.00047	0.7	0.7	-
Naphthalene	<0.00049	5.70 D	<0.00017	<0.00022	<0.00047	12	-	-
n-Butylbenzene	+0.00049	2.30 D	<0.00017	<0.00022	<0.00047	12	12	
Sample ID Sampling Date Start Depth End Depth Units	GP-17(0-5) 5/25/2014 0 feet 5 feet mg/kg	GP-18(6-18) 6/26/2014 6 Inches 18 Inches mg/kg	GP-19(10-24) 6/25/2014 10 Inches 24 Inches mg/kg			6 NYCRR Part 375 Unrestricted Use Soli Cleanup Objectives (SCOs) mg/kg	CP-51 Soll Cleanup Levels Fuel Oll Contaminated Soll mg/kg	CP-51 SCOs Residentia I Use mg/kg
1.2.4-	many	mBwA	mBwA	(mars	mgrag	in Bing
1,2,4- Trimethvibenzene	<0.00052	<0.00016	<0.00018			3.6	3.6	-

Table 5

Detected VOC Concentrations above Unrestricted Use SCOs and Supplemental SCOs in Soil

Footnotes/Qualifiers

1,3,5-Trimethylbenzene

Isopropylbenzene

Tetrachloroethene

Acetone

Benzene

Ethylbenzene

m,p-Xylene

Toluene Naphthalene

n-Butylbenzene

n-Propylbenzene

o-Xylene

mg/kg: Milligrams per kilogram

< Analyzed for but not detected

<0.00016

<0.0008

<0.00016

<0.00016

<0.00016

<0.00032

<0.00016

<0.00016

<0.00016

<0.00016

<0.00016

<0.00016

<0.00018

<0.00092

<0.00018

<0.00018

<0.00018

<0.00037

<0.00018

0.13 D

<0.00018

<0.00018

<0.00018

<0.00018

- J: Estimated value
- Detected at secondary
- D: dilution

<0.00052

0.0109 J

<0.00052

0.0011 J

<0.00052

0.0019 J

<0.00052

0.0041 J

<0.00052

<0.00052

<0.00052

<0.00052

- -: No standard
 - Exceeds Unrestricted Use SCO, SCL and/or Supplemental SCO

8.4

0.05

0.06

1

0.26

0.26

1.3

0.7

12

12

3.9

8.4

-

0.06

1

2.3

0.26

-

0.7

3.9

-

- - - -

100

-

1111

-

Table 6 Detected SVOC Concentrations above Unrestricted Use SCOs and/or Supplemental SCOs in Soil

Sample ID Sampling Date Start Depth End Depth Units	GP-1(0-5) 5/24/14 0 feet 5 feet mg/kg	GP-2(0-5) 6/24/14 0 feet 5 feet mg/kg	GP-3(5-18) 5/24/14 6 Inches 18 Inches mgikg	GP-4(0-5) 6/23/14 0 feet 5 feet mg/kg	GP-5(10-12) 6/23/14 10 feet 12 feet mg/kg	6 NYCRR Part 375 Unrestricted Use Soli Cleanup Objectives (SCOs) mg/kg	CP-51 Soli Cleanup Levels Fuel Oli Contaminated Soli mg/kg	CP-51 SCOs Residential Use mg/kg
2-Methylnaphthalene	<0.37	<0.0767	<0.0383	<0.0726	0.64	-	-	0.41
Benzo(a)anthracene	0.91 J	0.67 J	0.36 J	0.58 J	<0.0402	1	1	-
Benzo(a)pyrene	0.79 J	0.62 J	0.32 J	0.51 J	<0.0402	1	1	-
Benzo(b)fluoranthene	1 J	0.79	0.37 J	0.55 J	<0.0402	1	1	
Benzo(k)fluoranthene	<0.37	0.26 J	0.19 J	0.29 J	<0.0402	0.8	0.8	-
Chrysene	0.8 J	0.66 J	0.31 J	0.56 J	<0.0402	1	1	-
Dibenzo(a,h)anthracene	+0.37	<0.0767	<0.0383	<0.0726	<0.0402	0.33	0.33	-
Indeno(1.2.3-cd)pyrene	<0.37	0.36 J	0.19 J	0.28 J	<0.0402	0.5	0.5	-
Sample ID Sampling Date Start Depth End Depth Units	GP-5(18-20) 6/23/14 18 feet 20 feet mg/kg	GP-6(7-9) 6/25/14 7 feet 9 feet mg/kg	GP-6(12-14) 6/25/14 12 feet 14 feet mg/kg	GP-7(9-11) 6/25/14 9 feet 11 feet mg/kg	GP-7(14-16) 6/25/14 14 feet 16 feet mg/kg	6 NYCRR Part 375 Unrestricted Use Soll Cleanup Objectives (SCOs) mg/kg	CP-51 Soli Cleanup Levels Fuel Oli Contaminated Soli mg/kg	CP-51 SCOs Residential Use mg/kg
2-Methylnaphthalene	<0.0406	<0.0407	<0.0456	<0.0384	<0.037			0.41
Benzo(a)anthracene	~0.0406	-0.0407	~0.0456	<0.0384	<0.037	1	1	-
Benzo(a)pyrene	<0.0406	<0.0407	<0.0456	<0.0384	<0.037	1	1	-
Benzo(b)fluoranthene	<0.0406	<0.0407	<0.0456	<0.0384	<0.037	1	1	-
Benzo(k)fluoranthene	<0.0406	<0.0407	<0.0456	<0.0384	<0.037	0.8	0.8	-
Chrysene	<0.0406	+0.0407	<0.0456	<0.0384	<0.037	1	1	-
Dibenzo(a,h)anthracene	<0.0406	-0.0407	<0.0456	<0.0384	<0.037	0.33	0.33	-
Indeno(1,2,3-cd)pyrene	<0.0406	<0.0407	<0.0456	<0.0384	<0.037	0.5	0.5	2.1
Sample ID Sampling Date Start Depth End Depth Units	GP-8(6-18) 6/24/14 6 Inches 18 Inches mg/kg	GP-9(0-5) 6/25/14 0 feet 5 feet mg/kg	GP-10(6-19) 6/23/14 6 Inches 19 Inches mg/kg	GP-11(6- 23) 6/23/14 6 Inches 23 Inches mg/kg	GP-12(0-5) 6/24/14 0 feet 5 feet mg/kg	6 NYCRR Part 375 Unrestricted Use Soll Cleanup Objectives (SCOs) mg/kg	CP-51 Soli Cleanup Levels Fuel Oil Contaminated Soli mg/kg	CP-51 SCOs Residential Use mg/kg
2-Methylnaphthalene	+0.041	<0.0366	<0.0411	<0.0394	<0.0378	1. THE C.		0.41
Benzo(a)anthracene	0.51	-0.0366	D.58	<0.0394	+0.0378	1	1	1. and 1.
Benzo(a)pyrene	0.4 J	<0.0366	0.47	< 0.0394	<0.0378	1	1	-
Benzo(b)fluoranthene	0.48	<0.0366	0.53	<0.0394	<0.0378	.1	1	- 2
Benzo(k)fluoranthene	0.2 J	<0.0366	0.27 J	<0.0394	<0.0378	0.8	0.8	-
Chrysene	0.47	<0.0366	0.56	<0.0394	<0.0378	1	1	-
Dibenzo(a,h)anthracene	+0.041	<0.0366	<0.0411	<0.0394	+0.0378	0.33	0.33	

Footnotes/Qualifiers:

mg/kg:

Milligrams per kilogram

< Analyzed for but not detected

J: Estimated value

-: No standard

Exceeds Unrestricted Use SCO, SCL and/or Supplemental SCO

Sample ID Sampling Date Start Depth End Depth Units	GP-13(0-5) 6/23/14 0 feet 5 feet mg/kg	GP-13(18-20) 6/30/14 18 feet 23 feet mg/kg	GP-14(6-18) 6/25/14 6 Inches 18 Inches mg/kg	GP-15(6- 20) 6/26/14 6 Inches 20 Inches mg/kg	GP-16(0-5) 6/26/14 0 feet 5 feet mg/kg	6 NYCRR Part 375 Unrestricted Use Soli Cleanup Objectives (SCOs) mgikg	CP-51 Soll Cleanup Levele Fuel Oll Contaminated Soll mg/kg	CP-51 SCOs Residentia Use mg/kg
2-Methylnaphthalene	<0.0388	0.75	<0.0391	<0.0383	<0.037	-	-	0.41
Benzo(a)anthracene	0.4	<0.0384	<0.0391	+0.0383	+0.037	1	1	-
Senzo(a)pyrene	0.42	+0.0384	<0.0391	<0.0383	<0.037	1	1	
Benzo(b)fluoranthene	0.49	<0.0384	<0.0391	<0.0383	<0.037	1	1	
Benzo(k)fluoranthene	0.23 J	<0.0384	<0.0391	<0.0383	<0.037	0.8	8.0	
chrysene	0.36 J	<0.0384	<0.0391	+0.0383	<0.037	1	1	
lbenzo(a,h)anthracene	<0.0388	<0.0384	<0.0391	<0.0383	<0.037	0.33	0.33	-
ndeno(1,2,3-cd)pyrene	0.26 J	<0.0384	<0.0391	<0.0383	<0.037	0.5	0.5	-
Sample ID Sampling Date Start Depth End Depth Units	GP-17(0-5) 5/26/14 0 feet 5 feet mg/kg	GP-18(6-18) 6/26/14 6 Inches 18 Inches mg/kg	GP-19(10-24) 6/25/14 10 Inches 24 Inches mg/kg			6 NYCRR Part 375 Unrestricted Use Soli Cleanup Objectives (SCOs) mg/kg	CP-S1 Soli Cleanup Levels Fuel Oli Contaminated Soli mg/kg	CP-S1 SCOs Residentia Use mg/kg
2-Methylnaphthalene	<0.2	<0.0397	<0.0419			-	and the second se	0.41
Benzo(a)anthracene	6,5	0.3 J	<0.0419			1	1	· · · · ·
Benzo(a)pyrene	5	0.31 J	<0.0419			1	1	-
Senzo(b)fluoranthene	5.8	0.4	<0.0419			1	1	-
Senzo(k)fluoranthene	2.7	0.15 J	<0.0419			8.0	0.8	-
Chrysene	5.3	0.33 J	<0.0419			1	1	-
Dibenzo(a,h)anthracene	0.76 J	<0.0397	≪0.0419			0.33	0.33	
ndeno(1,2,3-cd)pyrene	3.1	0.19 J	<0.0419		A second s	0.5	0.5	

Table 6 Detected SVOC Concentrations above Unrestricted Use SCOs and/or Supplemental SCOs in Soil

Footnotes/Qualifiers:

mg/kg: Milligrams per kilogram

Analyzed for but not detected Estimated value $\mathcal{A}_{i}^{(n)}$

di -

No standard - 10

Exceeds Unrestricted Use SCO, SCL and/or Supplemental SCO

 Table 7

 Detected Metals and Cyanide Concentrations above

 Unrestricted Use SCOs and/or Supplemental SCOs in Soil

Sample ID Sampling Date Start Depth End Depth Units	GP-1(0-5) 6/24/2014 0 feet 5 feet	GP-2(0-5) 6/24/2014 0 feet 5 feet	GP-3(6-18) 6/24/2014 6 Inches 18 Inches	GP-4(0-5) 6/23/2014 0 feet 5 feet	GP-5(10-12) 6/23/2014 10 feet 12 feet	6 NYCRR Part 375 Unrestricted Use Soli Cleanup Objectives (SCOs) mg/kg	CP-51 SCOs Residential Use mg/kg
and the second s	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ungeng	mawa
Metals Arsenic Barlum Cadmium Chromium	8.1 172 0.608 20.1	3.97 100 ≪0.141 22.3	7.81 286 0.679 28.3	5.18 154 ⊲0.139 24.1	1.88 73.7 ⊲0.157 31.6	13 350 2.5 30	1111
Cobalt Copper	9.91 146	14.2	17 17 17	11.5	13 21.8	- 50	30
Lead Mercury	508 0.184	116 0.168	461 0.0060 J	232 0.15	11.4	63 0.18	
Nickel Silver	28.3 1.54	24.5 0.821	31.2 2.27	20.9	21.8 0.755	30 2	5
Zinc	385	112	447	215	55.1	109	-
Sample ID Sampling Date Start Depth End Depth Units	GP-5(18-20) 6/23/2014 18 feet 20 feet mplkg	GP-6(7-9) 6/25/2014 7 feet 9 feet mg/kg	GP-6(12-14) 6/25/2014 12 feet 14 feet mg/kg	GP-7(3-11) 6/25/2014 9 feet 11 feet mg/kg	GP-7(14-16) 6/25/2014 14 feet 16 feet mg/kg	6 NYCRR Part 375 Unrestricted Use Soll Cleanup Objectives (SCOs) mg/kg	CP-51 SCOs Residential Use mg/kg
Metals							
Arsenic Barlum	0.473 J 7.86	3.08 68.4	1.44 167	3.46 113	1.2 84.4	13 350	2
Cadmium Chromium	<0.150 70.2	<0.158 28.9	0.384	<0.147 20.9	<0.138 18.3	2.5 30	-
Cobalt Copper Lead	5.05 34.4 19.4	15.4 25.3 26.2	47 14.3 16.2	9.88 26.2 71.1	19.6 28.5 36.4	50 63	30
Mercury Nickel	<0.0060 8.38	0.074 23.5	0.014	0.118	<0.0050 25.8	0.18	2
Silver Zinc	0.886	1.28 61.3	1.77	0.746	0.765 71.6	2	7
Sample ID Sampling Date Start Depth End Depth	GP-8(6-18) 6/24/2014 6 Inches 18 Inches	GP-9(0-5) 6/25/2014 0 feet 5 feet	GP-10(6-19) 6/23/2014 6 Inches 19 Inches	GP-11(6-23) 6/23/2014 6 Inches 23 Inches	GP-12(0-5) 6/24/2014 0 feet 5 feet	6 NYCRR Part 375 Unrestricted Use Soll Cleanup Objectives (SCOs)	CP-51 SCOs Residential Use
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Metals							1000
Arsenic Badum	22.6 1410	3.94 359	5.79	4.14	2.82	13	1
Cadmium	5.77	0.224 J	<0.152	<0.145	<0.143	2.5	C
Chromium	60.1	28.6	22.5	20.4	24.7	30	-
Cobalt	13.3	11	13.1	7.39	25.2	-	30
Copper	82.5	29.9	28.8	7.86	25	50	-
Lead	1060	827	405	9.84	20.6	63	
Mercury	0.382	0.239	0.269	0.039	0.029	0.18	-
Nickel	34.5	25	21	13.3	26.4	30	-
Sliver	2.6	0.807	1.21	1.1	1.14	2	7
Zinc	1710	265	238	32.3	74.7	109	-

Footnotes/Qualifiers;

mg/kg: Milligrams per kilogram

< Analyzed for but not detected

Exceeds Unrestricted Use SCO and/or Supplemental SCO

Table 7 Detected Metals and Cyanide Concentrations above Unrestricted Use SCOs and/or Supplemental SCOs in Soil

Sample ID Sampling Date Start Depth End Depth Units	GP-13(0-5) 6/23/2014 0 feet 5 feet mg/kg	GP-13(18- 20) 6/30/2014 18 feet 23 feet mg/kg	GP-14(6-18) 6/25/2014 6 Inches 18 Inches mg/kg	GP-15(6-20) 6/26/2014 6 Inches 20 Inches mg/kg	GP-16(0-5) 6/26/2014 0 feet 5 feet mg/kg	6 NYCRR Part 375 Unrestricted Use Soll Cleanup Objectives (SCOs) mg/kg	CP-51 SCOs Residential Use mg/kg
Metals							
Arsenic	4.43	2.25	3.61	3.19	2.4	13	-
Barlum	142	33.8	68.6	79.8	91.6	350	-
Cadmium	<0.143	<0.144	0.179 J	<0.151	<0.137	2.5	-
Chromlum	29.2	14.9	21.1	22.8	20.2	30	2
Cobalt	12.4	9.04	75.1	14.2	13.5	(H) (30
Copper	35.2	27.1	61.1	26.8	19.7	50	- 1
Lead	151	11.1	11.4	28,1	39.3	63	12
Mercury	0.258	0.0100 J	0.0100 J	0.208	0.039	0.18	-
Nickel	25.6	24.8	73.3	22.1	15.4	30	-
Silver	1.3	0.791	2.12	0.971	0.809	2	-
Zinc	203	64.5	104	63.1	50.6	109	-
Sample ID Sampling Date Start Depth End Depth Units	GP-17(0-5) 6/26/2014 0 feet 5 feet mg/kg	GP-18(6-18) 6/26/2014 6 Inches 18 Inches mg/kg	GP-19(10- 24) 6/25/2014 10 Inches 24 Inches mg/kg			6 NYCRR Part 375 Unrestricted Use Soli Cleanup Objectives (SCOs) mg/kg	CP-S1 SCOs Residential Use mg/kg
Metals	mana	undind	manua		-		
Arsenic	6.82	4.36	2.65			13	-
Bartum	748	539	87			350	-
Cadmium	0.79	0.0680 J	<0.161			2.5	-
Chromium	24.4	25.4	23			30	-
Cobalt	14	30	10.1			-	30
Copper	51	44.8	23.6			50	-
Lead	3240	2140	26.4			63	-
Mercury	0.681 D	0.03	0.0070 J			0.18	-
Nickel	19.1	30.5	18.6			30	-
Sliver	1.27	1.4	0.802			2	-
Zinc	561	186	59.7			109	-

Footnotes/Qualifiers:

mg/kg: Milligrams per kilogram

< Analyzed for but not detected

Exceeds Unrestricted Use SCO and/or Supplemental SCO

Sample ID	GP-3(6-18)	GP-7(9-11)	GP-7(14-16)	GP-10(6-19)	GP-11(6-23)
Sampling Date	6/24/2014	6/25/2014	6/25/2014	6/23/2014	6/23/2014
Start Depth	6 inches	9 feet	14 feet	6 inches	6 inches
End Depth	18 inches	11 feet	16 feet	19 inches	23 inches
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Gasoline Range Organics (GRO)	<0.025	0.026 J	0.027 J	<0.027	<0.026
Diesel Range Organics	310.52	4.79	2.995	153.91	4.097
Sample ID	GP-14(6-18)	GP-17(0-5)	GP-18(6-18)	GP-19(10-24)	
Sampling Date	6/25/2014	6/26/2014	6/26/2014	6/25/2014	
Start Depth	6 inches	0 feet	6 inches	10 inches	
End Depth	18 inches	5 feet	18 inches	24 inches	
Units	mg/kg	mg/kg	mg/kg	mg/kg	
Gasoline Range Organics (GRO)	<0.028	<0.026	<0.026	<0.028	
Diesel Range Organics	26.883	98.21	66.463	2.096	

Table 8 Summary of Total Petroleum Hydrocarbons (TPH) Concentrations in Soil

Footnotes/Qualifiers:

mg/kg: Milligrams per kilogram <: Analyzed for but not detected

Sample ID Sampling Date Units	GW-1 6/30/2014 µg/l	GW-5 6/23/2014 µg/l	GW-7 6/25/2014 µg/i	GW-9 6/25/2014 µg/l	GW-11 6/26/2014 µg/l	GW-13 6/30/2014 µg/ī	GW-15 6/26/2014 µg/l	NYSDEC Class GA Standard or Guidance Value µgA
1,2,4-Trimethylbenzene	<0.200	220 D	<0.200	<0.200	<0.200	2600	<0.200	5
1,3,5-Trimethylbenzene	<0.200	84.2	<0.200	<0.200	<0.200	750	<0.200	5
Benzene	<0.200	4000 D	+0.200	<0.200	<0.200	<10	<0.200	1
Chioroform	<0.200	+0.200	<0.200	<0.200	<0.200	<10	<0.200	7
Cis-1,2-Dichloroethylene	<0.200	<0.200	<0.200	<0.200	<0.200	<10	<0.200	5
Ethylbenzene	<0.200	720 D	<0.200	<0.200	<0.200	4600	<0.200	5
sopropylbenzene	<0.200	45.7	<0.200	<0.200	<0.200	130	<0.200	5
n.p-Xylene	<0.400	960 D	<0.400	<0.400	<0.400	13800	<0.400	5
aphthalene	<0.200	210 D	<0.200	<0.200	<0.200	500	+0.200	10
-Butylbenzene	<0.200	5.8	+0.200	<0.200	<0.200	<10	<0.200	5
I-Propylbenzene	<0.200	98.4	<0.200	<0.200	<0.200	400	<0.200	5
O-Xylene	<0.200	170	<0.200	<0.200	<0.200	5100	<0.200	5
-isopropyttoluene	<0.200	1.6	<0.200	<0.200	<0.200	14.5 J	<0.200	5
Sec-Butylbenzene	<0.200	3.8	<0.200	<0.200	<0.200	30.0 J	<0.200	5
ert-Butyl Methyl Ether	39.6	46.9	<0.500	1.6	<0.500	<25.0	<0.500	10
etrachloroethviene	<0.200	<0.200	<0.200	<0.200	<0.200	<10	1	5
Foluene	<0.200	140	<0.200	<0.200	<0.200	530	<0.200	5
Trichloroethylene	<0.200	<0.200	<0.200	<0.200	<0.200	<10	<0.200	5
		And the	Starte .	-	1000		-	NYSDEC Class GA
Sample ID	GW-16	GW-17	GW-18	MW-E	MW-F	MW-G	MW-H	Standard or
Sampling Date	6/26/2014	6/26/2014	6/26/2014	6/27/2014	6/27/2014	6/27/2014	6/27/2014	Guidance Value ug/
Units	µg/ī	µg/l	hðų	µg/l	hði	μдл	hðy	1.
,2,4-Trimethylbenzene	<0.200	+0.200	<0.200	<0.200	4.9	130	0.810 J	5
3.5-Trimethylbenzene						56.6		
tere in the second second second	<0.200	<0.200	<0.200	<0.200	4.8	20.0	<0.200	5
	<0.200	<0.200	-0.200	~0.200	640 D	1200 D	<0.200 <0.200	1
lenzene	and the second se					and the second se		
lenzene chloroform	2	<0.200	-0.200	~0.200	640 D	1200 D	+0.200	1 7 5
lenzene hioroform 38-1,2-Dichloroethylene	2 <0.200	<0.200 0.870 J	⊲0.200 15.8	<0.200 <0.200	640 D <0.200	1200 D <0.200	+0.200 +0.200	1 7 5 5
lenzene hioroform XIa-1,2-Dichloroethylene thylbenzene	2 <0.200 7.6	<0.200 0.870 J 5.9	<0.200 15.8 <0.200	<0.200 <0.200 <0.200	640 D <0.200 <0.200	1200 D <0.200 <0.200	+0.200 +0.200 +0.200	1 7 5
Senzene Chloroform Cla-1,2-Dichloroethylene Chylbenzene sopropylbenzene	2 <0.200 7.6 <0.200	<0.200 0.870 J 5.9 <0.200	<0.200 15.8 <0.200 <0.200	<0.200 <0.200 <0.200 <0.200	640 D <0.200 <0.200 190 D	1200 D <0.200 <0.200 140 D	<0.200 <0.200 <0.200 1.4	1 7 5 5
Senzene Chloroform Cla-1,2-Dichloroethylene Sthylbenzene sopropylbenzene n,p-Xylene	2 <0.200 7.6 <0.200 <0.200	<0.200 0.870 J 5.9 <0.200 <0.200	<0.200 15.8 <0.200 <0.200 <0.200	<0.200 <0.200 <0.200 <0.200 <0.200 <0.200	640 D <0.200 <0.200 190 D 14.7	1200 D ≪0.200 ≪0.200 140 D 10.5	<0.200 <0.200 <0.200 1.4 <0.200	1 7 5 5
Senzene Chloroform Cle-1,2-Dichloroethylene Sthylbenzene sopropylbenzene n,p-Xylene Laphthalene	2 <0.200 7.6 <0.200 <0.200 <0.200 <0.400	<0.200 0.870 J 5.9 <0.200 <0.200 <0.200 <0.400	<0.200 15.8 <0.200 <0.200 <0.200 <0.200 <0.400	<0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.400	640 D <0.200 <0.200 190 D 14.7 110	1200 D <0.200 <0.200 140 D 10.5 380 D	<0.200 <0.200 <0.200 1.4 <0.200 2.5	1 7 5 5 5
Senzene Chloroform Cle-1,2-Dichloroethylene Sthylbenzene sopropylbenzene n,p-Xylene Iaphthalene I-Butylbenzene	2 <0.200 7.6 <0.200 <0.200 <0.400 <0.200	<0.200 0.870 J 5.9 <0.200 <0.200 <0.400 <0.200	<0.200 15.8 <0.200 <0.200 <0.200 <0.400 <0.200	<0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.400 <0.200	640 D <0.200 <0.200 190 D 14.7 110 55.9	1200 D <0.200 <0.200 140 D 10.5 380 D 53.8	<0.200 <0.200 <0.200 1.4 <0.200 2.5 <0.200	1 7 5 5 5 5 10 5 5
enzene chloroform de-1,2-Dichloroethylene chylbenzene sopropylbenzene n,p-Xylene laphthalene I-Butylbenzene I-Propylbenzene	2 <0.200 7.6 <0.200 <0.200 <0.400 <0.200 <0.200	+0.200 0.870 J 5.9 +0.200 +0.200 +0.400 +0.200 +0.200	<0.200 15.8 <0.200 <0.200 <0.200 <0.400 <0.200 <0.200	<0.200 <0.200 <0.200 <0.200 <0.200 <0.400 <0.200 <0.200 <0.200	640 D <0.200 <0.200 190 D 14.7 110 55.9 1.7	1200 D <0.200 <0.200 140 D 10.5 380 D 53.8 1.4	+0.200 +0.200 -0.200 1.4 +0.200 2.5 +0.200 +0.200	1 7 5 5 5 5 10 5
enzene hioroform de-1,2-Dichlorosthylene thylbenzene sopropylbenzene n,p-Xylene laphthalene i-Butylbenzene i-Propylbenzene D-Xylene	2 <0.200 7.6 <0.200 <0.200 <0.400 <0.200 <0.200 <0.200 <0.200	<0.200 0.870 J 5.9 <0.200 <0.200 <0.400 <0.200 <0.200 <0.200 <0.200	<0.200 15.8 <0.200 <0.200 <0.200 <0.400 <0.200 <0.200 <0.200	<0.200 <0.200 <0.200 <0.200 <0.200 <0.400 <0.200 <0.200 <0.200 <0.200	640 D <0.200 <0.200 190 D 14.7 110 55.9 1.7 24.7	1200 D <0.200 <0.200 140 D 10.5 380 D 53.8 1.4 20.4	+0.200 +0.200 -0.200 1.4 +0.200 2.5 +0.200 +0.200 +0.200	1 7 5 5 5 5 10 5 5
enzene hloroform de-1,2-Dichloroethylene thylbenzene sopropylbenzene n,p-Xylene laphthalene I-Butylbenzene I-Propylbenzene -Xylene -Isopropyltoluene	2 <0.200 7.5 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200	<0.200 0.870 J 5.9 <0.200 <0.200 <0.400 <0.200 <0.200 <0.200 <0.200 <0.200	<0.200 15.8 <0.200 <0.200 <0.200 <0.400 <0.200 <0.200 <0.200 <0.200 <0.200	<0.200 <0.200 <0.200 <0.200 <0.200 <0.400 <0.200 <0.200 <0.200 <0.200	640 D <0.200 <0.200 190 D 14.7 110 55.9 1.7 24.7 5.4	1200 D <0.200 <0.200 140 D 10.5 380 D 53.8 1.4 20.4 20.8	+0.200 +0.200 1.4 +0.200 2.5 +0.200 +0.200 +0.200 1.3	1 7 5 5 5 10 5 5 5 5
enzene hioroform de-1,2-Dichloroethylene thylbenzene sopropylbenzene n,p-Xylene laphthalene I-Butylbenzene I-Propylbenzene I-Propylbenzene -isopropyltoluene ec-Butylbenzene	2 <0.200 7.5 <0.200 <0.200 <0.400 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200	<0.200 0.870 J 5.9 <0.200 <0.200 <0.400 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200	<0.200 15.8 <0.200 <0.200 <0.200 <0.400 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200	<0.200 <0.200 <0.200 <0.200 <0.200 <0.400 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200	640 D <0.200 <0.200 190 D 14.7 110 55.9 1.7 24.7 5.4 0.330 J	1200 D <0.200 <0.200 140 D 10.5 380 D 53.8 1.4 20.4 20.4 20.8 0.910 J	+0.200 +0.200 1.4 +0.200 2.5 +0.200 +0.200 +0.200 1.3 +0.200	1 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Senzene Chloroform Cla-1,2-Dichloroethylene Ethylbenzene sopropylbenzene h,p-Xylene laphthalene k-Butylbenzene d-Propylbenzene o-Xylene o-Xylene sec-Butylbenzene Sec-Butylbenzene Fert-Butyl Methyl Ether	2 <0.200 7.5 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200	<0.200 0.870 J 5.9 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200	<0.200 15.8 <0.200 <0.200 <0.200 <0.400 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200	<0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <1.7	640 D <0.200 <0.200 190 D 14.7 110 55.9 1.7 24.7 5.4 0.330 J 1.6	1200 D +0.200 +0.200 140 D 10.5 380 D 53.8 1.4 20.4 20.4 20.8 0.910 J 1.1	+0.200 +0.200 1.4 +0.200 2.5 +0.200 +0.200 +0.200 1.3 +0.200 1.3 +0.200 +0.200	1 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Senzene Chioroform Cla-1,2-Dichloroethylene Ethylbenzene sopropylbenzene N-P-Xylene N-Butylbenzene N-Propylbenzene O-Xylene Sec-Butylbenzene Fert-Butyl Methyl Ether Fetrachloroethylene Gluene	2 <0.200 7.6 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.55	<0.200 0.870 J 5.9 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200	<0.200 15.8 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200	<0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <1.7 <0.500	640 D <0.200 <0.200 190 D 14.7 110 55.9 1.7 24.7 5.4 0.330 J 1.6 18.8	1200 D +0.200 +0.200 140 D 10.5 380 D 53.8 1.4 20.4 20.4 20.8 0.910 J 1.1 20.8	+0.200 +0.200 1.4 +0.200 2.5 +0.200 +0.200 1.3 +0.200 1.3 +0.200 +0.200 +0.200 +0.200 +0.200 +0.200 +0.200	1 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Table 9 Detected VOC Concentrations in Groundwater above State Criteria

Footnotes/Qualifiers:

pg/l: Micrograms per liter

< Analyzed for but not detected

D: Detected at secondary dilution

J; Estimated value

Sample ID Sampling Date Units	GW-1 6/30/201 4 µg/ī	GW-5 6/23/201 4 µg/l	GW-7 6/25/201 4 µg/l	GW-3 6/25/201 4 µg/l	GW-11 6/26/201 4 µg/l	GW-13 6/30/201 4 µg/l	GW-15 6/26/201 4 µg/l	NYSDEC Class GA Standard or Guidance Value µg/l
Cresols, M&P	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1
Naphthalene	×1.0	210 D	<1.0	<1.0	<1.0	390 D	<1.0	10
Phenol	<1.0	14.5	<1.0	<1.0	<1.0	<1.0	<1.0	1
Sample ID Sampling Date Units	GW-16 6/26/201 4 µg/l	GW-17 6/26/201 4 µg/l	GW-18 6/26/201 4 µg/l	MW-E 6/27/201 4 µg/l	MW-F 6/27/201 4 µg/l	MW-G 6/27/201 4 µg/l	мw-н 6/27/201 4 µgA	NYSDEC Class GA Standard or Guidance Value µg/l
Cresols, M&P	<1.0	<1.0	<1.0	<1.0	<1.0	3.20 J	<1.0	1
Naphthalene	<1.0	<1.0	<1.0	<1.0	53.6	18.8	<1.0	10
Phenol	×1.0	<1.0	<1.0	<1.0	4.40 J	21.9	<1.0	1

Table 10 Detected SVOC Concentrations in Groundwater above State Criteria

Footnotes/Qualifiers:

µg.l: Micrograms per liter

< Analyzed for but not detected

J: Estimated value

Sample ID Sampling Date Analysis	GW-1 6/30/2014 total	GW-1 6/30/2014 dissolved	GW-5 6/23/2014 total	GW-5 6/23/2014 dissolved	GW-7 6/25/2014 total	GW-7 6/25/2014 dissolved	GW-9 6/25/2014 total	GW-9 6/25/2014 dissolved	NYSDEC Class GA Standard or Guidance Value mg/l
Units	mg/l	mg/l	mg/I	mg/T	mg/t	mg/l	mg/t	mg/l	
Beryllium	0.00059 J	<0.0005	<0.0005	+0.0005	0.0011	<0.0005	0.00011 J	<0.0005	0.003
Cadmium	0.0011	0.0011	0.0131	+0.0005	0.001 J	<0.0005	0.00024 J	<0.0005	0.005
Chromium	0.0149	0.003	0.00308	0.00262	0.0377	0.00019 J	0.0099	0.0028	0.05
Lead	0.0487	L 6600000	0.313	0.00432	0.521	<0.0005	0.0314	0.00023 J	0.025
Manganese	13.5 D	14.4 D	3.44	3.46	3.34	0.0167	0.532	0.417	0.3
Mercury	<0.0001	<0.0001	0.000113 J	<0.0001	0.000955	~D.0001	<0.0001	<0.0001	0.0007
Nickel	0.0505	0.0389	0.00845	0.00512	0.0545	0.00049 J	0.0276	0.014	0.1
Selenium	0.0036 J	0.003 J	<0.0025	0.000859 J	0.004 J	0.0011 J	0.0155	0.0164	0.01
Silver	0.000048 J	0.000048 J	0.000046 J	<0.0005	0.0011	<0.0005	0.00054 J	0.000041 J	0.05
Thaillum	0.00014 J	0.000025 J	0.00023 J	0.000062 J	0.00068 J	~0.0005	0.00019 J	0.00013 J	0.0005
Sample ID Sampling	GW-11	GW-11	GW-13	GW-13	GW-15	GW-15	GW-16	GW-16	NYSDEC Class
Date Analysis	6/26/2014 total	6/26/2014 dissolved	6/30/2014 total	G/30/2014 dissolved	6/26/2014 total	6/26/2014 dissolved	6/26/2014 total	6/26/2014 dissolved	Guidance Value
Units	mg/l	mg/l	mg/l	mg/T	mg/t	mg/l	mg/l	mg/l	
Beryllium	0.0063	<0.0005	0.0005 J	<0.0005	0.0016	<0.0005	<0.0005	<0.0005	0.003
Cadmium	0.0028	0.00037 J	0.00014 J	<0.0005	0.003	0.001 J	<0.0005	<0.0005	0.005
Chromium	0.0718	0.00062 J	0.0131	0.0012 J	0.0506	0.00055 J	0.0026	0.00091 J	0.05
Lead	0.132	0.00065 J	0.0204	0.00012 J	0.082	0.000098 J	0.0011	0.000053 J	0.025
Manganese	17.9 D	6.1	3.55	3.2	7.69	1.09	2.59	2.23	0.3
Mercury	0.000413	<0.0001	<0.0001	<0.0001	0.000186 J	<0.0001	+0.0001	<0.0001	0.0007
Nickel	0.14	0.0261	0.0184	0.0042	0.112	0.0371	0.0121	0.0091	0.1
Selenium	0.0042 J	0.0028 J	0.0024 J	0.0018 J	0.0034 J	0.0039 J	0.0027 J	0.0023 J	0.01
Silver	0.0008 J	+0.0005	0.0720 J	<0.0005	0.00061 J	<0.0005	0.0004 J	<0.0005	0.05
Thaillum	0.00079 J	0.000074 J	0.00011 J	<0.0005	0.00029 J	0.000021 J	<0.0005	<0.0005	0.0005
Sample ID Sampling Date	GW-17	GW-17	GW-18	GW-18	MW-E	MW-E	MW-F	MW-F	NYSDEC Class GA Standard or
Analysis	total	dissolved	total	dissolved	total	dissolved	total	dissolved	Guidance Value
									mg/I
Units	mg/l	mg/l	mg/I	mg/I	mg/l	mg/l	mg/l	mg/l	-
Beryllium	0.00064 J	<0.0005	<0.0005	+0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.003
Cadmium	0.00046 J	0.00023 J	0.00038 J	0.00019 J	0.00067 J	D.00062 J	0.00016 J	<0.0005	0.005
Chromium	0.0129	0.00053 J	0.0044	0.0017 J	0.0024	L 86000.0	0.002 J	0.0003 J	0.05
Lead	0.0553	0.00017 J	0.002	0.00026 J	0.0084	0.00028 J	0.0074	0.000094 J	0.025
Manganese	3.7	3.37	2.05	1.63	15.4 D	13.8 D	3.58	3.05	0.3
Mercury	0.000683	<0.0001	<0.0001	+0.0001	<0.0001	+0.0001	+0.0001	<0.0001	0.0007
Nickel	0.0315	0.0177	0.0626	0.053	0.0113	0.0075	0.0059	0.0036	0.1
Selenium	0.0158	0.0154	0.0033 J	+0.0025	0.0033 J	0.003 J	<0.0025	<0.0025	0.01
Silver	0.00044 J	<0.0005	0.00017 J	0.000058 J	<0.0005	<0.0005	0.000041 J	<0.0005	0.05
Thaillum	0.00011 J	0.00004 J	0.000047 J	0.000028 J	0.000064 J	0.000042 J	0.000042 J	0.000027 J	0.0005

Table 11 Detected Total and Dissolved Metals Concentrations in Groundwater above State Criteria

Footnotes/Qualifiers:

mg/r. Milligrams per liter

< Analyzed for but not detected

-: No standard

J: Estimated value

D: Detected at a secondary dilution

Sample ID Sampling Date Analysis Units	MW-G 6/27/2014 total mg/l	MW-G 6/27/2014 dissolved mg/l	MW-H 6/27/2014 total mg/l	MW-H 6/27/2014 dissolved mgil	NYSDEC Class GA Standard or Guidance Value mg/l
Beryllium	<0.0005	<0.0005	<0.0005	<0.0005	0.003
Cadmium	0.0005 J	+0.0005	0.0011	<0.0005	0.005
Chromlum	0.0039	0.0011 J	0.0033	0.00057 J	0.05
Lead	0.0243	0.00039 J	0.023	0.00018 J	0.025
Manganese	2.78	2.46	0.552	0.0125	0.3
Mercury	<0.0001	+0.0001	+0.0001	<0.0001	0.0007
Nickel	0.0133	0.0076	0.0045	0.0016	0.1
Selenium	0.00095 J	<0.0025	0.0012 J	<0.0025	0.01
Silver	0.000049 J	<0.0005	0.000045 J	<0.0005	0.05
Thailium	0.0001 J	0.000028 J	0.000041 J	0.000027 J	0.0005

Table 11 Detected Total and Dissolved Metals Concentrations in Groundwater above State Criteria

Footnotes/Qualifiers:

mg/r. Milligrams per liter

< Analyzed for but not detected

-: No standard

J: Estimated value

D: Detected at a secondary dilution

APPENDIX G-3

Documented USTs and ASTs

ENVIRONMENTAL CONSERVATION

Bulk Storage Database Search Details

Facility Information

Site No.: 2-297623 Status: Active Expiration Date: 05/23/2015 Site Type: PBS Site Name: DBA EAGLE WHITE PLAINS GAS CORP. Address: 1596 WHITE PLAINS ROAD Locality: NEW YORK State: NY Zipcode: 10462 County: BRONX

Owner(s) Information

Facility Owner: BROAD HILL FIRST REALTY ASSOC. LLC 21 W. 38TH ST, 8TH FL . NEW YORK, NJ. 10018 Mail Contact: EAGLE WHITE PLAINS GAS CORP. 1596 WHITE PLAINS ROAD . BRONX, NY. 10462

Tank Information

14 Tanks Found

Tank No	Tank Location	Status	Capacity (Gal.)
001	Underground	Closed - Removed	4000
002	Underground	Closed - Removed	2000
003	Underground	Closed - Removed	4000
004	Underground	Closed - Removed	4000
005	Underground	Closed - Removed	2000
006	Underground	Closed - Removed	4000
007	Underground	Closed - Removed	550
008	Underground	Closed - Removed	2000

http://www.dec.ny.gov/cfmx/extapps/derexternal/abs/details.cfm

009	Underground	In Service	4000
010	Underground	In Service	4000
011	Underground	In Service	4000
012	Underground	In Service	4000
013	Underground	In Service	4000
014	Underground	In Service	550
			Г

Refine This Search

Return To Results

Bulk Storage Database Search Details

Site No: 2-098191 Site Name: 1623 UNIONPORT RD Tank No: 001 Tank Location: Aboveground - in contact with soil Tank Status: In Service Tank Install Date: 09/12/1951 Tank Closed Date: Tank Capacity: 1500 gal. Product Stored: #2 Fuel Oil (On-Site Consumption) Percentage: 100% Tank Type: 01 - Steel/Carbon Steel/Iron Tank Internal Protection: None Tank External Protection: Painted/Asphalt Coating Tank Secondary Containment: Vault (w/o access) Tank Leak Detection: None **Overfill:** Product Level Gauge (A/G) Spill Prevention: None **Dispenser**: Suction Dispenser Pipe Location: Aboveground/Underground Combination Pipe Type: Steel/Carbon Steel/Iron Pipe External Protection: None Piping Secondary Containment: None Piping Leak Detection: Exempt Suction Piping Tank Next Test Due: Tank Last Test: Tank Test Method: Testing Not Required **Refine This Search**

Return To Facility

ENVIRONMENTAL CONSERVATION

Bulk Storage Database Search Details Facility Information

Site No.: 2-098191 Status: Active Expiration Date: 08/24/2017 Site Type: PBS Site Name: 1623 UNIONPORT RD Address: 1623 UNIONPORT RD Locality: NEW YORK State: NY Zipcode: 10462 County: BRONX

Owner(s) Information

Facility Owner: PARKDALE FIRST REALTY ASSOCIATES 21 WEST 38 STREET, FLOOR 8 . NEW YORK, NY. 10018 **Mail Contact:** PARKDALE FIRST REALTY ASSOCIATES 21 WEST 38 STREET . NEW YORK, NY. 10018

Tank Information

1 Tanks Found

Tank No	Tank Location	Status	Capacity (Gal.)
001	Aboveground - in contact with soil	In Service	1500
Refine This	Search		

Page 2 of 2

Bulk Storage Database Search Details

Site No: 2-330213 Site Name: ROSEDALE MANAGEMENT COMPANY Tank No: 001 Tank Location: Aboveground - in contact with soil Tank Status: In Service Tank Install Date: 01/01/1960 Tank Closed Date: Tank Capacity: 2000 gal. Product Stored: #2 Fuel Oil (On-Site Consumption) Percentage: 100% Tank Type: 01 - Steel/Carbon Steel/Iron Tank Internal Protection: None Tank External Protection: Painted/Asphalt Coating Tank Secondary Containment: Impervious Underlayment Tank Leak Detection: None **Overfill:** Vent Whistle Spill Prevention: None **Dispenser**: Suction Dispenser Pipe Location: Aboveground Pipe Type: Steel/Carbon Steel/Iron Pipe External Protection: Painted/Asphalt Coating Piping Secondary Containment: None Piping Leak Detection: None Tank Next Test Due: Tank Last Test: Tank Test Method: Testing Not Required **Refine This Search**

Return To Facility

ENVIRONMENTAL CONSERVATION

Bulk Storage Database Search Details

Facility Information

Site No.: 2-330213 Status: Active Expiration Date: 12/19/2015 Site Type: PBS Site Name: ROSEDALE MANAGEMENT COMPANY Address: 1603 UNIONPORT RD Locality: BRONX State: NY Zipcode: 10462 County: BRONX

Owner(s) Information

Facility Owner: ROSEDALE MANAGEMENT COMPANY 1775 BROADWAY, ROOM 424 . NEW YORK, NY. 10019 Mail Contact: ROSEDALE MANAGEMENT COMPANY 1775 BROADWAY . NEW YORK, NY. 10019

Tank Information

1 Tanks Found

Tank No	Tank Location	Status	Capacity (Gal.)	
001	Aboveground - in contact with soil	In Service	2000	_

Return To Results

Refine This Search

Page 2 of 2

APPENDIX G-4

Documented Spills

Spill Incidents Database Search Details

Spill Record

Administrative Information

DEC Region: 2 Spill Number: 8907138

Spill Date/Time

Spill Date: 06/19/1989 Spill Time: 04:30:00 PM Call Received Date: 10/19/1989 Call Received Time: 06:42:00 PM

Location

Spill Name: MERIT Address: 1596 WHITE PLAINS RD City: BRONX County: BRONX

Spill Description

Material Spilled Amount Spilled Resource Affected

Gasoline UNKNOWN Groundwater Cause: Tank Test Failure Source: Commercial/Industrial Waterbody:

Record Close

Date Spill Closed: 01/16/1990

"Date Spill Closed" means the date the spill case was closed by the case manager in the Department of Environmental Conservation (the Department). The spill case was closed because either; a) the records and data submitted indicate that the necessary cleanup and removal actions have been completed and no further remedial activities are necessary, or b) the case was closed for administrative reasons (e.g., multiple reports of a single spill consolidated into a single spill number). The Department however reserves the right to require additional remedial work in relation to the spill, if in the future it determines that further action is necessary.

If you have questions about this reported incident, please contact the Regional Office where the incident occurred.

Refine This Search

Spill Incidents Database Search Details

Spill Record

Administrative Information

DEC Region: 2 Spill Number: 9307951

Spill Date/Time

Spill Date: 09/30/1993 **Spill Time:** 10:10:00 AM **Call Received Date:** 09/30/1993 **Call Received Time:** 10:13:00 AM

Location

Spill Name: MERIT SERV STA Address: 1596 WHITE PLAINS RD City: BRONX County: BRONX

Spill Description

Material Spilled Amount Spilled Resource Affected

Gasoline UNKNOWN Soil Cause: Unknown Source: Gasoline Station or other PBS Facility Waterbody:

Record Close

Date Spill Closed: 03/19/2003

"Date Spill Closed" means the date the spill case was closed by the case manager in the Department of Environmental Conservation (the Department). The spill case was closed because either; a) the records and data submitted indicate that the necessary cleanup and removal actions have been completed and no further remedial activities are necessary, or b) the case was closed for administrative reasons (e.g., multiple reports of a single spill consolidated into a single spill number). The Department however reserves the right to require additional remedial work in relation to the spill, if in the future it determines that further action is necessary.

If you have questions about this reported incident, please contact the Regional Office where the incident occurred.

Refine This Search

APPENDIX G-5

Merritt Environmental Consulting Corp. Phase I Environmental Site Assessment (ESA) June 10, 2013 (Provided on Attached CD)

APPENDIX G-6

D&B Engineers and Architects, P.C. Phase II Environmental Site Investigation (ESI) August 22, 2014 (Provided on Attached CD)

APPENDIX H

<u>Section VII</u>. Property's Environmental History Part 6 – Owner and Operator History

- H-1. Summary of Former Owners/ Operators Information
- H-2. Former Owners' Information
- H-3. Former Operators' Information

APPENDIX H-1

SECTION VII PART 6

SUMMARY OF FORMER OWNERS/OPERATORS INFORMATION

There is no relationship between the Applicant and the former owners and operators. Additional information is provided in Appendices H-2 and H-3.

APPENDIX H-2

SECTION VII PART 6

FORMER OWNERS' INFORMATION

Lot 1 (f/k/a Lots 1, 2, 3, 4 & 5)

Address: 1584 White Plains Road, Bronx, NY

Period	Lot	Owner	Relationship to Applicant
Unknown to 11/8/1954	All of Lot 1	Park Center Realty Corporation	None
		21 West 38th Street, Floor 8, NY, NY 10018	
11/8/1954 to Present	All of Lot 1	West Lane Realty Corporation	None
		21 West 38th Street, Floor 8, NY, NY 10018	

Lot 7 (f/k/a Lots 7, 12, 13, 14, and 16)

Address 1596 White Plains Road, Bronx, NY

Period	Lot	Owner	Relationship to Applicant
Unknown to 10/20/1949	Part of Lot 7	Park Plains, Inc 21 West 38th Street, Floor 8, NY, NY 10018	None
Unknown to 10/20/1949	Part of lot 7	Parkdale Center Realty Corp 21 West 38th Street, Floor 8, NY, NY 10018	None
Unknown to 10/20/1949	Part of Lot 7	Jacob Aisenberg & Samuel Fine <i>Contact Information</i> <i>Unknown</i>	None

Period	Lot	Owner	Relationship to Applicant
10/20/1949 to 12/26/1986	All of Lot 7	Parkdale Realty Corp 21 West 38th Street, Floor 8, NY, NY 10018	None
12/16/1986 to current	All of Lot 7	Parkdale First Realty Associates 21 West 38th Street, Floor 8, NY, NY 10018	None

Lot 8 (f/k/a Lots 8,9, 10, 11, and 12)

Address 1596 White Plains Road, Bronx, NY /1880 E. Tremont Avenue, Bronx, NY

Period	Lot	Owner	Relationship to Applicant
Unknown to 4/3/1940	Part of Lot 8	Joseph P. Zolot Contact Information Unknown	None
Unknown to 6/5/1952	Part of Lot 7	Parkdale Realty Corporation 21 West 38th Street, Floor 8, NY, NY 10018	None
4/3/1940 to 12/26/1986	Part of Lot 8	Broad Hill, Inc. 21 West 38th Street, Floor 8, NY, NY 10018	None
12/26/1986 to current	All of Lot 8	Broad Hill First Reality Associates 21 West 38th Street, Floor 8, NY, NY 10018	None

Lot 17 (f/k/a Lots 17, 19, 20, 21, 22, p/o 106&107)

Address: 1603-1617 Unionport Road, Bronx, NY

Period	Lot	Owner	Relationship to Applicant
Unknown to 1/4/1946	Part of Lot 17	Park Plains, Inc. Contact Information Unknown	None
1/4/1946	Part of Lot 17	Park Center Realty Corp.	None
Unknown to 1/4/1946	Part of Lot 17	Jacob Aisenberg & Samuel Fine <i>Contact Information</i> <i>Unknown</i>	None
1/4/1946 to current	Part of Lot 17	Park Center Realty Corp. 21 West 38th Street, Floor 8, NY, NY 10018	None
Unknown to 10/20/1949	Part of Lot 17	Jacob Aisenberg & Samuel Fine Contact Information Unknown	None
10/20/1949 to current	Part of Lot 17	Park Center Realty Corp. 21 West 38th Street, Floor 8, NY, NY 10018	None
Unknown to 10/20/1949	Part of Lot 17	Park Plains Inc. Contact Information Unknown	None
Unknown to 6/5/1952	Part of Lot 17	Parkdale Realty Corporation 21 West 38th Street, Floor 8, NY, NY 10018	None

Period	Lot	Owner	Relationship to Applicant
6/5/1952 to Current	Part of Lot 17	Park Center Realty Corp	None
		21 West 38th Street, Floor 8, NY, NY 10018	

Lot 23 (f/k/a Lots 40, 23 to 33)

Address: 1572-1578 White Plains Road / 1895 Guerlain Street, Bronx, NY

Period	Lot	Owner	Relationship to Applicant
Unknown to 10/1/1941	Part of Lot 23	Nathan Goldshlag Contact Information Unknown	None
Unknown to 10/1/1941	Part of Lot 23	Key Realty Contact Information Unknown	None
10/1/1941 to Present	All of Lot 23	Park Plains Inc. 21 West 38th Street, Floor 8, NY, NY 10018	None

February 03, 2015

Pryor Cashman LLP 7 Times Square New York, NY 100336 Attn: Ronald B. Kremnitzer, Esq.

Re:Title No.NY140749Premises1572-1578 White Plains Road a/k/a 1895 Guerlain Street, Bronx, NY
Block 3952 Lot 23 (f/k/a Lots 40, 23 through 33)
Bronx County

Dear Mr. Kremnitzer:

With reference to the above captioned property, we conducted a 75 Years Deed Chain search. The following deeds were found of record:

DEED CHAIN:

- 1. Deed made by Nathan Goldshlag to Park Plains Inc., a New York corporation dated October 1, 1941 and recorded on October 14, 1941 in Liber 1152 Cp 38 (Affecting part of Old Tax Lots No. 27, 28 and 29)
- 2. Deed made by Key Realty Corporation to Park Plains Inc., a New York corporation dated October 1, 1941 and recorded on October 14, 1941 in Liber 1152 Cp 34 (Affecting Old Tax Lots No. 30, 31, 32 and 33)
- 3. Deed made by Nathan Goldshlag to Park Plains Inc., a New York corporation dated October 1, 1941 and recorded on December 29, 1941 in Liber 1164 Cp 461 (Affecting part of Old Tax Lots 23, 24, 25, 26, 27 and 28)

If you have any questions or comments, or if I may be of further assistance, please contact me.

Thank you in advance for your cooperation.

Ali Chen

Alice Chan

February 03, 2015

Pryor Cashman LLP 7 Times Square New York, NY 100336 Attn: Ronald B. Kremnitzer, Esq.

Re:Title No.NY140750Premises1596 White Plains Road, Bronx, NY
Block 3952 Lot 8 (f/k/a Lots 8, 9, 10, 11, and 12)
Bronx County

Dear Mr. Kremnitzer:

With reference to the above captioned property, we conducted a 75 Years Deed Chain search. The following deeds were found of record:

DEED CHAIN:

- 1. Deed made by Joseph P. Zolot to Broad Hill Inc., dated 4/3/1940 and recorded on 7/25/1940 in Liber 1074 Cp. 12. (Affects Part of Old Tax Lot 8)
- 2. Deed made by Parkdale Realty Corporation to Broad Hill Inc., dated 6/5/1952 and recorded on 6/6/1952 in Liber 1923 Cp. 496. (Affects Part of Old Tax Lot 7)
- 3. Deed made by Broad Hill Inc. to Broad Hill First Realty Associates, dated 12/26/1986 and recorded on 1/14/1987 in Reel 731 Page 2475.

If you have any questions or comments, or if I may be of further assistance, please contact me.

Thank you in advance for your cooperation.

Ali Chen

Alice Chan

February 03, 2015

Pryor Cashman LLP 7 Times Square New York, NY 100336 Attn: Ronald B. Kremnitzer, Esq.

Re:	Title No.	NY140751
	Premises	1603-1617 Unionport Road, Bronx, NY
		Block 3952 Lot 17 (f/k/a Lots 17, 19, 20, 21, 22, p/o 106 & 107)
		Bronx County

Dear Mr. Kremnitzer:

With reference to the above captioned property, we conducted a 75 Years Deed Chain search. The following deeds were found of record:

DEED CHAIN:

- 1. Deed made by Park Plains Inc. to Park Center Realty Corp., dated 1/4/1946 and recorded on 4/23/1946 in Liber 1606 Cp. 200. (Affects Old Tax Lots No. 19, 20, 21 and 22)
- 2. Deed made by Jacob Aisenberg and Samuel Fine to Park Center Realty Corp., dated 1/4/1946 and recorded on 4/23/1946 in Liber 1606 Cp. 196. (Affects Part of Old Tax Lot No. 17)
- 3. Deed made by Jacob Aisenberg and Samuel Fine to Park Center Realty Corp., dated 10/20/1949 and recorded on 10/26/1949 in Liber 1715 Cp. 360. (Affects Part of Old Tax Lot No. 17)
- 4. Deed made by Park Plains Inc. to Park Center Realty Corp., dated 10/20/1949 and recorded on 10/26/1949 in Liber 1715 Cp 368. (Affects Part of Old Tax Lot No. 17)
- 5. Deed made by Parkdale Realty Corporation to Park Center Realty Corp., dated 6/5/1952 and recorded on 7/3/1952 in Liber 1929 Cp 425. (Affects Part of Old Tax Lot No. 17).

If you have any questions or comments, or if I may be of further assistance, please contact me.

Thank you in advance for your cooperation.

Ali Chen

Alice Chan

February 03, 2015

Pryor Cashman LLP 7 Times Square New York, NY 100336 Attn: Ronald B. Kremnitzer, Esq.

Re:Title No.NY140752Premises1584 White Plains Road, Bronx, NY
Block 3952 Lot 1 (f/k/a Lots 1, 2, 3, 4 & 5)
Bronx County

Dear Mr. Kremnitzer:

With reference to the above captioned property, we conducted a 75 Years Deed Chain search. The following deeds were found of record:

DEED CHAIN:

1. Deed made by Park Center Realty Corporation to West Lane Realty Corporation,, dated 11/8/1954 and recorded on 11/12/1954 in Liber 2098 Cp 426.

If you have any questions or comments, or if I may be of further assistance, please contact me.

Thank you in advance for your cooperation.

Ali Chen

Alice Chan

February 03, 2015

Pryor Cashman LLP 7 Times Square New York, NY 100336 Attn: Ronald B. Kremnitzer, Esq.

Re: Title No. NY140753 Premises 1619-1627 Unionport Road, Bronx, NY Block 3952 Lot 7 (f/k/a Lots 7, 12, 13, 14 & 16) Bronx County

Dear Mr. Kremnitzer:

With reference to the above captioned property, we conducted a 75 Years Deed Chain search. The following deeds were found of record:

DEED CHAIN:

- 1. Deed made by Park Plains Inc. to Parkdale Realty Corp., dated 10/20/1949 and recorded on 10/26/1949 in Liber 1715 Cp. 364. (Affects Part of Old Lot 7)
- 2. Deed made by Parkdale Center Realty Corp. to Parkdale Realty Corp., dated 10/20/1949 and recorded on 10/26/1949 in Liber 1715 Page 376. (Affects Part of Old Lot 7)
- 3. Deed made by Jacob Aisenberg and Samuel Fine to Parkdale Realty Corp., dated 10/20/1949 and recorded on 10/26/1949 in Liber 1715 Cp. 356. (Affects Part of Old Lot 7)
- 4. Deed made by Jacob Aisenberg and Samuel Fine to Parkdale Realty Corporation, dated 11/10/1949 and recorded on 11/15/1949 in Liber 1719 Cp. 349. Corrects Deed recorded in Liber 1715 Cp. 356. (Affects Part of Old Lot 7)
- 5. Deed made by Parkdale Realty Corporation to Parkdale First Realty Associates, LLC, a New York limited liability company, (successor by conversion to Parkdale First Realty Associates, a New York Co-partnership, dated 12/26/1986 and recorded on 1/14/1987 in Reel 731 Page 2479.

If you have any questions or comments, or if I may be of further assistance, please contact me.

Thank you in advance for your cooperation.

Ali Chen

Alice Chan

APPENDIX H-3

SECTION VII PART 6

FORMER OPERATORS' INFORMATION

* Please note: There is no relationship between the Applicant and the Former Operators

YEAR	USES	SOURCE
	LOT	` 8
1596 White	e Plains Road / 1880 East Tremont Avenue	
1992	Merit Oil of New York, Inc.	ACRIS
1971	Save Way Roadway, Inc.	ACRIS
1969	Gulf Oil Corporation	ACRIS
Guerlain S	Street	
	LOT	23
1905 Guer	lain Street	
2012	One Stop Convenience	Cole Information Services
2007	One Stop Convenience	Cole Information Services
2005	Myung Shin Luncheonette Inc.	Hill-Donnelly Information S
2000	Myung Shin Lnchntt	Cole Information Services
1961	Ben & Sam Lunchnet Inc.	New York Telephone
UNION PO	ORT ROAD	
1597 Unior	nport Road	
2012	A 24 Hour Emergency Locksmith	Cole Information Services
	Christies Beauty Salon	Cole Information Services
	Parkchester Family Practice	Cole Information Services
	Sun Dry Cleaners	Cole Information Services
2007	1663 Cleaners Inc.	Cole Information Services
	Beas Gatherings Inc.	Cole Information Services
	Christi Beauty Salon	Cole Information Services
	Park Chester Family Practice	Cole Information Services

YEAR	USES	SOURCE
	LOT 17	
1603 Unior	nport Road	
2012	Furniture World	Cole Information Services
2007	Furniture World	Cole Information Services
	LOT 7	
1619 Unior	nport Road	
2012	Orchid Beauty Salon	Cole Information Services
2007	Orchid Beauty Salon	Cole Information Services
Unionport	Road	
	LOT 23	
1597A Uni	onport Road	
2005	Christies Beauty Salon I Daisy Cleaners	Hill-Donnelly Information Services
	Daisy Cleaners	Hill-Donnelly Information Services
	Parkchester Family Practice	Hill-Donnelly Information Services
2000	Bees Gatherings	Cole Information Services
	Daisy Cleaners	Cole Information Services
	Parkchester Family Practice	Cole Information Services
1993	Daisy Cleaners	New York Telephone
1983	Bea S Gatherings	New York Telephone
	Daisy Cleaners	New York Telephone
	K S Discount	New York Telephone
1976	African & Haitian Gallery of Antiguity Inc.	New York Telephone Company
	Beauty Box II	New York Telephone Company
	Charles Beauty Salon	New York Telephone Company
	Charles Hairstylists	New York Telephone Company
	Electrolux Corp Vacuum Cleaners Bronx Branch	New York Telephone Company
	Fiesta Travel Inc.	New York Telephone Company
	Sports Packages Inc.	New York Telephone Company
1971	Ben S Svce Lndret	New York Telephone

YEAR	USES	SOURCE
	Charles Beauty Salon	New York Telephone
	Daisy Cleanrs & Shirt Lnderers Stores	New York Telephone
	Fiesta Travel Inc.	New York Telephone
	M & B Floor Covering Inc.	New York Telephone
1965	Ben S Svce Lndret	New York Telephone Company
	Charles Beauty Salon	New York Telephone Company
	Daisy Cleanrs & Shirt Lnderers Stores	New York Telephone Company
	Food Farmery	New York Telephone Company
	Gunhill Cleanrs Inc.	New York Telephone Company
1961	Chester Pk Fruiterers	New York Telephone
	Food Farmery	New York Telephone
	Self Svce Laundry	New York Telephone
	LOT 17	
1603 Union	oort Road	
2005	Furniture World Corp I	Hill-Donnelly Information Services
2000	Parchester CC Inc.	Cole Information Services
1983	Palace Theatre Corp	New York Telephone
1971	Palace Theatre	New York Telephone
1965	Palace Theatre	New York Telephone Company
1961	Palace Theatre	New York Telephone
	LOT 7	
1619 Union	oort Road	
2005	Orchid Beauty Salon	Hill-Donnelly Information Services
2000	The Orchid Bty Sin	Cole Information Services
1993	Orchid Beauty Salon The Bronx	New York Telephone
1983	Orchid Beauty Salon The Bronx	New York Telephone
1976	Autumn Gift Shop	New York Telephone Company
1971	Lando Robert Hairstylst Inc.	New York Telephone
	Robert Lando Hairstylst Inc.	New York Telephone
1965	Lando Robert Hairstylst Inc.	New York Telephone Company

YEAR	USES	SOURCE
	Robert Lando Hairstylst Inc.	New York Telephone Company
WHITE P	LAINS ROAD	
	LOI	S 23
1578 White	e Plains Road	
2012	Kenmar Shirts Inc.	Cole Information Services
2007	Kenmar Shirts Apparel Printing	Cole Information Services
2005	Retail Dry Goods Co Inc.	Cole Information Services
	Apparel Printing	Hill-Donnelly Information Services
	Kenmar Shirts Inc.	Hill-Donnelly Information Services
2000	Apparel Printing	Cole Information Services
	Kenmar Shirts Inc.	Cole Information Services
1993	Kenmar Shirt Inc.	New York Telephone
1983	Kenmar Shirt Supl	New York Telephone
	LOI	S 23
1580 White	e Plains Road	
2005	1584 NCL	Hill Donnelly Information Services
1993	Playdrome Bowling Cntr	New York Telephone
	Playdrome Inc.	New York Telephone
1983	Playdrome Bowling Cntr	New York Telephone Company
1976	Playdrome Bowling Cntr	New York Telephone
	Playdrome Inc.	New York Telephone Company
1971	Playdrome Bowling Cntr	New York Telephone
	Playdrome Inc.	New York Telephone
1965	Playdrome Bowling Cntr	New York Telephone Company
	Playdrome Inc.	New York Telephone Company
1961	Playdrome Inc.	New York Telephone
1956	Playdrome Inc.	New York Telephone
1949	Playdrome Inc.	New York Telephone

YEAR	USES	SOURCE
	LOT 1	
1584 White	e Plains Road	
2012	Divine Monuments	Cole Information Services
2007	McConneghey Bang Ensign Corp	Cole Information Services
2000	Gage Plumbing Corp	Cole Information Services
1993	Gage Plumbing Corp	New York Telephone
1983	Gage Plumbing Corp	New York Telephone
1971	Stanton Cleaners & Dyers of Parkchester	New York Telephone
	Stanton Cleanrs & Dyers of Parkchester	New York Telephone
1961	Stanton Cleaners & Dyers of Parkchester	New York Telephone
1931	Daly Thos B	Manhattan And Bronx Directory Publishing Company Residential Directory
	LOT 1	· ·
1586 White	e Plains Road	
2012	1 Emergency Locksmith 24 Hour	Cole Information Services
	Dan Kofi Fashions	Cole Information Services
2007	Dan Kofi Fashions	Cole Information Services
	Rossi E	Cole Information Services
2005	Dan Kofi Fashions	Hill Donnelly Information Services
	Hair Braiding 1 S	Hill-Donnelly Information Services
	Rossi E	Hill-Donnelly Information Services
2000	A Rossi E	Cole Information Services
	Building	Cole Information Services
	Shammys Caribbean	Cole Information Services
1971	Kelly Patrick J	New York Telephone
1931	Becker Nathan	Manhattan And Bronx Directory Publishing Company Residential Directory
	LOT 1	
1586A Wh	ite Plains Road	
1993	Rossi E Tailor	New York Telephone

YEAR	USES	SOURCE
1976	Johns Quality Meats	New York Telephone Company
1971	John S Quality Meats	New York Telephone
1965	John S Quality Meats	New York Telephone Company
	Lovecchio John B	New York Telephone Company
1961	Ted S Quality Meat Mkt	New York Telephone
	LOT 1	
1586B Wh	ite Plains Road	
1993	Belle Brokerage	New York Telephone
1956	Fein I Frts Vegs	New York Telephone
	LOT 1	
1588 White	e Plains Road	
2012	Belle Brokerageins Agency	Cole Information Services
	Millys Hairstyle Inc.	Cole Information Services
	P P H Tax Centers	Cole Information Services
2007	Belle Brokerage	Cole Information Services
	Millie Unisex Professional	Cole Information Services
2005	Belle Brokerage 1 F	Hill-Donnelly Information Services
	Millys Hairstyle Inc. 1 S	Hill-Donnelly Information Services
	P P H Tax Ctr	Hill-Donnelly Information Services
	Pph Tax Ctr 15s	Hill-Donnelly Information Services
2000	B ABC Fabrics	Cole Information Services
	Belle Brokerage	Cole Information Services
	Building	Cole Information Services
1993	Royal Shade & Blind Co Bronx	New York Telephone
	Royal Table Pad & Venetian Blind Co.	New York Telephone
1971	Sol S Dairy	New York Telephone
	LOT 1	
1588A Wh	ite Plains Road	
1976	Sol S Dairy	New York Telephone Company
1965	Leons Dairy	New York Telephone Company

YEAR	USES	SOURCE
	LOT 1	
1588B Wh	ite Plains Road	
1965	Loren Wigs & Hair Stylists Inc.	New York Telephone Company
	Loren Wigs & Hair Stylists Inc.	New York Telephone Company
1961	Freddy's Beauty Salon	New York Telephone
	LOT 1	
1590 White	e Plains Road	
2007	1590 White Plains Road Laundromat Co	Cole Information Services
2005	h Flynn Jv	Hill Donnelly Information Services
1971	Sal Tone Laundry Center Inc.	New York Telephone
1965	Half Hour Laundoromat	New York Telephone Company
1961	Half Hour Laundoromat	New York Telephone
1940	Westchester Social Club	New York Telephone
WHITE P	LAINS ROAD	
	LOT 23	
1578 White	e Plains Road	
2005	Apparel Printing	Hill Donnelly Information Services
	Kenmar Shirts Inc.	Hill Donnelly Information Services
2000	Apparel Printing	Cole Information Services
	Kenmar Shirts Inc.	Cole Information Services
1993	Kenmar Shirts Inc.	New York Telephone
1983	Kenmar Shirts Supl	New York Telephone
	LOT 1	
1584 White	e Plains Road	
2000	Gage Plumbing Corp	Cole Information Services
1993	Gage Plumbing Corp	New York Telephone
1983	Gage Plumbing Corp	New York Telephone
1971	Stanton Cleaners & Dyers Of Parkchester	New York Telephone
	Stanton Cleanrs & Dyers Of Parkchester	New York Telephone
1961	Stanton Cleanrs & Dyers Of Parkchester	New York Telephone

YEAR	USES	SOURCE
1931	Daly Thos B	Manhattan And Bronx Director Publishing Company Residential Directory
	LO	T 1
1586A Wh	ite Plains Road	
2005	Dan Kofi Fashions	Hill Donnelly Information Services
	Hair Braiding 1 S	Hill Donnelly Information Services
	Rossi E	Hill Donnelly Information Services
2000	A Rossie	Cole Information Services
	Building	Cole Information Services
	Shammys Caribbean	Cole Information Services
1971	Kelly Patrick J	New York Telephone
1931	Becker Nathan	Manhattan And Bronx Directory Publishing Company Residential Directory
	LO	T 1
1592 Whit	e Plains Road	
1983	Boaz & Vincent Inc.	New York Telephone
1976	M & B Floor Covering Inc.	New York Telephone Company
1971	Honigs Pkwy Inc.	New York Telephone
1965	Honigs Pkwy Inc.	New York Telephone Company
1961	Dollar Wise Sales Corp	New York Telephone
1956	Marty S Hrdwr & Paint	New York Telephone

M9505

1584 WHITE PLAINS RD Bronx, NY 10462

Inquiry Number: 3604448.6 May 14, 2013

The EDR-City Directory Abstract

440 Wheelers Farms Road Milford, CT 06461 800.352.0050 www.edmet.com

TABLE OF CONTENTS

SECTION

Executive Summary

Findings

City Directory Images

Thank you for your business. Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OR DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction orforecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2013 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc. or its affiliates is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

DESCRIPTION

Environmental Data Resources, Inc.'s (EDR) City Directory Abstract is a screening tool designed to assist environmental professionals in evaluating potential liability on a target property resulting from past activities. EDR's City Directory Abstract includes a search and abstract of available city directory data. For each address, the directory lists the name of the corresponding occupant at five year intervals.

Business directories including city, cross reference and telephone directories were reviewed, if available, at approximately five year intervals for the years spanning 1927 through 2012. This report compiles information gathered in this review by geocoding the latitude and longitude of properties identified and gathering information about properties within 100 feet of the target property.

A summary of the information obtained is provided in the text of this report.

RESEARCH SUMMARY

The following research sources were consulted in the preparation of this report. An "X" indicates where information was identified in the source and provided in this report.

<u>Year</u>	Source	IP	<u>Adioinina</u>	Text Abstract	Source Image
2012	Cole Information Services	Х	X	Х	-
2005	Hill-Donnelly Information Services	-	х	Х	-
	Hill-Donnelly Information Services	Х	х	Х	-
2000	Cole Information Services	Х	х	х	-
1993	New York Telephone	Х	х	Х	-
1983	New York Telephone	Х	х	Х	-
1976	New York Telephone Company	-	Х	Х	-
	New York Telephone Company	Х	Х	Х	-
1971	New York Telephone	Х	Х	Х	-
1965	New York Telephone Company	-	Х	Х	-
	New York Telephone Company	Х	Х	Х	-
1961	New York Telephone	Х	х	Х	-
1956	New York Telephone	-	х	Х	-
	New York Telephone	Х	х	Х	-
1949	New York Telephone	-	х	Х	-
	New York Telephone	Х	х	Х	-
1940	New York Telephone	-	Х	Х	-
	New York Telephone	Х	х	Х	-
1931	Manhattan and Bronx Directory Publishing Company Residential Directory	Х	X	X	-
1927	New York Telephone	-	-	-	-

EXECUTIVE SUMMARY	

SELECTED ADDRESSES

The following addresses were selected by the client, for EDR to research. An "X" indicates where information was identified.

Address	<u>Түре</u>	<u>Findinas</u>
1578 WHITE PLAINS ROAD	Client Entered	Х
1584 WHITE PLAINS ROAD	Client Entered	Х
1586A WHITE PLAINS ROAD	Client Entered	Х
1592 WHITE PLAINS ROAD	Client Entered	х
1894A EAST TREMONT AVENUE	Client Entered	Х
1597A UNIONPORT ROAD	Client Entered	х
1603 UNIONPORT ROAD	Client Entered	х
1619 UNIONPORT ROAD	Client Entered	х
1905 GUERLAIN STREET	Client Entered	х

<u>Source</u>

Cole Information Services Cole Information Services

TARGET PROPERTY INFORMATION

ADDRESS

1584 WHITE PLAINS RD Bronx, NY 10462

FINDINGS DETAIL

Target Property research detail.

GUERLAIN ST

1905 GUERLAIN ST

<u>Year</u>	<u>Uses</u>
2012	ONE STOP CONVENIENCE
2007	ONE STOP CONVENIENCE

GUERLAIN STREET

1905 GUERLAIN STREET

<u>Year</u>	<u>Uses</u>	Source
2005	Myung Shin Luncheonette Inc	Hill-Donnelly Information Services
2000	MYUNG SHN LNCHNTT	Cole Information Services
1 9 61	BEN & SAM LUNCHNET INC	New York Telephone

UNIONPORT RD

1597 UNIONPORT RD

<u>Year</u>	<u>Uses</u>	<u>Source</u>
2012	A 24 HOUR EMERGENCY LOCKSMITH	Cole Information Services
	CHRISTIES BEAUTY SALON	Cole Information Services
	PARKCHESTER FAMILY PRACTICE	Cole Information Services
	SUN DRY CLEANERS	Cole Information Services
2007	1663 CLEANERS INC	Cole Information Services
	BEAS GATHERINGS INC	Cole Information Services
	CHRISTI BEAUTY SALON	Cole Information Services
	PARK CHESTER FAMILY PRACTICE	Cole Information Services

1603 UNIONPORT RD

<u>Year</u>	<u>Uşes</u>
2012	FURNITURE WORLD
2007	FURNITURE WORLD

<u>Source</u>

Cole Information Services Cole Information Services Source

1619 UNIONPORT RD

<u>Year</u>	<u>Uses</u>
2012	ORCHID BEAUTY SALON
2007	ORCHID BEAUTY SALON

UNIONPORT ROAD

2005

2000

1993

1983

1976

1971

1597A UNIONPORT ROAD

<u>Year</u> <u>Uses</u> Source Hill-Donnelly Information Services Christies Beauty Salon i **Daisy Cleaners** Parkchester Family Practice BEES GATHERINGS DAISY CLEANERS PRKCHSTR FMLY PROC DAISY CLEANERS **BEA S GATHERINGS** DAISY CLEANERS K S DISCOUNT AFRICAN & HAITIAN GALLERY OF ANTIGUITY INC BEAUTY BOX II CHARLES BEAUTY SALON CHARLES HAIRSTYLISTS ELECTROLUX CORP VACUUM CLEANERS BRONX BRANCH FIESTA TRAVEL INC SPORTS PACKAGES INC BEN S SVCE LNDRET CHARLES BEAUTY SALON DAISY CLEANRS & SHIRT LNDERERS STORES FIESTA TRAVEL INC M & B FLOOR COVERING INC

1965 BEN S SVCE LNDRET CHARLES BEAUTY SALON DAISY CLEANRS & SHIRT LNDERERS STORES FOOD FARMERY **GUNHILL CLEANRS INC**

1961 CHESTER PK FRUITERERS Cole Information Services Cole Information Services

Hill-Donnelly Information Services Hill-Donnelly Information Services Cole Information Services Cole Information Services Cole Information Services New York Telephone Company New York Telephone Company New York Telephone Company New York Telephone Company New York Telephone Company

New York Telephone Company New York Telephone

Year Uses

1961	FOOD FARMERY	
	SELF SVCE LAUNDRY	

1603 UNIONPORT ROAD

<u>Year</u>	<u>Uses</u>	
20 0 5	Furniture World Corp I	
2000	PARCHESTER CC INC	
1983	PALACE THEATRE CORP	
1971	PALACE THEATR	
1965	PALACE THEATR	
1961	PALACE THEATR	
1619 UNIONPORT ROAD		

<u>Source</u>

New York Telephone New York Telephone

<u>Source</u>

Hill-Donnelly Information Services Cole Information Services New York Telephone New York Telephone New York Telephone Company New York Telephone

<u>Year</u>	<u>Uses</u>	Source
2005	Orchid Beauty Salon	Hill-Donnelly Information Services
2000	THE ORCHID BTY SIN	Cole Information Services
1993	ORCHID BEAUTY SALON THE BRONX	New York Telephone
1983	ORCHID BEAUTY SALON THE	New York Telephone
1976	AUTUMN GIFT SHOP	New York Telephone Company
1971	LANDO ROBERT HAIRSTYLST INC	New York Telephone
	ROBERT LANDO HAIRSTYLST INC	New York Telephone
1965	LANDO ROBERT HAIRSTYLST INC	New York Telephone Company
	ROBERT LANDO HAIRSTYLST INC	New York Telephone Company

WHITE PLAINS RD

1578 WHITE PLAINS RD

<u>Year</u>	<u>Uses</u>	<u>Source</u>
2012	KENMAR SHIRTS INC	Cole Informa
2007	KENMAR SHIRTS APPAREL PRINTING	Cole Informa
	RETAIL DRY GOODS CO INC	Cole Informa
2005	Apparel Printing	Hill-Donnelly
	Kenmar Shirts Inc	Hill-Donnelly
2000	APPAREL PRINTING	Cole Informa
	KENMAR SHIRTS INC	Cole Informa
1993	KENMAR SHIRTS INC	New York Te
198 3	KENMAR SHIRT SUPL	New York Te

Cole Information Services Cole Information Services Cole Information Services Hill-Donnelly Information Services Hill-Donnelly Information Services Cole Information Services Cole Information Services New York Telephone

1580 WHITE PLAINS RD

<u>Year</u>	<u>Uses</u>	Source
2005	1584 NCL	Hill-Donnelly Information Services
1993	PLAYDROME BOWLING CNTR	New York Telephone
	PLAYDROME INC	New York Telephone
1983	PLAYDROME BOWLING CNTR	New York Telephone
1976	PLAYDROME BOWLING CHTR	New York Telephone Company
	PLAYDRONE INC	New York Telephone Company
1971	PLAYDROME BOWLING CNTR	New York Telephone
	PLAYDROME INC	New York Telephone
1965	PLAYDROME BOWLING CNTR	New York Telephone Company
	PLAYDROME INC	New York Telephone Company
1961	PLAYDROME INC	New York Telephone
1956	PLAYDROME INC	New York Telephone
1949	PLAYDROME INC	New York Telephone

1584 WHITE PLAINS RD

<u>Year</u>	<u>Uses</u>	Source
2012	DIVINE MONUMENTS	Cole Information Services
2007	MCCONNEGHEY BANG ENSIGN CORP	Cole Information Services
2000	GAGE PLUMBING CORP	Cole Information Services
1993	GAGE PLUMBING CORP	New York Telephone
1983	GAGE PLUMBING CORP	New York Telephone
1971	STANTON CLEANERS & DYERS OF PARKCHESTER	New York Telephone
	STANTON CLEANRS & DYERS OF PARKCHESTER	New York Telephone
1961	STANTON CLEANERS & DYERS OF PARKCHESTER	New York Telephone
1931	Daly Thos B	Manhattan and Bronx Directory Publishing Company Residential Directory

1586 WHITE PLAINS RD

<u>Uses</u>	Source
1 EMERGENCY LOCKSMITH 24 HOUR	Cole Information Services
DAN KOFI FASHIONS	Cole Information Services
DAN KOFI FASHIONS	Cole Information Services
ROSSIE	Cole Information Services
Dan Kofi Fashions	Hill-Donnelly Information Services
Hair Braiding 1 s	Hill-Donnelly Information Services
Rossi E	Hill-Donnelly Information Services
	1 EMERGENCY LOCKSMITH 24 HOUR DAN KOFI FASHIONS DAN KOFI FASHIONS ROSSI E Dan Kofi Fashions Hair Braiding 1 s

<u>Year</u> Uses

2000	A ROSSI E
	BUILDING
	SHAMMYS CARIBBEAN
1971	KELLY PATRICK J

1931 Becker Nathan

1586A WHITE PLAINS RD

<u>Year</u>	<u>Uses</u>
1993	ROSSI E TAILOR
1976	JOHNS QUALITY MEATS
1971	JOHN S QUALITY MEATS
1965	JOHN S QUALITY MEATS
	LOVECCHIO JOHN B
1961	TED S QUALITY MEAT MKT

1586B WHITE PLAINS RD

<u>Year</u>	Uses
1993	BELLE BROKERAGE
1956	FEIN FRTS VEGS

1588 WHITE PLAINS RD

Source <u>Year</u> <u>Uses</u> 2012 BELLE BROKERAGEINS AGENCY MILLYS HAIRSTYLE INC **P P H TAX CENTERS** 2007 BELLE BROKERAGE MILLIE UNISEX PROFESSIONAL 2005 Belle Brokerage 1 F Millys Hairstyle Inc 1 s P P H Tax Ctr PPH Tax Ctr 15s 2000 **B ABC FABRICS** BELLE BROKERAGE BUILDING 1993 New York Telephone ROYAL SHADE & BLIND CO BRONX ROYAL TABLE PAD & VENETIAN BLIND CO New York Telephone 1971 SOL S DAIRY New York Telephone

Source

Cole Information Services Cole Information Services Cole Information Services New York Telephone Manhattan and Bronx Directory Publishing Company **Residential Directory**

Source

New York Telephone New York Telephone Company New York Telephone New York Telephone Company New York Telephone Company New York Telephone

Source

New York Telephone New York Telephone

Cole Information Services Cole Information Services Cole Information Services **Cole Information Services** Cole Information Services Hill-Donnelly Information Services Hill-Donnelly Information Services Hill-Donnelly Information Services Hill-Donnelly Information Services Cole Information Services Cole Information Services Cole Information Services

1588A WHITE PLAINS RD

<u>Year</u>	<u>Uses</u>
1976	SOL S DAIRY
1965	LEONS DAIRY

1588B WHITE PLAINS RD

Year <u>Uşeş</u>

<u>Year</u>

2007

2005

1971

1965

1961

1940

<u>Year</u>

2000

1993

1983

1971

1965	LOREN WIGS & HAIR STYLISTS INC
	LOREN WIGS & HAIRSTYLSTS INC
1961	FREDDY S BEAUTY SALON

Source

New York Telephone Company New York Telephone Company

Source

New York Telephone Company New York Telephone Company New York Telephone

1590 WHITE PLAINS RD <u>Uşes</u>

co

h Flynn J v

Source 1590 WHITE PLAINS ROAD LAUNDROMAT Cole Information Services

Hill-Donnelly Information Services SAL TONE LAUNDRY CENTER INC New York Telephone New York Telephone Company HALF HOUR LAUNDROMAT New York Telephone HALF HOUR LAUNOROMAT New York Telephone Westchester Social Club

WHITE PLAINS ROAD

1578 WHITE PLAINS ROAD

<u>Uses</u>

<u>Year</u>	<u>Uses</u>	Source
2005	Apparel Printing	Hill-Donnelly Information Services
	Kenmar Shirts Inc	Hill-Donnelly Information Services
2000	APPAREL PRINTING	Cole Information Services
	KENMAR SHIRTS INC	Cole Information Services
1993	KENMAR SHIRTS INC	New York Telephone
1983	KENMAR SHIRT SUPL	New York Telephone
1584 WH	IITE PLAINS ROAD	

<u>Source</u>

GAGE PLUMBING CORP	Cole I
GAGE PLUMBING CORP	New Y
GAGE PLUMBING CORP	New Y
STANTON CLEANERS & DYERS OF PARKCHESTER	New Y
CTANTON CLEANDE & DVERC OF	Now Y

STANTON CLEANRS & DYERS OF PARKCHESTER

Information Services York Telephone York Telephone York Telephone

New York Telephone

<u>Year</u>	<u>Uses</u>			
1961	STANTON CLEANERS & DYERS OF PARKCHESTER			
1931	Daly Thos B			
1586A WHITE PLAINS ROAD				
Year	Uses			
2005	Dan Kofi Fashions			
2005				
2005	Dan Kofi Fashions			
2005	Dan Kofi Fashions Hair Braiding 1 s			

Source

New York Telephone

Manhattan and Bronx Directory Publishing Company Residential Directory

<u>Source</u>

Hill-Donnelly Information Services Hill-Donnelly Information Services Hill-Donnelly Information Services Cole Information Services Cole Information Services Cole Information Services SHAMMYS CARIBBEAN New York Telephone Manhattan and Bronx Directory Publishing Company **Residential Directory**

1592 WHITE PLAINS ROAD

KELLY PATRICK J

Becker Nathan

1971

1931

<u>Year</u>	<u>Uses</u>	Source
1983	BOAZ & VINCENT INC	New York Telephone
1976	M & B FLOOR COVERING INC	New York Telephone Company
1971	HONIGS PKWY INC	New York Telephone
1965	HONIG S PKWY INC	New York Telephone Company
1961	DOLLAR WISE SALES CORP	New York Telephone
1956	MARTY S HRDWR & PAINT	New York Telephone

APPENDIX I

Section VIII. Contact List

APPENDIX I

SECTION VIII CONTACT LIST INFORMATION

i. Local Officials

Mayor Bill de Blasio City Hall New York, NY 10007-1200

Rubén Diaz NYS Senator – District 32 900 Rogers Place Bronx, NY 10459

Luis R. Sepúlveda NYS Assembly – District 87 1973 Westchester Avenue Bronx, NY 10462

Ruben Diaz, Jr. Office of the Bronx Borough President 851 Grand Concourse, 3rd Floor Bronx, NY 10451 Annabel Palma Council Member - District 18 1041 Castle Hill Avenue Bronx, NY 10472

Carl Weisbrod, Director Department of City Planning 22 Reade Street New York, NY 10007-1216

Department of City Planning Bronx Borough Office One Fordham Plaza, 5th Fl. Bronx, NY 10458-5891

ii. Current Owners and Occupants of the Subject Site and Adjacent Sites

The Site is currently owned by various entities. Current owners and operators are listed below. Some of the buildings and/or parcels are vacant. A list of adjacent properties are provided below and identified on Figure 3 in Appendix B.

Onsite	
Block 3952/Lot 1	Block 3952/Lot 1
Current Occupant	Current Occupant
1584 White Plains Road	1588A White Plains Road
Bronx, NY 10462	Bronx, NY 10462
Block 3952/Lot 1	Block 3952/Lot 1
Current Occupant	Current Occupant
1586 White Plains Road	1588B White Plains Road
Bronx, NY 10462	Bronx, NY 10462

ROUX ASSOCIATES, INC.

Block 3952/Lot 1 Current Occupant 1590 White Plains Road Bronx, NY 10462

Block 3952/Lot 1 Current Occupant 1592 White Plains Road Bronx, NY 10462

Block 3952/Lot 7 Current Occupant 1894 East Tremont Avenue Bronx, NY 10462

Block 3952/Lot 7 Current Occupant 1619 Unionport Road Bronx, NY 10462

Block 3952/Lot 7 Current Occupant 1621 Unionport Road Bronx, NY 10462

Block 3952/Lot 7 Current Occupant 1621B Unionport Road Bronx, NY 10462

Block 3952/Lot 7 Current Occupant 1623 Unionport Road Bronx, NY 10462

Block 3952/Lot 7 Current Occupant 1623 Unionport Road Suite 101, Second Floor Bronx, NY 10462 Block 3952/Lot 7 Current Occupant 1625 Unionport Road Bronx, NY 10462

Block 3952/Lot 7 Current Occupant 1625A Unionport Road Bronx, NY 10462

Block 3952/Lot 7 Current Occupant 1627 Unionport Road Bronx, NY 10462

Block 3952/Lot 8 Current Occupant 1596 White Plains Road Bronx, NY 10462

Block 3952/Lot 8 Current Occupant 1880 East Tremont Avenue Bronx, NY 10462

Block 3952/Lot 17 Current Occupant 1603 Unionport Road Bronx, NY 10462

Block 3952/Lot 17 Current Occupant 1605 Unionport Road Bronx, NY 10462

Block 3952/Lot 17 Current Occupant 1607 Unionport Road Bronx, NY 10462 Block 3952/Lot 17 Current Occupant 1609 Unionport Road Bronx, NY 10462

Block 3952/Lot 17 Current Occupant 1611 Unionport Road Bronx, NY 10462

Block 3952/Lot 17 Current Occupant 1615 Unionport Road Bronx, NY 10462

Block 3952/Lot 17 Current Occupant 1617 Unionport Road Bronx, NY 10462

Block 3952/Lot 23 Current Occupant 1597 Unionport Road Bronx, NY 10462

Block 3952/Lot 23 Current Occupant 1905 Guerlain Street Bronx, NY 10462

Block 3952/Lot 23 Current Occupant 1897 Guerlain Street Bronx, NY 10462

Block 3952/Lot 23 Current Occupant 1897-10 Guerlain Street Bronx, NY 10462 Block 3952/Lot 23 Current Occupant 1889 Guerlain Street Bronx, NY 10462

Block 3952/Lot 23 Current Occupant 1572 White Plains Road Bronx, NY 10462

Block 3952/Lot 23 Current Occupant 1574 White Plains Road Bronx, NY 10462

Block 3952/Lot 23 Current Occupant 1576 White Plains Road Bronx, NY 10462

Block 3952/Lot 23 Current Occupant 1578 White Plains Road Bronx, NY 10462

North of Site Block 4041/Lot 1 Current Occupant 1881 East Tremont Avenue Bronx, NY 10462

Block 4041/Lot 5 Current Occupant East Tremont Avenue Bronx, NY 10462

Block 4042/Lot 325 Current Occupant 1901 East Tremont Avenue Bronx, NY 10462 Block 4025/Lot 27 Current Occupant White Plains Road Bronx, NY 10460

Block 4025/Lot 35 Current Occupant 1865 East Tremont Avenue Bronx, NY 10460

West of Site

Block 3927/Lot 8 Current Occupant 1872 East Tremont Avenue Bronx, NY 10460

Block 3927/Lot 11 Current Occupant 1585 White Plains Road Bronx, NY 10462

Block 3927/Lot 16 Current Occupant 1879 Guerlain Street Bronx, NY 10460

South of Site

Block 3923/Lot 9 Current Occupant 1565 White Plains Road Bronx, NY 10460 Block 3937/Lot 133 Current Occupant 1880 Guerlain Street Bronx, NY 10462

Block 3937/Lot 7501 Current Occupant 65 Wood Road Bronx, NY 10462

East of Site Block 3944/Lot7501 Parkchester Preservation Management 2000 East Tremont Avenue Bronx, NY 10462

Block 3944/Lot 7501 Parkchester North Condominium 1970 East Tremont Avenue Bronx, NY 10462

iii. Local News Media

New York Daily News 450 West 33rd Street New York, NY 10001

The New York Times 229 West 43rd Street New York, NY 10036

Bronx Times 3604 East Tremont Avenue Bronx, NY 10465

Bronx News 135 Dreiser Loop Bronx, NY 10475

Parkchester News 135 Dreiser Loop Bronx, NY 10475 El Diario 1 Metrotech LLC 1 MetroTech Roadway Brooklyn, NY 11201

Hoy Nueva York 1 Metro Tech Center, 18th Floor Brooklyn, NY 11201

New York 1 News Chelsea Market 75 9th Avenue New York, NY 10011

1010 WINS-CBS Radio 888 7th Avenue, 10th Floor New York NY 10106

iv. Public Water Supplier

Public water is provided from Upstate NY reservoirs by the City of New York, Department of Environmental Protection (Consumer Service Center: 59-17 Junction Boulevard, 10th Floor, Flushing, NY 11373).

v. Persons Requesting to be on the Site Contact List

No persons have requested to be on the Site Contact List.

vi. School/Day Care Administration Near the Site

Schools and day care centers within a 1000 foot radius of the Site are listed below.

Community School Bronx 102/ Bronx Little	Marie's Early Learning Center
Elementary School	Administrator: Marie St. Hill
Principal: Janice Gordon	1562 White Plains Road
1827 Archer Street	Bronx, NY 10462
Bronx, NY 10460	

Little Treasures Administrator: Hilda M. Luna 1504 White Plains Road Bronx, NY 10462 Sweet Faces Daycare & Preschool Administrator: Prenda J. Jimenez 1560 White Plains Road Bronx, NY 10462

vii. Local Community Board/Civic Association

Parkchester Preservation Management 2000 East Tremont Avenue Bronx, NY 10462

Community Board #9 Bronx William Rivera 1967 Turnbull Avenue, Rm. 7 Bronx, NY 10473

Parkchester North Condominium 1970 East Tremont Avenue Bronx, NY 10462

viii. Document Repository

New York Public Library Parkchester Branch 1985 Westchester Avenue Bronx, NY 10462 (718) 829-7830 NYSDEC, Region #2 Office 47-40 21st Street Long Island City, NY 11101 (718) 482-4891

The Parkchester Branch of New York Public Library has agreed to serve as the document repository for the project. Please see attached correspondence.

Kathryn Sommo

From: Sent: To: Subject: Frank Cherena Friday, January 30, 2015 4:41 PM Joe Duminuco; Kathryn Sommo Fwd: Parkchester Public Library - Request for use as Repository for Brownfield Cleanup Site Documents

Begin forwarded message:

From: Wendy Archer <<u>wendyarcher@nypl.org</u>> Date: January 30, 2015 at 4:36:59 PM EST To: Frank Cherena <<u>fcherena@rouxinc.com</u>> Subject: Re: Parkchester Public Library - Request for use as Repository for Brownfield Cleanup Site Documents

Hello as discussed, we can house the documents and please send electronically. Thank you. Wendy Archer

On Thu, Jan 29, 2015 at 9:15 AM, Frank Cherena <<u>fcherena@rouxinc.com</u>> wrote:

Wendy,

Pleasure speaking with you. As we discussed, Roux Associates is requesting permission to use the Parkchester Public Library as a document repository for a Site applying for entry into the Brownfield Cleanup Program which is administered through the New York State Department of Environmental Conservation (NYSDEC). The NYSDEC requires a document repository be listed for the Site so that documents and reports prepared for the Site can be reviewed by concerned citizens. The Site is located at 1590 White Plains Road in the Bronx. We anticipate that the documents we produce would require providing shelf space for reports for approximately 18 to 24 months. The shelf space required would likely be about 12 inches by 12 inches and the stack of reports approximately 18 inches high. A total of six to seven reports (including the Application, Remedial Investigation Work Plan, Remedial Investigation Report, Remedial Action Work Plan, Remedial Investigation Report, We will send the reports by express delivery to your attention. If shelf space is limited electronic versions can be submitted as necessary.

Please reply indicating that use of the Parkchester Public Library as the document repository as noted above is permissible. Should you have any questions or concerns please don't hesitate to contact me at the number listed below.

Appreciate your assistance with this matter.

Frank Cherena Principal Geologist Roux Associates, Inc. 209 Shafter St Islandia, NY 11749 Tel: <u>631-232-2600</u> Fax : <u>631-232-9898</u>

fcherena@rouxinc.com

--

Wendy Archer Library Manager Parkchester Branch, New York Public Library 1985 Westchester Avenue, Bronx, New York, 10462 718-597-9386

APPENDIX J

Section IX. Land Use Factors

APPENDIX J

SECTION IX LAND USE FACTORS

- **1.** Current Use: Business operations are mixed commercial and vacant. Additional detail is provided in Appendix C.
- 2. Intended Use: See project description provided in Appendix F.
- **4. Applicable Zoning Laws:** Current the majority of the Site is zoned for residential (R6) with a commercial overlay (C2-4). A portion of the Site is (Lot 8) is zoned C8-1. The development plan is compatible with the current zoning laws; however, a zoning amendment or a special use permit may be acquired in order to maximize the development plan.
- **5. Comprehensive Plans:** As depicted in the attached Land Use Map (Appendix B), the redevelopment of Site is consistent with the surrounding community redevelopment plans. The Bronx Cooperative Development Initiative (BCDI) and the Development Study for the Bronx in part includes the following strategies to foster a sustainable regional economy:
 - "Using real estate development to anchor local economic growth;
 - *Providing resources and expertise to build local community capacity;*
 - Addressing work force needs of the cluster; and
 - Stimulating growth of related businesses and institutions in the community."

The proposed Parkchester Crossing redevelopment plans are aligned with the strategies to stimulate economic development in the local community. The redevelopment would provide residential housing, commercial business opportunities, and much needed community facilities and parking.

- 6. Environmental Justice Concerns: According to the NYSDEC data base for environmental justice concerns, Site is included as part of the Potential Environmental Justice Areas (PEJAs). The census block group ID number is 360050216021. According to the database 90.88% of the population is a minority and 9.45% of the population income is below federal poverty level.
- 8. **Population Growth Patterns:** According to population growth patterns and projections, the proposed redevelopment of Site into a mixed-use building that provides: residential, retail, and office space, with community facilities and parking, will be supportive of the growing community.

- **14. Adjacent Uses:** The adjacent uses surrounding the Site are residential, commercial, and vacant. Adjacent uses are shown on the Land Use Map provided in Appendix B.
- **15. Groundwater Vulnerability:** There are no known wellhead protection areas or specifically designated groundwater recharge areas in the vicinity of the Site. Contamination migrating from the Site would likely flow in a southerly direction. There are no sensitive natural resources located within ¹/₂ mile of the Site.
- **16. Geography and Geology:** The Site topography slopes in a southerly direction with a change in elevation from East Tremont Avenue to Guerlain Street of approximately 10 feet. Based on D&B Phase II ESI, the property lies at an elevation of approximately 50 feet above the National Geodetic Vertical Datum of 1929 (NGVD29) (an approximation of mean sea level).

According to boring logs contained within the D&B Phase II ESI, the Site was noted to be underlain by historic fill material consisting of fine to coarse sands, gravels, brick, concrete, asphalt, slag, and cinders. A silt and fine sand layer with decomposed weathered rock fragments was observed beneath the historic fill layer during the D&B Phase II ESI. Competent bedrock was not encountered during the D&B Phase II ESI.

The D&B Phase II ESI borings logs indicated groundwater was encountered approximately 9 to 22 feet below grade and most likely flows in a southerly direction toward the Bronx River located approximately 0.75 miles from the Site. However, actual groundwater flow direction at the Site can be affected by many factors including, seasonal variation, past filling activities during Site construction, underground utilities and other subsurface openings or obstructions such as basements.